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Preface

This thesis, titled "Development and Evaluation of a Classification-Based Binary-QSAR
Model for Identifying Key Molecular Fingerprints in Histone Deacetylase 11 (HDACIT)
Inhibition," represents the culmination of my research and studies towards the Master of
Pharmacy degree. The ficld of drug discovery and development is continuously evolving,
driven by the need to understand complex biological targets and develop effective therapeutic
agents. HDACI11 has emerged as a significant target due to its role in the regulation of gene
expression, cell cycle progression, and oncogenesis. Inhibition of HDAC11 holds promise for

therapeutic applications in cancer and other diseases.

Quantitative Structure-Activity Relationship (QSAR) modeling is a pivotal tool in
computational chemistry, allowing researchers to predict the biological activity of chemical
compounds based on their molecular structures. The binary-QSAR model, a subset of QSAR,

focuses on classifying compounds as active or inactive, thus aiding in the identification of

potential drug candidates.

The objective of this research is to develop and evaluate a classification-based binary-QSAR
model to explore and identify the essential molecular fingerprints responsible for HDAC11
inhibition. This work involves the integration of molecular modeling, and statistical analysis
to derive a robust predictive model. By identifying key molecular features, this study aims to

contribute valuable insights into the design of potent HDAC11 inhibitors.

The journey of this research has been both challenging and rewarding. It has deepened my
understanding of computational drug discovery and provided me with the skills to handle
complex data and derive meaningful conclusions. I am grateful for the guidance and support
of my supervisors and seniors, the collaboration with my peers, and the encouragement from
my family and friends. This thesis is a testament to the collective effort and dedication towards

advancing the field of pharmaceutical sciences.

T'hope this work will serve as a foundation for future research and inspire continued exploration

in the quest for innovative therapeutic solutions.
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Chapter 1: Introduction




Chapter 1: Introduction

A class of enzymes known as histone deacetylases (HDACSs) regulates the acetylation status of
both histones and non-histone proteins, which is important in regulating gene expression.
Acetylation and deacetylation of histones are pivotal processes in chromatin remodeling,
impacting the accessibility of transcriptional machinery to DNA and thereby influencing gene
transcription (Kouzarides et al., 2007). HDACs catalyze the removal of acetyl groups from
lysine residues on histone tails, leading to a more condensed chromatin structure and
transcriptional repression. Conversely, histone acetyltransferases (HATS) add acetyl groups,
resulting in an open chromatin conformation and active transcription (Shogren-Knaak et al.,
2006; Shanmugam et al., 2022).

The HDAC family is divided into four classes based on sequence homology and domain
organization: Class I, Class Il (subdivided into Ila and I1b), Class Il (sirtuins), and Class IV.
Class | HDACs (HDACL, 2, 3, and 8) are primarily located in the nucleus and are involved in
regulating cell cycle progression and differentiation. Class Il HDACs (HDAC4, 5, 6, 7, 9, and
10) can shuttle between the nucleus and cytoplasm, and they play roles in tissue-specific
functions and developmental processes. Class 111 HDACs (SIRT1-7), or sirtuins, are NAD+-
dependent deacetylases involved in metabolic regulation, aging, and stress responses. Class IV
is represented by a single member, HDAC11, which exhibits properties of both Class I and II
enzymes and is the least characterized among the HDACs (Ruijter et al., 2003; Witt et al.,
2009).

HDACSs are implicated in a wide array of physiological processes, including cell proliferation,
differentiation, apoptosis, and DNA repair (Hauer et al., 2017). Dysregulation of HDAC
activity is associated with various diseases, most notably cancer, where aberrant deacetylation
can lead to the silencing of tumor suppressor genes and the activation of oncogenes. This has
made HDAC:s attractive targets for therapeutic intervention (Pan et al., 2012; Glozak et al.,
2009). Several HDAC inhibitors (HDACI), such as vorinostat, romidepsin, and panobinostat,
have been developed and approved for the treatment of certain cancers, underscoring the
therapeutic potential of targeting HDACs (West et al., 2014; Moinul et al., 2023).

Recent research has extended beyond cancer, exploring the role of HDACs in
neurodegenerative diseases, cardiovascular disorders, and inflammatory conditions. For

instance, HDAC inhibitors have shown promise in the treatment of Huntington's disease and
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amyotrophic lateral sclerosis by promoting neuronal survival and reducing neuroinflammation.
In cardiovascular diseases, HDAC inhibition can modulate cardiac hypertrophy and fibrosis,
offering potential therapeutic benefits (Amin et al., 2023; Yoon et al., 2016; Sardar et al., 2024;
Bhattacharya et al., 2023; Khatun et al., 2024).

Despite the progress in understanding and targeting HDACS, challenges remain, particularly in
achieving isoform selectivity to minimize side effects and enhance therapeutic efficacy. The
development of isoform-selective HDAC inhibitors is a burgeoning area of research, focusing
on elucidating the distinct biological functions and regulatory mechanisms of individual
HDAC isoforms (Sardar et al., 2024; Bhattacharya et al., 2023; Khatun et al., 2024; Khatun et
al.,2023; Balasubramanian et al., 2009).

In this study, we have focused on HDAC11 which is the smallest and latest discovered only
known HDAC enzyme that belongs to class IV (Gao et al., 2002). Its encoding gene, which is
an open reading frame with a 347-residue protein, is found on the human chromosome 3g25.1
(Cao et al., 2019). It plays a crucial role in regulating gene expression through chromatin
remodeling. It has been also demonstrated that HDAC11 is the first isozyme in the HDAC
family to favour physiologically relevant acyl groups over acetyl groups. It effectively degrades
long-chain acyl modifications on side chains of lysine. Strong lysine de-fatty acylase HDAC11
is found to function more than 10,000 times better than its deacetylase counterpart. HDAC11
is the most efficient fatty-acid deacetylase, with catalytic efficiencies towards dodecanoylated
and myristoylated peptides of 77,700 and 149,000 M— 1s— 1, respectively (Kutil et al., 2018;
Sahakian et al., 2017; Villagra et al., 2009). HDAC11 has garnered significant interest in recent

years due to its potential as a therapeutic target in various diseases, including cancer,

neurodegenerative disorders, immunological diseases, metabolic diseases, and so on. Inhibiting
HDAC11 can modulate the acetylation status of histones and non-histone proteins, thereby
influencing key cellular processes such as proliferation, differentiation, and apoptosis (Woods
et al., 2017; Yanginlar et al., 2018).

The development of HDACL11 inhibitors has become a focal point in drug discovery. However,
identifying potent and selective inhibitors remains challenging due to the conserved nature of
the active sites across the HDAC family and the absence of experimental structure. Therefore,
there is a compelling need to develop computational models that can accurately predict
HDACL11 inhibition and guide the design of selective inhibitors (Khatun et al., 2024).

Quantitative Structure-Activity Relationship (QSAR) models have been instrumental in the

drug discovery process by establishing a relationship between the chemical structure of
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compounds and their biological activity (Tropsha et al., 2010). Among the various types of
QSAR models, classification-based binary-QSAR models are particularly useful when the
primary interest is in distinguishing between active and inactive compounds (Ahamed et al.,
2018). These models employ Bayesian classification, Recursive partitioning, SARpy analysis,
and different machine learning (ML) algorithms to identify molecular fingerprints, and specific
structural features that are crucial for biological activity.

We aim to develop and evaluate a classification-based binary-QSAR model to identify key
molecular fingerprints associated with HDAC11 inhibition. This study will leverage a
comprehensive dataset of known/unknown HDAC11 inhibitors and non-inhibitors, applying
advanced feature selection techniques to extract relevant molecular fragments, decision trees,
and descriptors. By employing classification-based QSAR methods, we will construct a robust
predictive model that can accurately classify compounds based on their potential to inhibit
HDAC11 (Amin et al., 2022).

The primary objectives of this research are to compile a dataset of HDACL11 inhibitors and
non-inhibitors from databases and literature sources, ensuring data quality and relevance;
removing duplicates from the dataset; and balancing the dataset in a justified manner.
Subsequently, in the case of Bayesian classification and Recursive partitioning, constructing a
predictive model and evaluating the performance of the developed models using metrics such
as accuracy, precision, recall, and receiver operating characteristic curve (ROC); will generate
relevant good/bad molecular fragments, and decision trees which will be crucial for identifying
inhibitors from non-inhibitors (Sardar et al., 2024; Bhattacharya et al., 2023).

Moreover in the case of ML algorithms, utilizing genetic algorithms and other feature selection
methods to identify the most relevant molecular descriptors that contribute to HDAC11
inhibition; to implement various classification algorithms, including Random Forest Classifier

(RFC), Support Vector Classifier (SVC), Logistic Regression (LR) and Linear Discriminant

Analysis (LDA), to build predictive models; to assess the performance of the developed models

using metrics such as accuracy, precision, recall, and area under the receiver operating
characteristic curve (AUC-ROC); and to analyze the models to extract and interpret the key
molecular fingerprints that are critical for HDACL11 inhibition (Banerjee et al., 2023).

The successful development of a reliable binary-QSAR model will provide valuable insights
into the structural requirements for HDAC11 inhibition, facilitating the design of novel
inhibitors with improved potency and selectivity. This approach not only enhances our
understanding of HDAC11 biology but also accelerates the drug discovery process for

therapeutic interventions targeting HDAC11.




1.1 Mechanism of action of HDAC11

The mode of action of HDAC11 is similar to that of other HDAC isoforms. Interestingly,
research on chromatin remodeling by histone deacetylation has gained traction during the past
few decades. Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are two
enzymes that balance the acetylation (relaxed chromatin) and deacetylation (condensed
chromatin) of histones (Figure 1). HDACs remove the acetyl group from the e-NH2 group of
lysine residues in proteins, while HATSs primarily catalyze the transfer of an acetyl group from
acetyl-CoA to the lysine residue’s e-NH2 group (Liu et al., 2009). One important epigenetic
alteration that alters the chromatin architecture and controls gene expression by opening or
shutting the chromatin structure is histone acetylation. The nucleosomes found in chromatin
are made up of an octamer with four histone cores (H2A, H2B, H3, and H4) encircled by 146
base pairs of DNA. The € amino groups present in the N-terminal of lysine residues are the site
of acetylation, which aids in transcription factor binding. It weakens the bond that holds DNA
and core nucleosome proteins together. Consequently, this increases accessibility to the
transcription factor binding sites (Ruijter et al., 2003). But according to Jenke et al., these
HDAC:Ss also deacetylate several non-histone proteins such p53, c-Myc, NF-xB, and E2F (Jenke
et al., 2021).

Transcription Repression Transcription Activation

HAT Inhibitors

Condensed Chromatin '
HDAC Inhibitors Relaxed Chromatin

Figure 1: Mode of action of HAT and HDAC protein

1.2 Location of HDAC11

HDACL11 is localized in both the cytoplasm and the nucleus. Unlike some other HDACs, it

does not exhibit a preference for either site, and it dynamically shuttles between these
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compartments, similar to other class Il HDACs (Tiwari et al., 2014; Schliter et al., 2019). In
freshly isolated, unstimulated T regulatory cells, HDAC11 is present in both the nucleus and
cytoplasm. However, upon activation of these cells, HDAC11 predominantly localizes in the
nucleus (Cheng et al., 2014). In retinal ganglion cells (RGC), HDAC11 also shows both nuclear
and cytoplasmic distribution, but it is expelled from the nucleus in response to excitotoxicity
induced by N-Methyl-D-aspartate (NMDA) receptors (Joshi et al., 2013). In adult neurons,
RGCs, macrophages, and human T regulatory cells, HDAC11 is evenly distributed across the
cytoplasm and nucleus (Tiwari et al., 2014; Schluter et al., 2019; Cheng et al., 2014; Joshi et
al., 2013; Takase et al., 2013).

Additionally, the interactions of HDAC11 provide substantial evidence that it may play a role
in regulating the cohesin complex and other cell cycle-related processes. Interestingly,
HDACI11 is found in the perinuclear region of T regulatory cells, which aligns with its
interaction with the survival of motor neuron (SMN) complexes, responsible for the assembly
of the spliceosome. This positioning suggests a potential role in coordinating activities crucial
for cell function and survival (Joshi et al., 2013). HDAC11 has been identified in specific
subcellular locations in various studies. These locations include the cytoplasm of quiescent
CD4+ cells, maturing oligodendrocytes, retinal pigmented cells, and neurons in the anterior
cingulate cortex (Gao et al., 2002; Host et al., 2011; Hurtado et al., 2021; Keedy et al., 2009;
Liu et al., 2008). Additionally, HDAC11 is notably abundant in brain synapses and
mitochondria-rich skeletal muscle cells. The localization of HDACL11 varies across different
systems. For example, HDAC11 is mostly located in the cytoplasm of mature cells and the
progenitors of embryonic astrocytes, but it is also equally present in the cytoplasm and nucleus

of immature oligodendrocytes (Tiwari et al., 2014).

1.3 Structural insights and the Catalytic domain of HDAC11

The HDACL11 protein consists of conserved residues within the catalytic key regions used by
mammalian class | and Il HDACs (Gao et al., 2002). While the deacetylase function and
structure of HDAC11 for each domain remain to be determined, they have been accurately
modeled with the help of the resolved structure of HDACS8 (Gao et al., 2002). The key
characteristics of HDAC11’s catalytic site are a conserved funnel-like channel outline that can
accommodate a reformed lysine residue; a uniform catalytic residue at the base of the funnel,
and four loops at the opening of the funnel, varying in length and shape, that interact with
protein regions and may be involved in substrate identification (Hurtado et al., 2021; Bryant et
al., 2017). Histidine residues 142 and 143 are crucial for the enzymatic activity of HDAC11,
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specifically in catalyzing the hydrolysis of acyl groups within the catalytic region (Figure 2).
These residues are among the invariant amino acids essential for this function. Research
indicates that HDAC11 is more similar to class | HDACs than to class Il, suggesting that
HDAC11 may possess the full deacetylase activity characteristic of class | HDACs
(Thangapandian et al., 2012; Woods et al., 2017).

Homology models of HDACL11, developed by Thangapandian et al. were aligned with the
structure of HDACS to compare the dimensions of their catalytic tunnels. The analysis revealed

that both HDACS and HDAC11 feature tunnels that are generally deep and narrow

Inhibitor

Zn2+

Catalytic site

(Important for ccﬁw

Figure 2: The alpha model of HDAC11 provides structural insights into the catalytic region of the

enzyme.

from the top to the bottom, containing a charge relay system and divalent Zn2+ ions necessary
for catalytic activity (Thangapandian et al., 2012). Kutil et al. noted that a narrow channel,
extending from the surface of the protein to the zinc-dependent catalytic site, accommodates
the lysine side chain of the substrate. This narrow channel branches into lateral and vertical
internal tunnels. These tunnels are capable of accommodating substrates with long aliphatic
fatty acid chains. The lateral tunnel, also known as the "foot pocket" in HDACS, is thought to
act as an escape pathway for unbound acetate and can be occupied by acyl groups from the
substrates. Therefore, HDAC11, similar to HDACS8 and class | HDACS, has a deep lateral
pocket, indicating a catalytic mechanism akin to that of HDACS8 (Kutil et al., 2018).




1.4 Understanding the Functionality and Growing Importance of
HDAC11

HDACI11 stands out among other HDACSs due to its unique enzymatic activity, specifically
targeting lysine residues' fatty acid modifications. This specialization differentiates HDAC11
from other HDAC:S that are involved in the deacetylation of histone and non-histone proteins,
establishing it as a distinct entity in the realm of epigenetic regulation, expanding the substrate

scope of HDACSs beyond traditional acetyl lysine hydrolysis (Nufiez-Alvarez et al., 2022).

HDAC11 plays distinct roles in the myeloid compartment, particularly within neutrophils. In
antigen-presenting myeloid cells, HDAC11 negatively regulates the production of interleukin-
10 (IL-10) by promoting histone deacetylation and binding to the IL-10 promoter, thereby
influencing immune system activation (Li et al., 2016). In neutrophils, HDAC11 is upregulated
during differentiation and maturation but inversely correlates with functional activity
(Sahakian et al., 2016). It also influences cytokine and chemokine biology in neutrophils,
making HDAC11 a potential target for diseases involving these cells. Furthermore, HDAC11
regulates RNA splicing and immune cell functions, including those of neutrophils, T cells,
regulatory T cells, and antigen-presenting cells (Sahakian et al., 2017; Villagra et al., 2009;
Woods et al., 2017).

HDACI11 is highly expressed in the rat brain, suggesting its significance in neurological
functions (Broide et al., 2007). Research indicates that inhibiting HDAC11 may be beneficial
for treating conditions such as multiple sclerosis, obesity, and cancer (Ho et al., 2023). In breast
cancer cells, HDAC11 affects gene expression and interacts with the promoter of the
adrenodoxin reductase tumor suppressor gene ARH1 (Feng et al., 2007; Tao et al., 2007).
Additionally, HDAC11 inhibits hepatitis B virus (HBV) replication by reducing H3 acetylation

on covalently closed circular DNA (cDNA) minichromosomes (Yuan et al., 2019).

In oligodendrocytes, HDAC11 regulates maturation by modulating H3K9 and H3K14
acetylation on the proteolipid protein (Plp) and myelin basic protein (Mbp) genes (Liu et al.,
2009). In vitamin D-deficient intestinal epithelial cells, HDAC11 binds to promoters of tight
junction proteins, reducing H3/H4 acetylation ratios and inhibiting gene transcription.
HDACI11 is also associated with transcription factors such as TBX2, TBET, and EOMES in
non-activated T cells, suppressing T-cell effector functions (Woods et al., 2017). HDAC11's
role extends to cell-specific transcription factors like KLF4, PU.1, GLI1, and MYQOD, and it

interacts with bromodomain-containing protein BRD2 (Figure 3). These interactions highlight




the potential therapeutic applications of HDAC11 inhibition for various conditions, including
metabolic disorders, cancers, and inflammatory diseases (Bagchi et al., 2018; Todd et al., 2010;
Chen et al., 2022; Chen et al., 2020). Although no specific HDAC11 inhibitors are currently
approved, several naturally derived and synthetic inhibitors have shown promising preclinical
therapeutic effects (Dallavalle et al., 2022; Son et al., 2020). Ongoing research continues to

focus on developing specific HDAC11 inhibitors for disease treatment.

Regulation of HDAC11 HDACII therapeutic interventions
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Figure 3: HDAC11 regulation and its involvement in epigenetics, as well as therapeutic treatments that target
HDAC11. SOX-2 (SRY-box transcription factor 2), PU.1 (Polyomavirus enhancer-binding protein 2 alpha 1),
GLI1 (glioma-associated oncogene family zinc finger-1), KLF4 (Krippel-like factor 4), MYOD (myoblast
determination protein 1), UCP-25 (uncoupling protein-25), HEY-1 (Hes Related Family BHLH transcription
factor with YRPW motif 1), and DNA (deoxyribonucleic acid).

1.5 The Role of HDAC11 in Epigenetic Regulation

HDACL11 is expressed in particular tissues, including the brain, heart, testis, kidney, skeletal
muscle, and gallbladder (Gao et al., 2002; Nufiez-Alvarez et al., 2021; Boltz et al., 2019). It




plays a vital role in epigenetic regulation by deacetylating both histone and non-histone
proteins, thereby influencing the acetylation status of various proteins involved in
transcriptional regulation and cell cycle control. In breast cancer cells, HDAC11 deacetylates
transcription factors such as E2F1 and E2F4, affecting their function and expression levels, and
thereby contributing to cancer progression. HDACL11 also deacetylates CDT1, promoting its
proteasomal degradation and removing acetylation protection against ubiquitination (Feng et
al., 2007; Tao et al., 2007). Additionally, HDAC11 decreases the acetylation of BubR1 without
altering its protein levels, and this interaction occurs at the centrosome alongside HDACS. In
vitro experiments have shown that HDAC11-mediated deacetylation can inactivate BubR1 and
enhance dendritic growth (Lozada et al., 2016; Watanabe et al., 2014).

HDAC11 is crucial for various biological traits such as migration, apoptosis, stemness, immune
evasion, and cell invasion, all contributing to tumor growth and metastasis. Its overexpression
in cancer is linked to the regulation of cell proliferation, differentiation, immune evasion, and
treatment resistance (Liu et al., 2023). HDACL11 depletion can double the acetylation levels of
histone H3 at lysine residues 9 and 14 (H3K9/K14ac) in cells like oligodendrocytes compared
to non-depleted cells (Liu et al., 2009). Conversely, HDAC11 overexpression reduces
acetylation on histone H3 at lysine residue 27 (H3K27ac) and decreases chromatin accessibility
in retinal-pigmented cells (Wang et al., 2018). The extent of histone acetylation is modulated
by either the downregulation or overexpression of HDAC11. Interleukin-10 (IL-10) is the first
known epigenetic target of HDAC11, which acts as a transcriptional repressor of IL-10
production by influencing H3/H4 acetylation levels at the IL-10 promoter and regulating

immune system activation in antigen-presenting cells (APCs) (Villagra et al., 2009).

1.6 Different Physiological Roles of HDAC11

HDAC11 plays a vital biological role in almost all systems in the human body and is recognized
as a crucial regulator of cellular functions. It is notably expressed in the brain, kidneys, heart,
and testis. HDACL11 is implicated in the development of numerous metabolic diseases, such as
diabetes and obesity, and in the regulation of several immune cells, including T-cells and
neutrophils. Additionally, it is associated with cardiovascular disease, chronic kidney disease,
CNS-related disorders, and cancer. HDACL11 is among the top 1-4% of overexpressed genes
in cancers like breast cancer and hepatocellular carcinoma. This section provides an overview
of the latest research on the role and mechanisms of HDACL11 in the regulation of these various

diseases.




1.6.1 Renal and Metabolic disorders

In today's world, metabolic illnesses such as obesity, hypertension, type Il diabetes,
cardiovascular diseases, and polycystic ovarian syndrome pose significant health risks
(https://www.nhlbi.nih.gov/health/metabolic-syndrome/causes). The primary contributors to
metabolic syndrome include overweight and obesity, which elevate blood pressure, low-
density lipoprotein (LDL), triglycerides, and high-density lipoprotein (HDL) levels (Yang et
al., 2021). Additionally, obesity is linked to chronic metabolic inflammation and abnormal
adipocyte growth and function. HDAC11 plays a crucial role in combating obesity by
modulating the immune response; normal or high levels of HDAC11 activity can stimulate this
response, while inhibition of HDAC11 increases IL-10 expression and affects metabolic
inflammation. HDACL11 is also vital for regulating cell division, proliferation, migration,

glucose homeostasis, and insulin sensitivity (Figure 4) (Villagra et al., 2009).
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Figure 4: HDAC11's function in metabolic diseases. Histone deacetylase 11, PAI-1 (plasminogen agonist
inhibitor type 1), KLF15 (Krugppel-like factor 15), IL-10 (interleukin-10), BAT (brown adipose tissue), LPL
(lipoprotein lipase), UCP1 (uncoupling protein 1), and AMPK (AMP-activated protein kinase) are some of the
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However, some research suggests that depleting HDAC11 can significantly reduce liver fat and
damage, while improving insulin sensitivity, lowering cholesterol levels, and enhancing
glucose tolerance (Sun et al., 2018). Significantly, lacking HDAC11 leads to a marked increase
in metabolic rate and oxygen consumption, which boosts energy expenditure and fat oxidation
(Bagchi et al., 2018). Sun et al. found that the increase in uncoupling protein 1 (UCP1)
expression and activity in brown adipose tissue due to HDAC11 deficiency enhances energy
expenditure through improved thermogenesis. Moreover, HDAC11 deletion activates the
adiponectin-AdipoR-activated protein kinase (AMPK) pathway in the liver, potentially
reversing hepatosteatosis. Consequently, HDAC11 is recognized as a novel regulator of obesity

with promising therapeutic implications for obesity-related diseases (Sun et al., 2018).

Fan et al. highlighted the role of HDAC11 in maintaining healthy body weight and preventing
lipid accumulation in diabetic hearts and adipose tissues. In a diabetic heart failure mouse
model, reduced levels of HDACL11 led to oxidative stress, inflammation, decreased apoptosis,
and dyslipidemia. This suggests that inhibiting HDAC11 expression might prevent or mitigate
diabetes-associated cardiomyopathy. Furthermore, renal fibrosis, characterized by increased
myofibroblast proliferation, inflammatory infiltrates, migration, and extracellular matrix
proteins, is a poor prognostic indicator in chronic kidney disease. Among the HDACS, only
HDAC11 has been shown to suppress PAI-1 (plasminogen activator inhibitor type 1)
expression in kidneys subjected to ischemia-reperfusion (I/R) injury, particularly in gender-
specific kidney models, and in monocytes and macrophages stimulated with
lipopolysaccharide (LPS). Orchiectomy prevented the release of HDAC11 induced by
ischemia-reperfusion (I/R) injury, while dihydrotestosterone therapy restored its levels. This
suggests that reductions in HDAC11 binding and expression due to I/R injury are influenced
by male gender and hormones, leading to increased PAI-1 expression (Fan et al., 2018; Kim et
al., 2013; Mrug Kim et al., 2013).

Mao et al. explored various models of renal fibrosis, finding that HDAC11 expression was
elevated in the kidneys. In cultured renal tubular epithelial cells (RTECs), treatment with
angiotensin 11 (Ang 1) also increased HDACL11 levels. Additionally, inhibiting HDAC11 with

quisinostat or siRNA reduced the Ang ll-induced fibrogenic response in these cells. The

interaction between HDAC11 and activator protein 2 alpha (AP-2a) was found to suppress the

transcription of Kruppel-like factor 15 (KLF15). Consequently, Ang Il promoted fibrogenesis
in RTECs by counteracting the effects of HDAC11 inhibition or depletion through KLF15




knockdown. This led to the identification of a critical AP-20-HDAC11-KLF15 pathway

involved in renal fibrosis (Mao et al., 2020).

1.6.2 Neurological diseases

Epigenetic alterations, such as histone acetylation, are essential for normal brain function.
HDAC11 is predominantly expressed in the brain and some other tissues in the human body.
At the cellular level, the HDAC11 protein is primarily located in the cell nuclei of mature
oligodendrocytes, with a lesser presence in astrocytes (Liu et al., 2008). The acetylation of
histone core proteins decreases as neural cells in the CNS grow. Consequently, using RNA
interference to inhibit HDAC11 expression enhances histone H3 acetylation in an
oligodendroglial cell line (Liu et al., 2008). Additionally, HDACL11 is considered a potential
therapeutic target for mental conditions, including depression, Parkinson’s disease, and
schizophrenia, due to its role in neuronal differentiation. It is also relevant in the treatment of
malignant hematopoiesis and myeloproliferative neoplasms (Baek et al., 2023; Kumar et al.,
2022; Sun et al., 2018). Some studies suggest that the removal of HDACL11 leads to a significant
decrease in chemokine C-C motif ligand 2 (CCL2) levels. This reduction is associated with a
lower number of monocytes and dendritic cells infiltrating the spinal cords of animals with
experimental autoimmune encephalomyelitis (EAE), aiding in the treatment of CNS
demyelinating diseases (Figure 5) (Baek et al., 2023; Kumar et al., 2022; Sun et al., 2018).

Baek et al. achieved a revolutionary discovery by pharmacologically controlling HDAC11,
which induces autophagy and balances reactive nitrogen species in microglia. This discovery
suggests a new therapeutic approach for depressive conditions and an anti-inflammatory
strategy for brain disorders involving microglia (Baek et al., 2023). Jagielska et al. found that
during the development of oligodendrocytes, HDAC11 decreases histone 3 acetylation and
promotes the transcription of the Mbp and Plp genes (Jagielska et al.,2017). He et al.
demonstrated that HDAC11 affects the expression of the human microRNA hsa-miR-4639-5p,
which could potentially serve as both a diagnostic tool and a treatment option for Parkinson's
disease (He et al., 2017). Additionally, Bryant et al. observed decreased expression of the
schizophrenia-associated gene FEZ1 in differentiating brain cells. Since FEZ1 interacts with
DISC1, it is associated with the risk of schizophrenia and the dendritic development of neurons
(Bryant et al., 2017).
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Figure 5: HDAC11's function in neurological conditions. FEZ1, fasciculation and elongation protein zeta 1;
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1.6.3 Functions of Inmune system

HDACI11 acts as a negative regulator of IL-10 gene expression. IL-10 is an anti-inflammatory
cytokine that modulates macrophages and dendritic cells, while also controlling the production
of pro-inflammatory cytokines (Sahakian et al., 2015). It prevents the differentiation of
dendritic cells from monocyte precursors and limits macrophages' ability to combat
intracellular infections by inhibiting TNF (tumor necrosis factor) production (Bryant et al.,
2017; Sahakian et al., 2015; Kumar et al., 2022). Recent studies have shown that HDAC11
negatively affects the phenotype and function of T-cells and neutrophils. HDAC11-deficient
myeloid-derived suppressor cells displayed increased inhibitory activity against CD8+ T-cells
(Chen et al., 2021). Additionally, lactate from Staphylococcus aureus biofilms inhibits
HDAC11, enhancing IL-10 transcription through unchecked HDACSG activity, which promotes
the anti-inflammatory properties of macrophages and myeloid-derived suppressor cells (Heim
et al., 2020).

Emerging evidence suggests that HDAC11 could be an inflammatory biomarker in

Huntington’s disease (Kumar et al., 2022), as it directly suppresses IL-10 production, leading




to inflammation and disease progression (Shao et al., 2018). In Parkinson’s disease,
hyperimmune activation, characterized by elevated IL-10 gene expression, promotes neuronal
loss through the activation and release of CD4+ and T-cells (Kumar et al., 2022).
Overexpression of HDAC11 lowers IL-10 production, which boosts the functioning of
inflammatory antigen-presenting cells, potentially activating naive T cells and increasing the

responsiveness of tolerant CD4+ T cells (Kumar et al., 2022; Villagra et al., 2009).

HDAC11 plays a dual role in neutrophil biology: it increases as neutrophils mature, and a
decrease in HDACL11 correlates with neutrophil functional activity (Sahakian et al., 2017). TNF
upregulates HDAC11 expression in B cells, inhibiting IL-10 synthesis and contributing to
allergic rhinitis (Shao et al., 2018). Nasal polyp development is mediated by IL-4, which also
suppresses IL-10 production in dendritic cells by modulating HDAC11 (Luo et al., 2017). In
Hodgkin’s lymphoma (HL) cell lines, HDAC inhibitors increased OX40 ligand (OX40L)
surface expression in a dose-dependent manner. Suppressing HDAC11 transcripts elevated
TNF- and IL-17 production in HL cell supernatants. Furthermore, OX40L produced by
HDAC11 suppressed Type-1 T-regulatory (Treg) cells that generate 1L-10 (Buglio et al., 2011).
OX40 activation reduces the suppressive effect of IL-10-producing Type 1 Treg cells and
CD4+ CD25+ Foxp3+ Treg cells, as well as the transformation of antigen-specific CD4+ naive
T cells to CD4+ CD25+ Foxp3+ Treg cells (Ito et al., 2006).

Finally, individuals with food allergies show elevated expression of IL-13 and HDAC11 in
their blood and local tissues. Mechanistically, IL-13 binds to HDAC11 in the IL-10 promoter
area, which prevents B-cells from producing IL-10 and hence contributes to food allergies (Liu
et al., 2020).

1.6.4 Vascular Injury

Vascular injury refers to damage to a blood vessel, such as an artery that supplies blood to an
organ or limb, or a vein that returns blood to the heart (https://vascular.org/patients-and-
referring-physicians/conditions/vasculartrauma). This injury triggers inflammation within
blood vessels, leading to a transformation of vascular smooth muscle cells from a contractile

state to a synthetic state, which plays a crucial role in the development of cardiovascular

diseases (Nufiez-Alvarez et al., 2016). Vascular smooth muscle cells have become a significant

focus of research as a model for flexible gene expression (Miano et al., 2010). Studies suggest
that Kruppel-like factor 4 (KLF4) recruits HDAC11 to silence histone acetylation, which

deactivates the chromatin around the angiogenic factor with G-Patch and FHA domain 1
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(Aggfl) promoter, thereby repressing Aggfl transcription. Consequently, the modulation of
the vascular smooth muscle cell phenotype was halted, and Aggfl expression was restored
when either HDAC11 or KLF4 was depleted. Administering an HDAC11 inhibitor to mice
ultimately reduced vascular injury (Zhou et al., 2017). Zhou et al. experimented on rats, where
intraperitoneal treatment with quisinostat reduced vascular injury in rats with carotid artery
ligation-induced vascular injury by restoring Aggfl levels and contractile gene expression
(Zhou et al., 2017).

1.6.5 HDAC11 in Skeletal muscle

Skeletal muscle, comprising over 40% of total body mass in mammals, plays a crucial role in
determining basal metabolic rate (BMR) and maintaining overall energy homeostasis (Hurtado
et al., 2021). Although HDACL11 is highly expressed in skeletal muscle, its specific biological
functions and physiological roles remain largely unknown. Recent research suggests that
HDACI11 deficiency enhances muscle strength and endurance, thereby improving muscular
function (Zhang et al., 2022). The loss of HDAC11 facilitates a shift from glycolytic to

oxidative muscle fibers, increasing the number of oxidative myofibers without significantly

affecting the overall structure of skeletal muscle (Nufiez-Alvarez et al., 2016). Additionally,

HDACI11 depletion boosts mitochondrial fatty acid B-oxidation by lowering acylcarnitine
levels in vivo and activating the AMP-activated protein kinase-acetyl-CoA carboxylase
pathway, which helps maintain the balance between different muscle fiber types and

mitochondrial lipid oxidation (Morales et al., 2017).

Nunez-Alvarez et al. investigated the impact of HDAC11 genetic deficiency on skeletal muscle
regeneration, a process primarily dependent on local stem cells along with stromal and immune
cells. Their findings indicate that HDAC11 is not essential for adult muscle development or
the formation of the stem cell population. However, HDAC11 deficiency accelerates muscle
healing following injury. This acceleration is partly due to the inappropriate rise in IL-10 levels,
creating a pro-regenerative and anti-inflammatory environment, which promotes more

effective muscle regeneration in the absence of HDAC11 (Nunez-Alvarez et al., 2021).

1.6.6 HDAC11 in Cancer

HDAC11 is upregulated in various cancers and plays a significant role in tumor development,
influencing cell proliferation, differentiation, apoptosis, migration, stemness, immune evasion,

and therapeutic tolerance (Liu et al., 2023). These processes are mediated through signaling




pathways such as AMPK and JAK/STAT. The involvement of HDAC11 in cancer is
multifaceted and varies across different cancer types. For instance, HDAC11 enhances cell
invasion and migration in esophageal squamous cell carcinoma (Yang et al., 2022), while in
colorectal cancer (M&rmol et al., 2017) and non-small-cell lung cancer (Gridelli et al., 2015),
it inhibits these processes. Additionally, HDAC11 has dual roles in hepatocellular carcinoma
(HCC) (Wang et al., 2020) and breast cancer (Leslie et al., 2019), affecting cell invasion and
migration differently (Figure 6).
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Figure 6: HDAC11's involvement in many cancer types. LKB1, liver kinase B1; AMPK, AMP-activated protein
kinase; NSCLC, non-small cell lung cancer; ARH1, ADP-ribosylhydrolase 1; EGR1, Early Growth Response

Protein 1.

In the context of tumor immunity, HDAC11 acts as a "gatekeeper™ of immune cell demise and
regulates various immune cells, including neutrophils, CD8+ T cells, macrophages, natural
Killer cells, T-helper 1 (Th1) cells, and bone marrow-derived suppressor cells (Kirchner et al.,
2021). Deficiency in HDAC11 leads to cell death and suppresses metabolic processes in
ovarian (SK-OV-3), colon (HCT-116), prostate (PC-3), and breast (MCF-7) cancer cell lines
(Deubzer et al., 2013). Aiming HDAC11 might be beneficial for treating HCC and overcoming
resistance to kinase inhibitors, as HDAC11 decreases Liver Kinase B1 (LKB1) expression in

HCC, promoting progression and cancer stemness (Bi et al., 2021). Recent studies (Yang et




al., 2024) indicate that inhibiting or depleting HDAC11 significantly reduces the self-renewal
capacity of cancer stem cells in non-small-cell lung cancer and diminishes the expression of
SOX-2, essential for cancer stem cell maintenance. HDAC11 has been observed to inhibit
SOX2 production through GLI1, a transcription factor in the Hedgehog pathway (Bora-Singhal
et al., 2020).

Silencing HDAC11 decreases protein deacetylation, enhances the apoptotic response to
mitogen-activated protein kinase inhibitors (MEKi), and inhibits proliferation in various uveal
melanoma cell lines during long-term colonization experiments (Sriramareddy et al., 2022).
HDACI11 is also thought to negatively affect liver cancer cell death by suppressing the p53
gene (Gong et al., 2019). Higher HDAC11 expression is associated with improved overall
survival in breast cancer patients, making HDAC11 a potential prognostic marker due to its

partial inhibition of breast cancer cell invasion and proliferation (Zhao et al., 2023).

Li et al. discovered that HDAC11 is abnormally expressed in 25 different cancer types, with
its expression either positively or negatively correlated with prognosis. HDAC11 may have a
suppressive role in cancers such as kidney renal papillary cell carcinoma, brain lower-grade
glioma, rectum adenocarcinoma, kidney renal clear cell carcinoma, pheochromocytoma and
paraganglioma, and uveal melanoma, challenging the notion that HDAC11 functions
universally as an oncogene (Li et al., 2022). Currently, few highly selective inhibitors target
HDAC11 with precision, and the low selectivity of existing HDAC inhibitors often results in

dose-dependent toxicities. Cancer remains a critical target for HDAC11 research, with

significant potential for future investigations.

1.7 Inhibitors of HDAC11

The development of selective HDACL11 inhibitors is still in its nascent stages compared to

inhibitors for other HDAC family members. However, some promising compounds have been

identified:

1.7.1 Hydroxamic Acids

These compounds are common in many HDAC inhibitors and have shown potential in

inhibiting HDAC11. Hydroxamic acids can chelate the zinc ion in the active site of HDAC11,

leading to effective inhibition.

e SAHA: Suberoylanilide Hydroxamic Acid (SAHA), also known as Vorinostat, is a well-
known HDAC inhibitor approved for treating cutaneous T-cell lymphoma. SAHA is a pan-
HDAC inhibitor that can inhibit multiple HDAC enzymes, including Class | and 11 HDACs.
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While SAHA is primarily known for its broad-spectrum inhibition of HDACs, its role in
inhibiting HDAC11 is of particular interest due to the unique biological functions and
therapeutic potential associated with HDACL11 inhibition (Auzzas et al., 2010).

FT895: FT895 is an emerging HDAC inhibitor under investigation for its potential
therapeutic applications, particularly in cancer treatment. These inhibitors work by
blocking the activity of HDAC enzymes, leading to increased acetylation of histones,
which can result in altered gene expression, cell cycle arrest, apoptosis, and enhanced
immune responses. This novel compound has demonstrated promising selectivity and
efficacy in preclinical studies, representing a significant step forward in HDAC11

inhibitor development (Martin et al., 2018).

Elevenostat: Elevenostat represents a promising advancement in the field of selective
HDACI11 inhibition, with potential therapeutic applications in cancer, immune regulation,
and neurological disorders. While still in the early stages of development, ongoing research
and development efforts are expected to further elucidate the therapeutic potential of
Elevenostat, paving the way for new treatment strategies targeting HDAC11 (Kutil et al.,
2019).

MIR002: MIRO002 is a small molecule inhibitor specifically designed to target HDAC11.
As a novel HDAC11 inhibitor, MIR002 represents a significant advancement in the
development of selective inhibitors aimed at regulating the activity of this particular enzyme
(Chen et al., 2020).

Trichostatin A: Trichostatin A is a valuable HDAC inhibitor with significant effects on
HDAC11, among other HDACs. Understanding TSA's impact on HDAC11 is crucial for
advancing our knowledge of HDAC biology and developing targeted therapies for diseases
involving HDACL11 dysregulation (Auzzas et al., 2010).

Quisinostat: Quisinostat (JNJ-26481585) is a second-generation hydroxamic acid-based
HDAC inhibitor. It is known for its potent and broad-spectrum activity against multiple
HDACSs, with a particular emphasis on its efficacy in cancer therapy due to its ability to
induce cell cycle arrest, differentiation, and apoptosis in cancer cells. Further research is

needed to fully understand Quisinostat's specific effects on HDAC11 and optimize its

therapeutic applications (Arts et al., 2009).
Belinostat (PXD101): Belinostat (PXD101) is a pan-HDAC inhibitor belonging to the

hydroxamic acid class. It is approved for treating peripheral T-cell lymphoma (PTCL) and




is being investigated for other types of cancers due to its ability to induce apoptosis, cell
cycle arrest, and differentiation in malignant cells.

Its inhibition of HDAC11 contributes to its therapeutic effects in cancer treatment,
particularly in inducing apoptosis and modulating immune responses. Further studies on
Belinostat's specific interaction with HDAC11 will enhance our understanding of its
mechanisms and therapeutic potential (Rana et al., 2020; Li et al., 2016).

Aes-135: Aes-135 is a novel HDAC inhibitor that has shown potential in targeting
HDAC11. HDAC inhibitors work by blocking the activity of HDAC enzymes, leading to
increased acetylation of histone proteins, which can alter gene expression, inhibit cell
proliferation, and induce apoptosis. Aes-135 is a promising selective HDAC inhibitor
targeting HDAC11. Its ability to inhibit HDAC11 specifically positions it as a potential
candidate for targeted cancer therapy and other diseases where HDAC11 plays a crucial
role. Further research on Aes-135 will enhance our understanding of HDAC11 and optimize
its therapeutic applications (Shouksmith et al., 2019).

Fimepinostat: Fimepinostat is a potent dual inhibitor of HDACs, including HDAC11, and
PI3Ks. Its inhibition of HDAC11 contributes to its anti-cancer effects, promoting apoptosis
and disrupting cancer cell proliferation. Fimepinostat’s dual action enhances its therapeutic
potential, making it a promising candidate for targeted cancer therapies and further research
into the specific roles of HDAC11 in disease (Cheshmazar et al., 2022; Kutil et al., 2019).
Dacinostat: Dacinostat is a powerful HDAC inhibitor with broad-spectrum activity,
including inhibition of HDAC1L1. Its ability to target HDAC11 contributes to its therapeutic
effects in cancer treatment, particularly by inducing apoptosis and modulating immune
responses (Auzzas et al., 2010).

Pracinostat: Pracinostat is an influential HDAC inhibitor with broad-spectrum activity,
including targeting HDACL11. Its inhibition of HDAC11 enhances its therapeutic effects in

cancer treatment by promoting apoptosis, regulating immune responses, and influencing

metabolic pathways. Continued research into Pracinostat's specific interactions with
HDAC11 will improve our understanding of its mechanisms and refine its therapeutic use
(Kutil et al., 2019; Rana et al., 2020).

Panobinostat: Panobinostat, also known as LBH589, is a potent pan-HDAC inhibitor that
includes HDACL11 in its spectrum of targets. It is primarily used in the treatment of multiple

myeloma, particularly in patients who have not responded to other treatments. By inhibiting




HDAC activity, Panobinostat alters gene expression, leading to anti-proliferative and pro-
apoptotic effects in cancer cells (Li et al., 2014).

1.7.2 Benzamides and Thiols

These chemical classes have also been explored for HDAC11 inhibition. They offer an

alternative to hydroxamic acids, potentially providing different selectivity profiles and

pharmacokinetic properties.

e Mocetinosta: Mocetinostat, also known as MGCDO0103, is an orally bioavailable inhibitor
of HDACs, with a preference for Class | and IV HDACSs. It has shown promise in the
treatment of various hematological malignancies and solid tumors. By inhibiting HDACs,
Mocetinostat induces changes in gene expression that can lead to anti-tumor effects (Rana
et al., 2020; Zhou et al., 2008).

1.7.3 Cyclic peptides

Cyclic peptides are a class of peptides characterized by a circular structure, which is formed

through peptide bonds between the amino and carboxyl termini or through side-chain linkages.

This cyclic structure imparts unique stability and binding properties, making cyclic peptides an

attractive scaffold for drug development. Their enhanced stability, resistance to proteolytic

degradation, and ability to bind to protein targets with high affinity have positioned them as

potential therapeutics, including inhibitors of HDACs (Olsen et al., 2009).

e TDO034: TDO034 is a small molecule inhibitor designed to target histone deacetylases
(HDACS). While it is primarily recognized for its inhibitory action on HDACL11, it may also
exhibit effects on other HDACs to a lesser extent. HDAC inhibitors, such as TD034, are of
significant interest in the field of oncology and other therapeutic areas due to their ability to
modulate gene expression and cellular functions (Ho et al., 2023).

e Romidepsin: Romidepsin, also known as Istodax or FK228, is a potent HDAC inhibitor
approved for the treatment of cutaneous T-cell lymphoma (CTCL) and peripheral T-cell
lymphoma (PTCL). It is a cyclic peptide that selectively inhibits Class | HDACs, including
HDAC1, HDAC2, HDAC3, and HDACS, leading to the re-expression of silenced genes that
regulate cell cycle arrest and apoptosis in cancer cells. Although Romidepsin primarily
targets Class | HDACs, its inhibitory effects also extend to HDAC11. While challenges such
as selectivity and resistance need to be addressed, the development of Romidepsin and
similar inhibitors holds promise for advancing targeted therapies in oncology and beyond
(Yao et al., 2015).




e Trapoxin A: Trapoxin A is a naturally occurring cyclic tetrapeptide that functions as a
potent HDAC inhibitor. It was originally isolated from the culture broth of the fungus
Helicoma ambiens. Trapoxin A is well-known for its ability to inhibit HDACs irreversibly,
leading to increased acetylation of histones and subsequent changes in gene expression.
While Trapoxin A is a broad-spectrum HDAC inhibitor, its effects on HDAC11 have
garnered significant interest. Trapoxin A inhibits HDAC activity by covalently binding to
the enzyme's active site, leading to the accumulation of acetylated histones. This results in
a more open chromatin structure, promoting the transcription of genes involved in cell cycle
regulation, apoptosis, and differentiation. The irreversible nature of Trapoxin A's inhibition
provides a prolonged effect on gene expression (Furumai et al., 2001; Kutil et al., 2019).

1.7.4 Hydrazides

Hydrazides are a class of organic compounds characterized by the presence of the functional

group -CONHNH2. They are known for their diverse biological activities and have been

explored extensively in medicinal chemistry for their potential as therapeutic agents.

Hydrazides have shown promising results as HDAC inhibitors, including the inhibition of

HDACI11 (Carreiras et al., 2024).

e SIS7: SIS7 is an investigational compound designed to selectively inhibit HDAC11, a
protein involved in regulating gene expression, immune responses, and cellular metabolism.
By targeting HDACL11, SIS7 disrupts its deacetylase activity, leading to an accumulation of
acetylated proteins that alter chromatin structure and gene expression. This inhibition holds
potential therapeutic benefits across various diseases. In cancer treatment, SIS7 could
reduce tumor growth and induce apoptosis in cancer cells with high HDAC11 expression.
Inflammatory diseases may benefit from SIS7's ability to modulate immune responses and

reduce inflammation. Additionally, by impacting neuronal function and neuroinflammation,

SIS7 shows promise for neurodegenerative disorders like Alzheimer's and Parkinson's.

Despite its potential, SIS7 faces challenges related to achieving high selectivity for
HDAC11 over other HDACs and ensuring safety and efficacy through rigorous preclinical
and clinical studies. Ongoing research is necessary to optimize SIS7 and validate its
therapeutic benefits (Son et al., 2019).

e SIS17 - SIS17 is a compound under investigation for its potential to inhibit HDAC11.
HDACI11 is a key enzyme involved in regulating gene expression, cellular metabolism, and

immune responses. Its inhibition by specific compounds like SIS17 is of significant interest




for therapeutic development, particularly in cancer, inflammatory diseases, and

neurodegenerative disorders (Son et al., 2019).

Table 1. Different HDACL11 inhibitors along with their chemical class, inhibitory activity in
different HDAC isoforms and clinical status.
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There is no molecular modeling analysis on HDAC11, so we are reporting some review articles
and research articles based on synthesis. In this scenario, we want to give more emphasis on

drug discovery and biological investigations.

2.1 Son et al. (2020) represented a significant breakthrough in understanding the mechanism
of action of Garcinol. It provides a natural product-derived lead that could be further optimized
to enhance its potency and specificity. The observed similarities between the phenotypes of
Garcinol treatment and HDAC11 knockout in mouse models further support this hypothesis.
The authors discovered that Garcinol is a potent and selective inhibitor of HDAC11, with an
ICs0 of approximately 5 uM in vitro and 10 pM in cellular assays. The discovery of Garcinol
as a potent and selective HDAC11 inhibitor opens new avenues for developing natural product-
derived therapeutic agents for various diseases, including obesity, diabetes, and multiple
sclerosis. It underscores the importance of continued research into the molecular mechanisms
of natural products and their potential therapeutic applications. This discovery not only
provides a new lead for the development of HDAC11 inhibitors but also offers a deeper

understanding of the biological activities of Garcinol (Son et al., 2020).

2.2 Baek et al. (2023) introduced a novel HDAC inhibitor, compound 5, which selectively
targets HDAC11. HDACs are enzymes that regulate gene expression and cellular processes,
with HDAC11 being highly expressed in the brain and immune cells. The study demonstrates
that compound 5 can significantly alleviate depression-like behaviors in mice by inhibiting
microglial activation and inducing autophagy. Microglia are immune cells in the central
nervous system that play a crucial role in neuroinflammation, which is implicated in depressive
disorders. By targeting HDAC11, inhibitor 5 effectively suppresses the production of nitric
oxide, a key mediator of neuroinflammation, and induces autophagy in microglial cells. This
dual action of inhibiting microglial activation and enhancing autophagy makes HDAC11 a
promising therapeutic target for treating depressive disorders. The research provides new
insights into the molecular mechanisms underlying depression and opens new avenues for the

development of targeted therapies for various neuropsychiatric diseases (Baek et al., 2023).

2.3 Huang et al. (2017) investigated the role of HDAC11 in enhancing the function of Foxp3+
T-regulatory (Treg) cells, particularly in the context of transplantation and autoimmune

diseases. By using mice with constitutive or conditional deletion of HDAC11 within Foxp3+
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Treg cells and employing small molecule HDAC11 inhibitors in allograft models, the
researchers demonstrate that targeting HDAC11 can significantly boost Treg function and
suppress allograft rejection. The findings suggest that HDAC11-selective inhibitors may offer
new therapeutic options for managing transplantation and autoimmune diseases, by enhancing
the suppressive activity of Tregs and promoting long-term allograft survival (Huang et al.
(2017).

Tian et al. (2017) presented a novel method for assaying slow-binding inhibitors against the
unstable protein HDAC11, a poorly studied member of the human HDAC family. By
employing the fast-binding inhibitor SAHA as a chaperone molecule, the researchers stabilized
HDAC11, significantly reducing the protein's activity loss from 40% to less than 10% over a
3-hour period. This stabilization allowed for a more accurate determination of the inhibitory
capacity of the benzamide HDAC inhibitor MS275, with the true 1Cso being established at 0.65
M. The optimized assay conditions were then applied to a one-dose screening assay, revealing
that several benzamide derivatives showed moderate inhibition strength against HDAC11,
which would have been missed using traditional methods. This approach not only enhances the
accuracy of HDAC11 inhibitor assays but also improves the discovery of potential inhibitors,

particularly in the hit-discovery stage (Tian et al., 2017).

Sui et al. (2020) investigated the role of HDAC11 in mouse oocyte maturation, revealing that
HDAC11 inhibition disrupts meiosis progression, spindle organization, chromosome
alignment, kinetochore-microtubule attachment, and spindle assembly checkpoint (SAC)
function. The inhibition also increases the acetylation levels of H4K16 and a-tubulin,
suggesting that HDAC11 promotes meiotic apparatus assembly by modulating these
acetylation statuses. The findings underscore the importance of HDAC11 in ensuring accurate
chromosome segregation during oocyte meiosis, providing insights into the regulatory
mechanisms of meiosis and potential pathways for modulating meiotic apparatus assembly (Sui
et al., 2020).

Villagra et al. (2009) examined the function of HDACL11 in the regulation of interleukin 10

(IL-10) expression within antigen-presenting cells (APCs) and its effect on the immune
system's decision between activation and tolerance. The authors demonstrate that HDAC11
negatively regulates IL-10 expression, with overexpression leading to decreased IL-10 and

increased inflammatory responses, capable of priming naive T cells and reversing tolerance in
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CD4+ T cells. Conversely, disrupting HDAC11 results in higher IL-10 expression and reduced
antigen-specific T-cell responses. The study also shows that HDACL11 interacts with the distal
segment of the IL-10 promoter, influencing its transcriptional activity through changes in
histone acetylation and transcription factor binding. These findings identify HDACL11 as a key
molecule in the balance between immune tolerance and activation, with potential implications
for treating autoimmune diseases, managing transplant rejection, and enhancing cancer

immunotherapy (Villagra et al., 2009).

Baselious et al. (2023) explored the application of AlphaFold models in drug discovery,
focusing on HDAC11, an enzyme with potential therapeutic implications for cancer and other
diseases. Despite the lack of a crystal structure for HDACL11, the authors successfully
optimized an AlphaFold model by incorporating a catalytic zinc ion and assessed its reliability
through docking simulations with known inhibitors. Molecular dynamics simulations
confirmed the stability of the optimized model and its complexes with various inhibitors. The
study demonstrates that the optimized HDAC11 model can be utilized for structure-based drug
design, emphasizing the potential of AlphaFold in aiding drug discovery efforts, even for

proteins with limited structural data (Baselious et al., 2023).

Baselious et al. (2024) demonstrate the successful application of an optimized AlphaFold
protein model for the design of a novel and selective inhibitor targeting HDAC11, which has

potential implications for treating neuroblastoma. The authors address the challenge of using

AlphaFold models in drug discovery, particularly in the absence of ligands and cofactors, by

refining the HDAC11 model and employing it to predict the binding mode of a known inhibitor,
FT895. Based on this prediction, they design and synthesize a series of compounds, with one
compound, 5a, showing the most promise, having an 1Cso of 365 nM for HDAC11 and
displaying selective inhibition. Molecular docking and dynamics simulations validate the
predicted binding mode of compound 5a, which also exhibits anti-neuroblastoma activity with
an ECso of 3.6 pM. The research signifies the potential of optimized AlphaFold models in
guiding the development of novel therapeutic agents, particularly for cancer targets like
HDACI11 (Baselious et al., 2024).
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HDAC11 plays a crucial role in various diseases, including cancer, neurodegenerative
disorders, and inflammatory conditions (Amin et al., 2023; Yoon et al., 2016; Sardar et al.,
2024; Bhattacharya et al., 2023; Khatun et al., 2024). However, creating selective inhibitors
for HDACL11 is challenging due to the necessity to distinguish its activity from other HDAC

family members.

The significance of HDAC11 inhibition is underscored by its involvement in modulating gene
expression, immune responses, and key cellular processes such as apoptosis and differentiation.
Overexpression of HDAC11 is linked to several pathological conditions, including tumor
progression and inflammation (Bagchi et al., 2018; Chen et al., 2022; Chen et al., 2020; Liu et
al., 2009; Todd et al., 2010). Developing specific HDAC11 inhibitors could offer new
therapeutic options for these diseases. However, achieving selectivity is a major challenge, as
many current HDAC inhibitors affect multiple HDAC isoforms, leading to potential off-target
effects and toxicity. A classification-based binary-QSAR model is proposed to help identify
and optimize inhibitors with high specificity for HDAC11, thereby minimizing unwanted side

effects.

Binary-QSAR models are essential in drug discovery as they elucidate the relationship between
molecular structure and biological activity. These models predict the inhibitory potential of
new compounds based on their molecular fingerprints, facilitating the design of more effective
and selective inhibitors. By employing a classification-based approach, researchers can gain
insights into the structural features contributing to HDAC11 inhibition, leading to the

identification of key molecular determinants.

The development of a classification-based binary-QSAR model for HDAC11 inhibition could
significantly advance drug discovery efforts. It offers a systematic approach to screen and
optimize potential inhibitors, improving the efficiency of the drug development process. This
approach aligns with current trends in computational drug design and personalized medicine,
where predictive models play a crucial role in identifying and developing new therapeutic
agents. Some studies such as bayesian classification, recursive partitioning, SARpy analysis,
and machine learning study have been conducted to find important fingerprints for potent
HDACL11 inhibitory activity. This research is valuable for studying the molecular docking of
selected compounds. It provides insights into the binding mechanisms between inhibitors and

their targets, helping to optimize drug design and improve binding affinity.
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4. Materials and Methods

4.1 Collection and preparation of data set

In this work, a total of 1191 compounds having HDAC11 inhibitory activity (ICso) in
nanomolar (nM) concentration was compiled from Binding Data Base also known as Binding
DB (https://www.bindingdb.org/rwd/bind/index.jsp). It provides three-dimensional structures

of compounds in the .sdf format. For ease of work, the “prepare ligands for QSAR” protocol
of Discovery Studio version 3.0 (D.S. 3.0) (Accelrys Inc., CA, USA, 2015) was applied,
removing duplicate compounds from the dataset. As a result, 382 duplicate compounds were
detected and permanently removed from the dataset. The duplicate-free dataset contains a total
of 809 compounds. In the next step, the duplicate-free dataset was filtered with the “Filter
using Lipinski and Verber’s rule” protocol of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) to
prepare a dataset of drug-like compounds only. The protocol produced a dataset containing 712
drug-like compounds which passed Lipinski and Verber’s rule (Lipinski et al., 2004). Then the
inhibitor’s HDAC11 inhibitory activities (1Cso) were converted to negative logarithm values
(pICso). Therefore, the activity profile of the compounds in this dataset had been segregated
into binary manner, having HDAC11 inhibitory activity equal to or more than the plCso value
of 6.001 (ICso < 1000 nM) were labeled as 'l' (active) whereas compounds with indefinite
HDAC11 inhibitory action and activity range less than the plCso value of 6.001 (ICso > 1000
nM) was labeled as '0' (inactive). The binarized dataset shows the number of actives = 307

(training=237, test=70) and the number of inactive compounds = 405 (training=297, test=108).
4.2 Division of Dataset

The dataset division in a justified manner is the most necessary step for any QSAR model
development process. In this study, the dataset contains a large number of structurally diverse
compounds (Nset = 712, where the highest active compound with ICso = 0.3 nM and least active
compound with I1Cso = 80,020 nM). The whole dataset was divided into two distinct sets i.e.,
the training set and test set through the "Generate Training and Test Data" module in D.S. 3.0
(Accelrys Inc., CA, USA, 2015), which were used to build and evaluate the QSAR models

respectively. The dataset was divided with the “random per cluster” method based on various

parameters like cluster, distance to the closest, cluster centre, and cluster size, to create the
training set (which contained almost 70% of the dataset compounds) and the test sets (which
contained nearly 30% of the dataset compounds). All training sets (Ntrain = 534, Annexure-1)

were used to build the QSAR models, which were then verified using their equivalent test set
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(Ntest = 178, Annexure-1). Several molecular descriptors of the selected compounds were
evaluated such as the number of aromatic rings (nAR), rings (nR), and rotatable bonds (nRB);
molecular weight (MW), octanol/water partitioning coefficient (AlogP) and molecular
fractional polar surface area (M_FPSA); number of hydrogen bond (nHBD) donors and
acceptors (nHBA) (Amin et al., 2004) as well as topological fingerprint descriptors such as
extended connectivity fingerprints of diameter 6 (ECFP_6) (Rogers et al.,, 2010) and
functional-class fingerprints of diameter 6 (FCFP_6) for the modeling study in D.S. 3.0
(Accelrys Inc., CA, USA, 2015). Further with the help of this divided dataset classification-
based Bayesian classification, Recursive partitioning, and SARpy analysis were conducted.
Also, the workflow of the study is illustrated in Figure 7.
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Figure 7: Overall workflow of the study

4.3 Machine learning (ML) models utilizing multiple 2D Descriptors

a. Molecular Descriptor Calculation

To perform ML modeling, the curated dataset containing 712 compounds (.sdf file format) was
used for calculating 2D descriptors through PaDEL software (Yap et al., 2011). The PaDEL-
Descriptor program was used to construct several classes of 2D-descriptors, such as molecular
features, electro-topochemical atom descriptors, detour matrix descriptor, auto-correlation

descriptors, etc.




b. Data pre-treatment and dataset division

To ensure the accuracy of our modeling analysis, we performed data pre-treatment to remove
undesired features such as missing values, constant values across all compounds, and highly
inter-correlated features. We used the Java-based tool DataPreTreatmentGUI 1.2, available at
http://teqip.jdvu.ac.in/fQSAR_Tools/, for this purpose (Ambure et al., 2015). This tool helped

us eliminate descriptors with intercorrelation cut-off values above 0.85 and those with a
variance cut-off below 0.0001. After pre-treating the data, we divided the dataset into a training
set (Ntrain= 534) and a test set (Ntest= 178) consistent with the sets used for Bayesian and
Recursive models. The pre-treated training set was then used for feature selection.

c. Selection of features and model development

Before conducting classification-based modeling analysis, it is crucial to identify the essential
features that accurately represent the response. Feature selection using appropriate algorithms
is a significant challenge for modelers. So, we have utilized the Most Discriminating

Features (MDF) selection tool (https://dtclab.webs.com/software-tools) to keep those features

that appeared most often. Importantly, feature selection was performed exclusively on the
training set, with no involvement of the test set compounds. The selected features were
combined, and hyperparameter optimization was employed for building multiple
classification-based ML models. These models were built using the ML classifier tool

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-

model-development-guis).

d. Development of Classification-based ML models

ML entails programming computers to gather information from existing information
to enhance their performance on subsequent duties, with usage in several fields like regulatory
decision-making and predictive modeling (Chatterjee et al., 2024; Jordan et al., 2015).

Subsequently, by utilizing the finalized list of selected features from the "Feature selection”

step, various ML-based classification models were built including Random Forest Classifier
(RFC) (Pal et al., 2005), Support Vector Classifier (SVC) (Lau et al., 2003), Logistic
Regression (LR) (Kleinbaum et al., 2002) and Linear Discriminant Analysis (LDA)

(Xanthopoulos et al., 2013). We developed ML-based models using Python-based scripts and
executed them in Jupyter Notebook web tool (Kluyver et al., 2016) with Anaconda Navigator

version 2022.05 (https://www.anaconda.com/products/distribution) and Python version 3.10.4.
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The best model for the prediction of test set compounds was selected after the related
hyperparameters ~ were  optimized using the " CSL v 11 " tool
(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-learning-

model-development-guis) by the Grid search technique utilizing 5-fold cross-validation mean
squared error as the objective function in each of the ML approaches. Finally, the "Machine

Learning Classification v1.1" tool was used to build the ML models.

e. SHAp analysis

SHapley Additive exPlanations (SHAp) analysis is a method used in ML to explain model
predictions by assigning importance values to each feature based on their contribution to the
prediction. Developed from cooperative game theory, SHAP values offer a unified approach
to interpreting complex models by fairly distributing the prediction among the features. This
analysis helps identify key features, understand their interactions, and enhance model
transparency and trustworthiness (Mangalathu et al., 2020).

This approach calculates Shapley values, which are the mean marginal contribution of every
feature over all feasible combinations. The process begins by feeding the dataset into the

model, and then SHAp gives a Shapley value to each feature, reflecting its involvement in the

model's output (Strumbelj et al., 2011).

4.4 Bayesian classification study

The Bayesian classification is a statistical method that primarily utilizes probability principles

(Box et al., 2011) based on Bayes’ theorem as indicated in EQ. 1.

P(h/d) = Posterior probability
P(d/h) = Likelihood
P(h) = Prior belief
P(d) = Evidenced data
where h stands for hypothesis and d stands for observed data

P(d/h) P(h)

P (h/d) = 0

The fundamental goal of Bayesian classification in our study is to identify important structural
fingerprints using a probabilistic approach (Fang et al., 2015). The “Create Bayesian model”
protocol of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) involved building a Bayesian
classification model on the training set molecules, comprising both calculated molecular
descriptors and the extended connectivity fingerprint descriptors (Chen et al., 2011). The

models were then validated using the test set molecules.




4.5 Recursive partitioning (RP) study

RP is a classification-based QSAR approach that classifies dataset molecules based on their
molecular features/descriptors into group/class-based groupings (Yadav et al., 2022). RP
generates multiple "decision trees" using key molecular features that separate the research
samples into further smaller samples (nodes) based on whether a certain selected predictor is
greater than or less than a given cut-off value (Amin et al., 2022). Thus, the RP study was
applied in our investigation to gather significant data and characterize HDAC11 inhibitors. RP
models were built through the "Create RP model” module of the D.S. 3.0 software (Accelrys
Inc., CA, USA, 2015) utilizing the training set molecules (Ntrain= 534) which were then
validated using the test set compounds (Ntest= 178). These models depend on the combination
of distinct molecular descriptors (as considered for Bayesian classification study) and FPCP_6
(Chen et al., 2011; Rogers et al., 2010). Among the several models, the best RP model with
the maximum discriminating capability was selected as the best RP tree model.

4.6 Statistical analysis and evaluation of QSAR-based models

To support the model's predictability and dependability, it is essential to evaluate various
statistical parameters for fitness measurement and performance evaluation of the overall
classification-based modeling study. In this work, to validate and justify the robustness of the
QSAR models, a statistical evaluation based on the receiver operating characteristic (ROC)-
based evaluation was exclusively examined (Fawcett et al., 2005; Roy et al., 2015). Both
internal (ROCrrain and ROCcy) and externally validated ROC (ROCrest) scores have been
examined using a test set for the developed classification-based models. The statistical models
depend on some predicted values like true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). Similarly, the performance of the model was validated using statistical

parameters including sensitivity (Se), specificity (Sp), accuracy (Acc), precision (Pr), and

geometric mean (G-means) (Son et al., 2020; Nufiez-Alvarez et al., 2021; Boltz et al., 2019)

using Eqgs 2-6. Additionally, metrics including F1-measure (F1), area under the balanced
accuracy ROC curve (AUCy), Youden's index (y), positive likelihood (p+), negative likelihood
(p-), and Matthew’s correlation coefficient (MCC) were calculated for both the training and test
set compounds employing Eqs 6 to 12 (Kar et al., 2013; Das et al., 2014; Toropova et al., 2017,
Toropova et al., 2014).

TP TP = Number of true positives

Sensitivity (Se) = TP+ FN ' FN = Number of false negatives
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T
SPECifiCity (Sp) = W
TP+TN
TP+TN+FP+FN
TP

TP + FP

Accuracy (Acc) =

Precision (Pr) =

G —means = \/(Sensitivity * Specificity)

Fl = 2TP
" 2TP+FP+FN
Se + Sp
AUCb =
2

where, y = 0: Model has no discriminatory ability

y =Se—(1-Sp); (random classification)
y = 1:Perfect discrimination (ideal classification)

Se where, p, > 1:Model is more likely to correctly identify positive instances
P+ = m ; p+ = 1:Model has no discriminatory power
py+ < 1:Modelis less likely to correctly identify positive instances

(1—Se) where, p_ > 1:Model is more likely to correctly identify negativce instances
p- = Sp ; p_ = 1:Model has no discriminatory power
p_ < 1:Model is less likely to correctly identify negative instances

where MCC ranges from —1to + 1;
(TP «TN) — (FP = FN) MCC = 1: Perfect prediction

= ; MCC = 0:No better than random prediction (12)
‘/(TP + FP)(TP + FN)(TN + FP)(TN + FN) MCC = —1:Total disagreement between

prediction and observation

McC

4.7 SARpy Model

The SAR in Python (SARpy) program is a Python script based on the OpenBabel chemistry
library (Banerjee et al., 2022; Golbamaki et al., 2016). SARpy is a QSAR technique designed
to transparently discover significant molecular fragments utilizing categorized active and
inactive compounds in a learning set and immediately extract a set of rules from data in a
recursive manner, without the need for any previous knowledge (Ferrari et al., 2013). The
methodology builds molecular substructures of arbitrary complexity, and the fragments that
are candidates for structural alerts are automatically chosen based on their performance in a

learning set of predictions (Marzo et al., 2016; Mombelli et al., 2016).

The software generates substructures in a set using user-defined SMILES format depending on

their likelihood ratio (LR) value and attempts to connect the specific molecular structures with
their biological activity in three phases: fragmentation, evaluation, and extraction (Lombardo
et al., 2014).




o i True positive negative
Likelihood ratio (LR) = —— X ——— (13)
False positive positives

LR value is a number between 1 and infinity. When the structural alert is only present in the
positive observations then the LR can be regarded as infinite (inf) (Banerjee et al., 2023).

In the fragmentation stage, a recursive simple fragmentation algorithm is employed to find
chemical substructures in the training set molecules. It continues through each bond in the input
structures, attempting to produce every possible pair of fragments (Yang et al., 2017). After
each substructure has been created, it is evaluated individually to look for any possible
structural alerts (SA) in the evaluation step. Furthermore, to complete the process, only the
reduced sets of estimated rules were applied from the collection of generated structural alerts
(Baderna et al., 2020). The rule sets in our present investigation were generated utilizing
“OPTIMAL” single alert precision for fragments with atom numbers between 2 (minimum)
and 26 (maximum) and a minimum number of 6 occurrences. Later, utilizing the SARpy
software  (https://www.vegahub.eu/portfolio-item/sarpy/)  these  generated structural

alerts/active rulesets were further evaluated on the test set compounds.
4.8 Molecular Docking Analysis

Till now, the mammalian HDAC11 X-ray crystallographic structure has not been solved. So,
the AlphaFold model of HDAC1l1 was downloaded from the AlphaFold database
(https://alphafold.ebi.ac.uk/entry/BSMCUG). The zinc coordination motif of this protein was
discovered by structural alignment analysis with the PDB ID: 1C3S
(https://www.rcsh.org/structure/1C3S) as described in the previous research study by Baek et
al., 2023. Figure 8 shows that the binding motif of PDB ID: 1C3S and the Alphafold HDAC11
model is similar and can be considered an active site for molecular docking analysis with
reference compound SAHA.

For molecular docking analysis, we used AutoDockZn, which is a freely available docking tool
developed by Santos-Martins et al., 2014 which uses a modified improved forcefield option
for improvement in the performance of binding estimation and free energy calculation in case
of molecular docking with zinc-specific metalloproteins. Some common initial steps of
molecular processes, such as PDB to PDBQT conversion for protein and selected ligands, were
done using the ADFR suite and mk-prepare.py python script of the MEEKO software package
(https://pypi.org/project/meeko/). Then the tetrahedral zinc pseudo atom was added according

to the protocol of the AutoDockZn. The grid box was generated (X, Y, Z dimensions of 60,

spacing: 0.375 A) by enclosing the prototype ligand SAHA and zinc ion (Grid centre: -7.605,
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11.153, -9.269). Additionally, the AD4Zn.bat (specific parameter file for zinc) was added to
the grid input file. Then, the grid generation (with AutoGrid4.2.7) and molecular docking (with

AutoDock4) were done conventionally. Finally, the best docking pose for each compound

(A004, A007, A013, A053) was selected by comparing the docked structure with the prototype
compound. The 3D and 2D interactions of the compounds were analyzed with D.S. 3.0
(Accelrys Inc., CA, USA, 2015).

Figure 8: Structural alignment of alphafold HDAC11 model (Siam) with PDB ID:1c3s (Pink) bound with SAHA
(Red). The structure showing same binding motif in both of their structure.
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5. Results and discussion
5.1 Data Analysis

In this study, a dataset containing 712 compounds was used for the development of

classification models. The dataset was split into training (Ntrain=534) and test sets (Ntest=178)

using the "Random per Cluster" method for the Bayesian and RP studies. The model was
developed on the training set and validated on test set compounds. Before the
model development, different molecular descriptors were calculated, including nAR, nRB, nR,
AlogP, MW, nHBD, nHBA, M_FPSA, ECFP_6, and FCFP_6. In Figure 9 multiple bin plots
for physicochemical properties are illustrated, including nAR, nRB, nR, AlogP, MW, nHBD,
nHBA, and M_FPSA for active and inactive compounds.
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Figure 9: Distribution of HDAC11 inhibitory activity, A. nAR, B. nRB, C. nR, D. AlogP, E. MW,
F. nHBD, G. nHBA, H. M_FPSA.




5.2 Machine Learning (ML)

A well-curated dataset of 712 HDAC11 inhibitors was used to build ML-based QSAR models,
which included Random Forest Classifier (RFC), Support Vector Classifier (SVC), Logistic
Regression (LR) and Linear Discriminant Analysis (LDA). At first, the PaDEL-Descriptor
program was implemented to build a set of 1445 2D descriptors (Yap et al., 2011). After that,
the dataset was pre-treated, which yielded 496 2D descriptors, and then these descriptors were
employed for model development and feature selection. Ultimately, 53 descriptors that the
MDF tool determined to be the most discriminatory features were used to generate four
classification-based ML models (RFC, SVC, LDA, and LR). The model was specified and
configured through hyperparameter optimization [RFC (‘criterion’: ‘gini’, 'max_depth': None,
min_samples_leaf': 4, 'min_samples_split": 2, 'n_estimators': 150); SVC ('C": 0.1, ‘gamma’:
'scale’, 'kernel’: 'linear’); LR ('C": 0.1, 'penalty': None, 'solver": ‘Ibfgs'); LDA (‘solver': 'svd")] by
utilizing Scikit-learn package in Python. These ML algorithms are easily available onthe DTC
Lab webpage (https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home/machine-
learning-model-development-guis). A range of validation metrics based on classification was

used to evaluate the ML models' performance. The RFC model with 53 descriptors turned out

to be the best of them. Table 2 presents a detailed analysis of validation outcomes using various

approaches for each of the four models and Figure 10 presents an illustration of the obtained
ROC plots from the RFC models.

Several metrics were used to evaluate the model, including Cohen's kappa (k) coefficient, F1
score, accuracy, precision, recall, and Matthews correlation coefficient (MCC). Specifically,
the random forest (RF) model performed better, with an AUC-ROC of 0.985 for the training
set and 0.831 for the test set, demonstrating adequate internal and external validation at 0.852
and 0.529, respectively. On the training set, the RF model yielded an accuracy of 0.927 and a
precision of 0.934; on the test set, it obtained an accuracy of 0.758 and a precision value of
0.651. The training set demonstrated a specificity of 0.899 and a recall of 0.898, while the test
set showed a value of 0.828 for specificity and recall. Cohen's kappa coefficients for the
training and test sets were 0.851 and 0.517, respectively. In addition, we used the RFC model
to perform SHAp (SHapley Additive ExPlanations) analysis on the training dataset. This
analysis aimed to assess each variable's (descriptor) local and global contributions to the

predictions.




Table 2. Comparison of the performances of different ML models

Model Set TP FP TN FN Acc Pr Sp F1 Recall ~ Cohen’s
Type score
(Se)
Training 0.898
Test 0.828
Training 0.751
Test 0.785
Training 0.734
Test 80 0.728

Training 234 . 0.730

Test 73 0.814

ROC Curve for Test data ROC Curve for Train data
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Figure 10: The ROC plots obtained in the RFC model

5.2.1 Interpretation of the descriptors involved in Machine learning models

Mechanistic interpretation is crucial for any QSAR model as per OECD Guidelines 5. The
development of the final model utilizes some molecular descriptors minHBint2, minHBInNt5,
VE3 Dt, maxHdsCH, GATS1m, minHssNH, and minsssN as illustrated in Figure 11.
Understanding the contribution of these structural descriptors is essential for gaining insight

into HDAC11 inhibition. Among these descriptors, minHBint5 has the most significant impact
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on HDACL11 inhibition (Figure 12). The minHBint2 and minHBInt5 descriptors are 2D electro-
topological state (E-state) descriptors, which represent the minimum E-State descriptors of
lengths of 2 (minHBInt2) and 5
(minHBInt5) respectively. These descriptors highlighted the relevance of hydrogen bonding
with path lengths 2 and 5. Interestingly, compounds like A043 (ICso = 27 nM), A073 (ICso =
115 nM), A117 (ICso = 651 nM), and A118 (ICso = 659 nM) show both high minHBint2 and
minHBInt5 values and powerful HDACL1 inhibition, indicating that minHBint2 and

strength for potential hydrogen bonds with path

minHBINt5 positively contribute to HDAC11 inhibitory action. On the other hand, the
descriptors minHssNH (A117, 1Cso = 651 nM, A130 = 750 nM), maxHdsCH (A037 = 15 nM,
A084 = 180 nM, A134 = 750 nM), and minsssN (A046 = 31 nM, A161 =776 nM) are also E-
state fragments based on atoms that positively contribute to HDAC11 activity. These
descriptors represent both the electronic and steric properties of atoms and molecules.
MinHssNH denotes the bonding of amine groups while the feature minsssN refers to the >N-
fragment's minimum nitrogen atom-type E-State. A high minsssN score indicates strong
polarity and, thus, less toxicity since the presence of polar nitrogen atoms increases the
hydrophilicity of molecules. In addition, maxHdsCH is one of the most essential descriptors
for the model with only PaDEL descriptors. It represented the maximum atom-type H E-State:
=CH-.

| DESCRIPTORS

________ pmmmmmmmn=!
[ |

Electrotopological state (E-
state) descriptors

minHBint2 §
For potential Hydrogen Bonds of
path length 2
Eg. A073, Al17, A326

minHBint5 1
For potential Hydrogen Bonds of
path length 5
Eg. A043, Al18, A326

MDE Descriptor

MDEC-34

Molecular distance edge between all

tertiary and quaternary carbons
Eg. A081, Al151, A298

Figure 11: A summary of 13 significant descriptors used in ML models

Auto-correlation descriptors

GATSIm 1
Geary autocorrelation - lag 1
weighted by mass
Eg. A039, A082, A310

AATSC7i ‘
Average centered Broto-Moreau
autocorrelation - lag 7 / weighted
by first ionization potential
Eg. A043, A359, A369

ATSC2i ¥
Centered Broto-Moreau
autocorrelation - lag 2 / weighted
by first ionization potential
Eg. A302, A421

Detour Matrix Descriptor

VE3_Dt T
Logarithmic coefficient sum of the
last eigenvector from detour matrix

Eg. A003, A008, A095

Path Count Descriptor

mpcio |

Molecular path count of order 10
Eg. A003, A008, A082

R_TpiPCTPC 4
Ratio of total conventional bond
order (up to order 10) with toral
path count (up to order 10)
Eg. A001, A003, A082

E-state fragments based on
atom

minHssNH -
Eg. A326, A357, “T 1
A360

minsssN R 1
Eg A297,A303, |

A320

|
maxHdsCH —CH T
Eg. A084, A354,
A357

Crippen Descriptor

CrippenLogP ‘
Crippen's LogP
Eg. A003, A008, A081

. Positive contributions are

denoted by upward arrows in blue, while negative contributions are represented by downward arrows

in red.




The GATS1m is a 2D autocorrelation descriptor that describes how a given attribute is
distributed over a topological molecular structure. It defines mass distribution along a
topological molecular structure. Higher values of GATS1m indicate increased HDAC11
activity, as observed in compounds like A039 (ICso = 21 nM), and A082 (ICso = 174 nM).
Conversely, ATSC2i (A630 and A696) and AATSC7i (A691 and A702) contributed negatively
to the HDACL11 activity. Moreover, the descriptor VE3_Dt denoted the logarithmic coefficient
sum of the last eigenvector in the detour matrix. It has been found that VE3_Dt contributes
positively to the HDAC11 activity, in compounds like A003 (ICso =1 nM), and A008 (ICso =
2 nM). Furthermore, CrippenLogP a Crippen's LogP descriptor (A528 and A673), MDEC-34
MDE descriptor (A586 and A648), MPC10 (A625 and A699) and R_TpiPCTPC (A616 and
A625) a path count descriptor each of them have a negative impact on HDAC11 activity.

5.2.2 SHAP Plots

SHapley Additive exPlanations (SHAP) illustrate the output of ML models. SHAP highlights
each feature by itself and also, shows the importance of all the features together. SHAP is a
model-nonspecific tool, organic to the application of any ML algorithm, and ensures that the
sum of the SHAP values for each attribute is the difference between the prediction loss and the
average prediction loss. To sum up, SHAP is a powerful method of increasing transparency
and trust in ML models as it provides a comprehensive explanation of how each feature affects
the predictions (Mangalathu et al., 2020; Strumbelj et al., 2011).

These plots show the contribution of each descriptor to the prediction on the y-axis (SHAP

values), with features plotted on the x-axis. Every point on the plot represents a data instance,

and its colour indicates whether the feature value is high (usually blue) or low (usually red),
depending on where the point falls on the x-axis. In complicated machine learning models like
neural networks or tree-based models, SHAP plots help visualize the relative relevance of
different features and how they contribute to individual predictions (Lundberg et al., 2018).
We trained the best machine learning model (RFC) from the dataset to investigate these

visualizations.
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Figure 12: A. SHAP Summary plot providing a detailed overview of the directional effects of different
features on the predictions for the Random Forest Classification (RFC) model. B. t-SNE Plot of SHAP
embeddings for the training data set. C. t-SNE Plot of SHAP embeddings for the test data set.

5.2.3 SHAP Summary Plot

SHAP summary plots employ individual feature attributions to efficiently communicate
multiple aspects of a feature's significance while maintaining the visualization simple and
brief. These plots show dots representing SHAP values in a horizontal orientation, with
characteristics arranged according to their total impact. The dots stack vertically in cases where
there is insufficient room. The colour of each dot indicates the value of the feature, ranging
from low (blue) to high (red). The colouring will exhibit a smooth transition if a feature's

influence on the model varies gradually as its value changes.

The most significant element influencing the model's output at baseline is minHBInt5, as seen

in Figure 12A. The colouring of the minHBInt5 plot shows a smooth increase in the model's

output (a log odds ratio) with higher minHBint5 values, while the density of dots shows the

frequency of different minHBInt5 values in the dataset. The pattern of dots that leans more to
the right (as in the case of maxHdsCH) than to the left suggests that high values of these

measures might considerably increase the influence on RFC. These depictions aid in
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comprehending the behaviour of the model and highlighting significant characteristics that

influence its evaluations. These descriptors strongly influence HDAC11 inhibitory activity.
5.2.4 t-SNE Plots

A technique for visualizing data that maps high-dimensional points to discrete locations in two
or three dimensions is called t-distributed stochastic embedding, or t-SNE. This non-linear
method of lowering complicated data dimensions is achieved by efficiently distilling the core
of high-dimensional datasets and projecting them into lower-dimensional environments
(Banerjee et al., 2023). t-SNE plots showing various scenarios for the training and test set
compounds are shown in Figures 12B and 12C. In the first scenario (6B), t-SNE plots were
generated for the training set of the best (RFC) model. In this instance, the data point clustering
indicates total segregation. As we go to the next scenario (6C), t-SNE plots were generated for
the test set of the best (RFC) model.

5.3 Bayesian Classification

The "Create Bayesian Model™ module of D.S. 3.0 (Accelrys Inc., CA, USA, 2015) generated
the Bayesian classification model. However, the Bayesian model has been developed on a
collection of 534 training set HDAC11 inhibitors and non-inhibitors using descriptors such as
nHBD, nHBA, ALogP, nRB, nR, nAR, MW, and M_FPSA together with ECFP_6 fingerprint.

After analysis, it has been found that the proposed model accurately discriminated between

favourable and unfavourable structural features which can be classified into distinct categories.

Therefore, this approach is beneficial in identifying several essential molecular properties of
diverse classes of HDAC11 inhibitors.

The results of the statistical analysis of the Bayesian classification model along with its
parameter and predictive performance are discussed in Table 3. The developed model for both
training (five-fold cross-validated, ROC:,,) and test sets demonstrated good ROC scores of
0.824 and 0.834 respectively, while the ROC plots are displayed in Figure 13. The training set
(Ntrain) model depicted a value of 77.2 % Se, 91.9 % Sp, 0.853 Acc, 0.884 Pr, and 0.842 G-
mean. Similarly, in the case of external validation, the test set (Nrest) model also demonstrated
satisfactory scores for the different statistical parameters (Table 3) such as 65.7 % Se, 79.3 %
Sp, 0.741 Acc, 0.676 Pr, and 0.723 G-mean. The G-mean algorithm efforts to enhance the
accuracy on each of the classes. Furthermore, to quantify the overall performance of the model,
other measures such as the F1, AUCy, MCC, v, and likelihoods such as positive likelihood (p+)
and negative likelihood (p-) were also determined. A good Youden's index (y=0.691, Nrrain;
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v=0.453, Nrest) signifies a higher potential for discriminating the developed model. A higher
positive likelihood score (p+=9.555, Nrrain; p+=3.225, Nrest) indicates how well the model
recognizes positive instances, while a lower negative likelihood value (p-=0.247, Ntrain; p-
=0.430, NTest) indicates how well the model recognizes negative instances in comparison to the
likelihood that it will incorrectly identify positive instances.

True positive rate
True positive rate

T T T T T T T T T 1 . T T T T T T T T T 1
0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 10 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 10
False positive rate False positive rate

Figure 13: ROC plots obtained from the Bayesian model

Table 3. Validation metrics of the developed Bayesian model

Set ROC ROC TP FP TN FN Se Sp Acc Pr - F1 AUC, MCC

Score
Rating

Train#  0.824 Good 24 273 54 0772 0919 0.853 0884 0842 0.824 0.845 0.705 0.691 9555  0.247

Test 0.834 Good 46 22 86 24 0.657 0793 0741 0676 0.723 0.666 0.726 0.455 0453 3225 0430

#5-fold cross-validation is used for the training set to evaluate the statistics, ROC= Receiver operating characteristics; TP = True positive; FN
= False negative; FP =False positive; TN = True negative; Se =Sensitivity, Sp =Specificity, Acc =Accuracy, Pr = precision, G-mean =
Geometric mean F1 =F1 measure, AUC, = area under the balanced accuracy ROC curve, MCC = Matthew's correlation co-efficient, y =

Youden’s index, p+ = positive likelihood, p- = negative likelihood.

5.3.1 Evaluation of structural fingerprints generated by a Bayesian classification model

The Bayesian classification model generated 20 favourable as well as unfavourable molecular

fingerprints that may influence or hinder the HDAC11 inhibitory activities. Following the

Bayesian score, the top 20 good (G1-G20) and bad (B1-B20) structural fingerprints (Figures
14 and 16) are taken for further identification and evaluation. The compounds having good

fingerprints show significant behaviour for HDAC11 inhibitory activity.




Additionally, most of the good structural fingerprints are present in the developed compounds
showing favourable activity and it has been illustrated in Figure 15. Similarly, the presence of
fingerprint features G1, G2, G3, G4, G5, G9, G11, G17, G18, G19, and G20 exhibit the
favourable contribution of benzimidazole moiety in the biological activity of HDAC11
inhibitors for example, compound A007 and A008 (ICsp = 2 nM); A013 (ICs0 = 3 nM). The
fragments G6, G8, and G10 exhibit the significance of the carboxamide functional group
present in the compound A003 (ICso = 1 nM); A014 (ICso = 3 nM); A017 (ICs0 =5 nM); A053
(ICso =47 nM).

G617 ¢ 5 | 1G19 :

Figure 14: Top 20 favorable fingerprints identified from the Bayesian classification model

Furthermore, compounds A004, A006, A007, A010, A012, A021 and A022 with fingerprints
like G7, G12, G13, G14, G15 and G16 exhibit a significant HDAC11 inhibitory action.
Meanwhile, the mentioned fingerprints denote the existence of an isoindoline moiety attached
to the substituted oxazole ring. Interestingly, some of the compounds have more than one good
fingerprint such as A004, A007, A008, A013, and A022 which revealed a clear picture, that
they might be a potential candidate for HDAC11 inhibitory activity.




As a result, the Bayesian study revealed that the benzimidazole moiety, carboxamide group,
and isoindoline moiety are essential for enhancing HDAC11 inhibitory action. Also, the study

revealed certain bad fingerprints liable for HDAC11 inhibitory activity hindrances.
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Figure 15: Molecular structures of some active HDAC11 inhibitors with favourable Bayesian
fingerprint.

Considering the Bayesian classification of bad molecular fingerprints (B1-B20, Figure 16), the
B1 fragment makes it abundantly evident that the molecule containing the 1,3-dimethyl
imidazolidine-2-one scaffolds may not be able to boost the activity of any HDAC11 inhibitors,
as it is observed in compounds A501-A503 all exhibiting HDAC11 ICso values exceeding
100,000 nM. Specifically, analogs containing 1,3-dimethyl-2,4-
dimethylenehexahydropyrimidine moiety (B4, B6, B7, B9, B10, B11, B13, B14 and B15) were
responsible for detrimental characteristic of HDAC11 inhibition as illustrated in Figure 17, for
example, compounds like A237 (ICso = 5686 nM); A269 (ICso = 15400 nM); A284 (ICso =
34370 nM); A289 (ICso =52050). Additionally, B2 and B16 fingerprints possessing propyl
benzene moiety, such as in compounds A234 (ICso = 5530 nM); and A285 (ICso = 37000 nM)
are also responsible for poor activity. Similarly, scaffolds like divinyl amine having 1,3-methyl
or ethyl substitution in fingerprints B3, B5, B8, and B12 in compounds A269 (ICso = 15400
nM); A289 (ICso = 52050) is undesirable for HDACL11 inhibitory action. The negative
fingerprint B17 (A697, A699) suggests that the 1-ethyl-2,3-dimethyleneindoline and 2-
isopropyl oxazole moiety (B18-B20) may also impede the HDAC11 inhibitory activities.
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Figure 17: Structure of some inactive HDAC11 inhibitors with bad Bayesian fingerprints
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In general, our Bayesian analysis shows that the majority of compounds with substituted 1,3-
dimethyl-2,4-dimethylenehexahydropyrimidine, methyl substituted-divinyl amine, and 2-
propyloxazole scaffolds have shown poor or less activity while compounds with benzimidazole,
isoindoline, or carboxamide functional group have a significant outcome. Another intriguing
finding is that compounds having both benzimidazole and isoindoline scaffolds have shown

higher activity as compared to others.

5.4 Recursive partitioning (RP) study

The Recursive Partitioning (RP) analysis was carried out using a dataset encompassing 712
compounds as HDAC11 inhibitors with diverse hydroxamate and non-hydroxamate groups to
develop clearer and more precise classification-based models by generating decision trees. RP
modeling was done on the training (Ntrain = 534) and test (Ntest = 178) sets developed by the
"Random per cluster” method. Since the Bayesian classification models involving the training
set performed better on the test set. Similar to the Bayesian classification research, this RP
model was built in D.S. 3.0 [125] with default settings utilizing a combination of fingerprint
features (Feature-class fingerprint of diameter 6, FPCP_6) and different types of molecular
descriptors like AlogP, MW, nR, nAR, nRB, nHBD, nHBA, ECFP_6 and MFPSA. 5-fold cross-
validation was utilized to assess the model's performance, which led to the generation of 9
tree(s) for differentiating the actives from inactives. Statistical analysis of the RP model's
decision trees reveals that decision tree-1 outperformed the training and test sets in terms of
ROCCYV, ROC score, and other statistical metrics. Table 4 shows the statistical performance of
9 decision trees built from the training set compounds, and Table 5 has a full statistical

description of the 9 decision trees for the test set.

Tree-1 has an ROCrrain sScore 0f 0.922 and is the least-trimmed tree. Consequently, it is a model

with less error (Min alpha = 0) than the other eight trees. A thorough investigation revealed
that Tree-1, with an ROCcy score of 0.794, is the best model and the ROC score for the test set

compounds was found to be 0.83. Based on the FPCP_6 fingerprint, the decision tree with 26
leaves exported six molecular properties and twelve structural fingerprints (FP-1to FP-12), as
shown in Figure 18. These twelve fingerprints (Figure 19) are essential in distinguishing
between highly active and less active or inactive HDAC11 inhibitors. In addition, various
statistical measures like sensitivity (Se), specificity (Sp), overall accuracy (Acc), precision (Pr),
geometric-mean (g-mean), F1-measure (F1), and area under the balanced accuracy ROC curve

(AUCy), etc. were obtained for both the training and test set compounds. Moreover, both the




Table 4. Statistical results of the RP model for the training set

Tree No:  ROC ROCev TP FP TN FN Se Sp Acc Pr G- F1

Depth:

Leaves
0.922 47
0.941 200 47
0.931 200 49
0.921 199 199 55
0.896 0.788 183 43
0.887 0.785 190 57
0.879 0.764 134 29
0.861 0.764 11 21

9:2 0.794 0.733 69 14

The best RP model is shown in boldfaces

Table 5. Statistical results of the RP model for the test set
Tree No: ROC TP FP TN FN Se Sp Acc Pr G-
Depth: ore
Leaves
57 24 84 i3
57 24 84 13
55 33 75 15
51 39 69 19
49 32 76 21
54 34 74 16
42 21 87 28
8:4 33 11 97 37

9:2 0.57 15 8 100 55

The best RP model is shown in boldfaces

training and test set yielded Se at (0.844, 0.814); Sp (0.842, 0.778); Acc (0.843, 0.792); Pr
(0.809, 0.703); G-mean (0.843, 0.796); F1 (0.826, 0.754); AUCy (0.842, 0.796); and so on

(summarized in Table 4 and 5). These obtained measures demonstrate Tree 1's supremacy as

the best RP model over the other eight models and a graphical illustration with 12 fingerprints
(FP-1to FP-12) and 26 terminal leaves of Tree-1 is depicted in Figure 18.
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Figure 18: Classification of HDACL11 inhibitors through the decision tree into active and inactive

classes by using the RP model.

5.4.1 Evaluation of the decision tree and structural fragments of the RP Model

The potential of Tree-1 in distinguishing between active and inactive HDAC11 inhibitors is
strongly reliant on the twelve fragments (Figure 19) and these fragments plays an essential
role in governing the activity of HDAC11 inhibitors.

Mechanistically, the number of hydrogen bond donors (nHBD), number of hydrogen bond
acceptors (nHBA), number of rings (nR), octanol/water partitioning coefficient (ALogP),
molecular fractional polar surface area (MFPSA), and molecular weight (MW) are the prime
molecular descriptors determined by the best decision tree (Tree-1) that has an impact on the
activity of the compounds to be predicted as active/inactive classes of HDACL11 inhibitors. The
RP model findings demonstrated the importance of different structural fragments in the
formation of the decision tree. In particular, it is expected that the fragments FP-1 to FP-5, and
FP-7 will improve HDACL11 inhibition.




FP-10 FP-11 FP-12

Figure 19: FCFP_6 fingerprints obtained from the RP Study

On the other hand, probably, FP-6, FP-8, and FP-9 to FP-12 will negatively affect HDAC11
inhibition. In addition, each of the 26 terminal leaves of decision Tree-1 represents a cluster of
active and inactive compounds. In this context, leaf #5, #7, #8, #9, #20, #33, #35, #44, #57 and
#64 indicate clusters of active compounds, while leaf #4, #19, #25, #36, #49 and #53 represent

clusters of inactive compounds.

In the decision tree (Tree-1), FP-1 (diisopropyl amine moiety) is split into compounds that

contain FP-2 (fluromethane scaffold) and that do not contain FP-3 (isoindoline moiety fused

with carboxamide). Both FP-1 and FP-2 are believed to show good inhibitory activity. For
instance, compound A013 (ICso = 3 nM), A067 (ICs0= 190 nM) contains both FP-1 and FP-2.
In addition, Leaf ID #7 and #8 are comprised of compounds with nHBA (<5.5 and > 6.5).

Mostly, compounds with isoindoline moiety with a carboxamide group belong to Leaf ID #5
that comprise FP-3 and seem to be excellent HDAC11 inhibitors for example compounds A004
(ICs0=1 nM), A006 (ICs0 = 2 nM), A007 (ICs0 = 2 nM), A010 (ICso = 3 nM), A012 (ICs0= 3
nM), A013 (ICso= 3 nM), A030 (ICso= 27 nM). Leaf ID #9 consists of compounds having FP-




4 (carboxamide group) and the rest do not contain FP-4. Interestingly, compounds with Leaf
ID #9 possess a majority of phenyl mercaptoheptanamide and 6-oxopiperidine-2-carboxamide
kind of scaffolds which is responsible for good HDAC11 inhibitory activity such as in
compounds A001 (ICso = 0.3 nM), A003 (ICso = 1 nM), A011 (ICs0 = 3 nM), A025 (ICs0 = 15
nM), A036-A041, etc. Further, analyzing compounds such as A135-A139, A356-A370, etc
bearing FP-5 (pyrrolidine ring fused to cyclic pentane) have shown better activity. Next, Leaf
ID #19 and #20 consist of compounds with MW <403.88 and > 403.88 respectively
(compounds A133-A139, A354-A361, A365-A370).

On the one hand, FP-5 does not contain compounds with nHBD <2.5 and >2.5 and is again
split into other fingerprints such as FP-6 (isopropyl thiazolidine ring) from nHBD <2.5, which
shows poor activity (A703, 1Cso = >50000). Leaf ID #25 comprises compounds with ALogP
<1.855. Then, Leaf ID #27 and #28 consist of compounds with ALogP < 2.63 and > 2.63
independently. On the other hand, Leaf ID #35 and #36 consist of compounds with nHBA <4.5
and > 4.5 which bear FP-8 (diethyl propane amine). Likewise, Leaf ID #33 comprises
compounds having FP-7 (N-hydroxy acetamide attached to an aliphatic chain) that have shown
good activity for example, compounds A046 (ICso= 38 nM), A056 (1Cs0= 51 nM), A062 (I1Cso
= 75 nM), A065 (ICso = 79 nM), etc. In addition, Leaf ID #39 consist of compounds having
FP-9 (compounds A188, A199, A210, A214, A221, A222, A269, A284). Here, FP-9
containing molecules belong to isobutyramide scaffolds indicating that this fingerprint has a

negative influence on the inhibitory activities.

Further, Leaf ID #43 and #44 consist of compounds with MW <435.43 and > 435.43 having

FP-10 (N-hydroxy-4-methylbenzamide). Most of the compounds of Leaf ID #43 are inactive.
Then Leaf ID #45 contains compounds with FP-12 (methyl indene) and the rest of the
compounds do not contain FP-12. These fragments are responsible for the detrimental activity
of the HDAC11 inhibitors. Again, Leaf ID #49 comprises compounds with nRings <1.5
whereas nRings > 1.5 divides into MFPSA <0.2975 and > 0.2975 having Leaf ID #53 and #54
respectively. Next, Leaf ID #47 consists of compounds with FP-11 (m-substituted toluene) and
the remaining compounds do not contain FP-11 but are divided into nRings < 2.5 and > 2.5, all
these Leaf IDs contain inactive compounds. However, the decision tree is split into Leaf ID
#55 and #56 which comprise compounds with MFPSA <0.2335 and > 0.2335. In addition, Leaf
ID #57 consist of compounds with MFPSA <0.2645 (compounds A002, A005, A008, A019,
A032, A044, A049). Lastly, Leaf ID #63 and #64 contain compounds with MW <366.354 and




> 366.354 which is a part of MFPSA > 0.2645. Both of these Leaf IDs are not suitable for the
favourable activity of HDAC11 inhibition.

5.5 SARpy analysis

To identify the key structural alerts for potent HDAC11 inhibition, a SARpy-mediated
structural analysis has been performed on the dataset molecules. The SARpy analysis applied
in this work yielded a collection of 22 structural fragments of these HDAC11 inhibitors that
served as active rulesets that have shown a positive impact on their inhibition. From Table 6,
it can be observed that the training set population achieves 78% for Se, 83% Sp, and 81% Acc.
Whereas, the external validation with the test set yields 67% Se, 89% Sp, and 80% Acc in the
SARpy analysis. Some other statistical measures were also performed for both training and test
sets such as Pr (0.776, 671), G-means (0.803, 0.802), F1 (0.780, 0.729), etc.

Table 6. Outcomes from SARpy analysis of the training and test set compounds

Dataset TP FP TN FN Sen Spe Acc Pr G- F1 AUC, MCC Y pt p-
means

Train 184 53 246 51 0783 0823 0805 0.776 0.803 0.780 0.802 0.605 0.605 4.417 0.263

23 96 12 0.797 0.807 0.803 0.671 0.802 0.729 0.801 0581 0603 412 0.252

Many of the segments have shown their potential features for providing powerful HDAC11
inhibition in terms of structural alerts. Information regarding structural alert (SA), SMARTS
along with its likelihood ratio (LR) is mentioned in Table 7. Structural alert 1 (SA1) is 6-
trifluromethyl-benzimidazole moiety having infinite LR value in compounds like A007, and
AO008 indicating the potent features of the HDAC11 inhibitor. SA2 revealed the importance of
5-0x0-N-(1-oxoheptan-2-yl)pyrrolidine-2-carboxamide moiety (LR = inf) in compounds A036

A041 and A045 whereas SA3 represented the significance of N-phenylbenzo-oxazole (LR =

inf) structure for imparting effective HDAC11 inhibition, this scaffold can be seen in
compound A013 and slightly with A004. Moreover, SA4 uncovers the importance of 5-fluro-
benzimidazole, SA5 of (benzyloxy)benzene, SA6 of trifluoromethyl aniline, SA7 of 6-methyl
tetrahydro-benzimidazole and all are having infinite LR value, possess better inhibition.
Several additional structural alerts such as SA8 (5-methyl-benzimidazole amine, LR = 33.84),
SA9 (2-amino-N-phenylheptanamide, LR = 20.05, eg: A053), SA10 (5-methyl-1H-
benzimidazol-2-amine, LR = 14.41) and SA11 (5-chloro-benzimidazole, LR = 13.78, eg: A013)
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have shown an effective impact on HDAC11 inhibiting efficacy according to their LR values.

Lastly, SA1, SA4, SA8, and SA10 are strongly indicated towards the compounds A007, A008,
and A012 which conclude that all the generated alerts and the compounds are interrelated with

each other.

Table 7: Active structural ruleset

SL. no SMARTS Structural Alert Likelihood ratio

clc2c(nc([nH]2)N)ceclC(F)(F)F N inf

N1C(CCC1=0)C(=0)NC(CCCCC)C(=0)

N1C(CCC1=0)C(=0)NC(CCCCC)C(=0)

clc2c(ce(clF)n(c(n2)N)

clcce(ccl)OCclecccecl

clcec(cclC(F)(F)F)NCCCC

c1[nH]c2c(n1)CCC(C2)(C)

cl(c(cc2c(cl)nc([nH]2)N))C

clccec(c1)NC(=0)C(CCCCC)N

clc2c(ce(c1C))n(c(n2)N)

clc2c(cc(c1Ch)n(c(n2))




5.6 Molecular Docking Analysis

Molecular docking analysis helps validate the significance of identified crucial structural
fingerprints obtained through multiple classification-based molecular modelling studies. It is
also possible to classify and identify the role that these fragments play in achieving selective
and promising HDAC11 inhibition.

At first, some potent compounds containing good molecular fingerprints were chosen to
understand the binding mode patterns of HDAC11 inhibitors with the receptor. Among all,
some of the highly potent compounds (A004, A007, A013, A053) having efficient HDAC11
inhibitory activity were selected for docking. In addition, Figure 20 demonstrates the
interactions of essential structural fingerprints identified using various classification-based

QSAR techniques and validates them through molecular docking.
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Figure 20: Compounds containing different fingerprints through Bayesian study, RP study, SARpy, and
machine-learning-based QSAR techniques.

Here, compound A004 contains crucial fingerprints like G6, G7, G13, and A007 contains G2
and G7 whereas A013 contains G6 and G9, respectively. The information regarding the activity
and similarities of the fingerprints was already discussed in the Bayesian classification portion
(Figure 15). Since the X-ray crystal structure of HDAC11 has not yet been discovered, so, we
have decided to pick  the  AlphaDB Fold model of HDACI11
(https://alphafold.ebi.ac.uk/entry/B5SMCUG6) which has been collected from the AlphaFold
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Database (https://alphafold.ebi.ac.uk/). Binding site determination was done with the active
site of hydroxamate bound HDAC homolog complex (as mentioned in the materials and
method section) for the molecular docking simulation. However, after analyzing the results,
the selected compounds exhibit well-estimated free energy of binding in terms of “Dock score”
after interaction with the active site residues of HDAC11 (Table 8). From Figure 21 it can be
observed that all the compounds show identical Zn?* metal coordination with the hydroxamate

group.

"/ £
¥,

Leu268
Tyr209

M27

1le208

Figure: 21 Analysis of zinc-binding interactions in the compounds A004, A007, A013, and A053 using molecular
docking studies. All the compounds are coordinated with zinc metal via the carboxamide group (CONHOH). The
dotted lines indicate different interactions: black lines (metal coordination with zinc metal), green lines (H-

bonding), white lines (n-alkyl), blue lines (n-c), orange lines (n-cation), and purple lines (halogen interaction).

Now, by considering the A004 compound, the nitrogen atom in the oxazole ring, and the phenyl
ring in the G13 fingerprint have conventional H-bond interaction with Leu268 and Tyr304.
The trifluoromethyl benzene of the G17 fingerprint has m-alkyl interaction with 11e208 and
Trp227. In the G6 fingerprint, the double-bonded oxygen and the amide form H-bond
interaction with Tyr304 and His143 respectively. The hydroxyl group of the hydroxamate
functional group forms an H-bonding with Asp181 and His142. On the other hand, for the
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A007 compound, the hydroxamate functional group of the G7 fingerprint forms multiple H-
bonding interactions with Tyr304, Asp181, His142, and His143. The methyl group forms n-c
interaction with Tyr209 and the phenyl ring forms n- © stacked interaction with His183. The
G2 fingerprint forms C-H bonding with 11e208 residue and has conventional H-bond
interaction with Leu268. The trifluoromethyl group of the G2 fingerprint has a halogen

interaction with His207.

In the case of A013, the chlorophenyl ring of the G9 fingerprint shows engagement with 11e208
and Trp227 through w-alkyl. Then, multiple hydrogen bonds can be noticed in the hydroxamate
moiety of the acetamide ring with Tyr304, Asp181, His142, and His143 residue, and also n- &
stacked interaction with His183 and Tyr209.

From these observations, it can be hypothesized that these molecular fingerprints may have a
key role in modulating the important amino acid interactions towards the active site. Also, the
interaction of the specific regions of these fingerprints with important amino acid residues like
Leu268, Tyr209, 11e208, Trp227, His143, Aspl81, His142, and His183 can be important for

accommodating the ligands inside the binding cavity.

Table 8. Docking results, H-Bond interacting residues with good fingerprints of selected

compounds

Compound Dock Score ] Fingerprints involved in H-
H-Bond Interaction . .
(kcal/mol) Bond interaction

Tyr304, Asp181, His142, His143
-8.43 G6, G7, G13 and G17
and Leu268

Tyr304, Asp181, 11e208, His142,
His143 and Leu268

G2 and G7

Tyr304, Asp181, His142, His143
and Leu268

G6 and G9

His183, Arg267, Tyr304, His142 G6, G8 and G10




Chapter 6: Conclusion and Future Perspective




6. Conclusion

The purpose of this work was to find significant fingerprints necessary for HDAC11 inhibition.
Since the human crystal structure of HDAC11 has not yet been discovered, so, ligand-based
drug design, particularly fragment-based in-silico drug design, is a viable alternative for
accelerating the anti-HDAC11 drug development approach. Here, we have developed binary-
QSAR models (i.e., bayesian classification, recursive partitioning, SARpy analysis, and
machine learning analysis) and molecular docking on a dataset containing Ntrain = 534 and Nrest
=178, that have successfully well-performed in all the validation metrics. These models pointed
towards several significant structural attributes of these compounds which can define the active
and inactive classes of HDAC11 inhibitors. The observations from the overall modeling
strategy are very helpful in understanding the mechanisms underlying the fingerprints
associated with supported inhibition processes. For instance, the Bayesian classification model
accurately distinguishes good and detrimental structural features of HDACL11 inhibitors.
Positive contributors include benzimidazole moiety, carboxamide group, and isoindoline
moiety.  Conversely, some scaffolds such as substituted 1,3-dimethyl-2,4-
dimethylenehexahydropyrimidine, methyl substituted-divinyl amine, and certain 2-
propyloxazole scaffolds should be omitted in the design of HDAC11 inhibitors. Structural
fragments obtained from the RP study such as diisopropyl amine moiety, fluromethane
scaffold, and isoindoline moiety fused with carboxamide positively influence HDAC11
inhibition, while isobutyramide and methyl indene have a negative impact. The SARpy analysis

revealed that trifluromethyl-benzimidazole moiety (SALl), 5-oxo-N-(1-oxoheptan-2-

yDpyrrolidine-2-carboxamide moiety (SA2) having infinite likelihood ratios positively

influence the HDAC11 inhibitory activity. Upon interpreting descriptors using SHAP plots
discovered some influential features like minHBint5, GATS1m and some electrotopological
descriptors which provide insight into their roles in inhibiting HDACL11 activity.

Moreover, the importance of the discovered structural fragments in attaining effective and
selective HDAC11 inhibition was further validated by the molecular docking study, with
compounds A004, A007, A013, and A053, exhibiting highly potent inhibitory activity. We
hope this study will help researchers design and discover highly effective and promising
HDACI11 inhibitors, mainly for anticancer and immunosuppressive drugs. We anticipate that
these will lead to new insights when designing selective HDAC11 inhibitors in the near future.
It is crucial to remember that further in vitro and in vivo research is required to properly

interpret our results.




Furthermore, forthcoming investigations could focus on refining the binary-QSAR models by
incorporating advanced ML techniques such as deep learning, neural networks, ensemble
methods, etc, which could enhance predictive accuracy. Additionally, expanding the molecular

fingerprint database and integrating multi-omics data could provide a more comprehensive

understanding of HDAC11 inhibition mechanisms. This work has the potential to identify
novel inhibitors with high specificity, paving the way for targeted therapies with fewer side

effects.




Annexure-I|

All HDAC11 compounds in SMILES format.

Training set of compounds of HDAC11 inhibitors in SMILES format

SMILES

Compou
nd ID

C1(=0)[C@@H](C(C)C)NC(=0)C[C@H]20C(=0)[C@H](C(C)C)NC(=0)/C(=CIC)/NC(=0)[C@@
H](CSSCC/C=C/2)N1

A002 clce2n(cc(c2cc1l)CNCCLCCN(CCl)clnec(enl1)C(=0)NO)C
A003 N1[C@@H](CCCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Nclcc(ccel)C
A004 O=C(NO)clc2c(C(C)(C)N(c3ocacce(ccan3)C(F)(F)F)C2)cccl

A001

A005 0O=C(NO)/C=Clclccc(CNCCc2c3c([nH]c2C)ceee3)ccl

A006 cl(oc2c(nl)nccc2)N1C(C)(C)c2ceee(c2Cl)C(=0)NO

A007 0O=C(NO)clc2c(C(C)(C)N(c3[nH]c4cc(cecean3)C(F) (F)F)C2)cecl

A008 c1([nH]c2c(nl)cee(c2)C(F)(F)F)N1Cc2c(cccc2Cl)C(=0)NO

A009 clcc2c(cclS(=0)(=0)N1CCN(CC1)clnce(cnl)C(=0)NO)ccec2

A010 0O=C(NO)clc2c(C(C)(C)N(C2)c2cce(nc2)C(F)(F)F)ceel
A011 slc2nc(cl)C1=N[C@@](CS1)(C(=O)N[C@@H](C(=0)O[C@H](/C=C/CCS)CC(=0)NC2)C(C)C)C
A012 0O=C(NO)clc2¢c(C(C)(C)N(C2)c2cenc(cn2)C(F) (F)F)ceel

A013 c1(c(cc2c(cl)oc(n2)Nclee(cecl)C(=0O)NO)CHCI
A014 N1[C@@H](CCCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Nclcce(ccl)C

A017 clecee(c1)NC(=0)[C@H](CCCCCS)NC(=0)[C@H]LN(C(=0)CCC1)C

A019 clce(cecl/C=C/C(=0)NO)CN(CCO)CCclc[nH]c2clccec2
A021 0O=C(NO)clc2c¢c(C(C)(C)N(C2)c2cec(en2)C(F)(F)F)ceecl

A022 cl(oc2c(nl)cccc2)N1Cc2c(ccec2Cl)C(=0)NO

A023 N1(Cc2c(ccecc2C1)C(=0)NO)clceec(cnl)C(F)(F)F
A025 N1[C@@H](CC1=0)C(=O)N[C@@H](CCCCCS)C(=0)Nclcccecl

A027 ONC(=0)/C=C/C(=C/[C@H](C(=0)clccc(N(C)C)cel)C)/C

A032 C(=0)(NCCOclcce(ccl)C(=0)NO)clce(c2c(ceecc2)ol)CN(C)C
A033 clce(ccclC(=0)/C(=C/[C@@H](C)/C=CI/C(=0)NO)/C)N(C)C

A036 clee(ce(c1)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@ @H]LNC(=0)CC1)C

A037 clceec(cl)NC(=0)[C@H](CCCCCS)NC(=0)[C@@H]1C(=0O)NCCC1
A038 clc(cee(cl)C(=0)NO)/C=C/C(=O)N[C@@H](Cclc[nH]c2clcecec2)C(=0)Ncleee(ccl)Cl

A039 [C@H](N1CCN(CC1)clnce(cnl)C(=0)NO)(/C=Cl/clcce(ccl)F)CO

A041 N1C(=0)[C@@H]([C@@H](CL)clceeeel)C(=0)N[C@@H](CCCCCS)C(=0)Nelecceel

A042 N1(Cc2c(cccc2C1)C(=0)NO)cleec2e(nl)ccec2

A043 0O=C(NO)clc2c(C(C)(C)N(C2)c2enc(nc2)C(F)(F)F)ceel

A044 c1([nH]c2c(nl)ccec2)N1CCe2¢(CCl)c(ceec2)C(=0)NO
A045 N1[C@@H](CCC1=0)C(=0O)N[C@@H](CCCCCS)C(=0)Nclccceel

A046 C(nlncc(cl)clc2e(nenl)[nH]cc2)CCCCCC(=0)NO

A047 cl(sc2c(nl)ccec2)N1Cce2c(cecc2Cl)C(=0)NO
A048 clceec(cl)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]INC(=0)C1

A049 cl2c¢(ccecl)[nH]ecc2CN1CCN(CC1)clnee(cnl)C(=0O)NNCCCCCC
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0=S(=0)(Nclccc(C(=0)NO)ccl)cleee(ccl)C(C)(C)C

clecee(c1)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]LINC(=0)CCC1

C(=0)(clc(ccecl)OC)N[C@H](COclece(ceel)/C=C/C(=0)NO)Cclc[nH]c2clcccc2

C(=0)(/C=C/clc(=0O)n(cccl)CCCclec2c(ccl)cecc2)NO

cl(cc2cc(cl)/C=C\CO[C@@H](C(=0)Nc1c(OC2)cceccl)CCCCCC(=0)NO)OC

N1[C@@H](CCC1=0)C(=0)N[C@ @H](CCCCCS)C(=0)Nclec(ceel)C

N1([C@H](CCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Ncleceecl)C

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcee(ccl)C(=0)NO)Celeee(ccl)C

clecee(cL)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@ @H]LINC(=0)CC1

clcce(cclC(F)(F)F)NC(=0)CCCCCCC(=0)NO

clc(cee(cl)C(=0)NO)/C=C/C(=O)N[C@@H](Cclc[nH]c2clccec2)C(=0)Nclceee(cl)Cl

nlc(sc(c1C(=0O)N[C@H](clcce(ccl)C(=0)NO)C)C1CCl)clnec(sl)cleeeccl

clc(cce(c1)NC(=0)CCCCCCC(=0)NO)C

cl(ccc2c3clecce3c(=0)n(c2=0)CCCCCC(=0)NO)NCCC

N1[C@@H](CCCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)NC1CCCCL

cl(cc2cc(cl)/C=C\CO[C@@H](C(=0)Nc1c(OC2)ccccl)CCCCCC(=0)NO)OC

N1[C@H](CCC1=0)C(=0)N[C@H](CCCCCS)C(=0)Nclcececl

cl(cc2cc(cl)CCCO[C@H](C(=0)Nclc(0C2)ccecl)CCCCCC(=0)NO)OC

cl2ccc(ncleecc2)N(CCCCCCC(=0)NO)cleccenl

S(=0)(=0)(cle(c(c(c(cl)F)F)F)F)N(Cclcee(ccl)C(=0)NO)Ccleccecl

cle(cec(cL)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@@H]LNC(=0)CC1)C

clcc2c(ccl)neln(c2=0)nc(c2clcccc2)NCCCCCCCC(=0)NO

clcc2c(ccl)neln(c2=0)nc(c2cleccc2)NCCCCCCC(=0)NO

C(=0)(Nclcccecl)CCCCCCCS

cleece(c1)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]1C(=0)NCC1

cl(ccc2c3clecce3c(=0)n(c2=0)CCCCCC(=0)NO)NCclcceecl

nl(ccce(cl=0)/C=C/C(=0)NO)CCclcc2c(ccl)ceec2

cl(cc2cc(cl)CCCO[C@@H](C(=0)Ncle(OC2)ccecl)CCCCCC(=0)NO)OC

clc(cee(cl)C(=0)NO)/C=C/C(=O)N[C@@H](Cclc[nH]c2clcecec2)C(=0)Ncelcec(cel)Br

C(CCCCC)NNC(=0)clcec(ccl)cleee(ccl)CNC(=0)C

cl(ccc2c3cleece3c(=0)n(c2=0)CCCCCC(=0)NO)Nclcececl

cl(ccc2c3clecce3c(=0)n(c2=0)CCCCCC(=0)NO)Nclcece(cl)F

0O=S(=0)(Nclccc(C(C)(C)C)ccl)cleec(C(=0)NO)ccl

cl(cc2cc(cl)CCCO[C@H](C(=0)Nclc(0C2)ccecl)CCCCCC(=0)NO)OC

O=S(=0)(N(Cclccc(ccl)C(=0)NO)C)cle(c(c(c(clF)F)F)F)F

clccee(cl)NC(=0)CCCCCCS

C(=0)(CCCCCnlc(=0)c2c3c(c1=0)cce(c3ccc2)NICCOCCL)NO

N1[C@@H](CCCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)N1Cc2¢(CC1)ceee2

cle(c([nH]cleleee(cel)O)C(=0)NCclece(ccl)C(=0)NO)clceescl

cle(c([nH]cleleee(ccl)OC)C(=0)NCcleee(ccl)C(=0)NO)clcecocl

C(=0)(clcce(cecl)CNelecec2ecencl2)NO

C(clc[nH]c2clceee2)(cle[nH]c2cleecee2)clece(ccl)/C=C/C(=0O)NO

C(=0)(clcee(cecl)C1CCCCC1)Nelecee(ccl)C(=0)NO




C(=0)(CCcccCcCC(cle[nH]c2clccec2)cle[nH]c2clcecc2)NO

C(clcec(ccl)NC(=0)cleece(C(=0)NO)ccl)(C)(C)C

S(=0)(=0)(clc(c(c(c(cl)F)F)F)F)N(Ccleee(ccl)C(=0)NO)Ccleencel

cle(ce2e(cl)n(clc2C[S@](=0)CC1)Cclcee(ccl)C(=0)NO)F

C(=0)(clc(ce(c(c1)C(C)C)O)OINLCCe20nc(c2C1)C(=0)NCCCCCCC(=0)NO

N1(Cc2ccc(cc2)C(=0)NO)c2¢c(CC[C@H]3[C@H]1CCCC3)ccec2

¢1ccec2c10CCCCCCCO[C@H](C(=0)N2)CCCCCC(=0)NO

¢1ccec2c10CCCCCCO[C@@H](C(=0)N2)CCCCCC(=0)NO

c12c(ccecl)[NnH]cc2CN1CCN(CC1)clnce(cnl)C(=0O)NNCCC

clcencclcleenc(nl)NCelece(cel)C(=0O)Ncle(ceccl)N

clc(cc2c(cl)c(en2Cceleec(ccl)C(=0)NO)C(=0)clee(c(c(cl)OC)OC)0C)0C

C(=0)(Nclcceecl)CCCCCS

0O=S(=0)(clcc(ccel)C(F)(F)F)N(cleec(ccl)C(=0)NO)CC

0O=S(=0)(N(CC(=0)N(clcce(ccl)C(=0)NO)Ccleee(ccl)C(C)(C)C)C)clece(ccl)F

C(=0)(clc(c(c(c(clF)F)F)F)F)Nclcee(ccl)C(=0)NO

Clc2¢c(N(CC1)Cclcee(ccl)C(=0)NO)cee(c2)Cl

cl(c(cc2e(cl)nc([nH]2)Nclec(C(=0)NO)cecl)S(=0)(=0)C)C#N

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(clF)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(c1OC)ClI

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cccl[N+](=0)[O-]

clc2c(nc(n2C)Nc2ec(C(=0)NO)ccce2)ce(c1C(F)(F)F)cleeencl

clcc2ce(c(cl)C(=0)NO)C[C@]1(C2)C(=0O)N(CC1)Cclcce(ccl)F

cleec2¢(c1C(=0)NO)C[C@]L(C2)C(=0)N(CCL)clec(cecl)C(F)(F)F

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccee(cl)C

c12c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclc(cceclCI)Cl

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)CclccccclC(F)(F)F

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclc(cceccl)OC(F)(F)F

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclecce(c(cl)C)C

¢1(ccec2c1C[C@]1(CC2)C(=0)N(CC1)clecc(cel)C(F)(F)F)C(=0)NO

cl2c(c(cecl)C(=0)NO)CC[C@@]1(C2)C(=0O)N(CC1)clccec(cl)C(F)(F)F

cle(cc2e([nH]c(n2)Nc2ee(C(=0)NO)ccc2)cl)[N+](=0)[O-]

N1(Cc2c(C1l)c(ccc2)C(=0)NO)cl[nH]c2c(n1)CCC(C2)(C)C

cleee(c2c1CN(C2)clecc2¢(cl)OCCN2)C(=0)NO

N1(C(c2c(C1)c(ceec2)C(=0)NO)(C)C)C(=0O)Nclenc(ccl)C(F)(F)F

c12¢(cc(ncl)NC(=0)N1C(c3c(C1)c(cce3)C(=0)NO)(C)C)CCcce2

clec(ncclC(F)(F)F)N1C(c2c(Cl)c(ncec2)C(=0)NO)(C)C

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c2c(nl)ce(cc2elececcl)C(F)(F)F

c12¢(c(cccl)C(=0)NO)[nH]c(c2)cleec(ccl)C(F)(F)F

c1([nH]c2c(cl)c(cecc2)C(=0)NO)cleec(cecl)C(F)(F)F

c12¢(c(cccl)C(=0)NO)N[C@@H](C2)clcee(ccl)C(F)(F)F

clec(ceclC(F)(F)F)[C@H]1C(c2¢(N1)c(ccc2)C(=0)NO)(C)C

clece2¢(c1C(=0)NO)CCN(C2)cl[nH]c2¢c(nl)ccec2

clncececl/C=C/C(=0)NCclccc(ccl)C(=0O)Nclcce(ccIN)F




cl(cec(ccl)C(=0)NO)Cnlnc(nnl)clnccenl

C(=0)(CCCCCCS)NCICCCCL

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcee(ccl)C(=0O)NO)Cclcee(ccl)F

clc(cce(cl)/C=C/C(=0)NO)/C=N/OCclccc(ccl)[N+](=0)[O-]

0O=S(=0)(clcc(ccel)C(C)(C)C)N(cleee(ccl)C(=0)NO)CC

C1Cc2¢(N(Cc3cce(ce3)C(=0)NO)[C@H]3[C@H](C1)CCCC3)cc(cc2)C(F)(F)F

C(=0)(CCCCclnn(ccl)Ccleec(cecl)nlecc2eceeccl2)NO

clec(cecl/C=C/C(=0)NO)OC[C@@H](NC(=0)clccc(ccl)Cl)Celc2cccec2[nH]cl

N(Cclcee(cecl)C(=0)NclececcclN)C(=0)OCclecencl

clcc2cc(cl)COC/C=C/COCclc(cec(Ne3ncee2n3)c1)OCCCCCCC(=0)NO

S(=0)(=0)(clc(c(c(c(cl)F)F)F)F)N(Ccleee(ccl)C(=0)NO)Cclnceccl

clec(ccelC(=0)NO)CN(S(=0)(=0)cLe(c(c(c(c1F)F)F)F)F)C(C)C

C(CCCCC(=0)NO)ONC(=0)clcc(c(cc1)C)C

C(=0)(clcec(ccl)CNelce2cecenc2cccl)NO

cl(cce(ccl)C(=0)NO)Cnlc(nnnl)clceesl

cl(ccc2c3cleccc3c(=0)n(c2=0)CCCCCC(=0)NO)[N+](=0)[O-]

C1c2¢c(N(Cc3cec(ce3)C(=0)NO)[C@H]3[C@H]1CCCCC3)ccec2

C(=C\clnnn(cl)[C@H]1C[C@H](N(C1)Cclcceecl)CO)/C(=0)NO

cl(ccc2c3cleccc3c(=0)n(c2=0)CCCCCC(=0)NO)N(Cclcceecl)C

clc(cee(cl)/C=C/C(=0)NO)C(=O)N[C@@H](Cclc[nH]c2clcecec2)C(=0)Nclcee(ccl)Cl

N(C(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]LINC(=0)CCC1)C1CCCCL

CL[C@H]2[C@H](N(Cc3cce(ce3)C(=0)NO)c3elecee3)CCCC2

clc(cee(cl)/C=C/C(=0)NO)C(=O)N[C@@H](Cclc[nH]c2clceec2)C(=0)Nclcec(cel)Br

c1(c(c(ce(cl)/C=C\clcec(c(cl)/C=C/C(=0)NclcccccIN)OC)OC)0C)0C

cl2cc(cccln(cc2)Celeec(ccl)OC)C(=0)NO

C(=0)(CCcCCclnn(ccl)Ccleec(ccl)cleccecl)NO

C(CC)NNC(=0)clccece(cel)clecc(ccl)CNC(=0)C

C(=0)(CCCCCCS)NCCclcc(cecl)C

c12c(c(cc(n1)C#N)N(clee(c(ccl)OC)/C=C/C(=0)NO)C)ccec2

cl(ccceecl)CNelnee(cnl)C(=0O)NNCCC

C(=0)(CCCCCCS)NCelcee(cel)C(F)(F)F

C(CCCCC(=0)NO)ONC(=0)clec(ceel)C

clec(c(ccl)NC(=0)/C=C/cinnn(cl)[C@H]1C[C@H](N(C1)Cclcccecl)CO)N

C(=0O)(CCCCclnn(ccl)Ccelec(cecel)cleeceecl)NO

0=S1(=0)c2ccccc2N([C@@H]2[C@H](C1)CCCC2)Cclcec(ccl)C(=0)NO

C1Cc2c¢(N(Cc3cce(cc3)C(=0)NO)[C@H]3[C@H](C1)CCCC3)ccec2

C1(NC(=0)CCCCCCC(=0)NO)CCCCl

C[C@@H](/C=CIC(=0)NO)/C=C(\C)/C(=0)cLccc(ccl)N(C)C

cl(cec(ccl)C(=0)NclcceccIN)NC(=0)C

ONC(=0)clcce(cecl)Cnlsc2neccc2cl=0

cl(c(ce(cclF)C(=0)NO)F)Cnlnc(nnl)clnccenl

clc(cec(cl)/C=C/C(=0O)NO)C(=O)N[C@@H](Cclc[nH]c2clcecec2)C(=0)Nelec2e(cel)ceec2

c12¢(c(nc(n1)C)N(clce(c(ccl)OC)/C=C/C(=0)NO)C)ccec2

o|lo|lo|lolo|lolo|lo|]o|lo|]lo|l]o|j]olo|lo|lo|lo|o|lo|lo|]o|lo|]o|lo|]o|lo|o|o| o] o




clee(ccclC(=0)NO)C(=O)N[C@@H](clc2c([nH]cl)ccee2)C(=0)Neleee(ccl)C

3,500

C1[C@H]2C[C@@H]3C[C@@H](C[C@]L(C3)N(cInce(cn1)C(=0)NO)C)C2

3,600

C(=0)(Cclccecccl)N(CCO)C(=0)Celece(ccl)C(=0)NO

3,705

clecece2e(cl)n(clc2CN(CC1)C)Celeec(ccl)C(=0)NO

3,790

C(=C\C(=0)NO)/clcc(ccecl)S(=0)(=0)N[C@H](C(=0O)Nclc2ccecc2eecl)cleccecl

3,850

clc(cee(cl)/C=C/C(=0)NO)C(=O)N[C@@H](Cclc[nH]c2clccec2)C(=0)Ncleeee(cl)Br

3,962

clece2ce(cl)N(cle(S2)cececl)Celnec(ccl)C(=0)NO

4,304

cl(ncee(cl)/C=Cl/cleec(ccl)C(=0)NO)cle(cc(ccl)C)F

4,930

N(C(=0)CCCC(=O)NCCclccececl)O

5,000

c1(c(c(ce(cl)C(=C)clecc2e(cl)c(cn2C)/C=C/C(=0)NO)OC)OC)0C

5,000

clccc(CCNC(=0)CCCNC(=0)0OCC)ccl

5,000

cl(cce(cel)/C=C/C(=0)NO)clcce(ccl)O

5,010

0lc(cc(nl)C(=0)NO)CCNC(=0)clce(c(ccl)Cl)Cl

5,120

ONC(=0)CCCCCnlc(=0)c2ccec3ccec(c1=0)c23

5,200

Clc2cc(ccec2N(CC1)Celeec(ccl)C(=0)NO)C(=0)N

5,310

clc(cee(cl)/C=C/C(=0)NO)/C=N/OCclc(c(c(c(c1F)F)F)F)F

5,480

clc(cc2¢(cl)c(=0)n(c(=0)n2Cclcee(ccl)C(=0)NO)CCceleceecl)O

5,501

C(=0)(/C=C/clccc(ccl)C(F)(F)F)NO

5,530

c1(cc(ce(clCnlc(nnnl)clsceccl)F)C(=0)NO)F

5,662

clc(c([nH]clclceee(cel)O)C(=0)NCclceee(ccl)C(=0)Ncle(ceecl)N)clecocl

5,662

n1(c(=0)n(c(=0)c2clscc2)CCclcceeccl)Celeec(ccl)C(=0)NO

5,686

C(=0)(Ccccccec(cle[nH]c2elecce?)cle[nH]c2clcecc2)NeleceeclN

5,800

c1(cc(onl)CN1CCOCC1)cleec(ccl)/C=C/IC(=O)NO

6,260

nlc(nc2c(cIN1CCOCC1)cecn2CCCCCCC(=0)NO)clenc(ncl)N

6,300

clc(cc2ce(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCclceeecccl)C(F)(F)F

7,392

c1(c(c(ce(c1)C(=C)clece(cel/C=CIC(=0)NO)OC)OC)OC)OC

8,000

cl(ccc2c3clecce3c(=0)n(c2=0)CCCCCC(=0)Nclc(cceccl)N)NICCOCCL

8,120

o|lolo|lo|lolo|lo|]o|lo|]lo|lo|]olo|lo|o|lo|lo|lo|lo|]o|lo|]o|lo|]o|o|o| o

CL[C@H]2C[C@]3(C[C@@H]1C[C@H](C3)C2)clc(cee(cl)clece(ccl)C=CC(=0)0)O[C@@H](C(
=0)NO)C

8,230

o

C(CCCCC)NNC(=0)clcccc(cl)NCclceececl

8,600

S1Cc2c¢(CC1)n(clc2ce(ccl)F)Celeec(ccl)C(=0)NO

9,700

cl(ncnc2clnc[nH]2)N[C@H](clnc(c2c(nl)ceccc2)CCCCCC(=0)NO)CC

9,819

C1[C@@H]2C[C@@H]3C[C@H]1C[C@](C2)(C3)CN(Ccle(ce(cel)C(=0)NO)F)C

10,000

clcee(ccl)NC(=0)CCCCCC(=0)NO

10,000

cl(c(c(ce(cl)C(=C)clecee(c(cl)/C=C/C(=0O)NO)OC)OC)0OC)OC

10,000

clcce2e(cl)c(=0)n(c(=0)n2Cclcee(ccl)C(=0)NO)CCclceesl

10,020

C(=0)(/C=Clclccc(cnl)NC(=O)[C@H](Cclcccecl)cleecccl)NO

10,200

clec(cc2e(cl)e(=0)n(c(=0)n2Cclcee(ccl)C(=0)NO)CCclcececl)C1lCCL

10,500

clece2e(cl)c(=0)n(c(=0)n2Cclcce(ccl)C(=0)NO)CCclec(cecl)F

10,660

clc(cee(cl)/C=C/C(=0)NO)/C=N/OCclccc(ccl)C(=0)0C

10,800

cl(c(c(ce(cl)C(=C)cleee(c(cl)C#HCCCC(=0)NO)OC)OC)OC)0C

11,000

clece2e(cl)c(=0)n(c(=0)n2Cclcce(ccl)C(=0)NO)CCclcee(cecl)O

11,290

cle(c(cc(cl)C(=0)NO)F)Cnlc(nc2clececc2)C

12,900

clece2e(cl)c(=0)n(c(=0)n2Cclcce(ccl)C(=0)NO)CCcleee(ccl)OC

13,850

o|lo|lo|lolo|lo|lo|lo|lo|lo|o|o|o| o | o
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clece2e(cl)c(=0)n(c(=0)n2Cclccc(ccl)C(=0)NO)CCcleececl

cl([C@H]2CN(C[C@@H]2C(=0)Nc2cce(cc2)Cl)C)ece(/C=C/C(=0)Nc2c(ccecc2)N)cel

clecee(c1)NC(=0)[C@@H](CCCCCS)NC(=0)[C@H]INC(=0)CCCl

clece2e(cl)c(=0)n(c(=0)n2Cclece(ccl)C(=0)NO)CCclece(ccl)F

clc(cce(cl)C(=0)NO)NCclesc2clec(cc2)Br

clc(cc2c(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCcelcececl)F

clece2e(cl)c(c([nH]2)C)/C=Clclc(ccecl)clece(ccl)/C=C/C(=0)NO

cl(ccc2e(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCcelcececl)F

c1([C@@H]2CN(C[C@H]2C(=0)Nc2cec(cc2)Cl)C)cee(/C=C/C(=0)Ne2e(ceec2)N)ecl

N1CC2(0OC1=0)CCN(clcce(cnl)C(=0)Nclc(cee(cl)clscecl)N)CC2

clccee(cl)NS(=0)(=0)clee(cccl)/C=C/C(=0O)NO

clenc2e(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCclcececl

C1N(Cc2n(C1)cc(c2)C(=0)NO)C(=0)clceenlC

[C@H](CCCCCS)(C(=0)NCLCCCC1NC(=0)OC(C)(C)C

clcee(ccl)/C=C/clscc(nl)CCCC(=0)NO

clcee2e(cl)c(=0)n(c(=0)n2Cclccc(ccl)C(=0)NO)CCclc(cceccl)OC

C(/C(=Clclcce(ccl)/C=C/C(=0)NO)/clcec(ccl)F)NCICCL

clcece2e(cl)c(=0)n(c(=0)n2Cclccc(ccl)C(=0)NO)Cclceececl

o|lo|lo|lo|lo/lo|lo|]o|lo|j]o|lo|]o|lo|o|l|o|o|o| oo

C(=0)(NO)/C=C/C=Clclcec(c2cce(c(c2) [C@]23C[C@@HJAC[C@H](C2)C[C@@H](C4)C3)OC)ce
1

o

clcc(ccclC(=O)NNCCCC)Br

clc(cc2e(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCclcececcl)C

cl(c(cee(cl)clece(cel)/C=CIC(=0)NO)O)[C@]12C[C@@H]3C[C@H](C1)C[C@@H](C3)C2

c1(cc(cccLCCHN)cLe(ce(cel)/C=CIC(=0)NO)CI)[C@]12C[C@@H]3C[C@H](C1)C[C@@H](C3)C
2

clc(cc2ce(cl)ee(c(=0)02)C(=0)/C=C/C=C/clccc(c(cl)OC)0C)0C

N1(C(=0)c2¢(C1)c(ccc2)C(=0)NO)cloc2c(nl)ce(cc2)C(F)(F)F

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c2c(nl)cc(c(c2)cleecececl)C(F)(F)F

€12¢(c(cccl)C(=0)NO)[nH]c(c2)cince(ncl)C(F)(F)F

c12¢(c(cccl)C(=0)NO)N[C@H](C2)clccc(ccl)C(F)(F)F

clec(neclC(F)(F)F)[C@@H]1C(c2c(N1)c(ccec2)C(=0)NO)(C)C

nlcc(ncclC(F)(F)F)[C@H]1C(c2¢c(N1)c(ceec2)C(=0)NO)(C)C

N1(Cc2c(C1l)c(ccc2)C(=0)NO)cl[nH]c2c(nl)CC[C@H](C2)C(F)(F)F

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c2c(nl)CC[C@@H](C2)C(F)(F)F

cle(cc2ce(cl)sc(n2)N1Cc2¢(Cl)c(cece2)C(=0)NO)C(F)(F)F

Cl[C@@H](Cc2¢c(C1)oc(n2)N1Cc2c(Cl)c(ccec2)C(=0)NO)C(F)(F)F

cl(ccc2e(cl)oc(n2)N1C(c2c(Cl)c(ceec2)C(=0)NO)(C)C)C(F)(F)F

Cl[C@@H](Cc2¢c(C1)oc(n2)N1C(c2¢c(Cl)c(ccec2)C(=0)NO)(C)C)C(F)(F)F

[C@H]1(CCc2c(C1)oc(n2)N1C(c2¢c(Cl)c(ccc2)C(=0)NO)(C)C)C(F)(F)F

cle(cc2e(cl)sc(n2)N1C(c2c(Cl)c(cecc2)C(=0)NO)(C)C)C(F)(F)F

clncc2c(cl)oc(n2)N1C(c2c(Cl)c(ccec2)C(=0O)NO)(C)C

clece2e(cl)sc(n2)N1C(c2¢(Cl)c(ccec2)C(=0)NO)(C)C

clece2e(cl)nc(cc2)N1Cc2¢(C1(C)C)eeecc2C(=0)NO

cle(cc2e(cl)ne(cc2)N1Cce2¢(CL(C)C)eeccc2C(=0)NO)C(F)(F)F

c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)oc2c(n1)nc(cc2)C(F)(F)F
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c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)oc2c(n1)nce(c2)C(F)(F)F

c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)nc(c(ccl)C(F)(F)F)C#N

N1(C(c2¢c(C1)c(ccc2)C(=0)NO)(C)C)C(=0O)Nclee(nccl)C(F)(F)F

N1(C(c2¢c(C1)c(ccc2)C(=0)NO)(C)C)C(=0O)Nclncec(cl)C(F)(F)F

[N+](=0)(clc(cc2e([nH]c(n2)Nc2ec(C(=0)NO)cce2)c1)Cl)[O-]

clc2c¢(nc([nH]2)Nc2ce(C(=0)NO)cce2)cc(c1F)Br
C(clc(cc2e([nH]c(n2)Nc2ec(C(=0)NO)cce2)cl)C#HC)(F) (F)F

clc2c¢(nc([nH]2)Nc2ce(C(=0)NO)ccc2)ceclC(F)(F)F

clc2c¢(nc(n2C)Nc2ec(C(=0)NO)cce2)cc(cleclencecl)C(F)(F)F

clc2c¢(nc(n2C)Nc2ec(C(=0)NO)cce2)cc(clcleccccl)C(F)(F)F

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(c1C(F)(F)F)cleceecl

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cce2)ce(clelecencl)C(F)(F)F

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(c1C(F)(F)F)cleenccl

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cce2)ce(clelecee(cl)OCC)C(F)(F)F

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(clelecc(ccl)SC)C(F)(F)F
clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cec2)ce(clelecc(ccl)C(=0)N(C)C)C(F) (F)F

ONC(=0)clcc(cccl)Ncl[nH]c2c(nl)ce(c(c2)C(F)(F)F)clcc20C=COc2ccl

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cec2)cc(clelecce(cl)O)C(F)(F)F
clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cec2)cc(clelecccclCO)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(clelenc(ncl)NICCOCCL)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccec2)ce(clelec(cecl)C(=0)N1CCOCCL)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(clelec(cecl)COC)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(clelec2e(cecl)enn2C)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)ce(clelec(ceecl)C(=0)N(C)C)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)cc(clelecc(ccl)NICCOCCL)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cec2)ce(clclcoccl)C(F)(F)F

clccc2c(clC(=0)NO)C[C@]1(C2)C(=0O)N(CC1)Cclcece(ccl)Cl
clecec2c(c1C(=0O)NO)C[C@@]1(C2)C(=0O)N(CC1)Cclcce(c(cl)C(F)(F)F)CI
Clclc(cc(CN2C(=0)[C@@]3(CC2)Cc2ccec(c2C3)C(=0)NO)ccl)C(F)(F)F

Fclec(CN2C(=0)[C@@]3(CC2)Cc2ccec(c2C3)C(=0)NO)ceclC(F)(F)F

clec2e(c(cl)C(=0)NO)C[C@]1(C2)C(=O)N(CC1)Cclcee(ccl)C(F)(F)F

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccec(cl)cleececl

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccece(clCl)Cl

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclcce(ccl)OC(F)(F)F

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccec(cl)Cl

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccececclclceececl

c12c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclccc(c(cl)Cl)Cl

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcce(ccl)OCcleecccl

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclccce(cl)OC(F)(F)F

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccce(clF)C(F)(F)F

cl(cccc2clC[C@]1(CC2)C(=0O)N(CC1)Cclee(c(ccl)Cl)C(F)(F)F)C(=0)NO

¢12¢(c(cecl)C(=0)NO)OCL(CC2)CCN(CCL)C(=0)C1(CC1)clec(cecl)C(F)(F)F

cl2c(c(cccl)C(=0)NO)CC[C@@]1(C2)C(=O)N(CC1)Cclcce(c(cl)F)C(F)(F)F




clc(c(cc2cloc(n2)Neleeee(cl)C(=0)NO)C(F)(F)F)C#C

clc(c(cc2cloc(n2)Neleeee(c1C)C(=0)NO)CI)CI

cl(c(cc2c(cl)oc(n2)Nclec(C(=0)NO)cecclF)CICI

cl(c(cc2c(cl)oc(n2)Nclec(C(=0)NO)encl)CI)Cl

cl(c(cc2e(cl)sc(n2)Nclec(C(=0)NO)cccl)CICI
cl(c(cc2e(cl)nc([nH]2)Nclec(C(=0)NO)cecl)S(=0)(=0)C)C(F)(F)F
cl(c(cc2e(cl)nc([nH]2)N(clee(C(=0)NO)cccl)C)C#N)C(F)(F)F

clc2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nclec(C(=0O)NO)cecl)C

clc2c(cc(clF)C#N)n(c(n2)Nclec(C(=0)NO)cecl)C

clc2c(cc(c1Cl)Cl)n(c(n2)Nclec(C(=0)NO)cccl)C

clc2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nclec(C(=0O)NO)cecl)C(C)C

clc2c(cc(cLC#N)C(F)(F)F)n(c(n2)Nclcc(C(=0O)NO)cecl)C(C)C

clc2c(cc(cleleccecl)C(F)(F)F)n(c(n2)Nclec(C(=0)NO)cecl)C(C)C

clc2c(cc(c1Cl)Clyn(c(n2)Nclec(C(=0)NO)cccl)C(C)C

clc2c(cc(cLC(F)(F)F)clccceel)n(c(n2)Nelec(C(=0)NO)cecl)CCOC

clc(c(cc2clne(n2CCCCCC)Nclecec(cl)C(=0)NO)C(F)(F)F)C#N

N(clcc(C(=0)NO)ccel)cln(c2c(nl)cc(c(c2)CI)CI)CCCCCN

N(clcc(C(=0)NO)cccl)cln(c2c(nl)cc(c(c2)F)CI)CCCCCN

c1(c(cc2e(cl)nc([nH]2)Nclec(C(=0)NO)cecl)C)C

c1(c(cc2c(nc([nH]2)Cc2cc(C(=0)NO)ccc2)cl)ChCI

cl(c(cc2c([nH]c(c2)Nc2ce(C(=0)NO)ccc2)cl)CICI
clc2c(oc(n2)Nc2nc(C(=0)NO)ccc2)cc(c1Cl)ClI

nlc2c(oc(n2)Nc2cc(C(=0)NO)ccc2)cc(cl)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(ClyclF
clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)cc(clCl)C

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(clF)C(F)(F)F

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)cc(c1CHC(F)(F)F
clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)cc(C(F)(F)F)clBr

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)cc(C)clF

cle(c(cc2cloc(n2)Nelee(ce(cl)C(=0)NO)C)Br)C(F)(F)F

clc2c(nc([nH]2)Nc2ce(C(=0)NO)cce2)ce(C)clBr

clc2c(cc(c1C(F)(F)F)C#N)n(c(n2)Nclec(C(=0)NO)cecl)CCOC

N(clce(C(=0)NO)cccl)cln(c2e(nl)cc(c(c2)C(F)(F)F)C#N)CCCCCN
clc2c(nc([nH]2)Nc2ce(C(=0)NO)cce2)cc(c1CI)[N+](=0)[O-]

clc2c(nc([nH]2)Nc2ce(C(=0)NO)cce2)cc(cLC#N)C(F)(F)F

clc2c(nc([nH]2)Nc2ce(C(=0)NO)cce2)ce(c1C(F)(F)F)cleee2e(c1)OCCO2

clcce2c(c1C(=0)NO)C[C@]1(C2)C(=O)N(CCL)Cclcee(c(cl)F)C(F)(F)F

cl(c(cc2c(cl)oc(n2)Nclee(ceel)C(=0)NO)C(F)(F)F)C#N

cl(c(cc2c(cl)oc(n2)Nclecce(C(=0)NO)c1F)CI)CI

cl(c(cc2c(cl)oc(n2)Nclec(C(=0)NO)nccl)Cl)Cl

clec(ceclC(=0)NO)CN(Ccelcee(c(c(clF)F)F)F)C(C)C

clcc2c(cclC(=0)NO)CCN(C2)S(=0)(=0)clce(c(c(clF)F)F)F
C(=0)(clc(c(c(c(clF)F)F)F)F)N(C(C)C)Cclcee(ccl)C(=0)NO




C(=0)(clcce(ccl)CN(C(=0)Nclceeececcl)CCCC)NO

N1(Cc2c(C1l)c(ccc2)C(=0)NO)clne(cecl)C(F)(F)F

clc(cc2e(cl)CCN(C2)cl[nH]c2¢c(n1)ceecc2)C(=0)NO

cl(ccc2c(cl)CCN(C2)cl[nH]c2¢(nl)ceec2)C(=0)NO

clee(c2¢(cl)CCN(C2)cl[nH]c2¢(nl)ceec2)C(=0)NO

c1([nH]c(c(n1)C)C)NLCc2c(ceec2C1)C(=0)NO

c12¢(c(cccl)C(=0)OC)CN(C2(C)C)clnee(ncl)C(F)(F)F

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcee(ccl)C(=0)NO)Celece(ccl)N(C)C

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcec(ccl)C(=0)NO)Cclcenccl

S(=0)(=0)(clc(c(c(c(cl)F)F)F)F)N(Ccleee(ccl)C(=0)NO)Cclencecl

0O=S(=0)(N(Cclcce(ccl)C(=0)NO)CLCCL)cle(c(cc(clF)F)F)F

0O=S(=0)(N(Cclcce(ccl)C(=0)NO)CLCC1)cleec(ccl)F

0O=S(=0)(N(Cclcce(ccl)C(=0)NO)C1CC1)clee(c(c(cl)F)F)F

0O=S(=0)(N(Cclccee(cl)C(=0)NO)C1CC1)cle(c(c(c(cIF)F)F)F)F

0O=S(=0)(N(Cclccc(ccl)C(=0)NO)CLCCL)cle(c(c(c(clF)F)CHF)F

0O=S(=0)(N(Cclccec(ccl)C(=0)NO)C1CCl)clec(c(c(clF)F)F)F

clcc(ccclC(=0)NO)CN(S(=0)(=0)clee(c(c(c1F)F)F)F)C1CCCCl

clnc(ccclC(=0)NO)CN(S(=0)(=0)clec(c(c(clF)F)F)F)C(C)C

clce(ccclC(=0)NO)CN(S(=0)(=0)clcec(c(c(clF)F)F)F)CC(C)C

C(=0)(clcee(ccl)C(C)(C)C)N(Ccelceee(ccl)C(=0)NO)C1CCL

C(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcee(ccl)C(=0O)NO)C1CCL

C(=0)(clc(c(c(c(clF)F)F)F)F)NCclcee(ccl)/C=C/C(=O)NO

C(=0)(cle(c(c(c(CLF)F)F)F)F)N(Celece(cel)/C=C/C(=0)NO)C1CC1

C(=0)(clcee(ccl)C(C)(C)C)N(cleee(cecl)C(=0)NO)CC

C(=0)(clc(c(c(c(clF)F)F)F)F)N(C)Cclcee(ccl)C(=0O)NO

cle(cec(cl)/C=C/IC(=0)NO)CN(C[C@]12C[C@H]3C[C@H](C[C@@H](C1)C3)C2)C

cl(c(cee(cl)/C=CIC(=0)NO)CN(C[C@]12C[C@H]3C[C@H](C[C@@H](C1)C3)C2)C)F

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c(cnl)CCC

N1(Cc2c(C1)c(ccec2)C(=0)NO)cl[nH]c2c(nl)cncc2

N1(Cc2c(C1l)c(ccc2)C(=0)NO)cl[nH]c2c(nl)nceec2

N1(Cc2c(C1l)c(ccec2)C(=0)NO)clnc2c(ol)encec2

N1(Cc2c(C1l)c(ccec2)C(=0)NO)clnc2c(ol)necec2

nlc(nc2c(cl)cecc2)N1Cc2¢(Cl)c(cec2)C(=0)NO

cle(nc2c(cl)nccc2)N1Cc2¢(Cl)c(cec2)C(=0)NO

N1(Cc2c(C1l)c(ccec2)C(=0)NO)cl[nH]c(cnl)C

clenc2c(cl)nee(c2)N1Cc2c(Cl)c(cec2)C(=0)NO

clec(cc2c(c1)OCCN2)N1Cc2¢(Cl)c(cecc2)C(=0)NO

clenc2c(cl)sc(n2)N1Cc2¢(Cl)c(cec2)C(=0)NO

C1INCc2¢c(C1)nc([nH]2)N1Cc2c(C1)c(ccec2)C(=0)NO

C1IN(Cc2c¢(Cl)nc([nH]2)N1Cc2¢(C1)c(cec2)C(=0)NO)C(=0)C

clenc2c(cl)sc(n2)N1C(c2c(Cl)c(ceec2)C(=0)NO)(C)C

C(=0)(N1C(c2c(C1)c(cec2)C(=0)NO)(C)C)clecce(cecl)C(F)(F)F

C(=0)(N1C(c2c(C1)c(cec2)C(=0)NO)(C)C)clec(cecl)C(F)(F)F
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N1(C(c2¢c(C1)c(ccec2)C(=0)NO)(C)C)C(=0O)Nclnce(ccl)C(F)(F)F

N1(C(c2¢c(C1)c(ccc2)C(=0)NO)(C)C)C(=0O)Nclencc(cl)C(F)(F)F

N1(C(c2¢c(C1)c(ccc2)C(=0)NO)(C)C)C(=0O)Ncloc2c(nl)cecc2

N1(C(c2c(C1)c(ccc2)C(=0)NO)(C)C)Celeee(ccl)OC

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c2¢(nl)ceecc2cleccecl

N1(C(=0)c2c(C1l)c(ccec2)C(=0)NO)cloc2c(nl)ceecc2

[C@H]1(Nc2¢c(C1)c(cec2)C(=0)NO)cleec(ccl)C(F)(F)F

c12c¢(c(cccl)C(=0)NO)N[C@@H](C2)clcec(ccl)C(F)(F)F

nlce(ncelC(F)(F)F)[C@@H]1C(c2c(N1)c(ccc2)C(=0)NO)(C)C

N1(Cc2c(C1)c(ccc2)C(=0)NO)cln(c2¢(nl)ceccc2)CCOC

N1(Cc2c(CL)c(cec2)C(=0)NO)C(=0)[C@H](clece(ccl)OC)CC

N1(Cc2c(C1)c(ccc2)C(=0)NO)C(=0)cleccecl

N1(Cc2¢c(C1)c(ccc2)C(=0)NO)Cceleec(ccl)OC

N1(Cc2c(C1)c(ccc2)C(=0)NO)C1=N[C@@](C(=N1)clcccecl)(O)C(F)(F)F

c1(cc(ceecl)C(=0)Ncleec(ccl)C(=0)NO)C(C)(C)C

cl(cc(ceecl)C(=0)N(cleec(ccl)C(=0)NO)CC)C(C)(C)C

cl(cc(ceecl)C(=0)N(cleec(ccl)C(=0)NO)CC)C(F)(F)F

0=S(=0)(clcc(cc(cl)C(F)(F)F)C(F)(F)F)N(clcee(ccl)C(=0O)NO)CC

c1(cc(ce(cl)C(C)(C)C)C(=0)N(clcec(ccl)C(=0)NO)CC)C(C)(C)C

clc(c(cecl)C(=0)N(cleec(ccl)C(=0)NO)CC)C(F)(F)F

cl(cc(cecl)CN(cleece(ccl)C(=0)NO)C(=0)C)C(F)(F)F

c1(cc(ce(c1)C(F) (F)F)CN(clece(cel)C(=0)NO)C(=0) C)C(F)(F)F

c1(cc(cecl)C(=0)N(cleee(ccl)C(=0)NO)CCLCCL)C(F)(F)F

c1(cc(cecl)C(=0)N(cleec(ccl)C(=0)NO)C(C)C)C(F)(F)F

c1(cc(ce(c1)C(C)(C)C)C(=0)N(cLece(cel)C(=0)NOYCCLCCL)C(C)(C)C

c1(cc(cecl)C(=0)N(cleec(ccl)C(=0)NO)C(C)C)OC(F)(F)F

cl(cc(ceclF)C(=0)N(cleee(ccl)C(=0)NO)C(C)C)C(F)(F)F

cl(cc(cccl)NC(=0)cleee(ccl)C(=0)NO)C(C)(C)C

clcc(cccINC(=0)clcec(ccl)C(C)(C)C)C(=0O)NO

C(=0)(clcce(ccl)NC(=0)cleec(ccl)C)NO

FC(F)(F)clcee(C(=0O)Nc2cee(cec2)C(=0)NO)ccl

C(=0)(clcee(ccl)NC(=0)Ccleee(cel)C(C)(C)C)NO

C(=0)(clcee(ccl)C(C)(C)C)NCcelceee(cecl)C(=0)NO

0O=S(=0)(NCclccc(C(=0)NO)ccl)clece(ccl)C(C)(C)C

c12¢(c(cecl)C(=0)NO)C[C@@]1(C2)CCN(CC1)CLCCl

€12¢(CC3(C2=0)CCN(CC3)Cc2cccee2)c(cecl)C(=0)NO

c12¢(CC3([C@H]20)CCN(CC3)Cc2ccece2)c(cecl)C(=0)NO

c12¢(c(cccl)C(=0)NO)C[C@@]1(CC2)C(=0O)N(CC1)Cclcce(ccl)Cl

¢1(ccec2c10C1(CC2)CCN(CC1)C(=0)N(C)C)C(=0)NO

c12¢(c(cccl)C(=0)NO)OCL(CC2)CCN(CCL)C(=0)clcec(ccl)F

c12¢(c(ceel)C(=0)NO)OCL(CC2)CCN(CC1)S(=0)(=0)CLCCCCCL

c12¢(c(ccel)C(=0)NO)OC1(CC2)CCN(CCL)C(=0)C1(CCOCCL)C

c12¢(c(cccl)C(=0)NO)OCL(CC2)CCN(CCL)C(=0)Cclcceecl
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c12¢(c(cccl)C(=0)NO)OCL(CC2)CCN(CCl)clee(c(ccl)C)F

c12¢(c(cccl)C(=0)NO)CC[C@]1(C2)C(=0O)N(CC1)Cclccc(ccl)Cl

c12¢(c(cccl)C(=0)NO)CC[C@@]1(C2)C(=0O)N(CC1)clcceccclC(F)(F)F

c12¢(c(cccl)C(=0)NO)CCC1(02)CCN(CCl)cleeeccl

0O=S(=0)(N(CC(=0)N(clccc(ccl)C(=0)NO)C)Cele(c(c(c(clF)F)F)F)F)cleee(ccl)F

clec(cccINCeleee(ccl)C(C)(C)C)C(=0O)NO

0O=S(=0)(N(CC(=0)N(clcecc(ccl)C(=0)NO)Ccleee(ccl)C(C)(C)C)Cele(c(c(c(clF)F)F)F)F)C

nlcnc2c(c1C)ec(cc20CCCCCCC(=0)NO)clec(c(ncl)OC)F

c1(c(cc2e(cl)oc(n2)Nclnc(C(=0)NO)cenl)CI)Cl

clcece2e(cl)ne([nH]2)Nclee(C(=0)NO)cecl

clcece2e(cl)n(c(n2)Nclec(ceecl)C(=0)NO)CCOC

clc(c2c¢(ccINcl[nH]c3c(ccee3)nl)cecc2)C(=0)NO

c12n(c(nclcecc2)Nelec2e(c(cl)C(=0)NO)ccec2)CCOC

clee(c2c(cl)n(c(n2)Nclec(C(=0)NO)ceccl)CCOC)0C

clc2c(cc(cLC#N)C(F)(F)F)n(c(n2)Nclcc(C(=0)NO)cccl)CCOC

nlcnc2c(nc([nH]2)Nc2cc(C(=0)NO)cec2)cl

O(clc(cc2e([nH]c(n2)Nc2cc(C(=0)NO)cee2)cl)0)C

c12c¢(cc3c([nH]c(n3)Nc3cc(C(=0)NO)cce3)cl)OCC(=0)N2

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ceclCl

clc2c(nc(n2C)N(c2cc(C(=0)NO)ccc2)C)ee(c1C(F)(F)F)clecencl

clc2c(nc(n2C)N(c2cc(C(=0)NO)ccc2)C)ee(clelencecl)C(F)(F)F

clccccclCNC(=0)ONC(=0)clecec(cl)N(cl[nH]c2cc(c(ce2nl)C(F)(F)F)C#N)C

clec2c(c(c1)C(=0)NO)C[C@]1(C2)C(=0)N(CCL)C

c12¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclccc(ccl)S(=0)(=0)C

cleec2c(cLC(=0)NO)C[C@]1(C2)C(=0)N(CC1)C1CCL

C1(CCC1)CN1C(=0)[C@@]2(CCL)Cclecee(cLC2)C(=0)NO

clec2e(c(c1)C(=0)NO)C[C@@]1(C2)C(=0)N(CC1)clc(cececl)C(F)(F)F

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)CCCclcccccl

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcncecl

c12c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclc(ccccl)Cl

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccec(cl)F

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcsc(nl)clceeccl

cl2c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclcc(cc(cl)OC)OC

c12¢(ceeclC(=0)NO)C[C@]1(C2)CCN(C1=0)Celnoc(n1)C1CCOCCL

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclc(onclC)C

cl2c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclnnn(cl)clcceecl

cleece2c(c1C(=0)NO)C[C@]1(C2)CN(CCL)C(=0)clcec(ccl)C(F)(F)F

clece2c(c1C(=0)NO)C[C@@]1(C2)CN(CCL)C(=0)C

cleee2c(c1C(=0)NO)CC1(C2)CCN(CCL)C(=0)C

clc2ce(nc([nH]2)Nc2ce(C(=0)NO)cce2)ce(c1OC)0C

clc2c(nc([nH]2)Nc2ce(C(=0)NO)ccc2)cc2c1OCC(=0)N2

clece2c(c1C(=0)0CC1CCCL)C[C@]1(C2)C(=0)N(CCL)CCLCCCl

clece2e(ne([nH]2)N(c2cc(C(=0)NO)ccc2)CCOC)cl

o|lolo|lo/lo|lolo|lo|]o|lo|]o|lo|]o|lo|lo|l]o|lo|lo|lo|lo|]o|lo|]lo|lo|l]olo|lo|]o|lo|lo|lo|lo|]o|lo|]o|lo|]olo|o|o|o|o| oo




cl(c(cc2e(nc([nH]2)Oc2cc(C(=0)NO)cce2)cl)C#N)C(F)(F)F

>1000

clece2e(cl)c(=0)n(c(=0)n2Cclec(cccl)C(=0)NO)CCcleececl

>10000

clece2e(cl)c(=0)n(c(=0)n2Cclesc(cl)C(=0)NO)CCclceeecl

>10000

SCCIC=C/[C@@H]1CC(=0)NCc2scc(C(=0)N/C(=C\C)/C(=0)N[C@H](C(=0)01)C(C)C)n2

>10000

o|lo|o | o

S(CCIC=C/[C@ @H]1CC(=0O)NCc2scc(C(=0)N/C(=C\C)/C(=0)N[C@H](C(=0)O1)C(C)C)n2)C(=
0)C

>10000

o

[nH]1nc(cc1C(=0)NCCCCCCS)cleenccl

>10000

[nH]1nc(cc1C(=0)NCCCCCCS)clecencl

>10000

[nH]1nc(cc1C(=0)NCCCCCCS)clencenl

>10000

clcce2e(cl)c(nc(n2)C)N(clee(c(ccl)OC)OCCCC(=0)NO)C

>10000

Cl[C@H]2C[C@]3(C[C@@H]1C[C@H](C3)C2)clc(cce(cl)cleec(ccl)C=CC(=0)0)0

>10000

nlc(nc2c(cIN1CCOCC1)ncn2CCCCCCC(=0)NO)clcee(ncl)N

>10000

C(=0)(/C=C/clcc2nc(n(c2ccl)CCN(CC)CC)CCCC)NO

>10000

OCCN(C(=0)Cclccc(C(=0)NO)ccl)cleceecl

>10000

nlc2c(c3n(c1N)nc(n3)clocccl)enn2CCeleec(ccl)C(=0)NclecceclN

>10000

cl(ccc(ccIN)F)NC(=0)clcec(ccl)CSclne(c2n(nl)ccc2)Nelee([nH]nl)C

>10000

N(clc(N)ceeel)C(=0)CCCCCCC(=0)Nclcceecl

>10000

n1(Cc2ccc(cc2)C(=0)NO)sc2c¢(cl=0)ccec2

>10000

N1(Cc2c(CC1)nlc(=NCC1)n(c2=0)Cclc(ccecl)OC)Celeec(cecl)C(=0)NclecccclN

>10000

C1(CCOCC1)(CNC(=0)clccee(c2ne(on2)C(F)(F)F)cl)clnc(csl)cleccecl

>10000

cleec(c(c1)CNIC[C@H](CC1)0)NC(=0)CCCCCCC(=0)NO

>10000

C(=0)(clcee(ccl)CCnle(=0)c2c¢3c(cl=0)cce(c3ccc2)N1ICCOCCL)NO

>10000

clc(c(c(cclO)C)cl[nH]c2c(nl)ce(cc2)C(=0)NO)C

>10000

clc(c(cecl)cl[nH]c2c(nl)ce(cc2)C(=0)NO)C(F)(F)F

>10000

C(=0)(NO)clcnc(N(Cc2onc(n2)C2CCN(CC2)Cc2ccc(cc2)C)C)ncl

>10000

nlc([nH]c(=0)c2clsclc2CCN(C1)C)clee(c(c(cl)C)OCCCCCC(=0)NO)C

>10000

o|lo|jlo|l]olo|lo|l]o|lo|lo|lo|lo|]o|lo|]o|lo|]o|o|o|o| oo

N(Cclcce(ccl)C(=0)NcleeccecIN)Cl=N[C@@H]([C@@H](O1)clcceecl)clececcl

>10000
0

o

cl(ccc2e(cl)C[C@@H](CC2)Nclncee(nl)cleeencl)C(=0)NO

>10000
0

o

clc(cee(cl)/C=C/C=C/C(=0)NO)clccc(ccl)OC

>10000
0

clccc2c(cl)C(=0)cle(C2=0)cce(cl)/C=C/C(=0O)NO

>10000
0

C1(NC(=O)CCCCCC[C@@H](C(=O)NC)N=0)c2c(cccc2)c2cleecc2

>10000
0

cleeee(c1)NC(=0)CCCCCC[C@@H](C(=0)NC)N=0

>10000
0

clec(cc2cleecc2)NC(=0)CCCCCC[C@@H](C(=O)NC)N=0

>10000
0

nlcc(cc2cleccc2)NC(=0)CCCCCC[C@@H](C(=O)NC)N=0

>10000
0

C1(=0O)N([C@@H](C(=0O)N1clccc(ccl)Cl)CCC(=0)Nclece(ccl)C(=0)NO)Cceleceecl

>10000
0

C1(=0O)N([C@@H](C(=O)N1clccc(ccl)Cl)CCC(=0)Ncleee(ccl)C(=0)NO)Ccleee(ccl)Br

>10000
0

C1(=0O)N([C@@H](C(=O)N1clccc(ccl)Cl)CCC(=0)Nclece(cel)C(=0)NO)Ccleee(ccl)C

>10000
0

clec(ce(c1)NC(=0)CCCCCC[C@@H](C(=0)NC)N=0)Br

>10000
0

cl(cc(ceecl)C(=0)N(cleee(ccl)C(=0)NO)Ccleeeccl)C(F)(F)F

>2000

clec(cc2ce(cl)cen2Celece(ccl)OC)C(=0)NO

>20000

[O-][N+](=0)clc(N)cc(N2CCN(CC2)C)ccl

>20000
0

nln(cc(nl)clecec(cl)NC(=O)N1CCOCC1)Cclnee(cel)elnne(ol)C(F)F

>30000

87




A669 cl(cec(cel)elnne(ol)C(F)F)Cnlcc(nnl)clec2c(cecl)ne([nH]2)N >30000

A670 cl(nce(ccl)clnne(ol)C(F)F)Cnlec(nnl)cleecc2c(cl)ne([nH]2)CI >30000

AB73 cl(cec(enl)clnen(cl)Ccleec(cnl)cloc(nnl)C(F)F)N >30000

AB77 nln(cc(nl)clec(cccl)NC(=0O)N1CCOCCL)Celeec(c(cl)F)clnne(ol)C(F)F >30000

A678 c1(n(c2c(nl)cc(cc2)cinnn(cl)Celeec(cnl)cloc(nnl)C(F)F)C)N >30000

AB79 c1([nH]c2c(nl)cce(c2)clnnn(cl)Celeec(cnl)cloc(nnl)C(F)F)NCC >30000

A683 C1(=NCCN1)Nclcece(cel)elnen(cl)Celeee(ccl)cloc(nnl)C(F)F >30000

A684 nln(cc(nl)clec2e(n(c(n2)N)C)ecl)Celeee(cel)clnne(ol)C(F)F >30000

A688 nln(cc(nl)clecc2sc(nc2c1)N)Celnec(cel)clnne(ol)C(F)F >30000

AB90 cl(cce(enl)clnnn(cl)Ccleec(cnl)cloc(nnl)C(F)F)N >30000

AB91 CN1C[C@H](c2¢c(cc(/C=C/C(=0)Nc3c(ccce3)N)cc2)F)[C@H](C1)C(=0)Nclece(ccl)Cl >30000

A693 c1(C(=0)N[C@H](C(=O)NO)C(N)(C)C)ccc(ccl)OCCHCC >30000
AB95 clc(cee(cl)C(=0)NNCCC)CNC(=0)clec2c([nH]1)ccec2 >5000

AB96 C(=0)(NCclccc(ccl)C(=0O)NNCCC)/C=C/clcccecl >5000

A697 C\1(=C\2/C(=0)Nc3c2cccce3)/C(=N/OCCCC(=0)NO)/c2¢c(N1)ccec2 >5000

A699 C\L(=C\2/C(=0)N(c3c2¢cce3)CCHC)/C(=N/OCCCC(=0)NO)/c2¢(NL)ceee? >5000

A700 [C@@H](Oclcc(N(c2c3ccecee3nc(n2)C)C)eeclOC)(C(=0)NO)C(C)C >5000

A701 0=S1(=0)c2c3c(n(Cc4cce(ccd)C(=0)NO)c2CCl)cecce3 >5000

A702 clc(c(cecleleccccl)N)NC(=0)cleccecl >50000

A703 clc(c(cccl)N)NC(=0)cleccecl >50000

A704 clc(c(ceclelsceccl)N)NC(=0)cleccecl >50000
A705 C(=0)(clcee(ccl)CN(C(=0)Nclceec(ccl)CN)CCCCO)NO >50000

AT706 clcc(cc2c1CN(CC2)C(=0)clceeenlC)C(=0)NO >50000

A708 clc(cee(cl)C(=0)NO)CN(CCCCO)C(=0O)Nclcccecl >50000

AT709 clc(c(cccl)N)NC(=0)clecencl >50000

A710 clc(c(cecleleececl)O)NC(=0)cleccecl >50000

o|lolo|lo|lolo|lo|]o|lo|]lo|lo|]olo|lo|o|lo|lo|lo|lo|]o|lo|]o|lo|]o|o|o| o

A711 clc(c(cecleleccecl)N)NC(=0)clecencl >50000
Here 1 is depicted as active, and 0 is depicted as inactive classes

Test set compounds of HDAC11 inhibitors in SMILES format

Compound

D SMILES

A015 N1C(=0)[C@H]([C@ @H](CL)clcceeel)C(=0)N[C@@H](CCCCCS)C(=0)Neleceeel

A016 O=C(NO)clc2c(C(C)(C)N(C2)c2nce(cn2)C(F) (F)F)ceel

A018 N1[C@H](CCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Nclce(ceel)C

A020 clceec(c1)NC(=0)[C@H](CCCCCS)NC(=0)[C@H]INC(=0)CCC1

A024 clceec(c1)NC(=0)[C@H](CCCCCS)NC(=0)[C@H]1C(=0)NCCC1

A026 clceec(c1)NC(=0)[C@H](CCCCCS)NC(=0)[C@@H]INC(=0)CCC1

A028 N1([C@H](CCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Nclcc(cecl)C)C

A029 N1C(=0)[C@ @H]([C@H](CL)clcceeel)C(=0)N[C@@H](CCCCCS)C(=0)Ncleceeel

A030 clceec(c1)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]INC(=0)CC1




N1C(=0)[C@H]([C@H](C1)clcceecl)C(=O)N[C@@H](CCCCCS)C(=0)Nclcececl

clceee(c1)NC(=0)[C@H](CCCCCS)NC(=0)[C@@H]INC(=0)CC1

N1[C@@H](CCC1=0)C(=0)N[C@H](CCCCCS)C(=0)Nclceeeel

cl(cc2cc(cl)/C=C\CO[C@H](C(=0)Nclc(OC2)ccecl)CCCCCC(=0)NO)OC

N1[C@H](CCC1=0)C(=0)N[C@@H](CCCCCS)C(=0)Nclce(ceel)C(F)(F)F

0=5(=0)(N(Cclcce(cel)C(=0)NO)CICCL)cle(c(c(c(cF)F)F)F)F

[nH]1c(c(ccleleee(cel)O)cleoccl)C(=0)NCeleec(ccl)C(=0)NO

C(=0)(CCcCCsclnc(cc(=0)[nH]1)clece(ccl)cleccecl)NO

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)N(Cclcec(cecl)C(=0)NO)Cclceeccl

S(=0)(=0)(clc(c(c(c(cl)F)F)F)F)N(Ccleee(ccl)C(=0)NO)Cclec(cecl)F

clecec(c1)NC(=0)[C@H](CCCCCC(=0)NO)NC(=0)[C@H]LC(=0)NCCCL

S(=0)(=0)(clc(c(c(c(cl)F)F)F)F)N(Cclceee(cecl)C(=0)NO)Cclce(ceeccl)F

C(=0)(Nclcce(C(=0)NO)ccl)OCclec2e(cc(CN(CC)CC)cc2)ccl

C1(=N[C@H]2[C@H](N1)CCCC2)NICc2¢(ccec2CL)C(=0)NO

0O=S(=0)(N(Cclccec(ccl)C(=0)NO)CLCCL)cle(c(c(c(clF)CIHF)CHF

cl(cc(ceecl)C(=0)N(cleec(cecl)C(=0)NO)Ccleeec(cl)C(F)(F)F)C(F) (F)F

[n+]1(onc(c1S(=0)(=0)clcececccl)OCCCCCC(=0)NO)[O-]

cl(cce(ccIN)F)NC(=0)clcec(ccl)CNC(=0)/C=C/1\NC(=0)c2clccec2

0=S(=0)(NCC(=0)N(clcce(ccl)C(=0)NO)Cclceee(cecl)C(C)(C)C)clecc(cecl)F

C(=0)(clcec(ccl)C1CC1)Nclecece(ccl)C(=0)NO

clc(c([nH]clclceee(ccl)OC)C(=0)NCcelceec(ccl)C(=0)NO)cleescl

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cee2)cc2c10CCO2

clc2c(nc(n2C)N(c2cc(C(=0)NO)ccc2)C)ee(cleleccecl)C(F)(F)F

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclc(cce(cl)ChCl

clccc2c(clC(=0)NO)C[C@]1(C2)CN(CC1)Cclcce(ccl)C(F)(F)F

cl(ccecec2clC[C@]1(CC2)C(=0O)N(CC1)Cclcee(ccl)C(F)(F)F)C(=0O)NO

N1(Cc2c(C1l)c(ccec2)C(=0)NO)cloc2c(nl)encc2

cl(ccc2e(cl)ne(cc2)N1Cce2¢(CL(C)C)eececc2C(=0)NO)C(F)(F)F

clec(cccIN(C(=0)OC(C)(C)C)Cclcee(ccl)C(C)(C)C)C(=0O)NO

C(CCCCC(=0)NO)ONC(=0)clce(ce(cl)C)C

C(=0)(CCCCCCS)NICc2c(CCL)ccec2

cl(cc(ccclCl)C(=0)NCclcec(ccl)C(=0)NO)CI

C(NC(=0)CCCCCCC(=0)NO)Cclceeecl

clceec2c10CCCCCO[C@@H](C(=0)N2)CCCCCC(=0)NO

clec(cc(c1)NC(=0)CCCCCCC(=0)NO)C

0=S1(=0)C[C@@H]2[C@H](N(c3clccce3)Cclcec(ccl)C(=0)NO)CCCC2

clc(cec(cl)/C=C/C(=0)NO)/C=N/OCCN1CCOCC1




clc(cee(cl)/C=C/C(=0)NO)C(=O)N[C@@H](Cclc[nH]c2clccec2)C(=0)Nclcee(cel)l

3,229

[nH]1cc(c2cleecc2)C[C@H](NC(=0)cleec(C(=0)NO)ccl)C(=0)Nclcec(cel)C

3,500

C[C@H](IC=CIC(=0)NO)/C=C(\C)/C(=O)cLccc(ccl)N(C)C

3,642.50

clcce(ccl)CC(=0)N(CCO)Ccleec(ccl)C(=0)NO

3,700

clece2e(cl)c(=0)n(c(=0)n2Cclece(ccl)C(=0)NO)CCcleec(ccl)NC

3,800

C1[C@H]2C[C@]3(C[C@@H]LC[C@H](C3)C2)cle(cee(cl)clec(cel)C=CC(=0)0)OCC(=0)
NO

6,090

n1(c(=0)c2c3c(c1=0)ccec3ccc2) CCCCCC(=0)Nele(N)ceeel

9,350

0O=S(=0)(clccc(ccl)clen(ncl)C)nleec(cl)/C=C/C(=0)NclccecclN

9,700

nlc(nc2c(cIN1CCOCC1)ncn2CCCCCCC(=0)NO)clcee(cccl)CO

9,700

clcece2e(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCclc(ccecl)O

16,700

0=S1(=0)[C@H]2c3c(N(Cc4cce(ccd)C(=0)NO)[C@@H]2CC1)ccee3

17,000

clcee2e(cl)c(=0)n(c(=0)n2Cclsc(ccl)C(=0)NO)CCclcececl

19,800

clcee2e(cl)c(=0)n(c(=0)n2Cclcec(ccl)C(=0)NO)CCcleec(ccl)N1CCOCCL

22,750

cl(ncnc2clnc[nH]2)N[C@H](clnc(c2¢(nl)ccec2)CCCCC(=0)NO)CC

23,030

c1(cce(ccl)/C=C/C(=0)NO)clcec(ccl)OC

73,000

cl(cce2c(cl)CN(CC2)Ccleec(ol)clecec(cl)[N+](=0)[O-])C(=O)NO

75,300

cl(c(cee(cl)clecc(cel)/C=CIC(=0)NO)OC) [C@]12C[C@@H]3C[C@H](CL)C[C@@H](C3)C2

77,000

clccc2c(cl)C(=0)cle(C2=0)ccc(cl)C(=0)NO

80,020

c1([nH]c2c(cl)c(cecec2)C(=0)NO)cince(ncl)C(F)(F)F

<500

N1(Cc2c(C1L)c(cec2)C(=0)NO)cl [nH]c2¢(n1)CC[C@H](C2)C(F)(F)F

<500

N1(Cc2c(C1)c(ccec2)C(=0)NO)cloc2e(nl)nceec2

<500

clc(nc2c(cl)nc(cc2)N1Cc2¢(CL(C)C)cececc2C(=0)NO)C(F)(F)F

<500

c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)oc2c(nl)ccec2

<500

c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)nce(c(cl)CHN)C(F)(F)F

<500

N1(C(c2c(C1)c(ccc2)C(=0)NO)(C)C)C(=0)Nclcee(ccl)C(F)(F)F

<500

clc2c(nc([nH]2)Nc2ce(C(=0)NO)ccc2)ce(clclece(ccl)COC)C(F)(F)F

<500

clc2c(nc([nH]2)Nc2ce(C(=0)NO)ccc2)ce(c1C(F)(F)F)clecc2e(cl)ccen2

<500

clc2c(nc([nH]2)Nc2ce(C(=0)NO)ccc2)ce(clclece(ncl)N(C)C)C(F)(F)F

<500

clc2c(nc([nH]2)Nc2ce(C(=0)NO)cce2)ce(clclec(cecclCO)F)C(F)(F)F

<500

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcee(ccl)cleccecl

<500

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccec(cl)C(F)(F)F

<500

cl2c¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclccece(cl)Br

<500

c12¢(c(cccl)C(=0)NO)C[C@]1(CC2)C(=0)N(CC1)Cclcee(c(cl)F)C(F)(F)F

<500

cl2c(c(cecl)C(=0)NO)CC[C@@]1(C2)C(=0O)N(CC1)Cclcee(c(cl)C(F)(F)F)CI

<500

c12¢(c(cccl)C(=0)NO)CC[C@@]1(C2)C(=0O)N(CC1)Cclcec(ccl)C(F)(F)F

<500

c12c¢(c(cccl)C(=0)NO)CC[C@@]1(C2)C(=0O)N(CC1)clcee(ccl)C(F)(F)F

<500

cl(c(cc2c(cl)oc(n2)Nclee(ccel)C(=0)NO)C(F)(F)F)cleeeecl

<500




cl(c(cc2c(cl)oc(n2)Nclec(C(=0)NO)c(ccl)F)CI)CI

clc(c(cc2cloc(n2)Nelenne(cl)C(=0)NO)CI)CI

clc(c(cc2cloc(n2)Nelnene(cl)C(=0)NO)CI)CI

cl(c(cc2e(cl)n(c(n2)Nclec(C(=0)NO)cecl)C)C#N)C(F) (F)F

clc2c(cc(c1C(F)(F)F)clceceel)n(c(n2)Nelec(C(=0)NO)cecl)C(C)C

clc2c(cc(cleleccecl)C(F)(F)F)n(c(n2)Nclec(C(=0)NO)cecl)CCOC

cl(c(cc2c(ne([nH]2)Cc2cc(C(=0)NO)ccc2)cl)C#N)C(F) (F)F

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ce(c1CI)Cl

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc(c1Br)OC(F)(F)F

clcec2c(cLC(=0)NO)C[C@@]1(C2)C(=0)N(CCL)Celeec(c(cl)F)C(F)(F)F

cl(c(cc2e(cl)oc(n2)Nclec(C(=0)NO)cenl)CI)CI

clec(ccelC(=0)NO)CN(S(=0)(=0)clec(c(c(cLF)F)F)F)CCOC

clc(c(ccclC(=0)NO)CN(S(=0)(=0)clcce(c(c(clF)F)F)F)C(C)C)OC

clcccccINC(=0)CCCCCCC(=0)NO

c1([nH]c2c(n1)ccec2)N1Ce2c(cececc2C1)C(=0)NO

N1(Cc2c(C1)c(ccc2)C(=0)NO)cl[nH]c2¢c(n1)CCCC2

S(=0)(=0)(clc(c(c(c(clF)F)F)F)F)NCclcee(ccl)C(=0)NO

S(=0)(=0)(cle(c(c(c(cl)F)F)F)F)N(Cclcee(ccl)C(=0)NO)Ccleec(ccl)F

nlcnc2c(c1C)cc(cc20CCN(clnce(enl)C(=0)NO)C)cleeec(ncl)OC

C(=0)(clc(c(c(c(clF)F)F)F)F)NCclcee(ccl)C(=0O)NO

0=S(=0)(N(Cclcce(ccl)C(=0)NO)C1CC1)cle(cc(cclF)F)F

0=S(=0)(N(Cclccc(ccl)C(=0)NO)C1CCl)cle(cc(c(clF)CHF)F

clcc(ccclC(=0)NO)CN(S(=0)(=0)clcece(c(c(clF)F)F)F)C(C)C

clec(ccclCC(=0)NO)CN(S(=0)(=0)clcece(c(c(clF)F)F)F)C(C)C

c1(N2C(c3c(C2)c(cce3)C(=0)NO)(C)C)sce(nl)C(F)(F)F

N1(C(c2c(C1)c(ccc2)C(=0)NO)(C)C)C(=0)Nclnc(cecl)C(F)(F)F

clec(neclC(F)(F)F)[C@H]1C(c2c(N1)c(cec2)C(=0)NO)(C)C

clec(ceclC(F)(F)F)[C@@H]1C(c2¢(N1)c(cce2)C(=0)NO)(C)C

N1(Cc2c(C1)c(ccc2)C(=0)NO)clececcl

cl(ce(ceecl)C(=0)Nclece(ccl)C(=0)NO)C(F)(F)F

cl(ce(ceecl)C(=0)N(cleee(ccl)C(=0)NO)CC1CCL)C(C)(C)C

cl(ce(cc(c1)C(C)(C)C)C(=0)Ncleee(ccl)C(=0)NO)C(C)(C)C

cl(c(c(cecl)C(=0)N(clece(cel)C(=0)NO)C(C)C)F)C(F)(F)F

cl(ce(cc(cl)C(C)(C)C)C(=0)N(clcee(cecl)C(=0)NO)C(C)C)C(C)(C)C

cl(ce(cccl)N(C(=0)cleec(cecl)C(=0)NO)CC)C(C)(C)C

C(=0)(clcce(ccl)NC(=0)cleece(ccl)NICCOCCI)NO

C(=0)(clcce(ccl)F)Neleee(cecl)C(=0)NO




c12¢(c(cccl)C(=0)NO)CC1(C2)CCN(CC1)C(=0O)clece(ccl)Cl >1000

c12¢(c(cccl)C(=0)NO)CC1(C2)CCN(CC1)Cclece(ccl)Cl >1000

€12¢(CC3(C2)CCN(CC3)Cc2ccecc2)c(cccl)C(=0)NO >1000

cl(cccc2clC[C@]1(CC2)C(=0)N(CC1)cleeec(cl)C(F)(F)F)C(=0O)NO >1000

cl(ccec2clC[C@@]1(CC2)C(=0)N(CC1)clceccclC(F)(F)F)C(=0)NO >1000

cl(cccc2c1OCL(CC2)CCN(CCL)Celeee(ccl)F)C(=0)NO >1000

c12¢(c(cecl)C(=0)NO)O[C@@]L(CC2)CCN(CC1)CICCCCCl >1000

cl(cccec2¢1OCL(CC2)CCN(CCl)cleee(cnl)C(F)(F)F)C(=0)NO >1000

c12¢(c(cccl)C(=0)NO)CCC1(02)CCN(CCL)C(=0)C >1000

c12¢(c(ccel)C(=0)NO)CCC1(02)CCN(CCI)cleec(ccl)F >1000

0O=S(=0)(N(CC(=0)N(clccc(ccl)C(=0)NO)C)C)cleec(ccl)F >1000

clecc(cccIN(Celeee(ccl)C(C)(C)C)C(=0)C)C(=0)NO >1000

clceec2e(n(c(n2)Nc2cc(C(=0)NO)cec2)CCOC)cloC >1000

clenc2c(ne([nH]2)Nc2cc(C(=0)NO)ccc2)nl >1000

nlc2c(oc(n2)Nc2cc(C(=0)NO)cee2)cecl >1000

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)cec2)cc2¢10CO2 >1000

clc2c¢(nc([nH]2)Nc2cc(C(=0)NO)ccc2)cc2c10CCCO2 >1000

clc2c(nc([nH]2)Nc2cc(C(=0)NO)ccc2)ceclS(=0)(=0)C >1000

clc2c(nc([nH]2)Nc2cc(C(=0)NO)cce2)ceclS(=0)(=0)N >1000

clcec2c(cLC(=0)NO)C[C@]L(C2)C(=0)N(CCL)clece(ccl)C(F)(F)F >1000

clccc2c(clC(=0)NO)C[C@]1(C2)C(=0O)N(CC1)Cclcceecl >1000

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclcce(ccl)OC >1000

cl2c(ccecclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclccee(cl)OC >1000

cl2c(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclc(ccecl)C >1000

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcc(cc(cl)F)F >1000

c12c(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclc(cc(ccl)F)F >1000

c12¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclc(ccccl)OC >1000

c12¢(cecclC(=0)NO)C[C@]1(C2)CCN(C1=0)CC1CCCCCl >1000

c12¢(cccclC(=0)NO)C[C@@]1(C2)CCN(C1=0)Cclonc(cl)clcececl >1000

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclcnc(ccl)nlceenl >1000

c12c¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclecnc(ccl)C(F)(F)F >1000

c12¢(cccclC(=0)NO)C[C@]1(C2)CCN(C1=0)Cclccee(nl)C(F)(F)F >1000

c12¢(cecclC(=0)NO)C[C@]1(C2)CCN(C1=0)CCNICCOCCL >1000

c12¢(ceeclC(=0)NO)C[C@]1(C2)CCN(C1=0)CCICCl >1000

clcec2¢(c1C(=0)NO)C[C@]1(C2)CN(CC1)C1CCl >1000

clec2e(c(cl)C(=0)NO)C[C@]1(C2)C(=0O)N(CC1)Cclcec(ccl)C >1000

SCCIC=C/[C@@H]1CC(=0)N[C@ @H](c2scc(C(=0)N/C(=C\C)/C(=0)N[C@H](C(=0)O1)C(
C)C)n2)C(C)C

>10000




cl(ncee(cl)/C=C/cleec(ccl)C(=0)NO)cle(cceecl)O >10000

0O=C(N)c1c2c(C(C)(C)N(C2)c2cenc(cn2)C(F)(F)F)cccl >10000

cl2cc(oclcecc2)clnc2c(cecc2)c(cl)C(=0)NC(cleececl)cleececl >200000

olc(nc2clcec(c2)clnn(nnl)Cclece(cnl)cloc(nnl)C(F)F)N >30000

C1(=NCCN1)Nclcec(cel)elnnn(cl)Celece(ccl)cloc(nnl)C(F)F >30000

cl(c2nnc(02)C(F)F)cce(cecl)Cnlnc(nnl)cleecc2c(cl)nc(n2C)N >30000

cl(ccc(enl)clenn(cl)Cceleec(cnl)cloc(nnl)C(F)F)N >30000

nln(cc(nl)clec2c(nc(s2)N)ccl)Celeee(cecl)clnne(ol)C(F)F >30000

nln(cc(nl)clecc(ncl)N)Celeee(c(cl)F)clnnc(ol)C(F)F >30000

nln(cc(nl)clec2c(NC(=0)C32CCNCC3)ccl)Celnec(ccl)clnne(ol)C(F)F >30000

cl(ccc(enl)clnnc(ol)C(F)F)Cnlce(nel)cleec(ccl)NC1=NCCN1 >30000

cl(cce(enl)clnnn(cl)Cele(c(c(ccl)cloc(nnl)C(F)F)F)F)N >30000

C(clcee(ccl)C(=0)NO)nlc(=0)c2c3c(c1=0)ccec3c(cc2)0C >30000

nln(cc(nl)clec2c(nc(s2)N)ccl)Celnec(cel)clnne(ol)C(F)F >30000

nln(nc(nl)clcce(c(c1)NC(=0)N1CCOCC1)0)Cclcec(cnl)clnnc(ol)C(F)F >30000

cl(nnc(o1)C(F)F)clenc(cecl)Cnlne(nnl)clcc2c(ccl)CNC2=0 >30000

clcee(c(cl)C(=0)N)Nclceee(cl)OCCceleccecl >30000

C(C)(C)(CNC(=0)clccecee(cl)clnoc(C(F)(F)F)nl)clinc(ocl)cleccecl >5000

C\L(=C\2/C(=0)Nc3c2cccc3)/C(=N/OCCCC(=0)0)/c2c(NL)cece2 >5000

C(=0)(clcee(ccl)CN(C(=0)Ncleec(ccl)CN)CCCC)NO >50000

clc(c(cecleleccsl)N)NC(=0)cleeencl >50000

Here 1 is depicted as active, and 0 is depicted as inactive classes
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Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the
electronic properties of atoms, molbecules, and solids based on the density of electrons rather than wavefunctions.
It provides insights into the structure, bonding, and behavior of different molecules, including those involved in
the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACIS). HDACs are a wide
group of metalleenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the M-
terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially
cancer. Therefore, it has been recognized as & prospective target for accelerating the development of anticancer
therapies. Researchers have studied HDACs and its inhibitors extensively using & combination of experimental
methods and diverse in-silico approaches such as machine leamning and quantitative structure-activity rela-
tionship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and maore. In this
context, DFT smdies can make significant contribution by shedding light on the molecular properties, in-
teractions, reaction pathways, fransition states, reactivity and mechanisms involved in the development of
HDACEs. This review attempied to elucidate the scope in which DFT methodologies may be used to enhance our
comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of
these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide
experimental efforts toward developing more potent and selective HDAC inhibitors.

1. Introduction Chidamide (HBIS00O0) has received FDA approval from the Chinese

government (Fig. 1) [3]. In recent times, there has been a shift in

HDACs belong to a category of metalloenzymes responsible for
remaoving acetyl groups from the e-N-acetyl lysine amino acid present in
histones and non-histone proteing [1]. HDACs control the acetylation
status of histones within chromatin and also influence the acetylation of
numerous non-histone substrates, such as various proteins linked to
human cancerogenesis, which makes HDACs interesting for therapeutic
investigation [2]. Consequently, there has been an increasing interest in
HDAC inhibitors (HDACIS) in recent years. The Food and Drug Admin-
istration of the United States (US-FDA) has recognized and authorized
multiple HDACis. The US FDA approved Vorinostat (SAHA) for treating
cutaneous T-cell lymphoma. Belinostat (PXD101), Panabinostat
(LBH589), and Romidepsin are the HDACis with US FDA approval, while
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1ail. com (8. Gayen).

attention among academic institutions and pharmaceutical companies
towards developing selective inhibitors for specific isoforms of HDACs.
However, in recent years, both academic institutions and pharmaceu-
tical companies have begun to focus on the development of
isoform-selective HDACHs [4]. All these HDAC-targeting drugs approved
by the FDA are pan-HDAC inhibitors and hence lead to several toxicities
even at therapeutic levels. Therefore, there is an ongoing quest to
develop cancer treatments that are more precise, safer, and more
effective therapeutically.
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