MASTER OF CIVIL ENGINEERING EXAMINATION, 2019 First year , 2nd Semester

SUBJECT: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING

Full Marks 30/100

Time: Two hours/Three hours/Four hours/ Six hours

No. of uestions	Part I (Marks:60)	Mari
		T
	Answer All the questions	
	Assume relevant Data wherever is necessary	
Q1.		
a)	A city requires to supply for a population of 10, 75,000 with 180 lpcd potable water for which rapid gravity filter is to be installed. The backwash water is 2% of the total requirement. The operation time is 20 hrs a day out of which 30 minutes are kept for service time. Determine the	
4:	following components of the filtration unit. a) No.of filter bed including 25% extra as stand bye.	
	b) Size and No. of Laterals.	
	c) Nos and spacing of orifices (use 15mm dia) d) Spacing of Laterals.	12
	e) Size of Manifold.	
	Size of Back washwater troughs. Assume other relevant data.	
*		
b)	Design a suitable septic tank for 50 users. Assume simultaneous equivalent fixture units to operative as 30. Draw also a suitable sketch of the septic tank.	be 8
Q 2.		
, a)	Discuss the hydraulic configuration with reference to contact period of the following units.	
- E	a) Batch fed reactor.	4+4=
. ы	b) Continuous reactor	
	Derive an expression to calculate the reactor volume to obtain a desired concentration of as pollutant undergoes 'n' nos of CMBR.	4
.c)	Determine the reaction order and the reaction rate constant using the following data obtained from a laboratory experiment.	
	Time in hrs:- 0 0.25 0.50 0.60 0.70 0.75 1.0 1.5 2 3 4	8
	Concentration in mg/L :-40 38 26 20 18 16 10 8 6 5 2.0	

Ref No. -Ex/PG/CE/T/128E/2019

MASTER OF CIVIL ENGINEERING EXAMINATION, 2019 First year, 2nd Semester

SUBJECT: PROCESS DESIGN IN ENVIRONMENTAL ENGINEERING

Time: Three hours!

Full Marks 30/100

No. of	Use a separate Answer-Script for each part	
No. of Questions	Part I (Marks:60)	Marks
Q3 .		
a)	Following information are available for designing of a mixing and flocculation unit. Flow rate = 10MLD Rapid mixing time = 60sec Viscosity of water = 1.08x10 ⁻³ N-sec/m ² The depth of rapid mixing unit = 3.6 m The depth of flocculation basin = 4.2 m Flocculation time = 20 min	
	Determine 1) the power input in the above two units in KW 2) dimension of mixing and flocculation unit Assume G for fresh mixing unit 700 sec-1 G for flocculation unit 35 sec	13
b)	Explain with examples, the principle of preparation of filter bed from river run off available sand	7
3		

M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2019 (2nd Semester) SUBJECT: Process Design in Environmental Engineering

Full Marks 100

Time: Three hours

			Use separate Answer-Scripts for each part	
No. of Questions			Part I (40 marks for this part)	Mark
		Answe their u	er any two questions. Answer should be brief and to the point. All the notations have usual meaning. Assume relevant data if not provided	
	Q1. a)	Explair	what do you mean by plug flow, complete mix flow and dispersal flow condition.	
	b)		dispersion number with its expression. What is its unit?	2×3
		For a w	vaste stabilization ponds following data are applicable:	2+1+:
	c)	Final B	tion= 4000; Waste water flow = 165 litres/capitad $^{-1}$; BOD ₅ contribution = 50g/persond $^{-1}$; BOD ₅ in the effluent < 50 mg/l; SO ₄ 2 =115 mg/L, latitude of the place = 23°N; Average on in January = 125 cal/cm 2 -d; conversion efficiency=6%; Kp reactor temperature =	6)
		Detern	nine:	
		a.	Oxygen production	2.2
		b.	Detention time for mixed flow condition	2+2
		c.	Pond size: volume, area and depth	T4+2
		d.	Sulphide concentration in pond at 25°C	
	Q2. a)	What o	lo you mean by rotating biological contractor (RBC)? Draw a neat labeled process flow or a RBC.	2+3
	b)	With a	neat sketch explain staging of a RBC.	5
	c)	Determ KW for	nine the oxygenation capacity in kg per day of a cage rotor and power requirement in an aerated lagoon with the following information:	10
		1.	Waste water flow = 5000 m³ per day	
		II.	Influent soluble BOD ₅ contribution = 200 g/m ³	
		III.	Desired effluent soluble BOD ₅ = 30 g/m ³	
		IV.	Kinetic coefficient at reactor temperature: Y=0.6 g/g; k_s =80g/m³; k= 5g/gd; k_d =0.07g/gd	
		V.	Lagoon depth =2.5m	
		VI.	Design hydraulic retention time = 5 days	
	18	VII.	Power requirement for mixing = 8KW/1000m ³	
		VIII.	Aerator O ₂ transfer rate 1.8 kgO ₂ /KWh	

M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2019 (2nd Semester) SUBJECT: Process Design in Environmental Engineering

Full Marks 100

Time: Three hours

No. of	Use separate Answer-Scripts for each part			
Questions	Part I (40 marks for this part)	Marks		
	IX. Summer ambient temperature = 30°C			
	X. Wastewater temperature during summer = 20°C			
6	XI. For aerated lagoon, f=0.5			
	XII. Elevation of the area = 1000m			
	XIII. $α = 0.85; β = 1$			
	XIV. $C_s = 9.17 \text{mg/L at } 20^{\circ}\text{C}$			
	XV. C _w at 25°C = 8.38mg/L			
	XVI. Altitude correction factor for 1000m elevation = 0.95			
	XVII. O2 concentration to be maintained in liquid =1.5 mg/L			
(3a)	With a complete flow sheet of oxidation ditch explain the advantages of oxidation ditch for treating wastewater.			
(d. 4)	Write a short note on flow through aerobic lagoons	64		
(P)	Determine the liquid volume and total oxygen requirement for an oxidation ditch for the following conditions:	٠		
9	i)Population to be served=60000 @ 150lpercapitaperday waste water, BOD5 at 20°C 40gpercapita perday and TKN 8g percapitaperday	10		
	ii)Desired effluent BOD5 at 20°C=20mg/I			
	iii) Suspended solid in the wastewater = 20 mg/l and 65% of this solid is biodegradable			
	iv)Organic loading=0.25kgBOD5/day/kgMLVSS			
	v)MLSS concentration=3500mg/l			
	vi)Volatile fraction of MLSS=0.6			
	vii)Sludge yield coefficient=0.6			
	viii) Sludge decay coefficient=0.12d ⁻¹			

M.E. CIVIL ENGINEERING 1ST YEAR EXAMINATION, 2019 (2nd Semester)

SUBJECT: Process Design in Environmental Engineering

Time: Three hours

Full Marks 100

Use separate Answer-Scripts for each part

No. of Questions

Part I (40 marks for this part)

Marks

