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Abbreviations and Notations

Symbol Description

P, : real power output of i th unit during time interval ¢

p™", P lower and upper generation limits of i th unit

P, : load demand at the time interval ¢

P,: transmission line losses at time ¢

a;,b.,c..d,e;: cost coefficients of i th unit

F,(P,): cost of producing real power output P, at time ¢

UR,, DR;: ramp-up and ramp-down rate limits of the i th generator

N: number of generating units

T: number of intervals in the scheduled horizon

P.: power output of i th conventional thermal generating unit

P, P lower and upper power capacity limits of i th conventional
thermal generating unit .

P., H,: power output and heat output of i th cogeneration unit.

H,: heat output of i th heat-only unit

H, H™ lower and upper heat production limits of the i th heat-only
unit

C; : total production cost

c.,C, C,.: fuel cost characteristics of the conventional thermal
generating unit, cogeneration unit and heat-only unit
respectively

a;,b;,d, e, f: cost coefficients of ith conventional thermal generating
unit

a,pB,.7,0,,€,¢: cost coefficients of ith cogeneration unit

@1, A cost coefficients of i th heat-only unit

H,: system heat demand

P,: system power demand

P, : transmission loss

N,, N, N,: numbers of conventional thermal generating units,
cogeneration units and heat-only units respectively

a.,b., c., d., cost curve coefficients of i th thermal unit
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power output of i th thermal generator during subinterval m
lower and upper generation limits for i th thermal unit
duration of subinterval m .

power output of j th hydro unit during subinterval m

load demand during subinterval m

transmission loss during subinterval m

loss formula coefficients.

coefficients for water discharge rate function of jth hydro

generator
prespecified volume of water available for generation by j

th hydro unit during the scheduling period.
lower and upper generation limits for j th hydro unit

output power of i th thermal unit at time ¢

load demand at time ¢

transmission loss at time ¢

output power of jth hydro unit at time ¢

power generation coefficients of jth hydro unit
water discharge rate of j th reservoir at time ¢
storage volume of j th reservoir at time ¢

minimum and maximum water discharge rate of jth

reservoir

lower and upper bounds of k th prohibited zones of hydro
unit j

minimum and maximum storage volume of j th reservoir
inflow rate of j th reservoir at time ¢

number of upstream units directly above j th hydro plant
spillage of j th reservoir at time ¢

water transport delay from reservoir / to j

time index and scheduling period
number of thermal generating units

number of hydro generating units
number of prohibited zones for hydro unit j

index of prohibited zones of a hydro unit



EXECUTIVE SUMMARY

The present work is the study and application of intelligent control to power system
scheduling. Here, the work focuses on different optimization techniques for power system
scheduling. Intelligent control such as evolutionary algorithm, differential evolution,
evolutionary programming, genetic algorithm, artificial immune system, simulated annealing,
teaching learning based optimization, modified teaching learning based optimization , quasi
oppositional differential algorithm ,heat transfer search algorithm are used to optimize the
power system for economic dispatch, dynamic economic dispatch, multi area economic
dispatch, reactive power dispatch, combined heat and power economic dispatch and
hydrothermal system etc. Also the study carried out on optimal scheduling of generation for
fixed and variable head hydrothermal system using both opposition-based differential
evolution and heat transfer search algorithm. The proposed method is validated by applying it
to two test problems, two fixed head hydrothermal test systems and three hydrothermal multi-
reservoir cascaded hydroelectric test systems having prohibited operating zones and thermal
units with valve point loading. The modified teaching learning based optimization method has
been applied to solve the non-smooth/non-convex combined heat and power economic
dispatch problem. Here modified teaching-learning-based optimization where gaussian
random variables are introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves
search efficiency and guarantees a high probability of obtaining the global optimum without
significantly impairing the speed of convergence and the simplicity of the structure of
teaching learning based optimization. Also the present work describes on optimal power flow
(OPF) which optimizes the fuel, emission minimization, reduction of voltage deviation and
improvement of voltage stability. The effectiveness of the proposed algorithm for OPF is
tested on IEEE 30-bus, 57-bus and 118-bus test systems for four objective problems. Different
test systems are used for the above intelligent techniques for optimization of power system.
Here two different optimization technique like heat transfer search and quasi-oppositional
differential evolution has been applied to solve optimal power flow problem. Test results
obtained from the proposed algorithm for three different test systems are compared with other

optimization techniques suggested in literature.
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CHAPTER 1

Introduction

1.1. General Introduction

The word ‘“scheduling” means “to plan”, “to arrange”, “to organize”, or “to take place” at a
particular time. Power system scheduling is an important aspect both from the economic and
environmental safety viewpoints. The scheduling involves decisions with regards to the units
start-up and shut-down times and to the assignment of the load demands to the committed
generating units for minimizing the system operation costs and the emission of atmospheric
pollutants. As many other real-world engineering problems, power system generation scheduling
involves multiple, conflicting optimization criteria for which there exists no single best solution
with respect to all criteria considered. Mathematical optimization methods have been used over
the years for many power systems planning, operation, and control problems. Mathematical
formulations of real-world problems are derived under certain assumptions and even with these
assumptions; the solution of large-scale power systems is not simple. On the other hand, there
are many uncertainties in power system problems because power systems are large, complex,
and geographically widely distributed. An optimization problem is a mathematical model where
main objective is to minimize undesirable things i.e. cost, energy loss, errors, etc. or maximize

desirable things i.e. profit, quality, efficiency, etc. subject to some constraints.

To handle complex power system problems, researchers have been looking into nature for years
both as model and as metaphor for inspiration. Optimization is at the heart of many natural
processes like Darwinian evolution itself. Through millions of years, everyone had to adapt
physical structure to fit to the environment. A keen observation of the underlying relation
between optimization and biological evolution led to the development of an important paradigm
of computational intelligence known as evolutionary computing techniques for performing very

complex search and optimization.



Evolutionary programming (EP) was introduced by Lawrence J.Fogel in the USA, while almost
simultaneously I. Rechenberg and H.-P. Schwefel introduced evolution strategies (ESs) in
Germany. Almost a decade later, John Henry Holland from University of Michigan, devised an
independent method of simulating the Darwinian evolution to solve practical optimization
problems and called it the genetic algorithm (GA). These areas developed separately for about 15
years. From the early 1990s on they are unified as different representatives of one technology,
called evolutionary computing. Since the mid-eighties several multi-objective EAs have been
developed and capable of searching for multiple pareto-optimal solutions concurrently in a single
run. After the first studies on evolutionary multi-objective optimization in the mid-eighties, a
number of Pareto-based techniques were proposed in 1993 and 1994, e.g., multi-objective
genetic algorithm, niched pareto genetic algorithm and non-dominated sorting genetic algorithm
which demonstrated the capability of EMO algorithms to approximate the set of optimal trade-
offs in a single optimization run. These approaches did not incorporate elitism explicitly, but a
few years later the importance of this concept in multi-objective search was recognized and
supported experimentally. A couple of elitist multi-objective evolutionary algorithms were
presented at this time, e.g., strength pareto evolutionary algorithm and pareto archived evolution
strategy. Strength pareto evolutionary algorithm?2 is developed later which outperforms. It
provides good performance in terms of convergence and diversity. In artificial intelligence,
an Evolutionary Algorithm (EA) is a subset of evolutionary computation i.e. generic population-
based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological
evolution, such as reproduction, mutation, recombination, and selection.  Evolutionary
algorithms often perform well approximating solutions to all types of problems because they
ideally do not make any assumption about the underlying fitness landscape. Techniques from
evolutionary algorithms applied to the modeling of biological evolution are generally limited to
explorations of micro-evolutionary processes and planning models based upon cellular
processes. In most real applications of EAs, computational complexity is a prohibiting factor. In
fact, this computational complexity is due to fitness function evaluation. Fitness approximation is
one of the solutions to overcome this difficulty. EA can solve many complex problems of

Artificial Intelligence system.

The immune system of vertebrates including human is composed of cells, molecules and organs

in the body which protect the body against infectious diseases caused by foreign pathogens such



as viruses, bacteria, etc. To perform these functions, the immune system has to be able to
distinguish between the body’s own cells as the self cells and foreign pathogens as the non-self
cells or antigens. After distinguishing between self and non-self cells, the immune system has to
perform an immune response in order to eliminate non-self cell or antigen. Antigens are further
categorized in order to activate the suitable defense mechanism and at the same time, the
immune system also developed a memory to enable more efficient responses in case of further
infection by the similar antigen. Artificial immune system (AIS) mimics these biological
principles of clone generation, proliferation and maturation. The main steps of AIS based on
clonal selection principle are activation of antibodies, proliferation and differentiation on the
encounter of cells with antigens, maturation by carrying out affinity maturation process,
eliminating old antibodies to maintain the diversity of antibodies and to avoid premature
convergence, selection of those antibodies whose affinities with the antigen are greater. In order
to emulate AIS in optimization, the antibodies and affinity are taken as the feasible solutions and

the objective function respectively.

Economic dispatch is an important optimization task in power system operation for allocating
generation among the committed units. Its objective is to minimize the total generation cost of
units, while satisfying the various physical constraints. Static economic dispatch (SED) allocates
the load demand for a given interval of time among the committed generating units economically
while fulfilling various constraints. Dynamic economic dispatch (DED) which is an extension of
static economic dispatch, determines the optimal sharing of time varying load demand among the
committed units. Power plant operators try to keep gradients for temperature and pressure inside
the boiler and turbine within safe limits to avoid shortening the life of the equipment. This
mechanical constraint imposes limit on the rate of increase or decrease of the electrical power
output. This limit is called ramp rate limit which differentiates DED from SED problem. Thus, in
DED, the dispatch decision at one time period affects those at later time periods. DED is the
most accurate formulation of the economic dispatch problem but it is the most difficult to solve
because of its large dimensionality. Here improved real coded genetic algorithm (IRCGA) has
been developed for solving dynamic economic dispatch problem with non-smooth fuel cost

function in view of one-to-one competition to boost convergence speed and solution quality.



Multi-area economic dispatch (MAED) is an extension of economic dispatch. MAED determines
the generation level and interchange power between areas such that total fuel cost in all areas is
minimized while satisfying power balance constraints, generating limits constraints and tie-line
capacity constraints.

Non-linear optimization methods, such as dual and quadratic programming and gradient descent
approaches, such as Lagrangian relaxation, have been applied for solving combined heat and
power economic dispatch (CHPED). However, these methods cannot handle non-convex fuel
cost functions of the generating units. The advent of teaching-learning-based optimization
(TLBO), a teaching-learning process where Gaussian random variables are introduced in the
‘Teacher phase’ and ‘Learner phase’ which improves search efficiency and guarantees a high
probability of obtaining the global optimum without significantly impairing the speed of

convergence and the simplicity of the structure of TLBO.

Optimal scheduling of power plant generation is of great importance to electric utility systems.
Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the
operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of
thermal plants under the various constraints on the hydraulic, thermal and power system
network. Here, opposition-based differential evolution (ODE) for optimal scheduling of
generation in a hydrothermal system have been applied to optimize the operational cost of
hydrothermal system.

Reactive power dispatch (RPD) minimizes active power transmission loss and perks up voltage
profile and voltage stability by adjusting control variables such as generator voltages,
transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time
satisfying several equality and inequality constraints.

Optimal power flow (OPF) is an important tool for power system operators both in power system
planning and operation for many years. The OPF minimizes the power system operating
objective problems like fuel cost minimization, emission minimization, voltage deviation
minimization and enhancement of voltage stability while satisfying a set of equality and
inequality constraints. The equality constraints are power flow equations and inequality
constraints are the limits on control variables and functional operating constraints. Here two
different intelligent methods i.e. heat transfer search algorithm and quasi oppositional differential

evolution have been applied to solve optimal power flow problems.



1.2. Literature Survey

Evolutionary algorithms (EA) [1]-[2] are search algorithms based on the simulated evolutionary
process of natural selection and genetics. Genetic algorithm (GA) [3] belongs to a class of
evolutionary computation techniques [4]-[5] based on models of biological evolution. The main
difficulty of GA is its binary representation which arises when dealing with continuous search
space with large dimensions. Evolutionary Programming (EP) [4] is a technique in the field of
evolutionary computation. It seeks the optimal solution by evolving a population of candidate
solutions over a number of generations or iterations. Differential evolution (DE) is a very simple
and robust method originally proposed by Price and Stron [5] for optimization problem over a
continuous domain. The basic idea of DE is to adapt the search during the evolutionary process.
At the start of the evolution, the perturbations are large since parent populations are far away
from each other. Simulated annealing [6] is a powerful optimization technique which exploits the
resemblance between a minimization process and the cooling of molten metal. The physical
annealing process is simulated in the simulated annealing (SA) technique for the determination

of global or near-global optimum solutions for optimization problems.

Economic dispatch (ED) is one of the important optimization problems in power system
operation. ED allocates the load demand among the committed generators most economically
while satisfying the physical and operational constraints in a single area. The economic dispatch
problem is frequently solved without considering transmission constraints. However, some
researchers have taken transmission capacity constraints into account. Shoults et al. [7] solved
economic dispatch problem considering import and export constraints between areas. This study
provides a complete formulation of multi-area generation scheduling, and a framework for multi-
area studies. Romano et al. [8] presented the Dantzig—Wolfe decomposition principle to the
constrained economic dispatch of multi-area systems. An application of linear programming to
transmission constrained production cost analysis was proposed in [9]. Helmick et al. [10] solved
multi-area economic dispatch with area control error. Wang and Shahidehpour [11] proposed a
decomposition approach for solving multi-area generation scheduling with tie-line constraints
using expert systems. Network flow models for solving the multi-area economic dispatch
problem with transmission constraints have been proposed by Streiffert [12]. An algorithm for

multi-area economic dispatch and calculation of short range margin cost based prices has been



presented by Wernerus and Soder [13], where the multi-area economic dispatch problem was
solved via Newton—Raphson’s method. Yalcinoz and Short [14] solved multi-area economic
dispatch problems by using Hopfield neural network approach. Jayabarathi et al. [15] solved
multi-area economic dispatch problems with tie line constraints using evolutionary
programming. The direct search method for solving economic dispatch problem considering
transmission capacity constraints was presented in Ref. [16]. Since generators are practically
supplied with multi-fuel sources by Chiang [17]. Evolutionary Programming (EP) [18] is a
technique in the field of evolutionary computation. It seeks the optimal solution by evolving a
population of candidate solutions over a number of generations or iterations. Gaing[19] defines
the modified generator data and each area consists of three generators with prohibited operating
zones. The initial temperature of SA algorithm has been determined by using the procedures

described by Wong and Fung [20].

Static economic dispatch (SED) allocates the load demand for a given interval of time among the
committed generating units economically while fulfilling various constraints. Dynamic economic
dispatch (DED) which is an extension of static economic dispatch, determines the optimal
sharing of time varying load demand among the committed units. DED is the most accurate
formulation of the economic dispatch problem but it is the most difficult to solve because of its
large dimensionality. Since the DED was introduced, several classical methods [23]-[28] have
been employed for solving this problem. Yao et al. defines the evolutionary programming and
have been pertained for solving 15 benchmark functions [29]. However, all of these methods
may not be able to find an optimal solution and usually stuck at a local optimum solution.
Classical calculus-based methods address DED problem with convex cost function. But in reality
large steam turbines have a number of steam admission valves, which contribute nonconvexity in
the fuel cost function of the generating units. Dynamic programming (DP) can solve such type of
problems but it suffers from the curse of dimensionality. Recently, stochastic search algorithms
such as simulated annealing (SA) [30], tabu search [31], differential evolution (DE) [32] have
been successfully used to solve dynamic economic dispatch problem due to their ability to find
the near global solution of a nonconvex optimization problem. Recently, stochastic search
algorithms such as differential evolution (DE) [32],[35], harmony search algorithm [33], particle
swarm optimization (PSO) [34] have been successfully used to solve dynamic economic dispatch

problem due to their ability to find the near global solution of a nonconvex optimization



problem. Due to difficulties of binary representation when dealing with continuous search space
with large dimensions, real-coded genetic algorithm (RCGA) [36]-[37] has been employed. The
Simulated Binary Crossover (SBX) and polynomial mutation have been applied in this work.

Non-linear classical optimization methods, such as quadratic programming [38], Lagrangian
relaxation [39] and semi-definite programming approach [40] have been pertained to solve
combined heat and power economic dispatch (CHPED). However, these methods cannot handle
non-convex fuel cost function of the conventional thermal generating units. The foreword of
heuristic search algorithms has given alternative approaches for solving CHPED problem.
Improved ant colony search algorithm [41], evolutionary programming [42], genetic algorithm
[43], harmonic search algorithm [44]-[45], multi-objective particle swarm optimization [46], self
adaptive real-coded genetic algorithm [47], novel selective particle swarm optimization [48],
mesh adaptive direct search algorithm [49], particle swarm optimization with time varying
acceleration coefficients [50] and oppositional teaching learning based optimization [51] have
been pertained for solving CHPED problem. Teaching-learning-based optimization (TLBO), a
teaching-learning process inspired algorithm recently proposed by Rao et al. [52], [53] and Rao
and Patel [54] is based on the effect of influence of a teacher on the output of learners in a class.
It is a population-based method and does not require any algorithm-specific control parameters.
The main advantage of TLBO is that it requires only common controlling parameters like
population size and number of generations for its working. Javadi, et al. [55] define the harmonic
search algorithm (HS) have been proposed for solving the CHPED problem. The improved HS
methods have obtained better solution quality than the original one. However, the convergence
characteristic of the HS has revealed that the method is still slow for obtaining optimal solution.
Many meta-heuristic and artificial intelligent algorithms like genetic algorithm (GA) [56],
opposition-based group search optimization (OGSO) [57], group search optimization (GSO)
[58], cuckoo search algorithm (CSA) [59], integrated civilized swarm optimization (CSO) and
Powell’s pattern search (PPS) method [60] have been used for solving the CHPED problem.

Very recently, V. K. Patel and V. J. Savsani has pioneered heat transfer search (HTS) algorithm
[61], based on the edict of thermodynamics and heat transfer. The searching procedure of HTS
mulls over three components namely ‘conduction phase’, ‘convection phase’ and ‘radiation
phase’. The HTS algorithm imitates the thermal balance manners of any system. The HTS

algorithm replicates the thermal equilibrium behavior of any system. The thermal equilibrium



can be achieved when molecules of the system, transfer heat in the form of conduction,
convection and radiation. Each phase of the proposed algorithm is executed with equal
probability during an entire search process. The search processes of all three phases are
calculated in such a manner that during the first half each phase explores search space while in
the second half each phase exploits the search space. The feasible operating regions of a
conventional thermal generator with prohibited operating zones define by Pereira-Neto et al.

[62].

Optimal scheduling of power plant generation is of great importance to electric utility systems.
Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the
operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of
thermal plants under the various constraints on the hydraulic, thermal and power system
network. The hydrothermal scheduling problem has been the subject of investigation for several
decades. Several classical methods such as Newton’s method [63], mixed integer programming
[65], [79] dynamic programming (DP) [66], etc. have been widely used to solve hydrothermal
scheduling problem. Among these methods, DP appears to be the most popular. However, major
disadvantages of DP method are computational and dimensional requirements which grow
drastically with increasing system size and planning horizon. Recently, stochastic search
algorithms such as simulated annealing (SA) [67], evolutionary programming (EP) [68], genetic
algorithm (GA) [69]-[70], evolutionary programming technique [71], differential evolution (DE)
[72]-[74], particle swarm optimization [75], artificial immune system [76], clonal selection
algorithm [77] and teaching learning based optimization [78] have been successfully used to
solve hydrothermal scheduling problem. Since the mid 1990s, many techniques originated from
Darwin’s natural evolution theory have emerged. These techniques are usually termed by
“evolutionary computation methods” including evolutionary algorithms (EAs), swarm
intelligence and artificial immune system. Differential evolution (DE) [80]-[82], a relatively new
member in the family of evolutionary algorithms, first proposed over 1995-1997 by Storn and
Price at Berkeley is a novel approach to numerical optimization. It is a population-based
stochastic parallel search evolutionary algorithm which is very simple yet powerful. Price and
Storn describe the technique of differential evolution in optimizing the hydrothermal system. The
main advantages of DE are its capability of solving optimization problems which require

minimization process with nonlinear, non-differentiable and multi-modal objective functions.



Oppositional based learning (OBL) was first utilized to improve learning and back propagation
in neural networks and since then, it has been applied to many EAs such as particle swarm
optimization define by Wang et al [83]. The basic concept of opposition-based learning [84]-[86]
was originally introduced by Tizhoosh. The main idea behind OBL is for finding a better
candidate solution and the simultaneous consideration of an estimate and its corresponding
opposite estimate (i.e., guess and opposite guess) which is closer to the global optimum. OBL
was first utilized to improve learning and back propagation in neural networks by Ventresca and
Tizhoosh [87], and since then, it has been applied to many EAs, such as differential evolution
[88] and ant colony optimization [89]. Opposition-based harmony search algorithm [90] has been
applied to solve combined economic and emission dispatch problems. In [91] oppositional real
coded chemical reaction optimization has been used for solving economic dispatch problems.
Opposition-based gravitational search algorithm has been applied for solving reactive power
dispatch problem. The maximization and minimization problem in optimizing fixed head

hydrothermal system define by Michalewicz [92].

Reactive power dispatch (RPD) perks up power system economy and security. Reactive power
generation has no production cost but in general it has an effect on the production cost related
with active power transmission loss. RPD minimizes active power transmission loss and perks up
voltage profile and voltage stability by adjusting control variables such as generator voltages,
transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time
satisfying several equality and inequality constraints.A variety of classical optimization
techniques [93]-[96] such as Newton method, linear programming, quadratic programming and
interior point method have been pertained to solve RPD problem. RPD is a mixture of discrete
and continuous variables with multiple local optima. So it is exigent to acquire global optima by
using classical optimization techniques. In recent times nature-inspired metaheuristics such as
quasi-oppositional differential evolution [97], evolutionary programming (EP) [98], novel
teaching—learning-based optimization algorithm [99] quantum-inspired evolutionary algorithm
(QEA) [100], comprehensive learning particle swarm optimization (CLPSO) [101], hybrid
shuffled frog leaping algorithm (HSFLA) modified teaching learning algorithm and double
differential evolution algorithm [102], and have been pertained to solve RPD problem. Voltage
stability is the capacity of a power system to keep up suitable voltages at all bus bars beneath

normal operating condition and even after disturbances such as change in load demand or system



configuration. In recent times a number of major network collapses [103] have been taken place
due to voltage instability. Improvement of voltage stability has been acquired by minimizing
voltage stability indicator define by Kessel and Glavitsch [104]. Multi-area dynamic economic
dispatch (MADED) is an extension of multi-area static economic dispatch problem. It schedules
the online generator outputs, and interchange power between areas with the predicted load
demands over a certain period of time so as to operate an electric power system most
economically. The algorithm is based on iterative method, proposed by Metropolis et al. [105],
which simulates the transition of atoms in equilibrium at a given temperature

Optimal power flow (OPF) is an important tool for power system operators both in power system
planning and operation for many years. The OPF minimizes the power system operating
objective function while satisfying a set of equality and inequality constraints. The equality
constraints are power flow equations and inequality constraints are the limits on control variables
and functional operating constraints. The OPF is a highly non-linear, non-convex, large scale
static optimization problem. Several optimization techniques have emerged so far and have been
applied to solve OPF problem. Earlier, OPF algorithms were based on classical mathematics-
based on differential evolution (QODE) [106], Gradient based method [107], quadratic
programming (QP) [108], Newton-based method [109], linear programming (LP) [110], and
interior point methods (IPMs) [111]-[112] have been successfully applied to solve OPF
problems. The problem of OPF was originally formulated in 1962 by Carpentier [107] and he
solved the OPF problem by using reduced gradient method. In the following years, a lot of
research took place to improve the quality of OPF solution. These classical optimization
techniques have been widely applied to varieties of OPF problems. However, these techniques
fail to deal with systems having complex non-smooth, non-convex and non-differentiable
objective functions and constraints. Due to tremendous improvement in capability of computers
in recent years, evolutionary algorithms, such as genetic algorithm (GA) [112], evolutionary
programming (EP) [113], particle swarm optimization (PSO) [114]-[115], simulated annealing
(SA) [116], differential evolution (DE) [117], biogeography-based optimization (BBO) [118],
faster evolutionary algorithm [119], particle swarm optimization (PSO) [120] have been applied
for solving various complex OPF problems to overcome the drawbacks of classical techniques.
Earlier, OPF algorithms were based on classical mathematics-based methods. Tinney and Hart

describes the Newton-based method [121] was successfully applied to solve OPF problems.
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The line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [122]. Due to tremendous improvement in capability of
computers in recent years, evolutionary algorithms, such as improved evolutionary programming
[123], enhanced genetic algorithm [124], differential evolution (DE) [125] and particle swarm
optimization (PSO) [126] have been applied for solving various complex OPF problems to
overcome the drawbacks of classical techniques. Yokoyama and Bae[127] defines the objective
for comparison purposes i.e. the total emission of these pollutants which is the sum of a quadratic
and an exponential function. For IEEE 57 test bus system, the system line data, bus data,
generator data and the minimum and maximum limits for the control variables have been adapted
from [128] and [130]. The upper and lower limits of reactive power sources and transformer tap
settings are taken from [129]. To test optimal power flow, system line data, bus data, generator
data and the minimum and maximum limits for the control variables have been adapted for IEEE
57-bus and for IEEE 118-bus test system the system line data, bus data, generator data and the

minimum and maximum limits for the control variables have been adapted from [130]-[132].
1.3. Motivation behind the work

The valve-point loading, prohibited operating zones, ramp-rate limits and other constraints turn
the decision space into disjoint subsets, transforming the most of the power system problems into
difficult non-smooth, non-convex optimization problems. The calculus-based methods fail to
address  these  types of  problems. The  dynamic  programming  method
has no restrictions on the shape of the objective function and can solve these types of problems.
However, this method suffers from the curse of dimensionality or local optimality. Modern
Intelligent algorithms are promising alternatives for the solution of complex power system
optimization problems. Keeping this in mind, this work mainly focuses on complex power

system optimization by using various intelligent control methods.
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1.4. Organization of Thesis

The layout of Thesis is as follows.
Chapter: 1

This chapter describes the general introduction to all intelligent control methods. Also it
describes the Literature Survey and motivation towards this present work. It presents the earlier
works done on different optimization technique like differential evolution, opposition based
differential evolution, quasi-oppositional differential evolution, evolutionary algorithm, genetic
algorithm, improved real coded genetic algorithm, simulated annealing, teaching-learning based

optimization, modified teaching-learning based optimization, heat transfer search algorithm.
Chapter: 2

This chapter describes about different metaheuristic techniques like differential evolution,
evolutionary programming, genetic algorithm, and simulated annealing and application of this
metaheuristic techniques to multi-area economic dispatch problem (MAED). The proposed
methods have been validated by application of three types of MAED problems i.e. test system 1:
MAED with quadratic cost function prohibited operating zones and transmission losses, test
system2: with valve point loading and test system3: with valve point loading multiple fuel

sources and transmission losses.
Chapter: 3

This chapter describes about dynamic economic dispatch. Here improved real coded genetic
algorithm (IRCGA) has been developed in view of one-to-one competition to boost convergence
speed and solution quality. IRCGA has been pertained for solving dynamic economic dispatch
problem with nonsmooth fuel cost function. Two test systems and 15 benchmark functions are
exploited here. Test results are matched up to those acquired by real coded genetic algorithm
(RCGA).

Chapter: 4

This chapter describes about combined heat and power economic dispatch (CHPED) problem.

Also intelligent control methods like modified teachning learning based optimization and heat

12



transfer search algorithm have been applied to CHEPD problem and 15 benchmark functions.

Test results are compared with those acquired by other evolutionary techniques.
Chapter: 5

This chapter describes about fixed-head hydrothermal system. Also it describes the application
of opposition-based differential equation and improved real coded genetic algorithm to fixed

head hydrothermal system.
Chapter: 6

This chapter describes about variable-head hydrothermal system. Also it describes the
application of opposition-based differential equation to variable head hydrothermal system,
multi-reservoir cascaded hydro plants having prohibited operating zones and thermal units with

valve point loading.
Chapter: 7

This chapter describes about reactive power dispatch. Also in this study it describes application
of improved real coded genetic algorithm to reactive power dispatch problem. The developed
IRCGA and RCGA have been pertained to solve different types of RPD problems and three

different test systems with three different objective functions and 15 benchmark functions.
Chapter: 8

This chapter describes about Optimal Power Flow problems. Two different intelligent control
methods like, heat transfer search (HTS) algorithm and quasi-oppositional differential evolution
(QODE) have been successfully applied to solve optimal power flow problems. The performance
of the proposed algorithm has been assessed on IEEE 30-bus, 57-bus and 118-bus test systems to

demonstrate its effectiveness.

At end of this thesis, conclusion form all chapters have been presented and future work also

described. The references and appendices are included in the end of this thesis.
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CHAPTER-2

Multi-area Economic Dispatch

2.1. Introduction:

Economic dispatch (ED) is one of the important optimization problems in power system
operation. ED allocates the load demand among the committed generators most economically
while satisfying the physical and operational constraints in a single area. Generally, the
generators are divided into several generation areas interconnected by tie-lines. Multi-area
economic dispatch (MAED) is an extension of economic dispatch. MAED determines the
generation level and interchange power between areas such that total fuel cost in all areas is
minimized while satisfying power balance constraints, generating limits constraints and tie-line

capacity constraints.

With the emergence of metaheuristic techniques, attention has been gradually shifted to
applications of such technology-based approaches to handle the complexity involved in real
world problems. Metaheuristic techniques have been given much attention by many researchers

due their ability to seek for the near global optimal solution.

Here four different metaheuristic techniques have been applied in the MAED problem to
investigate the applicability of this technique. These are, differential evolution (DE),

evolutionary programming (EP), genetic algorithm (GA), and simulated annealing (SA).

The proposed methods have been validated by application of three types of MAED problems.
These are A) multi area economic dispatch with quadratic cost function prohibited operating
zones and transmission losses (MAEDQCPOZTL) B) multi area economic dispatch with valve
point loading (MAEDVPL) C) multi area economic dispatch with valve point loading multiple
fuel sources and transmission losses (MAEDVPLMFTL).

The metaheuristic techniques are evaluated against three different test systems for comparison

with each other.

14



2.2. Problem Formulation:

The objective of MAED is to minimize the total cost of supplying loads to all areas while
satisfying power balance constraints, generating limits constraints and tie-line capacity

constraints.

Three different types of MAED problems have been considered.
2.2.1. MAEDQCPOZTL

The objective function F,, total cost of committed generators of all areas, of MAED problem

may be written as

M‘_z

Fyp)=>

i=l j

M_z

)

i=l j

a; +b,P, +c,P; (2.1)

)

H
—_
H
—_

where  F; (PU.) is the cost function of jth generator in area i and is usually expressed as a

quadratic polynomial; a;, b; and c are the cost coefficients of jth generator in area i; N is
the number of areas, M, is the number of committed generators in area i; PU is the real power

output of jth generator in area i. The MAED problem minimizes F, subject to the following

t

constraints.

2.2.1.1. Real power balance constraint:

M;
> P, =P, +P,+> T, ieN (2.2)
j=1

k. k#i

The transmission loss P, of area i may be expressed by using B -coefficients as

M;
ZR] ilj tl+zBOt/P +B001 (23)

1 j=1

Mz
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Where P,, is the real power demand of area i; T, is the tie line real power transfer from area i

L

to area k. T, is positive when power flows from area i to area k and T, is negative when

power flows from area k to area i.
2.2.1.2. Tie line capacity constraints

The tie line real power transfer T, from area i to area k should not exceed the tie line transfer

capacity for security consideration.
—T < T, < TP (2.4)

where T, is the power flow limit from area i to area k and - T, is the power flow limit from

area k to area i.
2.2.1.3. Real power generation capacity constraints

The real power generated by each generator should be within its lower limit P;.“i“ and upper limit

P, so that
P <P <PM™ ieN and je M, (2.5)
2.2.1.4. Prohibited Operating Zone

The prohibited operating zones are the range of power output of a generator where the operation
causes undue vibration of the turbine shaft bearing caused by opening or closing of the steam
valve. Normally operation is avoided in such regions. The feasible operating zones of unit can be
described as follows:

min l
P'" <P, <P,

ij,1

P!, <P, <P,

.
ij,m—1 — ij,m 9

m= 2,3,...,nl.j (2.6)

u max
P! <P, <P

ij.ny
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where m represents the number of prohibited operating zones of j the generator in area i . P, ,

is the upper limit of (m —1)th prohibited operating zone of jthe generator in area i . Plé,.m is the

lower limit of mth prohibited operating zone of jthe generator in area i. Total number of

prohibited operating zone of jthe generator in area i is n,;.

2.2.2. MAEDVPL

To model the effect of valve-points, a recurring rectified sinusoid contribution is added to the
quadratic function [22]. The fuel cost function considering valve-point loadings of the generator

is given as

<

i M

F=YYFPp)=Y a; +b,;P; +c; P +|d, xsinfe, x (P ~ P, )} 2.7

g g )

\ I
—

i=l j i=l j=1
where d;; and e; are cost coefficients of jth generator in area i due to valve-point effect. The
objective of MAEDVPL is to minimize F, subject to the constraints given in (2.2), (2.4) and

(2.5). Here transmission loss (P, ) is not considered.

2.2.3. MAEDVPLMFTL

Since generators are practically supplied with multi-fuel sources [17], each generator should be
represented with several piecewise quadratic functions superimposed sine terms reflecting the
effect of fuel type changes and the generator must identify the most economical fuel to burn. The

fuel cost function of the jth generator in area i with N, fuel types considering valve-point

loading is expressed as

F,(B,)=ay, +b,,P, +c, P} +d,

ij ijm ijm= ij ijm= ij

o xsinfe,,, x (P — P, )} 2.8)

if Pt < P, <P;" forfuel type m and m=12,..,N,

ijm ijm
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The objective function F, is given by

.(,) (2.9)

M»z
!

)

i=

—
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J

The objective function F, is to be minimized subject to the constraints given in (2.2), (2.4) and

(2.5).

2.3. Determination of Generation Level of slack generator

M. committed generators in area i deliver their power output subject to the power balance

constraint (2.2), tie line capacity constraints (2.4) and the respective generation capacity

constraints (2.5). Assuming the power loading of first (M, —1) generators are known, the power

level of the M, th generator (i.e. the slack generator) is given by

M, -1
PiM, =P, +P, + szk - zPij (2.10)
=1

k k#i

The transmission loss P,; is a function of all generator outputs including the slack generator and

it is given by

—1M, M, -1
P, PijBileil +2P;M{ZB[M,/‘PUJ+B1‘M,M 12\4 + ZBOUP + BO[M,PiM, + By, (2.11)

Expanding and rearranging, equation (2.10) becomes

M,—IM, -1
lMM P;w (ZZBM/P +B01M, - jPlM +( ;T ZT + ZZ ilj tl+ZB0U
=1 I=1

k. k#i j=

ZP +Boo,j (2.12)

The loading of the slack generator (i.e. M, th) can then be found by solving equation (2.12) using

standard algebraic method
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2.4. Overview of Metaheuristic Techniques

Several metaheuristic techniques have evolved in recent past that facilitate to solve optimization
problems which were previously difficult or impossible to solve. These techniques include

evolutionary programming, differential evolution, genetic algorithm, simulated annealing, etc.

2.4.1. Evolutionary Programming

Evolutionary Programming (EP) [18] is a technique in the field of evolutionary computation. It
seeks the optimal solution by evolving a population of candidate solutions over a number of
generations or iterations. During each iteration, a second new population is formed from an
existing population through the use of a mutation operator. This operator produces a new
solution by perturbing each component of an existing solution by a random amount. The degree
of optimality of each of the candidate solutions or individuals is measured by their fitness, which
can be defined as a function of the objective function of the problem. Through the use of a
competition scheme, the individuals in each population compete with each other. The winning
individuals form a resultant population, which is regarded as the next generation. For
optimization to occur, the competition scheme must be such that the more optimal solutions have
a greater chance of survival than the poorer solutions. Through this the population evolves

towards the global optimal point. The algorithm is described as follows:

i) Initialization: The initial population of control variables is selected randomly from the set of
uniformly distributed control variables ranging over their upper and lower limits. The fitness

score f; is obtained according to the objective function and the environment.

1

ii) Statistics: The maximum fitness f,, , minimum fitness f, . , the sum of fitness Z f,and

ax ?

average fitness f,,. of this generation are calculated.

iii) Mutation: Each selected parent, for example X, , is mutated and added to its population with

the following rule:

Xi+m,j :Xij+N[O’ﬂ(;j_£j)_J9 jE I’l,iE Np (213)
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where n is the number of decision variables in an individual, N, is the population size, X

denotes the jth element of the ith individual; N (,u, 0'2) represents a Gaussian random variable

with mean g and variance ¢*; f

a 18 the maximum fitness of the old generation which is
obtained in statistics; ;cj and x; are respectively maximum and minimum limits of the ;j th

element; and £ is the mutation scale, 0< # <1, that could be adaptively decreased during

generations. If any mutated value exceeds its limit, it will be given the limit value. The mutation
process allows an individual with larger fitness to produce more offspring for the next

generation.

iv) Competition: Several individuals (k) which have the best fitness are kept as the parents for
the next generation. Other individuals in the combined population of size (2N, —k ) have to
compete with each other to get their chances for the next generation. A weight value w, of the i

th individual is calculated by the following competition:

z

(2.14)

N
Il
LN

where N, is the competition number generated randomly; w,, is either O for loss or 1 for win as

the ith individual competes with a randomly selected (rth) individual in the combined

population. The value of w,, is given in the following equation:

1 if f < f,
W, = (2.15)

0 , otherwise

where f is the fitness of randomly selected r th individuals, and f, is the fitness of the ith
individual. When all 2N, individuals, get their competition weights, they will be ranked in a
descending order according to their corresponding value w;. The first m individuals are selected
along with their corresponding fitness f; to be the bases for the next generation. The maximum,

minimum and the average fitness and the sum of the fitness of the current generation are then

calculated in the statistics.
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v) Convergence test: If the convergence condition is not met, the mutation and competition will
run again. The maximum generation number can be used for convergence condition. Other
criteria, such as the ratio of the average and the maximum fitness of the population is computed

and generations are repeated until

Ve fun 126 (2.16)

where ¢ should be very close to 1, which represents the degree of satisfaction. If the
convergence has reached a given accuracy, an optimal solution has been found for an
optimization problem.

2.4.2. Differential Evolution

Differential Evolution (DE) [82] is a type of evolutionary algorithm originally proposed by Price
and Storn [5] for optimization problems over a continuous domain. DE is exceptionally simple,
significantly faster and robust. The basic idea of DE is to adapt the search during the
evolutionary process. At the start of the evolution, the perturbations are large since parent
populations are far away from each other. As the evolutionary process matures, the population
converges to a small region and the perturbations adaptively become small. As a result, the
evolutionary algorithm performs a global exploratory search during the early stages of the
evolutionary process and local exploitation during the mature stage of the search. In DE the
fittest of an offspring competes one-to-one with that of corresponding parent which is different
from other evolutionary algorithms. This one-to-one competition gives rise to faster convergence
rate. Price and Storn gave the working principle of DE with simple strategy in [82]. Later on,
they suggested ten different strategies of DE [5]. Strategy-7 (DE/rad/1/bin) is the most successful

and widely used strategy. The key parameters of control in DE are population size (N ), scaling
factor ( F) and crossover constant ( C, ). The optimization process in DE is carried out with three

basic operations: mutation, crossover and selection. The DE algorithm is described as follows:
Initialization

The initial population of N, vectors is randomly selected based on uniform probability
distribution for all variables to cover the entire search uniformly. Each individual X, is a vector

that contains as many parameters as the problem decision variables D. Random values are

assigned to each decision parameter in every vector according to:
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XY~ uxm, xm) 2.17)

where i=1,...,N, and j=1,....,D; X‘]‘f‘j“ and Xr]?“a" are the lower and upper bounds of the j th
decision variable; U (Xr]“m ,X‘;‘a") denotes a uniform random variable ranging over [X';‘j“ X ]
Xg is the initial jth variable of ith population. All the vectors should satisfy the constraints.

Evaluate the value of the cost function f (X?) of each vector.
Mutation

DE generates new parameter vectors by adding the weighted difference vector between two

population members to a third member. For each target vector X? at g th generation the noisy

vector X!¢is obtained by
X'¢ =X +5, (X8 -X*), ieN, (2.18)

where X*, X? and X! are selected randomly from N, vectors at gth generation and

a#b+#c#i. The scaling factor (S,), in the range0< S, <1.2, controls the amount of

perturbation added to the parent vector. The noisy vectors should satisfy the constraint.

Crossover

. . . / .
Perform crossover for each target vector X? with its noisy vector X:* and create a trial vector

X /¢ such that

X/ if p<C,
X/ =

X% , otherwise , ie N, (2.19)
where p is an uniformly distributed random number within [0, 1]. The crossover constant (C, ),
in the range 0 < C, <1, controls the diversity of the population and aids the algorithm to escape

from local optima.
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Selection

Perform selection for each target vector, X¥ by comparing its cost with that of the trial vector,

X”# . The vector that has lesser cost of the two would survive for the next generation.

XU (xre)< ()
Xf-%—l —
). G otherwise , ie N, (2.20)

1

The process is repeated until the maximum number of iterations or no improvement is seen in the

best individual after many iterations.

Specify the DE
v
Set Iter.=1
v
Generate initial
v
Set target vector

v

Evaluate cost of target
1

A 4

A 4

Generate mutant vector by mutation operation
v
Generate trial vector by crossover
v
Evaluate cost of trial

v

The best vector survives by selection operation
1

Iter. < Max.
Iter.

Iter.=Iter.+1

Stop

Fig. 2.1. Flowchart of Differential Evolution
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2.4.3. Genetic Algorithm

Genetic algorithm [3] is based on the mechanics of natural selection. An initial population of
candidate solutions is created randomly. Each of these candidate solutions is termed as
individual. Each individual is assigned a fitness, which measures its quality. During each
generation of the evolutionary process, individuals with higher fitness are favored and more
probabilities to be selected as parents. After parents are selected for reproduction, they produce
children via the processes of crossover and mutation. The individuals formed during
reproduction explore different areas of the solution space. These new individuals replace lesser-

fit individuals of the existing population.

Due to difficulties of binary representation when dealing with continuous search space with large
dimensions, the proposed approach has been implemented using real-coded genetic algorithm
(RCGA) [36]. The simulated Binary Crossover (SBX) and polynomial mutation are explained as

follows.
Simulated Binary Crossover (SBX) operator

The procedure of computing child populations ¢, and ¢, from two parent populations y, and y,

under SBX operator as follows:
1. Create a random number u between O and 1.

2. Find a parameter ¥ using a polynomial probability distribution as follows:

(ua)l/ () , if u< e
(04
}/ =
(1/(2- ua))l/(””+) , otherwise (2.21)

where ¢ =2— " and S=1+ min[(y, - y,).(y, = ,)]

Y=

Here, the parameter y is assumed to vary in [yl, yu]. Here, the parameter 77, is the distribution

index for SBX and can take any non-negative value. A small value of 77_allows the creation of
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child populations far away from parents and a large value restricts only near-parent populations

to be created as child populations.

3. The intermediate populations are calculated as follows:
Cpi = 0-5[()’1 + yz)_ 7qy2 - y1|)]
¢, =05[v, + v,)+ Ay, =3[} (222)

Each variable is chosen with a probability p_. and the above SBX operator is applied variable-

by-variable.

Polynomial Mutation Operator
A polynomial probability distribution is used to create a child population in the vicinity of a

parent population under the mutation operator. The following procedure is used:
1. Create a random number u between 0 and 1.

2. Calculate the parameter ¢ as follows:

1
[214 +(1-2u)1- ¢)('7m“) |(r7,,,+1) -1 ,if u<0.5
o=

1
1= 20— u)+ 20— 0.5)1 = ) [0 , otherwise (2.23)

min[(cp -y )y, - ¢y )

where ¢ = G =)
u l

The parameter 77, is the distribution index for mutation and takes any non-negative value.
3. Calculate the mutated child as follows:

a=c,+6(y,-v) (2.24)

C, =Cp +§(yu _yl) (225)
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The perturbance in the population can be adjusted by varying 77, and p, with generations as

given below:

nm = ﬂmmin + gen (226)
2.27
py = s 5T (1—1] 27
n genmax n
where 77, . 1s the user defined minimum value for 77, , p,, is the probability of mutation, and n

is the number of decision variables

2.4.4 Simulated Annealing

The Simulated Annealing algorithm simulates the procedure of gradually cooling a metal, until
the energy of the system reaches the globally minimum value. Beginning with a high
temperature, a metal is slowly cooled, so that the system is in thermal equilibrium at every stage.
At high temperatures, the metal is in liquid phase and the atoms of the system are randomly
arranged. By gradually cooling the metal, the system becomes more organized, until it finally
reaches a “frozen” ground state, where the energy of the system has reached the globally
minimum value [6]. Metropolis et al. [105] proposed an iterative method to simulate the
evolution of thermal equilibrium of a metal for a fixed value of temperature. In each trial, the
state of an atom is randomly perturbed, resulting in a change of energy (AE ) of the system. If
AE <0, the perturbation results in a lower energy of the system and the change is accepted. The
new configuration of the system constitutes the starting point for the next trial. If AE >0, the

proposed change is accepted with a probability given by Boltzmann distribution
P(A)=1/{l+exp(AE/K,T)} (2.28)

where K is Boltzmann’s constant and T corresponds to the current value of temperature. The

acceptance of the new state with higher energy level is determined by comparing a random
number generated from a uniform distribution on the interval between 0 and 1. If the random

number is less than the value of P(A), the new state is accepted as the current state. This

acceptance rule for new state is referred to as the “Metropolis criterion”.
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At each temperature, the “Metropolis criterion” is applied for a sequence of trials, where the
outcome of each trial depends only on the outcome of the previous one. This procedure is
mathematically described by means of a Markov chain, where the length of each chain is equal
to a specific number of iterations performed at each temperature. As the temperature decreases,
the Boltzmann distribution concentrates on the states with lower energy and finally, when the
temperature approaches asymptotically to zero, only the minimum energy states have a nonzero
probability of appearance. The above procedure is modeled through (2.28), due to which the
probability of acceptance of higher energy configurations is large in high temperatures, whereas
it becomes smaller as the temperature decreases. The flow chart of simulated annealing

technique is shown in Fig. 2.2.
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2.5. Simulation and Results of Metaheuristic technique

A comparative study is performed for the four metaheuristic techniques by solving the MAED
problem for three different test systems. All metaheuristic techniques for the MAED problems
are implemented by using MATLAB 7.0 on a PC (Pentium-1V, 80 GB, 3.0 GHz).

The initial temperature (I,) of SA algorithm has been determined by using the procedures

described in [20]. As per guideline [6], the value of r lies in the range from 0.80 to 0.99. For
seeking the optimal solution, the value of r is required to be set close to 0.99 so that a slow
cooling process is simulated. The appropriate setting of r is set by experimenting with its value
in the range from 0.95 to 0.99, and this value is found to be 0.98. Number of trials at each
temperature has been taken 30. In this paper, iterative process is terminated when the maximum

number of iterations is reached.

2.5.1. Test System 1: This system consists of two areas. Each area consists of three generators
with prohibited operating zones. Transmission loss is considered here. The generator data has
modified from [19]. The generator data and B-coefficients are given in the appendices
Table A.1. The percentage of the total load demand in area 1 is 60% and 40% in area 2. The total
load demand is 1263 MW and power flow limit of the system is 100 MW.

The problem is solved by using DE, EP, RCGA, and SA. In case of DE, the population size,
scaling factor, and crossover rate have been selected as 100, 0.75, and 1.0 respectively for the
test system under consideration. The population size and scaling factor have been selected as
100, and 0.1 respectively in case of EP. In case of RCGA, the population size, crossover and

mutation probabilities have been selected as 100, 0.9 and 0.2 respectively.
Maximum number of generations has been selected 100 for all the four metaheuristic techniques
discussed in this paper.

Results obtained from the four metaheuristic techniques i.e. DE, EP, RCGA, and SA have been
summarized in Table 2.1. Fig. 2.3. gives the comparison of convergence of minimum total cost

obtained by DE, EP, RCGA, and SA.
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Table 2.1: Simulation results for test system 1

DE SA EP RCGA

P, (MW) 500.0000 500.0000 500.0000 500.0000
P, (MW) 200.0000 200.0000 200.0000 200.0000
P ; (MW) 150.0000 150.0000 149.9919 149.6328
P, (MW) 204.3341 204.2157 206.4493 205.9398
P, , MW) 154.7048 155.0575 154.8892 155.8322
P, ,(MW) 67.5770 67.3516 65.2717 65.2209
T,(MW) 82.7731 82.7731 82.7652 82.4135
P, (MW) 9.4269 9.4269 9.4267 9.4193
P,,(MW) 4.1890 4.1979 4.1754 4.2064
Cost ($/h) 12255.39 12255.39 12255.43 12256.23
CPU time 17.6875 14.7656 21.3281 24.2031
(second)
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Fig. 2.3. Cost convergence characteristic of DE, SA, EP, RCGA of test system 1

2.5.2. Test System 2: This system comprises ten generators with valve-point loading and multi-
fuel sources having three fuel options. Transmission loss is considered here. The generator data
has been taken from [17]. The total load demand is 2700 MW. The ten generators are divided
into three areas. Area 1 consists of the first four units; area 2 includes the next three units and
area 3 includes the last three units. The load demand in area 1 is assumed as 50 % of the total
demand. The load demand in area 2 is assumed as 25 % and in area 3 is taken as 25 % of the
total demand. The power flow limit from area 1 to area 2 or from area 2 to area 1 is 100 MW.
The power flow limit from area 1 to area 3 or from area 3 to area 1 is 100 MW. Also the power
flow limit from area 2 to area 3 or from area 3 to area 2 is 100 MW. The B-coefficients are given
in the appendices Table A.2. The problem is solved by using four metaheuristic techniques 1i.e.

DE, EP, RCGA, and SA.
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In case of DE, the population size, scaling factor, and crossover rate have been selected as 200,
0.75, and 1.0 respectively for the test system under consideration. The population size and
scaling factor have been selected as 100, and 0.1 respectively in case of EP. In case of RCGA,
the population size, crossover and mutation probabilities have been selected as 100, 0.9 and 0.2
respectively. Maximum number of generations has been selected 300 for DE, EP, RCGA, and
SA.

Results obtained from DE, EP, RCGA and RCGA have been presented in Table 2.2. The cost
convergence characteristic of this test system obtained from DE, EP, RCGA and SA is shown in

Fig. 2.4.
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Table 2.2: Simulation results for test system 2

Power DE SA EP RCGA
(MW)

Fuel Fuel Fuel Fuel
P, (MW) 225.9431 2 228.1730 2 223.8491 2 239.0958 2
P, (MW) 211.1594 1 213.3402 1 209.5759 1 216.1166 1
P, (MW) 489.9216 2 482.8722 2 496.0680 2 484.1506 2
P, ,(MW) 240.6232 3 242.6425 3 237.9954 3 240.6228 3
P, (MW) 254.0397 1 253.505s9 1 259.4299 1 259.6639 1
P,, MW) 235.4927 3 236.5760 3 228.9422 3 219.9107 3
P, (MW) 263.8837 1 266.6356 1 264.1133 1 254.5140 1
P, (MW) 237.0006 3 234.3130 3 238.2280 3 231.3565 3
P, , (MW) 328.7373 1 3259516 1 331.2982 1 341.9624 1
P, ; (MW) 248.8607 1 251.4034 1 246.6025 1 248.2782 1
T,, MW) 99.8288 100 100 93.1700
T,, (MW) 99.7334 99.8797 100 93.8739
T,, MW) 31.2615 28.1853 32.5231 43.7824
P, (MW) 17.2095 16.9000 17.4884 17.0297
P,,(MW) 9.8488 9.9028 10.0085 9.7010
P,,(MW) 8.6037 8.6030 8.6056 8.9408
Cost ($/h) 653.9995 654.0916 655.1716 657.3325
CPU time 95.0351 10.0156 108.0625 133.8438
(second)
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2.5.3. Test System 3: This system comprises forty generators with valve-point loading. The
generator data has been taken from [21]. The total load demand is 10500 MW. The forty
generators are divided into four areas. Area 1 includes first ten units and 15 % of the total load
demand. Area 2 has second ten generators and 40 % of the total load demand. Area 3 consists of
third ten generators and 30 % of the total load demand. Area four includes last ten generators and
15 % of the total load demand. The power flow limit from area 1 to area 2 or from area 2 to area
1 is 200 MW. The power flow limit from area 1 to area 3 or from area 3 to area 1 is 200 MW.
The power flow limit from area 2 to area 3 or from area 3 to area 2 is 200 MW. The power flow
limit from area 4 to area 1 or from area 1 to area 4 is 100 MW. The power flow limit from area 4
to area 2 or from area 2 to area 4 is 100 MW. The power flow limit from area 4 to area 3 or from

area 3 to area 4 is 100 MW. Transmission loss is neglected here.

Four metaheuristic techniques i.e. DE, EP, RCGA, and SA have been used to solve the problem.
The population size, scaling factor, and crossover rate have been been selected as 400, 0.75 and
1.0 respectively in case of DE. In EP, the population size and scaling factor have been selected
200 and 0.1 respectively. In case of RCGA, the population size, crossover and mutation
probabilities have been selected as 200, 0.9 and 0.2 respectively. Maximum number of
generations has been selected 500 for DE, EP, RCGA and SA.

Results obtained from DE, EP, RCGA and SA has been depicted in Table 2.3. The cost
convergence characteristic of this test system obtained from DE, EP, RCGA and SA is shown in

Fig. 2.5.

From Tables 1, 2 and 3, it can be inferred that, the lowest minimum total cost amongst the four is
achieved by DE, followed by SA. Minimum total cost obtained by EP is more than DE and SA.
RCGA is the worst performer. The CPU time requirement is least in case of SA and highest in

the case of RCGA amongst the four metaheuristic techniques discussed in the paper.
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Table 2.3: Simulation results for test system 3

Power DE SA EP RCGA Power DE SA EP RCGA
(MW) MW)

P, 111.5448 1109120 107.6644  95.7552 P,, 523.4073  523.3366  525.7752  518.1120

P1,2 111.7092 111.8740  12.0673 88.5828 P3,5 52377703  525.5247  531.2092  538.1994
P1,3 98.2429  110.2589  91.8132 97.6063 1)3,6 523.5424  523.2794  513.5659  527.4775
P1,4 179.8834 179.7351 1753171  126.4966 P3,7 10.1621 10.0002 113612 24.4133
Pl,S 959500  88.8739  92.4242 71.0127 P3,8 10.1326 10.0006 10.0000  28.9856
PI,G 139.3533  68.0000 112.5634 116.3866 P3’9 10.6366 10.0006 10.0000  28.8571
P1,7 259.3395 184.9322  257.5370  244.5857 P3,10 88.1189 93.2065 78.3523 87.9016
P1,8 285.3569 285.0432 297.3619  210.6920 P4,1 161.2220  190.0000  162.4480  159.7482
P1,9 284.9627 284.6015 285.2035 236.1685 P4’2 189.5668  189.9990  166.3508  153.6255
P1,10 130.2217 130.0008 134.5862  130.1286 P4,3 189.9240  159.7546  190.0000  160.4706
P2,1 243.6005 168.6194 162.4313  367.4862 P4,4 165.6621  165.6736  178.4541  169.9359
Pz,z 95.3890  318.3986 217.8387  297.9501 P4’5 1654321  164.8248  168.0752  168.5220
P2,3 214.5171 304.5197 125.0000 394.9246 P4,6 164.9868  196.1794  174.4529  172.2638
P2,4 394.0808 394.2792 384.0187  370.3473 P4,7 109.8137  §9.1143 77.3875 91.2423
P2’5 394.2481 469.0618 397.6902  455.7123 P4’8 109.7935 89.1147 90.1059 86.4778
Pz,e 394.4360 304.5195 407.4993  393.9673 P4,9 90.1543 104.7206  109.5654  88.3627
P2,7 489.9552 489.2801 500.0000  424.1994 P4’10 459.1140  458.7992  549.0335  279.2691
Pz,g 488.8885 489.2803 480.8874  484.5498 T, 172.0652  192.6532 200 -71.7855
P2’9 511.4713  511.2790 524.8487  528.4148 T,, -36.3060  160.6028 17.5885  161.9336
P2,1o 511.4125 511.2805 499.7857  511.3403 T, 191.1128  -46.9736 200 95.2833
P3,1 523.2896 524.8208 523.4522  525.4497 T, 86.8070 52.8188 90.8733  -76.1340
P3!2 523.2950 523.2802 526.5051  510.7391 T, 98.8231 93.8021 100 -52.3900
1)3!3 523.4129 433.6204 537.3675  533.6399 T, 45.0391 86.5590 100 83.4418
Total cost ($/h) 1217948  123337.1  123591.9  128046.5
CPU time (second) 134.8125  29.2813 144.5000  160.5313
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Fig. 2.5. Cost convergence characteristic of DE, SA, EP, RCGA of test system 3

2.6. Conclusion

Here, a comparison analysis has been done for the four metaheuristic techniques viz., differential
evolution, evolutionary programming, real coded genetic algorithm and simulated annealing
technique for multi-area economic dispatch problem considering transmission losses, multiple
fuels, valve-point loading and prohibited operating zones with respect to minimum cost and CPU
time. Differential evolution achieves the lowest minimum cost and SA requires least CPU time

amongst the four metaheuristic techniques.
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CHAPTER-3

Dynamic Economic Dispatch

3.1. Introduction.

Static economic dispatch (SED) allocates the load demand for a given interval of time among the
committed generating units economically while fulfilling various constraints. Dynamic economic
dispatch (DED) which is an extension of static economic dispatch, determines the optimal
sharing of time varying load demand among the committed units. Power plant operators try to
keep gradients for temperature and pressure inside the boiler and turbine within safe limits to
avoid shortening the life of the equipment. This mechanical constraint imposes limit on the rate
of increase or decrease of the electrical power output. This limit is called ramp rate limit which
differentiates DED from SED problem. Thus, in DED the dispatch decision at one time period
affects those at later time periods.

Dynamic economic dispatch (DED) is one of the main functions of power system operation and
control. DED is a real time power system problem. It determines the optimal operation of units
with predicted load demands over a certain period of time with an objective to minimize total
production cost while the system is operating within its ramp rate limits. DED is the most
accurate formulation of the economic dispatch problem but it is the most difficult to solve
because of its large dimensionality. As competition is increasingly introduced into the wholesale
generation markets, there is a need to understand the incremental cost burden imposed on the
system operation by the generator ramping rate limitations.

Here improved real coded genetic algorithm (IRCGA) has been developed in view of one-to-one
competition to boost convergence speed and solution quality.

IRCGA has been pertained for solving dynamic economic dispatch problem with nonsmooth fuel
cost function. Two test systems and 15 benchmark functions are exploited here. Test results are
matched up to those acquired by real coded genetic algorithm (RCGA). It has been observed that
the developed IRCGA offers superior solution.
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3.2. Problem Formulation

Normally, the DED problem minimizes the following total production cost of committed units:

F=%>F(p) (3.1)

t=1 i=1l
The fuel cost function of each unit considering valve-point effect [22] can be expressed as

F‘[t it

(B,)=a; +b,P, +c.B+|d, sinle, (™ —P, | (32)

Subject to the following equality and inequality constraints for the fth interval in the scheduled

horizon
3.2.1. Real power balance

The total power generated must be equal the total load demand plus transmission losses.

> P, -P,-P,=0 1eT (3.3)

i=1
3.2.2. Real power operating limits

The power generated by each generator is constrained between its lower and upper limits as

follows:
p" <P, <P™ ieN,teT (3.4)
3.2.3. Generator ramp rate limits

The rate of output power change of thermal generator must be within an acceptable range to
avoid undue stresses on the boiler and combustion equipment. The ramp rate limits of thermal

generator can be mathematically expressed as follows:

P,-P,, <UR, ieN, teT (3.5)

it

P i ieN, teT 3.6)
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3.3. Determination of Generation Levels

In this approach, the power loading of first (N —1) generators are specified. From the equality
constraints in equation (3.3) the power level of the Nth generator (i.e. the slack generator) is

given by

N-1
P, =P, +P,->P, teT (3.7)
i=1

The transmission loss P,, is a function of all the generators including that of the dependent
generator and it is given by

N-1N-1

N-1
P, = ZZPirBiijt + 2PNr(EBNiPitJ +B WPy reT (3.8)

i=l j=1

Expanding and rearranging, equation (3.6) becomes

N-1 N-1 N-1 N-1
B PS +(2ZBN,.P,, —1)PN,+(PD, +> >'P,B,P, —ZPi,j:o teT (3.9)

i=1 i=1 j=1 i=1

The loading of the dependent generator (i.e. Nth) can then be found by solving equation (3.9)

using standard algebraic method.

3.4. Overview of Improved Real Coded Genetic Algorithm

Genetic algorithm [2] pioneered in the early 1970s at the University of Michigan by John
Holland and his students, engenders the global or close to the global optima of a minimization
problem by creating a number of populations over a number of iterations. Genetic algorithm [2]
is inspired from Darwinian evolution theory “the survival of the fittest”. An initial population of
candidate solutions is generated randomly. The capability of the global or close to the global
optima of each of the new population is assessed by its fitness which can be stated by a function
of the objective function. After parents are selected for reproduction, they produce offspring via
the processes of crossover and mutation. The individuals formed during reproduction explore

different areas of the solution space.
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Due to difficulties of binary representation when dealing with continuous search space with large
dimensions, real-coded genetic algorithm (RCGA) [36] [37] has been employed. The Simulated
Binary Crossover (SBX) [36] and polynomial mutation have been applied in this work.

In case of improved real coded genetic algorithm (IRCGA), one-to-one challenge is pioneered in
real coded genetic algorithm (RCGA) to boost the convergence speed and solution quality. Here,
an offspring contends one-to-one with that of matching parent. Initialization, selection of parent
population, crossover, mutation and selection between parent and offspring are the five stages of
IRCGA stated as:

3.4.1. Initialization: The initial population (X,) of control variables chosen randomly from the

set of uniformly distributed control variables ranging over their maximum and minimum limits

has been stated as:

x. ~U(x’.“in xm"‘"), jenieN, (3.10)

i i

where n is the number of decision variables in an individual, N, is the population size; xfi

signifies the initial jth variable of the ith population ; x™

] and x;“ax are the minimum and

min

maximum limits of the j th decision variable; U(xj x;“ax) signifies a uniform random variable

ranging over [x?“‘“ X ] Compute the objective function value f, of each population.

3.4.2. Selection of parent population

The binary tournament selection method is utilized for choosing the parents in the mating pool.
Two chromosomes are haphazardly chosen from the population, and their objective function
values are compared and the chromosome with lower objective function value i.e. winner
chromosome is set aside in the mating pool. This process is repetitive until the mating pool is full

by the chromosomes.

3.4.3. Simulated Binary Crossover (SBX)

The process of computing offsprings xl’ and xé from two parents x, and x, by utilizing SBX

operator as follows:

1. Generate a random number u between 0 and 1.
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2. Get a parameter y by utilizing a polynomial probability distribution as follows:

(uar)' ,if u<la
y = (3.11)

/2 -ua))’™ | otherwise

where ¢ =2- 3 4 and B is computed as follows:

min[(x1 —xm ), (me X )]

p=1+

Xy =X

The parameter 77, is the distribution index for SBX and can obtain any non-negative value. A
minute value of 77, permits the formation of offsprings far-off from parents and a great value

confines only close to-parent populations to be generated as offsprings.

3. The intermediate populations are computed as follows:
Xp1 :O'S[(xl +x2)_7qx2 —x1|)] (3.12)
Xp2 :O'S[(xl +x2)+7qx2 _x1|)] (3.13)

3.4.4. Polynomial Mutation

The polynomial probability distribution is utilized to generate an offspring in the neighborhood

of a parent population underneath the mutation operator. This is stated as follows:
1. Generate a random number u between 0 and 1.

2. Compute the parameter 0 as follows:

1

.
[2u + (1= 2u)(1 = )™ o) —1 , ifu<05

o = < (3.14)

1

1- [2(1 —u)+2(u—05)1-¢)™ " |m) | otherwise

\
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min[(xp —xm ), (Xmax - X, )]

(xmax _xmjn)

where @ =

The parameter 77,, is the distribution index for mutation and obtains any non-negative value.

3.4.5. Compute the mutated offspring as follows:

X =X, + O'(xm"1X —xm ) (3.15)
/I _ max min

X, —xp2+0'(x -X ) (3.16)

The perturbation can be changed by varying 77, and p, with iterations as follows:

N, =N,m Titer (3.17)

1 iter ( 1)
Py =t 1=~

noouer, n (3.18)
where 77,,... 1s the abuser definite lowest value for 77, , p,, is the probability of mutation, and n

is the number of choice variables.Compute the objective function value of each offspring.

3.4.6. Selection between parent and offspring:

Carry out assortment for each parent (Xl.) by comparing its objective function value with that of

the matching offspring (Xf ) The population that has lower objective function value between

parent and offspring, carries on for the next iteration.

X! it f(x!)< f(X,)

X, , otherwise ,ie N, (3.19)

1

The procedure is replicated till the maximum number of iterations is arrived at. Fig. 3.1. portrays

the flowchart of improved real coded genetic algorithm (JIRCGA).
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Fig. 3.1. Flowchart of improved real coded genetic algorithm

3.5. Simulation and Results of IRCGA algorithm

The developed improved real coded genetic algorithm (IRCGA) and real coded genetic
algorithm (RCGA) have been pertained for solving two different test systems and 15 benchmark
functions. IRCGA and RCGA techniques have been realized by using MATLAB 7.0 on a PC
(Pentium-1V, 80 GB, 3.0 GHz).

3.5.1. Test System 1

This system comprises a five-unit test system with non-smooth fuel cost function. The demand

of the system has been divided into 24 intervals. Unit data and load demands can be found in the
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appendices Table.A.3 and Table.A.4 respectively. The transmission loss coefficients are also

found in the appendices.

The problem is solved by using IRCGA and RCGA. Here, maximum number of iterations,
population size, crossover and mutation probabilities have been chosen as 200, 50, 0.9 and 0.2,
respectively for IRCGA and RCGA.

Test results acquired from the best fuel cost among 100 runs of solutions by using developed
IRCGA and RCGA are summed up in Table 3.1 and Table 3.2 respectively.

The cost convergence characteristic acquired from developed IRCGA and RCGA has been
portrayed in Fig. 3.2. It has been observed from Table 3.1 and Table 3.2 that the total production
cost acquired from IRCGA is the less than RCGA.

Table 3.1: Hourly generation (MW) schedule, cost (x10*$) and CPU time (second) of
dynamic economic dispatch obtained from IRCGA for test system 1

Hour P, P, P3 P, P5 Cost CPU time
1 11.3164 94.4161 34.8735 146.6867 126.5497 4.7185 70.35
2 23.1813 90.1666 73.7201 113.5044 138.4590
3 11.9324 93.9033 108.5855 115.6246 149.7128
4 27.1539 112.3399 129.1379 127.4656 139.8012
5 33.0977 105.1074 119.7769 157.6852 148.8756
6 34.2727 113.1852 118.1478 198.1880 152.0965
7 21.0618 95.2011 126.5935 200.9683 190.5027
8 13.2336 84.1612 124.7809 210.7558 230.2387
9 15.4049 111.9255 114.6057 206.1754 252.2273
10 38.1468 102.8138 112.3537 228.4493 232.9199
11 22.9734 115.6917 116.1610 245.6676 230.8052
12 22.6146 100.7327 131.6335 217.3580 279.4648
13 17.1397 101.0136 130.8908 230.8320 234.7908
14 14.4215 125.0000 116.7502 208.0259 236.1501
15 27.3155 102.7837 132.0737 186.6684 214.2108
16 10.0000 88.8931 112.6023 143.4474 232.2756
17 29.3193 75.7853 115.8604 111.6682 231.9894
18 10.9216 98.6467 128.8807 155.2371 222.1789
19 10.0000 97.3583 116.4014 204.7380 234.7459
20 21.3901 101.9513 111.1422 249.0230 231.3192
21 41.8179 92.4563 124.0882 204.4698 226.9759
22 26.2425 83.8814 120.7969 168.0922 213.7139
23 27.0398 93.6921 111.9390 124.6404 175.5184
24 13.9996 97.5889 112.7651 112.7183 130.4413
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Table 3.2: Hourly generation (MW) schedule, cost (x10*$) and CPU time (second) of
dynamic economic dispatch obtained from RCGA for test system 1

Hour P, P, P, P, P, Cost CPU time
1 13.1295 83.5304 30.0000 131.5777 155.5877 4.7564 63.41
2 20.7587 103.9699 47.7241 121.1508 145.5922
3 30.0888 96.8590 39.0542 121.3086 192.7561
4 34.6016 120.1340 459461 999179 235.8191
5 11.1545 99.4230 79.6158 127.7968 246.9099
6 38.5179 103.8989 104.0526 114.2895 255.2500
7 10.0000 112.3671 121.8815 162.0736 228.0966
8 12.1923 94.8772 114.6329 200.1064 241.4309
9 40.3314 92.0681 109.8161 227.9227 230.1095
10 51.9218 99.9601 123.7857 204.9619 233.8897
11 67.8766 104.7002 116.5753 219.9124 221.9794
12 68.0362 104.4624 141.4227 222.6975214.9175
13 39.2518 107.5492 115.4971 210.8340 241.5070
14 15.9646 110.7312 140.0208 212.6738 220.7837
15 15.6750 95.3407 106.4133 202.2451 243.6056
16 10.0000 99.2551 69.7553 184.2966 224.1859
17 25.4383 100.0201 35.7367 202.2340 201.7308
18 54.1205 96.0491 31.3978 205.6964 229.1920
19 54.9027 109.0564 61.4139 212.5498 225.5727
20 67.8133 98.9348 96.8481 219.0149 232.0707
21 64.1935 97.1720 105.7931 192.3558 230.3411
22 59.0403 96.4422 112.5213 160.1490 184.5178
23 51.9522 97.0567 99.1880 138.5687 146.0497
24 28.7679 100.1259 71.3424 135.5410 131.8331
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Fig. 3.2. Cost convergence characteristic for test system 1

3.5.2. Test System 2

also found in the appendices.
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This system comprises a ten-unit test system with non-smooth fuel cost function. The demand of
the system has been divided into 24 intervals. Unit data and load demands can be found in

Table.A.5 and Table.A.6 respectively in the appendices. The transmission loss coefficients are

The problem is solved by using IRCGA and RCGA. Here, maximum number of iterations,
population size, crossover and mutation probabilities have been chosen as 300, 100, 0.9 and 0.2,

respectively for IRCGA and RCGA.



Test results acquired from the best fuel cost among 100 runs of solutions by using developed

IRCGA and RCGA are summed up in Table 3.3 and Table 3.4 respectively.

The cost convergence characteristic acquired from developed IRCGA and RCGA has been

portrayed in Fig. 3.3. It has been observed from Table 3.3 and Table 3.4 that the total production
cost acquired from IRCGA is the less than RCGA.

Cost ($)

2.85

3 —  |IRCGA
28 : — RCGA

2.75

2.7

2.65

2.6

2.55 |

| | | |
0 50 100 150 200 250
[teration

Fig. 3.3. Cost convergence characteristic for test system 2
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3.6. Benchmark Functions

The developed IRCGA and RCGA have been pertained for solving 15 benchmark functions [29].
These test functions are revealed in Table 3.5. All other data is taken from [29]. The population
size, crossover and mutation probabilities have been chosen as 100, 0.9 and 0.2 respectively for
IRCGA and RCGA.

To verify the performance of the proposed IRCGA technique, these 15 test functions are
repeatedly tested by using the IRCGA. Each test is repeated 100 times. Mean results of 15 test
functions acquired from 100 runs are summarized in Table 3.6. Table 3.7 summarizes best
optimum values and the variables corresponding to the best optimum value, number of iterations
and CPU time of all 15 benchmark functions in 100 runs acquired from IRCGA.

These 15 test functions are also tested by using RCGA technique. Table 3.8 shows best optimum
values, number of iterations and CPU time acquired from RCGA.

Table 3.6: Mean optimum value, number of iterations and mean CPU time acquired from
IRCGA

Function Mean Optimum Number of Mean CPU time (sec)
Value Iterations
f, 1.6703e-22 200 27.5631
f, 8.6875e-18 200 28.6573
f, 7.0153e-17 300 38.9348
f, 1.2035e-17 300 37.9738
f, 3.0151e-17 300 39.0571
f, 9.4572¢-18 300 41.3401
f, 22.324e-17 300 38.0479
f, 6.8957e-18 300 40.9752
f, -186.7307 100 1.5042
flo 0.00030763 200 5.9033
f, -1.031642 50 0.7047
f, 0.397733 50 0.6981
f 3 50 0.6348
f, -3.8626 50 0.9015
f, -3.319 50 1.7748
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Table 3.5: Test Functions

Mathematical representation Domain Optimum
S [-100,100] 0
=3 x;
i=1
30 30 [-10,10] 0
= Ju|+ Tkl
30 (i 2 [-100,100] 0
5[5
i=1 \_j=1
(%)= max{x |1 < [-100,100] 0
2 -30,30 0
= z [100(xi+1 - x; )2 + (xi - 1)2 ] | :
30 -5.12,5.12 0
=[x ~10cos(22,) + 10] [ :
i=1
1 & [-32,32] 0
f,(x)=—-20exp| —0.2 IEZJC,.Z —exp(3 ZCOS 27, )+ 20+e
i=1 i=1
[-600,600] 0
x COS
Js 4000Z H ( j
-10,10 -186.73
ZZCOS[Z-I-lX1+l]ZICOS[l+1)x2+l] [ |
i=1 i=1
¥ (b2 +ba [-5,5] 0.0003075
S (x) [a[ _M}
p b’ +bx, +x,
- -1.03162
£ (x) = 4x; —2.1x; +§xf +x,x, —4x +4x; [-5,3] 0316285
2 [-5,10], 0.398
fi(x)= (xz 5'12 2 +§x1 —6) +10(1—iJcosxl +10 [0,15]
A V4 8
fis(X) =1+ (x, +x, +1)*(19 = 14x, +3x] —14x, +6x,x, +3x3)] [-2,2] 3
X[30+(2x, —3x,)” x (18 —32x, +12x] +48x, —36x,x, +27x;)]
E T [0,1] -3.86
f14 Zc exp —Z:aij(xj—pij)2
L = _
[ 7 [0,1] -3.32
f15 ZC exXp _zaij(xj_pij)z
L = |
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Table 3.7: Best Optimum value, the variables corresponding to the best optimum value,

number of iterations and CPU time acquired from IRCGA

0.3117, 0.6573]

Function x* f(x*) Number of | CPU time
Iterations (sec)
fi [0,0,....... ,0] 1.6701e-24 200 25.5788
f, [0,0,....... ,0] 7.7935e-18 200 26.9347
1 [0,0,....... 0] 5.8031e-17 300 37.7409
fa [0,0,....... ,0] 1.3135e-17 300 36.7092
fs [1,1,....... L] 2.6149¢-17 300 37.5872
fe [0,0,....... 0] 8.9901e-18 300 40.8805
1 [0,0,....... 0] 2.1067e-17 300 37.7943
I [0,0,....... 0] 6.3568e-18 300 39.9052
fo [4.8581, 5.4829], [ -7.0835, - -186.7309 100 1.6325
7.7083], [-0.8003, -7.7083]
fio [0.1928, 0.1909, 0.1231, 0.1358] 0.0003075 200 5.8807
I [0.089842, -0.712654], [- -1.0316285 50 0.6183
0.089842, 0.712655],
fi [ -3.1416, 12.272], [ 3.1416, 0.397725 50 0.5996
2.276]

fis [0, -1] 3 50 0.6074
fia [0.1146, 0.5556, 0.8525] -3.86 50 0.8807
fis [0.2017, 0.1468, 0.4767, 0.2753, -3.32 50 1.6038
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Table 3.8: Best optimum value, number of iterations and CPU time acquired from RCGA

Function RCGA
f(x* ) Number of CPU time
Iterations (sec)
fi 6.0739e-019 200 25.7905
f, 1.6857e-005 300 39.6358
fs 0.26796 500 62.7043
fa 0.05389 500 64.9351
fs 71.7808 400 54.9532
fe 33.8247 300 40.8562
fi 1.5308e-005 300 37.7794
fe 4.9494 300 39.8093
fo -186.7308 100 1.3835
fio 0.0003077 200 5.8774
fi -1.0316273 50 0.6058
fi 0.397728 50 0.5495
fis 3 50 0.6015
fua -3.8621 50 0.8795
fis -3.3214 50 1.49752

3.7. Conclusion

Here, improved real coded genetic algorithm (IRCGA) has been developed and pertained for
solving dynamic economic dispatch problem with non-smooth fuel cost function and 15
benchmark functions. Test results have been matched up to those acquired from real coded
genetic algorithm. It has been observed from the comparison that the developed improved real
coded genetic algorithm has the capability to offer superior solution and quick convergence. Due
to these properties, improved real coded genetic algorithm can be utilized for solving

complicated power system problems.
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CHAPTER-4

Combined Heat & Power Economic Dispatch

4.1. Introduction

The conversion of fossil fuel into electricity takes place inefficiently. Most of the energy
desecrated in the process of conversion is heat. Cogeneration gets better this heat and makes use
of it usefully. On the whole, the efficiency of the conversion is moved up. Comparing with the
other form of power suppliers, cogeneration such as heat and power generation is more energy

efficient and lower green house gas emission power supplier.

Even the energy efficiency of the most modern combined cycle plants is less than 60%. Most of
the energy wasted in the conversion process is heat. But the fuel efficiency of combined heat and
power generation unit can be as much as 90%. Also combined heat and power generation unit
has less green house gas emission as compared with the other forms of energy supply. The
principle of combined heat and power, known as cogeneration, is to recover and make beneficial
use of this heat and as a result the overall efficiency of the conversion process is increased.
Cogeneration units play an increasingly important role in the utility industry. For most
cogeneration units, the heat production capacity depends on the power generation and vice versa.
This introduces complexity due to the non-separable nature of electrical power and heat in the
combined heat and power unit. The mutual dependencies of heat and power generation initiate a
complication in the incorporation of cogeneration units into the power economic dispatch. Non-
linear optimization methods, such as dual and quadratic programming and gradient descent
approaches, such as Lagrangian relaxation, have been applied for solving combined heat and
power economic dispatch (CHPED). However, these methods cannot handle non-convex fuel

cost functions of the generating units.

The advent of Teaching-learning-based optimization (TLBO), a teaching-learning process
inspired algorithm recently proposed by Rao et al. [52], [53] and Rao and Patel [54] is based on

the effect of influence of a teacher on the output of learners in a class. It is a population-based
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method and does not require any algorithm-specific control parameters. The main advantage of
TLBO is that it requires only common controlling parameters like population size and number of
generations for its working.

Here modified teaching-learning-based optimization (MTLBO) where Gaussian random
variables are introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves search
efficiency and guarantees a high probability of obtaining the global optimum without
significantly impairing the speed of convergence and the simplicity of the structure of TLBO.

In this study, MTLBO has been applied to solve the non-smooth/non-convex combined heat and
power economic dispatch (CHPED) problem and 15 benchmark functions. The valve-point
loading and forbidden working regions of conventional thermal generators and transmission loss
are taken into consideration. Three test systems are exploited here. Test results are compared
with those acquired by other evolutionary techniques. It has been observed that the developed

MTBLO offers superior solution.

4.2. Problem Formulation

The system under consideration has conventional thermal generators, cogeneration units and
heat-only units. The heat-power feasible operating region of a combined cycle co-generation unit
is portrayed in Fig. 4.1. The heat and power outputs of this type of unit are inseparable and one
output varies with the other. The heat-power feasible operating region is enclosed by the

boundary curve ABCDEF.

The power output of the conventional thermal generators and the heat output of heat units are
confined by their own maximum and minimum limits. The power is created by conventional
thermal generators and combined heat and power units and the heat is created by combined heat
and power units and heat-only units. The CHPED problem determines the unit power and heat
production so that the system production cost is minimized at the same time satisfying the power
and heat demands and other constraints. The objective function and constraints of CHPED

problem can be stated as:
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Fig. 4.1. Heat-Power Feasible Operation Region for a cogeneration unit
4.2.1. Objective

The cost function of conventional thermal generator is acquired when the unit output is slowly
varied throughout its workable region. The valve point effect takes place due to the aperture of
each steam admission valve in a turbine. The valve point effect is modeled as a summation of
recurring rectified sinusoid and quadratic function [22].

The total heat and power production cost can be stated as

Nc N/t

NI
C; = z C, (Pn ) + Z C, (Pa JH, ) + Z C (Hhi )
i=l i=1

i=1

Sl 46, +a P2 + e, sinf, (B ~P, )}
i=1

N, N,
+Z[at +IBiPci + }/Pz +é‘iHCi +€lH£2‘l +§iPciHci]+Z[¢i +77iHhi +llHil:| (41)
i=1

i~ ci
i=1

4.2.2. Constraints:

Two types of constraints i.e. equality and inequality constraints are taken into account. Equality
constraints are the power and heat balance constraints. Inequality constraints are the capacity
limits on heat and power generated by each unit and the forbidden working regions of
conventional thermal generator.
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4.2.2.1. Power balance constraint

N, N,

D> P, +> P, =P,+P, 4.2)
i=1 i=1

Transmission loss P, is a function of power of all generating units and can be stated as:

Nr t

N, N, N, N,
P, =2 2 PBP+> > PB;P,+> > PBP, (4.3)

i=l j=1 i=1l j=1 i=l j=1

z

~
I

where B is the loss coefficient for a network branch connected between units i and j.

4.2.2.2. Heat balance constraint

ZHci + ZHM =H, 4.4)
The heat demand is used within a short distance of cogeneration units and so the heat loss is
insignificant.

4.2.2.3. Capacity limits of conventional thermal generating units

P <P, <P/™ i€l2,...N, (4.5)
4.2.2.4. Capacity limits of cogeneration units

The heat and power outputs of the cogeneration units are inseparable and one output affects the

other. P™" (H,),P™ (H,), H™ (P.) and H™ (P,) are the linear inequalities that define the

c c

feasible operating region of the cogeneration units

P"™(H,)<P,<P™(H,), iel2,..,N, (4.6)
H™(P.)<H,<H™(P,), iel2..,N, (4.7)
4.2.2.5. Production limits of heat-only units

HM <H

hi hi

<H™ iel2...N, (4.8)

where H"™ and H™ are heat production limits of the i th heat-only unit.
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4.3. Forbidden working region

Shaft bearing tremor caused by the steam admission valve or the machine fault or the associated
auxiliary equipment fault can produce forbidden working regions in the input-output curve of a
conventional thermal generator. The greatest achievable saving is achieved by circumventing
operation in these areas. The feasible working regions of a conventional thermal generator with

forbidden working regions can be stated as:

Pt;nin S Pn' S Pti',l
P/ <P, <P, , j=23..n (4.9)
P/, <P, <P™ , ieN,

ti,n;

where j represents the number of forbidden working regions of ithe conventional thermal

generator. P"__ is the upper limit of (j—1)th forbidden working region of i the conventional

i, j—1

thermal generator. Pi., ; 1s the lower limit of j th forbidden working region of i the conventional

1

thermal generator. Total number of forbidden working region of ithe conventional thermal

generator is n,.
4.4. Overview of Modified Teaching Learning Based Optimization algorithm

4.4.1. Teaching—learning-based optimization

Teaching—learning-based optimization (TLBO) is a teaching—learning process inspired algorithm
recently proposed by Rao et al. [52], [5S3] and Rao and Patel [54] based on the effect of influence
of a teacher on the output of learners in a class. The algorithm mimics teaching—learning ability
of teacher and learners in a classroom. Teacher and learners are the two vital components of the
algorithm. The algorithm describes two basic modes of the learning: (i) through teacher (known
as teacher phase) and (ii) interacting with the other learners (known as learner phase). The output
in TLBO algorithm is considered in terms of results or grades of the learners which depend on
the quality of teacher. A high quality teacher is usually considered as a highly learned person
who trains learners so that they can have better results in terms of their marks or grades. Learners

also learn from the interaction among themselves which also helps in improving their results.
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TLBO is population based method. In this optimization algorithm a group of learners are
considered as population and different subjects offered to the learners are considered as different
design parameters and a learner’s result is analogous to the ‘fitness’ value of the optimization
problem. The best solution in the entire population is considered as the teacher. The design
variables are actually the parameters involved in the objective function of the given optimization
problem and the best solution is the best value of the objective function. The working of TLBO

is divided into two parts, “Teacher phase’ and ‘Learner phase’.
4.4.1.1. Teacher phase

It is the first part of the optimization algorithm where learners learn through the teacher. During
this phase a teacher tries to improve the mean result of the class in the subject taught by him or
her depending on his or her capability. At any iteration i, assume that there are ‘m ’ number of

subjects (i.e. design variables), ‘n’ number of learners (i.e. population size, k =1,2,.....,N,) and

L, ; be the mean result of the learners in a particular subject® j* (j =1,2,.....,]). The best overall

result X obtained in the entire population of learners considering all the subjects

total _ kbest,i
together can be considered as the result of best learner kbest. However, as the teacher is usually
considered as a highly learned person who trains learners so that they can have better results. The
best learner identified is considered by the algorithm as the teacher. The difference between the

existing mean result of each subject and the corresponding result of the teacher for each subject

is given by:
Difference _Mean, ;, = r, X (Xi,j,kbext - Li,j) (4.10)
where X, . 18 the result of the best learner (i.e. teacher) in subject j and r, is the random

number in the range [0, 1].

Based on the Difference _Mean the existing solution is updated in the teacher phase

i,j.k >

according to the following expression.

X!

i,j.k

=X.

i.jx T Difference _mean, ; (4.11)

where X j« 1s the updated value of X, ;, . Accept X, ;, if it gives better function value.
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All the accepted function values at the end of the teacher phase are maintained and these values

become the input to the learner phase.

4.4.1.2. Learner phase

The learner phase depends upon the teacher phase. It is the second part of the algorithm where
learners increase their knowledge by interaction among themselves. A learner interacts randomly
with other learners for enhancing his or her knowledge. A learner learns new things if the other
learner has more knowledge than him or her. Considering a population size of ‘N, ’, the learning
phenomenon of this phase is expressed below.

Randomly select two learners P and Q such that X/, . . # X, where X/ and

i,total—Q i,total —P

X o are the updated values of X, » and X respectively at the end of the teacher

itotal—Q
phase.
<X/

0~ ey / A
Xip=Xipth (Xi,j,P - X )’ if X prarp i total-Q

0 (4.12)

I~/ I~/ _~ . / /
Xi,j,P - Xi,j,P +7 (X Xi,j,P)’ if Xi,taml—Q < Xi,zotal—P

Lo (4.13)

where 7/ is the random number in the range [0, 1]. Accept X,// ;p if it gives a better function value.

Repeat the procedure of teacher phase and learner phase till the termination criterion is met.
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Fig. 4.2. Flowchart of TLBO algorithm
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4.4.2. Modified Teaching-learning-based optimization

In modified teaching-learning-based optimization (MTLBO), Gaussian random variables are
introduced in the ‘Teacher phase’ and ‘Learner phase’ which improves search efficiency and
guarantees a high probability of obtaining the global optimum without significantly impairing the
speed of convergence and the simplicity of the structure of TLBO. Accordingly the difference
between the existing mean result of each subject and the corresponding result of the teacher for

each subject is thus modified to

Difference _Mean, ;, = N(O,)x(X, , 4o = L, ;) (4.14)

where X.

i jwves 18 the result of the best learner (i.e. teacher) in subject j and N (O,l) represents a

Gaussian random variable with mean zero and standard deviation 1.

Accordingly randomly select two learners P and Q such that X;,, , # X!, Where X

i,total —P

and Xz{,mtal—Q are the updated values of X, ., and X respectively at the end of the

i,total—Q

teacher phase is thus modified to.

<X/

itotal—-Q

+NODx(X!,, -XL,, ). if X!

i,j.P i,total -P

=X/

i.j.p

X!

i.j.P

(4.15)

<X

i,total—P

X!y =X, + N (XL, =X ), if X!

i,j,0 i total—Q

(4.16)
where N(0,1) represents a Gaussian random variable with mean zero and standard deviation 1.

The Gaussian random variables control the amount of perturbation added to the ‘Teacher phase’
and ‘Learner phase’ and aids the method to escape from local optima. This maintains the

diversity of the population throughout iterative process which guarantees a high probability of

achieving the global optimum.
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4.5. Simulation and Results of MTLBO algorithm

The developed MTLBO has been pertained to solve three test systems and 15 benchmark
functions. Computational results of three test systems have been used to compare the efficacy of
the developed MTLBO approach with that of other evolutionary techniques suggested in the
literature. The developed MTLBO is utilized by using MATLAB 7.0 on a PC (Pentium-I1V, 80
GB, 3.0 GHz).

45.1. Test System 1

This system comprises four conventional thermal generators, two cogeneration units and a heat-
only unit. Here, transmission loss is taken into account. Unit data has been modified from [39].
System data containing coefficients of fuel cost equations, prohibited operating zones, B loss
coefficients and heat-power feasible regions are given in the Appendix. The power and heat

demand of the test system are 600 MW and 150 MWth respectively. Here, two cases are chosen.
Case 1

Here, only valve point loading of conventional thermal generators has been considered. The

problem is solved by using the developed MTLBO. Here, the population size (N,) and the
maximum iteration number (N, ) have been selected as 50 and 100 respectively for the test

system under consideration. The power and heat generations corresponding to best cost obtained
from proposed MTLBO is summarized in Table 4.1. The best, average and worst cost and
average CPU time among 100 runs of solutions obtained from developed MTLBO are
summarized in Table 4.2. The cost acquired from classical PSO (CPSO) [50], time varying
acceleration coefficients PSO (TVAC-PSO) [50], teaching learning-based optimization (TLBO)
[51] and oppositional teaching learning based optimization (OBTLBO) [51] are also shown in
Table 4.2.

The cost convergence characteristic acquired from developed MTLBO is portrayed in Fig. 4.4. It
is observed from Table 4.2 that the cost found by using MTLBO is the lowest among all other

techniques.
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Table 4.1: Power generation (MW) and heat generation (MWth) for case 1 of Test System 1
P, 45.6342 P, 209.8158 H, 27.7500 Ploss 0.7499

P, 98.5397 P, 940869 H, 74.9991
P, 1126732 P, 400001  H, 47.2509

Table 4.2: Comparison of performance for case 1 of Test System 1

Techniques Best cost (§)  Average cost ($)  Worst cost ($)  CPU time (s)
MTLBO 10094.25 10094.34 10094.47 2.25
TVAC-PSO [50] 10100.31 - - -

CPSO [50] 10325.33 - - -
OBTLBO [51] 10094.35 10099.40 10106.83 3.06
TLBO [51] 10094.83 10114.15 10133.61 2.86
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Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been considered. The data of conventional thermal
generator is same as in [50] except the following modifications in Table A.1 which lists the
prohibited zones of conventional thermal generating units. These forbidden regions result in
three disjoint feasible sub-regions for each of the conventional thermal generators. Hence, those
zones result in a non-convex decision space which consists of 81 convex sub-spaces for this

system. The problem is solved by using the developed MTLBO. Here, the population size (N, )

and the maximum iteration number (N __ ) have been selected as 50 and 100 respectively for the

max

test system under consideration.

The power and heat generations corresponding to best cost acquired from developed MTLBO is
summarized in Table 4.3. The best, average and worst cost and average CPU time among 100
runs of solutions obtained from developed MTLBO are summarized in Table 4.4. The cost

convergence characteristic acquired from developed MTLBO is portrayed in Fig. 4.5.
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Fig. 4.5. Cost convergence characteristics for case 2 of test system 1

Table 4.3: Power generation (MW) and heat generation (MWth) for case 2 of Test System 1

P, 44.1501 p, 209.8158 H, 27.6123 Ploss 0.7511
p, 100.0015 Pp, 941101 H, 74.9999
p, 112.6736 P,  40.0000 H, 47.3878

68



Table 4.4: Comparison of performance for case 2 of Test System 1

Techniques MTLBO

Best cost ($) 10101.29

Average cost ($) 10101.44

Worst cost ($) 10101.71

CPU time (s) 2.5656
4.5.2. Test System 2

The system consists of thirteen conventional thermal generators having prohibited operating
zones and valve-point effect, six cogeneration units and five heat-only units. System data
containing coefficients of fuel cost equations, prohibited operating zones, and heat-power
feasible regions are given in the Appendix. The power and heat demands of the test system are

2350 MW and 1250 MWth respectively. Here, two cases are chosen.

Case 1

Here, only valve point loading of conventional thermal generators has been considered. The

problem is solved by using the proposed MTLBO. Here, the population size (N,) and the

maximum iteration number (N __ ) have been selected as 100 and 100 respectively for the test

max
system under consideration. The power and heat generations corresponding to best cost acquired

from developed MTLBO is summarized in Table 4.5.

The best, average and worst cost and average CPU time among 100 runs of solutions obtained
from developed MTLBO are summarized in Table 4.6. The cost obtained from classical PSO
(CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50], teaching learning
based optimization (TLBO) [51] and oppositional teaching learning based optimization
(OBTLBO) [51] are also summarized in Table 4.6. The cost convergence characteristic acquired
from developed MTLBO is portrayed in Fig. 4.6. It has been observed seen from Table 4.6 that
the cost found by using MTLBO is the lowest among all other techniques.
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Table 4.5: Power generation (MW) and heat generation (MWth) for case 1 of Test System 2

P, 5385724 P, 71834  H_ 76.5205
P, 2986487 P, 550023  H, 105.5142
P, 2989085 P, 550100  H, 75.4833
P, 1102820 P, 81.0524  H, 39.9999
P, 1102645 P_ 400015  H, 18.3944
P, 1103381 P, 810030  H, 468.9043
P, 1102745 P 400009  H,, 59.9994
P, 1102452 p_ 100002  H, 59.9999
P, 1101592 P, 350001  H, 119.9854
P, 773992 H, 1052219  H,, 119.9768
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Table 4.6: Comparison of performance for case 1 of Test System 2

Techniques Best cost (§) Average cost (§)  Worst cost ($§) CPU time (s)

MTLBO 57829.49 57830.21 57830.95 5.19

TVAC-PSO [50] 58122.74 58198.31 58359.55 7.84

CPSO [50] 59736.26 59853.47 60076.69 8.00

OBTLBO [51] 57856.26 57883.21 57913.77 5.82

TLBO [51] 58006.99 58014.36 58038.52 5.67
Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been considered. The data of conventional thermal
generator is same as in [50] except the following modifications in Table A.2 which lists the
prohibited zones of conventional thermal generating units 1, 2, 3, 10 and 11. These forbidden
regions result in four disjoint feasible sub-regions for each of conventional thermal generators 1,
2, and 3 and three disjoint feasible sub-regions for each of the conventional thermal generators
10 and 11. Hence, those zones result in a non-convex decision space which consists of 576

convex sub-spaces for this system.

The problem is solved by using the developed MTLBO. Here, the population size (N, ) and the

maximum iteration number (N __ ) have been selected as 100 and 100 respectively for the test

max

system under consideration.

The power and heat generations corresponding to best cost obtained from proposed MTLBO is
summarized in Table 4.7. The best, average and worst cost and average CPU time among 100
runs of solutions acquired from developed MTLBO are given in Table 4.8. The cost convergence

characteristic acquired from developed MTLBO is portrayed in Fig. 4.7.
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Table 4.7: Power generation (MW) and heat generation (MWth) for case 2 of Test System 2

P, 6283185 B,  40.0000 H, 79.2433
P, 2992051 P, 550000 H, 107.7938
P, 2244078 P, 923999  H, 80.1432
P, 600000 P,  89.3203 H, 40.0006
P, 1597331 P, 448825 H, 20.0013
P, 600000 P, 863330 H, 453.3426
P, 1597331 P, 459304 H, 60.0000
P, 600000 P, 100000 H, 60.0000
P, 1597331 P, 350029 H,, 120.0000
P, 400000 H, 1094702 H,, 120.0000
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Table 4.8: Comparison of performance for case 2 of Test System 2

Techniques MTLBO

Best cost ($) 57942.33

Average cost ($) 57943.05

Worst cost ($) 57943.86

CPU time (s) 5.8787
4.5.3. Test System 3

This system consists of twenty six conventional thermal generators, twelve cogeneration units
and ten heat-only units. Data of this test system is obtained by duplicating data of test system 3.
Characteristics of conventional thermal generators 1-13 and 14-26 in this test system are same as
units 1-13 in test system 3. Characteristics of cogeneration units 27-32 and 33-38 are same as
units 14-19 in case of test system 3. Also characteristics of heat-only units 39-43 and 44-48 are
same as units 19-24 in case of test system 3. The power and heat demands of this test system are
4700 MW and 2500 MWth respectively. Total number of decision variables is sixty. Here, two

cases are considered.

Case 1

Here, only valve point loading of conventional thermal generators has been considered. The

problem is solved by using the developed MTLBO. Here, the population size (N;) and the

maximum iteration number (N __ ) have been selected as 200 and 200 respectively for the test

system under consideration. The power and heat generations corresponding to best cost acquired
from proposed MTLBO is summarized in Table 4.9. The best, average and worst cost and
average CPU time among 100 runs of solutions acquired from developed MTLBO are
summarized in Table 4.10. The cost obtained from classical PSO (CPSO) [50], time varying
acceleration coefficients PSO (TVAC-PSO) [50], teaching learning based optimization (TLBO)
[51] and oppositional teaching learning based optimization (OBTLBO) [51] are also summarized

in Table 4.10. The cost convergence characteristic acquired from developed MTLBO is
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portrayed in Fig. 4.8. It has been observed from Table 4.10 that the cost found by using MTLBO

is the lowest among all other techniques.
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Fig. 4.8. Cost convergence characteristics for case 1 of test system 3
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Table 4.9: Power generation (MW) and heat generation (MWth) for case 1of Test System 3

628.3190

153.5074

225.6470

159.7349

60.0002

159.7332

Ry

159.7331

60.0000

Ny

Nyl

159.7336

P, 114.7999
114.8010
55.0001

55.0055
269.2799

300.4257

Pl 6

299.2444

60.0003

109.8680

60.0000

159.7331

159.7332

159.7333

40.0772

114.8015

92.4022

119.9999

90.3999

46.3967

82.2470

55.2780

P31

31

H32

H33

10.0001

35.2279

84.3575

52.5133

88.3237

52.5881

10.0031

41.3508

110.0761

80.5508

105.5007

88.2204

40.0006

20.1036

106.6851

H34

H35
H36
H37

H43
H44
H45

H46

H47

H48

85.8329

108.9109

85.8975

40.0019

22.8867

461.4128

60.0000

60.0000

120.0000

120.0000

423.9202

60.0000

60.0000

120.0000

120.0000

Table 4.10: Comparison of performance for case 1 of Test System 3

Techniques Best cost (§)  Average cost (§) Worst cost ($) CPU time (s)
MTBLO 116402.48 116403.17 116403.75 6.32
TVAC-PSO [50] 117824.89 - - -

CPSO [50] 119708.88 - - -

OBTLBO [51] 116579.23 116613.65 116649.44 10.9

TLBO [51] 116739.36 116756.00 116825.82 10.3
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Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been considered. The data of conventional thermal
generator is same as in case 1 except the following modifications in Table A.3 which lists the
forbidden regions of conventional thermal generators 1, 2, 3, 10, 11, 14, 15, 16, 23 and 24. These
prohibited zones result in four disjoint feasible sub-regions for each of conventional thermal
generators 1, 2, 3, 14, 15 and 16 and three disjoint feasible sub-regions for each of the
conventional thermal generators 10, 11, 23 and 24. Hence, those zones result in a non-convex

decision space which consists of 331776 convex sub-spaces for this system.

The problem is solved by using the developed MTLBO. Here, the population size (N, ) and the

maximum iteration number (N __ ) have been selected as 200 and 200 respectively for the test

max
system under consideration. The power and heat generations corresponding to best cost obtained

from developed MTLBO is summarized in Table 4.11.

The best, average and worst cost and average CPU time among 100 runs of solutions acquired
from developed MTLBO are summarized in Table 4.12. The cost convergence characteristic

acquired from proposed MTLBO is portrayed in Fig. 4.9.
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Fig. 4.9. Cost convergence characteristics for case 2 of test system 3
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Table 4.11: Power generation (MW) and heat generation (MWth) for case 2 of Test System 3

P, 6284322 P, 1526009 P, 10.0213 H, 81.359%

P, 2252795 P, 1597504 P, 45.0196 H, 108.4749

P, 360.0000 P, 159.9559 P,, 81.0331 H, 89.0333
H;,

P, 1597473 P, 159.7512 P, 473354 40.0626

P, 159.8316 P, 159.8017 P, 87.6543 H,  20.2502
P, 159.7316 P, 159.9887 P, 562196 H, 4482178

P, 160.0075 P, 159.7755 P, 102250 H,,  60.0000
P, 159.7481 P,, 114.8030 P, 355826 H,  60.0000
P, 109.9707 P, 1152846 H,, 1155509 H,, 119.9999

P, 400307 P, 550887 H, 836316 H, 119.9994
P,  40.0046 P, 1199971 H, .1059947 H,, 438.7974
P, 1199529 P,, 1002425 H, 79.3812 H,  59.9972

P, 551176 P, 500101 H, 399999 H,  60.0000
P, 0 P, 832744 H, 245086 H, 119.9998

P. 153.6658 P, 450643 H, 1047422 H, 119.9988

Table 4.12: Comparison of performance for case 2 of Test System 3

Techniques MTLBO
Best cost ($) 116669.57
Average cost ($) 116670.34
Worst cost ($) 116671.77
CPU time (s) 7.9805
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4.6. Benchmark Functions

The developed MTLBO and TLBO have been pertained for solving 15 benchmark functions.

These test functions are revealed in Table 4.13. The first five functions f,— f; are unimodal
high-dimensional functions. The next four functions f,— f, are multimodal functions and the

number of local minima raises exponentially with the problem dimension. Functions f,,— f,s are

low-dimensional functions and have only a few local minima. Table 4.14 shows the coefficients

of function f,. Table 4.15 and Table 4.16 show the coefficients of f,, and f.

To verify the performance of the proposed technique, these 15 test functions are repeatedly
tested by using the MTLBO. In MTLBO, the population size (N, ) is taken as 50. Each test is

repeated 100 times. Mean results of 15 test functions acquired from 100 runs are summarized in
Table 4.15. Table 4.16 summarizes best optimum values and the variables corresponding to the
best optimum value, number of iterations and CPU time of all 15 benchmark functions in 100

runs acquired from MTLBO.

These 15 test functions are also tested by using TLBO technique. In TLBO, the population size
(N, ) is taken as 50. Table 4.17 shows best optimum values, number of iterations and CPU time

acquired from TLBO.

Table 4.14: Function f,

i a, b
1 0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.1600 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12
10 0.0235 14
11 0.0246 16
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Table 4.13: Test Functions

Mathematical representation Domain Optimum
S [-100,100] 0
= in
i=1
30 El [-10,10] 0
38 (1
30 (i 2 [-100,100] 0
5[]
i=1 \_j=1
f.(x)=max{x |1 < [-100,100] 0
2 -30,30 0
= z [100()61.+1 - xi2 )2 + (x,. - 1)2] [ ]
0 -5.12,5.12 0
= Z[Xiz —10cos(2ﬂ:x[)+101 [ :
i=1
1 30 [-32,32] 0
f,(x)=—=20exp| 0.2 /—Zx - Xp[ 02cos2mij+20+
i=1 i=1
[-600,600] 0
x)=——> x_ —|[cos
7= g 2t ~TTeod 2 o1
-10,10 -186.73
ZlCOS[l-I—lX1+I]ZZCOS[I+1))C2+Z] [ :
= i=1
11 x(b? +b.x [-5,5] 0.0003075
flO(x): Z a; _M
p b’ +bx, +x,
- -1.03162
fi(x)=4x! —2.1x; +%xf +x,x, —4x; +4x; [-5.5] 0316285
2 [-5,10] 0.398
fio(x)= (xz —5—'121612 +ix1 - 6) + 10[1 —L)cos x, +10 ,[0,15]
4 V4 kY4
fis(X)=[1+(x, +x, +1)> (19— 14x, +3x] —14x, +6x,x, +3x3)]  [-2.2] 3
X[30+(2x, —3x,)” x (18 —32x, +12x] +48x, —36x,x, +27x])]
[ 1 [0,1] -3.86
f14 ZC exXp _zaij(xj_pij)z
L A J
[ } [0,1] -3.32
f15 ZC exp —Z:aij(xj—pij)2
L i
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Table 4.15: Function f,

~

1

a;, j=123 c, Py i=1.2.3

3 10 30 1 0.36890 0.1170 0.2673
0.1 10 35 1.2 | 0.46990 0.4387 0.7470
3 10 30 3 |0.10910 0.8732 0.5547
0.1 10 35 3.2 10.03815 0.5743 0.8828

B W N =

Table 4.16: Function f
i Cll] ) ] = 1,....,6 C. plja J = 1’-'-"6

1

10 3 17 35 17 8 |1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
005 10 17 0.1 8 14 |1.2 |0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3517 10 17 8 |3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
17 8 005 10 0.1 14 |3.2 ]0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

W=

Table 4.17: Best optimum value, number of iterations and CPU time acquired from TLBO

Function TLBO
f(x*) Number of CPU time
Iterations (sec)

fi 5.4739e-019 200 25.1875
1, 1.6653e-005 300 39.40625
fs 0.26788 500 62.6406
fa 0.05381 500 64.5156
fs 71.7587 400 54.7812
fe 33.8118 300 40.6718
fi 1.5218e-005 300 37.7656
fe 4.9450 300 39.4531
fo -186.7309 100 1.3750
fio 0.0003075 200 5.8751
fi -1.0316275 50 0.6250
fir 0.397726 50 0.6406
fis 3 50 0.6093
fus -3.8623 50 0.8751
fis -3.3219 50 1.4375
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4.7. Overview of Heat Transfer Search algorithm

In a Heat Transfer Search (HTS) algorithm [61], a population is analogous to groups of
molecules that participate in a heat transfer process attaining different temperature echelons.
Here, the different design variables correspond to different temperature of molecules. Further,
the energy level of the molecules denotes the objective function value of the problem. The best
solution is considered as the surrounding and the remaining solutions as the system. Now, in
order to visualize the procedure followed by the HTS algorithm, we need to see the case of
thermal imbalance in a system i.e. if a thermal imbalance exists between a system and its
surroundings (or within the system itself), the former always tries to reduce this imbalance in
order to attain thermal equilibrium. Similarly, during optimization in the Heat transfer search
(HTS) algorithm, which is a population based algorithm, if the difference in the solution exists
within the population, the solution tries to improve its value. This improvement can be made by
taking into account the difference between the present solution and either of the best solution,

other random solution from the population or the mean value of the solution from the population.

The HTS algorithm method can be considered to be of three parts namely, ‘conduction phase’,
radiation phase’ and convection phase’, which oppose the thermal imbalance of the system by
conduction, radiation and convection modes of heat transfer respectively. All three modes
happen with equal probability, which is managed by the parameter ‘ R’ in each iteration. ‘R’ is a
uniformly random number which varies between 0 and 1. During optimization, as R varies
between 0 and 1, for equal probability, each phase must share the equal proportion of R
.According to the value of R, any one of the three phases can be applied to update the solution in

that iteration as follows:

Value of R Phase
0-0.3333 Conduction
0.3333-0.6666 Radiation
0.6666-1 Convection

The HTS algorithm starts with a random initial population of n solutions, where n is the size of
population. Each solution is an m dimensional vector and m is the number of optimization

parameters or design variables. At first the population is initialized and then its value is updated
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in each iteration g (g =1, 2, ....,Gmax) by the search procedure of conduction, convection or
radiation phase. Moreover, the selection procedure here is called the greedy selection technique
which allows the modernized solution in HTS algorithm only if it creates better objective
function value. After selection, the worst solutions of the population are replaced by the best
solutions and finally any existing duplicate solution is replaced by a randomly generated
solution. The operational procedure of all three phases is brought below to minimize a function

f(x), which is the objective function for an optimization problem.

The Conduction Phase

The conduction phase is the part of the algorithm where the system tries to attain thermal balance
by conduction heat transfer. Energy is transferred from higher energetic molecules to lower
energetic molecules. As declared earlier, if the number of molecules of the system i.e. population
be n and the different temperature levels of the molecules i.e. design variables be m, then during
the first conduction phase where generation g<Gmax/CDF (where CDF is the conduction

factor), the solutions are updated as follows:

X" = X2 1 CDS, if f(x,)> f(x,) 4.17)

jii
X = x%¢ +CDS, if f(x,)> flx;) (4.18)
where j=12,...,n, ke(@2,...,n), j#k and k is a randomly selected solution from the

population, i€ (L2,...,m) and i is a randomly selected design variables. CDS,and CDS, are the

conduction steps stated as follows:
CDS, =—R*x;¥ (4.19)

CDS, = —R?*x°¢ (4.20)

I
(R =value of probability for the selection of conduction phase)

Here, R* is matched up to the conductance of the Fourier’s equation and X, ; , X;; are matched

up to the temperature gradient. The conductance of any system depends on the thermal

conductivity which in turn is a function of temperature. During heat transfer, the temperature of
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the system and hence its thermal conductivity and conductance are varying constantly. Thus, to
replicate this temperature dependent behavior of conductance, it is represented by variable R
which can attain any value between 0 and 0.33333 at the starting of iteration in the conduction
phase. Moreover, to use the search space, this random variable is represented by squaring its

value so that it can pursue a fine search.

In the second part of the conduction phase where g>Gmax/CDF, the solution are brought up to

date as
=y yeps, it fly)> flx,) (4.21)
e =xMeceps, s it flx)> flx,) (4.22)

CDS, and CDS, are the conduction steps stated as follows:
CDS, =—rx;"! (4.23)

CDS, =—rx?" (4.24)

Jst

Where r is a random number in the range [0, 1]. In Egs. (9.16) and (9.17), r matches up to the

conductance of the Fourier’s equation and x,; andx;; are matched up to the temperature

1

gradient. The value of CDF is taken 2 for the conduction phase.
The Convection Phase

The convection phase is the part of the algorithm where the system tries to attain thermal balance
by convection heat transfer. Here, the mean temperature of the system interacts with the
surrounding temperature to find a thermal balance between the system and the surrounding. The

surrounding is considered as the best solution. At any iteration g (where g <Gmax/COF and COF

is a convection factor), x, be the temperature of the surrounding, x, be the mean temperature

of the system. When the energy of the system is higher than that of the surrounding i.e.

f (xs )< f (xms) , the solution is updated as follows:
X1 =x% +COS (4.25)

Ji
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Where j =12,...,n, i=12,...,m. Each design variable of the population is updated in the

conduction phase. COS is the convection step stated as follows:
COS = R(x, — X, *TCF) (4.26)
(R = value of probability for the selection of convection phase)

R becomes equal to the convection element of the Newton’s law of cooling and X the

S ’Xms
temperature of the surrounding and the mean temperature of the system respectively. The system
temperature constantly changes during the heat transfer process. The surrounding becomes the
heat sink or heat source, so its temperature remains constant. To account this effect, temperature
change factor (TCF) is initiated. Thus, TCF is the temperature change factor based on which

the mean temperature of the system can be varied. The value of TCF is determined as follows:
TCF =abs(R-r) , ifg <Gmax/COF (4.27)
TCF =round(l+r) , ifg >Gmax/COF (4.28)

Where r is a random number in the range [0, 1]. The value of TCF changes randomly between
0 and 1 in the first part of the conduction phase. In the second part of the conduction phase, the
value of TCF is either 1 or 2. The different value of TCF in the proposed algorithm is to

balance the exploration and exploitation. The value of COF is set to 10 for this phase.
The Radiation Phase

The radiation phase is the part of the algorithm where the system tries to attain thermal balance
by radiation heat transfer. Here, the system interacts with the surrounding (i.e. best solution) or
within the system (i.e. other solution) to achieve thermal balance. In the first part of the radiation
phase, where g < Gmax/RDF (where RDF is the radiation factor) the solution is updated (i.e.

energy reduction of the system) as follows:
X" =x% 4 RDS, , if f(x;)> f(x,) (4.29)
X" = x° LRDS, , if f(x)> f(x;) (4.30)

)i
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Where j=12,..,n, ke (1,2,...,n), j#k and k is a randomly selected solution from the
population, i€ (1,2,...,m). All design variables of the solution is brought up to date during each

iteration of the radiation phase. RDS, and RDS, are radiation step stated as follows:
RDS, = R{x(} - x}!) @31)

RDS, = R(x" — x¢) (4.32)

Jii
( R = the value of probability for the selection of radiation phase)

R matches up to the radiation element of the Stefan-Boltzmann law and x, , x; matches up to the

system and the surrounding temperature respectively.

In the second part of radiation phase where g >Gmax/RDF, the solution is brought up to date as

follows:
X = xM 4 RDS,, if fx;)> f(x,) (4.33)
X = x4y RDS,, if f(x)> flx;) (4.34)

Where RDS, and RDS, are radiation step stated as follows:

RDS, = r(x —x7) (4.35)

Jol
old old
RDS, = rl{x? — x74) (4.36)

Where r is a random number in the range [0, 1] and RDF is the radiation factor which finds out
the exploration and exploitation tendency in this phase. In radiation phase, the value of RDF is

set to 2.

Fig. 4.10 portrays the flow chart of heat transfer search algorithm.
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Fig. 4.10. Flow chart of heat transfer search algorithm
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4.8. Application of Heat Transfer Search Algorithm for CHPED

The Heat Transfer Search (HTS) algorithm includes three phases each of which is divided in two
parts whose activation is based on the current number of iterations and depends on the
conduction, convection and radiation factors. Iteration is completed when the randomly selected
phase is performed. The HTS algorithm repeats the search process until the predetermined total

number of iterations is performed.
The HTS algorithm for solving CHPED problem is described below.

Step 1: Initialize the HTS algorithm parameters: population size (N, ), elite solution size (N ),

conduction factor (CDF), convection factor (COF), radiation factor (RDF). Set the iteration

counter: it=0.

T

PPy PPy s Py Py
Step 2: Let p, = Hy ;. Hy s Hy oy S Hy onas
Hy inaoes Hyona,

be the k th vector of a population to be evolved and k =1,2,..., N, . The elements of p, should
satisfy the constraints given by equations (4.2)-(4.9). Production cost of each vector p, is

calculated.
Step 3: Increase the iteration counter, iz=it+ 1. Generate a uniformly distributed random number
R between 0 and 1 in order to decide which heat transfer phase should be performed.

Step 4: If 0 < R <0.3333, perform the conduction phase by using Egs. (4.17-4.24).
Step 5: If 0.3333 <R < 0.6666, perform the radiation phase by using Eqs (4.29-4.36).

Step 6: If 0.6666 < R < 1.0, perform convection phase by using Eqs. (4.25-4.28).

Step 7: Obtain a new vector. The new vector should satisfy the constraints given by equations
(4.2)-(4.9). Calculate the production cost of the new vector. If the production cost of the new
vector is less than the previous one, replace them. Otherwise leave the original vector

unchanged. Repeat this process until all vectors in the population are updated.
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Step 8: Replace the worst solutions of the current iteration with the elite solutions of previous

iteration.

Step 9: Stop the search process if the termination criterion is satisfied i.e. maximum number of

iterations is reached. Otherwise, go to step 3.
4.9. Prohibited operating zones

Shaft bearing shaking due to steam admission valve opening or the machine and associated
auxiliary equipment fault can produce prohibited operating zones in the input-output curve of a
conventional thermal generator. The greatest achievable saving is achieved by circumventing
operation in these areas. The feasible operating regions of a conventional thermal generator with

prohibited operating zones [62] can be stated as:

min 1
P"™ <P <P

ti,1

P‘ <P, <P’ , j=23..n (4.37)

ti,j-1 — ti,j

u max .
Pti,n,. < Pti < Pti > S NI

where j represents the number of prohibited operating zones of ithe conventional thermal

generator. P, is the upper limit of (j —1)th prohibited operating zones of i the conventional

thermal generator. P, ; 18 the lower limit of j th prohibited operating zones of i th conventional

thermal generator. Total number of prohibited operating zones of ith conventional thermal

generator 1s 7.

4.10. Simulation and Results of HTS algorithm

The suggested (HTS) has been applied to four different test systems. Computational results have
been used to compare the efficacy of the suggested HTS with that of other evolutionary
techniques suggested in the literature. The suggested HTS is utilized by using MATLAB 7.0 on a
PC (Pentium-1V, 80 GB, 3.0 GHz).
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4.10.1. Test System 1

This test system comprises one conventional thermal generator and two cogeneration units and a
heat-only unit. Unit data has been adopted from [50]. The power and heat demands of the test
system are 200 MW and 115 MWth respectively. Here, two cases are chosen.

Case 1

Firstly, only valve point loading of conventional thermal generator has been reflected on. The

problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size(N )

and the maximum iteration number (N _ ) have been chosen as 50, 5, 100 respectively.

max

The power and heat generations matching to best cost acquired from the suggested HTS is
revealed in Table 4.18. The best, average and worst cost and average CPU time among 100 runs
of solutions acquired from suggested HTS are summed up in Table 4.19. The cost acquired from
classical PSO (CPSO) [50] and time varying acceleration coefficients PSO (TVAC-PSO) [50]
are also summed up in Table 4.19. The cost convergence characteristic acquired from the
suggested HTS is portrayed in Fig. 4.11. It has been observed from Table 4.19 that the cost

acquired by utilizing HTS is the lowest among all other techniques.

Table 4.18: Power generation (MW) and heat generation (MWth) for case 1 of Test System 1

P, 0.00039 P, 40.0000 H, 75.0058
P, 159.9996 H, 39.9911 H, 0.0031

Table 4.19: Comparison of performance for case 1 of Test System 1

Techniques HTS TVAC-PSO [50] CPSO [50]
Best cost ($) 9256.95 9257.07 9257.08
Average cost ($) 9257.06 - -

Worst cost ($) 9257.10 - -

CPU time (s) 1.3897 - -
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Fig. 4.11. Cost convergence characteristics for case 1 of test system 1
Case 2

Here, valve point loading of conventional thermal generator and prohibited operating zones of
conventional thermal generator have been reflected on. The data of conventional thermal

generator is similar as in [50].

The problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size

(N.) and the maximum iteration number (N_. ) have been chosen as 50, 5 and 100

respectively. The power and heat generations matching to best cost acquired from the suggested
HTS is revealed in Table 4.20. The best, average and worst cost and average CPU time among
100 runs of solutions acquired from suggested HTS are summed up in Table 4.21. The cost

convergence characteristic obtained from suggested HTS is portrayed in Fig. 4.12.
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Fig. 4.12. Cost convergence characteristics for case 2 of test system 1

Table 4.20: Power generation (MW) and heat generation (MWth) for case 2 of Test System 1
P, 0.0012 P, 40.0000 H, 75.0005

P, 159.9988 H, 39.9908 H, 0.0086

Table 4.21: Comparison of performance for case 2 of Test System 1

Techniques HTS
Best cost ($) 9257.04
Average cost ($) 9257.07
Worst cost ($) 9257.12
CPU time (s) 1.6513
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4.10.2. Test System 2

This system comprises four conventional thermal generators, two cogeneration units and a heat-
only unit. Here, transmission loss is reflected on. Unit data has been adopted from [50]. The
power and heat demands of this test system are 600 MW and 150 MWth respectively. Here, two

cases are chosen.

Case 1

Firstly, only valve point loading of conventional thermal generators has been reflected on. The

problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size(N)

and the maximum iteration number (N __ ) have been chosen as 50, 5 and 100 respectively.

The power and heat generations matching to best cost acquired from suggested HTS is revealed
in Table 4.22. The best, average and worst cost and average CPU time among 100 runs of
solutions acquired from suggested HTS are summed up in Table 4.23. The cost acquired from
classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50],
teaching learning based optimization (TLBO) [51] and oppositional teaching learning based
optimization (OBTLBO) [51] are also summed up in Table 4.23. The cost convergence
characteristic acquired from suggested HTS is portrayed in Fig. 4.13. It has been observed from

Table 4.23 that the cost acquired by utilizing HT'S is the lowest among all other techniques.
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Fig. 4.13. Cost convergence characteristics for case 1 of test system 2

Table 4.22: Power generation (MW) and heat generation (MWth) for case 1 of Test System 2

P, 45.5410 P, 112.6714 P, 941215 H, 27.5498 H, 47.4842
P, 985905 P, 209.8220 P, 40.0035 H, 74.9660 Ploss  0.7499
Table 4.23: Comparison of performance for case 1 of Test System 2
Techniques Best cost ($) Average cost ($) Worst cost ($)  CPU time(s)
HTS 10094.7109 10094.8512 10094.9743 2.0153
TVAC-PSO [50] 10100.3124 - - -
CPSO [50] 10325.3339 - - -
OBTLBO [51] 10094.3529 10099.4057 10106.8314 3.06
TLBO [51] 10094.8384 10114.1539 10133.6130 2.86
GSO [58] 10094.2670 10095.6615 10097.2406 2.4203
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Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been reflected on. The data of conventional thermal

generator is similar as in [50].

The problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size

(N.) and the maximum iteration number (N_.) have been chosen as 50, 5 and 100

respectively.

The power and heat generations matching to best cost acquired from suggested HTS is summed
up in Table 4.24. The best, average and worst cost and average CPU time among 100 runs of
solutions acquired from suggested HTS are revealed in Table 4.25. The cost convergence

characteristic acquired from suggested HTS is portrayed in Fig. 4.14.

1.06

1.055

1.05

1.045

1.04

1.035

Cost ($)

1.03

1.025

1.02

1.015

1 i 01 | | | | | | | t t
0 10 20 30 40 50 60 70 80 90 100

lteration

Fig. 4.14. Cost convergence characteristics for case 2 of test system 2
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Table 4.24: Power generation (MW) and heat generation (MWth) for case 2 of Test System 2

P, 44.2825 P, 112.6214 P, 94.0105 H, 28.2620 H, 46.9948

P, 100.1107 P, 209.7009 P, 40.0235 H, 74.7432 Ploss 0.7495

Table 4.25: Comparison of performance for case 2 of Test System 2

Techniques HTS

Best cost ($) 10104.2707

Average cost ($) 10104.4054

Worst cost ($) 10104.7031

CPU time (s) 2.4405
4.10.3. Test System 3

This system comprises thirteen conventional thermal generators, six cogeneration units and five
heat-only units. Unit data has been adopted from [58]. The power and heat demands of the test
system are 2350 MW and 1250 MWth respectively. Here, two cases are chosen.

Case 1

Here, only valve point loading of conventional thermal generators has been reflected on. The

problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size(N)

and the maximum iteration number (N __ ) have been chosen as 100, 10 and 200 respectively.

The power and heat generations matching to the best cost acquired from the suggested HTS is
revealed in Table 4.26. The best, average and worst cost and average CPU time among 100 runs
of solutions acquired from suggested HTS are summed up in Table 4.27. The cost acquired from
classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50],
teaching learning based optimization (TLBO) [51] and oppositional teaching learning based
optimization (OBTLBO) [51] are also revealed in Table 4.27. The cost convergence
characteristic acquired from suggested HTS is portrayed in Fig. 4.15. It has been observed from

Table 4.27 that the cost acquired by utilizing HT'S is the lowest among all other techniques.
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Table 4.26: Power generation (MW) and heat generation (MWth) for case 1 of Test System 3

P, 5395724 P, 778364 H, 765205

P, 2989487 P, 550023 H, 1055142
P, 2979085 P, 550109 H, 754833

P, 1100820 P, 810524 H,  39.9999
P, 1102645 P, 400015 H, 183944

P, 1102381 P,  81.0030 H, 4689043

P, 1102745 P, 400009 H,  59.9994
P, 1102452 P, 100002 H,  59.9999
P, 1101592 P, 350001 H,, 119.9854
P, 773992 H,, 1052219 H,, 119.9768

Table 4.27: Comparison of performance for case 1 of Test System 3

Techniques Best cost (§)  Average cost (§) Worst cost (§)  CPU time (s)
HTS 57842.99 57843.15 57843.77 5.47
TVAC-PSO [50] 58122.74 58198.31 58359.55 7.84
CPSO [50] 59736.26 59853.47 60076.69 8.00
OBTLBO [51] 57856.26 57883.21 57913.77 5.82
TLBO [51] 58006.99 58014.36 58038.52 5.67
GSO [58] 57843.51 57849.30 57857.79 5.41
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Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been reflected on. The data of conventional thermal
generator is similar as in [58]. The problem is pertained to solve by utilizing HTS. Here, the
population size (N,), elite size(N,) and the maximum iteration number (N, _ ) have been
chosen as 100, 10 and 200 respectively. The power and heat generations matching to best cost
acquired from suggested HTS is revealed in Table 4.28. The best, average and worst cost and
average CPU time among 100 runs of solutions acquired from suggested HTS are summed up in
Table 4.29. The cost convergence characteristic acquired from the suggested HTS has been

portrayed in Fig. 4.16.
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Fig. 4.16. Cost convergence characteristics for case 2 of test system 3

Table 4.28: Power generation (MW) and heat generation (MWth) for case 2 of Test System 3

P 6283185 p 400000 79.2433
P, 2989051  p, 550000 g _  107.7938
P, 2244078  p 92399 [ 80.1432
P, 60.0000 P, 893203 g 40.0006
P, 1501331 p_ 448825 20.0013
P, 60.0000 P, 863330 = 4533426
P, 1506331 p_ 459304  H, 60.0000
P, 60.0000 p, 100000  H, 60.0000
P, 1507331 p_ 350029 g 120.0000
P, 400000 g, 1094702 | 20.0000
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Table 4.29: Comparison of performance for case 2 of Test System 3

Techniques HTS

Best cost ($) 57959.41

Average cost ($) 57959.92

Worst cost ($) 57960.73

CPU time (s) 6.6877
4.10.4. Test System 4

This system comprises twenty six conventional thermal generators, twelve cogeneration units
and ten heat-only units. Data of this test system is acquired by duplicating data of test system 3.
The power and heat demands of this test system are 4700 MW and 2500 MWth respectively.

Here, two cases are chosen.

Case 1

Firstly, only valve point loading of conventional thermal generators has been reflected on. The

problem is pertained to solve by utilizing HTS. Here, the population size (N, ), elite size (N)

and the maximum iteration number (N ) have been chosen as 150, 15 and 300 respectively.

The power and heat generations matching to best cost acquired from the suggested HTS is
revealed in Table 4.30. The best, average and worst cost and average CPU time among 100 runs
of solutions acquired from the suggested HTS are summed up in Table 4.31. The cost acquired
from classical PSO (CPSO) [50], time varying acceleration coefficients PSO (TVAC-PSO) [50],
teaching learning based optimization (TLBO) [51] and oppositional teaching learning based
optimization (OBTLBO) [51] are also revealed in Table 4.31. The cost convergence
characteristic acquired from the suggested HTS has been portrayed in Fig. 4.17. It has been
observed from Table 4.31 that the cost acquired by utilizing HTS is the lowest among all other

techniques.
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Table 4.30: Power generation (MW) and heat generation (MWth) for case 1 of Test System 4

P, 5385705 P, 2242057 P, 100002 H, 784853
P, 2245205 P, 1598062 P, 48.6396 H, 1057117
P, 2296394 P, 602947 P, 860222 H,  83.7420
P, 1598146 P, 109.8813 P, 440049  H,_  40.0004
P, 600409 P, 1099534 P 826239 H, 222596
P, 1597333 P, 109.8681 P, 50.0926  H,  514.5539
P, 1597483 P, 1597347 P_ 100004 H,  60.0000
P, 603910 p, 774085 P, 399712 H,  60.0000
P, 1597346 P, 774089  H, 1084796 H,  120.0000
P, 77.8308 P, 924043  H, 78.5030 H,  119.9997
P, 774274 p, 550095  H, 1064777 H,  389.4737
P, 924412 p_ 875554  H, 784939  H,  59.9999
P, 550051 P, 440256  H, 400006 H,  59.9999
P, 6283214 P, 839878  H, 261998 H,  120.0000
P, 1496676 P, 440149  H, 1076192 H,  120.0000

Table 4.31: Comparison of performance for case 1 of Test System 4

Techniques Best cost ($) Average cost ($) Worst cost ($)  CPU time (s)
HTS 116362.50 116369.06 116385.37 6.0035
TVAC-PSO [50] 117824.89 - - -

CPSO [50] 119708.88 - - -
OBTLBO [51] 116579.23 116613.65 116649.44 10.93
TLBO [51] 116739.36 116756.00 116825.82 10.38
GSO [58] 116457.95 116463.65 116473.21 9.51
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Case 2

Here, valve point loading of conventional thermal generators and prohibited operating zones of
conventional thermal generators have been reflected on. The data of conventional thermal
generator is similar as in case [58]. The problem has been pertained to solve by utilizing HT'S.

Here, the population size (N, ), elite size (N ) and the maximum iteration number (N ) have

been chosen as 150, 15 and 300 respectively. The power and heat generations matching to best
cost acquired from the suggested HTS is revealed in Table 4.32. The best, average and worst cost
and average CPU time among 100 runs of solutions acquired from the suggested HTS are
summed up in Table 4.33. The cost convergence characteristic acquired from the suggested HTS

has been portrayed in Fig. 4.18.
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Table 4.32: Power generation (MW) and heat generation (MWth) for case 2 of Test System 4

P, 2599998 P, 2992020 P, 100000  H,  78.8757
P, 2992292 p_ 1743803 P 358856  H,  113.0611
P, 293.0285 P, 1597327 p, 857164  H, 815086
P, 109.8682 P, 1115855 P, 444571  H_  40.0004
P, 108.6801 P 1599501 P 957190  H,  20.4882
P, 1597799 P, 1597332 P,  47.5058  H,  508.5805
P, 1098663 P, 1597331 P, 100000  H,  59.9999
P, 109.8662 P, 1147999 P, 360743  H,  60.0000
P, 1597325 P, 1148014 H_ 1061234 H,  120.0000
P, 646775 P_ 1198199 H_ 784828  H,_  119.9999
P, 774946 P 924016 H, 1083679 H, 3953627
P, 1199999 P 833573 H, 812992  H,_  60.0000
P, 550048 P 440020 H, 400006 H,  59.9999
P, 1795202 P, 873568 H, 204024  H,_  119.9998
P, 2997767 P, 472635 H, 1074477 H, 119.9995
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Table 4.33: Comparison of performance for case 2 of Test System 4

Techniques HTS
Best cost ($) 116918.90
Average cost ($) 116924.75
Worst cost ($) 116935.38
CPU time (s) 6.9056

4.11. Conclusion

Modified teaching-learning-based optimization (MTLBO) has been developed and pertained to
solve three different complex combined heat and power economic dispatch problems and 15
benchmark functions. Test results acquired from three different complex combined heat and
power economic dispatch problems have been compared with those acquired by other
evolutionary techniques suggested in the literature. A comparison has been observed for both test
cases i.e. a valve point loading of conventional thermal generator and valve point loading of
conventional thermal generators and prohibited operating zones of conventional thermal

generators in MTLBO gives better result for minimum cost and good performance.

Heat transfer search (HTS) algorithm has been pertained to solve four different complex
combined heat and power economic dispatch problems. Test results have been matched up to
those acquired by other evolutionary techniques suggested in literature. A comparison of
performance for different test system has been observed and found that the best cost, average

cost, worst cost and CPU time gives better result in HTS algorithm.
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CHAPTER-S5

Short-term Scheduling of Fixed Head
Hydrothermal Power System

5.1. Introduction:

Optimal scheduling of power plant generation is of great importance to electric utility systems.
Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the
operational cost of hydrothermal system essentially reduces to that of minimizing the fuel cost of
thermal plants under the various constraints on the hydraulic, thermal and power system
network. Since the mid1990s, many techniques originated from Darwin’s natural evolution
theory have emerged. These techniques are usually termed by ‘“evolutionary computation
methods” including evolutionary algorithms (EAs), swarm intelligence and artificial immune
system.

In this study, opposition-based differential evolution (ODE) for optimal scheduling of generation
in a hydrothermal system has been applied to a fixed head hydrothermal power system. This
paper considers a fixed head hydrothermal system. Here the system with fixed head hydro plants,
water discharge rate curves are modeled as a quadratic function of the hydropower generation
and thermal units with non-smooth fuel cost function. Here, scheduling period is divided into a
number of subintervals each having a constant load demands. In case of variable head
hydrothermal system, multi-reservoir cascaded hydro plants having prohibited operating zones
and thermal units with valve point loading are used. The proposed method is validated by
applying it to two test problems, two fixed head hydrothermal test systems and three
hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating
zones and thermal units with valve point loading. The test results are compared with those
obtained by other evolutionary methods like differential evolution (DE), particle swarm

optimization (PSO) and evolutionary programming (EP) techniques.
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5.2. Problem Formulation
Fixed head hydrothermal scheduling problem with N, hydro units and N thermal units over M

time subintervals is described as follows:

5.2.1. Objective function

The fuel cost function of each thermal generator, considering valve-point effect, is expressed as a
sum of quadratic and sinusoidal function. The superimposed sine components represent rippling
effect produced by steam admission valve opening.

The problem minimizes following total fuel cost

M N;
fFH = zztm [asi + bsiPsim + CsiPszim + dxi XSin{esi X (Pvrzmn - Psim )}] (51)

m=l i=1

5.2.2. Constraints

(1) Power balance constraints:

N.\ Nh
ZPvim +ZPhjm _PDm _PLm = O me M (52)
i=1 j=1
and
N, +N; N, +N;
P,=> D>PBP, meM (5.3)

=1 r=l1

(i1) Water availability constraints:

M , ‘

z [tm (aOhj + althhim + aZthhjm )]_W/h,' =0 JEN, (5.4)
m=1

(ii1) Generation limits:

min
P <P

max
hjm s Phj

jeN,, meM (5.5)
and P™ <P <P™ ieN,, meM (5.6)

sum

5.3. Determination of Generation Level of Slack Generator

Thermal generators and hydro generators deliver their power output subject to the power balance

constraint (5.2), water availability constraint (5.4) and respective capacity constraints (5.5) and

(5.6). Assuming the power loading of N, and first (N, - 1) generators are known, the power
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level of the N, th generator (i.e. the slack generator) is given by

N,+N -1

P, = P, - Z meM (5.7)

The transmission loss P, is a function of all the generators including the slack generator and it

is given by

N, +N, ~1N,+N, -1 Nj+N, -1
I=1

PLm: z ZP Berrm+ 2P ;BNSZPI j-l_BNNP2 me M (58)

Expanding and rearranging, equation (5.7) becomes

N, +N,-1 N, +N;-IN,+N -1 N, +N,-1
BNJNA PI\21Am ( ZBN ! j N,m +P Dm + z Z P Blr Prm - Zle =0 (59)
1=1 r=1 =1
me M

The loading of the slack generator (i.e. N th ) can then be found by solving equation (5.9) using

standard algebraic method.

5.4. Overview of Opposition based Differential Evolution method
Opposition-based learning (OBL) was developed by Tizhoosh to improve candidate solution by
considering current population as well as its opposite population at the same time.

Evolutionary optimization methods start with some initial population and try to improve them
toward some optimal solution. The process of searching terminates when some predefined
criteria are satisfied. The process is started with random guesses in the absence of prior
information about the solution. The process can be improved by starting with a closer i.e. fitter
solution by simultaneously checking the opposite solution. By doing this, the fitter one (guess or
opposite guess) may be chosen as an initial solution. According to the theory of probability, 50%
of the time, a guess is further from the solution than its opposite guess. Therefore, process starts
with the closer of the two guesses. The same approach can be applied not only to the initial

solution but also continuously to each solution in the current population.
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5.4.1. Definition of opposite number

If x be a real number between [lb, ub], its opposite number is defined as

x=Ib+Ilu—x (5.10)

Similarly, this definition can be extended to higher dimensions [84] as stated in the next sub-

section.
5.4.2. Definition of opposite point

Let X :(xl,xz,....,xn) be a point in n- dimensional space where x; € [lbi,ubi] and

i€ 1,2,...,n.The opposite point X = (x_l,x_2, ..... ,xn) is completely defined by its components as in
x_i:lbi+ubi_xi (5.11)

By employing the definition of opposite point, the opposition-based optimization is defined in

the following sub-section.

5.4.3. Opposition-based optimization

Let X :(xl,xz,....,xn) be a point in n- dimensional space i.e. a candidate solution. Assume
f= (0) is a fitness function which is used to measure the candidate’s fitness. According to the

definition of the opposite point, X = (x_l,x_z, ..... ,xn) is the opposite of X = (xl,xz,....,x” ) Now,

if f (Y)< f(X) (for a minimization problem), then point X can be replaced with X ; otherwise,

the process is continued with X . Hence, the point and its opposite point are evaluated
simultaneously in order to continue with the fitter one.

5.4.4. Opposition-based Differential evolution

Here, the concept of the opposition-based learning [84] is incorporated in differential evolution.
The original DE is chosen as a parent algorithm and the opposition-based ideas are embedded in

DE.
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Specify the DE
-

A 4

Set Iter.=1

A 4

Generate and evaluate initial populations and its opposite members

v

If cost function value of opposite member is less than the cost function value
of initial population replace the initial population with its opposite member

v

\ 4

Set target vector

A 4

Generate mutant vector by mutation operation

v

Generate trial vector by crossover

5
A 4

Evaluate cost of trial

A 4

The best vector survives by selection operation

v

Generate and evaluate the opposite members of the best vector

¥

If cost function value of opposite member is less than the cost function value
of the best vector replace the best vector with its opposite member

Iter.=Iter.+1 Iter. < Max. Iter.

Stop

Fig. 5.1. Flowchart of ODE
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5.5. Simulation Results of ODE and DE algorithm

Two test problems, two fixed head hydrothermal systems and three hydrothermal multi-reservoir
cascaded hydroelectric test systems having prohibited operating zones and thermal units with
valve point loading are investigated. The computational results have been used to compare the
performance of the proposed ODE method with that of other evolutionary methods. The
proposed ODE algorithm and DE algorithm used in this paper are implemented by using
MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz).

5.5.1. Examplel: Consider the maximization problem [92].
max f(x,,x,)=21.5+x, sin(47x, )+ x, sin (207, ) (5.12)
where —3.0<x, <12.1 and 4.1<x, <5.8

This function is multimodal. The problem is solved by using ODE. .

Here, the population size (N, ), scaling factor (F ), crossover constant (C,) and maximum

iteration number have been selected 10, 0.3, 1.0 and 50 respectively. The best optimum value,
the variables corresponding to the best optimum value, average and worst value and average
CPU time among 100 runs of solutions obtained from proposed ODE and DE for example 1 have
been shown in Table 5.1. Figure 5.2 shows the nature of convergence obtained from ODE and

DE for example 1

Table 5.1: Best optimum value, the variables corresponding to the best optimum value,

average value, worst value and average CPU time for example 1

Method x* f(x*) Average value Worst value CPU time(sec)
ODE [12.1000, 5.7227]  38.9377 38.9377 38.9377 0.0473
DE [12.1000, 5.7228]  38.9375 38.9373 38.9371 0.0469
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Fig. 5.2. Convergence characteristic of example 1
5.5.2. Example 2: Consider the minimization problem [92].

5
mlnf X, X, ) chos[z+1 x| +l]ZlC0S[l+1)x2 +z] (5.13)
i=1

pan
where —10<x, <10 and -10< x, <10

This function has 760 local minima, 18 of which are global minima with -186.73. The problem is
solved by using ODE. . Here, the population size (N, ), scaling factor ( F' ), crossover constant
(C,) and maximum iteration number have been selected 10, 0.3, 1 and 100 respectively for the
example under consideration.

To validate the proposed ODE based approach, the same example is solved by using DE.

In case of DE, the population size (N, ), scaling factor (F ), crossover constant (C,) and
maximum iteration number have been selected as 10, 0.3, 1.0 and 100 respectively. Table 5.2
summarizes the best optimum value, the variables corresponding to the best optimum value,

average and worst value and average CPU time among 100 runs of solutions obtained from
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proposed ODE and DE for example 2. Figure 5.3 depicts the nature of convergence obtained
from ODE and DE for example 2.

Figure 5.3 depicts the nature of convergence obtained from ODE and DE for example 2.
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Fig. 5.3. Convergence characteristic of example 2

Table 5.2: Best optimum value, the variables corresponding to the best optimum value,

average value, worst value and average CPU time for example 2

Method X" f(x*) Average Worst value ~ CPU time
value (sec)

ODE [5.4830, 4.8581] -186.7309 -186.7309 -186.7309 0.0625

DE [-7.7084, -7.0834] -186.7308 -186.7307 -186.7303 0.0781
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5.6. Case Study of Fixed Head Hydrothermal System

5.6.1. Test System 1

This system consists of two hydro plants and two thermal plants whose characteristics and load
demands are given in Table A-9, Table A-10 and Table A-11 respectively in appendices.
Transmission loss formula coefficients are also given in the appendix. Hydro plant data is taken
from [64].

The problem is solved by using both the proposed ODE and DE. Here, the population size (N, ),

scaling factor (F), crossover rate (C,)and the maximum iteration number (N . ) have been

selected as 100, 1.0, 1.0 and 100 respectively for the test system under consideration.
The optimal hydrothermal generation obtained by the proposed ODE and DE are provided in
Table 5.3 and Table 5.4 respectively. The best, average and worst cost and average CPU time
among 100 runs of solutions obtained from proposed ODE and DE method are summarized in
Table 5.5. The cost obtained from artificial immune system (AIS) [76], particle swarm
optimization (PSO) [76] and evolutionary programming (EP) [76] are also shown in Table 5.5.
The cost convergence characteristic obtained from proposed ODE and DE is shown in Fig. 5.4.
It is seen from Table 5.5 that the cost found by using ODE is the lowest among all other

methods.

Table 5.3: Results obtained from ODE of test system 1 of fixed head hydrothermal system

Subin_ Phl Ph2 Psl Ps2
terval (MW) (MW) (MW) (MW)
1 244.5860 90.7689 179.4953 424.9773
2 307.3581 163.3383 228.7850 570.1572
3 285.4852 139.2931 211.2739 522.5895

Table 5.4: Results obtained from DE for test system 1 of fixed head hydrothermal system

Subin_ Phl PhZ PSl PS2

terval MW) MW) MW) MW)
1 240.3807 85.6583 206.3934 407.6673
2 310.1176 167.5754 206.3934 585.2895
3 286.6845 139.7912 206.3934 525.7479
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Table 5.5: Comparison of performance for Test System 1 of fixed head hydrothermal system

Techniques Best cost ($) Average cost ($)  Worst cost ($) CPUtime (s)
ODE 66030.85 66031.68 66032.46 40.31
DE 66060.74 66061.44 66064.14 36.01
AIS [74] 66117 - - 53.43
PSO [74] 66166 - - 71.62
EP [74] 66198 - - 75.48

6.62
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— — DE
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Cost ($)

6.61
6.608
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lteration

Fig. 5.4. Cost convergence of test system 1 of fixed head hydrothermal system

5.6.2. Test System 2

This system comprises of two hydro plants and four thermal plants whose characteristics and
load demands are given in Table A-12, Table A-13 and Table A-14 respectively in

ices. Transmission loss formula coefficients are also given in the appendices.
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The problem is solved by using both the proposed ODE and DE. Here, the population size (N ),

scaling factor (F), crossover rate (C,)and the maximum iteration number (N

) have been

max

selected as 100, 1.0, 1.0 and 200 respectively for the test system under consideration. The

optimal hydrothermal generation obtained by the proposed ODE and DE are provided in

Table 5.6 and Table 5.7 respectively. The best, average and worst cost and average CPU time

among 100 runs of solutions obtained from proposed ODE and DE are summarized in Table 5.8.

The cost obtained from artificial immune system (AIS) [76], particle swarm optimization (PSO)

[76] and evolutionary programming (EP) [76] are also shown in Table 5.8. The cost convergence

characteristic obtained from proposed ODE and DE is depicted in Fig. 5.5. It is seen from Table

8 that the cost found by using ODE is the lowest among all other methods

Table 5.6: Results obtained from ODE of test system 2 of fixed head hydrothermal system

Subin- Phl Ph2 Psl Ps2 Ps3 Ps4
terval MW)  (MW)  (MW) (MW) MW)  (MW)
1 172.6478 317.8272  93.6207 174.7438  109.2596 50.3779
2 243.8370 411.3216 124.8716 174.6929  123.6025 50.1150
3 209.7780 351.8750 116.1764 174.7282  120.3243  50.0519
4 249.8641 499.8741 124.8642 1749127  222.4536 68.0992

Table 5.7: Results obtained from DE of test system 2 of fixed head hydrothermal system

Subin_ Phl PhZ Psl PS2 PS3 Ps4
terval (MW) (MW) (MW) (MW) (MW) (MW)
1 184.4627  303.6346 88.3611 1747233 116.2664  50.9170
2 241.0344  419.5791 117.4402  174.8712 124.7407  50.9397
3 201.9931 357.2371 123.3403  173.9739 115.3547  51.0280
4 249.3076  499.1428 124.0676  174.7184 221.4260  71.3501
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Table 5.8: Comparison of performance for Test System 2 of fixed head hydrothermal system

Techniques Best cost ($) Average cost ($)  Worst cost ($) CPU time (s)
ODE 92817.01 92819.81 92822.68 46.09
DE 93107.34 93110.45 93114.07 41.53
AIS [74] 93950 - - 59.14
PSO [74] 94126 - - 83.54
EP [74] 94250 - - 67.82
x 10°
1.25
— ODE
1.2 -~ DE f

1.15

1.1

Cost ($)

1.05

0.95
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lteration

Fig. 5.5. Cost convergence of test system 2 of fixed head hydrothermal system
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5.7. Overview of Improved Real Coded Genetic algorithm

The overview of Improved Real Coded Genetic algorithm described in Chapter 3.4.

5.8. Simulation Results of RCGA and IRCGA method

The developed improved real coded genetic algorithm (IRCGA) and real coded genetic
algorithm (RCGA) have been pertained for solving two different test systems. IRCGA and
RCGA techniques have been realized by using MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0
GHz).

5.8.1. Test System 1

Test system 1 consists of two hydro plants and two thermal plants whose characteristics and load
demands are given in Table A-9, Table A-10 and Table A-11 respectively in appendices.
Transmission loss formula coefficients are also given in the appendix Table A-11. Hydro plant
data is taken from [64]. The problem is solved by using IRCGA and RCGA. Here, maximum
number of iterations, population size, crossover and mutation probabilities have been chosen as
100, 50, 0.9 and 0.2, respectively for IRCGA and RCGA. Test results acquired from the best fuel
cost among 100 runs of solutions by using developed IRCGA and RCGA are summed up in
Table 5.9 and Table 5.10 respectively. The cost convergence characteristic acquired from
developed IRCGA and RCGA has been portrayed in Fig. 5.6. It has been observed from
Table 5.9 and Table 5.10 that the fuel cost acquired from IRCGA is the less than RCGA.
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Fig. 5.6. Cost convergence of test system 1
Table 5.9: Results acquired from IRCGA of test system 1
Subin- P, P, P, P, Cost . CPU
erval  (MW)  (MW)  (MW)  (MW) $) time (sec)
1 2444824  91.7609 177.1186 426.4080 66031 55.03
2 306.6226 162.1315 226.9595 574.0518
3 286.3345 139.5808 212.0984 520.5925
Table 5.10: Results acquired from RCGA of test system 1
Subin- P, P, P, P, Cost ) CPU
terval  (MW)  (MW)  (MW)  (MW) (%) time (sec)
1 237.6474 97.7308 183.3124 420.6857 66054 51.97
2 310.2027 170.4667 226.3238 562.0064
3 289.1620 124.9021 212.3097 533.4285
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5.8.2. Test System 2
Test system 2 comprises of two hydro plants and four thermal plants whose characteristics and
load demands are given in Table A-12, Table A-13 and Table A-14 respectively in appendices.

Transmission loss formula coefficients are also given in the appendix Table A-14.

The problem is solved by using developed IRCGA and RCGA. Here, maximum number of
iterations, population size, crossover and mutation probabilities have been chosen as 200, 50, 0.9

and 0.2, respectively for IRCGA and RCGA.

Test results acquired from the best fuel cost among 100 runs of solutions by using developed

IRCGA and RCGA are summed up in Table 5.11 and Table 5.12 respectively.

The cost convergence characteristic acquired from developed IRCGA and RCGA has been
portrayed in Fig. 5.7. It has been observed from Table 5.11 and Table 5.12 that the fuel cost
acquired from IRCGA is the less than RCGA.

Table 5.11: Results acquired from IRCGA of test system 2

Subin- P, P, P, P, P, P, Cost CPU
erval (MW) (MW)  (MW)  (MW) (MW) (MW) ) time (sec)
I 177.1505 3148073 89.4437 1749074 111.9127 50.2581
2 2487030 408.1596 123.8875 174.9438 122.6685 50.0685 92773 77.78
3 2002083 358.1134 116.9637 174.7650 122.8367 50.0770
4 2499786 499.9132 124.9163 174.9314 220.4093 69.8954
Table 5.12: Results acquired from RCGA of test system 2
Subin- P, P, P, P, P, P, Cost CPU
Terval (MW) (MW) (MW) (MW) (MW) (MW) ) time (sec)
[ 157.6372 307.7543 1064287 175.0000 118.9544 52.4040
2 2475443 410.5934 125.0000 175.0000 117.1135 53.1834
3 219.6215 362.0285 97.3968 171.6784 122.3066 50.2556 93125 7089
4 250.0000 500.0000 125.0000 174.8682 217.2241 72.9124

118



1.25
IRCGA
1.2 RCGA | -
1.15 §
1.1 g
&
%
Q
O 105 4
1 ]
0.95 g
09 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

lteration

Fig. 5.7. Cost convergence of test system 2

5.9. Conclusion

Here, opposition-based differential evolution is demonstrated and presented to solve the
hydrothermal scheduling problem. The proposed opposition-based differential evolution method
has been successfully applied to two test problems, two fixed head hydrothermal test systems.
The results have been compared with those obtained by other evolutionary algorithms reported in
the literature. It is seen from the comparisons that the proposed opposition-based differential

evolution method performs better than other evolutionary algorithms in the literature.
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CHAPTER-6

Short-term Scheduling of Variable Head
Hydrothermal Power System

6.1. Introduction

The hydro thermal generation scheduling problem is a nonlinear constrained dynamic
optimization problem which plays an important role to electric utility systems. With the
insignificant marginal cost of hydroelectric power, operational cost of a hydrothermal system
essentially reduces to that of minimizing the fuel cost for thermal plants under the various

constraints on the hydraulic, thermal and power system network.

The main constraints include: the time coupling effect of the hydro sub problem, where the water
flow in an earlier time interval affects the discharge capability at a later period of time, the
cascaded nature of the hydraulic network, the varying hourly reservoir inflows, the physical
limitations on the reservoir storage and turbine flow rate, the varying system load demand and

the loading limits of both thermal and hydro plants.

In this study, opposition-based differential evolution (ODE) for optimal scheduling of generation
in a hydrothermal system has been applied to a variable head hydrothermal power system. Here,
opposition-based differential evolution is applied to determine the optimal hourly schedule of
power generation in a hydrothermal system. Differential evolution (DE) is a population-based
stochastic parallel search evolutionary algorithm. Opposition-based differential evolution has

been used here to improve the effectiveness and quality of the solution.

The proposed opposition-based differential evolution (ODE) employs opposition-based learning
(OBL) for population initialization and also for generation jumping. The effectiveness of the
proposed method has been verified on three hydrothermal multi-reservoir cascaded hydroelectric

test systems having prohibited operating zones and thermal units with valve point loading.
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6.2. Problem Formulation

The variable head hydrothermal scheduling problem is aimed to minimize the fuel cost of
thermal plants, while making use of the availability of hydro power as much as possible. The
objective function and associated constraints of the hydrothermal scheduling problem are
formulated as follows.

6.2.1. Objective function

T

NS
Minimize f,,, =>. > [a, +b,P, +c P +

Si~ sit si sit

d, xsinfe, x (P P, J}] 6.1)

=1 i=l
6.2.2. Constraints

(i) Power balance constraints:
The total active power generation must balance the predicted power demand and transmission

loss, at each time interval over the scheduling horizon

N.\ N/)
ZPM +ZPhjt _PDt _PLr =0 teT (6.2)
i=1 =

The hydroelectric generation is a function of water discharge rate and reservoir water head,

which in turn, is a function of storage.

P, =C jv,; +C, jQ,f]., +CyV,,0,, +CV,, +Cs,0,,+Co; je N, teT (6.3)

The transmission loss P,, is given by
N,+N, N, +N, N,+N,
P,=> > PB,P,+ >BP +B (6.4)
=l j=l i=1

(i1) Generation limits:

P <P, <P . jEN, ,1eT (6.5)

and

P™ <P <P™, jieN,teT (6.6)
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(iii) Hydraulic network constraints

The hydraulic operational constraints comprise the water balance equations for each hydro unit
as well as the bounds on reservoir storage and release targets. These bounds are determined by
the physical reservoir and plant limitations as well as the multipurpose requirements of the hydro
system. These constraints include:

(a) Physical limitations on reservoir storage volumes and discharge rates,

ymn <y

hj hjt

VM, jeN,, teT (6.7)

Q;;““ <0, SO, jeN,, teT (6.8)

b) The continuity equation for the hydro reservoir network

Ruj
th(z+1) = tht + Ihjr - thr - Shjr + Z(th(t—r,j) + Shl(t—r,j)) , JEN,, 1teT (6.9)
I=1

(iv) Prohibited operating regions of water discharge- rates
i L
Qll:;m < th < th,1
0, €304 50,, <0y k=2,.n, (6.10)
U max
th,n/- S th S th

6.3. Overview of Opposition-based Differential Evolution method

The overview of Opposition based Differential Evolution (ODE) method has been described in
Chapter 5 of subsection 5.4

6.4. Simulation Results of ODE and DE algorithm

Three variable head hydrothermal test systems are considered to inspect and verify the proposed
Opposition-based Differential Evolution (ODE) method.

6.4.1. Test System 1

This test system considers a multi-chain cascade of four reservoir hydro plants and an equivalent
thermal plant. The entire scheduling period is 1 day and divided into 24 intervals. Here, two

cases are considered.
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Case 1: Here fuel cost is considered as a quadratic function of the power from the composite

thermal plant. The detailed parameters for this case come from [69].

The problem is solved by using both the proposed ODE and DE. Here, the population size (N ),

scaling factor (F), crossover constant (C, ) and maximum iteration number have been selected

100, 1, 1 and 300 respectively for this case.

The optimal hourly discharges and hydrothermal generation obtained by the proposed ODE
method are provided in Table A-15 and Table A-16 in appendices respectively. Fig. 6.1 depicts
the reservoir storage volumes of four hydro plants obtained from ODE. The best, average and
worst cost and average CPU time among 100 runs of solutions obtained from proposed ODE and
DE are summarized in Table 6.1. The cost obtained from modified differential evolution (MDE)
[72], improved particle swarm optimization (IPSO) [75], teaching learning based optimization
(TLBO) [78], improved fast evolutionary programming (IFEP) [71] and genetic algorithm (GA)
[69] methods are also shown in Table 6.1. The cost convergence characteristic obtained from
proposed ODE and DE is shown in Fig.6.2. It is seen from Table 6.1 that the cost found by using
ODE is the lowest among all other methods.
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Fig. 6.1. Hydro reservoir storage volumes for case 1 of test system 1
of variable head hydrothermal system
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Table 6.1: Comparison of performance for case 1 of Test System 1 of variable head
hydrothermal system

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (s)
ODE 917199.44 917208.56 917221.37 257.03
DE 918480.03 018494.37 918504.47 256.75
TLBO [78] 922373.39 022462.24 922873.81 -
IPSO [75] 922553.49 - - -
MDE [72] 922556.44 ; _ ;
IFEP [71] 930129.82 930290.13 930881.92 1033.20
GA [69] 926707.00 - - -
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Fig. 6.2. Cost convergence characteristics for case 1 of test system 1
of variable head hydrothermal system

Case 2: Here prohibited operating zones of hydro plants and valve point loading of thermal

generator are considered. The detailed parameters for this case come from [71].

The problem is solved by using both the proposed ODE and DE. Here, the population size (Ny),
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scaling factor (F), crossover constant (C,) and maximum iteration number have been selected

100, 1, 1 and 400 respectively for this case.

The optimal hourly discharges and hydrothermal generation obtained by the proposed ODE
method are provided in Table A-17, Table A-18 respectively in appendices. Fig. 6.3 shows the
reservoir storage volumes of four hydro plants obtained from ODE. The best, average and worst
cost and average CPU time among 100 runs of solutions obtained from proposed ODE and DE
are summarized in Table 6.4. The cost obtained from improved fast evolutionary programming
(IFEP) [71], improved particle swarm optimization (IPSO) [75] and teaching learning based
optimization (TLBO) [78] method is also shown in Table 6.4. The cost convergence
characteristic obtained from proposed ODE and DE is shown in Fig. 6.4. It is seen from

Table 6.4 that the cost found by using ODE is the lowest among all other methods.
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Fig. 6.3. Hydro reservoir storage volumes for case 2 of test system 1
of variable head hydrothermal system
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Fig. 6.4. Cost convergence characteristics for case 2 of test system 1
of variable head hydrothermal system

Table 6.2: Optimal Hydro Discharge (x10*n’) for case 2 of test system 1 of variable head
hydrothermal system

Hour th th th Qh4

1 10.1845 6.1121 20.5536 6.3438
2 93545 6.0000 29.9857 6.0059
3 5.0934 6.0672 18.8188 6.0081
4 123025 6.9922 19.7814 6.0011
5 94396 69832 15.2970 6.3376
6
7
8

7.8835 6.3622 18.4255 11.1545

10.2721 8.2105 18.0212  8.7499

6.7694 6.0283 17.9212 9.3215
9 6.6014 6.9949 16.6465 15.9994
10 9.8394 6.6298 14.1732 14.6373
11 5.8365 8.0881 17.9684 19.8695
12 6.2467 6.7252 18.3894 15.9965
13 10.4311 6.0065 16.4035 15.9976
14 6.7118 6.0342 19.8262 13.0358
15 52117 89019 14.7661 19.6512
16 5.8669 8.0785 18.5218 18.0045
17 10.3436 13.0473 15.8221 18.0241
18 9.0289 8.2601 15.6486 18.1861
19 6.8068 10.6257 18.4059 18.1376
20 5.0351 13.1212 10.7805 18.6221
21 7.2673 9.9088 11.9574 18.0174
22 7.0480 12.8178 11.9622 20.0000
23 7.9655 10.0050 10.1140 19.8378
24 13.2600 13.2228 11.6386 19.6248
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Table 6.3: Optimal Hydrothermal generation (MW) for case 2 of test system 1 of variable

head hydrothermal system

Hour Phl Ph 2 P n3 Ph4 P s
1 86.8344 49.7921 42.4872 136.4915 1054.39
2 82.7927 50.0996 0 128.7959 1128.31
3 53.2023 51.7131 38.2060 125.5285 1091.35
4 953572 59.6889 32.3296 121.2998 981.32
5 822469 60.718 45.8186 119.8371 981.38
6 723219 57.0068 36.5382 189.8853 1054.25
7 84.3272 69.3217 39.5418 180.8054 1276.01
8 63.8671 53.8113 40.4187 196.2406 1645.66
9 63.4079 61.0171 43.8752 273.675 1798.02
10 83.8010 59.0764 48.8933 261.1712 1867.06
11 58.8915 69.7213 40.9075 304.3079 1756.17
12 63.6159 61.3895 37.7617 274.8044 1872.42
13 90.3650 56.9064 44.1043 276.5894 1762.03
14 68.1055 58.0340 32.0219 249.5939 1792.24
15 56.4505 78.0365 46.5805 304.8704 1644.06
16 62.7673 73.2219 38.5827 292.2578 1603.17
17 93.8183 96.3354 45.1644 292.7708 1601.91
18 86.3257 71.3305 44.6121 292.334 1645.39
19 70.6874 82.4647 36.9713 293.5957 1756.28
20 55.3803 89.5719 48.3725 293.5926 1793.08
21 74.3523 73.9104 52.4342 289.3438 1749.96
22 72.6529 84.7098 53.7410 299.7932 1609.10
23 79.4951 71.3102 53.2242 294.2187 1351.75
24 104.9608 81.7733 57.2461 291.4408 1054.58

Table 6.4: Comparison of performance for case 2 of test system 1 of variable head
hydrothermal system

Techniques ODE DE IFEP [71] TLBO [78] IPSO [75]
Best cost ($) 923230.63  924069.73  933949.25 924550.78 925978.84
Average cost($) 92324245  924083.56  938508.87 924702.43 -
Worst cost ($) 923255.37  924096.28  942593.02 925149.06 -
CPU time (s) 264.73 258.65 1450.90 - -

6.4.2. Test System 2

This system considers a multi-chain cascade of four reservoir hydro plants and three thermal

plants. The entire scheduling period is 1 day and divided into 24 intervals. The effect of valve

point loading is considered. Transmission loss is also considered. The detailed parameters for

this case are taken from [72].

The problem is solved by using both the proposed ODE and DE. Here, the population size (N, ),

scaling factor (F), crossover constant (C, ) and maximum iteration number have been selected

100, 1, 1 and 300 respectively for this case. The optimal hourly discharges and hydrothermal
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generation obtained by the proposed ODE method are provided in Table A-19 Table A-20
respectively in appendices. Fig. 6.5. shows the reservoir storage volumes of four hydro plants
obtained from ODE.

The best, average and worst cost and average CPU time among 100 runs of solutions obtained
from proposed ODE and DE are shown in Table 6.7. The cost obtained from modified
differential evolution (MDE) [72], clonal selection algorithm (CSA) [77] and teaching learning
based optimization (TLBO) [78] is also shown in Table 6.7. The cost convergence characteristic
obtained from proposed ODE and DE is shown in Fig. 6.6. It is seen from Table 6.7 that the cost
found by using ODE is the lowest among all other methods.
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Fig. 6.5. Hydro reservoir storage volumes of test system 2
of variable head hydrothermal system
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Table 6.5: Optimal Hydro Discharge (x10%m’) of test system 2 of variable head
hydrothermal system

Hour Q) O» 0,5 O

5.0000 8.1694 29.9825 10.6846
11.8249 6.0349 20.3834 8.1109
8.2756  9.3968 29.9993 6.0699
10.6764 7.1839 17.4356 6.5270
10.7913 6.1217 14.9166 7.0655
7.5122 6.0114 19.9168 12.2241
11.8929 7.1014 16.4236 14.2319
8.0364 8.9342 19.9639 6.3860
5.0000 7.0265 17.2913 14.8253
5.2012 6.0000 19.6801 13.3341
9.0382 7.4124 16.8647 18.8811
7.1895 6.0830 16.7021 17.6400
13 10.7560 8.4874 17.0601 18.0055
14 9.6444 9.6666 16.3546 18.8809
15 7.5333 10.1478 14.5476 16.8217
16 12.2331 9.0725 12.3182 19.4624
17 5.0001 9.8397 14.7639 16.0024
18 6.9996 10.8825 13.7793 20.0000
19 12.3816 14.8071 14.5850 20.0000
20 5.7002 9.2668 12.3534 14.4891
21 5.0013 6.0008 21.3704 15.8796
22 5.0078 9.1880 11.7756 12.9617
23 5.0002 6.0045 15.2021 13.6869
24 9.3038 13.1606 12.9722 19.9519

—_—
OO0 I NP W -

—_ =
N =
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Table 6.6: Optimal Hydrothermal generation (MW) of test system 2 of variable head
hydrothermal system

Hour Ph1

PhZ

Ph 3 Ph 4

Psl Ps 2

PS3

O 00NN B~ W —

10
11
12
13
14
15
16
17
18

52.5001
94.9645
77.4693
89.6264
88.6817
69.9013
90.0410
71.5381
49.9772
53.0657
81.4462
70.7288
91.5678
86.4941
74.3655
98.9002
54.2296
71.4333

19 100.2199

20
21
22
23
24

60.3478
54.2311
54.5201
54.7321
87.5753

62.9911
49.1472
70.7940
57.8274
51.7208
51.9834
59.9969
70.3084
57.7790
51.3073
62.5231
54.3802
70.9632
77.0705
79.0482
72.9424
76.2645
79.2985
87.8464
63.3576
42.9424
64.1698
44.8122
80.9892

0 188.4124
36.0943 151.4483

0 120.2516
34.8294 121.7495
43.1194 121.7213
27.7926 202.2525
42.2954 229.2022
31.2740 155.4249
39.9087 261.0326
31.4504 247.0815
40.4364 298.9633
40.1454 287.9098
38.1093 292.8062
40.8922 298.1207
45.0727 283.9845
48.6283 302.6975
49.2103 274.8114
51.6777 304.2234
53.8828 300.4273
55.0328 254.1731
34.5069 264.0216
56.8181 236.6617
58.1308 244.4422
59.3598 292.6200

20.0000 40.0470
20.0001 294.7080
174.9999 40.0626
174.9999 40.0144
20.0713 209.8746
20.0027 294.7478
102.8131 294.9635
175.0000 294.7975
174.9942 294.7360
102.6427 294.7893
20.0014 294.7375
102.6722 294.7042
20.0158 294.6822
102.6981 294.7381
102.6488 294.7742
20.0008 298.7904
174.9981 294.7637
102.6951 294.7382
102.7774 294.7563
20.0000 294.7757
175.0000 40.0042
20.0000 294.7116
20.0024 294.6434
20.0004 125.0043

409.0353
139.9935
229.7881
140.0427
139.7717
139.7384
140.0704
229.5029
229.4873
319.3190
319.3074
319.2878
319.3190
139.8472
139.7885
229.5013
139.6912
229.7389
140.0848
319.3300
319.0230
139.6709
139.7895
139.8794

Table 6.7: Comparison of performance of test system 2 of variable head hydrothermal

system
Techniques ODE DE MDE [72] TLBO [79] CSA [77]
Best cost ($) 42322.23 43068.01 43435.41 42385.88 42440.574
Averagecost ($) 42330.53 43079.52 - 42407.23 -
Worst cost ($) 42339.36 43083.05 - 42441.36 -
CPU time (s) 304.05 298.72 - - -

6.4.3. Test System 3

This system considers a multi-chain cascade of four reservoir hydro plants and ten thermal

plants. The entire scheduling period is 1 day and divided into 24 intervals. The effect of valve

point loading is taken into account. Here transmission loss is not considered. The detailed

data for this system is taken from [74].

The problem is solved by using both the proposed ODE and DE. Here, the population size (N, ),

scaling factor (F), crossover constant (C, ) and maximum iteration number have been selected

100, 1, 1 and 900 respectively for this case. The optimal hourly discharges and hydrothermal
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generation obtained by the proposed ODE method are provided in Table A-21, Table A-22
respectively in appendices.

Fig. 6.7 shows the reservoir storage volumes of four hydro plants obtained from ODE. The best,
average and worst cost and average CPU time among 100 runs of solutions obtained from
proposed ODE and DE are summarized in Table 6.10. The cost obtained from differential
evolution (DE) [74] method is also shown in Table 6.10. The cost convergence characteristic
obtained from proposed ODE and DE is shown in Fig. 6.8. It is seen from Table 6.10 that the

cost found by using ODE is the lowest among all other methods.
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Fig. 6.7. Hydro reservoir storage volumes for test system 3 of variable head hydrothermal system
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Table 6.8: Optimal Hydro Discharge (x10* ") of test system 3 of variable head
hydrothermal system

Hour Q,, O, 05 O,

1 10.5900 7.2207 19.4370 6.0254
2 12.0523 7.7304 20.2455 8.5457
3 5.0001 6.0184 17.4557 6.0000
4 64478 6.3207 22.6585 14.8061
5 5.0000 11.1350 29.9287 7.6698
6 7.6269 9.9408 17.6070 10.8973
7 9.2146 9.5815 13.9492 12.4732
8 7.1216 6.0000 21.4589 6.0044
9 147220 9.4742 16.3758 16.8335
10 8.7003 6.0001 18.0804 15.0361
11 7.6528 9.7120 10.0203 12.3636
12 5.4338 7.2947 17.1649 16.8305
13 11.5460 6.0053 30.0000 12.6269
14 10.5001 10.4945 15.3613 18.1704
15 6.9555 10.5776 10.0003 17.1377
16 5.0000 10.6310 21.2541 19.9868
17 10.5398 9.0909 11.1185 19.9873
18 5.1753 6.0028 19.1245 15.2733
19 5.0000 6.0000 18.4536 19.9871
20 5.8448 6.0003 10.0100 19.2115
21 6.0854 9.8456 11.2876 17.9333
22 8.5236 11.1071 10.4763 14.4865
23 149775 7.8296 13.2974 19.9983
24 5.2899 11.9870 13.3435 18.2195
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Table 6.10: Comparison of performance for test system 3 of variable head hydrothermal
system

Techniques ODE DE DE [74]
Best cost ($) 170452.35 170915.57 170964.15
Average cost ($) 170459.78 170924.41 -

Worst cost ($) 170468.52 170935.28 -

CPU time (s) 472.51 459.92 -

It is observed from in Table A-16, Table A-18, Table A-20 and Table A-22 respectively in
appendices that the third hydro unit has no output during some time interval. This is because of
the fact that output from a particular hydro unit during a specified time interval depends on the
availability of water, reservoir storage volume limit, water transport delay between cascaded
reservoirs and on the system configuration as a whole. Depending on the system configuration

and constraints for the present problem, this has happened in case of the third hydro unit.

6.5. Conclusion

In this paper, opposition-based differential evolution is demonstrated and presented to solve the
hydrothermal scheduling problem. The proposed opposition-based differential evolution method
has been successfully applied to two test problems, two fixed head hydrothermal test systems
and three hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited
operating zones and thermal units with valve point loading. The results have been compared with
those obtained by other evolutionary algorithms reported in the literature. It has been seen from
the comparisons that the proposed opposition-based differential evolution method gives better

result.
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CHAPTER-7

Reactive Power Dispatch

7.1. Introduction

Reactive power dispatch (RPD) perks up power system economy and security. Reactive power
generation has no production cost but in general it has an effect on the production cost related
with active power transmission loss. RPD minimizes active power transmission loss and perks up
voltage profile and voltage stability by adjusting control variables such as generator voltages,
transformer tap settings, reactive power output of shunt VAR compensators etc. at the same time
satisfying several equality and inequality constraints. The Reactive Power Dispatch (RPD)
problem has a significant influence on secure and economic operation of power systems. It is one
of the most complex problems, as it requires the minimization of the real power losses in a
power system.

A variety of classical optimization techniques such as Newton method, linear programming,
quadratic programming and interior point method have been pertained to solve RPD problem.
RPD is a mixture of discrete and continuous variables with multiple local optima. So it is exigent

to acquire global optima by using classical optimization techniques.

Here, improved real coded genetic algorithm (IRCGA) is applied to solve different types of
reactive power dispatch problems. Genetic algorithm (GA) is a bunch of evolutionary algorithms
root of the basic human heritable chromosome operation. GA has the ability to ascertain the
global or close to the global optimal solutions. In this study, IRCGA has been suggested to
heighten convergence speed and solution quality. The developed IRCGA has been exploited for
acquiring the control variables settings such as generator terminal voltages, transformer taps and
reactive power output of shunt VAR compensators to acquire minimum active power
transmission loss, improved voltage profile and voltage stability. IRCGA has been tested on
IEEE 30-bus, 57-bus and 118-bus test systems and 15 benchmark functions. Test results have

been compared with those acquired from other stated evolutionary techniques.
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7.2. Problem Formulation
The goal of RPD is to minimize active power transmission loss and to perk up voltage profile
and stability at the same time fulfilling equality and inequality constraints. The objective

functions and constraints can be stated as:
7.2.1. Objective functions
7.2.1.1. Minimization of active power transmission loss

The objective function [95] can be stated as:

NTL

Minimize F, =P, = > ¢, [V’ +V? -2V, cos(5, -5, )] (7.1)
k=1

where P

loss

signifies active power transmission loss, NTL is the number of transmission lines,
g, 1s the conductance of branch k connected between ith bus and jth bus, V, and V, are the
magnitude voltage of ith and jth buses, J, and J,; are the phase angle of voltages of the ith

and jth buses.

7.2.1.2. Improvement of voltage profile

The objective is to minimize the voltage deviation of all load (PQ) buses from 1 p.u to perk up

power system security and service quality. The objective function [97] can be stated as:

NPQ

Minimize F, = ) |V, —1.0| (1.2)
i=1

where NPQ is the number of load buses.

7.2.1.3. Improvement of voltage stability

Voltage stability is the capacity of a power system to keep up suitable voltages at all bus bars
beneath normal operating condition and even after disturbances such as change in load demand
or system configuration. In recent times a number of major network collapses [103] have been

taken place due to voltage instability. Improvement of voltage stability has been acquired by
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minimizing voltage stability indicator i.e. L —index value at each bus which signifies voltage

collapse condition of that bus. L, of jth bus [104] can be stated as:

NPV \74

L,=- ZE,.,.V—' where j=12,....,NPQ (7.3)
i=l j

= _[Yl ]71 [Yz] (7.4)

where NPV is the number of PV bus and NPQ is the number of PQ bus. Y, and Y, are sub-

matrices. YBUS acquired after segregating the PQ and PV bus parameters can be stated as:

I Y)Y, |V,
|:PQ:|:|: 1 2:||: PQ:| (75)
I, Y.Y, ||V,
L —index is computed for all PQ buses. L; is zero or one depending upon no load condition or
voltage collapse condition of j th bus. The objective function [97] can be stated as:
Minimize F, = max(L,), where j=12,..,NPQ (7.6)

7.2.2. Constraints

7.2.2.1. Equality constraints

NB
P, —P, ~V.> V,[G, cos(6, —8,)+B, sin(5, - 5,)|=0, i=12,..NB (1.7)
j=1
NB
O — 0 ~V, Y V|G, sin(6, - 5,)-B, cos(s, - 5,)|=0, i=12,.,NB (7.8)
j=1

where NB is the number of buses, P, and O, are active and reactive power generation at the
ith bus, P, and Q,, are active and reactive power demands at the ith bus, G, and B are the

transfer conductance and susceptance between ith bus and j th bus respectively.
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7.2.2.2. Inequality constraints
7.2.2.2.1. Generator constraints

The generator voltage magnitudes and reactive power outputs curbed by their minimum and

maximum limits can be stated as:
Vo <y, <Vei=12,..,NG (7.9)
ngi“ <0, 2057, 1=12,.,NG (7.10)

7.2.2.2.2. Shunt VAR compensator constraints

Reactive power output of shunt VAR compensators curbed by their minimum and maximum

limits can be stated as:

oM <Q, <0, i=12,.,NC (7.11)

7.2.2.2.3. Transformer constraints

Transformer tap settings curbed by their physical deliberation can be stated as:

™ <T, <T™, i=12,.,NT (7.12)
7.2.2.2.4. Security constraints

The voltage magnitude of each PQ bus curbed by its minimum and maximum limits and

transmission line flow curbed by its maximum limit can be stated as:
vr <y, <V i=1.2,..,NPQ (7.13)
S, <8, i=12,..,NTL (7.14)

7.3. Overview of Improved Real Coded Genetic Algorithm

The overview of Improved Real Coded Genetic Algorithm (IRCGA) has been explained in
Chapter 3 of subsection 3.4.
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7.4. Simulation and Results of IRCGA and RCGA algorithm

The developed IRCGA and RCGA have been pertained to solve different types of RPD problems
and three different test systems with three different objective functions and 15 benchmark
functions have been tested to confirm its efficacy. Test results compared with those acquired
from other stated evolutionary techniques. The developed IRCGA and RCGA programs have
been executed in MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz).

7.4.1. IEEE 30-bus system

The line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [95]. The system has six generators at buses 1, 2, 5, 8, 11 and
13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27 and shunt
VAR compensators are connected at bus bars 10, 12, 15, 17, 20, 21, 23, 24 and 29. Total real

power demand is 2.834 p.u. at 100 MVA base. 50 runs are carried out for each case.
7.4.1.1. Minimization of active power transmission loss

The developed IRCGA and RCGA have been pertained to minimize active power transmission

loss. Here, maximum number of iterations, population size, crossover and mutation probabilities

have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA.

The optimal control variables acquired from the developed IRCGA have been summed up in
Table 7.1. The best, average and worst minimum active power transmission loss and average
CPU time among 50 runs acquired from developed IRCGA and RCGA are summarized in
Table 7.2. The minimum active power transmission loss acquired from PSO [101] and CLPSO
[101], modified teaching learning algorithm and double differential evolution (MTLA-DDE)
[102], novel teaching—learning-based optimization (NTLBO) [99] and quasi-oppositional
differential evolution (QODE) [97] are also shown in Table 7.2. The convergence characteristic
acquired from developed IRCGA and RCGA has been portrayed in Fig. 7.1. It has been observed
from Table 7.2, that the minimum active power transmission loss acquired from IRCGA is the

lowest among all other stated techniques.
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Table 7.1: Optimal control variables acquired from IRCGA of IEEE 30 bus system for

three different cases

L

max

Variable Active power loss | Voltage stability Voltage profile
minimization improvement improvement

v, 1.0500 1.0500 1.0500
v, 1.0337 1.0335 1.0341
V. 1.0055 1.0054 1.0062
v, 1.0229 1.0231 1.0237
Vi, 1.0911 1.0912 1.0910
Vi, 1.0398 1.0403 1.0393
T, 0.9865 0.9911 1.0114
T, ., 1.0150 1.0058 1.0203
T, ,, 0.9823 1.0248 1.0001
Ty o, 0.9805 0.9910 0.9961
Q.0 0.0171 0.0273 0.0049
0., 0.0436 0.0500 0.0000
Q..s 0.0056 0.0103 0.0000
0. 0.0442 0.0000 0.0158
0.1 0.0353 0.0346 0.0475
0., 0.0280 0.0483 0.0395
0., 0.0111 0.0407 0.0381
0., 0.0407 0.0428 0.0065
0.r0 0.0221 0.0500 0.0071
power loss (MW) 2.6699 9.0759 9.3400
voltage deviation 0.6902 0.9019 0.0612
0.0489 0.0225 0.0535
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Table 7.2: Comparison of active power transmission loss minimization of IEEE 30 bus
system

Techniques Best loss (MW) Average loss (MW) Worst loss (MW) CPU time (S)

IRCGA 2.6699 2.6708 2.6804 60.57
RCGA 3.2437 3.2459 3.2505 57.67
PSO [101] 4.6282 - - 130
CLPSO [101] 4.5615 - - 138
MTLA-DE[102] 4.8596 - - -
NTLBO [99] 4.7802 - - -
QODE [97] 2.6867 2.6879 2.6895 82.074

7.4.1.2. Improvement of voltage stability

The developed IRCGA and RCGA have been pertained to perk up voltage stability. Here,
maximum number of iterations, population size, crossover and mutation probabilities have been
chosen as 50, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal control
variables acquired from the developed IRCGA are summed up in Table 7.1. The best, average

and worst L value and average CPU time among 50 runs acquired from developed IRCGA

and RCGA are shown in Table 7.3. The convergence characteristic acquired from developed

IRCGA and RCGA has been portrayed in Fig. 7.2. It has been observed from Table 7.3 that L_,.

value acquired from the developed IRCGA is lower than RCGA.
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Table 7.3: Comparison of performance for L ., minimization of IEEE 30 bus system

Techniques Best L Average L_ Worst L CPU time (S)
IRCGA 0.0225 0.0236 0.0245 59.738
RCGA 0.0309 0.0310 0.0312 52.352

7.4.1.3. Improvement of voltage profile

The developed IRCGA and RCGA have been pertained to perk up voltage profile. Here,
maximum number of iterations, population size, crossover and mutation probabilities have been
chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal control

variables acquired from the developed IRCGA are summarized in Table 7.1. The best, average
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and worst voltage deviation and average CPU time among 50 runs acquired from developed
IRCGA and RCGA are summarized in Table 7.4. The convergence characteristic acquired from
developed IRCGA and RCGA has portrayed in Fig. 7.3. It has been observed from Table 7.4 that
voltage deviation acquired from the developed IRCGA is the lower than RCGA.

Table 7.4: Comparison of performance for voltage deviation of IEEE 30 bus system

Techniques Best voltage Average voltage Worst voltage CPU time
deviation (p.u.) deviation (p.u.) deviation (p.u.) S)
IRCGA 0.0612 0.0615 0.0620 63.10
RCGA 0.0627 0.0629 0.0633 58.06

0.4

IRCGA

0-35 — —RCGA |
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0.25

0.2

Voltage Deviation
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Fig. 7.3. Voltage deviation convergence characteristics of IEEE 30 bus system
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7.4.2. IEEE 57-bus system

The IEEE 57-bus system comprises 80 transmission lines, seven generators at buses 1, 2, 3, 6, 8,
9, 12 and 15 branches with tap setting transformers. The reactive power sources are connected at
buses 18, 25 and 53. The system line data, bus data, generator data and the minimum and
maximum limits for the control variables have been adapted from [130]. Total active power
demand is 12.508 p.u. and reactive power demand is 3.364 p.u. at 100 MVA base. Different
types of RPD problem for this system have been solved by using developed OGSO and GSO. 50

test runs are carried out for each case.

7.4.2.1. Minimization of active power transmission loss

The developed IRCGA and RCGA have been pertained to minimize active power transmission
loss. Here, maximum number of iterations, population size, crossover and mutation probabilities
have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal
control variables obtained from the developed IRCGA are shown in Table 7.5. The best, average
and worst minimum active power transmission loss and average CPU time among 50 runs of
solutions obtained from developed IRCGA and RCGA are summarized in Table 7.6. The
minimum active power transmission loss acquired from CLPSO [101] has been also shown in
Table 7.6. The convergence characteristic acquired from developed IRCGA and RCGA for
active power loss minimization is portrayed in Fig. 7.4. It has been observed from Table 7.6 that
the active power transmission loss acquired from IRCGA is the lowest among all other stated

techniques
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Table 7.5: Optimal value of control variables acquired from IRCGA of IEEE 57 bus system
for different cases

Control Active power loss  Improvement of Improvement of
variable minimization voltage stability voltage profile
Vi 1.0400 1.0400 1.0400
v, 1.0102 1.0104 1.0098
V, 0.9848 0.9846 0.9853
Vs 0.9810 0.9799 0.9802
Vi 1.0055 1.0051 1.0044
A 0.9802 0.9809 0.9806
Vi, 1.0152 1.0147 1.0149
T, s 1.0985 0.9803 0.9833
T, s 1.0821 0.9528 0.9508
T, 0 0.9220 0.9505 0.9510
T, 1.0173 1.0044 1.0045
T 0.9965 0.9779 0.9770
T, 1.0998 0.9137 0.9138
T s 1.0753 0.9466 0.9463
T 4s 0.9542 0.9268 0.9259
| 0.9375 0.9961 0.9958
T s 1.0162 1.0384 1.0377
Ti s 1.0997 0.9053 0.9055
T 1.0982 0.9241 0.9227
Ty0-56 0.9796 0.9874 0.9866
Ty s, 1.0243 1.0097 1.0094
Ty o5 1.0374 0.9374 0.9366
Q.15 0.0876 0.0062 0.0121
Q.5 0.0008 0.0440 0.0035
0.5 0.0073 0.0375 0.0427
power loss (MW) 15.6938 32.7760 31.7881
voltage deviation 3.7956 1.0811 0.6740
L. 0.2242 0.1001 0.1371
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Table 7.6: Comparison of performance for active power transmission loss minimization of
IEEE 57 bus system

Techniques Best loss (MW)  Average loss MW)  Worst loss (MW)  CPU time (S)

IRCGA 15.6938 15.7054 15.7235 81.94
RCGA 16.7277 16.8380 16.9055 75.47
CLPSO[101] 24.5152 - - 423

7.4.2.2 Improvement of voltage stability

The developed IRCGA and RCGA have been pertained to perk up voltage stability i.e.

minimization of L_ . Here, maximum number of iterations, population size, crossover and

mutation probabilities have been chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and
RCGA. The optimal values of control variables acquired from the developed IRCGA are

summarized in Table 7.5. The best, average and worst L . and average CPU time among 50

runs of solutions acquired from the developed IRCGA and RCGA are summarized in Table 7.7.
The convergence characteristic acquired from the developed IRCGA and RCGA for

minimization of L_, portrayed in Fig. 7.5. It has been observed from Table 7.7 that the value of

max

L . acquired from the developed IRCGA is lower than RCGA.

max

Table 7.7: Comparison of performance of L , minimization of IEEE 57 bus system

Techniques Best L, Average L Worst L, CPU time (S)
IRCGA 0.1001 0.1004 0.1008 84.01
RCGA 0.1032 0.1035 0.1040 76.95
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Fig. 7.5. L ,, Convergence characteristics of IEEE 57 bus system
7.4.2.3 Improvement of voltage profile

The developed IRCGA and RCGA have been pertained to perk up voltage profile. Here,
maximum number of iterations, population size, crossover and mutation probabilities have been
chosen as 100, 100, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal values of
control variables acquired from the developed IRCGA have been shown in Table 7.5. The best,
average and worst voltage deviation and average CPU time among 50 runs of solutions acquired
from developed IRCGA and RCGA are summarized in Table 7.8. The convergence characteristic
acquired from the developed IRCGA and RCGA for voltage deviation is portrayed in Fig. 7.6. It
has been observed from Table 7.8, that voltage deviation acquired from the developed IRCGA is
lower than RCGA.
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Table 7.8: Comparison of performance of voltage deviation of IEEE 57 bus system

Techniques Best voltage Average voltage Worst voltage CPU time
deviation (p.u.) deviation (p.u.) deviation (p.u.) (sec)
IRCGA 0.6740 0.6746 0.6750 83.05
RCGA 0.6775 0.6778 0.6784 77.98

7.4.3. IEEE 118-bus system

The standard IEEE 118-bus system comprises 186 transmission lines, 54 generator buses, 64

load buses, 9 branches with tap setting transformers and 14 reactive power sources. The system

line data, bus data, generator data and the minimum and maximum limits for the control

variables, the maximum and minimum limits of reactive power sources and transformer tap

settings have been adapted from [131]. The total system active power demand is 42.4200 p.u.
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and reactive power demand is 14.3800 p.u. at 100 MVA base. 50 runs are carried out by using
the developed OGSO and GSO for solving different types of RPD problems.

7.4.3.1. Minimization of active power transmission loss

The developed IRCGA and RCGA have been pertained to minimize active power transmission
loss. Here, maximum number of iterations, population size, crossover and mutation probabilities
have been chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal
values of control variables acquired from the developed IRCGA are summarized in Table 7.9.
The best, average and worst minimum active power transmission loss and average CPU time
among 50 runs of solutions acquired from the developed IRCGA and RCGA are summarized in
Table 7.10. The active power transmission loss acquired from comprehensive learning particle
swarm optimization (CLPSO) [101] and particle swarm optimization (PSO) [101], MTLA-DDE
[102] and QODE [97] have been shown in Table 7.10. The convergence characteristic acquired
from the developed IRCGA and RCGA for minimization of active power transmission loss is
portrayed in Fig. 7.7. It has been observed from Table 7.10 that active power transmission loss

acquired from IRCGA is the lowest among all other stated techniques.

152



Power loss (MW)

160

— IRCGA

150 — — RCGA

140

—
wW
o

100

90

-

80 | | | | | | | |
0 10 20 30 40 50 60 70 8 9 100

lteration

Fig. 7.7. Active power loss convergence characteristics of IEEE 118 bus system

153



Table 7.9: Optimal value of control variables acquired from IRCGA for IEEE 118 bus
system of active power transmission loss minimization

Variable IRCGA Variable IRCGA  Variable IRCGA Variable IRCGA
Vv, 0.9553 Vi 1.0253 Vio 0.9852 Ty 0.9347
v, 0.9981 V., 0.9551 Vi, 0.9805 Ts o 0.9353
Vv, 0.9910 Vi 0.9519 |7 0.9827 Ty o 0.9358
Ve 1.0153 Ve 0.9547 Vio 1.0104 Q. -0.0715
Vi 1.0500 Ve 0.9852 Vioo 0.9697 Q... 0.0438
Vi, 0.9908 V., 0.9955 Vi 0.9549 Q.+ -0.1016
Vis 0.9705 Ve, 0.9986 Vi 0.9406 Q. 0.0002
Vi 0.9728 Vs 1.0052 Vies 0.9443 Q.. 0.0622
Vi 0.9647 Ve, 1.0500 Vi 0.9522 Q.6 0.0000
V., 0.9922 Ve 1.0350 Vi 0.9597 Q.. 0.1271
V,s 1.0500 |7 0.9847 Vi, 0.9803 Q... 0.0285
Ve 1.0153 |7 0.9802 Vi 0.9751 Q.. 0.1358
v, 0.9681 V., 0.9914 Vi 0.9932 Q. 0.0378
V., 0.9675 V., 0.9637 Vi 1.0056 0.3 0.0979
Vi, 0.9683 Ve 0.9416 T, . 0.9816 Q.05 0.0628
V., 0.9798 |7 1.0062 Ty s 0.9603 Q.00 0.1890
Vi 0.9736 Vio 1.0403 Ty - 0.9615 Q.10 0.0007
Vi 0.9703 Vis 0.9837 Ty 5 0.9362 power loss 80.01

MW)
Vi, 0.9851 Ve, 1.0154 T, & 0.9596 Vol'ta.ge 2.1978
deviation
Vi 1.0053 Veo 1.0051 T, o 0.9849 L. 0.1125

Table 7.10: Comparison of performance of active power loss minimization of IEEE 118 bus
system

Techniques Best loss Average loss Worst loss CPU time (sec)
(MW) MW) MW)
IRCGA 80.01 80.98 82.27 102.49
RCGA 81.44 82.27 83.82 99.73
CLPSO [101] 130.96 - - 1472
PSO [101] 131.99 - - 1215
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7.4.3.2. Improvement of voltage stability
The developed IRCGA and RCGA have been pertained to perk up voltage stability i.e.

minimization of L_ . Here, maximum number of iterations, population size, crossover and

mutation probabilities have been chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and
RCGA. The optimal values of control variables among 50 runs of solutions acquired from the

developed IRCGA are shown in Table 7.11. The convergence characteristic acquired from the

developed IRCGA and RCGA for L, minimization is portrayed in Fig. 7.8.
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Fig. 7.8. L, ,, Convergence characteristics of IEEE 118 bus system
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Table 7.11: Optimal value of control variables acquired from IRCGA of IEEE 118 bus
system for voltage stability enhancement

Variable IRCGA Variable IRCGA  Variable IRCGA Variable IRCGA
v, 0.9546 Vi 1.0255 Vi, 0.9851 T o 0.9349
v, 0.9978 V., 0.9552 Vi, 0.9804 Ty co 0.9348
V. 0.9903 Ves 0.9527 Vi, 0.9993 Ty 0.9351
V, 1.0151 Ve 0.9549 Vio 1.0111 Q. -0.1503
Vi 1.0500 Ve 0.9855 Vioo 1.0173 Q.. 0.0000
Vi, 0.9904 V,, 0.9947 Vios 1.0069 Q.. -0.1434
Vi 0.9701 v, 0.9981 Vi 0.9822 0. 0.0 461
Vi 0.9727 V, 1.0056 Vios 0.9773 Q.. 0.0899
V, 0.9653 V,, 1.0503 Vi 0.9524 Q.. 0.0000
V. 0.9926 Ve 1.0350 Vi 0.9738 0.4 0.1425
Vs 1.0481 |7 0.9895 Vi 0.9806 Q... 0.0000
Ve 1.0155 V., 0.9810 Vi 0.9755 Q.- 0.0177
V,, 0.9687 V., 0.9913 Vis 0.9931 0.cr 0.0253
Vi, 0.9672 V., 0.9670 Vi 1.0047 Q. 0.1047
V., 0.9697 Vo 0.9487 T, 0.9801 Q.05 0.0000
V., 0.9873 |/ 1.0065 Ty o5 0.9601 Q.00 0.0000
Vie 0.9832 Vio 1.0403 Ty - 0.9603 Q.10 0.0000
Vi 0.9708 Vis 0.9865 Ty 5 0.9352 power loss 99.52

MW)
V., 0.9856 Vi, 1.0152 T 5 0.9599 vol.tage 1.6499
deviation
Vi 1.0057 Vi 1.0057 T, o 0.9847 L. 0.0561

7.4.3.3. Improvement of voltage profile

The developed IRCGA and RCGA have been pertained to perk up voltage profile. Here,
maximum number of iterations, population size, crossover and mutation probabilities have been
chosen as 100, 200, 0.9 and 0.2, respectively for IRCGA and RCGA. The optimal values of
control variables among 50 runs of solutions acquired from the developed IRCGA are shown in
Table 7.12. The convergence characteristic acquired from the developed IRCGA and RCGA for
voltage deviation is portrayed in Fig. 7.9.
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Table 7.12: Optimal value of control variables acquired from IRCGA of IEEE 118 bus
system for improvement of voltage profile

Variable  IRCGA Variable IRCGA Variable IRCGA Variable IRCGA
Vv, 0.9553 Vi 1.0251 Vo 0.9853 Ts o 0.9347
v, 0.9981 V., 0.9554 Vi, 0.9801 Tis oo 0.9344
V, 0.9905 Ve 0.9520 |7 1.0002 Ty o 0.9358
v, 1.0152 Vi, 0.9548 Vi 1.0105 Qs -0.2610
v, 1.0497 Vi, 0.9850 Vi 1.0173 Q. 0.0000
Vi, 0.9903 vy, 0.9952 Vi3 1.0048 Q.+, -0.0871
Vis 0.9705 Ve, 0.9981 Vis 0.9806 Q.. 0.0202
V. 0.9731 V., 1.0053 Vi 0.9749 0., 0.0849
Vi, 0.9654 V., 1.0500 Vi 0.9521 0. 0.0000
V, 0.9923 Vo 1.0350 Vi 0.9732 Q.. 0.0541
Vs 1.0495 Vao 0.9854 Vi, 0.9804 Q... 0.0000
Ve 1.0152 V., 0.9801 Vi 0.9755 Q.+ 0.1644
V,, 0.9684 V., 0.9912 Vi 0.9929 Q. 0.0052
V., 0.9673 V., 0.9628 Ve 1.0051 0. 0.1976
V., 0.9721 V., 0.9431 T, . 0.9815 0 o5 0.0000
V., 0.9860 |7 1.0064 Ty s 0.9602 Q.00 0.0000
Vi 0.9828 Veo 1.0403 Ty - 0.9610 Q.10 0.0317
Vi 0.9701 Vs 0.9889 Tys 5, 0.9359 power loss (MW) 100.2234
v, 0.9854 Ve, 1.0151 T, & 0.9596 voltage deviation 1.5644
V. 1.0052 Vi 1.0054 T, . 0.9847 L 0.0597

7.5. Benchmark Functions

The developed IRCGA and RCGA have been pertained for solving 15 benchmark functions [29].
These test functions are revealed in Table 7.13. All other data is taken from [29]. The population
size, crossover and mutation probabilities have been chosen as 100, 0.9 and 0.2 respectively for
IRCGA and RCGA.

To verify the performance of the proposed IRCGA technique, these 15 test functions are
repeatedly tested by using the IRCGA. Each test is repeated 100 times. Mean results of 15 test
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functions acquired from 100 runs are summarized in Table 7.14 and Table 7.15 summarizes best

optimum values and the variables corresponding to the best optimum value, number of iterations

and CPU time of all 15 benchmark functions in 100 runs acquired from IRCGA. These 15 test

functions are also tested by using RCGA technique. Table 7.16 shows best optimum values,

number of iterations and CPU time acquired from RCGA.

Table 7.15: Best Optimum value, the variables corresponding to the best optimum value,

number of iterations and CPU time acquired from IRCGA

Function Xt f(x*) Number CPU time
of (sec)
Iterations
fi [0,0,....... ,0] 1.6701e-24 200 25.5788
1 [0,0,....... ,0] 7.7935e-18 200 26.9347
fs [0,0,....... ,0] 5.8031e-17 300 37.7409
fa [0,0,....... ,0] 1.3135e-17 300 36.7092
fs [1,1,....... ] 2.6149¢-17 300 37.5872
fe [0,0,....... ,0] 8.9901e-18 300 40.8805
fs [0,0,....... ,0] 2.1067e-17 300 37.7943
fe [0,0,....... ,0] 6.3568e-18 300 39.9052
fo [4.8581, 5.4829] , [ -7.0835, -7.7083], | -186.7309 100 1.6325
[-0.8003, -7.7083]
fio [0.1928, 0.1909, 0.1231, 0.1358] 0.0003075 200 5.8807
fu [0.089842,  -0.712654], [-0.089842, | -1.0316285 50 0.6183
0.712655],
fi [ -3.1416, 12.272], [ 3.1416, 2.276] 0.397725 50 0.5996
fis [0, -1] 3 50 0.6074
fua [0.1146, 0.5556, 0.8525] -3.86 50 0.8807
fis [0.2017, 0.1468, 0.4767, 0.2753,|-3.32 50 1.6038

0.3117, 0.6573]
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Table 7.13: Test Functions

Mathematical representation Domain Optimum
oo [-100,100] 0
= in
30 [-10,10] 0
)= 2 |l + Hlx |
i [-100,100] 0
- z(zx,}
i=1 \_j=1
f.(x)=max{x 1 < [-100,100] 0
2 -30,30 0
fs(x): Z[loo(xm _xi2 )2 +(xi _1)2] [ ]
30 [-5.12,5.12] 0
Z[x ~10cos(27x,) +10]
i=1
1 30 1 30 [‘32732] O
f,(x)=—20exp| —0.2 —fo —exp —ZcosZﬂxi +20+e
3045 305
[-600,600] 0
(x) Ccos|
Js " 40004 Z H ( j
-10,10 -186.73
chos[z+1x1+l]chos[z+1x2+l] : ]
i=1
) i X, (bi +bl.x2) [-5.5] 0.0003075
x)= a, —————>
10 =" b +bx,+x,
-5,5 -1.0316285
fi(x) =4x] = 2.1x] +%x16 +x,x, —4x7 +4x; 5.5]
2 [-5,10] 0.398
fio(x)= (xz - 5—12x12 + ixl - 6} + 10[1 —LJCOS x, +10 ,[0,15]
4 V4 kY4
fis () =1+ (x, +x, + 1) (19 = 14x, +3x] —14x, +6x,x, +3x3)] | [-2.2] 3
X[30+(2x, —3x,)* x (18 —32x, +12x] +48x, —36x,x, +27x;)]
[ 3 ) | [0,1] -3.86
f14 Zc exp| — Zaij (xj —pij)
L A |
[ l [0,1] -3.32
f15 Zc exp —Zaij (x] — Py )2
L = i
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Table 7.14: Mean optimum value, number of iterations and mean CPU time acquired from
IRCGA

Function Mean Optimum Value | Number of Iterations | Mean CPU time
(sec)
f, 1.6703e-22 200 27.5631
f, 8.6875e-18 200 28.6573
f, 7.0153e-17 300 38.9348
f, 1.2035e-17 300 37.9738
f, 3.0151e-17 300 39.0571
f, 9.4572¢-18 300 41.3401
f, 22.324e-17 300 38.0479
fy 6.8957e-18 300 40.9752
f, -186.7307 100 1.5042
flo 0.00030763 200 5.9033
f, -1.031642 50 0.7047
f, 0.397733 50 0.6981
fis 3 50 0.6348
fla -3.8626 50 0.9015
fe -3.319 50 1.7748
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Table 7.16: Best optimum value, number of iterations and CPU time acquired from RCGA

Function RCGA
f(x* ) Number of | CPU time
Iterations (sec)

fi 6.0739¢-019 200 25.7905
f, 1.6857e-005 300 39.6358
fs 0.26796 500 62.7043
fa 0.05389 500 64.9351
s 71.7808 400 54.9532
fe 33.8247 300 40.8562
fi 1.5308e-005 300 37.7794
fe 4.9494 300 39.8093
fo -186.7308 100 1.3835
fio 0.0003077 200 5.8774
fu -1.0316273 50 0.6058
fi 0.397728 50 0.5495
fis 3 50 0.6015
fua -3.8621 50 0.8795
fis -3.3214 50 1.49752

7.6. Conclusion

Improved real coded genetic algorithm (IRCGA) has been developed and validated for solving
different types of RPD problems such as minimization of active power transmission loss and
improvement of voltage profile and stability and 15 benchmark functions. The developed
IRCGA is experimented on IEEE 30-bus, 57-bus and 118-bus test systems to reveal its efficacy.
It has been examined that test results acquired from the developed IRCGA is superior compared

to those acquired from other stated evolutionary techniques.
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CHAPTER-8

Optimal Power Flow

8.1. Introduction

Optimal power flow (OPF) is an important tool for power system operators both in power system
planning and operation for many years. The main purpose of an OPF is to determine the settings
of control variables for economic and secure operation of a power system. The OPF minimizes
the power system operating objective function while satisfying a set of equality and inequality
constraints. The equality constraints are power flow equations and inequality constraints are the
limits on control variables and functional operating constraints. The OPF is a highly non-linear,
non-convex, large scale static optimization problem. Optimal power flow (OPF) is a nonlinear
programming problem which optimizes a certain objective function while satisfying a set of
physical and operational constraints imposed by equipment limitations and security
requirements. Over the last three decades, several successful methods have been developed such
as, generalized reduced gradient method, successive linear programming, successive quadratic
programming, Newton method, P-Q decomposition, interior point method (IPM), genetic

algorithm (GA), evolutionary programming (EP).

In this Chapter, two different algorithms have been applied to solve Optimal Power Flow

Problems.

1. Heat transfer search (HTS) algorithm
2. Quasi-oppositional differential evolution (QODE) algorithm

The effectiveness of the above proposed algorithm is tested on IEEE 30-bus, 57-bus and 118-bus
test systems for four objective problems. These are (i) fuel cost minimization, (ii) emission
minimization, (iii) voltage deviation minimization and (iv) enhancement of voltage stability. It
has been seen that performance of the proposed HTS and QODE algorithm is better compared to

other evolutionary methods.
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8.2. Problem Formulation

The OPF problem optimizes the steady state performance of power system with respect to
specified objective function subject to various equality and inequality constraints. Here, four
different objectives i.e. (i) fuel cost minimization, (ii) emission minimization, (iii) reduction of
voltage deviation and (iv) improvement of voltage stability are considered. Four objective

functions and constraints are formulated as follows.
8.2.1. Objective Functions
8.2.1.1. Minimization of fuel cost

The fuel cost function of each thermal generating unit, considering the valve-point effects [22], is
expressed as the sum of a quadratic and a sinusoidal function. The total fuel cost in terms of

active power output can be expressed as

Gi

F1 = %[a[ +b,‘PG[ +CiP(2?i + ‘dl XSin{ei X (Pm'm _PGi )}“ (81)
i=1

where a,, b,, c, are the fuel cost coefficients of the ith generator; d; and e, are the coefficients
of the ith generator reflecting valve-point effect; P, is the active power generation of the ith

generator; P2" is the minimum active power generation limit of the ith generator. N, is the

number of committed generators.

The vector of dependent variables x may be represented as
x' = lPGx/ack ’VLI ""’VLNPQ > QGl 00y QGNPV > Sll seees S/NTL J (8.2)

where P, , denotes the slack bus power; V, is the PQ bus voltage; O, is the reactive power
output of the generator; §, is the transmission line flow; N, is the number of generator bus;

Ny, is the number of PQ bus; Ny, is the number of transmission lines.

The vector of control variables # may be represented as
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u' = lVGl"’VGNPV PorsPox,, - Qurss Oun, ’Tl"’TNTJ (8.3)

where N, and N are the number of shunt VAR compensators and the number of tap changing

transformers, V is the terminal voltage at the generator bus, Q

C

is the output of shunt VAR

compensator and T is the tap setting of the tap changing transformer.
8.2.1.2. Minimization of emission

The atmospheric pollutants such as sulfur oxides (SOy) and nitrogen oxides (NOy) caused by
thermal generating units can be modeled separately. However, for comparison purposes, the total
emission of these pollutants which is the sum of a quadratic and an exponential function [126]

can be expressed as

NG
Fz = z [ai + :BiPGi + %Péi +7]; exp(/liPGi )] (8.4)

i=1
where a,,f,,7,,1,,A, are the emission coefficients of the i th generator.

8.2.1.3. Minimization of voltage deviation

The objective is to minimize the voltage deviation of all load (PQ ) buses from 1 p.u. As a result

the power system operates more securely and service quality is also improved. The objective

function can be formulated as follows

Npo

Minimize F, =) |V, —1.0| (8.5)
i=1

where N, is the number of load buses in the power system.

8.2.1.4. Voltage stability enhancement

Voltage stability problem is the ability of a power system to maintain acceptable voltages at all
bus bars in the system under normal operating condition. A system experiences a state of voltage
instability when the system is being subjected to a disturbance, increase in load demand or

change in system configuration which causes a progressive and uncontrollable decrease in
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voltage. Weak system, system with long transmission lines and heavily loaded system are much
prone to voltage instability problem. In recent years, several major network collapses [103] have
taken place due to voltage instability. Enhancement of voltage stability of a system is an
important parameter of power system planning and operation. Voltage stability enhancement
can be done by minimizing the voltage stability indicator i.e. L —index value at each bus of a
power system. The L —index of a bus indicates the proximity of voltage collapse condition of

that bus. L —index L, of jth bus is defined as follows [104]

NPV V

Lj:1—ZFﬁV—’ where j=12,....,NPQ (8.6)
i=1 j

where F, =-[Y,]"[Y,] (8.7)

where N, is the number of PV bus and N, is the number of PQ bus. Y, and Y, are the sub-

matrices of the system YBUS obtained after segregating the PQ and PV bus bar parameters as
described in (8).

IPQ _ Y)Y, VPQ (8.8)
Loy Y.Y, Vey .

L —index is calculated for all the PQ buses. L; represents no load case and voltage collapse

case of bus j in the range of 0 and 1 respectively. Hence, a global system indicator L

describing the stability of a complete system is given as follows

L= max(Lj), where j=12,....,Ny, (8.9)

Lower value of L represents a more stable system. In order to improve voltage stability and to
move the system far from the voltage collapse point, the objective function can be defined as

follows
Minimize F, =L (8.10)

where L__ 1is the maximum value of L —index.
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8.2.2. Constraints

The objective functions are subjected to the equality constraints imposed by the physical laws
governing the transmission system as well as the inequality constraints imposed by the

equipment ratings given below:
8.2.2.1. Equality constraints

These constraints are load flow equations as described below

Npg
P, —P, —V, 3 V,[G, cos(6, - 5,)+B,sin(5, - 5,)|=0, i=12..N, (8.11)
j=1
Npg
O — 0y =V, > V|G, sin(6, - 8,)-B, cos(5, - 5,)|=0, i=12,..N, (8.12)
j=1

where N; is the number of buses, P;, and Q. are active and reactive power generation at the i
th bus, P, and Q,, are active and reactive power demand at the ith bus, G; and B, are the

transfer conductance and susceptance between ith bus and j th bus respectively.

8.2.2.2. Inequality constraints

8.2.2.2.1 Generator constraints: The generator voltage magnitudes and reactive power outputs
are constrained by design specifications. The lower and upper limits of generator voltage

magnitude and reactive power output are given below:

v <y, SVEi=1.2,..,N,, (8.13)
Pi" <P, <PM, i=12,.,N,, (8.14)
< QS0 i=12,..,N}, (8.15)

8.2.2.2.2 Shunt VAR compensator constraints: Reactive power output of shunt VAR

compensators must be restricted within their lower and upper limits as follows:
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0" <0, <™, i=12,...N, (8.16)

8.2.2.2.3 Transformer constraints: The upper and lower values for the transformer tap settings

are limited by physical considerations and these are given below:
™ <T, <T™, i=12,.,N; (8.17)

8.2.2.2.4 Security constraints: These include the constraints on voltage magnitudes at PQ
buses and transmission line loadings. Voltage of each PQ bus must be within its lower and

operating limits. Line flow through each transmission line must be within its capacity limits.

These are described as follows:

Vi<V, SV i=12,0,Ny, (8.18)
S, <8™,i=12,.,Np, (8.19)

8.3. Overview of Heat Transfer Search Algorithm

The overview of HTS algorithm has been explained in Chapter 4 of subsection 4.7

8.4. Simulation and Results of HTS algorithm

To verify the effectiveness and performance of the proposed HTS algorithm by solving four
objectives OPF problems, IEEE 30-bus, 57-bus and 118-bus test systems have been considered.
Programs have been written in MATLAB-7 language and executed on a 3.0 GHz Pentium-IV
personal computer. The results obtained from proposed HTS algorithm are compared with those

obtained from other evolutionary methods reported in the literature.
8.4.1. IEEE 30-bus system:

The line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [128]. The system has six generators at buses 1, 2, 5, 8, 11 and
13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27. In
addition, shunt VAR compensating devices are assumed to be connected at bus bars 10, 12, 15,

17, 20, 21, 23, 24 and 29. as in [129]. The total system active power demand is 2.834 p.u. at 100
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MVA base. In this study, 50 test runs are performed to solve the OPF problem for different

objective functions.
8.4.1.1. Minimization of fuel cost

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective
function. Here, the population size (N ), elite size (NE) and the maximum iteration number
(N, ...) have been selected as 50, 5 and 100 respectively for this test system. The optimal values
of control variables obtained from the proposed HTS algorithm are given in Table 8.1. The best,
average and worst fuel cost and average CPU time among 50 runs of solutions obtained from
proposed HTS algorithm are summarized in Table 8.2. The minimum fuel cost obtained from
biogeography based optimization (BBO) [118], differential evolution (DE) [117], particle swarm
optimization (PSO) [129], improved genetic algorithm (IGA) [113] and improved particle swarm
optimization (IPSO) [115] are also shown in Table 8.2. The convergence characteristic obtained
from proposed HTS algorithm for cost minimization is shown in Fig. 8.1. It is seen from

Table 8.2, that minimum cost obtained from HTS algorithm is the lowest among all other

methods.
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Table 8.1: Optimal value of control variables obtained from HTS for IEEE 30 bus system
for different cases

Control Fuel cost Emission Voltage stability Improvement
variable minimization  minimization enhancement of voltage
profile
P,, (MW) 190.31 115.68 113.20 158.60
P, MW) 47.90 72.43 62.13 52.56
P, (MW) 19.61 38.75 47.17 39.84
P, (MW) 11.25 32.96 35.00 14.51
P, (MW) 10.000 29.53 19.10 10.00
P, ,(MW) 12.000 0 12.00 14.50
Vi (pw) 1.0500 1.0500 1.0500 1.0500
V, (p.u) 1.0338 1.0334 1.0337 1.0339
V, (p.u) 1.0058 1.0053 1.0059 1.0060
V, (p.u.) 1.0230 1.0227 1.0233 1.0231
Vi, (p.u) 1.0913 1.0908 1.0914 1.0911
Vi, (p-u.) 1.0400 1.0404 1.0398 1.0399
T, 1.0155 0.9946 1.0069 1.0157
T, . 0.9629 0.9953 0.9820 1.0274
T, ,, 1.0129 0.9844 0.9913 1.0087
T, », 0.9581 1.0044 1.0095 0.9817
Q.,,(Mvar) 4.12 0.5914 5.0000 0.95
Q.,,(Mvar) 1.15 0.9519 5.0000 0.68
Q.,s(Mvar) 4.99 1.7289 2.4663 3.01
Q.,,(Mvar) 4.80 2.9142 0 0
Q.,, Mvar) 0.08 3.5631 5.0000 5.0000
Q.,, Mvar) 4.93 0.8467 5.0000 5.0000
Q.,, (Mvar) 0.38 1.4583 2.1800 2.1800
Q.,, Mvar) 1.06 2.8836 3.7715 3.7715
Q.,, Mvar) 4.85 2.5745 5.0000 5.0000
Fuel Cost ($/h) 793.79 859.26 866.98 821.07
Emission (ton/h) 0.4080 0.1961 0.2476 0.3201
Loss (MW) 7.67 5.94 5.20 6.61
Voltage deviation (p.u.) 0.5405 0.3535 0.8706 0.0615
Lnax 0.0489 0.0729 0.0202 0.0641
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Table 8.2: Comparison of performance for cost minimization of IEEE 30 bus system

Techniques Best cost Average cost Worst cost CPU time (S)
($/h) ($/h) ($/h)
HTS 793.79 793.84 793.91 18.25
BBO [118] 799.11 - - -
DE [117] 799.28 - - -
PSO [129] 800.41 - - -
IGA [113] 800.80 - - -
IPSO [115] 801.97 - - -
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Fig. 8.1. Cost convergence characteristics for IEEE 30 bus system

8.4.1.2. Minimization of emission

The proposed HTS algorithm has been applied for minimization of emission as the objective

function. Here, the population size (N, ), elite size (NE) and the maximum iteration number

(N

max
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of control variables obtained from the proposed HTS algorithm are given in Table 8.1. The best,
average and worst emission and average CPU time among 50 runs of solutions obtained from
proposed HTS algorithm are summarized in Table 8.3. The minimum emission obtained from
improved particle swarm optimization (IPSO) [115] is also shown in Table 8.3. The convergence
characteristic obtained from proposed HTS algorithm for emission minimization is shown in
Fig. 8.2. It is seen from Table 8.3, that minimum emission obtained from HTS algorithm is the

lowest among all other methods.
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Fig. 8.2. Emission convergence characteristics for IEEE 30 bus system

Table 8.3: Comparison of performance for emission minimization of IEEE 30 bus system

Techniques Best emission Average emission Worst emission CPU time (S)
(ton/h) (ton/h) (ton/h)
HTS 0.1961 0.1964 0.1969 20.57
IPSO [115] 0.2058 - - -
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8.4.1.3. Enhancement of voltage stability

In this case, the proposed HTS algorithm has been applied for enhancement of voltage stability

i.e. minimization of L_ . Here, the population size (N;), elite size (N E) and the maximum

iteration number (N__ ) have been selected as 50, 5 and 100 respectively for this test system.

The optimal values of control variables obtained from the proposed HTS algorithm are shown in

Table 1. The best, average and worst L and average CPU time among 50 runs of solutions

X

obtained from proposed HTS algorithm are summarized in Table 8.4. The L, obtained from

BBO [118] and improved particle swarm optimization (IPSO) [115] are also shown in Table 8.4.

The convergence characteristic obtained from proposed HTS algorithm for L, minimization is

X

shown in Fig. 8.3. It is seen from Table 8.4 that the value of L_, obtained from HTS algorithm

X

is the lowest among all other methods.
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Fig. 8.3. L, convergence characteristics for IEEE 30 bus system
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Table 8.4: Comparison of performance for L , minimization of IEEE 30 bus system

Techniques Best L, Average L Worst L CPU time
S)
HTS 0.0202 0.0205 0.0209 19.23
BBO [118] 0.0980 - - -
IPSO [115] 0.1037 - - -

8.4.1.4. Improvement of voltage profile

In this case, the proposed HTS algorithm applied for improvement of voltage profile. Here, the

population size (N, ), elite size (NE) and the maximum iteration number (N _ ) have been

selected as 50, 5 and 100 respectively for this test system. The optimal values of control
variables obtained from the proposed HTS algorithm are given in Table 8.1. The best, average
and worst voltage deviation and average CPU time among 50 runs of solutions obtained from
proposed HTS algorithm are summarized in Table 5. The voltage deviation obtained from BBO
[118] and faster evolutionary algorithm (FEA) [119] is also shown in Table 8.5. The
convergence characteristic obtained from proposed HTS algorithm for voltage deviation is

shown in Fig. 8.4. It is seen from Table 8.5, that voltage deviation obtained from HTS algorithm

is the lowest among all other methods.
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Fig. 8.4. Voltage deviation convergence characteristics for IEEE 30 bus system

Table 8.5: Comparison of performance for voltage deviation of IEEE 30 bus system

Techniques Best voltage Average voltage Worst voltage CPU time (S)
deviation deviation deviation
HTS 0.0615 0.0617 0.0621 26.99
BBO [118] 0.0951 - - -
FEA [119] 0.1052 - - -
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8.4.2. IEEE 57-bus system

The standard IEEE 57-bus system consists of 80 transmission lines, seven generators at buses 1,
2,3,6,8,9, 12 and 15 branches under load tap setting transformer branches. The reactive power
sources are considered at buses 18, 25 and 53. The system line data, bus data, generator data and
the minimum and maximum limits for the control variables have been adapted from [127] and
[130]. The upper and lower limits of reactive power sources and transformer tap settings are
taken from [128]. The total system active power demand is 12.508 p.u. and reactive power
demand is 3.364 p.u. at 100 MVA base. In this study, 50 test runs are performed to solve the

OPF problem for different objective functions.
8.4.2.1. Minimization of fuel cost

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective
function. Here, the population size (N, ), elite size (NE) and the maximum iteration number
(N, ...) have been selected as 50, 5 and 100 respectively for this test system. The optimal values
of control variables obtained from the proposed HTS are given in Table 8.6. The best, average
and worst fuel cost and average CPU time among 50 runs of solutions obtained from proposed
HTS algorithm are summarized in Table 8.7. The convergence characteristic obtained from

proposed HTS algorithm for minimum fuel cost solution is shown in Fig. 8.5.

Table 8.7: Comparison of performance for cost minimization of IEEE 57 bus system

Technique Best cost Average cost ($/h) Worst cost CPU time (S)
($/h) ($/h)
HTS 7640.00 7642.03 7644.83 37.87
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Fig. 8.5. Cost convergence characteristics for IEEE 57 bus system
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Table 8.6: Optimal value of control variables obtained from HTS for IEEE 57 bus system

for different cases

Control variable Fuel cost Emission Voltage Stability Improvement of
minimization minimization enhancement voltage profile
P, (MW) 592.76 304.02 522.37 589.66
P.,(MW) 0 0 0 0
P..(MW) 97.62 172.65 35.73 16.35
P..(MW) 0 0 0 0
P..(MW) 136.25 341.89 523.20 482.32
P.,(MW) 0 0 0 0
P.,,(MW) 460.61 461.89 201.67 196.53
V, (p.u.) 1.0400 1.0400 1.0400 1.0400
V, (p.u.) 1.0100 1.0104 1.0103 1.0107
V, (p.u.) 0.9850 0.9855 0.9853 0.9856
Ve (p.u.) 0.9801 0.9806 0.9801 0.9804
Vs (p-u.) 1.0052 1.0057 1.0049 1.0055
V, (p.u.) 0.9800 0.9804 0.9805 0.9806
Vi, (p.u.) 1.0153 1.0148 1.0151 1.0153
T, s 0.9700 1.0987 0.9801 0.9831
T, s 0.9780 1.0820 0.9526 0.9510
T, 5 1.0430 0.9221 0.9501 0.9507
T, 1.0430 1.0171 1.0045 1.0043
T, 0.9670 0.9960 0.9777 0.9769
T, 4 0.9750 1.0999 0.9138 0.9139
T . 0.9550 1.0750 0.9465 0.9461
Ts .s 0.9550 0.9541 0.9269 0.9258
0.9000 0.9370 0.9962 0.9957
T, 0.9300 1.0160 1.0385 1.0379
T 4 0.8950 1.0998 0.9052 0.9053
g 0.9580 1.0980 0.9240 0.9229
T, 56 0.9580 0.9799 0.9875 0.9868
Ty 5, 0.9800 1.0246 1.0098 1.0095
T, s 0.9400 1.0371 0.9373 0.9367
0.5 (Mvar) 4.0117 0.2339 3.5236 5.7907
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0.,s (Mvar) 4.0184 2.8458 4.0004 0.6058

0.5, (Mvar) 1.7637 1.2245 3.1840 5.8095
Cost ($/h) 7640.00 13181.08 20833.36 18556.16
Emission (ton/h) 2.8086 1.7003 2.8134 3.0945
power loss (MW) 36.4534 29.6432 32.1714 34.0597
Voltage deviation 1.1486 5.3719 1.1228 0.6725
(p-u.)
L 0.1129 0.4161 0.0987 0.1362

max

8.4.2.2. Minimization of emission

The proposed HTS algorithm has been applied for minimization of emission as the objective
function. Here, the population size (N, ), elite size (NE) and the maximum iteration number
(N, ...) have been selected as 50, 5 and 100 respectively for this test system. The optimal values
of control variables obtained from the proposed HTS algorithm are given in Table 8.6. The best,
average and worst emission and average CPU time among 50 runs of solutions obtained from
proposed HTS are summarized in Table 8.8. The convergence characteristic obtained from

proposed HTS for emission minimization is shown in Fig. 8.6.

Table 8.8: Comparison of performance for emission minimization of IEEE 57 bus system

Technique Best emission Average emission Worst emission CPU time
(ton/h) (ton/h) (ton/h) S)
HTS 1.7003 1.7006 1.7011 38.01
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Fig. 8.6. Emission convergence characteristics for IEEE 57 bus system

8.4.2.3. Enhancement of voltage stability

In this case, the proposed HTS algorithm has been applied for enhancement of voltage stability
i.e. minimization of L_ . Here, the population size (N;), elite size (N E) and the maximum
iteration number (N __ ) have been selected as 50, 5 and 100 respectively for this test system.

The optimal values of control variables obtained from the proposed HTS algorithm are given in

Table 8.6. The best, average and worst L, and average CPU time among 50 runs of solutions

obtained from proposed HTS algorithm are summarized in Table 8.9. The convergence

characteristic obtained from proposed HTS algorithm for L, minimization is shown in Fig. 8.7.
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Fig. 8.7. L, convergence characteristics for IEEE 57 bus system

Table 8.9: Comparison of performance for L, minimization of IEEE 57 bus system

Technique Best L, Average L Worst L, CPU time (S)
HTS 0.0987 0.0989 0.0992 33.6524

8.4.2.4. Improvement of voltage profile

In this case, the proposed HTS algorithm has been applied for improvement of voltage profile.

Here, the population size (N;), elite size (N E) and the maximum iteration number (N __ ) have

been selected as 50, 5 and 100 respectively for this test system. The optimal values of control
variables obtained from the proposed HTS algorithm are given in Table 8.6. The best, average

and worst voltage deviation and average CPU time among 50 runs of solutions obtained from
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proposed HTS algorithm are summarized in Table 8.10. The convergence characteristic obtained

from proposed HTS for voltage deviation is shown in Fig. 8.8.

Table 8.10: Comparison of performance for voltage deviation of IEEE 57 bus system

Technique Best voltage =~ Average voltage Worst voltage CPU time
deviation deviation deviation S)
HTS 0.6725 0.6728 0.6732 38.93
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Fig. 8.8. Voltage deviation convergence characteristics for IEEE 57 bus system

8.4.3. IEEE 118-bus system

The standard IEEE 118-bus system consists of 186 transmission lines, 54 generator buses, 64
load buses, 9 branches under load tap setting transformer and 14 reactive power sources. The
system line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [101] and [131]. The upper and lower limits of reactive power

sources and transformer tap settings are taken from [101]. The generator data has been taken
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from [132]. The total system active power demand is 42.4200 p.u. and reactive power demand is
14.3800 p.u. at 100 MV A base. In this study, 50 test runs are performed to solve different OPF
problems by using HTS algorithm. Here, Due to brevity, only comparison tables obtained from

different objective functions are given here.

8.4.3.1. Minimization of fuel cost

The proposed HTS algorithm has been applied for minimization of fuel cost as the objective
function. Here, the population size (N ), elite size (NE) and the maximum iteration number

(N, .. ) have been selected as 100, 10, and 100 respectively for this test system. The optimal

values of control variables obtained from the proposed HTS algorithm are given in Table 8.11.
The best, average and worst fuel cost and average CPU time among 50 runs of solutions obtained
from proposed HTS algorithm are summarized in Table 8.12. The convergence characteristic

obtained from proposed HTS algorithm for minimum fuel cost solution is shown in Fig. 8.9.

7.2

7.15¢ -

7.05+ B

Cost ($/h)
~

6.95 i

6.9+ i

6.85 i

6_ 8 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

lteration

Fig. 8.9. Cost convergence characteristics for IEEE 118 bus system
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Table 8.11: Optimal value of control variables obtained from HTS for IEEE 118 bus

system for cost minimization

Variable Variable Variable Variable Variable

P, Mw) 29.2109 P W) 381.8617 v, 0.9903 V., 0.9854 T, ., 0.9597

P, w) 27.7608 P, W) 332.5110 v, 1.0151 V., 0.9801 T, ., 0.9846

PG6 (MW) 12.7737 PG70 MW) 0 VlO 1.0500 V73 0.9909 T65—66 0.9351

P, w) 14.1875 P.., W) 11.2969 v, 0.9904 V., 0.9663 T, ., 0.9347

Pow) RO p gy, 15719 v, 02y 09430 T, 0.9356

Pow 9T Py 0 v, o3y oo 0. cvwvan 36.6145
P, Mw) 113817 P W) 0 Vi 0.9648 Vi, 1.0403 0., van 13.5245
P, Mw) 59.5803 P.., W) 55.6755 V., 0.9921 Vi 0.9565 0. Vv 127591
P, W) 0 P, W) 232.4882 Vs 1.0500 Ve, 1.0151 0., Mvan 2.8039

P, w) 28.1248 P ouw) 0 V. 1.0151 Vi 1.0048 0., Vv 05621

PGZS (MW) 198.2669 P(;37 (MW) 163.8951 V27 0.9683 V90 0.9853 QC46 (Mvar) -17.1541
P omw PN Py 20009y 09612y 000 g 3.9863

P, w) 12.7930 P, Mw) 11.1843 V., 0.9678 V,, 0.9837 0., v 11.1285
P, Mw) 20.0211 P, w) 24.6972 V., 0.9815 Vi 1.0102 0., (Mvan 2.4003

P Mw) ‘ Pior MW) ° Vi 09754 Vioo 09710 O 5o Mvar) 379876
P, 01w, 0 Pw) TOSH0 0900y 09SST g 9.1203

PiseMw) 0 P, 0 (MW) 180.4911 v, 0.9853 Vi 0.9411 0.1 (Mvan 4.0877

P, W) 12.1452 P\ MW) 0 Vi 1.0049 Vi 0.9443 0.y Vv 57172
P,,, W) 21.9355 P, MW) 0 Vi 1.0247 Vo 09521 0.1 Mvan) 18.2214
P,  mmw) 494935 P s Mw) 0 v, %oy o 0958 Cost ($/h) 68110.35
P, W) 70.0794 P, W) 16.8557 V.. 09517 Vi, 09802 g cion(lbmy 4059932
P..,ow) 241.5004 P, o MW) 28.6788 V., 0.9545 Vi, 09753  power loss(MW)  104.8402
Pcss MW) 0 1:)01 | (MW) 81.7905 Ve, 0.9851 V., 0.9931 devzggﬁg(; " 1.8182

P Mw) 0 P, ,MW) 59.7296 V., 0.9953 Ve 1.0054 L 0.1046

Pw) 1205 P gy, STBIS oy 09975 09816

P, w) 140.2808 P, MW) 25.0041 V., 1.0051 T, .. 0.9605

P, mw) Ot V, (o 0.9563 v, ~leswo o 0o

P, Mw) 381.8979 V, 0.9981 Vi, 1.0350 T, ., 0.9367
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Table 8.12: Comparison of performance for cost minimization of IEEE 118 bus system

Technique Best cost Average cost Worst cost CPU time (S)
($/h) ($/h) ($/h)
HTS 68110.35 68111.84 68114.16 288.6257

8.4.3.2. Minimization of emission

The proposed HTS algorithm has been applied for minimization of emission as the objective
function. Here, the population size (N ), elite size (NE) and the maximum iteration number
(N,..) have been selected as 100, 10 and 100 respectively for this test system. The optimal
values of control variables obtained from the proposed HTS are given in Table 8.13. The best,
average and worst emission and average CPU time among 50 runs of solutions obtained from
proposed HTS are summarized in Table 8.14. The convergence characteristic obtained from

proposed HTS algorithm for minimum emission solution is shown in Fig. 8.10.
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Table 8.13: Optimal value of control variables obtained from HTS for IEEE 118 bus

system for emission minimization

Variable Variable Variable Variable Variable

P,, (MW) SUT43 P vw)  388257 y o 09905y 09857 T 0.9596
P, MW) 258042 P qawy 430101y 10147y 09808 T 0.9855
P, MW) 75464 P vqwy O v, 10500 09915 T 0.9357
P, MW) 19135 p_ mw) 283154y 0996y 09667 T 0.9348
P, (MW) 4019364 P iw) 172548y 09698 09433 T 0.9356
P, (MW) 1215883 p_ mw) O v, 0975y 10072 0 (Mvar) 17.7742
P, (MW) 25734 P aaw) O v, 09647y LOOL 0 vvan 1362
P, (MW) 825876 P aaw) O V,, 09929y 09568 () (Mvan 52974
P, MW) 0 P, Mw) 1750243y 10500y 1OISS 0 Mvar) 69876
P,,, (MW) 203710 p_ mw) O v, 10147y 10054 O Mvan 58355
P, (MW) 1059800 P vwy 2275886y 09686y 09857 () (Mvar 354268
P, (MW) 3031171 P vw)y 2974263y 09678y 09806 () (Mvar 100909
P,,, MW) 85042 p_mw) 148003y 09677y 09838 O (Myany 50010
P, (MW) 138602 p_ vqw) 436077y 09816y 10107 ) Mvar 156264
Py, Mw) 0 P,mw) © V, 0955 vy . 0973 0O Myay 931279
P,., (MW) 0 P,ow) 1517637y o 09707y 0957 O Mva 67833
P, (MW) 0 P, Mw) 2873936 y - 09853y 09414 0 (Myar) 130101
P40 MW) 162087 P G103 (MW) 0 Vis 10053 Vios 09445 Q,.1¢7 Mvar) 45025
P, MW) 150353 p_ aw) O v, 10254y 09529 () \yay 206641
P, (MW) 996463 p_ mw) O v, 095% 'y o 09583 Cost(Sh) 70467.71
P, (MW) 2246444 P vqwy 101385y 09517y 0.9805  Emission (Ib 2986965
P, (MW 2076887 P vqw) 433030y 09545y 0.9752 %Ev\v;; loss 162.2439
P.ssoMw) 0 P, w) 74258y 09888y o 09937 zfeovllt:g(em o 2.0173
P, MW) 0 P, ,w) 805707y o 09956y o 10055 0.1075
PisoMW) 72.7896 Py 1MW) 94.4714 Ve, 0.9977 T« 0.9819

P, MwW) 1919093 p_ w) 307140y 1L00S3 T o 09625

P, MW) 67.9450 V, (pu) 0.9564 vV, 1.0500 T, 1) 0.9607

P W) 3893891 Y (pu) 09987y o 10350 T 09369
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Table 8.14: Comparison of performance for emission minimization of IEEE 118 bus system

Technique Best emission Average emission ~ Worst emission ( CPU time
(Ib/h) (Ib/h) b /h) (S)

HTS 298.6965 300.4253 302.0186 287.8752
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380 - -

360 |- R
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340} .
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Fig. 8.10. Emission convergence characteristics for IEEE 118 bus system
8.4.3.3. Enhancement of voltage stability

In this case, the proposed HTS algorithm has been applied for enhancement of voltage stability

1.e. minimization of L_ . Here, the population size (N,), elite size (NE) and the maximum

iteration number (N ) have been selected as 100, 10 and 100 respectively for this test system.

The optimal values of control variables obtained from the proposed HTS are given in Table 8.15.

The best, average and worst L, and average CPU time among 50 runs of solutions obtained

X

from proposed HTS are summarized in Table 8.16. The convergence characteristic obtained from
proposed HTS algorithm for L, minimization is shown in Fig. 8.11.
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Table 8.15: Optimal value of control variables obtained from HTS for IEEE 118 bus
system for voltage stability enhancement

Variable Variable Variable Variable Variable

PG1 (MW) 15.1000 PG% (MW) 382.4401 V6 0.9903 V70 0.9856 T63—59 0.9596

PG4 (MW) 26.7207 PG()9 (MW) 362.3144 VS 1.0151 V72 0.9805 T64—6l 0.9848

PG6 (MW) 14.9317 PG70 (MW) 70.9164 V10 1.0500 V73 0.9911 T65—66 0.9345

PG8 (MW) 20.3994 PG72 (MW) 12.4464 Vlz 0.9904 V74 0.9667 T68—69 0.9343

PGIO (MW) 404.2671 PG73 (MW) 9.3132 V15 0.9693 V76 0.9426 T81—82 0.9366

PG12 (MW) 262.3616 PG74 (MW) 19.9994 V18 0.9736 V77 1.0071 ch (Mvar) -24.0515

PG15 (MW) 27.5909 PG76 (MW) 30.7464 Vl 0 0.9648 V80 1.0403 Qc34 (Mvar) 0

PG18 (MW) 91.2769 PG77 (MW) 84.0866 V.. 0.9925 V85 0.9569 QL37 (Mvar) -17.9176

PG19 (MW) 14.3799 PGSO (MW) 293.6501 V25 1.0500 V87 1.0152 Qc44 (Mvar) 0.0290

PG24 (MW) 17.4469 PG85 (MW) 12.2924 V% 1.0146 V89 1.0054 Qc45 (Mvar) 5.4166

PGZS (MW) 148.8825 PG87 (MW) 132.3614 V27 0.9682 V9() 0.9853 QL% (Mvar) -27.6219

PG26 (MW) 303.1802 P089 (MW) 299.9668 V31 0.9678 V91 0.9806 Qc48 (Mvar) 11.3379

PG27 (MW) 15.0559 PG90 (MW) 16.7316 V32 0.9676 ng 0.9833 Qc74 (Mvar) 0

PG31 (MW) 27.2856 PG91 (MW) 44.3270 V34 0.9814 V99 1.0106 Qc79 (Mvar) 2.2228

PG32 (MW) 90.4919 PG92 (MW) 196.5727 V36 0.9755 Vloo 0.9712 chz (Mvar) 110.8863

PG34 (MW) 25.5560 PG99 (MW) 133.9130 V40 0.9702 V103 0.9558 Qc83 (Mvar) 0.0138

PG% (MW) 45.1288 PGlOO (MW) 267.0140 v, 0.9853 V104 0.9416 chOS (Mvar) 0

PG40 (MW) 9.0982 P0103 (MW) 9.8975 V46 1.0057 V105 0.9444 Qc107 (Mvar) -14.6412

P, Mw) 199417 P mw) 52205 y 10255y 0.9526 Q. Mvan) 5472

PG46 (MW) 57.8948 PGIOS (MW) 87.4796 V54 0.9559 Vno 0.9587 Cost ($/h) 72213.61

PG49 (MW) 90.3132 PGl07 17.3746 V55 0.9514 Vi, 0.9803 Emission 398.4442
(MW) (b m)

PG54 (MW) 61.5296 PGl 1o (MW) 43.0175 VSé 0.9545 V1 » 0.9754 Ei)/[vvvs; loss ;82.460

PGSS (MW) 56.8374 PGl“ (MW) 58.5205 V59 0.9857 V113 0.9932 Zle(illitzgzr; 1.7401

(p-w)

PG56 (MW) 37.4630 PGI 1 (MW) 79.7727 V61 0.9956 Vl 6 é.OOS Lmax 0.0506

PG59 (MW) 167.2125 PGl 13 (MW) 55.7530 V62 0.9975 T8—5 0.9806

PG61 (MW) 73.5977 PGl 16 (MW) 30.6073 V65 1.0053 Tze—zs 0.9614

PG()2 (MW) 69.7190 V, (pa) 0.9567 V66 1.0500 T30717 0.9608

PG65 (MW) 394.8187 V, (pu) 0.9984 V69 1.0350 T38—37 0.9367
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Table 8.16: Comparison of performance for L, minimization of IEEE 118 bus system

Technique Best L. Average L Worst L CPU time (S)

HTS 0.0506 0.0507 0.0510 288.8312

0.3

0.25 i

0.2F i

Lmax

0.15+ -

0.1r i

0. 05 | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

lteration

Fig. 8.11. L, convergence characteristics for IEEE 118 bus system

8.4.3.4. Improvement of voltage profile

In this case, the proposed HTS algorithm has been applied for improvement of voltage profile.

Here, the population size (N ), elite size (NE) and the maximum iteration number (N . ) have

been selected as 100, 10 and 100 respectively for this test system. The optimal values of control
variables obtained from the proposed HTS algorithm are given in Table 8.17. The best, average

and worst voltage deviation and average CPU time among 50 runs of solutions obtained from
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proposed HTS algorithm are summarized in Table 8.18. The convergence characteristic obtained

from proposed HTS algorithm for voltage deviation is shown in Fig. 8.12.

Table 8.17: Optimal value of control variables obtained from HTS for IEEE 118 bus

system for improvement of voltage profile

Variable Variable Variable Variable Variable
248354 386.8658 0.9908 0.9855 0.9593
Pg, amw) Pogs MW) Vi Vao T3 50
27.3774 431.2400 1.0155 0.9803 0.9845
PpsMw) Poso MW) Vs Vo Toi 61
7.4553 47.0490 1.0500 0.9911 0.9348
Pos W) Poro MW) Vo Vs Tos 6
23.1324 27.1003 0.9912 0.9664 0.9346
Py Mw) Pg7, vw) Via Vi Tis 60
406.4214 14.1555 0.9697 0.9435 0.9357
PoioMw) Pgrsmw) Vis Vi T
188.1378 19.9808 0.9734 1.0077 2102461
P, Mw) Pg7y vw) Vig Vi Qs
(Mvar)
14.8522 69.3648 0.9647 1.0402 0
PoisMw) P76 MW) Vio Vso Q.
(Mvar)
36.5888 87.9338 0.9924 0.9568 -15.0288
Poig Mw) Pe77 Mw) Vi Ves Q.3
(Mvar)
19.6471 220.4790 1.0500 1.0154 7.9582
PoioMw) PigoMw) Vs Vs Q.44
(Mvar)
6.0058 26.1360 1.0147 1.0047 1.7116
Pgoy Mw) PigsMw) |2 Vio Q.45
(Mvar)
240.1806 53.1162 0.9685 0.9855 -33.5173
Pgos Mw) Pog; Mw) Vi Voo Q.46
(Mvar)
301.7679 173.7364 0.9678 0.9806 7.6346
P MW) PigoMw) Vi Vo, Q.4
(Mvar)
12.2519 17.8891 0.9676 0.9838 0
Pgyy Mw) PoooMw) Vi Vo, Q.14
(Mvar)
22.1487 22.0689 0.9818 1.0106 19.3213
Pos (Mw) PoorMw) Vi Voo Q.79
(Mvar)
56.7973 242.4305 0.9754 0.9717 33.4421
PosMw) Poo(Mw) Vi Vio O
(Mvar)
14.9005 172.2366 0.9705 0.9556 13.4003
PiaaMw) PrgoMw) Vio Vies O
(Mvar)
44.6387 111.5876 0.9853 0.9413 0
PssMW) PeiooMwW) Vi Vi Q. 105
(Mvar)
21.6357 11.6736 1.0055 0.9452 -12.4021
Peso Mw) PoiosMw) Vis Vios Q. 107
(Mvar)
15.6677 77.6202 1.0251 0.9525 7.4332
Ppy Mw) P o Mw) Vio Vier Q.10
(Mvar)
80.0593 6 0.1407 0.9558 0.9587 Cost($/h) 70904.50
Py MW) PgiosMw) Vi Vi
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Poag MW)
PisaMW)

Pgss (MW)

Piiss MW)
PisoMW)
Poe1 MW)
Pger MW)

Pos MW)

179.8429

50.4990

32.2701

39.2898

92.3657

142.8751

81.2074

395.0630

Po1o7 MW)
Pe110MW)

Po Mw)

Po11,MW)

Po11:MW)

o116 (MW)
Vi (pw)

V4 (p.u.)

12.8669

40.6254

68.1610

78.7837

43.0954

31.0410

0.9566

0.9984

0.9517

0.9548

0.9855

0.9951

0.9973

1.0054

1.0500

1.0350

Vl . 0.9805  Emission (b 451.7620
/h)
Vv 0.9755 powerloss 110.3291
112 (MW)
V. 0.9934 Voltage 1.5955
13 deviation
(p-u)
1.0053 0.0894
Vl 16 Lmax
0.9805
TS*S
0.9616
T26725

0.9625
T30717

0.9369
T38—37

Table 8.18: Comparison of performance for voltage deviation of IEEE 118 bus system

Technique

Best voltage
deviation

Average voltage

deviation

Worst voltage CPU time
deviation S)

HTS

1.5955

1.5957

1.5961 287.3169

2.8

2.6F

2.2¢

Voltage Deviation

1.6+

1.4
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50
lteration
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100

Fig. 8.12. Voltage deviation convergence characteristics for IEEE 118 bus system
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8.5. Overview of Quasi-oppositional Differential Evolution algorithm

Quasi-opposition-based learning was introduced by Rahnamayan et al [106] to improve
candidate solution by considering current population as well as its quasi-opposite population at

the same time.

The process can be improved by starting with a closer i.e. fitter solution by simultaneously
checking the quasi-opposite solution. By doing this, the fitter one (guess or quasi-opposite guess)
may be chosen as an initial solution. The process starts with the closer of the two guesses. The
same approach can be applied not only to the initial solution but also continuously to each
solution in the current population. It is proved that a quasi-opposite number is usually closer than

an opposite number to the solution. [106]
8.5.1. Definition of opposite number and quasi-opposite number

If x be a real number between [lb,ub], its opposite number (xo) and its quasi-opposite number

(x qo) are defined as

x,=lb+Ilu-x (8.20)
and
X, = randK b er u j (b + Iu - x)} (8.21)

Similarly, this definition can be extended to higher dimensions [105] as stated in the next sub-

section.
8.5.2. Definition of opposite point and quasi-opposite point

Let X =(x,,x,,....,x,) be a point in 7- dimensional space where x, € [Ib,,ub,| and i€ 1,2,...n.

The opposite point X, = (xol,xgz, ..... ,xm) is completely defined by its components as in (8.22)

x,; =Ib, +ub, —x, (8.22)
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The quasi-opposite point X, = (x go13 X o2 serene ,xq{m) is completely defined by its components as
in (8.23)

b, + lu,
X, :mnd[( = al j,(lbi +lu, - x, )} (8.23)

By employing the definition of quasi-opposite point, the quasi-opposition-based optimization is

defined in the following sub-section.
8.5.3. Quasi-Opposition based optimization

Let X = (xl,xz,....,xn) be a point in n- dimensional space i.e. a candidate solution. Assume
f= (0) is a fitness function which is used to measure the candidate’s fitness. According to the

definition of the quasi-opposite point, X , :(x X, g yeneee , X ) is the quasi-opposite of

gol? ¥ qo2°

X = ()c1 3 Xy ey X, ) Now, if f (X o ) < f(X) (for a minimization problem), then point X can be

replaced with X _ ; otherwise, the process is continued with X . Hence, the point and its quasi-

qo?

opposite point are evaluated simultaneously in order to continue with the fitter one.
8.5.4. Quasi-oppositional Differential evolution

Here, the concept of the quasi-opposition-based learning [106] is incorporated in differential
evolution. The original DE is chosen as a parent algorithm and the quasi-opposition-based ideas

are embedded in DE. Fig. 2.3 shows the flowchart of QODE algorithm.
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Specify the DE parameters
v

Set Iter.=1
v

Generate and evaluate initial populations and its quasi-opposite members

v

If cost function value of quasi-opposite member is less than the cost function value of
initial population replace the initial population with its quasi-opposite member

v

\ 4

Set target vector
v

Generate mutant vector by mutation operation

v

Generate trial vector by crossover operation
v

Evaluate cost of trial

v

The best vector survives by selection operation

v
Generate and evaluate the quasi-opposite members of the best vector
v
If cost function value of quasi-opposite member is less than the cost function
value of the best vector replace the best vector with its quasi-opposite

Iter. < Max.
Iter.

Iter.=Iter.+1

Stop

Fig. 8.13. Flowchart of QODE
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8.6. Simulation and Results of QODE and DE algorithm

To verify the effectiveness and performance of the proposed QODE and DE for solving four
objectives OPF problems, IEEE 30-bus, 57-bus and 118-bus test systems have been considered.
Programs have been written in MATLAB-7 language and executed on a 3.0 GHz Pentium-IV
personal computer. The results obtained from proposed QODE and DE method are compared

with those obtained from other evolutionary methods reported in the literature.
8.6.1. IEEE 30-bus system

The line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [122]. The system has six generators at buses 1, 2, 5, 8, 11 and
13 and four transformers with off nominal tap ratio at lines 6-9, 6-10, 4-12, and 28-27. In
addition, shunt VAR compensating devices are assumed to be connected at bus bars 10, 12, 15,
17, 20, 21, 23, 24 and 29. as in [129]. The generator characteristics are given in Table A-23 in
the appendix. The total system active power demand is 2.834 p.u. at 100 MVA base. In this
study, 50 test runs are performed to solve the OPF problem for different single objective and

multi-objective functions.

8.6.1.1.Minimization of fuel cost
The proposed QODE and DE approach are applied for minimization of fuel cost as the objective

function. Here, the population size (N;), scaling factor(S,), crossover rate (C,)and the

maximum iteration number (N __ ) have been selected as 100, 1.0, 1.0 and 100 respectively for

this test system. The optimal values of control variables obtained from the proposed QODE are
given in Table 19. The best, average and worst fuel cost and average CPU time among 50 runs of
solutions obtained from proposed QODE and DE are summarized in Table 20. The minimum
fuel cost obtained from biogeography based optimization (BBO) [118], differential evolution
(DE) [117], particle swarm optimization (PSO) [129], improved genetic algorithm (IGA) [113],
improved particle swarm optimization (IPSO) [115] and modified differential evolution (MDE)
[125] are also shown in Table 20. The convergence characteristic obtained from proposed QODE
and DE for cost minimization is shown in Fig. 8.14. It is seen from Table 20, that minimum cost

obtained from QODE is the lowest among all other methods.
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Fig. 8.14. Cost convergence characteristics for IEEE 30 bus system
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Table 8.19: Optimal value of control variables obtained from QODE for IEEE 30 bus

system for different cases

Control Variable Fuel cost Emission Voltage stability Improvement of
minimization minimization enhancement Voltage Profile

P, (MW) 190.31 115.68 113.20 158.60
P, MW) 47.90 72.43 62.13 52.56
P..Mw) 19.61 38.75 47.17 39.84
P, (MW) 11.25 32.96 35.00 14.51
P, (MW) 10.000 29.53 19.10 10.00
P, (MW) 12.000 0 12.00 14.50

V, (p.u) 1.0500 1.0500 1.0500 1.0500

V, (pu.) 1.0338 1.0334 1.0337 1.0339

Vs (p.u) 1.0058 1.0053 1.0059 1.0060

Vi, (p.u.) 1.0230 1.0227 1.0233 1.0231
Vi, (pu) 1.0913 1.0908 1.0914 1.0911

Vi, (pu) 1.0400 1.0404 1.0398 1.0399

T, 1.0155 0.9946 1.0069 1.0157

T, . 0.9629 0.9953 0.9820 1.0274

T, ., 1.0129 0.9844 0.9913 1.0087

Ty >, 0.9581 1.0044 1.0095 0.9817
Q.,oMvar) 4.12 0.5914 5.0000 0.95
Q.,, Mvar) 1.15 0.9519 5.0000 0.68
Q.,s(Mvar) 4.99 1.7289 2.4663 3.01

0., (Mvar) 4.80 2.9142 0 0

Q. ,, Mvar) 0.08 3.5631 5.0000 5.0000

Q.,, Mvar) 4.93 0.8467 5.0000 5.0000

Q.,; (Mvar) 0.38 1.4583 2.1800 2.1800

Q.,, Mvar) 1.06 2.8836 3.7715 3.7715

Q. o (Mvar) 4.85 2.5745 5.0000 5.0000

FuelCost ($/h) 793.79 859.26 866.98 821.07

Emission(ton/h) 0.4080 0.1961 0.2476 0.3201
Loss Voltage(MW) 7.67 5.94 5.20 6.61

Voltage deviation (p.u.) 0.5405 0.3535 0.8706 0.0615

L 0.0489 0.0729 0.0202 0.0641

max
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Table 8.20: Comparison of performance for cost minimization of IEEE 30 bus system

Techniques Best cost Average cost Worst cost CPU time (S)
($/h) ($/h) ($/h)
QODE 793.79 793.84 793.91 38.2537
DE 797.07 796.81 796.93 36.0264
BBO [118] 799.11 - - -
DE [117] 799.28 - - -
PSO [129] 800.41 - - -
IGA [113] 800.80 - - -
IPSO [115] 801.97 - - -
MDE [125] 802.37 - - -

8.6.1.2.Minimization of emission
The proposed QODE and DE approach are applied for minimization of emission as the objective

function. Here, the population size (N,), scaling factor(S,), crossover rate (C,)and the

maximum iteration number (N ) have been selected as 100, 1.0, 1.0 and 100 respectively for

this test system. The optimal values of control variables obtained from the proposed QODE are
given in Table 8.19. The best, average and worst emission and average CPU time among 50 runs
of solutions obtained from proposed QODE and DE are summarized in Table 8.21. The
minimum emission obtained from improved particle swarm optimization (IPSO) [115] is also
shown in Table 8.21. The convergence characteristic obtained from proposed QODE and DE for

emission minimization is shown in Fig. 8.15. It is seen from Table 8.21, that minimum emission

obtained from QODE is the lowest among all other methods.
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Fig. 8.15. Emission convergence characteristics for IEEE 30 bus system

Table 8.21: Comparison of performance for emission minimization of IEEE 30 bus system

Techniques Best emission Average emission Worst emission CPU time
(ton/h) (ton/h) (ton/h) S)

QODE 0.1961 0.1965 0.1971 40.5756

DE 0.2053 0.2058 0.2064 37.9302
IPSO [115] 0.2058 - - -

8.6.1.3. Enhancement of voltage stability
In this case, the proposed QODE and DE approach are applied for enhancement of voltage

stability i.e. minimization of L _, . Here, the population size (N} ), scaling factor (S, ), crossover

rate (C,) and the maximum iteration number (N ) have been selected as 100, 1.0, 1.0 and 100

max

respectively for this test system. The optimal values of control variables obtained from the
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proposed QODE are shown in Table 8.19. The best, average and worst L and average CPU

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in
Table 8.22. The L, obtained from BBO [118] and improved particle swarm optimization
(IPSO) [115] are also shown in Table 8.22. The convergence characteristic obtained from

proposed QODE and DE for L , minimization is shown in Fig. 8.16. It is seen from Table 8.22

that the value of L, obtained from QODE is the lowest among all other methods.

0.055

— QODE

0.05 e

0.045

0.04

Lmax

0.035

0.03

0.025

0.02

15 20 25 30 35 40 45 50
lteration

Fig. 8.16. L__ convergence characteristics for IEEE 30 bus system

Table 8.22: Comparison of performance for L _, minimization of IEEE 30 bus system

Techniques Best L. Average L Worst L CPU time (S)
QODE 0.0202 0.0206 0.02012 39.2357
DE 0.0235 0.0238 0.0243 37.4235
BBO [118] 0.09803 - - -
IPSO [115] 0.1037 - - -
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8.6.1.4.Improvement of voltage profile

In this case, the proposed QODE and DE approach are applied for improvement of voltage

profile. Here, the population size (N,), scaling factor(S,), crossover rate (Cj)and the

maximum iteration number (N __ ) have been selected as 100, 1.0, 1.0 and 100 respectively for

this test system. The optimal values of control variables obtained from the proposed QODE are
given in Table 8.19. The best, average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.23. The
voltage deviation obtained from BBO [118] and faster evolutionary algorithm (FEA) [119] is
also shown in Table 8.23. The convergence characteristic obtained from proposed QODE and
DE for voltage deviation is shown in Fig. 8.17. It is seen from Table 8.23, that voltage deviation

obtained from QODE is the lowest among all other methods.

0.3

— QODE
— —DE

0.25

0.2

0.15

Voltage Deviation

0.1

0. 05 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

[teration

Fig. 8.17. Voltage deviation convergence characteristics for IEEE 30 bus system
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Table 8.23: Comparison of performance for voltage deviation of IEEE 30 bus system

Techniques Best voltage Average voltage Worst voltage CPU time
deviation deviation deviation S
QODE 0.0615 0.0618 0.0625 46.9973
DE 0.0627 0.0629 0.0633 45.0637
BBO [118] 0.0951 - - -
FEA [119] 0.1052 - - -

8.6.2. IEEE 57-bus system

The standard IEEE 57-bus system consists of 80 transmission lines, seven generators at buses 1,
2,3,6,8,9, 12 and 15 branches under load tap setting transformer branches. The reactive power
sources are considered at buses 18, 25 and 53. The system line data, bus data, generator data and
the minimum and maximum limits for the control variables have been adapted from [127] and
[130]. The upper and lower limits of reactive power sources and transformer tap settings are
taken from [128]. The generator characteristics are given in Table A-24 in the appendix. The
total system active power demand is 12.508 p.u. and reactive power demand is 3.364 p.u. at 100
MVA base. In this study, 50 test runs are performed to solve the OPF problem for different

single objective and multi-objective functions.

8.6.2.1.Minimization of fuel cost

The proposed QODE and DE are applied for minimization of fuel cost as the objective function.

Here, the population size (N ), scaling factor(S,), crossover rate (C,)and the maximum

iteration number (N ) have been selected as 100, 1.0, 1.0 and 100 respectively for this test

system. The optimal values of control variables obtained from the proposed QODE are given in
Table 8.24. The best, average and worst fuel cost and average CPU time among 50 runs of
solutions obtained from proposed QODE and DE are summarized in Table 8.25. The
convergence characteristic obtained from proposed QODE and DE for minimum fuel cost

solution is shown in Fig. 8.18.
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Table 8.24: Optimal value of control variables obtained from QODE for IEEE 57 bus
system for different cases

Control Fuel Cost Emission Voltage Improvement Minimization Minimization
variable Minimization =~ Minimization stability of voltage of F of F
enhancement profile 5 6
PG1 (MW) 592.76 304.02 522.37 589.66 417.72 418.87
PGZ (MW) 0 0 0 0 0 0
PG3 (MW) 97.62 172.65 35.73 16.35 112.00 85.56
PGé (MW) 0 0 0 0 0 0
ch (MW) 136.25 341.89 523.20 482.32 270.71 284.92
PG'9 (MW) 0 0 0 0 0 0
460.61 461.89 201.67 196.53 479.25 488.58
P;,, Mw)
V. (pu.) 1.0400 1.0400 1.0400 1.0400 1.0400 1.0400
1 (pu.
V, (pw) 1.0100 1.0104 1.0103 1.0107 1.0103 1.0102
5, (pu.
V. (pu.) 0.9850 0.9855 0.9853 0.9856 0.9852 0.9854
3 (pu.
V6 (p-u.) 0.9801 0.9806 0.9801 0.9804 0.9804 0.9802
VS (p.u.) 1.0052 1.0057 1.0049 1.0055 1.0053 1.0051
V, (pu) 0.9800 0.9804 0.9805 0.9806 0.9801 0.9802
o (p-u.
V., (pu) 1.0153 1.0148 1.0151 1.0153 1.0149 1.0151
12 M-
T 0.9700 1.0987 0.9801 0.9831 1.0975 1.0983
4-18
T 0.9780 1.0820 0.9526 0.9510 1.0810 1.0816
4-18
T2 , 1.0430 0.9221 0.9501 0.9507 0.9212 0.9215
1-20
T s 1.0430 1.0171 1.0045 1.0043 1.0172 1.0170
2 —
T 0.9670 0.9960 0.9777 0.9769 0.9954 0.9953
7-29
T . 0.9750 1.0999 0.9138 0.9139 1.0993 1.0995
3 —
T11 ul 0.9550 1.0750 0.9465 0.9461 1.0761 1.0757
T 0.9550 0.9541 0.9269 0.9258 0.9543 0.9542
15-45
T4 46 0.9000 0.9370 0.9962 0.9957 0.9367 0.9365
l —
To 0.9300 1.0160 1.0385 1.0379 1.0158 1.0161
10-51
T 0.8950 1.0998 0.9052 0.9053 1.0996 1.0994
13-49
T 0.9580 1.0980 0.9240 0.9229 1.0974 1.0981
11-43
T40 . 0.9580 0.9799 0.9875 0.9868 0.9796 0.9787
-5
T 0.9800 1.0246 1.0098 1.0095 1.0244 1.0243
39-57
T 0.9400 1.0371 0.9373 0.9367 1.0374 1.0369
9-55
Q... Mvar) 4.0117 0.2339 3.523 5.7907 0 10.0000
cl18
4.0184 2.8458 4.0004 0.6058 0.0361 0.6325

Q 25 (Mvar)
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Qc53 (Mvar) 1.7637 1.2245 3.1840 5.8095 0 5.2532

Cost ($/h) 7640.00 13181.08 20833.36 18556.16 10509.89 10910.29
Emission 2.8086 1.7003 2.8134 3.0945 2.0003 2.0499
(ton/h)
power loss 36.4534 29.6432 32.1714 34.0597 28.8854 27.1294
MW)
voltage 1.1486 5.3719 1.1228 0.6725 4.3066 3.8625
deviation
(p-u.)
L 0.1129 0.4161 0.0987 0.1362 0.2828 0.2209

max

Table 8.25: Comparison of performance for cost minimization of IEEE 57 bus system

Techniques Best cost Average cost Worst cost CPU time (S)
($/h) ($/h) ($/h)
QODE 7640.00 7642.03 7644.83 47.8745
DE 7680.42 7681.75 76883.67 45.6595
11000 - N
10500 QODE
— — DE
10000 - 8

= 9500 .

&

2

S 9000 .
8500 - .
8000 - .
7500 | | | | | | | | |

0O 10 20 30 40 50 60 70 8 90 100

lteration

Fig. 8.18. Cost convergence characteristics for IEEE 57 bus system
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8.6.2.2.Minimization of emission

The proposed QODE and DE are applied for minimization of emission as the objective function.

Here, the population size (N, ), scaling factor (S,), crossover rate (C,)and the maximum

iteration number (N ) have been selected as 100, 1.0, 1.0 and 100 respectively for this test

system. The optimal values of control variables obtained from the proposed QODE are given in

Table 8.24. The best, average and worst emission and average CPU time among 50 runs of

solutions obtained from proposed QODE and DE are summarized in Table 8.26. The

convergence characteristic obtained from proposed QODE and DE for emission minimization is

shown in Fig. 8.19.

Table 8.26: Comparison of performance for emission minimization of IEEE 57 bus system

Techniques Best emission Average emission Worst emission CPU time
(ton/h) (ton/h) (ton/h) S)
QODE 1.7003 1.7006 1.7011 98.0136
DE 1.7187 1.7191 1.7195 95.3025
2.4
— QODE

2.3 — — DE -
<
§ -
5
2 .
S
L

80 90 100

lteration
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8.6.2.3. Enhancement of voltage stability
In this case, the proposed QODE and DE are applied for enhancement of voltage stability i.e.
minimization of L, . Here, the population size (N, ), scaling factor (S, ), crossover rate (C,)

) have been selected as 100, 1.0, 1.0 and 100
respectively for this test system. The optimal values of control variables obtained from the
proposed QODE are given in Table 8.24. The best, average and worst L,

and the maximum iteration number (N

max

. and average CPU

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in
Table 8.27. The convergence characteristic obtained from proposed QODE and DE for L_

minimization is shown in Fig. 8.20.

Table 8.27: Comparison of performance for L , minimization of IEEE 57 bus system

Techniques Best L, Average L Worst L, CPU time (S)

QODE 0.0987 0.0989 0.0992 103.6524
DE 0.1036 0.1038 0.1041 101.4525

0.18

017 | ~— QODE ,
| DE

0.16 |

0.15 | - ]

0.14
Lmax

0.11 | ) ]

0.1 . B

009 | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
lteration

Fig. 8.20. L__ convergence characteristics for IEEE 57 bus system

206



8.6.2.4.Improvement of voltage profile

In this case, the proposed QODE and DE approach are applied for improvement of voltage
profile. Here, the population size (N,), scaling factor(S,), crossover rate (Cj)and the

maximum iteration number (N __ ) have been selected as 100, 1.0, 1.0 and 100 respectively for

max

this test system. The optimal values of control variables obtained from the proposed QODE are
given in Table 8.24. The best, average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.28. The
convergence characteristic obtained from proposed QODE and DE for voltage deviation is

shown in Fig. 8.21.

Table 8.28: Comparison of performance for voltage deviation of IEEE 57 bus system

Techniques Best voltage Average voltage Worst voltage CPU time
deviation deviation deviation S)
QODE 0.6725 0.6728 0.6732 98.9354
DE 0.7041 0.7044 0.7047 96.0439
1.4
QODE | |
— — DE

Voltage Deviation

0 10 20 30 40 50 60 70 80 90 100
lteration

Fig. 8.21. Voltage deviation convergence characteristics for IEEE 57 bus system
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8.6.3. IEEE 118-bus system

The standard IEEE 118-bus system consists of 186 transmission lines, 54 generator buses, 64
load buses, 9 branches under load tap setting transformer and 14 reactive power sources. The
system line data, bus data, generator data and the minimum and maximum limits for the control
variables have been adapted from [101] and [132]. The upper and lower limits of reactive power
sources and transformer tap settings are taken from [101]. The generator data has been taken
from [132]. The total system active power demand is 42.4200 p.u. and reactive power demand is
14.3800 p.u. at 100 MVA base. In this study, 50 test runs are performed to solve different single
objective and multi-objective OPF problems by using QODE.

8.6.3.1.Minimization of fuel cost
The proposed QODE and DE are applied for minimization of fuel cost as the objective function.

Here, the population size (N ), scaling factor(S,), crossover rate (C,)and the maximum

iteration number (N__ ) have been selected as 200, 1.0, 1.0 and 100 respectively for this test

system. The optimal values of control variables obtained from the proposed QODE are given in
Table 8.29. The best, average and worst fuel cost and average CPU time among 50 runs of
solutions obtained from proposed QODE and DE are summarized in Table 8.30. The
convergence characteristic obtained from proposed QODE and DE for minimum fuel cost

solution is shown in Fig. 8.22.

208



7.2

— QODE

7.15
— — DE

7.1

7.05

Cost ($/h)
~

6.95

6.9

6.85

68 | | | | | | | | |

lteration

Fig. 8.22. Cost convergence characteristics for IEEE 118 bus system

Table 8.30: Comparison of performance for cost minimization of IEEE 118 bus system

Techniques Best cost Average cost Worst cost CPU time (S)
($/h) ($/h) ($/h)
QODE 68110.35 68111.84 68114.16 288.6257
DE 68292.79 68294.27 68297.02 286.0725
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Table 8.29: Optimal value of control variables obtained from QODE for IEEE 118 bus

system for cost minimization

Variable Variable Variable Variable Variable
29.2109 381.8617 0.9903 0.9854 0.9597
P 1 MW) PG66 MW) Vé V70 T63—59
27.7608 332.5110 1.0151 0.9801 0.9846
Pgs W) Pogo (MW) Vs Va To e
12.7737 0 1.0500 0.9909 0.9351
Pje MW) Po7o MW) Vo Vas Tes66
PGS (MW) 14.1875 PG72 (MW) 11.2969 V12 0.9904 V74 0.9663 T()g_()g 0.9347
422.6864 15.7119 0.9692 0.9430 0.9356
PGIO MW) PG73 (MW) V15 V76 T81—82
PG12 (MW) 110.9571 PG74 (MW) 0 V18 0.9733 V77 1.0071 QC5 (Mvar) 36.6145
11.3817 0 0.9648 1.0403 13.5245
PGIS MW) PG76 MW) V19 V80 Qc34
(Mvar)
59.5803 55.6755 0.9921 0.9565 -12.7591
Pois MW) Po77 (MW) Vi Vis Q.37
(Mvar)
0 232.4882 1.0500 1.0151 2.8039
Po1o MW) Poso MW) Vs Ver Qena
(Mvar)
28.1248 0 1.0151 1.0048 0.5621
Piay MW) Piss (MW) Vi Vs Q.15
(Mvar)
198.2669 163.8951 0.9683 0.9853 -17.1541
Pczs (MW) PG87 (MW) V27 V90 Qc46
(Mvar)
291.1758 210.0919 0.9672 0.9801 3.9863
PGzé (MW) PG89 (MW) V31 V91 Qc48
(Mvar)
12.7930 11.1843 0.9678 0.9837 11.1285
P027 (MW) P090 (MW) V32 V92 Qc74
(Mvar)
20.0211 24.6972 0.9815 1.0102 2.4003
Posi (MwW) Poor (MW) Vi Voo Q.79
(Mvar)
0 0 0.9754 0.9710 37.9876
Pos (MW) Plop (MW) Vi Vioo Qs
(Mvar)
0 176.6940 0.9701 0.9557 9.1203
PG34 MW) P099 (MW) V40 Vl 03 Qc83
(Mvar)
0 180.4911 0.9853 0.9411 4.0877
PG36 MW) PGIOO (MW) V42 Vl 04 chos
(Mvar)
12.1452 0 1.0049 0.9443 5.7172
PG4O (MW) PGIO3 (MW) V46 Vl 05 Qc‘107
(Mvar)
21.9355 0 1.0247 0.9521 18.2214
Poa MW) o104 MW) Vio Vi Qeino
(Mvar)
PG46 (MW) 49.4955 PGIOS (MW) 0 V54 0.9553 V110 0.9588 Cost ($/h)  68110.35
PG49 (MW) 70.0794 PG107 (MW) 16.8557 V55 0.9517 Vl " 0.9802 Emission 405.9932
(Ibm
PGS4 (MW) 241.5004 PG1 1o (MW) 28.6788 V56 0.9545 Vl " 0.9753 po(waI:{?;())ss 104.8402
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PGss MW) 0 P6111 (MW) 81.7905 ng 0.9851 Vl s 0.9931 \;(t)il(t)z;lg(eslel\.l)i 1.8182
PoseMW) 0 P, ,mwy 97296y 09955y o 10054 L 0.1046
P, (MW) 129.0256 P, (MW) 57.3315 v, 09975 T, 0.9816
P mw) 1402808 p_ w) 250041 V., Lo0st o 09605
P, (Mw) 512464 V, (p) 0.9563 vV, 1000 09614
P, (MW) 3818979V (pu) 0.9981 vV, 10350 0.9367

8.6.3.2.Minimization of emission

The proposed QODE and DE are applied for minimization of emission as the objective function.

Here, the population size (N ), scaling factor(S,), crossover rate (C,)and the maximum

iteration number (N ) have been selected as 200, 1.0, 1.0 and 100 respectively for this test

system. The optimal values of control variables obtained from the proposed QODE are given in
Table 8.31. The best, average and worst emission and average CPU time among 50 runs of
solutions obtained from proposed QODE and DE are summarized in Table 8.32. The
convergence characteristic obtained from proposed QODE and DE for minimum emission

solution is shown in Fig. 8.23.

Table 8.31: Optimal value of control variables obtained from QODE for IEEE 118 bus

system for emission minimization

Variable Variable Variable Variable Variable
5.1743 388.5257 0.9905 0.9857 0.9596
P(;] (MW) PG66 (MW) V6 V70 T63—59
25.8042 43.0101 1.0147 0.9808 0.9855
PG4 (MW) PG69 (MW) V8 V72 T64—61
7.5464 0 1.0500 0.9915 0.9357
PG() (MW) PG70 (MW) Vl() V73 T65766
11.9135 28.3154 0.9906 0.9667 0.9348
P, (MW) P, mw) Vi Vi Tes 60
401.9364 17.2548 0.9698 0.9433 0.9356
Poio MW) Po73 (MW) Vis Vae Ty
121.5883 0 0.9735 1.0072 -17.7742
Poi, Mw) Pj7a MW) Vis Vi Qs
(Mvar)
22.5734 0 0.9647 1.0401 3.1362
PGIS (MW) PG76 (MW) V19 V80 QC34
(Mvar)
82.5876 0 0.9929 0.9568 -8.2974
PGIS (MW) PG77 (MW) V24 V85 QC37
(Mvar)
0 175.0243 1.0500 1.0155 6.9876
Pgio W) Py MW) Vs Vs Q.44
(Mvar)
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Poa W)
P.,s Mw)
P, Mw)
P.,, mw)
P, mw)
P, mw)
P, omw)
P, Mmw)
P.,, Mw)

P.,, mw)

Plas MW)

Pg o MW)

P, oMmw)

P...omw)

PossMW)

Pcs9 (MW)
P, Mmw)

Pog MW)

P, omw)

20.3710

105.9800

303.1171

8.5042

13.8602

16.2087

15.0353

99.6463

224.6444

207.6887

0

72.7896

191.9093

67.9450

389.3891

Pgs MW)
Pq, (MW)
Pgo MW)
Pgo MW)
Py, (MW)
Pgor MW)
PgooMW)
P 00 MW)
P 0 MW)

P 10sMW)

Pp10s MW)

P17 MW)

Po110MW)

Pei1i (MW)

Pgi,Mw)

Po113(MW)
P11 MW)

Vi ()

V, (pu)

227.5886

297.4263

14.8003

43.6077

151.7637

287.3936

0

10.1385

45.3030

97.4258

80.5707

94.4714

30.7140

0.9564

0.9987

1.0147

0.9686

0.9678

0.9677

0.9816

0.9755

0.9707

0.9853

1.0055

1.0254

0.9559

0.9517

0.9545

0.9858

0.9956

0.9977

1.0053

1.0500

1.0350

<

116

T8—5
’];6—25
T30717

T3 8-37

1.0054

0.9857

0.9806

0.9838

1.0107

0.9713

0.9567

0.9414

0.9445

0.9529

0.9583

0.9805

0.9752

0.9937

1.0055

0.9819

0.9625

0.9607

0.9369

Qc45

(Mvar)

Qc46

(Mvar)

Qc48

(Mvar)

Qc 74

(Mvar)

Qc79

(Mvar)

QCSZ

(Mvar)

Qc83

(Mvar)

chOS

(Mvar)

chO7

(Mvar)

chlO

(Mvar)
Cost
($/h)

Emission

(lbm

power
loss

MW)

Voltage

deviation
(p-u)

L

max

5.8355

-35.4268

10.0909

8.0010

15.6264

95.1279

6.7833

13.0101

-4.5025

20.6641

70467.71

298.6965

162.2439

2.0173

0.1075
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Fig. 8.23. Emission convergence characteristics for IEEE 118 bus system

Table 8.32: Comparison of performance for emission minimization of IEEE 118 bus system

Techniques Best emission Average emission Worst emission CPU time
(Ib/h) (Ib/h) (Ib/h) (S)

QODE 298.6965 300.4253 302.0186 287.8752

DE 314.0861 316.9684 318.7568 285.3085

8.6.3.3.Enhancement of voltage stability
In this case, the proposed QODE and DE are applied for enhancement of voltage stability i.e.

minimization of L_, . Here, the population size (N, ), scaling factor (S, ), crossover rate (C,)
and the maximum iteration number (N __ ) have been selected as 200, 1.0, 1.0 and 100

respectively for this test system. The optimal values of control variables obtained from the

proposed QODE are given in Table 8.33. The best, average and worst L . and average CPU

time among 50 runs of solutions obtained from proposed QODE and DE are summarized in
Table 8.34. The convergence characteristic obtained from proposed QODE and DE for L_,

minimization is shown in Fig. 8.24.
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Table 8.33: Optimal value of control variables obtained from QODE for IEEE 118 bus

system for voltage stability enhancement

Variable Variable Variable Variable Variable

PG1 (MW) 15.1000 PG66 (MW) 382.4401 V6 0.9903 V70 0.9856 T63—59 0.9596
P.,oaw) 267207 P vwy 362314y Loist 09805 T 0.9848
P, (MW) 149317 P aqw)y 709164y 10500y 09911 T 0.9345
PGS (MW) 20.3994 PG72 (MW) 12.4464 V12 0.9904 V74 0.9667 Tég,ég 0.9343
P iwy 442671 P w9312y 09693y 0946 T 0.9366
PG12 (MW) 262.3616 PG74 (MW) 19.9994 V18 0.9736 V77 1.0071 ch (Mvar) -24.0515
P ow) 275909 P mw) 07464y 09648y 10403 0 Mvan O

P ow) 912769 P qw) 840866y 09925 7 09560 () (Mvar) 179176
PG19 (MW) 14.3799 PGSO (MW) 293.6501 st 1.0500 V87 1.0152 Qc44 (Mvar) 0.0290
PG24 (MW) 17.4469 PGSS (MW) 12.2924 V26 1.0146 V89 1.0054 Qc45 (Mvar) 5.4166
P025 (MW) 148.8825 P087 (MW) 132.3614 V27 0.9682 V90 0.9853 QC46 (Mvar) -27.6219
P026 (MW) 303.1802 P089 (MW) 299.9668 V31 0.9678 V91 0.9806 Qc48 (Mvar) 11.3379
P, ow) 15059 P ovwy 167316y 09676y 09833 0 omvary O

P, oiw) 272856 P mw) 43270y 09814y L0106 )  (vvar) 22228
P,ow) 0419 P vw) 1965727y 09755y 09712 0 (Myay 1108863
PG34 (MW) 25.5560 PG99 (MW) 133.9130 V40 0.9702 V103 0.9558 Qc83 (Mvar) 0.0138
P.Mw) 451288 Py 2670140y 09853y o 09416 O (Myay O

PG40 (MW) 9.0982 PG103 (MW) 9.8975 V46 1.0057 sz 0.9444 Qc107 (Mvar) -~ 14.6412
P.,aw) 199417 P oqw) 522055y 10255y 09526 () (vvar 5H72
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Pjs MW)

Pg o MW)

P..,omw)

Pgss (MW)

P, oMw)
P, MW)
P, (MW)
P, vMw)

P, (MW)

57.8948

90.3132

61.5296

56.8374

37.4630

167.2125

73.5977

69.7190

394.8187

Pj10s MW)

Pg1o7 MW)

PiijoMw)

Pgiy Mw)

P MW)
P11 (MW)
Poi16(MW)
Vi (p)

V, (puw)

87.4796

17.3746

43.0175

58.5205

79.7727

55.7530

30.6073

0.9567

0.9984

0.9559

0.9514

0.9545

0.9857

0.9956

0.9975

1.0053

1.0500

1.0350

0.9587

Vlll

V112

V113

VHO

0.9803

0.9754

0.9932

1.0053
0.9806
0.9614
0.9608

0.9367

Cost ($/h)

Emission( b
/h)

Power loss
MW)

Vo

Itage

deviation
(p.u.)

L

max

72213.61

398.4442

182.4603

1.7401

0.0506

Table 8.34: Comparison of performance for L_, minimization of IEEE 118 bus system

Techniques Best L. Average L Worst L, CPU time (S)
QODE 0.0506 0.0507 0.0510 288.8312
DE 0.0587 0.0591 0.0593 287.0318
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Fig. 8.24. L __ convergence characteristics for IEEE 118 bus system

8.6.3.4.Improvement of voltage profile

In this case, the proposed QODE and DE approach are applied for improvement of voltage

profile. Here, the population size (N,), scaling factor(S,), crossover rate (C,)and the

maximum iteration number (N _ ) have been selected as 200, 1.0, 1.0 and 100 respectively for

this test system. The optimal values of control variables obtained from the proposed QODE are
given in Table 8.35. The best, average and worst voltage deviation and average CPU time among
50 runs of solutions obtained from proposed QODE and DE are summarized in Table 8.36. The
convergence characteristic obtained from proposed QODE and DE for voltage deviation is

shown in Fig. 8.25.
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Table 8.35: Optimal value of control variables obtained from QODE for IEEE 118 bus

system for improvement of voltage profile

Variable Variable Variable Variable Variable
24.8354 386.8658 0.9908 0.9855 0.9593
Pg, amw) Pogs MW) Vi Vo T 50
27.3774 431.2400 1.0155 0.9803 0.9845
Peymw) Pogo MW) Vi Vi, Toy 6
7.4553 47.0490 1.0500 0.9911 0.9348
Py Mw) Pg7o Mw) Vio Vi Tis 66
23.1324 27.1003 0.9912 0.9664 0.9346
Peg Mw) Pg7, vw) Viz Vi T 60
406.4214 14.1555 0.9697 0.9435 0.9357
PoioMw) PorsMw) Vis Vi Ts1 s
188.1378 19.9808 0.9734 1.0077 -10.2461
Poi, Mw) Po7, Mw) Vig Vi, 0,5
(Mvar)
14.8522 69.3648 0.9647 1.0402 0
PoisMw) P76 MW) Vio Vzo 0.5
(Myvar)
36.5888 87.9338 0.9924 0.9568 -15.0288
Poig Mw) Pg77 Mw) Vi Ves 0.3
(Myvar)
19.6471 220.4790 1.0500 1.0154 7.9582
PoioMw) PsoMW) Vs Vi 0.4
(Mvar)
6.0058 26.1360 1.0147 1.0047 1.7116
Pgoy Mw) PgsMw) |2 Vso Q.45
(Myvar)
240.1806 53.1162 0.9685 0.9855 -33.5173
Pgos Mw) P, (MW) Vy Vao Q.46
(Mvar)
301.7679 173.7364 0.9678 0.9806 7.6346
P MW) Prso MW) Vi Vor O.us
(Mvar)
12.2519 17.8891 0.9676 0.9838 0
Pgoy Mw) PooMW) Vi Vo, 0.4
(Mvar)
22.1487 22.0689 0.9818 1.0106 19.3213
Pos (Mw) Pooi Mw) Vi Voo Q.7
(Mvar)
56.7973 242.4305 0.9754 0.9717 33.4421
PosMw) PoorMW) Vi Vioo O,
(Mvar)
14.9005 172.2366 0.9705 0.9556 13.4003
PossMw) PooMW) Vio Vies Q.3
(Mvar)
44.6387 111.5876 0.9853 0.9413 0
P36 MW) P iooMw) Vi Vi Q105
(Mvar)
21.6357 11.6736 1.0055 0.9452 -12.4021
Peso Mw) PoiosMw) Vis Vios Q107
(Mvar)
15.6677 77.6202 1.0251 0.9525 7.4332
Poyr Mw) P o Mw) Vio Vier Q.10
(Mvar)
80.0593 60.1407 0.9558 0.9587 Cost ($/h)  70904.50
Py MW) P iosMw) Vi Vi
179.8429 12.8669 0.9517 0.9805 Emissi 451.7620
Piyo MW) Pi1o7 Mw) 55 Vin esion
(Ib m)
50.4990 40.6254 0.9548 0.9755 power loss 110.3291
PosaMw) PoiioMw) Vse Vi (MW)
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P, omw)

PossMW)
PosoMW)
Posi (MW)
Poso MW)

P, samw)

32.2701
Peiiiomw)

39.2898

Poi,mw)
92.3657

Poismw)
142.8751

PoiisMw)

3950630 Y, ()

68.1610

78.7837

43.0954

31.0410
0.9566

0.9984

=

9

—

W

NI

6

V69

0.9855

0.9951

0.9973

1.0054

1.0500

1.0350

0.9934
Vl 13

1.0053
Vl 16

0.9805
TS—S

0.9616

T26—25

0.9625
T30 17

0.9369
T38—37

voltage 1.5955
deviation
(p-u.)

L 0.0894

max

Table 8.36: Comparison of performance for voltage deviation of IEEE 118 bus system

Techniques Best voltage Average voltage =~ Worst voltage CPU time (S)
deviation deviation deviation
QODE 1.5955 1.5957 1.5961 287.3169
DE 1.6317 1.6320 1.6323 285.3158
2.8
— QODE
2.6 - DE 7
2.4 |
[y
R/
T 22 |
>
[
a
[
g o f
©
>
1.8 .
1.6 - -
1 4 | | | | | | | |
0 10 20 30 40 60 70 80 90 100

[teration

Fig. 8.25. Voltage deviation convergence characteristics for IEEE 118 bus system

218



8.6.3.5.Minimization of fuel cost and emission

The value of ¥ in this case is chosen as 1000. The problem is solved by using QODE. Here, the

population size (N, ), scaling factor(S,), crossover rate (Cy)and the maximum iteration

number (N

max

) have been selected as 200, 1.0, 1.0 and 100 respectively for this test system. The

results obtained from proposed QODE for optimal values of control variables are shown in

Table 8.37.

Table 8.37: Optimal value of control variables obtained from QODE for IEEE 118 bus
system for fuel cost and emission minimization

Variable Variable Variable Variable Variable

P P

1 (MW) 24.4411 o6 (MW) 390.2885 Vs 0.9907 Vo 0.9855 63-59  0.9596

P., aomw P..,omw V. V. T

G4 (MW) 29.9011 Go9 (MW) 32.8835 8 1.0151 72 0.9803 64-61 (9847

P. Mw P ow 0 1% V. T

o (MW) 23.7663 670 MW) 10 1.0500 73 0.9906 65-66  ().9349

P P T

s MW) 11.8135 672 MW) 11.1104 Via 0.9904 Vi 0.9664 68-69  .9344

P.. omw P..omw \% \% T,

G0 (MW) 466.7529 673 (MW) 17.1720 15 0.9698 76 0.9433 81-82  .9356

P.., ow P..,mw Vv |%

12 (MW) 290.7476 74 MW) 0 18 0.9735 77 1.0072 Qes -39.4989
(Mvar)

P..mw P. avw Vv %

15 MW) 15.4058 676 (MW) 0 19 0.9646 80 1.0401 Qess 1.1773
(Mvar)

P..omw P.. aovw V. %

G1s MW) 59.9337 77 (MW) 91.2272 2 0.9921 85 0.9563 Qs -13.2530
(Mvar)

P...mw P...oMmw \% Vv

G1o (MW) 0 as0MW) 294.2445 25 1.0500 87 1.0152 Qess 49713
(Mvar)

P.., mw P...omw \% Vv

G24 (MW) 6.1776 Gss MW) 0 26 1.0153 89 1.0055 Qess 4.0560
(Mvar)

P... mw P...omw \% V.

Gas (MW) 111.4086 Gs7(MW) 179.6139 27 0.9682 90 0.9851 Qess -25.9087
(Mvar)

P. avw P...oMmw V. V.

G26 (MW) 250.1633 G0 MW) 239.7910 31 0.9671 91 0.9804 Oess 4.8949
(Mvar)

P.. ow P, oMmw V. V.

Ga7 (MW) 14.4614 G9o (MW) 12.0063 32 0.9677 92 0.9836 Qery 5.3109
(Mvar)

Pz W) 9.3482 Po1 MW) 25.9256 Vi 0.9815 Vao 1.0103 Qero 3.3505
(Mvar)

P P

632 MW) 0 o2 (MW) 0 Vie 0.9753 Vioo 0.9705 Oes2 38.2120
(Mvar)

P...omw P...oMmw \% V

634 (MW) 0 G99 MW) 161.6689 40 0.9701 103 0.955 Ouss 14.2517
(Mvar)

P... mw P MW \% V

636 MW) 40.7704 G100 MW) 180.0080 42 0.9855 104 0.940 (%105) 12.2687
var
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Poao MW)
P, mMw)

P, MW)

Pg a0 MW)

Pgs,MW)

P, oMmw)

P omw)

P, Mw)
Posi (MW)
Pog MW)

P, . omw)

11.3385

28.1754

57.7918

115.0737

165.7851

149.3231

180.2244

88.3819

383.6734

P 10s MW)
P 10sMW)

Pp10s MW)

P1o7 MW)

Pe110MW)
Po111MW)

Pgi,Mw)

PiisMw)
Pii16MW)
V| (pw)

V, (puw)

18.4037

25.2177

54.6984

47.0741

85.2145

32.0288

0.9563

0.9981

NS

=S

o g

9

1.0053

1.0252

0.9554
0.9517

0.9546

0.9853

0.9955

0.9971

1.0053

1.0500

1.0350

Vl 05
Vl 07

V110
Vlll

V112

V113

<

116

e

-5

=

26-25

=

30-17

—

38-37

0.9446

0.952

0.9583
0.9804

0.9754

0.9933

1.0052

0.9806

0.9604

0.9617

0.9365

Qc107

(Mva)

chl()

(Mvar)
Cost
($/h)

Emissio

n (Ib\h)

power

loss

(MW)

voltage

deviatio

n(p.u.)

L

max

-9.8406

9.3443

69167.10

323.6974

100.2088

1.7728

0.1054

8.6.3.6. Minimization of fuel cost, emission and voltage deviation and enhancement of

voltage stability

The value of ¥, p and o in this case are chosen as 1000, 10000 and 100000 respectively. The

problem is solved by using QODE. Here, the population size (N,), scaling factor(S;),

crossover rate (Cp)and the maximum iteration number (N

max

) have been selected as 200, 1.0,

1.0 and 100 respectively for this test system. The results obtained from proposed QODE for

optimal values of control variables are shown in Table 8.38.
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Table 8.38: Optimal value of control variables obtained from QODE for IEEE 118 bus

system for minimization of fuel cost, emission and voltage deviation and enhancement of

voltage stability
Variable Variable Variable Variable Variable
P. vmw P. ww \% V. T
61 (MW) 23.0088 Go6 MW) 395.1631 6 0.9905 70 0.9855 63-59 0.9594
P., aomw P..,omw \% V. T
G4 (MW) 6.9193 Ge9 MW) 206.0957 8 1.0153 72 0.9803 64-61 0.9849
P. omw P.. omw Vv V. T
66 MW) 24.4549 70 MW) 79.2383 10 1.0500 73 0.9911 65-66 0.9346
P..omw P... amw V V. T
s MW) 5.2956 672 MW) 23.8707 12 0.990 7 0.9663 68-69 0.9343
P. aw P..omw V V. T,
G0 MW) 437.1753 673 (MW) 18.7049 15 0.9693 76 0.9427 81-82 0.9355
P. 6 aw P.., omw Vv V.
G2 MW) 294.6273 74 MW) 10.5942 18 0.9727 7 1.0072 Oes -8.0943
(Mvar)
P..aw P.. omw Vv %
15 MW) 27.5509 76 MW) 93.1198 19 0.9645 80 1.0405 Q.4 0
(Mvar)
P..w P... omw V %
c1s MW) 76.3999 G771 (MW) 443106 E 0.9916 85 0.9563 Qs -1.2401
(Mvar)
P..mw P.. aw Vv Vv
G1o (MW) 18.8869 as0(MW) 263.0722 2 1.0500 87 1.0154 Qs 5.6484
(Mvar)
P., mw P...omw Vv Vv
G24 MW) 28.5297 a5 (MW) 17.4067 26 1.0147 89 1.0052 Qess 4.3767
(Mvar)
P...omw P... aw Vv V.
Gas MW) 114.7655 Gg7 (MW) 103.1024 27 0.9684 90 0.9853 Qess -20.6662
(Mvar)
P.. omw P..w \% V.
626 MW) 253.3012 689 (MW) 157.3679 31 0.9673 91 0.9804 Qess 11.6488
(Mvar)
P.. omw P.. amw \% V.
G271 MW) 16.7096 G90MW) 8.8590 32 0.9677 92 0.9833 Qery 0
(Mvar)
P.. mMmw P...mw V. V.
631 (MW) 9.3482 o1 (MW) 25.9256 34 0.9815 99 1.0103 Qero 3.3505
(Mvar)
P...mMmw P..,w V. V
632 (MW) 27.5363 o2 (MW) 234.1465 36 0.9751 100 0.9706 Oes2 57.0130
(Mvar)
P P
634 (MW) 14.7008 G99 (MW) 193.7836 Vio 0.9704 Vios 0.9558 Oess 4.9391
(Mvar)
Pz MW) 54.1406 P100 MW) 061550 ' oosss Vo gouge  Letos 0
(Mvar)
Pgao MW) 18.3070 Pe103 MW) 17.3832 Vis 1.0047 Vies 0.9445 Qeior 11.7700
(Mvar)
Pan MW) 8.0693 Pe10sMW) 30.4592 Vi 1.0253 Vier 0.9523 Qeino 2.1827
(Mvar)
P P Cost ($/h)  69709.99
Gas MW) 34.7227 G1os MW) 74.3720 Vs 0.9554 Vino 0.9587
P MW P V. Vv Emission
G40 MWD 19 5305 G107 10.6044 309516 t 0.9801 Ibmy 3544841
(MW) ( )
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P..,.omw P MW \% V power
G54(MW) 178.0808 G110 (MW) 32.6684 56 0.9544 12 0.9753 loss 117.1778
MW)
P...Mw P...oMw V. V voltage
G55 (MW) 32.0726 i (MW) 50.3478 59 0.9853 113 0.9935  deviation 1.6489
(p-u.)
P..mw P MW \% V L
Gs6(MW) 94.9690 G112 (MW) 66.0932 61 0.9955 116 1.0053 max 0.0666
P...oMmw P MW \% T,
Gs9(MW) 135.2936 G113 (MW) 57.0389 62 0.9976 85 0.9817
P.. aw P MW \% T
Go1 (MW) 127.9625 G116 MW) 30.5116 65 1.0053 2625 0.9605
P. omw V. (pu. \% T
Ge2 MW) 57.9078 1 (pu) 0.9561 66 1.0500 30-17°0.9609
P..omw V, (pu \% T
os MWD 1es 0720 4 PW) 0976 6 10350 3837 (9365

8.7. Conclusion

Here, HTS algorithm has been successfully applied to solve optimal power flow problems. The
optimal power flow problem is formulated as a nonlinear optimization problem with equality and
inequality constraints of power system. In this study, different objective functions such as fuel
cost minimization, emission minimization, improvement of voltage profile and enhancement of
voltage stability are considered. The proposed HTS algorithm is tested on IEEE 30-bus, 57-bus
and 118-bus test systems to demonstrate its effectiveness.

Also QODE is demonstrated and successfully applied to solve single-objective and multi-
objective optimal power flow problems. The optimal power flow problem is formulated as a
nonlinear optimization problem with equality and inequality constraints of power system. In this
study, different single objective functions such as fuel cost minimization, emission minimization
and improvement of voltage profile and enhancement of voltage stability and multi-objective
functions such as minimization of fuel cost, emission and minimization of fuel cost, emission,
voltage deviation and enhancement of voltage stability are considered. The proposed QODE
approach is tested on IEEE 30-bus, 57-bus and 118-bus test systems to demonstrate its
effectiveness. The results obtained from proposed QODE approach is better than the results

obtained from other evolutionary methods reported in the literature.
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CHAPTER-Y

Conclusion & Future Scope

(a) Overall Conclusion

In this thesis intelligent techniques like differential evolution, opposition based differential
evolution, quasi-oppositional differential evolution, evolutionary algorithm, genetic algorithm,
improved real coded genetic algorithm, simulated annealing, teaching-learning based
optimization, modified teaching-learning based optimization, heat transfer search algorithm,
meta-heuristic techniques have been applied to solve different complex power system
optimization problems such as multi area economic dispatch, dynamic economic dispatch,
reactive power dispatch, combined heat and power economic dispatch, short-term hydrothermal
scheduling problem of fixed head and variable head hydrothermal power systems. Results
obtained from all the techniques were compared with the results obtained from other
computational intelligent technique from the literature. It has been found that here the results are

competitive and quite encouraging.
Chapter wise conclusion has been presented below.

Chapter-2

Here, four different metaheuristic techniques viz., differential evolution, evolutionary
programming, real coded genetic algorithm and simulated annealing technique for multi-area
economic dispatch problem considering transmission losses, multiple fuels, valve-point loading
and prohibited operating zones with respect to minimum cost and CPU time. Differential
evolution achieves the lowest minimum cost and SA requires least CPU time amongst the four
metaheuristic techniques.

Chapter-3

Here, improved real coded genetic algorithm (IRCGA) has been developed and pertained for

solving dynamic economic dispatch problem with non-smooth fuel cost function and 15
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benchmark functions. Test results have been matched up to those acquired from real coded
genetic algorithm. It has been observed from the comparison that the developed improved real
coded genetic algorithm has the capability to offer superior solution and quick convergence. Due
to these properties, improved real coded genetic algorithm can be utilized for solving

complicated power system problems.

Chapter -4

Modified teaching-learning-based optimization (MTLBO) has been developed and pertained to
solve three different complex combined heat and power economic dispatch test systems and 15
benchmark functions. Test results acquired from three different complex combined heat and
power economic dispatch problems have been compared with those acquired by other

evolutionary techniques suggested in the literature.

Heat transfer search (HTS) algorithm has been pertained to solve four different complex
combined heat and power economic dispatch test systems. Test results have been matched up to
those acquired by other evolutionary techniques suggested in the literature. The results obtained

using the proposed algorithm is compared with the results of other optimization algorithm.

Chapter -5

Here, opposition-based differential evolution is demonstrated and presented to solve the
hydrothermal scheduling problem. The proposed opposition-based differential evolution method
has been successfully applied to two test problems, two fixed head hydrothermal test systems.
The results have been compared with those obtained by other evolutionary algorithms reported in
the literature. It is seen from the comparisons that the proposed opposition-based differential

evolution method performs better than other evolutionary algorithms in the literature.
Chapter -6

In this chapter, opposition-based differential evolution is demonstrated and presented to solve the
hydrothermal scheduling problem. The proposed opposition-based differential evolution method
has been successfully applied to two fixed head hydrothermal test systems and three
hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating
zones and thermal units with valve point loading. The results have been compared with those

obtained by other evolutionary algorithms reported in the literature. It is seen from the
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comparisons that the proposed opposition-based differential evolution method performs better

than other evolutionary algorithms in the literature.

Chapter-7

Improved real coded genetic algorithm (IRCGA) has been developed and validated for solving
different types of reactive power dispatch (RPD) problems such as minimization of active power
transmission loss and improvement of voltage profile and stability. The developed IRCGA is
experimented on IEEE 30-bus, 57-bus and 118-bus test systems to reveal its efficacy. It has been
examined that test results acquired from the developed IRCGA is superior compared to those

acquired from other stated evolutionary techniques.

Chapter -8

Here, heat transfer search (HTS) algorithm has been successfully applied to solve optimal power
flow problems. The optimal power flow problem is formulated as a nonlinear optimization
problem with equality and inequality constraints of power system. In this study, different
objective functions such as fuel cost minimization, emission minimization, improvement of
voltage profile and enhancement of voltage stability are considered. The performance of the
proposed algorithm has been assessed on IEEE 30-bus, 57-bus and 118-bus test systems to

demonstrate its effectiveness.

Also quasi-oppositional differential evolution (QODE) is demonstrated and successfully applied
to solve single-objective and multi-objective optimal power flow problems. The optimal power
flow problem is formulated as a nonlinear optimization problem with equality and inequality
constraints of power system. In this study, different single objective functions such as fuel cost
minimization, emission minimization and improvement of voltage profile and enhancement of
voltage stability and multi-objective functions such as minimization of fuel cost, emission and
minimization of fuel cost, emission, voltage deviation and enhancement of voltage stability are
considered. The proposed QODE approach is tested on IEEE 30-bus, 57-bus and 118-bus test
systems to demonstrate its effectiveness. The results obtained from proposed QODE approach is

better than the results obtained from other evolutionary methods reported in the literature.
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(b) Future Scope

Metaheuristic techniques for multi area economic dispatch (MAED) are applied to 2 area, 3 area
and 4 area system. Future work can be carried out with other optimization technique for multi-
area system and compare the result with metaheuristic method.

Improved real coded genetic algorithm (IRCGA) has been developed and pertained for solving
dynamic economic dispatch problem with non-smooth fuel cost function and 15 benchmark
functions. Further study can be carried out with other intelligent control method and compare the
result with IRCGA.

Here, HTS and TLBO methods are applied in CHEPD problems. Further study can be carried out
with other intelligent control method and compare with this method.

Opposition-based differential evolution is presented to solve the hydrothermal scheduling
problem and has been successfully applied to two test problems, two fixed head hydrothermal
test systems. Further work can be carried out on more test systems and compare with the cost
value.

IRCGA has been developed and validated for solving different types of RPD problems such as
minimization of active power transmission loss and improvement of voltage profile and voltage
stability have been assessed by testing on IEEE 30-bus, 57-bus and 118-bus test systems to
reveal its efficacy. Future work can be carried out on more test bus system and check the voltage
deviation with this.

HTS and QODE algorithm has been successfully applied to solve optimal power flow problems
tested on IEEE 30-bus, 57-bus and 118-bus test systems to demonstrate its effectiveness. Future
work can be carried out on more test bus system and check the fuel cost minimization, emission

minimization and improvement of voltage profile.
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CHAPTER-11

Appendices

Chapter: 2

Table A.1: Data for 2 area system

Generator ij a, b, c; P’ " P Prohibited zones

$/h  $/MWh $/(MW) MW MW MW

G, 550  8.10  0.00028 100 500 [210240] [350 380]
G, 350  7.50  0.00056 50 200 [90 110] [140 160]
G, 310  8.10  0.00056 50 150 [8090] [110 120]
G,, 240  7.74  0.00324 80 300 [150 170] [210 240]
G,, 200  8.00  0.00254 50 200 [90 110] [140 150]
G,; 126 8.60  0.00284 50 120 [75 85] [100 105]

The transmission loss formula coefficients of two-area system are:

17 12 7
B, = 12 14 9 X10°

7 9 31

— - -3

Boi= -0.3908 -0.1297 0.7047 X10
BOOl = 0045

24 -6 8

X10°

B, = -6 129 -2

8 -2 150
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-3
Byy= [ 0.0591 0.2161 -0.6635 X10

B002 = 0056

Table A.2: The transmission loss formula coefficients of three-area system are:

870 0.43 -461 036

0.43 830 -0.97 0.22
_ -5

B, = 461 -0.97 9.00 -2.00 x10

0.36 0.22 -2.00 5.30

L _
o -3
Boi= I: -0.3908 -0.1297 0.7047 0.0591 X10
Bgor = 0.056
[ 860 -0.80 0.37
-5
B,= -0.80 9.08 -4.90 X10
037 -4.90 824 _
B= | 0.2161 -0.6635 0.5034 X107
Booz = 0.045
1.20 -0.96 0.56
-5
By= 096 4.93 -0.30 X10
056 -0.30 5.99 _
Bos= [ -0.3216  0.4635 0.3503 X107
Bgoz = 0.055
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Chapter:3

Table A.3: Data for test system 1

Unit P™ Pp™ a b c d e UR DR
MW MW $/h $MWh $/ MW?h $/h rad/MW MW/h MW/h

10 75 25 2.0 0.0080 100 0.042 30 30
20 125 60 1.8 0.0030 140 0.040 30 30
30 175 100 2.1 0.0012 160 0.038 40 40
40 250 120 2.0 0.0010 180 0.037 50 50
50 300 40 1.8 0.0015 200 0.035 50 50

DR W=

Table A.4: Load Demand for 24h for test system 1

Hour Load Hour Load Hour Load
MW) MW) MW)
410 9 690 17 558
435 10 704 18 608
475 11 720 19 654
530 12 740 20 704
558 13 704 21 680
608 14 690 22 605
626 15 654 23 527
654 16 580 24 463

0NN B W

The transmission loss formula coefficients for test system 1 are:

0.000049 0.000014 0.000015 0.000015 0.000020
0.000014 0.000045 0.000016 0.000020 0.000018
0.000015 0.000016 0.000039 0.000010 0.000012
0.000015 0.000020 0.000010 0.000040 0.000014

0.000020 0.000018 0.000012 0.000014 0.000035
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Table.A.5: Data for test system 2

Unit P™  P™ a b c d e UR DR

MW MW $/h $/MWh  $/ MW’h $/h rad/MW MW/h MW/h

1

150 470 786.7988 38.53973 0.15241 450 0.041 100 100

2 135 470 451.3251 46.15916 0.10587 600 0.036 100 100
3 73 340 1049.9977 40.39655 0.02803 320 0.028 100 100
4 60 300 1243.5311 38.30553 0.03546 260 0.052 80 80
5 73 243 1658.5696 36.32782 0.02111 280 0.063 60 60
6 57 160 1356.6592 38.27041 0.01799 310 0.048 50 50
7 20 130 1450.7045 36.51045 0.01211 300 0.086 30 30
8 47 120 1450.7045 36.51045 0.01211 340 0.082 30 30
9 20 80 1455.6056 39.58042 0.10908 270 0.098 30 30
10 10 55 1469.4026 40.54074 0.12951 380 0.094 30 30

Table.A.6: Load Demand for 24h for test system 2

Hour Load Hour Load Hour Load

MW) MW) MW)

0NN N kW~

1036 9 1924 17 1480
1110 10 2072 18 1628
1258 11 2106 19 1776
1406 12 2150 20 1972
1480 13 2072 21 1924
1628 14 1924 22 1628
1702 15 1776 23 1332
1776 16 1554 24 1184

The transmission loss formula coefficients for test system 2 are:

o]
1l

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.000020
0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018
0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016
0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.000015
0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016
0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015
0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018
0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016
0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019
0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044
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Chapter: 4 :

4.1. Data of test system 1

(a) Conventional thermal generators

C,,(P,)=25+2P, +0.008P; +[100sin{0.042(B™ ~P,)} $

C,,(P,)=60+1.8P, +0.003P; +[1405in{0.04(Py" — P, )} $

C,,(P,)=100+2.1P, +0.0012P; + \160 sin{0.038(P™ — P, )] $ 30<P, <175MW
C,,(P,)=120+2P, +0.001P} +[180sin{0.037(p;" ~ P, )} $

t

0<P, <150MW
20<P, <125MW

40 <P, <250MW

Table A.7: Prohibited zones of Conventional Thermal generator for test system 1

Unit Zone 1, MW Zone 2, MW
1 [20, 30] [50, 60]
2 [40, 50] [90, 100]
3 [50, 70] [120, 140]
4 [70, 90] [180, 200]

(b) Cogeneration units

C.o(P,,H,)=2650+14.5P, +0.0345P2 + 4.2H, +0.03H? +0.031P,H, $

C..(P,,H,)=1250+36P, +0.0435P +0.6H, +0.027H: +0.011P,H, $

(c) Heat-only unit

C,,(H,)=950+2.0109H, +0.038H?> $

0<H, <60 MWth

Network loss coefficients: These are given below.

49
14
15
15
20
25

14 15
45 16
16 39
20 10
18 12
19 15

15
20
10
40
14
11

20
18
12
14
35
17

25
19
15
11
17
39

X10®
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4.2. Data of test system 2

(a) Conventional thermal generators

)=550+8.1P, +0.000288P;
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240 +7.74P, +0.00324P>
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240+ 7.74P, +0.00324P?

240+ 7.74P, +0.00324P;

~
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126 +8.6P,, +0.00284P2 +
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309 +8.1P, +0.00056P; +[200sin{0.042(P;
309 +8.1P, +0.00056P; +|200sin{0.042(P;"™
240+ 7.74P, +0.00324P? +

+[300sin{0.035(p"™ P

150sin{0.063(P™

(p;
+/150sin{0.063(P/"™
+/150sin{0.063(P"™
+150sin{0.063(P" — P
240 +7.74P, +0.00324P; +[150sin{0.063(P,™ ~ P
240 +7.74P, +0.00324P; +[1505in{0.063(p;™ P,
100sin{0.084(P™" — P

126+8.6P,, +0.00284P2 +[100sin{0.084(P;" — P
126 +8.6P,, +0.00284P7, +
126 +8.6P,, +0.00284P7, +

min

100sin{0.084 (P — P
100sin{0.084(P7" — P

0<P, <680MW
0<P, <360 MW

)} $  0<P, <360MW
P} $ 60<P, <180MW
PJ}$ 60<P <ISOMW
PJ}$ 60<P <180MW
P} $ 60<P, <ISOMW
PJ}$ 60<P <I180MW
)}1 $ 60<P, <ISOMW

40 <P, <120 MW
40 <P, <120MW
55<P, <120MW
55<P, <120 MW

Table A.8: Prohibited zones of Conventional thermal generators for test system 2

Unit Zone 1, MW Zone 2, MW Zone 3, MW
1 [180, 200] [260, 335] [390, 420]
2 [30, 40] [180, 220] [305, 335]
3 [30, 45] [180, 225] [305, 335]
10 [45, 55] [65, 75] -

11 [45, 55] [65, 75] -

(b) Cogeneration units

C.,(P,,H,,)=2650+14.5P, +0.0345P2 +4.2H,, +0.03H2, +0.031P H,, $

C.s(Ps,H,;)=1250+36P, +0.0435P2 + 0.6H, + 0.027H% +0.011P H,; $

C...(P,H, )=2650+14.5P, +0.0345P2 +4.2H,, +0.03H2 +0.031P, H,, $

C,,(P,,H,,)=1250+36P, +0.0435P% +0.6H,, + 0.027HZ +0.011P, H, $
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C..s(Py.H, )= 2650+34.5P,, +0.1035P2 +2.203H,, +0.025H2 +0.051P, ;H,, $
C..,(P,.H, )=1565+20P, +0.072P} +2.34H,, + 0.02H2 +0.04P,H,, $

(c) Heat-only units

C,(Hy ) =950+ 2.0109H,, +0.038HZ, $ 0<H,, <60MWth
C,, (H, )=950+2.0109H,, +0.038H2, $ 0<H,, <60 MWth
C,», (H,,)=480+3.0651H,, +0.052H2, $ 0<H,, <I20MWth
C,,;(H,,)=480+3.0651H,, + 0.052HZ, $ 0<H,, <120 MWth

C,,,(H,,)=950+2.0109H,, + 0.038HZ, $ 0<H,, <2695.2MWth

4.3. Operation limits:

The heat-power feasible regions of the cogeneration units are illustrated in Fig. 1, Fig. 2, Fig.3
and Fig. 4.

Power(MW)

247

215

98.8

81

[
»

104.8 180 Heat(MWth)

Fig. 1. Heat-Power Feasible Operation Region for the cogeneration unit 1 of test system 1 and cogeneration unit 1
and unit 3 of test system 2
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Power(MW)

125.8

110.2 |

44 |

40

o
y

159 324 75 135.6 Heat(MWth)

Fig. 2. Heat-Power Feasible Operation Region for the cogeneration unit 2 of test system 1 and cogeneration unit 2
and cogeneration unit 4 of test system 2

A

Power(MW)

60

45

20

10

[
»

Heat(MWth)

Fig. 3. Heat-Power Feasible Operation Region for the Cogeneration unit 5 of test system 2
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A
Power(MW)
105 A
B
MV4F+ - - - - - C
D
35
E
| 45
[ [
0 >
Heat(MWth)
20 25

Fig. 4. Heat-Power Feasible Operation Region for the Cogeneration unit 6 of test system 2

Chapter:5 :
Table A-9: Hydro system data of test system 1
Unit  q,, ay, Ao P P,
MCF/h  MCF/MWh MCF/(MW)2h MW MW
1 1.980 0.306 0.000216 0 400
2 0.936 0.612 0.000360 0 300
Table A-10: Thermal generator data of test system 1
Unit P™ p™ a, b, c, ‘ e,
MW MW $/h $/MWh  $/(MW)2h $/h 1/MW
1 50 300 25 3.2 0.0025 0
2 50 700 30 34 0.0008 0

Table A-11: Load demands of test system 1

Sub- Duration
interval (hr) (MW)
1 8 900
2 8 1200
3 8 1100
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The transmission loss formula coefficients of test system 1 are

0.000015 0.000140 0.000010 0.000015

B= 0.000010 0.000060 0.000010 0.000013 per MW
0.000015 0.000010 0.000068 0.000065
0.000015 0.000013 0.000065 0.000070

Table A-12: Hydro system data of test system 2

Unit a,, a,, a,, W, P p™
acre-ft/h  acre-ft/MWh acre-ft/(MW)2h  acre-ft MW MW

1 260 8.5 0.00986 125000 0 250

2 250 9.8 0.01140 286000 0 500

Table A-13: Thermal generator data of test system 2

Unit P™ P™  gq, b, c, d, e

§ S § S s

MW MW  $h $/MWh $/(MW)2h $/h rad/MW

3 20 125 10 3.25 0.0083 12 0.0450
4 30 175 10 2.00 0.0037 18  0.0370
5 40 250 20 1.75 0.0175 16  0.0380
6 50 300 20 1.00 0.0625 14 0.0400
Table A-14: Load demands of test system 2
Sub- Duration PD
interval (hr) (MW)
1 12 900
2 12 1100
3 12 1000
4 12 1200

The transmission loss formula coefficients are of test system 2

0.000049 0.000014 0.000015 0.000015 0.000020 0.000017
0.000014 0.000045 0.000016 0.000020 0.000018 0.000015
B= 0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 per MW
0.000015 0.000020 0.000010 0.000040 0.000014 0.000010
0.000020 0.000018 0.000012 0.000014 0.000035 0.000011
0.000017 0.000015 0.000012 0.000010 0.000011 0.000036
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Chapter:6 :

Table A-15: Optimal Hydro Discharge (x10°m’) for case 1 of Test System 1 of
variable head hydrothermal system

Hour O O O3 04

1 8.7861 6.0009 30.0000 6.0000

2 8.6477 6.0001 18.5747 6.0000

3 8.5682 6.0000 29.9998 6.0000

4 8.3775 6.0006 17.3534 6.0008

5 8.1550 6.0000 15.4229 6.0005

6 8.0533 6.0030 15.9130 7.9993

7 8.1591 6.0910 15.9792 11.1179
8 8.4589 6.8847 16.5977 13.6690
9 8.6193 7.4527 16.4652 15.3635
10 8.7715 7.6903 16.5940 16.1257
11 8.5801 7.7683 17.1467 15.7670
12 8.6525 8.1049 16.8463 16.5977
13 8.5011 8.2039 17.4470 16.4653
14 8.3269 8.3350 17.8223 16.5934
15 8.2464 8.4235 18.7109 17.1544
16 8.0697 8.7110 18.4832 16.8390
17 8.0004 9.0106 16.9627 17.4464
18 7.8467 9.4610 15.9095 17.8224
19 7.8246 10.1045 14.5644 18.8539
20 7.7368 10.6701 13.8283 19.6055
21 7.5925 11.2530 11.0169 19.9997
22 7.3682 11.7971 11.5735 19.9999
23 6.9536 12.6091 12.0326 19.9999
24 6.7040 13.4245 12.5674 19.9998
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Table A-16: Optimal Hydrothermal generation (MW) for case 1 of test system 1 of
variable head hydrothermal system

Hour P, P, P, P, P,

1 79.7973 49.0061 0 131.8801 1109.32
2 79.3927 50.1639 43.5292 129.0270 1087.89
3 79.0387 51.2957 0 125.7437 1103.92
4 77.7373 52.9380 37.4242 121.6365 1000.26
5 75.9674 54.4995 42.2628 115.8283 1001.44
6 74.6619 55.5248 42.0011 163.8960 1073.92
7 74.9610 56.6535 42.7802 209.7731 1265.83
8 76.6787 62.1650 41.6644 252.8746 1566.62
9 77.7838 65.9683 41.8104 271.8340 1782.60
10 79.1114 67.7564 40.9661 278.4111 1853.75
11 78.7489 68.9033 38.9557 275.1930 1768.19
12 80.1994 71.5905 39.5975 282.2694 1836.34
13 79.6781 72.1369 38.3010 281.2003 1758.68
14 79.2573 72.8195 38.1722 282.2342 1727.52
15 79.5884 73.6734 35.5391 286.6439 1654.55
16 78.9796 75.6289 36.7765 284.1818 1594 .43
17 78.8516 76.9618 41.8592 288.8606 1643.46
18 77.9593 78.3512 45.1334 291.6388 1646.92
19 77.8291 79.6915 48.4354 298.8079 1735.23
20 77.0919 80.4924 50.2710 303.4720 1768.67
21 75.8005 81.3147 51.4605 304.7025 1726.72
22 74.1001 81.9619 53.9109 301.5554 1608.47
23 71.1238 82.8437 56.0420 297.2275 1342.77
24 69.4655 81.8843 57.7491 291.3201 1089.58

Table A-17: Optimal Hydro Discharge (x10*m”) for case 2 of test system 1 of variable head
hydrothermal system

Hour th th Qh3 Qh4

1 10.1845 6.1121 20.5536 6.3438
2 9.3545 6.0000 29.9857 6.0059
3 5.0934 6.0672 18.8188 6.0081
4 12.3025 6.9922 19.7814 6.0011
5 9.4396 6.9832 15.2970 6.3376
6 7.8835 6.3622 18.4255 11.1545
7 10.2721 8.2105 18.0212 8.7499
8 6.7694 6.0283 17.9212 9.3215
9 6.6014 6.9949 16.6465 15.9994
10 9.8394 6.6298 14.1732 14.6373
11 5.8365 8.0881 17.9684 19.8695
12 6.2467 6.7252 18.3894 15.9965
13 10.4311 6.0065 16.4035 15.9976
14 6.7118 6.0342 19.8262 13.0358
15 5.2117 8.9019 14.7661 19.6512
16 5.8669 8.0785 18.5218 18.0045
17 10.3436 13.0473 15.8221 18.0241
18 9.0289 8.2601 15.6486 18.1861
19 6.8068 10.6257 18.4059 18.1376
20 5.0351 13.1212 10.7805 18.6221
21 7.2673 9.9088 11.9574 18.0174
22 7.0480 12.8178 11.9622 20.0000
23 7.9655 10.0050 10.1140 19.8378
24 13.2600 13.2228 11.6386 19.6248
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Table A-18: Optimal Hydrothermal generation (MW) for case 2 of test system 1 of
variable head hydrothermal system

Hour P, P, P, P, P,

1 86.8344 49.7921 42.4872 136.4915 1054.39
2 82.7927 50.0996 0 128.7959 1128.31
3 53.2023 51.7131 38.2060 125.5285 1091.35
4 95.3572 59.6889 32.3296 121.2998 981.32
5 82.2469 60.718 45.8186 119.8371 981.38
6 72.3219 57.0068 36.5382 189.8853 1054.25
7 84.3272 69.3217 39.5418 180.8054 1276.01
8 63.8671 53.8113 40.4187 196.2406 1645.66
9 63.4079 61.0171 43.8752 273.675 1798.02
10 83.8010 59.0764 48.8933 261.1712 1867.06
11 58.8915 69.7213 40.9075 304.3079 1756.17
12 63.6159 61.3895 37.7617 274.8044 1872.42
13 90.3650 56.9064 44.1043 276.5894 1762.03
14 68.1055 58.0340 32.0219 249.5939 1792.24
15 56.4505 78.0365 46.5805 292.2578 1603.17
17 93.8183 96.3354 45.1644 292.7708 1601.91
18 86.3257 71.3305 44.6121 292.334 1645.39
19 70.6874 82.4647 36.9713 293.5957 1756.28
20 55.3803 89.5719 48.3725 293.5926 1793.08
21 74.3523 73.9104 52.4342 289.3438 1749.96
22 72.6529 84.7098 53.7410 299.7932 1609.10
23 79.4951 71.3102 53.2242 294.2187 1351.75
24 104.9608 81.7733 57.2461 291.4408 1054.58

Table A-19: Optimal Hydro Discharge (x10*m’) of test system 2 of variable head
hydrothermal system

Hour th th Qh3 Qh4

1 5.0000 8.1694 29.9825 10.6846
2 11.8249 6.0349 20.3834 8.1109
3 8.2756 9.3968 29.9993 6.0699
4 10.6764 7.1839 17.4356 6.5270
5 10.7913 6.1217 14.9166 7.0655
6 7.5122 6.0114 19.9168 12.2241
7 11.8929 7.1014 16.4236 14.2319
8 8.0364 8.9342 19.9639 6.3860
9 5.0000 7.0265 17.2913 14.8253
10 5.2012 6.0000 19.6801 13.3341
11 9.0382 7.4124 16.8647 18.8811
12 7.1895 6.0830 16.7021 17.6400
13 10.7560 8.4874 17.0601 18.0055
14 9.6444 9.6666 16.3546 18.8809
15 7.5333 10.1478 14.5476 16.8217
16 12.2331 9.0725 12.3182 19.4624
17 5.0001 9.8397 14.7639 16.0024
18 6.9996 10.8825 13.7793 20.0000
19 12.3816 14.8071 14.5850 20.0000
20 5.7002 9.2668 12.3534 14.4891
21 5.0013 6.0008 21.3704 15.8796
22 5.0078 9.1880 11.7756 12.9617
23 5.0002 6.0045 15.2021 13.6869
24 9.3038 13.1606 12.9722 19.9519
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Table A-20: Optimal Hydrothermal generation (MW) of test system 2 of variable head
hydrothermal system

Hour P, P, P, P, P, P, P,
1 525001 62.9911 0 188.4124  20.0000  40.0470  409.0353
2 949645 49.1472  36.0943 151.4483 20.0001  294.7080 139.9935
3 77.4693  70.7940 0 120.2516  174.9999 40.0626  229.7881
4  89.6264 57.8274  34.8294 121.7495 174.9999 40.0144  140.0427
5 88.6817 51.7208 43.1194 121.7213 20.0713  209.8746 139.7717
6 69.9013 51.9834 27.7926 202.2525 20.0027 294.7478 139.7384
7 90.0410 59.9969 42.2954 229.2022 102.8131 294.9635 140.0704
8 71.5381 70.3084  31.2740 155.4249 175.0000 294.7975 229.5029
9 499772 57.7790 39.9087 261.0326 174.9942 2947360 229.4873
10 53.0657 51.3073 31.4504 247.0815 102.6427 294.7893 319.3190
11 81.4462 62.5231 40.4364 298.9633 20.0014 294.7375 319.3074
12 70.7288  54.3802  40.1454 287.9098 102.6722 2947042 319.2878
13 915678 70.9632 38.1093 292.8062 20.0158 294.6822 319.3190
14 86.4941 77.0705 40.8922 298.1207 102.6981 294.7381 139.8472
15 743655 79.0482  45.0727 83.9845 102.6488 294.7742 139.7885
16 98.9002 729424  48.6283 302.6975 20.0008  298.7904 229.5013
17 542296 762645 49.2103 274.8114 174.9981 294.7637 139.6912
18 71.4333  79.2985 51.6777 304.2234 102.6951 294.7382 229.7389
19 100.2199 87.8464  53.8828 300.4273 102.7774 294.7563 140.0848
20 603478 63.3576  55.0328 254.1731 20.0000 294.7757 319.3300
21 542311 429424 345069 264.0216 175.0000 40.0042 319.0230
22 545201 64.1698 56.8181 236.6617 20.0000 294.7116 139.6709
23 547321 448122  58.1308 244.4422 20.0024  294.6434 139.7895
24 87.5753 80.9892  59.3598 292.6200 20.0004  125.0043 139.8794
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Table A-21: Optimal Hydro Discharge (x10*m") of test system 3 of variable head
hydrothermal system

Hour Ou Q> Qs 04

1 10.5900 7.2207 19.4370 6.0254
2 12.0523 7.7304 20.2455 8.5457
3 5.0001 6.0184 17.4557 6.0000
4 6.4478 6.3207 22.6585 14.8061
5 5.0000 11.1350 29.9287 7.6698
6 7.6269 9.9408 17.6070 10.8973
7 9.2146 9.5815 13.9492 12.4732
8 7.1216 6.0000 21.4589 6.0044
9 14.7220 9.4742 16.3758 16.8335
10 8.7003 6.0001 18.0804 15.0361
11 7.6528 9.7120 10.0203 12.3636
12 5.4338 7.2947 17.1649 16.8305
13 11.5460 6.0053 30.0000 12.6269
14 10.5001 10.4945 15.3613 18.1704
15 6.9555 10.5776 10.0003 17.1377
16 5.0000 10.6310 21.2541 19.9868
17 10.5398 9.0909 11.1185 19.9873
18 5.1753 6.0028 19.1245 15.2733
19 5.0000 6.0000 18.4536 19.9871
20 5.8448 6.0003 10.0100 19.2115
21 6.0854 9.8456 11.2876 17.9333
22 8.5236 11.1071 10.4763 14.4865
23 14.9775 7.8296 13.2974 19.9983
24 5.2899 11.9870 13.3435 18.2195
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Chapter: 7: NA

Chapter: 8

Table A-23: Generator data of IEEE 30-bus system

e 6B b ¢« )i y no 2

No. (MW) (MW) ($/h) (S/MWh) ($/MW2h (ton/h) (ton/MWh) (ton/MW2h) (ton/h) (1/MW)
1 50 200 0 2.00 0.00375 4.091E-2 -5.554E-4 6.490E-6 2.0E-4  2.857E-2

2 20 80 0 1.75 0.01750 2.543E-2 -6.047E-4 5.638E-6 5.0E-4  3.333E-2
5 15 50 0 1.00 0.06250 4.258E-2 -5.094E-4 4.586E-6 1.0E-6  8.000E-2
8 10 35 0 3.25 0.00834 5.326E-2 -3.550E-4 3.380E-6  2.0E-3  2.000E-2
11 10 30 0 3.00 0.02500 4.258E-2 -5.094E-4 4.586E-6 1.0E-6  8.000E-2
13 12 40 0 3.00 0.02500 6.131E-2 -5.555E-4 5.151E-6 1.0E-5 6.667E-2

Table A-24: Generator data of IEEE 57-bus system

Bus P2 PM™ a b c d e a Yij % n A

No. (MW) (MW) ($/h) (S/MWh) (S/MWZh) (8/h) (rad/MW) (ton/h) (ton/MWh) (ton/Mth)(ton/h) (1/MW)
1 0 600 O 2.00 0.00375 18.00 0.0370 4.091E-2 -5.554E-4 6.490E-6 2.0E-4 2.857E-3

2 0 500 0 175 0.01750 16.00 0.0380 2.543E-2 -6.047E-4 5.638E-6 5.0E-4 3.333E-3
3 0 500 O 3.00 0.02500 13.50 0.0410 6.131E-2 -5.555E-4 5.151E-6 1.0E-5 6.667E-3
6 0 500 O 200 0.00375 18.00 0.0370 3.491E-2 -5.754E-4 6.390E-6 3.0E-4 2.657E-3
8 0 650 O 1.00 0.06250 14.00 0.0400 4.258E-2 -5.094E-4 4.586E-6 1.0E-6 8.000E-3
9 0 500 O 175 0.01950 15.00 0.0390 2.754E-2 -5.847E-4 5.238E-6 4.0E-4 2.875E-3
12 0 500 O 3.25 0.00834 12.00 0.0450 5.326E-2 -3.555E-4 3.380E-6 2.0E-3 2.000E-3
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