Logo
Please use this identifier to cite or link to this item: http://20.198.91.3:8080/jspui/handle/123456789/8926
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBhattacharjee, Debotosh-
dc.contributor.authorKumari, Ekata-
dc.date.accessioned2025-10-13T10:34:35Z-
dc.date.available2025-10-13T10:34:35Z-
dc.date.issued2022-
dc.date.submitted2022-
dc.identifier.otherDC3558-
dc.identifier.urihttp://20.198.91.3:8080/jspui/handle/123456789/8926-
dc.description.abstractThis engineering thesis includes the approaches to implementing the Quantum Neural Networks to classify the Brain tumor on the MRI Brain Tumor dataset and the classification of digits from the MNIST database. The different architectures of Quantum Neural Network are trained on this dataset and compared in terms of prediction performance.en_US
dc.format.extent78p.en_US
dc.language.isoenen_US
dc.publisherJadavpur University, Kolkata, West Bengalen_US
dc.subjectNeural Networken_US
dc.subjectMNISTen_US
dc.titleBrain tumor detection using quantum neural networken_US
dc.typeTexten_US
dc.departmentJadavpur University, Dept. of Computer Science and Engineeringen_US
Appears in Collections:Dissertations

Files in This Item:
File Description SizeFormat 
M.Tech (Dept.of Computer Science and Engineering) Ekata Kumari.pdf12.83 MBAdobe PDFView/Open


Items in IR@JU are protected by copyright, with all rights reserved, unless otherwise indicated.