ME ELECTRICAL Engineering, First Year Second Semester Examination, 2019

EMBEDDED SYSTEMS

Time:3 Hours.	Full Marks: 100
Answer any FOUR questions.	
1. Design-an-ASIC for the following state-machine. An output-pulse z is to be consecutive x_2 pulses immediately following an x_1 pulse.	oincident with the second of
2. Develop a state diagram, flow chart/algorithm, data-flow path and control log to obtain the sum of first n terms of the series: $1 + 2x + 3x^2 + 4x^3 + $ proposed IC inputs the first two elements of the series.	ic of an Integrated Circuit (IC+ (n-1)x ⁿ . Presume that th
3. (a) Emphasize the importance of a Hierarchical state machine in the context of	an elevator design. [10
(b) Construct a lattice automaton with 4 states: 0, 1, 2, 3 and two input sy automaton can recognize the string: bbaa in at least 3 ways. Assign lattice transitions with input symbols a and b arbitrarily. Construct 2 arbitrary Has lattice beliefs to recognize the given string: bbaa using the Hasse diagrams.	e beliefs: x, y and z for stat
4. (a) Design a PLA to store the combinational logic - ABC, ABC, ABC and ABC	5. [10]
(b)Construct a PAL to develop the following switching functions:	
$y_1 = \overline{A}B\overline{C} + AB\overline{C},$ $y_2 = \overline{A}C + A\overline{B}C.$	
$y_2 = \overline{A}C + A\overline{B}C.$	[10
(c) Modify the above PAL into a PLD for the following switching function:	
$y_{\uparrow} = \overline{A}B\overline{C}y_{\uparrow} + AB\overline{C}.$	[5
5. (a) Draw the schematic diagram of the basic FPGA module developed by Fairc	hild Corporation. [5]
(b) Realize a Half Adder on this FPGA module.	[10
(c) How optimal mapping of a logic function is done on an FPGA?	[10]

6. (a) Explain with a schematic diagram, the interface of a Dot-Matri	x Printer with a micro-computer. [10
(b) Develop an assembly level program with appropriate remark printer.	s to transfer a block of data-bytes to the
(c) Justify the importance of the printer buffer and the character gen	eration ROM in a DOT Matrix Printer. [5
 (a) Develop a scheme to transfer a 2 byte set-point to a process cor RST 7.5 and RST 5.5 interrupt. 	
(b) Also design an assembly level program to undertake the above	[5] scheme.
(c) Explain the operation of the instruction: STR r_0 , $[r_1]$ with	the help of a neat diagram of the ARM
architecture. Show the data instruction-flow path by arrowheads al	
8. (a) Explain the importance of the Hardware-Software partitioning	
(b) Write down the equations involved in the Ant Colony optimizat(c) State the main steps of the Ant colony optimization algorithm.	tion. Also explain the equations. [10]
(d) How will you use the above algorithm to solve the Hardware-So	
O. Write short notes on any two of the following:	
(a) Task merging and splitting on a Task Graph.	
(b) Principles used in Mind-driven position control of a 2-D ro signals.	bot arm using ERD/ERS and ErrP brain
(c) Fuzzy Automation.	12 ½ ×2