M.TECH. FOOD TECHNOLOGY & BIOCHEMICAL ENGINEERING 1st YEAR 2ND SEMESTER EXAMINATION 2019

Advanced Food Biotechnology

Full Marks: 100

Time: 3hrs

Part-I

GROUP-A

Answer any one question

 $1 \times 10 = 10$

- 1. Why organism produce polysaccharides from mono saccharides? What are the different types and sources of microbial polysaccharides?
- Mention different characteristics of probiotics. What are prebiotics? Mention their beneficial effects.

GROUP-B

Answer any two questions

 $2 \times 20 = 40$

- 3. Briefly describe the biosynthetic pathway of bacterial polysaccharides. Briefly describe the industrial production process of microbial polysaccharides.

 10+10 =20
- Briefly describe the biotechnological production process of FOS, GOS and XOS.
 Mention the simple analysis method of oligosaccharides. Briefly describe the purification methods of oligosaccharides.
- 5. What is bacteriocin? Mention its applications. Briefly describe the fermentative production of bacteriocin. Briefly describe the effect of cultivation conditions for bacteriocin fermentation.

 2+2+10+6 = 20

MASTER OF TECHNOLOGY (F.T.B.E) EXAMINATION, 2019

(1st Year -2nd Semester)

Advanced Food Biotechnology

Time: 3 hrs.

Full Marks: 100

Part - II (Full marks 50)

- Answer any five of the following: $(5 \times 1 = 5)$ A.
 - Give examples of microbial production of polysaccharide useful in confectioneries (i)
 - Why malted barley is used in Breweries? (ii)
 - Name two genera of Lactic Acid Bacteria (LAB). (ii)
 - What is the DE value for starch? (iv)
 - Define probiotic. (v)
 - Write the iso-electric point of casein. (vi)
 - Give one example of enzyme used for improving the colour of wheat flour. (vii)
- Answer any three of the following: $(3 \times 15 = 45)$ B.
 - With the help of flow chart show the manufacturing steps of beer production. 1. (a)
 - How can you make alcoholic drinks 'low calorie'? (b)
 - Show with example how biotechnology can help developing improved fermenting strain. (c)
 - Show how you can produce high DE syrup from corn starch (5+2+3+5)(d)
 - Mention the beneficial effects claimed for lactic acid bacteria. 2. (a)
 - Name the factors which actually contribute to the inhibitory activity of LAB in a fermented food (b) product.
 - Write the characteristic features of LAB (c)
 - Mention characteristic features of two genera of LAB and also give example of each one. (d)
 - Name one enzyme and its objective of use in fruit juice processing. (3+2+2+3+5)(e)
 - Write the difference between acid curd and enzymatic curd 3. (a)
 - With the help of a flow chart show the steps Cheese production. (b)
 - Name two organisms and their functions in cheese production. (c)
 - Name two enzymes, their sources and types of cheese in which they are used. (d) (2+3+3+4+3)
 - What do you understand by 'rennet substitute'? (e) Give example of application of biotechnology to utilize dairy industry bi-products
 - 4. (a) How biotechnology can be applicable in bakery industry? (b)
 - Write the differences between bacteriocin and therapeutic antibiotic. (c)
 - Compare two bacteriocins with reference to the following points: (d)

Producing organism, mode of action, stability and antimicrobial spectrum (4+3+2+6)

- Define prebiotics . Give one example of it. 5. (a)
 - What are the beneficial effects claimed for prebiotics? (b)
 - Mention the characteristics of probiotics. (c)
 - Write the beneficial effects of probiotic (d)
 - Write the basic principles to be followed during screening of probiotic organisms. (e)
 - Give two examples of probiotic strains. (f)
 - (2+2+2+2+2+2+3) Dairy product seems to be desired probiotic delivery vehicle - explain (g)