10

Bachelor of Arts Examination 2019

(2nd year, 3rd semester)

Economics (Honours)

Mathematical Methods in Economics I

	Mathematical Methods in Economics II	
Time: 2	P. Hours Full Marks: 30)
Answei	r any three questions: $_{-}$ 10 \times 3 = 30)
1)	a) State the condition for the existence of a unique solution in a system of simultaneous equations?	ous 1
	b) For a Leontief open static input-output model, the input coefficient matrix and the fidemand vector are given as: A = 0.2 0.1 0.6	7 e in
	the final demand for the second industry?	2
2)	a) Solve the following differential equation: 3y ⁴ tdy+(y ⁵ +2ty ²)dt=0. b) For a growth model given as (all variables have their usual meanings):Q=f(K,L),	6
	$\lambda Q = f(\lambda K, \lambda L)$ $f_K > 0$ and $f_L > 0$ $f_{KK} < 0$ and $f_{LL} < 0$ $K' = \alpha Q$ and $L'/L = \lambda$,	
	Find out whether equilibrium, defined by $(K/L)^{\prime}=0$, is stable or not.	4
3)	Consider the following macro economic model (all varibles have their usual meanings) : $ Y_t = C_t + I_t + G_t $ $ C_t = y \ Y_{t-1} $ $ I_t = \alpha \ (C_t - C_{t-1}) $ $ G_t = \beta t^2 $ Find out the time path for income Y_t	10
4)	Consider the following market model (all varibles have their usual meanings): $Q_{t}^{d} = \alpha^{-}\beta P_{t}; \ \alpha, \ \beta > 0$ $Q_{t}^{s} = -\gamma + \delta P_{t}; \ \gamma, \ \delta > 0$ $\Delta P_{t} = j(Q_{t}^{d} - Q_{t}^{s})$	
5)	What condition should be imposed on j to make the time path for P stable? Consider the following inflation-unemployment interaction model (all varibles have their usual meanings): $p = \alpha - \beta U - T + g \Pi$ $\Pi' = j(p - \Pi)$ $U' = -k(m-p)$	10 r

Analyse the nature and stability of the time paths for U and Π using phase diagrams.