M.E Electronics and Tele-Communication Engineering, First Year Second Semester Examination, 2019

EMBEDDED SYSTEMS

Time:3 Hours.	Full Marks: 100	
Answer any FOUR questions.		
 Design an-ASIC for the following state-machine. An output pulse z is to be coincided consecutive x₂ pulses immediately following an x₁ pulse. 	dent with the second of 2	
 Develop a state diagram, flow chart/algorithm, data-flow path and control logic of a to obtain the sum of first n terms of the series: 1 + 2x + 3x² + 4x³ ++ (a proposed IC inputs the first two elements of the series. 		
3. (a) Emphasize the importance of a Hierarchical state machine in the context of an ele	evator design. [10]	
(b) Construct a lattice automaton with 4 states: 0, 1, 2, 3 and two input symbols automaton can recognize the string: bbaa in at least 3 ways. Assign lattice belief transitions with input symbols a and b arbitrarily. Construct 2 arbitrary Hasse dia lattice beliefs to recognize the given string: bbaa using the Hasse diagrams.	efs: x, y and z for state	
4. (a) Design a PLA to store the combinational logic - ABC, ABC, ABC and ABC.	[10]	
(b)Construct a PAL to develop the following switching functions:		
$y_1 = \overline{A}B\overline{C} + AB\overline{C},$ $y_2 = \overline{A}C + A\overline{B}C.$		
$y_2 = \overline{A}C + A\overline{B}C.$	[10]	
(c) Modify the above PAL into a PLD for the following switching function:		
$y_1 = \overline{A}B\overline{C}y_1 + AB\overline{C}$.	[5	
5. (a) Draw the schematic diagram of the basic FPGA module developed by Fairchild C	Corporation. [5]	
(b) Realize a Half Adder on this FPGA module.	[10]	
(c) How optimal mapping of a logic function is done on an FPGA?	[10]	

6. (a) Explain with a schematic dia	gram, the interface of a Dot-Matrix Printer with a micro-computer.	[10
(b) Develop an assembly level printer.	program with appropriate remarks to transfer a block of data-bytes	to th
(c) Justify the importance of the p	orinter buffer and the character generation ROM in a DOT Matrix Prin	nter. [5
	a 2 byte set-point to a process control program under online condition	
RST 7.5 and RST 5.5 interrupt.		[5]
(b) Also design an assembly leve	el program to undertake the above scheme.	[10
(c) Explain the operation of the	e instruction: STR r_0 , $[r_1]$ with the help of a neat diagram of the	e AR
	uction-flow path by arrowheads along the appropriate buses.	[10
8. (a) Explain the importance of the	e Hardware-Software partitioning problem in Embedded Systems.	[5
(b) Write down the equations inv	rolved in the Ant Colony optimization, Also explain the equations.	[10
(c) State the main steps of the Ar	nt colony optimization algorithm.	[8
(d) How will you use the above a	algorithm to solve the Hardware-Software partitioning problem?	[
9. Write short notes on any two of the	he following:	
(a) Task merging and splitting of	on a Task Graph.	,
(b) Principles used in Mind-dri	iven position control of a 2-D robot arm using ERD/ERS and Erri	P bra
signals.		
(c) Fuzzy Automation.	13	2 ½ x