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 Preface 

This dissertation is presented for the partial fulfilment for the degree of Master of Pharmacy 

in Pharmaceutical Technology. The work presented in this dissertation is spread over two years, 

which encompasses the development of Quantitative Structure-Toxicity Relationship (QSTR) 

and Quantitative Read-Across Structure-Toxicity Relationship (q-RASTR ) models using 

easily interpretable two-dimensional (2D) molecular descriptors for efficient prediction of 

toxicity of diverse organic compounds towards various avian species. The significance of this 

research is underscored by its practical application, which extends beyond the realm of theory 

and into the screening of chemical databases, enabling the identification of substances that may 

pose risks to both human health and the environment. 

The identification and evaluation of toxicity in chemical compounds are of paramount 

importance in addressing potential health risks, encompassing a spectrum of hazards including 

carcinogenicity, genotoxicity, immunotoxicology, and developmental and reproductive 

toxicity. These considerations underscore the integral role of toxicity prediction in the intricate 

process of drug design and development. While preclinical and clinical trials serve as 

indispensable means of assessing toxicity before public consumption, they are often 

characterized by exorbitant costs, extensive labour requirements, prolonged timelines, the 

potential for inconclusive outcomes, and practical infeasibility in certain scenarios. 

In recent years, there has been a significant paradigm shift in the field of toxicology, with in 

silico techniques becoming increasingly prominent as a rational alternative to traditional animal 

testing for predicting toxicity and chemical properties. Driven by ethical considerations, 

efficiency gains, and cost-effectiveness, and aligned with the 3Rs (replacement, refinement, 

and reduction of animals in research), these computational methods offer rapid and versatile 

solutions for assessing chemical toxicity across various compounds. From predicting diverse 

toxicity types to aiding in drug discovery and environmental impact assessments, in silico 

techniques are revolutionizing the way we approach chemical evaluation, aligning with both 

scientific progress and ethical responsibility in the modern era. The classical approach to QSTR 

owes much of its foundation to the pioneering research led by Hansch in 1960, utilizing 

statistical modeling based on linear regression to elucidate the relationships between the 

structural features of molecules and their activity/toxicity/property. The development of 

predictive QSTR models represents a significant advancement in our ability to assess the 

toxicological hazards and properties of chemical toxicants. These models are constructed based 

on chemical information derived from molecular descriptors, enabling a systematic analysis of 
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how the structural features of chemicals relate to their toxicological behaviour.  

QSTR modeling, especially when applied to a large set of toxic compounds, often involves a 

multitude of descriptors, adding complexity and potentially diminishing reliability and 

predictiveness. In such cases, the utilization of the Read Across Structure-Toxicity 

Relationship (RASTR) model becomes a viable alternative. RASTR combines the principles 

of similarity and error-based estimations, merging elements of both read-across (a non-

statistical approach) and traditional QSAR modeling. This approach addresses challenges 

encountered in QSAR modeling related to external validation and the interpretability of Read 

Across methods.  

Recently, an enhanced iteration of the RASTR model, referred to as q-RASTR (Quantitative 

Read Across Structure-Toxicity Relationship) modeling, has been introduced. q-RASTR 

utilizes a blend of similarity and error-based descriptors in its modeling, achieving superior 

predictive potential compared to both QSTR and read-across predictions. The strength of the 

q-RASTR method lies in its capacity to incorporate information about similarity and error 

measures into descriptors, facilitating the development of straightforward, interpretable, 

transferrable, and reproducible models with enhanced predictive capabilities. 

In the present study, predictive QSTR as well as q-RASTR models were developed using 

different classes of simple 2D descriptors to estimate the toxicity of different organic 

compounds including pesticides. We attempted to explore the toxicity profile of different 

diverse chemical compounds and pesticides to make a more realistic move towards risk 

assessment that could be useful in the development of safer or greener chemicals. The 

predictive models were constructed strictly catering to OECD guidelines and rigorously 

validated using various internationally accepted internal and external validation parameters. 

The following analyses have been performed in this dissertation: 

Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian 

Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and 

Read-Across. 

Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological 

effects of diverse pesticides against California quail. 

Study 3: Chemometric-based exploration of the toxicological significance of diverse 

chemical toxicants in wild birds with an application of the q-RASTR approach. 
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The accomplished work has been presented in this dissertation under the following sections: 

 Chapter 1: Introduction 

Chapter 2: Present work 

Chapter 3: Materials and methods  

Chapter 4: Results and discussion  

Chapter 5: Conclusion 
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Abbreviation 
 

Abbreviations Full forms Abbreviations Full forms 

AD Applicability domain OECD 

Organization for Economic 

Co-operation 

and Development 

ANN Artificial neural network PPDB Pesticide property database 

SVM Support Vector Machines PCA 
Principal Component 

Analysis 

SVR Support vector regression PCR 
Principal Component 

Regression 

SAR Structure-Activity Relationship PLS Partial Least Squares 

pLD50 Logarithmic conversion of LD50 pLC50 
Logarithmic conversion of 

LC50 

DModX Distance to Model X PRESS 
Predicted residual sum of 

squares 

R2 Co-efficient of determination QAAR 
Quantitative activity–activity 

relationship 

R2adj 

Adjusted coefficient of 

determination 
QSAR 

Quantitative structure-

activity relationships 

LV Latent variable QSPR 

Quantitative structure-

property 

relationship 

MAE Mean absolute error QSTR 
Quantitative structure-

toxicity relationship 

MLR Multiple Linear Regression QTTR 
Quantitative toxicity–toxicity 

relationship 

CCC 
Concordance correlation 

coefficient 
q-RASAR 

Quantitative Read Across 

Structure-Activity 

Relationship 

CM Consensus model 

q-RASTR 

Quantitative Read Across 

Structure-Toxicity 

Relationship 
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IM 

 

Individual model REACH 

Registration, Evaluation, 

Authorization, and 

Restriction of Chemicals 

Q2
LOO 

Cross-validated correlation 

coefficient 

MD Mallard duck 

SVM Support Vector Machines RNP Ring-necked pheasant 

SAR Structure-Activity Relationship CQ California quail 

SD Standard deviation VIP Variable importance plot 

SDEP The standard deviation of error of 

prediction 

ICP  Intelligent Consensus Predictor 
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1. INTRODUCTION 
1. Introduction 

1.1 Toxicity and it’s various aspects 

Toxicity is considered as a multidimensional concept that comprises a variety of dimensions. 

Toxicity can be defined as the capacity of a chemical to produce detrimental consequences on 

health and these consequences may affect either one cell, an organ, a group of cells, or the whole 

body might cause anatomical or functional damage, permanently disturb homeostasis, or increase 

vulnerability to other chemicals or biological stresses,  like infectious illnesses. Toxic effects might 

be obvious harm to the body or a decline in normal body functions which can only be determined 

through testing. The growing global population and industrial development have highlighted the 

significant impact that chemicals, particularly pesticides, have on the planet's ecosystems. Most 

chemicals have the potential to be poisons since they may harm or even kill people when exposed 

in excess at certain quantities. Understanding how chemicals interact with the environment is 

crucial since human society depends on so many different kinds and classes of chemicals. The 

followings are major chemical classes that have a significant influence on the environment: 

insecticides, agrochemicals, metals, halogenated hydrocarbons, polycyclic aromatic hydrocarbons, 

pharmaceuticals for humans and animals, dyes, and synthetic and semi-synthetic substances [1].  

The negative or bothersome effects of chemicals on the ecosystem, people, or other living beings 

are referred to as toxicity [2]. Concerns over the possible effects that new chemicals and 

environmental pollution may have on human health and the environment are on the rise due to the 

ongoing synthesis of new chemicals and the pollution of the environment. The impact of dangerous 

chemicals, medications, food items, pesticides, dyes, and pollutants on the environment is a cause 

for great concern because, despite the vast majority of compounds being used in commerce, only 

a small percentage of them have undergone adequate testing to determine their potentially harmful 

environmental characteristics. Over the past six decades, the amounts of chemicals produced on a 

big scale have grown from 1 million tons to 400 million tons. It is quite expensive and time-

consuming to experimentally determine the environmental parameters such as bioconcentration, 

biotransformation, and toxic effects of commercial chemicals. As there is a huge quantity of 

chemicals in regular use today and the rapidity with which new chemicals are synthesized and 

registered, it is evident that our personnel and resources are inadequate for in-depth testing and 



Chapter 1 Introduction 

Page 2 

 

 

focusing on their long-term and chronic effects.  

Therefore, the development of quantitative models that can easily and accurately anticipate the 

environmental behavior of huge sets of chemicals is required. These models, which are supported 

by strong scientific principles and cutting-edge computational methods, are essential instruments 

for bridging the gap between the rapidly changing chemical landscape and our ability to thoroughly 

evaluate its effects on the environment.  

1.1.1 Chemical toxicity 

Chemicals may have both positive and negative effects on the organisms to which they are 

exposed, and for thousands of years, people have understood how poisons, medicines, pesticides, 

and other toxic agents work. Various organisms and the environment are increasingly exposed to 

a growing number of chemicals as a result of industrialization. People understand that evaluating 

these compound’s effects is necessary due to their potential for harm. Chemical toxicity has 

become a major worldwide issue in recent times due to the abundance of untested compounds [4]. 

1.1.2 Environmental toxicity 

Human reliance on industrial chemicals including pharmaceuticals, and pesticides is increasing 

rapidly, mostly in the fields of food production, healthcare, and agriculture. The chemical toxicants 

in use pose a major risk to the local flora and wildlife due to a lack of necessary eco-toxicological 

knowledge. Consequently, having a direct or indirect impact on the ecological species that are 

present in the surroundings. These toxic pollutants may generate metabolic and degradation bi-

products that cause unfavorable environmental events that are seen in some organisms. 

1.1.3 Pesticide toxicity 

Numerous pesticides that are hazardous to animal and human health are dispersed into the 

environment in large quantities. The use of pesticides carelessly and indiscriminately has annoying 

effects on biodiversity and the world's ecology. Due to their long-lasting and bioaccumulative 

nature, pesticides have both acute and long-term negative impacts on both aquatic and non-aquatic 

habitats. As a result, it's crucial to ascertain the origin, frequency, harmful effects, and ecological 

destiny of pesticides in addition to conducting an accurate risk assessment. 

1.2 Pesticides, Agriculture and Environment 

The expanding global population puts an enormous strain on the present agricultural system by 

increasing the demand for food. Thus, agriculture is essential to the advancement of civilization. 

A decade of improved agricultural technology and developed fertilizer components have led to a 
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modest improvement in agricultural production. However, several risks, including weeds, fungi, 

pests, and insects, are having a significant impact on agricultural output. Pesticide is one kind of 

chemical used in modern agriculture with functions such as preventing pests and insects, 

controlling different plant diseases, reducing damage from different fungi, minimizing waste, and 

enhancing crop quality. Over the past several decades, there has been a substantial increase in the 

usage of agrochemicals in agricultural fields to counteract the detrimental impacts of these threats. 

These pesticides include nematicides, rodenticides, molluscicides, insecticides, fungicides, 

herbicides, and other hazardous agrochemicals that are frequently employed for particular goals 

including disease vector control and crop protection [5].  

Pesticide usage on crops is estimated to be 2.5 million tons worldwide annually. Nevertheless, the 

quantity ingested by pests or comes into contact with them represents a relatively small portion of 

the overall pesticide application. The majority of research has demonstrated that fewer than 0.3% 

of pesticides sprayed reach the intended insects [6]. As a consequence, toxic residues of pesticides 

accumulate in the environment and affect both terrestrial and aquatic food chains. Several 

researchers reported that currently used pesticides are lack specificity which may responsible for 

toxicity toward various non-target species including humans and birds. According to research on 

poisoning and the effects of synthetic pesticides on human health, there have been several instances 

of farmers and rural laborers becoming intoxicated while applying pesticides [7]. 

Nowadays, pesticide poisonings are thought to be one of the leading causes of death globally, 

accounting for 220,000 fatalities and 26 million poisonings annually. The presence of pesticide 

residues in different ecosystem components worries researchers. Pesticide usage is expanding in 

response to rising agricultural demand, putting non-target creatures like birds, insects, and aquatic 

life in jeopardy and upsetting the delicate ecological balance on a worldwide scale. Therefore, 

from the standpoint of ecosystem safety, it is imperative that a range of endangered species should 

be protected and restored.  

1.3 Pesticide-related risks to biodiversity 

1.3.1 Terrestrial biodiversity 

Terrestrial biodiversity provides several ecological services, like plant pollination and biodiversity 

monitoring, making the terrestrial environment indispensable to the ecology. Some reports suggest  

that thirty-five percent of the food crop yield is attributed to biological pollinators like honey bees 

and birds. We can't even imagine a world without birds as they are an important part of the 
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environment. Approximately, 10,000 avian species exist on the planet, but as per the report, over 

the past five centuries, a total of 150 bird species have become extinct and one in eight avian 

species is at the risk of extinction. Birds are among the most identifiable animal species on the 

planet. Birds are vital to the world environment because they pollinate plants, spread seeds, 

maintain ecological circles, and aid in biological conservation [8]. Certain human activities have 

contributed to the decline of 41% of the 1138 water bird populations, even though birds play a 

vital role in maintaining ecological balance. Various studies show that the number of common 

birds and forest birds in Europe reduced by around 10%, while the populations of agricultural birds 

declined by 48% [9]. Some researchers reported that organophosphate pesticides as well as 

carbamate pesticides block the AChE enzyme at the post-synaptic membrane of the cholinergic 

synapse in all the vertebrate species [10] and at large dosages, they can cause convulsion, 

respiratory collapse, and death. In birds, the rate of binding of organophosphate and carbamate 

pesticides is faster than in any other vertebrates due to the high activity of AChE in the brain [11]. 

Numerous literature has reported on the hazardous effects of these pesticides on various birds [12-

15]. 

1.3.2 Aquatic biodiversity 

Aquatic organisms are severely affected due to pesticide exposure through the dermal route, 

breathing route, or oral route. Pesticides have extremely negative impacts on aquatic life, through 

the skin, respiratory system, or mouth. Herbicides lead to lowering oxygen levels, which causes 

fish to suffocate and decrease fish breeding. Aquatic plants provide approximately 80% of 

dissolved oxygen, essential for the survival of the aquatic species [16]. Fishes are susceptible to 

the range of sub-lethal and lethal effects from pesticides, including behavioral alterations, 

hematological changes, histopathological changes, genotoxicity, disruption of the endocrine 

system, and acetylcholine activity alteration. Amphibians are mostly impacted by pesticide-

polluted surface waterways. As per reports, carbaryl insecticide has been shown to be harmful to 

a variety of amphibian species. For instance, the herbicide glyphosate has significantly increased 

tadpole mortality [17]. 

1.4 In silico estimation of pesticide toxicity and risk assessment  

Numerous chemicals that are hazardous to both animal and human health are dispersed into the 

environment in large quantities. The use of pesticides carelessly and indiscriminately has resulted 

in alarming consequences for biodiversity and the preservation and restoration of the world's 
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ecology. Due to their long-lasting and bio-accumulative nature, pesticides have both acute and 

chronic negative impacts on both aquatic and non-aquatic habitats. As a result, it is crucial to 

ascertain the origin, frequency, harmful effects, and ecological destiny of pesticides in addition to 

conducting an accurate risk assessment. 

Regretfully, determining the ecotoxicity of these pesticides and their environmental transformation 

products by in vitro experimental validation is an expensive and time-consuming process. A single 

pesticide may produce many environmental transformation products of pesticides with various 

end-points, for which numerous in vivo validations are required that are time-consuming and 

ethically problematic. Various government organizations such as USEPA (United State 

Environmental Protection Agency), and EFSA (European Food Safety Agency) have given 

importance to in-silico techniques such as QSAR (Quantitative Structure-Activity Relationships), 

QSTR (Quantitative Structure-Toxicity Relationships), read-across, RASAR and pharmacophore 

modeling as suitable alternatives for toxicity assessment. This new scientific trend directed us to 

develop QSAR-based in-silico model. We have developed QSAR models to estimate the 

environmental toxicity of pesticides in response to this new scientific trend. The qualities that have 

been identified can also help us to combat the toxicity of pesticides against environmentally 

friendly insects like butterflies and moths, as well as various birds including avian species and 

aquatic organisms.  

1.5 Quantitative structure-activity relationships (QSARs) approach 

Similar molecules can display completely various kinds of biological activities or varying 

intensities of a single biological activity with just a little structural difference. The QSAR study is 

focused on this type of relationship between molecular structure and biological activity. QSAR is 

demonstrated as predictive mathematical models derived from the application of statistical tools 

correlating biological activity (including therapeutic and toxic) of chemicals 

(drugs/toxicants/environmental pollutants) with descriptors representative of molecular structure 

and/or property. Both qualitative (basic SAR) and quantitative (QSAR) correlations are possible. 

QSAR, or QSPR (quantitative structure-property relationship) approaches link a structure of a 

molecule to a certain activity or property. The most widely used and well-known in silico 

methodology for screening novel chemical entities is the QSAR, which has extensive application 

in the area of drug discovery and chemical toxicity modeling for guiding the experimental design 

of various chemical compounds.All QSAR research is based on the idea that biological activity is 



Chapter 1 Introduction 

Page 6 

 

 

a mathematical function (f) of structure or physiochemical properties. Therefore, a basic 

mathematical equation can be developed and represented as follows in Eq. 1.1. 

 

Biological activity = f (Chemical attributes) = f (Structural, Properties)   

 

 

The phrase "chemical attributes" describes the characteristics that prescribe how a behavior 

manifests itself, or, to put it another way, the basic knowledge of the chemicals governing the 

behavior that is being studied. A behavioral manifestation's physiological characteristics, which 

reflect its biological roots, provide a clear explanation. The QSAR approach is used to determine 

the structural characteristics of molecules that are associated with their toxicological profiles.  The 

chemical attributes often characterize information derived directly from the structure, whereas 

physiological information is obtained through experimental methods that result in the 

corresponding expression, as shown in Eq. 1.2. 

Response =f (Chemical attributes) = f (Structure, physiological Property)  

QSAR equation for a particular response can be demonstrated mathematically in terms of chemical 

information and physiochemical attributes as follows in Eq. 1.3 

 

                                               Y = a0 + a1x1 + a2x2 + a3x3 + …… + anxn     

  

As we are discussing a mathematical correlation, such equations are better stated in terms of 

variables. Here, Y stands for the response that is being modeled such as activity or toxicity or 

property, whereas, X1, X2, X3…. Xn represents the independent variables that signify the 

physiochemical properties in terms of numerical quantities and a0, a1, a2, a3…...an stands for the 

contribution of individual descriptors with a0 as a constant term. The primary goal of the QSAR 

analysis is to quantify chemical characteristics, which is followed by the creation of an appropriate 

interpretive connection that addresses a specific reaction. Therefore, in this case, mathematics acts 

as a tool to derive an appropriate connection that is subsequently utilized in accordance with the 

requirements of the designer. A QSAR investigation includes aspects of biology to account for the 

biochemical interactions involved, mathematics and statistics for modeling and computation, and 

chemistry and physics to account for the intrinsic molecular nature. Three easy steps, (a) data 

preparation, (b) data processing, and (c) data interpretation for a collection of chemicals, can be 

used to display the QSAR analysis. The response, or endpoint, to be addressed, and the predictor, 

1.3 

1.1 

1.2 
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or independent variables (i.e., X variables) describing the chemical attributes, are the two main 

sources of the quantitative data. The first step, i.e., the data set preparation includes arrangements 

and conversion of the data in a suitable form. Typically, two types of endpoints are obtained: 

response-fixed dose patterns, which show the response induced by the chemical at a fixed dose 

(concentration), and fixed-dose response patterns, which show the quantity of a chemical required 

to elicit a given response [18]. 

1.5.1 Application of QSAR/QSTR 

Computational methods have developed into invaluable resources for evaluating the ecological 

toxicity of chemical toxicants in the environment. QSTR modeling is essential for understanding 

and predicting the possible risks that chemicals may pose to the environment, along with related 

approaches. 

Data efficiency: QSTR modeling has a special advantage by aiding the prediction of toxicological 

significance even in situations when there is a lack of available or restricted data on the toxicity of 

a certain chemical. This is especially helpful for determining the possible ecological impact of 

recently created or insufficiently researched substances. 

Cost-effective and time-efficient: QSTR modeling is time and money-efficient since it eliminates 

the requirement for in-depth laboratory testing and experiments. Without the resource-intensive 

procedures usually connected with conventional toxicological investigations, it enables 

researchers to make well-informed estimates and judgments regarding the possible toxicity of 

substances.  

Ethical considerations: The application of QSTR models in testing and research is aligned with 

ethical standards. Reducing the utilization of animal testing contributes to the protection of 

laboratory animals' well-being and is in line with current ethical standards in scientific research. 

Predictive ability: QSTR models have the ability to assess particular target endpoints or the 

toxicological significance of novel compounds. When working with compounds that are within 

the model's applicability domain, this predictive capacity is especially helpful. These models can 

be used by researchers to calculate the possible hazards connected to these substances. 

Mechanistic insights: Mechanistic insights into the relationships between a chemical's structure 

and activity or toxicity can be obtained using QSTR modeling. This implies that by examining the 

molecular characteristics of chemicals, researchers might understand why particular compounds 

display particular toxicological behaviors. 
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Regulatory recognition: Various regulatory agencies across the globe, including the US EPA, the 

Agency for Toxic Substances and Disease Registry (ATSDR), the European Centre for the 

Validation of Alternative Methods (ECVAM) of the European Union, and the European Union 

Commission's Scientific Committee on Toxicity, Ecotoxicity, and Environment (CSTEE), 

recognize the importance of QSTR modeling in assessing chemical toxicity. 

1.5.2. Significance of QSAR/QSTR 

To create new compounds with more activity and reduced toxicity, ligand-based drug design can 

make use of the QSAR and QSTR models. Predicting the activity and toxicity of novel chemical 

entities (NCEs) that fit within the developed models' applicability domain is the primary goal of 

QSAR/QSTR modeling. Although developing a predictive QSAR/QSTR model may appear 

straightforward, there are many uses for it in the scientific world. Depending on its chemical 

makeup, even the same chemical substance might occasionally trigger distinct biological reactions 

and responses. This makes determining the chemical characteristics causing behavioral changes 

essential. When it comes to model predictability and making the best use of limited experimental 

resources with less computational capacity, QSAR/QSTR approaches are helpful. 

1.6 Concept of molecular descriptor 

Molecular descriptors describe particular details about a molecule under study. They are 

represented as the numerical value associated with the chemical constitution for correlating 

chemical structure with various physical attributes, chemical reactivity, and biological activity 

[19]. In other words, the modeled response (activity/ property/toxicity of query molecules) is represented 

as a function of quantitative values of structural features or properties that are termed as descriptors for a 

QSAR model as demonstrated in Eq.1.4. 

Response (toxicity) = f (descriptors)  

The type of descriptors employed and their capacity to represent the structural characteristics of 

the molecules have a significant impact on the quality of QSAR models. The descriptors can be 

topological (hydrophobic, steric, or electronic), physicochemical, geometric (based on a molecular 

surface area calculation), electronic (based on molecular orbital calculations), structural (based on 

the frequency of occurrence of a substructure), or simple indicator parameters (dummy variables). 

The summary of the most ideal characteristics that make a descriptor suitable for the construction 

of QSTR models is as follows: 

 The descriptor should match the structural properties of a particular endpoint with 

1.4 
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negligible correlation to other descriptors. 

 A descriptor should be applicable to a wide range of chemicals. 

 The descriptor should produce a unique value for molecules with diverse structures, even 

when there are little structural variations. This suggested that the descriptor should show 

low degeneracy and continuity, which means that small structural variation should result 

in slight changes in descriptor value. 

 The descriptor should have a clear mechanical interpretation in order to encode the query 

characteristics of the molecules.  

 Another important aspect is the capacity to map the descriptor values back to the structure 

for visualization purposes. These visualizations are meaningful only when descriptor 

values can be linked to structural attributes. 

Dimension serves as a constraint in QSTR analysis that controls the character of the study. During 

predictive model generation, the term dimension refers to the complexity of the modeling 

technique which describes the degree of the descriptors. Thus, the molecular descriptors can be 

possibly classified on the basis of the dimension as demonstrated in Table 1. 

 

Table 1. Different molecular descriptors on the basis of dimension. 

Sl. 

No. 

Dimension of the 

descriptors 

Parameters 

1 0D-descriptor Constitutional indices, molecular property, atom, and bond 

count. 

2 1D-descriptor Fragment counts fingerprints. 

3 2D-descriptor Topological parameters, structural parameters, and 

physicochemical parameters including thermodynamic 

descriptors. 

4 3D-descriptor Electronic parameters, spatial parameters, molecular shape 

analysis parameters, molecular field analysis parameters, and 

receptor surface analysis parameters. 

5 4D-descriptor Volsurf, GRID, Raptor, etc. derived descriptors. 

6 5D-descriptor These descriptors consider induced-fit parameters and aim to 

establish a ligand-based virtual or pseudo-receptor model. These 

can be explained as 4D-QSAR 1 explicit representations of 

different induced-fit models. Example: flexible-protein docking. 
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1.6.1 Types of descriptors 

Descriptors can be classified into various types depending on the method of their computation, 

structural (based on substructure occurrence frequency), topological, electronic (involving 

molecular orbital calculations), physicochemical (encompassing hydrophobic, steric, or electronic 

aspects), geometric (utilizing molecular surface area calculations), or simple indicator parameters 

(represented as dummy variables). 

1.6.1.1 Descriptor commonly used in QSTR study 

The following descriptors pertain to physiological characteristics and are based on certain findings 

from scientific experiments. Changes in the physiological qualities will also have an impact on 

adsorption, distribution, and excretion. Important physicochemical characteristics that impact a 

drug's chemistry and bioactivity include the substituent that is present in the molecule as well as 

its electronic, hydrophobic, and steric properties. 

Commonly used descriptors in QSAR research are explained in a detailed manner as follows: 

 Physiological descriptors 

The physicochemical descriptors pertain to physicochemical characteristics and are based on 

certain biological experimentation findings. Changes in physiological properties will also affect 

adsorption, distribution, and excretion. The chemistry and bioactivity of drugs are influenced by a 

number of significant physicochemical properties, such as the substituent present in the molecules 

as well as their electronic, hydrophobic, and steric properties [20].  

 Indicator variables  

Indicator variables are used in the QSAR study due to their simplicity in nature. They can represent 

the presence or absence of specific substructures in molecules. This method is especially helpful 

when comparing groups of compounds that are similar except for the coded substructure [21]. 

 Topological descriptors  

Topological descriptors are computed using a graphical representation of molecules, therefore they 

do not need the extensive computations associated with quantum chemical descriptors or the 

7 6D-descriptor These are derived using the representation of various solvation 

circumstances along with the information obtained from 5D 

descriptors. They can be explained as 5D-QSAR 1 simultaneous 

consideration of different solvation models. 

8 7D-descriptor They comprise real receptor or target-based receptor model data. 
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estimation of physicochemical attributes. The 2D graphical topology, which shows the bond 

connections and atom positions, is necessary for the structural representation. It is based on the graph 

theory, in which the edges of a molecule represent covalent bonds and the atoms are represented by the 

vertices [22]. 

 Structural descriptors  

A variety of characteristics are included in these descriptors, including the number of chiral 

centers, molecular weight, rotatable bonds, H-bond donors, and H-bond acceptors. They shed light 

on the structural characteristics of molecules that may affect how they behave [23]. 

 Thermodynamic descriptors  

These descriptors, such as AlogP, AlogP98, Alogp_atypes, Fh2o, Foct, and Hf, are extensively 

used in QSAR model generation to define thermodynamic properties and characteristics of 

compounds [24]. 

 Electronic descriptor 

Electronic descriptors of molecules are described using electronic characteristics, both at the entire 

molecule level and within specific sections like atoms, bonds, and molecular fragments. 

Superdelocalizability(Sr), highest occupied molecular orbital (HOMO) energy, lowest unoccupied 

molecular orbital (LUMO) energy, and the sum of atomic polarizabilities are a few examples [25]. 

 Quantum chemical descriptors 

These descriptors include Mulliken atomic charges and Quantum Topological Molecular 

Similarity (QTMS) descriptors, which focus on bond critical points (BCPs) and their relevance in 

chemical reactions [26]. 

 Spatial descriptor 

These descriptors are calculated based on the spatial arrangements of the molecules and the surface 

occupied by the molecules. Examples of this class of descriptors include radius of gyration, Jurs 

descriptors, shadow indices, molecular surface area, density, principal moment of inertia, and 

molecular volume [27]. 

 Information indices 

This method divides molecules according to certain characteristics into subsets of equivalent 

elements. This category comprises many indices such as atomic composition index, indices based 

on the A-matrix, D-matrix, E-matrix, and ED-matrix, as well as multigraph information content 
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indices (IC, BIC, CIC, SIC) [28]. 

 Molecular shape analysis descriptors 

 

These descriptors, such as Difference volume (DIFFV), Common overlap steric volume (COSV), 

Common overlap volume ratio (Fo), Noncommon overlap steric volume (NCOSV), and Root 

mean square to shape reference (ShapeRMS), are utilized for QSAR model development [29]. 

 Molecular field analysis descriptors 

Molecular field analysis (MFA) estimates probe interaction energies on a grid around a bundle of 

active molecules. Fields are represented using grids, and each energy value at a grid point can be 

used as a QSAR descriptor [30]. 

 Receptor surface analysis descriptors 

Molecular models and receptor surface models interact through interaction energies, which are 

used as descriptors. These descriptors capture 3D information of interaction energies, considering 

steric and electrostatic fields at each surface point of the receptor surface [31]. 

1.7 Commonly employed QSAR/QSTR methods for chemometric model development 

The main aim of the QSAR/QSTR research is to develop correlation models that utilize chemical 

information data and the response of the chemicals (toxicity) within a statistical framework. 

Regression and classification-based approaches are employed for model generation. In addition to 

conventional methods, some machine learning techniques are helpful in QSTR/QSAR model 

development, particularly while working with high dimensional and complex information data that 

may show nonlinear relationships with response variables [32].  

1.7.1 Classification of QSAR/QSTR approaches based on the type of chemometric methods used 

1.7.1.1 Linear methods 

1.7.1.1.1 Multiple Linear Regression (MLR) 

Multiple linear regression (MLR) is a commonly used approach in QSAR/QSTR model generation 

as MLR is a transparent, easy to interpret, simple, and reproducible approach. The generalized 

form of an MLR equation can be represented as follows in Eq. 1.3: 

Y = a0 + a1x1 + a2x2 + a3x3 + ⋯ + +anxn 

 
In the above equation, Y is the response (dependent variable), and the x1, x2, …xn are descriptors 

(independent variables) in the model with their corresponding regression coefficient a1, a2, …an 

respectively, and a0 is the constant. During the interpretation, the individual descriptors (x1, x2, 

1.3 
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…xn) directly depend upon the corresponding value and its algebraic sign. Each regression 

coefficient should be significant at p < 0.05 which can be verified by performing the ‘t’ test. The 

descriptors present in an MLR model should not be intercorrelated [33]. 

1.7.1.1.2 Partial least squares (PLS) 

When a small dataset contains a large number of noisy and intercorrelated descriptors, partial least 

squares (PLS) is a better choice as compared to MLR [34], looking for latent variables (LVs) that 

are functions derived from the original variables. The latent variables aim to capture as much of 

the underlying factor variation as possible while simultaneously modeling the response.  

Linear PLS identifies a set of new variables (LVs) which are linear combinations of the original 

variables. When the number of latent variables is the same as the number of variables, the PLS 

essential becomes equivalent to the MLR model. It is important to determine the predictive 

significance of each PLS component and stop the addition of new components when they are found 

to be statistically significant. Cross-validation is a frequently used and reliable method for testing 

the predictive significance. The application of PLS allows the generation of larger QSAR/QSTR 

models by avoiding overfitting and eliminating most variables. 

1.7.1.1.3 Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) is an effective method for differentiating between two or more 

classes of objects, making it a useful tool for classification issues. LDA shares a common goal 

with MLR when dealing with scenarios where the response variable has categorical values and the 

molecular descriptors are continuous variables.  

LDA mainly aims to model the distinctions between various data classes. The generalized form of 

the LDA equation is as follows: 

                                           DF = c1 × X1 + c2 × X2 + ⋯ + cm × Xm + a    

Where, DF represents the discriminant function, which is formed by a linear combination of the 

discriminating variables. The ‘c’ represents the discriminant coefficient or weight for that variable, 

‘X’ denotes the score of the respondent on that variable, ‘a’ denoted as constant, and ‘m’ indicates 

the total number of predictor variables. These ‘c’ coefficients are unstandardized and can be 

considered as similar to the beta coefficients in a regression equation. They are chosen in order to 

maximize the separation between the means of criterion (dependent) variables. Normally strong 

predictors tend to have a large weight. Once the DF is calculated using an existing dataset to 

1.5 
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classify cases, it is possible to classify new cases (test samples). In a step-wise DF analysis, the 

model is generated. At every stage, all variables are assessed to find out which one has the biggest 

impact on the discrimination between groups. The selected variable is then included and the 

procedure is repeated once more.  

1.7.1.1.4 Cluster analysis 

Cluster analysis is a tool for exploratory data analysis, used for organizing observed data or cases 

into two or more categories. In contrast to LDA, cluster analysis does not necessitate any prior 

knowledge of which elements belong to which clusters. The clusters are defined by an analysis of 

the data. Cluster analysis maximizes the similarity of cases within each cluster while maximizing 

the dissimilarity between previously unknown groups. Cluster analysis includes two approaches 

of analysis; 

 Hierarchical cluster analysis 

Hierarchical cluster analysis detects relatively homogeneous clusters of cases by estimating 

dissimilarities or distances between objects the most commonly used methods for calculating the 

distances in a multidimensional space include either Euclidean distances or squared Euclidean 

distances between objects. Each case is first treated as an individual cluster and then gradually 

merges these clusters, reducing their count with each step until only one cluster is left. Hierarchical 

tree diagrams or dendrograms can be generated to show the connection points visually and show 

how clusters are connected at different dissimilarity levels [34]. 

 k-Means clustering 

k-Means clustering is a non-hierarchical clustering method used when the number of intended 

clusters within the objects or cases is known. It functions as a centroid-based, unsupervised 

clustering technique. Essentially, the k-Means algorithm produces exactly k unique clusters. The 

first step in this process is to create k centroids, one for each cluster, and place them as far apart 

from one another as possible. The closest centroid is then assigned to each data point in the dataset. 

As this assignment occurs for all data points, the positions of k centroids are recalculated. The 

technique is repeated until the centroids no longer move significantly [35]. 

1.7.1.2 Non-linear methods 

1.7.1.2.1 Artificial neural networks (ANN) 

It is a computational approach inspired by natural neurons.  Artificial neurons are simple tools that 
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are highly interconnected and the connections between neurons transfer the function of the neuron. 

An artificial neural network creates an empirical relationship between the input variable, also 

known as independent variables or descriptors (X), and output variables, also known as dependent 

variables also known as responses(Y), without relying on prior information [36]. The network can 

be represented by the equation: Y = f(X)+ e. Each neuron, serving as a processing unit, receives 

stimuli from other neurons via dendrites and transmits stimuli to other neurons through its axon. 

The strength of the connections between neurons is stored as weight values, and these specific 

connections are termed synapses. Within a neural network, information is distributed across 

multiple cells (nodes) and the connections between them, referred to as synapses (weights). The 

activation signal transforms a function to yield the neuron's output, expressed as Y = f (a). This 

transformation function can take on various forms, including linearity or non-linearity, such as 

threshold or sigmoid functions. 

1.7.1.2.2 k-nearest neighbour method (kNN) 

The aim of supervised learning is to establish a classification rule using a set of training objects of 

known origin. By using this rule, new objects with unknown origins can be categorized into one 

of the specified classes according to their variable values [37].  

The supervised learning process is carried out in several phases. First, a training set is carefully 

curated, consisting of objects with well-defined classifications and associated features. 

Consequently, a careful selection of relevant variables for classification takes place, while non-

discriminatory or less significant variables are eliminated. Then, a classification rule is formulated 

using the training set. The efficacy of this classification rule is assessed using an independent test set for 

validation. There are several clustering techniques that can be used in the process of variable 

selection. One approach includes organizing the original data in a transposed matrix format, where 

descriptors occupy rows, and molecules are arranged in columns. From each cluster, one or more 

representative descriptors are chosen. These methods establish the classifier by evaluating the 

distances between each object in the training set and approximate functions locally based on 

neighbouring data points. Typically, Euclidean distance is widely used, although other distance 

metrics can also be applied. Correlation-based measures are favoured when dealing with strongly 

correlated variables. For a training set comprising 'n' objects, 'n' distances relative to a test sample 

are computed, and the closest distance is used to determine class membership. The k-nearest 

neighbor method (kNN) represents a non-parametric and unbiased approach with versatile 
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applications in both classification and regression tasks. 

1.7.1.2.3 Read Across  

Read across acts as a non-testing strategy for bridging data gaps by extrapolating toxicological 

insights from the known toxicity data of compounds exhibiting analogous properties or chemical 

profiles [38]. It is used in toxicological assessments, where predictions are made within a grouping 

framework such as the analogue or category approach involving either qualitative or quantitative 

prediction. In this methodology, the known toxicity data of a chemical, referred to as the "source" 

chemical, are leveraged to predict the same endpoint or test outcome for another chemical, termed 

the "target" chemical, which shares scientific similarities. The category approach is based on a 

group of chemicals with comparable physico-chemical, human health, environmental 

toxicological, or environmental fate properties, often resulting from structural similarity. 

Conversely, the analogue approach centres on a smaller subset of closely related substances, 

typically a target and source substance [39]. Read-across depends on on structural similarity and 

similar properties or activities between the source and target chemicals. This assessment considers 

factors such as structure, composition, physical-chemical properties, reactivity, metabolism, and 

mechanistic similarity. Source analogues are identified based on searches for structurally related 

compounds, utilizing similarity metrics, or by evaluating structural alerts, potential metabolic 

precursors, or chemical classes. 

1.7.1.2.4 Quantitative read-across structure-toxicity relationship (q-RASTR) 

QSTR and read-across approaches have merged to form an emerging method known as Read-

across structure–toxicity relationship (RASTR). This approach utilizes the chemical similarity 

principles of read-across, as an unsupervised step, and later develops into a supervised learning 

model similar to QSAR [40]. 

In this approach, a combination of similarity-based and error-based descriptors was employed. 

This method exhibited superior predictive capability and lower Mean Absolute Error (MAE) as 

compared to both QSTR and Read across predictions. The effectiveness of the q-RASTR approach 

relies on its ability to integrate similarity and error measurement information into descriptors. This 

integration enables the generation of interpretable, transferable, reproducible models with 

enhanced predictive accuracy [41]. 

 1.7.1.2.5 q-RASTR descriptors 

 Based on the fundamental principle of read-across, compounds with similar chemical structures 
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are anticipated to exhibit analogous characteristics, commonly known as similarity between the 

source and target substances. This similarity can result in comparable toxicokinetic and 

toxicodynamic behaviors. This principle is rooted in a non-statistical methodology and does not 

depend on mathematically complex models to make predictions of desired chemical compounds. 

Three distinct techniques are used to estimate compound similarity such as; Gaussian kernel 

similarity, Euclidean distance, and Laplacian kernel similarity [42]. 

The RASAR descriptor RA function (LK) is a prediction function produced from read-across by 

averaging the response values of source compounds, created by averaging the response values of 

source compounds identified as having structurally analogous properties [43]. The SD activity 

descriptor represents the weighted standard deviation of activity near n source compounds for a 

specific target compound. SE is defined as the weighted standard error allied with the activity 

values of the adjacent n-source compounds for a given target compound. The CVact descriptor 

characterizes the coefficient of variation of the activity values among the nearest n-source 

compounds for a specific target compound. MaxPos defines the maximum similarity score 

between the training set and the target compound. MaxNeg signifies the degree of similarity 

between a target compound and a close source compound with an activity response value lower 

than the mean response of the training set. 

 The absolute difference between MaxPos and MaxNeg for a particular query molecule is 

demonstrated as Abs Max Pos-Max Neg or Abs Diff. The AvgSim descriptor calculates the 

similarity mean value among n closely associated compounds for a definite target compound. The 

gm (Banerjee-Roy coefficient) descriptor estimates the possibility of whether the query compound 

is active or inactive, with ranging values from -1 to +1. gm*Avg. Sim and gm*SD_Similarity 

descriptors are found by multiplying gm values with Avg. Sim and SD_Similarity values, 

respectively. Pos.Avg.Sim defines the average similarity values among the n close source 

compounds with response values higher than the mean response value of the training set, on the 

other hand, Neg.Avg.Sim represented as the average similarity values among the n close source 

compounds with response values lower than the mean response value of the training set [44].   
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1.7.2 Classification of QSAR/QSTR approaches based on of dimensionality 

Table. 2. Classification of the QSAR methodologies on the basis of dimensionality. 

1.8 Development of quantitative models over the period 

A timeline showing the various approaches that are developed over the period of time to focus on 

the key molecular structural attributes. Therefore, QSAR methods originated way back in the 

nineteenth century 

1.8.1 De novo design 

The De novo QSAR model is a collaborative mathematical model that may encode any molecular 

information without the need for a descriptor. The models are generated using indicator parameters 

(binary values 0 or 1) to indicate the presence or absence of groups at specific positions. 

i. Hansch’s method  

In 1962 Hansch et al correlated the Hammett constants and partition coefficients of phenoxyacetic 

acid with the growth regulatory activity of plants [45]. Two years later they demonstrated that 

biological activity could be correlated with free energy-related terms linearly. Previously called 

Linear Free Energy Relationship (LFER), later evolved into an extra thermodynamic approach as 

expressed by Eq 1.6. 

log 1⁄C = aπ + bσ + cEs + ⋯ +constant 

Dimension Methods 

0D-QSAR Models are based on descriptors involving molecular formulas like 

molecular weight etc. 

1D-QSAR Models are based on the simplex representation of molecular structure 

(SiRMS) approach. 

2D-QSAR Activity is correlated with physicochemical and structural patterns 

(connectivity, topology, etc.) of the molecules without consideration of an 

explicit 3D representation of these properties. 

3D-QSAR Activity is correlated with the three-dimensional structure of the ligands 

4D-QSAR Ligands are represented as an ensemble of configurations 

5D-QSAR As 4D-QSAR + explicit representation of different induced-fit models 

6D-QSAR As 5D-QSAR + simultaneous consideration of different solvation models 

1.6 
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Where π = hydrophobic parameter 

             σ = Hammett electronic descriptor of the substituent 

             Es = Taft steric constant 

             a, b, c = appropriate constants 

ii. Free Wilson model 

Free Wilson approach is genuinely a structure activity-based methodology considering the 

contributions that every structural component provides to the whole biological process. This model 

was represented as follows in Eq 1.7 

〖𝐵𝐴〗_𝑖 = 𝛴𝑎_𝑗 𝑋_𝑖𝑗 + 𝜇  

Where, μ = overall average biological activity. 

BA = biological activity, 

aj = contribution of the j th substituent to biological, 

Xj = j th substituent, which carries a value 1 if present, 0 if absent 

This de novo approach assumes that the effects of substituents are additive and constant. This 

approach does not need of physicochemical constant. However, there are certain limitations. The 

large number of variables is required to describe a smaller number of compounds together with a 

large number of molecules with varying substituents. Besides, these intra-molecular interactions 

are not handled well. The constant term (μ) is an overall average of the biological activity of all 

the compounds used to develop the model. 

iii.  Fujita Ban model 

Fujita Ban modifies the approaches of the Free-Wilson model. In this approach, the biological 

activity data was expressed in a logarithmic scale. It is a Free-energy-related approach and additive 

in nature. This model is represented in Eq 1.8.    

 

𝑙𝑜𝑔 𝐴/𝐴𝑜 = 𝛴 𝐺𝑖𝑥𝑖 
 

Here, A and A0 are the magnitudes of the activity of substituted and unsubstituted compounds 

respectively. Gi is the log activity contribution or the log activity enhancement factor of the ith 

substituent relative to that of H and Xi is the parameter that takes a value 1 or 0 according to the 

presence or absence of the ith substituent. 

1.8 

1.7 
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1.9 The methodology of QSAR/QSTR model generation 

The development of predictive QSAR models consists of various steps such as  

1) Dataset preparation  

2) Data analysis 

3) Data validation 

4) Interpretation of data where the “data” relates to the response and predictor variables. 

The steps are briefly discussed one by one as follows, 

1. Data preparation    

 The physiological/biological/toxicological response is converted to the respective unit and 

maintains data consistency. 

 Then, drawing of the chemical structures using suitable drawing software like 

ChemSketch, ChemDraw, Marvin-Sketch, etc. The chemical structures can also be 

downloaded/collected from public databases such as NIST Chemistry, and PubChem. The 

configuration should be checked before using the structures. 

 Energy minimization operation and conformational analysis should be performed 

depending on the purpose of modeling. 

 A file containing the structure is subjected to software used to calculate descriptors. 

Initially, data pretreatment was performed to eliminate the intercorrelated descriptors and 

the constants. Various software can be used for the descriptor calculation. 

 There is a single worksheet with different descriptors for each variable and a single column 

of response (activity/ property/toxicity) that represents all the variables in the QSAR 

matrix. An additional column representing the name of the chemicals can be added for the 

quick identification of any compound. 

2. Data analysis  

This phase consists of feature selection, dataset division, and model development. 

 The selection of features refers to the identification of the important predictor variables 

suitable for developing a correlation with the response variable suitable for developing a 

correlation with the response variables. Usually, various feature selection tools are coupled 

with one or more model generation methods under the same interface so that the user can 

select the best predictor variables and simultaneously construct the models using them. 
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Many applications can generate hundreds or thousands of various molecular descriptors. 

In chemometric modeling studies, various feature selection tools are performed which 

include stepwise variable selection, genetic algorithm, best subset selection, variable subset 

selection, and factor analysis. Typically, only some of them are significantly correlated 

with the activity. Furthermore, many of the descriptors are inter-correlated. This has 

negative effects on several aspects of QSAR analysis.  

 Some statistical methods require that the number of compounds is significantly greater than 

the number of descriptors. Using large descriptor sets would require large datasets. 

 Selection of the training set chemicals is important in QSTR analysis. According to 

chemical similarity, the entire dataset is divided into a training set and a test set for the 

prediction model. The training set (i.e., the equation), while the test set (not used during 

model development) is used to judge the external predictivity of the model. However, 

physicochemical descriptors and the chemical similarity principle are the most rational 

means to select training sets. A higher number of training set chemicals is used in the 

development of the model. This method is based on the assumption that a molecule 

structurally very similar to the training set molecules will also be predicted well by the 

model since the model captures features that are common to the training set molecules and 

can identify them in the new molecule. It is important to choose the training and test sets 

in such a way that the test set chemicals fall within the structural domain of the training set 

chemicals. Otherwise, the model developed using the training set will not be able to make 

accurate predictions. The methods for the selection of training and test set are as follows; 

 k-Means clustering and Kennard-Stone selection 

 Kohonen’s Self-Organizing Map (SOM) 

 Principal component analysis (PCA) 

 D-optimal design 

 Sphere exclusion 

 Sorted response 

Here, the whole data matrix is first sorted based on the response column followed by a selection 

of a predefined fraction of chemicals into a training/ test set from different zones maintaining a 

pattern e.g., every first/second/third/fourth compound, etc. In the random division approach, 

chemicals are arbitrarily divided into training and test sets following a user-defined fraction. 
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Sometimes, a combination of response variable-based and predictor variable-based approaches 

may also be employed e.g., chemicals may be assigned into different structurally similar groups 

using any of the above-mentioned techniques followed by a selection of chemicals into training/ 

test set using the sorted response formalism separately from each group. 

The model development step dictates that the selected best features are to be combined in a single 

equation employing an explicit formalism. After the calculation of different features, i.e. 

descriptors, the construction of the QSTR model is done by using a feature mapping procedure 

also referred to as the parameter estimation problem. The aim is to build a pure mathematical 

relationship between the response and the descriptors under investigation. Partial least squares 

(PLS), multiple linear regression (MLR), etc. are the algorithms used for the development of 

quantitative regression-based equations while linear discriminant analysis (LDA) generates the 

classification-based model. 

The variable selection tools are accompanied by statistical evaluation of the corresponding model 

developed from the selected variables as stepwise-MLR, GFA-MLR, G/PLS (genetic PLS), PLS-

DA (PLS followed by discriminant analysis), etc. 

3. Model validation   

Determination of statistical reliability becomes the next essential task during the development of 

predictive models. As the purpose of QSTR analysis isn't simply to develop a model, but also to 

predict the response of untested/new chemicals, it's important to check for its predictability and 

stability. Various statistical metrics are calculated to determine the model fitness (R2, R2a, etc.), 

internal stability (Q2
LOO, rm

2
(LOO)) as well as external predictivity (rm

2
(test), R

2
(pred)), and the values 

above the threshold limits identify model acceptability. Training set chemicals are used to predict 

the internal validation (internal stability) only i.e., chemicals used for developing the model, while 

external predictivity (external validation) refers to the judgment on test set prediction. Some 

additional validation metrics can also be used to determine the overall predictivity e.g. rm
2. For the 

validation of discriminant model parameters such as specificity, sensitivity, precision, F-value, 

accuracy, receiver operating characteristic (ROC) analysis, etc. can be employed. 

4. Model interpretation 

Once a QSAR/QSTR model has been developed and considered acceptable from the values of the 

metrics, the final important part remains with the mechanistic interpretability of the modeled 

features. Establishing a suitable basis between the chemistry of the chemicals and biological/ 
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toxicological action or physicochemical property helps in understanding the mechanism of action 

involved. Accordingly, by combining the experimental results and observation from the model, 

one can explicitly explain each step of the process of behavioral manifestation of chemicals. Such 

knowledge is useful in designing and developing potent analogues. 

1.10 Application of QSAR/QSTR 

QSAR presents a suitable option in the rational monitoring of activity/ property/toxicity of 

chemicals and hence is useful in a wide variety of applications namely biological activity, 

predictive toxicity, and physicochemical property. Fine-tuning the behavioral nature of chemicals 

gives fruitful results for a significantly large class of chemicals such as: 

 Pharmaceuticals 

 Agrochemicals 

 Perfumeries 

 Analytical reagents 

 Solvents 

 Surface modifying agents etc. 

The chemicals modelled using the QSAR method can be overviewed in three major types, namely: 

 Chemicals of health benefits (drugs, pharmaceuticals, food ingredients, etc.), 

 Chemicals involved in industrial/laboratory processes (solvents, reagents, etc.) 

 The chemicals posing hazardous outcomes are persistent organic pollutants (POPs), 

toxins, xenobiotics, and volatile organic chemicals (VOCs). 

Besides modeling biological activity and toxicity endpoints, it may also be involved in the 

modeling of ADME which involves in pharmacokinetics profile of drug candidates before its 

synthesis and hence enhances the efficacy of the designed drug in a biological system. QSTR 

modeling can be a very good option to predict chemical responses using limited resources in any 

prospective discipline. Hence, we can see that the simple ideology of QSPR, i.e., the development 

of a suitable mathematical correlation between the chemical attributes and a response of interest, 

can be of significant application to serve the human community. QSAR/QSTR plays an 

encouraging role in achieving this environmental greenness through the design and development 
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of process-specific chemicals with reduced or null hazardous outcomes. 

1.11 Computation of different statistical metrics for assessing model quality 

Squared correlation coefficient (R2): This parameter is termed as the determination coefficient 

or squared correlation coefficient. The squared correlation coefficient of a model can be obtained 

from the following equation Eq.1.9. 

𝑅2 = 1 −
Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑐𝑎𝑙𝑐(𝑡𝑟𝑎𝑖𝑛))

2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑡𝑟𝑎𝑖𝑛)
2   

The R2 statistic represents the ratio of the regression variance to the original variance where the 

former is determined using the original variance minus the variance around the line of regression 

[46]. The R2 bears a value between zero (no correlations) to one (perfect correlation). A model 

possessing a value of R2 more than 0.8 can be considered to elicit an acceptable correlation while 

the quality enhances with the increasing value of R2 until it reaches a maximum value of unity 

(which is unusual in real cases). Yobs and Ycalc are the respective observed and calculated values 

of the response variable. R2 gives a measure of explained variance. Each additional X variable 

added to a model increases R2. The prime drawbacks of the R2 parameter lie in the fact that it does 

not provide any information on whether: 

 The independent variables are a true cause of the changes in the dependent variable, 

 The correct regression was used, 

 The most appropriate set of independent variables has been chosen, 

 The model might be improved by using transformed versions of the existing set of 

independent variables and 

 Whether any collinear ties exist in the data or not. 

Adjusted R2
a (Eq. 1.10) is a modified version of the determination coefficient and is also known 

as the explained variance. The 𝑅𝑎
2 parameter incorporates the information of the number of samples 

and the independent variables used in the model and can be defined as follows [47]. Here, R2 is 

the determination coefficient of a QSTR model comprising p number of predictor variables and n 

number of samples. Hence, instead of using only the initial observed (i.e., experimental) and final 

predicted response values, 𝑅𝑎
2 considers information on the model history in terms of the number 

of descriptors and number of chemicals used to develop the model (i.e., training set chemicals). 

1.9 
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The 𝑅𝑎
2 penalizes the R2 value of a model containing too many independent variables compared to 

the total number of compounds. The 𝑅𝑎
2 improves only if the addition of a new term enhances the 

model quality avoiding chance. The 𝑅𝑎
2 value usually is less than the corresponding R2 value. 

𝑅𝑎𝑑𝑗
2 =

(𝑛−1)×𝑅2−𝑝

(𝑛−𝑝−1)
  

In Eq.1.10, Yobs and Ycalc are the actual and estimated scores respectively, while n is the number 

of scores and p is the number of descriptors. 

Standard error of estimate (s): The error in the estimation of individual activity values of the 

compounds under study using the MLR method can be quantified based on their residual data. The 

standard error of estimate (SEE or s) for the residuals is calculated by taking the root mean square 

of the residuals. The standard error of the estimate is a measure of the accuracy of the fitting. 

Lower values of SEE correspond to improved model acceptability as shown in Eq. 1.11. 

𝑆 = √
∑(𝑌𝑜𝑏𝑠−𝑌𝑐𝑎𝑙𝑐)2

𝑛−𝑝−1
   

Here, Yobs and Ycalc are the actual and estimated scores respectively, while n is the number of 

scores and p is the number of descriptors.  

1.11.1 Validation metrics for the training set 

1.11.1.1 𝑸𝑳𝑶𝑶
𝟐  

The models developed from the training set by using stepwise regression or genetic methods have 

been subjected to internal validation by means of calculating leave-one-out cross-validation R2(Q2) 

and predicted residual sum of squares (PRESS) and the acceptable models have been further 

processed for the prediction of toxicity and/or property of the test set compounds. The cross-

validated correlation coefficient R2 (LOO−Q2) is calculated according to the formula. 

𝑄𝐿𝑂𝑂
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑐𝑎𝑙𝑐(𝑡𝑟𝑎𝑖𝑛))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑡𝑟𝑎𝑖𝑛)
2   

Here Yobs(train), Ypred(train), and 𝑌𝑡𝑟𝑎𝑖𝑛 are the observed, predicted, and the average value of the 

response variable of the training set. In this technique, one compound is omitted from the data set 

at random in each cycle and then a model is built using the rest of the compounds. The model thus 

formed in this way is used for the prediction of the activity of the omitted compound. The process 

is iterated until all the compounds are eliminated once. On the basis of the predicting ability of the 

model, the cross-validated R2 (Q2) for the model is determined. The acceptable value of Q2 is 0.5 

with a maximum value of 1.0 and hence more the value i.e. closer to 1, the more the internal 

1.12 
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predictivity of the model. 

 

1.11.1.2 Root mean square error in prediction for the training set (RMSEp)  

This parameter suggests that it is possible to determine the internal predictive ability of the training 

set compounds simply by taking the square root of the squared difference between the observed 

and predicted response value divided by the number of compounds in the training set as shown in 

Eq. 1.13. 

𝑅𝑀𝑆𝐸𝑝 = √∑(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑐𝑎𝑙𝑐(𝑡𝑟𝑎𝑖𝑛))
2

𝑛𝑡𝑒𝑠𝑡
   

where ntest is the number of compounds present in the training set and Yobs and Ypred correspond to 

the corresponding observed and LOO predicted response value. It should have a minimum value. 

 1.11.1.3 The rm
2 metrics 

Using the concept of regression through the origin approach [47], introduced a new parameter r2 

or modified that penalizes the R2 value of a model with respect to an ideal condition [47]. The r 2  

metrics can be defined as follows in Eq. 1.14 and 1.15; 

𝑟𝑚
2 = 𝑟2 × (1 − √(𝑟2 − 𝑟0

2))  

𝑟𝑚
′    2  =  𝑟   2 × (1 − √(𝑟   2  −  𝑟0 

′   2))   

where, r2 is the squared correlation coefficient value between observed and predicted response 

values, and 𝑟0
2 and 𝑟0 

′ 2 are the respective squared correlation coefficients when the regression line 

is passed through the origin by interchanging the axes. Roy and co-workers [48] further defined 

the average and difference of the two r2 metric values (i.e., 𝑟𝑚
2  and 𝑟𝑚

′  2) to be used as the acceptable 

criteria to judge the predictive ability of a model as follows in Eq. 1.16.  

𝑟𝑚
    2

=
(𝑟𝑚

   2 + 𝑟𝑚
′   2)

2
 

 

Δ𝑟𝑚
   2 = |𝑟𝑚

   2 − 𝑟𝑚
′   2|   

 

The 𝑟𝑚
2  metrics can not only be computed for the test set compound (𝑟𝑚 (𝑡𝑒𝑠𝑡)

2 ) to judge external 

predictivity but it can also be used to determine the internal predictivity of the model using the 

training set. In the latter case, leave-one-out predicted values (𝑟𝑚 (𝐿𝑂𝑂)
2 ) of the training set 

observations are used against their observed response. Furthermore, Roy et al. [49] also reported 

1.13 

1.14 

1.15 

1.16 

1.17 



Chapter 1 Introduction 

Page 27 

 

 

the use of the 𝑟𝑚
2  metric in characterizing the overall predictive capability of the model by using 

leave-one-out predicted values for the training set and equation (i.e., model) based predicted values 

for the test set together against their corresponding observed response (r2). Later, a rank-based r2 

[48], as well as a scaled [50] version of the r2 metric, was introduced by the same group of authors 

and these have been used in this present study. 

1.11.2 Validation metrics for the test set 

1.11.2.1 R2
pred or Q2

(F1) 

For the prediction of toxicity and/or property of the test set compounds, this parameter was 

calculated. It can be defined as in Eq. 1.18.  

𝑄𝐹1
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑐𝑎𝑙𝑐(𝑡𝑒𝑠𝑡))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑟𝑎𝑖𝑛)
2  

 

where, Yobs(test) is the observed activity of the test set compounds, Ypred(test) is the predicted activity 

of the test set compounds and Ytrain corresponds to the mean of observed activity of the training 

set compounds. R2
pred value for an acceptable model should be greater than 0.5 (maximum value 

1). 

1.11.2.2 Q2
(F2) 

This function as a metric for external set validation was described in the paper of Hawkins [51] 

and can be calculated as in Eq. 1.19.  

𝑄𝐹2
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)−𝑌𝑐𝑎𝑙𝑐(𝑡𝑒𝑠𝑡))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡)−𝑌𝑡𝑒𝑠𝑡)
2   

 

The only notable difference from Q2
ext (F1) is that the average value of the external or test set is 

used in the denominator instead of the internal or training set average value. Both Q2
(F1) and Q2 

(F2) 

were compared and discussed [51]. The threshold value of acceptance for all three parameters 

Q2
(F1), Q

2
(F2), and Q2

(F3) is 0.5. 

1.11.3 Y-randomization study 

The relationships between the response variable and the descriptors can be checked for further 

statistical significance by the randomization test (Y-randomization) of the models. The method 

can be executed in the following two ways; 

 Process randomization  

1.18 
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 Model randomization 

In process randomization, random scrambling of the dependent response variables is performed 

accompanied by a fresh selection of variables from the whole descriptor matrix, and in model 

randomization, scrambling or randomization of the response variable is performed within the 

descriptors present in an existing model. We have performed the model randomization of the 

genetic models using SIMCA software. A parameter was proposed by Roy and Paul named Rp
2 

that penalizes the model R2 for a small difference between the squared mean correlation coefficient 

(Rr
2) of randomized models and the squared correlation coefficient (R2) of the non-randomized 

model and was defined as in Eq. 1.20.  

𝑅𝑝
2 = 𝑅2 × √𝑅2 − 𝑅𝑟

2  

The acceptable value of 𝐶𝑅𝑝
2 was proposed to be greater than or at least equal to 0.5. Later a 

correction for this parameter has been suggested [52] and the rebuilt formula is as follows in Eq. 

1.21. 

𝐶𝑅𝑝
2 = 𝑅2 × √𝑅2 − 𝑅𝑟

2  

1.11.4 Determination of model applicability domain (AD) 

The applicability domain (AD) of a QSTR model can be described as the theoretical region in the 

chemical space defined by the chemical as well as the response attributes of the model [53]. A 

definite domain of applicability enables the reliability of the predictive performance of a model. 

In other words, any QSTR model possesses a defined theoretical domain within which it can 

provide reliable predictions of other chemicals not used in developing the model. It is not feasible 

to develop a single model that can contain the chemical information of the whole universe, and 

accordingly, QSTR models are characterized by different domains. The applicability domain [54] 

is a theoretical region in chemical space, defined by the model descriptors and modeled response. 

When a compound is highly dissimilar to all compounds of the modeling set, reliable prediction 

of its property is unlikely. The concept of AD was used to avoid such an unjustified extrapolation 

of property predictions. Here, we have applied both the Leverage approach and Distance to model 

in X-space (DModX) approach for verifying the applicability domain of the best model developed 

from this study [55]. 

1.11.4.1 Applicability domain: Standardization approach 

The equation to calculate AD is:  

1.20 
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𝑆𝑘𝑖 = |𝑋𝑘𝑖− 𝑋𝑖  |

𝜎𝑋𝑖
     

Where, k=1, 2, 3 … nComp (here, nComp = total number of compounds) 

             i= 1, 2, 3 … nDes (here, nDes = total number of descriptors) 

Ski = Standardized descriptor i for compound k (from the training or test set)  

Xki = original descriptor ‘i’ for compound ‘k’ (from the training or test set) 

Xki = mean value of the descriptor 

Xi= for the training set compounds only  

σXi=standard deviation of the descriptor  

Xi for the training set compounds only 

The standardization approach of the applicability domain (Eq. 1.22) is based on the ideal data 

distribution; 99.7% of the compounds would stay within the range of mean ± 3 standard deviations 

(SDs). As a result, this range (i.e., mean ± 3SDs) is considered as the area of the majority of the 

training set compounds. Outside this area, a compound is examined as diverse from the rest of the 

compounds. So, one should compute the maximum Si(k) value ([Si] max(k)) for the compound k. 

If the SD value for descriptor i of compound k (Ski) is greater than 3 then the compound is an X-

outlier (if it is in the training set) or outside the AD (if it is in the test set) [56]. 

1.12 Literature review  

There are innumerous studies for the prediction of pesticide toxicity (LD50) against different avian 

species using QSAR approaches have been reported. In 2006, Mazzatorta et al. reported a 

classification-based QSAR study using the Support Vector Machine (SVM) technique for the 

estimation of oral toxicity of pesticides against Bobwhite Quail (Colinus virginianus) [57]. In 

2015, Basant et al., developed QSAR models using different tree-based modeling approaches like 

Single Decision Tree (SDT) QSAR, Decision Tree Forest (DTF) QSAR, and Decision Tree Boost 

(DTB) QSAR to determine the acute oral toxicity of pesticides on multiple avian species, for 

example, Bobwhite Quail (Colinus virginianus), Mallard Duck (Anas platyrhynchos), Ring-

necked Pheasant (Phasianus colchicus), Japanese Quail (Coturnix japonica) and House Sparrow 

(Passer domesticus) [58]. In 2017, Halder et al. developed a QSTR model using the Monte Carlo 

method to predict the acute oral toxicity of some diverse agrochemical pesticides against Bobwhite 

Quail (Colinus virginianus) [59]. In 2020, Kar & Leszczynski developed partial least square (PLS) 

regression-based individual and intraspecies QSTR models to estimate the acute oral toxicity of 

certain pesticides in Bobwhite Quail (Colinus virginianus), Mallard Duck (Anas platyrhynchos) 

1.22 
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and Japanese Quail (Coturnix japonica) [60]. In recent work, Banjare et al. developed 

classification-based predictive QSTR models for the estimation of acute oral toxicity of pesticides 

on three different avian species namely Bobwhite Quail (Colinus virginianus), Mallard Duck 

(Anas platyrhynchos) and Zebra Finch (Taeniopygia guttata) [61]. In 2022, Mukherjee et al. 

generated a regression-based 2D quantitative structure toxicity relationship (2D QSTR) and 

quantitative structure toxicity–toxicity relationship (QSTTR) models to predict the toxicological 

significance of pesticides on five different avian species [62]. Recently podder et al. also developed 

regression-based QSTR and i-QSTR models for toxicity assessment of pesticides on various avian 

species, such as mallard duck, bobwhite quail, and zebra finch [63]. 
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2. PRESENT WORK 

2.1. Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian 

Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and 

Read-Across 

Pesticides comprise a diverse class of chemicals that are commonly used to control or eliminate 

pests such as weeds, fungi, insects, and rodents effective crop management. In recent decades, 

there have been a significant surge in the usage of pesticides, particularly in developing nations 

that rely on agriculture. [64]. Due to the inherent characteristics, a significant fraction of the 

applied dose persists as residues on crops and fields [58]. As a result, large concentrations of 

pesticides have been found in crops, vegetation, and further edible products causing exposure to 

both animals and humans. According to the reports, prolonged exposure to these substances can 

cause adverse effects on the neurological, endocrine, reproductive, immunological, 

cardiovascular, renal, and respiratory systems of an individual [65]. 

In light of the aforementioned, various regulatory authorities have emphasized the need for the 

toxicity evaluation of both new and existing pesticides. The avian toxicity tests are essential for 

regulatory approval and licensing of the active ingredients of pesticides. Aves are significant for 

ecology and have a huge contribution to biodiversity by performing pollination of plants, rodent 

control, seed dispersal, and spreading nutrients [62]. According to today’s scenario, one in every 

eight bird species faces extinction [66]. Therefore, birds are used as a model organism to evaluate 

toxicity. 

Oral toxicity testing is important for determining the toxicological significance of various avian 

species. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese quail (Coturnix japonica) 

[JQ], ring-necked pheasant (Phasianus colchicus) [RNP], and mallard duck (Anas platyrhynchos) 

[MD] are the major test species as per OECD norms [67]. The validated wet-lab techniques for 

the evaluation of compound toxicity towards avians are expensive, unethical, and require a 

significant amount of time and effort. So the relevant regulatory bodies encourage the 

employment of potential alternative strategies to achieve the objective. Regulatory agencies like 

the Environmental Protection Agency (EPA), European Food Safety Authority (EFSA), 

Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH), and European 

Chemicals Bureau (ECB), have emphasized the potential of computational tools like QSTR, 

Read-Across, and alternative approaches for investigating the inherent characteristics of 

chemicals within the realm of toxicokinetics [68].  

Some alternative in silico-based approaches were reported previously that offer significant 

improvements over single-output models for regulatory purposes [69-74]. Speck-Planche et al. 
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[69] reported the discriminant model based on substructural descriptors for the rational design of 

new agrochemical fungicides. Speck-Planche et al. [70] also worked on new in-silico methods for 

the rational design of new insecticidal agents. Speck-Planche et al. [71] also reported the multi-

species chemoinformatic methods for assessing the various ecotoxicological profiles in 

agrochemical fungicides. Speck-Planche et al. [72] also published a work regarding multi-scale 

QSAR methodology for simultaneous ecotoxicological modeling of pesticides. Jiang et al. [73] 

worked on boosting tree-assisted multitask deep learning methods for small scientific datasets.  a 

consensus multitask deep learning method was used to model multispecies acute toxic effects by 

Jain et al. [74]. Even other alternative modeling approaches based on machine learning (ML) tools 

that have demonstrated significant advancements, particularly in handling nonlinearity aspects 

and improving predictions were also reported earlier [73-76]. Halder et al. [75] reported the global 

models employing in-silico methods for Predicting the ecotoxicity of endocrine disruptive 

chemicals. Samanipour et al. [76] worked on alternative methods for chemical prioritization using 

molecular descriptors and intrinsic fish toxicity of chemicals 

These in-slico techniques examine significant structural features that are essential for predicting 

the biological activity, toxicity, and other characteristics of untested substances. Several research 

teams published in silico predictions of acute oral toxicity in various species, including rats, mice, 

and fish [61,77-80]. But in the case of avian oral toxicity, very few in-silico reports are available 

[58, 61, 62, 63, 66,81]. 

Herein, we developed QSTR models to interpret the major structural and physicochemical 

features responsible for their toxicity followed by estimating the toxicity of external datasets in 

RNP and MD avian species following the OECD guidelines strictly [67].   Alternative tools, such 

as read-across, are widely used for hazard assessment to fill data gaps. The Read-Across-based 

predictions assume that a molecule with an unreported experimental endpoint value should have 

a value similar to molecules that are structurally and/or biologically similar to the query molecule. 

So, we have conducted the Read-across predictions to improve the test set results. The main 

motive for choosing the regression-based QSTR approach over others (e.g.: regarding its 

effectiveness, coping with chemical heterogeneity, and several different species) was to develop 

a linear relationship between the descriptors and this defined endpoint (pLC50) and to identify the 

important features responsible for toxicity towards avian species (RNP and MD) as well as data-

gap filling. Classification models only focus on the categorical relationship between the input and 

output variables rather than the exact numerical relationship. On the other hand, regression models 

can identify the most important features or predictors driving the outcome variable. Additionally, 

we have also developed classification models as well as employed two different ML algorithms 
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namely SVM, and RF to evaluate their effectiveness in model construction and prediction The 

present work aimed to design a logical method to assess pesticide toxicity towards avians. 

Furthermore, screening of the Pesticide Properties DataBase (PPDB) was conducted to evaluate 

the avian toxicity following the prediction reliability assessment of the QSTR models by the PRI 

(prediction reliability indicator) tool (http://teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data 

gaps filling and risk assessment [82]. The robustness, reproducibility, and predictivity of QSTR 

models were thoroughly validated using globally accepted statistical parameters. 

 

Fig. 1. The graphical representation of the steps involved in the development of the QSTR model. 

 

2.2. Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological 

effects of diverse pesticides against California quail 

Birds are the essential species for the ecosystem and we can’t even imagine a world without birds. 

Unfortunately, in today’s world due to increasing the usage of different chemical compounds 

including pesticides a large number of birds have extinct globally. As per the report, around 150 

avian species have been wiped out from the planet since the 1500s and one in eight avian species 

is at the risk of extinction [66]. Healthy avian populations are a sign of ecological integrity [83] 

and they also play a significant role in a wide range of functions including pollination, scavenging, 

seed-dispersing, pest-predator, nutrient cycling, ecosystem engineering, and many more [84]. 

Therefore, the global decline in bird numbers is a matter of great concern. Human beings 

ceaselessly manipulate nature to fulfill their demands with increasing population through various 

activities like deforestation, usage of pesticides, and industrialization [61].  

http://teqip.jdvu.ac.in/QSAR_Tools/
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To fulfill the agricultural demand of the rising population and for effective crop management 

pesticide usage increases rapidly. As a consequence, toxic residues of pesticides accumulate in 

the environment and affect both terrestrial and aquatic food chains. Several researchers reported 

that currently used pesticides are lack specificity which may responsible for toxicity toward 

various non-target species including humans and birds. Birds are susceptible to exposure to 

pesticides directly through spray treatment and indirectly by feeding, preening, and grooming. 

Therefore, such effects especially on birds are a threat to the ecosystem and biodiversity, 

suggested test protocols for oral toxicity in birds. 

Considering the aforementioned, a number of regulatory bodies have given priority to the toxicity 

assessment of pesticides and their derivatives. As the oral route is thought to be the most important 

for pesticide exposure in avian species, the United States Environmental Protection Agency 

(USEPA) and the Organization for Economic Co-operation and Development (OECD) proposed 

test protocols for avian oral toxicity. However, estimating avian toxicity by using animal models 

is a tough task as well as quite expensive, time-consuming, and unethical. The concept of “3R” 

(replacement, reduction, and refinement) given by Russell and Burch in 1959, aims to implement 

other possible approaches for toxicity prediction [54]. Recently, some regulatory agencies like the 

Environment Protection Agency (EPA), European Chemical Bureau (ECB), and Registration, 

Evaluation, Authorization, and Restriction of Chemicals (REACH) proposed to limit the usage of 

experimental animals and compel to use of non-animal models or in silico based methods like 

QSAR or QSTR for toxicity risk assessment, which are considered as a convenient replacement 

for both in vivo and in vitro approaches, offering advantages in economy and time efficiency. 

These techniques can investigate significant structural characteristics and forecast the biological 

activity or toxicity of the novel compounds [62]. Few researchers reported various individual-

species and multi-species QSAR models for toxicity evaluation of various chemicals in fish, rats, 

and mice [85-87] but in the case of avian species, few In-silico-based models are reported. By 

thorough analysis of various previous works on toxicity assessment, we found that toxicological 

evaluation for avian species is majorly conducted using either Mallard duck, Bobwhite quail, 

Japanese quail, Ring-necked pheasant, or zebra finch. However, red-winged blackbirds, house 

finches, house sparrows, brown-headed cowbirds, and California quail might be utilized 

optionally or alternatively. Formerly some researchers reported the anti-cholinergic effect of 

insecticides on California quail [88], which might be considered a threat to their existence. 

Therefore, we used California quail as the test organism for the toxicological assessment of the 

chemical pesticides. 

The present study deals with avian toxicity assessment of pesticides against California quail 
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(Callipepla california) by constructing QSTR models with partial least square (PLS)-regression 

by employing 2D descriptors for model development to avoid molecular optimization complexity. 

We have also attempted to strengthen the prediction quality of the test set compound by intelligent 

selection of various models using the “Intelligent consensus predictor” tool [89].  All the produced 

models were built in accordance with the OECD recommendation.  

 

Fig. 2. The graphical representation of the steps involved in the development of the QSTR model. 

 

2.3.Study 3: Chemometric-based exploration of the toxicological significance of diverse 

chemical toxicants in wild birds with an application of the q-RASTR approach. 

In this modern era, the usage of various chemical compounds has risen enormously to fulfill 

human requirements. Chemical compounds are mainly designed for different specific purposes, 

as they tend to air and aquatic transport, these substances have been detected globally. The 

environment, biodiversity, and wildlife including birds are greatly affected by these chemicals. 

Birds represent a diverse group of species that play many key ecological roles and offer various 

services associated with the ecosystem such as nutrient cycling, pollination, seed dispersal, and 

promoting plant growth and diversity via their herbivory activities [90]. They also function as 

markers for environmental health. Birds have cultural importance and are also considered symbols 

of nations and organizations. Regrettably, birds have been recognized as a species that experience 

the harmful consequences of various chemicals. Various reports suggest that there is a huge drop 
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in the bird population worldwide due to eggshell thinning after exposure to the well-known 

pesticide dichlorodiphenyltrichloroethane (DDT) [91]. Some researchers reported that a decline 

in the Gyps vulture population was triggered by diclofenac-induced toxicity [92] and the 

poisoning of Red kites as a result of exposure to several pesticides and rodenticides [93]. Another 

research performed by J. W. Macdonald reported that a group of 38 birds which is 19 percent of 

the total bird population have died as a consequence of adverse environmental factors including 

chemicals, pesticides, and pharmaceuticals [94]. 

So, the above reports indicate that there is a significant impact of different chemical compounds 

on the bird's wildlife ecosystem. Therefore, various regulatory agencies emphasize toxicity 

assessment of chemical compounds to determine their toxicological effect on various species 

including both terrestrial and aquatic. For toxicity estimation of a large number of compounds in 

vitro and in vivo assessment is quite expensive, time-consuming, and needs sacrifice of innocent 

animals. Therefore, it is essential to attempt various alternative methods of toxicity assessment 

such as in-silico-based methods which include QSAR, QSTR, and q-RASTR. The in-silico-based 

approaches associated with chemical toxicology continue to be a better alternative to in-vivo or 

in-vitro methods of toxicity assessment as they reduce human effort as well as time and cost [95]. 

Regulatory authorities, chemical industries, and risk evaluators also encourage computational 

toxicology methods particularly QSTR as suitable technique for early hazard identification and 

risk assessment. In recent times, few models have been fabricated for toxicity evaluation of 

various environmental hazards using QSAR or other related in-silico techniques. Various 

toxicological studies of diverse chemicals against several species such as dogs, fish, and rats have 

already been performed by using QSAR methods for toxicity prediction [85,96,97]. Recently, few 

researchers reported avian toxicity studies of diverse chemicals or pesticides using single species 

[98] as well as multiple avian species. The Read-Across Structure-Activity Relationship is the 

fusion of both QSAR and the Read-Across approach which improves the reliability of predictions. 

q-RASAR boosts the predictive ability and diminishes the mean absolute error by using similarity 

and error-based descriptors [99]. In the recent past, the q-RASAR approach has been used by 

many researchers for toxicity assessment associated with molecular and environmental contexts. 

Banerjee et al. developed multiple q-RASAR models for assessing the cytotoxicity of TiO2-based 

nanoparticles using two sets of toxicity data [100]. Ghosh et al. also use the q-RASAR approach 

to predict the aquatic toxicity of organic pesticides against fish [101]. 

In this study, we have generated PLS-based QSTR and q-RASTR models using experimental data 

with the endpoint LD50 of diverse chemical compounds toward wild birds. Wild birds encompass 

a large group of avian species and represent a major part of our ecosystem. Therefore, it is 
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essential to evaluate the toxicological significance using experimental data on diverse chemicals 

for wild birds. 

 

Fig.  3. The graphical representation of the steps involved in the the q-RASTR model 

development. 
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3. MATERIALS AND METHODS 
The dissertation presents a transparent methodology for developing QSTR and q-RASTR models using 

simple 2D descriptors. Our objective has been to ensure clarity and transparency in the process, from 

the calculation of descriptors to the reduction of the variable matrix, the identification of significant 

features, and the assessment of the models' reliability and predictive abilities. QSTR models are 

generally developed in a number of steps, by following the OECD guidelines. This dissertation 

describes the process we followed in order to complete our studies. In the first part, we provided a 

general overview of the steps involved in generating a predictive QSTR model; next, we described the 

methods for each study. 

We divided the work into the following parts: 

Dataset details: In this section, we provide a comprehensive account of the datasets used in our study. 

These datasets include information on chemical names and their corresponding activity or toxicity 

data. This foundational information serves as the bedrock for our research. 

Methodological Approach: We represent a general overview of the methodologies and techniques 

employed in the development of our models. This section outlines the strategies and tools we used to 

create predictive models for understanding the relationship between chemical structures and toxicity. 

3.1 Organization for Economic Cooperation and Development (OECD) guidelines for the QSTR 

model generation 

To develop a QSTR model, certain factors should be considered according to the Organization for 

Economic Cooperation and Development (OECD). Table 3 illustrates the five OECD guidelines for 

the validation of a QSTR model. 

Table 3. OECD guidelines for QSTR models. 

Serial 

No. 

OECD guidelines Description 

1 A defined end-point To make sure that all endpoint values in a dataset are 

the same. 

2 An unambiguous algorithm In order to ensure that the suggested QSAR model is 

transparent and reproducible 

3 In order to ensure that the 

suggested QSAR model is 

transparent and reproducible 

The necessity to define an AD reflects the fact that 

QSARs are inherently limited in terms of the sorts of 

chemical structures, physicochemical characteristics, 

and mechanisms of action for which they can provide 

valid predictions. 
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4 Appropriate measures of 

goodness of fit, robustness, 

and predictivity 

To make the overall criterion of model validation 

easier to understand: determination of the internal 

performance and predictive capability of a model. 

5 Mechanistic interpretation, if 

possible 

To ensure that there are assessments of the possibility 

of a mechanistic interpretation. 

 

3.2 Study 1  

3.2.1 Dataset preparation 

Here, we developed models using datasets with toxicity endpoint (LC50; defined as the lethal 

concentration in 50% population) for toxicity prediction in multiple avian species collected from 

literature [102] which was originally collected from the EPA, Ecotox database 

(http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides for RNP (Ring-necked pheasant), and 564 

pesticides for MD (Mallard duck) were taken for the development of the model. The toxicity endpoint 

values range from 0.27 to 4.67 in MD and 0.162 to 4.857 in RNP. The two-dimensional structures of 

the pesticides were sketched using Marvin Sketch 5.5.0.1 (https://chemaxon.com)  with the addition 

of explicit hydrogen atoms as well as proper aromatization. The conversion of structure file formats 

was carried out using Open Babel v.2.3.2 [103]. Knime workflow 

(https://www.knime.com/cheminformatics-extensions) was employed for data curation which 

removes unwanted salts and duplicate compounds. Toxicity in an avian species characterized as an 

endpoint value (LC50) was converted to millimolar (mM) concentration followed by converting to a 

negative logarithmic scale, pLC50, for easy interpretation. Some compounds were omitted from the 

datasets due to high residual values. 

Table 4. Canonical smiles with respective experimental pLC50 values of the RNP dataset. 

Sl 

No. 

Canonical Smiles pLC50 

1 Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 3.056 

2 COP(=O)(OC)C(O)C(Cl)(Cl)Cl 1.879 

3 COP(=S)(OC)Oc1ccc(cc1)S(=O)(=O)N(C)C 3.822 

4 COP(=S)(OC)Oc1ccc(SC)c(C)c1 3.139 

5* CCOP(=S)(OCC)Oc1ccc(cc1)[N+](=O)[O-] 2.937 

6* CCOP(=S)(OCC)Oc1ccc2C(=C(Cl)C(=O)Oc2c1)C 3.057 

7 C1C2C(C(C1Cl)Cl)C3(C(=C(C2(C3(Cl)Cl)Cl)Cl)Cl)Cl 2.979 

8 C1(C(C(C(C(C1Cl)Cl)Cl)Cl)Cl)Cl 2.714 

9 CNC(=O)CSP(=S)(OC)OC 2.839 

10 C1=NNC(=N1)N 1.225 

11 COP(=O)(OC)OC=C(Cl)Cl 2.590 

12 CNC(=O)Oc1cccc2ccccc12 1.604 

13 CC(=O)C 0.162 

http://cfpub.epa.gov/ecotox/
https://chemaxon.com/
https://www.knime.com/cheminformatics-extensions
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14 COc1ccc(cc1)C(c2ccc(OC)cc2)C(Cl)(Cl)Cl 1.839 

15 ClC(Cl)C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 2.856 

16 ClC(=C(c1ccc(Cl)cc1)c2ccc(Cl)cc2)Cl 2.583 

17 CCc1ccc(cc1)C(C(Cl)Cl)c2ccc(CC)cc2 1.788 

18 CC(Cl)(Cl)C(=O)O 1.456 

19* ClC1C=CC2C1C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 3.221 

20 CCOP(=S)(OCC)SC1OCCOC1SP(=S)(OCC)OCC 2.050 

21* CC(=C)C1CC2=C(O1)C=CC3=C2OC4COC5=CC(=C(C=C5C4C3=O)OC)OC 2.389 

22* OC(=O)Cc1c(Cl)ccc(Cl)c1Cl 1.680 

23 COP(=S)(OC)SCN1N=Nc2ccccc2C1=O 2.241 

24* Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.788 

25 CCC(C)c1cc(cc(c1O)[N+](=O)[O-])[N+](=O)[O-] 2.668 

26 CC(Oc1cc(Cl)c(Cl)cc1Cl)C(=O)O 1.777 

27 Cc1cc(Cl)ccc1OCC(=O)O 2.001 

28 Cc1cc(Cl)ccc1OCCCC(=O)O 1.660 

29 OC(=O)CCCOc1ccc(Cl)cc1Cl 1.697 

30* CN(C)C(=O)Nc1ccccc1 1.516 

31* CNC(=O)Oc1ccccc1OC(C)C 2.077 

32 ClC1=C(Cl)C2(Cl)C3COS(=O)OCC3C1(Cl)C2(Cl)Cl 2.503 

33 OC(c1ccc(Cl)cc1)(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.241 

34 CCOP(=S)(OCC)Oc1ccc(cc1)S(=O)C 3.318 

35 CNC(=O)O\N=C\C(C)(C)SC 2.802 

36 Clc1ccc(cc1)S(=O)(=O)c2cc(Cl)c(Cl)cc2Cl 1.852 

37 ClC1=C(Cl)C(=O)c2ccccc2C1=O 1.657 

38 CCCCC(CC)COC(=O)c1ccccc1C(=O)OCC(CC)CCCC 1.892 

39* Clc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 2.664 

40 CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC 2.097 

41 COP(=S)(OC)Oc1ccc(c(C)c1)[N+](=O)[O-] 2.786 

42 CCNc1nc(Cl)nc(NCC)n1 1.605 

43 CC(Cl)(Cl)C(=O)[O-] 1.453 

44 ClC(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 1.779 

45 CN(C)C(=S)SSC(=S)N(C)C 1.682 

46 CNC(=S)[S-] 1.327 

47* CC(COc1ccc(cc1)C(C)(C)C)OS(=O)OCCCl 1.825 

48* COP(=O)(OC)OC(=CC(=O)N(C)C)C 3.731 

49 [S-]C(=S)NCCNC(=S)[S-] 1.624 

50 CN(C)C(=O)Nc1ccc(Cl)cc1 1.627 

51 CCOP(=S)(OCC)Oc1cnccn1 3.537 

52* COP(=S)(OC)Oc1ccc(cc1)[N+](=O)[O-] 3.461 

53* CCOP(=S)(OCC)SCSCC 2.771 

54 CCOP(=S)(OCC)SCCSCC 2.636 

55 COP(=O)(OC)OC(Br)C(Cl)(Cl)Br 2.176 

56 CCS(=O)CCSP(=O)(OC)OC 2.216 

57* C1C2C=CC1C3C2C4(C(=C(C3(C4(Cl)Cl)Cl)Cl)Cl)Cl 3.806 

58 CCC(C)N1C(=O)NC(=C(Br)C1=O)C 1.416 

59* CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 2.419 
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60 CN(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.66 

61* CON(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.860 

62 CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 3.096 

63 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 1.885 

64 COP(=S)(OC)SCN1C(=O)c2ccccc2C1=O 2.003 

65* CCOP(=S)(CC)Sc1ccccc1 2.960 

66* COP(=S)(OC)SCSc1ccc(Cl)cc1 2.297 

67* C[N+](C)(C)CCCl 1.389 

68* Clc1cccc(Cl)c1C#N 2.059 

69 CNC(=O)Oc1cccc2CC(C)(C)Oc12 2.586 

70* CCCCCCCC(=O)Oc1c(Br)cc(cc1Br)C#N 1.961 

71 CCNc1nc(Cl)nc(NC(C)C)n1 1.634 

72* Nc1c(Cl)c(Cl)nc(C(=O)O)c1Cl 1.683 

73 CCCCOCCOC(=O)COc1ccc(Cl)cc1Cl 1.807 

74 CNC(=O)Oc1ccc(N(C)C)c(C)c1 2.017 

75 CNC(=O)Oc1cc(C)c(SC)c(C)c1 1.767 

76 CCOP(=S)(Oc1ccc(cc1)[N+](=O)[O-])c2ccccc2 2.478 

77* CN(C)C(=O)Nc1cccc(c1)C(F)(F)F 1.867 

78 CCCC(C)c1cccc(OC(=O)NC)c1 1.646 

79 ClC1(Cl)C2(Cl)C3(Cl)C4(Cl)C(Cl)(Cl)C5(Cl)C(Cl)(C1(Cl)C35Cl)C24Cl 2.549 

80 CCCCOCCOC(=O)COc1cc(Cl)c(Cl)cc1Cl 1.954 

81 CCOC(=O)C(SP(=S)(OC)OC)c1ccccc1 2.062 

82* Cc1cc(cc(c1C)C)OC(=O)NC 1.632 

83 CCOP(=S)(OCC)Oc1nc(Cl)c(Cl)cc1Cl 2.802 

84 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.879 

85 COC(=O)NS(=O)(=O)c1ccc(N)cc1 0.487 

86 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)cc2)cc1 3.459 

87 COP(=S)(OC)Oc1c(cc(c(n1)Cl)Cl)Cl 1.888 

88* CC1=C(Cl)C(=O)N(C(=O)N1)C(C)(C)C 0.913 

89 CN(C)C=Nc1ccc(Cl)cc1C 1.877 

90 CNC(=O)C=C(C)OP(=O)(OC)OC 4.857 

91 COC(=O)C=C(C)OP(=O)(OC)OC 2.959 

92* ClCC1(CCl)C(=C)C2(Cl)C(Cl)C(Cl)C1(Cl)C2(Cl)Cl 2.880 

93 CC1(C(=C)C2(C(C1(C(C2(Cl)Cl)(Cl)Cl)Cl)Cl)Cl)C 2.673 

94 CC1C(OC(=O)C2C(C=C(C)C)C2(C)C)C=C(CC=CC=C)C1=O 1.817 

95 CCOP(=O)(OCC)SCCSCC 2.589 

96* Clc1ccc(c(Cl)c1Cl)c2ccc(Cl)c(Cl)c2Cl 2.456 

97 Clc1ccc(c(Cl)c1Cl)c2cccc(Cl)c2Cl 2.475 

98* CC1=CC(=C(C(=C1)OC(=O)NC)C)C 1.632 

99 Clc1cc(Cl)cc(c1)c2cc(Cl)cc(Cl)c2 2.347 

100 CCN(CC)C(=O)\C(=C(/C)\OP(=O)(OC)OC)\Cl 3.590 

101 CCCSP(=O)(OCC)SCCC 3.312 

102* CNC(=O)ON=C(C)SC 1.914 

103 CCCCOCCOC(=O)C(C)Oc1cc(Cl)c(Cl)cc1Cl 2.245 

104 CC(C)C(=O)[O-] 1.241 

105 COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl 1.864 
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106 CCOP(=S)(OCC)SCCl 1.750 

107 CCC(C)c1cccc(OC(=O)N(C)Sc2ccccc2)c1 2.040 

108 COC(CN(C)C(=O)Nc1nnc(s1)C(C)(C)C)OC 2.444 

109* CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc2cccc(Oc3ccccc3)c2 1.230 

110 Clc1ccc(c(Cl)c1)c2cccc(Cl)c2Cl 2.147 

111 CCCCCCCCCCCCCC[N+](C)(C)Cc1ccccc1 1.587 

112 Cc1cc(c(cc1C)Cl)OC(=O)NC 1.319 

*Test set compounds 

Table. 5. Canonical smiles with respective experimental pLC50 values of MD dataset. 

Sl No. Canonical_Smiles pLC50 

1 CC(=CC(=O)NC)OP(=O)(OC)OC 4.366 

2 COP(=S)(OC)Oc1nc(Cl)n(n1)C(C)C 4.455 

3 COP(=S)(OC)Oc1ccc(cc1)S(=O)(=O)N(C)C 3.968 

4 CCOP(=S)(OCC)Oc1ccc(cc1)S(=O)C 3.876 

5 COP(=S)(OC)Oc1ccc(SC)c(C)c1 3.745 

6 CCOP(=S)(OCC)Oc1ccc(cc1)[N+](=O)[O-] 3.583 

7 CNC(=O)Oc1cccc2CC(C)(C)Oc12 3.447 

8 CCCSP(=O)(OCC)SCCC 3.449 

9 CC(=CC(=O)N(C)C)OP(=O)(OC)OC 3.402 

10 CN1SC(=CC1=O)Cl 3.174 

11 CCCSP(=O)(OCC)Oc1ccc(Br)cc1Cl 3.396 

12 CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 3.170 

13 CCOP(=S)(OCC)SCSC(C)(C)C 3.295 

14 CCOP(=S)(OCC)OC(Cl)C(Cl)(Cl)Cl 3.152 

15 C1CN2CC3=CCOC4CC(=O)N5C6C4C3CC2C61C7=CC=CC=C75 3.197 

16 CCOP(=S)(OCC)SCSCC 3.021 

17 CCOP(=O)(NC(C)C)Oc1ccc(SC)c(C)c1 2.982 

18 CCOP(=S)(OCC)Oc1ccc2C(=C(Cl)C(=O)Oc2c1)C 2.956 

19 CCOP(=S)(OCC)Oc1cnccn1 2.771 

20 CC1(C(=C)C2(C(C1(C(C2(Cl)Cl)(Cl)Cl)Cl)Cl)Cl)C 2.922 

21 CCOP(=S)(OCC)SC(CCl)N1C(=O)c2ccccc2C1=O 2.928 

22 ClC1C=CC2C1C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 2.890 

23 CCOP(=S)(OCC)SCCSCC 2.730 

24 ClCC1(CCl)C(=C)C2(Cl)C(Cl)C(Cl)C1(Cl)C2(Cl)Cl 2.883 

25 CCC(C)c1cc(cc(c1O)[N+](=O)[O-])[N+](=O)[O-] 2.648 

26 COC1=NN(CSP(=S)(OC)OC)C(=O)S1 2.745 

27 CCOP(=S)(OC(C)C)Oc1cnc(nc1)C(C)(C)C 2.741 

28 CN(c1c(Br)cc(Br)cc1Br)c2c(cc(cc2C(F)(F)F)[N+](=O)[O-])[N+](=O)[O-] 2.969 

29 COc1ccc(cc1NNC(=O)OC(C)C)c2ccccc2 2.660 

30 CCN(CC)C(=O)\C(=C(/C)\OP(=O)(OC)OC)\Cl 2.624 

31 CN1SC=CC1=O 2.205 

32 Nc1ccncc1 2.115 

33 CN(C)C(=O)Oc1nc(nc(C)c1C)N(C)C 2.507 

34 CNC(=O)ON=C(C(=O)N(C)C)SC 2.456 

35 CCCCCCC(C)C1=C(C(=CC(=C1)[N+](=O)[O-])[N+](=O)[O-])OC(=O)C=CC 2.617 
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36 CNC(=O)Oc1cc(C)c(SC)c(C)c1 2.384 

37 CCCSP(=S)(OCC)Oc1ccc(SC)cc1 2.515 

38 Cc1cccc2sc3nncn3c12 2.277 

39 CCOP(=S)(NC(C)C)Oc1ccccc1C(=O)OC(C)C 2.538 

40 CNC(=O)Oc1ccccc1OC(C)C 2.320 

41 OC(CC(C1=C(O)c2ccccc2OC1=O)c3ccccc3)c4ccc(cc4)c5ccc(Br)cc5 2.722 

42 ClC1=C(Cl)C2(Cl)C3COS(=O)OCC3C1(Cl)C2(Cl)Cl 2.587 

43 COP(=S)(Oc1cc(Cl)c(Br)cc1Cl)c2ccccc2 2.583 

44 CC(C1CC1)C(O)(Cn2cncn2)c3ccc(Cl)cc3 2.387 

45 CCCCCCCCN1SC=CC1=O 2.244 

46 CCOP(=S)(CC)Sc1ccccc1 2.303 

47 CC(=O)CC(C1=C(O)c2ccccc2OC1=O)c3ccccc3 2.400 

48 Cc1c(COC(=O)C2C(\C=C(/Cl)\C(F)(F)F)C2(C)C)cccc1c3ccccc3 2.519 

49 COP(=O)(OC)OC=C(Cl)Cl 2.224 

50 Oc1c(Br)cc(cc1Br)C#N 2.302 

51 CCOc1nc(ns1)C(Cl)(Cl)Cl 2.176 

52 OC(c1ccc(Cl)cc1)(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.351 

53 Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.277 

54 CNC(=O)ON=C(C)SC 1.933 

55 CCC1O[C@]2(CCC1C)C[C@@H]3C[C@@H](CC=C(C)CC(C)C=CC=C4CO

[C@@H]5[C@H](O)C(=C[C@@H](C(=O)O3)[C@]45O)C)O2 

2.440 

56 Clc1ccc(c(Cl)c1Cl)c2ccc(Cl)c(Cl)c2Cl 2.261 

57 CC(=CC(=O)OC)OP(=O)(OC)OC 2.051 

58 Cc1cc(Cl)ccc1OCC(=O)O 2.001 

59 Clc1ccc(CCC(Cn2cncn2)(C#N)c3ccccc3)cc1 2.223 

60 CCCCCCCC(=O)Oc1c(Br)cc(cc1Br)C#N 2.273 

61 CC(C)(C)C(=O)C1C(=O)c2ccccc2C1=O 2.010 

62 CCC(C)c1cccc(OC(=O)N(C)Sc2ccccc2)c1 2.1373 

63 CNC(=O)Oc1cc(C)c(C)c(C)c1 1.924 

64 Cc1c(F)c(F)c(COC(=O)C2C(\C=C(/Cl)\C(F)(F)F)C2(C)C)c(F)c1F 2.257 

65 COP(=S)(OC)Oc1ccc(c(C)c1)[N+](=O)[O-] 1.875 

66 CC(C)Oc1cc(N2N=C(OC2=O)C(C)(C)C)c(Cl)cc1Cl 2.140 

67 CNC(=O)N(C)c1nnc(s1)C(C)(C)C 1.960 

68 CNC(=O)Oc1ccc(N(C)C)c(C)c1 1.911 

69 COc1cc2OC[C@H]3Oc4c5C[C@@H](Oc5ccc4C(=O)[C@H]3c2cc1OC)C(=C

)C 

2.181 

 70* CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2 2.198 

 71* CC1OC(C)OC(C)OC(C)O1 1.819 

72 Clc1ccc(c(Cl)c1Cl)c2cccc(Cl)c2Cl 2.082 

73 COP(=O)(OC)OC(Br)C(Cl)(Cl)Br 2.145 

74 COP(=S)(OC)SCSc1ccc(Cl)cc1 2.020 

75 CON(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.907 

76 COC(=O)c1cc(Cl)cc(N)c1Cl 1.842 

77 Clc1ccc(c(Cl)c1)c2cccc(Cl)c2Cl 1.962 

78 COP(=S)(OC)SCN1C(=O)c2ccccc2C1=O 1.996 

79 NC(=S)Nc1cccc2ccccc12 1.774 
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  80* CCC12COCN1COC2 1.621 

81 CC(C)(C)[C@H](O)C(=Cc1ccc(Cl)cc1)n1cncn1 1.928 

 82* ClC(=C(c1ccc(Cl)cc1)c2ccc(Cl)cc2)Cl 1.949 

83 CCOP(=S)(OCC)SC1OCCOC1SP(=S)(OCC)OCC 2.103 

84 CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC 2.074 

85 CCC(CN1CCOCC1)[N+](=O)[O-] 1.707 

86 COC(=O)c1csc(C)c1S(=O)(=O)NC(=O)N2N=C(OC)N(C)C2=O 2.006 

  87* CC1(C)[C@@H](\C=C(/Cl)\C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)c2cccc(O

c3ccccc3)c2 

2.056 

88 ClC1=C(Cl)C(Cl)(C(=C1Cl)Cl)C2(Cl)C(=C(Cl)C(=C2Cl)Cl)Cl 2.077 

  89* CCSC(C)CC1CC(=C(C(=NOC\C=C\Cl)CC)C(=O)C1)O 1.956 

90 CC1=C(SCCO1)C(=O)Nc2ccccc2 1.757 

91 COc1cnc(OC)n2nc(NS(=O)(=O)c3c(OCC(F)F)cccc3C(F)(F)F)nc12 2.049 

  92* COC(=O)Nc1nc2ccccc2[nH]1 1.631 

  93* CCOc1nc(F)cc2nc(nn12)S(=O)(=O)Nc3c(Cl)cccc3Cl 1.955 

94 N#CSCSc1nc2ccccc2s1 1.724 

95 CCCCCCCCCCCCCC[N+](C)(C)Cc1ccccc1 1.868 

  96* CN(C)C(=O)Nc1cccc(c1)C(F)(F)F 1.712 

  97* COC(=O)c1ccc(I)cc1S(=O)(=O)[N-]C(=O)Nc2nc(C)nc(OC)n2 2.050 

  98* CN1C=C(C(=O)C(=C1)c2cccc(c2)C(F)(F)F)c3ccccc3 1.860 

  99* [O-][N+](=O)\C=C/1\NCCCS1 1.544 

100 COC(=O)NC(=S)Nc1ccccc1NC(=S)NC(=O)OC 1.873 

101 COC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(C)cc(C)n2 1.898 

102 O=C1NSc2ccccc12 1.514 

103 CCOC(=O)[C@@H](C)Oc1ccc(Oc2oc3cc(Cl)ccc3n2)cc1 1.892 

  104* CC(C)(C)c1ccc(OC2CCCCC2OS(=O)OCC#C)cc1 1.878 

105 CC(C)CCCC(C)C\C=C\C(=C\C(=O)OCC#C)\C 1.775 

106 CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=O)O[C@H](C#N)c2cccc(Oc3ccccc

3)c2 

2.0369 

107 CCCCCCCCCCCCCC=CCCCCCCCC 1.842 

108 CCNc1nc(NC(C)(C)C)nc(SC)n1 1.716 

109 ClC(Cl)(Cl)C(NC=O)N1CCN(CC1)C(NC=O)C(Cl)(Cl)Cl 1.971 

110 CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@H]2[C@H](O

[C@H]3[C@H](O)[C@@H](O)[C@H](NC(=N)N)[C@@H](O)[C@@H]3NC

(=N)N)O[C@@H](C)[C@]2(O)C=O 

2.098 

  111* COc1c(Cl)ccc(Cl)c1C(=O)[O-] 1.675 

112 Fc1cccc(F)c1C(=O)NC(=O)Nc2ccc(Cl)cc2 1.825 

  113* COC1=NN(C(=O)[N-]S(=O)(=O)c2ccccc2OC(F)(F)F)C(=O)N1C 1.952 

114 CC(C)(C)N1N=CC(=C(Cl)C1=O)SCc2ccc(cc2)C(C)(C)C 1.891 

115 CN(C)C(=S)[S-] 1.409 

116 COC(=O)c1ccc(CNS(=O)(=O)C)cc1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 2.025 

  117* COc1cc(OC)nc(NC(=O)NS(=O)(=O)Nc2ccccc2C(=O)N(C)C)n1 1.947 

118 [O-][N+](=O)N=C1NCCN1Cc2ccc(Cl)nc2 1.726 

119 [O-][N+](=O)NC1=NCCN1Cc1ccc(Cl)nc1 1.726 

120 CCN(Cc1c(F)cccc1Cl)c2c(cc(cc2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.943 

  121* ClC(Cl)C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 1.822 
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122 CC(C)(C)C(O)(CCc1ccc(Cl)cc1)Cn2cncn2 1.805 

123 CCC1=C(C(=O)[O-])C(=O)C=NN1c2ccc(Cl)cc2 1.760 

  124* CCCCOC(=O)[C@@H](C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F)cc1 1.897 

125 CC(C)[C@H](C(=O)OC(C#N)c1cccc(Oc2ccccc2)c1)c3ccc(OC(F)F)cc3 1.965 

  126* CC(C)[C@H](C(=O)O[C@H](C#N)c1cccc(Oc2ccccc2)c1)c3ccc(Cl)cc3 1.933 

  127* [O-]C(=O)C1C2CCC(O2)C1C(=O)[O-] 1.566 

128 BrCC(=O)OC\C=C\COC(=O)CBr 1.819 

  129* C[C@@H](Oc1ccc(Cl)cc1C)C(=O)O 1.632 

130 C[N+](C)(C)CCCl 1.389 

  131* CC(=CC1C(C(=O)OCc2coc(Cc3ccccc3)c2)C1(C)C)C 1.830 

  132* CC(=CCC\C(=C\CC\C(=C\CO)\C)\C)C 1.648 

  133* CC(=CCC\C(=C\CCC(C)(O)C=C)\C)C 1.648 

  134* CC(=O)Nc1cc(NS(=O)(=O)C(F)(F)F)c(C)cc1C 1.792 

  135* CC(C)(C)C(O)C(Oc1ccc(cc1)c2ccccc2)n3cncn3 1.829 

136 CC(C)(C)N(NC(=O)c1ccc(Cl)cc1)C(=O)c2ccccc2 1.820 

  137* CC(C)[C@@]1(C)N=C(NC1=O)c2ncc(C)cc2C(=O)[O-] 1.739 

  138* CC(C)C(C(=O)OC(C#N)c1cccc(Oc2ccccc2)c1)c3ccc(Cl)cc3 1.924 

  139* CC(C)C(O)(c1ccc(OC(F)(F)F)cc1)c2cncnc2 1.795 

  140* CC(C)C1(C)N=C(NC1=O)c2nc3ccccc3cc2C(=O)O 1.794 

141 CC(C)C1(C)N=C(NC1=O)c2ncccc2C(=O)O 1.718 

142 CC(C)CCCCCCCCCCCCCCCOCCO 1.798 

  143* CC(C)N(C(=O)CCl)c1ccccc1 1.626 

144 CC(Cl)(Cl)C(=O)[O-] 1.453 

145 CC(Cl)(Cl)C(=O)O 1.456 

146 CC(O)CSS(=O)(=O)C 1.532 

  147* CC1(C)[C@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@H](C#N)c2ccc(F)c(Oc3ccccc

3)c2 

1.938 

148 CC1(C)CCC(=Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 1.803 

  149* CC1(C)N(Cl)C(=O)N(Br)C1=O 1.683 

  150* CC1(C)N(CO)C(=O)N(CO)C1=O 1.575 

151 CC1=C(Cl)C(=O)N(C(=O)N1)C(C)(C)C 1.636 

152 Cc1cc(Cl)ccc1OCCCC(=O)[O-] 1.658 

  153* Cc1cc(Cl)ccc1OCCCC(=O)O 1.660 

  154* Cc1ncc([N+](=O)[O-])n1CCO 1.534 

155 CCC(=O)Nc1ccc(Cl)c(Cl)c1 1.639 

156 CCC(C)(C)C(=O)OC1=C(C(=O)OC12CCCCC2)c3cc(Cl)cc(Cl)c3 1.915 

  157* CCc1ccc(cc1)C(=O)NN(C(=O)c2cc(C)cc(C)c2)C(C)(C)C 1.8487 

  158* CCc1ccc(cc1)C(C(Cl)Cl)c2ccc(CC)cc2 1.788 

159 CCc1cccc(CC)c1N(COC)C(=O)CCl 1.732 

  160* CCc1nn(C)c(C(=O)NCc2ccc(cc2)C(C)(C)C)c1Cl 1.824 

  161* CCCCC(CC)COC(=O)c1ccccc1C(=O)OCC(CC)CCCC 1.892 

162 CCCCC(Cn1cncn1)(C#N)c2ccc(Cl)cc2 1.761 

163 CCCCCCCC[N+](C)(C)CCCCCCCC 1.733 

  164* CCCCCCCCCC[C@H]1O[C@H]1CCCCC(C)C 1.752 

  165* CCCCCCCCCCCC(=O)[O-] 1.600 

166 CCCCCCCCSC(=O)Oc1cc(Cl)nnc1c2ccccc2 1.879 
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  167* CCCCN(CC)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.826 

  168* CCCCOCCOC(=O)C(C)Oc1cc(Cl)c(Cl)cc1Cl 1.868 

169 CCCCOCCOC(=O)COc1cc(Cl)c(Cl)cc1Cl 1.852 

  170* CCCCOCCOC(=O)COc1ccc(Cl)cc1Cl 1.807 

  171* CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])C(C)C)[N+](=O)[O-] 1.791 

172 CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.826 

  173* CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-] 1.840 

174 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.879 

  175* CCN(CC(=C)C)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.823 

176 CCN(CC)C(=O)c1cccc(C)c1 1.582 

177 CCN(CC)C(=O)SCc1ccc(Cl)cc1 1.712 

178 CCN(CC)C(=S)SCC(=C)Cl 1.650 

179 CCNc1nc(Cl)nc(NC(C)C)n1 1.634 

180 CCNc1nc(Cl)nc(NCC)n1 1.605 

181 CCOC(=O)C(C)Oc1ccc(Oc2cnc3cc(Cl)ccc3n2)cc1 1.872 

182 CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC 1.820 

183 CCOC(=O)COc1cc(c(F)cc1Cl)c2nn(C)c(OC(F)F)c2Cl 1.917 

184 CCOC(=O)Nc1cccc(OC(=O)Nc2ccccc2)c1 1.778 

  185* CCOc1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.859 

186 CCOc1ccc(cc1)C(C)(C)COCc2cccc(Oc3ccccc3)c2 1.876 

187 CCOP(=S)(OCC)SCCl 1.671 

188 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 1.885 

189 CCS(=O)CCSP(=O)(OC)OC 1.692 

  190* Cl[C@@H]1[C@H](Cl)[C@@H](Cl)[C@H](Cl)[C@H](Cl)[C@H]1Cl 1.764 

191 ClC(Cl)(Cl)S(=O)(=O)C(Cl)(Cl)Cl 1.779 

192 ClC(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 1.677 

193 ClC(Cl)(Cl)SN1C(=O)c2ccccc2C1=O 1.773 

194 ClC1(Cl)C2(Cl)C3(Cl)C4(Cl)C(Cl)(Cl)C5(Cl)C(Cl)(C1(Cl)C35Cl)C24Cl 2.037 

195 Clc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.755 

196 Clc1ccc(c(Cl)c1)C2(Cn3cncn3)CC(Br)CO2 1.877 

197 Clc1ccc(cc1)C(=O)c2ccc(Cl)cc2 1.700 

  198* Clc1ccc(cc1)c2ccccc2NC(=O)c3cccnc3Cl 1.836 

199 Clc1ccc(cc1)S(=O)(=O)c2cc(Cl)c(Cl)cc2Cl 1.852 

200 Clc1ccccc1Nc2nc(Cl)nc(Cl)n2 1.741 

  201* ClN1C(=O)[N-]C(=O)N(Cl)C1=O 1.595 

  202* ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O 1.667 

203 CN(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.668 

  204* CN(C)C(=O)Nc1ccc(Cl)cc1 1.599 

  205* CN(C)C(=O)Nc1ccccc1 1.516 

206 CN(C)C(=S)SSC(=S)N(C)C 1.682 

207 CN(C)C=Nc1ccc(Cl)cc1C 1.594 

208 CN(C)C1=NC(=O)N(C2CCCCC2)C(=O)N1C 1.703 

  209* CN(Cc1ccc(Cl)nc1)C(=NC#N)C 1.648 

  210* CN\C(=N\[N+](=O)[O-])\NCC1CCOC1 1.606 

211 CN1CSC(=S)N(C)C1 1.511 

212 CNC(=O)Oc1cccc2ccccc12 1.604 
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213 COC(=O)C(C)Oc1ccc(Oc2ccc(Cl)cc2Cl)cc1 1.834 

214 COC(=O)c1cc(Oc2ccc(Cl)cc2Cl)ccc1[N+](=O)[O-] 1.835 

215 COC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(OC(F)F)cc(OC(F)F)n2 1.9718 

  216* COc1cc(OC)n2nc(NS(=O)(=O)c3c(OC)nccc3C(F)(F)F)nc2n1 1.938 

  217* COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2ncccc2C(=O)N(C)C)n1 1.914 

218 COc1ccc(cc1)C(c2ccc(OC)cc2)C(Cl)(Cl)Cl 1.839 

219 COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2Cl)n1 1.854 

220 CON(C(=O)OC)c1ccccc1COc2ccn(n2)c3ccc(Cl)cc3 1.889 

221 CON=C(C(=O)OC)c1ccccc1COc2ccccc2C 1.797 

222 COP(=O)(OC)C(O)C(Cl)(Cl)Cl 1.711 

  223* COP(=S)(OC)Oc1nc(Cl)c(Cl)cc1Cl 1.809 

224 CP(=O)(O)CCC(N)C(=O)[O-] 1.556 

225 CSC(=O)c1cccc2nnsc12 1.623 

226 N#CSCSC#N 1.415 

227 Nc1c(Cl)c(Cl)nc(C(=O)O)c1Cl 1.683 

  228* Nc1nc(NCl)nc(n1)N(Cl)Cl 1.661 

229 Nc1nc[nH]n1 1.225 

  230* O=C(Nc1ccccc1)Nc2cnns2 1.644 

231 OC(=O)c1c(Cl)ccc2cc(Cl)cnc12 1.684 

232 OC(=O)Cc1c(Cl)ccc(Cl)c1Cl 1.680 

233 OC(=O)CN(CP(=O)(O)O)CP(=O)(O)O 1.721 

234 OCCN(CC[O-])CC[O-] 1.468 

235 OCCN1CN(CCO)CN(CCO)C1 1.642 

236 OP(=O)(O)CCCl 1.460 

  237* CC(=C)C1CCC(C)=CC1 1.435 

238 CC(C)C1(C)NC(=NC1=O)c1ncc(C)cc1C([O-])=O 1.739 

  239* CC1(C)CCCC(C1)=CC=O 1.483 

  240* CC1=C(C)S(=O)(=O)CCS1(=O)=O 1.623 

  241* CCCCCCCC1CCC(=O)O1 1.5665 

  242* CCCCCCCCCCCCNC(N)=N 1.657 

243 COC(=O)c1ccc(C)cc1C1=NC(=O)C(C)(N1)C(C)C 1.760 

  244* CO\N=C(\C1=NOCCO1)/c2ccccc2Oc3ncnc(Oc4ccccc4Cl)c3F 1.962 

  245* CC1=NNC(=O)N(C1)\N=C\c2cccnc2 1.637 

  246* FC(F)(F)c1ccncc1C(=O)NCC#N 1.658 

  247* CNC(=N[N+](=O)[O-])NCc1cnc(Cl)s1 1.695 

248 CSC1=N[C@](C)(C(=O)N1Nc2ccccc2)c3ccccc3 1.790 

249 CNC(NCc1cnc(Cl)s1)=N[N+]([O-])=O 1.695 

  250* CON=C(C(=O)OC)c1ccccc1CON=C(C)c2cccc(c2)C(F)(F)F 1.907 

251 Cc1c(ccc(c1C2=NOCC2)S(=O)(=O)C)C(=O)c3cnn(C)c3O 1.854 

252 Cc1nn(C)c(O)c1C(=O)c2ccc(cc2S(=O)(=O)C)C(F)(F)F 1.852 

  253* CC(C)N1\C(=N\C(C)(C)C)\SCN(C1=O)c2ccccc2 1.778 

254 O=CCCCC=O 1.290 

255 CS(=O)(=O)c1ccc(C(=O)C2C(=O)CCCC2=O)c(c1)[N+](=O)[O-] 1.820 

  256* CCCCN1Sc2ccccc2C1=O 1.606 

  257* Cc1cc(C)nc(Nc2ccccc2)n1 1.589 

258 CC(COc1ccc(Oc2ccccc2)cc1)Oc3ccccn3 1.791 
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  259* CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc2cccc(Oc3ccccc3)c2 1.876 

260 CCCOC(=O)NCCCN(C)C 1.558 

  261* CCOC(=O)CN(C(=O)CCl)c1c(CC)cccc1CC 1.777 

262 CCOC1Oc2ccc(OS(=O)(=O)C)cc2C1(C)C 1.740 

  263* Clc1cccc(Cl)c1C#N 1.519 

264 CN1COCN(Cc2cnc(Cl)s2)C1=N[N+](=O)[O-] 1.749 

  265* CO\C=C(\C(=O)OC)/c1ccccc1Oc2cc(Oc3ccccc3C#N)ncn2 1.889 

266 OC(=O)CNCP(=O)(O)O 1.512 

267 N(c1ccccc1)c2ccccc2 1.512 

268 CC(C)OC(=O)COc1ccc(Cl)cc1Cl 1.702 

269 C[C@@H](Oc1ccc(Oc2ncc(Cl)cc2F)cc1)C(=O)OCC#C 1.825 

270 CC1(C)CCC(Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 1.786 

  271* CC(Oc1ccc(Oc2ncc(Cl)cc2F)cc1)C(=O)OCC#C 1.825 

  272* CCOc1cc(ccc1C2COC(=N2)c3c(F)cccc3F)C(C)(C)C 1.836 

  273* CC(C)Oc1cccc(NC(=O)c2ccccc2C(F)(F)F)c1 1.790 

274 CCC(C)(NC(=O)c1cc(Cl)c(C)c(Cl)c1)C(=O)CCl 1.807 

  275* Cc1cc(C)c(C2=C(OC(=O)C(C)(C)C)C3(CCCC3)OC2=O)c(C)c1 1.829 

276 CCCCCCCCC=CCCCCCCCC(=O)[O-] 1.726 

277 Nc1nc(nc(C(=O)O)c1Cl)C2CC2 1.606 

278 CC1(C)[C@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@@H](C#N)c1cccc(Oc2ccccc2

)c1 

1.895 

279 FC(OC(F)(F)F)C(F)(F)Oc1ccc(NC(=O)NC(=O)c2c(F)cccc2F)cc1Cl 1.967 

  280* CCS(=O)(=O)c1nc2ccccn2c1S(=O)(=O)NC(=O)Nc3nc(OC)cc(OC)n3 1.946 

281 CCSC(=O)N(CC)C1CCCCC1 1.601 

282 CCCCOCCOC(=O)COc1nc(Cl)c(Cl)cc1Cl 1.819 

283 Nc1cc(Cl)nc(C(=O)O)c1Cl 1.575 

284 FC(F)(F)c1ccc(OCCCOc2c(Cl)cc(OCC=C(Cl)Cl)cc2Cl)nc1 1.950 

  285* CC(CN1C[C@@H](C)O[C@@H](C)C1)Cc2ccc(cc2)C(C)(C)C 1.735 

286 COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2ncccc2C(F)(F)F)n1 1.862 

287 CC1=CC(=O)NO1 1.247 

  288* [O-][N+](=O)\C(=C\c1ccccc1)\Br 1.608 

289 C[C@H](O)C(=O)O 1.204 

290 C[C@H]1[C@@H](SC(=O)N1C(=O)NC2CCCCC2)c3ccc(Cl)cc3 1.797 

291 c1ccc2[nH]c(nc2c1)c3cscn3 1.554 

  292* CC(=C[C@@H]1[C@@H](C(=O)OCN2C(=O)C3=C(CCCC3)C2=O)C1(C)C)

C 

1.770 

293 CC(=C[C@@H]1[C@@H](C(=O)OCN2C(=O)CN(CC#C)C2=O)C1(C)C)C 1.753 

  294* CC(=CC1[C@@H](C(=O)OCc2cccc(Oc3ccccc3)c2)C1(C)C)C 1.794 

295 CC(C)[C@@]1(O)[C@@H](OC(=O)c2ccc[nH]2)[C@@]3(O)[C@@]4(C)C[C

@]5(O)O[C@@]6([C@H](O)[C@@H](C)CC[C@]46O)[C@@]3(O)[C@@]1

5C 

1.943 

296 CC(C)C(Nc1ccc(cc1Cl)C(F)(F)F)C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2 1.951 

297 CC(C)N(C(C)C)C(=O)SCC(=C(Cl)Cl)Cl 1.734 

298 CC(C)NC(=O)N1CC(=O)N(C1=O)c2cc(Cl)cc(Cl)c2 1.769 

299 CC(C)OP(=S)(OC(C)C)SCCNS(=O)(=O)c1ccccc1 1.849 

300 CC(Cl)(Cl)Cl 1.375 
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301 CC(Oc1ccc(Oc2ncc(cc2Cl)C(F)(F)F)cc1)C(=O)O 1.808 

302 CC1(C)CON(Cc2ccccc2Cl)C1=O 1.629 

  303* CC1(C)N(Br)C(=O)N(Br)C1=O 1.706 

304 CC1(C)N(Br)C(=O)N(Cl)C1=O 1.633 

  305* CC1(C)N(Cl)C(=O)N(Cl)C1=O 1.544 

306 CC1(OC(=O)N(Nc2ccccc2)C1=O)c3ccc(Oc4ccccc4)cc3 1.823 

307 Cc1cc(C)n(CO)n1 1.351 

  308* Cc1cc(O)cc(C)c1Cl 1.445 

309 CC1CC(OC(=O)C)OC(C)O1 1.491 

310 Cc1ccc(cc1)S(=O)(=O)C(I)I 1.875 

  311* CC1CCCCC1NC(=O)Nc2ccccc2 1.616 

312 Cc1ccn2nc(nc2n1)S(=O)(=O)Nc3c(F)cccc3F 1.762 

313 CCCC(=NOCC)C1=C(O)CC(CC(C)SCC)CC1=O 1.765 

  314* CCCCC(CC)CN1C(=O)C2C3CC(C=C3)C2C1=O 1.690 

315 CCCCC(CC)COC(=O)[C@@H](C)Oc1ccc(Cl)cc1Cl 1.790 

316 CCCCC(CC)COC(=O)COc1ccc(Cl)cc1Cl 1.773 

317 CCCCCCCCCC[N+](C)(C)CCCCCCC(C)C 1.745 

  318* CCCCCCCCCc1ccc(OCCO)cc1 1.672 

  319* CCCCCCNC(=N)NC(=N)N 1.518 

  320* CCCCOC(=O)[C@@H](C)Oc1ccc(Oc2ccc(cc2F)C#N)cc1 1.803 

  321* CCCCOCC(C)O 1.371 

  322* CCCCOCCOCCOCCc1cc2OCOc2cc1CCC 1.797 

323 CCCN(CCC)C(=O)SCC 1.527 

324 CCCOC(=O)c1ccc(nc1)C(=O)OCCC 1.650 

  325* CCCOCC(=Nc1ccc(Cl)cc1C(F)(F)F)n2ccnc2 1.789 

326 CCCSC(=O)N(CCC)CCC 1.558 

327 CCN(CC)C(=O)C(C)Oc1cccc2ccccc12 1.683 

328 CCNc1nc(Cl)nc(NC(C)(C)C)n1 1.611 

  329* CCNc1nc(NC(C)C)nc(SC)n1 1.607 

330 CCOC(=O)C(C)OC(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.914 

331 CCOC(=O)C(C)Oc1ccc(Oc2oc3cc(Cl)ccc3n2)cc1 1.808 

  332* CCOC(=O)C(Cl)Cc1cc(N2N=C(C)N(C(F)F)C2=O)c(F)cc1Cl 1.865 

  333* CCOc1nc(NC)nc(NC(=O)NS(=O)(=O)c2ccccc2C(=O)OC)n1 1.863 

334 CCOCCOCCOC(=O)Nc1nc2ccccc2[nH]1 1.717 

335 CCOP(=O)([O-])C(=O)N 1.432 

336 CCSC(=O)N(CC(C)C)CC(C)C 1.587 

  337* ClC(Cl)C(Cl)(Cl)SN1C(=O)[C@@H]2CC=CC[C@@H]2C1=O 1.793 

338 Clc1cc(NC(=O)Nc2ccccc2)ccn1 1.644 

339 Clc1ccc(C(Cn2ccnc2)OCC=C)c(Cl)c1 1.723 

340 CN1C(=O)ON(C1=O)c2ccc(Cl)c(Cl)c2 1.667 

  341* CN1SC2=C(CCC2)C1=O 1.441 

342 COC(=O)c1c(CC(C)C)c(C2=NCCS2)c(nc1C(F)F)C(F)(F)F 1.848 

  343* COC(=O)c1c(Cl)c(Cl)c(C(=O)OC)c(Cl)c1Cl 1.771 

  344* COC(=O)c1c(Cl)nn(C)c1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 1.888 

345 COC(=O)c1cccc(C)c1S(=O)(=O)NC(=O)Nc2nc(OCC(F)(F)F)nc(n2)N(C)C 1.942 

  346* COC(=O)c1ccccc1N 1.429 
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  347* COC(=O)c1ccccc1S(=O)(=O)NC(=O)N(C)c2nc(C)nc(OC)n2 1.847 

  348* COC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(C)nc(OC)n2 1.831 

349 COC(=O)N(C(=O)N1CO[C@]2(Cc3cc(Cl)ccc3C2=N1)C(=O)OC)c4ccc(OC(F

)(F)F)cc4 

1.972 

  350* COC[C@H](C)N(C(=O)CCl)c1c(C)csc1C 1.690 

  351* COc1cc(OC)nc(Oc2cccc(Oc3nc(OC)cc(OC)n3)c2C(=O)[O-])n1 1.883 

352 COc1cc(OC)nc(Sc2cccc(Cl)c2C(=O)[O-])n1 1.763 

353 COc1nc(NC(C)C)nc(NC(C)C)n1 1.603 

354 COCC(C)N(C(=O)CCl)c1c(C)csc1C 1.690 

  355* CS\C(=N\OC(=O)N(C)SN(C)C(=O)ON=C(C)SC)\C 1.799 

356 CSC(=O)c1c(CC(C)C)c(C(=O)SC)c(nc1C(F)F)C(F)(F)F 1.853 

357 CSc1nc(NC2CC2)nc(NC(C)(C)C)n1 1.654 

  358* Fc1cc2OCC(=O)N(CC#C)c2cc1N3C(=O)C4=C(CCCC4)C3=O 1.799 

359 Fc1ccc(Oc2ccnc3cc(Cl)cc(Cl)c23)cc1 1.739 

360 Nc1c(Cl)c(F)nc(OCC(=O)O)c1Cl 1.656 

361 Nc1nc(N)nc(NC2CC2)n1 1.470 

  362* O=C\C=C\c1ccccc1 1.371 

  363* OC(=O)c1ccccc1 1.337 

364 OC(=O)COc1ccc(Cl)cc1Cl 1.594 

365 OC(=O)COc1nc(Cl)c(Cl)cc1Cl 1.659 

  366* Oc1ccc(cc1)[N+](=O)[O-] 1.393 

  367* Oc1ccc(Cl)cc1Cc2ccccc2 1.590 

368 Oc1ccccc1c2ccccc2 1.481 

369 OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O 1.694 

370 OCNCC(=O)[O-] 1.267 

371 C\C(=N/NC(=O)Nc1cc(F)cc(F)c1)c1ncccc1C([O-])=O 1.773 

372 CC(=NNC(=O)Nc1cc(F)cc(F)c1)c1ncccc1C(O)=O 1.774 

  373* CC(C)=C[C@@H]1[C@@H](C(=O)O[C@H]2CC(=O)C(CC=C)=C2C)C1(C)

C 

1.730 

374 CC(C)CCCCCOC(=O)C(C)Oc1ccc(Cl)cc1Cl 1.790 

  375* CCCCCCCCCCCC(=O)O 1.552 

376 CCCCCOC(=O)COc1cc(N2C(=O)C3=C(CCCC3)C2=O)c(F)cc1Cl 1.877 

  377* CCCCOCCOCCOCc1cc2OCOc2cc1CCC 1.779 

378 ClC(Cl)C(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 1.793 

  379* COC(=O)c1ccccc1CS(=O)(=O)NC(=O)Nc1nc(OC)cc(OC)n1 1.863 

380 Cl\C=C\C[N+]12CN3CN(CN(C3)C1)C2 1.583 

381 CCC(C)(CCC(C)C)C(=O)NC 1.513 

  382* CC(C)C1CCC(Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 1.766 

  383* COCc1c(F)c(F)c(COC(=O)[C@@H]2[C@@H](C=CC)C2(C)C)c(F)c1F 1.796 

  384* CC(C)CC(C)c1sccc1NC(=O)c2cn(C)nc2C(F)(F)F 1.792 

385 COC(=O)Nc1cccc(OC(=O)Nc2cccc(C)c2)c1 1.714 

386 CS(=O)(=O)c1ccc(C(=O)C2C(=O)CCCC2=O)c(Cl)c1COCC(F)(F)F 1.881 

  387* FC(F)(F)c1cnc(CNC(=O)c2c(Cl)cccc2Cl)c(Cl)c1 1.821 

  388* CC(=O)Nc1ccc(O)cc1 1.408 

  389* CCc1cc(C)cc(CC)c1C2=C(OC(=O)C(C)(C)C)N3CCOCCN3C2=O 1.826 

390 CCC(=NOC\C=C\Cl)C1=C(O)CC(CC1=O)C2CCOCC2 1.755 
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391 COc1cc(C)c(C(=O)c2c(C)c(Br)ccc2OC)c(OC)c1OC 1.828 

  392* COc1cc(OCC#C)ccc1CCNC(=O)C(OCC#C)c2ccc(Cl)cc2 1.830 

393 Nc1c(Cl)cc(cc1Cl)[N+](=O)[O-] 1.524 

  394* OC(c1ccc(Cl)cc1)(c2cncnc2)c3ccccc3Cl 1.724 

395 CCCCCCCCSCCO 1.463 

396 CN(\C=N\c1ccc(C)cc1C)\C=N\c2ccc(C)cc2C 1.622 

397 COC(=O)C[C@@H]1[C@@]2(C)[C@H](O[C@@H]3C[C@H](C(C)=C23)c2

ccoc2)[C@@H]2OC[C@@]3(C)[C@H]2[C@]1(C)[C@H](C[C@H]3OC(C)=

O)OC(=O)C(C)=CC 

1.930 

398 CCON=C(CC)C1=C(O)CC(CC1=O)c2c(C)cc(C)cc2C 1.648 

399 CC1(C)[C@@H]([C@@H](Br)C(Br)(Br)Br)[C@H]1C(=O)O[C@H](C#N)c2c

ccc(Oc3ccccc3)c2 

1.934 

400 CN1CCCC1 0.999 

401 CC1(C)C(C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2)C1(C)C 1.587 

402 [O-]N1C=CC=CC1=S 1.141 

403 BrCC(Br)(CCC#N)C#N 1.424 

404 C[N+]1(C)CCCCC1 1.057 

405 CC(C)(NC(=O)c1cc(Cl)cc(Cl)c1)C#C 1.408 

406 CC(Oc1ccc(Cl)cc1Cl)C(=O)O 1.371 

407 CC(Oc1cccc(Cl)c1)C(=O)[O-] 1.300 

408 CCC(C)N1C(=O)NC(=C(Br)C1=O)C 1.416 

409 CCC(C)Nc1c(cc(cc1[N+](=O)[O-])C(C)(C)C)[N+](=O)[O-] 1.470 

410 CCc1cccc(C)c1N(C(C)COC)C(=O)CCl 1.453 

 411* CCCCCCCCN1SC(=C(Cl)C1=O)Cl 1.450 

412 CCCCOC(=O)COc1ccc(Cl)cc1Cl 1.442 

413 CCCCOCCOC(=O)C(C)Oc1ccc(Cl)cc1Cl 1.525 

414 CCCN(CCC)c1c(cc(c(N)c1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.544 

415 CCN(CC)c1c(cc(c(N)c1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.508 

416 CCOC(=O)Cc1cccc2ccccc12 1.330 

417 ClC\C=C\Cl 1.045 

  418* Clc1c(Cl)c(C#N)c(Cl)c(C#N)c1Cl 1.424 

419 CN(C)NC(=O)CCC(=O)O 1.204 

420 CNC(=O)O\N=C\C(C)(C)S(=O)(=O)C 1.346 

421 CNC1=C(Cl)C(=O)N(N=C1)c2cccc(c2)C(F)(F)F 1.482 

  422* COC(C)(C)CCCC(C)C\C=C\C(=C\C(=O)OC(C)C)\C 1.492 

423 COc1c(Cl)ccc(Cl)c1C(=O)O 1.344 

424 COCC(=O)N(C(C)C(=O)OC)c1c(C)cccc1C 1.446 

425 O=C(C(c1ccccc1)c2ccccc2)C3C(=O)c4ccccc4C3=O 1.531 

426 O=C1NNC(=O)C=C1 1.049 

427 OC(=O)c1ccccc1C(=O)Nc2cccc3ccccc23 1.464 

  428* OCC(Br)(CO)[N+](=O)[O-] 1.301 

429 CCC(O)=O 0.869 

430 CCCCCCCCCCO 1.199 

  431* OCOCC12COCN1COC2 1.243 

432 CC(C)C1=NN(C(=O)NC(C)(C)C)C(=O)N1N 1.359 

433 CCCCC(O)(Cn1cncn1)c2ccc(Cl)cc2Cl 1.470 
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434 CCSC(=O)N1CCCCCC1 1.158 

435 CCOC(=O)NCCOc1ccc(Oc2ccccc2)cc1 1.178 

436 CS(=O)(=O)NC(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+]([O-])=O 1.341 

437 Clc1ccccc1c2nnc(nn2)c3ccccc3Cl 1.166 

438 CCCCOC(=O)C(C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F)cc1 1.185 

439 CN(C)C(=O)C(c1ccccc1)c2ccccc2 0.901 

440 CSc1nc(NC(C)C)nc(NC(C)C)n1 0.751 

441 COC(=O)NS(=O)(=O)c1ccc(N)cc1 0.487 

442 CCOCn1c(c2ccc(Cl)cc2)c(C#N)c(Br)c1C(F)(F)F 4.675 

443 CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 3.978 

444 CCOP(=O)(SC(C)CC)N1CCSC1=O 3.355 

445 CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F 3.504 

446 CCOP(=S)(Oc1ccc(cc1)[N+](=O)[O-])c2ccccc2 3.284 

447 CN(C)c1ccc(cc1)N=NS(=O)(=O)[O-] 2.967 

448 [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F 3.187 

449 Clc1ccc(cc1)C(C(=O)C2C(=O)c3ccccc3C2=O)c4ccccc4 2.944 

450 CNC(=O)Oc1cccc2OC(C)(C)Oc12 2.670 

451 CNC(=O)O\N=C\C(C)(C)SC 2.505 

452 CCN(CC)c1nc(C)cc(OP(=S)(OC)OC)n1 2.683 

453 CCNc1nc(Cl)nc(NC(C)(C)C#N)n1 2.559 

454 COP(=O)(N)SC 2.221 

455 Cl[C@@H]1C[C@H]2[C@@H]([C@H]1Cl)[C@]3(Cl)C(=C(Cl)[C@]2(Cl)C

3(Cl)Cl)Cl 

2.679 

456 CC(=O)CC(C1=C([O-])c2ccccc2OC1=O)c1ccccc1 2.538 

457 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)cc2)cc1 2.717 

458 OC(=O)CCCOc1ccc(Cl)cc1Cl 2.396 

459 CNC(=O)CSP(=S)(OC)OC 2.355 

460 CCS(=O)(=O)c1cccnc1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 2.495 

461 CNC(=O)Oc1cccc(c1)\N=C\N(C)C 2.194 

462 Clc1cccc(n1)C(Cl)(Cl)Cl 2.197 

463 COC(CN(C)C(=O)Nc1nnc(s1)C(C)(C)C)OC 2.261 

464 CCOP(=S)(OCC)SCN1C(=O)Oc2cc(Cl)ccc12 2.345 

465 OC(=O)C1(CC1)C(=O)Nc2ccc(Cl)cc2Cl 2.356 

466 CCNP(=S)(OC)O\C(=C\C(=O)OC(C)C)\C 2.198 

467 COP(=S)(OC)SCN1N=Nc2ccccc2C1=O 2.213 

  468* CCCC(=O)Oc1c(Br)cc(cc1Br)C#N 2.103 

  469* Clc1cc(Cl)cc(c1)c2cc(Cl)cc(Cl)c2 2.018 

470 [S-]C#N 1.309 

  471* Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.849 

472 CSC1=NN=C(C(=O)N1N)C(C)(C)C 1.729 

473 CC1(C)COCN1 1.402 

  474* CCCN(CC)CC1COC2(CCC(CC2)C(C)(C)C)O1 1.853 

475 CCOCN(C(=O)CCl)c1c(C)cccc1CC 1.810 

   476* CS(=O)(=O)c1cc(ccc1C(=O)c2cnoc2C3CC3)C(F)(F)F 1.926 

477 CC1(C)CNC(=NN=C(\C=C\c2ccc(cc2)C(F)(F)F)\C=C\c3ccc(cc3)C(F)(F)F)N

C1 

2.055 
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   478* COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2cc(NC=O)ccc2C(=O)N(C)C)n1 2.008 

479 CCOC(=O)C(SP(=S)(OC)OC)c1ccccc1 1.852 

480 Cc1cc(ccc1NC(=O)c2cccc(I)c2C(=O)NC(C)(C)CS(=O)(=O)C)C(F)(C(F)(F)F)

C(F)(F)F 

2.177 

  481* CCC(CC)Nc1c(cc(C)c(C)c1[N+](=O)[O-])[N+](=O)[O-] 1.782 

482 CCCCCCCCO 1.994 

  483* [O-][N+](=O)c1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.771 

484 CC(C)(C)C(O)C(Oc1ccc(Cl)cc1)n2cncn2 1.772 

485 CC1(CCCCC1)C(=O)Nc2ccc(O)c(Cl)c2Cl 1.781 

486 CC1C(OC(=O)C2C(C=C(C)C)C2(C)C)C=C(CC=CC=C)C1=O 1.817 

487 Cc1ccc2nc3SC(=O)Sc3nc2c1 1.670 

  488* CCC(C)(CC)c1cc(NC(=O)c2c(OC)cccc2OC)on1 1.822 

489 CCc1cnc(C2=NC(C)(C(C)C)C(=O)N2)c(c1)C(=O)O 1.762 

  490* CCCC(C)c1cccc(OC(=O)NC)c1 1.646 

491 CCCCNC(=O)OCC#CI 1.749 

492 CCCCOC(=O)c1ccccc1C(=O)OCCCC 1.745 

493 CCCCSP(=O)(SCCCC)SCCCC 1.798 

494 CCN1C(=CC(=O)C(=C1c2ccc(Cl)cc2)C(=O)[O-])C 1.764 

495 CCOC(=O)C1=NN(c2ccc(Cl)cc2Cl)C(C)(C1)C(=O)OCC 1.873 

496 ClC1=C(Cl)C(=O)c2ccccc2C1=O 1.657 

497 ClC1=C(Cl)C(=O)SS1 1.573 

498 CN1CCCC1=O 1.297 

  499* COc1cc(Cl)c(OC)cc1Cl 1.617 

  500* COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2CCC(F)(F)F)n1 1.923 

501 COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2OCCCl)n1 1.905 

502 COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl 1.864 

503 NC#N 0.924 

504 OC(=O)C1C2CCC(O2)C1C(=O)O 1.570 

  505* Oc1ccc(c(c1)C(F)(F)F)[N+](=O)[O-] 1.617 

506 CC(Oc1ccc(Cl)cc1C)C(O)=O 1.632 

507 ClNc1nc(NCl)nc(NCl)n1 1.661 

508 FC(C(F)(F)F)C(F)(F)Oc1cc(Cl)c(NC(=O)NC(=O)c2c(F)cccc2F)cc1Cl 2.0078

6164 

  509* CC(C)(C)c1ccc(CCOc2ncnc3ccccc23)cc1 1.784 

510 COC1CC(NC(NC(=O)NS(=O)(=O)c2c(Cl)nc3ccccn23)N1)OC 1.9131 

511 Clc1ccc(CN2CCSC2=NC#N)cn1 1.695 

  512* CC(C)Nc1nc(Cl)nc(NC(C)C)n1 1.650 

513 CC[C@H]1CCCC(O[C@H]2CC[C@@H]([C@@H](C)O2)N(C)C)[C@@H](

C)C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3[C@@H

]2CC(=O)O1)O[C@@H]1O[C@@H](C)[C@H](OC)[C@@H](OC)[C@H]1O

C 

2.152 

514 CCOC(=O)C1CC(=O)C(=C(O)C2CC2)C(=O)C1 1.685 

515 FC(F)C(F)(F)Oc1c(Cl)cc(NC(=O)NC(=O)c2c(F)cccc2F)cc1Cl 1.947 

516 CCCCN(CC)C(=O)SCCC 1.591 

  517* CC(F)c1nc(N)nc(N[C@@H]2[C@@H](C)Cc3ccc(C)cc23)n1 1.761 
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518 CC(C)N(C)S(=O)(=O)NC(=O)c1cc(N2C(=O)C=C(N(C)C2=O)C(F)(F)F)c(F)c

c1Cl 

1.977 

  519* COc1ccc(cc1OC)\C(=C\C(=O)N2CCOCC2)\c3ccc(Cl)cc3 1.864 

520 FC(C(F)(F)F)C(F)(F)Oc1c(Cl)cc(NC(=O)NC(=O)c2c(F)cccc2F)c(F)c1Cl 1.999 

521 OC(CN1NC=NC1=S)(Cc2ccccc2Cl)C3(Cl)CC3 1.791 

522 COCc1cnc(C2=NC(C)(C(C)C)C(=O)N2)c(c1)C(=O)O 1.738 

  523* CCN(CC)CCOCc1ccc(C)cc1 1.596 

  524* [O-]C(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.807 

  525* [O-]c1ccccc1c2ccccc2 1.478 

526 CC(=C[C@H]1[C@H](C(=O)O[C@@H]2CC(=O)C(=C2C)CC#C)C1(C)C)C 1.728 

527 CC(Oc1cccc(Cl)c1)C(=O)O 1.552 

528 CC1=NN(C(=O)N1C(F)F)c2cc(NS(=O)(=O)C)c(Cl)cc2Cl 1.838 

529 CCc1cccc(C)c1N([C@@H](C)COC)C(=O)CCl 1.703 

530 CCCC1COC(Cn2cncn2)(O1)c3ccc(Cl)cc3Cl 1.784 

531 CCCCCCC(C)OC(=O)COc1nc(F)c(Cl)c(N)c1Cl 1.815 

532 CCCCCCCCCC(=O)C 1.481 

  533* CCCCCCCCCC[N+](C)(C)CCCCCCCCCC 1.764 

  534* CCNC(=O)NC(=O)\C(=N\OC)\C#N 1.547 

535 CCOC(=O)C(O)(c1ccc(Cl)cc1)c2ccc(Cl)cc2 1.762 

536 CCOC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(Cl)cc(OC)n2 1.868 

537 Clc1cc(Cl)cc(c1)C2(CC(Cl)(Cl)Cl)CO2 1.755 

538 CN1C(=O)N(C(=O)C=C1C(F)(F)F)c2ccc(Cl)c(c2)C(=O)OC(C)(C)C(=O)OCC

=C 

1.926 

  539* COC(=O)c1sccc1S(=O)(=O)NC(=O)Nc2nc(C)nc(OC)n2 1.838 

540 COCC(=O)N(N1CCOC1=O)c2c(C)cccc2C 1.694 

541 NC(=O)C(Br)(Br)C#N 1.633 

542 NC(=O)N 1.028 

  543* Oc1ccc(cc1)C(=O)CBr 1.582 

  544* CC(C)=C[C@H]1[C@H](C(=O)O[C@@H]2CC(=O)C(CC=C)=C2C)C1(C)C 1.730 

545 CCCCCCCCC(O)=O 1.449 

546 CCN(Cc1cccc(c1)S([O-

])(=O)=O)c1ccc(cc1)C(=C1C=CC(C=C1)=[N+](CC)Cc1cccc(c1)S([O-

])(=O)=O)c1ccccc1S([O-])(=O)=O 

2.123 

547 CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C(O)[C@]2(O)C(=O)C(C(

N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O 

1.913 

548 CC1(OC(=O)N(C1=O)c2cc(Cl)cc(Cl)c2)C=C 1.706 

  549* Cn1cc(C(=O)Nc2ccccc2C3CC3C4CC4)c(n1)C(F)F 1.765 

550 COc1cccc(C(=O)NN(C(=O)c2cc(C)cc(C)c2)C(C)(C)C)c1C 1.797 

551 CCOC(=O)OC1=C(C(=O)N[C@@]12CC[C@@H](CC2)OC)c3cc(C)ccc3C 1.790 

  552* CCCC(C)C1(CC=C)C(=O)NC(=NC1=O)[O-] 1.495 

553 [S-]C(=NC#N)[S-] 1.065 

554 BrCC(=O)OCc1ccccc1 1.359 

555 CC(C)(C)C(=O)C(Oc1ccc(Cl)cc1)n2cncn2 1.468 

  556* CCCC\C=C\CCC=CCCCCCCOC(=O)C 1.447 

557 CCCCNC(=O)n1c(NC(=O)OC)nc2ccccc12 1.462 

558 Oc1nc(O)nc(O)n1 1.110 
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559 [O-][N+](=O)c1cc(c(Cl)c(c1Nc2ncc(cc2Cl)C(F)(F)F)[N+](=O)[O-])C(F)(F)F 1.642 

560 CC(C)N1C(=C2C=CC=CC2=NS1(=O)=O)[O-] 1.318 

561 CC1(C)[C@H](\C=C(/Cl)\C(F)(F)F)[C@@H]1C(=O)O[C@H](C#N)c2cccc(O

c3ccccc3)c2 

1.556 

562 CC(C)(C)[C@H](O)[C@H](Cc1ccc(Cl)cc1)n2cncn2 1.167 

563 CNC(=O)Oc1cc(C)c(C)cc1Cl 0.727 

564 OCC(CO)(CO)[N+](=O)[O-] 0.276 

*Test set compounds 

3.2.2 Descriptor calculation & data preprocessing 

Descriptors are the numerical representation in which we correlate the chemical structure with any 

physiochemical property/biological activity/ toxicity. In this study, a total of 9 classes of descriptors 

were calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/alvadesc/)  [104]. In each 

dataset, the defective and inter-correlated chemical descriptors were eliminated by V-WSP1.2 

(http://teqip.jdvu.ac.in/QSAR_Tools/) software with a standard deviation less than 0.0001 or 

correlation coefficient greater than 0.95. 

3.2.3 Dataset splitting 

Dataset division is crucial for QSTR model development. Normally, training set compounds are used 

to develop the model and test compounds for validation. The validation set is used to assess the model 

performance and fine-tune the parameters of the model. It tells us how well the model is learning and 

adapting, allowing for adjustments and optimizations to be made to the model's parameters and 

hyperparameters (the latter in the case of machine learning-based models) before it is finally tested. 

The test data set mirrors real-world data the model has never seen before, i.e.: a separate sample of 

unseen data. Its primary purpose is to offer a fair and final assessment of how the model would perform 

when it encounters new data in a live, operational environment. This is especially critical to evaluate 

models effectively along with preventing overfitting [105]. We performed dataset division of four 

datasets by using rational methods such as the Kennard stone, activity property-based, and Euclidean 

distance method using Dataset Division GUI 1.2 software as well as using random division method 

[106]. We also employed modified k-medoid clustering by using Modified k-Medoid 1.3 

(http://teqip.jdvu.ac.in/QSAR_Tools/) [107]. After that, the final selection of data-set division methods 

was done based on the statistical results. The best results come in the Kennard stone method for the 

MD and JQ data set, the activity property-based method for the BQ dataset, and the random division 

method for the RNP dataset. In this process of dataset division, the datasets are divided into 75:25 

ratios of training and test sets compounds [108]. 

 

https://www.alvascience.com/alvadesc/
http://teqip.jdvu.ac.in/QSAR_Tools/
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3.2.4 Selection of features and model building 

In the case of model building, feature selection is one of the important phases by which we can find 

significant descriptors to boost the interpretability and predictive ability of the model [109].  Primarily, 

we performed a step-wise regression method and genetic algorithm (GA) approaches for feature 

selection [110] and then we employed the regression-based partial least square (PLS) [111] method 

through Partial least squares v1.0 tool (http://teqip.jdvu.ac.in/QSAR_Tools/)  for model generation. 

3.2.5 Validation metrics of QSTR models 

A significant step in the formation of a QSTR model is statistical validation, which establishes it’s 

reliability and predictivity [54]. Various internal validation parameters were calculated which involve 

the determination coefficient (𝑅2), and leave-one-out (LOO) cross-validated correlation coefficient 

(𝑄𝐿𝑂𝑂
2 ) to judge the reliability and importance of the model. External validation parameters 

demonstrate the predictivity of QSTR models. The model’s external validation is determined using 

parameters such as 𝑄𝐹1
2 and 𝑄𝐹2

2  [112]. For both internal (𝑄   𝐿𝑂𝑂
2 ) and external predictive parameters 

(𝑄𝐹1
2 ,𝑄𝐹2

2 ), the approved threshold value is 0.5. 

 

Fig. 4. Workflow of QSTR model development. 

3.2.6. Prediction using read-across algorithm 

According to the fundamental tenet of read-across, substances with similar chemical structures will 

also have comparable attributes and it is not utilized in the model development process [113]. Read-

across prediction is a similarity-based non-testing technique that is widely used in eco-toxicological 

http://teqip.jdvu.ac.in/QSAR_Tools/
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data-gap filling. Initially, the training set of the best model was split into sub-training and sub-test sets. 

These sets were again used to optimize the hyperparameters through Read-Across-v3.1 

(http://teqip.jdvu.ac.in/QSAR_Tools/). After similarity-based sorting, similarity threshold values (0 to 

1), various distance threshold values (1 to 0), and the numbers of most similar training compounds (2 

to 10) were applied. The best setting of hyperparameters obtained from sub-training and sub-test was 

applied to the original training and test set for the final prediction [114]. 

3.2.7. Applicability domain study of the model 

The applicability domain (AD) of a QSAR model has been defined as the chemical structure and 

response space, considered by the properties of the molecules in the training set [54]. The AD 

expresses the fact that QSARs are undeniably associated with restrictions in the categories of 

physicochemical properties, chemical structures, and mechanisms of action for which the models can 

generate reliable predictions. In the current study, distance to the model in X-space (DModx) has been 

utilized for AD estimation of constructed PLS models which rely on residuals of response and 

predictive variables [115]. 

3.2.8 Y-randomization study 

Y-randomization study was carried out to check the chance correlation of the QSTR models with the 

help of SIMCA-P software [116]. In the Y-randomization test, the descriptor matrix X is kept constant 

but only the vector Y is scrambled randomly, and a new model is developed using the same set of 

descriptors. The original model is considered as robust if its validation metrics are better than the 

random models [117]. The values of the R2yrand intercept and Q2yrand intercept should not be more than 

0.3 and 0.05 respectively. 

3.2.9 Analysis of parametric assumptions of the developed models 

To ensure that our model is reliable we carried out some diagnostic tests to check for the existence of 

multi-collinearity, normal distribution, and homoscedasticity [118-119]. Multicollinearity is when the 

predictor variables within a regression model are highly correlated with each other, leading to 

inaccurate results in regression analysis. To identify multicollinearity, we used the variation inflation 

factor which is a widely used metric. If the VIF is higher than 5, multicollinearity is considered to be 

present [120]. In statistical regression models, exhibiting multicollinearity can lead to misleading 

results. For each modeled descriptor, we found that the VIF values were very close to 1. So, it can be 

concluded that all the independent variables are not collinear with the dependent variable. The function 

values follow a multidimensional normal distribution with a mean and covariance matrix that depends 

on the descriptor vectors. We have plotted the normal distribution curve for each (MD and RNP) avian 

http://teqip.jdvu.ac.in/QSAR_Tools/
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species and provided in Figs. 5-6. Homoscedasticity refers to the equal variance of an error in a 

regression model assessed using the Breusch-Pagan test in our study. A p-value of more than 0.05 

indicates the homoscedasticity of the model. In our study, the calculated p-values were not less than 

0.05 (0.093-0.209) for all the developed models. Therefore, we fail to reject the null hypothesis, and 

the model can be considered homoscedastic in nature. All the statistical results of Homoscedasticity 

and multicollinearity (VIF) for each model are provided in Tables 6-7. 

 

 
Fig. 5. Normal distribution curve of MD and RNP. 

Table 6. Variance Inflation Factor (VIF) results for each model. 

MD RNP 

Variables VIF Variables VIF 

MW 1.1 X2A 1.0 

C-012 1.1 nRCONHR 1.0 

B07[O-P] 1.2 nN(CO)2 1.0 

Br-094 1.0 B04[C-P] 1.2 

B05[C-P] 1.2 B05[P-Cl] 1.2 

F04[C-Cl] 1.1 F03[O-S] 1.0 

Table 7. Homoscedasticity test results for each model. 

Metrics MD RNP 

P-value 0.158 0.093 

Test statistics 9.29 7.96 
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3.2.10 Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have employed two different state–

of–the–art ML algorithms namely support vector machine (SVM) and Random forest (RF) using the 

orange data mining tool [120]. The hyperparameters were adjusted to tune the model for optimal 

performance. The prediction qualities of the ML models were evaluated in terms of R2, Q2 
Loo, and 

MAE values. 

3.2.11 Classification QSTR (LDA-QSTR) model development 

In the present work, we have developed a classification-based linear discriminant analysis (LDA) 

QSTR model from the selected set of features and evaluated its performance for its predictive ability. 

The model development is done using Classification-Based QSAR_v1.0.0 tools (available at 

http://teqip.jdvu.ac.in/QSAR_Tools/). The model was extensively validated based on different internal 

and external classification metrics (area under the ROC curve (AUC), accuracy, precision, sensitivity, 

F-measure, and Matthews correlation coefficient (MCC) [121-122]. 

3.2.12. Screening of the Pesticide Properties Database 

We have collected 1903 chemical data from the Pesticide Properties Database (PPDB) available at 

(http://sitem.herts.ac.uk/aeru/ppdb/). Knime curation was done to remove duplicates, inorganic salts, 

and mixtures using the KNIME workflow. Due to the knime curation, some compounds were removed. 

After the curation, the remaining 1694 compounds were used for the screening process to check the 

developed model’s reliability. The descriptors for these molecules were calculated using the same 

procedure as in the QSAR modeling process. The predictions were made through the use of individual 

QSTR models with the help of the PRI (Prediction Reliability Indicator) tool 

(http://teqip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the predictions into three distinct groups: 

good (composite score 3), moderate (composite score 2), and bad (composite score 1). Additionally, 

the tool determines the localization of compounds inside the AD. The screened compounds were 

ranked on the basis of their predicted toxicity and the twenty highest and least toxic compounds which 

exhibited toxicity towards all four avian species were analysed. The results were further validated 

extensively based on experimental data reported previously, to establish the real-world applicability 

of the developed QSTR model.  

3.3 Study 2 

3.3.1 Dataset preparation 

The pesticide toxicity data for California quail were extracted from the EPA ECOTOX database 

(https://ecotox.ipmcenters.org). The toxicity end-point values range from -0.99 to 2.50. The collected 

http://teqip.jdvu.ac.in/QSAR_Tools/
http://sitem.herts.ac.uk/aeru/ppdb/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://ecotox.ipmcenters.org/
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data were curated carefully to eliminate the inorganic salts and organ-metallic compounds from the 

initial dataset to maintain homogeneity [123]. We have used the remaining 35 compounds with the 

definite endpoint (LD50) for the model development. For ease of interpretation, the toxicity endpoint 

values (LD50) were transformed to a negative logarithmic scale (pLD50). The molecular structures of 

the compounds were drawn by Marvin sketch software with the addition of explicit hydrogen atoms 

and proper aromatization. 

Table 8. Compounds smiles name with respective experimental pLD50 values.  

Sl. No. Smiles pLD50 

1 COP(=O)(OC)OC(=CC(=O)N(C)C)C 2.098 

  2* CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl 0.710 

3 COP(=S)(OC)OC1=CC=C(C=C1)SC2=CC=C(C=C2)OP(=S)(OC)OC 1.392 

  4* ClC1=CC=C(C=C1)C(C1=CC=C(Cl)C=C1)C(Cl)(Cl)Cl -0.224 

5 CCC(=O)OC(C(Cl)(Cl)Cl)P(=O)(OC)OC 0.723 

6 CC1=C(C=CC(=C1)OP(=S)(OC)OC)SC 1.268 

  7* CCOP(=O)(OCC)SC1=CC=C(C=C1)[N+](=O)[O-] 1.236 

8 C1CN2CC3=CCOC4CC(=O)N5C6C4C3CC2C61C7=CC=CC=C75 0.475 

9 C1C2C(C(C1Cl)Cl)C3(C(=C(C2(C3(Cl)Cl)Cl)Cl)Cl)Cl 1.463 

 10* C(C(=O)[O-])F 1.221 

11 CNC(=O)OC1=CC=CC2=CC=CC=C21 -0.997 

12 C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl 2.505 

13 CCOC(=O)CC(C(=O)OCC)SP(=S)(OC)OC.COC1=CC=C(C=C1)C(C2

=CC=C(C=C2)OC)C(Cl)(Cl)Cl 

-0.471 

14 C1=CC(=CC=C1C(C2=CC=C(C=C2)Cl)C(Cl)Cl)Cl -0.375 

15 C1=CC(=C(C=C1O)C(F)(F)F)[N+](=O)[O-] -0.420 

16 CC(C)OC1=CC=CC=C1OC(=O)NC 0.907 

  17* CCOP(=S)(OCC)OC1=CC=C(C=C1)S(=O)C 2.413 

18 CNC(=O)O/N=C/C(C)(C)SC 1.610 

19 P(SCCS(CC)=O)(OC)(OC)=O 0.713 

20 CC1=CC(=CC(=C1N(C)C)C)OC(=O)NC 1.493 

21 CNC(=O)OC1=C2C=CSC2=CC=C1 -0.349 

22 CNC(=O)OC1=C2C=CSC2=CC=C1 -0.732 

  23* CCOP(=S)(C1=CC=CC=C1)OC2=CC=C(C=C2)[N+](=O)[O-] 0.949 

24 COP(=S)(OC)OC1=NC(=C(C=C1Cl)Cl)Cl -0.015 

25 CC1(C2C(C(C1(C(C2Cl)Cl)C(Cl)Cl)Cl)Cl)C(Cl)Cl 1.242 

  26* CCOP(=O)(OCC)SCCSCC 1.386 



Materials and methods Chapter 3 

Page 63 

 

 

27 CC(=CC1C(C1(C)C)C(=O)OCC2=COC(=C2)CC3=CC=CC=C3)C -0.771 

28 CC1=CC(=C(C(=C1)OC(=O)NC)C)C -0.003 

29 F[As-](F)(F)(F)(F)F -0.083 

30 COP(=S)(C1=CC=CC=C1)OC2=CC(=C(C=C2Cl)Br)Cl 1.149 

31 CCOP(=O)(NC(C)C)OC1=CC(=C(C=C1)SC)C 2.219 

  32* CC1(C(C1C(=O)OCC2=COC(=C2)CC3=CC=CC=C3)C=C4CCCC4)C 0.418 

33 CNC(=O)OC1=CC=CC=C1CCCSC 0.366 

34 CC(=NOC(=O)NC)SCCC#N 0.888 

*Test set compounds 

3.3.2 Calculation of descriptor & data pretreatment 

Molecular descriptors are the numerical representation of chemically comprised values that correlate 

molecular structure with physicochemical or biological properties [124]. In this current work, we have 

computed various 2D descriptors such as constitutional indices, ring descriptors, topological indices, 

connectivity index, functional group counts, atom-centered fragments, atom type E-states, 2D atom 

pairs molecular properties, and ETA indices using AlvaDesc software version 2.02 

(https://www.alvascience.com/alvadesc/) [104]. The unnecessary descriptors (descriptors with a fixed 

value, highly inter-correlated descriptors, low diverse descriptors, etc.) were removed by employing 

the data pretreatment tool V-WSP v1.2 (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab) [106] with 

inter-correlated coefficient |r| > 0.95 and variance < 0.0001. were eliminated using the data 

preprocessing technique. 

3.3.3 Splitting of dataset 

Dataset splitting into training and test sets ensures the predictivity of the model during model 

development. In our present study, the data-set splitting was performed using various dataset division 

methods, such as Kennard stone, Euclidean distance, activity property based [106] and modified k-

medoid clustering technique [107] by using “Dataset Division GUI” version 1.2 and “Modified k-

Medoid” version 1.3 software tool correspondingly (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). 

However, the best result was obtained from the Euclidean distance division. 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab
http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab
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Fig. 6. Schematic depiction of QSTR model generation. 

3.3.4 Feature selection & model generation 

Selection of appropriate descriptors constitutes a crucial step before model generation feature selection 

shrinks the original variable set to obtain a variable sub-set by removing redundant and irrelevant 

variables, which improves the model’s interpretability and predictivity [125]. In the present study, the 

variable selection was performed using stepwise regression (using Minitab 14 software) [126] and 

Genetic algorithm (GA) (employing Genetic algorithm 4.1 tools) [106]. The obtained reduced pool of 

descriptors was subjected to Best-Subset selection2.1 [127] to identify the most significant descriptors 

for model building. In the current work, the PLS regression approach was adopted to construct the 

final QSTR models. 

3.3.5 Statistical validation of the constructed model 

In this work, various statistical validation approaches are employed for measuring robustness and 

prediction accuracy to establish the significance and reliability of the constructed model using both 

internal and external validation metrics. For statistical quality assessment as well as internal validation, 
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we calculated metrics such as the determination coefficient (R2) and leave-one-out cross-validated 

correlation coefficient (Q2
(LOO)) [127]. Internal validation metrics are not enough to assess the 

performance of the developed model in terms of robustness and predictive ability; therefore, we also 

validated the predictions for test set compounds using various external validation parameters such as 

Q2
F1, Q2

F2 and CCC (Concordance Correlation Coefficient) to estimate the significance of the 

developed model. For a better understanding of the prediction quality, we also calculated mean 

absolute error (MAE) [128]. The approved threshold value for Q2
(LOO) and external validation 

parameters (Q2
F1, Q

2
F2) is 0.5 [128]. 

3.3.6 Intelligent Consensus Prediction (ICP) 

Different classes of descriptors were employed to develop a well-validated QSAR model, which 

represents various structural and molecular features. An individual QSAR model may either 

exaggerate some of the descriptors underrate a few descriptors or may completely disregard a few 

significant features [129]. Thus, consensus models should be generated utilizing individual models. In 

ICP, we evaluate the consensus model’s performance and correlate it with the individual MLR model-

derived prediction quality (95%) based on the MAE criteria. Therefore, in our present study, we 

execute consensus modeling of selected five PLS-based QSTR models(M1-M5) using the “Intelligent 

Consensus Predictor (ICP) PLS version 1.2” tool (available at http://dtclab.webs.com/software-tools)  

to investigate the prediction quality of test set compounds which may be improved by an “intelligent” 

selection. Four distinct methods of consensus prediction were employed as outlined below: 

Model 0 (CM0): This involves calculating the simple average of predictions obtained from each 

individual model. 

Model 1 (CM1): Here, predictions from all eligible individual models are averaged using arithmetic 

mean. 

Model 2 (CM2): Predictions from qualified individual models are averaged with weights assigned to 

each, creating a weighted average. 

Model 3 (CM3): The selection of the best prediction for each compound is determined compound-

wise from all eligible individual models. 

Consensus predictions are precise enough and depend on numerous models rather than a single model 

[130]. Here prediction was performed by considering the Dixon Q-test, AD criteria, and Euclidean 

distance [130]. 

http://dtclab.webs.com/software-tools
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Fig. 7. Workflow of Intelligent Consensus Prediction. 

3.3.7 Applicability domain (AD) study of the developed models 

The applicability domain (AD) of a QSAR is the physicochemical, structural, or biological space, 

enclosed by model descriptors and response on which basis the training set of the model has been 

developed, and which may be useful for the prediction of novel compounds. Whether the assumptions 

of the model are satisfied or not is determined by AD. Usually, in this regard, interpolation occurs 

rather than extrapolation [131]. AD of the developed models was assessed using the DmodX approach 

using SIMCA-P10.0 software. The basic idea of the DModx approach is based on the residuals of the 

Y matrix (response variable) and residual of the X matrix (predictor variables) which are of diagnostic 

value for the quality of the model. The residual standard deviation of the X-residuals of the 

corresponding row of the residual matrix E offers a summary for each observation as there are large 

numbers of X-residuals. The standard deviation (SD) is proportional to the distance between the data 

point and the model plane in X-space, usually called DModX (distance to model in X-space). Here, E 

is the (N×K) matrix of X-residual, N is the number of observations, and ‘k’ is the index of X-variables 

(K=1, 2, 3, 4…, K). If the DModX value is larger than around 2.5 times the overall SD of X-residuals, 
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then the observation is considered to be outside the AD [111]. 

3.3.8 Y-randomization study 

Y-randomization study has been performed to analyze and confirm whether the developed models are 

produced by any chance [132]. Here, Y-randomization plots are generated for final PLS-based models 

through the SIMCA-P software [116]. In randomization, the dependent variables were scrambled 

randomly while keeping the descriptor matrix constant, and by using the same set of variables from 

the original set, new models were built. The validation metrics obtained from the randomized model 

should be poorer than the original model otherwise that model should be considered to be developed 

by any chance [133]. 

3.3.9 Application of the constructed model on a prepared external dataset for data gap bridging 

The capacity of a generated model is defined by its ability to determine the response value of unknown 

compounds. The developed models were employed to screen the pesticide property database (PPDB) 

[134] for potential toxicants in California quail by using the prediction reliability indicator (PRI) tool 

[135]. The PRI tool includes AD estimation and enables the categorization of the prediction quality of 

an external set [136]. 

3.4 Study 3 

3.4.1. Collection, curation, and preparation of toxicity dataset 

The toxicity data against wild birds with LD50 endpoint was collected from the TOXRIC database 

[137] (available from https://toxric.bioinforai.tech/)  and used for toxicity modeling. Before model 

generation, we prepare the dataset and curate the data to eliminate duplicate compounds, salts, and 

impurities. The endpoint values (LD50) were converted to a negative logarithmic scale to modify the 

wide range of LD50 into a narrow range and for easy interpretation. Marvin sketch 5.11.5 software 

(available from https://chemaxon.com/) was executed for drawing structures followed by their 

structure optimization by adding explicit hydrogen and transforming to aromatic form. 

Table 9. Compounds smiles name with respective experimental pLD50 values. 

Sl. No. Canonical SMILES pLD50 

  1* S=P(N1CC1)(N1CC1)N1CC1 4.527 

2 ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl 3.715 

3 O=C(O)C=Cc1ccccc1 3.170 

4 CCC1C2CC3C4N(C)c5ccccc5C45CC(C2C5O)N3C1O 3.263 

5 O=C1c2ccccc2C(=O)c2c1ccc(O)c2O 2.880 

6 CC=Cc1cc(OC)c(OC)cc1OC 2.443 

7 CNC(C)C(O)c1ccccc1 2.468 

8 Oc1cccc(O)c1O 3.225 

9 O=[N+]([O-])c1cccc([N+](=O)[O-])c1 3.602 

https://toxric.bioinforai.tech/
https://chemaxon.com/
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10 O=[N+]([O-])c1ccc(O)c([N+](=O)[O-])c1 4.151 

11 ClC1=C(Cl)C2(Cl)C3C4C=CC(C4)C3C1(Cl)C2(Cl)Cl 4.704 

12 Nc1ncn(C2OC(CO)C(O)C2O)c(=O)n1 3.387 

13 C#CC(O)(C=CCl)CC 3.536 

14 NC(Cc1ccc(O)c(O)c1)C(=O)O 3.294 

  15* CNC(=O)ON=C(C)SC 4.210 

16 COc1ccc2c(c1)N(CC(C)CN(C)C)c1ccccc1S2 3.516 

17 Nc1ccc(O)cc1 3.288 

18 N#Cc1ccc2c(c1)N(CCCN1CCC(O)CC1)c1ccccc1S2 3.562 

19 COC(=O)C1C2CC3c4[nH]c5cc(OC)ccc5c4CCN3CC2CC(OC(=O)c2cc(OC)c(O

C)c(OC)c2)C1OC 

3.784 

20 COP(=S)(OC)Oc1cc(Cl)c(Cl)cc1Cl 3.604 

  21* Sc1ccccc1 3.661 

22 Nc1ccncc1N 3.162 

23 CCOC(=O)c1ccc(N)cc1 3.469 

24 CS(=O)(=O)OCCCCOS(C)(=O)=O 3.641 

25 Nc1ccncc1 4.599 

26 CCCCOc1cc(C(=O)NCCN(CC)CC)c2ccccc2n1 3.912 

27 O=[N+]([O-])c1cc(Cl)cc(-c2cc(Cl)cc([N+](=O)[O-])c2O)c1O 4.424 

28 OCCN1CCN(CCCN2c3ccccc3Sc3ccc(Cl)cc32)CC1 4.101 

29 CN(C)C(=S)SSC(=S)N(C)C 2.904 

30 CC=Cc1ccc(OC)cc1 2.671 

31 COC12C(COC(N)=O)C3=C(C(=O)C(C)=C(N)C3=O)N1CC1NC12 4.649 

32 CN1CCCC1c1cccnc1 3.959 

33 CNC(=O)Oc1cccc2ccccc12 3.555 

34 O=C(O)O 2.792 

35 COP(=O)(OC)C(O)C(Cl)(Cl)Cl 3.842 

36 COc1cc2c(c(OC)c1OC)-c1ccc(OC)c(=O)cc1C(NC(C)=O)CC2 4.101 

37 CCN(CC)C(=O)C1C=C2c3cccc4[nH]cc(c34)CC2N(C)C1 5.254 

  38* C1CN1c1nc(N2CC2)nc(N2CC2)n1 4.852 

  39* C(#CCN1CCCC1)CN1CCCC1 3.284 

40 C1CN1P1(N2CC2)=NP(N2CC2)(N2CC2)=NP(N2CC2)(N2CC2)=N1 3.197 

41 CCOP(=S)(OCC)Oc1cc(C)c(SC)c(C)c1 4.882 

42 COP(=S)(OC)Oc1ccc(S(=O)(=O)N(C)C)cc1 5.257 

43 COP(=S)(OC)Oc1cc(C)c(SC)c(C)c1 4.465 

  44* COP(=S)(OC)Oc1ccc(SC)c(C)c1 5.330 

45 CCOP(=S)(OCC)Oc1ccc([N+](=O)[O-])cc1 5.340 

46 CCOP(=S)(OCC)Oc1ccc2c(C)c(Cl)c(=O)oc2c1 5.309 

47 CNC(=O)CSP(=S)(OC)OC 4.540 

  48* COP(=O)(OC)OC=C(Cl)Cl 4.265 

49 O=C(O)CF 4.517 

50 CNC(=O)Oc1cccc(C(C)C)c1 4.781 

  51* COS(C)(=O)=O 3.292 

52 O=C1CC2OCC=C3CN4CCC56c7ccccc7N1C5C2C3CC46 4.320 

53 Cc1ccc(S(N)(=O)=O)cc1 3.358 

54 CCC(=O)c1ccc(N)cc1 3.049 
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55 CCCCO 1.472 

56 CCc1ccc(C(c2ccc(CC)cc2)C(Cl)Cl)cc1 1.533 

57 CCC1(C(C)C)C(=O)NC(=O)NC1=O 3.917 

58 NNC(N)=S 4.000 

59 CC(C)(O)C(C)(O)c1ccc(Cl)cc1 3.826 

  60* C[n+]1c2cc(N)ccc2cc2ccc(N)cc21 3.601 

61 COP(=S)(OC)SCn1nnc2ccccc2c1=O 4.572 

  62* COc1cc(C=O)cc(OC)c1OC 2.667 

  63* Cc1cc(OC(=O)N(C)C)n(-c2ccccc2)n1 3.798 

64 Cc1c(N)cccc1Cl 2.776 

65 NC(=O)c1ccccc1N 2.134 

66 Nc1ccccc1[N+](=O)[O-] 2.265 

  67* CCC(C)c1cc([N+](=O)[O-])cc([N+](=O)[O-])c1O 4.529 

  68* O=[N+]([O-])c1cc(Cl)c(Cl)cc1Cl 3.355 

69 COc1ccccc1N 2.465 

70 COc1cc(C=CC(=O)O)cc(OC)c1OC 2.751 

  71* CN(C)c1ccc(C(=O)c2ccc(N(C)C)cc2)cc1 3.428 

72 Cc1c(N=C=O)cccc1N=C=O 3.240 

73 O=C(O)c1ccc2ccccc2n1 3.238 

  74* Cc1ccccc1F 3.041 

75 Nc1ccccc1N 2.910 

76 Cc1ccc(N)cc1C 4.335 

77 Cc1cc(Cl)ccc1N 3.276 

78 Nc1ccc(Cl)c(Cl)c1 2.834 

  79* OCC(O)CCl 3.668 

80 O=C(O)c1ccc(Cl)c([N+](=O)[O-])c1 3.429 

81 CCOP(=S)(OCC)Oc1ccc(Cl)cc1Cl 4.352 

  82* O=S(=O)(O)c1ccccc1 3.324 

83 O=C(O)c1ccccn1 2.839 

84 Nc1cccc(C(=O)O)c1 2.262 

85 CC(=O)c1ccc(N)cc1 3.007 

86 Nc1ccc([N+](=O)[O-])cc1 3.265 

87 CN(C)c1ccc(N(C)C)cc1 3.840 

88 C=Cc1ccncc1 3.021 

89 COc1ccc(OC)c(N)c1 3.185 

90 Nc1ccc(Cl)cc1 3.105 

91 Cc1ccc(N)cc1 3.406 

  92* CCOP(=O)(OCC)OP(=O)(OCC)OCC 5.348 

93 CCOP(=O)(OCC)Oc1cc(C)[nH]n1 3.767 

94 Cc1cccc(N)c1 2.646 

  95* Nc1cccc(N)c1 2.260 

96 Cc1ccncc1 2.343 

97 Cc1cccnc1 1.969 

98 Oc1cccnc1 2.103 

99 Clc1ccccn1 2.055 

100 OCC#CCO 3.059 
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101 CCN(CC)C(=O)C1CN2CCc3cc(OC)c(OC)cc3C2CC1OC(C)=O 3.606 

102 CNC(=O)Oc1ccccc1OC(C)C 4.740 

103 O=S1OCC2C(CO1)C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl 4.065 

104 CCOP(=S)(OCC)Oc1ccc(S(C)=O)cc1 6.108 

  105* CNC(=O)ON=CC(C)(C)SC 5.404 

106 Nc1ccccc1C(=O)O 2.262 

  107* COc1cc(OC)c([N+](=O)[O-])cc1Cl 3.337 

108 Cc1ccc(N)cc1[N+](=O)[O-] 4.677 

109 Cc1cc(OC(=O)N(C)C)n(C(C)C)n1 4.390 

  110* CNC(=S)C(=S)NC 4.295 

  111* COC(=O)C=C(CC(=O)OC)OP(=O)(OC)OC 5.472 

  112* COP(=S)(OC)Oc1ccc([N+](=O)[O-])c(C)c1 4.401 

113 O=C1C=CC(=O)c2ccccc21 3.075 

  114* CN(C)c1ccc(N=NS(=O)(=O)O)cc1 4.105 

115 COP(=O)(OC)OC(C)=CC(=O)N(C)C 5.375 

116 N#C[Na] 4.088 

117 CN(C)P(=O)(OP(=O)(N(C)C)N(C)C)N(C)C 4.415 

  118* c1ncncn1 2.908 

119 ClC1=C(Cl)C2(Cl)C3C(Cl)OC(Cl)C3C1(Cl)C2(Cl)Cl 5.614 

120 CCOP(=S)(OCC)Oc1cnccn1 5.011 

  121* COP(=S)(OC)Oc1ccc([N+](=O)[O-])cc1 4.721 

122 CCOP(=S)(OCC)SCSCC 5.415 

123 CCOP(=S)(OCC)SCCSCC 5.058 

  124* CNP(=O)(OC)Oc1ccc(C(C)(C)C)cc1Cl 3.465 

125 CCS(=O)CCSP(=O)(OC)OC 3.768 

126 CN(C)CCCN(C)C1CCC2C3CC=C4CC(O)CCC4(C)C3CCC21C 2.964 

127 CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 5.346 

  128* CCC1CN2CCc3cc(OC)c(OC)cc3C2CC1CC1NCCc2cc(OC)c(OC)cc21 3.932 

129 CCOP(=S)(CC)Oc1cc(Cl)c(Cl)cc1Cl 5.319 

  130* CNC(=O)Oc1cc(C(C)C)cc(C(C)C)c1 4.371 

131 CCOP(=S)(N=C1SCCS1)OCC 5.178 

132 CCOP(=S)(OCC)Oc1cc(C)nc(C(C)C)n1 5.182 

133 CC(=O)c1cccnc1 2.832 

134 Nc1ccc(F)cc1 3.045 

135 Nc1cccc(F)c1 3.297 

136 Cc1ccc(N)cc1F 4.983 

  137* Cc1ccc(N)c(F)c1 3.097 

138 Nc1cccnc1 3.849 

139 CCOP(=O)(OCC)OC(=CCl)c1ccc(Cl)cc1Cl 4.441 

140 O=C1CC(c2ccccc2)Oc2ccccc21 3.475 

141 COP(=S)(OC)Oc1ccc([N+](=O)[O-])c(Cl)c1 4.172 

  142* Nc1ccccn1 3.474 

143 O=C1C=Cc2ccccc2C1=O 3.324 

  144* COc1cccc(N)c1 2.340 

  145* Nc1ccc(I)cc1 3.340 

  146* ClCCN(CCCl)CCCl 3.811 
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147 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 3.931 

148 CCc1ccccc1N 2.208 

  149* Cc1ccc(N=C=O)cc1N=C=O 3.240 

150 OCc1ccncc1 2.412 

151 OCc1ccccn1 2.162 

152 CCc1cccc(N)c1 2.583 

153 CCc1ccc(N)cc1 3.208 

  154* Nc1cccc(O)c1 2.663 

155 Cc1ccc(Cl)c(O)c1 2.404 

  156* Nc1ccc(N)cc1 3.034 

157 Clc1cccnc1 2.180 

  158* Nc1ccc(Cl)c([N+](=O)[O-])c1 3.236 

159 Cn1cc(NC(=O)c2cc(NC(=O)c3cc(NC=O)cn3C)cn2C)cc1C(=O)NCCC(=N)N 3.825 

160 CCCC1CCCCN1 3.354 

  161* NC(=O)CF 4.137 

162 Cc1cc(OC(=O)N(C)C)nn1C(=O)N(C)C 4.426 

  163* CNC(=O)Oc1cc(C)c(Cl)c(C)c1Cl 3.394 

164 CNC(=O)Oc1cc(C)c(C)cc1Cl 5.079 

  165* CCc1cc(OC(=O)NC)c(Cl)c(C)c1Cl 4.304 

  166* CNC(=O)Oc1cc(C)c(Cl)c(C)c1 3.329 

167 CCC(C)c1cccc(OC(=O)NC)c1 4.653 

168 O[n+]1ccccc1 1.982 

169 COP(=S)(OC)SCN1C(=O)c2ccccc2C1=O 4.246 

170 CCCN(CCC)C(=O)SCC 3.277 

171 CCOP(=S)(OCC)SCSc1ccc(Cl)cc1 4.786 

  172* CCN(CC)CCCl 3.509 

173 N#Cc1ccc(N)cc1 3.697 

  174* CC(=O)O[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 3.592 

175 CC(C)OS(C)(=O)=O 2.682 

  176* CCOP(=S)(CC)Sc1ccccc1 4.391 

  177* CCOP(=O)(N=C1SCCS1)OCC 5.032 

178 COP(=S)(OC)SCSc1ccc(Cl)cc1 4.242 

  179* c1ccc(C2(N3CCCCC3)CCCCC2)cc1 4.638 

180 Cc1cc[n+](O)cc1 2.042 

  181* CC(=O)NN 3.244 

  182* CNC(=O)Oc1cccc2sccc12 4.066 

  183* On1ccccc1=S 3.104 

  184* CC(=O)c1ccccn1 2.083 

185 O=[N+]([O-])c1cc[n+]([O-])cc1 4.243 

186 CNC(=O)Oc1cccc(C)c1 3.218 

187 Nc1ccc(C(=O)c2ccccc2)cc1 2.545 

188 COP(=S)(OC)Oc1ccc(S(=O)(=O)c2ccc(OP(=S)(OC)OC)cc2)cc1 4.074 

  189* COC(=O)C1C2CC3c4[nH]c5cc(OC)ccc5c4CCN3CC2CC(OC)C1OC 3.632 

190 CNC(=O)Oc1cccc2c1OC(C)(C)C2 5.721 

191 CCCC(=O)c1ccc(N)cc1 3.587 

  192* N#Cc1cc(I)c(O)c(I)c1 3.859 
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  193* N#Cc1cc(Br)c(O)c(Br)c1 3.743 

  194* CCCCCCCC(=O)Oc1c(Br)cc(C#N)cc1Br 3.362 

  195* CNP(=O)(NC)Oc1ccccc1 4.187 

196 CCOP(=S)(OCC)OC(=CCl)c1cc(Cl)ccc1Cl 3.699 

197 CSc1cccc(N)c1 2.268 

  198* CC(=O)Nc1ccc(N=NN(C)C)cc1 3.566 

199 CNC(=O)Oc1ccccc1 3.179 

200 Cc1cnccc1N 4.653 

201 CNC(=O)Oc1ccc(N(C)C)c(C)c1 3.619 

  202* CNC(=O)Oc1cc(C)c(SC)c(C)c1 4.972 

203 CCOP(=S)(Oc1ccc([N+](=O)[O-])cc1)c1ccccc1 5.134 

  204* CNC(=O)Oc1cc(C)c(S(C)(=O)=O)c(C)c1 5.155 

205 CCNP(=O)(OC)Oc1cc(Cl)c(Cl)cc1Cl 3.754 

206 N#Cc1cccc(N)c1 2.322 

207 CNC(=O)C(C)SCCSP(=O)(OC)OC 3.914 

208 CNC(=O)Oc1ccc(Cl)c(C)c1 3.300 

209 CC1OCC2C(CO1)C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl 3.888 

210 CNC(=O)Oc1ccc(Cl)cc1 3.268 

211 CNC(=O)Oc1cc(C)cc(C(C)C)c1 4.617 

212 CNC(=O)Oc1ccccc1C(C)C 3.536 

  213* CNC(=O)Oc1cc(C)c(S(C)=O)c(C)c1 3.759 

  214* COP(=S)(OC)Oc1ccc(C#N)cc1 4.908 

215 CNC(=O)Oc1cc(C)cc(C)c1 3.378 

216 CCOP(=S)(OCC)ON1C(=O)c2cccc3cccc(c23)C1=O 4.312 

217 COc1cc(Cl)c(OC)cc1Cl 1.617 

218 CNC(=O)Oc1cc(C)c(C)c(C)c1 4.286 

219 CCNP(=O)(OCC)Oc1cc(Cl)c(Cl)cc1Cl 4.141 

  220* CCC(C)c1ccc(Cl)c(OC(=O)NC)c1 5.003 

221 CCOP(=S)(OCC)Oc1nc(Cl)c(Cl)cc1Cl 4.845 

  222* CCP(=S)(OC)Sc1ccc(C)cc1 4.643 

  223* S=P(NC1CCCCC1)(N1CC1)N1CC1 4.389 

  224* COP(=S)(OC)Oc1ccc(SC)cc1 5.723 

225 COP(=S)(OC)Oc1ccc(SSc2ccc(OP(=S)(OC)OC)cc2)cc1 5.521 

226 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)cc2)cc1 4.163 

227 Nc1cc[n+]([O-])cc1 3.112 

228 NC(=O)c1cccc(N)c1 2.134 

  229* CNC(=O)Oc1ccc(SC)c(C)c1 3.722 

230 CCCCNCC1COc2cccc(OCC)c2O1 3.423 

  231* CN(C)P(=S)(N1CC1)N1CC1 4.157 

232 CCCCCCCC(=O)Oc1c(I)cc(C#N)cc1I 2.696 

  233* CNC(=O)Oc1ccc(C)c(C)c1C 3.662 

234 COP(=O)(OC)Oc1cc(Cl)c(Cl)cc1Cl 4.229 

235 CC(N)=NP(=S)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 4.951 

  236* CCOC(=O)NN 3.642 

237 COc1cc(OC)c(OC)cc1C=O 2.667 

  238* CC(N)Cc1ccc(Cl)c(Cl)c1 3.434 
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239 CCOP(=S)(OCC)Oc1cc(Cl)c(Br)cc1Cl 4.283 

240 CC(=O)Nc1ccncc1 4.020 

241 CC1=C(C(=O)Nc2ccccc2)SCCO1 3.746 

242 CN(C)C1CC(c2ccccc2)c2ccccc21 3.500 

243 COP(=S)(OC)Oc1nc(Cl)c(Cl)cc1Cl 4.394 

  244* CC(C)OC(=O)C(O)(c1ccc(Cl)cc1)c1ccc(Cl)cc1 2.132 

  245* COc1cc(Cl)c(OC)cc1N 3.273 

  246* C=CCN(CC=C)c1c(C)cc(OC(=O)NC)cc1C 4.324 

247 CCOP(=S)(OCC)SC1CCC2C=CCC1S2 3.636 

248 CNC(=O)C=C(C)OP(=O)(OC)OC 5.445 

  249* CNC(=O)Oc1ccccc1C1OCCO1 4.238 

250 CC(=O)Nc1ccc(C)c(Cl)c1 5.150 

251 CCNP(=S)(OC)Oc1ccc(C(C)(C)C)cc1Cl 2.729 

  252* COC(=O)C=C(C)OP(=O)(OC)OC 5.204 

  253* CC(C)=CC1C(C(=O)OCc2coc(Cc3ccccc3)c2)C1(C)C 3.654 

  254* OCC(CO)(CCl)CCl 4.857 

  255* CCN(CC)C(=O)C(Cl)=C(C)OP(=O)(OC)OC 5.223 

  256* CCCSP(=O)(OCC)SCCC 4.760 

257 Clc1ccc(C2NCCNCc3ccccc32)cc1 3.435 

258 CNC(=O)Oc1ccc(SC)c(C(C)C)c1 5.123 

259 O[N+]1=NC2CC1C1C2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl 4.186 

260 CCOP(=S)(OCC)ON=C(C#N)c1ccccc1 4.724 

261 CC1CCC2(O)C3(C)CC4(O)OC2(C1O)C1(O)C3(O)C(OC(=O)c2ccc[nH]2)C(O)

(C(C)C)C41C 

5.443 

262 OCC(O)C1OC2OC(C(Cl)(Cl)Cl)OC2C1O 4.536 

  263* CCC(C)(C)c1ccc(Cl)c(OC(=O)NC)c1 4.453 

  264* Nc1nc(-c2ccccc2)ns1 3.498 

265 CCNC(=O)Oc1ccc([N+](=O)[O-])cc1 3.447 

  266* CCCCNC(=O)n1c(NC(=O)OC)nc2ccccc21 3.462 

267 COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl 3.563 

  268* Cc1nc(N(C)C)nc(OC(=O)N(C)C)c1C 3.900 

269 CCOP(=S)(OCC)Oc1cc(C)nc(N(CC)CC)n1 5.045 

270 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)c(C)c2)cc1C 4.995 

271 CNC(=O)ON=C(C)SCCC#N 4.678 

   272* COP(=O)(NC(C)=O)SC 3.116 

273 CCC(C(=O)N1CCCC1C)(c1ccccc1)c1ccccc1 3.612 

274 CCP(N)(=S)Oc1ccc(SC)c(C)c1 4.912 

275 Cc1ccc(N)cc1I 4.987 

276 O=S(=O)(F)C1CCC(S(=O)(=O)F)C1 5.255 

  277* COC(=O)c1cncn1C(C)c1ccccc1 3.857 

278 CCOP(=O)(NC(C)CC)Oc1cc(Cl)c(Cl)cc1Cl 3.681 

279 CCNP(=O)(O)Oc1cc(Cl)c(Cl)cc1Cl 4.735 

280 CC(C)NP(=O)(S)Oc1cc(Cl)c(Cl)cc1Cl 4.679 

281 CNP(=O)(S)OC(C)C 3.228 

  282* O=P(O)(O)OC(=CCl)c1ccc(Cl)cc1Cl 4.976 

283 CCOP(=O)(OCC)OC(=CSCC)c1ccc(Cl)cc1 4.545 
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284 CCOP(=O)(OCC)SC(C#N)=NOc1ccccc1 4.992 

  285* CCNP(=O)(O)Oc1ccc(Cl)cc1Cl 4.556 

286 FC(F)(F)N=C1SC(=Nc2ccccc2)N(c2ccccc2)C1=NC(F)(F)F 2.619 

287 CCN(CC)Cc1cc(Cl)cc(Cl)c1OP(O)(=S)CC 4.928 

288 CCCCSC(=Nc1cccnc1)SCc1ccc(C(C)(C)C)cc1 1.571 

289 CCCCN(CCCC)SN(C)C(=O)Oc1cccc2c1OC(C)(C)C2 4.165 

290 CCCCCCCCSC(=O)Oc1cc(Cl)nnc1-c1ccccc1 1.578 

291 OC(c1ccc(Cl)cc1)(c1cncnc1)c1ccccc1Cl 3.219 

  292* CN(c1c(Br)cc(Br)cc1Br)c1c([N+](=O)[O-])cc([N+](=O)[O-])cc1C(F)(F)F 5.099 

293 COP(=O)(OC)ON1C(=O)c2cccc3cccc(c23)C1=O 5.126 

294 CCCN(CCOc1c(Cl)cc(Cl)cc1Cl)C(=O)n1ccnc1 2.805 

295 O=C1OCCC1N(C(=O)C1CC1)c1cccc(Cl)c1 2.145 

296 CC(C)(C)C(O)C(Cc1ccc(Cl)cc1Cl)n1cncn1 1.540 

297 O=C1C(N(CO)C(=O)NCO)N(CO)C(=O)N1CO 2.092 

298 COC(=O)c1c(Cl)nn(C)c1S(=O)(=O)NC(=O)Nc1nc(OC)cc(OC)n1 2.286 

299 Nc1ccc(S)cc1 3.472 

300 OCC(Br)(Br)Br 2.951 

301 CCCCCCC1C(=O)OC(C)C(NC(=O)c2cccc(NC=O)c2O)C(=O)OC(C)C1OC(=O

)CC(C)C 

5.040 

  302* COC1=CC(=O)c2ccccc2C1=O 2.774 

303 CNC(=O)Oc1ccc(C)c(C)c1 3.901 

304 COP(=S)(OC)Oc1ccc([N+](=O)[O-])cc1Cl 4.297 

305 COP(=O)(OC)Oc1ccc(SC)cc1 5.646 

306 C#CCOc1ccccc1OC(=O)NC 3.659 

307 c1ccc(-c2nc(-c3ccccn3)nc(-c3ccccn3)n2)nc1 4.744 

308 CCOP(=S)(OCC)OP(=S)(OCC)OCC 3.508 

309 C#CCOc1cccc(OC(=O)NC)c1 4.136 

  310* NCc1ccccn1 2.284 

  311* S=c1cc[nH]cc1 2.170 

312 CCOP(=S)(OCC)Oc1nn2c(C)cc(C)nc2c1Br 5.215 

  313* COP(=O)(OC)OC(C)=CC(=O)OC(C)c1ccccc1 3.747 

314 Cc1ccc(N)cc1Cl 4.770 

315 Cc1ccc(N)cc1Br 4.990 

  316* CCCOC(=O)NCCCN(C)C 1.790 

317 CCOP(=S)(OCC)Oc1nn2c(C)cc(C)nc2c1Cl 5.038 

  318* CCOP(=O)(O)Sc1ccc(C)cc1 5.161 

319 OCc1ccccc1 3.034 

  320* Nc1ccccc1 2.219 

*Test set compounds 

3.4.2. Computation of molecular descriptors and data pretreatment 

The physicochemical and structural descriptors were estimated using Alvadesc software [104]. 3D-

based descriptors were omitted and only considered a pool of 2D descriptors which involved atom-

based  E-state indices, constitutional indices, ring descriptors, 2D atom pairs, molecular properties, 

connectivity index, functional group numbers, atom-centered fragments, and ETA indices. The 
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identical and non-redundant descriptors were excluded by performing data pre-treatment using the 

Data pretreatment GUI 1.2 tool (http://teqip.jdvu.ac.in/QSAR_Tools/ DTCLab) with a standard 

deviation less than 0.001 and a coefficient of correlation value greater than 0.95. 

3.4.3. Dataset splitting 

The dataset was divided into the training and test sets with the ratio 70:30 by “Dataset Division GUI” 

version 1.2 (available from http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab). The dataset splitting was 

carried out by implementing various methods of dataset division such as Kennard stone, activity-

property, Euclidean distance based, and modified k-Medoid clustering techniques but the best statistics 

were obtained by using the Euclidean distance-based method.  

3.4.4. Feature selection and QSAR model generation  

Feature selection is a significant process whose objective is to reduce the redundant, noisy, and 

irrelevant descriptors towards the model generation without loss of important feature information 

[138]. In the present study, suitable features are selected from the initial pool of descriptors by genetic 

algorithm using a java-based tool Genetic algorithm_v4.1 (available from 

https://teqip.jdvu.ac.in/QSAR_Tools/) [106]. The optimal combination of features was selected by 

employing the best subset selection method [106] available from 

(http://teqip.jdvu.ac.in/QSAR_Tools/). Afterward, the selected descriptors were subjected to develop 

an initial partial least square model (PLS)[22] by the PLS_SingleY_version_1.0 tool (available from 

https://teqip.jdvu.ac.in/QSAR_Tools/) to diminish the intercorrelated descriptors with the optimum 

number of latent variables. 

3.4.5. Read-across and RASAR descriptor calculation  

Read-across is a data gap-filling method based on structural similarity between a target and source 

compounds in which the toxicity/activity/property of novel compounds are estimated from their 

structural analouges. The read-across prediction was performed by utilizing 3 similarity-based 

techniques such as Gaussian kernel (GK) based similarity, Euclidean distance (ED) based similarity 

and Laplacian Kernel (LK) based similarity methods with hyperparameter optimization which includes 

Sigma(σ): Gaussian kernel similarity assessment, gamma(γ): Laplacian kernel similarity assessment 

and number of closed source compound numbers essential for quality prediction [139]. In this current 

study, we have used various sigma values (0.25-2 with an interval of 0.25), various gamma values 

(0.25-2 with an interval of 0.25), and the number of close source compounds within the range of 2-10 

for hyperparameters optimization. Before optimization, the initial training set is split randomly into 

sub-train and sub-test sets with the proportion of 3:1. The sub-train and sub-test were deployed to a 

https://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://teqip.jdvu.ac.in/QSAR_Tools/


Materials and methods Chapter 3 

Page 76 

 

 

java-based tool Read-Across-v4.1 (available from https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home) with different suggested values of σ and γ. On the other hand, other parameters 

such as the number of close source compounds, the distance threshold, and the threshold of similarity 

remained constant. The optimized setup has been chosen based on Q2
F1, Q2

F2, MAE, and RMSE. 

Finally, the optimized set-up was applied to the original training and test sets for final prediction. 

The RASAR technique integrates the concept of Read-Across and QSAR [140]. Here, the RASAR 

descriptor calculation was associated with Read-across prediction followed by hyperparameter 

optimization.  This technique computes novel descriptors like RA function, SD Activity, SE, CVact, 

CVsim, MaxPos, MaxNeg, Abs Maxpos-MaxNeg, AvgSim, SD Similarity, gm (Banerjee-Roy 

Coefficient), gm*Avg.Sim, gm*SD Similarity, Pos.Avg.Sim, and Neg.Avg.Sim. by using similarity 

and error-based measures. The above 15 q-RASAR descriptors were computed by the RASAR-Desc-

Calc-v2.0 tool (available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home).  

3.4.6. q-RASAR-based model development 

After calculating RASAR descriptors, these descriptors were combined with formerly selected 

structural and physicochemical descriptors for the final q-RASAR model generation. A combination 

of ten descriptors was identified by performing the best subset selection. The q-RASAR model was 

generated using a pool of combined descriptors (RASAR, structural, and physiochemical descriptors) 

by employing PLS regression. This model has been validated vigorously using both internally and 

externally. 

3.4.7. Applicability domain study of the generated model 

OECD principle 3 suggests the estimation of applicability domain study of the developed model. The 

applicability domain is the theoretical chemical space encompassing the model descriptors and 

response. It is practically impossible to predict the toxicity of every compound by one statistical-based 

model; there should be some structural similarity between query compounds and training compounds 

for a reliable prediction [141]. Therefore, estimating the applicability domain of any developed model 

is required. Here, we perform AD analysis by using the DmodX (distance to model X) approach for 

the developed PLS-based q-RASTR model with SIMCA-P software [142]. 

3.4.8. Y-randomization test of the generated model 

Y-randomization test is employed to ensure whether the obtained model is generated by any chance or 

not. In this test, the descriptor variables (X variables) are kept constant and the vector Y is shuffled 

randomly multiple times and generates a new model using the same sets of descriptors. The model is 

considered to be robust if the estimates of statistical parameters of the randomized model are poorer 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home


Materials and methods Chapter 3 

Page 77 

 

 

than the originally developed model. The R2yrand intercept and Q2yrand intercept are not more than 0.3 

and 0.05 respectively. In this study, the chance correlation between the descriptor and response 

variable of the developed model was checked by SIMCA-P software [142]. 

3.4.9. PPDB database assessment by deploying the developed q-RASTR model and reliability 

study  

For the preparation of an external dataset, PPDB (Pesticides Property Database) consisting of 1902 

pesticides was downloaded. The database was curated to eliminate mixtures, salts, and impurities by 

KNIME workflow. Ultimately, 1694 compounds are remained after curation and used as the external 

database for screening. Descriptors for these compounds were calculated as done for the modelled 

dataset by Alvadesc software version 2.02 (https://www.alvascience.com/alvadesc/). This Prepared 

PPDB database was screened by deploying the generated model using the Prediction Reliability 

Indicator (PRI) tool [135], which provides assessment and categorization of prediction quality in terms 

of AD as well as in terms of Good, Moderate, and Bad. 

 

https://www.alvascience.com/alvadesc/
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4. Results and discussion 

4.1 Study 1 

In this study, we have developed PLS models utilizing the toxicity of pesticides (𝐿𝑜𝑔𝐿𝐶50) on 

two different avians (MD and RNP) employing a reduced pool of chemical descriptors. The 

created model’s quality is measured by using different internal (𝑅2, 𝑄𝐿𝑂𝑂
2 ,) and external 

(𝑄𝐹1
2 , 𝑄𝐹2

2 , ) statistical parameters. The results obtained from PLS models indicated the model’s 

robustness, reliability, and predictivity. All the metrics obtained from QSTR models are depicted 

in Table 10. The read-across algorithm was employed to improve the model's external 

predictivity External predictivity was improved for the dataset RNP but for MD the external 

predictivity is slightly diminished in read-across prediction and results are provided in Table 11. 

The obtained results from the Y-randomization test were found to be 𝑅2 = -0.008, 𝑄2 = -0.0377 

(for MD) and 𝑅2 = 0.028, 𝑄2 = -0.213 (for RNP) which demonstrated that the models were not 

formed by any chance. AD study depicted that compound 468 in MD, and compound 88 in RNP 

from the test set are outside the AD as depicted in Fig. 15 and Fig. 16 respectively. The tentative 

reasons or characteristics that designate certain compounds as outliers in each model (above the 

D-critical line) are due to structural dissimilarity for example, In the case of the MD model C-

012, [O-P] fragment at topological distance 7, [C-P] fragment at topological distance 5 and [C-

Cl] fragment at topological distance 4 are absent and lastly, for RNP model nRCONHR, [C-P] 

fragment at topological distance 4, [P-Cl] fragment at topological distance 5, and  [O-S] fragment 

at topological distance 3 is absent. We have developed new QSTR models without the identified 

outliers and checked the statistical metrics. A visual representation of the correlation between 

observed and predicted toxicity values has been depicted in the scatter plot (provided in Fig 8). 

Additionally, we used two different ML algorithms namely SVM, and RF to evaluate their 

effectiveness in model construction and prediction, and the obtained statistical results are 

demonstrated in Table 12.  

Table 10. Statistical results of developed PLS models. 

Avian 

Species 

Training set Test set 

Ntrain/Ntest LVs 𝑹𝟐 𝑸𝑳𝑶𝑶
𝟐  𝑸𝑭𝟏

𝟐  𝑸𝑭𝟐
𝟐  𝑴𝑨𝑬(𝒕𝒆𝒔𝒕) Quality(test) 

RNP 82/30 2 0.63 0.53 0.60 0.60 0.34 Moderate 

MD 377/162 1 0.60 0.58 0.75 0.63 0.06 Good 
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Table 11. Read-across-based predictions for four species. 

Ring-necked pheasant 

Optimized settings METRICS Ylk (Test) 

σ =0.5 

γ =0.5 

No. of similar compounds =10 

Q2
F1 0.714 

Q2
F2 0.714 

RMSEP 0.392 

MAE 0.290 

Mallard duck 

Optimized settings METRICS Yeuc (Test) 

σ =0.75 

γ =0.75 

No. of similar compounds =10 

Q2
F1 0.686 

Q2
F2 0.540 

RMSEP 0.114 

MAE 0.081 

 

Table 12. ML model's statistical quality for MD and RNP. 

Validation 

Metrics 

ML model's statistical quality 

Model SVM(MD) RF(MD) SVM(RNP) RF(RNP) 

R2
LOO 0.666 0.667 0.641 0.577 

Q2
LOO 0.663 0.666 0.505 0.566 

RMSEc 0.098 0.098 0.438 0.476 

MAE 0.061 0.065 0.340 0.349 

Optimum 

hyperparameter 

(v-SVM) 

Regression Cost - 

0.50 

Complexity 

bound - 0.55 

Kernel-RBF 

Numerical 

tolerance-0.0011 

Iteration limit-

150 

No of trees-48 

Limit depth of 

individual trees-

5 

No of attributes-

7 

Cost-1.90 

Regression loss 

epsilon-0.30 

Kernel-RBF 

Numerical 

tolerance-

0.0011 

Iteration limit-

150 

No of trees-27 

Limit depth of 

individual trees-

5 

No of 

attributes-4 
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Fig. 8. Scatter plots of developed models. 

Several classification-based metrics have been computed with the PLS-based QSTR-read across 

models for all (MD and RNP) the avian species and reported in the following Table 13. Good 

sensitivity, specificity, and accuracy values indicate the good classification ability of the model. 

The computed values of the Matthews correlation coefficient [143] indicate an acceptable 

prediction and an agreement between observed and predicted classification for all the developed 

models against avian species. 

Table 13. Statistical results of the classification-based QSTR models. 

4.1.1. Regression coefficient plot 

The descriptor’s positive and negative contribution towards toxicity is provided via a regression 

coefficient plot. In this investigation, for MD, the descriptors MW, C-012, B07[O-P], Br-094, 

B05[C-P], and F04[C-Cl] contributed positively towards toxicity on the other hand, in case of 

RNP, the descriptors nRCONHR and B04[C-P] contributed positively whereas the descriptors 

X2A, nN(CO)2, B05[P-Cl], and F03[O-S] contributed negatively towards the toxicity. All the 

relevant plots have been provided in Fig. 9. and Fig. 10. 

 

Sl no. LDA-

QSTR 

models 

AUC-

ROC 

Sensitivity Accuracy Precision F-measure MCC 

1 MD 

 (train) 

0.88 75.00 83.59 82.60 78.62 0.65 

MD  

(test) 

0.86 75.71 85.71 89.83 82.17 0.71 

2 RNP 

(train) 

0.83 63.88 79.74 88.46 74.19 0.60 

RNP 

 (test) 

0.87 76.92 84.84 83.33 80.00 0.67 
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Fig. 9. Regression coefficient plot for MD. 

 

 

Fig. 10. Regression coefficient plot for RNP. 

 

4.1.2. Variable importance plot (VIP) 

The relative importance of model descriptors is illustrated with VIP [144]. Descriptors having the 

highest and lowest impact on avian species can be recognized from these plots. The significance 

of the variable is higher whose VIP score is greater than 1. In VIP plot, the descriptors are 

presented with respect to their significance (higher contribution to lower contribution) and their 
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importance which is in the following order: B05[C-P], MW, B07[O-P], C-012, Br-094, F04[C-

Cl)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S], B05[P-Cl], Nn(CO)2 (in case 

of RNP) as depicted in Fig. 11 and Fig. 12. 

 

Fig. 11. Variable importance plot of MD. 

 

Fig. 12. Variable importance plot of RNP. 

 

4.1.3. Loading plot 

The loading plot shows how the independent variables (descriptors) are related to the response 

variable. The first two components were used to create the loading plot. A descriptor is assumed 
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to have a stronger effect on response value if it is located far from the origin of the plot. On the 

basis of the loading plot as shown in Fig.13 and Fig. 14, it is interpreted that the X-variables 

B05[C-P], and B04[C-P] are the most influential descriptors in the case of MD, and RNP 

respectively.  

 
Fig. 13. Loading plot of MD. 

 
Fig. 14. Loading plot of RNP. 
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Fig. 15. DmodX plot for MD. 

 

Fig. 16. DmodX plot for RNP. 

4.1.4. Mechanistic interpretation of PLS models 

Table. 14 and Figs. 17-18 provide a detailed account of the model descriptors followed by 

mechanistic interpretations important to identify major structural and physicochemical features. 

Table 14.  Mechanistic interpretation of descriptors employed in models. 

Sl. no Descriptor Type Function Contribution 

MD oral pLC50 

1 MW Constitutional 

descriptor 

Molecular weight +ve 
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Mechanistic interpretation 

This descriptor is directly related to molecular bulkiness and lipophilicity [145-

146]. Usually, lipophilic compounds easily cross the lipophilic membrane of the 

reference species which ultimately leads to enhancement in toxicity as 

demonstrated in compound 546 and oppositely occurs in compound 503 (depicted 

in Fig. 17). 

2 C-012 Atom-centered 

fragments 

CR2X2 (X is a 

hetero atom (O, N, 

S, P, Se, or 

halogens) and R is a 

carbon-linked 

group) 

+ve 

Mechanistic interpretation 

This descriptor enhances the molecular size as well as the electronegativity of the 

compound due to the presence of heteroatom, which ultimately leads to 

enhancement in toxicity of diverse pesticides against avian species by 

incorporating oxidative stress [147] as demonstrated in compound 445, and vice-

versa occurs in compound 144 (given in Fig. 17) . 

3 B07[O-P] 2D Atom Pair Presence of   O–P 

at topological 

distance 7 

+ve 

Mechanistic interpretation 

Oxygen and phosphorus are highly electronegative atoms and their presence 

makes the compound more toxic (due to increment in oxidative stress in reference 

species) [148]. The presence of a long carbon chain (lipophilicity) also contributes 

to toxicity. This phenomenon is demonstrated in compound 3 and vice versa 

occurs in the case of compound 145 (illustrated in Fig. 17) . 

4 Br-094 Atom-centered 

fragments 

Br attached to 

C1(sp2) 

+ve 

Mechanistic interpretation 

The Br-094 descriptor refers to the presence of the halogen group (bromine). 

Thus, the presence of more electronegative/halogen atoms (bromine) makes the 

compound more toxic as demonstrated in compound 28. Conversely, the absence 
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of this atom/fragment tends to decrease the toxicity as shown in compound 408 

(depicted in Fig. 17). 

5 B05[C-P] 2D Atom pair C–P situated at a 

topological distance 

of 5 

+ve 

Mechanistic interpretation 

The presence of the phosphate group enhances the toxicity of the compound 

[149]. This is evidenced in compound 4. In opposition, the absence of this 

fragment tends to decrease the toxicity as shown in compound 530. 

6 F04[C-Cl] 2D Atom pair C – Cl situated  at 

topological distance 

4 

+ve 

Mechanistic interpretation 

This descriptor refers to the existence of a large electronegative atom such as 

chlorine, which has a high atomic refractivity and electronegativity [150]. Thus, 

the presence of more number of this fragment results in high toxicity toward avian 

species as shown in compound 24 and vice versa occurs in compound 562 

(represented in Fig. 17). 

RNP oral pLC50 

1 X2A Connectivity 

indices descriptor 

Average 

connectivity index 

of order 2 

-ve 

Mechanistic interpretation 

The negative regression coefficient of this descriptor indicates that a higher 

numerical value of this descriptor leads to a decrease in toxicity as shown in 

compound 13 and vice versa in the case of compound 51 (given in Fig. 18). X2A 

is inversely correlated with hydrophobic interaction as well as toxicity. 

2 nRCONHR Functional group 

count 

Presence  of 

secondary aliphatic 

amides 

+ve 

Mechanistic interpretation 

Aliphatic amides are considered to be toxic as well as reactive [151]. The positive 

regression coefficient of this descriptor indicates that the presence of this 
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fragment may increase the toxicity as demonstrated in compound 90 and toxicity 

value may be decreased if the compounds have no such fragment as represented 

in compound 104 (depicted in Fig. 18). 

3 nN(CO)2 Functional group 

count 

Number of imides 

(-thio ) 

-ve 

Mechanistic interpretation 

Generally, this feature helps to facilitate hydrolysis of the compounds which 

facilitates quick excretion from the body of the reference organism resulting in a 

reduction of their toxic effects [152] as demonstrated in compound 58 and the 

absence of this fragment tends to increase the toxicity as shown in compound 101 

(illustrated in Fig. 18). 

4 B04[C-P] 2D Atom pair C – P situated  at 

topological distance 

4 

+ve 

Mechanistic interpretation 

The presence of an electronegative atom (like phosphorous) enhances the toxicity 

of the diverse pesticides by incorporating oxidative stress in avian species [62] as 

evidenced by compound 3. On the other hand, the absence of this fragment leads 

to a decrease the toxicity as shown in compound 10 (represented in Fig. 18). 

5 B05[P-Cl] 2D Atom pair Presence of 

P-Cl at topological 

distance 5 

-ve 

Mechanistic interpretation 

The negative regression coefficient of this descriptor indicates that the presence 

of more number of this fragment reduces the toxicity as demonstrated in 

compound 105 and oppositely occurs in the case of compound 62 (shown in Fig. 

18). 

6 F03[O-S] 

 

2D Atom pair Frequency of 

oxygen and sulfur 

which are situated at 

topological distance 

3. 

-ve 
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Mechanistic interpretation 

This descriptor is directly related to the polarity (presence of polar bond) [62] of 

the compound, as a result, the hydrophilicity of the compound increases, and thus 

toxicity will decrease which is evidenced by compound 85 and vice versa in the 

case of compound 9 (represented in Fig. 18). 

 

 
Fig. 17 Positive and negative contribution of model descriptors towards MD. 
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Fig. 18. Positive and negative contribution of model descriptors toward RNP. 

 

4.1.5 PPDB DataBase screening 

The pesticide Properties DataBase was screened through the developed models with the help of 

the software “PRI Tool_PLSversion” (available from http://teqip.jdvu.ac.in/QSAR Tools/) using 

the developed PLS models. The categorization threshold (mean value of the training set 

compound) for avian toxicity against MD; RNP ≥ 1.845; 2.191 was applied for prioritization 

purposes. From the prediction, it was seen that maximum compounds are within the domain of 

applicability and show prediction quality as “good”. The screened chemicals from the Pesticide 

Properties DataBase with their respective predicted toxicity against MD, and RNP. The 

compounds were ranked in decreasing order of predicted toxicity for each avian species. The top 

20 and least 20 toxic pesticides for all four avian species from the PPDB database are provided 

in Table 15. Further validation of the predicted toxicity of the selected pesticides revealed that 

apart from fluoroacetamide and sodium-monofluoroacetate all the predicted toxicity corroborated 

with the previous experimental findings, indicating the practical applicability of the developed 

models as shown in Table 15. 

 

 

 

 

http://teqip.jdvu.ac.in/QSAR%20Tools/
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Table 15. Top 20 highly & least toxic pesticides screened from Pesticide Properties Database 

(PPDB). 

Sl. No. Names of pesticides Safety and hazards 

Top 20 highly toxic pesticides screened from Pesticide Properties Database (PPDB). 

1 Imicyafos Acute toxic, Irritant. 

2 Pirimiphos-ethyl Acute toxic, Environmental Hazard. 

3 Quinothion Acute toxic 

4 Pirimiphos-methyl Irritant, Health hazard, Environmental 

hazard 

5 Etrimfos Irritant, Environmental Hazard 

6 Buminafos Acute toxic 

7 Diazinon Irritant, Environmental hazard 

8 Quintiofos Acute toxic 

9 Phoxim Irritant, Health hazard, and 

Environmental hazard 

10 Inezin Acute toxic 

11 Dufulin Oxidative stress inducer 

12 Chlorphoxim Acute toxic 

13 Pyridaphenthion Irritant 

14 Triazophos Acute toxic, Environmental hazard 

15 Isoxathion Acute toxic, Environmental hazard 

16 Naftalofos Acute toxic 

17 Quinalphos Acute toxic, Environmental hazard 

18 Butamifos Irritant, Environmental hazard 

19 Sulprofos Acute toxic, Environmental hazard 

20 Edifenphos Acute toxic, Environmental hazard 

Top 20 least toxic pesticides screened from the Pesticide Properties Database (PPDB) 

1 Ferbam non-toxic 

2 Hexylene glycol less toxic 

3 Bisthiosemi moderate toxic 
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4 Choline chloride less toxic 

5 Glutaraldehyde less toxic 

6 Fumaric acid less toxic 

7 Lime sulphur less  toxic 

8 Methyl isobutyl ketone less toxic 

9 Sodium tetrathiocarbonate moderate toxic 

10 1,2-dichloropropane less toxic 

11 Metam less toxic 

12 Methylene bisthiocyanate less toxic 

13 Bentonite Nontoxic 

14 Butanethiol moderate toxic 

15 Sodium monochloroacetate moderate toxic 

16 Fluoroacetamide high toxic 

17 Sodium monofluoroacetate high toxic 

18 Propylene glycol less toxic 

19 Peroxyacetic acid moderate toxic 

20 2-hydrazinoethanol moderate toxic 

4.1.6 Comparison with previous study 

As the composition of the training and test sets, endpoints used, as well as the algorithms used 

for model development are not the same, we can’t perform a rigorous comparison, so we have 

attempted to represent some simple comparative studies between the current work and previously 

reported literature. Mukherjee et al. [62] developed the models using small data sets in 

comparison with current work. Basanta et al. (2015) [58] used tree-based approaches to build 

QSTR and i-QSTR models for various avian species. Banjare et al. (2021) [61] presented QSTR 

and i-QSTR models for three avian species using a classification approach. Podder et al. [63] 

developed a regression-based QSTR and i-QSTR model against multiple avian species (MD, BQ, 

 and ZF). Leszczynski et al. [60] reported ecotoxicity QSTR and i-QSTR modeling of chemicals 

to avian species.  While regression models provide explicit quantitative predictions, classification 

approaches can be useful for data filtering at the outset of research. The current models are built 

using a regression-based method and a limited number of Simple, 2D, and easily interpretable 

descriptors. In this work, we have tried to develop the first PLS-based QSTR model considering 

LC50 as an endpoint to assess the toxicity of diverse pesticides against multiple avian species.  
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Regression-based technique is an assertive and effective approach that can confidently tackle 

challenges such as descriptor inter-correlation, high levels of noise, collinearity, and a large 

number of descriptors. In the present work, we have developed the models using large datasets 

of different avian species. So, it has a wide domain of applicability compared to previous studies. 

Additionally, we used a read-across algorithm to enhance the external predictivity and it is widely 

used for data-gap filing as well as widely accepted and recommended by regulatory bodies  Apart 

from the previous studies, consequently, read-across prediction shows a better result than the 

previous model except for MD. Apart from the previous studies, we get additionally some new 

findings (specifically observation) which are related to pesticide toxicity towards avian species 

such as presence of  C-012 (CR2X2), B07[O-P] (Presence/absence of O–P at topological distance 

7), Br-094 (Br attached to C1(sp2)),  B05[C-P] (Presence/absence of C – P at topological distance 

5), F04[C-Cl] (Frequency of C–Cl at topological distance 4) and nRCONHR (number of 

secondary amides (aliphatic)) enhances the pesticides toxicity towards avian species;  on the other 

hands, presence of nN(CO)2 (number of imides (-thio)) and B05[P-Cl] (Presence/absence of P–

Cl at topological distance 5) reduces the pesticides toxicity towards avian species. Furthermore, 

our work highlighted some extra features not mentioned in the previous studies, which are useful 

for pesticide toxicity assessment viz. molecular weight, presence of heteroatom, presence of 

bridgehead atoms, secondary aliphatic amide, and molecular refractivity. On the other hand, 

features like molecular branching and the presence of thio-imides contribute negatively towards 

the toxicity. The PPDB database was screened using developed models to show the predictivity 

and application in real-world data of the developed models. The current study's comparison to 

previously published studies is depicted in Table 16. 

Table 16. Comparison table with previous works. 

Source Organism 

used 

End 

point 

Model LV Features Training set Test set 

R2 Q2
LOO Q2

F1 Q2
F2 

Present 

study 

RNP LC50 PLS-Read 

across 

2 6 0.63 0.53 0.60-

0.71 

0.60-

0.71 

MD 1 6 0.60 0.58 0.71-

0.75 

0.63-

0.68 

Mukherjee 

et al. 2021 

[62] 

BQ LD50 PLS 3 10 0.65 0.58 0.64 0.64 

JQ 2 3 0.73 0.59 -- -- 

RNP 2 4 0.76 0.60 0.64 0.64 
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MD 2 7 0.65 0.56 0.65 0.57 

HS 1 2 0.91 0.86 0.94 0.88 

Mazzatorta  

et al. 2006 

[57] 

BQ LD50 GA-SVM       

Podder et 

al. 2023 

[63] 

BQ LD50 MLR - 7 0.715–

0.719 

0.694–

0.700 

0.722–

0.732 

0.722–

0.732 

MD - 8 0.689–

0.708 

0.626-

0.695 

0.620–

0.639 

0.620–

0.638 

ZF - 5 0.754–

0.758 

0.697–

0.722 

0.787–

0.830 

0.786-

0.829 

Banjare 

et.al. 2021 

[61] 

BQ LD50 GA-LDA 

along with 

interspecies 

correlation 

- - - - - - 

MD - - - - - - 

ZF - - - - - - 

Basant et al. 

2015 [58] 

BQ LD50 Tree-based 

QSAR 

approaches 

- - - - - - 

Leszczynski 

et al. (2020) 

[60] 

BQ LD50 GFA-PLS 3 5 0.67 0.63 0.70 0.68 

MD 2 5 0.75 0.67 0.88 0.87 

RNH 3 4 0.89 0.80 0.87 0.87 

 

4.2 Study 2 

PLS-based QSTR models were developed using a curated dataset with pLD50 endpoint against 

California quail. The external and internal validation metrics of the models have been provided 

in Table. We used the generated models and performed intelligent consensus prediction to verify 

whether the prediction quality of test set compounds was improved or not (by an intelligent 

selection of various PLS models using the ICP tool). It was found that the consensus model 2 

(CM2 model) with the best statistical metrics was selected as the winner model as shown in Table 

17. Y-randomization was carried out to investigate the chance of occurrence of the developed 

model. R2yrand and Q2yrand were found to be less than the standard threshold [117], which assures 
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that the generated models were not obtained by any chance as depicted in Figs. 40-41. DModX 

plots showed that compound 1 for Model 1, and compounds 2, 25, and 31 for Model 5 are outside 

the AD. On the other hand, there is no outlier compound in Model 2, Model 3, and Model 4. 

Scatter plot representations of the experimental against predicted toxicity are depicted in Fig. 19. 

Table. 17. Statistical parameters of the developed PLS and consensus models. 

Statistics  for  Training set Statistics  for  Test set 

Model LV R2 Q2
LOO Q2

(F1) Q2
(F2) CCC r2

m(test) Δr2
m(test) MAE 

IM1 2 0.701 0.601 0.762 0.690 0.880 0.65 0.15 0.33 

IM2 2 0.711 0.612 0.701 0.621 0.821 0.61 0.18 0.40 

IM3 2 0.671 0.562 0.753 0.694 0.864 0.68 0.10 0.34 

IM4 2 0.674 0.564 0.684 0.597 0.772 0.54 0.001 0.31 

IM5 3 0.645 0.531 0.707 0.615 0.815 0.55 0.03 0.31 

CM0    0.815 0.751 0.883 0.70 0.10 0.30 

CM1    0.812 0.754 0.881 0.70 0.10 0.30 

CM2    0.822 0.761 0.881 0.72 0.12 0.28 

CM3    0.743 0.672 0.842 0.65 0.14 0.34 

(IM: Individual Model, CM: Consensus Model) 
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Fig. 19. Scatter plots of the constructed models. 

 

4.2.1. Regression coefficient plot 

The positive and negative contribution of the descriptors towards the modeled response value 

(pLD50) can be categorized from the regression coefficient plot. The descriptors such as F03[C-

P], B07[S-S], nR_Cs, F06[S-P], F04[C-P], Fsp3, and C% contribute positively towards toxicity 

which indicates that the toxicity enhanced with increasing descriptor values while the descriptors 

like nBM, RBN, AP, Me, F03[O-S] and T(P..Cl) show negative contribution towards toxicity 

which indicate that the toxicity reduced with increasing the descriptor number. The regression 

coefficient plot is depicted in Figs.20 –24.   
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Fig. 20. Regression coefficient plot of model M1 

 

Fig. 21. Regression coefficient plot of model M2 
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Fig. 22. Regression coefficient plot of model M3 

 

 

Fig. 23. Regression coefficient plot of model M4. 
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Fig. 24. Regression coefficient plot of model M5. 

4.2.2. Variable importance plot (VIP)  

The significance of the individual descriptors towards toxicity can be described for their 

importance toward the toxicity from the Variable Importance plot (VIP). The most significant 

and least significant descriptor contributing to the toxicity can be recognized by this plot. A 

variable is considered to have high statistical significance if it has a VIP score > 1 as opposed to 

one with a low VIP value [144]. According to the VIP plot depicted in Figs. 25-29, the influential 

descriptors toward toxicity in the developed model are nBM, nR_Cs, F03[C-P] and B07[S-S] in 

model M1; nBM, nR_Cs, F03[C-P] and F06[S-P] in model M2; Fsp3, F03[C-P], RBN and B07[S-

S] in model M3; AP, F04[C-P], Me and F03[O-S] in model M4 & AP, C%, F03[C-P] and T(P..Cl) 

in model M5 arranged in higher to lower order as per their VIP score. 

 
Fig. 25. VIP plot of model M1. 
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Fig. 26.  VIP plot of model M2. 

 

Fig. 27. VIP plot of model M3. 
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Fig.28. VIP plot of model M4. 

 

Fig. 29. VIP plot of model M5. 

4.2.3. Loading plot of the generated models 

The loading plot, portrayed in (Fig. 30 - Fig. 34) the relationship between the model's X-variables 

(independent variables) and Y-variables (dependent variables). The first two components of the 

developed models were used to generate the loading plot. This plot clarifies how various variables 

impact the models. The descriptors with maximum distance from the origin are thought to have 

a higher influence on response value as well as on models. According to the loading plot nBM 

descriptor in the case of model M2, Fsp3 descriptor in the case of model M3, AP descriptor in 

the case of model M4 and model M5 were the most impactful variables for the respective models 



Chapter 4 Result and discussion 

Page 102 

 

 

as they were present farthest from the origin. 

 
Fig. 30. Loading plot of model M1 

 

 

Fig. 31. Loading plot of model M2. 
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Fig. 32. Loading plot of model M3. 

 

 

Fig. 33. Loading plot of model M4. 
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Fig. 34. Loading plot of model M5. 

4.2.4 Score plot 

A score plot [153] illustrates the disposition of compounds within the hypothetical ellipse 

representing the latent variable space for reliable prediction. The affirmation of a compound 

within AD involves confirming its presence within or outside the ellipse on the plot. No 

compound was found outside the ellipse in the case of models M1, M2, and M3. On the other 

hand, one compound is situated outside the ellipse in models M4 and M5. The score plots of the 

developed models are illustrated in Figs. 35-39.  

 

Fig. 35. Score plot of model M1. 
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Fig. 36. Score plot of model M2. 

 
Fig. 37. Score plot of model M3. 
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Fig. 38. Score plot of model M4. 

 

 
Fig. 39. Score plot of model M5. 

4.2.5 Y-randomization study 

In our study, we used Y-randomization, where for the training set, the X data (descriptors) 

remained fixed and Y data (response) were scrambled randomly, and the model was fitted to the 

permuted data and compared with the best fit. The number of permutations varies; here it is 100 

permutations. The horizontal axis contains the correlation coefficient values for those 100 

different combinations and the vertical axis contains their respective determination coefficient 

values (R2 and Q2). The basic statistics of randomization models (Q2 and R2) should be poor and 

not within the range of those for acceptable regression models. Otherwise, each resulting model 
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may be considered as a chance correlation. The randomization results (𝑅𝑌
2 < 0.3 and 𝑄𝑌

2 <0.05) 

suggested that the models were not obtained by any chance as shown in Figs. 40-44. 

 
Fig. 40. Y-randomization plot of model M1. 

 

 
Fig. 41. Y-randomization plot of model M2. 
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Fig. 41. Y-randomization plot of model M3. 

Fig. 42. Y-randomization plot of model M4. 
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Fig. 43. Y-randomization plot of model M5. 

4.2.6 DModX plot 

The Dmodx plot (Figs. 45-49) shows that 1 compound for Model 2 and Model 4, 2 compounds 

for Model 5 are outside the AD. On the other hand, there is no outlier in Model 1 and Model 3. 

Such a low number of outliers signifies that the developed model is reliable and demonstrates the 

suitability of the same for toxicity prediction. 

Fig. 45. DmodX plot of model M1. 
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Fig. 46. DmodX plot of model M2. 

 

 

 

Fig. 47. DmodX plot of model M3. 
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Fig. 48. DmodX plot of model M4. 

 

Fig. 49. DmodX plot of model M5. 

4.2.7 Mechanistic interpretation of descriptors used in the QSTR model 

Table 18. Mechanistic interpretation of descriptors employed in Models 

Sl. no Descriptor Type Description 
Contribution 

 

1 nBM Constitutional 

index 

Number of multiple 

bonds 

-ve 

Mechanistic interpretation 
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Increasing the number of multiple bonds will diminish the compound’s 

toxicity (inversely related to the toxicity as indicated by the negative regression 

coefficient). We observed that the multiple bonds in the compounds are either 

situated adjacent to atoms such as nitrogen, sulfur, chlorine, and oxygen, 

which imparts hydrogen bonding with water or form polar bond which imparts 

polarity to the compounds. As a result, the hydrophilicity of the respective 

compounds increases which lowers the toxicity value as demonstrated in 

compound 8 and the opposite occurs in compound 9 given in Fig. 51. 

2 F03[C-P] 2D Atom 

Pairs 

Frequency of C-P at 

topological distance 3 

+ve 

Mechanistic interpretation 

This fragment represents the presence of a phosphorus atom which is toxic 

[154]. The toxicity in the respective species is enhanced with the increase of 

this fragment as depicted in compound 31 and vice versa as demonstrated in 

compound 5 in Fig. 50. 

3 B07[S-S] 2D Atom Pairs Existence/non-existence  

of S-S  at topological 

distance 7 

+ve 

Mechanistic interpretation 

This feature characterizes the existence of two sulfur atoms that enhanced the 

overall electronegativity of the compound. The increase of electronegativity 

may result in the generation of reactive oxygen species (ROS) [130], which 

may be responsible for toxicity enhancement toward the respective species as 

demonstrated in compound 3, while the opposite occurs in the case of 

compound  33  depicted in Fig. 50. 

4 nR=Cs Functional 

group counts 

Number of aliphatic 

secondary C(sp2) 

+ve 

Mechanistic interpretation 

This descriptor characterizes the number of sp2 hybridized carbon atoms which 

means the degree of unsaturation [63]. Generally, unsaturated compounds are 

more reactive and toxic in nature [63] as demonstrated in compound 12 and vice 

versa occurs in compound 8 (given in Fig. 50). 
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5 F06[S-P] 2D Atom 

Pairs 

 

Frequency of S-P at 

topological distance 6 

+ve 

Mechanistic interpretation 

Phosphorous itself is toxic, so its presence makes the compound more toxic. 

Sulfur atoms are electronegative.  Sulfur atoms may create hydrogen bonds with 

the DNA of the reference species and make the DNA unstable which leads to the 

death of the reference organism [155]. Thus, toxicity value may be enhanced if 

the molecule contains more S and P atoms as shown in compound 3, and vice 

versa as traced in compound 6  depicted in Fig. 50. 

 

6 Fsp3 Constitutional 

indices 

Number of sp3 hybridized 

carbons/total carbon count 

+ve 

Mechanistic interpretation 

The presence of this descriptor leads to the enhancement of the alkyl chain length 

of the compound (enhancement in the size of the compound) which will cause 

toxicity by raising the lipophilicity of that compound [156]. This feature has a 

positive contribution towards the response which shows the toxicity increases 

with an increase in the numerical value of the descriptor as depicted in compound 

25 and oppositely occurs as per compound 16 highlighted in Fig. 50. 

7 RBN Constitutional 

indices 

Number of rotatable bonds -ve 

Mechanistic interpretation 

RBN descriptor represents the number of rotatable bonds that contribute 

negatively towards the modeled response. A molecule with more rotatable bonds 

has a lesser effect on oral bioavailability as a result chances of inducing toxicity 

of that compound are also reduced [63] as shown in compound 19 and vice versa 

as illustrated in compound 1 in Fig 51. 

8 AP Ring descriptor Aromatic proportion -ve 

Mechanistic interpretation 

This feature represents the presence of aromatic rings in the compound’s 

structure. Since aromatic rings are stable and less reactive[153], they loosely 
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interact with any receptor protein. Thereby, making the compound less toxic as 

demonstrated in compounds 16 and vice versa as shown in compound 18 ( Given 

in Fig. 51.) 

9 
Me Constitutional 

indices 

Mean atomic Sanderson 

electronegativity (scaled 

carbon atom) 

-ve 

Mechanistic interpretation  

Mean atomic Sanderson electronegativity illustrates the molecular polarity [157] 

which is responsible for the hydrophilicity of the compound. Hydrophilicity 

reduces the penetration ability of the compound into the lipophilic cell 

membrane, which leads to diminishing the toxicity of the compound towards the 

reference species as depicted in compound 26 and vice versa in compound 31 

provided in Fig. 51. 

10 
F04[C-P] 2D Atom Pairs Rate of occurrence of C-P 

at topological distance 4 

+ve 

Mechanical interpretation  

Generally, phosphorus atoms are toxic [158]. The presence of carbon and 

phosphorous at topological distance 4 increases the size of molecules, making 

them more lipophilic [82]. Lipophilic compound easily crosses the membrane 

(more accumulative) of reference organism, making it more toxic as highlighted 

in compound 31 whereas the absence of this feature lowers the toxicity as shown 

in compound 19, provided in Fig. 50. 

11 
F03[O-S] 2D Atom Pairs Rate of occurrence of O-S 

at topological distance 4 

-ve 

Mechanistic interpretation 

The presence of these two polar atoms (oxygen and sulfur) enhanced the overall 

polarity of the compound, which leads to an increase the hydrophilicity, and 

hydrophilic compound has a low penetration ability into the lipophilic cell 

membrane (easily excreted out from the body of reference organism). Thereby, 

reducing the toxicity of pesticides as shown in compound 34 and  inversely 

occurs in compound 18  displayed in Fig. 51. 

12 
C% Constitutional 

indices 

percentage of C atoms +ve 



Chapter 4 Result and discussion 

Page 115 

 

 

Mechanistic interpretation 

The alkyl chain length of the corresponding chemical enhanced when the 

percentage of carbon atoms increased which resulted in a rise in lipophilicity 

[158] and ultimately leads to enhancement of compound’s toxicity  as 

demonstrated in compound 9 and oppositely occurs in case of compound 5 as 

illustrated in Fig. 50. 

13 
T(P..Cl) 2D Atom Pairs The sum of topological 

distance between P..Cl 

-ve 

Mechanistic interpretation 

The presence of chlorine atom may responsible to form hydrogen bond with 

water, which make the compound hydrophilic and reduce the toxicity[62] as 

evidenced in compound 5 and inversly occurred in compound 20 as depicted in 

Fig. 51. 

 

 
Fig. 50. Depiction of negatively contributed descriptors toward toxicity against California quail. 
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Fig. 51. Depiction of negatively contributed descriptors toward toxicity against California quail. 

4.2.8 Screening of prepared external dataset 

The PPDB database was screened through the developed models using the PRI tool [136]. After 

screening with the developed models, it was found that major pesticides are within the 

applicability domain and with good prediction quality. The screened pesticides are enlisted and 

categorized in decreasing order of their respective predicted toxicity value. The top 10 and least 

10 pesticides according to their predicted values are listed in Table 19. Further assessment of the 

chosen pesticides indicated that all of the expected toxicity coincides with prior experimental 

values except Fentin chloride, which assures the model’s applicability as well as reliability. 

Table 19. Top 10 and least 10 toxic screened pesticides from Pesticide Properties DataBase 

(PPDB). 

Top 10 highly toxic pesticides screened from Pesticide Properties Database (PPDB). 

Names of pesticides Safety and hazards 

Buminafos Acute toxic 

Cadusafos Highly toxic 

Hexylthiofos High toxic (Cramer class-iii) 
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Sulfotep Acute toxic 

Tetradifon Acute toxic, Environmental Hazard 

Tetraethyl pyrophosphate Acute toxic, Environmental Hazard 

Mipafox Highly toxic organophosphate 

Fosthiazate Acute toxic, Environmental Hazard 

Merphos Highly toxic 

IPSP Acute toxic, Environmental Hazard 

Top 10 least toxic pesticides screened from the Pesticide Properties Database (PPDB) 

Tioxazafen Low acute toxicity 

Fentin hydroxide Moderately toxic 

Clofentezine Low acute toxicity 

Thiabendazole Low acute toxicity 

Fentin chloride Highly toxic 

Diflovidazin Low toxicity 

Fuberidazole Moderately toxic 

Sulcofuron Non-toxic 

Sulcofuron-sodium Non-toxic 

Sulphaquinoxaline No ecotoxicity data 

4.3 Study 3 

4.3.1 Assessment of PLS-based QSTR model 

In this current work, a PLS-based QSTR model has been constructed with 4 latent variables. 

Rigorous validation was performed for the assessment of the generated model’s performance 

using various statistical parameters such as determination coefficient (R2), Leave-one-out cross-

validated correlation coefficient (Q2
LOO), and external correlation coefficient (Q2

F1, Q
2

F2). The 

calculated R2 value of the generated model for the studied dataset crosses the threshold value 

(0.6) and the cross-validated correlation coefficient (Q2
LOO), Q2

F1, and Q2
F2 crosses the acceptable 

threshold value of 0.5. These validation parameters suggest pretty good predictability of the 

developed QSAR model. 

pLD50 = 2.99045 + 0.16995 × nDB + 0.16876 × nCt + 0.66741 × nArOCON + 0.16741 × 

C-006 + 0.82808 ×   H-054 + 1.00087 + B01[O-P] + 0.84222 × B06[S-P] + 1.63402 × 

B06[O-F] + 0.31054 × B07[C-N] -0.57278 × B09[C-N] 

 
ntraining =210, R

2 =0.636, Q2
LOO =0.601, r2m(LOO) =0.467, LV=4, MAE(LOO) =0.432,  

ntest =70, Q2
F1=0.603, Q2

F2=0.558, r2
m(test) =0.389. 
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4.3.2. Assessment of generated q-RASTR model 

We generated q-RASAR models for raising the external predictivity of the developed PLS-based model. 

Thus, we calculated similarity and error-based read-across derived descriptors and clubbed them with 

structural and physicochemical features before model development. This combined pool of descriptors 

encompasses both RA-based similarity and chemical structure attribute-related information. The ultimate 

feature selection for q-RASAR model construction has been performed from the combined pool of 

descriptors followed by the selection of the best combination using the best subset selection based on the 

MAE, cross-validated correlation coefficient (Q2
LOO), and R2. Finally, PLS-based regression has been used 

to develop the q-RASAR model with four latent variables, which are depicted as follows; 

pLD50 = 0.60329 + 1.74735 × Eta_betaS_A + 0.86077 × H-054 + 0.44739× B01[O-P] + 

0.19007× B07[C-N] - 0.13052× F04[N-O] + 0.046× F04[O-O] + 0.49346× RA function(LK) 

+0.8103×SE(LK) + 1.50415 × gm*SD Similarity - 0.02972 × sm2(LK) 

ntraining=210, R2 =0.657, Q2
LOO =0.630, r2

m(LOO) =0.501, LV=4, MAE(LOO) =0.421, ntest =70, 

Q2
F1=0.678, Q2

F2=0.642, r2
m(test) =0.520 

The generated q-RASAR model was verified by various internal and external validation for it’s 

reliability, robustness, and predictability. A visual depiction of the correlation between observed 

and predicted toxicity values is represented in the scatter plot. A graphical representation of the 

relationship between observed and estimated toxicity values is depicted in the scattered plot (Fig. 

52). 

 

Table 20. Statistical parameters of developed PLS-based QSTR and q-RASTR models. 
 

Model Internal validation metrics External validation metrics 

L

V 

R2 Q2
Loo rm(Loo) 

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Δrm2
(Loo) MAE 

(train) 

Q2
F1 Q2

F2 𝑟𝑚2(𝑡𝑒𝑠𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ Δrm2 MAE 

(test) 

PLS 

based 

QSTR 

4 0.63

6 

0.601 0.467 0.250 0.432 0.603 0.558 0.389 0.304 0.460 

PLS 

based 

q-

RAST

R 

4 0.65

7 

0.630 0.501 0.238 0.402 0.678 0.642 0.520 0.232 0.410 
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Fig. 52. Scatter plot of the constructed models. 

4.3.2.1. Regression coefficient plot 

The regression coefficient plot illustrates whether the descriptor of the generated model has a 

positive or negative impact on the modelled toxicity [28]. Here, molecular descriptors such as 

Eta_betaS_A, H-054, B01[O-P], B07[C-N], F04[O-O] and RASAR descriptors such as RA 

function(LK), SE(LK) and gm*SD Similarity has positive contribution towards the model. On 

the other hand, a single 2D descriptor namely F04[N-O], and a RASAR descriptor i.e. sm2(LK) 

has a negative contribution towards toxicity. 

 

Fig. 53. Regression coefficient plot of the constructed models. 
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4.3.2.2 Variable importance plot (VIP) 

The relative importance of the modeled descriptors about the toxicity is demonstrated by the 

variable importance plot [111]. Generally, VIP is a column plot where modeled descriptors are 

represented on the X-axis from left to right descendingly along with the VIP score of individual 

descriptors plotted on the Y-axis. A descriptor having a VIP value of more than 1 is considered 

statistically significant. According to the VIP plot, the contributing descriptor’s relative 

importance is arranged in the following order: RA function > B01[O-P] > gm*SD Similarity > 

Eta_betaS_A > sm2(LK) > SE(LK) > F04[N-O] > H-054 > B07[C-N] > F04[O-O]. 

 

Fig. 54. Variable importance plot (VIP) of the constructed models. 

4.3.2.3 Loading plot  

The loading plot of the constructed q-RASTR model has been represented by SIMCA-P software. 

This plot demonstrates the correspondence between the descriptor variable and the response 

variable with the contribution of the descriptors to the toxicity. The distance of the X-variable 

from the origin demonstrates the importance of the descriptor. According to the generated loading 

plot, it was found that the RA function which is a Read-across derived similarity-based RASTR 

descriptor was present far from the origin and considered as the most influential descriptor for 

the model toxicity. 
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Fig. 55. Loading plot of the constructed models. 

4.3.2.4 Score plot 

The distribution of compounds in the space of latent variable is defined by the obtained scores 

[160]. Based on a scoring function, a score plot shows where the chemical compounds are located 

in theoretical chemical space. We found that only 3 compounds are situated outside the ellipse, 

which demonstrates the model’s robustness. 

 

 
Fig. 56. Score plot of the constructed models. 
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Table 21. Descriptors and their contribution to the generated q-RASTR model. 

Descriptors Definition Type Type of 

contribution 

toward toxicity 

Eta_betaS_A Eta Sigma average 

VEM count 

Electro topochemical 

atom index 

descriptors 

Positive (+ve) 

H-054 H attached to C0(sp3) 

with 3X attached to 

next C 

Atom-centred 

fragments 

Positive (+ve) 

B01[O-P] Presence/absence of 

O – P at topological 

distance 1 

2D Atom Pairs 

descriptor 

Positive (+ve) 

B07[C-N] Presence/absence of C 

– N at topological 

distance 7 

2D Atom Pairs 

descriptor 

Positive (+ve) 

F04[N-O] Frequency of N – O at 

topological distance 4 

2D atom pairs 

descriptor 

Negative (-ve) 

F04[O-O] Frequency of O – O at 

topological distance 4 

2D atom pairs 

descriptor 

Positive (+ve) 

RA function(LK) A read-across-

obtained prediction 

function utilizing the 

Laplacian kernel 

function similarity-

based algorithm 

RASAR descriptor Positive (+ve) 

SE(LK) The weighted 

standard error relates 

to the response values 

of neighboring source 

compounds 

RASAR descriptor Positive (+ve) 

gm*SD Similarity gm × standard 

deviation of close 

source compounds 

where gm is a 

concordance measure 

RASAR descriptor Positive (+ve) 

sm2(LK) Similarity coefficient RASAR descriptor Negative (-ve) 

 

3.3 Possible mechanical interpretation of the modeled descriptor     

Eta_betaS_A 

Eta_betaS_A is a descriptor that belongs to the group of extended topochemical atom indices 

(ETA) descriptors. This descriptor is defined as the summation of β values for all the sigma bonds 

relative to the vertices number, where β denoted as valence electron mobile (VEM) counts. This 
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can be represented as; Σβ’s = Σβs/Nv, where Σβs is the total VEM count and Nv is denoted as the 

number of vertices [161]. This descriptor represents the electron richness relative to the molecular 

bulkiness. The electron richness (higher electronegative atoms) in any compound leads to 

increase the overall electronegativity and increases the production of reactive oxygen species 

which ultimately cause the death of respective animals [162]. Thus, we can assume that the 

presence of this feature makes the compound more toxic as evidenced by compound no. 38 

(Triethylenemelamine) (pLD50= 4.852, Eta_betaS_A = 0.85) and vice versa as demonstrated by 

compound no. 294 (Prochloraz) (pLD50= 2.805, Eta_betaS_A = 0.673).  

H-054 

This is an atom-centered fragment descriptor that denotes the number of hydrogen attached to sp3 

hybridized carbon bound to three electronegative atoms. It is a simple molecular descriptor that 

expresses the electronegative characteristics of the respective compounds. As we discussed 

earlier enhancing the electronegativity of any chemical may cause the production of reactive 

oxygen species (ROS) which is very fatal to the species. Therefore, the existence of this descriptor 

makes the compound more toxic as demonstrated in compound no. 119 (Isobenzan) (H-054=2, 

pLD50 = 5.614), and the absence of this descriptor makes the compound relatively safer by 

decreasing toxicity as depicted in compound no. 31 (H-054=1, pLD50 = 4.649). 

B01[O-P]     

B01[O-P] is a 2D atom pair descriptor that characterizes as existence or absence of O and P atoms 

at topological distance 1. This descriptor represents the presence of two electronegative atoms 

(oxygen and phosphorous) which raises the overall electronegativity of the compound and 

resulting oxidative stress leads to the demise of the reference species [62]. Therefore, high 

electronegativity in a molecule makes the compound more toxic as evidenced in compound no. 

177 (B01[O-P]= 1, pLD50 = 5.032)  and vice versa in case of compound no. 206 (B01[O-P] = 0, 

pLD50 = 2.322). 

B07[C-N] 

B07[C–N] characterizes the presence of carbon-nitrogen fragments with topological distance 7 

in the carbon skeleton of the compound. The presence of this fragment is responsible for higher 

toxicity due to the presence of electronegative heteroatom such as nitrogen may form hydrogen 

bonds and electron donor-acceptor (EDA) complexes with the DNA of respective species. 

Consequently, the stability of the double helix DNA structure may hindered and make the 

compound more toxic [155]. For example, compound no. 132 has more toxicity value (pLD50 = 

5.182) as the numerical value of this descriptor is high (B07[C-N] = 1) and on the other hand 
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compound no. 75 has low toxicity value (pLD50 = 2.910) as it has low descriptor value (B07[C-

N] = 0). 

F04[O-O] 

F04[O-O] is a 2Datom pair descriptor representing the frequency of 2 oxygen atoms with 

topological distance 4. This descriptor contributed positively to the toxicity and increased the 

toxicity by increasing the numerical value of the respective descriptor as it contains highly 

electronegative atoms such as oxygen. Therefore, the overall electronegativity of the compound 

has increased which leads to a rise in the toxicity of the compound by forming ROS (reactive 

oxygen species) [130] as discussed earlier. For example, compound no. 262 has a high toxicity 

value (pLD50 = 4.536,F04[O-O] = 3). On the contrary, compound no. 6 has relatively lower 

toxicity value (pLD50 = 2.443) with descriptor value (F04[O-O] = 1). 

F04[N-O] 

F04[N-O] is a 2D atom pair descriptor which is defined as the frequency of nitrogen and oxygen 

atoms at topological distance 4. This descriptor contributed negatively towards the model 

response, which suggests that the presence of higher number of this fragment will reduce the 

toxicity as evidenced by compound 298 (F04[N-O] = 14, pLD50 = 2.286) and vice bersa in case 

of compound 284 (F04[N-O] = 4, pLD50 = 4.992). The presence of nitrogen and oxygen makes 

the compound hydrophilic by making hydrogen bonds. Hydrophilic compounds are less toxic.  

RA function(LK)  

The descriptor RA function(LK), a RASAR descriptor, that acts like latent variables, represent 

various molecular features by providing a comprehensive understanding of the compound’s 

properties [163]. It can be observed that this descriptor shows a positive contribution towards the 

model response, which means the toxicity value increases with an increase in descriptor value. 

For example, compound 224 has a high toxicity value (pLD50 = 5.723) with a high numerical 

value of descriptor (RA function (LK) = 5.061), while compound 148 has a low toxicity value 

(pLD50 = 2.208) as the corresponding low numerical value of descriptor (RA function (LK) = 

2.75).  

SE(LK) 

This is a read-across derived RASAR descriptor encoded as a weighted standard error of the 

nearby source compound’s response value. This descriptor has positive impacts towards the 

response value. Thus, the toxicity of compounds elevates with elevating this read-across derived 

RASAR descriptor as shown in compound 276 (SE(LK) = 1.209,  pLD50 = 5.255) and vice versa 

in case of  compound 207 (SE(LK) = 0.604, pLD50 = 3.914). 



Chapter 4 Result and discussion 

Page 125 

 

 

Sm2(LK) 

Sm
2(LK) is a novel similarity coefficient introduced by Banerjee and Roy [164] which found 

chemical compounds showing abnormal prediction (Activity cliffs). This is directly related to the 

difference between positive average similarity and negative average similarity [165] as shown in 

the following formula: 

𝑆𝑚
2 =

𝑃𝑜𝑠𝐴𝑣𝑔𝑆𝑖𝑚 − 𝑁𝑒𝑔𝐴𝑣𝑔𝑆𝑖𝑚

𝐴𝑣𝑔. 𝑆𝑖𝑚
 

Here, the Sm
2(LK) coefficients are negatively correlated to the response value for the generated 

model, which indicates that the higher the coefficient value lower the toxicity as shown in 

compound 18 (sm2(LK) = 1.478, pLD50 = 3.562) and vice versa in case of compound 131 

(sm2(LK) = 0.521)  has high response value (pLD50 = 5.178).   . 

gm*SD Similarity 

gm*SD Similarity is an another RASAR descriptor that shows a positive contribution to the 

model toxicity. It is the product of the gm (concordance measure) with the nearest compound's 

standard deviation of similarity values. It’s positive contribution can be demonstrated by 

compound no. 44 with descriptor value (gm*SD Similarity = 0.187) and response value (pLD50 

= 5.330) and vice versa in case of compound no. 174 having descriptor value (gm*SD Similarity  

= 0.016), response value (pLD50 = 3.592). 

 

3.1 
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Fig. 57. Mechanistic interpretation of 2D descriptors. 

 
Fig. 58. Mechanistic interpretation of RASAR descriptors. 

 

3.4 Screening of external dataset through the developed model 

The developed model has been deployed for the screening of the prepared PPDB dataset by using 

the PRI tool. The majority of the compounds are within the applicability domain and have good 

prediction accuracy. The screened compounds are arranged according to their predicted toxicity 

values in decreasing order. Based on their estimated toxicity value, the top 10 and least 10 toxic 

compounds are enlisted in Table 22. 

Table 22.Top 10 highly & least toxic pesticides screened from Pesticide Properties Database 

(PPDB). 

Names of pesticides Safety and hazards 

Top 10 highly toxic pesticides screened from the Pesticide Properties Database (PPDB) 

Amiprofos-methyl Highly toxic 

Methocrotophos Acutely toxic 

Dicrotophos Highly toxic 

Monocrotophos Very high acutely toxic 

Fensulfothion Highly toxic 

Phosnichlor Moderately toxic 
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Butathiofos Highly toxic 

Pyraclofos Highly toxic 

Dioxathion Highly toxic 

Dufulin Low toxic 

Top 10 least toxic pesticides screened from the Pesticide Properties Database (PPDB) 

Copper oxychloride Low to Moderate toxicity 

Dimethyl disulfide Moderately  toxic to Birds 

Aluminium phosphide Moderately toxicity 

Chlorine dioxide Moderate toxic 

Lime sulphur Low toxic to earthworms and honeybees 

Ammonium thiocyanate Non-toxic to aquatic invertebrates 

1,1,1-acetonitrile Low to aquatic organisms 

Formaldehyde Low toxic 

Metosulam Low toxic to birds 

Methyl isobutyl ketone Low toxic to rat 
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5. Conclusions 
The success of any research work is determined by the results and conclusions obtained from the 

studies, which may reveal previously unknown or undiscovered scientific explanations. These 

findings may further lead to the development of better understanding and deep knowledge in the 

specific area in which the studies were performed. Computational chemistry including computer-

aided drug design, molecular modeling, and virtual screening techniques are emerging as cost-

effective and time-saving methods for introducing new chemicals into the market.  

In response to the ethical concerns and the need for more sustainable practices, in-silico modeling 

emerges as a viable alternative to traditional in vivo and in vitro experimentation on living organisms. 

Through predictive modeling and computational simulations, we can effectively evaluate the 

behavior of organic chemicals, shedding light on their potential risks and impacts. This approach not 

only enhances our understanding of chemical interactions but also contributes to the development of 

ethical and environmentally conscious practices in the chemical industry. 

However, there are a lot of limitations to the conventional methods of toxicity assessment. These 

limitations include ethical concerns related to animal experimentation, significant time and financial 

investments and the inherent scarcity of comprehensive experimental data. In this regards, the 

developed QSTR and q-RASTR models emerged to be an effective and adaptable tool for the 

efficient prediction of toxicity. We can overcome these constraints and deliver precise and quick 

evaluations of drug toxicity by utilizing data-driven insights and computational modeling. 

Our work includes several approaches and combines a wide range of concepts, which come together 

to produce the results and explanations we offer. Due to their extensive uses in a variety of industries, 

including food, medicine, cosmetics, and agriculture, organic chemicals highlight the significance of 

thorough risk assessment. One notable challenge is the substantial data gap that exists concerning 

the toxic effects of certain chemicals and their largely unidentified environmental consequences. 

5.1 Study 1: Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian 

Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and 

Read-Across 

In summary, this study employs a range of chemometric tools to predict pesticide toxicity for four 

different avian species. The research focuses on creating robust and easily interpretable QSTR 

models based on OECD principles. The study's statistical validation parameters consistently 

demonstrate the strength and reliability of the constructed PLS models. External validation metrics, 

employing the read-across algorithm, show slightly superior performance in predicting toxicity, 
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except for the mallard duck dataset. Furthermore, this research develops regression-based models, 

surpassing previous studies in terms of the dataset's size and the variety of avian species examined. 

The findings highlight the significance of electronegativity, molecular weight, imide count, 

lipophilicity, and steric effects in avian toxicity. Notably, the presence of C-P fragments at 

topological distance 4 and electronegative groups intensifies toxicity, while features like branching 

and hydrogen bond acceptor characteristics reduce the toxicity. 

The validation of the predicted toxicity of the screened compounds by experimental data 

demonstrated the reliability and feasibility of applying the developed models for screening 

pesticides, offering valuable support to researchers striving to design eco-friendly and safe chemical 

pesticides. They effectively bridge gaps in toxicity data and simplify the evaluation of novel 

pesticides for various bird species. Moreover, these models significantly reduce the time, resources, 

costs, and the need for animal testing, aligning with the principles of reduction, refinement, and 

replacement (RRR) in research practices. 

5.2. Study 2: First report on Intelligent Consensus Prediction addressing Ecotoxicological 

effects of diverse pesticides against California quail 

The current work has proposed PLS-based QSTR models against a new avian species (California 

quail). These models were validated by using various statistical metrics to establish the model’s 

reliability and robustness. External validation parameters were intensified by using intelligent 

consensus prediction. Possible mechanistic interpretations of the associated descriptors were 

demonstrated and we found that the presence of phosphate groups, electronegativity, a high 

percentage of carbon, unsaturation, mean Sanderson electronegativity, lipophilicity, aromatic 

proportion, and flexibility have significant effects on toxicity. Particularly, the presence of C-P 

fragments at exact topological distances, electronegativity, carbon chain length, and degree of 

unsaturation elevate the toxicity. At the same time, features like the number of rotatable bonds, and 

aromatic proportion diminish the toxicity. The developed models were employed on a prepared 

external database which was originally collected from the pesticide properties database (PPDB) and 

predicted their toxicity to demonstrate the reliability and feasibility of the developed models. After 

the screening, it can be concluded that the reported models can efficiently fill the gaps in toxicity 

data and may enlighten researchers and synthetic chemists to design novel, safer, and eco-friendly 

compounds to reduce the possibility of toxicity specifically toward avian species. 
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5.3. Study 3: Chemometric-based exploration of the toxicological significance of diverse 

chemical toxicants in wild birds with an application of the q-RASTR approach  

In the current study, a predictive q-RASTR model for the toxicity assessment against the wild birds 

of diverse chemical toxicants has been generated. Various readily interpreted 2D descriptors were 

employed for the construction of the final q-RASTR model. The constructed model has been 

validated externally and internally to verify quantitatively as well as qualitatively by using different 

statistical parameters to establish reliability, robustness, and predictability. Possible mechanistic 

interpretation of the modeled descriptors demonstrated that features such as H-054, B01[O-P], 

B07[C-N], and F04[O-O], majorly indicate the presence of electronegative atoms/hetero atoms along 

with the presence of extended topochemical atom indices (ETA) descriptors contribute positively 

towards the toxicity of the chemical toxicants. Furthermore, a few similarity-based RASAR 

descriptors like RA function, SE(LK), gm*SD Similarity, and Sm2(LK) also contributed positively 

towards the toxicity of wild birds. Here in this study, the undetermined toxicity values of the PPDB 

(Pesticide Properties Database) were predicted by deploying the generated q-RASTR model which 

shows the reliability and feasibility of the developed model. The generated model can be useful for 

assessing the toxicity of any unknown compound by overcoming limitations such as animal testing, 

time-consuming, and cost. The generated model and obtained structural information might enlighten 

the researchers to synthesize safer and environmentally safe chemicals as well as bridge the data gaps 

in the toxicity database. 
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A R T I C L E  I N F O   
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A B S T R A C T   

The rapid increase in the use of pesticides is driven by the growing demand in the agricultural sector. However, 
the widespread application of these pesticides and their inherent toxicity have significant repercussions on the 
ecosystem, particularly impacting animal and bird species. In this present study, we have developed four 2D 
quantitative structure-toxicity relationships (QSTRs) models for four different avian species using the largest 
number of available experimental data points to date employing the partial least squares (PLS) algorithm. 
Furthermore, we have also performed the read-across algorithm to improve the test set results. Based on the 
information derived from the models, it was found that hydrophilic characteristics, the presence of molecular 
branching and thio imide groups impact negatively to the pesticide toxicity, while the presence of phosphate 
group, presence of halogens viz. chlorine and bromine atoms, presence of hetero atoms, high molecular weight, 
presence of bridgehead atoms, presence of secondary aliphatic amide and fragments like RCONHR escalates 
avian toxicity. The developed QSTR models were further employed to predict the Pesticide Properties DataBase 
(PPDB) for all four avian species as a measure of data gap-filling and risk assessment. Thus, the developed models 
can be utilized for eco-toxicological data-gap filling, prediction of toxicity of untested pesticides as well as the 
development of novel and safe environmental-friendly pesticides.   

1. Introduction 

Pesticides encompass a wide range of chemicals, which are typically 
employed to control or kill pests viz. insects, rodents, fungi, weeds, etc. 
for effective crop management. The use of pesticides has increased 
significantly in recent decades, particularly in agriculturally dependent 
developing countries (Singh et al., 2014). Due to the inherent charac
teristics, a significant portion of the applied dose continues to remain as 
remnants on crops and fields (Basant et al., 2015). As a result, large 
amounts of pesticides have been found in crops, vegetation, and further 

edible products causing exposure to both animals and humans. Ac
cording to reports, prolonged exposure to these substances can harm a 
person’s nervous, endocrine, reproductive, immunological, cardiovas
cular, renal, and respiratory systems (Mostafalou and Abdollahi, 2013). 
In light of the aforementioned, various regulatory authorities have 
emphasized the need for the toxicity evaluation of both new and existing 
pesticides. The avian toxicity tests are essential for regulatory approval 
and licensing of the active ingredients of pesticides. Aves are significant 
for ecology and have a huge contribution to biodiversity by performing 
pollination of plants, rodent control, seed dispersal, and spreading 

Abbreviations: BQ, Bobwhite quail; JQ, Japanese quail; MD, Mallard duck; RNP, Ring-necked pheasant; 2D descriptors, Two-dimensional descriptors; 2D-QSTR, 
Two dimensional- quantitative structure- toxicity relationship; AD, Applicability domain; DModx, Distance to model X; GA, Genetic algorithm; Log[LC50], loga
rithmic value of the 50% Lethal concentration LC50; OECD, The Organisation for Economic Cooperation and Development; PLS, partial least square; QSAR, 
Quantitative structure-activity relationship; QSTR, Quantitative structure-toxicity relationship; REACH, Registration, Evaluation, Authorisation, and Restrictions of 
Chemicals; RMSEP, root mean square error of prediction; EPA, Environmental Protection Agency; PPDB, Pesticide Properties DataBase. 
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nutrients (Mukherjee et al., 2021). According to today’s scenario, one in 
every eight bird species faces extinction (Saxena et al., 2015). Therefore, 
birds are used as a model organism to evaluate toxicity. Oral toxicity 
testing is important for determining avian species’ toxicological signif
icance. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese 
quail (Coturnix japonica) [JQ], ring-necked pheasant (Phasianus colchi
cus) [RNP], and mallard duck (Anas platyrhynchos) [MD] are the major 
test species as per OECD norms (OECD, 2010). The validated wet-lab 
techniques for the evaluation of compound toxicity towards avians are 
expensive, unethical, and require a significant amount of time and 
effort. So the relevant regulatory bodies encourage the employment of 
potential alternative strategies to achieve the objective. Regulatory 
agencies like the Environmental Protection Agency (EPA), European 
Food Safety Authority (EFSA), Registration, Evaluation, Authorization, 
and Restriction of Chemicals (REACH), and European Chemicals Bureau 
(ECB), have emphasized the potential of computational tools like QSTR, 
read-across, and alternative approaches for investigating the inherent 
characteristics of chemicals within the realm of toxicokinetics (Nicolotti 
et al., 2014; Pandey et al., 2020). Some alternatives in silico-based ap
proaches were reported previously that offer significant improvements 
over single-output models for regulatory purposes (Speck-Planche et al., 
2011; Speck-Planche et al., 2011, 2012; Speck-Planche, 2020; Jiang 
et al., 2020; Jain et al., 2021). Speck-Planche et al. (Speck-Planche et al., 
2011) reported the discriminant model based on substructural de
scriptors for the rational design of new agrochemical fungicides. 
Speck-Planche et al. (Speck-Planche et al., 2011) also worked on new 
in-silico methods for the rational design of new insecticidal agents. 
Speck-Planche et al. (Speck-Planche et al., 2012) further reported the 
multi-species chemoinformatic methods for assessing the various eco
toxicological profiles in agrochemical fungicides. Speck-Planche et al. 
(Speck-Planche, 2020) also published a work regarding multi-scale 
QSAR methodology for simultaneous ecotoxicological modeling of 
pesticides. Jiang et al. (Jiang et al., 2020) worked on boosting 
tree-assisted multitask deep learning methods for small scientific data
sets. A consensus multitask deep learning method was used to model 
multispecies acute toxic effects by Jain et al (Jain et al., 2021). Even 
other alternative modeling approaches based on machine learning (ML) 
tools that have demonstrated significant advancements, particularly in 
handling nonlinearity aspects and improving predictions were also re
ported earlier (Jiang et al., 2020; Jain et al., 2021; Halder et al., 2023; 
Samanipour et al., 2022). Halder et al. (Halder et al., 2023) reported the 
global models employing in-silico methods for predicting the ecotoxicity 
of endocrine disruptive chemicals. Samanipour et al. (Samanipour et al., 
2022) worked on alternative methods for chemical prioritization using 
molecular descriptors and intrinsic fish toxicity of chemicals. 

These in silico techniques examine significant structural features that 
are essential for predicting the biological activity, toxicity, and other 
characteristics of untested substances. Several research teams published 
in silico predictions of acute oral toxicity in various species, including 
rats, mice, and fish (Banjare et al., 2021; Song et al., 2011; Hamadache 
et al., 2016; Wang et al., 2021). But in the case of avian oral toxicity, 
very few in-silico reports are available (Basant et al., 2015; Mukherjee 
et al., 2021; Saxena et al., 2015; Banjare et al., 2021; Zhang et al., 2015; 
Podder et al., 2023). 

Herein, we developed QSTR models to interpret the major structural 
and physicochemical features responsible for their toxicity followed by 
assessing the toxicity of external datasets in BQ, JQ, RNP, and MD avian 
species following the OECD guidelines strictly (OECD, 2007). Alterna
tive tools, such as read-across, are widely used for hazard assessment to 
fill the data gaps. The read-across-based predictions assume that a 
molecule with an unreported experimental endpoint value should have a 
value similar to molecules that are structurally and/or biologically 
similar to the query molecule. So, we have conducted the read-across 
predictions to improve the test set results. The main motive for 
choosing the regression-based QSTR approach over others (e.g.: 
regarding its effectiveness, coping with chemical heterogeneity, and 

several different species) (Karpov et al., 2020; Jaganathan et al., 2022) 
was to develop a linear relationship between the descriptors and the 
defined endpoints (pLC50) to identify the important features responsible 
for toxicity towards avian species (BQ, JQ, RNP, and MD) as well as 
data-gap filling. Classification-based approaches also excel in handling 
similar challenges, and both methodologies come with distinct advan
tages and disadvantages. For example, classification models are typi
cally more robust to outliers and data errors than regression models. 
This is because classification models only focus on the categorical 
relationship between the input and output variables rather than the 
exact numerical relationship. On the other hand, regression models can 
identify the most important features or predictors driving the outcome 
variable. This information can be used to inform decision-making and 
guide further investigations. Sometimes, it may be beneficial to convert 
a classification problem into a regression problem or vice versa. By 
doing so, one can gain additional insights into the data and improve the 
accuracy of our predictions. Nevertheless, the decision to convert a 
problem type should be based on the specific problem at hand and the 
characteristics of the data. Additionally, we have also developed clas
sification models as well as employed two different ML algorithms 
namely SVM, and RF to evaluate their effectiveness in model construc
tion and prediction. The present work aimed to design a logical method 
to assess pesticide toxicity towards avians. Furthermore, screening of the 
Pesticide Properties DataBase (PPDB) was conducted to evaluate the 
avian toxicity following the prediction reliability assessment of the 
QSTR models by the PRI (prediction reliability indicator) tool (http:// 
teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data gaps filling and 
risk assessment (Kumar et al., 2023). The robustness, reproducibility, 
and predictivity of QSTR models were thoroughly validated using 
globally accepted statistical parameters. 

2. Methods and materials 

2.1. Preparation of dataset & curation 

Here, we developed models using datasets with toxicity endpoint 
(LC50; defined as the lethal concentration in 50% population) for toxicity 
prediction in multiple avian species collected from literature (Zhang 
et al., 2015) which was originally collected from the EPA, Ecotox 
database (http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides 
for RNP, 117 pesticides for JQ, 556 pesticides for BQ, and 564 pesticides 
for MD were taken for the development of the model. The toxicity 
endpoint values ranges from 0.082-4.957 in BQ, 0.162–4.968 in JQ, 
0.27–4.67 in MD, and 0.162–4.857 in RNP. The two-dimensional 
structures of the pesticides were sketched using Marvin Sketch 5.5.0.1 
(https://chemaxon.com) software with the addition of explicit hydrogen 
atoms as well as proper aromatization. The conversion of structure file 
formats was carried out using Open Babel v.2.3.2 (O’Boyle et al., 2011). 
Knime workflow (https://www.knime.com/cheminformatics-exte 
nsions) was employed for data curation which removes unwanted salts 
and duplicate compounds. Toxicity in an avian species characterized as 
an endpoint value (LC50) was converted to millimolar (mM) concen
tration followed by converting to a negative logarithmic scale, pLC50, for 
easy interpretation. Some compounds were omitted from the datasets 
due to high residual values. 

2.2. Descriptor calculation & data pre-treatment 

Descriptors are the numerical presentation in which we correlate the 
chemical structure with any physiochemical property/biological activ
ity/ toxicity. In this work, a total of 9 classes of descriptors were 
calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/ 
alvadesc/) software (Mauri, 2020). In each dataset, the defective and 
inter-correlated chemical descriptors were eliminated by V-WSP1.2 
(http://teqip.jdvu.ac.in/QSAR_Tools/) software with a standard devia
tion less than 0.0001 or correlation coefficient greater than 0.95. 
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2.3. Dataset division 

Dataset division is crucial for QSTR model development. Normally, 
training set compounds are used to develop the model and test set 
compounds for validation. The validation set is used to assess the model 
performance and fine-tune the parameters of the model. It tells us how 
well the model is learning and adapting, allowing for adjustments and 
optimizations to be made to the model’s parameters and hyper
parameters (the latter in the case of machine learning-based models) 
before it is finally tested. The test data set mirrors real-world data the 
model has never seen before, i.e.: a separate sample of unseen data. Its 
primary purpose is to offer a fair and final assessment of how the model 
would perform when it encounters new data in a live, operational 
environment. This is especially critical to evaluate models effectively 
along with preventing overfitting (Martin et al., 2012). We performed 
dataset division of four datasets by using rational methods such as the 
Kennard stone, activity property-based, and Euclidean distance based 
method using Dataset Division GUI 1.2 software as well as using random 
division method (Martin et al., 2012; Ambure et al., 2015). We also 
employed modified k-medoid clustering by using Modified k-Medoid 1.3 
(http://teqip.jdvu.ac.in/QSAR_Tools/) (Park and Jun, 2009). After that, 
the final selection of data-set division methods was done based on the 
statistical results. The best results come in the Kennard stone method for 
the MD and JQ data set, the activity property-based method for the BQ 
dataset, and the random division method for the RNP dataset. In this 
process of dataset division, the datasets are divided into 75:25 ratios of 
training and test sets compounds respectively (Jillella et al., 2021). 

2.4. Selection of features and model building 

In the case of model building, feature selection is one of the vital 
steps by which we can find significant descriptors to boost the inter
pretability and predictive ability of the model (Roy et al., 2008). Pri
marily, we performed stepwise regression method and genetic algorithm 
(GA) for feature selection (Ojha and Roy, 2011) and then we employed 
the regression-based partial least square (PLS) (Wold et al., 2001) 
method through the partial least squares v1.0 tool (http://teqip.jdvu.ac. 
in/QSAR_Tools/) for model building. 

2.5. Validation metrics of QSTR models 

A significant step in the creation of a QSTR model is statistical 
validation, which demonstrates its reliability and predictivity (Roy 
et al., 2015a). Various internal validation parameters were calculated 
which involve determination coefficient (R2), leave-one-out (LOO)

cross-validated correlation coefficient (Q2
LOO) to judge the reliability and 

importance of the model. External validation parameters demonstrate 
the predictivity of QSTR models. The model’s external validation is 
determined using parameters such as Q2

F1 and Q2
F2 (Todeschini et al., 

2016). For both internal (Q2
LOO) and external predictive parameters 

(Q2
F1,Q2

F2), the approved threshold value is 0.5. 

2.6. Prediction using read-across algorithm 

According to the fundamental tenet of read-across, substances with 
similar chemical structures will also have comparable attributes and it is 
not utilized in the model development process (Banerjee et al., 2022). 
Read-across prediction is a similarity-based non-testing technique that is 
widely used in eco-toxicological data-gap filling. Initially, the training 
set of the best model was split into sub-training and sub-test sets. These 
sets were again used to optimize the hyperparameters through 
Read-Across-v3.1 (http://teqip.jdvu.ac.in/QSAR_Tools/) software. 
After similarity-based sorting, similarity threshold values (0− 1), various 
distance threshold values (1− 0), and the numbers of most similar 
training compounds (2− 10) were applied. The best setting of 

hyperparameters obtained from sub-training and sub-test was applied to 
the original training and test sets for the final prediction (Chatterjee 
et al., 2022). 

2.7. Model’s applicability domain study 

The applicability domain (AD) of a QSAR model has been defined as 
the chemical structure and response space, considered by the properties 
of the molecules in the training set (Roy et al., 2015a). The AD expresses 
the fact that QSARs are undeniably associated with restrictions in the 
categories of physicochemical properties, chemical structures, and 
mechanisms of action for which the models can generate reliable pre
dictions. In the current study, distance to the model in X-space (DModx) 
has been utilized for AD estimation of constructed PLS models which 
rely on residuals of response and predictive variables (Roy et al., 2015b). 

2.8. Y-randomization study 

Y-randomization study was carried out to check the chance corre
lation of the QSTR models with the help of SIMCA-P software (SIMCA-P, 
2002). In the Y-randomization test, the descriptor matrix X is kept 
constant but only the vector Y is scrambled randomly, and a new model 
is developed using the same set of descriptors. The original model is 
considered as robust if its validation metrics are better than the random 
models (Paul et al., 2022). The values of the R2yrand intercept and 
Q2yrand intercept should not be more than 0.3 and 0.05 respectively. 

2.9. Analysis of parametric assumptions of the developed models 

To ensure that our model is reliable we carried out some diagnostic 
tests to check for the existence of multicollinearity, normal distribution, 
and homoscedasticity (Dillon and Goldstein, 1984; Morales Helguera 
et al., 2008). Multicollinearity is defined as predictor variables within a 
regression model that are highly correlated with each other, leading to 
inaccurate results in regression analysis. To identify multicollinearity, 
we used the variation inflation factor (VIF) which is a widely used 
metric. If the VIF is higher than 5, multicollinearity is considered to be 
present (Kim, 2019). In statistical regression models, exhibiting multi
collinearity can lead to misleading results. For each modeled descriptor, 
we found that the VIF values were very close to 1. So, it can be concluded 
that all the independent variables are not collinear with the dependent 
variable. The function values follow a multidimensional normal distri
bution with a mean and covariance matrix that depends on the 
descriptor vectors. We have plotted the normal distribution curve for 
each (BQ, JQ, MD, and RNP) avian species and provided in Fig. S1 of 
supplementary information 2. Homoscedasticity refers to the equal 
variance of an error in a regression model was assessed using the 
Breusch-Pagan test in our study. A p-value of more than 0.05 indicates 
the homoscedasticity of the model. In our study, the calculated p-values 
were not less than 0.05 (0.093–0.209) for all the developed models. 
Therefore, we fail to reject the null hypothesis, and the model can be 
considered homoscedastic. All the statistical results of homoscedasticity 
and multicollinearity for each model are provided in Tables S1 and S2 of 
supplementary information 2. 

2.10. Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have 
employed two different state-of-the-art ML algorithms namely support 
vector machine (SVM) and random forest (RF) using the Orange data 
mining tool (Demšar et al., 2013, Senanayake et al., 2022). The hyper
parameters were adjusted to tune the model for optimal performance. 
The prediction qualities of the ML models were evaluated in terms of R2, 
Q2

Loo, and MAE values. 

S. Das et al.                                                                                                                                                                                                                                      

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/


Process Safety and Environmental Protection 188 (2024) 39–52

42

2.11. Classification based QSTR (LDA-QSTR) model development 

In the present work, we have developed a classification-based linear 
discriminant analysis (LDA) QSTR model from the selected set of fea
tures and evaluated its performance for its predictive ability. The model 
development is done using ClassificationBasedQSAR_v1.0.0 tools 
(available at http://teqip.jdvu.ac.in/QSAR_Tools/). The model was 
extensively validated based on different internal and external classifi
cation metrics (area under the ROC curve (AUC), accuracy, precision, 
sensitivity, F-measure, and Matthews correlation coefficient (MCC)) 
(Fawcett, 2006; Matthews, 1975). 

2.12. Screening of the Pesticide Properties DataBase 

We have collected 1903 chemical data from Pesticide Properties 
DataBase (PPDB) available in (http://sitem.herts.ac.uk/aeru/ppdb/). 
Knime curation was done to remove duplicates, inorganic salts, and 
mixtures using the KNIME workflow. Due to the knime curation, some 
compounds were removed. After the curation, the remaining 1694 
compounds were used for the screening process to check the developed 
model’s reliability. The descriptors for these molecules were calculated 
using the same procedure as in the QSAR modeling process. The pre
dictions were made through the use of individual PLS-based QSTR 
models with the help of the PRI (Prediction Reliability Indicator) tool 
(http://teqip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the pre
dictions into three distinct groups: good (composite score 3), moderate 
(composite score 2), and bad (composite score 1). Additionally, the tool 
determines the localization of compounds inside the AD. The screened 
compounds were ranked based on their predicted toxicity and the 
twenty highest and least toxic compounds which exhibited toxicity to
wards all four avian species were analysed. The results were further 
validated extensively based on experimental data reported previously, 
to establish the real-world applicability of the developed final PLS-based 
QSTR models. Detailed discussions on the results can be found in Section 
3 (Roy et al., 2018). A detailed flow diagram of this study has been given 
in Fig. 1. 

3. Results and discussion 

In this study, we have developed PLS models utilizing the toxicity of 
pesticides (LogLC50) on four different avians (BQ, JQ, MD, and RNP) 
employing a reduced pool of chemical descriptors. The created model’s 
quality is measured by using different internal (R2, Q2

LOO,) and external 
(Q2

F1, Q2
F2,) statistical parameters. The results obtained from PLS 

models indicated the model’s robustness, reliability, and predictivity. 
All the metrics obtained from QSTR models are depicted in Table 1. 
Read-across algorithm was employed to improve the model’s external 
predictivity. External predictivity was improved for all three datasets 
(BQ, JQ, RNP) except MD in read-across prediction, and results are 
provided in Table 2. The obtained results from the Y-randomization test 
were found to be R2= -0.01, Q2= -0.0531, (for BQ), R2 = 0.0194, Q2 =

-0.215 (for JQ), R2 = -0.008, Q2 = -0.0377 (for MD), and R2 = 0.028, 
Q2 = -0.213 (for RNP) which demonstrated that the models were not 
formed by any chance. AD study depicted that compounds 26, 112, and 
113 in BQ, compounds 31 and 103 in JQ, compound 468 in MD, and 
compound 88 in RNP from the test set are outside the AD as depicted in 
Figs: S1-S4 in supplementary information 2. The tentative reasons or 
characteristics that designate certain compounds as outliers in each 
model (above the D-critical line) is due to some structural dissimilarity. 
As for example, in case of the BQ model; [O-P] fragment at topological 
distance 3 is absent for compounds 26,112 and 113; for the JQ model; 
nBridgeHead, [N-P] fragment at topological distance 5 and [O-P] frag
ment at topological distance 1 are absent; in the case of MD model; C- 
012, [O-P] fragment at topological distance 7, [C-P] fragment at topo
logical distance 5 and [C-Cl] fragment at topological distance 4 are 
absent and lastly, for RNP model; nRCONHR, [C-P] fragment at topo
logical distance 4, [P-Cl] fragment at topological distance 5, and [O-S] 
fragment at topological distance 3 is absent. We have developed new 
QSTR models without the identified outliers and checked the statistical 
metrics (provided in Table S3 of Supplementary Information 2). A vi
sual representation of the correlation between observed and predicted 
toxicity values has been depicted in the scatter plot (provided in Fig. 2). 
Additionally, we used two different ML algorithms namely support 

Fig. 1. Workflow of QSTR model development.  
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vector machine and random forest to evaluate their effectiveness in 
model construction and prediction. The PLS-based QSTR models with 
read-across predictions produce the lowest prediction error for the test 
set compounds, as indicated by the MAEtest value compared to ML-based 
models against all of the avian species provided in Table S4 of Supple
mentary information 2. The equations of the final developed models of 
BQ, JQ, RNP, and MD are provided below: 

Model BQ: 

pLC50 (BQ) = 1.25782+0.43538 × F02[C − P] + 0.00176

× MW+ 0.5691 × F09[S − F] − 1.15994

× B09[C − P] − 0.55509 × F03[O − P] − 0.046 × T(P..Cl)

Model JQ: 

pLC50 (JQ) = 4.15712+0.74137 × B01[O − P] − 6.67929

× X2A+1.18073 × B05[N − P] − 0.28037

× H − 048 − 0.00675 × T(O..Cl)+0.44076

× nBridgeHead 

Model RNP: 

Table 1 
Statistical parameter of developed PLS models.  

Avian Species Training set Test set 

Ntrain/Ntest LVs R2 Q2
LOO Q2

F1 Q2
F2 MAE(test) Quality(test) 

BQ 411/137  2  0.643  0.603  0.613  0.613  0.186 Good 
JQ 77/34  2  0.630  0.552  0.534  0.519  0.403 Moderate 
RNP 82/30  2  0.635  0.531  0.604  0.600  0.349 Moderate 
MD 377/162  1  0.606  0.588  0.752  0.637  0.060 Good  

Table 2 
Read-across based predictions for four species.  

Optimized settings Metrics Ygk (Test) 

Bobwhite quail 
Ygk (Test) 

σ ¼ 0.25 
γ ¼ 0.25 
No. of similar compounds ¼10 

Q2
F1 0.690 

Q2
F2 0.690 

RMSEP 0.279 
MAE 0.179 

Japanese quail 
Optimized settings Metrics Ylk (Test) 
σ ¼ 0.25 

γ ¼ 0.25 
No. of similar compounds ¼10 

Q2
F1 0.707 

Q2
F2 0.698 

RMSEP 0.394 
MAE 0.307 

Ring-necked pheasant 
Optimized settings METRICS Ylk (Test) 
σ ¼0.5 

γ ¼0.5 
No. of similar compounds ¼10 

Q2
F1 0.714 

Q2
F2 0.714 

RMSEP 0.392 
MAE 0.290 

Mallard duck 
Optimized settings METRICS Yeuc (Test) 
σ ¼0.75 

γ ¼0.75 
No. of similar compounds ¼10 

Q2
F1 0.686 

Q2
F2 0.540 

RMSEP 0.114 
MAE 0.081  

Fig. 2. Scatter plots of developed models.  
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pLC50 (RNP) = 4.19704 − 6.73075 × X2A+ 1.81161

× nRCONHR − 0.99523 × nN(CO)2+0.84946

× B04[C − P] − 0.81404 × B05[P − Cl] − 0.42293

× F03[O − S]

Model MD: 

pLC50 (MD) = 1.31098+0.00138 × MW+ 0.19812

× C − 012+1.25421 × B07[O − P] +0.27204

× Br − 094+0.5788 × B05[C − P] + 0.01952

× F04[C − Cl]

Several classification-based metrics have been computed with the 
PLS-based QSTR-read across models for all (BQ, JQ, MD, and RNP) the 
avian species and reported in the following Table 3. Good sensitivity, 
specificity, and accuracy values indicate the good classification ability of 
the model. The computed values of the Matthews correlation coefficient 
(Matthews, 1975) indicate an acceptable prediction and an agreement 
between observed and predicted classification for all the developed 
models against avian species. 

3.1. Regression coefficient plot 

The descriptor’s positive/negative contribution towards the toxicity 
is provided via a regression coefficient plot. In this investigation, the 
descriptors, F02[C-P], MW and F09[S-F]) contributed positively while 
the descriptors, B09[C-P], F03[O-P], and T(P.Cl) contributed negatively 
towards the toxicity of pesticides in case of BQ. In JQ, the descriptors 
which contributed positively toward the toxicity are B01[O-P], B05[N- 
P], nbridgehead and X2A, whereas the descriptors H-048 and T(O.Cl) 
contributed negatively towards the toxicity. In the case of MD, the de
scriptors MW, C-012, B07[O-P], Br-094, B05[C-P], and F04[C-Cl] 
contributed positively towards the toxicity. In case of RNP, the de
scriptors, nRCONHR and B04[C-P] contributed positively whereas the 
descriptors X2A, nN(CO)2, B05[P-Cl], and F03[O-S] contributed nega
tively towards the toxicity. All the relevant plots have been provided in 
Figs S5-S8 in supplementary information 2. 

3.2. Variable importance plot (VIP) 

The relative importance of model descriptors is illustrated with VIP 
(Akarachantachote et al., 2014). Descriptors having the highest and 
lowest impact on avian species can be recognized from these plots. The 
significance of the variable is higher if the VIP score is greater than 1. In 
VIP plot, the descriptors are presented concerning their significance 
(higher contribution to lower contribution) and their importance which 
is in the following order: F02[C-P], T(P.Cl), MW, B09[C-P], F03 [O-P], 

F09[S-F] (in case of BQ), B01[O-P], B05[N-P], X2A, nBridgeHead, 
H-048, T(O.Cl) (in case of JQ), B05[C-P], MW, B07[O-P], C-012, Br-094, 
F04[C-Cl)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S], 
B05[P-Cl], Nn(CO)2 (in case of RNP) as depicted in Figs: S9-S12 in 
supplementary information 2. 

3.3. Loading plot 

The loading plot shows how the independent variables (descriptors) 
are related to the response variable. The first two components were used 
to create the loading plot. A descriptor is assumed to have a stronger 
effect on response value if it is located far from the origin of the plot. On 
the basis of the loading plot as shown in Figs. S13-S16 in supplementary 
information 2; it is interpreted that the X-variables F02[C-P] and MW 
have more influence to the Y-variable as traced from the proximity with 
response variable and the presence of these features elevated pesticide 
toxicity towards BQ. Similarly, B01[O-P], B05[C-P], and B04[C-P] are 
the most influential descriptors in the case of JQ, MD, and RNP 
respectively. 

3.4. Mechanistic interpretation of PLS models 

Table 4 and Figs. 3–6 provide a detailed account of the model de
scriptors followed by mechanistic interpretations important to identify 
major structural and physicochemical features. 

3.5. Pesticide Properties DataBase screening 

Pesticide Properties DataBase was screened through the developed 
models with the help of the software “PRI Tool_PLSversion” (available 
from http://teqip.jdvu.ac.in/QSAR Tools/) using the developed PLS 
models. The categorization threshold (mean value of the training set 
compound) for avian toxicity against BQ; JQ; MD; RNP ≥ 1.883; 2.236; 
1.845; 2.191 respectively was applied for prioritization purposes. From 
the prediction, it was seen that maximum compounds are within the 
domain of applicability and show prediction quality as “good”. The 
screened chemicals from the Pesticide Properties DataBase with their 
respective predicted toxicity against BQ, JQ, MD, and RNP are shown in 
supplementary information 1. The compounds were ranked in 
decreasing order of predicted toxicity for each avian species. The top 20 
and least 20 toxic pesticides for all four avian species from the PPDB 
database are provided in Table 4. Further validation of the predicted 
toxicity of the selected pesticides revealed that apart from fluo
roacetamide and sodium monofluoroacetate, all the predicted toxicity 
corroborated with the previous experimental findings, indicating the 
practical applicability of the developed models as shown in Table 5. 

Table 3 
Statistics of the classification-based QSTR models.  

Sl no. LDA-QSTR MODELS AUC-ROC SENSITIVITY ACCURACY PRECISION F-MEASURE MCC  

1 BQ 
(train)  

0.80  54.54  83.33  88.00  67.35  0.59 

BQ 
(test)  

0.83  52.17  85.36  92.30  66.67  0.62  

2 JQ 
(train)  

0.82  62.50  80.76  86.95  72.73  0.60 

JQ 
(test)  

0.80  75.00  84.84  81.81  78.26  0.66  

3 MD 
(train)  

0.88  75.00  83.59  82.60  78.62  0.65 

MD 
(test)  

0.86  75.71  85.71  89.83  82.17  0.71  

4 RNP (train)  0.83  63.88  79.74  88.46  74.19  0.60 
RNP 
(test)  

0.87  76.92  84.84  83.33  80.00  0.67  
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Table 4 
Mechanistic analysis of model descriptors of all species.  

S. 
no 

Descriptor Type Function Contribution Mechanistic introspection 

BQ oral pLC50 

1 F02[C-P] 2D Atom pair Frequency of carbon and phosphorus 
atoms at topological distance 2 

+ve Generally, the phosphate group is toxic (Vervloet, 2019a).The presence 
of more phosphate groups in a molecule tends to increase its toxicity as 
evidenced in compound 442. On the other hand, the presence of less 
number of these fragments in a compound may result in low toxicity 
values, as seen in compound 501 (depicted in Fig. 3). 

2 MW Constitutional 
descriptor 

Molecular weight +ve This descriptor is directly related to the molecular size and bulkiness of 
molecules. It may influence diffusion in biological membranes and fluid 
media (Hou et al., 2004; Khan et al., 2019). So the chemicals may easily 
cross the biological membrane of species and retain in the body of 
reference species for a long time, which ultimately enhances the toxicity ( 
Basant et al., 2015) as demonstrated in compound 381 and vice versa in 
compound 239 (given in Fig. 3). 

3 F09[S-F] 2D Atom pair Frequency of sulfur and fluorine 
atoms at topological distance 9 

+ve Lipophilic substances have a greater susceptibility to accumulation 
within the cells, resulting in a higher pesticide concentration inside the 
organism, which ultimately leads to enhanced toxic effects. The presence 
of two highly electronegative atoms (fluorine and sulfur) as well as a long 
carbon chain (lipophilicity) in a compound tend to make it more reactive 
and potentially more toxic (Mukherjee et al., 2021; Ghosh et al., 2020) as 
shown in compound 23 and oppositely occurs in compound 523 (shown 
in Fig. 3). 

4 B09[C-P] 2D Atom pair Presence/absence of carbon and 
phosphorus atoms at topological 
distance 9 

-ve The negative regression coefficient of this descriptor indicates that the 
presence of carbon and phosphorus atoms at the topological distance 9 
may decrease the pesticide’s toxicity towards avian species as shown in 
compound 296 while the absence of this fragment in a chemical may have 
higher toxicity values as shown in the case of compound 11 (described in  
Fig. 3). 

5 F03[O-P] 2D Atom pair Frequency of oxygen and phosphorus 
atoms at topological distance 3 

-ve The negative regression coefficient of this descriptor indicates that it 
inversely correlated with the pesticide’s toxicity towards avian species. 
Thus, the presence of this fragment reduces the compound toxicity as 
demonstrated in compound 487 and the absence of this fragment 
enhances the toxicity as represented in compound 52 (given in Fig. 3). 

6 T(P.Cl) 2D Atom pair Sum of topological distances between 
P.Cl 

-ve The two-dimensional atom pair descriptor, T(P⋯Cl) accounts for the 
topological distances between phosphorus and chlorine atoms. Reduction 
of inductivity in chlorine substituents causes a decrease in electron 
density for the relevant compounds. Therefore, the incidence of the P–Cl 
bond in aromatic chemicals reduces the electron density of the aromatic 
ring, thus, electron-donor-acceptor interactions cannot happen easily 
between pesticides and the reference species (Ghosh et al., 2020). This 
descriptor has a negative regression coefficient, indicating that the 
presence of this fragment will result in a decrease in pesticide toxicity 
profile, as exemplified by compound 243, while it would have the 
opposite effect when present, as proven by compound 441 (provided in  
Fig. 3). 

JQ oral pLC50 

1 B01[O-P] 2D Atom pair Presence/absence of O – P at 
topological distance 1 

+ve The presence of two electronegative atoms (O and P) in a compound 
makes it more electronegative which leads to oxidative stress and the 
death of the reference species (Kumar et al., 2023; Roy and Roy, 2021). 
This phenomenon is demonstrated in compound 81 and inversely occurs 
in compound 113 (shown in Fig. 4). 

2 X2A Connectivity indices 
descriptor 

Average connectivity index of order 2 -ve X2A represents the degree of branching in molecules, which is inversely 
correlated with hydrophobic interaction as well as toxicity (Arvidsson 
et al., 1971; Roy and Das, 2013). Thus, the higher numerical value of this 
descriptor leads to a decrease in toxicity value as shown in compound 13 
and vice versa occurs in compound 57 (given in Fig. 4). 

3 B05[N-P] 2D Atom pair Incidence of N – P at topological 
distance 5 

+ve The presence of two electronegative atoms (N and P) in a compound 
makes it more electronegative which leads to oxidative stress and the 
death of the reference species (Zhang et al., 2015; Roy and Roy, 2021). 
This phenomenon is demonstrated in compound 88. On the other hand, 
the compound containing less number of this fragment may exhibit less 
toxicity as shown in compound 66 (demonstrated in Fig. 4). 

4 H-048 Atom-centered 
fragments 

H attached to C2(sp3)/C1(sp2)/C0 
(sp) 

-ve H-048 has the potential to make compounds electronically conductive as 
well as hydrophilic (Kumar et al., 2013). Hydrophilicity and toxicity are 
inversely related to each other (Li et al., 2022). Thus the presence of a 
greater number of this descriptor in a molecule makes it less toxic as 
shown in compound 67. On the other side, the presence of less number of 
hydrophilic groups in a molecule leads to an increase the toxicity as 
shown in compound 11 (depicted in Fig. 4) 

5 T(O.Cl) 2D Atom pair Sum of topological distances between 
O.Cl 

-ve The negative regression coefficient of this descriptor indicates that it is 
inversely correlated with the pesticide’s toxicity towards avian species 
thus the presence of more of this fragment makes the compound less toxic 
as shown in compound 33 and conversely occurs in compound 84 
(depicted in Fig. 4). 

(continued on next page) 
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3.6. Comparison with previous work 

As the composition of the training and test sets, endpoints used, as 
well as the algorithms used for model development are not the same, we 
can’t perform a rigorous comparison, so we have attempted to represent 

some simple comparative studies between the current work and previ
ously reported literature. Mukherjee et al. (Mukherjee et al., 2021) 
developed the models using small data sets in comparison with current 
work. Basanta et al. (Basant et al., 2015) used tree-based approaches to 
build QSTR and i-QSTR models for various avian species. Banjare et al. 

Table 4 (continued ) 

S. 
no 

Descriptor Type Function Contribution Mechanistic introspection 

6 nBridgeHead Ring descriptors Number of bridgehead atoms +ve Usually, bridgehead atoms have a complex structure as well as toxic ( 
Kumar et al., 2023) which is demonstrated in compound 19. Conversely, 
the absence of bridgehead atoms makes the compound less toxic as shown 
in compound 110 (demonstrated in Fig. 4). 

MD oral pLC50 

1 MW Constitutional 
descriptor 

Molecular weight +ve This descriptor is directly related to molecular bulkiness and lipophilicity 
(Hou et al., 2004; Khan et al., 2019). Usually, lipophilic compounds easily 
cross the lipophilic membrane of the reference species which ultimately 
leads to enhancement in toxicity as demonstrated in compound 546 and 
oppositely occurs in compound 503 (given in Fig. 5). 

2 C-012 Atom-centered 
fragments 

CR2X2 (X is a hetero atom (O, N, S, P, 
Se, or halogens) and R is a carbon- 
linked group) 

+ve This descriptor enhances the molecular size as well as the 
electronegativity of the compound due to the presence of heteroatom, 
which ultimately leads to enhancement in toxicity of diverse pesticides 
against avian species by incorporating oxidative stress (Kar et al., 2020) 
as demonstrated in compound 445, and vice-versa occurs in compound 
144 (depicted in Fig. 5). 

3 B07[O-P] 2D Atom Pair presence of O – P at topological 
distance 7 

+ve Oxygen and phosphorus are highly electronegative atoms and their 
presence makes the compound more toxic (due to increment in oxidative 
stress in reference species) (Roy and Roy, 2021). The presence of a long 
carbon chain (lipophilicity) also contributes to toxicity. This 
phenomenon is demonstrated in compound 3 and vice versa occurs in the 
case of compound 145 (illustrated in Fig. 5). 

4 Br-094 Atom-centered 
fragments 

Br attached to C1(sp2) +ve The Br-094 descriptor refers to the presence of the halogen group 
(bromine). Thus, the presence of more electronegative/halogen atoms 
(bromine) makes the compound more toxic as demonstrated in 
compound 28. Conversely, absence of this atom/fragment tends to 
decrease the toxicity as shown in compound 408 (depicted in Fig. 5). 

5 B05[C-P] 2D Atom pair C – P situated at topological distance 
5 

+ve The presence of the phosphate group enhances the toxicity of the 
compound (Vervloet, 2019b). This is evidenced in compound 4. In 
opposition, absence of this fragment tends to decrease the toxicity as 
shown in compound 530 (provided in Fig. 5). 

6 F04[C-Cl] 2D Atom pair C – Cl situated at topological distance 
4 

+ve This descriptor refers to the existence of a large electronegative atom 
such as chlorine, which has a high atomic refractivity and 
electronegativity (Khan and Roy, 2019). Thus, the presence of a greater 
number of this fragment results in high toxicity toward avian species as 
shown in compound 24 and vice versa occurs in compound 562 
(provided in Fig. 5). 

RNP oral pLC50 

1 X2A Connectivity indices 
descriptor 

Average connectivity index of order 2 -ve The negative regression coefficient of this descriptor indicates that higher 
numerical value of this descriptor leads to a decrease in toxicity as shown 
in compound 13 and vice versa in the case of compound 51 (given in  
Fig. 6). X2A is inversely correlated with hydrophobic interaction as well 
as toxicity (Arvidsson et al., 1971; Roy and Das, 2013). 

2 nRCONHR Functional group 
count 

Presence of secondary aliphatic 
amides 

+ve Aliphatic amides are considered to be toxic as well as reactive (Schultz 
et al., 2006). The positive regression coefficient of this descriptor 
indicates that presence of this fragment may increase the toxicity as 
demonstrated in compound 90 and toxicity value may be decreased if the 
compounds have no such fragment as represented in compound 104 
(shown in Fig. 6). 

3 nN(CO)2 Functional group 
count 

Number of imides (-thio) -ve Generally, this feature helps to facilitate hydrolysis of the compounds 
which facilitates quick excretion from the body of the reference organism 
resulting in a reduction of their toxic effects (Krishna et al., 2020) as 
demonstrated in compound 58 and the absence of this fragment tends to 
increase the toxicity as shown in compound 101 (illustrated in Fig. 6). 

4 B04[C-P] 2D Atom pair C – P situated at topological distance 
4 

+ve The presence of an electronegative atom (like phosphorous) enhances the 
toxicity of the diverse pesticides by incorporating oxidative stress in 
avian species (Mukherjee et al., 2021; Kumar et al., 2024) as evidenced 
by compound 3. On the other hand, the absence of this fragment leads to 
a decrease the toxicity as shown in compound 10 (described in Fig. 6). 

5 B05[P-Cl] 2D Atom pair Presence of P – Cl at topological 
distance 5 

-ve The negative regression coefficient of this descriptor indicates that 
presence of more number of this fragment reduces the toxicity as 
demonstrated in compound 105 and oppositely occurs in case of 
compound 62 (depicted in Fig. 6). 

6 F03[O-S] 2D Atom pair Frequency of oxygen and sulfur which 
are situated at topological distance 3. 

-ve This descriptor is directly related to the polarity (presence of polar bond) 
(Mukherjee et al., 2021) of the compound, as a result the hydrophilicity 
of the compound increase and thus toxicity will decrease which is 
evidenced by compound 85 and vice versa in case of compound 9. 
(represented in Fig. 6).  

S. Das et al.                                                                                                                                                                                                                                      



Process Safety and Environmental Protection 188 (2024) 39–52

47

(Banjare et al., 2021) presented QSTR and i-QSTR models for three avian 
species using a classification approach. Podder et al. (Podder et al., 
2023; O’Boyle et al., 2011) developed a regression-based QSTR and 
i-QSTR models against multiple avian species (MD, BQ, and ZF). 
Leszczynski et al. (Kar and Leszczynski, 2020) reported ecotoxicity 
QSTR and i-QSTR modeling of chemicals to avian species. While 
regression models provide explicit quantitative predictions, 

classification approaches can be useful for data filtering at the outset of 
research. The current models are built using a regression-based method 
and a limited number of simple, 2D, and easily interpretable descriptors. 
In this work, we have tried to develop first PLS-based QSTR model 
considering LC50 as an endpoints to assess the toxicity of diverse pesti
cides against multiple avian species. Regression-based technique is an 
assertive and effective approach that can confidently tackle challenges 

Fig. 3. Positive and negative contribution of model descriptors towards BQ.  

Fig. 4. Positive and negative contribution of model descriptors towards JQ.  
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such as descriptor inter-correlation, high levels of noise, collinearity, 
and a large number of descriptors. In the present work, we have 
developed the models using large datasets of different avian species. So, 
it has a wide domain of applicability compared to previous studies. 
Additionally, we used read-across algorithm to enhance the external 
predictivity and it is widely used for data-gap filing as well as widely 

accepted and recommended by regulatory bodies Apart from the pre
vious studies, and consequently read-across prediction shows a better 
result than the previous model except for MD. Apart from the previous 
studies, we get additionally some new findings (specifically observation) 
which are related to pesticide toxicity towards avian species such as 
presence of C-012 (CR2X2), B07[O-P] (Presence/absence of O–P at 

Fig. 5. Positive and Negative contribution of model descriptors towards MD.  

Fig. 6. Positive and Negative contribution of model descriptors towards RNP.  
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Table 5 
Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase 
(PPDB).  

Sl. 
no. 

Pesticide Safety and 
Hazards 

Sources 

Top 20 most toxic screened pesticides from Pesticide Properties DataBase 
(PPDB). 

1 Imicyafos Acute toxic, 
Irritant. 

https://pubchem.ncbi.nlm.nih. 
gov/compound/18772487#s 
ection=Safety-and-Hazards 
&fullscreen=true 

2 Pirimiphos-ethyl Acute toxic, 
Environmental 
Hazard. 

https://pubchem.ncbi.nlm.nih. 
gov/compound/31957#s 
ection=Safety-and-Hazards 
&fullscreen=true 

3 Quinothion Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/89714#secti 
on=Toxicity&fullscreen=true 

4 Pirimiphos-methyl Irritant, Health 
hazard, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/34526#s 
ection=Safety-and-Hazards 
&fullscreen=true 

5 Etrimfos Irritant, 
Environmental 
Hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37995#s 
ection=Safety-and-Hazards 
&fullscreen=true 

6 Buminafos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/39966#secti 
on=Toxicity&fullscreen=true 

7 Diazinon Irritant, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/3017#s 
ection=Safety-and-Hazards 
&fullscreen=true 

8 Quintiofos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/72069#secti 
on=Toxicity&fullscreen=true 

9 Phoxim Irritant, Health 
hazard, and 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/9570290#s 
ection=Safety-and-Hazards 
&fullscreen=true 

10 Inezin Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/30772#secti 
on=Toxicity&fullscreen=true 

11 Dufulin Oxidative stress 
inducer 

(Yu et al., 2021). 

12 Chlorphoxim Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/5360461#s 
ection=Safety-and-Hazards 
&fullscreen=true 

13 Pyridaphenthion Irritant https://pubchem.ncbi.nlm.nih. 
gov/compound/8381#s 
ection=Safety-and-Hazards 
&fullscreen=true 

14 Triazophos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/32184#s 
ection=Safety-and-Hazards 
&fullscreen=true 

15 Isoxathion Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/29307#s 
ection=Safety-and-Hazards 
&fullscreen=true 

16 Naftalofos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/15148#s 
ection=Safety-and-Hazards 
&fullscreen=true 

17 Quinalphos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/26124#s 
ection=Safety-and-Hazards 
&fullscreen=true 

18 Butamifos Irritant, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37419#s 
ection=Safety-and-Hazards 
&fullscreen=true 

19 Sulprofos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37125#s 
ection=Safety-and-Hazards 
&fullscreen=true  

Table 5 (continued ) 

Sl. 
no. 

Pesticide Safety and 
Hazards 

Sources 

20 Edifenphos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/28292#s 
ection=Safety-and-Hazards 
&fullscreen=true 

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB). 
1 Ferbam non-toxic https://www3.epa.gov/pestici 

des/chem_search/reg_actions/re 
registration/fs_PC-034801_0 
1-Sep-05.pdf 

2 Hexylene glycol less toxic https://hpvchemicals.oecd. 
org/ui/handler.axd?id=3c 
2a8190–8500–467c-af27-a636e 
6636c38 

3 Bisthiosemi moderate toxic https://www.drugfuture.com/ 
toxic/dir/5061.html 

4 Choline chloride less toxic http://sitem.herts.ac.uk/aeru 
/iupac/Reports/161.htm 

5 Glutaraldehyde less toxic https://archive.epa. 
gov/pesticides/reregistration/w 
eb/pdf/glutaraldehyde-red.pdf 

6 Fumaric acid less toxic https://www.sciencedirect.co 
m/science/article/pii/S0095 
955315310854 

7 Lime sulphur less toxic https://www.ams.usda.gov/s 
ites/default/files/media/Lime% 
20Sulfur%20Evaluation%20TR. 
pdf 

8 Methyl isobutyl 
ketone 

less toxic https://www.epa.gov/sites 
/default/files/2016–09/docu 
ments/methyl-isobutyl-ketone. 
pdf 

9 Sodium 
tetrathiocarbonate 

moderate toxic https://www.sciencedirect.co 
m/topics/agricultural-and-biolo 
gical-sciences/thiocarbonate 

10 1,2- 
dichloropropane 

less toxic https://wedocs.unep.org/bitstre 
am/handle/20.500.11822/ 
29625/HSG76.pdf?sequence 
=1&isAllowed=y 

11 Metam less toxic https://archive.epa.gov/pes 
ticides/chemicalsearch/chemic 
al/foia/web/pdf/039003/0 
39003–028.pdf 

12 Methylene 
bisthiocyanate 

less toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/2905.htm 

13 Bentonite Nontoxic https://digitalfire.com/h 
azard/bentonite+toxicity#:~:te 
xt=Bentonite%20is%20a%20 
ground%20naturally,flush%20t 
o%20remove%20the%20part 
icles. 

14 Butanethiol moderate toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/1-Butanethiol 

15 Sodium 
monochloroacetate 

moderate toxic https://tera.org/OARS/Sodium 
%20Chloroacetat%20 
(3926–62–3)%20WEEL%2020 
16%20public%20comment.pdf 

16 Fluoroacetamide high toxic http://sitem.herts.ac.uk 
/aeru/ppdb/en/Reports/338.ht 
m 

17 Sodium 
monofluoroacetate 

high toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/3160.htm 

18 Propylene glycol less toxic https://downloads.regulations. 
gov/EPA-HQ-OPP 
-2013–0218–0007/content.pdf 

19 Peroxyacetic acid moderate toxic https://www.federalregister. 
gov/document 
s/2000/12/01/00–30679/pe 
roxyacetic-acid-exempti 
on-from-the-requirement-of-a-t 
olerance#:~:text=Because% 
20of%20the%20low%20toxicit 
y,not%20pose%20a%20dietary 
%20risk 

20 2-hydrazinoethanol moderate toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/2803.htm  
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topological distance 7), Br-094 (Br attached to C1(sp2)), B05[C-P] 
(Presence/absence of C–P at topological distance 5), F04[C-Cl] (Fre
quency of C–Cl at topological distance 4) and nRCONHR (number of 
secondary amides (aliphatic)) enhances the pesticides toxicity towards 
avian species; on the other hands, presence of nN(CO)2 (number of 
imides (-thio)) and B05[P-Cl] (Presence/absence of P–Cl at topological 
distance 5) reduces the pesticides toxicity towards avian species. 
Furthermore, our work highlighted some extra features not mentioned 
in the previous studies, which are useful for pesticide toxicity assessment 
viz. molecular weight, presence of heteroatom, presence of bridgehead 
atoms, secondary aliphatic amide, and molecular refractivity. On the 
other hand, features like molecular branching and the presence of thio 
imides contribute negatively towards the toxicity. The PPDB database 
was screened using developed models to show the predictivity as well as 
application in the real-world data of the developed models. The current 
study’s comparison to previously published studies is depicted in  
Table 6. 

4. Conclusion 

In summary, this study employs a range of chemometric tools to 
predict pesticide toxicity for four different avian species. The research 
focuses on creating robust and easily interpretable QSTR models based 
on OECD principles. The study’s statistical validation parameters 
consistently demonstrate the strength and reliability of the constructed 
PLS-based QSTR-read across models. External validation metrics, 
employing the read-across algorithm, show slightly superior perfor
mance in predicting toxicity, except for the mallard duck dataset. 
Additionally, we have developed classification models and employed 
two Machine Learning algorithms SVM and RF to evaluate their effec
tiveness in constructing models and making predictions. The PLS-based 
QSTR models with read-across predictions produce better statistical 
results (such as the lowest prediction error for the test set compounds, as 
indicated by the MAEtest value) as compared to ML-based models against 
all of the avian species. 

Furthermore, this research develops regression-based models, sur
passing previous studies in terms of the dataset’s size, the variety of 
avian species examined, domain of applicability features responsible for 
toxicity, model quality, algorithm used as well as the endpoint (LC50). 

The findings highlight the significance of electronegativity, molecular 
weight, imide count, lipophilicity, and steric effects in avian toxicity. 
Additional findings (descriptors) such as C-012, B07[O-P], Br-094, B05 
[C-P], F04[C-Cl], nRCONHR, nN(CO)2, and B05[P-Cl] were observed in 
this study which is related to pesticides toxicity towards avian species. 
Notably, the presence of C-P fragments at specific topological distances 
and electronegative groups intensifies toxicity, while features like 
branching and hydrogen bond acceptor characteristics reduce it. 

The validation of the predicted toxicity of the screened compounds 
by experimental data demonstrated the reliability and feasibility of 
applying the developed models for screening pesticides, offering valu
able support to researchers striving to design eco-friendly and safe 
chemical pesticides. They effectively bridge gaps in toxicity data and 
simplify the evaluation of novel pesticides for various bird species. 
Moreover, these models significantly reduce the time, resources, costs, 
and the need for animal testing, aligning with the principles of reduc
tion, refinement, and replacement (RRR) in research practices. 
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Table 6 
Comparison table with previous work.  

Source Organisms 
used 
in this 
study 

Defined 
endpoint 

Model LV Features Training set Test set 

Ntrain R2 Q2
Loo Ntest Q2

F1 Q2
F2 

In this present 
study 

BQ LC50 PLS-Read across 2 6 411 0.64 0.60 137 0.61–0.69 0.61–0.69 
JQ 2 6 77 0.63 0.55 34 0.53–0.70 0.51–0.69 
RNP 2 6 82 0.63 0.53 30 0.60–0.71 0.60–0.71 
MD 1 6 377 0.60 0.58 162 0.71–0.75 0.63–0.68 

(Mukherjee 
et al., 2021) 

BQ LD50 PLS 3 10 103 0.65 0.58 25 0.64 0.64 
JQ 2 3 – 0.73 0.59 – – – 
RNP 2 4 22 0.76 0.60 7 0.64 0.64 
MD 2 7 49 0.65 0.56 13 0.65 0.57 
HS 1 2 – 0.91 0.86 – 0.94 0.88 

Mazzatorta et al ( 
Kim, 2019). 

BQ LD50 GA-SVM – – 94 – – 19 — — 

Podder et 
al (O’Boyle 
et al., 2011). 

BQ LD50 MLR - 7 278 0.715–0.719 0.694–0.700 88 0.722–0.732 0.722–0.732 
MD - 8 182 0.689–0.708 0.626–0.695 65 0.620–0.639 0.620–0.638 
ZF - 5 40 0.754–0.758 0.697–0.722 13 0.787–0.830 0.786–0.829 

(Banjare et al., 
2021). 

BQ LD50 GA-LDA along with 
interspecies 
correlation 

- - 203 - - 67 - - 
MD - - 143 - - 60 - - 
ZF - - 31 -  12 -  

(Basant et al., 
2015). 

BQ LD50 Tree-based QSAR 
approaches 

- - 98 - - 33 - - 

(Kar and 
Leszczynski, 
2020). 

BQ LD50 GFA-PLS 3 5 41 0.67 0.63 15 0.70 0.68 
MD 2 5 42 0.75 0.67 14 0.88 0.87 
RNH 3 4 20 0.89 0.80 7 0.87 0.87 

LV: Latent variable; PLS: Partial least square; SVM: Support vector machine. 
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the work reported in this paper. 
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