Logo
Please use this identifier to cite or link to this item: http://20.198.91.3:8080/jspui/handle/123456789/8731
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSarkar, Kamal-
dc.contributor.authorBurman, Rahul-
dc.date.accessioned2025-09-22T06:36:29Z-
dc.date.available2025-09-22T06:36:29Z-
dc.date.issued2022-
dc.date.submitted2022-
dc.identifier.otherDC3610-
dc.identifier.urihttp://20.198.91.3:8080/jspui/handle/123456789/8731-
dc.description.abstractText summarization creates an automatically generated summary that includes all pertinent significant information from the original material. When looking at the summary results, extractive and abstractive techniques are one of the most common. In the near future, an extracted summary will be available. Extractive summarization selects a subset of sentences from the text to form a summary. In this work we have used the BERT model for Text Summarization using the method of Text Segmentation to achieve our goal.en_US
dc.format.extent47p.en_US
dc.language.isoenen_US
dc.publisherJadavpur University, Kolkata, West Bengalen_US
dc.subjectText summarizationen_US
dc.subjectBERTen_US
dc.titleText segmentation using BERT for text summarizationen_US
dc.typeTexten_US
dc.departmentJadavpur University. Department of Computer Science and Engineeringen_US
Appears in Collections:Dissertations

Files in This Item:
File Description SizeFormat 
M.E. (Computer Science and Engineering) Rahul Burman.pdf901.74 kBAdobe PDFView/Open


Items in IR@JU are protected by copyright, with all rights reserved, unless otherwise indicated.