Logo
Please use this identifier to cite or link to this item: http://20.198.91.3:8080/jspui/handle/123456789/9091
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMandal, Chinatan Kumar-
dc.contributor.authorRoy, Amartya-
dc.date.accessioned2025-10-31T05:40:50Z-
dc.date.available2025-10-31T05:40:50Z-
dc.date.issued2023-
dc.date.submitted2023-
dc.identifier.otherDC3846-
dc.identifier.urihttp://20.198.91.3:8080/jspui/handle/123456789/9091-
dc.description.abstractThis study focuses on Bengali text classification using machine learning and deep learning techniques. The research explores the efficacy of multilingual pre-trained models for Bengali text classification tasks and proposes algorithms to address challenges related to base classifier selection and input length constraints in existing models. The findings contribute to the advancement of Bengali text classification techniques by identifying effective pre-trained models, optimizing ensemble model selection, and bypassing the input length constraint of BERT models. The outcomes of this research have practical implications for improving the accuracy and efficiency of Bengali text classification in various applicationsen_US
dc.format.extent[ix],45 p.en_US
dc.language.isoenen_US
dc.publisherJadavpur University, Kolkata, West Bengalen_US
dc.subjectBengali Text Classificationen_US
dc.subjectLanguage Modelen_US
dc.subjectError Analysisen_US
dc.titleStudies on bengali text classification using machine learning and deep learningen_US
dc.typeTexten_US
dc.departmentJadavpur University, Dept. of Computer Technologyen_US
Appears in Collections:Dissertations

Files in This Item:
File Description SizeFormat 
M.Tech (Computer Science and Engineering) Amartya Roy.pdf792.61 kBAdobe PDFView/Open


Items in IR@JU are protected by copyright, with all rights reserved, unless otherwise indicated.