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Abbreviations and Notations 

Symbol     Description 

itΡ : real power output of i th unit during time interval t  

min

iΡ , max

iΡ : lower and upper generation limits of i th unit 

DtΡ : load demand at the time interval t  

LtΡ : transmission line losses at time t  

iiiii edcba ,,,, : cost coefficients of i th unit 

( )ititF Ρ : cost of producing real power output itΡ  at time t  

iUR , iDR : ramp-up and ramp-down rate limits of the i th generator 

Ν : number of generating units 

Τ : number of intervals in the scheduled horizon 

tiΡ : power output of i th conventional thermal generating unit 

min

tiΡ , max

tiΡ : lower and upper power capacity limits  of i th conventional 

thermal generating unit . 

ciΡ , ciΗ : power output and heat output of i th cogeneration unit. 

hiΗ : heat output of i th heat-only unit 

min

hiΗ , max

hiΗ : lower and upper heat production limits of the i th heat-only 

unit 

ΤC   : total production cost 

tiC , ciC , hiC : fuel cost characteristics of the conventional thermal 

generating unit, cogeneration  unit and heat-only unit 

respectively 

iiiii fedba ,,,, : cost coefficients of  i th conventional thermal generating 

unit 

iiiiii ξεδγβα ,,,,, : cost coefficients of  i th cogeneration unit 

iii ληϕ ,, :  cost coefficients of  i th heat-only unit 

DΗ :  system heat demand 

DΡ : system power demand 

LΡ : transmission loss 

tΝ , cΝ , hΝ : numbers of conventional thermal generating units, 

cogeneration units and heat-only units respectively 

sia , sib , sic , sid , sie : cost curve coefficients of i th thermal unit 



simΡ : power output of i th thermal generator during subinterval m  

min

siΡ , max

siΡ : lower and upper generation limits for i th thermal unit 

mt : duration of subinterval m . 

hjmΡ : power output of j th hydro unit during subinterval m  

DmΡ : load demand during subinterval m  

LmΡ : transmission loss during subinterval m  

lrΒ : loss formula coefficients. 

hja0 , hja1 , and hja2 : coefficients for water discharge rate function of j th  hydro 

generator 

hjW :  prespecified volume of water available for generation by j

th hydro unit during the  scheduling period. 
min

hjΡ , max

hjΡ : lower and upper generation limits for j th hydro unit 

sitΡ : output power of i th thermal unit at  time t  

DtΡ : load demand at time t  

LtΡ : transmission loss at time t  

hjtΡ : output power of j th  hydro unit at time t  

jC1 , jC2 , jC3 , jC4 , jC5 , jC6 :  power generation coefficients of j th  hydro unit 

hjtQ :  water discharge rate of j th reservoir at time t  

hjtV :  storage volume of j th reservoir at time t  

min

hjQ , max

hjQ : minimum and maximum water discharge rate of j th 

reservoir 
L

khjQ , , U

khjQ , : lower and upper bounds of k th prohibited zones of hydro 

unit j  

min

hjV , max

hjV : minimum and maximum storage volume of j th reservoir 

hjtΙ : inflow rate of j th reservoir at time t  

ujR : number of upstream units directly above j th hydro plant 

hjtS : spillage of j th reservoir at time t  

ljτ : water transport delay from reservoir l  to j  

t , Τ : time index and scheduling period 

sΝ : number of thermal generating units 

N�: number of hydro generating units 

jn : number of prohibited zones for hydro unit j  

k : index of prohibited zones of a hydro unit 



EXECUTIVE SUMMARY 

 

The present work is the study and application of intelligent control to power system 

scheduling. Here, the work focuses on different optimization techniques for power system 

scheduling. Intelligent control such as evolutionary algorithm, differential evolution, 

evolutionary programming, genetic algorithm, artificial immune system, simulated annealing, 

teaching learning based optimization, modified teaching learning based optimization , quasi 

oppositional differential algorithm ,heat transfer search algorithm are used to optimize the 

power system for  economic dispatch, dynamic economic dispatch, multi area economic 

dispatch, reactive power dispatch, combined heat and power economic dispatch and 

hydrothermal system etc. Also the study carried out on optimal scheduling of generation for 

fixed and variable head hydrothermal system using both opposition-based differential 

evolution and heat transfer search algorithm. The proposed method is validated by applying it 

to two test problems,  two fixed head hydrothermal test systems and three hydrothermal multi-

reservoir cascaded hydroelectric test systems having prohibited operating zones and thermal 

units with valve point loading. The modified teaching learning based optimization method has 

been applied to solve the non-smooth/non-convex combined heat and power economic 

dispatch problem. Here modified teaching-learning-based optimization where gaussian 

random variables are introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves 

search efficiency and guarantees a high probability of obtaining the global optimum without 

significantly impairing the speed of convergence and the simplicity of the structure of 

teaching learning based optimization. Also the present work describes on optimal power flow 

(OPF) which optimizes the fuel, emission minimization, reduction of voltage deviation and 

improvement of voltage stability. The effectiveness of the proposed algorithm for OPF is 

tested on IEEE 30-bus, 57-bus and 118-bus test systems for four objective problems. Different 

test systems are used for the above intelligent techniques for optimization of power system. 

Here two different optimization technique like heat transfer search and quasi-oppositional 

differential evolution has been applied to solve optimal power flow problem. Test results 

obtained from the proposed algorithm for three different test systems are compared with other 

optimization techniques suggested in literature. 
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CHAPTER 1 

Introduction 

 

1.1. General Introduction 

The word “scheduling” means “to plan”, “to arrange”, “to organize”, or “to take place” at a 

particular time. Power system scheduling is an important aspect both from the economic and 

environmental safety viewpoints. The scheduling involves decisions with regards to the units 

start-up and shut-down times and to the assignment of the load demands to the committed 

generating units for minimizing the system operation costs and the emission of atmospheric 

pollutants. As many other real-world engineering problems, power system generation scheduling 

involves multiple, conflicting optimization criteria for which there exists no single best solution 

with respect to all criteria considered. Mathematical optimization methods have been used over 

the years for many power systems planning, operation, and control problems. Mathematical 

formulations of real-world problems are derived under certain assumptions and even with these 

assumptions; the solution of large-scale power systems is not simple. On the other hand, there 

are many uncertainties in power system problems because power systems are large, complex, 

and geographically widely distributed. An optimization problem is a mathematical model where 

main objective is to minimize undesirable things i.e. cost, energy loss, errors, etc. or maximize 

desirable things i.e. profit, quality, efficiency, etc. subject to some constraints. 

To handle complex power system problems, researchers have been looking into nature for years 

both as model and as metaphor for inspiration. Optimization is at the heart of many natural 

processes like Darwinian evolution itself. Through millions of years, everyone had to adapt 

physical structure to fit to the environment. A keen observation of the underlying relation 

between optimization and biological evolution led to the development of an important paradigm 

of computational intelligence known as evolutionary computing techniques for performing very 

complex search and optimization.  
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Evolutionary programming (EP) was introduced by Lawrence J.Fogel in the USA, while almost 

simultaneously I. Rechenberg and H.-P. Schwefel introduced evolution strategies (ESs) in 

Germany. Almost a decade later, John Henry Holland from University of Michigan, devised an 

independent method of simulating the Darwinian evolution to solve practical optimization 

problems and called it the genetic algorithm (GA). These areas developed separately for about 15 

years. From the early 1990s on they are unified as different representatives of one technology, 

called evolutionary computing. Since the mid-eighties several multi-objective EAs have been 

developed and capable of searching for multiple pareto-optimal solutions concurrently in a single 

run. After the first studies on evolutionary multi-objective optimization in the mid-eighties, a 

number of Pareto-based techniques were proposed in 1993 and 1994, e.g., multi-objective 

genetic algorithm, niched pareto genetic algorithm and non-dominated sorting genetic algorithm 

which demonstrated the capability of EMO algorithms to approximate the set of optimal trade-

offs in a single optimization run. These approaches did not incorporate elitism explicitly, but a 

few years later the importance of this concept in multi-objective search was recognized and 

supported experimentally. A couple of elitist multi-objective evolutionary algorithms were 

presented at this time, e.g., strength pareto evolutionary algorithm and pareto archived evolution 

strategy. Strength pareto evolutionary algorithm2 is developed later which outperforms. It 

provides good performance in terms of convergence and diversity. In artificial intelligence, 

an Evolutionary Algorithm (EA) is a subset of evolutionary computation  i.e. generic population-

based metaheuristic optimization algorithm. An EA uses mechanisms inspired by  biological 

evolution, such as  reproduction, mutation, recombination, and selection.  Evolutionary 

algorithms often perform well approximating solutions to all types of problems because they 

ideally do not make any assumption about the underlying fitness landscape. Techniques from 

evolutionary algorithms applied to the modeling of biological evolution are generally limited to 

explorations of micro-evolutionary processes and planning models based upon cellular 

processes. In most real applications of EAs, computational complexity is a prohibiting factor. In 

fact, this computational complexity is due to fitness function evaluation. Fitness approximation is 

one of the solutions to overcome this difficulty. EA can solve many complex problems of 

Artificial Intelligence system. 

The immune system of vertebrates including human is composed of cells, molecules and organs 

in the body which protect the body against infectious diseases caused by foreign pathogens such 
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as viruses, bacteria, etc. To perform these functions, the immune system has to be able to 

distinguish between the body’s own cells as the self cells and foreign pathogens as the non-self 

cells or antigens. After distinguishing between self and non-self cells, the immune system has to 

perform an immune response in order to eliminate non-self cell or antigen. Antigens are further 

categorized in order to activate the suitable defense mechanism and at the same time, the 

immune system also developed a memory to enable more efficient responses in case of further 

infection by the similar antigen. Artificial immune system (AIS) mimics these biological 

principles of clone generation, proliferation and maturation. The main steps of AIS based on 

clonal selection principle are activation of antibodies, proliferation and differentiation on the 

encounter of cells with antigens, maturation by carrying out affinity maturation process, 

eliminating old antibodies to maintain the diversity of antibodies and to avoid premature 

convergence, selection of those antibodies whose affinities with the antigen are greater. In order 

to emulate AIS in optimization, the antibodies and affinity are taken as the feasible solutions and 

the objective function respectively.  

Economic dispatch is an important optimization task in power system operation for allocating 

generation among the committed units. Its objective is to minimize the total generation cost of 

units, while satisfying the various physical constraints. Static economic dispatch (SED) allocates 

the load demand for a given interval of time among the committed generating units economically 

while fulfilling various constraints. Dynamic economic dispatch (DED) which is an extension of 

static economic dispatch, determines the optimal sharing of time varying load demand among the 

committed units. Power plant operators try to keep gradients for temperature and pressure inside 

the boiler and turbine within safe limits to avoid shortening the life of the equipment. This 

mechanical constraint imposes limit on the rate of increase or decrease of the electrical power 

output. This limit is called ramp rate limit which differentiates DED from SED problem. Thus, in 

DED, the dispatch decision at one time period affects those at later time periods.  DED is the 

most accurate formulation of the economic dispatch problem but it is the most difficult to solve 

because of its large dimensionality. Here improved real coded genetic algorithm (IRCGA) has 

been developed for solving dynamic economic dispatch problem with non-smooth fuel cost 

function in view of one-to-one competition to boost convergence speed and solution quality. 
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Multi-area economic dispatch (MAED) is an extension of economic dispatch. MAED determines 

the generation level and interchange power between areas such that total fuel cost in all areas is 

minimized while satisfying power balance constraints, generating limits constraints and tie-line 

capacity constraints. 

Non-linear optimization methods, such as dual and quadratic programming and gradient descent 

approaches, such as Lagrangian relaxation, have been applied for solving combined heat and 

power economic dispatch (CHPED). However, these methods cannot handle non-convex fuel 

cost functions of the generating units. The advent of teaching-learning-based optimization 

(TLBO), a teaching-learning process where Gaussian random variables are introduced in the 

‘Teacher phase’ and ‘Learner phase’ which improves search efficiency and guarantees a high 

probability of obtaining the global optimum without significantly impairing the speed of 

convergence and the simplicity of the structure of TLBO. 

Optimal scheduling of power plant generation is of great importance to electric utility systems. 

Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the 

operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of 

thermal plants under the various constraints on the hydraulic, thermal and power system 

network. Here, opposition-based differential evolution (ODE) for optimal scheduling of 

generation in a hydrothermal system have been applied to optimize the operational cost of 

hydrothermal system. 

Reactive power dispatch (RPD) minimizes active power transmission loss and perks up voltage 

profile and voltage stability by adjusting control variables such as generator voltages, 

transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time 

satisfying several equality and inequality constraints. 

Optimal power flow (OPF) is an important tool for power system operators both in power system 

planning and operation for many years. The OPF minimizes the power system operating 

objective problems like fuel cost minimization, emission minimization, voltage deviation 

minimization and enhancement of voltage stability while satisfying a set of equality and 

inequality constraints. The equality constraints are power flow equations and inequality 

constraints are the limits on control variables and functional operating constraints. Here two 

different intelligent methods i.e. heat transfer search algorithm and quasi oppositional differential 

evolution have been applied to solve optimal power flow problems. 
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1.2. Literature Survey 

Evolutionary algorithms (EA) [1]-[2] are search algorithms based on the simulated evolutionary 

process of natural selection and genetics. Genetic algorithm (GA) [3] belongs to a class of   

evolutionary computation techniques [4]-[5] based on models of biological evolution. The main 

difficulty of GA is its binary representation which arises when dealing with continuous search 

space with large dimensions. Evolutionary Programming (EP) [4] is a technique in the field of 

evolutionary computation. It seeks the optimal solution by evolving a population of candidate 

solutions over a number of generations or iterations. Differential evolution (DE) is a very simple 

and robust method originally proposed by Price and Stron [5] for optimization problem over a 

continuous domain. The basic idea of DE is to adapt the search during the evolutionary process. 

At the start of the evolution, the perturbations are large since parent populations are far away 

from each other. Simulated annealing [6] is a powerful optimization technique which exploits the 

resemblance between a minimization process and the cooling of molten metal. The physical 

annealing process is simulated in the simulated annealing (SA) technique for the determination 

of global or near-global optimum solutions for optimization problems. 

 Economic dispatch (ED) is one of the important optimization problems in power system 

operation. ED allocates the load demand among the committed generators most economically 

while satisfying the physical and operational constraints in a single area.  The economic dispatch 

problem is frequently solved without considering transmission constraints. However, some 

researchers have taken transmission capacity constraints into account. Shoults et al. [7] solved 

economic dispatch problem considering import and export constraints between areas. This study 

provides a complete formulation of multi-area generation scheduling, and a framework for multi-

area studies. Romano et al. [8] presented the Dantzig–Wolfe decomposition principle to the 

constrained economic dispatch of multi-area systems. An application of linear programming to 

transmission constrained production cost analysis was proposed in [9]. Helmick et al. [10] solved 

multi-area economic dispatch with area control error. Wang and Shahidehpour [11] proposed a 

decomposition approach for solving multi-area generation scheduling with tie-line constraints 

using expert systems. Network flow models for solving the multi-area economic dispatch 

problem with transmission constraints have been proposed by Streiffert [12]. An algorithm for 

multi-area economic dispatch and calculation of short range margin cost based prices has been 
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presented by Wernerus and Soder [13], where the multi-area economic dispatch problem was 

solved via Newton–Raphson’s method. Yalcinoz and Short [14] solved multi-area economic 

dispatch problems by using Hopfield neural network approach. Jayabarathi et al. [15] solved 

multi-area economic dispatch problems with tie line constraints using evolutionary 

programming. The direct search method for solving economic dispatch problem considering 

transmission capacity constraints was presented in Ref. [16]. Since generators are practically 

supplied with multi-fuel sources by Chiang [17]. Evolutionary Programming (EP) [18] is a 

technique in the field of evolutionary computation. It seeks the optimal solution by evolving a 

population of candidate solutions over a number of generations or iterations. Gaing[19] defines 

the modified generator data and each area consists of three generators with prohibited operating 

zones. The initial temperature of SA algorithm has been determined by using the procedures 

described by Wong and Fung [20]. 

Static economic dispatch (SED) allocates the load demand for a given interval of time among the 

committed generating units economically while fulfilling various constraints. Dynamic economic 

dispatch (DED) which is an extension of static economic dispatch, determines the optimal 

sharing of time varying load demand among the committed units. DED is the most accurate 

formulation of the economic dispatch problem but it is the most difficult to solve because of its 

large dimensionality. Since the DED was introduced, several classical methods [23]–[28] have 

been employed for solving this problem. Yao et al. defines the evolutionary programming and 

have been pertained for solving 15 benchmark functions [29]. However, all of these methods 

may not be able to find an optimal solution and usually stuck at a local optimum solution. 

Classical calculus-based methods address DED problem with convex cost function. But in reality 

large steam turbines have a number of steam admission valves, which contribute nonconvexity in 

the fuel cost function of the generating units. Dynamic programming (DP) can solve such type of 

problems but it suffers from the curse of dimensionality. Recently, stochastic search algorithms 

such as simulated annealing (SA) [30], tabu search [31], differential evolution (DE) [32] have 

been successfully used to solve dynamic economic dispatch problem due to their ability to find 

the near global solution of a nonconvex optimization problem. Recently, stochastic search 

algorithms such as differential evolution (DE) [32],[35], harmony search algorithm [33], particle 

swarm optimization (PSO) [34] have been successfully used to solve dynamic economic dispatch 

problem due to their ability to find the near global solution of a nonconvex optimization 
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problem. Due to difficulties of binary representation when dealing with continuous search space 

with large dimensions, real-coded genetic algorithm (RCGA) [36]-[37] has been employed. The 

Simulated Binary Crossover (SBX) and polynomial mutation have been applied in this work. 

Non-linear classical optimization methods, such as quadratic programming [38], Lagrangian 

relaxation [39] and semi-definite programming approach [40] have been pertained to solve 

combined heat and power economic dispatch (CHPED). However, these methods cannot handle 

non-convex fuel cost function of the conventional thermal generating units. The foreword of 

heuristic search algorithms has given alternative approaches for solving CHPED problem. 

Improved ant colony search algorithm [41], evolutionary programming [42], genetic algorithm 

[43], harmonic search algorithm [44]-[45], multi-objective particle swarm optimization [46], self 

adaptive real-coded genetic algorithm [47], novel selective particle swarm optimization [48], 

mesh adaptive direct search algorithm [49], particle swarm optimization with time varying 

acceleration coefficients [50] and oppositional teaching learning based optimization [51] have 

been pertained for solving CHPED problem. Teaching-learning-based optimization (TLBO), a 

teaching-learning process inspired algorithm recently proposed by Rao et al. [52], [53] and Rao 

and Patel [54] is based on the effect of influence of a teacher on the output of learners in a class. 

It is a population-based method and does not require any algorithm-specific control parameters. 

The main advantage of TLBO is that it requires only common controlling parameters like 

population size and number of generations for its working. Javadi, et al. [55] define the harmonic 

search algorithm (HS) have been proposed for solving the CHPED problem. The improved HS 

methods have obtained better solution quality than the original one. However, the convergence 

characteristic of the HS has revealed that the method is still slow for obtaining optimal solution. 

Many meta-heuristic and artificial intelligent algorithms like genetic algorithm (GA) [56], 

opposition-based group search optimization (OGSO) [57], group search optimization (GSO) 

[58], cuckoo search algorithm (CSA) [59], integrated civilized swarm optimization (CSO) and 

Powell’s pattern search (PPS) method [60] have been used for solving the CHPED problem.    

Very recently, V. K. Patel and V. J. Savsani has pioneered heat transfer search (HTS) algorithm 

[61], based on the edict of thermodynamics and heat transfer.  The searching procedure of HTS 

mulls over three components namely ‘conduction phase’, ‘convection phase’ and ‘radiation 

phase’. The HTS algorithm imitates the thermal balance manners of any system. The HTS 

algorithm replicates the thermal equilibrium behavior of any system. The thermal equilibrium 
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can be achieved when molecules of the system, transfer heat in the form of conduction, 

convection and radiation. Each phase of the proposed algorithm is executed with equal 

probability during an entire search process. The search processes of all three phases are 

calculated in such a manner that during the first half each phase explores search space while in 

the second half each phase exploits the search space. The feasible operating regions of a 

conventional thermal generator with prohibited operating zones define by Pereira-Neto et al. 

[62]. 

Optimal scheduling of power plant generation is of great importance to electric utility systems. 

Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the 

operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of 

thermal plants under the various constraints on the hydraulic, thermal and power system 

network. The hydrothermal scheduling problem has been the subject of investigation for several 

decades. Several classical methods such as Newton’s method [63], mixed integer programming 

[65], [79] dynamic programming (DP) [66], etc. have been widely used to solve hydrothermal 

scheduling problem. Among these methods, DP appears to be the most popular. However, major 

disadvantages of DP method are computational and dimensional requirements which grow 

drastically with increasing system size and planning horizon. Recently, stochastic search 

algorithms such as simulated annealing (SA) [67], evolutionary programming (EP) [68], genetic 

algorithm (GA) [69]-[70], evolutionary programming technique [71], differential evolution (DE) 

[72]-[74], particle swarm optimization [75], artificial immune system [76], clonal selection 

algorithm [77] and teaching learning based optimization [78]  have been successfully used to 

solve hydrothermal scheduling problem. Since the mid 1990s, many techniques originated from 

Darwin’s natural evolution theory have emerged. These techniques are usually termed by 

“evolutionary computation methods” including evolutionary algorithms (EAs), swarm 

intelligence and artificial immune system. Differential evolution (DE) [80]-[82], a relatively new 

member in the family of evolutionary algorithms, first proposed over 1995-1997 by Storn and 

Price at Berkeley is a novel approach to numerical optimization. It is a population-based 

stochastic parallel search evolutionary algorithm which is very simple yet powerful. Price and 

Storn describe the technique of differential evolution in optimizing the hydrothermal system. The 

main advantages of DE are its capability of solving optimization problems which require 

minimization process with nonlinear, non-differentiable and multi-modal objective functions. 
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Oppositional based learning (OBL) was first utilized to improve learning and back propagation 

in neural networks and since then, it has been applied to many EAs such as particle swarm 

optimization define by Wang et al [83]. The basic concept of opposition-based learning [84]-[86] 

was originally introduced by Tizhoosh. The main idea behind OBL is for finding a better 

candidate solution and the simultaneous consideration of an estimate and its corresponding 

opposite estimate (i.e., guess and opposite guess) which is closer to the global optimum. OBL 

was first utilized to improve learning and back propagation in neural networks by Ventresca and 

Tizhoosh [87], and since then, it has been applied to many EAs, such as differential evolution 

[88] and ant colony optimization [89]. Opposition-based harmony search algorithm [90] has been 

applied to solve combined economic and emission dispatch problems. In [91] oppositional real 

coded chemical reaction optimization has been used for solving economic dispatch problems. 

Opposition-based gravitational search algorithm has been applied for solving reactive power 

dispatch problem. The maximization and minimization problem in optimizing fixed head 

hydrothermal system define by Michalewicz [92]. 

Reactive power dispatch (RPD) perks up power system economy and security. Reactive power 

generation has no production cost but in general it has an effect on the production cost related 

with active power transmission loss. RPD minimizes active power transmission loss and perks up 

voltage profile and voltage stability by adjusting control variables such as generator voltages, 

transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time 

satisfying several equality and inequality constraints.A variety of classical optimization 

techniques [93]–[96] such as Newton method, linear programming, quadratic programming and 

interior point method have been pertained to solve RPD problem. RPD is a mixture of discrete 

and continuous variables with multiple local optima. So it is exigent to acquire global optima by 

using classical optimization techniques. In recent times nature-inspired metaheuristics such as 

quasi-oppositional differential evolution [97], evolutionary programming (EP) [98], novel 

teaching–learning-based optimization algorithm [99] quantum-inspired evolutionary algorithm 

(QEA) [100], comprehensive learning particle swarm optimization (CLPSO) [101], hybrid 

shuffled frog leaping algorithm (HSFLA) modified teaching learning algorithm and double 

differential evolution algorithm [102], and  have been pertained to solve RPD problem. Voltage 

stability is the capacity of a power system to keep up suitable voltages at all bus bars beneath 

normal operating condition and even after disturbances such as change in load demand or system 
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configuration. In recent times a number of major network collapses [103] have been taken place 

due to voltage instability. Improvement of voltage stability has been acquired by minimizing 

voltage stability indicator define by Kessel and Glavitsch [104]. Multi-area dynamic economic 

dispatch (MADED) is an extension of multi-area static economic dispatch problem. It schedules 

the online generator outputs, and interchange power between areas with the predicted load 

demands over a certain period of time so as to operate an electric power system most 

economically. The algorithm is based on iterative method, proposed by Metropolis et al. [105], 

which simulates the transition of atoms in equilibrium at a given temperature 

Optimal power flow (OPF) is an important tool for power system operators both in power system 

planning and operation for many years. The OPF minimizes the power system operating 

objective function while satisfying a set of equality and inequality constraints. The equality 

constraints are power flow equations and inequality constraints are the limits on control variables 

and functional operating constraints. The OPF is a highly non-linear, non-convex, large scale 

static optimization problem. Several optimization techniques have emerged so far and have been 

applied to solve OPF problem. Earlier, OPF algorithms were based on classical mathematics-

based on differential evolution (QODE) [106], Gradient based method [107], quadratic 

programming (QP) [108], Newton-based method [109], linear programming (LP) [110], and 

interior point methods (IPMs) [111]-[112] have been successfully applied to solve OPF 

problems. The problem of OPF was originally formulated in 1962 by Carpentier [107] and he 

solved the OPF problem by using reduced gradient method. In the following years, a lot of 

research took place to improve the quality of OPF solution. These classical optimization 

techniques have been widely applied to varieties of OPF problems. However, these techniques 

fail to deal with systems having complex non-smooth, non-convex and non-differentiable 

objective functions and constraints. Due to tremendous improvement in capability of computers 

in recent years, evolutionary algorithms, such as genetic algorithm (GA) [112], evolutionary 

programming (EP) [113], particle swarm optimization (PSO) [114]-[115], simulated annealing 

(SA) [116], differential evolution (DE) [117], biogeography-based optimization (BBO) [118], 

faster evolutionary algorithm [119], particle swarm optimization (PSO) [120] have been applied 

for solving various complex OPF problems to overcome the drawbacks of classical techniques. 

Earlier, OPF algorithms were based on classical mathematics-based methods. Tinney and Hart 

describes the Newton-based method [121] was successfully applied to solve OPF problems.    
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The line data, bus data, generator data and the minimum and maximum limits for the control 

variables have been adapted from [122]. Due to tremendous improvement in capability of 

computers in recent years, evolutionary algorithms, such as improved evolutionary programming 

[123], enhanced genetic algorithm [124], differential evolution (DE) [125] and particle swarm 

optimization (PSO) [126] have been applied for solving various complex OPF problems to 

overcome the drawbacks of classical techniques. Yokoyama and Bae[127] defines the objective 

for comparison purposes i.e. the total emission of these pollutants which is the sum of a quadratic 

and an exponential function. For IEEE 57 test bus system, the system line data, bus data, 

generator data and the minimum and maximum limits for the control variables have been adapted 

from [128] and [130]. The upper and lower limits of reactive power sources and transformer tap 

settings are taken from [129]. To test optimal power flow, system line data, bus data, generator 

data and the minimum and maximum limits for the control variables have been adapted for IEEE 

57-bus and for IEEE 118-bus test system the system line data, bus data, generator data and the 

minimum and maximum limits for the control variables have been adapted from [130]-[132].  

1.3. Motivation behind the work 

The valve-point loading, prohibited operating zones, ramp-rate limits and other constraints turn 

the decision space into disjoint subsets, transforming the most of the power system problems into 

difficult non-smooth, non-convex optimization problems. The calculus-based methods fail to 

address these types of problems. The dynamic programming method                         

has no restrictions on the shape of the objective function and can solve these types of problems. 

However, this method suffers from the curse of dimensionality or local optimality. Modern 

Intelligent algorithms are promising alternatives for the solution of complex power system 

optimization problems. Keeping this in mind, this work mainly focuses on complex power 

system optimization by using various intelligent control methods.  
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1.4. Organization of Thesis 

The layout of Thesis is as follows. 

Chapter: 1 

This chapter describes the general introduction to all intelligent control methods. Also it 

describes the Literature Survey and motivation towards this present work. It presents the earlier 

works done on different optimization technique like differential evolution, opposition based 

differential evolution, quasi-oppositional differential evolution, evolutionary algorithm, genetic 

algorithm, improved real coded genetic algorithm, simulated annealing, teaching-learning based 

optimization, modified teaching-learning based optimization, heat transfer search algorithm. 

Chapter: 2 

This chapter describes about different metaheuristic techniques like differential evolution, 

evolutionary programming, genetic algorithm, and simulated annealing and application of this 

metaheuristic techniques to multi-area economic dispatch problem (MAED). The proposed 

methods have been validated by application of three types of MAED problems i.e. test system 1: 

MAED with quadratic cost function prohibited operating zones and transmission losses, test 

system2: with valve point loading and test system3: with valve point loading multiple fuel 

sources and transmission losses. 

Chapter: 3 

This chapter describes about dynamic economic dispatch. Here improved real coded genetic 

algorithm (IRCGA) has been developed in view of one-to-one competition to boost convergence 

speed and solution quality. IRCGA has been pertained for solving dynamic economic dispatch 

problem with nonsmooth fuel cost function. Two test systems and 15 benchmark functions are 

exploited here. Test results are matched up to those acquired by real coded genetic algorithm 

(RCGA). 

Chapter: 4 

This chapter describes about combined heat and power economic dispatch (CHPED) problem. 

Also intelligent control methods like modified teachning learning based optimization and heat 
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transfer search algorithm have been applied to CHEPD problem and 15 benchmark functions. 

Test results are compared with those acquired by other evolutionary techniques. 

Chapter: 5 

This chapter describes about fixed-head hydrothermal system. Also it describes the application 

of opposition-based differential equation and improved real coded genetic algorithm to fixed 

head hydrothermal system. 

Chapter: 6 

This chapter describes about variable-head hydrothermal system. Also it describes the 

application of opposition-based differential equation to variable head hydrothermal system, 

multi-reservoir cascaded hydro plants having prohibited operating zones and thermal units with 

valve point loading. 

Chapter: 7 

This chapter describes about reactive power dispatch. Also in this study it describes application 

of improved real coded genetic algorithm to reactive power dispatch problem. The developed 

IRCGA and RCGA have been pertained to solve different types of RPD problems and three 

different test systems with three different objective functions and 15 benchmark functions.  

Chapter: 8 

This chapter describes about Optimal Power Flow problems. Two different intelligent control 

methods like, heat transfer search (HTS) algorithm and quasi-oppositional differential evolution 

(QODE) have been successfully applied to solve optimal power flow problems. The performance 

of the proposed algorithm has been assessed on IEEE 30-bus, 57-bus and 118-bus test systems to 

demonstrate its effectiveness.  

 

At end of this thesis, conclusion form all chapters have been presented and future work also 

described. The references and appendices are included in the end of this thesis. 
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CHAPTER-2 

Multi-area Economic Dispatch 

 

2.1. Introduction: 

Economic dispatch (ED) is one of the important optimization problems in power system 

operation. ED allocates the load demand among the committed generators most economically 

while satisfying the physical and operational constraints in a single area.  Generally, the 

generators are divided into several generation areas interconnected by tie-lines. Multi-area 

economic dispatch (MAED) is an extension of economic dispatch. MAED determines the 

generation level and interchange power between areas such that total fuel cost in all areas is 

minimized while satisfying power balance constraints, generating limits constraints and tie-line 

capacity constraints. 

With the emergence of metaheuristic techniques, attention has been gradually shifted to 

applications of such technology-based approaches to handle the complexity involved in real 

world problems. Metaheuristic techniques have been given much attention by many researchers 

due their ability to seek for the near global optimal solution. 

Here four different metaheuristic techniques have been applied in the MAED problem to 

investigate the applicability of this technique. These are, differential evolution (DE), 

evolutionary programming (EP), genetic algorithm (GA), and simulated annealing (SA). 

The proposed methods have been validated by application of three types of MAED problems. 

These are A) multi area economic dispatch with quadratic cost function prohibited operating 

zones and transmission losses (MAEDQCPOZTL) B) multi area economic dispatch with valve 

point loading (MAEDVPL) C) multi area economic dispatch with valve point loading multiple 

fuel sources and transmission losses (MAEDVPLMFTL). 

The metaheuristic techniques are evaluated against three different test systems for comparison 

with each other. 
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2.2. Problem Formulation: 

The objective of MAED is to minimize the total cost of supplying loads to all areas while 

satisfying power balance constraints, generating limits constraints and tie-line capacity 

constraints. 

Three different types of MAED problems have been considered. 

2.2.1. MAEDQCPOZTL 

The objective function tF , total cost of committed generators of all areas, of MAED problem 

may be written as 
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where  ( )
ijijF Ρ  is the cost function of j th generator in area i  and is usually expressed as a 

quadratic polynomial; ija , ijb  and ijc are the cost coefficients of j th generator in area i ; Ν  is 

the number of  areas, iΜ  is the number of committed generators in area i ; ijΡ is the real power 

output of j th generator in area i . The MAED problem minimizes tF  subject to the following 

constraints. 

2.2.1.1. Real power balance constraint: 
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Where DiΡ  is the real power demand of area i ; ikΤ   is the tie line real  power transfer from area i  

to area k . ikΤ  is positive when power flows from area i  to area k  and ikΤ  is negative when 

power flows from area k  to area i . 

2.2.1.2. Tie line capacity constraints 

The tie line real power transfer ikΤ  from area i  to area k  should not exceed the tie line transfer 

capacity for security consideration. 

maxmax

ikikik Τ≤Τ≤Τ−                                   (2.4) 

where max

ikΤ is the power flow limit from area i  to area k  and - max

ikΤ  is the power flow limit from 

area k  to area i . 

2.2.1.3. Real power generation capacity constraints 

The real power generated by each generator should be within its lower limit 
min

ijΡ and upper limit

max

ijΡ , so that 

maxmin

ijijij Ρ≤Ρ≤Ρ      Ν∈i   and ij Μ∈                                           (2.5) 

2.2.1.4. Prohibited Operating Zone 

The prohibited operating zones are the range of power output of a generator where the operation 

causes undue vibration of the turbine shaft bearing caused by opening or closing of the steam 

valve. Normally operation is avoided in such regions. The feasible operating zones of unit can be 

described as follows: 

l

ijijij 1,

min Ρ≤Ρ≤Ρ  

l

mijij

u

mij ,1, Ρ≤Ρ≤Ρ −  ;   ijnm ,...,3,2=                                                         (2.6) 

max

, ijij

u

nij ij
Ρ≤Ρ≤Ρ  



17 

where m  represents the number of prohibited operating zones of j the generator in area i . 
u

mij 1, −Ρ  

is the upper limit of ( )1−m th prohibited operating zone of j the generator in area i . 
l

mij,Ρ  is the 

lower limit of m th prohibited operating zone of  j the generator in area i . Total number of 

prohibited operating zone of j the generator in area i  is ijn . 

2.2.2. MAEDVPL 

To model the effect of valve-points, a recurring rectified sinusoid contribution is added to the 

quadratic function [22]. The fuel cost function considering valve-point loadings of the generator 

is given as 
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where ijd  and ije  are cost coefficients of j th generator in area i  due to valve-point effect. The 

objective of MAEDVPL is to minimize tF  subject to the constraints given in (2.2), (2.4) and 

(2.5). Here transmission loss ( LΡ ) is not considered.  

2.2.3. MAEDVPLMFTL 

Since generators are practically supplied with multi-fuel sources [17], each generator should be 

represented with several piecewise quadratic functions superimposed sine terms reflecting the 

effect of fuel type changes and the generator must identify the most economical fuel to burn. The 

fuel cost function of the j th generator in area i  with FΝ  fuel types considering valve-point 

loading is expressed as 
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 if 
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The objective function tF  is given by 
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The objective function tF  is to be minimized subject to the constraints given in (2.2), (2.4) and 

(2.5).   

2.3. Determination of Generation Level of slack generator 

iΜ  committed generators in area i  deliver their power output subject to the power balance 

constraint (2.2), tie line capacity constraints (2.4) and the respective generation capacity 

constraints (2.5). Assuming the power loading of first ( 1−Μ i ) generators are known, the power 

level of the iΜ th generator (i.e. the slack generator) is given by  
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The transmission loss LiΡ  is a function of all generator outputs including the slack generator and 

it is given by 
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Expanding and rearranging, equation (2.10) becomes 
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The loading of the slack generator (i.e. iΜ th) can then be found by solving equation (2.12) using 

standard algebraic method 
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2.4. Overview of Metaheuristic Techniques 

Several metaheuristic techniques have evolved in recent past that facilitate to solve optimization 

problems which were previously difficult or impossible to solve. These techniques include 

evolutionary programming, differential evolution, genetic algorithm, simulated annealing, etc.  

 

2.4.1. Evolutionary Programming 

Evolutionary Programming (EP) [18] is a technique in the field of evolutionary computation. It 

seeks the optimal solution by evolving a population of candidate solutions over a number of 

generations or iterations. During each iteration, a second new population is formed from an 

existing population through the use of a mutation operator. This operator produces a new 

solution by perturbing each component of an existing solution by a random amount. The degree 

of optimality of each of the candidate solutions or individuals is measured by their fitness, which 

can be defined as a function of the objective function of the problem. Through the use of a 

competition scheme, the individuals in each population compete with each other. The winning 

individuals form a resultant population, which is regarded as the next generation. For 

optimization to occur, the competition scheme must be such that the more optimal solutions have 

a greater chance of survival than the poorer solutions. Through this the population evolves 

towards the global optimal point. The algorithm is described as follows: 

i) Initialization: The initial population of control variables is selected randomly from the set of 

uniformly distributed control variables ranging over their upper and lower limits. The fitness 

score if  is obtained according to the objective function and the environment. 

ii) Statistics: The maximum fitness maxf , minimum fitness minf , the sum of fitness ∑ f , and 

average fitness avgf  of this generation are calculated. 

iii) Mutation: Each selected parent, for example iΧ , is mutated and added to its population with 

the following rule: 
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where n  is the number of decision variables in an individual, ΡΝ  is the population size, ijΧ  

denotes the j th element of the i th individual; ( )2,σµN  represents a Gaussian random variable 

with mean µ  and variance 2σ ; maxf  is the maximum fitness of the old generation which is 

obtained in statistics; jx  and jx  are respectively maximum and minimum limits of the j th 

element; and β  is the mutation scale, 10 ≤< β , that could be adaptively decreased during 

generations. If any mutated value exceeds its limit, it will be given the limit value. The mutation 

process allows an individual with larger fitness to produce more offspring for the next 

generation. 

iv) Competition: Several individuals ( k ) which have the best fitness are kept as the parents for 

the next generation. Other individuals in the combined population of size ( k−Ν Ρ2 ) have to 

compete with each other to get their chances for the next generation. A weight value iw  of the i

th individual is calculated by the following competition: 

∑
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,               (2.14) 

where tΝ  is the competition number generated randomly; tiw ,  is either 0 for loss or 1 for win as 

the i th individual competes with a randomly selected ( r th) individual in the combined 

population. The value of tiw ,  is given in the following equation: 

                1                , if ri ff <  

 tiw , =                                 (2.15) 

     0                , otherwise             

  

where rf  is the fitness of randomly selected r th individuals, and if  is the fitness of the i th 

individual. When all ΡΝ2  individuals, get their competition weights, they will be ranked in a 

descending order according to their corresponding value iw . The first m  individuals are selected 

along with their corresponding fitness if  to be the bases for the next generation. The maximum, 

minimum and the average fitness and the sum of the fitness of the current generation are then 

calculated in the statistics. 
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v) Convergence test: If the convergence condition is not met, the mutation and competition will 

run again. The maximum generation number can be used for convergence condition. Other 

criteria, such as the ratio of the average and the maximum fitness of the population is computed 

and generations are repeated until 

{ } δ≥maxff avg             (2.16) 

where δ  should be very close to 1, which represents the degree of satisfaction. If the 

convergence has reached a given accuracy, an optimal solution has been found for an 

optimization problem. 

2.4.2. Differential Evolution 

Differential Evolution (DE) [82] is a type of evolutionary algorithm originally proposed by Price 

and Storn [5] for optimization problems over a continuous domain. DE is exceptionally simple, 

significantly faster and robust. The basic idea of DE is to adapt the search during the 

evolutionary process. At the start of the evolution, the perturbations are large since parent 

populations are far away from each other. As the evolutionary process matures, the population 

converges to a small region and the perturbations adaptively become small. As a result, the 

evolutionary algorithm performs a global exploratory search during the early stages of the 

evolutionary process and local exploitation during the mature stage of the search. In DE the 

fittest of an offspring competes one-to-one with that of corresponding parent which is different 

from other evolutionary algorithms. This one-to-one competition gives rise to faster convergence 

rate. Price and Storn gave the working principle of DE with simple strategy in [82]. Later on, 

they suggested ten different strategies of DE [5]. Strategy-7 (DE/rad/1/bin) is the most successful 

and widely used strategy. The key parameters of control in DE are population size ( ΡΝ ), scaling 

factor ( F ) and crossover constant ( RC ). The optimization process in DE is carried out with three 

basic operations: mutation, crossover and selection. The DE algorithm is described as follows: 

Initialization 

The initial population of ΡΝ  vectors is randomly selected based on uniform probability 

distribution for all variables to cover the entire search uniformly. Each individual iΧ  is a vector 

that contains as many parameters as the problem decision variables D . Random values are 

assigned to each decision parameter in every vector according to: 
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( )maxmin0 ,~ jjij U ΧΧΧ              (2.17) 

where i =1,…., ΡΝ  and j =1,…., D ; min

jΧ  and max

jΧ  are the lower and upper bounds of the j th 

decision variable; ( )maxmin , jjU ΧΧ  denotes a uniform random variable ranging over [ ]maxmin , jj ΧΧ . 

0

ijΧ   is the initial j th variable of i th population. All the vectors should satisfy the constraints. 

Evaluate the value of the cost function ( )0

if Χ  of each vector. 

Mutation 

DE generates new parameter vectors by adding the weighted difference vector between two 

population members to a third member. For each target vector g

iΧ  at g th generation the noisy 

vector g

i

/Χ is obtained by 

( )g

c

g

bF

g

a

g

i S Χ−Χ+Χ=Χ / ,           ΡΝ∈i            (2.18) 

where g

aΧ , g

bΧ  and g

cΧ  are selected randomly from ΡΝ  vectors at g th generation and 

icba ≠≠≠ . The scaling factor ( FS ), in the range 2.10 ≤< FS , controls the amount of 

perturbation added to the parent vector. The noisy vectors should satisfy the constraint. 

Crossover 

Perform crossover for each target vector g

iΧ  with its noisy vector g

i

/Χ  and create a trial vector 

g

i

//Χ such that  

               g

i

/Χ   , if   RC≤ρ  

=Χ g

i

//          

               
g

iΧ    ,   otherwise                                  ,              ΡΝ∈i            (2.19)   

 

where ρ  is an uniformly distributed random number within [0, 1].  The crossover constant ( RC ), 

in the range 10 ≤≤ RC , controls the diversity of the population and aids the algorithm to escape 

from local optima.  
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Selection 

Perform selection for each target vector, g

iΧ  by comparing its cost with that of the trial vector, 

g

i

//Χ . The vector that has lesser cost of the two would survive for the next generation. 

                    g

i

//Χ   ,         if   ( ) ( )g

i

g

i ff Χ≤Χ //  

     =Χ +1g

i         

                    g

iΧ     ,          otherwise                                      ,        ΡΝ∈i         (2.20) 

 

The process is repeated until the maximum number of iterations or no improvement is seen in the 

best individual after many iterations. 

 

 

Start 

         Specify the DE 

Set Iter.=1 

         Generate initial 

Set target vector 

        Evaluate cost of target 

vector 

Generate mutant vector by mutation operation 

          Generate trial vector by crossover 

    Evaluate cost of trial 

              The best vector survives by selection operation 

Iter. < Max. 

Iter. 
Iter.=Iter.+1 

Yes 

Stop 

No 

   Fig. 2.1. Flowchart of Differential Evolution 
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2.4.3. Genetic Algorithm   

Genetic algorithm [3] is based on the mechanics of natural selection. An initial population of 

candidate solutions is created randomly. Each of these candidate solutions is termed as 

individual. Each individual is assigned a fitness, which measures its quality. During each 

generation of the evolutionary process, individuals with higher fitness are favored and more 

probabilities to be selected as parents. After parents are selected for reproduction, they produce 

children via the processes of crossover and mutation. The individuals formed during 

reproduction explore different areas of the solution space. These new individuals replace lesser-

fit individuals of the existing population.  

Due to difficulties of binary representation when dealing with continuous search space with large 

dimensions, the proposed approach has been implemented using real-coded genetic algorithm 

(RCGA) [36]. The simulated Binary Crossover (SBX) and polynomial mutation are explained as 

follows.  

Simulated Binary Crossover (SBX) operator 

The procedure of computing child populations 1c  and 2c  from two parent populations 1y  and 2y  

under SBX operator as follows: 

1. Create a random number u between 0 and 1. 

2. Find a parameter γ  using a polynomial probability distribution as follows:              

             ( ) ( )11 +cu
η

α         ,               if   α

1
≤u  

γ  =       

             ( )( ) ( )+
− cu

η
α

1
21    ,          otherwise                                               (2.21) 

 

where 
( )1

2
+−−= cηβα   and  ( ) ( )[ ]21

12

,min
2

1 yyyy
yy

ul −−
−

+=β  

Here, the parameter y is assumed to vary in [ ]ul yy , . Here, the parameter cη  is the distribution 

index for SBX and can take any non-negative value. A small value of cη allows the creation of 
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child populations far away from parents and a large value restricts only near-parent populations 

to be created as child populations. 

3.  The intermediate populations are calculated as follows: 

( ) ( )[ ]12211 5.0 yyyyc p −−+= γ  

( ) ( )[ ]12212 5.0 yyyyc p −++= γ                                                                                  (2.22) 

Each variable is chosen with a probability cp  and the above SBX operator is applied variable-

by-variable. 

Polynomial Mutation Operator 

A polynomial probability distribution is used to create a child population in the vicinity of a 

parent population under the mutation operator. The following procedure is used: 

1. Create a random number u between 0 and 1. 

2. Calculate the parameter δ  as follows: 

          ( )( )( )[ ]( ) 11212 1

1
1

−−−+ ++
m

muu ηη
φ                       , if 5.0≤u  

δ =   

          ( ) ( )( )( )[ ]( )1

1
1

15.02121 ++
−−+−− m

muu ηη
φ             , otherwise                                  (2.23) 

 

 

where   
( ) ( )[ ]

( )lu

pulp

yy

cyyc

−

−−
=

,min
ϕ   

The parameter mη  is the distribution index for mutation and takes any non-negative value. 

3. Calculate the mutated child as follows: 

( )
lup yycc −+= δ11                  (2.24)

 

( )
lup yycc −+= δ22             (2.25)
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The perturbance in the population can be adjusted by varying mη  and mp  with generations as 

given below: 

genmm += minηη                                       (2.26) 

      

                (2.27)                                                      

                                    

where minmη  is the user defined minimum value for mη , mp  is the probability of mutation, and n  

is the number of decision variables 

2.4.4 Simulated Annealing 

The Simulated Annealing algorithm simulates the procedure of gradually cooling a metal, until 

the energy of the system reaches the globally minimum value. Beginning with a high 

temperature, a metal is slowly cooled, so that the system is in thermal equilibrium at every stage. 

At high temperatures, the metal is in liquid phase and the atoms of the system are randomly 

arranged. By gradually cooling the metal, the system becomes more organized, until it finally 

reaches a “frozen” ground state, where the energy of the system has reached the globally 

minimum value [6]. Metropolis et al. [105] proposed an iterative method to simulate the 

evolution of thermal equilibrium of a metal for a fixed value of temperature. In each trial, the 

state of an atom is randomly perturbed, resulting in a change of energy ( E∆ ) of the system. If 

0≤∆E , the perturbation results in a lower energy of the system and the change is accepted. The 

new configuration of the system constitutes the starting point for the next trial. If 0>∆E , the 

proposed change is accepted with a probability given by Boltzmann distribution 

   ( ) ( ){ }Τ∆+=∆ ΒKEP exp11                                                                                              (2.28) 

where ΒK  is Boltzmann’s constant and Τ  corresponds to the current value of temperature. The 

acceptance of the new state with higher energy level is determined by comparing a random 

number generated from a uniform distribution on the interval between 0 and 1. If the random 

number is less than the value of ( )∆P , the new state is accepted as the current state. This 

acceptance rule for new state is referred to as the “Metropolis criterion”.  









−+=

ngen

gen

n
pm

1
1

1

max
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At each temperature, the “Metropolis criterion” is applied for a sequence of trials, where the 

outcome of each trial depends only on the outcome of the previous one. This procedure is 

mathematically described by means of a Markov chain, where the length of each chain is equal 

to a specific number of iterations performed at each temperature. As the temperature decreases, 

the Boltzmann distribution concentrates on the states with lower energy and finally, when the 

temperature approaches asymptotically to zero, only the minimum energy states have a nonzero 

probability of appearance. The above procedure is modeled through (2.28), due to which the 

probability of acceptance of higher energy configurations is large in high temperatures, whereas 

it becomes smaller as the temperature decreases. The flow chart of simulated annealing 

technique is shown in Fig. 2.2. 
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 Fig. 2.2. Flow chart of simulated annealing 
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2.5. Simulation and Results of Metaheuristic technique 

A comparative study is performed for the four metaheuristic techniques by solving the MAED 

problem for three different test systems. All metaheuristic techniques for the MAED problems 

are implemented by using MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

The initial temperature ( 0Τ ) of SA algorithm has been determined by using the procedures 

described in [20]. As per guideline [6], the value of r  lies in the range from 0.80 to 0.99. For 

seeking the optimal solution, the value of r  is required to be set close to 0.99 so that a slow 

cooling process is simulated. The appropriate setting of r  is set by experimenting with its value 

in the range from 0.95 to 0.99, and this value is found to be 0.98. Number of trials at each 

temperature has been taken 30. In this paper, iterative process is terminated when the maximum 

number of iterations is reached. 

 

2.5.1. Test System 1: This system consists of two areas. Each area consists of three generators 

with prohibited operating zones. Transmission loss is considered here. The generator data has 

modified from [19].  The generator data and B-coefficients are given in the appendices          

Table A.1. The percentage of the total load demand in area 1 is 60% and 40% in area 2. The total 

load demand is 1263 MW and power flow limit of the system is 100 MW. 

The problem is solved by using DE, EP, RCGA, and SA. In case of DE, the population size, 

scaling factor, and crossover rate have been selected as 100, 0.75, and 1.0 respectively for the 

test system under consideration. The population size and scaling factor have been selected as 

100, and 0.1 respectively in case of EP.  In case of RCGA, the population size, crossover and 

mutation probabilities have been selected as 100, 0.9 and 0.2 respectively.  

Maximum number of generations has been selected 100 for all the four metaheuristic techniques 

discussed in this paper. 

Results obtained from the four metaheuristic techniques i.e. DE, EP, RCGA, and SA have been 

summarized in Table 2.1. Fig. 2.3. gives the comparison of convergence of minimum total cost 

obtained by DE, EP, RCGA, and SA. 
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Table 2.1: Simulation results for test system 1 

 DE SA EP RCGA 

 

1,1Ρ (MW) 500.0000 

 

500.0000 

 

500.0000 500.0000 

 

2,1Ρ (MW) 200.0000 

 

200.0000 

 

200.0000 200.0000 

 

3,1Ρ (MW) 150.0000 150.0000 

 

149.9919 149.6328 

 

1,2Ρ (MW) 204.3341 

 

204.2157 206.4493 205.9398 

 

2,2Ρ (MW) 154.7048 

 

155.0575 154.8892 155.8322 

 

3,2Ρ (MW) 67.5770 

 

67.3516 65.2717 65.2209 

 

12Τ (MW) 82.7731 

 

82.7731 82.7652 82.4135 

 

1LΡ (MW) 9.4269 9.4269 9.4267 9.4193 

2LΡ (MW) 4.1890 4.1979 4.1754 4.2064 

Cost ($/h) 

 

12255.39 12255.39 12255.43 12256.23 

 

CPU time 

(second) 

17.6875 

 

14.7656 

 

21.3281 

 

24.2031 

 

 

 



31 

 

                    Fig. 2.3. Cost convergence characteristic of DE, SA, EP, RCGA of test system 1 
 

2.5.2. Test System 2: This system comprises ten generators with valve-point loading and multi-

fuel sources having three fuel options. Transmission loss is considered here. The generator data 

has been taken from [17].  The total load demand is 2700 MW. The ten generators are divided 

into three areas. Area 1 consists of the first four units; area 2 includes the next three units and 

area 3 includes the last three units. The load demand in area 1 is assumed as 50 % of the total 

demand. The load demand in area 2 is assumed as 25 % and in area 3 is taken as 25 % of the 

total demand. The power flow limit from area 1 to area 2 or from area 2 to area 1 is 100 MW. 

The power flow limit from area 1 to area 3 or from area 3 to area 1 is 100 MW. Also the power 

flow limit from area 2 to area 3 or from area 3 to area 2 is 100 MW. The B-coefficients are given 

in the appendices Table A.2. The problem is solved by using four metaheuristic techniques i.e. 

DE, EP, RCGA, and SA. 
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In case of DE, the population size, scaling factor, and crossover rate have been selected as 200, 

0.75, and 1.0 respectively for the test system under consideration. The population size and 

scaling factor have been selected as 100, and 0.1 respectively in case of EP.  In case of RCGA, 

the population size, crossover and mutation probabilities have been selected as 100, 0.9 and 0.2 

respectively. Maximum number of generations has been selected 300 for DE, EP, RCGA, and 

SA. 

Results obtained from DE, EP, RCGA and RCGA have been presented in Table 2.2. The cost 

convergence characteristic of this test system obtained from DE, EP, RCGA and SA is shown in 

Fig. 2.4. 
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Table 2.2: Simulation results for test system 2  

 

 

 

 

 

Power 

(MW) 

       DE        SA 

 

       EP      RCGA 

 Fuel  Fuel  Fuel  Fuel 

1,1Ρ (MW) 225.9431 

 

2 228.1730 2 223.8491 2 239.0958 2 

2,1Ρ (MW) 211.1594 

 

1 213.3402 1 209.5759 1 216.1166 1 

3,1Ρ (MW) 489.9216 

 

2 482.8722 2 496.0680 2 484.1506 2 

4,1Ρ (MW) 240.6232 

 

3 242.6425 3 237.9954 3 240.6228 3 

1,2Ρ (MW) 254.0397 

 

1 253.505s9 1 259.4299 1 259.6639 1 

2,2Ρ (MW) 235.4927 

 

3 236.5760 3 228.9422 3 219.9107 3 

3,2Ρ (MW) 263.8837 

 

1 266.6356 1 264.1133 1 254.5140 1 

1,3Ρ (MW) 237.0006 

 

3 234.3130 3 238.2280 3 231.3565 3 

2,3Ρ (MW) 328.7373 

 

1 325.9516 1 331.2982 1 341.9624 1 

3,3Ρ (MW) 248.8607 

 

1 251.4034 1 246.6025 1 248.2782 1 

21Τ (MW)   99.8288 

 

     100       100 

 

   93.1700 

 

31Τ (MW)   99.7334 

 

   99.8797       100 

 

    93.8739 

 

32Τ (MW)    31.2615 

 

   28.1853   32.5231     43.7824 

 

1LΡ (MW)    17.2095    16.9000   17.4884     17.0297 

2LΡ (MW)      9.8488      9.9028   10.0085       9.7010 

3LΡ (MW)      8.6037      8.6030     8.6056       8.9408 

Cost ($/h) 

 

 653.9995 

 

 654.0916 

 

655.1716   657.3325 

CPU time 

(second) 

   95.0351    10.0156 

 

108.0625 

 

  133.8438 
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                        Fig. 2.4. Cost convergence characteristic of DE, SA, EP, RCGA of test system 2 
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2.5.3. Test System 3: This system comprises forty generators with valve-point loading. The 

generator data has been taken from [21]. The total load demand is 10500 MW. The forty 

generators are divided into four areas. Area 1 includes first ten units and 15 % of the total load 

demand. Area 2 has second ten generators and 40 % of the total load demand. Area 3 consists of 

third ten generators and 30 % of the total load demand. Area four includes last ten generators and 

15 % of the total load demand. The power flow limit from area 1 to area 2 or from area 2 to area 

1 is 200 MW. The power flow limit from area 1 to area 3 or from area 3 to area 1 is 200 MW. 

The power flow limit from area 2 to area 3 or from area 3 to area 2 is 200 MW. The power flow 

limit from area 4 to area 1 or from area 1 to area 4 is 100 MW. The power flow limit from area 4 

to area 2 or from area 2 to area 4 is 100 MW. The power flow limit from area 4 to area 3 or from 

area 3 to area 4 is 100 MW. Transmission loss is neglected here. 

Four metaheuristic techniques i.e. DE, EP, RCGA, and SA have been used to solve the problem. 

The population size, scaling factor, and crossover rate have been been selected as 400, 0.75 and 

1.0 respectively in case of DE.  In EP, the population size and scaling factor have been selected 

200 and 0.1 respectively. In case of RCGA, the population size, crossover and mutation 

probabilities have been selected as 200, 0.9 and 0.2 respectively.  Maximum number of 

generations has been selected 500 for DE, EP, RCGA and SA. 

Results obtained from DE, EP, RCGA and SA has been depicted in Table 2.3. The cost 

convergence characteristic of this test system obtained from DE, EP, RCGA and SA is shown in 

Fig. 2.5. 

From Tables 1, 2 and 3, it can be inferred that, the lowest minimum total cost amongst the four is 

achieved by DE, followed by SA. Minimum total cost obtained by EP is more than DE and SA. 

RCGA is the worst performer. The CPU time requirement is least in case of SA and highest in 

the case of RCGA amongst the four metaheuristic techniques discussed in the paper.  
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Table 2.3: Simulation results for test system 3 
Power 

(MW) 

DE SA EP RCGA Power 

(MW) 

DE SA EP RCGA 

1,1Ρ  111.5448 110.9120 107.6644 95.7552 

 
4,3Ρ  523.4073 523.3366 525.7752 518.1120 

 

2,1Ρ  111.7092 111.8740 12.0673 88.5828 

 
5,3Ρ  523.7703 525.5247 531.2092 538.1994 

 

3,1Ρ  98.2429 

 

110.2589 91.8132 97.6063 

 
6,3Ρ  523.5424 523.2794 513.5659 527.4775 

 

4,1Ρ  179.8834 179.7351 175.3171 126.4966 
7,3Ρ  10.1621 

 

10.0002 

 

11.3612 

 

24.4133 

 

5,1Ρ  95.9500 

 

88.8739 92.4242 71.0127 

 
8,3Ρ  10.1326 

 

10.0006 

 

10.0000 

 

28.9856 

 

6,1Ρ  139.3533 68.0000 112.5634 116.3866 
9,3Ρ  10.6366 

 

10.0006 

 

10.0000 

 

28.8571 

 

7,1Ρ  259.3395 184.9322 257.5370 244.5857 
10,3Ρ  88.1189 

 

93.2065 

 

78.3523 

 

87.9016 

 

8,1Ρ  285.3569 285.0432 297.3619 210.6920 
1,4Ρ  161.2220 190.0000 162.4480 159.7482 

 

9,1Ρ  284.9627 284.6015 285.2035 236.1685 
2,4Ρ  189.5668 189.9990 166.3508 153.6255 

 

10,1Ρ  130.2217 130.0008 134.5862 130.1286 
3,4Ρ  189.9240 159.7546 190.0000 160.4706 

 

1,2Ρ  243.6005 168.6194 162.4313 367.4862 
4,4Ρ  165.6621 165.6736 178.4541 169.9359 

 

2,2Ρ  95.3890 

 

318.3986 217.8387 297.9501 
5,4Ρ  165.4321 164.8248 168.0752 168.5220 

 

3,2Ρ  214.5171 304.5197 125.0000 394.9246 
6,4Ρ  164.9868 196.1794 174.4529 172.2638 

 

4,2Ρ  394.0808 394.2792 384.0187 370.3473 
7,4Ρ  109.8137 89.1143 

 

77.3875 

 

91.2423 

 

5,2Ρ  394.2481 469.0618 397.6902 455.7123 
8,4Ρ  109.7935 89.1147 

 

90.1059 

 

86.4778 

 

6,2Ρ  394.4360 304.5195 407.4993 393.9673 
9,4Ρ  90.1543 

 

104.7206 109.5654 88.3627 

 

7,2Ρ  489.9552 489.2801 500.0000 424.1994 
10,4Ρ  459.1140 458.7992 549.0335 279.2691 

 

8,2Ρ  488.8885 489.2803 480.8874 484.5498 
12Τ  172.0652 192.6532 200 

 

-71.7855 

 

9,2Ρ  511.4713 511.2790 524.8487 528.4148 
31Τ  -36.3060 

 

160.6028 17.5885 

 

161.9336 

 

10,2Ρ  511.4125 511.2805 499.7857 511.3403 
32Τ  191.1128 -46.9736 

 

200 

 

95.2833 

 

1,3Ρ  523.2896 524.8208 523.4522 525.4497 
41Τ  86.8070 

 

52.8188 

 

90.8733 

 

-76.1340 

 

2,3Ρ  523.2950 523.2802 526.5051 510.7391 
42Τ  98.8231 

 

93.8021 

 

100 

 

-52.3900 

 

3,3Ρ  523.4129 433.6204 537.3675 533.6399 
43Τ  45.0391 

 

86.5590 

 

100 

 

83.4418 

 

Total cost ($/h) 121794.8 123337.1 123591.9 128046.5 

 

CPU time (second) 134.8125 29.2813 

 

144.5000 160.5313 
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                          Fig. 2.5. Cost convergence characteristic of DE, SA, EP, RCGA of test system 3 

 

2.6. Conclusion 

Here, a comparison analysis has been done for the four metaheuristic techniques viz., differential 

evolution, evolutionary programming, real coded genetic algorithm and simulated annealing 

technique for multi-area economic dispatch problem considering transmission losses, multiple 

fuels, valve-point loading and prohibited operating zones with respect to minimum cost and CPU 

time. Differential evolution achieves the lowest minimum cost and SA requires least CPU time 

amongst the four metaheuristic techniques.  
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CHAPTER-3 

Dynamic Economic Dispatch 

 

3.1. Introduction.  
 

Static economic dispatch (SED) allocates the load demand for a given interval of time among the 

committed generating units economically while fulfilling various constraints. Dynamic economic 

dispatch (DED) which is an extension of static economic dispatch, determines the optimal 

sharing of time varying load demand among the committed units. Power plant operators try to 

keep gradients for temperature and pressure inside the boiler and turbine within safe limits to 

avoid shortening the life of the equipment. This mechanical constraint imposes limit on the rate 

of increase or decrease of the electrical power output. This limit is called ramp rate limit which 

differentiates DED from SED problem. Thus, in DED the dispatch decision at one time period 

affects those at later time periods.   

Dynamic economic dispatch (DED) is one of the main functions of power system operation and 

control. DED is a real time power system problem.  It determines the optimal operation of units 

with predicted load demands over a certain period of time with an objective to minimize total 

production cost while the system is operating within its ramp rate limits. DED is the most 

accurate formulation of the economic dispatch problem but it is the most difficult to solve 

because of its large dimensionality. As competition is increasingly introduced into the wholesale 

generation markets, there is a need to understand the incremental cost burden imposed on the 

system operation by the generator ramping rate limitations.  

Here improved real coded genetic algorithm (IRCGA) has been developed in view of one-to-one 

competition to boost convergence speed and solution quality. 

IRCGA has been pertained for solving dynamic economic dispatch problem with nonsmooth fuel 

cost function. Two test systems and 15 benchmark functions are exploited here. Test results are 

matched up to those acquired by real coded genetic algorithm (RCGA). It has been observed that 

the developed IRCGA offers superior solution. 
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3.2. Problem Formulation 

Normally, the DED problem minimizes the following total production cost of committed units: 

( )it

t i

itFF Ρ=∑∑
Τ

=

Ν

=1 1

                                                   (3.1) 

The fuel cost function of each unit considering valve-point effect [22] can be expressed as  

( ) 2

itiitiiitit cbaF Ρ+Ρ+=Ρ + ( )( )itiii ed Ρ−Ρ min
sin                                         (3.2) 

Subject to the following equality and inequality constraints for the t th interval in the scheduled 

horizon 

3.2.1. Real power balance  

The total power generated must be equal the total load demand plus transmission losses. 

∑
Ν

=

=Ρ−Ρ−Ρ
1

0
i

LtDtit     Τ∈t                                                              (3.3) 

3.2.2. Real power operating limits 

The power generated by each generator is constrained between its lower and upper limits as 

follows: 

maxmin

iiti Ρ≤Ρ≤Ρ      Ν∈i , Τ∈t                                                            (3.4) 

3.2.3. Generator ramp rate limits 

The rate of output power change of thermal generator must be within an acceptable range to 

avoid undue stresses on the boiler and combustion equipment. The ramp rate limits of thermal 

generator can be mathematically expressed as follows: 

itiit UR≤Ρ−Ρ − )1(  
,                        Ν∈i ,  Τ∈t              (3.5) 

iitti DR≤Ρ−Ρ − )1(  
,                        Ν∈i ,  Τ∈t                                                                    (3.6)                                      
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3.3. Determination of Generation Levels 

In this approach, the power loading of first ( 1−Ν ) generators are specified. From the equality 

constraints in equation (3.3) the power level of the Ν th generator (i.e. the slack generator) is 

given by  

∑
−Ν

=

Ν Ρ−Ρ+Ρ=Ρ
1

1i

itLtDtt           Τ∈t                                                  (3.7) 

The transmission loss LtΡ  is a function of all the generators including that of the dependent 

generator and it is given by 

∑∑ ∑
−Ν

=

−Ν

=

−Ν

=

ΝΝ 







ΡΒΡ+ΡΒΡ=Ρ

1

1

1

1

1

1

2
i j i

ititjtijitLt + 2

tΝΝΝΡΒ           Τ∈t                               (3.8) 

Expanding and rearranging, equation (3.6) becomes 

t

i

itit Ν

−Ν

=

ΝΝΝΝ Ρ







−ΡΒ+ΡΒ ∑

1

1

2 12 + 









Ρ−ΡΒΡ+Ρ ∑∑ ∑

−Ν

=

−Ν

=

−Ν

=

1

1

1

1

1

1i j i

itjtijitDt =0          Τ∈t                     (3.9) 

The loading of the dependent generator (i.e. Ν th) can then be found by solving equation (3.9) 

using standard algebraic method. 

3.4. Overview of Improved Real Coded Genetic Algorithm 

Genetic algorithm [2] pioneered in the early 1970s at the University of Michigan by John 

Holland and his students, engenders the global or close to the global optima of a minimization 

problem by creating a number of populations over a number of iterations. Genetic algorithm [2] 

is inspired from Darwinian evolution theory “the survival of the fittest”. An initial population of 

candidate solutions is generated randomly. The capability of the global or close to the global 

optima of each of the new population is assessed by its fitness which can be stated by a function 

of the objective function. After parents are selected for reproduction, they produce offspring via 

the processes of crossover and mutation. The individuals formed during reproduction explore 

different areas of the solution space.  
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Due to difficulties of binary representation when dealing with continuous search space with large 

dimensions, real-coded genetic algorithm (RCGA) [36] [37] has been employed. The Simulated 

Binary Crossover (SBX) [36] and polynomial mutation have been applied in this work. 

In case of improved real coded genetic algorithm (IRCGA), one-to-one challenge is pioneered in 

real coded genetic algorithm (RCGA) to boost the convergence speed and solution quality. Here, 

an offspring contends one-to-one with that of matching parent. Initialization, selection of parent 

population, crossover, mutation and selection between parent and offspring are the five stages of 

IRCGA stated as: 

3.4.1. Initialization: The initial population ( i ) of control variables chosen randomly from the 

set of uniformly distributed control variables ranging over their maximum and minimum limits 

has been stated as: 

 maxmin0

, ,~ jjji xxUx ,  
 inj ,  (3.10) 

where n  is the number of decision variables in an individual, 
  is the population size; 0

, jix  

signifies the initial j th variable of the i th population ; min

jx  and max

jx  are the minimum and 

maximum limits of the j th decision variable;  maxmin , jj xxU  signifies a uniform random variable 

ranging over  maxmin , jj xx . Compute the objective function value if  of each population.  

3.4.2. Selection of parent population 

The binary tournament selection method is utilized for choosing the parents in the mating pool. 

Two chromosomes are haphazardly chosen from the population, and their objective function 

values are compared and the chromosome with lower objective function value i.e. winner 

chromosome is set aside in the mating pool. This process is repetitive until the mating pool is full 

by the chromosomes. 

3.4.3. Simulated Binary Crossover (SBX)  

The process of computing offsprings 
/

1x  and 
/

2x  from two parents 1x  and 2x  by utilizing SBX 

operator as follows: 

1. Generate a random number u between 0 and 1. 
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2. Get a parameter γ  by utilizing a polynomial probability distribution as follows: 

               ( ) ( )11 +cu
η

α                   ,   if   α1≤u  

γ  =                                                                                                                                   (3.11) 

               ( )( ) ( )11
21

+
− cu

η
α        ,      otherwise 

 

       where 
( )1

2
+−−= cηβα   and β  is computed as follows: 

( ) ( )[ ]2

maxmin

1

12

,min
2

1 xxxx
xx

−−
−

+=β  

The parameter cη  is the distribution index for SBX and can obtain any non-negative value. A 

minute value of cη  permits the formation of offsprings far-off from parents and a great value 

confines only close to-parent populations to be generated as offsprings. 

3.  The intermediate populations are computed as follows: 

( ) ( )[ ]12211 5.0 xxxxx p −−+= γ                                                                                       (3.12)                                           

( ) ( )[ ]12212 5.0 xxxxx p −++= γ                                                                                      (3.13) 

3.4.4. Polynomial Mutation  

The polynomial probability distribution is utilized to generate an offspring in the neighborhood 

of a parent population underneath the mutation operator. This is stated as follows: 

1. Generate a random number u between 0 and 1. 

2. Compute the parameter σ  as follows: 

              ( )( )( )[ ]( ) 11212 1

1
1

−−−+ ++
m

muu ηη
φ                 ,    if 5.0≤u  

σ  =                                                                                                                                (3.14) 

              ( ) ( )( )( )[ ]( )1

1
1

15.02121 ++
−−+−− m

muu ηη
φ       ,   otherwise 
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where   
( ) ( )[ ]

( )minmax

maxmin ,min

xx

xxxx pp

−

−−
=ϕ   

The parameter mη  is the distribution index for mutation and obtains any non-negative value. 

3.4.5. Compute the mutated offspring as follows: 

( )minmax

1

/

1 xxxx p −+= σ                                                                                            (3.15) 

( )minmax

2

/

2 xxxx p −+= σ                                                                                                          (3.16) 

The perturbation can be changed by varying mη  and mp  with iterations as follows: 

itermm += minηη                                                                                                       (3.17) 

 

 

                                                                                     (3.18) 

where minmη  is the abuser definite lowest value for mη , mp  is the probability of mutation, and n  

is the number of choice variables.Compute the objective function value of each offspring.  

3.4.6. Selection between parent and offspring:  

Carry out assortment for each parent ( )iΧ  by comparing its objective function value with that of 

the matching offspring ( )/

iΧ .  The population that has lower objective function value between 

parent and offspring, carries on for the next iteration. 

                 

               /

iΧ
        

,   if  ( ) ( )ii ff Χ≤Χ /

 
=Χ i  

                iΧ       ,   otherwise                                 , ΡΝ∈i                                                      (3.19)                         

The procedure is replicated till the maximum number of iterations is arrived at. Fig. 3.1. portrays 

the flowchart of improved real coded genetic algorithm (IRCGA). 









−+=

niter

iter

n
pm

1
1

1

max
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Fig. 3.1. Flowchart of improved real coded genetic algorithm 

3.5. Simulation and Results of IRCGA algorithm 

The developed improved real coded genetic algorithm (IRCGA) and real coded genetic 

algorithm (RCGA) have been pertained for solving two different test systems and 15 benchmark 

functions. IRCGA and RCGA techniques have been realized by using MATLAB 7.0 on a PC 

(Pentium-IV, 80 GB, 3.0 GHz). 

3.5.1. Test System 1 

This system comprises a five-unit test system with non-smooth fuel cost function. The demand 

of the system has been divided into 24 intervals. Unit data and load demands can be found in the 
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calculate the objective function value  
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Carry out assortment between parent and matching 

offspring based on objective function value 
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function value 
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End 

Creation of two offsprings from two selected 

parents by performing simulated binary crossover 

and polynomial mutation operation 
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appendices Table.A.3 and Table.A.4 respectively. The transmission loss coefficients are also 

found in the appendices. 

The problem is solved by using IRCGA and RCGA. Here, maximum number of iterations, 

population size, crossover and mutation probabilities have been chosen as 200, 50, 0.9 and 0.2, 

respectively for IRCGA and RCGA.  

Test results acquired from the best fuel cost among 100 runs of solutions by using developed 

IRCGA and RCGA are summed up in Table 3.1 and Table 3.2 respectively.  

The cost convergence characteristic acquired from developed IRCGA and RCGA has been 

portrayed in Fig. 3.2. It has been observed from Table 3.1 and Table 3.2 that the total production 

cost acquired from IRCGA is the less than RCGA. 

Table 3.1: Hourly generation (MW) schedule, cost ( 410× $) and CPU time (second) of 

dynamic economic dispatch obtained from IRCGA for test system 1 

Hour             1Ρ             2Ρ           3Ρ           4Ρ             5Ρ                    Cost CPU time 

  1               11.3164    94.4161    34.8735  146.6867  126.5497 

  2               23.1813    90.1666    73.7201  113.5044  138.4590 

  3               11.9324    93.9033  108.5855  115.6246  149.7128 

  4               27.1539  112.3399  129.1379  127.4656  139.8012 

  5               33.0977  105.1074  119.7769  157.6852  148.8756 

  6               34.2727  113.1852  118.1478  198.1880  152.0965 

  7               21.0618    95.2011  126.5935  200.9683  190.5027 

  8               13.2336    84.1612  124.7809  210.7558  230.2387 

  9               15.4049  111.9255  114.6057  206.1754  252.2273 

10               38.1468  102.8138  112.3537  228.4493  232.9199 

11               22.9734  115.6917  116.1610  245.6676  230.8052 

12               22.6146  100.7327  131.6335  217.3580  279.4648 

13               17.1397  101.0136  130.8908  230.8320  234.7908 

14               14.4215  125.0000  116.7502  208.0259  236.1501 

15               27.3155  102.7837  132.0737  186.6684  214.2108 

16               10.0000    88.8931  112.6023  143.4474  232.2756 

17               29.3193    75.7853  115.8604  111.6682  231.9894 

18               10.9216    98.6467  128.8807  155.2371  222.1789 

19               10.0000    97.3583  116.4014  204.7380  234.7459 

20               21.3901  101.9513  111.1422  249.0230  231.3192 

21               41.8179    92.4563  124.0882  204.4698  226.9759 

22               26.2425    83.8814  120.7969  168.0922  213.7139 

23               27.0398    93.6921  111.9390  124.6404  175.5184 

24               13.9996     97.5889  112.7651 112.7183  130.4413  

4.7185 
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Table 3.2: Hourly generation (MW) schedule, cost ( 410× $) and CPU time (second) of 

dynamic economic dispatch obtained from RCGA for test system 1 

Hour                 1Ρ            2Ρ           3Ρ           4Ρ            5Ρ                      Cost CPU time 

  1                  13.1295    83.5304    30.0000  131.5777  155.5877 

  2                  20.7587  103.9699    47.7241  121.1508  145.5922 

  3                  30.0888    96.8590    39.0542  121.3086  192.7561 

  4                  34.6016  120.1340    45.9461   99.9179   235.8191 

  5                  11.1545    99.4230    79.6158  127.7968  246.9099 

  6                  38.5179  103.8989  104.0526  114.2895  255.2500 

  7                  10.0000  112.3671  121.8815  162.0736  228.0966 

  8                  12.1923    94.8772  114.6329  200.1064  241.4309 

  9                   40.3314    92.0681  109.8161  227.9227  230.1095 

10                   51.9218    99.9601  123.7857  204.9619  233.8897 

11                   67.8766  104.7002  116.5753  219.9124  221.9794 

12                   68.0362  104.4624  141.4227  222.6975 214.9175 

13                   39.2518  107.5492  115.4971  210.8340  241.5070 

14                   15.9646  110.7312  140.0208  212.6738  220.7837 

15                   15.6750    95.3407  106.4133  202.2451  243.6056 

16                   10.0000    99.2551    69.7553  184.2966  224.1859 

17                   25.4383  100.0201    35.7367  202.2340  201.7308 

18                   54.1205    96.0491    31.3978  205.6964  229.1920 

19                   54.9027  109.0564    61.4139  212.5498  225.5727 

20                   67.8133    98.9348    96.8481  219.0149  232.0707 

21                   64.1935    97.1720  105.7931  192.3558  230.3411 

22                   59.0403    96.4422  112.5213  160.1490  184.5178 

23                   51.9522    97.0567    99.1880  138.5687  146.0497 

24                   28.7679  100.1259    71.3424  135.5410  131.8331 

 4.7564 
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                                     Fig. 3.2.  Cost convergence characteristic for test system 1 

 

3.5.2. Test System 2 

This system comprises a ten-unit test system with non-smooth fuel cost function. The demand of 

the system has been divided into 24 intervals. Unit data and load demands can be found in    

Table.A.5 and Table.A.6 respectively in the appendices. The transmission loss coefficients are 

also found in the appendices. 

The problem is solved by using IRCGA and RCGA. Here, maximum number of iterations, 

population size, crossover and mutation probabilities have been chosen as 300, 100, 0.9 and 0.2, 

respectively for IRCGA and RCGA.  
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Test results acquired from the best fuel cost among 100 runs of solutions by using developed 

IRCGA and RCGA are summed up in Table 3.3 and Table 3.4 respectively.  

The cost convergence characteristic acquired from developed IRCGA and RCGA has been 

portrayed in Fig. 3.3. It has been observed from Table 3.3 and Table 3.4 that the total production 

cost acquired from IRCGA is the less than RCGA. 

 

 

 

                         Fig. 3.3. Cost convergence characteristic for test system 2 
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3.6. Benchmark Functions 

The developed IRCGA and RCGA have been pertained for solving 15 benchmark functions [29]. 

These test functions are revealed in Table 3.5. All other data is taken from [29]. The population 

size, crossover and mutation probabilities have been chosen as 100, 0.9 and 0.2 respectively for 

IRCGA and RCGA. 

To verify the performance of the proposed IRCGA technique, these 15 test functions are 

repeatedly tested by using the IRCGA. Each test is repeated 100 times. Mean results of 15 test 

functions acquired from 100 runs are summarized in Table 3.6. Table 3.7 summarizes best 

optimum values and the variables corresponding to the best optimum value, number of iterations 

and CPU time of all 15 benchmark functions in 100 runs acquired from IRCGA. 

These 15 test functions are also tested by using RCGA technique. Table 3.8 shows best optimum 

values, number of iterations and CPU time acquired from RCGA.  

 

Table 3.6: Mean optimum value, number of iterations and mean CPU time acquired from 

IRCGA 

Function Mean Optimum  

Value 

Number of 

Iterations 

Mean CPU time (sec) 

1f  1.6703e-22 200 27.5631 

2f  8.6875e-18 200 28.6573 

3f  7.0153e-17 300 38.9348 

4f  1.2035e-17 300 37.9738 

5f  3.0151e-17 300 39.0571 

6f  9.4572e-18 300 41.3401 

7f  22.324e-17 300 38.0479 

8f  6.8957e-18 300 40.9752 

9f  -186.7307 100 1.5042 

10f  0.00030763 200 5.9033 

11f  -1.031642 50 0.7047 

12f  0.397733 50   0.6981 

13f  3 50 0.6348 

14f  -3.8626 50 0.9015 

15f  -3.319 50 1.7748 

 



52 

Table 3.5: Test Functions 

Mathematical representation Domain Optimum 
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Table 3.7: Best Optimum value, the variables corresponding to the best optimum value, 

number of iterations and CPU time acquired from IRCGA 

Function ∗
x  ( )∗

xf  Number of 

Iterations 

CPU time 

(sec) 

1f  [0,0,…….,0] 1.6701e-24 200 25.5788 

2f  [0,0,…….,0] 7.7935e-18 200 26.9347 

3f  [0,0,…….,0] 5.8031e-17 300 37.7409 

4f  [0,0,…….,0] 1.3135e-17 300 36.7092 

5f  [1,1,…….,1] 2.6149e-17 300 37.5872 

6f  [0,0,…….,0] 8.9901e-18 300 40.8805 

7f  [0,0,…….,0] 2.1067e-17 300 37.7943 

8f  [0,0,…….,0] 6.3568e-18 300 39.9052 

9f  [4.8581, 5.4829] , [ -7.0835, -

7.7083], [-0.8003,  -7.7083] 

 

-186.7309 100 1.6325 

10f  [0.1928, 0.1909, 0.1231, 0.1358] 0.0003075 200 5.8807 

11f  [0.089842,  -0.712654], [-

0.089842,  0.712655], 

-1.0316285 50 0.6183 

12f  [ -3.1416, 12.272], [ 3.1416, 

2.276] 

0.397725 50 0.5996 

13f  [0, -1] 3 50 0.6074 

14f  [0.1146, 0.5556, 0.8525] -3.86 50 0.8807 

15f  [0.2017, 0.1468, 0.4767, 0.2753, 

0.3117, 0.6573] 

-3.32 50 1.6038 
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Table 3.8: Best optimum value, number of iterations and CPU time acquired from RCGA 

Function RCGA 

( )∗
xf  Number of 

Iterations 

CPU time 

(sec) 

1f  6.0739e-019 200 25.7905 

2f  1.6857e-005 300 39.6358 

3f  0.26796 500 62.7043 

4f  0.05389 500 64.9351 

5f  71.7808 400 54.9532 

6f  33.8247 300 40.8562 

7f  1.5308e-005 300 37.7794 

8f  4.9494 300 39.8093 

9f  -186.7308 100 1.3835 

10f  0.0003077 200 5.8774 

11f  -1.0316273 50 0.6058 

12f  0.397728 50 0.5495 

13f  3 50 0.6015 

14f  -3.8621 50 0.8795 

15f  -3.3214 50 1.49752 

 

3.7. Conclusion 

Here, improved real coded genetic algorithm (IRCGA) has been developed and pertained for 

solving dynamic economic dispatch problem with non-smooth fuel cost function and 15 

benchmark functions. Test results have been matched up to those acquired from real coded 

genetic algorithm. It has been observed from the comparison that the developed improved real 

coded genetic algorithm has the capability to offer superior solution and quick convergence. Due 

to these properties, improved real coded genetic algorithm can be utilized for solving 

complicated power system problems. 
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CHAPTER-4 

Combined Heat & Power Economic Dispatch 

 

4.1. Introduction 

The conversion of fossil fuel into electricity takes place inefficiently. Most of the energy 

desecrated in the process of conversion is heat. Cogeneration gets better this heat and makes use 

of it usefully. On the whole, the efficiency of the conversion is moved up. Comparing with the 

other form of power suppliers, cogeneration such as heat and power generation is more energy 

efficient and lower green house gas emission power supplier. 

Even the energy efficiency of the most modern combined cycle plants is less than 60%. Most of 

the energy wasted in the conversion process is heat. But the fuel efficiency of combined heat and 

power generation unit can be as much as 90%. Also combined heat and power generation unit 

has less green house gas emission as compared with the other forms of energy supply. The 

principle of combined heat and power, known as cogeneration, is to recover and make beneficial 

use of this heat and as a result the overall efficiency of the conversion process is increased. 

Cogeneration units play an increasingly important role in the utility industry. For most 

cogeneration units, the heat production capacity depends on the power generation and vice versa. 

This introduces complexity due to the non-separable nature of electrical power and heat in the 

combined heat and  power unit. The mutual dependencies of heat and power generation initiate a 

complication in the incorporation of cogeneration units into the power economic dispatch. Non-

linear optimization methods, such as dual and quadratic programming and gradient descent 

approaches, such as Lagrangian relaxation, have been applied for solving combined heat and 

power economic dispatch (CHPED). However, these methods cannot handle non-convex fuel 

cost functions of the generating units. 

The advent of Teaching-learning-based optimization (TLBO), a teaching-learning process 

inspired algorithm recently proposed by Rao et al. [52], [53] and Rao and Patel [54] is based on 

the effect of influence of a teacher on the output of learners in a class. It is a population-based 
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method and does not require any algorithm-specific control parameters. The main advantage of 

TLBO is that it requires only common controlling parameters like population size and number of 

generations for its working.  

Here modified teaching-learning-based optimization (MTLBO) where Gaussian random 

variables are introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves search 

efficiency and guarantees a high probability of obtaining the global optimum without 

significantly impairing the speed of convergence and the simplicity of the structure of TLBO. 

In this study, MTLBO has been applied to solve the non-smooth/non-convex combined heat and 

power economic dispatch (CHPED) problem and 15 benchmark functions. The valve-point 

loading and forbidden working regions of conventional thermal generators and transmission loss 

are taken into consideration. Three test systems are exploited here. Test results are compared 

with those acquired by other evolutionary techniques. It has been observed that the developed 

MTBLO offers superior solution.  

 

4.2. Problem Formulation 

 The system under consideration has conventional thermal generators, cogeneration units and 

heat-only units. The heat-power feasible operating region of a combined cycle co-generation unit 

is portrayed in Fig. 4.1. The heat and power outputs of this type of unit are inseparable and one 

output varies with the other. The heat-power feasible operating region is enclosed by the 

boundary curve ABCDEF.  

The power output of the conventional thermal generators and the heat output of heat units are 

confined by their own maximum and minimum limits. The power is created by conventional 

thermal generators and combined heat and power units and the heat is created by combined heat 

and power units and heat-only units. The CHPED problem determines the unit power and heat 

production so that the system production cost is minimized at the same time satisfying the power 

and heat demands and other constraints. The objective function and constraints of CHPED 

problem can be stated as: 
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Fig. 4.1. Heat-Power Feasible Operation Region for a cogeneration unit 

4.2.1. Objective 

The cost function of conventional thermal generator is acquired when the unit output is slowly 

varied throughout its workable region. The valve point effect takes place due to the aperture of 

each steam admission valve in a turbine. The valve point effect is modeled as a summation of 

recurring rectified sinusoid and quadratic function [22]. 

The total heat and power production cost can be stated as 
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4.2.2. Constraints: 

Two types of constraints i.e. equality and inequality constraints are taken into account. Equality 

constraints are the power and heat balance constraints. Inequality constraints are the capacity 

limits on heat and power generated by each unit and the forbidden working regions of 

conventional thermal generator. 
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4.2.2.1. Power balance constraint 

L
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Transmission loss LΡ  is a function of power of all generating units and can be stated as:  
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where ijΒ  is the loss coefficient for a network branch connected between units  i and j. 

4.2.2.2. Heat balance constraint 
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The heat demand is used within a short distance of cogeneration units and so the heat loss is 

insignificant. 

4.2.2.3. Capacity limits of conventional thermal generating units 

maxmin

tititi Ρ≤Ρ≤Ρ          ti Ν∈ ,...,2,1     (4.5) 

4.2.2.4. Capacity limits of cogeneration units 

The heat and power outputs of the cogeneration units are inseparable and one output affects the 

other. ( )cc ΗΡmin , ( )cc ΗΡmax , ( )cc ΡΗ min  and ( )cc ΡΗ max  are the linear inequalities that define the 

feasible operating region of the cogeneration units 

( ) ( )cicicicici ΗΡ≤Ρ≤ΗΡ maxmin
,      ci Ν∈ ,...,2,1                                   (4.6) 

( ) ( )cicicicici ΡΗ≤Η≤ΡΗ maxmin
,      ci Ν∈ ,...,2,1                                               (4.7) 

4.2.2.5. Production limits of heat-only units 

maxmin

hihihi Η≤Η≤Η            hi Ν∈ ,...,2,1                                            (4.8) 

where min

hiΗ  and max

hiΗ are heat production limits of the i th heat-only unit. 
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4.3. Forbidden working region 

Shaft bearing tremor caused by the steam admission valve or the machine fault or the associated 

auxiliary equipment fault can produce forbidden working regions in the input-output curve of a 

conventional thermal generator. The greatest achievable saving is achieved by circumventing 

operation in these areas. The feasible working regions of a conventional thermal generator with 

forbidden working regions can be stated as: 

 
l

tititi 1,

min Ρ≤Ρ≤Ρ  

l

jtiti

u

jti ,1, Ρ≤Ρ≤Ρ −    
,   inj ,...,3,2=                                                                                              (4.9)                          

max

, titi

u

nti i
Ρ≤Ρ≤Ρ

   
,       ti Ν∈  

where j  represents the number of forbidden working regions of i the conventional thermal 

generator. u

jti 1, −Ρ  is the upper limit of ( )1−j th forbidden working region of i the conventional 

thermal generator. l

jti,Ρ  is the lower limit of j th forbidden working region of  i the conventional 

thermal generator. Total number of forbidden working region of i the conventional thermal 

generator is in . 

4.4. Overview of Modified Teaching Learning Based Optimization algorithm 

4.4.1. Teaching–learning-based optimization  

Teaching–learning-based optimization (TLBO) is a teaching–learning process inspired algorithm 

recently proposed by Rao et al. [52], [53] and Rao and Patel [54] based on the effect of influence 

of a teacher on the output of learners in a class. The algorithm mimics teaching–learning ability 

of   teacher and learners in a classroom. Teacher and learners are the two vital components of the 

algorithm.  The algorithm describes two basic modes of the learning: (i) through teacher (known 

as teacher phase) and (ii) interacting with the other learners (known as learner phase). The output 

in TLBO algorithm is considered in terms of results or grades of the learners which depend on 

the quality of teacher. A high quality teacher is usually considered as a highly learned person 

who trains learners so that they can have better results in terms of their marks or grades. Learners 

also learn from the interaction among themselves which also helps in improving their results. 
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TLBO is population based method. In this optimization algorithm a group of learners are 

considered as population and different subjects offered to the learners are considered as different 

design parameters and a learner’s result is analogous to the ‘fitness’ value of the optimization 

problem. The best solution in the entire population is considered as the teacher. The design 

variables are actually the parameters involved in the objective function of the given optimization 

problem and the best solution is the best value of the objective function. The working of TLBO 

is divided into two parts, ‘Teacher phase’ and ‘Learner phase’.  

4.4.1.1. Teacher phase 

It is the first part of the optimization algorithm where learners learn through the teacher. During 

this phase a teacher tries to improve the mean result of the class in the subject taught by him or 

her depending on his or her capability. At any iteration i , assume that there are ‘ m ’ number of 

subjects (i.e. design variables), ‘ n ’ number of learners (i.e. population size, ΡΝ= ,.....,2,1k ) and 

jiL ,  be the mean result of the learners in a particular subject‘ j ’ ( lj ,.....,2,1= ). The best overall 

result ikbesttotal ,_Χ , obtained in the entire population of learners considering all the subjects 

together can be considered as the result of best learner kbest . However, as the teacher is usually 

considered as a highly learned person who trains learners so that they can have better results. The 

best learner identified is considered by the algorithm as the teacher. The difference between the 

existing mean result of each subject and the corresponding result of the teacher for each subject 

is given by: 

( )
jikbestjiikji LrMeanDifference ,,,,,_ −Χ×=                       (4.10) 

where kbestji ,,Χ  is the result of the best learner (i.e. teacher) in subject j  and ir  is the random 

number in the range [0, 1].  

Based on the kjiMeanDifference ,,_ , the existing solution is updated in the teacher phase 

according to the following expression. 

kjikjikji meanDifference ,,,,

/

,, _+Χ=Χ                       (4.11) 

where /

,, kjiΧ   is the updated value of kji ,,Χ . Accept kji ,,Χ  if it gives better function value.  
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All the accepted function values at the end of the teacher phase are maintained and these values 

become the input to the learner phase.  

4.4.1.2. Learner phase  

The learner phase depends upon the teacher phase. It is the second part of the algorithm where 

learners increase their knowledge by interaction among themselves. A learner interacts randomly 

with other learners for enhancing his or her knowledge. A learner learns new things if the other 

learner has more knowledge than him or her. Considering a population size of ‘ ΡΝ ’, the learning 

phenomenon of this phase is expressed below. 

Randomly select two learners Ρ  and Q  such that /

,

/

, Qtotalitotali −Ρ− Χ≠Χ  where /

, Ρ−Χ totali   and 

/

, Qtotali −Χ  are the updated values of Ρ−Χ totali ,  and Qtotali −Χ ,  respectively at the end of the teacher 

phase. 

( )/

,,

/

,,

//

,,

//

,, Qjijiijiji r Χ−Χ+Χ=Χ ΡΡΡ , if /

,

/

, Qtotalitotali −Ρ− Χ<Χ                 (4.12) 

( )/

,,

/

,,

//

,,

//

,, ΡΡΡ Χ−Χ+Χ=Χ jiQjiijiji r , if /

,

/

, Ρ−− Χ<Χ totaliQtotali                      (4.13) 

where /

ir  is the random number in the range [0, 1]. Accept 
//

,, ΡΧ ji  if it gives a better function value. 

Repeat the procedure of teacher phase and learner phase till the termination criterion is met.  
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                                                     Fig. 4.2. Flowchart of TLBO algorithm  
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4.4.2. Modified Teaching–learning-based optimization 

In modified teaching–learning-based optimization (MTLBO), Gaussian random variables are 

introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves search efficiency and 

guarantees a high probability of obtaining the global optimum without significantly impairing the 

speed of convergence and the simplicity of the structure of TLBO. Accordingly the difference 

between the existing mean result of each subject and the corresponding result of the teacher for 

each subject is thus modified to 

( ) ( )
jikbestjikji LNMeanDifference ,,,,, 1,0_ −Χ×=                      (4.14) 

where kbestji ,,Χ  is the result of the best learner (i.e. teacher) in subject j  and ( )1,0N  represents a 

Gaussian random variable with mean zero and standard deviation 1. 

Accordingly randomly select two learners Ρ  and Q  such that /

,

/

, Qtotalitotali −Ρ− Χ≠Χ  where /

, Ρ−Χ totali   

and /

, Qtotali −Χ  are the updated values of Ρ−Χ totali ,  and Qtotali −Χ ,  respectively at the end of the 

teacher phase is thus modified to. 

 

( ) ( )/

,,

/

,,

/

,,

//

,, 1,0 Qjijijiji N Χ−Χ×+Χ=Χ ΡΡΡ , if /

,

/

, Qtotalitotali −Ρ− Χ<Χ                    (4.15) 

( ) ( )/

,,

/

,,

/

,,

//

,, 1,0 ΡΡΡ Χ−Χ×+Χ=Χ jiQjijiji N , if /

,

/

, Ρ−− Χ<Χ totaliQtotali                    (4.16) 

where ( )1,0N  represents a Gaussian random variable with mean zero and standard deviation 1.  

The Gaussian random variables control the amount of perturbation added to the ‘Teacher phase’ 

and ‘Learner phase’ and aids the method to escape from local optima. This maintains the 

diversity of the population throughout iterative process which guarantees a high probability of 

achieving the global optimum. 
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                                                           Fig. 4.3. Flowchart of MTLBO algorithm  
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4.5. Simulation and Results of MTLBO algorithm 

The developed MTLBO has been pertained to solve three test systems and 15 benchmark 

functions. Computational results of three test systems have been used to compare the efficacy of 

the developed MTLBO approach with that of other evolutionary techniques suggested in the 

literature. The developed MTLBO is utilized by using MATLAB 7.0 on a PC (Pentium-IV, 80 

GB, 3.0 GHz).  

4.5.1. Test System 1 

This system comprises four conventional thermal generators, two cogeneration units and a heat-

only unit. Here, transmission loss is taken into account. Unit data has been modified from [39]. 

System data containing coefficients of fuel cost equations, prohibited operating zones, B loss 

coefficients and heat-power feasible regions are given in the Appendix. The power and heat 

demand of the test system are 600 MW and 150 MWth respectively. Here, two cases are chosen. 

Case 1 

Here, only valve point loading of conventional thermal generators has been considered. The 

problem is solved by using the developed MTLBO. Here, the population size (  ) and the 

maximum iteration number ( max ) have been selected as 50 and 100 respectively for the test 

system under consideration. The power and heat generations corresponding to best cost obtained 

from proposed MTLBO is summarized in Table 4.1. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from developed MTLBO are 

summarized in Table 4.2. The cost acquired from classical PSO (CPSO) [50], time varying 

acceleration coefficients PSO (TVAC-PSO) [50], teaching learning-based optimization (TLBO) 

[51] and oppositional teaching learning based optimization (OBTLBO) [51] are also shown in 

Table 4.2.  

The cost convergence characteristic acquired from developed MTLBO is portrayed in Fig. 4.4. It 

is observed from Table 4.2 that the cost found by using MTLBO is the lowest among all other 

techniques. 
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                     Fig. 4.4. Cost convergence characteristics for case 1 of test system 1 

Table 4.1: Power generation (MW) and heat generation (MWth) for  case 1 of Test System 1 

 

 

Table 4.2: Comparison of performance for case 1 of Test System 1  

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

MTLBO 10094.25 10094.34 10094.47   2.25 

TVAC-PSO [50] 10100.31 - -    - 

CPSO [50] 10325.33 - -    - 

OBTLBO  [51] 10094.35 10099.40 10106.83    3.06 

TLBO [51] 10094.83 10114.15 10133.61    2.86 
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Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators have been considered. The data of conventional thermal 

generator is same as in [50] except the following modifications in Table A.1 which lists the 

prohibited zones of conventional thermal generating units.  These forbidden regions result in 

three disjoint feasible sub-regions for each of the conventional thermal generators. Hence, those 

zones result in a non-convex decision space which consists of 81 convex sub-spaces for this 

system. The problem is solved by using the developed MTLBO. Here, the population size ( ΡΝ ) 

and the maximum iteration number ( maxΝ ) have been selected as 50 and 100 respectively for the 

test system under consideration. 

The power and heat generations corresponding to best cost acquired from developed MTLBO is 

summarized in Table 4.3. The best, average and worst cost and average CPU time among 100 

runs of solutions obtained from developed MTLBO are summarized in Table 4.4. The cost 

convergence characteristic acquired from developed MTLBO is portrayed in Fig. 4.5. 
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                   Fig. 4.5. Cost convergence characteristics for case 2 of test system 1 
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Table 4.4: Comparison of performance for case 2 of Test System 1 

Techniques MTLBO 

Best cost ($) 10101.29 

Average cost ($) 10101.44 

Worst cost ($) 10101.71 

CPU time (s) 2.5656 

 

4.5.2. Test System 2 

The system consists of thirteen conventional thermal generators having prohibited operating 

zones and valve-point effect, six cogeneration units and five heat-only units. System data 

containing coefficients of fuel cost equations, prohibited operating zones, and heat-power 

feasible regions are given in the Appendix. The power and heat demands of the test system are 

2350 MW and 1250 MWth respectively. Here, two cases are chosen. 

Case 1 

Here, only valve point loading of conventional thermal generators has been considered. The 

problem is solved by using the proposed MTLBO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 100 and 100 respectively for the test 

system under consideration. The power and heat generations corresponding to best cost acquired 

from developed MTLBO is summarized in Table 4.5. 

The best, average and worst cost and average CPU time among 100 runs of solutions obtained 

from developed MTLBO are summarized in Table 4.6. The cost obtained from classical PSO 

(CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50], teaching learning 

based optimization (TLBO) [51] and oppositional teaching learning based optimization 

(OBTLBO) [51] are also summarized in Table 4.6. The cost convergence characteristic acquired 

from developed MTLBO is portrayed in Fig. 4.6. It has been observed seen from Table 4.6 that 

the cost found by using MTLBO is the lowest among all other techniques. 
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          Fig. 4.6. Cost convergence characteristics for case 1 of test system 2 
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Table 4.6: Comparison of performance for case 1 of Test System 2   

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

MTLBO 57829.49 57830.21 57830.95      5.19 

TVAC-PSO [50]   58122.74 58198.31 58359.55      7.84 

CPSO [50] 59736.26 59853.47 60076.69      8.00 

OBTLBO [51] 57856.26 57883.21 57913.77      5.82 

TLBO [51] 58006.99 58014.36 58038.52      5.67 

 

Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators have been considered. The data of conventional thermal 

generator is same as in [50] except the following modifications in Table A.2 which lists the 

prohibited zones of conventional thermal generating units 1, 2, 3, 10 and 11. These forbidden 

regions result in four disjoint feasible sub-regions for each of conventional thermal generators 1, 

2, and 3 and three disjoint feasible sub-regions for each of the conventional thermal generators 

10 and 11. Hence, those zones result in a non-convex decision space which consists of 576 

convex sub-spaces for this system. 

The problem is solved by using the developed MTLBO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 100 and 100 respectively for the test 

system under consideration. 

The power and heat generations corresponding to best cost obtained from proposed MTLBO is 

summarized in Table 4.7. The best, average and worst cost and average CPU time among 100 

runs of solutions acquired from developed MTLBO are given in Table 4.8. The cost convergence 

characteristic acquired from developed MTLBO is portrayed in Fig. 4.7. 
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                           Fig. 4.7. Cost convergence characteristics for case 2 of test system 2 
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Table 4.8: Comparison of performance for case 2 of Test System 2 

Techniques           MTLBO 

Best cost ($)  57942.33 

Average cost ($)          57943.05 

Worst cost ($)          57943.86 

CPU time (s)             5.8787 

 

4.5.3. Test System 3 

This system consists of twenty six conventional thermal generators, twelve cogeneration units 

and ten heat-only units. Data of this test system is obtained by duplicating data of test system 3. 

Characteristics of conventional thermal generators 1-13 and 14-26 in this test system are same as 

units 1-13 in test system 3. Characteristics of cogeneration units 27-32 and 33-38 are same as 

units 14-19 in case of test system 3. Also characteristics of heat-only units 39-43 and 44-48 are 

same as units 19-24 in case of test system 3. The power and heat demands of this test system are 

4700 MW and 2500 MWth respectively. Total number of decision variables is sixty. Here, two 

cases are considered. 

Case 1 

Here, only valve point loading of conventional thermal generators has been considered. The 

problem is solved by using the developed MTLBO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 200 and 200 respectively for the test 

system under consideration. The power and heat generations corresponding to best cost acquired 

from proposed MTLBO is summarized in Table 4.9. The best, average and worst cost and 

average CPU time among 100 runs of solutions acquired from developed MTLBO are 

summarized in Table 4.10. The cost obtained from classical PSO (CPSO) [50], time varying 

acceleration coefficients PSO (TVAC-PSO) [50], teaching learning based optimization (TLBO) 

[51] and oppositional teaching learning based optimization (OBTLBO) [51] are also summarized 

in Table 4.10. The cost convergence characteristic acquired from developed MTLBO is 
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portrayed in Fig. 4.8. It has been observed from Table 4.10 that the cost found by using MTLBO 

is the lowest among all other techniques. 

                                                         

                               Fig. 4.8. Cost convergence characteristics for case 1 of test system 3 
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Table 4.9: Power generation (MW) and heat generation (MWth) for case 1of Test System 3 

1Ρ      628.3190   16Ρ     299.2444    31Ρ      10.0001   34Η       85.8329 

2Ρ     153.5074   17Ρ       60.0003    32Ρ     35.2279    35Η     108.9109 

3Ρ      225.6470   18Ρ    109.8680    33Ρ     84.3575    36Η       85.8975 

4Ρ     159.7349   19Ρ       60.0000    34Ρ     52.5133    37Η       40.0019 

5Ρ        60.0002   20Ρ    159.7331    35Ρ     88.3237    38Η       22.8867 

6Ρ      159.7332   21Ρ    159.7332    36Ρ      52.5881   39Η    461.4128 

7Ρ     159.7331   22Ρ    159.7333    37Ρ     10.0031   40Η      60.0000 

8Ρ       60.0000   23Ρ      40.0772    38Ρ      41.3508    41Η       60.0000 

9Ρ     159.7336   24Ρ    114.8015    27Η   110.0761   42Η    120.0000 

10Ρ    114.7999   25Ρ      92.4022    28Η     80.5508    43Η    120.0000 

11Ρ    114.8010   26Ρ    119.9999    29Η   105.5007    44Η    423.9202 

12Ρ      55.0001   27Ρ      90.3999    30Η     88.2204    45Η      60.0000 

13Ρ      55.0055   28Ρ      46.3967    31Η    40.0006    46Η      60.0000 

14Ρ    269.2799   29Ρ      82.2470    32Η    20.1036     47Η    120.0000 

15Ρ    300.4257   30Ρ      55.2780    33Η   106.6851    48Η    120.0000 

 

Table 4.10: Comparison of performance for case 1 of Test System 3 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

MTBLO 116402.48 116403.17 116403.75 6.32 

TVAC-PSO [50] 117824.89 - - - 

CPSO [50] 119708.88 - - - 

OBTLBO [51] 116579.23 116613.65 116649.44 10.9 

TLBO [51] 116739.36 116756.00 116825.82 10.3 
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Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators have been considered. The data of conventional thermal 

generator is same as in case 1 except the following modifications in Table A.3 which lists the 

forbidden regions of conventional thermal generators 1, 2, 3, 10, 11, 14, 15, 16, 23 and 24. These 

prohibited zones result in four disjoint feasible sub-regions for each of conventional thermal 

generators 1, 2, 3, 14, 15 and 16 and three disjoint feasible sub-regions for each of the 

conventional thermal generators 10, 11, 23 and 24. Hence, those zones result in a non-convex 

decision space which consists of 331776 convex sub-spaces for this system. 

The problem is solved by using the developed MTLBO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 200 and 200 respectively for the test 

system under consideration. The power and heat generations corresponding to best cost obtained 

from developed MTLBO is summarized in Table 4.11.  

 The best, average and worst cost and average CPU time among 100 runs of solutions acquired 

from developed MTLBO are summarized in Table 4.12. The cost convergence characteristic 

acquired from proposed MTLBO is portrayed in Fig. 4.9. 

 

                 Fig. 4.9. Cost convergence characteristics for case 2 of test system 3 
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Table 4.11: Power generation (MW) and heat generation (MWth) for case 2 of Test System 3 

1Ρ         628.4322   16Ρ    152.6009   31Ρ      10.0213   34Η      81.3596 

2Ρ        225.2795   17Ρ    159.7504   32Ρ     45.0196    35Η     108.4749 

3Ρ        360.0000   18Ρ    159.9559   33Ρ      81.0331   36Η      89.0333 

4Ρ        159.7473  19Ρ    159.7512   34Ρ      47.3354   37Η      40.0626 

5Ρ        159.8316   20Ρ    159.8017   35Ρ      87.6543   38Η      20.2502 

6Ρ        159.7316   21Ρ    159.9887   36Ρ      56.2196    39Η    448.2178 

7Ρ       160.0075   22Ρ    159.7755   37Ρ      10.2250   40Η      60.0000 

8Ρ        159.7481  23Ρ    114.8030   38Ρ      35.5826    41Η       60.0000 

9Ρ        109.9707  24Ρ    115.2846   27Η   115.5509   42Η     119.9999 

10Ρ         40.0307  25Ρ      55.0887   28Η     83.6316    43Η     119.9994 

11Ρ         40.0046  26Ρ    119.9971   29Η   .105.9947    44Η    438.7974 

12Ρ       119.9529  27Ρ    100.2425   30Η      79.3812    45Η      59.9972 

13Ρ         55.1176  28Ρ      50.0101   31Η      39.9999    46Η      60.0000 

14Ρ             0         29Ρ      83.2744   32Η      24.5086    47Η    119.9998 

15Ρ       153.6658   30Ρ     45.0643   33Η    104.7422    48Η    119.9988 

 

 

Table 4.12: Comparison of performance for case 2 of Test System 3 

Techniques MTLBO 

Best cost ($) 116669.57 

Average cost ($) 116670.34 

Worst cost ($) 116671.77 

CPU time (s) 7.9805 
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4.6. Benchmark Functions  

The developed MTLBO and TLBO have been pertained for solving 15 benchmark functions. 

These test functions are revealed in Table 4.13. The first five functions 1f – 5f  are unimodal 

high-dimensional functions. The next four functions 6f – 9f  are multimodal functions and the 

number of local minima raises exponentially with the problem dimension. Functions 10f – 15f  are 

low-dimensional functions and have only a few local minima. Table 4.14 shows the coefficients 

of function 10f . Table 4.15 and Table 4.16 show the coefficients of 14f  and 15f . 

To verify the performance of the proposed technique, these 15 test functions are repeatedly 

tested by using the MTLBO. In MTLBO, the population size ( ΡΝ ) is taken as 50. Each test is 

repeated 100 times. Mean results of 15 test functions acquired from 100 runs are summarized in 

Table 4.15. Table 4.16 summarizes best optimum values and the variables corresponding to the 

best optimum value, number of iterations and CPU time of all 15 benchmark functions in 100 

runs acquired from MTLBO. 

These 15 test functions are also tested by using TLBO technique. In TLBO, the population size    

( ΡΝ ) is taken as 50.  Table 4.17 shows best optimum values, number of iterations and CPU time 

acquired from TLBO.  

Table 4.14: Function 10f  

 i            ia               1−

ib  

 1         0.1957         0.25 

 2         0.1947          0.5 

 3         0.1735           1 

 4         0.1600           2 

 5         0.0844           4 

 6         0.0627           6 

 7         0.0456           8 

 8         0.0342         10 

 9         0.0323         12 

10        0.0235         14 

11        0.0246         16 
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Table 4.13: Test Functions 
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Table 4.15: Function 14f  

i 
ija , j =1,2,3 

ic        ijp , j =1,2,3 

1 

2 

3 

4 

  3     10    30 

0.1    10    35 

  3     10    30 

0.1    10     35 

1 

1.2 

3 

3.2 

0.36890   0.1170   0.2673 

0.46990   0.4387   0.7470 

0.10910   0.8732   0.5547 

0.03815   0.5743   0.8828 

 

Table 4.16: Function 15f  

i  
ija , 6,....,1=j  

ic  ijp , 6,....,1=j  

1 

2 

3 

4 

 10      3     17    3.5   1.7     8 

0.05   10    17    0.1    8    14 

  3      3.5  1.7    10    17    8 

 17      8   0.05   10    0.1  14 

1 

1.2 

3 

3.2 

0.1312   0.1696   0.5569   0.0124   0.8283   0.5886 

0.2329   0.4135   0.8307   0.3736   0.1004   0.9991 

0.2348   0.1415   0.3522   0.2883   0.3047   0.6650 

0.4047   0.8828   0.8732   0.5743   0.1091   0.0381 

 

Table 4.17: Best optimum value, number of iterations and CPU time acquired from TLBO 

 

Function TLBO 

( )∗
xf  Number of 

Iterations 

CPU time 

(sec) 

1f  5.4739e-019 200 25.1875 

2f  1.6653e-005 300 39.40625 

3f  0.26788 500 62.6406 

4f  0.05381 500 64.5156 

5f  71.7587 400 54.7812 

6f  33.8118 300 40.6718 

7f  1.5218e-005 300 37.7656 

8f  4.9450 300 39.4531 

9f  -186.7309 100 1.3750 

10f  0.0003075 200 5.8751 

11f  -1.0316275 50 0.6250 

12f  0.397726 50 0.6406 

13f  3 50 0.6093 

14f  -3.8623 50 0.8751 

15f  -3.3219 50 1.4375 
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4.7. Overview of Heat Transfer Search algorithm 

In a Heat Transfer Search (HTS) algorithm [61], a population is analogous to groups of 

molecules that participate in a heat transfer process attaining different temperature echelons. 

Here, the different design variables correspond to different temperature of molecules. Further, 

the energy level of the molecules denotes the objective function value of the problem. The best 

solution is considered as the surrounding and the remaining solutions as the system. Now, in 

order to visualize the procedure followed by the HTS algorithm, we need to see the case of 

thermal imbalance in a system i.e. if a thermal imbalance exists between a system and its 

surroundings (or within the system itself), the former always tries to reduce this imbalance in 

order to attain thermal equilibrium. Similarly, during optimization in the Heat transfer search 

(HTS) algorithm, which is a population based algorithm, if the difference in the solution exists 

within the population, the solution tries to improve its value. This improvement can be made by 

taking into account the difference between the present solution and either of the best solution, 

other random solution from the population or the mean value of the solution from the population.  

The HTS algorithm method can be considered to be of three parts namely, ‘conduction phase’, 

radiation phase’ and convection phase’, which oppose the thermal imbalance of the system by 

conduction, radiation and convection modes of heat transfer respectively. All three modes 

happen with equal probability, which is managed by the parameter ‘ R ’ in each iteration. ‘ R ’ is a 

uniformly random number which varies between 0 and 1. During optimization, as R  varies 

between 0 and 1, for equal probability, each phase must share the equal proportion of R

.According to the value of R , any one of the three phases can be applied to update the solution in 

that iteration as follows:  

Value of R  Phase 

0-0.3333 Conduction 

0.3333-0.6666 Radiation 

0.6666-1 Convection 

 

The HTS algorithm starts with a random initial population of n solutions, where n is the size of 

population. Each solution is an m dimensional vector and m is the number of optimization 

parameters or design variables. At first the population is initialized and then its value is updated 
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in each iteration g (g = 1, 2, ….,Gmax) by  the search procedure of conduction, convection or 

radiation phase. Moreover, the selection procedure here is called the greedy selection technique 

which allows the modernized solution in HTS algorithm only if it creates better objective 

function value. After selection, the worst solutions of the population are replaced by the best 

solutions and finally any existing duplicate solution is replaced by a randomly generated 

solution. The operational procedure of all three phases is brought below to minimize a function 

 xf , which is the objective function for an optimization problem.   

The Conduction Phase    

The conduction phase is the part of the algorithm where the system tries to attain thermal balance 

by conduction heat transfer. Energy is transferred from higher energetic molecules to lower 

energetic molecules. As declared earlier, if the number of molecules of the system i.e. population 

be n and the different temperature levels of the molecules i.e. design variables be m, then  during 

the first  conduction phase where generation gGmax/CDF (where CDF is the conduction 

factor), the solutions are updated as follows: 

1,, CDSxx old

ik

new

ij                   if    kj xfxf                                                                           (4.17) 

1,, CDSxx old

ij

new

ik                  if    jk xfxf                                                                           (4.18)          

where nj ,.....,2,1 , ),.....,2,1( nk , kj   and k  is a randomly selected solution from the 

population, ),...,2,1( mi  and i  is a randomly selected design variables. 
1CDS and 

2CDS  are the 

conduction steps stated as follows: 

old

ikxRCDS ,

2

1                                                                                                                         (4.19) 

old

ijxRCDS ,

2

2                                                                                                                        (4.20) 

( R  = value of probability for the selection of conduction phase) 

Here, 2R  is matched up to the conductance of the Fourier’s equation and  ikx ,  , ijx ,  are matched 

up to the temperature gradient. The conductance of any system depends on the thermal 

conductivity which in turn is a function of temperature. During heat transfer, the temperature of 
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the system and hence its thermal conductivity and conductance are varying constantly. Thus, to 

replicate this temperature dependent behavior of conductance, it is represented by variable R  

which can attain any value between 0 and 0.33333 at the starting of iteration in the conduction 

phase. Moreover, to use the search space, this random variable is represented by squaring its 

value so that it can pursue a fine search. 

In the second part of the conduction phase where g ≥ Gmax/CDF, the solution are brought up to 

date as 

3,, CDSxx
old

ik

new

ij +=   ;        if  ( ) ( )
kj xfxf >                                                                             (4.21) 

4,, CDSxx
old

ij

new

ik +=   ;        if   ( ) ( )
jk xfxf >                                                                            (4.22) 

3CDS  and 
4CDS  are the conduction steps stated as follows: 

old

ikrxCDS ,3 −=                                                                                                                           (4.23) 

old

ijrxCDS ,4 −=                                                                                                                           (4.24) 

Where r  is a random number in the range [0, 1]. In Eqs. (9.16) and (9.17), r  matches up to the 

conductance of the Fourier’s equation and ikx ,  and ijx ,  are matched up to the temperature 

gradient. The value of CDF is taken 2 for the conduction phase. 

The Convection Phase 

The convection phase is the part of the algorithm where the system tries to attain thermal balance 

by convection heat transfer. Here, the mean temperature of the system interacts with the 

surrounding temperature to find a thermal balance between the system and the surrounding. The 

surrounding is considered as the best solution. At any iteration g (where g <Gmax/COF and COF 

is a convection factor), sx  be the temperature of the surrounding, msx  be the mean temperature 

of the system. When the energy of the system is higher than that of the surrounding i.e. 

( ) ( )mss xfxf <  , the solution is updated as follows: 

+= old

ij

new

ij xx ,, COS                                                                                                                    (4.25)                          
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Where nj ,...,2,1 , mi ,...,2,1 . Each design variable of the population is updated in the 

conduction phase. COS is the convection step stated as follows: 

COS =  TCFxxR mss *                                                                                                          (4.26)  

( R = value of probability for the selection of convection phase) 

R becomes equal to the convection element of the Newton’s law of cooling and sx  , msx  the 

temperature of the surrounding and the mean temperature of the system respectively. The system 

temperature constantly changes during the heat transfer process. The surrounding becomes the 

heat sink or heat source, so its temperature remains constant. To account this effect, temperature 

change factor (TCF)  is initiated. Thus, TCF  is the temperature change factor based on which 

the mean temperature of the system can be varied. The value of TCF  is determined as follows: 

 rRabsTCF       ,    if g Gmax/COF                                                                              (4.27)                                                            

 rroundTCF  1   ,     if g Gmax/COF                                                                             (4.28)                                                 

Where r  is a random number in the range [0, 1]. The value of TCF  changes randomly between 

0 and 1 in the first part of the conduction phase. In the second part of the conduction phase, the 

value of  TCF  is either 1 or 2. The different value of TCF  in the proposed algorithm is to 

balance the exploration and exploitation. The value of COF is set to 10 for this phase. 

The Radiation Phase 

The radiation phase is the part of the algorithm where the system tries to attain thermal balance 

by radiation heat transfer. Here, the system interacts with the surrounding (i.e. best solution) or 

within the system (i.e. other solution) to achieve thermal balance. In the first part of the radiation 

phase, where g   Gmax/RDF (where RDF is the radiation factor) the solution is updated (i.e. 

energy reduction of the system) as follows: 

1,, RDSxx old

ij

new

ij      ,    if    kj xfxf                                                                                  (4.29) 

2,, RDSxx old

ij

new

ij      ,     if    jk xfxf                                                                                 (4.30)    
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Where nj ,.....,2,1= , ),.....,2,1( nk ∈ , kj ≠  and k  is a randomly selected solution from the 

population, ),...,2,1( mi ∈ . All design variables of the solution is brought up to date during each 

iteration of the radiation phase. 
1RDS  and 

2RDS  are radiation step stated as follows: 

( )old

ij

old

ik xxRRDS ,,1 −=                                                                                                                (4.31) 

( )old

ik

old

ij xxRRDS ,,2 −=                                                                                                               (4.32)      

( R = the value of probability for the selection of radiation phase) 

R matches up to the radiation element of the Stefan-Boltzmann law and kx , jx  matches up to the 

system and the surrounding temperature respectively. 

In the second part of radiation phase where g ≥ Gmax/RDF, the solution is brought up to date as 

follows: 

3,, RDSxx
old

ij

new

ij += ,    if ( ) ( )
kj xfxf >                                                                                     (4.33) 

4,, RDSxx
old

ij

new

ij += ,    if ( ) ( )
jk xfxf >                                                                                     (4.34)   

Where 3RDS  and 
4RDS  are radiation step stated as follows:                                                                           

( )old

ij

old

ik xxrRDS ,,3 −=                                                                                                               (4.35)      

( )old

ik

old

ij xxrRDS ,,4 −=                                                                                                               (4.36) 

Where r  is a random number in the range [0, 1] and RDF is the radiation factor which finds out 

the exploration and exploitation tendency in this phase. In radiation phase, the value of RDF is 

set to 2.  

Fig. 4.10 portrays the flow chart of heat transfer search algorithm. 
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                                Fig. 4.10.  Flow chart of heat transfer search algorithm 
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4.8. Application of Heat Transfer Search Algorithm for CHPED 

The Heat Transfer Search (HTS) algorithm includes three phases each of which is divided in two 

parts whose activation is based on the current number of iterations and depends on the 

conduction, convection and radiation factors. Iteration is completed when the randomly selected 

phase is performed. The HTS algorithm repeats the search process until the predetermined total 

number of iterations is performed. 

The HTS algorithm for solving CHPED problem is described below. 

Step 1: Initialize the HTS algorithm parameters: population size ( ΡΝ ), elite solution size ( ΕΝ ), 

conduction factor (CDF), convection factor (COF), radiation factor (RDF). Set the iteration 

counter: it=0. 

Step 2:  Let 
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 be the k th vector of a population to be evolved and ΡΝ= ,...,2,1k . The elements of kp  should 

satisfy the constraints given by equations (4.2)-(4.9). Production cost of each vector kp  is 

calculated. 

Step 3: Increase the iteration counter, it=it+1. Generate a uniformly distributed random number 

R between 0 and 1 in order to decide which heat transfer phase should be performed. 

Step 4: If 0 ≤ R ≤ 0.3333, perform the conduction phase by using Eqs. (4.17-4.24). 

Step 5: If 0.3333 <R < 0.6666, perform the radiation phase by using Eqs (4.29-4.36). 

Step 6: If 0.6666 ≤ R ≤ 1.0, perform convection phase by using Eqs. (4.25-4.28). 

Step 7: Obtain a new vector. The new vector should satisfy the constraints given by equations 

(4.2)-(4.9). Calculate the production cost of the new vector. If the production cost of the new 

vector is less than the previous one, replace them.  Otherwise leave the original vector 

unchanged. Repeat this process until all vectors in the population are updated. 
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Step 8: Replace the worst solutions of the current iteration with the elite solutions of previous 

iteration. 

Step 9: Stop the search process if the termination criterion is satisfied i.e. maximum number of 

iterations is reached. Otherwise, go to step 3. 

4.9. Prohibited operating zones 

Shaft bearing shaking due to steam admission valve opening or the machine and associated 

auxiliary equipment fault can produce prohibited operating zones in the input-output curve of a 

conventional thermal generator. The greatest achievable saving is achieved by circumventing 

operation in these areas. The feasible operating regions of a conventional thermal generator with 

prohibited operating zones [62] can be stated as: 

l

tititi 1,

min Ρ≤Ρ≤Ρ  

l

jtiti

u

jti ,1, Ρ≤Ρ≤Ρ −       ,   inj ,...,3,2=                                   (4.37)                                                                          

max

, titi

u

nti i
Ρ≤Ρ≤Ρ       ,       ti Ν∈  

where j  represents the number of prohibited operating zones of i the conventional thermal 

generator. u

jti 1, −Ρ  is the upper limit of ( )1−j th prohibited operating zones of i the conventional 

thermal generator. l

jti,Ρ  is the lower limit of j th prohibited operating zones of  i th conventional 

thermal generator. Total number of prohibited operating zones of i th conventional thermal 

generator is in . 

4.10. Simulation and Results of HTS algorithm 

The suggested (HTS) has been applied to four different test systems. Computational results have 

been used to compare the efficacy of the suggested HTS with that of other evolutionary 

techniques suggested in the literature. The suggested HTS is utilized by using MATLAB 7.0 on a 

PC (Pentium-IV, 80 GB, 3.0 GHz).  
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4.10.1. Test System 1 

This test system comprises one conventional thermal generator and two cogeneration units and a 

heat-only unit. Unit data has been adopted from [50]. The power and heat demands of the test 

system are 200 MW and 115 MWth respectively. Here, two cases are chosen. 

Case 1 

Firstly, only valve point loading of conventional thermal generator has been reflected on. The 

problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  

and the maximum iteration number ( maxΝ ) have been chosen as 50, 5, 100 respectively.  

The power and heat generations matching to best cost acquired from the suggested HTS is 

revealed in Table 4.18. The best, average and worst cost and average CPU time among 100 runs 

of solutions acquired from suggested HTS are summed up in Table 4.19. The cost acquired from 

classical PSO (CPSO) [50] and time varying acceleration coefficients PSO (TVAC-PSO) [50] 

are also summed up in Table 4.19. The cost convergence characteristic acquired from the 

suggested HTS is portrayed in Fig. 4.11. It has been observed from Table 4.19 that the cost 

acquired by utilizing HTS is the lowest among all other techniques. 

 

Table 4.18: Power generation (MW) and heat generation (MWth)  for case 1 of Test System 1 

1Ρ  0.00039 
 3Ρ  40.0000 

3Η  75.0058 

2Ρ  159.9996  2Η
 

39.9911 
4Η
 

0.0031 

 

Table 4.19: Comparison of performance for case 1 of Test System 1 

Techniques HTS TVAC-PSO [50] CPSO [50] 

Best cost ($) 9256.95    9257.07 9257.08 

Average cost ($) 9257.06 - - 

Worst cost ($) 9257.10 - - 

CPU time (s) 1.3897 - - 
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               Fig. 4.11. Cost convergence characteristics for case 1 of test system 1 

Case 2 

Here, valve point loading of conventional thermal generator and prohibited operating zones of 

conventional thermal generator have been reflected on. The data of conventional thermal 

generator is similar as in [50].   

The problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size

( )ΕΝ  and the maximum iteration number ( maxΝ ) have been chosen as 50, 5 and 100 

respectively. The power and heat generations matching to best cost acquired from the suggested 

HTS is revealed in Table 4.20. The best, average and worst cost and average CPU time among 

100 runs of solutions acquired from suggested HTS are summed up in Table 4.21. The cost 

convergence characteristic obtained from suggested HTS is portrayed in Fig. 4.12. 
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                          Fig. 4.12. Cost convergence characteristics for case 2 of test system 1 

 

Table 4.20: Power generation (MW) and heat generation (MWth) for case 2 of Test System 1 

1Ρ  0.0012 
3Ρ  40.0000 

3Η  75.0005 

2Ρ  159.9988 
2Η  39.9908 

4Η   0.0086 

 

Table 4.21: Comparison of performance for case 2 of Test System 1 

  Techniques    HTS 

Best cost ($)  9257.04 

Average cost ($)  9257.07 

Worst cost ($)  9257.12 

 CPU time (s)    1.6513 
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4.10.2. Test System 2 

This system comprises four conventional thermal generators, two cogeneration units and a heat-

only unit. Here, transmission loss is reflected on. Unit data has been adopted from [50]. The 

power and heat demands of this test system are 600 MW and 150 MWth respectively. Here, two 

cases are chosen. 

Case 1 

Firstly, only valve point loading of conventional thermal generators has been reflected on. The 

problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  

and the maximum iteration number ( maxΝ ) have been chosen as 50, 5 and 100 respectively.  

The power and heat generations matching to best cost acquired from suggested HTS is revealed 

in Table 4.22. The best, average and worst cost and average CPU time among 100 runs of 

solutions acquired from suggested HTS are summed up in Table 4.23. The cost acquired from 

classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50], 

teaching learning based optimization (TLBO) [51] and oppositional teaching learning based 

optimization (OBTLBO) [51] are also summed up in Table 4.23. The cost convergence 

characteristic acquired from suggested HTS is portrayed in Fig. 4.13. It has been observed from 

Table 4.23 that the cost acquired by utilizing HTS is the lowest among all other techniques. 
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                       Fig. 4.13. Cost convergence characteristics for case 1 of test system 2 

Table 4.22: Power generation (MW) and heat generation (MWth) for case 1 of Test System 2 

1Ρ       45.5410 
3Ρ    112.6714 5Ρ  94.1215 

5Η  27.5498 
7Η  47.4842 

2Ρ      98.5905 4Ρ    209.8220 6Ρ  
40.0035 6Η  

74.9660 Ploss 0.7499 

 

Table 4.23: Comparison of performance for case 1 of Test System 2 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time(s) 

HTS 10094.7109 10094.8512 10094.9743   2.0153 

TVAC-PSO  [50] 10100.3124 - -   - 

CPSO [50] 10325.3339 - -   - 

OBTLBO  [51] 10094.3529 10099.4057 10106.8314   3.06 

TLBO [51] 10094.8384 10114.1539 10133.6130   2.86 

GSO [58] 10094.2670 10095.6615 10097.2406 2.4203 
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Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators have been reflected on. The data of conventional thermal 

generator is similar as in [50].  

The problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size

( )ΕΝ  and the maximum iteration number ( maxΝ ) have been chosen as 50, 5 and 100 

respectively.  

The power and heat generations matching to best cost acquired from suggested HTS is summed 

up in Table 4.24. The best, average and worst cost and average CPU time among 100 runs of 

solutions acquired from suggested HTS are revealed in Table 4.25. The cost convergence 

characteristic acquired from suggested HTS is portrayed in Fig. 4.14. 

 

 

                       Fig. 4.14. Cost convergence characteristics for case 2 of test system 2 
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Table 4.24: Power generation (MW) and heat generation (MWth) for case 2 of Test System 2 

1Ρ  44.2825 
3Ρ  112.6214 

5Ρ  94.0105 
5Η  28.2620 

7Η  46.9948 

2Ρ
 

100.1107
 4Ρ

 
209.7009

 6Ρ
 

40.0235
 6Η

 
74.7432

 
Ploss

 
0.7495

 

 

Table 4.25: Comparison of performance for case 2 of Test System 2 

Techniques     HTS 

Best cost ($) 10104.2707 

Average cost ($) 10104.4054 

Worst cost ($) 10104.7031 

CPU time (s)    2.4405 

 

4.10.3. Test System 3 

This system comprises thirteen conventional thermal generators, six cogeneration units and five 

heat-only units. Unit data has been adopted from [58]. The power and heat demands of the test 

system are 2350 MW and 1250 MWth respectively. Here, two cases are chosen. 

Case 1 

Here, only valve point loading of conventional thermal generators has been reflected on. The 

problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  

and the maximum iteration number ( maxΝ ) have been chosen as 100, 10 and 200 respectively.   

The power and heat generations matching to the best cost acquired from the suggested HTS is 

revealed in Table 4.26. The best, average and worst cost and average CPU time among 100 runs 

of solutions acquired from suggested HTS are summed up in Table 4.27. The cost acquired from 

classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50], 

teaching learning based optimization (TLBO) [51] and oppositional teaching learning based 

optimization (OBTLBO) [51] are also revealed in Table 4.27. The cost convergence 

characteristic acquired from suggested HTS is portrayed in Fig. 4.15. It has been observed from 

Table 4.27 that the cost acquired by utilizing HTS is the lowest among all other techniques. 
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Table 4.26: Power generation (MW) and heat generation (MWth)  for case 1 of Test System 3 

1Ρ          539.5724       
11Ρ        77.8364      15Η         76.5205   

2Ρ         298.9487       
12Ρ        55.0023      16Η       105.5142   

3Ρ         297.9085       13Ρ         55.0109     17Η         75.4833 

4Ρ         110.0820       
14Ρ         81.0524     18Η        39.9999 

5Ρ          110.2645      15Ρ         40.0015      19Η        18.3944 

6Ρ          110.2381      16Ρ         81.0030      20Η      468.9043 

7Ρ         110.2745      17Ρ         40.0009      
21Η        59.9994    

8Ρ          110.2452      18Ρ         10.0002      
22Η       59.9999   

9Ρ          110.1592      19Ρ         35.0001      23Η     119.9854   

10Ρ           77.3992      
14Η      105.2219      

24Η     119.9768 

 

Table 4.27: Comparison of performance for case 1 of Test System 3 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

HTS 57842.99 57843.15 57843.77    5.47 

TVAC-PSO [50] 58122.74 58198.31 58359.55    7.84 

CPSO [50] 59736.26 59853.47 60076.69    8.00 

OBTLBO  [51] 57856.26 57883.21 57913.77    5.82 

TLBO [51] 58006.99 58014.36 58038.52    5.67 

GSO [58] 57843.51 57849.30 57857.79    5.41 
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                           Fig. 4.15. Cost convergence characteristics for case 1 of test system 3 

Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal  generators have been reflected on. The data of conventional  thermal 

generator is similar as in [58].  The problem is pertained to solve by utilizing HTS. Here,   the 

population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number ( maxΝ ) have been 

chosen as  100, 10 and 200 respectively. The power and heat   generations matching to best cost 

acquired from suggested HTS is revealed in Table 4.28. The best, average and worst cost and 

average CPU time among 100 runs of solutions  acquired from suggested HTS are summed up in 

Table 4.29.  The cost convergence characteristic acquired from the suggested HTS has been 

portrayed in Fig. 4.16. 
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                      Fig. 4.16. Cost convergence characteristics for case 2 of test system 3 

Table 4.28: Power generation (MW) and heat generation (MWth) for case 2 of Test System 3 

1Ρ  628.3185 
11Ρ  40.0000 

15Η  79.2433 

2Ρ
 

298.9051 
12Ρ

 
55.0000 

16Η
 

107.7938 

3Ρ
 

224.4078 
13Ρ

 
92.3999 

17Η
 

80.1432 

4Ρ
 

60.0000 
14Ρ

 
89.3203 

18Η
 

40.0006 

5Ρ
 

159.1331 
15Ρ

 
44.8825 

19Η
 

20.0013 

6Ρ
 

60.0000 
16Ρ

 
86.3330 

20Η
 

453.3426 

7Ρ
 

159.6331 
17Ρ

 
45.9304 

21Η
 

60.0000 

8Ρ
 

60.0000 
18Ρ

 
10.0000 

22Η
 

60.0000 

9Ρ
 

159.7331 
19Ρ

 
35.0029 

23Η
 

120.0000 

10Ρ
 

40.0000 
14Η

 
109.4702 

24Η
 

20.0000 
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Table 4.29: Comparison of performance for case 2 of Test System 3 

Techniques    HTS 

Best cost ($) 57959.41 

Average cost ($) 57959.92 

Worst cost ($)  57960.73 

CPU time (s) 6.6877 

 

4.10.4. Test System 4 

This system comprises twenty six conventional thermal generators, twelve cogeneration units 

and ten heat-only units. Data of this test system is acquired by duplicating data of test system 3. 

The power and heat demands of this test system are 4700 MW and 2500 MWth respectively. 

Here, two cases are chosen. 

Case 1 

Firstly, only valve point loading of conventional thermal generators has been reflected on. The 

problem is pertained to solve by utilizing HTS. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  

and the maximum iteration number ( maxΝ ) have been chosen as 150, 15 and 300 respectively.  

The power and heat generations matching to best cost acquired from the suggested HTS is 

revealed in Table 4.30. The best, average and worst cost and average CPU time among 100 runs 

of solutions acquired from the suggested HTS are summed up in Table 4.31. The cost acquired 

from classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50], 

teaching learning based optimization (TLBO) [51] and oppositional teaching learning based 

optimization (OBTLBO) [51] are also revealed in Table 4.31. The cost convergence 

characteristic acquired from the suggested HTS has been portrayed in Fig. 4.17. It has been 

observed from Table 4.31 that the cost acquired by utilizing HTS is the lowest among all other 

techniques. 
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Table 4.30: Power generation (MW) and heat generation (MWth) for case 1 of Test System 4 

1Ρ  538.5705 
16Ρ  224.2057 

31Ρ  10.0002 
34Η  78.4853 

2Ρ  224.5205 
17Ρ

 
159.8062 

32Ρ
 

48.6396 
35Η

 
105.7117 

3Ρ  
229.6394 

18Ρ
 

60.2947 
33Ρ

 
86.0222 

36Η
 

83.7420 

4Ρ
 

159.8146 
19Ρ

 
109.8813 

34Ρ
 

44.0049 
37Η

 
40.0004 

5Ρ  
60.0409 

20Ρ
 

109.9534 
35Ρ

 
82.6239 

38Η
 

22.2596 

6Ρ
 

159.7333 
21Ρ

 
109.8681 

36Ρ
 

50.0926 
39Η

 
514.5539 

7Ρ
 

159.7483 
22Ρ  159.7347 

37Ρ
 

10.0004 
40Η

 
60.0000 

8Ρ
 

60.3910 
23Ρ  

77.4085 
38Ρ

 
39.9712 

41Η
 

60.0000 

9Ρ
 

159.7346 
24Ρ

 
77.4089 

27Η
 

108.4796 
42Η  120.0000 

10Ρ
 

77.8308 
25Ρ  

92.4043 
28Η

 
78.5030 

43Η  
119.9997 

11Ρ
 

77.4274 
26Ρ

 
55.0095 

29Η
 

106.4777 
44Η

 
389.4737 

12Ρ  92.4412 
27Ρ

 
87.5554 

30Η
 

78.4939 
45Η  

59.9999 

13Ρ  
55.0051 

28Ρ
 

44.0256 
31Η

 
40.0006 

46Η
 

59.9999 

14Ρ
 

628.3214 
29Ρ

 
83.9878 

32Η
 

26.1998 
47Η

 
120.0000 

15Ρ  
149.6676 

30Ρ
 

44.0149 
33Η

 
107.6192 

48Η
 

120.0000 

 

Table 4.31: Comparison of performance for case 1 of Test System 4 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

HTS 116362.50 116369.06   116385.37   6.0035 

TVAC-PSO  [50] 117824.89 -    -    - 

CPSO [50] 119708.88 -    -     - 

OBTLBO  [51] 116579.23 116613.65   116649.44    10.93 

TLBO [51] 116739.36 116756.00   116825.82    10.38 

GSO [58] 116457.95 116463.65   116473.21    9.51 



101 

   

   Fig. 4.17. Cost convergence characteristics for case 1 of test system 4 

 

Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators have been reflected on. The data of conventional thermal 

generator is similar as in case [58].  The problem has been pertained to solve by utilizing HTS. 

Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number ( maxΝ ) have 

been chosen as 150, 15 and 300 respectively. The power and heat generations matching to best 

cost acquired from the suggested HTS is revealed in Table 4.32. The best, average and worst cost 

and average CPU time among 100 runs of solutions acquired from the suggested HTS are 

summed up in Table 4.33. The cost convergence characteristic acquired from the suggested HTS 

has been portrayed in Fig. 4.18. 
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                        Fig. 4.18. Cost convergence characteristics for case 2 of test system 4 

Table 4.32: Power generation (MW) and heat generation (MWth) for case 2 of Test System 4 
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Table 4.33: Comparison of performance for case 2 of Test System 4 

Techniques    HTS 

Best cost ($) 116918.90 

Average cost ($) 116924.75 

Worst cost ($) 116935.38 

CPU time (s)    6.9056 

  

4.11. Conclusion 

Modified teaching-learning-based optimization (MTLBO) has been developed and pertained to 

solve three different complex combined heat and power economic dispatch problems and 15 

benchmark functions. Test results acquired from three different complex combined heat and 

power economic dispatch problems have been compared with those acquired by other 

evolutionary techniques suggested in the literature. A comparison has been observed for both test 

cases i.e. a valve point loading of conventional thermal generator and valve point loading of 

conventional thermal generators and prohibited operating zones of conventional thermal 

generators in MTLBO gives better result for minimum cost and good performance.  

Heat transfer search (HTS) algorithm has been pertained to solve four different complex 

combined heat and power economic dispatch problems. Test results have been matched up to 

those acquired by other evolutionary techniques suggested in literature. A comparison of 

performance for different test system has been observed and found that the best cost, average 

cost, worst cost and CPU time gives better result in HTS algorithm. 
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CHAPTER-5 

Short-term Scheduling of Fixed Head 

Hydrothermal Power System 

 

 

5.1. Introduction: 

Optimal scheduling of power plant generation is of great importance to electric utility systems. 

Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the 

operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of 

thermal plants under the various constraints on the hydraulic, thermal and power system 

network. Since the mid1990s, many techniques originated from Darwin’s natural evolution 

theory have emerged. These techniques are usually termed by “evolutionary computation 

methods” including evolutionary algorithms (EAs), swarm intelligence and artificial immune 

system. 

In this study, opposition-based differential evolution (ODE) for optimal scheduling of generation 

in a hydrothermal system has been applied to a fixed head hydrothermal power system. This 

paper considers a fixed head hydrothermal system. Here the system with fixed head hydro plants, 

water discharge rate curves are modeled as a quadratic function of the hydropower generation 

and thermal units with non-smooth fuel cost function. Here, scheduling period is divided into a 

number of subintervals each having a constant load demands. In case of variable head 

hydrothermal system, multi-reservoir cascaded hydro plants having prohibited operating zones 

and thermal units with valve point loading are used. The proposed method is validated by 

applying it to two test problems,  two fixed head hydrothermal test systems and three 

hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating 

zones and thermal units with valve point loading. The test results are compared with those 

obtained by other evolutionary methods like differential evolution (DE), particle swarm 

optimization (PSO) and evolutionary programming (EP) techniques. 
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5.2. Problem Formulation 

Fixed head hydrothermal scheduling problem with hΝ  hydro units and sΝ thermal units over M 

time subintervals is described as follows:  

5.2.1. Objective function 

The fuel cost function of each thermal generator, considering valve-point effect, is expressed as a 

sum of quadratic and sinusoidal function. The superimposed sine components represent rippling 

effect produced by steam admission valve opening.  

The problem minimizes following total fuel cost  

[∑∑
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5.2.2. Constraints 

(i) Power balance constraints: 
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(ii) Water availability constraints: 

( )[ ]∑
Μ

=

=−Ρ+Ρ+
1

2

210 0
m

hjhjmhjhjmhjhjm Waaat  hj Ν∈                                 (5.4) 

(iii) Generation limits:  

maxmin

hjhjmhj Ρ≤Ρ≤Ρ
      hj Ν∈ ,  Μ∈m                                        (5.5) 

and maxmin

sisimsi Ρ≤Ρ≤Ρ    si Ν∈ ,  Μ∈m                                              (5.6) 

 

5.3. Determination of Generation Level of Slack Generator 

Thermal generators and hydro generators deliver their power output subject to the power balance 

constraint (5.2), water availability constraint (5.4) and respective capacity constraints (5.5) and 

(5.6). Assuming the power loading of ΡΝ  and first ( sΝ - 1) generators are known, the power 
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level of the sΝ th generator (i.e. the slack generator) is given by  
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The transmission loss LmΡ  is a function of all the generators including the slack generator and it 

is given by 
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Expanding and rearranging, equation (5.7) becomes 
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The loading of the slack generator (i.e. sΝ th ) can then be found by solving equation (5.9) using 

standard algebraic method. 

 

5.4. Overview of Opposition based Differential Evolution method 

Opposition-based learning (OBL) was developed by Tizhoosh to improve candidate solution by 

considering current population as well as its opposite population at the same time. 

Evolutionary optimization methods start with some initial population and try to improve them 

toward some optimal solution. The process of searching terminates when some predefined 

criteria are satisfied. The process is started with random guesses in the absence of prior 

information about the solution. The process can be improved by starting with a closer i.e. fitter 

solution by simultaneously checking the opposite solution. By doing this, the fitter one (guess or 

opposite guess) may be chosen as an initial solution. According to the theory of probability, 50% 

of the time, a guess is further from the solution than its opposite guess. Therefore, process starts 

with the closer of the two guesses. The same approach can be applied not only to the initial 

solution but also continuously to each solution in the current population. 
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5.4.1. Definition of opposite number 

If x  be a real number between [ ]ublb, , its opposite number is defined as  

xlulbx −+=                                                (5.10) 

Similarly, this definition can be extended to higher dimensions [84] as stated in the next sub-

section. 

5.4.2. Definition of opposite point 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space where [ ]iii ublbx ,∈  and 

ni ,...,2,1∈ .The opposite point  ( )nxxxX ,.....,, 21=  is completely defined by its components as in  

iiii xublbx −+=                                             (5.11) 

By employing the definition of opposite point, the opposition-based optimization is defined in 

the following sub-section. 

5.4.3. Opposition-based optimization 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space i.e. a candidate solution. Assume

( )•=f  is a fitness function which is used to measure the candidate’s fitness. According to the 

definition of the opposite point, ( )nxxxX ,.....,, 21=  is the opposite of ( )nxxxX ,....,, 21= .  Now, 

if ( ) ( )XfXf <  (for a minimization problem), then point X  can be replaced with X ; otherwise, 

the process is continued with X . Hence, the point and its opposite point are evaluated 

simultaneously in order to continue with the fitter one. 

5.4.4. Opposition-based Differential evolution 

Here, the concept of the opposition-based learning [84] is incorporated in differential evolution. 

The original DE is chosen as a parent algorithm and the opposition-based ideas are embedded in 

DE.  
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Start 

         Specify the DE 

parameters 

Set Iter.=1 

Generate and evaluate initial populations and its opposite members 

Set target vector 

Generate mutant vector by mutation operation 

      Generate trial vector by crossover 

operation 

     Evaluate cost of trial 

vector 

  The best vector survives by selection operation 

Iter. < Max. Iter. Iter.=Iter.+1 

Yes 

Stop 

No 

             Fig. 5.1. Flowchart of ODE 

If cost function value of opposite member is less than the cost function value 

of initial population replace the initial population with its opposite member 

Generate and evaluate the opposite members of the best vector 

If cost function value of opposite member is less than the cost function value 

of the best vector replace the best vector with its opposite member 
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5.5. Simulation Results of ODE and DE algorithm 

Two test problems, two fixed head hydrothermal systems and three hydrothermal multi-reservoir 

cascaded hydroelectric test systems having prohibited operating zones and thermal units with 

valve point loading are investigated. The computational results have been used to compare the 

performance of the proposed ODE method with that of other evolutionary methods. The 

proposed ODE algorithm and DE algorithm used in this paper are implemented by using 

MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

5.5.1. Example1: Consider the maximization problem [92]. 

( ) ( ) ( )221121
,

20sin4sin5.21,max
21

xxxxxxf
xx

ππ ++=                                                  (5.12) 

where 1.120.3 1 ≤≤− x  and 8.51.4 2 ≤≤ x  

This function is multimodal. The problem is solved by using ODE. . 

Here, the population size ( ΡΝ ), scaling factor ( F ), crossover constant (
RC ) and maximum 

iteration number have been selected 10, 0.3, 1.0 and 50 respectively. The best optimum value, 

the variables corresponding to the best optimum value, average and worst value and average 

CPU time among 100 runs of solutions obtained from proposed ODE and DE for example 1 have 

been shown in Table 5.1. Figure 5.2 shows the nature of convergence obtained from ODE and 

DE for example 1 

Table 5.1: Best optimum value, the variables corresponding to the best optimum value, 

average value, worst value and average CPU time for example 1 

Method             ∗x  
 ( )∗

xf  Average value Worst value CPU time(sec) 

ODE [12.1000, 5.7227] 38.9377   38.9377  38.9377   0.0473 

DE [12.1000, 5.7228] 38.9375   38.9373  38.9371   0.0469 
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                       Fig. 5.2. Convergence characteristic of example 1 

            

5.5.2. Example 2: Consider the minimization problem [92]. 
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,
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21 ii

xx
ixiiixiixxf                                                              (5.13)                                          

 where 1010 1 ≤≤− x  and 1010 2 ≤≤− x  

This function has 760 local minima, 18 of which are global minima with -186.73. The problem is 

solved by using ODE. . Here, the population size ( ΡΝ ), scaling factor ( F ), crossover constant   

 (
RC ) and maximum iteration number have been selected 10, 0.3, 1 and 100  respectively for the 

example under consideration. 

To validate the proposed ODE based approach, the same example is solved by using DE. 

In case of DE, the population size ( ΡΝ ), scaling factor ( F ), crossover constant (
RC ) and 

maximum iteration number have been selected as 10, 0.3, 1.0 and 100 respectively.  Table 5.2 

summarizes the best optimum value, the variables corresponding to the best optimum value, 

average and worst value and average CPU time among 100 runs of solutions obtained from 
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proposed ODE and DE for example 2. Figure 5.3 depicts the nature of convergence obtained 

from ODE and DE for example 2.  

Figure 5.3 depicts the nature of convergence obtained from ODE and DE for example 2. 

 

 
                       Fig. 5.3. Convergence characteristic of example 2 

 

 

 

Table 5.2: Best optimum value, the variables corresponding to the best optimum value, 

average value, worst value and average CPU time for example 2 

Method             ∗x    ( )∗
xf      Average    

       value 

  Worst value CPU time      

    (sec) 

ODE  [5.4830, 4.8581] -186.7309   -186.7309   -186.7309   0.0625 

DE [-7.7084, -7.0834] -186.7308   -186.7307   -186.7303   0.0781 
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5.6. Case Study of Fixed Head Hydrothermal System 
 

5.6.1. Test System 1 

 

This system consists of two hydro plants and two thermal plants whose characteristics and load 

demands are given in Table A-9, Table A-10 and Table A-11 respectively in appendices. 

Transmission loss formula coefficients are also given in the appendix. Hydro plant data is taken 

from [64].  

The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover rate )( RC and the maximum iteration number ( maxΝ ) have been 

selected as 100, 1.0, 1.0 and 100 respectively for the test system under consideration. 

The optimal hydrothermal generation obtained by the proposed ODE and DE are provided in 

Table 5.3 and Table 5.4 respectively. The best, average and worst cost and average CPU time 

among 100 runs of solutions obtained from proposed ODE and DE method are summarized in 

Table 5.5. The cost obtained from artificial immune system (AIS) [76], particle swarm 

optimization (PSO) [76] and evolutionary programming (EP) [76] are also shown in Table 5.5. 

The cost convergence characteristic obtained from proposed ODE and DE is shown in Fig. 5.4.  

It is seen from Table 5.5 that the cost found by using ODE is the lowest among all other 

methods. 

 

Table 5.3: Results obtained from ODE of test system 1 of fixed head hydrothermal system 

Subin-           1hΡ
                     2hΡ

                     1sΡ
                          2sΡ

                 

terval           (MW)                (MW)                 (MW)                       (MW)        

  1             244.5860             90.7689               179.4953                  424.9773 

  2             307.3581            163.3383               228.7850                 570.1572 

  3             285.4852            139.2931               211.2739                 522.5895 

 

 

 

Table 5.4: Results obtained from DE for test system 1 of fixed head hydrothermal system 

Subin-           1hΡ
                  2hΡ

                   1sΡ
                         2sΡ

                 

terval           (MW)             (MW)               (MW)                     (MW)        

  1           240.3807           85.6583             206.3934                  407.6673 

  2           310.1176          167.5754             206.3934                  585.2895 

  3           286.6845          139.7912             206.3934                  525.7479 
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Table 5.5: Comparison of performance for Test System 1 of fixed head hydrothermal system 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPUtime (s) 

ODE  66030.85  66031.68  66032.46  40.31 

DE  66060.74  66061.44  66064.14  36.01 

AIS [74]  66117  -  -  53.43 

PSO [74]  66166  -  -  71.62 

EP [74]  66198  -  -  75.48 

 

 

 
                     Fig. 5.4. Cost convergence of test system 1 of fixed head hydrothermal system 

 

 

5.6.2. Test System 2 

 

This system comprises of two hydro plants and four thermal plants whose characteristics and 

load demands are given in Table A-12, Table A-13 and Table A-14 respectively in                         

ices. Transmission loss formula coefficients are also given in the appendices.  
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The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover rate )( RC and the maximum iteration number ( maxΝ ) have been 

selected as 100, 1.0, 1.0 and 200 respectively for the test system under consideration. The 

optimal hydrothermal generation obtained by the proposed ODE and DE are provided in              

Table 5.6 and Table 5.7 respectively. The best, average and worst cost and average CPU time 

among 100 runs of solutions obtained from proposed ODE and DE are summarized in Table 5.8. 

The cost obtained from artificial immune system (AIS) [76], particle swarm optimization (PSO) 

[76] and evolutionary programming (EP) [76] are also shown in Table 5.8. The cost convergence 

characteristic obtained from proposed ODE and DE is depicted in Fig. 5.5. It is seen from Table 

8 that the cost found by using ODE is the lowest among all other methods 

Table 5.6:  Results obtained from ODE of test system 2 of fixed head hydrothermal system 

Subin-          1hΡ
            2hΡ

              1sΡ
                 2sΡ

              3sΡ
             4sΡ

       

terval          (MW)        (MW)         (MW)             (MW)           (MW)         (MW) 

  1          172.6478     317.8272     93.6207         174.7438      109.2596       50.3779 

  2          243.8370     411.3216     124.8716        174.6929      123.6025       50.1150 

  3          209.7780     351.8750     116.1764        174.7282      120.3243       50.0519 

  4          249.8641     499.8741     124.8642        174.9127      222.4536       68.0992 
   

 

Table 5.7: Results obtained from DE of test system 2 of fixed head hydrothermal system 

Subin-         1hΡ
              2hΡ

                1sΡ
              2sΡ

              3sΡ
               4sΡ

       

terval        (MW)          (MW)            (MW)         (MW)          (MW)          (MW) 

  1         184.4627       303.6346        88.3611       174.7233     116.2664      50.9170 

  2         241.0344       419.5791        117.4402      174.8712     124.7407      50.9397 

  3         201.9931       357.2371        123.3403      173.9739     115.3547      51.0280 

  4         249.3076       499.1428        124.0676      174.7184     221.4260      71.3501 
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Table 5.8: Comparison of performance for Test System 2 of fixed head hydrothermal system 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

ODE 92817.01 92819.81 92822.68    46.09 

DE 93107.34 93110.45 93114.07    41.53 

AIS [74] 93950 - -    59.14 

PSO [74] 94126 - -    83.54 

EP [74] 94250 - -    67.82 

 

 
                     Fig. 5.5. Cost convergence of test system 2 of fixed head hydrothermal system 
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5.7. Overview of Improved Real Coded Genetic algorithm 

 
The overview of Improved Real Coded Genetic algorithm described in Chapter 3.4. 

 

5.8. Simulation Results of RCGA and IRCGA method 
 

The developed improved real coded genetic algorithm (IRCGA) and real coded genetic 

algorithm (RCGA) have been pertained for solving two different test systems. IRCGA and 

RCGA techniques have been realized by using MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 

GHz). 

5.8.1. Test System 1 

Test system 1 consists of two hydro plants and two thermal plants whose characteristics and load 

demands are given in Table A-9, Table A-10 and Table A-11 respectively in appendices. 

Transmission loss formula coefficients are also given in the appendix Table A-11. Hydro plant 

data is taken from [64]. The problem is solved by using IRCGA and RCGA. Here, maximum 

number of iterations, population size, crossover and mutation probabilities have been chosen as 

100, 50, 0.9 and 0.2, respectively for IRCGA and RCGA. Test results acquired from the best fuel 

cost among 100 runs of solutions by using developed IRCGA and RCGA are summed up in 

Table 5.9 and Table 5.10 respectively. The cost convergence characteristic acquired from 

developed IRCGA and RCGA has been portrayed in Fig. 5.6. It has been observed from      

Table 5.9 and Table 5.10 that the fuel cost acquired from IRCGA is the less than RCGA. 
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                                       Fig. 5.6. Cost convergence of test system 1 

Table 5.9: Results acquired from IRCGA of test system 1 

Subin-       1hΡ             2hΡ             1sΡ             2sΡ                  

terval      (MW)        (MW)        (MW)       (MW)        

Cost 

($) 

CPU  

time (sec) 

  1        244.4824     91.7609   177.1186    426.4080 

  2        306.6226   162.1315   226.9595    574.0518 

  3        286.3345   139.5808   212.0984    520.5925 

66031 55.03 

   

Table 5.10: Results acquired from RCGA of test system 1 

Subin-           1hΡ              2hΡ             1sΡ             2sΡ                  

terval          (MW)        (MW)        (MW)        (MW)        

Cost 

($) 

CPU  

time (sec) 

  1             237.6474     97.7308   183.3124    420.6857 

  2             310.2027   170.4667   226.3238    562.0064 

  3             289.1620   124.9021   212.3097    533.4285  

66054 51.97 
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5.8.2. Test System 2 

Test system 2 comprises of two hydro plants and four thermal plants whose characteristics and 

load demands are given in Table A-12, Table A-13 and Table A-14 respectively in appendices. 

Transmission loss formula coefficients are also given in the appendix Table A-14.  

The problem is solved by using developed IRCGA and RCGA. Here, maximum number of 

iterations, population size, crossover and mutation probabilities have been chosen as 200, 50, 0.9 

and 0.2, respectively for IRCGA and RCGA.  

Test results acquired from the best fuel cost among 100 runs of solutions by using developed 

IRCGA and RCGA are summed up in Table 5.11 and Table 5.12 respectively.  

The cost convergence characteristic acquired from developed IRCGA and RCGA has been 

portrayed in Fig. 5.7. It has been observed from Table 5.11 and Table 5.12 that the fuel cost 

acquired from IRCGA is the less than RCGA. 

 

Table 5.11: Results acquired from IRCGA of test system 2 

Subin-   1hΡ            2hΡ             1sΡ              2sΡ           3sΡ             4sΡ        

terval   (MW)       (MW)        (MW)          (MW)      (MW)       (MW) 

Cost 

 ($) 

CPU 

time (sec) 

  1      177.1505   314.8073    89.4437    174.9074   111.9127   50.2581 

  2      248.7030   408.1596    123.8875  174.9438   122.6685   50.0685 

  3      200.2083   358.1134    116.9637  174.7650   122.8367   50.0770 

  4      249.9786   499.9132    124.9163  174.9314   220.4093   69.8954 

 

92773 

 

 77.78  

   

 

Table 5.12: Results acquired from RCGA of test system 2 

Subin-      1hΡ           2hΡ            1sΡ            2sΡ            3sΡ           4sΡ        

Terval    (MW)      (MW)       (MW)        (MW)        (MW)      (MW) 

Cost 

 ($) 

CPU 

time (sec) 

  1       157.6372  307.7543   106.4287   175.0000   118.9544   52.4040 

  2       247.5443  410.5934   125.0000   175.0000   117.1135   53.1834 

  3       219.6215  362.0285    97.3968    171.6784   122.3066   50.2556 

  4       250.0000  500.0000   125.0000   174.8682   217.2241  72.9124 

  

 93125 

 

    70.89 
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                                           Fig. 5.7. Cost convergence of test system 2 

 

 

5.9. Conclusion           

            
Here, opposition-based differential evolution is demonstrated and presented to solve the 

hydrothermal scheduling problem. The proposed opposition-based differential evolution method 

has been successfully applied to two test problems, two fixed head hydrothermal test systems. 

The results have been compared with those obtained by other evolutionary algorithms reported in 

the literature. It is seen from the comparisons that the proposed opposition-based differential 

evolution method performs better than other evolutionary algorithms in the literature. 
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CHAPTER-6 

Short-term Scheduling of Variable Head 

Hydrothermal Power System 

 

 

6.1. Introduction 

The hydro thermal generation scheduling problem is a nonlinear constrained dynamic 

optimization problem which plays an important role to electric utility systems. With the 

insignificant marginal cost of hydroelectric power, operational cost of a hydrothermal system 

essentially reduces to that of minimizing the fuel cost for thermal plants under the various 

constraints on the hydraulic, thermal and power system network.  

The main constraints include: the time coupling effect of the hydro sub problem, where the water 

flow in an earlier time interval affects the discharge capability at a later period of time, the 

cascaded nature of the hydraulic network, the varying hourly reservoir inflows, the physical 

limitations on the reservoir storage and turbine flow rate, the varying system load demand and 

the loading limits of both thermal and hydro plants. 

In this study, opposition-based differential evolution (ODE) for optimal scheduling of generation 

in a hydrothermal system has been applied to a variable head hydrothermal power system. Here, 

opposition-based differential evolution is applied to determine the optimal hourly schedule of 

power generation in a hydrothermal system. Differential evolution (DE) is a population-based 

stochastic parallel search evolutionary algorithm. Opposition-based differential evolution has 

been used here to improve the effectiveness and quality of the solution.  

The proposed opposition-based differential evolution (ODE) employs opposition-based learning 

(OBL) for population initialization and also for generation jumping. The effectiveness of the 

proposed method has been verified on three hydrothermal multi-reservoir cascaded hydroelectric 

test systems having prohibited operating zones and thermal units with valve point loading.  
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6.2. Problem Formulation 

The variable head hydrothermal scheduling problem is aimed to minimize the fuel cost of 

thermal plants, while making use of the availability of hydro power as much as possible. The 

objective function and associated constraints of the hydrothermal scheduling problem are 

formulated as follows.  

6.2.1. Objective function 

Minimize [ 2

1 1

sitsisitsi

t i

siVH cbaf
s

Ρ+Ρ+=∑∑
Τ

=

Ν

=

+ ( ){ }]sitsisisi ed Ρ−Ρ×× minsin                                       (6.1)                                                      

6.2.2. Constraints 

(i) Power balance constraints: 

The total active power generation must balance the predicted power demand and transmission 

loss, at each time interval over the scheduling horizon 

0
11

=Ρ−Ρ−Ρ+Ρ ∑∑
Ν

=

Ν

=
LtDt

j

hjt

i

sit

hs

     Τ∈t                                                                                     (6.2)                                                                

                                                                                                                        

The hydroelectric generation is a function of water discharge rate and reservoir water head, 

which in turn, is a function of storage.  

hjthjthjtjhjtjhjtjhjt VCQVCQCVC 43

2

2

2

1 +++=Ρ + jhjtj CQC 65 +
hj Ν∈              Τ∈t                    (6.3)                  

                                         

The transmission loss LtΡ  is given by 
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Ν+Ν

=

Ν+Ν

=

Ν+Ν

=
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itijtijitLt                                                                               (6.4)                                       

                                           

(ii) Generation limits:  

maxmin

hjhjthj Ρ≤Ρ≤Ρ              , hj Ν∈
 
, Τ∈t                                                                         (6.5)                                                                     

and 

   maxmin

sisitsi Ρ≤Ρ≤Ρ ,      si Ν∈ , Τ∈t                                                                                         (6.6)                                                                  
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 (iii) Hydraulic network constraints              

The hydraulic operational constraints comprise the water balance equations for each hydro unit 

as well as the bounds on reservoir storage and release targets. These bounds are determined by 

the physical reservoir and plant limitations as well as the multipurpose requirements of the hydro 

system. These constraints include: 

(a) Physical limitations on reservoir storage volumes and discharge rates, 

maxmin

hjhjthj VVV ≤≤  ,      hj Ν∈ ,  Τ∈t                                                                                        (6.7)                                                                   

                                                                                                                    

maxmin

hjhjthj QQQ ≤≤  ,      hj Ν∈ ,  Τ∈t                                                                                       (6.8)                                                                 

                                                                                                                        

b) The continuity equation for the hydro reservoir network 

+−−Ι+=+ hjthjthjthjtthj SQVV )1(  ( ) ( )( )∑
=

−− +
uj

ljlj

R

l

thlthl SQ
1

ττ  ,     hj Ν∈ ,  Τ∈t                           (6.9)                      

                                         

(iv) Prohibited operating regions of water discharge- rates  
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6.3. Overview of Opposition-based Differential Evolution method 

 
The overview of Opposition based Differential Evolution (ODE) method has been described in 

Chapter 5 of subsection 5.4 

6.4. Simulation Results of ODE and DE algorithm 
  

Three variable head hydrothermal test systems are considered to inspect and verify the proposed 

Opposition-based Differential Evolution (ODE) method. 

6.4.1. Test System 1 

This test system considers a multi-chain cascade of four reservoir hydro plants and an equivalent 

thermal plant. The entire scheduling period is 1 day and divided into 24 intervals. Here, two 

cases are considered. 
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Case 1: Here fuel cost is considered as a quadratic function of the power from the composite 

thermal plant. The detailed parameters for this case come from [69]. 

The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover constant ( RC ) and maximum iteration number have been selected 

100, 1, 1 and 300 respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed ODE 

method are provided in Table A-15 and Table A-16 in appendices respectively. Fig. 6.1 depicts 

the reservoir storage volumes of four hydro plants obtained from ODE. The best, average and 

worst cost and average CPU time among 100 runs of solutions obtained from proposed ODE and 

DE are summarized in Table 6.1. The cost obtained from modified differential evolution (MDE) 

[72], improved particle swarm optimization (IPSO) [75], teaching learning based optimization 

(TLBO) [78], improved fast evolutionary programming (IFEP) [71] and genetic algorithm (GA) 

[69] methods are also shown in Table 6.1. The cost convergence characteristic obtained from 

proposed ODE and DE is shown in Fig.6.2. It is seen from Table 6.1 that the cost found by using 

ODE is the lowest among all other methods. 

 
                       Fig. 6.1. Hydro reservoir storage volumes for case 1 of test system 1  

                     of variable head hydrothermal system 
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Table 6.1: Comparison of performance for case 1 of Test System 1 of variable head 

hydrothermal system 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s) 

ODE 917199.44 917208.56  917221.37 257.03 

DE 918480.03 918494.37 918504.47 256.75 

TLBO [78] 922373.39 922462.24 922873.81 - 

IPSO [75] 922553.49 - - - 

MDE [72] 922556.44 - - - 

IFEP [71] 930129.82 930290.13 930881.92 1033.20 

GA [69] 926707.00 - - - 

 

 

 
                    Fig. 6.2. Cost convergence characteristics for case 1 of test system 1 

                    of variable head hydrothermal system 

 

Case 2: Here prohibited operating zones of hydro plants and valve point loading of thermal 

generator are considered.  The detailed parameters for this case come from [71]. 
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scaling factor )(F , crossover constant ( RC ) and maximum iteration number have been selected 

100, 1, 1 and 400 respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed ODE 

method are provided in Table A-17, Table A-18 respectively in appendices. Fig. 6.3 shows the 

reservoir storage volumes of four hydro plants obtained from ODE. The best, average and worst 

cost and average CPU time among 100 runs of solutions obtained from proposed ODE and DE 

are summarized in Table 6.4. The cost obtained from improved fast evolutionary programming 

(IFEP) [71], improved particle swarm optimization (IPSO) [75] and teaching learning based 

optimization (TLBO) [78] method is also shown in Table 6.4. The cost convergence 

characteristic obtained from proposed ODE and DE is shown in Fig. 6.4. It is seen from        

Table 6.4 that the cost found by using ODE is the lowest among all other methods. 

 

               Fig. 6.3. Hydro reservoir storage volumes for case 2 of test system 1 

               of variable head hydrothermal system 
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                  Fig. 6.4. Cost convergence characteristics for case 2 of test system 1 

                  of variable head hydrothermal system 

Table 6.2: Optimal Hydro Discharge (
3410 m× )  for case 2 of test system 1  of variable  head 

hydrothermal system 

Hour   1hQ        2hQ        3hQ        4hQ  

  1   10.1845    6.1121   20.5536     6.3438 

  2     9.3545    6.0000   29.9857     6.0059 

  3     5.0934    6.0672   18.8188     6.0081 

  4   12.3025    6.9922   19.7814     6.0011 

  5     9.4396    6.9832   15.2970     6.3376 

  6     7.8835    6.3622   18.4255   11.1545 

  7   10.2721    8.2105   18.0212     8.7499 

  8    6.7694     6.0283   17.9212     9.3215 

  9    6.6014     6.9949   16.6465   15.9994 

10    9.8394     6.6298   14.1732   14.6373 

11    5.8365     8.0881   17.9684   19.8695 

12    6.2467     6.7252   18.3894   15.9965 

13   10.4311    6.0065   16.4035   15.9976 

14     6.7118    6.0342   19.8262   13.0358 

15     5.2117    8.9019   14.7661   19.6512 

16     5.8669    8.0785   18.5218   18.0045 

17   10.3436  13.0473   15.8221   18.0241 

18     9.0289    8.2601   15.6486   18.1861 

19     6.8068  10.6257   18.4059   18.1376 

20     5.0351  13.1212   10.7805   18.6221 

21     7.2673    9.9088   11.9574   18.0174 

22     7.0480  12.8178   11.9622   20.0000 

23     7.9655  10.0050   10.1140   19.8378 

24   13.2600  13.2228   11.6386   19.6248 
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Table 6.3: Optimal Hydrothermal generation (MW) for case 2 of test system 1 of variable 

head hydrothermal system 

Hour   1hΡ            2hΡ          3hΡ           4hΡ            sΡ              

  1      86.8344    49.7921   42.4872    136.4915    1054.39 

  2      82.7927    50.0996       0           128.7959    1128.31 

  3      53.2023    51.7131   38.2060    125.5285    1091.35 

  4      95.3572    59.6889   32.3296    121.2998      981.32 

  5      82.2469      60.718   45.8186    119.8371      981.38 

  6      72.3219    57.0068   36.5382    189.8853    1054.25 

  7      84.3272    69.3217   39.5418    180.8054    1276.01 

  8       63.8671   53.8113   40.4187    196.2406    1645.66 

  9       63.4079   61.0171   43.8752     273.675     1798.02 

10       83.8010   59.0764   48.8933    261.1712    1867.06 

11       58.8915   69.7213   40.9075    304.3079    1756.17 

12       63.6159   61.3895   37.7617    274.8044    1872.42 

13       90.3650   56.9064   44.1043    276.5894    1762.03 

14       68.1055   58.0340   32.0219    249.5939    1792.24 

15       56.4505   78.0365   46.5805    304.8704    1644.06 

16       62.7673   73.2219   38.5827    292.2578    1603.17 

17       93.8183   96.3354   45.1644    292.7708    1601.91 

18       86.3257   71.3305   44.6121    292.334      1645.39 

19       70.6874   82.4647   36.9713    293.5957    1756.28 

20       55.3803   89.5719   48.3725    293.5926    1793.08 

21       74.3523   73.9104   52.4342    289.3438    1749.96 

22       72.6529   84.7098   53.7410    299.7932    1609.10 

23       79.4951   71.3102   53.2242    294.2187    1351.75 

24     104.9608   81.7733   57.2461    291.4408    1054.58 

 

Table 6.4: Comparison of performance for case 2 of test system 1 of variable head 

hydrothermal system 

Techniques    ODE               DE  IFEP [71] TLBO [78]  IPSO [75] 

Best cost ($)   923230.63 924069.73 933949.25 924550.78  925978.84 

Average cost($)   923242.45 924083.56 938508.87 924702.43   - 

Worst cost ($)   923255.37 924096.28 942593.02 925149.06   - 

CPU time (s)         264.73       258.65     1450.90  -   - 

 

6.4.2. Test System 2 

This system considers a multi-chain cascade of four reservoir hydro plants and three thermal 

plants. The entire scheduling period is 1 day and divided into 24 intervals. The effect of valve 

point loading is considered. Transmission loss is also considered. The detailed parameters for 

this case are taken from [72].  

The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover constant ( RC ) and maximum iteration number have been selected 

100, 1, 1 and 300 respectively for this case. The optimal hourly discharges and hydrothermal 
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generation obtained by the proposed ODE method are provided in Table A-19 Table A-20 

respectively in appendices. Fig. 6.5. shows the reservoir storage volumes of four hydro plants 

obtained from ODE.  

The best, average and worst cost and average CPU time among 100 runs of solutions obtained 

from proposed ODE and DE are shown in Table 6.7. The cost obtained from modified 

differential evolution (MDE) [72], clonal selection algorithm (CSA) [77] and teaching learning 

based optimization (TLBO) [78] is also shown in Table 6.7. The cost convergence characteristic 

obtained from proposed ODE and DE is shown in Fig. 6.6. It is seen from Table 6.7 that the cost 

found by using ODE is the lowest among all other methods. 

 

 
                  Fig. 6.5. Hydro reservoir storage volumes of test system 2  

                  of variable head hydrothermal system 
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                   Fig. 6.6. Cost convergence characteristics of test system 2  

       of variable head hydrothermal system 

Table 6.5: Optimal Hydro Discharge (
3410 m× ) of test system 2 of variable head 

hydrothermal system 

Hour   1hQ         2hQ       3hQ         4hQ  

  1     5.0000    8.1694   29.9825  10.6846 

  2   11.8249    6.0349   20.3834    8.1109 

  3     8.2756    9.3968   29.9993    6.0699 

  4   10.6764    7.1839   17.4356    6.5270 

  5   10.7913    6.1217   14.9166    7.0655 

  6    7.5122    6.0114   19.9168   12.2241 

  7  11.8929    7.1014   16.4236   14.2319 

  8    8.0364    8.9342   19.9639     6.3860 

  9    5.0000    7.0265   17.2913   14.8253 

10    5.2012    6.0000   19.6801   13.3341 

11    9.0382    7.4124   16.8647   18.8811 

12    7.1895    6.0830   16.7021   17.6400 

13  10.7560    8.4874   17.0601   18.0055 

14    9.6444    9.6666   16.3546   18.8809 

15    7.5333  10.1478   14.5476   16.8217 

16  12.2331    9.0725   12.3182   19.4624 

17    5.0001    9.8397   14.7639   16.0024 

18    6.9996  10.8825   13.7793   20.0000 

19  12.3816  14.8071   14.5850   20.0000 

20    5.7002    9.2668   12.3534   14.4891 

21    5.0013    6.0008   21.3704   15.8796 

22    5.0078    9.1880   11.7756   12.9617 

23    5.0002    6.0045   15.2021   13.6869 

24    9.3038  13.1606   12.9722   19.9519 
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Table 6.6: Optimal Hydrothermal generation (MW) of test system 2 of variable head 

hydrothermal system 

Hour  1hΡ         2hΡ         3hΡ        4hΡ           1sΡ           2sΡ         3sΡ  

  1   52.5001   62.9911       0         188.4124    20.0000    40.0470  409.0353 

  2   94.9645   49.1472   36.0943  151.4483    20.0001  294.7080  139.9935 

  3   77.4693   70.7940       0         120.2516  174.9999    40.0626  229.7881 

  4   89.6264   57.8274   34.8294  121.7495  174.9999    40.0144  140.0427 

  5   88.6817   51.7208   43.1194  121.7213    20.0713  209.8746  139.7717 

  6   69.9013   51.9834   27.7926  202.2525    20.0027  294.7478  139.7384 

  7   90.0410   59.9969   42.2954  229.2022  102.8131  294.9635  140.0704 

  8   71.5381   70.3084   31.2740  155.4249  175.0000  294.7975  229.5029 

  9   49.9772   57.7790   39.9087  261.0326  174.9942  294.7360  229.4873 

10   53.0657   51.3073   31.4504  247.0815  102.6427  294.7893  319.3190 

11   81.4462   62.5231   40.4364  298.9633    20.0014  294.7375  319.3074 

12   70.7288   54.3802   40.1454  287.9098  102.6722  294.7042  319.2878 

13   91.5678   70.9632   38.1093  292.8062    20.0158  294.6822  319.3190 

14   86.4941   77.0705   40.8922  298.1207  102.6981  294.7381  139.8472 

15   74.3655   79.0482   45.0727  283.9845  102.6488  294.7742  139.7885 

16   98.9002   72.9424   48.6283  302.6975    20.0008  298.7904  229.5013 

17   54.2296   76.2645   49.2103  274.8114  174.9981  294.7637  139.6912 

18   71.4333   79.2985   51.6777  304.2234  102.6951  294.7382  229.7389 

19 100.2199   87.8464   53.8828  300.4273  102.7774  294.7563  140.0848 

20   60.3478   63.3576   55.0328  254.1731    20.0000  294.7757  319.3300 

21   54.2311   42.9424   34.5069  264.0216  175.0000    40.0042  319.0230 

22   54.5201   64.1698   56.8181  236.6617    20.0000  294.7116  139.6709 

23   54.7321   44.8122   58.1308  244.4422    20.0024  294.6434  139.7895 

24   87.5753   80.9892   59.3598  292.6200    20.0004  125.0043  139.8794 

 

Table 6.7: Comparison of performance of test system 2 of variable head hydrothermal 

system 

Techniques   ODE    DE MDE [72] TLBO [79] CSA [77] 

Best cost ($) 42322.23 43068.01 43435.41 42385.88 42440.574 

Averagecost ($) 42330.53 43079.52 - 42407.23 - 

Worst cost ($) 42339.36 43083.05 - 42441.36 - 

CPU time (s) 304.05 298.72 - - - 

 

6.4.3. Test System 3 
 

This system considers a multi-chain cascade of four reservoir hydro plants and ten thermal 

plants. The entire scheduling period is 1 day and divided into 24 intervals. The effect of valve 

point loading is taken into account. Here transmission loss is not considered. The detailed  

data for this system is taken from [74].  

The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover constant ( RC ) and maximum iteration number have been selected 

100, 1, 1 and 900 respectively for this case.  The optimal hourly discharges and hydrothermal 
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generation obtained by the proposed ODE method are provided in Table A-21, Table A-22 

respectively in appendices.  

Fig. 6.7 shows the reservoir storage volumes of four hydro plants obtained from ODE. The best, 

average and worst cost and average CPU time among 100 runs of solutions obtained from 

proposed ODE and DE are summarized in Table 6.10. The cost obtained from differential 

evolution (DE) [74] method is also shown in Table 6.10. The cost convergence characteristic 

obtained from proposed ODE and DE is shown in Fig. 6.8. It is seen from Table 6.10 that the 

cost found by using ODE is the lowest among all other methods. 

 

 

 

              Fig. 6.7. Hydro reservoir storage volumes for test system 3 of variable head hydrothermal system 
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           Fig. 6.8. Cost convergence characteristics for test system 3 of   variable head hydrothermal system 

  

0 100 200 300 400 500 600 700 800 900
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

5

C
o
s
t(

$
)

Iteration

ODE

DE



133 

Table 6.8: Optimal Hydro Discharge (
3410 m× ) of test system 3  of variable head 

hydrothermal system 

Hour  1hQ           2hQ          3hQ            4hQ  

  1   10.5900     7.2207   19.4370     6.0254 

  2   12.0523     7.7304   20.2455     8.5457 

  3     5.0001     6.0184   17.4557     6.0000 

  4     6.4478     6.3207   22.6585   14.8061 

  5     5.0000   11.1350   29.9287     7.6698 

  6     7.6269     9.9408   17.6070   10.8973 

  7     9.2146     9.5815   13.9492   12.4732 

  8     7.1216     6.0000   21.4589     6.0044 

  9   14.7220     9.4742   16.3758   16.8335 

10     8.7003     6.0001   18.0804   15.0361 

11     7.6528     9.7120   10.0203   12.3636 

12     5.4338     7.2947   17.1649   16.8305 

13   11.5460     6.0053   30.0000   12.6269 

14   10.5001   10.4945   15.3613   18.1704 

15     6.9555   10.5776   10.0003   17.1377 

16     5.0000   10.6310   21.2541   19.9868 

17   10.5398     9.0909   11.1185   19.9873 

18     5.1753     6.0028   19.1245   15.2733 

19     5.0000     6.0000   18.4536   19.9871 

20     5.8448     6.0003   10.0100   19.2115 

21     6.0854     9.8456   11.2876   17.9333 

22     8.5236   11.1071   10.4763   14.4865 

23   14.9775     7.8296   13.2974   19.9983 

24     5.2899   11.9870   13.3435   18.2195  
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Table 6.10: Comparison of performance for test system 3 of variable head hydrothermal 

system 

Techniques   ODE    DE    DE [74] 

Best cost ($) 170452.35 170915.57  170964.15 

Average cost ($) 170459.78 170924.41    - 

Worst cost ($) 170468.52 170935.28    - 

CPU time (s) 472.51 459.92    - 

 

It is observed from in Table A-16, Table A-18, Table A-20 and Table A-22 respectively in 

appendices that the third hydro unit has no output during some time interval. This is because of 

the fact that output from a particular hydro unit during a specified time interval depends on the 

availability of water, reservoir storage volume limit, water transport delay between cascaded 

reservoirs and on the system configuration as a whole. Depending on the system configuration 

and constraints for the present problem, this has happened in case of the third hydro unit. 

 

6.5. Conclusion 

In this paper, opposition-based differential evolution is demonstrated and presented to solve the 

hydrothermal scheduling problem. The proposed opposition-based differential evolution method 

has been successfully applied to two test problems, two fixed head hydrothermal test systems 

and three hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited 

operating zones and thermal units with valve point loading. The results have been compared with 

those obtained by other evolutionary algorithms reported in the literature. It has been seen from 

the comparisons that the proposed opposition-based differential evolution method gives better 

result. 
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CHAPTER-7 

Reactive Power Dispatch 

 

 

7.1. Introduction 

Reactive power dispatch (RPD) perks up power system economy and security. Reactive power 

generation has no production cost but in general it has an effect on the production cost related 

with active power transmission loss. RPD minimizes active power transmission loss and perks up 

voltage profile and voltage stability by adjusting control variables such as generator voltages, 

transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time 

satisfying several equality and inequality constraints. The Reactive Power Dispatch (RPD) 

problem has a significant influence on secure and economic operation of power systems. It is one 

of the most  complex  problems,  as  it  requires  the  minimization  of  the  real  power losses in a 

power system. 

A variety of classical optimization techniques such as Newton method, linear programming, 

quadratic programming and interior point method have been pertained to solve RPD problem. 

RPD is a mixture of discrete and continuous variables with multiple local optima. So it is exigent 

to acquire global optima by using classical optimization techniques. 

 

Here, improved real coded genetic algorithm (IRCGA) is applied to solve different types of 

reactive power dispatch problems. Genetic algorithm (GA) is a bunch of evolutionary algorithms 

root of the basic human heritable chromosome operation. GA has the ability to ascertain the 

global or close to the global optimal solutions. In this study, IRCGA has been suggested to 

heighten convergence speed and solution quality. The developed IRCGA has been exploited for 

acquiring the control variables settings such as generator terminal voltages, transformer taps and 

reactive power output of shunt VAR compensators to acquire minimum active power 

transmission loss, improved voltage profile and voltage stability. IRCGA has been tested on 

IEEE 30-bus, 57-bus and 118-bus test systems and 15 benchmark functions. Test results have 

been compared with those acquired from other stated evolutionary techniques. 
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7.2. Problem Formulation 

The goal of RPD is to minimize active power transmission loss and to perk up voltage profile 

and stability at the same time fulfilling equality and inequality constraints. The objective 

functions and constraints can be stated as: 

7.2.1. Objective functions 

7.2.1.1. Minimization of active power transmission loss 

The objective function [95] can be stated as: 

Minimize lossF Ρ=1 = ( )[ ]jijiji

L

k

k VVVVg δδ −−+∑
ΝΤ

=

cos222

1

                                                      (7.1)         

   

where lossΡ  signifies active power transmission loss, LΝΤ  is the number of transmission lines, 

kg  is the conductance of branch k  connected  between i th bus and j th  bus, iV  and 
jV  are the 

magnitude voltage of i th  and j th  buses, iδ  and 
jδ  are the phase angle of voltages of the i th  

and j th  buses. 

7.2.1.2. Improvement of voltage profile  

The objective is to minimize the voltage deviation of all load ( QΡ ) buses from 1 p.u to perk up 

power system security and service quality. The objective function [97] can be stated as:  

Minimize ∑
ΝΡ

=

−=
Q

i

iVF
1

2 0.1                                                        (7.2)                          

where QΝΡ  is the number of load buses. 

7.2.1.3. Improvement of voltage stability  

Voltage stability is the capacity of a power system to keep up suitable voltages at all bus bars 

beneath normal operating condition and even after disturbances such as change in load demand 

or system configuration. In recent times a number of major network collapses [103] have been 

taken place due to voltage instability. Improvement of voltage stability has been acquired by 
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minimizing voltage stability indicator i.e. −L index value at each bus which signifies voltage 

collapse condition of that bus. 
jL  of j th  bus [104] can be stated as: 

∑
ΝΡ

=

−=
V

i j

i

jij
V

V
FL

1

1      where Qj ΝΡ= ,.....,2,1                     (7.3)                                                                       

[ ] [ ]2

1

1 ΥΥ−=
−

jiF                                                                    (7.4)                          

where VΝΡ  is the number of VΡ  bus and QΝΡ  is the number of PQ bus. 
1Υ  and 

2Υ  are sub-

matrices. YBUS acquired after segregating the PQ and PV bus parameters can be stated as: 
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−L index is computed for all PQ buses.  
jL  is zero or one depending upon no load  condition or 

voltage collapse condition of  j th bus. The objective function [97] can be stated as:  

Minimize ( )
jLF max3 = ,     where Qj ΝΡ= ,.....,2,1                                                                  (7.6)                         

7.2.2. Constraints 

7.2.2.1. Equality constraints 

( )[ jiij

j

jiDiGi GVV δδ −−Ρ−Ρ ∑
ΝΒ

=

cos
1

+ ( )] 0sin =−Β jiij δδ ,  ΝΒ= ,..,2,1i                                   (7.7) 

( )[ jiij

j

jiDiGi GVVQQ δδ −−− ∑
ΝΒ

=

sin
1

- ( )] 0cos =−Β jiij δδ ,  ΝΒ= ,..,2,1i                                  (7.8) 

where ΝΒ  is the number of buses, GiΡ  and GiQ  are active and reactive power generation at the   

i th bus, DiΡ  and DiQ  are active and reactive power demands at the i th bus, 
ijG  and 

ijΒ  are the 

transfer conductance and susceptance between i th bus and j th bus respectively. 
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7.2.2.2. Inequality constraints 

7.2.2.2.1. Generator constraints 

The generator voltage magnitudes and reactive power outputs curbed by their minimum and 

maximum limits can be stated as: 

maxmin

GiGiGi VVV ≤≤ , Gi Ν= ,...,2,1                                  (7.9) 

maxmin

GiGiGi QQQ ≤≤ , Gi Ν= ,...,2,1                                                     (7.10) 

7.2.2.2.2. Shunt VAR compensator constraints 

Reactive power output of shunt VAR compensators curbed by their minimum and maximum 

limits can be stated as: 

maxmin

cicici QQQ ≤≤ , Ci Ν= ,....,2,1                                                       (7.11) 

7.2.2.2.3. Transformer constraints 

Transformer tap settings curbed by their physical deliberation can be stated as: 

maxmin

iii Τ≤Τ≤Τ ,   ΝΤ= ,...,2,1i                                                      (7.12) 

7.2.2.2.4. Security constraints 

The voltage magnitude of each QΡ  bus curbed by its minimum and maximum limits and 

transmission line flow curbed by its maximum limit can be stated as: 

maxmin

LiLiLi VVV ≤≤ , Qi ΝΡ= ,..,2,1                               (7.13) 

max

lili SS ≤ , Li ΝΤ= ,...,2,1                                                            (7.14) 

7.3. Overview of Improved Real Coded Genetic Algorithm 

 
The overview of Improved Real Coded Genetic Algorithm (IRCGA) has been explained in 

Chapter 3 of subsection 3.4. 
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7.4. Simulation and Results of IRCGA and RCGA algorithm 
 

The developed IRCGA and RCGA have been pertained to solve different types of RPD problems 

and three different test systems with three different objective functions and 15 benchmark 

functions have been tested to confirm its efficacy. Test results compared with those acquired 

from other stated evolutionary techniques. The developed IRCGA and RCGA programs have 

been executed in MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz).  

7.4.1. IEEE 30-bus system 

The line data, bus data, generator data and the minimum and maximum limits for the control 

variables have been adapted from [95]. The system has six generators at buses 1, 2, 5, 8, 11 and 

13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27 and shunt 

VAR compensators are connected at bus bars 10, 12, 15, 17, 20, 21, 23, 24 and 29.  Total real 

power demand is 2.834 p.u. at 100 MVA base. 50 runs are carried out for each case.  

7.4.1.1. Minimization of active power transmission loss 

The developed IRCGA and RCGA have been pertained to minimize active power transmission 

loss. Here, maximum number of iterations, population size, crossover and mutation probabilities 

have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA.  

The optimal control variables acquired from the developed IRCGA have been summed up in 

Table 7.1. The best, average and worst minimum active power transmission loss and average 

CPU time among 50 runs acquired from developed IRCGA and RCGA are summarized in     

Table 7.2. The minimum active power transmission loss acquired from PSO [101] and CLPSO 

[101], modified teaching learning algorithm and double differential evolution (MTLA-DDE) 

[102], novel teaching–learning-based optimization (NTLBO) [99] and quasi-oppositional 

differential evolution (QODE) [97] are also shown in Table 7.2. The convergence characteristic 

acquired from developed IRCGA and RCGA has been portrayed in Fig. 7.1. It has been observed 

from Table 7.2, that the minimum active power transmission loss acquired from IRCGA is the 

lowest among all other stated techniques. 
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Fig. 7.1. Active power transmission loss minimization Convergence characteristics of IEEE 30 bus system 
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Table 7.1: Optimal control variables acquired from IRCGA of IEEE 30 bus system for 

three different cases 

Variable 

 

Active power loss 

minimization 

Voltage stability 

improvement 

Voltage  profile 

improvement 

1V  1.0500 1.0500 1.0500 

2V
 

1.0337 1.0335 1.0341 

5V
 

1.0055 1.0054 1.0062 

8V
 

1.0229 1.0231 1.0237 

11V
 

1.0911 1.0912 1.0910 

13V
 

1.0398 1.0403 1.0393 

96−Τ
 

0.9865 0.9911 1.0114 

106−Τ
 

1.0150 1.0058 1.0203 

124−Τ
 

0.9823 1.0248 1.0001 

2728−Τ
 

0.9805 0.9910 0.9961 

10cQ
 

0.0171 0.0273 0.0049 

12cQ
 

0.0436 0.0500 0.0000 

15cQ
 

0.0056 0.0103 0.0000 

17cQ
 

0.0442 0.0000 0.0158 

20cQ
 

0.0353 0.0346 0.0475 

21cQ
 

0.0280 0.0483 0.0395 

23cQ
 

0.0111 0.0407 0.0381 

24cQ
 

0.0407 0.0428 0.0065 

29cQ
 

0.0221 0.0500 0.0071 

power loss (MW)
 

2.6699 9.0759 9.3400 

voltage deviation
 

0.6902 0.9019 0.0612 

maxL
 

0.0489 0.0225 0.0535 
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Table 7.2: Comparison of active power transmission loss minimization of IEEE 30 bus 

system 

Techniques Best loss (MW) Average loss (MW) Worst loss (MW) CPU time (S) 

IRCGA 2.6699 2.6708 2.6804 60.57 

RCGA 3.2437 3.2459 3.2505 57.67 

PSO [101] 

CLPSO [101] 

4.6282 

4.5615 

- 

- 

- 

- 

130 

138 

MTLA-DE[102]        4.8596 - - - 

NTLBO [99] 4.7802 - - - 

QODE [97] 2.6867 2.6879 2.6895 82.074 

 

7.4.1.2. Improvement of voltage stability 

The developed IRCGA and RCGA have been pertained to perk up voltage stability. Here, 

maximum number of iterations, population size, crossover and mutation probabilities have been 

chosen as 50, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal control 

variables acquired from the developed IRCGA are summed up in Table 7.1. The best, average 

and worst maxL  value and average CPU time among 50 runs acquired from developed IRCGA 

and RCGA are shown in Table 7.3. The convergence characteristic acquired from developed 

IRCGA and RCGA has been portrayed in Fig. 7.2. It has been observed from Table 7.3 that maxL  

value acquired from the developed IRCGA is lower than RCGA. 
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                         Fig. 7.2. maxL Convergence characteristics of IEEE 30 bus system 
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and worst voltage deviation and average CPU time among 50 runs acquired from developed 

IRCGA and RCGA are summarized in Table 7.4. The convergence characteristic acquired from 

developed IRCGA and RCGA has portrayed in Fig. 7.3. It has been observed from Table 7.4 that 

voltage deviation acquired from the developed IRCGA is the lower than RCGA. 

Table 7.4: Comparison of performance for voltage deviation of IEEE 30 bus system 

Techniques Best voltage 

deviation (p.u.) 

Average voltage 

deviation (p.u.) 

Worst voltage 

deviation (p.u.) 

CPU time 

(S) 

IRCGA 0.0612 0.0615 0.0620 63.10 

RCGA 0.0627 0.0629 0.0633 58.06 

 

                Fig. 7.3. Voltage deviation convergence characteristics of IEEE 30 bus system 
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7.4.2. IEEE 57-bus system 

The IEEE 57-bus system comprises 80 transmission lines, seven generators at buses 1, 2, 3, 6, 8, 

9, 12 and 15 branches with tap setting transformers. The reactive power sources are connected at 

buses 18, 25 and 53.  The system line data, bus data, generator data and the minimum and 

maximum limits for the control variables have been adapted from [130]. Total active power 

demand is 12.508 p.u. and reactive power demand is 3.364 p.u. at 100 MVA base. Different 

types of RPD problem for this system have been solved by using developed OGSO and GSO. 50 

test runs are carried out for each case. 

7.4.2.1. Minimization of active power transmission loss 

The developed IRCGA and RCGA have been pertained to minimize active power transmission 

loss. Here, maximum number of iterations, population size, crossover and mutation probabilities 

have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal 

control variables obtained from the developed IRCGA are shown in Table 7.5. The best, average 

and worst minimum active power transmission loss and average CPU time among 50 runs of 

solutions obtained from developed IRCGA and RCGA are summarized in Table 7.6. The 

minimum active power transmission loss acquired from CLPSO [101] has been also shown in 

Table 7.6. The convergence characteristic acquired from developed IRCGA and RCGA for 

active power loss minimization is portrayed in Fig. 7.4. It has been observed from Table 7.6 that 

the active power transmission loss acquired from IRCGA is the lowest among all other stated 

techniques 
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                Fig. 7.4. Active power loss convergence characteristics of IEEE 57 bus system 
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Table 7.5: Optimal value of control variables acquired from IRCGA of IEEE 57 bus system 

for different cases 

 

 

 

 

 

 

Control               Active power loss      Improvement of            Improvement of     

variable                  minimization          voltage stability              voltage profile          

1V                                1.0400                    1.0400                             1.0400                     

2V                               1.0102                    1.0104                              1.0098                    

3V                                0.9848                    0.9846                             0.9853                   

6V                                0.9810                   0.9799                              0.9802                   

8V                                1.0055                    1.0051                             1.0044                   

9V                                0.9802                    0.9809                             0.9806                     

12V                              1.0152                    1.0147                              1.0149                  

184−Τ                            1.0985                    0.9803                             0.9833                      

184−Τ                            1.0821                    0.9528                             0.9508                 

2021−Τ                           0.9220                    0.9505                             0.9510                   

2624−Τ                          1.0173                    1.0044                              1.0045                 

297−Τ                            0.9965                    0.9779                             0.9770                  

3234−Τ                          1.0998                     0.9137                            0.9138               

4111−Τ                           1.0753                    0.9466                             0.9463                

4515−Τ                           0.9542                    0.9268                             0.9259               

4614−Τ                           0.9375                    0.9961                             0.9958                

5110−Τ                           1.0162                    1.0384                             1.0377               

4913−Τ                           1.0997                    0.9053                             0.9055                       

4311−Τ                           1.0982                    0.9241                             0.9227                       

5640−Τ                          0.9796                    0.9874                             0.9866                       

5739−Τ                          1.0243                    1.0097                             1.0094                         

559−Τ                           1.0374                     0.9374                             0.9366                      

18cQ                             0.0876                    0.0062                             0.0121                      

25cQ                            0.0008                    0.0440                             0.0035                      

53cQ                            0.0073                    0.0375                             0.0427                      

power loss (MW)       15.6938                   32.7760                           31.7881                      

voltage deviation         3.7956                    1.0811                             0.6740                      

maxL                            0.2242                     0.1001                             0.1371                      
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Table 7.6: Comparison of performance for active power transmission loss minimization of 

IEEE 57 bus system 

Techniques Best loss (MW) 

 

Average loss (MW) 

 

Worst loss (MW) 

 

CPU time (S) 

IRCGA 15.6938 15.7054 15.7235 81.94 

RCGA 16.7277   16.8380 16.9055 75.47 

CLPSO[101]         24.5152 - - 423 

 

7.4.2.2 Improvement of voltage stability 

The developed IRCGA and RCGA have been pertained to perk up voltage stability i.e. 

minimization of maxL . Here, maximum number of iterations, population size, crossover and 

mutation probabilities have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and 

RCGA. The optimal values of control variables acquired from the developed IRCGA are 

summarized in Table 7.5. The best, average and worst maxL  and average CPU time among 50 

runs of solutions acquired from the developed IRCGA and RCGA are summarized in Table 7.7. 

The convergence characteristic acquired from the developed IRCGA and RCGA for 

minimization of  maxL  portrayed in Fig. 7.5. It has been observed from Table 7.7 that the value of 

maxL   acquired from the developed IRCGA is lower than RCGA. 

Table 7.7:  Comparison of performance of maxL  minimization of IEEE 57 bus system 

Techniques   Best maxL     Average maxL  Worst maxL  CPU time (S) 

IRCGA 0.1001 0.1004 0.1008 84.01 

RCGA 0.1032 0.1035 0.1040 76.95 
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                   Fig. 7.5. maxL  Convergence characteristics of IEEE 57 bus system 
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          Fig. 7.6. Voltage deviation convergence characteristics of IEEE 57 bus system 

 

Table 7.8: Comparison of performance of voltage deviation of IEEE 57 bus system 

Techniques Best voltage 

deviation (p.u.) 

Average voltage 

deviation (p.u.) 

Worst voltage 

deviation (p.u.) 

CPU time 

(sec) 

IRCGA 0.6740 0.6746 0.6750 83.05 

RCGA 0.6775 0.6778 0.6784 77.98 
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and reactive power demand is 14.3800 p.u. at 100 MVA base. 50 runs are carried out by using 

the developed OGSO and GSO for solving different types of RPD problems.  

7.4.3.1. Minimization of active power transmission loss 

The developed IRCGA and RCGA have been pertained to minimize active power transmission 

loss. Here, maximum number of iterations, population size, crossover and mutation probabilities 

have been chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal 

values of control variables acquired from the developed IRCGA are summarized in Table 7.9. 

The best, average and worst minimum active power transmission loss and average CPU time 

among 50 runs of solutions acquired from the developed IRCGA and RCGA are summarized in       

Table 7.10. The active power transmission loss acquired from comprehensive learning particle 

swarm optimization (CLPSO) [101] and particle swarm optimization (PSO) [101], MTLA-DDE 

[102] and QODE [97] have been shown in Table 7.10. The convergence characteristic acquired 

from the developed IRCGA and RCGA for minimization of active power transmission loss is 

portrayed in Fig. 7.7. It has been observed from Table 7.10 that active power transmission loss 

acquired from IRCGA is the lowest among all other stated techniques. 
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               Fig. 7.7. Active power loss convergence characteristics of IEEE 118 bus system 
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Table 7.9: Optimal value of control variables acquired from IRCGA for IEEE 118 bus 

system of active power transmission loss minimization  

Variable IRCGA Variable IRCGA Variable IRCGA Variable IRCGA 

1V  0.9553 
49V  1.0253 

90V  0.9852 
6665−Τ  0.9347 

4V
 

0.9981
 54V

 
0.9551

 91V
 

0.9805
 6968−Τ

 
0.9353

 

6V
 

0.9910
 55V

 
0.9519

 92V
 

0.9827
 8281−Τ

 
0.9358

 

8V
 

1.0153
 56V

 
0.9547

 99V
 

1.0104
 5cQ

 
-0.0715

 

10V
 

1.0500
 59V

 
0.9852

 100V
 

0.9697
 34cQ

 
0.0438

 

12V
 

0.9908
 61V

 
0.9955

 103V
 

0.9549
 37cQ

 
-0.1016

 

15V
 

0.9705
 62V

 
0.9986

 104V
 

0.9406
 44cQ

 
0.0002

 

18V
 

0.9728
 65V

 
1.0052

 105V
 

0.9443
 45cQ

 
0.0622

 

19V
 

0.9647
 66V

 
1.0500

 107V
 

0.9522
 46cQ

 
0.0000

 

24V
 

0.9922
 69V

 
1.0350

 110V
 

0.9597
 48cQ

 
0.1271

 

25V
 

1.0500
 70V

 
0.9847

 111V
 

0.9803
 74cQ

 
0.0285

 

26V
 

1.0153
 72V

 
0.9802

 112V
 

0.9751
 79cQ

 
0.1358

 

27V
 

0.9681
 73V

 
0.9914

 113V
 

0.9932
 82cQ

 
0.0378

 

31V
 

0.9675
 74V

 
0.9637

 116V
 

1.0056
 83cQ

 
0.0979

 

32V
 

0.9683
 76V

 
0.9416

 58−Τ
 

0.9816
 105cQ

 
0.0628

 

34V
 

0.9798
 77V

 
1.0062

 2526−Τ
 

0.9603
 107cQ

 
0.1890

 

36V
 

0.9736
 80V

 
1.0403

 1730−Τ
 

0.9615
 110cQ

 
0.0007

 

40V
 

0.9703
 85V

 
0.9837

 3738−Τ
 

0.9362
 

power loss 

(MW)
 

80.01
 

42V
 

0.9851
 87V

 
1.0154

 5963−Τ
 

0.9596
 

voltage 

deviation
 

2.1978
 

46V
 

1.0053
 89V

 
1.0051

 6164−Τ
 

0.9849
 maxL

 
0.1125

 

Table 7.10: Comparison of performance of active power loss minimization of IEEE 118 bus 

system 

Techniques Best loss 

(MW) 

Average loss 

(MW) 

 Worst loss 

(MW) 

 CPU time (sec) 

IRCGA 80.01 80.98 82.27 102.49 

RCGA 81.44 82.27 83.82 99.73 

CLPSO [101] 130.96 - - 1472 

PSO [101] 131.99 - - 1215 
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7.4.3.2. Improvement of voltage stability 

The developed IRCGA and RCGA have been pertained to perk up voltage stability i.e. 

minimization of maxL . Here, maximum number of iterations, population size, crossover and 

mutation probabilities have been chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and 

RCGA. The optimal values of control variables among 50 runs of solutions acquired from the 

developed IRCGA are shown in Table 7.11. The convergence characteristic acquired from the 

developed IRCGA and RCGA for maxL  minimization is portrayed in Fig. 7.8.  

 

                       Fig. 7.8. maxL  Convergence characteristics of IEEE 118 bus system 
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Table 7.11: Optimal value of control variables acquired from IRCGA of IEEE 118 bus 

system for voltage stability enhancement  

Variable IRCGA Variable IRCGA Variable IRCGA Variable IRCGA 

1V  0.9546 
49V  1.0255 

90V  0.9851 
6665−Τ  0.9349 

4V
 

0.9978
 54V

 
0.9552

 91V
 

0.9804
 6968−Τ

 
0.9348

 

6V
 

0.9903
 55V

 
0.9527

 92V
 

0.9993
 8281−Τ

 
0.9351

 

8V
 

1.0151
 56V

 
0.9549

 99V
 

1.0111
 5cQ

 
-0.1503

 

10V
 

1.0500
 59V

 
0.9855

 100V
 

1.0173
 34cQ

 
0.0000

 

12V
 

0.9904
 61V

 
0.9947

 103V
 

1.0069
 37cQ

 
-0.1434

 

15V
 

0.9701
 62V

 
0.9981

 104V
 

0.9822
 44cQ

 
0.0 461

 

18V
 

0.9727
 65V

 
1.0056

 105V
 

0.9773
 45cQ

 
0.0899

 

19V
 

0.9653
 66V

 
1.0503

 107V
 

0.9524
 46cQ

 
0.0000

 

24V
 

0.9926
 69V

 
1.0350

 110V
 

0.9738
 48cQ

 
0.1425

 

25V
 

1.0481
 70V

 
0.9895

 111V
 

0.9806
 74cQ

 
0.0000

 

26V
 

1.0155
 72V

 
0.9810

 112V
 

0.9755
 79cQ

 
0.0177

 

27V
 

0.9687
 73V

 
0.9913

 113V
 

0.9931
 82cQ

 
0.0253

 

31V
 

0.9672
 74V

 
0.9670

 116V
 

1.0047
 83cQ

 
0.1047

 

32V
 

0.9697
 76V

 
0.9487

 58−Τ
 

0.9801
 105cQ

 
0.0000

 

34V
 

0.9873
 77V

 
1.0065

 2526−Τ
 

0.9601
 107cQ

 
0.0000

 

36V
 

0.9832
 80V

 
1.0403

 1730−Τ
 

0.9603
 110cQ

 
0.0000

 

40V
 

0.9708
 85V

 
0.9865

 3738−Τ
 

0.9352
 

power loss 

(MW)
 

99.52
 

42V
 

0.9856
 87V

 
1.0152

 5963−Τ
 

0.9599
 

voltage 

deviation
 

1.6499
 

46V
 

1.0057
 89V

 
1.0057

 6164−Τ
 

0.9847
 maxL

 
0.0561

 

 

7.4.3.3. Improvement of voltage profile 

The developed IRCGA and RCGA have been pertained to perk up voltage profile. Here, 

maximum number of iterations, population size, crossover and mutation probabilities have been 

chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal values of 

control variables among 50 runs of solutions acquired from the developed IRCGA are shown in 

Table 7.12. The convergence characteristic acquired from the developed IRCGA and RCGA for 

voltage deviation is portrayed in Fig. 7.9.   
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                Fig. 7.9. Voltage deviation convergence characteristics of IEEE 118 bus system 

  

0 10 20 30 40 50 60 70 80 90 100
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
V

o
lt

a
g

e
 D

e
v

ia
ti

o
n

Iteration

 

 

IRCGA

RCGA



158 

Table 7.12: Optimal value of control variables acquired from IRCGA of IEEE 118 bus 

system for improvement of voltage profile  

Variable IRCGA Variable IRCGA Variable IRCGA Variable IRCGA 

1V  0.9553 
49V  1.0251 

90V  0.9853 
6665−Τ  0.9347 

4V  0.9981 
54V  0.9554 

91V  0.9801 
6968−Τ  0.9344 

6V  0.9905 
55V  0.9520 

92V  1.0002 
8281−Τ  0.9358 

8V  1.0152 
56V  0.9548 

99V  1.0105 
5cQ  -0.2610 

10V  1.0497 
59V  0.9850 

100V  1.0173 
34cQ  0.0000 

12V  0.9903 
61V  0.9952 

103V  1.0048 
37cQ  -0.0871 

15V  0.9705 
62V  0.9981 

104V  0.9806 
44cQ  0.0202 

18V  0.9731 
65V  1.0053 

105V  0.9749 
45cQ  0.0849 

19V  0.9654 
66V  1.0500 

107V  0.9521 
46cQ  0.0000 

24V  0.9923 
69V  1.0350 

110V  0.9732 
48cQ  0.0541 

25V  1.0495 
70V  0.9854 

111V  0.9804 
74cQ  0.0000 

26V  1.0152 
72V  0.9801 

112V  0.9755 
79cQ  0.1644 

27V  0.9684 
73V  0.9912 

113V  0.9929 
82cQ  0.0052 

31V  0.9673 
74V  0.9628 

116V  1.0051 
83cQ  0.1976 

32V  0.9721 
76V  0.9431 

58−Τ  0.9815 
105cQ  0.0000 

34V  0.9860 
77V  1.0064 

2526−Τ  0.9602 
107cQ  0.0000 

36V  0.9828 
80V  1.0403 

1730−Τ  0.9610 
110cQ  0.0317 

40V  0.9701 
85V  0.9889 

3738−Τ  0.9359 power loss (MW) 100.2234 

42V  0.9854 
87V  1.0151 

5963−Τ  0.9596 voltage deviation 1.5644 

46V  1.0052 
89V  1.0054 

6164−Τ  0.9847 
maxL  0.0597 

 

7.5. Benchmark Functions 
 

The developed IRCGA and RCGA have been pertained for solving 15 benchmark functions [29]. 

These test functions are revealed in Table 7.13. All other data is taken from [29]. The population 

size, crossover and mutation probabilities have been chosen as 100, 0.9 and 0.2 respectively for 

IRCGA and RCGA. 

To verify the performance of the proposed IRCGA technique, these 15 test functions are 

repeatedly tested by using the IRCGA. Each test is repeated 100 times. Mean results of 15 test 
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functions acquired from 100 runs are summarized in Table 7.14 and Table 7.15 summarizes best 

optimum values and the variables corresponding to the best optimum value, number of iterations 

and CPU time of all 15 benchmark functions in 100 runs acquired from IRCGA. These 15 test 

functions are also tested by using RCGA technique. Table 7.16 shows best optimum values, 

number of iterations and CPU time acquired from RCGA.  

 

Table 7.15: Best Optimum value, the variables corresponding to the best optimum value, 

number of iterations and CPU time acquired from IRCGA 

Function ∗x  ( )∗
xf  

Number 

of 

Iterations 

CPU time 

(sec) 

1f  
[0,0,…….,0] 1.6701e-24 200 25.5788 

2f  
[0,0,…….,0] 7.7935e-18 200 26.9347 

3f  
[0,0,…….,0] 5.8031e-17 300 37.7409 

4f  
[0,0,…….,0] 1.3135e-17 300 36.7092 

5f  
[1,1,…….,1] 2.6149e-17 300 37.5872 

6f
 

[0,0,…….,0] 8.9901e-18 300 40.8805 

7f
 

[0,0,…….,0] 2.1067e-17 300 37.7943 

8f  
[0,0,…….,0] 6.3568e-18 300 39.9052 

9f  
[4.8581, 5.4829] , [ -7.0835, -7.7083],  

[-0.8003,  -7.7083] 

-186.7309 100 1.6325 

10f
 

[0.1928, 0.1909, 0.1231, 0.1358] 0.0003075 200 5.8807 

11f  
[0.089842,  -0.712654], [-0.089842,  

0.712655], 

-1.0316285 50 0.6183 

12f  
[ -3.1416, 12.272], [ 3.1416, 2.276] 0.397725 50 0.5996 

13f
 

[0, -1]  3 50 0.6074 

14f  
[0.1146, 0.5556, 0.8525] -3.86 50 0.8807 

15f
 

[0.2017, 0.1468, 0.4767, 0.2753, 

0.3117, 0.6573] 

-3.32 50 1.6038 
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Table 7.13: Test Functions 

Mathematical representation Domain Optimum 
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Table 7.14: Mean optimum value, number of iterations and mean CPU time acquired from 

IRCGA 
 

Function Mean Optimum  Value Number of Iterations Mean CPU time 

(sec) 

1f  
1.6703e-22 200 27.5631 

2f  
8.6875e-18 200 28.6573 

3f  
7.0153e-17 300 38.9348 

4f  
1.2035e-17 300 37.9738 

5f  
3.0151e-17 300 39.0571 

6f  
9.4572e-18 300 41.3401 

7f  
22.324e-17 300 38.0479 

8f  
6.8957e-18 300 40.9752 

9f  
-186.7307 100  1.5042 

10f
 

0.00030763 200  5.9033 

11f  
-1.031642 50 0.7047 

12f  
0.397733 50 0.6981 

13f
 

3 50 0.6348 

14f  
-3.8626 50 0.9015 

15f
 

-3.319 50 1.7748 
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Table 7.16: Best optimum value, number of iterations and CPU time acquired from RCGA 

 

Function RCGA 

      ( )∗
xf  

Number of 

Iterations 

  CPU time 

     (sec) 

1f  
6.0739e-019 200 25.7905 

2f  
1.6857e-005 300 39.6358 

3f  
0.26796 500 62.7043 

4f  
0.05389 500 64.9351 

5f  
71.7808 400 54.9532 

6f
 

33.8247 300 40.8562 

7f
 

1.5308e-005 300 37.7794 

8f  
4.9494 300 39.8093 

9f  
-186.7308 100 1.3835 

10f
 

0.0003077 200 5.8774 

11f  
-1.0316273 50 0.6058 

12f  
0.397728 50 0.5495 

13f
 

3 50 0.6015 

14f  
-3.8621 50 0.8795 

15f
 

-3.3214 50 1.49752 

 

7.6. Conclusion 

Improved real coded genetic algorithm (IRCGA) has been developed and validated for solving 

different types of RPD problems such as minimization of active power transmission loss and 

improvement of voltage profile and stability and 15 benchmark functions. The developed 

IRCGA is experimented on IEEE 30-bus, 57-bus and 118-bus test systems to reveal its efficacy. 

It has been examined that test results acquired from the developed IRCGA is superior compared 

to those acquired from other stated evolutionary techniques. 
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CHAPTER-8 

Optimal Power Flow 

 

8.1. Introduction  

Optimal power flow (OPF) is an important tool for power system operators both in power system 

planning and operation for many years. The main purpose of an OPF is to determine the settings 

of control variables for economic and secure operation of a power system. The OPF minimizes 

the power system operating objective function while satisfying a set of equality and inequality 

constraints. The equality constraints are power flow equations and inequality constraints are the 

limits on control variables and functional operating constraints. The OPF is a highly non-linear, 

non-convex, large scale static optimization problem. Optimal power flow (OPF) is a nonlinear 

programming problem which optimizes a certain objective function while satisfying a set of 

physical and operational constraints imposed by equipment limitations and security 

requirements. Over the last three decades, several successful methods have been developed such 

as, generalized reduced gradient method, successive linear programming, successive quadratic 

programming, Newton method, P-Q decomposition, interior point method (IPM), genetic 

algorithm (GA), evolutionary programming (EP).  

In this Chapter, two different algorithms have been applied to solve Optimal Power Flow 

Problems. 

1. Heat transfer search (HTS) algorithm 

2. Quasi-oppositional differential evolution (QODE) algorithm 

The effectiveness of the above proposed algorithm is tested on IEEE 30-bus, 57-bus and 118-bus 

test systems for four objective problems. These are (i) fuel cost minimization, (ii) emission 

minimization, (iii) voltage deviation minimization and (iv) enhancement of voltage stability. It 

has been seen that performance of the proposed HTS and QODE algorithm is better compared to 

other evolutionary methods. 
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8.2. Problem Formulation 

The OPF problem optimizes the steady state performance of power system with respect to 

specified objective function subject to various equality and inequality constraints. Here, four 

different objectives i.e. (i) fuel cost minimization, (ii) emission minimization, (iii) reduction of 

voltage deviation and (iv) improvement of voltage stability are considered. Four objective 

functions and constraints are formulated as follows. 

8.2.1. Objective Functions 

8.2.1.1. Minimization of fuel cost 

The fuel cost function of each thermal generating unit, considering the valve-point effects [22], is 

expressed as the sum of a quadratic and a sinusoidal function. The total fuel cost in terms of 

active power output can be expressed as  

[∑
Ν

=

Ρ+Ρ+=
G

i

GiiGiii cbaF
1

2

1 + ( ){ }]GiGiii ed Ρ−Ρ×× minsin                                                               (8.1) 

where ia , ib , ic  are the fuel cost coefficients of  the i th generator; id  and ie  are the coefficients 

of the i th generator reflecting valve-point effect; GiΡ  is the active power generation of the i th 

generator; min

GiΡ  is the minimum active power generation limit of the i th generator. GΝ  is the 

number of committed generators. 

The vector of dependent variables x   may be represented as 

[ ]
LVQ llGGLLGslack SSQQVVx

ΤΡΡ ΝΝΝ
Τ Ρ= ,...,,,..,,,...,, 111                                                                    (8.2)                                           

where GslackΡ  denotes the slack bus power; LV  is the QΡ  bus voltage; GQ  is the reactive power 

output of the generator; lS  is the transmission line flow; VΡΝ  is the number of generator bus; 

QΡΝ  is the number of QΡ  bus; LΤΝ  is the number of transmission lines. 

The vector of control variables u   may be represented as 
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[ ]
ΤΡΡ ΝΝΝΝ

Τ ΤΤΡΡ= ,.,,,.,,,.,,,., 1121 CVV ccGGGG QQVVu                                                                     (8.3)                                                                     

where  CΝ  and ΤΝ  are the number of shunt VAR compensators and the number of tap changing 

transformers, GV  is the terminal voltage at the generator bus, cQ  is the output of shunt VAR 

compensator and Τ  is the tap setting of the tap changing transformer. 

8.2.1.2. Minimization of emission 

The atmospheric pollutants such as sulfur oxides (SOx) and nitrogen oxides (NOx) caused by 

thermal generating units can be modeled separately. However, for comparison purposes, the total 

emission of these pollutants which is the sum of a quadratic and an exponential function [126] 

can be expressed as 

[∑
Ν

=

Ρ+Ρ+=
G

i

GiiGiiiF
1

2

2 γβα + ( )]Giii Ρλη exp                                                                                 (8.4) 

where  iiiii ληγβα ,,,,  are the  emission coefficients of the i th generator. 

8.2.1.3. Minimization of voltage deviation 

The objective is to minimize the voltage deviation of all load ( QΡ ) buses from 1 p.u. As a result 

the power system operates more securely and service quality is also improved. The objective 

function can be formulated as follows 

Minimize ∑
ΡΝ

=

−=
Q

i

iVF
1

3 0.1                                                                                                        (8.5) 

where  QΡΝ  is the number of load buses in the power system. 

8.2.1.4. Voltage stability enhancement 

Voltage stability problem is the ability of a power system to maintain acceptable voltages at all 

bus bars in the system under normal operating condition. A system experiences a state of voltage 

instability when the system is being subjected to a disturbance, increase in load demand or 

change in system configuration which causes a progressive and uncontrollable decrease in 
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voltage. Weak system, system with long transmission lines and heavily loaded system are much 

prone to voltage instability problem. In recent years, several major network collapses [103] have 

taken place due to voltage instability. Enhancement of voltage stability of a system is an 

important parameter of power system planning and operation.  Voltage stability enhancement 

can be done by minimizing the voltage stability indicator i.e. −L index value at each bus of a 

power system. The −L index of a bus indicates the proximity of voltage collapse condition of 

that bus. −L index jL  of j th  bus is defined as follows [104] 

∑
ΝΡ

=

−=
V

i j

i

jij
V

V
FL

1

1   where Qj ΝΡ= ,.....,2,1                                                                              (8.6) 

where [ ] [ ]2

1

1 ΥΥ−=
−

jiF                                                                                                              (8.7) 

where VΡΝ  is the number of VΡ  bus and QΡΝ  is the number of PQ bus. 1Υ  and 2Υ  are the sub-

matrices of the system YBUS obtained after segregating the PQ and PV bus bar parameters as 

described in (8). 


















ΥΥ

ΥΥ
=









Ι

Ι

Ρ

Ρ

Ρ

Ρ

V

Q

V

Q

V
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43

21
                                                                                                               (8.8) 

−L index is calculated for all the PQ buses. jL  represents no load  case and voltage collapse 

case of  bus j  in the range of  0 and 1 respectively. Hence, a global system indicator L  

describing the stability of a complete system is given as follows 

( )
jLL max= ,   where Qj ΡΝ= ,.....,2,1                                                                                      (8.9) 

Lower value of L  represents a more stable system. In order to improve voltage stability and to 

move the system far from the voltage collapse point, the objective function can be defined as 

follows  

Minimize max4 LF =                                                                                                                  (8.10)     

where maxL  is the maximum value of −L index. 
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8.2.2. Constraints 

The objective functions are subjected to the equality constraints imposed by the physical laws 

governing the transmission system as well as the inequality constraints imposed by the 

equipment ratings given below: 

8.2.2.1. Equality constraints 

These constraints are load flow equations as described below 

( )[ jiij

j

jiDiGi GVV δδ −−Ρ−Ρ ∑
ΒΝ

=

cos
1

+ ( )] 0sin =−Β jiij δδ ,  ΒΝ= ,..,2,1i                                  (8.11) 

( )[ jiij

j

jiDiGi GVVQQ δδ −−− ∑
ΒΝ

=

sin
1

- ( )] 0cos =−Β jiij δδ ,  ΒΝ= ,..,2,1i                                 (8.12) 

where ΒΝ  is the number of buses, GiΡ  and GiQ  are active and reactive power generation at the i

th bus, DiΡ  and DiQ  are active and reactive power demand at the i th bus, ijG  and ijΒ  are the 

transfer conductance and susceptance between i th bus and j  th bus respectively. 

8.2.2.2. Inequality constraints 

8.2.2.2.1 Generator constraints: The generator voltage magnitudes and reactive power outputs 

are constrained by design specifications.  The lower and upper limits of generator voltage 

magnitude and reactive power output are given below: 

  maxmin

GiGiGi VVV ≤≤ , Vi ΡΝ= ,...,2,1                                                                                           (8.13) 

  maxmin

GiGiGi Ρ≤Ρ≤Ρ , Vi ΡΝ= ,...,2,1                                                                                            (8.14) 

  maxmin

GiGiGi QQQ ≤≤ , Vi ΡΝ= ,...,2,1                                                                                          (8.15) 

8.2.2.2.2 Shunt VAR compensator constraints: Reactive power output of shunt VAR 

compensators must be restricted within their lower and upper limits as follows: 
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    maxmin

cicici QQQ ≤≤ , Ci Ν= ,....,2,1                                                                                         (8.16)                          

8.2.2.2.3 Transformer constraints: The upper and lower values for the transformer tap settings 

are limited by physical considerations and these are given below: 

 maxmin

iii Τ≤Τ≤Τ ,   ΤΝ= ,...,2,1i                                                                                              (8.17) 

8.2.2.2.4 Security constraints: These include the constraints on voltage magnitudes at QΡ  

buses and transmission line loadings. Voltage of each QΡ  bus must be within its lower and 

operating limits. Line flow through each transmission line must be within its capacity limits. 

These are described as follows: 

 maxmin

LiLiLi VVV ≤≤ , Qi ΡΝ= ,..,2,1                                                                                              (8.18) 

  max

lili SS ≤ , Li ΤΝ= ,...,2,1                                                                                                        (8.19) 

8.3. Overview of Heat Transfer Search Algorithm 

The overview of HTS algorithm has been explained in Chapter 4 of subsection 4.7 

 

8.4. Simulation and Results of HTS algorithm 

To verify the effectiveness and performance of the proposed HTS algorithm by solving four 

objectives OPF problems, IEEE 30-bus, 57-bus and 118-bus test systems have been considered. 

Programs have been written in MATLAB-7 language and executed on a 3.0 GHz Pentium-IV 

personal computer. The results obtained from proposed HTS algorithm are compared with those 

obtained from other evolutionary methods reported in the literature. 

8.4.1. IEEE 30-bus system:  

The line data, bus data, generator data and the minimum and maximum limits for the control 

variables have been adapted from [128]. The system has six generators at buses 1, 2, 5, 8, 11 and 

13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27. In 

addition, shunt VAR compensating devices are assumed to be connected at bus bars 10, 12, 15, 

17, 20, 21, 23, 24 and 29. as in [129]. The total system active power demand is 2.834 p.u. at 100 
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MVA base. In this study, 50 test runs are performed to solve the OPF problem for different 

objective functions.  

8.4.1.1. Minimization of fuel cost 

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective 

function. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number         

( maxΝ ) have been selected as 50, 5 and 100 respectively for this test system. The optimal values 

of control variables obtained from the proposed HTS algorithm are given in Table 8.1. The best, 

average and worst fuel cost and average CPU time among 50 runs of solutions obtained from 

proposed HTS algorithm are summarized in Table 8.2. The minimum fuel cost obtained from 

biogeography based optimization (BBO) [118], differential evolution (DE) [117], particle swarm 

optimization (PSO) [129], improved genetic algorithm (IGA) [113] and improved particle swarm 

optimization (IPSO) [115] are also shown in Table 8.2. The convergence characteristic obtained 

from proposed HTS algorithm for cost minimization is shown in Fig. 8.1. It is seen from       

Table 8.2, that minimum cost obtained from HTS algorithm is the lowest among all other 

methods. 
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Table 8.1: Optimal value of control variables obtained from HTS for IEEE 30 bus system 

for different cases 

Control 

variable 

 

Fuel cost 

minimization 

 

Emission 

minimization 

 

Voltage stability 

enhancement 

Improvement 

of voltage 

profile 

1GΡ (MW) 190.31 115.68 113.20 158.60 

2GΡ (MW)
 

47.90
 

72.43
 

62.13
 

52.56
 

5GΡ (MW)
 

19.61
 

38.75
 

47.17
 

39.84
 

8GΡ (MW)
 

11.25
 

32.96
 

35.00
 

14.51
 

11GΡ (MW) 10.000 29.53 19.10 10.00 

13GΡ (MW) 12.000 0 12.00 14.50 

1V  (p.u.) 1.0500 1.0500 1.0500 1.0500 

2V  (p.u.)
 

1.0338
 

1.0334
 

1.0337
 

1.0339
 

5V  (p.u.)
 

1.0058
 

1.0053
 

1.0059
 

1.0060
 

8V  (p.u.)
 

1.0230
 

1.0227
 

1.0233
 

1.0231
 

11V  (p.u.)
 

1.0913
 

1.0908
 

1.0914
 

1.0911
 

13V  (p.u.)
 

1.0400
 

1.0404
 

1.0398
 

1.0399
 

96−Τ
 

1.0155
 

0.9946
 

1.0069
 

1.0157
 

106−Τ
 

0.9629
 

0.9953
 

0.9820
 

1.0274
 

124−Τ
 

1.0129
 

0.9844
 

0.9913
 

1.0087
 

2728−Τ
 

0.9581
 

1.0044
 

1.0095
 

0.9817
 

10cQ (Mvar)
 

4.12
 

0.5914
 

5.0000
 

0.95
 

12cQ (Mvar)
 

1.15
 

0.9519
 

5.0000
 

0.68
 

15cQ (Mvar)
 

4.99
 

1.7289
 

2.4663
 

3.01
 

17cQ (Mvar)
 

4.80
 

2.9142
 

0
 

0
 

20cQ (Mvar)
 

0.08
 

3.5631
 

5.0000
 

5.0000
 

21cQ (Mvar)
 

4.93
 

0.8467
 

5.0000
 

5.0000
 

23cQ (Mvar)
 

0.38
 

1.4583
 

2.1800
 

2.1800
 

24cQ (Mvar)
 

1.06
 

2.8836
 

3.7715
 

3.7715
 

29cQ (Mvar)
 

4.85
 

2.5745
 

5.0000
 

5.0000
 

       Fuel  Cost ($/h) 793.79 859.26 866.98 821.07 

 Emission (ton/h) 0.4080 0.1961 0.2476 0.3201 

Loss (MW) 7.67 5.94 5.20 6.61 

Voltage deviation (p.u.) 0.5405 0.3535 0.8706 0.0615 

���� 0.0489 0.0729 0.0202 0.0641 
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Table 8.2: Comparison of performance for cost minimization of IEEE 30 bus system 

Techniques Best cost 

($/h) 

Average cost 

($/h) 

Worst cost 

($/h) 

CPU time (S) 

HTS 793.79 793.84 793.91 18.25 

BBO [118] 799.11 - - - 

DE [117] 799.28 - - - 

PSO [129] 800.41 - - - 

IGA [113] 800.80 - - - 

IPSO [115] 801.97 - - - 

 

 

                      Fig. 8.1. Cost convergence characteristics for IEEE 30 bus system 
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of control variables obtained from the proposed HTS algorithm are given in Table 8.1. The best, 

average and worst emission and average CPU time among 50 runs of solutions obtained from 

proposed HTS algorithm are summarized in Table 8.3. The minimum emission obtained from 

improved particle swarm optimization (IPSO) [115] is also shown in Table 8.3. The convergence 

characteristic obtained from proposed HTS algorithm for emission minimization is shown in   

Fig. 8.2. It is seen from Table 8.3, that minimum emission obtained from HTS algorithm is the 

lowest among all other methods. 

 

                    Fig. 8.2. Emission convergence characteristics for IEEE 30 bus system 
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8.4.1.3. Enhancement of voltage stability 

In this case, the proposed HTS algorithm has been applied for enhancement of voltage stability 

i.e. minimization of maxL . Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum 

iteration number ( maxΝ ) have been selected as 50, 5 and 100 respectively for this test system. 

The optimal values of control variables obtained from the proposed HTS algorithm are shown in 

Table 1. The best, average and worst maxL  and average CPU time among 50 runs of solutions 

obtained from proposed HTS algorithm are summarized in Table 8.4. The maxL obtained from 

BBO [118] and improved particle swarm optimization (IPSO) [115] are also shown in Table 8.4. 

The convergence characteristic obtained from proposed HTS algorithm for maxL  minimization is 

shown in Fig. 8.3. It is seen from Table 8.4 that the value of maxL  obtained from HTS algorithm 

is the lowest among all other methods. 

 

                      Fig. 8.3. maxL  convergence characteristics for IEEE 30 bus system 
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Table 8.4: Comparison of performance for maxL minimization of IEEE 30 bus system 

Techniques Best maxL  Average maxL  Worst maxL  CPU time 

(S) 

HTS 0.0202 0.0205 0.0209 19.23 

BBO [118] 0.0980 - - - 

IPSO [115] 0.1037 - - - 

 

8.4.1.4. Improvement of voltage profile 

In this case, the proposed HTS algorithm applied for improvement of voltage profile. Here, the 

population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number ( maxΝ ) have been 

selected as 50, 5 and 100 respectively for this test system. The optimal values of control 

variables obtained from the proposed HTS algorithm are given in Table 8.1. The best, average 

and worst voltage deviation and average CPU time among 50 runs of solutions obtained from 

proposed HTS algorithm are summarized in Table 5. The voltage deviation obtained from BBO 

[118] and faster evolutionary algorithm (FEA) [119] is also shown in Table 8.5. The 

convergence characteristic obtained from proposed HTS algorithm for voltage deviation is 

shown in Fig. 8.4. It is seen from Table 8.5, that voltage deviation obtained from HTS algorithm 

is the lowest among all other methods. 
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            Fig. 8.4. Voltage deviation convergence characteristics for IEEE 30 bus system 
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8.4.2. IEEE 57-bus system 

The standard IEEE 57-bus system consists of 80 transmission lines, seven generators at buses 1, 

2, 3, 6, 8, 9, 12 and 15 branches under load tap setting transformer branches. The reactive power 

sources are considered at buses 18, 25 and 53.  The system line data, bus data, generator data and 

the minimum and maximum limits for the control variables have been adapted from [127] and 

[130]. The upper and lower limits of reactive power sources and transformer tap settings are 

taken from [128]. The total system active power demand is 12.508 p.u. and reactive power 

demand is 3.364 p.u. at 100 MVA base. In this study, 50 test runs are performed to solve the 

OPF problem for different objective functions.  

8.4.2.1. Minimization of fuel cost  

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective 

function. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number        

( maxΝ ) have been selected as 50, 5 and 100 respectively for this test system. The optimal values 

of control variables obtained from the proposed HTS are given in Table 8.6. The best, average 

and worst fuel cost and average CPU time among 50 runs of solutions obtained from proposed 

HTS algorithm are summarized in Table 8.7. The convergence characteristic obtained from 

proposed HTS algorithm for minimum fuel cost solution is shown in Fig. 8.5. 

 

Table 8.7: Comparison of performance for cost minimization of IEEE 57 bus system 

Technique Best cost 

($/h) 

Average cost ($/h) Worst cost 

($/h) 

CPU time (S) 

HTS 7640.00 7642.03 7644.83 37.87 
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             Fig. 8.5. Cost convergence characteristics for IEEE 57 bus system 
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Table 8.6: Optimal value of control variables obtained from HTS for IEEE 57 bus system 

for different cases 

Control variable       

minimization 

Fuel cost Emission  

minimization 

Voltage Stability 

enhancement 

Improvement of  

voltage profile 

1GΡ (MW) 592.76 304.02 522.37 589.66 

2GΡ (MW)
 

0
 

0
 

0
 

0
 

3GΡ (MW) 97.62 172.65 35.73 16.35 

6GΡ (MW) 0 0 0 0 

8GΡ (MW) 136.25 341.89 523.20 482.32 

9GΡ (MW) 0 0 0 0 

12GΡ (MW) 460.61 461.89 201.67 196.53 

1V  (p.u.) 1.0400 1.0400 1.0400 1.0400 

2V  (p.u.) 1.0100 1.0104 1.0103 1.0107 

3V  (p.u.) 0.9850 0.9855 0.9853 0.9856 

6V  (p.u.) 0.9801 0.9806 0.9801 0.9804 

8V  (p.u.) 1.0052 1.0057 1.0049 1.0055 

9V (p.u.) 0.9800 0.9804 0.9805 0.9806 

12V (p.u.) 1.0153 1.0148 1.0151 1.0153 

184−Τ  0.9700 1.0987 0.9801 0.9831 

184−Τ  0.9780 1.0820 0.9526 0.9510 

2021−Τ  1.0430 0.9221 0.9501 0.9507 

2624−Τ  1.0430 1.0171 1.0045 1.0043 

297−Τ  0.9670 0.9960 0.9777 0.9769 

3234−Τ  0.9750 1.0999 0.9138 0.9139 

4111−Τ  0.9550 1.0750 0.9465 0.9461 

4515−Τ  0.9550 0.9541 0.9269 0.9258 

4614−Τ  0.9000 0.9370 0.9962 0.9957 

5110−Τ  0.9300 1.0160 1.0385 1.0379 

4913−Τ  0.8950 1.0998 0.9052 0.9053 

4311−Τ  0.9580 1.0980 0.9240 0.9229 

5640−Τ  0.9580 0.9799 0.9875 0.9868 

5739−Τ  0.9800 1.0246 1.0098 1.0095 

559−Τ  0.9400 1.0371 0.9373 0.9367 

18cQ  (Mvar) 4.0117 0.2339 3.5236 5.7907 
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25cQ  (Mvar) 4.0184 2.8458 4.0004 0.6058 

53cQ  (Mvar) 1.7637 1.2245 3.1840 5.8095 

Cost ($/h) 7640.00 13181.08 20833.36 18556.16 

Emission (ton/h) 2.8086 1.7003 2.8134 3.0945 

power loss (MW) 36.4534 29.6432 32.1714 34.0597 

Voltage deviation 

(p.u.) 

1.1486 5.3719 1.1228 0.6725 

maxL  0.1129 0.4161 0.0987 0.1362 

 

8.4.2.2. Minimization of emission 

The proposed HTS algorithm has been applied for minimization of emission as the objective 

function. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number         

( maxΝ ) have been selected as 50, 5 and 100 respectively for this test system. The optimal values 

of control variables obtained from the proposed HTS algorithm are given in Table 8.6. The best, 

average and worst emission and average CPU time among 50 runs of solutions obtained from 

proposed HTS are summarized in Table 8.8. The convergence characteristic obtained from 

proposed HTS for emission minimization is shown in Fig. 8.6.  

 

Table 8.8: Comparison of performance for emission minimization of IEEE 57 bus system 

Technique Best emission 

(ton/h) 

Average emission 

(ton/h) 

Worst emission 

(ton/h) 

CPU time 

(S) 

HTS   1.7003   1.7006   1.7011 38.01 
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                    Fig. 8.6. Emission convergence characteristics for IEEE 57 bus system 
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                 Fig. 8.7. maxL  convergence characteristics for IEEE 57 bus system 
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proposed HTS algorithm are summarized in Table 8.10. The convergence characteristic obtained 

from proposed HTS for voltage deviation is shown in Fig. 8.8. 

Table 8.10: Comparison of performance for voltage deviation of IEEE 57 bus system 

Technique Best voltage 

deviation 

Average voltage 

deviation 

Worst voltage 

deviation 

CPU time 

(S) 

HTS 0.6725 0.6728 0.6732 38.93 

 

 

       Fig. 8.8. Voltage deviation convergence characteristics for IEEE 57 bus system 
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from [132]. The total system active power demand is 42.4200 p.u. and reactive power demand is 

14.3800 p.u. at 100 MVA base. In this study, 50 test runs are performed to solve different OPF 

problems by using HTS algorithm. Here, Due to brevity, only comparison tables obtained from 

different objective functions are given here. 

 

8.4.3.1. Minimization of fuel cost 

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective 

function. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number        

( maxΝ ) have been selected as 100, 10, and 100 respectively for this test system. The optimal 

values of control variables obtained from the proposed HTS algorithm are given in Table 8.11. 

The best, average and worst fuel cost and average CPU time among 50 runs of solutions obtained 

from proposed HTS algorithm are summarized in Table 8.12. The convergence characteristic 

obtained from proposed HTS algorithm for minimum fuel cost solution is shown in Fig. 8.9.  

 

                       Fig. 8.9. Cost convergence characteristics for IEEE 118 bus system 
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Table 8.11: Optimal value of control variables obtained from HTS for IEEE 118 bus 

system for cost minimization  

Variable  Variable  Variable  Variable Variable  

1GΡ (MW) 
29.2109 

 66GΡ (MW) 
381.8617 

6V  
0.9903 

70V  
0.9854 

5963−Τ  
0.9597 

4GΡ (MW)
 

27.7608 

 69GΡ (MW)
 

332.5110
 8V

 

1.0151
 72V

 

0.9801
 6164−Τ

 

0.9846
 

6GΡ (MW)
 

12.7737 

 70GΡ (MW)
 

0
 10V

 

1.0500
 73V

 

0.9909
 6665−Τ

 

0.9351
 

8GΡ (MW)
 

14.1875 

 72GΡ (MW)
 

11.2969
 12V

 

0.9904
 74V

 

0.9663
 6968−Τ

 

0.9347
 

10GΡ (MW)
 

422.6864 

 73GΡ (MW)
 

15.7119
 15V

 

0.9692
 76V

 

0.9430
 8281−Τ

 

0.9356
 

12GΡ (MW)
 

110.9571 

 74GΡ (MW)
 

0
 18V

 

0.9733
 77V

 

1.0071
 5cQ (Mvar)

 

36.6145
 

15GΡ (MW)
 

11.3817 

 76GΡ (MW)
 

0
 19V

 

0.9648
 80V

 

1.0403
 34cQ (Mvar)

 

13.5245
 

18GΡ (MW)
 

59.5803 

 77GΡ (MW)
 

55.6755
 24V

 

0.9921
 85V

 

0.9565
 37cQ (Mvar)

 

-12.7591
 

19GΡ (MW)
 

0 

 80GΡ (MW)
 

232.4882
 25V

 

1.0500
 87V

 

1.0151
 44cQ (Mvar)

 

2.8039
 

24GΡ (MW)
 

28.1248 

 85GΡ (MW)
 

0
 26V

 

1.0151
 89V

 

1.0048
 45cQ (Mvar)

 

0.5621
 

25GΡ (MW)
 

198.2669 

 87GΡ (MW)
 

163.8951
 27V

 

0.9683
 90V

 

0.9853
 46cQ (Mvar)

 

-17.1541
 

26GΡ (MW)
 

291.1758 

 89GΡ (MW)
 

210.0919
 31V

 

0.9672
 91V

 

0.9801
 48cQ (Mvar)

 

3.9863
 

27GΡ (MW)
 

12.7930 

 90GΡ (MW)
 

11.1843
 32V

 

0.9678
 92V

 

0.9837
 74cQ (Mvar)

 

11.1285
 

31GΡ (MW)
 

20.0211 

 91GΡ (MW)
 

24.6972
 34V

 

0.9815
 99V

 

1.0102
 79cQ (Mvar)

 

2.4003
 

32GΡ (MW)
 

0 

 92GΡ (MW)
 

0
 36V

 

0.9754
 100V

 

0.9710
 82cQ (Mvar)

 

37.9876
 

34GΡ (MW)
 

0 

 99GΡ (MW)
 

176.6940
 40V

 

0.9701
 103V

 

0.9557
 83cQ (Mvar)

 

9.1203
 

36GΡ (MW)
 

0 
100GΡ (MW)

 

180.4911
 42V

 

0.9853
 104V

 

0.9411
 105cQ (Mvar)

 

4.0877
 

40GΡ (MW)
 

12.1452 
103GΡ (MW)

 

0
 46V

 

1.0049
 105V

 

0.9443
 107cQ (Mvar)

 

-5.7172
 

42GΡ (MW)
 

21.9355 
104GΡ (MW)

 

0
 49V

 

1.0247
 107V

 

0.9521
 110cQ (Mvar)

 

18.2214
 

46GΡ (MW)
 

49.4955 
105GΡ (MW)

 

0
 54V

 

0.9553
 110V

 

0.9588
 

Cost ($/h)
 

68110.35
 

49GΡ (MW)
 

70.0794 
107GΡ (MW)

 

16.8557
 55V

 

0.9517
 111V

 

0.9802
 Emission( lb /h)

 

405.9932 

54GΡ (MW)
 

241.5004 
110GΡ (MW)

 

28.6788
 56V

 

0.9545
 112V

 

0.9753
 

power loss(MW)
 

104.8402
 

55GΡ (MW)
 

0 
111GΡ (MW) 

81.7905 
59V  

0.9851 
113V  

0.9931 Voltage 

deviation (p.u.) 

1.8182 

56GΡ (MW) 

 

0 
112GΡ (MW)

 

59.7296
 61V  

0.9953 
116V  

1.0054 
maxL  

0.1046 

59GΡ (MW)
 

129.0256 
113GΡ (MW) 

57.3315 
62V  

0.9975 
58−Τ  

0.9816  

61GΡ (MW)
 

140.2808 
116GΡ (MW) 

25.0041 
65V  

1.0051 
2526−Τ

 

0.9605  

62GΡ (MW) 

 

51.2464 
1V  (p.u.) 

0.9563 
66V  

1.0500 
1730−Τ

 

0.9614  

65GΡ (MW)
 

381.8979 

 4V  (p.u.)
 

0.9981 
69V

 

1.0350 
3738−Τ

 

0.9367  
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Table 8.12: Comparison of performance for cost minimization of IEEE 118 bus system 

Technique Best cost 

($/h) 

Average cost 

($/h) 

Worst cost 

($/h) 

CPU time (S) 

HTS 68110.35 68111.84 68114.16 288.6257 

 

8.4.3.2. Minimization of emission 

The proposed HTS algorithm has been applied for minimization of emission as the objective 

function. Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number         

( maxΝ ) have been selected as 100, 10 and 100 respectively for this test system. The optimal 

values of control variables obtained from the proposed HTS are given in Table 8.13. The best, 

average and worst emission and average CPU time among 50 runs of solutions obtained from 

proposed HTS are summarized in Table 8.14. The convergence characteristic obtained from 

proposed HTS algorithm for minimum emission solution is shown in Fig. 8.10.  
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Table 8.13: Optimal value of control variables obtained from HTS for IEEE 118 bus 

system for emission minimization  

Variable  Variable                   Variable Variable  Variable  

1GΡ (MW) 
5.1743 

66GΡ (MW) 
388.5257 

6V  
0.9905 

70V  
0.9857 

5963−Τ  
0.9596 

4GΡ (MW)
 

25.8042
 69GΡ (MW)

 
43.0101

 8V
 

1.0147
 72V

 
0.9808

 6164−Τ
 

0.9855
 

6GΡ (MW)
 

7.5464
 70GΡ (MW)

 
0

 10V
 

1.0500
 73V

 
0.9915

 6665−Τ
 

0.9357
 

8GΡ (MW)
 

11.9135
 72GΡ (MW)

 
28.3154

 12V
 

0.9906
 74V

 
0.9667

 6968−Τ
 

0.9348
 

10GΡ (MW)
 

401.9364
 73GΡ (MW)

 
17.2548

 15V
 

0.9698
 76V

 
0.9433

 8281−Τ
 

0.9356
 

12GΡ (MW)
 

121.5883
 74GΡ (MW)

 
0

 18V
 

0.9735
 77V

 
1.0072

 5cQ (Mvar)
 

-17.7742
 

15GΡ (MW)
 

22.5734
 76GΡ (MW)

 
0

 19V
 

0.9647
 80V

 
1.0401

 34cQ (Mvar)
 

3.1362
 

18GΡ (MW)
 

82.5876
 77GΡ (MW)

 
0

 24V
 

0.9929
 85V

 
0.9568

 37cQ (Mvar)
 

-8.2974
 

19GΡ (MW)
 

0
 80GΡ (MW)

 
175.0243

 25V
 

1.0500
 87V

 
1.0155

 44cQ (Mvar)
 

6.9876
 

24GΡ (MW)
 

20.3710
 85GΡ (MW)

 
0

 26V
 

1.0147
 89V

 
1.0054

 45cQ (Mvar)
 

5.8355
 

25GΡ (MW)
 

105.9800
 87GΡ (MW)   

 
227.5886     

27V      
0.9686     

90V   
 

0.9857
 46cQ (Mvar) 

 

-35.4268 
 

26GΡ (MW)
 

303.1171
 89GΡ (MW)            

297.4263     
31V

 
0.9678     

91V
 

0.9806
 48cQ (Mvar)

 
10.0909   

 

27GΡ (MW)
 

8.5042
 90GΡ (MW)

 
14.8003

 32V
 

0.9677
 92V

 
0.9838               

74cQ (Mvar)
 

8.0010
 

31GΡ (MW)
 

 13.8602
 91GΡ (MW)

 
43.6077

 34V
 

0.9816
 99V

 
1.0107

 79cQ (Mvar)
 

15.6264
 

32GΡ (MW)
 

 0
 92GΡ (MW)

 
0

 36V
 

0.9755
 100V

 
0.9713

 82cQ (Mvar)
 

95.1279
 

34GΡ (MW)
 

 0
 99GΡ (MW)          

151.7637     
40V   

 
0.9707    

103V
 

0.9567
 83cQ (Mvar)

 
6.7833 

 

36GΡ (MW)
 

0
 100GΡ (MW)

 
287.3936

 42V
 

0.9853
 104V

 
0.9414

 105cQ (Mvar)
 

13.0101
 

40GΡ (MW)
 

16.2087
 103GΡ (MW)

 
0

 46V
 

1.0055
 105V

 
 0.9445

 107cQ (Mvar)
 

-4.5025
 

42GΡ (MW)
 

15.0353
 104GΡ (MW)

 
0

 49V
 

1.0254
 107V

 
0.9529

 110cQ (Mvar)
 

20.6641
 

46GΡ (MW)
 

99.6463
 105GΡ (MW)

 
0

 54V
 

0.9559
 110V

 
0.9583

 
Cost ($/h)

 
70467.71

 

49GΡ (MW)
 

224.6444
 107GΡ (MW)

 
10.1385

 55V
 

0.9517
 111V

 
0.9805

 Emission ( lb
/h)         

 

298.6965 

54GΡ (MW
 

207.6887
 110GΡ (MW)

 
45.3030

 56V
 

0.9545
 112V

 
0.9752

 
power loss  

(MW)
 

162.2439
 

55GΡ (MW)
 

0
 111GΡ (MW)

 
97.4258

 59V
 

0.9858
 113V

 
0.9937 

 

Voltage 

deviation (p.u.) 

 

2.0173        

 

56GΡ (MW)
 

0
 112GΡ (MW)

 
80.5707

 61V
 

0.9956
 116V

 
1.0055

 maxL
 

0.1075
 

59GΡ (MW)
 

72.7896
 113GΡ (MW)

 
94.4714

 62V
 

0.9977
 58−Τ

 
0.9819

 
  

61GΡ (MW)
 

191.9093
 116GΡ (MW)

 
30.7140

 65V
 

1.0053
 2526−Τ

 
0.9625

 
  

62GΡ (MW)
 

67.9450
 1V  (p.u.)

 
0.9564

 66V
 

1.0500
 1730−Τ

 
0.9607

 
 

65GΡ (MW)
 

389.3891
 4V  (p.u.)

 
0.9987

 69V
 

1.0350
 3738−Τ

 
0.9369
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Table 8.14: Comparison of performance for emission minimization of IEEE 118 bus system 

Technique Best emission 

( lb /h)     

Average emission 

( lb /h)     

Worst emission (

lb /h)     

CPU time 

(S) 

HTS 298.6965 300.4253 302.0186 287.8752 

 

                        Fig. 8.10. Emission convergence characteristics for IEEE 118 bus system 

8.4.3.3. Enhancement of voltage stability 

In this case, the proposed HTS algorithm has been applied for enhancement of voltage stability 

i.e. minimization of maxL . Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum 

iteration number ( maxΝ ) have been selected as 100, 10 and 100 respectively for this test system. 

The optimal values of control variables obtained from the proposed HTS are given in Table 8.15. 

The best, average and worst maxL  and average CPU time among 50 runs of solutions obtained 

from proposed HTS are summarized in Table 8.16. The convergence characteristic obtained from 

proposed HTS algorithm for maxL  minimization is shown in Fig. 8.11. 
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Table 8.15: Optimal value of control variables obtained from HTS for IEEE 118 bus 

system for voltage stability enhancement  

Variable     Variable  Variable  Variable  Variable  

1GΡ (MW) 
15.1000 

66GΡ (MW) 
382.4401 

6V  
0.9903 

70V  
0.9856 

5963−Τ  
0.9596 

4GΡ (MW)
 

26.7207
 69GΡ (MW)

 
362.3144

 8V
 

1.0151
 72V

 
0.9805

 6164−Τ
 

0.9848
 

6GΡ (MW)
 

14.9317
 70GΡ (MW)

 
70.9164

 10V
 

1.0500
 73V

 
0.9911

 6665−Τ
 

0.9345
 

8GΡ (MW)
 

20.3994
 72GΡ (MW)

 
12.4464

 12V
 

0.9904
 74V

 
0.9667

 6968−Τ
 

0.9343
 

10GΡ (MW)
 

404.2671
 73GΡ (MW)

 
9.3132

 15V
 

0.9693
 76V

 
0.9426

 8281−Τ
 

0.9366
 

12GΡ (MW)
 

262.3616
 74GΡ (MW)

 
19.9994

 18V
 

0.9736
 77V

 
1.0071

 5cQ (Mvar)
 

-24.0515
 

15GΡ (MW)
 

27.5909
 76GΡ (MW)

 
30.7464

 19V
 

0.9648
 80V

 
1.0403

 34cQ (Mvar)
 

0
 

18GΡ (MW)
 

91.2769
 77GΡ (MW)

 
84.0866

 24V
 

0.9925
 85V

 
0.9569

 37cQ (Mvar)
 

-17.9176
 

19GΡ (MW)
 

14.3799
 80GΡ (MW)

 
293.6501

 25V
 

1.0500
 87V

 
1.0152

 44cQ (Mvar)
 

0.0290
 

24GΡ (MW)
 

17.4469
 85GΡ (MW)

 
12.2924

 26V
 

1.0146
 89V

 
1.0054

 45cQ (Mvar)
 

5.4166
 

25GΡ (MW)
 

148.8825
 87GΡ (MW)

 
132.3614

 27V
 

0.9682
 90V  

0.9853 
46cQ (Mvar) 

-27.6219 

26GΡ (MW)
 

303.1802
 89GΡ (MW)

 
299.9668

 31V
 

0.9678
 91V

 
0.9806

 48cQ (Mvar)
 

11.3379
 

27GΡ (MW)
 

15.0559
 90GΡ (MW)

 
16.7316

 32V
 

0.9676
 92V

 
0.9833

 74cQ (Mvar)
 

0
 

31GΡ (MW)
 

27.2856
 91GΡ (MW)

 
44.3270

 34V
 

0.9814
 99V

 
1.0106

 79cQ (Mvar)
 

2.2228  
 

32GΡ (MW)
 

90.4919
 92GΡ (MW)

 
196.5727

 36V
 

0.9755
 100V

 
0.9712

 82cQ (Mvar)
 

110.8863
 

34GΡ (MW)
 

25.5560
 99GΡ (MW)

 
133.9130

 40V
 

0.9702
 103V

 
0.9558

 83cQ (Mvar)
 

0.0138
 

36GΡ (MW)
 

45.1288
 100GΡ (MW)

 
267.0140

 42V
 

0.9853
 104V

 
0.9416

 105cQ (Mvar)
 

0
 

40GΡ (MW)
 

9.0982
 103GΡ (MW)

 
9.8975

 46V
 

1.0057
 105V

 
0.9444

 107cQ (Mvar)
 

-14.6412
 

42GΡ (MW)
 

19.9417
 104GΡ (MW)

 
52.2055

 49V
 

1.0255
 107V

 
0.9526

 110cQ (Mvar)
 

5.3472
 

46GΡ (MW)
 

57.8948
 105GΡ (MW)

 
87.4796

 54V
 

0.9559
 110V

 
0.9587

 
Cost ($/h)

 
72213.61

 

49GΡ (MW)
 

90.3132
 107GΡ

(MW)
 

17.3746
 55V

 
0.9514

 111V
 

0.9803
 

Emission  

( lb /h)
 

398.4442
 

54GΡ (MW)
 

61.5296
 110GΡ (MW)

 
43.0175

 56V
 

0.9545
 112V

 
0.9754

 
power loss  

(MW)
 

182.460

3
 

55GΡ (MW)
 

56.8374
 111GΡ (MW) 

 
58.5205

 59V
 

0.9857
 113V

 
0.9932

 
Voltagem 

deviation 

(p.u)
 

  1.7401                         

56GΡ (MW)
 

37.4630
 112GΡ (MW)

 
79.7727

 61V
 

0.9956
 116V

 
1.005

3 

 
maxL

 
0.0506

 

59GΡ (MW)
 

167.2125
 113GΡ (MW)

 
55.7530

 62V
 

0.9975
 58−Τ

 
0.9806

 
  

61GΡ (MW)
 

73.5977
 116GΡ (MW)

 
30.6073

 65V
 

1.0053
 2526−Τ

 
0.9614

 
  

62GΡ (MW)
 

69.7190
 1V  (p.u.)

 
  0.9567

 66V
 

1.0500
 1730−Τ

 
0.9608

 
  

65GΡ (MW)
 

394.8187 
4V  (p.u.)

 
  0.9984

 69V
 

1.0350
 3738−Τ

 
0.9367
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Table 8.16: Comparison of performance for maxL minimization of IEEE 118 bus system 

Technique Best maxL    Average maxL    Worst maxL     CPU time (S) 

HTS 0.0506 0.0507 0.0510 288.8312 

 

 

                      Fig. 8.11. maxL convergence characteristics for IEEE 118 bus system 

8.4.3.4. Improvement of voltage profile 

In this case, the proposed HTS algorithm has been applied for improvement of voltage profile. 

Here, the population size ( ΡΝ ), elite size ( )ΕΝ  and the maximum iteration number ( maxΝ ) have 

been selected as 100, 10 and 100 respectively for this test system. The optimal values of control 

variables obtained from the proposed HTS algorithm are given in Table 8.17. The best, average 

and worst voltage deviation and average CPU time among 50 runs of solutions obtained from 
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proposed HTS algorithm are summarized in Table 8.18. The convergence characteristic obtained 

from proposed HTS algorithm for voltage deviation is shown in Fig. 8.12.  

Table 8.17: Optimal value of control variables obtained from HTS for IEEE 118 bus 

system for improvement of voltage profile  

Variable  Variable  Variable  Variable                            Variable 

1GΡ (MW) 
24.8354 

66GΡ (MW) 
386.8658 

6V  
0.9908 

70V  
0.9855 

5963−Τ  
0.9593 

4GΡ (MW)
 

27.3774
 69GΡ (MW)

 

431.2400
 8V

 

1.0155
 72V

 

0.9803
 6164−Τ

 

0.9845
 

6GΡ (MW)
 

7.4553
 70GΡ (MW)

 

47.0490
 10V

 

1.0500
 73V

 

0.9911
 6665−Τ

 

0.9348
 

8GΡ (MW)
 

23.1324
 72GΡ (MW)

 

27.1003
 12V

 
0.9912

 74V
 

0.9664
 6968−Τ

 

0.9346
 

10GΡ (MW)
 

406.4214
 73GΡ (MW)

 

14.1555
 15V

 

0.9697
 76V

 

0.9435
 8281−Τ

 

0.9357
 

12GΡ (MW)
 

188.1378
 74GΡ (MW)

 

19.9808
 18V

 

0.9734
 77V

 

1.0077
 5cQ

(Mvar)
 

-10.2461
 

15GΡ (MW)
 

14.8522
 76GΡ (MW)

 

69.3648
 19V

 

0.9647
 80V

 

1.0402
 34cQ

(Mvar)
 

0
 

18GΡ (MW)
 

36.5888
 77GΡ (MW)

 

87.9338
 24V

 
0.9924

 85V
 

0.9568
 37cQ

(Mvar)
 

-15.0288
 

19GΡ (MW)
 

19.6471
 80GΡ (MW)

 

220.4790
 25V

 

1.0500
 87V

 

1.0154
 44cQ

(Mvar)
 

7.9582
 

24GΡ (MW)
 

6.0058
 85GΡ (MW)

 

26.1360
 26V

 

1.0147
 89V

 

1.0047
 45cQ

(Mvar)
 

1.7116
 

25GΡ (MW)
 

240.1806
 87GΡ (MW)

 

53.1162
 27V

 

0.9685
 90V

 

0.9855
 46cQ

(Mvar)
 

-33.5173
 

26GΡ (MW)
 

301.7679
 89GΡ (MW)

 

173.7364
 31V

 

0.9678
 91V

 

0.9806
 48cQ

(Mvar)
 

7.6346
 

27GΡ (MW)
 

12.2519
 90GΡ (MW)

 

17.8891
 32V

 

0.9676
 92V

 

0.9838
 74cQ

(Mvar)
 

0
 

31GΡ (MW)
 

22.1487
 91GΡ (MW)

 

22.0689
 34V

 

0.9818
 99V

 

1.0106
 79cQ

(Mvar)
 

19.3213
 

32GΡ (MW)
 

56.7973
 92GΡ (MW)

 

242.4305
 36V

 

0.9754
 100V

 

0.9717
 82cQ

(Mvar)
 

33.4421
 

34GΡ (MW)
 

14.9005
 99GΡ (MW)

 

172.2366
 40V

 

0.9705
 103V

 

0.9556
 83cQ

(Mvar)
 

13.4003
 

36GΡ (MW)
 

44.6387
 100GΡ (MW)

 

111.5876
 42V

 
0.9853

 104V
 

0.9413
 105cQ

(Mvar)
 

0
 

40GΡ (MW)
 

21.6357
 103GΡ (MW)

 

11.6736
 46V

 

1.0055
 105V

 

0.9452
 107cQ

(Mvar)
 

-12.4021
 

42GΡ (MW)
 

15.6677
 104GΡ (MW)

 

77.6202
 49V

 

1.0251
 107V

 

0.9525
 110cQ

(Mvar)
 

7.4332
 

46GΡ (MW)
 

80.0593
 105GΡ (MW)

 

6 0.1407
 54V

 

0.9558
 110V

 

0.9587
 

Cost($/h)
 

70904.50
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49GΡ (MW)
 

179.8429
 107GΡ (MW)

 
12.8669

 55V

 

0.9517
 111V

 
0.9805

 Emission ( lb
/h)

 

451.7620
 

54GΡ (MW)
 

50.4990
 110GΡ (MW)

 
40.6254

 56V

 

0.9548
 112V

 
0.9755

 
powerloss 

(MW)
 

110.3291
 

55GΡ (MW)
 

32.2701
 111GΡ (MW)

 
68.1610

 59V

 

0.9855
 113V

 
0.9934

 
Voltage 

deviation 

(p.u.)
 

1.5955
 

56GΡ (MW)
 

39.2898
 112GΡ (MW)

 
78.7837

 61V

 

0.9951
 116V

 
1.0053

 maxL
 

0.0894
 

59GΡ (MW)
 

92.3657
 113GΡ (MW)

 
43.0954

 62V

 

0.9973
 58−Τ

 
0.9805

 
 

61GΡ (MW)
 

142.8751
 116GΡ (MW)

 
31.0410

 65V

 

1.0054
 2526−Τ

 

0.9616
 

 

62GΡ (MW)
 

81.2074
 1V  (p.u.)

 
0.9566

 66V

 

1.0500
 1730−Τ

 

0.9625
 

 

65GΡ (MW)
 

395.0630
 4V  (p.u.)

 
0.9984

 69V

 

1.0350
 3738−Τ

 

0.9369
 

 

Table 8.18: Comparison of performance for voltage deviation of IEEE 118 bus system 

Technique Best voltage 

deviation 

Average voltage 

deviation 

Worst voltage 

deviation 

CPU time 

(S) 

HTS 1.5955 1.5957 1.5961 287.3169 

 

 

           Fig. 8.12. Voltage deviation convergence characteristics for IEEE 118 bus system 

0 10 20 30 40 50 60 70 80 90 100
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

V
o
lt
a
g
e
 D

e
v
ia

ti
o
n

Iteration



  192 

8.5. Overview of Quasi-oppositional Differential Evolution algorithm 

Quasi-opposition-based learning was introduced by Rahnamayan et al [106] to improve 

candidate solution by considering current population as well as its quasi-opposite population at 

the same time. 

The process can be improved by starting with a closer i.e. fitter solution by simultaneously 

checking the quasi-opposite solution. By doing this, the fitter one (guess or quasi-opposite guess) 

may be chosen as an initial solution. The process starts with the closer of the two guesses. The 

same approach can be applied not only to the initial solution but also continuously to each 

solution in the current population. It is proved that a quasi-opposite number is usually closer than 

an opposite number to the solution. [106] 

8.5.1. Definition of opposite number and quasi-opposite number 

If x  be a real number between [ ]ublb, , its opposite number ( )ox  and its quasi-opposite number 

( )
qox  are defined as  

xlulbxo −+=                                                                                                                          (8.20) 

and 

( )







−+







 +
= xlulb

lulb
randxqo ,

2
                                                                                          (8.21)             

Similarly, this definition can be extended to higher dimensions [105] as stated in the next sub-

section. 

8.5.2. Definition of opposite point and quasi-opposite point 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space where [ ]iii ublbx ,∈  and ni ,...,2,1∈ . 

The opposite point  ( )onooo xxxX ,.....,, 21=  is completely defined by its components as in (8.22) 

iiioi xublbx −+=                                                                                                                     (8.22) 
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The quasi-opposite point  ( )
qonqoqoqo xxxX ,.....,, 21=  is completely defined by its components as 

in (8.23) 

( )







−+







 +
= iii

ii

qoi xlulb
lulb

randx ,
2

                                                                                   (8.23) 

By employing the definition of quasi-opposite point, the quasi-opposition-based optimization is 

defined in the following sub-section.  

8.5.3. Quasi-Opposition based optimization 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space i.e. a candidate solution. Assume 

( )•=f  is a fitness function which is used to measure the candidate’s fitness. According to the 

definition of the quasi-opposite point, ( )
qonqoqoqo xxxX ,.....,, 21=  is the quasi-opposite of 

( )nxxxX ,....,, 21= .  Now, if ( ) ( )XfXf qo <  (for a minimization problem), then point X  can be 

replaced with qoX ; otherwise, the process is continued with X . Hence, the point and its quasi-

opposite point are evaluated simultaneously in order to continue with the fitter one.  

8.5.4. Quasi-oppositional Differential evolution 

Here, the concept of the quasi-opposition-based learning [106] is incorporated in differential 

evolution. The original DE is chosen as a parent algorithm and the quasi-opposition-based ideas 

are embedded in DE. Fig. 2.3 shows the flowchart of QODE algorithm. 
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Start 

Specify the DE parameters 

Set Iter.=1 

Generate and evaluate initial populations and its quasi-opposite members 

Set target vector 

Generate mutant vector by mutation operation 

Generate trial vector by crossover operation 

Evaluate cost of trial 

The best vector survives by selection operation 

Iter. < Max. 

Iter. 
Iter.=Iter.+1 

Yes 

Stop 

No 

    Fig. 8.13. Flowchart of QODE 

If cost function value of quasi-opposite member is less than the cost function value of 

initial population replace the initial population with its quasi-opposite member 

Generate and evaluate the quasi-opposite members of the best vector 

If cost function value of quasi-opposite member is less than the cost function 

value of the best vector replace the best vector with its quasi-opposite 

member 
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8.6. Simulation and Results of QODE and DE algorithm 

To verify the effectiveness and performance of the proposed QODE and DE for solving four 

objectives OPF problems, IEEE 30-bus, 57-bus and 118-bus test systems have been considered. 

Programs have been written in MATLAB-7 language and executed on a 3.0 GHz Pentium-IV 

personal computer. The results obtained from proposed QODE and DE method are compared 

with those obtained from other evolutionary methods reported in the literature. 

8.6.1. IEEE 30-bus system 

The line data, bus data, generator data and the minimum and maximum limits for the control 

variables have been adapted from [122]. The system has six generators at buses 1, 2, 5, 8, 11 and 

13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27. In 

addition, shunt VAR compensating devices are assumed to be connected at bus bars 10, 12, 15, 

17, 20, 21, 23, 24 and 29. as in [129]. The generator characteristics are given in Table A-23 in 

the appendix. The total system active power demand is 2.834 p.u. at 100 MVA base. In this 

study, 50 test runs are performed to solve the OPF problem for different single objective and 

multi-objective functions.  

8.6.1.1.Minimization of fuel cost 

The proposed QODE and DE approach are applied for minimization of fuel cost as the objective 

function. Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the 

maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for 

this test system. The optimal values of control variables obtained from the proposed QODE are 

given in Table 19. The best, average and worst fuel cost and average CPU time among 50 runs of 

solutions obtained from proposed QODE and DE are summarized in Table 20. The minimum 

fuel cost obtained from biogeography based optimization (BBO) [118], differential evolution 

(DE) [117], particle swarm optimization (PSO) [129], improved genetic algorithm (IGA) [113], 

improved particle swarm optimization (IPSO) [115] and modified differential evolution (MDE) 

[125] are also shown in Table 20. The convergence characteristic obtained from proposed QODE 

and DE for cost minimization is shown in Fig. 8.14. It is seen from Table 20, that minimum cost 

obtained from QODE is the lowest among all other methods. 
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                   Fig. 8.14. Cost convergence characteristics for IEEE 30 bus system 
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Table 8.19: Optimal value of control variables obtained from QODE for IEEE 30 bus 

system for different cases 

Control Variable Fuel cost 

minimization 

Emission 

minimization 

Voltage stability 

enhancement 

Improvement of 

Voltage Profile 

1GΡ (MW) 190.31 115.68 113.20 158.60 

2GΡ (MW)
 

47.90 72.43 62.13 52.56 

5GΡ (MW)
 

19.61 38.75 47.17 39.84 

8GΡ (MW)
 

11.25 32.96 35.00 14.51 

11GΡ (MW)
 

10.000 29.53 19.10 10.00 

13GΡ (MW)
 

12.000 0 12.00 14.50 

1V  (p.u.)
 

1.0500 1.0500 1.0500 1.0500 

2V  (p.u.)
 

1.0338 1.0334 1.0337 1.0339 

5V  (p.u.)
 

1.0058 1.0053 1.0059 1.0060 

8V  (p.u.)
 

1.0230 1.0227 1.0233 1.0231 

11V  (p.u.)
 

1.0913 1.0908 1.0914 1.0911 

13V  (p.u.)
 

1.0400 1.0404 1.0398 1.0399 

96−Τ
 

1.0155 0.9946 1.0069 1.0157 

106−Τ
 

0.9629 0.9953 0.9820 1.0274 

124−Τ
 

1.0129 0.9844 0.9913 1.0087 

2728−Τ
 

0.9581 1.0044 1.0095 0.9817 

10cQ (Mvar)
 

4.12 0.5914 5.0000 0.95 

12cQ (Mvar)
 

1.15 0.9519 5.0000 0.68 

15cQ (Mvar)
 

4.99 1.7289 2.4663 3.01 

17cQ (Mvar)
 

4.80 2.9142 0 0 

20cQ (Mvar)
 

0.08 3.5631 5.0000 5.0000 

21cQ (Mvar)
 

4.93 0.8467 5.0000 5.0000 

23cQ (Mvar)
 

0.38 1.4583 2.1800 2.1800 

24cQ (Mvar)
 

1.06 2.8836 3.7715 3.7715 

29cQ (Mvar)
 

4.85 2.5745 5.0000 5.0000 

FuelCost ($/h)
 

793.79 859.26 866.98 821.07 

Emission(ton/h)
 

0.4080 0.1961 0.2476 0.3201 

Loss Voltage(MW)
 

7.67 5.94 5.20 6.61 

Voltage deviation (p.u.) 0.5405 0.3535 0.8706 0.0615 

maxL  0.0489 0.0729 0.0202 0.0641 



  198 

 

Table 8.20: Comparison of performance for cost minimization of IEEE 30 bus system 

Techniques Best cost 

($/h) 

Average cost 

($/h) 

Worst cost 

($/h) 

CPU time (S) 

QODE 793.79 793.84 793.91 38.2537 

DE 797.07 796.81 796.93 36.0264 

BBO [118] 799.11 - - - 

DE    [117] 799.28 - - - 

PSO  [129] 800.41 - - - 

IGA  [113] 800.80 - - - 

IPSO [115] 801.97 - - - 

MDE [125] 802.37 - - - 

 

8.6.1.2.Minimization of emission 

The proposed QODE and DE approach are applied for minimization of emission as the objective 

function. Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the 

maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for 

this test system. The optimal values of control variables obtained from the proposed QODE are 

given in Table 8.19. The best, average and worst emission and average CPU time among 50 runs 

of solutions obtained from proposed QODE and DE are summarized in Table 8.21. The 

minimum emission obtained from improved particle swarm optimization (IPSO) [115] is also 

shown in Table 8.21. The convergence characteristic obtained from proposed QODE and DE for 

emission minimization is shown in Fig. 8.15. It is seen from Table 8.21, that minimum emission 

obtained from QODE is the lowest among all other methods. 
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                      Fig. 8.15. Emission convergence characteristics for IEEE 30 bus system 

Table 8.21: Comparison of performance for emission minimization of IEEE 30 bus system 

Techniques Best emission 

(ton/h) 

Average emission 

(ton/h) 

Worst emission 

(ton/h) 

CPU time 

(S) 

QODE 0.1961 0.1965 0.1971 40.5756 

DE 0.2053 0.2058 0.2064 37.9302 

IPSO [115] 0.2058 - - - 

 

8.6.1.3. Enhancement of voltage stability 

In this case, the proposed QODE and DE approach are applied for enhancement of voltage 

stability i.e. minimization of maxL . Here, the population size ( ΡΝ ), scaling factor )( FS , crossover 

rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 

respectively for this test system. The optimal values of control variables obtained from the 
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proposed QODE are shown in Table 8.19. The best, average and worst maxL  and average CPU 

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in 

Table 8.22. The maxL obtained from BBO [118] and improved particle swarm optimization 

(IPSO) [115] are also shown in Table 8.22. The convergence characteristic obtained from 

proposed QODE and DE for maxL  minimization is shown in Fig. 8.16. It is seen from Table 8.22 

that the value of maxL  obtained from QODE is the lowest among all other methods. 

 

               Fig. 8.16. maxL  convergence characteristics for IEEE 30 bus system 

Table 8.22: Comparison of performance for maxL minimization of IEEE 30 bus system 

Techniques Best maxL  Average maxL  Worst maxL  CPU time (S) 

QODE 0.0202 0.0206 0.02012 39.2357 

DE 0.0235 0.0238 0.0243 37.4235 

BBO [118] 0.09803 - - - 

IPSO [115] 0.1037 - - - 
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8.6.1.4.Improvement of voltage profile 

In this case, the proposed QODE and DE approach are applied for improvement of voltage 

profile. Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the 

maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for 

this test system. The optimal values of control variables obtained from the proposed QODE are 

given in Table 8.19. The best, average and worst voltage deviation and average CPU time among 

50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.23. The 

voltage deviation obtained from BBO [118] and faster evolutionary algorithm (FEA) [119] is 

also shown in Table 8.23. The convergence characteristic obtained from proposed QODE and 

DE for voltage deviation is shown in Fig. 8.17. It is seen from Table 8.23, that voltage deviation 

obtained from QODE is the lowest among all other methods. 

 

               Fig. 8.17. Voltage deviation convergence characteristics for IEEE 30 bus system 
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Table 8.23: Comparison of performance for voltage deviation of IEEE 30 bus system 

Techniques Best voltage 

deviation 

Average voltage 

deviation 

Worst voltage 

deviation 

CPU time 

(S) 

QODE 0.0615 0.0618 0.0625 46.9973 

DE 0.0627 0.0629 0.0633 45.0637 

BBO [118] 0.0951 - - - 

FEA  [119] 0.1052 - - - 

 

8.6.2. IEEE 57-bus system 

The standard IEEE 57-bus system consists of 80 transmission lines, seven generators at buses 1, 

2, 3, 6, 8, 9, 12 and 15 branches under load tap setting transformer branches. The reactive power 

sources are considered at buses 18, 25 and 53.  The system line data, bus data, generator data and 

the minimum and maximum limits for the control variables have been adapted from [127] and 

[130]. The upper and lower limits of reactive power sources and transformer tap settings are 

taken from [128]. The generator characteristics are given in Table A-24 in the appendix. The 

total system active power demand is 12.508 p.u. and reactive power demand is 3.364 p.u. at 100 

MVA base. In this study, 50 test runs are performed to solve the OPF problem for different 

single objective and multi-objective functions.  

8.6.2.1.Minimization of fuel cost  

The proposed QODE and DE are applied for minimization of fuel cost as the objective function. 

Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the maximum 

iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for this test 

system. The optimal values of control variables obtained from the proposed QODE are given in 

Table 8.24. The best, average and worst fuel cost and average CPU time among 50 runs of 

solutions obtained from proposed QODE and DE are summarized in Table 8.25. The 

convergence characteristic obtained from proposed QODE and DE for minimum fuel cost 

solution is shown in Fig. 8.18. 
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Table 8.24: Optimal value of control variables obtained from QODE for IEEE 57 bus 

system for different cases 

Control 

variable 

Fuel Cost 

Minimization 

Emission 

Minimization 

Voltage 

stability 

enhancement 

Improvement            

of voltage 

profile 

Minimization 

of 5F  

Minimization 

of 6F  

1GΡ (MW) 
592.76 304.02 522.37 589.66 417.72 418.87 

2GΡ (MW)
 

0
 

0
 

0
 

0
 

0
 

0
 

3GΡ (MW)
 

97.62
 

172.65
 

35.73
 

16.35
 

112.00
 

85.56
 

6GΡ (MW)
 

0
 

0
 

0
 

0
 

0
 

0
 

8GΡ (MW)
 

136.25
 

341.89
 

523.20
 

482.32
 

270.71
 

284.92
 

9GΡ (MW)
 

0
 

0
 

0
 

0
 

0
 

0
 

12GΡ (MW)
 

460.61
 

461.89
 

201.67
 

196.53
 

479.25
 

488.58
 

1V  (p.u.)
 

1.0400
 

1.0400
 

1.0400
 

1.0400
 

1.0400
 

1.0400
 

2V  (p.u.)
 

1.0100
 

1.0104
 

1.0103
 

1.0107
 

1.0103
 

1.0102
 

3V  (p.u.)
 

0.9850
 

0.9855
 

0.9853
 

0.9856
 

0.9852
 

0.9854
 

6V  (p.u.)
 

0.9801
 

0.9806
 

0.9801
 

0.9804
 

0.9804
 

0.9802
 

8V  (p.u.) 
1.0052 1.0057 1.0049 1.0055 1.0053 1.0051 

9V (p.u.)
 

0.9800
 

0.9804
 

0.9805
 

0.9806
 

0.9801
 

0.9802
 

12V (p.u.)
 

1.0153
 

1.0148
 

1.0151
 

1.0153
 

1.0149
 

1.0151
 

184−Τ
 

0.9700
 

1.0987
 

0.9801
 

0.9831
 

1.0975
 

1.0983
 

184−Τ
 

0.9780
 

1.0820
 

0.9526
 

0.9510
 

1.0810
 

1.0816
 

2021−Τ
 

1.0430
 

0.9221
 

0.9501
 

0.9507
 

0.9212
 

0.9215
 

2624−Τ
 

1.0430
 

1.0171
 

1.0045
 

1.0043
 

1.0172
 

1.0170
 

297−Τ
 

0.9670
 

0.9960
 

0.9777
 

0.9769
 

0.9954
 

0.9953
 

3234−Τ
 

0 .9750
 

1.0999
 

0.9138
 

0.9139
 

1.0993
 

1.0995
 

4111−Τ
 

0.9550
 

1.0750
 

0.9465
 

0.9461
 

1.0761
 

1.0757
 

4515−Τ
 

0.9550
 

0.9541
 

0.9269
 

0.9258
 

0.9543
 

0.9542
 

4614−Τ
 

0.9000
 

0.9370
 

0.9962
 

0.9957
 

0.9367
 

0.9365
 

5110−Τ
 

0.9300
 

1.0160
 

1.0385
 

1.0379
 

1.0158
 

1.0161
 

4913−Τ
 

0.8950
 

1.0998
 

0.9052
 

0.9053
 

1.0996
 

1.0994
 

4311−Τ
 

0.9580
 

1.0980
 

0.9240
 

0.9229
 

1.0974
 

1.0981
 

5640−Τ
 

0.9580
 

0.9799
 

0.9875
 

0.9868
 

0.9796
 

0.9787
 

5739−Τ
 

0.9800
 

1.0246
 

1 .0098
 

 1.0095
 

1.0244
 

1.0243
 

559−Τ
 

0.9400
 

1.0371
 

0.9373
 

0.9367
 

1.0374
 

1.0369
 

18cQ  (Mvar)
 

4.0117
 

0.2339
 

3.523
 

5.7907
 

0
 

10.0000
 

25cQ  (Mvar)
 

4.0184 2.8458 4.0004 0.6058 0.0361 0.6325 
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53cQ  (Mvar)
 

1.7637
 

1.2245
 

3.1840
 

5.8095
 

0
 

5.2532
 

Cost ($/h)
 

7640.00
 

13181.08
 

20833.36
 

18556.16
 

10509.89
 

10910.29
 

Emission 

(ton/h) 

2.8086 1.7003 2.8134 3.0945 2.0003 2.0499 

power loss 

(MW)
 

36.4534
 

29.6432
 

32.1714
 

34.0597
 

28.8854
 

27.1294
 

voltage 

deviation  

(p.u.) 

1.1486 5.3719 1.1228 0.6725 4.3066 3.8625 

maxL  
0.1129 0.4161 0.0987 0.1362 0.2828 0.2209 

 

Table 8.25: Comparison of performance for cost minimization of IEEE 57 bus system 

Techniques Best cost 

($/h) 

Average cost 

($/h) 

Worst cost 

($/h) 

CPU time (S) 

QODE 7640.00 7642.03 7644.83 47.8745 

DE   7680.42 7681.75 76883.67 45.6595 

 

 

                         Fig. 8.18. Cost convergence characteristics for IEEE 57 bus system 
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8.6.2.2.Minimization of emission 

The proposed QODE and DE are applied for minimization of emission as the objective function. 

Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the maximum 

iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for this test 

system. The optimal values of control variables obtained from the proposed QODE are given in 

Table 8.24. The best, average and worst emission and average CPU time among 50 runs of 

solutions obtained from proposed QODE and DE are summarized in Table 8.26. The 

convergence characteristic obtained from proposed QODE and DE for emission minimization is 

shown in    Fig. 8.19.  

Table 8.26: Comparison of performance for emission minimization of IEEE 57 bus system 

Techniques Best emission 

(ton/h) 

Average emission 

(ton/h) 

Worst emission 

(ton/h) 

CPU time 

(S) 

QODE   1.7003   1.7006   1.7011 98.0136 

DE   1.7187   1.7191 1.7195 95.3025 

 

 

                     Fig. 8.19. Emission convergence characteristics for IEEE 57 bus system 
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8.6.2.3.Enhancement of voltage stability 

In this case, the proposed QODE and DE are applied for enhancement of voltage stability i.e. 

minimization of maxL . Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC

and the maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 

respectively for this test system. The optimal values of control variables obtained from the 

proposed QODE are given in Table 8.24. The best, average and worst maxL  and average CPU 

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in           

Table 8.27. The convergence characteristic obtained from proposed QODE and DE for maxL  

minimization is shown in Fig. 8.20.  

Table 8.27: Comparison of performance for maxL minimization of IEEE 57 bus system 

Techniques Best maxL  Average maxL  Worst maxL  CPU time (S) 

QODE 0.0987 0.0989 0.0992 103.6524 

DE 0.1036 0.1038 0.1041 101.4525 

 

 

                    Fig. 8.20. maxL convergence characteristics for IEEE 57 bus system 
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8.6.2.4.Improvement of voltage profile 

In this case, the proposed QODE and DE approach are applied for improvement of voltage 

profile. Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the 

maximum iteration number ( maxΝ ) have been selected as 100, 1.0, 1.0 and 100 respectively for 

this test system. The optimal values of control variables obtained from the proposed QODE are 

given in Table 8.24. The best, average and worst voltage deviation and average CPU time among 

50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.28. The 

convergence characteristic obtained from proposed QODE and DE for voltage deviation is 

shown in Fig. 8.21. 

Table 8.28: Comparison of performance for voltage deviation of IEEE 57 bus system 

Techniques Best voltage 

deviation 

Average voltage 

deviation 

Worst voltage 

deviation 

CPU time 

(S) 

QODE 0.6725 0.6728 0.6732 98.9354 

DE 0.7041 0.7044 0.7047 96.0439 

 

 

          Fig. 8.21. Voltage deviation convergence characteristics for IEEE 57 bus system 

0 10 20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

V
o
lt
a
g
e
 D

e
v
ia

ti
o
n

Iteration

QODE

DE



  208 

8.6.3. IEEE 118-bus system 

The standard IEEE 118-bus system consists of 186 transmission lines, 54 generator buses, 64 

load buses, 9 branches under load tap setting transformer and 14 reactive power sources. The 

system line data, bus data, generator data and the minimum and maximum limits for the control 

variables have been adapted from [101] and [132]. The upper and lower limits of reactive power 

sources and transformer tap settings are taken from [101]. The generator data has been taken 

from [132]. The total system active power demand is 42.4200 p.u. and reactive power demand is 

14.3800 p.u. at 100 MVA base. In this study, 50 test runs are performed to solve different single 

objective and multi-objective OPF problems by using QODE.  

 

8.6.3.1.Minimization of fuel cost 

The proposed QODE and DE are applied for minimization of fuel cost as the objective function. 

Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the maximum 

iteration number ( maxΝ ) have been selected as 200, 1.0, 1.0 and 100 respectively for this test 

system. The optimal values of control variables obtained from the proposed QODE are given in 

Table 8.29. The best, average and worst fuel cost and average CPU time among 50 runs of 

solutions obtained from proposed QODE and DE are summarized in Table 8.30. The 

convergence characteristic obtained from proposed QODE and DE for minimum fuel cost 

solution is shown in Fig. 8.22.  
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                   Fig. 8.22. Cost convergence characteristics for IEEE 118 bus system 

 

Table 8.30: Comparison of performance for cost minimization of IEEE 118 bus system 

Techniques Best cost 

($/h) 

Average cost 

($/h) 

Worst cost 

($/h) 

CPU time (S) 

QODE 68110.35 68111.84 68114.16 288.6257 

DE 68292.79 68294.27 68297.02 286.0725 
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Table 8.29: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for cost minimization  

Variable  Variable  Variable  Variable  Variable  

1GΡ (MW) 
29.2109 

66GΡ (MW) 
381.8617 

6V  
0.9903 

70V  
0.9854 

5963−Τ  
0.9597 

4GΡ (MW)
 

27.7608
 69GΡ (MW)

 
332.5110

 8V
 

1.0151
 72V

 
0.9801

 6164−Τ
 

0.9846
 

6GΡ (MW)
 

12.7737
 70GΡ (MW)

 
0

 10V
 

1.0500
 73V

 
0.9909

 6665−Τ
 

0.9351
 

8GΡ (MW)
 

14.1875
 72GΡ (MW)

 
11.2969

 12V
 

0.9904
 74V

 
0.9663

 6968−Τ
 

0.9347
 

10GΡ (MW)
 

422.6864
 73GΡ (MW)

 
15.7119

 15V
 

0.9692
 76V

 
0.9430

 8281−Τ
 

0.9356
 

12GΡ (MW)
 

110.9571
 74GΡ (MW)

 
0

 18V
 

0.9733
 77V

 
1.0071

 5cQ (Mvar)
 

36.6145
 

15GΡ (MW)
 

11.3817
 76GΡ (MW)

 
0

 19V
 

0.9648
 80V

 
1.0403

 34cQ

(Mvar)
 

13.5245
 

18GΡ (MW)
 

59.5803
 77GΡ (MW)

 
55.6755

 24V
 

0.9921
 85V

 
0.9565

 37cQ

(Mvar)
 

-12.7591
 

19GΡ (MW)
 

0
 80GΡ (MW)

 
232.4882

 25V
 

1.0500
 87V

 
1.0151

 44cQ

(Mvar)
 

2.8039
 

24GΡ (MW)
 

28.1248
 85GΡ (MW)

 
0

 26V
 

1.0151
 89V

 
1.0048

 45cQ

(Mvar)
 

0.5621
 

25GΡ (MW)
 

198.2669
 87GΡ (MW)

 
163.8951

 27V
 

0.9683
 90V

 
0.9853

 46cQ

(Mvar)
 

-17.1541
 

26GΡ (MW)
 

291.1758
 89GΡ (MW)

 
210.0919

 31V
 

0.9672
 91V

 
0.9801

 48cQ

(Mvar)
 

3.9863
 

27GΡ (MW)
 

12.7930
 90GΡ (MW)

 
11.1843

 32V
 

0.9678
 92V

 
0.9837

 74cQ

(Mvar)
 

11.1285
 

31GΡ (MW)
 

20.0211
 91GΡ (MW)

 
24.6972

 34V
 

0.9815
 99V

 
1.0102

 79cQ

(Mvar)
 

2.4003
 

32GΡ (MW)
 

0
 92GΡ (MW)

 
0

 36V
 

0.9754
 100V

 
0.9710

 82cQ

(Mvar)
 

37.9876
 

34GΡ (MW)
 

0
 99GΡ (MW)

 
176.6940

 40V
 

0.9701
 103V

 
0.9557

 83cQ

(Mvar)
 

9.1203
 

36GΡ (MW)
 

0
 100GΡ (MW)

 
180.4911

 42V
 

0.9853
 104V

 
0.9411

 105cQ

(Mvar)
 

4.0877
 

40GΡ (MW)
 

12.1452
 103GΡ (MW)

 
0

 46V
 

1.0049
 105V

 
0.9443

 107cQ

(Mvar)
 

5.7172
 

42GΡ (MW)
 

21.9355
 104GΡ (MW)

 
0

 49V
 

1.0247
 107V

 
0.9521

 110cQ

(Mvar)
 

18.2214
 

46GΡ (MW)
 

49.4955
 105GΡ (MW)

 
0

 54V
 

0.9553
 110V

 
0.9588

 
Cost ($/h)

 
68110.35

 

49GΡ (MW)
 

70.0794
 107GΡ (MW)

 
16.8557

 55V
 

0.9517
 111V

 
0.9802

 
Emission 

( lb /h)
 

405.9932
 

54GΡ (MW)
 

241.5004
 110GΡ (MW)

 
28.6788

 56V
 

0.9545
 112V

 
0.9753

 
power loss 

(MW)
 

104.8402
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55GΡ (MW)
 

0
 111GΡ (MW)

 
81.7905

 59V
 

0.9851
 113V

 
0.9931

 
voltagedevi

ation (p.u.)
 

1.8182
 

56GΡ (MW)
 

0
 112GΡ (MW)

 
59.7296

 61V
 

0.9953
 116V

 
1.0054

 maxL
 

0.1046
 

59GΡ (MW)
 

129.0256
 113GΡ (MW)

 
57.3315

 62V
 

0.9975
 58−Τ

 
0.9816

 
  

61GΡ (MW)
 

140.2808
 116GΡ (MW)

 
25.0041

 65V
 

1.0051
 2526−Τ

 
0.9605

 
  

62GΡ (MW)
 

51.2464
 1V  (p.u.)

 
0.9563

 66V
 

1.0500
 1730−Τ

 
0.9614

 
  

65GΡ (MW)
 

381.8979
 4V  (p.u.)

 
0.9981

 69V
 

1.0350
 3738−Τ

 
0.9367

 
  

 

8.6.3.2.Minimization of emission 

The proposed QODE and DE are applied for minimization of emission as the objective function. 

Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the maximum 

iteration number ( maxΝ ) have been selected as 200, 1.0, 1.0 and 100 respectively for this test 

system. The optimal values of control variables obtained from the proposed QODE are given in 

Table 8.31. The best, average and worst emission and average CPU time among 50 runs of 

solutions obtained from proposed QODE and DE are summarized in Table 8.32. The 

convergence characteristic obtained from proposed QODE and DE for minimum emission 

solution is shown in Fig. 8.23.  

Table 8.31: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for emission minimization  

Variable  Variable  Variable  Variable  Variable  

1GΡ (MW) 
5.1743 

66GΡ (MW) 
388.5257 

6V  
0.9905 

70V  
0.9857 

5963−Τ  
0.9596 

4GΡ (MW)
 

25.8042
 69GΡ (MW)

 
43.0101

 8V
 

1.0147
 72V

 
0.9808

 6164−Τ
 

0.9855
 

6GΡ (MW)
 

7.5464
 70GΡ (MW)

 
0

 10V
 

1.0500
 73V

 
0.9915

 6665−Τ
 

0.9357
 

8GΡ (MW)
 

11.9135
 72GΡ (MW)

 
28.3154

 12V
 

0.9906
 74V

 
0.9667

 6968−Τ
 

0.9348
 

10GΡ (MW)
 

401.9364
 73GΡ (MW)

 
17.2548

 15V
 

0.9698
 76V

 
0.9433

 8281−Τ
 

0.9356
 

12GΡ (MW)
 

121.5883
 74GΡ (MW)

 
0

 18V
 

0.9735
 77V

 
1.0072

 5cQ

(Mvar)
 

-17.7742
 

15GΡ (MW)
 

22.5734
 76GΡ (MW)

 
0

 19V
 

0.9647
 80V

 
1.0401

 34cQ

(Mvar)
 

3.1362
 

18GΡ (MW)
 

82.5876
 77GΡ (MW)

 
0

 24V
 

0.9929
 85V

 
0.9568

 37cQ

(Mvar)
 

-8.2974
 

19GΡ (MW)
 

0
 80GΡ (MW)

 
175.0243

 25V
 

1.0500
 87V

 
1.0155

 44cQ

(Mvar)
 

6.9876
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24GΡ (MW)
 

20.3710
 85GΡ (MW)

 
0

 26V
 

1.0147
 89V

 
1.0054

 45cQ

(Mvar)
 

5.8355
 

25GΡ (MW)
 

105.9800
 87GΡ (MW)

 
227.5886

 27V
 

0.9686
 90V

 
0.9857

 46cQ

(Mvar)
 

-35.4268
 

26GΡ (MW)
 

303.1171
 89GΡ (MW)

 
297.4263

 31V
 

0.9678
 91V

 
0.9806

 48cQ

(Mvar)
 

10.0909
 

27GΡ (MW)
 

8.5042
 90GΡ (MW)

 
14.8003

 32V
 

0.9677
 92V

 
0.9838

 74cQ

(Mvar)
 

8.0010
 

31GΡ (MW)
 

13.8602
 91GΡ (MW)

 
43.6077

 34V
 

0.9816
 99V

 
1.0107

 79cQ

(Mvar)
 

15.6264
 

32GΡ (MW)
 

0
 92GΡ (MW)

 
0

 36V
 

0.9755
 100V

 
0.9713

 82cQ

(Mvar)
 

95.1279
 

34GΡ (MW)
 

0
 99GΡ (MW)

 
151.7637

 40V
 

0.9707
 103V

 
0.9567

 83cQ

(Mvar)
 

6.7833
 

36GΡ (MW)
 

0
 100GΡ (MW)

 
287.3936

 42V
 

0.9853
 104V

 
0.9414

 105cQ

(Mvar)
 

13.0101
 

40GΡ (MW)
 

16.2087
 103GΡ (MW)

 
0

 46V
 

1.0055
 105V

 
0.9445

 107cQ

(Mvar)
 

-4.5025
 

42GΡ (MW)
 

15.0353
 104GΡ (MW)

 
0

 49V
 

1.0254
 107V

 
0.9529

 110cQ

(Mvar)
 

20.6641
 

46GΡ (MW)
 

99.6463
 105GΡ (MW)

 
0

 54V
 

0.9559
 110V

 
0.9583

 
Cost 

($/h)
 

70467.71
 

49GΡ (MW)
 

224.6444
 107GΡ (MW)

 
10.1385

 55V
 

0.9517
 111V

 
 0.9805

 
Emission

( lb /h)
 

298.6965
 

54GΡ (MW)
 

207.6887
 110GΡ (MW)

 
45.3030

 56V
 

0.9545
 112V

 
 0.9752

 
power 

loss 

(MW)
 

162.2439
 

55GΡ (MW)
 

0
 111GΡ (MW)

 
97.4258

 59V
 

0.9858
 113V

 
 0.9937 Voltage           

deviation

(p.u.) 

 

2.0173
 

56GΡ (MW)
 

0
 112GΡ (MW)

 
80.5707

 61V
 

0.9956
 116V

 
 1.0055 

maxL
 

0.1075
 

59GΡ (MW)
 

72.7896
 113GΡ (MW)

 
94.4714

 62V
 

0.9977
 58−Τ

 

 0.9819   

61GΡ (MW)
 

191.9093 
116GΡ  (MW)

 
30.7140

 65V
 

1.0053
 2526−Τ

 

 0.9625
 

 

62GΡ (MW)
 

67.9450
 1V  (p.u.)

 
0.9564

 66V
 

1.0500
 1730−Τ

 

 0.9607  

65GΡ (MW)
 

389.3891
 4V  (p.u.)

 
0.9987

 69V
 

1.0350
 3738−Τ

 

 0.9369  
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                     Fig. 8.23. Emission convergence characteristics for IEEE 118 bus system 

Table 8.32: Comparison of performance for emission minimization of IEEE 118 bus system 

Techniques Best emission 

( lb /h)     

Average emission 

( lb /h)     

Worst emission  

( lb /h)     

CPU time 

(S) 

QODE 298.6965 300.4253 302.0186 287.8752 

DE 314.0861 316.9684               318.7568 285.3085 

 

8.6.3.3.Enhancement of voltage stability 

In this case, the proposed QODE and DE are applied for enhancement of voltage stability i.e. 

minimization of maxL . Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC

and the maximum iteration number ( maxΝ ) have been selected as 200, 1.0, 1.0 and 100 

respectively for this test system. The optimal values of control variables obtained from the 

proposed QODE are given in Table 8.33. The best, average and worst maxL  and average CPU 

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in 

Table 8.34. The convergence characteristic obtained from proposed QODE and DE for maxL  

minimization is shown in Fig. 8.24. 
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Table 8.33: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for voltage stability enhancement  

Variable  Variable                          Variable  Variable  Variable  

1GΡ (MW) 
15.1000 

66GΡ (MW) 
382.4401 

6V  
0.9903 

70V  
0.9856 

5963−Τ  
 0.9596 

4GΡ (MW) 
26.7207 

69GΡ (MW) 
362.3144 

8V  
1.0151 

72V  
0.9805 

6164−Τ  
0.9848 

6GΡ (MW) 
14.9317 

70GΡ (MW) 
70.9164 

10V  
1.0500 

73V  
0.9911 

6665−Τ  
0.9345 

8GΡ (MW) 
20.3994 

72GΡ (MW) 
12.4464 

12V  0.9904 
74V  

0.9667 
6968−Τ  

0.9343 

10GΡ (MW) 
404.2671 

73GΡ (MW) 
9.3132 

15V  
0.9693 

76V  
0.9426 

8281−Τ  
0.9366 

12GΡ (MW) 
262.3616 

74GΡ (MW) 
19.9994 

18V  
0.9736 

77V  
1.0071 

5cQ (Mvar) 
-24.0515 

15GΡ (MW) 
27.5909 

76GΡ (MW) 
30.7464 

19V  
0.9648 

80V  
1.0403 

34cQ (Mvar) 
0 

18GΡ (MW) 
91.2769 

77GΡ (MW) 
84.0866 

24V  0.9925 
85V  

0.9569 
37cQ (Mvar) 

-17.9176 

19GΡ (MW) 
14.3799 

80GΡ (MW) 
293.6501 

25V  
1.0500 

87V  
1.0152 

44cQ (Mvar) 
0.0290 

24GΡ (MW) 
17.4469 

85GΡ (MW) 
12.2924 

26V  
1.0146 

89V  
1.0054 

45cQ (Mvar) 
5.4166 

25GΡ (MW) 
148.8825 

87GΡ (MW) 
132.3614 

27V  
0.9682 

90V  
0.9853 

46cQ (Mvar) 
-27.6219 

26GΡ (MW) 
303.1802 

89GΡ (MW) 
299.9668 

31V  
0.9678 

91V  
0.9806 

48cQ (Mvar) 
11.3379 

27GΡ (MW) 
15.0559 

90GΡ (MW) 
16.7316 

32V  
0.9676 

92V  
0.9833 

74cQ (Mvar) 
0 

31GΡ (MW) 
27.2856 

91GΡ (MW) 
44.3270 

34V  
09814 

99V  
1.0106 

79cQ (Mvar) 
2.2228   

32GΡ (MW) 
90.4919 

92GΡ (MW)       
196.5727      

36V  
0.9755 

100V  
0.9712 

82cQ (Mvar) 
110.8863 

34GΡ (MW) 
25.5560 

99GΡ (MW)       
133.9130    

40V  
0.9702 

103V  
0.9558 

83cQ (Mvar) 
0.0138 

36GΡ (MW) 
45.1288 

100GΡ (MW)     
267.0140      

42V  0.9853 
104V  

0.9416 
105cQ (Mvar) 

0 

40GΡ (MW) 
9.0982 

103GΡ (MW) 
9.8975 

46V  
1.0057 

105V  
0.9444 

107cQ (Mvar) 
-14.6412 

42GΡ (MW) 
19.9417 

104GΡ (MW) 
52.2055 

49V  
1.0255 

107V  
0.9526 

110cQ (Mvar)           
5.3472 
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46GΡ (MW) 
57.8948 

105GΡ (MW) 
87.4796 

54V  
0.9559 0.9587 

110V                 

 

Cost ($/h) 72213.61 

49GΡ (MW) 
90.3132 

107GΡ (MW) 
17.3746 

55V  
0.9514 

111V  0.9803 Emission( lb
/h) 

398.4442 

54GΡ (MW) 
61.5296 

110GΡ (MW) 
43.0175 

56V  
0.9545 

112V  0.9754 Power loss 

(MW) 

182.4603 

55GΡ (MW) 
56.8374 

111GΡ (MW) 
58.5205 

59V  
0.9857 

113V  
0.9932 voltage 

deviation 

(p.u.) 

1.7401 

56GΡ (MW) 
37.4630 

112GΡ (MW) 
79.7727 

61V  
0.9956 

116V  
1.0053 

maxL  
0.0506 

59GΡ (MW) 
167.2125 

113GΡ (MW) 
55.7530 

62V  
0.9975 

58−Τ  
0.9806   

61GΡ (MW) 
73.5977 

116GΡ (MW) 
30.6073 

65V  
1.0053 

2526−Τ  
0.9614   

62GΡ (MW) 
69.7190 

1V  (p.u.) 0.9567 
66V  

1.0500 
1730−Τ  

0.9608   

65GΡ (MW) 
394.8187 

4V  (p.u.) 0.9984 
69V  

1.0350 
3738−Τ  

0.9367   

 

Table 8.34: Comparison of performance for maxL minimization of IEEE 118 bus system 

Techniques Best maxL  Average maxL  Worst maxL  CPU time (S) 

QODE 0.0506 0.0507 0.0510 288.8312 

DE 0.0587 0.0591 0.0593 287.0318 
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                          Fig. 8.24. maxL  convergence characteristics for IEEE 118 bus system 

8.6.3.4.Improvement of voltage profile 

In this case, the proposed QODE and DE approach are applied for improvement of voltage 

profile. Here, the population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the 

maximum iteration number ( maxΝ ) have been selected as 200, 1.0, 1.0 and 100 respectively for 

this test system. The optimal values of control variables obtained from the proposed QODE are 

given in Table 8.35. The best, average and worst voltage deviation and average CPU time among 

50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.36. The 

convergence characteristic obtained from proposed QODE and DE for voltage deviation is 

shown in Fig. 8.25.  
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Table 8.35: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for improvement of voltage profile  

Variable  Variable  Variable  Variable    Variable  

1GΡ (MW) 
24.8354 

66GΡ (MW) 
386.8658 

6V  
0.9908 

70V  
0.9855 

5963−Τ  
0.9593 

4GΡ (MW)
 

27.3774
 69GΡ (MW)

 

431.2400
 8V

 

1.0155
 72V

 

0.9803
 6164−Τ

 

0.9845
 

6GΡ (MW)
 

7.4553
 70GΡ (MW)

 

47.0490
 10V

 

1.0500
 73V

 

0.9911
 6665−Τ

 

0.9348
 

8GΡ (MW)
 

23.1324
 72GΡ (MW)

 

27.1003
 12V

 
0.9912

 74V
 

0.9664
 6968−Τ

 

0.9346
 

10GΡ (MW)
 

406.4214
 73GΡ (MW)

 

14.1555
 15V

 

0.9697
 76V

 

0.9435
 8281−Τ

 

0.9357
 

12GΡ (MW)
 

188.1378
 74GΡ (MW)

 

19.9808
 18V

 

0.9734
 77V

 

1.0077
 5cQ

(Mvar)
 

-10.2461
 

15GΡ (MW)
 

14.8522
 76GΡ (MW)

 

69.3648
 19V

 

0.9647
 80V

 

1.0402
 34cQ

(Mvar)
 

0
 

18GΡ (MW)
 

36.5888
 77GΡ (MW)

 

87.9338
 24V

 
0.9924

 85V
 

0.9568
 37cQ

(Mvar)
 

-15.0288
 

19GΡ (MW)
 

19.6471
 80GΡ (MW)

 

220.4790
 25V

 

1.0500
 87V

 

1.0154
 44cQ

(Mvar)
 

7.9582
 

24GΡ (MW)
 

6.0058
 85GΡ (MW)

 

26.1360
 26V

 

1.0147
 89V

 

1.0047
 45cQ

(Mvar)
 

1.7116
 

25GΡ (MW)
 

240.1806
 87GΡ (MW)

 

53.1162
 27V

 

0.9685
 90V

 

0.9855
 46cQ

(Mvar)
 

-33.5173
 

26GΡ (MW)
 

301.7679
 89GΡ (MW)

 

173.7364
 31V

 

0.9678
 91V

 

0.9806
 48cQ

(Mvar)
 

7.6346
 

27GΡ (MW)
 

12.2519
 90GΡ (MW)

 

17.8891
 32V

 

0.9676
 92V

 

0.9838
 74cQ

(Mvar)
 

0
 

31GΡ (MW)
 

22.1487
 91GΡ (MW)

 

22.0689
 34V

 

0.9818
 99V

 

1.0106
 79cQ

(Mvar)
 

19.3213
 

32GΡ (MW)
 

56.7973
 92GΡ (MW)

 

242.4305
 36V

 

0.9754
 100V

 

0.9717
 82cQ

(Mvar)
 

33.4421
 

34GΡ (MW)
 

14.9005
 99GΡ (MW)

 

172.2366
 40V

 

0.9705
 103V

 

0.9556
 83cQ

(Mvar)
 

13.4003
 

36GΡ (MW)
 

44.6387
 100GΡ (MW)

 

111.5876
 42V

 
0.9853

 104V
 

0.9413
 105cQ

(Mvar)
 

0
 

40GΡ (MW)
 

21.6357
 103GΡ (MW)

 

11.6736
 46V

 

1.0055
 105V

 

0.9452
 107cQ

(Mvar)
 

-12.4021
 

42GΡ (MW)
 

15.6677
 104GΡ (MW)

 

77.6202
 49V

 

1.0251
 107V

 

0.9525
 110cQ

(Mvar)
 

7.4332
 

46GΡ (MW)
 

80.0593
 105GΡ (MW)

 

60.1407
 54V

 

0.9558
 110V

 

0.9587
 

Cost ($/h)
 

70904.50
 

49GΡ (MW)
 

179.8429
 107GΡ (MW)

 

12.8669
 55V

 

0.9517
 111V

 
0.9805

 
Emission 

( lb /h)
 

451.7620
 

54GΡ (MW)
 

50.4990
 110GΡ (MW)

 

40.6254
 56V

 

0.9548
 112V

 
0.9755

 
power loss 

(MW)
 

110.3291
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55GΡ (MW)
 

32.2701
 111GΡ (MW)

 

68.1610
 59V

 

0.9855
 113V

 

0.9934
 

voltage 

deviation 

(p.u.)
 

1.5955
 

56GΡ (MW)
 

39.2898
 112GΡ (MW)

 

78.7837
 61V

 

0.9951
 116V

 

1.0053
 maxL

 

0.0894
 

59GΡ (MW)
 

92.3657
 113GΡ (MW)

 

43.0954
 62V

 

0.9973
 58−Τ

 

0.9805
 

  

61GΡ (MW)
 

142.8751
 116GΡ (MW)

 

31.0410
 65V

 

1.0054
 2526−Τ

 

0.9616
 

  

62GΡ (MW)
 

81.2074
 1V  (p.u.)

 
0.9566

 66V
 

1.0500
 1730−Τ

 

0.9625
 

  

65GΡ (MW)
 

395.0630
 4V  (p.u.)

 
0.9984

 69V
 

1.0350
 3738−Τ

 

0.9369
 

  

Table 8.36: Comparison of performance for voltage deviation of IEEE 118 bus system 

Techniques Best voltage 

deviation 

Average voltage 

deviation 

Worst voltage 

deviation 

CPU time (S) 

QODE 1.5955 1.5957     1.5961 287.3169 

DE 1.6317 1.6320     1.6323 285.3158 

 

 

           Fig. 8.25. Voltage deviation convergence characteristics for IEEE 118 bus system 
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8.6.3.5.Minimization of fuel cost and emission 

The value of ψ  in this case is chosen as 1000. The problem is solved by using QODE. Here, the 

population size ( ΡΝ ), scaling factor )( FS , crossover rate )( RC and the maximum iteration 

number ( maxΝ ) have been selected as 200, 1.0, 1.0 and 100 respectively for this test system. The 

results obtained from proposed QODE for optimal values of control variables are shown in    

Table 8.37. 

Table 8.37: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for fuel cost and emission minimization  

 

Variable 

  

Variable 

  

Variable                                

  

Variable 

   
Variable 

 

1GΡ (MW) 
 

24.4411 66GΡ (MW) 
 

390.2885 6V  
 

0.9907 70V  
 

0.9855 5963−Τ  
 

0.9596 

4GΡ (MW)
 

 

29.9011
 

69GΡ (MW)
 

 

32.8835
 

8V
 

 

1.0151
 

72V
 

 

0.9803
 

6164−Τ
 

 

0.9847
 

6GΡ (MW)
 

 

23.7663
 

70GΡ (MW)
 

0
 10V

 
 

1.0500
 

73V
 

 

0.9906
 

6665−Τ
 

 

0.9349
 

8GΡ (MW)
 

 

11.8135
 

72GΡ (MW)
 

 

11.1104
 

12V
 

 

0.9904
 

74V
 

 

0.9664
 

6968−Τ
 

 

0.9344
 

10GΡ (MW)
 

 

466.7529
 

73GΡ (MW)
 

 

17.1720
 

15V
 

 

0.9698
 

76V
 

 

0.9433
 

8281−Τ
 

 

0.9356
 

12GΡ (MW)
 

 

290.7476
 

74GΡ (MW)
 

 

0
 

18V
 

 

0.9735
 

77V
 

 

1.0072
 

5cQ

(Mvar)
 

 

-39.4989
 

15GΡ (MW)
 

 

15.4058
 

76GΡ (MW)
 

 

0
 

19V
 

 

0.9646
 

80V
 

 

1.0401
 

34cQ

(Mvar)
 

 

1.1773
 

18GΡ (MW)
 

 

59.9337
 

77GΡ (MW)
 

 

91.2272
 

24V
 

 

0.9921
 

85V
 

 

0.9563
 

37cQ

(Mvar)
 

 

-13.2530
 

19GΡ (MW)
 

 

0
 

80GΡ (MW)
 

 

294.2445
 

25V
 

 

1.0500
 

87V
 

 

1.0152
 

44cQ

(Mvar)
 

 

4.9713
 

24GΡ (MW)
 

 

6.1776
 

85GΡ (MW)
 

 

0
 

26V
 

 

1.0153
 

89V
 

 

1.0055
 

45cQ

(Mvar)
 

 

4.0560
 

25GΡ (MW)
 

 

111.4086
 

87GΡ (MW)
 

 

179.6139
 

27V
 

 

0.9682
 

90V
 

 

0.9851
 

46cQ

(Mvar)
 

 

-25.9087
 

26GΡ (MW)
 

 

250.1633
 

89GΡ (MW)
 

 

239.7910
 

31V
 

 

0.9671
 

91V
 

 

0.9804
 

48cQ

(Mvar)
 

 

4.8949
 

27GΡ (MW)
 

 

14.4614
 

90GΡ (MW)
 

 

12.0063
 

32V
 

 

0.9677
 

92V
 

 

0.9836
 

74cQ

(Mvar)
 

 

5.3109
 

31GΡ (MW)
 

 

9.3482
 

91GΡ (MW)
 

 

25.9256
 

34V
 

 

0.9815
 

99V
 

 

1.0103
 

79cQ

(Mvar)
 

 

3.3505
 

32GΡ (MW)
 

 

0
 

92GΡ (MW)
 

 

0
 

36V
 

 

0.9753
 

100V
 

 

0.9705
 

82cQ

(Mvar)
 

 

38.2120
 

34GΡ (MW)
 

 

0
 

99GΡ (MW)
 

 

161.6689
 

40V
 

 

0.9701
 

103V
 

 

0.955
 

83cQ

(Mvar)
 

 

14.2517
 

36GΡ (MW)
 

 

40.7704
 

100GΡ (MW)
 

 

180.0080
 

42V
 

 

0.9855
 

104V
 

 

0.940 105cQ

(Mvar)
 

 

12.2687
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40GΡ (MW)
 

 

11.3385
 

103GΡ (MW)
 

 

  0
 

46V
 

 

1.0053
 

105V
 

 

0.9446 107cQ

(Mva)
 

 

-9.8406
 

42GΡ (MW)
 

 

28.1754
 

104GΡ (MW)
 

 

0
 

49V
 

 

1.0252
 

107V
 

 

0.952 110cQ

(Mvar)
 

 

9.3443
 

46GΡ (MW)
 

 

57.7918
 

105GΡ (MW)
 

0
 54V

 
 

0.9554
 

110V
 

 

0.9583
 

Cost 

($/h)
 

 

69167.10
 

49GΡ (MW)
 

 

115.0737
 

107GΡ (MW)
 

 

18.4037
 

55V
 

0.9517
 111V          0.9804

 
Emissio

n (lb\h)
 

 

323.6974
 

54GΡ (MW) 
 

165.7851 110GΡ (MW) 
 

25.2177 56V  
 

0.9546 112V   

0.9754 

power 

loss 

(MW) 

 

100.2088 

55GΡ (MW) 
 

0 111GΡ (MW) 
 

54.6984 59V  
 

0.9853 113V  
 

0.9933 

voltage 

deviatio

n(p.u.) 

 

1.7728 

56GΡ (MW)
 

 

0
 

112GΡ (MW)
 

 

47.0741
 

61V
 

 

0.9955
 

116V
 

 

1.0052
 

maxL
 

 

0.1054
 

59GΡ (MW)
 

 

149.3231
 

113GΡ (MW)
 

 

85.2145
 

62V
 

 

0.9971
 

58−Τ
 

 

0.9806
 

  

61GΡ (MW)
 

 

180.2244
 

116GΡ (MW)
 

 

32.0288
 

65V
 

 

1.0053
 

2526−Τ
 

 

0.9604
 

  

62GΡ (MW)
 

 

88.3819 1V  (p.u.)
 

 

0.9563
 

66V
 

 

1.0500
 

1730−Τ
 

 

0.9617
 

 

65GΡ (MW)
 

 

383.6734
 

4V  (p.u.)
 

 

0.9981
 

69V
 

 

1.0350
 

3738−Τ
 

 

0.9365
 

 

 

8.6.3.6. Minimization of fuel cost, emission and voltage deviation and enhancement of 

voltage stability 

The value of ψ , ρ  and σ  in this case are chosen as 1000, 10000 and 100000 respectively. The 

problem is solved by using QODE. Here, the population size ( ΡΝ ), scaling factor )( FS , 

crossover rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 200, 1.0, 

1.0 and 100 respectively for this test system. The results obtained from proposed QODE for 

optimal values of control variables are shown in Table 8.38. 
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Table 8.38: Optimal value of control variables obtained from QODE for IEEE 118 bus 

system for minimization of fuel cost, emission and voltage deviation and enhancement of 

voltage stability 

Variable  Variable  Variable  Variable  Variable  

1GΡ (MW) 
 

23.0088 66GΡ (MW) 
 

395.1631 6V  
 

0.9905 70V  
 

0.9855 5963−Τ  
 

0.9594 

4GΡ (MW)
 

 

6.9193
 

69GΡ (MW)
 

 

206.0957
 

8V
 

 

1.0153
 

72V
 

 

0.9803
 

6164−Τ
 

 

0.9849
 

6GΡ (MW)
 

 

24.4549
 

70GΡ (MW)
 

 

79.2383
 

10V
 

 

1.0500
 

73V
 

 

0.9911
 

6665−Τ
 

 

0.9346
 

8GΡ (MW)
 

 

5.2956
 

72GΡ (MW)
 

 

23.8707
 

12V
 

 

0.990
 

74V
 

 

0.9663
 

6968−Τ
 

 

0.9343
 

10GΡ (MW)
 

 

437.1753
 

73GΡ (MW)
 

 

18.7049
 

15V
 

 

0.9693
 

76V
 

 

0.9427
 

8281−Τ
 

 

0.9355
 

12GΡ (MW)
 

 

294.6273
 

74GΡ (MW)
 

 

10.5942
 

18V
 

 

0.9727
 

77V
 

 

1.0072
 

5cQ

(Mvar)
 

 

-8.0943
 

15GΡ (MW)
 

 

27.5509
 

76GΡ (MW)
 

 

93.1198
 

19V
 

 

0.9645
 

80V
 

 

1.0405
 

34cQ

(Mvar)
 

 

0
 

18GΡ (MW)
 

 

76.3999
 

77GΡ (MW)
 

 

44.3106
 

24V
 

 

0.9916
 

85V
 

 

0.9563
 

37cQ

(Mvar)
 

 

-1.2401
 

19GΡ (MW)
 

 

18.8869
 

80GΡ (MW)
 

 

263.0722
 

25V
 

 

1.0500
 

87V
 

 

1.0154
 

44cQ

(Mvar)
 

 

5.6484
 

24GΡ (MW)
 

 

28.5297
 

85GΡ (MW)
 

 

17.4067
 

26V
 

 

1.0147
 

89V
 

 

1.0052
 

45cQ

(Mvar)
 

 

4.3767
 

25GΡ (MW)
 

 

114.7655
 

87GΡ (MW)
 

 

103.1024
 

27V
 

 

0.9684
 

90V
 

 

0.9853
 

46cQ

(Mvar)
 

 

-20.6662
 

26GΡ (MW)
 

 

253.3012
 

89GΡ (MW)
 

 

157.3679
 

31V
 

 

0.9673
 

91V
 

 

0.9804
 

48cQ

(Mvar)
 

 

11.6488
 

27GΡ (MW)
 

 

16.7096
 

90GΡ (MW)
 

 

8.8590
 

32V
 

 

0.9677
 

92V
 

 

0.9833
 

74cQ

(Mvar)
 

 

0
 

31GΡ (MW) 
 

9.3482 91GΡ (MW) 
 

25.9256 34V  
 

0.9815 99V  
 

1.0103 79cQ

(Mvar) 

 

3.3505 

32GΡ (MW)
 

 

27.5363
 

92GΡ (MW)
 

 

234.1465
 

36V
 

 

0.9751
 

100V
 

 

0.9706
 

82cQ

(Mvar)
 

 

57.0130
 

34GΡ (MW)
 

 

14.7008
 

99GΡ (MW)
 

 

193.7836
 

40V
 

 

0.9704
 

103V
 

 

0.9558
 

83cQ

(Mvar)
 

 

4.9391
 

36GΡ (MW)
 

 

54.1406
 

100GΡ (MW)
 

 

206.1550
 

42V
 

 

0.9853
 

104V
 

 

0.9409
 

105cQ

(Mvar)
 

 

0
 

40GΡ (MW)
 

 

18.3070
 

103GΡ (MW)
 

 

17.3832
 

46V
 

 

1.0047
 

105V
 

 

0.9445
 

107cQ

(Mvar)
 

 

11.7700
 

42GΡ (MW)
 

 

8.0693
 

104GΡ (MW)
 

 

30.4592
 

49V
 

 

1.0253
 

107V
 

 

0.9523
 

110cQ

(Mvar)
 

 

2.1827
 

46GΡ (MW) 
 

34.7227 105GΡ (MW) 
 

74.3720 54V  
 

0.9554 110V  
 

0.9587 

Cost ($/h) 69709.99 

49GΡ (MW)
 

 

190.5395
 

107GΡ
(MW)

 

 

10.6044
 

55V
 

 

0.9516
 

111V
 

 

0.9801
 

Emission 

( lb /h)
 

 

354.4841
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54GΡ (MW) 
 

178.0808 110GΡ (MW) 
 

32.6684 56V  
 

0.9544 112V   

0.9753 

power 

loss 

(MW) 

 

117.1778 

55GΡ (MW) 
 

32.0726 111GΡ (MW) 
 

50.3478 59V  
 

0.9853 113V  
 

0.9935 

voltage 

deviation 

(p.u.) 

 

1.6489 

56GΡ (MW) 
 

94.9690 112GΡ (MW) 
 

66.0932 61V  
 

0.9955 116V  
 

1.0053 maxL  
 

0.0666 

59GΡ (MW) 
 

135.2936 

 

113GΡ (MW) 
 

57.0389 62V  
 

0.9976 58−Τ  
 

0.9817 

  

61GΡ (MW) 
 

127.9625 116GΡ (MW) 
 

30.5116 65V  
 

1.0053 2526−Τ  
 

0.9605 

  

62GΡ (MW) 
 

57.9078 1V  (p.u.)  

0.9561 66V  
 

1.0500 1730−Τ  
 

0.9609 

  

65GΡ (MW) 
 

387.0729 4V  (p.u.)  

0.9976 69V  
 

1.0350 3738−Τ  
 

0.9365 

  

 

8.7. Conclusion 

Here, HTS algorithm has been successfully applied to solve optimal power flow problems. The 

optimal power flow problem is formulated as a nonlinear optimization problem with equality and 

inequality constraints of power system. In this study, different objective functions such as fuel 

cost minimization, emission minimization, improvement of voltage profile and enhancement of 

voltage stability are considered. The proposed HTS algorithm is tested on IEEE 30-bus, 57-bus 

and 118-bus test systems to demonstrate its effectiveness.  

Also QODE is demonstrated and successfully applied to solve single-objective and multi-

objective optimal power flow problems. The optimal power flow problem is formulated as a 

nonlinear optimization problem with equality and inequality constraints of power system. In this 

study, different single objective functions such as fuel cost minimization, emission minimization 

and improvement of voltage profile and enhancement of voltage stability and multi-objective 

functions such as minimization of fuel cost, emission and minimization of fuel cost, emission, 

voltage deviation and enhancement of voltage stability are considered. The proposed QODE 

approach is tested on IEEE 30-bus, 57-bus and 118-bus test systems to demonstrate its 

effectiveness. The results obtained from proposed QODE approach is better than the results 

obtained from other evolutionary methods reported in the literature. 

 

 



223 

CHAPTER-9 

Conclusion & Future Scope 

 
(a) Overall Conclusion 

 
In this thesis intelligent techniques like differential evolution, opposition based differential 

evolution, quasi-oppositional differential evolution, evolutionary algorithm, genetic algorithm, 

improved real coded genetic algorithm, simulated annealing, teaching-learning based 

optimization, modified teaching-learning based optimization, heat transfer search algorithm, 

meta-heuristic techniques have been applied to solve different complex power system 

optimization problems such as multi area economic dispatch, dynamic economic dispatch, 

reactive power dispatch, combined heat and power economic dispatch, short-term hydrothermal 

scheduling problem of fixed head and variable head hydrothermal power systems. Results 

obtained from all the techniques were compared with the results obtained from other 

computational intelligent technique from the literature. It has been found that here the results are 

competitive and quite encouraging. 

 

Chapter wise conclusion has been presented below. 

 

Chapter-2 

Here, four different metaheuristic techniques viz., differential evolution, evolutionary 

programming, real coded genetic algorithm and simulated annealing technique for multi-area 

economic dispatch problem considering transmission losses, multiple fuels, valve-point loading 

and prohibited operating zones with respect to minimum cost and CPU time. Differential 

evolution achieves the lowest minimum cost and SA requires least CPU time amongst the four 

metaheuristic techniques. 

Chapter-3 

Here, improved real coded genetic algorithm (IRCGA) has been developed and pertained for 

solving dynamic economic dispatch problem with non-smooth fuel cost function and 15 
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benchmark functions. Test results have been matched up to those acquired from real coded 

genetic algorithm. It has been observed from the comparison that the developed improved real 

coded genetic algorithm has the capability to offer superior solution and quick convergence. Due 

to these properties, improved real coded genetic algorithm can be utilized for solving 

complicated power system problems. 

Chapter -4 

Modified teaching-learning-based optimization (MTLBO) has been developed and pertained to 

solve three different complex combined heat and power economic dispatch test systems and 15 

benchmark functions. Test results acquired from three different complex combined heat and 

power economic dispatch problems have been compared with those acquired by other 

evolutionary techniques suggested in the literature. 

Heat transfer search (HTS) algorithm has been pertained to solve four different complex 

combined heat and power economic dispatch test systems. Test results have been matched up to 

those acquired by other evolutionary techniques suggested in the literature. The results obtained 

using the proposed algorithm is compared with the results of other optimization algorithm.  

Chapter -5 

Here, opposition-based differential evolution is demonstrated and presented to solve the 

hydrothermal scheduling problem. The proposed opposition-based differential evolution method 

has been successfully applied to two test problems, two fixed head hydrothermal test systems. 

The results have been compared with those obtained by other evolutionary algorithms reported in 

the literature. It is seen from the comparisons that the proposed opposition-based differential 

evolution method performs better than other evolutionary algorithms in the literature. 

Chapter -6 

In this chapter, opposition-based differential evolution is demonstrated and presented to solve the 

hydrothermal scheduling problem. The proposed opposition-based differential evolution method 

has been successfully applied to two fixed head hydrothermal test systems and three 

hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating 

zones and thermal units with valve point loading. The results have been compared with those 

obtained by other evolutionary algorithms reported in the literature. It is seen from the 
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comparisons that the proposed opposition-based differential evolution method performs better 

than other evolutionary algorithms in the literature. 

Chapter-7 

Improved real coded genetic algorithm (IRCGA) has been developed and validated for solving 

different types of reactive power dispatch (RPD) problems such as minimization of active power 

transmission loss and improvement of voltage profile and stability. The developed IRCGA is 

experimented on IEEE 30-bus, 57-bus and 118-bus test systems to reveal its efficacy. It has been 

examined that test results acquired from the developed IRCGA is superior compared to those 

acquired from other stated evolutionary techniques. 

Chapter -8 

Here, heat transfer search (HTS) algorithm has been successfully applied to solve optimal power 

flow problems. The optimal power flow problem is formulated as a nonlinear optimization 

problem with equality and inequality constraints of power system. In this study, different 

objective functions such as fuel cost minimization, emission minimization, improvement of 

voltage profile and enhancement of voltage stability are considered. The performance of the 

proposed algorithm has been assessed on IEEE 30-bus, 57-bus and 118-bus test systems to 

demonstrate its effectiveness.  

Also quasi-oppositional differential evolution (QODE) is demonstrated and successfully applied 

to solve single-objective and multi-objective optimal power flow problems. The optimal power 

flow problem is formulated as a nonlinear optimization problem with equality and inequality 

constraints of power system. In this study, different single objective functions such as fuel cost 

minimization, emission minimization and improvement of voltage profile and enhancement of 

voltage stability and multi-objective functions such as minimization of fuel cost, emission and 

minimization of fuel cost, emission, voltage deviation and enhancement of voltage stability are 

considered. The proposed QODE approach is tested on IEEE 30-bus, 57-bus and 118-bus test 

systems to demonstrate its effectiveness. The results obtained from proposed QODE approach is 

better than the results obtained from other evolutionary methods reported in the literature. 
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(b) Future Scope 

 
Metaheuristic techniques for multi area economic dispatch (MAED) are applied to 2 area, 3 area 

and 4 area system. Future work can be carried out with other optimization technique for multi-

area system and compare the result with metaheuristic method. 

Improved real coded genetic algorithm (IRCGA) has been developed and pertained for solving 

dynamic economic dispatch problem with non-smooth fuel cost function and 15 benchmark 

functions. Further study can be carried out with other intelligent control method and compare the 

result with IRCGA.  

Here, HTS and TLBO methods are applied in CHEPD problems. Further study can be carried out 

with other intelligent control method and compare with this method. 

Opposition-based differential evolution is presented to solve the hydrothermal scheduling 

problem and has been successfully applied to two test problems, two fixed head hydrothermal 

test systems. Further work can be carried out on more test systems and compare with the cost 

value. 

IRCGA has been developed and validated for solving different types of RPD problems such as 

minimization of active power transmission loss and improvement of voltage profile and voltage 

stability have been assessed by testing on IEEE 30-bus, 57-bus and 118-bus test systems to 

reveal its efficacy. Future work can be carried out on more test bus system and check the voltage 

deviation with this. 

HTS and QODE algorithm has been successfully applied to solve optimal power flow problems 

tested on IEEE 30-bus, 57-bus and 118-bus test systems to demonstrate its effectiveness. Future 

work can be carried out on more test bus system and check the fuel cost minimization, emission 

minimization and improvement of voltage profile. 
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CHAPTER-11 

Appendices 

  

Chapter: 2 

Table A.1: Data for 2 area system 

 

Generator ij   ija        ijb            ijc             
min

ijΡ     
max

ijΡ         Prohibited zones 

                     $/h     $/MWh   $/(MW)       MW    MW                 MW 

 

 

    1,1G           550       8.10       0.00028      100     500          [210 240]  [350 380] 

    2,1G          350       7.50       0.00056        50     200          [90 110]  [140 160] 

    3,1G          310       8.10       0.00056        50     150           [80 90]  [110 120] 

    1,2G          240       7.74       0.00324        80     300           [150 170]  [210 240] 

    2,2G          200       8.00       0.00254        50     200           [90 110]  [140 150] 

    3,2G          126       8.60       0.00284        50     120           [75 85]  [100 105] 

 

 

The transmission loss formula coefficients of two-area system are: 

 

 

    B001 = 0.045 

   

B1 = 

17 

X10
-6 

12  7 

12 14  9 

 7  9 31 

B01= --0.3908  0.7047  -0.1297 
X10

-3 

B2 = 

24 

X10
-6 

 -6    -8 

-6 129

14 

   -2 

 -8  -2 150 



240 

 

   B002 = 0.056 

Table A.2: The transmission loss formula coefficients of three-area system are: 

 

 

 

   B001 = 0.056 

 

 

         

    B002 = 0.045 

           

 

 

   B003 = 0.055             

B02= -0.0591 -0.6635  0.2161 
X10

-3 

B1 =  

8.70 

X10
-5 

0.43 -4.61 0.36 

0.43 8.30 -0.97 0.22

 -4.61 -0.97 9.00 -2.00 

0.36 0.22 -2.00 5.30 

B01= --0.3908  0.7047  -0.1297 
X10

-3 

 0.0591 

B2 = 

8.60 

X10
-5 

-0.80  0.37 

-0.80 9.08  -4.90 

 0.37 -4.90 8.24 

B02= -0.2161  0.5034  -0.6635 X10
-3 

B3 = 

1.20 

X10
-5 

-0.96  0.56 

-0.96 4.93  -0.30 

 0.56 -0.30 5.99 

B03= --0.3216  0.3503 0.4635 X10
-3 



241 

Chapter:3 

Table A.3: Data for test system 1 

 

 

Table A.4: Load Demand for 24h for test system 1 

Hour   Load    Hour   Load   Hour   Load 

          (MW)              (MW)            (MW) 

  1        410       9        690      17      558 

  2        435     10        704      18      608 

  3        475     11        720      19      654 

  4        530     12        740      20      704 

  5        558     13        704      21      680 

  6        608     14        690      22      605 

  7        626     15        654      23      527 

  8        654     16        580      24      463 

 
 

 The transmission loss formula coefficients for test system 1 are: 

 

 

                0.000049 0.000014 0.000015 0.000015 0.000020 

                0.000014 0.000045 0.000016 0.000020 0.000018 

                0.000015 0.000016 0.000039 0.000010 0.000012  

                0.000015 0.000020 0.000010 0.000040 0.000014  

                0.000020 0.000018 0.000012 0.000014 0.000035 
   

  

Unit  minΡ   maxΡ      a         b            c           d        e           UR       DR  

         MW   MW    $/h   $/MWh  $/ MW
2
h  $/h  rad/MW  MW/h  MW/h 

  1     10      75        25     2.0        0.0080    100    0.042       30         30  

  2     20    125        60     1.8        0.0030    140    0.040       30         30 

  3     30    175      100     2.1        0.0012    160    0.038       40         40  

  4     40    250      120     2.0        0.0010    180    0.037       50         50 

  5     50    300        40     1.8        0.0015    200    0.035       50         50 
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Table.A.5: Data for test system 2 

 

Unit  
minΡ    

maxΡ          a                    b             c            d         e        UR       DR  

         MW     MW          $/h              $/MWh     $/ MW
2
h    $/h   rad/MW  MW/h   MW/h 

 

 1    150     470    786.7988  38.53973  0.15241  450  0.041   100       100 

 2    135     470    451.3251  46.15916  0.10587  600  0.036   100       100 

 3      73     340  1049.9977  40.39655  0.02803  320  0.028   100       100 

 4      60     300  1243.5311  38.30553  0.03546  260  0.052     80         80 

 5      73     243  1658.5696  36.32782  0.02111  280  0.063     60         60 

 6      57     160  1356.6592  38.27041  0.01799  310  0.048     50         50 

 7      20     130  1450.7045  36.51045  0.01211  300  0.086     30         30 

 8      47     120  1450.7045  36.51045  0.01211  340  0.082     30         30 

 9      20       80  1455.6056  39.58042  0.10908  270  0.098     30         30 

10     10       55  1469.4026  40.54074  0.12951  380  0.094     30         30 

 

Table.A.6: Load Demand for 24h for test system 2 

 

Hour   Load    Hour   Load   Hour   Load 

          (MW)              (MW)            (MW) 

  1       1036       9      1924     17     1480 

  2       1110     10      2072     18     1628 

  3       1258     11      2106     19     1776 

  4       1406     12      2150     20     1972 

  5       1480     13      2072     21     1924 

  6       1628     14      1924     22     1628 

  7       1702     15      1776     23     1332 

  8       1776     16      1554     24     1184 
 

    The transmission loss formula coefficients for test system 2 are: 
 

 

         0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.000020 

         0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018 

         0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016 

         0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.000015 

B =   0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016 

         0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015  

         0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018 

         0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016 

         0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019 

         0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044 
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Chapter: 4 :  

4.1. Data of test system 1 

(a) Conventional thermal generators 

( ) ( ){ }1

min

1

2

1111 042.0sin100008.0225 Ρ−Ρ+Ρ+Ρ+=ΡtC  $               1500 1 ≤Ρ≤ MW 

( ) ( ){ }2

min

2

2

2222 04.0sin140003.08.160 Ρ−Ρ+Ρ+Ρ+=ΡtC  $             12520 2 ≤Ρ≤ MW 

( ) ( ){ }3

min

3

2

3333 038.0sin1600012.01.2100 Ρ−Ρ+Ρ+Ρ+=ΡtC  $        17530 2 ≤Ρ≤ MW 

( ) ( ){ }4

min

4

2

4444 037.0sin180001.02120 Ρ−Ρ+Ρ+Ρ+=ΡtC  $            25040 2 ≤Ρ≤ MW 

 

Table A.7: Prohibited zones of Conventional Thermal generator for test system 1 

Unit Zone 1, MW Zone 2, MW 

1 [20, 30] [50, 60] 

2 [40, 50] [90, 100] 

3 [50, 70] [120, 140] 

4 [70, 90] [180, 200] 

(b) Cogeneration units 

( ) 55

2

55

2

55555 031.003.02.40345.05.142650, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

( ) 66

2

66

2

66666 011.0027.06.00435.0361250, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

(c) Heat-only unit 

( ) 2

7777 038.00109.2950 Η+Η+=ΗhC  $         600 7 ≤Η≤  MWth    

Network loss coefficients:  These are given below. 

 

  

B =  

49 

X10
-6 

14 15 15 20 25 

14 45 16 20

 

18 19 

15 16 39 10 12 15 

15 20 10 40 14 11 

20 18 12 14 35 17 

25 19 15 11 17 39 
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4.2. Data of test system 2 

(a) Conventional thermal generators 

( ) ( ){ }1

min

1

2

1111 035.0sin300000288.01.8550 Ρ−Ρ+Ρ+Ρ+=ΡtC  $      6800 1 ≤Ρ≤ MW 

( ) ( ){ }2

min

2

2

2222 042.0sin20000056.01.8309 Ρ−Ρ+Ρ+Ρ+=ΡtC  $      3600 2 ≤Ρ≤ MW 

( ) ( ){ }3

min

3

2

3333 042.0sin20000056.01.8309 Ρ−Ρ+Ρ+Ρ+=ΡtC  $       3600 3 ≤Ρ≤ MW 

( ) ( ){ }4

min

4

2

4444 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 4 ≤Ρ≤ MW 

( ) ( ){ }5

min

5

2

5555 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 5 ≤Ρ≤ MW 

( ) ( ){ }6

min

6

2

6666 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 6 ≤Ρ≤ MW 

( ) ( ){ }7

min

7

2

7777 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 7 ≤Ρ≤ MW 

( ) ( ){ }8

min

8

2

8888 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 8 ≤Ρ≤ MW 

( ) ( ){ }9

min

9

2

9999 063.0sin15000324.074.7240 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     18060 9 ≤Ρ≤ MW 

( ) ( ){ }10

min

10

2

10101010 084.0sin10000284.06.8126 Ρ−Ρ+Ρ+Ρ+=ΡtC  $    12040 10 ≤Ρ≤ MW 

( ) ( ){ }11

min

11

2

11111111 084.0sin10000284.06.8126 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     12040 11 ≤Ρ≤ MW 

( ) ( ){ }12

min

12

2

12121212 084.0sin10000284.06.8126 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     12055 12 ≤Ρ≤ MW 

( ) ( ){ }13

min

13

2

13131313 084.0sin10000284.06.8126 Ρ−Ρ+Ρ+Ρ+=ΡtC  $     12055 13 ≤Ρ≤ MW 

 

Table A.8: Prohibited zones of Conventional thermal generators for test system 2 

Unit Zone 1, MW Zone 2, MW Zone 3, MW 

1 [180, 200] [260, 335] [390, 420] 

2 [30, 40] [180, 220] [305, 335] 

3 [30, 45] [180, 225] [305, 335] 

10 [45, 55] [65, 75] - 

11 [45, 55] [65, 75] - 

 

(b) Cogeneration units 

( ) 1414

2

1414

2

1414141414 031.003.02.40345.05.142650, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

( ) 1515

2

1515

2

1515151515 011.0027.06.00435.0361250, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

( ) 1616

2

1616

2

1616161616 031.003.02.40345.05.142650, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

( ) 1717

2

1717

2

1717171717 011.0027.06.00435.0361250, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 
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( ) 1818

2

1818

2

1818181818 051.0025.0203.21035.05.342650, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

( ) 1919

2

1919

2

1919191919 04.002.034.2072.0201565, ΗΡ+Η+Η+Ρ+Ρ+=ΗΡcC  $ 

(c) Heat-only units 

( ) 2

20202020 038.00109.2950 Η+Η+=ΗhC  $         600 20 ≤Η≤ MWth    

( ) 2

21212121 038.00109.2950 Η+Η+=ΗhC  $         600 21 ≤Η≤ MWth    

( ) 2

22222222 052.00651.3480 Η+Η+=ΗhC  $         1200 22 ≤Η≤ MWth  

( ) 2

23232323 052.00651.3480 Η+Η+=ΗhC  $         1200 23 ≤Η≤ MWth    

( ) 2

24242424 038.00109.2950 Η+Η+=ΗhC  $         2.26950 24 ≤Η≤ MWth    

4.3. Operation limits: 

The heat-power feasible regions of the cogeneration units are illustrated in Fig. 1, Fig. 2, Fig.3 

and Fig. 4. 

 

Fig. 1. Heat-Power Feasible Operation Region for the cogeneration unit 1 of test system 1 and cogeneration unit 1 

and unit 3 of test system 2 
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Fig. 2. Heat-Power Feasible Operation Region for the cogeneration unit 2 of test system 1 and cogeneration unit 2 

and cogeneration unit 4 of test system 2 

 

Fig. 3. Heat-Power Feasible Operation Region for the Cogeneration unit 5 of test system 2 
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Fig. 4. Heat-Power Feasible Operation Region for the Cogeneration unit 6 of test system 2 

Chapter:5 :  

Table A-9: Hydro system data of test system 1 

Unit      ha0               ha1                   ha2                    hW           min

hΡ        max

hΡ  

           MCF/h     MCF/MWh     MCF/(MW)2h      MCF        MW       MW 

  1         1.980         0.306            0.000216             2500           0           400 

  2         0.936         0.612            0.000360             2100           0           300 

 

Table A-10: Thermal generator data of test system 1 

Unit     min

sΡ      max

sΡ       sa            sb                sc             sd           se      

            MW     MW       $/h       $/MWh      $/(MW)2h    $/h       1/MW    

  1         50       300         25           3.2            0.0025          0          0     

  2         50       700         30           3.4            0.0008          0          0       
 

Table A-11: Load demands of test system 1 

 

  Sub-           Duration         PD 

interval            (hr)           (MW) 

 1                        8             900 

 2                        8            1200 

 3                        8            1100       

 

 

Power(MW) 
A 

B 

C 

D 

E 
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45 
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90 

35 

Heat(MWth) 
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20 
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The transmission loss formula coefficients of test system 1 are  
 

                        

                     0.000015  0.000140  0.000010  0.000015 

       B =        0.000010  0.000060  0.000010  0.000013         per MW 

               0.000015  0.000010  0.000068  0.000065          
                0.000015  0.000013  0.000065  0.000070 

 

 

Table A-12: Hydro system data of test system 2 

 

Unit        ha0                ha1                     ha2                      hW             min

hΡ          max

hΡ  

            acre-ft/h     acre-ft/MWh    acre-ft/(MW)2h      acre-ft         MW          MW 

 1             260               8.5                  0.00986            125000           0             250 

 2             250               9.8                  0.01140            286000           0             500 

 
 

Table A-13: Thermal generator data of test system 2 

Unit    min

sΡ      max

sΡ       sa           sb                  sc           sd          se       

           MW     MW        $/h      $/MWh     $/(MW)2h   $/h      rad/MW   

  3        20       125         10          3.25          0.0083       12       0.0450        

  4        30       175         10          2.00          0.0037       18       0.0370  

  5        40       250         20          1.75          0.0175       16       0.0380   

  6        50       300         20          1.00          0.0625       14       0.0400   
  

Table A-14: Load demands of test system 2 

  Sub-                       Duration            PD 

interval                        (hr)               (MW) 

    1                               12                   900 

    2                               12                 1100 

    3                               12                 1000   

    4                               12                 1200  

 
 

 

The transmission loss formula coefficients are of test system 2 
 

 

                0.000049  0.000014  0.000015  0.000015  0.000020  0.000017 

                0.000014  0.000045  0.000016  0.000020  0.000018  0.000015 

B =          0.000015  0.000016  0.000039  0.000010  0.000012  0.000012            per MW 

                0.000015  0.000020  0.000010  0.000040  0.000014  0.000010 

                0.000020  0.000018  0.000012  0.000014  0.000035  0.000011 

                0.000017  0.000015  0.000012  0.000010  0.000011  0.000036 
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Chapter:6 :  

    Table A-15: Optimal Hydro Discharge ( 3410 m× ) for case 1 of Test System 1 of     

   variable head hydrothermal system 

Hour              1hQ               2hQ              3hQ                4hQ  

 1               8.7861            6.0009           30.0000             6.0000 

 2               8.6477            6.0001           18.5747             6.0000 

 3               8.5682            6.0000           29.9998             6.0000 

 4               8.3775            6.0006           17.3534             6.0008 

 5               8.1550            6.0000           15.4229             6.0005 

 6               8.0533            6.0030           15.9130             7.9993 

 7               8.1591            6.0910           15.9792             11.1179 

 8               8.4589            6.8847           16.5977             13.6690 

 9               8.6193            7.4527           16.4652             15.3635 

10               8.7715            7.6903           16.5940             16.1257 

11               8.5801            7.7683           17.1467             15.7670 

12               8.6525            8.1049           16.8463             16.5977 

13               8.5011            8.2039           17.4470             16.4653 

14               8.3269            8.3350           17.8223             16.5934 

15               8.2464            8.4235           18.7109             17.1544 

16               8.0697            8.7110           18.4832             16.8390 

17               8.0004            9.0106           16.9627             17.4464 

18               7.8467            9.4610           15.9095             17.8224 

19               7.8246            10.1045          14.5644             18.8539 

20               7.7368            10.6701          13.8283             19.6055 

21               7.5925            11.2530          11.0169             19.9997 

22               7.3682            11.7971          11.5735             19.9999 

23               6.9536            12.6091          12.0326             19.9999 

24               6.7040            13.4245          12.5674             19.9998 
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    Table A-16: Optimal Hydrothermal generation (MW) for case 1 of test system 1 of     

   variable head hydrothermal system 

Hour           1hΡ              2hΡ                  3hΡ                 4hΡ                 sΡ              

 1           79.7973         49.0061              0                 131.8801         1109.32 

 2           79.3927         50.1639           43.5292         129.0270        1087.89 

 3           79.0387         51.2957              0                 125.7437         1103.92 

 4           77.7373         52.9380           37.4242         121.6365        1000.26 

 5           75.9674         54.4995           42.2628         115.8283        1001.44 

 6           74.6619         55.5248           42.0011         163.8960        1073.92 

 7           74.9610         56.6535           42.7802         209.7731        1265.83 

 8           76.6787         62.1650           41.6644         252.8746        1566.62 

 9           77.7838         65.9683           41.8104         271.8340        1782.60 

10           79.1114         67.7564           40.9661         278.4111        1853.75 

11           78.7489         68.9033           38.9557         275.1930        1768.19 

12           80.1994         71.5905           39.5975         282.2694        1836.34 

13           79.6781         72.1369           38.3010         281.2003        1758.68 

14           79.2573         72.8195           38.1722         282.2342        1727.52 

15           79.5884         73.6734           35.5391         286.6439        1654.55 

16           78.9796         75.6289           36.7765         284.1818        1594.43 

17           78.8516         76.9618           41.8592         288.8606        1643.46 

18           77.9593         78.3512           45.1334         291.6388        1646.92 

19           77.8291         79.6915           48.4354         298.8079        1735.23 

20           77.0919         80.4924           50.2710         303.4720        1768.67                    

21           75.8005         81.3147           51.4605         304.7025        1726.72 

22           74.1001         81.9619           53.9109         301.5554        1608.47 

23           71.1238         82.8437           56.0420         297.2275        1342.77 

24           69.4655         81.8843           57.7491         291.3201        1089.58 

 

Table A-17: Optimal Hydro Discharge ( 3410 m× ) for case 2 of test system 1 of variable head 

hydrothermal system 

Hour        1hQ              2hQ              3hQ                4hQ  

 1           10.1845          6.1121           20.5536            6.3438 

 2           9.3545            6.0000           29.9857            6.0059 

 3           5.0934            6.0672           18.8188            6.0081 

 4           12.3025           6.9922          19.7814            6.0011 

 5           9.4396            6.9832           15.2970            6.3376 

 6           7.8835            6.3622           18.4255            11.1545 

 7           10.2721          8.2105           18.0212            8.7499 

 8           6.7694            6.0283           17.9212            9.3215 

 9           6.6014            6.9949           16.6465            15.9994 

10          9.8394            6.6298           14.1732            14.6373 

11          5.8365            8.0881           17.9684            19.8695 

12          6.2467            6.7252           18.3894            15.9965 

13          10.4311          6.0065           16.4035            15.9976 

14          6.7118            6.0342           19.8262            13.0358 

15          5.2117            8.9019           14.7661            19.6512 

16          5.8669            8.0785           18.5218            18.0045 

17          10.3436          13.0473         15.8221            18.0241 

18           9.0289           8.2601           15.6486            18.1861 

19           6.8068           10.6257         18.4059            18.1376 

20           5.0351           13.1212         10.7805            18.6221 

21           7.2673           9.9088           11.9574            18.0174 

22           7.0480           12.8178         11.9622            20.0000 

23           7.9655           10.0050         10.1140            19.8378 

24         13.2600           13.2228         11.6386            19.6248 
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 Table A-18: Optimal Hydrothermal generation (MW) for case 2 of test system 1 of    

  variable head hydrothermal system 

Hour          1hΡ             2hΡ                3hΡ                4hΡ                sΡ              

 1           86.8344        49.7921        42.4872       136.4915         1054.39 

 2           82.7927        50.0996          0                128.7959          1128.31 

 3           53.2023        51.7131        38.2060       125.5285         1091.35 

 4           95.3572        59.6889        32.3296       121.2998         981.32 

 5           82.2469        60.718         45.8186        119.8371         981.38 

 6           72.3219        57.0068        36.5382       189.8853         1054.25 

 7           84.3272        69.3217        39.5418       180.8054         1276.01 

 8           63.8671        53.8113        40.4187       196.2406         1645.66 

 9           63.4079        61.0171        43.8752        273.675          1798.02 

10           83.8010        59.0764        48.8933       261.1712         1867.06 

11           58.8915        69.7213        40.9075       304.3079         1756.17 

12           63.6159        61.3895        37.7617       274.8044         1872.42 

13           90.3650        56.9064        44.1043       276.5894         1762.03 

14           68.1055        58.0340       32.0219        249.5939         1792.24 

15           56.4505        78.0365       46.5805        292.2578         1603.17 

17           93.8183        96.3354       45.1644        292.7708         1601.91 

18           86.3257        71.3305       44.6121        292.334          1645.39 

19           70.6874        82.4647       36.9713        293.5957         1756.28 

20           55.3803        89.5719       48.3725        293.5926         1793.08 

21           74.3523        73.9104       52.4342        289.3438         1749.96 

22           72.6529        84.7098       53.7410        299.7932         1609.10 

23           79.4951        71.3102       53.2242        294.2187         1351.75 

24          104.9608        81.7733       57.2461       291.4408         1054.58 

 

Table A-19: Optimal Hydro Discharge ( 3410 m× ) of test system 2 of variable head 

hydrothermal system 
 

Hour         1hQ              2hQ               3hQ                  4hQ  

 1              5.0000             8.1694             29.9825              10.6846 

 2              11.8249           6.0349             20.3834               8.1109 

 3              8.2756             9.3968             29.9993               6.0699 

 4              10.6764           7.1839             17.4356               6.5270 

 5              10.7913           6.1217             14.9166               7.0655 

 6              7.5122             6.0114             19.9168              12.2241 

 7              11.8929           7.1014             16.4236              14.2319 

 8              8.0364             8.9342             19.9639                6.3860 

 9              5.0000             7.0265             17.2913              14.8253 

10             5.2012             6.0000             19.6801              13.3341 

11             9.0382             7.4124             16.8647              18.8811 

12             7.1895             6.0830             16.7021              17.6400 

13             10.7560            8.4874            17.0601              18.0055 

14             9.6444              9.6666            16.3546              18.8809 

15             7.5333             10.1478           14.5476              16.8217 

16             12.2331            9.0725            12.3182              19.4624 

17              5.0001             9.8397            14.7639              16.0024 

18              6.9996            10.8825           13.7793              20.0000 

19             12.3816           14.8071           14.5850              20.0000 

20              5.7002             9.2668            12.3534              14.4891 

21              5.0013             6.0008            21.3704              15.8796 

22              5.0078             9.1880            11.7756              12.9617 

23              5.0002             6.0045            15.2021              13.6869 

24              9.3038            13.1606            12.9722             19.9519 
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Table A-20: Optimal Hydrothermal generation (MW) of test system 2 of variable head 

hydrothermal system 
 

Hour  1hΡ          2hΡ          3hΡ           4hΡ             1sΡ           2sΡ             3sΡ  

 1     52.5001      62.9911         0             188.4124      20.0000      40.0470      409.0353 

 2     94.9645      49.1472      36.0943     151.4483     20.0001      294.7080     139.9935 

 3     77.4693      70.7940       0               120.2516      174.9999     40.0626      229.7881 

 4     89.6264      57.8274      34.8294     121.7495     174.9999     40.0144      140.0427 

 5     88.6817      51.7208      43.1194     121.7213     20.0713      209.8746     139.7717 

 6     69.9013      51.9834      27.7926     202.2525     20.0027      294.7478     139.7384 

 7     90.0410      59.9969      42.2954     229.2022     102.8131     294.9635     140.0704 

 8     71.5381      70.3084      31.2740     155.4249     175.0000     294.7975     229.5029 

 9     49.9772      57.7790      39.9087     261.0326     174.9942     294.7360     229.4873 

10     53.0657      51.3073      31.4504     247.0815    102.6427     294.7893     319.3190 

11     81.4462      62.5231      40.4364     298.9633    20.0014      294.7375     319.3074 

12     70.7288      54.3802      40.1454     287.9098    102.6722     294.7042     319.2878 

13     91.5678      70.9632      38.1093     292.8062    20.0158      294.6822     319.3190 

14     86.4941      77.0705      40.8922     298.1207    102.6981     294.7381     139.8472 

15     74.3655      79.0482      45.0727     83.9845     102.6488     294.7742     139.7885 

16     98.9002      72.9424      48.6283     302.6975    20.0008      298.7904     229.5013 

17     54.2296      76.2645      49.2103     274.8114    174.9981     294.7637     139.6912 

18     71.4333      79.2985      51.6777     304.2234    102.6951     294.7382     229.7389 

19     100.2199     87.8464      53.8828     300.4273    102.7774     294.7563     140.0848 

20     60.3478      63.3576      55.0328     254.1731    20.0000      294.7757     319.3300 

21     54.2311      42.9424      34.5069     264.0216    175.0000      40.0042     319.0230 

22     54.5201      64.1698      56.8181     236.6617    20.0000      294.7116     139.6709 

23     54.7321      44.8122      58.1308     244.4422    20.0024      294.6434     139.7895 

24     87.5753      80.9892      59.3598     292.6200    20.0004      125.0043     139.8794 

 

  



253 

Table A-21: Optimal Hydro Discharge ( 3410 m× ) of test system 3 of variable head 

hydrothermal system 
 

Hour           1hQ              2hQ                3hQ                 4hQ  

1           10.5900            7.2207           19.4370             6.0254  

2           12.0523            7.7304           20.2455             8.5457 

3            5.0001             6.0184           17.4557             6.0000 

4            6.4478             6.3207           22.6585            14.8061 

5            5.0000            11.1350           29.9287             7.6698 

6            7.6269             9.9408           17.6070            10.8973 

7            9.2146             9.5815           13.9492            12.4732  

8            7.1216             6.0000           21.4589             6.0044 

9           14.7220            9.4742           16.3758            16.8335 

10           8.7003            6.0001           18.0804            15.0361 

11           7.6528            9.7120           10.0203            12.3636 

12           5.4338            7.2947           17.1649            16.8305 

13          11.5460            6.0053           30.0000            12.6269 

14          10.5001           10.4945          15.3613           18.1704 

15           6.9555           10.5776           10.0003            17.1377 

16           5.0000           10.6310           21.2541            19.9868 

17          10.5398            9.0909           11.1185            19.9873 

18           5.1753            6.0028           19.1245            15.2733 

19           5.0000            6.0000           18.4536            19.9871 

20           5.8448            6.0003           10.0100            19.2115 

21           6.0854            9.8456           11.2876            17.9333 

22           8.5236           11.1071          10.4763            14.4865 

23          14.9775           7.8296            13.2974            19.9983 

24           5.2899           11.9870           13.3435            18.2195  
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Chapter: 8 
 

Table A-23: Generator data of IEEE 30-bus system 

Bus   

min

GΡ
 

max

GΡ
  a          b              c              α                 

β
                

γ
                

η
            λ  

No.  (MW)  (MW)  ($/h)  ($/MWh)   ($/MW2h   (ton/h)   (ton/MWh)   (ton/MW2h) (ton/h)    (1/MW) 

  1      50      200        0         2.00        0.00375     4.091E-2   -5.554E-4        6.490E-6     2.0E-4       2.857E-2 

  2      20        80        0         1.75        0.01750     2.543E-2   -6.047E-4        5.638E-6     5.0E-4       3.333E-2 

  5      15        50        0         1.00        0.06250    4.258E-2   -5.094E-4          4.586E-6     1.0E-6      8.000E-2  

  8      10        35        0         3.25        0.00834    5.326E-2   -3.550E-4         3.380E-6      2.0E-3      2.000E-2 

 11     10        30        0         3.00        0.02500    4.258E-2   -5.094E-4         4.586E-6      1.0E-6      8.000E-2 

 13     12        40        0         3.00        0.02500    6.131E-2   -5.555E-4         5.151E-6      1.0E-5      6.667E-2 

 

 

Table A-24: Generator data of IEEE 57-bus system 

Bus   
min

GΡ  
max

GΡ  a        b              c           d         e            α                 β               γ                η            λ  

No.  (MW) (MW) ($/h) ($/MWh) ($/MW
2
h)  ($/h)  (rad/MW)  (ton/h)  (ton/MWh) (ton/MW

2
h)(ton/h)    (1/MW) 

  1       0       600      0       2.00      0.00375   18.00     0.0370   4.091E-2   -5.554E-4     6.490E-6     2.0E-4   2.857E-3 

  2       0       500      0       1.75      0.01750   16.00     0.0380   2.543E-2   -6.047E-4     5.638E-6     5.0E-4   3.333E-3  

  3       0       500      0       3.00      0.02500   13.50     0.0410   6.131E-2   -5.555E-4     5.151E-6     1.0E-5   6.667E-3 

  6       0       500      0       2.00      0.00375   18.00     0.0370   3.491E-2   -5.754E-4     6.390E-6     3.0E-4   2.657E-3 

  8       0       650      0       1.00      0.06250   14.00     0.0400   4.258E-2   -5.094E-4     4.586E-6     1.0E-6   8.000E-3 

  9       0       500      0       1.75      0.01950   15.00     0.0390   2.754E-2   -5.847E-4     5.238E-6     4.0E-4   2.875E-3 

12       0       500      0       3.25      0.00834   12.00     0.0450   5.326E-2   -3.555E-4     3.380E-6     2.0E-3   2.000E-3 
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