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Inhibition," represents the culmination of my rescarch and studies towards the Master of 

Pharmacy degree. The ficld of drug discovery and development is continuously evolving, 
driven by the need to understand complex biological targets and develop effective therapeutic 
agents. HDACII has emerged as a significant target due to its role in the regulation of gene 
expression, cell cycle progression, and oncogenesis. Inhibition of HDACIT holds promise for 
therapeutic applications in cancer and other diseases. 

Quantitative Structure-Activity Relationship (QSAR) modeling is a pivotal tool in 
computational chemistry, allowing researchers to predict the biological activity of chemical 
compounds based on their mo lecular structures. The binary-QSAR model, a subset of QSAR, 
focuses on classifying compounds as active or inactive, thus aiding in the identification of 

potential drug candidates. 

The objective of this research is to develop and evaluate a classification-based binary-QSAR 

model to explore and identify the essential molecular fingerprints responsible for HDAC11 

inhibition. This work involves the integration of molecular modeling, and statistical analysis 
to derive a robust predictive model. By identifying key molecular features, this study aims to 
contribute valuable insights into the design of potent HDAC11l inhibitors. 

The journey of this research has been both challenging and rewarding. It has deepened my 

understanding of computational drug discovery and provided me with the skills to handle 
complex data and derive meaningful conclusions. I am grateful for the guidance and support 
of my supervisors and seniors, the collaboration with my peers, and the encouragement from 

my family and friends. This thesis is a testament to the collective effort and dedication towards 
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(Rinki Prasad Bhagat) 



9 
 

LIST OF FIGURES 

Figure 1: Mode of action of HAT and HDAC protein. 

Figure 2: The alpha model of HDAC11 provides structural insights into the catalytic region of 

the enzyme. 

Figure 3: HDAC11 regulation and its involvement in epigenetics, as well as therapeutic 

treatments that target HDAC11. SOX-2 (SRY-box transcription factor 2), PU.1 (Polyomavirus 

enhancer-binding protein 2 alpha 1), GLI1 (glioma-associated oncogene family zinc finger-1), 

KLF4 (Krüppel-like factor 4), MYOD (myoblast determination protein 1), UCP-25 

(uncoupling protein-25), HEY-1 (Hes Related Family BHLH transcription factor with YRPW 

motif 1), and DNA (deoxyribonucleic acid). 

Figure 4: HDAC11's function in metabolic diseases. Histone deacetylase 11, PAI-1 

(plasminogen agonist inhibitor type 1), KLF15 (Krugppel-like factor 15), IL-10 (interleukin-

10), BAT (brown adipose tissue), LPL (lipoprotein lipase), UCP1 (uncoupling protein 1), and 

AMPK (AMP-activated protein kinase) are some of the proteins involved in this pathway. 

Figure 5: HDAC11's function in neurological conditions. FEZ1, fasciculation and elongation 

protein zeta 1; DISC1, disturbed in schizophrenia 1; LPS, lipopolysaccharides; RNS, reactive 

nitrogen species; CCL2, chemokine (C-C motif) ligand 2. 

Figure 6: HDAC11's involvement in many cancer types. LKB1, liver kinase B1; AMPK, 

AMP-activated protein kinase; NSCLC, non-small cell lung cancer; ARH1, ADP-

ribosylhydrolase 1; EGR1, Early Growth Response Protein 1. 

Figure 7: Overall workflow of the study. 

Figure 8: Structural alignment of alphafold HDAC11 model (Siam) with PDB ID:1c3s (Pink) 

bound with SAHA (Red). The structure showing same binding motif in both of their structure.  

Figure 9: Distribution of HDAC11 inhibitory activity, A. nAR, B. nRB, C. nR, D. AlogP, E.  

MW, F. nHBD, G. nHBA, H. M_FPSA. 

Figure 10:  The ROC plots obtained in the RFC model. 

Figure 11: A summary of 13 significant descriptors used in ML models. Positive contributions 

are denoted by upward arrows in blue, while negative contributions are represented by 

downward arrows in red. 

Figure 12: A. SHAP Summary plot providing a detailed overview of the directional effects of 

different features on the predictions for the Random Forest Classification (RFC) model. B. t-

SNE Plot of SHAP embeddings for the training data set. C. t-SNE Plot of SHAP embeddings 

for the test data set. 

Figure 13: ROC plots obtained from the Bayesian model. 



10 
 

Figure 14: Top 20 favorable fingerprints identified from the Bayesian classification model. 

Figure 15: Molecular structures of some active HDAC11 inhibitors with favourable Bayesian 

fingerprint. 

Figure 16: Top 20 unfavourable fingerprints identified from the Bayesian classification study. 

Figure 17: Structure of some inactive HDAC11 inhibitors with bad Bayesian fingerprints. 

Figure 18: Classification of HDAC11 inhibitors through the decision tree into active and 

inactive classes by using the RP model. 

Figure 19: FCFP_6 fingerprints obtained from the RP Study. 

Figure 20: Compounds containing different fingerprints through Bayesian study, RP study, 

SARpy, and machine-learning-based QSAR techniques. 

Figure 21: Analysis of zinc-binding interactions in the compounds A004, A007, A013, and 

A053 using molecular docking studies. All the compounds are coordinated with zinc metal via 

the carboxamide group (CONHOH). The dotted lines indicate different interactions: black lines 

(metal coordination with zinc metal), green lines (H-bonding), white lines (π-alkyl), blue lines 

(π-), orange lines (π-cation), and purple lines (halogen interaction). 

  



11 
 

LIST OF TABLES 

 

Table 1: Different HDAC11 inhibitors along with their chemical class, inhibitory activity in 

different HDAC isoforms and clinical status. 

Table 2. Comparison of the performances of different ML models. 

Table 3. Validation metrics of the developed Bayesian model 

Table 4. Statistical results of the RP model for the training set. 

Table 5. Statistical results of the RP model for the test set. 

Table 6. Outcomes from SARpy analysis of the training and test set compounds. 

Table 7.  Active structural ruleset. 

Table 8. Docking results, H-Bond interacting residues with good fingerprints of selected 

compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction   



13 
 

Chapter 1: Introduction 
 

A class of enzymes known as histone deacetylases (HDACs) regulates the acetylation status of 

both histones and non-histone proteins, which is important in regulating gene expression. 

Acetylation and deacetylation of histones are pivotal processes in chromatin remodeling, 

impacting the accessibility of transcriptional machinery to DNA and thereby influencing gene 

transcription (Kouzarides et al., 2007). HDACs catalyze the removal of acetyl groups from 

lysine residues on histone tails, leading to a more condensed chromatin structure and 

transcriptional repression. Conversely, histone acetyltransferases (HATs) add acetyl groups, 

resulting in an open chromatin conformation and active transcription (Shogren-Knaak et al., 

2006; Shanmugam et al., 2022).  

The HDAC family is divided into four classes based on sequence homology and domain 

organization: Class I, Class II (subdivided into IIa and IIb), Class III (sirtuins), and Class IV. 

Class I HDACs (HDAC1, 2, 3, and 8) are primarily located in the nucleus and are involved in 

regulating cell cycle progression and differentiation. Class II HDACs (HDAC4, 5, 6, 7, 9, and 

10) can shuttle between the nucleus and cytoplasm, and they play roles in tissue-specific 

functions and developmental processes. Class III HDACs (SIRT1-7), or sirtuins, are NAD+-

dependent deacetylases involved in metabolic regulation, aging, and stress responses. Class IV 

is represented by a single member, HDAC11, which exhibits properties of both Class I and II 

enzymes and is the least characterized among the HDACs (Ruijter et al., 2003; Witt et al., 

2009). 

HDACs are implicated in a wide array of physiological processes, including cell proliferation, 

differentiation, apoptosis, and DNA repair (Hauer et al., 2017). Dysregulation of HDAC 

activity is associated with various diseases, most notably cancer, where aberrant deacetylation 

can lead to the silencing of tumor suppressor genes and the activation of oncogenes. This has 

made HDACs attractive targets for therapeutic intervention (Pan et al., 2012; Glozak et al., 

2009). Several HDAC inhibitors (HDACi), such as vorinostat, romidepsin, and panobinostat, 

have been developed and approved for the treatment of certain cancers, underscoring the 

therapeutic potential of targeting HDACs (West et al., 2014; Moinul et al., 2023). 

 

Recent research has extended beyond cancer, exploring the role of HDACs in 

neurodegenerative diseases, cardiovascular disorders, and inflammatory conditions. For 

instance, HDAC inhibitors have shown promise in the treatment of Huntington's disease and 
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amyotrophic lateral sclerosis by promoting neuronal survival and reducing neuroinflammation. 

In cardiovascular diseases, HDAC inhibition can modulate cardiac hypertrophy and fibrosis, 

offering potential therapeutic benefits (Amin et al., 2023; Yoon et al., 2016; Sardar et al., 2024; 

Bhattacharya et al., 2023; Khatun et al., 2024). 

Despite the progress in understanding and targeting HDACs, challenges remain, particularly in 

achieving isoform selectivity to minimize side effects and enhance therapeutic efficacy. The 

development of isoform-selective HDAC inhibitors is a burgeoning area of research, focusing 

on elucidating the distinct biological functions and regulatory mechanisms of individual 

HDAC isoforms (Sardar et al., 2024; Bhattacharya et al., 2023; Khatun et al., 2024; Khatun et 

al.,2023; Balasubramanian et al., 2009).  

In this study, we have focused on HDAC11 which is the smallest and latest discovered only 

known HDAC enzyme that belongs to class IV (Gao et al., 2002). Its encoding gene, which is 

an open reading frame with a 347-residue protein, is found on the human chromosome 3q25.1 

(Cao et al., 2019). It plays a crucial role in regulating gene expression through chromatin 

remodeling. It has been also demonstrated that HDAC11 is the first isozyme in the HDAC 

family to favour physiologically relevant acyl groups over acetyl groups. It effectively degrades 

long-chain acyl modifications on side chains of lysine. Strong lysine de-fatty acylase HDAC11 

is found to function more than 10,000 times better than its deacetylase counterpart. HDAC11 

is the most efficient fatty-acid deacetylase, with catalytic efficiencies towards dodecanoylated 

and myristoylated peptides of 77,700 and 149,000 M− 1s− 1, respectively (Kutil et al., 2018; 

Sahakian et al., 2017; Villagra et al., 2009). HDAC11 has garnered significant interest in recent 

years due to its potential as a therapeutic target in various diseases, including cancer, 

neurodegenerative disorders, immunological diseases, metabolic diseases, and so on. Inhibiting 

HDAC11 can modulate the acetylation status of histones and non-histone proteins, thereby 

influencing key cellular processes such as proliferation, differentiation, and apoptosis (Woods 

et al., 2017; Yanginlar et al., 2018). 

The development of HDAC11 inhibitors has become a focal point in drug discovery. However, 

identifying potent and selective inhibitors remains challenging due to the conserved nature of 

the active sites across the HDAC family and the absence of experimental structure. Therefore, 

there is a compelling need to develop computational models that can accurately predict 

HDAC11 inhibition and guide the design of selective inhibitors (Khatun et al., 2024). 

Quantitative Structure-Activity Relationship (QSAR) models have been instrumental in the 

drug discovery process by establishing a relationship between the chemical structure of 
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compounds and their biological activity (Tropsha et al., 2010). Among the various types of 

QSAR models, classification-based binary-QSAR models are particularly useful when the 

primary interest is in distinguishing between active and inactive compounds (Ahamed et al., 

2018). These models employ Bayesian classification, Recursive partitioning, SARpy analysis, 

and different machine learning (ML) algorithms to identify molecular fingerprints, and specific 

structural features that are crucial for biological activity. 

We aim to develop and evaluate a classification-based binary-QSAR model to identify key 

molecular fingerprints associated with HDAC11 inhibition. This study will leverage a 

comprehensive dataset of known/unknown HDAC11 inhibitors and non-inhibitors, applying 

advanced feature selection techniques to extract relevant molecular fragments, decision trees, 

and descriptors. By employing classification-based QSAR methods, we will construct a robust 

predictive model that can accurately classify compounds based on their potential to inhibit 

HDAC11 (Amin et al., 2022). 

The primary objectives of this research are to compile a dataset of HDAC11 inhibitors and 

non-inhibitors from databases and literature sources, ensuring data quality and relevance; 

removing duplicates from the dataset; and balancing the dataset in a justified manner. 

Subsequently, in the case of Bayesian classification and Recursive partitioning, constructing a 

predictive model and evaluating the performance of the developed models using metrics such 

as accuracy, precision, recall, and receiver operating characteristic curve (ROC); will generate 

relevant good/bad molecular fragments, and decision trees which will be crucial for identifying 

inhibitors from non-inhibitors (Sardar et al., 2024; Bhattacharya et al., 2023). 

Moreover in the case of ML algorithms, utilizing genetic algorithms and other feature selection 

methods to identify the most relevant molecular descriptors that contribute to HDAC11 

inhibition; to implement various classification algorithms, including Random Forest Classifier 

(RFC), Support Vector Classifier (SVC), Logistic Regression (LR) and Linear Discriminant 

Analysis (LDA), to build predictive models; to assess the performance of the developed models 

using metrics such as accuracy, precision, recall, and area under the receiver operating 

characteristic curve (AUC-ROC); and to analyze the models to extract and interpret the key 

molecular fingerprints that are critical for HDAC11 inhibition (Banerjee et al., 2023). 

The successful development of a reliable binary-QSAR model will provide valuable insights 

into the structural requirements for HDAC11 inhibition, facilitating the design of novel 

inhibitors with improved potency and selectivity. This approach not only enhances our 

understanding of HDAC11 biology but also accelerates the drug discovery process for 

therapeutic interventions targeting HDAC11. 
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1.1 Mechanism of action of HDAC11 

The mode of action of HDAC11 is similar to that of other HDAC isoforms. Interestingly, 

research on chromatin remodeling by histone deacetylation has gained traction during the past 

few decades. Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are two 

enzymes that balance the acetylation (relaxed chromatin) and deacetylation (condensed 

chromatin) of histones (Figure 1). HDACs remove the acetyl group from the ε-NH2 group of 

lysine residues in proteins, while HATs primarily catalyze the transfer of an acetyl group from 

acetyl-CoA to the lysine residue’s ε-NH2 group (Liu et al., 2009). One important epigenetic 

alteration that alters the chromatin architecture and controls gene expression by opening or 

shutting the chromatin structure is histone acetylation. The nucleosomes found in chromatin 

are made up of an octamer with four histone cores (H2A, H2B, H3, and H4) encircled by 146 

base pairs of DNA. The ε amino groups present in the N-terminal of lysine residues are the site 

of acetylation, which aids in transcription factor binding. It weakens the bond that holds DNA 

and core nucleosome proteins together. Consequently, this increases accessibility to the 

transcription factor binding sites (Ruijter et al., 2003). But according to Jenke et al., these 

HDACs also deacetylate several non-histone proteins such p53, c-Myc, NF-κB, and E2F (Jenke 

et al., 2021). 

 

 

 
Figure 1: Mode of action of HAT and HDAC protein 

 

1.2 Location of HDAC11 

HDAC11 is localized in both the cytoplasm and the nucleus. Unlike some other HDACs, it 

does not exhibit a preference for either site, and it dynamically shuttles between these 
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compartments, similar to other class II HDACs (Tiwari et al., 2014; Schlüter et al., 2019). In 

freshly isolated, unstimulated T regulatory cells, HDAC11 is present in both the nucleus and 

cytoplasm. However, upon activation of these cells, HDAC11 predominantly localizes in the 

nucleus (Cheng et al., 2014). In retinal ganglion cells (RGC), HDAC11 also shows both nuclear 

and cytoplasmic distribution, but it is expelled from the nucleus in response to excitotoxicity 

induced by N-Methyl-D-aspartate (NMDA) receptors (Joshi et al., 2013). In adult neurons, 

RGCs, macrophages, and human T regulatory cells, HDAC11 is evenly distributed across the 

cytoplasm and nucleus (Tiwari et al., 2014; Schlüter et al., 2019; Cheng et al., 2014; Joshi et 

al., 2013; Takase et al., 2013). 

Additionally, the interactions of HDAC11 provide substantial evidence that it may play a role 

in regulating the cohesin complex and other cell cycle-related processes. Interestingly, 

HDAC11 is found in the perinuclear region of T regulatory cells, which aligns with its 

interaction with the survival of motor neuron (SMN) complexes, responsible for the assembly 

of the spliceosome. This positioning suggests a potential role in coordinating activities crucial 

for cell function and survival (Joshi et al., 2013). HDAC11 has been identified in specific 

subcellular locations in various studies. These locations include the cytoplasm of quiescent 

CD4+ cells, maturing oligodendrocytes, retinal pigmented cells, and neurons in the anterior 

cingulate cortex (Gao et al., 2002; Host et al., 2011; Hurtado et al., 2021; Keedy et al., 2009; 

Liu et al., 2008). Additionally, HDAC11 is notably abundant in brain synapses and 

mitochondria-rich skeletal muscle cells. The localization of HDAC11 varies across different 

systems. For example, HDAC11 is mostly located in the cytoplasm of mature cells and the 

progenitors of embryonic astrocytes, but it is also equally present in the cytoplasm and nucleus 

of immature oligodendrocytes (Tiwari et al., 2014).  

1.3 Structural insights and the Catalytic domain of HDAC11 

The HDAC11 protein consists of conserved residues within the catalytic key regions used by 

mammalian class I and II HDACs (Gao et al., 2002). While the deacetylase function and 

structure of HDAC11 for each domain remain to be determined, they have been accurately 

modeled with the help of the resolved structure of HDAC8 (Gao et al., 2002).  The key 

characteristics of HDAC11’s catalytic site are a conserved funnel-like channel outline that can 

accommodate a reformed lysine residue; a uniform catalytic residue at the base of the funnel; 

and four loops at the opening of the funnel, varying in length and shape, that interact with 

protein regions and may be involved in substrate identification (Hurtado et al., 2021; Bryant et 

al., 2017). Histidine residues 142 and 143 are crucial for the enzymatic activity of HDAC11, 
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specifically in catalyzing the hydrolysis of acyl groups within the catalytic region (Figure 2). 

These residues are among the invariant amino acids essential for this function. Research 

indicates that HDAC11 is more similar to class I HDACs than to class II, suggesting that 

HDAC11 may possess the full deacetylase activity characteristic of class I HDACs 

(Thangapandian et al., 2012; Woods et al., 2017). 

Homology models of HDAC11, developed by Thangapandian et al. were aligned with the 

structure of HDAC8 to compare the dimensions of their catalytic tunnels. The analysis revealed 

that both HDAC8 and HDAC11 feature tunnels that are generally deep and narrow  

 

Figure 2: The alpha model of HDAC11 provides structural insights into the catalytic region of the 

enzyme. 

from the top to the bottom, containing a charge relay system and divalent Zn2+ ions necessary 

for catalytic activity (Thangapandian et al., 2012). Kutil et al. noted that a narrow channel, 

extending from the surface of the protein to the zinc-dependent catalytic site, accommodates 

the lysine side chain of the substrate. This narrow channel branches into lateral and vertical 

internal tunnels. These tunnels are capable of accommodating substrates with long aliphatic 

fatty acid chains. The lateral tunnel, also known as the "foot pocket" in HDAC8, is thought to 

act as an escape pathway for unbound acetate and can be occupied by acyl groups from the 

substrates. Therefore, HDAC11, similar to HDAC8 and class I HDACs, has a deep lateral 

pocket, indicating a catalytic mechanism akin to that of HDAC8 (Kutil et al., 2018). 
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1.4 Understanding the Functionality and Growing Importance of 

HDAC11    

HDAC11 stands out among other HDACs due to its unique enzymatic activity, specifically 

targeting lysine residues' fatty acid modifications. This specialization differentiates HDAC11 

from other HDACs that are involved in the deacetylation of histone and non-histone proteins, 

establishing it as a distinct entity in the realm of epigenetic regulation, expanding the substrate 

scope of HDACs beyond traditional acetyl lysine hydrolysis (Núñez‐Álvarez et al., 2022). 

HDAC11 plays distinct roles in the myeloid compartment, particularly within neutrophils. In 

antigen-presenting myeloid cells, HDAC11 negatively regulates the production of interleukin-

10 (IL-10) by promoting histone deacetylation and binding to the IL-10 promoter, thereby 

influencing immune system activation (Li et al., 2016). In neutrophils, HDAC11 is upregulated 

during differentiation and maturation but inversely correlates with functional activity 

(Sahakian et al., 2016). It also influences cytokine and chemokine biology in neutrophils, 

making HDAC11 a potential target for diseases involving these cells. Furthermore, HDAC11 

regulates RNA splicing and immune cell functions, including those of neutrophils, T cells, 

regulatory T cells, and antigen-presenting cells (Sahakian et al., 2017; Villagra et al., 2009; 

Woods et al., 2017). 

HDAC11 is highly expressed in the rat brain, suggesting its significance in neurological 

functions (Broide et al., 2007). Research indicates that inhibiting HDAC11 may be beneficial 

for treating conditions such as multiple sclerosis, obesity, and cancer (Ho et al., 2023). In breast 

cancer cells, HDAC11 affects gene expression and interacts with the promoter of the 

adrenodoxin reductase tumor suppressor gene ARH1 (Feng et al., 2007; Tao et al., 2007). 

Additionally, HDAC11 inhibits hepatitis B virus (HBV) replication by reducing H3 acetylation 

on covalently closed circular DNA (cDNA) minichromosomes (Yuan et al., 2019). 

In oligodendrocytes, HDAC11 regulates maturation by modulating H3K9 and H3K14 

acetylation on the proteolipid protein (Plp) and myelin basic protein (Mbp) genes (Liu et al., 

2009). In vitamin D-deficient intestinal epithelial cells, HDAC11 binds to promoters of tight 

junction proteins, reducing H3/H4 acetylation ratios and inhibiting gene transcription. 

HDAC11 is also associated with transcription factors such as TBX2, TBET, and EOMES in 

non-activated T cells, suppressing T-cell effector functions (Woods et al., 2017). HDAC11's 

role extends to cell-specific transcription factors like KLF4, PU.1, GLI1, and MYOD, and it 

interacts with bromodomain-containing protein BRD2 (Figure 3). These interactions highlight 



20 
 

the potential therapeutic applications of HDAC11 inhibition for various conditions, including 

metabolic disorders, cancers, and inflammatory diseases (Bagchi et al., 2018; Todd et al., 2010; 

Chen et al., 2022; Chen et al., 2020). Although no specific HDAC11 inhibitors are currently 

approved, several naturally derived and synthetic inhibitors have shown promising preclinical 

therapeutic effects (Dallavalle et al., 2022; Son et al., 2020). Ongoing research continues to 

focus on developing specific HDAC11 inhibitors for disease treatment. 

 

Figure 3: HDAC11 regulation and its involvement in epigenetics, as well as therapeutic treatments that target 

HDAC11. SOX-2 (SRY-box transcription factor 2), PU.1 (Polyomavirus enhancer-binding protein 2 alpha 1), 

GLI1 (glioma-associated oncogene family zinc finger-1), KLF4 (Krüppel-like factor 4), MYOD (myoblast 

determination protein 1), UCP-25 (uncoupling protein-25), HEY-1 (Hes Related Family BHLH transcription 

factor with YRPW motif 1), and DNA (deoxyribonucleic acid). 

1.5 The Role of HDAC11 in Epigenetic Regulation 

HDAC11 is expressed in particular tissues, including the brain, heart, testis, kidney, skeletal 

muscle, and gallbladder (Gao et al., 2002; Núñez‐Álvarez et al., 2021; Boltz et al., 2019). It 
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plays a vital role in epigenetic regulation by deacetylating both histone and non-histone 

proteins, thereby influencing the acetylation status of various proteins involved in 

transcriptional regulation and cell cycle control. In breast cancer cells, HDAC11 deacetylates 

transcription factors such as E2F1 and E2F4, affecting their function and expression levels, and 

thereby contributing to cancer progression. HDAC11 also deacetylates CDT1, promoting its 

proteasomal degradation and removing acetylation protection against ubiquitination (Feng et 

al., 2007; Tao et al., 2007). Additionally, HDAC11 decreases the acetylation of BubR1 without 

altering its protein levels, and this interaction occurs at the centrosome alongside HDAC6. In 

vitro experiments have shown that HDAC11-mediated deacetylation can inactivate BubR1 and 

enhance dendritic growth (Lozada et al., 2016; Watanabe et al., 2014). 

HDAC11 is crucial for various biological traits such as migration, apoptosis, stemness, immune 

evasion, and cell invasion, all contributing to tumor growth and metastasis. Its overexpression 

in cancer is linked to the regulation of cell proliferation, differentiation, immune evasion, and 

treatment resistance (Liu et al., 2023). HDAC11 depletion can double the acetylation levels of 

histone H3 at lysine residues 9 and 14 (H3K9/K14ac) in cells like oligodendrocytes compared 

to non-depleted cells (Liu et al., 2009). Conversely, HDAC11 overexpression reduces 

acetylation on histone H3 at lysine residue 27 (H3K27ac) and decreases chromatin accessibility 

in retinal-pigmented cells (Wang et al., 2018). The extent of histone acetylation is modulated 

by either the downregulation or overexpression of HDAC11. Interleukin-10 (IL-10) is the first 

known epigenetic target of HDAC11, which acts as a transcriptional repressor of IL-10 

production by influencing H3/H4 acetylation levels at the IL-10 promoter and regulating 

immune system activation in antigen-presenting cells (APCs) (Villagra et al., 2009). 

1.6 Different Physiological Roles of HDAC11 

HDAC11 plays a vital biological role in almost all systems in the human body and is recognized 

as a crucial regulator of cellular functions. It is notably expressed in the brain, kidneys, heart, 

and testis. HDAC11 is implicated in the development of numerous metabolic diseases, such as 

diabetes and obesity, and in the regulation of several immune cells, including T-cells and 

neutrophils. Additionally, it is associated with cardiovascular disease, chronic kidney disease, 

CNS-related disorders, and cancer. HDAC11 is among the top 1–4% of overexpressed genes 

in cancers like breast cancer and hepatocellular carcinoma. This section provides an overview 

of the latest research on the role and mechanisms of HDAC11 in the regulation of these various 

diseases. 
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1.6.1 Renal and Metabolic disorders 

In today's world, metabolic illnesses such as obesity, hypertension, type II diabetes, 

cardiovascular diseases, and polycystic ovarian syndrome pose significant health risks 

(https://www.nhlbi.nih.gov/health/metabolic-syndrome/causes). The primary contributors to 

metabolic syndrome include overweight and obesity, which elevate blood pressure, low-

density lipoprotein (LDL), triglycerides, and high-density lipoprotein (HDL) levels (Yang et 

al., 2021). Additionally, obesity is linked to chronic metabolic inflammation and abnormal 

adipocyte growth and function. HDAC11 plays a crucial role in combating obesity by 

modulating the immune response; normal or high levels of HDAC11 activity can stimulate this 

response, while inhibition of HDAC11 increases IL-10 expression and affects metabolic 

inflammation. HDAC11 is also vital for regulating cell division, proliferation, migration, 

glucose homeostasis, and insulin sensitivity (Figure 4) (Villagra et al., 2009). 

 

Figure 4: HDAC11's function in metabolic diseases. Histone deacetylase 11, PAI-1 (plasminogen agonist 

inhibitor type 1), KLF15 (Krugppel-like factor 15), IL-10 (interleukin-10), BAT (brown adipose tissue), LPL 

(lipoprotein lipase), UCP1 (uncoupling protein 1), and AMPK (AMP-activated protein kinase) are some of the 

proteins involved in this pathway. 
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However, some research suggests that depleting HDAC11 can significantly reduce liver fat and 

damage, while improving insulin sensitivity, lowering cholesterol levels, and enhancing 

glucose tolerance (Sun et al., 2018). Significantly, lacking HDAC11 leads to a marked increase 

in metabolic rate and oxygen consumption, which boosts energy expenditure and fat oxidation 

(Bagchi et al., 2018). Sun et al.  found that the increase in uncoupling protein 1 (UCP1) 

expression and activity in brown adipose tissue due to HDAC11 deficiency enhances energy 

expenditure through improved thermogenesis. Moreover, HDAC11 deletion activates the 

adiponectin-AdipoR-activated protein kinase (AMPK) pathway in the liver, potentially 

reversing hepatosteatosis. Consequently, HDAC11 is recognized as a novel regulator of obesity 

with promising therapeutic implications for obesity-related diseases (Sun et al., 2018).  

Fan et al. highlighted the role of HDAC11 in maintaining healthy body weight and preventing 

lipid accumulation in diabetic hearts and adipose tissues. In a diabetic heart failure mouse 

model, reduced levels of HDAC11 led to oxidative stress, inflammation, decreased apoptosis, 

and dyslipidemia. This suggests that inhibiting HDAC11 expression might prevent or mitigate 

diabetes-associated cardiomyopathy. Furthermore, renal fibrosis, characterized by increased 

myofibroblast proliferation, inflammatory infiltrates, migration, and extracellular matrix 

proteins, is a poor prognostic indicator in chronic kidney disease. Among the HDACs, only 

HDAC11 has been shown to suppress PAI-1 (plasminogen activator inhibitor type 1) 

expression in kidneys subjected to ischemia-reperfusion (I/R) injury, particularly in gender-

specific kidney models, and in monocytes and macrophages stimulated with 

lipopolysaccharide (LPS). Orchiectomy prevented the release of HDAC11 induced by 

ischemia-reperfusion (I/R) injury, while dihydrotestosterone therapy restored its levels. This 

suggests that reductions in HDAC11 binding and expression due to I/R injury are influenced 

by male gender and hormones, leading to increased PAI-1 expression (Fan et al., 2018; Kim et 

al., 2013; Mrug Kim et al., 2013). 

Mao et al. explored various models of renal fibrosis, finding that HDAC11 expression was 

elevated in the kidneys. In cultured renal tubular epithelial cells (RTECs), treatment with 

angiotensin II (Ang II) also increased HDAC11 levels. Additionally, inhibiting HDAC11 with 

quisinostat or siRNA reduced the Ang II-induced fibrogenic response in these cells. The 

interaction between HDAC11 and activator protein 2 alpha (AP-2α) was found to suppress the 

transcription of Kruppel-like factor 15 (KLF15). Consequently, Ang II promoted fibrogenesis 

in RTECs by counteracting the effects of HDAC11 inhibition or depletion through KLF15 
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knockdown. This led to the identification of a critical AP-2α-HDAC11-KLF15 pathway 

involved in renal fibrosis (Mao et al., 2020). 

1.6.2 Neurological diseases 

Epigenetic alterations, such as histone acetylation, are essential for normal brain function. 

HDAC11 is predominantly expressed in the brain and some other tissues in the human body. 

At the cellular level, the HDAC11 protein is primarily located in the cell nuclei of mature 

oligodendrocytes, with a lesser presence in astrocytes (Liu et al., 2008). The acetylation of 

histone core proteins decreases as neural cells in the CNS grow. Consequently, using RNA 

interference to inhibit HDAC11 expression enhances histone H3 acetylation in an 

oligodendroglial cell line (Liu et al., 2008). Additionally, HDAC11 is considered a potential 

therapeutic target for mental conditions, including depression, Parkinson’s disease, and 

schizophrenia, due to its role in neuronal differentiation. It is also relevant in the treatment of 

malignant hematopoiesis and myeloproliferative neoplasms (Baek et al., 2023; Kumar et al., 

2022; Sun et al., 2018). Some studies suggest that the removal of HDAC11 leads to a significant 

decrease in chemokine C–C motif ligand 2 (CCL2) levels. This reduction is associated with a 

lower number of monocytes and dendritic cells infiltrating the spinal cords of animals with 

experimental autoimmune encephalomyelitis (EAE), aiding in the treatment of CNS 

demyelinating diseases (Figure 5) (Baek et al., 2023; Kumar et al., 2022; Sun et al., 2018). 

Baek et al. achieved a revolutionary discovery by pharmacologically controlling HDAC11, 

which induces autophagy and balances reactive nitrogen species in microglia. This discovery 

suggests a new therapeutic approach for depressive conditions and an anti-inflammatory 

strategy for brain disorders involving microglia (Baek et al., 2023). Jagielska et al. found that 

during the development of oligodendrocytes, HDAC11 decreases histone 3 acetylation and 

promotes the transcription of the Mbp and Plp genes (Jagielska et al.,2017). He et al. 

demonstrated that HDAC11 affects the expression of the human microRNA hsa-miR-4639-5p, 

which could potentially serve as both a diagnostic tool and a treatment option for Parkinson's 

disease (He et al., 2017). Additionally, Bryant et al. observed decreased expression of the 

schizophrenia-associated gene FEZ1 in differentiating brain cells. Since FEZ1 interacts with 

DISC1, it is associated with the risk of schizophrenia and the dendritic development of neurons 

(Bryant et al., 2017).  
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Figure 5: HDAC11's function in neurological conditions. FEZ1, fasciculation and elongation protein zeta 1; 

DISC1, disturbed in schizophrenia 1; LPS, lipopolysaccharides; RNS, reactive nitrogen species; CCL2, 

chemokine (C-C motif) ligand 2. 

1.6.3 Functions of Immune system 

HDAC11 acts as a negative regulator of IL-10 gene expression. IL-10 is an anti-inflammatory 

cytokine that modulates macrophages and dendritic cells, while also controlling the production 

of pro-inflammatory cytokines (Sahakian et al., 2015). It prevents the differentiation of 

dendritic cells from monocyte precursors and limits macrophages' ability to combat 

intracellular infections by inhibiting TNF (tumor necrosis factor) production (Bryant et al., 

2017; Sahakian et al., 2015; Kumar et al., 2022). Recent studies have shown that HDAC11 

negatively affects the phenotype and function of T-cells and neutrophils. HDAC11-deficient 

myeloid-derived suppressor cells displayed increased inhibitory activity against CD8+ T-cells 

(Chen et al., 2021). Additionally, lactate from Staphylococcus aureus biofilms inhibits 

HDAC11, enhancing IL-10 transcription through unchecked HDAC6 activity, which promotes 

the anti-inflammatory properties of macrophages and myeloid-derived suppressor cells (Heim 

et al., 2020). 

Emerging evidence suggests that HDAC11 could be an inflammatory biomarker in 

Huntington’s disease (Kumar et al., 2022), as it directly suppresses IL-10 production, leading 
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to inflammation and disease progression (Shao et al., 2018). In Parkinson’s disease, 

hyperimmune activation, characterized by elevated IL-10 gene expression, promotes neuronal 

loss through the activation and release of CD4+ and T-cells (Kumar et al., 2022). 

Overexpression of HDAC11 lowers IL-10 production, which boosts the functioning of 

inflammatory antigen-presenting cells, potentially activating naïve T cells and increasing the 

responsiveness of tolerant CD4+ T cells (Kumar et al., 2022; Villagra et al., 2009).  

HDAC11 plays a dual role in neutrophil biology: it increases as neutrophils mature, and a 

decrease in HDAC11 correlates with neutrophil functional activity (Sahakian et al., 2017). TNF 

upregulates HDAC11 expression in B cells, inhibiting IL-10 synthesis and contributing to 

allergic rhinitis (Shao et al., 2018). Nasal polyp development is mediated by IL-4, which also 

suppresses IL-10 production in dendritic cells by modulating HDAC11 (Luo et al., 2017). In 

Hodgkin’s lymphoma (HL) cell lines, HDAC inhibitors increased OX40 ligand (OX40L) 

surface expression in a dose-dependent manner. Suppressing HDAC11 transcripts elevated 

TNF- and IL-17 production in HL cell supernatants. Furthermore, OX40L produced by 

HDAC11 suppressed Type-1 T-regulatory (Treg) cells that generate IL-10 (Buglio et al., 2011). 

OX40 activation reduces the suppressive effect of IL-10-producing Type 1 Treg cells and 

CD4+ CD25+ Foxp3+ Treg cells, as well as the transformation of antigen-specific CD4+ naive 

T cells to CD4+ CD25+ Foxp3+ Treg cells (Ito et al., 2006). 

Finally, individuals with food allergies show elevated expression of IL-13 and HDAC11 in 

their blood and local tissues. Mechanistically, IL-13 binds to HDAC11 in the IL-10 promoter 

area, which prevents B-cells from producing IL-10 and hence contributes to food allergies (Liu 

et al., 2020). 

1.6.4 Vascular Injury 

Vascular injury refers to damage to a blood vessel, such as an artery that supplies blood to an 

organ or limb, or a vein that returns blood to the heart (https://vascular.org/patients-and-

referring-physicians/conditions/vasculartrauma). This injury triggers inflammation within 

blood vessels, leading to a transformation of vascular smooth muscle cells from a contractile 

state to a synthetic state, which plays a crucial role in the development of cardiovascular 

diseases (Núñez‐Álvarez et al., 2016). Vascular smooth muscle cells have become a significant 

focus of research as a model for flexible gene expression (Miano et al., 2010). Studies suggest 

that Kruppel-like factor 4 (KLF4) recruits HDAC11 to silence histone acetylation, which 

deactivates the chromatin around the angiogenic factor with G-Patch and FHA domain 1 
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(Aggf1) promoter, thereby repressing Aggf1 transcription. Consequently, the modulation of 

the vascular smooth muscle cell phenotype was halted, and Aggf1 expression was restored 

when either HDAC11 or KLF4 was depleted. Administering an HDAC11 inhibitor to mice 

ultimately reduced vascular injury (Zhou et al., 2017). Zhou et al. experimented on rats, where 

intraperitoneal treatment with quisinostat reduced vascular injury in rats with carotid artery 

ligation-induced vascular injury by restoring Aggf1 levels and contractile gene expression 

(Zhou et al., 2017). 

1.6.5 HDAC11 in Skeletal muscle  

Skeletal muscle, comprising over 40% of total body mass in mammals, plays a crucial role in 

determining basal metabolic rate (BMR) and maintaining overall energy homeostasis (Hurtado 

et al., 2021). Although HDAC11 is highly expressed in skeletal muscle, its specific biological 

functions and physiological roles remain largely unknown. Recent research suggests that 

HDAC11 deficiency enhances muscle strength and endurance, thereby improving muscular 

function (Zhang et al., 2022). The loss of HDAC11 facilitates a shift from glycolytic to 

oxidative muscle fibers, increasing the number of oxidative myofibers without significantly 

affecting the overall structure of skeletal muscle (Núñez‐Álvarez et al., 2016). Additionally, 

HDAC11 depletion boosts mitochondrial fatty acid β-oxidation by lowering acylcarnitine 

levels in vivo and activating the AMP-activated protein kinase-acetyl-CoA carboxylase 

pathway, which helps maintain the balance between different muscle fiber types and 

mitochondrial lipid oxidation (Morales et al., 2017). 

Nunez-Alvarez et al. investigated the impact of HDAC11 genetic deficiency on skeletal muscle 

regeneration, a process primarily dependent on local stem cells along with stromal and immune 

cells. Their findings indicate that HDAC11 is not essential for adult muscle development or 

the formation of the stem cell population. However, HDAC11 deficiency accelerates muscle 

healing following injury. This acceleration is partly due to the inappropriate rise in IL-10 levels, 

creating a pro-regenerative and anti-inflammatory environment, which promotes more 

effective muscle regeneration in the absence of HDAC11 (Nunez-Alvarez et al., 2021). 

1.6.6 HDAC11 in Cancer  

HDAC11 is upregulated in various cancers and plays a significant role in tumor development, 

influencing cell proliferation, differentiation, apoptosis, migration, stemness, immune evasion, 

and therapeutic tolerance (Liu et al., 2023). These processes are mediated through signaling 
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pathways such as AMPK and JAK/STAT. The involvement of HDAC11 in cancer is 

multifaceted and varies across different cancer types. For instance, HDAC11 enhances cell 

invasion and migration in esophageal squamous cell carcinoma (Yang et al., 2022), while in 

colorectal cancer (Mármol et al., 2017) and non-small-cell lung cancer (Gridelli et al., 2015), 

it inhibits these processes. Additionally, HDAC11 has dual roles in hepatocellular carcinoma 

(HCC) (Wang et al., 2020) and breast cancer (Leslie et al., 2019), affecting cell invasion and 

migration differently (Figure 6). 

 

Figure 6: HDAC11's involvement in many cancer types. LKB1, liver kinase B1; AMPK, AMP-activated protein 

kinase; NSCLC, non-small cell lung cancer; ARH1, ADP-ribosylhydrolase 1; EGR1, Early Growth Response 

Protein 1. 

In the context of tumor immunity, HDAC11 acts as a "gatekeeper" of immune cell demise and 

regulates various immune cells, including neutrophils, CD8+ T cells, macrophages, natural 

killer cells, T-helper 1 (Th1) cells, and bone marrow-derived suppressor cells (Kirchner et al., 

2021). Deficiency in HDAC11 leads to cell death and suppresses metabolic processes in 

ovarian (SK-OV-3), colon (HCT-116), prostate (PC-3), and breast (MCF-7) cancer cell lines 

(Deubzer et al., 2013). Aiming HDAC11 might be beneficial for treating HCC and overcoming 

resistance to kinase inhibitors, as HDAC11 decreases Liver Kinase B1 (LKB1) expression in 

HCC, promoting progression and cancer stemness (Bi et al., 2021). Recent studies (Yang et 
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al., 2024) indicate that inhibiting or depleting HDAC11 significantly reduces the self-renewal 

capacity of cancer stem cells in non-small-cell lung cancer and diminishes the expression of 

SOX-2, essential for cancer stem cell maintenance. HDAC11 has been observed to inhibit 

SOX2 production through GLI1, a transcription factor in the Hedgehog pathway (Bora-Singhal 

et al., 2020). 

Silencing HDAC11 decreases protein deacetylation, enhances the apoptotic response to 

mitogen-activated protein kinase inhibitors (MEKi), and inhibits proliferation in various uveal 

melanoma cell lines during long-term colonization experiments (Sriramareddy et al., 2022). 

HDAC11 is also thought to negatively affect liver cancer cell death by suppressing the p53 

gene (Gong et al., 2019). Higher HDAC11 expression is associated with improved overall 

survival in breast cancer patients, making HDAC11 a potential prognostic marker due to its 

partial inhibition of breast cancer cell invasion and proliferation (Zhao et al., 2023). 

Li et al. discovered that HDAC11 is abnormally expressed in 25 different cancer types, with 

its expression either positively or negatively correlated with prognosis. HDAC11 may have a 

suppressive role in cancers such as kidney renal papillary cell carcinoma, brain lower-grade 

glioma, rectum adenocarcinoma, kidney renal clear cell carcinoma, pheochromocytoma and 

paraganglioma, and uveal melanoma, challenging the notion that HDAC11 functions 

universally as an oncogene (Li et al., 2022). Currently, few highly selective inhibitors target 

HDAC11 with precision, and the low selectivity of existing HDAC inhibitors often results in 

dose-dependent toxicities. Cancer remains a critical target for HDAC11 research, with 

significant potential for future investigations. 

1.7 Inhibitors of HDAC11 

The development of selective HDAC11 inhibitors is still in its nascent stages compared to 

inhibitors for other HDAC family members. However, some promising compounds have been 

identified: 

1.7.1 Hydroxamic Acids 

These compounds are common in many HDAC inhibitors and have shown potential in 

inhibiting HDAC11. Hydroxamic acids can chelate the zinc ion in the active site of HDAC11, 

leading to effective inhibition. 

 SAHA: Suberoylanilide Hydroxamic Acid (SAHA), also known as Vorinostat, is a well-

known HDAC inhibitor approved for treating cutaneous T-cell lymphoma. SAHA is a pan-

HDAC inhibitor that can inhibit multiple HDAC enzymes, including Class I and II HDACs. 
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While SAHA is primarily known for its broad-spectrum inhibition of HDACs, its role in 

inhibiting HDAC11 is of particular interest due to the unique biological functions and 

therapeutic potential associated with HDAC11 inhibition (Auzzas et al., 2010). 

 FT895: FT895 is an emerging HDAC inhibitor under investigation for its potential 

therapeutic applications, particularly in cancer treatment. These inhibitors work by 

blocking the activity of HDAC enzymes, leading to increased acetylation of histones, 

which can result in altered gene expression, cell cycle arrest, apoptosis, and enhanced 

immune responses. This novel compound has demonstrated promising selectivity and 

efficacy in preclinical studies, representing a significant step forward in HDAC11 

inhibitor development (Martin et al., 2018). 

 Elevenostat: Elevenostat represents a promising advancement in the field of selective 

HDAC11 inhibition, with potential therapeutic applications in cancer, immune regulation, 

and neurological disorders. While still in the early stages of development, ongoing research 

and development efforts are expected to further elucidate the therapeutic potential of 

Elevenostat, paving the way for new treatment strategies targeting HDAC11 (Kutil et al., 

2019). 

 MIR002: MIR002 is a small molecule inhibitor specifically designed to target HDAC11. 

As a novel HDAC11 inhibitor, MIR002 represents a significant advancement in the 

development of selective inhibitors aimed at regulating the activity of this particular enzyme 

(Chen et al., 2020). 

 Trichostatin A: Trichostatin A is a valuable HDAC inhibitor with significant effects on 

HDAC11, among other HDACs. Understanding TSA's impact on HDAC11 is crucial for 

advancing our knowledge of HDAC biology and developing targeted therapies for diseases 

involving HDAC11 dysregulation (Auzzas et al., 2010). 

 Quisinostat: Quisinostat (JNJ-26481585) is a second-generation hydroxamic acid-based 

HDAC inhibitor. It is known for its potent and broad-spectrum activity against multiple 

HDACs, with a particular emphasis on its efficacy in cancer therapy due to its ability to 

induce cell cycle arrest, differentiation, and apoptosis in cancer cells. Further research is 

needed to fully understand Quisinostat's specific effects on HDAC11 and optimize its 

therapeutic applications (Arts et al., 2009). 

 Belinostat (PXD101): Belinostat (PXD101) is a pan-HDAC inhibitor belonging to the 

hydroxamic acid class. It is approved for treating peripheral T-cell lymphoma (PTCL) and 
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is being investigated for other types of cancers due to its ability to induce apoptosis, cell 

cycle arrest, and differentiation in malignant cells. 

       Its inhibition of HDAC11 contributes to its therapeutic effects in cancer treatment, 

particularly in inducing apoptosis and modulating immune responses. Further studies on 

Belinostat's specific interaction with HDAC11 will enhance our understanding of its 

mechanisms and therapeutic potential (Rana et al., 2020; Li et al., 2016). 

 Aes-135: Aes-135 is a novel HDAC inhibitor that has shown potential in targeting 

HDAC11. HDAC inhibitors work by blocking the activity of HDAC enzymes, leading to 

increased acetylation of histone proteins, which can alter gene expression, inhibit cell 

proliferation, and induce apoptosis. Aes-135 is a promising selective HDAC inhibitor 

targeting HDAC11. Its ability to inhibit HDAC11 specifically positions it as a potential 

candidate for targeted cancer therapy and other diseases where HDAC11 plays a crucial 

role. Further research on Aes-135 will enhance our understanding of HDAC11 and optimize 

its therapeutic applications (Shouksmith et al., 2019). 

 Fimepinostat: Fimepinostat is a potent dual inhibitor of HDACs, including HDAC11, and 

PI3Ks. Its inhibition of HDAC11 contributes to its anti-cancer effects, promoting apoptosis 

and disrupting cancer cell proliferation. Fimepinostat’s dual action enhances its therapeutic 

potential, making it a promising candidate for targeted cancer therapies and further research 

into the specific roles of HDAC11 in disease (Cheshmazar et al., 2022; Kutil et al., 2019).   

 Dacinostat: Dacinostat is a powerful HDAC inhibitor with broad-spectrum activity, 

including inhibition of HDAC11. Its ability to target HDAC11 contributes to its therapeutic 

effects in cancer treatment, particularly by inducing apoptosis and modulating immune 

responses (Auzzas et al., 2010). 

 Pracinostat: Pracinostat is an influential HDAC inhibitor with broad-spectrum activity, 

including targeting HDAC11. Its inhibition of HDAC11 enhances its therapeutic effects in 

cancer treatment by promoting apoptosis, regulating immune responses, and influencing 

metabolic pathways. Continued research into Pracinostat's specific interactions with 

HDAC11 will improve our understanding of its mechanisms and refine its therapeutic use 

(Kutil et al., 2019; Rana et al., 2020). 

 Panobinostat: Panobinostat, also known as LBH589, is a potent pan-HDAC inhibitor that 

includes HDAC11 in its spectrum of targets. It is primarily used in the treatment of multiple 

myeloma, particularly in patients who have not responded to other treatments. By inhibiting 
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HDAC activity, Panobinostat alters gene expression, leading to anti-proliferative and pro-

apoptotic effects in cancer cells (Li et al., 2014). 

1.7.2 Benzamides and Thiols 

These chemical classes have also been explored for HDAC11 inhibition. They offer an 

alternative to hydroxamic acids, potentially providing different selectivity profiles and 

pharmacokinetic properties.  

 Mocetinosta: Mocetinostat, also known as MGCD0103, is an orally bioavailable inhibitor 

of HDACs, with a preference for Class I and IV HDACs. It has shown promise in the 

treatment of various hematological malignancies and solid tumors. By inhibiting HDACs, 

Mocetinostat induces changes in gene expression that can lead to anti-tumor effects (Rana 

et al., 2020; Zhou et al., 2008). 

1.7.3 Cyclic peptides 

Cyclic peptides are a class of peptides characterized by a circular structure, which is formed 

through peptide bonds between the amino and carboxyl termini or through side-chain linkages. 

This cyclic structure imparts unique stability and binding properties, making cyclic peptides an 

attractive scaffold for drug development. Their enhanced stability, resistance to proteolytic 

degradation, and ability to bind to protein targets with high affinity have positioned them as 

potential therapeutics, including inhibitors of HDACs (Olsen et al., 2009). 

 TD034: TD034 is a small molecule inhibitor designed to target histone deacetylases 

(HDACs). While it is primarily recognized for its inhibitory action on HDAC11, it may also 

exhibit effects on other HDACs to a lesser extent. HDAC inhibitors, such as TD034, are of 

significant interest in the field of oncology and other therapeutic areas due to their ability to 

modulate gene expression and cellular functions (Ho et al., 2023). 

 Romidepsin: Romidepsin, also known as Istodax or FK228, is a potent HDAC inhibitor 

approved for the treatment of cutaneous T-cell lymphoma (CTCL) and peripheral T-cell 

lymphoma (PTCL). It is a cyclic peptide that selectively inhibits Class I HDACs, including 

HDAC1, HDAC2, HDAC3, and HDAC8, leading to the re-expression of silenced genes that 

regulate cell cycle arrest and apoptosis in cancer cells. Although Romidepsin primarily 

targets Class I HDACs, its inhibitory effects also extend to HDAC11. While challenges such 

as selectivity and resistance need to be addressed, the development of Romidepsin and 

similar inhibitors holds promise for advancing targeted therapies in oncology and beyond 

(Yao et al., 2015). 
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 Trapoxin A: Trapoxin A is a naturally occurring cyclic tetrapeptide that functions as a 

potent HDAC inhibitor. It was originally isolated from the culture broth of the fungus 

Helicoma ambiens. Trapoxin A is well-known for its ability to inhibit HDACs irreversibly, 

leading to increased acetylation of histones and subsequent changes in gene expression. 

While Trapoxin A is a broad-spectrum HDAC inhibitor, its effects on HDAC11 have 

garnered significant interest. Trapoxin A inhibits HDAC activity by covalently binding to 

the enzyme's active site, leading to the accumulation of acetylated histones. This results in 

a more open chromatin structure, promoting the transcription of genes involved in cell cycle 

regulation, apoptosis, and differentiation. The irreversible nature of Trapoxin A's inhibition 

provides a prolonged effect on gene expression (Furumai et al., 2001; Kutil et al., 2019). 

1.7.4 Hydrazides 

Hydrazides are a class of organic compounds characterized by the presence of the functional 

group -CONHNH2. They are known for their diverse biological activities and have been 

explored extensively in medicinal chemistry for their potential as therapeutic agents. 

Hydrazides have shown promising results as HDAC inhibitors, including the inhibition of 

HDAC11 (Carreiras et al., 2024). 

   SIS7: SIS7 is an investigational compound designed to selectively inhibit HDAC11, a 

protein involved in regulating gene expression, immune responses, and cellular metabolism. 

By targeting HDAC11, SIS7 disrupts its deacetylase activity, leading to an accumulation of 

acetylated proteins that alter chromatin structure and gene expression. This inhibition holds 

potential therapeutic benefits across various diseases. In cancer treatment, SIS7 could 

reduce tumor growth and induce apoptosis in cancer cells with high HDAC11 expression. 

Inflammatory diseases may benefit from SIS7's ability to modulate immune responses and 

reduce inflammation. Additionally, by impacting neuronal function and neuroinflammation, 

SIS7 shows promise for neurodegenerative disorders like Alzheimer's and Parkinson's. 

Despite its potential, SIS7 faces challenges related to achieving high selectivity for 

HDAC11 over other HDACs and ensuring safety and efficacy through rigorous preclinical 

and clinical studies. Ongoing research is necessary to optimize SIS7 and validate its 

therapeutic benefits (Son et al., 2019). 

   SIS17 - SIS17 is a compound under investigation for its potential to inhibit HDAC11. 

HDAC11 is a key enzyme involved in regulating gene expression, cellular metabolism, and 

immune responses. Its inhibition by specific compounds like SIS17 is of significant interest 
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for therapeutic development, particularly in cancer, inflammatory diseases, and 

neurodegenerative disorders (Son et al., 2019). 

Table 1. Different HDAC11 inhibitors along with their chemical class, inhibitory activity in 

different HDAC isoforms and clinical status. 

HDAC11is HDACs IC50 (nM) Clinical 

Status 

Ref 

11 1 2 3 4 5 6 7 8 9 10 

CYCLIC PEPTIDES 

Trapoxin A 

 

10 0.82     524      

 

 

 

__ 

(Furu

mai et 

al., 

2001; 

Kutil 

et al., 

2019) 

Romidepsin 

 
 

a 1050 6070 62 a  a 1220 a a a 11 

Completed 

ClinicalTria

ls.gov ID – 

NCT02850

016 

  

(Yao 

et al., 

2015) 

TD034* 

 

5.1 - - - - - - - - - -  

 

 

__ 

(Ho et 

al., 

2023) 

BENZAMIDES 

Mocetinostat 
 

 
 

590 150 290 1660 a a - a a - -  

 

Phase II 

ClinicalTria

ls.gov ID -

NCT02236

195 

(Rana 

et al., 

2020; 

Zhou 

et al., 

2008) 

 HYDRAZIDES 

SIS7* 

 

910,7

60 

- - - - - - - - - -  

 

__ 

(Son 

et al., 

2019) 

SIS17* 

 

830, 

270 

- - - - - - - - - -  

 

__ 

(Son 

et al., 

2019)   

HYDROXAMIC ACIDS 

SAHA 

 
 

362 258 921 350 493 378 28.60 344 243 316 456 Completed 

ClinicalTria

ls.gov ID-

NCT01319

383 

  

(Auzz

as et 

al., 

2010)   

Trichostatin A 

 

15.15 7.12 22.95 10.32 12.07 16.48 0.42 22.46 89.53 38.12 20.10  

Phase I 

ClinicalTria

ls.gov ID-

NCT03838

926 

(Furu

mai et 

al., 

2001; 

Kutil 

et al., 
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2019) 

Quisinostat 

 

0.37 0.11 0.33 4.86 0.64 3.69 76.8 119 4.26 32.1 0.46  

Phase II 
ClinicalTria

ls.gov ID- 

NCT01486

277 

(Arts 

et al., 

2009) 

Belinostat (PXD101) 
 

 

25,00

0 

41 125 30 115 - 82 67 216 128 - 

Completed 

ClinicalTria

ls.gov ID- 

NCT01583

777 

  

(Rana 

et al., 

2020; 

Li et 

al., 

2016) 

 

Aes-135 

 

636 - - 654 - - 190  b  - - __ (Shou

ksmit

h et 

al., 

2019) 

Fimepinostat 

 

23 1.7 5 1.8 - - - - - - 2.8  

Phase II 
ClinicalTria

ls.gov ID- 

NCT05971

758 

 

(Ches

hmaz

ar et 

al., 

2022; 

Kutil 

et al., 

2019)  

Dacinostat 

 

5.58 3.23 15.70 10.50 5.82 5.58 5.93 6.11 3.84 8.24 8.41 __ (Auzz

as et 

al., 

2010)   

Pracinostat 

 

93 49 96 43 56 47 1008 137 140 70 40  

Phase II 
ClinicalTria

ls.gov ID-

NCT03151

304 

(Kutil 

et al., 

2019; 

Rana 

et al., 

2020) 

Panobinostat 

 

2.7 2.5 13.3 2.1 203 7.8 10.5 531 277 5.7 2.3 Completed 

ClinicalTria

ls.gov ID- 

NCT01680

094 

  

(Li et 

al., 

2014) 

MIR002* 

 

6090 - - - - - - - - - - __ (Chen 

et al., 

2020) 

FT895* 

 

3 a a a a a a a 5600 a a  

 

__ 

(Marti

n et 

al., 

2018) 

Elevenostat* 

 

235 - - - - - - - - - -  

 

__ 

(Kutil 

et al., 

2019) 

* Indicates selective HDAC11 inhibitors as reported by Ho et al., 2023, Chen et al., 2020, Dallavalle et al., 2022, 

Martin et al., 2018, and Son et al., 2019. (a indicates IC50 > 10,000 nM, and b indicates IC50 > 1000 nM). 
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Chapter 2: Literature Review 

There is no molecular modeling analysis on HDAC11, so we are reporting some review articles 

and research articles based on synthesis. In this scenario, we want to give more emphasis on 

drug discovery and biological investigations. 

2.1 Son et al. (2020) represented a significant breakthrough in understanding the mechanism 

of action of Garcinol. It provides a natural product-derived lead that could be further optimized 

to enhance its potency and specificity. The observed similarities between the phenotypes of 

Garcinol treatment and HDAC11 knockout in mouse models further support this hypothesis. 

The authors discovered that Garcinol is a potent and selective inhibitor of HDAC11, with an 

IC50 of approximately 5 μM in vitro and 10 μM in cellular assays. The discovery of Garcinol 

as a potent and selective HDAC11 inhibitor opens new avenues for developing natural product-

derived therapeutic agents for various diseases, including obesity, diabetes, and multiple 

sclerosis. It underscores the importance of continued research into the molecular mechanisms 

of natural products and their potential therapeutic applications. This discovery not only 

provides a new lead for the development of HDAC11 inhibitors but also offers a deeper 

understanding of the biological activities of Garcinol (Son et al., 2020). 

 

2.2 Baek et al. (2023) introduced a novel HDAC inhibitor, compound 5, which selectively 

targets HDAC11. HDACs are enzymes that regulate gene expression and cellular processes, 

with HDAC11 being highly expressed in the brain and immune cells. The study demonstrates 

that compound 5 can significantly alleviate depression-like behaviors in mice by inhibiting 

microglial activation and inducing autophagy. Microglia are immune cells in the central 

nervous system that play a crucial role in neuroinflammation, which is implicated in depressive 

disorders. By targeting HDAC11, inhibitor 5 effectively suppresses the production of nitric 

oxide, a key mediator of neuroinflammation, and induces autophagy in microglial cells. This 

dual action of inhibiting microglial activation and enhancing autophagy makes HDAC11 a 

promising therapeutic target for treating depressive disorders. The research provides new 

insights into the molecular mechanisms underlying depression and opens new avenues for the 

development of targeted therapies for various neuropsychiatric diseases (Baek et al., 2023). 

 

2.3 Huang et al. (2017) investigated the role of HDAC11 in enhancing the function of Foxp3+ 

T-regulatory (Treg) cells, particularly in the context of transplantation and autoimmune 

diseases. By using mice with constitutive or conditional deletion of HDAC11 within Foxp3+ 
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Treg cells and employing small molecule HDAC11 inhibitors in allograft models, the 

researchers demonstrate that targeting HDAC11 can significantly boost Treg function and 

suppress allograft rejection. The findings suggest that HDAC11-selective inhibitors may offer 

new therapeutic options for managing transplantation and autoimmune diseases, by enhancing 

the suppressive activity of Tregs and promoting long-term allograft survival (Huang et al. 

(2017). 

 

Tian et al. (2017) presented a novel method for assaying slow-binding inhibitors against the 

unstable protein HDAC11, a poorly studied member of the human HDAC family. By 

employing the fast-binding inhibitor SAHA as a chaperone molecule, the researchers stabilized 

HDAC11, significantly reducing the protein's activity loss from 40% to less than 10% over a 

3-hour period. This stabilization allowed for a more accurate determination of the inhibitory 

capacity of the benzamide HDAC inhibitor MS275, with the true IC50 being established at 0.65 

µM. The optimized assay conditions were then applied to a one-dose screening assay, revealing 

that several benzamide derivatives showed moderate inhibition strength against HDAC11, 

which would have been missed using traditional methods. This approach not only enhances the 

accuracy of HDAC11 inhibitor assays but also improves the discovery of potential inhibitors, 

particularly in the hit-discovery stage (Tian et al., 2017). 

 

Sui et al. (2020) investigated the role of HDAC11 in mouse oocyte maturation, revealing that 

HDAC11 inhibition disrupts meiosis progression, spindle organization, chromosome 

alignment, kinetochore-microtubule attachment, and spindle assembly checkpoint (SAC) 

function. The inhibition also increases the acetylation levels of H4K16 and α-tubulin, 

suggesting that HDAC11 promotes meiotic apparatus assembly by modulating these 

acetylation statuses. The findings underscore the importance of HDAC11 in ensuring accurate 

chromosome segregation during oocyte meiosis, providing insights into the regulatory 

mechanisms of meiosis and potential pathways for modulating meiotic apparatus assembly (Sui 

et al., 2020). 

 

Villagra et al. (2009) examined the function of HDAC11 in the regulation of interleukin 10 

(IL-10) expression within antigen-presenting cells (APCs) and its effect on the immune 

system's decision between activation and tolerance. The authors demonstrate that HDAC11 

negatively regulates IL-10 expression, with overexpression leading to decreased IL-10 and 

increased inflammatory responses, capable of priming naive T cells and reversing tolerance in 
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CD4+ T cells. Conversely, disrupting HDAC11 results in higher IL-10 expression and reduced 

antigen-specific T-cell responses. The study also shows that HDAC11 interacts with the distal 

segment of the IL-10 promoter, influencing its transcriptional activity through changes in 

histone acetylation and transcription factor binding. These findings identify HDAC11 as a key 

molecule in the balance between immune tolerance and activation, with potential implications 

for treating autoimmune diseases, managing transplant rejection, and enhancing cancer 

immunotherapy (Villagra et al., 2009). 

 

Baselious et al. (2023) explored the application of AlphaFold models in drug discovery, 

focusing on HDAC11, an enzyme with potential therapeutic implications for cancer and other 

diseases. Despite the lack of a crystal structure for HDAC11, the authors successfully 

optimized an AlphaFold model by incorporating a catalytic zinc ion and assessed its reliability 

through docking simulations with known inhibitors. Molecular dynamics simulations 

confirmed the stability of the optimized model and its complexes with various inhibitors. The 

study demonstrates that the optimized HDAC11 model can be utilized for structure-based drug 

design, emphasizing the potential of AlphaFold in aiding drug discovery efforts, even for 

proteins with limited structural data (Baselious et al., 2023). 

 

Baselious et al. (2024) demonstrate the successful application of an optimized AlphaFold 

protein model for the design of a novel and selective inhibitor targeting HDAC11, which has 

potential implications for treating neuroblastoma. The authors address the challenge of using 

AlphaFold models in drug discovery, particularly in the absence of ligands and cofactors, by 

refining the HDAC11 model and employing it to predict the binding mode of a known inhibitor, 

FT895. Based on this prediction, they design and synthesize a series of compounds, with one 

compound, 5a, showing the most promise, having an IC50 of 365 nM for HDAC11 and 

displaying selective inhibition. Molecular docking and dynamics simulations validate the 

predicted binding mode of compound 5a, which also exhibits anti-neuroblastoma activity with 

an EC50 of 3.6 µM. The research signifies the potential of optimized AlphaFold models in 

guiding the development of novel therapeutic agents, particularly for cancer targets like 

HDAC11 (Baselious et al., 2024). 
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Chapter 3: Rationale Behind the Study 

HDAC11 plays a crucial role in various diseases, including cancer, neurodegenerative 

disorders, and inflammatory conditions (Amin et al., 2023; Yoon et al., 2016; Sardar et al., 

2024; Bhattacharya et al., 2023; Khatun et al., 2024). However, creating selective inhibitors 

for HDAC11 is challenging due to the necessity to distinguish its activity from other HDAC 

family members. 

The significance of HDAC11 inhibition is underscored by its involvement in modulating gene 

expression, immune responses, and key cellular processes such as apoptosis and differentiation. 

Overexpression of HDAC11 is linked to several pathological conditions, including tumor 

progression and inflammation (Bagchi et al., 2018; Chen et al., 2022; Chen et al., 2020; Liu et 

al., 2009; Todd et al., 2010). Developing specific HDAC11 inhibitors could offer new 

therapeutic options for these diseases. However, achieving selectivity is a major challenge, as 

many current HDAC inhibitors affect multiple HDAC isoforms, leading to potential off-target 

effects and toxicity. A classification-based binary-QSAR model is proposed to help identify 

and optimize inhibitors with high specificity for HDAC11, thereby minimizing unwanted side 

effects. 

Binary-QSAR models are essential in drug discovery as they elucidate the relationship between 

molecular structure and biological activity. These models predict the inhibitory potential of 

new compounds based on their molecular fingerprints, facilitating the design of more effective 

and selective inhibitors. By employing a classification-based approach, researchers can gain 

insights into the structural features contributing to HDAC11 inhibition, leading to the 

identification of key molecular determinants. 

The development of a classification-based binary-QSAR model for HDAC11 inhibition could 

significantly advance drug discovery efforts. It offers a systematic approach to screen and 

optimize potential inhibitors, improving the efficiency of the drug development process. This 

approach aligns with current trends in computational drug design and personalized medicine, 

where predictive models play a crucial role in identifying and developing new therapeutic 

agents. Some studies such as bayesian classification, recursive partitioning, SARpy analysis, 

and machine learning study have been conducted to find important fingerprints for potent 

HDAC11 inhibitory activity. This research is valuable for studying the molecular docking of 

selected compounds. It provides insights into the binding mechanisms between inhibitors and 

their targets, helping to optimize drug design and improve binding affinity. 
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4. Materials and Methods 

4.1 Collection and preparation of data set  

In this work, a total of 1191 compounds having HDAC11 inhibitory activity (IC50) in 

nanomolar (nM) concentration was compiled from Binding Data Base also known as Binding 

DB (https://www.bindingdb.org/rwd/bind/index.jsp). It provides three-dimensional structures 

of compounds in the .sdf format. For ease of work, the “prepare ligands for QSAR” protocol 

of Discovery Studio version 3.0 (D.S. 3.0) (Accelrys Inc., CA, USA, 2015) was applied, 

removing duplicate compounds from the dataset. As a result, 382 duplicate compounds were 

detected and permanently removed from the dataset. The duplicate-free dataset contains a total 

of 809 compounds. In the next step, the duplicate-free dataset was filtered with the “Filter 

using Lipinski and Verber’s rule” protocol of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) to 

prepare a dataset of drug-like compounds only. The protocol produced a dataset containing 712 

drug-like compounds which passed Lipinski and Verber’s rule (Lipinski et al., 2004). Then the 

inhibitor’s HDAC11 inhibitory activities (IC50) were converted to negative logarithm values 

(pIC50). Therefore, the activity profile of the compounds in this dataset had been segregated 

into binary manner, having HDAC11 inhibitory activity equal to or more than the pIC50 value 

of 6.001 (IC50 ≤ 1000 nM) were labeled as '1' (active) whereas compounds with indefinite 

HDAC11 inhibitory action and activity range less than the pIC50 value of 6.001 (IC50 ≥ 1000 

nM) was labeled as '0' (inactive). The binarized dataset shows the number of actives = 307 

(training=237, test=70) and the number of inactive compounds = 405 (training=297, test=108).  

4.2 Division of Dataset  

The dataset division in a justified manner is the most necessary step for any QSAR model 

development process. In this study, the dataset contains a large number of structurally diverse 

compounds (Nset = 712, where the highest active compound with IC50 = 0.3 nM and least active 

compound with IC50 = 80,020 nM). The whole dataset was divided into two distinct sets i.e., 

the training set and test set through the "Generate Training and Test Data" module in D.S. 3.0 

(Accelrys Inc., CA, USA, 2015), which were used to build and evaluate the QSAR models 

respectively. The dataset was divided with the “random per cluster” method based on various 

parameters like cluster, distance to the closest, cluster centre, and cluster size, to create the 

training set (which contained almost 70% of the dataset compounds) and the test sets (which 

contained nearly 30% of the dataset compounds). All training sets (NTrain = 534, Annexure-I) 

were used to build the QSAR models, which were then verified using their equivalent test set 

https://www.bindingdb.org/rwd/bind/index.jsp
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(NTest = 178, Annexure-I). Several molecular descriptors of the selected compounds were 

evaluated such as the number of aromatic rings (nAR), rings (nR), and rotatable bonds (nRB); 

molecular weight (MW), octanol/water partitioning coefficient (AlogP) and molecular 

fractional polar surface area (M_FPSA); number of hydrogen bond (nHBD) donors and 

acceptors (nHBA)  (Amin et al., 2004) as well as topological fingerprint descriptors such as 

extended connectivity fingerprints of diameter 6 (ECFP_6) (Rogers et al., 2010) and 

functional-class fingerprints of diameter 6 (FCFP_6) for the modeling study in D.S. 3.0 

(Accelrys Inc., CA, USA, 2015). Further with the help of this divided dataset classification-

based Bayesian classification, Recursive partitioning, and SARpy analysis were conducted. 

Also, the workflow of the study is illustrated in Figure 7.  

 

Figure 7: Overall workflow of the study 

 

4.3 Machine learning (ML) models utilizing multiple 2D Descriptors 

a. Molecular Descriptor Calculation 

To perform ML modeling, the curated dataset containing 712 compounds (.sdf file format) was 

used for calculating 2D descriptors through PaDEL software (Yap et al., 2011). The PaDEL-

Descriptor program was used to construct several classes of 2D-descriptors, such as molecular 

features, electro-topochemical atom descriptors, detour matrix descriptor, auto-correlation 

descriptors, etc.  
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b. Data pre-treatment and dataset division 

To ensure the accuracy of our modeling analysis, we performed data pre-treatment to remove 

undesired features such as missing values, constant values across all compounds, and highly 

inter-correlated features. We used the Java-based tool DataPreTreatmentGUI 1.2, available at 

http://teqip.jdvu.ac.in/QSAR_Tools/, for this purpose (Ambure et al., 2015). This tool helped 

us eliminate descriptors with intercorrelation cut-off values above 0.85 and those with a 

variance cut-off below 0.0001. After pre-treating the data, we divided the dataset into a training 

set (NTrain= 534) and a test set (NTest= 178) consistent with the sets used for Bayesian and 

Recursive models. The pre-treated training set was then used for feature selection.  

c. Selection of features and model development  

Before conducting classification-based modeling analysis, it is crucial to identify the essential 

features that accurately represent the response. Feature selection using appropriate algorithms 

is a significant challenge for modelers. So, we have utilized the Most Discriminating 

Features (MDF) selection tool (https://dtclab.webs.com/software-tools) to keep those features 

that appeared most often. Importantly, feature selection was performed exclusively on the 

training set, with no involvement of the test set compounds. The selected features were 

combined, and hyperparameter optimization was employed for building multiple 

classification-based ML models. These models were built using the ML classifier tool 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-

model-development-guis). 

d. Development of Classification-based ML models 

ML entails programming computers to gather information from existing information 

to enhance their performance on subsequent duties, with usage in several fields like regulatory 

decision-making and predictive modeling (Chatterjee et al., 2024; Jordan et al., 2015). 

Subsequently, by utilizing the finalized list of selected features from the "Feature selection" 

step, various ML-based classification models were built including Random Forest Classifier 

(RFC) (Pal et al., 2005), Support Vector Classifier (SVC) (Lau et al., 2003), Logistic 

Regression (LR) (Kleinbaum et al., 2002) and Linear Discriminant Analysis (LDA) 

(Xanthopoulos et al., 2013). We developed ML-based models using Python-based scripts and 

executed them in Jupyter Notebook web tool (Kluyver et al., 2016) with Anaconda Navigator 

version 2022.05 (https://www.anaconda.com/products/distribution) and Python version 3.10.4. 

http://teqip.jdvu.ac.in/QSAR_Tools/
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The best model for the prediction of test set compounds was selected after the related 

hyperparameters were optimized using the " CSL v 1.1 " tool 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-

model-development-guis) by the Grid search technique utilizing 5-fold cross-validation mean 

squared error as the objective function in each of the ML approaches. Finally, the "Machine 

Learning Classification v1.1" tool was used to build the ML models.    

e. SHAp analysis  

SHapley Additive exPlanations (SHAp) analysis is a method used in ML to explain model 

predictions by assigning importance values to each feature based on their contribution to the 

prediction. Developed from cooperative game theory, SHAP values offer a unified approach 

to interpreting complex models by fairly distributing the prediction among the features. This 

analysis helps identify key features, understand their interactions, and enhance model 

transparency and trustworthiness (Mangalathu et al., 2020). 

This approach calculates Shapley values, which are the mean marginal contribution of every 

feature over all feasible combinations. The process begins by feeding the dataset into the 

model, and then SHAp gives a Shapley value to each feature, reflecting its involvement in the 

model's output (Štrumbelj et al., 2011). 

4.4 Bayesian classification study 

The Bayesian classification is a statistical method that primarily utilizes probability principles 

(Box et al., 2011) based on Bayes’ theorem as indicated in Eq. 1. 

𝑃 (ℎ 𝑑) =
𝑃(𝑑 ℎ) 𝑃(ℎ)⁄

𝑃(𝑑)
⁄ ; 

         𝑃(ℎ 𝑑)⁄ = 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

        𝑃(𝑑 ℎ)⁄ = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑃(ℎ) = 𝑃𝑟𝑖𝑜𝑟 𝑏𝑒𝑙𝑖𝑒𝑓 

𝑃(𝑑) = 𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑑 𝑑𝑎𝑡𝑎
𝑤ℎ𝑒𝑟𝑒 ℎ 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑎𝑛𝑑 𝑑 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎

        (1) 

 

The fundamental goal of Bayesian classification in our study is to identify important structural 

fingerprints using a probabilistic approach (Fang et al., 2015). The “Create Bayesian model” 

protocol of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) involved building a Bayesian 

classification model on the training set molecules, comprising both calculated molecular 

descriptors and the extended connectivity fingerprint descriptors (Chen et al., 2011). The 

models were then validated using the test set molecules.   
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4.5 Recursive partitioning (RP) study  

RP is a classification-based QSAR approach that classifies dataset molecules based on their 

molecular features/descriptors into group/class-based groupings (Yadav et al., 2022). RP 

generates multiple "decision trees" using key molecular features that separate the research 

samples into further smaller samples (nodes) based on whether a certain selected predictor is 

greater than or less than a given cut-off value (Amin et al., 2022). Thus, the RP study was 

applied in our investigation to gather significant data and characterize HDAC11 inhibitors. RP 

models were built through the "Create RP model" module of the D.S. 3.0 software (Accelrys 

Inc., CA, USA, 2015) utilizing the training set molecules (NTrain= 534) which were then 

validated using the test set compounds (NTest= 178). These models depend on the combination 

of distinct molecular descriptors (as considered for Bayesian classification study) and FPCP_6 

(Chen et al., 2011; Rogers et al., 2010). Among the several models, the best RP model with 

the maximum discriminating capability was selected as the best RP tree model. 

4.6 Statistical analysis and evaluation of QSAR-based models 

To support the model's predictability and dependability, it is essential to evaluate various 

statistical parameters for fitness measurement and performance evaluation of the overall 

classification-based modeling study. In this work, to validate and justify the robustness of the 

QSAR models, a statistical evaluation based on the receiver operating characteristic (ROC)-

based evaluation was exclusively examined (Fawcett et al., 2005; Roy et al., 2015). Both 

internal (ROCTrain and ROCCV) and externally validated ROC (ROCTest) scores have been 

examined using a test set for the developed classification-based models. The statistical models 

depend on some predicted values like true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN). Similarly, the performance of the model was validated using statistical 

parameters including sensitivity (Se), specificity (Sp), accuracy (Acc), precision (Pr), and 

geometric mean (G-means) (Son et al., 2020; Núñez‐Álvarez et al., 2021; Boltz et al., 2019) 

using Eqs 2-6. Additionally, metrics including F1-measure (F1), area under the balanced 

accuracy ROC curve (AUCb), Youden's index (γ), positive likelihood (ρ+), negative likelihood 

(ρ-), and Matthew’s correlation coefficient (MCC) were calculated for both the training and test 

set compounds employing Eqs 6 to 12 (Kar et al., 2013; Das et al., 2014; Toropova et al., 2017; 

Toropova et al., 2014). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  
;  

𝑇𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝐹𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

                                                                                 (2) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃  
                                                                                                                                                        (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  
                                                                                                                                   (4) 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  
                                                                                                                                                             (5) 

      𝐺 − 𝑚𝑒𝑎𝑛𝑠 =  √(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)                                                                                                                              (6) 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁  
                                                                                                                                                                     (7) 

𝐴𝑈𝐶𝑏 =
𝑆𝑒 + 𝑆𝑝

2  
                                                                                                                                                                                 (8) 

𝛾 = 𝑆𝑒 − (1 − 𝑆𝑝);                   

        
   𝑤ℎ𝑒𝑟𝑒, 𝛾 = 0: 𝑀𝑜𝑑𝑒𝑙 ℎ𝑎𝑠 𝑛𝑜 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
𝛾 = 1: 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑖𝑑𝑒𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

                                         (9) 

𝜌+ =
𝑆𝑒

(1 − 𝑆𝑝) 
 ;     

        
   𝑤ℎ𝑒𝑟𝑒,   𝜌+ >  1: 𝑀𝑜𝑑𝑒𝑙 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

 𝜌+ =  1: 𝑀𝑜𝑑𝑒𝑙 ℎ𝑎𝑠 𝑛𝑜 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑝𝑜𝑤𝑒𝑟
𝜌+ <  1: 𝑀𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

              (10) 

𝜌− =
(1 − 𝑆𝑒)

𝑆𝑝
 ;    

        
   𝑤ℎ𝑒𝑟𝑒,   𝜌− >  1: 𝑀𝑜𝑑𝑒𝑙 𝑖𝑠 𝑚𝑜𝑟𝑒 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

 𝜌− =  1: 𝑀𝑜𝑑𝑒𝑙 ℎ𝑎𝑠 𝑛𝑜 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 𝑝𝑜𝑤𝑒𝑟
𝜌− <  1: 𝑀𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑙𝑖𝑘𝑒𝑙𝑦 𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

           (11) 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
;

        
𝑤ℎ𝑒𝑟𝑒 𝑀𝐶𝐶 𝑟𝑎𝑛𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 − 1 𝑡𝑜 + 1;

𝑀𝐶𝐶 = 1: 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
         𝑀𝐶𝐶 = 0: 𝑁𝑜 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑀𝐶𝐶 = −1: 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

     (12) 

4.7 SARpy Model 

The SAR in Python (SARpy) program is a Python script based on the OpenBabel chemistry 

library (Banerjee et al., 2022; Golbamaki et al., 2016). SARpy is a QSAR technique designed 

to transparently discover significant molecular fragments utilizing categorized active and 

inactive compounds in a learning set and immediately extract a set of rules from data in a 

recursive manner, without the need for any previous knowledge (Ferrari et al., 2013). The 

methodology builds molecular substructures of arbitrary complexity, and the fragments that 

are candidates for structural alerts are automatically chosen based on their performance in a 

learning set of predictions (Marzo et al., 2016; Mombelli et al., 2016).  

The software generates substructures in a set using user-defined SMILES format depending on 

their likelihood ratio (LR) value and attempts to connect the specific molecular structures with 

their biological activity in three phases: fragmentation, evaluation, and extraction (Lombardo 

et al., 2014). 
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Likelihood ratio (LR) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
×

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                          (13) 

LR value is a number between 1 and infinity. When the structural alert is only present in the 

positive observations then the LR can be regarded as infinite (inf) (Banerjee et al., 2023). 

In the fragmentation stage, a recursive simple fragmentation algorithm is employed to find 

chemical substructures in the training set molecules. It continues through each bond in the input 

structures, attempting to produce every possible pair of fragments (Yang et al., 2017). After 

each substructure has been created, it is evaluated individually to look for any possible 

structural alerts (SA) in the evaluation step. Furthermore, to complete the process, only the 

reduced sets of estimated rules were applied from the collection of generated structural alerts 

(Baderna et al., 2020). The rule sets in our present investigation were generated utilizing 

“OPTIMAL” single alert precision for fragments with atom numbers between 2 (minimum) 

and 26 (maximum) and a minimum number of 6 occurrences. Later, utilizing the SARpy 

software (https://www.vegahub.eu/portfolio-item/sarpy/) these generated structural 

alerts/active rulesets were further evaluated on the test set compounds. 

4.8 Molecular Docking Analysis 

 Till now, the mammalian HDAC11 X-ray crystallographic structure has not been solved. So, 

the AlphaFold model of HDAC11 was downloaded from the AlphaFold database 

(https://alphafold.ebi.ac.uk/entry/B5MCU6). The zinc coordination motif of this protein was 

discovered by structural alignment analysis with the PDB ID: 1C3S 

(https://www.rcsb.org/structure/1C3S) as described in the previous research study by Baek et 

al., 2023. Figure 8 shows that the binding motif of PDB ID: 1C3S and the Alphafold HDAC11 

model is similar and can be considered an active site for molecular docking analysis with 

reference compound SAHA. 

For molecular docking analysis, we used AutoDockZn, which is a freely available docking tool 

developed by Santos-Martins et al., 2014 which uses a modified improved forcefield option 

for improvement in the performance of binding estimation and free energy calculation in case 

of molecular docking with zinc-specific metalloproteins. Some common initial steps of 

molecular processes, such as PDB to PDBQT conversion for protein and selected ligands, were 

done using the ADFR suite and mk-prepare.py python script of the MEEKO software package 

(https://pypi.org/project/meeko/). Then the tetrahedral zinc pseudo atom was added according 

to the protocol of the AutoDockZn. The grid box was generated (X, Y, Z dimensions of 60, 

spacing: 0.375 Å) by enclosing the prototype ligand SAHA and zinc ion (Grid centre: -7.605, 
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11.153, -9.269). Additionally, the AD4Zn.bat (specific parameter file for zinc) was added to 

the grid input file. Then, the grid generation (with AutoGrid4.2.7) and molecular docking (with 

AutoDock4) were done conventionally. Finally, the best docking pose for each compound 

(A004, A007, A013, A053) was selected by comparing the docked structure with the prototype 

compound. The 3D and 2D interactions of the compounds were analyzed with D.S. 3.0 

(Accelrys Inc., CA, USA, 2015). 

 

Figure 8:  Structural alignment of alphafold HDAC11 model (Siam) with PDB ID:1c3s (Pink) bound with SAHA 

(Red). The structure showing same binding motif in both of their structure.  
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5. Results and discussion 

5.1  Data Analysis 

In this study, a dataset containing 712 compounds was used for the development of 

classification models. The dataset was split into training (NTrain=534) and test sets (NTest=178) 

using the "Random per Cluster" method for the Bayesian and RP studies.  The model was 

developed on the training set and validated on test set compounds. Before the 

model development, different molecular descriptors were calculated, including nAR, nRB, nR, 

AlogP, MW, nHBD, nHBA, M_FPSA, ECFP_6, and FCFP_6. In Figure 9 multiple bin plots 

for physicochemical properties are illustrated, including nAR, nRB, nR, AlogP, MW, nHBD, 

nHBA, and M_FPSA for active and inactive compounds. 

 

Figure 9: Distribution of HDAC11 inhibitory activity, A. nAR, B. nRB, C. nR, D. AlogP, E.  MW, 

F. nHBD, G. nHBA, H. M_FPSA. 
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5.2 Machine Learning (ML) 

A well-curated dataset of 712 HDAC11 inhibitors was used to build ML-based QSAR models, 

which included Random Forest Classifier (RFC), Support Vector Classifier (SVC), Logistic 

Regression (LR) and Linear Discriminant Analysis (LDA). At first, the PaDEL-Descriptor 

program was implemented to build a set of 1445 2D descriptors (Yap et al., 2011). After that, 

the dataset was pre-treated, which yielded 496 2D descriptors, and then these descriptors were 

employed for model development and feature selection. Ultimately, 53 descriptors that the 

MDF tool determined to be the most discriminatory features were used to generate four 

classification-based ML models (RFC, SVC, LDA, and LR). The model was specified and 

configured through hyperparameter optimization [RFC ('criterion': 'gini', 'max_depth': None, 

min_samples_leaf': 4, 'min_samples_split': 2, 'n_estimators': 150); SVC ('C': 0.1, 'gamma': 

'scale', 'kernel': 'linear'); LR ('C': 0.1, 'penalty': None, 'solver': 'lbfgs'); LDA ('solver': 'svd')] by 

utilizing Scikit-learn package in Python. These ML algorithms are easily available on the DTC 

Lab webpage (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-

learning-model-development-guis). A range of validation metrics based on classification was 

used to evaluate the ML models' performance. The RFC model with 53 descriptors turned out 

to be the best of them. Table 2 presents a detailed analysis of validation outcomes using various 

approaches for each of the four models and Figure 10 presents an illustration of the obtained 

ROC plots from the RFC models.  

Several metrics were used to evaluate the model, including Cohen's kappa (k) coefficient, F1 

score, accuracy, precision, recall, and Matthews correlation coefficient (MCC). Specifically, 

the random forest (RF) model performed better, with an AUC-ROC of 0.985 for the training 

set and 0.831 for the test set, demonstrating adequate internal and external validation at 0.852 

and 0.529, respectively. On the training set, the RF model yielded an accuracy of 0.927 and a 

precision of 0.934; on the test set, it obtained an accuracy of 0.758 and a precision value of 

0.651.  The training set demonstrated a specificity of 0.899 and a recall of 0.898, while the test 

set showed a value of 0.828 for specificity and recall. Cohen's kappa coefficients for the 

training and test sets were 0.851 and 0.517, respectively. In addition, we used the RFC model 

to perform SHAp (SHapley Additive ExPlanations) analysis on the training dataset. This 

analysis aimed to assess each variable's (descriptor) local and global contributions to the 

predictions. 
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Table 2. Comparison of the performances of different ML models 

Model 

Type 

Set TP FP TN FN Acc Pr Sp F1 

score 

Recall 

(Se) 

Cohen’s 

k 

MCC AUC-

ROC 

 

RFC 

Training 282 24 213 15 0.927 0.934 0.899 0.916 0.898 0.851 0.852 0.985 

Test 77 12 58 31 0.758 0.651 0.828 0.729 0.828 0.517 0.529 0.831 

 

SVC 

Training 242 59 178 55 0.786 0.763 0.751 0.757 0.751 0.567 0.567 0.822 

Test 77 15 55 31 0.741 0.639 0.785 0.705 0.785 0.479 0.488 0.820 

 

LDA 

Training 248 63 174 49 0.790 0.780 0.734 0.756 0.734 0.573 0.573 0.846 

Test 80 19 51 28 0.736 0.645 0.729 0.684 0.728 0.459 0.461 0.838 

 

LR 

Training 234 64 173 63 0.762 0.733 0.73 0.731 0.730 0.518 0.518 0.816 

Test 73 13 57 35 0.730 0.619 0.814 0.703 0.814 0.465 0.480 0.824 

 

 

 

Figure 10: The ROC plots obtained in the RFC model 

 

5.2.1 Interpretation of the descriptors involved in Machine learning models 

 

Mechanistic interpretation is crucial for any QSAR model as per OECD Guidelines 5. The 

development of the final model utilizes some molecular descriptors minHBint2, minHBint5, 

VE3_Dt, maxHdsCH, GATS1m, minHssNH, and minsssN as illustrated in Figure 11.  

Understanding the contribution of these structural descriptors is essential for gaining insight 

into HDAC11 inhibition. Among these descriptors, minHBint5 has the most significant impact 
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on HDAC11 inhibition (Figure 12). The minHBint2 and minHBint5 descriptors are 2D electro-

topological state (E-state) descriptors, which represent the minimum E-State descriptors of 

strength for potential hydrogen bonds with path lengths of 2 (minHBint2) and 5 

(minHBint5) respectively. These descriptors highlighted the relevance of hydrogen bonding 

with path lengths 2 and 5. Interestingly, compounds like A043 (IC50 = 27 nM), A073 (IC50 = 

115 nM), A117 (IC50 = 651 nM), and A118 (IC50 = 659 nM) show both high minHBint2 and 

minHBint5 values and powerful HDAC11 inhibition, indicating that minHBint2 and 

minHBint5 positively contribute to HDAC11 inhibitory action. On the other hand, the 

descriptors minHssNH (A117, IC50 = 651 nM, A130 = 750 nM), maxHdsCH (A037 = 15 nM, 

A084 = 180 nM, A134 = 750 nM), and minsssN (A046 = 31 nM, A161 =776 nM) are also E-

state fragments based on atoms that positively contribute to HDAC11 activity. These 

descriptors represent both the electronic and steric properties of atoms and molecules. 

MinHssNH denotes the bonding of amine groups while the feature minsssN refers to the >N-

fragment's minimum nitrogen atom-type E-State. A high minsssN score indicates strong 

polarity and, thus, less toxicity since the presence of polar nitrogen atoms increases the 

hydrophilicity of molecules. In addition, maxHdsCH is one of the most essential descriptors 

for the model with only PaDEL descriptors. It represented the maximum atom-type H E-State: 

=CH-. 

 

Figure 11: A summary of 13 significant descriptors used in ML models. Positive contributions are 

denoted by upward arrows in blue, while negative contributions are represented by downward arrows 

in red. 
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The GATS1m is a 2D autocorrelation descriptor that describes how a given attribute is 

distributed over a topological molecular structure. It defines mass distribution along a 

topological molecular structure. Higher values of GATS1m indicate increased HDAC11 

activity, as observed in compounds like A039 (IC50 = 21 nM), and A082 (IC50 = 174 nM). 

Conversely, ATSC2i (A630 and A696) and AATSC7i (A691 and A702) contributed negatively 

to the HDAC11 activity. Moreover, the descriptor VE3_Dt denoted the logarithmic coefficient 

sum of the last eigenvector in the detour matrix. It has been found that VE3_Dt contributes 

positively to the HDAC11 activity, in compounds like A003 (IC50 = 1 nM), and A008 (IC50 = 

2 nM). Furthermore, CrippenLogP a Crippen's LogP descriptor (A528 and A673), MDEC-34 

MDE descriptor (A586 and A648), MPC10 (A625 and A699) and R_TpiPCTPC (A616 and 

A625) a path count descriptor each of them have a negative impact on HDAC11 activity. 

 

5.2.2 SHAP Plots 

SHapley Additive exPlanations (SHAP) illustrate the output of ML models. SHAP highlights 

each feature by itself and also, shows the importance of all the features together. SHAP is a 

model-nonspecific tool, organic to the application of any ML algorithm, and ensures that the 

sum of the SHAP values for each attribute is the difference between the prediction loss and the 

average prediction loss. To sum up, SHAP is a powerful method of increasing transparency 

and trust in ML models as it provides a comprehensive explanation of how each feature affects 

the predictions (Mangalathu et al., 2020; Štrumbelj et al., 2011).  

These plots show the contribution of each descriptor to the prediction on the y-axis (SHAP 

values), with features plotted on the x-axis. Every point on the plot represents a data instance, 

and its colour indicates whether the feature value is high (usually blue) or low (usually red), 

depending on where the point falls on the x-axis. In complicated machine learning models like 

neural networks or tree-based models, SHAP plots help visualize the relative relevance of 

different features and how they contribute to individual predictions (Lundberg et al., 2018). 

We trained the best machine learning model (RFC) from the dataset to investigate these 

visualizations. 
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Figure 12: A. SHAP Summary plot providing a detailed overview of the directional effects of different 

features on the predictions for the Random Forest Classification (RFC) model. B. t-SNE Plot of SHAP 

embeddings for the training data set. C. t-SNE Plot of SHAP embeddings for the test data set. 

5.2.3 SHAP Summary Plot   

SHAP summary plots employ individual feature attributions to efficiently communicate 

multiple aspects of a feature's significance while maintaining the visualization simple and 

brief. These plots show dots representing SHAP values in a horizontal orientation, with 

characteristics arranged according to their total impact. The dots stack vertically in cases where 

there is insufficient room. The colour of each dot indicates the value of the feature, ranging 

from low (blue) to high (red). The colouring will exhibit a smooth transition if a feature's 

influence on the model varies gradually as its value changes. 

 The most significant element influencing the model's output at baseline is minHBint5, as seen 

in Figure 12A. The colouring of the minHBint5 plot shows a smooth increase in the model's 

output (a log odds ratio) with higher minHBint5 values, while the density of dots shows the 

frequency of different minHBint5 values in the dataset. The pattern of dots that leans more to 

the right (as in the case of maxHdsCH) than to the left suggests that high values of these 

measures might considerably increase the influence on RFC. These depictions aid in 
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comprehending the behaviour of the model and highlighting significant characteristics that 

influence its evaluations. These descriptors strongly influence HDAC11 inhibitory activity. 

5.2.4 t-SNE Plots 

A technique for visualizing data that maps high-dimensional points to discrete locations in two 

or three dimensions is called t-distributed stochastic embedding, or t-SNE. This non-linear 

method of lowering complicated data dimensions is achieved by efficiently distilling the core 

of high-dimensional datasets and projecting them into lower-dimensional environments 

(Banerjee et al., 2023). t-SNE plots showing various scenarios for the training and test set 

compounds are shown in Figures 12B and 12C. In the first scenario (6B), t-SNE plots were 

generated for the training set of the best (RFC) model. In this instance, the data point clustering 

indicates total segregation. As we go to the next scenario (6C), t-SNE plots were generated for 

the test set of the best (RFC) model.  

5.3 Bayesian Classification  

The "Create Bayesian Model" module of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) generated 

the Bayesian classification model. However, the Bayesian model has been developed on a 

collection of 534 training set HDAC11 inhibitors and non-inhibitors using descriptors such as 

nHBD, nHBA, ALogP, nRB, nR, nAR, MW, and M_FPSA together with ECFP_6 fingerprint. 

After analysis, it has been found that the proposed model accurately discriminated between 

favourable and unfavourable structural features which can be classified into distinct categories. 

Therefore, this approach is beneficial in identifying several essential molecular properties of 

diverse classes of HDAC11 inhibitors. 

The results of the statistical analysis of the Bayesian classification model along with its 

parameter and predictive performance are discussed in Table 3. The developed model for both 

training (five-fold cross-validated, RO𝐶5𝐶𝑣) and test sets demonstrated good ROC scores of 

0.824 and 0.834 respectively, while the ROC plots are displayed in Figure 13. The training set 

(NTrain) model depicted a value of 77.2 % Se, 91.9 % Sp, 0.853 Acc, 0.884 Pr, and 0.842 G-

mean. Similarly, in the case of external validation, the test set (NTest) model also demonstrated 

satisfactory scores for the different statistical parameters (Table 3) such as 65.7 % Se, 79.3 % 

Sp, 0.741 Acc, 0.676 Pr, and 0.723 G-mean. The G-mean algorithm efforts to enhance the 

accuracy on each of the classes. Furthermore, to quantify the overall performance of the model, 

other measures such as the F1, AUCb, MCC, γ, and likelihoods such as positive likelihood (ρ+) 

and negative likelihood (ρ-) were also determined. A good Youden's index (γ=0.691, NTrain; 
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γ=0.453, NTest) signifies a higher potential for discriminating the developed model. A higher 

positive likelihood score (ρ+=9.555, NTrain; ρ+=3.225, NTest) indicates how well the model 

recognizes positive instances, while a lower negative likelihood value (ρ-=0.247, NTrain; ρ-

=0.430, NTest) indicates how well the model recognizes negative instances in comparison to the 

likelihood that it will incorrectly identify positive instances. 

 

Figure 13: ROC plots obtained from the Bayesian model 

Table 3. Validation metrics of the developed Bayesian model 

Set ROC 

Score 

ROC 

 Rating 

TP FP TN FN Se Sp Acc Pr G-

mean 

F1 AUCb MCC 𝜸 𝝆+ 𝝆- 

Train# 0.824 Good 183 24 273 54 0.772 0.919 0.853 0.884 0.842 0.824 0.845 0.705 0.691 9.555 0.247 

Test 0.834 Good  46 22 86 24 0.657 0.793 0.741 0.676 0.723 0.666 0.726 0.455 0.453 3.225 0.430 

#5-fold cross-validation is used for the training set to evaluate the statistics, ROC= Receiver operating characteristics; TP = True positive; FN 

= False negative; FP =False positive; TN = True negative; Se =Sensitivity, Sp =Specificity, Acc =Accuracy, Pr = precision, G-mean = 

Geometric mean F1 =F1 measure, AUCb = area under the balanced accuracy ROC curve, MCC = Matthew's correlation co-efficient, γ = 

Youden’s index, ρ+ = positive likelihood, ρ- = negative likelihood.  

 

5.3.1 Evaluation of structural fingerprints generated by a Bayesian classification model 

The Bayesian classification model generated 20 favourable as well as unfavourable molecular 

fingerprints that may influence or hinder the HDAC11 inhibitory activities. Following the 

Bayesian score, the top 20 good (G1-G20) and bad (B1-B20) structural fingerprints (Figures 

14 and 16) are taken for further identification and evaluation. The compounds having good 

fingerprints show significant behaviour for HDAC11 inhibitory activity. 
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Additionally, most of the good structural fingerprints are present in the developed compounds 

showing favourable activity and it has been illustrated in Figure 15. Similarly, the presence of 

fingerprint features G1, G2, G3, G4, G5, G9, G11, G17, G18, G19, and G20 exhibit the 

favourable contribution of benzimidazole moiety in the biological activity of HDAC11 

inhibitors for example, compound A007 and A008 (IC50 = 2 nM); A013 (IC50 = 3 nM). The 

fragments G6, G8, and G10 exhibit the significance of the carboxamide functional group 

present in the compound A003 (IC50 = 1 nM); A014 (IC50 = 3 nM); A017 (IC50 =5 nM); A053 

(IC50 =47 nM).  

Figure 14: Top 20 favorable fingerprints identified from the Bayesian classification model 

Furthermore, compounds A004, A006, A007, A010, A012, A021 and A022 with fingerprints 

like G7, G12, G13, G14, G15 and G16 exhibit a significant HDAC11 inhibitory action. 

Meanwhile, the mentioned fingerprints denote the existence of an isoindoline moiety attached 

to the substituted oxazole ring. Interestingly, some of the compounds have more than one good 

fingerprint such as A004, A007, A008, A013, and A022 which revealed a clear picture, that 

they might be a potential candidate for HDAC11 inhibitory activity. 
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As a result, the Bayesian study revealed that the benzimidazole moiety, carboxamide group, 

and isoindoline moiety are essential for enhancing HDAC11 inhibitory action. Also, the study 

revealed certain bad fingerprints liable for HDAC11 inhibitory activity hindrances.  

 

Figure 15: Molecular structures of some active HDAC11 inhibitors with favourable Bayesian 

fingerprint. 

Considering the Bayesian classification of bad molecular fingerprints (B1-B20, Figure 16), the 

B1 fragment makes it abundantly evident that the molecule containing the 1,3-dimethyl 

imidazolidine-2-one scaffolds may not be able to boost the activity of any HDAC11 inhibitors, 

as it is observed in compounds A501-A503 all exhibiting HDAC11 IC50 values exceeding 

100,000 nM. Specifically, analogs containing 1,3-dimethyl-2,4-

dimethylenehexahydropyrimidine moiety (B4, B6, B7, B9, B10, B11, B13, B14 and B15) were 

responsible for detrimental characteristic of HDAC11 inhibition as illustrated in Figure 17, for 

example, compounds like A237 (IC50 = 5686 nM); A269 (IC50 = 15400 nM); A284 (IC50 = 

34370 nM); A289 (IC50 = 52050). Additionally, B2 and B16 fingerprints possessing propyl 

benzene moiety, such as in compounds A234 (IC50 = 5530 nM); and A285 (IC50 = 37000 nM) 

are also responsible for poor activity. Similarly, scaffolds like divinyl amine having 1,3-methyl 

or ethyl substitution in fingerprints B3, B5, B8, and B12 in compounds A269 (IC50 = 15400 

nM); A289 (IC50 = 52050) is undesirable for HDAC11 inhibitory action. The negative 

fingerprint B17 (A697, A699) suggests that the 1-ethyl-2,3-dimethyleneindoline and 2-

isopropyl oxazole moiety (B18-B20) may also impede the HDAC11 inhibitory activities.   
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 Figure 16: Top 20 unfavourable fingerprints identified from the Bayesian classification study 

 

Figure 17: Structure of some inactive HDAC11 inhibitors with bad Bayesian fingerprints 
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In general, our Bayesian analysis shows that the majority of compounds with substituted 1,3-

dimethyl-2,4-dimethylenehexahydropyrimidine, methyl substituted-divinyl amine, and 2-

propyloxazole scaffolds have shown poor or less activity while compounds with benzimidazole, 

isoindoline, or carboxamide functional group have a significant outcome. Another intriguing 

finding is that compounds having both benzimidazole and isoindoline scaffolds have shown 

higher activity as compared to others. 

5.4  Recursive partitioning (RP) study 

The Recursive Partitioning (RP) analysis was carried out using a dataset encompassing 712 

compounds as HDAC11 inhibitors with diverse hydroxamate and non-hydroxamate groups to 

develop clearer and more precise classification-based models by generating decision trees.  RP 

modeling was done on the training (NTrain = 534) and test (NTest = 178) sets developed by the 

"Random per cluster" method. Since the Bayesian classification models involving the training 

set performed better on the test set. Similar to the Bayesian classification research, this RP 

model was built in D.S. 3.0 [125] with default settings utilizing a combination of fingerprint 

features (Feature-class fingerprint of diameter 6, FPCP_6) and different types of molecular 

descriptors like AlogP, MW, nR, nAR, nRB, nHBD, nHBA, ECFP_6 and MFPSA. 5-fold cross-

validation was utilized to assess the model's performance, which led to the generation of 9 

tree(s) for differentiating the actives from inactives.  Statistical analysis of the RP model's 

decision trees reveals that decision tree-1 outperformed the training and test sets in terms of 

ROCCV, ROC score, and other statistical metrics. Table 4 shows the statistical performance of 

9 decision trees built from the training set compounds, and Table 5 has a full statistical 

description of the 9 decision trees for the test set. 

Tree-1 has an ROCTrain score of 0.922 and is the least-trimmed tree. Consequently, it is a model 

with less error (Min alpha = 0) than the other eight trees. A thorough investigation revealed 

that Tree-1, with an ROCCV score of 0.794, is the best model and the ROC score for the test set 

compounds was found to be 0.83. Based on the FPCP_6 fingerprint, the decision tree with 26 

leaves exported six molecular properties and twelve structural fingerprints (FP-1 to FP-12), as 

shown in Figure 18. These twelve fingerprints (Figure 19) are essential in distinguishing 

between highly active and less active or inactive HDAC11 inhibitors. In addition, various 

statistical measures like sensitivity (Se), specificity (Sp), overall accuracy (Acc), precision (Pr), 

geometric-mean (g-mean), F1-measure (F1), and area under the balanced accuracy ROC curve 

(AUCb), etc. were obtained for both the training and test set compounds. Moreover, both the  
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Table 4. Statistical results of the RP model for the training set  

Tree No: 

Depth: 

Leaves 

ROC 

 

ROCCV TP FP TN FN Se Sp Acc Pr G-

mean 

F1 AUCb MCC 𝜸 ρ+ ρ- 

1:26 0.922 0.794 200 47 250 37 0.844 0.842 0.843 0.809 0.843 0.826 0.842 0.683 0.685 5.332 0.185 

2:20 0.941 0.796 200 47 250 37 0.844 0.842 0.843 0.809 0.843 0.826 0.842 0.683 0.685 5.332 0.185 

3:18 0.931 0.792 200 49 248 37 0.844 0.835 0.839 0.803  0.839 0.823 0.844 0.676 0.679 5.115 0.186 

4:15 0.921 199 199 55 242 38 0.840 0.815 0.826 0.783 0.827 0.810 0.827 0.652 0.654 4.534 0.196 

5:12 0.896 0.788 183 43 254 54 0.772 0.855 0.818 0.810 0.813 0.790 0.813  0.630 0.627 5.333 0.266 

6:11 0.887 0.785 190 57 240 47 0.802 0.808 0.805 0.77 0.805 0.785 0.805 0.607 0.609 4.177 0.245 

7:5 0.879 0.764 134 29 268 103 0.565 0.902 0.753 0.822 0.714 0.67 0.734 0.504 0.467 5.790 0.481 

8:4 0.861 0.764 111 21 276 126 0.468 0.929 0.725 0.840 0.660 0.601 0.698 0.457 0.398 6.623 0.572 

9:2 0.794 0.733 69 14 283 168 0.291 0.953 0.659 0.831 0.527 0.431 0.622 0.334 0.244 6.176 0.744 

The best RP model is shown in boldfaces 

Table 5. Statistical results of the RP model for the test set 

Tree No: 

Depth: 

Leaves 

ROC 

score 

TP FP TN FN Se Sp Acc Pr G-

mean 

F1 AUCb MCC 𝜸 ρ+ ρ- 

1:26 0.83 57 24 84 13 0.814 0.778 0.792 0.703 0.796 0.754 0.796 0.580 0.592 3.66 0.238 

2:20 0.827 57 24 84 13 0.814 0.778 0.792 0.703 0.796 0.754 0.796 0.580 0.592 3.66 0.238 

3:18 0.802 55 33 75 15 0.786 0.694 0.730 0.625 0.739 0.696 0.740 0.47 0.480 2.57 0.308 

4:15 0.731 51 39 69 19 0.729 0.639 0.674 0.566  0.682 0.637 0.683 0.36 0.367 2.01 0.424 

5:12 0.724 49 32 76 21 0.700 0.704 0.702 0.605 0.702 0.650 0.701   0.40 0.403 2.36 0.426 

6:11 0.725 54 34 74 16 0.771 0.685 0.719 0.613 0.727 0.683 0.728 0.446 0.456 2.45 0.333 

7:5 0.711 42 21 87 28 0.600 0.806 0.725 0.666 0.695 0.631 0.702 0.414 0.405 3.08 0.496 

8:4 0.678 33 11 97 37 0.471 0.898 0.730 0.75 0.651 0.578 0.684 0.418 0.37 4.63 0.588 

9:2 0.57 15 8 100 55 0.214 0.926 0.646 0.652 0.445 0.322 0.570 0.204 0.140 2.9 0.848 

The best RP model is shown in boldfaces 

training and test set yielded Se at (0.844, 0.814); Sp (0.842, 0.778); Acc (0.843, 0.792); Pr 

(0.809, 0.703); G-mean (0.843, 0.796); F1 (0.826, 0.754); AUCb (0.842, 0.796); and so on 

(summarized in Table 4 and 5). These obtained measures demonstrate Tree 1's supremacy as 

the best RP model over the other eight models and a graphical illustration with 12 fingerprints 

(FP-1 to FP-12) and 26 terminal leaves of Tree-1 is depicted in Figure 18. 
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Figure 18: Classification of HDAC11 inhibitors through the decision tree into active and inactive 

classes by using the RP model. 

5.4.1 Evaluation of the decision tree and structural fragments of the RP Model 

The potential of Tree-1 in distinguishing between active and inactive HDAC11 inhibitors is 

strongly reliant on the twelve fragments (Figure 19) and these fragments plays an essential 

role in governing the activity of HDAC11 inhibitors.  

Mechanistically, the number of hydrogen bond donors (nHBD), number of hydrogen bond 

acceptors (nHBA), number of rings (nR), octanol/water partitioning coefficient (ALogP), 

molecular fractional polar surface area (MFPSA), and molecular weight (MW) are the prime 

molecular descriptors determined by the best decision tree (Tree-1) that has an impact on the 

activity of the compounds to be predicted as active/inactive classes of HDAC11 inhibitors. The 

RP model findings demonstrated the importance of different structural fragments in the 

formation of the decision tree. In particular, it is expected that the fragments FP-1 to FP-5, and 

FP-7 will improve HDAC11 inhibition.  
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Figure 19:  FCFP_6 fingerprints obtained from the RP Study 

On the other hand, probably, FP-6, FP-8, and FP-9 to FP-12 will negatively affect HDAC11 

inhibition. In addition, each of the 26 terminal leaves of decision Tree-1 represents a cluster of 

active and inactive compounds. In this context, leaf #5, #7, #8, #9, #20, #33, #35, #44, #57 and 

#64 indicate clusters of active compounds, while leaf #4, #19, #25, #36, #49 and #53 represent 

clusters of inactive compounds.  

In the decision tree (Tree-1), FP-1 (diisopropyl amine moiety) is split into compounds that 

contain FP-2 (fluromethane scaffold) and that do not contain FP-3 (isoindoline moiety fused 

with carboxamide). Both FP-1 and FP-2 are believed to show good inhibitory activity. For 

instance, compound A013 (IC50 = 3 nM), A067 (IC50 = 190 nM) contains both FP-1 and FP-2. 

In addition, Leaf ID #7 and #8 are comprised of compounds with nHBA (<5.5 and ≥ 6.5). 

Mostly, compounds with isoindoline moiety with a carboxamide group belong to Leaf ID #5 

that comprise FP-3 and seem to be excellent HDAC11 inhibitors for example compounds A004 

(IC50 = 1 nM), A006 (IC50 = 2 nM), A007 (IC50 = 2 nM), A010 (IC50 = 3 nM), A012 (IC50 = 3 

nM), A013 (IC50 = 3 nM), A030 (IC50 = 27 nM). Leaf ID #9 consists of compounds having FP-
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4 (carboxamide group) and the rest do not contain FP-4. Interestingly, compounds with Leaf 

ID #9 possess a majority of phenyl mercaptoheptanamide and 6-oxopiperidine-2-carboxamide 

kind of scaffolds which is responsible for good HDAC11 inhibitory activity such as in 

compounds A001 (IC50 = 0.3 nM), A003 (IC50 = 1 nM), A011 (IC50 = 3 nM), A025 (IC50 = 15 

nM), A036-A041, etc.  Further, analyzing compounds such as A135-A139, A356-A370, etc 

bearing FP-5 (pyrrolidine ring fused to cyclic pentane) have shown better activity. Next, Leaf 

ID #19 and #20 consist of compounds with MW <403.88 and ≥ 403.88 respectively 

(compounds A133-A139, A354-A361, A365-A370).  

On the one hand, FP-5 does not contain compounds with nHBD <2.5 and ≥2.5 and is again 

split into other fingerprints such as FP-6 (isopropyl thiazolidine ring) from nHBD <2.5, which 

shows poor activity (A703, IC50 = >50000). Leaf ID #25 comprises compounds with ALogP 

<1.855. Then, Leaf ID #27 and #28 consist of compounds with ALogP < 2.63 and ≥ 2.63 

independently. On the other hand, Leaf ID #35 and #36 consist of compounds with nHBA <4.5 

and ≥ 4.5 which bear FP-8 (diethyl propane amine). Likewise, Leaf ID #33 comprises 

compounds having FP-7 (N-hydroxy acetamide attached to an aliphatic chain) that have shown 

good activity for example, compounds A046 (IC50 = 38 nM), A056 (IC50 = 51 nM), A062 (IC50 

= 75 nM), A065 (IC50 = 79 nM), etc. In addition, Leaf ID #39 consist of compounds having 

FP-9 (compounds A188, A199, A210, A214, A221, A222, A269, A284). Here, FP-9 

containing molecules belong to isobutyramide scaffolds indicating that this fingerprint has a 

negative influence on the inhibitory activities. 

Further, Leaf ID #43 and #44 consist of compounds with MW <435.43 and ≥ 435.43 having 

FP-10 (N-hydroxy-4-methylbenzamide). Most of the compounds of Leaf ID #43 are inactive. 

Then Leaf ID #45 contains compounds with FP-12 (methyl indene) and the rest of the 

compounds do not contain FP-12.  These fragments are responsible for the detrimental activity 

of the HDAC11 inhibitors. Again, Leaf ID #49 comprises compounds with nRings <1.5 

whereas nRings ≥ 1.5 divides into MFPSA <0.2975 and ≥ 0.2975 having Leaf ID #53 and #54 

respectively. Next, Leaf ID #47 consists of compounds with FP-11 (m-substituted toluene) and 

the remaining compounds do not contain FP-11 but are divided into nRings < 2.5 and ≥ 2.5, all 

these Leaf IDs contain inactive compounds. However, the decision tree is split into Leaf ID 

#55 and #56 which comprise compounds with MFPSA <0.2335 and ≥ 0.2335. In addition, Leaf 

ID #57 consist of compounds with MFPSA <0.2645 (compounds A002, A005, A008, A019, 

A032, A044, A049). Lastly, Leaf ID #63 and #64 contain compounds with MW <366.354 and 
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≥ 366.354 which is a part of MFPSA ≥ 0.2645. Both of these Leaf IDs are not suitable for the 

favourable activity of HDAC11 inhibition.    

5.5 SARpy analysis 

To identify the key structural alerts for potent HDAC11 inhibition, a SARpy-mediated 

structural analysis has been performed on the dataset molecules. The SARpy analysis applied 

in this work yielded a collection of 22 structural fragments of these HDAC11 inhibitors that 

served as active rulesets that have shown a positive impact on their inhibition. From Table 6, 

it can be observed that the training set population achieves 78% for Se, 83% Sp, and 81% Acc. 

Whereas, the external validation with the test set yields 67% Se, 89% Sp, and 80% Acc in the 

SARpy analysis. Some other statistical measures were also performed for both training and test 

sets such as Pr (0.776, 671), G-means (0.803, 0.802), F1 (0.780, 0.729), etc. 

Table 6. Outcomes from SARpy analysis of the training and test set compounds  

 

Many of the segments have shown their potential features for providing powerful HDAC11 

inhibition in terms of structural alerts. Information regarding structural alert (SA), SMARTS 

along with its likelihood ratio (LR) is mentioned in Table 7. Structural alert 1 (SA1) is 6-

trifluromethyl-benzimidazole moiety having infinite LR value in compounds like A007, and 

A008 indicating the potent features of the HDAC11 inhibitor. SA2 revealed the importance of 

5-oxo-N-(1-oxoheptan-2-yl)pyrrolidine-2-carboxamide moiety (LR = inf) in compounds A036 

A041 and A045 whereas SA3 represented the significance of N-phenylbenzo-oxazole (LR = 

inf) structure for imparting effective HDAC11 inhibition, this scaffold can be seen in 

compound A013 and slightly with A004. Moreover, SA4 uncovers the importance of 5-fluro-

benzimidazole, SA5 of (benzyloxy)benzene, SA6 of trifluoromethyl aniline, SA7 of 6-methyl 

tetrahydro-benzimidazole and all are having infinite LR value, possess better inhibition. 

Several additional structural alerts such as SA8 (5-methyl-benzimidazole amine, LR = 33.84), 

SA9 (2-amino-N-phenylheptanamide, LR = 20.05, eg: A053), SA10 (5-methyl-1H-

benzimidazol-2-amine, LR = 14.41) and SA11 (5-chloro-benzimidazole, LR = 13.78, eg: A013) 

Dataset TP FP TN FN Sen Spe Acc Pr G - 

means 

F1 AUCb MCC 𝜸 ρ+ ρ- 

Train 184 53 246 51 0.783 0.823 0.805 0.776 0.803 0.780 0.802 0.605 0.605 4.417 0.263 

Test 47 23 96 12 0.797 0.807 0.803 0.671 0.802 0.729 0.801 0.581 0.603 4.12 0.252 
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have shown an effective impact on HDAC11 inhibiting efficacy according to their LR values. 

Lastly, SA1, SA4, SA8, and SA10 are strongly indicated towards the compounds A007, A008, 

and A012 which conclude that all the generated alerts and the compounds are interrelated with 

each other. 

Table 7: Active structural ruleset 

 

 

 

 

SL. no SMARTS Structural Alert Likelihood ratio 

1 c1c2c(nc([nH]2)N)ccc1C(F)(F)F 

 

inf 

2 N1C(CCC1=O)C(=O)NC(CCCCC)C(=O) 
 

inf 

3 N1C(CCC1=O)C(=O)NC(CCCCC)C(=O) 

 

inf 

4 c1c2c(cc(c1F))n(c(n2)N) 
 

inf 

5 c1ccc(cc1)OCc1ccccc1 

 

inf 

6 c1ccc(cc1C(F)(F)F)NCCCC 

 

inf 

7 c1[nH]c2c(n1)CCC(C2)(C) 

 

inf 

8 c1(c(cc2c(c1)nc([nH]2)N))C 

 

33.84 

9 c1cccc(c1)NC(=O)C(CCCCC)N 

 

20.05 

10 c1c2c(cc(c1C))n(c(n2)N) 
 

14.41 

11 c1c2c(cc(c1Cl))n(c(n2)) 
 

13.78 
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5.6 Molecular Docking Analysis 

Molecular docking analysis helps validate the significance of identified crucial structural 

fingerprints obtained through multiple classification-based molecular modelling studies. It is 

also possible to classify and identify the role that these fragments play in achieving selective 

and promising HDAC11 inhibition. 

At first, some potent compounds containing good molecular fingerprints were chosen to 

understand the binding mode patterns of HDAC11 inhibitors with the receptor. Among all, 

some of the highly potent compounds (A004, A007, A013, A053) having efficient HDAC11 

inhibitory activity were selected for docking. In addition, Figure 20 demonstrates the 

interactions of essential structural fingerprints identified using various classification-based 

QSAR techniques and validates them through molecular docking. 

 

Figure 20: Compounds containing different fingerprints through Bayesian study, RP study, SARpy, and 

machine-learning-based QSAR techniques.  

Here, compound A004 contains crucial fingerprints like G6, G7, G13, and A007 contains G2 

and G7 whereas A013 contains G6 and G9, respectively. The information regarding the activity 

and similarities of the fingerprints was already discussed in the Bayesian classification portion 

(Figure 15). Since the X-ray crystal structure of HDAC11 has not yet been discovered, so, we 

have decided to pick the AlphaDB Fold model of HDAC11 

(https://alphafold.ebi.ac.uk/entry/B5MCU6) which has been collected from the AlphaFold 
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Database (https://alphafold.ebi.ac.uk/). Binding site determination was done with the active 

site of hydroxamate bound HDAC homolog complex (as mentioned in the materials and 

method section) for the molecular docking simulation. However, after analyzing the results, 

the selected compounds exhibit well-estimated free energy of binding in terms of “Dock score” 

after interaction with the active site residues of HDAC11 (Table 8). From Figure 21 it can be 

observed that all the compounds show identical Zn2+ metal coordination with the hydroxamate 

group.  

 

Figure: 21 Analysis of zinc-binding interactions in the compounds A004, A007, A013, and A053 using molecular 

docking studies. All the compounds are coordinated with zinc metal via the carboxamide group (CONHOH). The 

dotted lines indicate different interactions: black lines (metal coordination with zinc metal), green lines (H-

bonding), white lines (π-alkyl), blue lines (π-), orange lines (π-cation), and purple lines (halogen interaction). 

 

Now, by considering the A004 compound, the nitrogen atom in the oxazole ring, and the phenyl 

ring in the G13 fingerprint have conventional H-bond interaction with Leu268 and Tyr304. 

The trifluoromethyl benzene of the G17 fingerprint has π-alkyl interaction with Ile208 and 

Trp227. In the G6 fingerprint, the double-bonded oxygen and the amide form H-bond 

interaction with Tyr304 and His143 respectively. The hydroxyl group of the hydroxamate 

functional group forms an H-bonding with Asp181 and His142. On the other hand, for the 



72 
 

A007 compound, the hydroxamate functional group of the G7 fingerprint forms multiple H-

bonding interactions with Tyr304, Asp181, His142, and His143. The methyl group forms π- 

interaction with Tyr209 and the phenyl ring forms π- π stacked interaction with His183. The 

G2 fingerprint forms C-H bonding with Ile208 residue and has conventional H-bond 

interaction with Leu268. The trifluoromethyl group of the G2 fingerprint has a halogen 

interaction with His207. 

In the case of A013, the chlorophenyl ring of the G9 fingerprint shows engagement with Ile208 

and Trp227 through π-alkyl. Then, multiple hydrogen bonds can be noticed in the hydroxamate 

moiety of the acetamide ring with Tyr304, Asp181, His142, and His143 residue, and also π- π 

stacked interaction with His183 and Tyr209. 

From these observations, it can be hypothesized that these molecular fingerprints may have a 

key role in modulating the important amino acid interactions towards the active site. Also, the 

interaction of the specific regions of these fingerprints with important amino acid residues like 

Leu268, Tyr209, Ile208, Trp227, His143, Asp181, His142, and His183 can be important for 

accommodating the ligands inside the binding cavity.    

Table 8. Docking results, H-Bond interacting residues with good fingerprints of selected 

compounds 

Compound 

ID 

Dock Score 

(kcal/mol) 
H-Bond Interaction 

Fingerprints involved in H-

Bond interaction 

A004 -8.43 
Tyr304, Asp181, His142, His143 

and Leu268 
G6, G7, G13 and G17 

A007 -9.17 
Tyr304, Asp181, Ile208, His142, 

His143 and Leu268 
G2 and G7 

A013 -8.28 
Tyr304, Asp181, His142, His143 

and Leu268 
G6 and G9 

A053 -6.15 His183, Arg267, Tyr304, His142 G6, G8 and G10 

 

  



73 
 

 

 

 

 

 

 

 

 

Chapter 6: Conclusion and Future Perspective 
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6. Conclusion 

The purpose of this work was to find significant fingerprints necessary for HDAC11 inhibition. 

Since the human crystal structure of HDAC11 has not yet been discovered, so, ligand-based 

drug design, particularly fragment-based in-silico drug design, is a viable alternative for 

accelerating the anti-HDAC11 drug development approach. Here, we have developed binary-

QSAR models (i.e., bayesian classification, recursive partitioning, SARpy analysis, and 

machine learning analysis) and molecular docking on a dataset containing NTrain = 534 and NTest 

=178, that have successfully well-performed in all the validation metrics. These models pointed 

towards several significant structural attributes of these compounds which can define the active 

and inactive classes of HDAC11 inhibitors. The observations from the overall modeling 

strategy are very helpful in understanding the mechanisms underlying the fingerprints 

associated with supported inhibition processes.  For instance, the Bayesian classification model 

accurately distinguishes good and detrimental structural features of HDAC11 inhibitors. 

Positive contributors include benzimidazole moiety, carboxamide group, and isoindoline 

moiety. Conversely, some scaffolds such as substituted 1,3-dimethyl-2,4-

dimethylenehexahydropyrimidine, methyl substituted-divinyl amine, and certain 2-

propyloxazole scaffolds should be omitted in the design of HDAC11 inhibitors. Structural 

fragments obtained from the RP study such as diisopropyl amine moiety, fluromethane 

scaffold, and isoindoline moiety fused with carboxamide positively influence HDAC11 

inhibition, while isobutyramide and methyl indene have a negative impact. The SARpy analysis 

revealed that trifluromethyl-benzimidazole moiety (SA1), 5-oxo-N-(1-oxoheptan-2-

yl)pyrrolidine-2-carboxamide moiety (SA2) having infinite likelihood ratios positively 

influence the HDAC11 inhibitory activity. Upon interpreting descriptors using SHAP plots 

discovered some influential features like minHBint5, GATS1m and some electrotopological 

descriptors which provide insight into their roles in inhibiting HDAC11 activity.  

Moreover, the importance of the discovered structural fragments in attaining effective and 

selective HDAC11 inhibition was further validated by the molecular docking study, with 

compounds A004, A007, A013, and A053, exhibiting highly potent inhibitory activity. We 

hope this study will help researchers design and discover highly effective and promising 

HDAC11 inhibitors, mainly for anticancer and immunosuppressive drugs. We anticipate that 

these will lead to new insights when designing selective HDAC11 inhibitors in the near future. 

It is crucial to remember that further in vitro and in vivo research is required to properly 

interpret our results.  
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Furthermore, forthcoming investigations could focus on refining the binary-QSAR models by 

incorporating advanced ML techniques such as deep learning, neural networks, ensemble 

methods, etc, which could enhance predictive accuracy. Additionally, expanding the molecular 

fingerprint database and integrating multi-omics data could provide a more comprehensive 

understanding of HDAC11 inhibition mechanisms. This work has the potential to identify 

novel inhibitors with high specificity, paving the way for targeted therapies with fewer side 

effects. 
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Annexure-I 

All HDAC11 compounds in SMILES format. 

 Training set of compounds of HDAC11 inhibitors in SMILES format 

Compou

nd ID 

SMILES 

 

IC50 

(nM) 

Bina

ry 

A001 
C1(=O)[C@@H](C(C)C)NC(=O)C[C@H]2OC(=O)[C@H](C(C)C)NC(=O)/C(=C/C)/NC(=O)[C@@

H](CSSCC/C=C/2)N1 
0.3 1 

A002 c1cc2n(cc(c2cc1)CNCC1CCN(CC1)c1ncc(cn1)C(=O)NO)C 0.37 1 

A003 N1[C@@H](CCCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1cc(ccc1)C 1 1 

A004 O=C(NO)c1c2c(C(C)(C)N(c3oc4ccc(cc4n3)C(F)(F)F)C2)ccc1 1 1 

A005 O=C(NO)/C=C/c1ccc(CNCCc2c3c([nH]c2C)cccc3)cc1 1.6 1 

A006 c1(oc2c(n1)nccc2)N1C(C)(C)c2cccc(c2C1)C(=O)NO 2 1 

A007 O=C(NO)c1c2c(C(C)(C)N(c3[nH]c4cc(ccc4n3)C(F)(F)F)C2)ccc1 2 1 

A008 c1([nH]c2c(n1)ccc(c2)C(F)(F)F)N1Cc2c(cccc2C1)C(=O)NO 2 1 

A009 c1cc2c(cc1S(=O)(=O)N1CCN(CC1)c1ncc(cn1)C(=O)NO)cccc2 2.1 1 

A010 O=C(NO)c1c2c(C(C)(C)N(C2)c2ccc(nc2)C(F)(F)F)ccc1 3 1 

A011 s1c2nc(c1)C1=N[C@@](CS1)(C(=O)N[C@@H](C(=O)O[C@H](/C=C/CCS)CC(=O)NC2)C(C)C)C 3 1 

A012 O=C(NO)c1c2c(C(C)(C)N(C2)c2cnc(cn2)C(F)(F)F)ccc1 3 1 

A013 c1(c(cc2c(c1)oc(n2)Nc1cc(ccc1)C(=O)NO)Cl)Cl 3 1 

A014 N1[C@@H](CCCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccc(cc1)C 3 1 

A017 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@H]1N(C(=O)CCC1)C 5 1 

A019 c1cc(ccc1/C=C/C(=O)NO)CN(CCO)CCc1c[nH]c2c1cccc2 5.6 1 

A021 O=C(NO)c1c2c(C(C)(C)N(C2)c2ccc(cn2)C(F)(F)F)ccc1 6 1 

A022 c1(oc2c(n1)cccc2)N1Cc2c(cccc2C1)C(=O)NO 7 1 

A023 N1(Cc2c(cccc2C1)C(=O)NO)c1ccc(cn1)C(F)(F)F 7 1 

A025 N1[C@@H](CC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 10 1 

A027 ONC(=O)/C=C/C(=C/[C@H](C(=O)c1ccc(N(C)C)cc1)C)/C 11 1 

A032 C(=O)(NCCOc1ccc(cc1)C(=O)NO)c1c(c2c(cccc2)o1)CN(C)C 14 1 

A033 c1cc(ccc1C(=O)/C(=C/[C@@H](C)/C=C/C(=O)NO)/C)N(C)C 14 1 

A036 c1cc(cc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@@H]1NC(=O)CC1)C 15 1 

A037 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@@H]1C(=O)NCCC1 15 1 

A038 c1c(ccc(c1)C(=O)NO)/C=C/C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1ccc(cc1)Cl 16 1 

A039 [C@H](N1CCN(CC1)c1ncc(cn1)C(=O)NO)(/C=C/c1ccc(cc1)F)CO 21 1 

A041 N1C(=O)[C@@H]([C@@H](C1)c1ccccc1)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 24 1 

A042 N1(Cc2c(cccc2C1)C(=O)NO)c1ccc2c(n1)cccc2 26 1 

A043 O=C(NO)c1c2c(C(C)(C)N(C2)c2cnc(nc2)C(F)(F)F)ccc1 27 1 

A044 c1([nH]c2c(n1)cccc2)N1CCc2c(CC1)c(ccc2)C(=O)NO 30 1 

A045 N1[C@@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 30 1 

A046 C(n1ncc(c1)c1c2c(ncn1)[nH]cc2)CCCCCC(=O)NO 31 1 

A047 c1(sc2c(n1)cccc2)N1Cc2c(cccc2C1)C(=O)NO 35 1 

A048 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1NC(=O)C1 37 1 

A049 c12c(cccc1)[nH]cc2CN1CCN(CC1)c1ncc(cn1)C(=O)NNCCCCCC 41 1 
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A050 O=S(=O)(Nc1ccc(C(=O)NO)cc1)c1ccc(cc1)C(C)(C)C 44 1 

A053 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1NC(=O)CCC1 47 1 

A054 C(=O)(c1c(cccc1)OC)N[C@H](COc1cc(ccc1)/C=C/C(=O)NO)Cc1c[nH]c2c1cccc2 53 1 

A055 C(=O)(/C=C/c1c(=O)n(ccc1)CCCc1cc2c(cc1)cccc2)NO 55 1 

A056 c1(cc2cc(c1)/C=C\CO[C@@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 58 1 

A057 N1[C@@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1cc(ccc1)C 62 1 

A058 N1([C@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1)C 67 1 

A060 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)C 73 1 

A061 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@@H]1NC(=O)CC1 75 1 

A062 c1ccc(cc1C(F)(F)F)NC(=O)CCCCCCC(=O)NO 75 1 

A063 c1c(ccc(c1)C(=O)NO)/C=C/C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1cccc(c1)Cl 76 1 

A064 n1c(sc(c1C(=O)N[C@H](c1ccc(cc1)C(=O)NO)C)C1CC1)c1ncc(s1)c1ccccc1 78 1 

A065 c1c(ccc(c1)NC(=O)CCCCCCC(=O)NO)C 79 1 

A066 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)NCCC 80 1 

A067 N1[C@@H](CCCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)NC1CCCC1 89 1 

A068 c1(cc2cc(c1)/C=C\CO[C@@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 97 1 

A070 N1[C@H](CCC1=O)C(=O)N[C@H](CCCCCS)C(=O)Nc1ccccc1 102 1 

A071 c1(cc2cc(c1)CCCO[C@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 103 1 

A072 c12ccc(nc1cccc2)N(CCCCCCC(=O)NO)c1ccccn1 112 1 

A073 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccccc1 115 1 

A075 c1c(ccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@@H]1NC(=O)CC1)C 127 1 

A076 c1cc2c(cc1)nc1n(c2=O)nc(c2c1cccc2)NCCCCCCCC(=O)NO 130 1 

A077 c1cc2c(cc1)nc1n(c2=O)nc(c2c1cccc2)NCCCCCCC(=O)NO 130 1 

A078 C(=O)(Nc1ccccc1)CCCCCCCS 133 1 

A079 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1C(=O)NCC1 150 1 

A080 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)NCc1ccccc1 150 1 

A081 n1(cccc(c1=O)/C=C/C(=O)NO)CCc1cc2c(cc1)cccc2 161 1 

A082 c1(cc2cc(c1)CCCO[C@@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 174 1 

A083 c1c(ccc(c1)C(=O)NO)/C=C/C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1ccc(cc1)Br 176 1 

A084 C(CCCCC)NNC(=O)c1ccc(cc1)c1ccc(cc1)CNC(=O)C 180 1 

A085 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)Nc1ccccc1 190 1 

A086 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)Nc1cccc(c1)F 210 1 

A087 O=S(=O)(Nc1ccc(C(C)(C)C)cc1)c1ccc(C(=O)NO)cc1 223 1 

A088 c1(cc2cc(c1)CCCO[C@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 226 1 

A090 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C)c1c(c(c(c(c1F)F)F)F)F 246 1 

A092 c1cccc(c1)NC(=O)CCCCCCS 262 1 

A095 C(=O)(CCCCCn1c(=O)c2c3c(c1=O)ccc(c3ccc2)N1CCOCC1)NO 290 1 

A096 N1[C@@H](CCCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)N1Cc2c(CC1)cccc2 293 1 

A098 c1c(c([nH]c1c1ccc(cc1)O)C(=O)NCc1ccc(cc1)C(=O)NO)c1ccsc1 319 1 

A099 c1c(c([nH]c1c1ccc(cc1)OC)C(=O)NCc1ccc(cc1)C(=O)NO)c1ccoc1 340 1 

A101 C(=O)(c1ccc(cc1)CNc1cccc2cccnc12)NO 376 1 

A102 C(c1c[nH]c2c1cccc2)(c1c[nH]c2c1cccc2)c1ccc(cc1)/C=C/C(=O)NO 410 1 

A103 C(=O)(c1ccc(cc1)C1CCCCC1)Nc1ccc(cc1)C(=O)NO 411 1 
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A104 C(=O)(CCCCCC(c1c[nH]c2c1cccc2)c1c[nH]c2c1cccc2)NO 430 1 

A105 C(c1ccc(cc1)NC(=O)c1ccc(C(=O)NO)cc1)(C)(C)C 447 1 

A106 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccncc1 472 1 

A107 c1c(cc2c(c1)n(c1c2C[S@](=O)CC1)Cc1ccc(cc1)C(=O)NO)F 500 1 

A108 C(=O)(c1c(cc(c(c1)C(C)C)O)O)N1CCc2onc(c2C1)C(=O)NCCCCCCC(=O)NO 521 1 

A110 N1(Cc2ccc(cc2)C(=O)NO)c2c(CC[C@H]3[C@H]1CCCC3)cccc2 540 1 

A111 c1cccc2c1OCCCCCCCO[C@H](C(=O)N2)CCCCCC(=O)NO 546 1 

A112 c1cccc2c1OCCCCCCO[C@@H](C(=O)N2)CCCCCC(=O)NO 564 1 

A113 c12c(cccc1)[nH]cc2CN1CCN(CC1)c1ncc(cn1)C(=O)NNCCC 570 1 

A114 c1ccncc1c1ccnc(n1)NCc1ccc(cc1)C(=O)Nc1c(cccc1)N 590 1 

A117 c1c(cc2c(c1)c(cn2Cc1ccc(cc1)C(=O)NO)C(=O)c1cc(c(c(c1)OC)OC)OC)OC 651 1 

A118 C(=O)(Nc1ccccc1)CCCCCS 659 1 

A120 O=S(=O)(c1cc(ccc1)C(F)(F)F)N(c1ccc(cc1)C(=O)NO)CC 695 1 

A121 O=S(=O)(N(CC(=O)N(c1ccc(cc1)C(=O)NO)Cc1ccc(cc1)C(C)(C)C)C)c1ccc(cc1)F 697 1 

A122 C(=O)(c1c(c(c(c(c1F)F)F)F)F)Nc1ccc(cc1)C(=O)NO 700 1 

A125 C1c2c(N(CC1)Cc1ccc(cc1)C(=O)NO)ccc(c2)Cl 746 1 

A126 c1(c(cc2c(c1)nc([nH]2)Nc1cc(C(=O)NO)ccc1)S(=O)(=O)C)C#N 750 1 

A127 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1F)F 750 1 

A129 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1OC)Cl 750 1 

A130 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)ccc1[N+](=O)[O-] 750 1 

A132 c1c2c(nc(n2C)Nc2cc(C(=O)NO)ccc2)cc(c1C(F)(F)F)c1cccnc1 750 1 

A133 c1cc2c(c(c1)C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)F 750 1 

A134 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)c1cc(ccc1)C(F)(F)F 750 1 

A135 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1)C 750 1 

A136 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1c(cccc1Cl)Cl 750 1 

A137 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1ccccc1C(F)(F)F 750 1 

A138 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1c(cccc1)OC(F)(F)F 750 1 

A139 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1ccc(c(c1)C)C 750 1 

A143 c1(cccc2c1C[C@]1(CC2)C(=O)N(CC1)c1ccc(cc1)C(F)(F)F)C(=O)NO 750 1 

A144 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)c1cccc(c1)C(F)(F)F 750 1 

A145 c1c(cc2c([nH]c(n2)Nc2cc(C(=O)NO)ccc2)c1)[N+](=O)[O-] 750 1 

A146 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)CCC(C2)(C)C 750 1 

A148 c1ccc(c2c1CN(C2)c1ccc2c(c1)OCCN2)C(=O)NO 750 1 

A150 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1cnc(cc1)C(F)(F)F 750 1 

A151 c12c(cc(nc1)NC(=O)N1C(c3c(C1)c(ccc3)C(=O)NO)(C)C)CCCC2 750 1 

A152 c1cc(ncc1C(F)(F)F)N1C(c2c(C1)c(ncc2)C(=O)NO)(C)C 750 1 

A153 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)cc(cc2c1ccccc1)C(F)(F)F 750 1 

A154 c12c(c(ccc1)C(=O)NO)[nH]c(c2)c1ccc(cc1)C(F)(F)F 750 1 

A155 c1([nH]c2c(c1)c(ccc2)C(=O)NO)c1ccc(cc1)C(F)(F)F 750 1 

A156 c12c(c(ccc1)C(=O)NO)N[C@@H](C2)c1ccc(cc1)C(F)(F)F 750 1 

A157 c1cc(ccc1C(F)(F)F)[C@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C 750 1 

A158 c1ccc2c(c1C(=O)NO)CCN(C2)c1[nH]c2c(n1)cccc2 750 1 

A159 c1ncccc1/C=C/C(=O)NCc1ccc(cc1)C(=O)Nc1ccc(cc1N)F 760 1 
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A160 c1(ccc(cc1)C(=O)NO)Cn1nc(nn1)c1ncccn1 762 1 

A161 C(=O)(CCCCCCS)NC1CCCC1 776 1 

A162 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)F 787 1 

A163 c1c(ccc(c1)/C=C/C(=O)NO)/C=N/OCc1ccc(cc1)[N+](=O)[O-] 790 1 

A164 O=S(=O)(c1cc(ccc1)C(C)(C)C)N(c1ccc(cc1)C(=O)NO)CC 802 1 

A165 C1Cc2c(N(Cc3ccc(cc3)C(=O)NO)[C@H]3[C@H](C1)CCCC3)cc(cc2)C(F)(F)F 820 1 

A168 C(=O)(CCCCc1nn(cc1)Cc1ccc(cc1)n1ccc2ccccc12)NO 897 1 

A169 c1cc(ccc1/C=C/C(=O)NO)OC[C@@H](NC(=O)c1ccc(cc1)Cl)Cc1c2ccccc2[nH]c1 900 1 

A170 N(Cc1ccc(cc1)C(=O)Nc1ccccc1N)C(=O)OCc1cccnc1 900 1 

A171 c1cc2cc(c1)COC/C=C/COCc1c(ccc(Nc3nccc2n3)c1)OCCCCCCC(=O)NO 930 1 

A172 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ncccc1 941 1 

A173 c1cc(ccc1C(=O)NO)CN(S(=O)(=O)c1c(c(c(c(c1F)F)F)F)F)C(C)C 941 1 

A175 C(CCCCC(=O)NO)ONC(=O)c1cc(c(cc1)C)C 997 1 

A176 C(=O)(c1ccc(cc1)CNc1c2cccnc2ccc1)NO 1,004 0 

A177 c1(ccc(cc1)C(=O)NO)Cn1c(nnn1)c1cccs1 1,015 0 

A178 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)[N+](=O)[O-] 1,020 0 

A181 C1c2c(N(Cc3ccc(cc3)C(=O)NO)[C@H]3[C@H]1CCCCC3)cccc2 1,200 0 

A182 C(=C\c1nnn(c1)[C@H]1C[C@H](N(C1)Cc1ccccc1)CO)/C(=O)NO 1,200 0 

A184 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)NO)N(Cc1ccccc1)C 1,220 0 

A185 c1c(ccc(c1)/C=C/C(=O)NO)C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1ccc(cc1)Cl 1,365 0 

A186 N(C(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1NC(=O)CCC1)C1CCCC1 1,440 0 

A187 C1[C@H]2[C@H](N(Cc3ccc(cc3)C(=O)NO)c3c1cccc3)CCCC2 1,500 0 

A188 c1c(ccc(c1)/C=C/C(=O)NO)C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1ccc(cc1)Br 1,577 0 

A190 c1(c(c(cc(c1)/C=C\c1ccc(c(c1)/C=C/C(=O)Nc1ccccc1N)OC)OC)OC)OC 1,620 0 

A191 c12cc(ccc1n(cc2)Cc1ccc(cc1)OC)C(=O)NO 1,700 0 

A192 C(=O)(CCCCc1nn(cc1)Cc1ccc(cc1)c1ccccc1)NO 1,725 0 

A193 C(CC)NNC(=O)c1ccc(cc1)c1ccc(cc1)CNC(=O)C 1,800 0 

A194 C(=O)(CCCCCCS)NCCc1cc(ccc1)C 1,870 0 

A195 c12c(c(cc(n1)C#N)N(c1cc(c(cc1)OC)/C=C/C(=O)NO)C)cccc2 1,900 0 

A196 c1(ccccc1)CNc1ncc(cn1)C(=O)NNCCC 2,000 0 

A197 C(=O)(CCCCCCS)NCc1ccc(cc1)C(F)(F)F 2,070 0 

A198 C(CCCCC(=O)NO)ONC(=O)c1cc(ccc1)C 2,135 0 

A199 c1cc(c(cc1)NC(=O)/C=C/c1nnn(c1)[C@H]1C[C@H](N(C1)Cc1ccccc1)CO)N 2,140 0 

A200 C(=O)(CCCCc1nn(cc1)Cc1cc(ccc1)c1ccccc1)NO 2,342 0 

A201 O=S1(=O)c2ccccc2N([C@@H]2[C@H](C1)CCCC2)Cc1ccc(cc1)C(=O)NO 2,400 0 

A203 C1Cc2c(N(Cc3ccc(cc3)C(=O)NO)[C@H]3[C@H](C1)CCCC3)cccc2 2,400 0 

A204 C1(NC(=O)CCCCCCC(=O)NO)CCCC1 2,630 0 

A205 C[C@@H](/C=C/C(=O)NO)/C=C(\C)/C(=O)c1ccc(cc1)N(C)C 2,684 0 

A206 c1(ccc(cc1)C(=O)Nc1ccccc1N)NC(=O)C 2,830 0 

A207 ONC(=O)c1ccc(cc1)Cn1sc2ncccc2c1=O 2,840 0 

A209 c1(c(cc(cc1F)C(=O)NO)F)Cn1nc(nn1)c1ncccn1 3,071 0 

A210 c1c(ccc(c1)/C=C/C(=O)NO)C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1cc2c(cc1)cccc2 3,164 0 

A211 c12c(c(nc(n1)C)N(c1cc(c(cc1)OC)/C=C/C(=O)NO)C)cccc2 3,200 0 
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A214 c1cc(ccc1C(=O)NO)C(=O)N[C@@H](c1c2c([nH]c1)cccc2)C(=O)Nc1ccc(cc1)C 3,500 0 

A215 C1[C@H]2C[C@@H]3C[C@@H](C[C@]1(C3)N(c1ncc(cn1)C(=O)NO)C)C2 3,600 0 

A218 C(=O)(Cc1ccccc1)N(CCO)C(=O)Cc1ccc(cc1)C(=O)NO 3,705 0 

A219 c1ccc2c(c1)n(c1c2CN(CC1)C)Cc1ccc(cc1)C(=O)NO 3,790 0 

A221 C(=C\C(=O)NO)/c1cc(ccc1)S(=O)(=O)N[C@H](C(=O)Nc1c2ccccc2ccc1)c1ccccc1 3,850 0 

A222 c1c(ccc(c1)/C=C/C(=O)NO)C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1cccc(c1)Br 3,962 0 

A223 c1ccc2c(c1)N(c1c(S2)cccc1)Cc1ncc(cc1)C(=O)NO 4,304 0 

A224 c1(nccc(c1)/C=C/c1ccc(cc1)C(=O)NO)c1c(cc(cc1)C)F 4,930 0 

A225 N(C(=O)CCCC(=O)NCCc1ccccc1)O 5,000 0 

A226 c1(c(c(cc(c1)C(=C)c1ccc2c(c1)c(cn2C)/C=C/C(=O)NO)OC)OC)OC 5,000 0 

A227 c1ccc(CCNC(=O)CCCNC(=O)OCC)cc1 5,000 0 

A228 c1(ccc(cc1)/C=C/C(=O)NO)c1ccc(cc1)O 5,010 0 

A229 o1c(cc(n1)C(=O)NO)CCNC(=O)c1cc(c(cc1)Cl)Cl 5,120 0 

A230 ONC(=O)CCCCCn1c(=O)c2cccc3cccc(c1=O)c23 5,200 0 

A231 C1c2cc(ccc2N(CC1)Cc1ccc(cc1)C(=O)NO)C(=O)N 5,310 0 

A232 c1c(ccc(c1)/C=C/C(=O)NO)/C=N/OCc1c(c(c(c(c1F)F)F)F)F 5,480 0 

A233 c1c(cc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)O 5,501 0 

A234 C(=O)(/C=C/c1ccc(cc1)C(F)(F)F)NO 5,530 0 

A235 c1(cc(cc(c1Cn1c(nnn1)c1sccc1)F)C(=O)NO)F 5,662 0 

A236 c1c(c([nH]c1c1ccc(cc1)O)C(=O)NCc1ccc(cc1)C(=O)Nc1c(cccc1)N)c1ccoc1 5,662 0 

A237 n1(c(=O)n(c(=O)c2c1scc2)CCc1ccccc1)Cc1ccc(cc1)C(=O)NO 5,686 0 

A238 C(=O)(CCCCCC(c1c[nH]c2c1cccc2)c1c[nH]c2c1cccc2)Nc1ccccc1N 5,800 0 

A240 c1(cc(on1)CN1CCOCC1)c1ccc(cc1)/C=C/C(=O)NO 6,260 0 

A241 n1c(nc2c(c1N1CCOCC1)ccn2CCCCCCC(=O)NO)c1cnc(nc1)N 6,300 0 

A242 c1c(cc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)C(F)(F)F 7,392 0 

A243 c1(c(c(cc(c1)C(=C)c1ccc(cc1/C=C/C(=O)NO)OC)OC)OC)OC 8,000 0 

A244 c1(ccc2c3c1cccc3c(=O)n(c2=O)CCCCCC(=O)Nc1c(cccc1)N)N1CCOCC1 8,120 0 

A245 
C1[C@H]2C[C@]3(C[C@@H]1C[C@H](C3)C2)c1c(ccc(c1)c1ccc(cc1)C=CC(=O)O)O[C@@H](C(

=O)NO)C 
8,230 0 

A246 C(CCCCC)NNC(=O)c1cccc(c1)NCc1ccccc1 8,600 0 

A249 S1Cc2c(CC1)n(c1c2cc(cc1)F)Cc1ccc(cc1)C(=O)NO 9,700 0 

A251 c1(ncnc2c1nc[nH]2)N[C@H](c1nc(c2c(n1)cccc2)CCCCCC(=O)NO)CC 9,819 0 

A252 C1[C@@H]2C[C@@H]3C[C@H]1C[C@](C2)(C3)CN(Cc1c(cc(cc1)C(=O)NO)F)C 10,000 0 

A253 c1ccc(cc1)NC(=O)CCCCCC(=O)NO 10,000 0 

A254 c1(c(c(cc(c1)C(=C)c1ccc(c(c1)/C=C/C(=O)NO)OC)OC)OC)OC 10,000 0 

A255 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1cccs1 10,020 0 

A256 C(=O)(/C=C/c1ccc(cn1)NC(=O)[C@H](Cc1ccccc1)c1ccccc1)NO 10,200 0 

A257 c1c(cc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)C1CC1 10,500 0 

A258 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1cc(ccc1)F 10,660 0 

A259 c1c(ccc(c1)/C=C/C(=O)NO)/C=N/OCc1ccc(cc1)C(=O)OC 10,800 0 

A260 c1(c(c(cc(c1)C(=C)c1ccc(c(c1)C#CCCC(=O)NO)OC)OC)OC)OC 11,000 0 

A261 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccc(cc1)O 11,290 0 

A262 c1c(c(cc(c1)C(=O)NO)F)Cn1c(nc2c1cccc2)C 12,900 0 

A263 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccc(cc1)OC 13,850 0 
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A264 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1 13,900 0 

A265 c1([C@H]2CN(C[C@@H]2C(=O)Nc2ccc(cc2)Cl)C)ccc(/C=C/C(=O)Nc2c(cccc2)N)cc1 14,000 0 

A266 c1cccc(c1)NC(=O)[C@@H](CCCCCS)NC(=O)[C@H]1NC(=O)CCC1 14,200 0 

A267 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccc(cc1)F 14,730 0 

A268 c1c(ccc(c1)C(=O)NO)NCc1csc2c1cc(cc2)Br 15,000 0 

A269 c1c(cc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)F 15,400 0 

A270 c1ccc2c(c1)c(c([nH]2)C)/C=C/c1c(cccc1)c1ccc(cc1)/C=C/C(=O)NO 16,200 0 

A272 c1(ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)F 16,740 0 

A275 c1([C@@H]2CN(C[C@H]2C(=O)Nc2ccc(cc2)Cl)C)ccc(/C=C/C(=O)Nc2c(cccc2)N)cc1 20,000 0 

A278 N1CC2(OC1=O)CCN(c1ccc(cn1)C(=O)Nc1c(ccc(c1)c1sccc1)N)CC2 25,000 0 

A279 c1cccc(c1)NS(=O)(=O)c1cc(ccc1)/C=C/C(=O)NO 25,000 0 

A280 c1cnc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1 25,050 0 

A281 C1N(Cc2n(C1)cc(c2)C(=O)NO)C(=O)c1cccn1C 29,000 0 

A282 [C@H](CCCCCS)(C(=O)NC1CCCC1)NC(=O)OC(C)(C)C 30,700 0 

A283 c1ccc(cc1)/C=C/c1scc(n1)CCCC(=O)NO 32,800 0 

A284 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1c(cccc1)OC 34,370 0 

A285 C(/C(=C/c1ccc(cc1)/C=C/C(=O)NO)/c1ccc(cc1)F)NC1CC1 37,000 0 

A286 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)Cc1ccccc1 37,500 0 

A287 
C(=O)(NO)/C=C/C=C/c1ccc(c2ccc(c(c2)[C@]23C[C@@H]4C[C@H](C2)C[C@@H](C4)C3)OC)cc

1 
38,000 0 

A288 c1cc(ccc1C(=O)NNCCCC)Br 44,500 0 

A289 c1c(cc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccccc1)C 52,050 0 

A290 c1(c(ccc(c1)c1ccc(cc1)/C=C/C(=O)NO)O)[C@]12C[C@@H]3C[C@H](C1)C[C@@H](C3)C2 57,000 0 

A291 
c1(cc(ccc1CC#N)c1c(cc(cc1)/C=C/C(=O)NO)Cl)[C@]12C[C@@H]3C[C@H](C1)C[C@@H](C3)C

2 
63,000 0 

A293 c1c(cc2c(c1)cc(c(=O)o2)C(=O)/C=C/C=C/c1ccc(c(c1)OC)OC)OC 74,000 0 

A297 N1(C(=O)c2c(C1)c(ccc2)C(=O)NO)c1oc2c(n1)cc(cc2)C(F)(F)F <500 1 

A298 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)cc(c(c2)c1ccccc1)C(F)(F)F <500 1 

A299 c12c(c(ccc1)C(=O)NO)[nH]c(c2)c1ncc(nc1)C(F)(F)F <500 1 

A301 c12c(c(ccc1)C(=O)NO)N[C@H](C2)c1ccc(cc1)C(F)(F)F <500 1 

A302 c1cc(ncc1C(F)(F)F)[C@@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C <500 1 

A303 n1cc(ncc1C(F)(F)F)[C@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C <500 1 

A305 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)CC[C@H](C2)C(F)(F)F <500 1 

A306 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)CC[C@@H](C2)C(F)(F)F <500 1 

A308 c1c(cc2c(c1)sc(n2)N1Cc2c(C1)c(ccc2)C(=O)NO)C(F)(F)F <500 1 

A309 C1[C@@H](Cc2c(C1)oc(n2)N1Cc2c(C1)c(ccc2)C(=O)NO)C(F)(F)F <500 1 

A310 c1(ccc2c(c1)oc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(F)(F)F <500 1 

A311 C1[C@@H](Cc2c(C1)oc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(F)(F)F <500 1 

A312 [C@H]1(CCc2c(C1)oc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(F)(F)F <500 1 

A313 c1c(cc2c(c1)sc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(F)(F)F <500 1 

A314 c1ncc2c(c1)oc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C <500 1 

A315 c1ccc2c(c1)sc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C <500 1 

A316 c1ccc2c(c1)nc(cc2)N1Cc2c(C1(C)C)cccc2C(=O)NO <500 1 

A317 c1c(cc2c(c1)nc(cc2)N1Cc2c(C1(C)C)cccc2C(=O)NO)C(F)(F)F <500 1 

A320 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)oc2c(n1)nc(cc2)C(F)(F)F <500 1 



82 
 

A321 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)oc2c(n1)ncc(c2)C(F)(F)F <500 1 

A322 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)nc(c(cc1)C(F)(F)F)C#N <500 1 

A325 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1cc(ncc1)C(F)(F)F <500 1 

A326 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1nccc(c1)C(F)(F)F <500 1 

A327 [N+](=O)(c1c(cc2c([nH]c(n2)Nc2cc(C(=O)NO)ccc2)c1)Cl)[O-] <500 1 

A328 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1F)Br <500 1 

A329 C(c1c(cc2c([nH]c(n2)Nc2cc(C(=O)NO)ccc2)c1)C#C)(F)(F)F <500 1 

A330 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)ccc1C(F)(F)F <500 1 

A331 c1c2c(nc(n2C)Nc2cc(C(=O)NO)ccc2)cc(c1c1cnccc1)C(F)(F)F <500 1 

A332 c1c2c(nc(n2C)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccccc1)C(F)(F)F <500 1 

A333 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1C(F)(F)F)c1ccccc1 <500 1 

A334 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cccnc1)C(F)(F)F <500 1 

A335 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1C(F)(F)F)c1ccncc1 <500 1 

A336 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cccc(c1)OCC)C(F)(F)F <500 1 

A337 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccc(cc1)SC)C(F)(F)F <500 1 

A338 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccc(cc1)C(=O)N(C)C)C(F)(F)F <500 1 

A341 ONC(=O)c1cc(ccc1)Nc1[nH]c2c(n1)cc(c(c2)C(F)(F)F)c1cc2OC=COc2cc1 <500 1 

A342 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cccc(c1)O)C(F)(F)F <500 1 

A343 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccccc1CO)C(F)(F)F <500 1 

A345 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cnc(nc1)N1CCOCC1)C(F)(F)F <500 1 

A346 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cc(ccc1)C(=O)N1CCOCC1)C(F)(F)F <500 1 

A348 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cc(ccc1)COC)C(F)(F)F <500 1 

A349 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cc2c(cc1)cnn2C)C(F)(F)F <500 1 

A350 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cc(ccc1)C(=O)N(C)C)C(F)(F)F <500 1 

A351 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccc(cc1)N1CCOCC1)C(F)(F)F <500 1 

A352 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cocc1)C(F)(F)F <500 1 

A353 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)Cl <500 1 

A354 c1ccc2c(c1C(=O)NO)C[C@@]1(C2)C(=O)N(CC1)Cc1ccc(c(c1)C(F)(F)F)Cl <500 1 

A355 Clc1c(cc(CN2C(=O)[C@@]3(CC2)Cc2cccc(c2C3)C(=O)NO)cc1)C(F)(F)F <500 1 

A356 Fc1cc(CN2C(=O)[C@@]3(CC2)Cc2cccc(c2C3)C(=O)NO)ccc1C(F)(F)F <500 1 

A357 c1cc2c(c(c1)C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)C(F)(F)F <500 1 

A359 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1)c1ccccc1 <500 1 

A360 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1Cl)Cl <500 1 

A361 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1ccc(cc1)OC(F)(F)F <500 1 

A362 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1)Cl <500 1 

A365 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1ccccc1c1ccccc1 <500 1 

A366 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1ccc(c(c1)Cl)Cl <500 1 

A367 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1ccc(cc1)OCc1ccccc1 <500 1 

A368 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1cccc(c1)OC(F)(F)F <500 1 

A369 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1F)C(F)(F)F <500 1 

A370 c1(cccc2c1C[C@]1(CC2)C(=O)N(CC1)Cc1cc(c(cc1)Cl)C(F)(F)F)C(=O)NO <500 1 

A372 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)C(=O)C1(CC1)c1cc(ccc1)C(F)(F)F <500 1 

A375 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)Cc1ccc(c(c1)F)C(F)(F)F <500 1 
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A377 c1c(c(cc2c1oc(n2)Nc1cccc(c1)C(=O)NO)C(F)(F)F)C#C <500 1 

A380 c1c(c(cc2c1oc(n2)Nc1cccc(c1C)C(=O)NO)Cl)Cl <500 1 

A381 c1(c(cc2c(c1)oc(n2)Nc1cc(C(=O)NO)ccc1F)Cl)Cl <500 1 

A382 c1(c(cc2c(c1)oc(n2)Nc1cc(C(=O)NO)cnc1)Cl)Cl <500 1 

A385 c1(c(cc2c(c1)sc(n2)Nc1cc(C(=O)NO)ccc1)Cl)Cl <500 1 

A386 c1(c(cc2c(c1)nc([nH]2)Nc1cc(C(=O)NO)ccc1)S(=O)(=O)C)C(F)(F)F <500 1 

A387 c1(c(cc2c(c1)nc([nH]2)N(c1cc(C(=O)NO)ccc1)C)C#N)C(F)(F)F <500 1 

A389 c1c2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nc1cc(C(=O)NO)ccc1)C <500 1 

A390 c1c2c(cc(c1F)C#N)n(c(n2)Nc1cc(C(=O)NO)ccc1)C <500 1 

A391 c1c2c(cc(c1Cl)Cl)n(c(n2)Nc1cc(C(=O)NO)ccc1)C <500 1 

A392 c1c2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nc1cc(C(=O)NO)ccc1)C(C)C <500 1 

A393 c1c2c(cc(c1C#N)C(F)(F)F)n(c(n2)Nc1cc(C(=O)NO)ccc1)C(C)C <500 1 

A395 c1c2c(cc(c1c1ccccc1)C(F)(F)F)n(c(n2)Nc1cc(C(=O)NO)ccc1)C(C)C <500 1 

A396 c1c2c(cc(c1Cl)Cl)n(c(n2)Nc1cc(C(=O)NO)ccc1)C(C)C <500 1 

A397 c1c2c(cc(c1C(F)(F)F)c1ccccc1)n(c(n2)Nc1cc(C(=O)NO)ccc1)CCOC <500 1 

A399 c1c(c(cc2c1nc(n2CCCCCC)Nc1cccc(c1)C(=O)NO)C(F)(F)F)C#N <500 1 

A400 N(c1cc(C(=O)NO)ccc1)c1n(c2c(n1)cc(c(c2)Cl)Cl)CCCCCN <500 1 

A401 N(c1cc(C(=O)NO)ccc1)c1n(c2c(n1)cc(c(c2)F)Cl)CCCCCN <500 1 

A402 c1(c(cc2c(c1)nc([nH]2)Nc1cc(C(=O)NO)ccc1)C)C <500 1 

A404 c1(c(cc2c(nc([nH]2)Cc2cc(C(=O)NO)ccc2)c1)Cl)Cl <500 1 

A405 c1(c(cc2c([nH]c(c2)Nc2cc(C(=O)NO)ccc2)c1)Cl)Cl <500 1 

A406 c1c2c(oc(n2)Nc2nc(C(=O)NO)ccc2)cc(c1Cl)Cl <500 1 

A407 n1c2c(oc(n2)Nc2cc(C(=O)NO)ccc2)cc(c1)C(F)(F)F <500 1 

A408 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(Cl)c1F <500 1 

A409 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1Cl)C <500 1 

A410 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1F)C(F)(F)F <500 1 

A411 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1Cl)C(F)(F)F <500 1 

A412 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(C(F)(F)F)c1Br <500 1 

A413 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(C)c1F <500 1 

A414 c1c(c(cc2c1oc(n2)Nc1cc(cc(c1)C(=O)NO)C)Br)C(F)(F)F <500 1 

A415 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(C)c1Br <500 1 

A417 c1c2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nc1cc(C(=O)NO)ccc1)CCOC <500 1 

A418 N(c1cc(C(=O)NO)ccc1)c1n(c2c(n1)cc(c(c2)C(F)(F)F)C#N)CCCCCN <500 1 

A420 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1Cl)[N+](=O)[O-] <500 1 

A421 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1C#N)C(F)(F)F <500 1 

A422 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1C(F)(F)F)c1ccc2c(c1)OCCO2 <500 1 

A424 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccc(c(c1)F)C(F)(F)F <500 1 

A425 c1(c(cc2c(c1)oc(n2)Nc1cc(ccc1)C(=O)NO)C(F)(F)F)C#N <500 1 

A426 c1(c(cc2c(c1)oc(n2)Nc1cccc(C(=O)NO)c1F)Cl)Cl <500 1 

A427 c1(c(cc2c(c1)oc(n2)Nc1cc(C(=O)NO)ncc1)Cl)Cl <500 1 

A430 c1cc(ccc1C(=O)NO)CN(Cc1cc(c(c(c1F)F)F)F)C(C)C >1000 0 

A432 c1cc2c(cc1C(=O)NO)CCN(C2)S(=O)(=O)c1cc(c(c(c1F)F)F)F >1000 0 

A433 C(=O)(c1c(c(c(c(c1F)F)F)F)F)N(C(C)C)Cc1ccc(cc1)C(=O)NO >1000 0 
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A435 C(=O)(c1ccc(cc1)CN(C(=O)Nc1ccccc1)CCCC)NO >1000 0 

A436 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1nc(ccc1)C(F)(F)F >1000 0 

A437 c1c(cc2c(c1)CCN(C2)c1[nH]c2c(n1)cccc2)C(=O)NO >1000 0 

A438 c1(ccc2c(c1)CCN(C2)c1[nH]c2c(n1)cccc2)C(=O)NO >1000 0 

A439 c1cc(c2c(c1)CCN(C2)c1[nH]c2c(n1)cccc2)C(=O)NO >1000 0 

A441 c1([nH]c(c(n1)C)C)N1Cc2c(cccc2C1)C(=O)NO >1000 0 

A443 c12c(c(ccc1)C(=O)OC)CN(C2(C)C)c1ncc(nc1)C(F)(F)F >1000 0 

A445 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)N(C)C >1000 0 

A446 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccncc1 >1000 0 

A448 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1cnccc1 >1000 0 

A451 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(c(cc(c1F)F)F)F >1000 0 

A452 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1ccc(cc1)F >1000 0 

A453 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1cc(c(c(c1)F)F)F >1000 0 

A455 O=S(=O)(N(Cc1cccc(c1)C(=O)NO)C1CC1)c1c(c(c(c(c1F)F)F)F)F >1000 0 

A457 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(c(c(c(c1F)F)Cl)F)F >1000 0 

A458 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1cc(c(c(c1F)F)F)F >1000 0 

A461 c1cc(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)C1CCCC1 >1000 0 

A462 c1nc(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)C(C)C >1000 0 

A463 c1cc(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)CC(C)C >1000 0 

A464 C(=O)(c1ccc(cc1)C(C)(C)C)N(Cc1ccc(cc1)C(=O)NO)C1CC1 >1000 0 

A465 C(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)C1CC1 >1000 0 

A466 C(=O)(c1c(c(c(c(c1F)F)F)F)F)NCc1ccc(cc1)/C=C/C(=O)NO >1000 0 

A467 C(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)/C=C/C(=O)NO)C1CC1 >1000 0 

A468 C(=O)(c1ccc(cc1)C(C)(C)C)N(c1ccc(cc1)C(=O)NO)CC >1000 0 

A469 C(=O)(c1c(c(c(c(c1F)F)F)F)F)N(C)Cc1ccc(cc1)C(=O)NO >1000 0 

A470 c1c(ccc(c1)/C=C/C(=O)NO)CN(C[C@]12C[C@H]3C[C@H](C[C@@H](C1)C3)C2)C >1000 0 

A471 c1(c(ccc(c1)/C=C/C(=O)NO)CN(C[C@]12C[C@H]3C[C@H](C[C@@H](C1)C3)C2)C)F >1000 0 

A472 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c(cn1)CCC >1000 0 

A473 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)cncc2 >1000 0 

A474 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)nccc2 >1000 0 

A475 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1nc2c(o1)cncc2 >1000 0 

A476 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1nc2c(o1)nccc2 >1000 0 

A477 n1c(nc2c(c1)cccc2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A478 c1c(nc2c(c1)nccc2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A479 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c(cn1)C >1000 0 

A480 c1cnc2c(c1)ncc(c2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A481 c1c(cc2c(c1)OCCN2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A482 c1cnc2c(c1)sc(n2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A483 C1NCc2c(C1)nc([nH]2)N1Cc2c(C1)c(ccc2)C(=O)NO >1000 0 

A484 C1N(Cc2c(C1)nc([nH]2)N1Cc2c(C1)c(ccc2)C(=O)NO)C(=O)C >1000 0 

A485 c1cnc2c(c1)sc(n2)N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C >1000 0 

A487 C(=O)(N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)c1ccc(cc1)C(F)(F)F >1000 0 

A488 C(=O)(N1C(c2c(C1)c(ccc2)C(=O)NO)(C)C)c1cc(ccc1)C(F)(F)F >1000 0 
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A489 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1ncc(cc1)C(F)(F)F >1000 0 

A490 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1cncc(c1)C(F)(F)F >1000 0 

A492 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1oc2c(n1)cccc2 >1000 0 

A493 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)Cc1ccc(cc1)OC >1000 0 

A494 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)cccc2c1ccccc1 >1000 0 

A495 N1(C(=O)c2c(C1)c(ccc2)C(=O)NO)c1oc2c(n1)cccc2 >1000 0 

A496 [C@H]1(Nc2c(C1)c(ccc2)C(=O)NO)c1ccc(cc1)C(F)(F)F >1000 0 

A497 c12c(c(ccc1)C(=O)NO)N[C@@H](C2)c1ccc(cc1)C(F)(F)F >1000 0 

A499 n1cc(ncc1C(F)(F)F)[C@@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C >1000 0 

A501 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1n(c2c(n1)cccc2)CCOC >1000 0 

A502 N1(Cc2c(C1)c(ccc2)C(=O)NO)C(=O)[C@H](c1ccc(cc1)OC)CC >1000 0 

A503 N1(Cc2c(C1)c(ccc2)C(=O)NO)C(=O)c1ccccc1 >1000 0 

A504 N1(Cc2c(C1)c(ccc2)C(=O)NO)Cc1ccc(cc1)OC >1000 0 

A506 N1(Cc2c(C1)c(ccc2)C(=O)NO)C1=N[C@@](C(=N1)c1ccccc1)(O)C(F)(F)F >1000 0 

A507 c1(cc(ccc1)C(=O)Nc1ccc(cc1)C(=O)NO)C(C)(C)C >1000 0 

A508 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)CC)C(C)(C)C >1000 0 

A509 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)CC)C(F)(F)F >1000 0 

A510 O=S(=O)(c1cc(cc(c1)C(F)(F)F)C(F)(F)F)N(c1ccc(cc1)C(=O)NO)CC >1000 0 

A511 c1(cc(cc(c1)C(C)(C)C)C(=O)N(c1ccc(cc1)C(=O)NO)CC)C(C)(C)C >1000 0 

A513 c1c(c(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)CC)C(F)(F)F >1000 0 

A514 c1(cc(ccc1)CN(c1ccc(cc1)C(=O)NO)C(=O)C)C(F)(F)F >1000 0 

A515 c1(cc(cc(c1)C(F)(F)F)CN(c1ccc(cc1)C(=O)NO)C(=O)C)C(F)(F)F >1000 0 

A516 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)CC1CC1)C(F)(F)F >1000 0 

A517 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)C(C)C)C(F)(F)F >1000 0 

A519 c1(cc(cc(c1)C(C)(C)C)C(=O)N(c1ccc(cc1)C(=O)NO)CC1CC1)C(C)(C)C >1000 0 

A521 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)C(C)C)OC(F)(F)F >1000 0 

A523 c1(cc(ccc1F)C(=O)N(c1ccc(cc1)C(=O)NO)C(C)C)C(F)(F)F >1000 0 

A525 c1(cc(ccc1)NC(=O)c1ccc(cc1)C(=O)NO)C(C)(C)C >1000 0 

A527 c1cc(ccc1NC(=O)c1ccc(cc1)C(C)(C)C)C(=O)NO >1000 0 

A528 C(=O)(c1ccc(cc1)NC(=O)c1ccc(cc1)C)NO >1000 0 

A530 FC(F)(F)c1ccc(C(=O)Nc2ccc(cc2)C(=O)NO)cc1 >1000 0 

A532 C(=O)(c1ccc(cc1)NC(=O)Cc1ccc(cc1)C(C)(C)C)NO >1000 0 

A533 C(=O)(c1ccc(cc1)C(C)(C)C)NCc1ccc(cc1)C(=O)NO >1000 0 

A534 O=S(=O)(NCc1ccc(C(=O)NO)cc1)c1ccc(cc1)C(C)(C)C >1000 0 

A537 c12c(c(ccc1)C(=O)NO)C[C@@]1(C2)CCN(CC1)C1CC1 >1000 0 

A539 c12c(CC3(C2=O)CCN(CC3)Cc2ccccc2)c(ccc1)C(=O)NO >1000 0 

A540 c12c(CC3([C@H]2O)CCN(CC3)Cc2ccccc2)c(ccc1)C(=O)NO >1000 0 

A541 c12c(c(ccc1)C(=O)NO)C[C@@]1(CC2)C(=O)N(CC1)Cc1ccc(cc1)Cl >1000 0 

A544 c1(cccc2c1OC1(CC2)CCN(CC1)C(=O)N(C)C)C(=O)NO >1000 0 

A545 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)C(=O)c1ccc(cc1)F >1000 0 

A546 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)S(=O)(=O)C1CCCCC1 >1000 0 

A547 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)C(=O)C1(CCOCC1)C >1000 0 

A548 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)C(=O)Cc1ccccc1 >1000 0 
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A552 c12c(c(ccc1)C(=O)NO)OC1(CC2)CCN(CC1)c1cc(c(cc1)C)F >1000 0 

A553 c12c(c(ccc1)C(=O)NO)CC[C@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)Cl >1000 0 

A554 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)c1ccccc1C(F)(F)F >1000 0 

A556 c12c(c(ccc1)C(=O)NO)CCC1(O2)CCN(CC1)c1ccccc1 >1000 0 

A558 O=S(=O)(N(CC(=O)N(c1ccc(cc1)C(=O)NO)C)Cc1c(c(c(c(c1F)F)F)F)F)c1ccc(cc1)F >1000 0 

A560 c1cc(ccc1NCc1ccc(cc1)C(C)(C)C)C(=O)NO >1000 0 

A562 O=S(=O)(N(CC(=O)N(c1ccc(cc1)C(=O)NO)Cc1ccc(cc1)C(C)(C)C)Cc1c(c(c(c(c1F)F)F)F)F)C >1000 0 

A563 n1cnc2c(c1C)cc(cc2OCCCCCCC(=O)NO)c1cc(c(nc1)OC)F >1000 0 

A564 c1(c(cc2c(c1)oc(n2)Nc1nc(C(=O)NO)ccn1)Cl)Cl >1000 0 

A565 c1ccc2c(c1)nc([nH]2)Nc1cc(C(=O)NO)ccc1 >1000 0 

A566 c1ccc2c(c1)n(c(n2)Nc1cc(ccc1)C(=O)NO)CCOC >1000 0 

A567 c1c(c2c(cc1Nc1[nH]c3c(cccc3)n1)cccc2)C(=O)NO >1000 0 

A568 c12n(c(nc1cccc2)Nc1cc2c(c(c1)C(=O)NO)cccc2)CCOC >1000 0 

A569 c1cc(c2c(c1)n(c(n2)Nc1cc(C(=O)NO)ccc1)CCOC)OC >1000 0 

A571 c1c2c(cc(c1C#N)C(F)(F)F)n(c(n2)Nc1cc(C(=O)NO)ccc1)CCOC >1000 0 

A573 n1cnc2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)c1 >1000 0 

A577 O(c1c(cc2c([nH]c(n2)Nc2cc(C(=O)NO)ccc2)c1)O)C >1000 0 

A578 c12c(cc3c([nH]c(n3)Nc3cc(C(=O)NO)ccc3)c1)OCC(=O)N2 >1000 0 

A579 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)ccc1Cl >1000 0 

A582 c1c2c(nc(n2C)N(c2cc(C(=O)NO)ccc2)C)cc(c1C(F)(F)F)c1cccnc1 >1000 0 

A583 c1c2c(nc(n2C)N(c2cc(C(=O)NO)ccc2)C)cc(c1c1cnccc1)C(F)(F)F >1000 0 

A584 c1ccccc1CNC(=O)ONC(=O)c1cccc(c1)N(c1[nH]c2cc(c(cc2n1)C(F)(F)F)C#N)C >1000 0 

A585 c1cc2c(c(c1)C(=O)NO)C[C@]1(C2)C(=O)N(CC1)C >1000 0 

A586 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1ccc(cc1)S(=O)(=O)C >1000 0 

A587 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)C1CC1 >1000 0 

A588 C1(CCC1)CN1C(=O)[C@@]2(CC1)Cc1cccc(c1C2)C(=O)NO >1000 0 

A590 c1cc2c(c(c1)C(=O)NO)C[C@@]1(C2)C(=O)N(CC1)c1c(cccc1)C(F)(F)F >1000 0 

A592 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)CCCc1ccccc1 >1000 0 

A596 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cnccc1 >1000 0 

A597 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1c(cccc1)Cl >1000 0 

A598 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1)F >1000 0 

A600 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1csc(n1)c1ccccc1 >1000 0 

A603 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1cc(cc(c1)OC)OC >1000 0 

A608 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1noc(n1)C1CCOCC1 >1000 0 

A609 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1c(onc1C)C >1000 0 

A612 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1nnn(c1)c1ccccc1 >1000 0 

A615 c1ccc2c(c1C(=O)NO)C[C@]1(C2)CN(CC1)C(=O)c1ccc(cc1)C(F)(F)F >1000 0 

A616 c1ccc2c(c1C(=O)NO)C[C@@]1(C2)CN(CC1)C(=O)C >1000 0 

A617 c1ccc2c(c1C(=O)NO)CC1(C2)CCN(CC1)C(=O)C >1000 0 

A618 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1OC)OC >1000 0 

A619 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc2c1OCC(=O)N2 >1000 0 

A621 c1ccc2c(c1C(=O)OCC1CCC1)C[C@]1(C2)C(=O)N(CC1)CC1CCC1 >1000 0 

A622 c1ccc2c(nc([nH]2)N(c2cc(C(=O)NO)ccc2)CCOC)c1 >1000 0 
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A623 c1(c(cc2c(nc([nH]2)Oc2cc(C(=O)NO)ccc2)c1)C#N)C(F)(F)F >1000 0 

A624 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1cc(ccc1)C(=O)NO)CCc1ccccc1 >10000 0 

A625 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1csc(c1)C(=O)NO)CCc1ccccc1 >10000 0 

A627 SCC/C=C/[C@@H]1CC(=O)NCc2scc(C(=O)N/C(=C\C)/C(=O)N[C@H](C(=O)O1)C(C)C)n2 >10000 0 

A628 
S(CC/C=C/[C@@H]1CC(=O)NCc2scc(C(=O)N/C(=C\C)/C(=O)N[C@H](C(=O)O1)C(C)C)n2)C(=

O)C 
>10000 0 

A629 [nH]1nc(cc1C(=O)NCCCCCCS)c1ccncc1 >10000 0 

A630 [nH]1nc(cc1C(=O)NCCCCCCS)c1cccnc1 >10000 0 

A631 [nH]1nc(cc1C(=O)NCCCCCCS)c1cnccn1 >10000 0 

A632 c1ccc2c(c1)c(nc(n2)C)N(c1cc(c(cc1)OC)OCCCC(=O)NO)C >10000 0 

A633 C1[C@H]2C[C@]3(C[C@@H]1C[C@H](C3)C2)c1c(ccc(c1)c1ccc(cc1)C=CC(=O)O)O >10000 0 

A634 n1c(nc2c(c1N1CCOCC1)ncn2CCCCCCC(=O)NO)c1ccc(nc1)N >10000 0 

A635 C(=O)(/C=C/c1cc2nc(n(c2cc1)CCN(CC)CC)CCCC)NO >10000 0 

A636 OCCN(C(=O)Cc1ccc(C(=O)NO)cc1)c1ccccc1 >10000 0 

A638 n1c2c(c3n(c1N)nc(n3)c1occc1)cnn2CCc1ccc(cc1)C(=O)Nc1ccccc1N >10000 0 

A639 c1(ccc(cc1N)F)NC(=O)c1ccc(cc1)CSc1nc(c2n(n1)ccc2)Nc1cc([nH]n1)C >10000 0 

A640 N(c1c(N)cccc1)C(=O)CCCCCCC(=O)Nc1ccccc1 >10000 0 

A641 n1(Cc2ccc(cc2)C(=O)NO)sc2c(c1=O)cccc2 >10000 0 

A642 N1(Cc2c(CC1)n1c(=NCC1)n(c2=O)Cc1c(cccc1)OC)Cc1ccc(cc1)C(=O)Nc1ccccc1N >10000 0 

A643 C1(CCOCC1)(CNC(=O)c1cccc(c2nc(on2)C(F)(F)F)c1)c1nc(cs1)c1ccccc1 >10000 0 

A645 c1ccc(c(c1)CN1C[C@H](CC1)O)NC(=O)CCCCCCC(=O)NO >10000 0 

A646 C(=O)(c1ccc(cc1)CCn1c(=O)c2c3c(c1=O)ccc(c3ccc2)N1CCOCC1)NO >10000 0 

A647 c1c(c(c(cc1O)C)c1[nH]c2c(n1)cc(cc2)C(=O)NO)C >10000 0 

A648 c1c(c(ccc1)c1[nH]c2c(n1)cc(cc2)C(=O)NO)C(F)(F)F >10000 0 

A649 C(=O)(NO)c1cnc(N(Cc2onc(n2)C2CCN(CC2)Cc2ccc(cc2)C)C)nc1 >10000 0 

A650 n1c([nH]c(=O)c2c1sc1c2CCN(C1)C)c1cc(c(c(c1)C)OCCCCCC(=O)NO)C >10000 0 

A651 N(Cc1ccc(cc1)C(=O)Nc1ccccc1N)C1=N[C@@H]([C@@H](O1)c1ccccc1)c1ccccc1 
>10000

0 
0 

A652 c1(ccc2c(c1)C[C@@H](CC2)Nc1nccc(n1)c1cccnc1)C(=O)NO 
>10000

0 
0 

A653 c1c(ccc(c1)/C=C/C=C/C(=O)NO)c1ccc(cc1)OC 
>10000

0 
0 

A654 c1ccc2c(c1)C(=O)c1c(C2=O)ccc(c1)/C=C/C(=O)NO 
>10000

0 
0 

A655 C1(NC(=O)CCCCCC[C@@H](C(=O)NC)N=O)c2c(cccc2)c2c1cccc2 
>10000

0 
0 

A656 c1cccc(c1)NC(=O)CCCCCC[C@@H](C(=O)NC)N=O 
>10000

0 
0 

A657 c1cc(cc2c1cccc2)NC(=O)CCCCCC[C@@H](C(=O)NC)N=O 
>10000

0 
0 

A658 n1cc(cc2c1cccc2)NC(=O)CCCCCC[C@@H](C(=O)NC)N=O 
>10000

0 
0 

A659 C1(=O)N([C@@H](C(=O)N1c1ccc(cc1)Cl)CCC(=O)Nc1ccc(cc1)C(=O)NO)Cc1ccccc1 
>10000

0 
0 

A660 C1(=O)N([C@@H](C(=O)N1c1ccc(cc1)Cl)CCC(=O)Nc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)Br 
>10000

0 
0 

A661 C1(=O)N([C@@H](C(=O)N1c1ccc(cc1)Cl)CCC(=O)Nc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)C 
>10000

0 
0 

A662 c1cc(cc(c1)NC(=O)CCCCCC[C@@H](C(=O)NC)N=O)Br 
>10000

0 
0 

A663 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)Cc1ccccc1)C(F)(F)F >2000 0 

A664 c1c(cc2c(c1)ccn2Cc1ccc(cc1)OC)C(=O)NO >20000 0 

A665 [O-][N+](=O)c1c(N)cc(N2CCN(CC2)C)cc1 
>20000

0 
0 

A667 n1n(cc(n1)c1cccc(c1)NC(=O)N1CCOCC1)Cc1ncc(cc1)c1nnc(o1)C(F)F >30000 0 
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A669 c1(ccc(cc1)c1nnc(o1)C(F)F)Cn1cc(nn1)c1cc2c(cc1)nc([nH]2)N >30000 0 

A670 c1(ncc(cc1)c1nnc(o1)C(F)F)Cn1cc(nn1)c1ccc2c(c1)nc([nH]2)Cl >30000 0 

A673 c1(ccc(cn1)c1ncn(c1)Cc1ccc(cn1)c1oc(nn1)C(F)F)N >30000 0 

A677 n1n(cc(n1)c1cc(ccc1)NC(=O)N1CCOCC1)Cc1ccc(c(c1)F)c1nnc(o1)C(F)F >30000 0 

A678 c1(n(c2c(n1)cc(cc2)c1nnn(c1)Cc1ccc(cn1)c1oc(nn1)C(F)F)C)N >30000 0 

A679 c1([nH]c2c(n1)ccc(c2)c1nnn(c1)Cc1ccc(cn1)c1oc(nn1)C(F)F)NCC >30000 0 

A683 C1(=NCCN1)Nc1ccc(cc1)c1ncn(c1)Cc1ccc(cc1)c1oc(nn1)C(F)F >30000 0 

A684 n1n(cc(n1)c1cc2c(n(c(n2)N)C)cc1)Cc1ccc(cc1)c1nnc(o1)C(F)F >30000 0 

A688 n1n(cc(n1)c1ccc2sc(nc2c1)N)Cc1ncc(cc1)c1nnc(o1)C(F)F >30000 0 

A690 c1(ccc(cn1)c1nnn(c1)Cc1ccc(cn1)c1oc(nn1)C(F)F)N >30000 0 

A691 CN1C[C@H](c2c(cc(/C=C/C(=O)Nc3c(cccc3)N)cc2)F)[C@H](C1)C(=O)Nc1ccc(cc1)Cl >30000 0 

A693 c1(C(=O)N[C@H](C(=O)NO)C(N)(C)C)ccc(cc1)OCC#CC >30000 0 

A695 c1c(ccc(c1)C(=O)NNCCC)CNC(=O)c1cc2c([nH]1)cccc2 >5000 0 

A696 C(=O)(NCc1ccc(cc1)C(=O)NNCCC)/C=C/c1ccccc1 >5000 0 

A697 C\1(=C\2/C(=O)Nc3c2cccc3)/C(=N/OCCCC(=O)NO)/c2c(N1)cccc2 >5000 0 

A699 C\1(=C\2/C(=O)N(c3c2cccc3)CC#C)/C(=N/OCCCC(=O)NO)/c2c(N1)cccc2 >5000 0 

A700 [C@@H](Oc1cc(N(c2c3ccccc3nc(n2)C)C)ccc1OC)(C(=O)NO)C(C)C >5000 0 

A701 O=S1(=O)c2c3c(n(Cc4ccc(cc4)C(=O)NO)c2CC1)cccc3 >5000 0 

A702 c1c(c(ccc1c1ccccc1)N)NC(=O)c1ccccc1 >50000 0 

A703 c1c(c(ccc1)N)NC(=O)c1ccccc1 >50000 0 

A704 c1c(c(ccc1c1sccc1)N)NC(=O)c1ccccc1 >50000 0 

A705 C(=O)(c1ccc(cc1)CN(C(=O)Nc1ccc(cc1)CN)CCCCO)NO >50000 0 

A706 c1cc(cc2c1CN(CC2)C(=O)c1cccn1C)C(=O)NO >50000 0 

A708 c1c(ccc(c1)C(=O)NO)CN(CCCCO)C(=O)Nc1ccccc1 >50000 0 

A709 c1c(c(ccc1)N)NC(=O)c1cccnc1 >50000 0 

A710 c1c(c(ccc1c1ccccc1)O)NC(=O)c1ccccc1 >50000 0 

A711 c1c(c(ccc1c1ccccc1)N)NC(=O)c1cccnc1 >50000 0 

Here 1 is depicted as active, and 0 is depicted as inactive classes 

 

Test set compounds of HDAC11 inhibitors in SMILES format 

Compound 

ID 
SMILES 

IC50 

(nM) 

Binar

y 

A015 N1C(=O)[C@H]([C@@H](C1)c1ccccc1)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 4 1 

A016 O=C(NO)c1c2c(C(C)(C)N(C2)c2ncc(cn2)C(F)(F)F)ccc1 5 1 

A018 N1[C@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1cc(ccc1)C 5 1 

A020 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@H]1NC(=O)CCC1 6 1 

A024 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@H]1C(=O)NCCC1 9 1 

A026 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@@H]1NC(=O)CCC1 10 1 

A028 N1([C@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1cc(ccc1)C)C 12 1 

A029 N1C(=O)[C@@H]([C@H](C1)c1ccccc1)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 12 1 

A030 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1NC(=O)CC1 13 1 
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A031 N1C(=O)[C@H]([C@H](C1)c1ccccc1)C(=O)N[C@@H](CCCCCS)C(=O)Nc1ccccc1 13 1 

A034 c1cccc(c1)NC(=O)[C@H](CCCCCS)NC(=O)[C@@H]1NC(=O)CC1 14 1 

A035 N1[C@@H](CCC1=O)C(=O)N[C@H](CCCCCS)C(=O)Nc1ccccc1 14 1 

A040 c1(cc2cc(c1)/C=C\CO[C@H](C(=O)Nc1c(OC2)cccc1)CCCCCC(=O)NO)OC 23 1 

A051 N1[C@H](CCC1=O)C(=O)N[C@@H](CCCCCS)C(=O)Nc1cc(ccc1)C(F)(F)F 44 1 

A052 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(c(c(c(c1F)F)F)F)F 47 1 

A059 [nH]1c(c(cc1c1ccc(cc1)O)c1cocc1)C(=O)NCc1ccc(cc1)C(=O)NO 72 1 

A069 C(=O)(CCCCSc1nc(cc(=O)[nH]1)c1ccc(cc1)c1ccccc1)NO 100 1 

A074 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccccc1 122 1 

A089 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1cc(ccc1)F 235 1 

A091 c1cccc(c1)NC(=O)[C@H](CCCCCC(=O)NO)NC(=O)[C@H]1C(=O)NCCC1 255 1 

A093 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1c(cccc1)F 263 1 

A094 C(=O)(Nc1ccc(C(=O)NO)cc1)OCc1cc2c(cc(CN(CC)CC)cc2)cc1 287 1 

A097 C1(=N[C@H]2[C@H](N1)CCCC2)N1Cc2c(cccc2C1)C(=O)NO 300 1 

A100 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(c(c(c(c1F)Cl)F)Cl)F 364 1 

A109 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)Cc1cccc(c1)C(F)(F)F)C(F)(F)F 526 1 

A115 [n+]1(onc(c1S(=O)(=O)c1ccccc1)OCCCCCC(=O)NO)[O-] 608 1 

A116 c1(ccc(cc1N)F)NC(=O)c1ccc(cc1)CNC(=O)/C=C/1\NC(=O)c2c1cccc2 632 1 

A119 O=S(=O)(NCC(=O)N(c1ccc(cc1)C(=O)NO)Cc1ccc(cc1)C(C)(C)C)c1ccc(cc1)F 665 1 

A123 C(=O)(c1ccc(cc1)C1CC1)Nc1ccc(cc1)C(=O)NO 704 1 

A124 c1c(c([nH]c1c1ccc(cc1)OC)C(=O)NCc1ccc(cc1)C(=O)NO)c1ccsc1 718 1 

A128 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc2c1OCCO2 750 1 

A131 c1c2c(nc(n2C)N(c2cc(C(=O)NO)ccc2)C)cc(c1c1ccccc1)C(F)(F)F 750 1 

A140 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1c(ccc(c1)Cl)Cl 750 1 

A141 c1ccc2c(c1C(=O)NO)C[C@]1(C2)CN(CC1)Cc1ccc(cc1)C(F)(F)F 750 1 

A142 c1(cccc2c1C[C@]1(CC2)C(=O)N(CC1)Cc1ccc(cc1)C(F)(F)F)C(=O)NO 750 1 

A147 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1oc2c(n1)cncc2 750 1 

A149 c1(ccc2c(c1)nc(cc2)N1Cc2c(C1(C)C)cccc2C(=O)NO)C(F)(F)F 750 1 

A166 c1cc(ccc1N(C(=O)OC(C)(C)C)Cc1ccc(cc1)C(C)(C)C)C(=O)NO 837 1 

A167 C(CCCCC(=O)NO)ONC(=O)c1cc(cc(c1)C)C 852 1 

A174 C(=O)(CCCCCCS)N1Cc2c(CC1)cccc2 949 1 

A179 c1(cc(ccc1Cl)C(=O)NCc1ccc(cc1)C(=O)NO)Cl 1,050 0 

A180 C(NC(=O)CCCCCCC(=O)NO)Cc1ccccc1 1,130 0 

A183 c1cccc2c1OCCCCCO[C@@H](C(=O)N2)CCCCCC(=O)NO 1,210 0 

A189 c1cc(cc(c1)NC(=O)CCCCCCC(=O)NO)C 1,600 0 

A202 O=S1(=O)C[C@@H]2[C@H](N(c3c1cccc3)Cc1ccc(cc1)C(=O)NO)CCCC2 2,400 0 

A208 c1c(ccc(c1)/C=C/C(=O)NO)/C=N/OCCN1CCOCC1 3,060 0 
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A212 c1c(ccc(c1)/C=C/C(=O)NO)C(=O)N[C@@H](Cc1c[nH]c2c1cccc2)C(=O)Nc1ccc(cc1)I 3,229 0 

A213 [nH]1cc(c2c1cccc2)C[C@H](NC(=O)c1ccc(C(=O)NO)cc1)C(=O)Nc1ccc(cc1)C 3,500 0 

A216 C[C@H](/C=C/C(=O)NO)/C=C(\C)/C(=O)c1ccc(cc1)N(C)C 3,642.50 0 

A217 c1ccc(cc1)CC(=O)N(CCO)Cc1ccc(cc1)C(=O)NO 3,700 0 

A220 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccc(cc1)NC 3,800 0 

A239 
C1[C@H]2C[C@]3(C[C@@H]1C[C@H](C3)C2)c1c(ccc(c1)c1ccc(cc1)C=CC(=O)O)OCC(=O)

NO 
6,090 0 

A247 n1(c(=O)c2c3c(c1=O)cccc3ccc2)CCCCCC(=O)Nc1c(N)cccc1 9,350 0 

A248 O=S(=O)(c1ccc(cc1)c1cn(nc1)C)n1ccc(c1)/C=C/C(=O)Nc1ccccc1N 9,700 0 

A250 n1c(nc2c(c1N1CCOCC1)ncn2CCCCCCC(=O)NO)c1cc(ccc1)CO 9,700 0 

A271 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1c(cccc1)O 16,700 0 

A273 O=S1(=O)[C@H]2c3c(N(Cc4ccc(cc4)C(=O)NO)[C@@H]2CC1)cccc3 17,000 0 

A274 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1sc(cc1)C(=O)NO)CCc1ccccc1 19,800 0 

A276 c1ccc2c(c1)c(=O)n(c(=O)n2Cc1ccc(cc1)C(=O)NO)CCc1ccc(cc1)N1CCOCC1 22,750 0 

A277 c1(ncnc2c1nc[nH]2)N[C@H](c1nc(c2c(n1)cccc2)CCCCC(=O)NO)CC 23,030 0 

A292 c1(ccc(cc1)/C=C/C(=O)NO)c1ccc(cc1)OC 73,000 0 

A294 c1(ccc2c(c1)CN(CC2)Cc1ccc(o1)c1cccc(c1)[N+](=O)[O-])C(=O)NO 75,300 0 

A295 c1(c(ccc(c1)c1ccc(cc1)/C=C/C(=O)NO)OC)[C@]12C[C@@H]3C[C@H](C1)C[C@@H](C3)C2 77,000 0 

A296 c1ccc2c(c1)C(=O)c1c(C2=O)ccc(c1)C(=O)NO 80,020 0 

A300 c1([nH]c2c(c1)c(ccc2)C(=O)NO)c1ncc(nc1)C(F)(F)F <500 1 

A304 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)CC[C@H](C2)C(F)(F)F <500 1 

A307 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1oc2c(n1)nccc2 <500 1 

A318 c1c(nc2c(c1)nc(cc2)N1Cc2c(C1(C)C)cccc2C(=O)NO)C(F)(F)F <500 1 

A319 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)oc2c(n1)cccc2 <500 1 

A323 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)ncc(c(c1)C#N)C(F)(F)F <500 1 

A324 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1ccc(cc1)C(F)(F)F <500 1 

A339 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccc(cc1)COC)C(F)(F)F <500 1 

A340 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1C(F)(F)F)c1ccc2c(c1)cccn2 <500 1 

A344 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1ccc(nc1)N(C)C)C(F)(F)F <500 1 

A347 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1c1cc(ccc1CO)F)C(F)(F)F <500 1 

A358 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1ccc(cc1)c1ccccc1 <500 1 

A363 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(c1)C(F)(F)F <500 1 

A364 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1cccc(c1)Br <500 1 

A371 c12c(c(ccc1)C(=O)NO)C[C@]1(CC2)C(=O)N(CC1)Cc1ccc(c(c1)F)C(F)(F)F <500 1 

A373 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)Cc1ccc(c(c1)C(F)(F)F)Cl <500 1 

A374 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)C(F)(F)F <500 1 

A376 c12c(c(ccc1)C(=O)NO)CC[C@@]1(C2)C(=O)N(CC1)c1ccc(cc1)C(F)(F)F <500 1 

A378 c1(c(cc2c(c1)oc(n2)Nc1cc(ccc1)C(=O)NO)C(F)(F)F)c1ccccc1 <500 1 



91 
 

A379 c1(c(cc2c(c1)oc(n2)Nc1cc(C(=O)NO)c(cc1)F)Cl)Cl <500 1 

A383 c1c(c(cc2c1oc(n2)Nc1cnnc(c1)C(=O)NO)Cl)Cl <500 1 

A384 c1c(c(cc2c1oc(n2)Nc1ncnc(c1)C(=O)NO)Cl)Cl <500 1 

A388 c1(c(cc2c(c1)n(c(n2)Nc1cc(C(=O)NO)ccc1)C)C#N)C(F)(F)F <500 1 

A394 c1c2c(cc(c1C(F)(F)F)c1ccccc1)n(c(n2)Nc1cc(C(=O)NO)ccc1)C(C)C <500 1 

A398 c1c2c(cc(c1c1ccccc1)C(F)(F)F)n(c(n2)Nc1cc(C(=O)NO)ccc1)CCOC <500 1 

A403 c1(c(cc2c(nc([nH]2)Cc2cc(C(=O)NO)ccc2)c1)C#N)C(F)(F)F <500 1 

A416 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1Cl)Cl <500 1 

A419 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc(c1Br)OC(F)(F)F <500 1 

A423 c1ccc2c(c1C(=O)NO)C[C@@]1(C2)C(=O)N(CC1)Cc1ccc(c(c1)F)C(F)(F)F <500 1 

A428 c1(c(cc2c(c1)oc(n2)Nc1cc(C(=O)NO)ccn1)Cl)Cl <500 1 

A429 c1cc(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)CCOC >1000 0 

A431 c1c(c(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)C(C)C)OC >1000 0 

A434 c1ccccc1NC(=O)CCCCCCC(=O)NO >1000 0 

A440 c1([nH]c2c(n1)cccc2)N1Cc2c(cccc2C1)C(=O)NO >1000 0 

A442 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1[nH]c2c(n1)CCCC2 >1000 0 

A444 S(=O)(=O)(c1c(c(c(c(c1F)F)F)F)F)NCc1ccc(cc1)C(=O)NO >1000 0 

A447 S(=O)(=O)(c1c(c(c(c(c1)F)F)F)F)N(Cc1ccc(cc1)C(=O)NO)Cc1ccc(cc1)F >1000 0 

A449 n1cnc2c(c1C)cc(cc2OCCN(c1ncc(cn1)C(=O)NO)C)c1ccc(nc1)OC >1000 0 

A450 C(=O)(c1c(c(c(c(c1F)F)F)F)F)NCc1ccc(cc1)C(=O)NO >1000 0 

A454 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(cc(cc1F)F)F >1000 0 

A456 O=S(=O)(N(Cc1ccc(cc1)C(=O)NO)C1CC1)c1c(cc(c(c1F)Cl)F)F >1000 0 

A459 c1cc(ccc1C(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)C(C)C >1000 0 

A460 c1cc(ccc1CC(=O)NO)CN(S(=O)(=O)c1cc(c(c(c1F)F)F)F)C(C)C >1000 0 

A486 c1(N2C(c3c(C2)c(ccc3)C(=O)NO)(C)C)scc(n1)C(F)(F)F >1000 0 

A491 N1(C(c2c(C1)c(ccc2)C(=O)NO)(C)C)C(=O)Nc1nc(ccc1)C(F)(F)F >1000 0 

A498 c1cc(ncc1C(F)(F)F)[C@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C >1000 0 

A500 c1cc(ccc1C(F)(F)F)[C@@H]1C(c2c(N1)c(ccc2)C(=O)NO)(C)C >1000 0 

A505 N1(Cc2c(C1)c(ccc2)C(=O)NO)c1ccccc1 >1000 0 

A512 c1(cc(ccc1)C(=O)Nc1ccc(cc1)C(=O)NO)C(F)(F)F >1000 0 

A518 c1(cc(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)CC1CC1)C(C)(C)C >1000 0 

A520 c1(cc(cc(c1)C(C)(C)C)C(=O)Nc1ccc(cc1)C(=O)NO)C(C)(C)C >1000 0 

A522 c1(c(c(ccc1)C(=O)N(c1ccc(cc1)C(=O)NO)C(C)C)F)C(F)(F)F >1000 0 

A524 c1(cc(cc(c1)C(C)(C)C)C(=O)N(c1ccc(cc1)C(=O)NO)C(C)C)C(C)(C)C >1000 0 

A526 c1(cc(ccc1)N(C(=O)c1ccc(cc1)C(=O)NO)CC)C(C)(C)C >1000 0 

A529 C(=O)(c1ccc(cc1)NC(=O)c1ccc(cc1)N1CCOCC1)NO >1000 0 

A531 C(=O)(c1ccc(cc1)F)Nc1ccc(cc1)C(=O)NO >1000 0 



92 
 

A535 c12c(c(ccc1)C(=O)NO)CC1(C2)CCN(CC1)C(=O)c1ccc(cc1)Cl >1000 0 

A536 c12c(c(ccc1)C(=O)NO)CC1(C2)CCN(CC1)Cc1ccc(cc1)Cl >1000 0 

A538 c12c(CC3(C2)CCN(CC3)Cc2ccccc2)c(ccc1)C(=O)NO >1000 0 

A542 c1(cccc2c1C[C@]1(CC2)C(=O)N(CC1)c1cccc(c1)C(F)(F)F)C(=O)NO >1000 0 

A543 c1(cccc2c1C[C@@]1(CC2)C(=O)N(CC1)c1ccccc1C(F)(F)F)C(=O)NO >1000 0 

A549 c1(cccc2c1OC1(CC2)CCN(CC1)Cc1ccc(cc1)F)C(=O)NO >1000 0 

A550 c12c(c(ccc1)C(=O)NO)O[C@@]1(CC2)CCN(CC1)C1CCCCC1 >1000 0 

A551 c1(cccc2c1OC1(CC2)CCN(CC1)c1ccc(cn1)C(F)(F)F)C(=O)NO >1000 0 

A555 c12c(c(ccc1)C(=O)NO)CCC1(O2)CCN(CC1)C(=O)C >1000 0 

A557 c12c(c(ccc1)C(=O)NO)CCC1(O2)CCN(CC1)c1ccc(cc1)F >1000 0 

A559 O=S(=O)(N(CC(=O)N(c1ccc(cc1)C(=O)NO)C)C)c1ccc(cc1)F >1000 0 

A561 c1cc(ccc1N(Cc1ccc(cc1)C(C)(C)C)C(=O)C)C(=O)NO >1000 0 

A570 c1ccc2c(n(c(n2)Nc2cc(C(=O)NO)ccc2)CCOC)c1OC >1000 0 

A572 c1cnc2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)n1 >1000 0 

A574 n1c2c(oc(n2)Nc2cc(C(=O)NO)ccc2)ccc1 >1000 0 

A575 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc2c1OCO2 >1000 0 

A576 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)cc2c1OCCCO2 >1000 0 

A580 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)ccc1S(=O)(=O)C >1000 0 

A581 c1c2c(nc([nH]2)Nc2cc(C(=O)NO)ccc2)ccc1S(=O)(=O)N >1000 0 

A589 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)c1ccc(cc1)C(F)(F)F >1000 0 

A591 c1ccc2c(c1C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccccc1 >1000 0 

A593 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1ccc(cc1)OC >1000 0 

A594 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1cccc(c1)OC >1000 0 

A595 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1c(cccc1)C >1000 0 

A599 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cc(cc(c1)F)F >1000 0 

A601 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1c(cc(cc1)F)F >1000 0 

A602 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1c(cccc1)OC >1000 0 

A604 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)CC1CCCCC1 >1000 0 

A605 c12c(cccc1C(=O)NO)C[C@@]1(C2)CCN(C1=O)Cc1onc(c1)c1ccccc1 >1000 0 

A606 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cnc(cc1)n1cccn1 >1000 0 

A607 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cnc(cc1)C(F)(F)F >1000 0 

A610 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)Cc1cccc(n1)C(F)(F)F >1000 0 

A611 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)CCN1CCOCC1 >1000 0 

A613 c12c(cccc1C(=O)NO)C[C@]1(C2)CCN(C1=O)CC1CC1 >1000 0 

A614 c1ccc2c(c1C(=O)NO)C[C@]1(C2)CN(CC1)C1CC1 >1000 0 

A620 c1cc2c(c(c1)C(=O)NO)C[C@]1(C2)C(=O)N(CC1)Cc1ccc(cc1)C >1000 0 

A626 
SCC/C=C/[C@@H]1CC(=O)N[C@@H](c2scc(C(=O)N/C(=C\C)/C(=O)N[C@H](C(=O)O1)C(

C)C)n2)C(C)C 
>10000 0 
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A637 c1(nccc(c1)/C=C/c1ccc(cc1)C(=O)NO)c1c(cccc1)O >10000 0 

A644 O=C(N)c1c2c(C(C)(C)N(C2)c2cnc(cn2)C(F)(F)F)ccc1 >10000 0 

A666 c12cc(oc1cccc2)c1nc2c(cccc2)c(c1)C(=O)NC(c1ccccc1)c1ccccc1 >200000 0 

A668 o1c(nc2c1ccc(c2)c1nn(nn1)Cc1ccc(cn1)c1oc(nn1)C(F)F)N >30000 0 

A671 C1(=NCCN1)Nc1ccc(cc1)c1nnn(c1)Cc1ccc(cc1)c1oc(nn1)C(F)F >30000 0 

A672 c1(c2nnc(o2)C(F)F)ccc(cc1)Cn1nc(nn1)c1ccc2c(c1)nc(n2C)N >30000 0 

A674 c1(ccc(cn1)c1cnn(c1)Cc1ccc(cn1)c1oc(nn1)C(F)F)N >30000 0 

A675 n1n(cc(n1)c1cc2c(nc(s2)N)cc1)Cc1ccc(cc1)c1nnc(o1)C(F)F >30000 0 

A676 n1n(cc(n1)c1ccc(nc1)N)Cc1ccc(c(c1)F)c1nnc(o1)C(F)F >30000 0 

A680 n1n(cc(n1)c1cc2c(NC(=O)C32CCNCC3)cc1)Cc1ncc(cc1)c1nnc(o1)C(F)F >30000 0 

A681 c1(ccc(cn1)c1nnc(o1)C(F)F)Cn1cc(nc1)c1ccc(cc1)NC1=NCCN1 >30000 0 

A682 c1(ccc(cn1)c1nnn(c1)Cc1c(c(c(cc1)c1oc(nn1)C(F)F)F)F)N >30000 0 

A685 C(c1ccc(cc1)C(=O)NO)n1c(=O)c2c3c(c1=O)cccc3c(cc2)OC >30000 0 

A686 n1n(cc(n1)c1cc2c(nc(s2)N)cc1)Cc1ncc(cc1)c1nnc(o1)C(F)F >30000 0 

A687 n1n(nc(n1)c1ccc(c(c1)NC(=O)N1CCOCC1)O)Cc1ccc(cn1)c1nnc(o1)C(F)F >30000 0 

A689 c1(nnc(o1)C(F)F)c1cnc(cc1)Cn1nc(nn1)c1cc2c(cc1)CNC2=O >30000 0 

A692 c1ccc(c(c1)C(=O)N)Nc1cccc(c1)OCCc1ccccc1 >30000 0 

A694 C(C)(C)(CNC(=O)c1cccc(c1)c1noc(C(F)(F)F)n1)c1nc(oc1)c1ccccc1 >5000 0 

A698 C\1(=C\2/C(=O)Nc3c2cccc3)/C(=N/OCCCC(=O)O)/c2c(N1)cccc2 >5000 0 

A707 C(=O)(c1ccc(cc1)CN(C(=O)Nc1ccc(cc1)CN)CCCC)NO >50000 0 

A712 c1c(c(ccc1c1cccs1)N)NC(=O)c1cccnc1 >50000 0 

 

Here 1 is depicted as active, and 0 is depicted as inactive classes 
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Battistuzzi G, Gallo G, Ciacci A, Vesci L. Non-natural macrocyclic inhibitors of histone 

deacetylases: design, synthesis, and activity. Journal of medicinal chemistry. 2010 Dec 

9;53(23):8387-99. 



96 
 

Baderna D, Gadaleta D, Lostaglio E, Selvestrel G, Raitano G, Golbamaki A, Lombardo A, 

Benfenati E. New in silico models to predict in vitro micronucleus induction as marker of 

genotoxicity. Journal of hazardous materials. 2020 Mar 5;385:121638. 

Baek SY, Lee J, Kim T, Lee H, Choi HS, Park H, Koh M, Kim E, Jung ME, Iliopoulos D, Lee 

JY. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in 

alleviating depression by inhibition of microglial activation. Biomedicine & Pharmacotherapy. 

2023 Oct 1;166:115312. 

Bagchi RA, Ferguson BS, Stratton MS, Hu T, Cavasin MA, Sun L, Lin YH, Liu D, Londono 

P, Song K, Pino MF. HDAC11 suppresses the thermogenic program of adipose tissue via 

BRD2. JCI insight. 2018 Aug 8;3(15). 

Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the 

next step?. Cancer letters. 2009 Aug 8;280(2):211-21. 

Banerjee A, Roy K. Prediction-inspired intelligent training for the development of 

classification read-across structure–activity relationship (c-RASAR) models for organic skin 

sensitizers: assessment of classification error rate from novel similarity coefficients. Chemical 

Research in Toxicology. 2023 Aug 16;36(9):1518-31. 

Banerjee S, Amin SA, Jha T. A fragment-based structural analysis of MMP-2 inhibitors in 

search of meaningful structural fragments. Computers in Biology and Medicine. 2022 May 

1;144:105360. 

Banerjee S, Baidya SK, Ghosh B, Jha T, Adhikari N. Exploration of structural alerts and 

fingerprints for novel anticancer therapeutics: a robust classification-QSAR dependent 

structural analysis of drug-like MMP-9 inhibitors. SAR and QSAR in Environmental Research. 

2023 Apr 3;34(4):299-319. 

Baselious F, Hilscher S, Robaa D, Barinka C, Schutkowski M, Sippl W. Comparative 

Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective 

HDAC11 Inhibitor. International Journal of Molecular Sciences. 2024 Jan 22;25(2):1358. 

Baselious F, Robaa D, Sippl W. Utilization of AlphaFold models for drug discovery: 

Feasibility and challenges. Histone deacetylase 11 as a case study. Computers in Biology and 

Medicine. 2023 Dec 1;167:107700. 



97 
 

Bhattacharya A, Amin SA, Kumar P, Jha T, Gayen S. Exploring structural requirements of 

HDAC10 inhibitors through comparative machine learning approaches. Journal of Molecular 

Graphics and Modelling. 2023 Sep 1;123:108510. 

Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, Jiao Q, Wang Y, Du L, Zhou F, Jiang Y. 

HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain 

hepatocellular carcinoma stemness. Cancer research. 2021 Apr 15;81(8):2015-28. 

Boltz TA, Khuri S, Wuchty S. Promoter conservation in HDACs points to functional 

implications. BMC genomics. 2019 Dec;20:1-2. 

Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, Zheng X, Coppola 

D, Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-

renewal and overcome drug resistance by suppressing Sox2. Scientific reports. 2020 Mar 

13;10(1):4722. 

Box GE, Tiao GC. Bayesian inference in statistical analysis. John Wiley & Sons; 2011 Jan 25. 

Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone 

deacetylases 1–11 in the rat brain. Journal of Molecular Neuroscience. 2007 Jan;31:47-58. 

Bryant DT, Landles C, Papadopoulou AS, Benjamin AC, Duckworth JK, Rosahl T, Benn CL, 

Bates GP. Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 

knockout mice. Scientific Reports. 2017 Sep 19;7(1):11900. 

Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A. HDAC11 plays 

an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood, The 

Journal of the American Society of Hematology. 2011 Mar 10;117(10):2910-7. 

Cao J, Sun L, Aramsangtienchai P, Spiegelman NA, Zhang X, Huang W, Seto E, Lin H. 

HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. 

Proceedings of the National Academy of Sciences. 2019 Mar 19;116(12):5487-92. 

Carreiras MD, Marco-Contelles J. Hydrazides as Inhibitors of Histone Deacetylases. Journal 

of Medicinal Chemistry. 2024 Aug 2. 

Chatterjee M, Roy K. Predictive binary mixture toxicity modeling of fluoroquinolones (FQs) 

and the projection of toxicity of hypothetical binary FQ mixtures: a combination of 2D-QSAR 

and machine-learning approaches. Environmental Science: Processes & Impacts. 

2024;26(1):105-18. 



98 
 

Chen H, Xie C, Chen Q, Zhuang S. HDAC11, an emerging therapeutic target for metabolic 

disorders. Frontiers in Endocrinology. 2022 Oct 20;13:989305. 

Chen IC, Sethy B, Liou JP. Recent update of HDAC inhibitors in lymphoma. Frontiers in cell 

and developmental biology. 2020 Sep 3;8:576391. 

Chen J, Cheng F, Sahakian E, Powers J, Wang Z, Tao J, Seto E, Pinilla-Ibarz J, Sotomayor 

EM. HDAC11 regulates expression of C/EBPβ and immunosuppressive molecules in myeloid-

derived suppressor cells. Journal of Leucocyte Biology. 2021 May;109(5):891-900. 

Chen L, Li Y, Zhao Q, Peng H, Hou T. ADME evaluation in drug discovery. 10. Predictions 

of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification 

techniques. Molecular pharmaceutics. 2011 Jun 6;8(3):889-900. 

Cheng F, Lienlaf M, Perez-Villarroel P, Wang HW, Lee C, Woan K, Woods D, Knox T, 

Bergman J, Pinilla-Ibarz J, Kozikowski A. Divergent roles of histone deacetylase 6 (HDAC6) 

and histone deacetylase 11 (HDAC11) on the transcriptional regulation of IL10 in antigen 

presenting cells. Molecular immunology. 2014 Jul 1;60(1):44-53. 

Cheshmazar N, Hamzeh-Mivehroud M, Charoudeh HN, Hemmati S, Melesina J, Dastmalchi 

S. Current trends in development of HDAC-based chemotherapeutics. Life Sciences. 2022 Nov 

1;308:120946. 

Dallavalle S, Musso L, Cincinelli R, Darwiche N, Gervasoni S, Vistoli G, Guglielmi MB, La 

Porta I, Pizzulo M, Modica E, Prosperi F. Antitumor activity of novel POLA1-HDAC11 dual 

inhibitors. European Journal of Medicinal Chemistry. 2022 Jan 15;228:113971. 

Das RN, Roy K. Predictive in silico modeling of ionic liquids toward inhibition of the acetyl 

cholinesterase enzyme of electrophorus electricus: a predictive toxicology approach. Industrial 

& Engineering Chemistry Research. 2014 Jan 15;53(2):1020-32. 

Deubzer HE, Schier MC, Oehme I, Lodrini M, Haendler B, Sommer A, Witt O. HDAC11 is a 

novel drug target in carcinomas. International journal of cancer. 2013 May 1;132(9):2200-8. 

Discovery Studio 3.0 (DS 3.0), Accelrys Inc., CA, USA, 2015. Available at www.accelrys. 

com. 

Fan XD, Wan LL, Duan M, Lu S. HDAC11 deletion reduces fructose-induced cardiac 

dyslipidemia, apoptosis and inflammation by attenuating oxidative stress injury. Biochemical 

and biophysical research communications. 2018 Sep 5;503(2):444-51. 



99 
 

Fang J, Li Y, Liu R, Pang X, Li C, Yang R, He Y, Lian W, Liu AL, Du GH. Discovery of 

multitarget-directed ligands against Alzheimer’s disease through systematic prediction of 

chemical–protein interactions. Journal of chemical information and modeling. 2015 Jan 

26;55(1):149-64. 

Fawcett T. Roc analysis in pattern recognition. Pattern Recognition Letters. 2005;8:861-74. 

Feng W, Lu Z, Luo RZ, Zhang X, Seto E, Liao WS, Yu Y. Multiple histone deacetylases repress 

tumor suppressor gene ARHI in breast cancer. International journal of cancer. 2007 Apr 

15;120(8):1664-8. 

Ferrari T, Cattaneo D, Gini G, Golbamaki Bakhtyari N, Manganaro A, Benfenati E. Automatic 

knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR and 

QSAR in Environmental Research. 2013 May 1;24(5):365-83. 

Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone 

deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including 

trapoxin. Proceedings of the National Academy of Sciences. 2001 Jan 2;98(1):87-92. 

Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of 

HDAC11, a novel member of the human histone deacetylase family. Journal of Biological 

Chemistry. 2002 Jul 12;277(28):25748-55. 

Glozak MA, Seto E. Acetylation/deacetylation modulates the stability of DNA replication 

licensing factor Cdt1. Journal of Biological Chemistry. 2009 Apr 24;284(17):11446-53. 

Golbamaki A, Benfenati E, Golbamaki N, Manganaro A, Merdivan E, Roncaglioni A, Gini 

G. New clues on carcinogenicity-related substructures derived from mining two large datasets 

of chemical compounds. Journal of Environmental Science and Health, Part C. 2016 Apr 

2;34(2):97-113. 

Gong D, Zeng Z, Yi F, Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer 

cell apoptosis. American Journal of Translational Research. 2019;11(2):983. 

Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L, 

Rosell R. Non-small-cell lung cancer. Nature reviews Disease primers. 2015 May 21;1(1):1-6. 

Hauer MH, Gasser SM. Chromatin and nucleosome dynamics in DNA damage and repair. 

Genes & development. 2017 Nov 15;31(22):2204-21. 



100 
 

He L, Chen Y, Lin S, Shen R, Pan H, Zhou Y, Wang Y, Chen S, Ding J. Regulation of Hsa‐

miR‐4639‐5p expression and its potential role in the pathogenesis of Parkinson's disease. Aging 

Cell. 2023 Jun;22(6):e13840. 

Heim CE, Bosch ME, Yamada KJ, Aldrich AL, Chaudhari SS, Klinkebiel D, Gries CM, 

Alqarzaee AA, Li Y, Thomas VC, Seto E. Lactate production by Staphylococcus aureus 

biofilm inhibits HDAC11 to reprogramme the host immune response during persistent 

infection. Nature microbiology. 2020 Oct;5(10):1271-84. 

Ho TT, Peng C, Seto E, Lin H. Trapoxin A analogue as a selective nanomolar inhibitor of 

HDAC11. ACS chemical biology. 2023 Mar 28;18(4):803-9. 

Host L, Dietrich JB, Carouge D, Aunis D, Zwiller J. Cocaine self-administration alters the 

expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition. 

Journal of psychopharmacology. 2011 Feb;25(2):222-9. 

Huang J, Wang L, Dahiya S, Beier UH, Han R, Samanta A, Bergman J, Sotomayor EM, Seto 

E, Kozikowski AP, Hancock WW. Histone/protein deacetylase 11 targeting promotes Foxp3+ 

Treg function. Scientific reports. 2017 Aug 17;7(1):8626. 

Hurtado E, Núñez‐Álvarez Y, Muñoz M, Gutiérrez‐Caballero C, Casas J, Pendás AM, 

Peinado MA, Suelves M. HDAC11 is a novel regulator of fatty acid oxidative metabolism in 

skeletal muscle. The FEBS journal. 2021 Feb;288(3):902-19. 

Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, Qin FX, Liu YJ. OX40 

ligand shuts down IL-10-producing regulatory T cells. Proceedings of the National Academy 

of Sciences. 2006 Aug 29;103(35):13138-43. 

Jagielska A, Lowe AL, Makhija E, Wroblewska L, Guck J, Franklin RJ, Shivashankar GV, 

Van Vliet KJ. Mechanical strain promotes oligodendrocyte differentiation by global changes 

of gene expression. Frontiers in cellular neuroscience. 2017 Apr 20;11:93. 

Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer therapy with HDAC inhibitors: 

Mechanism-based combination strategies and future perspectives. Cancers 2021, 13, 634. 

Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 

2015 Jul 17;349(6245):255-60. 



101 
 

Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM. The functional 

interactome landscape of the human histone deacetylase family. Molecular systems biology. 

2013 Jun 11;9(1):672. 

Kar S, Roy K. First report on predictive chemometric modeling, 3D-toxicophore mapping and 

in silico screening of in vitro basal cytotoxicity of diverse organic chemicals. Toxicology in 

Vitro. 2013 Mar 1;27(2):597-608. 

Keedy KS, Archin NM, Gates AT, Espeseth A, Hazuda DJ, Margolis DM. A limited group of 

class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. 

Journal of virology. 2009 May 15;83(10):4749-56. 

Khatun S, Amin SA, Gayen S, Jha T. In Silico Discovery of Class IIb HDAC Inhibitors: The 

State of Art. Current Trends in Computational Modeling for Drug Discovery. 2023 Jul 1:25-

55. 

Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in 

HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. 

Computers in Biology and Medicine. 2024 Apr 16:108468. 

Khatun S, Bhagat RP, Dutta R, Datta A, Jaiswal A, Halder S, Jha T, Amin SA, Gayen S. 

Unraveling HDAC11: Epigenetic orchestra in different diseases and structural insights for 

inhibitor design. Biochemical Pharmacology. 2024 May 22:116312. 

Kim JI, Jung KJ, Jang HS, Park KM. Gender-specific role of HDAC11 in kidney ischemia-

and reperfusion-induced PAI-1 expression and injury. American Journal of Physiology-Renal 

Physiology. 2013 Jul 1;305(1):F61-70. 

Kirchner M, Kluck K, Brandt R, Volckmar AL, Penzel R, Kazdal D, Endris V, Neumann O, 

Seker-Cin H, Goldschmid H, Glade J. The immune microenvironment in EGFR-and ERBB2-

mutated lung adenocarcinoma. ESMO open. 2021 Oct 1;6(5):100253. 

Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. Logistic regression. New York: Springer-

Verlag; 2002 Aug. 

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick 

J, Grout J, Corlay S, Ivanov P. Jupyter Notebooks–a publishing format for reproducible 

computational workflows. InPositioning and power in academic publishing: Players, agents 

and agendas 2016 (pp. 87-90). IOS press. 



102 
 

Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693-705. 

Kumar V, Kaur S, Kapil L, Singh C, Singh A. HDAC11: A novel inflammatory biomarker in 

Huntington’s disease. EXCLI journal. 2022;21:647. 

Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their 

inhibitors in neurodegenerative disorders: current targets and future perspective. Current 

neuropharmacology. 2022 Jan 1;20(1):158. 
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