M.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2019

BIOFNERGETICS AND BIOPROCESS ENGINEERING

Time: Three hours

Answer all questions

Full Marks: 100

- 1. (a)What do you mean by saturation constant in Monod equation for cellular system?
 - (b) What is the Lineweaver- Burk (double-reciprocal) plot?
 - (c)What do you mean by microencapsulation?
 - (d) What is an allostery binding?
 - (e)Write the Monod equation with the meanings of all symbols?
 - (f) What is the non-competitive inhibitor?
 - (g)What do you mean by sterilization of cell?
 - (h) What is a chemostat?
 - (i) What do you mean by electrophoresis of cell?
 - (j) What is the antibiotic method of cell disruption?

10x2=20

- (a) Derive the rate equation for a homogeneous enzyme-catalyzed reaction using Briggs-Halden theory. What is its basic difference with Michaelian concept?
 - (b) The following data have been obtained from an enzyme catalyzed reaction using enzyme concentration ([E_0 =0.00875 g/L).

Substrate concentration, [s](g/	L) 20	10	6.7	5.0	40
Rate of reaction, y[g/L.min)]	0.67				

Estimate using Hanes-Woolf plot

- 1. Forward reaction velocity (vm)
- 2. Michaelis-Menten constant (Km)
- 3. Rate constant (k₂)

10+10=20

3. (a) Derive the optimum cell concentration using MFR,

$$C_{C,opt} = Y_{C/A} \left[C_{A0} - \frac{c_{A0}}{1+N} \right]$$
, where $N = \sqrt{1 + \frac{c_{A0}}{K_c}}$, and $Y_{C/A} = \text{Yield of cell concentration}$.

(b) Briefly write the design and operation of a typical aseptic, aerobic fermentation process.

10+10=20

- 4. (a) Write the different methods of enzyme immobilization?
 - (b) Briefly explain the different methods for quantifying cell concentration.
 - (c) E-coli lives and grows on manitol (Carbon-source) with the following kinetics.

$$r_{\rm c} = \, \tfrac{1.2\,C_AC_C}{2+C_A} {\rm g~cell.~m^{-3}.~hr^{-1}~~with}~~Y_{C_C/C_A} {\rm = \, 0.1\,g~cell~/\,g~manitol.}$$

It is required to produce 1 kg cell/day in a batch fermenting. Start with 1 kg/m³ and 0.1 g cell/m³ and continue fermentation until substrate becomes 10 g/m³. The time of filling, empty and cleaning may be taken 0.23 hr. Find the volume of the fermential needed.

5+5+10=20

5. (a) Describe briefly with the help of a neat sketch the various section of cell growth curve.

(b)Part of the experimental data relating to a single batch run on bacterial growth in a lactose solution presented by Monod while proposing the equation named after him is as follows:

Time(hr)	0	0.54	0.90	1.23	1.58	1.95	2.33	2.70
C _A (mg.L ⁻¹)	147	125	104	70	38	18	3	1
C _c (mg.L ⁻¹)	15.5	23	30	38.8	48.5	68.3	61.3	62.5

Fit the Monod equation to this data.

10+10=20