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Preface

This dissertation is presented for the partial fulfilment for the degree of Master of Pharmacy
in Pharmaceutical Technology. The work presented in this dissertation is spread over two years,
which encompasses the development of Quantitative Structure-Toxicity Relationship (QSTR)
and Quantitative Read-Across Structure-Toxicity Relationship (q-RASTR ) models using
easily interpretable two-dimensional (2D) molecular descriptors for efficient prediction of
toxicity of diverse organic compounds towards various avian species. The significance of this
research is underscored by its practical application, which extends beyond the realm of theory
and into the screening of chemical databases, enabling the identification of substances that may

pose risks to both human health and the environment.

The identification and evaluation of toxicity in chemical compounds are of paramount
importance in addressing potential health risks, encompassing a spectrum of hazards including
carcinogenicity, genotoxicity, immunotoxicology, and developmental and reproductive
toxicity. These considerations underscore the integral role of toxicity prediction in the intricate
process of drug design and development. While preclinical and clinical trials serve as
indispensable means of assessing toxicity before public consumption, they are often
characterized by exorbitant costs, extensive labour requirements, prolonged timelines, the

potential for inconclusive outcomes, and practical infeasibility in certain scenarios.

In recent years, there has been a significant paradigm shift in the field of toxicology, with in
silico techniques becoming increasingly prominent as a rational alternative to traditional animal
testing for predicting toxicity and chemical properties. Driven by ethical considerations,
efficiency gains, and cost-effectiveness, and aligned with the 3Rs (replacement, refinement,
and reduction of animals in research), these computational methods offer rapid and versatile
solutions for assessing chemical toxicity across various compounds. From predicting diverse
toxicity types to aiding in drug discovery and environmental impact assessments, in silico
techniques are revolutionizing the way we approach chemical evaluation, aligning with both
scientific progress and ethical responsibility in the modern era. The classical approach to QSTR
owes much of its foundation to the pioneering research led by Hansch in 1960, utilizing
statistical modeling based on linear regression to elucidate the relationships between the
structural features of molecules and their activity/toxicity/property. The development of
predictive QSTR models represents a significant advancement in our ability to assess the
toxicological hazards and properties of chemical toxicants. These models are constructed based
on chemical information derived from molecular descriptors, enabling a systematic analysis of



how the structural features of chemicals relate to their toxicological behaviour.

QSTR modeling, especially when applied to a large set of toxic compounds, often involves a
multitude of descriptors, adding complexity and potentially diminishing reliability and
predictiveness. In such cases, the utilization of the Read Across Structure-Toxicity
Relationship (RASTR) model becomes a viable alternative. RASTR combines the principles
of similarity and error-based estimations, merging elements of both read-across (a non-
statistical approach) and traditional QSAR modeling. This approach addresses challenges
encountered in QSAR modeling related to external validation and the interpretability of Read

Across methods.

Recently, an enhanced iteration of the RASTR model, referred to as g-RASTR (Quantitative
Read Across Structure-Toxicity Relationship) modeling, has been introduced. g-RASTR
utilizes a blend of similarity and error-based descriptors in its modeling, achieving superior
predictive potential compared to both QSTR and read-across predictions. The strength of the
g-RASTR method lies in its capacity to incorporate information about similarity and error
measures into descriptors, facilitating the development of straightforward, interpretable,

transferrable, and reproducible models with enhanced predictive capabilities.

In the present study, predictive QSTR as well as g-RASTR models were developed using
different classes of simple 2D descriptors to estimate the toxicity of different organic
compounds including pesticides. We attempted to explore the toxicity profile of different
diverse chemical compounds and pesticides to make a more realistic move towards risk
assessment that could be useful in the development of safer or greener chemicals. The
predictive models were constructed strictly catering to OECD guidelines and rigorously

validated using various internationally accepted internal and external validation parameters.
The following analyses have been performed in this dissertation:

Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian
Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and

Read-Across.

Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological
effects of diverse pesticides against California quail.

Study 3: Chemometric-based exploration of the toxicological significance of diverse
chemical toxicants in wild birds with an application of the g-RASTR approach.



The accomplished work has been presented in this dissertation under the following sections:
Chapter 1: Introduction

Chapter 2: Present work

Chapter 3: Materials and methods

Chapter 4: Results and discussion

Chapter 5: Conclusion
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Chapter 1 Introduction

1. INTRODUCTION

1. Introduction

1.1 Toxicity and it’s various aspects

Toxicity is considered as a multidimensional concept that comprises a variety of dimensions.
Toxicity can be defined as the capacity of a chemical to produce detrimental consequences on
health and these consequences may affect either one cell, an organ, a group of cells, or the whole
body might cause anatomical or functional damage, permanently disturb homeostasis, or increase
vulnerability to other chemicals or biological stresses, like infectious illnesses. Toxic effects might
be obvious harm to the body or a decline in normal body functions which can only be determined
through testing. The growing global population and industrial development have highlighted the
significant impact that chemicals, particularly pesticides, have on the planet's ecosystems. Most
chemicals have the potential to be poisons since they may harm or even kill people when exposed
in excess at certain quantities. Understanding how chemicals interact with the environment is
crucial since human society depends on so many different kinds and classes of chemicals. The
followings are major chemical classes that have a significant influence on the environment:
insecticides, agrochemicals, metals, halogenated hydrocarbons, polycyclic aromatic hydrocarbons,
pharmaceuticals for humans and animals, dyes, and synthetic and semi-synthetic substances [1].

The negative or bothersome effects of chemicals on the ecosystem, people, or other living beings
are referred to as toxicity [2]. Concerns over the possible effects that new chemicals and
environmental pollution may have on human health and the environment are on the rise due to the
ongoing synthesis of new chemicals and the pollution of the environment. The impact of dangerous
chemicals, medications, food items, pesticides, dyes, and pollutants on the environment is a cause
for great concern because, despite the vast majority of compounds being used in commerce, only
a small percentage of them have undergone adequate testing to determine their potentially harmful
environmental characteristics. Over the past six decades, the amounts of chemicals produced on a
big scale have grown from 1 million tons to 400 million tons. It is quite expensive and time-
consuming to experimentally determine the environmental parameters such as bioconcentration,
biotransformation, and toxic effects of commercial chemicals. As there is a huge quantity of
chemicals in regular use today and the rapidity with which new chemicals are synthesized and

registered, it is evident that our personnel and resources are inadequate for in-depth testing and
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Chapter 1 Introduction

focusing on their long-term and chronic effects.

Therefore, the development of quantitative models that can easily and accurately anticipate the
environmental behavior of huge sets of chemicals is required. These models, which are supported
by strong scientific principles and cutting-edge computational methods, are essential instruments
for bridging the gap between the rapidly changing chemical landscape and our ability to thoroughly
evaluate its effects on the environment.

1.1.1 Chemical toxicity
Chemicals may have both positive and negative effects on the organisms to which they are

exposed, and for thousands of years, people have understood how poisons, medicines, pesticides,
and other toxic agents work. Various organisms and the environment are increasingly exposed to
a growing number of chemicals as a result of industrialization. People understand that evaluating
these compound’s effects is necessary due to their potential for harm. Chemical toxicity has

become a major worldwide issue in recent times due to the abundance of untested compounds [4].

1.1.2 Environmental toxicity

Human reliance on industrial chemicals including pharmaceuticals, and pesticides is increasing
rapidly, mostly in the fields of food production, healthcare, and agriculture. The chemical toxicants
in use pose a major risk to the local flora and wildlife due to a lack of necessary eco-toxicological
knowledge. Consequently, having a direct or indirect impact on the ecological species that are
present in the surroundings. These toxic pollutants may generate metabolic and degradation bi-

products that cause unfavorable environmental events that are seen in some organisms.

1.1.3 Pesticide toxicity

Numerous pesticides that are hazardous to animal and human health are dispersed into the
environment in large quantities. The use of pesticides carelessly and indiscriminately has annoying
effects on biodiversity and the world's ecology. Due to their long-lasting and bioaccumulative
nature, pesticides have both acute and long-term negative impacts on both aquatic and non-aquatic
habitats. As a result, it's crucial to ascertain the origin, frequency, harmful effects, and ecological

destiny of pesticides in addition to conducting an accurate risk assessment.

1.2 Pesticides, Agriculture and Environment
The expanding global population puts an enormous strain on the present agricultural system by
increasing the demand for food. Thus, agriculture is essential to the advancement of civilization.

A decade of improved agricultural technology and developed fertilizer components have led to a
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Chapter 1 Introduction

modest improvement in agricultural production. However, several risks, including weeds, fungi,
pests, and insects, are having a significant impact on agricultural output. Pesticide is one kind of
chemical used in modern agriculture with functions such as preventing pests and insects,
controlling different plant diseases, reducing damage from different fungi, minimizing waste, and
enhancing crop quality. Over the past several decades, there has been a substantial increase in the
usage of agrochemicals in agricultural fields to counteract the detrimental impacts of these threats.
These pesticides include nematicides, rodenticides, molluscicides, insecticides, fungicides,
herbicides, and other hazardous agrochemicals that are frequently employed for particular goals
including disease vector control and crop protection [5].

Pesticide usage on crops is estimated to be 2.5 million tons worldwide annually. Nevertheless, the
quantity ingested by pests or comes into contact with them represents a relatively small portion of
the overall pesticide application. The majority of research has demonstrated that fewer than 0.3%
of pesticides sprayed reach the intended insects [6]. As a consequence, toxic residues of pesticides
accumulate in the environment and affect both terrestrial and aquatic food chains. Several
researchers reported that currently used pesticides are lack specificity which may responsible for
toxicity toward various non-target species including humans and birds. According to research on
poisoning and the effects of synthetic pesticides on human health, there have been several instances
of farmers and rural laborers becoming intoxicated while applying pesticides [7].

Nowadays, pesticide poisonings are thought to be one of the leading causes of death globally,
accounting for 220,000 fatalities and 26 million poisonings annually. The presence of pesticide
residues in different ecosystem components worries researchers. Pesticide usage is expanding in
response to rising agricultural demand, putting non-target creatures like birds, insects, and aquatic
life in jeopardy and upsetting the delicate ecological balance on a worldwide scale. Therefore,
from the standpoint of ecosystem safety, it is imperative that a range of endangered species should
be protected and restored.

1.3 Pesticide-related risks to biodiversity

1.3.1 Terrestrial biodiversity

Terrestrial biodiversity provides several ecological services, like plant pollination and biodiversity
monitoring, making the terrestrial environment indispensable to the ecology. Some reports suggest
that thirty-five percent of the food crop yield is attributed to biological pollinators like honey bees

and birds. We can't even imagine a world without birds as they are an important part of the
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Chapter 1 Introduction

environment. Approximately, 10,000 avian species exist on the planet, but as per the report, over
the past five centuries, a total of 150 bird species have become extinct and one in eight avian
species is at the risk of extinction. Birds are among the most identifiable animal species on the
planet. Birds are vital to the world environment because they pollinate plants, spread seeds,
maintain ecological circles, and aid in biological conservation [8]. Certain human activities have
contributed to the decline of 41% of the 1138 water bird populations, even though birds play a
vital role in maintaining ecological balance. Various studies show that the number of common
birds and forest birds in Europe reduced by around 10%, while the populations of agricultural birds
declined by 48% [9]. Some researchers reported that organophosphate pesticides as well as
carbamate pesticides block the AChE enzyme at the post-synaptic membrane of the cholinergic
synapse in all the vertebrate species [10] and at large dosages, they can cause convulsion,
respiratory collapse, and death. In birds, the rate of binding of organophosphate and carbamate
pesticides is faster than in any other vertebrates due to the high activity of AChE in the brain [11].
Numerous literature has reported on the hazardous effects of these pesticides on various birds [12-
15].

1.3.2 Aquatic biodiversity

Aquatic organisms are severely affected due to pesticide exposure through the dermal route,
breathing route, or oral route. Pesticides have extremely negative impacts on aquatic life, through
the skin, respiratory system, or mouth. Herbicides lead to lowering oxygen levels, which causes
fish to suffocate and decrease fish breeding. Aquatic plants provide approximately 80% of
dissolved oxygen, essential for the survival of the aquatic species [16]. Fishes are susceptible to
the range of sub-lethal and lethal effects from pesticides, including behavioral alterations,
hematological changes, histopathological changes, genotoxicity, disruption of the endocrine
system, and acetylcholine activity alteration. Amphibians are mostly impacted by pesticide-
polluted surface waterways. As per reports, carbaryl insecticide has been shown to be harmful to
a variety of amphibian species. For instance, the herbicide glyphosate has significantly increased
tadpole mortality [17].

1.4 In silico estimation of pesticide toxicity and risk assessment

Numerous chemicals that are hazardous to both animal and human health are dispersed into the
environment in large quantities. The use of pesticides carelessly and indiscriminately has resulted

in alarming consequences for biodiversity and the preservation and restoration of the world's
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Chapter 1 Introduction

ecology. Due to their long-lasting and bio-accumulative nature, pesticides have both acute and
chronic negative impacts on both aquatic and non-aquatic habitats. As a result, it is crucial to
ascertain the origin, frequency, harmful effects, and ecological destiny of pesticides in addition to
conducting an accurate risk assessment.

Regretfully, determining the ecotoxicity of these pesticides and their environmental transformation
products by in vitro experimental validation is an expensive and time-consuming process. A single
pesticide may produce many environmental transformation products of pesticides with various
end-points, for which numerous in vivo validations are required that are time-consuming and
ethically problematic. Various government organizations such as USEPA (United State
Environmental Protection Agency), and EFSA (European Food Safety Agency) have given
importance to in-silico techniques such as QSAR (Quantitative Structure-Activity Relationships),
QSTR (Quantitative Structure-Toxicity Relationships), read-across, RASAR and pharmacophore
modeling as suitable alternatives for toxicity assessment. This new scientific trend directed us to
develop QSAR-based in-silico model. We have developed QSAR models to estimate the
environmental toxicity of pesticides in response to this new scientific trend. The qualities that have
been identified can also help us to combat the toxicity of pesticides against environmentally
friendly insects like butterflies and moths, as well as various birds including avian species and
aquatic organisms.

1.5 Quantitative structure-activity relationships (QSARS) approach

Similar molecules can display completely various kinds of biological activities or varying
intensities of a single biological activity with just a little structural difference. The QSAR study is
focused on this type of relationship between molecular structure and biological activity. QSAR is
demonstrated as predictive mathematical models derived from the application of statistical tools
correlating  biological activity (including therapeutic and toxic) of chemicals
(drugs/toxicants/environmental pollutants) with descriptors representative of molecular structure
and/or property. Both qualitative (basic SAR) and quantitative (QSAR) correlations are possible.
QSAR, or QSPR (quantitative structure-property relationship) approaches link a structure of a
molecule to a certain activity or property. The most widely used and well-known in silico
methodology for screening novel chemical entities is the QSAR, which has extensive application
in the area of drug discovery and chemical toxicity modeling for guiding the experimental design

of various chemical compounds.All QSAR research is based on the idea that biological activity is
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a mathematical function (f) of structure or physiochemical properties. Therefore, a basic

mathematical equation can be developed and represented as follows in Eq. 1.1.
Biological activity = f (Chemical attributes) = f (Structural, Properties) 1.1

The phrase "chemical attributes” describes the characteristics that prescribe how a behavior
manifests itself, or, to put it another way, the basic knowledge of the chemicals governing the
behavior that is being studied. A behavioral manifestation's physiological characteristics, which
reflect its biological roots, provide a clear explanation. The QSAR approach is used to determine
the structural characteristics of molecules that are associated with their toxicological profiles. The
chemical attributes often characterize information derived directly from the structure, whereas
physiological information is obtained through experimental methods that result in the

corresponding expression, as shown in Eq. 1.2.

Response =f (Chemical attributes) = f (Structure, physiological Property) 1.2
QSAR equation for a particular response can be demonstrated mathematically in terms of chemical

information and physiochemical attributes as follows in Eq. 1.3

Y=zap+aiXxp+taxxg+asxs+...... + anXn 1.3

As we are discussing a mathematical correlation, such equations are better stated in terms of
variables. Here, Y stands for the response that is being modeled such as activity or toxicity or
property, whereas, Xi, Xz, Xs.... Xn represents the independent variables that signify the
physiochemical properties in terms of numerical quantities and ao, ai, az, as......an stands for the
contribution of individual descriptors with ag as a constant term. The primary goal of the QSAR
analysis is to quantify chemical characteristics, which is followed by the creation of an appropriate
interpretive connection that addresses a specific reaction. Therefore, in this case, mathematics acts
as a tool to derive an appropriate connection that is subsequently utilized in accordance with the
requirements of the designer. A QSAR investigation includes aspects of biology to account for the
biochemical interactions involved, mathematics and statistics for modeling and computation, and
chemistry and physics to account for the intrinsic molecular nature. Three easy steps, (a) data
preparation, (b) data processing, and (c) data interpretation for a collection of chemicals, can be

used to display the QSAR analysis. The response, or endpoint, to be addressed, and the predictor,
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or independent variables (i.e., X variables) describing the chemical attributes, are the two main
sources of the quantitative data. The first step, i.e., the data set preparation includes arrangements
and conversion of the data in a suitable form. Typically, two types of endpoints are obtained:
response-fixed dose patterns, which show the response induced by the chemical at a fixed dose
(concentration), and fixed-dose response patterns, which show the quantity of a chemical required

to elicit a given response [18].

1.5.1 Application of QSAR/QSTR

Computational methods have developed into invaluable resources for evaluating the ecological
toxicity of chemical toxicants in the environment. QSTR modeling is essential for understanding
and predicting the possible risks that chemicals may pose to the environment, along with related
approaches.

Data efficiency: QSTR modeling has a special advantage by aiding the prediction of toxicological
significance even in situations when there is a lack of available or restricted data on the toxicity of
a certain chemical. This is especially helpful for determining the possible ecological impact of
recently created or insufficiently researched substances.

Cost-effective and time-efficient: QSTR modeling is time and money-efficient since it eliminates
the requirement for in-depth laboratory testing and experiments. Without the resource-intensive
procedures usually connected with conventional toxicological investigations, it enables
researchers to make well-informed estimates and judgments regarding the possible toxicity of
substances.

Ethical considerations: The application of QSTR models in testing and research is aligned with
ethical standards. Reducing the utilization of animal testing contributes to the protection of
laboratory animals' well-being and is in line with current ethical standards in scientific research.
Predictive ability: QSTR models have the ability to assess particular target endpoints or the
toxicological significance of novel compounds. When working with compounds that are within
the model's applicability domain, this predictive capacity is especially helpful. These models can
be used by researchers to calculate the possible hazards connected to these substances.
Mechanistic insights: Mechanistic insights into the relationships between a chemical's structure
and activity or toxicity can be obtained using QSTR modeling. This implies that by examining the
molecular characteristics of chemicals, researchers might understand why particular compounds

display particular toxicological behaviors.
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Regulatory recognition: Various regulatory agencies across the globe, including the US EPA, the
Agency for Toxic Substances and Disease Registry (ATSDR), the European Centre for the
Validation of Alternative Methods (ECVAM) of the European Union, and the European Union
Commission's Scientific Committee on Toxicity, Ecotoxicity, and Environment (CSTEE),
recognize the importance of QSTR modeling in assessing chemical toxicity.

1.5.2. Significance of QSAR/QSTR

To create new compounds with more activity and reduced toxicity, ligand-based drug design can
make use of the QSAR and QSTR models. Predicting the activity and toxicity of novel chemical
entities (NCEs) that fit within the developed models' applicability domain is the primary goal of
QSAR/QSTR modeling. Although developing a predictive QSAR/QSTR model may appear
straightforward, there are many uses for it in the scientific world. Depending on its chemical
makeup, even the same chemical substance might occasionally trigger distinct biological reactions
and responses. This makes determining the chemical characteristics causing behavioral changes
essential. When it comes to model predictability and making the best use of limited experimental
resources with less computational capacity, QSAR/QSTR approaches are helpful.

1.6 Concept of molecular descriptor

Molecular descriptors describe particular details about a molecule under study. They are
represented as the numerical value associated with the chemical constitution for correlating
chemical structure with various physical attributes, chemical reactivity, and biological activity
[19]. In other words, the modeled response (activity/ property/toxicity of query molecules) is represented

as a function of quantitative values of structural features or properties that are termed as descriptors for a
QSAR model as demonstrated in Eq.1.4.

Response (toxicity) = f (descriptors) 14
The type of descriptors employed and their capacity to represent the structural characteristics of
the molecules have a significant impact on the quality of QSAR models. The descriptors can be
topological (hydrophobic, steric, or electronic), physicochemical, geometric (based on a molecular
surface area calculation), electronic (based on molecular orbital calculations), structural (based on
the frequency of occurrence of a substructure), or simple indicator parameters (dummy variables).
The summary of the most ideal characteristics that make a descriptor suitable for the construction
of QSTR models is as follows:

e The descriptor should match the structural properties of a particular endpoint with
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negligible correlation to other descriptors.

A descriptor should be applicable to a wide range of chemicals.

The descriptor should produce a unique value for molecules with diverse structures, even
when there are little structural variations. This suggested that the descriptor should show
low degeneracy and continuity, which means that small structural variation should result
in slight changes in descriptor value.

The descriptor should have a clear mechanical interpretation in order to encode the query
characteristics of the molecules.

Another important aspect is the capacity to map the descriptor values back to the structure
for visualization purposes. These visualizations are meaningful only when descriptor

values can be linked to structural attributes.

Dimension serves as a constraint in QSTR analysis that controls the character of the study. During

predictive model generation, the term dimension refers to the complexity of the modeling

technique which describes the degree of the descriptors. Thus, the molecular descriptors can be

possibly classified on the basis of the dimension as demonstrated in Table 1.

Table 1. Different molecular descriptors on the basis of dimension.

Sl Dimension of the Parameters
No. descriptors
1 OD-descriptor Constitutional indices, molecular property, atom, and bond
count.
1D-descriptor Fragment counts fingerprints.
2D-descriptor Topological parameters, structural parameters, and
physicochemical parameters including thermodynamic
descriptors.
4 3D-descriptor Electronic parameters, spatial parameters, molecular shape
analysis parameters, molecular field analysis parameters, and
receptor surface analysis parameters.
5 4D-descriptor Volsurf, GRID, Raptor, etc. derived descriptors.
6 5D-descriptor These descriptors consider induced-fit parameters and aim to

establish a ligand-based virtual or pseudo-receptor model. These
can be explained as 4D-QSAR 1 explicit representations of
different induced-fit models. Example: flexible-protein docking.
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7 6D-descriptor These are derived using the representation of various solvation
circumstances along with the information obtained from 5D
descriptors. They can be explained as 5D-QSAR 1 simultaneous
consideration of different solvation models.

8 7D-descriptor They comprise real receptor or target-based receptor model data.

1.6.1 Types of descriptors

Descriptors can be classified into various types depending on the method of their computation,
structural (based on substructure occurrence frequency), topological, electronic (involving
molecular orbital calculations), physicochemical (encompassing hydrophobic, steric, or electronic
aspects), geometric (utilizing molecular surface area calculations), or simple indicator parameters
(represented as dummy variables).

1.6.1.1 Descriptor commonly used in QSTR study

The following descriptors pertain to physiological characteristics and are based on certain findings
from scientific experiments. Changes in the physiological qualities will also have an impact on
adsorption, distribution, and excretion. Important physicochemical characteristics that impact a
drug's chemistry and bioactivity include the substituent that is present in the molecule as well as
its electronic, hydrophobic, and steric properties.

Commonly used descriptors in QSAR research are explained in a detailed manner as follows:

» Physiological descriptors
The physicochemical descriptors pertain to physicochemical characteristics and are based on
certain biological experimentation findings. Changes in physiological properties will also affect
adsorption, distribution, and excretion. The chemistry and bioactivity of drugs are influenced by a
number of significant physicochemical properties, such as the substituent present in the molecules

as well as their electronic, hydrophobic, and steric properties [20].

» Indicator variables
Indicator variables are used in the QSAR study due to their simplicity in nature. They can represent
the presence or absence of specific substructures in molecules. This method is especially helpful

when comparing groups of compounds that are similar except for the coded substructure [21].

» Topological descriptors
Topological descriptors are computed using a graphical representation of molecules, therefore they

do not need the extensive computations associated with quantum chemical descriptors or the
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estimation of physicochemical attributes. The 2D graphical topology, which shows the bond
connections and atom positions, is necessary for the structural representation. It is based on the graph
theory, in which the edges of a molecule represent covalent bonds and the atoms are represented by the
vertices [22].

» Structural descriptors
A variety of characteristics are included in these descriptors, including the number of chiral
centers, molecular weight, rotatable bonds, H-bond donors, and H-bond acceptors. They shed light

on the structural characteristics of molecules that may affect how they behave [23].

» Thermodynamic descriptors
These descriptors, such as AlogP, AlogP98, Alogp_atypes, Fh20, Foct, and Hf, are extensively
used in QSAR model generation to define thermodynamic properties and characteristics of

compounds [24].

» Electronic descriptor
Electronic descriptors of molecules are described using electronic characteristics, both at the entire
molecule level and within specific sections like atoms, bonds, and molecular fragments.
Superdelocalizability(Sr), highest occupied molecular orbital (HOMO) energy, lowest unoccupied
molecular orbital (LUMO) energy, and the sum of atomic polarizabilities are a few examples [25].

» Quantum chemical descriptors
These descriptors include Mulliken atomic charges and Quantum Topological Molecular
Similarity (QTMS) descriptors, which focus on bond critical points (BCPs) and their relevance in
chemical reactions [26].

» Spatial descriptor
These descriptors are calculated based on the spatial arrangements of the molecules and the surface
occupied by the molecules. Examples of this class of descriptors include radius of gyration, Jurs
descriptors, shadow indices, molecular surface area, density, principal moment of inertia, and

molecular volume [27].

» Information indices
This method divides molecules according to certain characteristics into subsets of equivalent
elements. This category comprises many indices such as atomic composition index, indices based

on the A-matrix, D-matrix, E-matrix, and ED-matrix, as well as multigraph information content
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indices (IC, BIC, CIC, SIC) [28].

» Molecular shape analysis descriptors

These descriptors, such as Difference volume (DIFFV), Common overlap steric volume (COSV),
Common overlap volume ratio (Fo), Noncommon overlap steric volume (NCOSV), and Root
mean square to shape reference (ShapeRMS), are utilized for QSAR model development [29].

» Molecular field analysis descriptors
Molecular field analysis (MFA) estimates probe interaction energies on a grid around a bundle of

active molecules. Fields are represented using grids, and each energy value at a grid point can be
used as a QSAR descriptor [30].

> Receptor surface analysis descriptors
Molecular models and receptor surface models interact through interaction energies, which are
used as descriptors. These descriptors capture 3D information of interaction energies, considering

steric and electrostatic fields at each surface point of the receptor surface [31].

1.7 Commonly employed QSAR/QSTR methods for chemometric model development

The main aim of the QSAR/QSTR research is to develop correlation models that utilize chemical
information data and the response of the chemicals (toxicity) within a statistical framework.
Regression and classification-based approaches are employed for model generation. In addition to
conventional methods, some machine learning techniques are helpful in QSTR/QSAR model
development, particularly while working with high dimensional and complex information data that
may show nonlinear relationships with response variables [32].

1.7.1 Classification of QSAR/QSTR approaches based on the type of chemometric methods used

1.7.1.1 Linear methods

1.7.1.1.1 Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is a commonly used approach in QSAR/QSTR model generation
as MLR is a transparent, easy to interpret, simple, and reproducible approach. The generalized
form of an MLR equation can be represented as follows in EqQ. 1.3:

Y = ag+ aiX1 + axXe + asXz + -+ + +anXn 1.3

In the above equation, Y is the response (dependent variable), and the X1, X, ...xn are descriptors
(independent variables) in the model with their corresponding regression coefficient as, az, ...an
respectively, and a0 is the constant. During the interpretation, the individual descriptors (X1, X2,
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...xn) directly depend upon the corresponding value and its algebraic sign. Each regression
coefficient should be significant at p < 0.05 which can be verified by performing the ‘t’ test. The

descriptors present in an MLR model should not be intercorrelated [33].

1.7.1.1.2 Partial least squares (PLS)

When a small dataset contains a large number of noisy and intercorrelated descriptors, partial least
squares (PLS) is a better choice as compared to MLR [34], looking for latent variables (LVs) that
are functions derived from the original variables. The latent variables aim to capture as much of
the underlying factor variation as possible while simultaneously modeling the response.

Linear PLS identifies a set of new variables (LVs) which are linear combinations of the original
variables. When the number of latent variables is the same as the number of variables, the PLS
essential becomes equivalent to the MLR model. It is important to determine the predictive
significance of each PLS component and stop the addition of new components when they are found
to be statistically significant. Cross-validation is a frequently used and reliable method for testing
the predictive significance. The application of PLS allows the generation of larger QSAR/QSTR

models by avoiding overfitting and eliminating most variables.

1.7.1.1.3 Linear discriminant analysis (LDA)
Linear discriminant analysis (LDA) is an effective method for differentiating between two or more
classes of objects, making it a useful tool for classification issues. LDA shares a common goal
with MLR when dealing with scenarios where the response variable has categorical values and the
molecular descriptors are continuous variables.
LDA mainly aims to model the distinctions between various data classes. The generalized form of

the LDA equation is as follows:

DF=ci1x X1 +CoxXo+--+CmXXn+a 15
Where, DF represents the discriminant function, which is formed by a linear combination of the
discriminating variables. The ‘c’ represents the discriminant coefficient or weight for that variable,
‘X’ denotes the score of the respondent on that variable, ‘a’ denoted as constant, and ‘m’ indicates
the total number of predictor variables. These ‘c’ coefficients are unstandardized and can be
considered as similar to the beta coefficients in a regression equation. They are chosen in order to
maximize the separation between the means of criterion (dependent) variables. Normally strong

predictors tend to have a large weight. Once the DF is calculated using an existing dataset to
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classify cases, it is possible to classify new cases (test samples). In a step-wise DF analysis, the
model is generated. At every stage, all variables are assessed to find out which one has the biggest
impact on the discrimination between groups. The selected variable is then included and the
procedure is repeated once more.

1.7.1.1.4 Cluster analysis

Cluster analysis is a tool for exploratory data analysis, used for organizing observed data or cases
into two or more categories. In contrast to LDA, cluster analysis does not necessitate any prior
knowledge of which elements belong to which clusters. The clusters are defined by an analysis of
the data. Cluster analysis maximizes the similarity of cases within each cluster while maximizing
the dissimilarity between previously unknown groups. Cluster analysis includes two approaches

of analysis;

» Hierarchical cluster analysis
Hierarchical cluster analysis detects relatively homogeneous clusters of cases by estimating
dissimilarities or distances between objects the most commonly used methods for calculating the
distances in a multidimensional space include either Euclidean distances or squared Euclidean
distances between objects. Each case is first treated as an individual cluster and then gradually
merges these clusters, reducing their count with each step until only one cluster is left. Hierarchical
tree diagrams or dendrograms can be generated to show the connection points visually and show

how clusters are connected at different dissimilarity levels [34].

» k-Means clustering

k-Means clustering is a non-hierarchical clustering method used when the number of intended
clusters within the objects or cases is known. It functions as a centroid-based, unsupervised
clustering technique. Essentially, the k-Means algorithm produces exactly k unique clusters. The
first step in this process is to create k centroids, one for each cluster, and place them as far apart
from one another as possible. The closest centroid is then assigned to each data point in the dataset.
As this assignment occurs for all data points, the positions of k centroids are recalculated. The
technique is repeated until the centroids no longer move significantly [35].

1.7.1.2 Non-linear methods

1.7.1.2.1 Artificial neural networks (ANN)

It is a computational approach inspired by natural neurons. Artificial neurons are simple tools that
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are highly interconnected and the connections between neurons transfer the function of the neuron.
An artificial neural network creates an empirical relationship between the input variable, also
known as independent variables or descriptors (X), and output variables, also known as dependent
variables also known as responses(Y), without relying on prior information [36]. The network can
be represented by the equation: Y = f(X)+ e. Each neuron, serving as a processing unit, receives
stimuli from other neurons via dendrites and transmits stimuli to other neurons through its axon.
The strength of the connections between neurons is stored as weight values, and these specific
connections are termed synapses. Within a neural network, information is distributed across
multiple cells (nodes) and the connections between them, referred to as synapses (weights). The
activation signal transforms a function to yield the neuron's output, expressed as Y = f (a). This
transformation function can take on various forms, including linearity or non-linearity, such as
threshold or sigmoid functions.

1.7.1.2.2 k-nearest neighbour method (KNN)

The aim of supervised learning is to establish a classification rule using a set of training objects of
known origin. By using this rule, new objects with unknown origins can be categorized into one
of the specified classes according to their variable values [37].

The supervised learning process is carried out in several phases. First, a training set is carefully
curated, consisting of objects with well-defined classifications and associated features.
Consequently, a careful selection of relevant variables for classification takes place, while non-
discriminatory or less significant variables are eliminated. Then, a classification rule is formulated
using the training set. The efficacy of this classification rule is assessed using an independent test set for
validation. There are several clustering techniques that can be used in the process of variable
selection. One approach includes organizing the original data in a transposed matrix format, where
descriptors occupy rows, and molecules are arranged in columns. From each cluster, one or more
representative descriptors are chosen. These methods establish the classifier by evaluating the
distances between each object in the training set and approximate functions locally based on
neighbouring data points. Typically, Euclidean distance is widely used, although other distance
metrics can also be applied. Correlation-based measures are favoured when dealing with strongly
correlated variables. For a training set comprising 'n’ objects, 'n' distances relative to a test sample
are computed, and the closest distance is used to determine class membership. The k-nearest

neighbor method (KNN) represents a non-parametric and unbiased approach with versatile
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applications in both classification and regression tasks.

1.7.1.2.3 Read Across

Read across acts as a non-testing strategy for bridging data gaps by extrapolating toxicological
insights from the known toxicity data of compounds exhibiting analogous properties or chemical
profiles [38]. It is used in toxicological assessments, where predictions are made within a grouping
framework such as the analogue or category approach involving either qualitative or quantitative
prediction. In this methodology, the known toxicity data of a chemical, referred to as the "source”
chemical, are leveraged to predict the same endpoint or test outcome for another chemical, termed
the "target” chemical, which shares scientific similarities. The category approach is based on a
group of chemicals with comparable physico-chemical, human health, environmental
toxicological, or environmental fate properties, often resulting from structural similarity.
Conversely, the analogue approach centres on a smaller subset of closely related substances,
typically a target and source substance [39]. Read-across depends on on structural similarity and
similar properties or activities between the source and target chemicals. This assessment considers
factors such as structure, composition, physical-chemical properties, reactivity, metabolism, and
mechanistic similarity. Source analogues are identified based on searches for structurally related
compounds, utilizing similarity metrics, or by evaluating structural alerts, potential metabolic

precursors, or chemical classes.

1.7.1.2.4 Quantitative read-across structure-toxicity relationship (g-RASTR)

QSTR and read-across approaches have merged to form an emerging method known as Read-
across structure—toxicity relationship (RASTR). This approach utilizes the chemical similarity
principles of read-across, as an unsupervised step, and later develops into a supervised learning
model similar to QSAR [40].

In this approach, a combination of similarity-based and error-based descriptors was employed.
This method exhibited superior predictive capability and lower Mean Absolute Error (MAE) as
compared to both QSTR and Read across predictions. The effectiveness of the g-RASTR approach
relies on its ability to integrate similarity and error measurement information into descriptors. This
integration enables the generation of interpretable, transferable, reproducible models with
enhanced predictive accuracy [41].

1.7.1.2.5 g-RASTR descriptors

Based on the fundamental principle of read-across, compounds with similar chemical structures
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are anticipated to exhibit analogous characteristics, commonly known as similarity between the
source and target substances. This similarity can result in comparable toxicokinetic and
toxicodynamic behaviors. This principle is rooted in a non-statistical methodology and does not
depend on mathematically complex models to make predictions of desired chemical compounds.
Three distinct techniques are used to estimate compound similarity such as; Gaussian kernel
similarity, Euclidean distance, and Laplacian kernel similarity [42].

The RASAR descriptor RA function (LK) is a prediction function produced from read-across by
averaging the response values of source compounds, created by averaging the response values of
source compounds identified as having structurally analogous properties [43]. The SD activity
descriptor represents the weighted standard deviation of activity near n source compounds for a
specific target compound. SE is defined as the weighted standard error allied with the activity
values of the adjacent n-source compounds for a given target compound. The CVact descriptor
characterizes the coefficient of variation of the activity values among the nearest n-source
compounds for a specific target compound. MaxPos defines the maximum similarity score
between the training set and the target compound. MaxNeg signifies the degree of similarity
between a target compound and a close source compound with an activity response value lower
than the mean response of the training set.

The absolute difference between MaxPos and MaxNeg for a particular query molecule is
demonstrated as Abs Max Pos-Max Neg or Abs Diff. The AvgSim descriptor calculates the
similarity mean value among n closely associated compounds for a definite target compound. The
gm (Banerjee-Roy coefficient) descriptor estimates the possibility of whether the query compound
is active or inactive, with ranging values from -1 to +1. gm*Avg. Sim and gm*SD_Similarity
descriptors are found by multiplying gm values with Avg. Sim and SD_Similarity values,
respectively. Pos.Avg.Sim defines the average similarity values among the n close source
compounds with response values higher than the mean response value of the training set, on the
other hand, Neg.Avg.Sim represented as the average similarity values among the n close source

compounds with response values lower than the mean response value of the training set [44].
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1.7.2 Classification of QSAR/QSTR approaches based on of dimensionality

Table. 2. Classification of the QSAR methodologies on the basis of dimensionality.

Dimension Methods

0D-QSAR Models are based on descriptors involving molecular formulas like

molecular weight etc.

1D-QSAR Models are based on the simplex representation of molecular structure
(SIRMS) approach.
2D-QSAR Activity is correlated with physicochemical and structural patterns

(connectivity, topology, etc.) of the molecules without consideration of an

explicit 3D representation of these properties.

3D-QSAR Activity is correlated with the three-dimensional structure of the ligands
4D-QSAR Ligands are represented as an ensemble of configurations
5D-QSAR As 4D-QSAR + explicit representation of different induced-fit models
6D-QSAR As 5D-QSAR + simultaneous consideration of different solvation models

1.8 Development of quantitative models over the period

A timeline showing the various approaches that are developed over the period of time to focus on
the key molecular structural attributes. Therefore, QSAR methods originated way back in the
nineteenth century

1.8.1 De novo design

The De novo QSAR model is a collaborative mathematical model that may encode any molecular
information without the need for a descriptor. The models are generated using indicator parameters

(binary values 0 or 1) to indicate the presence or absence of groups at specific positions.

i. Hansch’s method
In 1962 Hansch et al correlated the Hammett constants and partition coefficients of phenoxyacetic
acid with the growth regulatory activity of plants [45]. Two years later they demonstrated that
biological activity could be correlated with free energy-related terms linearly. Previously called
Linear Free Energy Relationship (LFER), later evolved into an extra thermodynamic approach as
expressed by Eq 1.6.

log 1/C = an + bo + cEs + -+ +constant 1.6
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Where © = hydrophobic parameter
o = Hammett electronic descriptor of the substituent
Es = Taft steric constant
a, b, ¢ = appropriate constants

ii. Free Wilson model
Free Wilson approach is genuinely a structure activity-based methodology considering the
contributions that every structural component provides to the whole biological process. This model
was represented as follows in Eq 1.7

(BA) _i=2Za_jX_ij+u 1.7
Where, 1 = overall average biological activity.
BA = biological activity,
aj = contribution of the j th substituent to biological,
Xj = J th substituent, which carries a value 1 if present, 0 if absent
This de novo approach assumes that the effects of substituents are additive and constant. This
approach does not need of physicochemical constant. However, there are certain limitations. The
large number of variables is required to describe a smaller number of compounds together with a
large number of molecules with varying substituents. Besides, these intra-molecular interactions
are not handled well. The constant term (p) is an overall average of the biological activity of all

the compounds used to develop the model.

iii. Fujita Ban model
Fujita Ban modifies the approaches of the Free-Wilson model. In this approach, the biological
activity data was expressed in a logarithmic scale. It is a Free-energy-related approach and additive

in nature. This model is represented in Eq 1.8.

log A/Ao = ¥ Gixi 18

Here, A and Ao are the magnitudes of the activity of substituted and unsubstituted compounds
respectively. Gi is the log activity contribution or the log activity enhancement factor of the i™"
substituent relative to that of H and X; is the parameter that takes a value 1 or 0 according to the

presence or absence of the i substituent.
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1.9 The methodology of QSAR/QSTR model generation

The development of predictive QSAR models consists of various steps such as

1) Dataset preparation

2) Data analysis

3) Data validation

4) Interpretation of data where the “data” relates to the response and predictor variables.

The steps are briefly discussed one by one as follows,

1.
>

2.

Data preparation

The physiological/biological/toxicological response is converted to the respective unit and
maintains data consistency.

Then, drawing of the chemical structures using suitable drawing software like
ChemSketch, ChemDraw, Marvin-Sketch, etc. The chemical structures can also be
downloaded/collected from public databases such as NIST Chemistry, and PubChem. The
configuration should be checked before using the structures.

Energy minimization operation and conformational analysis should be performed
depending on the purpose of modeling.

A file containing the structure is subjected to software used to calculate descriptors.
Initially, data pretreatment was performed to eliminate the intercorrelated descriptors and
the constants. Various software can be used for the descriptor calculation.

There is a single worksheet with different descriptors for each variable and a single column
of response (activity/ property/toxicity) that represents all the variables in the QSAR
matrix. An additional column representing the name of the chemicals can be added for the
quick identification of any compound.

Data analysis

This phase consists of feature selection, dataset division, and model development.

>

The selection of features refers to the identification of the important predictor variables
suitable for developing a correlation with the response variable suitable for developing a
correlation with the response variables. Usually, various feature selection tools are coupled
with one or more model generation methods under the same interface so that the user can

select the best predictor variables and simultaneously construct the models using them.
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>

Many applications can generate hundreds or thousands of various molecular descriptors.
In chemometric modeling studies, various feature selection tools are performed which
include stepwise variable selection, genetic algorithm, best subset selection, variable subset
selection, and factor analysis. Typically, only some of them are significantly correlated
with the activity. Furthermore, many of the descriptors are inter-correlated. This has
negative effects on several aspects of QSAR analysis.

Some statistical methods require that the number of compounds is significantly greater than
the number of descriptors. Using large descriptor sets would require large datasets.
Selection of the training set chemicals is important in QSTR analysis. According to
chemical similarity, the entire dataset is divided into a training set and a test set for the
prediction model. The training set (i.e., the equation), while the test set (not used during
model development) is used to judge the external predictivity of the model. However,
physicochemical descriptors and the chemical similarity principle are the most rational
means to select training sets. A higher number of training set chemicals is used in the
development of the model. This method is based on the assumption that a molecule
structurally very similar to the training set molecules will also be predicted well by the
model since the model captures features that are common to the training set molecules and
can identify them in the new molecule. It is important to choose the training and test sets
in such a way that the test set chemicals fall within the structural domain of the training set
chemicals. Otherwise, the model developed using the training set will not be able to make
accurate predictions. The methods for the selection of training and test set are as follows;
k-Means clustering and Kennard-Stone selection

Kohonen’s Self-Organizing Map (SOM)

Principal component analysis (PCA)

D-optimal design

Sphere exclusion

Sorted response

Here, the whole data matrix is first sorted based on the response column followed by a selection

of a predefined fraction of chemicals into a training/ test set from different zones maintaining a

pattern e.g., every first/second/third/fourth compound, etc. In the random division approach,

chemicals are arbitrarily divided into training and test sets following a user-defined fraction.
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Sometimes, a combination of response variable-based and predictor variable-based approaches
may also be employed e.g., chemicals may be assigned into different structurally similar groups
using any of the above-mentioned techniques followed by a selection of chemicals into training/
test set using the sorted response formalism separately from each group.

The model development step dictates that the selected best features are to be combined in a single
equation employing an explicit formalism. After the calculation of different features, i.e.
descriptors, the construction of the QSTR model is done by using a feature mapping procedure
also referred to as the parameter estimation problem. The aim is to build a pure mathematical
relationship between the response and the descriptors under investigation. Partial least squares
(PLS), multiple linear regression (MLR), etc. are the algorithms used for the development of
quantitative regression-based equations while linear discriminant analysis (LDA) generates the
classification-based model.

The variable selection tools are accompanied by statistical evaluation of the corresponding model
developed from the selected variables as stepwise-MLR, GFA-MLR, G/PLS (genetic PLS), PLS-
DA (PLS followed by discriminant analysis), etc.

3. Model validation
Determination of statistical reliability becomes the next essential task during the development of
predictive models. As the purpose of QSTR analysis isn't simply to develop a model, but also to
predict the response of untested/new chemicals, it's important to check for its predictability and
stability. Various statistical metrics are calculated to determine the model fitness (R?, RZ,, etc.),
internal stability (Q2Loo, rm?wLoo)) as well as external predictivity (rm?(est), R%(preq)), and the values
above the threshold limits identify model acceptability. Training set chemicals are used to predict
the internal validation (internal stability) only i.e., chemicals used for developing the model, while
external predictivity (external validation) refers to the judgment on test set prediction. Some
additional validation metrics can also be used to determine the overall predictivity e.g. rm?. For the
validation of discriminant model parameters such as specificity, sensitivity, precision, F-value,

accuracy, receiver operating characteristic (ROC) analysis, etc. can be employed.

4. Model interpretation
Once a QSAR/QSTR model has been developed and considered acceptable from the values of the
metrics, the final important part remains with the mechanistic interpretability of the modeled

features. Establishing a suitable basis between the chemistry of the chemicals and biological/
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toxicological action or physicochemical property helps in understanding the mechanism of action
involved. Accordingly, by combining the experimental results and observation from the model,
one can explicitly explain each step of the process of behavioral manifestation of chemicals. Such
knowledge is useful in designing and developing potent analogues.

1.10 Application of QSAR/QSTR

QSAR presents a suitable option in the rational monitoring of activity/ property/toxicity of
chemicals and hence is useful in a wide variety of applications namely biological activity,
predictive toxicity, and physicochemical property. Fine-tuning the behavioral nature of chemicals

gives fruitful results for a significantly large class of chemicals such as:
v Pharmaceuticals
v" Agrochemicals
v Perfumeries
v Analytical reagents
v Solvents

v" Surface modifying agents etc.

The chemicals modelled using the QSAR method can be overviewed in three major types, namely:
» Chemicals of health benefits (drugs, pharmaceuticals, food ingredients, etc.),
» Chemicals involved in industrial/laboratory processes (solvents, reagents, etc.)

» The chemicals posing hazardous outcomes are persistent organic pollutants (POPs),
toxins, xenobiotics, and volatile organic chemicals (VOCs).
Besides modeling biological activity and toxicity endpoints, it may also be involved in the
modeling of ADME which involves in pharmacokinetics profile of drug candidates before its
synthesis and hence enhances the efficacy of the designed drug in a biological system. QSTR
modeling can be a very good option to predict chemical responses using limited resources in any
prospective discipline. Hence, we can see that the simple ideology of QSPR, i.e., the development
of a suitable mathematical correlation between the chemical attributes and a response of interest,
can be of significant application to serve the human community. QSAR/QSTR plays an

encouraging role in achieving this environmental greenness through the design and development

Page 23



Chapter 1 Introduction

of process-specific chemicals with reduced or null hazardous outcomes.

1.11 Computation of different statistical metrics for assessing model quality
Squared correlation coefficient (R?): This parameter is termed as the determination coefficient
or squared correlation coefficient. The squared correlation coefficient of a model can be obtained

from the following equation Eq.1.9.

2
Z(Y in)—Y i
Rz 1 ( obs(train) calc(traln))

(Y obs(erainy~Verain) 1.9
The R2 statistic represents the ratio of the regression variance to the original variance where the
former is determined using the original variance minus the variance around the line of regression
[46]. The R2 bears a value between zero (no correlations) to one (perfect correlation). A model
possessing a value of RZ more than 0.8 can be considered to elicit an acceptable correlation while
the quality enhances with the increasing value of RZ? until it reaches a maximum value of unity
(which is unusual in real cases). Yobs and Ycalc are the respective observed and calculated values
of the response variable. RZ gives a measure of explained variance. Each additional X variable
added to a model increases R?. The prime drawbacks of the R? parameter lie in the fact that it does

not provide any information on whether:

The independent variables are a true cause of the changes in the dependent variable,
e The correct regression was used,
e The most appropriate set of independent variables has been chosen,

e The model might be improved by using transformed versions of the existing set of
independent variables and

e Whether any collinear ties exist in the data or not.
Adjusted R?, (Eq. 1.10) is a modified version of the determination coefficient and is also known
as the explained variance. The RZ parameter incorporates the information of the number of samples
and the independent variables used in the model and can be defined as follows [47]. Here, R? is
the determination coefficient of a QSTR model comprising p number of predictor variables and n
number of samples. Hence, instead of using only the initial observed (i.e., experimental) and final
predicted response values, RZ considers information on the model history in terms of the number

of descriptors and number of chemicals used to develop the model (i.e., training set chemicals).

Page 24



Chapter 1 Introduction

The R2 penalizes the R? value of a model containing too many independent variables compared to
the total number of compounds. The RZ improves only if the addition of a new term enhances the
model quality avoiding chance. The R?2 value usually is less than the corresponding R? value.

2 _ (n—1)xR?*-p
Raaj == 1.10

In EQ.1.10, Yobs and Ycarc are the actual and estimated scores respectively, while n is the number
of scores and p is the number of descriptors.

Standard error of estimate (s): The error in the estimation of individual activity values of the
compounds under study using the MLR method can be quantified based on their residual data. The
standard error of estimate (SEE or s) for the residuals is calculated by taking the root mean square
of the residuals. The standard error of the estimate is a measure of the accuracy of the fitting.

Lower values of SEE correspond to improved model acceptability as shown in Eq. 1.11.

S — z(yobs_ycalc)2 1.11
J n—-p-1

Here, Yons and Yeca are the actual and estimated scores respectively, while n is the number of
scores and p is the number of descriptors.

1.11.1 Validation metrics for the training set

1.11.1.1 @3y,

The models developed from the training set by using stepwise regression or genetic methods have
been subjected to internal validation by means of calculating leave-one-out cross-validation R%(Q?)
and predicted residual sum of squares (PRESS) and the acceptable models have been further
processed for the prediction of toxicity and/or property of the test set compounds. The cross-
validated correlation coefficient R? (LOO—Q?) is calculated according to the formula.

2
1— 2:(Yobs(train)_Ycalc(train))
— 2
2:(Yobs(train) _Ytrain) 1.12

2 —
LOO —

Here Yobs(rainy, Ypredarainy, and Y y,qin, are the observed, predicted, and the average value of the
response variable of the training set. In this technique, one compound is omitted from the data set
at random in each cycle and then a model is built using the rest of the compounds. The model thus
formed in this way is used for the prediction of the activity of the omitted compound. The process
is iterated until all the compounds are eliminated once. On the basis of the predicting ability of the
model, the cross-validated R? (Q?) for the model is determined. The acceptable value of Q2 is 0.5

with a maximum value of 1.0 and hence more the value i.e. closer to 1, the more the internal

Page 25



Chapter 1 Introduction

predictivity of the model.

1.11.1.2 Root mean square error in prediction for the training set (RMSEp)

This parameter suggests that it is possible to determine the internal predictive ability of the training
set compounds simply by taking the square root of the squared difference between the observed
and predicted response value divided by the number of compounds in the training set as shown in
Eq. 1.13.

RMSEp — \/Z(Yobs(train) =Y calc(train) )2 1.13

Ntest

where nest is the number of compounds present in the training set and Yobs and Ypred COrrespond to

the corresponding observed and LOO predicted response value. It should have a minimum value.

1.11.1.3 The rm? metrics

Using the concept of regression through the origin approach [47], introduced a new parameter r?
or modified that penalizes the R? value of a model with respect to an ideal condition [47]. The r 2
metrics can be defined as follows in Eq. 1.14 and 1.15;

2 =1r%x (1 —J(r2 - roz)) 1.14
m?=rix(1-JG2-19) 1.15

where, r? is the squared correlation coefficient value between observed and predicted response
values, and r¢ and rg 2 are the respective squared correlation coefficients when the regression line
is passed through the origin by interchanging the axes. Roy and co-workers [48] further defined
the average and difference of the two r? metric values (i.e., ;2 and r;,,?) to be used as the acceptable
criteria to judge the predictive ability of a model as follows in Eq. 1.16.

N e D) 1.16
Tm =5

Ary? = |1? — 1 2| 1.17
The 1,2 metrics can not only be computed for the test set compound (1% (test)) 10 judge external
predictivity but it can also be used to determine the internal predictivity of the model using the
training set. In the latter case, leave-one-out predicted values (1% (Looy) Of the training set

observations are used against their observed response. Furthermore, Roy et al. [49] also reported
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the use of the n,2 metric in characterizing the overall predictive capability of the model by using
leave-one-out predicted values for the training set and equation (i.e., model) based predicted values
for the test set together against their corresponding observed response (r?). Later, a rank-based r
[48], as well as a scaled [50] version of the r? metric, was introduced by the same group of authors
and these have been used in this present study.

1.11.2 Validation metrics for the test set

1.11.2.1 R?pred Or Q?ry)

For the prediction of toxicity and/or property of the test set compounds, this parameter was

calculated. It can be defined as in Eq. 1.18.

2
2:(Yobs(testr) - Ycalc(test))
— 2
z:(Yobs(test) - Ytrain)

QF =1- 1.18
where, Y obs(test) IS the observed activity of the test set compounds, Y predtest) IS the predicted activity
of the test set compounds and Ytrain corresponds to the mean of observed activity of the training

set compounds. R?preq Value for an acceptable model should be greater than 0.5 (maximum value
1).

1.11.2.2 Q%r2)
This function as a metric for external set validation was described in the paper of Hawkins [51]

and can be calculated as in Eq. 1.19.

2
(Y -Y
QI?"Z =1- ( obs(test) ca_lc(teszt)) 1.19
2:(Yobs(test) _Ytest)

The only notable difference from Q%x: (r1) is that the average value of the external or test set is
used in the denominator instead of the internal or training set average value. Both Q1) and Q2 (2
were compared and discussed [51]. The threshold value of acceptance for all three parameters
Q1) Q%r2), and Q?(rs) is 0.5.

1.11.3 Y-randomization study

The relationships between the response variable and the descriptors can be checked for further
statistical significance by the randomization test (Y-randomization) of the models. The method

can be executed in the following two ways;

e Process randomization
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e Model randomization

In process randomization, random scrambling of the dependent response variables is performed
accompanied by a fresh selection of variables from the whole descriptor matrix, and in model
randomization, scrambling or randomization of the response variable is performed within the
descriptors present in an existing model. We have performed the model randomization of the
genetic models using SIMCA software. A parameter was proposed by Roy and Paul named Ry?
that penalizes the model R? for a small difference between the squared mean correlation coefficient
(R/?) of randomized models and the squared correlation coefficient (R?) of the non-randomized
model and was defined as in Eq. 1.20.

R% = R? x \/[RZ — R? 1.20
The acceptable value of CR} was proposed to be greater than or at least equal to 0.5. Later a
correction for this parameter has been suggested [52] and the rebuilt formula is as follows in Eq.
1.21.

CR% = R? x \/[R? — R? 1.21
1.11.4 Determination of model applicability domain (AD)
The applicability domain (AD) of a QSTR model can be described as the theoretical region in the
chemical space defined by the chemical as well as the response attributes of the model [53]. A
definite domain of applicability enables the reliability of the predictive performance of a model.
In other words, any QSTR model possesses a defined theoretical domain within which it can
provide reliable predictions of other chemicals not used in developing the model. It is not feasible
to develop a single model that can contain the chemical information of the whole universe, and
accordingly, QSTR models are characterized by different domains. The applicability domain [54]
is a theoretical region in chemical space, defined by the model descriptors and modeled response.
When a compound is highly dissimilar to all compounds of the modeling set, reliable prediction
of its property is unlikely. The concept of AD was used to avoid such an unjustified extrapolation
of property predictions. Here, we have applied both the Leverage approach and Distance to model
in X-space (DModX) approach for verifying the applicability domain of the best model developed
from this study [55].
1.11.4.1 Applicability domain: Standardization approach
The equation to calculate AD is:
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1.22

Ski = lxkf,i;lxll

Where, k=1, 2, 3 ... ncomp (here, Ncomp = total number of compounds)

i=1, 2,3 ... npes (here, npes = total number of descriptors)
Ski = Standardized descriptor i for compound k (from the training or test set)
Xki = original descriptor ‘i’ for compound ‘k’ (from the training or test set)
Xki = mean value of the descriptor
Xi= for the training set compounds only
oXj=standard deviation of the descriptor
Xi for the training set compounds only
The standardization approach of the applicability domain (Eq. 1.22) is based on the ideal data
distribution; 99.7% of the compounds would stay within the range of mean = 3 standard deviations
(SDs). As a result, this range (i.e., mean = 3SDs) is considered as the area of the majority of the
training set compounds. Outside this area, a compound is examined as diverse from the rest of the
compounds. So, one should compute the maximum Si(k) value ([Si] max(k)) for the compound k.
If the SD value for descriptor i of compound k (Ski) is greater than 3 then the compound is an X-
outlier (if it is in the training set) or outside the AD (if it is in the test set) [56].
1.12 Literature review
There are innumerous studies for the prediction of pesticide toxicity (LDso) against different avian
species using QSAR approaches have been reported. In 2006, Mazzatorta et al. reported a
classification-based QSAR study using the Support Vector Machine (SVM) technique for the
estimation of oral toxicity of pesticides against Bobwhite Quail (Colinus virginianus) [57]. In
2015, Basant et al., developed QSAR models using different tree-based modeling approaches like
Single Decision Tree (SDT) QSAR, Decision Tree Forest (DTF) QSAR, and Decision Tree Boost
(DTB) QSAR to determine the acute oral toxicity of pesticides on multiple avian species, for
example, Bobwhite Quail (Colinus virginianus), Mallard Duck (Anas platyrhynchos), Ring-
necked Pheasant (Phasianus colchicus), Japanese Quail (Coturnix japonica) and House Sparrow
(Passer domesticus) [58]. In 2017, Halder et al. developed a QSTR model using the Monte Carlo
method to predict the acute oral toxicity of some diverse agrochemical pesticides against Bobwhite
Quiail (Colinus virginianus) [59]. In 2020, Kar & Leszczynski developed partial least square (PLS)
regression-based individual and intraspecies QSTR models to estimate the acute oral toxicity of
certain pesticides in Bobwhite Quail (Colinus virginianus), Mallard Duck (Anas platyrhynchos)
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and Japanese Quail (Coturnix japonica) [60]. In recent work, Banjare et al. developed
classification-based predictive QSTR models for the estimation of acute oral toxicity of pesticides
on three different avian species namely Bobwhite Quail (Colinus virginianus), Mallard Duck
(Anas platyrhynchos) and Zebra Finch (Taeniopygia guttata) [61]. In 2022, Mukherjee et al.
generated a regression-based 2D quantitative structure toxicity relationship (2D QSTR) and
quantitative structure toxicity—toxicity relationship (QSTTR) models to predict the toxicological
significance of pesticides on five different avian species [62]. Recently podder et al. also developed
regression-based QSTR and i-QSTR models for toxicity assessment of pesticides on various avian

species, such as mallard duck, bobwhite quail, and zebra finch [63].
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2. PRESENT WORK

2.1. Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian
Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and
Read-Across

Pesticides comprise a diverse class of chemicals that are commonly used to control or eliminate
pests such as weeds, fungi, insects, and rodents effective crop management. In recent decades,
there have been a significant surge in the usage of pesticides, particularly in developing nations
that rely on agriculture. [64]. Due to the inherent characteristics, a significant fraction of the
applied dose persists as residues on crops and fields [58]. As a result, large concentrations of
pesticides have been found in crops, vegetation, and further edible products causing exposure to
both animals and humans. According to the reports, prolonged exposure to these substances can
cause adverse effects on the neurological, endocrine, reproductive, immunological,
cardiovascular, renal, and respiratory systems of an individual [65].

In light of the aforementioned, various regulatory authorities have emphasized the need for the
toxicity evaluation of both new and existing pesticides. The avian toxicity tests are essential for
regulatory approval and licensing of the active ingredients of pesticides. Aves are significant for
ecology and have a huge contribution to biodiversity by performing pollination of plants, rodent
control, seed dispersal, and spreading nutrients [62]. According to today’s scenario, one in every
eight bird species faces extinction [66]. Therefore, birds are used as a model organism to evaluate
toxicity.

Oral toxicity testing is important for determining the toxicological significance of various avian
species. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese quail (Coturnix japonica)
[JQ], ring-necked pheasant (Phasianus colchicus) [RNP], and mallard duck (Anas platyrhynchos)
[MD] are the major test species as per OECD norms [67]. The validated wet-lab techniques for
the evaluation of compound toxicity towards avians are expensive, unethical, and require a
significant amount of time and effort. So the relevant regulatory bodies encourage the
employment of potential alternative strategies to achieve the objective. Regulatory agencies like
the Environmental Protection Agency (EPA), European Food Safety Authority (EFSA),
Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH), and European
Chemicals Bureau (ECB), have emphasized the potential of computational tools like QSTR,
Read-Across, and alternative approaches for investigating the inherent characteristics of
chemicals within the realm of toxicokinetics [68].

Some alternative in silico-based approaches were reported previously that offer significant

improvements over single-output models for regulatory purposes [69-74]. Speck-Planche et al.
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[69] reported the discriminant model based on substructural descriptors for the rational design of
new agrochemical fungicides. Speck-Planche et al. [70] also worked on new in-silico methods for
the rational design of new insecticidal agents. Speck-Planche et al. [71] also reported the multi-
species chemoinformatic methods for assessing the various ecotoxicological profiles in
agrochemical fungicides. Speck-Planche et al. [72] also published a work regarding multi-scale
QSAR methodology for simultaneous ecotoxicological modeling of pesticides. Jiang et al. [73]
worked on boosting tree-assisted multitask deep learning methods for small scientific datasets. a
consensus multitask deep learning method was used to model multispecies acute toxic effects by
Jain et al. [74]. Even other alternative modeling approaches based on machine learning (ML) tools
that have demonstrated significant advancements, particularly in handling nonlinearity aspects
and improving predictions were also reported earlier [73-76]. Halder et al. [75] reported the global
models employing in-silico methods for Predicting the ecotoxicity of endocrine disruptive
chemicals. Samanipour et al. [76] worked on alternative methods for chemical prioritization using
molecular descriptors and intrinsic fish toxicity of chemicals

These in-slico techniques examine significant structural features that are essential for predicting
the biological activity, toxicity, and other characteristics of untested substances. Several research
teams published in silico predictions of acute oral toxicity in various species, including rats, mice,
and fish [61,77-80]. But in the case of avian oral toxicity, very few in-silico reports are available
[58, 61, 62, 63, 66,81].

Herein, we developed QSTR models to interpret the major structural and physicochemical
features responsible for their toxicity followed by estimating the toxicity of external datasets in
RNP and MD avian species following the OECD guidelines strictly [67]. Alternative tools, such
as read-across, are widely used for hazard assessment to fill data gaps. The Read-Across-based
predictions assume that a molecule with an unreported experimental endpoint value should have
a value similar to molecules that are structurally and/or biologically similar to the query molecule.
So, we have conducted the Read-across predictions to improve the test set results. The main
motive for choosing the regression-based QSTR approach over others (e.g.: regarding its
effectiveness, coping with chemical heterogeneity, and several different species) was to develop
a linear relationship between the descriptors and this defined endpoint (pLCso) and to identify the
important features responsible for toxicity towards avian species (RNP and MD) as well as data-
gap filling. Classification models only focus on the categorical relationship between the input and
output variables rather than the exact numerical relationship. On the other hand, regression models
can identify the most important features or predictors driving the outcome variable. Additionally,

we have also developed classification models as well as employed two different ML algorithms
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namely SVM, and RF to evaluate their effectiveness in model construction and prediction The
present work aimed to design a logical method to assess pesticide toxicity towards avians.
Furthermore, screening of the Pesticide Properties DataBase (PPDB) was conducted to evaluate
the avian toxicity following the prediction reliability assessment of the QSTR models by the PRI
(prediction reliability indicator) tool (http://teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data

gaps filling and risk assessment [82]. The robustness, reproducibility, and predictivity of QSTR
models were thoroughly validated using globally accepted statistical parameters.
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Fig. 1. The graphical representation of the steps involved in the development of the QSTR model.

2.2. Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological
effects of diverse pesticides against California quail

Birds are the essential species for the ecosystem and we can’t even imagine a world without birds.
Unfortunately, in today’s world due to increasing the usage of different chemical compounds
including pesticides a large number of birds have extinct globally. As per the report, around 150
avian species have been wiped out from the planet since the 1500s and one in eight avian species
is at the risk of extinction [66]. Healthy avian populations are a sign of ecological integrity [83]
and they also play a significant role in a wide range of functions including pollination, scavenging,
seed-dispersing, pest-predator, nutrient cycling, ecosystem engineering, and many more [84].
Therefore, the global decline in bird numbers is a matter of great concern. Human beings
ceaselessly manipulate nature to fulfill their demands with increasing population through various

activities like deforestation, usage of pesticides, and industrialization [61].
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To fulfill the agricultural demand of the rising population and for effective crop management
pesticide usage increases rapidly. As a consequence, toxic residues of pesticides accumulate in
the environment and affect both terrestrial and aquatic food chains. Several researchers reported
that currently used pesticides are lack specificity which may responsible for toxicity toward
various non-target species including humans and birds. Birds are susceptible to exposure to
pesticides directly through spray treatment and indirectly by feeding, preening, and grooming.
Therefore, such effects especially on birds are a threat to the ecosystem and biodiversity,
suggested test protocols for oral toxicity in birds.

Considering the aforementioned, a number of regulatory bodies have given priority to the toxicity
assessment of pesticides and their derivatives. As the oral route is thought to be the most important
for pesticide exposure in avian species, the United States Environmental Protection Agency
(USEPA) and the Organization for Economic Co-operation and Development (OECD) proposed
test protocols for avian oral toxicity. However, estimating avian toxicity by using animal models
is a tough task as well as quite expensive, time-consuming, and unethical. The concept of “3R”
(replacement, reduction, and refinement) given by Russell and Burch in 1959, aims to implement
other possible approaches for toxicity prediction [54]. Recently, some regulatory agencies like the
Environment Protection Agency (EPA), European Chemical Bureau (ECB), and Registration,
Evaluation, Authorization, and Restriction of Chemicals (REACH) proposed to limit the usage of
experimental animals and compel to use of non-animal models or in silico based methods like
QSAR or QSTR for toxicity risk assessment, which are considered as a convenient replacement
for both in vivo and in vitro approaches, offering advantages in economy and time efficiency.
These techniques can investigate significant structural characteristics and forecast the biological
activity or toxicity of the novel compounds [62]. Few researchers reported various individual-
species and multi-species QSAR models for toxicity evaluation of various chemicals in fish, rats,
and mice [85-87] but in the case of avian species, few In-silico-based models are reported. By
thorough analysis of various previous works on toxicity assessment, we found that toxicological
evaluation for avian species is majorly conducted using either Mallard duck, Bobwhite quail,
Japanese quail, Ring-necked pheasant, or zebra finch. However, red-winged blackbirds, house
finches, house sparrows, brown-headed cowbirds, and California quail might be utilized
optionally or alternatively. Formerly some researchers reported the anti-cholinergic effect of
insecticides on California quail [88], which might be considered a threat to their existence.
Therefore, we used California quail as the test organism for the toxicological assessment of the
chemical pesticides.

The present study deals with avian toxicity assessment of pesticides against California quail

Page 35



Chapter 2 Present work

(Callipepla california) by constructing QSTR models with partial least square (PLS)-regression
by employing 2D descriptors for model development to avoid molecular optimization complexity.
We have also attempted to strengthen the prediction quality of the test set compound by intelligent
selection of various models using the “Intelligent consensus predictor” tool [89]. All the produced

models were built in accordance with the OECD recommendation.
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Fig. 2. The graphical representation of the steps involved in the development of the QSTR model.

2.3.Study 3: Chemometric-based exploration of the toxicological significance of diverse
chemical toxicants in wild birds with an application of the g-RASTR approach.

In this modern era, the usage of various chemical compounds has risen enormously to fulfill
human requirements. Chemical compounds are mainly designed for different specific purposes,
as they tend to air and aquatic transport, these substances have been detected globally. The
environment, biodiversity, and wildlife including birds are greatly affected by these chemicals.
Birds represent a diverse group of species that play many key ecological roles and offer various
services associated with the ecosystem such as nutrient cycling, pollination, seed dispersal, and
promoting plant growth and diversity via their herbivory activities [90]. They also function as
markers for environmental health. Birds have cultural importance and are also considered symbols
of nations and organizations. Regrettably, birds have been recognized as a species that experience

the harmful consequences of various chemicals. Various reports suggest that there is a huge drop
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in the bird population worldwide due to eggshell thinning after exposure to the well-known
pesticide dichlorodiphenyltrichloroethane (DDT) [91]. Some researchers reported that a decline
in the Gyps vulture population was triggered by diclofenac-induced toxicity [92] and the
poisoning of Red Kites as a result of exposure to several pesticides and rodenticides [93]. Another
research performed by J. W. Macdonald reported that a group of 38 birds which is 19 percent of
the total bird population have died as a consequence of adverse environmental factors including
chemicals, pesticides, and pharmaceuticals [94].

So, the above reports indicate that there is a significant impact of different chemical compounds
on the bird's wildlife ecosystem. Therefore, various regulatory agencies emphasize toxicity
assessment of chemical compounds to determine their toxicological effect on various species
including both terrestrial and aquatic. For toxicity estimation of a large number of compounds in
vitro and in vivo assessment is quite expensive, time-consuming, and needs sacrifice of innocent
animals. Therefore, it is essential to attempt various alternative methods of toxicity assessment
such as in-silico-based methods which include QSAR, QSTR, and g-RASTR. The in-silico-based
approaches associated with chemical toxicology continue to be a better alternative to in-vivo or
in-vitro methods of toxicity assessment as they reduce human effort as well as time and cost [95].
Regulatory authorities, chemical industries, and risk evaluators also encourage computational
toxicology methods particularly QSTR as suitable technique for early hazard identification and
risk assessment. In recent times, few models have been fabricated for toxicity evaluation of
various environmental hazards using QSAR or other related in-silico techniques. Various
toxicological studies of diverse chemicals against several species such as dogs, fish, and rats have
already been performed by using QSAR methods for toxicity prediction [85,96,97]. Recently, few
researchers reported avian toxicity studies of diverse chemicals or pesticides using single species
[98] as well as multiple avian species. The Read-Across Structure-Activity Relationship is the
fusion of both QSAR and the Read-Across approach which improves the reliability of predictions.
g-RASAR boosts the predictive ability and diminishes the mean absolute error by using similarity
and error-based descriptors [99]. In the recent past, the g-RASAR approach has been used by
many researchers for toxicity assessment associated with molecular and environmental contexts.
Banerjee et al. developed multiple g-RASAR models for assessing the cytotoxicity of TiO2-based
nanoparticles using two sets of toxicity data [100]. Ghosh et al. also use the q-RASAR approach
to predict the aquatic toxicity of organic pesticides against fish [101].

In this study, we have generated PLS-based QSTR and q-RASTR models using experimental data
with the endpoint LDsg of diverse chemical compounds toward wild birds. Wild birds encompass

a large group of avian species and represent a major part of our ecosystem. Therefore, it is
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essential to evaluate the toxicological significance using experimental data on diverse chemicals
for wild birds.
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Fig. 3. The graphical representation of the steps involved in the the g-RASTR model

development.
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3. MATERIALS AND METHODS
The dissertation presents a transparent methodology for developing QSTR and g-RASTR models using

simple 2D descriptors. Our objective has been to ensure clarity and transparency in the process, from
the calculation of descriptors to the reduction of the variable matrix, the identification of significant
features, and the assessment of the models' reliability and predictive abilities. QSTR models are
generally developed in a number of steps, by following the OECD guidelines. This dissertation
describes the process we followed in order to complete our studies. In the first part, we provided a
general overview of the steps involved in generating a predictive QSTR model; next, we described the
methods for each study.

We divided the work into the following parts:

Dataset details: In this section, we provide a comprehensive account of the datasets used in our study.
These datasets include information on chemical names and their corresponding activity or toxicity
data. This foundational information serves as the bedrock for our research.

Methodological Approach: We represent a general overview of the methodologies and techniques
employed in the development of our models. This section outlines the strategies and tools we used to
create predictive models for understanding the relationship between chemical structures and toxicity.
3.1 Organization for Economic Cooperation and Development (OECD) guidelines for the QSTR
model generation

To develop a QSTR model, certain factors should be considered according to the Organization for
Economic Cooperation and Development (OECD). Table 3 illustrates the five OECD guidelines for
the validation of a QSTR model.

Table 3. OECD guidelines for QSTR models.

Serial | OECD guidelines Description
No.
1 A defined end-point To make sure that all endpoint values in a dataset are
the same.
2 An unambiguous algorithm In order to ensure that the suggested QSAR model is
transparent and reproducible
3 In order to ensure that the The necessity to define an AD reflects the fact that
suggested QSAR model is QSARs are inherently limited in terms of the sorts of
transparent and reproducible chemical structures, physicochemical characteristics,
and mechanisms of action for which they can provide
valid predictions.
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4 Appropriate measures of To make the overall criterion of model validation
goodness of fit, robustness, easier to understand: determination of the internal
and predictivity performance and predictive capability of a model.

5 Mechanistic interpretation, if | To ensure that there are assessments of the possibility
possible of a mechanistic interpretation.

3.2 Study 1

3.2.1 Dataset preparation

Here, we developed models using datasets with toxicity endpoint (LCso; defined as the lethal
concentration in 50% population) for toxicity prediction in multiple avian species collected from
literature [102] which was originally collected from the EPA, Ecotox database
(http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides for RNP (Ring-necked pheasant), and 564

pesticides for MD (Mallard duck) were taken for the development of the model. The toxicity endpoint
values range from 0.27 to 4.67 in MD and 0.162 to 4.857 in RNP. The two-dimensional structures of
the pesticides were sketched using Marvin Sketch 5.5.0.1 (https://chemaxon.com) with the addition

of explicit hydrogen atoms as well as proper aromatization. The conversion of structure file formats
was carried out using Open Babel v.2.3.2 [103]. Knime  workflow

(https://www.knime.com/cheminformatics-extensions) was employed for data curation which

removes unwanted salts and duplicate compounds. Toxicity in an avian species characterized as an
endpoint value (LCso) was converted to millimolar (mM) concentration followed by converting to a
negative logarithmic scale, pLCso, for easy interpretation. Some compounds were omitted from the
datasets due to high residual values.

Table 4. Canonical smiles with respective experimental pLCso values of the RNP dataset.

Sl Canonical Smiles pLC50
No.
1 Clclcee(ccl)C(c2cec(Clyecc2)C(Cl)(CHCI 3.056
2 COP(=0)(OC)C(O)C(Ch(ChClI 1.879
3 COP(=S)(0OC)Oclcce(ccl)S(=0)(=0)N(C)C 3.822
4 COP(=S)(0C)0Oclccc(SC)e(C)el 3.139
5* CCOP(=S)(0OCC)Oclccc(ccl)[N+](=0)[O-] 2.937
6* CCOP(=S)(0CC)Oclccc2C(=C(CHC(=0)Oc2c1)C 3.057
7 ClC2C(Cc(c1chenc3(c(=c(cz2(c3cnecnhenenencl 2.979
8 Cl(C(Cc(c(c(crchecnenenencl 2.714
9 CNC(=0)CSP(=S)(0C)0OC 2.839
10 C1=NNC(=N1)N 1.225
11 COP(=0)(0C)OC=C(CIHCI 2.590
12 CNC(=0)Oclccec2cccccl? 1.604
13 CC(=0)C 0.162

Page 41


http://cfpub.epa.gov/ecotox/
https://chemaxon.com/
https://www.knime.com/cheminformatics-extensions

Chapter 3

Materials and methods

14 COclcce(ccl)C(c2cec(OC)ec2)C(ChH(CICI 1.839
15 CIC(CHC(clcce(Checel)c2eec(Cl)ec2 2.856
16 CIC(=C(clccc(Cl)ccl)c2cce(Clyec2)Cl 2.583
17 CCclcce(ccl)C(C(ChHCl)c2cec(CC)ec2 1.788
18 CC(ChH(CNHC(=0)O 1.456
19* CIC1C=CC2C1C3(ChC(=C(Clhc2(chc3(chciCl 3.221
20 CCOP(=S)(0OCC)SC10CCOCISP(=S)(0OCC)OCC 2.050
21* | CC(=C)C1CC2=C(01)C=CC3=C20C4COC5=CC(=C(C=C5C4C3=0)0C)OC | 2.389
22* OC(=0)Cclc(Chcee(ClyciCl 1.680
23 COP(=S)(OC)SCN1N=Nc2ccccc2C1=0 2.241
24* Oclc(Chc(Che(Che(ChelCl 1.788
25 CCC(C)clce(ce(c1O)[N+](=0)[O-D[N+](=0)[O-] 2.668
26 CC(Oclcc(Clc(ClycclChHC(=0)0 1.777
27 Cclcc(Cl)ccc1OCC(=0)0 2.001
28 Cclce(Cl)ccclOCCCC(=0)0 1.660
29 OC(=0)CCCOclccc(Cl)cclCl 1.697
30* CN(C)C(=0O)Nclcceecl 1.516
31* CNC(=0)OclccccclOC(C)C 2.077
32 CIC1=C(CI)C2(CI)C3COSs(=0)occaci(chcz(chcl 2.503
33 OC(clcce(Clheel)(c2cec(Chec2)C(Cl)(CNCI 2.241
34 CCOP(=S)(0OCC)Oclccc(ccl)S(=0)C 3.318
35 CNC(=0)O\N=C\C(C)(C)SC 2.802
36 Clclcee(ccl)S(=0)(=0)c2cc(Cl)c(Cl)cc2Cl 1.852
37 CIC1=C(CI)C(=0)c2ccccc2C1=0 1.657
38 CCCCC(CC)COC(=0)clccecclC(=0)OCC(CC)CCcee 1.892
39* Clclc(Clc(Cle(Clye(Cl)clCl 2.664
40 CCOC(=0)CC(SP(=S)(0C)OC)C(=0)0CC 2.097
41 COP(=S)(0C)Oclcce(c(C)cl)[N+](=0)[O-] 2.786
42 CCNclnc(Clnc(NCC)nl 1.605
43 CC(CH(CNHC(=0)[0O-] 1.453
44 CIC(CI)(CI)SN1C(=0)C2CC=CCC2C1=0 1.779
45 CN(C)C(=S)SSC(=S)N(C)C 1.682
46 CNC(=9)[S-] 1.327
47* CC(COclcec(ccl)C(C)(C)C)OS(=0)OCCCI 1.825
48* COP(=0)(OC)OC(=CC(=0)N(C)C)C 3.731
49 [S-]C(=S)NCCNC(=9)[S-] 1.624
50 CN(C)C(=0O)Nclccc(Cl)ccl 1.627
51 CCOP(=S)(0OCC)Oclcncenl 3.537
52* COP(=S)(0C)Oclcce(ccl)[N+](=0)[0-] 3.461
53* CCOP(=S)(0OCC)SCsCC 2.771
54 CCOP(=S)(0OCC)SccsccC 2.636
55 COP(=0)(OC)OC(Br)C(Ch(ChHBr 2.176
56 CCS(=0)CCSP(=0)(0C)0C 2.216
57* C1C2C=CC1C3C2C4(C(=Cc(c3(ca(cncnhecnecnencl 3.806
58 CCC(C)N1C(=0O)NC(=C(Br)C1=0)C 1.416
59* CNC(=0)Oclcc(C)c(N(C)C)c(C)cl 2.419
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60 CN(C)C(=O)Nclccc(Cl)c(Clycl 1.66
61* CON(C)C(=O)Nclcce(Clyc(Clhcl 1.860
62 CCOP(=S)(0OCC)Oclcc(C)nc(n1)C(C)C 3.096
63 CCOP(=S)(0OCC)SCSP(=S)(0CC)0oCC 1.885
64 COP(=S)(OC)SCN1C(=0)c2ccccc2C1=0 2.003
65* CCOP(=S)(CC)Sclcccecl 2.960
66* COP(=S)(OC)SCSclccc(Cl)ccl 2.297
67* C[N+](C)(C)CCCI 1.389
68* Clclccec(Cl)c1C#N 2.059
69 CNC(=0)Oclcccc2CC(C)(C)Ocl2 2.586
70* CCCCCCCC(=0)Oclc(Br)cc(cclBr)C#N 1.961
71 CCNclnc(Clhnc(NC(C)C)nl 1.634
72* Nclc(Cl)c(Cl)nc(C(=0)0)c1Cl 1.683
73 CCCCOCCOC(=0)COclcce(CheclCl 1.807
74 CNC(=0)Oclccc(N(C)C)e(C)cl 2.017
75 CNC(=0)Oclcc(C)c(SC)c(C)el 1.767
76 CCOP(=S)(Oclcce(ccl)[N+](=0)[0O-])c2ccecec? 2.478
77* CN(C)C(=O)Nclccee(cl)C(F)(F)F 1.867
78 CCCC(C)clceec(OC(=0O)NC)c1 1.646
79 CIC1(ChHC2(ChHC3(ChHC4(CHC(CH(CHC5(CHC(CH(CL(CI)C35CI)C24Cl 2.549
80 CCCCOCCOC(=0)COclcc(Cl)c(CheelCl 1.954
81 CCOC(=0)C(SP(=S)(0OC)OC)clcceecl 2.062
82* Cclcc(cc(clC)C)OC(=0O)NC 1.632
83 CCOP(=S)(0OCC)Oc1nc(Cl)c(Cl)cclCl 2.802
84 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.879
85 COC(=0)NS(=0)(=0)clccc(N)ccl 0.487
86 COP(=S)(0OC)Oclcce(Sc2cec(OP(=S)(0OC)OC)cc2)ccl 3.459
87 COP(=S)(0C)0Oclc(cc(c(n1)CHCHCI 1.888
88* CC1=C(CI)C(=O)N(C(=O)N1)C(C)(C)C 0.913
89 CN(C)C=Nclccc(Cl)cclC 1.877
90 CNC(=0)C=C(C)OP(=0)(0C)OC 4.857
91 COC(=0)C=C(C)OP(=0)(0C)0OC 2.959
92* CICCL(CChC(=C)C2(Chc(chc(chcicncz(chcl 2.880
93 CCL(C(=C)C2(C(C1r(c(cz2(cnchenecnenecnenc 2.673
94 CC1C(OC(=0)C2C(C=C(C)C)C2(C)C)C=Cc(CCc=CC=0C)C1=0 1.817
95 CCOP(=0)(OCC)SccsccC 2.589
96* Clclcee(c(Cl)clCl)c2cec(Clyc(Cl)c2Cl 2.456
97 Clclcce(c(Cl)clCl)c2ceee(Cl)c2Cl 2.475
98* CC1=CC(=C(C(=C1)OC(=0O)NC)C)C 1.632
99 Clclcc(Cl)ee(cl)c2ec(Cl)ee(Cl)c2 2.347
100 CCN(CC)C(=0)\C(=C(/C)\OP(=0)(OC)OC)\CI 3.590
101 CCCSP(=0)(0CC)ScCcCC 3.312
102* CNC(=0)ON=C(C)SC 1.914
103 CCCCOCCOC(=0)C(C)Oclcc(Cl)c(Cl)cclCl 2.245
104 CC(C)C(=0)[O-] 1.241
105 COP(=0)(0C)OC(=CCl)clcc(Cl)c(Cl)cclCl 1.864
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106 CCOP(=S)(OCC)SCCI 1.750
107 CCC(C)clecec(OC(=0)N(C)Sc2ccececec2)cl 2.040
108 COC(CN(C)C(=0O)Nclnnc(s1)C(C)(C)C)OC 2.444
109* CCLl(C)C(C=C(ChChHC1C(=0)OCc2cccc(Oc3ceeccld)c2 1.230
110 Clclcee(c(Cl)cl)c2eccc(Cl)c2Cl 2.147
111 CCCCCCCCCCCCCCIN+](C)(C)Cclcceecl 1.587
112 Cclce(c(cclC)CHOC(=0)NC 1.319

*Test set compounds

Table. 5. Canonical smiles with respective experimental pLCso values of MD dataset.

S| No. Canonical_Smiles pLCso
1 CC(=CC(=0O)NC)OP(=0)(0C)OC 4.366
2 COP(=S)(0OC)Oc1nc(Cln(n1)C(C)C 4.455
3 COP(=S)(0C)Oclcce(ccl)S(=0)(=O)N(C)C 3.968
4 CCOP(=S)(0OCC)Oclcce(ccl)S(=0)C 3.876
5 COP(=S)(0C)0Oclccc(SC)c(C)el 3.745
6 CCOP(=S)(0OCC)Oclcce(ccl)[N+](=0)[O-] 3.583
7 CNC(=0)Oclcccc2CC(C)(C)Ocl2 3.447
8 CCCSP(=0)(0OCC)SCCC 3.449
9 CC(=CC(=0O)N(C)C)OP(=0)(0C)OC 3.402

10 CN1SC(=CC1=0)CI 3.174
11 CCCSP(=0)(0CC)Oclcce(Br)cclCl 3.396
12 CNC(=0)Oclcc(C)c(N(C)C)c(C)cl 3.170
13 CCOP(=S)(0OCC)SCSC(C)(C)C 3.295
14 CCOP(=S)(0cC)oc(cneccnencl 3.152
15 C1CN2CC3=CCOCACC(=0)N5C6C4C3CC2C61C7=CC=CC=C75 3.197
16 CCOP(=S)(0OCC)SCSsCC 3.021
17 CCOP(=0)(NC(C)C)Oclcce(SC)e(C)el 2.982
18 CCOP(=S)(0OCC)Oclccc2C(=C(CI)C(=0)Oc2c1)C 2.956
19 CCOP(=S)(0OCC)Oclcncenl 2.771
20 CClL(C(=C)C2(C(C1r(c(cz2(cnchecnecnenecnenc 2.922
21 CCOP(=S)(OCC)SC(CCI)N1C(=0)c2cceec2C1=0 2.928
22 CIC1C=CC2C1C3(ChC(=C(Chc2(chc3(checncl 2.890
23 CCOP(=S)(OCC)SccsccC 2.730
24 CICCL(CChC(=C)C2(Chc(chc(chcicncz(cncl 2.883
25 CCC(C)clce(cc(c10)[N+](=0)[O-])[N+](=0)[O-] 2.648
26 COC1=NN(CSP(=S)(0C)OC)C(=0)S1 2.745
27 CCOP(=S)(0OC(C)C)Oclcnc(ncl)C(C)(C)C 2.741
28 CN(clc(Br)cc(Br)cclBr)c2c(cc(cc2C(F)(F)F)[N+](=0O)[O-])[N+](=0)[O-] 2.969
29 COclccc(ccINNC(=0)OC(C)C)c2cceec2 2.660
30 CCN(CC)C(=0)\C(=C(/C)\OP(=0)(OC)OC)\CI 2.624
31 CN1SC=CC1=0 2.205
32 Nclccnccl 2.115
33 CN(C)C(=0)Oclnc(nc(C)c1C)N(C)C 2.507
34 CNC(=0)ON=C(C(=0O)N(C)C)SC 2.456
35 CCCCCCC(C)C1=C(C(=CC(=C1)[N+](=O)[O-])[N+](=0)[O-])OC(=0)C=CC | 2.617
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36 CNC(=0)Oclcc(C)c(SC)c(C)cl 2.384
37 CCCSP(=S)(0OCC)Oclcce(SC)ecl 2.515
38 Cclcccc2sc3nncn3cl? 2.277
39 CCOP(=S)(NC(C)C)OclccceclC(=0)OC(C)C 2.538
40 CNC(=0)OclcceccclOC(C)C 2.320
41 OC(CC(C1=C(O)c2ccccc20C1=0)c3ccccc3d)cdccc(ccd)csece(Br)cch 2.722
42 CIC1=C(CI)C2(CI)C3COS(=0)0CC3C1(ChC2(ChCI 2.587
43 COP(=S)(Oclcc(Cl)c(Br)cclCl)c2ccecec2 2.583
44 CC(C1CC1)C(O)(Cn2cncn2)c3cec(Clyce3 2.387
45 CCCCCCCCN1SC=CC1=0 2.244
46 CCOP(=S)(CC)Sclcccecl 2.303
47 CC(=0)CC(C1=C(O)c2ccccc20C1=0)c3cccecc3 2.400
48 Cclc(COC(=0)C2C(\C=C(/CH\C(F)(F)F)C2(C)C)cccclec3cceec3 2.519
49 COP(=0)(OC)OC=C(CNCI 2.224
50 Oclc(Br)cc(cclBr)C#N 2.302
51 CCOclnc(ns1)C(CI)(CICI 2.176
52 OC(clcce(Clhecel)(c2cec(Chec2)C(Cl)(CNCI 2.351
53 Clclcec(ccl)C(c2cec(Clycc2)C(Cl)(CHCI 2.277
54 CNC(=0)ON=C(C)SC 1.933
55 CCCl1O[C@]2(CCClLO)C[C@@H]3C[C@@H](CC=C(C)CC(C)C=CC=C4CO | 2.440
[C@@H]5[C@H](O)C(=C[C@@H](C(=0)03)[C@]450)C)02
56 Clclcee(c(ChclCl)c2cee(Clye(Che2Cl 2.261
57 CC(=CC(=0)0OC)0OP(=0)(0C)0OC 2.051
58 Cclcc(Cl)cecc1OCC(=0)0 2.001
59 Clclcec(CCC(Cn2cenen2)(C#N)c3ccccece3)ccl 2.223
60 CCCCCCCC(=0)Oclc(Br)cc(cclBr)C#N 2.273
61 CC(C)(C)C(=0)C1C(=0)c2cccec2C1=0 2.010
62 CCC(C)clceec(OC(=0)N(C)Sc2ceccc2)cl 2.1373
63 CNC(=0)Oclcc(C)c(C)e(C)cl 1.924
64 Cclc(F)c(F)c(COC(=0)C2C(\C=C(/CN\C(F)(F)F)C2(C)C)c(F)c1F 2.257
65 COP(=S)(0C)Oclcce(c(C)c1)[N+](=0)[O-] 1.875
66 CC(C)Oclcc(N2N=C(0C2=0)C(C)(C)C)c(Cl)cciClI 2.140
67 CNC(=0)N(C)clnnc(s1)C(C)(C)C 1.960
68 CNC(=0)Oclcce(N(C)C)e(C)cl 1.911
69 COclcc20C[C@H]30c4cs5CI[C@@H](Oc5cccaC(=0)[C@H]3c2cc1OC)C(=C | 2.181
)C
70* CC1(C)C(C=C(CICIHC1C(=0)OC(C#N)c2ccce(Oc3cccce3)c? 2.198
71* CC10C(C)OC(C)OC(C)01 1.819
72 Clclcce(c(Cl)clCl)c2ceec(Cl)c2Cl 2.082
73 COP(=0)(0C)OC(Br)C(Ch(ChBr 2.145
74 COP(=S)(0C)SCSclccc(Cl)ccl 2.020
75 CON(C)C(=0O)Nclccc(Cl)e(Clyel 1.907
76 COC(=0)clcc(Cl)cc(N)clCl 1.842
77 Clclcee(c(Cl)cl)c2ccce(Cl)c2Cl 1.962
78 COP(=S)(OC)SCN1C(=0)c2ccccc2C1=0 1.996
79 NC(=S)Nclccecc2cecccl?2 1.774
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80* CCC12COCN1COC2 1.621
81 CC(C)(CO)[C@H](O)C(=Cclccc(Cl)cecl)nlenenl 1.928
82* CIC(=C(clccc(Cl)ccl)c2cec(Clyec2)Cl 1.949
83 CCOP(=S)(0OCC)SC10CCOC1SP(=S)(0CC)OCC 2.103
84 CCCCCCCCCCCCCC[P+](Ccce)(ccee)cece 2.074
85 CCC(CN1CCOCC1)[N+](=0)[O-] 1.707
86 COC(=0)clcsc(C)c1S(=0)(=0)NC(=0)N2N=C(OC)N(C)C2=0 2.006
87* | CCL(C)[C@@H](\C=C(/CNH\C(F)(F)F)[C@H]1C(=0)O[C@H](C#N)c2cccc(O | 2.056
c3ccccc3)c2
88 CIC1=C(ChHC(CI)(C(=C1ChChC2(Cl)C(=C(Cl)C(=C2CI)CICI 2.077
89* CCSC(C)CC1CC(=C(C(=NOC\C=C\CI)CC)C(=0)C1)O 1.956
90 CC1=C(SCCO01)C(=0O)Nc2ccccc2 1.757
91 COclenc(OC)N2nc(NS(=0)(=0)c3c(OCC(F)F)ccec3C(F)(F)F)ncl2 2.049
92* COC(=0)Nclnc2ccecec2[nH]1 1.631
93* CCOclnc(F)cc2nc(nn12)S(=0)(=0)Nc3c(Cl)cccc3Cl 1.955
94 N#CSCSclnc2cccec2sl 1.724
95 CCCCCCCCCCCCCC[N+](C)(C)Cclcceecl 1.868
96* CN(C)C(=0O)Nclccee(cl)C(F)(F)F 1.712
97* COC(=0)clcce(l)ecclS(=0)(=0)[N-]C(=0)Nc2nc(C)nc(OC)n2 2.050
98* CN1C=C(C(=0)C(=C1)c2ccce(c2)C(F)(F)F)c3cceec3 1.860
99* [O-][N+](=0)\C=C/1\NCCCS1 1.544
100 COC(=0O)NC(=S)NclcccccINC(=S)NC(=0)OC 1.873
101 COC(=0)clccecclS(=0)(=0O)NC(=0)Nc2nc(C)ec(C)n2 1.898
102 O=C1NSc2cccccl?2 1514
103 CCOC(=0)[C@@H](C)Oclccc(Oc2oc3cc(Cl)cce3n2)cel 1.892
104* CC(C)(C)cleec(OC2CCCCC20S(=0)OCCHC)ccl 1.878
105 CC(C)CCCC(C)C\C=C\C(=C\C(=0)OCC#HC)\C 1.775
106 CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=0)O[C@H](C#N)c2cccc(Oc3cccee | 2.0369
3)c2
107 CCCCCCcCccceeecee=ceeccecececce 1.842
108 CCNc1nc(NC(C)(C)C)nc(SC)nl 1.716
109 CIC(CI)(CI)C(NC=0)NICCN(CC1)C(NC=0)C(Ch(CNCI 1.971
110 | CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]10[C@H]2[C@H](O | 2.098
[C@H]3[C@H](O)[C@@H](O)[C@H](NC(=N)N)[C@@H](O)[C@@H]3NC
(=EN)N)O[C@@H](C)[C@]2(0)C=0
111* COclc(Cl)cee(Cl)clC(=0)[0-] 1.675
112 Fclccec(F)c1C(=0)NC(=0O)Nc2ccc(Cl)ce2 1.825
113* COC1=NN(C(=0)[N-]S(=0)(=0)c2ccccc20C(F)(F)F)C(=0)N1C 1.952
114 CC(C)(C)NIN=CC(=C(CI)C1=0)SCc2ccc(cc2)C(C)(C)C 1.891
115 CN(C)C(=9)[S-] 1.409
116 COC(=0)clcec(CNS(=0)(=0)C)cclS(=0)(=0)NC(=0)Nc2nc(OC)cc(OC)n2 | 2.025
117* COclcc(OC)Nc(NC(=0)NS(=0)(=0O)Nc2cceccc2C(=0)N(C)C)nl 1.947
118 [O-][N+](=O)N=C1INCCN1Cc2ccc(Cl)nc2 1.726
119 [O-][N+](=0)NC1=NCCN1Cclccc(Cl)ncl 1.726
120 CCN(Cclc(F)cceclCl)c2c(cec(cc2[N+](=0)[O-)C(F)(F)F)[N+](=0)[O-] 1.943
121* CIC(CI)C(clcce(Cl)ecl)c2ecc(Cl)ec2 1.822
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122 CC(C)(C)C(O)(CCclcce(Clyecl)Cn2encn2 1.805
123 CCC1=C(C(=0)[O-])C(=0)C=NN1c2ccc(Cl)cc2 1.760
124* CCCCOC(=0)[C@@H](C)Oclcce(Oc2cee(cn2)C(F)(F)F)ccl 1.897
125 CC(C)[C@H](C(=0)OC(C#N)clccce(Oc2ceccc2)cl)c3cec(OC(F)F)ce3 1.965
126* CC(C)[C@H](C(=0)O[C@H](C#N)clcccc(Oc2ccccc2)cl)c3cec(Cl)ee3 1.933
127* [O-]C(=0)C1C2CCC(02)C1C(=0)[O-] 1.566
128 BrCC(=0)OC\C=C\COC(=0)CBr 1.819
129* C[C@@H](Oclcce(Cl)cc1C)C(=0)O 1.632
130 C[N+](C)(C)CCCI 1.389
131* CC(=CC1C(C(=0)OCc2coc(Cc3ccece3)c2)C1(C)C)C 1.830
132* CC(=CCC\C(=C\CC\C(=C\CO)\C)\C)C 1.648
133* CC(=CCC\C(=C\CCC(C)(O)C=C)\C)C 1.648
134* CC(=0)Nclcc(NS(=0)(=0)C(F)(F)F)c(C)cclC 1.792
135* CC(C)(C)C(O)C(Oclcce(ccl)c2eeccec2)n3cnend 1.829
136 CC(C)(C)N(NC(=0)clccee(Clhecl)C(=0)c2ccecec2 1.820
137* CC(O)[C@@]1(C)N=C(NC1=0)c2ncc(C)cc2C(=0)[O-] 1.739
138* CC(C)C(C(=0)OC(C#N)clccee(Oc2ccececc2)cl)c3cec(Cl)ee3 1.924
139* CC(C)C(0)(clcec(OC(F)(F)F)ccl)c2enenc? 1.795
140* CC(C)C1(C)N=C(NC1=0)c2nc3ccccc3cc2C(=0)0 1.794
141 CC(C)C1(C)N=C(NC1=0)c2ncccc2C(=0)0 1.718
142 CC(C)cceecececececececececececcocco 1.798
143* CC(C)N(C(=0)CCl)clccececl 1.626
144 CC(CI(CHC(=0)[0-] 1.453
145 CC(CI)(CIHC(=0)O 1.456
146 CC(0O)CSS(=0)(=0)C 1.532
147* | CCL(C)[C@H](C=C(CHCDH[C@H]1C(=0O)O[C@H](C#N)c2ccc(F)c(Oc3ccecee | 1.938
3)c2
148 CC1(C)CCC(=Cc2ccc(Cl)cc2)C1(0)Cn3cncn3 1.803
149* CCL(C)N(CIC(=O)N(Br)C1=0 1.683
150* CCL1(C)N(CO)C(=O)N(CO)C1=0 1.575
151 CC1=C(CI)C(=O)N(C(=0O)N1)C(C)(C)C 1.636
152 Cclcc(Cl)ccclOCCCC(=0)[0-] 1.658
153* Cclcc(Cl)ccc1OCCCC(=0)0 1.660
154* Cclncc([N+](=0)[O-])n1CCO 1.534
155 CCC(=0O)Nclcce(Cl)e(Clyel 1.639
156 CCC(C)(C)C(=0)0OC1=C(C(=0)0C12CCCCC2)c3cc(Cl)cc(Cl)c3 1.915
157* CCclcee(ccl)C(=0)NN(C(=0)c2cc(C)ee(C)ec2)C(C)(C)C 1.8487
158* CCclcce(ccl)C(C(ChHCl)c2cec(CC)ec2 1.788
159 CCclccec(CC)cIN(COC)C(=0)CCI 1.732
160* CCc1nn(C)c(C(=0O)NCc2ccc(cc2)C(C)(C)C)ci1Cl 1.824
161* CCCCC(CC)COC(=0)clccecclC(=0)OCC(CC)CccC 1.892
162 CCCCC(Cnlcncnl)(C#N)c2cce(Cl)ec2 1.761
163 CCCCCCCCIN+](C)(C)cceeececce 1.733
164* CCCCCCCCCC[C@H]10[C@H]1CCCCC(C)C 1.752
165* CCCcCccceeeeecc(=0)[04] 1.600
166 CCCCCCCCSC(=0)Oclcc(Clnnclc2ceccc? 1.879
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167* CCCCN(CC)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.826
168* CCCCOCCOC(=0)C(C)Oclcc(Che(CheclCl 1.868
169 CCCCOCCOC(=0)COclcc(Clhc(Cl)celCl 1.852
170* CCCCOCCOC(=0)COclcee(ClcclCl 1.807
171* CCCN(CCC)clc(ce(ccl[N+](=0)[O-1)C(C)C)[N+](=0)[O-] 1.791
172 CCCN(CCC)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.826
173* CCCN(CCC)clc(cc(ccl[N+](=0)[0-])S(=0)(=0)N)[N+](=0)[O-] 1.840
174 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.879
175* CCN(CC(=C)C)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.823
176 CCN(CC)C(=0)clccee(C)el 1.582
177 CCN(CC)C(=0)SCclccc(Clyccl 1.712
178 CCN(CC)C(=S)scc(=C)ClI 1.650
179 CCNclnc(Cl)nc(NC(C)C)nl 1.634
180 CCNclnc(Clnc(NCC)nl 1.605
181 CCOC(=0)C(C)Oclcce(Oc2enc3cc(Cl)ece3n2)ccl 1.872
182 CCOC(=0)CC(SP(=S)(0C)OC)C(=0)0CC 1.820
183 CCOC(=0)COclcc(c(F)cciChe2nn(C)e(OC(F)F)c2Cl 1.917
184 CCOC(=0)Nclccec(OC(=0)Nc2ccecc2)cl 1.778
185* CCOclcc(Oc2cee(cc2Cl)C(F)(F)F)cecl[N+](=0)[0-] 1.859
186 CCOclcee(ccl)C(C)(C)COCc2ccec(Oc3ccecce3d)c2 1.876
187 CCOP(=S)(OCC)SCCI 1.671
188 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 1.885
189 CCS(=0)CCSP(=0)(0C)0OC 1.692
190* Cl[C@@H]1[C@H](C)[C@@H](CH[C@H](CH[C@H](CH[C@H]1CI 1.764
191 CIC(CI)(CHS(=0)(=0)C(Ch(CNCI 1.779
192 CIC(CH(CISN1C(=0)C2CC=CCC2C1=0 1.677
193 CIC(CI)(CI)SN1C(=0)c2cccec2C1=0 1.773
194 CICL(ChC2(ChC3(Chc4(Chc(Ch(chcs(Chc(Ch(ci(chc3schncz4cCl 2.037
195 Clclc(Che(Che(Che(ChcelCl 1.755
196 Clclcce(c(Cl)c1)C2(Cn3cncn3)CC(Br)CO2 1.877
197 Clclcce(ccl)C(=0)c2cec(Cl)ec2 1.700
198* Clclcece(ccl)c2ccccc2NC(=0)c3ceenc3Cl 1.836
199 Clclcee(ccl)S(=0)(=0)c2cc(Cl)c(Cl)cc2Cl 1.852
200 ClclcceccINe2ne(Clhne(Cln2 1.741
201* CIN1C(=0O)[N-]C(=0)N(CI)C1=0 1.595
202* CIN1C(=O)N(CIC(=O)N(CI)C1=0 1.667
203 CN(C)C(=0O)Nclccc(Cl)c(Clyel 1.668
204* CN(C)C(=0O)Nclcce(Cl)ecl 1.599
205* CN(C)C(=0O)Nclccececl 1.516
206 CN(C)C(=S)SSC(=S)N(C)C 1.682
207 CN(C)C=Nclccc(Cl)cclC 1.594
208 CN(C)C1=NC(=0)N(C2CCCCC2)C(=0)N1C 1.703
209* CN(Cclcce(Clncl)C(=NC#N)C 1.648
210* CN\C(=N\[N+](=0)[O-])\NCC1CCOC1 1.606
211 CN1CSC(=S)N(C)C1 1.511
212 CNC(=0)Oclccec2eccccl? 1.604

Page 48




Chapter 3

Materials and methods

213 COC(=0)C(C)Oclcce(Oc2cec(Clec2Cl)ecl 1.834
214 COC(=0)clcc(Oc2cec(Cl)cc2Cl)cccl[N+](=0)[O-] 1.835
215 COC(=0)clcececlS(=0)(=0O)NC(=0)Nc2nc(OC(F)F)cc(OC(F)F)n2 1.9718
216* COclcc(OC)N2nc(NS(=0)(=0)c3c(OC)ncec3C(F)(F)F)nc2nl 1.938
217* COclcc(OC)Nc(NC(=0)NS(=0)(=0)c2nccecc2C(=0)N(C)C)nl 1.914
218 COclcce(ccl)C(c2cec(OC)ec2)C(ChH(CHCI 1.839
219 COc1nc(C)nc(NC(=O)NS(=0)(=0)c2cccec2Cl)nl 1.854
220 CON(C(=0)OC)clcccec1COc2cen(n2)c3cec(Cl)ec3 1.889
221 CON=C(C(=0)OC)clccceclCOc2cccecc2C 1.797
222 COP(=0)(OC)C(O)C(Ch(cnCl 1.711
223* COP(=S)(0C)Oclnc(Chc(ClhcclCl 1.809
224 CP(=0)(0O)CCC(N)C(=0)[O-] 1.556
225 CSC(=0)clccec2nnscl?2 1.623
226 N#CSCSC#N 1.415
227 Nclc(Cl)c(Cl)nc(C(=0)0)c1Cl 1.683
228* Nclnc(NCl)nc(n1)N(CI)CI 1.661
229 Nclnc[nH]nl 1.225
230* O=C(Nclcccccl)Nc2cnns2 1.644
231 OC(=0)clc(Cl)ccc2ec(Cl)encl2 1.684
232 OC(=0)Cclc(Cl)cce(Cl)c1Cl 1.680
233 OC(=0)CN(CP(=0)(0)O)CP(=0)(0)O 1.721
234 OCCN(CC[O-])CCJO-] 1.468
235 OCCNI1CN(CCO)CN(CCO)C1 1.642
236 OP(=0)(O)CCCI 1.460
237* CC(=C)C1CCC(C)=CC1 1.435
238 CC(C)CL(C)NC(=NC1=0)clncc(C)cclC([O-)=0 1.739
239* CC1(C)CCCC(C1)=CC=0 1.483
240* CC1=C(C)S(=0)(=0)CCS1(=0)=0 1.623
241* CCCCCCCCI1CCC(=0)01 1.5665
242* CCCCCCCCCCCCNC(N)=N 1.657
243 COC(=0)clcec(C)eclC1=NC(=0)C(C)(N1)C(C)C 1.760
244* CO\N=C(\C1=NOCCO1)/c2ccccc20c3ncnc(OcdcccccdCl)c3F 1.962
245* CC1=NNC(=0O)N(C1)\N=C\c2cccnc2 1.637
246* FC(F)(F)clcencclC(=O)NCC#N 1.658
247* CNC(=N[N+](=0)[O-])NCclcnc(Cl)sl 1.695
248 CSC1=N[C@](C)(C(=0O)N1Nc2cccce2)c3cceec3 1.790
249 CNC(NCclcenc(Cl)s1)=N[N+](JO-])=0 1.695
250* CON=C(C(=0)OC)clccccclCON=C(C)c2ccec(c2)C(F)(F)F 1.907
251 Cclc(cee(clC2=NOCC2)S(=0)(=0)C)C(=0)c3cnn(C)c30 1.854
252 Cclnn(C)c(0)c1C(=0)c2cce(cc2S(=0)(=0)C)C(F)(F)F 1.852
253* CC(C)NI\C(=N\C(C)(C)C)\SCN(C1=0)c2cccec? 1.778
254 0O=CCCCC=0 1.290
255 CS(=0)(=0)clcec(C(=0)C2C(=0)CCCC2=0)c(c1)[N+](=0)[O-] 1.820
256* CCCCN1Sc2ccecc2C1=0 1.606
257* Cclcc(C)nc(Nc2ceeee2)nl 1.589
258 CC(COclcce(Oc2ceecc2)ccl)Oc3cccen3 1.791
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259* CC1(C)C(C=C(CICI)C1C(=0)OCc2cccc(Oc3ccccc3)c? 1.876
260 CCCOC(=0O)NCCCN(C)C 1.558
261* CCOC(=0O)CN(C(=0)CCl)clc(CC)cccclCC 1.777
262 CCOC10c2ccc(0S(=0)(=0)C)cc2C1(C)C 1.740
263* Clclcecec(Cl)c1C#N 1.519
264 CN1COCN(Cc2cnc(Cl)s2)C1=N[N+](=0)[O-] 1.749
265* CO\C=C(\C(=0)OC)/clccececclOc2cc(Oc3ceccc3C#N)Nen2 1.889
266 OC(=0)CNCP(=0)(0)O 1.512
267 N(clcceecl)c2ccccc2 1.512
268 CC(C)OC(=0)COclccc(ClycclCl 1.702
269 C[C@@H](Oclcce(Oc2nee(Cl)cc2F)ccl)C(=0)OCC#C 1.825
270 CC1(C)CCC(Cc2ccc(Cl)cc2)C1(0)Cn3cnen3 1.786
271* CC(Oclcce(Oc2nec(Cl)ec2F)cecl)C(=0)OCC#HC 1.825
272* CCOclce(ccc1C2COC(=N2)c3c(F)ceec3F)C(C)(C)C 1.836
273* CC(C)Oclccecc(NC(=0)c2ccccc2C(F)(F)F)cl 1.790
274 CCC(C)(NC(=0)clcc(Clhe(C)e(Clhc1)C(=0)CCl 1.807
275* Cclcc(C)c(C2=C(OC(=0)C(C)(C)C)C3(CCCC3)0C2=0)c(C)c1 1.829
276 CCCCcCccecee=ccececececececc(=0)[0-] 1.726
277 Nclnc(nc(C(=0)O)c1Cl)C2CC2 1.606
278 | CC1(C)[C@H](C=C(CI)CH[C@H]1C(=0)O[C@@H](C#N)clcccc(Oc2cceec2 | 1.895
)cl
279 FC(OC(F)(F)F)C(F)(F)Oclccc(NC(=0O)NC(=0)c2c(F)ccecc2F)cclCl 1.967
280* CCS(=0)(=0)clnc2cceen2¢lS(=0)(=0)NC(=0)Nc3nc(OC)cc(OC)n3 1.946
281 CCSC(=0O)N(CC)C1CcCcCcCC1 1.601
282 CCCCOCCOC(=0)COclnc(Che(CheclCl 1.819
283 Nclcc(Clnc(C(=0)0)c1Cl 1.575
284 FC(F)(F)clcce(OCCCOc2¢(Cl)ecc(OCC=C(CI)Cl)cc2Cl)ncl 1.950
285* CC(CN1C[C@@H](C)O[C@@H](C)C1)Cc2ccc(cc2)C(C)(C)C 1.735
286 COclce(OC)Nc(NC(=0)NS(=0)(=0)c2ncccc2C(F)(F)F)nl 1.862
287 CC1=CC(=0)NO1 1.247
288* [O-][N+](=O)\C(=C\clcceecl)\Br 1.608
289 C[C@H](0)C(=0)O 1.204
290 C[C@H]1[C@@H](SC(=0)N1C(=0)NC2CCCCC2)c3ccc(Cl)ce3 1.797
291 clcee2[nH]c(nc2cl)c3cscn3 1.554
292* | CC(=C[C@@H]1[C@@H](C(=0)OCN2C(=0)C3=C(CCCC3)C2=0)C1(C)C) | 1.770
C
293 CC(=C[C@@H]1[C@@H](C(=0)OCN2C(=0)CN(CC#C)C2=0)C1(C)C)C 1.753
294* CC(=CC1l[C@@H](C(=0)OCc2cccc(Oc3ccece3)c2)C1(C)C)C 1.794
295 | CC(O[C@@]1(O)[C@@H](OC(=0)c2ccc[nH]2)[C@@]3(0)[C@@]4(C)C[C | 1.943
@]5(O)O[C@@]6([C@H](O)[C@@H]éC)CC[C@]460)[C@@]3(0)[C@@]1
5
296 CC(C)C(Nclcce(cclCl)C(F)(F)F)C(=0)OC(C#N)c2ccee(Oc3ccccee3)c2 1.951
297 CC(C)N(C(C)C)C(=0)scc(=c(cnchcl 1.734
298 CC(C)NC(=O)N1CC(=0O)N(C1=0)c2cc(Cl)cc(Cl)c2 1.769
299 CC(C)OP(=S)(OC(C)C)SCCNS(=0)(=0)clcceecl 1.849
300 CC(CI)(ChClI 1.375
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301 CC(Oclccc(Oc2nece(cc2Cl)C(F)(F)F)ccl)C(=0)0 1.808
302 CC1(C)CON(Cc2ccccc2Cl)C1=0 1.629
303* CCL(C)N(Br)C(=O)N(Br)C1=0 1.706
304 CCL(C)N(Br)C(=O)N(CIC1=0 1.633
305* CCIL(C)N(CHC(=O)N(ChHC1=0 1.544
306 CC1(OC(=O)N(Nc2ccceec2)C1=0)c3ccc(Oc4cccccd)cc3 1.823
307 Cclcc(C)n(CO)Nl 1.351
308* Cclcc(O)cc(C)clCl 1.445
309 CC1CC(0C(=0)C)0C(C)01 1.491
310 Cclcce(ccl)S(=0)(=0)C(D)I 1.875
311* CC1CCCCCINC(=0O)Nc2ccccc? 1.616
312 Cclcen2ne(ne2n1)S(=0)(=0O)Nc3c(F)ccec3F 1.762
313 CCCC(=NOCC)C1=C(O)CC(CC(C)SCC)CC1=0 1.765
314* CCCCC(CC)CN1C(=0)C2C3Ccc(C=C3)C2C1=0 1.690
315 CCCCC(CC)COC(=0)[C@@H](C)Oclccc(Cl)cclCl 1.790
316 CCCCC(CC)COC(=0)COciccc(ChcclCl 1.773
317 CCCCCCCCCC[N+](C)(C)cceeecec(o)e 1.745
318* CCCCCCCCCclccc(OCCO)ccl 1.672
319* CCCCCCNC(=N)NC(=N)N 1.518
320* CCCCOC(=0)[C@@H](C)Oclcce(Oc2cce(cc2F)C#N)cecl 1.803
321* CCCCOCC(C)O 1.371
322* CCCCOCCOCCOCCc1cc20C0c2cciCCC 1.797
323 CCCN(CCC)C(=0)scC 1.527
324 CCCOC(=0)clcce(ncl)C(=0)OCCC 1.650
325* CCCOCC(=Nclcce(ClheclC(F)(F)F)n2cenc2 1.789
326 CCCSC(=0O)N(Cce)ccce 1.558
327 CCN(CC)C(=0)C(C)Oclccec2ceccccl2 1.683
328 CCNclnc(Clnc(NC(C)(C)C)n1 1.611
329* CCNc1nc(NC(C)C)nc(SC)nl 1.607
330 CCOC(=0)C(C)OC(=0)clcc(Oc2cce(cc2Cl)C(F)(F)F)cecl[N+](=0)[O-] 1.914
331 CCOC(=0)C(C)Oclcce(Oc2oc3cc(Cl)cec3n2)ccel 1.808
332* CCOC(=0)C(CI)Cclcc(N2N=C(C)N(C(F)F)C2=0)c(F)cc1Cl 1.865
333* CCOclnc(NC)nc(NC(=0)NS(=0)(=0)c2cceec2C(=0)OC)nl 1.863
334 CCOCCOCCOC(=0)Nclnc2ccecc2[nH]1 1.717
335 CCOP(=0)([O-])C(=O)N 1.432
336 CCSC(=0O)N(CC(C)C)CC(C)C 1.587
337* CIC(CNC(CH(CHSN1C(=0)[C@@H]2CC=CC[C@@H]2C1=0 1.793
338 Clclcc(NC(=0O)Nc2ceecc2)cenl 1.644
339 Clclcec(C(Cn2cenc2)OCC=C)c(Cl)cl 1.723
340 CN1C(=0O)ON(C1=0)c2ccc(Cl)c(Cl)c2 1.667
341* CN1SC2=C(CCC2)C1=0 1.441
342 COC(=0)c1c(CC(C)C)c(C2=NCCS2)c(nc1C(F)F)C(F)(F)F 1.848
343* COC(=0)c1c(Clc(Che(C(=0)OC)c(Cl)c1Cl 1.771
344* COC(=0)c1c(Clhnn(C)c1S(=0)(=0)NC(=0)Nc2nc(OC)cc(0OC)n2 1.888
345 COC(=0)clceec(C)ec1S(=0)(=0)NC(=0)Nc2nc(OCC(F)(F)F)nc(n2)N(C)C 1.942
346* COC(=0)clccccclIN 1.429
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347* COC(=0)clccecclS(=0)(=0O)NC(=0)N(C)c2nc(C)nc(OC)n2 1.847
348* COC(=0)clccecclS(=0)(=0)NC(=0)Nc2nc(C)nc(OC)n2 1.831
349 | COC(=O)N(C(=O)N1CO[C@]2(Cc3cc(Cl)ccec3C2=N1)C(=0)OC)c4ccc(OC(F | 1.972
)(F)F)cc4
350* COCI[C@H](C)N(C(=0)CCl)clc(C)csclC 1.690
351* COclcc(OC)nc(Oc2ccec(0c3nc(0OC)cc(0C)n3)c2C(=0)[O-])nl 1.883
352 COclcc(OC)nc(Sc2ecee(Cl)c2C(=0)[0O-])nl 1.763
353 COc1nc(NC(C)C)nc(NC(C)C)nl 1.603
354 COCC(C)N(C(=0)CCl)clc(C)esclC 1.690
355* CS\C(=N\OC(=0O)N(C)SN(C)C(=0)ON=C(C)SC)\C 1.799
356 CSC(=0)clc(CC(C)C)c(C(=0)SC)c(nc1C(F)F)C(F)(F)F 1.853
357 CSclnc(NC2CC2)nc(NC(C)(C)C)nl 1.654
358* Fc1cc20CC(=0)N(CC#C)c2ccIN3C(=0)C4=C(CCCC4)C3=0 1.799
359 Fclcce(Oc2cenc3cec(Cl)ec(Cl)c23)ccl 1.739
360 Nclc(Cl)c(F)nc(OCC(=0)O)c1ClI 1.656
361 Nclnc(N)nc(NC2CC2)nl 1.470
362* O=C\C=C\clccccel 1.371
363* OC(=0)clcccecl 1.337
364 OC(=0)COclccc(Cl)cclCl 1.594
365 OC(=0)COclnc(Cl)c(Cl)cclCl 1.659
366* Oclcce(ccl)[N+](=0)[O-] 1.393
367* Oclcce(Cl)eclCc2cceec?2 1.590
368 Oclccccclc2ccccc? 1.481
369 OCNC(=0)N(CO)CIN(CO)C(=0)N(C0O)C1=0 1.694
370 OCNCC(=0)[0-] 1.267
371 C\C(=N/NC(=0)Nclcc(F)cc(F)cl)cincceclC([O-])=0 1.773
372 CC(=NNC(=0)Nclcc(F)cc(F)cl)cinceeclC(0)=0 1.774
373* | CC(C)=C[C@@H]1l[C@@H](C(=0)O[C@H]2CC(=0)C(CC=C)=C2C)C1(C) | 1.730
C
374 CC(C)CCCCCOC(=0)C(C)Oclccc(ClycclCl 1.790
375* CCCCCCCCCCCC(=0)0 1.552
376 CCCCCOC(=0)COclcc(N2C(=0)C3=C(CCCCI)C2=0)c(F)cclCl 1.877
377* CCCCOCCOCCOCc1cc20C0c2cciCCC 1.779
378 CIC(CHC(CI(CI)SN1C(=0)C2CC=CCC2C1=0 1.793
379* COC(=0)clccecclCS(=0)(=0)NC(=0)Nclnc(OC)cc(OC)nl 1.863
380 CI\C=C\C[N+]12CN3CN(CN(C3)C1)C2 1.583
381 CCC(C)(CCC(C)C)C(=O)NC 1.513
382* CC(C)C1CCC(Cc2ccc(Clheec2)C1(0)Cn3enen3 1.766
383* COCclc(F)c(F)c(COC(=0)[C@@H]2[C@@H](C=CC)C2(C)C)c(F)c1F 1.796
384* CC(C)CC(C)clscccINC(=0)c2en(C)nc2C(F)(F)F 1.792
385 COC(=0O)Nclccec(OC(=0O)Nc2ceec(C)c2)cl 1.714
386 CS(=0)(=0)clcec(C(=0)C2C(=0)CCCC2=0)c(Cl)c1COCC(F)(F)F 1.881
387* FC(F)(F)clcnc(CNC(=0)c2c(Clycecc2Cl)e(Chel 1.821
388* CC(=0)Nclcce(O)ccl 1.408
389* CCclcc(C)ec(CC)c1C2=C(OC(=0)C(C)(C)C)N3CCOCCN3C2=0 1.826
390 CCC(=NOC\C=C\CI)C1=C(0O)CC(CC1=0)C2CCOCC2 1.755
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391 COclce(C)e(C(=0)c2¢(C)e(Br)cec20C)c(0C)c10C 1.828
392* COclcc(OCC#C)ccclCCNC(=0)C(OCC#C)c2ccece(Cl)ec2 1.830
393 Nclc(Cl)cec(cclCH[N+](=0)[0O-] 1.524
394* OC(clcee(Cl)ecl)(c2enenc2)c3ceccc3Cl 1.724
395 CCCCCCCCscCo 1.463
396 CN(\C=N\clccc(C)ecclC)\C=N\c2cee(C)ec2C 1.622
397 | COC(=O)C[C@@H]l[C@@]2(C)[C@H](C[C@@H]3C[C@H](C(C)=C23)c2 | 1.930
ccoc2)[C@@H]20C[C@@]3(C)[C@H]2[C@]1(C)[C@H](C[C@H]30C(C)=
0)OC(=0)C(C)=CC
398 CCON=C(CC)C1=C(0O)CC(CC1=0)c2c(C)cc(C)cc2C 1.648
399 | CCL(O)[C@@H]([C@@H](Br)C(Br)(Br)Br)[C@H]1C(=0)O[C@H](C#N)c2c | 1.934
cce(Oc3cceccee3)c2
400 CN1CCCC1 0.999
401 CC1(C)C(C(=0)OC(C#N)c2ccee(Oc3ccecce3)c2)C1(C)C 1.587
402 [O-]N1C=CC=CC1=S 1.141
403 BrCC(Br)(CCC#N)C#N 1.424
404 C[N+]1(C)CCCCC1 1.057
405 CC(C)(NC(=0O)clcc(Cl)ce(Cl)c1)C#C 1.408
406 CC(Oclcce(Cl)eclClC(=0)0 1.371
407 CC(Oclccee(Cl)cl)C(=0)[0-] 1.300
408 CCC(C)N1C(=O)NC(=C(Br)C1=0)C 1.416
409 CCC(C)Nclc(cc(ccl[N+](=0)[O-])C(C)(C)C)N+](=0)[0O-] 1.470
410 CCclccec(C)cIN(C(C)COC)C(=0)CCI 1.453
411* CCCCCCCCNI1SC(=C(Ch)C1=0)CI 1.450
412 CCCCOC(=0)COclccc(Cl)celCl 1.442
413 CCCCOCCOC(=0)C(C)Oclccc(Cl)cclCl 1.525
414 CCCN(CCC)clc(cc(c(N)CI[N+](=0)[O-)C(F)(F)F)[N+](=0)[O-] 1.544
415 CCN(CC)clc(cc(c(N)CI[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.508
416 CCOC(=0)Cclcccc2eccecl?2 1.330
417 CIC\C=C\CI 1.045
418* Clc1c(Cl)c(C#N)c(Cl)c(C#N)c1Cl 1.424
419 CN(C)NC(=0)CCC(=0)O 1.204
420 CNC(=0)O\N=C\C(C)(C)S(=0)(=0)C 1.346
421 CNC1=C(CI)C(=O)N(N=C1)c2cccc(c2)C(F)(F)F 1.482
422* COC(C)(C)CCCC(C)C\C=C\C(=C\C(=0)OC(C)C)\C 1.492
423 COcl1c(Cl)cee(Cl)clC(=0)0 1.344
424 COCC(=0)N(C(C)C(=0)OC)clc(C)cceclC 1.446
425 0=C(C(clccceel)c2ceccec2)C3C(=0)cdccecccdC3=0 1.531
426 O=C1NNC(=0)C=C1 1.049
427 OC(=0)clccecclC(=0)Nc2ccec3cceccc23 1.464
428* OCC(Br)(CO)[N+](=0)[O-] 1.301
429 CCC(0)=0 0.869
430 CCCcccceeeco 1.199
431* OCOCC12COCNI1COC2 1.243
432 CC(C)C1=NN(C(=0O)NC(C)(C)C)C(=O)NIN 1.359
433 CCCCC(0O)(Cnlcncnl)c2ccc(Cl)ec2Cl 1.470
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434 CCSC(=0O)N1CCCCCC1 1.158
435 CCOC(=0)NCCOclccc(Oc2ccecc2)ecl 1.178
436 CS(=0)(=0)NC(=0)clcc(Oc2cce(cc2Cl)C(F)(F)F)cccl[N+]([O-])=0 1.341
437 Clclccccclce2nne(nn2)c3ccccc3Cl 1.166
438 CCCCOC(=0)C(C)Oclccc(Oc2cec(cn2)C(F)(F)F)ccl 1.185
439 CN(C)C(=0)C(clcccecl)c2cccecc2 0.901
440 CSc1Inc(NC(C)C)nc(NC(C)C)nl 0.751
441 COC(=0O)NS(=0)(=0)clccc(N)ccl 0.487
442 CCOCnlc(c2cce(Chec2)c(C#N)e(Br)c1C(F)(F)F 4.675
443 CCOP(=S)(0OCC)Oclcc(C)nc(n1)C(C)C 3.978
444 CCOP(=0)(SC(C)CC)N1CCSC1=0 3.355
445 | CCNS(=0)(=0)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F | 3.504
446 CCOP(=S)(Oclcce(ccl)[N+](=0)[O-])c2ccecec? 3.284
447 CN(C)clcee(ccl)N=NS(=0)(=0)[O-] 2.967
448 | [O-]S(=0)(=O)C(R)(R)C(R)(RC(F)(F)C(F)(FC(R)(F)C(R(F)C(F)(F)IC(F)(F)F | 3.187
449 Clclcee(ccl)C(C(=0)C2C(=0)c3ccccc3C2=0)c4cccecd 2.944
450 CNC(=0)Oclcccc20C(C)(C)Oc12 2.670
451 CNC(=0)O\N=C\C(C)(C)SC 2.505
452 CCN(CC)clnc(C)cc(OP(=S)(0C)0C)n1 2.683
453 CCNclnc(Cl)nc(NC(C)(C)C#N)nl 2.559
454 COP(=0)(N)SC 2.221
455 | Cl[C@@H]1C[C@H]2[C@@H]([C@H]1ChH[C@]3(C)C(=C(CH[C@]2(CIC | 2.679

3(ChCICI
456 CC(=0)CC(C1=C([O-])c2cceec20C1=0)clcccccl 2.538
457 COP(=S)(0OC)0Oclcce(Sc2cec(OP(=S)(0C)OC)cc2)ccl 2.717
458 OC(=0)CCCOclccc(Cl)cclCl 2.396
459 CNC(=0)CSP(=S)(0C)0OC 2.355
460 CCS(=0)(=0)clccenclS(=0)(=0)NC(=0)Nc2nc(OC)ec(OC)n2 2.495
461 CNC(=0)Oclccec(c1)\N=C\N(C)C 2.194
462 Clclccec(nl)C(CH(CICI 2.197
463 COC(CN(C)C(=0O)Nclnnc(s1)C(C)(C)C)OC 2.261
464 CCOP(=S)(OCC)SCN1C(=0)0Oc2cc(Cl)cecl2 2.345
465 OC(=0)C1(CCL)C(=0)Nc2cce(Clhycc2Cl 2.356
466 CCNP(=S)(0OC)O\C(=C\C(=0)OC(C)C)\C 2.198
467 COP(=S)(OC)SCN1N=Nc2ccccc2C1=0 2.213
468* CCCC(=0)Oclc(Br)cc(cc1Br)C#N 2.103
469* Clclcc(Cl)ee(cl)c2ec(Cl)ee(Cl)c2 2.018
470 [S-]1C#N 1.309
471* Oclc(Cl)c(Clhc(Cl)e(Cl)ciCl 1.849
472 CSC1=NN=C(C(=0)NIN)C(C)(C)C 1.729
473 CC1(C)COCN1 1.402
474* CCCN(CC)CC1COoC2(CCc(cca)Cc(C)(c)0)o1 1.853
475 CCOCN(C(=0)CCl)clc(C)cecclCC 1.810
476* CS(=0)(=0)clcc(ccclC(=0)c2cnoc2C3CCI)C(F)(F)F 1.926
AT7 CC1(C)CNC(=NN=C(\C=C\c2ccc(cc2)C(F)(F)F)\C=C\c3ccc(cc3)C(F)(F)F)N | 2.055

C1
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478* COc1cc(OC)Nc(NC(=0)NS(=0)(=0)c2cc(NC=0)ccc2C(=0)N(C)C)nl 2.008
479 CCOC(=0)C(SP(=S)(0OC)OC)clcccececl 1.852
480 | Cclcc(cccINC(=0)c2ccec(l)c2C(=0)NC(C)(C)CS(=0)(=O)C)C(F)(C(F)(F)F) | 2.177
C(F)(F)F
481* CCC(CC)Nclc(cc(C)e(C)cI[N+](=0)[O-DIN+](=0)[O-] 1.782
482 CCCcccececo 1.994
483* [O-]1[N+](=0)c1c(Clhc(Che(Che(ClclCl 1.771
484 CC(C)(C)C(O)C(Oclcee(Checl)n2enen2 1.772
485 CC1(CCCCC1)C(=0O)Nc2ccc(O)c(ChezCl 1.781
486 CC1C(OC(=0)C2C(C=C(C)C)C2(C)C)C=C(CC=CC=C)C1=0 1.817
487 Cclcee2nc3SC(=0)Sc3nc2cl 1.670
488* CCC(C)(CC)clec(NC(=0)c2c(OC)ceec20C)onl 1.822
489 CCclenc(C2=NC(C)(C(C)C)C(=0O)N2)c(c1)C(=0)0O 1.762
490* CCCC(C)clceec(OC(=0O)NC)cl 1.646
491 CCCCNC(=0)OCC#CI 1.749
492 CCCCOC(=0)clcececclC(=0)OCCCC 1.745
493 CCCCSP(=0)(SCCccC)sccce 1.798
494 CCN1C(=CC(=0)C(=C1c2ccc(Cl)cc2)C(=0)[O-])C 1.764
495 CCOC(=0)C1=NN(c2ccc(Cl)cc2CI)C(C)(CL)C(=0)0CC 1.873
496 CIC1=C(CI)C(=0)c2ccccc2C1=0 1.657
497 CIC1=C(CI)C(=0)SSs1 1.573
498 CN1CCCC1=0 1.297
499* COclcc(Cl)c(OC)cclCl 1.617
500* COclnc(C)nc(NC(=0O)NS(=0)(=0)c2ccecc2CCC(F)(F)F)nl 1.923
501 COclnc(C)nc(NC(=0)NS(=0)(=0)c2cceccc20CCCl)nl 1.905
502 COP(=0)(0OC)OC(=CCl)clcc(Cl)c(Cl)cclCl 1.864
503 NC#N 0.924
504 OC(=0)C1C2CCC(02)C1C(=0)0 1.570
505* Oclcce(c(cl)C(F)(F)F)[N+](=0)[O-] 1.617
506 CC(Oclccc(Cl)eclC)C(0)=0 1.632
507 CINc1nc(NCInc(NCI)nl 1.661
508 FC(C(F)(F)F)C(F)(F)Oclcc(Cl)c(NC(=O)NC(=0)c2c(F)cccc2F)cclCl 2.0078
6164
509* CC(C)(C)clcec(CCOc2nenc3cceccc23)ccl 1.784
510 COCI1CC(NC(NC(=O)NS(=0)(=0)c2c(Cl)nc3ccecen23)N1)OC 1.9131
511 Clclccc(CN2CCSC2=NC#N)cnl 1.695
512* CC(C)Ncinc(Cl)nc(NC(C)C)nl 1.650
513 CC[C@H]1CCCC(O[C@H]2CC[C@@H]([C@@H](C)O2)N(C)C)[C@@H]( | 2.152
C)C(=0)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3[C@@H
]ZCC(=O)01)O[C@@H]10[C@@H](é?)[C@H](OC)[C@@H](OC)[C@H]10
514 CCOC(=0)C1CC(=0)C(=C(0)C2CC2)C(=0)C1 1.685
515 FC(F)C(F)(F)Oclc(Clhcc(NC(=O)NC(=0)c2c(F)cccc2F)cclCl 1.947
516 CCCCN(CC)C(=0)SCCC 1.591
517* CC(F)clnc(N)nc(N[C@@H]2[C@@H](C)Cc3ccc(C)cec23)nl 1.761
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518 | CC(C)N(C)S(=0O)(=O)NC(=0)clcc(N2C(=0)C=C(N(C)C2=0)C(F)(F)F)c(F)c | 1.977
c1Cl
519* COclcce(cc1OC)\C(=C\C(=0)N2CCOCC2)\c3cce(Cl)ce3 1.864
520 FC(C(F)(F)F)C(F)(F)Oclc(Cl)cc(NC(=0O)NC(=0)c2c(F)ccecc2F)c(F)c1Cl 1.999
521 OC(CN1INC=NC1=S)(Cc2ccccc2CI)C3(Cl)CC3 1.791
522 COCclcenc(C2=NC(C)(C(C)C)C(=0O)N2)c(c1)C(=0)0 1.738
523* CCN(CC)CCOCclcec(C)ecl 1.596
524* [O-]C(=0)clcc(Oc2cec(cc2CHC(F)(F)F)cccl[N+](=0)[O-] 1.807
525* [O-]clcececlc2ceccec? 1.478
526 CC(=C[C@H]1[C@H](C(=0)O[C@@H]2CC(=0)C(=C2C)CC#C)C1(C)C)C | 1.728
527 CC(Oclccec(Cl)c1)C(=0)0 1.552
528 CC1=NN(C(=0O)N1C(F)F)c2cc(NS(=0)(=0)C)c(Cl)cc2Cl 1.838
529 CCclccec(C)cIN([C@@H](C)COC)C(=0)CCI 1.703
530 CCCC1COC(Cn2cncn2)(01)c3ccc(Cl)ec3Cl 1.784
531 CCCCCCC(C)OC(=0)COc1nc(F)c(Che(N)c1cl 1.815
532 CCCCCCCCCC(=0)C 1.481
533* CCCCCCCCCC[N+](C)(C)cceeecececcec 1.764
534* CCNC(=O)NC(=0)\C(=N\OC)\C#N 1.547
535 CCOC(=0)C(0O)(c1cce(Clhecl)c2ece(Cl)ec2 1.762
536 CCOC(=0)clccccclS(=0)(=0)NC(=0)Nc2nc(Cl)cc(OC)n2 1.868
537 Clclcc(Cl)ce(c1)C2(CC(CI)(CHCI)CO2 1.755
538 | CN1C(=O)N(C(=0)C=C1C(F)(F)F)c2ccc(Cl)c(c2)C(=0)OC(C)(C)C(=0)OCC | 1.926
=C
539* COC(=0)c1sccclS(=0)(=0)NC(=0)Nc2nc(C)nc(OC)n2 1.838
540 COCC(=0)N(N1CCOC1=0)c2c(C)cccc2C 1.694
541 NC(=0)C(Br)(Br)C#N 1.633
542 NC(=O)N 1.028
543* Oclcce(ccl)C(=0)CBr 1.582
544* | CC(C)=C[C@H]1[C@H](C(=0)O[C@@H]2CC(=0)C(CC=C)=C2C)C1(C)C | 1.730
545 CCCCCCCCC(0)=0 1.449
546 CCN(Cclccee(cl)S([O- 2.123
])(=0)=0)clccc(ccl)C(=C1C=CC(C=C1)=[N+](CC)Cclcccc(cl)S([O-
1)(=0)=0)clccccclS([O-])(=0)=0
547 | CN(C)[C@H]l[C@@H]2[C@@H](O)[C@H]3C(=C(O)[C@]2(0)C(=O)C(C( | 1.913
N)=0)=C10)C(=0)clc(O)ccccl[C@@]3(C)O
548 CC1(OC(=0)N(C1=0)c2cc(Cl)cc(Clhc2)C=C 1.706
549* Cnlcc(C(=0)Nc2ccecc2C3CC3C4CC4A)c(n1)C(F)F 1.765
550 COclccec(C(=0)NN(C(=0)c2cc(C)ec(C)c2)C(C)(C)C)elC 1.797
551 CCOC(=0)0C1=C(C(=O)N[C@@]12CC[C@@H](CC2)OC)c3cc(C)ccec3C 1.790
552* CCCC(C)CL(CC=C)C(=0)NC(=NC1=0)[O-] 1.495
553 [S-]IC(=NC#N)[S-] 1.065
554 BrCC(=0)OCclcccecl 1.359
555 CC(C)(C)C(=0)C(Ocicce(Cl)ecl)n2cnen?2 1.468
556* CCCC\C=C\CCC=CCCCCCCOC(=0)C 1.447
557 CCCCNC(=0)n1c(NC(=0)OC)nc2cceccl? 1.462
558 Oclnc(O)nc(O)nl 1.110
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559 [O-][N+](=O)c1cc(c(Clhc(cINc2nec(cc2CHC(F)(F)F)[N+](=0)[O-])C(F)(F)F | 1.642

560 CC(C)N1C(=C2C=CC=CC2=NS1(=0)=0)[O-] 1.318

561 | CCL(C)[C@H](\C=C(/CH\C(F)(F)F)[C@@H]1C(=0)O[C@H](C#N)c2cccc(O | 1.556
c3ccccc3)c2

562 CC(C)(O)[C@H](O)[C@H](Cclcee(Clycecl)n2enen2 1.167

563 CNC(=0)Oclcc(C)c(C)eclCl 0.727

564 OCC(CO)(CO)[N+](=0)[0O-] 0.276

*Test set compounds

3.2.2 Descriptor calculation & data preprocessing

Descriptors are the numerical representation in which we correlate the chemical structure with any
physiochemical property/biological activity/ toxicity. In this study, a total of 9 classes of descriptors

were calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/alvadesc/) [104]. In each

dataset, the defective and inter-correlated chemical descriptors were eliminated by V-WSP1.2
(http://teqip.jdvu.ac.infQSAR_Tools/) software with a standard deviation less than 0.0001 or
correlation coefficient greater than 0.95.

3.2.3 Dataset splitting

Dataset division is crucial for QSTR model development. Normally, training set compounds are used
to develop the model and test compounds for validation. The validation set is used to assess the model
performance and fine-tune the parameters of the model. It tells us how well the model is learning and
adapting, allowing for adjustments and optimizations to be made to the model's parameters and
hyperparameters (the latter in the case of machine learning-based models) before it is finally tested.
The test data set mirrors real-world data the model has never seen before, i.e.: a separate sample of
unseen data. Its primary purpose is to offer a fair and final assessment of how the model would perform
when it encounters new data in a live, operational environment. This is especially critical to evaluate
models effectively along with preventing overfitting [105]. We performed dataset division of four
datasets by using rational methods such as the Kennard stone, activity property-based, and Euclidean
distance method using Dataset Division GUI 1.2 software as well as using random division method
[106]. We also employed modified k-medoid clustering by using Modified k-Medoid 1.3
(http://teqip.jdvu.ac.in/QSAR_Tools/) [107]. After that, the final selection of data-set division methods

was done based on the statistical results. The best results come in the Kennard stone method for the
MD and JQ data set, the activity property-based method for the BQ dataset, and the random division
method for the RNP dataset. In this process of dataset division, the datasets are divided into 75:25

ratios of training and test sets compounds [108].
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3.2.4 Selection of features and model building

In the case of model building, feature selection is one of the important phases by which we can find
significant descriptors to boost the interpretability and predictive ability of the model [109]. Primarily,
we performed a step-wise regression method and genetic algorithm (GA) approaches for feature
selection [110] and then we employed the regression-based partial least square (PLS) [111] method
through Partial least squares v1.0 tool (http://tegip.jdvu.ac.in/QSAR_Tools/) for model generation.
3.2.5 Validation metrics of QSTR models

A significant step in the formation of a QSTR model is statistical validation, which establishes it’s
reliability and predictivity [54]. Various internal validation parameters were calculated which involve
the determination coefficient (R?), and leave-one-out (LOO) cross-validated correlation coefficient
(Q%,5) to judge the reliability and importance of the model. External validation parameters
demonstrate the predictivity of QSTR models. The model’s external validation is determined using
parameters such as Q2,and Q2, [112]. For both internal (Q2,,,) and external predictive parameters

(Q%,,0%,), the approved threshold value is 0.5.

WORK FLOW Data set from literature with experimental ‘—_
log(pLDs,) value

| Chemical structure were downloaded from “pubchem” and draw using Marvin Sketch |

[ 0ECD Principtes2 | 1

Data set Division -

Test set

PLS

Model
Devolopment

Train

Test ‘

I Explanation of Encoded Features l

Fig. 4. Workflow of QSTR model development.
3.2.6. Prediction using read-across algorithm
According to the fundamental tenet of read-across, substances with similar chemical structures will
also have comparable attributes and it is not utilized in the model development process [113]. Read-

across prediction is a similarity-based non-testing technique that is widely used in eco-toxicological
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data-gap filling. Initially, the training set of the best model was split into sub-training and sub-test sets.
These sets were again used to optimize the hyperparameters through Read-Across-v3.1

(http://tegip.jdvu.ac.in/QSAR_Tools/). After similarity-based sorting, similarity threshold values (0 to

1), various distance threshold values (1 to 0), and the numbers of most similar training compounds (2
to 10) were applied. The best setting of hyperparameters obtained from sub-training and sub-test was
applied to the original training and test set for the final prediction [114].

3.2.7. Applicability domain study of the model

The applicability domain (AD) of a QSAR model has been defined as the chemical structure and
response space, considered by the properties of the molecules in the training set [54]. The AD
expresses the fact that QSARs are undeniably associated with restrictions in the categories of
physicochemical properties, chemical structures, and mechanisms of action for which the models can
generate reliable predictions. In the current study, distance to the model in X-space (DModx) has been
utilized for AD estimation of constructed PLS models which rely on residuals of response and
predictive variables [115].

3.2.8 Y-randomization study

Y-randomization study was carried out to check the chance correlation of the QSTR models with the
help of SIMCA-P software [116]. In the Y-randomization test, the descriptor matrix X is kept constant
but only the vector Y is scrambled randomly, and a new model is developed using the same set of
descriptors. The original model is considered as robust if its validation metrics are better than the
random models [117]. The values of the R2yrang intercept and Q?yrang intercept should not be more than
0.3 and 0.05 respectively.

3.2.9 Analysis of parametric assumptions of the developed models

To ensure that our model is reliable we carried out some diagnostic tests to check for the existence of
multi-collinearity, normal distribution, and homoscedasticity [118-119]. Multicollinearity is when the
predictor variables within a regression model are highly correlated with each other, leading to
inaccurate results in regression analysis. To identify multicollinearity, we used the variation inflation
factor which is a widely used metric. If the VIF is higher than 5, multicollinearity is considered to be
present [120]. In statistical regression models, exhibiting multicollinearity can lead to misleading
results. For each modeled descriptor, we found that the VIF values were very close to 1. So, it can be
concluded that all the independent variables are not collinear with the dependent variable. The function
values follow a multidimensional normal distribution with a mean and covariance matrix that depends

on the descriptor vectors. We have plotted the normal distribution curve for each (MD and RNP) avian
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species and provided in Figs. 5-6. Homoscedasticity refers to the equal variance of an error in a
regression model assessed using the Breusch-Pagan test in our study. A p-value of more than 0.05
indicates the homoscedasticity of the model. In our study, the calculated p-values were not less than
0.05 (0.093-0.209) for all the developed models. Therefore, we fail to reject the null hypothesis, and
the model can be considered homoscedastic in nature. All the statistical results of Homoscedasticity

and multicollinearity (VIF) for each model are provided in Tables 6-7.

12 06

MD RNP

Fig. 5. Normal distribution curve of MD and RNP.

Table 6. Variance Inflation Factor (VIF) results for each model.

MD RNP
Variables VIF Variables VIF
MW 11 XA 1.0
C-012 11 NRCONHR 1.0
BO7[O-P] 12 N(CO)2 1.0
Br-094 1.0 B04[C-P] 1.2
BOS[C-P] 1.2 BOS[P-CI] 1.2
FO4[C-CI] 1.1 FO3[0-S] 1.0
Table 7. Homoscedasticity test results for each model.

Metrics MD RNP

P-value 0.158 0.093

Test statistics 9.29 7.96
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3.2.10 Application of other machine learning (ML) algorithms

To estimate the prediction performance of other algorithms, we have employed two different state—
of—the—art ML algorithms namely support vector machine (SVM) and Random forest (RF) using the
orange data mining tool [120]. The hyperparameters were adjusted to tune the model for optimal
performance. The prediction qualities of the ML models were evaluated in terms of R?, Q? oo, and
MAE values.

3.2.11 Classification QSTR (LDA-QSTR) model development

In the present work, we have developed a classification-based linear discriminant analysis (LDA)
QSTR model from the selected set of features and evaluated its performance for its predictive ability.
The model development is done using Classification-Based QSAR_v1.0.0 tools (available at

http://teqip.jdvu.ac.in/QSAR_Tools/). The model was extensively validated based on different internal

and external classification metrics (area under the ROC curve (AUC), accuracy, precision, sensitivity,
F-measure, and Matthews correlation coefficient (MCC) [121-122].

3.2.12. Screening of the Pesticide Properties Database

We have collected 1903 chemical data from the Pesticide Properties Database (PPDB) available at
(http://sitem.herts.ac.uk/aeru/ppdb/). Knime curation was done to remove duplicates, inorganic salts,

and mixtures using the KNIME workflow. Due to the knime curation, some compounds were removed.
After the curation, the remaining 1694 compounds were used for the screening process to check the
developed model’s reliability. The descriptors for these molecules were calculated using the same
procedure as in the QSAR modeling process. The predictions were made through the use of individual
QSTR models with the help of the PRI (Prediction Reliability Indicator) tool
(http://tegip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the predictions into three distinct groups:

good (composite score 3), moderate (composite score 2), and bad (composite score 1). Additionally,
the tool determines the localization of compounds inside the AD. The screened compounds were
ranked on the basis of their predicted toxicity and the twenty highest and least toxic compounds which
exhibited toxicity towards all four avian species were analysed. The results were further validated
extensively based on experimental data reported previously, to establish the real-world applicability
of the developed QSTR model.

3.3 Study 2

3.3.1 Dataset preparation

The pesticide toxicity data for California quail were extracted from the EPA ECOTOX database

(https://ecotox.ipmcenters.org). The toxicity end-point values range from -0.99 to 2.50. The collected
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data were curated carefully to eliminate the inorganic salts and organ-metallic compounds from the
initial dataset to maintain homogeneity [123]. We have used the remaining 35 compounds with the
definite endpoint (LDsp) for the model development. For ease of interpretation, the toxicity endpoint
values (LDso) were transformed to a negative logarithmic scale (pLDsp). The molecular structures of
the compounds were drawn by Marvin sketch software with the addition of explicit hydrogen atoms

and proper aromatization.

Table 8. Compounds smiles name with respective experimental pLDsg values.

Sl. No. Smiles pLDso
1 COP(=0)(0OC)OC(=CC(=0O)N(C)C)C 2.098
2* CCOP(=S)(0OCC)OC1=NC(Ch=Cc(Chc=C1CI 0.710
3 COP(=S)(0OC)0OC1=CC=C(C=C1)SC2=CC=C(C=C2)0OP(=S)(OC)OC 1.392
4* CIC1=CC=C(C=C1)C(C1=CC=C(Chc=Cc1)c(cncnci -0.224
5 CCC(=0)0oc(c(cn(cncnp(=0)(oc)oc 0.723
6 CC1=C(C=CC(=C1)OP(=S)(0C)OC)SsC 1.268
* CCOP(=0)(0CC)SC1=CC=C(C=C1)[N+](=0)[O-] 1.236
8 C1CN2CC3=CCOC4CC(=0)N5C6C4C3CC2C61C7=CC=CC=C75 0.475
9 ClCa2c(c(crcnencs(c(=c(cz2(cscnenenenencl 1.463

10* C(C(=0)[O-])F 1.221
11 CNC(=0)0C1=CC=CC2=CC=CC=C21 -0.997
12 C1C2C3C(C1C4C204)Ch(C(=C(c3(cs(cnechenenencl 2.505

13 CCOC(=0)CC(C(=0)OCC)SP(=S)(0OC)OC.COC1=CC=C(C=C1)C(C2 | -0.471
=CC=C(C=C2)OC)C(CI)(CI)CI

14 C1=CC(=CC=C1C(C2=CC=C(C=C2)CI)C(CICI)CI -0.375
15 C1=CC(=C(C=C10)C(F)(F)F)[N+](=0)[0-] -0.420
16 CC(C)OC1=CC=CC=C10C(=0)NC 0.907
17* CCOP(=S)(OCC)OC1=CC=C(C=C1)S(=0)C 2.413
18 CNC(=0)O/N=C/C(C)(C)SC 1610
19 P(SCCS(CC)=0)(0C)(0C)=0 0.713
20 CC1=CC(=CC(=CIN(C)C)C)OC(=O)NC 1.493
21 CNC(=0)0OC1=C2C=CSC2=CC=C1 -0.349
22 CNC(=0)0OC1=C2C=CSC2=CC=C1 -0.732
23* CCOP(=S)(C1=CC=CC=C1)0C2=CC=C(C=C2)[N+](=0)[O-] 0.949
24 COP(=S)(OC)OC1=NC(=C(C=C1CI)CI)CI -0.015
25 CC1(C2C(C(CL(C(C2CICI)C(CHCICHCHC(CI)CI 1.242
26* CCOP(=0)(OCC)SCCSCC 1.386
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27 CC(=CC1C(C1(C)C)C(=0)OCC2=COC(=C2)CC3=CC=CC=C3)C -0.771
28 CC1=CC(=C(C(=C1)OC(=0)NC)C)C -0.003
29 FIAs-1(F)(F)(F)(F)F -0.083
30 COP(=S)(C1=CC=CC=C1)0C2=CC(=C(C=C2CI)Br)ClI 1.149
31 CCOP(=0)(NC(C)C)OC1=CC(=C(C=C1)SC)C 2.219
32* | CC1(C(C1C(=0)0OCC2=COC(=C2)CC3=CC=CC=C3)C=C4CCCC4)C | 0.418
33 CNC(=0)OC1=CC=CC=CICCCSC 0.366
34 CC(=NOC(=0)NC)SCCC#N 0.888

*Test set compounds

3.3.2 Calculation of descriptor & data pretreatment

Molecular descriptors are the numerical representation of chemically comprised values that correlate
molecular structure with physicochemical or biological properties [124]. In this current work, we have
computed various 2D descriptors such as constitutional indices, ring descriptors, topological indices,
connectivity index, functional group counts, atom-centered fragments, atom type E-states, 2D atom
pairs molecular properties, and ETA indices using AlvaDesc software version 2.02
(https://www.alvascience.com/alvadesc/) [104]. The unnecessary descriptors (descriptors with a fixed
value, highly inter-correlated descriptors, low diverse descriptors, etc.) were removed by employing
the data pretreatment tool V-WSP v1.2 (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab) [106] with

inter-correlated coefficient |r] > 0.95 and variance < 0.0001. were eliminated using the data

preprocessing technique.

3.3.3 Splitting of dataset

Dataset splitting into training and test sets ensures the predictivity of the model during model
development. In our present study, the data-set splitting was performed using various dataset division
methods, such as Kennard stone, Euclidean distance, activity property based [106] and modified k-
medoid clustering technique [107] by using “Dataset Division GUI” version 1.2 and “Modified k-
Medoid” version 1.3 software tool correspondingly (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab).

However, the best result was obtained from the Euclidean distance division.
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Fig. 6. Schematic depiction of QSTR model generation.

3.3.4 Feature selection & model generation

Selection of appropriate descriptors constitutes a crucial step before model generation feature selection
shrinks the original variable set to obtain a variable sub-set by removing redundant and irrelevant
variables, which improves the model’s interpretability and predictivity [125]. In the present study, the
variable selection was performed using stepwise regression (using Minitab 14 software) [126] and
Genetic algorithm (GA) (employing Genetic algorithm 4.1 tools) [106]. The obtained reduced pool of
descriptors was subjected to Best-Subset selection2.1 [127] to identify the most significant descriptors
for model building. In the current work, the PLS regression approach was adopted to construct the
final QSTR models.

3.3.5 Statistical validation of the constructed model

In this work, various statistical validation approaches are employed for measuring robustness and
prediction accuracy to establish the significance and reliability of the constructed model using both

internal and external validation metrics. For statistical quality assessment as well as internal validation,
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we calculated metrics such as the determination coefficient (R?) and leave-one-out cross-validated
correlation coefficient (Q%Loo)) [127]. Internal validation metrics are not enough to assess the
performance of the developed model in terms of robustness and predictive ability; therefore, we also
validated the predictions for test set compounds using various external validation parameters such as
Q%m1, Q% and CCC (Concordance Correlation Coefficient) to estimate the significance of the
developed model. For a better understanding of the prediction quality, we also calculated mean
absolute error (MAE) [128]. The approved threshold value for Qi ooy and external validation
parameters (Q%r1, Q%) is 0.5 [128].

3.3.6 Intelligent Consensus Prediction (ICP)

Different classes of descriptors were employed to develop a well-validated QSAR model, which
represents various structural and molecular features. An individual QSAR model may either
exaggerate some of the descriptors underrate a few descriptors or may completely disregard a few
significant features [129]. Thus, consensus models should be generated utilizing individual models. In
ICP, we evaluate the consensus model’s performance and correlate it with the individual MLR model-
derived prediction quality (95%) based on the MAE criteria. Therefore, in our present study, we
execute consensus modeling of selected five PLS-based QSTR models(M1-MS5) using the “Intelligent

Consensus Predictor (ICP) PLS version 1.2” tool (available at http://dtclab.webs.com/software-tools)

to investigate the prediction quality of test set compounds which may be improved by an “intelligent”
selection. Four distinct methods of consensus prediction were employed as outlined below:

Model 0 (CMO0): This involves calculating the simple average of predictions obtained from each
individual model.

Model 1 (CM1): Here, predictions from all eligible individual models are averaged using arithmetic
mean.

Model 2 (CM2): Predictions from qualified individual models are averaged with weights assigned to
each, creating a weighted average.

Model 3 (CM3): The selection of the best prediction for each compound is determined compound-
wise from all eligible individual models.

Consensus predictions are precise enough and depend on numerous models rather than a single model
[130]. Here prediction was performed by considering the Dixon Q-test, AD criteria, and Euclidean
distance [130].
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Fig. 7. Workflow of Intelligent Consensus Prediction.

3.3.7 Applicability domain (AD) study of the developed models

The applicability domain (AD) of a QSAR is the physicochemical, structural, or biological space,
enclosed by model descriptors and response on which basis the training set of the model has been
developed, and which may be useful for the prediction of novel compounds. Whether the assumptions
of the model are satisfied or not is determined by AD. Usually, in this regard, interpolation occurs
rather than extrapolation [131]. AD of the developed models was assessed using the DmodX approach
using SIMCA-P10.0 software. The basic idea of the DModx approach is based on the residuals of the
Y matrix (response variable) and residual of the X matrix (predictor variables) which are of diagnostic
value for the quality of the model. The residual standard deviation of the X-residuals of the
corresponding row of the residual matrix E offers a summary for each observation as there are large
numbers of X-residuals. The standard deviation (SD) is proportional to the distance between the data
point and the model plane in X-space, usually called DModX (distance to model in X-space). Here, E
is the (NxK) matrix of X-residual, N is the number of observations, and ‘k’ is the index of X-variables
(K=1, 2, 3, 4..., K). If the DModX value is larger than around 2.5 times the overall SD of X-residuals,
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then the observation is considered to be outside the AD [111].

3.3.8 Y-randomization study

Y-randomization study has been performed to analyze and confirm whether the developed models are
produced by any chance [132]. Here, Y-randomization plots are generated for final PLS-based models
through the SIMCA-P software [116]. In randomization, the dependent variables were scrambled
randomly while keeping the descriptor matrix constant, and by using the same set of variables from
the original set, new models were built. The validation metrics obtained from the randomized model
should be poorer than the original model otherwise that model should be considered to be developed
by any chance [133].

3.3.9 Application of the constructed model on a prepared external dataset for data gap bridging
The capacity of a generated model is defined by its ability to determine the response value of unknown
compounds. The developed models were employed to screen the pesticide property database (PPDB)
[134] for potential toxicants in California quail by using the prediction reliability indicator (PRI) tool
[135]. The PRI tool includes AD estimation and enables the categorization of the prediction quality of
an external set [136].

3.4 Study 3

3.4.1. Collection, curation, and preparation of toxicity dataset

The toxicity data against wild birds with LDse endpoint was collected from the TOXRIC database

[137] (available from https://toxric.bioinforai.tech/) and used for toxicity modeling. Before model

generation, we prepare the dataset and curate the data to eliminate duplicate compounds, salts, and
impurities. The endpoint values (LDso) were converted to a negative logarithmic scale to modify the
wide range of LDs into a narrow range and for easy interpretation. Marvin sketch 5.11.5 software

(available from https://chemaxon.com/) was executed for drawing structures followed by their

structure optimization by adding explicit hydrogen and transforming to aromatic form.

Table 9. Compounds smiles name with respective experimental pLDso values.

Sl. No. Canonical SMILES pLDso
1* S=P(N1CC1)(N1CC1)N1CC1 4.527
2 CICL1C(ChC(Chc(chc(chcicl 3.715
3 0=C(0)C=Cclcccccl 3.170
4 CCC1C2CC3C4AN(C)c5ceeec5C45CC(C2C50)N3C10 3.263
5 0O=C1c2ccccc2C(=0)c2clcec(0)c20 2.880
6 CC=Cclcc(0C)c(0C)cclOC 2.443
7 CNC(C)C(O)clcccccl 2.468
8 Oclcccc(0)c10 3.225
9 O=[N+]([O-])clcccc([N+](=0O)[O-])cl 3.602
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10 O=[N+]([O-])clccc(O)c(I[N+](=0)[O-])cl 4.151
11 CIC1=C(CI)C2(CI)C3C4C=CC(C4)C3C1(Chc2(ChClI 4.704
12 Nclncn(C20C(CO)C(0)C20)c(=0)nl 3.387
13 C#CC(O)(C=CcCI)CcC 3.536
14 NC(Cclccc(0)c(0)c1)C(=0)0 3.294
15* CNC(=0)ON=C(C)SC 4.210
16 COclccc2c(cl)N(CC(C)CN(C)C)elcecceclS2 3.516
17 Nclccc(O)ccl 3.288
18 N#Cclccc2c(c1)N(CCCN1ICCC(O)CC1l)clccccclS2 3.562
19 | COC(=0)C1C2CC3c4[nH]c5cc(OC)cec5c4CCN3CC2CC(OC(=0)c2cc(OC)e(O | 3.784
C)c(0C)c2)C10C
20 COP(=S)(0C)Oclcc(Cl)c(Cl)cclCl 3.604
21* Sclcceecl 3.661
22 NclccncclN 3.162
23 CCOC(=0)clccc(N)ccl 3.469
24 CS(=0)(=0)OCCCCOS(C)(=0)=0 3.641
25 Nclccnccl 4,599
26 CCCCOclcc(C(=0)NCCN(CC)CC)c2cceee2nl 3.912
27 O=[N+](JO-])clcc(Clce(-c2ce(Cl)ec([N+](=0)[0-])c20)c10 4.424
28 OCCN1CCN(CCCN2c3cccee3Sc3cec(Cl)ec32)CCl 4.101
29 CN(C)C(=S)SSC(=S)N(C)C 2.904
30 CC=Cclccc(OC)ccl 2.671
31 COC12C(COC(N)=0)C3=C(C(=0)C(C)=C(N)C3=0)N1CCINC12 4.649
32 CN1CCCClclccencl 3.959
33 CNC(=0)Oclcccc2ccecccl? 3.555
34 0=C(0)O 2.792
35 COP(=0)(OC)C(O)C(Ch(cncl 3.842
36 COclcc2c(c(0C)c10C)-cleec(OC)c(=0)cclC(NC(C)=0)CC2 4.101
37 CCN(CC)C(=0)C1C=C2c3cccca[nH]cc(c34)CC2N(C)C1 5.254
38* C1CN1clnc(N2CC2)nc(N2CC2)nl 4.852
39* C(#CCN1CCCC1)CN1CCCC1 3.284
40 C1CN1P1(N2CC2)=NP(N2CC2)(N2CC2)=NP(N2CC2)(N2CC2)=N1 3.197
41 CCOP(=S)(0CC)Oclcc(C)c(SC)e(C)el 4.882
42 COP(=S)(0C)Oclcce(S(=0)(=0)N(C)C)ccl 5.257
43 COP(=S)(0C)0Oclcc(C)c(SC)c(C)cl 4.465
44* COP(=S)(0C)Oclcce(SC)e(C)cl 5.330
45 CCOP(=S)(0OCC)Oclccc([N+](=0)[O-])ccl 5.340
46 CCOP(=S)(OCC)Oclccc2c(C)e(Cl)c(=0)oc2cl 5.309
47 CNC(=0)CSP(=S)(0OC)0OC 4.540
48* COP(=0)(OC)OC=C(CIhCI 4.265
49 0O=C(O)CF 4517
50 CNC(=0)Oclccec(C(C)C)el 4.781
51* COS(C)(=0)=0 3.292
52 0O=C1CC20CC=C3CN4CCC56¢c7ccccc7/N1C5C2C3CC46 4.320
53 Cclcec(S(N)(=0)=0)ccl 3.358
54 CCC(=0)clcce(N)ccl 3.049
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55 CCCCO 1.472
56 CCclcce(C(c2cec(CC)ec2)C(ChHClhecl 1.533
57 CCC1(C(C)C)C(=O)NC(=0O)NC1=0 3.917
58 NNC(N)=S 4.000
59 CC(C)(0O)C(C)(O)clccec(Cl)ecl 3.826
60* C[n+]1c2cc(N)ccc2cc2ccc(N)cc2l 3.601
61 COP(=S)(OC)SCnlnnc2cccec2c1=0 4,572
62* COclcc(C=0)cc(0C)c10C 2.667
63* Cclcc(OC(=0O)N(C)C)n(-c2cceec2)nl 3.798
64 Cclc(N)cceclCl 2.776
65 NC(=0)clccccclN 2.134
66 Nclcccccl[N+](=0)[O-] 2.265
67* CCC(C)clcc(I[N+](=0)[O-]ecc(I[N+](=0)[O-])c10 4.529
68* O=[N+](JO-])clcc(Cl)c(Cl)cclCl 3.355
69 COclcccccIN 2.465
70 COclcc(C=CC(=0)0)cc(0C)c10C 2.751
71* CN(C)clcee(C(=0)c2ccc(N(C)C)ec2)ecl 3.428
72 Cclc(N=C=0)ccccIN=C=0 3.240
73 0O=C(O)clccc2cccee2nl 3.238
74* CclccccclF 3.041
75 NclccceclN 2.910
76 Cclccc(N)cclC 4.335
77 Cclcc(Cl)cecclN 3.276
78 Nclcce(Cl)e(Cl)cl 2.834
79* OCC(O)CClI 3.668
80 0=C(O)clccc(Chc([N+](=0)[O-])cl 3.429
81 CCOP(=S)(0OCC)Oclccc(Cl)cclCl 4.352
82* 0=S(=0)(0O)clcccecl 3.324
83 0=C(O)clcceenl 2.839
84 Nclccee(C(=0)0)cl 2.262
85 CC(=0)clccc(N)ccl 3.007
86 Nclccc([N+](=0)[O-])ccl 3.265
87 CN(C)clcec(N(C)C)ecl 3.840
88 C=Cclccnecl 3.021
89 COclccc(OC)c(N)cl 3.185
90 Nclcce(Clyecl 3.105
91 Cclcce(N)ccl 3.406
92* CCOP(=0)(0OCC)OP(=0)(0CC)OCC 5.348
93 CCOP(=0)(0CC)Oclcc(C)[nH]n1 3.767
94 Cclccec(N)cl 2.646
95* Nclccee(N)cl 2.260
96 Cclcencel 2.343
97 Cclccencl 1.969
08 Oclccencl 2.103
99 Clclcccenl 2.055
100 OCC#CCO 3.059
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101 CCN(CC)C(=0)C1CN2CCc3cc(0C)c(0C)cc3C2CC10C(C)=0 3.606
102 CNC(=0)OclcccecclOC(C)C 4.740
103 0=S10CC2C(CO1)CL(ChC(Ch=C(ChC2(ClhC1(ChCI 4.065
104 CCOP(=S)(0OCC)Oclcce(S(C)=0)ccl 6.108
105* CNC(=0)ON=CC(C)(C)SC 5.404
106 NclccceclC(=0)O 2.262
107* COclcc(OC)c([N+](=0)[O-])cclClI 3.337
108 Cclccc(N)ccl[N+](=0)[O-] 4.677
109 Cclcc(OC(=0)N(C)C)n(C(C)C)nl 4.390
110* CNC(=S)C(=S)NC 4.295
111* COC(=0)C=C(CC(=0)0C)OP(=0)(0C)0OC 5.472
112* COP(=S)(0C)Oclccc([N+](=0)[O-])c(C)cl 4.401
113 0O=C1C=CC(=0)c2ccccc21 3.075
114* CN(C)clcec(N=NS(=0)(=0)O)ccl 4.105
115 COP(=0)(0OC)OC(C)=CC(=0O)N(C)C 5.375
116 N#C[Na] 4.088
117 CN(C)P(=0)(OP(=0)(N(C)C)N(C)C)N(C)C 4.415
118* clncnenl 2.908
119 CIC1=C(ChC2(ChCc3c(Choc(cnhcacicncz(cncl 5.614
120 CCOP(=S)(0OCC)Oclcncenl 5.011
121* COP(=S)(0C)Oclccc([N+](=0)[O-])ccl 4,721
122 CCOP(=S)(0OCC)SCscCC 5.415
123 CCOP(=S)(0OCC)Sccsce 5.058
124* CNP(=0)(0C)Oclccc(C(C)(C)C)eclCl 3.465
125 CCS(=0)CCSP(=0)(0C)0C 3.768
126 CN(C)CCCN(C)C1CCC2C3CC=CACC(O)CCr4(C)c3ceeaic 2.964
127 CNC(=0)Oclcc(C)c(N(C)C)e(C)cl 5.346
128* CCC1CN2CCc3cc(0C)c(0C)cc3C2CCICCINCCe2cc(0C)c(0C)cc21 3.932
129 CCOP(=S)(CC)Oclcc(Cl)c(Cl)cclCl 5.319
130* CNC(=0)Oclcc(C(C)C)ee(C(C)C)el 4.371
131 CCOP(=S)(N=C1SCCS1)0CC 5.178
132 CCOP(=S)(0CC)Oclcc(C)nc(C(C)C)nl 5.182
133 CC(=0)clccencl 2.832
134 Nclccc(F)ccl 3.045
135 Nclccce(F)cl 3.297
136 Cclccc(N)cclF 4,983
137* Cclccc(N)c(F)cl 3.097
138 Nclccencl 3.849
139 CCOP(=0)(0OCC)OC(=CCl)clccc(Cl)cclCl 4.441
140 0O=C1CC(c2cccec2)Oc2ccccc2l 3.475
141 COP(=S)(0C)Oclccc([N+](=0)[O-])c(Cl)cl 4.172
142* Nclcccenl 3.474
143 0=C1C=Cc2ccccc2C1=0 3.324
144* COclccec(N)cl 2.340
145* Nclcee(l)ccl 3.340
146* CICCN(CCCI)CCCI 3.811
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147 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 3.931
148 CCclccccclN 2.208
149* Cclccc(N=C=0)ccIN=C=0 3.240
150 OCclcenccl 2412
151 OCclcccenl 2.162
152 CCclccee(N)cl 2.583
153 CCclccc(N)ccl 3.208
154* Nclccee(O)cl 2.663
155 Cclcee(Cl)c(O)cl 2.404
156* Nclccc(N)ccl 3.034
157 Clclccencl 2.180
158* Nclccc(Cl)e([N+](=0)[O-])cl 3.236
159 Cnlcc(NC(=0)c2cc(NC(=0)c3cc(NC=0)cn3C)cn2C)cc1C(=0)NCCC(=N)N 3.825
160 CCCC1CCCCN1 3.354
161* NC(=0)CF 4.137
162 Cclcc(OC(=0O)N(C)C)nn1C(=0O)N(C)C 4.426
163* CNC(=0)Oclcc(C)c(Cl)c(C)clCl 3.394
164 CNC(=0)Oclcc(C)c(C)eclCl 5.079
165* CCclcc(OC(=0)NC)c(Cl)c(C)c1Cl 4.304
166* CNC(=0)Oclcc(C)c(Cl)c(C)cl 3.329
167 CCC(C)clccec(OC(=0O)NC)c1 4.653
168 O[n+]1cccecl 1.982
169 COP(=S)(OC)SCN1C(=0)c2cccecc2C1=0 4.246
170 CCCN(CCC)C(=0)SCC 3.277
171 CCOP(=S)(0OCC)SCSclcce(Clyccl 4.786
172* CCN(CC)CCCI 3.509
173 N#Cclccc(N)ccl 3.697
174* CC(=0)O[Sn](clccceel)(cleeccccl)cleccecl 3.592
175 CC(C)OS(C)(=0)=0 2.682
176* CCOP(=S)(CC)Sclcceecl 4.391
177* CCOP(=0)(N=C1SCCS1)0CC 5.032
178 COP(=S)(0OC)SCSclcce(Cl)ccl 4.242
179* clccc(C2(N3CCCCC3)cceee2)ecl 4.638
180 Cclcc[n+](O)ccl 2.042
181* CC(=O)NN 3.244
182* CNC(=0)Oclcccc2scecl?2 4.066
183* Onlcccecl=S 3.104
184* CC(=0)clcceenl 2.083
185 O=[N+](JO-])clcc[n+]([O-])ccl 4.243
186 CNC(=0)Oclccec(C)cl 3.218
187 Nclcce(C(=0)c2ccecc2)ccl 2.545
188 COP(=S)(0C)0Oclccc(S(=0)(=0)c2cec(OP(=S)(0C)O0C)cc2)ccl 4.074
189* COC(=0)C1C2CC3c4[nH]c5cc(OC)cec5c4CCN3CC2CC(OC)C10C 3.632
190 CNC(=0)Oclccec2c10C(C)(C)C2 5.721
191 CCCC(=0)clccc(N)ccl 3.587
192* N#Cclcc(1)c(O)c(l)cl 3.859
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193* N#Cclcc(Br)c(O)c(Br)cl 3.743
194* CCCCCCCC(=0)Oclc(Br)cc(C#N)cclBr 3.362
195* CNP(=0)(NC)Oclcccecl 4.187
196 CCOP(=S)(0OCC)OC(=CCl)clcc(Cl)ceclCl 3.699
197 CSclccec(N)cl 2.268
198* CC(=0O)Nclccc(N=NN(C)C)ccl 3.566
199 CNC(=0)Oclcccccl 3.179
200 CclcnccclN 4.653
201 CNC(=0)Oclccc(N(C)C)c(C)cl 3.619
202* CNC(=0)Oclcc(C)c(SC)c(C)cl 4.972
203 CCOP(=S)(Oclccc([N+](=0)[O-])ccl)clcccccl 5.134
204* CNC(=0)O0clcc(C)c(S(C)(=0)=0)c(C)cl 5.155
205 CCNP(=0)(0C)Oclcc(Cl)c(Cl)cclCl 3.754
206 N#Cclcccc(N)cl 2.322
207 CNC(=0)C(C)SCCSP(=0)(0C)OC 3.914
208 CNC(=0)Oclccc(Cl)c(C)cl 3.300
209 CCl10CC2C(Co1)ci(cnc(cn=ccneczcncicncl 3.888
210 CNC(=0)Oclccc(Cl)cel 3.268
211 CNC(=0)Oclcc(C)ce(C(C)C)cl 4.617
212 CNC(=0)OclccccclC(C)C 3.536
213* CNC(=0)Oclcc(C)c(S(C)=0)c(C)cl 3.759
214* COP(=S)(0C)Oclccc(C#N)ccl 4.908
215 CNC(=0)Oclcc(C)ce(C)cl 3.378
216 CCOP(=S)(OCC)ON1C(=0)c2ccec3ccec(c23)C1=0 4.312
217 COclcc(Cl)c(OC)cclCl 1.617
218 CNC(=0)Oclcc(C)c(C)e(C)cl 4.286
219 CCNP(=0)(0CC)Oclcc(Cl)c(ClycclCl 4.141
220* CCC(C)clcee(Cl)e(OC(=0)NC)cl 5.003
221 CCOP(=S)(0CC)Oc1nc(Cl)c(Cl)cclCl 4.845
222* CCP(=S)(0C)Sclcec(C)eel 4.643
223* S=P(NC1CCCCC1)(N1CC1)N1CC1 4.389
224* COP(=S)(0C)Oclcce(SC)ecl 5.723
225 COP(=S)(0C)0Oclcce(SSc2cec(OP(=S)(0C)OC)cc2)ccl 5.521
226 COP(=S)(0C)Oclcce(Sc2cec(OP(=S)(OC)OC)cc2)ccl 4.163
227 Nclcc[n+](JO-])ccl 3.112
228 NC(=O)clccec(N)cl 2.134
229* CNC(=0)Oclccec(SC)c(C)cl 3.722
230 CCCCNCC1COc2ccec(0CC)c201 3.423
231* CN(C)P(=S)(N1CC1)N1CC1 4.157
232 CCCCCCCC(=0)Oc1c(h)cc(C#N)ccll 2.696
233* CNC(=0)Oclccc(C)c(C)clC 3.662
234 COP(=0)(0C)Oclcc(Clhe(ClyeclCl 4.229
235 CC(N)=NP(=S)(Oclccc(Cl)ccl)Oclceec(Cl)ecl 4,951
236* CCOC(=O)NN 3.642
237 COclcc(0OC)c(0OC)cclC=0 2.667
238* CC(N)Cclccc(Cl)e(Cl)el 3.434
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239 CCOP(=S)(0OCC)Oclcc(Cl)c(Br)cclCl 4.283
240 CC(=0)Nclcenccl 4.020
241 CC1=C(C(=0O)Nc2ccccc2)SCCO1 3.746
242 CN(C)C1CC(c2cceec2)c2cecccc21 3.500
243 COP(=S)(0C)Oclnc(Cl)c(Cl)cclCl 4.394
244* CC(C)OC(=0)C(0O)(clcee(Clyeel)cleece(Clyeel 2.132
245* COclcc(Cl)c(OC)cclN 3.273
246* C=CCN(CC=C)cl1c(C)cc(OC(=0)NC)cclC 4.324
247 CCOP(=S)(0OCC)SC1CcccC2C=CCC1S2 3.636
248 CNC(=0)C=C(C)OP(=0)(0C)0OC 5.445
249* CNC(=0)OclcccecclC10CCO1 4.238
250 CC(=O)Nclcce(C)e(Clhcl 5.150
251 CCNP(=S)(0C)Oclcec(C(C)(C)C)eclCl 2.729
252* COC(=0)C=C(C)OP(=0)(0C)OC 5.204
253* CC(C)=CC1C(C(=0)OCc2coc(Cc3cccce3)c2)CL(C)C 3.654
254* OCC(co)(ccnccl 4.857
255* CCN(CC)C(=0)C(CI)=C(C)OP(=0)(OC)OC 5.223
256* CCCSP(=0)(0CC)scccC 4.760
257 Clclccc(C2NCCNCc3cccec32)ccl 3.435
258 CNC(=0)Oclcce(SC)e(C(C)C)cl 5.123
259 O[N+]1=NC2CC1C1C2C2(ChC(Ch=C(ChC1(Cl)C2(CICI 4.186
260 CCOP(=S)(OCC)ON=C(C#N)clcccccl 4.724
261 | CC1CCC2(0)C3(C)CC4(O)OC2(C10)C1L(0)C3(0)C(OC(=0)c2ccc[nH]2)C(0) | 5.443
(C(C)C)c41C
262 OCC(0O)C10Cc20Cc(c(cn(cncnocacio 4.536
263* CCC(C)(C)clcee(Cle(OC(=0)NC)cl 4.453
264* Nclnc(-c2cceec2)nsl 3.498
265 CCNC(=0)Ocl1ccc([N+](=0)[O-])ccl 3.447
266* CCCCNC(=0)n1c(NC(=0)OC)nc2ccecc2l 3.462
267 COP(=0)(0C)OC(=CCl)clcec(Clhc(CheclCl 3.563
268* Cclnc(N(C)C)nc(OC(=0O)N(C)C)c1C 3.900
269 CCOP(=S)(0OCC)Oclcc(C)nc(N(CC)CC)nl 5.045
270 COP(=S)(0C)Oclcce(Sc2cec(OP(=S)(0OC)OC)c(C)c2)cclC 4.995
271 CNC(=0)ON=C(C)SCCC#N 4.678
272* COP(=0)(NC(C)=0)SC 3.116
273 CCC(C(=0O)N1CCCC1C)(clccececl)cleccecl 3.612
274 CCP(N)(=S)Oclcce(SC)c(C)el 4,912
275 Cclcce(N)ccell 4,987
276 0=S(=0)(F)C1CCC(S(=0)(=0)F)C1 5.255
277* COC(=0)clcnen1C(C)clcececcl 3.857
278 CCOP(=0)(NC(C)CC)Oclcc(Cl)c(Cl)cclCl 3.681
279 CCNP(=0)(0)Oclcc(Cl)c(ClyeclCl 4.735
280 CC(C)NP(=0)(S)Oclcc(Cl)c(Cl)cclCl 4.679
281 CNP(=0)(S)OC(C)C 3.228
282* 0=P(0)(0)OC(=CCl)clccc(ClycclCl 4.976
283 CCOP(=0)(0OCC)OC(=CSCC)clccc(Cl)ecl 4.545

Page 73




Chapter 3 Materials and methods

284 CCOP(=0)(OCC)SC(C#N)=NOc1lcccccl 4.992
285* CCNP(=0)(0)Oclccc(Cl)cclCl 4.556
286 FC(F)(F)N=C1SC(=Nc2ccccc2)N(c2cccec2)C1=NC(F)(F)F 2.619
287 CCN(CC)Cclcc(Cl)ec(ClclOP(0)(=S)CC 4.928
288 CCCCSC(=Nclccencl)SCcelceec(C(C)(C)C)ecl 1.571
289 CCCCN(CCCC)SN(C)C(=0)Oclceec2c1OC(C)(C)C2 4.165
290 CCCCCCCCSC(=0)Oclcc(Chnncl-cleececl 1.578
291 OC(clcce(Cl)ecl)(clenencl)clecceclCl 3.219
292* CN(clc(Br)cc(Br)cclBr)cle([N+](=0)[O-])cc([N+](=0)[O-])cc1C(F)(F)F 5.099
293 COP(=0)(OC)ON1C(=0)c2cccc3ccece(c23)C1=0 5.126
294 CCCN(CCOclc(Chce(CheclCl)C(=0)nlcencl 2.805
295 0=C10CCCIN(C(=0)C1CC1)clccec(Chcel 2.145
296 CC(C)(C)C(O)C(Cclcce(CleclClhnlenenl 1.540
297 0O=C1C(N(CO)C(=O)NCO)N(CO)C(=0)N1CO 2.092
298 COC(=0)c1c(Cl)nn(C)c1S(=0)(=0)NC(=0)Nclnc(OC)cc(OC)nl 2.286
299 Nclcce(S)ccl 3.472
300 OCC(Br)(Br)Br 2.951
301 | CCCCCCC1C(=0)OC(C)C(NC(=0)c2ccec(NC=0)c20)C(=0)OC(C)C1OC(=0 | 5.040
)CC(C)C
302* COC1=CC(=0)c2ccccc2C1=0 2.774
303 CNC(=0)Oclccc(C)c(C)cl 3.901
304 COP(=S)(0OC)Oclccc([N+](=0)[O-])cclCl 4.297
305 COP(=0)(0C)Oclcce(SC)ecl 5.646
306 C#CCOclccceclOC(=0O)NC 3.659
307 clcce(-c2nc(-c3cececen3)ne(-c3cceen3)n2)ncl 4.744
308 CCOP(=S)(0OCC)OP(=S)(0OCC)OCC 3.508
309 C#CCOclccec(OC(=0)NC)cl 4.136
310* NCclcccenl 2.284
311* S=clcc[nH]ccl 2.170
312 CCOP(=S)(0CC)Oc1nn2c(C)cc(C)nc2c1Br 5.215
313* COP(=0)(0OC)OC(C)=CC(=0)OC(C)clcccecl 3.747
314 Cclcce(N)cclCl 4.770
315 Cclccc(N)cclBr 4.990
316* CCCOC(=0O)NCCCN(C)C 1.790
317 CCOP(=S)(0CC)Oclnn2c(C)cc(C)nc2clCl 5.038
318* CCOP(=0)(0)Sclccc(C)ecl 5.161
319 OCclcccecl 3.034
320* Nclcccecl 2.219

*Test set compounds

3.4.2. Computation of molecular descriptors and data pretreatment

The physicochemical and structural descriptors were estimated using Alvadesc software [104]. 3D-
based descriptors were omitted and only considered a pool of 2D descriptors which involved atom-
based E-state indices, constitutional indices, ring descriptors, 2D atom pairs, molecular properties,

connectivity index, functional group numbers, atom-centered fragments, and ETA indices. The
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identical and non-redundant descriptors were excluded by performing data pre-treatment using the
Data pretreatment GUI 1.2 tool (http://tegip.jdvu.ac.in/fQSAR_Tools/ DTCLab) with a standard
deviation less than 0.001 and a coefficient of correlation value greater than 0.95.

3.4.3. Dataset splitting

The dataset was divided into the training and test sets with the ratio 70:30 by “Dataset Division GUI”
version 1.2 (available from http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). The dataset splitting was

carried out by implementing various methods of dataset division such as Kennard stone, activity-
property, Euclidean distance based, and modified k-Medoid clustering techniques but the best statistics
were obtained by using the Euclidean distance-based method.

3.4.4. Feature selection and QSAR model generation

Feature selection is a significant process whose objective is to reduce the redundant, noisy, and
irrelevant descriptors towards the model generation without loss of important feature information
[138]. In the present study, suitable features are selected from the initial pool of descriptors by genetic
algorithm  using a  java-based tool  Genetic algorithm _v4.1  (available  from

https://teqip.jdvu.ac.in/QSAR_Tools/) [106]. The optimal combination of features was selected by

employing the best subset selection method [106] available from
(http://tegip.jdvu.ac.in/QSAR_Tools/). Afterward, the selected descriptors were subjected to develop

an initial partial least square model (PLS)[22] by the PLS_SingleY _version_1.0 tool (available from
https://teqip.jdvu.ac.in/fQSAR_Tools/) to diminish the intercorrelated descriptors with the optimum

number of latent variables.

3.4.5. Read-across and RASAR descriptor calculation

Read-across is a data gap-filling method based on structural similarity between a target and source
compounds in which the toxicity/activity/property of novel compounds are estimated from their
structural analouges. The read-across prediction was performed by utilizing 3 similarity-based
techniques such as Gaussian kernel (GK) based similarity, Euclidean distance (ED) based similarity
and Laplacian Kernel (LK) based similarity methods with hyperparameter optimization which includes
Sigma(o): Gaussian kernel similarity assessment, gamma(y): Laplacian kernel similarity assessment
and number of closed source compound numbers essential for quality prediction [139]. In this current
study, we have used various sigma values (0.25-2 with an interval of 0.25), various gamma values
(0.25-2 with an interval of 0.25), and the number of close source compounds within the range of 2-10
for hyperparameters optimization. Before optimization, the initial training set is split randomly into

sub-train and sub-test sets with the proportion of 3:1. The sub-train and sub-test were deployed to a
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java-based tool Read-Across-v4.1 (available from https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home) with different suggested values of 6 and y. On the other hand, other parameters

such as the number of close source compounds, the distance threshold, and the threshold of similarity
remained constant. The optimized setup has been chosen based on Q%1, Q%2 MAE, and RMSE.
Finally, the optimized set-up was applied to the original training and test sets for final prediction.
The RASAR technique integrates the concept of Read-Across and QSAR [140]. Here, the RASAR
descriptor calculation was associated with Read-across prediction followed by hyperparameter
optimization. This technique computes novel descriptors like RA function, SD Activity, SE, CVact,
CVsim, MaxPos, MaxNeg, Abs Maxpos-MaxNeg, AvgSim, SD Similarity, gm (Banerjee-Roy
Coefficient), gm*Avg.Sim, gm*SD Similarity, Pos.Avg.Sim, and Neg.Avg.Sim. by using similarity
and error-based measures. The above 15 g-RASAR descriptors were computed by the RASAR-Desc-
Calc-v2.0 tool (available from https://sites.google.com/jadavpuruniversity.in/dic-lab-software/home).
3.4.6. g-RASAR-based model development

After calculating RASAR descriptors, these descriptors were combined with formerly selected

structural and physicochemical descriptors for the final g-RASAR model generation. A combination
of ten descriptors was identified by performing the best subset selection. The g-RASAR model was
generated using a pool of combined descriptors (RASAR, structural, and physiochemical descriptors)
by employing PLS regression. This model has been validated vigorously using both internally and
externally.

3.4.7. Applicability domain study of the generated model

OECD principle 3 suggests the estimation of applicability domain study of the developed model. The
applicability domain is the theoretical chemical space encompassing the model descriptors and
response. It is practically impossible to predict the toxicity of every compound by one statistical-based
model; there should be some structural similarity between query compounds and training compounds
for a reliable prediction [141]. Therefore, estimating the applicability domain of any developed model
is required. Here, we perform AD analysis by using the DmodX (distance to model X) approach for
the developed PLS-based g-RASTR model with SIMCA-P software [142].

3.4.8. Y-randomization test of the generated model

Y-randomization test is employed to ensure whether the obtained model is generated by any chance or
not. In this test, the descriptor variables (X variables) are kept constant and the vector Y is shuffled
randomly multiple times and generates a new model using the same sets of descriptors. The model is

considered to be robust if the estimates of statistical parameters of the randomized model are poorer
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than the originally developed model. The R2yrang intercept and Q?yrang intercept are not more than 0.3
and 0.05 respectively. In this study, the chance correlation between the descriptor and response
variable of the developed model was checked by SIMCA-P software [142].

3.4.9. PPDB database assessment by deploying the developed q-RASTR model and reliability
study

For the preparation of an external dataset, PPDB (Pesticides Property Database) consisting of 1902
pesticides was downloaded. The database was curated to eliminate mixtures, salts, and impurities by
KNIME workflow. Ultimately, 1694 compounds are remained after curation and used as the external
database for screening. Descriptors for these compounds were calculated as done for the modelled

dataset by Alvadesc software version 2.02 (https://www.alvascience.com/alvadesc/). This Prepared

PPDB database was screened by deploying the generated model using the Prediction Reliability
Indicator (PRI) tool [135], which provides assessment and categorization of prediction quality in terms
of AD as well as in terms of Good, Moderate, and Bad.
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4. Results and discussion

4.1 Study 1

In this study, we have developed PLS models utilizing the toxicity of pesticides (LogLCs,) on
two different avians (MD and RNP) employing a reduced pool of chemical descriptors. The
created model’s quality is measured by using different internal (R?, QZ,,,) and external
(Q2,, Q2,,) statistical parameters. The results obtained from PLS models indicated the model’s
robustness, reliability, and predictivity. All the metrics obtained from QSTR models are depicted
in Table 10. The read-across algorithm was employed to improve the model's external
predictivity External predictivity was improved for the dataset RNP but for MD the external
predictivity is slightly diminished in read-across prediction and results are provided in Table 11.
The obtained results from the Y-randomization test were found to be R? = -0.008, Q2 = -0.0377
(for MD) and R? = 0.028, Q% = -0.213 (for RNP) which demonstrated that the models were not
formed by any chance. AD study depicted that compound 468 in MD, and compound 88 in RNP
from the test set are outside the AD as depicted in Fig. 15 and Fig. 16 respectively. The tentative
reasons or characteristics that designate certain compounds as outliers in each model (above the
D-critical line) are due to structural dissimilarity for example, In the case of the MD model C-
012, [O-P] fragment at topological distance 7, [C-P] fragment at topological distance 5 and [C-
ClI] fragment at topological distance 4 are absent and lastly, for RNP model nRCONHR, [C-P]
fragment at topological distance 4, [P-Cl] fragment at topological distance 5, and [O-S] fragment
at topological distance 3 is absent. We have developed new QSTR models without the identified
outliers and checked the statistical metrics. A visual representation of the correlation between
observed and predicted toxicity values has been depicted in the scatter plot (provided in Fig 8).
Additionally, we used two different ML algorithms namely SVM, and RF to evaluate their
effectiveness in model construction and prediction, and the obtained statistical results are
demonstrated in Table 12.

Table 10. Statistical results of developed PLS models.

Avian Training set Test set

Species | Nwain/Nest | LVS | R?2 | Q%50 Q% Q%, | MAE . | Quality(esy
RNP 82/30 2 0.63 | 0.53 0.60 0.60 |0.34 Moderate
MD 377/162 |1 0.60 | 0.58 0.75 0.63 | 0.06 Good

Page 79




Chapter 4

Table 11. Read-across-based predictions for four species.
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Ring-necked pheasant

Optimized settings METRICS Ylk (Test)
6=05 Q%rt 0.714
v=0.5 Q%2 0.714
No. of similar compounds =10
RMSEp 0.392
MAE 0.290
Mallard duck
Optimized settings METRICS Yeuc (Test)
6=0.75 Q%rt 0.686
Y =(0.75 Q2F2 0.540
No. of similar compounds =10
RMSEp 0.114
MAE 0.081
Table 12. ML model's statistical quality for MD and RNP.
Validation ML model's statistical quality
Metrics
Model SVM(MD) RF(MD) SVM(RNP) RF(RNP)
R%Loo 0.666 0.667 0.641 0.577
Q%Loo 0.663 0.666 0.505 0.566
RMSEc 0.098 0.098 0.438 0.476
MAE 0.061 0.065 0.340 0.349
Optimum (v-SVM) No of trees-48 Cost-1.90 No of trees-27
hyperparameter | Regression Cost - | Limit depth of | Regression loss | Limit depth of
0.50 individual trees- epsilon-0.30 | individual trees-
Complexity 5 Kernel-RBF 5
bound - 0.55 No of attributes- Numerical No of
Kernel-RBF 7 tolerance- attributes-4
Numerical 0.0011
tolerance-0.0011 Iteration limit-
Iteration limit- 150
150
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Fig. 8. Scatter plots of developed models.
Several classification-based metrics have been computed with the PLS-based QSTR-read across
models for all (MD and RNP) the avian species and reported in the following Table 13. Good
sensitivity, specificity, and accuracy values indicate the good classification ability of the model.
The computed values of the Matthews correlation coefficient [143] indicate an acceptable
prediction and an agreement between observed and predicted classification for all the developed
models against avian species.

Table 13. Statistical results of the classification-based QSTR models.

Sl no. LDA- AUC- | Sensitivity | Accuracy Precision F-measure | MCC
QSTR ROC
models

1 MD 0.88 75.00 83.59 82.60 78.62 0.65
(train)
MD 0.86 75.71 85.71 89.83 82.17 0.71
(test)

2 RNP 0.83 63.88 79.74 88.46 74.19 0.60
(train)
RNP 0.87 76.92 84.84 83.33 80.00 0.67
(test)

4.1.1. Regression coefficient plot

The descriptor’s positive and negative contribution towards toxicity is provided via a regression
coefficient plot. In this investigation, for MD, the descriptors MW, C-012, BO7[O-P], Br-094,
BO5[C-P], and FO4[C-CI] contributed positively towards toxicity on the other hand, in case of
RNP, the descriptors nRCONHR and B04[C-P] contributed positively whereas the descriptors
X2A, nN(CO)2, BO5[P-CI], and FO3[O-S] contributed negatively towards the toxicity. All the
relevant plots have been provided in Fig. 9. and Fig. 10.
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Regression Coefficient Plot
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Fig. 9. Regression coefficient plot for MD.
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Fig. 10. Regression coefficient plot for RNP.

4.1.2. Variable importance plot (VIP)

The relative importance of model descriptors is illustrated with VIP [144]. Descriptors having the
highest and lowest impact on avian species can be recognized from these plots. The significance
of the variable is higher whose VIP score is greater than 1. In VIP plot, the descriptors are

presented with respect to their significance (higher contribution to lower contribution) and their
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importance which is in the following order: BO5[C-P], MW, B0O7[O-P], C-012, Br-094, FO4[C-
CI)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S], BO5[P-CI], Nn(CO)2 (in case
of RNP) as depicted in Fig. 11 and Fig. 12.

VIP Plot
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0.60
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BOS[C-P] MW BOT[O-P] c-012 Br-094 FO4[C-CI]
Var ID (Primary)
Fig. 11. Variable importance plot of MD.
VIP Plot
2.40
2.20
2.00
1.80
1.60
1.40
!;__—‘ 1.20
&

1.00
0.80
0.60
0.40
0.20
0.00

BO4[C-P] X24 nRCONHR FO3[0-S] BOS[P-CI) uN(CO)2
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Fig. 12. Variable importance plot of RNP.

4.1.3. Loading plot
The loading plot shows how the independent variables (descriptors) are related to the response

variable. The first two components were used to create the loading plot. A descriptor is assumed
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to have a stronger effect on response value if it is located far from the origin of the plot. On the
basis of the loading plot as shown in Fig.13 and Fig. 14, it is interpreted that the X-variables
BO5[C-P], and BO4[C-P] are the most influential descriptors in the case of MD, and RNP

respectively.

Loading Plot . X

wpLCED

~BOS[C-P)
MW
4BO7[O-P]

we[l]

aBr-054
0.20 F4[C-CT)

0.00 0.10 0.20 0.30 0.40 0.50 0.60
we[1]

Fig. 13. Loading plot of MD.

Loading Plot

< >
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-0.40 4nN(CO)2

-0.60 aF03{0-5]

BoE(P-C1

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
w*e[l]

Fig. 14. Loading plot of RNP.
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Fig. 15. DmodX plot for MD.
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Fig. 16. DmodX plot for RNP.

4.1.4. Mechanistic interpretation of PLS models
Table. 14 and Figs. 17-18 provide a detailed account of the model descriptors followed by

mechanistic interpretations important to identify major structural and physicochemical features.

Table 14. Mechanistic interpretation of descriptors employed in models.

Sl. no Descriptor Type Function Contribution
MD oral pLCso
1 MW Constitutional Molecular weight +ve
descriptor
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Mechanistic interpretation

This descriptor is directly related to molecular bulkiness and lipophilicity [145-
146]. Usually, lipophilic compounds easily cross the lipophilic membrane of the
reference species which ultimately leads to enhancement in toxicity as
demonstrated in compound 546 and oppositely occurs in compound 503 (depicted
in Fig. 17).

C-012 Atom-centered CR2X2 (X isa +ve
fragments hetero atom (O, N,
S, P, Se, or
halogens) and R is a
carbon-linked

group)

Mechanistic interpretation

This descriptor enhances the molecular size as well as the electronegativity of the
compound due to the presence of heteroatom, which ultimately leads to
enhancement in toxicity of diverse pesticides against avian species by
incorporating oxidative stress [147] as demonstrated in compound 445, and vice-

versa occurs in compound 144 (given in Fig. 17) .

BO7[O-P] 2D Atom Pair Presence of O-P +ve
at topological

distance 7

Mechanistic interpretation

Oxygen and phosphorus are highly electronegative atoms and their presence
makes the compound more toxic (due to increment in oxidative stress in reference
species) [148]. The presence of a long carbon chain (lipophilicity) also contributes
to toxicity. This phenomenon is demonstrated in compound 3 and vice versa

occurs in the case of compound 145 (illustrated in Fig. 17) .

Br-094 Atom-centered Br attached to +ve
fragments C1(sp2)

Mechanistic interpretation
The Br-094 descriptor refers to the presence of the halogen group (bromine).
Thus, the presence of more electronegative/halogen atoms (bromine) makes the

compound more toxic as demonstrated in compound 28. Conversely, the absence
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of this atom/fragment tends to decrease the toxicity as shown in compound 408
(depicted in Fig. 17).

BO5[C-P] 2D Atom pair C—P situated at a +ve
topological distance
of 5

Mechanistic interpretation
The presence of the phosphate group enhances the toxicity of the compound
[149]. This is evidenced in compound 4. In opposition, the absence of this

fragment tends to decrease the toxicity as shown in compound 530.

FO4[C-CI] 2D Atom pair C — Cl situated at +ve
topological distance
4

Mechanistic interpretation

This descriptor refers to the existence of a large electronegative atom such as
chlorine, which has a high atomic refractivity and electronegativity [150]. Thus,
the presence of more number of this fragment results in high toxicity toward avian
species as shown in compound 24 and vice versa occurs in compound 562

(represented in Fig. 17).

RNP oral pLCso

X2A Connectivity Average -ve
indices descriptor | connectivity index

of order 2

Mechanistic interpretation

The negative regression coefficient of this descriptor indicates that a higher
numerical value of this descriptor leads to a decrease in toxicity as shown in
compound 13 and vice versa in the case of compound 51 (given in Fig. 18). X2A

is inversely correlated with hydrophobic interaction as well as toxicity.

NRCONHR Functional group Presence of +ve
count secondary aliphatic

amides

Mechanistic interpretation
Aliphatic amides are considered to be toxic as well as reactive [151]. The positive

regression coefficient of this descriptor indicates that the presence of this
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fragment may increase the toxicity as demonstrated in compound 90 and toxicity
value may be decreased if the compounds have no such fragment as represented

in compound 104 (depicted in Fig. 18).

nN(CO)2 Functional group | Number of imides -ve

count (-thio)

Mechanistic interpretation

Generally, this feature helps to facilitate hydrolysis of the compounds which
facilitates quick excretion from the body of the reference organism resulting in a
reduction of their toxic effects [152] as demonstrated in compound 58 and the
absence of this fragment tends to increase the toxicity as shown in compound 101
(illustrated in Fig. 18).

BO4[C-P] 2D Atom pair C — P situated at +ve
topological distance
4

Mechanistic interpretation

The presence of an electronegative atom (like phosphorous) enhances the toxicity
of the diverse pesticides by incorporating oxidative stress in avian species [62] as
evidenced by compound 3. On the other hand, the absence of this fragment leads

to a decrease the toxicity as shown in compound 10 (represented in Fig. 18).

BO5[P-CI] 2D Atom pair Presence of -ve
P-ClI at topological

distance 5

Mechanistic interpretation

The negative regression coefficient of this descriptor indicates that the presence
of more number of this fragment reduces the toxicity as demonstrated in
compound 105 and oppositely occurs in the case of compound 62 (shown in Fig.
18).

FO3[0-S] 2D Atom pair Frequency of -ve
oxygen and sulfur
which are situated at
topological distance
3.
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Mechanistic interpretation

This descriptor is directly related to the polarity (presence of polar bond) [62] of
the compound, as a result, the hydrophilicity of the compound increases, and thus
toxicity will decrease which is evidenced by compound 85 and vice versa in the

case of compound 9 (represented in Fig. 18).
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= & ad Ja;y \Q\/ “ ver=0) {
- ) a = pLCq N
cl =1.784@
\
Compound No=503 Compound No=24 Compound No=562 b
MW (+ve)=42.05 [| FO4[C-Cl) (+ve)=22{] | FO4[C-Cl] (+ve] 10}
PLC:=0.924]] pLCy,=2.883 1] PLCs,=1.167 H’Cﬁ
= 0. /OW‘
F F = Compoun s
F—f—F d No=4
¥ F ir | n ~J| BOS[C-P]
x x Compound No=445 | | | = 1 {trot
: :_ C-012 (+ve)=6 ﬂ e E;;;‘éﬂ LN
PR [ prcw=ssosf . MALLARD DUCK - e
F ¥ «
O=8=0
NH CcH o Git
[ (»)\’ o-cH, CH e Fx<r * .
CHy Xeo Cl 3 o=’ \,f’\\r/' » \\’/ CHy
s
=8 O/\ CH,
CH [ ] 2 c U N "~°
Gy . S 5
o O™ S
0— Cl Compound No=144 == | \' CH
C-012 (+ve)=1 oS b Br ?
LCq=1453 . S X No=145
PLCs 4 Compound No=3 ;32‘]'(1)0_;';((‘+\»:)=loh Compound No=28 Compound No=408
BO7(0-P] (+ve=1 LC.. =1.456 i3 Br-094 (+ve)=31 Br-094 (+ve)=
PLC=3.968 PLC:o=1456 ] PLC4=2.969 4 pLC4=1.416

Fig. 17 Positive and negative contribution of model descriptors towards MD.

Page 89



Chapter 4 Result and discussion
—————
= y CH,
HyC 0\ ’( Hy H3C hmi
CH L H,C NH 3
3 o, s : ® CH
P.. CHy 0 3 & L N
HJC s © 1l = = -
e ! 0-P-0 0 e
N ]
o N 3 HC o o g S NH
AL H.C”
) i CH,
Compound No=13 Compound No=51 Compound No=90 Compound No=104 Compound No=58
X2A(ve)=0577 % X2A(-ve)=0.316 nRCONHR(+ve)=1 T nRCONHR(+ve)=0J} aN(COR(ve=1
PLC5 =0.16 PLC5 =3.537 PLC< =4.857 1} PLCs,=1.241 pLCo=1.416
/ - 3
HyC
2
20
H,('/\o’ \q 3
BsClo v lcH,
OJ\NH C 1 No=85 20 % o€
ompound NO=83 coniieid = T
s FO3 f).s veo=11 RING-NECKED Compound No=101
2=8=0 . ‘ei nN(CO)2(ve)=0 )
PLCs0=0.487 PHEASANT  / PLC=3312 §
4 \’y
CH, - -
B ; NH,

Compound No=9
F03[0-S]|(-ve)=1

pLCy, =2.839%

cH,

HC A
’ N CH,

Compound No=62
BOS[P-Clj(-ve)=0J)
PLC,=3.096F

Compound No=105
BOS[P-Cl|(-ve)=1§
pLCe =1.864.

Compound No=10
BO4[C-P] (+ve)=0
pLCg=1.225

Compound

BO4[C-P] (+ve)=1
pLCy,=3.822

No=3

Fig. 18. Positive and negative contribution of model descriptors toward RNP.

4.1.5 PPDB DataBase screening

The pesticide Properties DataBase was screened through the developed models with the help of

the software “PRI Tool PLSversion” (available from http://teqip.jdvu.ac.in/QSAR Tools/) using

the developed PLS models. The categorization threshold (mean value of the training set

compound) for avian toxicity against MD; RNP > 1.845; 2.191 was applied for prioritization

purposes. From the prediction, it was seen that maximum compounds are within the domain of

applicability and show prediction quality as “good”. The screened chemicals from the Pesticide

Properties DataBase with their respective predicted toxicity against MD, and RNP. The

compounds were ranked in decreasing order of predicted toxicity for each avian species. The top

20 and least 20 toxic pesticides for all four avian species from the PPDB database are provided

in Table 15. Further validation of the predicted toxicity of the selected pesticides revealed that

apart from fluoroacetamide and sodium-monofluoroacetate all the predicted toxicity corroborated

with the previous experimental findings, indicating the practical applicability of the developed

models as shown in Table 15.
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Table 15. Top 20 highly & least toxic pesticides screened from Pesticide Properties Database

(PPDB).
SI. No. Names of pesticides Safety and hazards
Top 20 highly toxic pesticides screened from Pesticide Properties Database (PPDB).
1 Imicyafos Acute toxic, Irritant.
2 Pirimiphos-ethyl Acute toxic, Environmental Hazard.
3 Quinothion Acute toxic
4 Pirimiphos-methyl Irritant, Health hazard, Environmental
hazard
5 Etrimfos Irritant, Environmental Hazard
6 Buminafos Acute toxic
7 Diazinon Irritant, Environmental hazard
8 Quintiofos Acute toxic
9 Phoxim Irritant, Health hazard, and
Environmental hazard
10 Inezin Acute toxic
11 Dufulin Oxidative stress inducer
12 Chlorphoxim Acute toxic
13 Pyridaphenthion Irritant
14 Triazophos Acute toxic, Environmental hazard
15 Isoxathion Acute toxic, Environmental hazard
16 Naftalofos Acute toxic
17 Quinalphos Acute toxic, Environmental hazard
18 Butamifos Irritant, Environmental hazard
19 Sulprofos Acute toxic, Environmental hazard
20 Edifenphos Acute toxic, Environmental hazard
Top 20 least toxic pesticides screened from the Pesticide Properties Database (PPDB)
1 Ferbam non-toxic
2 Hexylene glycol less toxic
3 Bisthiosemi moderate toxic

Page 91



Chapter 4 Result and discussion

4 Choline chloride less toxic
5 Glutaraldehyde less toxic
6 Fumaric acid less toxic
7 Lime sulphur less toxic
8 Methyl isobutyl ketone less toxic
9 Sodium tetrathiocarbonate moderate toxic
10 1,2-dichloropropane less toxic
11 Metam less toxic
12 Methylene bisthiocyanate less toxic
13 Bentonite Nontoxic
14 Butanethiol moderate toxic
15 Sodium monochloroacetate moderate toxic
16 Fluoroacetamide high toxic
17 Sodium monofluoroacetate high toxic
18 Propylene glycol less toxic
19 Peroxyacetic acid moderate toxic
20 2-hydrazinoethanol moderate toxic

4.1.6 Comparison with previous study

As the composition of the training and test sets, endpoints used, as well as the algorithms used
for model development are not the same, we can’t perform a rigorous comparison, so we have
attempted to represent some simple comparative studies between the current work and previously
reported literature. Mukherjee et al. [62] developed the models using small data sets in
comparison with current work. Basanta et al. (2015) [58] used tree-based approaches to build
QSTR and i-QSTR models for various avian species. Banjare et al. (2021) [61] presented QSTR
and i-QSTR models for three avian species using a classification approach. Podder et al. [63]
developed a regression-based QSTR and i-QSTR model against multiple avian species (MD, BQ,
and ZF). Leszczynski et al. [60] reported ecotoxicity QSTR and i-QSTR modeling of chemicals
to avian species. While regression models provide explicit quantitative predictions, classification
approaches can be useful for data filtering at the outset of research. The current models are built
using a regression-based method and a limited number of Simple, 2D, and easily interpretable
descriptors. In this work, we have tried to develop the first PLS-based QSTR model considering

LCso as an endpoint to assess the toxicity of diverse pesticides against multiple avian species.
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Regression-based technique is an assertive and effective approach that can confidently tackle
challenges such as descriptor inter-correlation, high levels of noise, collinearity, and a large
number of descriptors. In the present work, we have developed the models using large datasets
of different avian species. So, it has a wide domain of applicability compared to previous studies.
Additionally, we used a read-across algorithm to enhance the external predictivity and it is widely
used for data-gap filing as well as widely accepted and recommended by regulatory bodies Apart
from the previous studies, consequently, read-across prediction shows a better result than the
previous model except for MD. Apart from the previous studies, we get additionally some new
findings (specifically observation) which are related to pesticide toxicity towards avian species
such as presence of C-012 (CR2X2), BO7[O-P] (Presence/absence of O—P at topological distance
7), Br-094 (Br attached to C1(sp2)), BO5[C-P] (Presence/absence of C — P at topological distance
5), FO4[C-CI] (Frequency of C-CI at topological distance 4) and nRCONHR (number of
secondary amides (aliphatic)) enhances the pesticides toxicity towards avian species; on the other
hands, presence of nN(CO)2 (number of imides (-thio)) and BO5[P-CI] (Presence/absence of P—
Cl at topological distance 5) reduces the pesticides toxicity towards avian species. Furthermore,
our work highlighted some extra features not mentioned in the previous studies, which are useful
for pesticide toxicity assessment viz. molecular weight, presence of heteroatom, presence of
bridgehead atoms, secondary aliphatic amide, and molecular refractivity. On the other hand,
features like molecular branching and the presence of thio-imides contribute negatively towards
the toxicity. The PPDB database was screened using developed models to show the predictivity
and application in real-world data of the developed models. The current study's comparison to

previously published studies is depicted in Table 16.

Table 16. Comparison table with previous works.

Source Organism | End Model LV | Features | Training set Test set

used point R? Q%00 | Q% Q%
Present RNP LCso | PLS-Read | 2 6 0.63 0.53 | 0.60- | 0.60-
study across 0.71 0.71
MD 1 6 0.60 0.58 0.71- | 0.63-
0.75 0.68
Mukherjee BQ LDso PLS 3 10 0.65 0.58 0.64 0.64

et al. 2021 JQ 2 3 0.73 0.59 - -
[62] RNP 2 4 0.76 | 0.60 | 0.64 | 0.64
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MD 0.65 0.56 0.65 0.57
HS 0.91 0.86 0.94 0.88
Mazzatorta BQ LDso | GA-SVM
et al. 2006
[57]
Podder et BQ LDso MLR 0.715- | 0.694- | 0.722— | 0.722—
al. 2023 0.719 | 0.700 | 0.732 | 0.732
[63]
MD 0.689— | 0.626- | 0.620— | 0.620—
0.708 | 0.695 | 0.639 | 0.638
ZF 0.754— | 0.697—- | 0.787— | 0.786-
0.758 | 0.722 | 0.830 | 0.829
Banjare BQ LDso | GA-LDA - - - -
et.al. 2021 MD along with - - - -
[61] ZF interspecies - - - -
correlation
Basant et al. BQ LDso | Tree-based - - - -
2015 [58] QSAR
approaches
Leszczynski BQ LDso | GFA-PLS 0.67 0.63 0.70 0.68
et al. (2020)
[60] MD 0.75 0.67 0.88 0.87
RNH 0.89 0.80 0.87 0.87
4.2 Study 2

PLS-based QSTR models were developed using a curated dataset with pLDso endpoint against

California quail. The external and internal validation metrics of the models have been provided

in Table. We used the generated models and performed intelligent consensus prediction to verify

whether the prediction quality of test set compounds was improved or not (by an intelligent

selection of various PLS models using the ICP tool). It was found that the consensus model 2

(CM2 model) with the best statistical metrics was selected as the winner model as shown in Table

17. Y-randomization was carried out to investigate the chance of occurrence of the developed

model. R?Yrand and Q?yrana Were found to be less than the standard threshold [117], which assures
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that the generated models were not obtained by any chance as depicted in Figs. 40-41. DModX
plots showed that compound 1 for Model 1, and compounds 2, 25, and 31 for Model 5 are outside
the AD. On the other hand, there is no outlier compound in Model 2, Model 3, and Model 4.

Scatter plot representations of the experimental against predicted toxicity are depicted in Fig. 19.

Table. 17. Statistical parameters of the developed PLS and consensus models.

Statistics for Training set Statistics for Test set
Model | LV R?2 Q%00 | Q%y | Q%2 | CCC | rPmgesty | Arlmiesy | MAE
IM1 2 0.701 | 0.601 | 0.762 | 0.690 | 0.880 0.65 0.15 0.33
IM2 2 0.711 | 0.612 | 0.701 | 0.621 | 0.821 0.61 0.18 0.40
IM3 2 0.671 | 0562 | 0.753 | 0.694 | 0.864 0.68 0.10 0.34
IM4 2 0.674 | 0564 | 0.684 | 0.597 | 0.772 0.54 0.001 0.31
IM5 3 0.645 | 0.531 | 0.707 | 0.615 | 0.815 0.55 0.03 0.31
CMO 0.815 | 0.751 | 0.883 0.70 0.10 0.30
CM1 0.812 | 0.754 | 0.881 0.70 0.10 0.30
CM2 0.822 | 0.761 | 0.881 0.72 0.12 0.28
CM3 0.743 | 0.672 | 0.842 0.65 0.14 0.34

(IM: Individual Model, CM: Consensus Model)
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Fig. 19. Scatter plots of the constructed models.

4.2.1. Regression coefficient plot

The positive and negative contribution of the descriptors towards the modeled response value

(pLDsp) can be categorized from the regression coefficient plot. The descriptors such as FO3[C-
P], BO7[S-S], nR_Cs, FO6[S-P], FO4[C-P], Fsp3, and C% contribute positively towards toxicity
which indicates that the toxicity enhanced with increasing descriptor values while the descriptors
like nBM, RBN, AP, Me, FO3[O-S] and T(P..Cl) show negative contribution towards toxicity

which indicate that the toxicity reduced with increasing the descriptor number. The regression
coefficient plot is depicted in Figs.20 —-24.
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Regression coefficient plot of model M1
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Fig. 20. Regression coefficient plot of model M1

Regression coefficient plot of model M2
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Fig. 21. Regression coefficient plot of model M2
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Regression coefficient Plot of model M3
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Fig. 22. Regression coefficient plot of model M3
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Fig. 23. Regression coefficient plot of model M4.
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Regression coeflicient plot of model M5
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Fig. 24. Regression coefficient plot of model M5.

4.2.2. Variable importance plot (VIP)

The significance of the individual descriptors towards toxicity can be described for their
importance toward the toxicity from the Variable Importance plot (VIP). The most significant
and least significant descriptor contributing to the toxicity can be recognized by this plot. A
variable is considered to have high statistical significance if it has a VIP score > 1 as opposed to
one with a low VIP value [144]. According to the VIP plot depicted in Figs. 25-29, the influential
descriptors toward toxicity in the developed model are nBM, nR_Cs, FO3[C-P] and BO7[S-S] in
model M1; nBM, nR_Cs, FO3[C-P] and FO6[S-P] in model M2; Fsp3, FO3[C-P], RBN and BO7][S-
S] in model M3; AP, FO4[C-P], Me and FO3[O-S] in model M4 & AP, C%, FO3[C-P] and T(P..Cl)

in model M5 arranged in higher to lower order as per their VIP score.

VIP plot of model M1

2.00

VIP[2]
-
o
=]

0.00

nBM nR_Cs F03[C-P] B07[S-S]
VarID (Primary)

Fig. 25. VIP plot of model M1.

Page 99



Chapter 4

Result and discussion

VIP[2]

VIP plot of model M2
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Fig. 26. VIP plot of model M2.
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Fig. 27. VIP plot of model M3.
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VIP plot of model M4
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Fig.28. VIP plot of model M4.
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Fig. 29. VIP plot of model M5.

4.2.3. Loading plot of the generated models

The loading plot, portrayed in (Fig. 30 - Fig. 34) the relationship between the model's X-variables
(independent variables) and Y-variables (dependent variables). The first two components of the
developed models were used to generate the loading plot. This plot clarifies how various variables
impact the models. The descriptors with maximum distance from the origin are thought to have
a higher influence on response value as well as on models. According to the loading plot nBM
descriptor in the case of model M2, Fsp3 descriptor in the case of model M3, AP descriptor in

the case of model M4 and model M5 were the most impactful variables for the respective models

Page 101



Chapter 4

Result and discussion

as they were present farthest from the origin.
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Fig. 30. Loading plot of model M1
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Fig. 31. Loading plot of model M2.
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Fig. 32. Loading plot of model M3.
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Fig. 33. Loading plot of model M4.
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Loading plot of model M5
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Fig. 34. Loading plot of model M5.
4.2.4 Score plot
A score plot [153] illustrates the disposition of compounds within the hypothetical ellipse
representing the latent variable space for reliable prediction. The affirmation of a compound
within AD involves confirming its presence within or outside the ellipse on the plot. No
compound was found outside the ellipse in the case of models M1, M2, and M3. On the other
hand, one compound is situated outside the ellipse in models M4 and M5. The score plots of the

developed models are illustrated in Figs. 35-39.

Score plot of model M1

t2]
(—]

Fig. 35. Score plot of model M1.
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Score plot of model M2
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Fig. 36. Score plot of model M2.
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Fig. 37. Score plot of model M3.
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Score plot of model M4
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Fig. 38. Score plot of model M4.

Score plot of model M5
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Fig. 39. Score plot of model M5.

4.2.5 Y-randomization study

In our study, we used Y-randomization, where for the training set, the X data (descriptors)

remained fixed and Y data (response) were scrambled randomly, and the model was fitted to the

permuted data and compared with the best fit. The number of permutations varies; here it is 100

permutations. The horizontal axis contains the correlation coefficient values for those 100

different combinations and the vertical axis contains their respective determination coefficient

values (R? and Q?). The basic statistics of randomization models (Q? and R?) should be poor and

not within the range of those for acceptable regression models. Otherwise, each resulting model
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may be considered as a chance correlation. The randomization results (Rz < 0.3 and Q2 <0.05)

suggested that the models were not obtained by any chance as shown in Figs. 40-44.

Y randomization plot of model M1 -
pLD50 Intercepts: R2=(0.0, 0.0471), Q2=(0.0, -0.267)
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Fig. 40. Y-randomization plot of model M1.

Y randomization plot of model M2 - @
pLD 50 Intercepts: R2=(0.0, 0.0349), Q2=(0.0, -0.277)
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Fig. 41. Y-randomization plot of model M2.
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Y randomization plot of model M3 . gg
pLD 50 Intercepts: R2=(0.0, 0.0693), Q2=(0.0, -0.361)
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Fig. 41. Y-randomization plot of model M3.
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Fig. 42. Y-randomization plot of model M4.
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Y randomization plot pLD 50 Intercepts: R2=(0.0, 0.0253), Q2=(0.0, -0.366) . 25
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Fig. 43. Y-randomization plot of model M5.
4.2.6 DModX plot
The Dmodx plot (Figs. 45-49) shows that 1 compound for Model 2 and Model 4, 2 compounds
for Model 5 are outside the AD. On the other hand, there is no outlier in Model 1 and Model 3.
Such a low number of outliers signifies that the developed model is reliable and demonstrates the

suitability of the same for toxicity prediction.

DModX plot (training set) of model M1

D-Crit(0.00999898)

~

DModXPS[2](Norm)
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M1-D-Crit[2] = 3.163

Fig. 45. DmodX plot of model M1.
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DModXPS[2](Norm)

DModX plot (training set) of model M2
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Fig. 46. DmodX plot of model M2.
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Fig. 47. DmodX plot of model M3.
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Fig. 48. DmodX plot of model M4.
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4.2.7 Mechanistic interpretation of descriptors used in the QSTR model

Fig. 49. DmodX plot of model M5.

Table 18. Mechanistic interpretation of descriptors employed in Models

SI. no

Descriptor

Type

Description

Contribution

nBM

Constitutional
index

Number of multiple
bonds

Mechanistic interpretation
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Increasing the number of multiple bonds will diminish the compound’s
toxicity (inversely related to the toxicity as indicated by the negative regression
coefficient). We observed that the multiple bonds in the compounds are either
situated adjacent to atoms such as nitrogen, sulfur, chlorine, and oxygen,
which imparts hydrogen bonding with water or form polar bond which imparts
polarity to the compounds. As a result, the hydrophilicity of the respective
compounds increases which lowers the toxicity value as demonstrated in

compound 8 and the opposite occurs in compound 9 given in Fig. 51.

FO3[C-P] 2D Atom Frequency of C-P at +ve
Pairs topological distance 3

Mechanistic interpretation

This fragment represents the presence of a phosphorus atom which is toxic
[154]. The toxicity in the respective species is enhanced with the increase of
this fragment as depicted in compound 31 and vice versa as demonstrated in
compound 5 in Fig. 50.

BO7[S-S] 2D Atom Pairs Existence/non-existence +ve
of S-S at topological
distance 7

Mechanistic interpretation

This feature characterizes the existence of two sulfur atoms that enhanced the
overall electronegativity of the compound. The increase of electronegativity
may result in the generation of reactive oxygen species (ROS) [130], which
may be responsible for toxicity enhancement toward the respective species as
demonstrated in compound 3, while the opposite occurs in the case of

compound 33 depicted in Fig. 50.

nR=Cs Functional Number of aliphatic +ve

group counts secondary C(sp?)

Mechanistic interpretation

This descriptor characterizes the number of sp? hybridized carbon atoms which
means the degree of unsaturation [63]. Generally, unsaturated compounds are
more reactive and toxic in nature [63] as demonstrated in compound 12 and vice

versa occurs in compound 8 (given in Fig. 50).
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FO6[S-P] Frequency of S-P at +ve

topological distance 6

2D Atom

Pairs

Mechanistic interpretation

Phosphorous itself is toxic, so its presence makes the compound more toxic.
Sulfur atoms are electronegative. Sulfur atoms may create hydrogen bonds with
the DNA of the reference species and make the DNA unstable which leads to the
death of the reference organism [155]. Thus, toxicity value may be enhanced if
the molecule contains more S and P atoms as shown in compound 3, and vice

versa as traced in compound 6 depicted in Fig. 50.

Fsp3 Constitutional | Number of sp3 hybridized +ve

indices carbons/total carbon count

Mechanistic interpretation

The presence of this descriptor leads to the enhancement of the alkyl chain length
of the compound (enhancement in the size of the compound) which will cause
toxicity by raising the lipophilicity of that compound [156]. This feature has a
positive contribution towards the response which shows the toxicity increases
with an increase in the numerical value of the descriptor as depicted in compound
25 and oppositely occurs as per compound 16 highlighted in Fig. 50.

RBN Constitutional | Number of rotatable bonds -ve

indices

Mechanistic interpretation

RBN descriptor represents the number of rotatable bonds that contribute
negatively towards the modeled response. A molecule with more rotatable bonds
has a lesser effect on oral bioavailability as a result chances of inducing toxicity
of that compound are also reduced [63] as shown in compound 19 and vice versa

as illustrated in compound 1 in Fig 51.

AP Ring descriptor Aromatic proportion -ve

Mechanistic interpretation
This feature represents the presence of aromatic rings in the compound’s

structure. Since aromatic rings are stable and less reactive[153], they loosely
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interact with any receptor protein. Thereby, making the compound less toxic as
demonstrated in compounds 16 and vice versa as shown in compound 18 ( Given
in Fig. 51.)

Me Constitutional Mean atomic Sanderson | -ve

indices electronegativity (scaled

carbon atom)

Mechanistic interpretation

Mean atomic Sanderson electronegativity illustrates the molecular polarity [157]
which is responsible for the hydrophilicity of the compound. Hydrophilicity
reduces the penetration ability of the compound into the lipophilic cell
membrane, which leads to diminishing the toxicity of the compound towards the
reference species as depicted in compound 26 and vice versa in compound 31
provided in Fig. 51.

10

FO4[C-P] 2D Atom Pairs | Rate of occurrence of C-P +ve

at topological distance 4

Mechanical interpretation

Generally, phosphorus atoms are toxic [158]. The presence of carbon and
phosphorous at topological distance 4 increases the size of molecules, making
them more lipophilic [82]. Lipophilic compound easily crosses the membrane
(more accumulative) of reference organism, making it more toxic as highlighted
in compound 31 whereas the absence of this feature lowers the toxicity as shown

in compound 19, provided in Fig. 50.

11

FO3[0-S] 2D Atom Pairs | Rate of occurrence of O-S -ve

at topological distance 4

Mechanistic interpretation

The presence of these two polar atoms (oxygen and sulfur) enhanced the overall
polarity of the compound, which leads to an increase the hydrophilicity, and
hydrophilic compound has a low penetration ability into the lipophilic cell
membrane (easily excreted out from the body of reference organism). Thereby,
reducing the toxicity of pesticides as shown in compound 34 and inversely

occurs in compound 18 displayed in Fig. 51.

12

C% Constitutional
indices

percentage of C atoms +ve
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Mechanistic interpretation

The alkyl chain length of the corresponding chemical enhanced when the
percentage of carbon atoms increased which resulted in a rise in lipophilicity
[158] and ultimately leads to enhancement of compound’s toxicity as
demonstrated in compound 9 and oppositely occurs in case of compound 5 as
illustrated in Fig. 50.

13 T(P..Cl) 2D Atom Pairs The sum of topological -ve

distance between P..ClI

Mechanistic interpretation

The presence of chlorine atom may responsible to form hydrogen bond with
water, which make the compound hydrophilic and reduce the toxicity[62] as
evidenced in compound 5 and inversly occurred in compound 20 as depicted in

Fig. 51.
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Fig. 51. Depiction of negatively contributed descriptors toward toxicity against California quail.

4.2.8 Screening of prepared external dataset

The PPDB database was screened through the developed models using the PRI tool [136]. After

screening with the developed models, it was found that major pesticides are within the

applicability domain and with good prediction quality. The screened pesticides are enlisted and

categorized in decreasing order of their respective predicted toxicity value. The top 10 and least

10 pesticides according to their predicted values are listed in Table 19. Further assessment of the

chosen pesticides indicated that all of the expected toxicity coincides with prior experimental

values except Fentin chloride, which assures the model’s applicability as well as reliability.

Table 19. Top 10 and least 10 toxic screened pesticides from Pesticide Properties DataBase

(PPDB).

Top 10 highly toxic pesticides screened from Pesticide Properties Database (PPDB).

Names of pesticides

Safety and hazards

Buminafos Acute toxic
Cadusafos Highly toxic
Hexylthiofos High toxic (Cramer class-iii)
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Sulfotep Acute toxic
Tetradifon Acute toxic, Environmental Hazard
Tetraethyl pyrophosphate Acute toxic, Environmental Hazard
Mipafox Highly toxic organophosphate
Fosthiazate Acute toxic, Environmental Hazard
Merphos Highly toxic
IPSP Acute toxic, Environmental Hazard

Top 10 least toxic pesticides screened from the Pesticide Properties Database (PPDB)

Tioxazafen Low acute toxicity
Fentin hydroxide Moderately toxic
Clofentezine Low acute toxicity
Thiabendazole Low acute toxicity
Fentin chloride Highly toxic
Diflovidazin Low toxicity
Fuberidazole Moderately toxic
Sulcofuron Non-toxic
Sulcofuron-sodium Non-toxic
Sulphaquinoxaline No ecotoxicity data

4.3 Study 3

4.3.1 Assessment of PLS-based QSTR model

In this current work, a PLS-based QSTR model has been constructed with 4 latent variables.
Rigorous validation was performed for the assessment of the generated model’s performance
using various statistical parameters such as determination coefficient (R?), Leave-one-out cross-
validated correlation coefficient (Q?.o0), and external correlation coefficient (Q%1, Q%2). The
calculated R? value of the generated model for the studied dataset crosses the threshold value
(0.6) and the cross-validated correlation coefficient (Q2Loo), Q?%r1, and Q?r, crosses the acceptable
threshold value of 0.5. These validation parameters suggest pretty good predictability of the
developed QSAR model.

PLDsp = 299045 + 0.16995 X nDB + 0.16876 X nCt + 0.66741 X nArOCON + 0.16741 X
C-006 + 0.82808 x H-054 + 1.00087 + BO1[0-P] + 0.84222 x BO6[S-P] + 1.63402 X
B06[0-F] + 0.31054 x B07[C-N] -0.57278 x B0O9[C-N]

Niraining =210, R?=0.636, Q200 =0.601, r’m(Loo) =0.467, LV=4, MAE 00) =0.432,
Niest =70, Q%r1=0.603, Q%F>=0.558, Im(testy =0.389.
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4.3.2. Assessment of generated g-RASTR model

We generated q-RASAR models for raising the external predictivity of the developed PLS-based model.
Thus, we calculated similarity and error-based read-across derived descriptors and clubbed them with
structural and physicochemical features before model development. This combined pool of descriptors
encompasses both RA-based similarity and chemical structure attribute-related information. The ultimate
feature selection for g-RASAR model construction has been performed from the combined pool of
descriptors followed by the selection of the best combination using the best subset selection based on the
MAE, cross-validated correlation coefficient (Q%.00), and R?. Finally, PLS-based regression has been used

to develop the g-RASAR model with four latent variables, which are depicted as follows;

pLDsp= 0.60329 + 1.74735 x Eta_betaS_A + 0.86077 x H-054 + 0.44739x B01[0-P] +
0.19007x BO7[C-N] - 0.13052x FO4[N-0] + 0.046x F04[0-0] + 0.49346x RA function(LK)
+0.8103xSE(LK) + 1.50415 X gm*SD Similarity - 0.02972 X sm2(LK)

Ntaining=210, R2 =0.657, Q2 00 =0.630, rmwoo) =0.501, LV=4, MAE(oo) =0.421, nest =70,
Q2r1=0.678, Q%r2=0.642, r?m(testy =0.520

The generated g-RASAR model was verified by various internal and external validation for it’s
reliability, robustness, and predictability. A visual depiction of the correlation between observed
and predicted toxicity values is represented in the scatter plot. A graphical representation of the
relationship between observed and estimated toxicity values is depicted in the scattered plot (Fig.
52).

Table 20. Statistical parameters of developed PLS-based QSTR and g-RASTR models.

Model Internal validation metrics External validation metrics
L[ R® | Qo |12, o] ArPuon) | MAE [ Q%r | Q% | rm?(test)| Arm? | MAE
V (train) (test)
PLS |4 | 0.63 | 0.601 | 0.467 0.250 0.432 | 0.603 | 0.558 0.389 0.304 | 0.460
based 6
QSTR
PLS |4 | 0.65 | 0.630 | 0.501 0.238 0.402 | 0.678 | 0.642 0.520 0.232 | 0.410
based 7
q_
RAST
R
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Predicted

p &~ . ® training set

2 test set

0 1 2 3 4 5 6 7 8
Observed

Fig. 52. Scatter plot of the constructed models.
4.3.2.1. Regression coefficient plot
The regression coefficient plot illustrates whether the descriptor of the generated model has a
positive or negative impact on the modelled toxicity [28]. Here, molecular descriptors such as
Eta_betaS_A, H-054, BO1[O-P], BO7[C-N], FO4[O-O] and RASAR descriptors such as RA
function(LK), SE(LK) and gm*SD Similarity has positive contribution towards the model. On
the other hand, a single 2D descriptor namely FO4[N-O], and a RASAR descriptor i.e. sm2(LK)

has a negative contribution towards toxicity.

Regression coeflicient plot of PLS based ¢-RASTR model

CoeffCS[4](pLD50)
Lo o

2

g

Eta betaS H054 BO1[O-P] BO7[C-N] FO4[N-0] F04[0-0] RA functio SE(LK) em SD Simi sm2(LK)[Ba
Var ID (Primary)

Fig. 53. Regression coefficient plot of the constructed models.
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4.3.2.2 Variable importance plot (VIP)

The relative importance of the modeled descriptors about the toxicity is demonstrated by the
variable importance plot [111]. Generally, VIP is a column plot where modeled descriptors are
represented on the X-axis from left to right descendingly along with the VIP score of individual
descriptors plotted on the Y-axis. A descriptor having a VIP value of more than 1 is considered
statistically significant. According to the VIP plot, the contributing descriptor’s relative
importance is arranged in the following order: RA function > BO1[O-P] > gm*SD Similarity >
Eta _betaS_A > sm2(LK) > SE(LK) > FO4[N-O] > H-054 > B07[C-N] > F04[O-0].

VIP plot of PLS based ¢-RASTR model

VIP[4]

RA functio BO1[O-P] gm SD Simi Eta_betaS sm2(LK)[Ba SE(LK) FO4|N-0] H-054 BOT[C-N] F4[0-0]
Var ID (Primary)

Fig. 54. Variable importance plot (VIP) of the constructed models.

4.3.2.3 Loading plot

The loading plot of the constructed q-RASTR model has been represented by SIMCA-P software.
This plot demonstrates the correspondence between the descriptor variable and the response
variable with the contribution of the descriptors to the toxicity. The distance of the X-variable
from the origin demonstrates the importance of the descriptor. According to the generated loading
plot, it was found that the RA function which is a Read-across derived similarity-based RASTR
descriptor was present far from the origin and considered as the most influential descriptor for

the model toxicity.
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Fig. 55. Loading plot of the constructed models.

4.3.2.4 Score plot

The distribution of compounds in the space of latent variable is defined by the obtained scores

[160]. Based on a scoring function, a score plot shows where the chemical compounds are located

in theoretical chemical space. We found that only 3 compounds are situated outside the ellipse,

which demonstrates the model’s robustness.

Score plot of PLS based q-RASTR model
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Fig. 56. Score plot of the constructed models.
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Table 21. Descriptors and their contribution to the generated g-RASTR model.

Descriptors Definition Type Type of
contribution
toward toxicity
Eta _betaS_A Eta Sigma average | Electro topochemical Positive (+ve)
VEM count atom index
descriptors
H-054 H attached to CO(sp3) Atom-centred Positive (+ve)
with 3X attached to fragments
next C
BO1[O-P] Presence/absence of 2D Atom Pairs Positive (+ve)
O — P at topological descriptor
distance 1
BO7[C-N] Presence/absence of C 2D Atom Pairs Positive (+ve)
— N at topological descriptor
distance 7
FO4[N-O] Frequency of N — O at 2D atom pairs Negative (-ve)
topological distance 4 descriptor
F04[0-0O] Frequency of O — O at 2D atom pairs Positive (+ve)
topological distance 4 descriptor
RA function(LK) A read-across- RASAR descriptor Positive (+ve)
obtained prediction
function utilizing the
Laplacian kernel
function similarity-
based algorithm
SE(LK) The weighted RASAR descriptor Positive (+ve)
standard error relates
to the response values
of neighboring source
compounds
gm*SD Similarity gm % standard RASAR descriptor Positive (+ve)
deviation of close
source compounds
where gm is a
concordance measure
sm2(LK) Similarity coefficient | RASAR descriptor Negative (-ve)

3.3 Possible mechanical interpretation of the modeled descriptor

Eta betaS A

Eta betaS_A is a descriptor that belongs to the group of extended topochemical atom indices
(ETA) descriptors. This descriptor is defined as the summation of § values for all the sigma bonds

relative to the vertices number, where B denoted as valence electron mobile (VEM) counts. This
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can be represented as; £f’s = £Bs/Nv, where Xfs is the total VEM count and Nv is denoted as the
number of vertices [161]. This descriptor represents the electron richness relative to the molecular
bulkiness. The electron richness (higher electronegative atoms) in any compound leads to
increase the overall electronegativity and increases the production of reactive oxygen species
which ultimately cause the death of respective animals [162]. Thus, we can assume that the
presence of this feature makes the compound more toxic as evidenced by compound no. 38
(Triethylenemelamine) (pLDso= 4.852, Eta_betaS_A = 0.85) and vice versa as demonstrated by
compound no. 294 (Prochloraz) (pLDso= 2.805, Eta_betaS_A = 0.673).

H-054

This is an atom-centered fragment descriptor that denotes the number of hydrogen attached to sp?
hybridized carbon bound to three electronegative atoms. It is a simple molecular descriptor that
expresses the electronegative characteristics of the respective compounds. As we discussed
earlier enhancing the electronegativity of any chemical may cause the production of reactive
oxygen species (ROS) which is very fatal to the species. Therefore, the existence of this descriptor
makes the compound more toxic as demonstrated in compound no. 119 (Isobenzan) (H-054=2,
pLDso = 5.614), and the absence of this descriptor makes the compound relatively safer by
decreasing toxicity as depicted in compound no. 31 (H-054=1, pLDso = 4.649).

B01[O-P]

BO1[O-P] is a 2D atom pair descriptor that characterizes as existence or absence of O and P atoms
at topological distance 1. This descriptor represents the presence of two electronegative atoms
(oxygen and phosphorous) which raises the overall electronegativity of the compound and
resulting oxidative stress leads to the demise of the reference species [62]. Therefore, high
electronegativity in a molecule makes the compound more toxic as evidenced in compound no.
177 (BO1[O-P]= 1, pLDsg = 5.032) and vice versa in case of compound no. 206 (BO1[O-P] =0,
pLDso = 2.322).

BO7[C-N]

BO7[C-N] characterizes the presence of carbon-nitrogen fragments with topological distance 7
in the carbon skeleton of the compound. The presence of this fragment is responsible for higher
toxicity due to the presence of electronegative heteroatom such as nitrogen may form hydrogen
bonds and electron donor-acceptor (EDA) complexes with the DNA of respective species.
Consequently, the stability of the double helix DNA structure may hindered and make the
compound more toxic [155]. For example, compound no. 132 has more toxicity value (pLDsg =
5.182) as the numerical value of this descriptor is high (BO7[C-N] = 1) and on the other hand
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compound no. 75 has low toxicity value (pLDso = 2.910) as it has low descriptor value (BO7[C-
N] = 0).

FO4[0-0O]

FO4[0-0O] is a 2Datom pair descriptor representing the frequency of 2 oxygen atoms with
topological distance 4. This descriptor contributed positively to the toxicity and increased the
toxicity by increasing the numerical value of the respective descriptor as it contains highly
electronegative atoms such as oxygen. Therefore, the overall electronegativity of the compound
has increased which leads to a rise in the toxicity of the compound by forming ROS (reactive
oxygen species) [130] as discussed earlier. For example, compound no. 262 has a high toxicity
value (pLDsp = 4.536,F04[O-0] = 3). On the contrary, compound no. 6 has relatively lower
toxicity value (pLDso = 2.443) with descriptor value (F04[O-O] = 1).

FO4[N-O]

FO4[N-Q] is a 2D atom pair descriptor which is defined as the frequency of nitrogen and oxygen
atoms at topological distance 4. This descriptor contributed negatively towards the model
response, which suggests that the presence of higher number of this fragment will reduce the
toxicity as evidenced by compound 298 (FO4[N-O] = 14, pLDso = 2.286) and vice bersa in case
of compound 284 (FO4[N-O] = 4, pLDso = 4.992). The presence of nitrogen and oxygen makes
the compound hydrophilic by making hydrogen bonds. Hydrophilic compounds are less toxic.
RA function(LK)

The descriptor RA function(LK), a RASAR descriptor, that acts like latent variables, represent
various molecular features by providing a comprehensive understanding of the compound’s
properties [163]. It can be observed that this descriptor shows a positive contribution towards the
model response, which means the toxicity value increases with an increase in descriptor value.
For example, compound 224 has a high toxicity value (pLDso = 5.723) with a high numerical
value of descriptor (RA function (LK) = 5.061), while compound 148 has a low toxicity value
(pLDso = 2.208) as the corresponding low numerical value of descriptor (RA function (LK) =
2.75).

SE(LK)

This is a read-across derived RASAR descriptor encoded as a weighted standard error of the
nearby source compound’s response value. This descriptor has positive impacts towards the
response value. Thus, the toxicity of compounds elevates with elevating this read-across derived
RASAR descriptor as shown in compound 276 (SE(LK) = 1.209, pLDso=5.255) and vice versa
in case of compound 207 (SE(LK) = 0.604, pLDsg = 3.914).
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Sm2(LK)

Sm?(LK) is a novel similarity coefficient introduced by Banerjee and Roy [164] which found
chemical compounds showing abnormal prediction (Activity cliffs). This is directly related to the
difference between positive average similarity and negative average similarity [165] as shown in
the following formula:

_ PosAvgSim — NegAvgSim 31

S

Avg.Sim

Here, the Sm2(LK) coefficients are negatively correlated to the response value for the generated
model, which indicates that the higher the coefficient value lower the toxicity as shown in
compound 18 (sm2(LK) = 1.478, pLDso = 3.562) and vice versa in case of compound 131
(sm2(LK) = 0.521) has high response value (pLDsp = 5.178). .

gm*SD Similarity

gm*SD Similarity is an another RASAR descriptor that shows a positive contribution to the
model toxicity. It is the product of the gm (concordance measure) with the nearest compound's
standard deviation of similarity values. It’s positive contribution can be demonstrated by
compound no. 44 with descriptor value (gm*SD Similarity = 0.187) and response value (pLDso
=5.330) and vice versa in case of compound no. 174 having descriptor value (gm*SD Similarity
=0.016), response value (pLDso = 3.592).

Compound no. 132

Compound no. 119 Compound no. 31 BO7[C-N] (+ve)=1
H-054 (+ve)=2 1} H-054 (+ve)=1 L1 pLDy, =5.182
PLDg, =5.614 4 PLDg, = 464971, $ Compound no. 75

" /¢, | BOZ[CN] (+ve)=0
0 — ,’J_ 5 % ans,,=z.9m"

Compound no. 294
Eta_betaS A (+ve)=0.6731)
PLDg = 2.805%

Compound no. 177
BO1[0-P] (+ve)—1 10
s pLDy=5.032 1

‘Compound no. 38
Eta_betaS_A (+ve)=0.851F
pLDg, =4.852

‘Compound no. 206
BO1[0-P] (+ve)= 04
H,N pLDg, =2.3220)

Compound no. 262 Compound no. 6 |
FO4[0-0] (+ve) =34 F04[0-0] (+ve) = 148 O c
PLDy, = 4.536> PLDs, - 2.443 1 CH;

Page 125



Chapter 4 Result and discussion

Fig. 57. Mechanistic interpretation of 2D descriptors.
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Fig. 58. Mechanistic interpretation of RASAR descriptors.

3.4 Screening of external dataset through the developed model

The developed model has been deployed for the screening of the prepared PPDB dataset by using
the PRI tool. The majority of the compounds are within the applicability domain and have good
prediction accuracy. The screened compounds are arranged according to their predicted toxicity
values in decreasing order. Based on their estimated toxicity value, the top 10 and least 10 toxic
compounds are enlisted in Table 22.

Table 22.Top 10 highly & least toxic pesticides screened from Pesticide Properties Database
(PPDB).

Names of pesticides

Safety and hazards

Top 10 highly toxic pesticides screened from the Pesticide Properties Database (PPDB)

Amiprofos-methyl

Highly toxic

Methocrotophos

Acutely toxic

Dicrotophos

Highly toxic

Monocrotophos

Very high acutely toxic

Fensulfothion

Highly toxic

Phosnichlor

Moderately toxic
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Butathiofos Highly toxic
Pyraclofos Highly toxic
Dioxathion Highly toxic
Dufulin Low toxic

Top 10 least toxic pesticides screened from

the Pesticide Properties Database (PPDB)

Copper oxychloride

Low to Moderate toxicity

Dimethyl disulfide

Moderately toxic to Birds

Aluminium phosphide

Moderately toxicity

Chlorine dioxide

Moderate toxic

Lime sulphur

Low toxic to earthworms and honeybees

Ammonium thiocyanate

Non-toxic to aquatic invertebrates

1,1,1-acetonitrile

Low to aquatic organisms

Formaldehyde

Low toxic

Metosulam

Low toxic to birds

Methyl isobutyl ketone

Low toxic to rat
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5. Conclusions
The success of any research work is determined by the results and conclusions obtained from the

studies, which may reveal previously unknown or undiscovered scientific explanations. These
findings may further lead to the development of better understanding and deep knowledge in the
specific area in which the studies were performed. Computational chemistry including computer-
aided drug design, molecular modeling, and virtual screening techniques are emerging as cost-
effective and time-saving methods for introducing new chemicals into the market.

In response to the ethical concerns and the need for more sustainable practices, in-silico modeling
emerges as a viable alternative to traditional in vivo and in vitro experimentation on living organisms.
Through predictive modeling and computational simulations, we can effectively evaluate the
behavior of organic chemicals, shedding light on their potential risks and impacts. This approach not
only enhances our understanding of chemical interactions but also contributes to the development of
ethical and environmentally conscious practices in the chemical industry.

However, there are a lot of limitations to the conventional methods of toxicity assessment. These
limitations include ethical concerns related to animal experimentation, significant time and financial
investments and the inherent scarcity of comprehensive experimental data. In this regards, the
developed QSTR and g-RASTR models emerged to be an effective and adaptable tool for the
efficient prediction of toxicity. We can overcome these constraints and deliver precise and quick
evaluations of drug toxicity by utilizing data-driven insights and computational modeling.

Our work includes several approaches and combines a wide range of concepts, which come together
to produce the results and explanations we offer. Due to their extensive uses in a variety of industries,
including food, medicine, cosmetics, and agriculture, organic chemicals highlight the significance of
thorough risk assessment. One notable challenge is the substantial data gap that exists concerning
the toxic effects of certain chemicals and their largely unidentified environmental consequences.
5.1 Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian
Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and
Read-Across

In summary, this study employs a range of chemometric tools to predict pesticide toxicity for four
different avian species. The research focuses on creating robust and easily interpretable QSTR
models based on OECD principles. The study's statistical validation parameters consistently
demonstrate the strength and reliability of the constructed PLS models. External validation metrics,

employing the read-across algorithm, show slightly superior performance in predicting toxicity,
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except for the mallard duck dataset. Furthermore, this research develops regression-based models,
surpassing previous studies in terms of the dataset's size and the variety of avian species examined.
The findings highlight the significance of electronegativity, molecular weight, imide count,
lipophilicity, and steric effects in avian toxicity. Notably, the presence of C-P fragments at
topological distance 4 and electronegative groups intensifies toxicity, while features like branching
and hydrogen bond acceptor characteristics reduce the toxicity.

The validation of the predicted toxicity of the screened compounds by experimental data
demonstrated the reliability and feasibility of applying the developed models for screening
pesticides, offering valuable support to researchers striving to design eco-friendly and safe chemical
pesticides. They effectively bridge gaps in toxicity data and simplify the evaluation of novel
pesticides for various bird species. Moreover, these models significantly reduce the time, resources,
costs, and the need for animal testing, aligning with the principles of reduction, refinement, and
replacement (RRR) in research practices.

5.2. Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological
effects of diverse pesticides against California quail

The current work has proposed PLS-based QSTR models against a new avian species (California
quail). These models were validated by using various statistical metrics to establish the model’s
reliability and robustness. External validation parameters were intensified by using intelligent
consensus prediction. Possible mechanistic interpretations of the associated descriptors were
demonstrated and we found that the presence of phosphate groups, electronegativity, a high
percentage of carbon, unsaturation, mean Sanderson electronegativity, lipophilicity, aromatic
proportion, and flexibility have significant effects on toxicity. Particularly, the presence of C-P
fragments at exact topological distances, electronegativity, carbon chain length, and degree of
unsaturation elevate the toxicity. At the same time, features like the number of rotatable bonds, and
aromatic proportion diminish the toxicity. The developed models were employed on a prepared
external database which was originally collected from the pesticide properties database (PPDB) and
predicted their toxicity to demonstrate the reliability and feasibility of the developed models. After
the screening, it can be concluded that the reported models can efficiently fill the gaps in toxicity
data and may enlighten researchers and synthetic chemists to design novel, safer, and eco-friendly

compounds to reduce the possibility of toxicity specifically toward avian species.
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5.3. Study 3: Chemometric-based exploration of the toxicological significance of diverse
chemical toxicants in wild birds with an application of the g-RASTR approach

In the current study, a predictive g-RASTR model for the toxicity assessment against the wild birds
of diverse chemical toxicants has been generated. Various readily interpreted 2D descriptors were
employed for the construction of the final g-RASTR model. The constructed model has been
validated externally and internally to verify quantitatively as well as qualitatively by using different
statistical parameters to establish reliability, robustness, and predictability. Possible mechanistic
interpretation of the modeled descriptors demonstrated that features such as H-054, BO1[O-P],
BO7[C-N], and FO4[O-O], majorly indicate the presence of electronegative atoms/hetero atoms along
with the presence of extended topochemical atom indices (ETA) descriptors contribute positively
towards the toxicity of the chemical toxicants. Furthermore, a few similarity-based RASAR
descriptors like RA function, SE(LK), gm*SD Similarity, and Sm2(LK) also contributed positively
towards the toxicity of wild birds. Here in this study, the undetermined toxicity values of the PPDB
(Pesticide Properties Database) were predicted by deploying the generated q-RASTR model which
shows the reliability and feasibility of the developed model. The generated model can be useful for
assessing the toxicity of any unknown compound by overcoming limitations such as animal testing,
time-consuming, and cost. The generated model and obtained structural information might enlighten
the researchers to synthesize safer and environmentally safe chemicals as well as bridge the data gaps
in the toxicity database.
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ARTICLE INFO ABSTRACT

Keywords:
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The rapid increase in the use of pesticides is driven by the growing demand in the agricultural sector. However,
the widespread application of these pesticides and their inherent toxicity have significant repercussions on the
ecosystem, particularly impacting animal and bird species. In this present study, we have developed four 2D
quantitative structure-toxicity relationships (QSTRs) models for four different avian species using the largest
number of available experimental data points to date employing the partial least squares (PLS) algorithm.
Furthermore, we have also performed the read-across algorithm to improve the test set results. Based on the
information derived from the models, it was found that hydrophilic characteristics, the presence of molecular
branching and thio imide groups impact negatively to the pesticide toxicity, while the presence of phosphate
group, presence of halogens viz. chlorine and bromine atoms, presence of hetero atoms, high molecular weight,
presence of bridgehead atoms, presence of secondary aliphatic amide and fragments like RCONHR escalates
avian toxicity. The developed QSTR models were further employed to predict the Pesticide Properties DataBase
(PPDB) for all four avian species as a measure of data gap-filling and risk assessment. Thus, the developed models
can be utilized for eco-toxicological data-gap filling, prediction of toxicity of untested pesticides as well as the
development of novel and safe environmental-friendly pesticides.

1. Introduction

Pesticides encompass a wide range of chemicals, which are typically
employed to control or kill pests viz. insects, rodents, fungi, weeds, etc.
for effective crop management. The use of pesticides has increased
significantly in recent decades, particularly in agriculturally dependent
developing countries (Singh et al., 2014). Due to the inherent charac-
teristics, a significant portion of the applied dose continues to remain as
remnants on crops and fields (Basant et al., 2015). As a result, large
amounts of pesticides have been found in crops, vegetation, and further

edible products causing exposure to both animals and humans. Ac-
cording to reports, prolonged exposure to these substances can harm a
person’s nervous, endocrine, reproductive, immunological, cardiovas-
cular, renal, and respiratory systems (Mostafalou and Abdollahi, 2013).
In light of the aforementioned, various regulatory authorities have
emphasized the need for the toxicity evaluation of both new and existing
pesticides. The avian toxicity tests are essential for regulatory approval
and licensing of the active ingredients of pesticides. Aves are significant
for ecology and have a huge contribution to biodiversity by performing
pollination of plants, rodent control, seed dispersal, and spreading

Abbreviations: BQ, Bobwhite quail; JQ, Japanese quail; MD, Mallard duck; RNP, Ring-necked pheasant; 2D descriptors, Two-dimensional descriptors; 2D-QSTR,
Two dimensional- quantitative structure- toxicity relationship; AD, Applicability domain; DModx, Distance to model X; GA, Genetic algorithm; Log[LCsl, loga-
rithmic value of the 50% Lethal concentration LCso; OECD, The Organisation for Economic Cooperation and Development; PLS, partial least square; QSAR,
Quantitative structure-activity relationship; QSTR, Quantitative structure-toxicity relationship; REACH, Registration, Evaluation, Authorisation, and Restrictions of
Chemicals; RMSEP, root mean square error of prediction; EPA, Environmental Protection Agency; PPDB, Pesticide Properties DataBase.
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nutrients (Mukherjee et al., 2021). According to today’s scenario, one in
every eight bird species faces extinction (Saxena et al., 2015). Therefore,
birds are used as a model organism to evaluate toxicity. Oral toxicity
testing is important for determining avian species’ toxicological signif-
icance. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese
quail (Coturnix japonica) [JQ], ring-necked pheasant (Phasianus colchi-
cus) [RNP], and mallard duck (Anas platyrhynchos) [MD] are the major
test species as per OECD norms (OECD, 2010). The validated wet-lab
techniques for the evaluation of compound toxicity towards avians are
expensive, unethical, and require a significant amount of time and
effort. So the relevant regulatory bodies encourage the employment of
potential alternative strategies to achieve the objective. Regulatory
agencies like the Environmental Protection Agency (EPA), European
Food Safety Authority (EFSA), Registration, Evaluation, Authorization,
and Restriction of Chemicals (REACH), and European Chemicals Bureau
(ECB), have emphasized the potential of computational tools like QSTR,
read-across, and alternative approaches for investigating the inherent
characteristics of chemicals within the realm of toxicokinetics (Nicolotti
et al., 2014; Pandey et al., 2020). Some alternatives in silico-based ap-
proaches were reported previously that offer significant improvements
over single-output models for regulatory purposes (Speck-Planche et al.,
2011; Speck-Planche et al., 2011, 2012; Speck-Planche, 2020; Jiang
etal., 2020; Jain et al., 2021). Speck-Planche et al. (Speck-Planche et al.,
2011) reported the discriminant model based on substructural de-
scriptors for the rational design of new agrochemical fungicides.
Speck-Planche et al. (Speck-Planche et al., 2011) also worked on new
in-silico methods for the rational design of new insecticidal agents.
Speck-Planche et al. (Speck-Planche et al., 2012) further reported the
multi-species chemoinformatic methods for assessing the various eco-
toxicological profiles in agrochemical fungicides. Speck-Planche et al.
(Speck-Planche, 2020) also published a work regarding multi-scale
QSAR methodology for simultaneous ecotoxicological modeling of
pesticides. Jiang et al. (Jiang et al., 2020) worked on boosting
tree-assisted multitask deep learning methods for small scientific data-
sets. A consensus multitask deep learning method was used to model
multispecies acute toxic effects by Jain et al (Jain et al., 2021). Even
other alternative modeling approaches based on machine learning (ML)
tools that have demonstrated significant advancements, particularly in
handling nonlinearity aspects and improving predictions were also re-
ported earlier (Jiang et al., 2020; Jain et al., 2021; Halder et al., 2023;
Samanipour et al., 2022). Halder et al. (Halder et al., 2023) reported the
global models employing in-silico methods for predicting the ecotoxicity
of endocrine disruptive chemicals. Samanipour et al. (Samanipour et al.,
2022) worked on alternative methods for chemical prioritization using
molecular descriptors and intrinsic fish toxicity of chemicals.

These in silico techniques examine significant structural features that
are essential for predicting the biological activity, toxicity, and other
characteristics of untested substances. Several research teams published
in silico predictions of acute oral toxicity in various species, including
rats, mice, and fish (Banjare et al., 2021; Song et al., 2011; Hamadache
et al., 2016; Wang et al., 2021). But in the case of avian oral toxicity,
very few in-silico reports are available (Basant et al., 2015; Mukherjee
et al., 2021; Saxena et al., 2015; Banjare et al., 2021; Zhang et al., 2015;
Podder et al., 2023).

Herein, we developed QSTR models to interpret the major structural
and physicochemical features responsible for their toxicity followed by
assessing the toxicity of external datasets in BQ, JQ, RNP, and MD avian
species following the OECD guidelines strictly (OECD, 2007). Alterna-
tive tools, such as read-across, are widely used for hazard assessment to
fill the data gaps. The read-across-based predictions assume that a
molecule with an unreported experimental endpoint value should have a
value similar to molecules that are structurally and/or biologically
similar to the query molecule. So, we have conducted the read-across
predictions to improve the test set results. The main motive for
choosing the regression-based QSTR approach over others (e.g.:
regarding its effectiveness, coping with chemical heterogeneity, and
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several different species) (Karpov et al., 2020; Jaganathan et al., 2022)
was to develop a linear relationship between the descriptors and the
defined endpoints (pLCsp) to identify the important features responsible
for toxicity towards avian species (BQ, JQ, RNP, and MD) as well as
data-gap filling. Classification-based approaches also excel in handling
similar challenges, and both methodologies come with distinct advan-
tages and disadvantages. For example, classification models are typi-
cally more robust to outliers and data errors than regression models.
This is because classification models only focus on the categorical
relationship between the input and output variables rather than the
exact numerical relationship. On the other hand, regression models can
identify the most important features or predictors driving the outcome
variable. This information can be used to inform decision-making and
guide further investigations. Sometimes, it may be beneficial to convert
a classification problem into a regression problem or vice versa. By
doing so, one can gain additional insights into the data and improve the
accuracy of our predictions. Nevertheless, the decision to convert a
problem type should be based on the specific problem at hand and the
characteristics of the data. Additionally, we have also developed clas-
sification models as well as employed two different ML algorithms
namely SVM, and RF to evaluate their effectiveness in model construc-
tion and prediction. The present work aimed to design a logical method
to assess pesticide toxicity towards avians. Furthermore, screening of the
Pesticide Properties DataBase (PPDB) was conducted to evaluate the
avian toxicity following the prediction reliability assessment of the
QSTR models by the PRI (prediction reliability indicator) tool (http://
teqip.jdvu.ac.in/QSAR _Tools/) as a measure of data gaps filling and
risk assessment (Kumar et al., 2023). The robustness, reproducibility,
and predictivity of QSTR models were thoroughly validated using
globally accepted statistical parameters.

2. Methods and materials
2.1. Preparation of dataset & curation

Here, we developed models using datasets with toxicity endpoint
(LCs0; defined as the lethal concentration in 50% population) for toxicity
prediction in multiple avian species collected from literature (Zhang
et al., 2015) which was originally collected from the EPA, Ecotox
database (http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides
for RNP, 117 pesticides for JQ, 556 pesticides for BQ, and 564 pesticides
for MD were taken for the development of the model. The toxicity
endpoint values ranges from 0.082-4.957 in BQ, 0.162-4.968 in JQ,
0.27-4.67 in MD, and 0.162-4.857 in RNP. The two-dimensional
structures of the pesticides were sketched using Marvin Sketch 5.5.0.1
(https://chemaxon.com) software with the addition of explicit hydrogen
atoms as well as proper aromatization. The conversion of structure file
formats was carried out using Open Babel v.2.3.2 (O’Boyle et al., 2011).
Knime workflow (https://www.knime.com/cheminformatics-exte
nsions) was employed for data curation which removes unwanted salts
and duplicate compounds. Toxicity in an avian species characterized as
an endpoint value (LCsg) was converted to millimolar (mM) concen-
tration followed by converting to a negative logarithmic scale, pLCs, for
easy interpretation. Some compounds were omitted from the datasets
due to high residual values.

2.2. Descriptor calculation & data pre-treatment

Descriptors are the numerical presentation in which we correlate the
chemical structure with any physiochemical property/biological activ-
ity/ toxicity. In this work, a total of 9 classes of descriptors were
calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/
alvadesc/) software (Mauri, 2020). In each dataset, the defective and
inter-correlated chemical descriptors were eliminated by V-WSP1.2
(http://teqip.jdvu.ac.in/QSAR Tools/) software with a standard devia-
tion less than 0.0001 or correlation coefficient greater than 0.95.
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2.3. Dataset division

Dataset division is crucial for QSTR model development. Normally,
training set compounds are used to develop the model and test set
compounds for validation. The validation set is used to assess the model
performance and fine-tune the parameters of the model. It tells us how
well the model is learning and adapting, allowing for adjustments and
optimizations to be made to the model’s parameters and hyper-
parameters (the latter in the case of machine learning-based models)
before it is finally tested. The test data set mirrors real-world data the
model has never seen before, i.e.: a separate sample of unseen data. Its
primary purpose is to offer a fair and final assessment of how the model
would perform when it encounters new data in a live, operational
environment. This is especially critical to evaluate models effectively
along with preventing overfitting (Martin et al., 2012). We performed
dataset division of four datasets by using rational methods such as the
Kennard stone, activity property-based, and Euclidean distance based
method using Dataset Division GUI 1.2 software as well as using random
division method (Martin et al., 2012; Ambure et al., 2015). We also
employed modified k-medoid clustering by using Modified k-Medoid 1.3
(http://teqip.jdvu.ac.in/QSAR _Tools/) (Park and Jun, 2009). After that,
the final selection of data-set division methods was done based on the
statistical results. The best results come in the Kennard stone method for
the MD and JQ data set, the activity property-based method for the BQ
dataset, and the random division method for the RNP dataset. In this
process of dataset division, the datasets are divided into 75:25 ratios of
training and test sets compounds respectively (Jillella et al., 2021).

2.4. Selection of features and model building

In the case of model building, feature selection is one of the vital
steps by which we can find significant descriptors to boost the inter-
pretability and predictive ability of the model (Roy et al., 2008). Pri-
marily, we performed stepwise regression method and genetic algorithm
(GA) for feature selection (Ojha and Roy, 2011) and then we employed
the regression-based partial least square (PLS) (Wold et al., 2001)
method through the partial least squares v1.0 tool (http://teqip.jdvu.ac.
in/QSAR _Tools/) for model building.

2.5. Validation metrics of QSTR models

A significant step in the creation of a QSTR model is statistical
validation, which demonstrates its reliability and predictivity (Roy
et al., 2015a). Various internal validation parameters were calculated
which involve determination coefficient (R?), leave-one-out (LOO)
cross-validated correlation coefficient (QZ,) to judge the reliability and
importance of the model. External validation parameters demonstrate
the predictivity of QSTR models. The model’s external validation is
determined using parameters such as Q% and QZ, (Todeschini et al.,
2016). For both internal (QZ,,) and external predictive parameters

(Q%,Q%), the approved threshold value is 0.5.
2.6. Prediction using read-across algorithm

According to the fundamental tenet of read-across, substances with
similar chemical structures will also have comparable attributes and it is
not utilized in the model development process (Banerjee et al., 2022).
Read-across prediction is a similarity-based non-testing technique that is
widely used in eco-toxicological data-gap filling. Initially, the training
set of the best model was split into sub-training and sub-test sets. These
sets were again used to optimize the hyperparameters through
Read-Across-v3.1  (http://teqip.jdvu.ac.in/QSAR_Tools/)  software.
After similarity-based sorting, similarity threshold values (0—1), various
distance threshold values (1-0), and the numbers of most similar
training compounds (2—10) were applied. The best setting of
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hyperparameters obtained from sub-training and sub-test was applied to
the original training and test sets for the final prediction (Chatterjee
et al., 2022).

2.7. Model’s applicability domain study

The applicability domain (AD) of a QSAR model has been defined as
the chemical structure and response space, considered by the properties
of the molecules in the training set (Roy et al., 2015a). The AD expresses
the fact that QSARs are undeniably associated with restrictions in the
categories of physicochemical properties, chemical structures, and
mechanisms of action for which the models can generate reliable pre-
dictions. In the current study, distance to the model in X-space (DModx)
has been utilized for AD estimation of constructed PLS models which
rely on residuals of response and predictive variables (Roy et al., 2015b).

2.8. Y-randomization study

Y-randomization study was carried out to check the chance corre-
lation of the QSTR models with the help of SIMCA-P software (SIMCA-P,
2002). In the Y-randomization test, the descriptor matrix X is kept
constant but only the vector Y is scrambled randomly, and a new model
is developed using the same set of descriptors. The original model is
considered as robust if its validation metrics are better than the random
models (Paul et al., 2022). The values of the R2yrand intercept and
QZYrand intercept should not be more than 0.3 and 0.05 respectively.

2.9. Analysis of parametric assumptions of the developed models

To ensure that our model is reliable we carried out some diagnostic
tests to check for the existence of multicollinearity, normal distribution,
and homoscedasticity (Dillon and Goldstein, 1984; Morales Helguera
et al., 2008). Multicollinearity is defined as predictor variables within a
regression model that are highly correlated with each other, leading to
inaccurate results in regression analysis. To identify multicollinearity,
we used the variation inflation factor (VIF) which is a widely used
metric. If the VIF is higher than 5, multicollinearity is considered to be
present (Kim, 2019). In statistical regression models, exhibiting multi-
collinearity can lead to misleading results. For each modeled descriptor,
we found that the VIF values were very close to 1. So, it can be concluded
that all the independent variables are not collinear with the dependent
variable. The function values follow a multidimensional normal distri-
bution with a mean and covariance matrix that depends on the
descriptor vectors. We have plotted the normal distribution curve for
each (BQ, JQ, MD, and RNP) avian species and provided in Fig. S1 of
supplementary information 2. Homoscedasticity refers to the equal
variance of an error in a regression model was assessed using the
Breusch-Pagan test in our study. A p-value of more than 0.05 indicates
the homoscedasticity of the model. In our study, the calculated p-values
were not less than 0.05 (0.093-0.209) for all the developed models.
Therefore, we fail to reject the null hypothesis, and the model can be
considered homoscedastic. All the statistical results of homoscedasticity
and multicollinearity for each model are provided in Tables S1 and S2 of
supplementary information 2.

2.10. Application of other machine learning (ML) algorithms

To estimate the prediction performance of other algorithms, we have
employed two different state-of-the-art ML algorithms namely support
vector machine (SVM) and random forest (RF) using the Orange data
mining tool (Demsar et al., 2013, Senanayake et al., 2022). The hyper-
parameters were adjusted to tune the model for optimal performance.
The prediction qualities of the ML models were evaluated in terms of R?,
Qﬁoo, and MAE values.
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2.11. Classification based QSTR (LDA-QSTR) model development

In the present work, we have developed a classification-based linear
discriminant analysis (LDA) QSTR model from the selected set of fea-
tures and evaluated its performance for its predictive ability. The model
development is done using ClassificationBasedQSAR _v1.0.0 tools
(available at http://teqip.jdvu.ac.in/QSAR Tools/). The model was
extensively validated based on different internal and external classifi-
cation metrics (area under the ROC curve (AUC), accuracy, precision,
sensitivity, F-measure, and Matthews correlation coefficient (MCC))
(Fawcett, 2006; Matthews, 1975).

2.12. Screening of the Pesticide Properties DataBase

We have collected 1903 chemical data from Pesticide Properties
DataBase (PPDB) available in (http://sitem.herts.ac.uk/aeru/ppdb/).
Knime curation was done to remove duplicates, inorganic salts, and
mixtures using the KNIME workflow. Due to the knime curation, some
compounds were removed. After the curation, the remaining 1694
compounds were used for the screening process to check the developed
model’s reliability. The descriptors for these molecules were calculated
using the same procedure as in the QSAR modeling process. The pre-
dictions were made through the use of individual PLS-based QSTR
models with the help of the PRI (Prediction Reliability Indicator) tool
(http://teqip.jdvu.ac.in/QSAR _Tools/). PRI tool categorizes the pre-
dictions into three distinct groups: good (composite score 3), moderate
(composite score 2), and bad (composite score 1). Additionally, the tool
determines the localization of compounds inside the AD. The screened
compounds were ranked based on their predicted toxicity and the
twenty highest and least toxic compounds which exhibited toxicity to-
wards all four avian species were analysed. The results were further
validated extensively based on experimental data reported previously,
to establish the real-world applicability of the developed final PLS-based
QSTR models. Detailed discussions on the results can be found in Section
3 (Roy et al., 2018). A detailed flow diagram of this study has been given
in Fig. 1.
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3. Results and discussion

In this study, we have developed PLS models utilizing the toxicity of
pesticides (LogLCs,) on four different avians (BQ, JQ, MD, and RNP)
employing a reduced pool of chemical descriptors. The created model’s
quality is measured by using different internal (R?, Q%,,) and external
(Q%, Q%)) statistical parameters. The results obtained from PLS
models indicated the model’s robustness, reliability, and predictivity.
All the metrics obtained from QSTR models are depicted in Table 1.
Read-across algorithm was employed to improve the model’s external
predictivity. External predictivity was improved for all three datasets
(BQ, JQ, RNP) except MD in read-across prediction, and results are
provided in Table 2. The obtained results from the Y-randomization test
were found to be R?= -0.01, Q%= -0.0531, (for BQ), R?> = 0.0194, Q> =
-0.215 (for JQ), R? = -0.008, Q? = -0.0377 (for MD), and R? = 0.028,
Q? = -0.213 (for RNP) which demonstrated that the models were not
formed by any chance. AD study depicted that compounds 26, 112, and
113 in BQ, compounds 31 and 103 in JQ, compound 468 in MD, and
compound 88 in RNP from the test set are outside the AD as depicted in
Figs: S1-S4 in supplementary information 2. The tentative reasons or
characteristics that designate certain compounds as outliers in each
model (above the D-critical line) is due to some structural dissimilarity.
As for example, in case of the BQ model; [O-P] fragment at topological
distance 3 is absent for compounds 26,112 and 113; for the JQ model;
nBridgeHead, [N-P] fragment at topological distance 5 and [O-P] frag-
ment at topological distance 1 are absent; in the case of MD model; C-
012, [O-P] fragment at topological distance 7, [C-P] fragment at topo-
logical distance 5 and [C-Cl] fragment at topological distance 4 are
absent and lastly, for RNP model; nRCONHR, [C-P] fragment at topo-
logical distance 4, [P-Cl] fragment at topological distance 5, and [O-S]
fragment at topological distance 3 is absent. We have developed new
QSTR models without the identified outliers and checked the statistical
metrics (provided in Table S3 of Supplementary Information 2). A vi-
sual representation of the correlation between observed and predicted
toxicity values has been depicted in the scatter plot (provided in Fig. 2).
Additionally, we used two different ML algorithms namely support
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Table 1

Statistical parameter of developed PLS models.
Avian Species Training set Test set

Nirain/Neest Lvs R? Qoo Q% Q, MAE jcs) Quality(cesty

BQ 411/137 2 0.643 0.603 0.613 0.613 0.186 Good
JQ 77/34 2 0.630 0.552 0.534 0.519 0.403 Moderate
RNP 82/30 2 0.635 0.531 0.604 0.600 0.349 Moderate
MD 377/162 1 0.606 0.588 0.752 0.637 0.060 Good

vector machine and random forest to evaluate their effectiveness in

;ab;e 2 based predictions for f . model construction and prediction. The PLS-based QSTR models with
cad-across based predictions for four species. read-across predictions produce the lowest prediction error for the test
Optimized settings Metrics Ygk (Test) set compounds, as indicated by the MAE;e; value compared to ML-based
Bobwhite quail models against all of the avian species provided in Table S4 of Supple-
Ygk (Test) le 0.690 mentary information 2. The equations of the final developed models of

6=0.25 Qf2 0.690 BQ, JQ, RNP, and MD are provided below:
¥=0.25 RMSEp 0.279 Model BO:
No. of similar compounds =10 MAE 0.179 odel BQ:
Japanese quail _ _
Optimized settings Metrics Y1k (Test) PLC50 (BQ) = 1.25782 +0.43538 x FO2[C — P] +0.00176
6=0.25 Qh 0.707 x MW 4+ 0.5691 x F09[S — F] — 1.15994
¥=0.25 Q% 0.698
No. of similar compounds =10 RMSEp 0.394 x B0O9[C —P] —0.55509 x FO3[0 —P] —0.046 x T(P..Cl)
MAE 0.307
Ring-necked pheasant Model JQ:
Optimized settings METRICS Ylk (Test)
¢ =0.5 Q% 0.714 PLC50 (JQ) = 415712+ 0.74137 x BO1[O — P] — 6.67929
¥ =0.5 Q% 0.714
No. of similar compounds =10 RMSEp 0.392 x X2A +1.18073 x BO5|N —P] —0.28037
MAE 0.290 x H— 048 — 0.00675 x T(0..Cl) +0.44076
Mallard duck .
Optimized settings METRICS Yeuc (Test) x nBridgeHead
¢ =0.75 Q%4 0.686
1 =0.75 0% 0.540 Model RNP:
No. of similar compounds =10 RMSEp 0.114
MAE 0.081
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Fig. 2. Scatter plots of developed models.
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PLC50 (RNP) = 4.19704 — 6.73075 x X2A +1.81161
x nRCONHR — 0.99523 x nN(CO)2 + 0.84946
x BO4[C — P] — 0.81404 x BO5[P — Cl] — 0.42293
x FO3[0 —§]

Model MD:

PLC50 (MD) = 1.31098 + 0.00138 x MW + 0.19812
x C—012+1.25421 x BO7[O — P] + 0.27204
x Br— 094 + 0.5788 x BO5[C — P] +0.01952
x FO4[C — Cl]

Several classification-based metrics have been computed with the
PLS-based QSTR-read across models for all (BQ, JQ, MD, and RNP) the
avian species and reported in the following Table 3. Good sensitivity,
specificity, and accuracy values indicate the good classification ability of
the model. The computed values of the Matthews correlation coefficient
(Matthews, 1975) indicate an acceptable prediction and an agreement
between observed and predicted classification for all the developed
models against avian species.

3.1. Regression coefficient plot

The descriptor’s positive/negative contribution towards the toxicity
is provided via a regression coefficient plot. In this investigation, the
descriptors, FO2[C-P], MW and FO9[S-F]) contributed positively while
the descriptors, BO9[C-P], FO3[O-P], and T(P.Cl) contributed negatively
towards the toxicity of pesticides in case of BQ. In JQ, the descriptors
which contributed positively toward the toxicity are BO1[O-P], BO5[N-
P], nbridgehead and X2A, whereas the descriptors H-048 and T(O.Cl)
contributed negatively towards the toxicity. In the case of MD, the de-
scriptors MW, C-012, B07[O-P], Br-094, BO5[C-P], and F04[C-Cl]
contributed positively towards the toxicity. In case of RNP, the de-
scriptors, nRCONHR and B04[C-P] contributed positively whereas the
descriptors X2A, nN(CO)2, BO5[P-Cl], and FO3[O-S] contributed nega-
tively towards the toxicity. All the relevant plots have been provided in
Figs S5-S8 in supplementary information 2.

3.2. Variable importance plot (VIP)

The relative importance of model descriptors is illustrated with VIP
(Akarachantachote et al., 2014). Descriptors having the highest and
lowest impact on avian species can be recognized from these plots. The
significance of the variable is higher if the VIP score is greater than 1. In
VIP plot, the descriptors are presented concerning their significance
(higher contribution to lower contribution) and their importance which
is in the following order: FO2[C-P], T(P.Cl), MW, BO9[C-P], FO3 [O-P],
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FO9[S-F] (in case of BQ), BO1[O-P], BO5[N-P], X2A, nBridgeHead,
H-048, T(0.Cl) (in case of JQ), BO5[C-P], MW, BO7[O-P], C-012, Br-094,
F04[C-CI)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S],
BO5[P-Cl], Nn(CO)2 (in case of RNP) as depicted in Figs: $§9-S12 in
supplementary information 2.

3.3. Loading plot

The loading plot shows how the independent variables (descriptors)
are related to the response variable. The first two components were used
to create the loading plot. A descriptor is assumed to have a stronger
effect on response value if it is located far from the origin of the plot. On
the basis of the loading plot as shown in Figs. $13-S16 in supplementary
information 2; it is interpreted that the X-variables FO2[C-P] and MW
have more influence to the Y-variable as traced from the proximity with
response variable and the presence of these features elevated pesticide
toxicity towards BQ. Similarly, BO1[O-P], BO5[C-P], and B04[C-P] are
the most influential descriptors in the case of JQ, MD, and RNP
respectively.

3.4. Mechanistic interpretation of PLS models

Table 4 and Figs. 3-6 provide a detailed account of the model de-
scriptors followed by mechanistic interpretations important to identify
major structural and physicochemical features.

3.5. Pesticide Properties DataBase screening

Pesticide Properties DataBase was screened through the developed
models with the help of the software “PRI Tool_PLSversion” (available
from http://teqip.jdvu.ac.in/QSAR Tools/) using the developed PLS
models. The categorization threshold (mean value of the training set
compound) for avian toxicity against BQ; JQ; MD; RNP > 1.883; 2.236;
1.845; 2.191 respectively was applied for prioritization purposes. From
the prediction, it was seen that maximum compounds are within the
domain of applicability and show prediction quality as “good”. The
screened chemicals from the Pesticide Properties DataBase with their
respective predicted toxicity against BQ, JQ, MD, and RNP are shown in
supplementary information 1. The compounds were ranked in
decreasing order of predicted toxicity for each avian species. The top 20
and least 20 toxic pesticides for all four avian species from the PPDB
database are provided in Table 4. Further validation of the predicted
toxicity of the selected pesticides revealed that apart from fluo-
roacetamide and sodium monofluoroacetate, all the predicted toxicity
corroborated with the previous experimental findings, indicating the
practical applicability of the developed models as shown in Table 5.

Table 3
Statistics of the classification-based QSTR models.
Sl no. LDA-QSTR MODELS AUC-ROC SENSITIVITY ACCURACY PRECISION F-MEASURE MCC
1 BQ 0.80 54.54 83.33 88.00 67.35 0.59
(train)
BQ 0.83 52.17 85.36 92.30 66.67 0.62
(test)
2 JQ 0.82 62.50 80.76 86.95 72.73 0.60
(train)
JQ 0.80 75.00 84.84 81.81 78.26 0.66
(test)
3 MD 0.88 75.00 83.59 82.60 78.62 0.65
(train)
MD 0.86 75.71 85.71 89.83 82.17 0.71
(test)
4 RNP (train) 0.83 63.88 79.74 88.46 74.19 0.60
RNP 0.87 76.92 84.84 83.33 80.00 0.67
(test)
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Table 4

Mechanistic analysis of model descriptors of all species.
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S.
no

Descriptor

Type

Function

Contribution

Mechanistic introspection

BQ oral pLCso

1

FO2[C-P]

MW

FO9[S-F]

BO9[C-P]

FO3[0-P]

T(P.CD

JQ oral pLCso

1

BO1[O-P]

X2A

BO5[N-P]

H-048

T(0.CD)

2D Atom pair

Constitutional
descriptor

2D Atom pair

2D Atom pair

2D Atom pair

2D Atom pair

2D Atom pair

Connectivity indices

descriptor

2D Atom pair

Atom-centered
fragments

2D Atom pair

Frequency of carbon and phosphorus
atoms at topological distance 2

Molecular weight

Frequency of sulfur and fluorine
atoms at topological distance 9

Presence/absence of carbon and
phosphorus atoms at topological
distance 9

Frequency of oxygen and phosphorus
atoms at topological distance 3

Sum of topological distances between
P.Cl

Presence/absence of O — P at
topological distance 1

Average connectivity index of order 2

Incidence of N - P at topological
distance 5

H attached to C2(sp3)/C1(sp2)/CO
(sp)

Sum of topological distances between
0.ql

+ve

+ve

+ve

+ve
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Generally, the phosphate group is toxic (Vervloet, 2019a).The presence
of more phosphate groups in a molecule tends to increase its toxicity as
evidenced in compound 442. On the other hand, the presence of less
number of these fragments in a compound may result in low toxicity
values, as seen in compound 501 (depicted in Fig. 3).

This descriptor is directly related to the molecular size and bulkiness of
molecules. It may influence diffusion in biological membranes and fluid
media (Hou et al., 2004; Khan et al., 2019). So the chemicals may easily
cross the biological membrane of species and retain in the body of
reference species for a long time, which ultimately enhances the toxicity (
Basant et al., 2015) as demonstrated in compound 381 and vice versa in
compound 239 (given in Fig. 3).

Lipophilic substances have a greater susceptibility to accumulation
within the cells, resulting in a higher pesticide concentration inside the
organism, which ultimately leads to enhanced toxic effects. The presence
of two highly electronegative atoms (fluorine and sulfur) as well as a long
carbon chain (lipophilicity) in a compound tend to make it more reactive
and potentially more toxic (Mukherjee et al., 2021; Ghosh et al., 2020) as
shown in compound 23 and oppositely occurs in compound 523 (shown
in Fig. 3).

The negative regression coefficient of this descriptor indicates that the
presence of carbon and phosphorus atoms at the topological distance 9
may decrease the pesticide’s toxicity towards avian species as shown in
compound 296 while the absence of this fragment in a chemical may have
higher toxicity values as shown in the case of compound 11 (described in
Fig. 3).

The negative regression coefficient of this descriptor indicates that it
inversely correlated with the pesticide’s toxicity towards avian species.
Thus, the presence of this fragment reduces the compound toxicity as
demonstrated in compound 487 and the absence of this fragment
enhances the toxicity as represented in compound 52 (given in Fig. 3).
The two-dimensional atom pair descriptor, T(P---Cl) accounts for the
topological distances between phosphorus and chlorine atoms. Reduction
of inductivity in chlorine substituents causes a decrease in electron
density for the relevant compounds. Therefore, the incidence of the P-Cl
bond in aromatic chemicals reduces the electron density of the aromatic
ring, thus, electron-donor-acceptor interactions cannot happen easily
between pesticides and the reference species (Ghosh et al., 2020). This
descriptor has a negative regression coefficient, indicating that the
presence of this fragment will result in a decrease in pesticide toxicity
profile, as exemplified by compound 243, while it would have the
opposite effect when present, as proven by compound 441 (provided in
Fig. 3).

The presence of two electronegative atoms (O and P) in a compound
makes it more electronegative which leads to oxidative stress and the
death of the reference species (Kumar et al., 2023; Roy and Roy, 2021).
This phenomenon is demonstrated in compound 81 and inversely occurs
in compound 113 (shown in Fig. 4).

X2A represents the degree of branching in molecules, which is inversely
correlated with hydrophobic interaction as well as toxicity (Arvidsson
etal., 1971; Roy and Das, 2013). Thus, the higher numerical value of this
descriptor leads to a decrease in toxicity value as shown in compound 13
and vice versa occurs in compound 57 (given in Fig. 4).

The presence of two electronegative atoms (N and P) in a compound
makes it more electronegative which leads to oxidative stress and the
death of the reference species (Zhang et al., 2015; Roy and Roy, 2021).
This phenomenon is demonstrated in compound 88. On the other hand,
the compound containing less number of this fragment may exhibit less
toxicity as shown in compound 66 (demonstrated in Fig. 4).

H-048 has the potential to make compounds electronically conductive as
well as hydrophilic (Kumar et al., 2013). Hydrophilicity and toxicity are
inversely related to each other (Li et al., 2022). Thus the presence of a
greater number of this descriptor in a molecule makes it less toxic as
shown in compound 67. On the other side, the presence of less number of
hydrophilic groups in a molecule leads to an increase the toxicity as
shown in compound 11 (depicted in Fig. 4)

The negative regression coefficient of this descriptor indicates that it is
inversely correlated with the pesticide’s toxicity towards avian species
thus the presence of more of this fragment makes the compound less toxic
as shown in compound 33 and conversely occurs in compound 84
(depicted in Fig. 4).

(continued on next page)
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Table 4 (continued)
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S. Descriptor
no

Type

Function

Contribution

Mechanistic introspection

6 nBridgeHead

MD oral pLCso

1 MwW

2 C-012

3 B07[0-P]

4 Br-094

5 BO5[C-P]

6 F04[C-Cl]

RNP oral pLCsg
1 X2A

2 nRCONHR

3 nN(C0)2

4 B04[C-P]

5 BO5[P-Cl]

6 FO3[0-S]

Ring descriptors

Constitutional
descriptor

Atom-centered
fragments

2D Atom Pair

Atom-centered
fragments

2D Atom pair

2D Atom pair

Connectivity indices

descriptor

Functional group
count

Functional group
count

2D Atom pair

2D Atom pair

2D Atom pair

Number of bridgehead atoms

Molecular weight

CR2X2 (X is a hetero atom (O, N, S, P,
Se, or halogens) and R is a carbon-
linked group)

presence of O — P at topological
distance 7

Br attached to C1(sp2)

C - P situated at topological distance
5

C - Cl situated at topological distance
4

Average connectivity index of order 2

Presence of secondary aliphatic
amides

Number of imides (-thio)

C - P situated at topological distance
4

Presence of P — Cl at topological
distance 5

Frequency of oxygen and sulfur which
are situated at topological distance 3.

+ve

+ve

+ve

+ve

+ve

+ve

+ve

+ve

+ve

Usually, bridgehead atoms have a complex structure as well as toxic (
Kumar et al., 2023) which is demonstrated in compound 19. Conversely,
the absence of bridgehead atoms makes the compound less toxic as shown
in compound 110 (demonstrated in Fig. 4).

This descriptor is directly related to molecular bulkiness and lipophilicity
(Hou et al., 2004; Khan et al., 2019). Usually, lipophilic compounds easily
cross the lipophilic membrane of the reference species which ultimately
leads to enhancement in toxicity as demonstrated in compound 546 and
oppositely occurs in compound 503 (given in Fig. 5).

This descriptor enhances the molecular size as well as the
electronegativity of the compound due to the presence of heteroatom,
which ultimately leads to enhancement in toxicity of diverse pesticides
against avian species by incorporating oxidative stress (Kar et al., 2020)
as demonstrated in compound 445, and vice-versa occurs in compound
144 (depicted in Fig. 5).

Oxygen and phosphorus are highly electronegative atoms and their
presence makes the compound more toxic (due to increment in oxidative
stress in reference species) (Roy and Roy, 2021). The presence of a long
carbon chain (lipophilicity) also contributes to toxicity. This
phenomenon is demonstrated in compound 3 and vice versa occurs in the
case of compound 145 (illustrated in Fig. 5).

The Br-094 descriptor refers to the presence of the halogen group
(bromine). Thus, the presence of more electronegative/halogen atoms
(bromine) makes the compound more toxic as demonstrated in
compound 28. Conversely, absence of this atom/fragment tends to
decrease the toxicity as shown in compound 408 (depicted in Fig. 5).
The presence of the phosphate group enhances the toxicity of the
compound (Vervloet, 2019b). This is evidenced in compound 4. In
opposition, absence of this fragment tends to decrease the toxicity as
shown in compound 530 (provided in Fig. 5).

This descriptor refers to the existence of a large electronegative atom
such as chlorine, which has a high atomic refractivity and
electronegativity (Khan and Roy, 2019). Thus, the presence of a greater
number of this fragment results in high toxicity toward avian species as
shown in compound 24 and vice versa occurs in compound 562
(provided in Fig. 5).

The negative regression coefficient of this descriptor indicates that higher
numerical value of this descriptor leads to a decrease in toxicity as shown
in compound 13 and vice versa in the case of compound 51 (given in
Fig. 6). X2A is inversely correlated with hydrophobic interaction as well
as toxicity (Arvidsson et al., 1971; Roy and Das, 2013).

Aliphatic amides are considered to be toxic as well as reactive (Schultz
et al., 2006). The positive regression coefficient of this descriptor
indicates that presence of this fragment may increase the toxicity as
demonstrated in compound 90 and toxicity value may be decreased if the
compounds have no such fragment as represented in compound 104
(shown in Fig. 6).

Generally, this feature helps to facilitate hydrolysis of the compounds
which facilitates quick excretion from the body of the reference organism
resulting in a reduction of their toxic effects (Krishna et al., 2020) as
demonstrated in compound 58 and the absence of this fragment tends to
increase the toxicity as shown in compound 101 (illustrated in Fig. 6).
The presence of an electronegative atom (like phosphorous) enhances the
toxicity of the diverse pesticides by incorporating oxidative stress in
avian species (Mukherjee et al., 2021; Kumar et al., 2024) as evidenced
by compound 3. On the other hand, the absence of this fragment leads to
a decrease the toxicity as shown in compound 10 (described in Fig. 6).
The negative regression coefficient of this descriptor indicates that
presence of more number of this fragment reduces the toxicity as
demonstrated in compound 105 and oppositely occurs in case of
compound 62 (depicted in Fig. 6).

This descriptor is directly related to the polarity (presence of polar bond)
(Mukherjee et al., 2021) of the compound, as a result the hydrophilicity
of the compound increase and thus toxicity will decrease which is
evidenced by compound 85 and vice versa in case of compound 9.
(represented in Fig. 6).

3.6. Comparison with previous work

As the composition of the training and test sets, endpoints used, as
well as the algorithms used for model development are not the same, we
can’t perform a rigorous comparison, so we have attempted to represent

some simple comparative studies between the current work and previ-
ously reported literature. Mukherjee et al. (Mukherjee et al., 2021)
developed the models using small data sets in comparison with current
work. Basanta et al. (Basant et al., 2015) used tree-based approaches to
build QSTR and i-QSTR models for various avian species. Banjare et al.
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Fig. 4. Positive and negative contribution of model descriptors towards JQ.

(Banjare et al., 2021) presented QSTR and i-QSTR models for three avian
species using a classification approach. Podder et al. (Podder et al.,
2023; O’Boyle et al., 2011) developed a regression-based QSTR and
i-QSTR models against multiple avian species (MD, BQ, and ZF).
Leszczynski et al. (Kar and Leszczynski, 2020) reported ecotoxicity
QSTR and i-QSTR modeling of chemicals to avian species. While

regression

models

provide

explicit

quantitative

predictions,
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classification approaches can be useful for data filtering at the outset of
research. The current models are built using a regression-based method
and a limited number of simple, 2D, and easily interpretable descriptors.
In this work, we have tried to develop first PLS-based QSTR model
considering LCsg as an endpoints to assess the toxicity of diverse pesti-
cides against multiple avian species. Regression-based technique is an
assertive and effective approach that can confidently tackle challenges
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such as descriptor inter-correlation, high levels of noise, collinearity, accepted and recommended by regulatory bodies Apart from the pre-
and a large number of descriptors. In the present work, we have vious studies, and consequently read-across prediction shows a better
developed the models using large datasets of different avian species. So, result than the previous model except for MD. Apart from the previous
it has a wide domain of applicability compared to previous studies. studies, we get additionally some new findings (specifically observation)
Additionally, we used read-across algorithm to enhance the external which are related to pesticide toxicity towards avian species such as

predictivity and it is widely used for data-gap filing as well as widely presence of C-012 (CR2X2), BO7[O-P] (Presence/absence of O-P at
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Table 5
Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase
(PPDB).

Sl Pesticide Safety and Sources

no. Hazards

Top 20 most toxic screened pesticides from Pesticide Properties DataBase

(PPDB).
1 Imicyafos
2 Pirimiphos-ethyl
3 Quinothion
4 Pirimiphos-methyl
5 Etrimfos
6 Buminafos
7 Diazinon
8 Quintiofos
9 Phoxim
10 Inezin
11 Dufulin
12 Chlorphoxim
13 Pyridaphenthion
14 Triazophos
15 Isoxathion
16 Naftalofos
17 Quinalphos
18 Butamifos
19 Sulprofos

Acute toxic,
Irritant.

Acute toxic,
Environmental
Hazard.

Acute toxic

Irritant, Health
hazard,
Environmental
hazard
Irritant,
Environmental
Hazard

Acute toxic

Irritant,
Environmental
hazard

Acute toxic

Irritant, Health
hazard, and
Environmental
hazard

Acute toxic

Oxidative stress
inducer
Acute toxic

Irritant

Acute toxic,
Environmental
hazard

Acute toxic,
Environmental
hazard

Acute toxic

Acute toxic,
Environmental
hazard

Irritant,
Environmental
hazard

Acute toxic,
Environmental
hazard

https://pubchem.ncbi.nlm.nih.

gov/compound/18772487#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/31957#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/89714+#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/34526#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37995#s
ection=_Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/39966#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/3017#s
ection=_S8afety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/72069#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/9570290#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/30772#secti
on=Toxicity&fullscreen=true
(Yu et al., 2021).

https://pubchem.ncbi.nlm.nih.

gov/compound/5360461#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/8381#s
ection=_Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/32184#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/29307#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/15148#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/26124#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37419#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37125#s
ection=Safety-and-Hazards
&fullscreen=true
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Table 5 (continued)

Sl Pesticide Safety and Sources
no. Hazards
20 Edifenphos Acute toxic, https://pubchem.ncbi.nlm.nih.

Environmental
hazard

gov/compound/28292#s
ection=Safety-and-Hazards
&fullscreen=true

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB).

1

10

11

12

13

14

15

16

17

18

19

20

Ferbam

Hexylene glycol

Bisthiosemi
Choline chloride

Glutaraldehyde

Fumaric acid

Lime sulphur

Methyl isobutyl
ketone

Sodium
tetrathiocarbonate
1,2-

dichloropropane

Metam

Methylene
bisthiocyanate
Bentonite

Butanethiol
Sodium
monochloroacetate

Fluoroacetamide

Sodium
monofluoroacetate
Propylene glycol

Peroxyacetic acid

2-hydrazinoethanol

non-toxic

less toxic

moderate toxic
less toxic

less toxic

less toxic

less toxic

less toxic

moderate toxic

less toxic

less toxic

less toxic

Nontoxic

moderate toxic

moderate toxic

high toxic

high toxic

less toxic

moderate toxic

moderate toxic

https://www?3.epa.gov/pestici
des/chem search/reg actions/re
registration/fs_PC-034801_0
1-Sep-05.pdf
https://hpvchemicals.oecd.
org/ui/handler.axd?id=3c
2a8190-8500-467c-af27-a636e
663638
https://www.drugfuture.com/
toxic/dir/5061.html
http://sitem.herts.ac.uk/aeru
/iupac/Reports/161.htm
https://archive.epa.
gov/pesticides/reregistration/w
eb/pdf/glutaraldehyde-red.pdf
https://www.sciencedirect.co
m/science/article/pii/S0095
955315310854
https://www.ams.usda.gov/s
ites/default/files/media/Lime%
20Sulfur%20Evaluation%20TR.
pdf

https://www.epa.gov/sites
/default/files/2016-09/docu
ments/methyl-isobutyl-ketone.
pdf
https://www.sciencedirect.co
m/topics/agricultural-and-biolo
gical-sciences/thiocarbonate
https://wedocs.unep.org/bitstre
am/handle/20.500.11822/
29625/HSG76.pdf?sequence
=1&isAllowed=y
https://archive.epa.gov/pes
ticides/chemicalsearch/chemic
al/foia/web/pdf/039003/0
39003-028.pdf
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/2905.htm
https://digitalfire.com/h
azard/bentonite+toxicity#:~:te
xt=Bentonite%20i5s%20a%20
ground%20naturally,flush%20t
0%20remove%20the%20part
icles.
https://pubchem.ncbi.nlm.nih.
gov/compound/1-Butanethiol
https://tera.org/OARS/Sodium
%20Chloroacetat%20
(3926-62-3)%20WEEL%2020
16%20public%20comment.pdf
http://sitem.herts.ac.uk
/aeru/ppdb/en/Reports/338.ht
m
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/3160.htm
https://downloads.regulations.
gov/EPA-HQ-OPP
-2013-0218-0007/content.pdf
https://www.federalregister.
gov/document
$/2000/12/01/00-30679/pe
roxyacetic-acid-exempti
on-from-the-requirement-of-a-t
olerance#:~:text=Because%
200f%20the%20low%20toxicit
y,n0t%20pose%20a%20dietary
%20risk
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/2803.htm
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topological distance 7), Br-094 (Br attached to Cl(sp2)), BO5[C-P]
(Presence/absence of C-P at topological distance 5), FO4[C-Cl] (Fre-
quency of C-Cl at topological distance 4) and nRCONHR (number of
secondary amides (aliphatic)) enhances the pesticides toxicity towards
avian species; on the other hands, presence of nN(CO)2 (number of
imides (-thio)) and BO5[P-Cl] (Presence/absence of P-Cl at topological
distance 5) reduces the pesticides toxicity towards avian species.
Furthermore, our work highlighted some extra features not mentioned
in the previous studies, which are useful for pesticide toxicity assessment
viz. molecular weight, presence of heteroatom, presence of bridgehead
atoms, secondary aliphatic amide, and molecular refractivity. On the
other hand, features like molecular branching and the presence of thio
imides contribute negatively towards the toxicity. The PPDB database
was screened using developed models to show the predictivity as well as
application in the real-world data of the developed models. The current
study’s comparison to previously published studies is depicted in
Table 6.

4. Conclusion

In summary, this study employs a range of chemometric tools to
predict pesticide toxicity for four different avian species. The research
focuses on creating robust and easily interpretable QSTR models based
on OECD principles. The study’s statistical validation parameters
consistently demonstrate the strength and reliability of the constructed
PLS-based QSTR-read across models. External validation metrics,
employing the read-across algorithm, show slightly superior perfor-
mance in predicting toxicity, except for the mallard duck dataset.
Additionally, we have developed classification models and employed
two Machine Learning algorithms SVM and RF to evaluate their effec-
tiveness in constructing models and making predictions. The PLS-based
QSTR models with read-across predictions produce better statistical
results (such as the lowest prediction error for the test set compounds, as
indicated by the MAE,. value) as compared to ML-based models against
all of the avian species.

Furthermore, this research develops regression-based models, sur-
passing previous studies in terms of the dataset’s size, the variety of
avian species examined, domain of applicability features responsible for
toxicity, model quality, algorithm used as well as the endpoint (LCsg).
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The findings highlight the significance of electronegativity, molecular
weight, imide count, lipophilicity, and steric effects in avian toxicity.
Additional findings (descriptors) such as C-012, BO7[O-P], Br-094, B05
[C-P], FO4[C-Cl], nRCONHR, nN(CO),, and BO5[P-Cl] were observed in
this study which is related to pesticides toxicity towards avian species.
Notably, the presence of C-P fragments at specific topological distances
and electronegative groups intensifies toxicity, while features like
branching and hydrogen bond acceptor characteristics reduce it.

The validation of the predicted toxicity of the screened compounds
by experimental data demonstrated the reliability and feasibility of
applying the developed models for screening pesticides, offering valu-
able support to researchers striving to design eco-friendly and safe
chemical pesticides. They effectively bridge gaps in toxicity data and
simplify the evaluation of novel pesticides for various bird species.
Moreover, these models significantly reduce the time, resources, costs,
and the need for animal testing, aligning with the principles of reduc-
tion, refinement, and replacement (RRR) in research practices.
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Table 6
Comparison table with previous work.
Source Organisms Defined Model LV  Features Training set Test set
:‘: et:llis endpou.lt Ntrain Rz Q%oo Niest Q%l Q]%Z
study

In this present BQ LCso PLS-Read across 2 6 411 0.64 0.60 137 0.61-0.69 0.61-0.69

study JQ 2 6 77 0.63 0.55 34 0.53-0.70 0.51-0.69
RNP 2 6 82 0.63 0.53 30 0.60-0.71 0.60-0.71
MD 1 6 377 0.60 0.58 162 0.71-0.75 0.63-0.68

(Mukherjee BQ LDso PLS 3 10 103 0.65 0.58 25 0.64 0.64

et al., 2021) JQ 2 3 - 0.73 0.59 - - -
RNP 2 4 22 0.76 0.60 7 0.64 0.64
MD 2 7 49 0.65 0.56 13 0.65 0.57
HS 1 2 - 0.91 0.86 - 0.94 0.88

Mazzatortaetal (  BQ LDsg GA-SVM - - 94 - - 19 — —
Kim, 2019).

Podder et BQ LDso MLR 7 278 0.715-0.719  0.694-0.700 88 0.722-0.732  0.722-0.732
al (O’Boyle MD 8 182 0.689-0.708 0.626-0.695 65 0.620-0.639 0.620-0.638
et al., 2011). ZF 5 40 0.754-0.758  0.697-0.722 13 0.787-0.830  0.786-0.829

(Banjare et al., BQ LDso GA-LDA along with 203 - - 67 - -

2021). MD interspecies 143 - 60
ZF correlation 31 - 12

(Basant et al., BQ LDsg Tree-based QSAR 98 - 33
2015). approaches

(Kar and BQ LDso GFA-PLS 3 5 41 0.67 0.63 15 0.70 0.68
Leszczynski, MD 2 5 42 0.75 0.67 14 0.88 0.87
2020). RNH 3 4 20 0.89 0.80 7 0.87 0.87

LV: Latent variable; PLS: Partial least square; SVM: Support vector machine.
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