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Abstract

This thesis is oriented toward optimization of powgstems by application and development
of soft computing techniques. Two most primary edesable aspects, when performing
these tasks, are economic aspect and environmasyatt. In most of the cases, these two
aspects are mutually contradictory from the viewinpof mathematical optimization
problems.

The scope of technological advancement for powstegy optimization lies essentially in the
domains of optimal power generation planning, optippwer operation planning and power
system restructuring in optimal ways. The poweltespsoptimization problems have been
proposed here to be categorized in two segmentsielga Large-scale power system
optimization problems and Micro-scale power systgitimization problems.

In class of Large-scale power system optimizatimblems, several studies have been done
in this thesis about optimal strategies and opamapilanning for economic dispatch and
economic-environmental dispatch of single area mndti area large power systems, Wind
power integrated multi area economic-environmedtgpatch and short term hourly basis
hydro-thermal generation scheduling of differentvposystems considering several technical
constraints. Mathematical modeling in form of olipge functions and constraints have been
formulated. A novel energy policy that encouragesppr estimation and maximization of
wind energy generation has been proposed. Applitaloif different heuristic and meta-
heuristic optimization algorithms like, Heat TragrsEearch, Artificial Immune system, Multi
Objective Differential Evolution, Non-dominated 8ng Genetic Algorithm I, Improved
Real Coded Genetic Algorithm etéor different cases have been studied. Comparative
studies of the obtained solutions by different reghes have also been done.

In class of Micro-scale power system optimizatisalpems, several studies have been done
in this thesis on optimal placement and sizing adtfibuted generation systems in power
distribution networks. Transmission loss minimigati along with voltage profile
maintenance and have been focused. Studies withtiear of load have been done. Optimal
integration and operation of distributed renewadahergy recourses focusing on economic
aspect have been studied for several realisticscast different demand profile like a
whole township, a typical railway rake maintenadepot and a typical hospital campus. In
those cases, economic power operation increasmgliare of renewable energy recourses

have been proposed. Active distribution systemsehasen thoroughly designed forming



mocro-grid and nano-grids. Comprehensive eledtnnoadeling and then mathematical
modeling have been done to optimally design thgse of micro/nano scale power networks.
Optimum economic power operation for a PV aidedebgistorage connected nano-grid for a
typical hospital campus have been proposed. Rdfagting controllers for automatic power
operation have been designed in this thesis. Fogusn the fault analysis aspect; faults of
photovoltaic system, which takes a large shareemmewable energy sector, have been
considered for studying. Detailed mathematical moélehotovoltaic string along with other
accessories like maximum power point tracking coeveetc, have been constructed. A
novel optimization technique based fault detectsmmeme with methodology has been
proposed in this thesis, that can proficiently detand locate open and short circuit faults of
modules in a photovoltaic strin@ifferent optimizers like, Water Cycle Algorithmo&al
Spider Optimization, Gravitational Search Algorithnimproved Real Coded Genetic
Algorithm Grey Wolf Optimization etc. have been khpgp to these mathematically

formulated optimization problems.
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Chapter 1

Introduction

Optimization is an everywhere-needed technique nognessive human civilization.
Optimization has been applied, though in very cradg, since the very beginning of our
society to make things as perfect or effective @ssible or to find the trade off among many
possible options. In modern science this optimiratiechniques has been given different
complex mathematical forms. In late 1940's, GeoRpmtzig firstly used mathematical
optimization technique for United States air foeglication. It can be easily realized that,
the more we know about something, the more we $egenoptimization can be applied. For
mathematical optimization, one or more objectivections need to be formed. The goal of
the mathematical optimization techniques is to fuatles of the variables that minimize or
maximize the objective function while satisfyingeticonstraints. These mathematical
techniques have to be robust, providing Good perémce for a wide class of problems.
Those have to be efficient, not having too much matational load. At the same time those
have to be accurate in identifying errors.

This thesis is oriented toward optimization of powsystems by application and
development of soft computing techniques. A cidtian cannot be expected without
consumption of energy. Energy demand is continyoinglreasing with the development of
our society. Electricity, being a compact and &ffit form of energy, is a prime mover of
modern civilization. To manage electricity, powgstems with different social, economic,
environmental and technological strategies have feened. Power system optimization has
been considered as a crucial socio techno-econbatiallenge since the very beginning.

Power system optimization can be done through secteological advancement. Two
most primary considerable aspects, when perforrthiege tasks, are economic aspect and

environmental aspect. The technologies should baamuically faceable and simultaneously



environment friendly. In most of the cases, thesedspects are mutually contradictory from
the view point of mathematical optimization probkem

The scope of technological advancement for powstiegy optimization lies mainly in the
domains of optimal power generation planning, optippwer operation planning and power
system restructuring in optimal ways. The powertesys optimization problems have
proposed here to be categorized in two segmentsielga Large-scale power system
optimization problems and Micro-scale power systgtimization problems.

In class of Large-scale power system optimizatiovblems, several studies have been
done about optimal strategies and operation plgnfin economic dispatch and economic-
environmental dispatch of single area and multaderge power systems, Wind power
integrated multi area economic-environmental ddpatnd short term hourly basis hydro-
thermal generation scheduling of different powestems considering several technical
constraints. Mathematical modeling in form of olijge functions and constraints have been
formulated. A novel energy policy that encouragesppr estimation and maximization of
wind energy generation has been proposed. Appligaloif different heuristic and meta-
heuristic optimization algorithms for different esshave been studied. Comparative studies
of the obtained solutions by different techniquagéhalso been done.

In class of Micro-scale power system optimizationlgpems, several studies have been
done on optimal placement and sizing of Distribigederation systems in power distribution
networks. Transmission loss minimization along witiitage profile maintenance and have
been focused. Studies with variation of load haeenbdone. Optimal integration and
operation of distributed renewable energy recoufsessing on economic aspect have been
studied for several realistic cases with differel@mand profile like a whole township (where
overall power demand prominently varies with theather), a typical railway rake
maintenance depot (contains very unique load @odihd a typical hospital campus. In those
cases, economic power operation increasing thee stfarenewable energy recourses have
been proposed. To fulfill these purposes, actiwribution systems have been thoroughly
designed forming mocro-grid and even nano-grids.

Two important optimization aspects of active dimited systems for being triumphant,
are smooth automatic controlled operations by aésig optimal controllers of power
electronic devises, and power network reliability fault analysis of renewable power
sources. Focusing on the control prospect; compshe electrical modeling and then
mathematical modeling have been done to optimadligh these type of micro/nano scale

power networks. Optimum economic power operation d PV aided battery storage
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connected nano-grid for a typical hospital campasehbeen proposed. Robust tracking
controllers for automatic power operation have béesigned. Focusing on the fault analysis
aspect; faults of photovoltaic system, which taidarge share in renewable energy sector,
have been considered for studying. Detailed matkieahanodel of photovoltaic string along
with other accessories like maximum power pointckildg converter etc, have been
constructed. A novel optimization technique basmdtfdetection scheme with methodology
has been proposed that can proficiently detectlacate open and short circuit faults of
modules in a photovoltaic string.

The outlining of the power system optimization peobhs, which have been developed to

solve by application of soft computing techniqua®tighout this thesis, has been depicted in
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Figure 1.1.Outlining of power system optimization.

1.1 Large-scale power system optimization

1.1.1. Economic dispatch problems

Economic Dispatch (ED) is a crucial maneuver fowgo production through all online
generators with least possible cost fulfilling aa@sment of technical constraints. The valve-
point effect [1] has been modeled mathematicallysioynming up the sinusoidal function and
guadratic function. Shaft bearing shuddering, cdumsethe opening of steam entrance valve

or machine burden, creates prohibited operatingasdn in a few sections of generation
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region of a generator, commonly known as prohibapdrating zone [2]. The lowest cost is
attained in case of circumven this operating zone.

The traditional practice cannot solve these typ&Dfproblems. Dynamic programming
can solve these problems but it undergoes to theerBionality quandary and restricted
optimality. Meta-heuristic algorithms substantitiie potential for solving these class of ED
problems. Improved tabu search (ITS) [3], genelgodthm (GA) [1, 2, 4] evolutionary
strategy optimization (ESO) [5], evolutionary pragming (EA) [6, 7], particle swarm
optimization (PSO) [8-12], biogeography-based ojzation (BBO) [13], continuous quick
group search optimizer (CQGSO) [14], differentialolaition (DE) [15, 16], Distributed
auction optimization algorithm (DAOA) [17], cuckosearch algorithm with interactive
learning (CSAIL) [18] etc. have been on hand toreatomplicated ED problems. Though
these methods cannot always realize the globamaptthey often achieve close up to the
global optima.

Heat Transfer Search (HTS) algorithm, based onptioelamation of thermodynamics
and heat transfer, emulates the thermal balanostist of any system. The penetrating route
of HTS ponders over three stages, specifically duanion phase’, ‘convection phase’ and
‘radiation phase’ [19].

In this thesis, the suggested HTS algorithm has leegaged to work out three complex
economic dispatch problems. Test results obtainen fHTS algorithm have been
adjudicatored against to that other evolutionarghtéques solving economic dispatch
problems present in literature. It has been noked the proposed Heat Transfer Search

algorithm produces superior solution.

1.1.2. Multi area economic dispatch problems

Economic dispatch (ED) allots the load demand arsotige dedicated generators most
economically while fulfilling the operational comsints in a single area. Usually, the
generators are alienated into a number of generatieas interrelated by tie lines. Multi-area
economic dispatch (MAED) is an expansion of ED. MAEettles on the generation level
and exchange power among areas such that oveehltdst in all areas is minimized while
fulfilling technical constraints relsated to powkalance, generating limits and tie line
competence [20].

The ED problem is often resolved without takingoinaccount for transmission

constraints. Nevertheless, some researchers hkgr teansmission ability constraints into



consideration. Shoults et al. [21] solved ED probleonsidering power import and export
constraints between areas. This work endows witentire formulation of multi-area
generation forecast, and a structure for multi-asealies. Romano et al. [22] opened the
Dantzig—Wolfe decomposition rule to the constraifddl of multi-area systems. Doty and
McEntire [23] resolved a MAED problem by using sphtlynamic programming and the
outcome obtained was overall most favorable. Lingapgramming to transmission
constrained delivery cost examination was propaseef. [24]. MAED with area control
error was solved Helmick et al. [25]. Heuristic mHarea unit commitment with ED was
proposed by Ouyang et al. [26]. Wang and Shahidahfft’] proposed a decomposition
based approach for resolving multi-area genera@iting up with tie line constraints using
specialist systems. Network flow models to resthee MAED with transmission constraints
have been projected by Streiffert [28]. Calculatdrshort range margin cost-based prices for
MAED problems has been presented by Wernerus addr$29], solving MAED problem
via Newton—Raphson’s method. Yalcinoz and Shor} fved MAED problems by means
of Hopfield neural network approach. Jayabarathialet[31] resolved MAED problems
considering tie line flow constraints involving éwtoonary programming. The direct search
scheme for solving ED problem considering transimisdine capacity constraints was
offered in ref. [32].

Artificial immune system (AIS) [33-38] has appearedthe 1990s as a new area in
computational intelligence. AIS is stirred by imnology and principles of immunity
observed in life. It is now attention of lots osearchers and has been productively used in
power system optimization problems [39-40].

In this thesis, AIS algorithm is developed for sotythe MAED problem. The proposed
come up to the clonal selection attitude and gedegptive cloning, manic mutation, aging
operator and contest selection.

The projected AIS algorithm has been emploied twesMAED problem. Here, three
types of MAED problems have been chosen. ThesgAgrenulti-area economic dispatch
with quadratic cost function prohibited operatimpnes and transmission losses, (B) multi-
area economic dispatch with valve point loading @@dmulti-area economic dispatch with
valve point loading multiple fuel sources and traission losses.

The projected AIS technique has been authentidageseimploing it to three diverse test
systems. The solution wise performance of the me@dAlS algorithm has been weighted
against differential evolution (DE), evolutionaryogramming (EP) and real-coded genetic
algorithm (RCGA).



1.1.3. Multi area economic environmental dispatch qoblems

The power production through fossil fuels emitsf@ubxides, Carbon oxides, Nitrogen
oxides and many others into the atmosphere. Thesssiens influence humans as well as
other living beings in our planet. Other effectslinle vegetation damage, acid rain, less
visible clarity, global warming etc. The environn@rsafety issue as well as the clean air act
amendments, 1990 have bounded the amount of tresiems by a power generating station
[41]. Therefore, a trade-off is required betweemagating electricity at the minimum
possible cost with maintaining the emission leeahie minimum.

Various techniques have been suggested for mimignitie emission level [42]. Some of
these include post combustion cleaning device ysagieag the fuels with less emission
content, changing old fuel burner devices with nel@aner devices, power dispatching
keeping in view emission limits etc. Choices ottiean the final one need investment in the
form of new devices use and/or changes in the &yraestalled devices involving significant
monetary requirements. Therefore, they may be guaumefor long duration aspect. Due to
the aforementioned reason, the final choice seemsbd convenient for practical
implementation point of view.

Goals related to pricing and level of emissionnsée be contradictory. Both are required
to be taken into consideration at the same timeeirmine feasible and optimal power
dispatch. Various optimizing methods [43-53] araikable in the literature related to the
economic environmental power dispatch strategy.s&@hgroblems deal with a single area
power network and their related engineering comga

Large realistic power networks are spread over iplaliareas connected to each other
with tie lines. Several researches [21-32] havenbeenducted to deal with the power
production strategies considering only economi@eisfor multi area power systems.

Multi area economic environmental dispatch stratd@xEED) is an extended version of
the multi area economic dispatch problem. It gimasinformation about the level of power
production as well as power exchange between amemsnanner such that total cost of fuel
and pollution level in each of the area remain raed simultaneously keeping various
constraints such as equality between generatedrpanvaeload demand, generation range and
capacity consideration of tie line into considerati

In recent time, the formulation of various multi jedtive evolutionary algorithms
(MOEA) [54-57] took place. Aforementioned techniguare based on population, and
various pareto-optimal results are obtained by ingmrthem just once. Strength pareto



evolutionary algorithm 1l (SPEA 1) and multi obgaee differential evolution (MODE) have
been used for solving the economic environmentalgpadispatch problems effectively for
single area power networks. The presented worlkh@nthesis emphasizes on the use of the
MODE for the MAEED problem which has been formutatie the form of a nonlinear
constrained multiple objective optimization taskor Fdemonstrating the suggested
technique’s competence, a four area test systerhdeas considered. A comparison has been
made between the results achieved by the MODEratdt SPEA II.

1.1.4. Wind integrated multi area economic environrantal

dispatch problems

The MAEED settles on the generation levels and pdvemsactions among areas such
that cumulative generation cost and emission |getl minimized in each of the areas
maintaining power balance boundings, productionitéinboundings, boundings related to
prohibited operating zones (POZ) and tie-line capdwoundings. The solution approaches
for the MAEED available in the literature are baseddifferent metaheuristic optimization
algorithms and mathematical solvers. An analytivaldel possessing dependency on the
multi objective particle swarm optimization withgienal exploring has been developed for
solving the MAEED task [58, 59]. Other multiple ebjive approaches such as improved
differential evolution along with fuzzy selectiomuniversal best artificial bee colony
algorithmic technique with chaotic optimization keaween suggested for solving the MAEED
task [60, 61].

Hybridization of gradient search method with impedvJaya algorithm has been
accomplished for a practical MAEED problem [62]. Pareto-based teaching—learning
optimization algorithm has been also proposed [88]ce, the majority of the power systems
are still generating power from fossil fuels, whiente unsustainable, costly and are the major
sources of atmospheric pollution, the modern pasystems are gradually restructured with
the strategic integration of renewable energy ressuin conventional power systems.
Amongst these, wind energy is gaining the most @ecees for meeting the rising energy
demand at low cost without any harmful emissiord,[@/hich significantly influence EED
problems of power systems integrated with wind gneBut considering the scenario of
large wind power producing units (WUs), randomném, inertia characteristics and huge

forecasting errors corresponding to wind speed thed produced wind power upset the



stability as well as security of the overall povststem. Hence, intermittent wind power
needs policies and dispatch tactics to uphold engnwith reliability and security.

Different stochastic search methods and solver$ s1%; strength pareto evolutionary
algorithm (SPEA) and simulated annealing-like péetiswarm optimization equipped with
specially encoded/ decoded chromosome's strin@gfhsehaotic quantum genetic algorithm
[68], harmony search algorithm [69] and GAMS BARQRM0] solver have been used for
some EED studies incorporating wind energy withitigt consideration of stochasticity in
available wind power.

Several other EED, employing different stochastiogpamming, have included some
modifications to conventional EED models to dealhwntermittent wind integrated power
system. Uncertainty constraints [71] and frequestgbility constraint [72] have been
incorporated in some EED problems to transact whth wind power indefiniteness. The
entropy concept has been introduced in [73] torlzaahe uncertainty issue regarding wind
power. Deterministic uncertainty set [74] and pelgtal uncertainty set [75] have been
modelled to describe the volatile wind generatiogarning automata [76] has been used as a
multi-objective optimizer where its strategies aredified according to the learning
experience about current information of wind speed.

In latest EED studies, the Weibull probability distition function (WPDF) [77] has been
considered as the best fitting probability disttibn model for forecasting the empirical wind
speed distribution [78]. With the assortment of WR Different meta-heuristic methods such
as, pareto based modified teaching-learning algorif79], artificial bee colony algorithm
guided by Gbest [80], gravitational search algonitf81], bacterial colony chemotaxis [82],
decomposition based evolutionary algorithm [83]tipee swarm optimization [84], honey
bee mating optimization [85] and nondominated agrgenetic algorithm 11 (NSGA 1) [86]
have been considered to solve the EED with speoiagideration to uncertainty due to wind
integration.

It is evident from the literature that, so far m®tes have concentrated on the impacts of
WUs in either the single area single objective eooic or environmental dispatch or bi-
objective EED. In case of wide spread multi-areagrosystem network, uncertainty of wind
power availability notably differs for differenteas. Moreover, for enhanced motivation of
wind power operators to inject more power to thel gvith maximum possible certainty,
proper area-wise penalty cost formulation is neededthis scenario, considering the

inevitability of wind power integrated multi-are@wyer system operation in modern power



system restructuring process, optimal wind integtaEED planning for large scale multi-
area power system is a relevant research interest.

This thesis develops a novel model of multi-are@ldjective economic environmental
dispatch of wind power integrated system (WMAEEB)jch would potentially optimize the
schedules of the committed conventional and WU#$ Wit tie-line power flow limitations
while simultaneously reduce the operating cost amyironmental emission levels
considering several area-wise uncertainties oflavia wind power, special penalty costs for
over and under estimation of committed WUs, dynésnaf the online generating units with
operational and physical network constraints.

For resolving the multiple-objective optimizatiasks, two usual paths can be followed.
One merges all the objectives into a distinct aanalgted function by assigning adaptive
weights to each objective through optimizers adogrdo the prior knowledge. Moreover,
the optimal result renders no knowledge about tmepromise among objectives. The other
way employs suitable multiple-objective algorithrhigh generates “Pareto front” solutions
[87].

This WMAEED model formulation has been incorporatedthe form of a bounded
nonlinear multiple-objective optimization task. Validate the proposed approaches, a four
area wind integrated test power system is congideéne this work. Well recognized
algorithms like nondominated sorting genetic algon 11 (NSGA II) [57] along with
strength pareto evolutionary algorithm Il (SPEA [B8] have been employed here to
generate Pareto fronts [89] of suitable compromsadtions for the proposed WMAEED
model. The obtained results from the numerical arptations confirm that the wind
integration to conventionally sourced multi-areavpo system reduces the overall generation
cost as well as emission level with the proposegbatch modeling considering area-wise

uncertainty and introducing area-wise penalty costs

1.1.5. Hydro-thermal scheduling problems

Hydro electricity, being a cleaner production melkblogy, is becoming significant in our
energy based society. Practice of hydro-electrerggngeneration may effectively reduce the
environmental degradation caused by conventiorexhthl, diesel or nuclear power plants.
On the basis of operating cost, hydro-electricg#ytruly convenient whereas thermal power
generation is very expensive. Optimal operatiorrdioating hydro and thermal generation is

a relevant engineering problem in the current gnsognario. Hydro and thermal plants can



give the optimal solution from cost perspective ibig very difficult to co-ordinate with each
other. It is a big challenge for the researcherghia field of economic power system
operations. Hence, the requirement is cost optitzathrough proficient operation
planning. The operation planning is classified amlf§ intermediate and large horizon
generation scheduling. Small horizon operation dalikeg is for one day to one week,
intermediate scheduling is for one week to one yeat large horizon is for one year to
several years.

Amongst these, short-term hydrothermal generatahreduling (SHTGS) problems are
widely trending the now a days. Hydro-thermal gatien constraints may comprise of
generation-load power balance, upper and lowetdimm reservoir capacity, water discharge
rate, water spillage rate, hydraulic continuitytrieion and operating capacity limits of
different hydro and thermal units. The optimal sthigg of hydrothermal power system is
usually more complex than that for all thermal egss. It is a complex multi-dimensional
optimization problem with a non-linear highly caaéhed objective function. The aim of
SHTGS is to determine the optimal amount of theewatlease for the hydro and thermal
generation in the system to meet the load demawds @ scheduled horizon of one day.
Different mathematical optimization algorithms haween implemented for the solution of
SHTGS problems. Those are gradient search [90,m8afhematical decomposition [92-94],
dynamic programming [95-98], and mixed integer tgpegramming [99,100].

But, these methods have difficulties in handlingioias constraints and also take more
time to solve. Hence, these methods are not saitbladdress such types of problems.
Dynamic programming has been frequently used. Hewethis method has difficulties in
computational overburden for its large dimensidgalvhen applied in a practical power
system. Various stochastic search algorithms haea liound in literature for hydro-thermal
scheduling (HTS).Simulated annealing (SA) has besed in to find the global optimal
solution [101] by Wong et al. But, appropriate isgttof the relevant control parameter of the
SA based algorithm is a difficult task and the speé the algorithm is quite slow when
applied to practical sized power system. Evoluttgr@mogramming (EP) is one of the oldest
meta-heuristic optimization technique used to soha&y optimization problems [102]. Yang
et al. [103] and Hota et al. [104] projected EPstdve the HTS problem using Gaussian
mutation. But it is useful in solving simple protvie with fewer constraints.

Afterward, evolutionary programming and an improvast EP technique were planned
by Sinha et al. [102] for HTS. Later, Werner et[a05] applied evolutionary approach to

solve SHTGS problems of hydrothermal systems. A&yuzased evolutionary programming
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technique was reported for the economic HTS proliEd6].Genetic algorithm (GA) is an
evolutionary method [107, 108], and proposed byr®et al. to solve HTS problem [109].
Kumar et al. offered GA to solve the HTS problenthmaptimal power flow [110]. Gjorgiev
et al. planed an efficient multi-objective based 8Asolving HTS [111]. A short-term HTS
based differential evolution (DE) algorithm wasradtuced by Mandal et al. [112]. But, it is
very difficult to correctly choose the control pareters of differential evolution. The faster
convergence of DE results in a highest probabitityvard a local optimal solution.
Parameters of DE generally are steady throughauetitire search process but it is difficult
to properly set control parameters.

Particle swarm optimization (PSO), an another sblaptimization technique, can
produce stable convergence characteristics thar ofidke other stochastic methods [113-
115]. An improved PSO (IPSO) based HTS to solveuliisreservoir cascaded hydro-electric
system having restricted discharge zones and angharnit with valve point loading have
been introduced [116]. The simulation results shibvt®e superiority over other techniques.
Yu et al. used PSO to solve SHTGS problem with@nvalent thermal unit having smooth
cost functions [117]. Modified adaptive PSO baselSHvas introduced by Amjady et al.
[118]. Mahor et al. presented self-adaptive ineviigight based PSO method to find the
optimal generation planning for cascaded hydroetesystem [119].

Clonal selection algorithmic technique has beerd usea practical sized power system
related HTS problems [120].

Rao et al. developed teaching learning based amiion (TLBO) technique for HTS
related power system optimization problem [121,122]

Tabu search algorithm technique based HTS for higdronal plant was first introduced
by Bai et al. [123]. Huang et al. first initiatedtacolony optimization (ACO) technique to
solve HTS problems [124]. Adaptive artificial be@lany algorithm was first introduced by
Liao et al. to solve long time dispatch of cascalgdropower systems and also compared its
efficiency with other available techniques [125uMal network technique can be used to
solve HTS problems. But, the neural network-basqgpra@ach suffers from large
computational problem. The GA is one of the mosbnpsing EP having its origin
corresponding to the human inbred chromosome aperathe GA is inspired from the
Darwinian evolution theory “the survival of thetést”. It engenders the universal or close to
the universal optimized results corresponding taimmizing optimization task. For this, it

creates a number of communities during iterative fthe GA has some advantages such as
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simple algorithm, able to handle different sortdusfctional representations of problems and
its robustness [126].

In this concise, improved real coded genetic atlgaric technique (IRCGA) has been
implemented to increase the convergence speeddautibs quality. The IRCGA has been
used to plan a short-spell, hourly basis optimippérative scheduling for the considered
hydrothermal network. Restricted operating sectioage been taken into consideration for
hydro producer. Different test solutions of the [R&£ have been compared with acquired by
other EPs. It has been noticed that the implemelRE&GA gives superior results. The test
results for short term hydro-thermal schedulingammpared with other methods available in
literature, such as Real coded Genetic algorithn€CGR) [127-128], Improved first
evolutionary programming (IFEP), Genetic Algoritl{aA), Modified differential evolution
(MDE), Improved particle swarm optimization (IPS@nd Teaching learning based
optimization technique (TLBO). Numerical resultsoshthat the projected Improved real

coded Genetic algorithm (IRCGA) based algorithm gaovide quality solutions.

1.2. Micro-scale power system optimization

1.2.1. Optimal DG allocation

Coal and oil based traditional centralized methddse been applied for power
generation, from very early age. In these schethesgenerated power is transmitted over
extended distances with huge transmission systetnshwinvolves massive amount of
transmission losses. Besides, fossil fuels origmébads of environmental vulnerability. On
these grounds, DG is gaining magnitude in hastease of DG, the power is generated in the
vicinity of the load centers. Nonconventional energsources such as solar photovoltaic
system, biomass, fuel cell, wind power etc. arendgpenvolved to generate power. By that
ground, DGs may be tagged as reliable, flexible ahdosphere gracious system with
enhanced power quality [129-130]. Considering thedmission losses, DG is more energy
efficient than traditional centralized power getieg schemes [130]. It initiates
diversification in energy resources with a reduttad speculation risks [131]. DG can also
make power available to those distant areas, dowllities where traditional fossil fuel fired
methods of power generation are unable to convesepo

DGs may be clusterred according to the amount oégged power by them. DGs, which
can generate up to 5 kW, are known as micro DGanFs kW to 5 MW, are small DGs.
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From 5 MW to 50 MW, are medium DGs. From 50 MW @3JW, are classified as large
DGs [132]. DGs may also be classified accordingh® mode they transact with real and
reactive power [133]. The DGs, which convey justl neower, are of Type 1. DGs which
carry in cooperation real and reactive power ar&ygfe 2 while the DGs which deliver real
power but take up reactive power come up to theeTypDG allocation and sizing have
elevated considerable notice in modern times. Musthe recommended schemes are
analytical or meta-heuristic or heuristic in natubetermination of optimal allocation and
sizing of DG using loss compassion factor techniggas used in [134]. Similarly, methods
have also been developed invilvong exact loss equébr manifold DG unit assignment in
order to attain greater loss reduction [135]. Otimethods, based on novel power stability
index [136] and power loss factors [137], have &lsen employed for DG assignment. Other
methods, which have been used for DG placemenbegecolony algorithm [138], a GA
induced algorithm [139], improved PSO and Monte I€aeplication [140], modified
teaching learning optimization algorithm [141]. Skeworks have been done for optimal
assignment and sizing of DG, lessening of powesdss and voltage profile as well as
reliability upgrading. In order to reduce systersskes addressing uncertainties, a probabilistic
technique based scheme was anticipated in [142].

Usually, a DG is positioned to bring in real povirio the system but reactive power is
significant as well to uphold the voltage at thquisite point. Alteration of reactive power
results in voltage level shifts that affects thdtage stability. Therefore, reactive power
reparation is essential. The traditional practamrfg this issue is to place capacitor banks. In
previous era, synchronous condensers were emplfye@ower factor enhancement. In
recent situations, static VAR compensator is plaeeténsively for regulation of voltage,
power factor and the system stability. Novel Globarmony Search algorithm (NGHSA)
has been proposed for optimal allotment of VAR cengators in a power system [143],
which have also been used for reactive power maneage[144]. A combined scheme of
modal analysis, simulated annealing and Tabu sewa$ used in [142] for optimal
placement of VAR compensator.

All the above research work to DG or VAR compensatacement has been employed
separately in power systems. In this thesis, a ogetii optimal placement and sizing of both
DG and VAR compensator has been proposed. In fitimzation problem, multiple DGs,
those inject active power in the system at diffefeumses and along with capacitor banks,
which inject reactive power at different systemdsjhave been projected to be put in in the

powr network. This technique is implemented inandard IEEE 33 bus radial distribution
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system using water cycle algorithm (WCA), a newdyweloped optimizer, based on the flow

of water from rain drop to water stream to riveséa finally [145].

1.2.2. Optimal power operation integrating distribued renewable

energy resources

With the growing consciousness about the necesditgconomic power production
measuring the concern of environmental securitystnod conventional energy resources in
centralized power delivery schemes are trailingutenty. Whereas, a recently mounting
technology of dispersed generation explicitly déedized generation or distributed
generation is approaching the front. Distributedegy Resources (DER) are singing a
crucial role to check the environmental effluenkceotigh employment of non-conventional
and renewable energy sources such as fuel celtg, power, solar modules, biomass gasifier
units etc. Many researches related to the desigroparations of DERs are being done [131,
146-150]. Potentialities of implementing micro-gridith the DERs are also discussed
someplace [151-153]. Special treatments are alsogbgaid to the economics of Hybrid
Distributed Energy Resources [154].

Optimal integration and operation of distributechewable energy recourses (DER)
spotlighting on economic aspect have been analigreskeveral realistic cases with different

demand profiles.

1.2.2.1. Optimal power operation planning in a towship

Currently, fossil fuel ablaze power generation isstty used. In this scheme, generation
of power is done far away from localities and ngathe places where fuel is readily
obtainable. By executing this, the transportati@pemses stay least and localities are also
free from effluence. After production, power isrtsanitted to different places with the help of
transmission lines. With the incessantly growingrgy demand, additional power generation
is obligatory. Fossil fuel fired power generatioasharrived at that level, where additional
generation should be controlled due to limited asit®lity of these fuels and environmental
alarm. Thus, various other methodologies for poweneration should be involved.
Distributed generation is a superior idea concerriims. In it, the power generation takes
place near the consumers with the help of tradili@mergy resources or nonconventional
energy resources like solar photovoltaic system, ¢ells, biomass gasifier units etc [155]. It

has many advantages over fossil fuel fired poweegaion. It offers environmental benefits,

14



better energy efficiency, energy independence, fdefersification and engage less
investment risks [131]. DG can fulfill the powercessities of those distant areas and petite
localities, where power has not attained yet byveational power generation. DERs are
established to be more reliable power providerleange compact transmission systems [130].
A amalgamation of DERs provides more flexibilitydareliability to accomplish requisite
power demand and named as hybrid DER. Micro-grid excellent notion to alleviate the
intricacies of traditional centralized power gemiera schemes. Micro-grid may be
constructed involving DERs. A lot of technical seslhas been done on hybrid DER but not
much work associated to its economic analysishis thesis, development of micro-grid by
involving hybrid DER has been studied, consumeddoaransformers, circuit breakers,
cables and controllers. Five types of consumeks, harket, campus quarters, hospital, bank
and post office and hostel have been considerd¢haragpur Township of West Bengal,
India. Two types of seasonal load variation havenbeonsidered for the economic scrutiny
of hybrid DERs [154]. At this place, it is pragntathat the day by day solar irrradiance are
consistent. So, solar energy can be a practicaggnmesource here. Biomass is also easily
accessible here and can produce sufficient powgisFree from losses due to mechanical to
electrical alteration process. However, wind poWwas not been found dependable at this
place. In this thesis, economic analysis of hyliERs has been made by using a newly
developed social spider optimization (SSO) algamitfi56]. This algorithm endowed with
better solutions as compared to other evolutiopargwarm algorithms [157, 158].

1.2.2.2. Optimal power operation planning in a ralway rake maintenance
depot

Previous part was about the study of optimal poweration for a whole township.
There delineated demand dissimilarity depends ers#dasons throughout the year. Though
in the case of some distinctive industries, wheoa/gy stipulation do not have seasonal
craving, detailed optimal power operation studied aconomic analysis in this low scale
level is indispensable. In this thesis, such amsiny, like a rail-way rake maintenance depot
has been taken as a realistic case.

A Rail Ways rake maintaining depot, where electremad mechanical maintenance of
Traction Rolling Stocks are performed, namely “Spoa TRS/EMU Railways Car-shed,
E.Rly” was established in the year 1979. It isat#ad in Sonarpur, the south sub-urban of
Kolkata City. Total premises area of this car-siedbout 68550 f where total covered

space is 8850 fmand area of open space is about 59760 This depot has an average
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electrical consumption of about 50 KVA with a maxim demand contract of 200KVA. This
power is drawn from Sonarpur 33/11 KV Substation\Vést Bengal State Electricity
Distribution Company Ltd (WBSEDCL).

In this thesis, a proposal is initiated to implemdistributed energy or decentralized
energy generation system in the aforesaid siteastdfn Railways. This car-shed is in the run
of 24X7 hours by 3 shifts per day. The load peotf 24 hours is inspected and it is noted
that the load arrangement is very taut and highpyintal (considering all constraints
regarding their routine working schedule) with age load of 50 KVA , maximum demand
of 120 KVA and with connected load of 400 KVA. Theghold their power factor 0.98 to 1
introducing capacitor bank in their sub-station.thms situayion, optimal power operation
planning is to be done extenuating the hourly deian

Solar and wind impending of this region was takeomf West Bengal Renewable
Development Agenc{WBREDA) and as per the reports wind power genemaifo not
apposite there but its solar potential is consiolerto generate power. Large amount of spare
area is available In the premises to set up renlewadwer generators like biomass gasifier
units, fuel cells, etc. Considering this scenanaly solar power system (SPS), biomass
gasifier unit (BMGU) and phosphoric acid fuel q@lAFC) are projected as DERs haleng
with a battery energy storage system (BESS).

Beside the environmental reimbursement, the majactiee for introducing distributed
generation here is to lessen the electricity ineabarged by WBSEDCL to Eastern Rail
Ways and if possible to earn back some money fegesjimre power to the grid, so that this
proposal becomes pretty to the consumer ie. thieViRays company.

To fulfill the objective, optimal power operatioiapning and the optimal capacity of the
afforsaid renewable power generators are projededomparative study is also done for
three set of generators. ie. Case I, Il & IlI.

Case |. Biomass gasifier unit (BMGU) and solar powystem (SPS), along with a
battery energy storage system (BESS).

Case Il. Phosphoric acid fuel cell (PAFC) and s@lawer system (SPS), along with a
battery energy storage system (BESS).

Case lll. Biomass gasifier unit (BMGU), phosphosacid fuel cell (PAFC) and solar
power system (SPS), along with a battery energyagtosystem (BESS).

Here Gravitational Search Algorithm (GSA) is choseptimize this highly constrained
problem. Gravitational Search Algorithm is a strdvagyiristic search algorithm. It is based on

the law of gravity and mass interactions [159]. O¢io GSA is not very common to solve
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such optimization problems, it has success solaimgriety of optimization problems in other
field like symmetric traveling salesman problemQJL&low shop scheduling problem [161],
DNA sequence design problem [162] etc. Considetivese, GSA is chosen to solve this
optimization problem. To ensure the reliability die performance of GSA for this
optimization problem, the problem is also resol®d well recognized Particle Swarm

Optimization (PSO) technique.

1.2.3. Optimal power controller design of active ditribution

network

On the contrariety of cleaner energy productiohgse distributed renewable energy
recourses are appearing with several challenge®riming optimally reliable, efficient,
smooth and economic power supply arrangements.

The energy produced by the renewable energy systemsbeen increased due to
improvement in technology and awareness among ¢bel@, around the world. Although,
these alternate energy systems still have varioawlthcks, such as over dependency on
environmental conditions, which varies from placeptace and hence can lead to designing
flaws. The system, thus developed for a particafglication, may be found to be oversized
or undersized. This makes the problem difficulstdve as the fluctuating source may not be
able to supply the demand at some critical conastid63]. These situations have led us to a
significant increase in the number of scientifidpeations on the field of renewable energy
sector over the last few decades [164].

In India, a large portion of population lives iraland remote areas which are far away
from grid supply and a heavy cost is involved iteexling the grid. Therefore, such areas can
be electrified in a decentralized mode by renewalergy plants such as small hydro,
biomass, solar, wind, etc. and their combinationaim integrated manner. Apart from
electrification of individual household by renewalgnergy, the integrated renewable energy
system (IRES) and the hybrid energy system (HES8)]|[tan also be developed. HES or
IRES requires the knowledge of parameters liketegjdechnologies, available government
policies, customer requirements and resource limita [166]. Incorporation of recent
energy solutions are required for energy delivegftdsment, assurance of seamless power
supply and handiness along with monetarily favarageration [167].

A regulating network is required to estimate thedexl active and reactive power which
can be obtained through each power producer whdarang the required voltage as well as
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frequency values. Each power producer along wghown regulator is desired in order to
attain optimized power operation by utilizing thgad#able informative details of the
corresponding instant. On addressing these purpasggus planning, schematics and
methodologies are available in the resent liteeatur

Most of the time, classification of the regulatingetwork involves centralized,
decentralized and hybrid type model and a multipieered approach towards regulation
[165]. The impact of solar photovoltaic system edso be mitigated by a proper regulation
network incorporation support in attaining grid dsable operation [168]. A two stage model
predictive control strategy has been proposed foe@nomic diesel-pv-battery integrated
operation in [163]. Load prediction and energy af@r sizing methodologies have been
proposed for a university campus in [166]. A MILPoael for micro-grid energy
management has been proposed in [169]. Optimahgsiand operation of a standalone
islanded micro-grid have been studied [170]. Stodyexperimentations on real-time energy
management of a islanded micro-grid are also pteserjl71] and micro-grid power
scheduling considering multi period islanding coaistts has been treated in [172] and many
others.

Out of numerous inexhaustible energy productioresws [163-172], a combination of
solar photovoltaic system along with battery sterag mostly used and is the subject of
interest of this part of the thesis.

In this context, considering the emphasized rebeactivities on operation and
management of PV integrated dispersed power gemeraystem, the presented work is
motivated to propose a comprehensive economic bpesh strategy and control scheme of
battery energy storage connected solar power amded-grid, formed in a typical urban
hospital campus.

In this work, the considered practical system tiidede the proposed scheme is the power
supply system of a typical medium scale hospitalased in Kolkata, India. Its premises
contain main building, oncology building and daycdvuilding. Major healthcare and
auxiliary facilities of the hospital are spread ward an area about 4879.78 square m. The
power requirement is brought to fruition throughmgection from Calcutta Electric Supply
Corporation (CESC).

This problem has been mathematically formulateéd @®st minimization optimization
problem finding the optimized power operation. Amproved real coded genetic algorithm
(IMRCGA) is employed for achieving economic poweéspatch through solar photovoltaic

network and battery energy storage accumulatingvar&t constituting a nano-grid. The
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obtained results have been compared with well kskednl real coded genetic algorithm
(RLCGA). The electrical model of this nano-grid Haeen presented mathematically along
with designed controllers which suit to performpas the optimum solution obtained by the
proposed methodology. The transient behavior of dlosed loop system for a realistic
change of reference due to ambient disturbancevdes studied by real-time Hardware-in-
Loop simulations using the real-time platform Opal OP4500 and MATLAB real-time

Windows target.

1.2.4. Optimization based fault detection scheme iphotovoltaic

system

With the speedy exhaustion of fossil fuels, thebgloenergy scenario is altering
drastically by tactical replacement with renewadatergy resources throughout the past few
decades. Amongst these, solar photovoltaics (B\Woing to have the uppermost yield
increment of roughly 230 times of its existing asbg/ and will share 16% of total electrical
energy production by the year 2050 [173, 174]. Tast growth in PV industry can be
ascribed to various environmental, economic, texdirand social factors and their sustaining
policies [175, 176].

Huge PV plants, with hundreds of megawatts geraratapability, are constructed over
thousands acres of plant vicinity. Such massivepR¥its are outfitted with hefty number of
PV modules, balance of system components and pimtedevices like power fuses, ground
fault detection interrupter, over current protectidevices etc. [177-181]. PV modules are
typically connected in series-parallel amalgamationget optimum current and voltage
ratings [182]. Any unanticipated module failurege® in any single module, can lead to great
fault current and severely degrade the capitulgierformance of the plant. Furthermore, the
protection devices are often unable to clear théifainder non-uniform irradiation state and
during "night-to-day" shifting mode [183]. Thouglault possibility of PV modules is
relatively less, but different module associatestesy faults, mainly, open circuit (OC) and
short circuit (SC) faults arise recurrently, cagsimajor deterioration of output electrical
parameters and overall system efficiency [184].

So, in this situation, it is an unavoidable needd&tect these kinds of faults fast and
efficiently. There are several recent significantdges on fault diagnosis of PV system for
identification of different faults including SC ardC faults. Most of these fault detection

procedures are implemented online and have adapféstent fault detection techniques
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based on threshold estimation, fuzzy logic, donteamsformation, classification methods
like artificial neural networks, state estimationdahybridization among these techniques
[185, 186].

Thermo-graphic inspection using thermal imaging eas or infrared radiation sensors,
mainly mounted on unmanned aerial vehicles, arallpopmethodologies to trace hotspot
caused by SC, OC, mismatch or other faults [187-188ese actions cannot discriminate
among the dissimilar faults. A threshold-based me@tlexecuted by comparing current and
voltage indicators with their threshold values, basn engaged to recognize the occurrence
of faults in a PV sub-string, but failed to clagsénd locate the OC, SC or bypassed PV
module [190]. Graph-Based Semi-supervised machgaening and Fractional-Order Color
Relation Classifier have also been studied for @@ &C faults [182]. Artificial neural
network and probabilistic neural network based @@ &C fault detection and classification
have been reported in the literature [191, 192k €bncept of wireless self-powered sensor
monitoring has also been introduced [193]. There some studies of PV string electrical
parameters based OC and SC fault diagnosis, whrarg sutput power and voltage window
were created. These are probabilistic methodolagieishave used probabilistic factors based
on string output power or voltage along with modidediation data and temperature
captured using sensors [194, 195]. These methodslect the number of faulty modules,
but still cannot locate the faulty modules in theng. Furthermore, these methods have not
considered the occurrence of both OC and SC fadtsther in PV string.

From the above brief literature review, it can loged that, the so far proposed techniques
for OC and SC fault diagnosis in PV system haveesantricacies to wholly diagnose OC
and SC faults along with the locations of faultydules in PV string. Interestingly, direct
application of heuristic optimization approachedha case of PV system fault diagnosis is
rare in the literature. Though, some partial usesptimization techniques, like optimal
placement of voltage sensors using optimizer goonization of BP neural network for SC
and OC fault diagnosis have been noted in theatiiee [196].

Hence, motivation of this work is to apply metahstic optimization based soft
computing technique to develop an efficient PV falihgnosis methodology that is able to
guantify, locate and identify open circuited andrsitircuited modules in a PV system. The
fundamental concept of this proposed fault diaghosethodology exploits the fact that for a
large PV system, experiencing heterogeneous imadiaand temperature distribution
throughout the string, the resultant string curieréxplicit for a particular fault combination

and specific locations of the faulty modules intth@ing. This very phenomenon has been
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utilized in this work to formulate fitness functiofihere exist so many probable combinations
of faulty modules in a PV string. From this hugarsé space, the proposed technique makes
use of metaheuristic optimizer to seek out the egambination of faulty modules and their
respective locations, which may cause the stringeati same as monitored from the PV
string at the particular irradiance and temperatoralitions prevailing at that instant.

There are some potential key challenges in the o&$®/ fault diagnosis. In running
condition, the PV system is supposed to be opemttetaximum power point (MPP). Under
non-uniform irradiation or partial shading conditiand during faults in a PV string yield
nonlinear electrical characteristics, thereby umsatrall output power. Modified Perturb &
Observe (P&O) MPPT controller is widely used tackrdhe maximum generated power in
order to increase output efficiency and make uprenmental fluctuations [197]. Again, PV
string output current varies with environmental ditions and fault types. Many times,
healthy PV systems act like faulty under non-umifarradiation with few highly shaded PV
modules. Distinguishing among these conditionsfaaltis is also a challenge.

The proposed scheme has been tested in a 100Wd®&hsin a laboratory environment.
To carry out the experiment, Matlab simulation madetating the existing setup has been
constructed and random situations, which repredéfdarent possible fault combinations,
have been created at the existing PV setup. Therged current of PV string, operating at
maximum power point (MPP), is obtained from the MP&bntroller and converter. The
simulated and measured string currents are fed to-aouse developed Matlab program of
the proposed fault diagnosis algorithm employingahneuristic optimizer.

Selection of optimizer is a vital issue. The coesadl optimization problem in this work
is associated with an online fault detection schah®V system. Mathematically, it is a
multidimensional, nonlinear constrained system. Bois desirable that the optimizer,
involved in this scheme, has less computational ptexity and rapid convergence with
proficiency to find global optima.

Recently, Mirjalili et al. have introduced a sim@ed robust meta-heuristic algorithm
known as Grey Wolf Optimization (GWO), which is jm®d by social leadership of grey
wolves that attack preys for hunting drive in natu6WO considers problems as black
boxes. Hence, it can be easily applied to varietieproblems in unknown environments
without much change in the algorithm. Besides)vwbives fewer operators and parameters of
adjustment in comparison with other heuristic mdtiogies. GWO has efficient exploration
and exploitation scheme with better transmissionchmeism and information sharing

capability. It provides a more stochastic and digeesearches in the solution space. During
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the process of optimization, there is no need topute the gradient of the objective function
and thus the derivative of search spaces, whidefethe computational complexity. GWO
has excellent local optima avoidance capability parad to other conventional optimization
techniques. All these properties of GWO make ithhiguitable to solve highly nonlinear,
multivariable, multi-constrained optimization prebis with rapid convergence. It is evident
in literature that GWO shows adeptness in variaugireering problems [198]. Moreover,
different type of classical well recognized optiatibn techniques like, Genetic Algorithm
(GA) [199] and Tabu Search (TS) Algorithm [200],vRaalso been used in this study as
optimizers to evaluate the flexibility of the pragsal fault diagnosis algorithm. Results and
comparative studies of the proposed PV system fdialjnosis methodology, using these
aforesaid optimization techniques, have been peavith the work for the purpose of

validation and performance assessment.
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Chapter 2

Problem formulation

The various power system optimization problemsestah the previous chapter of the
thesis, requisite objective functions and expressiof different constraints have to be
constructed to mathematically formulate these mwmisl Problem formulation of these

various power system optimization problems areedtat this chapters as follows.

2.1. Economic dispatch problems

The endeavor of the economic dispatch (ED) probite minimize the fuel cost of a
power producing station at the same time fulfillmmgariety of constraints. The ED problem
takes to mean valve-point effect, excluded workaglee and multiple fuels in concurrence

with the load demand, transmission loss and workajggacity limits.

2.1.1. Economic dispatch with prohibited operatinggones

The ED problem can be stated as:
N N
_ 9 g 2
'V“”CED(Pg): Min 2 5 (Pgi)= 2,8 *BiFgi * Py (2.1)
Where, a, , b, andc, are the cost coefficients of the generatorp, is the power output of

the i generator andl, is the total number of generators.

2.1.2. Constraints

2.1.2.1. Load balance constraint

Ng
2P

2 Pgi P ~PL =0 (2.2)
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The transmission Ios;sL can be stated as:

NgNg Ng
PL= 2 2 PoBiFai * Z 1BaiPgi *Boo 2.3)

Where Py is load demand anEIi » B and Bpo are thes -coefficients.

2.1.2.2.Generating capacity limit constraints

The generator power output must be within its mimmand maximum limits such that,

mln max F—
Py <Py <P, 1=12..Ng 2.4)
Where, Pgl"n is the minimum limit ande'”ls the maximum limit of thei™™ generator.

2.1.2.3. Prohibited operating zone

The workable region of a generator with precludedkable county can be stated as:

gi gi = gil

pU I _

g| r—1SPg| < Pgl ry =230 8.
max o _

gl,,r ngl <Pg| , —1,2,...,Ng

Where, r indicates the number of disallowed workable cowftthe i the generatorP g| =

is the maximum limit of(r -1) ™ disallowed feasible county anéi ¢ is the minimum limit of

th disallowed feasible county. Total number of disakal feasible county of" generator

IS ni.

2.1.3. Economic dispatch with valve-point effect

The ED problem subject to constraints endowed wWith equations (2.2) and (2.4) can be

stated as:

MinCED(Pg) MmNng( ) Nzgal +BPy +GPG + dixsin{el (PS,“” Pgi)}‘ (2.6)

Where, d, ande are the cost coefficients of generator due to valve-point effect.
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2.1.4 Economic dispatch with valve-point effect and muliple fuels
The generator is usually offered with multiple fu¢#], characterized by a number of

piecewise quadratic functions allowing for the \eapwoint effect. The cost function oft"

generator withn - fuel types can be stated as:
Ryt )= i + 8Py + 1P b <l < N -y ) @)

If Pmln <P.. < Pmax

gir < Pgi < Pgir for fuel typer andr =12.. N

Where, Pgﬂr'n and P, “are the minimum and maximum power limits of itie generator for

" fuel type respectivelya;. , By, ¥, 7% and g, are the cost coefficients of tH&

generator for fuel type .
The objective function subject to constraints eneldwith the equations (2.2) and (2.4) can

be stated as:

MinCED(Pg) MlnNZ F( gl) (2.8)

2.2. Multi area economic dispatch problems

The aim of Multi area economic dispatch (MAEpoblems is to minimize the total
production cost of supplying loads to all areaslevhulfilling power balance constraints,
generating limits constraints and tie line capacawpstraints. Three different types of MAED

problems have been accounted.

2.2.1. MAED with prohibited operating zone and line loss

consideration

The objective functiorF; , total cost of dedicated generators of all aredsMAED

problem may be presented as

F_gl\gﬁj(”) a +b P +¢ P° (2.9)
i=1j=1 I

where F;(Pj) is the cost function of " generator in area and typically expressed as a
quadratic polynomiala;, bj andc; are the cost coefficients it generator in are N is the

number of areadyl; is the number of dedicated generators in areaj isRhe real power
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output of jth generator in areaThe MAED problem minimize§; subject to the following

constraints.
2.2.1.1. Real power balance constraint

P =R +R+ Y E-D P 210)

k,kzi

The transmission loss PLi of area i may be artiealdy using B-coefficients as

M

R = REB ||D+Z B P+t & (2.11)
=1 j=1 i=1

WherePD,; is real power demand of aredl is the tie line real power transfer from arda

areak. Ti is positive when power flows from areo areak andTy is negative when power

flows from are& to ared.

2.2.1.2. Tie line capacity constraints

The tie line real power transf@}, from areai to areak should not exceed the tie line
transfer capacity for security concern.
T < Ty STEg™ (2.12)
whereT}** is the power flow limit from areato areak and—T;;** is the power flow limit

from ared&k to ared.

2.2.1.3 Real power generation capacity constraints
The real power generated by each generator shauldithin its lower limitP[*" and
upper limitP;***, so that

PM™ < Py < P*¥; i € N and j € M; (2.13)

2.2.1.4 Prohibited operating zone

The prohibited operating zones are the range ofepamtput of a generator where the
operation originates unwanted vibration of the ielshaft bearing due to opening or closing
of the steam valve. This undue vibration might eadamage to the shaft and bearings. In
general, operation is evaded in these regions.pfaeticable operating zones of unit can be

illustrated as follows:
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;m:2,3,...,r]j (2.14)

Where m stands for the number of prohibited opegationes of the generator in arda
P m—1 is the upper limit ofm-1)" prohibited operating zone ¢fthe generator in area
Pl-lj,m is the lower limit ofm™ prohibited operating zone ¢fthe generator in area Total

number of prohibited operating zonejdhe generator in areas ny.

2.2.2. MAED with valve point loading

The generator cost function is acquired from daimtp taken during “heat run” tests,
when input and output data are calculated as tliteisislowly varied through its working
region. Wire drawing effects, occurring as eaclarsteentrance valve in a turbine starts to
open, generate a rippling effect on the unit cuive.model the effect of valve-points, a
recurring rectified sinusoid contribution is addedthe quadratic function [201]. The fuel

cost function accounting valve-point loadings & tfenerator is given as

d xsin{_e x(_Pmi” -P )}
i T ij

whered; ande; are cost coefficients of" generator in areadue to valve-point effect. The

NMi 2
F=2 xRj(R)=a +b P +c P+

(2.15)
i=1j=1 I TR T

aim of MAED with VPL is to minimizeF; subject to the constraints given in eqn. (2.10),
(2.12) and (2.13). Here transmission loss (PL)isatcounted.

2.2.3. MAED with valve point loading multiple fuel and

transmission loss

Since generators are sensibly supplied with mubi-fsources [202], each generator
should be embodied with several piecewise quadfatictions superimposed sine terms
reflecting the effect of fuel-type changes andgheerator must identify the most economical
fuel to burn. The fuel cost function of tH& generator withNF fuel types considering valve-

point loading is articulated as

):a. +h. P. +c, P..2+
m jm ijm ijm ijj

F (B d xsin{e. X(P..min—P.. )}‘ (2.16)
im im \iim  ij

i\
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if Pyun < P;; < PT5Y for fuel type mand m =1, 2, ..., NF;

ijm ijm

The objective functiofir; is given by

R = 215151( A ) (2.17)

The objective function Ft is to be minimized subjecthe constraints given in egns. (2.10),
(2.12) and (2.13).

2.2.4. Determination of generation level of slackemerator

M; Committed generators in area i deliver their poawgput subject to the power balance
constraint (2.10), tie line capacity constraintsl?Z}) and the respective generation capacity
constraints (2.13). Assuming the power loading icdt f(M;-1) generators are known, the

power level of thav™ generator (i.e. the slack generator) is given by

'+ - Z P (2.18)

k,k#i

The transmission lo98; is a function of all generator outputs including slack generator
and it is given by

R zlzl:

= ]:1

M, -1 M; -1

F.TE%; ll:)+2iﬁi(z ﬁj ijpj-l_il\ﬁl\(liiwpi-*_z igijp-l_ir\ﬁiiMPi-l_ i(% (219)
j=1 j=1

Expanding and rearranging, eg. (2.18) becomes

BlMM 2 [zw_hz: BMJ + BJM‘ _1] 'I:\)/I‘ [ Z J+ZZ |JP.||3.|P+Z ﬁu B iM R + iJ@J:O (2'20)

k,kzi =1 j=1

The loading of the slack generator (M) can then be found by solving eq. (2.20) using

standard algebraic method

2.3. Multi area economic environmental dispatch

problems

Required objective, corresponding to the Multi assmnomic environmental dispatch
(MAEED) problems, is the optimization of total cost as veslthe level of emission at the
same time related to the supplied load demandegmonding to each of the area along with
fulfilling the criteria corresponding to aforemesmed constraints. The goals along with the
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constraints, which have to be considered while tdating the MAEEDS problem, are as

mentioned below.

2.3.1. Cost calculation

The function, corresponding to fuel cost for eatliogsil source generator while taking
into consideration the effect of valve point [208n be expressed in the form of addition of
a second order polynomial and a sinusoid type foncihe expression of fuel cost related to

committed generators considering all areas is gnedow in (2.21).

NANCg

fi=2 2 f,(pgn) (2.21)
g=1h=1

fian(Pgn) =8gn + ByiPgn* Cgfp§h+‘dghxsmgghx(p;]m_ pgh)}‘ 42)

Here,,, (py,) in (2.22) represents the cost function matchedouthé h" power generating
unit located in area. agy, ,b,,,cy,dy,, andey,represent cost coefficients corresponding to
the aforementioned unitva specifies areas under consideration (totad), representing the
total dedicated generating units located at arggrepresents the power generated by the

aforementioned unit.

2.3.2.Emission calculation

The modeling corresponding to various pollutarie ISulfur oxides, Carbon dioxide as
well as Nitrogen oxides emitted from fossil res@asrddased power production can be made
individually. In order to make a comparison amomgse, the total emission is represented in
the form of summation of a second order polynomaiahg with an exponential function
[204]. The version of entire emission correspondmgommitted generators of all areas can

be done as per (2.23).
NANGC,
i = gzzll hzzll Ly 3 (Pgn) (2.23)

2
fl' gh( pgh) = agh + ﬁgh pgh + ygh pgh + ngh expﬁgh pgh) (224)

Here, fl-gh(pgh)in (2.24) represents emission functiom'dfgenerating unit located at agga

Agns Bgn» Vanr gn» @Nds, indicate  the coefficients of emission for abovermed

gh?’

generating unit.
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2.3.3 Constraints

2.3.3.1. Power balance

NG,
z pgh = ng + pLg + z Tgo¥g U NA (225)
h=1 0,021

Where,p,, represents an power demand corresponding t¢ th€2.25)1  corresponds to tie

line power flow from thg too . It remains positive for the period of power exupa
between thg to the o while becomes negative corresponding to the coofs@ower

exchange from the to theg .

2.3.3.2. Tie-line capability

As stated above, thg possesses limits for exchanging the power in otderonsider
security issue as mentioned in (2.26).
max

max
“Tgo STgosSTgo

(2.26)
Where Tgmoaxrepresents the limit corresponding to power exchafigm they to the o .

Similarly, - Ty indicates the limit when power exchanges fronothie theg .

2.3.3.3. Power generating capacity

min

The power generation through each of the generatoosid remains betweey, , the
lower limit and pg, ", the upper limit as per (2.27).

min

Pgo = Pgo= pgl,mg ONA,hONC, (2.27)

2.4. Windn integrated multi area economic

environmental dispatch problems

To formulate dynamic WMAEED problem for a multi-arevind power integrated
network, the main components considered are coioreit TUs and WUs. Here, it is
considered that WUs' operators can also take padiispatching and exchanging operation
among different power network areas in the eletyrimarket. However, the utility operators
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should obey appropriate margin for each tie-linegroflow during operational planning. The
optimal scheduling with WUs, dispersed in differgzawer system areas, is of utmost
important to optimally monitor, operate, controldaplan power networks to deal with the
indefiniteness and area-wise variability of dynamiod speed distribution. The wind turbine
output is predicted by taking into consideratioa #tone wise weather forecasting.

Since the input power to the wind turbine is ureiertthe outcome from the generator is
also uncertain which can be modelled using diffepgabability distribution function (PDF).
To deal with the dynamic behaviour of online getieraand load demand, ramp rate limits
for TUs and Weibull Probability Density Function R®F) of wind are considered
[77,205].Hence, the dynamic WMAEED problem is alimear dual-objective optimization
task restricted to several complex equality andjuiadity constraints associated with TUs,
WUs and tie-lines. First objective is associatethveconomic dispatch which assesses the
total power production price by maintaining all {h@ver network boundings.

Another function is about environmental dispatcholhlestimates the net emission across
all the areas. The objectives and boundings asiomeat below are taken into consideration
to formulate dynamic WMAEED problem.

2.4.1 Generation cost

The operational cost of a thermal-wind system caseprthe fuel cost for fossil fuel fired
plants along with the cost of WUs. The total getieraprice formulates in accordance to
(2.28).

N N
M | Gi

Wi

F =Y 2 f [P J > f (P j (2.28)

C ) Gij\ Gijj Wik \ Wik
i=1| j=1 k=1

+

Where, Ng; and Ny; are the number of TUs and WUs iff area of a power system having

M number of areas. The beginning term in (2.28) s the total fuel cost function
corresponding to committed fossil fuel fired TUs alf areas by considering the effect of

valve-point as in (2.29).

2
= +
fGij (PGijj aGij ¥ bGij PGij " CGij PGij

. min
dGij ><sm{eGij x(PGij —PGij )H (2.29)
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Where, PGij indicates the scheduled power dispatch throughjth@U in i" area. aGij ,

th

,c...,d_. and eGij represent the fuel cost coefficients belonging"tdU in i™ area.

bGij Gij ' Gij

The second term in (2.28), the cost of wind powemprises of three functions, a direct cost
( fDik)’ an under estimation penalty cost,( ) for not utilizing all the available wind power
and a reserve cost(,, ) because of over estimation corresponding to wimder when wind
power availability lacks to the scheduled wind pov@&o the wind power cost af" WU can
be calculated as (2.30) [206].

fWik(R/Vik)={fDik(PDik)+ fPikMAvanameik - Ruik ) ¥ fRik(PWik _WAvaiIabIeikj} (2.30)

Where, P indicates the scheduled power dispatch throughkthaVU in i" area and
Wik

w is the available wind power of the same WU at ttfgeduled time. Direct cost
Available, ik

for scheduled wind generation is linear cost fuorct{(2.31) whered is the direct cost
Wik

coefficient.
f (P _ j: d x(P _ ) (2.31)
Dik \ Wik Wik Wik

The under estimation penalty cost, whepe is the penalty cost coefficient, can be

Wik
expressed as (2.32).
WRated,ik
fpik(WAvailableik _PWikj “Rui* ! (Wik _PWikijik(Wik )jwik (2.32)
Wik
Where, W represents the rated power produced throughkthéNU in i" area.

Rated,ik

f (Wik) is Weibull Probability Density Function (WPDF) wind power fok™ WU in i"
Wik

area. The overestimation cost or reserve cost,evher denotes the reserve cost coefficient,
Wik

can be represented in accordance to (2.33).

33



P

i ( j ( )j 2.33
f P -W = X P - W-: f W W, -
Rik( Wik Availablelk) Wik I wik K ) wik © K ik ( )
0

2.4.2 Emission level

To model the emission level of atmospheric polltgdrom fossil fuel fired generators, a
summation involving a quadratic and an exponertialkction is utilized. The WUs are
emission free. Hence, the total emission levelashmitted fossil fuel fired generators of all

areas can be represented in accordance to (2.34).

M | Ngj 2
F =X { ElaGij +Baij Faij * VG o) Vg e>(p@GijPGij)} (2.34)

Whereg 8 , vy ,n and 5 _ denote the emission coefficients corresponding to
Gij ' Gij "Gij Gi Gij

i fossil fuel fired TU ini™ area.

2.4.3. Constraints

2.4.3.1. Real power production constraint

The real power production through each of the geoes should remain between pre-

specified lower and upper limiting values.

PMNep <P™X iga e 0N } (2.35)
Gij Gij Gij Gi

pMin p g pMax . LM & kO{...N } (2.36)
Wik Wik Wik Wi

2.4.3.2 POZ constraint

min _p < plower
Gij Gij Gij1
upper lower iy My, jO{...N }&kO{l..N
Faii 217 k1= Foi < TGil. k {1..m}, J O Gi} { Wi}

upper _ < pmax
PGij,Z B PGij B PGij

(2.37)
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Due to some limitations, a TU may have some POZseitween lower limit and upper

limit of generation during operation, where it isable to generate any power [207]. In

(2.37), Z represents the total number of prohibitedes for;™ TU in i" area.Pg’i‘j’Vir and

Pé’?jpir are the lower and upper limits of tRE prohibited zones foj™ TU in i" area.

2.4.3.3. Real time demand-production balance constint

N N

Gi Wi

SP + X P =P +P (2.38)
Gij Wik DI Li

]:1 k=1

Where,p and P indicate the real power demand and transmississek corresponding
Di Li

to areai respectively.

2.4.3.4. Spinning reserve constraint

In order to achieve stable and reliable power systperation under the wind power
indefiniteness and the load demand fluctuationggedain amount of spinning reserve
requirement should be maintained. This constraiMAKED as (2.39) and (2.40).

N N
M| Gi| max Wil max up
¢ X|p -Pp |+ X|P T-P > R - 2.39
- ( Gi .J Wik Ly Demandi (2.39)
i=1| =1 k=1{ wik
M NG. NW.
' min ' min down
>|Pp ~-P + 2 |P -P >0, R 2.40
> _ (Gu Gij] Wik 2 "Demand (2.40)
i=1| =1 k=1 Wik
Where, pYP and P9°"  are the demand when the upward spinning resemyehen

Demandi Demandi

downward spinning reserve are needed'irarea.

2.4.3.5. Tie line capacity constraint

The real power transmissiom.I from areai to areal through tie lines should not go
|

beyond the tie line transfer capacity limits dusécurity consideration.
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- <™ 0 {.M (2.41)

max . o . : max
Where, T_I indicates the power flow limiting value from areato areal while -T_I
| |

denotes the power flow limiting value from aredo areai .

2.4.3.6. Wind power uncertainty constraint

The WPDF of wind speed, fork™ WU in i area can be formulated as a two-parameter

WPDF (2.42).
6, -1
G | v | v. Yk
fov=l— | — exp - /]'—k (22)
Vik Ak A ik

Where, eik and /llkare the shape and scale factor for the WPDF of wpwkd fok"WU in

i" area respectively. The cumulative density functbwind speed,, fork™ WU in i" area
can be summed up as (2.43).

(Vik ): 1-exp - {Vi—krik (2.43)

A

c
Vik ik

Wind power ofk™ WU in i" area at any instant is restricted to a limit sethe cut-in speed

(VCut—in,ik) and cut-out speed/éut_ Outik) of the same WU as (2.44).
0 S ik < Veut-in,ik 2" Vie ™ Veut- out ik
V., —V L
ik Cut—in,ik
w =JW . : O \Y; .. SV, <V . (2.44)
ik Ratedlk[vik _VCut—out,ikJ Cut-in,ik = ik ~ 'Ratedik
Wratedik 5 VRatedik =ik = Vcut-out ik
Where,v denotes the rated speedidf WU in i"™ area. Thus, in the discrete region,

' "Ratedik

the probability of the wind power &f" WU in i area being zero is given by (2.45).
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—ini i . G

ik

The probability of the wind power o&f" WU in i" area being rated is given by (2.46).

prik{wik :WRated ik}= ¢ (VCut—out,ik )+ (1_ c\/ik(VRated ik D

Vik
T’ik (2.46)

Y% «9”( Y
_ { Ratedik} [ Cut-out, ik
—exg -| ——— -exg -| ————

Aik Aik

In the continuous region, the WPDF of wind poweafbWU in i" area is expressed as

(2.47).

g
[ 1, ~1 h w v ik
ik A o
[1+h'kwikvcm‘m:”<] [“W]
‘ (W ):5ikh|kVCut—in,ik WRated.ik vexpl - Rated,ik (2.47)
Wik \ ik
Wrated ik Ak Ak
V .
Where, , = Rated,ik 4
ik v o
Cut=in,ik

2.5. Hydro-thermal scheduling problems

The cost of hydropower plants is negligible comgat@ thermal power plants, so the
hydro-thermal scheduling problem is designed toimmize the total thermal production cost
making maximum possible use of the available hydswurce considering different

constraints.

2.5.1. Objective task

The main objective of short-term hydrothermal sehied is to provide maximum use of
available hydro resources to minimize the therneat over a scheduling peridd. The cost
equation of thermal power can be expressed in daoce to (2.48).

Tl Ny,

F% :::E::E:Las-+ bgF;ﬂ +-CSF§; +

ti=1s=1

d, xsirle, x(P™- P, )M] @4
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Here F_ is the total generation cost of thermal system b _and c_ in (2.49) represent

cost curve coefficients for thermal produgerd, ande_ indicate the valve point coefficients
of s unit. B, and P, indicate minimum and total amount of thermal poyesduction

through s™ unit respectively ati” time index.n, and Tl indicate total number of thermal

power producers and time indices sequentially.

2.5.2. Power balance constraint

The total power generated by the hydro and thetmi$ per hour must be equal to total
loaddemand anghowertransmission loss. It can be mathematically exgq@@sn accordance
to (2.49).

Nip Npy

Zps,ti +ZR1,ti - PD,ti - R_,ti =00t 0TI (2.49)
s=1 h=1

N,, represents total number of hydro power producksg. and F_; are total power demand
and power losses respectively during transmissiahinva specified period. The hydro
power generatioR, ; as a function of storage capacity and dischargeisan accordance to
(2.50).

Fl)’l,ti = PQhS\f,ti + Pgh\NDﬁ,ti + PQhS\A,tiWDR,ti + PC4hS\4,ti + PQhWDR,ti + PQh

2.50
OhON,, &t 0TI (2.50)

Here,R, ; indicates power production through th€ hydro unit atti"time index. WDR

represents water discharge ratetidtime index. SV,; represents tank storing capability.
pc,, PC,, PC,, PC,, PC.,and pPc, represent power production coefficients

corresponding to theh™ hydro unit. Total power transmission loss depewds loss

coefficient and can be expressed in accordanc2$d) B, , B,., and B, represent the power

transmission loss coefficients.

Nip+Npy Nip+Npy Nip+Npy
Ri= z z A = z BosPesi + Boo (251)
s=1 h=1 s=1

2.5.3. Ramp rate limiting values constraint
Thermal power generation cannot be increase oredser suddenly. The power

generationR;in a definite time span should not be enhanced bgr&in amounRu , to
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that of the last intervaPs,(ti_l) . RU _ is known as ramping up limiting value. Similarpower
generation should not be curtailed to that of th&t nterval by a definite amourrD

known as ramping down limiting value. Boundariekatieg these limiting values can be

expressed by equation (2.52) and (2.53).
Py — R S RU,OsON, & tiOTI (2.52)

sti

R — R SRD,Os0ON,, &tiOTI (2.33

S

2.5.4. Reservoir flow balance constraint

The reservoir water flow balance equation relakes durrent water storage volume to
previous interval storage volume, inflow rate, dmge rate and spillage. Here, water
transportation delay between reservoirs is alssidened because of some upstream units

exist exactly above the™ unit. This can be mathematically expressed as,

Uus
S\(,(tiﬂ) :Sv,ti +|Fh,ti _WDBi _SE,)ti + MDBW,(N—WTQQ +Slé)rm(ti—vvmh))’ DhDI\lhy&tI Tl (2.54)
meL

Here, SV, ; denotes spillage of tank di"hydro unit at t" time index. IF, ; represents

inflow rate for the same tankis, indicates total upstream units exactly above hfieunit

andwTpD , represents water transporting delay from tanko theh.

2.5.5. Power generation constraint

Hydro and thermal power cannot be produce at vRitoduction limiting values
corresponding to the hydro as well as thermal predkican be expressed by equation (2.55)

and (2.56) sequentially.

P™<PR, <R™ChON,, &ti=Tl (2.55)

P™<P

sti

<P™ OsON,, &tiOTI (2.56)

Here, ™ and P,™ are respectively the minimum and maximum valueafgr production

by the h"hydro unit. The P"™"and P.™represents the minimum and maximum value of

thermal power production respectively.
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2.5.6. Water discharge rate constraint

Water discharge rate is limited by lower bound,ergpound and further within minimum

and maximum range. Considering total restrictedatpe sections gso, ) corresponding to

the h™ hydro producer is expressed in accordance to (2.57)

WDR™ <WDR, <WDR"

p-1

WDR, 0 WDR™_, <WDR, <WDR",0 P= 2345,.....RSQ

1=

(2.57)
WDR® <WDR, < WDR™

RSO, represents total restricted operating sectidMOR and WDR? represent lower

bound and upper bound on the to the restrictedatipgr section p for the h™ producer

sequentially, andp is the restricted operating section index.

2.5.7. Reservoir storage capacity and hydro dischge constraints

2.5.7.1. Reservoir storage capacity constraint
The operating volume of reservoir storage mesbétween its minimum and maximum
capacity limits.

SVY"<8Y,; <SY™,[hON,, &tiOITI (2.58)

2.5.7.2. Hydro discharge constraint
The physical limitation of water discharge of timgs in nf must lie within its minimum and
maximum operating limits as (2.59).

WDR"<WDR, <WDR* ChON,, &ti OIT| 59)

Thermal plants emit pollutants like oxides of sglfaarbon and nitrogen whiotause
environmental damageNowadays economic and environmental objectives are
becoming one of the most important optimizationbtgons in power system.hé
harmful emission produced by steam power plantst ineiconsidered in power system
operation. The aim of hydrothermal scheduling is ffaper is to determine the optimal
water discharge rates of hydropower plants and pgereration of thermals plants that
can simultaneously minimize both of environmentlygion and fuel costs in the whole

scheduling period.
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2.6. Optimal DG allocation problem

For the formulation of DG assignment in the powgstem, the load system must be
analyzed using load flow analysis. Load flow anislysan be branch based or node based.
The current injection or bus voltage is taken asatée for node based methods while branch

currents or power for branch based methods. The bead flow equations are given as

below:
R = Z VVJYU cos@ -6, - a;) (2.60)
Q = Z VY sin@ - 6, - a;) (2.61)

it

Where,V;, V, are the voltages df andj™ buses, respectivelf is the active power injection

at thei™ bus, @, is the reactive power injection at thbus,n is the number of buses,and

o, are voltage phase angles®andj™ buses respectively.

Fig. 2.1 depicts a single line diagram (SLD) of EE&3 bus test system.
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Figure 2.1.IEEE 33 bus radial distribution system
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Techniques like Gauss-Seidel method, Newton-Raphsathod, Fast decoupled method
have been used for load flow analysis. In thisithdead flow is analyzed using forward
backward sweep method [139].

It has virtues of low memory, high computationdicncy, high convergence capability,
simple structure, unbalanced system applicabiligr this method, there are two steps:
backward sweep (BWS) and forward sweep (FWS). InSBWoltage and current are
calculated using KVL and KCL. Whereas, in FWS, t®vnstream voltage is calculated
starting from the source node. To begin with, weetthe rated voltage at the end node and

KCL is applied to determine the current flowingrfrmode using the equation:

L) = l; 41 + ZCurrentEmaating (2.62)

This current is computed with the voltage atithrode using the equation:

i+ =V g+ " 20w (263
This process is unremitting till the junction node reached and the voltage hence

computed is stored. Continuing in this alike fashiath a further node end of the system we

compute till the reference node is reached. Comgathe calculated voltage with the

specified source voltage, if the disparity is lesban specified criteria we stop otherwise we

move on to the FWS.

The node voltage in the forward direction is cabedl using the following equation

Vi+) =V i) T4 (2)64
This updated bus voltage as calculated in FWSad @@ calculation in BWS. After node

voltage and line currents are calculated using B'WMS algorithm, the losses are calculated.

The objective of this work is to minimize powerdes. The real power losses are calculated

as given below [140].

Np Ny,
A= igljél[aij (F}Pj +Qin)+qj Q Pj —F;Qj) (2.65)
Where,
Rj
a; =——Ccos(g — J;) (2.66)
Rj
ARV L (2.67)

1]
Load models are of constant power, constant cyragat constant impedance type. In this

work, the system is supposed to be under divesdirig conditions, so the constant power
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load model is chosen. DG can be mainly classified three types based on how it transacts
with the real and reactive power [141]. Type 1 D{&cts only active power, Type 2 injects
both real and reactive power and Type 3 injectsr@giower but consumes reactive power
from the system. Here, in this case, Type 2 D&liscted for analysis.

The reduction in power losses due to optimal plaargnef DG and also its optimal size
has been premeditated in this work. Due to theodhiction of DG, the nature of voltage
profile under varying load conditions is observétie load is varied linearly from 50% to
150% of the tangible value. Here, the bus numbevelksas the size of DG has been set up
using WCA. The amalgamation of bus number and @, $or which the power losses are

the minimum, has been considered as the optimum.

2.7. Optimal power operation planning In a

township

In this work, two cases of hybrid DER for the ecamcal analysis of micro-grid have
been considered which are as follows:

Case 1. SPS and BMGU with BESS and

Case 2. SPS and PAFC with BESS.

Studied systems for different hybrid DERs usedia article are shown below in Fig. 2.2
and Fig. 2.3.
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Figure. 2.2 Studied system for case 1 of hybrid DER
43



| = Markst
11 KVi440 vV
Campus
d |_ quarters
11KV230V
Inverter T
Ny
— A '— Hospital
Fuel T
esft ] = 220V 11KVA40V
DC Bus
Chopper
Battery )
EnarEy jic b Controller
storags TR Bank and
swstem - and
Chepper — d Poat offica
et 11 KV230V
Chopper =
Solar
Photovoltaic
Swstem
ﬁ I— Hostel
At 11EV230V
Bus

Figure. 2.3.Studied system for case 2 of hybrid DER

Phosphoric Acid Fuel Cell (PAFC) has been fountiéadhe best among all types of FC.
PAFCs have low chemical and thermal emissions, mai&bility, siting and fuel flexibility,
less upholding requirement, ultimate part load grenbince and towering efficiency [154].
Although, biomass gasification process is les<igffit than biomass combustion, but it has
been found more environment friendly. Lead aciddmgthas been found to be the best
among all types of battery. Purchasing and selbhgower with the utility is required
according to the difference in generated power lmad demand [154]. If the generated
power from all the sources is less than requirad ldemand then, power has to be purchased
from utility. On the other hand, if the generatenver from all the sources is more than the

required load demand then, this excess power astedhe utility.

2.7.1. Objective function

The objective function is to determine equateduahrtost of the micro-grid for each
case of hybrid DER and is given by:
R=RrR, +R*+Ry R, (2.68)
Where, r,, R, Ryandr, are operating cost, initial cost, micro-grid casd utility cost

respectively. Operating cost for case 1 is given by

n m
bi —
= 33 sk (2.69)
cons=1ss=1 > Py (sshr,congOg, + D Rr(sshr,congOg; + Y Ry(ss hr,congOg,
hr=t hret, hrety

r=t,
hr#tgt
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Where, B, , Ri;and p,, are the power generated from BMGU, BESS and SBi&ctively.

PSO
Oy, Ogrando,, are the operating cost of BMGU, BESS and SPS cotispy.

The operating cost for case 2 is:

n m
SEEDID NI 270
conslss=1 Z R (ss,hr,cons)Og¢ + Z RBr (ss hr,cons)Og; + Z Ry (ss hr,cons)Og,
R:i:g'tw hr=t; hr=ty
Where, p.., Riyand p,, are the power generated from PAFC , BESS and 88&ctively.

0. » Ogrando,, are the operating cost of PAFC, BESS and SPSctsply.

Equation (2.70) explain the total operating cosfigt hybrid DER. The first term on
right hand side describes the operating cost of BM(S the product of power generated by it
and the cost involved with it. The second and therths describe the operating cost of BESS
and SPS respectively. Equation (2.71) describegdtal operating cost of second hybrid
DER. The operating cost of SPS is zero. The nurobdays per season, consumer, season

and hour in (2.70) and (2.71) are representeghy; cons, ss and hr respectively.

The BMGU produces powé,, in kW and after multiplying it by operating cos€l,, in
Rs/kWh, we get the operating cost of BMGU in Rdthra particular hour. After summing
the P, Ogy0ver twenty four hours, we get the operating cdsbme day. When it is

multiplied by number of days in a season (243 daysummer and 122 days in winter), the
operating cost of a season is obtained. On sumthmgosts of both the season, the annual
operating cost of the BMGU is obtained. This precesrepetitive with diverse DERs to
obtain their yearly operating cost.

Initial cost for case 1 is given by

R = Z [a icgy (cons) +B icgr (CONS) +1gy, iCgy + lgriCer +icy, | (2.71)

cons=1

The initial cost for case 2 is:

n

RIfCS = z [Y ic EC (COHS) +B iCBT (ConS) +||:c ic FC + IBT iCBT+ ic [Sle] ] (272)

cons=1
Where, icgy ,iCgr , ic, andic.. are the initial cost of BMGU, BESS, SPS and PAFC
respectively. To resolve the total annual depramiaéxpenses, the initial costs have to be
multiplied by depreciation factors B andy respectively.lg,, , Iz, andi . are the allowed

interest rate of return on the initial investmeioisBMGU, BESS and PAFC respectively by
the funding agency, f andy can be found by the following equation:
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d (Litgm gTFCD)

o, B, Y= drx (273)

(1+dr)LftBM,BT,FC 1
Where, Lftg,, Lftyr, Lt . and dr are the lifetime of BMGU, BESS, PAFC ancerat

depreciation respectively. The micro-grid costvialeated using the following equation:

RV' = 8 icsw+,7 iCtfm +)\’ ic cbl *o ic cont + Isw iCsw + I tfm ictfm + I chl ic chl + I cont ic cont (274)

Where, ic_,, icy, ic,, andic,, are the initial cost of switching equipment, tfanser,

t

cable and controller respectively, 77, A andc are the depreciation factor of switching

and __ are the

cont

equipment, transformer, cable and controller respsEy. |

sw ! In‘m ! chl
allowed interest rate of return on the initial estments for switching equipment,
transformer, cable and controller respectively.
The utility cost is given as follows:

1oy

Ry= D D Nod.x Y { e R(ss, hr, cons)e, r,(ss, hr, cons)i+12ez{max[R,

cons=lss=1 hr=ty
(cons)]} (2.75)
Whereg,, ¢ ,and e; are cost of purchasing power (Rs/kWh), cost ofirgelpower

(Rs/kwh) and base charge of electricity (Rs/kW/rhpnespectively.

2.7.2. Constraints
To optimize the equated annual cost of (2.68),no@itioperation of hybrid DERS is the

main functional constraint.

n
Z D¢ (Ss, hr, cons) &;,, (ss, hr, cons) B, (ss, hr, cons) £, (ss, hr, cons) .. (ss, hr,

cons=1

cons) +R; (ss, hr, cons) e

. (SS, hr, cons) (2.76)
Where D represents power demand of consumers of microagradparticular hour of a day

in a season in kKW.

Besides above, there are some other constraint®$bioptimization:

0< Py (hr, conskICg, (hr, cons) (2.77)
0< p, (hr, conskx ic ., (hr, cons) (2.78)
0< p. (hr, conskx ic . (hr, cons) (2.79)
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-1Cg; (hr, consx Ry;(hr, consk IC4, (hr, cons) (2.80)

Pam » Psor Pec o ICBM, ICgo1 ICH = 0 (281)

Equation (2.77), (2.78) and (2.79) determine thevelo and upper limit of power
generation by BMGU, SPS and PAFC respectively. iRelg2.80) determines the lower and
upper limit of power generation by BESS. The negasign in lower limit indicates the
charging of battery. On any day, the total sum @i/g@r generated by BESS should be zero.
But practically, battery does not discharge conghjetiue to its efficiency. Hence, the total
sum of generated power by BESS has very small tiernifrom zero value. Relation (2.81)

determines thad,, , r,,, P.., ICgy, Ics, andic . should have values greater than or equal

to zero.

2.8. Optimal power operation planning in a rail-way

rake maintenance depot

A railway rake up keeping depot, to perform eleatrias well as mechanical up keeping
of Traction Rolling Stock (TRS), named, SonarpurSTRectrical Multiple Unit railway car-
shed, Eastern Railways of India, came into thetemce in the 1979. It is located at Sonarpur,
the south sub-urban of Kolkata, India. Its totamising area is approximately 68,550 square
meters. Out of this, current utilizing space is @8§uare meters.

Mean value of the electrical energy usage for tioeeaaid depot is approximately 50
KVA including a maximum demand agreement of 200 KMAe required power is supplied
by the Sonarpur 33/11 KV substation, WEBSEDCL. Aratl results of the load power
requirement profile (corresponding to each day)ttedt load scheduling is very critical as
well as highly optimized (including each of the straints with respect to their normal
operating schedule) with 50 KVA mean load, 120 Kg@ak power requirement along with
400 KVA connected load. They maintain their powasstdér 0.98 to 1 placing capacitor bank
in their sub-station. So optimal power operatioanping is to be done mitigating the hourly
demand.

Solar and wind potential of this area was takenmfrdVest Bengal Renewable
Development Agenc{WBREDA) and as per the reports wind power genemai not
suitable there but its solar potential is fair egiowo generate power. In the premises large
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amount of spare area is available to set up rerlewsdwer generators like biomass gasi
units, fuel cells, etc. Considering this scenaoaly solar power system (SP<biomass
gasifier unit (BMGU)and phosptric acid fuel cell (PAFC) are proposed as DERs along
with a battery energy storage system (BE

Beside the environmental benefits, the main objectior introducing distribute
generation here is to minimize the electricity wHarged by WBSEDCIto Eastern Rall
Ways and if possible to earn back some money fgeslinplus power to the grid, so that t
proposal becomes attractive to the consumer ieR#ileNays compan

To fulfill the objective, optimal power operatiofapning and the optimaapacity of the
above mentioned renewable power generators are@gedjA comparative study is also do
for three set of generators. ie. Case |, Il &

Case |. Biomass giher unit (BMGU) and solar power system (SP along with a
battery energy stage system (BES

Case Il.Phosphoric acid fuel cell (PAFC) & solar power system (SP along with a
battery energy storage system (BE

Case lll. Biomass gdeer unit (BMGU), phosphoric acid fuel cell (PAFC) & solar
power system (SPS3Jong witha battery energy storage system (BESS).

Fig. 2.4 depicts the satellite image of the depot campugtuced from Google may
online application [208]. Fig2.5shows a representation relating necessary conmsppewet

contactors, converters, relay pal, circuit breakers, diesel generaset etc

- -
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Figure 2.4.Satellite view of the railway rake -keeping depc
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The cost evolution for this distributed generat®ystem, three set of nerators are
considered as mentioned above. The test cases bemre chosen in anticipation of t
scenariothat as per our present technology, BMGU has |ostaitation cost and operatil
costbut power density is less. Whereas, PAFC has mgfialiatior and operating cost, but

Figure 2.5.Single line diagram of the proposed protectionesyx
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has high power density.ie. less space is requioethdtall a high capacity power plant
comparative to other DERSs.

Among various type of fuel cells, PAFC, with higi@ency, low chemical and thermal
emissions, fuel flexibility, reliability, low maiehance, excellent part-load performance, is
considered as most advanced in the range of 50 000 KW [209,210]. Presently it is
proved that, in micro-power systems, Solar powestesy (SPS) performs good with
economic merit to mitigate nearby loads [211,214. per the scenario of Indian context,
BMGUs are also playing a vital role in the areadetentralized energy generation systems
[213-217]. Among existing batteries, VRLA (valvegudated lead acid) shows most

technological maturity in respect of efficiencyitia cost etc [215].

2.8.1. Obijective Functions

Here the objective function is total annual costtlut distributed generation system
which is given by
R=R,+R, +R, +R, (2.82)
whereRo , R, Ry , Ry are operating cost, initial cost, micro-grid coashd utility cost,
respectively.

Here the objective is to minimize the total annc@dt R, with optimal power operation
and to find the optimum installed capacity of vasdERSs. It is considered that, the control
variablesPym P, Pot, Pso are the vectors which represent the hourly basmgep generation
of a day in KW andCy, ICs, ICh;, ICso are the installed capacities of Biomass, fuel, cell
battery energy storage system and solar powermygspectively.

Operating cost varies for different type of DERgs, Or, Opnt, Oso are the operating costs
per KW of BMGU, PAFC, BESS, SPS respectively. Tihgilies,

For Case |

R, =365 - PO+ Ry Oy + PO, (2.83)
For Case Il

R, =365 POy +R,.0, + PO, (2.84)
For Case Il

R, =365Y . POy + ROy + ROy + PO, (2.85)
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Different DERs have different initial costs. Lebe the market rate of interekt, pm. tc b,
so andC pn 1, bt, s@re the optimal installed capacities and instaltatosts per KW capacity
of BMGU, PAFC, BESS, SPS respectively. TBa,m, i ot s@re calculated as
IC bm, fc, bt, s&= MaX | Pom, e, bt, so | (2.86)

So the equated annual cost for installations cenisig depreciation,

for Case |

R = (fort ). ICom. Gom+ (Tt +1). ICpt . Got + (fso+1). 1Cs0. Cso (2.87)
for Case Il

R=(fict1). ICkc. Ge+ (for+1). ICt . Gyt + (fso+ 1). ICs0 . Cso (2.88)
for Case llI

RI :(fbm'l' I ) ICbm -Cbm+ (ffc + 1 ) ICfc . Cfc + (fbt +1 ) ICbt . Cbt + (fso"'I ) ICso -Cso (289)
Wheref pm, 1, bt, so are factors associated with sinking fund depremmawalue, which are

given below.

(1+dT‘)( Lft bm fc, bt,so _1)

fom, fc, bt, so= AT (2.90)

ft
(1+d7”) bm fc,bt,;so

-1

Here,Lft sw, tm, cbl, ctrl @re the estimated life times of these various PBRer plants, withdr

as the rate of depreciation.

The micro-grid installation cost (including depiedn and interest on the invested money
for these installations) can be expressed as

Rv = (fswtl ).Csw+ (fitm +1).Citm + (feor +1 ).Cenl + (fetn +1).Cen (2.91)
WhereC s, tim. cbl, ci@re the costs of optimum installed capacitieswofch gears (including
CTs, PTs, LAs), transformers (1100 / 415 V), cabld controller (including panel)
respectively. Here, the subjected site for impletingndistributed generation is not very
large. Transformers (1100 / 415 V) are needed agfhe interface between the grid and the
micro-grid. As the DERs will be existed near thads, the local network is proposed of
415V. f sw, vm, cbl, ci@re the factors associated with sinking fund depten value, and are
expressed as

(1+dr)( Lt swifm cbl el ~ D

f sw, tim, cbl, ctn= dT. (2.92)

(1+dr) Manimanan 1
Here,Lft sw. wm, cbl, ci@re the estimated life times of these variousmgents andlr is the
depreciation rate.
The utility costRy includes the cost related for the purchasing ettelcity from the grid and
the selling of electricity to the grid.
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Ry=365.247-1( E,. P, — E,.P,) +12.B.max (B) (2.93)
Here the first part, ieE . P, implies the cost to purchase electricity from gnil, with Ep

being the rate of energy (which varies as normadkpor off load time) an&p amount of
purchased energy per hour. The last term signifeese price of electricity charged by the
utility on the basis of maximum demand contractjolicharged by the electricity board in

every month. The middle term, ig.,.p, indicates the income of the consumer feeding or

selling the surplus power to the grid. H&xgis the amount of energy fed to the grid per hour
andEg is considered as selling price per unit amourgrargy generated from DERSs. It is
enquired in 'Vidyut Bhavan', the Head Office of WH3CL, that there is no prominent
scheme at which rate they can buy energy from astyililited generation system, but they
have individual tariff for energy generated fronffetient renewable energy generators which
is fixed throughout every hours of the day. Soghssible tariff to sale power to the grid is

proposed here as

- Som' hr I:)bm + Sfc 'Zhr Pfc + Sso'zhr Pso
) Zhr Pbm + Zhr Pfc + Zhr PSO

whereSpm 1, soare the individual tariffs as regulated by théitytbody.

E (2.94)

2.8.2. Constraints

There are several constraints to solve this optitmizgoroblem. The primary constraint
for the optimal power operation is to meet the podemand Rd) of the consumer for all
instances. This can be formulated as

| Pd |=Pom + Prd + Pso + Ppi + [P [Psl],  (fori=1... to ... 24) (2.95)
P =0, (fori=1... to ... 24, Case I) (2.96)
Por =0, (fori=1... to ... 24, Case Il (2.97)

Also, there are some auxiliary constraints in tpsimization procedure. L& pm fc, b, sodre

the maximum installable capacities of different DERsen

0< Ppm <Mpm, Vi (2.98)
0< Pid <M, Vi (2.99)
0< Py <My, Vi (2.100)

Battery energy storage system has certain stordfigeeecy. Let . be the efficiency of the

BESS. Considering that positive power indicates paledivered by BESS
Y Ry =~{1-7,)xmaxR| (2.101)
hr
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Solar power system can produce electricity neitimemight and evening hours nor at
uniformed rate throughout the day timeSIDPbe the hourly basis solar potential to generate
electrical power, then

0< Psg <SOP, Vi (2.102)
Thereafter, a crucial constraint for this particutzase, is associated with the size of
Transformer. Transformers have high costs and anéinearly related with their capacities.
Besides, there are only some standard sizes offtraners available in market. Here, as
mentioned earlier, the consumer has a maximum copison of 120KVA and has connected
load of 400 KVA. However they have installed 2 sfommers (11000 / 415 V) with total
capacity of 700 KVA. So, in case of excess producidf power by the DERs, when the
maximum amount of fed power is below 700 KW, noraxransformer is needed to be
installed. But when it exceeds 700 KW, cost of $farmer will be added. These facts are

indicated as,

Cim=0, (for Max |R| <700) (2.103)
Cifm = Tr100, (for 700< Max |Py| <800 ) (2.104)
Cim = Trais, (for 800< Max |Ry| <1000 ) (2.105)
Citm = Tr700, (for 1000< Max |Ry| < 1400 ) (2.106)

where Trioo, 315, 700 are the costs of transformers of capacities 100G, 00 KVA

respectively.

2.9. Optimal power controller design of active

distribution network

Taking environmental and technical floors into adagtion, solar photovoltaic network
(PV system) and valve regulated Lead Acid batteagkbas battery energy storage system

(BES system)) have been considered here to forama power network.

2.9.1. Objective Function

In this context, the objective is to minimize thet annual operating prick,,, alongwith

optimized power operation of the installable renel@gower producers. Ther,, andp

phv
represent the control vectors indicating a quantair basis daily power generation by the
BES and PV system sequentially. This power germraakes place in accordance with the

load power requirement data of similar time horizbheC,,, andc,, represent the installed
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capacities of the battery energy accumulating mediid solar photovoltaic network in a

sequential manner.

An overall annum term operating prid&,,) can be represented as

Ranu = Rgen-l_ Rlﬂ (2.107)

where, the first term on the right side of the eb'tqmr{Rgen) represents the power production
price and can be expressed as
96
Rgen = 3652 I:)batt (t)rbatt+ I:)phv(t)r phv (2.108)
t=1
whereR,, (t) andP,,(t) indicate the quarter hourly power supplied by biztery energy

storage system and the solar photovoltaic netwegkientially at" time duration. The terms

L andr, represent the equivalent prices of the aforesendiycers corresponding to per

kWh energy in the same sequence.
The utility priceR, is the transaction cost associated with eleggrimitying and selling with

the grid and can be expressed as

R, = foss . (01, ()-E.(0 () |
+12r ma>(Ebu (t))

whereE, () andg, (t) indicate the amount of energy bought and vendsgleatively and the

(2.109)

terms,, (t) andr, (t) represent corresponding tariff rat@e term

. Indicates the utility grid
contractual, thirty days basis minimal price imatin to the maximum consumable energy at
the demand side.

The surplus energy to the grid can be supplied ariee determined by using the
individual tariff plan for inexhaustible energy oesces involved in this objective task. Hence,
by utilizing the combined tariff plan, the vendimpgice of the surplus energy is can be

expressed as

r - Vphvz hr I:)phv
sl,srp P (20:)1

hr = phv
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wherey,, indicates the individual basis vending price @& #olar photovoltaic network. This

price is regulated by the utility body.

2.9.2. Constraints

Imposition of the following constraints has beemgsidered for the chosen optimization task.
At the outset, the total power dem4Rg,) of the hospital premise should be computed at

every time instance as

Rer(t] = R § + Ponf § 4 P § | P{

The producers cannot produce power beyond thalledtcapacities of the renewable energy

, L1 (2.111)

resources and battery energy storage system coesida the power network. Solar
photovoltaic networks possess complete dependenddeoirradiance level throughout the
day. A limitation on this power production is obsst during different durations of the day.
This happens in accordance to the irradiance feveach duration and thus,

OS‘Pbatt(t)‘ <G, [t 2.112)

0<P,,(t)<SQ(), Ot (2.113)

where,SQ,(fshows time based paramount electricity generatigntie installed solar
photovoltaic network. Considerimrg, as the battery bank storing efficieneyergy lost in the

battery energy accumulating media is deducted fitmentotal power calculation. It has been
assumed that power supplied by the battery energynaulating media is positive (in terms of

sign) and can be expressed as

%‘, Pbatt == (1_ ebatt) X max‘ Pbatt‘ (2.114)

2.9.3. System modeling

Figure 2.6 represents the single line block diagsaematic of the electrical power

system in the hospital campus.
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Figure. 2.6 Schematic of the electrical power network in thegita

model of the PV inverter syste

The PV system is connected through a-controlled grid connected inverter. In tl
scheme the PV system and inve are modeled by their Norton equivalents linearizing

PV characteristics around the maximum power |. Figure 2.7represents the electric

PV Array

I >
Sensors ‘
%: C, EI—‘_ FTCou g Rinv Cl:) L
Contraller » PWM [~

Figure. 2.7. Electrical model of the PV inverter syst
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This system can bmathematically modeled in

average modeling technique as bel218].
X=AX+BU

Y=CX+DU

X = [i1 vein Veouel”

U=[dL,I]

Y = [vCin]
where
1 (1-d)
0 . - ]
1 1
A== Cn  CinRmpp 0
(1-d) 0 _ 1 J
Cout Cout'Rinv
VCout
; 0 0 'I
1
L% 0o - 1 J
- Cout Cout
C=[010]
D=1[000]

st-variable representation applying 1

(2.115)
(2.116)
(2.117)

(2.118)
(2.119)

(2.120)

(2.121)

(2.122)
(2.123)

In the above referred equatiori; is the current through the inductL. Thev.;, and

Veour @re the voltages across the input and output dars C;,, andcC,,; respectively. The

required duty is represented d. Other inputs to the systend,, and I, are the equivalent

current of PV array and the inverter respectiv Ry,pp is the equivalent resistance of the

array at maximum power poi

. Ly Sensors
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e
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Figure 2.£. Electrical model of the BESS.
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The electrical model of battery energy storageesys(BESS) has been represented by
Fig. 2.8. The charging/discharging current of thédry energy storage system is modeled

Ipgpe = LBant=Vpe (2.124)

TBatt

where Iz, IS the charging/discharging currenitz,;,; and g, are the internal battery
potential and resistance respectivelypc is the battery bank terminal voltage.
Mathematically this BESS can be modeled as

V Yre, /e, VDC
If]fl l ] [ILf 1/ l [d. Verial (2.125)
Ve = [0 l/cf] I;ffc] (2.126)

WhereR is the equivalent resistance of the battery atliequm, Cr and L are the filter
capacitance and inductanekjs the required duty of the DC-DC converter aig;, is the
DC bus voltage.

The comprehensive schematic of the nano-grid isctegpas Figure 2.9

1
,-l —r—— oy I
N £\ 7] IS
& HO ko= 0] A
. cTPTicB  RVIKY “erprice 200 O
Grid y 1
_CTPTICB 11/0.415 KV I
[77 Mair!
VR = Buidine |
’ﬂ 2 1
3 > |
2 7 1170415 KV /
022011 KV 2| st |
4 Buildin; . .
______________ To2exvachus L/ - Electrical model of the PV inverter system
1 R |
| \;f_ Inverter | 1{‘“”1(\ Day Care
1 s ! 1 Building
I I——l-D.,&Ol.-\DCbusl
7 1 1 1170415KV
i Solar = / | Charge 1 | ‘_Onclclog}'
photovoltaic |—-y 7 1 controller | Building
system e — 1 |
A~ | | 1
Ch 1
Lo oo SR o f o - - !
Battery i d 11KV
! energy — I N
1 storage - s S g ! [Sensors ‘
< S m— ~ £ ~
1 system / 1 ~ g 3
1 | ~ g L >
———————— Chopper_ _ _ _ _ = RS S I g
S S 3
~ a
Schematic of the electrical power network in the hospital ~ N
\/ Phay
,_é‘_l’m;
Electrical model of the BESS

Figure 2.9.Comprehensive schematic of the nano-grid.
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2.10. Optimization based fault detection scheme
photovoltaic systen
2.10.1 PV system characteristic

Fig. 1 represents a single diode phwltaic cell equivalent circuitry that contains aopi

current source, a diode, a seri RS) and a shuntIRsh) resistors.

NMNW—©
t L] ]| R, Tt *

L
Y Ra %

Figure 2.10 Equivalent Circuit of PV Cell.

This single diode cell model entails the follng current-voltagel{V) relationship as in
(2.127) [219].

q[V+I.R ) V+ IR
=1, -1 |expy———21-1]- S (2.127)
ph o nkT Rsh

Where, |

oh is the generated photocurre I0 denotes the diode saturationrent, n is the

diode ideality factorg represents the elementary chatk is the Boltzmann constant aT
is cell temperaturel. andV are current ed voltage output respectively.
In a PV module, these solar cells are connectesgiiies and parallel combination. Thus,

I-V relationship of a module can be formulated a<2.128) [219].

I=N I -N_I |ex q[V/NSH'RS/NpJ -1 NpYINS TR (2.128)
p"ph po nkT R

sh

Where, NS is the number of PV cell connected in series incalue anc Np is the number of
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PV cell connected in parallel in a module.

2.10.2. Effect of non-uniform irradiance

It is very probable that solar irradiance be nofarm throughout the panels in PV string.
This causes dissimilar quantity of power productionPV units and also changes the
operating temperature of the PV modules, which reaidy affects the PV current hence the
power generation.

To harvest the maximum possible amount of energy fthe PV system, various MPPT
processes have been used, most commonly, regult#iegperating voltage. Modified
Perturb & Observe (P&O) is a readily used algoritevhich achieves great success tracking
the voltage at the maximum power point [197]. ktantaneously calculates the operating

duty of the DC-DC power converter connected toRNestring which controls the operating

voltage in real time. The operating PV string voiiaat MPP ‘(/S'\t/'rpp) is given by (2.129).

Vsl\t/lrPP = d-szlvoJc (2.129)

Where, d is the duty of DC-DC power convertdi)] is number of PV modules connected in

series in a string, in the PV string avgi is the open circuit voltage of the" module.

2.10.3. Formulation of OC and SC faults in PV strig

To introduce heuristic search technique as a toldult diagnosis in PV system, a fault
related system parameter based objective funcsisaquired. So, it is intended to develop a
fithess function that helps to locate open andtstimuited modules in a PV string.

For each PV module three possible fault situatemesconsidered: no fault, OC fault and
SC fault. These fault conditions can be realizeddepicted in Fig. 2.11, by opened and
closed positions of imaginary switches as SWO1-SW@witches to cause open circuit
faults) and SWS1-SWSm (switches to cause shouitif@ults). These SWOs and SWSs are
connected with each module in series and shunecéisply. Here SWOs are normally closed
and SWSs are normally open. An OC fault inifhenodule is realized by open SWOi and a
SC fault in thé™ module is realized by closed SWSi of the correspanPV module.

MPP

Tracker &
Converter




Figure 2.11 Connection Scheme of PV string.

As each module in a string experiences differentarsarradiation and module
temperature, operating voltages of each modul@liffierent. But, being connected in series,
current through the modules (string current) is eaifhe operating voltage of individual
module can be obtained from (2.128) with the infation of module irradiance, temperature
and string current obtained from respective sendargase of OC fault in a module, the
voltage across the module terminals is negativierwiard biased voltage of reverse bypass
diode. During module SC fault, the voltage acrtisg mmodule will be zero. Voltage available
at the string terminal is the summation of the agds across each module. It is supposed that,
whenever the PV string is faulty or healthy, the MiPacker, connected across the string, is
on its job to continuously control the operatingtage of the PV string for the sake of
harvesting maximum power from the string. The gtruoltage at MPP can be realized by
(2.129). Again, the string current at MPP dependalbof these module voltages. Hence, for
different fault combinations, the string currentriga. This property is mathematically

exploited here to create the fitness function. Nuaé expression of string output current at

MPP (i Z'rpp) is derived based on the above narrated faulindisig concept.

During normal operation (no fault), the string auttpurrent at MPP can be represented as
(2.130).

[ MPP _
str

1) m
(;J M. G) (2.130)

Where, R is the equivalent load resistandéegenotes the position of the modules in the
string,mis the total number of modules connected in seni¢ise string,T; is the temperature

of module ai" position, G, is the solar irradiance on modulei‘ﬁtposition,viMPP (T.,G;) is

the voltage output of module &t position forT; and G; when the whole string is operating

at MPP.

The imaginary switches (SWOs and SWSs), as prasamteig. 2, have been considered
to introduce open and short circuit faults in trgaion of string current. Here, in this
problem, SWO and SWSare the decision vectors with dimension where m is the total
number of modules connected in series in the stiing elements of the vect®@®#(C and

SW. are bound to be 0 or 1. The valuesxfo, as 0, indicates an open SWO associated with

thei™ module, which implies thé" module to be open circuited. Otherwise, the vallihat

61



swo, being 1, it implies no open circuited fault in & module. In the same way, the value
of swg as 1 indicates closed SWS associated withitheodule, which implies thé"
module to be short circuited. Otherwise the valtithat sws being 0, it implies no short

circuited fault in that module.

In occurrence of only open circuit faults, the opewuited modules are detached. At that
time, the string current will flow through the naaty connected modules and the bypass
diodes connected across the respective open @dcuitodules. The current through those
bypass diodes causes some power loss in the forwolt#ge drops across those bypass

diodes. Thus, the string output current equatiddP can be expressed as (2.131).

| MPP :itﬁigl{swq xVMPP (T 6 )-vgp x (1~ swq)}} (213

Where, swo={swgQ,...,SWQ..,SWqy,} and vgy is the voltage drop at bypass diode in

conduction state.

For example, it™, 6™ and9™ modules of the string, consisting of 10 numbersnofiules,
are open circuited, thetmm=10andswo= {111,0101101} . Thus, SWC indicates the locations
of OC faults in the string.

Again, in case of only short circuited conditiorfsnwodules in the string, the voltage across
short circuited modules will become zero. So, tieg output current can be formulated as

(2.132).

ot :é igl{(l‘swﬁ)xViMPP(Ti G )}} (2.132)

Where, sws={sws.... SW§...., SWSy}.

For example, i2™", 5", 6"and &' modules of the string, consisting of 10 numberotiules,
are short circuited, therm=10 andsws= {01,0,011,01,00} . In this mannerSW. indicates the

locations of SC faults.
Now, to realize both OC and SC faults together siinbs numerical combinations (Cb1-

Ch4) of swo; and sws are tabulated in Table 2.1. In case of Cbl, itdatiis normal

operation, i.e., no fault in that module. At thatiation, the bypass diode across that module
IS operating at reverse biased condition. In cdsg€b2, indicating an OC fault, the bypass

diode is in forward biased operation causing aagatdrop of vy in the string. Again, in
case of both Cbh3 and Cb4, the valuesm‘q is 1. In these situations, whatever is the value of

swo; (0 or 1); the effects of both these switching cormations to the string are same as
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short circuited operation of that module. In theases, the terminal voltage across the bypass

diode is zero.
Table 2.1
Realization of faults by switching combinations.
Associated _
_ Terminal Voltage across the
o operating _
Combination swq  sws; N voltage across bypass diode shunted to
condition of thel " "
" thei” Module thei” Module
module
Cbl 1 0 No fault vi'v'Pp(ri .Gj) —\/iMPP(ri .Gj)
Cb2 0 0 Open ~Vgp Vap
Cb3 1 1 Short 0 0
Cb4 0 1 Short 0 0

Considering these combinations and their effectsthen string electrical parameters,
(2.131) and (2.132) are combined to form a gers=dliequation (2.133) fog'rpp, where

both OC and SC faults are considered in the string.
I8 = E{Z swq x (1- swg )xvMPP (1,6, )-vgp x (1- swq )x (2~ sw§)}} (2.133)

So, the actual faults can be detected by followiregactual current measured at the string
operating at MPP and comparing the same with thaileged string current|§frfp), which

is equal to ('S\{lrpp) as given by (133). Hence, the objective functtan be modelled as the

absolute difference between measured string cu(ﬂé)ﬁ@’s) and calculated string current

(|Z'rfp), operating at MPP. Thus, the fithess functianT (swo swsfor PV string is

formulated as a minimization problem (2.134).

FIT (SWQSWS = ab+r':]/'epaps |2ng (2.134)

Where,swo:{swol ..... SWQ...., SWO}
SWS={SWS...., SWS,..., SWSp}.

|M§§S- Measured faulty string current at MPP.

|2:':P = Calculated faulty string current at MPP.
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MPP

The global minima of the fitness function (2.13gxero (i.e., Whem and | are the

MPP
mea

same). And the decision variables, that give thé&mapn solution, indicate the fault

combination (location of OC faults and locationS€ faults, individually), that has actually

occurred in the string.

2.10.4. Optimality condition

There may be many suboptimal solutions, solveditigrdnt optimizer for different fault
combinations, those are close to zero. Suboptimlatiens may fail to indicate the actual
fault combination. As simulated irradiation and parature distribution throughout the
modules are taken same as existed in the operattiygjcal PV string, the difference in value

MPP
sir

of | and |

Mg; is supposed to be caused by the dissimilarity iofulated fault
combination from the actually occurred faults ire thtring. But, on the other hand, the
optimal solution of the fithess function may not &@eactly zero, but close to zero, due to
various accuracy limitations of various sensors measuring and recording devices. Hence,
to guarantee the truthfulness of the solution, iokthby minimization of the fitness function
(2.134), necessary optimality condition has beén se

To set the optimality condition, the minimum di#ece of the effect on a PV string, due
to the actual fault combination and some other aoatlon of faults, has to be identified. It is
interesting to note that, the minimum possibleattghce of total string power output between
any two combinations of faults is either the powess in a single bypass diode at any
particular string current or the difference in povgeneration between those two modules
whose irradiance values are the closest in thatgstwhichever is smaller for a particular
faulty (or healthy) string.

Thus, the optimality condition has to be set ifligiguring the fault diagnosis procedure
every time. Here, the optimality condition is: théerence, between actual power output  (

) of the physical PV string and the simulated powaiput (P

simulated

) of the simulated

actual

model for the fault combination provided by theiopzer, must be less than a small number
E.

<&

So, the optimality condition can be mathematicakpressed as‘, 2 ulated” Pactual

Where, the value @&f is determined as follows using simulated PV model:

calculate B,
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calculateap

mod ule

if Pp<ap

mod ule
=Ry
else

E=AP

mod ule

Where P, , the power loss in a single bypass diode carryirggmeasured string current

(1 MPP), is obtained as (2.135).

mea
- MPP
Pao =V ! rea (2.135)
Andap, ... the difference in power generation between thtse modules whose

irradiance values and thus the generated poweslasest in that string, may be obtained as
(2.136).

AI:)module = min{AVmoduIe} X Ir'\:s: (2136)

Where,av can be obtained by the following steps.

mod ule

{

fori=1tom

{

forj=1tom
{
if 1]
{

AVmodule(i ) :ViMPP(Ti 'G) _VjMPP(Tj ,Gj)
}

}
}
}

2.10.5. Fault diagnosis scheme using optimizer

The proposed fault diagnosis scheme is represastéd Fig. 2.12. It shows the different
blocks of the diagnosis process. The acquired physdiata from the PV string are fed to the
soft computing based diagnosis platform througbraputer interface to carry out the search
of the actual fault combination. Optimization tejue is employed here to minimize the

fithess function (2.134), so that, the actual faolinbination can be identified.
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All the physically measured data obtained fromrdspective sensors are exported to
diagnosis platform via computer interface. The dathby the computeinterface have bee
computed by the computing machine equipped withukition software. A simulatio
model, replicating the physical PV string, is coansted. This simulated PV string is usec
carry out the intermediate function evaluationsrepuirec by the optimizer block irFig.
2.12 After computation by the optimizer, for the geated solution (i.e., the detected fe
combination), the optimality condition is checkdfl.the solution satisfies the optimali
condition, the detected fault is dlayed. The logical flow chart of this faultiagnosis

&
Tand G from the physical PV string

:

Simulate P;p,meq for no fault condition & Evaluate &

scheme is depicted in Fig.1<.

- MPP
Get Imeqs , Pactual’

Display:
Healthy
string

Optimizer Initialization:
Take (SWO, SWS) as decision vector

|

Perform mathematical minimization
for the objective function (8)

Yes Is [P

simulated — Pacmal | <e?

(check optimality condition)

Is convergence
criteria met?

a Yes

Return
(SWQ,SWS)
oplt

v

Display:
Detected faull as:

(SWO, SWS)
opt

Figure 2.13.Computational flowchart of the fault diagnosis noetblogy
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Chapter 3

Solution technigques

3.1. Mathematical optimization

A procedure to obtain the best possible solution(ger given situations is named as
optimization. Considering the design, maintenarened construction of an engineering
system, various technical and managerial decisemes needed at different stages. The
ultimate aim of each of these decisions includdseeito maximize the required advantage or
to minimize the effort count [220]. For mathemaltiogtimization, one or more objective
functions need to be formed. The goal of the ma#tmal optimization techniques is to find
values of the variables that minimize or maximize objective function while satisfying the

constraints.

3.1.1. Expressional stating
An optimization goal can be stated as,
determineXin (), resulting in minimized or maximized vaIuea‘sF(X).

WA{W, W, ..., Wi}=F(X), B
Here,Wis known as objective(s) and
X:{X1, %,...., %} IS decision vector.

This is subjected to satisfy the equality and iraityiconstraints as in (3.2) and (3.3).

H (X)=0, i=12..,h (3.2)

G.(X) <o, i=12..9 (3.3)

69



3.1.2. Solution methodologies for power system optization

problems

An elevated interest in algorithms encouraged gy aptness of natural phenomena is
seen throughout the last few decades [221-227]otPot studies seeking to find optimal
solution are being done [223,228,229]. Some algorst perform better to solve some
particular problems than others. A number of effeecbptimization algorithms are available
in the literature.

In the previous chapter of this thesis, various @ogystem optimization problems have
been formulated constructing the objective funai@md according constraints. All of the
problems stated here are in the form of minimizapooblems. Different available heuristic
and meta-heuristic optimization algorithms havenbeeplied to solve the power system
optimization problems stated here in this thesisese optimization algorithms and their

application methodologies have been discusseckeifollowing sections.

3.2. Heat transfer search algorithm for economic

dispatch problems

In Heat transfer search (HTS) algorithm, the pojamais considered as a group of
molecules that participate in a heat transfer ratigi different temperature echelons [19].
Here variables correspond to different molecule perature. The molecular energy level

denotes the value of the fitness function. The H&§ins with a random initial population of
por, and every solution hasl‘%numbers of decision variables. The values are epdaith

each iteration. The selection procedure here addptthe greedy selection technique which
allows the modernized solution in HTS, if it proeglbetter solution. The worst solution is
replaced by the best. The whole search procesenducted as in three equally probable

phases which are determined by a parametd&he phase wise solution algorithm for ED

problem applying HTS are as below.

3.2.1.Conduction Phase

In conduction phase, the system seeks to reacim#hezquilibrium by heat transfer

following ~ conduction  process. During this phase ®he iter <itermay / fq

{ foq : conduction_factor }, the solutions are modeled as follows:
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iter+1 iter _

Foj;i  TPok, +edfor CEkagj)>CED(ng) (3.4)
iter+1 iter _

Poki =Foj; *cdp:for CED(ng)>CED\ng) (3.5)

Where, iter is the current iteration,=1..., pop, kO(,....pop),j#k and k" generation is

randomly selected from the populationp (L...Ng). cdq andcd, are the respective

conduction steps stated as follows:

iter

__ 2
cdl— ) ng,i

(3.6)
iter

__2
cd, =-¢ ng,i

(3.7)
Here, »* is matched up to the conductance from the Fosriewv equation and’Qkiand

ng ; are matched up to the temperature gradients.

In the next part whereer > iter 5, / ., » the solution are brought up to date as:

cd ?

iter+1 __ iter .
Foji =Py Tedsy for CEkagj)>CED(PQk) (3.8)
O 9 "% ED\"0k/” “ED\'Y B.

Where, cd; andcd, are the steps of conduction phase stated as fallow
iter

iter

Where,r, symbolizes the conductance in the Fourier's eguafiemperature gradient of the

same Fourier's equation is representesgl‘gy and by ng -

3.2.2. Convection Phase

In this phase, the system attempts to reach thezmqalibrium by heat transfer following
convection process. The surrounding is consideedha best generation. At iteration

iter < iter max / feo 1 feo : CONVection _factor }, For is the surrounding temperatur€y . is the

mean system temperature. When the system acqugleerhienergy than that of the

surrounding i.e.CED(Pgt)<CED(Pgmt) , the solution can be modeled as follows:
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iter+l _ _ iter
ng,i _ng,i +Co (3.12)

Where,j = 1..., pop, 1 = 1...Ng. The decision vectors are updated in the condugtimse co
is the convection step expressed as follows:
coz(APgt - Pgmtth) (3.13)

Where, ¢ becomes equal to the convection element of thetdi€svlaw of cooling antt

and Fy mt the surrounding temperature and the mean systeipet@ature respectively. The

system temperature constantly changes with the traasfer process. The surrounding
becomes the heat source or heat sink, so its tetyperremains constant. To consider this

effect, temperature change factaf ) is initiated. Thus, based otfi , the mean system
temperature can be varied. The valuefois determined as follows:

tf = abs(q:— I ); for iter < iter pax / fco (3.1

tf = round (L+1; ); fOT iter > itermay / feo (3.15)
Where,r, varies in the range [0, 1]. Initially thé changes between 0 and 1 at random. The

value of tf becomes either 1 or 2. Different valuestbf are required to ensure balanced

exploration and exploitation. The value Qf is assigned 10 for the convection phase.

3.2.3. Radiation Phase

The heat transfer following radiation process ig tause here for system thermal
equilibrium. Here, the system and the surroundirggiateracted with each other within the

system to achieve thermal balance. Initially in theiation phase, whener <iteryqy / f,4 {

fq : radiation_factor }, the solution is updated (i.e. energy lessenifithe system) as follows:

iter+1 iter o

Poji oy trdp CEkagj)>CED(ng) (3.16)
iter+1 iter .

Poji  =Foj; *rda CED(ng)>CEDkng} (3.17)

Where, j=1,....,pop, kO@.....,pop), j #k and kth solution is a randomly selected from the

population,io (..., Ng)- All design variables of the solution is brougptto date during each
iteration of the radiation phased, andrd, are the radiation steps stated as follows:

_ iter iter
rdy = W(ng,i ~Fyji ) (3.18)
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_ iter iter)
rdp = "(ng i P
Where, ¢ matches up to the radiation element of the S-Boltzmann law

ng matches up to the temperatures of system and theusding respectivel

Where,iter > itermay / f,4 » the solution is brought up to date as follc

iter+l _ _ iter . ( )
Poji  TPoy trdssf CED(ng)>CED Pak

iter+1 _ _ iter . ( ) ( )

Where,rd; andrd, are the radiation steps stated as fos:

| o old)

| old old)

(3.19)

anc ng and

(3.20)

(3.21)

(3.22)

(3.23)

Where, r,:[0, 1] and f,; : radiation_factor, Which finds out the exploration and exploitat

propensity in this phase. The value £, has the value of 2.

Fig 3.1. portrays the flow chart of heat transfer sealgorithm

| pop, fus fo. froand termination criteria initialization |

Assess the initial population

Store the best solutions

Randomly determine ¢ [+

Cornduction Raciation ) )
Convedtion Phise
*hase Phurie

Ve - s T M o N e
. #s03337 0333 < d < 066667 __— Choase the best solutions
. T —
\/ ~—
Compute eo by utilizing (18)
Yos // 1 ‘-“‘-.‘_ No Yos // s \‘-__ Na
\__\_\m <,.‘.,__/,(‘;i/’ o sy er <ilerwdi? o Amend the selutions based on

best soluticn by using Eq. (17)

—
Choose  the  solution Choose the solution Choose  the  solutions Choose the sclutions / \
randomly and amend randomly and amend randomly, match up to randomly, match up to Is rew

them by utilizing (9) them by  ulilizing hem and amend them by them and amend them by generation

or (10} (13)or (14) utilizing (21) or (22) utilizing (25) or (26) superior than

an hand?

Yus \\\/ B
- Is new generalion ¢ Isocw geeration | ——— b Py eep the
T ___sunerior than on hand’ T~ ___superior than on hand? __—" a
~Suneric nd?_- ~—Sup nd?_—

previous
T v solution

| Accepl | l Keep the former generation |

Substiuie worse generalions

with elite generations
Substitute worse

Substitule worse gercrations
with elite generations

with elite generations

Amend duplicate
solutions

——
—_— Is lermiration eriteria fir filled?
——
; Yos No
Finzl value of solution

Figure 3.1 Computational flowchart of tt HTS algorithm
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3.3. Artificial immune system (AIS) for MAED

problems

3.3.1. Immune system

The immune system of vertebrates including humaselspossessed of cells, molecules
and organs in the body which protect the body agaifectious diseases caused by foreign
pathogens such as viruses, bacteria, and so fastperform these roles, the immune system
has to be capable to differentiate between the 'baalyn cells as the self cells and foreign
pathogens as the non-self cells or antigens. Afteinguishing between self and non-self
cells, the immune system has to perform an immespanse in order to get rid of non-self
cell or antigen. Antigens are further classifiedmder to activate the suitable defense method
and at the same time, the immune system also dexei® memory to enable more competent
responses in case of further infection by the sinahtigen.

Clonal selection theory explains how the immunetesysFights against an antigen. It
establishes the idea that only those cells whicliabeliar with the antigen are selected to
proliferate. The selected cells are subjectedtaffinity maturation process which improves
their attraction to the selected antigens.

Clonal selection operates both on B-lymphocyteB oells produced by the bone marrow
and T-lymphocytes or T cells shaped by the thyriisen the body is exposed to an antigen,
B cells would respond to secrete specific antibbdgethe particular antigen. Thereafter, a
second signal from the T-helper cells, a subclagsazlls, would then stimulate the B cell to
proliferate and mature into terminal (non-dividingntibody secreting cells called plasma
cells. In proliferation, clones are generated ideorto achieve the state of plasma cells as
they are the mainly active secretors of the antd®at a larger rate than rate of antibody
discharge by the B cells. The propagation rateresctly comparative to the affinity level, i.e.
higher the resemblance level of B cells more claaggenerated. Clones are mutated at a rate
inversely proportional to the antigen affinity,.i@ones of higher affinity are subjected to
less mutation compared to those which exhibit loaf#inity. This process of selection and
muta-tion of B cells is known as affinity maturatio

T cells do not exude antibodies but play a middle in the parameter of the B-cell
response and are the most excellent in cell-meatliatenune reaction. Lymphocytes, in
addition to proliferating into plasma cells, carstahiguish into long-lived B memory cells.
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These memory cells circulate through the blood digrand tissues, so that when exposed to a
second antigenic stimulus, they commence to diftexee into plasma cells capable of
producing high affinity antibody, prese-lected the specific antigen that had stimulated the

primary response.

3.3.2. Artificial immune system

Artificial immune system (AIS) mimics these biologl principles of clone generation,
proliferation and maturation. The main steps of Aksed on clonal selection principle are
activation of antibodies, prolif-eration and di#etiation on the encounter of cells with
antigens, maturation by carrying out affinity mattion process, eliminating old antibodies to
maintain the diversity of antibodies and to avord-mature convergence, selection of those
antibodies whose affinities with the antigen areagger.

In order to emulate AIS in optimization, the antiies and affinity are taken as the
feasible solutions andthe objective function, retipely. Real number is used to represent
the attributes of the antibodies.

Initially, a population of random solutions is gerated which represent a pool of
antibodies. These antibodies undergo proliferat@ma maturation. The proliferation of
antibodies is realized by cloning each member efitlitial pool depending on their affinity.
In minimization problem, a pool member with lesséjective value is measured to have
higher affinity. The propagation rate is directiypportional to the affinity of the antibodies.
The maturation process is carried through hypemtian which is inversely pro-portional to
the antigenic affinity of the antibodies. The nstdp is the application of the aging operator.
This aging operator eliminates old antibodies idleorto maintain the diversity of the
population and to avoid the premature convergelmcthis operator, an anti-body is allowed
to remain in the population for at ma# production. After this period, it is assumed tthas
antibody corresponds to local optima and must ledistted from the current population, no
matter what its affinity may be. During the cloniegpansion, a clone inherits the age of its
parent and is assigned an age equal to zero whersuiccessfully hyper-mutated, i.e. when
hyper-mutation improves its resemblance. Figureeth@hstrates the flowchart of artificial

immune system algorithm

75



Start

5

[nitialize antibody population and evaluate affinity

1

Clonal proliferation |q

v

Mutation of clone

g

Evaluate affinity of each mutated clone

z

Application of aging operator

v

Tournameant selectio

No

Stopping rule

Finish

Figure 3.2 Computational flowchart of the AIS algorithm.

3.3.3. Implementation of AlIS algorithm

In this section, an algorithm based on artificiaimune system for solving MAED

problem is described below.

Step 1.Let
Po = [(RuRsRu) -~ BuPoPu ) o (PusPuzPun ) (oTia-Tin ) (ToaToaTon ) o
(T )7 28)
be the nth antibody of a population to be evolved a= 1, 2, ..., N The elements ofare
real power outputs of the committed generatordlaraas and tie line real power flows. The
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real power output of thg" generator in areais determined by setting, ~U (Ffjmin, Fi’jmax),
wherei = 1, 2, ..., Nandj = 1, 2, ..., M. Tie line real power flow is determined by settimg
~U (~7,™,1,~). U,, denotes a uniform random variable ranging ovér [&£ach antibody

should satisfy the constraints given by eqgns. (2.(012), (2.13) and (2.14). [ref. chapter 2,
sec. 2.2]

Step 2.As MAED is a minimization problem, the affinity tee inverse of the objective
function and it is given by the following equation.

1
Affinity = — (3.25)
Ft

Step 3.The antibodies are cloned directly proportionahi@r affinities.

Step 4.The clones undergo maturation process throughrihpogation mechanism and

are given by the following equation

F .
Pn/wij = By + mulg x—"—x N(O,l)x(pi;nax - piT'n): NONp, monN,, iON, jOowm, (3.26)
tmin
I _ Ftn max max | } H i
T =T + mul x—2 x N(02) x (" - (- Tm)} nONp, mo N, iON, KON, i #k (3.27)

tmin
where Fnin IS the minimum value of (Famong the N solutions, mu and mu} are scaling
factors of real power generation and tie line potrensfer respectively,Hs the value of the
function associated with,@and N(0,1) represents a Gaussian random variaittermean 0
and standard deviation 1. The teFm—Ft” makes the mutation more intensive in antibodies

tmin

with a high production cost and smooth in antibsdigh low production cost. Each mutated
clone must satisfy the constraints given by eqhd0), (2.12), (2.13) and (2.14). [ref. chapter
2, sec. 2.2]

Step 5.The affinities of the mutated clones are evaluated.

Step 6.Aging operator eliminates those individuals whidve more thamg generations
from the current population. When an individuakgs+ 1 old it is erased from the current

population, no matter what its fitness value may be

Step 7.Tournament selection is done to select a new dipual of the same size as the

initial from the antibodies and mutated clones \whate remained after application of aging
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operator. Each of the antibodies and mutated clainésh are remained after the application
of aging operator undergoes a series ptddrnaments with randomly selected opponents.

The score for each population after a stochastigpatition is given by

=4

t

Spn = S

=1

S =1if Fy, < Fy,

= QOotherwise (3.28)
The competitor pis selected at random from among the antibodidsvantated clones. After
competing the antibodies and mutated clones areedaim descending order of the score

obtained in eq. (3.28). The firstidopulation is selected for the next generation.

Step 8.If the maximum number of generations is reachedput the optimal solution,
i.e. the highest affinity value obtained so far amdminates the proposed algorithm.

Otherwise, go back tStep 3

3.4. Multi objective differential evolution (MODE)
algorithm for MAEED problems

3.4.1. Principle of Multi-objective Optimization

Most of the practical problems involve concurreptimization of numerous objective
functionswith non-commensurable, competing and conflictibgeotives causing a rise to a
set of optimal solutions, namely pareto-optimalsohs, instead of one optimal solution. No
solution can be measured as better than any athasrisideration of all objective functions
together.

Mathematically, a multi-objective optimization ptetn several equality and inequality

constraints can be expressed as below.

Minimize f (x) 1 =1,....., Ny (3.29)
Subjectto{g"(x):O k=1....K (3.30)
h(x)<0 I=1...L

where f, is thei™ objective function x is a decision vector.
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3.4.2. Multi-objective Differential Evolution

Differential Evolution (DE) is a fast, simple anobust optimizer in continuous domain
[230-232]. It adapts the search during the evohattg process. In the early stage of
evolution, the perturbations of the intermediatkitsons are large since parent populations
are far away from each other in the search spacéheAmatured stage of the evolutionary
process, the population converges to a tiny areh the perturbations of the probable
solutions adaptively become diminutive. UniquetyDE, the fittest of an offspring competes
one-to-one with that of corresponding parent. Téme-to-one competition cause earlier
convergence. In multi-objective differential evatut (MODE), a pareto-based approach is

introduced to employ the assortment of the besvididals.

3.4.3. Application of MODE in the problem

Initially, a randomly generated population of sidg are used to evaluate objective
functions. i.e. (2.21) and (2.23). Here populatimdicates different amount of power
generation of thermal units. Subjected to the afistraints (2.25), (2.26) and (2.27). [ref.
chapter 2, sec. 2.3]

At a specified iteration, non-domination basedisgriand ranking of the population is

performed. Non-dominated sorting procedure is dlesdrbelow.

Non-dominated sorting: To acquire solutions of the fast non-dominatedntfr;m a
population of sizeN,, each solution can be matched up to every othkttiso in the

population to unearth if it is dominated. At thisgg all individuals in the first non-dominated
front are generated. In order to unearth the inddi&is in the next non-dominated front, the
solutions of the first front are marked down foe thme being and each solution of the
residual population can be matched up to everyrabkition of the residual population to
unearth if it is dominated. Thus all individuals ithe second non-dominated front are
generated. This is right for generating third aighér levels of non-domination.

After that, DE operations are carried out over thdividuals. After iteration and

evaluation of trial vectors of sizBl,, these are combined with the parent vectors tm far

population of size2N,. Then, the ranking of the combined population &mel crowding

distance calculation are carried out.
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Crowded distance estimation procedure: To acquire an estimation of the density of
solutions contiguous a particular solution in thepylation, the average distance of two
points on either side of this point along eachla bbjectives is computed. This quantity
provides as an estimation of the perimeter of thigo structured by the nearest neighbors
as the vertices. This is called crowding distanthe crowding-distance computation
necessitates categorization of the population aatgrto each objective function value in
ascending order of magnitude. Thereafter, for eabfective function, the boundary
populations (populations with smallest and largesiction values) are given very high
distance value so that boundary points are alwhgsen. All other intermediate populations
are given a distance value equal to the absolut@malized difference in the function values
of two adjacent populations. This computation iptken with other objective functions. The
crowding-distance value is computed as the sumndividual distance values matching to
each objective. Each objective function is nornaizbefore computing the crowding

distance.

Crowded-comparison operator: The crowded-comparison operator conducts the
assortment procedure at a variety of stages ofldparithm toward a uniformly spread-out
pareto-optimal front. Every individualin the population has two features:

a) nondomination ranki _ )

b) crowding distanc

P i < Tame OF ((ame = Jrane) @9 (g ance > Taistance )
Between two populations with differing non-domiatiranks, the population with the
lower (better) rank is favored. If both populatiohslong to the same front, then the

population with larger crowding distance is favared

Thus, topN; individuals are selected based on its ranking@odding distance. These

individuals are the new parent vectors for the sghbent iteration.
Figure 3.3 portrays the flowchart of multi-objeetidifferential evolution.
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| Specify the DE parameters ‘

Generate N, initial parent population and calculate e .
. . . ) Initialization
fuel cost and emission level of each population
v
- . Non-
Classify parent population into fronts based on non- dominated
domination and calculate the crowding distance of each .
population. Sort these populations according to front level sorting and
and crowding distance ranking
]
L 4
For each target population, generate noisy population
by mutation operation and calculate fuel cost and 3 Iterative DI
emission level of each Noisy population operations
v
Perform crossover for each target population with
its noisy population and generate trial population &
¥ i
Combine parent population and trial population.
Total 2N, population N.on-
dominated
¢ sorting and
Classify these 2N, combined populations into fronts ranking
based on non-domination and calculate the crowding L
distance of cach population. Sclect the best N, population

Yes
Iter =Iter +1 @

¢ No

Select the best compromise
solution using fuzzy set theory

Figure 3.3.Flowchart of Mult-objective Differential Evolutio

3.5. Nondominated sorting genetic algorithm I
(NSGA Il) for WMAEED problems

To deal with a multiple objective and constrainedorporating optimizing task like tt
WMAEED, NSGA Il has been taken for implementat Selection of dominating solutic
has been determined here by fuzzy seleciThe NDSGA Ilcan be explained using t

following calculation steps.
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3.5.1. Dominance determination by fuzzy selection

Let, f, is thei™ objective functionx is a decision vector that represents a solutind, a

Nobj is the number of objectives. Decision veciordominates decision vector, if both the
1 2

following conditions (3.31) and (3.32) are attained

a. Sufficient condition: The decision vectox is better tharx for all the objectives.
1 2

\4 iD{l...,Nobj}, fi(xljsfi(xzj (3.31)

b. Necessary condition: The decision vector<l Is strictly better than decision vectmi in at

least one of the objective functions.

i0{1,... f f .
3i0{] ’Nobj}’ i(xl)< i(xzj (3.32)

The optimum compromised solution gets preference@rgmpareto-optimal solutions in
agreement with the decision maker’'s fuzzy in napnmecondition. So, in order to describe
membership functions, decision maker’s experiemegsinstinctive knowledge is used. The

linear membership functionu([xj j) for objective functions is as expressed in (3.33).

)4 ) fi@ (s ) <ax, )<, 339

where, pareto optimal solution set }S={X1,X2,.--,>§(}, x Oxand i=12..k. fim‘”(xj)and
|

fimax(xj)represents to the minima and the maxima of iti@bjective function with j ™

pareto optimal solution respectively.
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3.5.2. Calculation steps of NSGA Il application

Step 1. Initialization: At the beginning, an arbitrary parent populatien (, 7 ) with
Gij Wik
N,members is generated [ref. chapter 2, sec. 2.4$. Nmumber of ¢, P ) variables
Gij Wik

are referred hereafter ag,, .

Step 2. Fast nondominateda,_. sorting: The sorting takes place in accordance with the

POP
non domination. Different ranks correspondent odirtHevel of nondominance / front
numbers (best level by ‘1’, corresponds to the sgbent best level by ‘2’,and so on)are
credited to each of the populations.

Step 3. Selection by tournamentTwo of the individuals are selected in an arbitrary
manner. A comparison is made between their fronhbars as well as for crowding

separation and superior one gets selected. Afigriths ready for the mating pool.

Step 4. Crossover and successive mutatioin this work, simulated binary crossover
(SIBNCO), and polynomial type mutation [127] haveeh considered. A child population

CH .., With same members as thateaf_, is generated.

Step 5. Merging: The aforementione@a,., andcH .. are merged to form a resultant

POP POP

populatiorres, ., = PA.,, 0 CH oo, With twice the members of botha,, as well ascH

POP POP POP

i.e. 2N;.

Step 6. Fast nondominance baseds ., sorting: Theres, ., gets sorted in accordance

POP

with nondominance. Due to the involvement of eatthe members of then as well as

POP

thecH elitism is assured. After that, the populationsrresponding to the best

POP !

nondominated seNDg, include best populations from thees__, by emphasizing more on

POP

these than any other population in #ae . . With the assumption that the size of Hig, is

POP
lesser than the,, each of the members corresponding toNig gets selected in order to

generate a new community. Other members correspgridiit get selected from succeeding

fronts based on the nondominance according to mgrdssigned to them.
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Hence, the succeeding selection is made for solsititom the NDg, grouping which is
further succeeded by population members fromnthegrouping and the process continues.
The process continues till the selection of all pussible groupings. The groupifg,,
represents the selection of final one based on ormandhnce. Normally, the number of

solutions including all the aforementioned grougiNgy, , ND;,,...,nD,, remains larger than
N,. For having absolutely,solutions, population members from the figal, front are

sorted with the(<) operator in the decreasing order. Best populati@mbers get selected

for filling of each of the population spots.

A new population pa__,. withN;members forms. Now, the tournament selection,

crossover as well as mutation take place with iy formedea_ .. Then, a new child

populationcH . is formed withN, members.

Step 7. Terminating criterion: The procedure terminates after execution of definit
generations. Now, the terminating criterion is ee#d. In case, the criterion fulfils, the

control shifts to theStep 8otherwisera, . gets copied tea After copying, the similar

POP *

procedure is repeated fragtep 3

Step 8. Final selectionThe first solution that is the population membenresponding to

the first front gets selected.

Step 9. Termination: The procedure gets terminated.
An expressional explanation related to the NSGhald been mentioned next.

RESpop = PApgp U CH pop (Merging of theDAPOP and the POP )

* r,denotes fast nondominance based sortiag(,, ).
Fs = (ND,,,NDg,.... NDg, )

Wherenp ,, denotes a nondominance based front correspondithgtes

POP *

PPoop = @) &
p=1

until [PA_J+FN| <N, (i.e. thepa,,, fills)

POP
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» Assigning of p,, (Fn,):
PA s = PAos U FNy (Inclusion of p™ nondominance based front in the,, )

p = p +1(Checking of the succeeding front in order to iy

* Sorting (FN <)
<is utilized for sorting in a decreasing order.
PAsop = PAge UFN pl]': (Nl _‘P'Abop' m
Selecting the startir(gl1 —‘P@Op‘) elements correspondingde |

CH .. = Generation of child population corresponding tortke .

3.6. Improved real coded genetic algorithm

(IRCGA) for short term hydro-thermal scheduling

The Genetic Algorithm (GA) is pioneered by John leiadl [126]. A random initial
population is created corresponding to candidagelt® The ability to attain the universal or
close to the universal optimized results correspuntb each new community is assessed by
its fitness value. After getting selected for prgg@on, parents produce offspring through the
crossover and mutation procedures. The generatidddoals during propagation operate in
differential regions of the exploring freedom. Tagkvolving continuous exploration of large
space are dealt with real coded genetic algoritit@QGA) because of the difficulties
corresponding to the binary form presentation [128}. Simulated binary crossover (SBC)
along with the multinomial mutation has been addtethis concise.

To implement IRCGA, personal basis matching chgkemas been incorporated in
RCGA for boosting convergence speed as well agisnlquality.

Here, a child copes with the matching parent onviddal basis. Initialization, selection
of parent community, crossover, mutation, and sieledetween parent and offspring are the
five levels of IRCGA. The fittest offspring compsteon one-to-one basis with the
corresponding parent to boost the convergence speegdolution quality, which is different
from the other evolutionary algorithms. This poweédptimization technique is analogous to
the natural selection process in genetics. It hasapability to converge to a global optimum

with the maximum probability with relatively leseraputational time.
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3.6.1. Population initialization

In this optimization problem, the decision vectsrA, , the thermal power generation
amount, and there is a dependent veator{in eqn. (2.49)}, the hydro-electric power
generation amount. The objective functign Xis calculated according to (48) [ref. chapter 2,
sec. 2.5]. This decision variabke, is indicated hereafter as;fp

The initial population (5}0) corresponding to control variables gets seleetditrarily
from a uniform grouping of these variables rangivgr the corresponding upper and lower
limiting values. Population size is chosen as rction of the string span. This can be
expressed in accordance to (3.34).

P =UNRp™, p™),000N,,, 1 Oy, (3.34)

Here, Fﬁr is the initial population corresponding td' variable of theq™ community. UNF(
p™ , p™) is an random variable ranging oves(™ , p™) in an uniform mannerp™ and
p™ representsthe minimum and the maximum limiting values corsging to ther™”
variable respectively.N is population size.ny represents total number of decision

variables corresponding to an individual.

3.6.2. Parent population selection

The selection method of GA is the process to deterrthe number of copies of each
individual parent that can take part in the repaiidun or mating pool. There are different
processes to implement the selection method. Tlawseroulette wheel selection [108],
tournament selection [233] and stochastic remaisdgaction [234]. The binary tournament
selection method is utilized for choosing paremts rhating pool. Two chromosomes are

selected randomly from the population. The chromusaevith lower objective functiony,

i.e. the winner one is set aside in the mating .pObis process is repetitive till the pool gets

filled by the chromosomes.

3.6.3. Simulated binary crossover (SBC)

The main responsibility of crossover operator iséarch for the global optimum. This
operator basically combines the substructures of parent chromosomes to produce new
offspring, with a selected probability. SBC operdtas been discussed in the following part

of the concise.
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a. Selection of an arbitrary numbar between [0,1].
b. Computation of a parameter with the help of a multinomial type probability

allocation as in (3.35).

y = (ar.g)"n incasear<l/o
= (L/(2 - ar.0))*"*Y .otherwise (3.35)
1
2 m mx
le"‘mmf[(pql‘ Py, (pg — pqz)] (3.37)
q2 ql

Here, 4, represents allocation index corresponding to tBE.SAny positive value can be

assigned to it. Generation of a descendant comgndepends on the value assigned to the

n,. The generated offspring would be very far orlased quarters from the parent people
corresponding to a smaller or larger value of #ie The calculation of intermediary

communities takes place in accordance to (3.38)adlsas (3.39).

pqp’_l_ = 2_1[( pql + pq2) - y(‘ pq2 - pql‘)] (338)

P =22 |(Pas + Do) + ¥ Pop — P (3.39)

3.6.4. Multinomial mutation operation
The multinomial probability distribution is utilideto produce an offspring nearby the

parent population by using an operator correspantbrnthe mutation. This can be stated as

next.
a. Selection of an arbitrary number betweer0, 1].

b. Calculation of parameteras (3.40).

1
a= [2.ar’ +@1-2ar).l- @Y |u.+n -1 in casear’ <2
1
:1—[2.(1—ar’) +2.@r' -21).0- @ |a.+n , otherwise (3.40)

mr{( Pap = Pq )-(Pg — pqp)J (3.41)
(p;nx _ p;nn) .

Wheregp=
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Parametey, is in equation (3.44) represents the allocatioeincbrresponding to the

mutation. Any positive value can be considered.
c. Empirical expressions associated with the mutafesphring can be expressed as (3.42)

and (3.43) respectively.
Py = Pga ta.(Py"— P") (3)42

P = Py ¥4 (R] = 15 (3)43

The perturbation can be altered by varying ghend pr_ with iterations as equation (3.44)

and (3.45).
Ny =1 e T 1LET (3.44)
pﬁm=i+ et (1—i (3.45)

,7ch iter.mx ,7ch
Where, 7] ,,..represents the lowest value which is equivalerthéa; . pr_, andn, indicate

the mutation stochastic value and total selectiamiables respectively. The objective

function(F_) in eqn. (2.49) is treated here fas The f, corresponding to each offspring is

computed.

3.6.5. Selection between a parent and an offspring

The value of f, of each parenfy,is compared with that of matching offspring, . The

I

population that has lower, betweenp,.and matchingp,, gets selected in order to operate
in the following iteration as in equation (3.46).
Py = Py in casef ()< f(p,)

= Py, otherwise (3.46)

An IRCGA typically searches for the optimal solutioy maximizing or minimizing a given
fitness function. Therefore an estimation functrdmch evaluates the quality of the problem
solution must be provided. This procedure is reypéd till the maximum iteration is reached.
The algorithmic flow of IRCGA is depicted in Fig.43
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Figure 3.4.Flowchart of the improved al coded genetic algorith
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3.7. Water cycle algorithm (WCA) for optimal DG

allocation problem

3.7.1. Water cycle algorithm

This algorithm has been proposed by Hadi Eskandar and is based on the water cycle
which takes place in nature. Water moving downwdodsis streams, then goes to river and
finally flows into sea. Water from the streams aivers evaporates and forms clouds, then, it

rains, hence the cycle continues.

Initial population: Like other meta heuristic algorithms, this alsartstavith an initial
population. Here, population is taken that of raopd. Then the cost of raindrop is evaluated

as follows
G =Cost = f(xil, Xi2 ........ xiNva') i=1..N pop (347)

Where, Npop and Nvas are number of raindrops and number of design ades
respectively.

The raindrop having the minimum value is consideredhe sea. Few of the minimum values
are selected as number of rivers. THeg' ‘is given as follows:

Nsr = Number of rivers + 1 (3.48)
The above '1' signifies sea i.e. the minimum vaod N,/ is the raindrops with minimum
values.

Rest of the population is calculated as
Nraindrops™ Npop~Nsr (3.49)

Whether to assign a raindrop to a river or to adsggends on the intensity of the flow and is

given by:

NG = round{

‘Nsn is the number of streams which flow to the specifier or sea.

Cosf,
Zi'\iif Cost

eraindrop%' n=1,...,Nsr (3-50)

Stream flowing to river or sea: Raindrops forming streams or streams flowing t@nsv
are given as follows

i+ i

Xstream”streaiff anGl‘C"(xlriver_ xlstrea,) (3.51)
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i+l _ i i i
Xriver= Xrivert randxCx (xsea‘ Xriver) (3.52)

Where, Xgream’s  Xiver  @Nd ‘Xge,  represent positions of stream, river and sea

respectively. ‘rand’ is a uniformly distributed dom number between ‘zero’ and ‘one’. ‘C’
has a value between ‘one’ and ‘two’. Now, the posg of stream and river, or those of river
and sea, are exchanged depending upon whicheverletter solution.

Evaporation: This is done to prevent the algorithm from rapidbnverging. The distance
between a river and a sea is checked if it is legs a given a small numbet s (having
value close to ‘zero’). If it is found to be lesh, it is assumed that the river has joined the
sea. Then the evaporation process takes placen Aature, raining (precipitation) follows

evaporation. The value afin.x decreases over the iterations as:

i

i i d

dm-%x: d:nax +—max ) (3.53)
max_iteration

Where, ‘max_iteration’ represents the total nundfeterations.

Raining process. In this process, new raindrops form streams at loeations. And the
whole algorithm repeats all over again. The baisidrop is considered the river which flows

to the stream. Also the concept of variance in fitven of ‘4’ is used to enhance the
searching process. Larger value of increases the possibility to exit from feasibégion,

whereas, smaller value leads to searching in tiiemeclose to the optimum value.

3.7.2. Computational steps

In this case, the aim is to minimized the real poless ) and the objective function is

according to (2.65). The decision vectorRg Q) [ref. chapter 2, sec. 2.6].
Step 1. The initial parameters of WCA are choserNas dmax Npop and max_iteration.

Step 2.Random initial population is generated. Here, pajpon consists of the values
the single DG unit which injects only P and fivdues of the VAR. Also the bus number at
which these are placed is taken into account. iBhitte sizing and placement both accounted

for. Initial streams (raindrops), rivers and se@&sfarmed using (2.65) and (3.47).

Step 3.The cost of each raindrop is calculated. In tlase¢ the cost function is the
power loss for that particular set of values of Bx@ VAR which are placed at those specific

buses.

91



Step 4.The intensity of flow of rivers and streams isccddited using (3.48).

Step 5.The streams flow to the rivers using (3.49), wheraver flows to the sea using
(3.50).

Step 6.The position of a river with a stream as welllas position of a sea with a sea are

exchanged depending on whichever has a betteli@olut

Step 7.The evaporation condition where the distance betwever and sea is compared
with ‘dmax (which has a value close to ‘zero’). If the valisefound to be less then, raining

process begins.
Step 8.The value ofdmax gets reduced after each iteration as per (3.51).

Step 9.The stopping criteria is evaluated, which in ttése, is the maximum number of
iterations. If it is satisfied then the algorithenstopped otherwise process gets repeated from

‘step 5.

3.8. Social Spider Optimization (SSO) for Optimal

power operation planning in a township

Social spider optimization is a newly advanced swaategorized algorithmic technique
by Eric Cuevas and Miguel Cienfuegos. In this téghe, spider individuals (i.e. exploring
representatives) perform interactive activity wahach other depending on the cooperative
colony’s biological norms. The technique also ipooates gender consideration of the
representatives. Communal web corresponding tcethgsresentatives is considered as the
space for exploring. Each of the representativesitpn indicates a solution within the

exploration space.

3.8.1. Computational procedure applying SSO
For this optimization problem the objective funatis according to (2.68) along with

different constraints [ref. chapter 2, sec. 2.T]isl represented hereafter(%(x)). The

decision vectors.. , By Rrand e, of egn. (2.69) and (2.70) generate the Populdf@) of

PSO
spiders’ in eqn (3.54). Computational procedureolfatiaining solution through this technique

is as mentioned below:
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Representatives’ selectionPopulation (PO) of spiders’ or exploring represews’
each having p-dimensions is selected. In the Paliemepresentatives (ROremain between
0.65-0.90 times (i.e. 65-90 %) of the PO in accoogato (3.54).

POg = floor {( 090- rand .(025)).PC} (3.54)

Where, ‘floor’ keeps the integer part of a realnel population.rand is utilized for random
number generation between ‘zero’ and ‘one’. Majfgesentatives (P@) are the complement
of PO andPOk in accordance to (3.55).

Pq, ={P0-PQ.} (3.55)
Representatives’ population initialization: The PO: alongside P@ gets initialized, and
radius of mating (R) is calculated.

Po;_f;'t'r = {Po,"’Wr +rand (0,1).(PO " - po " )} withg= 1234...PO:. , andr = 1234...,DS (3.56)

WherePOF”q't'rln (3.56) indicates an arbitrary beginning positioof theCf female
representative in thePQ. considering the DS indicespo " indicates known lower
beginning element limitpo " denotes known upper beginning element limit.

initl
POy_ ={Po™ +rand (01).(PO™ - PO )}

withs= 1234...PQ, , andr = 1234...,.DS (3.57)

WherePO,i\rA‘:'rrepresents a randomized beginning position of $fiemale representative

corresponding to thd" DS index. Mating radiusR,) is determined in accordance to (3.58).

po—pe)

Substituted function significance: A proper substituted function is utilized to attai
global optimized solution in place of the objectfuaction. The substituted functio(l‘.BB(x))
can be obtained by adding a penalty functen (x)) to the objective functio(OB(x))in

accordance to (). A term is introduced in the pgmniainction for constraints’ checking. This
checking evaluates whether the constraints aramitsl or not. Each of the representatives,

involves in exploration, possesses a definite weaigtich determines its solution quality.
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54 ={0s 00 + Ry G0} with FN(X)={J-p§1I§r-<x>+J'- 5 'ﬁr«x)} (3.59)

pr'=v+1

Whered and J indicate the coefficients of penalty. A relative mar importance of each

bounding is indicated by these coefficients. Ineortb decide their values, their importance

with respect to each other is taken into considimdtpr. (X) and Ipr.. (x) represent the

inequality and equality constraints in the seq@mtianner. In some scenarias, (x) is not

required depending on the problem and the conssrainorporated.

Solution quality determination: Every exploring personal carries a certain weighis
weighing amount indicates the quality of solutiaoypded by it (i.e. personal performance

capability). An expressional representation comesing to exploring persongdr s weight

involves (3.60).

e = {WR% —SB(PSpr)} @6

> WRS, -BS,,

with, wrs,, =ipr=hﬂl§«3ﬁl}{lpsss (PSpr )} and

BS,, :i MINM SB(PSpr)j

pr=12,34...PS
Where, thewRs, indicates the maximum value of thSB() in terms of representative

location. Thes, (PS,, ) denotes the fitness value of the posith®), for the personapr. The

BS,, indicates the minimurSB(.)value in terms of a representative location. WRS, and

theBs,, are defined in accordance to the objective goal.

Vibrational communication: In the communalexploring space, an information
exchange among personnel happens via vibratiorsseXthange depends on personal weight
along with positional arrangement of personnel. Thlerational amount between the
personnel locating nearer in the exploring spacganes more in comparison to that of far
locating personnel. Normally, three types of vilmatare significant in the web (i.e.

exploring space).

VB, : It corresponds to the one on representative ‘mthigy'n’ having greater weight in

comparison to the ‘m’, and sharing closest pos#ticarrangement with it. Its expressional

representation is in accordance to (3.61).
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2

VB, = {WEn.e_edm'”} (3.61)

Wheree(fmindicates a Euclidian stretch between the persommeland ‘n’, and can be

expressed #E’Sn - P%H .

VB, : It represents the one on representative ‘m’ due?t the heaviest one in the

exploring spacdts expressional view involves (3.62).

VB, = {weo.e'edﬁ‘vf’} (3.62)

VB, : The one representing the vibrational amount ondoe to ‘c’, the closest female

personal to it in the exploring space. In exprassidorm:

—ad2
v, = {WEC.e edmvC} (3.63)

Female representative cooperation:The PQ shows either attracting or repelling
behavior towards the remnant personnel withoutntakiheir gender into consideration.
Vibrations impart driving for this behavior. An ap#or remains engaged with female
cooperation to predict the cooperative behaviothef PQ. For the prediction purpose,
location changes are taken into consideration #fierexecution of each iteration. Modeling

of this operator happens in accordance to (3.64).

PO er*1 — tpo‘;ef +GVBy ,(pox - PoiFter)+ HVB,_ .(POY - PO'F‘er)+ K.(rand- 050)} (3.64)

N iy : - th . :
Wherepo * tindicates the position of representativeuring the(iteA])™ iterationG, H
K along with rand represent randomized numbers between ‘zero’ and.‘B®, indicates

the positional arrangement of persoMdlaving more weight than tkewhile PQ,

corresponds to th& having the highest weight in the exploring space.

Male representatives and their cooperation behaviorThe PQ, can be categorized as
dominant PQ, ) and nondominant RO, o) by assigning one of the personnel as the

median MDN). The PQ, ;s possess greater weight than that ofMi2N, and th?O,,

s incorporate lesser weight than M®N. An operator predicts the subsequent behavior of

the PQ, personnel as mentioned next.
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ThePQ, ; personnel show attractiveness towards the, R@d involve in mating. The

PO, no personnel perform an approaching movement towdiel$Q,'s weighted manner

averaging in the exploring space. Expressionalesprtation of these personnel’s movement

involves (3.65).

MDN

Pt - PO + avE,, (PO, ~PO") + H.(rand- 050}, in caseWE,, ., >WE

POM iter
3 PO WEpq_.q

. — q ) .
POR" +G| — PO |1+ IN CASEWEL, ., < WE,p, (3.65)

Wherepo [ **indicates the position of representative M duringaaition of the iteration

iter +1.PQ tells about the position of the closest femalespeal in the space to be

PO,\/I .
explored. The ter q§1 Poger-WEpoF +q | INn (3.65) represents the weighted manner averaging
PO\

> WE
g=1 POE +q

value of thePOy,.

Mating: This happens betwedi’IOMe male representativésr POM,D), andro . having

positional arrangement inside fRg. It assures about the seamless communal survital.
PO., mentioned above represents a grouping of femadecisers. RepresentatidD

corresponding to the subsequent generation isable gearcher corresponding to plae, =
qu,eUPOFe. In a scenario, when m® _ _exists in thd3, then, the mating remains absent.

The affecting probabilistic valuepRva ) considering every searche® is determined
through Roulette method, and formulates the BCcooedance with (3.66).

prRvA, = {WE,/ X WE} (3.66)
alPO,

Wherea indicates thePO,, , taking part in the mating phenomenon with giee . Here,
the BD gets compared with th‘vA/R%,Epr in the exploring space. Then, the searcher with a

smallerr (x)value proceeds further after its selection. Considethe scenario, where each

searcher is having the similg[(x)value then, the preference is given to heavier
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representative. In a scenario, where BD gets prioritized, it acquires index as well as

gender of thWR‘ﬁVEpr . Thus, desired proportion of the g and the P sustails.

Ending norm check: Moving towards the final activity, an evaluationaiding norm i
made. In its successful bringing to fruition, themputation process ends. An unsucces
bringing to fruition of the criterion, transfersrtool to searcher weiing computation stej
Now, rerunning of the similar procedure takes plact the ending norm brings to fruitic

A schematic concerning sequential manner exectiothe technique is in accordance
Fig. 3.5.

Begin

Searchers population initialization and mating radius

computation

'

Searchers’ weight and vibrating values

determination ¢ l

'

Female as well as male searchers’ positional change in
accordance to respective association operant

¢

Successive generation searchers creation via the
mating

'

Selecting a superior searcher between the successively generated one and
the one having highest substitution function value in locational term

'

Does ending norm
bring to fruition?

Figure 3.5.Computing steps for the sial spider optimizatio
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3.9. Gravitational search algorithm (GSA) for
Optimal power operation planning in a rail-way

rake maintenance depot

3.9.1 Implementation of GSA

This search algorithm (GSA) has been utilized teesthe optimization problem as stated
in chapter 2, sec. 2.8. The implementation logi¢hid algorithm is described in following
steps.

Step 1 Setting all the boundary values.

Step 2 Randomized initialization of all agents withimiis Ppm, P, Pot Pso), With
number of population equal i [ref. chapter 2, sec. 2.8].

Step3 Fitness evaluation of agents using the objectwections considering all
constraints€qn. 2.82-2.106, as appropriate for specific cases).

Step 4 Updating ofG(t), best(t), worst(tandMi(t) fori=1,2,. . .,N.

Step 5 Calculation of the total force in different ditiens.

Step 6 Calculation of acceleration and velocity.

Step 7. Updating the position of agents.

Step 8.Checking of space boundary, whether the agents game beyond the limits or
have caused violation of the constraints.

Step 9.if h is true, set the relevant agent/s to limit valoereinitialize theml/it.

Step 10 Repeat stepstoi until the stop criteria is reached.

Step 11 End.

3.9.2. Details of calculations in GSA

Let the decision vectoP{m, Pi, Po, Pso) be indicated as ageit Then, considering a

system withN agents the position of th8 agent is defined by
X, = (xi1 ...... X ... xi”) for iD(l,....,N) (3.67)
x! is the position of" agent in thed™ dimension. At a specific time the force acting on

mass ofi’ from mass of]’ as following
M ;i (£).M (t)

Fo(t) = G(t).W.(xf (1) - x° (1)
) (3.68)
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whereM,; is the active gravitational mass related to ageht,; is the passive gravitational
mass related to agentG(t) is gravitational constant at time t, e is a sratistant, andR;(t)

is the Euclidian distance between two agerasdj, andRpowis a parameter. Which can be
taken as (203) or (204).

R (1) =]X 1), X; (1), (3.69)
The gravitational consta@, is a function of the initial valu&, and timet

G(t) = Go.exp(—a.l)
T (3.70)

Herea is a tuning parameter which is set to be 20@# initialized by 100.

Gravitational and inertia masses are simply catedlay the fithess evaluatiohssuming the

equality of the gravitational and inertia mass, ftfilowing equations come.

My=M, =M, =M, ,id{L..N) (3.72)

MO hesg) - wrst) @7

M, (1) =- MO (3.73)
émj (t)

Wherefiti(t) represent the fithess value of the agaatttimet.

bes(t) = JDr(EurJL )( fit, (t)) 5.74)

worst(t) = J-Dn(}%()(ﬁt () 375

A stochastic nature is introduced here assumingatad force acts on agentn a dimension

d be a randomly weighted sumd? components of the forces exerted from other agents

N
Fi(t)= D rand F'(t)
j=Lj# .18)
Or it can be taken as

Fit)= D rand F(t)

/]

Mpesy i #i (3) 7
Hence the acceleration of the ageeat timet and ind" direction, a’ (t) is given as follows
RO
4ty =—
O v

(3.78)
WhereM; is the inertial mass af' agent. Its position and velocity are calculatefbdews.
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v (t+2) =rand, v’ (t) +a’(t) (3.79)

X (t+1) =7 (1) +vi' (t+1) (3)80

3.10. Improved real coded genetic algorithm
(IRCGA) for optimal power operation of PV aided

nano-grid

Goals concerning continuous large sized explorjpare are transacted with real coded
genetic algorithmic procedure (RCGA) considering ttifficulties associated with their
binary form representation. Simulated binary mancr@ssover (SIBICR) along with the
multinomial type mutation has been introduced is thethodology.

For implementation of the IRCGA, personal level chatg challenge has been
introduced in the RCGA to give a boost to convecgespeed as well as solution quality. A
descendant member copes wijth the corresponding ancestor member on persieval.
Initialization, ancestor members’ community sel@cti crossover, mutation, and selection
between ancestor and descendant members formulfféeeistt computing steps of the

IRCGA.

In this optimization problem, the objective is tdnimize (R,,)of eqn (2.107).[ref.

chapter 2, sec. 2.9]. The decision vecRy; (t) andehv(t) forms The early community
(Opbcj of control variables hereafter. A brief discussimineach of the computing steps is

mentioned herein.

3.10.1. Computational details
Initialization: The early communit{ Opbcj of control variables is formulated through an

arbitrary fashion selection from a uniform groupioigthese variables within the lower and

upper limiting values and can be expressed as

(Ebcj~UNF(pcm", R™).0b0 Ny, 6 Ny (3.81)
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wheren, , indicates the total number of personal decisioriabées. v, represents

0
community dimensions. TVEEDMJ indicates the starting” variable of theb™ community

while p." and py~ indicate the minimum and the paramount limitinguea corresponding
to c. UNF(pE””, pf:“x) represents the uniform manner range of an arpitiariable over

(pé"”,pé"x). The objective function valuem (that corresponds to thé" community)

corresponding to each community is computed.

Ancestor member community selectionThe binary tournament selection methodology
has been utilized to choose ancestor members fdingn@ool. A chromosome duo is
haphazardly selected from the community. Afterwarascomparative analysis is made
corresponding to their objective function valuese Dne with lowerm, i.e. the winner one is
set aside in the pool. This process continues uimél pool gets completely filled by the
chromosomes.

Simulated binary manner crossover (SIBICR):Methodology to find descendants,

and p;, from two ancestors,, and p,, through utilization of the SIBICR operator has bee

discussed as herein.
1) Generation of a random numegal between [0,1].

2) Attainment of a parameterwith the help of a multinomial type probabilityadation

in accordance to (3.82).

(anx 5)]/("&' & an<1/o
2= Lyl (3.82)

e — , otherwise

(2-anx0)
where, 5, _ (1 ) andg can be represented in accordance to (3.83).

B’]al+l
2 mn mx

B :1+7mr{(pbl Py )’(pb - pbz)] (3.83)

(pb2_pbl)
The parameter;, represents an allocation index corresponding ® #IBICR; any

nonnegative value can be assigned to it. A descermdeanmunity is generated in accordance

to the value assigned to thhe.The generated descendants remains either vegntlist at

closed quarters from the ancestor society in acowe to a smaller or larger value of jhe
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3) Intermediary communities’ computation takes plateaccordance to (3.84) as well as
(3.85).

Poa = 2_1[( P + pbz) - qubz - pb1|)] (3.84)

Poaz = 2_1[(pb1 + pbz) + qubz - pb1|)] (3.85)

Multinomial mutation: The multinomial probability allocation is used tengrate a
descendant in the vicinity of ancestor communityusyng a mutation operator. Its stating

herein
1) Production of an arbitrary numeraii in the[0,] range.

2) Computation of the parametgrin accordance to (3.86).

2xan [
[ —2xan)x(1- (”m*l)l -1 ans2
= L 2xan)<(1-9) 1 (3.86)
2x(1-an) (7))
1- . (1) , Otherwise
+2x(an - 2)x(1-¢)"

where, theg can be expressed as

_mnf(pua - o) (05 - pua)

mn

(ptr:nx ~ Py

@

The parametey,,, in the (3.86) represents the mutation allocatiotiek; any nonnegative
value can be assigned to it.
3) Computation of the mutated descendants takes plaaeordance to (3.87) and (3.88).

M = R X (- B (3.87)

P = P+ X (- 1) (3.88)

A change in the perturbation can be made throwgghtive variations in thg, and pr_, as

mut

expressed in (3.89) and (3.90).

Ma = ,7al,mn +itrn (389)
1 itrn 1
pr.g = +- 1- j 3.90
mut Mehvb 'tmmx( Mehvb ( )

where 77,,,, indicates the minimum value of thgandn,, and pr , represent the total

chvb
number of choice variables and mutation probakilisilue respectively.

Them, value corresponding to each descendant is computed
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Selection between an ancestor and a descend: A comparison of i, values is made
corresponding to each ance: p, and its matching descendaft Out of these two, the or
with lower ¢, value gets priority to participate in the succegdieration in accordance f
(3.91).

pbc:{pm, f(phe) < f(pu) (3.91)
p... otherwise

This procedure continues until timaximum value of iteratiafn_ is reache. Fig. 3.6

demonstrates execution sequence outline of the IGIR

Initialization of the ancestor members’
community and the objective function value

¥

Selection of the ancestor members’ community
according to the objective function value

v

Two descendants’ generation from a duo of selected ancestors
through simulated binary manner crossover and multinomial
mutation

v

Assorting between the ancestor and the corresponding descendant
based on the objective function value

v

Pick the survivor between the ancestor and the
corresponding descendant through lower objective function
value

No

Has the terminating
rule fulfilled?

Yes

Figure 3.€. Computing execution flow of the IMRCC
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3.11. Grey wolf optimization for fault detection

scheme in photovoltaic system

3.11.1. Grey Wolf Optimizer

GWO is a swarm intelligence based optimization mépie inspired by grey wolves
(Canis Lupus) [198]. It is based on the leaderstgrarchy and the hunting mechanism of
grey wolves in nature. The major three actionshid hunting mechanism are searching for
prey, encompassing prey and attacking the preyenewt these, four types of wolf, namely
alpha, beta, delta and omega are employed.

The alpha wolves are the topmost member of theatdky and the most promising
member. They are the best in terms of managingthep. Beta is the next in the hierarchy
of grey wolves and they are superior to the otlretdie group. It enacts the character of an
advisor to the alpha and discipliner for the patkvolves. The beta strengthens the alpha’s
commands all through the pack and delivers feedbmtke alpha. Those wolves that are not
alpha, beta or omega are delta. They have to subnalphas and betas, but dominate the
omega.

The hunting behaviour is loosely modeled by théofeing two operators:

a) Encircling prey: Grey wolves encircle the prey during hunt. The reathtical
modelling of encircling the prey is given as

b =[cx,0- (1) (3.92)
X(t+1) =%, - AD (3.93
Where t indicates the current iteratiérand ¢ are coefficient vectors,  is the position

vector of the prey, an& indicates the position vector of a grey wolf. Mextors A andC

are calculated as follows

A=2if-a 3.94)
C=2f, (3.95)
Where components cd are linearly decreased from 2 to O over the coafsterations and

I, ,I, are random vectors in [0, 1].
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b) Hunting: For the mathematical representation of the hunthghe prey, it is

supposed that the alphéa() (best candidate solution) bet&ﬁ(), and delta (<5) have better

knowledge about the potential location of prey.tl®first three best solutions generated so
far are saved and oblige the other search agemttuding the omegas) to update their
positions in accordance with the position of thetbe&earch agents. Then the position is
calculated as given by the formulae in the previsestion. The final updated position is
given by (3.96).
R(ie1)= X1 X2 Xs (3.96)

3
This optimization technique has great exportatiod exploitation capability to search the

optimum value in the search space as well as tadastagnation in local solutions. The
values of A and € aid in the process. AG vector contains random values betwéea] it

favours exploration. On the other hand, the veoiolnelps in exploitation as the vectéris

linearly decreased from 2 to 0.

3.11.2. Application of GWO in the fault diagnosis sheme

Here, the role of GWO, being applied as minimigeto minimize (2.134) [ref. chapter 2,
sec. 2.9], that is, to find the exact OC and SQt femmbination which can cause the same
amount of current, that are flowing through the f¥hg. To implement the GWO, switching

combinations(SWQSWS$ are distinguished as wolves. For this optimizatwooblem, SWC

and SW. are the decision vectors, where each maeumber of elementan is the total
number of modules present in the string. The detagincode scheme of computational flow
of the fault diagnosis strategy following stringm@nt for PV string implementing GWO is as

follows:

Step 1.Getl Mg;s P

actual !

module temperaturel () and irradiance @ ) data from the physical

PV string.
Step 2.Simulatep,_, ., for no fault condition at MPP and evaluate
Step 3.Uf P, <P,....c » 90 t0 Step 4, to start fault diagnosis algoritismg GWO.

Otherwise, display: "Healthy string oections” and go to Step 1.
Step 4.GWO Initialization:
a) SelN (number of Grey wolf position) &(number of iterations).
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b) Randomly initializé&l number of switching combinatiomsyo swg .
{This initialized switching combinationswo swg resembles withx }

c) Initializea, A andC
Step 5.Set Iteration counk=1.
Step 6.Set Wolf countw=1.

MPP
sim ‘w

Step 7.Simulatg|
{Simulated string current at MPP for" wolf, i.e., switching combination

(SWOSWS, }

Step 8.Evaluate the fitness functi{jFiT(Swoswsz]W

Step 9.If w<N, Set Wolf countw=w+1 and go to Step 7.
Otherwise, go to Step 10.
Step 10.Rank the Grey wolves based on the fitness:

(SWOSWSH:The best search agent.
(SWO, SWs) ¢ =The second best search agent.
(SWQOSW$ 3 =The third best search agent.

Step 11.Update a, A, C an(:lSWQSWSj

Step 12.If “:’simulated— F;lctua[ <& , terminate GWO, retur(SWOSWSa and go to Step 14.

Otherwise, go to Step 13.
Step 13.If k<t, set Iteration counk=k+1 and go to Step 6.

Otherwise, terminate GWO, rettﬂﬁWOSWSa and go to Step 14.

Step 14.Display detected fault dﬁSWOSWSa :
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Chapter 4

Results and discussion

4.1. Numerical Study on ED problems

4.1.1. Solution Approach

To solve highly non-linear and specially multi-mbdsthematical optimization problem
like ED, a heuristic optimizer capable of wide exption and in-depth fine searching in the
wide search space is essential. The aforesaidsstdgbe algorithm determines the balance
between exploration and exploitation in the seamdice. To prefer both the wide exploration
and in-depth fine searching, each stage of theesigd algorithm is put into practice with
equal probability during the whole search proceddree search procedures of all three
stages are computed in such a manner that durenfirgh half each stage investigates search
space while in the second half each stage utitizesearch space.

The proposed HTS algorithm is applied to threeedé#iit power systems test cases. In

each case 100 runs are conducted to compare titeosdjuality.

4.1.2. Parameter Selection

Test results have been built up to compare theatexi the suggested HTS with that of
other stated evolutionary techniques. For all thcaeses, the tuning parameters of the
proposed HTS algorithm (i.e. conduction, convectwon radiation factors) have been set as
2, 2 and 10 respectively. The values efdd N,.x have been selected based on the problem
dimension for different test cases. Number of egtitions (¢) has been taken as top 10%

of the population.
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4.1.3. Test System 1

This is a 15-unit system with POZ and transmissiosses [1]. Here, the system
dimension is 15. N Ne and Nhax have been selected as 50, 5 and 100 respectimethis
test system under consideration. The unit wise rg¢ioa level and transmission loss
acquired from HTS are as in table 4.1. Comparatselts of particle swarm optimization
(PSO) and improved particle swarm optimization @P@re provided in table 4.2 [1,14]. Fig

4.1 indicates the convergence characteristic ofs Hilthis case.

Table 4.1
Unit generation (MW) and power loss (MW) for T&sistem 1.

Unit Gen Unit Gen
1 562.7951 9 25.0000
2 455.0000 10 25.0000
3 130.0000 11 58.8098
4 130.0000 12 80.0000
5 150.0000 13 25.0000
6 460.0000 14 15.0000
7 465.0000 15 15.000
8 60.0000 Ploss 26.6129
Table 4.2

Comparison of performance for Test System 1

Techniques Best cost($) Average cost($) Worst cab)(
HTS 32532.17 32533.04 32537.53
IPSO[12] 32704.45 32704.45 32704.45
PSO[8] 32858.00 33039.00 33331.00
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Figure 4.1 Convergence characteristic for Test System 1.

4.1.4. Test System 2

This system comprises of 40-unit system with valeet effects [10]. Here, /l Ng and
Nmax have been selected as 100, 10 and 200 respedivehis 40-dimensional optimization
problem. The solved generation level are as iretdl8. The problem has also been solved by
improved particle swarm optimization (IPSO), newtigée swarm optimization with local
random search (NPSO-LRS), continuous quick grougrcke optimizer (CQGSO) and
biogeography-based optimization (BBO) [10,12,13,18he comparative results and
convergence pattern of HTS are provided in tableahd Fig 4.2 respectively.
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Table 4.3
Unit generation (MW) for Test System 2.

Unit Gen Unit Gen Unit Gen Unit Gen
1 110.803 11 94.000 21 523.279 31 190.000
2 110.800 12 94.000 22 523.279 32 190.000
3 97.3987 13 214.759 23 523.279 33 190.000
4 179.733 14 394.279 24 523.279 34 164.799
5 87.9996 15 394.279 25 523.279 35 194.394
6 140.000 16 394.279 26 523.279 36 199.802
7 259.599 17 489.279 27 10.000 37 110.000
8 284.599 18 489.279 28 10.000 38 110.000
9 284.599 19 511.279 29 10.000 39 110.000
10 130.000 20 511.279 30 87.799 40 511.278
Table 4.4
Comparison of performance for Test System 2
Techniques Best cost($) Average cost($) Worst cab)(
HTS 121370 121374 121380
IPSO[12] 121403 121445 121525
NPSO-LRS[10] 121664 122209 122981
BBOJ[13] 121426 121503 121688
CQGSO[14] 121412 121423 121438
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Figure 4.2 Convergence characteristic for Test System 2.

4.1.5. Test System 3

10-unit system considering multiple fuels with webpoint effects [4]. For this 10-
dimensional problem, NP, NE and Nmax have beerctsgleas 50, 5 and 100 respectively.
The generation results from HTS are as in Table e comparative results among
improved particle swarm optimization (IPSO), conbns quick group search optimizer
(CQGSO0), new particle swarm optimization with locahdom search (NPSO-LRS) and
improved genetic algorithm with multiplier updatifdGA_MU) are in Table 4.6 with
convergence curve of HTS as in Fig.4.3 [4,10,12,14]

Table 4.5
Unit Generation (MW) for Test System 3

Unit Gen F Unit Gen F
1 229.5981 2 6 242.3580 3
2 215.8744 1 7 306.2386 1
3 296.6904 1 8 244.2562 3
4 137.9270 1 9 440.0000 3
5 294.4132 1 10 292.6441 1
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Table 4.6

Comparison of performance for Test System 3

Techniques Best cost($) Average cost($) Worst cab)(
HTS 608.156 608.195 608.253
IPSO[12] 623.826 623.827 623.829
NPSO-LRS[10] 624.127 - -
CQGSO[14] 623.827 623.834 623.850
IGA_MUI4] 624.517 - -

655

650
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640

635

630 -

Cost ($)

625

620

615

610 -

605 | | | | | | | | |
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lteration

Figure 4.3. Convergence characteristic for Test System 3

4.1.6. Analysys

The considered test cases are of different dimesswith various constraints, which
provide unique mathematical character for eacthefmodels. In terms of best average and
worst results for all the cases, the algorithmfarend to be better than the other available
solutions in the literature. These findings indéecatlaptability and robustness of the proposed
algorithm.
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4.1.7. Conclusion

The proposed HTS algorithm has been successfyliylienl to three non-convex
economic dispatch problems considering valve-peifgcts, prohibited operating zones with
transmission losses and multiple fuels with vale@p effects. The results have been
compared with those obtained by other evolutioregprithms in the literature. It is seen
from the comparisons that the proposed HTS alguoritherforms better than other

evolutionary algorithms in the literature.

4.2. Numerical Study on MAED problems

The proposed AIS algorithm has been applied toesMAED problems in three different
test systems for verify-ing its feasibility. Theftseare has been written in MATLAB 7 on a
PC (Pentium — IV, 80 GB, 3.0 GHZ).

4.2.1. Test system 1

This system consists of two areas. Each area dsridishree generators with prohibited
operating zones. Transmission loss is considered. e generator data have modified
from [235]. The generator data and B-coeffi-cieats given in the Appendix 4.2.1. The
percentage of the total load demand in area 1 % @8d 40% in area 2. The total load
demand is 1,263 MW and power flow limit of the gyatis 100 MW.

The problem is solved by using AIS algorithm. Hesealing factor of real power
generation (mulG), scaling factor of tie line powsnsfer (mulT ), population size (NP),
number of clones (Nc) and maximum iteration num{bénax) are taken as 1, 0.5, ... 50, 10
and 100, respec-tively for this test system undesileration.

To validate the proposed AlS-based approach, timeesgest system is solved using
differential evolution (DE), evolutionary programmgi (EP) and real-coded genetic algorithm
(RCGA). The population size, scaling factor andssawver constant have been selected as
200, 1.0 and 1.0, respectively, in case of DE.dsecof EP, the population size and scaling
factor have been selected 100 and 0.1, respectiveRCGA, the popu-lation size, crossover
and mutation probabilities have been selected & A® and 0.2, respectively. Maximum
number of generations has been selected 100 foEPEnd RCGA.

Results obtained from proposed AIS, DE, EP and R@®@ye been summarized in Table
4.7. The cost con-vergence characteristic of #8$ $ystem obtained from AIS, DE, EP and
RCGA is shown in Fig 4.4.
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Table 4.7

Simulation results for test system 1

AlIS DE EP RCGA
P1,1 (MW) 500.0000 500.0000 500.0000 500.0000
P1,2 (MW) 200.0000 200.0000 200.0000 200.0000
P1,3 (MW) 149.9994 150.0000 149.9919 149.6328
P2,1 (MW) 204.1371 204.3341 206.4493 205.9398
P2,2 (MW) 154.8707 154.7048 154.8892 155.8322
P2,3 (MW) 67.6140 67.5770 65.2717 65.2209
T12 (MW) 82.7726 82.7731 82.7652 82.4135
PL1 (MW) 9.4268 9.4269 9.4267 9.4193
PL2 (MW) 4.1944 4.1890 4.1754 4.2064
Cost ($/h) 12,255.39 12,255.42 12,255.43 12,256.23
1232719
—AIS
1.231 | — _DE |1
— - -EP
| ~——RCGA| |
£1.229 1 .
B
D |
8 1.208 | .
|
I|I.I
1.227 (| .
||‘
1226 (K™ -
1225 1 1 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100
Generation

Figure 4.4. Cost convergence characteristic of test system 1
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Appendix 4.2.1

Generator data for two area system

Generator aij bij Cij Fijmin Fl,jmax Prohibited
! $/h $MWh  (SMW)2n - ZI\‘/’ICVGS
Gl,.1 550 8.10 0.00028 100 500 [210 240]
[350 380]
G1,2 350 7.50 0.00056 50 200 [90 110]
[140 160]
G1,3 310 8.10 0.00056 50 150 [80 90]
[110 120]
G2,1 240 7.74 0.00324 80 300 [150 170]
[210 240]
G2,2 200 8.00 0.00254 50 200 [90 110]
[140 150]
G2,3 126 8.60 0.00284 50 120 [75 85]
[100 105]

The transmission loss formula coefficients of twofaa system

17 12
12 14
7 9

Blz

Bo1 = [—0.3908

Bgo1 = [0.045]

24 -6
Boz =|-6 129
-8 -2

Byoz = [0.056]

7

31

-2
150

9 ] x 1076

x 1076

—0.1297 0.7047] x 1073
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4.2.2. Test system 2

This system comprises 10 generators with valvetplmading and multi-fuel sources
having three fuel options. Transmission loss issmered here. The gen-erator data have
been taken from [202]. The total load demand i9@,MW. The 10 generators are divided
into three areas. Area 1 consists of the first fmits; area 2 includes the next three units and
area 3 includes the last three units. The load ddnraarea 1 is assumed as 50% of the total
demand. The load demand in area 2 is assumed aga28% area 3 is taken as 25% of the
total demand. The power flow limit from area 1 tea2 or from area 2 to area 1 is 100 MW.
The power flow limit from area 1 to area 3 or fr@area 3 to area 1 is 100 MW. Also the
power flow limit from area 2 to area 3 or from argao area 2 is 100 MW. The B-
coefficients are given in the Appendix 4.2.2.

AIS algorithm is used to solve the problem. Heoaliag factor of real power generation
(mulG), scaling factor of tie line power transfenu|T ), population size (NP), number of
clones (Nc) and maximum itera-tion number (Nmax tken as 1, 0.5, 50, 10 and 300,
respectively, for this test system under considtamat

In order to validate the proposed AlS-based apprahae same test system is solved using
DE, EP and RCGA. In DE, the population size, scafactor and crossover constant have
been selected as 200, 1.0 and 1.0, respectively.pdpulation size and scaling factor have
been selected 100 and 0.1, respectively, in casERofIn RCGA, the population size,
crossover and mutation probabilities have beenctleas 100, 0.9 and 0.2, respectively.
Maximum number of generations has been selectedd8@E, EP and RCGA.

Results obtained from proposed AIS, DE, EP and RQGfa®e been presented in Table
4.8. The cost convergence characteristic of thss ggstem obtained from AIS, DE, EP and
RCGA is shown in Fig 4.5.
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Table 4.8

Simulation results for test system 2

AIS DE EP RCGA
Fuel Fuel Fuel Fuel
P1,1 (MW) 249.9932 2 250.0000 2 250.0000 2 241.1238 2
P1,2 (MW) 230.0000 1 230.0000 1 230.0000 1 2179371 1
P1,3(MW) 425.7459 2 421.7415 2 421.7450 2 4743300 2
P14 (MW) 259.3045 3 263.2026 3 263.1955 3 248.4239 3
P2,1 (MW) 235.9642 1 239.3128 1 2443361 1 250.5749 1
P2,2 (MW) 233.4799 3 230.9321 3 233.2185 3 2225926 3
P2,3(MW) 2544325 1 2524330 1 243.3656 1 234.9363 1
P3,1 (MW) 232.8335 3 234.2974 3 240.1423 3 228.5379 3
P3,2 (MW) 370.6897 3 370.4444 3 3715352 3 384.3050 3
P3,3 (MW) 241.0603 1 241.0873 1 235.8444 1 2325959 1
T21 (MW) 100.0000 100 100 92.0603
T31 (MW) 100.0000 99.9964 100 92.7851
T32 (MW) 60.0060 61.2609 63.0646 67.8913
PL1 (MW) 15.0000 14.9000 14.9000 16.7000
PL2 (MW) 8.8826 8.9388 8.9848 8.9348
PL3 (MW) 9.5775 9.5718 9.4573 9.7624
Cost ($/h) 674.5502 674.8207 675.3977 687.4220
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Figure 4.5. Cost convergence characteristic of test system 2
Appendix 4.2.2

The transmission loss formula coefficients of two+aa system

8.70 0.43 —-4.16 0.36
0.43 8.30 —-0.97 0.22
—4.61 -0.97 9.00 -2.00
0.36 0.22 -2.00 5.30

B, = x 1075

By; =[-0.3908 —0.1297 0.7047 0.0591] x 1073

Bgo1 = [0.056]

8.60 —-80 -37
-0.80 9.08 -4.90
0.37 —4.90 8.24

B, = x 1076

By, =[0.2161 —0.6635 0.5034] x 1073

Bgoz = [0.056]

1.20 -0.96 0.56
—0.80 9.08 —0.30(x107°
—-0.56 —-0.30 5.99

33:

By, =[—0.3216 0.4635 0.3503] % 1073
Bgoz = [0.055]
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4.2.3. Test system 3

This system comprises 40 generators with valvetdoeding. The generator data have
been taken from [236]. The total load demand i$Q®MW. The 40 generators are divided
into four areas. Area 1 includes first 10 units 4886 of the total load demand. Area 2 has
second 10 generators and 40% of the total load démArea 3 consists of third 10
generators and 30% of the total load demand. Aveaihcludes last 10 generators and 15%
of the total load demand. The power flow limit frarea 1to area 2 or from area 2 to area 1
is 200 MW. The power flow limit from area 1 to arg@ar from area 3 to area 1 is 200 MW.
The power flow limit from area 2 to area 3 or framea 3 to area 2 is 200 MW. The power
flow limit from area 4 to area 1 or from area larea 4 is 100 MW. The power flow limit
from area 4 to area 2 or from area 2 to area 8@0sMW. The power flow limit from area 4 to
area 3 or from area 3 to area 4 is 100 MW. Transondoss is neglected here.

The problem is solved by using AIS algorithm. Hesealing factor of real power
generation (mulG), scaling factor of tie line poweansfer (mulT), population size (NP),
number of clones (Nc) and maximum iteration num{banax) are taken as 1, 0.05, ... 100,
20 and 500, respectively, for the test system uodesideration.

To validate the proposed AlS-based approach, thee gast system is solved using DE,
EP and RCGA. The population size, scaling factar emossover constant have been selected
as 400, 1.0 and 1.0, respectively, in case of DER, the population size and scaling factor
have been selected 200 and 0.1, respectively.sm @dRCGA, the population size, crossover
and mutation prob-abilities have been selected0fs @9 and 0.2, respec-tively. Maximum
number of generations has been selected 500 foEPENnd RCGA.

Results obtained from proposed AIS, DE, EP and R®&ve been depicted in Table 4.9.
The cost conver-gence characteristic of this tgstesn obtained from AIS, DE, EP and
RCGA is shown in Figure 4.6.

120



Table 4.9

Simulation results for test system 3

Power AlS DE EP RCGA  Power AIS DE EP RCGA
(MW) (MW)
P11 113.7914  93.0826  114.0000  94.0855 5,P 5254970 5459437 531.7377 524.9246
113.9998 109.0592 114.0000 47.7313 3P 527.2531 523.6608 526.7530  495.4096
F)1,2
P13 64.7248 89.7493 63.7726 85.4353 ;cP 550.0000 527.3677 550.0000 442.8850
P14 80.1469  116.9489  138.8847  131.2807 3,P 10.0000  10.0000  10.0000 51.7060
Pis 97.0000 97.0000 75.3245 79.1771 ;P 10.0006  15.7851  10.0000 42.4448
P16 109.0492 140.0000 106.4216 131.4026 ;9P 10.0009 10.0000 10.0000 47.9812
P17 260.3904 283.7266 300.0000 176.5484 3,,P 97.0000 93.0253 89.7589 95.5812
Pig 300.0000 286.2646  300.0000 232.6707 4, P 160.1255 190.0000 173.5365 149.1883
Pio 285.9479  284.9088  284.9513  292.1746 4, P 190.0000 157.8968 190.0000  159.4065
P110 130.0000 131.6349 136.7335 130.1531 ,3 P 162.0924 190.0000 116.4310 161.6999
P, 159.9752 169.8738 175.3639 340.9307 4, P 169.7535 200.0000 180.6554 167.5135
Ps2 160.0619  110.9708  94.0000  185.7976 45P 167.6944 90.0000 162.0916  172.4220
P 393.4413  229.8845  263.8126  462.1471 ,sP 169.8139 149.4540 173.0920 179.2210
P4 394.2748 387.4742 331.0545 391.6765 ,;P 59.6628 110.0000 109.4254 91.9333
P.s 394.2794  427.7543 394.2191 376.9261 43P 110.0000 88.1630 74.3342 92.5453
Pos 394.2794  478.2780  413.0955  484.3564 ,oP 915097  25.0000  99.6914 89.0354
Py7 489.2794  490.1819  499.6763  481.2045 ,,0P 458.7990 538.4695 541.9711  458.8239
P.s 489.2794  490.9476 500.0000 421.9451 ., T 113.8184 200 200 -118.7357
Pog 511.2794 511.9152 533.8328  469.0019 5 T 55.4544 915412  94.6831  -25.9549
P,1o  511.2794 511.8241 508.9305 511.2801 5, T 152.4622 147.8992 186.0147  174.0405
Ps1 530.0810 547.6323 520.6865 513.0630 , T 78.3136 51.0838  46.2286 81.5599
Ps2 523.4983  523.4937 531.7618 513.8375 ,, T 36.2899  42.9964 100 19.4290
P33 524.7380 522.6286 550.0000 524.4524 4,3 T 49.8478 69.9032 100 45.8003
Total
cost 123,246.1 124,544.1 1245745 129,911.8
($/h)
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Figure 4.6. Cost convergence characteristic of test system 3

4.2.4. Discussion

Results show that the minimum production cost fioe¢ test systems as obtained by AIS
is less compared to thosetained by DE, EP, and RCGA. This clearly shoveg &IS has
the ability to reach to the minimum solution cotemly. It establishes the improved
robustness of the algorithm. Convergence charatteyifor test systems 1, 2, 3 obtained by
AIS, as presented in Figures 4.4, 4.5 and 4.6 lgleafiects that AIS reaches to the minimum
solutions within very few numbers of iterations.efk establish the superior computational
efficiency of AIS. Therefore, the above resultsyardhe enhanced ability of AIS to solve
complex, non-smooth, non-convex MAED problem inesrdo achieve superior quality

solutions, in a computationally efficient and robomanner.
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4.2.5. Conclusion

In this article, AIS has been successfully impletadnto solve MAED problems. The
effectiveness of the proposed method is illustrdgdising three different test systems and
the test results are compared with the resultsiriddafrom DE, EP and RCGA. It is seen
from the comparison that the proposed AIS has Hiktyato con-verge to a better quality
solution than DE, EP and RCGA.

4.3. Numerical Study on MAEED problems

4.3.1. Simulation results

A four area test system consisting of four genesatoeach area with nonsmooth fuel cost
as well as functions related to pollutants’ levals hbeen implemented in the work for
demonstrating the productivity of the MODE methddthe generation data and tie line
exchanging limits for the considered system are timeed in the Appendix 4.3.Load
demands corresponding to area 1, 2, 3, and 4 ad\80 50 MW, 40 MW, and 60 MW
respectively. The calculations have been done rmyinahouse developed code in the
MATLAB R2013a.Total fuel cost as well as emissiobjeatives have been minimized
separately with real coded genetic algorithmic mégie (RCGA) for finding the trade-off
surface’s extreme points. Comprehensive area wisgem characteristics related to
generation levels, corresponding operating costistlagir emissions are depicted in Fig 4.7,
Fig. 4.8, Fig 4.9 and Fig. 4.10 respectively fofa@lr power system areas.
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Figure 4.7.Power-cost-emission characteristics for Area 1.
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Total members or population, maximum generation mennmutation probability, and
crossover probability are taken as 100, 500, (hd,@9sequentially for aforementioned test
system. It has been observed that for cost minngizbjective, fuel cost remains 1521.92
$/hr and emission level at 279.10&48hr. An increment in the cost up to 2858.45 $/hr and
emission decrement up to 250.6367hr was noticed with respect to emission minimizatio
Curves of convergence concerning cost and pollsitigvel have been presented in Fig. 4.11
and Fig. 4.12 sequentially. The generation amonrthése Figures is in MW. In order to
optimize cost as well as emission at the same tineeMODE was implemented.

For aforementioned purpose, parameters were seélastenentioned next. Total members
or population, maximum generation number, mutaéiod crossover probabilities are 20, 50,
0.2 and 0.9sequentially for the considered systeim.seen that cost is 2306.15 $/hr which is
more than 1521.92 $/hr and less than 2858.45 $#threanission is 263.022®/hr which is
less than 279.104%/hr and more than 250.658B/hr. For demonstrating the NDSGA I
productivity, the SPEA 1l is selected for solvinget MAEED objective. Parameters
corresponding to the SPEA Il have been mentioned. neotal members or population,
mutation and crossover probabilities, and maximemegation number were chosen to be 20,
0.2and 0.9, and 50 sequentially.

Table 4.10 indicatesabout the best optimized smutorresponding to the final generation
as achieved through the MODE as well as the SPEBdta corresponding to the least price
value along with the least pollution level has abs®en presented in the same table. For
aforementioned least values, the RCGA techniquealsasbeen implemented. Fig. 4.13 deals
with the 20 nondominated solutions attained cowoedmg to the last generation of the
MODE as well as the SPEA II.
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Figure 4.11 Cost convergence Figure 4.12 Emission convergence
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Figure 4.13.Paretoeptimal frcnt as per the MODE and the SPEAMIith respect to tt final

Table 4.10
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Simulation solutions corresponding to the systeuhenconsideratic

Minimum fuel Minimum

cost emission level MODE SPEAL
P11 (MWt) 6.2199 0.0582 4.2767 3.7801
P12 (MWt) 0.0500 0.0500 2.4432 1.9565
P13 (MWt) 0.0675 13.0000 5.0288 9.0004
P14 (MWt) 11.6650 11.9647 10.2873 9.0604
P21 (MWH) 8.6814 25.0000 15.6294 13.9816
P22 (MWh) 0.3559 12.0000 9.1385 8.0030
P23 (MWH) 20.0000 9.3437 12.1516 17.5303
P24 (MWt) 17.9797 9.9112 16.1274 15.6876
P31 (MWt) 0.0500 9.3729 11.1128 14.2898
P32 (MWt) 30.0000 9.1430 11.5027 6.8935
P33 (MWh) 8.0818 11.9394 9.2512 3.3478
P34 (MWt) 10.0555 12.8634 11.5776 18.2130
P41 (MWt) 1.4822 11.0000 7.8041 7.1157
P42 (MWh) 14.0633 16.8607 14.1608 13.0403
P43 (MWh) 30.0000 14.3553 21.1647 18.8948
P44 (MWt) 21.2478 13.1374 18.3432 19.2051
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T21 (MWY) 6.0000 6.0000 4.4186 4.3529

T13 (MW -3.9976 -0.7187 -2.5100 -1.5756
T41 (MWY) 2.0000 -1.7917 1.0355 0.2741
T32 (MW 3.5000 3.5000 1.4146 1.0910
T24 (MWY) -5.4830 3.7549 0.0429 1.9407
T34 (MW 0.6898 -0.9000 -0.4802 0.0775
Cost ($/hr) 1521.92 2858.45 2306.15 2294.82
E(rl'l‘)i/srf:)o” 279.1049 250.6567 263.0229 263.5606

4.3.2. Conclusion

In the presented brief, the multi-objective diffetial evolution (MODE) has been chosen
to deal with the multiple objectives and constrdingcorporating optimizing MAEEDS task.
A comparison has been made between the resultsvachthrough the NDSGA Il and that
achieved through the SPEA I1l. The MODE showed #lghoetter optimal front
corresponding to this task. It has been observaa the comparison that the MODE gives

novel optimized results.

Appendix 4.3

Generator characteristics (Generation limits)

min max

Generator (CNM) Poh (MW1) Pah (MW1)
GN11 0.05 14
GN12 0.05 10
GN13 0.05 13
GN14 0.05 12
GN21 0.05 25
GN22 0.05 12
GN23 0.05 20
GN24 0.05 18
GN31 0.05 30
GN32 0.05 30
GN33 0.05 30
GN34 0.05 30
GN41 0.05 11
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GN42 0.05 20
GN43 0.05 30
GN44 0.05 30

Generator characteristics (Cost coefficients)

gh

Generator agn by dgn egn
(GNoh) ($/hr) ($/MWthr) ($/I:Ir\;Vt2 ($/hr) (rad/MWHt)
GN11 0 38.53900 0.15247 100 0.084
GN12 0 46.15916 0.10587 150 0.063
GN13 0 40.39655 0.02803 120 0.077
GN14 0 38.30553 0.03546 200 0.042
GN21 0 36.32782 0.02111 300 0.035
GN22 0 38.27041 0.01799 150 0.063
GN23 0 2.000000 0.00375 18.0 0.037
GN24 0 1.750000 0.01750 16.0 0.038
GN31 0 3.000000 0.02500 13.5 0.041
GN32 0 2.000000 0.00375 18.0 0.037
GN33 0 1.000000 0.06250 14.0 0.040
GN34 0 1.750000 0.01950 15.0 0.039
GN41 0 3.250000 0.06250 12.0 0.045
GN42 0 3.250000 0.00834 12.0 0.045
GN43 0 1.750000 0.01950 15.0 0.039
GN44 0 1.000000 0.00834 14.0 0.040
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Generator characteristics (Emission coefficients)

34

Generator agh Bgh Yah Mgh Jgh
(GNm) (b/hr) (» /MWthr)  ('®/MW?t2hr) (o /hr) (MWt-1)
GN11 13.85932 0.32767 0.00419 1.310000 0.05690
GN12 13.85932 0.32767 0.00419 0.914200 0.04540
GN13 40.26690 -0.54551 0.00683 0.993600 0.04060
GN14 40.26690 -0.54551 0.00683 0.655000 0.02846
GN21 42.89553 -0.51116 0.00461 0.503500 0.02075
GN22 42.89553 -0.51116 0.00461 0.914200 0.04540
GN23 40.91000 -0.05554 0.00649 0.000200 0.00285
GN24 2.54300 -0.06047 0.00563 0.000500 0.00333
GN31 6.13100 -0.05555 0.00515 0.000010 0.00666
GN32 3.49100 -0.05754 0.00639 0.000300 0.00265
GN33 4.25800 -0.05094 0.00458 0.000001 0.00800
GN34 2.75400 -0.05847 0.00523 0.000400 0.00287
GN41 5.32600 -0.03550 0.00338 0.002000 0.00200
GN42 5.32600 -0.03550 0.00338 0.002000 0.00200
GN43 2.75400 -0.05847 0.00523 0.000400 0.00287
GN44 4.25800 -0.05094 0.00458 0.000001 0.00800
Tie line power transfer limits
Tie line (") ~Tgo o (MWI) Too (MWL)

T -6.0 6.0

-4.0 4.0

T, -2.0 2.0

3.5 3.5

5.5 5.5

. -0.9 0.9
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4.4. Numerical Study on WMAEED problems

4.4.1. Simulation results

To examine the proficiency of the proposed powspdalich methodology, a standard wind
integrated four area test system is considerecepgted in Figure 4.14. Along with the tie-
line constraints, area-wise spinning reserve camgy, area-wise power balance, valve point
loading and POZ; nonlinear constraints related td&JsWare also considered for this
WMAEED problem. A comparative analysis of the swlogs obtained by NSGA-II and
SPEA-II has been accomplished.
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Figure 4.14.Representation of 4 area test system.

For this numeric study, a wind integrated four aeesst power system has been modeled
mathematically. Each power system area contain§/g d&nd 1 WU. The total load of 180
MW is distributed over the 4 areas as 30 MW, 50 MMYMW and 60 MW respectively. The
transmission losses are considered to be negligtgearea spinning reserve (SRR, SR;
and SR) requirements are considered to be 12 MW, 18 MW, MW and 21MW
respectively. The power ratings of WUs of each aread MW. The cut in, cut out and rated

wind speeds are 5ms 30ms' and 10m¢ respectively. The cost coefficients, emission
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coefficients, real power generation capacity camsts and POZ of TUs are tabulated in

Table 4.11. The cost coefficients and real powereggion capacity constraints of WUs are

given in Table 4.12 and area-wise Weibull paransetee given in Table 4.13. Tie line

capacities are given in Table 4.14. The data inlefdhl1, 4.12, and 4.14 are given in p.u.

considering the system base as 100 MVA.

Table 4.11
Data of TUs (p.u.)

Cost coefficient data

Emission coefficient data

Real power
generation capacity

E constraints POZ
; ; ; ) ) agj  Bagij ; min max
i bej i doj  Cj S Paij o

G1 150 189 050 11 40 0';1 -1.50 233'33 0'(1)31 0.5690  0.0005 0.14 -
1
G 115 200 055 8 46 0'103 -1.82 212'02 0'291 0.4540 0.0005  0.10 -
2
G . . .

40 350 060 10 42 03?1 -1.25 22005 0299 0.4060 0.0005  0.13 -
3
G 12 315 050 9 44 0'201 -1.36 22?')31 0'265 0.2846 0.0005  0.12 -
4
G 155 305 050 17 30 0'(?2 -1.90 213'31 0'250 0.2075 0.0005  0.25 -
1
G . . . .

2 70 275 070 9 44 000 080 2300 0091 c/y 00005 012 -
2 7 5 1 4
G 70 345 070 15 35 0'501 -1.40 24?;00 0'820 0.0285 0.0005  0.20 -
3
G . . .

2 70 345 070 14 37 0801 -1.80 25112 0850 0.0333 0.0005  0.18 -
4
Gs 130 245 050 20 25 001 500 2512 0101 0667 00005 o030 9020
1 9 1 2 0.25
Gs 130 245 050 20 25 001 )35 2299 0035 5066 00005 030 020
» 2 0 8 0.25
Gs 135 235 055 20 25 003 519 2701 0153 ;5097 00005 030 020
3 3 0 3 0.25
G 500 130 045 20 25 001 g9 2510 0044 67 00005 030 020
4 8 1 3 0.25
G . . .

“ 70 345 070 85 45 051 -1.81 24331 0227 0.0289 0.0005  0.11 -
1
G . . .

“ 45 389 060 15 35 O(?S -1.92 27911 0334 0.0215 0.0005  0.20 -
2
G, 0.02 30.11 0.046 0.20-
. 75 355 060 20 25 o L2 7/ ° 00282 00005 030
G: 100 370 080 20 25 004 ) 40 2250 0011 5005 00005 030 20
. 0 0 4 0.25
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Table 4.12
Data of WUs (p.u)

5 Cost coefficient data Real power generation capaoinstraints
min max
= dwik Pwik Wik PWik PWik
W1, 25 12 2 0.0005 0.04
W, 18 12 2 0.0005 0.04
Wy 22 12 2 0.0005 0.04
W1 10 12 2 0.0005 0.04

Table 4.13

Area-wise wind parameters

A (m s'l)
Area 1 1.6 6.5
Area 2 2 7
Area 3 1.8 7.5
Area 4 2.2 8
Table 4.14
Tie line capacities (p.u)
Tie line Ti'I“i” TirI"aX
T1io 0.001 0.060
Tis 0.001 0.040
T1a 0.001 0.200
Tos 0.001 0.035
Tos 0.001 0.055
Tas 0.001 0.009

The cost characteristics of TUs of four areas arergin Figure. 4.14.1, 4.14.2, 4.14.3 and
4.14.4. Likewise, the emission characteristics bfsTof four areas are depicted in Figure.
4.15.1, 4.15.2, 4.15.3 and 4.15.4. The cost chenatits of WUs of each area are given in

Figure. 4.16. The Weibull probability density cusvef each area are represented in Figure
4.17.
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Figure 4.17.Cost characteristics of WUSs.

Before solving the proposed multi-objective WMAERPbblem, the effects of different

parameters are analyzed using two single objeciitienizations, i.e., cost minimization and

emission minimization. These are solved using @ak§&A. The convergence characteristics

up to 200 iterations are plotted in Figure 4.18 &iglire 4.19 respectively. The minimum
cost obtained in the work is 2088.56 $/h and theimmim emission is 2.2710 ton/h.
The Pareto fonts obtained by the potential solgtipom NSGA Il and SPEA Il have been

depicted in Figure 4.20. From these Pareto fohts best compromised solutions have been

chosen employing fuzzy selection method.
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Figure 4.1¢&. Cost convergence characteristics.
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Figure 4.2(. Cost-emission Pareto-front for NSGA II, SPEA IdaviODE.

NSGA Il has been applied to optimize both cost antission objectives simultaneously.
In this case the population size, maximum numbeiteyhtions, crossover and mutation
probabilities have been selected as 20, 50, 0.Dahdespectively for this test system. It is
seen that trade-off generation cost is 2126.52%82% higher than minimum cost, but 0.4%
lesser than the cost corresponding to minimum eomysand trade-off emission level is
2.6612 ton/h (17.18% higher than minimum emisslaut, 55.52% lesser than the emission
corresponding to minimum cost).

SPEA 1l has also been applied to solve WMAEED peobl In case of SPEA 2, the

population size, crossover and mutation probaédiaand the maximum number of iterations
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have been selected as 20, 0.9, 0.2 and 50 resglgctAs per the solution obtained from
SPEA I, the trade-off cost is 2130.75 $/h (2.02%hkr than minimum cost, but 0.21%
lesser than the cost corresponding to minimum eomysand the trade-off emission is
2.5631ton/h (12.86% higher than minimum emissiant, $7.16% lesser than the emission
corresponding to minimum cost).

All of these obtained solutions may be considereda&r trade-offs. The particulars of

these dispatch solution are tabulated in Table.4.15

Table 4.15
Dispatch results
Dlspatch Egonomlc EmISSIOH NSGA || SPEA ||
particulars dispatch dispatch
Pe11 (MW) 11.3557 10.6223 10.7582 10.2914
Pe12 (MW) 9.8406 10 9.9705 9.985
Pe13 (MW) 5.2021 8.6325 7.997 8.0093
Ps14 (MW) 9.6524 10.6056 11.2437 11.1216
Pwz21 (MW) 3.7213 3.9691 3.9232 3.9458
Ps21 (MW) 23.9455 12.5104 14.6291 13.5877
Ps22 (MW) 11.8449 6.8151 7.747 7.2889
Ps2s (MW) 17.7118 11.2011 12.4074 11.8145
Pe14 (MW) 0.6841 12.3452 10.1847 11.2466
Pwz21 (MW) 2.5425 4 3.73 3.8627
Pea1 (MW) 0.05 10.3413 8.4346 9.3718
Pe32 (MW) 0.05 11.6008 9.4607 10.5126
Pgas (MW) 16.2745 9.8612 11.0494 11.4654
Pass (MW) 28.0052 9.4023 12.0343 10.2491
Pwa1 (MW) 3.5874 4 3.9236 3.9611
Paar (MW) 10.6365 11 10.9327 10.9658
Paaz (MW) 0.05 10.5753 8.6252 9.5837
Pgas (MW) 18.7546 7.2128 9.3512 8.3001
Pgas (MW) 2.2713 11.3056 9.6318 10.4545
Pwai (MW) 3.8199 4 3.9666 3.983
T12 (MW) 4.2959 0 0 0
Tz (MW) -4 -1.1774 -2.7006 -2.4604
T1a (MW) 18.068 15.0069 16.5925 15.8129
Tos (MW) -3.0671 -3.1282 -1.3019 -2.1996
Tos (MW) -5.5 0 0 0
Taq (MW) 0.9 0.9 0.9 0.9
SR, (MW) 12.9492 9.1396 9.0307 9.5927
SR, (MW) 20.8137 32.1282 30.0319 31.0623
SR; (MW) 75.6203 78.7944 79.0211 78.4012
SR, (MW) 59.2876 50.9063 52.4592 51.6959
Fec ($/h) 2088.56 2135.15 2126.52 2130.76
Fe (Ib/h) 5.9828 2.2710 2.6612 2.5631
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It is noted from the results, that the obtainedisohs from the multi-objective optimizers
satisfy all the constraints, like, tie line capgditits, POZ, spinning reserve and constraints
related to wind power availability etc., those hawen considered in the power system
model.

In the works [59], [60] and [62], MAEED problem fa80 MW 4-area 16 TUs without
incorporating WU have been solved. The availablsults in these works have been
compared with the outcome of the current work, whérWUs are incorporated in same
power system, to realize the effect of wind incogton on overall fuel cost and emission
level improvement in multi-area power system witBaawise uncertainty. The comparative
results for economic dispatch and emission dispateh tabulated in Table 4.16. These
dispatch problems without considering wind generetj have been solved using particle
swarm optimization (PSO) [59], differential evoluti (DE) [60] and Jaya algorithm (JA) [62]

respectively.

Table 4.16
Comparative results for economic dispatch and eamsdispatch.
Economic dispatch Emission dispatch
Power Optimizers Minimum Corresponding Minimum  Corresponding
system generation  emission level emission  generation cost
cost ($/h) (Ib/h) level (Ib/h) ($/h)

180 PSO [59] 2166.82 3.3152 3.2301 2178.20
MW 4- DE [60] 2136.95 6.5383 2.4725 2178.28
arTeS:G JA[62]  2135.99 5.8157 2.4429 2177.55

180
MW 4-
area 16 GA 2088.56 5.9828 2.2710 2135.15
TUs and
4 WUs

It is evident from Table 4.16 that incorporation \0Us in a multi-area power system
efficiently reduces both the generation cost angsion level with proper dispatch planning
and effective management of wind power and otheedainty. After integration of 4 WUs
in the same 180 MW 4-area 16 TUs system, the mimrganeration cost reduces to 3.61%
of [59], 2.26% of [60] and 2.22% of [62] and thenmmmum emission level reduces to 29.69%
of [59], 8.15% of [60] and 7.04% of [62].
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The comparative results for trade-off solutionstatmilated in Table 4.17. These dispatch
problems, without considering wind generations, ehdveen solved using differential
evolution with fuzzy selection (DEFS) [60] and imped gradient-based JA (IGJA) would
[62] respectively.

Table 4.17
Comparative results for trade-off solutions.

Average
Trade-off Average trade- Trade-off
_ . o trade-off
Power generation  off generation  emission o
Optimizers emission
system cost cost level
level
($/n) ($/h) (Ib/h)
(Ib/h)
180 MW 4- DEFS [60] 2161.70 3.0873
2156.70 3.0585
area 16 TUs IGJA [62] 2151.69 3.0297
180 MW 4- NSGA Il 2126.52 2.6612
area 16 TUs 2128.64 2.6122
and 4 WUs SPEAII 2130.76 2.5631

From Table 4.17 it is noted that the average ti@tigeneration cost of WUs integrated
system appears to be 1.3% lesser than that gfaer system without WU integration and
the average trade-off emission level of WUs irdégd system is 14.59% lesser than that of

the power system without WU integration.

4.4.2. Conclusion

This work proposes a wind power integrated mukisaeconomic environmental dispatch
model. The non-convexity and discontinuity of coshimization and emission minimization
objectives due to valve point effects and prohiitgperating zones for thermal power
generating units have been considered. Differealistec constraints, like power balance,
generation limitations and power transmission ktgns through tie-lines between areas
have been included in the model. Constraints rélaiearea-wise uncertainty of wind power
availability following Weibull probability densityfunction and penalties for over-
commitment or under-estimation of wind power prddut have also been incorporated in
the system model. The penalty cost is introduceitiénmodel to intensify the motivation of
apposite utilization of wind power by the power mers. To find reasonable trade-offs

between the power production cost and the emidsial in multi-area power system in the
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presence of emission less wind power plants, @ifferecognized multi-objective optimizer,
like, NSGA 1l and SPEA Il have been employed. Théeptial trade-off solutions have been
procured on the basis of best compromised selegiced by fuzzy logic. The numerical
studies have portrayed, with optimal area-wise widgration to the conventional multi-
area power system, 2.7% of on average generatish isoreduced in respect of cost
minimization and 14.96% of on average emissionllé&eeduced in respect of emission
minimization. In view of the high penetration déan wind power in global energy sector, it
can be concluded that this type of wind integrdsede scale multi-area power dispatch

modeling is going to be highly relevant power systeperational strategy in near future.

4.5. Numerical Study on short term hydro-thermal

scheduling

The hydrothermal generation planning using improwdGA (i.e. IRCGA) and the
RCGA has been realized through MATLAB R2013a ondeins 7 environment having
particulars: Intel core i7 processor, RAM of 80 GH00 MHz clock speed and 3 GHz
frequency value. In this work, four cases with eliéint test systems have been selected. For
first three cases, optimization parameters like imar number of iteration, population size,
crossover, and mutation probabilities have beensidered as 300, 50, 0.9, and 0.2
respectively for both IRCGA and RCGA. For the foucise, maximum number of iteration,
population size, crossover, and mutation probadslihave been chosen 900, 50, 0.9, and 0.2
respectively for both IRCGA and RCGA.

4.5.1.Case |

For this case, a test system consisting of muliisticascade of four reservoir containing
hydro plants and an equivalent thermal plant han lm®nsidered. Here, scheduling period
has been planned for 24 hours (i.e. 1 day). Thediding period has been divided into 24
equal intervals. Detailed parameters for this syshave been referred from [109]. Optimal
hourly hydro discharge rates and total hydrotherpmaler generation obtained through the
developed IRCGA have been tabulated in Table 4A® Bable 4.19 respectively. The
reservoir storage volumes of four hydro plants egused through the IRCGA have been
demonstrated in Fig. 4.21. The best, average amdwtirst costs, and average CPU time
among 100 runs of solutions obtained from the IRCEA the RCGA have been tabulated in
Table 4.20. Data corresponding to the generatiestsdoom MDE [237], IPSO [116], TLBO
[122], IFEP [102], and GA [109] techniques haveodi®en mentioned in the Table 4.20.
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Fig. 4.22 shows hourly optimal hydro dischargeest system-1 and Fig. 4.28.for hourly
optimal hydrothermal generation (MW) of test system

The cost convergence characteristics acquired fhendeveloped IRCGA and the RCGA
are in accordance to Fig. 4.24. It has been obddreen the Table 4.20 that the cost found

from the IRCGA is the lowest among all techniques.
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Figure 4.21.Reservoir storage volume for test system-1 ina@foog head mobility.

Table 4.18

24 hours water discharge (¥18°) for test system-1 incorporating head mobility
Hour Qn1 Qn2 Qns Qha

1 8.7861 6.0009 30.0000 6.0000
2 8.6477 6.0001 18.5747 6.0000
3 8.5682 6.0000 29.9998 6.0000
4 8.3775 6.0006 17.3534 6.0008
5 8.1550 6.0000 15.4229 6.0005
6 8.0533 6.0030 15.9130 7.9993
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8.1591 6.0910 15.9792 11.1179
8.4589 6.8847 16.5977 13.6690
8.6193 7.4527 16.4652 15.3635
10 8.7715 7.6903 16.5940 16.1257
11 8.5801 7.7683 17.1467 15.7670
12 8.6525 8.1049 16.8463 16.5977
13 8.5011 8.2039 17.4470 16.4653
14 8.3269 8.3350 17.8223 16.5934
15 8.2464 8.4235 18.7109 17.1544
16 8.0697 8.7110 18.4832 16.8390
17 8.0004 9.0106 16.9627 17.4464
18 7.8467 9.4610 15.9095 17.8224
19 7.8246 10.1045 14.5644 18.8539
20 7.7368 10.6701 13.8283 19.6055
21 7.5925 11.2530 11.0169 19.9997
22 7.3682 11.7971 11.5735 19.9999
23 6.9536 12.6091 12.0326 19.9999
24 6.7040 13.4245 12.5674 19.9998
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Figure 4.22.Hourly optimal hydro discharge of test system-1
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Table 4.19

Optimal hydrothermal power generation (MW) schedaletest system-1 incorporating head

mobility
Hour Ph1 Pho Phs Pha Ps
1 79.7973 49.0061 0.0000 131.8801 1109.32
2 79.3927 50.1639 43.5292 129.0270 1087.89
3 79.0387 51.2957 0.0000 125.7437 1103.92
4 77.7373 52.9380 37.4242 121.6365 1000.26
5 75.9674 54.4995 42.2628 115.8283 1001.44
6 74.6619 55.5248 42.0011 163.8960 1073.92
7 74.9610 56.6535 42.7802 209.7731 1265.83
8 76.6787 62.1650 41.6644 252.8746 1566.62
9 77.7838 65.9683 41.8104 271.8340 1782.60
10 79.1114 67.7564 40.9661 278.4111 1853.75
11 78.7489 68.9033 38.9557 275.1930 1768.19
12 80.1994 71.5905 39.5975 282.2694 1836.34
13 79.6781 72.1369 38.3010 281.2003 1758.68
14 79.2573 72.8195 38.1722 282.2342 1727.52
15 79.5884 73.6734 35.5391 286.6439 1654.55
16 78.9796 75.6289 36.7765 284.1818 1594.43
17 78.8516 76.9618 41.8592 288.8606 1643.46
18 77.9593 78.3512 45.1334 291.6388 1646.92
19 77.8291 79.6915 48.4354 298.8079 1735.23
20 77.0919 80.4924 50.2710 303.4720 1768.67
21 75.8005 81.3147 51.4605 304.7025 1726.72
22 74.1001 81.9619 53.9109 301.5554 1608.47
23 71.1238 82.8437 56.0420 297.2275 1342.77
24 69.4655 81.8843 57.7491 291.3201 1089.58
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Figure 4.23.Hourly optimal hydrothermal generation (MW) of tegstem-1.
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Figure 4.24.Cost convergence curve for test system-1 with inealoility.

Table 4.20
Comparative study of different techniques for s3gtem-1lincorporating head mobility.

Average cost

Technique Best cost ($) ©) Worst cost ($) CPU time (s)
IRCGA 917199.44 917208.56 917221.37 257.03
RCGA 918480.03 918494.37 918504.47 256.75
TLBO [122] 922373.39 922462.24 922873.81 -

IPSO [116] 922553.49 - - -

MDE [237] 922556.44 - - -

IFEP [102] 930129.82 930290.13 930881.92 1033.2
GA [109] 926707 - - -
4.5.2.Case |l

In this case, restricted operating section for byalant, and effect of valve point loading
for thermal generator have been considered. Ddtgalgameters for this case have been
taken from [102]. Table 4.21 and Table 4.22 show dptimal hourly discharge rates and
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total hydrothermal generation acquired by the dgedl IRCGA respectively. Figure 4.25
shows the reservoir storage volume of four hydemd acquired from the IRCGA. The best,
average and the worst costs (in $) and average R& among 100 runs of solutions
acquired from developed IRCGA and the RCGA havenlmenmarized in Table 4.23.The
cost values acquired from IFEP [102], IPSO [116d an.BO [122] techniques have also
been shown in Table 4.23. Fig. 4.26 shows houtymmal hydro discharge of test system-2
and Fig. 4.28s for hourly optimal hydrothermal generation (M@f)test system-2.

The cost convergence characteristics acquired fleseloped IRCGA and the RCGA
have been demonstrated in Fig. 4.28. It can be seenTable 4.23 that the cost found from

the IRCGA is the lowest among all techniques.
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Figure 4.25.Reservoir storage volume for test system-2 ina@foog head mobility.
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Table 4.21

Water discharge (x£@n% in 24 hours for test system-2 incorporating heebility.

Hour Qn1 Qn2 Qns Qna
1 10.1845 6.1121 20.5536 6.3438
2 9.3545 6.0000 29.9857 6.0059
3 5.0934 6.0672 18.8188 6.0081
4 12.3025 6.9922 19.7814 6.0011
5 9.4396 6.9832 15.2970 6.3376
6 7.8835 6.3622 18.4255 11.1545
7 10.2721 8.2105 18.0212 8.7499
8 6.7694 6.0283 17.9212 9.3215
9 6.6014 6.9949 16.6465 15.9994
10 9.8394 6.6298 14.1732 14.6373
11 5.8365 8.0881 17.9684 19.8695
12 6.2467 6.7252 18.3894 15.9965
13 10.4311 6.0065 16.4035 15.9976
14 6.7118 6.0342 19.8262 13.0358
15 5.2117 8.9019 14.7661 19.6512
16 5.8669 8.0785 18.5218 18.0045
17 10.3436 13.0473 15.8221 18.0241
18 9.0289 8.2601 15.6486 18.1861
19 6.8068 10.6257 18.4059 18.1376
20 5.0351 13.1212 10.7805 18.6221
21 7.2673 9.9088 11.9574 18.0174
22 7.0480 12.8178 11.9622 20.0000
23 7.9655 10.0050 10.1140 19.8378
24 13.2600 13.2228 11.6386 19.6248
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Figure 4.26.Hourly optimal hydro discharge for test system-2.
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Table 4.22

Optimal hydrothermal power generation (MW) scheaylfor test system-2 incorporating

head mobility
Hour Pn1 Pno Phs Pha Ps
1 86.8344 49.7921 42.4872 136.4915 1054.39
2 82.7927 50.0996 0.0000 128.7959 1128.31
3 53.2023 51.7131 38.206 125.5285 1091.35
4 95.3572 59.6889 32.3296 121.2998 981.32
5 82.2469 60.7180 45.8186 119.8371 981.38
6 72.3219 57.0068 36.5382 189.8853 1054.25
7 84.3272 69.3217 39.5418 180.8054 1276.01
8 63.8671 53.8113 40.4187 196.2406 1645.66
9 63.4079 61.0171 43.8752 273.675 1798.02
10 83.801 59.0764 48.8933 261.1712 1867.06
11 58.8915 69.7213 40.9075 304.3079 1756.17
12 63.6159 61.3895 37.7617 274.8044 1872.42
13 90.3650 56.9064 44.1043 276.5894 1762.03
14 68.1055 58.034 32.0219 249.5939 1792.24
15 56.4505 78.0365 46.5805 304.8704 1644.06
16 62.7673 73.2219 38.5827 292.2578 1603.17
17 93.8183 96.3354 45.1644 292.7708 1601.91
18 86.3257 71.3305 44.6121 292.334 1645.39
19 70.6874 82.4647 36.9713 293.5957 1756.28
20 55.3803 89.5719 48.3725 293.5926 1793.08
21 74.3523 73.9104 52.4342 289.3438 1749.96
22 72.6529 84.7098 53.7410 299.7932 1609.10
23 79.4951 71.3102 53.2242 294.2187 1351.75
24 104.9608 81.7733 57.2461 291.4408 1054.58
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Figure 4.27.Hourly optimal hydrothermal generation (MW) for tegstem-2.
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Figure 4.28.Cost convergence curves for test system-2 incatpg head mobility.

Table 4.23
Comparative study of different techniques for s3sttem-2 incorporating head mobility

Technigue Best cost ($ Average cost ($ Worst cost ($ CPU time (s

IRCGA 923230.6 923242.4 923255.3 264.7:
RCGA 924069.73 924083.56 924096.28 258.65
IFEP [102] 933949.25 938508.87 942593.02 1450.9
TLBO [122] 924550.78 924702.43 925149.06 -

IPSO [116] 925978.84 - - -

4.5.3.Case Il

Here, a multi-chain cascaded four reservoir comgirhydro plants and three thermal
plants have been considered. The effect of valatdoading has also been taken into
consideration. Transmission loss has also beempocated. Detailed parameters for this case
have been taken from [102]. Table 4.24 and Taldb demonstrate optimal hourly discharge

rates and hydrothermal generation acquired by dbeeloped IRCGA respectively.
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Figure 4.29 shows reservoir storage volume of égdhno plant as acquired from the IRCGA.
The best, average and the worst costs (in $), aahge CPU time (in s) among 100 runs of
solutions as acquired from developed IRCGA andREB8&A have been summarized in Table
4.26. The cost acquired from MDE [237], CSA [12@hd TLBO [122] is in accordance to
Table 4.26. Fig. 4.30 shows hourly optimal hydischarge of test system-3 and Fig. 4i81
for hourly optimal hydrothermal generation (MW)teét system-3.

The cost convergence characteristics acquired fhendeveloped IRCGA and the RCGA
have been shown in Figure 4.31. It is observed fi@ile 4.26 that the cost found from the

developed IRCGA is the lowest among all techniques.
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Figure 4.29.Reservoir storage volume for test system-3 ina@ony head mobility.
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Table 4.24
Water discharge (xf@n% in 24 hours for test system-3 incorporating heedbility

Hour Qhn1 On2 Ohs Qha

1 5.0000 8.1694 29.9825 10.6846
2 11.8249 6.0349 20.3834 8.1109
3 8.2756 9.3968 29.9993 6.0699
4 10.6764 7.1839 17.4356 6.5270
5 10.7913 6.1217 14.9166 7.0655
6 7.5122 6.0114 19.9168 12.2241
7 11.8929 7.1014 16.4236 14.2319
8 8.0364 8.9342 19.9639 6.3860
9 5.0000 7.0265 17.2913 14.8253
10 5.2012 6.0000 19.6801 13.3341
11 9.0382 7.4124 16.8647 18.8811
12 7.1895 6.083 16.7021 17.6400
13 10.756 8.4874 17.0601 18.0055
14 9.6444 9.6666 16.3546 18.8809
15 7.5333 10.1478 14.5476 16.8217
16 12.2331 9.0725 12.3182 19.4624
17 5.0001 9.8397 14.7639 16.0024
18 6.9996 10.8825 13.7793 20.0000
19 12.3816 14.8071 14.5850 20.0000
20 5.7002 90.2668 12.3534 14.4891
21 5.0013 6.0008 21.3704 15.8796
22 5.0078 9.1880 11.7756 12.9617
23 5.0002 6.0045 15.2021 13.6869
24 9.3038 13.1606 12.9722 19.9519
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Figure 4.30.Hourly optimal hydro discharge for test system-3.
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Table 4.25

Optimal hydrothermal power generation (MW) schealfor test system-3 incorporating

head mobility
Hour Ph1 Pn2 Pn3 Pha Ps1 Ps: Ps:
1 52,5001 62.9911 0.0000 188.4124 20.0000 40.047®9.0353
2 94.9645 49.1472 36.0943 151.4483 20.0001 294.7089.9935
3 77.4693 70.7940 0.0000 120.2516 174.9999 40.06Z229.7881
4 89.6264 57.8274 34.8294  121.7495 174.9999 40.014410.0427
5 88.6817 51.7208 43.1194 121.7213 20.0713 209.8748®.7717
6 69.9013 51.9834 27.7926 202.2525 20.0027 294.74739.7384
7 90.041 59.9969 422954 229.2022 102.8131 294.943%).0704
8 71.5381 70.3084 31.274 155.4249 175.0000 294.7972%9.5029
9 499772 57.7790 39.9087 261.0326 174.9942 294.7329.4873
10 53.0657 51.3073 31.4504 247.0815 102.6427 293.7819.319
11 81.4462 62.5231 40.4364 298.9633 20.0014 298.7319.3074
12 70.7288 54.3802 40.1454  287.9098 102.6722 292.7(819.2878
13 91.5678 70.9632 38.1093 292.8062 20.0158 292.6829.319
14 86.4941  77.0705 40.8922 298.1207 102.6981 284.7339.8472
15 74.3655 79.0482 45.0727 283.9845 102.6488 292.7739.7885
16 98.9002  72.9424 48.6283 302.6975 20.0008  298.7HP9.5013
17 542296  76.2645 49.2103 274.8114 174.9981 294.7639.6912
18 71.4333  79.2985 51.6777 304.2234 102.6951 282.73229.7389
19 100.2199 87.8464 53.8828 300.4273 102.7774 3263.7 140.0848
20 60.3478 63.3576 55.0328 254.1731 20.0000 29%.7789.3300
21 542311 42.9424 345069 264.0216 175.0000 40.004819.0230
22 545201 64.1698 56.8181 236.6617 20.0000 298.7119.6709
23 54.7321 44.8122 58.1308 244.4422 20.0024  294.64(39.7895
24 87.5753 80.9892 59.3598 292.6200 20.0004 1283.0(489.8794
Hourly Optimal Hydrothermal generation {MW) of Test System-3
1200 T T T T T — — T T T l:lphs
1000 - i ] <SS =E2f

s — — B4

© 800 — = | EEPs2

5 == —

g 600

: IIIIIIIIIIIIII-

B 400 —

'g L

[l i

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

Figure 4.31.Hourly optimal hydrothermal generation (MW) forttegstem-3.
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Figure 4.32.Cost convergence curves for test system-3 incatjpgy head mobility.

Table 4.26
Comparative study of different techniques for s3sttem-3 incorporating head mobility

Technique Best cost ($) Average cost ($) Worst cqs) CPU time (s)

IRCGA 42322.23 42330.53 42339.36 304.05
RCGA 43068.01 43079.52 43083.05 298.72
MDE [237] 43435.41 - - -

TLBO [122] 42385.88 42407.23 42441.36 -

CSA [120] 42440.574 - - .

4.5.4.Case |V

This system considers a multi-chain cascade of iesgrvoir containing hydro plants and
ten thermal plants. The effect of valve point logdhas also been taken into account. Here,
transmission losses have not been considered. |&ktdata for this system is taken from
[112]. Table 4.27 and Table 4.28 show the optimalirly discharges and hydrothermal
generation acquired by the developed IRCGA respalgti Figure 4.33 shows the reservoir
storage volumes of four hydro plants acquired fiIRG@GA. The best, average and worst cost
and average CPU time among 100 runs of solutiogsigex from the developed IRCGA and
RCGA are summarized in Table 4.29. The cost acdumem DE [112] technique is also

shown in Table 4.29. The cost convergence chaisiitsr obtained from the developed
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IRCGA and the RCGA are in accordance to Fig. 4l86as been observed from Table 4.29
that the cost found from the IRCGA is the lowestoam all techniques. Fig. 4.34 shows
hourly optimal hydro discharge of test system-4 dnd. 4.35is for hourly optimal
hydrothermal generation (MW) of test system-4.
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Figure 4.33.Reservoir storage volume for test system-4 ina@atoog head mobility.
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Figure 4.34.Hourly optimal hydro discharge of test system-4.
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Table 4.27

Water discharge (x£@n% in 24 hours for test system-4 incorporating heedbility.

Hour Qn1 Qh2 Qhs Qha

1 10.59 7.2207 19.437 6.0254
2 12.0523 7.7304 20.2455 8.5457
3 5.0001 6.0184 17.4557 6

4 6.4478 6.3207 22.6585 14.8061
5 5 11.135 29.9287 7.6698
6 7.6269 9.9408 17.607 10.8973
7 9.2146 9.5815 13.9492 12.4732
8 7.1216 6 21.4589 6.0044

9 14.722 9.4742 16.3758 16.8335
10 8.7003 6.0001 18.0804 15.0361
11 7.6528 9.7120 10.0203 12.3636
12 5.4338 7.2947 17.1649 16.8305
13 11.5460 6.0053 30.0000 12.6269
14 10.5001 10.4945 15.3613 18.1704
15 6.9555 10.5776 10.0003 17.1377
16 5.0000 10.6310 21.2541 19.9868
17 10.5398 9.0909 11.1185 19.9873
18 5.1753 6.0028 19.1245 15.2733
19 5.0000 6.0000 18.4536 19.9871
20 5.8448 6.0003 10.0100 19.2115
21 6.0854 9.8456 11.2876 17.9333
22 8.5236 11.1071 10.4763 14.4865
23 14.9775 7.8296 13.2974 19.9983
24 5.2899 11.9870 13.3435 18.2195
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Table 4.28
Optimal hydrothermal power generation (MW) schedaletest system-4 incorporating head
mobility.

Ero l:)hl F)h2 Ph3 I:)h4 Psl Psz Pss Ps4 PsS Pse Ps? PSB PSQ Ple
1 885 57. 47. 132. 139. 199. 949 119. 274. 139. 450 134. 98.1 178.
7 22 08 22 75 58 6 95 69 73 0 50 9 56
> 934 60. 40. 161. 50.0 350. 204 20.0 224. 239. 281. 851 250 127.
2 86 34 19 0 60 3 0 39 41 91 8 2 25
3 51.6 49. 46. 123. 229. 124. 20.0 119. 274. 89.8 163. 134. 97.0 176.
8 75 67 35 28 06 0 83 36 0 14 30 8 69
4 64.2 53. 22. 210. 229. 124. 20.0 119. 224. 139. 104. 134. 25.0 177.
0 58 20 91 23 65 5 57 58 82 17 65 0 39
5 524 81. 0.0 124. 140. 199. 953 120. 175. 40.2 222. 135. 103. 178.
8 84 O 65 14 97 2 03 65 0 70 15 36 50
6 729 74. 39. 172. 228. 199. 20.1 69.3 174. 289. 222. 134. 25.0 75.7
8 59 64 76 43 60 4 6 63 50 84 78 0 5
7 822 70. 47. 198. 318. 199. 946 119. 174. 139. 450 234. 97.7 126.
2 99 20 36 93 57 9 92 64 77 0 60 9 33
8 69.0 47. 22. 129. 229. 422. 955 119. 273. 189. 102. 849 97.3 125.
2 23 25 73 43 79 0 60 98 46 88 2 5 86
9 98.8 68. 42. 258. 319. 423. 20.3 698 250 139. 163. 184. 98.0 177.
3 78 67 01 36 92 1 0 1 90 48 45 9 38
10 78.0 46. 38. 257. 319. 274. 952 69.9 224, 189. 163. 35.0 159. 126.
4 93 92 21 82 80 9 5 61 18 61 5 97 61
11 724 70. 47. 234. 319. 124. 948 120. 224. 139. 341. 350 982 177.
5 95 72 14 29 73 1 22 58 52 31 1 0 07
12 56.8 56. 45. 275. 230. 50.7 20.1 119. 379. 289. 104. 184. 160. 176.
4 99 91 89 03 5 7 53 12 12 27 79 00 59
13 949 48. 0.0 242. 139. 274. 951 69.8 469. 89.6 163. 84.8 160. 176.
0 78 0 21 83 44 4 4 99 8 39 9 00 89
14 90.5 75. 46. 293. 229. 274. 946 20.0 273. 139. 281. 350 984 758
8 87 97 94 40 45 0 1 23 83 79 0 8 4
15 70.0 75. 49. 286. 50.0 424. 94.7 130. 174. 40.0 450 284. 160. 126.
6 26 06 25 0 09 1 00 56 0 6 12 00 83
16 544 74, 31. 298. 229. 199. 129. 70.0 25.0 189. 400. 134. 97.6 126.
6 44 43 21 35 34 99 4 0 00 01 43 1 69
17 93.6 65. 52. 295 50.0 273. 944 69.8 748 289. 281. 184. 98.3 126.
4 38 59 18 1 98 7 9 0 24 74 31 9 38
18 56.3 45. 43. 270. 229. 423. 946 69.8 174. 189. 163. 184. 98.2 76.0
9 19 01 90 48 84 5 8 65 67 65 46 0 3
19 549 45. 44, 305. 454. 274. 20.3 695 743 239. 104. 184. 159. 37.6
6 17 96 80 33 42 0 7 9 45 26 79 99 2
20 62.7 45. 53. 290. 50.0 274. 949 119. 324. 90.0 222. 134. 159. 126.
1 81 50 73 0 67 4 53 17 9 82 43 97 63
21 64.7 69. 56. 284. 229. 349. 20.0 20.0 273. 139. 450 184. 973 75.6
9 73 20 47 45 33 0 0 79 52 0 71 6 5
29 83.1 74. 55. 250. 319. 349. 20.0 119. 755 40.0 163. 84.7 98.4 125.
8 65 53 31 55 28 0 75 1 6 35 4 5 66
23 107. 57. 58. 295. 229. 199. 951 119. 75.1 140. 163. 84.8 98.2 126.
42 02 04 22 34 76 5 70 8 39 42 1 0 35
o 57.3 76. 57. 282. 319. 274. 944 69.6 25.0 139. 450 134. 98.0 125

8 52 98 60 28 03 8 8 0 51 0 71 0 83
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Table 4.29
Comparative study of different techniques for s3sttem-4 incorporating head mobility.

Technique Best cost ($) Average cost ($) Worst cd$) CPU time (s)

IRCGA 170452.35 170459.78 170468.52 472.51
RCGA 170915.57 170924.41 170935.28 459.92
DE [112] 170964.15 - - -

It has been observed from Table 4.19, Table 4.2BJeT4.25 and Table 4.28, and Fig.
4.23, Fig. 4.27, Fig.4.31 and Fig.4.35 that thedthiydro unit has no output during some time
interval. This is because of the fact that outpoinfa particular hydro unit during a specified
time interval depends on the availability of wateservoir storage volume limit, water
transport delay between cascaded reservoirs anttheoisystem configuration as a whole.
Depending on the system configuration and conggdor the present problem, this has
happened in case of the third hydro unit. In tloaaise, four numerical experiments have
been performed. Fig. 4.21, Fig. 4.25, Fig. 4.2% Biy. 4.33 show reservoir storage volume
at every hour in a day. The graph obtained frona @étTable 4.18, Table 4.21, Table 4.24
and Table 4.27, and Fig. 4.22, Fig. 4.26, Fig. 4aBd Fig. 4.34, show water discharge at
every hour in a day. The optimal hydrothermal pogeneration scheduling of four test
systems has been obtained in accordance to Tabe flable 4.22, Table 4.25 and Table
4.28 respectively.

All four schedules give information about the powgeneration by different hydro and
thermal units at every interval in a day to makenemic operation. The cost convergence
characteristics of four test systems are in accweldo Fig. 4.24, Fig. 4.28, Fig. 4.32, and
Fig. 4.36 respectively. The solid line demonstrdRSGA, and dotted line indicates RCGA.
From these characteristic curves, it is clear IR&IGA curves fall sharply compared to that
of the RCGA and thus, IRCGA proves to be more esoooThe IRCGA has been modified
by incorporating one-to-one challenge in convergid®RCGA to boost the convergence speed
and solution quality. Table 4.20, Table 4.23, €aldl.26, and Table 4.29 show the
comparative studies along with the reference restlihese comparative studies have proven
that the IRCGA gives least price in least time.
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4.5.5. Conclusion
In this paper, real coded genetic algorithm (RC@GAJ improved real coded genetic

algorithm (IRCGA) have been successfully implemédni@ solve short-term hydrothermal
scheduling problem. To evaluate the performandb@iRCGA, it has been applied on four
sample test systems comprising of multi-chain aasdahydro and thermal units for a 24
hour time horizon (i.e. small horizon). In this ctse, nonlinear and nonconvex relationships
for power generation characteristics and the waggrsport delay time, have also taken into
consideration. The results obtained for various w®stems have been compared with
modified differential evolution (MDE), teaching keéng based optimization (TLBO), clonal
selection algorithm (CSA), improved fast evolutipngprogramming (IFEP), improved
particle swarm optimization (IPSO), and genetioatgm (GA).

Test systems’ results indicate that the total petida cost obtained by proposed IRCGA
method is less than other existing techniques tiverscheduled time horizon. Moreover,
since the encoding and decoding schemes entaile@Ayre not needed in the proposed
method, a lot of computer memory and computing tocae be saved. Hence, the IRCGA

confirms its superiority.

4.6. Numerical Study on optimal DG allocation

problem
In this work, IEEE 33 bus radial distribution systéas been selected to solve the DG

placement problem applying meta heuristics. The $uDthe system is shown in Fig. 2.1
[ref chapter 2, sec 2.6]. Total active and readiasls for this system are 3.715 MW and 2.3
MVAR respectively.

The calculations of active and reactive power Issgighout implementing DG are given
in Table 4.30.

Table 4.30
Power loss without DG

Real Power Loss (kW) Reactive Power Loss (kVAR)

210.9 143.0

Initially, the DG, which is proposed to be pladgedhe power system, is meant to inject
both real and reactive power into the bus. To pldorpthe maximum amount of DG that

should be considered to be installed for solvinig G sizing and allocation problem,
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different trials with different maximum amount ofstallable DG have been considered. The
maximum levels of total injected distributed genierass have been taken as firstly 1000 kW
and 750 kVAR (condition 1) and then 2000 kW and &¥AR (condition 2) and finally
4000 kW and 3000 kVAR (condition 3).

This optimization problem has been solved by twdl vexzognized optimizers like Real
Coded Genetic algorithm (RCGA) and Classical Part8warm Optimization (CPSO) and a
recently developed optimization technique, namedeweycle algorithm (WCA). In all of
the cases, the total number of population for technique has been taken as 50 and the
maximum number of iterations 500.

Table 4.31 indicates comparative results obtainethbse optimizers. It is evident from
Table 4.31 that condition 3 (i.e. maximum DG iniectlevel as 4000 kW and 3000 kVAR)
exhibits less active and reactive power lossebast been noted that increased level of DG
injection reduces active and reactive power loasesbvious. Taking into account of the total
active and reactive power demand of the system7dH3MW and 2.3 MVAR, increment of
DG injection level beyond ‘condition 3' seems notie feasible.

One of the major purposes of this study is to eranthe applicability of WCA for this
type of optimization problem and this techniquevstigroficiency in the same by finding

moderately better solutions of this problem, agdah Table 4.31.

Table 4.31
Power loss with DG

Optimizer Condition Real power loss Reactive power loss Apparent power loss

(KW) (KVAR) (KVA)

1 138.362 126.985 187.801

RCGA 2 112.634 98.329 149.516
3 63.261 52.151 81.986

1 140.026 128.154 189.818

CPSO 2 111.974 97.968 148.781
3 62.462 51.384 80.881

1 138.664 126.072 187.408

WCA 2 111.544 97.328 148.036
3 61.529 50.863 79.830

Table 4.32 indicates the optimal size and the lonat(i.e. the bus numbers at which DGs
are to be placed) for the case of condition 3,ahsed by WCA. It has been seen that, DGs
are placed in bus number 3, 6 and 2. Total amoumjected active and reactive powers are
2.774 MW and 1.734 MVAR respectively.
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Table 4.32
Optimal allocation & sizing of DG as obtained frakfCA

Size of DG '
_ — : _ Location of DG (Bus No)
Active power inj. (MW) Reactive power inj. (MVAR)
0.325 0.254
1.873 1.154
0.576 0.326

Furthermore, WCA is applied in IEEE 33 bus radiatribution system for optimal
placement of two extra capacitor banks as VAR comsgtors at two different buses, along
with these three DGs at bus 2, 3 and 6. Here,dta¢ number of iterations is taken as 1000
and the number of search agents is taken as 1@0ndinber of rivers is taken to be 20. The
maximum injections of total active and reactive powave been supposed to be 3000 kW
and 2500 kVAR respectively.

The real power loss, reactive power loss and fmtaler loss as obtained using WCA are
shown in Table 4.33. The optimal location thathis bus number as well as the optimal size
of the DG and five VAR compensators are also shavecording to the results, total amount

of injected active and reactive powers are 2.743 B\ 1.937 MVAR respectively.

Table 4.33
Optimal Size, Location & Losses
Optimal size Total power Active power Reactive power
Bus No- kw kVAR loss (kVA) loss (kW) loss (kVAR)
658 533
513 594
1572 457 73.827 55.865 48.266
13 - 182
29 - 171

From the results, it can be noted that furtherithgtion of VAR generators in different
busses causes less power loss in the system. Agatine time the result indicate slightly
lesser total active power injection than the prasisolution.

The above results are for base loading. The poleer ¢alculations were also done for
different load steps from 50% to 150%. In Fig. 4.83tage angle at each bus is plotted. This
is done for load variations of 50% to 150% of tlesdo loading. Since five reactive power

injectors are placed at five different buses, & bfects on the bus voltage angle and hence
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the system stabtl. It can be inferrecfrom the Fig. 4.38that the voltage angle h
considerably improved thus aiding voltage stabThe voltage profile for each bus at ev
load step is shown ifrig. 4.3¢ As it can be seen from the figure minimum voltdeeel
occus at bus number 18. As seen iig. 2.1, bus number 18 is the end bus for the lon
branch. Hence, the power loss, here, is the minimatigach step of load variaticin Fig.
4.39 the total power loss, real power loss and reagtiewer loss with lo¢ variation are

shown. With increasing load, as expected, lossgsase
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In this work, a problem of optimal allocation anisg of DG with capacitor ban
placement has been studied. The problem has béaxtddor IEEE 33 bus radial distributic
test system. WCA has been u as optimizer to solve this optimization problem &hd
applicability of WCA for this type of optimizatioproblem has been noted. Here, mult
DGs along with five capacitor banks at differens&es have been proposed to be placec
this method, ihas been seen that total active, reactive and apppower losses are reduc
by 73.51%, 66.25% and 71.03% respectively for jistesn

4.7. Numerical Study or Optimal power operation
planning in a townshig

Average power demands of the whole m-grid at a particular hour on a single c
during summer andinter season are shown in thig. 4.4Q The initial and operating cos
of DERs are as mentioned irable 4.34 and Table 4.3&spectively. Cost and lifetime
different equipments forming the mi«-grid for each case are as mentione(Table 4.36.
Installable capacity of different eneiresources for optimal operation in each case aen
in Table 4.37.
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Table 4.34
Initial cost of DERS

seasons

DER

Micro-grid system (Case 1) Micro-grid system (Case 2)

(Rs x10%) (Rs x10%)
BMGU 1.9935 -
BESS 4.3355 4.3355
SPS 7.1736 7.1736
PAFC - 0.9450
Table 4.35

Operating cost of DERs

DER

Micro-grid system (Case 1) Micro-grid system (Case 2)

(Rs/kWh) (Rs/kWh)
BMGU 2.5 -
BESS 6
SPS 0
PAFC - 10

162



Table 4.36
Cost and lifetime of micro-grid equipments

Equipment forming Case 1 Case 2
micro-grid Cost (Rsxc%) Lifetime (in Cost (Rsxc®) Lifetime
years) (in years)

Switching equipment 0.00437000 6 0.00437000 6
Transformers (step up and0.03350000 15 0.03350000 15
step down)
Controller 0.00020000 30 0.00020000 30
Cables(underground and 0.10900000 20 0.05000000 20
overhead)
Table 4.37
Installable capacity of DERs
Optimal operation Micro-grid system(Case 1) Micro-grid

(kW) system (Case 2) (kW)
BMGU 850 -
BESS 110 140
SPS 350 350
PAFC - 650
PP 20 20

In this work, the economic feasibility of hybrid BE& for the micro-grid and its optimal
operation has been found with the help of SSO dlgarusing an in-house developed code
in MATLAB R2013a. The equated annual cost of eagbrid DER for optimal operation and
micro-grid formation is shown in the Table 4.38embelow.

Table 4.38
Equated annual cost of each hybrid DER
Micro-grid operation Equated annual cost (Rs)
Case 1 1.2984 x10®
Case 2 1.3217 x10®

The optimal operation by different DERs and coroesjing load demand, during summer
and winter seasons for case 1, is shown in Fidl.4#ere, hourly basis power generation

from each DER, during summer and winter seasodspgted.
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It has been observed, that, the combination of @REBMGU with BESS (i.e. case 1) is
1.76 percent cheaper than that of SPS and PAFCBH&®S (i.e. case 2), for the same load

demands.

SSO is a newly appeared technique. For the sakis ogliability, the case 1 of hybrid
DER has also been analyzed by another well eslteloljscommon meta heuristic, population
based optimization technique, named Genetic algari(GA). Since the case 1 of hybrid
DER is more economical, the convergence compahsgrbeen made for this case as shown
in Fig. 4.40. Here, it is evident, that, in eatigrations, GA converges faster than SSO, but as

the iterations go on, SSO converges more than GAiaally gives better result.
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The cost evaluation of different hybrid DERs forcrokgrid has been made with the help
of SSO algorithm. It shows some advantages oveero#volutionary algorithms, like
avoidance of premature convergence, improved balaatween exploration and exploitation
for obtaining the global optimal solution etc. Thisis evident, that, SSO is compatible to
solve this type of optimization problem. Hybrid DE&S distributed generator, is found to be
good approach to mitigate power demands of smallramotely situated localities. Hence, a
lot of research is going on renewable energy ressuiThe operating and installation costs of
these resources are likely to be decreased momeeam future. Then, this scheme of
distributed power generation with hybrid DERs v more attractive.

4.8. Numerical Study on Optimal power operation

planning in a rail-way rake maintenance depot

4.8.1. Input Parameters
Variation in power demand of the consumer throughlo@ day is depicted below in Fig.
4.43.
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Figure 4.43.Power demand

The installation and running costs [238-242] offetént DERs and their maximum

installable capacities[243] are tabulated in Tabhg9.
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Table 4.39

Cost of DERs
DERs Installation Cost Operating Cost Life time Maximum
(Rs./KW) (Rs./KWH) (Years) installable
capacity
(KW)
BMGU 11 2 10 20
PAFC 35000 10 5 1000
BESS 725 5 5 100
SPS 328000 - 10 150

Inputs associated to formation of micro-grid [244¢ tabulated in table 4.40.

Table 4.40
Details of micro-grid cost.
Equipments Cost (Rs.) Life time
(Years)
Switching Equipments 47400 8
100 KVA 256000 20
Transformers 315 KVA 465000 20
630 KVA 713000 20
Controller 20000 30
UG Cable (4 core,11 KV grade) 78100 20

Individual tariff for different DERs [244] are ginebelow in Table 4.41.

Table 4.41
Tariff for DERs
DERs BMGU PAFC SPS
Rate (Rs./KWH) 4 11 11

Existing Tariff [244] to purchase power from griglas in Table 4.42

Table 4.42
Energy Tariff
Time slab Normal Peak OFF-peak Demand Charge
(Rs./KVA/month)
Rate (Rs./KWH) 6.12 8.57 4.04 317
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4.8.2. Results and Analysis

In this work, Economic analysis to implement dlstited generation using DERs, with
optimal power operation planning, in the aforedaaill-Way car-shed has been done. To get
the best result as well as test the performand®3#4, 16 consecutive runs of the in-house
developed programs have done in Matlab R2013a, ditferent cases with different
combinations of tuning parameters and randomizigpgagons. Let, Rpow is a parameter,
which is suggested to be 2 or 1 and Type (a orsbthé indication of the selection of

randomizing equation. The simulation results abeil@ed below in Table 4.43.

Table 4.43
Obtained results

C | SI | TIR- | Pop.| No. of| Optimum installation Capacity Equated | Energy

a | No|y|po |Size | Iteration Annual Cost

S piw | (N) | () BMGU PAFC BESS SpPsCost(RS) | (Rs./K

e e WH)
1 a 1 50 1000 12 - 47 65 4.7897e6  12.33

| 2 a 2 50 1000 18 - 31 97 5.1073e6  13.15
3 b1 50 1000 12 - 41 60 4.4987e6  11.58
4 b 2 50 1000 19 - 46 125 4.7478e6  12.22
5 a 1 50 1000 - 572 35 66 9.4018e5 2.42

6 a 2 50 1000 - 996 47 126 3.7755 €6 9.72
7 b 1 50 1000 - 583 42 60 9.7941e5 2.53
8 b 2 50 1000 - 933 47 94  3.6589 €6 9.42
9 a 1 50 1000 12 620 41 73 1.2451 €6 2.83
10 a 2 50 1000 20 946 47 102 4.0101e6  10.33
11 b 1 50 1000 11 583 43 62 8.5629¢e5 2.20

12 b 2 50 1000 18 945 39 71 3.2973e6  8.49
13 a 1 80 1000 11 581 40 64 8.4839e5 2.18
14 b 1 50 1500 12 616 43 70 1.0867 e6 2.79

I 15 a 1 80 1000 - 580 30 64 9.3278¢e5 2.40
16 b 1 50 1500 - 588 41 64 9.7532e5 2.51

Analyzing the obtained results, it is clear thas€4is not economically faceable. Case I

is optimum to some extent, but Case lll is the noptmum economically. From the view

167



point of performance of GSA, it can be noted thhg type of randomizing equation,

population size and no. of iteration do no sigaifity affect the results. But, in case of
Rpow, value of 2 performs more efficiently thanot this optimization problem. Possibly, in

case of Rpow = 2, the discontinuity caused by foanger price when amount of surplus

power exceeds 700 KW, cannot be arrested. Howawaong the results, the most economic
solution comes out from thy £3un, which belongs to case lIl.

This optimization problem was also solved by PSéhieque. The best value arrived by
this is also goes for case Il with Equated AnmDakt of Rs 8.8547 e5, which means energy
cost of Rs 2.26/KWH.

The convergence curve of Equated Annual Cost fir B&SA and PSO are shown in Fig.
44. For GSA, it shows drastic convergence in eigehations and in latter iterations the value

improved slightly. Whereas, in case of PSO, theveogence is comparatively gradual.
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Figure 4.44.Convergence curve

The optimal power operation considering this ressilgraphically depicted below in
figure 4.45.
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Figure 4.45 Optimal Power Operation

Here, ‘Pfc’, ‘Pso’ and ‘Pbm’, which indicate theurty power generation by PAFC, SPS
and BMGU, are represented in figure 4.28. The BBfS&ation is also present there as ‘Pbt’.
The positive side indicates battery discharging #mel negative side indicates charging.
There also exists the hourly basis demand curb’. ‘B&stly, in the negative power axis, the
amount of surplus energy fed to the grid is represk as ‘PO’. Anyways, in this figure,
power operation of BMGU, SPS and BESS, and the ddngarb are not prominent, to get
clear view of these, omitting power operation ofH€Aand power fed to the grid, Figure

4.46 is presented below.
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Figure 4.46 Optimal Power Operation
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4.8.3. Conclusion

Giving priority to the economy, a theoretic anatys implement DG with optimal power
operation has been made. GSA is used to solveotttiization problem. It performed
slightly better than normal PSO method for thisecaSo it seems that GSA can be
successfully and reliably implemented in these sygieoptimization problems.

As per the proposal, the energy cost should effelstibe Rs. 2.18 per KWH and it will
be possible to feed renewable energy of 4.3513 QiatHyear. Effectively it results savings
of 4.7397 GWH energy, mostly generated from corieeat thermal power plants. It will be
beneficial to the environment. In spite of thaterth may arise some conflicts. As per the
obtained results, for case Il (when BMGU is diseal) the minimal energy cost will be Rs.
2.40 per KWH, which may be comparable to caseAdl.t is definite that, BMGU has very
low power density, omitting BMGU may spare a laggeount of land area of the consumer,
which will attract them (the authority of the radw car-shed). As lots of researches are going
on DERs technology, it can be assumed that thaliasbn and operating costs of different
DERs will definitely be reduced in near future @hdy will come with greater efficiency and
power density. At that time, implementation of D&ng DERs will be more attractive for

the most consumers.

4.9. Numerical Study on optimal power operation of

PV aided nano-grid in a hopital campus

4.9.1. Simulation and results

Total power consumption in the hospital campusuhout a day is presented below as
in Fig. 4.47 Here, the power demand has been recorded at engmter hour interval
throughout a day for a set of randomly chosen 3@ dd different months throughout a

whole year and the power demand has been averagedlize the 24 hrs demand profile.
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Figure 4.47.24 hours power demand of the hospital campus

The running cost of different renewable energy ueses and their installed capacity are
tabulated in Table 4.44.

Table 4.44
Running costs and installed capacities

Renewable energy resource Running cost (INR/kWh) ktalled capacity (KW)

Battery energy storage system 5 5
Solar photovoltaic system - 10

Existing time dependent tariff to purchase powentigrid is as in table 4.45 [245]

Table 4.45
Energy tariff of the utility grid
_ _ 4:.00 am - 10:00 am - 10:00 pm - Base charge
Time period
10:00 am 10:00 pm 4:00 am (Rs./KVA/month)
Rs./kWh 6.88 7.57 6.40 317

The parameters for the optimizer have been tunddllasvs. The community dimension
N,, » the allocation index corresponding to the SIB}GRand the maximum iteratiam_,
have been set as 100, 0.5 and 1000 respectively.

To ensure the performance of the proposed methggdolved by the IMRCGA, 10
simultaneous runs of an in-house developed code h&en done in MATLAB R2013a
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environment, by a computing system based on aatdrdtel i7 micro-processor with 16 GB
1600 MHz RAM and with 64 bit Windows 7 professiooglerating system. The problem has
also been solved by RLCGA to compare the resuh thié proposed methodology. To assure

a justified comparison, The community dimensiop , and the maximum iteratiam_, have

been set as the same of the case of IMRCGA. Theagee simulation results are given
below in Table 4.46. The average computing timesnato get the solutions are 15.82 and
16.21 seconds for RLCGA and IMRCGA respectively.

Table 4.46
Annual operating cost

Annual operating cost (INR)

_ _ With DERSs (solved by With DERSs (solved by
Without active DSM
RLCGA) IMRCGA)
7.4286e+05 5.9381e+05 5.4021e+05

It is evident from the results that the proposedRIBGA technique performs better in
respect of producing a more economic solution. dp&mal economic power operations of
nano-grid as per the obtained solution of the pgeddMRCGA have been depicted in Fig.
4.48.

power

1 4 8 12 16 20 24
Hour

Figure 4.48.24 hours optimal power operation
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Here, the PD denotes the power consumption gpdrepresents power purchased from
the utility grid. The area between these two cursammarizes the net energy saving
throughout the day. The,andR,, curves denotes power contribution of the PV and BEES
units respectively. Negative portion of tiee line represents charging of the BESS and the

positive portion represents the discharging mode@BESS.
Two separate tracking controllers have been dedigm@perate the PV and BESS following

the power operational references. These are reyiegkas

10.028

G.1(s) = 50.046 +

3.97)

N

1.216 0.514s

Gcz(S) =1.523 + T + 1108 (398)

The PI controllerG.,(s), is used to control the PV system described by-(22) The PID
controller, G.,(s), is used to control the BES system described by)-@&8. The
corresponding closed-loop system frequency respisnskown in Fig. 4.49a and Fig. 4.49b
respectively.

Freqguency response

wagnitude (dB)

Phase (deq)

Frequency {rad/s)

Figure 4.49a.Closed loop frequency response of the PV system.
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Frequency response
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Figure 4.49b.Closed loop frequency response of the BES sy

The closed loop frequency responsesFig. 4.49a and Fig. 4.49show stability at lov
frequency steady state and higher frequency nejsetion

The transient behaviors of the PV and BES systewe been examined witreal-time
Hardware-inLoop (HiL) simulations on a re-time platform viz. Opal RT OP4500 a
MATLAB Real-Time Windows Target (RTWT). The scheme of the Hiim&ation, as
shown in Fig. 4.50the analog outputs from the O-RT OP4500 mdule, which is in loo}
with the controller hardware Advantech PCI 171,fackdirectly to a storage oscilloscc

Analog
Signal "
j =M
[=]
—> 2
k=)
2
Q
&0
< 5
Analog “
Advantech PCI 1711 Signal Opal RT OP4500

Figure 4.50.Hardware-in-Loop (HiL) scheme

The time responses of the PV and BES system been captured for 120 seconds thro
this realtime HiL scheme. In this period of simulation, sonealistic changes of referenc
due to ambient uncertainty have been taken intouatt
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Figure 4.52.BESS power
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Figure 4.53a.BESS terminal voltage
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Figure 4.53b.BESS current

Generated traces from the simulator connected getavacilloscope are presentecFig.
451, Fig. 4.52, Fig. 4.%3andFig. 4.53b. Figure 4.51 and Fig. 4.B8present the re-time
reference power tracking of the PV and BES systespectively. Te associated BES
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terminal voltage and current waveforms have bequicted in Fig. 4.53a and Fig. 4.53b
respectively. Figure 4.51 and Fig. 4.52 show satisiy power tracking performances for
both the PV and BES systems.

4.9.2. Conclusion

With priority to economic demand side managemenhniog a PV-BESS assisted nano-
grid, a theoretic analysis to find optimal annupkeating cost has been done. It can be
concluded that evolutionary optimization techniqué® real coded genetic algorithm
(RLCGA) and improved real coded genetic algorithiitRCGA) can be successfully used as
optimizer to solve this kind of optimization probleand IMRCGA suits better than RLCGA
in this type of problem.

Electrically modeled power network of the hospitampus in the form of a nano-grid
containing PV, inverter and BES systems along wi#bkigned controllers analytically show
proficient performance in steady state and transeference tracking.

As an obvious future, distributed generation wobkel preferred over conventional
centralized power generation. In that situatiorstribution networks, which are presently
designed according to the conventional centralipedier generation, would have to be
changed according to the distributed generationirements. For this particular case, it has
been seen that by implementing active distributigstem with renewable energy resources,
the annual operating cost gets reduced by 27.28pemapproximately and in addition, it
saves almost 21.9 MWh of electrical energy produlegdconventional centralized power

generation system per annum.

4.10. Experimentation and validation of the
proposed optimization based fault detection scheme

In photovoltaic system

4.10.1.Experimental setup

To test the performance of the proposed methodplagyhysical test system has been
created in the laboratory, which consists of 10 bers of identical 36 multi-crystalline cells,

10 Watts PV modules. Here all the modules have kbeanected in series to construct a PV
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string. The generated power hasen fed to an electrical load through an MPPT cdletr
and converter. The technical specifications ofRMemodules are summarized in Ta4.47.
All the technical data are collected at standasd ¢endition (STC) (Irradian- 1000 W/nf,

AM 1.5, 25°C Temperature A Matlab-Simulink model, identical to this test system,

been constructed to perform the evaluations neégethe optimizer as the simulated |
system and th fault analyzer block in Fig. 2.. [ref. to chapter 2, sec 10] Here, in this
block, the optimizer subsystem contains the in bBodeveloped logical source code
implement GWO for fault detection. The -systems named PV string and MPPT contr¢

and converter are depicted below in [4.54 and Fig.4.55 respectively.

<A

i

Figure 4.54.PV string sub-system.
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Figure 4.55. MPPT controller and converter Salgstem
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Table 4.47

Electrical characteristics of test modules.

Parameter Value
Make SOVA SOLAR
Maximum Power (Pmax) 10.51W
Voltage at Pmax (Vpm) 18.18V
Current at Pmax (Ipm) 0.58 A
Open-Circuit Voltage (Voc) 22.14V
Short-Circuit Current (Isc) 0.64 A
Series Resistance (Rs) 1.73Q
Shunt Resistance (Rsh) 613.94Q
FF 0.75
Module efficiency (Eff,m) 13.29%
Cell efficiency (Eff,c) 16.41%

4.10.2. Results and discussions

Nonuniform irradiance throughout the PV string leasignificant effect on the string
current. As it causes deformation of power-voltadparacteristics of the PV string, the
operating point (MPP) of the string is changed iy MPPT controller and power converter,
which affects the string current. Here, the proposethodology follows this string current
to detect OC and SC faults. So, a keen attentisrbban paid on performance evaluation of
the methodology in case of MPPT controller and eoter connected PV string in
nonuniform irradiance with different module temparas. To realize the performance in
these different conditions, 4 sets of PV stringtaysirradiance and temperature conditions
(C1-C4) have been considered, as tabulated in #aB The irradiance values of modules
for test conditions C1 and C2 ranges from 807-98Mi%nd 475-718 W/ respectively,
while for conditions C3 and C4, some irradianedugs have been considered very low
values, as ranges from 71-576 \¥/mand 84-929 W/rh, to replicate heavily shaded
conditions in some modules in the PV string. Suages of irradiance levels for different
test conditions are selected to examine the effentiss of the proposed methodology in
cases of moderate and highly non-uniform irradiacas@litions.
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Table 4.48
Irradiance levels and corresponding temperatures

e o | @ | e | o
1°' Module G-lr(zl(\ilcr;r)]Z) 692?;1 4597_26 ?iLng 58;”5-33
2" Module G;(;(\ZQZ) 5880_276 4585.33 :3020 :7522
3% Module Gi(s\?‘{/g)]Z) 6947.3?7 574?27 3?5.367 381%15
4™ Module Gf‘r(x\«{gﬁ 5?(7)1 5741_22 33).166 2320
G WInT 9 791 299 929
5" Module ?I-(s(og) 633_?0 56.66 39.21 62.83
6" Module Gfsr(:/(\c{g]Z) 6%?720 4457_:1 4597.20 57:22
7" Module G;(:/(\c{gﬁ 62:28 4597_27 3?12.?35 ;:.738
2
8" Module Gﬁ\c{g) 6%7.22 5625.31 jf.iG 25.166
9" Module G%(;/(\c{g]Z) 5?116 5638,25 315.16 5611610
10" GidWiP) 834 702 134 a7
Module T1(°C) 59.27 54.32 33.02 45.73

Under each condition, the fault diagnosis technigas been tested four times. One in
each of them contains no fault, two consist of ddI$ or SC faults. Another case contains
different combinations of OC and SC faults. Thugtegn (4x4) number of consecutive
experiments (E1-E16) have been done to validateotbposed methodology with different
test conditions. Different combinations of SC ard faults have been created in the physical
test system with different irradiance level as extatabove. Corresponding module
temperatures have also been considered.

GWO has been selected here as the optimizer tce siblig optimization problem.
Moreover, two other well-recognized optimizatiorchieique such as Genetic Algorithm
(GA) and Tabu Search (TS) have also been adopteal\te these problems.

The simulation and algorithm have been run in MAB.AR2013a on Windows 7
environment, with Intel core i7 processor and RAMB® GB. The thorough results acquired

from these experimentations have been tabulated&able 4.49.
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Table 4.49

Fault diagnosis results

é .§ Actual IMPP Optimality | Algorithm 'Z::P Fitness Detected
g S Fault meas | Condition (A) Value [Psimulated” Fault
e S FocTsc (A) e (FIT) Pactual oc sc
GWO 0.505692] 0.000002 0.0019 Nil] Nil
El NilT | NilT | 0.505690 0.04849 GA 0.505692| 0.000002 0.0019 Nil| Nil
TS 0.505692] 0.000002 0.0019 Nill Nil
GWO 0.505273] 0.000008 0.0021 6,10 TNl
E2 6,10 | Nil' | 0.505270| 0.04935 GA 0.505273| 0.000003 0.0021 6,10 il
TS 0.505273] 0.000008 0.0021 6,10 Nl
Cl GWO | 0.511994/ 0.000006 0.0033 Nl 2-
E3 Nil" | 2- | 0.512000| 0.06530 48
48 GA 0.511994| 0.000006 0.0033 Nil 2-
48
TS 0.511994] 0.000006 0.0033 Nil[ - 2-
48
GWO 0.502764] 0.000004 0.0027 1,79  4j0
E4 1,7,9| 4,10 | 0.502760| 0.04454 GA 0.502764] 0.000004 0.0027 1,79 4o
T2 0.502799| 0.000039 0.0483 1,710 4|9
GWO 0.300939] 0.000001 0.0004 Nill Nil
E5 NilT | Nil™ | 0.300940| 0.01199 GA 0.300939| 0.000001 0.0004 Nil| Nil
TS 0.300939] 0.00000 0.0004 Nil] Nil™
GWO 0.299877] 0.000008 0.0002 2,47  NJI
E6 2,4,7| Nil' | 0.299880 0.01182 GA 0.299877| 0.000003 0.0002 2,47 i
TS 0.299877] 0.000008 0.0002 2,47 NJI
C2 GWO | 0.346421] 0.000001 0.0006 Nill 1,35
E7 Nil" | 1,3,5| 0.346420| 0.04114 GA 0.346421| 0.000001 0.0006 Nil| 1,3,5
TS 0.346421] 0.00000L 0.0006 Nill 1,3,5
GWO? | 0.298971] 0.000131 0.1951 1,4]9 6
E8 49 | 6-7 | 0.298840| 0.01151 GA® 0.298892| 0.00005% 0.0127 4.4 1)6
TS 0.298838] 0.00000p 0.0011 4.9 617
GWO 0.187563] 0.000008 0.0018 Nill Nil™
E9 Nil™ | Nil" | 0.187560| 0.03647 GA 0.187563| 0.000003 0.0018 Nil| NilT
TS 0.187563] 0.000003 0.0018 Nill Nil™
GWO 0.186784] 0.000004 0.0026 1,819 Nl
E10 1,8,9| Nil" | 0.186780| 0.03645 GA 0.186784| 0.000004 0.0026 1,8/9 il
TS 0.186784] 0.000004 0.0026 1,819 Nl
C3 GWO? | 0.184293| 0.000001 0.2794 Nil| 2,7
E1l Nil" | 3,7 | 0.184294| 0.00929 GA® 0.184092| 0.00020% 0.0752 2 7
T 0.184452| 0.000158 0.3661 3 7
GWO 0.211972] 0.00001B 0.0054 3 6-8
E12 3 | 6-8 | 0.21200| 0.06366 GA 0.211972] 0.000018 0.0054 3 5-8
T2 0.211033| 0.000967 0.0683 Nil 2,6-
8
GWO 0.298065| 0.000005 0.0039 Nil] Nil™
E13 NilT | NilT | 0.298060] 0.2820 GA 0.298065| 0.00000% 0.0039 Nil] Nil™
TS 0.298065 0.000005 0.0039 Nil] Nil™
GWO 0.459321] 0.00000P 0.0062 489 ™NjI
El4 4,8,9| Nil" | 0.459330| 0.2136 GA 0.459321] 0.000009 0.0062 48[9  Nil
TS 0.459321] 0.00000p 0.0062 489 NJI
C4 7- GWO | 0.460978 0.000002 0.0008 Nl 7-
E15 Nil" | 10" | 0.460980| 0.2342 10
GA 0.460978| 0.000002 0.0008 Nil 7-
10
TS 0.460978] 0.00000p 0.0008 il 7-
10
GWO 0.295912] 0.00001p 0.0055 2,6 [
E16 2,6 8 | 0.295900| 0.17754 GA 0.295912| 0.00001% 0.0055 2,6
TS 0.295912] 0.00001p 0.0055 2,6 §

TNil represents no occurrences of those fal8€ fault among these modules in betw&atirong fault detection
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I-V Characteristics

P-V Characteristics
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Fig. 4.5¢(a). Condition: C1, Experiment: E1, E 2, E 3, E 4.
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Fig. 4.5¢(d). Condition: C4, Experiment: E 13, E 14, E 15, E 16.

Fig. 4.56.P-V and I-V curves of the experimental test system
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Here, in E1, E5, E9 and E13 no fault has been fdrimeE2, E6, E10, and E14, there are
only OC faults and in E3, E7, E11 and E15, theeeanly SC faults. Experiments E4, ES8,
E12 and E16 have a combination of both OC and 8[&sfa

Power-voltage (P-V) and current-voltage (I-V) cleaeaistics for all of the experimental
conditions are shown in Fig. 4.56. Here, all blaantinuous curves represent the character
of a healthy PV string (no fault). Whereas, greew aed lines show P-V and |-V
characteristics of the PV string with only OC amilyoSC faults, respectively. Blue lines
represent both OC and SC faults together.

Motivation to perform the tests for healthy PV msiyiis to confirm the capability of the
proposed methodology to distinguish between faattg healthy PV string in non-uniform
irradiance. It has been noted in Table 4.49, thatgroposed methodology qualifies for all
these no-fault cases.

In E4, £, 7" and 9" modules were open circuited, antl, 40" modules were short
circuited. GWO and GA detect the fault correctlyt B'S detects®] 7" and 18' module as
open circuited, and 4th and 9th modules as shauited. Similarly, in case of E§, GWO and
GA fail to detect the exact fault, but TS detebtiatt Again in E12, GWO and GA is able to
detect faults correctly, but TS fails. In E11,thk techniqgues GWO, GA and TS fail to detect
fault correctly. In all other experiments, excepede four out of sixteen, all the three
techniques are successful. It has been noted, ablis to distinguish between faulty and
healthy conditions of a PV string under non-unifarmdiance with some moderately shaded
and highly shaded PV modules.

Significantly, it has also been noted that, intlal cases where the optimizers have failed
to detect faults, low fitness values have beeneaeu, but the optimality conditions for
respective cases have not been fulfilled. In otharcessful cases, low fithess values have
been achieved as well as the respective optimaldpditions have been satisfied.
Mathematically, this heuristic based fault diagedschnique is a minimization problem with
minimum possible value of zero. Though, the optis@ltions corresponding to the actual
fault combinations are the unique solution to tlhleppsed model, there are small gaps
between the measured string current and the cédcufault current. In these cases, it may be
counted as a success achieving a tiny number tgnovwards zero (sub-optimal point), if the
fault combination causing the result matches eyasilh the actual occurred faults. Hence,
to validate the effectiveness of the obtained tesabme facts have to be taken account. The
test system is equipped with small 10 W moduleg génerated current is small. There are

limitations in accurate measurement of this physst@ang current. Thus, it can be assumed
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that, if the optimizer reaches a sub-optimal pdmi;, satisfies the optimality condition, the
optimizer has performed successfully arresting dhual fault combination and the sub-
optimality is caused by the limitations of sensasiployed in physical parameter
measurements. On the other hand, if the optimeaches a sub-optimal point, but does not
satisfy the optimality condition, it is a failuref ehe optimizer and the detected fault
combination is wrong. In those cases, the optimimzay be successful, if the iteration count
is increased further than that has been set ferféhilt diagnosis method. But, it may not be
feasible because it will consume large computatitmee, which is not suitable for real time
fault detection scheme.

Analyzing the obtained results for different optzeris, it may be concluded that all these
optimizers as solver are suitable in most of treesaAs discussed in the introduction, all the
existing single fault diagnosis method alone ishlm&o completely diagnose the OC and SC
faults and their locations in the faulty string.n@»of them can detect SC faults only, some
are only for OC faults, some can differentiate lestmwthe faulty or healthy string, some only
find the number of OC and SC faults, and some adn distinguish the OC and SC fault
type and so on. Here, the proposed methodologyesdscto detect and distinguish OC and
SC faults and their locations in the PV stringslalso able to distinctly identify faulty string

and healthy string under non-uniform irradiance.

4.10.3. Conclusion

In this work a new method of fault diagnosis in B{tems following string current has
been presented. Grey Wolf Optimizer as well as @englgorithm and Tabu Search
Algorithm have been used here as a search technidue method has been applied to a
physical PV string consisting of 10 numbers of 120W 36 cell PV modules which detects
faults correctly in most of the cases. Thus theai¥eness of the proposed methodology and
the applicability of meta-heuristic optimizatiorchaiques as a solver have been confirmed.

The proposed method is able to explicitly identifg number and location of short circuit
and open circuit faults in a PV string operating/#&P or whether it is in healthy condition in
non-uniform irradiance regardless of the numbeP@fmodules in a PV string. This fault
detection algorithm follows the string current. 86 number of monitoring parameter needed
is less.

Here, only SC and OC type of faults have been demsd. There are chances of

occurrences of other related faults which can &ffiee PV string characteristics, including
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string current, which can cause a placebo OC anda8ifs. That may lead the proposed
methodology to false detection of OC and SC faults.

Some preventive measures have been taken to mamithe chance to be incurred in
false detection. The PV panels taken here to cactsthe test system were almost free from
other deformities and well calibrated. The simuda®/ system has also been minutely tuned
with the physical test system. These help to catheeéffects on PV string currents caused by
other faults and deformities and detect faults eately in test cases performed in the
laboratory.

Being a calculation based soft computing methods throposed fault detection
methodology is directly applicable to practicalgarscale PV systems. In this work, the PV
panels of the physical test system are only of &@swvSo, the change of string current caused
by OC, SC faults is here in few mA ranges. Theeelanitations in measuring these small
amounts of currents with high accuracy. In this deealed laboratory environment, the
global optimizer may often have a chance of failiresearch the best answer. However, in
practical large PV systems, OC, SC faults caudasga difference in string current. In those
cases, the optimizers may likely to be more effitte find faults.

Considering these studies and analysis, it can tecleded that the proposed

methodology may be employed as a proficient faeléction method for PV systems.
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Chapter 5

Conclusion & Future-scope

In this thesis optimization of power systems by laation and development of soft
computing techniques have been performed. The peysem optimization problems have
been proposed here to be categorized in two segmeainely, Large-scale power system
optimization problems and Micro-scale power systgtimization problems.

In class of Large-scale power system optimizatiovblems, several studies have been
done about optimal strategies and operation plgnfan economic dispatch and economic-
environmental dispatch of single area and multaderge power systems, Wind power
integrated multi area economic-environmental ddpatnd short term hourly basis hydro-
thermal generation scheduling of different powestems considering several technical
constraints. Mathematical modeling in form of olije functions and constraints have been
formulated. A novel energy policy that encouragesppr estimation and maximization of
wind energy generation has been proposed. Applitaloif different heuristic and meta-
heuristic optimization algorithms for different eashave been studied. Comparative studies
of the obtained solutions by different techniquesséh also been done. Soft computing
techniques to employ HTS algorithm for ED proble®Es algorithm for MAED problems,
MODE algorithm for MAEED problems, NSGA Il algorith for WMAED problems and
IRCGA algorithm for short term hydro-thermal schieay problems have been developed
and solved throughout this thesis.

In class of Micro-scale power system optimizatisalpems, several studies have been done
on optimal placement and sizing of Distributed gatien systems in power distribution
networks. Transmission loss minimization along witlitage profile maintenance and have
been focused. Studies with variation of load hagenbdone. These optimization problems
have been successfully solved applying WCA algorit©ptimal integration and operation
of distributed renewable energy recourses focusmgconomic aspect have been studied for
several realistic cases with different demandij@dike a whole township (where overall
power demand prominently varies with the weathar}ypical railway rake maintenance
depot (contains very unique load profile) and aidgibhospital campus. In those cases,
economic power operations increasing the shareméwable energy recourses have been
proposed.Optimal power operation planning in a township haen done applying SSO
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algorithm. For the case of optimal power operaptanning in a rail-way rake maintenance
depot, GSA algorithm has been employed. These igabs showed proficiency.

Active distribution systems have been thoroughdgigned forming mocro-grid and even
nano-grids. Focusing on the control prospect; cetmgnsive electrical modeling and then
mathematical modeling have been done to optimadligh these type of micro/nano scale
power networks. Optimum economic power operation & PV aided battery storage
connected nano-grid for a typical hospital campasehbeen proposed. Robust tracking
controllers for automatic power operation have bdesigned. IRCGA algorithm has been
successfully used to perform these tasks. Focusinghe fault analysis aspect; faults of
photovoltaic system, which takes a large shareemewable energy sector, have been
considered for studying. Detailed mathematical moéflehotovoltaic string along with other
accessories like maximum power point tracking coeveetc, have been constructed. A
novel optimization technique based fault detectsmeme with methodology has been
proposed that can proficiently detect and locatenognd short circuit faults of modules in a
photovoltaic string. Application of GWO algorithna$ been done to validate this proposed
fault detection scheme in this thesis.

There are endless scopes to perform research ierpeyg8tem optimization problems in
near future. Share of renewable energy in globaignsector is gaining drastically. Need of
more optimum unit commitment and generation plagmith complex power networks, with
different renewable energy resources with differeharacteristics, is evident. Optimum
policies on economic bidding of renewable powedpiers in competitive electricity market
ensuring reliable and environment friendly operatis going to be a vital matter of
optimization. There are scopes of optimization amieus power system protection problems
like over frequency error caused by adequacy ofdwgeneration in some countries,
harmonics reduction and power quality improvemehttiee supplied power from the
renewable energy generators associated with nuafljgwer electronic devices, and so on.
A large share of global energy demand is for trartggn sector. In near future almost all
transportation will be done utilizing electricalezgy. That will affect the power demand
scenario of complex power systems. Optimal placeéragrlectric vehicle charging stations
is going to be a crucial power system optimizatwablem. Nano-scale power systems of
smart buildings will need instance operation plagnand optimization. Fault analysis and
minimization of different renewable energy generais tending to be a vital research goal.
Researches on these power system optimizationgrab(along with many others) may be
performed extending the basis of the works in tiesis.
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