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Abstract 
This dissertation addresses the problem of state estimation of dynamic systems which remains an 

active research area. Formally, ‘State Estimation’ may be defined as a technique to estimate the 

unmeasured states of a dynamic system by using the model of the system and all or some of the 

measured (output) variables. 

Observers as state estimators, though have been used fairly extensively, suffer from two 

shortcomings: firstly, the design methods of observers do not take cognisance of measurement 

noise; secondly, the accuracy of the (state) estimation may be severely affected if the dynamics 

of the actual system differs from what has been assumed or some of the excitation inputs are 

inaccessible. These shortcomings are overcome in stochastic state estimators (of which, the 

Kalman Filter (KF) is considered to be the most well-known). Stochastic state estimators take 

care of measurement noise by filtering it out to the extent possible and also admit modeling 

inaccuracies, which are treated as a different variant of noise, called “process noise”. Kalman 

filter and its descendants have built-in mechanisms to trade-off components of estimation error 

due to measurement inaccuracy and due to process model inaccuracy.  

The present work evaluates Kalman filters and its extensions for nonlinear models as well as their 

adaptive counterparts for practical problems and also proposes novel extensions. The nonlinear 

counterparts of KF include Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), 

Central Difference Filter (CDF), Divided Difference Filter (DDF), Gauss Hermite Filter (GHF). 

The present work also employs variants and extensions of Variable Structure Filter (VSF). 

In particular, adaptive nonlinear state estimators such as Adaptive Extended Kalman Filter 

(AEKF), Adaptive Unscented Kalman Filter (AUKF), Adaptive Divided Difference Filter 

(ADDF) and Adaptive Gauss Hermite Filter (AGHF) have been evaluated for aircraft tracking 

scenarios under model uncertainty and unknown noise statistics. Evaluations are carried out with 

fairly extensive Monte Carlo simulation and with a number of numerical metrics like time 

averaged RMS error, peak RMS error and rms of RMS error. For qualitative appreciation, time 

plots of RMS errors are also provided. 

The following modified and improved nonlinear state estimators have been proposed, 

characterized and evaluated (by cross-comparisons of performance) for civil aircraft tracking 

scenarios. These are: (i) A sigma point variant of Smooth Variable Structure Filter (SVSF) (ii) 

An adaptive version of Smooth Variable Structure Filter (ASVSF) (iii) An adaptive version of 

Interacting Multiple Model Filter (AIMM).  
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Monte Carlo simulation and the metrics mentioned above have been used for evaluating the 

proposed novel filters. Performance of the proposed enhanced state estimators have been 

compared with the existing EKF, UKF, DDF, GHF, SVSF and Interacting Multiple Model (IMM) 

state estimator.   

Salient contributions of the work of this dissertation are summarised as follows: 

o A systematic survey of current literature on nonlinear state estimation, including adaptive state 

estimator and variable structure state estimators were done. Also carried out a systematic study 

of the estimation of aircraft tracking scenarios which involve mode switching between linear 

and non-linear models.  

o The estimation performance of some standard linear and non-linear state estimators have been 

characterised, evaluated and benchmarked against, for single model adaptive estimator in 

tracking scenarios.   

o Evaluation of Adaptive nonlinear state estimators such as AEKF, AUKF, ADDF and AGHF 

has been carried out for tracking scenarios under model uncertainty and unknown noise 

statistics.  

o The following modified, enhanced and improved nonlinear state estimators have been 

proposed, characterized and evaluated (by cross-comparisons of performance) for civil aircraft 

tracking scenarios/ These are: 

i. A sigma point variant of Smooth Variable Structure Filter (SVSF) 

ii. An adaptive version of Smooth Variable Structure Filter (ASVSF)   

iii. An adaptive version of Interacting Multiple Model Filter (AIMM)   
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1 Introduction   

1.1 Background 

The problem of state estimation of a dynamic system remains an active research area in the domain of 

control systems since about half a century. A state feedback controller needs the information of the 

states of the system to be controlled. However, only a subset of the states could be directly available 

by measurement. This is because of the cost, physical accessibility and/or space constraints. To utilize 

the design freedom of state feedback based control, the non-measured states need to be estimated and 

made available to the controller to apply such control laws. State estimators have been found to be 

very useful for controlling many complex plants like chemical process, spacecraft, ships, 

manufacturing process etc.   

More formally, ‘State Estimation’ may be defined as a technique and implementation to estimate the 

unmeasured states of a dynamical system by using the dynamic model of the system and all or some 

of the measured (output) variables specific algorithms are required to “reconstruct” the states. 

State estimators may be broadly classified into deterministic and stochastic. Deterministic state 

estimators, generally called (state) observers do not specifically take into account the fact that 

measurements may often be noisy. Luenberger observer (Ogata and Yang 2002) is a popular state 

estimator for linear systems whereas ‘sliding mode observers’ (Floquet, Edwards and Spurgeon 2007) 

and ‘Walcott-Zak observers’ (Xiang, Su and Chu 2005) are well known nonlinear observers. Most 

state observers themselves are (simulated) dynamic systems which are excited by functions of 

estimation error as shown in (Ogata and Yang 2002).  

Observers as state estimators, have been used extensively though they have some shortcomings. The 

first one alluded above is that the design methods of observers do not take cognizance of 

measurement noise. The second one is that observers are designed based on a defined (nominal) 

model of the system dynamics (say a nominal state variable model), further, the excitation input to the 

system needs to be used by the observer. The accuracy of the (state) estimation may be severely 

affected if the dynamics of the actual system differs from what has been assumed or some of the 

excitation inputs were inaccessible. Observer design steps do not generally have inbuilt mechanisms 

to take care of inaccurate model of the dynamic systems. It is generally accepted that some trade-off 

mechanism is required to balance the component of estimation error due to measurement inaccuracy 

and the component for process model inaccuracy. In other words, some optimization is required. 
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Stochastic state estimators intrinsically take care of measurement noise and reduce such disturbances 

which are ‘filtered out’ probably, for this reason, state estimators are also called “filters”. With such 

filtering, the performance of state feedback based controllers generally improves.  

Further, stochastic state estimators can also admit modeling inaccuracies, which they treat as a 

different variant of noise, called “process noise”.  

Kalman Filter (KF) (R. E. Kalman 1961) is considered to be most well-known and also one of the best 

optimal state estimator for linear systems in presence of noisy measured data and inaccurate process 

model (Grewal 2011). A salient feature of Kalman Filter and its ‘descendants’ is the modeling and 

quantification of the inaccuracy in the process model by the so-named ‘process noise’ and its 

covariance respectively, as mentioned above. This feature would be discussed and utilized rather 

extensively in the present work. Though a time-continuous domain description of Kalman filter is 

available, the more popular version is the discrete time domain (Simon 2006) (Anderson and Moore 

1979) (Grewal 2011). In this dissertation, only the discrete time form of the Kalman and succeeding 

filters would be discussed.  It may be noted in passing that the Kalman filter has also been used for 

interpolation, smoothing and prediction of data sequences (like future courses of dynamic systems 

like trajectories of celestial bodies, prices of traded commodities, flows of the river during flood etc. 

(Zarchan 2005) (Grewal 2011) . 

Extensions of Kalman Filter have occurred in several directions, namely, for robust filtering (Xie, 

Chai Soh and Souza 1994) (Xie and Chai Soh 1994) (Gandhi and Mili 2010), for adaptive filtering 

(Das, et al. 2015) (Das, Sadhu and Ghoshal 2013) (Dey, Sadhu and Ghoshal 2014) (Dey, Sadhu and 

Ghoshal. 2013), for coordinating distributed measurement (federated Kalman filter) and also for 

nonlinear plants by the so-named Extended Kalman Filter (EKF) (Felter 1990). 

In the direction of extension of Kalman Filter for nonlinear plants, several extensions of the KF are 

available in the literature, some of which are enumerated in the following table. 

Table 1.1 Extensions of Kalman Filters 

 Estimators Proposed by Text Book/ Recent 

publication 

1 Unscented Kalman Filter 

UKF  

Julier and Uhlman (Julier and 

Uhlmann 1997) 

(Ristic, Arulampalam 

and Gordon 2004) 

2 Central Difference Filter, 

CDF/DDF-1 

Tor Steinar Schei (Schei 1997) (NøRgaard, Niels K, & 

Ravn, 2000) 
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3 Divided Difference Filter 

DDF-2 

NøRgaard, Niels K, & Ravn 

(NøRgaard, Niels K, & Ravn, 

2000) 

 (Ahmadi, Khayatian and 

Karimaghaee 

2012)(NøRgaard, Niels 

K, & Ravn, 2000) 

4 Gauss Hermite Filter (GHF) Kazufumi Ito and Kaiqi Xiong (Ito 

and Xiong 2000) 

(Ito and Xiong 2000) 

5 Gaussian Sum Filter QKF Alspach, Daniel, and Harold 

Sorenson. (Alspach 1972)   

(Arasaratnam, Haykin 

and Elliott 2007) 

6 Cubature Quadrature filter 

(CQF) 

Ienkaran Arasaratnam and Simon 

Haykin (Arasaratnam and Haykin 

2009) 

(Jia, Xin and Cheng 

2013) (Bhaumik 2013) 

Apart from the above, several more approaches have been suggested to improve the accuracy of such 

estimators (i) to increase the robustness (ii) for a system with grossly inadequate modeling 

information etc.  

The present work also employs variants and extensions of Variable Structure Filter (VSF) and 

adaptive state estimators, discussed briefly below. 

Sliding mode observers (Floquet, Edwards and Spurgeon 2007), based on the concept of Sliding 

Mode Control (Utkin 1993) have been found to possess robustness against modeling errors but do not 

explicitly take care of measurement noise.  Another variant called  VSF   (Habibi, Burton and 

Chinniah 2002) is structured in the predictor-corrector format (like Kalman Filtering technique) for 

the robust state estimation of dynamic system. It was first introduced in the literature in 2002  (Habibi 

and Burton 2002) for linear discrete-time system and has been subsequently extended in other 

publications discussed in later chapters.  

Adaptive State Estimators (Mohamed and Schwarz 1999) are useful when the process noise 

covariance or/and measurement noise covariance. Recently some extensions of adaptive estimators 

for nonlinear systems have also been published (Cao and Kai 2016) (Das, et al. 2015).  

The literature survey chapter of this dissertation will review some of the above types of nonlinear 

filters with adaptivity and/or robustness as also some applications. 

Such estimators are used in numerous complex applications, such as object tracking, control and 

navigations, guidance, fault-tolerant systems, automotive system etc. to estimate state and parameters.                          
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1.2 Motivation  

The original broad motivation of the present worker had been to contribute to the body of knowledge 

in nonlinear state estimation specifically for cases where the model error is present i.e. knowledge of 

the process is not accurately known. This is because a number of nontrivial and interesting 

applications could be found in literature where an accurate model of the plant is not available. The 

unknown and inaccurate process models in such cases have been characterized by state variable 

models with unknown parameters and/or unknown process noise covariance.  

Regarding inaccurate model, there could be two possible situations; in first case an accurate model is 

too complex and unwieldy for state estimation, in second case the dynamics of the plant cannot be 

completely modeled due to the very nature of the problem. Example of the second type of situation is 

tracking of manned (by a remote pilot or a pilot in the cockpit) aircraft where the inputs by pilots 

cannot be modeled a priori. Though one may try out “unknown input observers” for such situations, 

practical applications do not seem to favor such approach due possibly to the inherent shortcomings of 

nonlinear observers.  

For systems with unknown process noise, the classical approach had been to manually tune the state 

estimators. To explore this approach, a systematic tuning exercise was carried out on Kalman filters 

for aircraft tracking scenario (as described in a later chapter) which provided some valuable insight 

into the tracking problem. From the study, it has been found that proper tuning of process noise 

covariance (Q) is required to handle model error or uncertainty to improve estimation accuracy. This 

motivated the present worker to study and explore the possibility of using Q-adaptive state estimators 

to handle such a situation.  

In the course of literature survey, further interesting patterns emerged. In contrast to linear problems, 

tuning of nonlinear estimators appeared to be rather problematic. On the other hand, adaptive 

estimators which automate the tuning process did not appear to be as developed as linear adaptive 

estimators. So designing nonlinear adaptive observers suited to the particular application also 

appeared to be challenging. 

Adaptive Extended Kalman Filter (AEKF) (Almagbile, Jinling, & Weidong, 2010). (He, Xiong, 

Zhang, Sun, & Fan, 2011), Adaptive Unscented Kalman Filter (AUKF) (Jiang, Song, He, & Han, 

2007) (Song & He, 2009), Adaptive Divided Difference Filter (ADDF) (Dey, Sadhu and Ghoshal. 

2013) (Das, Sadhu, & Ghoshal, 2013) are some of the nonlinear adaptive filters exist in the literature. 

These nonlinear adaptive estimators are single model adaptive estimators which adapts noise 

covariance automatically.    
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Further, the aircraft tracking problem is also considered from the viewpoint of hybrid systems where 

the plant model varies following unknown sequences. Hybrid systems are generally defined by a 

known or unknown sequence of modes, each having potentially different dynamics.  An Aircraft 

tracking system with an unknown sequence of mode changes (or a switched system) suffers from a 

more complex form of model uncertainty and poses further challenges. 

 Several approaches have been taken for such system whose states are to be estimated. Interacting 

Multiple Model (IMM) (Bar-Shalom, Chang, & Blom, 1989) state estimator is one of the popular 

state estimators for such switched system (or, Hybrid system). IMM estimators are sometimes referred 

as multiple-model (adaptive) state estimators. Also, several types of other multiple-model (adaptive) 

state estimators have been proposed and evaluated for tracking aircraft targets. Subsequent to the 

maturity of the Interactive Multiple Model algorithm several types of new nonlinear estimators have 

been proposed. Some of these estimation algorithms are claimed to be robust. Other estimators can 

apparently be cast in the form of single model adaptive state estimators. However, such recently 

proposed nonlinear state estimation methods have not been sufficiently characterized for systems with 

inadequate or inaccurate dynamic model or for hybrid systems.  

Thus the above challenges and “grey areas” in nonlinear state estimation for hybrid systems with 

inaccurate dynamic model motivated this worker to carry out further research so as to be able to make 

non-trivial contribution in this area.                       

1.3 Objective 

The objective of the present work may be articulated as follows: 

1. To evaluate existing nonlinear state estimators like robust (e.g. SVSF) state estimators, single 

model adaptive estimators and Interactive Multiple Model (IMM) estimators for (hybrid) 

systems with inaccurate process model as exemplified by maneuvering aircraft tracking 

problems. 

2. To enhance SVSF and IMM estimators so as to obtain better state estimation performance. 

3. To evaluate and compare the performances of the enhanced estimators with the already 

reported state estimators mentioned in (1) above. 
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1.4 Contribution 

Salient contributions of the work of this dissertation are as follows: 

o A systematic survey of current literature on nonlinear state estimation, including adaptive 

state estimator and variable structure state estimators. Also carried out a systematic study of 

the estimation of aircraft tracking scenarios which involves mode switching between linear 

and nonlinear models.  

o The estimation performance of some standard linear and nonlinear state estimators have been 

characterized and evaluated and benchmarked against for single model adaptive estimator in 

tracking scenarios.   

o Evaluation of Adaptive nonlinear state estimators such as AEKF, AUKF, ADDF and AGHF 

has been carried out for tracking scenarios under model uncertainty and unknown noise 

statistics.  

o Following modified, enhanced and improved nonlinear state estimators have been proposed, 

characterized and evaluated (by cross-comparisons of performance) for civil aircraft tracking 

scenarios. These are: 

i. A sigma point variant of Smooth Variable Structure Filter (SVSF) 

ii. An adaptive version of Smooth Variable Structure Filter (ASVSF)   

iii. An adaptive version of Interacting Multiple Model Filter (AIMM)   

1.5 Organization 

Rest of this dissertation is organized as follows: 

The literature survey is presented in the next chapter. The 3rd chapter discusses model and case 

studies. Existing adaptive Q Adaptive Filters are evaluated with the case studies in the 4th chapter. 

Algorithm of Sigma-Point Variable Structure Filter was presented in chapter-5. Adaptive Smooth 

Variable Structure Filter is presented in the 6th chapter. Adaptive Interacting Multiple Model is 

presented in chapter-7. Conclusion and discussions of the work are given in the last chapter. Appendix 

section provides (i) pragmatics for process noise tuning in linear and nonlinear estimators (ii) 

parameter estimation by linear and nonlinear state estimators. 
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2 Literature Survey 

2.1 Chapter Introduction  

This chapter provides a brief review of recent literature on state estimators and also selected problem 

domains, both of which form the core of the present work. Established state estimation methods 

available in textbooks are mostly skipped and the emphasis has been on nonlinear Adaptive and Robust 

estimators.  

After a subsection on general aspects of nonlinear state estimation, adaptive state estimators are 

surveyed in the next section, which is followed by Variable Structure Filters in section 2.3. Interacting 

Multiple Model (IMM) state estimators are covered in section 2.4. and problems of tracking of 

maneuvering targets are reviewed in the section 2.5. Finally, salient findings from the survey have been 

mentioned in section 2.6. 

2.1.1 Problem Formulation 

State estimation is carried out on the basis of known, nominal or approximate dynamic model of the 

plant or system. The objective, of course is to estimate the values of the state variables at time instants, 

given the sequence of measurements up to the present. 

For linear systems, the equations describing the system take the form:  

  kkkkkk wuGxFx 1  (2.1.1) 

 
kkkk vxHy   (2.1.2) 

where, xn
k Rx   is the continuous vector-valued state vector at time step k  and yn

k Ry  is the vector-

valued noisy measurements at each time step k .  The vector un

k Ru   represents the  (known, 

deterministic) input ku . The uncorrelated white Gaussian process and measurement noise are 

represented as un

k Rw  and yn

k Rv  with their covariances kQ and kR respectively.  

The optimal state estimators for such system is the well-known Kalman Filter  (Simon, 2006) (Grewal, 

2011). Literature survey about state estimation must begin with the recursive Kalman filter which may 

be shown to be optimal for the linear model with Gaussian noise. Even for non-Gaussian noise, a KF 

happens to be the best linear filter  (Anderson & Moore, 1979). Target tracking community had earlier 
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used weaker forms of KF called alpha-beta filter, alpha-beta-gamma filter (Brookner, 1998) and fading 

memory filter. Though proposed in 1960, the Kalman filter is still popular as a practical and viable 

method for many systems which were not strictly within the linear Gaussian domain. 

For linear systems with Gaussian noise, the estimated states would also have a Gaussian distribution. 

This permits description of the estimate in terms of mean, which is called “the estimated value of state” 

and the covariance which is called error covariance P. 

The commonly used nonlinear discrete state equation with additive inputs is represented as 

    kkkkkk wugxfx ,1   (2.1.3) 

   kkkk vxhy   (2.1.4) 

The functions       kkk hgf ,,,  may depend on the time step k. For time-invariant functions, the 

subscripts may be omitted. In subsequent developments, the known input 
ku  is omitted. 

The generic family tree for state estimators is shown in Fig 2.1, which is applicable to both linear and 

nonlinear systems. The first branch of the tree is called ‘known model’. Here, both the plant dynamic 

model and the noise statistics are assumed to be known. The other branch includes situations where the 

plant dynamic model is approximate and/or noise statistics are not known. The unknown model 

situation may be handled by one of the alternatives, viz., robust filters and adaptive filters. Robust filters 

may produce acceptable state estimation even if the modeling (both dynamics and noise model) is 

inaccurate. Adaptive filters, on the other hand, adjust filtering parameters (as in single model adaptive 

filters) or equivalent means (as in multiple model adaptive filters) to evolve and provide an acceptable 

estimation.  

While the adaptive and robust filters would be discussed in greater details in subsequent sections of this 

chapter, we continue this discussion assuming the model and the covariances are known. It may be 

pointed out that nonadaptive (single model) estimators form the kernel of most adaptive estimators (Fig 

2.3). Hence these are very briefly reviewed before taking up robust and adaptive filters. 
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Figure 2.1 Generic family tree for state estimators 

2.1.2 General Aspects of Nonlinear State Estimators  

Even when the parameters of the dynamics and the noise statistics are known, nonlinear system poses 

several other problems. Firstly, for nonlinear systems even with Gaussian noise, the probability 

distribution of the error is usually non-Gaussian. This must be taken into account in state estimator for 

nonlinear systems. Secondly, the steps of state estimation are more involved as shown below. 

As the probability distribution of error is most likely to be non-Gaussian, one should strictly know the 

probability distribution by applying the Bayes’ Theorem. In fact, many of the nonlinear state estimation 

methods, especially the numerical integration based types may be appreciated in the light of Bayes’ 

Theorem (Anderson & Moore, 1979) (Ristic, Gordon, & Arulampalam, 2004) (Afshari, 2014). Though 

Kalman filter may be derived without taking recourse to the Bayes Theorem, it may be shown that KF 

may also be derived, albeit more rigorously, from Bayes’ Theorem.  

With Bayesian paradigm the state estimation problem is formulated as the determination of conditional 

a posteriori probability density of the states denoted by )|( 11  kk Zxp , where  1211 ,,,   kk yyyZ 

is the sequence of noisy measurements. This can be recursively carried out in two steps using the state 

a priori PDF )|( kk yxp . {Starting with the initial PDF of the state )|()( 000 yxpxp  }. The two steps 

are variously known as prediction and update or time projection and measurement update. The time 

update of the PDF for the estimated state is given by the Chapman-Kolmogorov equation as 

State 
estimators

Known model
Approximated 

model

Adaptive 

Single model 
adaptive

Multiple model 
adaptive

Robust 
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         kkkkkkk dxZxpxxpZxp ||| 111  (2.1.5) 

Note that for Kalman filter, as the distribution is known to be Gaussian, the above step consists of time 

update of mean and covariance kkx |1  and kkP |1   .         

The first term in the above integrand can be obtained using the system model. The second term is 

obtained from the previous ( thk ) step following the process shown below. 

The measurement update step can be obtained from  

 
 

   
 kk

kkkk
kk

ZZp

ZxpxZp
Zxp

|

||
|

1

111
1




   (2.1.6) 

The first term in the numerator is the likelihood function and can be obtained from the measurement 

equation. The second term in the numerator is the time update PDF described above whereas the 

denominator is the normalizing constant given by 

       kkkkkkk dxZxpxZpZxp    ||| 1111  (2.1.7) 

From the above a posteriori PDF, a theoretically optimal state estimate may be computed by minimum 

mean square error (MMSE) method (Ristic, Gordon, & Arulampalam, 2004) (Afshari, 2014) or by 

maximum a posteriori (MAP) method.  

However, the integration involved in Bayes Theorem for nonlinear systems often become intractable, 

and approximations may have to be carried out to perform those integrations. A very powerful method 

of state estimation which has almost no restrictions has recently been proposed and it goes by the name 

of particle filters (Ristic, Gordon, & Arulampalam, 2004). Another closely related method is 

approximate grid based filters (Bhaumik, 2013). In this literature survey, we would skip discussions 

about these two types of state estimators which are extremely numerically intensive (except for in the 

context of some applications) and not suitable for on-board applications.   

Approximations may be carried out by adopting one of several possible approaches. The first approach 

is local linearization where the nonlinear equation is approximated by a few terms of Taylor series or 

equivalent methods like Sterling interpolation formula (Ito & Xiong, 2000). This approach assumes that 

the distributions remain close to Gaussian despite such nonlinearity and leads to several estimation 

techniques such as the extended Kalman filter (EKF), and the central difference filter (CDF). Simplest 
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among this class is EKF (Simon, 2006) (Ristic, Gordon, & Arulampalam, 2004) and its variants like 

second order EKF (Simon, 2006) (Anderson & Moore, 1979), iterated EKF (Ristic, Gordon, & 

Arulampalam, 2004), linearized approximation (Brown & Hwang, 1992). 

Another approach is approximating the non-Gaussian PDF into a sum of several Gaussian PDFs. This 

class of filter is known as the Gaussian sum filter. In Gaussian sum filters (Anderson & Moore, 1979), 

the posterior densities are approximated by a series of Gaussian distributions with different covariances. 

A version of the same is called statistically linearized filter (SLF) (Sarmavuori & Sarkka, 2012). The 

third alternative is carrying out a numerical integration by deterministic or statistical approximations. 

Nonlinear filters with known model may be classified in many different ways (Ristic, Gordon, & 

Arulampalam, 2004) (Afshari, 2014) but for the present literature survey, the classification (which is 

different from other publications) as in Fig 2.2 would be more appropriate. The simplest among this 

class is the function approximation based filter. The “function” might mean the combination of the state 

model and the measurement model. approximation of this “function” corresponds to the previously 

described EKF family and the DDF family. The “function” may also mean the probability distribution 

function and the approximation for the same may be carried out with the help of so-named sigma point 

(Julier & Uhlmann, 1996) (Julier & Uhlmann, 1997) (Julier, Uhlmann, & Durrant-Whyte, 2000) (Julier 

S. J., 2002) . It has been shown (Lefebvre, Bruyninckx, & Schuller, 2002), (Lefebvre, Bruyninckx, & 

Schutter, 2004)that both these forms are equivalent and the sigma point filters are, in effect, statistical 

linear regression of the state and measurement dynamics and the common term linear regression 

Kalman filter (LRKF). Accordingly, in this survey, no distinction would be made between LRKF and 

sigma point Kalman filter (SPKF) families.  

It may be noted that LRKF/SPKF types of state estimators had been introduced to overcome the main 

drawbacks of EKF and EKF family-based approaches viz., the requirement for calculating derivatives, 

filter divergence, inconsistency (Zarchan, 2005) including optimistic estimation of error covariance. 

Accordingly LRKF/SPKF groups of estimators are also called derivative free (NøRgaard, Niels K, & 

Ravn, 2000) nonlinear state estimators. According to (Sarmavuori & Sarkka, 2012), many of such 

LRKF based methods can also be interpreted as numerical approximations to the statistically linearized 

filter (SLF). Another possible approach is by extending the SLF method as in Fourier-Hermite Kalman 

filters (Sarmavuori & Sarkka, 2012) to improve estimation accuracy for more severe nonlinearity. 
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Figure 2.2 Nonlinear filters with known model 

Not included in the family tree is (a) variable structure filter (VSF) including smooth variable structure 

filter (SVSF) (b) ordinary multi-model filters (Li & Bar-Shalom, 1993) (Mazor, A., Averbuch, & 

Dayan, 1998)and interacting multiple model (IMM) filters. Interestingly, both types of multiple model 

filters are sometimes called “variable structure filter” (Gadsden, Habibi, & Kirubarajan, 2014) 

(Gadsden, Habibi, & Kirubarajan, 2012)and “adaptive filter” (Das, Sadhu, & Ghoshal, 2013) (Dey, Das, 

Sadhu, & Ghoshal, 2015). 

2.2 Adaptive State Estimation of Nonlinear Systems 

Adaptive state estimators are generally designed to adapt the parameters used in the estimator’s 

algorithm according to the unwanted changes in the actual systems or measurement.  Plant noise, or 

process noise and measurement noise have been major consideration for optimal filters like Kalman 

Filter. The adaptive state estimators are focused to adapt the mainly the noise statics of process and 

measurement.  

Broadly adaptive filters are classified into two categories: (i) adaptation of noise statistics and (ii) 

adaptation of the structure of estimators also called Multiple Model Estimator   

The noise adaptations are done based on (a) innovation or (b) residual. The method is applied to estimate 

the noise covariances of the measurement or the system. To realize that, a moving window is set to store 

the previous instances of the sequence of innovation or residual to calculate the estimated noise 

covariances. Some methods are available to adjust process and measurement noise based on fuzzy logic. 
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On the other hand, Multiple Model Estimators are based on more than one filter running in parallel in 

different mode to match the statistical information of the truth model.       

However, in this work the adaptive state estimators are basically referred to adapt the unknown or 

inaccurately known noise statistics only. 

 

Figure 2.3 Generic diagram for an adaptive filter  

2.2.1  Process noise and measurement noise adaptation 

2.2.1.1 Linear Estimators 

In (Sage & Husa, 1969) some preliminaries algorithms for linear adaptive state estimators are reviewed. 

In 1972, R K Mehera explains the four categories of adaptive estimators: Bayesian, maximum 

likelihood (ML), correlation and covariance matching (Mehra R. , 1972). Also in   (Mehra R. , 1972) 

new algorithms of adaptive estimation of optimal Kalman Gain when process noise covariance (Q) is 

not known accurately have been proposed. An Adaptive Extended Kalman Filter was proposed in 

(Maybeck, Jensen, & A. Harnly, 1981) for target tracking applications. Next year, in (Stallard, 1982) 

process noise adaptation for Kalman Filter was demonstrated and evaluated in a Ship tracking case. An 

approach of robust estimation of Kalman Filter by noise covariance adaptation was presented in (Tsai 

& Kurz, 1983). ML-based process and measurement noise covariance estimation for Extended Kalman 

Filter to estimate the attitude of spacecraft were presented in (Mehra, Seereeram, Bayard, & Hadaegh, 

1995). Adaptive Kalman filtering for linear system was summarised and applied to Inertial Navigations 

System in (Mohamed & Schwarz, 1999).   

2.2.1.2 Nonlinear and Sigma Point estimators 

Adaptive Extended Kalman Filter was experimentally validated for localization of mobile robot in 

(Jetto, Longhi, & Venturini, 1999) . R-Adaptive Extended Kalman Filter was applied to estimate the 

state of the charge of lead-acid batteries in (Han, Kim, & Sunwoo, 2009).  Evaluation of the performance 

Innovation/residual
Compuation of 

Variance -
Covariance Matrix

Computaion of Q/R Kalman Filter
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of residual and innovation based adaptive Kalman filter for R and Q based on ML and scaling factor 

provided in (Almagbile, Jinling, & Weidong, 2010).  

Applications of adaptive EKF to estimate state of charge in lithium battery are found in (He, Xiong, 

Zhang, Sun, & Fan, 2011), (Xiong, H., F., & K, 2013), (Xiong, X., C. C., & F, 2013), (Sepasi, Ghorbani, 

& Yann Liaw, 2014). 

The extension of noise statistics adaptation to the nonlinear sigma point filters such as Unscented 

Kalman Filter (UKF) was presented in (Jiang, Song, He, & Han, 2007) . Fading factor based adaptive 

Unscented Kalman Filter was presented in (Soken & Hajiyev, 2009). Some nonlinear applications of 

adaptive Unscented Kalman Filter were found in (Han, Song, & and He, 2009), (Song & He, 2009), 

(Wu, Ma, & Tian, 2010), (Bisht & Singh, 2014), (Partovibakhsh & Liu, 2015), (Zhang, Shi, & Ma, 

2015), (Dróżdż & Szabat, 2016), (Cao & Kai, 2016).  Joint estimation of state and parameter for a 

nonlinear system with Q-adaptive Divided Difference Filter (ADDF) was proposed by (Dey, Sadhu, & 

Ghoshal., 2013). Residual and innovation based adaptive sigma point filters, AUKF and adaptive 

Central Difference Filter (ACDF) were evaluated in (Das, Sadhu, & Ghoshal, 2013). The adaptive 

Gauss Hermite Filter was proposed by (Dey, Sadhu, & Ghoshal, 2014) to estimate time-varying 

parameter of the system with unknown process noise. Adaptive Square-Root Cubature–Quadrature 

Kalman Particle Filter was proposed by (Kiani & Pourtakdoust, 2014) for satellite attitude 

determination using vector observations. The extension of noise covariance adaptation to Unscented 

Information Filter was presented in (Dey, Das, Sadhu, & Ghoshal, 2015). R adaptive CDF was proposed 

in (Das, Dey, Sadhu, & Ghoshal, 2015) for state and parameter estimation of ballistic target tracking 

problem for unknown measurement noise.  

2.2.1.3 Some Recent developments  

An enhanced adaptive unscented Kalman filter (AUKF) based on adaptive Kalman filter combined with 

particle swarm optimization for fault detection of actuators onboard satellites, proposed in (Rahimi, 

Dev Kumar, & Alighanbari, 2015).  A new covariance matching based AUKF for INS/GNSS system 

for adaption of process noise was presented in (Meng, Gao, Zhong, Hu, & Subic, 2016). An estimation 

scheme based on AUKF and least-square support vector machines (LSSVM) was proposed in (Meng, 

Luo, & Gao, 2016) to estimate the state-of-charge of lithium polymer battery.  A novel robust 

Masreliez–Martin UKF which can provide reliable state estimates in the presence of both unknown 

process noise and measurement noise covariance matrices was proposed in (Li, Sun, Jia, & Du, 2016). 

A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter for robotic 

manipulator was presented in (Hagh, Asl, & Cocquempot, 2017). A new approach was proposed in 
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(Rahimi, Dev Kumar, & Alighanbari, 2017) for improving parameter estimation with adaptive 

unscented Kalman filter by adapting the covariance matrix to the faulty estimates using innovation and 

residual sequences combined with an adaptive fault annunciation scheme.  

2.2.2  Multiple Model State Estimator 

Multiple Model (MM) state estimators were introduced to adapt structural and parameter changes in the 

system. Multiple Model estimation algorithms (Jitendra K, 1982) had a fixed structure initially. The 

approach is a model based hybrid state estimation technique where more than one model is used in the 

filter algorithm for state estimation of a dynamical system whose behaviour changes rapidly. The 

Interacting Multiple Model (IMM) estimator consists of running a standard filter for each model 

(mode), a model probability evaluator, and an estimate combiner at the output of the filters. Each filter 

of IMM uses a mixed estimate at the beginning of each cycle (Bar-Shalom, Chang, & Blom, 1989). 

Detailed literature survey of IMM is given in the section 2.4.  

2.3 Variable Structure State Estimators 

2.3.1 Early forms of V S State estimators 

Based on the concept of variable structure observers the so-named Variable Structure Filter (VSF) were 

introduced 2002 (Habibi, Burton, & Chinniah, 2002). The departure from the observer format was 

characterized by two important criteria. (i) Recognition of process noise and measurement noise in the 

plant. (ii) The filter algorithm cast into the familiar predictor-corrector format (like Kalman Filtering 

technique). This type of filter was described in (Habibi, Burton, & Chinniah, 2002) (Habibi & Burton, 

2002) for a linear discrete-time system. 

The main objective was to estimate the states of a linear dynamical system from noisy measurements 

and also in the presence of process noise. VSF assumes the noise sequences of the system are 

uncorrelated but the theory doesn’t prescribe to be normal distributions. The problem is described by 

the following set of the equation where kw  and kv represent respectively process and measurement 

noise sequences. The discrete variables 1kx , kz , as also the matrices A, B and C have their usual 

meanings.  

 
kkkk wBuAxx 1  (2.3.1) 

 
kkk vCxz   (2.3.2) 



Ph.D. Thesis,  Nilanjan Patra  2. Literature Survey 

 

16 

 

Like Kalman Filter it uses a similar strategy of using a priori 1| kkx


, a posteriori kkx |


states and a priori 

measurement 1|
ˆ

kkZ for the calculation of gain 1|1  kkK for corrections for a given linear system 

described in Equation.  

   1

|1|11|1:


  RHHPHPKgainKalman T
Kk

T
Kkkk  (2.3.3) 

    
kKkK

z
ABSABSABS

zkk eRAVCAIeYCKgainVS
|1|1

sgn: max
1

max
111

1|1








  

   (2.3.4) 

In the sliding mode control a switching gain is used to push the system’s state towards a surface called 

‘sliding surface’ (a hyperplane) and after reaching the surface the states start sliding along it to converge 

to the operating point within a finite time.  

Whereas, the Variable Structure Filter uses a ‘discontinuous component’ which differs from the 

previously reported sliding mode observers (Habibi & Burton, 2002). The corrective gain is a function 

of the a priori output estimation errors, the modeling uncertainties, and the initial conditions (Fig 2.4). 

The calculation of gain considers upper bound for the unmodeled dynamics in the system. 

The stability of the VSF with the derivation of correction gain and an application of the algorithm to an 

uncertain linear system are also provided in (Habibi & Burton, 2002).  

 

Figure 2.4 SVSF Concept 
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However, VSF suffers from a few disadvantages. The estimator can only be applied for the linear 

systems. VSF yields non-optimal results and often produces chattering in the estimates, which may be 

undesirable for certain applications (Gadsden & Hamed, 2015).  

2.3.2 Extended Variable Structure Filter 

The Variable Structure Filter described above has been developed for linear plants. The next big 

development comes in 2007 with the introduction of Extended Variable Structure Filter (Habibi S. , 

2006). The EKVSF is the extension of VSF for the state estimation of nonlinear systems. 

A nonlinear system can be described as 

 
kkkk wuxfx  ),(1  (2.3.5) 

 
111 )(   kkk vxhy  (2.3.6) 

Where f and h  are system and measurement functions respectively. w and v are representing the 

process and measurement noise.      

In (Habibi S. , 2006) the nonlinear system equations have been linearized for the use in EKVSF 

estimator. The nonlinear approximation has been done by taking Jacobian of the nonlinear functions f 

and h described in the equations (2.3.7) and (2.3.8). The Jacobians are computed as given in the as 

follows 

 

kkk uxx

k
x

xf
F

,ˆ |

)(ˆ




  (2.3.7) 

 

kkxx

k
x

xh
H

|1ˆ

1

)(ˆ







  (2.3.8) 

EKVSF also considers the system to be observable and the nonlinear function to be smooth and 

differentiable. It also assumes the output matrix to be constant in its linearized form, i.e., Hk =H. The 

computation process of the corrective term of EKVSF is similar to VSF. The main advantage of the 

EKVSF is that it can be applied to the nonlinear system. The disadvantages of EKVSF are found to be 

similar to Extended Kalman Filter (EKF). The nonlinear approximation (truncating the higher order 

terms of Taylor series) makes the estimate inaccurate as compare to VSF. Numerical computation of 

Jacobians increases the complexity of the algorithm. The stability condition and the proof are also given 
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in the paper. The application of the algorithm is demonstrated by applying the algorithm to a nonlinear 

robotic arm.      

2.3.3  Smooth Variable Structure Filter (with boundary layer) 

The smooth variable structure filter was presented in (Habibi S. , 2007). The name ‘smooth’ refers to 

the smooth nonlinear dynamical system. The smooth variable structure filter (SVSF) can be applied to 

both linear and nonlinear systems. The SVSF has a secondary performance indicator for detecting 

modeling errors. Like VSF, SVSF also uses the predictor-corrector format. A ‘smoothing boundary 

layer’ is used for the discontinuous function of the gain term. The chattering is filtered out by using a 

smoothing function with a known boundary layer around the switching function.  

The replacement of )(vecsign by a smoother function ),( vecsat in the gain of the estimator is also 

suggested for the SVSF. The choice of width of the smoothing boundary layer (ψ) is important as 

chattering depends on it. If the width of the smoothing boundary layer (ψ) is greater than the existence 

boundary layer (β) then the effect of chattering is removed and for   chattering increases. One 

conservative choice of ψ would be assigning the value of the upper bound of the existence subspace i.e.

  .  

The corrective gain for SVSF was derived by following the condition given in Eq 2.3.9 

 
ABS

z
ABS

z
ABS

k
ABS

z kkkkkk
eeKHe

1|11|1|

ˆ


  (2.3.9) 

Where,  

 
kkkz zze

kk |
ˆ

|
  (2.3.10) 

 
1|

ˆ 
1| 
 kkkz zze

kk
 (2.3.11) 

Note that the above condition assumes the output matrix (H) to be linear or has been linearized. The 

usual practice has been to keep H as a square and identity matrix, where the number of states (n) is 

equal to the number of measurements (m). But in real applications, there are scenarios where the 

available measurements are fewer than the number of states, i.e. nm  . In (Habibi S. , 2007) the SVSF 

methodology has been demonstrated for a case where nm 
 
by using Luenberger reduced order 

observer additionally to get the output matrix full rank.    
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In (Habibi & Burton, 2007) application of SVSF for state and parameter identification of 

electrohydraulic actuator with linear measurement has been presented. A comparative study of SVSF 

and Extended Kalman Filter for nonlinear system model was demonstrated in (Wang, Habibi, & Burton, 

2008). The method of transformation in order to obtain the full state observer form of SVSF was also 

given in (Wang, Habibi, & Burton, 2008). The performance of SVSF has been shown to be more robust 

than EKF (Wang, Habibi, & Burton, 2008). SVSF was applied to a target tracking application (Gadsden 

& Habibi, 2009) for both linear and nonlinear estimation problem and performance has been evaluated 

in the presence of an outlier. SVSF was used for the robust estimation of sideslip angle of lateral 

dynamics of the vehicle in (Huang & Wang, 2013). 

2.3.4 Variable Structure Filter combined with other Estimators  

Variable structure Filter (VSF) is found to be more robust against modeling uncertainty and 

disturbances (Habibi S. , 2007) as compared to the Kalman Filters for linear systems. On the other hand 

Kalman Filters are optimal for a known linear system. Utilizing the robustness of VSF and optimal 

estimation of KF, the effort was given to form a combined structure for robust estimators with improved 

accuracy.  

In (Habibi S. , 2008) VSF was combined with EKF for improved performance and applied to a 

parameter tracking problem in a noisy and uncertain system. A user-defined boundary layer was 

introduced to make a decision to use estimator’s gain (either VSF or EKF) to be used for the state 

estimation. If a large error occurs (due to model error or uncertainty) in a priori and a posteriori, the 

VSF dominates and for lesser error EKF’s gain used in the correction term.  

2.3.5  Derivation of Covariance in SVSF      

Kalman filter (KF) needs a priori covariance, kkP |1  for the derivation of Kalman gain (Simon, 2006). 

Kalman Gain equation, for instance, is as follow 

   1

1|1|11



  k
T

kk
T

kkk RHHPHPK  (2.3.12) 

Where, 1kR refers to the measurement noise covariance of the system.   

For SVSF, there has been no requirement of kkP |1  for calculating gain or corrective term. In 2010 a 

priori covariance was first derived for SVSF (Al -Shabi & Habibi, 2010) for linear system. The 

derivation of kkP |1  for linear system found similar to the KF.    
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    T

kkkkkkkk xxxxEP |11|11|1
ˆˆ

   (2.3.13) 

However, Stability of SVSF for the linear system was not affected after deriving covariance. The update 

of a posteriori covariance 1|1  kkP  was also given in the same paper (Al -Shabi & Habibi, 2010). It is 

interesting to note that the gain equation of SVSF was still unchanged, meaning that it did not use kkP |1  

and hence the performance of SVSF (with covariance derivation) was not improved as compared to the 

previously reported SVSF without covariance derivation. The objective of deriving covariance was to 

open the possibility of combining Interacting Multiple Models (IMM) technique with SVSF. 

2.3.6 Derivation of time-varying optimal boundary layer width for SVSF       

SVSF had been using smoothing boundary layer (ψ) defined by the upper bounds of the model 

uncertainties present in the system since its first introduction in 2007 (Habibi S. , 2007). The concept 

of optimal boundary layer width was first presented in (Gadsden, Mohammed, & Habibi, 2011) by 

solving partial derivative of the  kkPtrace |1  with respect to ψ for a linear system. The derivation of the 

optimal boundary layer width assumes the existence of boundary layer for each state trajectory. The 

time-varying optimal boundary layer k  is a function of kkP |1 , 
kkze

|
and 

1|
 

kkze . The paper (Gadsden, 

Mohammed, & Habibi, 2011) suggested that for the implementation of optimal boundary layer, one 

needs to create a full measurement matrix for a case where nm  . Some methods have been suggested 

to create a full measurement matrix, typically an identity matrix for a system where nm   as given in 

(Habibi S. , 2007).  

For a linear system, the gain of SVSF with optimal boundary layer is found to be identical to Kalman 

Filter (KF) within the boundary of the saturation in the gain equation (Gadsden S. A., 2011).   

SVSF using data association technique for target tracking application was presented in (Attari, Gadsden, 

& Habibi, 2013).    

2.3.7 Combining SVSF with other filters 

 SVSF is said to be robust but not optimal for the estimation of state and parameter. Time-varying 

optimal boundary layer makes SVSF optimal within the saturation limit but it loses robustness to some 

extent (Gadsden S. A., 2011). It has also been reported that the KF, EKF and UKF are more accurate 

than SVSF for linear as well as nonlinear systems where on uncertainty and disturbance were present 

(Fig 2.5). 



Ph.D. Thesis,  Nilanjan Patra  2. Literature Survey 

 

21 

 

The combined structure of SVSF with other optimal filters aimed at improving the estimation accuracy 

of SVSF without compromising robustness. 

In (Gadsden, Habibi, & Kirubarajan, 2012) the particle filter was combined with SVSF for nonlinear 

state estimation. Robustness of EKF has been increased after combining with SVSF utilizing the effect 

of chattering (Al-Shabi, Gadsden, & Habibi, 2013).   

 

Figure 2.5 Combined structure of SVSF and other nonlinear filters 

Optimal boundary layer has also been used for the detection of uncertainty or fault present in the system. 

Based on the width of the optimal boundary layer, one can choose robust SVSF gain or optimal 

EKF/UKF gain for a combined approach of state estimation. EKF and UKF were combined with SVSF 

to construct EK-SVSF and UK-SVSF for target tracking application based on the width of the boundary 

layer in (Gadsden, Habibi, & Kirubarajan, 2014).  Cubature quadrature Kalman Filter was also 

combined with SVSF for nonlinear robust estimation in (Gadsden, Al-Shabi, Arasaratnam, & Habibi, 

2014). A good review of SVSF has been presented in (Gadsden & Hamed, 2015). A comparative study 

of SVSF combined with other sigma point filters have been carried out for the application of robotic 

arm (Al-Shabi M. , 2017).   

2.3.8 Recent advances of SVSF  

2.3.8.1  Second order Smooth Variable Structure Filter    

  A second order Variable structure state estimator for linear and nonlinear system was presented in 

(Afshari, 2014). Like SVSV, second order SVSF is also a model based estimation method which 

additionally benefits the chattering suppression and robustness characteristics of second order of sliding 

mode system. Derivation of gain and the stability analysis are also given in (Afshari, 2014).    
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2.3.8.2 Continuous time Variable Structure Filter 

First continuous-time variable structure filter was presented in (Gadsden, El Sayed, & Habibi, 2011). 

The algorithm was proposed for a linear system. A comparable result with performance analysis was 

given with Kalman Filter for a case study of the linear second order system.  

2.3.8.3 Unscented Smooth Variable Structure Filter 

Recently a novel boundary layer for SVSF based on sigma point has been presented in (Al-Shabi & 

Hatamleh, 2014). The same has been applied to the nonlinear system with linear measurement. 

However, Stability and proof of robustness have not been given in the same paper.   

2.3.8.4 Square root formation of SVSF  

Square root formulation of SVSF for improved numerical stability was proposed in (Gadsden & Lee, 

2017). The algorithm has used two-pass smoother SVSF gain for a linear system. The same has been 

evaluated in a case study of a linearized system.       

2.3.9 Some of the gaps observed in the literature survey 

i. The variable structure filters in its early form have been demonstrated for a linear system. The 

EKSVSF was the first extension of SVSF to a nonlinear system by linearizing the system and 

measurement matrix. However, taking Jacobian of the nonlinear system equation often 

produces inaccurate result.  The SVSF with time-varying boundary layer always assumes the 

measurement equation to be linear and invertible. However, additional techniques are to be 

followed where the measurement matrix is not linear or square.  

ii. The Sigma point SVSF as presented in (Al-Shabi & Hatamleh, 2014) calculates only the 

boundary layer based on the Sigma-points. The sigma point formulations of the output equation 

are however yet to be explored. Stability and robustness of such cases need to be established. 

In (Al-Shabi & Hatamleh, 2014) a novel boundary layer based on unscented Sigma-point has 

been presented, but the derivation of such layer was not presented.  

iii. The measurement equation for SVSF in most cases considers as a linear one. For a nonlinear 

measurement equation, the SVSF linearizes and inverts the output equation. 

iv. SVSF with optimal boundary layer always considers the output matrix to be linear and of full 

rank. In practical scenarios, situation may arise when this assumption may not always true. 

SVSF with optimal boundary layer assumes noise statistics of process and measurement noise 
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to be known properly. However, for robust application, where the system has model error the 

knowledge of noise statistics may be unavailable.  

v. The measurement noise covariance corresponding to the artificial measurements as provided in 

(Gadsden S. A., 2011) (Gadsden, Habibi, & Kirubarajan, 2014) is a point of concern.       

vi.  Computation of inverse function in the gain term and in boundary layers may produce 

numerical instability.     

2.4 Interacting Multiple Model Estimators  

Interacting Multiple Model (IMM) approach is a model based hybrid state estimation technique where 

more than one model is used in the filtering algorithm for state estimation of a dynamical system whose 

behaviour changes rapidly (Mazor, A., Averbuch, & Dayan, 1998). A finite number of models with 

different dynamics are used in the estimators operating in different modes. Main advantage of IMM is 

its ability to estimate the states of a system which has several modes and can switch from one to another. 

The system model for IMM is represented by these equations (Bar-Shalom, Rong Li, & Kirubarajan, 

2001):  

    )1(,)()1()1(  kMkvkxkMFkx  (2.4.1) 

   )]1(,1[)1()1()1(  kMkwkxkMHky  (2.4.2) 

where, )1( kx and )1( ky are state vector and measurement vector respectively. Variable v  and w  

represent the corresponding process noise and measurement noise of the system. Here )(kM denotes the 

mode or model at the time k . The mode at time k  is considered to be among the possible r modes. 

  r

jjMkM
1

)(


  (2.4.3) 

It is assumed that the mode (model) switching or the mode jump process is a Markov chain process 

with known mode transition probability.  

  ijij MkMMkMPp  )1(|)(  (2.4.4) 

The IMM estimator at time k computes the state estimate under each possible current model using r

filters, with each filter using a different combination of the previous model-conditioned estimates (Bar-

Shalom, Rong Li, & Kirubarajan, 2001).  
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Multiple Model (MM) state estimators were introduced in the mid-1960s (Magill, 1965) to adapt 

structural and parameter changes in the system. A survey on various suboptimal state estimations and 

structure detection of the system was presented in (Jitendra K, 1982).  However, initially the Multiple 

Model estimation algorithm has a fixed structure. MM estimation with the variable structure as 

proposed by Xiao-Rong Li (Li X. R., 1994) uses a set of models to represent the possible behavior 

pattern of the system were considered in the design of the estimator. The state estimation of hybrid 

stochastic system by variable structure MM estimator has been demonstrated in (Li & Bar-Shalom, 

1996).  In (Li X. R., 1998) a process of choosing estimate optimally in the MM estimation with uncertain 

parameters has been presented. 

 The Interacting Multiple Model (IMM) estimator consists of running a standard filter for each model 

(mode), a model probability evaluator, and an estimate combiner at the output of the filters. Each filter 

of IMM uses a mixed estimate at the beginning of each cycle (Bar-Shalom, Chang, & Blom, 1989). In 

IMM estimator 2 or 3 ‘mode matched’ filters (model based) run in parallel exchanging information in 

each step (sample) based on mode transition probability and combine the overall estimate and 

covariance at the end of the cycle.   A good study of IMM implemented in stochastic hybrid system, 

civilian aircraft tracking system provided in (Li & Bar-Shalom, 1993). Several practical issues have 

been discussed in (Kirubarajan & Bar-Shalom, 2003) on when to choose IMM over Kalman Filter.   

Target tracking has been seen to be one of the major application areas of IMM since last two decades. 

A good review of IMM estimator with the application in target tracking problems has been given in 

(Mazor, A., Averbuch, & Dayan, 1998). Numerically robust implementation of MM and IMM has been 

presented in (Li & Zhang, 2000) by overcoming the numerical problems with the standard 

implementation. Performance of static MM, dynamic MM and IMM in solving Air Traffic Control 

(ATC) tracking problem has been evaluated in (Bar-Shalom, Rong Li, & Kirubarajan, 2001). A 

comparative study of Multiple Model algorithms for maneuvering target tracking is given in (Pitre, 

Jilkov, & Li, 2005). Performance of different versions of IMM has been compared and analyzed for 

maneuvering target tracking applications in (Hong-Quan & Shao-Hong, 2008).     

However, IMM estimators while combining a number of mode-matched filters which would fit the 

desired target model to estimate lags the choice of estimators to enhance robustness. Optimal filters if 

used inside the IMM filters are sensitive to process and measurement noise. An effort was put (Gadsden, 

Habibi, & Kirubarajan, 2010) to combine robust smooth variable structure filter with other optimal 

filters in the IMM algorithm to enhance the robustness of IMM.  Recently in (Gao, Gao, Zhong, Hu, & 

Gu, 2017)IMM was constructed with robust and adaptive (based on fading factor) unscented Kalman 

Filter. 
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2.5 Tracking of Maneuvering targets  

Tracking of maneuvering target is a good application area to evaluate the performance of the estimators. 

A two-dimensional target tracking form of Air Traffic Control (ATC) scenario has been discussed in 

(Bar-Shalom, Rong Li, & Kirubarajan, 2001).  A good review about the dynamic models of target 

maneuvering system is discussed in (Li & P. Jilkov, 2003). Some important ballistic target models are 

reviewed in (Li & P. Jilkov, 2001). Review of measurement models of maneuvering target is discussed 

in (Li & Jilkov, 2001). A good review and evaluation of Multiple Model in maneuvering target tracking 

are given in (Pitre, Jilkov, & Li, 2005) (Hong-Quan & Shao-Hong, 2008).  

2.6 Conclusion of the Literature Survey 

This chapter provided a comprehensive description of the popular optimal/suboptimal Kalman Filter 

based estimators. The merits and shortcomings are also provided for the number of filters/estimators. 

Emphasis has been given mainly on nonlinear state and parameter estimation. The recent development 

of adaptive nonlinear state estimators and robust estimators have been thoroughly studied. Some of the 

gaps for conventional estimators on the robust application, variable Structure Filters and Multiple 

Model State Estimators have been identified and discussed. The main focus of this research is to deal 

with model error or process noise adaptation to improve the performance of some recently developed 

nonlinear estimators for a class of nonlinear hybrid system.   
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3 Models and Case Studies   

3.1 Why case studies? 

The case studies are important for evaluation of the performance of the proposed estimators or the 

estimation scheme. The simulation studies are to be carried out for the performance evaluation and 

comparison considering different environmental scenarios or conditions. State estimators which are 

designed for the estimation of the system’s states or parameters of the noisy system are required to be 

evaluated under different noise sequences (known as Monte Carlo simulation). Case studies are 

therefore essential practice to test the efficacy of the algorithm in the field of estimation and control. 

Another major aspect is to perform the comparative study of the proposed estimators with others 

keeping the simulation environment unchanged. It also helps one to understand and assess the effect of 

assumptions and consideration of certain parameters’ value that were made while constructing the 

algorithm.             

3.2 Overview of Case Studies  

This section demonstrates case study of (a) tracking scenarios of a civilian aircraft, (b) Ballistic object 

tracking and (c) road-tire friction estimation.  

The 2-D motion models have been chosen for the simulation. Commonly known as ‘Uniform Motion’ 

(linear) and ‘Coordinated Turn’ (nonlinear) model are taken into consideration of modeling the 

aircraft’s trajectory. Process noise and measurement noise have also been considered for the evaluation 

of the estimators. Tracking of a falling object is considered as the model of ballistic object tracking. 

Longitudinal and lateral dynamical model with popular friction model has been considered for modeling 

an anti-lock braking system.       

3.3 Civil aircraft Models and Tracking 

3.3.1 The Literature on Models and Tracking 

Ground-based radar tracking of aircraft is an important task of air traffic control system. Estimation of 

position, velocity, mode, altitude etc. of the aircraft needs truth models of the trajectory tracking system. 

Modeling a maneuvering target involves combination of linear and nonlinear modes of the target. Two 

basic modes of the flight are considered: uniform motion (UM) which involves straight path with 

constant moving and the coordinated turn (CT) which involves maneuvering. Some CT models are 

validated and compared in (Nabaa & Bishop, 2000). A two-dimensional planar model describing 
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uniform motion and coordinated turn model is given in (Li & Bar-Shalom, 1993). Models for the target 

tracking system and navigation system are given in (Yaakov, X, & Kirubarajan, 2001). Tracking and 

estimation of Similar two-dimensional models are also presented in (Wang, Kirubarajan, & Bar-

Shalom, 1999) (Pitre, Jilkov, & Li, 2005) (Mazor, A., Averbuch, & Dayan, 1998) (Gadsden, Habibi, & 

Kirubarajan, 2014) (Crouse, 2015). A survey on dynamical models used for target tracking is presented 

in (Li & P. Jilkov, Survey of maneuvering target tracking. Part I. Dynamic models, 2003). (Yuan, Han, 

Duan, & Lei, 2005) presents the choice of models for tracking the maneuvering targets with CT models.  

The measurement models for tracing and maneuvering have been discussed in (Li & Jilkov, 2001). The 

ballistic target models are surveyed by (Li & P. Jilkov, 2001). A three-dimensional airborne 

maneuvering target tracking problem has been presented in (Moose, Vanlandingham, & McCabe, 

1979).  

3.3.2 Two Dimensional Planar Motion 

 Uniform Motion 

The discrete state equations of the model for uniform motion is represented as given in (Yaakov, X, & 

Kirubarajan, 2001) (Gadsden, Habibi, & Kirubarajan, 2014)  
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where T is the sampling interval, and the state vector kx  is defined as 

   kkkkk  x  (3.3.2) 

with, k  and k  representing the position of the aircraft along the X  and Y  direction respectively; k
  

and k  represent the corresponding linear velocities. Here kw  represents the discrete equivalent of noise 

in the acceleration in the X and Y  directions with covariance UMQ . 
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Where 1L  is the power spectral density of corresponding continuous domain noise for linear acceleration 

and angular acceleration. 

 Coordinated Turn  

The coordinated turn model (Gadsden, Habibi, & Kirubarajan, 2014) (Yaakov, X, & Kirubarajan, 2001) 

contains an additional state variable, viz., the turn rate  , which is nominally an unknown constant.  For 

this model, the state vector kx  is defined as    kkkkk  x  
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Here kw  represents the discrete equivalent of noise in the acceleration in the X  and Y  directions with 

covariance CTQ . The measurement noise covariance is defined as 
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1L  and 2L  are the power spectral densities of corresponding continuous domain noise for linear 

acceleration and angular acceleration respectively as given in (Gadsden, Habibi, & Kirubarajan, 2014). 
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3.3.3 Measurement models 

Two types of measurement models are considered, namely the linear Cartesian measurement model and 

the nonlinear polar (r,) measurement model (also called range-bearing model). Both these models are 

applicable for CT and UM model cases. While the range-bearing model is more natural for a simple 

radar tracker, the simpler linear Cartesian measurement model is included to facilitate comparative 

study.  

 Cartesian 

It is assumed that the tracker is stationed at the origin to measure the position along the X  and Y  

directions. The measurement for the UM model is  
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The corresponding measurement model for CT is  
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 Polar Measurement 

The polar measurement model (Shi, Han, & Liang, 2009) is defined as 
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3.3.4 Civilian Aircraft 2-D Trajectories 

 Test trajectory-1 (‘s’) 

Trajectory-I can be described as follows: The aircraft starts flying from its initial position of [25,000m, 

10,000m]. The fight trajectory without considering process noise has been shown in Fig 3.1. From the 

initial point it flies westward (along X direction) with a constant velocity of 120m/s for 125s. Then it 

takes a coordinated turn with a turn rate of s/1 in anti-clockwise direction for 90s. Next, it flies 

southward for another 125s at a constant velocity of 120m/s. Then it takes another coordinated turn for 

30s at s/3 . Finally, it reaches the destination after taking a straight path to the westward direction at 
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120m/s for 120s. The trajectory marked true has been corrupted by an instance of the process noise. For 

both the Cartesian and the Polar measurement cases, the sensing radar is located at (0, 0).  

 

Figure 3.1 Nominal trajectories (not corrupted with process noise) of the aircraft for ‘s’ trajectory 

 Test trajectory -2 (zigzag) 

Figure 3.2 Nominal trajectories (not corrupted with process noise) of the aircraft for ‘zigzag’ trajectory 

Trajectory – II which is more severe than the previous one is employed to further contrast the 

performance of non-adaptive and adaptive state estimators. This is a relatively zigzag trajectory. The 

initial position of the aircraft is [25,000m, 10,000m]. It travels eastward for 100s along X direction with 

a velocity of 120m/s. Then it takes a coordinated ‘U’ turn for 180s with a turn rate of s/1 to return back 
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towards east. Then it maintains a constant speed of 120m/s for 100s. The aircraft then takes a second 

turn with different turn rate s/3 for 60s to fly back westward. It then repeats the same trajectory for 

next 100s with uniform motion and 180s with coordinated turn ( s/1 ) and terminates after a uniform 

motion segment with a constant speed of 120m/s.  The trajectory marked true has been corrupted by an 

instance of the process noise.                           

3.4 Ballistic object tracking 

3.4.1 Literature 

Ballistic object tracking is one of the major application areas for estimators. It is often used as a test 

field to evaluate performance or the characterization of the estimators. A nonlinear model of target 

motion of ballistic object in the re-entry phase is developed by (Farina, Ristic, & Benvenuti, 2002) .   A 

one-dimensional vertical motion model with unknown ballistic coefficient was presented in (B., Farina, 

Benvenuti, & Arulampalam, 2003) analyzing the posterior Cramer-Rao lower bounds. The system is 

mainly nonlinear due to the presence of drag. Drag parameter is one of the major concerns for the state 

estimation. Sequential Monte Carlo-based filter was proposed by (Angelova, Simeonova, & 

Semerdjiev, 2003)  for tracking nonlinear ballistic object with uncertain drag parameter. Several non-

linear estimation schemes for ballistic object tracking have been discussed in (Ristic, Arulampalam, & 

Gordon, 2003). State and parameter estimation by Unscented Kalman Filter for tracking ballistic object 

was demonstrated in (Liu, 2011). Estimation scheme of target landing point during re-entry phase and 

its accuracy was proposed in (Farina, Benvenuti, & Ristic, 2002). Applications of nonlinear adaptive 

filters on tracking of the ballistic object are given in (Dey, Sadhu, & Ghoshal, 2013), (Dey, Das, Sadhu, 

& Ghoshal, 2015). 

3.4.2 System Model   

 

Figure 3.3 Free body diagram of a falling object 
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The free body diagram of a ballistic object is shown in figure 3.3, which starts falling from an altitude 

of 200,000 Ft from the ground (Zarchan, 2005). The dynamics of the system is given as  

 
g

gQ
gdragx

p



  (3.4.1) 

Where, x is the distance from the radar to the object,  is the ballistic coefficient of the object and pQ

is the dynamic pressure. The ballistic coefficient, which is considered to be a constant in this problem, 

is a term describing the amount of drag acting on the object. Small values of  indicate high drag, and 

high values of  indicate low drag. Setting  equal to infinity eliminates the drag. The dynamic 

pressure pQ is given as 

 25.0 xQp
  (3.4.2) 

Where,   is representing the air density. For this problem it is assumed that the air density is an 

exponential function of the altitude (Zarchan, 2005). 

 22000/0034.0 xe  (3.4.3) 

Therefore, the equation expressing the acceleration acting on the object is to be expressed as the 

nonlinear second-order differential equation having two states, position and velocity  Txx  . Only the 

position is considered as measurement of the system. The time evolution of the states of the system is 

shown in Fig 3.4 and Fig 3.5 

 

Figure 3.4 Altitude 

 

 

Figure 3.5  Velocity 
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The fundamental matrix of the system by taking two-term Taylor-series approximation is given as  

 
sk FTI   (3.4.4) 
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The process noise was derived as given in (Zarchan, 2005)  

 
























332

323
2

2
22

2
22

2

22

2

2

22

22

T
fTfT

T
f

T

T
f

TT

Q sk  (3.4.5) 

where s  is the noise spectral density of the system assumed to be on the acceleration and T is the 

sampling interval. The measurement noise given as 2
vR   where 2

v denotes the variance of the 

altitude noise. The linear measurement matrix is defined as  01H . The plots in figure 3.6 show the 

dynamics of the elements of covariance matrix Q .    

 

Figure 3.6 Process noise covariance 
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3.5 Tire friction estimation case study 

3.5.1 Literature  

The characteristics of Anti-lock Braking System (ABS) rely strongly on the tire-friction model which 

introduces non-linearity into the system dynamics of ABS.  Numerous research papers are available 

which are based on the designing and modelling ABS controllers such as (Amodeo, Antonella, 

Riccardo, & Claudio, 2010) (Villagra, D’Andréa-Novel, Fliess, & Mounier, 2011) (Park & Lim, 2008) 

(Unsal & Kachroo, 1999) (Köppen, Küpper, & Makarenkov, 2017). The state and parameters are 

estimated by observer or estimator to increase the efficiency of the controller. Several estimation 

scheme such as sliding mode observer (Baffet, Charara, & Lechner, 2007) (Baffet, Charara, & Lechner, 

2009) (Amodeo, Antonella, Riccardo, & Claudio, 2010), Kalman filters (Imsland, Grip, Johansen, 

Fossen, Kalkkuhl, & Suissa, 2007) (Dakhlallah, Glaser, Mammar, & Sebsadji, 2008) or other non-linear 

observers (Doumiati, Victorino, Charara, & Lechner, 2010) etc. The development of state estimators 

are mainly on vehicle velocity, lateral forces (Nam, Hiroshi, & Yoichi, 2012), longitudinal or lateral 

slips (Antonov, Fehn, & Kugi, 2011) (Sebsadji, S., S., & J, 2008), some parameters such as road-tire 

friction cornering stiffness are estimated for ABS controller, are given in (Dakhlallah, Glaser, Mammar, 

& Sebsadji, 2008) (Rajamani, Piyabongkarn, & Lew, 2012) (Ahn, Peng, & Eric Tseng, 2013) (Zong, 

Song, & Hu, 2011) .  

3.5.2 System Model 

The control systems of an automotive application broadly depend on the vehicle handling dynamics. 

Therefore, the system is to be modeled to apply control laws.  The main focus of the area of this work 

is to design estimation based control scheme which for the following applications: 

The anti-lock braking system (ABS) is a system to ensure the vehicle stability and motion control while 

a hard brake is pressed. The brake pressure is to be applied smoothly on the wheel such that the wheels 

don’t get locked after the application of hard brake in an emergency situation. The slip value is an 

important parameter for the ABS system, which is to maintain at an optimum level such that the vehicle 

can be operated at in a stable zone. The tire force on the other hand, is dependent on the surface of the 

road. The road surface may change time to time which results the tire force to change as the friction 

coefficient between road and tire changes with the change of road asphalt. The propagation of the tire 

force and the sensing of the tire force is the most important part of the slip controller as the brake 

pressure depends on it. The propagation of the tire force depends on the tire characteristics. Thus 

modeling the tire and the vehicular system needs to be done for the application of estimation and control 

methodologies.      
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 Quarter car model 

A simple quarter car model (Mirzaeinejad & Mirzaei, 2010) (Anwar, 2006) (Park & Lim, 2008) (Unsal 

& Kachroo, 1999) is considered here which holds necessary characteristics of the whole vehicle 

dynamics. As the comprehensive vehicle model is much complex this simplified single-wheel model is 

taken for controller design purpose. Fig 3.7 shows the free body diagram of the wheel. 

 

Figure 3.7 Free body diagram of the quarter car model 

The equations of motion of the vehicle can be written as follows: 

 

t
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  (3.5.1) 
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Where  tm is Total mass of the quarter vehicle,  xF  is longitudinal tire force, V  Longitudinal velocity 

of the vehicle,    is wheel’s angular velocity,  tI represents total moment of inertia of the wheel,  R  

represents the radius of wheel, bT is the braking torque.  

The total mass of the quarter vehicle is given by 

 
wvst mmm 

4

1
 (3.5.3) 

Where, vsm is the vehicle sprung mass and wm is the mass of the wheel. 

The longitudinal force acting on the tire depends on the load which has two components: a static 

component for vehicle mass and a dynamic component for load transfer during braking. The tire normal 

force is given by 
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Ltz FgmF   (3.5.4) 
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Where g  is the gravitational acceleration, LF is the dynamic load transfer, cgh  represents height of 

the sprung mass c.g., Longitudinal acceleration is denoted by x and wheelbase is represented as l . 

 Longitudinal dynamics 

The vehicle model of a quarter car has been described in the previous section. For developing an anti-

skid controller for vehicle so it is important to measure wheel longitudinal slip (Mirzaeinejad & Mirzaei, 

2010), (Smith & Starkey, 1995). During vehicle acceleration, a positive torque is applied to the wheel. 

If this applied torque exceeds the tire-road friction force to the wheel, the wheel starts rotating and 

moves the loaded mass. Similarly, the wheel along with the vehicle speed decreases during braking 

after a braking torque is applied to the wheel. When the vehicle moves with a constant velocity, the 

vehicle speed and the tire longitudinal speed are of same value. However, if a driver presses the brake 

pedal in order to reduce the speed of the vehicle, the braking pressure increases the braking torque 

which decreases the angular velocity of the wheel. In this time slip between tire and road occurs at the 

contact surface of tire and road because the wheel longitudinal velocity and the tire longitudinal velocity 

are not same.  

The longitudinal slip,
 
  of the wheel is the relative difference between the driven wheel angular 

velocity  and the vehicle absolute velocity  
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Differentiating with respect to time gives 
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Substituting this equation into vehicle motion equation gives  
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Where bT is Braking torque 

The traction force depends on the slip ratio and the normal force acting on the wheel. 
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   zx FF   (3.5.10) 

The traction force or the friction force xF  comes from the wheel-road contact surface and strongly 

depends on the modeling of the wheel-friction. The wheel-friction models give the typical relationship 

between wheel slip ratio ( ) and the friction force ( xF ) of the tire or the relationship between the slip 

ratio ( ) and friction coefficient ( ).  A typical tire-road friction curve with respect to slip ratio is 

shown in the Fig 3.8.  

Eq 3.5.9 and 3.5.10 are two governing equations of motion. In state space form the vehicle velocity, V

and the wheel slip ratio,  are two state variables. The control variable is barking torque bT is to control 

the wheel-slip at the desired state. 

 

Figure 3.8 Slip – friction characteristics (simulated for snow asphalt only) 

The tire longitudinal force xF  is a function of wheel-slip . Due to the saturation property of tire forces 

the xF relationship is nonlinear for the higher value of slip ratio . At the low slip ratio this 

relationship is linear before reaching the maximum value of tire longitudinal force. Several tire models 

are there in the literature describing the xF characteristics. Some popular tire models are discussed 

later in this chapter. 

 Lateral dynamics 

Free body diagram of the bicycle model of a ground vehicle is shown in Figure 3.8 to demonstrate 

lateral dynamics of the vehicle (Ahn, Peng, & Eric Tseng, 2013).  
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The motion equation can be described as  

   yryfxy FFrvvm   (3.5.11) 

 
yryfz bFaFrI   (3.5.12) 

Here, m  is the mass of the vehicle, xv  is the longitudinal velocity, yv  is the lateral velocity, yF is the 

frictional force of the tire for front and rare wheel, r is the yaw rate, zI is the moment of inertia, a

and b are the length of the front wheel and rear wheel from the centre of gravity of the vehicle.  

Slip angle of the front wheel f  and the rear wheel r  can be written as  

 
 




x

y

f
v

arv
 (3.5.13) 

 

x

y

r
v

brv 
  (3.5.14) 

 

Figure 3.9 Lateral Force of the tire 

 

Figure 3.10 Aligning Moment of the tire 

 

 Road tire friction model  

Modeling of anti-lock braking system requires the vehicle model which longitudinal slip dynamics and 

the tire model which characterizes frictional forces. The longitudinal and lateral vehicle dynamics have 

been discussed earlier. It requires the model of the tires which would relate the force to slip or friction 

to slip characteristics. The friction models are discussed in this section.   Three popular road-tire friction 

models have been considered here for the purpose of designing anti-lock braking system. Dugoff’s 

friction model, LuGre tire model and Burckhardt tire model are discussed here. It is important to study 

the longitudinal force and friction characteristics of the tire. The slip ratio   depends on the current 

road friction which is faced by the wheel’s contact surface area. It is required to operate the friction in 

the linear range of   so that the system becomes stable. The longitudinal force curve of the wheel 
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therefore changes according to the surface condition of the road. The peak of the xF curve shifts 

from left to right. 

 

Figure 3.11 Friction coefficient characteristics in different road conditions 

It is also important to have the maximum friction coefficient since the maximum braking performance 

is related to the maximum road-tire friction coefficient. 
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maxxF Can be achieved from the peak value in the    curve. 

Dugoff’s friction model 

The Dugoff’s friction tire model (Dugoff, 1969) is the critical factor during emergency maneuvering. 

Linear tire model is not always sufficient for accurate maneuvering. To account for the nonlinearity due 

to saturation property of the tire force, the non-linear Dugoff’s tire model has been studied. It can 

calculate pure longitudinal and lateral tire forces and side slip ratio of the wheel. Dugoff’s tire model 

says uniform vertical pressure distribution on the tire contact patch which is based on friction ellipse 

concept. Comparing to the other model it is fast and gives more transparent equations for maximum 

friction coefficient from longitudinal force- slip dynamics. 

The relation of the longitudinal force of the tire is given as follows 
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Where, iC is the longitudinal stiffness of the tire, C is the cornering stiffness of the tire, zF represents 

normal load of the tire and r represents road adhesion factor.  

In the figures below the tire longitudinal force and friction force curve for dugoff’s model are shown. 

For simulation, NCi 20000 ; radNC /55422.2720  and 001099r  are taken. 

LuGre friction model 

LuGe tire model is a typical dynamic model which is proposed by Canudas de Wit et al. (De Wit, 

Olsson, Johan Astrom, & Lischinsky, 1995) The LuGre model is able to capture most friction 

phenomena that are of interests to feedback controls. It regards the friction as reciprocity between the 

bristle of the interface. It has two surfaces connected by elastic bristle. A tangential force acts on the 

bristle when there is a relative velocity between the two surfaces. The bristle will get distortion like a 

spring. The bristle begins to slip when the distortion is high enough. The model considers the average 

deflection of the bristles.  

The dynamics of the deflection z  is given by the following differential equation. 
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where, rV is the relative velocity between the two surfaces,  rVG denotes the non-linear friction 

characteristic function which is a positive function as described by the following equation. 0 is the 

stiffness of the bristle. 
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(3.5.20) 

where c is the Coulomb friction level, s is the level of static friction force, and sV  is the constant 

Stribeck velocity. For LuGre tire model the longitudinal tire force is given by the following equation. 

   zrx FVzzF 210     (3.5.21) 
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Here zF  is the normal load, 1 is the damping coefficient and 2  is the viscous coefficient. In general 

the normal load, gmF tz  .                                                                                                     

In the above-stated dynamics the relative velocity ,VRVr   where R  is the rolling radius of the 

tire,  is the angular displacement, and V is the velocity of the vehicle. c , s , sV and 2 are the static 

friction parameters while 0 and 1 are the dynamic friction parameters.  

Burckhardt friction model  

Burckhardt friction model  (Patel, Edwards, & Spurgeon, 2007) is also a popular one which is widely 

used for the maneuvers. Comparatively it is simple and includes only static friction model. The simpler 

model (Park & Lim, 2008) which does not consider the side slips have been chosen for the longitudinal 

slip control problem. This model characterizes the simple relationship between the road friction 

coefficient and the longitudinal slip ratio by the following equation.   

      
31

21, CeCC
C

r 


 (3.5.22) 

Where, the vector  rC  has three elements only. By changing the different values of 1C , 2C and 3C many 

different tire frictions can be modeled. Where 1C is the maximum friction value, 2C is the friction curve 

shape, and 3C  is the friction curve difference between the maximum value and the value at 1 . The 

table: 3.1 (Park & Lim, 2008) shows different combination of these parameters which is used for 

different road surface conditions.   

Table 3.1 Value of different parameters for different road conditions 

Surface conditions 1C  2C  3C  

Dry asphalt 1.2801 23.99 0.52 

Wet asphalt 0.857 33.822 0.347 

Dry concrete 1.1973 25.168 0.5373 

Snow 0.1946 94.129 0.0464 

Ice 0.05 306.39 0 

Brush Model 

The lateral forces and moments of the tire can be modeled by the Brush model (Ahn, Peng, & Eric 

Tseng, 2013) It gives a non-linear relationship between side-slip angle and the friction coefficient . 

The tire lateral force yf  and the aligning moment of the tire a  are.  
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If sl   
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   32
331 yyyyyyyyza lF    (3.5.24) 

Else, 

   sgnzy Ff   (3.5.25) 

 0a  (3.5.26) 

Sliding slip angle defined as 
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Where, 
z

p

y
F

lC




3

2 2

 and   tany . l  is the half of the tire-road frictional coefficient, zF is the tire 

normal force, pC  is the stiffness coefficient of the tire in unit length. The characteristics curves are 

shown in Fig 3.9 and Fig 3.10. 
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4 Algorithm for Existing Q-Adaptive Estimators 

4.1 Chapter introduction 

Model-based optimal estimators like Kalman Filter exhibits optimal performance when models (Plant 

model and measurement model) are accurately known to the estimators (Simon, 2006) (Zarchan, 

2005) . Performance of such filters degrades when plant models are inaccurately known or unknown. 

In this chapter some nonlinear adaptive filters are discussed which adapt process noise automatically. 

The adaptation of process noise covariance improves the performance of the Estimators when the 

process model is uncertain or inaccurately known to the filter. The usefulness of those adaptive state 

estimators is analyzed, studied and evaluated with the help of case studies. Aircraft tracking scenarios 

have been considered for the evaluation of performance of nonlinear Q-adaptive estimators.  

Q-Adaptation Vs R- Adaptation: 

The knowledge of process noise covariance (Q) and the measurement noise covariance (R) has great 

importance to design model based optimal or sub-optimal filters. The Process and measurement noise 

covariances are considered to be known for such estimators for the best result. The Adaptive filters 

are useful when any of these noise covariances are unknown or inaccurately known to the estimators. 

The estimators which adapt process noise covariance Q are called Q-Adaptive filter/estimator and the 

estimator to adapt measurement noise covariance (R) called R-adaptive filter/estimator.  Measurement 

noise covariance R represents the quantitative measure of the inaccuracy of the measurements. R-

adaptive filters are designed to estimate the value of R when it is not known accurately. On the other 

hand, Q adaptive filters are designed to estimate the value of Process Noise Covariance (Q) of the 

system. The process noise covariance Q often represents the amount of model inaccuracies in the 

system.  

It is often difficult to assign the process noise covariance in the estimator without performing 

numerical and other experiments especially when simplified process dynamics models are used in the 

filter. The trial and error method, called manual tuning, is often used to obtain the appropriate value of 

the process noise covariance (Q). In this work, we are focused to work on the state estimation of a 

system under model uncertainty or model mismatch. In this chapter, we have studied the possibility of 

employing Q adaptation schemes to improve the robustness of state estimation by nonlinear filters. 

The evaluation process of Q-adaptive nonlinear filters is thus carried out for a process where model 

uncertainty is present. We have assumed that the measurement noise covariance R to be known to the 

filters.   
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4.2 Q-Adaptive state estimators for linear systems 

Process noise adaptation for optimal linear state estimator has been reviewed in (Mohamed & 

Schwarz, 1999) and (Almagbile, Jinling, & Weidong, 2010).  The adaptive Kalman Filters are mainly 

deployed for three different scenarios. They are: (i) adapting process noise covariance, Q (ii) adapting 

measurement noise covariance, R and (iii) Adapting initial value of state error covariance, P. Several 

approaches have been reported in the literature to adapt these parameters such as fading memory 

based Q and R adaptive as presented in (Lee T. S., 1988) (Xia, Rao, Ying, & Shen, 1994),      

Q-adaptive estimators for the linear system are summarised. The estimation process of Q or R 

matrices of Adaptive Kalman Filter is generally based on residual or innovation. 

For a linear system, the dynamics of the state and measurement models can be expressed as 

 
kkkk wxx 1  (4.2.1) 

 

kkkk vxy   111  
(4.2.2) 

Where kx is the state vector, k is the state transition matrix, ky is the measurement vector, H is the 

observation matrix kw and kv are uncorrelated white noise sequence with covariance Q and R 

respectively.  The steps of the Kalman Filters are summarized below: 

State prediction: kkkkk xx ||1
ˆˆ   (4.2.3) 

Innovation: kkkkk xy |11
ˆ

  (4.2.4) 

Error Covariance prediction:   k
T
kkkkk QPP  |1  (4.2.5) 

Kalman Gain:   1

1|111|11



  RPPK T
kkkkkkkk  (4.2.6) 

Measurement update: kkkkk Kxx 1|11
ˆˆ

   (4.2.7) 

Error Covariance update:     kkkk PHKIP |111    (4.2.8) 

The scheme of Adaptive Kalman filter (Mohamed & Schwarz, 1999) is shown in Fig 4.1.  

 

Figure 4.1 Scheme of Adaptive Kalman Filter 
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The adaptive scheme as shown above may be classified into two categories based on the input to the 

computation of Variance-Covariance matrix (i) Innovation based and (ii) Residual-based. Innovation 

and residual are defined as bellow 

 
kkkkk xy |11

ˆ
  (4.2.9) 

 

11
ˆ

 kkkk xy  
(4.2.10) 

Where k  is the innovation vector and k is the residual vector. Evaluation and comparative study of 

both the cases are given in (Almagbile, Jinling, & Weidong, 2010). In this thesis we have considered 

only innovation based adaptation techniques.    

Q Adaptation

Innovation 

Sequence

Computation of 

V-C matrix

Estimate Q

Filter Initialisation

Time Update

Measurement Update

kkkk Px |1,|1 

000 ,, QPx

11,  kk Px

 

Figure 4.2 Flowchart of the adaptive filters   

The Eq 4.2.5 in the Kalman Filter algorithm requires Q to be known as the prediction stage. Two 

popular innovation based adaptation techniques are described in the next sections.      

4.2.1 Algorithm for Scaling factor based Q-adaptation 

The covariance matching principle based algorithm as given in (Mehra, 1970) (Mohamed & Schwarz, 

1999) (Ding, Jinling, Chris, & Doug, 2007). Variance-covariance matrix is computed through 

averaging inside a moving window of size N. 
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 (4.2.11) 

 Where, v is the innovation sequence. Based on covariance matching principle Q is estimated based 

on innovation. 

If R  and kkP |1  are assumed to be known, Q can be scaled by calculating the ratio between the 

estimated innovation covariance and predicted innovation covariance.  

  
 T

kk

v
k

HHPtrace

RCtrace

|1


  (4.2.12) 

Detailed derivation is given in (Ding, Jinling, Chris, & Doug, 2007).  

Now, Q can be scaled at every epoch k as given below: 

 
kkk QQ 1

ˆ  (4.2.13) 

When the process noise covariance is a constant, and the estimation attains the steady state, the 

scaling factor k should be ideally equal or close to 1.  

4.2.2 Algorithm for ML-based Q-Adaptation 

The innovation based adaptive estimation approaches base on Maximum Likelihood (ML) are given 

in (Mehra, 1970) (Maybeck, Jensen, & A. Harnly, 1981) (Mohamed & Schwarz, 1999).  Maximum 

Likelihood-based adaptation technique is also window based adaptation approach. This approach also 

assumes R  and kkP |1  to be known. The estimated process noise covariance at every epoch is 

computed as: 

 T
kvkk KCKQ 111

ˆ
   (4.2.14) 

Here, the variance-covariance matrix vC  is computed from Eq 4.2.11.         

4.3 Q-Adaptive state estimators for nonlinear systems 

The nonlinear suboptimal filters also suffer from the inaccurate knowledge of the process noise 

covariance. The approaches of the nonlinear adaptive filters are discussed in this section.   

A nonlinear system may be defined as: 
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   kkkk wuxfx  ,1  (4.3.1) 

   kkk vxhy   (4.3.2) 

where the state vector kx  and ky are the state and the measurement vectors of the system respectively 

at the instant k  for input ku . The uncorrelated white Gaussian process and measurement noise are 

represented as kw and kv with their covariances kQ and kR respectively.  

4.3.1 Options for nonlinear non-adaptive estimations 

Among numerous nonlinear filters, here some important and popular options for adaptive filters are 

given in this section.  

4.3.1.1 Extended Kalman filter 

The extended Kalman Filter (Simon, 2006) is the nonlinear extension of Kalman Filter here the  f

and  h are linearized. Where F denotes the linearized system matrix obtained by taking the Jacobian 

kk

kkk

x

uxf

|

|

ˆ

)),ˆ((




. The algorithm is similar to the Kalman Filter.   

4.3.1.2 Unscented Kalman filter 

Unscented Kalman Filter (Wan & Van Der Merwe, 2000) is one of the most popular estimators based 

on ‘Sigma Points’. 

A brief algorithm is described below. For details see (Wan & Van Der Merwe, 2000) 

i. The set of sigma points   are created by applying a sigma point selection algorithm 

 111111
ˆˆˆ

  kkkkkk PxPxx                                     

ii. The transformed set is given by instantiating each point through the process model 

                    11, , 
  kkki uf                                                                             

iii. The predicted mean is computed as 

                   
 


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L

i

ki
m

iki Wx
2

0

,,
ˆ                                                                               

iv. And the predicted covariance is computed as 
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v. Instantiate each of the prediction points through the observation model 

    kiki hy ,,                                                                                       

vi. The predicted observation is calculated by 
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vii. The innovation covariance is 
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viii. The cross-correlation matrix is determined by 
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ix. Finally, the update can be performed using the normal Kalman filter equations: 
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4.3.1.3 Divided Difference Filter 

Divided difference Filter (DDF) (NøRgaard, Niels K, & Ravn, 2000) is another option for nonlinear 

filtering.  

The brief algorithm of second order Divided Difference Filter is given as follow (Notations are in the 

standard form)  

i. Initialization: 00 , Px


 

ii. Computation of Cholesky factor )1(ˆ)1(ˆˆ  kSkSP T
xxk  



Ph.D. Thesis,  Nilanjan Patra  4. Algorithm for Existing Q-Adaptive Estimators 

 

49 
 

iii. State propagation  
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iv. Propagation of predicted error covariance 
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v. Measurement update 
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vi. Propagation of innovation covariance 
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vii. Cross-covariance 
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ix. State Update 
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4.3.1.4 Gauss Hermite Filter 

Gauss Hermite Filter (Ito & Xiong, 2000) (Arasaratnam, Haykin, & J. Elliott, 2007) also belongs to 

the sigma point filtering class. A brief algorithm for Gauss Hermite filter is given below:  

i. Computation of : 00 ,ˆ Px  

ii. Computation of Quadrature points and weights:  

A symmetric tri-diagonal, defined as 0, jiJ and 
2

1,

i
J ji 

for 11  Ni for ‘ N

’quadrature points. Quadrature points are chosen as ii xq 2 where ix are the Eigen 

values of J . 
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Corresponding weights  iw of iq is computed as  
2

1iv where  
1iv is the first 

element of ith normalized eigenvector of J . 

iii. Gauss Hermite Quadrature rule:   
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In order to evaluate IN for nth order system, Nn number of quadrature points and 

weights are required.  
 

iv. State propagation  
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v. Time update stage: 

Cholesky Factor is computed as 
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Modify the quadrature points as  
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kx  is a priori estimate and 


kP  is a priori error covariance.   

vi. Measurement update stage: 

Cholesky Factor is computed as 

   kx PCholeskykS )(
 

Select sigma points as 

kixi xqkS
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A priori estimate of measurement becomes
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The following covariance can be computed as 
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4.3.2 Algorithm for Scaling factor based nonlinear adaptive filter 

Scaling factor based adaptive EKF presented in (Almagbile, Jinling, & Weidong, 2010) . Extension to 

the adaptive nonlinear state estimators (such as ADDF, AGHF, AUKF etc.) is done by taking

 
 y

v
k

Ptrace

RCtrace 
 . 

Where the term yP represents the equivalent measurement covariance for the corresponding nonlinear 

estimators.  The Variance-Covariance matrix vC  is computed from the innovation/residual of the 

respective nonlinear filters.     

4.3.3 Algorithm for MLE based nonlinear adaptive filter 

MLE based methods for Q adaptive have been summarised in (Mohamed & Schwarz, 1999) and 

(Almagbile, Jinling, & Weidong, 2010)  KF. However, an extension to its nonlinear version can be 

done easily writing the same expression:
T
kvkk KCKQ 111

ˆ
  .  Here 1kK represent respective 

nonlinear gains of the filters. Adaptive version of GHF presented in (Dey, Sadhu, & Ghoshal, 2014). 

Adaptive Divided Difference filters are given in (Dey, Sadhu, & Ghoshal., 2013).  

4.4 Aircraft Tracking by Q-Adaptive Estimators 

State estimators, particularly nonlinear state estimators have synergistic relation with aerospace 

tracking problem. Performance improvement of such tracking systems over the years have been 

driven by better sensor systems like radars as well as improved state estimation algorithms. At the 

same time, new nonlinear state estimators have often been benchmarked with the help of aerospace 

tracking problems (Bar-Shalom, Li, & Kirubarajan, 2001) (Li & Vesselin, 2000) (Gadsden, Habibi, & 

Kirubarajan, 2014) (Gadsden & Hamed, 2015). State estimators can perform acceptably when the 
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process model is precisely defined, accurate values of measurement noise covariance are used and 

imperfections in the process model are taken care of by appropriate level of process noise covariance. 

The measurement noise covariance in these scenarios is often known with sufficient accuracy whereas 

the model of the process dynamics may not be known with sufficient accuracy or a simplified process 

model has to be used to reduce computational load. However, the often prescribed and simplified 

approach of using a ‘large’ process noise covariance (Q) to address the situation of inaccurate model 

and/or inaccurate knowledge about the genuine process noise, suffers from the disadvantage that the 

estimation tends to rely almost solely on the measurement information and consequently the 

estimation accuracy is likely to suffer. Similar situations have traditionally been addressed either by 

the use of adaptive approach or by the robust approach. In this particular case, one would consider 

using adaptive state estimators or robust state estimators. 

Tracking of aircraft, both civil and military had been an active research and application area for state 

estimators (Bar-Shalom, Li, & Kirubarajan, 2001) (Nabaa & Bishop, 2000) (Yuan, Han, Duan, & Lei, 

2005), since the early days of Kalman Filtering (Simon, 2006). Gadsden et al (Gadsden & Hamed, 

2015) (Gadsden, Habibi, & Kirubarajan, 2014) and also Yongjian (Yang, et al., 2016) have recently 

revisited the maneuvering aircraft tracking problems. Gadsden et al (Gadsden & Hamed, 2015) 

(Gadsden, Habibi, & Kirubarajan, 2014) considered civilian air traffic control scenario and the same 

would be used here for ease of comparison with SVSF approach (Gadsden & Hamed, 2015) 

(Gadsden, Habibi, & Kirubarajan, 2014).  

In the scenarios of tracking manned aircraft, the maneuver carried out by the pilot is often 

unpredictable. Even in an Air Traffic Control situation, depending on the traffic density and advice of 

the traffic controller, an aircraft may traverse curved or circuitous trajectories about which the 

automatic tracking algorithm may not have prior knowledge. The process dynamics therefore is not 

known with sufficient accuracy and simplified and or ad hoc models are often used in the estimators. 

In fact three different approaches are conceivable to address the problem of inaccurate knowledge 

about process dynamics, namely, (i) using a parameter tuning approach (Bar-Shalom, Li, & 

Kirubarajan, 2001) (Simon, 2006) where sufficiently ‘large’ process noise covariance (Q-matrix) is 

chosen to cover process model uncertainty, (ii) using a robust state estimators such as SVSF (Gadsden 

& Hamed, 2015) (Gadsden, Habibi, & Kirubarajan, 2014) and (iii) using an adaptive state estimator 

(Das, Dey, Sadhu, & Ghoshal, 2015) (Dey, Sadhu, & Ghoshal, 2014). The above discussion 

highlights how the process noise-adaptive (also called Q-adaptive) and the robust state estimators like 

SVSF, represent the two contrasting alternatives to overcome the lack of precise dynamic model of 

the process. The above also justifies the motivation of the present work viz., to compare performances 

of Q-adaptive nonlinear state estimators (often called filters) and the recently proposed robust variable 

structure filter, i.e., the SVSF, for tracking civilian aircraft in air traffic control scenarios. In 
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particular, for the adaptive nonlinear filter, representatives from the Q-adaptive sigma point filters, 

namely the Adaptive Divided Difference Filter (ADDF) and the Adaptive Gauss Hermite filter 

(AGHF) have been chosen.  

As mentioned before, the kinematics of the tracked aircraft is thus complex but the tracker system is 

often constrained to use simplified models like standard Uniform Motion (UM) and Coordinated Turn 

(CT) models (Bar-Shalom, Li, & Kirubarajan, 2001) (Nabaa & Bishop, 2000) though the actual 

aircraft trajectory follows neither of the two simple models throughout its tracking time. It may be 

pointed out that while the UM model involves essentially linear dynamics, the CT model is essentially 

nonlinear.  

 In the section, adaptive nonlinear filters are used to estimate the position and velocity of aircraft 

following unknown but standard zigzag trajectories using both UM and CT models without any model 

switching (Bar-Shalom, Li, & Kirubarajan, 2001) or manual parameter tuning requirements. For the 

nonlinear CT model, this work evaluates a Q-adaptive version of second-order Divided Difference 

Filter (NøRgaard, Niels K, & Ravn, 2000), called the ADDF (Dey, Sadhu, & Ghoshal., 2013) and also 

the AGHF (Dey, Sadhu, & Ghoshal, 2014). It is shown subsequently that such adaptive filters obviate 

the need for manual tuning or choosing appropriate process noise covariance matrix but can provide 

improved performance over competing estimators. To the best of the knowledge of the authors, the 

ADDF, GHF and AGHF have not been evaluated with the kind of air traffic trajectories considered in 

this work. The present work takes the same ATC scenario (Gadsden, Habibi, & Kirubarajan, 2014) as 

one of two case studies to evaluate the relative performances of ADDF and AGHF) for unknown Q 

with, inter alia, the above mentioned robust Smooth Variable Structure Filter. 

For evaluating the tracking estimators, both UM and CT models have been used. The performance of 

the tracking filters is presented in terms of typical true vs. estimated trajectory, and Monte Carlo 

simulation results like average and peak RMS errors.  

We take the opportunity of comparing different state estimators to also investigate the effects of 

different sampling rates and different kinds of target position measurements, viz., in Cartesian format 

(x, y) or in the range-bearing (polar) format (r,).  

Tracking Scenario:  

The tracking scenarios of the civilian aircraft are discussed in section the 3.4.4 under chapter 3. Two 

tracking cases as shown in Fig 4.3 and Fig 4.4 have been considered for the evaluation of adaptive 

state estimators.  
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Figure 4.3 Trajectory-I 

 

Figure 4.4 Trajectory-II 

Detailed description of the Trajectory-I and Trajectory-II are given in the section 3.4.4.1 and 3.4.4.2 

respectively.   Truth Models to generate the trajectory are discussed in section 3.3.  

Based on the measurement type, the evaluation process has been categorized into two: Linear 

Measurement and Polar measurement.  

Simulation parameter:   

The process noise covariance for the CT model is given by  
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 (4.4.1) 

Where, 1L  and 2L  are the power spectral densities of the noise corresponding to linear velocities and 

angular velocities respectively.  For the UM model, the fifth state variable is absent and accordingly, 

the 5th row and the 5th column is not required. For simulation in the case studies, values of the power 

spectral densities 1L  and 2L  considered are 0.16 and 0.01 respectively to maintain compatibility. Both 

UM and CT models have two measurements and the measurement noise covariance matrix kR  is 2 X 

2.  

For simulations, the Cartesian measurement the measurement noise covariance matrix is chosen as  
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ρ = 0.0034e-x/22000 The corresponding measurement noise covariance for polar measurement is 

chosen as 
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The units of range and bearing are considered in )(m  and degree )(   respectively. For each run, initial 

state vector of the plant has been randomized with prescribed nominal values as given above and 

corrupted by an initial noise covariance 0P . For non-adaptive filters, random process noise and 

measurement noise sequences have been drawn from zero mean Gaussian noise sequences with 

prescribed covariance matrices. For the adaptive filters, the process noise covariance evolves as 

described in the algorithm. The performance of the tracking filters is presented in terms of time versus 

estimated trajectory for typical cases, Monte Carlo simulation results for RMS errors are also shown 

likewise. The numerical values of average (over the total run-time) RMSE and peak RMSE have been 

presented in appropriate tables to compare the performance of the filters with different models and 

methods.  

The sample interval is taken as 5s for simulation of trajectory I. For trajectory II, results for two 

sampling intervals viz., 5s and 1s are provided. This is to investigate whether a faster sampling can 

substantially improve the performance. Initial error covariance 0P  is taken as

])11001005050([ 22diag . RMSE plots have been provided for 500 Monte Carlo runs. True kQ

(as given in Eq 4.4.1) has been used for truth generation of the trajectory and the adaptive filters have 

been initialized with a typical wrong initial value (guess) as kQ01.0 .  Additional values regarding the 

trajectories are provided in the following sections.   

4.4.1 Linear measurements (Trajectory-I) 

Two-dimensional planar models: Uniform Motion and Coordinated Turn, as discussed in the section 

3.3.2 are taken here for the evaluation of adaptive state estimators.  

The linear measurement equation is given as:   
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The linear measurement equation as shown in Eq 4.4.4 is considered for the nonlinear CT model. For 

UM model, 5th row of H matrix of Eq 4.4.4 should be omitted.  

 

Figure 4.5 Estimation of position by KF and AKF with UM model for unknown noise ( UMQQ  01.00 ) for a 

typical MC run (with Cartesian measurements) 

 

Figure 4.6 RMSE for X-position with KF and AKF via 
UM model where 

UMQQ  01.00
 for Trajectory-I 

 

Figure 4.7 RMSE for X-position with EKF, AGHF and 
ADDF with CT model where 

CTQQ  01.00
 for 

Trajectory-I 

Fig 4.8 represents the estimation of position of the aircraft by UM model. As UM model is linear one, simple 

Kalman Filter (KF) and its Q-adaptive version (AKF) are considered for state estimation. Both the filters have 

been initialized with the wrong value of process noise covariance ( UMQQ  01.00 ). The (non-adaptive) KF 

however, fails to track the position properly after the first turn. On the other hand, the AKF for the same 

scenario performs better and is able to handle the effect of model mismatch. This is evident in the plots of Fig 

4.6. Table 4.1 summarises the performance of KF and AKF along with the robust SVSF (Gadsden, Habibi, & 

Kirubarajan, 2014). 

Next, state estimation has been carried out with the EKF and ADDF and AGHF for the CT model. The 

simulation parameters are kept same as those taken for the case of UM model. It may be noted that the CT 

model with EKF performs better than the UM model with KF (as given in Table 4.1 and 4.2). However, the 

performance of the ADDF and AGHF has been found to be noticeably better than that of the EKF for unknown 
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process noise covariance (Table 4.2). Peak values of RMSE for 500 MC runs are also given in Table 4.2. It may 

be seen that adaptive filters (ADDF and AGHF) perform better for unknown process noise even in this metric. 

As expected the peak values are much larger compared to the average RMSE values.  

Additionally, the average RMSE have also been compared with that for the robust SVSF (Bar-Shalom, Li, & 

Kirubarajan, 2001), which shows that the adaptive filters perform better even if the SVSF was tuned with true 

process noise.     

Table 4.1 Performance comparison of Adaptive Kalman Filter with SVSF using UM model for 500 MC runs 

Trajectory I 
UM model 

KF 

UMQQ  01.00
 

Composite (X, Y) 

AKF  

UMQQ  01.00
 

Composite (X, Y) 

SVSF 

Composite (Gadsden, 

Habibi, & Kirubarajan, 2014) 

Position error (m) 1707.8 (1195, 1220) 94.9 (64.25, 69.89) 111 

Velocity error (m/sec) 
55.9 (39.7, 39.4) 50.14 (35.27, 35.65) 97 

 

Table 4.2 Performance comparison (Avg RMSE and peak RMSE) of ADDF and AGHF with EKF and SVSF for CT 
model for 500 MC runs for linear measurement  

Trajectory I 

CT model 

EKF 

CTQQ  01.00
 

ADDF 

CTQQ  01.00
 

AGHF 

CTQQ  01.00  

SVSF 

Composite 

(Gadsden, Habibi, & 

Kirubarajan, 2014) 

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Position error (m) 528.02 
(1139.14 

2397.13) 
82.29 

(253.90, 

318.98) 
82.45 

(238.76, 

199.18) 
110 

Velocity error 

(m/sec) 
41.14 (81.30, 154.17) 58.31 

(196.47, 

58.36) 
57.14 

(192.76, 

58.01) 
96.8 
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4.4.2 Polar measurements (Trajectory-I) 

The polar measurement model is defined as  
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State estimation has also been carried out with polar measurement model as given in Eq 4.4.5.  

Nonlinear state estimators like ADDF and AGHF have also been used for polar measurements. 

Nonlinear CT model has been taken as system model. The simulation parameters are kept same as 

those taken for the case of the Cartesian measurement model. Performance of the estimators is 

evaluated for a case where process noise covariance is not known. RMSE performance for peak value 

and time-averaged composite value are given in Table 4.3. A total of 500 Monte Carlo Simulations 

were performed.  

From Table 4.3, it may be noted that AGHF performs better as compared to ADDF in terms of time 

average RMSE. On the other hand, ADDF has shown better performance than AGHF when Peak 

value of RMSE is considered. Extended Kalman Filter was not considered due to the ‘divided by 

zero’ problem in the derivatives of Jacobean Matrix.  

However, the performance of the nonlinear adaptive filters (ADDF and AGHF) for Polar 

Measurement is close to the case of Cartesian measurement.     

Table 4.3 Performance comparison (Avg RMSE and peak RMSE) of ADDF and AGHF for CT model for 500 MC 
runs for polar measurement 

Trajectory I 

CT model 

 

EKF 

UMQQ  01.00
 

    ADDF 

CTQQ  01.00
 

AGHF 

CTQQ  01.00  

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Position error (m) - - 85.52 (154.03, 208.83) 81.33 (168.51, 212.07) 

Velocity error (m/sec) - - 56.92 (148.80, 77.52) 58.16 (166.82, 84.04) 
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4.4.3 Linear measurements (Trajectory-II) 

In the case of Trajectory-II as defined in Fig 4.4 a faster sampling interval of T=1s is considered for 

the evaluation of adaptive nonlinear filters. The true trajectory along with typical runs of estimated 

position with EKF, ADDF and AGHF has been shown in Fig 4.8. Note that even with faster sampling, 

the non-adaptive EKF fails to track the trajectory when the aircraft takes a quick ‘U’ turn with high 

turn rate. This contributes towards higher RMS error for EKF. Fig 4.9 depicts the RMSE plots of the 

EKF, ADDF and AGHF for Trajectory-II. The performance chart using the time-averaged RMS error 

metric is shown in Table 4.4, which also includes the performance of SVSF. As seen in the above 

figures and the table, the tracking performance of ADDF and AGHF, both being close to each other, 

are substantially better compared to that obtainable from the non-adaptive EKF. From Table 4.4, it is 

seen that the RMS position error performance of the adaptive state estimators is better compared to 

the SVSF which is consistent with results of Trajectory-I but the difference is less. In contrast to the 

results in Trajectory-I, the RMS velocity error performance is better for SVSF. 

 

Figure 4.8 Estimation of position by EKF, AGHF and ADDF with CT model for unknown noise 
CTQQ  01.00

 (T 

= 1s) for a typical MC run for Trajectory – II 
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Figure 4.9 RMS position error performance of EKF, AGHF and ADDF with CT model for unknown noise 

CTQQ  01.00
 (T = 1s) for a typical MC run for Trajectory - II 

Table 4.4 Performance comparison (time-averaged RMS) of ADDF and AGHF with EKF using CT model for 500 

MC runs  

Trajectory-II 

CT model 

EKF 

CTQQ  01.00
 

ADDF 

CTQQ  01.00
 

AGHF

CTQQ  01.00

 

SVSF 

Simulated 

Position error (m) 1986.8 85.08 85.02 92.75 

Velocity error (m/sec) 479.94 75.99 76.00 65.16 

4.4.4 Polar measurements (Trajectory-II) 

A similar tracking performance was obtained for Polar measurement for trajectory-II. Results are not 

in here. 

4.5 Chapter Conclusion 

Using Monte Carlo simulation and two trajectories, we have evaluated performances of smooth 

variable structure (SVSF) based robust filters and single model adaptive nonlinear estimators. As the 

trajectories essentially embody nonlinear dynamics, nonlinear estimators had to be used.  

Though earlier workers (Gadsden, Habibi, & Kirubarajan, 2014) benchmarked different estimation 

algorithms using the average RMS error as a measure, which, no doubt, provides a quick and 

convenient comparison between state estimators, for some practical applications the peak RMS 

position error measure should also be carefully considered as an off-line indicator of track loss 
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possibility. This is because the peak RMS position error value indicates the presence of large position 

errors which increases the possibility of losing track. 

The relative computation time of several estimators discussed in this work is shown in Table 4.5 

where it is seen that the computational efficiency of the AGHF is significantly lower compared to the 

other adaptive nonlinear filters. With the advent of high-speed microprocessors and parallel 

processing, the role of computational efficiency should be evaluated for each specific application. 

Here an AMD A8-7410 (2.20 GHz) Processor was used with MATLAB 2013b. Time was recorded by 

executing ‘tic/toc’ instructions.   

Table 4.5 Computation Time for 500 Monte Carlo runs (Trajectory –I) 

Estimator Time elapsed (s) 

EKF 16.94 

AEKF 75.633 

ADDF 187.00 

AGHF 2.31×103 

SVSF 64.93 

  

From this study, some the most significant results of the present investigation are as follows.  

(i) CT model-based state estimators, though marginally more computation intensive, provide better 

(compared to the UM model based) tracking performance for trajectories of the types considered.  

(ii) Performance of the adaptive estimators even when initialized with a wrong guess value of 

process noise covariance provides tracking performance comparable to that obtainable with the 

recently introduced robust SVSF. 

(iii) The AGHF is computationally more intensive by nearly an order of magnitude (more than a 

decade) compared to ADDF but tracking performance of this computationally intensive AGHF is 

very similar to that obtainable by ADDF and hence the former is not recommended for the 

tracking applications considered. 

The salient contribution of the work presented in this chapter is a systematic evaluation and 

comparison of several Q-adaptive nonlinear estimators based tracking filters with robust variable 

structure. This may facilitate the choice of an appropriate state estimator for tracking duties. 

Specifically, three types of single model adaptive filters, viz., ADDF, AGHF and AKF and robust 

SVSF (smooth variable structure filter) and also KF and EKF have been considered.  
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Single model adaptive state estimators have been found to perform acceptably well when compared to 

recently introduced SVSF. From the abovementioned comparative evaluation, an analyst can make an 

informed choice and make appropriate trade-offs on the basis of estimation accuracy, algorithm 

complexity, tuning requirement and computational load for a given tracking scenario. 
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5 Sigma Point Smooth Variable Structure Filters 

(SPSVSF) 

5.1 Chapter Introduction 

This chapter serves several purposes. The primary purpose is to introduce the novel Sigma point-

based Smooth Variable Structure Filter (SPSVSF), proposed in this work. The proposed SP-SVSF is 

based upon the Smooth Variable Structure Filter and also utilizes the benefits of using sigma point 

approach to deal with nonlinearity present in the system. The second purpose of this chapter is to 

provide a background and previous work on the Smooth Variable Structure Filter (SVSF) and 

especially the version with optimum boundary layer (SVSF-OBL) 

The Smooth Variable Structure Filter (SVSF) has recently become popular among the robust state 

estimators. This chapter presents an alternative approach to estimate states by SVSF for nonlinear 

systems. The Traditional Smooth Variable Structure Filters are used for the continuous (smooth) 

system (Gadsden & Habibi, 2010). SVSF uses Jacobian for nonlinear state estimation (Gadsden, 

Mohammed, & Habibi, 2011). The proposed Sigma Point Variable Structure Filter (SPSVSF) utilizes 

the benefits of using sigma point approach to deal with nonlinearity present in the system. Thus the 

proposed method uses derivative free computation for the nonlinear approximation to overcome the 

Jacobian issue and to handle discontinuity. However, the idea of using sigma points in SVSF was 

presented in (Gadsden S. A., 2011). The strategy presented in (Gadsden S. A., 2011) used for 

combining UKF with SVSF. Whereas the present work in this chapter is to overcome Jacobian 

calculations in the SVSF algorithm. Monte Carlo Simulation has been carried out to evaluate the 

performance of the SPSVSF estimator.  

The origin of the name ‘Smooth’ in SVSF came from the criteria that the estimator is applicable for a 

case where system model and the measurement model are continuous or smooth in nature (Habibi S. , 

2007). The SVSF is applicable to both linear and nonlinear systems which are differentiable. A time-

varying smoothing boundary layer is presented in (Gadsden, Mohammed, & Habibi, 2011). SVSF 

with time-varying smoothing boundary layer thus gives the optimal value of gain which is similar to 

Kalman Filter (Gadsden S. A., 2011) within the boundary layer for a linear system. However, the 

SVSF (with variable boundary layer) has been found to have several limitations for the nonlinear 

system though it is effective for robust state estimation. For the state estimation of nonlinear system, 

the system model and the measurement models are to be differentiable in order to obtain Jacobian for 

calculating the a priori estimate, the time-varying boundary layer calculation and SVSF gain. The 

Jacobian approximation may not be accurate for certain nonlinarites. On the other hand, there are 
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systems which may have discontinuities in its system or measurement model. In that case the SVSF 

with variable boundary layer may not be applicable to estimate the states. 

The above context motivates to use a derivative-free computation of the recent version of SVSF to 

make the SVSF with time-varying boundary layer applicable for nonlinear and discontinuous systems. 

It is to be noted that the sigma point filters such as UKF, GHF and DDF are more accurate as 

compared to EKF for handling nonlinearities.  

This chapter focuses on utilizing the sigma point formulation for the nonlinear approximation of a 

system for SVSF filters. Thus it minimizes the problem of nonlinear approximation and makes SVSF 

also applicable to discontinuous systems. However, it assumes the measurement model to be linear. 

5.2 Previous work on Smooth Variable Structure State Estimators 

5.2.1 Background on Smooth Variable Structure Filter (SVSF) 

Recently a robust variable structure filter called Smooth Variable Structure Filter (SVSF) (Al-Shabi, 

Gadsden, & Habibi, 2013) (Al-Shabi, Gadsden, & S. A, 2015) (Gadsden, Habibi, & Kirubarajan, 

2012) (Gadsden S. A., 2011) has been proposed and its application to air traffic control problem has 

been proposed in (Gadsden, Habibi, & Kirubarajan, 2014). The possibility of robust state estimation 

using the variable structure approach was explored in (Floquet, Edwards, & Spurgeon, 2007) (Liu, 

2014) and a good tutorial exposition is provided in (Edwards & Sarah, 1998). Though the estimators 

cited above are in the continuous time domain and are of the type ‘observer’ rather than full-fledged 

state estimator, a good idea of robustness and convergence analysis of such estimators may be 

obtained therefrom.  

A different kind of state estimator incorporating variable structure (often referred as VSF) was first 

introduced in (Gadsden, Habibi, & Kirubarajan, 2012) which, unlike earlier variable structure state 

estimators (with observer-structure), the VSF was formulated in a predictor-corrector structure and 

uses a discontinuous corrective ‘gain’ or, equivalently, a correction component which in Kalman filter 

framework would correspond to the Kalman gain multiplied by innovation. Initially the VSF concept 

was demonstrated using a linear plant model (Gadsden, Habibi, & Kirubarajan, 2012).  In the SVSF 

context, the “robustness” implies that estimated (sequence of) states can be generated even with an 

inaccurate model of the system. Starting with a guessed initial value, the estimated sequence 

(trajectory) of states is forced towards the true state trajectory (‘reachability phase’) with a high 

(saturated) gain until it reaches the (time-varying) subspace termed the existence subspace (Gadsden, 

Habibi, & Kirubarajan, 2012) (Habibi S. , 2007) which encloses the true state trajectory as shown in 

Fig 5.1. Due to disturbances and uncertainties, the estimated value may switch back and forth across 
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the true state trajectory - a phenomenon called chattering while remaining within the existence 

subspace. 

The VSF estimator as above was proven to ensure error convergence for bounded disturbance (even if 

uncertain) if the system is “consecutive bijective” and the measurement model is linear (Habibi S. , 

2007). Subsequent versions of VSF permitted locally linearized approximations of the measurement 

equation. As the later versions of VSF required smoothness (with continuous partial derivatives of any 

order with respect to its arguments) of the dynamic equation the filter is called smooth variable 

structure filter (SVSF) (Habibi S. , 2007) (Gadsden & Habibi, 2010). The SVSF algorithm is 

straightforward if all the state variables are available as measurements, implying that measurement 

matrix (H) is non-singular. If H matrix is singular, the situation may be handled by using the pseudo 

inverse of H or by an auxiliary observer (Gadsden, Habibi, & Kirubarajan, 2012). Application of 

SVSF nonlinear plant models has been reported in (Gadsden & Habibi, 2010) (Habibi & Burton, 

2007). The robustness of VSF has also been discussed in (Gadsden, Habibi, & Kirubarajan, 2012). 

To reduce the effect of chattering noise (Habibi & Burton, 2002) (Al-Shabi, Gadsden, & Habibi, 

2013) (Afshari, Dhafar, & Saeid, 2015) and consequent estimation error, a ‘boundary layer’ had been 

introduced in SVSF (Habibi S. , 2007) and such a version which inherits the robustness of SVSF 

without the encumbrance of switching noise  may be called SVSF-BL for convenience. The concept 

of boundary layers of SVSF and the related concept of existence sub-space (Gadsden & Habibi, 2010) 

(Habibi S. , 2007) have been represented in Fig 5.1 which draws upon the ideas presented in (Habibi 

S. , 2007) and (Gadsden S. A., 2011). An SVSF-BL operates in two regimes. Outside the boundary 

layer, the (saturated) high gain pushes the estimated quantity to the boundary layer (despite an 

inaccurate process model and certain types of disturbances). Once within the boundary region, smaller 

(unsaturated and interpolated) gain is used resulting in smooth estimated state trajectory and 

estimation errors within the bounds of the width of the boundary layer due to unmodelled dynamics 

cannot be ruled out though. The width of the smoothing boundary layer impacts chattering and 

estimation accuracy. A careful or optimal choice is necessary because a narrow boundary layer would 

give rise to chattering whereas a very wide boundary layer would also be detrimental to estimation 

accuracy. Both these cases may lead to increased estimation error in the RMS sense. Cues for 

determining an appropriate value of boundary layer width may be obtained by measuring the amount 

of Chattering (Al-Shabi, Gadsden, & Habibi, 2013), however, a further improved version of SVSF 

(the SVSF-OBL, mentioned before) has been described in (Gadsden S. A., 2011) where an optimum 

boundary has been determined with the help of the process noise covariance Q, which is indicator of 

modeling approximation/inaccuracy. The optimal width of the boundary layer for SVSF-OBL is 

derived by minimizing the trace of the posterior state covariance matrix (Gadsden S. A., 2011) 

(Gadsden, Mohammed, & Habibi, 2011). Robustness and accuracy of the SVSF-OBL depend on the 

process noise and measurement noise covariance. [ (Gadsden S. A., 2011), chapter 5]. However, the 
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knowledge of Q also helps to design a more accurate estimation within the smoothing boundary 

region by the use of Bayesian filters (e.g. KF, EKF, UKF, CDF (Das, Dey, Sadhu, & Ghoshal, 2015) 

(Simon, 2006), and cubature filter (Al-Shabi, Gadsden, & S. A, 2015)) with smooth gain.  

An inaccurate knowledge of process noise covariance adversely impacts the performance of SVSF-

OBL state estimators in more than one ways. Firstly, the width of the boundary layer ceases to be 

optimal which may lead to chattering or loss of estimation accuracy. Secondly, the state estimation 

algorithm used within the boundary generally makes use of the inaccurate Q (Gadsden S. A., 2011) 

(Gadsden, Habibi, & Kirubarajan, 2014) and therefore results in further increase of the estimation 

error. 

Versions of SVSF-OBL which switches between SVSF-OBL and conventional Bayesian filters like 

those mentioned above have been proposed (Gadsden S. A., 2011) (Gadsden, Habibi, & Kirubarajan, 

2014) (Gadsden & Hamed, 2015) (Gadsden, M, Ienkaran, & Saeid R., 2014).  

Another variant of the SVSF uses a combined methodology of SVSF and other conventional sigma 

point filters to combine robustness and freedom from chattering (Al-Shabi & Hatamleh, 2014). 

Robustness of SVSF and 2nd order SVSF have been compared (Afshari, Dhafar, & Saeid, 2015). 

A fairly comprehensive review of SVSF and its applications up to 2014 is available in (Gadsden & 

Hamed, 2015). An in-depth understanding about SVSF and the concept of optimal dynamic boundary 

layer are available in (Gadsden S. A., 2011). Some fairly recent developments have been reported in 

(Al-Shabi, Gadsden, & Habibi, 2013). 

Various applications of the SVSF and SVSF-OBL for state estimation have been presented in (Habibi 

S. , 2007) (Gadsden, Mohammed, & Habibi, 2011) (Gadsden, Habibi, & Kirubarajan, 2014) which 

include target tracking and hydraulic actuation system. 

5.2.2 Chattering in VSF and the Choice of Boundary Layer Thickness 

SVSF filters may suffer from chattering (Gadsden S. A., 2011) (Al-Shabi, Gadsden, & Habibi, 2013) 

due to unknown process noise and other disturbances. The bounds of the amplitude of chattering in 

certain cases may be predicted and the same is said to be contained within an ‘existence sub-space’ 

(Habibi S. , 2007). SVSF with boundary layers (Gadsden & Hamed, 2015) (Gadsden S. A., 2011) (Al-

Shabi, Gadsden, & Habibi, 2013) (Habibi & Burton, 2007) has been proposed to reduce such 

chattering. The concepts of boundary layers of SVSF and the existence sub-space (Habibi S. , 2007) 

have been represented in Fig 5.1 and would be further elaborated in the next section. Outside the 

boundary layer, a higher, saturated estimator gain is used, whereas inside the layer, a simpler 

estimator with smaller, unsaturated gain is generally used. The extent (thickness) of such boundary 
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layers should be carefully chosen so as not to allow residual chattering and at the same time, avoiding 

too wide a boundary layer, which may create excessive estimation error within the boundary layer.  

 

 

Figure 5.1 Boundary Layer Concept 

This chapter proposes an improved version of SVSF-OBL by incorporating sigma points for nonlinear 

systems.  

5.2.3 The SVSF-OBL Algorithm 

The proposed ASVSF estimator is based upon a special version of SVSF proposed in ( (Gadsden S. 

A., 2011) (Gadsden, Habibi, & Kirubarajan, 2014) envisages (to counter this by computing) an 

‘optimum’ boundary layer thickness. From Fig 5.1, it may be seen that such an optimum boundary 

layer would be just wide enough to contain the existence sub-space. To distinguish the “SVSF with 

the optimal boundary layer” from the other versions, we may use the nomenclature SVSF-OBL where 

such distinction is necessary.  

The algorithm/computational flow of SVSF-OBL is described below.  

Though the algorithm of basic SVSF is available in several references (Gadsden S. A., 2011) 

(Gadsden, Habibi, & Kirubarajan, 2014) (Gadsden, Mohammed, & Habibi, 2011), a brief overview of 

the algorithm and certain special requirements of SVSF-OBL are pointed out here.  
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The most general form of SVSF requires that the functions )(f  and )(h  should be smooth and 

differentiable i.e., differentiable at every point of interest and the system should be observable. The 

SVSF (Gadsden, Habibi, & Kirubarajan, 2014) works in predictor-corrector structure with a prior 

estimate kkx |1
ˆ

  (prediction) without utilizing the measurement and posterior estimates 1|1
ˆ

 kkx  

(correction) taking cognizance of the measurements. The prediction step of SVSF is quite similar to 

the corresponding steps used for Kalman filter and updates the prior estimate of the state and also the 

prior error covariance kkP |1 . The innovation ( kkz |1ˆ  ) is defined as the difference between the actual 

measurement 1ky  and the prior estimate of the measurement )ˆ(ˆ
|1|1 kkkk xhy   . Similarly, the residual 

1|1ˆ  kkz  is defined as the difference between the actual measurement 1ky  and the posterior estimate of 

the measurement 1|1
ˆ

 kky . 
  

As stated before, the SVSF-OBL state estimator assigns an optimal thickness of boundary layer in the 

hyperspace for a smooth estimate. Though the SVSF-OBL can be applied to more general cases, we 

first consider a simple form in which the measurement equation is linear and the concerned output 

matrix be of full rank.  

In other words, the output equation is of the form  

 
111   kkk vHxy  (5.2.1) 

and the matrix H  is invertible. 

However, the condition of the output matrix being full rank (which implies that the number of 

measurements equals the number of state variables) may be relaxed by using appropriate observers or 

by using synthetic measurements as is used by (Gadsden, Habibi, & Kirubarajan, 2014). For a 

nonlinear output equation, one may take recourse to linearization. However, in such a case the 

optimality will be questionable. 

The simple case of linear measurement and a full rank output matrix mentioned above, the properties 

of SVSF can be derived in a straightforward manner (Gadsden S. A., 2011). In the SVSF-OBL 

described in (Gadsden S. A., 2011) (Gadsden, Mohammed, & Habibi, 2011) the boundary layer 

thickness descriptor is a matrix, denoted by k which is to be calculated using the innovation ( kkz |1ˆ  ) 

and residual ( kkz |ˆ ) as given in (Gadsden, Mohammed, & Habibi, 2011). This boundary layer thickness 

matrix k  is used for the calculation of SVSF gain (correction) term  1kK  which, in turn, is used to 

update the estimate analogous to the way it is done in KF in the form kkkkkkk zKxx |11|11|1
ˆˆˆ
  .  This 

expression is repeated in the detailed description of the algorithm of ASVSF. 
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The SVSF-OBL, however, has its own expression to update state covariance (Gadsden & Habibi, 

2010) as described later.  

For a discussion on the stability of SVSF and the gain, see (Al-Shabi, Gadsden, & Habibi, 2013).     

5.3 Algorithm of Smooth Variable Structure Filter with Optimum 

Boundary Layer (SVSF-OBL) 

The algorithm for SVSF given below follows descriptions of SVSF with optimum boundary layer in 

(Gadsden, Habibi, & Kirubarajan, 2014) (Gadsden & Hamed, 2015). Detailed derivations of the steps 

and the concept of the underlying theory are available in (Gadsden S. A., 2011).  

A nonlinear dynamical system is described by the following equation  

 
kkkk wuxfx  ),(1  (5.3.1) 

 
kkk vxhy   )( 11  (5.3.2) 

 

Where kx  is the state vector for input ku  and kz represent measurement. The system has zero mean 

Gaussian process noise and measurement nose mentioned by kw  and kv respectively.    

The SVSF algorithm for the nonlinear system (Eq 5.3.1) and linear measurement equation 

 kkk vHxy   11  is stated below.   

i. Prediction stage:   

Like the Kalman filter genre, the state and state error covariance can be predicted as follows 

 ),ˆ(ˆ
||1 kkkkk uxfx   (5.3.3) 

 
k

T
kkkk QFFPP  ||1  (5.3.4) 

Where F denotes the linearized system matrix obtained by taking the Jacobian 

kk

kkk

x

uxf

|

|

ˆ

)),ˆ((




 

The innovation can be obtained as  

 
kkkkk xHyz |1|1

ˆˆ
   (5.3.5) 

Innovation covariance can be represented as
 

 
k

T
kkk RHHPS   |1  (5.3.6) 

ii. Smooth Boundary Layer:   
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  The width of the boundary layer can be calculated as given in (Gadsden, Habibi, & 

Kirubarajan, 2014) (Gadsden & Hamed, 2015). 

  11
|1

1 


 kkkkk HSHP  

Where,  kkkkk zz ||1
ˆˆ    

 represents the memory of VSF. It determines the convergence rate of the estimation. 

However, the value of  can be chosen anything between 0 and 1 (Gadsden, Habibi, & 

Kirubarajan, 2014). k takes the diagonal values of k .  

iii. Gain term:   

The SVSF gain is derived as   

 
   kk

k

kk

kkkkk zdiag
z

satzzdiagHK |1

|1

||11
ˆ

ˆ
ˆˆ



































   (5.3.7) 

The stability proof is given in (Al-Shabi, Gadsden, & Habibi, 2013) 

iv. Update stage:   

 
kkkkkkk zKxx |11|11|1

ˆˆˆ
   (5.3.8) 

     T
kkk

T

kkkkkk KRKHKIPHKIP 1111|111|1    (5.3.9) 

 
1|11|

ˆˆ
  kkkkk xHyz  (5.3.10) 

5.4 Extended Smooth Variable Structure Filter 

Extended Variable Structure Filter was presented by (Habibi S. , 2006) to deal with nonlinearity 

present in the system. Detailed descriptions are given in (Gadsden S. A., 2011). The version presented 

in (Habibi S. , 2006) did not include the optimal boundary layer. However, the below-mentioned steps 

include the SVSF with the optimal boundary layer.    

Prediction stage:  

),ˆ( ||1 kkkkk uxfx 


           

k

T

kkkkkk QFPFP  ||1   

)ˆ(ˆ
|1|1 kkkk xhy            
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Here 

kkk ux

k
x

f
F

,ˆ |








, the linearized function of the system. 

Innovation:   

The innovation can be obtained as         

kkkkk xHz |11k|1
ˆyˆ

            

Where 

kkx

k
x

h
H

|1ˆ

ˆ






 , the linearized measurement function for nonlinear system. 

The Width of the Variable Boundary layer: 

The expression is same as given in the section 5.3.    

Gain term: 

The expression is same as given in the section 5.3.       

Update stage:  

The expression is same as given in the section 5.3.       

5.5 Sigma Point Smooth Variable Structure Filter 

The sigma point SVSF actually makes use of the sigma point generation for nonlinear approximation.  

Here we have used the same methodology used for Unscented Kalman Filter (UKF). The SVSF 

discussed in previous section uses the Jacobian kF  in the prediction stage (calculation of kkP |1 ) for 

the estimation of the no-linear system. This proposed filter avoids the computation of derivatives for 

the Jacobian to make this filter used for nonlinear discontinuous system.       

5.5.1 Sigma Point Generation  

Sigma points are generated as per the unscented Kalman filtering (Wan & Van Der Merwe, 2000) 

kkkk xX ||,0
ˆˆ   

Where X̂  contains sigma points. Weights )(
0

mW  and )(
0

cW are calculated as follows:    








n
W m)(

0  
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 






 2)(

0 1
n

W c
 

Where   is the scaling parameter;  determines the distribution of sigma points;  is used to 

incorporate the prior knowledge of the distribution of 
kX


(for Gaussian distribution 2 is 

optimal); n is the order of the system.  

    kkkkkkkkk PnXPnXXX |1|1|
ˆ





  


   

 





n
WW c

i
m

i
2

)()(
 

  nkna  2  

Wi
(m)

= Wi
(c)

=
λ

2(n+λ)
 

 

5.5.2 Sigma Point SVSF steps 

Prediction stage:  

 
1|

2

0

|1
ˆ





  kk

n

i

ikk XWx


 (5.5.1) 

 
   k

n

i

T

kkkkkkkkikk QxXxXWP 




2

0

|11||11||1
ˆˆ 

 (5.5.2) 

 ),ˆ(ˆ
|1|1 kkkkk uXhZ    (5.5.3) 

 



 
n

i

kkikk ZWy
2

0

|1|1
ˆˆ  (5.5.4) 

Innovation:   

The innovation can be obtained as        

 
kkkk yz |11k|1

ˆyˆ
   (5.5.5) 

 

Width of the variable Boundary layer:  

Innovation covariance is computed as 

 
   k

n

i

T

kkkkkkkkikzz RzZzZWP 




2

0

|1|1|1|1|
ˆˆˆˆ  (5.5.6) 

     

The width of the boundary layer can be calculated as given as 

    11

||
1  

kzzkkzzkk PRP  (5.5.7) 

 
or,   kkzz

T

kkkkkk RPHPH 



 11

||1
1  (5.5.8) 
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Where,
 

 kkkkk zz ||1 ˆˆ          

   

 represents the memory of VSF. It determines the convergence rate of the 

estimation. However, the value of  can be chosen anything between 0 and 1  

Gain term: 

The SVSF gain is now given as follow. Note that the structure of the gain remained same 

as SVSF with variable boundary layer.    

     1

|1|1
11

1
ˆ])ˆ[()(






  kkkkkkkk zdiagzdiagsatdiagHK   (5.5.9) 

 

Update stage:      

      
kkkkkkk zKxx |11|11|1

ˆˆˆ
   (5.5.10) 

     T
kkk

T

kkkkkkkk KRKHKIPHKIP 1111|111|1    (5.5.11) 

 
1|111|1

ˆˆ
  kkkkkk xHyz  (5.5.12) 

   

5.6 Evaluation with test problem 

The SPSVSF is evaluated for a nonlinear discontinuous system with linear measurement. A Case 

study for the discontinuous system is taken from (Sadhu, Bhaumik, Doucet, & Ghoshal, 2009) to 

evaluate the performance of the estimators.  

The system is defined as: 

   kwxfx   (5.6.1) 

 kk vHxy   
(5.6.2) 

 Where,   )sgn(001.02 kk xxxf   and 1H . The system has process noise with covariance 1kQ and 

measurement noise with covariance 1kR . The sampling interval is taken as 0.01s (Sadhu, Bhaumik, 

Doucet, & Ghoshal, 2009). Initial state error covariance, 20 P is considered for the simulation study. 

SPSVSF is evaluated for a nonlinear discontinuous system. Fig 5.2 shows the true and estimated 

states for single run. RMSE plot for 500 Monte Carlo runs is given in Fig 5.3.   
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Figure 5.2 True and estimated states  

 

Figure 5.3 RMSE Plot of SPSVSF and UKF 

Note on the study: 

i. Sigma point Smooth Variable Structure Filter is presented in this chapter. From the 

simulation study, it is to be noted that it can estimate a discontinuous system.  

ii. The measurement model is considered as linear. As the present form of SVSF gain term 

contains 1H term, the equivalent nonlinear sigma points could not be substituted in this work.  

iii. From the RMSE plot it is seen that the performance of SPSVSF is better than the UKF.  

iv. For comparative study, SVSF is not included because the SVSF cannot estimate states of 

discontinuous system.  
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v. Structure of the SPSVSF gain is kept unchanged with respect to SVSF-OBL and the stability 

condition also did not change for the sigma point version. Only change was made to calculate 

the covariances with the help of sigma points as per the Unscented Transformation rules.    

5.7 Chapter Conclusion 

The Sigma point SVSF is presented here for the state estimation of nonlinear discontinuous system. 

The proposed version of the estimator has been evaluated with 1st order nonlinear discontinuous 

system. However, this also assumes H to be linear or linearized and to have full rank. This limitation 

may be tackled in future work.     
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6 Adaptive Smooth Variable Structure Filter 

6.1 Chapter Introduction 

This chapter proposes and describes the algorithm for an improved nonlinear adaptive state estimator 

called Adaptive Smooth Variable Structure Filter (ASVSF) and evaluates its performance. The 

proposed ASVSF extends the functionality and performance of a previously reported robust smooth 

variable structure filter (SVSF) with optimal boundary layer (SVSF-OBL) (Gadsden, Habibi, & 

Kirubarajan, 2014) (Al-Shabi, Gadsden, & Habibi, 2013). This proposed ASVSF estimator, which 

inherits the robustness of the SVSF, also adaptively provides an estimate of the unknown process 

noise covariance (and hence called adaptive SVSF or ASVSF) which is required for determining the 

optimal boundary layer width of SVSF-OBL. The optimal boundary layer, in turn, helps in reducing 

chattering noise as well as in reducing the estimation error due to the large boundary layer. 

Subsequent sections of this chapter would show that improvement in performance also includes the 

provision for accommodating unknown and time-varying process noise covariance Q, (which 

generally characterizes modeling uncertainty).  

Any inaccuracy in the value of Q therefore would lead to lack of optimality and consequent increased 

RMS error. This important shortcoming is proposed to be remedied in the present work by an 

improved state estimator, named ‘Adaptive Smooth Variable Structure Filter (ASVSF)’, which 

incorporates an additional component for nonlinear adaptive estimation component for estimating the 

process noise covariance in every time step and uses the same for computing the optimum boundary 

layer. This ensures the optimality of the SVSF-OBL component without the requirement of accurate 

knowledge of the process noise covariance, and further, makes the proposed ASVSF state estimator 

capable of handling time-varying process noise that is time-varying modeling errors. Apart from 

making the boundary layer width optimal, the estimated value of Q also helps to reduce the estimation 

error within the boundary layer. 

The estimation method proposed in this chapter incorporates aspects of SVSF-OBL as well as that of 

adaptive estimation and therefore inherits some of the good features of both. It may be noted that this 

type of state estimator combining the features of variable structure filter with optimum boundary layer 

as well as nonlinear adaptive state estimator, capable of handling unknown, time-varying modeling 

error, has not been previously reported. 
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6.1.1 Problem formulation (Generic) 

The formulation of the generic nonlinear state estimation problem is given below for appreciating the 

proposed estimation algorithm.  

 
kkkk wuxfx  ),(1  (6.1.1) 

 
111 )(   kkk vxhy  (6.1.2) 

where, kx is the state vector and ky is the measurement vector. The system has input ku and the 

Gaussian noise can be represented by kw and kv  having covariance matrices kQ  and kR  respectively. 

For the estimation algorithms to be presented, it is assumed that the measurement noise covariance 

kR  is known whereas the process noise covariance kQ  may not be so. 

The state estimator should be able to reconstruct the state variables from the noisy measurements in 

an optimal manner. A state estimator is called robust if it continues to provide acceptable results when 

parameters of the description given in (6.1.1) and (6.1.2) are not known accurately. In particular, we 

are interested in robustness with respect to the process model which is parameterized by the process 

noise covariance matrix kQ . In all types of state estimators there may be larger errors before the state 

estimator is engaged due to mismatch of initial conditions. However, it is expected that the estimate 

should converge towards the true value as time progresses. This property is called convergence and 

may be reformulated as a stability problem (Habibi S. , 2007). However, an inaccurate knowledge of 

process noise covariance adversely impacts the performance of SBSF-OBL state estimators in more 

than one ways. Firstly, the width of the boundary layer ceases to be optimal which may lead to 

chattering or loss of estimation accuracy. Secondly, the state estimation algorithm used within the 

boundary generally makes use of the inaccurate Q (Gadsden S. A., 2011) (Gadsden, Habibi, & 

Kirubarajan, 2014) and therefore results in further increase of the estimation error. 

6.1.2 Organization of this Chapter 

Rest of the chapter is organized as follows: 

The next section briefly describes the background and previous work along with the context of this 

contribution by brief reviews of previous work on SVSF and adaptive state estimators. For the sake of 

continuity, the steps of SVSF-OBL over which the proposed estimator is developed are briefly 

described before describing the ASVSF. The algorithm of the proposed ASVSF estimator is presented 

in the third section.  

The fourth section describes the evaluation methodology employed and two case studies involving 

aircraft tracking problems to establish the improved performance of the Adaptive Smooth Variable 



Ph.D. Thesis,  Nilanjan Patra  6. Adaptive Smooth Variable Structure Filter 

 

78 
 

Structure Filter (ASVSF). The truth models of the tracking problems as well as the models assumed in 

the filter are introduced. The simulation results are also tabulated and discussed in this section where 

the performance of the ASVSF is compared vis-à-vis those of SVS-OBL and a few other filters. Note 

that (a) the performance of the proposed ASVSF estimator is evaluated using Monte Carlo simulation 

and is compared with previously reported state estimators using a case of manoeuvring civilian 

aircraft (b) three different measures of RMS error over the trajectory have been used for comparison 

which demonstrates the strengths of the proposed ASVSF estimator (c) a simplified and grossly 

approximate process model is used in the estimator/filter for tracking and thereby generating a time-

varying and unknown process noise covariance situation. The last section provides a summary and 

concluding discussion. 

6.2 Problem Statement 

6.2.1 Robust and adaptive estimators 

As the rest of the chapter would indicate, the proposed estimation algorithm incorporates aspects of 

adaptive and robust approaches. At the outset the fundamental concepts that drive the Q-adaptive and 

robust approaches to estimation may be restated. 

Acceptable estimation accuracy in cases where only an approximate or simplified model of the 

process is available may be obtained with robust and/or adaptive state estimators. Both these types of 

estimators tolerate deterministic as well as uncertain process parameter variation. Approximation in 

the process model is often represented by process noise covariance Q. The accuracy of robust 

estimators normally does not strongly depend on the Q matrix that means it may tolerate modeling 

inaccuracies. An adaptive estimator on the other hand estimates the process noise covariance Q at 

every estimation step and uses the same for generating the optimal estimate. 

A number of nonlinear robust state estimators (Poznyak & Joel, 2001) (Hajiyev & Soken, 2014) 

(Habibi S. , 2007) (Gadsden & Hamed, 2015) as well as adaptive state estimators (Hajiyev & Soken, 

2014) (Das, Dey, Sadhu, & Ghoshal, 2015) (Dey, Sadhu, & Ghoshal, 2014) (Dey, Das, Sadhu, & 

Ghoshal, 2015)  have been reported in the literature.  

Smooth Variable Structure Filter (SVSF) is one of the robust estimation approaches (which is briefly 

recalled next. The structure and algorithm for the Q-adaptive state estimator have been proposed in an 

earlier chapter and would be recalled in a subsequent section. 

6.2.2 Outline of the Q-Adaptive Filter 

The proposed ASVSF employs the concept of Q-adaptive filter over the SVSF framework to 

incorporate adaptivity as well as robustness within a single algorithm. The previous work on Q-
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Adaptive Filter and an outline of the algorithm have already been discussed in a previous chapter. The 

following is provided only for the sake of continuity.  

In particular, the popular scale factor based adaptation of Q-adaptive filters (Almagbile, Jinling, & 

Weidong, 2010) (Hajiyev & Soken, 2014) has been incorporated and the structure of the Q-adaptation 

scheme is shown in Fig 6.1 within the blocks bounded by dashed lines. Details of nonlinear Q-

adaptive filters are discussed in chapter-4. The 3 steps of scale factor based adaptation are (i) 

Estimation of variance-covariance (V-C) matrix, vC  by averaging the innovation sequence through a 

moving window of length N . (ii) Calculation of the scaling factor k . (iii) Determination of the 

estimated value of process noise covariance from the previous estimate 1
ˆ

kQ . This value of the 

estimated process noise covariance matrix is used for the state estimation steps as described below. 

There are two process noise adaptation techniques, viz MLE based (Mohamed & Schwarz, 1999) and 

scaling factor based (Almagbile, Jinling, & Weidong, 2010). Though either of the two may be used 

for ASVSF, the simpler, scaling factor based process noise adaptation technique has been used in this 

work for the adaptation and calculation of the estimated process noise covariance kQ̂ . The algorithm 

for smooth variable structure filter is presented in the previous chapter.  

6.3 Adaptive Smooth Variable Structure Filter (ASVSF) 

6.3.1 Overview of this Contribution  

The contribution of this work, which proposes augmenting the SVSF-VBL estimators with an 

adaptive estimator for process noise covariance, may be appreciated in the context of the previous 

subsection. For the SVSF-VBL estimator an accurate knowledge of the process noise covariance is 

required to determine the correct width of the boundary layer and hence improve the estimation 

performance. When the model is inaccurate or uncertain and cannot be described by a known constant 

value of Q, the proposed ASVSF state estimator iteratively and dynamically estimates a more accurate 

value of Q, by an embedded adaptive filter. Such approach can also handle time-varying Q and 

nonlinear systems.  

The proposed estimator, called ASVFS inherits the inherent robustness of SVSF (with respect to 

model inaccuracy), smoothness i.e., avoidance of switching noise (for SVSF-OBL), and improved 

estimation accuracy by providing more accurate value of process noise covariance. The last named 

item i.e., reduced sensitivity to unknown process noise covariance would be particularly useful when 

the process noise covariance is not only unknown but also varies with time.  
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The difference between the root cause of robustness of SVSF and the same for ASVSF may be noted 

here. For the SVSF the fact that the filter performance does not depend on modeling inaccuracy 

(represented by the process noise covariance matrix Q) may be identified as the root cause. In the case 

of ASVSF, one can start with an almost wild guess about Q, which, thanks to the adaptive algorithm, 

recursively evolves to a near true value within a few time steps. This makes the state estimation 

independent of the knowledge about the process noise covariance matrix Q and hence to the extent of 

model inaccuracy. 

6.3.2 Architecture and Algorithm of ASVSF 

The system model is again represented by Eq. 6.1.1 & 6.1.2. We illustrate the concept of Adaptive 

Smooth Variable Structure Filter (ASVSF) using the SVSF with optimal boundary layer described 

above and accordingly the measurement equation is linear.  

The proposed structure of ASVSF algorithm is demonstrated in Fig 6.1. It may be noted from the 

flowchart that the Q-adaptation steps (bounded by dashed lines) are embedded in the algorithm for 

SVSF with the optimal boundary layer. Further, the process noise covariance adaptation occurs before 

the calculation of the optimal boundary layer k . In the proposed filter, the adaptive estimate of the 

process noise covariance is actually used within the boundary layer region of SVSF.  From the 

detailed steps of the SVSF (and also ASVSF), it may be noted that the boundary layer k  is directly 

dependent on process noise covariance (symbolized by Q with appropriate suffix depending on the 

context) of the system. The accuracy of SVSF within the boundary layer depends on the prior 

knowledge of the process noise covariance of the system. If we take a closer look at the expression for 

the gain term 1kK
 
of the SVSF, it may be observed that the term  1

|1
ˆ 
 kkkzsat   defines the linearly 

bounded region called the boundary layer. Thus, the accuracy of the estimator within the boundary 

layer may also suffer when the value of the process noise covariance is unknown.  When an 

approximate process model is used, there would be situations where the covariance of the process 

noise is unknown or is varying over time as discussed earlier. The proposed ASVSF algorithm 

provides a mechanism to correct the inaccuracies resulting from the cases of unknown or time-varying 

process noise covariance by adaptively estimating the process noise covariance at every time step. 

Thus, the robustness property of SVSF outside the boundary layer remains unaffected whereas a more 

accurate optimal boundary layer width is computed and concurrently a more accurate state estimate is 

computed inside the boundary layer. Detailed steps are as follow. 
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Figure 6.1 Flow chart of Adaptive SVSF 

The innovation can be computed as kkkkk xHyz |1|1
ˆˆ

  , where ky  is the measured output of the 

system and kkx |1
ˆ

  is the predicted states of the system. The covariance matrix kQ̂  can be estimated 

by averaging innovation sequence through a moving window of length N  (Dey, Sadhu, & Ghoshal, 

2014). The estimated variance-covariance matrix (V-C), vĈ  is defined as 

 
T

ikik

N

i

ikikv zz
N

C 



 |1

1

|1
ˆˆ

1ˆ  (6.3.1) 

For Nk  , the usual practice is to truncate the window as needed. The estimated kQ̂  at any epoch k  

can be expressed as  

Innovation  𝑧̂𝑘+1|𝑘 

State Prediction 𝑥𝑘+1|𝑘 

SVSF Gain 𝐾𝑘+1 

Update  𝑥𝑘+1|𝑘+1,𝑃𝑘+1|𝑘+1 

Smooth Boundary layer 𝜓𝑘 

Covariance prediction 𝑃𝑘+1|𝑘    

V-C computation 𝐶𝑣 

Scaling factor 𝛼𝑘 

Estimated process noise 

Covariance 𝑄̂𝑘 

Filter initialisation 

𝑥0, 𝑄̂0 ,𝑃0 , 
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kkk QQ 1

ˆˆ
  (6.3.2) 

where, the scaling factor k  denotes the ratio between calculated measurement noise covariance and 

its predicted counterpart (Almagbile, Jinling, & Weidong, 2010).   

  
 T

kk

kv
k

HHPtrace

RCtrace

|1

ˆ




  (6.3.3) 

When the process noise covariance is a constant, and the estimation attains the steady state, the 

scaling factor   should be ideally equal or close to 1. 

The steps of the ASVSF are as follows: 

ASVSF estimates states of the dynamical system defined in Eq. 6.1.1-6.1.2 iteratively from 

predefined initial conditions. 0x


, 0P and 0Q̂  which are to be initialized appropriately before the 

execution. As the proposed algorithm estimates the process noise iteratively and adaptively, the 

results are fairly insensitive to the initial value 0Q̂ .  

i. Prediction stage:   

The predicted state and error covariance are to be calculated first with the help of the given 

model of the system.  

 ),ˆ( ||1 kkkkk uxfx 


 (6.3.4) 

 
k

T
kkkk QFFPP ˆ
||1   (6.3.5) 

 

 The predicted covariance kkP |1 is calculated with the help of linearized state matrix F and 

the estimated process noise covariance kQ̂     

ii. Innovation sequence:   

The innovation is thus calculated using output function and predicted sates. 

 
kkkk xHy |1|1

ˆˆ
   (6.3.6) 

 
kkkkk yyz |1|1

ˆˆ
   (6.3.7) 

iii. Variance-covariance matrix  



Ph.D. Thesis,  Nilanjan Patra  6. Adaptive Smooth Variable Structure Filter 

 

83 
 

The variance-covariance matrix vĈ for the estimation of process noise covariance is to be 

calculated by averaging a moving window of length N through the innovation sequence. The 

length of N should be chosen appropriately. 

 
T

ikik

N

i

ikikv zz
N

C 



 |1

1

|1
ˆˆ

1ˆ  (6.3.8) 

iv. Scaling factor  

The estimated process noise covariance kQ̂  can be scaled by a factor k which is calculated 

by taking ratio between estimated process noise covariance and the predicted process noise 

covariance.  

  
 T

kk

kv
k

HHPtrace

RCtrace

|1

ˆ




  (6.3.9) 

v. Innovation covariance 

 RHHPS T
kkk   |1  (6.3.10) 

vi. Smooth boundary layer width 

The smooth boundary layer k is calculated using the innovation covariance and the 

linearized output matrix. See (Gadsden, Mohammed, & Habibi, 2011) for full the derivation.   

   11
|1

1 


 k
T

kkkk SHHP  (6.3.11) 

where k  refers to forming a diagonal matrix with elements of  kkkkk zz ||1
ˆˆ    

vii. Gain calculation  

The ASVSF gain can be written as (Gadsden S. A., 2011) follows  

     1

|1|1
11

1
ˆ])ˆ[()(






  kkkkkkk zdiagzdiagsatdiagHK   (6.3.12) 

According to the assumptions explained earlier, H is essentially a square matrix of full 

rank. The situation where the system has fewer measurements than the number of states can 

also be addressed as per (Habibi S. , 2007).  

viii. Update stage: 

Finally, the estimates are to be updated with the ASVSF gain.  
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kkkkkkk zKxx |11|11|1

ˆˆˆ
   (6.3.13) 

The state covariance is also updates as 

     T
kkk

T

kkkkkk KRKHKIPHKIP 1111|111|1    (6.3.14) 

Residual sequence can be updated with available measurement and the estimated states. 

 
1|111|1

ˆˆ
  kkkkk xHyz  (6.3.15) 

ix. Process noise adaptation (update) 

The estimated process noise to be scaled in every iteration by the factor k as calculated in 

Eq. 6.3.9. 

 
11

ˆˆ
  kkk QQ   (6.3.16) 

6.4 Evaluation of the Proposed Estimator  

6.4.1 Evaluation Approach 

Proofs of convergence and stability of adaptive nonlinear filters and SVSF-OBL for general nonlinear 

signal model are yet to be reported. Therefore, following previous workers (Hajiyev & Soken, 2014) 

(Al-Shabi M. , 2017) (Bhaumik, 2013) (Arasaratnam, Haykin, & Elliott, 2007) in the field of 

nonlinear filters, we take recourse to Monte Carlo simulation with non-trivial signal models for 

evaluating the performance of the new estimator.  

More specifically, using suitable test problems we would like to investigate (i) whether and to what 

extent the proposed ASVSF estimator inherits the advantages of the SVSF when inaccurate process 

model is used, (ii) the ability of the ASVSF to accommodate unknown and time-varying process noise 

covariance, and also (iii) to compare the performance of the ASVSF, SVSF-OBL and an ordinary 

Kalman filter in a target tracking scenario. 

Two tracking scenarios, where a target executes ‘S’ and ‘Triple U-turn’ planar test trajectories have 

been chosen. The scenario is characterized by nonlinear kinematics and is derived from (but is 

substantially more complex than) an often used example of a civil aircraft trajectory (Gadsden S. A., 

2011) (Gadsden, Habibi, & Kirubarajan, 2014) (Bar-Shalom, Li, & Kirubarajan, 2001) (but closer to a 

UAV track). To demonstrate the efficacy of the proposed ASVSF estimator for inaccurate process 

model, a simpler linear dynamic model called uniform motion model (UM) is assumed in the 

estimators. The mismatch between the actual trajectory and the same described by the simpler 

kinematic model may be considered to be unknown and time-varying process noise covariance. It may 
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be shown that an EKF with certain inaccurate initialization will diverge for this trajectory-filter 

assumed kinematics combination. 

The performance is evaluated with Monte Carlo studies from which the RMS error across the Monte 

Carlo population at each time sample may be obtained following traditional approach. For the present 

study, additional metrics like (i) peak RMS error, (ii) time-averaged RMS error and (iii) root of the 

mean square of the above RMS error (RMS of RMS) over the whole time period of the tracking 

problem are used as performance indicators. It may be noted that persistent peaks in the RMS error 

are reflected in the RMS of RMSE. Occasional peak errors however are better captured in the peak of 

RMSE descriptor. Performance of the proposed state estimator (ASVSF) is compared with that for 

SVSF and an ordinary Kalman filter. 

The trajectories, as shown in the section 3.3.4, have combinations of coordinated turn (CT) and 

uniform motion (UM) segments. The tracking Radar assumed to be at the origin, measures the 

position (x, y) of the aircraft at regular intervals. The task of the estimator is to estimate the motion 

states, viz., position and velocity of the aircraft with the available noisy measurements. To 

demonstrate the robustness of the estimator, the filter uses only linear uniform motion model 

(described below) to estimate the motion states for the entire course of the flight. As a result of using 

the simplified model in the estimator, fairly severe mismatches occur at the CT segments. Such 

mismatches are expected to be taken care of by (enhanced) process noise covariance. As the variable 

structure estimators possess a fair degree of robustness, it may be expected that mismatches of the 

above type would be taken care of adequately.  

The performance of the estimators has been evaluated with the help of Monte Carlo simulation. A 

total of 500 Monte Carlo runs have been performed for each study to calculate (i) the RMS error 

sequence ({  kerms }) across the Monte Carlo population corresponding to each instant (ii) peak value 

of the RMS error sequence ({   kerms
k

sup }), (iii) time average of the RMS error sequence 

 


N

k

rms ke
N 1

1
 and (iv) RMS of the RMS error sequence  



N

k

rms ke
N 1

21
. The sampling interval is 

taken as 5s.  

The SVSF-OBL convergence rate γ is chosen to be 0.1. For ASVSF, the window size N is taken as 35 

steps. 

The simulations have been carried out for two cases. In both the cases a random noise with covariance 

UMQ is injected into the process as the truth model. Note that the ASVSF requires only an initial value 

of process noise covariance matrix and the estimator continually updates the process noise covariance 
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as per its adaptation logic. The other estimators use a constant process noise covariance. The two 

cases respectively are, (a) where the non-adaptive filters use UMQ  as the process noise whereas the 

same value is used as an initial estimate of process  (b) here the covariance of the injected noise are 

unknown to the estimators and the non-adaptive and adaptive filters use UMQQ  01.00  as the 

process noise and as an initial estimate of process . All RMSE plots, values of average RMSE, peak of 

RMSE, and RMS of RMSE in the table for position and velocity are given in composite form (viz., 

equivalent resultant position error and resultant velocity error). 

6.4.2 Aircraft tracking Trajectory-I 

Same tracking trajectory which is discussed in section 3.3.4.1 has been used here for evaluation of the 

proposed ASVSF (Fig 6.2).  Performance of the proposed ASVSF has been compared with previously 

reported SVSF and traditional Kalman Filter.   

 

Figure 6.2 Trajectory-I (not corrupted with process noise) of the aircraft 

Fig 6.3 shows the estimates by KF, SVSF and ASVSF with the true trajectory. The estimators have 

been initialized with a wrong guess of process noise covariance UMQQ  01.00 . The RMSE for 500 

Monte Carlo runs have been plotted in Fig 6.4 and Fig 6.5 to represent the RMSE plots of position 

and velocity respectively for wrong initial guess.  

It is to be noted that the RMSE plots show the peaks whenever the aircraft takes a turn. From the 

RMSE plots it is clearly seen that the ASVSF performs better than SVSF and KF. During the model 

mismatches the performance of ASVSF is substantially better than the other estimators.  
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Figure 6.3 Estimation of position by KF, SVSF and ASVSF for unknown noise (
UMQQ  01.00

) 

Table 6.1 shows the time average RMSE performance for 500 Monte Carlo runs.  The two cases have 

been studied: (a) with correct initial guess and (b) with wrong initial guess. For both the studies, 

ASVSF performs substantially better than KF and SVSF. As mentioned previously, the ASVSF takes 

care of process noise adaption as well as the model inaccuracy. There is almost no change in the 

performance of ASVSF (as compared to the other two) for initializing the estimator with wrong value.  

 

Figure 6.4 RMSE of position with KF, SVSF and ASVSF 

where 
UMQQ  01.00

 

 

Figure 6.5: RMSE of velocity with KF, SVSF and ASVSF 

where 
UMQQ  01.00

 

Table 6.1 Time average RMSE of position by KF, SVSF and ASVSF for unknown noise (
UMQQ  01.00

)  

Process Noise 

Covariance 
States KF SVSF ASVSF 

UMkf QQ 0|
 

Position (m) 

Velocity (m/s) 

189.6 

17.92 

72.93 

41.99 

51.99 

12.92 

. 

UMkf QQ  01.00|
 

Position (m) 

Velocity (m/s) 

1708.5 

55.93 

455.17 

64.42 

51.94 

13.03 
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6.4.3 Aircraft tracking Trajectory-II 

Trajectory-II (Fig 6.6) which takes triple ‘U’ turn has also been considered for the evaluation of 

ASVSF.  The details of the trajectory are given in section 3.3.4.2.  

Typical tracking trajectories including the true trajectory (with process noise) and as estimated by KF, 

SVSF and ASVSF are shown in Fig 6.7.  

Fig 6.8 and Fig 6.9 represent the RMS error plots of position and velocity for nominal initialization of 

the process noise covariance. RMSE plots for wrong initialization ( UMQQ  01.00 ) of the process 

noise have been shown in Fig 6.10 and Fig 6.11.  

From the plots it is seen that ASVSF can perform well even when there is a sharp turn (the 2nd turn of 

the trajectory) in the flight path. The wrong initial guess has almost no effect on the performance of 

ASVSF. Table 6.2 summarises the performance of estimators in terms of time-averaged RMSE, peak 

of RMSE, and RMS of RMSE. Comparative robustness performance may be visualized from Fig 6.12 

and Fig 6.13 where time-averaged RMS error in position and velocity are shown against the 

multiplying factor for the process noise covariance.     

 

Figure 6.6 Trajectory-II (not corrupted with process noise) of the aircraft 
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Figure 6.7 Estimation of position by KF, SVSF and ASVSF for unknown process noise (
UMQQ  01.00

) 

 

 

Figure 6.8 RMSE of position using KF, SVSF and 

ASVSF where 
UMQQ 0

 

 

Figure 6.9 RMSE of velocity using KF, SVSF and ASVSF 

where 
UMQQ 0
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Figure 6.10 RMSE of position using KF, SVSF and 

ASVSF where 
UMQQ  01.00

 

 

 

Figure 6.11 RMSE of velocity using KF, SVSF and 

ASVSF where 
UMQQ  01.00

 

 

Figure 6.12 Time-averaged RMS error in position 
against the multiplying factor for the process noise 

covariance 

 

Figure 6.13 Time-averaged RMS error in velocity 
against the multiplying factor for the process noise 

covariance  
 

Table 6.2 Performance table for ‘Triple U-turn’ planar Trajectory 

Process noise 

covariance 
Metric Type Parameters KF AKF SVSF ASVSF 

UMQQ 0  

Time averaged 

RMS Error 

(RMSE)   

Position (m) 

Velocity (m/s) 

293.95 

29.29 

131.56   

19.66 

84.76 

61.78 

61.97    

27.02 

Peak of RMSE 
Position (m) 

Velocity (m/s) 

1146.1 

122.7 

919.03 

117.45 

267.45 

164.87 

165.31 

103.37 

RMS of RMSE 
Position (m) 

Velocity (m/s) 

415.47 

43.25 

226.44 

31.07 

108.96 

75.94 

68.37 

38.90 

UMQQ  01.00  

Time averaged 

RMSE 

Position (m) 

Velocity (m/s) 

2610.0 

84.50 

242.01 

27.46 

792.68  

100.60 

61.95  

27.003 

Peak of RMSE 
Position (m) 

Velocity (m/s) 

5461.6 

217.6 

2836.6 

474.7 

1234.2 

179.2 

165.14 

102.12 

RMS of RMSE 
Position (m) 

Velocity (m/s) 

3167.5 

105.6 

574.73 

54.42 

921.34 

116.65 

68.64 

38.76 
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6.5 Chapter Summary and Conclusion 

An algorithm for an improved state estimator, viz., ASVSF, for nonlinear systems incorporating the 

concepts of robustness of smooth variable structure filter (SVSF) as well as the ability to adapt 

unknown and time-varying process noise covariance through adaptive estimation has been proposed 

and evaluated by an aircraft tracking scenario where the nominal trajectory is composed of uniform 

motion and coordinated turn segments and the actual trajectory is also perturbed by random kinematic 

noise. 

Recall that out of several versions of SVSF, we have used the version with optimal boundary layer 

(Gadsden, Habibi, & Kirubarajan, 2014) (Gadsden, Mohammed, & Habibi, 2011) i.e., SVSF-OBL. 

This version requires linear measurement equation with full order measurement matrix. However, in 

line of (Gadsden, Habibi, & Kirubarajan, 2014, we have generated the velocity measurement by the 

“first difference” method as discussed before. 

Use of the linear UM model and linear measurement model in the filter allows us to evaluate the 

proposed ASVSF not only with SVSF but also with Kalman filter. 

From the results in the nominal process noise case, we can make the following observations w.r.t. 

different variables and metrics. 

o In the Average RMSE metric, in position and velocity, the proposed ASVSF exhibited the 

best performance.  

o In the Peak RMSE metric, in position and velocity, the proposed ASVSF again provides the 

best result. The same is true for RMS of RMSE metric.  

From the results in the off-nominal process noise case, we can make the following observations w.r.t. 

different variables and metrics.  

o For the underestimated value of process noise covariance ( UMQQ  1.00  and UMQQ  01.00

), Average RMSE, Peak RMSE and RMS of RMSE metrices of position and velocity, indicate 

that the performance of the proposed ASVSF is the best.  

o For the overestimated value of process noise covariance ( UMQQ  100  and UMQQ  1000 ), 

the comparative performances are more complex. Performance of the ASVSF, though good, 

but may not be claimed to be best for position for the different performance measures. For 

velocity, performance of the simple Kalman filter for higher values of Q turns out to be the 

best. This can be explained from the fact that for highest value of Q, information from the 

process model is generally ignored (Simon, 2006) (Raol & Girija, 2001)by the Kalman filter 
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and the velocity is most likely computed from the measurement only. Accuracy of SVSF-

OBL approaches that obtainable from the ordinary Kalman filter as Q becomes very large.  

Robustness of the filters was tested by the inaccurate process model in the filter and also by using off-

nominal process noise covariance in the filters as shown in the comparative performances in Fig 6.12 

and Fig 6.13. 

o Considering the time-averaged RMS error in position first. The robustness of ASVSF is 

evident as the error barely changes with Q which spans four decades. However, for higher 

values of Q, the error in SVSF-OBL decreases and approaches that of ASVSF. This is 

expected as many filters perform well with over-valued process noise covariance as discussed 

above, and is exemplified by the ordinary Kalman filter.  

o For the time-averaged RMS error in velocity, again the robustness of the proposed ASVSF 

would be evident while the RMS error for SVSF-OBL varies substantially with the magnitude 

of Q.  

o Considering the accuracy and robustness from the presented results, we may see that ASVSF 

marginally sacrifices accuracy in favor of robustness for higher values of Q. 

A number of evaluation parameters have been used to compare the performance of SVSF, the 

proposed ASVSF and Kalman filter. Though the filter was constrained to use a simplified uniform 

motion model, robustness of ASVSF ensured satisfactory tracking despite significant model 

inaccuracy. Considering the cases where the kinematic noise covariance is unknown and 

underestimated, it was shown that the proposed ASVSF outperforms the SVSF-OBL. This may be 

attributed to the automatic and continuous adaptation of the process noise covariance in ASVSF.  

From the description of the proposed algorithm it may be inferred that the additional complexity 

introduced by ASVSF over standard SVSF-OBL is not significant especially in the light of improved 

accuracy and robustness. 

As the performance of the proposed estimator was found to be encouraging, further evaluation and 

eventual use of the proposed state estimator in similar applications and evaluation of its performance 

in other nonlinear signal models may be advocated.   
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7 Adaptive Interacting Multiple Model Estimator 

7.1 Chapter Introduction  

In this chapter, an improved variant of the Interacting Multiple Model (IMM) state estimator has been 

proposed, its algorithm has been described and the performance of the estimator has been evaluated 

against the conventional IMM and other estimators.  

Interacting Multiple Model (IMM) state estimator is called for where the system model is 

approximate and/or some deterministic inputs are unknown. Both the imperfections, clubbed together 

is often called “modeling inaccuracy”. As discussed in earlier chapters a common example of state 

estimation in presence of such modeling inaccuracy is the problem of tracking a maneuvering aircraft. 

In such a situation the maneuver executed by the aircraft is not known to the tracker and an often a 

simplified (kinematic) model of the maneuvering aircraft may be employed in the tracking system. In 

the optimal state estimation context, the process noise covariance (Q) is often used to represent the 

severity of model inaccuracy. This again has been discussed before. 

We have previously noted that there are two broad approaches to perform state estimation in presence 

of such modelling inaccuracy, namely (a) the “robust estimation” approach where the estimation 

performance does not depend on the process noise, exemplified by the Variable Structure Filter or (b) 

the “adaptation approach” where the estimator adapts to the unknown process noise covariance.  

For the purpose of this discussion, we would broadly classify adaptive state estimators into two 

classes, viz, single model adaptive and multi-model adaptive. An example of the single model 

adaptive (Q-adaptive DDF) estimator was introduced and evaluated in an earlier chapter in the 

scenario of tracking a maneuvering civilian aircraft for air traffic control. 

The flagship of multi-model adaptive estimator is of course the Interacting Multiple Model (IMM) 

state estimator which is widely used in aircraft tracking. 

The modification of the IMM estimator proposed in this chapter primarily involves the use of Q-

adaptive estimators as “sub-filters”. Accordingly, the proposed estimator is referred as the “Adaptive 

IMM” (AIMM). This incorporation of single model adaptive estimators as sub-filters may potentially 

provide good estimation performance with less number of component models, especially in the 

context of tracking maneuvering civilian aircraft. But this remains a hypothesis which needs to be 

verified. 
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The next few sections provide a brief background for appreciating the proposed AIMM Estimator. 

Though a Q-adaptive DDF estimator has been used, this is not reviewed here as an elaborate 

exposition and evaluation thereof were carried out in an earlier chapter. 

7.2 Background 

7.2.1 Background of IMM Estimator 

Introduced about three decades earlier (Blom & Bar-Shalom, 1988) (Bar-Shalom, Chang, & Blom, 

1989) (Bar-Shalom, Rong Li, & Kirubarajan, 2001),  IMM estimators have become the algorithm of 

choice for the above type of target tracking (Li & Jilkov, 2005) (Gadsden, Habibi, & Kirubarajan, 

2010) (Mazor, A., Averbuch, & Dayan, 1998). However, interest in improving IMM estimators 

persists and a fair amount of improved versions has been reported in recent literature, see e.g. (Liu, 

Shi, & Pan, 2017)) (Zhou, Cai, Sun, & Shen Sun, 2014) (Gao, Gao, Zhong, Hu, & Gu, 2017) 

(Gadsden, Habibi, & Kirubarajan, 2010). 

IMM state estimators fall under the broader category of Multiple Model filters which have been 

subdivided by (Li X.-R. , 2000) (Li & Jilkov, 2005)into three generations. The present discussion is 

about IMM state estimators with fixed structure, which is from the ‘second generation’ and probably 

is the most popular class of IMM. The third generation of IMM estimators are of variable structure 

(Jilkov, Angelova, & Semerdjiev, 1999) (Semerdjiev, Mihaylova, & Li, 1999)(Model-Group 

Switching) (Li X.-R. , 2000).  

IMM estimators are particularly suitable for hybrid systems which can be in different ‘modes’ at 

different times, each such mode being describable by an appropriate dynamic model from the same or 

similar families but with unknown parameters. A typical example of such a hybrid system is the 

tracking problem of a maneuvering aircraft  (Hwang, Balakrishnan, & Tomlin, 2006) whose trajectory 

may be modeled by a sequence of segments, each obeying different dynamic equations like uniform 

motion, coordinated turn (constant normal acceleration), constant jerk etc. As the temporal onset of 

such segments and the parameters of such segments like levels of normal acceleration (turning rate), 

jerk etc. are unknown, IMM employs a number of state estimators (called component filters or sub-

filters) running in parallel and the best state estimate is obtained by an appropriately weighted sum of 

the estimates from such component filters. Each such component filter is generally based on an 

assumed (often simplified) dynamic model with designated amount of process noise covariance 

quantifying the extent of possible approximations involved in the model with respect to the actual 

dynamics. The generic structure of an IMM state estimator is shown in Fig 7.1, which is inspired by 

(Jwo, Chen, & Tseng, 2010) (Jwo, Hu, & Tseng, 2013). 
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The accuracy of the IMM estimators is often obtained by choosing a fairly large number of 

component estimators (Efe & Atherton, 1998). The large number may occur due to multiplicity of 

possible nominal dynamic models and each such nominal dynamic model may be potentially 

associated with a different level of process noise covariance to represent different degree of 

inaccuracy of such nominal dynamic models. One example of different dynamic models occur in air-

traffic control situation (see for example (Patra, Sadhu, & Ghoshal, 2018) where the aircraft trajectory 

may be approximated as segments of flights (uniform motion, UM) and coordinated turn (CT) 

segments. For the uniform motion (straight line, constant velocity) segment of the trajectory in a 

straight line, a Kalman filter would suffice, but due to deviations and fluctuations due to unmodelled 

disturbances and deterministic inputs, several UM-based Kalman filters with different levels of 

process noise covariance may be employed. For example, a UM model with a low-level process noise 

covariance will satisfactorily track an aircraft moving in an almost straight line motion segment but 

such a filter would become strongly mismatched during a turn maneuver. Contrarily, with a larger 

value of covariance process noise an UM model may allow the filter to track a sharply turning target 

(Bar-Shalom, Rong Li, & Kirubarajan, 2001) (Efe & Atherton, 1998) but may give larger tracking 

error during almost straight line motion segment. For the CT motion, EKF or nonlinear filters like 

sigma point filters (Ristic, Arulampalam, & Gordon, 2004) would have to be used. Again, to take care 

of imperfections several nonlinear sub-filters with different levels of process noise covariance are 

needed. If both UM and CT models have three levels of covariance each, six sub-filters, would be 

required. This requirement of multiple sub-filters to cover the entire range of possible target motion 

results in increased computational burden and complexity. This is one of the perceived defects of the 

unmodified fixed structure IMM. 

7.2.2 The significance of the Proposed IMM Variant  

The proposed variant of IMM utilizes adaptive (linear and nonlinear) estimators as component filters 

and accordingly would be called Adaptive IMM (AIMM). The adaptive component filters in the 

AIMM estimator adaptively estimate the appropriate values of process noise covariance at each time 

instance and therefore, it may be conjectured that even with reduced number of sub-filters, an AIMM 

estimator may obtain similar levels of tracking accuracy as obtainable with conventional (fixed 

structure) IMM with a larger number of component filters seeded with different levels of process 

noise covariance. The above conjecture however needs to be tested by non-trivial tracking problems. 

Towards this, the tracking performance of the proposed Adaptive IMM state estimator would be 

evaluated with the help of two different aircraft tracking scenarios using three different composite 

performance metrics and Monte Carlo simulation. Such tracking performance would be compared 

with a number of standard fixed structure IMM and also a single model adaptive filter. 
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The next section describes the background and briefly reviews related previous work. The architecture 

of the proposed Adaptive IMM (AIMM) state estimator is provided in section-3. The Kinematic 

Models used in this work are described and the corresponding estimation methods are enumerated in 

section-4. The methodology for evaluation and comparison of estimator performance are described 

next. Results of evaluation using Monte Carlo simulation and associated discussions are provided in 

section-6. This is followed by the concluding comments. 

7.2.3 The Basic Interacting Multiple Model State Estimator 

The basic concept has been discussed in the literature (Blom & Bar-Shalom, 1988) (Blom & Bar-

Shalom, 1988) (Jwo, Hu, & Tseng, Nonlinear filtering with IMM algorithm for ultra-tight GPS/INS 

integration, 2013) (Bar-Shalom, Rong Li, & Kirubarajan, 2001) (Bar-Shalom, Chang, & Blom, 1989) 

(Li X.-R. , 2000) (Mazor, A., Averbuch, & Dayan, 1998) (Simeonova & Semerdjiev, 2002) (Li & 

Jilkov, 2005) (Lin, 1993) (Zhou, Cai, Sun, & Shen Sun, 2014) (Zhou, Cai, Sun, & Shen Sun, 2014)  

The conventional IMM algorithm (Li & Bar-Shalom, 1993) is discussed here. For a class of stochastic 

hybrid system with additive noise can be described as  

     kkkkk mkvxkgmxkfx ,1,,1,,1 11    (7.2.1) 

    kkkk mkwmxkhy ,,,   (7.2.2) 

With the ‘system mode’ km is a homogeneous Markov chain with probabilities of transition given by 

    jiijkikj mmmmP ,| ,1,   (7.2.3) 

 xn
k Rx  is the continuous-valued base state vector at time step k  and yn

k Ry  is the vector-valued 

noisy measurements at each time step k .  P denotes probability; km is the scalar-valued modal 

state at time step k .   vn
k Rmkv  ,1 is the mode-dependent process noise sequence with mean 

 kmk ,1 and covariance  kmkQ ,1 ; and   yn

k Rmkw  ,1 is the mode dependent measurement 

noise sequence with mean  kmkw ,1 and covariance  kmkR , . 

The algorithm is summarised below where only one execution cycle of the estimator is given. 

Algorithm consists of r  interacting filters running in parallel. Mixing is done at the input side of the 

filters with their respective mixing probabilities.    

The algorithm has four parts, viz interacting, filtering, model probability updation and estimate 

combination. Let there be N number of sub-filters, at the k-th step the j-th mode is symbolized by,

)(kM j  estimated state vector and the corresponding covariance matrix of the j-th sub-filter are 
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denoted as )(ˆ kx j  and )(kPj . After the estimate combination step, the above estimates are denoted as 

)(ˆ kx  and )(kP . The sequence of measurements from the time step 1 to time step k is denoted by kZ . 

It is assumed that the mode transition probability   matrix is known and the initial weights )0(iw are 

assigned. 

The steps of traditional IMM estimators (Lin, 1993) are summarised below.  

Interacting or Input Mixing Step: 

At the 1k step, prior estimates, denoted as )1(ˆ 0 kx j  and )1(0 kPj  are obtained by mixing  
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Where )1( kwi  is the weighting of the i-th sub-filter at time step k-1 and ij is the corresponding 

element of the transition probability matrix. 
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Filtering Step:  

Depending on the model/sub-filter definition, at the k-th step, each sub-filter carries out estimations of 

the following quantities )(ˆ kx j , )(kPj , )(kP
j

 and )(kB j as appropriate for the filter, where )(kP
j

  

denotes prior error covariance ( 1| kkP in the KF/EKF notation)  for the j-th mode and 

k
T

j RHkHPkB
j

  )()(  
 
is the estimated measurement error covariance. 

For a linear kinematic model, one would invariably use the Kalman filter steps and for a nonlinear 

case one may, for example use one of EKF, UKF or DDF. 

Mode probability updating Step: 

The weighting factor )(kw j at time step k is actually the probability of the j-th mode )(kM j given the 

measurement kZ . 
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Where )|)(( 1 k
j ZkM is the likelihood function obtained from the innovation of the j-th sub-filter and 

)|( 1 kk ZZ is the normalizing constant (Lin, 1993). 

Estimate combination: 
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It may be noted that IMM filter calls for non-trivial prior knowledge about the possible maneuvers 

(adequate number of modes or sub-filters), choice of appropriate sub-filters and mode transition 

probability matrix.  

Like other nonlinear filters, the IMM filter remains an approximate filter and its optimality for a 

general trajectory has not been established. The standard (i.e., straightforward) implementation of the 

multiple model algorithms may have numerical problems in the calculation of the model probabilities 

in some situations (Li & Jilkov, 2005) 

The structure of an interacting multiple model (IMM) algorithm of r-element is shown in Fig 7.1.  
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Figure 7.1 Architecture of an r-element IMM State Estimators 

7.2.4 Related work on Adaptive IMM 

The third generation of IMM, mentioned above are of variable structure as groups of sub-filters may 

be switched in and out algorithmically to obtain best state estimates and can be justifiably called as 

Adaptive IMM. As the Adaptive estimator proposed in this work is of fixed structure, we would 

restrict our attention to the fixed structure class of IMM. Over the years many improved versions of 

the (fixed structure) IMM have become available.  

The first group of such improved IMM filter employs  more powerful nonlinear estimators  like UKF  

(Simon, 2006) (Ristic, Arulampalam, & Gordon, 2004), other sigma point filters (Van Der Merwe, 

Wan, & Julier, 2004) like Divided difference filter (Patra, Sadhu, & Ghoshal, 2018) (NøRgaard, Niels 

K, & Ravn, 2000) (Schei, 1997) and also cubature Kalman filter (Liu, Shi, & Pan, 2017))in the sub-

filters, in place of EKF. The smooth variable structure filter (SVSF) a recent robust estimator based 

on sliding mode concepts, has been utilized as a sub-filter in an IMM framework (Gadsden, Habibi, & 

Kirubarajan, 2010) and its performance evaluated in an aircraft tracking scenario. Though the SVSF 

method is not claimed to be optimal, it is robust (as the noise covariances are not required in 

designing the estimator) 
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We would now discuss another branch of improvements which goes by the name “adaptive IMM”. 

Models have been used in the sub-filters. 

In several publications, the “adaptive” qualification has been attributed to the standard fixed structure 

Multi-Model estimators or IMM’s in the broader sense of the term. An example is (Hide, Moore, & 

Smith, 2003) where the nomenclature Multiple Model Adaptive Estimation (MMAE) has been used to 

designate a multiple model estimation with fixed structure, employing multiple ordinary Kalman 

filters that run simultaneously, each using different error covariances for use in low-cost INS GPS 

fusion. At a given time the most appropriate model is given the highest weight using the residual 

probability density function. 

Turn-rate Adaptivity: 

This class of adaptive fixed structure IMM estimators has been designed specifically for target 

tracking applications. Here auxiliary estimators are used to estimate instantaneous kinematic turn rate 

or normal acceleration and such estimated values are plugged into state estimators with CT model. An 

‘adaptive’ IMM for tracking maneuvering target described in (Munir & Atherton, 1995) which 

improved the IMM filter in (Lin, 1993) by estimating the (normal) acceleration of the target and the 

estimated acceleration value was fed to the alpha-beta sub-filters. In (Efe & Atherton, 1998), 

estimates of turn rates have been obtained by auxiliary methods and such estimates have been used in 

CT motion models with deterministic (known) turn rates. In a comparable work, an ‘adaptive’ IMM 

approach (Efe & Atherton, 1998)  the process noise covariance level for the filter had been assigned 

from the estimated turn rate obtained through a 2nd order Kalman filter at each sample (using an 

empirically obtained relation).  

Sub-filter Adaptivity:  

In this group, one or more sub-filters adaptively estimate the process noise covariance. In (Jwo, Hu, & 

Tseng, 2013) an IMM configuration called “IMM-adaptive unscented Kalman filter (IMM-AUKF)” 

have been evaluated for navigation sensor fusion application. Out of the bank of two parallel UKFs, 

one UKF is adaptively tuned with the help of an ‘adaptive tuning system’ (ATS). The ATS uses the 

normalized innovation squared value at given epoch for determining the upper bound of process noise 

covariance matrix. Efficacy of this adaptive estimator has been demonstrated by comparison with a 

non-adaptive (two model) IMM-UKF and also with a single model AUKF.  

In a recent work (Gao, Gao, Zhong, Hu, & Gu, 2017) a single model adaptive UKF and a robust UKF 

form the two sub-filters in a fixed structure IMM and thereby pools the advantages of these two 

varieties of estimators. The adaptive fading UKF takes care of process model uncertainty and the 

measurement model uncertainty is dealt with by the robust UKF. Using the IMM estimation 



Ph.D. Thesis,  Nilanjan Patra  7. Adaptive Interacting Multiple Model Estimator 

 

101 

 

formalism state estimation is achieved as a probabilistic weighted sum of the estimation results from 

the two sub-filters.  

7.3 The Proposed AIMM State Estimator 

The proposed AIMM estimator contains only a limited (say 2 or three) number of sub-filters, only 1 

each for the corresponding dynamic models (Fig 7.2). Each such sub-filter is Q-adaptive and hence 

multiple sub-filters with the same algorithm but different values of process noise covariance are not 

required. 

Algorithm for the Proposed AIMM Estimator: 

The algorithm for proposed AIMM Estimator is stated below:  

 

Figure 7.2 AIMM architecture 

In this section adaptive version of IMM (AIMM) is formulated for automatic adaptation of process 

noise inside the state estimators used in IMM for better estimation accuracy for mode switched 

system. Thus AIMM reduces the number of filters used in IMM where filters were assigned to 
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different levels of process noise. Q-adaptation is applied to every individual filters used in AIMM. 

The below algorithm uses one linear (AKF) and one nonlinear (ADDF) filter to construct AIMM. 

i. Initialization 

Mode transition matrix is defined as
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ii. For the first model  

a. Mixing  
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b. Filtering (AKF)   

i. Time update: 
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ii. Q-adaptation loop:  
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iii. Measurement update: 
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iv. Q update: 
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c. Mode probability update   
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iii. For the second model  

a. Mixing  
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b. Filtering (ADDF): 

i. Time update: 
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ii. Q-adaptation loop:  
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iii. Measurement update: 
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iv. Q update: 
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c. Mode probability update:   
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iv. Mode selection probability update 
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)2()2()1()1(,  cccwhere  

v. The overall estimate and the state covariance 
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7.4 Kinematic Models and Estimation Methods for target tracking 

Two scenarios of target tracking have been considered for the evaluation of proposed estimators. 

Same uniform motion and coordinated turn models which have been discussed in chapter-3 are 

considered here for generating truth model.  

7.5 Evaluation Methodology 

Specifically, the AIMM tracking estimators used in the evaluation case studies in the present 

contribution employ only two adaptive estimator components corresponding to the two models. One 

of the models is a linear dynamic UM model and uses one adaptive Kalman Filter (AKF). The other 

one uses a nonlinear dynamic CT model with an accompanying Adaptive Divided Difference state 

estimator (ADDF). Tracking performance of this two-component AIMM estimator is compared with 

(i) a standard IMM estimator with the same number of component filters (IMM KF-DDF), (ii) a single 

model ADDF estimator (iii) a standard IMM estimators with three number of component filters (IMM 

EKF-EKF-EKF). Monte Carlo simulation was carried out to evaluate RMSE for individual estimators.  

7.5.1 Test Trajectory 

Two test trajectories (Fig 4.3 and 4.4) have been considered for evaluation of the proposed estimator. 

The detailed description of the trajectories is given in chapter-4. All the parameters are kept same for 

evaluation purpose. The simulation study was performed with T=5s sampling interval. The values of 

Q and R are also kept same as given in Chapter-4 (for linear case).       

7.5.2 Other test parameters and data 

For each run, initial state vector of the plant has been randomized with prescribed nominal values as 

given above and corrupted by an initial noise covariance 0P . For non-adaptive filters, random process 

noise and measurement noise sequences have been drawn from zero mean Gaussian noise sequences 

with prescribed covariance matrices. The performance of the tracking filters is presented in terms of 

estimated trajectory versus time for typical cases; Monte Carlo simulation results for RMS errors 

(RMSE) are also shown likewise. The numerical values of average (over the total run-time) RMSE 

and peak RMSE have been presented in appropriate tables to compare the performance of the filters 

with different models and methods.  
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Initial error covariance 0P  is taken as ])11001005050([ 22diag  (Gadsden, Habibi, & 

Kirubarajan, 2014) for both the trajectories. RMSE plots have been provided for 500 Monte Carlo 

runs. For the generation of the truth model, UMQ  and CTQ  (as given in Chapter 3) have been used as 

the value of process noise covariance for UM and CT segments of the trajectory respectively. This 

pair is collectively denoted as nomQ . The adaptive filters have been initialized with typical non-

nominal initial values as shown in the respective tables.  Additional values regarding the trajectories 

are provided in the following sections. For adaptive versions of the estimators, the length of the 

window size is taken as 20 epochs.    

Transition probability:  

Transition probability for two modes (Bar-Shalom, Rong Li, & Kirubarajan, 2001) is given as: 
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Transition probability for three modes (Naidu, Gopalaratnam, & Shanthakumar, 2007) is given as:
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7.5.3 Evaluation Metrics 

The performance of the estimators has been evaluated with the help of Monte Carlo simulation. A 

total of 500 Monte Carlo runs have been performed for each study to calculate (i) the RMS error 

sequence ({  kerms }) across the Monte Carlo population corresponding to each instant (ii) peak value 

of the RMS error sequence ({   kerms
k

sup }), (iii) time average of the RMS error sequence 

 


N

k

rms ke
N

1

1
 and (iv) RMS of the RMS error sequence  



N

k

rms ke
N

1

21
. The sampling interval is taken 

as 5s.  

7.6 Results & Discussions 

The result is generated by Monte Carlo Simulation. Two separate sections are provided for the two 

tracking trajectories of the aircraft.     

7.6.1 Results for Trajectory-I 

The trajectory-1 is ‘s’-type trajectory of aircraft as described in chapter-4. Initial values of the states 

have also been randomized with the corresponding covariance matrix P. Fig 7.3 shows the tracking 

performance of the proposed AIMM in comparison with ADDF and traditional IMM (with KF and 
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DDF as sub-filters).  As we have discussed before, the adaptive filters are initialized with the same 

values of the process noise covariances as assigned to the non-adaptive versions. Fig 7.4 shows the 

velocity profiles of the estimators. Table 7.1 contains all the performance metrics average, Peak and 

RMS of RMSE for all the estimators to compare performances. For completeness, the result of the 

IMM consist of three sub-filters (EKF) with different level of process noise ( CTQ01.0 , CTQ and 

CTQ100 ) has also been provided in the Table 7.1.  

 

Figure 7.3 RMSE of Position 

         

 

Figure 7.4 RMSE of velocity 
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Table 7.1 Performance table 

Trajectory-I  

ADDF IMM-KF-DDF IMM EKF-EKF-EKF IMM-AKF-

ADDF 

Qf(0) = Qct Qf1 = Qum 

Qf2 = Qct 

Qf1 = 0.01Qct 

Qf2 = Qct  

Qf3 = 100Qct 

Qf1(0) = Qum 

Qf2(0) = Qct 

Average RMSE 
Position (m) 

Velocity (m/s) 

74.96 

9.30 

69.74 

10.12 

56.13 

6.77 

57.21 

6.53 

Peak RMSE 
Position (m) 

Velocity (m/s) 

197.71 

28.43 

313.8 

56.29 

114.84 

39.13 

152.5 

49.49 

RMSE of RMSE 
Position (m) 

Velocity (m/s) 

87.96 

11.28 

88.14 

16.76 

60.46 

10.16 

62.94 

10.63 

From the performance table for trajectory-I, it may be noted that:  

i. Three-mode IMM (IMM EKF-EKF-EKF) performs better than two-mode IMM (IMM KF-

DDF) in most cases (metric wise). It indicates that the using more number of sub-filters 

increase the performance of the IMM estimators.   

ii. Single mode nonlinear Adaptive filter ADDF has shown better performance than two-mode 

IMM for all the cases.  

iii. Performance of AIMM is close to the performance of three-mode IMM filter.  

iv. It is to be noted that the three-mode IMM estimator is tuned with three different values of 

process noise. The selected range is wide to adjust the truth model of tracking scenarios. 

However, in the case of AIMM this tuning is not required since it adapts Q automatically.  

v. The performance of AIMM can be further improved by selecting the appropriate window size 

and initial covariances of the process noises of the sub-filters.   

7.6.2 Results for Trajectory-II 

Proposed AIMM has also been evaluated for a relatively zigzag trajectory, trajectory-II (detailed 

description is given in Chapter-4) tracking scenario. Fig 7.5 shows the RMSE performance of the 

proposed estimator in comparison with traditional IMM and ADFF. Table 7.2 shows all the 

performance metrics to have a comparative view. Table also contains the IMM with three sub-filters 

having different process noise covariances.  



Ph.D. Thesis,  Nilanjan Patra  7. Adaptive Interacting Multiple Model Estimator 

 

109 

 

 

Figure 7.5 Time-averaged RMSE for position 

Table 7.2 Performance table for trajectory-II 

 Trajectory-II 

IMM- KF-EKF 

 

ADDF IMM EKF-EKF-EKF IMM-AKF-

ADDF 

Qf1 = Qum 

Qf2 = Qct 

Qf(0) = Qct Qf1 = 0.01Qct 

Qf2 = Qct  

Qf3 = 100Qct 

Qf1(0) = Qum 

Qf2(0) = Qct 

Average RMSE 
Position (m) 

Velocity (m/s) 

83.29 

10.19 

45.28 

52.95 

   46.63 

    5.23 

43.78 

8.12 

Peak RMSE 
Position (m) 

Velocity (m/s) 

346.92 

50.10 

109.71 

115.61 

  118.10 

   39.39 

83.03 

29.15 

RMSE of RMSE 
Position (m) 

Velocity (m/s) 

103.47 

14.67 

46.32 

68.20 

   48.81 

    7.04 

44.68 

9.49 

From the performance table for trajectory-II, following points may be noted:  

i. Results are almost consistent for the more complex tracking scenario, trajectory-II.  

ii.  Unlike the previous trajectory, here IMM KF-EKF is used for two-mode IMM estimator. 

The results are almost similar and comparable.   

iii. Three-mode IMM (IMM EKF-EKF-EKF) performs better than two-mode IMM (IMM EKF-

EKF) in all cases.   

iv. Single mode nonlinear Adaptive filter ADDF has shown better performance than two-mode 

IMM for the position. For velocity, two-mode IMM performs better.     

v. Performance of AIMM is found to be better or close to the performance shown by three-

mode IMM filter (except two cases).  
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7.7 Chapter conclusions 

The structure of a modified adaptive sub-filter based IMM estimator and its algorithm is presented. It 

may be seen that the structure is easy to appreciate and consists of only limited number of sub-filters 

each being of the type Q-adaptive. The efficacy of the proposed filters for target tracking scenario has 

been demonstrated using two trajectories which may be encountered in air traffic control scenario.    

These types of air traffic control trajectories can be decomposed into uniform motion and coordinated 

turn segments. As a result, only two sub-filters proved to be adequate. The sub-filters automatically 

adapted with different process noise to compensate for modeling inaccuracies. 

In air defense scenarios also the tracking trajectories are often modeled as UM, constants acceleration 

and sometimes constant jerk (Mehrotra & Mahapatra, 1997) (Ghosh & Mukhopadhyay, 2011) (Naidu, 

Gopalaratnam, & Shanthakumar, 2007).   Thus it can be conjectured that only three sub-filters would 

be adequate to track such targets. It may be pointed out that the defense community generally 

demands very rigorous simulation to try a new algorithm and rejecting the existing practice that aspect 

is left for the future work.  

It is clearly seen, that the proposed adaptive version of the IMM improves the performance over the 

traditional IMM for tracking scenario.   It reduces the number of filters used in the traditional IMM 

state estimators to attain better accuracy. The proposed AIMM uses only two sub-filters, one for linear 

and other for nonlinear mode and it automatically adapts required process noise covariance to match 

required level. Thus for AIMM, the knowledge of Q for different modes of the filter is not required.      
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8 Discussion and Conclusions  

8.1 Discussions  

It may be recalled that (re-articulated) objectives of the present work had been to  

(i) evaluate different existing nonlinear state estimators for (hybrid) systems with inaccurate 

process model. 

(ii) enhance SVSF and IMM estimators so as to obtain better state estimation for nonlinear 

state and parameter estimation and evaluate their performance. 

(iii) compare the performances of the enhanced estimators with the already reported state 

estimators above tune up the parameters of the state estimators for a system with model 

error  

(iv) evaluation of such enhanced estimators for parameter estimation 

Towards the above objectives a focussed and fairly comprehensive literature survey (on nonlinear state 

estimation, including adaptive state estimator and variable structure state estimators) had been carried 

out. A systematic survey of literature about estimation in aircraft tracking scenarios was also carried 

out. Another systematic study was carried out to obtain insight into the Q-adaptation process by 

performing manual tuning of Kalman filters vis a vis studying Q-adaptive nonlinear state estimators. 

A ‘walk through’ of the dissertation would indicate that the stated objectives have mostly been met. 

The following table compares the individual objectives and corresponding investigation done. 

Table 8.1 Coverage of the objectives 

No Objective Attainment 

1 Evaluate different 

existing nonlinear state 

estimators for (hybrid) 

systems with inaccurate 

process model. 

Evaluation of Adaptive nonlinear state estimators such as AEKF, 

AUKF, ADDF and AGHF has been carried out for aircraft 

tracking scenarios under model uncertainty and unknown noise 

statistics. 
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A number of metrics and Monte Carlo simulation have been 

used for this purpose. Details provided immediately after this 

table. 

 

2 & 3 enhance SVSF and 

IMM estimators so as 

to obtain better state 

estimation for 

nonlinear state 

estimation and evaluate 

their performance 

Following modified and improved nonlinear state estimators 

have been proposed, characterized and evaluated (by cross-

comparisons of performance) for civil aircraft tracking scenarios. 

These are: 

i. A sigma point variant of Smooth Variable Structure 

Filter(SVSF) 

ii. An adaptive version of Smooth Variable Structure 

Filter (ASVSF).   

iii. An adaptive version of Interacting Multiple Model 

Filter (AIMM)   

Again a number of metrics and Monte Carlo simulation have been 

used for this purpose. The results of the Monte Carlo studies have 

been presented graphically as well as in tabular form. 

 

3 compare the 

performances of the 

enhanced estimators 

with the already 

reported state 

estimators above tune 

up the parameters of the 

state estimators for a 

system with model 

error 

Performance of the proposed enhanced state estimators have 

been compared with (as appropriate) 

 Non adaptive standard nonlinear filters like EKF, UKF, DDF 

and GHF 

 Ordinary Smooth Variable Structure Filter with the 

optimum boundary layer. 

 Non adaptive nonlinear filter. 

 Ordinary IMM filter as available in the literature. 



Ph.D. Thesis,  Nilanjan Patra  8. Discussion and Conclusions 

 

113 

 

Different values of process noise covariances have been used 

for non-adaptive filters 

 

Notes about the evaluation of non-adaptive nonlinear filters:  

Trajectory tracking scenarios have been considered for evaluation and characterisation of the single 

model linear and nonlinear non-adaptive filters such as KF, EKF, and UKF. The performances of 

estimators were analysed by tuning the process noise covariance (assumed by the filter) with the 

help of a scaling factor. A higher process noise covariance is created simply by increasing a scalar 

multiplier. This is effective because in the point mass model, this amounts to increasing the 

covariance of the equivalent acceleration. 

The objective was to systematically study and evaluate the optimal/suboptimal state estimators for 

a class of nonlinear hybrid system.  Monte Carlo simulation had been used and three metrics, 

namely, average RMS error, peak RMS error and RMS of RMSE error have been used for summary 

evaluation in tabular form. 

It was conjectured that though the time-averaged RMS error provides a quick comparison between 

state estimators, for practical applications the peak RMS errors should also be considered as this 

indirectly indicate the possibility of track loss.  

It was conjectured that the encouraging results obtained from studying non-adaptive filters can be 

extended to other problems in this class where the hybrid nature occurs because the inputs are not 

known to the estimator and such inputs enforce the different modes. Subsequent studies confirm 

the validity of such a conjecture. 

While comparing adaptive estimator with the corresponding non-adaptive estimators, the initial 

value of the process noise covariance of adaptive estimators were kept the same as that in the non-

adaptive estimators. This was to confirm that indeed process noise covariance adaptation indeed 

occurs even with wild initially assumed values. 

Regarding the Smooth variable structure filter (SVSF) it may be noted that (i) The SVSF with 

optimal boundary layer has been chosen as the version of SVSF, the longer nomenclature i.e. SVSF-

OBL has been avoided to keep the discussion easier to read.  (ii) Adaptive Smooth Variable 

Structure Filter has been proposed by the present worker to overcome the shortcomings of Smooth 

Variable Structure Filter with optimal boundary layer by incorporating the advantages of Process 
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noise adaptation technique. The proposed algorithm was evaluated with two aircraft tracking 

scenarios    

8.2 Conclusion 

The conclusion section has been subdivided into six major areas of work.  

8.2.1 Evaluation of the non-adaptive nonlinear estimators in trajectory tracking scenario  

o The various metrics of estimation performance, as expected were found to be strongly 

dependent on the process noise covariance multiplier.  

o The nonlinear CT model based filters generally exhibited better performance as compared to 

the linear UM model.  

o For the KF and the EKF, all the error descriptors viz., time averaged, peak and RMS of RMS 

error for both position and velocity of the aircraft were seen to decrease with increase in scaling 

factor  . For the UKF, a mild minima occurs at a higher value of . The errors in UKF, 

however, tend to increase thereafter.  

o A typical study says, the performance of UKF with increasing   beyond the optimum value 

needs some explanation. With the high value of process noise covariance, the “sigma points” 

in a sigma point based nonlinear state estimator become very widely spread leading to lower 

estimation accuracy so much so that for very high values of   the UKF may diverge. 

o For the optimal choice of  , the value of the descriptor metric for the position had been found 

to be substantially smaller compared to the square root of the corresponding measurement noise 

covariance. This indicates sufficient filtering despite the process model in the filter being 

simplistic and inaccurate. 

8.2.2 Evaluation of the adaptive estimators  

o It is seen that single mode adaptive state estimators including version with KF, EKF, DDF and 

GHF show better tracking performance compared to robust SVSF.  

o Single mode Adaptive Filters have shown similar performance as obtained from Interacting 

Multiple Model (IMM) state estimators with high value of Q or IMM with three sub filters.  

o The performance of adaptive estimators are particularly noteworthy because while SVSF 

results in (Gadsden, 2011) were obtained with the (known) nominal process noise covariance, 
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the adaptive estimators on the other hand, have been initialised with a wrong value of Q which 

was two decades below the true nominal value.  

o It is also noted that computationally intensive AGHF provides similar tracking performance as 

obtainable from ADDF and hence the former is not recommended due to computational cost. 

o Between the UM and CT model, the CT model (though marginally more computation intensive) 

performs noticeably better across all adaptive filtering algorithms with minor exception (X-

velocity for ADDF). 

o Performance of different versions of adaptive estimators as well as the non-adaptive EKF was 

evaluated. The non-adaptive EKF was observed to fail miserably to track one particular 

trajectory whereas the adaptive DDF and adaptive GHF tracked satisfactorily.  

o ADDF or AGHF have been found to perform better than 2-element IMM estimators for peak 

RMS errors.  

o It may be concluded that (i) performance of the adaptive estimators even starting with a wrong 

guess value of process noise covariance is closely comparable to that obtainable with the robust 

SVSF, (ii) the computationally more intensive AGHF provides similar tracking errors as 

obtainable from ADDF, (iii) CT model based state estimators, though marginally more 

computation intensive, provide better tracking performance for trajectories of the types 

considered. (iv) Single mode Adaptive Filters performs close to IMM estimators.  

8.2.3 Adaptive Smooth variable structure Filter  

o Performance of the proposed ASVSF (Average RMSE, Peak RMSE and RMS of RMSE) 

exhibits better performance as compared to the non-adaptive SVSF estimator.  

o For off-nominal values of process noise covariance, (i) for low initial value (
UMQQ  001.00

) 

the performance of ASVSF has again shown better than SVSF for all the metrics (ii) for over 

estimated value (
UMQQ 100

 and 
UMQQ 1000

), the comparative performances are more 

complex. Performance of the ASVSF, though good, but may not be claimed to be best for 

position for the different performance measures. This can be explained from the fact that for  

the highest value of Q, information from the process model is generally ignored by the Kalman 

filter and the velocity is most likely computed from the measurement only. Accuracy of SVSF-

OBL approaches that obtainable from the ordinary Kalman filter as Q becomes very large.     

o Robustness of the ASVSF was also tested by taking inaccurate process model in the estimator 

and also by using off-nominal process noise covariances in the filters. The robustness of 

ASVSF is evident as the error barely changes with the change of Q which spans four decades. 

However, for higher values of Q, the RMS error in SVSF-OBL decreases and approaches that 

of ASVSF. This is expected as many filters perform well with over-valued process noise 

covariance as discussed above, and is exemplified by the ordinary Kalman filter.  
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8.2.4 Adaptive Interacting Multiple Model 

o Adaptive Interacting Multiple Model (AIMM) estimator was proposed to reduce the number 

of sub-filters used in IMM with acceptable accuracy and to avoid the manual choice of process 

noise Q to tune the sub-filters. Performance of AIMM was evaluated with the two different 

tracking scenarios.    

o It is seen from Monte Carlo simulations that IMM performs better when the number of sub-

filters of IMM increases. In particular, the three-mode IMM (IMM EKF-EKF-EKF) performs 

better than two-mode IMM (IMM KF-DDF) in most cases (metric wise).  

o Performance of the AIMM estimator was found to be close to that of the carefully tuned three-

mode IMM filter. The “carefully tuned” three-mode IMM estimator is to be iteratively tuned 

with three different values of process noise. The selected range of the process noise should be 

just wide enough for the given truth model of tracking scenarios. However, in case of AIMM 

this careful tuning is not at all required since it adapts Q automatically.  

o An interesting observation was that the single mode nonlinear Adaptive filter ADDF has 

outperformed the two-mode IMM for all the cases.  

8.3 Suggestions for Future work  

i. In this work, Adaptive SVSF was proposed for linear measurement model. The algorithm can 

be formulated considering nonlinear measurement model.  

ii. Similarly, Sigma point SVSF can also be extended for nonlinear measurement model.  

iii. In air defence scenarios also the tracking trajectories are often modelled as UM, constants 

acceleration and sometimes constant jerk (Mehrotra & Mahapatra, 1997) (Ghosh & 

Mukhopadhyay, 2011) (Naidu, Gopalaratnam, & Shanthakumar, 2007).   Thus it can be 

conjectured that only three sub-filters would be adequate to track such targets. It may be pointed 

out that defence community generally demands very rigorous simulation to try a new algorithm 

and rejecting the existing practice that aspect is left for the future work. 

iv. Evaluation process of proposed ASVSF and AIMM were carried out for planner model of 

tracking trajectory. However, 3D models could also be considered for the evaluation process. 
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v. The adaptive versions of SVSF and AIMM may potentially be employed for fault detection and 

identification in the line suggested by (Chatterjee, Sadhu, & Ghoshal, 2015). 
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Appendices 

This section provides some additional findings and results that are relevant to the research 

work but not presented in the body of the thesis.   

9 Pragmatics for Process Noise Covariance Tuning 

The problem of tuning single mode stochastic state estimators for a class of nonlinear systems (NLS), 

which are often encountered in tracking of aerospace objects, is addressed. A trajectory of 

maneuvering aircraft may require different dynamic equations for different segments of the trajectory 

and the corresponding dynamic model may be classified as nonlinear hybrid system. This contribution 

investigates the use of single mode (non-hybrid) state estimators (in contrast to the option of using 

relatively complex multiple model estimators) for the tracking duty. Any mismatch between the 

dynamics of the actual system and the model used in the filter is often quantified by the process noise 

covariance. In the case of tracking, the true process noise covariance is time-varying and unknown. 

Estimation problem for simpler systems with unknown process noise is typically handled in the 

industry by manually tuning the estimator with a suitable high value of the process noise covariance. 

This contribution empirically investigates whether such tuning heuristics may be extended to more 

complex nonlinear hybrid systems and the efficacy of such tuning for aircraft tracking tasks with 

single mode linear and nonlinear state estimators. A well-known trajectory for a maneuvering aircraft 

has been used as an example of this class of systems. To compare the performance of filters with 

different tuning parameters, Monte Carlo simulation and three different aggregate metrics have been 

employed, viz., (i) time average of RMS error, (ii) peak of RMS error, (iii) RMS of RMS error. The 

study shows that (i) better estimation accuracy in terms of peak of RMS position error is obtainable 

with an estimator using a nonlinear (CT) model rather than a linear(UM) model, (ii) the practice of 

using a high value of process noise covariance applies even to this simplified system model and state 

estimator combination for the chosen problem, (iii) performance of such a manually tuned state 

estimator approaches that of the IMM filter and is better than an adaptive filter (UKF) and also than 

the variable structure (SVSF) filter and It is argued that, use of a more sophisticated and 

computationally intensive estimator would be justified provided such an estimator outperforms the 

single mode state estimators with manual tuning. 

Stochastic state estimators like Kalman filters (Simon, 2006) (Åkesson, Jørgensen, Poulsen, & 

Jørgensen, 2007) and its variants (Rezaie & Eidsvik, 2016) (Lefebvre, Herman Bruyninckx, & 

Schutter, 2004) extensions and successors provide optimal estimates of the states and are often used 
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for target tracking application (Rawat & Parthasarathy, 2008) (Bar‐Shalom, Yaakov, & Kirubarajan, 

2001) (Mehrotra & Mahapatra, 1997). Recent publications (Aalto, 2016) (Gadsden, Habibi, & 

Kirubarajan, 2014) (Gadola, Chindamo, & Fabrizio, 2014) (Mohan, Naik, Gemson, & 

Ananthasayanam, 2015) (Ananthasayanam, 2011) (Johansen & Thor, 2017) (Shambaky, 2011) and a 

review (Auger, et al., 2013)reveal that Kalman filter and its variants are still relevant for the industry 

and academia.   

Kalman filter gives optimum state estimation when, among other conditions, the process noise 

covariance should be known (Simon, 2006) (Åkesson, Jørgensen, Poulsen, & Jørgensen, 2007).  

The quantitative value of the process noise covariance, often denoted as Q represents the degree of 

inaccuracy or inadequacy of the process model, in a broad sense. Modeling inaccuracy may occur due 

to unknown values of the plant parameters and also due to unmodelled inputs as in the case of 

maneuvering aircraft model. The process noise covariance has a special role because it is used to 

represent a quantified mismatch between the actual process dynamics and the simplified process 

dynamics model used in the filter. Accordingly, the value of Q is not generally known a priori and the 

estimator performance may suffer due to the use of inappropriate value of Q. practitioners often tackle 

such situations by manually tuning the noise covariance parameters (Åkesson, Jørgensen, Poulsen, & 

Jørgensen, 2007) (Zarchan, 2005) (Ananthasayanam, 2011). While adaptive filters (Mehra, 1972) 

(Lee & Alfriend, 2004) (Mohamed & Schwarz, 1999) (Almagbile, Jinling, & Weidong, 2010) 

perform such tuning algorithmically, practitioners often perform manual tuning by adjusting Q and R.  

Tracking of maneuvering targets are often modeled as a hybrid nonlinear system (Hwang, 

Balakrishnan, & Tomlin, 2006), which makes the state estimation problem more complex than that for 

ordinary (single mode, non-hybrid) systems because each mode of the hybrid system would have 

distinctly different dynamics. State estimators for hybrid systems may use switched multiple models 

and interacting multiple models (Hwang, Balakrishnan, & Tomlin, 2006) (Bar‐Shalom, Yaakov, & 

Kirubarajan, 2001) (Li & Bar-Shalom, 1993) which lead to their complexity (as implicit or explicit 

determination of instantaneous modes or prior knowledge may be necessary except for simplistic 

cases). In this contribution, we explore the possibility of using simple single mode filters along with 

manual tuning for such nonlinear hybrid systems. Use of the single-model state estimator has the 

advantages of (i) simplicity (ii) computational efficiency and (iii) simplified tuning or adaptation 

procedure. 

A generally accepted heuristics for manual tuning is to tune the process covariance matrix with a 

sufficiently large value (Simon, 2006) (Zarchan, 2005) where an inaccurate (but simple and 

convenient) model has been used in the estimator. While such heuristics has been demonstrated to 

work well in the case of linear systems, the same cannot be said about nonlinear systems and also 
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hybrid nonlinear systems. One more objective of this chapter is to investigate and quantify the 

efficacy of such manual tuning heuristics for nonlinear and hybrid system using simple or simplified 

process models.  

It may be noted that when the plant model is linear and the covariances Q and R are known, rigorous 

theoretical proofs for optimal estimation are available (Simon, 2006). However, when the plant model 

is nonlinear and/or the noise covariances are not known, rigorous general proofs are not easy to come 

by (Simon, 2006). Nonlinearity may be handled by local and zonal linearization as is done 

respectively in extended Kalman filter (EKF) (Simon, 2006) or in the family of sigma point filters  

(Sadhu, Mondal, Srinivasan, & Ghoshal, 2006) which includes unscented Kalman filter (UKF) 

(Rezaie & Eidsvik, 2016) (Simon, 2006) (Lefebvre, Herman Bruyninckx, & Schutter, 2004) and 

divided difference filter (DDF) (Lefebvre, Herman Bruyninckx, & Schutter, 2004). Absence of 

rigorous general proof implies that application of nonlinear and adaptive filters must be evaluated by 

extensive simulation. For the stochastic estimators, such evaluation is usually carried out by Monte 

Carlo method (Zarchan, 2005).  

For aircraft tracking problems where sophisticated motion models (Bishop, 2000) (Li & P. Jilkov, 

2003) (Mehrotra & Mahapatra, 1997) and state estimation algorithms (Bar‐Shalom, Yaakov, & 

Kirubarajan, 2001) (Gadsden, Habibi, & Kirubarajan, 2014) are available, the industry reportedly 

continues to use manually tuned (Mohan, Naik, Gemson, & Ananthasayanam, 2015)  simpler tracking 

filters employing simple motion models. Two particular well-known motion models are uniform 

motion (UM) and coordinated turn (CT) described in a subsequent section. Trajectory of a civil 

aircraft may be considered as a hybrid system containing sequences of UM and CT segments. 

For the UM model the plant model is linear and a Kalman filter suffices, whereas for the nonlinear CT 

model, two filters viz., EKF and UKF have been used. However, in the present contribution we have 

characterized the performance of state estimators (filters) with UT model (by Kalman Filter) and CT 

model (with nonlinear filters), taking one at a time. Finally, performance of the several types of 

manually tuned nonadaptive, single model state estimators have been compared with adaptive UKF 

(AUKF), recently introduced smooth variable structure filter (SVSF) and with interacting multiple 

model (IMM) estimators using adequate Monte Carlo simulation and three quantitative descriptors of 

estimation performances. 

To the best of the knowledge of the contributors, such a comprehensive comparison, especially with 

SVSF, AUKF and IMM has not been reported in the literature.  



Ph.D. Thesis,  Nilanjan Patra  Appendices 

 

121 
 

9.1 Formulation of the Specific Aircraft Tracking Problem 

9.1.1 Preliminaries 

The general discrete nonlinear plant model is described as follows: 

   kkkk wuxfx  ,1  (9.1.1) 

 

  kkk vxhy   
(9.1.2) 

where, the state vector kx  and ky are the state and the measurement vectors of the system respectively 

at the instance k  for input ku . The uncorrelated white Gaussian process and measurement noise are 

represented as kw and kv with their covariances kQ and kR respectively. 

A wide variety of models for describing target motion with maneuver have been reported in the 

literature (Bishop, 2000) (Li & P. Jilkov, 2003) (Mehrotra & Mahapatra, 1997). A number of 

sophisticated state estimation based tracking systems (like multi-modal, interactive multiple model 

(Bar‐Shalom, Yaakov, & Kirubarajan, 2001), adaptive estimators (Lee & Alfriend, 2004), variable 

structure filter (Gadsden, Habibi, & Kirubarajan, 2014)) have been suggested for tracking 

maneuvering aircraft. 

The aircraft trajectory considered in this contribution has been used by several previous workers (Bar‐

Shalom, Yaakov, & Kirubarajan, 2001) (Gadsden, Habibi, & Kirubarajan, 2014) for evaluating state 

estimators. In the “S-shaped” trajectory the aircraft travels in a horizontal plane and such trajectory 

consists of three uniform motion (UM) segments and two coordinated turn (CT) segments. The 

nominal trajectory is shown in Fig 4.3. Appropriate dynamic models of these two segments are 

described subsequently.  

9.1.2 The Trajectory 

In the trajectory shown in Fig 4.3, the aircraft flies westward (along negative X-direction) from the 

initial position of [25,000m, 10,000m], with a constant velocity of 120m/s for 125s. Thereafter, it 

takes a coordinated turn with a turn rate of 1 degree/sec in the anti-clockwise direction for 90s and 

then flies southward for another 125s at a constant velocity of 120m/s. The aircraft then takes a 

clockwise coordinated turn for 30s at 3 degree/sec, after which it follows a straight westward path at 

120m/s for 120s.   

The UM segment is generally represented by a linear 4th-order model (where a simple Kalman filter 

would be appropriate) whereas the CT segment requires a 5th order nonlinear model with the ‘turn 
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rate’ as an additional state. For the sake of compatibility with the model in (Bar‐Shalom, Yaakov, & 

Kirubarajan, 2001) (Gadsden, Habibi, & Kirubarajan, 2014), it is assumed that measurements of 

position in Cartesian coordinates are available from a tracking system.  

9.1.3 Model of the Uniform Motion  

The discrete state equations of the model for uniform motion are represented as (Bar‐Shalom, 

Yaakov, & Kirubarajan, 2001). 
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where, T is the sampling interval, and the state vector kx  is defined as  

   kkkkk  x  (9.1.4) 

 

with k  and k  representing the position of the aircraft along the X  and Y  direction respectively; 

k
  and k  represent the corresponding linear velocities. Here kw  represents the discrete equivalent 

of noise in the acceleration in the X  and Y  directions with covariance UMQ . 

9.1.4 Model of Coordinated Turn  

The coordinated turn model contains an additional state variable, viz., the turn rate , which is 

nominally an unknown constant (Bar‐Shalom, Yaakov, & Kirubarajan, 2001).  For this model, the 

state vector kx  is defined as    kkkkk  x  
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Here kw  represents the discrete equivalent of noise in the acceleration in the X and Y  directions 

with covariance CTQ . 
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9.1.5 Measurement Models 

It is assumed that the tracker is stationed at the origin to measure the position along the X  and Y  

directions. The measurement for the UM model is  

 

kkk vxy 









0010

0001
 (9.1.6) 

kv  represents the discrete measurement noise of the system with covariance R .The corresponding 

measurement model for CT is 

 

kkk vxy 

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 (9.1.7) 

9.1.6 Noise Covariances 

The process noise covariance for the UM mode is  
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and the measurement noise covariance are defined as (Bar‐Shalom, Yaakov, & Kirubarajan, 2001)  
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1L  and 2L  are the power spectral densities (Bar‐Shalom, Yaakov, & Kirubarajan, 2001) of 

corresponding continuous domain noise for linear acceleration and angular acceleration respectively. 

The corresponding numerical values are 0.16 and 0.01 respectively.  

The measurement noise covariance values taken for this problem is (Gadsden, Habibi, & Kirubarajan, 

2014)  
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9.2 Evaluation Approach 

9.2.1 Performance Metrics 

Evaluation of state estimation of nonlinear hybrid systems even with the help of numerical Monte 

Carlo simulation poses a few problems. Hybrid systems follow cycles of trajectories and estimation 

errors may vary at each point in the cycle. For objective comparison of estimators, one has to use an 

aggregate metric for estimation errors. Previous workers have used time average of Monte Carlo 

(MC) derived RMS error (Gadsden, Habibi, & Kirubarajan, 2014). As a single metric may not be able 

to capture the relative efficacy of different tracking algorithms, we use two additional metrics viz., 

peak (h-infinity norm) RMS error as obtained from Monte Carlo studies and RMS of RMS error as 

obtained from Monte Carlo studies. 

9.2.2  Truth Model 

The truth model is created from the UM and CT models as above as appropriate for each segment. To 

make it realistic, the UM model used for this purpose is the CT model with the turn rate set to 0 . 

This permits addition of turning rate noise even in the nominal mode. The truth model is initialized 

with random initial conditions drawn from random Gaussian sequences with covariance 

])1001005050([ 22
0 diagP  and mean  T0010000250000 x . Here the distances are in 

meters, velocities in meter/sec. For each instance of such trajectory defined above, random process 

noise drawn from random Gaussian sequences with covariance UMQ  or CTQ  as appropriate, are 

added. 

The filter is initialized with deterministic values  T0010000250000 x  for the UM model. For 

the CT model, the initial turn rate is set as 0.  

9.2.3 Estimators Evaluated 

Using MC studies and the above set of descriptor metrics, we compare the performance of two types 

of manually tuned single model estimators (viz. the uniform motion (UM) and coordinated turn (CT) 

types described in the next section) with that obtainable from sophisticated state estimators like (a) Q-

adaptive estimator (Lee & Alfriend, 2004) like adaptive unscented Kalman filter (AUKF) (b) smooth 

variable structure filter (SVSF) (c) an interacting multiple model estimator (IMM).  

It may be noted that use of the CT model involves the estimation of turn rate parameter and makes the 

estimation problem nonlinear.  
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Tracking performance results for KF, EKF, UKF, AUKF and IMM were computed as a part of this 

present work whereas the same for SVSF was taken from (Gadsden, Habibi, & Kirubarajan, 2014).  

The steps of EKF and UKF are as per their respective conventional forms given in (Simon, 2006) 

(Gadsden, Habibi, & Kirubarajan, 2014). The parameters for the UKF are chosen as 

6.0,2,0    (Sadhu, Mondal, Srinivasan, & Ghoshal, 2006). 

A scale factor based adaptive UKF (Lee & Alfriend, 2004) has been used in the simulation study with 

the same parameters as in the UKF for the kernel. The length of the adaptation window is taken as 20 

samples and the AUKF estimator is initialized with CTQQ 1000  . We note in passing other forms of 

adaptation involving process noise covariance are also possible (Shambaky, 2011). 

In this work, we have used a two-mode version of the IMM, with initial weights (0.5, 0.5) for each 

mode. Several versions of the two-mode IMM were tried out of which we have selected the following 

which provided the best result amongst the versions considered. The chosen version incorporates CT 

model and EKF for both the modes but with different process noise covariance for the modes; 

specifically, with nominal process noise covariance ( CTQQ 0 ) in one mode and high process noise 

covariance ( CTQQ 200  ) in the other. The value of transition probability matrix (in MATLAB 

notation) is chosen as [0.95, 0.05; 0.05, 0.95] as in (Bar‐Shalom, Yaakov, & Kirubarajan, 2001). 

9.2.4 Evaluation Specifics 

The performance of the estimators has been evaluated with the help of Monte Carlo simulation with 

sampling interval of sT 5 . 

For each study, 500 Monte Carlo runs have been used to calculate (i) the RMS error sequence, 

  kerms  across the Monte Carlo population corresponding to each instant k  (ii) peak value of the 

RMS error sequence,    kerms
k

peak sup , (iii) time average of the RMS error sequence, 

  



N

k

rmsavg ke
N 1

1
, (iv) RMS of the RMS error sequence  




N

k

rmsRMS ke
N 1

21
. Note that the 

RMS error sequence is plotted against time sample k  whereas the other three metrics being 

aggregated single numbers are tabulated. For a compact representation, the position errors in X and Y 

are aggregated in a single number called composite position error, being the square root of sum of 

squared values of the components. The composite values of velocity errors are similarly computed. 

As the objective of the present work is to study the effect of varying the norm of the process noise 

covariance matrix, (designated as filterQ ) with the help of a multiplying scalar   so that 
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nomfilter QQ  , where nomQ  is the nominal value of the process noise covariance corresponding to 

the choice of UM or CT model. The scaler   has been varied from a very low value (0.001) to a 

very high value (1000). 

9.3 Results of Linear Model (UM) Based Filter 

Note that the UM-based filter is a simple Kalman filter as both the process and the measurement 

models are linear. For initializing the error covariance P  in the UM-based filter, an initial error 

covariance 0P  is taken as ])1001005050([ 22diag . 

 

Figure 9.1 RMSE (from MC simulation) of position 

for λ=10 

 

 

Figure 9.2 RMSE (from MC simulation) of velocity for 

λ=10 

 

The aggregate performance parameters of the UM-based filter with different values of the process 

noise covariance (quantified by the multiplier  ) are tabulated in Table 9.1, Table 9.2 and Table 9.3 

and their temporal profile are represented in corresponding figures as mentioned below.  

From these we may note the following. 

 Temporal variation of RMS error (position and velocity) for a specific value of multiplying 

factor 10  is shown in components marked with KF in Fig 9.1 and Fig 9.2. 

 Temporal variation of RMS error (position and velocity) for different values of multiplying 

factor   is shown in Fig 9.3 and Fig 9.4. The aggregate values of the metrics shown in the 

tables mentioned above are computed from these. Note that larger peak errors occur during 

the coordinated turn segments for all such cases. We also note that the peaks reduce as   is 

increased.  

 For different values of multiplying factor   as given in Table 9.1, we note that time average 

of RMS error ( avg ) of composite position, decreases as   increases with no distinct minima. 
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The same trend is seen for time average of RMS error in the case of composite velocity. This 

may also be visualized from the plots marked KF in Fig 9.5 and Fig 9.6. For the position error 

and with 10 , we see that the values are substantially less than square root of measurement 

error covariance ( 250  m).  

 The Table 9.2 shows that the peak of RMS error ( peak ) of composite position decreases as   

increases with no distinct minima. Though the trend for the peak of RMS composite velocity 

error is non-monotonic, the overall trend follows that of the position error. It may be noted 

that the peak values are substantially higher compared to the time-averaged values especially 

for higher values of . These may also be visualized from the plots marked KF in Fig 9.7 and 

Fig 9.8. We note that the high peak errors were also discernable in Fig 9.1, Fig 9.2, Fig 9.3, 

and Fig 9.4. 

 

Figure 9.3 RMSE of x-position for UM-KF for different 

choice of λ 

 

 

Figure 9.4 RMSE of x-velocity for UM-KF for 

different choice of λ 

 

Table 9.1 Time-averaged RMS error ( avg ) 

Scale factor ( ) Composite error KF EKF UKF 

0.001 
Position (m) 

Velocity (m/s) 

2712.6 

72.7 

1192.6 

60.8 

1175.9 

60.2 

0.01 
Position (m) 

Velocity (m/s) 

1729.6 

56.9 

557.53 

44.62 

548.41 

44.06 

0.1 
Position (m) 

Velocity (m/s) 

615.02 

33.12 

232.72 

27.77 

219.97 

26.34 

1 
Position (m) 

Velocity (m/s) 

197.97 

18.80 

67.34 

10.40 

65.36 

9.39 

10 
Position (m) 

Velocity (m/s) 

74.54 

10.45 

39.73 

4.87 

47.33 

5.38 
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100 
Position (m) 

Velocity (m/s) 

43.73 

6.36 

39.10 

5.07 

47.06 

9.21 

1000 
Position (m) 

Velocity (m/s) 

39.95 

6.12 

39.64 

7.65 

43.22 

27.06 

 

 The Table 9.3, shows that the RMS of RMS error ( RMS ) of composite position as well as 

composite velocity decreases as   increases with no distinct minima. 

 

Figure 9.5 Time-averaged position RMSE for 

different filters 

 

 

Figure 9.6 Time-averaged velocity RMSE for 

different filters 

 

Table 9.2 Peak of RMS ( peak ) 

Scale factor ( ) Composite 

error 
KF EKF UKF 

0.001 
Position (m) 

Velocity (m/s) 

5534.5 

143.1 

5924.9 

181.2 

5832.3 

179.5 

0.01 
Position (m) 

Velocity (m/s) 

3833.1 

165.9 

2454.5 

160.5 

2425.1 

158.2 

0.1 
Position (m) 

Velocity (m/s) 

2021.3 

149.0 

1111.0 

102.7 

1056.2 

98.0 

1 
Position (m) 

Velocity (m/s) 

934.36 

116.45 

345.87 

59.76 

294.48 

55.79 

10 
Position (m) 

Velocity (m/s) 

353.68 

72.49 

77.88 

26.16 

71.92 

23.05 

100 
Position (m) 

Velocity (m/s) 

104.73 

38.00 

71.92 

15.45 

71.92 

16.11 

1000 
Position (m) 

Velocity (m/s) 

71.92 

19.75 

71.92 

14.38 

71.92 

28.42 
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9.4  Results of the Nonlinear Model (CT) Based Filters 

Two types of CT based filters have been used viz., EKF and UKF.  

For initializing the error covariance P , an initial error covariance 0P  is taken as

])11001005050([ 22diag . Note that the turn rate is in degree/sec and the corresponding 

covariance element is (degree/sec)-squared. The aggregate performance of the two CT based filters 

with different values of the process noise covariance is also tabulated in Table 9.1, Table 9.2 and 

Table 9.3 and represented in corresponding figures.  

From these we may note the following. 

 Performance of the EKF may be seen to closely follow that of UKF except as mentioned 

below. 

 Temporal variation of RMS error (position and velocity) for a specific value of multiplying 

factor 10  is shown in components marked with EKF and UKF in Fig 9.2 and Fig 9.3. We 

note that the nonlinear (EKF and UKF) filters perform better than the linear filter for all time 

instances.  

 

Figure 9.7 Peak of position RMSE for different filters 

 

Figure 9.8 Peak of velocity RMSE for different filters 
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Figure 9.9 RMSE of x-position for CT-UKF for different 

choice of λ 

 

 

Figure 9.10 RMSE of x-velocity for CT-UKF for 

different choice of λ 

 Temporal variation of RMS error (position and velocity) for different values of multiplying 

factor   is shown in Fig 9.9 and Fig 9.10 (UKF). Note that in these cases larger peak errors 

occur during transition to and from coordinated turn modes for all such cases. We also note 

that the peaks reduce as   is increased. 

 Plots of RMS errors over the time provide insights about the areas of possible improvement. 

As the RMS errors tend to peak near mode transition points, it was conjectured that a multiple 

model may show better performance. However it turned out that the manually tuned EKF 

performance with adequate value of   outperformed that of a typical IMM estimator as 

discussed below. 

 For different values of multiplying factor , we note that time average of RMS error ( avg ) 

of composite position decreases as   increases with no distinct minima. This may also be 

verified from the plots marked EKF and UKF in Fig 9.5. 

 Time-averaged RMS error in the case of composite velocity also decreases monotonically 

with   for 10 . However, for higher values of  , i.e., at or beyond 10 , minima can 

be observed in EKF and UKF. This may also be visualized from the plots marked EKF and 

UKF in Fig 9.6. For the UKF, the minima is more distinct compared to the EKF. So for all 

practical purpose, 100  may be considered the upper permissible limit to obtain good 

position error performance and reasonable velocity error performance. 
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Table 9.3 RMS of RMS error ( RMS ) 

Scale 

factor (  ) 

Composite 

error 
KF EKF UKF 

0.001 
Position (m) 

Velocity (m/s) 

3488.7 

87.7 

1799.3 

81.1 

1771.4 

80.3 

0.01 
Position (m) 

Velocity (m/s) 

2203.9 

75.1 

830.89 

63.60 

818.65 

62.94 

0.1 
Position (m) 

Velocity (m/s) 

875.11 

50.63 

386.12   

44.18 

359.75 

41.72 

1 
Position (m) 

Velocity (m/s) 

306.49 

32.27 

92.70 

17.33 

82.85 

15.64 

10 
Position (m) 

Velocity (m/s) 

102.30 

19.16 

41.23    

6.90 

48.34 

6.80 

100 
Position (m) 

Velocity (m/s) 

46.56 

10.53 

40.00 

5.57 

47.87 

9.43 

1000 
Position (m) 

Velocity (m/s) 

40.85 

7.21 

40.50 

7.88 

44.06 

27.34 

 From the above figures, we note that both position error and velocity error are noticeably less 

compared to the Kalman filter for 10 . For the composite velocity error well past the 

optimum value of , the UKF exhibits more error compared to the Kalman filter.  

 If a substantially higher value of   is used ( 1000 ), the UKF was seen to diverge. The 

reason may be attributed to the fact that increasing   increases the spread of the sigma points 

and at a very high value, the approximations made by the sigma points may be invalid and/or 

beyond the current mode. This phenomenon may be avoided by adjusting the tuning factors of 

the UKF with some penalty on the performance at lower value of . 

 Further, (i) the peak of RMS error ( peak ) of composite position as well as composite 

velocity decreases as   increases. (ii) During the numerical interval, 10001.0  , both 

position error and velocity error are noticeably less compared to the Kalman filter. (iii) The 

velocity error for UKF exhibits mild minima. These may also be seen from the plots marked 

EKF and UKF in Fig 9.6 and Fig 9.8.   

 Again, the RMS of RMS error ( RMS ) of composite position decreases as   increases with 

no distinct minima. RMS error in the case of composite velocity, however, exhibits a minima.  

 Even for the case of RMS of RMS error, the position error is noticeably less compared to the 

Kalman filter for 1 . The velocity error in the range 10001.0    is also noticeably less 
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compared to the Kalman filter.  

 Table 9.4 provides a fairly comprehensive comparison table of filtering performance using all 

the three metrics and for all the filters evaluated for the same tracking scenario. Results for 

manually tuned filter, KF, UKF, AUKF and IMM were evaluated as part of this work whereas 

the results for Smooth Variable Structure Filter (SVSF) variants are taken from (Gadsden et 

al., 2014). For manually tuned EKF, CTfilter QQ 100  has been used and the AUKF is 

initialized with CTQQ 1000   for this comprehensive table.  

 We may note that performance of the manually tuned EKF is better than the more complex 

filters like SVSF and AUKF and is equivalent to (actually just marginally better than) the 

version of the IMM estimator used for this comparison. In particular, the peak RMS error in 

the IMM is substantially higher compared to the manually tuned filter. 

Table 9.4 RMSE Metrics for Estimators Evaluated 

Composite RMS 

State Error 

Manually 

tuned CT 

(EKF) ( 
=100) 

AUKF 

CTQQ 1000   
IMM 

EKF-EKF 

UKF 

CTfilter QQ 100  
SVSF-

CT 

Time 

averaged 

Position (m) 39.10 59.21 40.48 47.06 110 

Velocity (m/s) 5.07 17.38 4.79 9.21 96 

Peak 
Position (m) 71.92 230.12 72.05 71.92 - 

Velocity (m/s) 15.45 49.06 28.99 16.11 - 

RMS of 

RMSE 

Position (m) 40.00 66.66 41.20 47.87 - 

Velocity (m/s) 5.57 22.45 6.69 9.43 - 

 While it may be argued that the performance of the IMM could have been improved by a 

different choice of component filters, it must be noted that choosing the component filters 

(adequate number of modes or sub-filters, choice of appropriate sub-filters) in an IMM calls 

for non-trivial prior knowledge about possible manoeuvres and mode transition probability 

matrix. Results for the IMM estimator presented in the table may be considered as a 

representative value.  

 From the above results and discussion, it may be inferred that the performance of the 

manually tuned EKF with a CT model with a suitably high value of process noise covariance 

is at par or even better than other complex and sophisticated estimators.    

9.5 Concluding Discussions 

From the figures, the tables and discussion provided above, the following conclusions can be made:  



Ph.D. Thesis,  Nilanjan Patra  Appendices 

 

133 
 

i. All the three descriptors of estimation performance were found to be strongly dependent on 

the norm of process noise covariance, quantified by the multiplier .  

ii. As expected, the nonlinear CT model-based filters generally exhibited better performance (in 

peak RMS position error) compared to the linear UM model. 

iii. For the Kalman filter, EKF and UKF, all the error descriptors viz., time-averaged, peak and 

RMS of RMS error for both position and velocity were seen to decrease with increase in  

when the parameter is varied from very low value to 100 .  

iv. The general trend obtained from this study reaffirms the industry practice of using higher 

process noise where the model is not known adequately because estimation errors generally 

tend to decrease with increasing .  

v. Table 9.4 provides a comprehensive comparison of the various filters which underlines the 

strength of the manually tuned filter with high suitably high value of process noise covariance 

over other options. 

vi. It may be noted that a higher process noise covariance created simply by increasing a scalar 

proved to be effective because in the point mass model, this amounts to increasing the amount 

of unmodelled equivalent acceleration.  

vii. Overall, the manually tuned EKF turns out to be best in filtering performance and simplicity. 

Industry usually prefers simple solutions even if such a solution is not numerically optimum. 

However, the performance of simplistic single model filters surpassed the expectation and 

competed commendably with the IMM. 

Thus the present contribution has outlined an approach with which an informed decision about the 

choice of filters may be made for comparable tracking problems. We advocate that a similar analysis 

be carried out with manually tuned simple filter before a sophisticated state estimator (like adaptive, 

variable structure or interacting multiple model filter) is deployed.   
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10 Parameter Estimation 

In this chapter some of the important nonlinear problems on ballistic target tracking and road-tire 

friction estimation have been considered.      

 Ballistic Coefficient 

A nonlinear Ballistic target tracking model (Zarchan, 2005) as discussed in the section 3.4.2 is 

considered here for a parameter estimation problem. An Q-adaptive Extended Kalman Filter was used 

to estimate the state of the system. 

This plant model has been chosen for the characterization of the Q adaptive filters for a case where 

noise elements are the function of states. It would be interesting to see how Q-adaptive filters would 

perform under such circumstances.  The expression of Q for two-dimensional system as given below.  
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where, s  is the noise spectral density of the system assumed to be on the acceleration and T is the 

sampling interval. And 




000,44

2

21

gx
f


 ;  



 xg
f


22  . Here   is representing the air density, 

indicates drag, pQ is the dynamic pressure )5.0( 2xQp
 , in the system having two states, position 

and velocity  Txx  .  Fig 10.1 shows the elements of the process noise, Q which vary over time.  

 

Figure 10.1 Process Noise 
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10.1.1 State estimation by Adaptive EKF  

A scaling factor based Q adaptive EKF (Almagbile, Jinling, & Weidong, 2010) was used to evaluate 

the system. Position and velocity are considered for characterization of the adaptive EKF. Position is 

considered as the measurement.  System and measurement equations are given in the section 3.4.2.   

The simulation of has been carried out with the Q-adaptive Extended Kalman filter for the above-

stated system. The simulation parameter is given on the Table: 10.1. The simulation time has been set 

to 45 seconds after which the object touches the ground 

Table 10.1 Simulation Parameters 

Initial altitude 200,000 Ft 

Initial velocity 6000ft/s 

Ballistic coefficient 𝛽 500 lb/ft2 

Gravitational constant 𝑔 32.2 Ft/sec2 

Noise spectral density Φ𝑠 100 

Measurement noise standard deviation  𝜎𝑣 25 Ft 

Sampling interval, 𝑇𝑠 0.1s 

Simulation time 45 s 

Sate error covariance 𝑃0  𝑑𝑖𝑎𝑔[ 252  1502 ] 

 

Estimation of the two states of the ballistic target tracking system is presented in section 3.4.2, where 

the process noise covariance 𝑄 has been initialised wrongly 𝑄𝑓𝑖𝑙𝑡𝑒𝑟|𝑘=0 = 1000 × 𝑄𝑝𝑙𝑎𝑛𝑡|𝑘=0. The 

RMSE plots of the estimation errors have been shown in the Fig. 10.4-10.5 to evaluate the 

performance of the filter for 10,000 Monte Carlo runs with different random noise sequences. It is 

observed from the simulation study that the performance of the adaptive filter for both position and 

velocity estimation is better as compared to the case where the adaptive cases are not adopted with a 

wrong value of 𝑄 (Fig 10.6-10.7). Fig 9.8 is the demonstration of the convergence of scaling factor 𝛼 

for estimation of 𝑄. For the nominal study, the noise spectral density Φ𝑠 is taken as 100 (Zarchan, 

2005) for this simulation, which has been shown in Fig 9.2-9.5. However, the variation of 

the Φ𝑠 would cause impact on the performance of the 𝑄 adaptation process (Fig 10.6-10.7). Three 

different cases with the variation of Φ𝑠have been considered here and it is observed that with the 

higher value of Φ𝑠 the convergence of 𝛼 is faster. Convergence plot of 𝛼 has been shown in Fig 10.8 

and 10.9.  
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Figure 10.2 Estimation of Altitude 
 

 

Figure 10.3 Estimation of velocity 
 

 
Figure 10.4 RMSE for altitude when 𝑸𝒇𝒊𝒍𝒕𝒆𝒓 =

𝟏𝟎𝟎𝟎 × 𝑸𝒑𝒍𝒂𝒏𝒕 

 

 
Figure 10.5 RMSE for velocity when 𝑸𝒇𝒊𝒍𝒕𝒆𝒓 = 𝟏𝟎𝟎𝟎 ×

𝑸𝒑𝒍𝒂𝒏𝒕 

 

 
Figure 10.6 RMSE plot for position for different initial 
guesses of process noise 
 

 
Figure 10.7 RMSE plot for velocity for different initial 
guesses of process noise 
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Figure 10.8 Plot of the scaling factor 𝜶 for (a) 𝑸𝒇𝒊𝒍𝒕𝒆𝒓 =

𝟏𝟎𝟎𝟎 × 𝑸𝒑𝒍𝒂𝒏𝒕 

 

 
Figure 10.9 Plot of the scaling factor 𝜶 for (a) 𝑸𝒇𝒊𝒍𝒕𝒆𝒓 =

𝟎. 𝟎𝟎𝟏 × 𝑸𝒑𝒍𝒂𝒏𝒕 

 

Estimation of Ballistic Coefficient:  

For parameter estimation, the ballistic coefficient 𝛽 has been kept unknown to the estimator. The 

unknown parameter is considered as the third state (  Txx  ). The process noise (Zarchan, 

2005) is defined as  
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Where, 
2

2

ˆ2

ˆˆ



 xg
fd


 . For simulation study, the ballistic coefficient is initialized as a random number, 

say 800. Fig 10.10 shows that the estimator track its true value, 500 in 20s. Fig 10.11 shows RMS 

error for Ballistic Coefficient after 1000 MC runs.    
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Figure 10.10 Estimated ballistic coefficient 

 

Figure 10.11 RMSE plot of ballistic coefficient 
 

Salient observations  

i. In the case of RMS position error, adaptive estimator exhibits markedly improved 

performance for different initial error covariance (guess) over a wide range. The above almost 

preclude use of non-adaptive filters where Q is unknown. However, RMSE of velocity shows 

anomalous behavior for cases where the guess value of Q is much smaller than the true value 

as the RMSE for non-adaptive estimators comes out to be smaller than the adaptive 

estimators.        

ii. From the simulation studies of RMSE of the states, it is observed that the steady state 

performance of the adaptive filter for this model is consistent for all different choices of 

(wrong) initial guesses of Q for both position and velocity (Fig. 9.6 and 9.7). That is 

irrespective of the choice of the initial covariance over a wide range, the steady state RMSE 

error remain quite close.  

iii. The initial error dynamics of the RMS error for position as well as for velocity for adaptive 

estimators off course change widely with different choice of the initial Q.  

iv. It is interesting to notice that evolution of the scaling factor 𝛼 (ideal value is unity) over 

iterations has a dissimilar pattern with the different choice of initial guesses of Q. If the initial 

guess of Q is higher than that of nominal value the plot of 𝛼 over time shows an initial 

overshoot, which doesn’t occur if the initial guess is kept lower than that of nominal one 

(refer to Fig. 9.8 and 9.9). In both the cases however, value of 𝛼 settles down to the unity in 

steady state.    

v. The ballistic coefficient was initially guessed wrongly as 800 whereas the exact value was 

considered to be 500 in the truth model (Fig 10.10 and 10.11). The Q Adaptive EKF could 

track the unknown parameter within 15-20s. The steady state RMSE was noted as 65. 
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 R-Adaptive EKF for the state estimation of vehicle  

The system is described in the previous section. A quarter car model has been taken (as discussed in 

section 3.5), to model the system and a popular LuGre friction model is considered for the modeling 

of anti-lock braking system. The system states and the parameter of the tire have been estimated. The 

main objective is to estimate the velocity of the vehicle, 𝑣 which is essential to calculate the current 

slip value of the vehicle for anti-lock braking system. The 𝑅 adaptive Extended Kalman Filer scheme 

has been developed to estimate the internal parameter of the tire, vehicle velocity and the wheel 

velocity even if the noise statistics is unknown to the filter. The angular velocity of the wheel, which 

is considered here as the measurement state, can easily be measured by available sensor.   

10.2.1 System dynamics  

The dynamics of the system can be represented as the following state-space model (K. Deng, 

2006) 

The quarter-car model is described in the third chapter. The longitudinal dynamics of the car 

is described in 3.5.2.2.    

𝑥̇ = [
𝑧̇
𝜔̇
𝑣̇

] = 𝑓(𝑧, 𝜔, 𝑣,  𝑇𝑏) + 𝑤  

𝑦 = ℎ(𝑥) + 𝑣  

Where, the states are 𝑧, 𝜔 𝑎𝑛𝑑 𝑣 which represent internal parameter of the tire, wheel speed and the 

vehicle velocity. The measurement vector 𝑦 is considered a linear function of wheel’s angular speed. 

Here, 𝑤 and 𝑣 are the process noise and the measurement noise respectively. 

The system has been discretized with a sampling rate of 0.001s  

𝑄 = [
10−6 0 0

0 10−6 0
0 0 10−4

]  

 𝑅 = 1 

10.2.2 REKF Algorithm  

Maximum Likelihood equation based adaptive algorithm is revisited and the same is applied to the 

Extended Kalman Filter for ABS. The measurement noise statistics, 𝑅 is adapted by the following 

equation based on the innovation sequence of the measurement. 
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T

kkkvkk HPHCR 


 

Where, 



k

ii

T

iivk
L

C
0

1
 

kH and 


k
P are the partial derivative matrix calculated for EKF and predicted covariance of the state matrix 

respectively. The vkC is calculated by averaging a moving window of size L The first epoch of the estimation 

window is taken as .10  Lki The estimated kR̂ is fed to the EKF to calculate Kalman gain for the 

estimation of states of the system.  

10.2.3  Simulation results 

The simulation study has been performed to evaluate the performance of the estimator. The simulation 

parameters are taken as mentioned in (K. Deng, 2006). A straight path is considered for braking with 

initial longitudinal velocity of the vehicle and wheel as 22.5m/s. The initial value of internal parameter 

of the tire is considered to be zero. The other simulation parameters of the systems are given in the 

table: 1. sampling interval of the filter is taken as 0.001s and window length for averaging innovation 

sequence is taken as 250 epochs. Fig 10.12-10.17 depict the plot of estimated states over real states and 

the plots of estimation error for the three states of the vehicle with the application of AEKF. The 

nominal value of measurement noise covariance R in the plant is taken as 1. The first set (Fig 10.18-

10.21) of simulation has been performed with a random value of 1.0R in the Filter. The filter 

performs well while the value of R is wrongly initialized to the filter. However, it is also important to 

evaluate the performance of the filter under noise-uncertainty. The performance of AEKF has been 

shown in RMSE plots (Fig 10.18-10.21). In all the cases the RMSE error has been reduced by the use 

of adaptive one over the non-adaptive cases. Plot of estimated noise covariance R is shown in Fig 

10.22, where it is initialized with the different initial values. It is seen that for all the cases noise 

covariance converge to its true value ( 1R ) within finite time. 
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Figure 10.12 Plot of actual and estimated tire 
parameter 

 

Figure 10.13 Estimation error of the tire parameter 

 

s  

Figure 10.14 Plot of actual and estimated wheel 
speed 

 

 

Figure 10.15 Estimation error of the wheel speed 

 

 

Figure 10.16 Plot of actual and estimated vehicle 
speed 

 

 

Figure 10.17 Estimation error of the vehicle speed 
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Figure 10.18 RMSE with RR 01.0ˆ
0   

 

Figure 10.19 RMSE with RR 1.0ˆ
0   

 

 

Figure 10.20 RMSE with RR 10ˆ
0   

 

 

Figure 10.21 RMSE with RR 100ˆ
0   
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Figure 10.22 Plot of AEKFR̂ with different value of 0R̂  

10.2.4 Discussion   

The states of the longitudinal dynamics of the vehicle are estimated under a braking situation in a 

straight path. The adaptive methodology of the estimation exhibits good performance of estimating 

measurement noise covariance and the states of the system as well. The RMSE of the states have been 

reduced in all the simulation cases with the employment of adaptive terms in the filter. 

 Side-slip angle and friction coefficient estimation of vehicle from 

Lateral dynamics 

The friction coefficient is one of the important parameters of the Anti-lock Braking System (ABS). 

The friction coefficient between the tire and road contact surface characterizes the tire force. On the 

other hand, the maximum brake force which can be applied on the wheel before it gets locked 

depends on the friction coefficient at the contact patch. Thus, in ABS system, it is important to 

measure or estimate the frictional force or the friction coefficient dynamically. The characteristics of 

frictional force with the change in longitudinal slip. However, to estimate the friction coefficient the 

lateral vehicle model can also be considered. In that case, side-slip angle is another important 

parameter for capturing the alignment of the tire. The side-slip angle helps to estimate the friction 

coefficient. It can be estimated via lateral force or aligning moment of the tire.  
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This work considers lateral model of the vehicle with lateral acceleration, aligning moment, and yaw 

rate and side-slip angle given in (Ahn, Peng, & Tseng, 2013).     

10.3.1 Lateral dynamics 

As discussed previously in chapter 3, the friction coefficient and the side-slip angle is 

estimated through the Brush model. The lateral acceleration and the aligning moment of the 

tire are measured. The motion equation is discussed below. The symbols used here are 

discussed previously and carry their usual meaning. The detailed dynamics of the system is 

given in the section 3.5.2   

Steering angle 𝛿 is the excitation of the system. The road steer input is 0.25 Hz sinusoidal 

with a magnitude of 0.04 rad 

 

Figure 10.23 Steering input δ 

10.3.2 Simulation results and discussion  

The simulation study was carried out with the parameters given below. Two sets of 

simulation were performed. First, the state and parameters are estimated by the unscented 

Kalman Filter (UKF), second, adaptive scheme was applied for the UKF and the simulation s 

have been performed. Fig. 10.24 to 10.27 is the representation of estimation of the vehicle’s 

lateral velocity, yaw rate and the friction coefficient. Fig 10.28 to 10.30 represent the RMSEs 

of the corresponding estimated states using R-adaptive UKF. RMSE  plots for RAUKF was 

done performing 100 MC runs with 𝑅𝑡𝑟𝑢𝑡ℎ = [
50 0
0 100

] 𝑅𝑓𝑖𝑙𝑡𝑒𝑟(0) = 100 × 𝑅. 
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Table 10.2 Simulation Parameters 

 

 

 

 

 

 

 

 

Figure 10.24 Estimation of Lateral Velocity 
 

 

Figure 10.25 Estimation of  yaw rate 
 

 

Figure 10.26 Estimation of  side-slip angle 
 

 

Figure 10.27 Estimation of  friction coefficient 
 

 

 

 

Sampling time 0.01s 

Q diag ([10^-9  10^-9  10^-5]) 

R diag([50  100]) 

P diag([10 10 10]) 

𝛼 0.6 

𝛽 2 

Xtrue  [𝑉𝑦 𝑟 𝜇 ]′ = [0.01  .02  0.5]′ 

Xestimate [𝑉̂𝑦 𝑟̂ 𝜇̂ ]′ = [0.01  0  0.3]′ 
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Estimation of Friction coefficient and Side-slip angle by R- adaptive UKF:  

 

 

Figure 10.28 RMSE for  lateral velocity 𝑹𝒇𝒊𝒍𝒕𝒆𝒓(𝟎) = 𝟏𝟎𝟎 × 𝑹 

 

 

 

Figure 10.29 RMSE for  Yaw rate 𝑹𝒇𝒊𝒍𝒕𝒆𝒓(𝟎) = 𝟏𝟎𝟎 × 𝑹 

 



Ph.D. Thesis,  Nilanjan Patra  Appendices 

 

147 
 

 

Figure 10.30 RMSE for  the friction coefficient 𝑹𝒇𝒊𝒍𝒕𝒆𝒓(𝟎) = 𝟏𝟎𝟎 × 𝑹 

 

10.3.3 Conclusion 

Road-tire friction coefficient and side-lip are estimated by Unscented Kalman Filter. An 

adaptive scheme has been employed with the UKF and results are simulated with different 

test cases. The performance of the R-adaptive UKF based scheme is better than the non-

adaptive cases.     
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11 Addendum   

11.1 Introduction to the addendum 

Based on the reviewers’ comments and suggestions some results are provided in this chapter. Important 

observations and comments based on the result are also provided.   

11.1.1 Objective of the addendum 

Objective of this addendum is to provide some important results which were not included in the previous 

chapters. The results are obtained based on the reviewers’ comments and suggestions. Some key 

observations from the result obtained by the estimators for different sampling intervals and initial 

conditions are noted. 

11.1.2 Organization of the addendum 

Next Section provides the plots of the width of boundary layer simulated from the actual data for a 

tracking scenario. Section 11.3 presents evaluation of adaptive filters for a faster sampling rate. 

Behaviour of EKF for trajectory tracking scenario with faster sampling rate is given in 11.4. Evaluation 

of Sigma Point Smooth Variable Structure Filter for a tracking scenario is provided in the section 11.5. 

Performance of ASVSF for different initial conditions is evaluated in 11.6. In the section 11.7 effect of 

sampling rate on ASVSF is presented. The last section provides the algorithms of UKF, DDF and GHF.        

11.2 Boundary Layer and existence subspace for Smooth Variable Structure 

Filter (Response to comment 1) 

In chapter 5 and chapter 6 the concept of SVSF has been discussed.  The existence subspace with the 

boundary layer has been demonstrated in this section with the actual data for a specific case (UM model, 

Trajectory-I, with the same parameters as given in 3.3.4.1). For the following figure, the existing SVSF 

simulation program was run for a typical noise sequence. X-position of the filter has been set at 20000m 

initially.  

The figure for existence subspace are shown by (Gadsden, 2014) to illustrate the conceptual relationship 

between the true value of the state variable, typical estimate of that variable and a conceptual boundary 

where the estimate error is bounded in long term. As the basis for drawing the so-named existence 

boundary in the referred publication is not provided.  We can provide only an equivalent representation 

which shows the convergence of both estimation error and the boundary layer for one particular 

variable.  
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Figure 11.1 Boundary Layer and Error 

 
 

Figure 11.2 RMSE in x-position 

In Fig (11.1) for a single instance the convergence of the width of the boundary layer, absolute value of 

error. In Fig (11.2) and Fig (11.3) we show the nature of the RMS Error vs time for SVSF and ASVSF 

respectively. However, such plot can be misleading as such errors may vary in a multi-segment 

trajectory which has both UM and CT segments. For this reason, only first segment is provided. It 

should be pointed out that the results pertain to SVSF algorithm which is developed of previous worker.   

11.3 Results of adaptive filters with faster sampling rate for Trajectory-I 

(Response to comment 8) 

Results for UM and CT model using adaptive filters for Trajectory-I are provided here. Simulation 

parameters are set as given in Section 4.4.1 except the sampling interval. Results are given in table 11.1 

and 11.2. It is to be noted that in the section 4.4.2, the adaptive filters were already evaluated for 

Trajectory-II with 1s sampling rate. For completeness results for the Trajectory-I are given here.    

 

Figure 11.3 RMSE in X-position for ASVSF 
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Observations: Faster sampling implies faster measurement updates to the estimators. With 1s sampling 

interval both non-adaptive (KF and EKF) and adaptive state estimators (AKF, ADDF and AGHF) 

improve their performance as compared to the 5s sampling rate.  However, the result of adaptive filters 

can further be improved by choosing proper window size. 

11.4 Performance of EKF with CT model for faster sampling rate (Response to 

comment 9) 

Section 4.4.3 presents the analysis of the performance of adaptive filters for Trajectory-II. It was seen 

in Fig 4.8 that EKF have failed to track the aircraft trajectory after it takes the second U-turn. However, 

the Adaptive filters could effectively perform for the same scenario. In this section performance of the 

EKF is observed for a sampling rate faster than 1s.  

Table 11.1 Simulation of UM Model using 1s Sampling interval 

Trajectory I 

UM model 

KF 

UMQQ  01.00
 

COMPOSITE (X, Y) 

AKF 

UMQQ  01.00  

COMPOSITE (X, Y) 

Position error (m) 938.87 (649.425, 647.71) 38.23 (26.78, 26.88) 

Velocity error (m/sec) 
40.29 (27.70, 27.45) 5.15 (3.48, 3.61) 

 

 

Table 11.2 Simulation of CT Model using 1s Sampling interval 

Trajectory I 

CT model 

EKF 

UMQQ  01.00
 

ADDF 

CTQQ  01.00
 

AGHF 

CTQQ  01.00  

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Average 

(Composite) 

Peak  

(X,Y) 

Position error (m) 43.05 
(100.05 , 

146.92) 
42.28  

(235.99, 

108.23) 
37.48 

(30.85, 

29.50) 

Velocity error 

(m/sec) 
4.75 (30.42,40.66) 14.40 

(69.75, 

80.57) 
14.93 

(10.83, 

10.47) 
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Fig 11.4 shows the estimate of position for 0.1s sampling interval.  Table 11.3 provides results for two 

different sampling intervals (0.1s and 0.01s).  

 
Figure 11.4 Estimation of position by EKF with CT model using T=0.1s 

 

 

 

 

  

 

 

 

 

Observation: Though it shows a poor tracking performance for a maneuver with high turn rate with 

faster sampling rate it improves the performance.    

11.5 Evaluation of Sigma Point Smooth Variable Structure Filter (SPSVSF) in 

tracking scenario (Response to comment 13)   

In chapter 5, SPSVSF was evaluated by a test case as given in section 5.6. Here the same algorithm is 

evaluated for the tracking scenario as discussed for Trajectory-I. Sampling interval is taken as 1s. Fig. 

11.5 shows the RMSE plot for SPSVSF. For completeness, results obtained by SVSF with 1s sampling 

interval are also provided for comparative study (Table 11.4).    
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Table 11.3 Simulation of CT Model with 0.1s and 0.01s Sampling interval for EKF 

Trajectory II 

CT Model 

EKF  
sT 1.0  

EKF 
sT 01.0  

Average 

 Composite (X,Y) 

Peak  

Composite (X,Y) 

Average 

Composite (X,Y) 

Peak  

Composite (X,Y) 

Position error (m) 
676.69 

(470.39, 452.53) 

2492.8 

(2260.6,1507.6) 

105.84 

(67.44,77.37) 

345.44 

(296.25, 330.92) 

Velocity error 

(m/sec) 

85.73 

(55.53, 60.20) 

605.9 

(475.2, 442.3) 

7.50 

(3.51,3.51) 

52.66 

(36.07, 52.28) 
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Figure 11.5 RMSE plot of X-position for SPSVSF 

Observation: SPSVSF has shown marginally better performance than SVSF as observed from the data  

11.6 Evaluation of ASVSF with different values of initial process noise 

(Response to comment 15) 

Adaptive Smooth Variable Structure Filter (ASVSF) is presented in chapter 6. Performance was 

evaluated for only UMkf QQ  01.00| . In this section ASVSF is evaluated with different initial values of 

 

 

 

 

 

Table 11.4 Simulation of UM Model using 1s Sampling interval for SPSVSF 

Trajectory I 

UM Model 

SPSVSF SVSF 

Average 

 Composite (X,Y) 

Peak  

Composite (X,Y) 

Average  

Composite (X,Y) 

Peak  

Composite (X,Y) 

Position error 

(m) 

53.24  

(35.29, 36.16) 

160.25 

(146.63,84.98) 

64.08 

(41.86,43.27) 

210.51 

(182.68, 115.59) 

Velocity error 

(m/sec) 

14.27 

(9.58, 9.82) 

78.78 

(56.22, 63.59) 

17.78 

(11.97,12.28) 

89.38  

(62.64, 69.76) 

 

Table.11.5 Initial Process Noise Covariance of ASVSF 

Process Noise 

Covariance 
States 

ASVSF 

(Composite) 

UMkf QQ 0|
 

Position (m) 

Velocity (m/s) 

51.99 

12.92 

.
UMkf QQ  01.00|

 
Position (m) 

Velocity (m/s) 

51.94 

13.03 

UMkf QQ  100|
 

Position (m) 

Velocity (m/s) 

52.11 

12.91 

UMkf QQ  1000|
 

Position (m) 

Velocity (m/s) 

52.30 

13.24 

 

Figure 11.5 RMS E plot of X-position for SPSVSF 
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process noise covariance. Table 11.5 shows the performance (time average RMSE) of ASVSF for four 

such cases.  

Note: As expected the RMSE values does not change with the different Q levels. An Adaptive estimator 

is expected to estimate the state variables when the value of Q is unknown or is wrongly guessed. Hence, 

it is demonstrated that ASVSF performance remains insensitive to the initial guess value of Q over a 

wide range.   

11.7 Effect of sampling rates for ASVSF (Response to comment 16) 

Chapter 6 provides the evaluation of ASVSF for aircraft tracking scenario using 5s sampling interval. 

Here the effect of faster sampling rates has been studied. Same Trajectory (Trajectory-I) was taken as 

given in Chapter 6. Other simulation parameters are kept unchanged.  

Table 11.6 provides results for two different cases (T=1s and T=0.1s).   

Note: It is interesting to note that the performance of ASVSF does not improve with the faster sampling 

rate. Rather, velocity estimation got worsen for the case of 0.1s sampling interval.  This is because of 

the additional unmodelled noise coming from the generation of synthetic measurement for velocity 

terms.   

11.8 Algorithm of UKF, DDF and GHF (Response to comment 4) 

11.8.1 Unscented Kalman filter 

A brief algorithm is described below. For details see (Wan & Van Der Merwe, 2000) 

i. The set of sigma points   are created by applying a sigma point selection algorithm 

Table.11.6 Effect of sampling interval ASVSF 

Trajectory-I 

UMkf QQ 0|
 

 

ASVSF 
sT 1  

ASVSF 
sT 1.0  

Average 

 Composite (X,Y) 

Peak  

Composite (X,Y) 

Average 

Composite (X,Y) 

Peak  

Composite (X,Y) 

Position error (m) 
40.60 

(28.86, 28.70) 

70.78 

(50.05,50.05) 

42.17 

(29.80,29.82) 

80.78 

(55.56, 58.71) 

Velocity error 

(m/sec) 

16.06 

(11.31, 11.42) 

35.80 

(25.04, 25.59) 

287.31 

(203.03,202.92) 

402.32 

(278.53, 290.31) 
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ii. The transformed set is given by instantiating each point through the process model 
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iv. And the predicted covariance is computed as 
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v. Instantiate each of the prediction points through the observation model 
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vii. The innovation covariance is 
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viii. The cross-correlation matrix is determined by 
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ix. Finally, the update can be performed using the normal Kalman filter equations: 
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11.8.2 Divided Difference Filter 

Divided difference Filter (DDF) (NøRgaard, Niels K, & Ravn, 2000) is another option for nonlinear 

filtering.  
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The brief algorithm of second order Divided Difference Filter is given as follow (Notations are in the 

standard form)  

i. Initialization: 00 , Px


 

ii. Computation of Cholesky factor )1(ˆ)1(ˆˆ  kSkSP T
xxk  

iii. State propagation  
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iv. Propagation of predicted error covariance 
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v. Measurement update 
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vi. Propagation of innovation covariance 
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vii. Cross-covariance 
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11.8.3 Gauss Hermite Filter  

Gauss Hermite Filter (Ito & Xiong, 2000) (Arasaratnam, Haykin, & J. Elliott, 2007) also belongs to the 

sigma point filtering class. A brief algorithm for Gauss Hermite filter is given below:  

i. Computation of : 00 ,ˆ Px  

ii. Computation of Quadrature points and weights:  

A symmetric tri-diagonal, defined as 0, jiJ and 
2

1,

i
J ji 

for 11  Ni for ‘ N

’quadrature points. Quadrature points are chosen as ii xq 2 where ix are the Eigen 

values of J . 

Corresponding weights  iw of iq is computed as  
2

1iv where  
1iv is the first element 

of ith normalized eigenvector of J . 

iii. Gauss Hermite Quadrature rule:   
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In order to evaluate IN for nth order system, Nn number of quadrature points and weights 

are required.  
 

iv. State propagation  
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v. Time update stage: 

Cholesky Factor is computed as 

 

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Modify the quadrature points as  

1)1( 
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kx  is a priori estimate and 


kP  is a priori error covariance.   

vi. Measurement update stage: 

Cholesky Factor is computed as 
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Select sigma points as 
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A priori estimate of measurement becomes
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The following covariance can be computed as 
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