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Preface 

This dissertation is presented for the partial fulfilment of the degree of Master of Pharmacy 

in Pharmaceutical Technology. The work presented in this dissertation is spread over two years, 

which encompasses the development of PLS-based Quantitative Structure-Toxicity 

Relationship (QSTR) and q-RASTR (Quantitative Read-Across Structure-Toxicity 

Relationship) models using easily interpretable two-dimensional (2D) molecular descriptors 

for efficient prediction of toxicity of diverse organic compounds towards Birds. The 

significance of this research is underscored by its practical application, which extends beyond 

the realm of theory and into the screening of chemical databases, enabling the identification of 

substances that may pose risks to both human health and the environment. 

The identification and evaluation of toxicity in chemical compounds are of paramount 

importance in addressing potential health risks, encompassing a spectrum of hazards including 

carcinogenicity, genotoxicity, immunotoxicology, and developmental and reproductive 

toxicity. These considerations underscore the integral role of toxicity prediction in the intricate 

process of drug design and development. While preclinical and clinical trials serve as 

indispensable means of assessing toxicity before public consumption, they are often 

characterized by exorbitant costs, extensive labour requirements, prolonged timelines, the 

potential for inconclusive outcomes, and practical infeasibility in certain scenarios. 

In recent years, there has been a significant paradigm shift in the field of toxicology, with in 

silico techniques becoming increasingly prominent as a rational alternative to traditional animal 

testing for predicting toxicity and chemical properties. Driven by ethical considerations, 

efficiency gains, and cost-effectiveness, and aligned with the 3Rs (replacement, refinement, 

and reduction of animals in research), these computational methods offer rapid and versatile 

solutions for assessing chemical toxicity across various compounds. From predicting diverse 

toxicity types to aiding in drug discovery and environmental impact assessments, in silico 

techniques are revolutionizing the way we approach chemical evaluation, aligning with both 

scientific progress and ethical responsibility in the modern era. The classical approach to QSTR 

owes much of its foundation to the pioneering research led by Hansch in 1960, utilizing 

statistical modeling based on linear regression to elucidate the relationships between the 

structural features of molecules and their activity/toxicity/property. The development of 

predictive QSTR models represents a significant advancement in our ability to assess the 

toxicological hazards and properties of chemical toxicants. These models are constructed based 

on chemical information derived from molecular descriptors, enabling a systematic analysis of 
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how the structural features of chemicals relate to their toxicological behaviour.  

Quantitative Structure-Toxicity Relationship (QSTR) modeling, especially when applied to a 

large set of toxic compounds, often involves a multitude of descriptors, adding complexity and 

potentially diminishing reliability and predictiveness. In such cases, the utilization of the Read 

Across Structure-Toxicity Relationship (RASTR) model becomes a viable alternative. RASTR 

combines the principles of similarity and error-based estimations, merging elements of both 

read-across (a non-statistical approach) and traditional QSAR modeling. This approach 

addresses challenges encountered in QSAR modeling related to external validation and the 

interpretability of Read Across methods. 

Recently, an enhanced iteration of the RASTR model, referred to as q-RASTR (Quantitative 

Read Across Structure-Toxicity Relationship) modeling, has been introduced. q-RASTR 

utilizes a blend of similarity and error-based descriptors in its modeling, achieving superior 

predictive potential compared to both QSTR and read-across predictions. The strength of the 

q-RASTR method lies in its capacity to incorporate information about similarity and error 

measures into descriptors, facilitating the development of straightforward, interpretable, 

transferrable, and reproducible models with enhanced predictive capabilities. 

In the present study, predictive QSTR and q-RASTR models were developed using different 

classes of simple 2D descriptors to estimate the toxicity of different organic compounds. We 

attempted to explore the toxicity profile of different organic pollutants to make a more realistic 

move toward risk assessment that could be useful in the development of safer or greener 

chemicals. The predictive models were constructed strictly catering to OECD guidelines and 

rigorously validated using various internationally accepted internal and external validation 

parameters. 

The following analyses have been performed in this dissertation: 

Study 1. Chemometrics-driven prediction and prioritization of diverse pesticides on chickens 

for addressing hazardous effects on public health. 

Study 2.   First report on q-RASTR modeling of hazardous dose (HD5) for acute toxicity of 

pesticides: An efficient and reliable approach towards safeguarding the sensitive avian species. 

Study 3. Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian 

Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and Read-

Across. 

 

 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC
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The accomplished work has been presented in this dissertation under the following sections: 

Chapter 1: Introduction 

Chapter 2: Present Work 

Chapter 3: Materials and Methods 

Chapter 4: Results and Discussion 

Chapter 5: Conclusion 

Chapter 6: References 

Appendix: Reprints 

           

                  In the “introduction” section, we have provided background information on various types of 

pesticides and toxicity toward bird species, humans, and the environment, as well as the different 

types of Quantitative Structures-Activity Relationship (QSAR) models. We have outlined the 

general QSAR procedure and conducted a brief survey of QSAR modeling for predicting the 

toxicity of chemicals and pharmaceuticals to humans and the environment. Additionally, we have 

discussed the applications of QSAR by governing and regulatory authorities are also discussed. 

The planned work has been discussed in the section of Present Work. The descriptors and 

methodologies have been given in the ‘Materials and Methods’ section while the results have 

been discussed in ‘Results and Discussion’ section. Finally, ‘Conclusions’ has been incorporated 

followed by ‘References’ and ‘Reprints’. It is worth mentioning here that the author has already 

published the present work in referred journals like the Journal of Hazardous Material (Elsevier) 

and Process Safety and Environmental Protection (Elsevier) and also presented in different national 

and international seminars and conferences. Another research paper of the author has been 

communicated for publication in a journal. Reprints of the published papers and abstracts of the 

presentations have been enclosed. 

Finally, the work done and presented in this dissertation constitutes a small part of the broad 

spectrum of envisaged works. Considering the stipulated time limit only some representative and 

relevant studies could be performed. Many other interesting aspects arising out of this work could 

have been investigated in a far more meaningful way, which can be planned in the future. 
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Abbreviations Full forms Abbreviations Full forms 

2-D Two dimensional 
NOEL 

No observed effect level 

AD Applicability domain OECD Organization for Economic Co-operation 

and Development 

Abs Max Pos-

Max neg 

The absolute difference between the 

MaxPos and MaxNeg values 
PPDB Pesticide properties database 

BQ Bobwhite quail PRESS Predictive residual sum of square 

BSS Best subset selection QSAR  Quantitative structure-activity relationships 

CA Cluster analysis QSPR Quantitative structure-property relationship 

CVsim Coefficient of variation of the similarity 

values of the close source compounds 
QSTR Quantitative structure-toxicity relationship 

CCC Concordance correlation coefficient q-RASAR Quantitative Read Across Structure-Activity 

Relationship 

CAS Chemical abstracts service q-RASTR Quantitative Read Across Structure-Toxicity 

Relationship 

EPA Environmental protection agency Q2
LOO  Cross-validated correlation coefficient 

EU Europian union REACH 

 

Registration, Evaluation, Authorisation and 

Restrictions of Chemicals 

ED Euclidean distance R2
m Root mean square 

GA Genetic algorithm RF Random forest 

gm*Avg.Sim  
 

Product of the values of gm and Avg. 

Sim  
RR Ridge regression 

gm*SD Similarity  

 

Product of the values of gm and SD 

similarity 
RMSE Root mean square error 

 

HD Hazardous dose SD Standard deviation 

LOO Leave one out SE Weighted standard error of the response 

values of the close source compounds 

LV Latent variable SAR Structure-Activity Relationship 

LD 
Lethal dose SVM Support vector machine 

LC Lethal concentration SVR Support vector regression 

LOEL Lowest observed effect level SMILES Simplified molecular input line entry system 

LDA Linear discriminant analysis SDEP standard deviation of error of prediction 

MAE Mean absolute error VIP Variable importance plot 

MLR Multiple linear regression WHO World health organization 

MW Molecular weight Ycalc(train) Calculated response value of training set 

ML Machine learning Ymean(train) Average of all response of training set 

MAPE Mean absolute percentage error Ycalc(test) Calculated response value of test set 
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1. INTRODUCTION 
1.1 Toxicity 

 

The term "toxicity" refers to the degree to which a chemical or specific combination of chemicals 

can harm an organism. In common use, the word is occasionally almost a synonym for poisoning.  

It is essential to understand that the effects of a toxin depend on the dosage. For example, 

drinking too much water can lead to water intoxication, while even highly toxic substances like 

snake venom have a threshold below which they do not cause harm [1]. Toxicity can manifest 

in various ways, such as disrupting the body's balance, causing irreversible damage to function 

or structure, or making an individual more susceptible to other chemicals, biological stress, and 

infections. Given that our society relies on various chemicals, itis crucial to understand how they 

interact with the environment and their potential toxic effects. Elevated levels of certain 

chemicals or prolonged exposure to them can result in significant harm to the affected organism, 

with the most severe outcome being potential death [2]. The severity of toxic effects depends on 

factors such as the type of chemical, its concentration, the duration of exposure, and the 

sensitivity of the organism. Some adverse effects may be subtle and go unnoticed, while others 

can be immediately life-threatening. Regulatory bodies and environmental agencies play a 

crucial role in monitoring and regulating the use of toxic chemicals to minimize the risks to 

human health and the environment. 

1.1.1 Toxicity of pesticides 

Pesticides are chemical compounds that are used to eliminate insects, rodents, fungi, and weeds. 

These consist of plant growth regulators, molluscicides, rodenticides, fungicides, insecticides, 

herbicides, nematicides, and other substances [3-4]. It plays important roles in commercial as 

well as food-based industrial processes, such as aquaculture, agriculture, food processing, and 

storage, and is typically employed to prevent infections spread by vectors [5]. Any living bodies, 

either animals or plants, which are harmful for humans or animals are known as pests. Pesticides 

are chemicals used to eradicate pests or stop them from growing. Various chemical compounds 

have been used since ancient times to control pests. Sulfur compounds and pyrethrum, a pesticide 

derived from the Chrysanthemum cinerariaefolium plant, have been utilized for over 2000 years 

[6-7]. The global pesticide consumption in 2019 was approximately 4.19 million metric tons, 

where China was by far the largest pesticide-consuming country (1.76 million metric tons), 

followed by the United States (408 thousand tons), Brazil (377 thousand tons), and Argentina 

(204 thousand tons) [8]. India is one of the major pesticide-producing countries in Asia, with an 

annual production of 90 thousand tons of organochlorine pesticides, including benzene 

hexachloride and DDT [9]. Pests, insects, diseases, and weeds can significantly reduce crop 
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production, making pesticides crucial for food production and processing. Warren (1998) [10] 

also noted a substantial increase in food production in the United States over the 20th century. 

Pesticides are used to increase agricultural output and food preservation while ignoring their 

associated risks. Overuse, exposure, and harmful consequences can all be mitigated by applying 

it judiciously and utilizing different pesticide categories (World Health Organization, 2009). 

Widespread pesticide usage has been associated with various detrimental effects, highlighting 

the need for effecting waste management strategies to address pesticide issues. Pesticide 

biodegradation offers an environmentally friendly solution for controlling pesticide pollution in 

the long term. Microorganisms play a significant role in breaking down pesticides and have 

various uses in promoting human welfare. Recent studies have shown that microorganisms 

isolated from sewage or soil have the potential to degrade pesticides. These microbes encompass 

bacterial, fungal strains, actinomycetes, algae, and more [11]. The entire process, including 

pesticide synthesis, manufacturing, environmental and health impacts, and pesticide 

biodegradation, is illustrated in Figure 1.1. 

The use of pesticides has increased significantly in recent decades, particularly in agriculturally 

dependent developing countries. Due to the inherent characteristics, a significant portion of the 

applied dose continues to remain as remnants on crops and fields. Large amounts of pesticides 

have been found in crops, vegetation, and further edible products causing exposure to both 

animals and humans. According to reports, prolonged exposure to these substances can harm a 

person's nervous, endocrine, reproductive, immunological, cardiovascular, renal, and respiratory 

systems. In light of the aforementioned, various regulatory authorities have emphasized the need 

for the toxicity evaluation of both new and existing pesticides [12]. The avian toxicity tests are 

essential for regulatory approval and licensing of the active ingredients of pesticides. 

 

 

 

 

 

Figure 1.1. Thematic diagram of the synthesis, production, uses effects, and eco-friendly 

management of pesticides. 
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1.1.2 Classification of pesticides 

Pesticides are a diverse group of substances that include insecticides, herbicides, fungicides, 

rodenticides, wood preservatives, garden chemicals, and household disinfectants. These 

chemicals are used to kill or protect against pests [13]. These pesticides differ in their physical, 

chemical, and identical properties from one class to other. Therefore, it is worthy to classify 

them based on their properties and study under their respective groups. Synthetic pesticides are 

manmade chemicals and do not occur in nature. They are categorized into various classes 

depending on the needs. Currently, there are three popular methods of pesticide classification 

suggested by Drum [14].These three popular methods of pesticide include (i) classification based 

on the mode of entry, (ii) classification based on pesticide function and the pest organism they 

kill, and (iii) classification based on the chemical composition of the pesticide. 

1.1.2.1 Classification based on the mode of entry 

The ways pesticides come in contact with or enter the target are called modes of entry. These 

include systemic, contact, stomach poisons, fumigants, and repellents. 

1.1.2.1.1 Systemic pesticides 

Systemic pesticides are chemicals that are absorbed by plants or animals and then spread to 

untreated parts of the organism. Systemic herbicides can move through the plant to reach areas 

that were not directly treated, such as leaves, stems, or roots, and effectively kill weeds even 

with partial spray coverage. They have the ability to penetrate plant tissues and move through 

the plant's vascular system to target specific pests. Some systemic insecticides are also applied 

to animals and move through their bodies to control pests like warble grubs, lice, or fleas. When 

applied to the root zone, systemic pesticides will travel throughout the plant, but if applied to the 

leaves, they will not move throughout the plant. Additionally, a few pesticides are considered 

locally systemic, affecting only a short distance in a plant from the point of contact. Examples 

of systemic pesticides include 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate. 

1.1.2.1.2 Non-systemic (contact) pesticides 

Non-systemic pesticides, also known as contact pesticides, only work when they come into direct 

contact with the target pests. They enter the pests' bodies through the skin and cause death by 

poisoning. These pesticides do not spread through the plant's vascular system. Some examples 

of contact pesticides are paraquat and diquat dibromide. 

1.1.2.1.3 Stomach poisoning and stomach toxicants 

Pesticides that cause stomach poisoning enter pests' bodies through their mouth and digestive 

systems, leading to their death. Pests ingest these stomach poisons while feeding on leaves and 

other parts of the plants. The toxins can also be absorbed into the insect's body through the mouth 
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and digestive system. This method is particularly effective in controlling disease-carrying 

insects, such as mosquitoes and black flies, by applying bacteria or toxins to the water where 

larvae feed. These insecticides work by destroying the midgut or stomach of the larvae, 

ultimately killing them. An example of such a pesticide is malathion. 

1.1.2.1.4 Fumigants 

Fumigants are insecticides that function by vaporizing the target pests, possibly killing them. 

When these herbicides are used, toxic gasses are produced. Through spiracles, these vaporized 

insecticides enter the pests' bodies through their tracheal system (respiratory system) and poison 

them, killing them. When compressed under extreme pressure, some of their active constituents 

are liquids; yet, upon release, they transform into gasses. Other active chemicals are not 

formulated under pressure and, when enclosed in a regular container, are volatile liquids. Fruits, 

vegetables, and cereals are treated with fumigants to get rid of pests from stored goods. They 

play a crucial role in soil pest management as well. 

1.1.2.1.5 Repellents 

Repellents do not kill but are distasteful enough to keep pests away from treated 

areas/commodities. They also interfere with pest’s ability to locate crops. 

1.1.2.2 Classification based on pesticide function and pest organism they kill 

In this method, pesticides are categorized based on the specific pest organism they target and are 

given names that reflect their activity. The group names of these pesticides come from the Latin 

word "cide," meaning "kill" or "killer," and are used as suffixes after the corresponding name of 

the pests they kill (Table 1.1). It's important to note that not all the pesticides end with the suffix 

“cide”. Additionally, some pesticides are classified based on their function, such as growth 

regulators, defoliants, desiccants, repellents, attractants, and chemosterilants. 

Table 1.1 Pesticide classification by target pests. 

Type of pests Function Example 

Insecticides Kill insects and other arthropods Aldicarb 

Fungicides Kill fungi (including blights, mildews, molds, 

and rusts) 

Azoxystrobin 

Herbicides Kill weeds and other plants that grow where 

they are not wanted 

Atrazine 

Algaecides Control or kill growth of algae Copper sulfate 

Bactericides Kill bacteria or act against bacteria Copper complexes 

Rodenticides Control mice and other rodents Warfarin 

Lervicides Inhibits growth of larvae Methoprene 
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Repellents Repel pests by its taste or smell Methiocarb 

Virucides Acts against viruses Scytovirin 

Avicides Kill birds Avitrol 

Nematicides Kill nematodes that act as parasites of plants Aldicarb 

Molluscicides Inhibit or kill molluscs i.e. snails usually 

disturb the growth of plants or crops 

Metaldehyde 

1.1.2.3 Classification based on chemical composition of pesticides 

The most common and useful method of classifying pesticides is based on their chemical 

composition and the nature of their active ingredients. This classification provides clues about 

the efficacy, as well as the physical and chemical properties of the pesticides. The information 

on the chemical and physical characteristics of pesticides is very useful for determining the 

mode of application, the precautions that need to be taken during application, and the 

application rates. Pesticides are classified into four main groups based on their chemical 

composition such as organochlorines, organophosphorus, carbamates, and pyrethroids [15]. 

The chemical-based classification of pesticides is rather complex. Modern pesticides are 

generally organic chemicals, including those of both the synthetic and plant origin, although 

some inorganic compounds are also used. The classification of pesticides is presented in 

Figure 1.2. 

 

Figure 1.2. Classification of pesticides. 
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1.1.3 Effects of pesticides 

Despite the beneficial results of using pesticides in agriculture and the public health sector, 

their use also invites harmful environmental and public health effects. Pesticides have a high 

biological activity and toxicity, making them unique among environmental contaminants. 

Most pesticides do not differentiate between pests and other incidental life forms, posing 

potential harm to humans, animals, and the environment when used incorrectly. It is estimated 

that 5,000–20,000 people die and about 500,000 to 1 million people are poisoned every year 

by pesticides [16]. At least half of the affected individuals and 75% of those who die due to 

pesticides are agricultural workers, while the rest are poisoned due to consuming contaminated 

food. 

1.1.3.1 Potential impact on human health 

It's important to be aware that pesticides can enter the human body in several ways. These 

include inhalation of polluted air, dust, and vapor containing pesticides, oral exposure through 

consuming contaminated food and water, and dermal exposure through direct contact with 

pesticides [17]. Pesticides are often sprayed onto fruits and vegetables and can end up in the 

soil and groundwater, which may then contaminate drinking water. Additionally, pesticide 

spray can drift and pollute the air. The harmful impact on human health depends on factors 

such as the toxicity of the chemicals, the duration, and the magnitude of exposure [18]. The 

toxicity of chemicals is influenced by the nature of the toxicant, routes of exposure (oral, 

dermal, and inhalation), dose, and the organism. Toxicity can manifest as either acute or 

chronic. Acute toxicity refers to the rapid development of harmful effects within a few hours 

or a day after absorption, while chronic toxicity results from long-term exposure. The toxicity 

of insecticides is often measured in terms of lethal dose 50% (LD50) or lethal concentration 

50% (LC50). LD50 is the single exposure dose per unit weight of the organism required to kill 

50% of the test population, expressed in milligrams per kilogram of body weight. LC50 is the 

concentration of the chemical in the external medium (usually air or water) causing 50% 

mortality in the test population and is expressed in parts per million (ppm). 

1.1.3.2 Impacts on the environment 

The widespread use and disposal of pesticides by farmers, institutions, and the general public 

create multiple potential sources of pesticides in the environment. These substances can have 

far-reaching effects, spreading through the air, being absorbed in the soil, or dissolving in 

water and ultimately reaching a much larger area than originally intended. Once released into 

the environment, pesticides can take on different fates. For instance, when pesticides are 
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sprayed on crops, they may travel through the air and end up in other parts in the environment, 

such as soil or water. Pesticides applied directly to the soil may wash off and make their way 

to nearby surface water through runoff, or seep down through the soil and reach lower layers 

and groundwater [19]. The impact of pesticides on the environment can vary from minor 

disruptions in the normal functioning of ecosystems to loss of species diversity. Pesticides can 

have both long-term residual effects and immediate, severe impacts. For example, many 

organochlorine pesticides persist in the environment for long periods, leading to contamination 

of groundwater, surface water, food products, air, and soil. 

1.1.3.3 Impacts on avian species 

Avian species hold a unique position in the ecosystem as one of the most diverse and 

evolutionary successful groups, especially in the tropics. Unfortunately, Europe has observed 

a significant loss of around 550 million birds over the last forty years. This decline is primarily 

attributed to the widespread use of pesticides and fertilizers in agriculture, as well as the effects 

of climate change, changes in forest cover, and urbanization. Pesticides are important for 

managing pests and improving crop productivity in modern agriculture, but they also pose 

risks to non-target organisms like birds, raising significant environmental concerns [20]. Birds 

play crucial roles in ecosystems by contributing to pest control, pollination, and seed dispersal, 

which are essential for biodiversity and environmental health [21]. However, exposure to 

pesticides can cause acute toxicity and long-term declines in avian populations, disrupting 

ecological balance and biodiversity [22]. Therefore, it's crucial to assess pesticide toxicity to 

manage the associated risks to avian species and maintain ecosystem balance. 

1.1.4 Quantitative Structure-activity/property/toxicity relationship (QSAR/QSPR/QSTR) 

modeling and other in-silico approaches 

The investigation of the properties of chemicals for toxicological prediction is often advised 

by governing bodies such as the Environmental Protection Agency (EPA), Registration, 

Evaluation, Authorization and Restriction of Chemicals (REACH), European Chemicals 

Bureau (ECB), and European Food Safety Authority (EFSA). Computational tools such as 

read-across and QSAR are recommended for this purpose [23]. QSAR, in particular, is widely 

used to predict the toxicity of test chemicals. This technique involves developing a scientific 

model from a series of compounds with experimentally derived endpoint values. Due to its 

reproducibility, simplicity, and transferability, QSAR is widely employed. Current chemical 

risk assessment often relies on similarity-driven methods like Read-Across, which assumes 

that compounds with similar structures have comparable biological activities [24]. This makes 

emerging similarity-driven systems more suitable for consistent compound prediction. While 
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Read-Across predicts probe compounds more reliably than QSAR models, it has limitations 

in interpreting essential features [25]. To address this issue, a novel approach called Read-

Across Structure-Activity Relationship (RASAR) was introduced, which combines the 

benefits of QSAR and Read-Across algorithms, resulting in better predictive ability and 

reduced mean absolute error (MAE) [26]. They utilized classification-based models that 

produced predictions on a graded scale. Banerjee and Roy [27] introduced q-RASAR modeling 

with descriptors based on similarity and error measures. The q-RASAR methodology utilizes 

descriptors based on similarity and error measures to develop simple, convenient, 

interpretable, and reproducible models with better predictivity. These q-RASAR models can 

be developed using statistical techniques like MLR, PLS, and other sophisticated machine 

learning (ML) techniques. Machine learning, which uses various algorithms for building 

models and making predictions using data, has shown potential for experimental studies. 

Commonly used machine learning algorithms include support vector machines (SVM), 

artificial neural networks (ANN), and others [28-29]. 

1.1.4.1 What is QSAR/QSPR/QSTR modeling? 

QSAR modeling involves creating a mathematical relationship between a chemical response 

and the quantitative chemical attributes defining the features of related molecules. This study 

aims to establish a correlation between the behavior of a chemical (the "endpoint") and the 

quantitative chemical attributes that can be derived from the chemical structures through 

experimental or theoretical methods. Depending on the nature of the response being modeled, 

QSAR falls into three major classes: quantitative structure-property/activity/toxicity 

relationship (QSPR/QSAR/QSTR) studies, which consider modeling physicochemical 

property, biological activity, and toxicological data, respectively. The basic formalism of 

QSAR model can be mathematically represented as follows, 

          Biological activity/property/toxicity = f (Chemical attributes)                (1.1) 

The term "chemical attribute" refers to the features that define the behavior of the analyzed 

chemical compounds and control the response under study. These attributes are precise 

quantitative chemical information that can be derived from experimental analysis or theoretical 

algorithms. Considering the employment of a series of chemical information in presence-

absence of physicochemical features, the QSAR equation for a specific response can be 

mathematically stated as follows: 

               Y= a0 + a1X1 + a2X2 + a3X3+………………………+anXn     (1.2) 
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Since we are talking in terms of a mathematical correlation, such equations are better explained 

in terms of variables. Here, Y is the dependent variable representing the response being modeled, 

i.e., activity/property/toxicity while X1, X2,…, Xn are the independent variables denoting 

different structural features or physicochemical properties in the form of numerical quantities or 

descriptors and a1, a2,…, an are the contributions of individual descriptors to the response with 

a0 being a constant. Hence, we can see that the physicochemical properties can not only be 

employed as a dependent or response variable giving a structure-property relationship, i.e., 

QSPR, but they might also be used as independent or predictor variables. QSAR studies may 

also use one response parameter as a predictor variable for modeling another type of endpoint, 

resulting in quantitative activity-activity relationship (QAAR), quantitative toxicity-toxicity 

relationship (QTTR), or quantitative property-property relationship (QPPR) modeling, as 

appropriate. While the modeled response should be quantitative to develop a regression model, 

it may also be categorical entities used for classification models. However, the predictor 

variables in QSAR modeling should always be quantitative. QSAR analysis focuses on 

quantifying chemical information and developing an interpretative relationship for a given 

response [30].  

1.1.4.2 QSAR and regulatory perspectives 

The use of QSAR techniques for developing predictive models is recognized and recommended 

by several international regulatory bodies. Different regulatory bodies address the following 

aspects for performing risk assessment of chemicals, 

1. Assessment of chemical hazard: This includes identifying and characterizing the dose-

response of hazards, as well as classifying and labelling the chemicals. 

2. Assessment of exposure. 

3. Assessment of hazard and exposure. 

4. Identification of persistent, bioaccumulative, and toxic (PBT) as well as very persistent and 

very bioaccumulative (vPvB) chemicals. 

Determining chemical toxicity typically involves a significant number of animal experiments to 

generate reliable chemical response data. Therefore, it is crucial for any hazard assessment 

strategy to seek suitable alternative methods to reduce animal experimentation. QSAR plays a 

significant role in this context, as it requires a comparatively smaller amount of response data 

and can predict responses for a large number of chemicals. The QSAR technique aligns with the 

‘3R’ principle of Russell and Burch – replacement, reduction, and refinement of animals in 

biological experiments. The major advantages of QSAR modeling in regulatory assessment 

include prioritization of chemicals and filling of data gaps. Furthermore, modeling of categorical 

data is important, as the toxicological response of chemicals can be categorized into groups or 
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classes, signifying different levels of hazards such as high, moderate, low, etc. Regulatory 

agencies advocating the use of QSAR as an alternative strategy to animal experiments include 

the European Centre for the Validation of Alternative Methods (ECVAM) of the European 

Union, the Office of Toxic Substances of the US Environmental Protection Agency (US-EPA), 

the Agency for Toxic Substances and Disease Registry (ATSDR), and the Council for 

International Organizations of Medical Sciences. The European Commission introduced the 

REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulations in 

2006, aimed at systematically evaluating the toxicological hazards of existing and new chemicals 

(imported or produced) and identified QSAR as an alternative method for toxicity testing of 

animals. The Organization of Economic Cooperation and Development (OECD) proposed a set 

of five-point guidelines in 2004 for the development and validation of predictive QSAR models 

by its member countries. Over time, QSAR studies have become an essential part of global 

regulatory assessments, and various countries have developed their own ‘expert systems’ for 

determining chemical hazards. Expert systems are computational applications providing subject-

matter expertise to non-experts by using logical reasoning. Different expert systems contain 

models on toxicological endpoints prepared and maintained by professional personnel, serving 

as trusted systems with a suitable user interface to easily test the toxicity or categorical hazard 

of any unknown or new chemical using the existing knowledge base. 

1.1.4.3 Applications of QSAR 

Chemicals are essential for a wide range of applications, from industrial and laboratory processes 

to household uses. QSAR is a valuable approach for monitoring the activity, properties, and 

toxicity of chemicals, with extensive applications across various fields. By fine-tuning the 

behavior of chemicals, QSAR can produce positive results for a large class of chemicals, 

including pharmaceuticals, agrochemicals, perfumeries, solvents, and more. The potential 

application of the QSAR technique is vast, as it can model chemicals in three main categories: 

those with health benefits (drugs, pharmaceuticals, food ingredients), those involved in industrial 

and laboratory processes (solvents, reagents), and those with hazardous outcomes (persistent 

organic pollutants, toxins, carcinogens). In addition to modeling biological activity and toxicity, 

QSAR is also used in the drug design process to monitor the pharmacokinetic profile of potential 

drug candidates, enhancing the efficacy of designed compounds within the biological system. 

When assessing the toxicity of chemicals, two options are commonly considered: systematic 

toxicity evaluation and monitoring of ecotoxicological hazards. Drugs and pharmaceuticals can 

pose toxicity to specific organ systems (e.g. hepatotoxicity, nephrotoxicity, cardiovascular 

toxicity) and can also be concerning from an environmental perspective, as even trace amounts 



Chapter 1 Introduction 

 

                                                                                                                                                                     

                                                                                                                                                      Page 11    

of these compounds in wastewater streams can damage ecosystems [31]. Physiologically based 

pharmacokinetic (PBPK) 

modeling is another area of interest, involving the modeling of chemicals such as volatile organic 

compounds (VOCs) using physicochemical and biochemical parameters. 

In light of the growing health and environmental concerns, modern technologies are focused on 

establishing a sustainable and green ecosystem that promotes environmental friendliness in 

terms of efficiency, effectiveness, and safety. QSAR plays an encouraging role in achieving this 

environmental sustainability through the design and development of process-specific chemicals 

with reduced or no hazardous outcomes. 

1.1.4.4 Descriptor 

A QSAR model can be represented as a straightforward mathematical formula that correlates the 

physical, chemical, biological, and toxicological characteristics of molecules using a variety of 

quantitative factors that are obtained computationally or experimentally and are referred to as 

"descriptors." A number of chemometric techniques are used to link the descriptors with the 

experimental properties (response) in order to produce a statistically significant QSAR model. 

"Terms that characterize specific information of a studied molecule" are known as molecular 

descriptors. In order to correlate chemical structure with different physical attributes, chemical 

reactivity, or biological activity, these are the "numerical values associated with the chemical 

constitution." The resulting equation ought to offer substantial understanding of the fundamental 

structural requirements of the molecules that support the examined molecules' biological 

response [32]. In other words, the response of a chemical can be mathematically presented as 

the function of descriptors (Eq. 1.3). 

Response (activity/property/toxicity) 

= f (Molecular information extracted using chemical structure or physicochemical property) 

= f (Descriptors)                                                                                                                 (1.3) 

An ideal descriptor should possess the following features for the construction of a reliable 

QSAR model: 

1. A descriptor should be relevant to a broad class of compounds. 

2. A descriptor needs to show a negligible association with other descriptors and a correlation 

with the biological reactions under study.  

3. The descriptor should be quickly calculated and unaffected by experimental characteristics. 

4. Even with minor structural variations, a descriptor should yield distinct values for molecules 

with dissimilar structures. 

5. Physical interpretability of a descriptor is necessary to identify the chemicals under study and 

identify their query properties. 
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1.1.4.5 Types of descriptors 

Descriptors can be of different types depending on the method of their computation or 

determination: physicochemical (hydrophobic, steric, or electronic), structural (frequency of 

occurrence of substructure), topological, electronic (molecular orbital calculations), geometric 

(molecular surface area calculation), or simple indicator parameters (dummy variable). In a 

broader perspective descriptor, (basically physiochemical descriptors) can be classified can be 

two major groups 1) Substituent constant and  2) whole molecular descriptors [33,34]. 

Substituent constants are physiological descriptors which are deigned based on factors, which 

govern the physicochemical properties of chemical entities. Whole molecular descriptors are 

expansions of the substituent constant approach, but many of them are also derived from 

experimental approaches. 

The descriptor may also be classified based on the dimensions. Different types of descriptors 

employed in the QSAR study are represented in Table 1.2. 

Table 1.2. Different descriptors employed in the QSAR study based on dimensions. 

Dimension of descriptors Parameters 

0D-descriptors Constitutional indices, molecular property, and atom and bond 

count. 

1D-descriptors Fragment count, Fingerprints. 

2D-descriptors Topological parameters, structural parameters, physiochemical 

parameters, including thermodynamic descriptors. 

3D-descriptors Electronic parameters, spatial parameters, molecular shape analysis 

parameters, molecular field analysis parameters, and receptor 

surface analysis parameters. 

4D-descriptors Volsurf, GRID, Raptor, etc. derived descriptors 

5D-descriptors These descriptors considered induced-fit parameters and aimed to 

establish a ligand-based virtual or pseudoreceptor model. These can 

be explained as 4D-QSAR+ explicit representations of different 

induced fit models. 

Example- flexible protein docking 

6D-descriptors These are derived using representation of various solvation 

circumstances along with the information obtained from 5D 

descriptors. They can be explained as 5D-QSAR+ simultaneous 

consideration of different solvation models. Example- Quasar  

7D- descriptors They comprise real receptor or target based receptor model data. 
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1.1.4.6 Strategy for development of quantitative structure activity/property/toxicity 

relationship 

QSAR steps 

The strategy for developing quantitative structure-activity relationship (QSAR) in drug design 

involves multiple iterative steps based on statistical experimental design and multivariate data 

analysis. The ultimate goal is to design compounds or predict the toxicity of chemicals. 

I. Generation of molecular descriptors from chemical structures 

The chemical structures typically don't contain explicit information related to activity. This 

information needs to be extracted from the structure. Calculating descriptor values is generally 

straightforward due to the availability of many commercial and academic computer-aided 

molecular design (CAMD) packages that handle this calculation with ease. Different rationally 

designed molecular descriptors highlight various chemical properties present in the molecule's 

structure, and only those properties may have a more direct correlation with the activity. 

II. Feature selection 

In many applications, numerous molecular descriptors can be generated, often numbering in the 

hundreds or thousands. However, only a few of them are substantially correlated with the activity 

being studied. Additionally, many descriptors are correlated with each other, which can have 

adverse effects on various aspects of QSAR analysis. Some statistical methods require a 

significantly larger number of compounds than descriptors. Therefore, working with extensive 

descriptor sets necessitates large datasets. 

III. Series design (selection of training set) 

The selection of compounds for the training set is crucial in QSAR analysis. The most effective 

approach for selecting the training set is to consider relevant physicochemical descriptors and 

the principle of structural similarity. This process operates on the assumption that a molecule 

which is structurally similar to the molecules in the training set will be predicted accurately. This 

is because the model has captured common features of the training set molecules and is able to 

recognize them in the new molecule. 

IV. Model construction 

After selecting the relevant features, the final stage of building a QSAR model involves a feature 

mapping process, also known as the parameter estimation problem. The objective is to establish 

a mathematical relationship and estimate the model parameters. A variety of mapping function 

families can be utilized, such as linear ones (e.g., multiple linear regression, stepwise regression, 

partial least square regression) and non-linear ones (e.g., artificial neural network, random 

forest). Various methods can be used to train and obtain the optimal function. 
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V. Model validation 

"The validation of a QSAR involves assessing the model's predictive ability, applicability 

domain, and mechanistic basis for a specific purpose. Before using a QSAR model to interpret 

and predict biological responses of untested compounds, it must be properly validated. In 

essence, there are four tools for assessing the validity of QSAR models. These are: 

 Randomization of Response into an array of Recorded Variables (Y scrambling) 

This procedure ensures that the model is not due to a chance. The most widely used approach to 

establish model robustness is Y scrambling (random permutation of response values, i.e., 

activities). 

This process entails repeating the calculation with randomized activities and then evaluating the 

resulting statistics for their probability. 

 Cross-validation 

In recent times, the method known as cross-validation, or more accurately leave-one-out cross-

validation (LOO), was developed. In this method, a single sample of size n is used. Each member 

of the sample is removed in turn, the full modeling method is applied to the remaining n-1 

members, and the fitted model is applied to the holdback member. 

 Splitting of parent data set into training and validation sets 

Cross-validation gives a good estimate of how well the QSAR model can predict the activity 

values of new compounds. This is called internal validation because all the chemicals used 

belong to the same dataset. If there are enough compounds available, they can be divided into a 

training set and a separate validation set for external validation. 

 External validation using a designed validation set 

External validation using a designed validation set is a crucial aspect of any QSAR modeling. It 

is an absolute requirement for the development of a truly predictive QSAR model. True external 

datasets are rare for QSAR studies, and in cases where they are not available, the dataset is 

divided into training and test sets for appropriate validation. 

1.1.4.7 Chemometric tools 

Chemometrics is the chemical discipline that uses statistical methods to design optimal 

procedures, experiments, and objects, and to provide maximum chemical information by 

analyzing chemical data.  

1.1.4.7.1 Various chemometric tool used in QSAR/ QSPR/QSTR 

QSAR/QSPR/QSTR is a statistical approach correlating the response property, activity, or 

toxicity data with descriptors encoding chemical information. Such correlation may be derived 

either in regression-based approach (in case where the response property is quantitative and 

available on a continuous scale) or a classification-based approach (in cases where the response 
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property is graded or semi-quantitative). The most commonly used regression-based approaches 

are as follows: 

 Multiple linear regression (MLR) 

 Partial least square (PLS) 

Some of the common classification-based approaches are as follows  

 Linear discriminant analysis (LDA) 

 Logistic regression 

Machine learning tools such as artificial neural networks and support vector machines are very 

effective in developing predictive models, especially for handling high-dimensional and 

complex chemical information data that show a nonlinear relationship with the response(s) of 

the chemicals. This chapter will briefly discuss some of the more popular and commonly used 

chemometric tools. However, before applying any statistical model-building method, the 

QSAR/QSPR data table may need to be pre-treated followed by a suitable feature selection 

method. 

 Multiple linear regression (MLR) 

Multiple linear regression [35] or MLR is commonly used in QSAR due to its simplicity, 

transparency, reproducibility, and easy interpretability. The generalized expression of an MLR 

equation will be like the following, 

            Y= a0 + a1 × X1 + a2 × X2 + a3 × X3+………………………+an × Xn                            (1.4) 

In the above expression, Y is the response or dependent variable, X1, X2, X3…..Xn are 

descriptors (features or independent variables) present in the model with the corresponding 

regression coefficient a1, a2, a…..an, respectively, and a0 is the constant term of the model. Each 

regression coefficient should be significant at p<0.05 which can be checked from the ‘t’ test. 

The descriptors present in an MLR should not be much intercorrelated. For a statistically reliable 

model, the number of observations and descriptors should be maintained at 5:1. 

 Partial least square (PLS) 

When dealing with a large number of interrelated and noisy descriptors for a limited amount of 

data, PLS is a better choice over MLR. PLS is an extension of MLR and aims to extract latent 

variables (LVs) from the original variables, capturing as much of the underlying factor variation 

as possible while modeling the responses. In linear PLS, new variables (latent variables) are 

found, representing linear combinations of the original variables. When the number of LVs 

equals the number of variables, the PLS model is equivalent to the MLR model. It is important 

to rigorously test the predictive significance of each PLS component and stop adding new 

components when they become non-significant. 
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 Linear discriminant analysis (LDA) 

LDA [36] can be used to separate two or more classes of objects, making it useful for 

classification problems. It performs a similar task to MLR by predicting an outcome when the 

response property has graded values and molecular descriptors, as well as continuous variables. 

LDA explicitly attempts to model the difference between the classes of data. In a two-group 

situation, the predicted membership is calculated by computing a discriminant function (DF) 

score for each case. Then, cases with DF values smaller than the cut-off value are classified as 

belonging to one group, while those with values larger are classified into the other group. The 

DF may take the following form: 

                                    DF= C1×X1 + C2×X2 +………. + Cm×Xm + a                   (1.5)   

where DF is the discriminate function, which is a linear combination (sum) of the discriminating 

variables, c is the discriminant coefficient or weight for that variable, X is respondent’s score for 

that variable, a is a constant, m is the number of predictor variables. The c’s are unstandardized 

discriminant coefficients analogous to the beta coefficients in the regression equation. This c’s 

maximize the distance between the means of the criterion (dependent) variable. Good predictors 

tend to have large standardized coefficients. After using an existing set of data to calculate the 

DF and classify cases, any new cases (test samples) can then be classified. In a stepwise DF 

analysis, the model is built step-by-step. Specifically, at each step, all variables are reviewed and 

evaluated to determine which one will contribute most to the discrimination between groups. 

That variable will then be included in the model, and the process starts again. 

 Logistic regression 

Logistic regression [37] is a statistical classification model that assesses the relationship between 

a categorical-dependent variable (having only two categories) and one or more independent 

variables. These independent variables are usually continuous, but not necessarily so. It uses 

probability scores as the predicted values of the dependent variable. Unlike linear regression, 

logistic regression does not assume a linear relationship between the dependent and independent 

variables. The independent variables do not need to be normally distributed, linearly related, or 

have equal variance within each group. 

 Cluster analysis 

Unlike LDA, cluster analysis [38] does not require prior knowledge about which elements 

belong to which clusters. Instead, the clusters are defined through an analysis of the data. Cluster 

analysis aims to maximize the similarity of cases within each cluster while maximizing the 

dissimilarity between initially unknown groups. Hierarchical cluster analysis identifies relatively 

homogeneous clusters of cases based on dissimilarities or distances among objects. The most 

common way to compute distances between objects in a multidimensional space is to calculate 
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the Euclidean distances or the squared Euclidean distance. The process starts with each case as 

a separate cluster and then sequentially combines the clusters, reducing the number of clusters 

at each step until only one cluster is left. The k-means clustering is a non-hierarchical method of 

clustering that is used when the number of clusters in the data is known. It is an unsupervised, 

centroid-based method. In general, the k-means method will produce exactly k different clusters. 

The method starts by defining k centroids, one for each cluster, and placing them as far away 

from each other as possible. The next step is to take each point in the dataset and associate it 

with the nearest centroid. When no point is pending, the positions of the k centroids are 

recalculated. This process is repeated until the centroids no longer move. 

 Quantitative read-across structure-toxicity relationship (q-RASTR) 

QSTR and read-across techniques have recently converged to form an emerging field known as 

read-across structure-toxicity relationship (RASTR). This approach combines the chemical 

similarity principles of read-across with supervised learning techniques similar to QSAR. 

RASTR has been used for both the classification modeling and quantitative predictions (q-

RASTR) [39]. 

This modeling approach utilizes a combination of similarity and error-based descriptors. This 

method has been shown to have better predictive potential and lower Mean Absolute Error 

(MAE) as compared to both QSTR and read-across predictions. The strength of q-RASAR lies 

in its ability to incorporate both similarity and error measurement information into descriptors, 

creating models that are straightforward, interpretable, transferable, and replicable, with 

improved predictive accuracy [40]. 

 q-RASTR descriptors 

Compound similarity is estimated using three different methods: Euclidean distance, Gaussian 

kernel similarity, and Laplacian kernel similarity. The RASAR descriptor RA function is a 

prediction function derived from read-across, created by averaging the response values of source 

compounds identified as having structurally analogous properties. The weighted standard 

deviation of activity near n source chemicals for a specific target compound is represented by 

the SD activity descriptor. SE stands for the weighted standard error associated with the activity 

values of the nearby n-source compounds for a given target compound. The descriptor CVact 

represents the coefficient of variation of the activity values among the nearby n-source 

compounds for a specific target compound. MaxPos signifies the maximum similarity score 

between the target compound and the training set, while MaxNeg quantifies the degree of 

resemblance between a target compound and a nearby source compound with an activity 

response value lower than the mean response of the training set. The absolute difference between 

MaxPos and MaxNeg for a specific query compound is denoted as Abs Max Pos-Max Neg. The 
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descriptor AvgSim calculates the mean similarity value among n closely related source 

compounds for a specific target compound. The gm (Banerjee-Roy coefficient) descriptor 

assesses the likelihood of whether the query compound is active or inactive, with values ranging 

from -1 to +1. gm*Avg. Sim and gm*SD_Similarity descriptors are obtained by multiplying gm 

values with Avg. Sim and SD_Similarity values, respectively. Pos. Avg. Sim indicates the 

average similarity values among the n close source compounds with response values higher than 

the training set's mean response value, while Neg. Avg. Sim signifies the average similarity 

values among the n close source compounds with response values lower than the training set's 

mean response value [41-42].  

1.1.4.8 Calculation of various statistical metrics to evaluate the quality of a model 

The primary methods for validating the developed QSAR models are internal and external 

validation statistics. These methods are widely used by different groups of researchers to assess 

the predictive ability of the developed model. Another method involves fitting the dependent X 

matrix to randomized response parameters. Several metrics are used to check the predictivity of 

the QSPR models. For the validation of QSPR models, three strategies are primarily adopted: (i) 

internal validation using the training set molecules and (ii) external validation based on the test 

set compounds. 

1.1.4.8.1 Determination coefficient (R2): This parameter is known as the determination 

coefficient or squared correlation coefficient. The squared correlation coefficient of a model can 

be obtained from the following equation, 

𝑅2 = 1 −
Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑐𝑎𝑙𝑐(𝑡𝑟𝑎𝑖𝑛))

2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑡𝑟𝑎𝑖𝑛)
2           

In regression analysis, the goal is to minimize the sum of squared residuals (the differences 

between the observed and predicted values). A small sum of squared residuals indicates a good 

fit for the model. We expect most individual observed Y values to deviate significantly from the 

predicted Y values. In an ideal model, the sum of squared residuals is 0, and the R squared (R2) 

value is 1. As the R2 value deviates from 1, the model's fitting quality worsens. The square root 

of R2 is the multiple correlation coefficient (R). 

1.1.4.8.2 Leave-one-out cross-validation (Q2) 

The models developed from the training set by using stepwise regression or genetic methods have 

been subjected to internal validation by means of calculating leave-one-out cross-validation R2(Q2) 

and predicted residual sum of squares (PRESS) [43] and the acceptable models have been further 

processed for the prediction of toxicity and/or property of the test set compounds. Cross-validated 

correlation coefficient R2
 (LOO−Q2) is calculated according to the formula, 

(1.6) 
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                                           𝑄𝐿𝑂𝑂
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑝𝑟𝑒𝑑(𝑡𝑟𝑎𝑖𝑛))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛)−𝑌𝑡𝑟𝑎𝑖𝑛)
2   

Here 𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛), 𝑌𝑝𝑟𝑒𝑑(𝑡𝑟𝑎𝑖𝑛), and  𝑌𝑡𝑟𝑎𝑖𝑛 and are the observed, predicted and the average value 

of the response variable of the training set. In this technique, a single compound is randomly 

omitted from the dataset in each cycle, and then a model is built using the remaining compounds. 

This process is repeated for every compound in the dataset. The model formed in this way is 

used to predict the activity of the omitted compound. The process is iterated until all the 

compounds are eliminated once. On the basis of the predicting ability of the model, the cross-

validated R2 (Q2) for the model is determined. Acceptable value of Q2 is 0.5 with a maximum 

value of 1.0 and hence more the value is closer to 1, more will be the internal predictivity of the 

model. 

1.1.4.8.3 Root mean square error of calibration 

The root mean square error of calibration (RMSEC) can be computed from the following 

expression, 

𝑅𝑀𝑆𝐸𝑐 = √(Σ𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛) − 𝑌𝑐𝑎𝑙𝑐(𝑡𝑟𝑎𝑖𝑛))
2

𝑛
 

The value of RMSEc should be low for a good model. 

1.1.4.8.4 rm
2

(LOO) 

 It was shown that [44] squared cross-validated correlation coefficient alone might not indicate 

the true predictive capability of a model and hence a modified r2 (rm
2

(LOO)) term was used to 

indicate the leave-one-out prediction capacity of the model for the training set compounds. The 

parameter rm
2

(LOO) is obtained from the following equation, 

𝑟𝑚
2 = 𝑟2 × (1 − √(𝑟2 − 𝑟0

2)) 

where r2 and r0
2 are the squared correlation coefficients between the observed and LOO predicted 

values of the training set compounds with and without intercept respectively. The value of 

rm
2

(LOO) should be greater than 0.5 for an acceptable model. 

1.1.4.8.5 Golbraikh and Tropsha criteria 

Golbraikh and Tropsha [45] proposed several parameters for determining the external 

predictability of the QSAR model. An acceptable QSAR model should be close to ideal in order 

to exert high predictive ability. An ideal QSAR model should have a correlation coefficient (R) 

that is close to 1 between the observed (y) and predicted (y/) activities. According to Golbraikh 

and Tropsha, regressions of y against y/ against y through the origin should be characterized by 

   (1.8) 

     (1.7) 

   (1.9) 
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either k or k/ (slopes of the corresponding regression lines) being close to 1. Subsequently, the 

regression lines through the origin are defined by yr0 = ky/ and y/r0 =k/y, while the slopes k and 

k/ are given by, respectively, 

 

A stricter condition for the QSAR model to have high predictive ability was further proposed by 

Golbraikh and Tropsha. They showed that either of the squared correlation coefficients of these 

two regression lines (y against y / or y / against y through the origin) r0
2or r0 /2 (given by Eqs. 

(1.12) and (1.13), respectively) should be close to the value of r2 for the developed model. The 

values of r2 and r0
2 indicate the squared correlation coefficients between the observed and the 

predicted activity values with and without intercept, respectively, while r0 /
2 represents the same 

information as r0
2 does, but with inverted axes:  

        

Based on Golbraikh and Tropsha criteria, the model will be acceptable if:  

1. Q2
LOO (train) > 0.5 

2. R2(test) > 0.6 

3. [(r2-r0
2)/ r2] < 0.1 or [(r2-r’0

2)/ r2] 

4. 1.15 > k > 0.85 or 1.15 > k’> 0.85 

1.1.4.8.6 MAE-based criteria 

In a recent study, Roy et al. [46] have shown that commonly used metrics like (Q2
F1), (Q

2
F2), and 

(Q2
F3) can often provide biased assessments of model predictivity. This is because these metrics 

are influenced by factors such as the response range and distribution of data. In this study, the 

authors have proposed a set of criteria that utilize the 'mean absolute error' (MAE) and the 

corresponding standard deviation (σ) of the predicted residuals to evaluate the external 

predictivity of the models.  

 

 
     (1.14) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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where Yobs and Ypred are the respective observed and predicted response values of the test set 

comprising n number of compounds, the response range of training set compounds has been 

employed here to define the threshold values. Furthermore, the authors have proposed 

application of the MAE-based criteria‟ on 95% of the test set data by removing 5% data with 

high predicted residual values precluding the possibility of any outlier prediction. The criteria 

are described below, 

 Good prediction- The criteria for good predictions is as follows, 

            MAE ≤ 0.1× training set range AND (MAE +3σ) ≤ 0.2× training set range 

In simpler terms, an error of 10% of the training set range should be acceptable while an error 

value of more than 20% of the training set range may be considered high. 

 Bad prediction- The criteria for bad predictions is as follows, 

MAE > 0.15 × training set range OR (MAE+3σ) > 0.25 × training set range 

Here, a value of MAE more than 15% of the training set range is considered high while an 

error of more than 25% of the training set range is judged as very high. The predictions that 

do not fall under either of the above two conditions may be considered moderate quality. The 

above criteria should be applied for judging the quality of test set predictions when the number 

of data points is at least 10 (statistical reliability) and there is no systematic error in model 

predictions (statistical applicability). 

1.1.4.8.7 Q2
F1 or R2

pred 

Predictive R2 (Q2
F1) reflects the degree of correlation between the observed and predictive 

activity data of the test set. 

𝑄𝐹1
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑟𝑎𝑖𝑛)
2  

Here, Yobs(test) and Ypred(test) are the observed and predicted activity data for the test set 

compounds, while Ytraining indicates the mean observed activity of the training set molecules. 

Thus, models with values of R2
pred or Q2

F1 above the stipulated value of 0.5 are considered to be 

well predictive. 

1.1.4.8.8 Q2
F2 

Another expression for the calculation of external Q2 (i.e., Q2
F2) is based on the prediction of test 

compounds proposed by Schurmann et.al [47] as given by Eq. (1.16) 

 

(1.15) 
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𝑄𝐹2
2 = 1 −

 Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))
2

Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑡𝑒𝑠𝑡)
2  

where 𝑌𝑡𝑒𝑠𝑡 refers to the mean observed data of the test set compounds and Q2
F2 differs from 

Q2
F1 in the mean value used in the denominator for calculation. When the two values approach 

each other, it can be inferred that the training set mean lies in close proximity to that of the test 

set, indicating that the test set used for prediction spans the whole response domain of the model. 

A threshold value 0.5 is defined for this parameter. 

1.1.4.8.9 Q2
F3 

One more parameter, Q2
F3 with the threshold value of 0.5, used for external validation of a QSAR 

model, has been proposed by consonni et.al [48]. This parameter is defined as follows, 

𝑄𝐹3
2 = 1 −

 
[Σ(𝑌𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡))

2  
]

n𝑡𝑒𝑠𝑡

Σ(𝑌𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2

/n𝑡𝑟𝑎𝑖𝑛

 

Where, ntrain refers to the number of compounds in the training set. Here, the summation in the 

numerator deals with the external test set, while that in the denominator runs over the training 

set compounds. Considering that the number of test and training objects are usually different, 

divisions by ntest and ntrain make the two values comparable. However, although the value of Q2
F3 

measures the model predictability, it is sensitive to training-set data selection and tends to 

penalize models fitted to a very homogeneous data set, even if predictions are close to the truth. 

Since this function includes information about the training set, it cannot be properly regarded as 

an external validation measure even if predictions are really obtained for the external test set. 

1.1.4.8.10 Concordance correlation coefficient (CCC) 

The concordance correlation coefficient (CCC) parameter [49] can also be calculated to check 

the model reliability by using the following equation: 

In the above equation, Xobs(test) and Ypred(test) correspond to the observed and predicted values of 

the test compounds, n is the number of chemicals, and 𝑋𝑜𝑏𝑠(𝑡𝑒𝑠𝑡) and 𝑌𝑝𝑟𝑒𝑑(𝑡𝑒𝑠𝑡) correspond to 

the averages of the observed and predicted values, respectively, for the test compounds. The 

ideal value of CCC should be equal to 1. 

1.1.4.8.11 Y-randomization 

The relationships between the response variable and the descriptors can be checked for further 

statistical significance by randomization test (Y-randomization) of the models. The method can 

be executed in two ways namely: 

(1.17) 

(1.18) 

(1.16) 
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i) Process randomization and 

ii) Model randomization  

In process randomization, random scrambling of the dependent response variables is performed 

accompanied with fresh selection of variables from the whole descriptor matrix and in model 

randomization scrambling or randomization of the response variable is performed within the 

descriptors present in an existing model. We have performed process as well as the model 

randomization of the genetic models. Y-randomization study has been performed to analyze and 

confirm whether the developed models are produced by any chance. Y-randomization plots are 

generated for developed models through the SIMCA-P software 

(https://www.sartorius.com/en/products/process-analytical-technology/data-

analyticssoftware/mvda-software/simca).The validation metrics obtained from the randomized 

model should be poorer than the original model otherwise that model should be considered to be 

developed by chance. The values of the R2yrand intercept and Q2yrand intercept should not be more 

than 0.3 and 0.05 respectively. 

1.1.4.8.12 Determination of model applicability domain (AD) 

Applicability domain (AD) of a QSAR model can be described as the theoretical region in the 

chemical space defined by the chemical as well as response attributes of the model [50]. A 

definite domain of applicability enables reliability of predictive performance of a model. In other 

words, any QSPR model possesses a defined theoretical domain within which it can provide 

reliable predictions of other chemicals not used in developing the model. It is not feasible to 

develop a single model that can contain the chemical information of the whole universe, and 

accordingly, QSPR models are characterized by different domains. When a compound is highly 

dissimilar to all compounds of the modeling set, reliable prediction of its property is unlikely. 

The concept of AD was used to avoid such an unjustified extrapolation of property predictions. 

Here, we have applied Distance to model in X-space (DModX) approach for verifying the 

applicability domain of the best model developed for this study using Simca-P software [51]. 

DModX= 
√

𝑆𝑆𝐸𝑖

𝐾−𝐴

√
𝑆𝑆𝐸

(𝑁−𝐴−𝐴𝑂)(𝐾−𝐴)

 

For observation i, in a model with A component, K variables, and N observations, SSE is the 

squared sum of the residuals. A0 is 1 if the model was centered and 0 otherwise. It is claimed 

that DModX is approximately F-distributed, so it can be used to check if an observation deviates 

significantly from a normal PLS model. 

 

(1.19) 

https://www.sartorius.com/en/products/process-analytical-technology/data-analyticssoftware/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analyticssoftware/mvda-software/simca
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1.1.4.9 Model validation based on OECD guidelines 

To authenticate the applicability of the developed QSTR models and to judge the reliability of 

the predictions made, the models were further analyzed based on the OECD  guidelines [52]. 

Thus, the QSTR models developed in this work were validated based on these five guidelines 

laid down by the OECD. The compliance of the developed models with the OECD guidelines 

for applicability in regulatory purposes was assessed as follows: 

Principle 1: A defined endpoint 

The response parameter modeled in the present work for different datasets were measured 

under similar conditions. Thus, the QSTR models were developed in accordance with the 

1st OECD principle. 

Principle 2: An unambiguous algorithm 

Various chemometric tools based on specific algorithms were employed for the calculation 

of the different categories of descriptors and subsequent QSTR model development using 

specific software packages. Thus, the model development pathway employed for the present 

studies follows a definite algorithm. 

Principle 3: A defined domain of applicability 

The domain of applicability of all the statistically significant QSTR models was analyzed 

using the standardization method. Thus, the selection of the best QSTR model was done in 

corroboration with this principle. 

Principle 4: Appropriate measures of goodness-of-fit, robustness, and predictivity 

All the developed models were rigorously validated using internal, external, and overall 

validation techniques. The quality of fitness and the predictive potential of the developed 

models were assessed based on the different validation metrics while the robustness of the 

models was judged using the randomization approach. The selection of the most significant 

models based on the acceptable values of the various validation metrics accounts for the 

compliance of the models with the 4th guideline. 

Principle 5: A mechanistic interpretation 

All the descriptors appearing in the developed QSTR models could aptly define the essential 

structural attributes of the molecules imparting optimum endpoint values thus signifying 

suitable mechanistic interpretation of the developed models. 

1.1.4.10 Software packages employed in the study 

We have used different software’s in this research work namely: 
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i. “AlvaDesc” software (https://www.alvascience.com/alvadesc/) was used for descriptor 

calculation. 

ii.“Best Subset Selection Modified” v2.1 (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) 

was used for model development. 

iii. “Dataset Division GUI” v1.2 (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) was used 

to divide the dataset into training and test sets. 

iv. “Minitab” v14 (https://www.minitab.com/en-us/) was used for model development. 

v. “PLS_Single Y” v1.0 (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) was used to 

develop the PLS-based QSTR and q-RASTR models. 

vi. “Read-Across-v4.1” (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) was used for 

obtaining the optimized hyperparameters necessary for RASTR descriptor calculation. 

vii.“RASAR Descriptor Calculator” v2.0 (available from: 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) was used for RASTR 

descriptors calculation. 

viii. “Prediction Reliability Indicator” (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) 

was used to evaluate the localization in  AD of the test compounds to ascertain the reliability of 

prediction of final PLS-based q-RASTR model. 

ix. “SIMCA-P” (https://www.sartorius.com/en/products/process-analytical-technology/data-

analytics-software/mvda-software/simca) was used for the randomization test. 

 

 

https://www.alvascience.com/alvadesc/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://www.minitab.com/en-us/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://teqip.jdvu.ac.in/QSAR_Tools/
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
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2. PRESENT WORK 
Over the past four decades, Europe has witnessed a staggering loss of approximately 550 million 

birds from its population with the predominant cause being the widespread use of pesticides and 

fertilizers in agricultural practices followed by climate change, changes in forest cover, and 

urbanization [53]. Pesticides play an indispensable role in modern agriculture by managing pests 

and improving crop productivity [54]. Nevertheless, they carry a double-edged sword, offering 

benefits while also posing risks to non-target organisms such as avian species, thereby raising 

significant environmental concerns in scientific research. Birds play crucial roles in ecosystems, 

aiding in pest control, pollination, and seed dispersal, which are vital for maintaining biodiversity, 

ecosystem equilibrium, and environmental health [55]. However, exposure to pesticides can result 

in acute toxicity and long-term declines in avian populations, thus disturbing ecological balance 

and biodiversity [56]. Consequently, assessing pesticide toxicity becomes imperative for 

managing the associated health risks to avian species and preserving ecosystem balance. 

Traditional toxicity evaluations in birds involving in-vivo testing are costly, labor-intensive, time-

consuming, alongside ethical concerns, and almost practically unfeasible for addressing a 

multitude of avian species [57]. The proliferation of new chemical entities and diverse pesticide 

formulations underscores the need for alternative methods to consistently predict the toxic effects 

of pesticides on avian species, wherein high-throughput computational approaches can offer 

promising solutions [58]. To explore the intrinsic characteristics of chemicals for toxicological 

prediction, regulatory institutions such as the Environmental Protection Agency (EPA), 

Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH), European 

Chemicals Bureau (ECB), and European Food Safety Authority (EFSA) emphasize the use of in-

silico based approaches i.e. Quantitative Structure-Toxicity Relationship (QSTR) and Read-

across [59]. QSTR enables mathematical correlation of the physicochemical properties of 

chemicals with their biological activities. Read-across is a similarity-based approach employed to 

estimate toxicity by comparing a substance to a similar one with known toxicity, eliminating the 

need for supervised learning models. The q-RASTR (Quantitative Read Across Structure–

Toxicity Relationship) approach is the amalgamation of the QSTR and Read-Across which 

incorporates the similarity and error-based estimations to improve prediction accuracy. A recent 

advancement in predictive modeling known as q-RASTR has emerged, offering improvements 

over traditional methods like QSTR and read-across predictions. QSTR relies solely on descriptor 

values for structural and physicochemical data of test compounds, but q-RASTR utilizes a 

combination of similarity and error-based descriptors [60]. This approach enhances predictive 

accuracy and reduces mean absolute error (MAE) compared to its predecessors. Additionally, q-
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RASTR addresses the limitations of previous algorithms by incorporating information from close 

source neighbors in the training set into the descriptors of query/test compounds. This integration 

of training set data enables "prediction-inspired intelligent training", resulting in enhanced 

external predictivity for most scenarios. Machine learning is a growing technology that uses 

various algorithms for building models and making predictions using data. Support vector 

machines (SVM), artificial neural networks (ANN), and others are commonly used machine 

learning algorithms for numerous experimental studies [61]. 

Chemical toxicities are typically assessed using metrics such as the median lethal concentration 

(LC50) or median lethal dose (LD50), lowest observed effect level (LOEL), and no observed effect 

level, etc which vary based on factors such as the nature of the chemical, exposure pathways, and 

the species being tested. Typically, regulatory evaluations favor the lowest toxicity endpoint 

across species, yet this practice introduces bias towards compounds with sparse data. Conversely, 

comparing toxicity within the same species overlooks inherent variations in susceptibility among 

different species or chemical classes [62]. In instances where data scarcity impedes toxicity 

characterization, extrapolation techniques are employed to ensure a comprehensive understanding 

of a pesticide's impact on avian populations. An approach towards extrapolating laboratory 

toxicity data is the estimation of HD5, also known as the fifth percentile of the LD50 distribution, 

by aggregating LD50 data across multiple species from laboratory experiments. The HD5 value 

indicates a threshold where 50% mortality is expected for the most sensitive 5% of bird species. 

This distribution-based method ensures a comprehensive evaluation of pesticide toxicity, 

facilitating unbiased comparisons irrespective of data availability. To enable cross-species 

comparisons of toxicological susceptibility, the HD5 calculation incorporates a body weight 

scaling factor, and adjustments are made to account for the heightened susceptibility of smaller 

species in lethality assessments [63]. Incorporating HD5 alongside LD50 provides a safety buffer 

that will aid toxicologists and regulators in making informed decisions to protect the avian 

biodiversity. 

Study 1. Chemometrics-driven prediction and prioritization of diverse pesticides on 

chickens for addressing hazardous effects on public health 

In this work, we investigated the toxicity of several pesticides on chickens and developed a logical 

and trustworthy method for assessing ecotoxicological risk. Based on the OECD rules, we have 

developed q-RASTR models to predict pesticide ecotoxicity on bird species. RASTR combines 

the read-across and QSTR approaches to improve predictability. The pLOEL and pNOEL (the 

negative logarithm of Lowest Observed Effect Level and No Observed Effect Level values 

respectively) values have been used as endpoints in this study. NOEL is defined as the highest 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC
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dose of the toxicant that does not cause any toxicity or harm and LOEL stands for the lowest 

concentration of a substance that can cause an effect under specific exposure conditions. To 

successfully create the models, we used PLS for the initial model development. Further, RASAR 

descriptors were estimated using the optimal hyperparameters and incorporated to improve the 

external predictivity of the model. Additionally, Support vector machine and Ridge regression 

machine learning (ML) approaches were employed with the optimization of hyperparameters 

using cross-validation. The final test set predictions were then compared. After evaluating the test 

set predictions and interpretability, we have selected the PLS-based q-RASTR model as the final 

model. Using, globally accepted parameters, the robustness, reproducibility, and predictivity of 

the PLS-based q-RASTR models were thoroughly validated. It can be confidently affirmed that 

the models are reliable and accurate. The developed model was utilized to screen the Pesticide 

Properties Database (PPDB) to identify potential avian toxicants and promote the use of safer 

chemicals. The true predictive ability of the q-RASTR model was established by revalidating the 

real-world toxicity profiles of the most and least toxic screened compounds from the Pesticide 

Properties Database (PPDB). 

 

Figure 2.1. Graphical representation of study 1. 
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Study 2. First report on q-RASTR modeling of hazardous dose (HD5) for acute toxicity of 

pesticides: An efficient and reliable approach towards safeguarding the sensitive avian 

species 

The current work offers the first chemometric modeling for efficient prediction of HD5 values 

pertaining to acute toxicity of pesticides towards avian species employing simple 2D molecular 

descriptors with ease of interpretability. q-RASTR approach was utilized to enhance the 

predictivity of the developed model. The structural features of pesticides closely associated with 

the modulation of toxicity towards multiple avian species were also highlighted. To address the 

practical applicability, the q-RASTR model was employed to analyze the Pesticide Properties 

Database (PPDB) to identify the safe and toxic compounds towards avian species to enable the 

adoption of safer chemical alternatives. To evaluate the actual external predictive performance of 

the q-RASTR model, real-world data was employed to validate the twenty most and least toxic 

pesticides identified through screening. By bridging the gap between computational predictions 

and real-world toxicological outcomes, this research endeavors to contribute significantly to the 

field of ecological risk assessment and the protection of avian biodiversity amidst the ever-

increasing pesticide usage. 

 

 

Figure 2.2. Graphical representation of study 2. 

 

 

 



Chapter 2 Present work 

Page 31 

 

 

Study 3. Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian 

Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and 

Read-Across 

Herein, we developed QSTR models to interpret the major structural and physicochemical 

features responsible for their toxicity followed by assessing the toxicity of external datasets in 

BQ, and JQ avian species following the OECD guidelines strictly [64].   Alternative tools, such 

as read-across, are widely used for hazard assessment to fill data gaps. The Read-Across-based 

predictions assume that a molecule with an unreported experimental endpoint value should have 

a value similar to molecules that are structurally and/or biologically similar to the query molecule. 

So, we have conducted the Read-across predictions to improve the test set results. The main motive 

for choosing the regression-based QSTR approach over others (e.g.: regarding its effectiveness, 

coping with chemical heterogeneity, and several different species) [65-66] was to develop a linear 

relationship between the descriptors and the defined endpoints (pLC50) to identify the important 

features responsible for toxicity towards avian species (BQ, and JQ) as well as data-gap filling. 

Classification-based approaches also excel in handling similar challenges, and both 

methodologies come with distinct advantages and disadvantages. For example, classification 

models are typically more robust to outliers and data errors than regression models. This is 

because classification models only focus on the categorical relationship between the input and 

output variables rather than the exact numerical relationship. On the other hand, regression models 

can identify the most important features or predictors driving the outcome variable. This 

information can be used to inform decision-making and guide further investigations. Sometimes, 

it may be beneficial to convert a classification problem into a regression problem or vice versa. 

By doing so, one can gain additional insights into the data and improve the accuracy of our 

predictions. Nevertheless, the decision to convert a problem type should be based on the specific 

problem at hand and the characteristics of the data. Additionally, we have also developed 

classification models as well as employed two different ML algorithms namely SVM, and RF to 

evaluate their effectiveness in model construction and prediction. The present work aimed to 

design a logical method to assess pesticide toxicity towards avians. Furthermore, screening of the 

Pesticide Properties DataBase (PPDB) was conducted to evaluate the avian toxicity following the 

prediction reliability assessment of the QSTR models by the PRI (prediction reliability indicator) 

tool (http://teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data gaps filling and risk assessment 

[67]. The robustness, reproducibility, and predictivity of QSTR models were thoroughly validated 

using globally accepted statistical parameters. 

http://teqip.jdvu.ac.in/QSAR_Tools/
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Figure 2.3. Graphical representation of study 3. 
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3. MATERIALS AND METHODS 

This dissertation seeks to establish a clear and transparent methodological framework for 

constructing a predictive q-RASTR model, utilizing simple 2D descriptors. Our objective has been 

to ensure clarity and transparency in the process, from the calculation of descriptors to the reduction 

of the variable matrix, the identification of promising features, and the assessment of the models' 

reliability and predictive capabilities. In the following sections, we provide comprehensive insights 

into the dataset used for the q-RASTR modeling. This includes a detailed presentation of the 

dataset, along with information about the activities and toxicity data it contains. These data are 

instrumental in facilitating our computational investigations and predictive modeling efforts. The 

research undertaken was organized into distinct components, each serving a specific purpose: 

 Dataset Details: In this section, we provide a comprehensive account of the datasets used 

in our study. These datasets include information on chemical names and their 

corresponding activity or toxicity data. This foundational information serves as the 

bedrock for our research. 

 Methodological Approach: We present a general overview of the methodologies and 

techniques employed in the development of our q-RASTR model. This section outlines 

the strategies and tools we used to create predictive models for understanding the 

relationship between chemical structures and toxicity. 

3.1 Study 1 

3.1.1 Collection and curation of toxicity data of diverse pesticides  

 The required toxicity data of diverse pesticides against chicken (Gallus gallus) were retrieved 

from the ECOTOX repository (https://cfpub.epa.gov/ecotox/). The collected experimental toxicity 

data was expressed as LOEL and NOEL in micromolar (μM) concentration, which were 

transformed into molar concentrations and then their negative logarithmic equivalents (pLOEL and 

pNOEL) to reduce the data range. After excluding any outlier value(s), all available values for a 

particular chemical were averaged to generate a single value. We only included values that were 

numerically close to each other when calculating the average. After curating the primary data, we 

selected 43 pLOEL and 56 pNOEL compounds for modeling. 

 

 

 

 

 

 

 

 

https://cfpub.epa.gov/ecotox/
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Table 3.1. Compounds name with respective experimental pLOEL values. 

Sl. No Compound Exp 

pLOEL 

1 (17beta) Estra-1,3,5(10) triene-3,17-diol 5.055 

  2* 4,4'-(1-Methylethylidene) bis [2,6-dibromophenol] 4.720 

3 Phosphoric acid-triphenyl ester 5.000 

4 1,2-Benzenedicarboxylic acid, 1,2-Bis(2-ethylhexyl) ester 3.301 

5 2,2,3,3,4,4,5,5,6,6,6-Undecafluorohexanoic acid 5.000 

6 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-

Tricosafluorododecanoic acid 4.864 

  7* 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Nonadecafluorodecanoic acid 4.823 

  8* 2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptanoic acid 5.000 

9 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononanoic acid 4.585 

 10* 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

Heptacosafluorotetradecanoic acid 4.522 

 11* 

(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-1-

benzopyran-4-one 6.301 

12 4,4'-Methylenebisphenol 4.488 

13 Phosphoric acid-Diphenyl ester 5.000 

14 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene] bis [phenol] 5.000 

 15* 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 4.723 

16 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heneicosafluoroundecanoic 

acid 

4.923 

 

17 4,4'-[1,4-Phenylenebis(1-methylethylidene)] bis[phenol] 4.903 

18 2,2,3,3,4,4,5,5,5-Nonafluoropentanoic acid 4.301 

 19* 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 

potassium salt 4.373 

20 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heneicosafluoro-1-

decanesulfonic acid 5.000 

  21* 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-hexanoic acid 4.425 

22 Tris[3-bromo-2,2-bis(bromomethyl) propyl] phosphate 4.000 

23 2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptanoic acid) 4.301 

24 

1,1'-(1-Methylethylidene) bis [3,5-dibromo-4-(2,3-dibromopropoxy) 

benzene 3.551 

  25* 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid 

 5.000 

26 

(8S,10S)-10-[(3-Amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl) 

oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-

methoxy-5,12-naphthacenedione 6.301 

27 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine 3.522 

  28* 

3,4,5,6-Tetrabromo-1,2-benzenedicarboxylic acid 1,2-bis(2-ethylhexyl) 

ester 

3.522 

 

  29* 1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid 5.187 

30 Phosphoric acid-Isodecyl diphenyl ester 3.522 

31 

6H-Dibenz[c,e] [1,2] oxaphosphorin, 6-Oxide 

 4.000 

 32* 4,4'-Sulfonylbis[2-(prop-2-en-1-yl) phenol] 4.522 
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 * Test set compounds 

 

Table 3.2. Compounds name with respective experimental pNOEL values. 

 

Sl. No Compound Exp 

pNOEL 

 

1 (1,1-Dimethylethyl) phenyldiphenyl ester, Phosphoric acid 4.782 

2 (17beta) Estra-1,3,5(10) triene-3,17-diol 5.000 

  3* (1R,2R,5S,6R,9R,10S)-rel-1,2,5,6,9,10-Hexabromocyclododecane 5.641 

4 

(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-1-

benzopyran-4-one 6.301 

  5* (3E)-2-Amino-4-methyl-5-phosphono-3-pentenoic acid 1-ethyl ester 4.000 

  6* 

(5S)-10,11-dihydro-5-methyl-5H-Dibenzo[a,d]cyclohepten-5,10-imine 

(2Z)-2-butenedioate 5.301 

7 1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid 4.282 

8 1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluoro-1-hexanesulfonic acid 4.698 

9 1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid 5.000 

10 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid 

sodium 4.395 

11 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 4.637 

  12* 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 

potassium 4.470 

13 

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heneicosafluoro-1-

decanesulfonic acid 4.338 

14 1,1'-Oxybis[2,3,4,5,6-pentabromobenzene] 5.000 

15 1,2,4,5-Tetrabromo-3,6-bis(2,3,4,5,6-pentabromophenoxy) benzene 5.721 

16 

10-[3-(4-Methyl-1-piperazinyl) propyl]-2-(trifluoromethyl)-10H-

phenothiazine 6.154 

17 2,2,3,3,4,4,4-Heptafluorobutanoic acid 5.000 

18 2,2,3,3,4,4,5,5,5-Nonafluoropentanoic acid 4.363 

19 2,2,3,3,4,4,5,5,6,6,6-Undecafluorohexanoic acid 5.148 

20 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-hexanoic acid 4.418 

21 2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptanoic acid 5.115 

33 

2-[4-(4-Chlorobenzoyl) phenoxy]-2-methyl propanoic acid, 1-

Methylethyl ester 4.221 

34 

2-[[4-Chloro-6-[(2,3-dimethylphenyl) amino]-2-pyrimidinyl] thio] acetic 

acid 

4.000 

 

35 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-

Pentacosafluorotridecanoic acid 

4.301 

 

36 1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluoro-1-hexanesulfonic acid 5.691 

37 4,4'-[Methylenebis(oxy-2,1-ethanediylthio)] bisphenol 5.000 

  38* 4-{4-[(Propan-2-yl) oxy] benzene-1-sulfonyl}phenol 4.522 

39 4-[4-(4-Fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol 5.000 

40 

N-[4-(1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) phenyl]-N-(2,2,2-

trifluoroethyl) benzenesulfonamide 

4.875 

 

41 Ethanol 4.519 

42 Hydrogen peroxide (H2O2) 5.552 

43 

1,4-diethyl 2-{[dimethoxy (sulfanylidene)-λ⁵-

phosphanyl]sulfanyl}butanedioate 3.397 
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22 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctanoic acid 4.392 

23 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Nonadecafluorodecanoic acid 4.994 

     24 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-

Heneicosafluoroundecanoic acid 5.070 

 25* 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-

Tricosafluorododecanoic acid 4.999 

 26* 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-

Pentacosafluorotridecanoic acid 4.363 

27 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

Heptacosafluorotetradecanoic acid 4.323 

28 

2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,1

6,16-Hentriacontafluorohexadecanoic acid 4.301 

29 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononanoic acid 4.580 

30 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine 3.522 

31 

2',7'-Dichloro-3',6'-dihydroxyspiro[isobenzofuran-1(3H),9'- 9H 

xanthen]-3-one 4.698 

 32* 

2-[4-(4-Chlorobenzoyl) phenoxy]-2-methylpropanoic acid, 1-

Methylethyl ester 

4.307 

 

33 2-Methyl-2-(methylthio)propanol O-[(methylamino) carbonyl] oxime 5.045 

34 3-Methyl-3H-purin-6-amine 5.602 

  35* 4,4'-(1-Methylethylidene) bis[2,6-dibromophenol] 5.000 

      36 4,4'-(1-Methylethylidene) bis [2-methylphenol] 4.806 

37 4,4'-(1-Methylethylidene) bisphenol 4.683 

  38* 4,4'-(1-Phenylethylidene) bis phenol 4.806 

  39* 4,4'-[1,3-Phenylenebis(1-methylethylidene)] bis phenol 5.107 

 40 4,4'-[1,4-Phenylenebis(1-methylethylidene)] bis [phenol] 5.028 

41 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene] bis [phenol] 4.954 

 42* 4,4'-[Methylenebis(oxy-2,1-ethanediylthio)] bisphenol 5.000 

43 4,4'-Methylenebisphenol 4.505 

44 4,4'-Sulfonylbis[2-(prop-2-en-1-yl) phenol] 4.698 

45 4-{4-[(Propan-2-yl) oxy] benzene-1-sulfonyl} phenol 4.522 

  46* 

6-[4-[2-(1-Piperidinyl) ethoxy] phenyl]-3-(4-pyridinyl) pyrazolo [1,5-a] 

pyrimidine 4.698 

47 6H-Dibenz[c,e][1,2]oxaphosphorin, 6-Oxide 4.000 

48 Bis(tert-butylphenyl) phenyl phosphate 3.522 

49 Hexabromocyclododecane 5.514 

50 

N-[(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl) phenyl]-1-

propen-1-yl] amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxazolyl) ethoxy] 

phenyl] propyl] propanamide 

5.301 

 

51 

N-[4-(1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) phenyl]-N-(2,2,2-

trifluoroethyl) benzenesulfonamide 

5.193 

 

52 Phosphoric acid-Diphenyl ester 4.187 

53 Phosphoric acid-Isodecyl diphenyl ester 3.821 

54 Phosphoric acid-Triphenyl ester 5.000 

55 Tris(2,4-di-tert-butylphenyl) phosphate 5.000 

56 Tris[3-bromo-2,2-bis(bromomethyl)propyl] phosphate 4.000 

    *Test set compounds 
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3.1.2. Descriptor calculation 

A single .sdf file of all the compounds was compiled which is essential to Alvadesc software for 

descriptor calculation. AlvaDesc software [68]   was used to evaluate 2400 descriptors based on 

structural and physicochemical parameters. We removed the unnecessary descriptors columns 

using DataPreTreatmentGUI 1.2 software [69]. 

3.1.3 Dataset division and QSTR model development 

Division of dataset is a crucial component of statistical modeling, particularly in the context of 

QSARs. The modeling data is divided into two parts, the training set for model development and 

the test set to validate the developed model. In this present study, different dataset division 

techniques such as the clustering technique, Euclidean-distance-based method, Kennard-stone-

based method, activity property-sorted, and random-division methods were employed for dataset 

division into training and test sets. Among these techniques, the best result was obtained from the 

Kennard stone division method in case of the pLOEL endpoint and random selection in case of the 

pNOEL endpoint [65-70]. The training/test sets compounds for pLOEL endpoint and pNOEL 

endpoint are 30/13 and 44/12 respectively. And the divided training and test sets were also pre-

treated using the tool dataPreTreatmentTrainTest1.0 (available from 

https://teqip.jdvu.ac.in/QSAR_Tools/). These final pre-treated training and test sets were used for 

further analysis.  Preliminary multiple linear regression models were generated for two datasets 

using MINITAB software. After that, PLS (Partial Least Square) method was used to generate the 

final models for both datasets using the software PLS_Single Y_version 1.0 [65]. 

3.1.4 Read- Across and calculation of the RASTR descriptor  

Optimizing hyperparameters (similarity-based algorithm; σ, γ, and number of close source 

compounds) is crucial for read-across prediction. The descriptor involved in the QSTR model was 

used to create sub-train and sub-test sets from the training data. We have chosen a Gaussian kernel-

driven similarity, with σ=0.75; γ=0.75, and 9 close training compounds for pLOEL data points & 

Laplacian kernel-based similarity, with σ=0.25 and γ=0.25, and 4 close training compounds for 

pNOEL data points. During optimization, the hyperparameters were selected based on MAE-based 

(95%) criteria and external metrics (Q2
F1 and Q2

F2). To perform q-RASTR modeling, similarity, 

and error-based RASTR descriptors were calculated for both training and test compounds with 

"RASAR Descriptor Calculator v2.0 tool using the optimized hyperparameters. 

3.1.5 q- RASTR feature selection and model development 

A total of 15 descriptors (Table 3.3) were computed based on three similarity-based approaches 

(Euclidean Distance-based, Gaussian Kernel similarity-based, and Laplacian Kernel similarity-

https://teqip.jdvu.ac.in/QSAR_Tools/
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based) and a given set of source compounds for the individual training set and the test set. The 

calculated RASTR descriptors were integrated with the model descriptors and the combined pool 

was subjected to best subset selection using BestSubsetSelectionModified_v2.1 tool for model 

development. The final PLS-based q-RASTR model was developed with the best features using 

the PLS_Single Y_version 1.0 software. 

Table 3.3 List of RASTR descriptors. 

S.No. RASTR descriptors  Definition 

1 RA function A composite function derived from Read-Across. 

2 MaxPos Similarity score of the closest positive source compound (with 

an observed response value greater than the mean activity of the 

training set). 

3 MaxNeg Similarity score of the closest negative source compound (with 

an observed response value less than the mean activity of the 

training set). 

4 Abs Maxpos-MaxNeg Absolute difference between the MaxPos and Maxneg levels. 

5 SE Weighted standard error of the close source compounds’ 

response values. 

6 CVact Coefficient of variation of the close source compounds’ 

observed response values. 

7 SD_Activity Weighted standard deviation of the close source compounds’ 

observed response values. 

8 CVsim Coefficient and variation of the similarity values of the close 

source compounds. 

9 SD_similarity The standard deviation of the close source compounds’ 

similarity levels. 

10 Pos.Avg.Sim The positive close source compounds’ average similarity levels. 

11 Neg.Avg.Sim The negative close source compounds ‘ average similarity 

levels. 

12 Avg.Sim Average similarity level of the close source compounds. 

13 gm A novel concordance measure also known as Banerjee-Roy 

Coefficient 

14 gm*SD_Similarity Product of the gm and SD similarity levels 

15 gm*Avg.Sim Product of the gm and Avg.Sim levels 

 

3.1.6. Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have employed two different state–

of–the–art ML algorithms namely support vector machine (SVM) and Ridge Regression (RR) 

using the Orange data mining tool. The hyperparameters were adjusted to tune the model for 
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optimal performance. The prediction qualities of the ML models were evaluated in terms of Q2
F1, 

Q2
F2, and MAEtest values. 

3.1.7. Statistical validation metrics and Y-randomization 

Validation metrics are the key parameters for the recognition of any predictive model.  For internal 

validation (for the training set), we evaluated the model using various internationally accepted 

internal validation metrics including the determination coefficient (R2) and leave-one-out cross-

validated Q2 (Q2
Loo). R

2 and Q2
Loo are the measures of goodness-of-fit, and robustness, respectively. 

In machine learning (SVM, RR) approaches, the root means squared error of calibration (RMSEC) 

metric was also calculated by the Orange data mining tool. A lower RMSEc indicates a better 

model fit, showing that the model's predictions are, on average, closer to the true values. For 

external validation (for the test set), we calculated various globally accepted external validation 

metrics such as R2
Pred or Q2

F1, Q
2

F2, Q
2

F3, MAE-based criteria, rm
   2̅̅ ̅̅

, Δrm
2

, and concordance correlation 

coefficient (CCC). External correlation coefficients such as Q2
F1, Q

2
F2, and Q2

F3 are well-known 

prediction indicators. In usual practice, the optimal value of these three measures (R2
Pred or Q2

F1, 

Q2
F2, Q

2
F3) for model selection should be more than 0.5. Error measures such as mean absolute 

error (MAEtest) are frequently used to assess the accuracy of projected outputs, and they should be 

low for a strong model. The CCC measures both precision and accuracy, detecting the distance of 

the observations from the fitting line and the degree of deviation of the regression line from that 

passing through the origin, respectively. The concordance correlation coefficient (CCC) is an 

external validation measure proposed by Gramatica et.al. External validation is undertaken to 

ensure the predictability of the created model, and only the test set chemicals are employed for this 

purpose. Aside from traditional measures, rm
2 metrics (rm(test)

   2̅̅ ̅̅ ̅̅ ̅̅ ̅, Δ rm
2

test) are calculated for external 

validation. When the rm(test)
   2̅̅ ̅̅ ̅̅ ̅̅ ̅, values are quite good, the ∆rm

2 values may serve as an additional 

metric for judging the quality of predictions. The acceptability of the model was also checked using 

an external validation parameter proposed by Golbraikh and Tropsha. Based on Golbraikh and 

Tropsha criteria, the model will be acceptable if:  

1. Q2
LOO (train) > 0.5 

2. R2(test) > 0.6 

3. [(r2-r0
2)/ r2] < 0.1 or [(r2-r’0

2)/ r2] 

4. 1.15 > k > 0.85 or 1.15 > k’> 0.85 

Y-randomization study was performed using "SIMCA-P" software to investigate the probability of 

chance occurrence in the final model. Herein, the response data are altered, without scrambling the 

descriptors, for a total of 100 times. After shuffling the original model is refitted to compute the R2 
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and Q2 values, and the intercept values of R2 <0.3 and Q2<0.05 indicate no chance of correlation 

in a statistically significant model [71]. 

3.1.8 Screening of the Pesticide Properties DataBase (PPDB)  

We have collected 1903 chemical data from the Pesticide Properties DataBase (PPDB) which is 

accessible through the PPDB website (http://sitem.herts.ac.uk/aeru/ppdb/). KNIME curation was 

carried out using a KNIME workflow to eliminate any duplicates, inorganic salts, and mixtures 

[26]. As a result of the KNIME curation process, certain compounds have been eliminated. After 

curating the dataset, the enduring 1694 compounds were screened to verify model reliability. The 

descriptors of the molecules were calculated using the same procedure that was used in q-RASTR 

modeling as discussed earlier. The individual PLS q-RASTR models were used to make 

predictions, assisted by the PRI tool [17] which provided a reliable indication of the prediction's 

accuracy. The tool assesses the reliability of predictions using AD and furnishes qualitative 

prediction indicators categorized as 'Good', 'Moderate’, and 'Bad. A detailed flow diagram of this 

study has been given in Fig. 3.1. 

Figure 3.1. Schematic workflow of q-RASTR model development. 

3.2. Study 2 

3.2.1. Data collection and preparation 

A set of non-cholinesterase inhibitors consisting of 733 pesticides was collected from the literature 

[72]. The data was curated to remove duplicates and treat missing or inconsistent values using 

http://sitem.herts.ac.uk/aeru/ppdb/


Chapter 3 Materials and methods 

Page 42 

 

 

knime workflow (https://www.knime.com/cheminformatics-extensions). Some compounds were 

also omitted from the dataset due to the high residual values. After processing the data, we obtained 

toxicity information for 480 unique pesticides on avian species. The toxicity data are expressed as 

-log{HD5(50%)} or pHD5(50%) in molar units throughout the manuscript. 

Table 3.4. Compounds name with respective experimental pHD5 values. 
 

Sl. No Compound pHD5 

1 Methyl bromide 1.049 

2 Dichlobutrazol -0.452 

3 Citronella oil -0.229 

4 Pretilachlor -0.491 

5 Azadirachtin 0.359 

6 Methyl isocyanate 0.747 

7 Fenvalerate 0.116 

8 Methyl chloroform -0.340 

  9* Acibenzolat (CGA) -0.043 

10 Isobenzan 2.981 

11 Triforine -0.252 

12 Benfuresate -0.863 

  13* Nemagon 1.154 

14 Metconazole 0.542 

15 Resmethrin 0.749 

16 Dicofol 0.709 

17 Trimethoxysilyl quats 0.478 

  18* Flamprop-methyl 0.500 

  19* Bromethalin 2.843 

20 Carbendazim -0.410 

21 Butralin -0.149 

  22* Triazoxide 1.374 

23 Diflufenzopyr (BAS 654) -0.211 

24 Rotenone 0.270 

25 Coumatetralyl 0.180 

26 Haloxyfop-P-methyl 0.446 

27 Pyrithione 0.701 

28 Chloroneb -0.367 

  29* Propisochlor 0.631 

30 Furilazole 1.078 

31 Fluroxypyr 0.088 

32 Lignasan BLP -0.369 

  33* Glutaraldehyde -0.224 

34 Dithio-3-one,4,5-dichloro 0.814 

35 Ferimzone 0.432 

36 Oryzalin 0.820 

37 Quizalofop-P-tefuryl 0.283 

38 Hymexazol -0.249 

  39* Difethialone 3.241 

40 Dichlorprop-P 0.758 

https://www.knime.com/cheminformatics-extensions
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41 Diflumetorim 0.586 

42 Azoxystrobin 0.240 

43 Dichloropropene 0.798 

44 Metalaxyl 0.496 

45 4-Chloro-3,5-xylenol -0.246 

46 Tolclofos-methyl -0.207 

47 Fipronil 2.473 

  48* Pentachlorophenol (PCP) 0.720 

  49* Chlormequat 0.360 

50 Erioglaucine/tartrazine 0.504 

  51* Cycloxydim 0.194 

52 MCPA 0.709 

53 Buprofezin -0.348 

  54* Sodium dichloro-S-tri-azine trione -0.014 

55 Diflubenzuron -0.487 

56 Alachlor -0.088 

57 Tolylfluanid -0.143 

  58* Anilofos 0.133 

59 Thiazafluron 0.973 

60 Hexazinone -0.015 

61 Diclofop-methyl -0.364 

62 3-lodo-2-propynyl butyl-carbamate 0.453 

63 Bensulide 0.393 

64 Oxyfluorfen -0.230 

65 Flucythrinate 0.216 

  66* Metribuzin 0.708 

67 Atrazine -0.278 

  68* Propyzamide -0.457 

  69* Fuberidazole 0.586 

70* Glufosinate-ammonium -0.108 

71 Prodiamine 0.127 

72 Benoxacor 0.081 

73 Azadioxabicyclooctane -0.140 

74 Isoproturon -0.182 

  75* Pyridate 0.213 

76 Bioresmethrin -0.175 

77 Prochloraz 0.706 

78 Thiazopyr 0.251 

  79* Dikegulac-sodium -0.137 

  80* Bioallethron S-cyclo-pentenyl isomer -0.236 

81 Paradichlorobenzene -0.104 

82 Linuron 0.583 

83 Sodium 2-mercaptoben-Zothiolate -0.177 

  84* Isocyanuric acid -0.155 

85 Zirame 0.611 

86 Calcium polysulfide 0.392 

87 Endrin 2.706 

88 Tri-allate 0.066 

89 Trifluralin 0.135 
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90 Copper triethanolamine -0.117 

91 Propaquizafop 0.308 

92 Daminozide -0.288 

  93* Hydroxypropyl methane thiosulfonate 0.572 

94 Fenclorim 0.669 

95 Benalaxyl -0.401 

96 Sethoxydim -0.168 

  97* Triticonazole 0.136 

98 Triadimenol -0.274 

99 2,3,6-TBA 0.477 

100 Clofentezine -0.212 

101 Flubenzimine -0.016 

102 Tetradifon -0.212 

  103* Acrinathrin 0.540 

  104* Ioxynil 1.047 

  105* Nitrapyrin -0.053 

106 Cyfluthrin -0.048 

  107* Dicamba 0.550 

108 Glyphosate -0.138 

109 Etoxazole 0.271 

110 Hexythiazox -0.136 

  111* Chlorofenizon -0.166 

112 Kasugamycin -0.008 

113 2,4,5-T 0.655 

114 Ethalfluralin 0.157 

115 Cytokinin -0.132 

  116* Clodinafop-propargyl 0.295 

  117* Dieldrin 1.963 

  118* Fenoxycarb -0.351 

119 Oxabentrinil -0.277 

120 Dimethoxane -0.024 

121 Triethylhexahydro-s-triazine 0.557 

122 Napropamide 0.541 

  123* CGA 50 439 0.447 

124 Sodium chlorite -0.072 

125 Acequinocyl (AKD-2023) 0.299 

  126* Chlozolinate -0.377 

127 Sulcofuron-sodium 0.541 

  128* Furalaxyl -0.284 

129 Ethidimuron 0.647 

130 Parachlorometacresol -0.098 

131 Propamocarb -0.233 

  132* DCDMH (1,3-Dichloro-5,5-dimethylhydantoin) -0.170 

133 Toxaphene 1.598 

134 Etridiazole 0.580 

135 Myclobutanil 0.688 

136 Bifenazate (D2341) 0.355 

137 Hydramethylnon 0.346 

138 Acifluorfen-sodium 0.559 
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139 Nonanoic acid -0.218 

140 Ametryn -0.170 

141 Butachlor -0.156 

142 Fenuron -0.151 

143 2,4-D Isooctyl ester 0.718 

  144* Bilanafos 0.106 

145 Potassium dimethylthio-carbamate -0.084 

146 Prosulfuron 0.420 

147 Fluquinconazole 0.257 

148 TCMTB 0.492 

149 Thiabendazole -0.113 

150 Isoprothiolane -0.169 

  151* Methoxychlor 0.074 

152 Sebuthylazine -0.163 

  153* Bromoxynil heptanoate 0.970 

  154* Benfluralin 0.207 

155 Oxadiazon 0.253 

156 Fenoxaprop-P-ethyl 0.192 

157 Tebufenozide 0.150 

  158* Haloxyfop ethoxyethyl 0.321 

159 Edifenphos 0.616 

160 Difenacoum 1.679 

161 2-Benzyl-4-chlorophenol -0.125 

162 Bifenox -0.076 

163 Cymoxanil -0.072 

  164* Busan 77 0.659 

165 Metobromuron 0.274 

166 Fluazifop-butyl -0.289 

167 Dodine (doguadine) 0.315 

168 Propenamide 0.567 

169 Vernolate -0.218 

170 Fenpropimorph -0.141 

171 Carbetamide 0.046 

  172* Cyhalothrin -0.030 

173 Prallethrin 0.426 

174 Captan 1.075 

175 Penconazole 0.167 

  176* 2,4-D sodium 0.052 

177 Trichloro-s-triazinetrione 0.200 

178 Fenoxaprop-P 0.157 

179 Mineral (including parafin) 0.065 

  180* Dicloran 0.171 

181 Fenbuconazol 0.096 

182 Sulfluramid 1.493 

183 Cloquintocet-mexyl 0.208 

184 Forchlorfenuron -0.023 

185 Acetochlor 0.448 

186 Tebuthiuron 0.492 

187 Flutolanil 0.191 



Chapter 3 Materials and methods 

Page 46 

 

 

188 Epoxiconazol 0.152 

189 Benzene Hexachloride 1.365 

190 Flutriafol -0.204 

191 Flumetralin 0.275 

192 Dithiopyr 0.186 

193 Endosulfan 1.630 

194 Thidiazuron -0.222 

195 BCDMH 0.109 

196 Imazaquine 0.144 

197 Lufenuron 0.390 

198 Cosan 145 0.176 

  199* Trinexapac-ethyl 0.117 

200 Diflufenican 0.111 

201 Metamitron 0.058 

  202* Prometon -0.067 

203 Tralomethrin 0.358 

204 Nicotine 2.193 

  205* Nabam 0.012 

206 Quintozene 0.063 

  207* Triadimefon -0.118 

208 Chloroprop-sodium -0.039 

  209* Benazolin-ethyl -0.211 

210 Fenpiclonil 0.658 

  211* Bis(trichloromethyl) sulfone 0.142 

  212* Grotan 0.094 

213 Lambda-Cyhalothrin 0.022 

214 Azimsulfuron 0.258 

215 Nitenpyram 0.214 

216 MCPP Isooctyl ester 0.097 

217 1,3-dibromo-5,5- dimethylhydantoin (DBDMH) -0.008 

218 Fluazinam 0.214 

  219* Terbuthylazine 0.244 

220 Bitertanol -0.096 

221 POE Isooctadecanol 0.270 

222 Zineb -0.004 

223 Cycloate -0.064 

224 Ethirimol 0.014 

  225* Fenothiocarb 0.249 

226 Iprodione 0.319 

227 Chlorthal-dimethyl 0.104 

228 Haloxyfop 0.141 

229 Dipropyl isocinchomero-nate 0.205 

  230* SDDC 0.019 

231 Napthaleneacetic acid -0.047 

232 PNMDC/DCDMC -0.034 

233 Neurolidol -0.003 

234 Pymetrozine 0.019 

  235* Daimuron 0.063 

236 Tefluthrin 0.370 
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237 Diiodomethyl p-tolyl sulfone 0.161 

  238* Diniconazole 0.259 

239 Cyprodinil 0.034 

240 Clopyralid -0.001 

241 Tralkoxydim 0.054 

242 Etofenprox 0.291 

243 Flucycloxuron 0.400 

244 DBNPA 1.024 

245 Teflubenzuron 0.237 

246 Bensulfuron-methyl 0.297 

247 Oxadixyl 0.271 

248 Gibberellic acid 0.122 

249 2,4-D diolamine 0.505 

250 Mecoprop 0.417 

251 Mefenpyr-diethyl 0.286 

 252* Hexaconazole -0.095 

253 Nicosamide-olamine 0.149 

254 Fluoroglycofen-ethyl 0.086 

255 Bronopol 0.610 

256 Indole-3-butyric acid -0.089 

 257* Tetramethrin 0.079 

258 Molinate -0.058 

259 Lindane 1.442 

260 Potassium salts of fatty acids -0.165 

261 Quizalofop-ethyl 0.253 

262 Pyrazosulfuron-ethyl 0.200 

  263* Quinmerac -0.020 

  264* Fenpyroximate 0.307 

  265* Quinclorac 0.071 

  266* Tribufos 0.789 

267 Strychnine 2.507 

  268* Vinclozolin -0.008 

269 Heptachlor 2.032 

270 Benzisothiazolin-3-one 0.324 

  271* Cypermethrin -0.143 

  272* Warfarin 0.409 

273 Cinosulfuron 0.331 

 274* Flazasulfuron 0.324 

275 Guanidine (iodine free base) 0.206 

276 TDE 0.892 

277 Primisulfuron-methyl 0.321 

278 Dimepiperate 0.135 

279 Triclosan 0.320 

280 Cinmethylin 0.041 

281 Fluometuron 0.081 

282 Novaluron 0.408 

283 Uniconazole 0.183 

284 MCPA-thioethyl -0.073 

285 Triflusulfuron 0.310 



Chapter 3 Materials and methods 

Page 48 

 

 

286 Hexaflumuron 0.346 

287 Ethametsulfuron-methyl 0.196 

 288* Mepronil 0.112 

289 Dichloropropene/ 0.479 

290 Imazapyr 0.067 

291 Triflumuron 0.237 

292 Flumequine 0.432 

  293* Diuron 0.082 

294 Pyridaben 0.116 

295 Esfenvalerate 0.505 

296 Pyriminobac-methyl 0.272 

  297* Dazomet 0.483 

  298* Terrazole 0.395 

  299* Metiram -0.074 

  300* Trans-1,2-bis(n-propyl sulfonyl ethene 0.096 

301 Amidosulfuron 0.172 

302 Imibenconazole 0.245 

303 Bromoxynil 1.106 

304 Bromoxynil Phenol 1.106 

305 Difenoconazol 0.293 

306 Diethofencarb 0.058 

307 Chloretazate 0.148 

  308* SZI-121 0.198 

309 Propiconazole 0.062 

  310* Chlorsulfuron -0.129 

  311* Paclobutrazol 0.182 

312 Dimethenamid (SAN 0.095 

313 1,2-Benzenedicarbox- 0.276 

314 Fluvalinate 0.237 

  315* Tau-Fluvalinate 0.237 

316 Flufenoxuron 0.323 

  317* Ethofumesate -0.218 

  318* Bispyribac-sodium 0.217 

319 Folpet 0.399 

  320* Oxasulfuron 0.273 

321 Fluoxypyr-meptyl 0.247 

  322* Chlorhexidine diacetate 0.335 

323 Capric acid/pelargonic -0.115 

  324* Farnesol -0.003 

325 Quizalofop 0.219 

326 Norflurazon 0.365 

327 Triflusulfuron-methyl 0.323 

328 TFM (4-Nitro-3-[trifluoromethyl]phenol) 0.672 

329 Terbacil -0.083 

330 6-Benzylaminopurine (N6-Benzuladenine) 0.084 

331 4,4-Dimethyloxazolidine 0.042 

332 Fenazaquin 0.197 

333 Metazachlor 0.076 

  334* Pefurazoate 0.177 
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335 Tebufenpyrad 0.205 

  336* Fluridone 0.152 

337 Metsulfuron 0.182 

338 Thifensulfuron 0.189 

339 Muscalure 0.143 

340 Dimethipin 0.395 

341 Triflumizole 0.074 

342 Bromoxynil octanoate 1.396 

343 Isouron -0.041 

344 Pencycuron 0.073 

  345* Metosulam 0.278 

346 Thenylchlor 0.144 

347 Tridemorph 0.235 

348 Bromonitrostyrene 0.675 

349 2,4-D 0.221 

350 Halosulfuron-methyl 0.221 

  351* Paranitrophenol 0.317 

352 Cycloprothrin 0.000 

  353* Propineb -0.333 

  354* Clofencet 0.202 

  355* Asulam sodium -0.269 

356 2,4-D Butotyl 0.141 

357 BHAP (Bromohydroxya- 0.447 

358 Chloramben 0.111 

359 Cafenstrole -0.138 

360 Hydrogen cyanamide 0.165 

361 Methoprene 0.207 

362 Oxazolidine E 0.091 

363 Imazethabenz-methyl 0.110 

  364* Imazamethabenz-methyl 0.110 

365 Nicosulfuron 0.295 

  366* Polychlorocamphanes Potassium salt of oleic acid 0.058 

  367* Flurazole 0.043 

368 Mepanipyrim -0.021 

369 Copper sulfate (basic) 0.309 

  370* Pyriproxyfen 0.189 

371 Chlordecone 1.269 

372 Codlemone -0.137 

373 Karbutilate -0.317 

  374* Imazapic (AC 263,222) 0.090 

375 Oxine-copper 0.099 

376 Thiophanate-methyl -0.149 

  377* Thiram 0.815 

378 Monolinuron 0.073 

  379* Aldrin 2.501 

380 Pentoxazone 0.132 

381 Tebuconazole -0.052 

  382* Bioban P-1487 0.291 

383 Calcium tetrathiocarba-mate 0.280 
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  384* Benzyl benzoate -0.039 

385 Piperonyl butoxide 0.112 

386 Pyrazophos 1.148 

387 ADBAC 0.826 

388 Halfenprox 0.339 

389 Polyethoxylated aliphatic 0.065 

390 Fluoroglycofen 0.292 

391 Clomazone -0.037 

392 Diquat (dibromide) 1.015 

393 Z-11-Hexadecanol 0.011 

394 Bifenthrin 0.315 

395 Lactofen 0.200 

396 Esprocarb 0.138 

397 Tetradec-11-en-1-yl 0.008 

398 Endothall 0.805 

  399* Dimethomorph 0.270 

  400* Methyl nonyl ketone -0.138 

401 Bioallethrin 0.108 

402 Zinc oxide 0.093 

403 Phenothrin [(1R)-trans-isomer 0.080 

404 2-(Octylthio)ethanol -0.090 

405 Flumetsulam 0.095 

406 Fluxofenim 0.125 

  407* Phenmedipham 0.001 

408 Sodium 2-phenylphenate 0.163 

409 2-Phenylphenol 0.163 

410 Thifensulfuron-methyl 0.171 

  411* Chlorfluazuron 0.349 

412 Anthraquinone 0.033 

  413* Chlorimuron-ethyl 0.234 

  414* Rimsulfuron 0.429 

415 Thiobencarb 0.059 

416 N,N-Diethyl-M-Toluamide 0.078 

417 Chloroxuron -0.004 

418 ZXI 8901 1.212 

419 Butoxypolypropylene glycol -0.138 

  420* 2,4-DB 0.145 

421 Methabenzthiazuron 0.360 

422 Flurprimidol 0.129 

423 Alloxydim-sodium 0.053 

424 Pyrimethanil -0.019 

425 Sulcotrione 0.258 

426 Butroxydim 0.390 

427 Phosacetim 2.962 

  428* Desmedipham 0.065 

429 Fomesafen -0.041 

430 Pyrazole 0.156 

431 Allethrin 0.196 

432 Brodifacoum 2.810 
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433 Metolachlor 0.070 

434 Phenyl-indole-3-thiobutyrate 0.134 

  435* Brofenprox 0.374 

  436* DMPA 1.094 

437 Propham -0.032 

438 Dichlone 0.071 

439 Sodium dodecylbenzene-sulfonate 0.315 

  440* Azafenidin 0.160 

  441* Tribenuron 0.164 

442 Silafluofen 0.326 

443 Imazethapyr 0.112 

  444* DDT 0.460 

445 PHMB -0.054 

446 Imazosulfuron 0.246 

447 Fluazuron 0.386 

448 Procymidone -0.351 

  449* Flusilazole 0.314 

450 DTEA 0.001 

451 Bensultap 3.022 

  452* Endothall (dimethylal- 0.687 

453 Acetates of Z/E 8-dodecenyl and Z 8-dodecenol -0.011 

454 Pyrifenox 0.152 

455 Flumiclorac-pentyl 0.210 

456 Chlorpropham 0.044 

457 Orbencarb 0.093 

458 Fenoxaprop -0.120 

459 Tridec-4-en-1-yl acetate 0.050 

  460* Triasulfuron 0.254 

  461* TEPA 1.590 

462 Clethodim 0.190 

463 Methyl anthralinate 0.264 

464 Tribenuron-methyl 0.180 

465 Sulfometuron-methyl -0.121 

466 Flupyrsulfuron-methyl- 0.332 

467 Irgarol -0.013 

  468* Fenoxaprop-ethyl -0.085 

469 Isoxaflutole 0.239 

470 DMDM hydantoin 0.124 

471 Sulfentrazone 0.171 

  472* Diafenthiuron 0.392 

473 Dimethirimol 0.014 

474 Imazamox 0.154 

475 Pebulate 0.023 

  476* Isoxaben 0.156 

477 Maneb -0.215 

  478* Iodine complex 0.127 

  479* Prosulfocarb 0.033 

  480* Bupirimate -0.183 

     * Test set compounds 
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3.2.2. Descriptor calculation 

A comprehensive set of molecular descriptors for each compound was calculated using alvaDesc 

software [64]. These descriptors included physicochemical properties, structural features, and 

electronic properties. Redundant and non-informative descriptors were eliminated based on 

correlation analysis and feature importance metrics. 

3.2.3. Dataset division 

The modeling process involves dividing the data into a training set for model development and a 

test set for model validation. In this study, various approaches were used for the data set division 

namely Kennard stone, activity property-based, and Euclidean distance methods using Dataset 

Division GUI 1.2 software (http://teqip.jdvu.ac.in/QSAR_Tools/). The optimal division was 

achieved using the activity property-based approach. 

3.2.4. Feature selection and development of the QSTR model 

Feature selection is a technique that reduces the dimensionality of the feature space by eliminating 

noisy and insignificant descriptors. To develop the robust, interpretable model, the choice of an 

appropriate descriptor is important. In the present study, we conducted a stepwise regression (using 

Minitab 14 software) and selected some descriptors. After removing the selected descriptors 

obtained from the first stepwise regression run, we repeated the stepwise regression using the 

remaining pool of descriptors. We repeated the same procedure and selected a manageable number 

of descriptors to create a reduced pool. The obtained reduced pool of descriptors was subjected to 

best subset selection to identify the most significant descriptors for model building using Best-

Subset selection 2.1. software (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). The PLS 

regression approach was adopted to construct the final QSTR models. 

3.2.5. Read-Across and calculation of the RASTR descriptor  

Read-across approach is quite different from the QSAR/QSTR approach. Read-across assumes 

similar structural features in two compounds lead to the same biological activities. Optimization 

of hyperparameters for obtaining the read-across prediction is essential. The training set was 

divided into sub-train and sub-test sets for the weightage average prediction. Based on the quality 

of prediction for the validation set, laplacian kernel-driven similarity with σ=0.75; γ=0.75, and 10 

close training compounds were chosen as hyperparameters. During the hyperparameters 

optimization, MAE-based (95%) criteria and external metrics (Q2
F1 and Q2

F2) were used for the 

selection. To perform q-RASTR modeling, RASTR descriptors were calculated using "RASAR 

Descriptor Calculator v2.0" tool (available from: 

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) for both the training and 

test compounds with optimized hyperparameters based on similarity and error. 

3.2.6. q- RASTR feature selection and model development 

A set of 15 descriptors was computed using optimized hyperparameters for the individual training 

set and the test set. The RASTR descriptors that were calculated earlier were combined with the 

model descriptors and the resulting pool was analyzed by the BestSubsetSelectionModified_v2.1 

tool (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) for q-RASTR model development. The 

best features were then used to create the final PLS-based q-RASTR model using the PLS_Single 

Y_version 1.0 software. 

3.2.7. Statistical validation of the constructed model 

This study employs various statistical validation approaches to measure robustness and prediction 

accuracy, establishing the significance and reliability of the constructed model using standard 

validation metrics. For statistical quality assessment as well as internal validation, we calculated 

metrics such as the determination coefficient (R2), leave one out cross-validated correlation 

coefficient (Q2
LOO), and MAEtrain. Internal validation metrics are not true assessments of the 

robustness and predictivity of the model. Therefore, the developed models were validated using 

test set compounds employing various external validation parameters such as Q2
F1, Q

2
F2, and 

MAEtest. The approved threshold value for Q2
(LOO), Q

2
F1, and Q2

F2 is 0.5. 

3.2.8. Screening of the PPDB database 

We obtained 1903 chemicals data from the PPDB database (http://sitem.herts.ac.uk/aeru/ppdb/).  

We used a KNIME workflow to curate the dataset, eliminating duplicates, inorganic salts, and 

mixtures. The dataset was curated and 1694 compounds were selected for screening to ensure the 

model's reliability. We calculated the molecules’ descriptors using the same process as in q-RASTR 

modeling. We used the q-RASTR model and the PRI tool to make predictions and assess their 

reliability. The tool evaluates the quality of predictions using AD and provides qualitative 

prediction indicators, such as 'Good', 'Moderate', and 'Bad'. 

3.2.9. Applicability domain (AD) study  

AD is a specific region in chemical space where confident predictions can be made based on model 

descriptors and responses. To make an accurate prediction, the target compounds should closely 

resemble the training compounds in terms of structure. Therefore, it is crucial to validate the 

applicability domain for the statistical model as advised by OECD Principle 3 ("Validation of 

(Q)SAR Models - OECD," 2004). To adhere to the OECD guidelines, an applicability domain 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://teqip.jdvu.ac.in/QSAR_Tools/
http://sitem.herts.ac.uk/aeru/ppdb/
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analysis of the PLS-based q-RASTR model was conducted using DModX technique implemented 

in Simca-P software at a 99% confidence level. 

3.2.10 Y-randomization study 

Y-randomization study has been performed to analyze and confirm whether the developed models 

are produced by any chance. Y-randomization plots are generated for final PLS-based models 

through the SIMCA-P software. In randomization, the dependent variables are scrambled randomly 

while keeping the descriptor matrix constant, and by using the same set of variables from the 

original set, new models are built. The validation metrics obtained from the randomized model 

should be poorer than the original model otherwise that model should be considered to be 

developed by chance. The workflow for this entire study has been illustrated in Figure. 3.2. 

Figure 3.2. Schematic workflow of the q-RASTR model development. 

3.3 Study 3 

3.3.1. Preparation of dataset & curation 

 Here, we developed models using datasets with toxicity endpoint (LC50; defined as the lethal 

concentration in 50% population) for toxicity prediction in multiple avian species collected from 

literature [73] which was originally collected from the EPA, Ecotox database 

(http://cfpub.epa.gov/ecotox/). In this study; 556 pesticides for BQ and 117 pesticides for JQ, were 

taken for the development of the model. The toxicity endpoint values range from 0.082 to 4.957 in 

http://cfpub.epa.gov/ecotox/
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BQ, and 0.162 to 4.968 in JQ. The two-dimensional structures of the pesticides were sketched using  

Marvin Sketch 5.5.0.1 (https://chemaxon.com) with the addition of explicit hydrogen atoms as well 

as proper aromatization. The conversion of structure file formats was carried out using Open Babel 

v.2.3.2 [74]. Knime workflow (https://www.knime.com/cheminformatics-extensions) was 

employed for data curation which removes unwanted salts and duplicate compounds. Toxicity in 

an avian species characterized as an endpoint value (LC50) was converted to millimolar (mM) 

concentration followed by converting to a negative logarithmic scale, pLC50, for easy 

interpretation. Some compounds were omitted from the datasets due to high residual values. 

Table 3.5. Compounds smile with respective experimental pLC50 values for BQ. 

Sl.No Canonical_smiles pLC50 

1 COP(=O)(OC)OC(=CC(=O)N(C)C)C 4.261 

2 COP(=S)(OC)Oc1ccc(cc1)[N+](=O)[O-] 4.958 

3 COP(=S)(OC)Oc1ccc(SC)c(C)c1 4.133 

4 CCN(CC)C(=O)\C(=C(/C)\OP(=O)(OC)OC)\Cl 4.097 

5 CCOP(=S)(OCC)Oc1ccc(cc1)S(=O)C 3.945 

6 CCOP(=O)(NC(C)C)Oc1ccc(SC)c(C)c1 3.902 

7 CCCSP(=O)(OCC)SCCC 3.866 

 8* CCCSP(=O)(OCC)Oc1ccc(Br)cc1Cl 3.817 

 9* Nc1c(c(nn1-c1c(Cl)cc(cc1Cl)C(F)(F)F)C#N)S(=O)C(F)(F)F 3.716 

10 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)cc2)cc1 3.705 

11 CCOP(=S)(OCC)Oc1ccc2C(=C(Cl)C(=O)Oc2c1)C 3.630 

12 CNC(=O)O\N=C(/SC)\C(=O)N(C)C 3.609 

13 ClC1C=CC2C1C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 3.608 

14 CCOP(=S)(OCC)Oc1cnccn1 3.582 

15 COP(=S)(OC)Oc1nc(Cl)n(n1)C(C)C 3.569 

 16* COP(=O)(N)SC 3.526 

17 CCCSP(=S)(OCC)Oc1ccc(SC)cc1 3.513 

18 CCOCn1c(c2ccc(Cl)cc2)c(C#N)c(Br)c1C(F)(F)F 3.490 

19 CN(c1c(Br)cc(Br)cc1Br)c2c(cc(cc2C(F)(F)F)[N+](=O)[O-])[N+](=O)[O-] 3.440 

20 CCOP(=S)(NC(C)C)Oc1ccccc1C(=O)OC(C)C 3.377 

  21* CCOP(=S)(OCC)OC(Cl)C(Cl)(Cl)Cl 3.356 

  22* [O]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F 3.356 

23 CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 3.337 

24 CCOP(=O)(SC(C)CC)N1CCSC1=O 3.319 

  25* CCOP(=S)(OCC)SCSC(C)(C)C 3.305 

  26* CCOP(=S)(CC)Sc1ccccc1 3.268 

27 CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)

F 

3.266 

28 COP(=S)(OC)Oc1ccc(c(C)c1)[N+](=O)[O-] 3.247 

29 CCOP(=S)(OC(C)C)Oc1cnc(nc1)C(C)(C)C 3.222 

https://chemaxon.com/
https://www.knime.com/cheminformatics-extensions
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30 Clc1ccc(cc1)C(C(=O)C2C(=O)c3ccccc3C2=O)c4ccccc4 3.190 

31 CNC(=O)CSP(=S)(OC)OC 3.184 

32 CCOP(=S)(OCC)Oc1ccc(cc1)[N+](=O)[O-] 3.177 

33 CCN(CC)c1nc(C)cc(OP(=S)(OC)OC)n1 3.169 

34 COC1=NN(CSP(=S)(OC)OC)C(=O)S1 3.130 

35 C1C2C(C(C1Cl)Cl)C3(C(=C(C2(C3(Cl)Cl)Cl)Cl)Cl)Cl 3.093 

36 CCNP(=S)(OC)O\C(=C\C(=O)OC(C)C)\C 3.038 

37 CCOP(=S)(Oc1ccc(cc1)[N+](=O)[O-])c2ccccc2 2.967 

38 CCOC(=O)CSc1nc(nn1C(=O)N(C)C)C(C)(C)C 2.884 

  39* CCOP(=S)(OCC)SCSCC 2.844 

40 COP(=S)(OC)SCN1N=Nc2ccccc2C1=O 2.813 

41 COP(=S)(OC)SCN1C(=O)c2ccccc2C1=O 2.802 

42 CNC(=O)Oc1cccc2CC(C)(C)Oc12 2.796 

43 Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.764 

  44* CCS(=O)CCSP(=O)(OC)OC 2.754 

45 Clc1ccc(c(Cl)c1Cl)c2cccc(Cl)c2Cl 2.733 

46 ClC1=C(Cl)C2(Cl)C3COS(=O)OCC3C1(Cl)C2(Cl)Cl 2.704 

47 CCOP(=S)(OCC)SCCSCC 2.692 

  48* CC(=O)CC(C1=C([O-])c2ccccc2OC1=O)c1ccccc1 2.692 

  49* Clc1ccc(c(Cl)c1Cl)c2ccc(Cl)c(Cl)c2Cl 2.684 

50 FC(F)(F)c1ccc(OCCCOc2c(Cl)cc(OCC=C(Cl)Cl)cc2Cl)nc1 2.644 

  51* CC1(C)CNC(=NN=C(\C=C\c2ccc(cc2)C(F)(F)F)\C=C\c3ccc(cc3)C(F)(F)F)N

C1 

2.639 

52 CCOP(=O)(OCC)SCCSCC 2.637 

53 CC(C)(C)C(O)C(Oc1ccc(cc1)c2ccccc2)n3cncn3 2.621 

  54* ClC(=C(c1ccc(Cl)cc1)c2ccc(Cl)cc2)Cl 2.586 

55 CC(C1CC1)C(O)(Cn2cncn2)c3ccc(Cl)cc3 2.553 

56 COP(=O)(OC)C(O)C(Cl)(Cl)Cl 2.553 

  57* C1(C(C(C(C(C1Cl)Cl)Cl)Cl)Cl)Cl 2.518 

58 CCS(=O)(=O)c1cccnc1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 2.508 

59 CCCCCCCC(=O)Oc1c(Br)cc(cc1Br)C#N 2.487 

60 CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 2.484 

  61* CCC1CN(CCO1)c2ncc(cc2C#N)[N+](=O)[O-] 2.479 

62 CNC(=O)Oc1cccc2OC(C)(C)Oc12 2.474 

63 CC1(C)CCC(Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 2.472 

64 CNC(=O)Oc1cc(C)c(SC)c(C)c1 2.457 

65 C\C(=N/NC(=O)Nc1cc(F)cc(F)c1)c1ncccc1C([O-])=O 2.429 

  66* C1CN2CC3=CCOC4CC(=O)N5C6C4C3CC2C61C7=CC=CC=C75 2.427 

67 Clc1cc(Cl)cc(c1)c2cc(Cl)cc(Cl)c2 2.395 

68 ClC(Cl)(Cl)C(NC=O)N1CCN(CC1)C(NC=O)C(Cl)(Cl)Cl 2.372 

69 COC(=O)C=C(C)OP(=O)(OC)OC 2.351 

  70* ClC1(Cl)C2(Cl)C3(Cl)C4(Cl)C(Cl)(Cl)C5(Cl)C(Cl)(C1(Cl)C35Cl)C24Cl 2.337 

71 CCC(C)c1cccc(OC(=O)N(C)Sc2ccccc2)c1 2.330 

72 CCCCSP(=O)(SCCCC)SCCCC 2.316 
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73 CC1(C)[C@H](\C=C(/Cl)\C(F)(F)F)[C@@H]1C(=O)O[C@H](C#N)c2cccc(

Oc3ccccc3)c2 

2.281 

  74* Cc1cccc2sc3nncn3c12 2.277 

75 CC1(C)CCCC(C1)=CC=O 2.275 

  76* CCOP(=S)(OCC)SCN1C(=O)Oc2cc(Cl)ccc12 2.258 

77 COP(=O)(OC)OC(Br)C(Cl)(Cl)Br 2.255 

  78* C\C=C\C(=O)Oc1c(CCCCCC(C)C)cc(cc1[N+](=O)[O-])[N+](=O)[O-] 2.253 

79 COP(=S)(OC)Oc1nc(Cl)c(Cl)cc1Cl 2.245 

80 Nc1c(Cl)cc(cc1Cl)[N+](=O)[O-] 2.230 

81 [O-][N+](=O)N=C1NCCN1Cc2ccc(Cl)nc2 2.221 

82 [O-][N+](=O)NC1=NCCN1Cc1ccc(Cl)nc1 2.221 

  83* COc1ccc(cc1NNC(=O)OC(C)C)c2ccccc2 2.208 

84 CC1(C(C1C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C=C(C(F)(F)

F)Cl)C 

2.207 

85 [O-]C(=O)CF 2.200 

86 CC1(C(C1C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C(C(Br)(Br)

Br)Br)C 

2.198 

87 CC1=C(C(=O)CC1OC(=O)C2C(C2(C)C)C=C(C)C)CC=C 2.173 

88 O=C1NSc2ccccc12 2.171 

89 CC(C)(C)C(=O)C1C(=O)c2ccccc2C1=O 2.169 

90 CNC(=O)ON=C(C)SC 2.169 

91 ClC(Cl)C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 2.167 

  92* CON(C)C(=O)Nc1ccc(Cl)c(Cl)c1 2.166 

93 COP(=O)(NC(=O)C)SC 2.156 

94 CN1C(=O)ON(C1=O)c2ccc(Cl)c(Cl)c2 2.155 

 95* CC[C@H]1CCCC(O[C@H]2CC[C@@H]([C@@H](C)O2)N(C)C)[C@@H]

(C)C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3[C@@

H]2CC(=O)O1)O[C@@H]1O[C@@H](C)[C@H](OC)[C@@H](OC)[C@H]

1OC 

2.152 

96 Clc1ccc(c(Cl)c1)c2cccc(Cl)c2Cl 2.144 

  97* Oc1c(Br)cc(cc1Br)C#N 2.139 

98 CCCCCCCCCCCCCC[N+](C)(C)Cc1ccccc1 2.136 

99 CN(C)C(=O)Nc1ccc(Cl)c(Cl)c1 2.130 

100 CCN(Cc1cccc(c1)S([O-

])(=O)=O)c1ccc(cc1)C(=C1C=CC(C=C1)=[N+](CC)Cc1cccc(c1)S([O-

])(=O)=O)c1ccccc1S([O-])(=O)=O 

2.124 

101 Cc1cc(ccc1NC(=O)c1cccc(I)c1C(=O)NC(C)(C)CS(C)(=O)=O)C(F)(C(F)(F)F

)C(F)(F)F 

2.118 

102 CC(C)[C@H](C(=O)OC(C#N)c1cccc(Oc2ccccc2)c1)c3ccc(OC(F)F)cc3 2.118 

  103* ClC(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 2.098 

 104* [O-]S(=O)(=O)c1cc(Cl)ccc1Oc2ccc(Cl)cc2NC(=O)Nc3ccc(Cl)c(Cl)c3 2.094 

105 OC(c1ccc(Cl)cc1)(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.090 

106 CCCCOCCOC(=O)C(C)Oc1cc(Cl)c(Cl)cc1Cl 2.086 

107 COC(=O)c1ccc(I)cc1S(=O)(=O)[N-]C(=O)Nc2nc(C)nc(OC)n2 2.065 

108 CCCC(=O)Oc1c(Br)cc(cc1Br)C#N 2.041 
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  109* COc1cnc(OC)n2nc(NS(=O)(=O)c3c(OCC(F)F)cccc3C(F)(F)F)nc12 2.040 

  110* Clc1cccc(n1)C(Cl)(Cl)Cl 2.034 

111 Cc1ccc2nc3SC(=O)Sc3nc2c1 2.033 

  112* OC(=O)C1(CC1)C(=O)Nc2ccc(Cl)cc2Cl 2.026 

  113* CC=C(C)C(=O)OC1CC(C2(COC3C2C1(C(C4(C3OC5C4=C(C(C5)C6=COC

=C6)C)C)CC(=O)OC)C)C)OC(=O)C 

2.026 

114 CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2 2.023 

115 COC(=O)c1ccc(CNS(=O)(=O)C)cc1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 2.021 

  116* CCCCOCCOC(=O)COc1cc(Cl)c(Cl)cc1Cl 2.020 

  117* CCC1C(CCC2(O1)CC3CC(O2)CC=C(CC(C=CC=C4COC5C4(C(C=C(C5O)

C)C(=O)O3)O)C)C)C 

2.019 

118 CC1C(C(C(O1)OC2C(C(C(C(C2O)O)N=C(N)N)O)N=C(N)N)OC3C(C(C(C(

O3)CO)O)O)NC)(C=O)O 

2.015 

119 CCCCCCCC[N+](C)(C)CCCCCCCC 2.013 

120 CC(C)(C)c1ccc(OC2CCCCC2OS(=O)OCC#C)cc1 2.013 

121 COC(=O)c1csc(C)c1S(=O)(=O)NC(=O)N2N=C(OC)N(C)C2=O 2.006 

122 Cc1cc(Cl)ccc1OCC(=O)O 2.001 

123 CN(\C=N\c1ccc(C)cc1C)\C=N\c2ccc(C)cc2C 1.979 

124 CC(C)N(C)S(=O)(=O)NC(=O)c1cc(N2C(=O)C=C(N(C)C2=O)C(F)(F)F)c(F)

cc1Cl 

1.978 

125 Cc1c(COC(=O)C2C(\C=C(/Cl)\C(F)(F)F)C2(C)C)cccc1c3ccccc3 1.978 

126 CCCCCCCCCCCCCC[P+](CCCC)(CCCC)CCCC 1.977 

  127* FC(OC(F)(F)F)C(F)(F)Oc1ccc(NC(=O)NC(=O)c2c(F)cccc2F)cc1Cl 1.977 

128 CO\N=C(\C1=NOCCO1)/c2ccccc2Oc3ncnc(Oc4ccccc4Cl)c3F 1.976 

129 CCCN(CCC)C(=O)SCC 1.976 

130 CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC 1.975 

  131* CCC(=O)Nc1ccc(Cl)c(Cl)c1 1.975 

132 COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2cc(NC=O)ccc2C(=O)N(C)C)n1 1.963 

133 CNC(=O)N(C)c1nnc(s1)C(C)(C)C 1.961 

134 CCNc1nc(Cl)nc(NC(C)(C)C#N)n1 1.958 

135 CN1C(=NN(C1=O)C(=O)[N-

]S(=O)(=O)C2=CC=CC=C2OC(F)(F)F)OC.[Na+] 

1.957 

136 CCOc1nc(F)cc2nc(nn12)S(=O)(=O)Nc3c(Cl)cccc3Cl 1.956 

137 CC1(C(C1C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Br)Br)C 1.954 

138 CC(C)C(Nc1ccc(cc1Cl)C(F)(F)F)C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2 1.951 

139 CC(C1CCC(C(O1)OC2C(CC(C(C2O)OC3C(C(C(CO3)(C)O)NC)O)N)N)N)

NC 

1.949 

  140* CC(Oc1cc(Cl)c(Cl)cc1Cl)C(=O)O 1.949 

  141* CCS(=O)(=O)c1nc2ccccn2c1S(=O)(=O)NC(=O)Nc3nc(OC)cc(OC)n3 1.948 

142 CCN(Cc1c(F)cccc1Cl)c2c(cc(cc2[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.944 

143 CC(C)[C@@]1(O)[C@@H](OC(=O)c2ccc[nH]2)[C@@]3(O)[C@@]4(C)C[

C@]5(O)O[C@@]6([C@H](O)[C@@H](C)CC[C@]46O)[C@@]3(O)[C@

@]15C 

1.944 

144 COC(=O)c1cccc(C)c1S(=O)(=O)NC(=O)Nc2nc(OCC(F)(F)F)nc(n2)N(C)C 1.943 

145 OC(=O)COc1nc(Cl)c(Cl)cc1Cl 1.942 
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146 COc1cc(OC)n2nc(NS(=O)(=O)c3c(OC)nccc3C(F)(F)F)nc2n1 1.939 

  147* CC1(C(C1C(=O)OC(C#N)C2=CC(=C(C=C2)F)OC3=CC=CC=C3)C=C(Cl)C

l)C 

1.939 

148 CCCCCCC(=O)Oc1c(Br)cc(cc1Br)C#N 1.934 

149 CCOC(=O)C(O)(c1ccc(Cl)cc1)c2ccc(Cl)cc2 1.934 

  150* COc1cc(OC)nc(NC(=O)NS(=O)(=O)Nc2ccccc2C(=O)N(C)C)n1 1.931 

151 CS(=O)(=O)c1cc(ccc1C(=O)c2cnoc2C3CC3)C(F)(F)F 1.927 

152 ClC1=C(Cl)C(Cl)(C(=C1Cl)Cl)C2(Cl)C(=C(Cl)C(=C2Cl)Cl)Cl 1.927 

153 CN1C(=O)N(C(=O)C=C1C(F)(F)F)c2ccc(Cl)c(c2)C(=O)OC(C)(C)C(=O)OC

C=C 

1.926 

154 Cc1nn(C)c(Oc2ccccc2)c1\C=N\OCc3ccc(cc3)C(=O)OC(C)(C)C 1.926 

155 CCSC(C)CC1CC(=C(C(=NOC\C=C\Cl)CC)C(=O)C1)O 1.926 

156 CC(C)C(C(=O)OC(C#N)c1cccc(Oc2ccccc2)c1)c3ccc(Cl)cc3 1.924 

157 COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2CCC(F)(F)F)n1 1.924 

  158* Clc1ccc(CCC(Cn2cncn2)(C#N)c3ccccc3)cc1 1.920 

  159* FC(F)(F)c1cnc(CCNC(=O)c2ccccc2C(F)(F)F)c(Cl)c1 1.919 

160 CCOC(=O)COc1cc(c(F)cc1Cl)c2nn(C)c(OC(F)F)c2Cl 1.917 

  161* CCOC(=O)C(C)OC(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.915 

162 COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2ncccc2C(=O)N(C)C)n1 1.914 

  163* CN(C)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C(O)[C@]2(O)C(=O)C(C

(N)=O)=C1O)C(=O)c1c(O)cccc1[C@@]3(C)O 

1.913 

  164* COC1=CC(=NC(=N1)NC(=O)NS(=O)(=O)C2=C(N=C3N2C=CC=C3)Cl)OC 1.913 

165 Cl\C=C\C[N+]12CN3CN(CN(C3)C1)C2 1.912 

166 CON=C(C(=O)OC)c1ccccc1CON=C(C)c2cccc(c2)C(F)(F)F 1.908 

  167* COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2OCCCl)n1 1.905 

168 CC(=O)CC(C1=C(O)c2ccccc2OC1=O)c3ccccc3 1.898 

169 Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.894 

170 CO\C=C(\C(=O)OC)/c1ccccc1Oc2cc(Oc3ccccc3C#N)ncn2 1.890 

171 CON(C(=O)OC)c1ccccc1COc2ccn(n2)c3ccc(Cl)cc3 1.890 

172 COC(=O)c1c(Cl)nn(C)c1S(=O)(=O)NC(=O)Nc2nc(OC)cc(OC)n2 1.889 

  173* CCOc1nc(F)cc2nc(nn12)S(=O)(=O)Nc3c(Cl)cccc3C(=O)OC 1.884 

174 COc1cc(OC)nc(Oc2cccc(Oc3nc(OC)cc(OC)n3)c2C(=O)[O-])n1 1.883 

  175* CS(=O)(=O)c1ccc(C(=O)C2C(=O)CCCC2=O)c(Cl)c1COCC(F)(F)F 1.882 

176 O=C(C(c1ccccc1)c2ccccc2)C3C(=O)c4ccccc4C3=O 1.880 

177 CCCCCCCCSC(=O)Oc1cc(Cl)nnc1c2ccccc2 1.880 

178 CN1C=C(C(=O)C(=C1)c2cccc(c2)C(F)(F)F)c3ccccc3 1.879 

  179* CCCCCOC(=O)COc1cc(N2C(=O)C3=C(CCCC3)C2=O)c(F)cc1Cl 1.878 

  180* Clc1ccc(c(Cl)c1)C2(Cn3cncn3)CC(Br)CO2 1.877 

181 CCOc1ccc(cc1)C(C)(C)COCc2cccc(Oc3ccccc3)c2 1.877 

182 CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc2cccc(Oc3ccccc3)c2 1.877 

183 Cc1ccc(cc1)S(=O)(=O)C(I)I 1.876 

184 Cc1cc(C)c(C2=C(OC(=O)C(C)(C)C)C3(CCCC3)OC2=O)c(C)c1 1.874 

185 CCOC(=O)OC1=C(C(=O)N[C@@]12CC[C@@H](CC2)OC)c3cc(C)ccc3C 1.873 

186 CC(C)[C@H](C(=O)O[C@H](C#N)c1cccc(Oc2ccccc2)c1)c3ccc(Cl)cc3 1.873 
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  187* CC12C(C=CC3(C1C(C45C3CCC(C4)(C(=C)C5)O)C(=O)O)OC2=O)O 1.873 

188 CCOC(=O)C(C)Oc1ccc(Oc2cnc3cc(Cl)ccc3n2)cc1 1.873 

189 Cc1nn(C)c(O)c1C(=O)c2ccc(cc2S(=O)(=O)C)C(F)(F)F 1.868 

190 CCOC(=O)C(Cl)Cc1cc(N2N=C(C)N(C(F)F)C2=O)c(F)cc1Cl 1.865 

191 CCCCOC(=O)C(C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F)cc1 1.865 

192 COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl 1.864 

  193* COc1ccc(cc1OC)\C(=C\C(=O)N2CCOCC2)\c3ccc(Cl)cc3 1.864 

194 CCOc1nc(NC)nc(NC(=O)NS(=O)(=O)c2ccccc2C(=O)OC)n1 1.864 

195 COC(=O)c1ccccc1CS(=O)(=O)NC(=O)Nc1nc(OC)cc(OC)n1 1.864 

  196* CNC(=O)Oc1cc(C)c(C)c(C)c1 1.863 

197 COc1cc(OC)nc(NC(=O)NS(=O)(=O)c2ncccc2C(F)(F)F)n1 1.863 

198 CC(C)C(O)(c1ccc(OC(F)(F)F)cc1)c2cncnc2 1.860 

199 CCCCNC(=O)OCC#CI 1.860 

200 CCOc1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.859 

  201* CSC(=O)c1c(CC(C)C)c(C(=O)SC)c(nc1C(F)F)C(F)(F)F 1.854 

202 Clc1ccc(cc1)S(=O)(=O)c2cc(Cl)c(Cl)cc2Cl 1.853 

203 CS(=O)(=O)c1ccc(C(=O)C2C(=O)CCCC2=O)c(c1)[N+](=O)[O-] 1.852 

  204* CCOc1cc(ccc1C2COC(=N2)c3c(F)cccc3F)C(C)(C)C 1.851 

  205* CC(C)OP(=S)(OC(C)C)SCCNS(=O)(=O)c1ccccc1 1.850 

  206* CN1CSC(=S)N(C)C1 1.848 

207 COC(=O)c1c(CC(C)C)c(C2=NCCS2)c(nc1C(F)F)C(F)(F)F 1.848 

208 CCc1ccc(cc1)C(=O)NN(C(=O)c2cc(C)cc(C)c2)C(C)(C)C 1.848 

  209* COC(=O)c1ccccc1S(=O)(=O)NC(=O)N(C)c2nc(C)nc(OC)n2 1.847 

210 CC(=CC1C(C1(C)C)C(=O)OCC2=CC(=CC=C2)OC3=CC=CC=C3)C 1.846 

211 COC(=O)c1cc(Cl)cc(N)c1Cl 1.843 

212 CN(C)C(=O)Oc1nc(nc(C)c1C)N(C)C 1.843 

  213* CCCCCCCCCCCCCC=CCCCCCCCC 1.842 

214 CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])S(=O)(=O)N)[N+](=O)[O-] 1.841 

215 COc1ccc(cc1)C(c2ccc(OC)cc2)C(Cl)(Cl)Cl 1.840 

  216* OC(CN1NC=NC1=S)(Cc2ccccc2Cl)C3(Cl)CC3 1.839 

217 CC(C)Oc1cc(N2N=C(OC2=O)C(C)(C)C)c(Cl)cc1Cl 1.839 

218 CCCCC(O)(Cn1cncn1)c2ccc(Cl)cc2Cl 1.839 

219 COC(=O)c1sccc1S(=O)(=O)NC(=O)Nc2nc(C)nc(OC)n2 1.838 

220 CC1=NN(C(=O)N1C(F)F)c2cc(NS(=O)(=O)C)c(Cl)cc2Cl 1.838 

221 CCCCCC(C)OC(=O)COc1ccc(Cl)c2cccnc12 1.837 

222 Clc1ccc(cc1)c2ccccc2NC(=O)c3cccnc3Cl 1.837 

223 Cc1c(ccc(c1C2=NOCC2)S(=O)(=O)C)C(=O)c3cnn(C)c3O 1.836 

224 COC(=O)c1cc(Oc2ccc(Cl)cc2Cl)ccc1[N+](=O)[O-] 1.835 

  225* CC(C(=O)OCC#C)OC1=CC=C(C=C1)OC2=C(C=C(C=N2)Cl)F 1.835 

226 CC(Oc1ccc(Oc2ncc(Cl)cc2F)cc1)C(=O)OCC#C 1.835 

227 COC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(C)nc(OC)n2 1.832 

  228* COc1cc(OCC#C)ccc1CCNC(=O)C(OCC#C)c2ccc(Cl)cc2 1.831 

229 COc1cc(C)c(C(=O)c2c(C)c(Br)ccc2OC)c(OC)c1OC 1.829 
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  230* CCC(CC)Nc1c(cc(C)c(C)c1[N+](=O)[O-])[N+](=O)[O-] 1.827 

231 CCc1cc(C)cc(CC)c1C2=C(OC(=O)C(C)(C)C)N3CCOCCN3C2=O 1.827 

232 CCCCN(CC)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.826 

233 CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.826 

234 CC(COc1ccc(cc1)C(C)(C)C)OS(=O)OCCCl 1.826 

235 Fc1cccc(F)c1C(=O)NC(=O)Nc2ccc(Cl)cc2 1.826 

236 CN(C)C(=O)Nc1cccc(c1)C(F)(F)F 1.825 

237 CC(=CC1C(C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2)C1(C)C)C 1.825 

  238* CCc1nn(C)c(C(=O)NCc2ccc(cc2)C(C)(C)C)c1Cl 1.825 

239 CCN(CC(=C)C)c1c(cc(cc1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.824 

  240* CC1(OC(=O)N(Nc2ccccc2)C1=O)c3ccc(Oc4ccccc4)cc3 1.824 

241 CCC(C)(CC)c1cc(NC(=O)c2c(OC)cccc2OC)on1 1.823 

242 FC(F)(F)c1cnc(CNC(=O)c2c(Cl)cccc2Cl)c(Cl)c1 1.821 

243 CCCCOCCOC(=O)COc1nc(Cl)c(Cl)cc1Cl 1.820 

  244* BrCC(Br)(CCC#N)C#N 1.818 

245 CCCCCCCCN1SC=CC1=O 1.815 

  246* CC(C)(C)N1N=CC(=C(Cl)C1=O)SCc2ccc(cc2)C(C)(C)C 1.813 

247 Nc1cc(Cl)cc(C(=O)[O-])c1Cl 1.812 

  248* COC(=O)c1ccccc1S(=O)(=O)NC(=O)Nc2nc(C)cc(C)n2 1.812 

249 CCN(CC)c1c(cc(c(N)c1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.809 

250 CCOC(=O)C(C)Oc1ccc(Oc2oc3cc(Cl)ccc3n2)cc1 1.809 

251 CC(Oc1ccc(Oc2ncc(cc2Cl)C(F)(F)F)cc1)C(=O)O 1.809 

252 CCCCOCCOC(=O)COc1ccc(Cl)cc1Cl 1.808 

253 [O-]C(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.807 

  254* CCC(C)(NC(=O)c1cc(Cl)c(C)c(Cl)c1)C(=O)CCl 1.807 

255 COc1nc(C)nc(NC(=O)NS(=O)(=O)c2ccccc2Cl)n1 1.804 

  256* CCCCOC(=O)C(C)OC1=CC=C(C=C1)OC2=C(C=C(C=C2)C#N)F 1.803 

257 CC1(C)CCC(=Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 1.803 

258 CC(C)(C)C(=O)C(Oc1ccc(Cl)cc1)n2cncn2 1.802 

259 CS\C(=N\OC(=O)N(C)SN(C)C(=O)ON=C(C)SC)\C 1.800 

260 Fc1cc2OCC(=O)N(CC#C)c2cc1N3C(=O)C4=C(CCCC4)C3=O 1.800 

261 CCCCC(CC)COC(=O)c1nc(Cl)c(Cl)c(N)c1Cl 1.799 

  262* CC(C)CCCCCCCCCCCCCCCOCCO 1.799 

  263* CC1C(SC(=O)N1C(=O)NC2CCCCC2)C3=CC=C(C=C3)Cl 1.798 

264 COc1cccc(C(=O)NN(C(=O)c2cc(C)cc(C)c2)C(C)(C)C)c1C 1.798 

  265* CCCCOCCOCCOCCc1cc2OCOc2cc1CCC 1.797 

266 CON=C(C(=O)OC)c1ccccc1COc2ccccc2C 1.797 

267 CC(C)CCCCCOC(=O)COc1ccc(Cl)cc1C 1.796 

268 COCc1c(F)c(F)c(COC(=O)[C@@H]2[C@@H](C=CC)C2(C)C)c(F)c1F 1.796 

269 CC(C)C1(C)N=C(NC1=O)c2nc3ccccc3cc2C(=O)O 1.794 

270 C1C=CCC2C1C(=O)N(C2=O)SC(C(Cl)Cl)(Cl)Cl 1.793 

271 ClC(Cl)C(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 1.793 

272 CC(C)CC(C)c1sccc1NC(=O)c2cn(C)nc2C(F)(F)F 1.793 
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273 CCCN(CCC)c1c(cc(cc1[N+](=O)[O-])C(C)C)[N+](=O)[O-] 1.792 

274 CC(COc1ccc(Oc2ccccc2)cc1)Oc3ccccn3 1.791 

275 CCCCC(CC)COC(=O)C(C)OC1=C(C=C(C=C1)Cl)Cl 1.791 

276 CC(C)CCCCCOC(=O)C(C)Oc1ccc(Cl)cc1Cl 1.791 

277 CC(C)Oc1cccc(NC(=O)c2ccccc2C(F)(F)F)c1 1.790 

278 CCCOCC(=Nc1ccc(Cl)cc1C(F)(F)F)n2ccnc2 1.789 

279 CCc1ccc(cc1)C(C(Cl)Cl)c2ccc(CC)cc2 1.789 

280 CC1CCCCN1CCCOC(=O)c2ccc(Cl)c(Cl)c2 1.788 

281 CCCC1COC(Cn2cncn2)(O1)c3ccc(Cl)cc3Cl 1.785 

282 CN(C)C(=S)SSC(=S)N(C)C 1.784 

283 CCCCCCCCN1SC(=C(CI)C1=O)CI 1.784 

284 COC(=O)C(C)Oc1ccc(Oc2ccc(Cl)cc2Cl)cc1 1.783 

285 CCCCOCCOCCOCc1cc2OCOc2cc1CCC 1.780 

286 CC1CC2=C(C1NC3=NC(=NC(=N3)N)C(C)F)C=C(C=C2)C 1.780 

287 CCOC(=O)Nc1cccc(OC(=O)Nc2ccccc2)c1 1.779 

288 CCOC(=O)CN(C(=O)CCl)c1c(CC)cccc1CC 1.778 

289 CC(C)CCCC(C)C\C=C\C(=C\C(=O)OCC#C)\C 1.775 

290 CC(=NNC(=O)Nc1cc(F)cc(F)c1)c1ncccc1C(O)=O 1.774 

291 ClC(Cl)(Cl)SN1C(=O)c2ccccc2C1=O 1.773 

292 CCCCC(CC)COC(=O)COc1ccc(Cl)cc1Cl 1.773 

  293* CC(C)(C)C(O)C(Oc1ccc(Cl)cc1)n2cncn2 1.772 

  294* CCOC(=O)C1=NOC(C1)(c2ccccc2)c3ccccc3 1.771 

  295* COC(=O)c1c(Cl)c(Cl)c(C(=O)OC)c(Cl)c1Cl 1.771 

296 [O-][N+](=O)c1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.771 

297 CC(=CC1C(C1(C)C)C(=O)OCN2C(=O)C3=C(C2=O)CCCC3)C 1.771 

298 CC(C)NC(=O)N1CC(=O)N(C1=O)c2cc(Cl)cc(Cl)c2 1.769 

  299* CCOCN(C(=O)CCl)c1c(C)cccc1CC 1.767 

300 CC(C)C1CCC(Cc2ccc(Cl)cc2)C1(O)Cn3cncn3 1.767 

301 CC1C(OC(=O)C2C(C=C(C)C)C2(C)C)C=C(CC=CC=C)C1=O 1.767 

302 N#CSCSC#N 1.766 

303 CCCC(=NOCC)C1=C(O)CC(CC(C)SCC)CC1=O 1.766 

  304* CC(C)N1\C(=N\C(C)(C)C)\SCN(C1=O)c2ccccc2 1.765 

305 CCN1C(=CC(=O)C(=C1c2ccc(Cl)cc2)C(=O)[O-])C 1.765 

306 CCCCCCCCCC[N+](C)(C)CCCCCCCCCC 1.764 

307 COc1cc(OC)nc(Sc2cccc(Cl)c2C(=O)[O-])n1 1.763 

308 Oc1cc(Cl)ccc1Oc2ccc(Cl)cc2Cl 1.763 

309 Cc1ccn2nc(nc2n1)S(=O)(=O)Nc3c(F)cccc3F 1.763 

310 CCc1cnc(C2=NC(C)(C(C)C)C(=O)N2)c(c1)C(=O)O 1.762 

311 CC1=C(C(=CC=C1)C)N([C@H](C)C(=O)OC)C(=O)COC 1.762 

312 CCCCC(Cn1cncn1)(C#N)c2ccc(Cl)cc2 1.762 

  313* COC(=O)c1ccc(C)cc1C1=NC(=O)C(C)(N1)C(C)C 1.761 

  314* CCC1=C(C(=O)[O-])C(=O)C=NN1c2ccc(Cl)cc2 1.761 

315 COCC(=O)N(N1CCOC1=O)c2c(C)cccc2C 1.760 
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  316* CC1=C(SCCO1)C(=O)Nc2ccccc2 1.758 

317 CCC(=NOC\C=C\Cl)C1=C(O)CC(CC1=O)C2CCOCC2 1.756 

318 [S-]C(=S)NCCNC(=S)[S-] 1.753 

319 CC(=CC1C(C1(C)C)C(=O)OCN2C(=O)CN(C2=O)CC#C)C 1.753 

320 CCCCCCCCCCC1C(O1)CCCCC(C)C 1.752 

321 Cn1cc(C(=O)Nc2ccccc2C3CC3C4CC4)c(n1)C(F)F 1.752 

  322* CN1COCN(Cc2cnc(Cl)s2)C1=N[N+](=O)[O-] 1.749 

323 [S-]C1Nc2ccccc2S1 1.747 

  324* CNC(=O)Oc1cccc(c1)\N=C\N(C)C 1.747 

325 CCCCCCCCCC[N+](C)(C)CCCCCCC(C)C 1.745 

  326* Clc1ccccc1Nc2nc(Cl)nc(Cl)n2 1.741 

  327* CCOC1Oc2ccc(OS(=O)(=O)C)cc2C1(C)C 1.741 

328 CCON=C(CC)C1=C(O)CC(CC1=O)c2c(C)cc(C)cc2C 1.740 

329 CC1=CC(=C(N=C1)C2=NC(C(=O)N2)(C)C(C)C)C(=O)[O-] 1.739 

330 CC(C)C1(C)NC(=NC1=O)c1ncc(C)cc1C([O-])=O 1.739 

331 Fc1ccc(Oc2ccnc3cc(Cl)cc(Cl)c23)cc1 1.739 

332 COCc1cnc(C2=NC(C)(C(C)C)C(=O)N2)c(c1)C(=O)O 1.739 

  333* CC(C)N(C(C)C)C(=O)SCC(=C(Cl)Cl)Cl 1.734 

  334* OC(c1ccc(Cl)cc1)(c2cncnc2)c3ccccc3Cl 1.733 

335 CCc1cccc(CC)c1N(COC)C(=O)CCl 1.732 

336 CC(C)=C[C@H]1[C@H](C(=O)O[C@@H]2CC(=O)C(CC=C)=C2C)C1(C)C 1.731 

337 CSC1=NN=C(C(=O)N1N)C(C)(C)C 1.729 

338 ClC(Cl)(Cl)S(=O)(=O)C(Cl)(Cl)Cl 1.729 

  339* CC(=C[C@H]1[C@H](C(=O)O[C@@H]2CC(=O)C(=C2C)CC#C)C1(C)C)C 1.728 

340 CCCCCCCCC=CCCCCCCCC(=O)[O-] 1.727 

341 N#CSCSc1nc2ccccc2s1 1.724 

342 COC(=O)Nc1cccc(OC(=O)Nc2cccc(C)c2)c1 1.723 

  343* CC1=CC(=O)C(=NN1c2ccc(Cl)cc2)C(=O)[O-] 1.722 

344 COc1cc(Cl)c(OC)cc1Cl 1.719 

345 CN1SC=CC1=O 1.719 

346 CC(C)C1(C)N=C(NC1=O)c2ncccc2C(=O)O 1.718 

347 CCOCCOCCOC(=O)Nc1nc2ccccc2[nH]1 1.718 

348 CC(C)COC(=O)COc1ccc(Cl)cc1C 1.711 

349 Clc1c(Cl)c(C#N)c(Cl)c(C#N)c1Cl 1.709 

350 Nc1c(Cl)c(F)nc(OCC(=O)O)c1Cl 1.708 

351 CCC(CN1CCOCC1)[N+](=O)[O-] 1.707 

352 CC1(OC(=O)N(C1=O)c2cc(Cl)cc(Cl)c2)C=C 1.707 

353 CC1(C)N(Br)C(=O)N(Br)C1=O 1.707 

  354* CCC1=CC=CC(=C1N(C(C)COC)C(=O)CCl)C 1.703 

355 CN(C)C1=NC(=O)N(C2CCCCC2)C(=O)N1C 1.703 

356 CC(C)(C)[C@H](O)C(=Cc1ccc(Cl)cc1)n1cncn1 1.703 

357 CNC(=S)[S-] 1.702 

358 CCCC\C=C\CCC=CCCCCCCOC(=O)C 1.698 
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359 OC(=O)CCCOc1ccc(Cl)cc1Cl 1.697 

360 FC(F)(F)c1ccncc1C(=O)NCC#N 1.696 

361 OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O 1.695 

362 CCOc1nc(ns1)C(Cl)(Cl)Cl 1.695 

363 COc1ccc(cc1)C(O)(C2CC2)c3cncnc3 1.693 

364 COC[C@H](C)N(C(=O)CCl)c1c(C)csc1C 1.691 

365 COCC(C)N(C(=O)CCl)c1c(C)csc1C 1.691 

366 CCCCC(CC)CN1C(=O)C2C3CC(C=C3)C2C1=O 1.690 

367 CCOC(=O)C1CC(=O)C(=C(O)C2CC2)C(=O)C1 1.686 

368 OC(=O)c1c(Cl)ccc2cc(Cl)cnc12 1.685 

369 CC1(C)N(Cl)C(=O)N(Br)C1=O 1.684 

370 Nc1c(Cl)c(Cl)nc(C(=O)O)c1Cl 1.684 

371 CCN(CC)C(=O)C(C)Oc1cccc2ccccc12 1.684 

  372* CSc1nc(NC(C)C)nc(NC(C)C)n1 1.684 

  373* CC(C)OC(=O)COc1ccc(Cl)cc1Cl 1.683 

374 OC(=O)Cc1c(Cl)ccc(Cl)c1Cl 1.680 

375 CC(C)N1C(=O)c2ccccc2[N-]S1(=O)=O 1.680 

376 CNC(=N[N+](=O)[O-])NCc1cnc(Cl)s1 1.679 

377 CNC(NCc1cnc(Cl)s1)=N[N+]([O-])=O 1.679 

378 FC1(F)Oc2cccc(c2O1)c3c[nH]cc3C#N 1.679 

379 COP(=O)(OC)OC=C(Cl)Cl 1.678 

380 OC(Cn1cncn1)(c2ccc(F)cc2)c3ccccc3F 1.676 

381 Clc1ccc(C(Cn2ccnc2)OCC=C)c(Cl)c1 1.674 

382 CCCCCCCCCc1ccc(OCCO)cc1 1.673 

  383* ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O 1.667 

384 Nc1nc(NCl)nc(n1)N(Cl)Cl 1.662 

385 ClNc1nc(NCl)nc(NCl)n1 1.662 

386 Cc1cc(Cl)ccc1OCCCC(=O)O 1.660 

387 Cc1cc(Cl)ccc1OCCCC(=O)[O-] 1.658 

388 COC(=O)Nc1nc2ccccc2[nH]1 1.658 

389 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.658 

390 ClC1=C(Cl)C(=O)c2ccccc2C1=O 1.657 

391 CSc1nc(NC2CC2)nc(NC(C)(C)C)n1 1.654 

392 Cc1cc(O)ccc1Cl 1.652 

393 CCN(CC)C(=S)SCC(=C)Cl 1.651 

  394* CCCOC(=O)c1ccc(nc1)C(=O)OCCC 1.650 

395 C[C@H](c1ccccc1CNCCN)[N+](=O)[O-] 1.650 

396 OCC(Br)(CO)[N+](=O)[O-] 1.649 

  397* CN(Cc1ccc(Cl)nc1)C(=NC#N)C 1.649 

398 CC(=CCC\C(=C\CCC(C)(O)C=C)\C)C 1.648 

399 CC(=CCC\C(=C\CC\C(=C\CO)\C)\C)C 1.648 

400 [O-][N+](=O)c1cc(c(Cl)c(c1Nc2ncc(cc2Cl)C(F)(F)F)[N+](=O)[O-])C(F)(F)F 1.646 

401 Clc1cc(NC(=O)Nc2ccccc2)ccn1 1.644 
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402 O=C(Nc1ccccc1)Nc2cnns2 1.644 

  403* COc1c(Cl)ccc(Cl)c1C(=O)[O-] 1.644 

404 Clc1ccc(CN2CCSC2=NC#N)cn1 1.643 

  405* Cc1cc(nc(Nc2ccccc2)n1)C3CC3 1.638 

406 CCNc1nc(Cl)nc(NC(C)C)n1 1.635 

407 NC(=O)C(Br)(Br)C#N 1.634 

408 CC1(C)N(Br)C(=O)N(Cl)C1=O 1.633 

  409* CC(Oc1ccc(Cl)cc1C)C(O)=O 1.633 

410 Nc1c(Cl)c(Cl)nc(C(=O)[O-])c1Cl 1.631 

411 CCCCCCCCC=CCCCOC(=O)C 1.631 

  412* CCCCCCCC\C=C\CCCOC(C)=O 1.631 

413 CC1(C)CON(Cc2ccccc2Cl)C1=O 1.630 

 414* O=C(OCc1ccccc1)c2ccccc2 1.628 

415 CCCCC=CCCCCCCCCCC=O 1.628 

  416* CC1=NNC(=O)N(C1)\N=C\c2cccnc2 1.627 

417 CC(C)N(C(=O)CCl)c1ccccc1 1.627 

418 CSC(=O)c1cccc2nnsc12 1.624 

419 CC1=C(C)S(=O)(=O)CCS1(=O)=O 1.624 

420 CC(CN1COC(C)C1)OCOCOCO 1.622 

  421* CCC12COCN1COC2 1.621 

422 CC1CCCCC1NC(=O)Nc2ccccc2 1.616 

423 Cc1cc(C)nc(Nc2ccccc2)n1 1.616 

  424* CCNc1nc(Cl)nc(NC(C)(C)C)n1 1.612 

  425* OC(=O)CCCc1c[nH]c2ccccc12 1.609 

426 [O-][N+](=O)\C(=C\c1ccccc1)\Br 1.608 

  427* CCNc1nc(NC(C)C)nc(SC)n1 1.607 

428 Nc1nc(nc(C(=O)O)c1Cl)C2CC2 1.606 

429 CCNc1nc(Cl)nc(NCC)n1 1.606 

430 CNC(=O)Oc1cccc2ccccc12 1.605 

431 COc1nc(NC(C)C)nc(NC(C)C)n1 1.603 

432 C(Nc1[nH]cnc2ncnc12)c3ccccc3 1.603 

433 CCCCCCCCCCCC(=O)[O-] 1.601 

434 CN(C)C(=O)Nc1ccc(Cl)cc1 1.599 

 435* CCN(CC)CCOCc1ccc(C)cc1 1.597 

436 ClN1C(=O)[N-]C(=O)N(Cl)C1=O 1.595 

 437* OC(=O)COc1ccc(Cl)cc1Cl 1.595 

438 CCCCN(CC)C(=O)SCCC 1.592 

439 OCCN1CN(CCO)CN(CCO)C1 1.591 

  440* CNC(=O)O\N=C\C(C)(C)S(=O)(=O)C 1.591 

441 Oc1ccc(Cl)cc1Cc2ccccc2 1.590 

442 [O-]N1C=CC=CC1=S 1.590 

443 CCCCN1Sc2ccccc2C1=O 1.589 

444 CCSC(=O)N(CC(C)C)CC(C)C 1.588 
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445 CCCOC1=NN(C(=O)[N-]S(=O)(=O)c2ccccc2C(=O)OC)C(=O)N1C 1.585 

446 CCCOC(=O)NCCCN(C)C 1.585 

447 CCSC(=O)N(CC)C1CCCCC1 1.584 

448 Oc1ccc(cc1)C(=O)CBr 1.583 

449 CCOC(=O)Cc1cccc2ccccc12 1.581 

  450* CC(C)OC(=O)Nc1cccc(Cl)c1 1.580 

451 CC1(C)N(CO)C(=O)N(CO)C1=O 1.576 

452 ClC1=C(Cl)C(=O)SS1 1.573 

  453* Nc1cc(Cl)nc(C(=O)O)c1Cl 1.571 

454 OC(=O)C1C2CCC(O2)C1C(=O)O 1.571 

  455* Clc1cc(Cl)cc(c1)C2(CC(Cl)(Cl)Cl)CO2 1.570 

456 CCOc1ccc2NC(C)(C)C=C(C)c2c1 1.570 

457 NC(=O)Cc1cccc2ccccc12 1.569 

458 CCCCCCCC1CCC(=O)O1 1.567 

459 [O-]C(=O)C1C2CCC(O2)C1C(=O)[O-] 1.566 

460 [O-][N+](=O)\C=C/1\NCCCS1 1.565 

  461* C1=CC2C(C(C1O2)C(=O)[O-])C(=O)[O-] 1.561 

462 CCC[N+](C)(C)CC[N+](C)(C)CCO 1.561 

463 CCCSC(=O)N(CCC)CCC 1.559 

464 CP(=O)(O)CCC(N)C(=O)[O-] 1.557 

  465* c1ccc2[nH]c(nc2c1)c3cscn3 1.554 

466 CC(Oc1cccc(Cl)c1)C(=O)O 1.553 

467 CCCCCCCCCCCC(O)=O 1.552 

468 CCNC(=O)NC(=O)\C(=N\OC)\C#N 1.547 

469 CCCCCCCCN1CCCC1=O 1.546 

  470* CC1(C)N(Cl)C(=O)N(Cl)C1=O 1.545 

471 CCCN(CCC)c1c(cc(c(N)c1[N+](=O)[O-])C(F)(F)F)[N+](=O)[O-] 1.544 

472 CC1(C)C(C(=O)OC(C#N)c2cccc(Oc3ccccc3)c2)C1(C)C 1.543 

473 CCN1CN(CC)CN(CC)C1 1.535 

474 COC(=O)NC(=S)Nc1ccccc1NC(=S)NC(=O)OC 1.535 

475 Cc1ncc([N+](=O)[O-])n1CCO 1.534 

  476* CC(O)CSS(=O)(=O)C 1.532 

477 CCSC(=O)N1CCCCCC1 1.528 

478 OCOCC12COCN1COC2 1.528 

479 CCCCOCCOC(=O)C(C)Oc1ccc(Cl)cc1Cl 1.525 

480 CC(=O)Nc1cc(NS(=O)(=O)C(F)(F)F)c(C)cc1C 1.523 

481 Clc1cccc(Cl)c1C#N 1.520 

482 CCCCCCNC(=N)NC(=N)N 1.518 

483 CN(C)C(=O)Nc1ccccc1 1.516 

484 CCC(C)(CCC(C)C)C(=O)NC 1.514 

485 OC(=O)CNCP(=O)(O)O 1.512 

486 CC1(C)COCN1 1.493 

487 COC(C)(C)CCCC(C)C\C=C\C(=C\C(=O)OC(C)C)\C 1.492 
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488 CC1CC(OC(=O)C)OC(C)O1 1.491 

489 CNC1=C(Cl)C(=O)N(N=C1)c2cccc(c2)C(F)(F)F 1.482 

490 CCCCCCCCCC(=O)C 1.482 

491 Oc1ccccc1c2ccccc2 1.481 

492 OCC(CO)(CO)[N+](=O)[O-] 1.480 

493 [O-]c1ccccc1c2ccccc2 1.479 

494 Nc1nc(N)nc(NC2CC2)n1 1.471 

  495* CCC(C)Nc1c(cc(cc1[N+](=O)[O-])C(C)(C)C)[N+](=O)[O-] 1.470 

  496* OCCN(CC[O-])CC[O-] 1.469 

497 OC(=O)c1ccccc1C(=O)Nc2cccc3ccccc23 1.464 

  498* CCCCCCCCSCCO 1.463 

  499* CCCCNC(=O)n1c(NC(=O)OC)nc2ccccc12 1.463 

500 OP(=O)(O)CCCl 1.461 

501 CN(C)NC(=O)CCC(=O)O 1.455 

502 CCc1cccc(C)c1N(C(C)COC)C(=O)CCl 1.453 

503 CCCCCCCCC(=O)O 1.450 

504 c1ccc2ccccc2c1 1.449 

505 CCCCCCCCO 1.448 

506 COCC(=O)N(C(C)C(=O)OC)c1c(C)cccc1C 1.446 

507 Cc1c(F)c(F)c(COC(=O)C2C(\C=C(/Cl)\C(F)(F)F)C2(C)C)c(F)c1F 1.446 

  508* Cc1cc(O)cc(C)c1Cl 1.445 

509 CN1SC2=C(CCC2)C1=O 1.441 

510 CCOP(=O)([O-])C(=O)N 1.432 

  511* CC1=C(C(=O)Nc2ccccc2)S(=O)(=O)CCO1 1.427 

512 CCC(C)N1C(=O)NC(=C(Br)C1=O)C 1.417 

513 CCOC(=O)NCCOc1ccc(Oc2ccccc2)cc1 1.416 

514 CC(=O)Nc1ccc(O)cc1 1.409 

  515* CC(C)(NC(=O)c1cc(Cl)cc(Cl)c1)C#C 1.408 

516 Oc1ccc(cc1)[N+](=O)[O-] 1.394 

  517* OCCNCO 1.385 

518 CC(=C)C1CCC(=CC1)C 1.385 

519 CC(C)N1C(=O)c2ccccc2NS1(=O)=O 1.381 

  520* CC(Cl)(Cl)Cl 1.375 

521 CC(Oc1ccc(Cl)cc1Cl)C(=O)O 1.375 

522 CCCCOCC(C)O 1.372 

523 O=C\C=C\c1ccccc1 1.371 

  524* [S-]C(=NC#N)[S-] 1.366 

  525* CN(C)C(=S)[S-] 1.364 

526 BrCC(=O)OCc1ccccc1 1.360 

  527* Cc1cc(C)n(CO)n1 1.351 

528 COc1c(Cl)ccc(Cl)c1C(=O)O 1.344 

  529* CCCCOC(=O)[C@@H](C)Oc1ccc(Oc2ccc(cn2)C(F)(F)F)cc1 1.343 

  530* CS(=O)(=O)NC(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+]([O-])=O 1.341 
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531 CS(=O)(=O)[N-]C(=O)c1cc(Oc2ccc(cc2Cl)C(F)(F)F)ccc1[N+](=O)[O-] 1.340 

  532* OC(=O)c1ccccc1 1.337 

  533* CCCCOC(=O)COc1ccc(Cl)cc1Cl 1.329 

534 CC(Oc1cccc(Cl)c1)C(=O)[O-] 1.300 

535 O=CCCCC=O 1.293 

536 CCCC(C)C1(CC=C)C(=O)NC(=NC1=O)[O-] 1.285 

  537* CC1=CC(=O)NO1 1.280 

  538* OCNCC(=O)[O-] 1.268 

539 Oc1nc(O)nc(O)n1 1.251 

540 Nc1nc[nH]n1 1.226 

541 CC(C(=O)O)O 1.205 

542 CCCCCCCCCCO 1.200 

  543* Clc1ccccc1c2nnc(nn2)c3ccccc3Cl 1.184 

  544* CCCCCCCCCCCCNC(N)=N 1.181 

545 CCCCC(CC)COC(=O)COc1ccc(Cl)cc1C 1.153 

546 CN(C)C(=O)C(c1ccccc1)c2ccccc2 1.124 

547 [S-]C#N 1.065 

548 C[N+]1(C)CCCCC1 1.058 

549 CCC=C 1.050 

550 O=C1NNC(=O)C=C1 1.050 

551 ClC\C=C\Cl 1.045 

552 NC(=O)N 1.029 

553 NC#N 0.925 

554 CCC(=O)O 0.870 

555 Oc1ccc(c(c1)C(F)(F)F)[N+](=O)[O-] 0.714 

556 C=CCN=C=S 0.083 

  *Test set compounds 

Table 3.6. Compounds smile with respective experimental pLC50 values for JQ. 

Sl.No. Canonical_smiles pLC50 

1 Clc1ccc(cc1)C(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.795 

  2* COP(=O)(OC)C(O)C(Cl)(Cl)Cl 2.132 

  3* COP(=S)(OC)Oc1ccc(cc1)S(=O)(=O)N(C)C 3.680 

  4* COP(=S)(OC)Oc1ccc(SC)c(C)c1 3.510 

  5* CCOP(=S)(OCC)Oc1ccc(cc1)[N+](=O)[O-] 3.821 

6 CCOP(=S)(OCC)Oc1ccc2C(=C(Cl)C(=O)Oc2c1)C 3.207 

  7* C1C2C(C(C1Cl)Cl)C3(C(=C(C2(C3(Cl)Cl)Cl)Cl)Cl)Cl 3.068 

8 C1(C(C(C(C(C1Cl)Cl)Cl)Cl)Cl)Cl 2.835 

9 CNC(=O)CSP(=S)(OC)OC 2.821 

10 Nc1nc[nH]n1 1.226 

11 COP(=O)(OC)OC=C(Cl)Cl 2.870 

12 CNC(=O)Oc1cccc2ccccc12 1.605 
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13 CC(=O)C 0.162 

14 COc1ccc(cc1)C(c2ccc(OC)cc2)C(Cl)(Cl)Cl 1.840 

15 ClC(Cl)C(c1ccc(Cl)cc1)c2ccc(Cl)cc2 2.005 

16 ClC(=C(c1ccc(Cl)cc1)c2ccc(Cl)cc2)Cl 2.371 

17 CCc1ccc(cc1)C(C(Cl)Cl)c2ccc(CC)cc2 1.789 

18 CC(Cl)(Cl)C(=O)O 1.456 

19 ClC1C=CC2C1C3(Cl)C(=C(Cl)C2(Cl)C3(Cl)Cl)Cl 3.604 

  20* CCOP(=S)(OCC)SC1OCCOC1SP(=S)(OCC)OCC 1.837 

21 CC(=C)C1CC2=C(O1)C=CC3=C2OC4COC5=CC(=C(C=C5C4C3=O)OC)

OC 

2.321 

22 OC(=O)Cc1c(Cl)ccc(Cl)c1Cl 1.680 

23 COP(=S)(OC)SCN1N=Nc2ccccc2C1=O 2.696 

  24* Oc1c(Cl)c(Cl)c(Cl)c(Cl)c1Cl 1.709 

  25* CCC(C)c1cc(cc(c1O)[N+](=O)[O-])[N+](=O)[O-] 2.769 

26 CC(Oc1cc(Cl)c(Cl)cc1Cl)C(=O)O 1.732 

27 c1cc(c(cc1Cl)Cl)OCC(=O)O 1.646 

28 Cc1cc(Cl)ccc1OCCCC(=O)O 1.660 

29 OC(=O)CCCOc1ccc(Cl)cc1Cl 1.697 

30 CN(C)C(=O)Nc1ccccc1 1.516 

  31* CC1OC(C)OC(C)OC(C)O1 1.707 

32 CNC(=O)Oc1ccccc1OC(C)C 1.622 

33 ClC1=C(Cl)C2(Cl)C3COS(=O)OCC3C1(Cl)C2(Cl)Cl 2.513 

34 OC(c1ccc(Cl)cc1)(c2ccc(Cl)cc2)C(Cl)(Cl)Cl 2.612 

  35* CCOP(=S)(OCC)Oc1ccc(cc1)S(=O)C 3.570 

  36* CNC(=O)O\N=C\C(C)(C)SC 2.887 

37 Clc1ccc(cc1)S(=O)(=O)c2cc(Cl)c(Cl)cc2Cl 1.853 

38 ClC1=C(Cl)C(=O)c2ccccc2C1=O 1.657 

39 CC(Oc1ccc(Cl)cc1Cl)C(=O)O 1.584 

  40* CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC 2.191 

  41* COP(=S)(OC)Oc1ccc(c(C)c1)[N+](=O)[O-] 2.799 

  42* CCNc1nc(Cl)nc(NCC)n1 1.734 

43 CC(Cl)(Cl)C(=O)[O-] 1.453 

44 ClC(Cl)(Cl)SN1C(=O)C2CC=CCC2C1=O 1.779 

  45* CN(C)C(=S)SSC(=S)N(C)C 1.682 

  46* CNC(=S)[S-] 1.327 

  47* CC(COc1ccc(cc1)C(C)(C)C)OS(=O)OCCCl 1.826 

48 COP(=O)(OC)OC(=CC(=O)N(C)C)C 3.870 

   49* [S-]C(=S)NCCNC(=S)[S-] 1.624 

  50* CN(C)C(=O)Nc1ccc(Cl)cc1 1.599 

51 CCOP(=S)(OCC)Oc1cnccn1 3.948 

52 COP(=S)(OC)Oc1ccc(cc1)[N+](=O)[O-] 3.758 

53 CCOP(=S)(OCC)SCSCC 3.115 

 54* CCOP(=S)(OCC)SCCSCC 2.916 

 55* COP(=O)(OC)OC(Br)C(Cl)(Cl)Br 2.458 
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 56* CCS(=O)CCSP(=O)(OC)OC 2.275 

57 C1C2C=CC1C3C2C4(C(=C(C3(C4(Cl)Cl)Cl)Cl)Cl)Cl 4.031 

58 CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 2.648 

59 CN(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.669 

  60* CON(C)C(=O)Nc1ccc(Cl)c(Cl)c1 1.697 

61 CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 3.811 

62 CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 1.886 

63 COP(=S)(OC)SCN1C(=O)c2ccccc2C1=O 2.416 

  64* CCOP(=S)(CC)Sc1ccccc1 2.922 

65 COP(=S)(OC)SCSc1ccc(Cl)cc1 1.998 

66 C[N+](C)(C)CCCl 1.390 

67 CCCS(=O)(=O)\C=C\S(=O)(=O)CCC 1.682 

68 Clc1cccc(Cl)c1C#N 1.537 

69 CNC(=O)Oc1cccc2CC(C)(C)Oc12 2.937 

 70* CCNc1nc(Cl)nc(NC(C)C)n1 1.635 

71 Nc1c(Cl)c(Cl)nc(C(=O)O)c1Cl 1.684 

  72* CCCCOCCOC(=O)COc1ccc(Cl)cc1Cl 1.808 

73 Clc1cccc(n1)C(Cl)(Cl)Cl 2.450 

74 NC(=O)COC1CCC(Cl)CC1Cl 1.644 

75 CNC(=O)Oc1cc(C)c(SC)c(C)c1 2.274 

76 CCOP(=S)(Oc1ccc(cc1)[N+](=O)[O-])c2ccccc2 2.863 

77 CCCC(C)c1cccc(OC(=O)NC)c1 1.646 

78 ClC1(Cl)C2(Cl)C3(Cl)C4(Cl)C(Cl)(Cl)C5(Cl)C(Cl)(C1(Cl)C35Cl)C24Cl 2.038 

79 CCCCOCCOC(=O)COc1cc(Cl)c(Cl)cc1Cl 1.852 

80 CNC(=O)Oc1cc(C)c(C)c(C)c1 1.984 

81 CCOP(=S)(OCC)Oc1nc(Cl)c(Cl)cc1Cl 3.069 

82 CCCOP(=S)(OCCC)OP(=S)(OCCC)OCCC 1.879 

83 COP(=S)(OC)Oc1ccc(Sc2ccc(OP(=S)(OC)OC)cc2)cc1 3.254 

84 Clc1ccc(cc1)C(C(=O)C2C(=O)c3ccccc3C2=O)c4ccccc4 3.796 

85 COP(=S)(OC)Oc1nc(Cl)c(Cl)cc1Cl 1.810 

  86* CN(C)C=Nc1ccc(Cl)cc1C 2.051 

87 CNC(=O)C=C(C)OP(=O)(OC)OC 4.968 

88 Cc1ccc(N)cc1Cl 3.789 

89 COC(=O)C=C(C)OP(=O)(OC)OC 2.794 

  90* ClCC1(CCl)C(=C)C2(Cl)C(Cl)C(Cl)C1(Cl)C2(Cl)Cl 2.778 

91 CC1C(OC(=O)C2C(C=C(C)C)C2(C)C)C=C(CC=CC=C)C1=O 1.818 

  92* CCOP(=O)(OCC)SCCSCC 2.973 

93 COP(=O)(N)SC 3.186 

94 CC(=CC1C(C(=O)OCc2coc(Cc3ccccc3)c2)C1(C)C)C 1.831 

95 Clc1ccc(c(Cl)c1Cl)c2ccc(Cl)c(Cl)c2Cl 2.218 

  96* Clc1ccc(c(Cl)c1Cl)c2cccc(Cl)c2Cl 2.052 

  97* CC1=CC(=C(C(=C1)OC(=O)NC)C)C 1.984 

  98* Clc1cc(Cl)cc(c1)c2cc(Cl)cc(Cl)c2 1.780 
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99 CCN(CC)C(=O)\C(=C(/C)\OP(=O)(OC)OC)\Cl 3.527 

100 CCCSP(=O)(OCC)SCCC 3.694 

101 CC(=NOC(=O)NC)SC 1.715 

102 CCOP(=O)(Sc1ccccc1)Sc2ccccc2 2.088 

  103* CCCCOCCOC(=O)C(C)Oc1cc(Cl)c(Cl)cc1Cl 1.869 

104 COP(=S)(Oc1cc(Cl)c(Br)cc1Cl)c2ccccc2 2.439 

  105* CCOP(=O)(NC(C)C)Oc1ccc(SC)c(C)c1 3.711 

106 COP(=O)(OC)OC(=CCl)c1cc(Cl)c(Cl)cc1Cl 1.864 

107 CCOP(=S)(OCC)SCCl 1.672 

108 CCC(C)c1cccc(OC(=O)N(C)Sc2ccccc2)c1 2.370 

109 CN(\C=N\c1ccc(C)cc1C)\C=N\c2ccc(C)cc2C 2.212 

110 COC(=O)C(C)Oc1ccc(Oc2ccc(Cl)cc2Cl)cc1 1.232 

111 CC1(C)C(C=C(Cl)Cl)C1C(=O)OCc2cccc(Oc3ccccc3)c2 1.231 

112 Clc1ccc(c(Cl)c1)c2cccc(Cl)c2Cl 1.687 

113 COCC(=O)N(C(C)C(=O)OC)c1c(C)cccc1C 1.446 

114 CP(=O)(O)CCC(N)C(=O)[O-] 1.557 

115 COC(=O)c1ccc(I)cc1S(=O)(=O)[N-]C(=O)Nc2nc(C)nc(OC)n2 2.002 

116 COc1ncc(F)c2nc(nn12)S(=O)(=O)Nc3c(F)cccc3F 1.857 

117 CN\C(=N\[N+](=O)[O-])\NCC1CCOC1 1.607 

 *Test set compounds 

3.3.2. Descriptor calculation & data pre-treatment 

 

Descriptors are the numerical presentation in which we correlate the chemical structure with any 

physiochemical property/biological activity/ toxicity. In this work, a total of 9 classes of descriptors 

were calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/alvadesc/). In each dataset, 

the defective and inter-correlated chemical descriptors were eliminated by V-WSP1.2 

(http://teqip.jdvu.ac.in/QSAR_Tools/) software with a standard deviation less than 0.0001 or 

correlation coefficient greater than 0.95. 

3.3.3. Dataset division  

Dataset division is crucial for QSTR model development. Normally, training set compounds are 

used to develop the model and test compounds for validation. The validation set is used to assess 

the model performance and fine-tune the parameters of the model. It tells us how well the model is 

learning and adapting, allowing for adjustments and optimizations to be made to the model's 

parameters and hyperparameters (the latter in the case of machine learning-based models) before 

it is finally tested. The test data set mirrors real-world data the model has never seen before, i.e.: a 

separate sample of unseen data. Its primary purpose is to offer a fair and final assessment of how 

the model would perform when it encounters new data in a live, operational environment. This is 

especially critical to evaluate models effectively along with preventing overfitting. We performed 

dataset division of four datasets by using rational methods such as the Kennard stone, activity 

https://www.alvascience.com/alvadesc/
http://teqip.jdvu.ac.in/QSAR_Tools/
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property-based, and Euclidean distance method using Dataset Division GUI 1.2 software as well 

as using random division method. We also employed modified k-medoid clustering by using 

Modified k-Medoid 1.3 (http://teqip.jdvu.ac.in/QSAR_Tools/). After that, the final selection of 

data-set division methods was done based on the statistical results. In this process of dataset 

division, the datasets are divided into 75:25 ratios of training and test sets compounds respectively. 

3.3.4. Selection of features and model building 

           

In the case of model building, feature selection is one of the vital steps by which we can find 

significant descriptors to boost the interpretability and predictive ability of the model.  Primarily, 

we performed stepwise regression method and genetic algorithm (GA) for feature selection, and 

then we employed the regression-based partial least square (PLS) method through the Partial least 

squares v1.0 tool  (http://teqip.jdvu.ac.in/QSAR_Tools/) for model building. 

3.3.5. Validation metrics of QSTR models 

A significant step in the creation of a QSTR model is statistical validation, which demonstrates its 

reliability and predictivity. Various internal validation parameters were calculated which involve 

determination coefficient (R2), and leave-one-out (LOO) cross-validated correlation coefficient 

(QLOO
2 )to judge the reliability and importance of the model. External validation parameters 

demonstrate the predictivity of QSTR models. The model’s external validation is determined using 

parameters such as QF1
2  and QF2

2  [75]. For both internal (Q   LOO
2 ) and external predictive parameters 

(QF1
2 , QF2

2 ), the approved threshold value is 0.5. 

3.3.6. Prediction using read-across algorithm 

According to the fundamental tenet of read-across, substances with similar chemical structures will 

also have comparable attributes and it is not utilized in the model development process. Read-

across prediction is a similarity-based non-testing technique that is widely used in eco-toxicological 

data-gap filling. Initially, the training set of the best model was split into sub-training and sub-test 

sets. These sets were again used to optimize the hyperparameters through Read-Across-v3.1 

(http://teqip.jdvu.ac.in/QSAR_Tools/). After similarity-based sorting, similarity threshold values 

(0 to 1), various distance threshold values (1 to 0), and the numbers of most similar training 

compounds (2 to 10) were applied. The best setting of hyperparameters obtained from sub-training 

and sub-test was applied to the original training and test set for the final prediction. 

3.3.7. Model’s applicability domain study 

The applicability domain (AD) of a QSAR model has been defined as the chemical structure and 

response space, considered by the properties of the molecules in the training set. The AD expresses 

the fact that QSARs are undeniably associated with restrictions in the categories of 

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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physicochemical properties, chemical structures, and mechanisms of action for which the models 

can generate reliable predictions. In the current study, distance to the model in X-space (DModx) 

has been utilized for AD estimation of constructed PLS models which rely on residuals of response 

and predictive variables. 

3.3.8 Y-randomization study 

Y-randomization study was carried out to check the chance correlation of the QSTR models with 

the help of SIMCA-P software [76]. In the Y-randomization test, the descriptor matrix X is kept 

constant but only the vector Y is scrambled randomly, and a new model is developed using the 

same set of descriptors. The original model is considered as robust if its validation metrics are 

better than the random models [77]. The values of the R2yrand intercept and Q2yrand intercept should 

not be more than 0.3 and 0.05 respectively. 

3.3.9 Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have employed two different state-

of-the-art ML algorithms namely support vector machine (SVM) and random forest (RF) using the 

Orange data mining tool [78]. The hyperparameters were adjusted to tune the model for optimal 

performance. The prediction qualities of the ML models were evaluated in terms of R2, Q2
Loo, and 

MAE values. 

3.3.10 Classification-based QSTR (LDA-QSTR) model development 

In the present work, we have developed a classification-based linear discriminant analysis 

(LDA) QSTR model from the selected set of features and evaluated its performance for its 

predictive ability. The model development is done using ClassificationBasedQSAR_v1.0.0 tools 

(available at http://teqip.jdvu.ac.in/QSAR_Tools/). The model was extensively validated based on 

different internal and external classification metrics (area under the ROC curve (AUC), accuracy, 

precision, sensitivity, F-measure, and Matthews correlation coefficient (MCC) [79-80]. 

3.3.11 Screening of the Pesticide Properties DataBase 

We have collected 1903 chemical data from Pesticide Properties DataBase (PPDB) available in 

(http://sitem.herts.ac.uk/aeru/ppdb/). Knime curation was done to remove duplicates, inorganic 

salts, and mixtures using the KNIME workflow. Due to the knime curation, some compounds were 

removed. After the curation, the remaining 1694 compounds were used for the screening process 

to check the developed model’s reliability. The descriptors for these molecules were calculated 

using the same procedure as in the QSAR modeling process. The predictions were made through 

the use of individual PLS-based QSTR models with the help of the PRI (Prediction Reliability 

http://teqip.jdvu.ac.in/QSAR_Tools/
file:///C:/Users/Dr.Probir%20Kumar%20Ojha/Downloads/New%20folder
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Indicator) tool (http://teqip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the predictions into 

three distinct groups: good (composite score 3), moderate (composite score 2), and bad (composite 

score 1). Additionally, the tool determines the localization of compounds inside the AD. The 

screened compounds were ranked based on their predicted toxicity and the twenty highest and least 

toxic compounds which exhibited toxicity towards all four avian species were analysed. The results 

were further validated extensively based on experimental data reported previously, to establish the 

real-world applicability of the developed final PLS-based QSTR models. A detailed flow diagram 

of this study has been given in Figure 3.3. 

Figure 3.3. Workflow of QSTR model development.

http://teqip.jdvu.ac.in/QSAR_Tools/
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4.1. Study 1 

In this present study, we have developed QSTR and q-RASTR models for pLOEL and pNOEL 

endpoints using the PLS method and strictly obeying the OECD guidelines. We have 

additionally applied two different ML algorithms (SVM, RR) to check model performances.  

4.1.1. PLS-based QSTR and q-RASTR models 

The divided dataset is used to develop the QSTR and q-RASTR models for two endpoints 

(pLOEL and pNOEL) of chicken species. After the feature selection process, the PLS-based 

QSTR model was developed employing 3 and 5 descriptors with two and one latent variables 

for pLOEL (MODEL 1) and pNOEL (MODEL 2), respectively. 

PLS-based QSTR model for pLOEL and pNOEL endpoints: 

Model 1 (pLOEL endpoint): 

    𝒑𝑳𝑶𝑬𝑳 =  4.75827 +  0.50323 × NsOH − 0.191 × 𝑀𝑎𝑥𝑠𝐶𝐻3 − 0.64324 × 𝐵01[𝐶

− 𝑂] 

 Model 2 (pNOEL endpoint): 

𝒑𝑵𝑶𝑬𝑳 =  5.08369 + 0.16353 × 𝐻 − 050 + 0.35253 × 𝑁𝑠𝑠𝑠𝑁 − 0.62789 

× 𝐵05[𝐶 − 𝑂] + 0.80035 × 𝐵05[𝑂 − 𝑂] − 0.8449 × 𝐵08[𝐶 − 𝑃] 

 

After the development of the QSTR models, similarity and error-based RASTR descriptors 

were calculated for both training and test sets compounds of pLOEL and pNOEL endpoints 

models using "RASAR Descriptor Calculator v2.0 tool 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) with the optimized 

hyperparameters. After that, we clubbed the RASTR descriptors and Alvadesc descriptors for 

the final q-RASTR model development [81].  Finally, PLS-based q-RASTR models were 

developed using 3 and 4 descriptors with one and two latent variables as shown in model 3 and 

model 4 respectively for pLOEL and pNOEL endpoint models, 

PLS-based q-RASTR model for pLOEL and pNOEL endpoints: 

Model 3 (pLOEL endpoint): 

𝒑𝑳𝑶𝑬𝑳 = 5.1136 − 1.51275 × 𝑆𝐷 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐺𝐾) + 0.41951 × 𝑁𝑠𝑂𝐻 − 0.75444

× 𝐵01[𝐶 − 𝑂]  

Model 4 (pNOEL endpoint): 

𝒑𝑵𝑶𝑬𝑳 =  5.78412 − 2.04509 × 𝑆𝐸(𝐿𝐾) + 1.18371 × 𝐵05[𝑂 − 𝑂] − 0.74259

× 𝐵02[𝐶 − 𝑂] + 0.03736 × 𝑇(𝑁. . 𝑆) 

 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Each model has been rigorously validated following the OECD protocols. The computed 

internal and external validation metrics along with the optimum number of latent variables have 

been shown in the following Table 4.1. The PLS-based q-RASTR models 3 and 4 show strong 

fit and predictability with uniform scattering observed along the line, going through the origin 

of Cartesian coordinates (Figure. 4.1). 

Table 4.1.  QSTR and q-RASTR model's statistical quality.  

Validation 

Metrics 

QSTR model's statistical quality PLS q-RASTR model's statistical 

quality 

Model name Model 1 

(pLOEL) 

Model 2  

(pNOEL) 

Model 3 

(pLOEL) 

Model 4 

(pNOEL) 

No of LVs 2 1 1 2 

R2(train) 0.748 0.669 0.734 0.603 

Q2
LOO (train) 0.672 0.582 0.665 0.526 

Q2
F1 (test) 0.608 0.643 0.844 0.762 

Q2
F2 (test) 0.577 0.640 0.831 0.759 

Q2
F3 (test) 0.692 0.790 0.877 0.860 

MAEtest 0.309 0.225 0.214 0.195 

CCC 0.818 0.730 0.909 0.845 

rm(test)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.637 0.415 0.740 0.560 

Δr2
m(test) 0.035 0.318 0.136 0.220 

MAE-based 

prediction quality 

MODERATE GOOD GOOD GOOD 

 

 

Figure 4.1. Scatter plots of developed models. 

Here, we have seen that for both datasets, the external validation metrics were significantly 

improved for the PLS-based q-RASTR models as compared to the PLS-based QSTR models, 

indicating the significance of the RASTR descriptors. We have also validated all the models 

(PLS-based QSTR and q-RASTR models for the pLOEL and pNOEL endpoints) using 
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Golbraikh and Tropsha criteria and the results are given in Tables 4.2-4.5. The results showed 

that the PLS-based q-RASTR models for both endpoints are acceptable based on the Golbraikh 

and Tropsha’s criteria [82]. Hence, we have generalized that the PLS-based q-RASTR models 

are better as compared to the corresponding QSTR models. 

Table 4.2. Results of the final PLS-based q-RASTR (pLOEL) model obtained according to 

Golbraikh and Tropsha's criteria. 

Sl.No Parameters PLS q-RASTR 

(pLOEL) 

Remarks Threshold value 

1 Q2
LOO (train) 0.665 Pass Q2

LOO>0.5 

2 R2(test)  0.844 Pass R2(test)>0.6 

3 [(r2-r0
2)/ r2] 0.001 Pass <0.1 

4 [(r2-r’0
2)/ r2] 0.038 Pass <0.1 

5 k 0.986 Pass 0.85 < k <1.15 

6 k’ 1.011 Pass 0.85 < k’<1.15 

  

Table 4.3. Results of the final PLS-based q-RASTR (pNOEL) model obtained according to 

Golbraikh and Tropsha's criteria. 

Sl.No Parameters PLS q-RASTR 

(pNOEL) 

Remarks Threshold value 

1 Q2
LOO (train) 0.526 Pass Q2

LOO>0.5 

2 R2(test)  0.779 Pass R2(test)>0.6 

3 [(r2-r0
2)/ r2] 0.024 Pass <0.1 

4 [(r2-r’0
2)/ r2] 0.269 Fail <0.1 

5 k 0.997 Pass 0.85 < k <1.15 

6 k’ 1.036 Pass 0.85 < k’<1.15 

 

Table 4.4. Results of the final PLS-based QSTR (pLOEL) model obtained according to 

Golbraikh and Tropsha's criteria. 

Sl.No Parameters PLS QSTR 

(pLOEL) 

Remarks Threshold value 

1 Q2
LOO (train) 0.672 Pass Q2

LOO>0.5 

2 R2(test)  0.733 Pass R2(test)>0.6 

3 [(r2-r0
2)/ r2] 0.060 Pass <0.1 

4 [(r2-r’0
2)/ r2] 0.007 Pass <0.1 

5 k 0.960 Pass 0.85 < k <1.15 

6 k’ 1.036 Pass 0.85 < k’<1.15 

 

Table 4.5. Results of the final PLS-based QSTR (pNOEL) model obtained according to 

Golbraikh and Tropsha's criteria. 

Sl.No Parameters PLS QSTR 

(pNOEL) 

Remarks Threshold value 

1 Q2
LOO (train) 0.582 Pass Q2

LOO>0.5 

2 R2(test)  0.765 Pass R2(test)>0.6 

3 [(r2-r0
2)/ r2] 0.123 Fail <0.1 
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4 [(r2-r’0
2)/ r2] 1.023 Fail <0.1 

5 k 1.016 Pass 0.85 < k <1.15 

6 k’ 0.981 Pass 0.85 < k’<1.15 

 

4.1.2. Results of ML-based q-RASTR model  

As previously stated, we used two different ML algorithms to evaluate their effectiveness in 

model construction and prediction. Based on the internal validation, v-SVM was the best-

performing model toward the pLOEL endpoint, and Ridge regression was the best-performing 

model toward the pNOEL endpoint based on internal and external validation metrics. In terms 

of external validation metric, Q2
F3 [28], the ability to efficiently predict the response values for 

the target (query) compounds, the best-performing models were the PLS-based q-RASTR 

models. Furthermore, the PLS-based q-RASTR models produce the lowest prediction error for 

the query set compounds, as indicated by the MAEtest value [29]. Thus, to assess the overall 

performance of the models for both endpoints, the PLS-based q-RASTR models are superior 

than QSTR models. The results of ML models are presented in Table 4.6. 

Table 4.6.  ML-based q-RASTR model's statistical quality. 

Validation 

Metrics 

ML model's statistical quality 

Model name SVM 

(pLOEL) 

SVM  

(pNOEL) 

RR 

(pLOEL) 

RR 

(pNOEL) 

R2
Loo (train) 0.831 0.695 0.776 0.758 

Q2
LOO (train)  0.746 0.585 0.746 0.604 

RMSEc (train) 0.245 0.245 0.283 0.218 

Q2
F1 (test) 0.742 0.718 0.725 0.653 

Q2
F2 (test) 0.721 0.715 0.703 0.650 

Q2
F3 (test) 0.797 0.835 0.784 0.796 

MAEtest (test) 0.273 0.169 0.300 0.216 

CCC 0.893 0.856 0.850 0.804 

rm(test)
2̅̅ ̅̅ ̅̅ ̅̅ ̅ 0.725 0.659 0.626 0.541 

Δr2
m(test) 0.101 0.071 0.033 0.148 

Optimum 

hyperparameters 

v-SVM 

Regression 

cost-0.50 

Complexity 

bound-0.65 

Kernel- 

Linear 

v-SVM 

Regression cost-

2.50 

Complexity 

bound-0.70 

Kernel-Linear 

Alpha-0.001 Alpha-0.001 
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4.1.3. Regression coefficient plot 

The plot describes the descriptor’s positive/negative contribution towards the toxicity [30]. In 

this study, the descriptor NsOH contributed positively while the descriptors SD similarity (GK) 

and B01[C-O] contributed negatively toward the toxicity in case of Model 3. In case of Model 

4, the descriptors B05[O-O], T(N..S) contributed positively while the descriptors SE(LK), 

B02[C-O] contributed negatively towards the toxicity. All the relevant plots have been 

provided in Figures 4.2.-4.3. 

 

Figure 4.2. Regression coefficient plot of model M3. 

 

Figure 4.3. Regression coefficient plot of model M4. 

4.1.4. Variable importance plot (VIP) 

The respective descriptor contribution towards the model response is described by the variable 

importance plot, and the most and least important descriptors are recognized appropriately [31]. 

In this present study, NsOH and B02[C-O] depicting electronegativity and hydrophilicity were 
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identified as the most important descriptors for Model 3 and Model 4 respectively as shown in 

Figures 4.4.-4.5. 

 

Figure 4.4. The variable importance plot of model M3 (pLOEL).  

 

Figure 4.5. The variable importance plot of model M4 (pNOEL). 

4.1.5. Loading plot  

The plot describes the correlation between the X and Y variables, illustrating the effect of 

various model descriptors. The first two components were used to create the loading plot. A 

descriptor is supposed to have a stronger effect on response value if it is situated far from the 

origin of the plot and near the modeled endpoint. All the relevant plots have been provided in 

Figures 4.6-4.7. 
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Figure 4.6. The loading plot of the model M3 (pLOEL). 

 

Figure 4.7. The loading plot of the model M4 (pNOEL). 

4.1.6. Applicability domain (AD) 

AD is the hypothetical region in chemical space specified by the respective model descriptors 

and responses where predictions may be made with confidence. To obtain a reliable prediction, 

the target compounds must have the highest structural similarity to the training compounds. As 

a result, validating the applicability domain is a fundamental prerequisite for every statistical 

model, as recommended by OECD principle 3 ("Validation of (Q)SAR Models - OECD," 
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2004). To comply with the OECD guidelines, an applicability domain analysis of the created 

PLS-based q-RASTR model was done with SIMCA-P software using the DModX technique 

at a 99% confidence level.  

DModX= 
√

𝑆𝑆𝐸𝑖

𝐾−𝐴

√
𝑆𝑆𝐸

(𝑁−𝐴−𝐴𝑂)(𝐾−𝐴)

 

For observation i, in a model with A component, K variables, and N observations, SSE is the 

squared sum of the residuals. A0 is 1 if the model was centered and 0 otherwise. It is claimed 

that DModX is approximately F-distributed, so it can be used to check if an observation 

deviates significantly from a normal PLS model. The DModX (distance to model in X-space) 

plots for both the training and test sets have been showcased in Figures 4.8-4.11. (shows the 

AD plots of the Model 3 and Model 4). In this study, all the compounds from the training set 

(given in Figure. 4.8.) and test set (given in Figure. 4.9.) for the pLOEL endpoint model 

(model M3) are inside the applicability domain (below the D-Critical line) which indicates the 

reliability of predictions by the model. In the case of the pNOEL endpoint model (model M4), 

compounds 28 and 33 of the training set (given in Figure. 4.10.) are outside the applicability 

domain (above the D-critical line) due to the structural dissimilarity. All the compounds from 

the test set (given in Figure. 4.11.) of the pNOEL endpoint (model M4) are within the 

applicability domain. 

Figure 4.8. DModx plot (pLOEL) of the model M3 (training set).  
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Figure 4.9. DModx plot (pLOEL) of the model M3 (test set). 

Figure 4.10. DModx plot (pNOEL) of the model M4 (training set).
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Figure 4.11. DModx plot (pNOEL) of the model M4 (test set). 

4.1.7. Mechanistic interpretation 

The details of the descriptors obtained from the M3 (pLOEL endpoint) and M4 models 

(pNOEL endpoint), their contribution, description, and probable mechanistic interpretation 

(according to OECD principle 5) are provided in Table 4.7. 

4.1.7.1. Mechanistic interpretation of descriptors employed in Model M3 (pLOEL)  

SD similarity (GK) is a RASTR descriptor that denotes the typical deviation of similarity levels 

among closely related compounds. It has a negative contribution to the toxicity endpoint. 

Higher standard deviation (SD) similarity shows that the distribution among the close source 

compounds is high thereby reducing prediction reliability as demonstrated in compound 30 and 

conversely shown in compound 3 (depicted in Figure. 4.12). 

The descriptor NsOH defines the number of atoms of type sOH in the compound and it 

contributes positively towards the toxicity endpoint. This fragment enhances the compound 

toxicity due to the presence of an electronegative atom (Oxygen) as demonstrated in compound 

42 and the absence of this fragment decreases the toxicity as represented in compound 18 

(shown in Figure. 4.12). 

The descriptor B01[C-O] is a 2D atom pair descriptor that shows the occurrence of C-O at 

topological distance 1 and gives negative contribution towards the endpoint. The presence of 

polar bond [C-O] increases the hydrophilicity of the compound [34] and thus toxicity will 
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decrease which is evidenced by compound 27 and vice versa in case of compound 36 

(represented in Figure. 4.12). 

Fig 4.12. Contribution of the model descriptors towards pLOEL in chicken 

4.1.7.2. Mechanistic interpretation of descriptors employed in Model M4 (pNOEL)  

The SE(LK) is a RASTR descriptor that denotes the weighted standard error about the response 

values of adjacent source compounds. It shows negative contribution toward the endpoint. The 

presence of this high standard error based on the response values of the proximate source 

compound decreases the compound toxicity as demonstrated in compound 8 and the less 

standard error based on response enhances the toxicity as represented in compound 40 (given 

in Figure. 4.13). 
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The 2D atom pair descriptor, B05[O-O] shows the occurrence of two oxygen atoms at 

topological distance 5. The presence of two electronegative atoms increases the 

electronegativity rendering the compounds more electronegative [35]. The presence of large 

number of fragments in chemical structure will also increase the lipophilicity, ultimately 

enhancing the penetration ability of chemicals into the cell of the reference organism. Thus, 

the existence of oxygen atoms at the specified topological distance is associated with increased 

toxicity in pesticides as illustrated by compound 4, while the opposite was characterized in 

compound 48 (provided in Figure. 4.13). 

Another 2D atom pair descriptor, B02[C-O], indicates the occurrence of C-O at topological 

distance 2. It shows negative contribution toward the endpoint. This descriptor is related to 

hydrophilicity (oxygen is responsible for hydrogen bonding with water, and is easily excreted 

out from the body) [34]. Small fragments (occurrence of C-O at topological separation 2) are 

less lipophilic, as a result, toxicity will decrease which is evidenced by compound 30, and the 

opposite was shown in compound 34 (represented in Figure. 4.13). 

The T(N..S) descriptor denotes the summation of the topological distance between N..S and it 

contributed positively toward the endpoint. The occurrence of nitrogen and sulphur atoms in a 

compound increases its electronegativity, leading to oxidative stress and cell death [34-35]. 

Sulphur itself is toxic. Therefore, overall toxicity will increase as demonstrated in compound 

33. On the other hand, the compound containing less number of this fragment may exhibit less 

toxicity as shown in compound 53 (demonstrated in Figure. 4.13). 
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Figure 4.13 Contributions of the model descriptors towards pNOEL in chicken.                                                                           

4.1.8. Pesticide Properties DataBase screening 

The PPDB compounds were screened using developed models considering both the toxicity 

endpoints namely, pLOEL and pNOEL assisted by the Java-based tool “Prediction reliability 

indicator” (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). The applicability domain of 

the compounds was assessed to ascertain the reliability of the obtained prediction values and it 

was found that 100% and 55% of compounds lie within the chemical space of the developed 

pLOEL and pNOEL models respectively. The predicted pLOEL and pNOEL values of the 

respective compounds were cumulatively assessed. Then, based on the cumulative predictions, 

the top 20 and least 20 toxic compounds (compounds that are toxic for both pLOEL and 

pNOEL endpoints and lie within the AD of both models) with their CAS numbers, molecular 

weight, and pesticide groups have been provided in Table 4.8. Considering the top twenty 

http://teqip.jdvu.ac.in/QSAR_Tools/
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highest toxic compounds, our models’ pLOEL and pNOEL prediction values were in complete 

coherence with the experimental toxicity data. From the results, it can be stated that our model 

predictions are correlated to real-world data and can be considered suitable for the 

identification of potential toxicants alongside less ones. Upon further validation, all predicted 

toxicities, demonstrate the practical applicability of the developed models. 

Table 4.8. Twenty most and least toxic screened pesticides from the Pesticide Properties 

DataBase (PPDB). 
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Sl. 

No 

Pesticide name 

(Group) 

CAS no and 

Molecular 

mass 

Safety and Hazards Sources  

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Flumetsulam 

 

98967-40-9 

(Molecular 

mass-325.29) 

Toxic to rats, rabbits, 

quail, ducks, and 

Environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/91759#section=

GHS-

Classification&fullscreen=true  

2 Dipyrithione 

 

3696-28-4 

(Molecular 

mass-252.31) 

Environmental hazard, 

irritant 

https://pubchem.ncbi.nlm.nih.g

ov/compound/3109#section=G

HS-

Classification&fullscreen=true  

3 Sulfoxaflor 

 

946578-00-3 

(Molecular 

mass-277.27) 

Environmental hazard, 

irritant 

https://pubchem.ncbi.nlm.nih.g

ov/compound/16723172#sectio

n=GHS-

Classification&fullscreen=true  

4 Flusulfamide 

 

106917-52-6 

(Molecular 

mass-415.17) 

Acute toxic to rats, 

mice, and 

Environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/86268#section=

GHS-

Classification&fullscreen=true  

5 Benzofluor 

 

68672-17-3 

(Molecular 

mass-299.33) 

Threshold of 

Toxicological 

Concern (Cramer 

Class- High (class III) 

http://sitem.herts.ac.uk/aeru/pp

db/en/Reports/2711.htm  

6 Nithiazine 

 

58842-20-9 

(Molecular 

mass-216.24) 

Acute toxic to aves 

and irritants 

https://pubchem.ncbi.nlm.nih.g

ov/compound/42853#section=

EPA-

Ecotoxicity&fullscreen=true  

7 Perfluidone 

 

37924-13-3 

(Molecular 

mass-379.4) 

Acute toxic to rats, 

rabbits, mice, and 

irritants 

https://pubchem.ncbi.nlm.nih.g

ov/compound/37869#section=

Acute-Effects&fullscreen=true  

8 Fluensulfone 

 

318290-98-1 

(Molecular 

mass-291.70) 

Acute toxic to fish and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/11534927#sectio

n=GHS-

Classification&fullscreen=true  

9 1,3-

dinitrobenzene 

 

99-65-0 

(Molecular 

mass-168.12) 

Acute toxic, Health 

hazard, and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/7452#section=G

HS-

Classification&fullscreen=true  

10 Ampropylfos 

 

16606-64-7 

(Molecular 

mass-139.09) 

 

Corrosive https://pubchem.ncbi.nlm.nih.g

ov/compound/178368#section=

GHS-

Classification&fullscreen=true  

11 Azoxybenzene 

 

495-48-7 

(Molecular 

mass-198.22) 

 

Acute toxic to rats, 

mice, and rabbits 

https://pubchem.ncbi.nlm.nih.g

ov/compound/10316#section=

Acute-Effects&fullscreen=true  

https://pubchem.ncbi.nlm.nih.gov/compound/91759#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/91759#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/91759#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/91759#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3109#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3109#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3109#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3109#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16723172#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16723172#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16723172#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16723172#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/86268#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/86268#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/86268#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/86268#section=GHS-Classification&fullscreen=true
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2711.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2711.htm
https://pubchem.ncbi.nlm.nih.gov/compound/42853#section=EPA-Ecotoxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/42853#section=EPA-Ecotoxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/42853#section=EPA-Ecotoxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/42853#section=EPA-Ecotoxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37869#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37869#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37869#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11534927#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11534927#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11534927#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11534927#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/7452#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/7452#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/7452#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/7452#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/178368#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/178368#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/178368#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/178368#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/10316#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/10316#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/10316#section=Acute-Effects&fullscreen=true
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12 Benfluralin 

 

1861-40-1 

(Molecular 

mass-335.28) 

 

Acute toxic to rats, 

mice, rabbits and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/2319#section=G

HS-

Classification&fullscreen=true  

13 Benzamorf 

 

12068-08-5 

(Molecular 

mass-413.6) 

 

Corrosive and Irritant https://pubchem.ncbi.nlm.nih.g

ov/compound/20055166#sectio

n=GHS-

Classification&fullscreen=true  

14 Bis(methylmerc

ury) sulphate 

 

3810-81-9 

(Molecular 

mass-527.31) 

 

Threshold of 

Toxicological 

Concern (Cramer 

Class- High (class III) 

http://sitem.herts.ac.uk/aeru/pp

db/en/Reports/2716.htm  

15 Bis-

trichloromethyl 

sulfone 

 

3064-70-8 

(Molecular 

mass-300.80) 

 

Acute toxic to rats, 

mice, rabbits and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/62478#section=

GHS-

Classification&fullscreen=true  

16 Bromethalin 

 

63333-35-7 

(Molecular 

mass-577.9) 

 

 

Acute toxic to rats, 

mice, dogs and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/44465#section=

GHS-

Classification&fullscreen=true  

17 Butralin 

 

33629-47-9 

(Molecular 

mass-295.33) 

 

Environmental hazard, 

Health hazard and 

Acute toxic to rats, 

rabbits 

https://pubchem.ncbi.nlm.nih.g

ov/compound/36565#section=

GHS-

Classification&fullscreen=true  

18 Cacodylic acid 

 

75-60-5 

(Molecular 

mass-138.00) 

 

Acute toxic to rats, 

mice and 

environmental hazard 

https://pubchem.ncbi.nlm.nih.g

ov/compound/2513#section=G

HS-

Classification&fullscreen=true  

19 Chloropicrin 

 

76-06-2 

(Molecular 

mass-164.37) 

 

Acute toxic to 

humans, rats and mice 

https://pubchem.ncbi.nlm.nih.g

ov/compound/6423#section=G

HS-

Classification&fullscreen=true  

20 Dicloran 

 

99-30-9 

(Molecular 

mass-207.01) 

 

Environmental hazard, 

Health hazard and 

acute toxic to rat, mice 

https://pubchem.ncbi.nlm.nih.g

ov/compound/7430#section=G

HS-

Classification&fullscreen=true  

20 least screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Zarilamid 

 

84527-51-5 

( Molecular 

mass-238.67) 

The predictive value 

for both endpoints 

indicates this pesticide 

is less toxic for both 

endpoints. 

 

 

------------------ 

2 Xylylcarb 

 

2425-10-7 

( Molecular 

mass-179.22) 

Low toxic (Cramer 

Class): I 

https://sitem.herts.ac.uk/aeru/p

pdb/en/Reports/2556.htm 

3 Xylachlor 

 

63114-77-2 

( Molecular 

mass-239.77) 

The test results show 

that metolachlor is 

practically non-toxic 

to birds. From the 

https://www3.epa.gov/pesticide

s/chem_search/cleared_reviews

/csr_PC-108801_21-Mar-

94_205.pdf 

https://pubchem.ncbi.nlm.nih.gov/compound/2319#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/2319#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/2319#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/2319#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/20055166#section=GHS-Classification&fullscreen=true
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http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2716.htm
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https://pubchem.ncbi.nlm.nih.gov/compound/62478#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/62478#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/62478#section=GHS-Classification&fullscreen=true
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concept of structure-

activity relationship, 

we can say xylachlor 

may also be non-toxic 

to birds. 

4 XMC 

 

2655-14-3 

(Molecular 

mass-179.22) 

It has a low toxicity 

and is relatively stable 

https://www.sciencedirect.com/

science/article/abs/pii/S138614

2521007654 

5 Warfarin 

 

81-81-2 

(Molecular 

mass- 

308.35) 

 

It is practically non-

toxic 

http://extoxnet.orst.edu/pips/wa

rfarin.htm 

6 Vinegar 

 

90132-02-8 

(Molecular 

mass-60.06) 

 

Vinegar is used to 

promote the health of 

the birds 

https://haithspro.wordpress.co

m/category/vinegar-bird-

health/ 

7 Vinclozolin 

 

50471-44-8 

(Molecular 

mass-286.12) 

 

Vinclozolin is 

practically nontoxic to 

birds 

https://archive.epa.gov/pesticid

es/chemicalsearch/chemical/foi

a/web/pdf/113201/113201-

142.pdf 

8 Uniconazole 

 

83657-22-1 

(Molecular 

mass-291.81) 

Uniconazole-p is non-

toxic to birds 

https://apvma.gov.au/sites/defa

ult/files/publication/14096-prs-

uniconazole-p.pdf 

9 Umifoxolaner 

 

2021230-37-

3 

(Molecular 

mass-299.64) 

Low toxic https://www.ema.europa.eu/en/

documents/assessment-

report/nexgard-spectra-epar-

public-assessment-

report_en.pdf 

10 Triticonazole 

 

131983-72-7 

(Molecular 

mass-317.82) 

Triticonazole is non-

toxic to pollinating 

insects  

https://downloads.regulations.g

ov/EPA-HQ-OPP-2015-0602-

0039/content.pdf  

11 Triprene 

 

40596-80-3 

(Molecular 

mass-312.52) 

 

Low toxic https://hal.science/hal-

00891905/document  

12 Trimethacarb 

 

12407-86-2 

(Molecular 

mass-312.52) 

 

Birds were not as 

sensitive to 

trimethacarb 

https://escholarship.org/uc/item

/91t7r9mv  

13 Triisopropanola

mine 

 

122-20-3 

(Molecular 

mass-191.27) 

Practically non-toxic 

to birds, fish, 

honeybees 

https://downloads.regulations.g

ov/EPA-HQ-OPPT-2013-

0739-0140/attachment_1.pdf  

14 Triflumuron 

 

64628-44-0 

(Molecular 

mass-358.70) 

Triflumuron is not 

classified as toxic or 

highly toxic  

http://dissemination.echa.europ

a.eu/Biocides/ActiveSubstance

s/1407-18/1407-

18_Assessment_Report.pdf  

15 Triflumizole 

 

99387-89-0 

(Molecular 

mass-345.75) 

Triflumizole is 

categorized as 

being moderately 

https://nepis.epa.gov/Exe/ZyP

URL.cgi?Dockey=2000QRHX.

TXT  

https://www.sciencedirect.com/science/article/abs/pii/S1386142521007654
https://www.sciencedirect.com/science/article/abs/pii/S1386142521007654
https://www.sciencedirect.com/science/article/abs/pii/S1386142521007654
http://extoxnet.orst.edu/pips/warfarin.htm
http://extoxnet.orst.edu/pips/warfarin.htm
https://haithspro.wordpress.com/category/vinegar-bird-health/
https://haithspro.wordpress.com/category/vinegar-bird-health/
https://haithspro.wordpress.com/category/vinegar-bird-health/
https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/113201/113201-142.pdf
https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/113201/113201-142.pdf
https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/113201/113201-142.pdf
https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/113201/113201-142.pdf
https://apvma.gov.au/sites/default/files/publication/14096-prs-uniconazole-p.pdf
https://apvma.gov.au/sites/default/files/publication/14096-prs-uniconazole-p.pdf
https://apvma.gov.au/sites/default/files/publication/14096-prs-uniconazole-p.pdf
https://www.ema.europa.eu/en/documents/assessment-report/nexgard-spectra-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/nexgard-spectra-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/nexgard-spectra-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/nexgard-spectra-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/assessment-report/nexgard-spectra-epar-public-assessment-report_en.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2015-0602-0039/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2015-0602-0039/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2015-0602-0039/content.pdf
https://hal.science/hal-00891905/document
https://hal.science/hal-00891905/document
https://escholarship.org/uc/item/91t7r9mv
https://escholarship.org/uc/item/91t7r9mv
https://downloads.regulations.gov/EPA-HQ-OPPT-2013-0739-0140/attachment_1.pdf
https://downloads.regulations.gov/EPA-HQ-OPPT-2013-0739-0140/attachment_1.pdf
https://downloads.regulations.gov/EPA-HQ-OPPT-2013-0739-0140/attachment_1.pdf
http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1407-18/1407-18_Assessment_Report.pdf
http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1407-18/1407-18_Assessment_Report.pdf
http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1407-18/1407-18_Assessment_Report.pdf
http://dissemination.echa.europa.eu/Biocides/ActiveSubstances/1407-18/1407-18_Assessment_Report.pdf
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000QRHX.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000QRHX.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000QRHX.TXT
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4.2 Study 2 

4.2.1. PLS-based QSTR Model  

A PLS-based QSTR model was developed using the PLS regression method with four latent 

variables from ten different features identified using the best subset selection tool against avian 

species. The developed PLS-based QSTR model is given below: 

PLS-based QSTR model:  

𝑴𝒐𝒅𝒆𝒍 𝑴𝟏 =0.14334 + 0.17079*X5v + 0.56174*Br-094 - 0.28210*B07[C-C] + 

1.85683*nPyrrolidines + 0.65279*F02[S-F] +0.18407*C-003 - 0.39449*nCrq + 

1.85133*B03[N-P] + 0.17754*nCXr -0.31913*nR07 

The model’s performance has been thoroughly evaluated using rigorous internal and external 

validation methods following the guidelines of the OECD. The determination coefficient (R2= 

0.624) and leave one out cross-validated correlation coefficient (Q2
LOO= 0.538) indicate the 

model’s goodness of fit and robustness, whereas the mean absolute error of the training set 

toxic to fish 

16 Triflumezopyri

m 

 

1263133-33-

0 

(Molecular 

mass-398.34) 

Triflumezopyrim 

was harmless to 

Anagrus nilaparvatae 

https://pubmed.ncbi.nlm.nih.go

v/29404868/  

17 Trifloxystrobin 

 

141517-21-7 

(Molecular 

mass-408.37) 

Trifloxystrobin 

is practically non-

toxic to birds 

https://www.apvma.gov.au/site

s/default/files/publication/1408

1-prs-trifloxystrobin.pdf  

18 Trifenofos 

 

38524-82-2 

(Molecular 

mass-363.63) 

Profenofos has a 

moderate toxic  

https://apps.who.int/pesticide-

residues-jmpr-

database/Document/123  

19 Trifenmorph 

 

1420-06-0 

(Molecular 

mass-329.43) 

Trifenmorph 

is hydrolysed at acid 

pH to relatively non - 

toxic compounds 

http://erepository.uonbi.ac.ke/b

itstream/handle/11295/21816/B

enigna_Lethal%20and%20sub

%20-

%20lethal%20effects%20of%2

0dot%2C%20carbofuran%2C

%20trifenmorph%20and%20ni

closamide%20on%20oreochro

mis%20niger%20guther%20%

281898%29.pdf?sequence=3&i

sAllowed=y  

20 Tridiphane 

 

58138-08-2 

(Molecular 

mass-320.43) 

The predictive value 

for both endpoints 

indicates this pesticide 

is less toxic for both 

endpoints. 

 

 

------------------- 

https://pubmed.ncbi.nlm.nih.gov/29404868/
https://pubmed.ncbi.nlm.nih.gov/29404868/
https://www.apvma.gov.au/sites/default/files/publication/14081-prs-trifloxystrobin.pdf
https://www.apvma.gov.au/sites/default/files/publication/14081-prs-trifloxystrobin.pdf
https://www.apvma.gov.au/sites/default/files/publication/14081-prs-trifloxystrobin.pdf
https://apps.who.int/pesticide-residues-jmpr-database/Document/123
https://apps.who.int/pesticide-residues-jmpr-database/Document/123
https://apps.who.int/pesticide-residues-jmpr-database/Document/123
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
http://erepository.uonbi.ac.ke/bitstream/handle/11295/21816/Benigna_Lethal%20and%20sub%20-%20lethal%20effects%20of%20dot%2C%20carbofuran%2C%20trifenmorph%20and%20niclosamide%20on%20oreochromis%20niger%20guther%20%281898%29.pdf?sequence=3&isAllowed=y
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predictions (MAEtrain = 0.247) indicates the predictive error. In addition to these, external 

validation metrics, such as the external predicted variance (Q2
F1= 0.539 and Q2

F2= 0.538), and 

mean absolute error of test set prediction (MAEtest= 0.268), which are the standard markers of 

good external predictability, have also been calculated. 

4.2.2. PLS-based q-RASTR Model  

In this study, we aimed to create a q-RASTR model to improve the external predictability of 

the corresponding QSTR model. To achieve this, we integrated the calculated read-across-

based RASTR descriptor with the pull of ten alvaDesc descriptors. Using the best subset 

selection method, we obtained a new combination of descriptors. We then used PLS regression 

to model eight descriptors with the optimal number of latent variables (four LVs). The 

statistical metrics of the PLS-based QSTR and q-RASTR models are presented in Table 4.9. 

The resulting PLS-based q-RASTR model is given below: 

PLS-based q-RASTR model:  

𝑴𝒐𝒅𝒆𝒍 𝑴𝟐 =0.14648 + 0.53019* CVsim(LK) - 0.75982* SD similarity(LK) + 0.04142* 

gm*Avg.Sim + 0.12455* X5v -0.17495* B07[C-C] + 1.61151* nPyrrolidines + 0.08476* 

C-003 -0.46958* nCrq 

Table 4.9. Statistical quality of QSTR and q-RASTR model. 

 

The PLS-based q-RASTR model shown superior performance than the corresponding QSTR 

model in terms of internal validation metrics (Q2
Loo =0.569) as well as external validation 

metrics (Q2
F1 =0.541, Q2

F2 =0.540). The model also produced the lowest prediction error for the 

test compounds as indicated by MAEtest = 0.261. The results of our study indicate that the best-

performing models for predicting the response values of target compounds were found to be 

the PLS-based q-RASTR model. Y-randomization was carried out to investigate the chance 

occurrence of the developed model R2yrand and Q2yrand were found to be less than the standard 

threshold, which assures that the generated models were not obtained by any chance as depicted 

 

 

 

Avian 

Species 

Algorith

m 

 

Training set Test set 

Ntrain/

Ntest 

DES/ 

LVs 
𝑅2 𝑄𝐿𝑂𝑂

2  

 

𝑀𝐴𝐸(𝑡𝑟𝑎𝑖𝑛) 

 

𝑄𝐹1
2  𝑄𝐹2

2  𝑀𝐴𝐸(𝑡𝑒𝑠𝑡) 

 
PLS-

QSTR 

360/

120 

10/4 0.624 0.538 0.247 0.539 0.538 0.268 

PLS q-

RASTR 

360/

120 

8/4 0.623 0.569 0.247 0.541 0.540 0.261 
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in Figure.4.14. The PLS-based q-RASTR model's goodness-of-fit has been confirmed by 

evaluating the correlation between the observed and predicted values as shown in Figure. 4.15. 

 
Figure 4.14. Y-randomization plot of PLS-based q-RASTR model. 

 

Figure 4.15. Scatter plot of established model. 
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4.2.3 PLS plots 

The comprehensive use of PLS plots in SIMCA-P facilitated a detailed exploration of the 

dataset, providing valuable insights into the relationships between variables and the toxicity 

response. Each type of PLS plot played a crucial role in enhancing the understanding and 

reliability of the predictive models. The outcomes of these analyses contribute not only to 

model interpretation but also guide further refinement and optimization for robust predictive 

performance. 

4.2.3.1 Regression coefficient plot 

Employed SIMCA-P to generate regression coefficient plots, illustrating the contribution of 

each variable on the response variable. Evaluated the sign and magnitude of regression 

coefficients to discern the variables positively or negatively influencing the toxicity, offering 

valuable insights for understanding the underlying mechanisms. The descriptors CVsim(LK), 

gm*Avg.Sim, X5v, nPyrrolidines, and C-003 contributed positively towards the toxicity which 

indicates that the toxicity enhanced with increasing the numerical value of these descriptors 

while the descriptors SD similarity(LK), B07[C-C], and nCrq showed negative contribution 

towards the toxicity which indicated that the toxicity reduced with increasing the numerical 

value of these descriptors. The regression coefficient plot is provided in Figure. 4.16. 

 

Figure 4.16. Regression coefficient plot of PLS-based q-RASTR model. 
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4.2.3.2. Variable importance plot (VIP) 

Utilized the SIMCA-P software to generate VIP plots, quantifying the importance of each 

variable in explaining the variations observed in the data. Variables with higher VIP scores 

were considered more influential, aiding in feature selection and enhancing the interpretability 

of the predictive models. The influential descriptors toward toxicity of the developed model 

are CVsim(LK)> X5v> nCrq> SD similarity(LK)> C-003> nPyrrolidines> B07[C-C]> 

gm*Avg.Sim (arranged in higher to lower order as per their VIP score). The VIP plots are 

depicted in Figure. 4.17. 

Figure. 4.17. Variable importance plot PLS-based q-RASTR model. 

4.2.3.3. Loading plot 

The loading plot, portrayed in Figure. 4.18. identifies the relationship between the model's X-

variables (independent variables) and Y-variables (dependent variables). The first two 

components of the developed model were used to generate the loading plot. This plot clarifies 

how various variables impact the models. The descriptors with maximum distance from the 

origin are thought to have a higher influence on response value as well as on models. According 

to the loading plot, CVsim(LK) descriptor is the most impactful variable for the PLS-based q-

RASTR models as it is present farthest from the origin. 
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Figure 4.18. Loading plot of the model PLS-based q-RASTR model. 

4.2.4. Mechanistic interpretation 

The information regarding the descriptors gained from the developed model, their contribution, 

description, and probable mechanistic interpretation are provided in Table 4.10 and presented 

in Figure. 4.19. 
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Figure. 4.19. Mechanistic introspection of modeled descriptors. 
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Table 4.10. Mechanistic introspection of modeled descriptors. 

Sl. No. Descriptor Type Description Contribution 

Various types of bird species 

1 

CVsim(LK) RASTR 

Coefficient and variation of 

the similarity values of the 

close source compounds. 

Positive 

Mechanistic introspection:  

The descriptor "CVsim (LK)" quantifies the coefficient of variation in similarity 

values for chemicals resembling the target molecule. A high value of this 

descriptor suggests that the target molecule exhibits significant deviations in 

similarity to related chemicals, which may correlate with increased toxicity 

towards the endpoint. For example, compound 10 (Isobenzan) shows considerable 

variability in similarity measures among its close chemical analogs, indicating 

potential toxicity. In contrast, compound 25 (Coumatetralyl) demonstrates a 

lower coefficient of variation in similarity values, suggesting reduced toxicity 

towards the endpoint. 

2 

SD 

similarity(LK) 
RASTR 

The standard variation in 

similarity measures among 

closely related compounds 

Negative 

Mechanistic introspection:  

The extensive variability observed among closely related source compounds is a 

significant factor that reduces the prediction reliability. This fact is evident in 

compound 14 (Metconazole), whereas compound 30 (Furilazole) does not 

demonstrate such  phenomenon. 

3 

gm*Avg.Sim RASTR 

Product of the gm and Avg.Sim 

levels 

 

Positive 

Mechanistic introspection:  

Increasing the numerical value of this variable enhanced the compound’s toxicity 

(directly related to the toxicity as indicated by the positive regression coefficient) 

as represented in compound 1 (bromomethane) and oppositely occurs in 

compound 283 (Uniconazole). 

 

4 

X5v 

Connectivit

y indices 

 

Valence connectivity index of 

order 5 

 

Positive 

Mechanistic introspection:  
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The symbol X5v is commonly used to represent the valence connectivity index of 

order 5. However, based on the study of certain organic compounds, it can be 

inferred that X5v represents the extent of branching or molecular surface area. It 

has been observed that X5v has a positive correlation with the endpoint. This 

means when the numerical value of X5v increases (branching increases), the 

toxicity also increases [83] as traced in compound 267 (Strychnine)  and 

conversely in compound 16 (Dicofol). 

5 

B07[C-C] 

2D Atom 

Pairs 

 

Presence/absence of C – C at 

topological distance 7 
Negative 

Mechanistic introspection:  

This descriptor is inversely correlated with the toxicity as indicated by its negative 

regression coefficient. Thus, an increased number of this fragment correlates with 

decreased toxicity, as illustrated by compound 136 (Bifenazate (D2341), while the 

opposite effect is observed in compound 133 (Toxaphene). 

6 

nPyrrolidines 

Functional 

group 

counts 

 

number of Pyrrolidines Positive 

Mechanistic introspection:  
The nPyrrolidines alvaDesc descriptor positively contributed to the endpoint. This 

suggests that the presence of pyrrolidine rings enhances toxicity, as exemplified 

by compound 204 (Nicotine), whereas the reverse effect is observed in compound 

215 (Nitenpyram). 

7 

C-003 

Atom-

centred 

fragments 

CHR3 Positive 

Mechanistic introspection:  

The positive regression coefficient for this descriptor suggests that it enhances the 

toxicity profile of the chemicals, as evidenced by compound 87 (Endrin) and 

conversely in compound 143 (2,4-D Isooctyl ester). 

8 

nCrq 

Functional 

group 

counts 

 

number of ring quaternary 

C(sp3) 
Negative 

Mechanistic introspection:  

Generally, the Sp3 hybridized compound is more stable and less reactive due to the 

presence of a sigma bond.  The less reactivity of any compound indicates that it is 

potentially less toxic. This feature has a positive contribution towards the response 
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as depicted in compounds 248 (Gibberellic acid) and conversely for compound 

173 (Prallethrin). 

 

4.2.5. Pesticide Properties DataBase screening 

The developed PLS-based q-RASTR model was utilized to screen the PPDB database using 

PRI tool (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). We have ensured the utmost 

reliability of the prediction values by thoroughly assessing the applicability domain of the 

compounds and discovering that 92.08% of the compounds fall within the chemical space of 

the developed model. The HD5 values of the compounds were evaluated and the twenty highest 

and least toxic compounds have been provided with their respective CAS numbers, molecular 

weight, and pesticide groups in Tables 4.11 and 4.12. respectively. Our predictions were 

rigorously validated by corroborating them with the real-world experimental data available in 

the PubChem online repository, as well as in literature and references. We observed complete 

coherence between our predictions and the experimental toxicity data, particularly for the top 

twenty highest and least twenty toxic compounds. Therefore, we confidently state that our 

model predictions are reliable and can be considered highly suitable for identifying potential 

toxicants. 

Table 4.11 Top twenty toxic screened pesticides from Pesticide Properties DataBase (PPDB). 

Sl. 

No 

Pesticide 

name 

CAS no and 

Molecular 

mass 

Safety and 

Hazards 

Sources 

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Chlorbicycle

n 

103-17-3 

(Molecular 

mass-

269.19) 

Acute toxic 

(Dermal, 

Inhalation) 

https://pubchem.ncbi.nlm.nih.gov/com

pound/17357#section=GHS-

Classification&fullscreen=true 

2 Dialifos 10311-84-9 

(Molecular 

mass-

393.85) 

Acute toxic to 

rats, mice, 

dogs, rabbits, 

and an 

Environmenta

l hazard 

https://pubchem.ncbi.nlm.nih.gov/com

pound/25146#section=GHS-

Classification&fullscreen=true 

3 Schradan 152-16-9 

(Molecular 

mass-

286.25) 

Acute toxic to 

man, rats, etc. 

https://pubchem.ncbi.nlm.nih.gov/com

pound/9037#section=GHS-

Classification&fullscreen=true 

http://teqip.jdvu.ac.in/QSAR_Tools/
https://pubchem.ncbi.nlm.nih.gov/compound/17357#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/17357#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/17357#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/25146#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/25146#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/25146#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9037#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9037#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9037#section=GHS-Classification&fullscreen=true
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4 Bromethalin 63333-35-7 

(Molecular 

mass-577.9) 

Acute toxic to 

rats, mice, 

dogs, and 

Environmenta

l hazard 

https://pubchem.ncbi.nlm.nih.gov/com

pound/44465#section=GHS-

Classification&fullscreen=true 

5 Imicyafos 140163-89-9 

(Molecular 

mass- 

304.35) 

Acute toxic, 

Irritant 

https://pubchem.ncbi.nlm.nih.gov/com

pound/18772487#section=GHS-

Classification&fullscreen=true 

6 Bromocycle

n 

1715-40-8 

(Molecular 

mass-

393.75) 

Inhalation 

May be 

harmful if 

inhaled. 

https://www.hpc-

standards.com/shop/ReferenceMaterial

s/Pesticides/Bromocyclen_Ethylacetate

_1.htm 

7 Phosalone 2310-17-0 

(Molecular 

mass-367.8) 

Acute toxic, 

Environmenta

l Hazard, 

Irritant 

https://pubchem.ncbi.nlm.nih.gov/com

pound/4793#section=GHS-

Classification&fullscreen=true 

8 Prothidathio

n 

20276-83-9 

(Molecular 

mass-358.4) 

Threshold of 

Toxicological 

Concern 

(Cramer 

Class)- High 

(class III) 

http://sitem.herts.ac.uk/aeru/ppdb/en/R

eports/2847.htm  

9 Mazidox 7219-78-5 

(Molecular 

mass-

177.15) 

Threshold of 

Toxicological 

Concern 

(Cramer 

Class)- High 

(class III) 

http://sitem.herts.ac.uk/aeru/ppdb/en/R

eports/2870.htm 

10 Pyrafluprole 315208-17-4 

(Molecular 

mass-

477.27) 

(Cramer 

Class)- High 

(class III) 

http://sitem.herts.ac.uk/aeru/ppdb/en/R

eports/3071.htm  

11 Diazinon 333-41-5 

(Molecular 

mass-

304.35) 

Irritant, 

Health hazard, 

Environmenta

l hazard 

https://pubchem.ncbi.nlm.nih.gov/com

pound/3017#section=GHS-

Classification&fullscreen=true  

12 Athidathion 19691-80-6 

(Molecular 

mass-330.4) 

Acute toxic 

(dermal, oral, 

Environmenta

l hazard 

https://pubchem.ncbi.nlm.nih.gov/com

pound/88197#section=GHS-

Classification&fullscreen=true  

13 Azinphos-

ethyl 

2642-71-9 

(Molecular 

mass-

345.38) 

Acute toxic to 

rat,dog and 

environmental 

hazard  

https://pubchem.ncbi.nlm.nih.gov/com

pound/17531#section=GHS-

Classification&fullscreen=true  

14 Fosmethilan 83733-82-8 

(Molecular 

mass-367.8 

Acute toxic to 

quail, bird-

domestic and 

rat 

https://pubchem.ncbi.nlm.nih.gov/com

pound/55138#section=Acute-

Effects&fullscreen=true  

https://pubchem.ncbi.nlm.nih.gov/compound/44465#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/44465#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/44465#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=GHS-Classification&fullscreen=true
https://www.hpc-standards.com/shop/ReferenceMaterials/Pesticides/Bromocyclen_Ethylacetate_1.htm
https://www.hpc-standards.com/shop/ReferenceMaterials/Pesticides/Bromocyclen_Ethylacetate_1.htm
https://www.hpc-standards.com/shop/ReferenceMaterials/Pesticides/Bromocyclen_Ethylacetate_1.htm
https://www.hpc-standards.com/shop/ReferenceMaterials/Pesticides/Bromocyclen_Ethylacetate_1.htm
https://pubchem.ncbi.nlm.nih.gov/compound/4793#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/4793#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/4793#section=GHS-Classification&fullscreen=true
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2847.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2847.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2870.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/2870.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/3071.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/3071.htm
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/88197#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/88197#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/88197#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/17531#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/17531#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/17531#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/55138#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/55138#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/55138#section=Acute-Effects&fullscreen=true
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15 Benzobicycl

on 

156963-66-5 

(Molecular 

mass-

446.96) 

Toxic for aves https://pubchem.ncbi.nlm.nih.gov/com

pound/11236201#section=Toxicity&fu

llscreen=true  

16 Phosmet 732-11-6 

(Molecular 

mass-

317.33) 

Acute toxic, 

Irritant, 

Health hazard, 

Environmenta

l hazard 

https://pubchem.ncbi.nlm.nih.gov/com

pound/12901#section=GHS-

Classification&fullscreen=true  

17 Tralopyril 122454-29-9 

(Molecular 

mass-

349.53) 

Acute toxic, 

Health hazard, 

https://pubchem.ncbi.nlm.nih.gov/com

pound/183559#section=GHS-

Classification&fullscreen=true  

18 Halacrinate 34462-96-9 

(Molecular 

mass-

312.55) 

Acute toxic to 

rat 

https://pubchem.ncbi.nlm.nih.gov/com

pound/114868#section=Acute-

Effects&fullscreen=true  

19 Fluazolate 174514-07-9 

(Molecular 

mass-

443.62) 

Threshold of 

Toxicological 

Concern 

(Cramer 

Class)- High 

(class III) 

http://sitem.herts.ac.uk/aeru/ppdb/en/R

eports/326.htm  

20 Bromophos 2104-96-3 

(Molecular 

mass-

366.00) 

Environmenta

l hazard and 

acute toxic to 

rat 

https://pubchem.ncbi.nlm.nih.gov/com

pound/16422#section=Acute-

Effects&fullscreen=true  

 

Table 4.12 Least twenty screened pesticides from Pesticide Properties DataBase (PPDB). 

Sl. 

No 

Pesticide 

name 

CAS no and 

Molecular 

mass 

Safety and 

Hazards 

Sources (all references available 

in Supplementary 2) 

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Isophorone 

 

2104-96-3 

(Molecular 

mass-

366.00) 

Isophorone doe

s not affect the 

fertility or cause 

developmental 

toxicity in 

experimental an

imals (Rats, 

Mice) 

https://www.inchem.org/documents

/hsg/hsg/hsg91_e.htm  

2 Empenthrin 

 

54406-48-3 

(Molecular 

mass-

274.40) 

Emperithrin has 

a low mammali

an toxicity. It 

is not highly to

xic to birds  

http://sitem.herts.ac.uk/aeru/ppdb/e

n/Reports/1596.htm  

https://pubchem.ncbi.nlm.nih.gov/compound/11236201#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11236201#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11236201#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/12901#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/12901#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/12901#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/183559#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/183559#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/183559#section=GHS-Classification&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/114868#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/114868#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/114868#section=Acute-Effects&fullscreen=true
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/326.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/326.htm
https://pubchem.ncbi.nlm.nih.gov/compound/16422#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16422#section=Acute-Effects&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/16422#section=Acute-Effects&fullscreen=true
https://www.inchem.org/documents/hsg/hsg/hsg91_e.htm
https://www.inchem.org/documents/hsg/hsg/hsg91_e.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1596.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1596.htm
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3 Profluthrin 

 

223419-20-3 

(Molecular 

mass-

330.32) 

Metofluthrin, 

like other 

synthetic 

pyrethroids, is 

practically non-

toxic 

https://www3.epa.gov/pesticides/ch

em_search/reg_actions/registration/

fs_PC-109709_01-Sep-06.pdf  

4 Heptafluthrin 

 

1130296-65-

9 

(Molecular 

mass-

414.12) 

The substance 

has no 

implications 
for human 

health, 

biodiversity or 

the environment 

http://sitem.herts.ac.uk/aeru/ppdb/e

n/docs/Data_alerts_rules.pdf  

5 Metofluthrin 

 

240494-70-6 

(Molecular 

mass-

360.34) 

The substance 

has no 

implications 

for human 

health, 

biodiversity or 

the environment 

http://sitem.herts.ac.uk/aeru/ppdb/e

n/docs/Data_alerts_rules.pdf  

6 Epsilon-

metofluthrin 

 

240494-71-7 

(Molecular 

mass-

360.34) 

Epsilon- 

momfluorothrin 

has low acute to

xicity 

https://echa.europa.eu/documents/1

0162/e81b30a1-400a-9fed-b8dd-

362a3a54f08b  

7 Imiprothrin 

 

72963-72-5 

(Molecular 

mass-

318.37) 

The chemical is 

practically non-

toxic to birds  

https://www3.epa.gov/pesticides/ch

em_search/reg_actions/registration/

fs_PC-004006_01-Mar-98.pdf  

8 Transfluthrin 

 

118712-89-3 

(Molecular 

mass-

371.15) 

Transfluthrin 

is classified as 

practically 

non-toxic to 

birds and 

mammals, 

https://downloads.regulations.gov/E

PA-HQ-OPP-2016-0581-

0007/content.pdf  

9 Tefluthrin 

 

79538-32-2 

(Molecular 

mass-

371.15) 

Tefluthrin is 

nontoxic to 

birds 

https://www.sciencedirect.com/scie

nce/article/abs/pii/S0013935120308

884  

10 Kappa-

tefluthrin 

 

391634-71-2 

(Molecular 

mass-418.7) 

Nontoxic to 

mammals 

https://patents.google.com/patent/E

P3696177A1/en  

11 Fenfluthrin 

 

75867-00-4 

(Molecular 

mass-

389.16) 

Practically non-

toxic to slightly 

toxic when 

eaten by birds 

http://npic.orst.edu/factsheets/cyflut

hringen.html  

12 Renofluthrin 

 

352271-52-4 

(Molecular 

mass- 

415.22) 

No data found  

 

 ------------------------------------------ 

https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://patents.google.com/patent/EP3696177A1/en
https://patents.google.com/patent/EP3696177A1/en
http://npic.orst.edu/factsheets/cyfluthringen.html
http://npic.orst.edu/factsheets/cyfluthringen.html
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13 Meperfluthrin 

 

915288-13-0 

(Molecular 

mass- 
415.21) 

Metofluthrin, 

like other 

synthetic 

pyrethroids, is 

practically non-

toxic 

https://www3.epa.gov/pesticides/ch

em_search/reg_actions/registration/

fs_PC-109709_01-Sep-06.pdf  

14 S-bioallethrin 

 

28434-00-6 

(Molecular 

mass- 
302.41) 

Bioallethrin is 

less toxic 

to birds and 

honeybees. 

http://sitem.herts.ac.uk/aeru/ppdb/e

n/Reports/80.htm  

15 Bioallethrin 

 

260359-57-7 

(Molecular 

mass-

302.41) 

Bioallethrin is 

less toxic 

to birds and 

honeybees. 

http://sitem.herts.ac.uk/aeru/ppdb/e

n/Reports/80.htm 

16 Allethrin 

 

584-79-2 

(Molecular 

mass- 
302.41) 

Allethrin is 

practically non-

toxic to birds 

http://extoxnet.orst.edu/pips/allethri

.htm  

17 Momfluorothr

in 

 

609346-29-4 

(Molecular 

mass- 

385.35) 

Momfluorothri

n is considered 

practically non-

toxic to birds a

nd mammals 

https://downloads.regulations.gov/E

PA-HQ-OPP-2013-0478-

0020/content.pdf  

18 Chloropralleth

rin 

 

250346-55-5 

(Molecular 

mass- 

341.23) 

Prallethrin is 

of low mammal

ian toxicity 

https://en.wikipedia.org/wiki/Prallet

hrin  

19 Acrinathrin 

 

101007-06-1 

(Molecular 

mass- 
541.44) 

It 

is not considere

d as harmful 

to birds 

https://luxembourg.co.il/wp-

content/uploads/2020/02/Rufast-

1212.pdf  

20 Formetanate 

hydrochloride 

 

23422-53-9 

(Molecular 

mass- 257.8) 

Toxic 

compounds 

https://archive.epa.gov/pesticides/re

registration/web/html/formetanateh

cl_fs.html  

4.3 Study 3 

In this study, we have developed PLS models utilizing the toxicity of pesticides (𝐿𝑜𝑔𝐿𝐶50) on 

four different avians (BQ and JQ) employing a reduced pool of chemical descriptors. The 

created model’s quality is measured by using different internal (𝑅2, 𝑄𝐿𝑂𝑂
2 ,) and external 

(𝑄𝐹1
2 , 𝑄𝐹2

2 , ) statistical parameters. The results obtained from PLS models indicated the model’s 

robustness, reliability, and predictivity. All the metrics obtained from QSTR models are 

depicted in Table 4.13. Read-Across algorithm was employed to improve the model’s external 

predictivity External predictivity was improved for both datasets (BQ, JQ) in Read-Across 

prediction, and results are provided in Table 4.14. The obtained results from the Y-

randomization test were found to be 𝑅2= -0.01, 𝑄2= -0.0531, (for BQ), 𝑅2 =0.0194, 𝑄2 = -

https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/80.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/80.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/80.htm
http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/80.htm
http://extoxnet.orst.edu/pips/allethri.htm
http://extoxnet.orst.edu/pips/allethri.htm
https://downloads.regulations.gov/EPA-HQ-OPP-2013-0478-0020/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2013-0478-0020/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2013-0478-0020/content.pdf
https://en.wikipedia.org/wiki/Prallethrin
https://en.wikipedia.org/wiki/Prallethrin
https://luxembourg.co.il/wp-content/uploads/2020/02/Rufast-1212.pdf
https://luxembourg.co.il/wp-content/uploads/2020/02/Rufast-1212.pdf
https://luxembourg.co.il/wp-content/uploads/2020/02/Rufast-1212.pdf
https://archive.epa.gov/pesticides/reregistration/web/html/formetanatehcl_fs.html
https://archive.epa.gov/pesticides/reregistration/web/html/formetanatehcl_fs.html
https://archive.epa.gov/pesticides/reregistration/web/html/formetanatehcl_fs.html
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0.215 (for JQ) which demonstrated that the models were not formed by any chance. A visual 

representation of the correlation between observed and predicted toxicity values has been 

depicted in the scatter plot (provided in Figure 4.20). Additionally, we used two different ML 

algorithms namely support vector machine and random forest to evaluate their effectiveness in 

model construction and prediction. The PLS-based QSTR models with read-across predictions 

produce the lowest prediction error for the test set compounds, as indicated by the 

MAEtest value. The equations of the final developed models of BQ and JQ, are provided below: 

Model BQ: 

𝒑𝑳𝑪𝟓𝟎 (𝑩𝑸) = 1.25782 + 0.43538 × F02[C − P] + 0.00176 × MW + 0.5691 × F09[S −

F] − 1.15994 × B09[C − P] − 0.55509 × F03[O − P] − 0.046 × T(P. . Cl)  

Model JQ: 

𝒑𝑳𝑪𝟓𝟎 (𝑱𝑸) = 4.15712 + 0.74137 × B01[O − P] − 6.67929 × X2A + 1.18073 ×

B05[N − P] − 0.28037 × H − 048 − 0.00675 × T(O. . Cl) + 0.44076 × nBridgeHead 

Table 4.13. Statistical parameter of developed PLS models. 

Avian 

Species 

Training set Test set 

Ntrain/Ntest 

 

LVs 𝑹𝟐 𝑸𝑳𝑶𝑶
𝟐  

 

𝑸𝑭𝟏
𝟐  𝑸𝑭𝟐

𝟐  𝑴𝑨𝑬(𝒕𝒆𝒔𝒕) 

 

Quality(test) 

BQ 411/137 2 0.643 0.603 0.613 0.613 0.186 Good 

JQ 77/34 2 0.630 0.552 0.534 0.519 0.403 Moderate 

 

                  Table 4.14. Read-across based predictions for four species. 

Optimized settings Metrics Ygk (Test) 

Bobwhite quail 

Ygk (Test) 

σ = 0.25 

γ = 0.25 

No. of similar compounds 

=10 

Q2
F1 0.690 

Q2
F2 0.690 

RMSEP 0.279 

MAE 0.179 

Japanese quail 

Optimized settings Metrics Ylk (Test) 

σ = 0.25 

γ = 0.25 

No. of similar compounds 

=10 

Q2
F1 0.707 

Q2
F2 0.698 

RMSEP 0.394 

MAE 0.307 
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Figure 4.20. Scatter plots of developed models. 

Several classification-based metrics have been computed with the PLS-based QSTR-read 

across models for all (BQ, and JQ) the avian species and reported in the following Table 4.15 

Good sensitivity, specificity, and accuracy values indicate the good classification ability of the 

model. The computed values of the Matthews correlation coefficient [49] indicate an 

acceptable prediction and an agreement between observed and predicted classification for all 

the developed models against avian species. 
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Table 4.15. Statistics of the classification-based QSTR models. 

 

4.3.1. Regression coefficient plot 

                  The descriptor’s positive/negative contribution towards toxicity is provided via a regression 

coefficient plot. In this investigation, the descriptors F02[C-P], MW and F09[S-F]) contributed 

positively while the descriptors B09[C-P], F03[O-P], and T(P..Cl) contributed negatively 

towards toxicity of pesticides in case, of BQ. In JQ, the descriptors which contributed positively 

toward the toxicity are B01[O-P], B05[N-P], nbridgehead and X2A, whereas the descriptors 

H-048 and T(O..Cl) contributed negatively towards the toxicity. 

4.3.2. Variable importance plot (VIP) 

The relative importance of model descriptors is illustrated with VIP [51]. Descriptors having 

the highest and lowest impact on avian species can be recognized from these plots. The 

significance of the variable is higher the VIP score is greater than 1. In VIP plot, the descriptors 

are presented concerning their significance (higher contribution to lower contribution) and their 

importance which is in the following order: F02[C-P], T(P..Cl), MW, B09[C-P], F03 [O-P], 

F09[S-F] (in case of BQ), B01[O-P], B05[N-P], X2A, nBridgeHead, H-048, T(O..Cl) (in case 

of JQ). 

4.3.3. Loading plot 

The loading plot shows how the independent variables (descriptors) are related to the response 

variable. The first two components were used to create the loading plot. A descriptor is assumed 

to have a stronger effect on response value if it is located far from the origin of the plot. Based 

on the loading plot; it is interpreted that the X-variables F02[C-P] and MW have more influence 

on the Y-variable as traced from the proximity with the response variable and the presence of 

Sl 

no. 

LDA-

QSTR 

MODEL

S 

AUC

-ROC 

SENSITIVIT

Y 

ACCURAC

Y 

PRECISION F-

MEASUR

E 

MCC 

1 BQ  

(train) 

0.80 54.54 83.33 88.00 67.35 0.59 

BQ 

 (test) 

0.83 52.17 85.36 92.30 66.67 0.62 

2 JQ  

(train) 

0.82 62.50 80.76 86.95 72.73 0.60 

JQ  

(test) 

0.80 75.00 84.84 81.81 78.26 0.66 
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these features elevated pesticide toxicity towards BQ. Similarly, B01[O-P] are the most 

influential descriptors in the case of JQ. 

4.3.4. Mechanistic interpretation of PLS models 

Table 4.16. and Figures 4.21.-4.22. provide a detailed account of the model descriptors 

followed by mechanistic interpretations important to identify major structural and 

physicochemical features. 

Table 4.16. Mechanistic analysis of model descriptors of all species. 

S.no Descriptor Type Function Contribution 

BQ oral pLC50 

1 F02[C-P] 

 

2D Atom pair Frequency of carbon and 

phosphorus atoms at topological 

distance 2 

+ve 

Mechanistic introspection 

Generally, the phosphate group is toxic. The presence of more phosphate groups in a 

molecule tends to increase its toxicity as evidenced in compound 442. On the other hand, 

the presence of less number of these fragments in a compound may result in low toxicity 

values, as seen in compound 501 (depicted in Figure. 4.21). 

2 MW     

 

Constitutional 

descriptor 

Molecular weight +ve 

Mechanistic introspection 

This descriptor is directly related to the molecular size and bulkiness of molecules. It may 

influence diffusion in biological membranes and fluid media. So the drug may easily cross 

the biological membrane of species and retain in the body of reference species for a long 

time, which ultimately enhances the toxicity as demonstrated in compound 381 and vice 

versa in compound 239 (given in Figure. 4.21). 

3 F09[S-F] 2D Atom pair 

 

Frequency of sulfur and fluorine 

atoms at topological distance 9 

+ve 
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Mechanistic introspection 

Lipophilic substances have a greater susceptibility to accumulation within the cells, 

resulting in a higher pesticide concentration inside the organism, which ultimately leads 

to enhanced toxic effects. The presence of two highly electronegative atoms (fluorine and 

sulfur) as well as a long carbon chain (lipophilicity) in a compound tend to make it more 

reactive and potentially more toxic as shown in compound 23 and oppositely occurs in 

compound 523 (shown in Figure. 4.21). 

4 B09[C-P] 

 

2D Atom pair Presence/absence of carbon and 

phosphorus atoms at topological 

distance 9 

-ve 

Mechanistic introspection 

The negative regression coefficient of this descriptor indicates that the presence of carbon 

and phosphorus atoms at the topological distance 9 may decrease the pesticide’s toxicity 

towards avian species as shown in compound 296 while the absence of this fragment in a 

chemical may have higher toxicity values as shown in the case of compound 11 (described 

in Figure. 4.21). 

5 F03[O-P] 

 

2D Atom pair Frequency of oxygen and 

phosphorus atoms at topological 

distance 3 

-ve 

Mechanistic introspection 

The negative regression coefficient of this descriptor indicates that it inversely correlated 

with the pesticide’s toxicity towards avian species. Thus, the presence of this fragment 

reduces the compound toxicity as demonstrated in compound 487 and the absence of this 

fragment enhances the toxicity as represented in compound 52 (given in Figure. 4.21). 

6 T(P..Cl) 

 

2D Atom pair Sum of topological distances 

between P..Cl 

-ve 

Mechanistic introspection 

The two-dimensional atom pair descriptor, T(P⋯Cl) accounts for the topological distances 

between phosphorus and chlorine atoms. Reduction of inductivity in chlorine substituents 

causes a decrease in electron density for the relevant compounds. Therefore, the incidence 

of the P–Cl bond in aromatic chemicals reduces the electron density of the aromatic ring, 

thus, electron-donor-acceptor interactions cannot happen easily between pesticides and 

the reference species. This descriptor has a negative regression coefficient, indicating that 

the presence of this fragment will result in a decrease in pesticide toxicity profile, as 
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exemplified by compound 243, while it would have the opposite effect when present, as 

proven by compound 441 (provided in Figure. 4.21). 

JQ oral pLC50 

1 B01[O-P] 

 

2D Atom pair Presence/absence of O – P at 

topological distance 1 

+ve 

Mechanistic introspection 

The presence of two electronegative atoms (O and P) in a compound makes it more 

electronegative which leads to oxidative stress and the death of the reference species. This 

phenomenon is demonstrated in compound 81 and inversely occurs in compound 113 

(shown in Figure. 4.22). 

2 X2A 

 

Connectivity 

indices  descriptor 

Average connectivity index of 

order 2 

-ve 

Mechanistic introspection 

X2A represents the degree of branching in molecules, which is inversely correlated with 

hydrophobic interaction as well as toxicity. Thus, the higher numerical value of this 

descriptor leads to a decrease in toxicity value as shown in compound 13 and vice versa 

occurs in compound 57 (given in Figure. 4.22). 

3 B05[N-P] 

 

2D Atom pair Incidence of N – P at topological 

distance 5 

+ve 

Mechanistic introspection 

The presence of two electronegative atoms (N and P) in a compound makes it more 

electronegative which leads to oxidative stress and the death of the reference species. This 

phenomenon is demonstrated in compound 88. On the other hand, the compound 

containing less number of this fragment may exhibit less toxicity as shown in compound 

66 (demonstrated in Figure. 4.22). 

4 H-048 

 

Atom-centered 

fragments 

H attached to 

C2(sp3)/C1(sp2)/C0(sp) 

-ve 

Mechanistic introspection 

H-048 has the potential to make compounds electronically conductive as well as 

hydrophilic. Hydrophilicity and toxicity are inversely related to each other. Thus the 

presence of a greater number of this descriptor in a molecule makes it less toxic as shown 

in compound 67. On the other side, the presence of less number of hydrophilic groups in 

a molecule leads to an increase the toxicity as shown in compound 11 (depicted in Figure. 

4.22). 

5 T(O..Cl) 

 

2D Atom pair Sum of topological distances 

between O..Cl 

-ve 
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Mechanistic introspection 

The negative regression coefficient of this descriptor indicates that it is inversely 

correlated with the pesticide's toxicity towards avian species thus the presence of more of 

this fragment makes the compound less toxic as shown in compound 33 and conversely 

occurs in compound 84 (depicted in Figure. 4.22). 

6 nBridgeHead Ring descriptors Number of bridgehead atoms +ve 

Mechanistic introspection 

Usually, bridgehead atoms have a complex structure as well as toxic which is 

demonstrated in compound 19. Conversely, the absence of bridgehead atoms makes the 

compound less toxic as shown in compound 110 (demonstrated in Figure. 4.22). 

 

     Figure 4.21. Positive and negative contribution of model descriptors towards .
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Figure 4.22. Positive and negative contribution of model descriptors towards JQ. 

 

4.3.5. Pesticide Properties DataBase screening 

Pesticide Properties DataBase was screened through the developed models with the help of the 

software “PRI Tool_PLSversion” (available from http://teqip.jdvu.ac.in/QSAR Tools/) using the 

developed PLS models. The categorization threshold (mean value of the training set compound) 

for avian toxicity against BQ; JQ; ≥ 1.883; 2.236; was applied for prioritization purposes. From 

the prediction, it was seen that maximum compounds are within the domain of applicability and 

show prediction quality as “good”. The compounds were ranked in decreasing order of predicted 

toxicity for each avian species. The top 20 and least 20 toxic pesticides for all four avian species 

from the PPDB database are provided in Table. 4.17. Further validation of the predicted toxicity 

of the selected pesticides revealed that apart from fluoroacetamide and sodium 

monofluoroacetate, all the predicted toxicity corroborated with the previous experimental 

findings, indicating the practical applicability of the developed models.  

Table. 4.17. Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase 

(PPDB). 

Sl. no. Pesticide Safety and 

Hazards 

Sources 

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Imicyafos Acute toxic, 

Irritant. 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/18772487#section=Safety-

and-Hazards&fullscreen=true 

http://teqip.jdvu.ac.in/QSAR%20Tools/
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true


Chapter 4 Result and discussion 

discussiond 

ddddddddddddiscussi

on 

Page 115 

 

 

2 Pirimiphos-ethyl Acute toxic, 

Environmental 

Hazard. 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/31957#section=Safety-and-

Hazards&fullscreen=true 

3 Quinothion Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/89714#section=Toxicity&ful

lscreen=true 

4 Pirimiphos-methyl Irritant, Health 

hazard, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/34526#section=Safety-and-

Hazards&fullscreen=true 

5 Etrimfos Irritant, 

Environmental 

Hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/37995#section=Safety-and-

Hazards&fullscreen=true 

6 Buminafos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/39966#section=Toxicity&ful

lscreen=true 

7 Diazinon Irritant, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/3017#section=Safety-and-

Hazards&fullscreen=true 

8 Quintiofos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/72069#section=Toxicity&ful

lscreen=true 

9 Phoxim Irritant, Health 

hazard, and 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/9570290#section=Safety-

and-Hazards&fullscreen=true 

10 Inezin Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/30772#section=Toxicity&ful

lscreen=true 

11 Dufulin Oxidative 

stress inducer 

Y Yu et al. [67] 

12 Chlorphoxim Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/5360461#section=Safety-

and-Hazards&fullscreen=true 

13 Pyridaphenthion Irritant https://pubchem.ncbi.nlm.nih.gov/co

mpound/8381#section=Safety-and-

Hazards&fullscreen=true 

14 Triazophos Acute toxic, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/32184#section=Safety-and-

Hazards&fullscreen=true 

15 Isoxathion Acute toxic, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/29307#section=Safety-and-

Hazards&fullscreen=true 

16 Naftalofos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co

mpound/15148#section=Safety-and-

Hazards&fullscreen=true 

https://pubchem.ncbi.nlm.nih.gov/compound/31957#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/31957#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/31957#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/89714#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/89714#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/89714#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/34526#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/34526#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/34526#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37995#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37995#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37995#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/39966#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/39966#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/39966#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/3017#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/72069#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/72069#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/72069#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9570290#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9570290#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/9570290#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/30772#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/30772#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/30772#section=Toxicity&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/5360461#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/5360461#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/5360461#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/8381#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/8381#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/8381#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/32184#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/32184#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/32184#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/29307#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/29307#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/29307#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
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17 Quinalphos Acute toxic, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/26124#section=Safety-and-

Hazards&fullscreen=true 

18 Butamifos Irritant, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/37419#section=Safety-and-

Hazards&fullscreen=true 

19 Sulprofos Acute toxic, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/37125#section=Safety-and-

Hazards&fullscreen=true 

20 Edifenphos Acute toxic, 

Environmental 

hazard 

https://pubchem.ncbi.nlm.nih.gov/co

mpound/28292#section=Safety-and-

Hazards&fullscreen=true 

 

Sl. no. Pesticide Safety and 

Hazards 

Sources 

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 

1 Ferbam non-toxic https://www3.epa.gov/pesticides/chem_s

earch/reg_actions/reregistration/fs_PC-

034801_01-Sep-05.pdf 

2 Hexylene glycol less toxic https://hpvchemicals.oecd.org/ui/handler

.axd?id=3c2a8190-8500-467c-af27-

a636e6636c38 

3 Bisthiosemi moderate 

toxic 

https://www.drugfuture.com/toxic/dir/50

61.html 

4 Choline chloride less toxic http://sitem.herts.ac.uk/aeru/iupac/Repor

ts/161.htm 

5 Glutaraldehyde less toxic https://archive.epa.gov/pesticides/reregis

tration/web/pdf/glutaraldehyde-red.pdf 

6 Fumaric acid less toxic https://www.sciencedirect.com/science/a

rticle/pii/S0095955315310854 

7 Lime sulphur less  toxic https://www.ams.usda.gov/sites/default/f

iles/media/Lime%20Sulfur%20Evaluati

on%20TR.pdf 

8 Methyl isobutyl ketone less toxic https://www.epa.gov/sites/default/files/2

016-09/documents/methyl-isobutyl-

ketone.pdf 

9 Sodium 

tetrathiocarbonate 

moderate 

toxic 

https://www.sciencedirect.com/topics/ag

ricultural-and-biological-

sciences/thiocarbonate 

10 1,2-dichloropropane less toxic https://wedocs.unep.org/bitstream/handl

e/20.500.11822/29625/HSG76.pdf?sequ

ence=1&isAllowed=y 

https://pubchem.ncbi.nlm.nih.gov/compound/26124#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/26124#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/26124#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37419#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37419#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37419#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37125#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37125#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/37125#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/28292#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/28292#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/28292#section=Safety-and-Hazards&fullscreen=true
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-034801_01-Sep-05.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-034801_01-Sep-05.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-034801_01-Sep-05.pdf
https://hpvchemicals.oecd.org/ui/handler.axd?id=3c2a8190-8500-467c-af27-a636e6636c38
https://hpvchemicals.oecd.org/ui/handler.axd?id=3c2a8190-8500-467c-af27-a636e6636c38
https://hpvchemicals.oecd.org/ui/handler.axd?id=3c2a8190-8500-467c-af27-a636e6636c38
https://www.drugfuture.com/toxic/dir/5061.html
https://www.drugfuture.com/toxic/dir/5061.html
http://sitem.herts.ac.uk/aeru/iupac/Reports/161.htm
http://sitem.herts.ac.uk/aeru/iupac/Reports/161.htm
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11 Metam less toxic 

 

https://archive.epa.gov/pesticides/chemi

calsearch/chemical/foia/web/pdf/039003

/039003-028.pdf 

12 Methylene 

bisthiocyanate 

less toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re

ports/2905.htm 

13 Bentonite Nontoxic https://digitalfire.com/hazard/bentonite+

toxicity#:~:text=Bentonite%20is%20a%

20ground%20naturally,flush%20to%20r

emove%20the%20particles. 

14 Butanethiol moderate 

toxic 

https://pubchem.ncbi.nlm.nih.gov/comp

ound/1-Butanethiol 

15 Sodium 

monochloroacetate 

moderate 

toxic 

https://tera.org/OARS/Sodium%20Chlor

oacetate%20(3926-62-

3)%20WEEL%202016%20public%20co

mment.pdf 

16 Fluoroacetamide high toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re

ports/338.htm 

17 Sodium 

monofluoroacetate 

high toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re

ports/3160.htm 

18 Propylene glycol less toxic https://downloads.regulations.gov/EPA-

HQ-OPP-2013-0218-0007/content.pdf 

19 Peroxyacetic acid moderate 

toxic 

https://www.federalregister.gov/docume

nts/2000/12/01/00-30679/peroxyacetic-

acid-exemption-from-the-requirement-

of-a-

tolerance#:~:text=Because%20of%20the

%20low%20toxicity,not%20pose%20a

%20dietary%20risk 

20 2-hydrazinoethanol moderate 

toxic 

http://sitem.herts.ac.uk/aeru/ppdb/en/Re

ports/2803.htm 
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5. Conclusions 

In the present work, we have utilized different 2D descriptors including both the ETA and non – ETA 

indices to develop our models. We have developed QSTR and q-RASTR models in our study to 

investigate the structural characteristics that cause acute oral toxicity in multiple avian species and 

interpret the descriptors mechanistically to determine how these structural characteristics influence 

acute oral toxicity in birds. The ecotoxicity of pesticides was regulated by various physicochemical 

and chemical properties such as lipophilicity, electronegativity, polarity, steric hindrance, and 

branching. The model developed in our study was rigorously validated by using both internal (using 

different internal validation metrics) and external (using different external validation metrics) 

validation strategies. 

5.1. Study 1 

This work reports the first PLS q-RASTR model for acute toxicity in chicken, the widely 

consumed source of animal protein. The study's importance lies in the direct link between 

chemical toxicity in chicken, human intake, and environmental damage. In this study, we can be 

concluded that the present research is significant and novel because of the following reasons: 

I. By utilizing mathematical models, we got a comprehensive knowledge of how certain 

chemicals impact chicken species on a toxicological level. This knowledge is crucial in 

developing effective measures to protect the health of chicken species as well as human 

beings. 

II. From this study, it was found that lipophilicity and electronegativity are responsible for 

the toxicity of pesticides towards chickens. On the other hand, polarity, hydrophilicity, 

and large numerical value of SE (LK) & SD similarity (GK) descriptors will reduce the 

toxicity of pesticides towards chickens. 

III. The ability of models to identify specific features contributing to chicken toxicity will aid 

in creating safer, environmentally friendly chemicals. 

IV. The developed q-RASTR model is robust and practical for toxicity & risk assessment.  

V. The closeness of the acute toxicity prediction by the q-RASTR model with real-world 

data demonstrates its feasibility for screening acute toxicants in chickens.  

VI. Models can be used for data-gap filling as well as predicting the toxicity of chemicals 

even before their synthesis. 

5.2. Study 2 

The current work demonstrates the suitability of amalgamation of RA and QSTR i.e. q-RASTR 

based model for efficient and reliable ecotoxicological risk assessment of diverse pesticides in 

avian species. The robustness, predictive ability, and reproducibility of the model were 
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meticulously evaluated by globally accepted internal and external validation metrics. As a critical 

step in ensuring the real-world applicability, the PLS-based q-RASTR model was deployed for 

reliable prediction of HD5 values of the pesticides from the Pesticide Properties Database 

(PPDB), within the applicability domain. The high accuracy of the obtained predictions in 

comparison to the experimental toxicity data, demonstrated the true predictive capability of the 

q-RASTR model.  Although LD50 is crucial for general comparisons, HD5 provides a more 

cautious and safety-oriented approach, making it valuable for risk assessment and decision-

making in developing effective measures to safeguard the health of avian species. Through the 

use of mathematical models, we have gained a comprehensive understanding of how certain 

chemicals affect avian species on a toxicological level. We found that the presence of high 

coefficient and variation of the similarity values of the close source compounds, product of the 

gm, and Avg.Sim levels, number of Pyrrolidines, and increases in branching influence the toxicity 

towards avian species. Conversely, the high distribution among the close source compounds, 

Presence/absence of C – C bonds at topological distance 7, and degree of saturation decrease the 

toxicity toward avian species. This approach offers a cost-effective and ethical alternative to 

traditional in vivo testing, aiding regulatory bodies, researchers, and industries in assessing the 

potential ecological risks associated with pesticide use. 

5.3. Study 3 

In summary, this study employs a range of chemometric tools to predict pesticide toxicity for 

four different avian species. The research focuses on creating robust and easily interpretable 

QSTR models based on OECD principles. The study's statistical validation parameters 

consistently demonstrate the strength and reliability of the constructed PLS-based QSTR-read 

across models. External validation metrics, employing the read-across algorithm, show slightly 

superior performance in predicting toxicity, except for the mallard duck dataset. Additionally, we 

have developed classification models and employed two Machine Learning algorithms SVM and 

RF to evaluate their effectiveness in constructing models and making predictions. The PLS-based 

QSTR models with read-across predictions produce better statistical results (such as the lowest 

prediction error for the test set compounds, as indicated by the MAEtest value) as compared to 

ML-based models against all of the avian species. 

Furthermore, this research develops regression-based models, surpassing previous studies in 

terms of the dataset's size, the variety of avian species examined, domain of applicability features 

responsible for toxicity, model quality, algorithm used as well as the endpoint (LC50). The 

findings highlight the significance of electronegativity, molecular weight, imide count, 
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lipophilicity, and steric effects in avian toxicity. Additional findings (descriptors) such as C-012, 

B07[O-P], Br-094, B05[C-P], F04[C-Cl], nRCONHR, nN(CO)2, and B05[P-Cl] were observed in 

this study which is related to pesticides toxicity towards avian species. Notably, the presence of 

C-P fragments at specific topological distances and electronegative groups intensifies toxicity, 

while features like branching and hydrogen bond acceptor characteristics reduce it. 

The validation of the predicted toxicity of the screened compounds by experimental data 

demonstrated the reliability and feasibility of applying the developed models for screening 

pesticides, offering valuable support to researchers striving to design eco-friendly and safe 

chemical pesticides. They effectively bridge gaps in toxicity data and simplify the evaluation of 

novel pesticides for various bird species. Moreover, these models significantly reduce the time, 

resources, costs, and the need for animal testing, aligning with the principles of reduction, 

refinement, and replacement (RRR) in research practices. 

This thesis presents a comprehensive investigation into the acute toxicity of pesticides in avian 

species, utilizing a variety of 2D descriptors, including ETA and non-ETA indices, to develop 

QSTR and q-RASTR models. These models enable a detailed understanding of the structural 

characteristics that influence toxicity, providing significant insights into the ecotoxicity of 

pesticides regulated by properties such as lipophilicity, electronegativity, polarity, steric 

hindrance, and branching. This thesis advances the field of ecotoxicology by providing novel, 

validated models that offer accurate predictions of pesticide toxicity in avian species. These 

models not only enhance our understanding of toxicological mechanisms but also contribute to 

the development of safer pesticides and more ethical research practices. The integration of 

chemometric tools and rigorous validation strategies ensures the reliability and applicability of 

these models in real-world scenarios, ultimately supporting the goal of protecting both avian 

species and human health from the adverse effects of pesticide exposure.
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Chemometrics-driven prediction and prioritization of diverse pesticides on 
chickens for addressing hazardous effects on public health 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• This work reports the first PLS q-RASTR 
model for acute toxicity in chicken, the 
widely consumed source of animal 
protein. 

• The developed q-RASTR model is robust 
and practical for toxicity & risk 
assessment. 

• The models identify the essential fea
tures of chemicals associated with 
toxicity against chicken. 

• The compliance between the predicted 
acute toxicity by the PLS q-RASTR 
model with real-world data demon
strates its feasibility for screening acute 
toxicants in chickens.  
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A B S T R A C T   

The extensive use of various pesticides in the agriculture field badly affects both chickens and humans, primarily 
through residues in food products and environmental exposure. This study offers the first quantitative structure- 
toxicity relationship (QSTR) and quantitative read-across-structure toxicity relationship (q-RASTR) models 
encompassing the LOEL and NOEL endpoints for acute toxicity in chicken, a widely consumed protein. The 
study’s significance lies in the direct link between chemical toxicity in chicken, human intake, and environ
mental damage. Both the QSTR and the similarity-based read-across algorithms are applied concurrently to 
improve the predictability of the models. The q-RASTR models were generated by combining read-across derived 
similarity and error-based parameters, alongside structural and physicochemical descriptors. Machine Learning 
approaches (SVM and RR) were also employed with the optimization of relevant hyperparameters based on the 
cross-validation approach, and the final test set prediction results were compared. The PLS-based q-RASTR 
models for NOEL and LOEL endpoints showed good statistical performance, as traced from the external vali
dation metrics Q2

F1: 0.762–0.844; Q2
F2: 0.759–0.831 and MAEtest: 0.195–0.214. The developed models were 

further used to screen the Pesticide Properties DataBase (PPDB) for potential toxicants in chickens. Thus, 
established models can address eco-toxicological data gaps and development of novel and safe eco-friendly 
pesticides.  
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1. Introduction 

The most commonly consumed meat in the world is broiler chicken 
[1]. To fulfill the demand for meat, different types of bird diets (espe
cially supplements) as well as other medicines are used for fast and 
healthy growth of chickens. These food supplements and medicines 
contain diverse types of pesticides and other chemicals. Pesticides are 
substances that are used to control or eliminate pests, such as insects, 
weeds, and fungi, in agriculture. While they can be effective in pro
tecting crops, have the potential to impact both chickens and humans as 
well, primarily through residues in food products and environmental 
exposure [2,3]. One of the main concerns for humans is the presence of 
pesticide residues in food. If chickens consume feed containing pesti
cides, residues can be transferred to eggs and meat. Humans can then 
ingest these residues when consuming poultry products. Thus, 
consuming the meats of these chickens will affect the health of human 
beings too. There have been several concerns raised about the impact of 
pesticides on birds as well as on human beings. Such concerns arise due 
to the possible negative unintended impacts of pesticides on a variety of 
birds or the direct injurious effects of pesticides on human health [4]. 
Regulatory bodies have, therefore, underscored the need to carry out 
toxicity testing on current and new chemical pesticides to assess their 
impact on the environment [5]. Exposure to pesticides is severe and 
dangerous and can lead to death. While there are established techniques 
for evaluating avian toxicity through both in vivo and in vitro approaches, 
they are costly, time-consuming, and immoral [5]. To investigate the 
inherent properties of chemicals concerning toxicological prediction, 
governing bodies such as the Environmental Protection Agency (EPA), 
Registration, Evaluation, Authorization and Restriction of Chemicals 
(REACH), European Chemicals Bureau (ECB), and European Food Safety 
Authority (EFSA) advise using computational tools such as read-across 
and QSAR [6]. Among the various in-silico techniques, QSAR is widely 
employed to predict the toxicity of test chemicals. By using this tech
nique, a scientific model is developed from a compound series having 
experimentally derived endpoint values. Due to the reproducibility, 
simplicity, and transferability of the model, this technique is used 
widely. Current chemical risk assessment relies on similarity-driven 
methods like Read-Across, avoiding the need for mathematical models 
[7]. This approach assumes that compounds with similar structures have 
comparable biological activities, making emerging similarity-driven 
systems more suitable for consistent compound prediction. Often, 
Read-Across predicts probe compounds more reliably than QSAR 
models; however, one of the main limitations of Read-Across is that it 
lacks the ability to interpret essential features [8]. To overcome this 
problem, a novel approach, Read-Across Structure-Activity Relationship 
(RASAR), was introduced to combine the benefits of QSAR and 
Read-Across algorithms, which often results in better predictive ability 
and reduced mean absolute error (MAE) [9]. They utilized 
classification-based models that produced predictions on a graded scale. 
Banerjee and Roy [10] introduced q-RASAR modeling with descriptors 
based on similarity and error measures. The q-RASAR methodology 
utilizes similarity and error-based measures to produce simple, conve
nient, interpretable, and reproducible models with better predictivity. 
q-RASAR models can be developed using a variety of statistical tech
niques like MLR, PLS, etc. apart from sophisticated machine learning 
(ML) techniques. Machine learning is a growing technology that uses 
various algorithms for building models and making predictions using 
data. Support vector machines (SVM), artificial neural networks (ANN), 
and others are commonly used machine learning algorithms for 
numerous experimental studies [11,12]. There are various journals 
[13–15] present related to the in-silico prediction of acute toxicity of 
different species but concerning chicken, there are no in-silico reports 
available to date. 

In this work, we investigated the toxicity of several pesticides on 
chickens and developed a logical and trustworthy method for assessing 
ecotoxicological risk. Based on the OECD rules, we have developed q- 

RASTR models to predict pesticide ecotoxicity on bird species. RASTR 
combines the read-across and QSTR approaches to improve predict
ability. The pLOEL and pNOEL (the negative logarithm of Lowest 
Observed Effect Level and No Observed Effect Level values respectively) 
values have been used as endpoints in this study. NOEL is defined as the 
highest dose of the toxicant that does not cause any toxicity or harm and 
LOEL stands for the lowest concentration of a substance that can cause 
an effect under specific exposure conditions. To successfully create the 
models, we used PLS for the initial model development. Further, RASAR 
descriptors were estimated using the optimal hyperparameters and 
incorporated to improve the external predictivity of the model. Addi
tionally, support vector machine and Ridge regression machine learning 
(ML) approaches were employed with the optimization of hyper
parameters using cross-validation. The final test set predictions were 
then compared. After evaluating the test set predictions and interpret
ability, we have selected the PLS-based q-RASTR model as the final 
model. Using, globally accepted parameters, the robustness, reproduc
ibility, and predictivity of the PLS-based q-RASTR models were thor
oughly validated. It can be confidently affirmed that the models are 
reliable and accurate. The developed model was utilized to screen the 
Pesticide Properties Database (PPDB) to identify potential avian toxi
cants and promote the use of safer chemicals. The true predictive ability 
of the q-RASTR model was established by revalidating the real-world 
toxicity profiles of the most and least toxic screened compounds from 
the Pesticide Properties Database (PPDB). 

2. Methods and materials 

2.1. Collection and curation of toxicity data of diverse pesticides 

The required toxicity data of diverse pesticides against chicken 
(Gallus gallus) were retrieved from the ECOTOX repository (https://cf 
pub.epa.gov/ecotox/). The collected experimental toxicity data was 
expressed as LOEL and NOEL in micromolar (μM) concentration, which 
were transformed into molar concentrations and then their negative 
logarithmic equivalents (pLOEL and pNOEL) to reduce the data range. 
After excluding any outlier value(s), all available values for a particular 
chemical were averaged to generate a single value. We only included 
values that were numerically close to each other when calculating the 
average. After curating the primary data, we selected 43 pLOEL and 56 
pNOEL compounds for modeling. 

2.2. Descriptor calculation 

A single .sdf file of all the compounds was compiled which is 
essential to Alvadesc software for descriptor calculation. AlvaDesc 
software [16] was used to evaluate 2400 descriptors based on structural 
and physicochemical parameters. We removed the unnecessary de
scriptors columns using DataPreTreatmentGUI 1.2 software [17]. 

2.3. Dataset division and descriptor selection 

Division of dataset is a crucial component of statistical modeling, 
particularly in the context of QSARs. The modeling data is divided into 
two parts, the training set for model development and the test set to 
validate the developed model. In this present study, different dataset 
division techniques such as the clustering technique, Euclidean- 
distance-based method, Kennard-stone-based method, activity 
property-sorted, and random-division methods were employed for 
dataset division into training and test sets. Among these techniques, the 
best result was obtained from the Kennard stone division method in case 
of the pLOEL endpoint and random selection in case of the pNOEL 
endpoint [17,18]. The training/test sets compounds for pLOEL endpoint 
and pNOEL endpoint are 30/13 and 44/12 respectively. The divided 
training and test sets were also pre-treated using the tool data
PreTreatmentTrainTest1.0 (available from https://teqip.jdvu.ac.in/QS 
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AR_Tools/). These final pre-treated training and test sets were used for 
further analysis. Preliminary multiple linear regression models were 
generated for two datasets using MINITAB software. After that, PLS 
(Partial Least Square) method was used to generate the final models for 
both datasets using the software PLS_Single Y_version 1.0 [17]. 

2.4. Read – Across and calculation of the RASTR descriptor 

Optimizing hyperparameters (similarity-based algorithm; σ, γ, and 
number of close source compounds) is crucial for read-across prediction 
[19]. The descriptor involved in the QSTR model was used to create 
sub-train and sub-test sets from the training data. We have chosen a 
Gaussian kernel-driven similarity, with σ = 0.75; γ = 0.75, and 9 close 
training compounds for pLOEL data points & Laplacian kernel-based 
similarity, with σ = 0.25 and γ = 0.25, and 4 close training com
pounds for pNOEL data points. During optimization, the hyper
parameters were selected based on MAE-based (95%) criteria and 
external metrics (Q2

F1 and Q2
F2). To perform q-RASTR modeling, simi

larity, and error-based RASTR descriptors were calculated for both 
training and test compounds with "RASAR Descriptor Calculator v2.0 
tool using the optimized hyperparameters [17,20]. 

2.5. q- RASTR feature selection and model development 

A total of 15 descriptors (Table S1 in supplementary information 2) 
were computed based on three similarity-based approaches (Euclidean 
Distance-based, Gaussian Kernel similarity-based, and Laplacian Kernel 
similarity-based) and a given set of source compounds for the individual 
training set and the test set [21]. The calculated RASTR descriptors were 
integrated with the model descriptors and the combined pool was sub
jected to best subset selection using BestSubsetSelectionModified_v2.1 
tool [17] for model development. The final PLS-based q-RASTR model 
was developed with the best features using the PLS_Single Y_version 1.0 
software. 

2.6. Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have 
employed two different state–of–the–art ML algorithms namely support 
vector machine (SVM) and Ridge Regression (RR) using the Orange data 
mining tool [22]. The hyperparameters were adjusted to tune the model 
for optimal performance. The prediction qualities of the ML models were 
evaluated in terms of Q2

F1, Q2
F2, and MAEtest values. 

2.7. Statistical validation metrics and Y-randomization 

Validation metrics are the key parameters for the recognition of any 
predictive model. For internal validation (for the training set), we 
evaluated the model using various internationally accepted internal 
validation metrics including the determination coefficient (R2) and 
leave-one-out cross-validated Q2 (Q2

Loo). R2 and Q2
Loo are the measures of 

goodness-of-fit, and robustness, respectively. In machine learning (SVM, 
RR) approaches, the root means squared error of calibration (RMSEC) 
metric was also calculated by the Orange data mining tool. A lower 
RMSEc indicates a better model fit, showing that the model’s predictions 
are, on average, closer to the true values. For external validation (for the 
test set), we calculated various globally accepted external validation 
metrics such as R2

Pred or Q2
F1, Q2

F2, Q2
F3, MAE-based criteria, r2

m, Δrm
2
, and 

concordance correlation coefficient (CCC) [21]. External correlation 
coefficients such as Q2

F1, Q2
F2, and Q2

F3 are well-known prediction in
dicators. In usual practice, the optimal value of these three measures 
(R2

Pred or Q2
F1, Q2

F2, Q2
F3) for model selection should be more than 0.5 [21, 

22]. Error measures such as mean absolute error (MAEtest) are frequently 
used to assess the accuracy of projected outputs, and they should be low 
for a strong model. The CCC measures both precision and accuracy, 

detecting the distance of the observations from the fitting line and the 
degree of deviation of the regression line from that passing through the 
origin, respectively. The concordance correlation coefficient (CCC) is an 
external validation measure proposed by Gramatica et.al. [9]. We have 
calculated the external coefficients (R2

Pred or Q2
F1, Q2

F2, Q2
F3, and CCC) 

using “PLS_Single Y” v1.0 software (available from: http://teqip.jdvu. 
ac.in/QSAR_Tools/). External validation is undertaken to ensure the 
predictability of the created model, and only the test set chemicals are 
employed for this purpose. Aside from traditional measures, rm

2 metrics 
(r2

m(test), Δrm
2
test) are calculated for external validation. When the r2

m(test), 
values are quite good, the Δrm

2 values may serve as an additional metric 
for judging the quality of predictions [18]. The acceptability of the 
model was also checked using an external validation parameter pro
posed by Golbraikh and Tropsha [23,24]. Based on Golbraikh and 
Tropsha criteria, the model will be acceptable if: 

1. Q2
LOO (train) > 0.5. 

2. R2(test) > 0.6. 
3. [(r2-r0

2)/ r2] < 0.1 or [(r2-r′02)/ r2]<0.1 
4. 1.15 > k > 0.85 or 1.15 > k′> 0.85. 
Y-randomization study was performed using "SIMCA-P" software to 

investigate the probability of chance occurrence in the final model. 
Herein, the response data are altered, without scrambling the de
scriptors, for a total of 100 times. After shuffling the original model is 
refitted to compute the R2 and Q2 values, and the intercept values of R2 

< 0.3 and Q2 < 0.05 indicate no chance of correlation in a statistically 
significant model [24,25]. 

2.8. Screening of the Pesticide Properties DataBase (PPDB) 

We have collected 1903 chemical data from the Pesticide Properties 
DataBase (PPDB) which is accessible through the PPDB website (http:// 
sitem.herts.ac.uk/aeru/ppdb/). KNIME curation was carried out using a 
KNIME workflow to eliminate any duplicates, inorganic salts, and mix
tures [26]. As a result of the KNIME curation process, some compounds 
have been eliminated. After curating the dataset, the enduring 1694 
compounds were screened to verify model reliability. The descriptors of 
the molecules were calculated using the same procedure that was used in 
q-RASTR modeling as discussed earlier. The individual PLS-based 
q-RASTR models were used to make predictions, assisted by the PRI 
tool [17] which provided a reliable indication of the prediction’s ac
curacy. The tool assesses the reliability of predictions using AD and 
furnishes qualitative prediction indicators categorized as ’Good’, 
’Moderate’, and ’Bad. A detailed flow diagram of this study has been 
given in Fig. 1. 

2.9. Software used 

We have used different software’s in this research work namely: 
i.“AlvaDesc” software (available from https://www.alvascience. 

com/alvadesc/) was used for descriptor calculation. 
ii.“Best Subset Selection Modified” v2.1 (available from: http:// 

teqip.jdvu.ac.in/QSAR_Tools/) was used for model development. 
iii.“Dataset Division GUI” v1.2 (available from: http://teqip.jdvu.ac. 

in/QSAR_Tools/) was used to divide the dataset into training and test 
sets. 

iv. “Minitab” v14 (available from: https://www.minitab. 
com/en-us/) was used for model development. 

v. “PLS_Single Y” v1.0 (available from: http://teqip.jdvu.ac.in/QS 
AR_Tools/) was used to develop the PLS-based QSTR and q-RASTR 
models. 

vi. “Read-Across-v4.1″ (available from: http://teqip.jdvu.ac.in/QS 
AR_Tools/) was used for obtaining the optimized hyperparameters 
necessary for RASTR descriptor calculation. 

vii.“RASAR Descriptor Calculator” v2.0 (available from: https://sites 
.google.com/jadavpuruniversity.in/dtc-lab-software/home) was used 
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for RASTR descriptors calculation. 
viii. “Prediction Reliability Indicator” (available from: http://teqip. 

jdvu.ac.in/QSAR_Tools/) was used to evaluate the localization in AD 
of the test compounds to ascertain the reliability of prediction of final 
PLS-based q-RASTR model. 

ix. “SIMCA-P” (available from: https://www.sartorius.com/en/pro 
ducts/process-analytical-technology/data-analytics-software/mvda-so 
ftware/simca) was used for the randomization test. 

3. Results and discussion 

In this present study, we have developed QSTR and q-RASTR models 
for pLOEL and pNOEL endpoints using the PLS method and strictly 
obeying the OECD guidelines. We have additionally applied two 
different ML algorithms (SVM, RR) to check model performances. 

3.1. PLS-based QSTR and q-RASTR models 

The divided dataset is used to develop the QSTR and q-RASTR 
models for two endpoints (pLOEL and pNOEL) of chicken species. After 
the feature selection process, the PLS-based QSTR model was developed 
employing 3 and 5 descriptors with two and one latent variables for 
pLOEL (MODEL 1) and pNOEL (MODEL 2), respectively. 

3.1.1. PLS-based QSTR model for pLOEL and pNOEL endpoints 
Model 1 (pLOEL endpoint): 

pLOEL = 4.75827+ 0.50323 × NsOH − 0.191 × MaxsCH3 − 0.64324

× B01[C − O]

Model 2 (pNOEL endpoint): 

pNOEL = 5.08369+ 0.16353 × H − 050+ 0.35253 × NsssN − 0.62789

× B05[C − O] + 0.80035 × B05[O − O] − 0.8449 × B08[C − P]

After the development of the QSTR models, similarity and error- 
based RASTR descriptors were calculated for both training and test 
sets compounds of pLOEL and pNOEL endpoints models using "RASAR 
Descriptor Calculator v2.0 tool (https://sites.google.com/jadavpur 
university.in/dtc-lab-software/home) with the optimized 

hyperparameters. After that, we clubbed the RASTR descriptors and 
Alvadesc descriptors for the final q-RASTR model development [27]. 
Finally, PLS-based q-RASTR models were developed using 3 and 4 de
scriptors with one and two latent variables as shown in model 3 and 
model 4 respectively for pLOEL and pNOEL endpoint models, 

3.1.2. PLS-based q-RASTR model for pLOEL and pNOEL endpoints 
Model 3 (pLOEL endpoint): 

pLOEL = 5.1136 − 1.51275 × SD similarity(GK)+ 0.41951

× NsOH − 0.75444 × B01[C − O]

Model 4 (pNOEL endpoint): 

pNOEL = 5.78412 − 2.04509 × SE(LK)+ 1.18371 × B05[O − O] − 0.74259

× B02[C − O] + 0.03736 × T(N..S)

Each model has been rigorously validated following the OECD pro
tocols. The computed internal and external validation metrics along 
with the optimum number of latent variables have been shown in the 
following Table 1. The PLS-based q-RASTR models 3 and 4 show strong 
fit and predictability with uniform scattering observed along the line, 
going through the origin of Cartesian coordinates (Fig. 2). 

Here, we have seen that for both the datasets, the external validation 
metrics were significantly improved for the PLS-based q-RASTR models 
as compared to the PLS-based QSTR models, indicating the significance 
of the RASTR descriptors. We have also validated all the models (PLS- 
based QSTR and q-RASTR models for the pLOEL and pNOEL endpoints) 
using Golbraikh and Tropsha criteria and the results are given in 
Tables S2-S5 (Supplementary information 2). The results showed that 
the PLS-based q-RASTR models for both endpoints are acceptable based 
on the Golbraikh and Tropsha’s criteria [24]. Hence, we have general
ized that the PLS-based q-RASTR models are better as compared to the 
corresponding QSTR models. 

3.2. Results of ML-based q-RASTR model 

As previously stated, we used two different ML algorithms to eval
uate their effectiveness in model construction and prediction. Based on 

Fig. 1. Schematic workflow of q-RASTR model development.  

S. Das et al.                                                                                                                                                                                                                                      

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home


Journal of Hazardous Materials 471 (2024) 134326

5

the internal validation, v-SVM was the best-performing model toward 
the pLOEL endpoint, and Ridge regression was the best-performing 
model towards the pNOEL endpoint based on internal and external 
validation metrics. In terms of external validation metric, Q2

F3 [28], the 
ability to efficiently predict the response values for the test set com
pounds, the best-performing models were the PLS-based q-RASTR 
models. Furthermore, the PLS-based q-RASTR models produce the 
lowest prediction error for the test set compounds, as indicated by the 
MAEtest value [29]. Thus, to assess the overall performance of the 
models for both endpoints, the PLS-based q-RASTR models are superior 
than QSTR models. The results of ML models are presented in Table 2. 

3.3. Regression coefficient plot 

The plot describes descriptor’s positive/negative contribution to
wards the toxicity [30]. In this study, the descriptor NsOH contributed 
positively while the descriptors SD similarity (GK) and B01[C-O] 
contributed negatively towards the toxicity in case of Model 3. In case 
of Model 4, the descriptors B05[O-O], T(N.S) contributed positively 
while the descriptors SE(LK) and B02[C-O] contributed negatively to
wards the toxicity. All the relevant plots have been provided in 
Figs. S1-S2 in supplementary information 2. 

3.4. Variable importance plot (VIP) 

The respective descriptor contribution towards the model response is 
described by the variable importance plot, and the most and least 
important descriptors are recognized appropriately [31]. In this study, 
NsOH and B02[C-O] depicting electronegativity and hydrophilicity 
were identified as the most important descriptors for Model 3 and Model 
4 respectively as shown in Figs. S3-S4 in supplementary information 2. 

3.5. Loading plot 

The plot describes the correlation between the X and Y variables 
[32], illustrating the effect of various model descriptors. The first two 
components were used to create the loading plot. A descriptor is sup
posed to have a stronger effect on response value if it is situated far from 
the origin of the plot and near the modeled endpoint. All the relevant 
plots have been provided in Figs. S5-S6 in supplementary information 2. 

3.6. Applicability domain (AD) 

AD is the hypothetical region in chemical space specified by the 
respective model descriptors and responses where predictions may be 
made with confidence [33]. To obtain a reliable prediction, the test 

Table 1 
QSTR and q-RASTR model’s statistical quality.  

Validation Metrics QSTR model’s statistical 
quality 

PLS-based q-RASTR model’s 
statistical quality 

Model name Model 1 
(pLOEL) 

Model 2 
(pNOEL) 

Model 3 
(pLOEL) 

Model 4 
(pNOEL) 

No of LVs 2 1 1 2 
R2(train) 0.748 0.669 0.734 0.603 
Q2

LOO (train) 0.672 0.582 0.665 0.526 
Q2

F1 (test) 0.608 0.643 0.844 0.762 
Q2

F2 (test) 0.577 0.640 0.831 0.759 
Q2

F3 (test) 0.692 0.790 0.877 0.860 
MAEtest 0.309 0.225 0.214 0.195 
CCC 0.818 0.730 0.909 0.845 
r2
m(test)

0.637 0.415 0.740 0.560 

Δr2
m(test) 0.035 0.318 0.136 0.220 

MAE-based 
prediction 
quality 

MODERATE GOOD GOOD GOOD  

Fig. 2. Scatter plots of developed models.  

Table 2 
ML-based q-RASTR model’s statistical quality.  

Validation Metrics ML model’s statistical quality 

Model name SVM (pLOEL) SVM (pNOEL) RR 
(pLOEL) 

RR 
(pNOEL) 

R2
Loo (train) 0.831 0.695 0.776 0.758 

Q2
LOO (train) 0.746 0.585 0.746 0.604 

RMSEc (train) 0.245 0.245 0.283 0.218 
Q2

F1 (test) 0.742 0.718 0.725 0.653 
Q2

F2 (test) 0.721 0.715 0.703 0.650 
Q2

F3 (test) 0.797 0.835 0.784 0.796 
MAEtest (test) 0.273 0.169 0.300 0.216 
CCC 0.893 0.856 0.850 0.804 
r2
m(test)

0.725 0.659 0.626 0.541 

Δr2
m(test) 0.101 0.071 0.033 0.148 

Optimum 
hyperparameters 

v-SVM 
Regression 
cost-0.50 
Complexity 
bound-0.65 
Kernel- Linear 

v-SVM 
Regression 
cost-2.50 
Complexity 
bound-0.70 
Kernel-Linear 

Alpha- 
0.001 

Alpha- 
0.001  
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compounds must have the highest structural similarity to the training 
compounds. As a result, validating the applicability domain is a funda
mental prerequisite for every statistical model, as recommended by 
OECD principle 3 ("Validation of (Q)SAR Models - OECD," 2004). To 
comply with the OECD guidelines, an applicability domain analysis of 
the created PLS-based q-RASTR model was done with SIMCA-P software 
using the DModX technique at a 99% confidence level. 

DModX =

̅̅̅̅̅̅̅
SSEi
K− A

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SSE

(N− A− AO)(K− A)

√

For observation i, in a model with A component, K variables, and N 
observations, SSE is the 

squared sum of the residuals. A0 is 1 if the model was centered and 
0 otherwise. It is claimed that DModX is approximately F-distributed, so 
it can be used to check if an observation deviates significantly from a 
normal PLS model. The DModX (distance to model in X-space) plots for 
both the training and test sets have been showcased in Figs. S7-S10 in 
supplementary information 2 (shows the AD plots of the Model 3 and 
Model 4). In this study, all the compounds from the training set (given in 
Fig. S7 in supplementary information 2) and test set (given in Fig. S8 in 
supplementary information 2) for the pLOEL endpoint model (model 
M3) are inside the applicability domain (below the D-Critical line) 
which indicates the reliability of predictions by the model. In the case of 
the pNOEL endpoint model (model M4), compounds 28 and 33 of the 
training set (given in Fig. S9 in supplementary information 2) are 
outside the applicability domain (above the D-critical line) due to the 
structural dissimilarity. All the compounds from the test set (given in 

Fig. S9 in supplementary information 2) of the pNOEL endpoint (model 
M4) are within the applicability domain. 

3.7. Mechanistic interpretation 

The details of the descriptors obtained from the M3 (pLOEL 
endpoint) and M4 models (pNOEL endpoint), their contribution, 
description, and probable mechanistic interpretation (according to 
OECD principle 5) are provided in Table 3. 

3.7.1. Mechanistic interpretation of descriptors employed in Model M3 
(pLOEL) 

SD similarity (GK) is a RASTR descriptor that denotes the typical 
deviation of similarity levels among closely related compounds. It has a 
negative contribution to the toxicity endpoint. Higher standard devia
tion (SD) similarity shows that the distribution among the close source 
compounds is high thereby reducing prediction reliability as demon
strated in compound 30 and conversely shown in compound 3 (depicted 
in Fig. 3). 

The descriptor NsOH defines the number of atoms of type sOH in the 
compound and it contributes positively towards the toxicity endpoint. 
This fragment enhances the compound toxicity due to the presence of an 
electronegative atom (Oxygen) as demonstrated in compound 42 and 
the absence of this fragment decreases the toxicity as represented in 
compound 18 (shown in Fig. 3). 

The descriptor B01[C-O] is a 2D atom pair descriptor that shows the 
occurrence of C-O at topological distance 1 and gives negative contri
bution towards the endpoint. The presence of polar bond [C-O] increases 

Table 3 
Mechanistic analysis of modeled descriptors.  

S. 
NO 

Descriptor Type Description Contribution Mechanistic introspection 

CHICKEN - pLOEL 
1 SD similarity 

(GK) 
RASTR The typical deviation of similarity levels 

among closely related compounds 
(-)ve Higher standard deviation (SD) similarity shows that the distribution among 

the close source compounds is high thereby reducing prediction reliability as 
demonstrated in compound 30 and conversely shown in compound 3 (given 
in Fig. 3). 

2 NsOH Functional 
group counts 

Number of atoms of type sOH (+)ve This fragment enhances the compound toxicity due to the presence of an 
electronegative atom (Oxygen) as demonstrated in compound 42 and in 
absence of this fragment decreases the toxicity as represented in compound 
18 (given in Fig. 3). 

3 B01[C-O] 2D Atom Pairs Occurrence of C-O at topological 
separation of 1 

(-)ve In the case of B01[C-O] descriptor, the presence of polar bond [C-O] 
increases the hydrophilicity of the compound [34] and thus toxicity will 
decrease which is evidenced by compound 27 and vice versa in case of 
compound 36 (represented inFig. 3). 

CHICKEN - pNOEL 
1 SE(LK) RASTR The weighted standard error pertains to 

the response values of adjacent source 
compounds. 

(-)ve The presence of this high standard error based on the response values of the 
proximate source compound decreases the compound toxicity as 
demonstrated in compound 8 and the less standard error based on response 
enhances the toxicity as represented in compound 40 (given in Fig. 4). 

2 B05[O-O] 2D Atom Pairs Occurrence of single bond oxygen- 
oxygen topological distance 5 

(+)ve The presence of two electronegative atoms increases the electronegativity 
rendering the compounds more electronegative[35]. The presence of large 
fragments in chemical structure will also increase the lipophilicity, 
ultimately enhancing the penetration ability of chemicals into the cell of 
reference organism. Thus existence of oxygen atoms at the specified 
topological distance is associated with increased toxicity in pesticides, as 
illustrated by compound 4, while the opposite was characterized in 
compound 48 (provided in Fig. 4). 

3 B02[C-O] 2D Atom Pairs Occurrence of C-O at topological 
separation 2 

(-)ve This descriptor is related to hydrophilicity (oxygen is responsible for 
hydrogen bonding with water, and is easily excreted out from the body) [34, 
35]. Small fragments (Occurrence of C-O at topological separation 2) are less 
lipophilic, as a result, toxicity will decrease which is evidenced by 
compound 30, and the opposite was shown in compound 34 (represented in  
Fig. 4). 

4 T(N.S) 2D Atom Pairs Summation of topological separation 
between N.S 

(+)ve The occurrence of nitrogen and sulphur atoms in a compound increases its 
electronegativity, leading to oxidative stress and cell death [34]. Sulphur 
itself is toxic. Therefore, overall toxicity will increase as demonstrated in 
compound 33. On the other hand, the compound containing less number of 
this fragment may exhibit less toxicity as shown in compound 53 
(demonstrated in Fig. 4).  
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the hydrophilicity of the compound [34] and thus toxicity will decrease 
which is evidenced by compound 27 and vice versa in case of compound 
36 (represented in Fig. 3). 

3.7.2. Mechanistic interpretation of descriptors employed in Model M4 
(pNOEL) 

The SE(LK) is a RASTR descriptor that denotes the weighted standard 
error about the response values of adjacent source compounds. It shows 
negative contribution toward the endpoint. The presence of this high 
standard error based on the response values of the proximate source 
compound decreases the compound toxicity as demonstrated in com
pound 8 and the less standard error based on response values of the 
proximate source compound enhances the toxicity as represented in 
compound 40 (given in Fig. 4). 

The 2D atom pair descriptor, B05[O-O], shows the occurrence of two 
oxygen atoms at topological distance 5. The presence of two electro
negative atoms increases the electronegativity rendering the compounds 
more electronegative [35]. The presence of large number of fragments in 
chemical structure will also increase the lipophilicity, ultimately 
enhancing the penetration ability of chemicals into the cell of the 
reference organism. Thus, the existence of oxygen atoms at the specified 
topological distance is associated with increased toxicity in pesticides as 
illustrated by compound 4, while the opposite was characterized in 
compound 48 (provided in Fig. 4). 

Another 2D atom pair descriptor, B02[C-O], indicates the occurrence 
of C-O at topological distance 2. It shows negative contribution toward 

the endpoint. This descriptor is related to hydrophilicity (oxygen is 
responsible for hydrogen bonding with water, and is easily excreted out 
from the body) [34]. Small fragments (occurrence of C-O at topological 
separation 2) are less lipophilic, as a result, toxicity will decrease which 
is evidenced by compound 30, and the opposite was shown in compound 
34 (represented in Fig. 4). 

The T(N.S) descriptor denotes the summation of the topological 
distance between N.S and it contributed positively towards the 
endpoint. The occurrence of nitrogen and sulphur atoms in a compound 
increases its electronegativity, leading to oxidative stress and cell death 
[34,35]. Sulphur itself is toxic. Therefore, overall toxicity will increase 
as demonstrated in compound 33. On the other hand, the compound 
containing less number of this fragment may exhibit less toxicity as 
shown in compound 53 (demonstrated in Fig. 4). 

3.8. Pesticide Properties DataBase screening 

The PPDB compounds were screened using developed models 
considering both the toxicity endpoints namely, pLOEL and pNOEL 
assisted by the Java-based tool “Prediction reliability indicator” (avail
able from: http://teqip.jdvu.ac.in/QSAR_Tools/). The applicability 
domain of the compounds was assessed to ascertain the reliability of the 
obtained prediction values and it was found that 100% and 55% of 
compounds lie within the chemical space of the developed pLOEL and 
pNOEL models respectively. The predicted pLOEL and pNOEL values 
(predicted value provided in Supplementary Information 1) of the 

Fig. 3. Contribution of the model descriptors towards pLOEL in chicken.  
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respective compounds were cumulatively assessed. Then, based on the 
cumulative predictions, the top 20 and least 20 toxic compounds 
(compounds that are toxic for both pLOEL and pNOEL endpoints and lie 
within the AD of both models) with their CAS numbers, molecular 
weight, and pesticide groups have been provided in Table 4. Descriptor 
values of the top 20 and least 20 toxic pesticides are provided in sup
plementary information 1. Further, to validate our findings, an attempt 
was made to corroborate our predictions to the real-world experimental 
data available in the PubChem online repository, and literature and 
references of these findings are provided in Table S6 of Supplementary 
Information 2. Considering the top twenty highest toxic compounds, our 
models’ pLOEL and pNOEL prediction values were in complete coher
ence with the experimental toxicity data. From the results, it can be 
stated that our model predictions are correlated to real-world data and 
can be considered suitable for the identification of potential toxicants 
alongside less ones. Upon further validation, all predicted toxicities, 
demonstrate the practical applicability of the developed models. 

4. Conclusions 

This work reports the first PLS-based q-RASTR model for acute 
toxicity in chicken, the widely consumed source of animal protein. The 
study’s importance lies in the direct link between chemical toxicity in 
chicken, human intake, and environmental damage. In this study, we 
can be concluded that the present research is significant and novel 

because of the following reasons:  

I. By utilizing mathematical models, we got a comprehensive 
knowledge of how certain chemicals impact chicken species on a 
toxicological level. This knowledge is crucial in developing 
effective measures to protect the health of chicken species as well 
as human beings. 

II. From this study, it was found that lipophilicity and electronega
tivity are responsible for the toxicity of pesticides towards 
chickens. On the other hand, polarity, hydrophilicity, and large 
numerical value of SE (LK) & SD similarity (GK) descriptors will 
reduce the toxicity of pesticides towards chickens.  

III. The ability of the models to identify specific features contributing 
to chicken toxicity will aid in creating safer, environmentally 
friendly chemicals.  

IV. The developed q-RASTR models are robust and practical for 
toxicity & risk assessment.  

V. The closeness of the acute toxicity prediction by the q-RASTR 
model with real-world data demonstrates its feasibility for 
screening acute toxicants in chickens.  

VI. The models can be used for data-gap filling as well as predicting 
the toxicity of chemicals even before their synthesis. 

Fig. 4. Contributions of the model descriptors towards pNOEL in chicken.  
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Table 4 
Twenty most and least toxic screened pesticides from the Pesticide Properties DataBase (PPDB).  

Sl. 
No 

Pesticide name (Group) CAS no and 
Molecular mass 

Safety and Hazards Sources (all references available 
in Supplementary 2) 

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB) 
1 Flumetsulam 98967-40-9 

(Molecular mass- 
325.29) 

Toxic to rats, rabbits, quail, ducks, and Environmental hazard I 

2 Dipyrithione 3696-28-4 
(Molecular mass- 

252.31) 

Environmental hazard, irritant II 

3 Sulfoxaflor 946578-00-3 
(Molecular mass- 

277.27) 

Environmental hazard, irritant III 

4 Flusulfamide 106917-52-6 
(Molecular mass- 

415.17) 

Acute toxic to rats, mice, and Environmental hazard IV 

5 Benzofluor 68672-17-3 
(Molecular mass- 

299.33) 

Threshold of Toxicological Concern (Cramer Class- High (class III)) V 

6 Nithiazine 58842-20-9 
(Molecular mass- 

216.24) 

Acute toxic to aves and irritants VI 

7 Perfluidone 37924-13-3 
(Molecular mass- 

379.4) 

Acute toxic to rats, rabbits, mice, and irritants VII 

8 Fluensulfone 318290-98-1 
(Molecular mass- 

291.70) 

Acute toxic to fish and environmental hazard VIII 

9 1,3-dinitrobenzene 99-65-0 
(Molecular mass- 

168.12) 

Acute toxic, Health hazard, and environmental hazard IX 

10 Ampropylfos 16606-64-7 
(Molecular mass- 

139.09) 

Corrosive X 

11 Azoxybenzene 495-48-7 
(Molecular mass- 

198.22) 

Acute toxic to rats, mice, and rabbits XI 

12 Benfluralin 1861-40-1 
(Molecular mass- 

335.28) 

Acute toxic to rats, mice, rabbits and environmental hazard XII 

13 Benzamorf 12068-08-5 
(Molecular mass- 

413.6) 

Corrosive and Irritant XIII 

14 Bis(methylmercury) 
sulphate 

3810-81-9 
(Molecular mass- 

527.31) 

Threshold of Toxicological Concern (Cramer Class- High (class III)) XIV 

15 Bis-trichloromethyl 
sulfone 

3064-70-8 
(Molecular mass- 

300.80) 

Acute toxic to rats, mice, rabbits and environmental hazard XV 

16 Bromethalin 63333-35-7 
(Molecular mass- 

577.9) 

Acute toxic to rats, mice, dogs and environmental hazard XVI 

17 Butralin 33629-47-9 
(Molecular mass- 

295.33) 

Environmental hazard, Health hazard and Acute toxic to rats, rabbits XVII 

18 Cacodylic acid 75-60-5 
(Molecular mass- 

138.00) 

Acute toxic to rats, mice and environmental hazard XVIII 

19 Chloropicrin 76-06-2 
(Molecular mass- 

164.37) 

Acute toxic to humans, rats and mice XIX 

20 Dicloran 99-30-9 
(Molecular mass- 

207.01) 

Environmental hazard, Health hazard and acute toxic to rat, mice XX 

Least 20 screened pesticides from Pesticide Properties DataBase (PPDB) 
1 Zarilamid 84527-51-5 

(Molecular mass- 
238.67) 

The predictive value for both endpoints indicates this pesticide is less toxic for both 
endpoints. 

XXI 

2 Xylylcarb 2425-10-7 
(Molecular mass- 

179.22) 

Low toxic (Cramer Class): I XXII 

3 Xylachlor 63114-77-2 
(Molecular mass- 

239.77) 

The test results show that metolachlor is practically non-toxic to birds. From the 
concept of structure-activity relationship, we can say xylachlor may also be non-toxic 

to birds. 

XXIII 

(continued on next page) 
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Environmental implications 

The significance of this study lies in establishing a direct connection 
between chemical toxicity in chickens, human consumption, and envi
ronmental harm. Accurate assessment of compound toxicity is vital for 
managing various adverse effects such as carcinogenicity, genotoxicity, 
immunotoxicology, and reproductive toxicity. This is not only safe
guards of avian species and public health but also addresses challenges 
like animal testing, time, and cost constraints. The developed PLS-based 
q-RASTR models emerges as a valuable tool, circumventing these limi
tations and enabling effective prediction of toxicity. The predictive 
models, along with the key structural insights gained in the present 
study, can contribute to develop environmentally friendly and safer 
chemicals, filling data gaps, and promoting the responsible use of eco
toxic substances. 
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Table 4 (continued ) 

Sl. 
No 

Pesticide name (Group) CAS no and 
Molecular mass 

Safety and Hazards Sources (all references available 
in Supplementary 2) 

4 XMC 2655-14-3 
(Molecular mass- 

179.22) 

It has a low toxicity and is relatively stable XXIV 

5 Warfarin 81-81-2 
(Molecular mass- 

308.35) 

It is practically non-toxic XXV 

6 Vinegar 90132-02-8 
(Molecular mass- 

60.06) 

Vinegar is used to promote the health of the birds XXVI 

7 Vinclozolin 50471-44-8 
(Molecular mass- 

286.12) 

Vinclozolin is practically nontoxic to birds XXVII 

8 Uniconazole 83657-22-1 
(Molecular mass- 

291.81) 

Uniconazole-p is non-toxic to birds XXVIII 

9 Umifoxolaner 2021230-37-3 
(Molecular mass- 

299.64) 

Low toxic XXIX 

10 Triticonazole 131983-72-7 
(Molecular mass- 

317.82) 

Triticonazole is non-toxic to pollinating insects XXX 

11 Triprene 40596-80-3 
(Molecular mass- 

312.52) 

Low toxic XXXI 

12 Trimethacarb 12407-86-2 
(Molecular mass- 

312.52) 

Birds were not as sensitive to trimethacarb XXXII 

13 Triisopropanolamine 122-20-3 
(Molecular mass- 

191.27) 

Practically non-toxic to birds, fish, honeybees XXXIII 

14 Triflumuron 64628-44-0 
(Molecular mass- 

358.70) 

Triflumuron is not classified as toxic or highly toxic XXXIV 

15 Triflumizole 99387-89-0 
(Molecular mass- 

345.75) 

Triflumizole is categorized as being moderately toxic to fish XXXV 

16 Triflumezopyrim 1263133-33-0 
(Molecular mass- 

398.34) 

Triflumezopyrim was harmless to Anagrus nilaparvatae XXXVI 

17 Trifloxystrobin 141517-21-7 
(Molecular mass- 

408.37) 

Trifloxystrobin is practically non-toxic to birds XXXVII 

18 Trifenofos 38524-82-2 
(Molecular mass- 

363.63) 

Profenofos has a moderate toxic XXXVIII 

19 Trifenmorph 1420-06-0 
(Molecular mass- 

329.43) 

Trifenmorph is hydrolysed at acid pH to relatively non - toxic compounds XXXIX 

20 Tridiphane 58138-08-2 
(Molecular 

mass-320.43) 

The predictive value for both endpoints indicates this pesticide is less toxic for both 
endpoints. 

XL  
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A B S T R A C T   

The rapid increase in the use of pesticides is driven by the growing demand in the agricultural sector. However, 
the widespread application of these pesticides and their inherent toxicity have significant repercussions on the 
ecosystem, particularly impacting animal and bird species. In this present study, we have developed four 2D 
quantitative structure-toxicity relationships (QSTRs) models for four different avian species using the largest 
number of available experimental data points to date employing the partial least squares (PLS) algorithm. 
Furthermore, we have also performed the read-across algorithm to improve the test set results. Based on the 
information derived from the models, it was found that hydrophilic characteristics, the presence of molecular 
branching and thio imide groups impact negatively to the pesticide toxicity, while the presence of phosphate 
group, presence of halogens viz. chlorine and bromine atoms, presence of hetero atoms, high molecular weight, 
presence of bridgehead atoms, presence of secondary aliphatic amide and fragments like RCONHR escalates 
avian toxicity. The developed QSTR models were further employed to predict the Pesticide Properties DataBase 
(PPDB) for all four avian species as a measure of data gap-filling and risk assessment. Thus, the developed models 
can be utilized for eco-toxicological data-gap filling, prediction of toxicity of untested pesticides as well as the 
development of novel and safe environmental-friendly pesticides.   

1. Introduction 

Pesticides encompass a wide range of chemicals, which are typically 
employed to control or kill pests viz. insects, rodents, fungi, weeds, etc. 
for effective crop management. The use of pesticides has increased 
significantly in recent decades, particularly in agriculturally dependent 
developing countries (Singh et al., 2014). Due to the inherent charac
teristics, a significant portion of the applied dose continues to remain as 
remnants on crops and fields (Basant et al., 2015). As a result, large 
amounts of pesticides have been found in crops, vegetation, and further 

edible products causing exposure to both animals and humans. Ac
cording to reports, prolonged exposure to these substances can harm a 
person’s nervous, endocrine, reproductive, immunological, cardiovas
cular, renal, and respiratory systems (Mostafalou and Abdollahi, 2013). 
In light of the aforementioned, various regulatory authorities have 
emphasized the need for the toxicity evaluation of both new and existing 
pesticides. The avian toxicity tests are essential for regulatory approval 
and licensing of the active ingredients of pesticides. Aves are significant 
for ecology and have a huge contribution to biodiversity by performing 
pollination of plants, rodent control, seed dispersal, and spreading 

Abbreviations: BQ, Bobwhite quail; JQ, Japanese quail; MD, Mallard duck; RNP, Ring-necked pheasant; 2D descriptors, Two-dimensional descriptors; 2D-QSTR, 
Two dimensional- quantitative structure- toxicity relationship; AD, Applicability domain; DModx, Distance to model X; GA, Genetic algorithm; Log[LC50], loga
rithmic value of the 50% Lethal concentration LC50; OECD, The Organisation for Economic Cooperation and Development; PLS, partial least square; QSAR, 
Quantitative structure-activity relationship; QSTR, Quantitative structure-toxicity relationship; REACH, Registration, Evaluation, Authorisation, and Restrictions of 
Chemicals; RMSEP, root mean square error of prediction; EPA, Environmental Protection Agency; PPDB, Pesticide Properties DataBase. 
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nutrients (Mukherjee et al., 2021). According to today’s scenario, one in 
every eight bird species faces extinction (Saxena et al., 2015). Therefore, 
birds are used as a model organism to evaluate toxicity. Oral toxicity 
testing is important for determining avian species’ toxicological signif
icance. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese 
quail (Coturnix japonica) [JQ], ring-necked pheasant (Phasianus colchi
cus) [RNP], and mallard duck (Anas platyrhynchos) [MD] are the major 
test species as per OECD norms (OECD, 2010). The validated wet-lab 
techniques for the evaluation of compound toxicity towards avians are 
expensive, unethical, and require a significant amount of time and 
effort. So the relevant regulatory bodies encourage the employment of 
potential alternative strategies to achieve the objective. Regulatory 
agencies like the Environmental Protection Agency (EPA), European 
Food Safety Authority (EFSA), Registration, Evaluation, Authorization, 
and Restriction of Chemicals (REACH), and European Chemicals Bureau 
(ECB), have emphasized the potential of computational tools like QSTR, 
read-across, and alternative approaches for investigating the inherent 
characteristics of chemicals within the realm of toxicokinetics (Nicolotti 
et al., 2014; Pandey et al., 2020). Some alternatives in silico-based ap
proaches were reported previously that offer significant improvements 
over single-output models for regulatory purposes (Speck-Planche et al., 
2011; Speck-Planche et al., 2011, 2012; Speck-Planche, 2020; Jiang 
et al., 2020; Jain et al., 2021). Speck-Planche et al. (Speck-Planche et al., 
2011) reported the discriminant model based on substructural de
scriptors for the rational design of new agrochemical fungicides. 
Speck-Planche et al. (Speck-Planche et al., 2011) also worked on new 
in-silico methods for the rational design of new insecticidal agents. 
Speck-Planche et al. (Speck-Planche et al., 2012) further reported the 
multi-species chemoinformatic methods for assessing the various eco
toxicological profiles in agrochemical fungicides. Speck-Planche et al. 
(Speck-Planche, 2020) also published a work regarding multi-scale 
QSAR methodology for simultaneous ecotoxicological modeling of 
pesticides. Jiang et al. (Jiang et al., 2020) worked on boosting 
tree-assisted multitask deep learning methods for small scientific data
sets. A consensus multitask deep learning method was used to model 
multispecies acute toxic effects by Jain et al (Jain et al., 2021). Even 
other alternative modeling approaches based on machine learning (ML) 
tools that have demonstrated significant advancements, particularly in 
handling nonlinearity aspects and improving predictions were also re
ported earlier (Jiang et al., 2020; Jain et al., 2021; Halder et al., 2023; 
Samanipour et al., 2022). Halder et al. (Halder et al., 2023) reported the 
global models employing in-silico methods for predicting the ecotoxicity 
of endocrine disruptive chemicals. Samanipour et al. (Samanipour et al., 
2022) worked on alternative methods for chemical prioritization using 
molecular descriptors and intrinsic fish toxicity of chemicals. 

These in silico techniques examine significant structural features that 
are essential for predicting the biological activity, toxicity, and other 
characteristics of untested substances. Several research teams published 
in silico predictions of acute oral toxicity in various species, including 
rats, mice, and fish (Banjare et al., 2021; Song et al., 2011; Hamadache 
et al., 2016; Wang et al., 2021). But in the case of avian oral toxicity, 
very few in-silico reports are available (Basant et al., 2015; Mukherjee 
et al., 2021; Saxena et al., 2015; Banjare et al., 2021; Zhang et al., 2015; 
Podder et al., 2023). 

Herein, we developed QSTR models to interpret the major structural 
and physicochemical features responsible for their toxicity followed by 
assessing the toxicity of external datasets in BQ, JQ, RNP, and MD avian 
species following the OECD guidelines strictly (OECD, 2007). Alterna
tive tools, such as read-across, are widely used for hazard assessment to 
fill the data gaps. The read-across-based predictions assume that a 
molecule with an unreported experimental endpoint value should have a 
value similar to molecules that are structurally and/or biologically 
similar to the query molecule. So, we have conducted the read-across 
predictions to improve the test set results. The main motive for 
choosing the regression-based QSTR approach over others (e.g.: 
regarding its effectiveness, coping with chemical heterogeneity, and 

several different species) (Karpov et al., 2020; Jaganathan et al., 2022) 
was to develop a linear relationship between the descriptors and the 
defined endpoints (pLC50) to identify the important features responsible 
for toxicity towards avian species (BQ, JQ, RNP, and MD) as well as 
data-gap filling. Classification-based approaches also excel in handling 
similar challenges, and both methodologies come with distinct advan
tages and disadvantages. For example, classification models are typi
cally more robust to outliers and data errors than regression models. 
This is because classification models only focus on the categorical 
relationship between the input and output variables rather than the 
exact numerical relationship. On the other hand, regression models can 
identify the most important features or predictors driving the outcome 
variable. This information can be used to inform decision-making and 
guide further investigations. Sometimes, it may be beneficial to convert 
a classification problem into a regression problem or vice versa. By 
doing so, one can gain additional insights into the data and improve the 
accuracy of our predictions. Nevertheless, the decision to convert a 
problem type should be based on the specific problem at hand and the 
characteristics of the data. Additionally, we have also developed clas
sification models as well as employed two different ML algorithms 
namely SVM, and RF to evaluate their effectiveness in model construc
tion and prediction. The present work aimed to design a logical method 
to assess pesticide toxicity towards avians. Furthermore, screening of the 
Pesticide Properties DataBase (PPDB) was conducted to evaluate the 
avian toxicity following the prediction reliability assessment of the 
QSTR models by the PRI (prediction reliability indicator) tool (http:// 
teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data gaps filling and 
risk assessment (Kumar et al., 2023). The robustness, reproducibility, 
and predictivity of QSTR models were thoroughly validated using 
globally accepted statistical parameters. 

2. Methods and materials 

2.1. Preparation of dataset & curation 

Here, we developed models using datasets with toxicity endpoint 
(LC50; defined as the lethal concentration in 50% population) for toxicity 
prediction in multiple avian species collected from literature (Zhang 
et al., 2015) which was originally collected from the EPA, Ecotox 
database (http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides 
for RNP, 117 pesticides for JQ, 556 pesticides for BQ, and 564 pesticides 
for MD were taken for the development of the model. The toxicity 
endpoint values ranges from 0.082-4.957 in BQ, 0.162–4.968 in JQ, 
0.27–4.67 in MD, and 0.162–4.857 in RNP. The two-dimensional 
structures of the pesticides were sketched using Marvin Sketch 5.5.0.1 
(https://chemaxon.com) software with the addition of explicit hydrogen 
atoms as well as proper aromatization. The conversion of structure file 
formats was carried out using Open Babel v.2.3.2 (O’Boyle et al., 2011). 
Knime workflow (https://www.knime.com/cheminformatics-exte 
nsions) was employed for data curation which removes unwanted salts 
and duplicate compounds. Toxicity in an avian species characterized as 
an endpoint value (LC50) was converted to millimolar (mM) concen
tration followed by converting to a negative logarithmic scale, pLC50, for 
easy interpretation. Some compounds were omitted from the datasets 
due to high residual values. 

2.2. Descriptor calculation & data pre-treatment 

Descriptors are the numerical presentation in which we correlate the 
chemical structure with any physiochemical property/biological activ
ity/ toxicity. In this work, a total of 9 classes of descriptors were 
calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/ 
alvadesc/) software (Mauri, 2020). In each dataset, the defective and 
inter-correlated chemical descriptors were eliminated by V-WSP1.2 
(http://teqip.jdvu.ac.in/QSAR_Tools/) software with a standard devia
tion less than 0.0001 or correlation coefficient greater than 0.95. 
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2.3. Dataset division 

Dataset division is crucial for QSTR model development. Normally, 
training set compounds are used to develop the model and test set 
compounds for validation. The validation set is used to assess the model 
performance and fine-tune the parameters of the model. It tells us how 
well the model is learning and adapting, allowing for adjustments and 
optimizations to be made to the model’s parameters and hyper
parameters (the latter in the case of machine learning-based models) 
before it is finally tested. The test data set mirrors real-world data the 
model has never seen before, i.e.: a separate sample of unseen data. Its 
primary purpose is to offer a fair and final assessment of how the model 
would perform when it encounters new data in a live, operational 
environment. This is especially critical to evaluate models effectively 
along with preventing overfitting (Martin et al., 2012). We performed 
dataset division of four datasets by using rational methods such as the 
Kennard stone, activity property-based, and Euclidean distance based 
method using Dataset Division GUI 1.2 software as well as using random 
division method (Martin et al., 2012; Ambure et al., 2015). We also 
employed modified k-medoid clustering by using Modified k-Medoid 1.3 
(http://teqip.jdvu.ac.in/QSAR_Tools/) (Park and Jun, 2009). After that, 
the final selection of data-set division methods was done based on the 
statistical results. The best results come in the Kennard stone method for 
the MD and JQ data set, the activity property-based method for the BQ 
dataset, and the random division method for the RNP dataset. In this 
process of dataset division, the datasets are divided into 75:25 ratios of 
training and test sets compounds respectively (Jillella et al., 2021). 

2.4. Selection of features and model building 

In the case of model building, feature selection is one of the vital 
steps by which we can find significant descriptors to boost the inter
pretability and predictive ability of the model (Roy et al., 2008). Pri
marily, we performed stepwise regression method and genetic algorithm 
(GA) for feature selection (Ojha and Roy, 2011) and then we employed 
the regression-based partial least square (PLS) (Wold et al., 2001) 
method through the partial least squares v1.0 tool (http://teqip.jdvu.ac. 
in/QSAR_Tools/) for model building. 

2.5. Validation metrics of QSTR models 

A significant step in the creation of a QSTR model is statistical 
validation, which demonstrates its reliability and predictivity (Roy 
et al., 2015a). Various internal validation parameters were calculated 
which involve determination coefficient (R2), leave-one-out (LOO)

cross-validated correlation coefficient (Q2
LOO) to judge the reliability and 

importance of the model. External validation parameters demonstrate 
the predictivity of QSTR models. The model’s external validation is 
determined using parameters such as Q2

F1 and Q2
F2 (Todeschini et al., 

2016). For both internal (Q2
LOO) and external predictive parameters 

(Q2
F1,Q2

F2), the approved threshold value is 0.5. 

2.6. Prediction using read-across algorithm 

According to the fundamental tenet of read-across, substances with 
similar chemical structures will also have comparable attributes and it is 
not utilized in the model development process (Banerjee et al., 2022). 
Read-across prediction is a similarity-based non-testing technique that is 
widely used in eco-toxicological data-gap filling. Initially, the training 
set of the best model was split into sub-training and sub-test sets. These 
sets were again used to optimize the hyperparameters through 
Read-Across-v3.1 (http://teqip.jdvu.ac.in/QSAR_Tools/) software. 
After similarity-based sorting, similarity threshold values (0− 1), various 
distance threshold values (1− 0), and the numbers of most similar 
training compounds (2− 10) were applied. The best setting of 

hyperparameters obtained from sub-training and sub-test was applied to 
the original training and test sets for the final prediction (Chatterjee 
et al., 2022). 

2.7. Model’s applicability domain study 

The applicability domain (AD) of a QSAR model has been defined as 
the chemical structure and response space, considered by the properties 
of the molecules in the training set (Roy et al., 2015a). The AD expresses 
the fact that QSARs are undeniably associated with restrictions in the 
categories of physicochemical properties, chemical structures, and 
mechanisms of action for which the models can generate reliable pre
dictions. In the current study, distance to the model in X-space (DModx) 
has been utilized for AD estimation of constructed PLS models which 
rely on residuals of response and predictive variables (Roy et al., 2015b). 

2.8. Y-randomization study 

Y-randomization study was carried out to check the chance corre
lation of the QSTR models with the help of SIMCA-P software (SIMCA-P, 
2002). In the Y-randomization test, the descriptor matrix X is kept 
constant but only the vector Y is scrambled randomly, and a new model 
is developed using the same set of descriptors. The original model is 
considered as robust if its validation metrics are better than the random 
models (Paul et al., 2022). The values of the R2yrand intercept and 
Q2yrand intercept should not be more than 0.3 and 0.05 respectively. 

2.9. Analysis of parametric assumptions of the developed models 

To ensure that our model is reliable we carried out some diagnostic 
tests to check for the existence of multicollinearity, normal distribution, 
and homoscedasticity (Dillon and Goldstein, 1984; Morales Helguera 
et al., 2008). Multicollinearity is defined as predictor variables within a 
regression model that are highly correlated with each other, leading to 
inaccurate results in regression analysis. To identify multicollinearity, 
we used the variation inflation factor (VIF) which is a widely used 
metric. If the VIF is higher than 5, multicollinearity is considered to be 
present (Kim, 2019). In statistical regression models, exhibiting multi
collinearity can lead to misleading results. For each modeled descriptor, 
we found that the VIF values were very close to 1. So, it can be concluded 
that all the independent variables are not collinear with the dependent 
variable. The function values follow a multidimensional normal distri
bution with a mean and covariance matrix that depends on the 
descriptor vectors. We have plotted the normal distribution curve for 
each (BQ, JQ, MD, and RNP) avian species and provided in Fig. S1 of 
supplementary information 2. Homoscedasticity refers to the equal 
variance of an error in a regression model was assessed using the 
Breusch-Pagan test in our study. A p-value of more than 0.05 indicates 
the homoscedasticity of the model. In our study, the calculated p-values 
were not less than 0.05 (0.093–0.209) for all the developed models. 
Therefore, we fail to reject the null hypothesis, and the model can be 
considered homoscedastic. All the statistical results of homoscedasticity 
and multicollinearity for each model are provided in Tables S1 and S2 of 
supplementary information 2. 

2.10. Application of other machine learning (ML) algorithms 

To estimate the prediction performance of other algorithms, we have 
employed two different state-of-the-art ML algorithms namely support 
vector machine (SVM) and random forest (RF) using the Orange data 
mining tool (Demšar et al., 2013, Senanayake et al., 2022). The hyper
parameters were adjusted to tune the model for optimal performance. 
The prediction qualities of the ML models were evaluated in terms of R2, 
Q2

Loo, and MAE values. 
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2.11. Classification based QSTR (LDA-QSTR) model development 

In the present work, we have developed a classification-based linear 
discriminant analysis (LDA) QSTR model from the selected set of fea
tures and evaluated its performance for its predictive ability. The model 
development is done using ClassificationBasedQSAR_v1.0.0 tools 
(available at http://teqip.jdvu.ac.in/QSAR_Tools/). The model was 
extensively validated based on different internal and external classifi
cation metrics (area under the ROC curve (AUC), accuracy, precision, 
sensitivity, F-measure, and Matthews correlation coefficient (MCC)) 
(Fawcett, 2006; Matthews, 1975). 

2.12. Screening of the Pesticide Properties DataBase 

We have collected 1903 chemical data from Pesticide Properties 
DataBase (PPDB) available in (http://sitem.herts.ac.uk/aeru/ppdb/). 
Knime curation was done to remove duplicates, inorganic salts, and 
mixtures using the KNIME workflow. Due to the knime curation, some 
compounds were removed. After the curation, the remaining 1694 
compounds were used for the screening process to check the developed 
model’s reliability. The descriptors for these molecules were calculated 
using the same procedure as in the QSAR modeling process. The pre
dictions were made through the use of individual PLS-based QSTR 
models with the help of the PRI (Prediction Reliability Indicator) tool 
(http://teqip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the pre
dictions into three distinct groups: good (composite score 3), moderate 
(composite score 2), and bad (composite score 1). Additionally, the tool 
determines the localization of compounds inside the AD. The screened 
compounds were ranked based on their predicted toxicity and the 
twenty highest and least toxic compounds which exhibited toxicity to
wards all four avian species were analysed. The results were further 
validated extensively based on experimental data reported previously, 
to establish the real-world applicability of the developed final PLS-based 
QSTR models. Detailed discussions on the results can be found in Section 
3 (Roy et al., 2018). A detailed flow diagram of this study has been given 
in Fig. 1. 

3. Results and discussion 

In this study, we have developed PLS models utilizing the toxicity of 
pesticides (LogLC50) on four different avians (BQ, JQ, MD, and RNP) 
employing a reduced pool of chemical descriptors. The created model’s 
quality is measured by using different internal (R2, Q2

LOO,) and external 
(Q2

F1, Q2
F2,) statistical parameters. The results obtained from PLS 

models indicated the model’s robustness, reliability, and predictivity. 
All the metrics obtained from QSTR models are depicted in Table 1. 
Read-across algorithm was employed to improve the model’s external 
predictivity. External predictivity was improved for all three datasets 
(BQ, JQ, RNP) except MD in read-across prediction, and results are 
provided in Table 2. The obtained results from the Y-randomization test 
were found to be R2= -0.01, Q2= -0.0531, (for BQ), R2 = 0.0194, Q2 =

-0.215 (for JQ), R2 = -0.008, Q2 = -0.0377 (for MD), and R2 = 0.028, 
Q2 = -0.213 (for RNP) which demonstrated that the models were not 
formed by any chance. AD study depicted that compounds 26, 112, and 
113 in BQ, compounds 31 and 103 in JQ, compound 468 in MD, and 
compound 88 in RNP from the test set are outside the AD as depicted in 
Figs: S1-S4 in supplementary information 2. The tentative reasons or 
characteristics that designate certain compounds as outliers in each 
model (above the D-critical line) is due to some structural dissimilarity. 
As for example, in case of the BQ model; [O-P] fragment at topological 
distance 3 is absent for compounds 26,112 and 113; for the JQ model; 
nBridgeHead, [N-P] fragment at topological distance 5 and [O-P] frag
ment at topological distance 1 are absent; in the case of MD model; C- 
012, [O-P] fragment at topological distance 7, [C-P] fragment at topo
logical distance 5 and [C-Cl] fragment at topological distance 4 are 
absent and lastly, for RNP model; nRCONHR, [C-P] fragment at topo
logical distance 4, [P-Cl] fragment at topological distance 5, and [O-S] 
fragment at topological distance 3 is absent. We have developed new 
QSTR models without the identified outliers and checked the statistical 
metrics (provided in Table S3 of Supplementary Information 2). A vi
sual representation of the correlation between observed and predicted 
toxicity values has been depicted in the scatter plot (provided in Fig. 2). 
Additionally, we used two different ML algorithms namely support 

Fig. 1. Workflow of QSTR model development.  
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vector machine and random forest to evaluate their effectiveness in 
model construction and prediction. The PLS-based QSTR models with 
read-across predictions produce the lowest prediction error for the test 
set compounds, as indicated by the MAEtest value compared to ML-based 
models against all of the avian species provided in Table S4 of Supple
mentary information 2. The equations of the final developed models of 
BQ, JQ, RNP, and MD are provided below: 

Model BQ: 

pLC50 (BQ) = 1.25782+0.43538 × F02[C − P] + 0.00176

× MW+ 0.5691 × F09[S − F] − 1.15994

× B09[C − P] − 0.55509 × F03[O − P] − 0.046 × T(P..Cl)

Model JQ: 

pLC50 (JQ) = 4.15712+0.74137 × B01[O − P] − 6.67929

× X2A+1.18073 × B05[N − P] − 0.28037

× H − 048 − 0.00675 × T(O..Cl)+0.44076

× nBridgeHead 

Model RNP: 

Table 1 
Statistical parameter of developed PLS models.  

Avian Species Training set Test set 

Ntrain/Ntest LVs R2 Q2
LOO Q2

F1 Q2
F2 MAE(test) Quality(test) 

BQ 411/137  2  0.643  0.603  0.613  0.613  0.186 Good 
JQ 77/34  2  0.630  0.552  0.534  0.519  0.403 Moderate 
RNP 82/30  2  0.635  0.531  0.604  0.600  0.349 Moderate 
MD 377/162  1  0.606  0.588  0.752  0.637  0.060 Good  

Table 2 
Read-across based predictions for four species.  

Optimized settings Metrics Ygk (Test) 

Bobwhite quail 
Ygk (Test) 

σ ¼ 0.25 
γ ¼ 0.25 
No. of similar compounds ¼10 

Q2
F1 0.690 

Q2
F2 0.690 

RMSEP 0.279 
MAE 0.179 

Japanese quail 
Optimized settings Metrics Ylk (Test) 
σ ¼ 0.25 

γ ¼ 0.25 
No. of similar compounds ¼10 

Q2
F1 0.707 

Q2
F2 0.698 

RMSEP 0.394 
MAE 0.307 

Ring-necked pheasant 
Optimized settings METRICS Ylk (Test) 
σ ¼0.5 

γ ¼0.5 
No. of similar compounds ¼10 

Q2
F1 0.714 

Q2
F2 0.714 

RMSEP 0.392 
MAE 0.290 

Mallard duck 
Optimized settings METRICS Yeuc (Test) 
σ ¼0.75 

γ ¼0.75 
No. of similar compounds ¼10 

Q2
F1 0.686 

Q2
F2 0.540 

RMSEP 0.114 
MAE 0.081  

Fig. 2. Scatter plots of developed models.  
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pLC50 (RNP) = 4.19704 − 6.73075 × X2A+ 1.81161

× nRCONHR − 0.99523 × nN(CO)2+0.84946

× B04[C − P] − 0.81404 × B05[P − Cl] − 0.42293

× F03[O − S]

Model MD: 

pLC50 (MD) = 1.31098+0.00138 × MW+ 0.19812

× C − 012+1.25421 × B07[O − P] +0.27204

× Br − 094+0.5788 × B05[C − P] + 0.01952

× F04[C − Cl]

Several classification-based metrics have been computed with the 
PLS-based QSTR-read across models for all (BQ, JQ, MD, and RNP) the 
avian species and reported in the following Table 3. Good sensitivity, 
specificity, and accuracy values indicate the good classification ability of 
the model. The computed values of the Matthews correlation coefficient 
(Matthews, 1975) indicate an acceptable prediction and an agreement 
between observed and predicted classification for all the developed 
models against avian species. 

3.1. Regression coefficient plot 

The descriptor’s positive/negative contribution towards the toxicity 
is provided via a regression coefficient plot. In this investigation, the 
descriptors, F02[C-P], MW and F09[S-F]) contributed positively while 
the descriptors, B09[C-P], F03[O-P], and T(P.Cl) contributed negatively 
towards the toxicity of pesticides in case of BQ. In JQ, the descriptors 
which contributed positively toward the toxicity are B01[O-P], B05[N- 
P], nbridgehead and X2A, whereas the descriptors H-048 and T(O.Cl) 
contributed negatively towards the toxicity. In the case of MD, the de
scriptors MW, C-012, B07[O-P], Br-094, B05[C-P], and F04[C-Cl] 
contributed positively towards the toxicity. In case of RNP, the de
scriptors, nRCONHR and B04[C-P] contributed positively whereas the 
descriptors X2A, nN(CO)2, B05[P-Cl], and F03[O-S] contributed nega
tively towards the toxicity. All the relevant plots have been provided in 
Figs S5-S8 in supplementary information 2. 

3.2. Variable importance plot (VIP) 

The relative importance of model descriptors is illustrated with VIP 
(Akarachantachote et al., 2014). Descriptors having the highest and 
lowest impact on avian species can be recognized from these plots. The 
significance of the variable is higher if the VIP score is greater than 1. In 
VIP plot, the descriptors are presented concerning their significance 
(higher contribution to lower contribution) and their importance which 
is in the following order: F02[C-P], T(P.Cl), MW, B09[C-P], F03 [O-P], 

F09[S-F] (in case of BQ), B01[O-P], B05[N-P], X2A, nBridgeHead, 
H-048, T(O.Cl) (in case of JQ), B05[C-P], MW, B07[O-P], C-012, Br-094, 
F04[C-Cl)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S], 
B05[P-Cl], Nn(CO)2 (in case of RNP) as depicted in Figs: S9-S12 in 
supplementary information 2. 

3.3. Loading plot 

The loading plot shows how the independent variables (descriptors) 
are related to the response variable. The first two components were used 
to create the loading plot. A descriptor is assumed to have a stronger 
effect on response value if it is located far from the origin of the plot. On 
the basis of the loading plot as shown in Figs. S13-S16 in supplementary 
information 2; it is interpreted that the X-variables F02[C-P] and MW 
have more influence to the Y-variable as traced from the proximity with 
response variable and the presence of these features elevated pesticide 
toxicity towards BQ. Similarly, B01[O-P], B05[C-P], and B04[C-P] are 
the most influential descriptors in the case of JQ, MD, and RNP 
respectively. 

3.4. Mechanistic interpretation of PLS models 

Table 4 and Figs. 3–6 provide a detailed account of the model de
scriptors followed by mechanistic interpretations important to identify 
major structural and physicochemical features. 

3.5. Pesticide Properties DataBase screening 

Pesticide Properties DataBase was screened through the developed 
models with the help of the software “PRI Tool_PLSversion” (available 
from http://teqip.jdvu.ac.in/QSAR Tools/) using the developed PLS 
models. The categorization threshold (mean value of the training set 
compound) for avian toxicity against BQ; JQ; MD; RNP ≥ 1.883; 2.236; 
1.845; 2.191 respectively was applied for prioritization purposes. From 
the prediction, it was seen that maximum compounds are within the 
domain of applicability and show prediction quality as “good”. The 
screened chemicals from the Pesticide Properties DataBase with their 
respective predicted toxicity against BQ, JQ, MD, and RNP are shown in 
supplementary information 1. The compounds were ranked in 
decreasing order of predicted toxicity for each avian species. The top 20 
and least 20 toxic pesticides for all four avian species from the PPDB 
database are provided in Table 4. Further validation of the predicted 
toxicity of the selected pesticides revealed that apart from fluo
roacetamide and sodium monofluoroacetate, all the predicted toxicity 
corroborated with the previous experimental findings, indicating the 
practical applicability of the developed models as shown in Table 5. 

Table 3 
Statistics of the classification-based QSTR models.  

Sl no. LDA-QSTR MODELS AUC-ROC SENSITIVITY ACCURACY PRECISION F-MEASURE MCC  

1 BQ 
(train)  

0.80  54.54  83.33  88.00  67.35  0.59 

BQ 
(test)  

0.83  52.17  85.36  92.30  66.67  0.62  

2 JQ 
(train)  

0.82  62.50  80.76  86.95  72.73  0.60 

JQ 
(test)  

0.80  75.00  84.84  81.81  78.26  0.66  

3 MD 
(train)  

0.88  75.00  83.59  82.60  78.62  0.65 

MD 
(test)  

0.86  75.71  85.71  89.83  82.17  0.71  

4 RNP (train)  0.83  63.88  79.74  88.46  74.19  0.60 
RNP 
(test)  

0.87  76.92  84.84  83.33  80.00  0.67  
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Table 4 
Mechanistic analysis of model descriptors of all species.  

S. 
no 

Descriptor Type Function Contribution Mechanistic introspection 

BQ oral pLC50 

1 F02[C-P] 2D Atom pair Frequency of carbon and phosphorus 
atoms at topological distance 2 

+ve Generally, the phosphate group is toxic (Vervloet, 2019a).The presence 
of more phosphate groups in a molecule tends to increase its toxicity as 
evidenced in compound 442. On the other hand, the presence of less 
number of these fragments in a compound may result in low toxicity 
values, as seen in compound 501 (depicted in Fig. 3). 

2 MW Constitutional 
descriptor 

Molecular weight +ve This descriptor is directly related to the molecular size and bulkiness of 
molecules. It may influence diffusion in biological membranes and fluid 
media (Hou et al., 2004; Khan et al., 2019). So the chemicals may easily 
cross the biological membrane of species and retain in the body of 
reference species for a long time, which ultimately enhances the toxicity ( 
Basant et al., 2015) as demonstrated in compound 381 and vice versa in 
compound 239 (given in Fig. 3). 

3 F09[S-F] 2D Atom pair Frequency of sulfur and fluorine 
atoms at topological distance 9 

+ve Lipophilic substances have a greater susceptibility to accumulation 
within the cells, resulting in a higher pesticide concentration inside the 
organism, which ultimately leads to enhanced toxic effects. The presence 
of two highly electronegative atoms (fluorine and sulfur) as well as a long 
carbon chain (lipophilicity) in a compound tend to make it more reactive 
and potentially more toxic (Mukherjee et al., 2021; Ghosh et al., 2020) as 
shown in compound 23 and oppositely occurs in compound 523 (shown 
in Fig. 3). 

4 B09[C-P] 2D Atom pair Presence/absence of carbon and 
phosphorus atoms at topological 
distance 9 

-ve The negative regression coefficient of this descriptor indicates that the 
presence of carbon and phosphorus atoms at the topological distance 9 
may decrease the pesticide’s toxicity towards avian species as shown in 
compound 296 while the absence of this fragment in a chemical may have 
higher toxicity values as shown in the case of compound 11 (described in  
Fig. 3). 

5 F03[O-P] 2D Atom pair Frequency of oxygen and phosphorus 
atoms at topological distance 3 

-ve The negative regression coefficient of this descriptor indicates that it 
inversely correlated with the pesticide’s toxicity towards avian species. 
Thus, the presence of this fragment reduces the compound toxicity as 
demonstrated in compound 487 and the absence of this fragment 
enhances the toxicity as represented in compound 52 (given in Fig. 3). 

6 T(P.Cl) 2D Atom pair Sum of topological distances between 
P.Cl 

-ve The two-dimensional atom pair descriptor, T(P⋯Cl) accounts for the 
topological distances between phosphorus and chlorine atoms. Reduction 
of inductivity in chlorine substituents causes a decrease in electron 
density for the relevant compounds. Therefore, the incidence of the P–Cl 
bond in aromatic chemicals reduces the electron density of the aromatic 
ring, thus, electron-donor-acceptor interactions cannot happen easily 
between pesticides and the reference species (Ghosh et al., 2020). This 
descriptor has a negative regression coefficient, indicating that the 
presence of this fragment will result in a decrease in pesticide toxicity 
profile, as exemplified by compound 243, while it would have the 
opposite effect when present, as proven by compound 441 (provided in  
Fig. 3). 

JQ oral pLC50 

1 B01[O-P] 2D Atom pair Presence/absence of O – P at 
topological distance 1 

+ve The presence of two electronegative atoms (O and P) in a compound 
makes it more electronegative which leads to oxidative stress and the 
death of the reference species (Kumar et al., 2023; Roy and Roy, 2021). 
This phenomenon is demonstrated in compound 81 and inversely occurs 
in compound 113 (shown in Fig. 4). 

2 X2A Connectivity indices 
descriptor 

Average connectivity index of order 2 -ve X2A represents the degree of branching in molecules, which is inversely 
correlated with hydrophobic interaction as well as toxicity (Arvidsson 
et al., 1971; Roy and Das, 2013). Thus, the higher numerical value of this 
descriptor leads to a decrease in toxicity value as shown in compound 13 
and vice versa occurs in compound 57 (given in Fig. 4). 

3 B05[N-P] 2D Atom pair Incidence of N – P at topological 
distance 5 

+ve The presence of two electronegative atoms (N and P) in a compound 
makes it more electronegative which leads to oxidative stress and the 
death of the reference species (Zhang et al., 2015; Roy and Roy, 2021). 
This phenomenon is demonstrated in compound 88. On the other hand, 
the compound containing less number of this fragment may exhibit less 
toxicity as shown in compound 66 (demonstrated in Fig. 4). 

4 H-048 Atom-centered 
fragments 

H attached to C2(sp3)/C1(sp2)/C0 
(sp) 

-ve H-048 has the potential to make compounds electronically conductive as 
well as hydrophilic (Kumar et al., 2013). Hydrophilicity and toxicity are 
inversely related to each other (Li et al., 2022). Thus the presence of a 
greater number of this descriptor in a molecule makes it less toxic as 
shown in compound 67. On the other side, the presence of less number of 
hydrophilic groups in a molecule leads to an increase the toxicity as 
shown in compound 11 (depicted in Fig. 4) 

5 T(O.Cl) 2D Atom pair Sum of topological distances between 
O.Cl 

-ve The negative regression coefficient of this descriptor indicates that it is 
inversely correlated with the pesticide’s toxicity towards avian species 
thus the presence of more of this fragment makes the compound less toxic 
as shown in compound 33 and conversely occurs in compound 84 
(depicted in Fig. 4). 

(continued on next page) 
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3.6. Comparison with previous work 

As the composition of the training and test sets, endpoints used, as 
well as the algorithms used for model development are not the same, we 
can’t perform a rigorous comparison, so we have attempted to represent 

some simple comparative studies between the current work and previ
ously reported literature. Mukherjee et al. (Mukherjee et al., 2021) 
developed the models using small data sets in comparison with current 
work. Basanta et al. (Basant et al., 2015) used tree-based approaches to 
build QSTR and i-QSTR models for various avian species. Banjare et al. 

Table 4 (continued ) 

S. 
no 

Descriptor Type Function Contribution Mechanistic introspection 

6 nBridgeHead Ring descriptors Number of bridgehead atoms +ve Usually, bridgehead atoms have a complex structure as well as toxic ( 
Kumar et al., 2023) which is demonstrated in compound 19. Conversely, 
the absence of bridgehead atoms makes the compound less toxic as shown 
in compound 110 (demonstrated in Fig. 4). 

MD oral pLC50 

1 MW Constitutional 
descriptor 

Molecular weight +ve This descriptor is directly related to molecular bulkiness and lipophilicity 
(Hou et al., 2004; Khan et al., 2019). Usually, lipophilic compounds easily 
cross the lipophilic membrane of the reference species which ultimately 
leads to enhancement in toxicity as demonstrated in compound 546 and 
oppositely occurs in compound 503 (given in Fig. 5). 

2 C-012 Atom-centered 
fragments 

CR2X2 (X is a hetero atom (O, N, S, P, 
Se, or halogens) and R is a carbon- 
linked group) 

+ve This descriptor enhances the molecular size as well as the 
electronegativity of the compound due to the presence of heteroatom, 
which ultimately leads to enhancement in toxicity of diverse pesticides 
against avian species by incorporating oxidative stress (Kar et al., 2020) 
as demonstrated in compound 445, and vice-versa occurs in compound 
144 (depicted in Fig. 5). 

3 B07[O-P] 2D Atom Pair presence of O – P at topological 
distance 7 

+ve Oxygen and phosphorus are highly electronegative atoms and their 
presence makes the compound more toxic (due to increment in oxidative 
stress in reference species) (Roy and Roy, 2021). The presence of a long 
carbon chain (lipophilicity) also contributes to toxicity. This 
phenomenon is demonstrated in compound 3 and vice versa occurs in the 
case of compound 145 (illustrated in Fig. 5). 

4 Br-094 Atom-centered 
fragments 

Br attached to C1(sp2) +ve The Br-094 descriptor refers to the presence of the halogen group 
(bromine). Thus, the presence of more electronegative/halogen atoms 
(bromine) makes the compound more toxic as demonstrated in 
compound 28. Conversely, absence of this atom/fragment tends to 
decrease the toxicity as shown in compound 408 (depicted in Fig. 5). 

5 B05[C-P] 2D Atom pair C – P situated at topological distance 
5 

+ve The presence of the phosphate group enhances the toxicity of the 
compound (Vervloet, 2019b). This is evidenced in compound 4. In 
opposition, absence of this fragment tends to decrease the toxicity as 
shown in compound 530 (provided in Fig. 5). 

6 F04[C-Cl] 2D Atom pair C – Cl situated at topological distance 
4 

+ve This descriptor refers to the existence of a large electronegative atom 
such as chlorine, which has a high atomic refractivity and 
electronegativity (Khan and Roy, 2019). Thus, the presence of a greater 
number of this fragment results in high toxicity toward avian species as 
shown in compound 24 and vice versa occurs in compound 562 
(provided in Fig. 5). 

RNP oral pLC50 

1 X2A Connectivity indices 
descriptor 

Average connectivity index of order 2 -ve The negative regression coefficient of this descriptor indicates that higher 
numerical value of this descriptor leads to a decrease in toxicity as shown 
in compound 13 and vice versa in the case of compound 51 (given in  
Fig. 6). X2A is inversely correlated with hydrophobic interaction as well 
as toxicity (Arvidsson et al., 1971; Roy and Das, 2013). 

2 nRCONHR Functional group 
count 

Presence of secondary aliphatic 
amides 

+ve Aliphatic amides are considered to be toxic as well as reactive (Schultz 
et al., 2006). The positive regression coefficient of this descriptor 
indicates that presence of this fragment may increase the toxicity as 
demonstrated in compound 90 and toxicity value may be decreased if the 
compounds have no such fragment as represented in compound 104 
(shown in Fig. 6). 

3 nN(CO)2 Functional group 
count 

Number of imides (-thio) -ve Generally, this feature helps to facilitate hydrolysis of the compounds 
which facilitates quick excretion from the body of the reference organism 
resulting in a reduction of their toxic effects (Krishna et al., 2020) as 
demonstrated in compound 58 and the absence of this fragment tends to 
increase the toxicity as shown in compound 101 (illustrated in Fig. 6). 

4 B04[C-P] 2D Atom pair C – P situated at topological distance 
4 

+ve The presence of an electronegative atom (like phosphorous) enhances the 
toxicity of the diverse pesticides by incorporating oxidative stress in 
avian species (Mukherjee et al., 2021; Kumar et al., 2024) as evidenced 
by compound 3. On the other hand, the absence of this fragment leads to 
a decrease the toxicity as shown in compound 10 (described in Fig. 6). 

5 B05[P-Cl] 2D Atom pair Presence of P – Cl at topological 
distance 5 

-ve The negative regression coefficient of this descriptor indicates that 
presence of more number of this fragment reduces the toxicity as 
demonstrated in compound 105 and oppositely occurs in case of 
compound 62 (depicted in Fig. 6). 

6 F03[O-S] 2D Atom pair Frequency of oxygen and sulfur which 
are situated at topological distance 3. 

-ve This descriptor is directly related to the polarity (presence of polar bond) 
(Mukherjee et al., 2021) of the compound, as a result the hydrophilicity 
of the compound increase and thus toxicity will decrease which is 
evidenced by compound 85 and vice versa in case of compound 9. 
(represented in Fig. 6).  
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(Banjare et al., 2021) presented QSTR and i-QSTR models for three avian 
species using a classification approach. Podder et al. (Podder et al., 
2023; O’Boyle et al., 2011) developed a regression-based QSTR and 
i-QSTR models against multiple avian species (MD, BQ, and ZF). 
Leszczynski et al. (Kar and Leszczynski, 2020) reported ecotoxicity 
QSTR and i-QSTR modeling of chemicals to avian species. While 
regression models provide explicit quantitative predictions, 

classification approaches can be useful for data filtering at the outset of 
research. The current models are built using a regression-based method 
and a limited number of simple, 2D, and easily interpretable descriptors. 
In this work, we have tried to develop first PLS-based QSTR model 
considering LC50 as an endpoints to assess the toxicity of diverse pesti
cides against multiple avian species. Regression-based technique is an 
assertive and effective approach that can confidently tackle challenges 

Fig. 3. Positive and negative contribution of model descriptors towards BQ.  

Fig. 4. Positive and negative contribution of model descriptors towards JQ.  
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such as descriptor inter-correlation, high levels of noise, collinearity, 
and a large number of descriptors. In the present work, we have 
developed the models using large datasets of different avian species. So, 
it has a wide domain of applicability compared to previous studies. 
Additionally, we used read-across algorithm to enhance the external 
predictivity and it is widely used for data-gap filing as well as widely 

accepted and recommended by regulatory bodies Apart from the pre
vious studies, and consequently read-across prediction shows a better 
result than the previous model except for MD. Apart from the previous 
studies, we get additionally some new findings (specifically observation) 
which are related to pesticide toxicity towards avian species such as 
presence of C-012 (CR2X2), B07[O-P] (Presence/absence of O–P at 

Fig. 5. Positive and Negative contribution of model descriptors towards MD.  

Fig. 6. Positive and Negative contribution of model descriptors towards RNP.  
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Table 5 
Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase 
(PPDB).  

Sl. 
no. 

Pesticide Safety and 
Hazards 

Sources 

Top 20 most toxic screened pesticides from Pesticide Properties DataBase 
(PPDB). 

1 Imicyafos Acute toxic, 
Irritant. 

https://pubchem.ncbi.nlm.nih. 
gov/compound/18772487#s 
ection=Safety-and-Hazards 
&fullscreen=true 

2 Pirimiphos-ethyl Acute toxic, 
Environmental 
Hazard. 

https://pubchem.ncbi.nlm.nih. 
gov/compound/31957#s 
ection=Safety-and-Hazards 
&fullscreen=true 

3 Quinothion Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/89714#secti 
on=Toxicity&fullscreen=true 

4 Pirimiphos-methyl Irritant, Health 
hazard, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/34526#s 
ection=Safety-and-Hazards 
&fullscreen=true 

5 Etrimfos Irritant, 
Environmental 
Hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37995#s 
ection=Safety-and-Hazards 
&fullscreen=true 

6 Buminafos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/39966#secti 
on=Toxicity&fullscreen=true 

7 Diazinon Irritant, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/3017#s 
ection=Safety-and-Hazards 
&fullscreen=true 

8 Quintiofos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/72069#secti 
on=Toxicity&fullscreen=true 

9 Phoxim Irritant, Health 
hazard, and 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/9570290#s 
ection=Safety-and-Hazards 
&fullscreen=true 

10 Inezin Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/30772#secti 
on=Toxicity&fullscreen=true 

11 Dufulin Oxidative stress 
inducer 

(Yu et al., 2021). 

12 Chlorphoxim Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/5360461#s 
ection=Safety-and-Hazards 
&fullscreen=true 

13 Pyridaphenthion Irritant https://pubchem.ncbi.nlm.nih. 
gov/compound/8381#s 
ection=Safety-and-Hazards 
&fullscreen=true 

14 Triazophos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/32184#s 
ection=Safety-and-Hazards 
&fullscreen=true 

15 Isoxathion Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/29307#s 
ection=Safety-and-Hazards 
&fullscreen=true 

16 Naftalofos Acute toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/15148#s 
ection=Safety-and-Hazards 
&fullscreen=true 

17 Quinalphos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/26124#s 
ection=Safety-and-Hazards 
&fullscreen=true 

18 Butamifos Irritant, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37419#s 
ection=Safety-and-Hazards 
&fullscreen=true 

19 Sulprofos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/37125#s 
ection=Safety-and-Hazards 
&fullscreen=true  

Table 5 (continued ) 

Sl. 
no. 

Pesticide Safety and 
Hazards 

Sources 

20 Edifenphos Acute toxic, 
Environmental 
hazard 

https://pubchem.ncbi.nlm.nih. 
gov/compound/28292#s 
ection=Safety-and-Hazards 
&fullscreen=true 

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB). 
1 Ferbam non-toxic https://www3.epa.gov/pestici 

des/chem_search/reg_actions/re 
registration/fs_PC-034801_0 
1-Sep-05.pdf 

2 Hexylene glycol less toxic https://hpvchemicals.oecd. 
org/ui/handler.axd?id=3c 
2a8190–8500–467c-af27-a636e 
6636c38 

3 Bisthiosemi moderate toxic https://www.drugfuture.com/ 
toxic/dir/5061.html 

4 Choline chloride less toxic http://sitem.herts.ac.uk/aeru 
/iupac/Reports/161.htm 

5 Glutaraldehyde less toxic https://archive.epa. 
gov/pesticides/reregistration/w 
eb/pdf/glutaraldehyde-red.pdf 

6 Fumaric acid less toxic https://www.sciencedirect.co 
m/science/article/pii/S0095 
955315310854 

7 Lime sulphur less toxic https://www.ams.usda.gov/s 
ites/default/files/media/Lime% 
20Sulfur%20Evaluation%20TR. 
pdf 

8 Methyl isobutyl 
ketone 

less toxic https://www.epa.gov/sites 
/default/files/2016–09/docu 
ments/methyl-isobutyl-ketone. 
pdf 

9 Sodium 
tetrathiocarbonate 

moderate toxic https://www.sciencedirect.co 
m/topics/agricultural-and-biolo 
gical-sciences/thiocarbonate 

10 1,2- 
dichloropropane 

less toxic https://wedocs.unep.org/bitstre 
am/handle/20.500.11822/ 
29625/HSG76.pdf?sequence 
=1&isAllowed=y 

11 Metam less toxic https://archive.epa.gov/pes 
ticides/chemicalsearch/chemic 
al/foia/web/pdf/039003/0 
39003–028.pdf 

12 Methylene 
bisthiocyanate 

less toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/2905.htm 

13 Bentonite Nontoxic https://digitalfire.com/h 
azard/bentonite+toxicity#:~:te 
xt=Bentonite%20is%20a%20 
ground%20naturally,flush%20t 
o%20remove%20the%20part 
icles. 

14 Butanethiol moderate toxic https://pubchem.ncbi.nlm.nih. 
gov/compound/1-Butanethiol 

15 Sodium 
monochloroacetate 

moderate toxic https://tera.org/OARS/Sodium 
%20Chloroacetat%20 
(3926–62–3)%20WEEL%2020 
16%20public%20comment.pdf 

16 Fluoroacetamide high toxic http://sitem.herts.ac.uk 
/aeru/ppdb/en/Reports/338.ht 
m 

17 Sodium 
monofluoroacetate 

high toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/3160.htm 

18 Propylene glycol less toxic https://downloads.regulations. 
gov/EPA-HQ-OPP 
-2013–0218–0007/content.pdf 

19 Peroxyacetic acid moderate toxic https://www.federalregister. 
gov/document 
s/2000/12/01/00–30679/pe 
roxyacetic-acid-exempti 
on-from-the-requirement-of-a-t 
olerance#:~:text=Because% 
20of%20the%20low%20toxicit 
y,not%20pose%20a%20dietary 
%20risk 

20 2-hydrazinoethanol moderate toxic http://sitem.herts.ac.uk/aeru/ 
ppdb/en/Reports/2803.htm  
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topological distance 7), Br-094 (Br attached to C1(sp2)), B05[C-P] 
(Presence/absence of C–P at topological distance 5), F04[C-Cl] (Fre
quency of C–Cl at topological distance 4) and nRCONHR (number of 
secondary amides (aliphatic)) enhances the pesticides toxicity towards 
avian species; on the other hands, presence of nN(CO)2 (number of 
imides (-thio)) and B05[P-Cl] (Presence/absence of P–Cl at topological 
distance 5) reduces the pesticides toxicity towards avian species. 
Furthermore, our work highlighted some extra features not mentioned 
in the previous studies, which are useful for pesticide toxicity assessment 
viz. molecular weight, presence of heteroatom, presence of bridgehead 
atoms, secondary aliphatic amide, and molecular refractivity. On the 
other hand, features like molecular branching and the presence of thio 
imides contribute negatively towards the toxicity. The PPDB database 
was screened using developed models to show the predictivity as well as 
application in the real-world data of the developed models. The current 
study’s comparison to previously published studies is depicted in  
Table 6. 

4. Conclusion 

In summary, this study employs a range of chemometric tools to 
predict pesticide toxicity for four different avian species. The research 
focuses on creating robust and easily interpretable QSTR models based 
on OECD principles. The study’s statistical validation parameters 
consistently demonstrate the strength and reliability of the constructed 
PLS-based QSTR-read across models. External validation metrics, 
employing the read-across algorithm, show slightly superior perfor
mance in predicting toxicity, except for the mallard duck dataset. 
Additionally, we have developed classification models and employed 
two Machine Learning algorithms SVM and RF to evaluate their effec
tiveness in constructing models and making predictions. The PLS-based 
QSTR models with read-across predictions produce better statistical 
results (such as the lowest prediction error for the test set compounds, as 
indicated by the MAEtest value) as compared to ML-based models against 
all of the avian species. 

Furthermore, this research develops regression-based models, sur
passing previous studies in terms of the dataset’s size, the variety of 
avian species examined, domain of applicability features responsible for 
toxicity, model quality, algorithm used as well as the endpoint (LC50). 

The findings highlight the significance of electronegativity, molecular 
weight, imide count, lipophilicity, and steric effects in avian toxicity. 
Additional findings (descriptors) such as C-012, B07[O-P], Br-094, B05 
[C-P], F04[C-Cl], nRCONHR, nN(CO)2, and B05[P-Cl] were observed in 
this study which is related to pesticides toxicity towards avian species. 
Notably, the presence of C-P fragments at specific topological distances 
and electronegative groups intensifies toxicity, while features like 
branching and hydrogen bond acceptor characteristics reduce it. 

The validation of the predicted toxicity of the screened compounds 
by experimental data demonstrated the reliability and feasibility of 
applying the developed models for screening pesticides, offering valu
able support to researchers striving to design eco-friendly and safe 
chemical pesticides. They effectively bridge gaps in toxicity data and 
simplify the evaluation of novel pesticides for various bird species. 
Moreover, these models significantly reduce the time, resources, costs, 
and the need for animal testing, aligning with the principles of reduc
tion, refinement, and replacement (RRR) in research practices. 
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Table 6 
Comparison table with previous work.  

Source Organisms 
used 
in this 
study 

Defined 
endpoint 

Model LV Features Training set Test set 

Ntrain R2 Q2
Loo Ntest Q2

F1 Q2
F2 

In this present 
study 

BQ LC50 PLS-Read across 2 6 411 0.64 0.60 137 0.61–0.69 0.61–0.69 
JQ 2 6 77 0.63 0.55 34 0.53–0.70 0.51–0.69 
RNP 2 6 82 0.63 0.53 30 0.60–0.71 0.60–0.71 
MD 1 6 377 0.60 0.58 162 0.71–0.75 0.63–0.68 

(Mukherjee 
et al., 2021) 

BQ LD50 PLS 3 10 103 0.65 0.58 25 0.64 0.64 
JQ 2 3 – 0.73 0.59 – – – 
RNP 2 4 22 0.76 0.60 7 0.64 0.64 
MD 2 7 49 0.65 0.56 13 0.65 0.57 
HS 1 2 – 0.91 0.86 – 0.94 0.88 

Mazzatorta et al ( 
Kim, 2019). 

BQ LD50 GA-SVM – – 94 – – 19 — — 

Podder et 
al (O’Boyle 
et al., 2011). 

BQ LD50 MLR - 7 278 0.715–0.719 0.694–0.700 88 0.722–0.732 0.722–0.732 
MD - 8 182 0.689–0.708 0.626–0.695 65 0.620–0.639 0.620–0.638 
ZF - 5 40 0.754–0.758 0.697–0.722 13 0.787–0.830 0.786–0.829 

(Banjare et al., 
2021). 

BQ LD50 GA-LDA along with 
interspecies 
correlation 

- - 203 - - 67 - - 
MD - - 143 - - 60 - - 
ZF - - 31 -  12 -  

(Basant et al., 
2015). 

BQ LD50 Tree-based QSAR 
approaches 

- - 98 - - 33 - - 

(Kar and 
Leszczynski, 
2020). 

BQ LD50 GFA-PLS 3 5 41 0.67 0.63 15 0.70 0.68 
MD 2 5 42 0.75 0.67 14 0.88 0.87 
RNH 3 4 20 0.89 0.80 7 0.87 0.87 

LV: Latent variable; PLS: Partial least square; SVM: Support vector machine. 
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the work reported in this paper. 
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Wold, S., Sjöström, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. 
Chemom. Intell. Lab. Syst. 58 (2), 109–130. https://doi.org/10.1016/S0169-7439 
(01)00155-1. 

Yu, Y., Zhu, Y., Yang, J., Zhu, W., Zhou, Z., Zhang, R., 2021. Effects of Dufulin on 
Oxidative Stress and Metabolomic Profile of Tubifex. Metabolites 11 (6), 381. 
https://doi.org/10.3390/metabo11060381. 

Zhang, C., Cheng, F., Sun, L., Zhuang, S., Li, W., Liu, G., Lee, P.W., Tang, Y., 2015. In 
silico prediction of chemical toxicity on avian species using chemical category 
approaches. Chemosphere 122, 280–287. https://doi.org/10.1016/j. 
chemosphere.2014.12.001. 

S. Das et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0957-5820(24)00617-7/sbref38
http://refhub.elsevier.com/S0957-5820(24)00617-7/sbref38
http://refhub.elsevier.com/S0957-5820(24)00617-7/sbref38
https://doi.org/10.1016/j.chemolab.2011.08.007
https://doi.org/10.1016/j.chemosphere.2020.126508
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1007/s11356-022-21937-w
https://doi.org/10.1007/s11356-022-21937-w
https://doi.org/10.1039/D3VA00163F
https://doi.org/10.1039/D3VA00163F
https://doi.org/10.1021/acsomega.8b01647
https://doi.org/10.1016/j.jhazmat.2013.03.023
https://doi.org/10.1016/j.jhazmat.2013.03.023
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1016/j.chemolab.2015.04.013
http://refhub.elsevier.com/S0957-5820(24)00617-7/sbref47
http://refhub.elsevier.com/S0957-5820(24)00617-7/sbref47
https://doi.org/10.1016/j.chemolab.2007.07.004
https://doi.org/10.1039/D1EN00733E
https://doi.org/10.1039/D1EN00733E
https://doi.org/10.1021/acs.est.2c07353
https://doi.org/10.1021/acs.est.2c07353
https://doi.org/10.1080/1062936X.2015.1090749
https://doi.org/10.1080/1062936X.2015.1090749
https://doi.org/10.1007/s10565-006-0079-z
https://doi.org/10.1007/s10565-006-0079-z
https://doi.org/10.1007/s40192-022-00266-3
https://doi.org/10.1021/tx500100m
https://doi.org/10.1021/tx500100m
https://doi.org/10.5806/AST.2011.24.6.544
https://doi.org/10.1007/978-1-0716-0150-1_26
https://doi.org/10.1007/978-1-0716-0150-1_26
https://doi.org/10.1016/j.ecoenv.2012.03.018
https://doi.org/10.1016/j.ecoenv.2012.03.018
https://doi.org/10.2174/157340911798260359
https://doi.org/10.2174/157340911798260359
https://doi.org/10.1002/ps.2082
https://doi.org/10.1002/ps.2082
https://doi.org/10.1021/acs.jcim.6b00277
https://doi.org/10.3390/toxins11090522
https://doi.org/10.3390/toxins11090522
https://doi.org/10.1016/j.jhazmat.2020.123724
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.3390/metabo11060381
https://doi.org/10.1016/j.chemosphere.2014.12.001
https://doi.org/10.1016/j.chemosphere.2014.12.001

	Chemometrics-driven prediction and prioritization of diverse pesticides on chickens for addressing hazardous effects on pub ...
	1 Introduction
	2 Methods and materials
	2.1 Collection and curation of toxicity data of diverse pesticides
	2.2 Descriptor calculation
	2.3 Dataset division and descriptor selection
	2.4 Read – Across and calculation of the RASTR descriptor
	2.5 q- RASTR feature selection and model development
	2.6 Application of other machine learning (ML) algorithms
	2.7 Statistical validation metrics and Y-randomization
	2.8 Screening of the Pesticide Properties DataBase (PPDB)
	2.9 Software used

	3 Results and discussion
	3.1 PLS-based QSTR and q-RASTR models
	3.1.1 PLS-based QSTR model for pLOEL and pNOEL endpoints
	3.1.2 PLS-based q-RASTR model for pLOEL and pNOEL endpoints

	3.2 Results of ML-based q-RASTR model
	3.3 Regression coefficient plot
	3.4 Variable importance plot (VIP)
	3.5 Loading plot
	3.6 Applicability domain (AD)
	3.7 Mechanistic interpretation
	3.7.1 Mechanistic interpretation of descriptors employed in Model M3 (pLOEL)
	3.7.2 Mechanistic interpretation of descriptors employed in Model M4 (pNOEL)

	3.8 Pesticide Properties DataBase screening

	4 Conclusions
	Environmental implications
	Funding sources
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supporting information
	References

	Comprehensive ecotoxicological assessment of pesticides on multiple avian species: Employing quantitative structure-toxicit ...
	1 Introduction
	2 Methods and materials
	2.1 Preparation of dataset & curation
	2.2 Descriptor calculation & data pre-treatment
	2.3 Dataset division
	2.4 Selection of features and model building
	2.5 Validation metrics of QSTR models
	2.6 Prediction using read-across algorithm
	2.7 Model’s applicability domain study
	2.8 Y-randomization study
	2.9 Analysis of parametric assumptions of the developed models
	2.10 Application of other machine learning (ML) algorithms
	2.11 Classification based QSTR (LDA-QSTR) model development
	2.12 Screening of the Pesticide Properties DataBase

	3 Results and discussion
	3.1 Regression coefficient plot
	3.2 Variable importance plot (VIP)
	3.3 Loading plot
	3.4 Mechanistic interpretation of PLS models
	3.5 Pesticide Properties DataBase screening
	3.6 Comparison with previous work

	4 Conclusion
	Funding sources
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Author contributions
	Additional contents
	Appendix A Supporting information
	References


