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Abstract 
This thesis is oriented toward optimization of power systems by application and development 

of soft computing techniques. Two most primary considerable aspects, when performing 

these tasks, are economic aspect and environmental aspect. In most of the cases, these two 

aspects are mutually contradictory from the view point of mathematical optimization 

problems.  

The scope of technological advancement for power system optimization lies essentially in the 

domains of optimal power generation planning, optimal power operation planning and power 

system restructuring in optimal ways. The power system optimization problems have been 

proposed here to be categorized in two segments, namely, Large-scale power system 

optimization problems and Micro-scale power system optimization problems. 

In class of Large-scale power system optimization problems, several studies have been done 

in this thesis about optimal strategies and operation planning for economic dispatch and 

economic-environmental dispatch of single area and multi area large power systems, Wind 

power integrated multi area economic-environmental dispatch and short term hourly basis 

hydro-thermal generation scheduling of different power systems considering several technical 

constraints. Mathematical modeling in form of objective functions and constraints have been 

formulated. A novel energy policy that encourages proper estimation and maximization of 

wind energy generation has been proposed. Applicability of different heuristic and meta-

heuristic optimization algorithms like, Heat Transfer Search, Artificial Immune system, Multi 

Objective Differential Evolution, Non-dominated Sorting Genetic Algorithm II, Improved 

Real Coded Genetic Algorithm etc. for different cases have been studied. Comparative 

studies of the obtained solutions by different techniques have also been done. 

In class of Micro-scale power system optimization problems, several studies have been done 

in this thesis on optimal placement and sizing of Distributed generation systems in power 

distribution networks. Transmission loss minimization along with voltage profile 

maintenance and have been focused. Studies with variation of load have been done. Optimal 

integration and operation of distributed renewable energy recourses focusing on economic 

aspect have been studied for several realistic cases with different  demand profile like a 

whole township, a typical railway rake maintenance depot and a typical hospital campus. In 

those cases, economic power operation increasing the share of renewable energy recourses 

have been proposed. Active distribution systems have been thoroughly designed forming 



 

IV 
 

mocro-grid and  nano-grids. Comprehensive electrical modeling and then mathematical 

modeling have been done to optimally design these type of micro/nano scale power networks. 

Optimum economic power operation for a PV aided battery storage connected nano-grid for a 

typical hospital campus have been proposed. Robust tracking controllers for automatic power 

operation have been designed in this thesis. Focusing on the fault analysis aspect; faults of 

photovoltaic system, which takes a large share in renewable energy sector, have been 

considered for studying. Detailed mathematical model of photovoltaic string along with other 

accessories like maximum power point tracking converter etc, have been constructed. A 

novel optimization technique based fault detection scheme with methodology has been 

proposed in this thesis, that can proficiently detect and locate open and short circuit faults of 

modules in a photovoltaic string. Different optimizers like, Water Cycle Algorithm, Social 

Spider Optimization, Gravitational Search Algorithm, Improved Real Coded Genetic 

Algorithm Grey Wolf Optimization etc. have been applied to these mathematically 

formulated optimization problems. 

  



 

V 
 

 List of Figures 
 

Figure No. Title Page No. 

1.1 Outlining of power system optimization 3 

2.1 IEEE 33 bus radial distribution system 41 

2.2 Studied system for case 1 of hybrid DER 43 

2.3 Studied system for case 2 of hybrid DER 44 

2.4 Satellite view of the railway rake up-keeping depot 48 

2.5 Single line diagram of the proposed protection system 49 

2.6 Schematic of the electrical power network in the hospital 56 

2.7 Electrical model of the PV inverter system 56 

2.8 Electrical model of the BESS 57 

2.9 Comprehensive schematic of the nano-grid 58 

2.10 Equivalent Circuit of PV Cell 59 

2.11 Connection Scheme of PV string 60 

2.12 Block Diagram of the proposed fault diagnosis scheme 66 

2.13 Computational flowchart of the fault diagnosis methodology 67 

3.1 Computational flowchart of the HTS algorithm 73 

3.2 Computational flowchart of the AIS algorithm 76 

3.3 Flowchart of Multi-objective Differential Evolution 81 

3.4 Flowchart of the improved real coded genetic algorithm 89 



 

VI 
 

3.5 Computing steps for the social spider optimization 97 

3.6 Computing execution flow of the IRCGA 103 

4.1 Convergence characteristic for Test System 1 110 

4.2 Convergence characteristic for Test System 2 112 

4.3 Convergence characteristic for Test System 3 113 

4.4 Cost convergence characteristic of test system 1 115 

4.5 Cost convergence characteristic of test system 2 119 

4.6 Cost convergence characteristic of test system 3 122 

4.7 Power-cost-emission characteristics for Area 1 123 

4.8 Power-cost-emission characteristics for Area 2 124 

4.9 Power-cost-emission characteristics for Area 3 124 

4.10 Power-cost-emission characteristics for Area 4 124 

4.11 Cost convergence 125 

4.12 Emission convergence 125 

4.13 Pareto-optimal front as per the MODE and the SPEA II (with 

respect to the final generation) 

126 

4.14 Representation of 4 area test system 130 

4.14.1 Cost characteristics of TUs of area 1 133 

4.14.2 Cost characteristics of TUs of area 2 133 

4.14.3 Cost characteristics of TUs of area 3 133 

4.14.4 Cost characteristics of TUs of area 4 133 



 

VII 
 

4.15.1 Emission characteristics of TUs of area 1 133 

4.15.2 Emission characteristics of TUs of area 2 133 

4.15.3 Emission characteristics of TUs of area 3 133 

4.15.4 Emission characteristics of TUs of area 4 133 

4.16 Area-wise Weibull probability density curves 134 

4.17 Cost characteristics of WUs 134 

4.18 Cost convergence characteristics 134 

4.19 Emission convergence characteristics 135 

4.20 Cost-emission Pareto-front for NSGA II, SPEA II and MODE 135 

4.21 Reservoir storage volume for test system-1 incorporating head 

mobility 

140 

4.22 Hourly optimal hydro discharge of test system-1 141 

4.23 Hourly optimal hydrothermal generation (MW) of test system-1 142 

4.24 Cost convergence curve for test system-1 with head mobility 143 

4.25 Reservoir storage volume for test system-2 incorporating head 

mobility 

144 

4.26 Hourly optimal hydro discharge for test system-2 145 

4.27 Hourly optimal hydrothermal generation (MW) for test system-2 146 

4.28 Cost convergence curves for test system-2 incorporating head 

mobility 

147 

4.29 Reservoir storage volume for test system-3 incorporating head 

mobility 

148 



 

VIII 
 

4.30 Hourly optimal hydro discharge for test system-3 149 

4.31 Hourly optimal hydrothermal generation (MW) for test system-3 150 

4.32 Cost convergence curves for test system-3 incorporating head 

mobility 

151 

4.33 Reservoir storage volume for test system-4 incorporating head 

mobility 

152 

4.34 Hourly optimal hydro discharge of test system-4 152 

4.35 Hourly optimal hydrothermal generation (MW) for test system-4 155 

4.36 Cost convergence curves for test system-4 incorporating head 

mobility 

155 

4.37 Variation of voltage angle with bus number at every load change 160 

4.38 Variation of voltage magnitude with bus number at every load 

change 

160 

4.39 Variation of power losses at different loading levels 161 

4.40 Power demands of micro-grid on a particular day during summer 

and winter seasons 

162 

4.41 Optimal operation and corresponding load demand for case 1 of 

hybrid DER 

164 

4.42 Convergence comparison curves of cost for case 1 of hybrid DER 164 

4.43 Power demand 165 

4.44 Convergence curve 168 

4.45 Optimal Power Operation 169 

4.46 Optimal Power Operation 169 



 

IX 
 

4.47 24 hours power demand of the hospital campus 171 

4.48 24 hours optimal power operation 172 

4.49a Closed loop frequency response of the PV system 173 

4.49b Closed loop frequency response of the BES system 174 

4.50 Hardware-in-Loop (HiL) scheme 174 

4.51 PV power 175 

4.52 BESS power 175 

4.53(a) BESS terminal voltage 176 

4.53(b) BESS current 176 

4.54 PV string sub-system 178 

4.55 MPPT controller and converter Sub-system 178 

4.56(a) Condition: C1, Experiment: E 1, E 2, E 3, E 4.  182 

4.56(b) Condition: C2, Experiment: E 5, E 6, E 7, E 8.  182 

4.56(c) Condition: C3, Experiment: E 9, E 10, E 11, E 12.  182 

4.56(d) Condition: C4, Experiment: E 13, E 14, E 15, E 16.  182 

    

        



 

X 
 

List of Tables 

Table No. Title Page No. 

2.1 Realization of faults by switching combinations 63 

4.1 
Unit generation (MW) and power loss (MW) for Test System 1 109 

4.2 Comparison of performance for Test System 1 109 

4.3 Unit generation (MW) for Test System 2 111 

4.4 Comparison of performance for Test System 2 111 

4.5 Unit Generation (MW) for Test System 3 112 

4.6 Comparison of performance for Test System 3 113 

4.7 Simulation results for test system 1 115 

4.8 Simulation results for test system 2 118 

4.9 Simulation results for test system 3 121 

4.10 Simulation solutions corresponding to the system under 

consideration 

126 

4.11 Data of TUs (p.u.) 131 

4.12 Data of WUs (p.u.) 132 

4.13 Area-wise wind parameters 132 

4.14 Tie line capacities (p.u.) 132 

4.15 Dispatch results 136 

4.16 Comparative results for economic dispatch and emission dispatch 137 

4.17 Comparative results for trade-off solutions 138 

4.18 24 hours water discharge (×104 m3) for test system-1 incorporating 140 



 

XI 
 

head mobility 

4.19 

 

Optimal hydrothermal power generation (MW) schedule for test 

system-1 incorporating head mobility 

142 

4.20 

 

Comparative study of different techniques for test system-1 

incorporating head mobility 

143 

4.21 

 

Water discharge (×104 m3) in 24 hours for test system-2 

incorporating head mobility 

145 

4.22 

 

Optimal hydrothermal power generation (MW) scheduling for test 

system-2 incorporating head mobility 

146 

4.23 

 

Comparative study of different techniques for test system-2 

incorporating head mobility 

147 

4.24 

 

Water discharge (×104 m3) in 24 hours for test system-3 

incorporating head mobility 

149 

4.25 

 

Optimal hydrothermal power generation (MW) scheduling for test 

system-3 incorporating head mobility 

150 

4.26 

 

Comparative study of different techniques for test system-3 

incorporating head mobility 

151 

4.27 

 

Water discharge (×104 m3) in 24 hours for test system-4 

incorporating head mobility 

153 

4.28 

 

Optimal hydrothermal power generation (MW) schedule for test 

system-4 incorporating head mobility 

154 

4.29 

 

Comparative study of different techniques for test system-4 

incorporating head mobility 

156 



 

XII 
 

4.30 Power loss without DG 157 

4.31 Power loss with DG 158 

4.32 Optimal allocation & sizing of DG as obtained from WCA 159 

4.33 Optimal Size, Location & Losses 159 

4.34 Initial cost of DERs 162 

4.35 Operating cost of DERs 162 

4.36 Cost and lifetime of micro-grid equipments 163 

4.37 Installable capacity of DERs 163 

4.38 Equated annual cost of each hybrid DER 

 

163 

4.39 Cost of DERs 166 

4.40 Details of micro-grid cost 166 

4.41 Tariff for DERs 166 

4.42 Energy Tariff 166 

4.43 Obtained results 167 

4.44 Running costs and installed capacities 171 

4.45 Energy tariff of the utility grid 171 

4.46 Annual operating cost 172 

4.47 Electrical characteristics of test modules 179 

4.48 Irradiance levels and corresponding temperatures 180 

4.49 Fault diagnosis results 181 

    

        



 

XIII 
 

Table of Contents 

Acknowledgement I  

Preface II  

Abstract III  

List of Figures V 

List of Tables X 

S. No. Title Page No. 

Chapter 1 

Introduction  

1.1 Large-scale power system optimization 3 

1.1.1 
Economic dispatch problems 3 

1.1.2 Multi area economic dispatch problems 4 

1.1.3 Multi area economic environmental dispatch problems 6 

1.1.4 Wind integrated multi area economic environmental dispatch 

problems   

7 

1.1.5 Hydro-thermal scheduling problems 9 

1.2 Micro-scale power system optimization 12 

1.2.1 Optimal DG allocation 12 

1.2.2 Optimal power operation integrating distributed renewable energy 

resources 

14 

1.2.2.1 Optimal power operation planning in a township 14 

1.2.2.2 Optimal power operation planning in a rail-way rack maintenance 

depot  

15 

1.2.3 Optimal power controller design of active distribution network 17 

1.2.4 Optimization based fault detection scheme in photovoltaic system 19 



 

XIV 
 

Chapter 2 

Problem formulation 

2.1 Economic dispatch problems 24 

2.1.1 
Economic dispatch with prohibited operating zones 24 

2.1.2 Constraints 24 

2.1.2.1 Load balance constraint 24 

2.1.2.2 Generating capacity limit constraint 25 

2.1.2.3 Prohibited operating zone 25 

2.1.3 Economic dispatch with valve-point effect  25 

2.1.4 Economic dispatch with valve-point effect and multiple fuels 26 

2.2 Multi area economic dispatch problems 26 

2.2.1 MAED with prohibited operating zone and line loss consideration  26 

2.2.1.1 Real power balance constraint 27 

2.2.1.2 Tie-line power constraint 27 

2.2.1.3 Real power generation capacity constraint 27 

2.2.1.4 Prohibited operating zone 27 

2.2.2 MAED with valve point loading 28 

2.2.3 MAED with valve point loading, multiple fuel and transmission 

loss 

28 

2.2.4 Determination of generation level of slack generator 29 

2.3 Multi area economic environmental dispatch problems 29 

2.3.1 Cost calculation 30 

2.3.2 Emission calculation 30 

2.3.3 Constraints 31 

2.3.3.1 Power balance 31 

2.3.3.2 Tie-line capability 31 

2.3.3.3 Power generating capacity 31 

2.4 Wind integrated multi area economic environmental dispatch 

problems   

31 

2.4.1 Generation cost 32 

2.4.2 Emission level 34 



 

XV 
 

2.4.3 Constraints 34 

2.4.3.1 Real power production constraint 34 

2.4.3.2 Prohibited operating zone constraint 34 

2.4.3.3 Real time production demand balance constraint   35 

2.4.3.4 Spinning reserve constraint 35 

2.4.3.5 Tie line capacity constraint 35 

2.4.3.6 Wind power uncertainty constraint 36 

2.5 Hydro-thermal generation scheduling 37 

2.5.1 Objective task 37 

2.5.2 Power balance constraint 38 

2.5.3 Ramp rate limiting values constraint 38 

2.5.4 Reservoir flow balance constraint 39 

2.5.5 Power generation constraint 39 

2.5.6 Water discharge rate constraint 40 

2.5.7 Reservoir storage capacity and hydro discharge constraints 40 

2.5.7.1 Reservoir storage capacity constraint 40 

2.5.7.2 Hydro discharge constraint 40 

2.6 Optimal DG allocation problem 41 

2.7 Optimal power operation planning in a township 43 

2.7.1 Objective Function 44 

2.7.2 Constraints 46 

2.8 Optimal power operation planning in a rail-way rack maintenance 

depot 

47 

2.8.1 Objective Functions 50 

2.8.2 Constraints 52 

2.9 Optimal power controller design for active distribution network 53 

2.9.1 Objective Function 53 

2.9.2 Constraints 55 

2.9.3 System modelling 55 

2.10 Optimization based fault detection scheme in photovoltaic system 59 

2.10.1 PV system characteristics 59 

2.10.2 Effect of non-uniform irradiance 60 

2.10.3 Formulation of OC and SC faults in PV string 60 



 

XVI 
 

2.10.4 Optimality condition 64 

2.10.5 

 

Fault diagnosis scheme using optimizer 65 

Chapter 3 

Solution techniques 

3.1 Mathematical optimization 69 

3.1.1 
Expressional stating 69 

3.1.2 Solution methodologies for power system optimization problems  70 

3.2 Heat transfer search algorithm for economic dispatch problems 70 

3.2.1 Conduction Phase 70 

3.2.2 Convection Phase 71 

3.2.3 Radiation Phase 72 

3.3 Artificial immune system for MAED problem 74 

3.3.1 Immune system 74 

3.3.2 Artificial immune system 75 

3.3.3 Implementation of AIS algorithm 76 

3.4 Multi objective differential evolution (MODE) algorithm for 

MAEED problems  

78 

3.4.1 Principle of Multi-objective Optimization 78 

3.4.2 Multi-objective Differential Evolution 79 

3.4.3 Application of MODE in the problem 79 

3.5 Non-dominated sorting genetic algorithm II (NSGA II) for 

WMAEED problems 

81 

3.5.1 Dominance determination by fuzzy selection 82 

3.5.2 Calculation steps of NSGA II 83 

3.6 Improved real coded genetic algorithm (IRCGA) for short term 

hydro-thermal scheduling 

85 

3.6.1 Population initialization 86 

3.6.2 Parent population selection 86 

3.6.3 Simulated binary crossover (SBC) 86 

3.6.4 Multinomial mutation operation 87 



 

XVII 
 

3.6.5 Selection between a parent and an offspring 88 

3.7 Water cycle algorithm (WCA) for optimal DG allocation 90 

3.7.1 Water cycle algorithm 90 

3.7.2 Computational steps 91 

3.8 Social spider optimization (SSO) for optimal power operation 

planning in a township 

92 

3.8.1 Computational procedure applying SSO 92 

3.9 Gravitational search algorithm (GSA) for optimal power operation 

planning in a rail-way rack maintenance depot  

98 

3.9.1 Implementation of GSA 98 

3.9.2 Details of calculations in GSA 98 

3.10 Improved real coded genetic algorithm (IRCGA) for optimal 

power operation of PV aided nano-grid 

100 

3.10.1 Computational details 100 

3.11 Grey wolf optimization for fault detection scheme in photovoltaic 

system 

104 

3.11.1 Grey Wolf Optimizer 104 

3.11.2 

 

Application of GWO in the fault diagnosis scheme 105 

Chapter 4 

Results and discussion 

4.1 
Numerical Study on ED problems 

108 

4.1.1 Solution Approach 108 

4.1.2 Parameter Selection 108 

4.1.3 Test System 1 109 

4.1.4 Test System 2 110 

4.1.5 Test System 3 112 

4.1.6 Analysis 113 

4.1.7 Conclusion 114 

4.2 Numerical Study on MAED problems 114 

4.2.1 Test system 1 114 



 

XVIII 
 

4.2.2 Test system 2 117 

4.2.3 Test system 3 120 

4.2.4 Discussion 122 

4.2.5 Conclusion 123 

4.3 Numerical Study on MAEED problems 123 

4.3.1 Simulation results 123 

4.3.2 Conclusion 127 

4.4 Numerical Study on WMAEED problems 130 

4.4.1 Simulation results 130 

4.4.2 Conclusion 138 

4.5 Numerical Study on short term hydro-thermal scheduling 139 

4.5.1 Case I 139 

4.5.2 Case II 143 

4.5.3 Case III 147 

4.5.4 Case IV 151 

4.5.5 Conclusion 157 

4.6 Numerical Study on optimal DG allocation problem 157 

4.7 Numerical Study on Optimal power operation planning in a 

township 

161 

4.8 Numerical Study on Optimal power operation planning in a rail-

way rake maintenance depot 

165 

4.8.1 Input Parameters 165 

4.8.2 Results and Analysis 167 

4.8.3 Conclusion 170 

4.9 Numerical Study on optimal power operation of PV aided nano-

grid in a hospital campus 

170 

4.9.1 Simulation and results 170 

4.9.2 Conclusion 177 

4.10 Experimentation and validation of the proposed optimization 

based fault detection scheme in photovoltaic system 

177 

4.10.1 Experimental setup 177 

4.10.2 Results and discussions 179 

4.10.3 Conclusion 184 



 

XIX 
 

Chapter 5 

Conclusion & Future-scope 

References 
 

190 

    



 

1 
 

Chapter 1 

 Introduction 

============================ 
Optimization is an everywhere-needed technique in progressive human civilization. 

Optimization has been applied, though in very crude way, since the very beginning of our 

society to make things as perfect or effective as possible or to find the trade off among many 

possible options. In modern science this optimization techniques has been given different 

complex mathematical forms. In late 1940’s, George Dantzig firstly used mathematical 

optimization technique for United States air force application. It can be easily realized that, 

the more we know about something, the more we see where optimization can be applied. For 

mathematical optimization, one or more objective functions need to be formed. The goal of 

the mathematical optimization techniques is to find values of the variables that minimize or 

maximize the objective function while satisfying the constraints. These mathematical 

techniques have to be robust, providing Good performance for a wide class of problems. 

Those have to be efficient, not having too much computational load. At the same time those 

have to be accurate in identifying errors. 

This thesis is oriented toward optimization of power systems by application and 

development of soft computing techniques. A civilization cannot be expected without 

consumption of energy. Energy demand is continuously increasing with the development of 

our society. Electricity, being a compact and efficient form of energy, is a prime mover of 

modern civilization. To manage electricity, power systems with different social, economic, 

environmental and technological strategies have been formed. Power system optimization has 

been considered as a crucial socio techno-economical challenge since the very beginning. 

Power system optimization can be done through some technological advancement. Two 

most primary considerable aspects, when performing these tasks, are economic aspect and 

environmental aspect. The technologies should be economically faceable and simultaneously 
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environment friendly. In most of the cases, these two aspects are mutually contradictory from 

the view point of mathematical optimization problems.  

The scope of technological advancement for power system optimization lies mainly in the 

domains of optimal power generation planning, optimal power operation planning and power 

system restructuring in optimal ways. The power system optimization problems have 

proposed here to be categorized in two segments, namely, Large-scale power system 

optimization problems and Micro-scale power system optimization problems. 

In class of Large-scale power system optimization problems, several studies have been 

done about optimal strategies and operation planning for economic dispatch and economic-

environmental dispatch of single area and multi area large power systems, Wind power 

integrated multi area economic-environmental dispatch and short term hourly basis hydro-

thermal generation scheduling of different power systems considering several technical 

constraints. Mathematical modeling in form of objective functions and constraints have been 

formulated. A novel energy policy that encourages proper estimation and maximization of 

wind energy generation has been proposed. Applicability of different heuristic and meta-

heuristic optimization algorithms for different cases have been studied. Comparative studies 

of the obtained solutions by different techniques have also been done. 

In class of Micro-scale power system optimization problems, several studies have been 

done on optimal placement and sizing of Distributed generation systems in power distribution 

networks. Transmission loss minimization along with voltage profile maintenance and have 

been focused. Studies with variation of load have been done. Optimal integration and 

operation of distributed renewable energy recourses focusing on economic aspect have been 

studied for several realistic cases with different  demand profile like a whole township (where 

overall power demand prominently varies with the weather), a typical railway rake 

maintenance depot (contains very unique load profile) and a typical hospital campus. In those 

cases, economic power operation increasing the share of renewable energy recourses have 

been proposed. To fulfill these purposes, active distribution systems have been thoroughly 

designed forming mocro-grid and even nano-grids.  

Two important optimization aspects of active distributed systems for being triumphant, 

are smooth automatic controlled operations by designing optimal controllers of power 

electronic devises, and power network reliability by fault analysis of renewable power 

sources. Focusing on the control prospect; comprehensive electrical modeling and then 

mathematical modeling have been done to optimally design these type of micro/nano scale 

power networks. Optimum economic power operation for a PV aided battery storage 
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connected nano-grid for a typical hospital campus have been proposed. Robust tracking 

controllers for automatic power operation have been designed. Focusing on the fault analysis 

aspect; faults of photovoltaic system, which takes a large share in renewable energy sector, 

have been considered for studying. Detailed mathematical model of photovoltaic string along 

with other accessories like maximum power point tracking converter etc, have been 

constructed. A novel optimization technique based fault detection scheme with methodology 

has been proposed that can proficiently detect and locate open and short circuit faults of 

modules in a photovoltaic string. 

The outlining of the power system optimization problems, which have been developed to 

solve by application of soft computing techniques throughout this thesis, has been depicted in 

Figure 1.1. 

Economic Aspect

Technological
Advancement Environmental Aspect

POWER SYSTEM 
OPTIMIZATION

Optimal power generation | Optimal power operation | P.S. restructuring
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Figure 1.1. Outlining of power system optimization. 

1.1 Large-scale power system optimization 

1.1.1. Economic dispatch problems 

Economic Dispatch (ED) is a crucial maneuver for power production through all online 

generators with least possible cost fulfilling a assortment of technical constraints. The valve-

point effect [1] has been modeled mathematically by  summing up the sinusoidal function and 

quadratic function. Shaft bearing shuddering, caused by the opening of steam entrance valve 

or machine burden, creates prohibited operating situation in a few sections of generation 
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region of a generator, commonly known as prohibited operating zone [2]. The lowest cost is 

attained in case of circumven this operating zone. 

The traditional practice cannot solve these type of ED problems. Dynamic programming 

can solve these problems but it undergoes to the dimensionality quandary and restricted 

optimality. Meta-heuristic algorithms substantiate the potential for solving these class of ED 

problems. Improved tabu search (ITS) [3], genetic algorithm (GA) [1, 2, 4] evolutionary 

strategy optimization (ESO) [5], evolutionary programming (EA) [6, 7], particle swarm 

optimization (PSO) [8–12], biogeography-based optimization (BBO) [13], continuous quick 

group search optimizer (CQGSO) [14], differential evolution (DE) [15, 16], Distributed 

auction optimization algorithm (DAOA) [17], cuckoo search algorithm with interactive 

learning (CSAIL) [18] etc. have been on hand to solve complicated ED problems. Though 

these methods cannot always realize the global optima, they often achieve close up to the 

global optima. 

Heat Transfer Search (HTS) algorithm, based on the proclamation of thermodynamics 

and heat transfer, emulates the thermal balance activities of any system. The penetrating route 

of HTS ponders over three stages, specifically ‘conduction phase’, ‘convection phase’ and 

‘radiation phase’ [19].  

In this thesis, the suggested HTS algorithm has been engaged to work out three complex 

economic dispatch problems. Test results obtained from HTS algorithm have been 

adjudicatored against to that other evolutionary techniques solving economic dispatch 

problems present in literature. It has been noted that the proposed  Heat Transfer Search 

algorithm produces superior solution. 

1.1.2. Multi area economic dispatch problems 

Economic dispatch (ED) allots the load demand amongst the dedicated generators most 

economically while fulfilling the operational constraints in a single area. Usually, the 

generators are alienated into a number of generation areas interrelated by tie lines. Multi-area 

economic dispatch (MAED) is an expansion of ED. MAED settles on the generation level 

and exchange power among areas such that overall fuel cost in all areas is minimized while 

fulfilling technical constraints relsated to power balance, generating limits and tie line 

competence [20]. 

The ED problem is often resolved without taking into account for transmission 

constraints. Nevertheless, some researchers have taken transmission ability constraints into 
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consideration. Shoults et al. [21] solved ED problem considering power import and export 

constraints between areas. This work endows with a entire formulation of multi-area 

generation forecast, and a structure for multi-area studies. Romano et al. [22] opened the 

Dantzig–Wolfe decomposition rule to the constrained ED of multi-area systems. Doty and 

McEntire [23] resolved a MAED problem by using spatial dynamic programming and the 

outcome obtained was overall most favorable. Linear programming to transmission 

constrained delivery cost examination was proposed in Ref. [24]. MAED with area control 

error was solved Helmick et al. [25]. Heuristic multi-area unit commitment with ED was 

proposed by Ouyang et al. [26]. Wang and Shahidehpour [27] proposed a decomposition 

based approach for resolving multi-area generation setting up with tie line constraints using 

specialist systems. Network flow models to resolve the MAED with transmission constraints 

have been projected by Streiffert [28]. Calculation of short range margin cost-based prices for 

MAED problems has been presented by Wernerus and Soder [29], solving  MAED problem 

via Newton–Raphson’s method. Yalcinoz and Short [30] solved MAED problems by means 

of Hopfield neural network approach. Jayabarathi et al. [31] resolved MAED problems 

considering tie line flow constraints involving evolutionary programming. The direct search 

scheme for solving ED problem considering transmission line capacity constraints was 

offered in ref. [32]. 

Artificial immune system (AIS) [33-38] has appeared in the 1990s as a new area in 

computational intelligence. AIS is stirred by immunology and principles of immunity 

observed in life. It is now attention of lots of researchers and has been productively used in 

power system optimization problems [39-40]. 

In this thesis, AIS algorithm is developed for solving the MAED problem. The proposed 

come up to the clonal selection attitude and gears adaptive cloning, manic mutation, aging 

operator and contest selection. 

The projected AIS algorithm has been emploied to solve MAED problem. Here, three 

types of MAED problems have been chosen. These are (A) multi-area economic dispatch 

with quadratic cost function prohibited operating zones and transmission losses, (B) multi-

area economic dispatch with valve point loading and (C) multi-area economic dispatch with 

valve point loading multiple fuel sources and transmission losses. 

The projected AIS technique has been authenticated by emploing it to three diverse test 

systems. The solution wise performance of the proposed AIS algorithm has been weighted 

against differential evolution (DE), evolutionary programming (EP) and real-coded genetic 

algorithm (RCGA). 
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1.1.3. Multi area economic environmental dispatch problems 

The power production through fossil fuels emits Sulfur oxides, Carbon oxides, Nitrogen 

oxides and many others into the atmosphere. These emissions influence humans as well as 

other living beings in our planet. Other effects include vegetation damage, acid rain, less 

visible clarity, global warming etc. The environmental safety issue as well as the clean air act 

amendments, 1990 have bounded the amount of the emissions by a power generating station 

[41]. Therefore, a trade-off is required between generating electricity at the minimum 

possible cost with maintaining the emission level to the minimum. 

Various techniques have been suggested for minimizing the emission level [42]. Some of 

these include post combustion cleaning device usage, using the fuels with less emission 

content, changing old fuel burner devices with new cleaner devices, power dispatching 

keeping in view emission limits etc. Choices other than the final one need investment in the 

form of new devices use and/or changes in the already installed devices involving significant 

monetary requirements. Therefore, they may be convenient for long duration aspect. Due to 

the aforementioned reason, the final choice seems to be convenient for practical 

implementation point of view. 

Goals related to pricing and level of emission, seem to be contradictory. Both are required 

to be taken into consideration at the same time to determine feasible and optimal power 

dispatch. Various optimizing methods [43-53] are available in the literature related to the 

economic environmental power dispatch strategy. These problems deal with a single area 

power network and their related engineering constraints.  

Large realistic power networks are spread over multiple areas connected to each other 

with tie lines. Several researches [21-32] have been conducted to deal with the power 

production strategies considering only economic aspect for multi area power systems. 

Multi area economic environmental dispatch strategy (MAEED) is an extended version of 

the multi area economic dispatch problem. It gives an information about the level of power 

production as well as power exchange between areas in a manner such that total cost of fuel 

and pollution level in each of the area remain optimized simultaneously keeping various 

constraints such as equality between generated power and load demand, generation range and 

capacity consideration of tie line into consideration. 

In recent time, the formulation of various multi objective evolutionary algorithms 

(MOEA) [54-57] took place. Aforementioned techniques are based on population, and 

various pareto-optimal results are obtained by running them just once. Strength pareto 



 

7 
 

evolutionary algorithm II (SPEA II) and multi objective differential evolution (MODE) have 

been used for solving the economic environmental power dispatch problems effectively for 

single area power networks. The presented work on this thesis emphasizes on the use of the 

MODE for the MAEED problem which has been formulated in the form of a nonlinear 

constrained multiple objective optimization task. For demonstrating the suggested 

technique’s competence, a four area test system has been considered. A comparison has been 

made between the results achieved by the MODE and that of SPEA II. 

1.1.4. Wind integrated multi area economic environmental 

dispatch problems 

The MAEED settles on the generation levels and power transactions among areas such 

that cumulative generation cost and emission level get minimized in each of the areas 

maintaining power balance boundings, production limits boundings, boundings related to 

prohibited operating zones (POZ) and tie-line capacity boundings. The solution approaches 

for the MAEED available in the literature are based on different metaheuristic optimization 

algorithms and mathematical solvers. An analytical model possessing dependency on the 

multi objective particle swarm optimization with regional exploring has been developed for 

solving the MAEED task [58, 59]. Other multiple objective approaches such as improved 

differential evolution along with fuzzy selection, universal best artificial bee colony 

algorithmic technique with chaotic optimization have been suggested for solving the MAEED 

task [60, 61].  

Hybridization of gradient search method with improved Jaya algorithm has been 

accomplished for a practical MAEED problem [62]. A Pareto-based teaching–learning 

optimization algorithm has been also proposed [63]. Since, the majority of the power systems 

are still generating power from fossil fuels, which are unsustainable, costly and are the major 

sources of atmospheric pollution, the modern power systems are gradually restructured with 

the strategic integration of renewable energy resources in conventional power systems. 

Amongst these, wind energy is gaining the most acceptances for meeting the rising energy 

demand at low cost without any harmful emissions [64], which significantly influence EED 

problems of power systems integrated with wind energy. But considering the scenario of 

large wind power producing units (WUs), randomness, low inertia characteristics and huge 

forecasting errors corresponding to wind speed and the produced wind power upset the 
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stability as well as security of the overall power system. Hence, intermittent wind power 

needs policies and dispatch tactics to uphold economy with reliability and security.  

Different stochastic search methods and solvers such as, strength pareto evolutionary 

algorithm (SPEA) and simulated annealing-like particle swarm optimization equipped with 

specially encoded/ decoded chromosome's string [65-67], chaotic quantum genetic algorithm 

[68], harmony search algorithm [69] and GAMS BARON [70] solver have been used for 

some EED studies incorporating wind energy without the consideration of stochasticity in 

available wind power.  

Several other EED, employing different stochastic programming, have included some 

modifications to conventional EED models to deal with intermittent wind integrated power 

system. Uncertainty constraints [71] and frequency stability constraint [72] have been 

incorporated in some EED problems to transact with the wind power indefiniteness. The 

entropy concept has been introduced in [73] to balance the uncertainty issue regarding wind 

power. Deterministic uncertainty set [74] and polyhedral uncertainty set [75] have been 

modelled to describe the volatile wind generation. Learning automata [76] has been used as a 

multi-objective optimizer where its strategies are modified according to the learning 

experience about current information of wind speed. 

In latest EED studies, the Weibull probability distribution function (WPDF) [77] has been 

considered as the best fitting probability distribution model for forecasting the empirical wind 

speed distribution [78]. With the assortment of WPDF, different meta-heuristic methods such 

as, pareto based modified teaching-learning algorithm [79], artificial bee colony algorithm 

guided by Gbest [80], gravitational search algorithm [81], bacterial colony chemotaxis [82], 

decomposition based evolutionary algorithm [83], particle swarm optimization [84], honey 

bee mating optimization [85] and nondominated sorting genetic algorithm II (NSGA II) [86] 

have been considered to solve the EED with special consideration to uncertainty due to wind 

integration. 

It is evident from the literature that, so far researches have concentrated on the impacts of 

WUs in either the single area single objective economic or environmental dispatch or bi-

objective EED. In case of wide spread multi-area power system network, uncertainty of wind 

power availability notably differs for different areas. Moreover, for enhanced motivation of 

wind power operators to inject more power to the grid with maximum possible certainty, 

proper area-wise penalty cost formulation is needed. In this scenario, considering the 

inevitability of wind power integrated multi-area power system operation in modern power 
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system restructuring process, optimal wind integrated EED planning for large scale multi-

area power system is a relevant research interest.  

This thesis develops a novel model of multi-area bi-objective economic environmental 

dispatch of wind power integrated system (WMAEED), which would potentially optimize the 

schedules of the committed conventional and WUs with the tie-line power flow limitations 

while simultaneously reduce the operating cost and environmental emission levels 

considering several area-wise uncertainties of available wind power, special penalty costs for 

over and under estimation of committed WUs, dynamicity of the online generating units with 

operational and physical network constraints. 

For resolving the multiple-objective optimization tasks, two usual paths can be followed. 

One merges all the objectives into a distinct amalgamated function by assigning adaptive 

weights to each objective through optimizers according to the prior knowledge. Moreover, 

the optimal result renders no knowledge about the compromise among objectives. The other 

way employs suitable multiple-objective algorithm which generates “Pareto front” solutions 

[87]. 

This WMAEED model formulation has been incorporated in the form of a bounded 

nonlinear multiple-objective optimization task. To validate the proposed approaches, a four 

area wind integrated test power system is considered in this work. Well recognized 

algorithms like nondominated sorting genetic algorithm II (NSGA II) [57] along with 

strength pareto evolutionary algorithm II (SPEA II) [88] have been employed here to 

generate Pareto fronts [89] of suitable compromised solutions for the proposed WMAEED 

model. The obtained results from the numerical experimentations confirm that the wind 

integration to conventionally sourced multi-area power system reduces the overall generation 

cost as well as emission level with the proposed dispatch modeling considering area-wise 

uncertainty and introducing area-wise penalty costs. 

1.1.5. Hydro-thermal scheduling problems 

Hydro electricity, being a cleaner production methodology, is becoming significant in our 

energy based society. Practice of hydro-electric energy generation may effectively reduce the 

environmental degradation caused by conventional thermal, diesel or nuclear power plants. 

On the basis of operating cost, hydro-electricity is truly convenient whereas thermal power 

generation is very expensive. Optimal operation coordinating hydro and thermal generation is 

a relevant engineering problem in the current energy scenario. Hydro and thermal plants can 
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give the optimal solution from cost perspective but it is very difficult to co-ordinate with each 

other. It is a big challenge for the researchers in the field of economic power system 

operations. Hence, the requirement is cost optimization through proficient operation 

planning. The operation planning is classified as small, intermediate and large horizon 

generation scheduling. Small horizon operation scheduling is for one day to one week, 

intermediate scheduling is for one week to one year and large horizon is for one year to 

several years.  

Amongst these, short-term hydrothermal generation scheduling (SHTGS) problems are 

widely trending the now a days. Hydro-thermal generation constraints may comprise of 

generation-load power balance, upper and lower limits on reservoir capacity, water discharge 

rate, water spillage rate, hydraulic continuity restriction and operating capacity limits of 

different hydro and thermal units. The optimal scheduling of hydrothermal power system is 

usually more complex than that for all thermal systems. It is a complex multi-dimensional 

optimization problem with a non-linear highly constrained objective function. The aim of 

SHTGS is to determine the optimal amount of the water release for the hydro and thermal 

generation in the system to meet the load demands over a scheduled horizon of one day. 

Different mathematical optimization algorithms have been implemented for the solution of 

SHTGS problems. Those are gradient search [90, 91], mathematical decomposition [92-94], 

dynamic programming [95-98], and mixed integer type programming [99,100].  

But, these methods have difficulties in handling various constraints and also take more 

time to solve. Hence, these methods are not suitable to address such types of problems. 

Dynamic programming has been frequently used. However, this method has difficulties in 

computational overburden for its large dimensionality when applied in a practical power 

system. Various stochastic search algorithms have been found in literature for hydro-thermal 

scheduling (HTS).Simulated annealing (SA) has been used in to find the global optimal 

solution [101] by Wong et al. But, appropriate setting of the relevant control parameter of the 

SA based algorithm is a difficult task and the speed of the algorithm is quite slow when 

applied to practical sized power system. Evolutionary programming (EP) is one of the oldest 

meta-heuristic optimization technique used to solve many optimization problems [102]. Yang 

et al. [103] and Hota et al. [104] projected EP to solve the HTS problem using Gaussian 

mutation. But it is useful in solving simple problems with fewer constraints.  

Afterward, evolutionary programming and an improved fast EP technique were planned 

by Sinha et al. [102] for HTS. Later, Werner et al. [105] applied evolutionary approach to 

solve SHTGS problems of hydrothermal systems. A fuzzy based evolutionary programming 
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technique was reported for the economic HTS problem [106].Genetic algorithm (GA) is an 

evolutionary method [107, 108], and proposed by Orero et al. to solve HTS problem [109]. 

Kumar et al. offered GA to solve the HTS problem with optimal power flow [110]. Gjorgiev 

et al. planed an efficient multi-objective based GA for solving HTS [111]. A short-term HTS 

based differential evolution (DE) algorithm was introduced by Mandal et al. [112]. But, it is 

very difficult to correctly choose the control parameters of differential evolution. The faster 

convergence of DE results in a highest probability toward a local optimal solution. 

Parameters of DE generally are steady throughout the entire search process but it is difficult 

to properly set control parameters.  

 Particle swarm optimization (PSO), an another robust optimization technique, can 

produce stable convergence characteristics than most of the other stochastic methods [113-

115]. An improved PSO (IPSO) based HTS to solve a multi-reservoir cascaded hydro-electric 

system having restricted discharge zones and a thermal unit with valve point loading have 

been introduced [116]. The simulation results showed its superiority over other techniques. 

Yu et al. used PSO to solve SHTGS problem with an equivalent thermal unit having smooth 

cost functions [117]. Modified adaptive PSO based HTS was introduced by Amjady et al. 

[118]. Mahor et al. presented self-adaptive inertia weight based PSO method to find the 

optimal generation planning for cascaded hydroelectric system [119].  

Clonal selection algorithmic technique has been used in a practical sized power system 

related HTS problems [120]. 

Rao et al. developed teaching learning based optimization (TLBO) technique for HTS 

related power system optimization problem [121,122]. 

Tabu search algorithm technique based HTS for hydrothermal plant was first introduced 

by Bai et al. [123]. Huang et al. first initiated ant colony optimization (ACO) technique to 

solve HTS problems [124]. Adaptive artificial bee colony algorithm was first introduced by 

Liao et al. to solve long time dispatch of cascaded hydropower systems and also compared its 

efficiency with other available techniques [125]. Neural network technique can be used to 

solve HTS problems. But, the neural network-based approach suffers from large 

computational problem. The GA is one of the most promising EP having its origin 

corresponding to the human inbred chromosome operation. The GA is inspired from the 

Darwinian evolution theory “the survival of the fittest”. It engenders the universal or close to 

the universal optimized results corresponding to a minimizing optimization task. For this, it 

creates a number of communities during iterative run. The GA has some advantages such as 
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simple algorithm, able to handle different sorts of functional representations of problems and 

its robustness [126]. 

 In this concise, improved real coded genetic algorithmic technique (IRCGA) has been 

implemented to increase the convergence speed and solution quality. The IRCGA has been 

used to plan a short-spell, hourly basis optimized operative scheduling for the considered 

hydrothermal network. Restricted operating sections have been taken into consideration for 

hydro producer. Different test solutions of the IRCGA have been compared with acquired by 

other EPs. It has been noticed that the implemented IRCGA gives superior results. The test 

results for short term hydro-thermal scheduling are compared with other methods available in 

literature, such as Real coded Genetic algorithm (RCGA) [127-128], Improved first 

evolutionary programming (IFEP), Genetic Algorithm (GA), Modified differential evolution 

(MDE), Improved particle swarm optimization (IPSO) and Teaching learning based 

optimization technique (TLBO). Numerical results show that the projected Improved real 

coded Genetic algorithm (IRCGA) based algorithm can provide quality solutions. 

1.2. Micro-scale power system optimization 

1.2.1. Optimal DG allocation  

Coal and oil based traditional centralized methods have been applied for power 

generation, from very early age. In these schemes, the generated power is transmitted over 

extended distances with huge transmission systems which involves massive amount of 

transmission losses. Besides, fossil fuels originates loads of environmental vulnerability. On 

these grounds, DG is gaining magnitude in haste. In case of DG, the power is generated in the 

vicinity of the load centers. Nonconventional energy resources such as solar photovoltaic 

system, biomass, fuel cell, wind power etc. are being involved to generate power. By that 

ground, DGs may be tagged as reliable, flexible and atmosphere gracious system with 

enhanced power quality [129-130]. Considering the transmission losses, DG is more energy 

efficient than traditional centralized power generating schemes [130]. It initiates 

diversification in energy resources with a reduction of speculation risks [131]. DG can also 

make power available to those distant areas, small localities where traditional fossil fuel fired 

methods of power generation are unable to convey power. 

DGs may be clusterred according to the amount of generated power by them. DGs, which 

can generate up to 5 kW, are known as micro DGs. From 5 kW to 5 MW, are small DGs. 
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From 5 MW to 50 MW, are medium DGs. From 50 MW to 300 MW, are classified as large 

DGs [132]. DGs may also be classified according to the mode they transact with real and 

reactive power [133]. The DGs, which convey just real power, are of Type 1. DGs which 

carry in cooperation real and reactive power are of Type 2 while the DGs which deliver real 

power but take up reactive power come up to the Type 3. DG allocation and sizing have 

elevated considerable notice in modern times. Most of the recommended schemes are 

analytical or meta-heuristic or heuristic in nature. Determination of optimal allocation and 

sizing of DG using loss compassion factor technique was used in [134]. Similarly, methods 

have also been developed invilvong exact loss equation for manifold DG unit assignment in 

order to attain greater loss reduction [135]. Other methods, based on novel power stability 

index [136] and power loss factors [137], have also been employed for DG assignment. Other 

methods, which have been used for DG placement are bee colony algorithm [138], a GA 

induced algorithm [139], improved PSO and Monte Carlo replication [140], modified 

teaching learning optimization algorithm [141]. These works have been done for optimal 

assignment and sizing of DG, lessening of power losses, and voltage profile as well as 

reliability upgrading. In order to reduce system losses addressing uncertainties, a probabilistic 

technique based scheme was anticipated in [142]. 

Usually, a DG is positioned to bring in real power into the system but reactive power is 

significant as well to uphold the voltage at the requisite point. Alteration of reactive power 

results in voltage level shifts that affects the voltage stability. Therefore, reactive power 

reparation is essential. The traditional practice facing this issue  is to place capacitor banks. In 

previous era, synchronous condensers were employed for power factor enhancement. In 

recent situations, static VAR compensator is placed extensively for regulation of voltage, 

power factor and the system stability. Novel Global Harmony Search algorithm (NGHSA) 

has been proposed for optimal allotment of VAR compensators in a power system [143], 

which have also been used for reactive power management [144]. A combined scheme of 

modal analysis, simulated annealing and Tabu search was used in [142] for optimal 

placement of VAR compensator. 

All the above research work to DG or VAR compensator placement has been employed 

separately in power systems. In this thesis, a method of optimal placement and sizing of both 

DG and VAR compensator has been proposed. In this optimization problem, multiple DGs, 

those inject active power in the system at different buses and along with capacitor banks, 

which inject reactive power at different system buses, have been projected to be put in in the 

powr network. This technique is implemented in a standard IEEE 33 bus radial distribution 
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system using water cycle algorithm (WCA), a newly developed optimizer, based on the flow 

of water from rain drop to water stream to river to sea finally [145]. 

1.2.2. Optimal power operation integrating distributed renewable 

energy resources 

With the growing consciousness about the necessity of economic power production 

measuring the concern of environmental security, most of conventional energy resources in 

centralized power delivery schemes are trailing popularity. Whereas, a recently mounting 

technology of dispersed generation explicitly decentralized generation or distributed 

generation is approaching the front. Distributed Energy Resources (DER) are singing a 

crucial role to check the environmental effluence through employment of non-conventional 

and renewable energy sources such as fuel cells, wind power, solar modules, biomass gasifier 

units etc. Many researches related to the design and operations of DERs are being done [131, 

146-150]. Potentialities of implementing micro-grid with the DERs are also discussed 

someplace [151-153]. Special treatments are also being paid to the economics of Hybrid 

Distributed Energy Resources [154].  

Optimal integration and operation of distributed renewable energy recourses (DER) 

spotlighting on economic aspect have been analyzed for several realistic cases with different 

demand profiles. 

1.2.2.1. Optimal power operation planning in a township 

Currently, fossil fuel ablaze power generation is mostly used. In this scheme, generation 

of power is done far away from localities and nearby the places where fuel is readily 

obtainable. By executing this, the transportation expenses stay least and localities are also 

free from effluence. After production, power is transmitted to different places with the help of 

transmission lines. With the incessantly growing energy demand, additional power generation 

is obligatory. Fossil fuel fired power generation has arrived at that level, where additional 

generation should be controlled due to limited accessibility of these fuels and environmental 

alarm. Thus, various other methodologies for power generation should be involved. 

Distributed generation is a superior idea concerning this. In it, the power generation takes 

place near the consumers with the help of traditional energy resources or nonconventional 

energy resources like solar photovoltaic system, fuel cells, biomass gasifier units etc [155]. It 

has many advantages over fossil fuel fired power generation. It offers environmental benefits, 
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better energy efficiency, energy independence, fuel diversification and engage less 

investment risks [131]. DG can fulfill the power necessities of those distant areas and petite 

localities, where power has not attained yet by conventional power generation. DERs are 

established to be more reliable power provider and have compact transmission systems [130]. 

A amalgamation of DERs provides more flexibility and reliability to accomplish requisite 

power demand and named as hybrid DER. Micro-grid is a excellent notion to alleviate the 

intricacies of traditional centralized power generation schemes. Micro-grid may be 

constructed involving DERs. A lot of technical studies has been done on hybrid DER but not 

much work associated to its economic analysis. In this thesis, development of micro-grid by 

involving hybrid DER has been studied, consumer loads, transformers, circuit breakers, 

cables and controllers. Five types of consumers, like  market, campus quarters, hospital, bank 

and post office and hostel have been considered in Kharagpur Township of West Bengal, 

India. Two types of seasonal load variation have been considered for the economic scrutiny 

of hybrid DERs [154]. At this place, it is pragmatic that the day by day solar irrradiance are 

consistent. So, solar energy can be a practical energy resource here. Biomass is also easily 

accessible here and can produce sufficient power. FC is free from losses due to mechanical to 

electrical alteration process. However, wind power has not been found dependable at this 

place. In this thesis, economic analysis of hybrid DERs has been made by using a newly 

developed social spider optimization (SSO) algorithm [156]. This algorithm endowed with 

better solutions as compared to other evolutionary or swarm algorithms [157, 158].  

1.2.2.2. Optimal power operation planning in a rail-way rake maintenance 

depot 

Previous part was about the study of optimal power operation for a whole township. 

There delineated demand dissimilarity depends on the seasons throughout the year. Though 

in the case of some distinctive industries, where power stipulation do not have seasonal 

craving, detailed optimal power operation studies and economic analysis in this low scale 

level is indispensable. In this thesis, such an industry, like a rail-way rake maintenance depot 

has been taken as a realistic case. 

A Rail Ways rake maintaining depot, where electrical and mechanical maintenance of 

Traction Rolling Stocks are performed, namely “Sonarpur TRS/EMU Railways Car-shed, 

E.Rly” was established in the year 1979. It is situated in Sonarpur, the south sub-urban of 

Kolkata City. Total premises area of this car-shed is about 68550 m2, where total covered 

space is 8850 m2 and area of open space is about 59700 m2. This depot has an average 
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electrical consumption of about 50 KVA with a maximum demand contract of 200KVA. This 

power is drawn from Sonarpur 33/11 KV Substation of West Bengal State Electricity 

Distribution Company Ltd (WBSEDCL). 

In this thesis, a proposal is initiated to implement distributed energy or decentralized 

energy generation system in the aforesaid site of Eastern Railways. This car-shed is in the run 

of  24X7 hours by 3 shifts per day. The load profile of 24 hours is inspected and it is noted 

that the load arrangement is very taut and highly optimal (considering all constraints 

regarding their routine working schedule) with average load of 50 KVA , maximum demand 

of 120 KVA and with connected load of 400 KVA. They uphold their power factor 0.98 to 1 

introducing capacitor bank in their sub-station. In this situayion, optimal power operation 

planning is to be done extenuating the hourly demand. 

Solar and wind impending of this region was taken from West Bengal Renewable 

Development Agency (WBREDA) and as per the reports wind power generation is not 

apposite there but its solar potential is considerable to generate power. Large amount of spare 

area is available In the premises to set up renewable power generators like biomass gasifier 

units, fuel cells, etc. Considering this scenario, only solar power system (SPS), biomass 

gasifier unit (BMGU) and phosphoric acid fuel cell (PAFC) are projected as DERs here along 

with a battery energy storage system (BESS). 

Beside the environmental reimbursement, the main objective for introducing distributed 

generation here is to lessen the electricity invoice charged by WBSEDCL to Eastern Rail 

Ways and if possible to earn back some money feeding spare power to the grid, so that this 

proposal becomes pretty to the consumer ie. the Rail Ways company. 

To fulfill the objective, optimal power operation planning and the optimal capacity of the 

afforsaid renewable power generators are projected. A comparative study is also done for 

three set of generators. ie. Case I, II & III. 

Case I.  Biomass gasifier unit (BMGU) and solar power system (SPS), along with a 

battery energy storage system (BESS). 

Case II. Phosphoric acid fuel cell (PAFC) and solar power system (SPS), along with a 

battery energy storage system (BESS). 

Case III. Biomass gasifier unit (BMGU), phosphoric acid fuel cell (PAFC) and solar 

power system (SPS), along with a battery energy storage system (BESS). 

Here Gravitational Search Algorithm (GSA) is chosen to optimize this highly constrained 

problem. Gravitational Search Algorithm is a strong heuristic search algorithm. It is based on 

the law of gravity and mass interactions [159]. Though GSA is not very common to solve 
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such optimization problems, it has success solving a variety of optimization problems in other 

field like symmetric traveling salesman problem [160], flow shop scheduling problem [161], 

DNA sequence design problem [162] etc. Considering these, GSA is chosen to solve this 

optimization problem. To ensure the reliability of the performance of GSA for this 

optimization problem, the problem is also resolved by well recognized Particle Swarm 

Optimization (PSO) technique. 

1.2.3. Optimal power controller design of active distribution 

network 

On the contrariety of cleaner energy productions, these distributed renewable energy 

recourses are appearing with several challenges in forming optimally reliable, efficient, 

smooth and economic power supply arrangements. 

The energy produced by the renewable energy systems has been increased due to 

improvement in technology and awareness among the people, around the world. Although, 

these alternate energy systems still have various drawbacks, such as over dependency on 

environmental conditions, which varies from place to place and hence can lead to designing 

flaws. The system, thus developed for a particular application, may be found to be oversized 

or undersized. This makes the problem difficult to solve as the fluctuating source may not be 

able to supply the demand at some critical conditions [163]. These situations have led us to a 

significant increase in the number of scientific publications on the field of renewable energy 

sector over the last few decades [164].  

In India, a large portion of population lives in rural and remote areas which are far away 

from grid supply and a heavy cost is involved in extending the grid. Therefore, such areas can 

be electrified in a decentralized mode by renewable energy plants such as small hydro, 

biomass, solar, wind, etc. and their combination in an integrated manner. Apart from 

electrification of individual household by renewable energy, the integrated renewable energy 

system (IRES) and the hybrid energy system (HES) [165] can also be developed. HES or 

IRES requires the knowledge of parameters like existing technologies, available government 

policies, customer requirements and resource limitations [166]. Incorporation of recent 

energy solutions are required for energy delivery betterment, assurance of seamless power 

supply and handiness along with monetarily favorable operation [167].  

A regulating network is required to estimate the needed active and reactive power which 

can be obtained through each power producer while assuring the required voltage as well as 
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frequency values. Each power producer along with its own regulator is desired in order to 

attain optimized power operation by utilizing the available informative details of the 

corresponding instant. On addressing these purposes, various planning, schematics and 

methodologies are available in the resent literature. 

Most of the time, classification of the regulating network involves centralized, 

decentralized and hybrid type model and a multiple layered approach towards regulation 

[165]. The impact of solar photovoltaic system can also be mitigated by a proper regulation 

network incorporation support in attaining grid favorable operation [168].  A two stage model 

predictive control strategy has been proposed for an economic diesel-pv-battery integrated 

operation in [163]. Load prediction and energy storage sizing methodologies have been 

proposed for a university campus in [166]. A MILP model for micro-grid energy 

management has been proposed in [169]. Optimal sizing and operation of a standalone 

islanded micro-grid have been studied [170]. Study on experimentations on real-time energy 

management of a islanded micro-grid are also present in [171] and  micro-grid power 

scheduling considering multi period islanding constraints  has been treated in [172] and many 

others.  

Out of numerous inexhaustible energy production schemes [163-172], a combination of 

solar photovoltaic system along with battery storage is mostly used and is the subject of 

interest of this part of the thesis. 

In this context, considering the emphasized research activities on operation and 

management of PV integrated dispersed power generation system, the presented work is 

motivated to propose a comprehensive economic operational strategy and control scheme of 

battery energy storage connected solar power aided nano-grid, formed in a typical urban 

hospital campus. 

In this work, the considered practical system to validate the proposed scheme is the power 

supply system of a typical medium scale hospital situated in Kolkata, India. Its premises 

contain main building, oncology building and daycare building. Major healthcare and 

auxiliary facilities of the hospital are spread around an area about 4879.78 square m. The 

power requirement is brought to fruition through connection from Calcutta Electric Supply 

Corporation (CESC).  

This problem has been mathematically formulated as a cost minimization optimization 

problem finding the optimized power operation. An improved real coded genetic algorithm 

(IMRCGA) is employed for achieving economic power dispatch through solar photovoltaic 

network and battery energy storage accumulating network constituting a nano-grid. The 
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obtained results have been compared with well established real coded genetic algorithm 

(RLCGA). The electrical model of this nano-grid has been presented mathematically along 

with designed controllers which suit to perform as per the optimum solution obtained by the 

proposed methodology. The transient behavior of the closed loop system for a realistic 

change of reference due to ambient disturbances has been studied by real-time Hardware-in-

Loop simulations using the real-time platform Opal RT OP4500 and MATLAB real-time 

Windows target. 

1.2.4. Optimization based fault detection scheme in photovoltaic 

system 

With the speedy exhaustion of fossil fuels, the global energy scenario is altering 

drastically by tactical replacement with renewable energy resources throughout the past few 

decades. Amongst these,  solar photovoltaics (PV) is going to have the uppermost yield 

increment of roughly 230 times of its existing assembly and will share 16% of total electrical 

energy production by the year 2050 [173, 174]. This vast growth in PV industry can be 

ascribed to various environmental, economic, technical and social factors and their sustaining 

policies [175, 176]. 

Huge PV plants, with hundreds of megawatts generation capability, are constructed over 

thousands acres of plant vicinity. Such massive PV plants are outfitted with hefty number of 

PV modules, balance of system components and protection devices like power fuses, ground 

fault detection interrupter, over current protection devices etc. [177-181]. PV modules are 

typically connected in series-parallel amalgamation to get optimum current and voltage 

ratings [182]. Any unanticipated module failures, even in any single module, can lead to great 

fault current and severely degrade the capitulative performance of the plant. Furthermore, the 

protection devices are often unable to clear the faults under non-uniform irradiation state and 

during "night-to-day" shifting mode [183]. Though fault possibility of PV modules is 

relatively less, but different module associated system faults, mainly, open circuit (OC) and 

short circuit (SC) faults arise recurrently, causing major deterioration of output electrical 

parameters and overall system efficiency [184]. 

So, in this situation, it is an unavoidable need to detect these kinds of faults fast and 

efficiently. There are several recent significant studies on fault diagnosis of PV system for 

identification of different faults including SC and OC faults. Most of these fault detection 

procedures are implemented online and have adopted different fault detection techniques 
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based on threshold estimation, fuzzy logic, domain transformation, classification methods 

like artificial neural networks, state estimation and hybridization among these techniques 

[185, 186]. 

Thermo-graphic inspection using thermal imaging cameras or infrared radiation sensors, 

mainly mounted on unmanned aerial vehicles, are popular methodologies to trace hotspot 

caused by SC, OC, mismatch or other faults [187-189]. These actions cannot discriminate 

among the dissimilar faults. A threshold-based method, executed by comparing current and 

voltage indicators with their threshold values, has been engaged to recognize the occurrence 

of faults in a PV sub-string, but failed to classify and locate the OC, SC or bypassed PV 

module [190]. Graph-Based Semi-supervised machine learning and Fractional-Order Color 

Relation Classifier have also been studied for OC and SC faults [182]. Artificial neural 

network and probabilistic neural network based OC and SC fault detection and classification 

have been reported in the literature [191, 192]. The concept of wireless self-powered sensor 

monitoring has also been introduced [193]. There are some studies of PV string electrical 

parameters based OC and SC fault diagnosis, where string output power and voltage window 

were created. These are probabilistic methodologies and have used probabilistic factors based 

on string output power or voltage along with module irradiation data and temperature 

captured using sensors [194, 195]. These methods can detect the number of faulty modules, 

but still cannot locate the faulty modules in the string. Furthermore, these methods have not 

considered the occurrence of both OC and SC faults together in PV string. 

From the above brief literature review, it can be noted that, the so far proposed techniques 

for OC and SC fault diagnosis in PV system have some intricacies to wholly diagnose OC 

and SC faults along with the locations of faulty modules in PV string. Interestingly, direct 

application of heuristic optimization approaches in the case of PV system fault diagnosis is 

rare in the literature. Though, some partial uses of optimization techniques, like  optimal 

placement of voltage sensors using optimizer  and optimization of  BP neural network for SC 

and OC fault diagnosis have been noted in the literature [196].  

Hence, motivation of this work is to apply metaheuristic optimization  based soft 

computing technique to develop an efficient PV fault diagnosis methodology that is able to 

quantify, locate and identify open circuited and short circuited modules in a PV system. The 

fundamental concept of this proposed fault diagnosis methodology exploits the fact that for a 

large PV system, experiencing heterogeneous irradiance and temperature distribution 

throughout the string, the resultant string current is explicit for a particular fault combination 

and specific locations of the faulty modules in that string. This very phenomenon has been 
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utilized in this work to formulate fitness function. There exist so many probable combinations 

of faulty modules in a PV string. From this huge search space, the proposed technique makes 

use of metaheuristic optimizer to seek out the exact combination of faulty modules and their 

respective locations, which may cause the string current same as monitored from the PV 

string at the particular irradiance and temperature conditions prevailing at that instant. 

There are some potential key challenges in the case of PV fault diagnosis. In running 

condition, the PV system is supposed to be operated at maximum power point (MPP). Under 

non-uniform irradiation or partial shading condition and during faults in a PV string yield 

nonlinear electrical characteristics, thereby upset overall output power. Modified Perturb & 

Observe (P&O) MPPT controller is widely used to track the maximum generated power in 

order to increase output efficiency and make up environmental fluctuations [197]. Again, PV 

string output current varies with environmental conditions and fault types. Many times, 

healthy PV systems act like faulty under non-uniform irradiation with few highly shaded PV 

modules. Distinguishing among these conditions and faults is also a challenge. 

The proposed scheme has been tested in a 100W PV system in a laboratory environment. 

To carry out the experiment, Matlab simulation model imitating the existing setup has been 

constructed and random situations, which represent different possible fault combinations, 

have been created at the existing PV setup. The generated current of PV string, operating at 

maximum power point (MPP), is obtained from the MPPT controller and converter. The 

simulated and measured string currents are fed to an in-house developed Matlab program of 

the proposed fault diagnosis algorithm employing metaheuristic optimizer. 

Selection of optimizer is a vital issue. The considered optimization problem in this work 

is associated with an online fault detection scheme of PV system. Mathematically, it is a 

multidimensional, nonlinear constrained system. So, it is desirable that the optimizer, 

involved in this scheme, has less computational complexity and rapid convergence with 

proficiency to find global optima. 

Recently, Mirjalili et al. have introduced a simple and robust meta-heuristic algorithm 

known as Grey Wolf Optimization (GWO), which is inspired by social leadership of grey 

wolves that attack preys for hunting drive in nature. GWO considers problems as black 

boxes. Hence, it can be easily applied to varieties of problems in unknown environments 

without much change in the algorithm. Besides, it involves fewer operators and parameters of 

adjustment in comparison with other heuristic methodologies. GWO has efficient exploration 

and exploitation scheme with better transmission mechanism and information sharing 

capability. It provides a more stochastic and diverse searches in the solution space. During 
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the process of optimization, there is no need to compute the gradient of the objective function 

and thus the derivative of search spaces, which lessen the computational complexity. GWO 

has excellent local optima avoidance capability compared to other conventional optimization 

techniques. All these properties of GWO make it highly suitable to solve highly nonlinear, 

multivariable, multi-constrained optimization problems with rapid convergence. It is evident 

in literature that GWO shows adeptness in various engineering problems [198]. Moreover, 

different type of classical well recognized optimization techniques like, Genetic Algorithm 

(GA) [199] and Tabu Search (TS) Algorithm [200], have also been used in this study as  

optimizers to evaluate the flexibility of the proposed fault diagnosis algorithm. Results and 

comparative studies of the proposed PV system fault diagnosis methodology, using these 

aforesaid optimization techniques, have been provided in the work for the purpose of 

validation and performance assessment. 
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Chapter 2 

 Problem formulation 

============================ 
The various power system optimization problems stated in the previous chapter of the 

thesis, requisite objective functions and expressions of different constraints have to be 

constructed to mathematically formulate these problems. Problem formulation of these 

various power system optimization problems are stated in this chapters as follows. 

2.1. Economic dispatch problems 
The endeavor of the economic dispatch (ED) problem is to minimize the fuel cost of a 

power producing station at the same time fulfilling a variety of constraints. The ED problem 

takes to mean valve-point effect, excluded workable zone and multiple fuels in concurrence 

with the load demand, transmission loss and working capacity limits. 

2.1.1. Economic dispatch with prohibited operating zones 

The ED problem can be stated as: 
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Where, 
ia , 

ib  and 
ic  are the cost coefficients of the thi  generator, giΡ  is the power output of 

the thi  generator and gΝ  is the total number of  generators. 

2.1.2. Constraints 

2.1.2.1. Load balance constraint 
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The transmission loss LΡ  can be stated as: 
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Where DΡ  is load demand and liΒ , i0Β  and 00Β  are the Β -coefficients. 

2.1.2.2.Generating capacity limit constraints 

The generator power output must be within its minimum and maximum limits such that,  

maxmin
gigigi Ρ≤Ρ≤Ρ ,

 
 gi Ν= ,...,2,1                                                   (2.4) 

Where, min
giΡ  is the minimum limit and  min

giΡ is the maximum limit  of the  thi  generator. 

2.1.2.3. Prohibited operating zone 

The workable region of a generator with precluded workable county can be stated as: 

l
gigigi 1,

min Ρ≤Ρ≤Ρ  

l
rgigi

u
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Where, r  indicates the number of disallowed workable county of the i the generator. u rgi 1, −Ρ  

is the maximum limit of ( )1−r th disallowed feasible county and l rgi,Ρ  is the minimum limit of 

thr disallowed feasible county. Total number of disallowed feasible county of thi  generator 

is in . 

2.1.3. Economic dispatch with valve-point effect  

The ED problem subject to constraints endowed with the equations (2.2) and (2.4) can be 

stated as: 
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 Where,  
id  and 

ie are the cost coefficients of thi  generator due to valve-point effect.       
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2.1.4. Economic dispatch with valve-point effect and multiple fuels 

The generator is usually offered with multiple fuels [4], characterized by a number of 

piecewise quadratic functions allowing for the valve-point effect. The cost function of  thi  

generator with FΝ  fuel types can be stated as: 

( ) 2
giirgiirirgiiF Ρ+Ρ+=Ρ γβα + ( ){ }gigiririr Ρ−Ρ×× minsin δη                                                      (2.7)    

If maxmin
girgigir Ρ≤Ρ≤Ρ  for fuel type r  and Fr Ν= ,...,2,1  

Where, min
girΡ and 

max
girΡ are the minimum and maximum power limits of the i th generator for 

thr  fuel type respectively. irα , irβ , irγ , irη  and irδ  are the cost coefficients of  the thi  

generator for fuel type r . 

The objective function subject to constraints endowed with the equations (2.2) and (2.4) can 

be stated as: 
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2.2. Multi area economic dispatch problems 
The aim of Multi area economic dispatch (MAED) problems is to minimize the total 

production cost of supplying loads to all areas while fulfilling power balance constraints, 

generating limits constraints and tie line capacity constraints. Three different types of MAED 

problems have been accounted. 

2.2.1. MAED with prohibited operating zone and line loss 

consideration 

The objective function Ft , total cost of dedicated generators of all areas, of MAED 

problem may be presented as 
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where Fij(Pij) is the cost function of jth generator in area i and typically expressed as a 

quadratic polynomial; aij, bij and cij are the cost coefficients of j th generator in area i; N is the 

number of areas, Mi is the number of dedicated generators in area i; Pij is the real power 
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output of jth generator in area i. The MAED problem minimizes Ft subject to the following 

constraints. 

2.2.1.1. Real power balance constraint 
1
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The transmission loss PLi of area i may be articulated by using B-coefficients as 
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Where PDi is real power demand of area i; Tik is the tie line real power transfer from area i to 

area k. Tik is positive when power flows from area i to area k and Tik is negative when power 

flows from area k to area i. 

2.2.1.2. Tie line capacity constraints 

The tie line real power transfer ��� from area i to area k should not exceed the tie line 

transfer capacity for security concern. −������ ≤ ��� ≤ ������                                                                                                        (2.12) 

where ������ is the power flow limit from area i to area k and −������ is the power flow limit 

from area k to area i. 

2.2.1.3 Real power generation capacity constraints 

The real power generated by each generator should be within its lower limit 	�
��� and 

upper limit 	�
���, so that 

	�
��� ≤ 	�� ≤ 	�
���; 	� ∈ �	���	� ∈ ��                                                                 (2.13) 

2.2.1.4 Prohibited operating zone 

The prohibited operating zones are the range of power output of a generator where the 

operation originates unwanted vibration of the turbine shaft bearing due to opening or closing 

of the steam valve. This undue vibration might cause damage to the shaft and bearings. In 

general, operation is evaded in these regions. The practicable operating zones of unit can be 

illustrated as follows: 
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Where m stands for the number of prohibited operating zones of j the generator in area i. 	��,����  is the upper limit of (m-1)th prohibited operating zone of j the generator in area i. 

	��,�
  is the lower limit of mth prohibited operating zone of j the generator in area i. Total 

number of prohibited operating zone of j the generator in area i is nij. 

2.2.2. MAED with valve point loading 

The generator cost function is acquired from data points taken during “heat run” tests, 

when input and output data are calculated as the unit is slowly varied through its working 

region. Wire drawing effects, occurring as each steam entrance valve in a turbine starts to 

open, generate a rippling effect on the unit curve. To model the effect of valve-points, a 

recurring rectified sinusoid contribution is added to the quadratic function [201]. The fuel 

cost function accounting valve-point loadings of the generator is given as 

( ) ( ){ }
1 1

2 minsin
MN i

F Ρij ijt
i j

F a b Ρ c Ρ d e Ρ Ρ
ij ij ij ij ij ij ij ij ij

∑= +∑
= =

= + + × × −                                                 (2.15) 

where dij and eij are cost coefficients of i th generator in area i due to valve-point effect. The 

aim of MAED with VPL is to minimize Ft subject to the constraints given in eqn. (2.10), 

(2.12) and (2.13). Here transmission loss (PL) is not accounted. 

2.2.3. MAED with valve point loading multiple fuel and 

transmission loss 

Since generators are sensibly supplied with multi-fuel sources [202], each generator 

should be embodied with several piecewise quadratic functions superimposed sine terms 

reflecting the effect of fuel-type changes and the generator must identify the most economical 

fuel to burn. The fuel cost function of the i th generator with NF fuel types considering valve-

point loading is articulated as 

( ) ( ){ }2 minsinij ij a b Ρ c Ρ d e Ρ Ρ
ijm ijm ijm ijm ij ijm ijm ijm ij

F Ρ += + + × × −                                                 (2.16) 



 

29 
 

if  	������ ≤ 	�� ≤ 	������ for fuel type m and m =1, 2, . . . , NF; 

The objective function Ft is given by 
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The objective function Ft is to be minimized subject to the constraints given in eqns. (2.10), 

(2.12) and (2.13). 

2.2.4. Determination of generation level of slack generator 

Mi Committed generators in area i deliver their power output subject to the power balance 

constraint (2.10), tie line capacity constraints (2.12) and the respective generation capacity 

constraints (2.13). Assuming the power loading of first (Mi-1) generators are known, the 

power level of the Mi
th generator (i.e. the slack generator) is given by 
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The transmission loss PLi is a function of all generator outputs including the slack generator 

and it is given by 
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Expanding and rearranging, eq. (2.18) becomes 
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The loading of the slack generator (i.e. Mi
th) can then be found by solving eq. (2.20) using 

standard algebraic method 

2.3. Multi area economic environmental dispatch 

problems 
Required objective, corresponding to the Multi area economic environmental dispatch 

(MAEED) problems, is the optimization of total cost as well as the level of emission at the 

same time related to the supplied load demands corresponding to each of the area along with 

fulfilling the criteria corresponding to aforementioned constraints. The goals along with the 
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constraints, which have to be considered while formulating the MAEEDS problem, are as 

mentioned below. 

2.3.1. Cost calculation 

The function, corresponding to fuel cost for each of fossil source generator while taking 

into consideration the effect of valve point [203], can be expressed in the form of addition of 

a second order polynomial and a sinusoid type function. The expression of fuel cost related to 

committed generators considering all areas is given below in (2.21).   

∑ ∑=
= =

NA

g

gNC

h
ghpff

gh
1 1

11 )(                                                                                (2.21)

)}min(sin{2)(1 ghghghghghghghghghgh ppedpcpbapf
gh

−××+++=                                                 (2.22) 

Here, )(1 ghpf
gh

in (2.22) represents the cost function matched up to the thh power generating 

unit located in area g . gha , ghb , ghc , ,ghd  and ghe represent cost coefficients corresponding to 

the aforementioned unit. NA specifies areas under consideration (total), gNC representing the 

total dedicated generating units located at areag . ghp represents the power generated by the 

aforementioned unit. 

2.3.2.Emission calculation 

The modeling corresponding to various pollutants like Sulfur oxides, Carbon dioxide as 

well as Nitrogen oxides emitted from fossil resources based power production can be made 

individually. In order to make a comparison among these, the total emission is represented in 

the form of summation of a second order polynomial along with an exponential function 

[204]. The version of entire emission corresponding to committed generators of all areas can 

be done as per (2.23). 
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h
gh
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1 1 11
)(''                                                                        (2.23)

)exp()( 2
'1 ghghghghghghghghgh ppppf
gh

δηγβα +++=                                            (2.24) 

Here, )('
1 ghpf

gh
in (2.24) represents emission function ofthh  generating unit located at areag .

,ghα ,ghβ ,ghγ ,ghη and ghδ indicate the coefficients of emission for abovementioned 

generating unit. 
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2.3.3 Constraints 

2.3.3.1. Power balance  

∑ ∑++=
= ≠

g

gg

NC

h oo
goLDgh Tppp

1 1,
V NAg ∈                                                    (2.25) 

Where,
gDp represents an power demand corresponding to theg in (2.25). goT corresponds to tie 

line power flow from theg too . It remains positive for the period of power exchange 

between theg to the o while becomes negative corresponding to the course of power 

exchange from the o to theg . 

2.3.3.2. Tie-line capability  

As stated above, thegoT possesses limits for exchanging the power in order to consider 

security issue as mentioned in (2.26). 

maxmax
gogogo TTT ≤≤−                                                                        (2.26) 

Where 
max

goT represents the limit corresponding to power exchange from theg to the o . 

Similarly, - 
max

goT indicates the limit when power exchanges from theo to theg . 

2.3.3.3. Power generating capacity  

The power generation through each of the generators should remains between
min
gop , the 

lower limit and 
max
gop , the upper limit as per (2.27). 

maxmin
gogogo ppp ≤≤ V gNChNAg ∈∈ ,                                                          (2.27) 

2.4. Windn integrated multi area economic 

environmental dispatch problems 
To formulate dynamic WMAEED problem for a multi-area wind power integrated 

network, the main components considered are conventional TUs and WUs. Here, it is 

considered that WUs' operators can also take part in dispatching and exchanging operation 

among different power network areas in the electricity market. However, the utility operators 
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should obey appropriate margin for each tie-line power flow during operational planning. The 

optimal scheduling with WUs, dispersed in different power system areas, is of utmost 

important to optimally monitor, operate, control and plan power networks to deal with the 

indefiniteness and area-wise variability of dynamic wind speed distribution. The wind turbine 

output is predicted by taking into consideration the zone wise weather forecasting.  

Since the input power to the wind turbine is uncertain, the outcome from the generator is 

also uncertain which can be modelled using different probability distribution function (PDF). 

To deal with the dynamic behaviour of online generation and load demand, ramp rate limits 

for TUs and Weibull Probability Density Function (WPDF) of wind are considered 

[77,205].Hence, the dynamic WMAEED problem is a nonlinear dual-objective optimization 

task restricted to several complex equality and inequality constraints associated with TUs, 

WUs and tie-lines. First objective is associated with economic dispatch which assesses the 

total power production price by maintaining all the power network boundings.  

Another function is about environmental dispatch which estimates the net emission across 

all the areas. The objectives and boundings as mentioned below are taken into consideration 

to formulate dynamic WMAEED problem. 

2.4.1 Generation cost 

The operational cost of a thermal-wind system comprises the fuel cost for fossil fuel fired 

plants along with the cost of WUs. The total generation price formulates in accordance to 

(2.28). 
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Where,  GiΝ  and WiΝ are the number of TUs and WUs in thi area of a power system having 

M number of areas. The beginning term in (2.28) represents the total fuel cost function 

corresponding to committed fossil fuel fired TUs of all areas by considering the effect of 

valve-point as in (2.29).  
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Where, 
Gij
Ρ  indicates the scheduled power dispatch through the thj

 TU in thi  area.  
Gij

a ,

Gij
b ,

Gij
c , 

Gij
d  and 

Gij
e  represent the fuel cost coefficients belonging tothj

 TU in thi  area. 

The second term in (2.28), the cost of wind power, comprises of three functions, a direct cost 

(
Dik

f ), an under estimation penalty cost (
Pikf ) for not utilizing all the available wind power 

and a reserve cost (
Rkif ) because of over estimation corresponding to wind power when wind 

power availability lacks to the scheduled wind power. So the wind power cost of thk  WU can 

be calculated as (2.30) [206]. 

( ) { ( ) (
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WPikfDikPDikfWikPWikf
,
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



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 −

ikAvailable
WWikPRikf

,
         (2.30) 

Where, 
Wik
Ρ indicates the scheduled power dispatch through the thk

 WU in thi  area and 

ikAvailable
W

,
is the available wind power of the same WU at the scheduled time. Direct cost 

for scheduled wind generation is linear cost function (2.31) where 
Wik

d is the direct cost 

coefficient.  
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d                                                                                         (2.31) 

 

The under estimation penalty cost, where 
Wik

p is the penalty cost coefficient, can be 

expressed as (2.32). 
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Where, 
Rated,ik

W  represents the rated power produced through the thk
 WU in thi  area.

( )ikw
Wik
f  is Weibull Probability Density Function (WPDF) of wind power for thk

 WU in thi  

area. The overestimation cost or reserve cost, where 
Wik
r denotes the reserve cost coefficient, 

can be represented in accordance to (2.33). 
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2.4.2 Emission level 

To model the emission level of atmospheric pollutants from fossil fuel fired generators, a 

summation involving a quadratic and an exponential function is utilized. The WUs are 

emission free. Hence, the total emission level of committed fossil fuel fired generators of all 

areas can be represented in accordance to (2.34). 
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Where,
Gij

α ,
Gij

β , 
Gij

γ , 
Gij

η  and 
Gij

δ  denote the emission coefficients corresponding to 

thj  fossil fuel fired TU in thi  area. 

2.4.3. Constraints 

2.4.3.1. Real power production constraint  

The real power production through each of the generators should remain between pre-

specified lower and upper limiting values. 
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2.4.3.2 POZ constraint 
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Due to some limitations, a TU may have some POZs in between lower limit and upper 

limit of generation during operation, where it is unable to generate any power [207]. In 

(2.37), Z represents the total number of prohibited zones for thj
  TU in thi  area. lower

kGij
Ρ

,
 and 

upper
kGij

Ρ
,

 are the lower and upper limits of the thk  prohibited zones for thj
  TU in thi  area.  

2.4.3.3. Real time demand-production balance constraint  
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Where, 
Di
Ρ  and 

Li
Ρ  indicate the real power demand and transmission losses corresponding 

to area i  respectively.  

2.4.3.4. Spinning reserve constraint  

In order to achieve stable and reliable power system operation under the wind power 

indefiniteness and the load demand fluctuations, a certain amount of spinning reserve 

requirement should be maintained. This constrains WMAEED as (2.39) and (2.40). 
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Where, up

iDemand
Ρ

,
 and down

iDemand
Ρ

,
 are the demand when the upward spinning reserve and the 

downward spinning reserve are needed in thi
 area.  

2.4.3.5. Tie line capacity constraint 

The real power transmission 
il
Τ  from area i  to area l  through tie lines should not go 

beyond the tie line transfer capacity limits due to security consideration.  
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maxmax

il
Τ

il
Τ

il
Τ ≤≤− , },...,1{, Μli ∈                                                                                       (2.41) 

Where, 
max

il
Τ indicates the power flow limiting value from area i  to area l  while -

max

il
Τ  

denotes the power flow limiting value from area l  to area i .  

2.4.3.6. Wind power uncertainty constraint 

The WPDF of wind speed 
ikv for thk  WU in thi  area can be formulated as a two-parameter 

WPDF (2.42). 
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Where, 
ik

θ  and 
ik

λ are the shape and scale factor for the WPDF of wind speed for thk WU in 

thi  area respectively. The cumulative density function of wind speed 
ikv for thk  WU in thi  area 

can be summed up as (2.43). 
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Wind power of thk  WU in thi  area at any instant is restricted to a limit set by the cut-in speed 

(
ikinCut

v
,− ) and cut-out speed (

ikoutCut
v

,− ) of the same WU as (2.44). 
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Where, 
ikRated

v
,

denotes the rated speed of thk  WU in thi  area. Thus, in the discrete region, 

the probability of the wind power of thk  WU in thi  area being zero is given by (2.45). 
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The probability of the wind power of thk  WU in thi  area being rated is given by (2.46).  
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In the continuous region, the WPDF of wind power for thk
 WU in thi  area is expressed as 

(2.47). 
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2.5. Hydro-thermal scheduling problems 
The cost of hydropower plants is negligible compared to thermal power plants, so the 

hydro-thermal scheduling problem is designed to minimize the total thermal production cost 

making maximum possible use of the available hydro-resource considering different 

constraints. 

2.5.1. Objective task 

The main objective of short-term hydrothermal scheduling is to provide maximum use of 

available hydro resources to minimize the thermal cost over a scheduling periodTI . The cost 

equation of thermal power can be expressed in accordance to (2.48). 
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Here 
cF  is the total generation cost of thermal system. 

sa , 
sb and 

sc  in (2.49) represent 

cost curve coefficients for thermal producers . 
sd  and 

se  indicate the valve point coefficients 

of s  unit. mn
sP  and tsP , indicate minimum and total amount of thermal power production 

through ths  unit respectively at thti  time index. 
thN  and TI  indicate total number of thermal 

power producers and time indices sequentially. 

2.5.2. Power balance constraint 

The total power generated by the hydro and thermal units per hour must be equal to total 

load demand and power transmission loss. It can be mathematically expressed in accordance 

to (2.49). 
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hyN represents total number of hydro power producers. tiDP ,  and tiLP , are total power demand 

and power losses respectively during transmission within a specified period. The hydro 

power generation tihP , as a function of storage capacity and discharge rate is in accordance to 

(2.50).                                                                                                                                                             
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Here, tihP , indicates power production through the thh  hydro unit at thti time index. tihWDR,  

represents water discharge rate at thti time index. tihSV ,  
represents tank storing capability. 

hPC 1
, 

hPC2
, 

hPC 3
, 

hPC4
, 

hPC 5
and 

hPC 6
 represent power production coefficients 

corresponding to the thh  hydro unit. Total power transmission loss depends on loss 

coefficient and can be expressed in accordance to (2.51). 
shB , 

sB0
, and 

00B represent the power 

transmission loss coefficients. 

                                                       (2.51) 

2.5.3. Ramp rate limiting values constraint  

Thermal power generation cannot be increase or decrease suddenly. The power 

generation tisP, in a definite time span should not be enhanced by a certain amount 
sRU  to 
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that of the last interval )1(, −tisP . 
sRU  is known as ramping up limiting value. Similarly, power 

generation should not be curtailed to that of the last interval by a definite amount 
sRD  

known as ramping down limiting value. Boundaries relating these limiting values can be 

expressed by equation (2.52) and (2.53). 

TItiNsRUPP thstistis ∈∈∀≤− − &,)1(,,                                                                            (2.52)
 

 TItiNsRDPP thstistis ∈∈∀≤−− &,,)1(,                                                                                 (2.53)                                                                                                           

2.5.4. Reservoir flow balance constraint  

The reservoir water flow balance equation relates the current water storage volume to 

previous interval storage volume, inflow rate, discharge rate and spillage. Here, water 

transportation delay between reservoirs is also considered because of some upstream units 

exist exactly above the thh  unit. This can be mathematically expressed as,  

( ) TItiNhSPWDRSPWDRIFSVSV hy

US

m
WTDtidrmWTDtidrmtihtihtihtihtih

h

mhmh
∈∈∀++−−+= ∑

=
−−+ &,

1
)(,)(,,,,,)1(,   

 
(2.54)

 

Here, tihSV , denotes spillage of tank of thh hydro unit at  thti   time index. tihIF ,  represents 

inflow rate for the same tank. 
hUS indicates total upstream units exactly above the thh  unit 

and 
mhWTD represents water transporting delay from tank m  to the h .  

2.5.5. Power generation constraint 

Hydro and thermal power cannot be produce at will. Production limiting values 

corresponding to the hydro as well as thermal producers can be expressed by equation (2.55) 

and (2.56) sequentially. 

TItiNhPPP hy
mx

htih
mn

h =∈∀≤≤ &,,                                                                                   (2.55) 

TItiNsPPP th
mx

stis
mn

s ∈∈∀≤≤ &,,                                                                                    (2.56) 

 Here, mn
hP  and mx

hP are respectively the minimum and maximum value of power production 

by the thh hydro unit. The mn
sP and mx

sP represents the minimum and maximum value of 

thermal power production respectively.   
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2.5.6. Water discharge rate constraint  

Water discharge rate is limited by lower bound, upper bound and further within minimum 

and maximum range. Considering total restricted operating sections (
hRSO ) corresponding to 

the thh hydro producer is expressed in accordance to (2.57). 

 

                                                                                                                                            (2.57) 

hRSO  
represents total restricted operating sections. 

lwr
phWDR,  

and 
upr

phWDR,  
represent lower 

bound and upper bound on the to the restricted operating section p for the thh  producer 

sequentially, and p is the restricted operating section index. 

2.5.7. Reservoir storage capacity and hydro discharge constraints 

2.5.7.1. Reservoir storage capacity constraint 

  The operating volume of reservoir storage must lie between its minimum and maximum 

capacity limits.                                                                                      

TItiNhSVSVSV hy
mx

htih
mn

h ∈∈∀≤≤ &,,                                                                       (2.58) 

2.5.7.2. Hydro discharge constraint 

 The physical limitation of water discharge of turbines in m3 must lie within its minimum and 

maximum operating limits as (2.59). 

TItiNhWDRWDRWDR hy
mx
htih

mn
h ∈∈∀≤≤ &,,                                                 (2.59) 

Thermal plants emit pollutants like oxides of sulfur, carbon and nitrogen which cause 

environmental damage. Nowadays economic and environmental objectives are 

becoming one of the most important optimization problems in power system. The 

harmful emission produced by steam power plants must be considered in power system 

operation. The aim of hydrothermal scheduling in this paper is to determine the optimal 

water discharge rates of hydropower plants and power generation of thermals plants that 

can simultaneously minimize both of environmental pollution and fuel costs in the whole 

scheduling period. 
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2.6. Optimal DG allocation problem 

For the formulation of DG assignment in the power system, the load system must be 

analyzed using load flow analysis. Load flow analysis can be branch based or node based. 

The current injection or bus voltage is taken as variable for node based methods while branch 

currents or power for branch based methods. The basic load flow equations are given as 

below: 

∑
=

−−=
n

j ijjiijYjViViP 1
)cos( αθθ                                                                                               (2.60)             

∑
=

−−=
n

j ijjiijYjViViQ
1

)sin( αθθ                                                                                               (2.61) 

Where, Vi, Vj are the voltages at i th and j th buses, respectively, Pi is the active power injection 

at the i th bus, iQ is the reactive power injection at the i th bus, n is the number of buses,
iθ  and 

jθ  are voltage phase angles at i th and j th  buses respectively. 

Fig. 2.1 depicts a single line diagram (SLD) of IEEE 33 bus test system.  

 

Figure 2.1. IEEE 33 bus radial distribution system 



 

42 
 

Techniques like Gauss-Seidel method, Newton-Raphson method, Fast decoupled method 

have been used for load flow analysis. In this thesis, load flow is analyzed using forward 

backward sweep method [139]. 

It has virtues of low memory, high computational efficiency, high convergence capability, 

simple structure, unbalanced system applicability. For this method, there are two steps: 

backward sweep (BWS) and forward sweep (FWS). In BWS, voltage and current are 

calculated using KVL and KCL. Whereas, in FWS, the downstream voltage is calculated 

starting from the source node. To begin with, we take the rated voltage at the end node and 

KCL is applied to determine the current flowing from node using the equation:   

∑++=+ natingCurrentEmaiIiiI 1)1,(                                                                                        (2.62) 

This current is computed with the voltage at the i th node using the equation: 

)1,(*)1,()1( +++=+ iiZiiIiViV                                                                                                  (2.63) 

This process is unremitting till the junction node is reached and the voltage hence 

computed is stored. Continuing in this alike fashion with a further node end of the system we 

compute till the reference node is reached. Comparing the calculated voltage with the 

specified source voltage, if the disparity is lesser than specified criteria we stop otherwise we 

move on to the FWS. 

The node voltage in the forward direction is calculated using the following equation 

)1,(*)1,()1( ++−=+ iiZiiIiViV
                                                                                                 (2.64)

 

This updated bus voltage as calculated in FWS is used for calculation in BWS. After node 

voltage and line currents are calculated using BWS/FWS algorithm, the losses are calculated. 

The objective of this work is to minimize power losses. The real power losses are calculated 

as given below [140]. 

( )[ ]∑
=

∑
=

−++=
bN

i

bN

j jQiPjPiQijbjQiQjPiPijaLP
1 1

)(                                                                                (2.65)  

Where,    

)cos( ji
jViV

ijR

ija δδ −=                                                                                                (2.66) 

 )sin( ji
jViV

ijR

ijb δδ −=                                                                                               (2.67) 

Load models are of constant power, constant current, and constant impedance type. In this 

work, the system is supposed to be under diverse loading conditions, so the constant power 
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load model is chosen. DG can be mainly classified into three types based on how it transacts 

with the real and reactive power [141]. Type 1 DG injects only active power, Type 2 injects 

both real and reactive power and Type 3 injects active power but consumes reactive power 

from the system. Here, in this case, Type 2 DG is selected for analysis. 

The reduction in power losses due to optimal placement of DG and also its optimal size 

has been premeditated in this work. Due to the introduction of DG, the nature of voltage 

profile under varying load conditions is observed. The load is varied linearly from 50% to 

150% of the tangible value. Here, the bus number as well as the size of DG has been set up 

using WCA. The amalgamation of bus number and DG size, for which the power losses are 

the minimum, has been considered as the optimum. 

2.7. Optimal power operation planning in a 

township 
In this work, two cases of hybrid DER for the economical analysis of micro-grid have 

been considered which are as follows: 

Case 1.  SPS and BMGU with BESS and 

Case 2.  SPS and PAFC with BESS. 

Studied systems for different hybrid DERs used in this article are shown below in Fig. 2.2 

and Fig. 2.3. 

 

Figure. 2.2 Studied system for case 1 of hybrid DER 
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Figure. 2.3. Studied system for case 2 of hybrid DER 

Phosphoric Acid Fuel Cell (PAFC) has been found to be the best among all types of FC. 

PAFCs have low chemical and thermal emissions, more reliability, siting and fuel flexibility, 

less upholding requirement, ultimate part load performance and towering efficiency [154]. 

Although, biomass gasification process is less efficient than biomass combustion, but it has 

been found more environment friendly. Lead acid battery has been found to be the best 

among all types of battery. Purchasing and selling of power with the utility is required 

according to the difference in generated power and load demand [154]. If the generated 

power from all the sources is less than required load demand then, power has to be purchased 

from utility. On the other hand, if the generated power from all the sources is more than the 

required load demand then, this excess power is sold to the utility. 

2.7.1. Objective function 

 The objective function is to determine equated annual cost of the micro-grid for each 

case of hybrid DER and is given by: 

R =
OR  + IR + MR  +

UR                                                                                      (2.68) 

Where, 
OR , IR ,  MR and UR  are operating cost, initial cost, micro-grid cost and utility cost 

respectively. Operating cost for case 1 is given by: 
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Where, BMP , BTP and 
SOP  are the power generated from BMGU, BESS and SPS respectively. 

BMO , BTO and 
SOO  are the operating cost of BMGU, BESS and SPS respectively. 

The operating cost for case 2 is: 

fcs
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              (2.70) 

Where, 
FCP , BTP and 

SOP  are the power generated from PAFC , BESS and SPS respectively. 

FCO , BTO and 
SOO  are the operating cost of PAFC, BESS and SPS respectively. 

Equation (2.70) explain the total operating cost of first hybrid DER. The first term on 

right hand side describes the operating cost of BMGU as the product of power generated by it 

and the cost involved with it. The second and third terms describe the operating cost of BESS 

and SPS respectively.  Equation (2.71) describes the total operating cost of second hybrid 

DER. The operating cost of SPS is zero. The number of days per season, consumer, season 

and hour in (2.70) and (2.71) are represented by
sNod , cons, ss and hr respectively. 

The BMGU produces powerBMP  in kW and after multiplying it by operating cost  BMO  in 

Rs/kWh, we get the operating cost of BMGU in Rs/hr for a particular hour. After summing 

the BMP BMO over twenty four hours, we get the operating cost of one day. When it is 

multiplied by number of days in a season (243 days in summer and 122 days in winter), the 

operating cost of a season is obtained. On summing the costs of both the season, the annual 

operating cost of the BMGU is obtained. This process is repetitive with diverse DERs to 

obtain their yearly operating cost. 

Initial cost for case 1 is given by׃ 

bios
IR = ∑

=

n

cons 1

 [α BMic (cons) + β BTic  (cons) + BMI BMic  + BTI BTic   + 
SOic    ]                          (2.71) 

 The initial cost for case 2 is: 

fcs
IR = ∑

=

n

cons 1

 [γ 
FCic (cons) + β BTic  (cons) + 

FCI FCic   +   BTI BTic + 
SOic   ]                (2.72) 

Where, BMic , BTic  , 
SOic  and 

FCic  are the initial cost of BMGU, BESS, SPS and PAFC 

respectively. To resolve the total annual depreciation expenses, the initial costs have to be 

multiplied by depreciation factors α, β and γ respectively. BMI  , BTI , and 
FCI are the allowed 

interest rate of return on the initial investments for BMGU, BESS and PAFC respectively by 

the funding agency. α, β and γ can be found by the following equation: 
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α, β, γ = dr× 
1)1(

)(

,,

1,,

−+

−

FCBTBMLft

FCBTBMLft

dr

dr
                                                                                  (2.73) 

Where, BMLft , BTLft , 
FCLft and dr are the lifetime of BMGU, BESS, PAFC and rate of 

depreciation respectively. The micro-grid cost is evaluated using the following equation: 

MR = δ
swic +η

fmtic +λ
cblic +σ

contic + 
swI swic  + tfmI fmtic +

cblI cblic + 
contI contic             (2.74) 

Where, 
swic , 

fmtic , 
cblic and 

contic  are the initial cost of switching equipment, transformer, 

cable and controller respectively. δ, η , λ and σ are the depreciation factor of switching 

equipment, transformer, cable and controller respectively. 
swI , tfmI , 

cblI  and
contI are the 

allowed interest rate of return on  the initial investments for switching equipment, 

transformer, cable and controller respectively. 

The utility cost is given as follows: 

UR = ∑ ∑
= =

n

cons

m

ss1 1
sNod × ∑

=

24

1

t

thr

{ Pe PP (ss, hr, cons)- 
selle sellP (ss, hr, cons)}+12 Be {max[ PP  

(cons)]}                                                                                                                           (2.75)  

Where, Pe , 
selle and Be  are cost of purchasing power (Rs/kWh), cost of selling power 

(Rs/kWh) and base charge of electricity (Rs/kW/month) respectively. 

2.7.2. Constraints 

To optimize the equated annual cost of (2.68), optimal operation of hybrid DERs is the 

main functional constraint. 

∑
=

n

cons
ED

1

(ss, hr, cons) =BMP  (ss, hr, cons) +BTP   (ss, hr, cons) + 
SOP  (ss, hr, cons) + 

FCP  (ss, hr, 

cons) + PP  (ss, hr, cons) - 
sellP  (ss, hr, cons)                                                              (2.76) 

Where, ED  represents power demand of consumers of micro-grid at a particular hour of a day 

in a season in kW. 

Besides above, there are some other constraints for cost optimization:  

0 ≤ BMP  (hr, cons) ≤ BMIC  (hr, cons)                                                                             (2.77) 

0 ≤ 
SOP  (hr, cons) ≤ 

SOIC (hr, cons)                                                                                 (2.78) 

0 ≤ 
FCP (hr, cons) ≤ 

FCIC (hr, cons)                                                                                (2.79) 
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- BTIC (hr, cons) ≤ BTP (hr, cons) ≤ BTIC  (hr, cons)                                                             (2.80) 

BMP , 
SOP , 

FCP , BMIC , 
SOIC , 

FCIC   ≥  0                                                                       (2.81) 

Equation (2.77), (2.78) and (2.79) determine the lower and upper limit of power 

generation by BMGU, SPS and PAFC respectively. Relation (2.80) determines the lower and 

upper limit of power generation by BESS. The negative sign in lower limit indicates the 

charging of battery. On any day, the total sum of power generated by BESS should be zero. 

But practically, battery does not discharge completely due to its efficiency.  Hence, the total 

sum of generated power by BESS has very small deviation from zero value. Relation (2.81) 

determines thatBMP , 
SOP , 

FCP , BMIC , 
SOIC  and 

FCIC should have values greater than or equal 

to zero. 

2.8. Optimal power operation planning in a rail-way 

rake maintenance depot 
A railway rake up keeping depot, to perform electrical as well as mechanical up keeping 

of Traction Rolling Stock (TRS), named, Sonarpur TRS/Electrical Multiple Unit railway car-

shed, Eastern Railways of India, came into the existence in the 1979. It is located at Sonarpur, 

the south sub-urban of Kolkata, India. Its total premising area is approximately 68,550 square 

meters. Out of this, current utilizing space is 8850 square meters.  

Mean value of the electrical energy usage for the aforesaid depot is approximately 50 

KVA including a maximum demand agreement of 200 KVA. The required power is supplied 

by the Sonarpur 33/11 KV substation, WEBSEDCL. Analyzed results of the load power 

requirement profile (corresponding to each day) tell that load scheduling is very critical as 

well as highly optimized (including each of the constraints with respect to their normal 

operating schedule) with 50 KVA mean load, 120 KVA peak power requirement along with 

400 KVA connected load. They maintain their power factor 0.98 to 1 placing capacitor bank 

in their sub-station. So optimal power operation planning is to be done mitigating the hourly 

demand.  

Solar and wind potential of this area was taken from West Bengal Renewable 

Development Agency (WBREDA) and as per the reports wind power generation is not 

suitable there but its solar potential is fair enough to generate power. In the premises large 



 

 

amount of spare area is available to set up renewable power generators like biomass gasifier 

units, fuel cells, etc. Considering this scenario, only solar power system (SPS), 

gasifier unit (BMGU) and phospho

with a battery energy storage system (BESS).

Beside the environmental benefits, the main objective for introducing distributed 

generation here is to minimize the electricity bill charged by WBSEDCL 

Ways and if possible to earn back some money feeding surplus power to the grid, so that this 

proposal becomes attractive to the consumer ie. the Rail Ways company.

To fulfill the objective, optimal power operation planning and the optimal c

above mentioned renewable power generators are proposed. 

for three set of generators. ie. Case I, II & III.

Case I.  Biomass gasifier unit (BMGU)

battery energy storage system (BESS).

Case II. Phosphoric acid fuel cell (PAFC) and

battery energy storage system (BESS).

Case III. Biomass gasifier unit (BMGU)

power system (SPS), along with 

Fig. 2.4 depicts the satellite image of the depot campus, captured from Google maps 

online application [208]. Fig. 2.5 

contactors, converters, relay panels

48 

amount of spare area is available to set up renewable power generators like biomass gasifier 

units, fuel cells, etc. Considering this scenario, only solar power system (SPS), 

and phosphoric acid fuel cell (PAFC) are proposed as DERs here

with a battery energy storage system (BESS). 

Beside the environmental benefits, the main objective for introducing distributed 

generation here is to minimize the electricity bill charged by WBSEDCL 

Ways and if possible to earn back some money feeding surplus power to the grid, so that this 

proposal becomes attractive to the consumer ie. the Rail Ways company. 

To fulfill the objective, optimal power operation planning and the optimal c

above mentioned renewable power generators are proposed. A comparative study is also done 

for three set of generators. ie. Case I, II & III. 
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Figure 2.4. Satellite view of the railway rake up

Figure 2.5. Single line diagram of the proposed protection system.

The cost evolution for this distributed generation system, three set of ge

considered as mentioned above. The test cases have been chosen in anticipation of the 

scenario that as per our present technology, BMGU has low installation cost and operating 

cost but power density is less. Whereas, PAFC has high installation
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Satellite view of the railway rake up-keeping depot.

Single line diagram of the proposed protection system.

The cost evolution for this distributed generation system, three set of ge

considered as mentioned above. The test cases have been chosen in anticipation of the 

that as per our present technology, BMGU has low installation cost and operating 

but power density is less. Whereas, PAFC has high installation and operating cost, but it 

keeping depot. 

 

Single line diagram of the proposed protection system. 

The cost evolution for this distributed generation system, three set of generators are 

considered as mentioned above. The test cases have been chosen in anticipation of the 

that as per our present technology, BMGU has low installation cost and operating 

and operating cost, but it 
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has high power density.ie. less space is required to install a high capacity power plant 

comparative to other DERs.   

Among various type of fuel cells, PAFC, with high efficiency, low chemical and thermal 

emissions, fuel flexibility, reliability, low maintenance, excellent part-load performance, is 

considered as most advanced in the range of 50 KW to 1000 KW [209,210]. Presently it is 

proved that, in micro-power systems, Solar power system (SPS) performs good with 

economic merit to mitigate nearby loads [211,212]. As per the scenario of Indian context, 

BMGUs are also playing a vital role in the area of decentralized energy generation systems 

[213-217]. Among existing batteries, VRLA (valve regulated lead acid) shows most 

technological maturity in respect of efficiency, initial cost etc [215]. 

2.8.1.  Objective Functions 

Here the objective function is total annual cost of this distributed generation system 

which is given by 

UMIO RRRRR +++=                                                                                                        (2.82) 

where RO , RI , RM , RU are operating cost, initial cost, micro-grid cost, and utility cost, 

respectively. 

Here the objective is to minimize the total annual cost R, with optimal power operation 

and to find the optimum installed capacity of various DERs. It is considered that, the control 

variables, Pbm, Pfc, Pbt, Pso are the vectors which represent the hourly basis power generation 

of a day in KW and ICbm, ICfc, ICbt, ICso are the installed capacities of Biomass, fuel cell, 

battery energy storage system and solar power system respectively. 

Operating cost varies for different type of DERs. Obm, Ofc, Obt, Oso are the operating costs 

per KW of BMGU, PAFC, BESS, SPS respectively. That implies, 

For Case I 

∑ =
++= 24

1
....365

hr sosobtbtbmbmO OPOPOPR                                                                          (2.83) 

For Case II 

∑ =
++= 24

1
....365

hr sosobtbtfcfcO OPOPOPR                                                                          (2.84) 

For Case III 

∑ =
+++= 24

1
.....365

hr sosobtbtbmbmfcfcO OPOPOPOPR                                                           (2.85) 
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Different DERs have different initial costs. Let I be the market rate of interest, IC bm, fc, bt, 

so  and C bm, fc, bt, so are the optimal installed capacities and installation costs per KW capacity 

of BMGU, PAFC, BESS, SPS respectively. The IC bm, fc, bt, so are calculated as 

IC bm, fc, bt, so = max | P bm, fc, bt, so  |                                                                                       (2.86) 

So the equated annual cost for installations considering depreciation, 

for Case I 

RI = ( fbm+ I ). ICbm . Cbm + ( fbt + I ). ICbt . Cbt + ( fso + I ). ICso . Cso                              (2.87) 

for Case II 

RI = ( ffc + I ). ICfc . Cfc + ( fbt + I ). ICbt . Cbt + ( fso + I ). ICso . Cso                                 (2.88) 

for Case III 

RI =(fbm+ I ). ICbm .Cbm + ( ffc + I ). ICfc . Cfc + ( fbt + I ). ICbt . Cbt + ( fso+I ). ICso .Cso    (2.89) 

Where f bm, fc, bt, so  are factors associated with sinking fund depreciation value, which are 

given below. 

 f bm, fc, bt, so = ��.		 (��� )( 1,,, −sobtfcbmLft )
(��� ) sobtfcbmLft ,,, 					�				�

                                                                           (2.90) 

Here, Lft sw, tfm, cbl, ctrl  are the estimated life times of these various DER power plants, with dr 

as the rate of depreciation. 

The micro-grid installation cost (including depreciation and interest on the invested money 

for these installations) can be expressed as 

RM = ( fsw+I ).Csw + ( ftfm +I ).Ctfm + ( fcbl +I ).Ccbl + ( fctrl +I ).Cctrl                                           (2.91) 

Where C sw, tfm, cbl, ctrl are the costs of optimum installed capacities of switch gears (including 

CTs, PTs, LAs), transformers (1100 / 415 V), cable and controller (including panel) 

respectively. Here, the subjected site for implementing distributed generation is not very 

large. Transformers (1100 / 415 V) are needed here as the interface between the grid and the 

micro-grid. As the DERs will be existed near the loads, the local network is proposed of 

415V. f sw, tfm, cbl, ctrl are the factors associated with sinking fund depreciation value, and are 

expressed as 

f sw, tfm, cbl, ctrl  = ��.		 ("�#$)( ctrlcbltfmswLft .,, 	%	")
("�#$) ctrlcbl,tfm,sw,Lft 					�				"

                                                                      (2.92) 

Here, Lft sw, tfm, cbl, ctrl are the estimated life times of these various equipments and dr is the 

depreciation rate. 

The utility cost RU includes the cost related for the purchasing of electricity from the grid and 

the selling of electricity to the grid. 
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RU = 365. ∑ (	 pE . pP −
slsl PE . )*+, -�  + 12.Eb.max (Pp)                                                    (2.93) 

Here the first part, ie.	 pE . pP , implies the cost to purchase electricity from the grid, with Ep 

being the rate of energy (which varies as normal, peak or off load time) and 	. amount of 

purchased energy per hour. The last term signifies base price of electricity charged by the 

utility on the basis of maximum demand contract, which charged by the electricity board in 

every month. The middle term, ie.	
slsl PE .  indicates the income of the consumer feeding or 

selling the surplus power to the grid. Here Psl is the amount of energy fed to the grid per hour 

and Esl is considered as selling price per unit amount of energy generated from DERs. It is 

enquired in 'Vidyut Bhavan', the Head Office of WBSEDCL, that there is no prominent 

scheme at which rate they can buy energy from any distributed generation system, but they 

have individual tariff for energy generated from different renewable energy generators which 

is fixed throughout every hours of the day. So the possible tariff to sale power to the grid is 

proposed here as  

∑ ∑ ∑
∑ ∑ ∑

++
++

=
hr hr hr sofcbm

hr hr hr sosofcfcbmbm

sl PPP

PSPSPS
E

...
                                                                    (2.94) 

where S bm, fc, so are the individual tariffs as regulated by the utility body. 

2.8.2.   Constraints 

There are several constraints to solve this optimization problem. The primary constraint 

for the optimal power operation is to meet the power demand (Pd) of the consumer for all 

instances. This can be formulated as  

| Pd
i |=Pbm

i + Pfc
i + Pso

i + Pbt
i + |Pp

i|- |Psl
i|,    (for i = 1… to ... 24)                                  (2.95) 

Pfc
i = 0, (for i = 1… to ... 24, Case I)                                                                                 (2.96) 

Pbm
i = 0, (for i = 1… to ... 24, Case II)                                                                              (2.97) 

Also, there are some auxiliary constraints in this optimization procedure. Let M bm, fc, bt, so are 

the maximum installable capacities of different DERs. Then 

0 ≤  Pbm
i ≤ Mbm ,   V i                                                                                                          (2.98) 

0 ≤  Pfc
i 
≤ Mfc ,   V i                                                                                                             (2.99) 

0 ≤  Pbt
i 
≤ Mbt ,   V i                                                                                                           (2.100) 

Battery energy storage system has certain storage efficiency. Let 
btη be the efficiency of the 

BESS. Considering that positive power indicates power delivered by BESS, 

( ) btbt
hr

bt Ρ×−−=Ρ∑ max1 η                                                                                               (2.101) 
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Solar power system can produce electricity neither in night and evening hours nor at 

uniformed rate throughout the day time. If SOP be the hourly basis solar potential to generate 

electrical power, then 

0 ≤  Pso
i ≤ SOPi ,   V i                                                                                                       (2.102) 

Thereafter, a crucial constraint for this particular case, is associated with the size of 

Transformer. Transformers have high costs and are nonlinearly related with their capacities. 

Besides, there are only some standard sizes of transformers available in market. Here, as 

mentioned earlier, the consumer has a maximum consumption of 120KVA and has connected 

load of 400 KVA. However they have installed 2 transformers (11000 / 415 V) with total 

capacity of 700 KVA. So, in case of excess production of power by the DERs, when the 

maximum amount of fed power is below 700 KW, no extra transformer is needed to be 

installed. But when it exceeds 700 KW, cost of transformer will be added. These facts are 

indicated as, 

Ctfm = 0 ,  ( for Max |Psl| ≤ 700 )                                                                                      (2.103) 

Ctfm = Tr100 ,  ( for 700 ≤ Max |Psl| ≤ 800 )                                                                      (2.104) 

Ctfm = Tr315 ,  ( for 800 ≤ Max |Psl| ≤ 1000 )                                                                    (2.105) 

Ctfm = Tr700 ,  ( for 1000 ≤ Max |Psl| ≤ 1400 )                                                                  (2.106) 

where Tr100, 315, 700 are the costs of transformers of capacities 100, 315, 700 KVA 

respectively. 

2.9. Optimal power controller design of active 

distribution network 
Taking environmental and technical floors into consideration, solar photovoltaic network 

(PV system) and valve regulated Lead Acid battery bank as battery energy storage system 

(BES system)) have been considered here to form a nano power network. 

2.9.1. Objective Function 

In this context, the objective is to minimize the net annual operating price anuR  along with 

optimized power operation of the installable renewable power producers. The  battP   and phvP  

represent the control vectors indicating a quarter hour basis daily power generation by the 

BES and PV system sequentially. This power generation takes place in accordance with the 

load power requirement data of similar time horizon. The battC and phvC represent the installed 
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capacities of the battery energy accumulating media and solar photovoltaic network in a 

sequential manner. 

An overall annum term operating price( )anuR can be represented as 

anu gen utlR R R= +                                                             (2.107)  

where, the first term on the right side of the equation( )genR  represents the power production 

price and can be expressed as 

96

1

365 ( ) ( )gen batt batt phv phv
t

R P t r P t r
=

= +∑                                                              (2.108) 

where ( )battP t  and ( )phvP t  indicate the quarter hourly power supplied by the battery energy 

storage system and the solar photovoltaic network sequentially attht  time duration. The terms

battr  and phvr  represent the equivalent prices of the aforesaid producers corresponding to per

kWh energy in the same sequence. 

The utility price, utlR  is the transaction cost associated with electricity buying and selling with  

the grid and can be expressed as 

( ) ( ) ( ) ( )

( )( )

96

1

365

12 max

utl bu bu sl sl
t

bumnl

R

r E t

E t r t E t r t
=

=

+

 − 
 

∑
                                                        (2.109)  

where, ( )buE t  and ( )slE t  indicate the amount of energy bought and vended respectively and the 

terms ( )bur t and ( )slr t  represent corresponding tariff rates. The termmnlr  indicates the utility grid 

contractual, thirty days basis minimal price in relation to the maximum consumable energy at 

the demand side.  

The surplus energy to the grid can be supplied at a price determined by using the 

individual tariff plan for inexhaustible energy resources involved in this objective task. Hence, 

by utilizing the combined tariff plan, the vending price of the surplus energy is can be 

expressed as 

,
phv phvhr

sl srp
phvhr

V P
r

P
= ∑
∑                                                                                                  (2.110) 
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where, phvV  indicates the individual basis vending price of the solar photovoltaic network. This 

price is regulated by the utility body. 

2.9.2. Constraints 

Imposition of the following constraints has been considered for the chosen optimization task. 

At the outset, the total power demand( )demP  of the hospital premise should be computed at 

every time instance as 

( ) ( ) ( ) ( ) ( ) ,dem batt phv bu slP t P t P t P t P t t= + + − ∀                                 (2.111) 

 The producers cannot produce power beyond the installed capacities of the renewable energy 

resources and battery energy storage system considered in the power network. Solar 

photovoltaic networks possess complete dependence on the irradiance level throughout the 

day. A limitation on this power production is observed during different durations of the day. 

This happens in accordance to the irradiance level for each duration and thus, 

( )0 ,batt battP t C t≤ ≤ ∀
                                                                                            

(2.112) 

( ) ( )0 ,phv pP t SO t t≤ ≤ ∀                                                                                        (2.113) 

where, ( )pSO t shows time based paramount electricity generation by the installed solar 

photovoltaic network. Consideringbatte  as the battery bank storing efficiency, energy lost in the 

battery energy accumulating media is deducted from the total power calculation. It has been 

assumed that power supplied by the battery energy accumulating media is positive (in terms of 

sign) and can be expressed as 

( )1 maxbatt batt batt
hr

e PP = − − ×∑                                                                   (2.114) 

2.9.3. System modeling 

Figure 2.6 represents the single line block diagram schematic of the electrical power 

system in the hospital campus. 



 

 

Figure. 2.6 Schematic of the electrical power network in the hospital

The PV system is connected through a non

scheme the PV system and inverter

PV characteristics around the maximum power point

model of the PV inverter system.

Figure. 2.7
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Schematic of the electrical power network in the hospital

The PV system is connected through a non-controlled grid connected inverter. In this 

scheme the PV system and inverter are modeled by their Norton equivalents linearizing the 

PV characteristics around the maximum power point. Figure 2.7 represents the electrical 

model of the PV inverter system. 

2.7. Electrical model of the PV inverter system.

 

Schematic of the electrical power network in the hospital 

controlled grid connected inverter. In this 

are modeled by their Norton equivalents linearizing the 

represents the electrical 

 

. Electrical model of the PV inverter system. 



 

 

This system can be mathematically modeled in state

average modeling technique as below [/0 1 2/ 3 45     6 1 7/ 3 85     / 1 9�:	;<��	;<=�>?@                              

 5 1 A�	BCD	BEF@                         

6 1 9;<��?                                            
where 

2 1
GH
HH
I 0 �: − (
− �<KL − �<KL∙NOPP(���)<QRS 0 − <QRS

4 1
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HH
IDTQRS: 0 0
0 �<KL 0
��U<QRS 0 − �<QRSVW
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X
                       

7 1 90	1	0?                                                                           8 1 90	0	0?                                       
In the above referred equations, 	;<=�> are the voltages across the input and output capacito

required duty is represented by 

current of PV array and the inverter respectively. 

array at maximum power point.

Figure 2.8
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mathematically modeled in state-variable representation applying the 

average modeling technique as below [218]. 
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In the above referred equations, �: is the current through the inductor 

are the voltages across the input and output capacitors [�� and [=�>
required duty is represented by �. Other inputs to the system, 	BCD and 	B=
current of PV array and the inverter respectively. 	\]^^ is the equivalent resistance of the PV

array at maximum power point. 

ure 2.8. Electrical model of the BESS. 

variable representation applying the 

                         (2.115) 

                      (2.116) 

                               (2.117) 

                                                                           (2.118) 

                                (2.119) 

                              (2.120) 

                              (2.121) 

                              (2.122) 

                               (2.123) 

is the current through the inductor _. The	;<�� and 

=�> respectively. The 

= are the equivalent 

is the equivalent resistance of the PV 
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The electrical model of battery energy storage system (BESS) has been represented by 

Fig. 2.8. The charging/discharging current of the battery energy storage system is modeled 

B̀ �>> 1 abcSS�adT bcSS                                                                                                               (2.124) 

where 	B̀ �>> is the charging/discharging current, 	è �>> and 	�̀ �>> are the internal battery 

potential and resistance respectively. VDC is the battery bank terminal voltage. 

Mathematically this BESS can be modeled as  

feg<0B:h i 1 j−1 \[hk 1 [hk−1 _hk 0 l meg<B:h n + f 01 _hk i 9�. eo ��?                                                      (2.125) 

eg< = m0	 1 [hk n meg<B:h n                                                                                                      (2.126) 

Where \ is the equivalent resistance of the battery at equilibrium, [h and _h are the filter 

capacitance and inductance, � is the required duty of the DC-DC converter and 	eo ��  is the 

DC bus voltage. 

The comprehensive schematic of the nano-grid is depicted as Figure 2.9 

Schematic of the electrical power network in the hospital

Electrical model of the BESS

Electrical model of the PV inverter system

Figure 2.9. Comprehensive schematic of the nano-grid. 

 



 

 

2.10. Optimization based fault detection scheme in 

photovoltaic system

2.10.1. PV system characteristics

Fig. 1 represents a single diode photov

current source, a diode, a series (

Fig

This single diode cell model entails the followi

(2.127) [219]. 
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I  is the generated photocurrent, 

diode ideality factor, q represents the elementary charge, 

is cell temperature. I  and V  are current an

In a PV module, these solar cells are connected in series and parallel combination. Thus, the 

I-V relationship of a module can be formulated as in (
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Where, 
s

N  is the number of PV cell connected in series in a module and 
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2.10. Optimization based fault detection scheme in 

photovoltaic system 

. PV system characteristics 

. 1 represents a single diode photovoltaic cell equivalent circuitry that contains a photo 

current source, a diode, a series (
s

R ) and a shunt (
sh

R ) resistors. 

Figure 2.10  Equivalent Circuit of PV Cell. 

This single diode cell model entails the following current-voltage (I-V

sh
R

s
RIV .

1
+

−−






                                                 

is the generated photocurrent, 
o

I  denotes the diode saturation cur

represents the elementary charge, k  is the Boltzmann constant and 

are current and voltage output respectively. 

In a PV module, these solar cells are connected in series and parallel combination. Thus, the 

relationship of a module can be formulated as in (2.128) [219]. 
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is the number of PV cell connected in series in a module and N

2.10. Optimization based fault detection scheme in 

oltaic cell equivalent circuitry that contains a photo 

 

V) relationship as in 

                          (2.127) 

denotes the diode saturation current, n  is the 

is the Boltzmann constant and T  

In a PV module, these solar cells are connected in series and parallel combination. Thus, the 

                         (2.128) 

p
N  is the number of 
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PV cell connected in parallel in a module. 

2.10.2. Effect of non-uniform irradiance 

It is very probable that solar irradiance be nonuniform throughout the panels in PV string. 

This causes dissimilar quantity of power production in PV units and also changes the 

operating temperature of the PV modules, which remarkably affects the PV current hence the 

power generation. 

To harvest the maximum possible amount of energy from the PV system, various MPPT 

processes have been used, most commonly, regulating the operating voltage. Modified 

Perturb & Observe (P&O) is a readily used algorithm, which achieves great success tracking 

the voltage at the maximum power point [197]. It instantaneously calculates the operating 

duty of the DC-DC power converter connected to the PV string which controls the operating 

voltage in real time. The operating PV string voltage at MPP  ( MPP
strV ) is given by (2.129). 

∑ == m
j

j
ocVdMPP

strV 1.                                                                                            (2.129) 

Where, d  is the duty of DC-DC power converter, m is number of PV modules connected in 

series in a string, in the PV string and 
j

ocV  is the open circuit voltage of the j
th module. 

2.10.3. Formulation of OC and SC faults in PV string 

To introduce heuristic search technique as a tool for fault diagnosis in PV system, a fault 

related system parameter based objective function is required. So, it is intended to develop a 

fitness function that helps to locate open and short circuited modules in a PV string. 

For each PV module three possible fault situations are considered:  no fault, OC fault and 

SC fault. These fault conditions can be realized, as depicted in Fig. 2.11, by opened and 

closed positions of imaginary switches as SWO1-SWOm (switches to cause open circuit 

faults) and SWS1-SWSm (switches to cause short circuit faults). These SWOs and SWSs are 

connected with each module in series and shunt respectively. Here SWOs are normally closed 

and SWSs are normally open. An OC fault in the i th module is realized by open SWOi and a 

SC fault in the i th module is realized by closed SWSi of the corresponding PV module. 
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Figure 2.11  Connection Scheme of PV string. 

As each module in a string experiences different solar irradiation and module 

temperature, operating voltages of each module are different. But, being connected in series, 

current through the modules (string current) is same. The operating voltage of individual 

module can be obtained from (2.128) with the information of module irradiance, temperature 

and string current obtained from respective sensors. In case of OC fault in a module, the 

voltage across the module terminals is negative of forward biased voltage of reverse bypass 

diode. During module SC fault, the voltage across that module will be zero. Voltage available 

at the string terminal is the summation of the voltages across each module. It is supposed that, 

whenever the PV string is faulty or healthy, the MPP tracker, connected across the string, is 

on its job to continuously control the operating voltage of the PV string for the sake of 

harvesting maximum power from the string. The string voltage at MPP can be realized by 

(2.129). Again, the string current at MPP depends on all of these module voltages. Hence, for 

different fault combinations, the string current varies. This property is mathematically 

exploited here to create the fitness function. Numerical expression of string output current at 

MPP ( MPP
str

I ) is derived based on the above narrated fault diagnosis concept.  

During normal operation (no fault), the string output current at MPP can be represented as 

(2.130). 

∑
=

⋅= 





 m

i iGiTMPP
i

V
R

MPP
str

I
1

),(
1

                                                                  (2.130) 

Where, R  is the equivalent load resistance, i denotes the position of the modules in the 

string, m is the total number of modules connected in series in the string, �� is the temperature 

of module at ith position, iG  is the solar irradiance on module at ith position, ),( iGiTMPP
i

V  is 

the voltage output of module at ith position for �� and iG  when the whole string is operating 

at MPP. 

The imaginary switches (SWOs and SWSs), as presented in Fig. 2, have been considered 

to introduce open and short circuit faults in the equation of string current. Here, in this 

problem, SWO and SWS are the decision vectors with dimension m, where m is the total 

number of modules connected in series in the string. The elements of the vectorsSWO and 

SWS are bound to be 0 or 1. The value of iSWO  as 0, indicates an open SWO associated with 

the ith module, which implies the ith module to be open circuited. Otherwise, the value of that 
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iSWO  being 1, it implies no open circuited fault in that ith module. In the same way, the value 

of iSWS  as 1 indicates closed SWS associated with the ith module, which implies the ith 

module to be short circuited. Otherwise the value of that iSWS  being 0, it implies no short 

circuited fault in that module. 

In occurrence of only open circuit faults, the open circuited modules are detached. At that 

time, the string current will flow through the normally connected modules and the bypass 

diodes connected across the respective open circuited modules. The current through those 

bypass diodes causes some power loss in the form of voltage drops across those bypass 

diodes. Thus, the string output current equation at MPP can be expressed as (2.131). 

( ) ( ){ }




 ∑

=
−×−×⋅=

m

i iSWOBDViGiTMPP
iViSWO

R

MPP
strI

1
1,

1
                                              (2.131)                   

 

Where, },...,,...,1{ mSWOiSWOSWOSWO =  and BDV  is the voltage drop at bypass diode in 

conduction state. 

For example, if 4th, 6th and 9th modules of the string, consisting of 10 numbers of modules, 

are open circuited, then, 10=m and }1,0,1,1,0,1,0,1,1,1{=SWO . Thus, SWO indicates the locations 

of OC faults in the string. 

Again, in case of only short circuited conditions of modules in the string, the voltage across 

short circuited modules will become zero. So, the string output current can be formulated as 

(2.132). 

( ) ( ){ }




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=
×−⋅=

m

i iGiTMPP
iViSWS

R

MPP
strI

1
,1

1
                                          (2.132) 

Where, }.,...,,...,1{ mSWSiSWSSWSSWS=  

For example, if 2th, 5th, 6th and 8th modules of the string, consisting of 10 numbers of modules, 

are short circuited, then, 10=m  and }0,0,1,0,1,1,0,0,1,0{=SWS . In this manner, SWS indicates the 

locations of SC faults. 

Now, to realize both OC and SC faults together, possible numerical combinations (Cb1-

Cb4) of  iSWO  and iSWS are tabulated in Table 2.1. In case of Cb1, it indicates normal 

operation, i.e., no fault in that module. At that situation, the bypass diode across that module 

is operating at reverse biased condition. In case of Cb2, indicating an OC fault, the bypass 

diode is in forward biased operation causing a voltage drop of  BDV  in the string. Again, in 

case of both Cb3 and Cb4, the value of iSWS is 1. In these situations, whatever is the value of 

iSWO  (0 or 1); the effects of both these switching combinations to the string are same as 
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short circuited operation of that module. In these cases, the terminal voltage across the bypass 

diode is zero. 

Table 2.1 

Realization of faults by switching combinations. 

Combination iSWO  iSWS  

Associated 

operating 

condition of the i
th module 

Terminal 

voltage across 

the i th Module 

Voltage across the 

bypass diode shunted to 

the i th Module 

Cb1 1 0 No fault ),( iGiT
MPP

i
V  ),( iGiT

MPP

i
V−  

Cb2 0 0 Open - BDV  BDV  

Cb3 1 1 Short 0 0 

Cb4 0 1 Short 0 0 

Considering these combinations and their effects on the string electrical parameters, 

(2.131) and (2.132) are combined to form a generalised equation (2.133) forMPP
str

I , where 

both OC and SC faults are considered in the string. 

( ) ( ) ( ) ( ){ }




 ∑

=
−×−×−×−×⋅=

m

i iSWSiSWOBDViGiTMPP
iViSWSiSWO

R

MPP
strI

1
11,1

1
             (2.133) 

So, the actual faults can be detected by following the actual current measured at the string 

operating at MPP and comparing the same with the calculated string current (MPP
sim

I ), which 

is equal to ( MPP
strI ), as given by (133). Hence, the objective function can be modelled as the 

absolute difference between measured string current ( MPP
measI  ) and calculated string current     

( MPP
sim

I ), operating at MPP. Thus, the fitness function, ),( SWSSWOFIT for PV string is 

formulated as a minimization problem (2.134). 

MPP
sim

IMPP
meas

IabsSWSSWOFIT −=),(                                                                           (2.134) 

Where, }.,...,,...,1{ mSWOiSWOSWOSWO =  

    }.,...,,...,1{ mSWSiSWSSWSSWS=  

            
MPP
measI = Measured faulty string current at MPP. 

            
MPP
sim

I = Calculated faulty string current at MPP. 
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The global minima of the fitness function (2.134) is zero (i.e., when MPP
sim

I  and MPP
meas

I  are the 

same). And the decision variables, that give the optimum solution, indicate the fault 

combination (location of OC faults and location of SC faults, individually), that has actually 

occurred in the string. 

2.10.4. Optimality condition 

There may be many suboptimal solutions, solved by different optimizer for different fault 

combinations, those are close to zero. Suboptimal solutions may fail to indicate the actual 

fault combination. As simulated irradiation and temperature distribution throughout the 

modules are taken same as existed in the operating physical PV string, the difference in value 

of MPP
sim

I and MPP
meas

I  is supposed to be caused by the dissimilarity of simulated fault 

combination from the actually occurred faults in the string. But, on the other hand, the 

optimal solution of the fitness function may not be exactly zero, but close to zero, due to 

various accuracy limitations of various sensors and measuring and recording devices. Hence, 

to guarantee the truthfulness of the solution, obtained by minimization of the fitness function 

(2.134), necessary optimality condition has been set. 

To set the optimality condition, the minimum difference of the effect on a PV string, due 

to the actual fault combination and some other combination of faults, has to be identified. It is 

interesting to note that, the minimum possible difference of total string power output between 

any two combinations of faults is either the power loss in a single bypass diode at any 

particular string current or the difference in power generation between those two modules 

whose irradiance values are the closest in that string, whichever is smaller for a particular 

faulty (or healthy) string.  

Thus, the optimality condition has to be set initially during the fault diagnosis procedure 

every time. Here, the optimality condition is: the difference, between actual power output     (

actualP ) of the physical PV string and the simulated power output (
simulatedP ) of the simulated 

model for the fault combination provided by the optimizer, must be less than a small number 

.ε   

So, the optimality condition can be mathematically expressed as,  ε<− actualsimulated PP  

Where, the value ofε  is determined as follows using simulated PV model: 

calculate BDP  
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calculate
ulePmod∆  

if BDP <
ulePmod∆  

ε = BDP  

else 

ε =
ulePmod∆  

Where, BDP , the power loss in a single bypass diode carrying the measured string current       

( MPP
meas

I ), is obtained as (2.135). 

MPP
meas

I
BD

VBDP ×=                                                                      (2.135) 

And
ulePmod∆ , the difference in power generation between those two modules whose 

irradiance values and thus the generated power are closest in that string, may be obtained as 

(2.136). 

{ } MPP
meas

Iuleule VP ×∆=∆ modmod min                                                        (2.136) 

Where, 
uleVmod∆  can be obtained by the following steps. 

{ 
for i=1 to m 

{ 
for j=1 to m 

{ 
if i≠j 

{ 

),(),().(mod j
GjTMPP

j
ViGiTMPP

i
VjiV ule −=∆  

} 
} 

} 
} 

2.10.5.  Fault diagnosis scheme using optimizer 

The proposed fault diagnosis scheme is represented as in Fig. 2.12. It shows the different 

blocks of the diagnosis process. The acquired physical data from the PV string are fed to the 

soft computing based diagnosis platform through a computer interface to carry out the search 

of the actual fault combination. Optimization technique is employed here to minimize the 

fitness function (2.134), so that, the actual fault combination can be identified. 



 

 

Figure 2.12. Block Diagram of the proposed fault diagnosis scheme.
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Block Diagram of the proposed fault diagnosis scheme.

 

Block Diagram of the proposed fault diagnosis scheme. 



 

 

All the physically measured data obtained from the respective sensors are exported to the 

diagnosis platform via computer interface. The data fed by the computer 

computed by the computing machine equipped with simulation software. A simulation 

model, replicating the physical PV string, is constructed. This simulated PV string is used to 

carry out the intermediate function evaluations as required

2.12. After computation by the optimizer, for the generated solution (i.e., the detected fault 

combination), the optimality condition is checked. If the solution satisfies the optimality 

condition, the detected fault is disp

scheme is depicted in Fig. 2.13

Figure 2.13. Computational flowchart of the fault diagnosis methodology.
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All the physically measured data obtained from the respective sensors are exported to the 

diagnosis platform via computer interface. The data fed by the computer interface have been 

computed by the computing machine equipped with simulation software. A simulation 

model, replicating the physical PV string, is constructed. This simulated PV string is used to 

carry out the intermediate function evaluations as required by the optimizer block in 

. After computation by the optimizer, for the generated solution (i.e., the detected fault 

combination), the optimality condition is checked. If the solution satisfies the optimality 

condition, the detected fault is displayed. The logical flow chart of this fault d

. 2.13. 

Computational flowchart of the fault diagnosis methodology.

All the physically measured data obtained from the respective sensors are exported to the 

interface have been 

computed by the computing machine equipped with simulation software. A simulation 

model, replicating the physical PV string, is constructed. This simulated PV string is used to 

by the optimizer block in Fig. 

. After computation by the optimizer, for the generated solution (i.e., the detected fault 

combination), the optimality condition is checked. If the solution satisfies the optimality 

layed. The logical flow chart of this fault diagnosis 

 

Computational flowchart of the fault diagnosis methodology. 
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Chapter 3 

 Solution techniques 

============================ 

3.1. Mathematical optimization 
A procedure to obtain the best possible solution(s) under given situations is named as 

optimization. Considering the design, maintenance, and construction of an engineering 

system, various technical and managerial decisions are needed at different stages. The 

ultimate aim of each of these decisions includes either to maximize the required advantage or 

to minimize the effort count [220]. For mathematical optimization, one or more objective 

functions need to be formed. The goal of the mathematical optimization techniques is to find 

values of the variables that minimize or maximize the objective function while satisfying the 

constraints. 

3.1.1. Expressional stating 

An optimization goal can be stated as, 

determine X in (), resulting in minimized or maximized values of ( )XF .  

W:{W1,W2,...,Wn}=F(X),                                                                                                     (3.1) 

Here, W is known as objective(s) and  

X:{x1, x2,....,xm} is decision vector. 

This is subjected to satisfy the equality and inequality constraints as in (3.2) and (3.3). 

0)( =XH j ,   hj ,...,2,1=                                                                                  (3.2) 

≤)(X
i

G 0,             gi ,...,2,1=                                                                                              (3.3) 
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3.1.2. Solution methodologies for power system optimization 

problems 

An elevated interest in algorithms encouraged by the aptness of natural phenomena is 

seen throughout the last few decades [221-227]. A lot of studies seeking to find optimal 

solution are being done [223,228,229]. Some algorithms perform better to solve some 

particular problems than others. A number of effective optimization algorithms are available 

in the literature. 

In the previous chapter of this thesis, various power system optimization problems have 

been formulated constructing the objective functions and according constraints. All of the 

problems stated here are in the form of minimization problems. Different available heuristic 

and meta-heuristic optimization algorithms have been applied to solve the power system 

optimization problems stated here in this thesis. These optimization algorithms and their 

application methodologies have been discussed in the following sections. 

3.2. Heat transfer search algorithm for economic 

dispatch problems 
In Heat transfer search (HTS) algorithm, the population is considered as a group of 

molecules that participate in a heat transfer attaining different temperature echelons [19]. 

Here variables correspond to different molecule temperature. The molecular energy level 

denotes the value of the fitness function. The HTS begins with a random initial population of

pop, and every solution has a gN numbers of decision variables. The values are updated with 

each iteration. The selection procedure here adopted is the greedy selection technique which 

allows the modernized solution in HTS, if it provides better solution. The worst solution is 

replaced by the best. The whole search process is conducted as in three equally probable 

phases which are determined by a parameterφ . The phase wise solution algorithm for ED 

problem applying HTS are as below. 

3.2.1.Conduction Phase 

In conduction phase, the system seeks to reach thermal equilibrium by heat transfer 

following conduction process. During this phase where cdfiteriter /max≤                                  

{ _factorconduction:cdf }, the solutions are modeled as follows: 
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1,
1

,
cd

iter
ikgP

iter
ijgP +=+

; for ( ) ( )
kgPEDC

jgPEDC >                                               (3.4) 

2,
1

,
cd

iter
ijgP

iter
ikgP +=+

; for ( ) ( )
jgPEDC

kgPEDC >                                                      (3.5) 

Where, iter is the current iteration, popj ,...,1= , ),....,1( popk ∈ , kj ≠  and thk  generation is  

randomly selected from the population, ),...,1( gNi ∈ . 1cd  and 2cd  are the respective 

conduction steps stated as follows: 

iter
ikgPcd
,

2
1 φ−=                                                                                                (3.6) 

iter
ijgPcd
,

2
2 φ−=                                                                                                 (3.7) 

Here, 2φ  is matched up to the conductance from the Fourier’s law equation and ikgP
, and 

ijgP
,  are matched up to the temperature gradients.  

In the next part where, 
cdfiteriter /max≥ , the solution are brought up to date as: 

;3,

1

,
cdPP iter

ikg
iter

ijg +=+
 for ( ) ( )

kgPEDC
jgPEDC >                                                         (3.8) 

;4,
1

,
cd

iter
ijgP

iter
ikgP +=+

 for ( ) ( )
jgPEDC

kgPEDC >                                                 (3.9) 

Where, 3cd  and 4cd  are the steps of conduction phase stated as follows: 

iter
ikgPircd
,3 −=                                                                                                       (3.10) 

iter
ijgPircd
,4 −=                                                                                                                (3.11) 

Where, ir  symbolizes the conductance in the Fourier's equation. Temperature gradient of the 

same Fourier's equation is represented by
ikgP
,  

and by 
ijgP
,

.  

3.2.2. Convection Phase 

In this phase, the system attempts to reach thermal equilibrium by heat transfer following 

convection process. The surrounding is considered as the best generation. At iteration 

cofiteriter /max<  { _factorconvection:cof }, tgP  is the surrounding temperature, mtgP  is the 

mean system temperature. When the system acquire higher energy than that of the 

surrounding i.e. ( ) ( )
mtgPEDC

tgPEDC <  , the solution can be modeled as follows: 
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co
iter

ijgP
iter

ijgP +=+
,

1
,                                                                                                 (3.12) 

Where, popj ,...,1= , gNi ,...,1= . The decision vectors are updated in the conduction phase. co 

is the convection step expressed as follows: 

( )tf
mtgP

tgPco ×−= φ                                                                    (3.13) 

Where, φ  becomes equal to the convection element of the Newton’s law of cooling and tgP

and mtgP  the surrounding temperature and the mean system temperature respectively. The 

system temperature constantly changes with the heat transfer process. The surrounding 

becomes the heat source or heat sink, so its temperature remains constant. To consider this 

effect, temperature change factor (tf ) is initiated. Thus, based on tf  , the mean system 

temperature can be varied. The value of tf  is determined as follows: 

( )irabstf −= φ ; for cofiteriter /max≤                                                         (3.14)                                                

( )irroundtf += 1 ; for cofiteriter /max≥                                                        (3.15) 

Where, ir  varies in the range [0, 1]. Initially the tf  changes between 0 and 1 at random. The 

value of  tf  becomes either 1 or 2. Different values of tf  are required to ensure balanced 

exploration and exploitation. The value of cof  is assigned 10 for the convection phase. 

3.2.3. Radiation Phase 

The heat transfer following radiation process is the cause here for system thermal 

equilibrium. Here, the system and the surrounding are interacted with each other within the 

system to achieve thermal balance. Initially in the radiation phase, where rdfiteriter /max≤ {

factorradiation_:rdf }, the solution is updated (i.e. energy lessening of the system) as follows: 

;1,
1

,
rd

iter
ijgP

iter
ijgP +=+

 if ( ) ( )
kgPEDC

jgPEDC >                                                                (3.16) 

;2,
1

,
rd

iter
ijgP

iter
ijgP +=+

 if ( ) ( )
jgPEDC

kgPEDC >                                                                  (3.17) 

Where, popj ,.....,1= , ),.....,1( popk ∈ , kj ≠  and thk  solution is a randomly selected from the 

population, ),...,1( gNi ∈ . All design variables of the solution is brought up to date during each 

iteration of the radiation phase. 1rd  and 2rd  are the radiation steps stated as follows: 

( )iter
ijgP

iter
ikgPrd

,,1 −= φ                                                                             (3.18) 



 

 

( )iter
ikgP

iter
ijgPrd

,,2 −= φ                         

Where, φ  matches up to the radiation element of the Stefan

jgP  matches up to the temperatures of system and the surrounding respectively.

Where, rdfiteriter /max≥ , the solution is brought up to date as follows:

3,
1

,
rd

iter
ijgP

iter
ijgP +=+

; if EDC

4,
1

,
rd

iter
ijgP

iter
ijgP +=+

; if EDC

Where, 3rd  and 4rd  are the radiation steps stated as follow

( )old
ijgP

old
ikgPirrd

,,3 −=                                                      

( )old
ikgP

old
ijgPirrd

,,4 −=                  

Where, ir :[0, 1] and radiation_:rdf

propensity in this phase. The value of 

Fig 3.1. portrays the flow chart of heat transfer search algorithm.

Figure 3.1 Computational flowchart of the
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matches up to the radiation element of the Stefan-Boltzmann law and 

matches up to the temperatures of system and the surrounding respectively.

, the solution is brought up to date as follows: 

( ) ( )
kgPEDC

jgPED >                                        

( ) ( )
jgPEDC

kgP >                                   

are the radiation steps stated as follows:                                                                          

                                                                                                

                                                                                         

factorradiation_ , which finds out the exploration and exploitation 

propensity in this phase. The value of rdf  has the value of 2. 

1. portrays the flow chart of heat transfer search algorithm. 

Computational flowchart of the HTS algorithm.

                      (3.19) 

Boltzmann law and kgP  and 

matches up to the temperatures of system and the surrounding respectively. 

                       (3.20) 

                                      (3.21) 

s:                                                                           

               (3.22)      

                       (3.23) 

, which finds out the exploration and exploitation 

 

HTS algorithm. 
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3.3. Artificial immune system (AIS) for MAED 

problems 

3.3.1. Immune system 

The immune system of vertebrates including human is self-possessed of cells, molecules 

and organs in the body which protect the body against infectious diseases caused by foreign 

pathogens such as viruses, bacteria, and so forth. To perform these roles, the immune system 

has to be capable to differentiate between the body’s own cells as the self cells and foreign 

pathogens as the non-self cells or antigens. After distinguishing between self and non-self 

cells, the immune system has to perform an immune response in order to get rid of non-self 

cell or antigen. Antigens are further classified in order to activate the suitable defense method 

and at the same time, the immune system also developed a memory to enable more competent 

responses in case of further infection by the similar antigen. 

Clonal selection theory explains how the immune system Fights against an antigen. It 

establishes the idea that only those cells which be familiar with the antigen are selected to 

proliferate. The selected cells are subjectedto an affinity maturation process which improves 

their attraction to the selected antigens. 

Clonal selection operates both on B-lymphocytes or B cells produced by the bone marrow 

and T-lymphocytes or T cells shaped by the thymus. When the body is exposed to an antigen, 

B cells would respond to secrete specific antibodies to the particular antigen. Thereafter, a 

second signal from the T-helper cells, a subclass of T cells, would then stimulate the B cell to 

proliferate and mature into terminal (non-dividing) antibody secreting cells called plasma 

cells. In proliferation, clones are generated in order to achieve the state of plasma cells as 

they are the mainly active secretors of the antibodies at a larger rate than rate of antibody 

discharge by the B cells. The propagation rate is directly comparative to the affinity level, i.e. 

higher the resemblance level of B cells more clones is generated. Clones are mutated at a rate 

inversely proportional to the antigen affinity, i.e. clones of higher affinity are subjected to 

less mutation compared to those which exhibit lower affinity. This process of selection and 

muta-tion of B cells is known as affinity maturation. 

T cells do not exude antibodies but play a middle role in the parameter of the B-cell 

response and are the most excellent in cell-mediated immune reaction. Lymphocytes, in 

addition to proliferating into plasma cells, can distinguish into long-lived B memory cells. 
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These memory cells circulate through the blood, lymph and tissues, so that when exposed to a 

second antigenic stimulus, they commence to differentiate into plasma cells capable of 

producing high affinity antibody, prese-lected for the specific antigen that had stimulated the 

primary response. 

3.3.2. Artificial immune system 

Artificial immune system (AIS) mimics these biological principles of clone generation, 

proliferation and maturation. The main steps of AIS based on clonal selection principle are 

activation of antibodies, prolif-eration and differentiation on the encounter of cells with 

antigens, maturation by carrying out affinity maturation process, eliminating old antibodies to 

maintain the diversity of antibodies and to avoid pre-mature convergence, selection of those 

antibodies whose affinities with the antigen are greater. 

In order to emulate AIS in optimization, the antibo-dies and affinity are taken as the 

feasible solutions andthe objective function, respectively. Real number is used to represent 

the attributes of the antibodies. 

Initially, a population of random solutions is gen-erated which represent a pool of 

antibodies. These antibodies undergo proliferation and maturation. The proliferation of 

antibodies is realized by cloning each member of the initial pool depending on their affinity. 

In minimization problem, a pool member with lesser objective value is measured to have 

higher affinity. The propagation rate is directly proportional to the affinity of the antibodies. 

The maturation process is carried through hyper-mutation which is inversely pro-portional to 

the antigenic affinity of the antibodies. The next step is the application of the aging operator. 

This aging operator eliminates old antibodies in order to maintain the diversity of the 

population and to avoid the premature convergence. In this operator, an anti-body is allowed 

to remain in the population for at most τB production. After this period, it is assumed that this 

antibody corresponds to local optima and must be abolished from the current population, no 

matter what its affinity may be. During the cloning expansion, a clone inherits the age of its 

parent and is assigned an age equal to zero when it is successfully hyper-mutated, i.e. when 

hyper-mutation improves its resemblance. Figure 1 demonstrates the flowchart of artificial 

immune system algorithm 
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Figure 3.2 Computational flowchart of the AIS algorithm. 

3.3.3. Implementation of AIS algorithm 

In this section, an algorithm based on artificial immune system for solving MAED 

problem is described below. 

Step 1. Let  

Pn = [ ( )
111211 ...,, MPPP , …, ( )

iiMii PPP ...,, 21 , …, ( )
1

...,, 21 NMNN PPP , ( )NTTT 11312 ...,, , ( )NTTT 22423 ...,, , …, 

( )( )NNT 1− ]’                                                                                                 (3.24) 

be the nth antibody of a population to be evolved and n = 1, 2, ..., NP. The elements of pn are 

real power outputs of the committed generators of all areas and tie line real power flows. The 
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real power output of the j th generator in area i is determined by setting ijP ~U ( )maxmin, ijij PP , 

where i = 1, 2, ..., N and j = 1, 2, ..., Mi. Tie line real power flow is determined by setting 
ikT

~U ( )maxmax , ikik TT− . baU ,  denotes a uniform random variable ranging over [a,b]. Each antibody 

should satisfy the constraints given by eqns. (2.10), (2.12), (2.13) and (2.14). [ref. chapter 2, 

sec. 2.2] 

Step 2. As MAED is a minimization problem, the affinity is the inverse of the objective 

function and it is given by the following equation. 

tF
Affinity

1
=                                                                                                                          (3.25) 

Step 3. The antibodies are cloned directly proportional to their affinities.  

Step 4. The clones undergo maturation process through hyper-mutation mechanism and 

are given by the following equation  

( ) ( );1,0 minmax

min

/
ijij

t

tn
Gnijmij ppN

F

F
mulPP −×××+= ,PNn ∈ ,cNm ∈ ,Ni ∈

iMj ∈                          (3.26) 

( ) ( )( );1,0 maxmax

min

/
ikik

t

tn
Tnikmik TTN

F

F
mulTT −−×××+= ,PNn ∈ ,cNm ∈ ,Ni ∈ ,Nk ∈ ki ≠              (3.27) 

where Ftmin is the minimum value of Ft among the NP solutions, mulG and mulT are scaling 

factors of real power generation and tie line power transfer respectively, Ftn is the value of the 

function associated with pn and N(0,1) represents a Gaussian random variable with mean 0 

and standard deviation 1. The term 
mint

tn

F

F
makes the mutation more intensive in antibodies 

with a high production cost and smooth in antibodies with low production cost. Each mutated 

clone must satisfy the constraints given by eqns. (2.10), (2.12), (2.13) and (2.14). [ref. chapter 

2, sec. 2.2] 

Step 5. The affinities of the mutated clones are evaluated. 

Step 6. Aging operator eliminates those individuals which have more than τB generations 

from the current population. When an individual is τB + 1 old it is erased from the current 

population, no matter what its fitness value may be. 

Step 7. Tournament selection is done to select a new population of the same size as the 

initial from the antibodies and mutated clones which are remained after application of aging 
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operator. Each of the antibodies and mutated clones which are remained after the application 

of aging operator undergoes a series of Nt tournaments with randomly selected opponents. 

The score for each population after a stochastic competition is given by 

=
npS ∑

=

tN

l
lS

1
 

1=lS if 
rn tptp FF ≺  

          0= otherwise                                                                                                               (3.28) 

The competitor pr is selected at random from among the antibodies and mutated clones. After 

competing the antibodies and mutated clones are ranked in descending order of the score 

obtained in eq. (3.28). The first NP population is selected for the next generation.  

Step 8. If the maximum number of generations is reached, output the optimal solution, 

i.e. the highest affinity value obtained so far and terminates the proposed algorithm. 

Otherwise, go back to Step 3. 

3.4. Multi objective differential evolution (MODE) 

algorithm for MAEED problems 

3.4.1.  Principle of Multi-objective Optimization 

Most of the practical problems involve concurrent optimization of numerous objective 

functions with non-commensurable, competing and conflicting objectives causing a rise to a 

set of optimal solutions, namely pareto-optimal solutions, instead of one optimal solution. No 

solution can be measured as better than any other in consideration of all objective functions 

together. 

Mathematically, a multi-objective optimization problem several equality and inequality 

constraints can be expressed as below. 

Minimize  )( xf i
    i  = 1,….., Nobj                                                                 (3.29) 

Subject to  




≤
=
0)(

0)(

xh

xg

l

k   
Ll

k

,....,1

,....,1

=
Κ=

                                                                 (3.30) 

where 
if  is the i th objective function, x is a decision vector.  
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3.4.2. Multi-objective Differential Evolution  

Differential Evolution (DE) is a fast, simple and robust optimizer in continuous domain 

[230-232]. It adapts the search during the evolutionary process. In the early stage of 

evolution, the perturbations of the intermediate solutions are large since parent populations 

are far away from each other in the search space. At the matured stage of the evolutionary 

process, the population converges to a tiny area and the perturbations of the probable 

solutions adaptively become diminutive. Uniquely, in DE, the fittest of an offspring competes 

one-to-one with that of corresponding parent. This one-to-one competition cause earlier 

convergence. In multi-objective differential evolution (MODE), a pareto-based approach is 

introduced to employ the assortment of the best individuals.  

3.4.3. Application of MODE in the problem 

Initially, a randomly generated population of size ΡΝ  are used to evaluate objective 

functions. i.e. (2.21) and (2.23). Here population indicates different amount of power  

generation of thermal units. Subjected to the all constraints (2.25), (2.26) and (2.27). [ref. 

chapter 2, sec. 2.3] 

At a specified iteration, non-domination based sorting and ranking of the population is 

performed. Non-dominated sorting procedure is described below.  

Non-dominated sorting: To acquire solutions of the fast non-dominated front in a 

population of size ΡΝ , each solution can be matched up to every other solution in the 

population to unearth if it is dominated. At this step, all individuals in the first non-dominated 

front are generated. In order to unearth the individuals in the next non-dominated front, the 

solutions of the first front are marked down for the time being and each solution of the 

residual population can be matched up to every other solution of the residual population to 

unearth if it is dominated. Thus all individuals in the second non-dominated front are 

generated. This is right for generating third and higher levels of non-domination.  

After that, DE operations are carried out over the individuals. After iteration and 

evaluation of trial vectors of size ΡΝ , these are combined with the parent vectors to form a 

population of size ΡΝ2 . Then, the ranking of the combined population and the crowding 

distance calculation are carried out. 
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Crowded distance estimation procedure: To acquire an estimation of the density of 

solutions contiguous a particular solution in the population, the average distance of two 

points on either side of this point along each of the objectives is computed. This quantity 

provides as an estimation of the perimeter of the cuboid structured by the nearest neighbors 

as the vertices. This is called crowding distance. The crowding-distance computation 

necessitates categorization of the population according to each objective function value in 

ascending order of magnitude. Thereafter, for each objective function, the boundary 

populations (populations with smallest and largest function values) are given very high 

distance value so that boundary points are always chosen. All other intermediate populations 

are given a distance value equal to the absolute normalized difference in the function values 

of two adjacent populations. This computation is kept on with other objective functions. The 

crowding-distance value is computed as the sum of individual distance values matching to 

each objective. Each objective function is normalized before computing the crowding 

distance.  

Crowded-comparison operator: The crowded-comparison operator conducts the 

assortment procedure at a variety of stages of the algorithm toward a uniformly spread-out 

pareto-optimal front. Every individual i  in the population has two features: 

a) nondomination rank ( )ranki  

b) crowding distance ( )cedisi tan
  

ji ≺    if 
rankrank ji <  or ( )( rankrank ji =  and ( ))cediscedis ji tantan >  

Between two populations with differing non-domination ranks, the population with the 

lower (better) rank is favored. If both populations belong to the same front, then the 

population with larger crowding distance is favored. 

Thus, top ΡΝ  individuals are selected based on its ranking and crowding distance. These 

individuals are the new parent vectors for the subsequent iteration. 

Figure 3.3  portrays the flowchart of multi-objective differential evolution. 

 



 

 

Figure 3.3. Flowchart of Multi

3.5. Non-dominated sorting genetic algorithm II 

(NSGA II) for WMAEED problems
To deal with a multiple objective and constrained incorporating optimizing task like the 

WMAEED, NSGA II has been taken for implementation.

has been determined here by fuzzy selection. 

following calculation steps. 
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Flowchart of Multi-objective Differential Evolution

dominated sorting genetic algorithm II 

(NSGA II) for WMAEED problems  
To deal with a multiple objective and constrained incorporating optimizing task like the 

has been taken for implementation. Selection of dominating solution 

has been determined here by fuzzy selection. The NDSGA II can be explained using the 

 

objective Differential Evolution 

dominated sorting genetic algorithm II 

To deal with a multiple objective and constrained incorporating optimizing task like the 

Selection of dominating solution 

can be explained using the 
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3.5.1. Dominance determination by fuzzy selection 

Let, 
if  is the i th objective function, x  is a decision vector that represents a solution, and 

Nobj  is the number of objectives. Decision vector 
1

x  dominates decision vector
2

x , if both the 

following conditions (3.31) and (3.32) are attained. 

a. Sufficient condition:  The decision vector 
1

x  is better than 
2

x  for all the objectives. 

∀ },...,1{
obj

Ni∈ , 















≤

21
x

i
fx

i
f                                                               (3.31) 

b. Necessary condition: The decision vector 
1

x  is strictly better than decision vector 
2

x  in at 

least one of the objective functions. 

∃ },...,1{
obj

Ni∈ , 













 <

21
x

i
fx

i
f                                                          (3.32) 

The optimum compromised solution gets preference among pareto-optimal solutions in 

agreement with the decision maker’s fuzzy in nature precondition. So, in order to describe 

membership functions, decision maker’s experiences and instinctive knowledge is used. The 

linear membership function ( 






j
xiµ ) for objective functions is as expressed in (3.33).  

                                       if, 






j
xf i ≥ 







j
xfi

max  








j
xiµ  =     



























−
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f
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ii

i

minmax

max

,    if, 






j
xif

min < 






j
xif < 







j
xif

max            (3.33) 

                      1,                           if, 






j
xif ≤ 







j
xif

min  

where, pareto optimal solution set is 








=
k

,...,x,xxX
21

, X
i

x ∈ and ki ,...,2,1= . 






j
xif

min and 








j
xif

max represents to the minima and the maxima of the i th objective function with j th 

pareto optimal solution respectively. 
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3.5.2. Calculation steps of NSGA II application 

Step 1. Initialization: At the beginning, an arbitrary parent population (
Gij
Ρ , 

Wik
Ρ ) with 

1N members is generated [ref. chapter 2, sec. 2.4]. This 1N number of (
Gij
Ρ , 

Wik
Ρ )  variables 

are referred hereafter as
POPPA . 

Step 2. Fast nondominated
POPPA sorting: The sorting takes place in accordance with the 

non domination. Different ranks correspondent of their level of nondominance / front 

numbers (best level by ‘1’, corresponds to the subsequent best level by ‘2’,and so on)are 

credited to each of the populations. 

Step 3. Selection by tournament: Two of the individuals are selected in an arbitrary 

manner. A comparison is made between their front numbers as well as for crowding 

separation and superior one gets selected. After this, it is ready for the mating pool.  

Step 4. Crossover and successive mutation: In this work, simulated binary crossover 

(SIBNCO), and polynomial type mutation [127] have been considered. A child population 

POPCH with same members as that of
POPPA is generated. 

Step 5. Merging: The aforementioned 
POPPA  and 

POPCH are merged to form a resultant 

population
POPPOPPOP CHPARES ∪= with twice the members of both 

POPPA as well as 
POPCH  

i.e. 12N .  

Step 6. Fast nondominance based
POPRES sorting: The

POPRES gets sorted in accordance 

with nondominance. Due to the involvement of each of the members of the
POPPA  as well as 

the
POPCH , elitism is assured. After that, the populations corresponding to the best 

nondominated set 1BND include best populations from the 
POPRES by emphasizing more on 

these than any other population in the
POPRES . With the assumption that the size of the1BND is 

lesser than the1N , each of the members corresponding to the1BND gets selected in order to 

generate a new community. Other members corresponding to it get selected from succeeding 

fronts based on the nondominance according to ranking assigned to them.  
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Hence, the succeeding selection is made for solutions from the 2BND grouping which is 

further succeeded by population members from the
3BND grouping and the process continues. 

The process continues till the selection of all the possible groupings. The grouping
BlND

represents the selection of final one based on nondominance. Normally, the number of 

solutions including all the aforementioned groupings 1BND , 2BND ,…,
BlND remains larger than

1N . For having absolutely1N solutions, population members from the final
BlND front are 

sorted with the ( )≺  operator in the decreasing order. Best population members get selected 

for filling of each of the population spots.  

A new population 'POP
PA with 1N members forms. Now, the tournament selection, 

crossover as well as mutation take place with the newly formed 'POP
PA . Then, a new child 

population 'POP
CH is formed with 1N  members. 

Step 7. Terminating criterion: The procedure terminates after execution of definite 

generations. Now, the terminating criterion is evaluated. In case, the criterion fulfils, the 

control shifts to the Step 8 otherwise 'POP
PA gets copied to

POPPA . After copying, the similar 

procedure is repeated from Step 3. 

Step 8. Final selection: The first solution that is the population member corresponding to 

the first front gets selected. 

Step  9. Termination: The procedure gets terminated. 

An expressional explanation related to the NSGA II has been mentioned next. 

POPPOPPOP CHPARES ∪= (Merging of the
POPPA  and the

POPCH ) 

• 
SF denotes fast nondominance based sorting(

POPRES ).  

( )BlBBS NDNDNDF ,...,, 21=  

Where
BiND denotes a nondominance based front corresponding to the

POPRES . 

φ='POP
PA , & 

1=p  

Until pPOP
FNPA +' 1Ν≤  (i.e. the 

POPPA  fills) 
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• Assigning of 
distp ( )pFN : 

pPOPPOP
FNPAPA ∪= '' (Inclusion of thp  nondominance based front in the

POPPA ) 

1+= pp (Checking of the succeeding front in order to include) 

• Sorting ( )≺,pFN : 

≺ is utilized for sorting in a decreasing order. 

( )[ ]''' 1:1
POPpPOPPOP

PANFNPAPA −∪=  

Selecting the starting( )'1 POP
PAN −  elements corresponding to pFN  

='POP
CH Generation of child population corresponding to the 'POP

PA  

3.6. Improved real coded genetic algorithm 

(IRCGA) for short term hydro-thermal scheduling 
The Genetic Algorithm (GA) is pioneered by John Holland [126]. A random initial 

population is created corresponding to candidate results. The ability to attain the universal or 

close to the universal optimized results corresponding to each new community is assessed by 

its fitness value. After getting selected for propagation, parents produce offspring through the 

crossover and mutation procedures. The generated individuals during propagation operate in 

differential regions of the exploring freedom. Tasks involving continuous exploration of large 

space are dealt with real coded genetic algorithm (RCGA) because of the difficulties 

corresponding to the binary form presentation [127-128]. Simulated binary crossover (SBC) 

along with the multinomial mutation has been adopted in this concise. 

To implement IRCGA, personal basis matching challenge has been incorporated in 

RCGA for boosting convergence speed as well as solution quality.  

Here, a child copes with the matching parent on individual basis. Initialization, selection 

of parent community, crossover, mutation, and selection between parent and offspring are the 

five levels of IRCGA. The fittest offspring competes on one-to-one basis with the 

corresponding parent to boost the convergence speed and solution quality, which is different 

from the other evolutionary algorithms. This powerful optimization technique is analogous to 

the natural selection process in genetics. It has the capability to converge to a global optimum 

with the maximum probability with relatively less computational time. 
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3.6.1. Population initialization 

In this optimization problem, the decision vector is 
sP  , the thermal power generation 

amount, and there is a dependent vector 
hP  {in eqn. (2.49)}, the hydro-electric power 

generation amount. The objective function (
cF ) is calculated according to (48) [ref. chapter 2, 

sec. 2.5]. This decision variable tisP ,  is indicated hereafter as (pqr). 

The initial population (pqr
0) corresponding to control variables gets selected arbitrarily 

from a uniform grouping of these variables ranging over the corresponding upper and lower 

limiting values.  Population size is chosen as a function of the string span. This can be 

expressed in accordance to (3.34). 

dvpq
mx
r

mn
rqr nrNqppUNFp ∈∈∀≈ ,),,(0

                                                   (3.34) 

Here, 
0
qrp  is the initial population corresponding to thr  variable of the thq  community. UNF(

mn
rp , mx

rp ) is an random variable ranging over( mn
rp , mx

rp ) in an uniform manner. mn
rp  and  

mx
rp  represents the minimum and the maximum limiting values corresponding to the thr

variable respectively. pqN is population size. dyn represents total number of decision 

variables corresponding to an individual.  

3.6.2. Parent population selection 

The selection method of GA is the process to determine the number of copies of each 

individual parent that can take part in the reproduction or mating pool. There are different 

processes to implement the selection method. Those are roulette wheel selection [108], 

tournament selection [233] and stochastic remainder selection [234]. The binary tournament 

selection method is utilized for choosing parents for mating pool. Two chromosomes are 

selected randomly from the population. The chromosome with lower objective function, 
if  

i.e. the winner one is set aside in the mating pool. This process is repetitive till the pool gets 

filled by the chromosomes. 

3.6.3. Simulated binary crossover (SBC) 

The main responsibility of crossover operator is to search for the global optimum. This 

operator basically combines the substructures of two parent chromosomes to produce new 

offspring, with a selected probability. SBC operator has been discussed in the following part 

of the concise. 
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a. Selection of an arbitrary number ar  between [0,1]. 

b. Computation of a parameter γ with the help of a multinomial type probability 

allocation as in (3.35). 

)1/(1).( += var ησγ            in case  σ/1≤ar  

   )1/(1)).2/(1( +−= var ησ ,otherwise                                                                                      (3.35) 

)1(

1
2 +−=

vB ησ                                                                                                                     (3.36) 

[ ])(),(
)(

2
1 21

12
q

mx
q

mn
qq

qq

ppppmn
pp

B −−
−

+=                                                                   (3.37) 

Here, 
vµ  represents allocation index corresponding to the SBC. Any positive value can be 

assigned to it. Generation of a descendant community depends on the value assigned to the 

vη . The generated offspring would be very far or at closed quarters from the parent people 

corresponding to a smaller or larger value of the 
vη . The calculation of intermediary 

communities takes place in accordance to (3.38) as well as (3.39). 

[ ])()(2 1221
1

1 qqqqqp ppppp −−+= − γ                                                                               (3.38) 

[ ])()(2 1221
1

2 qqqqqp ppppp −++= − γ                                                                       (3.39) 

 

3.6.4. Multinomial mutation operation 

The multinomial probability distribution is utilized to produce an offspring nearby the 

parent population by using an operator corresponding to the mutation. This can be stated as 

next. 

a. Selection of an arbitrary number ra ′between [0, 1].  

b. Calculation of parameter α as (3.40). 

[ ] 1)1).(.21(.2 )1(

1
)1( −−′−+′= ++

m
mrara ηηφα , in case 12−≤′ra          

[ ] )1(

1
)1(1 )1).(2.(2)1.(21 ++− −−′+′−−= m

mrara ηηφ ,  otherwise                                              (3.40) 

Where,
[ ]

)(

)).((
mn
q

mx
q

qp
mx
q

mn
qqp

pp

ppppmn

−
−−

=φ                                                                             (3.41) 
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Parameter 
mη is in equation (3.44) represents the allocation index corresponding to the 

mutation.  Any positive value can be considered. 

c. Empirical expressions associated with the mutated offspring can be expressed as (3.42) 

and (3.43) respectively. 

).(11
mn
q

mx
qqpq pppp −+=′ α                                                                                                  (3.42) 

).(22
mn
q

mx
qqpq pppp −+=′ α                                                                                                  (3.43) 

The perturbation can be altered by varying the 
mη and 

mtpr with iterations as equation (3.44) 

and (3.45). 

itermnmm += ,ηη                                                                                                                  (3.44) 

)
1

1(
1

chmxch
mt iter

iter
pr

ηη
−+=                                                                                             (3.45) 

Where, mnm,η represents the lowest value which is equivalent to the 
mη . 

mtpr  and 
chn  indicate 

the mutation stochastic value and total selection variables respectively. The objective 

function (
cF ) in eqn. (2.49) is treated here as

if . The 
if corresponding to each offspring is 

computed. 

3.6.5. Selection between a parent and an offspring 

The value of 
if  of each parent qrp is compared with that of matching offspring ′qrp . The 

population that has lower 
if  between qrp and matching ′

qrp  gets selected in order to operate 

in the following iteration as in equation (3.46). 

qrqr pp ′= , in case )()( qrqr pfpf ≤′  

      qrp= , otherwise                                                                      (3.46) 

An IRCGA typically searches for the optimal solution by maximizing or minimizing a given 

fitness function. Therefore an estimation function which evaluates the quality of the problem 

solution must be provided. This procedure is replicated till the maximum iteration is reached. 

The algorithmic flow of IRCGA is depicted in Fig. 3.4. 



 

 

Figure 3.4. Flowchart of the improved re
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Flowchart of the improved real coded genetic algorithm.

 

al coded genetic algorithm. 



 

90 
 

3.7. Water cycle algorithm (WCA) for optimal DG 

allocation problem 

3.7.1. Water cycle algorithm  

This algorithm has been proposed by Hadi Eskander et al. and is based on the water cycle 

which takes place in nature. Water moving downwards forms streams, then goes to river and 

finally flows into sea. Water from the streams and rivers evaporates and forms clouds, then, it 

rains, hence the cycle continues.            

 Initial population: Like other meta heuristic algorithms, this also starts with an initial 

population. Here, population is taken that of raindrops. Then the cost of raindrop is evaluated 

as follows 

)
var

.......,2,1( i
NxixixfiCostiC ==     popNi ,..,1=                                                                          (3.47) 

Where, ‘Npop’  and ‘Nvars’ are number of raindrops and number of design variables 

respectively. 

The raindrop having the minimum value is considered as the sea. Few of the minimum values 

are selected as number of rivers. Then ‘Nsr’  is given as follows: 

Nsr = Number of rivers + 1                                                                                                 (3.48) 

The above '1' signifies sea i.e. the minimum value and ‘Nsr’ is the raindrops with minimum 

values. 

Rest of the population is calculated as 

srNpopNraindropsN −=                                                                                                       (3.49) 

Whether to assign a raindrop to a river or to a sea depends on the intensity of the flow and is 

given by: 













×
∑ =

= raindropsN
srN

i iCost

nCost
roundnNS

1
,  n=1,…, Nsr                                                                                              (3.50) 

 ‘Nsn’  is the number of streams which flow to the specific river or sea. 

Stream flowing to river or sea: Raindrops forming streams or streams flowing to rivers 

are given as follows 

( )i
streamXi

riverXCrandi
streamXi

streamX −××+=+1                                                                                   (3.51) 



 

91 
 

( )i
riverXi

seaXCrandi
riverXi

riverX −××+=+1                                                                                    (3.52) 

Where, ‘ streamX ’, ‘ riverX ’ and ‘ seaX ’ represent positions of stream, river and sea 

respectively. ‘rand’ is a uniformly distributed random number between ‘zero’ and ‘one’. ‘C’ 

has a value between ‘one’ and ‘two’. Now, the positions of stream and river, or those of river 

and sea, are exchanged depending upon whichever has a better solution. 

 Evaporation: This is done to prevent the algorithm from rapidly converging. The distance 

between a river and a sea is checked if it is less than a given a small number ‘dmax’ (having 

value close to ‘zero’). If it is found to be less then, it is assumed that the river has joined the 

sea. Then the evaporation process takes place. As in nature, raining (precipitation) follows 

evaporation. The value of ‘dmax’  decreases over the iterations as: 

iteration

ididid
max_

max
max

1
max +=+                                                                                            (3.53) 

Where, ‘max_iteration’ represents the total number of iterations. 

 Raining process: In this process, new raindrops form streams at new locations. And the 

whole algorithm repeats all over again.  The best raindrop is considered the river which flows 

to the stream. Also the concept of variance in the form of ‘ µ ’ is used to enhance the 

searching process. Larger value of ‘µ ’ increases the possibility to exit from feasible region, 

whereas, smaller value leads to searching in the region close to the optimum value. 

3.7.2. Computational steps 

In this case, the aim is to minimized the real power loss (PL) and the objective function is 

according to (2.65). The decision vector is (Pi, Qi) [ref. chapter 2, sec. 2.6]. 

Step 1.  The initial parameters of WCA are chosen as Nsr, dmax, Npop and max_iteration.  

Step 2. Random initial population is generated. Here, population consists of the values 

the single DG unit which injects only P and five values of the VAR. Also the bus number at 

which these are placed is taken into account. That is the sizing and placement both accounted 

for. Initial streams (raindrops), rivers and seas are formed using (2.65) and (3.47).  

Step 3. The cost of each raindrop is calculated. In this case,   the cost function is the 

power loss for that particular set of values of DG and VAR which are placed at those specific 

buses. 
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Step 4. The intensity of flow of rivers and streams is calculated using (3.48). 

Step 5. The streams flow to the rivers using (3.49), whereas river flows to the sea using 

(3.50). 

Step 6. The position of a river with a stream as well as the position of a sea with a sea are 

exchanged depending on whichever has a better solution. 

Step 7. The evaporation condition where the distance between river and sea is compared 

with ‘dmax’ (which has a value close to ‘zero’). If the value is found to be less then, raining 

process begins. 

Step 8. The value of ‘dmax’ gets reduced after each iteration as per (3.51). 

Step 9. The stopping criteria is evaluated, which in this case, is the maximum number of 

iterations. If it is satisfied then the algorithm is stopped otherwise process gets repeated from 

‘step 5’. 

3.8. Social Spider Optimization (SSO) for Optimal 

power operation planning in a township 
Social spider optimization is a newly advanced swarm categorized algorithmic technique 

by Eric Cuevas and Miguel Cienfuegos. In this technique, spider individuals (i.e. exploring 

representatives) perform interactive activity with each other depending on the cooperative 

colony’s biological norms. The technique also incorporates gender consideration of the 

representatives. Communal web corresponding to these representatives is considered as the 

space for exploring. Each of the representatives’ position indicates a solution within the 

exploration space.   

3.8.1. Computational procedure applying SSO 

For this optimization problem the objective function is according to (2.68) along with 

different constraints [ref. chapter 2, sec. 2.7]. It is represented hereafter as ( )( )xOB . The 

decision vectors
FCP , BMP BTP and 

SOP  of eqn. (2.69) and (2.70) generate the Population (PO) of 

spiders’ in eqn (3.54). Computational procedure for obtaining solution through this technique 

is as mentioned below: 
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 Representatives’ selection: Population (PO) of spiders’ or exploring representatives’ 

each having p-dimensions is selected. In the P, female representatives (POF) remain between 

0.65-0.90 times (i.e. 65-90 %) of the PO in accordance to (3.54).  

FPO = floor {( )25.0.(90.0 rand− ).PO}                                                                     (3.54) 

Where, ‘floor’ keeps the integer part of a real valued population. ‘rand’ is utilized for random 

number generation between ‘zero’ and ‘one’. Male representatives (POM) are the complement 

of PO and POF in accordance to (3.55). 

{ }FM POPOPO −=                                                                                                               (3.55) 

Representatives’ population initialization: The POF alongside POM gets initialized, and 

radius of mating (RM) is calculated.  

=initl

rqFPO
,

{ })).(1,0( lowr
r

uppr
r

lowr
r POPOrandPO −+  with FPOq ,...,4,3,2,1=  , and DSr ,...,4,3,2,1=  (3.56) 

Where initl

rqFPO
,

in (3.56) indicates an arbitrary beginning position of the
thq female 

representative in the FPO  considering the DS indices. lowr
rPO indicates known lower 

beginning element limit. uppr
rPO  denotes known upper beginning element limit.  

=initl

rsMPO
,

{ })).(1,0( lowr
r

uppr
r

lowr
r POPOrandPO −+   

with MPOs ,...,4,3,2,1=  , and DSr ,...,4,3,2,1=                                                                         (3.57) 

Where initl

rsMPO
,

represents a randomized beginning position of the ths  male representative 

corresponding to thethr  DS index. Mating radius (MR ) is determined in accordance to (3.58). 

=MR
( )

( ) 













 ∑ −
=

DS

POPO
DS

r

lowr
r

uppr
r

.2

1                                                                            (3.58) 

Substituted function significance: A proper substituted function is utilized to attain 

global optimized solution in place of the objective function. The substituted function ( )( )xSB

can be obtained by adding a penalty function ( )( )xFN
 to the objective function ( )( )xOB in 

accordance to (). A term is introduced in the penalty function for constraints’ checking. This 

checking evaluates whether the constraints are in limits or not. Each of the representatives, 

involves in exploration, possesses a definite weight which determines its solution quality.  
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( ) { })()( xFxOxS NBB += with ( )xFN
 = 









∑ ∑+
= +=

v

pr

o

vpr
prpr xIJxIJ

1'

'

1''

2
''

2
' )(.')(.                                (3.59) 

WhereJ and 'J indicate the coefficients of penalty. A relative manner importance of each 

bounding is indicated by these coefficients. In order to decide their values, their importance 

with respect to each other is taken into consideration. ( )xI
pr'

 
and ( )xI

pr ''
 
represent the 

inequality and equality constraints in the sequential manner. In some scenarios, ( )xFN
 is not 

required depending on the problem and the constraints incorporated. 

Solution quality determination: Every exploring personal carries a certain weight. This 

weighing amount indicates the quality of solution provided by it (i.e. personal performance 

capability). An expressional representation corresponding to exploring personal spr'  weight 

involves (3.60). 

prWE = 
( )









−

−

prpr

prBpr

BSWRS

PSSWRS
                                                                                                  (3.60)                                                                                                                          

with,  prWRS = ( ){ }prB
PSpr

PSSMAXM
,...,4,3,2,1=

, and  

prBS = ( ){ }prB
PSpr

PSSMINM
,...,4,3,2,1=

                                     

Where, the prWRS  
indicates the maximum value of the ( ).BS  in terms of representative 

location. The ( )prB PSS  denotes the fitness value of the positionprPS for the personalpr . The

prBS indicates the minimum ( ).BS value in terms of a representative location. The prWRS and 

the prBS are defined in accordance to the objective goal. 

Vibrational communication:  In the communal exploring space, an information 

exchange among personnel happens via vibrations. The exchange depends on personal weight 

along with positional arrangement of personnel. The vibrational amount between the 

personnel locating nearer in the exploring space remains more in comparison to that of far 

locating personnel. Normally, three types of vibration are significant in the web (i.e. 

exploring space). 

:
mnVB  It corresponds to the one on representative ‘m’ by the ‘n’ having greater weight in 

comparison to the ‘m’, and sharing closest positional arrangement with it. Its expressional 

representation is in accordance to (3.61). 
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mnVB = 






 − 2

,. nm
n

ed
eWE                                                                                       (3.61) 

Where
2

,nmed indicates a Euclidian stretch between the personnel ‘m’ and ‘n’, and can be 

expressed as nm PSPS − .  

:
moVB   It represents the one on representative ‘m’ due to ‘o’, the heaviest one in the 

exploring space. Its expressional view involves (3.62). 

moVB = 






 − 2

,. om
o

ed
eWE                                                                               (3.62) 

:
mpVB  The one representing the vibrational amount on ‘m’ due to ‘c’, the closest female 

personal to it in the exploring space. In expressional form: 

mcVB = 






 − 2

,. cm
c

ed
eWE                                                                                     (3.63) 

Female representative cooperation: The POF shows either attracting or repelling 

behavior towards the remnant personnel without taking their gender into consideration. 

Vibrations impart driving for this behavior. An operator remains engaged with female 

cooperation to predict the cooperative behavior of the POF. For the prediction purpose, 

location changes are taken into consideration after the execution of each iteration. Modeling 

of this operator happens in accordance to (3.64). 

=+1iter
FPO ( ){ iter

FX
F

iter
F POPOXVBGPO −+ .. + ( )iter

FYFY POPOVBH −.. + ( )}50.0. −randK               (3.64) 

Where 1+iter
FPO indicates the position of representativeF during the 

thiter )1( +  iteration. ,G ,H

K along with rand represent randomized numbers between ‘zero’ and ‘one’. XPO  indicates 

the positional arrangement of personalX having more weight than theF while YPO

corresponds to the Y having the highest weight in the exploring space. 

Male representatives and their cooperation behavior: The POM can be categorized as 

dominant ( DMPO , ) and nondominant ( NDMPO , ) by assigning one of the personnel as the 

median (MDN). The DMPO , s possess greater weight than that of theMDN, and the NDMPO ,

s incorporate lesser weight than theMDN. An operator predicts the subsequent behavior of 

the POM personnel as mentioned next. 
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The DMPO ,  personnel show attractiveness towards the POF, and involve in mating. The 

NDMPO ,  personnel perform an approaching movement towards the POM’s weighted manner 

averaging in the exploring space. Expressional representation of these personnel’s movement 

involves (3.65). 

=+1iter
MPO ( ){ iter

MCMC
iter
M POPOVBGPO −+ .. + })50.0(. −randH , in case MDNMPO WEWE
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. , in case MDNMPO WEWE
F

≤+                            (3.65) 

Where 1+iter
MPO indicates the position of representative M during execution of the iteration

1+iter . CPO tells about the position of the closest female personal in the space to be 

explored. The term 





















∑
= +

∑
= +

MPO

q qFPO
WE

MPO

q qFPO
WEiter

qPO

1

1
.  in (3.65) represents the weighted manner averaging 

value of the POM.  

Mating:  This happens between 
eMPO  male representatives( )DMPOe ,∈ , and

eFPO having 

positional arrangement inside theMR . It assures about the seamless communal survival. The 

eFPO  mentioned above represents a grouping of female searchers. RepresentativeBD

corresponding to the subsequent generation is the each searcher corresponding to the
ePO =

eFeM POPO ∪ . In a scenario, when no
eFPO exists in the MR  then, the mating remains absent. 

The affecting probabilistic value (
aPRVA ) considering every searcher a is determined 

through Roulette method, and formulates the BD in accordance with (3.66). 

aPRVA = { ∑
∈

e
POa a

WE
a

WE }                                                                  (3.66) 

Wherea indicates the DMPO ,  taking part in the mating phenomenon with the
eFPO . Here, 

the BD  gets compared with the 
prWEWRS  in the exploring space. Then, the searcher with a 

smaller ( )xFN
value proceeds further after its selection. Considering the scenario, where each 

searcher is having the similar( )xFN
value then, the preference is given to heavier 



 

 

representative. In a scenario, where the

gender of the
prWEWRS . Thus, desired proportion of the PO

Ending norm check: Moving towards the final activity, an evaluation of ending norm is 

made. In its successful bringing to fruition, the computation process ends. An unsuccessful 

bringing to fruition of the criterion, transfers control to searcher weigh

Now, rerunning of the similar procedure takes place until the ending norm brings to fruition.

A schematic concerning sequential manner execution for the

Fig. 3.5. 
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representative. In a scenario, where theBD gets prioritized, it acquires index as well as the 

. Thus, desired proportion of the POF and the POM sustain

Moving towards the final activity, an evaluation of ending norm is 

made. In its successful bringing to fruition, the computation process ends. An unsuccessful 

bringing to fruition of the criterion, transfers control to searcher weighing computation step. 

Now, rerunning of the similar procedure takes place until the ending norm brings to fruition.

A schematic concerning sequential manner execution for the technique is in accordance to 

Computing steps for the social spider optimization

gets prioritized, it acquires index as well as the 

sustains.  

Moving towards the final activity, an evaluation of ending norm is 

made. In its successful bringing to fruition, the computation process ends. An unsuccessful 

ing computation step. 

Now, rerunning of the similar procedure takes place until the ending norm brings to fruition. 

technique is in accordance to 

 

ial spider optimization 
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3.9. Gravitational search algorithm (GSA) for 

Optimal power operation planning in a rail-way 

rake maintenance depot 

3.9.1 Implementation of GSA 

This search algorithm (GSA) has been utilized to solve the optimization problem as stated 

in chapter 2, sec. 2.8. The implementation logic of this algorithm is described in following 

steps. 

Step 1. Setting all the boundary values. 

Step 2. Randomized initialization of all agents within limits (Pbm, Pfc, Pbt, Pso), with 

number of population equal to N. [ref. chapter 2, sec. 2.8]. 

Step3. Fitness evaluation of agents using the objective functions considering all 

constraints (eqn. 2.82-2.106, as appropriate for specific cases). 

Step 4. Updating of G(t), best(t), worst(t) and Mi(t) for i = 1,2,. . .,N. 

Step 5. Calculation of the total force in different directions. 

Step 6. Calculation of acceleration and velocity. 

Step 7. Updating the position of agents. 

Step 8. Checking of space boundary, whether the agents have gone beyond the limits or 

have caused violation of the constraints. 

Step 9. if h is true, set the relevant agent/s to limit values or reinitialize them/it. 

Step 10. Repeat steps c to i until the stop criteria is reached. 

Step 11. End. 

3.9.2. Details of calculations in GSA 

Let the decision vector (Pbm, Pfc, Pbt, Pso ) be indicated as agent X. Then, considering a 

system with N agents the position of the i th agent is defined by 

( )n
i

d
iii xxxX ,....,.....1=  for  i ( )N,....,1∈                                                                               (3.67) 

d
ix  is the position of i th agent in the dth dimension. At a specific time t, the force acting on 

mass of ‘i’  from mass of ‘j’  as following 

( ) ))()(.(
)(

)().(
).()( txtx

tR

tMtM
tGtF d

i
d
jRpow

ij

ajpid
ij −

+
=

ε                                                                        (3.68)
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where Maj is the active gravitational mass related to agent j, Mpi is the passive gravitational 

mass related to agent i, G(t) is gravitational constant at time t, e is a small constant, and Rij(t) 

is the Euclidian distance between two agents i and j, and Rpow is a parameter. Which can be 

taken as (203) or (204). 

2
)(),()( tXtXtR jiij = .                                                                                                      (3.69) 

The gravitational constant G, is a function of the initial value G0 and time t 

).exp(.)( 0 T

t
GtG α−=

                                                                                                         (3.70)
 

Here α is a tuning parameter which is set to be 20 and G0 is initialized by 100. 

Gravitational and inertia masses are simply calculated by the fitness evaluation. Assuming the 

equality of the gravitational and inertia mass, the following equations come. 

iaipiai MMMM ===  ,  i ( )N,....,1∈                                                                                 (3.71) 

)()(

)()(
)(

tworsttbest

tworsttfit
tm i

i −
−=

                                                                                                  (3.72)
 

∑
=

= N

j
j

i
i

tm

tm
tM

1

)(

)(
)(                                                                                                                 (3.73) 

Where fit i(t) represent the fitness value of the agent i at time t. 

))((min)(
),...,1(

tfittbest j
Nj∈

=
                                                                                                     (3.74)

 

=)(tworst  ))((max
),...,1(

tfit j
Nj∈                                                                                                  (3.75)

 

A stochastic nature is introduced here assuming the total force acts on agent i in a dimension 

d be a randomly weighted sum of dth components of the forces exerted from other agents. 

)(.)(
,1

tFrandtF d
ij

N

ijj
j

d
i ∑

≠=

=
                                                                                                    (3.76)

 

Or it can be taken as 

)(.)(
,

tFrandtF d
ij

ijkj
j

d
i

best

∑
≠∈

=
                                                                                                  (3.77)

 

Hence the acceleration of the agent i at time t and in dth direction, )(tad
i  is given as follows 

)(tad
i )(

)(

tM

tF

ii

d
i=

                                                                                                                 (3.78)
 

Where Mii is the inertial mass of i th agent. Its position and velocity are calculated as follows. 
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)()(.)1( tatvrandtv d
i

d
ii

d
i +=+                                                                                              (3.79) 

)1()()1( ++=+ tvtxtx d
i

d
i

d
i                                                                                                  (3.80) 

3.10. Improved real coded genetic algorithm 

(IRCGA) for optimal power operation of PV aided 

nano-grid 
Goals concerning continuous large sized exploring space are transacted with real coded 

genetic algorithmic procedure (RCGA) considering the difficulties associated with their 

binary form representation. Simulated binary manner crossover (SIBICR) along with the 

multinomial type mutation has been introduced in this methodology. 

For implementation of the IRCGA, personal level matching challenge has been 

introduced in the RCGA to give a boost to convergence speed as well as solution quality. A 

descendant member copes up with the corresponding ancestor member on personal level. 

Initialization, ancestor members’ community selection, crossover, mutation, and selection 

between ancestor and descendant members formulate different computing steps of the 

IRCGA.  

In this optimization problem, the objective is to minimize ( )anuR of eqn (2.107).[ref. 

chapter 2, sec. 2.9]. The decision vector ( )battP t  and ( )phvP t  forms The early community 

0

bcp 
 
 

 of control variables hereafter. A brief discussion of each of the computing steps is 

mentioned herein. 

3.10.1. Computational details 

Initialization:  The early community 
0

bcp 
 
 

 of control variables is formulated through an 

arbitrary fashion selection from a uniform grouping of these variables within the lower and 

upper limiting values and can be expressed as 

( )0

~ , , ,mn mx
c c ab devbbcp UNF p p b N c n  ∀ ∈ ∈ 

 
                                                              (3.81) 
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where
devbn  indicates the total number of personal decision variables. 

abN  represents 

community dimensions. The
0

bcp 
 
 

 indicates the starting thc  variable of the thb  community 

while mn
cp  and mx

cp  indicate the minimum and the paramount limiting values corresponding 

to c. ( )mx
c

mn
c ppUNF ,  represents the uniform manner range of an arbitrary variable over 

( )mx
c

mn
c pp , . The objective function value 

ifn (that corresponds to the ith community) 

corresponding to each community is computed. 

Ancestor member community selection: The binary tournament selection methodology 

has been utilized to choose ancestor members for mating pool. A chromosome duo is 

haphazardly selected from the community. Afterwards, a comparative analysis is made 

corresponding to their objective function values. The one with lower 
ifn  i.e. the winner one is 

set aside in the pool. This process continues until the pool gets completely filled by the 

chromosomes. 

Simulated binary manner crossover (SIBICR): Methodology to find descendants 
1bp ′  

and 
2bp′  from two ancestors 

1bp  and 
2bp  through utilization of the SIBICR operator has been 

discussed as herein.  

1) Generation of a random numeral an between [0,1]. 

2) Attainment of a parameter z  with the help of a multinomial type probability allocation 

in accordance to (3.82). 

( ) ( )

( )

( )

1 1

1 1

, 1

1
, otherwise

2

al

al

an an

z

an

η

η

δ δ

δ

+

+

 × ≤

=  
  − × 

                                                                (3.82) 

where, 
( )1

1
2 +−=

alB
ηδ and B  can be represented in accordance to (3.83). 

( ) ( ) ( )[ ]21
12

,
2

1 b
mx
b

mn
bb

bb

ppppmn
pp

B −−
−

+=                                                                      (3.83) 

The parameter 
alη  represents an allocation index corresponding to the SIBICR; any 

nonnegative value can be assigned to it. A descendant community is generated in accordance 

to the value assigned to the 
alη .The generated descendants remains either very distant or at 

closed quarters from the ancestor society in accordance to a smaller or larger value of the
alη . 
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3) Intermediary communities’ computation takes place in accordance to (3.84) as well as 

(3.85). 

( ) ( )[ ]1221
1

1 2 bbbbba ppzppp −−+= −                                                                                      (3.84) 

( ) ( )[ ]1221
1

2 2 bbbbba ppzppp −++= −                                                                                      (3.85) 

Multinomial mutation: The multinomial probability allocation is used to generate a 

descendant in the vicinity of ancestor community by using a mutation operator. Its stating 

herein 

1) Production of an arbitrary numeral an′ in the[ ]0,1  range. 

2) Computation of the parameter χ in accordance to (3.86). 

( ) ( )( )
( )

( )
( ) ( )( )

( )

1

1
1

1

1

1

11

2
1 , 2

1 2 1

2 1
1 , otherwise

2 2 1
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m

m
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η

η

η

η

ϕ
χ

ϕ

+
−

+

+

+−

 ′×  ′− ≤  ′+ − × × −  
= 
 ′× − 
  −
  ′+ × − × − 

                                                                (3.86) 

where, the φ can be expressed as 

   ( ) ( )[ ]
( )mn

b
mx
b

ba
mx
b

mn
bba

pp

ppppmn

−

−−
=

,
φ                                                                                                  

The parameter 
alη  in the (3.86) represents the mutation allocation index; any nonnegative 

value can be assigned to it.  

3) Computation of the mutated descendants takes place in accordance to (3.87) and (3.88). 

( )1 1
mx mn

b ba b bp p p pχ′ = + −                                                                                                         (3.87) 

( )2 2
mx mn

b ba b bp p p pχ′ = + −                                                                                                       (3.88) 

A change in the perturbation can be made through iterative variations in the 
alη  and 

mutpr  as 

expressed in (3.89) and (3.90). 

itrnmnalal += ,ηη                                                                                                                   (3.89) 







 −+=

chvbmxchvb
mut itrn

itrn
pr

ηη
1

1
1

                                                                                             (3.90) 

where mnal,η  indicates the minimum value of the
alη and

chvbn  and 
mutpr represent the total 

number of choice variables and mutation probabilistic value respectively. 

The
ifn  value corresponding to each descendant is computed.  



 

 

Selection between an ancestor and a descendant

corresponding to each ancestor

with lower 
ifn  value gets priority to participate in the succeeding ite

(3.91). 

( ) ( ),

, otherwise
bc bc bc

bc

bc

p f p f p
p

p

′ ′ ≤= 


                                   

This procedure continues until the 

demonstrates execution sequence outline of the IMRCGA.

Figure 3.6
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Selection between an ancestor and a descendant: A comparison of 

corresponding to each ancestor
bcp and its matching descendantbcp′ . Out of these two, the one 

value gets priority to participate in the succeeding iteration in accordance to 

                                                                                           

This procedure continues until the maximum value of iteration
mxitrn is reached

demonstrates execution sequence outline of the IMRCGA. 

3.6. Computing execution flow of the IMRCGA

A comparison of 
ifn values is made 

. Out of these two, the one 

ration in accordance to 

                                                             (3.91) 

is reached. Fig. 3.6 

 

Computing execution flow of the IMRCGA 



 

104 
 

3.11. Grey wolf optimization for fault detection 

scheme in photovoltaic system 

3.11.1. Grey Wolf Optimizer 

GWO is a swarm intelligence based optimization technique inspired by grey wolves 

(Canis Lupus) [198]. It is based on the leadership hierarchy and the hunting mechanism of 

grey wolves in nature. The major three actions of this hunting mechanism are searching for 

prey, encompassing prey and attacking the prey. To enact these, four types of wolf, namely 

alpha, beta, delta and omega are employed. 

The alpha wolves are the topmost member of the hierarchy and the most promising 

member. They are the best in terms of managing the group. Beta is the next in the hierarchy 

of grey wolves and they are superior to the others in the group. It enacts the character of an 

advisor to the alpha and discipliner for the pack of wolves. The beta strengthens the alpha’s 

commands all through the pack and delivers feedback to the alpha. Those wolves that are not 

alpha, beta or omega are delta. They have to submit to alphas and betas, but dominate the 

omega. 

The hunting behaviour is loosely modeled by the following two operators: 

a)  Encircling prey: Grey wolves encircle the prey during hunt. The mathematical 

modelling of encircling the prey is given as 

( )tXtpXCD
����

−= )(.                                                                                                                  (3.92) 

( ) DAtpXtX
����

.)(1 −=+                                                                                                           (3.93)                                                                                                             

Where t indicates the current iteration,A
�

and [t  are coefficient vectors,pX
�

is the position 

vector of the prey, and X
�

 indicates the position vector of a grey wolf. The vectors A
�

 and [t 
are calculated as follows 

araA
����

−= 1.2                                                                                                      (3.94)  

2.2 rC
��

=                                                                                                              (3.95)                                                                                                       

Where components of a
�

 are linearly decreased from 2 to 0 over the course of iterations and

1r , 2r  are random vectors in [0, 1]. 
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b)   Hunting: For the mathematical representation of the hunting of the prey, it is 

supposed that the alpha (
α

X
�

) (best candidate solution) beta (
β

X
�

), and delta (
δ

X
�

)   have better 

knowledge about the potential location of prey. So the first three best solutions generated so 

far are saved and oblige the other search agents (including the omegas) to update their 

positions in accordance with the position of the best search agents. Then the position is 

calculated as given by the formulae in the previous section. The final updated position is 

given by (3.96). 

( )
3

321
1

XXX
tX

���
� ++

=+                                                                                                             (3.96) 

This optimization technique has great exportation and exploitation capability to search the 

optimum value in the search space as well as to avoid stagnation in local solutions. The 

values of  ut  and 	[t  aid in the process. As [t vector contains random values between 90,2? it 
favours exploration. On the other hand, the vector  ut helps in exploitation as the vector �t is 

linearly decreased from 2 to 0. 

3.11.2. Application of GWO in the fault diagnosis scheme 

Here, the role of GWO, being applied as minimiser, is to minimize (2.134) [ref. chapter 2, 

sec. 2.9], that is, to find the exact OC and SC fault combination which can cause the same 

amount of current, that are flowing through the PV string. To implement the GWO, switching 

combinations ),( SWSSWO  are distinguished as wolves.  For this optimization problem, SWO 

and SWS are the decision vectors, where each has m number of elements. m is the total 

number of modules present in the string. The detailed encode scheme of computational flow 

of the fault diagnosis strategy following string current for PV string implementing GWO is as 

follows: 

Step 1. Get MPP
measI ,

actualP , module temperature (T ) and irradiance (G ) data from the physical 

PV string. 

Step 2. Simulate 
simulatedP  for no fault condition at MPP and evaluateε  . 

Step 3. If 
actualP <

simulatedP , go to Step 4, to start fault diagnosis algorithm using GWO.  

            Otherwise, display: "Healthy string connections" and go to Step 1. 

Step 4. GWO Initialization: 

     a) Set N (number of Grey wolf position) & t (number of iterations). 
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     b) Randomly initialize N number of switching combinations ),( SWSSWO . 

     {This initialized switching combinations ),( SWSSWO resembles with X
�

} 

     c) Initialize a, A and C 

Step 5. Set Iteration count: k=1. 

Step 6. Set Wolf count: w=1. 

Step 7. Simulate
w

MPP
sim

I )(  .  

           {Simulated string current at MPP for wth wolf, i.e., switching combination

w
SWSSWO ),( } 

Step 8. Evaluate the fitness function
w

SWSSWOFIT )],([  

Step 9. If w<N, Set Wolf count: w=w+1 and go to Step 7. 

            Otherwise, go to Step 10. 

Step 10. Rank the Grey wolves based on the fitness: 

              α
),( SWSSWO =The best search agent. 

              
β),( SWSSWO =The second best search agent. 

              δ
),( SWSSWO =The third best search agent. 

Step 11. Update a, A, C and 
j

SWSSWO ),(  

Step 12. If ε<− actualsimulated PP  , terminate GWO, return α
),( SWSSWO and go to Step 14. 

              Otherwise, go to Step 13. 

Step 13. If k<t, set Iteration count: k=k+1 and go to Step 6. 

              Otherwise, terminate GWO, return α
),( SWSSWO  and go to Step 14. 

Step 14. Display detected fault as: α
),( SWSSWO . 
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Chapter 4 

 Results and discussion 

============================ 

4.1. Numerical Study on ED problems 

4.1.1. Solution Approach 

To solve highly non-linear and specially multi-modal mathematical optimization problem 

like ED, a heuristic optimizer capable of wide exploration and in-depth fine searching in the 

wide search space is essential. The aforesaid stages of the algorithm determines the balance 

between exploration and exploitation in the search space. To prefer both the wide exploration 

and in-depth fine searching, each stage of the suggested algorithm is put into practice with 

equal probability during the whole search procedure. The search procedures of all three 

stages are computed in such a manner that during the first half each stage investigates search 

space while in the second half each stage utilizes the search space. 

The proposed HTS algorithm is applied to three different power systems test cases. In 

each case 100 runs are conducted to compare the solution quality.  

4.1.2. Parameter Selection 

Test results have been built up to compare the recital of the suggested HTS with that of 

other stated evolutionary techniques. For all three cases, the tuning parameters of the 

proposed HTS algorithm (i.e. conduction, convection and radiation factors) have been set as 

2, 2 and 10 respectively. The values of NP and Nmax have been selected based on the problem 

dimension for different test cases. Number of elite solutions (NE) has been taken as top 10% 

of the population.  
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4.1.3. Test System 1 

This is a 15-unit system with POZ and transmission losses [1]. Here, the system 

dimension is 15. NP, NE and Nmax have been selected as 50, 5 and 100 respectively for this 

test system under consideration. The unit wise generation level and transmission loss 

acquired from HTS are as in table 4.1. Comparative results of particle swarm optimization 

(PSO) and improved particle swarm optimization (IPSO) are provided in table 4.2 [1,14]. Fig 

4.1 indicates the convergence characteristic of  HTS in this case.  

 

Table 4.1 

 Unit generation (MW) and power loss (MW) for Test System 1. 

Unit Gen Unit Gen 

1 562.7951 9 25.0000 

2 455.0000 10 25.0000 

3 130.0000 11 58.8098 

4 130.0000 12 80.0000 

5 150.0000 13 25.0000 

6 460.0000 14 15.0000 

7 465.0000 15 15.000 

8 60.0000 Ploss 26.6129 

 

Table 4.2 

Comparison of performance for Test System 1 

Techniques Best cost($) Average cost($) Worst cost($) 

HTS 32532.17 32533.04 32537.53 

IPSO[12] 32704.45 32704.45 32704.45 

PSO[8] 32858.00 33039.00 33331.00 
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Figure 4.1.  Convergence characteristic for Test System 1. 

 

4.1.4. Test System 2 

This system comprises of 40-unit system with valve-point effects [10]. Here, NP, NE and 

Nmax have been selected as 100, 10 and 200 respectively for this 40-dimensional optimization 

problem. The solved generation level are as in table 4.3. The problem has also been solved by 

improved particle swarm optimization (IPSO), new particle swarm optimization with local 

random search (NPSO-LRS), continuous quick group search optimizer (CQGSO) and 

biogeography-based optimization (BBO) [10,12,13,14] The comparative results and 

convergence pattern of HTS are provided in table 4.4. and Fig 4.2 respectively. 
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Table 4.3 

Unit generation (MW) for Test System 2. 

Unit Gen Unit Gen Unit Gen Unit Gen 

1 110.803 11 94.000 21 523.279 31 190.000 

2 110.800 12 94.000 22 523.279 32 190.000 

3 97.3987 13 214.759 23 523.279 33 190.000 

4 179.733 14 394.279 24 523.279 34 164.799 

5 87.9996 15 394.279 25 523.279 35 194.394 

6 140.000 16 394.279 26 523.279 36 199.802 

7 259.599 17 489.279 27 10.000 37 110.000 

8 284.599 18 489.279 28 10.000 38 110.000 

9 284.599 19 511.279 29 10.000 39 110.000 

10 130.000 20 511.279 30 87.799 40 511.278 

 

 

 

Table 4.4 

Comparison of performance for Test System 2 

Techniques Best cost($) Average cost($) Worst cost($) 

HTS 121370 121374 121380 

IPSO[12] 121403 121445 121525 

NPSO-LRS[10] 121664 122209 122981 

BBO[13] 121426 121503 121688 

CQGSO[14] 121412 121423 121438 
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Figure 4.2. Convergence characteristic for Test System 2. 

4.1.5. Test System 3 

 10-unit system considering multiple fuels with valve-point effects [4]. For this 10-

dimensional problem, NP, NE and Nmax have been selected as 50, 5 and 100 respectively. 

The generation results from HTS are as in Table 4.5. The comparative results among 

improved particle swarm optimization (IPSO), continuous quick group search optimizer 

(CQGSO), new particle swarm optimization with local random search (NPSO-LRS) and 

improved genetic algorithm with multiplier updating (IGA_MU) are in Table 4.6 with 

convergence curve of HTS as in Fig.4.3 [4,10,12,14]. 

Table 4.5 

Unit Generation (MW) for Test System 3 

Unit Gen F Unit Gen F 

1 229.5981 2 6 242.3580 3 

2 215.8744 1 7 306.2386 1 

3 296.6904 1 8 244.2562 3 

4 137.9270 1 9 440.0000 3 

5 294.4132 1 10 292.6441 1 
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Table 4.6 

Comparison of performance for Test System 3 

Techniques Best cost($) Average cost($) Worst cost($) 

HTS 608.156 608.195 608.253 

IPSO[12] 623.826 623.827 623.829 

NPSO-LRS[10] 624.127 - - 

CQGSO[14] 623.827 623.834 623.850 

IGA_MU[4] 624.517 - - 

 

 

Figure 4.3.  Convergence characteristic for Test System 3 

4.1.6. Analysys 

 The considered test cases are of different dimensions with various constraints, which 

provide unique mathematical character for each of the models. In terms of best average and 

worst results for all the cases, the algorithm are found to be better than the other available 

solutions in the literature. These findings indicate adaptability and robustness of the proposed 

algorithm. 
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4.1.7. Conclusion 

 The proposed HTS algorithm has been successfully applied to three non-convex 

economic dispatch problems considering valve-point effects, prohibited operating zones with 

transmission losses and multiple fuels with valve-point effects. The results have been 

compared with those obtained by other evolutionary algorithms in the literature. It is seen 

from the comparisons that the proposed HTS algorithm performs better than other 

evolutionary algorithms in the literature. 

4.2. Numerical Study on MAED problems 

The proposed AIS algorithm has been applied to solve MAED problems in three different 

test systems for verify-ing its feasibility. The software has been written in MATLAB 7 on a 

PC (Pentium – IV, 80 GB, 3.0 GHZ). 

4.2.1. Test system 1 

This system consists of two areas. Each area consists of three generators with prohibited 

operating zones. Transmission loss is considered here. The generator data have modified 

from [235]. The generator data and B-coeffi-cients are given in the Appendix 4.2.1. The 

percentage of the total load demand in area 1 is 60% and 40% in area 2. The total load 

demand is 1,263 MW and power flow limit of the system is 100 MW. 

The problem is solved by using AIS algorithm. Here, scaling factor of real power 

generation (mulG), scaling factor of tie line power transfer (mulT ), population size (NP), 

number of clones (Nc) and maximum iteration num-ber (Nmax) are taken as 1, 0.5, … 50, 10 

and 100, respec-tively for this test system under consideration. 

To validate the proposed AIS-based approach, the same test system is solved using 

differential evolution (DE), evolutionary programming (EP) and real-coded genetic algorithm 

(RCGA). The population size, scaling factor and crossover constant have been selected as 

200, 1.0 and 1.0, respectively, in case of DE. In case of EP, the population size and scaling 

factor have been selected 100 and 0.1, respectively. In RCGA, the popu-lation size, crossover 

and mutation probabilities have been selected as 100, 0.9 and 0.2, respectively. Maximum 

number of generations has been selected 100 for DE, EP and RCGA. 

Results obtained from proposed AIS, DE, EP and RCGA have been summarized in Table 

4.7. The cost con-vergence characteristic of this test system obtained from AIS, DE, EP and 

RCGA is shown in Fig 4.4. 
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Table 4.7 

Simulation results for test system 1 

 AIS DE EP RCGA 

P1,1 (MW) 500.0000 500.0000 500.0000 500.0000 

P1,2 (MW) 200.0000 200.0000 200.0000 200.0000 

P1,3 (MW) 149.9994 150.0000 149.9919 149.6328 

P2,1 (MW) 204.1371 204.3341 206.4493 205.9398 

P2,2 (MW) 154.8707 154.7048 154.8892 155.8322 

P2,3 (MW) 67.6140 67.5770 65.2717 65.2209 

T12 (MW) 82.7726 82.7731 82.7652 82.4135 

PL1 (MW) 9.4268 9.4269 9.4267 9.4193 

PL2 (MW) 4.1944 4.1890 4.1754 4.2064 

Cost ($/h) 12,255.39 12,255.42 12,255.43 12,256.23 

 

 

Figure 4.4.  Cost convergence characteristic of test system 1 
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Appendix 4.2.1 

Generator data for two area system 

Generator 

ij 

aij 

$/h 

bij 

$/MWh 

cij 

($/MW)2h 

min
ijP

 

MW 

max
ijP

 

MW 

Prohibited 

zones   

MW 

 

G1,1 550 8.10 0.00028 100 500 [210 240] 

[350 380] 

G1,2 350 7.50 0.00056 50 200 [90 110] 

[140 160] 

G1,3 310 8.10 0.00056 50 150 [80 90] 

[110 120] 

G2,1 240 7.74 0.00324 80 300 [150 170] 

[210 240] 

G2,2 200 8.00 0.00254 50 200 [90 110] 

[140 150] 

G2,3 126 8.60 0.00284 50 120 [75 85] 

[100 105] 

 

The transmission loss formula coefficients of two-area system 

4" = w"x "y x"y "z {x { |"} × "��� 

4�" = 9−�. |{�� −�. "y{x �. x�zx? × "��| 

4��" = 9�. �z�? 
4�y = wyz −� −�−� "y{ −y−� −y "��} × "��� 

4��y = 9�. ���? 
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4.2.2. Test system 2 

This system comprises 10 generators with valve-point loading and multi-fuel sources 

having three fuel options. Transmission loss is considered here. The gen-erator data have 

been taken from [202]. The total load demand is 2,700 MW. The 10 generators are divided 

into three areas. Area 1 consists of the first four units; area 2 includes the next three units and 

area 3 includes the last three units. The load demand in area 1 is assumed as 50% of the total 

demand. The load demand in area 2 is assumed as 25% and in area 3 is taken as 25% of the 

total demand. The power flow limit from area 1 to area 2 or from area 2 to area 1 is 100 MW. 

The power flow limit from area 1 to area 3 or from area 3 to area 1 is 100 MW. Also the 

power flow limit from area 2 to area 3 or from area 3 to area 2 is 100 MW. The B-

coefficients are given in the Appendix 4.2.2. 

AIS algorithm is used to solve the problem. Here, scaling factor of real power generation 

(mulG), scaling factor of tie line power transfer (mulT ), population size (NP), number of 

clones (Nc) and maximum itera-tion number (Nmax) are taken as 1, 0.5, 50, 10 and 300, 

respectively, for this test system under consideration. 

In order to validate the proposed AIS-based approach, the same test system is solved using 

DE, EP and RCGA. In DE, the population size, scaling factor and crossover constant have 

been selected as 200, 1.0 and 1.0, respectively. The population size and scaling factor have 

been selected 100 and 0.1, respectively, in case of EP. In RCGA, the population size, 

crossover and mutation probabilities have been selected as 100, 0.9 and 0.2, respectively. 

Maximum number of generations has been selected 300 for DE, EP and RCGA. 

Results obtained from proposed AIS, DE, EP and RCGA have been presented in Table 

4.8. The cost convergence characteristic of this test system obtained from AIS, DE, EP and 

RCGA is shown in Fig 4.5. 
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Table 4.8 

Simulation results for test system 2 

  AIS  DE  EP  RCGA 

  Fuel  Fuel  Fuel  Fuel 

P1,1 (MW) 249.9932 2 250.0000 2 250.0000 2 241.1238 2 

P1,2 (MW) 230.0000 1 230.0000 1 230.0000 1 217.9371 1 

P1,3 (MW) 425.7459 2 421.7415 2 421.7450 2 474.3300 2 

P1,4 (MW) 259.3045 3 263.2026 3 263.1955 3 248.4239 3 

P2,1 (MW) 235.9642 1 239.3128 1 244.3361 1 250.5749 1 

P2,2 (MW) 233.4799 3 230.9321 3 233.2185 3 222.5926 3 

P2,3 (MW) 254.4325 1 252.4330 1 243.3656 1 234.9363 1 

P3,1 (MW) 232.8335 3 234.2974 3 240.1423 3 228.5379 3 

P3,2 (MW) 370.6897 3 370.4444 3 371.5352 3 384.3050 3 

P3,3 (MW) 241.0603 1 241.0873 1 235.8444 1 232.5959 1 

T21 (MW) 100.0000  100  100  92.0603  

T31 (MW) 100.0000  99.9964  100  92.7851  

T32 (MW) 60.0060  61.2609  63.0646  67.8913  

PL1 (MW) 15.0000  14.9000  14.9000  16.7000  

PL2 (MW) 8.8826  8.9388  8.9848  8.9348  

PL3 (MW) 9.5775  9.5718  9.4573  9.7624  

Cost ($/h) 674.5502  674.8207  675.3977  687.4220  
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Figure 4.5.  Cost convergence characteristic of test system 2 

Appendix 4.2.2 

The transmission loss formula coefficients of two-area system 

4" = � �. x� �. z| −z. "� �. |��. z| �. |� −�. {x �. yy−z. �" −�. {x {. �� −y. ���. |� �. yy −y. �� �. |� � × "��� 

4�" = 9−�. |{�� −�. "y{x �. x�zx �. ��{"? × "��| 

4��" = 9�. ���? 
4y = w �. �� −�� −|x−�. �� {. �� −z. {��. |x −z. {� �. yz } × "��� 

4�y = 9�. y"�" −�. ��|� �. ��|z? × "��| 

4��y = 9�. ���? 
4| = w ". y� −�. {� �. ��−�. �� {. �� −�. |�−�. �� −�. |� �. {{ } × "��� 

4�y = 9−�. |y"� �. z�|� �. |��|? × "��| 

4��y = 9�. ���? 
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4.2.3. Test system 3 

This system comprises 40 generators with valve-point loading. The generator data have 

been taken from [236]. The total load demand is 10,500 MW. The 40 generators are divided 

into four areas. Area 1 includes first 10 units and 15% of the total load demand. Area 2 has 

second 10 generators and 40% of the total load demand. Area 3 consists of third 10 

generators and 30% of the total load demand. Area four includes last 10 generators and 15% 

of the total load demand. The power flow limit from area 1 to area 2 or from area 2 to area 1 

is 200 MW. The power flow limit from area 1 to area 3 or from area 3 to area 1 is 200 MW. 

The power flow limit from area 2 to area 3 or from area 3 to area 2 is 200 MW. The power 

flow limit from area 4 to area 1 or from area 1 to area 4 is 100 MW. The power flow limit 

from area 4 to area 2 or from area 2 to area 4 is 100 MW. The power flow limit from area 4 to 

area 3 or from area 3 to area 4 is 100 MW. Transmission loss is neglected here. 

The problem is solved by using AIS algorithm. Here, scaling factor of real power 

generation (mulG), scaling factor of tie line power transfer (mulT), population size (NP), 

number of clones (Nc) and maximum iteration num-ber (Nmax) are taken as 1, 0.05, … 100, 

20 and 500, respectively, for the test system under consideration. 

To validate the proposed AIS-based approach, the same test system is solved using DE, 

EP and RCGA. The population size, scaling factor and crossover constant have been selected 

as 400, 1.0 and 1.0, respectively, in case of DE. In EP, the population size and scaling factor 

have been selected 200 and 0.1, respectively. In case of RCGA, the population size, crossover 

and mutation prob-abilities have been selected as 200, 0.9 and 0.2, respec-tively. Maximum 

number of generations has been selected 500 for DE, EP and RCGA. 

Results obtained from proposed AIS, DE, EP and RCGA have been depicted in Table 4.9. 

The cost conver-gence characteristic of this test system obtained from AIS, DE, EP and 

RCGA is shown in Figure 4.6. 
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Table 4.9 

Simulation results for test system 3 

Power 

(MW) 

AIS DE EP RCGA Power 

(MW) 

AIS DE EP RCGA 

P1,1 113.7914 93.0826 114.0000 94.0855 P3,4 525.4970 545.9437 531.7377 524.9246 

P1,2 
113.9998 109.0592 114.0000 47.7313 P3,5 527.2531 523.6608 526.7530 495.4096 

P1,3 64.7248 89.7493 63.7726 85.4353 P3,6 550.0000 527.3677 550.0000 442.8850 

P1,4 80.1469 116.9489 138.8847 131.2807 P3,7 10.0000 10.0000 10.0000 51.7060 

P1,5 97.0000 97.0000 75.3245 79.1771 P3,8 10.0006 15.7851 10.0000 42.4448 

P1,6 109.0492 140.0000 106.4216 131.4026 P3,9 10.0009 10.0000 10.0000 47.9812 

P1,7 260.3904 283.7266 300.0000 176.5484 P3,10 97.0000 93.0253 89.7589 95.5812 

P1,8 300.0000 286.2646 300.0000 232.6707 P4,1 160.1255 190.0000 173.5365 149.1883 

P1,9 285.9479 284.9088 284.9513 292.1746 P4,2 190.0000 157.8968 190.0000 159.4065 

P1,10 130.0000 131.6349 136.7335 130.1531 P4,3 162.0924 190.0000 116.4310 161.6999 

P2,1 159.9752 169.8738 175.3639 340.9307 P4,4 169.7535 200.0000 180.6554 167.5135 

P2,2 160.0619 110.9708 94.0000 185.7976 P4,5 167.6944 90.0000 162.0916 172.4220 

P2,3 393.4413 229.8845 263.8126 462.1471 P4,6 169.8139 149.4540 173.0920 179.2210 

P2,4 394.2748 387.4742 331.0545 391.6765 P4,7 59.6628 110.0000 109.4254 91.9333 

P2,5 394.2794 427.7543 394.2191 376.9261 P4,8 110.0000 88.1630 74.3342 92.5453 

P2,6 394.2794 478.2780 413.0955 484.3564 P4,9 91.5097 25.0000 99.6914 89.0354 

P2,7 489.2794 490.1819 499.6763 481.2045 P4,10 458.7990 538.4695 541.9711 458.8239 

P2,8 489.2794 490.9476 500.0000 421.9451 T12 113.8184 200 200 −118.7357 

P2,9 511.2794 511.9152 533.8328 469.0019 T31 55.4544 91.5412 94.6831 −25.9549 

P2,10 511.2794 511.8241 508.9305 511.2801 T32 152.4622 147.8992 186.0147 174.0405 

P3,1 530.0810 547.6323 520.6865 513.0630 T41 78.3136 51.0838 46.2286 81.5599 

P3,2 523.4983 523.4937 531.7618 513.8375 T42 36.2899 42.9964 100 19.4290 

P3,3 524.7380 522.6286 550.0000 524.4524 T43 49.8478 69.9032 100 45.8003 

Total 

cost 

($/h) 

      

123,246.1 

 

124,544.1 

 

124,574.5 

 

129,911.8 
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Figure 4.6.  Cost convergence characteristic of test system 3 

 

4.2.4. Discussion 

Results show that the minimum production cost for three test systems as obtained by AIS 

is less compared to those obtained by DE, EP, and RCGA. This clearly shows that AIS has 

the ability to reach to the minimum solution consistently. It establishes the improved 

robustness of the algorithm. Convergence characteristics for test systems 1, 2, 3 obtained by 

AIS, as presented in Figures 4.4, 4.5 and 4.6 clearly reflects that AIS reaches to the minimum 

solutions within very few numbers of iterations. These establish the superior computational 

efficiency of AIS. Therefore, the above results prove the enhanced ability of AIS to solve 

complex, non-smooth, non-convex MAED problem in order to achieve superior quality 

solutions, in a computationally efficient and robust manner. 
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4.2.5. Conclusion 

In this article, AIS has been successfully implemented to solve MAED problems. The 

effectiveness of the proposed method is illustrated by using three different test systems and 

the test results are compared with the results obtained from DE, EP and RCGA. It is seen 

from the comparison that the proposed AIS has the ability to con-verge to a better quality 

solution than DE, EP and RCGA. 

 

4.3. Numerical Study on MAEED problems 

4.3.1. Simulation results 

A four area test system consisting of four generators in each area with nonsmooth fuel cost 

as well as functions related to pollutants’ level has been implemented in the work for 

demonstrating the productivity of the MODE method. The generation data and tie line 

exchanging limits for the considered system are mentioned in the Appendix 4.3. Load 

demands corresponding to area 1, 2, 3, and 4 are 30 MW, 50 MW, 40 MW, and 60 MW 

respectively.  The calculations have been done by an in-house developed code in the 

MATLAB R2013a.Total fuel cost as well as emission objectives have been minimized 

separately with real coded genetic algorithmic technique (RCGA) for finding the trade-off 

surface’s extreme points.  Comprehensive area wise system characteristics related to 

generation levels, corresponding operating costs and their emissions are depicted in Fig 4.7, 

Fig. 4.8, Fig 4.9 and Fig. 4.10 respectively for all four power system areas. 

 
Figure 4.7. Power-cost-emission characteristics for Area 1. 
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Figure 4.8. Power-cost-emission characteristics for Area 2. 

 

 
Figure 4.9. Power-cost-emission characteristics for Area 3. 

 

 
Figure 4.10 Power-cost-emission characteristics for Area 4. 
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Total members or population, maximum generation number, mutation probability, and 

crossover probability are taken as 100, 500, 0.2, and 0.9sequentially for aforementioned test 

system. It has been observed that for cost minimizing objective, fuel cost remains 1521.92 

$/hr and emission level at 279.1049 /lb hr. An increment in the cost up to 2858.45 $/hr and 

emission decrement up to 250.6567 /lb hr was noticed with respect to emission minimization. 

Curves of convergence concerning cost and pollutants level have been presented in Fig. 4.11 

and Fig. 4.12 sequentially. The generation amount in these Figures is in MW. In order to 

optimize cost as well as emission at the same time, the MODE was implemented. 

For aforementioned purpose, parameters were selected as mentioned next. Total members 

or population, maximum generation number, mutation and crossover probabilities are 20, 50, 

0.2 and 0.9sequentially for the considered system. It is seen that cost is 2306.15 $/hr which is 

more than 1521.92 $/hr and less than 2858.45 $/hr and emission is 263.0229 /lb hr which is 

less than 279.1049 /lb hr and more than 250.6567 /lb hr. For demonstrating the NDSGA II 

productivity, the SPEA II is selected for solving the MAEED objective. Parameters 

corresponding to the SPEA II have been mentioned next. Total members or population, 

mutation and crossover probabilities, and maximum generation number were chosen to be 20, 

0.2and 0.9, and 50 sequentially.  

Table 4.10 indicatesabout the best optimized solution corresponding to the final generation 

as achieved through the MODE as well as the SPEA II. Data corresponding to the least price 

value along with the least pollution level has also been presented in the same table. For 

aforementioned least values, the RCGA technique has also been implemented. Fig. 4.13 deals 

with the 20 nondominated solutions attained corresponding to the last generation of the 

MODE as well as the SPEA II. 

  

Figure 4.11. Cost convergence Figure 4.12. Emission convergence 
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Figure 4.13. Pareto-optimal fro

Table 4.10 

Simulation solutions corresponding to the system under consideration

 

Minimum fuel 

cost  

P11 (MWt) 6.2199 

P12 (MWt) 0.0500 

P13 (MWt) 0.0675 

P14 (MWt) 11.6650 

P21 (MWt) 8.6814 

P22 (MWt) 0.3559 

P23 (MWt) 20.0000 

P24 (MWt) 17.9797 

P31 (MWt) 0.0500 

P32 (MWt) 30.0000 

P33 (MWt) 8.0818 

P34 (MWt) 10.0555 

P41 (MWt) 1.4822 

P42 (MWt) 14.0633 

P43 (MWt) 30.0000 

P44 (MWt) 21.2478 

126 

optimal front as per the MODE and the SPEA II (with respect to the
generation) 

Simulation solutions corresponding to the system under consideration 

Minimum fuel Minimum 

emission level  
MODE 

0.0582 4.2767 

0.0500 2.4432 

13.0000 5.0288 

11.9647 10.2873 

25.0000 15.6294 

12.0000 9.1385 

9.3437 12.1516 

9.9112 16.1274 

9.3729 11.1128 

9.1430 11.5027 

11.9394 9.2512 

12.8634 11.5776 

11.0000 7.8041 

16.8607 14.1608 

14.3553 21.1647 

13.1374 18.3432 

 
(with respect to the final 

SPEA II 

3.7801 

1.9565 

9.0004 

9.0604 

13.9816 

8.0030 

17.5303 

15.6876 

14.2898 

6.8935 

3.3478 

18.2130 

7.1157 

13.0403 

18.8948 

19.2051 
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T21 (MWt) 6.0000 6.0000 4.4186 4.3529 

T13 (MWt) -3.9976 -0.7187 -2.5100 -1.5756 

T41 (MWt) 2.0000 -1.7917 1.0355 0.2741 

T32 (MWt) 3.5000 3.5000 1.4146 1.0910 

T24 (MWt) -5.4830 3.7549 0.0429 1.9407 

T34 (MWt) 0.6898 -0.9000 -0.4802 0.0775 

Cost ($/hr) 1521.92 2858.45 2306.15 2294.82 

Emission 
(lb/hr) 

279.1049 250.6567 263.0229 263.5606 

4.3.2. Conclusion 

In the presented brief, the multi-objective differential evolution (MODE) has been chosen 

to deal with the multiple objectives and constrained incorporating optimizing MAEEDS task. 

A comparison has been made between the results achieved through the NDSGA II and that 

achieved through the SPEA II. The MODE showed slightly better optimal front 

corresponding to this task. It has been observed from the comparison that the MODE gives 

novel optimized results. 

Appendix 4.3 

Generator characteristics (Generation limits) 

Generator ( ghGN ) 
min
ghΡ

(MWt) 
max
ghΡ

(MWt) 

GN11 0.05 14 

GN12 0.05 10 

GN13 0.05 13 

GN14 0.05 12 

GN21 0.05 25 

GN22 0.05 12 

GN23 0.05 20 

GN24 0.05 18 

GN31 0.05 30 

GN32 0.05 30 

GN33 0.05 30 

GN34 0.05 30 

GN41 0.05 11 
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GN42 0.05 20 

GN43 0.05 30 

GN44 0.05 30 
 
 

Generator characteristics (Cost coefficients) 

Generator  

( ghGN ) 

gha  

($/hr) 

ghb  

($/MWthr) 

ghc  

($/MWt2 

hr) 

ghd  

($/hr) 

ghe  

(rad/MWt) 

GN11 0 38.53900 0.15247 100 0.084 

GN12 0 46.15916 0.10587 150 0.063 

GN13 0 40.39655 0.02803 120 0.077 

GN14 0 38.30553 0.03546 200 0.042 

GN21 0 36.32782 0.02111 300 0.035 

GN22 0 38.27041 0.01799 150 0.063 

GN23 0 2.000000 0.00375 18.0 0.037 

GN24 0 1.750000 0.01750 16.0 0.038 

GN31 0 3.000000 0.02500 13.5 0.041 

GN32 0 2.000000 0.00375 18.0 0.037 

GN33 0 1.000000 0.06250 14.0 0.040 

GN34 0 1.750000 0.01950 15.0 0.039 

GN41 0 3.250000 0.06250 12.0 0.045 

GN42 0 3.250000 0.00834 12.0 0.045 

GN43 0 1.750000 0.01950 15.0 0.039 

GN44 0 1.000000 0.00834 14.0 0.040 
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Generator characteristics (Emission coefficients) 

Generator  

( ghGN ) 

ghα  

( lb /hr) 

ghβ  

( lb /MWthr) 

ghγ  

( lb /MWt2hr) 

ghη  

( lb /hr) 

ghδ  

(MWt-1) 

GN11 13.85932 0.32767 0.00419 1.310000 0.05690 

GN12 13.85932 0.32767 0.00419 0.914200 0.04540 

GN13 40.26690 -0.54551 0.00683 0.993600 0.04060 

GN14 40.26690 -0.54551 0.00683 0.655000 0.02846 

GN21 42.89553 -0.51116 0.00461 0.503500 0.02075 

GN22 42.89553 -0.51116 0.00461 0.914200 0.04540 

GN23 40.91000 -0.05554 0.00649 0.000200 0.00285 

GN24 2.54300 -0.06047 0.00563 0.000500 0.00333 

GN31 6.13100 -0.05555 0.00515 0.000010 0.00666 

GN32 3.49100 -0.05754 0.00639 0.000300 0.00265 

GN33 4.25800 -0.05094 0.00458 0.000001 0.00800 

GN34 2.75400 -0.05847 0.00523 0.000400 0.00287 

GN41 5.32600 -0.03550 0.00338 0.002000 0.00200 

GN42 5.32600 -0.03550 0.00338 0.002000 0.00200 

GN43 2.75400 -0.05847 0.00523 0.000400 0.00287 

GN44 4.25800 -0.05094 0.00458 0.000001 0.00800 

 
Tie line power transfer limits 

Tie line  ( goT ) 
max
goΤ− (MWt) 

max
goΤ (MWt) 

 -6.0 6.0 

 -4.0 4.0 

 -2.0 2.0 

 -3.5 3.5 

 -5.5 5.5 

 -0.9 0.9 

12
Τ

13
Τ

14
Τ

23
Τ

24
Τ

34
Τ
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4.4. Numerical Study on WMAEED problems 

4.4.1. Simulation results 

To examine the proficiency of the proposed power dispatch methodology, a standard wind 

integrated four area test system is considered as depicted in Figure 4.14. Along with the tie-

line constraints, area-wise spinning reserve constraints, area-wise power balance, valve point 

loading and POZ; nonlinear constraints related to WUs are also considered for this 

WMAEED problem. A comparative analysis of the solutions obtained by NSGA-II and 

SPEA-II has been accomplished.  

 

Figure 4.14. Representation of 4 area test system.  

For this numeric study, a wind integrated four area test power system has been modeled 

mathematically. Each power system area contains 4 TUs and 1 WU. The total load of 180 

MW is distributed over the 4 areas as 30 MW, 50 MW, 40 MW and 60 MW respectively. The 

transmission losses are considered to be negligible. Per area spinning reserve (SR1, SR2, SR3 

and SR4) requirements are considered to be 12 MW, 18 MW, 15 MW and 21MW 

respectively. The power ratings of WUs of each area are 4 MW. The cut in, cut out and rated 

wind speeds are 5ms-1, 30ms-1 and 10ms-1 respectively. The cost coefficients, emission 
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coefficients, real power generation capacity constraints and POZ of TUs are tabulated in 

Table 4.11. The cost coefficients and real power generation capacity constraints of WUs are 

given in Table 4.12 and area-wise Weibull parameters are given in Table 4.13. Tie line 

capacities are given in Table 4.14. The data in Table 4.11, 4.12, and 4.14 are given in p.u. 

considering the system base as 100 MVA. 

 

Table 4.11 

Data of TUs (p.u.) 

T
U

 

Cost coefficient data  Emission coefficient data  
Real power 

generation capacity 
constraints POZ 

Gija  Gijb  Gijc  Gijd  Gije
 

 Gijα

 
Gijβ

 
Gijγ  

Gij
η  

Gij
δ   

min

Gij
Ρ  max

Gij
Ρ  

G1

1 
150 189 0.50 11 40 

0.01
6 

-1.50 
23.33

3 
0.131

0 
0.5690 0.0005 0.14 - 

G1

2 
115 200 0.55 8 46 

0.03
1 

-1.82 
21.02

2 
0.091

4 
0.4540 0.0005 0.10 - 

G1

3 
40 350 0.60 10 42 

0.01
3 

-1.25 
22.05

0 
0.099

3 
0.4060 0.0005 0.13 - 

G1

4 
122 315 0.50 9 44 

0.01
2 

-1.36 
22.31

3 
0.065

5 
0.2846 0.0005 0.12 - 

G2

1 
125 305 0.50 17 30 

0.02
0 

-1.90 
21.31

3 
0.050

3 
0.2075 0.0005 0.25 - 

G2

2 
70 275 0.70 9 44 

0.00
7 

0.80
5 

23.00
1 

0.091
4 

0.4540 0.0005 0.12 - 

G2

3 
70 345 0.70 15 35 

0.01
5 

-1.40 
24.00

3 
0.020

0 
0.0285 0.0005 0.20 - 

G2

4 
70 345 0.70 14 37 

0.01
8 

-1.80 
25.12

1 
0.050

0 
0.0333 0.0005 0.18 - 

G3

1 
130 245 0.50 20 25 

0.01
9 

-2.00 
25.12

1 
0.101

2 
0.0667 0.0005 0.30 

0.20-
0.25 

G3

2 
130 245 0.50 20 25 

0.01
2 

-1.36 
22.99

0 
0.035

8 
0.0266 0.0005 0.30 

0.20-
0.25 

G3

3 
135 235 0.55 20 25 

0.03
3 

-2.10 
27.01

0 
0.153

3 
0.0897 0.0005 0.30 

0.20-
0.25 

G3

4 
200 130 0.45 20 25 

0.01
8 

-1.80 
25.10

1 
0.044

3 
0.0287 0.0005 0.30 

0.20-
0.25 

G4

1 
70 345 0.70 8.5 45 

0.01
8 

-1.81 
24.31

3 
0.027

3 
0.0289 0.0005 0.11 - 

G4

2 
45 389 0.60 15 35 
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Table 4.12 

Data of WUs (p.u) 
W

U
 Cost coefficient data  Real power generation capacity constraints 

Wikd  Wikp  Wikr   min

Wik
Ρ  max

Wik
Ρ  

W11 25 12 2  0.0005 0.04 
W21 18 12 2  0.0005 0.04 
W31 22 12 2  0.0005 0.04 
W41 10 12 2  0.0005 0.04 

 

Table 4.13 

Area-wise wind parameters 

 θ  λ  ( m s-1) 

Area 1 1.6 6.5 
Area 2 2 7 
Area 3 1.8 7.5 
Area 4 2.2 8 

 

Table 4.14 

Tie line capacities (p.u) 

Tie line min

il
Τ  max

il
Τ  

T12 0.001 0.060 
T13 0.001 0.040 
T14 0.001 0.200 
T23 0.001 0.035 
T24 0.001 0.055 
T34 0.001 0.009 

 

The cost characteristics of TUs of four areas are given in Figure. 4.14.1, 4.14.2, 4.14.3 and 
4.14.4. Likewise, the emission characteristics of TUs of four areas are depicted in Figure. 
4.15.1, 4.15.2, 4.15.3 and 4.15.4. The cost characteristics of WUs of each area are given in 
Figure. 4.16. The Weibull probability density curves of each area are represented in Figure 
4.17. 

 



 

 

Figure 4.14.1. Cost characteri
area 1. 

Figure 4.14.3. Cost characteristics of TUs of 
area 3. 

Figure 4.15.1. Emission characteristics of 
TUs of area 1. 

Figure 4.15.3. Emission characteristics of 
TUs of area 3. 
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stics of TUs of Figure 4.14.2. Cost characteristics of TUs of 
area 2. 

 

Cost characteristics of TUs of Figure 4.14.4. Cost characteristics of TUs of 
area 4. 

 

Emission characteristics of 
 

Figure 4.15.2. Emission characteristics of 
TUs of area 2.

 

Emission characteristics of 
 

Figure 4.15.3. Emission characteristics of 
TUs of area 4.

 

Cost characteristics of TUs of 
 

 

Cost characteristics of TUs of 
 

 

Emission characteristics of 
TUs of area 2. 

 

Emission characteristics of 
TUs of area 4. 
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Figure 4.16. Area-wise Weibull probability 
density curves. 

 

Figure 4.17. Cost characteristics of WUs. 

 

Before solving the proposed multi-objective WMAEED problem, the effects of different 

parameters are analyzed using two single objective optimizations, i.e., cost minimization and 

emission minimization. These are solved using classical GA. The convergence characteristics 

up to 200 iterations are plotted in Figure 4.18 and Figure 4.19 respectively. The minimum 

cost obtained in the work is 2088.56 $/h and the minimum emission is 2.2710 ton/h.  

The Pareto fonts obtained by the potential solutions from NSGA II and SPEA II have been 

depicted in Figure 4.20. From these Pareto fonts, the best compromised solutions have been 

chosen employing fuzzy selection method. 

 

 

Figure 4.18. Cost convergence characteristics. 
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Figure 4.19. Emission convergence characteristics. 

 

 

Figure 4.20. Cost-emission Pareto-front for NSGA II, SPEA II and MODE. 

 

NSGA II has been applied to optimize both cost and emission objectives simultaneously. 

In this case the population size, maximum number of iterations, crossover and mutation 

probabilities have been selected as 20, 50, 0.9 and 0.2, respectively for this test system. It is 

seen that trade-off generation cost is 2126.52 $/h (1.82% higher than minimum cost, but 0.4% 

lesser than the cost corresponding to minimum emission) and trade-off emission level is 

2.6612 ton/h (17.18% higher than minimum emission, but 55.52% lesser than the emission 

corresponding to minimum cost). 

SPEA II has also been applied to solve WMAEED problem. In case of SPEA 2, the 

population size, crossover and mutation probabilities and the maximum number of iterations 
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have been selected as 20, 0.9, 0.2 and 50 respectively. As per the solution obtained from 

SPEA II, the trade-off cost is 2130.75 $/h (2.02% higher than minimum cost, but 0.21% 

lesser than the cost corresponding to minimum emission) and the trade-off emission is 

2.5631ton/h (12.86% higher than minimum emission, but 57.16% lesser than the emission 

corresponding to minimum cost). 

All of these obtained solutions may be considered as fair trade-offs. The particulars of 

these dispatch solution are tabulated in Table 4.15.  

Table 4.15 

Dispatch results 
Dispatch 

particulars 
Economic 
dispatch 

Emission 
dispatch 

NSGA II SPEA II 

PG11 (MW) 11.3557 10.6223 10.7582 10.2914 
PG12 (MW) 9.8406 10 9.9705 9.985 
PG13 (MW) 5.2021 8.6325 7.997 8.0093 
PG14 (MW) 9.6524 10.6056 11.2437 11.1216 
PW21 (MW) 3.7213 3.9691 3.9232 3.9458 
PG21 (MW) 23.9455 12.5104 14.6291 13.5877 
PG22 (MW) 11.8449 6.8151 7.747 7.2889 
PG23 (MW) 17.7118 11.2011 12.4074 11.8145 
PG14 (MW) 0.6841 12.3452 10.1847 11.2466 
PW21 (MW) 2.5425 4 3.73 3.8627 
PG31 (MW) 0.05 10.3413 8.4346 9.3718 
PG32 (MW) 0.05 11.6008 9.4607 10.5126 
PG33 (MW) 16.2745 9.8612 11.0494 11.4654 
PG34 (MW) 28.0052 9.4023 12.0343 10.2491 
PW31 (MW) 3.5874 4 3.9236 3.9611 
PG41 (MW) 10.6365 11 10.9327 10.9658 
PG42 (MW) 0.05 10.5753 8.6252 9.5837 
PG43 (MW) 18.7546 7.2128 9.3512 8.3001 
PG44 (MW) 2.2713 11.3056 9.6318 10.4545 
PW41 (MW) 3.8199 4 3.9666 3.983 
T12 (MW) 4.2959 0 0 0 
T13 (MW) -4 -1.1774 -2.7006 -2.4604 
T14 (MW) 18.068 15.0069 16.5925 15.8129 
T23 (MW) -3.0671 -3.1282 -1.3019 -2.1996 
T24 (MW) -5.5 0 0 0 
T34 (MW) 0.9 0.9 0.9 0.9 
SR1 (MW) 12.9492 9.1396 9.0307 9.5927 
SR2 (MW) 20.8137 32.1282 30.0319 31.0623 
SR3 (MW) 75.6203 78.7944 79.0211 78.4012 
SR4 (MW) 59.2876 50.9063 52.4592 51.6959 
FC ($/h) 2088.56 2135.15 2126.52 2130.76 
FE (lb/h) 5.9828 2.2710 2.6612 2.5631 
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It is noted from the results, that the obtained solutions from the multi-objective optimizers 

satisfy all the constraints, like, tie line capacity limits, POZ, spinning reserve and constraints 

related to wind power availability etc., those have been considered in the power system 

model. 

In the works [59], [60] and [62], MAEED problem for 180 MW 4-area 16 TUs without 

incorporating WU have been solved. The available results in these works have been 

compared with the outcome of the current work, where 4 WUs are incorporated in same 

power system, to realize the effect of wind incorporation on overall fuel cost and emission 

level improvement in multi-area power system with area-wise uncertainty. The comparative 

results for economic dispatch and emission dispatch are tabulated in Table 4.16. These 

dispatch problems without considering wind generations, have been solved using particle 

swarm optimization (PSO) [59], differential evolution (DE) [60] and Jaya algorithm (JA) [62] 

respectively.  

 

Table 4.16 

Comparative results for economic dispatch and emission dispatch. 

It is evident from Table 4.16 that incorporation of WUs in a multi-area power system 

efficiently reduces both the generation cost and emission level with proper dispatch planning 

and effective management of wind power and other uncertainty. After integration of 4 WUs 

in the same 180 MW 4-area 16 TUs system, the minimum generation cost reduces to 3.61% 

of [59], 2.26% of [60] and 2.22% of [62] and the minimum emission level reduces to 29.69% 

of [59], 8.15% of [60] and 7.04% of [62]. 

Power 
system 

Optimizers 

Economic dispatch  Emission dispatch 
Minimum 
generation 
cost ($/h) 

Corresponding 
emission level 

(lb/h) 

 Minimum 
emission 

level (lb/h) 

Corresponding 
generation cost 

($/h) 
180 

MW 4-
area 16 

TUs 

PSO [59] 2166.82 3.3152  3.2301 2178.20 
DE [60] 2136.95 6.5383  2.4725 2178.28 

JA [62] 2135.99 5.8157 
 

2.4429 2177.55 

180 
MW 4-
area 16 
TUs and 
4 WUs 

GA 2088.56 5.9828 

 

2.2710 2135.15 
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The comparative results for trade-off solutions are tabulated in Table 4.17. These dispatch 

problems, without considering wind generations, have been solved using differential 

evolution with fuzzy selection (DEFS) [60] and improved gradient-based JA (IGJA) would 

[62] respectively.  

Table 4.17 

Comparative results for trade-off solutions. 

From Table 4.17 it is noted that the average trade-off generation cost of WUs integrated 

system appears to be  1.3% lesser than that of the power system without WU integration and 

the  average trade-off  emission level of WUs integrated system is 14.59% lesser than that of 

the power system without WU integration. 

4.4.2. Conclusion 

This work proposes a wind power integrated multi-area economic environmental dispatch 

model. The non-convexity and discontinuity of cost minimization and emission minimization 

objectives due to valve point effects and prohibited operating zones for thermal power 

generating units have been considered. Different realistic constraints, like power balance, 

generation limitations and power transmission limitations through tie-lines between areas 

have been included in the model. Constraints related to area-wise uncertainty of wind power 

availability following Weibull probability density function and penalties for over-

commitment or under-estimation of wind power production have also been incorporated in 

the system model. The penalty cost is introduced in the model to intensify the motivation of 

apposite utilization of wind power by the power operators. To find reasonable trade-offs 

between the power production cost and the emission level in multi-area power system in the 

Power 

system 
Optimizers 

Trade-off 

generation 

cost 

($/h) 

Average trade-

off generation 

cost 

($/h) 

Trade-off 

emission 

level 

(lb/h) 

Average 

trade-off 

emission 

level 

(lb/h) 

180 MW 4-
area 16 TUs 

DEFS [60] 2161.70 
2156.70 

3.0873 
3.0585 

IGJA [62] 2151.69 3.0297 
180 MW 4-
area 16 TUs 
and 4 WUs 

NSGA II 2126.52 
2128.64 

2.6612 
2.6122 

SPEA II 2130.76 2.5631 
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presence of emission less wind power plants, different recognized multi-objective optimizer, 

like, NSGA II and SPEA II have been employed. The potential trade-off solutions have been 

procured on the basis of best compromised selection guided by fuzzy logic. The numerical 

studies have portrayed, with optimal area-wise wind integration to the conventional multi-

area power system, 2.7% of on average generation cost is reduced in respect of cost 

minimization and 14.96% of on average emission level is reduced in respect of emission 

minimization.  In view of the high penetration of clean wind power in global energy sector, it 

can be concluded that this type of wind integrated large scale multi-area power dispatch 

modeling is going to be highly relevant power system operational strategy in near future. 

4.5. Numerical Study on short term hydro-thermal 
scheduling 

The hydrothermal generation planning using improved RCGA (i.e. IRCGA) and the 
RCGA has been realized through MATLAB R2013a on windows 7 environment having 
particulars: Intel core i7 processor, RAM of 80 GB, 1600 MHz clock speed and 3 GHz 
frequency value. In this work, four cases with different test systems have been selected. For 
first three cases, optimization parameters like maximum number of iteration, population size, 
crossover, and mutation probabilities have been considered as 300, 50, 0.9, and 0.2 
respectively for both IRCGA and RCGA. For the fourth case, maximum number of iteration, 
population size, crossover, and mutation probabilities have been chosen 900, 50, 0.9, and 0.2 
respectively for both IRCGA and RCGA.  

4.5.1. Case I 

For this case, a test system consisting of multi-chain cascade of four reservoir containing 

hydro plants and an equivalent thermal plant has been considered. Here, scheduling period 

has been planned for 24 hours (i.e. 1 day). The scheduling period has been divided into 24 

equal intervals. Detailed parameters for this system have been referred from [109]. Optimal 

hourly hydro discharge rates and total hydrothermal power generation obtained through the 

developed IRCGA have been tabulated in Table 4.18 and Table 4.19 respectively. The 

reservoir storage volumes of four hydro plants as acquired through the IRCGA have been 

demonstrated in Fig. 4.21. The best, average and the worst costs, and average CPU time 

among 100 runs of solutions obtained from the IRCGA and the RCGA have been tabulated in 

Table 4.20. Data corresponding to the generation costs from MDE [237], IPSO [116], TLBO 

[122], IFEP [102], and GA [109] techniques have also been mentioned in the Table 4.20.  
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Fig.  4.22 shows hourly optimal hydro discharge of test system-1 and Fig. 4.23. is for hourly 

optimal hydrothermal generation (MW) of test system-1. 

The cost convergence characteristics acquired from the developed IRCGA and the RCGA 

are in accordance to Fig. 4.24. It has been observed from the Table 4.20 that the cost found 

from the IRCGA is the lowest among all techniques. 

 

Figure 4.21. Reservoir storage volume for test system-1 incorporating head mobility. 

 

Table 4.18 

24 hours water discharge (×104 m3) for test system-1 incorporating head mobility 

Hour Qh1 Qh2 Qh3 Qh4 

1 8.7861 6.0009 30.0000 6.0000 

2 8.6477 6.0001 18.5747 6.0000 

3 8.5682 6.0000 29.9998 6.0000 

4 8.3775 6.0006 17.3534 6.0008 

5 8.1550 6.0000 15.4229 6.0005 

6 8.0533 6.0030 15.9130 7.9993 

0 5 10 15 20 25
70

80

90

100

110

120

130

140

150

160

170

H
yd

ro
 r

es
er

vo
ir 

st
or

ag
e

Hour

plant1

plant2
plant3

plant4



 

141 
 

7 8.1591 6.0910 15.9792 11.1179 

8 8.4589 6.8847 16.5977 13.6690 

9 8.6193 7.4527 16.4652 15.3635 

10 8.7715 7.6903 16.5940 16.1257 

11 8.5801 7.7683 17.1467 15.7670 

12 8.6525 8.1049 16.8463 16.5977 

13 8.5011 8.2039 17.4470 16.4653 

14 8.3269 8.3350 17.8223 16.5934 

15 8.2464 8.4235 18.7109 17.1544 

16 8.0697 8.7110 18.4832 16.8390 

17 8.0004 9.0106 16.9627 17.4464 

18 7.8467 9.4610 15.9095 17.8224 

19 7.8246 10.1045 14.5644 18.8539 

20 7.7368 10.6701 13.8283 19.6055 

21 7.5925 11.2530 11.0169 19.9997 

22 7.3682 11.7971 11.5735 19.9999 

23 6.9536 12.6091 12.0326 19.9999 

24 6.7040 13.4245 12.5674 19.9998 

 
 
 

 

Figure 4.22. Hourly optimal hydro discharge of test system-1 
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Table 4.19 

Optimal hydrothermal power generation (MW) schedule for test system-1 incorporating head 
mobility 

Hour Ph1 Ph2 Ph3 Ph4 Ps 
1 79.7973 49.0061 0.0000 131.8801 1109.32 
2 79.3927 50.1639 43.5292 129.0270 1087.89 
3 79.0387 51.2957 0.0000 125.7437 1103.92 
4 77.7373 52.9380 37.4242 121.6365 1000.26 
5 75.9674 54.4995 42.2628 115.8283 1001.44 
6 74.6619 55.5248 42.0011 163.8960 1073.92 
7 74.9610 56.6535 42.7802 209.7731 1265.83 
8 76.6787 62.1650 41.6644 252.8746 1566.62 
9 77.7838 65.9683 41.8104 271.8340 1782.60 
10 79.1114 67.7564 40.9661 278.4111 1853.75 
11 78.7489 68.9033 38.9557 275.1930 1768.19 
12 80.1994 71.5905 39.5975 282.2694 1836.34 
13 79.6781 72.1369 38.3010 281.2003 1758.68 
14 79.2573 72.8195 38.1722 282.2342 1727.52 
15 79.5884 73.6734 35.5391 286.6439 1654.55 
16 78.9796 75.6289 36.7765 284.1818 1594.43 
17 78.8516 76.9618 41.8592 288.8606 1643.46 
18 77.9593 78.3512 45.1334 291.6388 1646.92 
19 77.8291 79.6915 48.4354 298.8079 1735.23 
20 77.0919 80.4924 50.2710 303.4720 1768.67 
21 75.8005 81.3147 51.4605 304.7025 1726.72 
22 74.1001 81.9619 53.9109 301.5554 1608.47 
23 71.1238 82.8437 56.0420 297.2275 1342.77 
24 69.4655 81.8843 57.7491 291.3201 1089.58 
 

 

Figure 4.23. Hourly optimal hydrothermal generation (MW) of test system-1. 
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Figure 4.24. Cost convergence curve for test system-1 with head mobility. 

Table 4.20 
Comparative study of different techniques for test system-1incorporating head mobility. 

Technique Best cost ($) 
Average cost 

($) 
Worst cost ($) CPU time (s) 

IRCGA 917199.44 917208.56 917221.37 257.03 

RCGA 918480.03 918494.37 918504.47 256.75 

TLBO [122] 922373.39 922462.24 922873.81 - 

IPSO [116] 922553.49 - - - 

MDE [237] 922556.44 - - - 

IFEP [102] 930129.82 930290.13 930881.92 1033.2 

GA [109] 926707 - - - 

 

4.5.2. Case II 

In this case, restricted operating section for hydro plant, and effect of valve point loading 

for thermal generator have been considered. Detailed parameters for this case have been 

taken from [102]. Table 4.21 and Table 4.22 show the optimal hourly discharge rates and 
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total hydrothermal generation acquired by the developed IRCGA respectively. Figure 4.25 

shows the reservoir storage volume of four hydro plants acquired from the IRCGA. The best, 

average and the worst costs (in $) and average CPU time among 100 runs of solutions 

acquired from developed IRCGA and the RCGA have been summarized in Table 4.23.The 

cost values acquired from IFEP [102], IPSO [116] and TLBO [122] techniques have also 

been shown in Table 4.23. Fig.  4.26 shows hourly optimal hydro discharge of test system-2 

and Fig. 4.28 is for hourly optimal hydrothermal generation (MW) of test system-2. 

The cost convergence characteristics acquired from developed IRCGA and the RCGA 

have been demonstrated in Fig. 4.28. It can be seen from Table 4.23 that the cost found from 

the IRCGA is the lowest among all techniques. 

 

 

Figure 4.25. Reservoir storage volume for test system-2 incorporating head mobility. 
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Table 4.21 
Water discharge (×104 m3) in 24 hours for test system-2 incorporating head mobility. 

Hour Qh1 Qh2 Qh3 Qh4 
1 10.1845 6.1121 20.5536 6.3438 
2 9.3545 6.0000 29.9857 6.0059 
3 5.0934 6.0672 18.8188 6.0081 
4 12.3025 6.9922 19.7814 6.0011 
5 9.4396 6.9832 15.2970 6.3376 
6 7.8835 6.3622 18.4255 11.1545 
7 10.2721 8.2105 18.0212 8.7499 
8 6.7694 6.0283 17.9212 9.3215 
9 6.6014 6.9949 16.6465 15.9994 
10 9.8394 6.6298 14.1732 14.6373 
11 5.8365 8.0881 17.9684 19.8695 
12 6.2467 6.7252 18.3894 15.9965 
13 10.4311 6.0065 16.4035 15.9976 
14 6.7118 6.0342 19.8262 13.0358 
15 5.2117 8.9019 14.7661 19.6512 
16 5.8669 8.0785 18.5218 18.0045 
17 10.3436 13.0473 15.8221 18.0241 
18 9.0289 8.2601 15.6486 18.1861 
19 6.8068 10.6257 18.4059 18.1376 
20 5.0351 13.1212 10.7805 18.6221 
21 7.2673 9.9088 11.9574 18.0174 
22 7.0480 12.8178 11.9622 20.0000 
23 7.9655 10.0050 10.1140 19.8378 
24 13.2600 13.2228 11.6386 19.6248 

 

 

Figure 4.26. Hourly optimal hydro discharge for test system-2. 
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Table 4.22 
Optimal hydrothermal power generation (MW) scheduling for test system-2 incorporating 
head mobility 

Hour Ph1 Ph2 Ph3 Ph4 Ps 
1 86.8344 49.7921 42.4872 136.4915 1054.39 
2 82.7927 50.0996 0.0000 128.7959 1128.31 
3 53.2023 51.7131 38.206 125.5285 1091.35 
4 95.3572 59.6889 32.3296 121.2998 981.32 
5 82.2469 60.7180 45.8186 119.8371 981.38 
6 72.3219 57.0068 36.5382 189.8853 1054.25 
7 84.3272 69.3217 39.5418 180.8054 1276.01 
8 63.8671 53.8113 40.4187 196.2406 1645.66 
9 63.4079 61.0171 43.8752 273.675 1798.02 
10 83.801 59.0764 48.8933 261.1712 1867.06 
11 58.8915 69.7213 40.9075 304.3079 1756.17 
12 63.6159 61.3895 37.7617 274.8044 1872.42 
13 90.3650 56.9064 44.1043 276.5894 1762.03 
14 68.1055 58.034 32.0219 249.5939 1792.24 
15 56.4505 78.0365 46.5805 304.8704 1644.06 
16 62.7673 73.2219 38.5827 292.2578 1603.17 
17 93.8183 96.3354 45.1644 292.7708 1601.91 
18 86.3257 71.3305 44.6121 292.334 1645.39 
19 70.6874 82.4647 36.9713 293.5957 1756.28 
20 55.3803 89.5719 48.3725 293.5926 1793.08 
21 74.3523 73.9104 52.4342 289.3438 1749.96 
22 72.6529 84.7098 53.7410 299.7932 1609.10 
23 79.4951 71.3102 53.2242 294.2187 1351.75 
24 104.9608 81.7733 57.2461 291.4408 1054.58 
 

 

 

Figure 4.27. Hourly optimal hydrothermal generation (MW) for test system-2. 
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Figure 4.28. Cost convergence curves for test system-2 incorporating head mobility. 

 

Table 4.23 
Comparative study of different techniques for test system-2 incorporating head mobility 
Technique Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 
IRCGA 923230.63 923242.45 923255.37 264.73 
RCGA 924069.73 924083.56 924096.28 258.65 
IFEP [102] 933949.25 938508.87 942593.02 1450.9 
TLBO [122] 924550.78 924702.43 925149.06 - 
IPSO [116] 925978.84 - - - 
 

4.5.3. Case III 

Here, a multi-chain cascaded four reservoir containing hydro plants and three thermal 

plants have been considered. The effect of valve point loading has also been taken into 

consideration. Transmission loss has also been incorporated. Detailed parameters for this case 

have been taken from [102]. Table 4.24 and Table 4.25 demonstrate optimal hourly discharge 

rates and hydrothermal generation  acquired by the developed  IRCGA respectively.      
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Figure 4.29 shows reservoir storage volume of each hydro plant as acquired from the IRCGA. 

The best, average and the worst costs (in $), and average CPU time (in s) among 100 runs of 

solutions as acquired from developed IRCGA and the RCGA have been summarized in Table 

4.26. The cost acquired from MDE [237], CSA [120], and TLBO [122] is in accordance to 

Table 4.26. Fig.  4.30 shows hourly optimal hydro discharge of test system-3 and Fig. 4.31 is 

for hourly optimal hydrothermal generation (MW) of test system-3. 

The cost convergence characteristics acquired from the developed IRCGA and the RCGA 

have been shown in Figure 4.31. It is observed from Table 4.26 that the cost found from the 

developed IRCGA is the lowest among all techniques. 

 

 

 

Figure 4.29. Reservoir storage volume for test system-3 incorporating head mobility. 
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Table 4.24 
Water discharge (×104 m3) in 24 hours for test system-3 incorporating head mobility 

Hour Qh1 Qh2 Qh3 Qh4 
1 5.0000 8.1694 29.9825 10.6846 
2 11.8249 6.0349 20.3834 8.1109 
3 8.2756 9.3968 29.9993 6.0699 
4 10.6764 7.1839 17.4356 6.5270 
5 10.7913 6.1217 14.9166 7.0655 
6 7.5122 6.0114 19.9168 12.2241 
7 11.8929 7.1014 16.4236 14.2319 
8 8.0364 8.9342 19.9639 6.3860 
9 5.0000 7.0265 17.2913 14.8253 
10 5.2012 6.0000 19.6801 13.3341 
11 9.0382 7.4124 16.8647 18.8811 
12 7.1895 6.083 16.7021 17.6400 
13 10.756 8.4874 17.0601 18.0055 
14 9.6444 9.6666 16.3546 18.8809 
15 7.5333 10.1478 14.5476 16.8217 
16 12.2331 9.0725 12.3182 19.4624 
17 5.0001 9.8397 14.7639 16.0024 
18 6.9996 10.8825 13.7793 20.0000 
19 12.3816 14.8071 14.5850 20.0000 
20 5.7002 9.2668 12.3534 14.4891 
21 5.0013 6.0008 21.3704 15.8796 
22 5.0078 9.1880 11.7756 12.9617 
23 5.0002 6.0045 15.2021 13.6869 
24 9.3038 13.1606 12.9722 19.9519 
   

 

Figure 4.30. Hourly optimal hydro discharge for test system-3. 
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Table 4.25 
Optimal hydrothermal power generation (MW) scheduling for test system-3 incorporating 
head mobility 
Hour Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 
1 52.5001 62.9911 0.0000 188.4124 20.0000 40.0470 409.0353 
2 94.9645 49.1472 36.0943 151.4483 20.0001 294.708 139.9935 
3 77.4693 70.7940 0.0000 120.2516 174.9999 40.0626 229.7881 
4 89.6264 57.8274 34.8294 121.7495 174.9999 40.0144 140.0427 
5 88.6817 51.7208 43.1194 121.7213 20.0713 209.8746 139.7717 
6 69.9013 51.9834 27.7926 202.2525 20.0027 294.7478 139.7384 
7 90.041 59.9969 42.2954 229.2022 102.8131 294.9635 140.0704 
8 71.5381 70.3084 31.274 155.4249 175.0000 294.7975 229.5029 
9 49.9772 57.7790 39.9087 261.0326 174.9942 294.736 229.4873 
10 53.0657 51.3073 31.4504 247.0815 102.6427 294.7893 319.319 
11 81.4462 62.5231 40.4364 298.9633 20.0014 294.7375 319.3074 
12 70.7288 54.3802 40.1454 287.9098 102.6722 294.7042 319.2878 
13 91.5678 70.9632 38.1093 292.8062 20.0158 294.6822 319.319 
14 86.4941 77.0705 40.8922 298.1207 102.6981 294.7381 139.8472 
15 74.3655 79.0482 45.0727 283.9845 102.6488 294.7742 139.7885 
16 98.9002 72.9424 48.6283 302.6975 20.0008 298.7904 229.5013 
17 54.2296 76.2645 49.2103 274.8114 174.9981 294.7637 139.6912 
18 71.4333 79.2985 51.6777 304.2234 102.6951 294.7382 229.7389 
19 100.2199 87.8464 53.8828 300.4273 102.7774 294.7563 140.0848 
20 60.3478 63.3576 55.0328 254.1731 20.0000 294.7757 319.3300 
21 54.2311 42.9424 34.5069 264.0216 175.0000 40.0042 319.0230 
22 54.5201 64.1698 56.8181 236.6617 20.0000 294.7116 139.6709 
23 54.7321 44.8122 58.1308 244.4422 20.0024 294.6434 139.7895 
24 87.5753 80.9892 59.3598 292.6200 20.0004 125.0043 139.8794 
 

 

Figure 4.31. Hourly optimal hydrothermal generation (MW) for test system-3. 
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Figure 4.32. Cost convergence curves for test system-3 incorporating head mobility. 

Table 4.26 
Comparative study of different techniques for test system-3 incorporating head mobility 

Technique Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 
IRCGA 42322.23 42330.53 42339.36 304.05 
RCGA 43068.01 43079.52 43083.05 298.72 
MDE [237] 43435.41 - - - 
TLBO [122] 42385.88 42407.23 42441.36 - 
CSA [120] 42440.574 - - - 
 

4.5.4. Case IV 

This system considers a multi-chain cascade of four reservoir containing hydro plants and 

ten thermal plants. The effect of valve point loading has also been taken into account. Here, 

transmission losses have not been considered. Detailed data for this system is taken from 

[112]. Table 4.27 and Table 4.28 show the optimal hourly discharges and hydrothermal 

generation acquired by the developed IRCGA respectively. Figure 4.33 shows the reservoir 

storage volumes of four hydro plants acquired from IRCGA. The best, average and worst cost 

and average CPU time among 100 runs of solutions acquired from the developed IRCGA and 

RCGA are summarized in Table 4.29. The cost acquired from DE [112] technique is also 

shown in Table 4.29. The cost convergence characteristics obtained from the developed 
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IRCGA and the RCGA are in accordance to Fig. 4.36. It has been observed from Table 4.29 

that the cost found from the IRCGA is the lowest among all techniques. Fig. 4.34 shows 

hourly optimal hydro discharge of test system-4 and Fig. 4.35 is for hourly optimal 

hydrothermal generation (MW) of test system-4. 

 

Figure 4.33. Reservoir storage volume for test system-4 incorporating head mobility. 

 

Figure 4.34. Hourly optimal hydro discharge of test system-4. 
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Table 4.27 
Water discharge (×104 m3) in 24 hours for test system-4 incorporating head mobility. 
Hour Qh1 Qh2 Qh3 Qh4 

1 10.59 7.2207 19.437 6.0254 

2 12.0523 7.7304 20.2455 8.5457 

3 5.0001 6.0184 17.4557 6 

4 6.4478 6.3207 22.6585 14.8061 

5 5 11.135 29.9287 7.6698 

6 7.6269 9.9408 17.607 10.8973 

7 9.2146 9.5815 13.9492 12.4732 

8 7.1216 6 21.4589 6.0044 

9 14.722 9.4742 16.3758 16.8335 

10 8.7003 6.0001 18.0804 15.0361 

11 7.6528 9.7120 10.0203 12.3636 

12 5.4338 7.2947 17.1649 16.8305 

13 11.5460 6.0053 30.0000 12.6269 

14 10.5001 10.4945 15.3613 18.1704 

15 6.9555 10.5776 10.0003 17.1377 

16 5.0000 10.6310 21.2541 19.9868 

17 10.5398 9.0909 11.1185 19.9873 

18 5.1753 6.0028 19.1245 15.2733 

19 5.0000 6.0000 18.4536 19.9871 

20 5.8448 6.0003 10.0100 19.2115 

21 6.0854 9.8456 11.2876 17.9333 

22 8.5236 11.1071 10.4763 14.4865 

23 14.9775 7.8296 13.2974 19.9983 

24 5.2899 11.9870 13.3435 18.2195 
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Table 4.28 
Optimal hydrothermal power generation (MW) schedule for test system-4 incorporating head 
mobility. 
Ho
ur 

Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 Ps4 Ps5 Ps6 Ps7 Ps8 Ps9 Ps10 

1 
88.5
7 

57.
22 

47.
08 

132.
22 

139.
75 

199.
58 

94.9
6 

119.
95 

274.
69 

139.
73 

45.0
0 

134.
50 

98.1
9 

178.
56 

2 
93.4
2 

60.
86 

40.
34 

161.
19 

50.0
0 

350.
60 

20.4
3 

20.0
0 

224.
39 

239.
41 

281.
91 

85.1
8 

25.0
2 

127.
25 

3 
51.6
8 

49.
75 

46.
67 

123.
35 

229.
28 

124.
06 

20.0
0 

119.
83 

274.
36 

89.8
0 

163.
14 

134.
30 

97.0
8 

176.
69 

4 
64.2
0 

53.
58 

22.
20 

210.
91 

229.
23 

124.
65 

20.0
5 

119.
57 

224.
58 

139.
82 

104.
17 

134.
65 

25.0
0 

177.
39 

5 
52.4
8 

81.
84 

0.0
0 

124.
65 

140.
14 

199.
97 

95.3
2 

120.
03 

175.
65 

40.2
0 

222.
70 

135.
15 

103.
36 

178.
50 

6 
72.9
8 

74.
59 

39.
64 

172.
76 

228.
43 

199.
60 

20.1
4 

69.3
6 

174.
63 

289.
50 

222.
84 

134.
78 

25.0
0 

75.7
5 

7 
82.2
2 

70.
99 

47.
20 

198.
36 

318.
93 

199.
57 

94.6
9 

119.
92 

174.
64 

139.
77 

45.0
0 

234.
60 

97.7
9 

126.
33 

8 
69.0
2 

47.
23 

22.
25 

129.
73 

229.
43 

422.
79 

95.5
0 

119.
60 

273.
98 

189.
46 

102.
88 

84.9
2 

97.3
5 

125.
86 

9 
98.8
3 

68.
78 

42.
67 

258.
01 

319.
36 

423.
92 

20.3
1 

69.8
0 

25.0
1 

139.
90 

163.
48 

184.
45 

98.0
9 

177.
38 

10 
78.0
4 

46.
93 

38.
92 

257.
21 

319.
82 

274.
80 

95.2
9 

69.9
5 

224.
61 

189.
18 

163.
61 

35.0
5 

159.
97 

126.
61 

11 
72.4
5 

70.
95 

47.
72 

234.
14 

319.
29 

124.
73 

94.8
1 

120.
22 

224.
58 

139.
52 

341.
31 

35.0
1 

98.2
0 

177.
07 

12 
56.8
4 

56.
99 

45.
91 

275.
89 

230.
03 

50.7
5 

20.1
7 

119.
53 

379.
12 

289.
12 

104.
27 

184.
79 

160.
00 

176.
59 

13 
94.9
0 

48.
78 

0.0
0 

242.
21 

139.
83 

274.
44 

95.1
4 

69.8
4 

469.
99 

89.6
8 

163.
39 

84.8
9 

160.
00 

176.
89 

14 
90.5
8 

75.
87 

46.
97 

293.
94 
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40 

274.
45 

94.6
0 

20.0
1 

273.
23 

139.
83 

281.
79 

35.0
0 

98.4
8 

75.8
4 

15 
70.0
6 
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26 
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06 
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25 

50.0
0 
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09 

94.7
1 
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00 
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56 
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0 
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6 
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12 
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00 
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83 

16 
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6 
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44 
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43 
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21 
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35 
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34 
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99 
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4 
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0 
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00 
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01 
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43 
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1 
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69 
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38 
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59 
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18 
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98 
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7 
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9 
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31 
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9 
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38 
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19 
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01 
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90 
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48 
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5 
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8 
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65 
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67 
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65 
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46 
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0 

76.0
3 
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6 
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17 

44.
96 
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80 
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33 
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42 
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0 
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7 
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9 
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Figure 4.35. Hourly optimal hydrothermal generation (MW) for test system-4. 

 

 

Figure 4.36. Cost convergence curves for test system-4 incorporating head mobility. 
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Table 4.29  
Comparative study of different techniques for test system-4 incorporating head mobility. 

Technique Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

IRCGA 170452.35 170459.78 170468.52 472.51 

RCGA 170915.57 170924.41 170935.28 459.92 

DE [112] 170964.15 - - - 

 
It has been observed from Table 4.19, Table 4.22, Table 4.25 and Table 4.28, and Fig. 

4.23, Fig. 4.27, Fig.4.31 and Fig.4.35 that the third hydro unit has no output during some time 

interval. This is because of the fact that output from a particular hydro unit during a specified 

time interval depends on the availability of water, reservoir storage volume limit, water 

transport delay between cascaded reservoirs and on the system configuration as a whole. 

Depending on the system configuration and constraints for the present problem, this has 

happened in case of the third hydro unit. In this concise, four numerical experiments have 

been performed. Fig. 4.21, Fig. 4.25, Fig. 4.29, and Fig. 4.33 show reservoir storage volume 

at every hour in a day. The graph obtained from data of Table 4.18, Table 4.21, Table 4.24 

and Table 4.27, and Fig. 4.22, Fig. 4.26, Fig. 4.30 and Fig. 4.34, show water discharge at 

every hour in a day. The optimal hydrothermal power generation scheduling of four test 

systems has been obtained in accordance to Table 4.19, Table 4.22, Table 4.25 and Table 

4.28 respectively.  

All four schedules give information about the power generation by different hydro and 

thermal units at every interval in a day to make economic operation. The cost convergence 

characteristics of four test systems are in accordance to Fig. 4.24, Fig. 4.28, Fig. 4.32, and 

Fig. 4.36 respectively. The solid line demonstrates IRCGA, and dotted line indicates RCGA. 

From these characteristic curves, it is clear that IRCGA curves fall sharply compared to that 

of the RCGA and thus, IRCGA proves to be more economic. The IRCGA has been modified 

by incorporating one-to-one challenge in conventional RCGA to boost the convergence speed 

and solution quality.  Table 4.20, Table 4.23, Table 4.26, and Table 4.29 show the 

comparative studies along with the reference results. These comparative studies have proven 

that the IRCGA gives least price in least time. 
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 4.5.5. Conclusion 
In this paper, real coded genetic algorithm (RCGA) and improved real coded genetic 

algorithm (IRCGA) have been successfully implemented to solve short-term hydrothermal 

scheduling problem. To evaluate the performance of the IRCGA, it has been applied on four 

sample test systems comprising of multi-chain cascaded hydro and thermal units for a 24 

hour time horizon (i.e. small horizon). In this concise, nonlinear and nonconvex relationships 

for power generation characteristics and the water transport delay time, have also taken into 

consideration. The results obtained for various test systems have been compared with 

modified differential evolution (MDE), teaching learning based optimization (TLBO), clonal 

selection algorithm (CSA), improved fast evolutionary programming (IFEP), improved 

particle swarm optimization (IPSO), and genetic algorithm (GA).  

Test systems’ results indicate that the total production cost obtained by proposed IRCGA 

method is less than other existing techniques over the scheduled time horizon. Moreover, 

since the encoding and decoding schemes entailed by GA are not needed in the proposed 

method, a lot of computer memory and computing time can be saved. Hence, the IRCGA 

confirms its superiority. 

4.6. Numerical Study on optimal DG allocation 
problem 

In this work, IEEE 33 bus radial distribution system has been selected to solve the DG 

placement problem applying meta heuristics. The SLD for the system is shown in Fig. 2.1 

[ref chapter 2, sec 2.6]. Total active and reactive loads for this system are 3.715 MW and 2.3 

MVAR respectively. 

The calculations of active and reactive power losses without implementing DG are given 

in Table 4.30. 

Table 4.30 
Power loss without DG 

Real Power Loss (kW) Reactive Power Loss (kVAR) 

210.9 143.0 

 Initially, the DG, which is proposed to be placed in the power system, is meant to inject 

both real and reactive power into the bus. To plump for the maximum amount of DG that 

should be considered to be installed for solving this DG sizing and allocation problem, 
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different trials with different maximum amount of installable DG have been considered. The 

maximum levels of total injected distributed generations have been taken as firstly 1000 kW 

and 750 kVAR (condition 1) and then 2000 kW and 1500 kVAR (condition 2) and finally 

4000 kW and 3000 kVAR (condition 3).  

This optimization problem has been solved by two well recognized optimizers like Real 

Coded Genetic algorithm (RCGA) and Classical Particle Swarm Optimization (CPSO) and a 

recently developed optimization technique, named Water cycle algorithm (WCA). In all of 

the cases, the total number of population for this technique has been taken as 50 and the 

maximum number of iterations 500. 

Table 4.31 indicates comparative results obtained by these optimizers. It is evident from 

Table 4.31 that condition 3 (i.e. maximum DG injection level as 4000 kW and 3000 kVAR) 

exhibits less active and reactive power losses. It has been noted that increased level of DG 

injection reduces active and reactive power losses as obvious. Taking into account of the total 

active and reactive power demand of the system as 3.715 MW and 2.3 MVAR, increment of 

DG injection level beyond ‘condition 3’ seems not to be feasible.  

One of the major purposes of this study is to examine the applicability of WCA for this 

type of optimization problem and this technique shows proficiency in the same by finding 

moderately better solutions of this problem, as noted in Table 4.31. 

Table 4.31 
Power loss with DG 

Optimizer  Condition Real power loss 
(kW) 

Reactive power loss 
(kVAR) 

Apparent power loss 
(kVA) 

 
RCGA 

1 138.362 126.985 187.801 
2 112.634 98.329 149.516 
3 63.261 52.151 81.986 

 
CPSO 

1 140.026 128.154 189.818 
2 111.974 97.968 148.781 
3 62.462 51.384 80.881 

 
WCA 

1 138.664 126.072 187.408 
2 111.544 97.328 148.036 
3 61.529 50.863 79.830 

Table 4.32 indicates the optimal size and the locations (i.e. the bus numbers at which DGs 

are to be placed) for the case of condition 3, as solved by WCA. It has been seen that, DGs 

are placed in bus number 3, 6 and 2. Total amount of injected active and reactive powers are 

2.774 MW and 1.734 MVAR respectively. 
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Table 4.32 
Optimal allocation & sizing of DG as obtained from WCA 

Size of DG 
Location of DG (Bus No) 

Active power inj. (MW) Reactive power inj.  (MVAR) 

0.325 0.254 3 

1.873 1.154 6 

0.576 0.326 2 

 
Furthermore, WCA is applied in IEEE 33 bus radial distribution system for optimal 

placement of two extra capacitor banks as VAR compensators at two different buses, along 

with these three DGs at bus 2, 3 and 6. Here, the total number of iterations is taken as 1000 

and the number of search agents is taken as 100. The number of rivers is taken to be 20. The 

maximum injections of total active and reactive power have been supposed to be 3000 kW 

and 2500 kVAR respectively.  

The real power loss, reactive power loss and total power loss as obtained using WCA are 

shown in Table 4.33. The optimal location that is the bus number as well as the optimal size 

of the DG and five VAR compensators are also shown. According to the results, total amount 

of injected active and reactive powers are 2.743 MW and 1.937 MVAR respectively. 

Table 4.33 
Optimal Size, Location & Losses 

Bus No. 
Optimal size Total power 

loss (kVA) 

Active power 

loss (kW) 

Reactive power 

loss (kVAR) kW kVAR 

2 658 533 

73.827 55.865 48.266 

3 513 594 

6 1572 457 

13 - 182 

29 - 171 

From the results, it can be noted that further distribution of VAR generators in different 

busses causes less power loss in the system. At the same time the result indicate slightly 

lesser total active power injection than the previous solution. 

The above results are for base loading. The power flow calculations were also done for 

different load steps from 50% to 150%. In Fig. 4.37, voltage angle at each bus is plotted. This 

is done for load variations of 50% to 150% of the base loading. Since five reactive power 

injectors are placed at five different buses, it has effects on the bus voltage angle and hence 
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Variation of power losses at different loading levels

In this work, a problem of optimal allocation and sizing of DG with capacitor bank 

placement has been studied. The problem has been solved for IEEE 33 bus radial distribution 

test system. WCA has been used as optimizer to solve this optimization problem and the 

applicability of WCA for this type of optimization problem has been noted.  Here, multiple 

DGs along with five capacitor banks at different busses have been proposed to be placed. By 

has been seen that total active, reactive and apparent power losses are reduced 

by 73.51%, 66.25% and 71.03% respectively for the system. 

Numerical Study on Optimal power operation 
planning in a township 
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applicability of WCA for this type of optimization problem has been noted.  Here, multiple 

DGs along with five capacitor banks at different busses have been proposed to be placed. By 

has been seen that total active, reactive and apparent power losses are reduced 

Optimal power operation 

at a particular hour on a single day 

. The initial and operating costs 

respectively. Cost and lifetime of 

grid for each case are as mentioned in Table 4.36. 

resources for optimal operation in each case are given 
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Figure 4.40. Power demands of micro-grid on a particular day during summer and winter 
seasons 

 

Table 4.34 
 Initial cost of DERs 
DER Micro-grid system (Case 1) 

(Rs × 8
10 ) 

Micro-grid system (Case 2 ) 

(Rs × 8
10 ) 

BMGU 1.9935 - 

BESS 4.3355  4.3355 

SPS  7.1736 7.1736 

PAFC - 0.9450 

 

Table 4.35 
Operating cost of DERs 
DER Micro-grid system (Case 1) 

(Rs/kWh) 

Micro-grid system (Case 2 ) 

(Rs/kWh) 

BMGU 2.5 - 

BESS 6 6 

SPS 0 0 

PAFC - 10 
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Table 4.36 
Cost and lifetime of micro-grid equipments 

 
Table 4.37  
Installable capacity of DERs 
Optimal operation Micro-grid system(Case 1) 

(kW) 
Micro-grid  
system (Case 2) (kW) 

BMGU  850 - 
BESS  110  140  
SPS 350 350 
PAFC - 650 
PP  20 20 

In this work, the economic feasibility of hybrid DERs for the micro-grid and its optimal 

operation has been found with the help of SSO algorithm using an in-house developed code 

in MATLAB R2013a. The equated annual cost of each hybrid DER for optimal operation and 

micro-grid formation is shown in the Table 4.38 given below. 

Table 4.38  
Equated annual cost of each hybrid DER 

Micro-grid operation  Equated annual cost (Rs) 

Case 1 1.2984 × 8
10

 

Case 2 1.3217 × 8
10  

The optimal operation by different DERs and corresponding load demand, during summer 

and winter seasons for case 1, is shown in Fig. 4.41. Here, hourly basis power generation 

from each DER, during summer and winter seasons is depicted. 

Equipment forming 

micro-grid 

Case 1 Case 2 

Cost (Rs× 8
10 ) Lifetime (in 

years) 

Cost (Rs× 8
10 ) Lifetime 

(in years) 

Switching equipment 0.00437000 6 0.00437000 6 

Transformers (step up and 

step down) 

0.03350000 15 0.03350000 15 

Controller 0.00020000 30 0.00020000 30 

Cables(underground and 

overhead) 

0.10900000 20 0.05000000 20 
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Figure 4.41. Optimal operation and corresponding load demand for case 1 of hybrid DER 

It has been observed, that, the combination of SPS and BMGU with BESS (i.e. case 1) is 

1.76 percent cheaper than that of SPS and PAFC with BESS (i.e. case 2), for the same load 

demands.  

SSO is a newly appeared technique. For the sake of its reliability, the case 1 of hybrid 

DER has also been analyzed by another well established, common meta heuristic, population 

based optimization technique, named Genetic algorithm (GA). Since the case 1 of hybrid 

DER is more economical, the convergence comparison has been made for this case as shown 

in Fig. 4.40. Here, it is evident, that, in early iterations, GA converges faster than SSO, but as 

the iterations go on, SSO converges more than GA and finally gives better result.  

 

Figure 4.42. Convergence comparison curves of cost for case 1 of hybrid DER 
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The cost evaluation of different hybrid DERs for micro-grid has been made with the help 
of SSO algorithm. It shows some advantages over other evolutionary algorithms, like 
avoidance of premature convergence, improved balance between exploration and exploitation 
for obtaining the global optimal solution etc. Thus, it is evident, that, SSO is compatible to 
solve this type of optimization problem. Hybrid DER, as distributed generator, is found to be 
good approach to mitigate power demands of small and remotely situated localities. Hence, a 
lot of research is going on renewable energy resources. The operating and installation costs of 
these resources are likely to be decreased more in near future. Then, this scheme of 
distributed power generation with hybrid DERs will be more attractive. 

 

4.8. Numerical Study on Optimal power operation 

planning in a rail-way rake maintenance depot 

4.8.1. Input Parameters 

Variation in power demand of the consumer throughout the day is depicted below in Fig. 

4.43.  

 
Figure 4.43. Power demand 

 
The installation and running costs [238-242] of different DERs and their maximum 

installable capacities[243] are tabulated in Table 4.39. 
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Table 4.39 
Cost of DERs 

DERs Installation Cost 
(Rs./KW) 

Operating Cost 
(Rs./KWH) 

Life time 
(Years) 

Maximum 
installable 
capacity 

(KW) 
BMGU 11 2 10 20 
PAFC 35000 10 5 1000 
BESS 725 5 5 100 
SPS 328000 - 10 150 

 
Inputs associated to formation of micro-grid [244] are tabulated in table 4.40. 

Table 4.40 
Details of micro-grid cost. 

Equipments Cost (Rs.) Life time 

(Years) 

Switching Equipments 47400 8 

 

Transformers 

100 KVA 256000 20 

315 KVA 465000 20 

630 KVA 713000 20 

Controller 20000 30 

UG Cable (4 core,11 KV grade) 78100 20 

 
Individual tariff for different DERs [244] are given below in Table 4.41. 

Table 4.41 
Tariff for DERs 

DERs BMGU PAFC SPS 

Rate (Rs./KWH) 4 11 11 

 
Existing Tariff [244] to purchase power from grid is as in Table 4.42. 

Table 4.42 
Energy Tariff 

Time slab Normal Peak OFF-peak Demand Charge 

(Rs./KVA/month) 

Rate (Rs./KWH) 6.12 8.57 4.04 317 
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4.8.2. Results and Analysis 

In this work, Economic analysis to implement distributed generation using DERs, with 

optimal power operation planning, in the aforesaid Rail-Way car-shed has been done. To get 

the best result as well as test the performance of GSA, 16 consecutive runs of the in-house 

developed programs have done in Matlab R2013a, for different cases with different 

combinations of tuning parameters and randomizing equations. Let, Rpow is a parameter, 

which is suggested to be 2 or 1 and Type (a or b) is the indication of the selection of 

randomizing equation. The simulation results are tabulated below in Table 4.43. 

 

Table 4.43 
 Obtained results 
C

a 

s 

e 

Sl

No 

T

y

p

e 

R- 

po

w 

Pop. 

Size 

(N) 

No. of 

Iteration 

(I) 

Optimum installation Capacity Equated 

Annual 

Cost (RS) 

Energy 

Cost 

(Rs./K

WH) 

BMGU PAFC BESS SPS 

 

I 

1 a 1 50 1000 12 - 47 65 4.7897 e6 12.33 

2 a 2 50 1000 18 - 31 97 5.1073 e6 13.15 

3 b 1 50 1000 12 - 41 60 4.4987 e6 11.58 

4 b 2 50 1000 19 - 46 125 4.7478 e6 12.22 

 

II 

 

 

5 a 1 50 1000 - 572 35 66 9.4018 e5 2.42 

6 a 2 50 1000 - 996 47 126 3.7755 e6 9.72 

7 b 1 50 1000 - 583 42 60 9.7941 e5 2.53 

8 b 2 50 1000 - 933 47 94 3.6589 e6 9.42 

 

 

 

III 

9 a 1 50 1000 12 620 41 73 1.2451 e6 2.83 

10 a 2 50 1000 20 946 47 102 4.0101 e6 10.33 

11 b 1 50 1000 11 583 43 62 8.5629 e5 2.20 

12 b 2 50 1000 18 945 39 71 3.2973 e6 8.49 

13 a 1 80 1000 11 581 40 64 8.4839 e5 2.18 

14 b 1 50 1500 12 616 43 70 1.0867 e6 2.79 

II 15 a 1 80 1000 - 580 30 64 9.3278 e5 2.40 

16 b 1 50 1500 - 588 41 64 9.7532 e5 2.51 

 
Analyzing the obtained results, it is clear that Case I is not economically faceable. Case II 

is optimum to some extent, but Case III is the most optimum economically. From the view 
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point of performance of GSA, it can be noted that, the type of randomizing equation, 

population size and no. of iteration do no significantly affect the results. But, in case of 

Rpow, value of 2 performs more efficiently than 1 for this optimization problem. Possibly, in 

case of Rpow = 2, the discontinuity caused by transformer price when amount of surplus 

power exceeds 700 KW, cannot be arrested. However, among the results, the most economic 

solution comes out from thy 13th run, which belongs to case III.  

This optimization problem was also solved by PSO technique. The best value arrived by 

this is also goes for case III with Equated Annual Cost of Rs 8.8547 e5, which means energy 

cost of Rs 2.26/KWH. 

The convergence curve of Equated Annual Cost for both GSA and PSO are shown in Fig. 

44. For GSA, it shows drastic convergence in early iterations and in latter iterations the value 

improved slightly. Whereas, in case of PSO, the convergence is comparatively gradual. 

 

 

 
Figure 4.44. Convergence curve 

 

The optimal power operation considering this result is graphically depicted below in 

figure 4.45. 
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Figure 4.45. Optimal Power Operation 

Here, ‘Pfc’, ‘Pso’ and ‘Pbm’, which indicate the hourly power generation by PAFC, SPS 

and BMGU, are represented in figure 4.28. The BESS operation is also present there as ‘Pbt’. 

The positive side indicates battery discharging and the negative side indicates charging. 

There also exists the hourly basis demand curb, ‘PD’. Lastly, in the negative power axis, the 

amount of surplus energy fed to the grid is represented as ‘PO’. Anyways, in this figure, 

power operation of BMGU, SPS and BESS, and the demand curb are not prominent, to get 

clear view of these, omitting power operation of PAFC and power fed to the grid,  Figure 

4.46 is presented below. 

 
Figure 4.46. Optimal Power Operation 
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4.8.3. Conclusion 

Giving priority to the economy, a theoretic analysis to implement DG with optimal power 

operation has been made. GSA is used to solve this optimization problem. It performed 

slightly better than normal PSO method for this case. So it seems that GSA can be 

successfully and reliably implemented in these types of optimization problems. 

As per the proposal, the energy cost should effectively be Rs. 2.18 per KWH and it will 

be possible to feed renewable energy of 4.3513 GWH per year. Effectively it results savings 

of 4.7397 GWH energy, mostly generated from conventional thermal power plants. It will be 

beneficial to the environment. In spite of that, there may arise some conflicts. As per the 

obtained results, for case II (when BMGU is discarded), the minimal energy cost will be Rs. 

2.40 per KWH, which may be comparable to case III. As it is definite that, BMGU has very 

low power density, omitting BMGU may spare a large amount of land area of the consumer, 

which will attract them (the authority of the railway car-shed). As lots of researches are going 

on DERs technology, it can be assumed that the installation and operating costs of different 

DERs will definitely be reduced in near future and they will come with greater efficiency and 

power density. At that time, implementation of DG using DERs will be more attractive for 

the most consumers. 

 

 

4.9. Numerical Study on optimal power operation of 

PV aided nano-grid in a hopital campus 

4.9.1. Simulation and results 

Total power consumption in the hospital campus throughout a day is presented below as 

in Fig. 4.47. Here, the power demand has been recorded at every quarter hour interval 

throughout a day for a set of randomly chosen 36 days of different months throughout a 

whole year and the power demand has been averaged to realize the 24 hrs demand profile. 



 

171 
 

 

Figure 4.47. 24 hours power demand of the hospital campus 

The running cost of different renewable energy resources and their installed capacity are 

tabulated in Table 4.44. 

Table 4.44 
Running costs and installed capacities 
Renewable energy resource Running cost (INR/kWh) Installed capacity (KW) 

Battery energy storage system 5 5 

Solar photovoltaic system - 10 

 
Existing time dependent tariff to purchase power from grid is as in table 4.45 [245]. 

Table 4.45 
Energy tariff of the utility grid 

Time period 
4:00 am - 

10:00 am 

10:00 am - 

10:00 pm 

10:00 pm - 

4:00 am 

Base charge 

(Rs./KVA/month) 

Rs./kWh 6.88 7.57 6.40 317 

 
The parameters for the optimizer have been tuned as follows. The community dimension

abN , the allocation index corresponding to the SIBICR
alη , and the maximum iteration

mxitrn , 

have been set as 100, 0.5 and 1000 respectively. 

To ensure the performance of the proposed methodology solved by the IMRCGA, 10 

simultaneous runs of an in-house developed code have been done in MATLAB R2013a 
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environment, by a computing system based on a standard Intel i7 micro-processor with 16 GB 

1600 MHz RAM and with 64 bit Windows 7 professional operating system. The problem has 

also been solved by RLCGA to compare the result with the proposed methodology. To assure 

a justified comparison, The community dimension 
abN , and the maximum iteration

mxitrn  have 

been set as the same of the case of IMRCGA. The averaged simulation results are given 

below in Table 4.46. The average computing time taken to get the solutions are 15.82 and 

16.21 seconds for RLCGA and IMRCGA respectively. 

Table 4.46 
Annual operating cost 

Annual operating cost (INR) 

Without active DSM 
With DERs (solved by 

RLCGA) 

With DERs (solved by 

IMRCGA) 

7.4286e+05 5.9381e+05 5.4021e+05 

 
It is evident from the results that the proposed IMRCGA technique performs better in 

respect of producing a more economic solution. The optimal economic power operations of 

nano-grid as per the obtained solution of the proposed IMRCGA have been depicted in Fig. 

4.48. 

 

 

Figure 4.48. 24 hours optimal power operation 
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Here, the PD denotes the power consumption and gridP  represents power purchased from 

the utility grid. The area between these two curves summarizes the net energy saving 

throughout the day. ThepvP and battP curves denotes power contribution of the PV and The BESS 

units respectively. Negative portion of the battP line represents charging of the BESS and the 

positive portion represents the discharging mode of the BESS. 

Two separate tracking controllers have been designed to operate the PV and BESS following 

the power operational references. These are represented as  

�����! = 50.046 + ��.�*��                                                                                                      (3.97) 

��*��! = 1.523 + �.*��� + �.��+������                                                                                           (3.98) 

The PI controller, �����!, is used to control the PV system described by (21)-(29) The PID 

controller, ��*��!, is used to control the BES system described by (30)-(32). The 

corresponding closed-loop system frequency response is shown in Fig. 4.49a and Fig. 4.49b 

respectively. 

 

 

 

Figure 4.49a. Closed loop frequency response of the PV system. 



 

 

Figure 4.49b. Closed loop frequency response of the BES system.

The closed loop frequency responses in 

frequency steady state and higher frequency noise rejection.

The transient behaviors of the PV and BES system hav

Hardware-in-Loop (HiL) simulations on a real

MATLAB Real-Time Windows Target (RTWT). The scheme of the HiL Simulation, as 

shown in Fig. 4.50, the analog outputs from the Opal

with the controller hardware Advantech PCI 171, are fed directly to a storage oscilloscope.

 

Figure

The time responses of the PV and BES system have
this real-time HiL scheme. In this period of simulation, some realistic changes of references 
due to ambient uncertainty have been taken into account.

174 

Closed loop frequency response of the BES system.

The closed loop frequency responses in Fig. 4.49a and Fig. 4.49b show stability at low 

frequency steady state and higher frequency noise rejection. 

The transient behaviors of the PV and BES system have been examined with 

Loop (HiL) simulations on a real-time platform viz. Opal RT OP4500 and 

Time Windows Target (RTWT). The scheme of the HiL Simulation, as 

, the analog outputs from the Opal-RT OP4500 module, which is in loop 

with the controller hardware Advantech PCI 171, are fed directly to a storage oscilloscope.

ure 4.50. Hardware-in-Loop (HiL) scheme 

The time responses of the PV and BES system have been captured for 120 seconds through 
time HiL scheme. In this period of simulation, some realistic changes of references 

due to ambient uncertainty have been taken into account. 

 

Closed loop frequency response of the BES system. 

b show stability at low 

e been examined with real-time 

time platform viz. Opal RT OP4500 and 

Time Windows Target (RTWT). The scheme of the HiL Simulation, as 

dule, which is in loop 

with the controller hardware Advantech PCI 171, are fed directly to a storage oscilloscope. 

 

been captured for 120 seconds through 
time HiL scheme. In this period of simulation, some realistic changes of references 
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Figure 4.51. PV power 

 

Figure 4.52. BESS power 

 

 



 

 

Figure

 

Generated traces from the simulator connected storage oscilloscope are presented in 

4.51, Fig. 4.52, Fig. 4.53a and 

reference power tracking of the PV and BES system respectively. Th
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Figure 4.53a. BESS terminal voltage 

 

Figure 4.53b. BESS current 

Generated traces from the simulator connected storage oscilloscope are presented in 

a and Fig. 4.53b. Figure 4.51 and Fig. 4.52 represent the real

reference power tracking of the PV and BES system respectively. Th

 

 

Generated traces from the simulator connected storage oscilloscope are presented in Fig. 

represent the real-time 

reference power tracking of the PV and BES system respectively. The associated BES 
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terminal voltage and current waveforms have been depicted in Fig. 4.53a and Fig. 4.53b 

respectively. Figure 4.51 and Fig. 4.52 show satisfactory power tracking performances for 

both the PV and BES systems. 

4.9.2. Conclusion 

With priority to economic demand side management forming a PV-BESS assisted nano-

grid, a theoretic analysis to find optimal annual operating cost has been done. It can be 

concluded that evolutionary optimization techniques like real coded genetic algorithm 

(RLCGA) and improved real coded genetic algorithm (IMRCGA) can be successfully used as 

optimizer to solve this kind of optimization problem and IMRCGA suits better than RLCGA 

in this type of problem. 

Electrically modeled power network of the hospital campus in the form of a nano-grid 

containing PV, inverter and BES systems along with designed controllers analytically show 

proficient performance in steady state and transient reference tracking. 

As an obvious future, distributed generation would be preferred over conventional 

centralized power generation. In that situation, distribution networks, which are presently 

designed according to the conventional centralized power generation, would have to be 

changed according to the distributed generation requirements. For this particular case, it has 

been seen that by implementing active distribution system with renewable energy resources, 

the annual operating cost gets reduced by 27.28 percent approximately and in addition, it 

saves almost 21.9 MWh of electrical energy produced by conventional centralized power 

generation system per annum. 

4.10. Experimentation and validation of the 

proposed optimization based fault detection scheme 

in photovoltaic system 

4.10.1. Experimental setup 

To test the performance of the proposed methodology, a physical test system has been 

created in the laboratory, which consists of 10 numbers of identical 36 multi-crystalline cells, 

10 Watts PV modules. Here all the modules have been connected in series to construct a PV 



 

 

string. The generated power has be

and converter.  The technical specifications of the PV modules are summarized in Table 

All the technical data are collected at standard test condition (STC) (Irradiance

AM 1.5, 25°C Temperature).

been constructed to perform the evaluations needed by the optimizer as the simulated PV 

system and the fault analyzer block in Fig. 2.12

block, the optimizer subsystem contains the in house developed logical source code to 

implement GWO for fault detection. The sub

and converter are depicted below in Fig. 

 

Figure 4.55
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string. The generated power has been fed to an electrical load through an MPPT controller 

and converter.  The technical specifications of the PV modules are summarized in Table 

All the technical data are collected at standard test condition (STC) (Irradiance

Temperature). A Matlab-Simulink model, identical to this test system, has 

been constructed to perform the evaluations needed by the optimizer as the simulated PV 

e fault analyzer block in Fig. 2.12. [ref. to chapter 2, sec 2.

block, the optimizer subsystem contains the in house developed logical source code to 

implement GWO for fault detection. The sub-systems named PV string and MPPT controller 

and converter are depicted below in Fig. 4.54 and Fig.4.55 respectively. 

Figure 4.54. PV string sub-system. 

4.55. MPPT controller and converter Sub-system.

en fed to an electrical load through an MPPT controller 

and converter.  The technical specifications of the PV modules are summarized in Table 4.47. 

All the technical data are collected at standard test condition (STC) (Irradiance- 1000 W/m2, 

Simulink model, identical to this test system, has 

been constructed to perform the evaluations needed by the optimizer as the simulated PV 

[ref. to chapter 2, sec 2.10] Here, in this 

block, the optimizer subsystem contains the in house developed logical source code to 

systems named PV string and MPPT controller 

 

 
system. 
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Table 4.47 
Electrical characteristics of test modules. 
Parameter Value 

Make SOVA SOLAR 

Maximum Power (Pmax) 10.51 W 

Voltage at Pmax (Vpm) 18.18 V 

Current at Pmax (Ipm) 0.58 A 

Open-Circuit Voltage (Voc) 22.14 V 

Short-Circuit Current (Isc) 0.64 A 

Series Resistance (Rs) 1.73 Ω 

Shunt Resistance (Rsh) 613.94 Ω 

FF 0.75 

Module efficiency (Eff,m) 13.29% 

Cell efficiency (Eff,c) 16.41% 

 

4.10.2. Results and discussions 

Nonuniform irradiance throughout the PV string has a significant effect on the string 

current. As it causes deformation of power-voltage characteristics of the PV string, the 

operating point (MPP) of the string is changed by the MPPT controller and power converter, 

which affects the string current. Here, the proposed methodology follows this string current 

to detect OC and SC faults. So, a keen attention has been paid on performance evaluation of 

the methodology in case of MPPT controller and converter connected PV string in 

nonuniform irradiance with different module temperatures. To realize the performance in 

these different conditions, 4 sets of PV string system irradiance and temperature conditions 

(C1-C4) have been considered, as tabulated in Table 4.48. The irradiance values of modules 

for test conditions C1 and C2 ranges from 807-987 W/m2 and 475-718 W/m2  respectively, 

while for conditions C3 and C4,   some irradiance values have been considered very low 

values, as ranges from 71-576 W/m2  and 84-929 W/m2 , to replicate heavily shaded 

conditions in some modules in the PV string. Such ranges of irradiance levels for different 

test conditions are selected to examine the effectiveness of the proposed methodology in 

cases of moderate and highly non-uniform irradiance conditions. 
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Table 4.48 
Irradiance levels and corresponding temperatures 

PV System 
Conditions 

C1 C2 C3 C4 

1st  Module 
G1(W/m2) 931 575 166 841 

T1(°C) 62.91 49.56 34.22 59.53 

2nd  Module 
G2(W/m2) 807 553 408 254 

T2(°C) 58.26 48.73 43.30 37.52 

3rd  Module 
G3(W/m2) 970 706 98 84 

T3(°C) 64.37 54.47 31.67 31.15 

4th  Module 
G4(W/m2) 987 718 71 344 

T4(°C) 65.01 54.92 30.66 40.90 

5th  Module 
G5(W/m2) 936 791 299 929 

T5(°C) 63.10 56.66 39.21 62.83 

6th  Module 
G6(W/m2) 952 475 576 750 

T6(°C) 63.70 45.81 49.60 56.12 

7th  Module 
G7(W/m2) 949 578 204 197 

T7(°C) 63.58 49.67 35.65 35.38 

8th  Module 
G8(W/m2) 878 659 351 551 

T8(°C) 60.92 52.71 41.16 48.66 

9th  Module 
G9(W/m2) 831 684 351 616 

T9(°C) 59.16 53.65 41.16 51.10 
10th  

Module 
G10(W/m2) 834 702 134 473 

T10(°C) 59.27 54.32 33.02 45.73 
 

 

Under each condition, the fault diagnosis technique has been tested four times. One in 

each of them contains no fault, two consist of only OC or SC faults. Another case contains 

different combinations of OC and SC faults. Thus, sixteen (4x4) number of consecutive 

experiments (E1-E16) have been done to validate the proposed methodology with different 

test conditions. Different combinations of SC and OC faults have been created in the physical 

test system with different irradiance level as stated above. Corresponding module 

temperatures have also been considered. 

GWO has been selected here as the optimizer to solve this optimization problem. 

Moreover, two other well-recognized optimization technique such as Genetic Algorithm 

(GA) and Tabu Search (TS) have also been adopted to solve these problems. 

The simulation and algorithm have been run in MATLAB R2013a on Windows 7 

environment, with Intel core i7 processor and RAM of 32 GB. The thorough results acquired 

from these experimentations have been tabulated as in Table 4.49. 
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Table 4.49 
Fault diagnosis results 

E
xp

er
im

e
nt

 

C
on

di
tio

n
  

Actual 
Fault 

 
MPP
measI

 
(A)

 

 
Optimality 
Condition �∈! Algorithm 

MPP

sim
I

 
(A)

 

 
Fitness 
Value 
(FIT) 

 
 

|Psimulated-
Pactual| 

 

 
Detected 

Fault 

OC SC OC SC 

 
E1 

 
 
 
 
 
 

C1 

 
Nil † 

 
Nil † 

 
0.505690 

 
0.04849 

GWO 0.505692 0.000002 0.0019 Nil† Nil † 

GA 0.505692 0.000002 0.0019 Nil† Nil † 

TS 0.505692 0.000002 0.0019 Nil† Nil † 

 
E2 

 
6,10 

 
Nil † 

 
0.505270 

 
0.04935 

GWO 0.505273 0.000003 0.0021 6,10 Nil† 

GA 0.505273 0.000003 0.0021 6,10 Nil† 

TS 0.505273 0.000003 0.0021 6,10 Nil† 

 
E3 

 
Nil † 

 
2-

4*,8 

 
0.512000 

 
0.06530 

GWO 0.511994 0.000006 0.0033 Nil† 2-
4*,8 

GA 0.511994 0.000006 0.0033 Nil† 2-
4*,8 

TS 0.511994 0.000006 0.0033 Nil† 2-
4*,8 

 
E4 

 
1,7,9 

 
4,10 

 
0.502760 

 
0.04454 

 

GWO 0.502764 0.000004 0.0027 1,7,9 4,10 
GA 0.502764 0.000004 0.0027 1,7,9 4,10 
TSΩ 0.502799 0.000039 0.0483 1,7,10 4,9 

 
E5 

 
 
 
 
 
 

C2 

 
Nil † 

 
Nil † 

 
0.300940 

 
0.01199 

GWO 0.300939 0.000001 0.0004 Nil† Nil† 
GA 0.300939 0.000001 0.0004 Nil† Nil† 
TS 0.300939 0.000001 0.0004 Nil† Nil† 

 
E6 

 
2,4,7 

 
Nil † 

 
0.299880 

 
0.01182 

GWO 0.299877 0.000003 0.0002 2,4,7 Nil† 
GA 0.299877 0.000003 0.0002 2,4,7 Nil† 
TS 0.299877 0.000003 0.0002 2,4,7 Nil† 

 
E7 

 
Nil † 

 
1,3,5 

 
0.346420 

 
0.04114 

GWO 0.346421 0.000001 0.0006 Nil† 1,3,5 
GA 0.346421 0.000001 0.0006 Nil† 1,3,5 
TS 0.346421 0.000001 0.0006 Nil† 1,3,5 

 
E8 

 
4,9 

 
6-7 

 
0.298840 

 
0.01151 

GWOΩ 0.298971 0.000131 0.1951 1,4,9 6 
GAΩ 0.298892 0.000052 0.0127 4,9 1,6 
TS 0.298838 0.000002 0.0011 4,9 6-7 

 
E9 

 
 
 
 
 
 

C3 

 
Nil † 

 
Nil † 

 
0.187560 

 
0.03647 

GWO 0.187563 0.000003 0.0018 Nil† Nil† 
GA 0.187563 0.000003 0.0018 Nil† Nil† 
TS 0.187563 0.000003 0.0018 Nil† Nil† 

 
E10 

 
1,8,9 

 
Nil † 

 
0.186780 

 
0.03645 

GWO 0.186784 0.000004 0.0026 1,8,9 Nil† 
GA 0.186784 0.000004 0.0026 1,8,9 Nil† 
TS 0.186784 0.000004 0.0026 1,8,9 Nil† 

 
E11 

 
Nil † 

 
3,7 

 
0.184294 

 
0.00929 

GWOΩ 0.184293 0.000001 0.2794 Nil† 2,7 
GAΩ 0.184092 0.000202 0.0752 2 7 
TSΩ 0.184452 0.000158 0.3661 3 7 

 
E12 

 
3 

 
6-8* 

 
0.21200 

 
0.06366 

GWO 0.211972 0.000018 0.0054 3 6-8* 

GA 0.211972 0.000018 0.0054 3 6-8* 

TSΩ 0.211033 0.000967 0.0683 Nil† 2,6-
8* 

 
E13 

 
 
 
 
 
 

C4 

 
Nil † 

 
Nil † 

 
0.298060 

 
0.2820 

GWO 0.298065 0.000005 0.0039 Nil† Nil† 
GA 0.298065 0.000005 0.0039 Nil† Nil† 
TS 0.298065 0.000005 0.0039 Nil† Nil† 

 
E14 

 
4,8,9 

 
Nil † 

 
0.459330 

 
0.2136 

GWO 0.459321 0.000009 0.0062 4,8,9 Nil† 
GA 0.459321 0.000009 0.0062 4,8,9 Nil† 
TS 0.459321 0.000009 0.0062 4,8,9 Nil† 

 
E15 

 
Nil † 

 7-
10* 

 
0.460980 

 
0.2342 

GWO 0.460978 0.000002 0.0008 Nil† 7-
10* 

GA 0.460978 0.000002 0.0008 Nil† 7-
10* 

TS 0.460978 0.000002 0.0008 Nil† 7-
10* 

 
E16 

 
2,6 

 
8 

 
0.295900 

 
0.17754 

GWO 0.295912 0.000012 0.0055 2,6 8 
GA 0.295912 0.000012 0.0055 2,6 8 
TS 0.295912 0.000012 0.0055 2,6 8 

† Nil represents no occurrences of those faults. *SC fault among these modules in between. Ω Wrong fault detection 
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I-V Characteristics 

 

P-V Characteristics 

 
Fig. 4.56(a). Condition: C1, Experiment: E 1, E 2, E 3, E 4. 

I-V Characteristics 

 

P-V Characteristics 

 
Fig. 4.56(b). Condition: C2, Experiment: E 5, E 6, E 7, E 8. 

I-V Characteristics 

 

P-V Characteristics 

 
Fig. 4.56(c). Condition: C3, Experiment: E 9, E 10, E 11, E 12. 

I-V Characteristics 

 

P-V Characteristics 

 
Fig. 4.56(d). Condition: C4, Experiment: E 13, E 14, E 15, E 16. 

 Fig. 4.56. P-V and I-V curves of the experimental test systems. 



 

183 
 

Here, in E1, E5, E9 and E13 no fault has been formed. In E2, E6, E10, and E14, there are 

only OC faults and in E3, E7, E11 and E15, there are only SC faults. Experiments E4, E8, 

E12 and E16 have a combination of both OC and SC faults. 

Power-voltage (P-V) and current-voltage (I-V) characteristics for all of the experimental 

conditions are shown in Fig. 4.56. Here, all black, continuous curves represent the character 

of a healthy PV string (no fault). Whereas, green and red lines show P-V and I-V 

characteristics of the PV string with only OC and only SC faults, respectively. Blue lines 

represent both OC and SC faults together.  

Motivation to perform the tests for healthy PV string is to confirm the capability of the 

proposed methodology to distinguish between faulty and healthy PV string in non-uniform 

irradiance. It has been noted in Table 4.49, that the proposed methodology qualifies for all 

these no-fault cases.  

In E4, 1st, 7th and 9th modules were open circuited, and 4th, 10th modules were short 

circuited. GWO and GA detect the fault correctly. But TS detects 1st, 7th and 10th module as 

open circuited, and 4th and 9th modules as short circuited. Similarly, in case of E8, GWO and 

GA fail to detect the exact fault, but TS detects that. Again in E12, GWO and GA is able to 

detect faults correctly, but TS fails. In E11, all the techniques GWO, GA and TS fail to detect 

fault correctly. In all other experiments, except these four out of sixteen, all the three 

techniques are successful. It has been noted, it is able to distinguish between faulty and 

healthy conditions of a PV string under non-uniform irradiance with some moderately shaded 

and highly shaded PV modules. 

Significantly, it has also been noted that, in all the cases where the optimizers have failed 

to detect faults, low fitness values have been achieved, but the optimality conditions for 

respective cases have not been fulfilled. In other successful cases, low fitness values have 

been achieved as well as the respective optimality conditions have been satisfied. 

Mathematically, this heuristic based fault diagnosis technique is a minimization problem with 

minimum possible value of zero. Though, the optimal solutions corresponding to the actual 

fault combinations are the unique solution to the proposed model, there are small gaps 

between the measured string current and the calculated fault current. In these cases, it may be 

counted as a success achieving a tiny number tending towards zero (sub-optimal point), if the 

fault combination causing the result matches exactly with the actual occurred faults. Hence, 

to validate the effectiveness of the obtained results, some facts have to be taken account. The 

test system is equipped with small 10 W modules. The generated current is small. There are 

limitations in accurate measurement of this physical string current. Thus, it can be assumed 
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that, if the optimizer reaches a sub-optimal point, but satisfies the optimality condition, the 

optimizer has performed successfully arresting the actual fault combination and the sub-

optimality is caused by the limitations of sensors employed in physical parameter 

measurements. On the other hand, if the optimizer reaches a sub-optimal point, but does not 

satisfy the optimality condition, it is a failure of the optimizer and the detected fault 

combination is wrong. In those cases, the optimizer may be successful, if the iteration count 

is increased further than that has been set for this fault diagnosis method. But, it may not be 

feasible because it will consume large computational time, which is not suitable for real time 

fault detection scheme.  

Analyzing the obtained results for different optimizers, it may be concluded that all these 

optimizers as solver are suitable in most of the cases. As discussed in the introduction, all the 

existing single fault diagnosis method alone is unable to completely diagnose the OC and SC 

faults and their locations in the faulty string. Some of them can detect SC faults only, some 

are only for OC faults, some can differentiate between the faulty or healthy string, some only 

find the number of OC and SC faults, and some can only distinguish the OC and SC fault 

type and so on. Here, the proposed methodology succeeds to detect and distinguish OC and 

SC faults and their locations in the PV string. It is also able to distinctly identify faulty string 

and healthy string under non-uniform irradiance. 

4.10.3. Conclusion 

In this work a new method of fault diagnosis in PV systems following string current has 

been presented. Grey Wolf Optimizer as well as Genetic Algorithm and Tabu Search 

Algorithm have been used here as a search technique. This method has been applied to a 

physical PV string consisting of 10 numbers of 12V, 10W 36 cell PV modules which detects 

faults correctly in most of the cases. Thus the effectiveness of the proposed methodology and 

the applicability of meta-heuristic optimization techniques as a solver have been confirmed. 

The proposed method is able to explicitly identify the number and location of short circuit 

and open circuit faults in a PV string operating at MPP or whether it is in healthy condition in 

non-uniform irradiance regardless of the number of PV modules in a PV string.  This fault 

detection algorithm follows the string current. So the number of monitoring parameter needed 

is less.  

Here, only SC and OC type of faults have been considered. There are chances of 

occurrences of other related faults which can affect the PV string characteristics, including 
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string current, which can cause a placebo OC and SC faults. That may lead the proposed 

methodology to false detection of OC and SC faults. 

 Some preventive measures have been taken to minimize the chance to be incurred in 

false detection. The PV panels taken here to construct the test system were almost free from 

other deformities and well calibrated. The simulated PV system has also been minutely tuned 

with the physical test system. These help to cancel the effects on PV string currents caused by 

other faults and deformities and detect faults accurately in test cases performed in the 

laboratory. 

Being a calculation based soft computing method; this proposed fault detection 

methodology is directly applicable to practical large scale PV systems. In this work, the PV 

panels of the physical test system are only of 10 watts. So, the change of string current caused 

by OC, SC faults is here in few mA ranges. There are limitations in measuring these small 

amounts of currents with high accuracy. In this downscaled laboratory environment, the 

global optimizer may often have a chance of failure to search the best answer. However, in 

practical large PV systems, OC, SC faults causes a large difference in string current. In those 

cases, the optimizers may likely to be more efficient to find faults. 

Considering these studies and analysis, it can be concluded that the proposed 

methodology may be employed as a proficient fault detection method for PV systems. 
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Chapter 5 

 Conclusion & Future-scope 

============================ 
In this thesis optimization of power systems by application and development of soft 

computing techniques have been performed. The power system optimization problems have 
been proposed here to be categorized in two segments, namely, Large-scale power system 
optimization problems and Micro-scale power system optimization problems.  

In class of Large-scale power system optimization problems, several studies have been 
done about optimal strategies and operation planning for economic dispatch and economic-
environmental dispatch of single area and multi area large power systems, Wind power 
integrated multi area economic-environmental dispatch and short term hourly basis hydro-
thermal generation scheduling of different power systems considering several technical 
constraints. Mathematical modeling in form of objective functions and constraints have been 
formulated. A novel energy policy that encourages proper estimation and maximization of 
wind energy generation has been proposed. Applicability of different heuristic and meta-
heuristic optimization algorithms for different cases have been studied. Comparative studies 
of the obtained solutions by different techniques have also been done. Soft computing 
techniques to employ HTS algorithm for ED problems, AIS algorithm for MAED problems, 
MODE algorithm for MAEED problems, NSGA II algorithm for WMAED problems and 
IRCGA algorithm for short term hydro-thermal scheduling problems have been developed 
and solved throughout this thesis. 

In class of Micro-scale power system optimization problems, several studies have been done 
on optimal placement and sizing of Distributed generation systems in power distribution 
networks. Transmission loss minimization along with voltage profile maintenance and have 
been focused. Studies with variation of load have been done. These optimization problems 
have been successfully solved applying WCA algorithm. Optimal integration and operation 
of distributed renewable energy recourses focusing on economic aspect have been studied for 
several realistic cases with different  demand profile like a whole township (where overall 
power demand prominently varies with the weather), a typical railway rake maintenance 
depot (contains very unique load profile) and a typical hospital campus. In those cases, 
economic power operations increasing the share of renewable energy recourses have been 
proposed. Optimal power operation planning in a township has been done applying SSO 
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algorithm. For the case of optimal power operation planning in a rail-way rake maintenance 
depot, GSA algorithm has been employed. These techniques showed proficiency. 

 Active distribution systems have been thoroughly designed forming mocro-grid and even 
nano-grids. Focusing on the control prospect; comprehensive electrical modeling and then 
mathematical modeling have been done to optimally design these type of micro/nano scale 
power networks. Optimum economic power operation for a PV aided battery storage 
connected nano-grid for a typical hospital campus have been proposed. Robust tracking 
controllers for automatic power operation have been designed. IRCGA algorithm has been 
successfully used to perform these tasks. Focusing on the fault analysis aspect; faults of 
photovoltaic system, which takes a large share in renewable energy sector, have been 
considered for studying. Detailed mathematical model of photovoltaic string along with other 
accessories like maximum power point tracking converter etc, have been constructed. A 
novel optimization technique based fault detection scheme with methodology has been 
proposed that can proficiently detect and locate open and short circuit faults of modules in a 
photovoltaic string. Application of GWO algorithm has been done to validate this proposed 
fault detection scheme in this thesis. 

There are endless scopes to perform research in power system optimization problems in 
near future. Share of renewable energy in global energy sector is gaining drastically. Need of 
more optimum unit commitment and generation planning with complex power networks, with 
different renewable energy resources with different characteristics, is evident. Optimum 
policies on economic bidding of renewable power producers in competitive electricity market 
ensuring reliable and environment friendly operation is going to be a vital matter of 
optimization. There are scopes of optimization in various power system protection problems 
like over frequency error caused by adequacy of wind generation in some countries, 
harmonics reduction and power quality improvement of the supplied power from the 
renewable energy generators associated with number of power electronic devices, and so on. 
A large share of global energy demand is for transportion sector. In near future almost all 
transportation will be done utilizing electrical energy. That will affect the power demand 
scenario of complex power systems. Optimal placement of electric vehicle charging stations 
is going to be a crucial power system optimization problem. Nano-scale power systems of 
smart buildings will need instance operation planning and optimization. Fault analysis and 
minimization of different renewable energy generators is tending to be a vital research goal. 
Researches on these power system optimization problems (along with many others) may be 
performed extending the basis of the works in this thesis. 
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