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Preface

This dissertation is presented for the partial fulfilment of the degree of Master of Pharmacy
in Pharmaceutical Technology. The work presented in this dissertation is spread over two years,
which encompasses the development of PLS-based Quantitative Structure-Toxicity
Relationship (QSTR) and ¢-RASTR (Quantitative Read-Across Structure-Toxicity
Relationship) models using easily interpretable two-dimensional (2D) molecular descriptors
for efficient prediction of toxicity of diverse organic compounds towards Birds. The
significance of this research is underscored by its practical application, which extends beyond
the realm of theory and into the screening of chemical databases, enabling the identification of

substances that may pose risks to both human health and the environment.

The identification and evaluation of toxicity in chemical compounds are of paramount
importance in addressing potential health risks, encompassing a spectrum of hazards including
carcinogenicity, genotoxicity, immunotoxicology, and developmental and reproductive
toxicity. These considerations underscore the integral role of toxicity prediction in the intricate
process of drug design and development. While preclinical and clinical trials serve as
indispensable means of assessing toxicity before public consumption, they are often
characterized by exorbitant costs, extensive labour requirements, prolonged timelines, the

potential for inconclusive outcomes, and practical infeasibility in certain scenarios.

In recent years, there has been a significant paradigm shift in the field of toxicology, with in
silico techniques becoming increasingly prominent as a rational alternative to traditional animal
testing for predicting toxicity and chemical properties. Driven by ethical considerations,
efficiency gains, and cost-effectiveness, and aligned with the 3Rs (replacement, refinement,
and reduction of animals in research), these computational methods offer rapid and versatile
solutions for assessing chemical toxicity across various compounds. From predicting diverse
toxicity types to aiding in drug discovery and environmental impact assessments, in silico
techniques are revolutionizing the way we approach chemical evaluation, aligning with both
scientific progress and ethical responsibility in the modern era. The classical approach to QSTR
owes much of its foundation to the pioneering research led by Hansch in 1960, utilizing
statistical modeling based on linear regression to elucidate the relationships between the
structural features of molecules and their activity/toxicity/property. The development of
predictive QSTR models represents a significant advancement in our ability to assess the
toxicological hazards and properties of chemical toxicants. These models are constructed based

on chemical information derived from molecular descriptors, enabling a systematic analysis of




how the structural features of chemicals relate to their toxicological behaviour.

Quantitative Structure-Toxicity Relationship (QSTR) modeling, especially when applied to a
large set of toxic compounds, often involves a multitude of descriptors, adding complexity and
potentially diminishing reliability and predictiveness. In such cases, the utilization of the Read
Across Structure-Toxicity Relationship (RASTR) model becomes a viable alternative. RASTR
combines the principles of similarity and error-based estimations, merging elements of both
read-across (a non-statistical approach) and traditional QSAR modeling. This approach
addresses challenges encountered in QSAR modeling related to external validation and the
interpretability of Read Across methods.

Recently, an enhanced iteration of the RASTR model, referred to as g-RASTR (Quantitative
Read Across Structure-Toxicity Relationship) modeling, has been introduced. g-RASTR
utilizes a blend of similarity and error-based descriptors in its modeling, achieving superior
predictive potential compared to both QSTR and read-across predictions. The strength of the
g-RASTR method lies in its capacity to incorporate information about similarity and error
measures into descriptors, facilitating the development of straightforward, interpretable,

transferrable, and reproducible models with enhanced predictive capabilities.

In the present study, predictive QSTR and g-RASTR models were developed using different
classes of simple 2D descriptors to estimate the toxicity of different organic compounds. We
attempted to explore the toxicity profile of different organic pollutants to make a more realistic
move toward risk assessment that could be useful in the development of safer or greener
chemicals. The predictive models were constructed strictly catering to OECD guidelines and
rigorously validated using various internationally accepted internal and external validation

parameters.

The following analyses have been performed in this dissertation:

Study 1. Chemometrics-driven prediction and prioritization of diverse pesticides on chickens
for addressing hazardous effects on public health.

Study 2. First report on g-RASTR modeling of hazardous dose (HDs) for acute toxicity of
pesticides: An efficient and reliable approach towards safeguarding the sensitive avian species.

Study 3. Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian
Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and Read-
Across.



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Y-uiwj4AAAAJ&sortby=pubdate&citation_for_view=Y-uiwj4AAAAJ:lSLTfruPkqcC

The accomplished work has been presented in this dissertation under the following sections:
Chapter 1: Introduction

Chapter 2: Present Work

Chapter 3: Materials and Methods

Chapter 4: Results and Discussion

Chapter 5: Conclusion

Chapter 6: References

Appendix: Reprints

In the “introduction” section, we have provided background information on various types of
pesticides and toxicity toward bird species, humans, and the environment, as well as the different
types of Quantitative Structures-Activity Relationship (QSAR) models. We have outlined the
general QSAR procedure and conducted a brief survey of QSAR modeling for predicting the
toxicity of chemicals and pharmaceuticals to humans and the environment. Additionally, we have
discussed the applications of QSAR by governing and regulatory authorities are also discussed.
The planned work has been discussed in the section of Present Work. The descriptors and
methodologies have been given in the ‘Materials and Methods’ section while the results have
been discussed in ‘Results and Discussion’ section. Finally, ‘Conclusions’ has been incorporated
followed by ‘References’ and ‘Reprints’. It is worth mentioning here that the author has already
published the present work in referred journals like the Journal of Hazardous Material (Elsevier)
and Process Safety and Environmental Protection (Elsevier) and also presented in different national
and international seminars and conferences. Another research paper of the author has been
communicated for publication in a journal. Reprints of the published papers and abstracts of the
presentations have been enclosed.

Finally, the work done and presented in this dissertation constitutes a small part of the broad
spectrum of envisaged works. Considering the stipulated time limit only some representative and
relevant studies could be performed. Many other interesting aspects arising out of this work could

have been investigated in a far more meaningful way, which can be planned in the future.
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Abbreviations

Full forms
2-D Two dimensional
AD Applicability domain
Abs Max Pos- The absolute difference between the
Max neg MaxPos and MaxNeg values
BQ Bobwhite quail
BSS Best subset selection
CA Cluster analysis
CVsim Coefficient of variation of the similarity
values of the close source compounds
CCC Concordance correlation coefficient
CAS Chemical abstracts service
EPA Environmental protection agency
EU Europian union
ED Euclidean distance
GA Genetic algorithm
gm*Avg.Sim Product of the values of gm and Avg.
Sim
gm*SD Similarity Product of the values of gm and SD
similarity
HD Hazardous dose
LOO Leave one out
LV Latent variable
LD Lethal dose
LC Lethal concentration
LOEL Lowest observed effect level
LDA Linear discriminant analysis
MAE Mean absolute error
MLR Multiple linear regression
MW Molecular weight
ML Machine learning
MAPE Mean absolute percentage error

Abbreviations Full forms

NOEL No observed effect level
OECD Organization for Economic Co-operation
and Development
PPDB Pesticide properties database
PRESS Predictive residual sum of square
QSAR Quantitative structure-activity relationships
QSPR Quantitative structure-property relationship
QSTR Quantitative structure-toxicity relationship
g-RASAR Quantitative Read Across Structure-Activity
Relationship
g-RASTR Quantitative Read Across Structure-Toxicity
Relationship
Q%Loo Cross-validated correlation coefficient
REACH Registration, Evaluation, Authorisation and
Restrictions of Chemicals
R%m Root mean square
RF Random forest
RR Ridge regression
RMSE Root mean square error
SD Standard deviation
SE Weighted standard error of the response
values of the close source compounds
SAR Structure-Activity Relationship
SVM Support vector machine
SVR Support vector regression
SMILES Simplified molecular input line entry system
SDEP standard deviation of error of prediction
VIP Variable importance plot
WHO World health organization
Ycalc(train)

Calculated response value of training set

Y mean(train) Average of all response of training set

Y calc(test) Calculated response value of test set
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Chapter 1 Introduction

1. INTRODUCTION

1.1 Toxicity

The term "toxicity" refers to the degree to which a chemical or specific combination of chemicals
can harm an organism. In common use, the word is occasionally almost a synonym for poisoning.
It is essential to understand that the effects of a toxin depend on the dosage. For example,
drinking too much water can lead to water intoxication, while even highly toxic substances like
snake venom have a threshold below which they do not cause harm [1]. Toxicity can manifest
in various ways, such as disrupting the body's balance, causing irreversible damage to function
or structure, or making an individual more susceptible to other chemicals, biological stress, and
infections. Given that our society relies on various chemicals, itis crucial to understand how they
interact with the environment and their potential toxic effects. Elevated levels of certain
chemicals or prolonged exposure to them can result in significant harm to the affected organism,
with the most severe outcome being potential death [2]. The severity of toxic effects depends on
factors such as the type of chemical, its concentration, the duration of exposure, and the
sensitivity of the organism. Some adverse effects may be subtle and go unnoticed, while others
can be immediately life-threatening. Regulatory bodies and environmental agencies play a
crucial role in monitoring and regulating the use of toxic chemicals to minimize the risks to
human health and the environment.

1.1.1 Toxicity of pesticides

Pesticides are chemical compounds that are used to eliminate insects, rodents, fungi, and weeds.
These consist of plant growth regulators, molluscicides, rodenticides, fungicides, insecticides,
herbicides, nematicides, and other substances [3-4]. It plays important roles in commercial as
well as food-based industrial processes, such as aquaculture, agriculture, food processing, and
storage, and is typically employed to prevent infections spread by vectors [5]. Any living bodies,
either animals or plants, which are harmful for humans or animals are known as pests. Pesticides
are chemicals used to eradicate pests or stop them from growing. Various chemical compounds
have been used since ancient times to control pests. Sulfur compounds and pyrethrum, a pesticide
derived from the Chrysanthemum cinerariaefolium plant, have been utilized for over 2000 years
[6-7]. The global pesticide consumption in 2019 was approximately 4.19 million metric tons,
where China was by far the largest pesticide-consuming country (1.76 million metric tons),
followed by the United States (408 thousand tons), Brazil (377 thousand tons), and Argentina
(204 thousand tons) [8]. India is one of the major pesticide-producing countries in Asia, with an
annual production of 90 thousand tons of organochlorine pesticides, including benzene

hexachloride and DDT [9]. Pests, insects, diseases, and weeds can significantly reduce crop
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Chapter 1 Introduction

production, making pesticides crucial for food production and processing. Warren (1998) [10]
also noted a substantial increase in food production in the United States over the 20th century.
Pesticides are used to increase agricultural output and food preservation while ignoring their
associated risks. Overuse, exposure, and harmful consequences can all be mitigated by applying
it judiciously and utilizing different pesticide categories (World Health Organization, 2009).
Widespread pesticide usage has been associated with various detrimental effects, highlighting
the need for effecting waste management strategies to address pesticide issues. Pesticide
biodegradation offers an environmentally friendly solution for controlling pesticide pollution in
the long term. Microorganisms play a significant role in breaking down pesticides and have
various uses in promoting human welfare. Recent studies have shown that microorganisms
isolated from sewage or soil have the potential to degrade pesticides. These microbes encompass
bacterial, fungal strains, actinomycetes, algae, and more [11]. The entire process, including
pesticide synthesis, manufacturing, environmental and health impacts, and pesticide
biodegradation, is illustrated in Figure 1.1.

The use of pesticides has increased significantly in recent decades, particularly in agriculturally
dependent developing countries. Due to the inherent characteristics, a significant portion of the
applied dose continues to remain as remnants on crops and fields. Large amounts of pesticides
have been found in crops, vegetation, and further edible products causing exposure to both
animals and humans. According to reports, prolonged exposure to these substances can harm a
person's nervous, endocrine, reproductive, immunological, cardiovascular, renal, and respiratory
systems. In light of the aforementioned, various regulatory authorities have emphasized the need
for the toxicity evaluation of both new and existing pesticides [12]. The avian toxicity tests are
essential for regulatory approval and licensing of the active ingredients of pesticides.

INGESTION

Hazardous
effects

//' - ‘\\\
/

[ \\\
( IMANS
IMPLEMENTA ‘\ HUMANS )
TION OF
AGRICULTUR

N
~

AL FIELD V \\\
. [ rLants ) g
\ )
\
R
N -
N =
// AVIAN | Z
| SPECIES |
N y,
« — -
» .
$g Ve \\
INDUSTRIAL PROTECTION ANIMALS |
CCTTOTV T v /
PESTICIDE PRODUCTION Hazardous \_ /

(FORMULATION) effects ~_

Exposure pathways

Figure 1.1. Thematic diagram of the synthesis, production, uses effects, and eco-friendly
management of pesticides.

Page 2



Chapter 1 Introduction

1.1.2 Classification of pesticides

Pesticides are a diverse group of substances that include insecticides, herbicides, fungicides,
rodenticides, wood preservatives, garden chemicals, and household disinfectants. These
chemicals are used to Kkill or protect against pests [13]. These pesticides differ in their physical,
chemical, and identical properties from one class to other. Therefore, it is worthy to classify
them based on their properties and study under their respective groups. Synthetic pesticides are
manmade chemicals and do not occur in nature. They are categorized into various classes
depending on the needs. Currently, there are three popular methods of pesticide classification
suggested by Drum [14]. These three popular methods of pesticide include (i) classification based
on the mode of entry, (ii) classification based on pesticide function and the pest organism they
kill, and (iii) classification based on the chemical composition of the pesticide.

1.1.2.1 Classification based on the mode of entry

The ways pesticides come in contact with or enter the target are called modes of entry. These
include systemic, contact, stomach poisons, fumigants, and repellents.

1.1.2.1.1 Systemic pesticides

Systemic pesticides are chemicals that are absorbed by plants or animals and then spread to
untreated parts of the organism. Systemic herbicides can move through the plant to reach areas
that were not directly treated, such as leaves, stems, or roots, and effectively kill weeds even
with partial spray coverage. They have the ability to penetrate plant tissues and move through
the plant’s vascular system to target specific pests. Some systemic insecticides are also applied
to animals and move through their bodies to control pests like warble grubs, lice, or fleas. When
applied to the root zone, systemic pesticides will travel throughout the plant, but if applied to the
leaves, they will not move throughout the plant. Additionally, a few pesticides are considered
locally systemic, affecting only a short distance in a plant from the point of contact. Examples
of systemic pesticides include 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate.
1.1.2.1.2 Non-systemic (contact) pesticides

Non-systemic pesticides, also known as contact pesticides, only work when they come into direct
contact with the target pests. They enter the pests' bodies through the skin and cause death by
poisoning. These pesticides do not spread through the plant's vascular system. Some examples
of contact pesticides are paraquat and diquat dibromide.

1.1.2.1.3 Stomach poisoning and stomach toxicants

Pesticides that cause stomach poisoning enter pests' bodies through their mouth and digestive
systems, leading to their death. Pests ingest these stomach poisons while feeding on leaves and
other parts of the plants. The toxins can also be absorbed into the insect's body through the mouth
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and digestive system. This method is particularly effective in controlling disease-carrying
insects, such as mosquitoes and black flies, by applying bacteria or toxins to the water where
larvae feed. These insecticides work by destroying the midgut or stomach of the larvae,
ultimately killing them. An example of such a pesticide is malathion.

1.1.2.1.4 Fumigants

Fumigants are insecticides that function by vaporizing the target pests, possibly killing them.
When these herbicides are used, toxic gasses are produced. Through spiracles, these vaporized
insecticides enter the pests' bodies through their tracheal system (respiratory system) and poison
them, killing them. When compressed under extreme pressure, some of their active constituents
are liquids; yet, upon release, they transform into gasses. Other active chemicals are not
formulated under pressure and, when enclosed in a regular container, are volatile liquids. Fruits,
vegetables, and cereals are treated with fumigants to get rid of pests from stored goods. They
play a crucial role in soil pest management as well.

1.1.2.1.5 Repellents

Repellents do not kill but are distasteful enough to keep pests away from treated
areas/commodities. They also interfere with pest’s ability to locate crops.

1.1.2.2 Classification based on pesticide function and pest organism they kill

In this method, pesticides are categorized based on the specific pest organism they target and are
given names that reflect their activity. The group names of these pesticides come from the Latin
word "cide,"” meaning "kill" or "killer," and are used as suffixes after the corresponding name of
the pests they kill (Table 1.1). It's important to note that not all the pesticides end with the suffix
“cide”. Additionally, some pesticides are classified based on their function, such as growth
regulators, defoliants, desiccants, repellents, attractants, and chemosterilants.

Table 1.1 Pesticide classification by target pests.

Type of pests Function Example
Insecticides Kill insects and other arthropods Aldicarb
Fungicides Kill fungi (including blights, mildews, molds, Azoxystrobin

and rusts)
Herbicides Kill weeds and other plants that grow where Atrazine

they are not wanted

Algaecides Control or kill growth of algae Copper sulfate

Bactericides Kill bacteria or act against bacteria Copper complexes

Rodenticides Control mice and other rodents Warfarin
Lervicides Inhibits growth of larvae Methoprene
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Repellents Repel pests by its taste or smell Methiocarb
Virucides Acts against viruses Scytovirin
Avicides Kill birds Awvitrol
Nematicides Kill nematodes that act as parasites of plants Aldicarb
Molluscicides Inhibit or kill molluscs i.e. snails usually Metaldehyde
disturb the growth of plants or crops

1.1.2.3 Classification based on chemical composition of pesticides

The most common and useful method of classifying pesticides is based on their chemical
composition and the nature of their active ingredients. This classification provides clues about
the efficacy, as well as the physical and chemical properties of the pesticides. The information
on the chemical and physical characteristics of pesticides is very useful for determining the
mode of application, the precautions that need to be taken during application, and the
application rates. Pesticides are classified into four main groups based on their chemical
composition such as organochlorines, organophosphorus, carbamates, and pyrethroids [15].
The chemical-based classification of pesticides is rather complex. Modern pesticides are
generally organic chemicals, including those of both the synthetic and plant origin, although

some inorganic compounds are also used. The classification of pesticides is presented in

Figure 1.2.

Insecticides ¢mm Systemic pesticides
Fungicides
Herbicides

Non-systemic
Algaecides (Contact)
pesticides
Bactericides
. Based on Pest Classification
Rodenticides Organism They based on the mode
Lervicides _ CLASSIFICATION OF mﬂ Stomach poisonin
PESTICIDES P g
and stomach
Classification Based on toxicants
Repellents — Chemical Composition
of Pesticides
Virucide R
Fumigants
Avicides Organochlorine Organophosphorus Carbamates Pyrethroids
Nematicides
Molluscicides Repellents

Figure 1.2. Classification of pesticides.
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1.1.3 Effects of pesticides

Despite the beneficial results of using pesticides in agriculture and the public health sector,
their use also invites harmful environmental and public health effects. Pesticides have a high
biological activity and toxicity, making them unique among environmental contaminants.
Most pesticides do not differentiate between pests and other incidental life forms, posing
potential harm to humans, animals, and the environment when used incorrectly. It is estimated
that 5,000-20,000 people die and about 500,000 to 1 million people are poisoned every year
by pesticides [16]. At least half of the affected individuals and 75% of those who die due to
pesticides are agricultural workers, while the rest are poisoned due to consuming contaminated
food.

1.1.3.1 Potential impact on human health

It's important to be aware that pesticides can enter the human body in several ways. These
include inhalation of polluted air, dust, and vapor containing pesticides, oral exposure through
consuming contaminated food and water, and dermal exposure through direct contact with
pesticides [17]. Pesticides are often sprayed onto fruits and vegetables and can end up in the
soil and groundwater, which may then contaminate drinking water. Additionally, pesticide
spray can drift and pollute the air. The harmful impact on human health depends on factors
such as the toxicity of the chemicals, the duration, and the magnitude of exposure [18]. The
toxicity of chemicals is influenced by the nature of the toxicant, routes of exposure (oral,
dermal, and inhalation), dose, and the organism. Toxicity can manifest as either acute or
chronic. Acute toxicity refers to the rapid development of harmful effects within a few hours
or a day after absorption, while chronic toxicity results from long-term exposure. The toxicity
of insecticides is often measured in terms of lethal dose 50% (LDso) or lethal concentration
50% (LCso). LDso is the single exposure dose per unit weight of the organism required to kill
50% of the test population, expressed in milligrams per kilogram of body weight. LCxo is the
concentration of the chemical in the external medium (usually air or water) causing 50%

mortality in the test population and is expressed in parts per million (ppm).
1.1.3.2 Impacts on the environment

The widespread use and disposal of pesticides by farmers, institutions, and the general public
create multiple potential sources of pesticides in the environment. These substances can have
far-reaching effects, spreading through the air, being absorbed in the soil, or dissolving in
water and ultimately reaching a much larger area than originally intended. Once released into
the environment, pesticides can take on different fates. For instance, when pesticides are
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sprayed on crops, they may travel through the air and end up in other parts in the environment,
such as soil or water. Pesticides applied directly to the soil may wash off and make their way
to nearby surface water through runoff, or seep down through the soil and reach lower layers
and groundwater [19]. The impact of pesticides on the environment can vary from minor
disruptions in the normal functioning of ecosystems to loss of species diversity. Pesticides can
have both long-term residual effects and immediate, severe impacts. For example, many
organochlorine pesticides persist in the environment for long periods, leading to contamination

of groundwater, surface water, food products, air, and soil.
1.1.3.3 Impacts on avian species

Avian species hold a unique position in the ecosystem as one of the most diverse and
evolutionary successful groups, especially in the tropics. Unfortunately, Europe has observed
a significant loss of around 550 million birds over the last forty years. This decline is primarily
attributed to the widespread use of pesticides and fertilizers in agriculture, as well as the effects
of climate change, changes in forest cover, and urbanization. Pesticides are important for
managing pests and improving crop productivity in modern agriculture, but they also pose
risks to non-target organisms like birds, raising significant environmental concerns [20]. Birds
play crucial roles in ecosystems by contributing to pest control, pollination, and seed dispersal,
which are essential for biodiversity and environmental health [21]. However, exposure to
pesticides can cause acute toxicity and long-term declines in avian populations, disrupting
ecological balance and biodiversity [22]. Therefore, it's crucial to assess pesticide toxicity to

manage the associated risks to avian species and maintain ecosystem balance.

1.1.4 Quantitative Structure-activity/property/toxicity relationship (QSAR/QSPR/QSTR)

modeling and other in-silico approaches

The investigation of the properties of chemicals for toxicological prediction is often advised
by governing bodies such as the Environmental Protection Agency (EPA), Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH), European Chemicals
Bureau (ECB), and European Food Safety Authority (EFSA). Computational tools such as
read-across and QSAR are recommended for this purpose [23]. QSAR, in particular, is widely
used to predict the toxicity of test chemicals. This technique involves developing a scientific
model from a series of compounds with experimentally derived endpoint values. Due to its
reproducibility, simplicity, and transferability, QSAR is widely employed. Current chemical
risk assessment often relies on similarity-driven methods like Read-Across, which assumes
that compounds with similar structures have comparable biological activities [24]. This makes

emerging similarity-driven systems more suitable for consistent compound prediction. While

Page 7



Chapter 1 Introduction

Read-Across predicts probe compounds more reliably than QSAR models, it has limitations
in interpreting essential features [25]. To address this issue, a novel approach called Read-
Across Structure-Activity Relationship (RASAR) was introduced, which combines the
benefits of QSAR and Read-Across algorithms, resulting in better predictive ability and
reduced mean absolute error (MAE) [26]. They utilized classification-based models that
produced predictions on a graded scale. Banerjee and Roy [27] introduced q-RASAR modeling
with descriptors based on similarity and error measures. The g-RASAR methodology utilizes
descriptors based on similarity and error measures to develop simple, convenient,
interpretable, and reproducible models with better predictivity. These q-RASAR models can
be developed using statistical techniques like MLR, PLS, and other sophisticated machine
learning (ML) techniques. Machine learning, which uses various algorithms for building
models and making predictions using data, has shown potential for experimental studies.
Commonly used machine learning algorithms include support vector machines (SVM),
artificial neural networks (ANN), and others [28-29].

1.1.4.1 What is QSAR/QSPR/QSTR modeling?

QSAR modeling involves creating a mathematical relationship between a chemical response
and the quantitative chemical attributes defining the features of related molecules. This study
aims to establish a correlation between the behavior of a chemical (the "endpoint™) and the
quantitative chemical attributes that can be derived from the chemical structures through
experimental or theoretical methods. Depending on the nature of the response being modeled,
QSAR falls into three major classes: quantitative structure-property/activity/toxicity
relationship (QSPR/QSAR/QSTR) studies, which consider modeling physicochemical
property, biological activity, and toxicological data, respectively. The basic formalism of
QSAR model can be mathematically represented as follows,

Biological activity/property/toxicity = f (Chemical attributes) (1.2)

The term "chemical attribute” refers to the features that define the behavior of the analyzed
chemical compounds and control the response under study. These attributes are precise
quantitative chemical information that can be derived from experimental analysis or theoretical
algorithms. Considering the employment of a series of chemical information in presence-
absence of physicochemical features, the QSAR equation for a specific response can be

mathematically stated as follows:

Y=a0+arXr+@2X2 + A3X3t. oo +anXn (1.2)
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Since we are talking in terms of a mathematical correlation, such equations are better explained
in terms of variables. Here, Y is the dependent variable representing the response being modeled,
I.e., activity/property/toxicity while Xi, Xa,..., Xn are the independent variables denoting
different structural features or physicochemical properties in the form of numerical quantities or
descriptors and ai, a»,..., an are the contributions of individual descriptors to the response with
ao being a constant. Hence, we can see that the physicochemical properties can not only be
employed as a dependent or response variable giving a structure-property relationship, i.e.,
QSPR, but they might also be used as independent or predictor variables. QSAR studies may
also use one response parameter as a predictor variable for modeling another type of endpoint,
resulting in quantitative activity-activity relationship (QAAR), quantitative toxicity-toxicity
relationship (QTTR), or quantitative property-property relationship (QPPR) modeling, as
appropriate. While the modeled response should be quantitative to develop a regression model,
it may also be categorical entities used for classification models. However, the predictor
variables in QSAR modeling should always be quantitative. QSAR analysis focuses on
quantifying chemical information and developing an interpretative relationship for a given
response [30].

1.1.4.2 QSAR and regulatory perspectives

The use of QSAR techniques for developing predictive models is recognized and recommended
by several international regulatory bodies. Different regulatory bodies address the following
aspects for performing risk assessment of chemicals,

1. Assessment of chemical hazard: This includes identifying and characterizing the dose-
response of hazards, as well as classifying and labelling the chemicals.

2. Assessment of exposure.

3. Assessment of hazard and exposure.

4. ldentification of persistent, bioaccumulative, and toxic (PBT) as well as very persistent and
very bioaccumulative (vPvB) chemicals.

Determining chemical toxicity typically involves a significant number of animal experiments to
generate reliable chemical response data. Therefore, it is crucial for any hazard assessment
strategy to seek suitable alternative methods to reduce animal experimentation. QSAR plays a
significant role in this context, as it requires a comparatively smaller amount of response data
and can predict responses for a large number of chemicals. The QSAR technique aligns with the
‘3R’ principle of Russell and Burch — replacement, reduction, and refinement of animals in
biological experiments. The major advantages of QSAR modeling in regulatory assessment
include prioritization of chemicals and filling of data gaps. Furthermore, modeling of categorical

data is important, as the toxicological response of chemicals can be categorized into groups or
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classes, signifying different levels of hazards such as high, moderate, low, etc. Regulatory
agencies advocating the use of QSAR as an alternative strategy to animal experiments include
the European Centre for the Validation of Alternative Methods (ECVAM) of the European
Union, the Office of Toxic Substances of the US Environmental Protection Agency (US-EPA),
the Agency for Toxic Substances and Disease Registry (ATSDR), and the Council for
International Organizations of Medical Sciences. The European Commission introduced the
REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulations in
2006, aimed at systematically evaluating the toxicological hazards of existing and new chemicals
(imported or produced) and identified QSAR as an alternative method for toxicity testing of
animals. The Organization of Economic Cooperation and Development (OECD) proposed a set
of five-point guidelines in 2004 for the development and validation of predictive QSAR models
by its member countries. Over time, QSAR studies have become an essential part of global
regulatory assessments, and various countries have developed their own ‘expert systems’ for
determining chemical hazards. Expert systems are computational applications providing subject-
matter expertise to non-experts by using logical reasoning. Different expert systems contain
models on toxicological endpoints prepared and maintained by professional personnel, serving
as trusted systems with a suitable user interface to easily test the toxicity or categorical hazard
of any unknown or new chemical using the existing knowledge base.

1.1.4.3 Applications of QSAR

Chemicals are essential for a wide range of applications, from industrial and laboratory processes
to household uses. QSAR is a valuable approach for monitoring the activity, properties, and
toxicity of chemicals, with extensive applications across various fields. By fine-tuning the
behavior of chemicals, QSAR can produce positive results for a large class of chemicals,
including pharmaceuticals, agrochemicals, perfumeries, solvents, and more. The potential
application of the QSAR technique is vast, as it can model chemicals in three main categories:
those with health benefits (drugs, pharmaceuticals, food ingredients), those involved in industrial
and laboratory processes (solvents, reagents), and those with hazardous outcomes (persistent
organic pollutants, toxins, carcinogens). In addition to modeling biological activity and toxicity,
QSAR is also used in the drug design process to monitor the pharmacokinetic profile of potential
drug candidates, enhancing the efficacy of designed compounds within the biological system.
When assessing the toxicity of chemicals, two options are commonly considered: systematic
toxicity evaluation and monitoring of ecotoxicological hazards. Drugs and pharmaceuticals can
pose toxicity to specific organ systems (e.g. hepatotoxicity, nephrotoxicity, cardiovascular

toxicity) and can also be concerning from an environmental perspective, as even trace amounts
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of these compounds in wastewater streams can damage ecosystems [31]. Physiologically based
pharmacokinetic (PBPK)

modeling is another area of interest, involving the modeling of chemicals such as volatile organic
compounds (VOCs) using physicochemical and biochemical parameters.

In light of the growing health and environmental concerns, modern technologies are focused on
establishing a sustainable and green ecosystem that promotes environmental friendliness in
terms of efficiency, effectiveness, and safety. QSAR plays an encouraging role in achieving this
environmental sustainability through the design and development of process-specific chemicals
with reduced or no hazardous outcomes.

1.1.4.4 Descriptor

A QSAR model can be represented as a straightforward mathematical formula that correlates the
physical, chemical, biological, and toxicological characteristics of molecules using a variety of
quantitative factors that are obtained computationally or experimentally and are referred to as
"descriptors.” A number of chemometric techniques are used to link the descriptors with the
experimental properties (response) in order to produce a statistically significant QSAR model.
"Terms that characterize specific information of a studied molecule” are known as molecular
descriptors. In order to correlate chemical structure with different physical attributes, chemical
reactivity, or biological activity, these are the "numerical values associated with the chemical
constitution.” The resulting equation ought to offer substantial understanding of the fundamental
structural requirements of the molecules that support the examined molecules' biological
response [32]. In other words, the response of a chemical can be mathematically presented as
the function of descriptors (Eq. 1.3).

Response (activity/property/toxicity)

= f (Molecular information extracted using chemical structure or physicochemical property)

= f (Descriptors) (1.3)
An ideal descriptor should possess the following features for the construction of a reliable
QSAR model:

1. A descriptor should be relevant to a broad class of compounds.

2. A descriptor needs to show a negligible association with other descriptors and a correlation
with the biological reactions under study.

3. The descriptor should be quickly calculated and unaffected by experimental characteristics.
4. Even with minor structural variations, a descriptor should yield distinct values for molecules
with dissimilar structures.

5. Physical interpretability of a descriptor is necessary to identify the chemicals under study and

identify their query properties.
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1.1.4.5 Types of descriptors

Introduction

Descriptors can be of different types depending on the method of their computation or

determination: physicochemical (hydrophobic, steric, or electronic), structural (frequency of

occurrence of substructure), topological, electronic (molecular orbital calculations), geometric

(molecular surface area calculation), or simple indicator parameters (dummy variable). In a

broader perspective descriptor, (basically physiochemical descriptors) can be classified can be

two major groups 1) Substituent constant and 2) whole molecular descriptors [33,34].

Substituent constants are physiological descriptors which are deigned based on factors, which

govern the physicochemical properties of chemical entities. Whole molecular descriptors are

expansions of the substituent constant approach, but many of them are also derived from

experimental approaches.

The descriptor may also be classified based on the dimensions. Different types of descriptors

employed in the QSAR study are represented in Table 1.2.

Table 1.2. Different descriptors employed in the QSAR study based on dimensions.

Dimension of descriptors

Parameters

0D-descriptors

Constitutional indices, molecular property, and atom and bond

count.

1D-descriptors

Fragment count, Fingerprints.

2D-descriptors

Topological parameters, structural parameters, physiochemical

parameters, including thermodynamic descriptors.

3D-descriptors

Electronic parameters, spatial parameters, molecular shape analysis
parameters, molecular field analysis parameters, and receptor

surface analysis parameters.

4D-descriptors

Volsurf, GRID, Raptor, etc. derived descriptors

5D-descriptors

These descriptors considered induced-fit parameters and aimed to
establish a ligand-based virtual or pseudoreceptor model. These can
be explained as 4D-QSAR+ explicit representations of different
induced fit models.

Example- flexible protein docking

6D-descriptors

These are derived using representation of various solvation
circumstances along with the information obtained from 5D
descriptors. They can be explained as 5D-QSAR+ simultaneous

consideration of different solvation models. Example- Quasar

7D- descriptors

They comprise real receptor or target based receptor model data.
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1.1.4.6 Strategy for development of quantitative structure activity/property/toxicity
relationship

QSAR steps

The strategy for developing quantitative structure-activity relationship (QSAR) in drug design
involves multiple iterative steps based on statistical experimental design and multivariate data
analysis. The ultimate goal is to design compounds or predict the toxicity of chemicals.

I. Generation of molecular descriptors from chemical structures

The chemical structures typically don't contain explicit information related to activity. This
information needs to be extracted from the structure. Calculating descriptor values is generally
straightforward due to the availability of many commercial and academic computer-aided
molecular design (CAMD) packages that handle this calculation with ease. Different rationally
designed molecular descriptors highlight various chemical properties present in the molecule's
structure, and only those properties may have a more direct correlation with the activity.

Il. Feature selection

In many applications, numerous molecular descriptors can be generated, often numbering in the
hundreds or thousands. However, only a few of them are substantially correlated with the activity
being studied. Additionally, many descriptors are correlated with each other, which can have
adverse effects on various aspects of QSAR analysis. Some statistical methods require a
significantly larger number of compounds than descriptors. Therefore, working with extensive
descriptor sets necessitates large datasets.

I11. Series design (selection of training set)

The selection of compounds for the training set is crucial in QSAR analysis. The most effective
approach for selecting the training set is to consider relevant physicochemical descriptors and
the principle of structural similarity. This process operates on the assumption that a molecule
which is structurally similar to the molecules in the training set will be predicted accurately. This
is because the model has captured common features of the training set molecules and is able to
recognize them in the new molecule.

IVV. Model construction

After selecting the relevant features, the final stage of building a QSAR model involves a feature
mapping process, also known as the parameter estimation problem. The objective is to establish
a mathematical relationship and estimate the model parameters. A variety of mapping function
families can be utilized, such as linear ones (e.g., multiple linear regression, stepwise regression,
partial least square regression) and non-linear ones (e.g., artificial neural network, random

forest). Various methods can be used to train and obtain the optimal function.
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V. Model validation

"The validation of a QSAR involves assessing the model's predictive ability, applicability
domain, and mechanistic basis for a specific purpose. Before using a QSAR model to interpret
and predict biological responses of untested compounds, it must be properly validated. In
essence, there are four tools for assessing the validity of QSAR models. These are:

» Randomization of Response into an array of Recorded Variables (Y scrambling)
This procedure ensures that the model is not due to a chance. The most widely used approach to
establish model robustness is Y scrambling (random permutation of response values, i.e.,
activities).

This process entails repeating the calculation with randomized activities and then evaluating the
resulting statistics for their probability.

» Cross-validation
In recent times, the method known as cross-validation, or more accurately leave-one-out cross-
validation (LOO), was developed. In this method, a single sample of size n is used. Each member
of the sample is removed in turn, the full modeling method is applied to the remaining n-1
members, and the fitted model is applied to the holdback member.

» Splitting of parent data set into training and validation sets
Cross-validation gives a good estimate of how well the QSAR model can predict the activity
values of new compounds. This is called internal validation because all the chemicals used
belong to the same dataset. If there are enough compounds available, they can be divided into a
training set and a separate validation set for external validation.

» External validation using a designed validation set
External validation using a designed validation set is a crucial aspect of any QSAR modeling. It
is an absolute requirement for the development of a truly predictive QSAR model. True external
datasets are rare for QSAR studies, and in cases where they are not available, the dataset is
divided into training and test sets for appropriate validation.
1.1.4.7 Chemometric tools
Chemometrics is the chemical discipline that uses statistical methods to design optimal
procedures, experiments, and objects, and to provide maximum chemical information by
analyzing chemical data.
1.1.4.7.1 Various chemometric tool used in QSAR/ QSPR/QSTR
QSAR/QSPR/QSTR is a statistical approach correlating the response property, activity, or
toxicity data with descriptors encoding chemical information. Such correlation may be derived
either in regression-based approach (in case where the response property is quantitative and

available on a continuous scale) or a classification-based approach (in cases where the response
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property is graded or semi-quantitative). The most commonly used regression-based approaches
are as follows:

» Multiple linear regression (MLR)

» Partial least square (PLS)

Some of the common classification-based approaches are as follows

» Linear discriminant analysis (LDA)

» Logistic regression
Machine learning tools such as artificial neural networks and support vector machines are very
effective in developing predictive models, especially for handling high-dimensional and
complex chemical information data that show a nonlinear relationship with the response(s) of
the chemicals. This chapter will briefly discuss some of the more popular and commonly used
chemometric tools. However, before applying any statistical model-building method, the
QSAR/QSPR data table may need to be pre-treated followed by a suitable feature selection
method.

» Multiple linear regression (MLR)
Multiple linear regression [35] or MLR is commonly used in QSAR due to its simplicity,
transparency, reproducibility, and easy interpretability. The generalized expression of an MLR
equation will be like the following,

Y=ap+arX Xe+a2X Xo+a3X Xatooooiiiiiiiiiiiinannnn.. +an X Xp (1.4

In the above expression, Y is the response or dependent variable, X1, X2, Xs.....X, are

descriptors (features or independent variables) present in the model with the corresponding

regression coefficient should be significant at p<0.05 which can be checked from the ‘t’ test.
The descriptors present in an MLR should not be much intercorrelated. For a statistically reliable
model, the number of observations and descriptors should be maintained at 5:1.
» Partial least square (PLS)

When dealing with a large number of interrelated and noisy descriptors for a limited amount of
data, PLS is a better choice over MLR. PLS is an extension of MLR and aims to extract latent
variables (LVs) from the original variables, capturing as much of the underlying factor variation
as possible while modeling the responses. In linear PLS, new variables (latent variables) are
found, representing linear combinations of the original variables. When the number of LVs
equals the number of variables, the PLS model is equivalent to the MLR model. It is important
to rigorously test the predictive significance of each PLS component and stop adding new

components when they become non-significant.
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» Linear discriminant analysis (LDA)

LDA [36] can be used to separate two or more classes of objects, making it useful for
classification problems. It performs a similar task to MLR by predicting an outcome when the
response property has graded values and molecular descriptors, as well as continuous variables.
LDA explicitly attempts to model the difference between the classes of data. In a two-group
situation, the predicted membership is calculated by computing a discriminant function (DF)
score for each case. Then, cases with DF values smaller than the cut-off value are classified as
belonging to one group, while those with values larger are classified into the other group. The
DF may take the following form:

DF=CixX1 + CoxXo +.......... + CmxXm+ a (1.5)
where DF is the discriminate function, which is a linear combination (sum) of the discriminating
variables, c is the discriminant coefficient or weight for that variable, X is respondent’s score for
that variable, a is a constant, m is the number of predictor variables. The c’s are unstandardized
discriminant coefficients analogous to the beta coefficients in the regression equation. This c’s
maximize the distance between the means of the criterion (dependent) variable. Good predictors
tend to have large standardized coefficients. After using an existing set of data to calculate the
DF and classify cases, any new cases (test samples) can then be classified. In a stepwise DF
analysis, the model is built step-by-step. Specifically, at each step, all variables are reviewed and
evaluated to determine which one will contribute most to the discrimination between groups.
That variable will then be included in the model, and the process starts again.

» Logistic regression
Logistic regression [37] is a statistical classification model that assesses the relationship between
a categorical-dependent variable (having only two categories) and one or more independent
variables. These independent variables are usually continuous, but not necessarily so. It uses
probability scores as the predicted values of the dependent variable. Unlike linear regression,
logistic regression does not assume a linear relationship between the dependent and independent
variables. The independent variables do not need to be normally distributed, linearly related, or
have equal variance within each group.

» Cluster analysis
Unlike LDA, cluster analysis [38] does not require prior knowledge about which elements
belong to which clusters. Instead, the clusters are defined through an analysis of the data. Cluster
analysis aims to maximize the similarity of cases within each cluster while maximizing the
dissimilarity between initially unknown groups. Hierarchical cluster analysis identifies relatively
homogeneous clusters of cases based on dissimilarities or distances among objects. The most
common way to compute distances between objects in a multidimensional space is to calculate
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the Euclidean distances or the squared Euclidean distance. The process starts with each case as
a separate cluster and then sequentially combines the clusters, reducing the number of clusters
at each step until only one cluster is left. The k-means clustering is a non-hierarchical method of
clustering that is used when the number of clusters in the data is known. It is an unsupervised,
centroid-based method. In general, the k-means method will produce exactly k different clusters.
The method starts by defining k centroids, one for each cluster, and placing them as far away
from each other as possible. The next step is to take each point in the dataset and associate it
with the nearest centroid. When no point is pending, the positions of the k centroids are
recalculated. This process is repeated until the centroids no longer move.

» Quantitative read-across structure-toxicity relationship (g-RASTR)
QSTR and read-across techniques have recently converged to form an emerging field known as
read-across structure-toxicity relationship (RASTR). This approach combines the chemical
similarity principles of read-across with supervised learning techniques similar to QSAR.
RASTR has been used for both the classification modeling and quantitative predictions (g-
RASTR) [39].
This modeling approach utilizes a combination of similarity and error-based descriptors. This
method has been shown to have better predictive potential and lower Mean Absolute Error
(MAE) as compared to both QSTR and read-across predictions. The strength of g-RASAR lies
in its ability to incorporate both similarity and error measurement information into descriptors,
creating models that are straightforward, interpretable, transferable, and replicable, with
improved predictive accuracy [40].

» (-RASTR descriptors
Compound similarity is estimated using three different methods: Euclidean distance, Gaussian
kernel similarity, and Laplacian kernel similarity. The RASAR descriptor RA function is a
prediction function derived from read-across, created by averaging the response values of source
compounds identified as having structurally analogous properties. The weighted standard
deviation of activity near n source chemicals for a specific target compound is represented by
the SD activity descriptor. SE stands for the weighted standard error associated with the activity
values of the nearby n-source compounds for a given target compound. The descriptor CVact
represents the coefficient of variation of the activity values among the nearby n-source
compounds for a specific target compound. MaxPos signifies the maximum similarity score
between the target compound and the training set, while MaxNeg quantifies the degree of
resemblance between a target compound and a nearby source compound with an activity
response value lower than the mean response of the training set. The absolute difference between

MaxPos and MaxNeg for a specific query compound is denoted as Abs Max Pos-Max Neg. The
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descriptor AvgSim calculates the mean similarity value among n closely related source
compounds for a specific target compound. The gm (Banerjee-Roy coefficient) descriptor
assesses the likelihood of whether the query compound is active or inactive, with values ranging
from -1 to +1. gm*Avg. Sim and gm*SD_Similarity descriptors are obtained by multiplying gm
values with Avg. Sim and SD_Similarity values, respectively. Pos. Avg. Sim indicates the
average similarity values among the n close source compounds with response values higher than
the training set's mean response value, while Neg. Avg. Sim signifies the average similarity
values among the n close source compounds with response values lower than the training set's
mean response value [41-42].

1.1.4.8 Calculation of various statistical metrics to evaluate the quality of a model

The primary methods for validating the developed QSAR models are internal and external
validation statistics. These methods are widely used by different groups of researchers to assess
the predictive ability of the developed model. Another method involves fitting the dependent X
matrix to randomized response parameters. Several metrics are used to check the predictivity of
the QSPR models. For the validation of QSPR models, three strategies are primarily adopted: (i)
internal validation using the training set molecules and (ii) external validation based on the test
set compounds.

1.1.4.8.1 Determination coefficient (R?): This parameter is known as the determination
coefficient or squared correlation coefficient. The squared correlation coefficient of a model can

be obtained from the following equation,

2
RZ — 1 _ 2:(Yobs(train)_Ycalc(train)) (16)

=(Y obs(erainy~V train)

In regression analysis, the goal is to minimize the sum of squared residuals (the differences
between the observed and predicted values). A small sum of squared residuals indicates a good
fit for the model. We expect most individual observed Y values to deviate significantly from the
predicted Y values. In an ideal model, the sum of squared residuals is 0, and the R squared (R?)
value is 1. As the R? value deviates from 1, the model's fitting quality worsens. The square root
of R?is the multiple correlation coefficient (R).

1.1.4.8.2 Leave-one-out cross-validation (Q?)

The models developed from the training set by using stepwise regression or genetic methods have
been subjected to internal validation by means of calculating leave-one-out cross-validation R?(Q?)
and predicted residual sum of squares (PRESS) [43] and the acceptable models have been further
processed for the prediction of toxicity and/or property of the test set compounds. Cross-validated

correlation coefficient R? (LOO—Q?) is calculated according to the formula,
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(v in—Y )
2 _ obs(train) — ! pred(train)
Qoo =1- (1.7)

— 2
z"(Yobs(train) _Ytrain)

Here Y, psctrain)» Yprea(train), @d Y rqin and are the observed, predicted and the average value
of the response variable of the training set. In this technique, a single compound is randomly
omitted from the dataset in each cycle, and then a model is built using the remaining compounds.
This process is repeated for every compound in the dataset. The model formed in this way is
used to predict the activity of the omitted compound. The process is iterated until all the
compounds are eliminated once. On the basis of the predicting ability of the model, the cross-
validated R? (Q?) for the model is determined. Acceptable value of Q? is 0.5 with a maximum
value of 1.0 and hence more the value is closer to 1, more will be the internal predictivity of the

model.
1.1.4.8.3 Root mean square error of calibration

The root mean square error of calibration (RMSEc) can be computed from the following

expression,

2
RMSEC _ \/(Eyobs(train) ;Ycalc(train)) (1.8)

The value of RMSEc should be low for a good model.

1.1.4.8.4 rm?(Lo0)

It was shown that [44] squared cross-validated correlation coefficient alone might not indicate
the true predictive capability of a model and hence a modified r? (rm?wLoo)) term was used to
indicate the leave-one-out prediction capacity of the model for the training set compounds. The

parameter rm?oo is obtained from the following equation,

2 =1?X (1 - /(r2 — r02)> (1.9)

where r2 and ro? are the squared correlation coefficients between the observed and LOO predicted
values of the training set compounds with and without intercept respectively. The value of
r'm®Loo) should be greater than 0.5 for an acceptable model.

1.1.4.8.5 Golbraikh and Tropsha criteria

Golbraikh and Tropsha [45] proposed several parameters for determining the external
predictability of the QSAR model. An acceptable QSAR model should be close to ideal in order
to exert high predictive ability. An ideal QSAR model should have a correlation coefficient (R)
that is close to 1 between the observed (y) and predicted (y/) activities. According to Golbraikh

and Tropsha, regressions of y against y/ against y through the origin should be characterized by
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either k or k' (slopes of the corresponding regression lines) being close to 1. Subsequently, the
regression lines through the origin are defined by y™© = ky’ and y™® =k’y, while the slopes k and

k' are given by, respectively,

k= E_Y"Jf-’; (1.10)
2o’

W 2 (1.11)
Z }'f'z

A stricter condition for the QSAR model to have high predictive ability was further proposed by
Golbraikh and Tropsha. They showed that either of the squared correlation coefficients of these
two regression lines (y against y / or y / against y through the origin) ro%or ro /2 (given by Egs.
(1.12) and (1.13), respectively) should be close to the value of r? for the developed model. The
values of r? and ro? indicate the squared correlation coefficients between the observed and the
predicted activity values with and without intercept, respectively, while ro 2 represents the same

information as ro? does, but with inverted axes:

2=1— > v =) (1.12)
u f _.I 3
2o =y

sy iy (113)
E (yi _?JE

Based on Golbraikh and Tropsha criteria, the model will be acceptable if:

1. Qoo (train) > 0.5

2. R%(test) > 0.6

3. [(r*ro®)/ r] < 0.1 or [(r>-r’0?)/ 17

4.1.15>k>0.850r1.15>k’>0.85
1.1.4.8.6 MAE-based criteria
In a recent study, Roy et al. [46] have shown that commonly used metrics like (Q%1), (Q?r2), and

(Q%s) can often provide biased assessments of model predictivity. This is because these metrics
are influenced by factors such as the response range and distribution of data. In this study, the
authors have proposed a set of criteria that utilize the 'mean absolute error' (MAE) and the
corresponding standard deviation (o) of the predicted residuals to evaluate the external

predictivity of the models.

M:%XZ‘F@&_YN&&‘ (1.14)
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where Yobns and Ypred are the respective observed and predicted response values of the test set
comprising n number of compounds, the response range of training set compounds has been
employed here to define the threshold values. Furthermore, the authors have proposed
application of the MAE-based criteria™ on 95% of the test set data by removing 5% data with
high predicted residual values precluding the possibility of any outlier prediction. The criteria

are described below,
e Good prediction- The criteria for good predictions is as follows,
MAE < 0.1x training set range AND (MAE +30) < 0.2% training set range

In simpler terms, an error of 10% of the training set range should be acceptable while an error

value of more than 20% of the training set range may be considered high.
e Bad prediction- The criteria for bad predictions is as follows,
MAE > 0.15 x training set range OR (MAE+3c) > 0.25 x training set range

Here, a value of MAE more than 15% of the training set range is considered high while an
error of more than 25% of the training set range is judged as very high. The predictions that
do not fall under either of the above two conditions may be considered moderate quality. The
above criteria should be applied for judging the quality of test set predictions when the number
of data points is at least 10 (statistical reliability) and there is no systematic error in model

predictions (statistical applicability).

1.1.4.8.7 Q%1 0r R?pred
Predictive R? (Q%) reflects the degree of correlation between the observed and predictive

activity data of the test set.

2
2:(Yobs(test) - Ypred(test))
— 2
2:(Yobs(test) - Ytrain)

Qf=1- (1.15)
Here, Yobstesty and Ypredtesty are the observed and predicted activity data for the test set
compounds, while Yaining indicates the mean observed activity of the training set molecules.
Thus, models with values of RZyred Or Q% above the stipulated value of 0.5 are considered to be
well predictive.

1.1.4.8.8 Q%

Another expression for the calculation of external Q? (i.e., Q%) is based on the prediction of test

compounds proposed by Schurmann et.al [47] as given by Eq. (1.16)
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2
z:(Yobs(test) - Ypred(test))
reditest (1.16)
z:(Yobs(test) - Ytest)

ngzzl_

where Y, refers to the mean observed data of the test set compounds and Q% differs from
Q%1 in the mean value used in the denominator for calculation. When the two values approach
each other, it can be inferred that the training set mean lies in close proximity to that of the test
set, indicating that the test set used for prediction spans the whole response domain of the model.
A threshold value 0.5 is defined for this parameter.

1.1.4.8.9 Q%
One more parameter, Q% with the threshold value of 0.5, used for external validation of a QSAR

model, has been proposed by consonni et.al [48]. This parameter is defined as follows,
2
[Z(Yobs(test) - Ypred(test)) ]
QZ =1— Nest (117)

—_ 2
z:(Yobs(training) - Ytraining) /ntrain

Where, nyin refers to the number of compounds in the training set. Here, the summation in the
numerator deals with the external test set, while that in the denominator runs over the training
set compounds. Considering that the number of test and training objects are usually different,
divisions by neest and nirain Make the two values comparable. However, although the value of Q%3
measures the model predictability, it is sensitive to training-set data selection and tends to
penalize models fitted to a very homogeneous data set, even if predictions are close to the truth.
Since this function includes information about the training set, it cannot be properly regarded as
an external validation measure even if predictions are really obtained for the external test set.
1.1.4.8.10 Concordance correlation coefficient (CCC)

The concordance correlation coefficient (CCC) parameter [49] can also be calculated to check

the model reliability by using the following equation:

R - - ; v
< Z,‘-l (-‘ubs-:n:st] — Xobs n_-st]) (,\'pn:d-:tcst] - ,"pn;d.;w_-,[])

5= (1.18)

g o)
z:i—l (-‘_«be-:tc.‘;t:l — Xohs( n:.l;t]) + Z:E—l {,\"pn:d-:tc.‘;t:l - .""pn.'d-: tc.‘;t]\»] + ”(-"_«Jbsitcxt:l o .""pn:d-:tc.‘;t ]\»]

In the above equation, Xobs(testy aNd Y pred(testy COrrespond to the observed and predicted values of
the test compounds, n is the number of chemicals, and Yobs(test) and 7pred(test) correspond to
the averages of the observed and predicted values, respectively, for the test compounds. The
ideal value of CCC should be equal to 1.

1.1.4.8.11 Y-randomization

The relationships between the response variable and the descriptors can be checked for further
statistical significance by randomization test (Y-randomization) of the models. The method can

be executed in two ways namely:
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i) Process randomization and
i) Model randomization

In process randomization, random scrambling of the dependent response variables is performed
accompanied with fresh selection of variables from the whole descriptor matrix and in model
randomization scrambling or randomization of the response variable is performed within the
descriptors present in an existing model. We have performed process as well as the model
randomization of the genetic models. Y-randomization study has been performed to analyze and
confirm whether the developed models are produced by any chance. Y-randomization plots are
generated for developed models through the SIMCA-P software

(https://www.sartorius.com/en/products/process-analytical-technology/data-

analyticssoftware/mvda-software/simca). The validation metrics obtained from the randomized

model should be poorer than the original model otherwise that model should be considered to be
developed by chance. The values of the R?yrand intercept and Q?yrang intercept should not be more

than 0.3 and 0.05 respectively.
1.1.4.8.12 Determination of model applicability domain (AD)

Applicability domain (AD) of a QSAR model can be described as the theoretical region in the
chemical space defined by the chemical as well as response attributes of the model [50]. A
definite domain of applicability enables reliability of predictive performance of a model. In other
words, any QSPR model possesses a defined theoretical domain within which it can provide
reliable predictions of other chemicals not used in developing the model. It is not feasible to
develop a single model that can contain the chemical information of the whole universe, and
accordingly, QSPR models are characterized by different domains. When a compound is highly
dissimilar to all compounds of the modeling set, reliable prediction of its property is unlikely.
The concept of AD was used to avoid such an unjustified extrapolation of property predictions.
Here, we have applied Distance to model in X-space (DModX) approach for verifying the
applicability domain of the best model developed for this study using Simca-P software [51].

SSEi

DModX= —=Z— (119)
(N-A-A0)(K-A4)

For observation i, in a model with A component, K variables, and N observations, SSE is the

squared sum of the residuals. AO is 1 if the model was centered and 0 otherwise. It is claimed
that DModX is approximately F-distributed, so it can be used to check if an observation deviates

significantly from a normal PLS model.
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1.1.4.9 Model validation based on OECD guidelines

To authenticate the applicability of the developed QSTR models and to judge the reliability of
the predictions made, the models were further analyzed based on the OECD guidelines [52].
Thus, the QSTR models developed in this work were validated based on these five guidelines
laid down by the OECD. The compliance of the developed models with the OECD guidelines

for applicability in regulatory purposes was assessed as follows:

Principle 1: A defined endpoint

The response parameter modeled in the present work for different datasets were measured
under similar conditions. Thus, the QSTR models were developed in accordance with the
1st OECD principle.

Principle 2: An unambiguous algorithm

Various chemometric tools based on specific algorithms were employed for the calculation
of the different categories of descriptors and subsequent QSTR model development using
specific software packages. Thus, the model development pathway employed for the present
studies follows a definite algorithm.

Principle 3: A defined domain of applicability

The domain of applicability of all the statistically significant QSTR models was analyzed
using the standardization method. Thus, the selection of the best QSTR model was done in
corroboration with this principle.

Principle 4: Appropriate measures of goodness-of-fit, robustness, and predictivity

All the developed models were rigorously validated using internal, external, and overall
validation techniques. The quality of fitness and the predictive potential of the developed
models were assessed based on the different validation metrics while the robustness of the
models was judged using the randomization approach. The selection of the most significant
models based on the acceptable values of the various validation metrics accounts for the

compliance of the models with the 4" guideline.

Principle 5: A mechanistic interpretation
All the descriptors appearing in the developed QSTR models could aptly define the essential
structural attributes of the molecules imparting optimum endpoint values thus signifying

suitable mechanistic interpretation of the developed models.

1.1.4.10 Software packages employed in the study

We have used different software’s in this research work namely:
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i. “AlvaDesc” software (https://www.alvascience.com/alvadesc/) was used for descriptor

calculation.
ii.“Best Subset Selection Modified” v2.1 (available from: http://teqip.jdvu.ac.in/QSAR_Tools/)

was used for model development.

iii. “Dataset Division GUI” v1.2 (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) was used
to divide the dataset into training and test sets.

iv. “Minitab” v14 (https://www.minitab.com/en-us/) was used for model development.

v. “PLS Single Y” v1.0 (available from: http://teqip.jdvu.ac.in/fQSAR_Tools/) was used to
develop the PLS-based QSTR and g-RASTR models.

vi. “Read-Across-v4.1” (available from: http://tegip.jdvu.ac.in/fQSAR_Tools/) was used for

obtaining the optimized hyperparameters necessary for RASTR descriptor calculation.
vii.“RASAR Descriptor Calculator” v2.0 (available from:

https://sites.qgoogle.com/jadavpuruniversity.in/dtc-lab-software/home) was used for RASTR

descriptors calculation.
viii. “Prediction Reliability Indicator” (available from: http://teqip.jdvu.ac.in/QSAR_Tools/)

was used to evaluate the localization in AD of the test compounds to ascertain the reliability of
prediction of final PLS-based g-RASTR model.
ix. “SIMCA-P” (https://www.sartorius.com/en/products/process-analytical-technology/data-

analytics-software/mvda-software/simca) was used for the randomization test.
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2. PRESENT WORK

Over the past four decades, Europe has witnessed a staggering loss of approximately 550 million
birds from its population with the predominant cause being the widespread use of pesticides and
fertilizers in agricultural practices followed by climate change, changes in forest cover, and
urbanization [53]. Pesticides play an indispensable role in modern agriculture by managing pests
and improving crop productivity [54]. Nevertheless, they carry a double-edged sword, offering
benefits while also posing risks to non-target organisms such as avian species, thereby raising
significant environmental concerns in scientific research. Birds play crucial roles in ecosystems,
aiding in pest control, pollination, and seed dispersal, which are vital for maintaining biodiversity,
ecosystem equilibrium, and environmental health [55]. However, exposure to pesticides can result
in acute toxicity and long-term declines in avian populations, thus disturbing ecological balance
and biodiversity [56]. Consequently, assessing pesticide toxicity becomes imperative for

managing the associated health risks to avian species and preserving ecosystem balance.

Traditional toxicity evaluations in birds involving in-vivo testing are costly, labor-intensive, time-
consuming, alongside ethical concerns, and almost practically unfeasible for addressing a
multitude of avian species [57]. The proliferation of new chemical entities and diverse pesticide
formulations underscores the need for alternative methods to consistently predict the toxic effects
of pesticides on avian species, wherein high-throughput computational approaches can offer
promising solutions [58]. To explore the intrinsic characteristics of chemicals for toxicological
prediction, regulatory institutions such as the Environmental Protection Agency (EPA),
Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH), European
Chemicals Bureau (ECB), and European Food Safety Authority (EFSA) emphasize the use of in-
silico based approaches i.e. Quantitative Structure-Toxicity Relationship (QSTR) and Read-
across [59]. QSTR enables mathematical correlation of the physicochemical properties of
chemicals with their biological activities. Read-across is a similarity-based approach employed to
estimate toxicity by comparing a substance to a similar one with known toxicity, eliminating the
need for supervised learning models. The g-RASTR (Quantitative Read Across Structure—
Toxicity Relationship) approach is the amalgamation of the QSTR and Read-Across which
incorporates the similarity and error-based estimations to improve prediction accuracy. A recent
advancement in predictive modeling known as g-RASTR has emerged, offering improvements
over traditional methods like QSTR and read-across predictions. QSTR relies solely on descriptor
values for structural and physicochemical data of test compounds, but g-RASTR utilizes a
combination of similarity and error-based descriptors [60]. This approach enhances predictive

accuracy and reduces mean absolute error (MAE) compared to its predecessors. Additionally, g-
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RASTR addresses the limitations of previous algorithms by incorporating information from close
source neighbors in the training set into the descriptors of query/test compounds. This integration
of training set data enables "prediction-inspired intelligent training”, resulting in enhanced
external predictivity for most scenarios. Machine learning is a growing technology that uses
various algorithms for building models and making predictions using data. Support vector
machines (SVM), artificial neural networks (ANN), and others are commonly used machine
learning algorithms for numerous experimental studies [61].

Chemical toxicities are typically assessed using metrics such as the median lethal concentration
(LCso) or median lethal dose (LDso), lowest observed effect level (LOEL), and no observed effect
level, etc which vary based on factors such as the nature of the chemical, exposure pathways, and
the species being tested. Typically, regulatory evaluations favor the lowest toxicity endpoint
across species, yet this practice introduces bias towards compounds with sparse data. Conversely,
comparing toxicity within the same species overlooks inherent variations in susceptibility among
different species or chemical classes [62]. In instances where data scarcity impedes toxicity
characterization, extrapolation techniques are employed to ensure a comprehensive understanding
of a pesticide's impact on avian populations. An approach towards extrapolating laboratory
toxicity data is the estimation of HDs, also known as the fifth percentile of the LDso distribution,
by aggregating LDso data across multiple species from laboratory experiments. The HDs value
indicates a threshold where 50% mortality is expected for the most sensitive 5% of bird species.
This distribution-based method ensures a comprehensive evaluation of pesticide toxicity,
facilitating unbiased comparisons irrespective of data availability. To enable cross-species
comparisons of toxicological susceptibility, the HDs calculation incorporates a body weight
scaling factor, and adjustments are made to account for the heightened susceptibility of smaller
species in lethality assessments [63]. Incorporating HDs alongside LDso provides a safety buffer
that will aid toxicologists and regulators in making informed decisions to protect the avian

biodiversity.

Study 1. Chemometrics-driven prediction and prioritization of diverse pesticides on
chickens for addressing hazardous effects on public health

In this work, we investigated the toxicity of several pesticides on chickens and developed a logical
and trustworthy method for assessing ecotoxicological risk. Based on the OECD rules, we have
developed g-RASTR models to predict pesticide ecotoxicity on bird species. RASTR combines
the read-across and QSTR approaches to improve predictability. The pLOEL and pNOEL (the
negative logarithm of Lowest Observed Effect Level and No Observed Effect Level values

respectively) values have been used as endpoints in this study. NOEL is defined as the highest
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dose of the toxicant that does not cause any toxicity or harm and LOEL stands for the lowest
concentration of a substance that can cause an effect under specific exposure conditions. To
successfully create the models, we used PLS for the initial model development. Further, RASAR
descriptors were estimated using the optimal hyperparameters and incorporated to improve the
external predictivity of the model. Additionally, Support vector machine and Ridge regression
machine learning (ML) approaches were employed with the optimization of hyperparameters
using cross-validation. The final test set predictions were then compared. After evaluating the test
set predictions and interpretability, we have selected the PLS-based q-RASTR model as the final
model. Using, globally accepted parameters, the robustness, reproducibility, and predictivity of
the PLS-based g-RASTR models were thoroughly validated. It can be confidently affirmed that
the models are reliable and accurate. The developed model was utilized to screen the Pesticide
Properties Database (PPDB) to identify potential avian toxicants and promote the use of safer
chemicals. The true predictive ability of the g-RASTR model was established by revalidating the
real-world toxicity profiles of the most and least toxic screened compounds from the Pesticide
Properties Database (PPDB).

Exposure pathways
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Figure 2.1. Graphical representation of study 1.
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Study 2. First report on g-RASTR modeling of hazardous dose (HDs) for acute toxicity of
pesticides: An efficient and reliable approach towards safeguarding the sensitive avian
species

The current work offers the first chemometric modeling for efficient prediction of HDs values
pertaining to acute toxicity of pesticides towards avian species employing simple 2D molecular
descriptors with ease of interpretability. g-RASTR approach was utilized to enhance the
predictivity of the developed model. The structural features of pesticides closely associated with
the modulation of toxicity towards multiple avian species were also highlighted. To address the
practical applicability, the g-RASTR model was employed to analyze the Pesticide Properties
Database (PPDB) to identify the safe and toxic compounds towards avian species to enable the
adoption of safer chemical alternatives. To evaluate the actual external predictive performance of
the g-RASTR model, real-world data was employed to validate the twenty most and least toxic
pesticides identified through screening. By bridging the gap between computational predictions
and real-world toxicological outcomes, this research endeavors to contribute significantly to the
field of ecological risk assessment and the protection of avian biodiversity amidst the ever-

increasing pesticide usage.
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Study 3. Comprehensive Ecotoxicological Assessment of Pesticides on Multiple Avian
Species: Employing Quantitative Structure-Toxicity Relationship (QSTR) Modeling and
Read-Across

Herein, we developed QSTR models to interpret the major structural and physicochemical
features responsible for their toxicity followed by assessing the toxicity of external datasets in
BQ, and JQ avian species following the OECD guidelines strictly [64]. Alternative tools, such
as read-across, are widely used for hazard assessment to fill data gaps. The Read-Across-based
predictions assume that a molecule with an unreported experimental endpoint value should have
a value similar to molecules that are structurally and/or biologically similar to the query molecule.
So, we have conducted the Read-across predictions to improve the test set results. The main motive
for choosing the regression-based QSTR approach over others (e.g.: regarding its effectiveness,
coping with chemical heterogeneity, and several different species) [65-66] was to develop a linear
relationship between the descriptors and the defined endpoints (pLCsp) to identify the important
features responsible for toxicity towards avian species (BQ, and JQ) as well as data-gap filling.
Classification-based approaches also excel in handling similar challenges, and both
methodologies come with distinct advantages and disadvantages. For example, classification
models are typically more robust to outliers and data errors than regression models. This is
because classification models only focus on the categorical relationship between the input and
output variables rather than the exact numerical relationship. On the other hand, regression models
can identify the most important features or predictors driving the outcome variable. This
information can be used to inform decision-making and guide further investigations. Sometimes,
it may be beneficial to convert a classification problem into a regression problem or vice versa.
By doing so, one can gain additional insights into the data and improve the accuracy of our
predictions. Nevertheless, the decision to convert a problem type should be based on the specific
problem at hand and the characteristics of the data. Additionally, we have also developed
classification models as well as employed two different ML algorithms namely SVM, and RF to
evaluate their effectiveness in model construction and prediction. The present work aimed to
design a logical method to assess pesticide toxicity towards avians. Furthermore, screening of the
Pesticide Properties DataBase (PPDB) was conducted to evaluate the avian toxicity following the

prediction reliability assessment of the QSTR models by the PRI (prediction reliability indicator)

tool (http://teqip.jdvu.ac.in/QSAR_Tools/) as a measure of data gaps filling and risk assessment
[67]. The robustness, reproducibility, and predictivity of QSTR models were thoroughly validated
using globally accepted statistical parameters.

Page 31


http://teqip.jdvu.ac.in/QSAR_Tools/

Chapter 2

Present work

DATASET
COLLECTION OF
PESTICIDES

=]

+Filling Toxicity Data Gap =sicall
*Less Time Consuming  Z&os>
*Cost Effective <« =

*No Animal Cruelty

*Environmental Risk Management _ &%
: *To identify the significant features responsible for avian
——Wiapanese quall) toxicity g&

PLS BASED QSTR
MODEL BUILDING
USING 2D

Classification based QSTR
(LDA-QSTR) model
development ”

0 1694 compounds)
O QSAR BASED
SCREENING
READ ACROSS
OPTIMIZATION ‘/"‘

POTENT TOXIC COMPOUNDS

Figure 2.3. Graphical representation of study 3.

Page 32



CHAPTER -3

Materials and Methods




Chapter 3 Materials and methods

3. MATERIALS AND METHODS

This dissertation seeks to establish a clear and transparent methodological framework for
constructing a predictive q-RASTR model, utilizing simple 2D descriptors. Our objective has been
to ensure clarity and transparency in the process, from the calculation of descriptors to the reduction
of the variable matrix, the identification of promising features, and the assessment of the models'
reliability and predictive capabilities. In the following sections, we provide comprehensive insights
into the dataset used for the g-RASTR modeling. This includes a detailed presentation of the
dataset, along with information about the activities and toxicity data it contains. These data are
instrumental in facilitating our computational investigations and predictive modeling efforts. The
research undertaken was organized into distinct components, each serving a specific purpose:

> Dataset Details: In this section, we provide a comprehensive account of the datasets used
in our study. These datasets include information on chemical names and their
corresponding activity or toxicity data. This foundational information serves as the
bedrock for our research.

» Methodological Approach: We present a general overview of the methodologies and
techniques employed in the development of our g-RASTR model. This section outlines
the strategies and tools we used to create predictive models for understanding the
relationship between chemical structures and toxicity.

3.1 Study 1
3.1.1 Collection and curation of toxicity data of diverse pesticides
The required toxicity data of diverse pesticides against chicken (Gallus gallus) were retrieved

from the ECOTOX repository (https://cfpub.epa.gov/ecotox/). The collected experimental toxicity

data was expressed as LOEL and NOEL in micromolar (uM) concentration, which were
transformed into molar concentrations and then their negative logarithmic equivalents (pLOEL and
pPNOEL) to reduce the data range. After excluding any outlier value(s), all available values for a
particular chemical were averaged to generate a single value. We only included values that were
numerically close to each other when calculating the average. After curating the primary data, we
selected 43 pLOEL and 56 pNOEL compounds for modeling.
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Table 3.1. Compounds name with respective experimental pLOEL values.

SI.No Compound Exp
pLOEL
1 (17beta) Estra-1,3,5(10) triene-3,17-diol 5.055
2* 4,4'-(1-Methylethylidene) bis [2,6-dibromophenol] 4.720
3 Phosphoric acid-triphenyl ester 5.000
4 1,2-Benzenedicarboxylic acid, 1,2-Bis(2-ethylhexyl) ester 3.301
5 2,2,3,3,4,4,5,5,6,6,6-Undecafluorohexanoic acid 5.000
2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-
6 Tricosafluorododecanoic acid 4.864
7* 2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,10-Nonadecafluorodecanoic acid 4.823
8* 2,2,3,3,4,45,5,6,6,7,7,7-Tridecafluoroheptanoic acid 5.000
9 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononanoic acid 4.585
2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-
10* Heptacosafluorotetradecanoic acid 4.522
(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydro-4H-1-
11* benzopyran-4-one 6.301
12 4,4'-Methylenebisphenol 4.488
13 Phosphoric acid-Diphenyl ester 5.000
14 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene] bis [phenol] 5.000
15* 1,1,2,2,3,3,4,45,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 4.723
2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,11,11,11-Heneicosafluoroundecanoic 4.923
16 acid
17 4,4'-[1,4-Phenylenebis(1-methylethylidene)] bis[phenol] 4.903
18 2,2,3,3,4,4,5,5,5-Nonafluoropentanoic acid 4.301
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid
19* potassium salt 4.373
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heneicosafluoro-1-
20 decanesulfonic acid 5.000
21* 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-hexanoic acid 4.425
22 Tris[3-bromo-2,2-bis(bromomethyl) propyl] phosphate 4.000
23 2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptanoic acid) 4.301
1,1'-(1-Methylethylidene) bis [3,5-dibromo-4-(2,3-dibromopropoxy)
24 benzene 3.551
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid
25* 5.000
(8S,10S)-10-[(3-Amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl)
oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-
26 methoxy-5,12-naphthacenedione 6.301
27 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine 3.522
3,4,5,6-Tetrabromo-1,2-benzenedicarboxylic acid 1,2-bis(2-ethylhexyl) 3.522
28* ester
29* 1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid 5.187
30 Phosphoric acid-Isodecyl diphenyl ester 3.522
6H-Dibenz[c,e] [1,2] oxaphosphorin, 6-Oxide
31 4.000
32* 4,4'-Sulfonylbis[2-(prop-2-en-1-yl) phenol] 4,522
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2-[4-(4-Chlorobenzoyl) phenoxy]-2-methyl propanoic acid, 1-
33 Methylethyl ester 4.221
2-[[4-Chloro-6-[(2,3-dimethylphenyl) amino]-2-pyrimidinyl] thio] acetic 4.000
34 acid
2,2,3,34455,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13- 4.301
35 Pentacosafluorotridecanoic acid
36 1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluoro-1-hexanesulfonic acid 5.691
37 4,4'-[Methylenebis(oxy-2,1-ethanediylthio)] bisphenol 5.000
38* 4-{4-[(Propan-2-yl) oxy] benzene-1-sulfonyl}phenol 4.522
39 4-[4-(4-Fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol 5.000
N-[4-(1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) phenyl]-N-(2,2,2- 4.875
40 trifluoroethyl) benzenesulfonamide
41 Ethanol 4.519
42 Hydrogen peroxide (H205) 5.552
1,4-diethyl 2-{[dimethoxy (sulfanylidene)-A°-
43 phosphanyl]sulfanyl}butanedioate 3.397

* Test set compounds

Table 3.2. Compounds name with respective experimental pNOEL values.

SI.No Compound Exp
pNOEL

1 (1,1-Dimethylethyl) phenyldiphenyl ester, Phosphoric acid 4.782

2 (17beta) Estra-1,3,5(10) triene-3,17-diol 5.000

3* (1R,2R,5S,6R,9R,10S)-rel-1,2,5,6,9,10-Hexabromocyclododecane 5.641
(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trinydroxy-2,3-dihydro-4H-1-

4 benzopyran-4-one 6.301

5* (3E)-2-Amino-4-methyl-5-phosphono-3-pentenoic acid 1-ethyl ester 4.000
(5S)-10,11-dihydro-5-methyl-5H-Dibenzo[a,d]cyclohepten-5,10-imine

6* (22)-2-butenedioate 5.301

7 1,1,2,2,3,3,4,4,4-Nonafluoro-1-butanesulfonic acid 4.282

8 1,1,2,2,3,3,4,4,5,5,6,6,6-Tridecafluoro-1-hexanesulfonic acid 4.698

9 1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid 5.000

1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-Pentadecafluoro-1-heptanesulfonic acid

10 sodium 4.395

11 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid 4.637
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid

12* potassium 4.470

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heneicosafluoro-1-

13 decanesulfonic acid 4.338

14 1,1'-Oxybis[2,3,4,5,6-pentabromobenzene] 5.000

15 1,2,4,5-Tetrabromo-3,6-bis(2,3,4,5,6-pentabromophenoxy) benzene 5.721

10-[3-(4-Methyl-1-piperazinyl) propyl]-2-(trifluoromethyl)-10H-

16 phenothiazine 6.154

17 2,2,3,3,4,4,4-Heptafluorobutanoic acid 5.000

18 2,2,3,3,4,4,5,5,5-Nonafluoropentanoic acid 4.363

19 2,2,3,3,4,4,5,5,6,6,6-Undecafluorohexanoic acid 5.148

20 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-hexanoic acid 4418

21 2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptanoic acid 5.115
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22 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluorooctanoic acid 4.392
23 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Nonadecafluorodecanoic acid 4.994
2,2,3,3,4,455,6,6,7,7,8,8,9,9,10,10,11,11,11-
24 Heneicosafluoroundecanoic acid 5.070
2,2,3,3,4,455,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-
25* Tricosafluorododecanoic acid 4.999
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-
26* Pentacosafluorotridecanoic acid 4.363
2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-
27 Heptacosafluorotetradecanoic acid 4.323
2,2,3,3,4,4,55,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,1
28 6,16-Hentriacontafluorohexadecanoic acid 4.301
29 2,2,3,3,4,45,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononanoic acid 4.580
30 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine 3.522
2',7'-Dichloro-3',6'-dihydroxyspiro[isobenzofuran-1(3H),9'- 9H
31 xanthen]-3-one 4.698
2-[4-(4-Chlorobenzoyl) phenoxy]-2-methylpropanoic acid, 1- 4.307
32* Methylethyl ester
33 2-Methyl-2-(methylthio)propanol O-[(methylamino) carbonyl] oxime 5.045
34 3-Methyl-3H-purin-6-amine 5.602
35* 4,4'-(1-Methylethylidene) bis[2,6-dibromophenol] 5.000
36 4,4'-(1-Methylethylidene) bis [2-methylphenol] 4.806
37 4,4'-(1-Methylethylidene) bisphenol 4.683
38* 4,4'-(1-Phenylethylidene) bis phenol 4.806
39* 4,4'-[1,3-Phenylenebis(1-methylethylidene)] bis phenol 5.107
40 4,4'-[1,4-Phenylenebis(1-methylethylidene)] bis [phenol] 5.028
41 4,4'-[2,2,2-Trifluoro-1-(trifluoromethyl)ethylidene] bis [phenol] 4.954
42* 4,4'-[Methylenebis(oxy-2,1-ethanediylthio)] bisphenol 5.000
43 4,4'-Methylenebisphenol 4.505
44 4,4'-Sulfonylbis[2-(prop-2-en-1-yl) phenol] 4.698
45 4-{4-[(Propan-2-yl) oxy] benzene-1-sulfonyl} phenol 4.522
6-[4-[2-(1-Piperidinyl) ethoxy] phenyl]-3-(4-pyridinyl) pyrazolo [1,5-a]
46* pyrimidine 4.698
47 6H-Dibenz[c,e][1,2]oxaphosphorin, 6-Oxide 4.000
48 Bis(tert-butylphenyl) phenyl phosphate 3.522
49 Hexabromocyclododecane 5.514
N-[(2S)-2-[[(1Z)-1-methyl-3-0x0-3-[4-(trifluoromethyl) phenyl]-1-
propen-1-yl] amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxazolyl) ethoxy] 5.301
50 phenyl] propyl] propanamide
N-[4-(1,1,1,3,3,3-Hexafluoro-2-hydroxypropan-2-yl) phenyl]-N-(2,2,2- 5.193
51 trifluoroethyl) benzenesulfonamide
52 Phosphoric acid-Diphenyl ester 4.187
53 Phosphoric acid-Isodecyl diphenyl ester 3.821
54 Phosphoric acid-Triphenyl ester 5.000
55 Tris(2,4-di-tert-butylphenyl) phosphate 5.000
56 Tris[3-bromo-2,2-bis(bromomethyl)propyl] phosphate 4.000

*Test set compounds
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3.1.2. Descriptor calculation

A single .sdf file of all the compounds was compiled which is essential to Alvadesc software for
descriptor calculation. AlvaDesc software [68] was used to evaluate 2400 descriptors based on
structural and physicochemical parameters. We removed the unnecessary descriptors columns
using DataPreTreatmentGUI 1.2 software [69].

3.1.3 Dataset division and QSTR model development

Division of dataset is a crucial component of statistical modeling, particularly in the context of
QSARs. The modeling data is divided into two parts, the training set for model development and
the test set to validate the developed model. In this present study, different dataset division
techniques such as the clustering technique, Euclidean-distance-based method, Kennard-stone-
based method, activity property-sorted, and random-division methods were employed for dataset
division into training and test sets. Among these techniques, the best result was obtained from the
Kennard stone division method in case of the pLOEL endpoint and random selection in case of the
pNOEL endpoint [65-70]. The training/test sets compounds for pLOEL endpoint and pNOEL
endpoint are 30/13 and 44/12 respectively. And the divided training and test sets were also pre-
treated using the tool dataPreTreatmentTrainTest1.0 (available from

https://teqip.jdvu.ac.in/fQSAR_Tools/). These final pre-treated training and test sets were used for

further analysis. Preliminary multiple linear regression models were generated for two datasets
using MINITAB software. After that, PLS (Partial Least Square) method was used to generate the
final models for both datasets using the software PLS_Single Y_version 1.0 [65].

3.1.4 Read- Across and calculation of the RASTR descriptor

Optimizing hyperparameters (similarity-based algorithm; o, y, and number of close source
compounds) is crucial for read-across prediction. The descriptor involved in the QSTR model was
used to create sub-train and sub-test sets from the training data. We have chosen a Gaussian kernel-
driven similarity, with 6=0.75; y=0.75, and 9 close training compounds for pLOEL data points &
Laplacian kernel-based similarity, with 6=0.25 and y=0.25, and 4 close training compounds for
pNOEL data points. During optimization, the hyperparameters were selected based on MAE-based
(95%) criteria and external metrics (Q%: and Q?%). To perform g-RASTR modeling, similarity,
and error-based RASTR descriptors were calculated for both training and test compounds with

"RASAR Descriptor Calculator v2.0 tool using the optimized hyperparameters.

3.1.5 g- RASTR feature selection and model development
A total of 15 descriptors (Table 3.3) were computed based on three similarity-based approaches
(Euclidean Distance-based, Gaussian Kernel similarity-based, and Laplacian Kernel similarity-
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based) and a given set of source compounds for the individual training set and the test set. The
calculated RASTR descriptors were integrated with the model descriptors and the combined pool
was subjected to best subset selection using BestSubsetSelectionModified v2.1 tool for model

development. The final PLS-based g-RASTR model was developed with the best features using

the PLS_Single Y_version 1.0 software.
Table 3.3 List of RASTR descriptors.

S.No. | RASTR descriptors Definition

1 RA function A composite function derived from Read-Across.

2 MaxPos Similarity score of the closest positive source compound (with
an observed response value greater than the mean activity of the
training set).

3 MaxNeg Similarity score of the closest negative source compound (with
an observed response value less than the mean activity of the
training set).

4 Abs Maxpos-MaxNeg Absolute difference between the MaxPos and Maxneg levels.

5 SE Weighted standard error of the close source compounds’
response values.

6 CVact Coefficient of variation of the close source compounds’
observed response values.

7 SD_Activity Weighted standard deviation of the close source compounds’
observed response values.

8 CVsim Coefficient and variation of the similarity values of the close
source compounds.

9 SD_similarity The standard deviation of the close source compounds’
similarity levels.

10 Pos.Avg.Sim The positive close source compounds’ average similarity levels.

11 Neg.Avg.Sim The negative close source compounds ‘ average similarity
levels.

12 Avg.Sim Average similarity level of the close source compounds.

13 Om A novel concordance measure also known as Banerjee-Roy
Coefficient

14 gm*SD_Similarity Product of the gm and SD similarity levels

15 gm*Avg.Sim Product of the gmand Avg.Sim levels

3.1.6. Application of other machine learning (ML) algorithms
To estimate the prediction performance of other algorithms, we have employed two different state—
of-the—art ML algorithms namely support vector machine (SVM) and Ridge Regression (RR)

using the Orange data mining tool. The hyperparameters were adjusted to tune the model for
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optimal performance. The prediction qualities of the ML models were evaluated in terms of Q%,
Q%r2, and MAEqest values.

3.1.7. Statistical validation metrics and Y-randomization

Validation metrics are the key parameters for the recognition of any predictive model. For internal
validation (for the training set), we evaluated the model using various internationally accepted
internal validation metrics including the determination coefficient (R?) and leave-one-out cross-
validated Q? (Q%Lo0). R?and Q%o are the measures of goodness-of-fit, and robustness, respectively.
In machine learning (SVM, RR) approaches, the root means squared error of calibration (RMSEc)
metric was also calculated by the Orange data mining tool. A lower RMSEc indicates a better
model fit, showing that the model's predictions are, on average, closer to the true values. For
external validation (for the test set), we calculated various globally accepted external validation
metrics such as R?%pred Or Q%r1, Q%r2, Q%r3, MAE-based criteria, r,2, Arn2 and concordance correlation
coefficient (CCC). External correlation coefficients such as Q%r1, Q%, and Q%3 are well-known
prediction indicators. In usual practice, the optimal value of these three measures (R%pred Or Q%1,
Q%r2, Q?%r3) for model selection should be more than 0.5. Error measures such as mean absolute
error (MAEtest) are frequently used to assess the accuracy of projected outputs, and they should be
low for a strong model. The CCC measures both precision and accuracy, detecting the distance of
the observations from the fitting line and the degree of deviation of the regression line from that
passing through the origin, respectively. The concordance correlation coefficient (CCC) is an
external validation measure proposed by Gramatica et.al. External validation is undertaken to
ensure the predictability of the created model, and only the test set chemicals are employed for this

purpose. Aside from traditional measures, rm? Metrics (r, 7.,y A rm’est) are calculated for external
validation. When the rmz(test), values are quite good, the Arm? values may serve as an additional

metric for judging the quality of predictions. The acceptability of the model was also checked using
an external validation parameter proposed by Golbraikh and Tropsha. Based on Golbraikh and

Tropsha criteria, the model will be acceptable if:

1. Qoo (train) > 0.5
2. R%(test) > 0.6
3. [(r?-ro?)/ 1’] < 0.1 or [(r?-r’¢%)/ 17

4.1.15>k>0.850r1.15>k’>0.85
Y-randomization study was performed using "SIMCA-P" software to investigate the probability of

chance occurrence in the final model. Herein, the response data are altered, without scrambling the
descriptors, for a total of 100 times. After shuffling the original model is refitted to compute the R?
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and Q? values, and the intercept values of R? <0.3 and Q?<0.05 indicate no chance of correlation
in a statistically significant model [71].
3.1.8 Screening of the Pesticide Properties DataBase (PPDB)

We have collected 1903 chemical data from the Pesticide Properties DataBase (PPDB) which is
accessible through the PPDB website (http://sitem.herts.ac.uk/aeru/ppdb/). KNIME curation was

carried out using a KNIME workflow to eliminate any duplicates, inorganic salts, and mixtures
[26]. As a result of the KNIME curation process, certain compounds have been eliminated. After
curating the dataset, the enduring 1694 compounds were screened to verify model reliability. The
descriptors of the molecules were calculated using the same procedure that was used in g-RASTR
modeling as discussed earlier. The individual PLS q-RASTR models were used to make
predictions, assisted by the PRI tool [17] which provided a reliable indication of the prediction's
accuracy. The tool assesses the reliability of predictions using AD and furnishes qualitative
prediction indicators categorized as 'Good', 'Moderate’, and 'Bad. A detailed flow diagram of this

study has been given in Fig. 3.1.
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Figure 3.1. Schematic workflow of g-RASTR model development.
3.2. Study 2
3.2.1. Data collection and preparation

A set of non-cholinesterase inhibitors consisting of 733 pesticides was collected from the literature

[72]. The data was curated to remove duplicates and treat missing or inconsistent values using
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knime workflow (https://www.knime.com/cheminformatics-extensions). Some compounds were

also omitted from the dataset due to the high residual values. After processing the data, we obtained

toxicity information for 480 unique pesticides on avian species. The toxicity data are expressed as

-log{HDs(50%)} or pHDs(50%) in molar units throughout the manuscript.

Table 3.4. Compounds name with respective experimental pHDs values.

SI.No Compound pHD5
1 Methyl bromide 1.049
2 Dichlobutrazol -0.452
3 Citronella oil -0.229
4 Pretilachlor -0.491
5 Azadirachtin 0.359
6 Methyl isocyanate 0.747
7 Fenvalerate 0.116
8 Methyl chloroform -0.340
9* Acibenzolat (CGA) -0.043
10 Isobenzan 2.981
11 Triforine -0.252
12 Benfuresate -0.863
13* Nemagon 1.154
14 Metconazole 0.542
15 Resmethrin 0.749
16 Dicofol 0.709
17 Trimethoxysilyl quats 0.478
18* Flamprop-methyl 0.500
19* Bromethalin 2.843
20 Carbendazim -0.410
21 Butralin -0.149
22* Triazoxide 1.374
23 Diflufenzopyr (BAS 654) -0.211
24 Rotenone 0.270
25 Coumatetralyl 0.180
26 Haloxyfop-P-methyl 0.446
27 Pyrithione 0.701
28 Chloroneb -0.367
29* Propisochlor 0.631
30 Furilazole 1.078
31 Fluroxypyr 0.088
32 Lignasan BLP -0.369
33* Glutaraldehyde -0.224
34 Dithio-3-one,4,5-dichloro 0.814
35 Ferimzone 0.432
36 Oryzalin 0.820
37 Quizalofop-P-tefuryl 0.283
38 Hymexazol -0.249
39* Difethialone 3.241
40 Dichlorprop-P 0.758
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41 Diflumetorim 0.586
42 Azoxystrobin 0.240
43 Dichloropropene 0.798
44 Metalaxyl 0.496
45 4-Chloro-3,5-xylenol -0.246
46 Tolclofos-methyl -0.207
47 Fipronil 2.473
48* Pentachlorophenol (PCP) 0.720
49* Chlormequat 0.360
50 Erioglaucine/tartrazine 0.504
51* Cycloxydim 0.194
52 MCPA 0.709
53 Buprofezin -0.348
54* Sodium dichloro-S-tri-azine trione -0.014
55 Diflubenzuron -0.487
56 Alachlor -0.088
57 Tolylfluanid -0.143
58* Anilofos 0.133
59 Thiazafluron 0.973
60 Hexazinone -0.015
61 Diclofop-methyl -0.364
62 3-lodo-2-propynyl butyl-carbamate 0.453
63 Bensulide 0.393
64 Oxyfluorfen -0.230
65 Flucythrinate 0.216
66* Metribuzin 0.708
67 Atrazine -0.278
68* Propyzamide -0.457
69* Fuberidazole 0.586
70* Glufosinate-ammonium -0.108
71 Prodiamine 0.127
72 Benoxacor 0.081
73 Azadioxabicyclooctane -0.140
74 Isoproturon -0.182
75* Pyridate 0.213
76 Bioresmethrin -0.175
77 Prochloraz 0.706
78 Thiazopyr 0.251
79* Dikegulac-sodium -0.137
80* Bioallethron S-cyclo-pentenyl isomer -0.236
81 Paradichlorobenzene -0.104
82 Linuron 0.583
83 Sodium 2-mercaptoben-Zothiolate -0.177
84* Isocyanuric acid -0.155
85 Zirame 0.611
86 Calcium polysulfide 0.392
87 Endrin 2.706
88 Tri-allate 0.066
89 Trifluralin 0.135
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90 Copper triethanolamine -0.117
91 Propaquizafop 0.308
92 Daminozide -0.288
93* Hydroxypropyl methane thiosulfonate 0.572
94 Fenclorim 0.669
95 Benalaxyl -0.401
96 Sethoxydim -0.168
97* Triticonazole 0.136
98 Triadimenol -0.274
99 2,3,6-TBA 0.477
100 Clofentezine -0.212
101 Flubenzimine -0.016
102 Tetradifon -0.212
103* Acrinathrin 0.540
104* loxynil 1.047
105* Nitrapyrin -0.053
106 Cyfluthrin -0.048
107* Dicamba 0.550
108 Glyphosate -0.138
109 Etoxazole 0.271
110 Hexythiazox -0.136
111* Chlorofenizon -0.166
112 Kasugamycin -0.008
113 2,4,5-T 0.655
114 Ethalfluralin 0.157
115 Cytokinin -0.132
116* Clodinafop-propargyl 0.295
117* Dieldrin 1.963
118* Fenoxycarb -0.351
119 Oxabentrinil -0.277
120 Dimethoxane -0.024
121 Triethylhexahydro-s-triazine 0.557
122 Napropamide 0.541
123* CGA 50 439 0.447
124 Sodium chlorite -0.072
125 Acequinocyl (AKD-2023) 0.299
126* Chlozolinate -0.377
127 Sulcofuron-sodium 0.541
128* Furalaxyl -0.284
129 Ethidimuron 0.647
130 Parachlorometacresol -0.098
131 Propamocarb -0.233
132* DCDMH (1,3-Dichloro-5,5-dimethylhydantoin) -0.170
133 Toxaphene 1.598
134 Etridiazole 0.580
135 Myclobutanil 0.688
136 Bifenazate (D2341) 0.355
137 Hydramethylnon 0.346
138 Acifluorfen-sodium 0.559
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139 Nonanoic acid -0.218
140 Ametryn -0.170
141 Butachlor -0.156
142 Fenuron -0.151
143 2,4-D Isooctyl ester 0.718
144* Bilanafos 0.106
145 Potassium dimethylthio-carbamate -0.084
146 Prosulfuron 0.420
147 Fluguinconazole 0.257
148 TCMTB 0.492
149 Thiabendazole -0.113
150 Isoprothiolane -0.169
151* Methoxychlor 0.074
152 Sebuthylazine -0.163
153* Bromoxynil heptanoate 0.970
154* Benfluralin 0.207
155 Oxadiazon 0.253
156 Fenoxaprop-P-ethyl 0.192
157 Tebufenozide 0.150
158* Haloxyfop ethoxyethyl 0.321
159 Edifenphos 0.616
160 Difenacoum 1.679
161 2-Benzyl-4-chlorophenol -0.125
162 Bifenox -0.076
163 Cymoxanil -0.072
164* Busan 77 0.659
165 Metobromuron 0.274
166 Fluazifop-butyl -0.289
167 Dodine (doguadine) 0.315
168 Propenamide 0.567
169 Vernolate -0.218
170 Fenpropimorph -0.141
171 Carbetamide 0.046
172* Cyhalothrin -0.030
173 Prallethrin 0.426
174 Captan 1.075
175 Penconazole 0.167
176* 2,4-D sodium 0.052
177 Trichloro-s-triazinetrione 0.200
178 Fenoxaprop-P 0.157
179 Mineral (including parafin) 0.065
180* Dicloran 0.171
181 Fenbuconazol 0.096
182 Sulfluramid 1.493
183 Cloquintocet-mexyl 0.208
184 Forchlorfenuron -0.023
185 Acetochlor 0.448
186 Tebuthiuron 0.492
187 Flutolanil 0.191
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188 Epoxiconazol 0.152
189 Benzene Hexachloride 1.365
190 Flutriafol -0.204
191 Flumetralin 0.275
192 Dithiopyr 0.186
193 Endosulfan 1.630
194 Thidiazuron -0.222
195 BCDMH 0.109
196 Imazaquine 0.144
197 Lufenuron 0.390
198 Cosan 145 0.176
199* Trinexapac-ethyl 0.117
200 Diflufenican 0.111
201 Metamitron 0.058
202* Prometon -0.067
203 Tralomethrin 0.358
204 Nicotine 2.193
205* Nabam 0.012
206 Quintozene 0.063
207* Triadimefon -0.118
208 Chloroprop-sodium -0.039
209* Benazolin-ethyl -0.211
210 Fenpiclonil 0.658
211* Bis(trichloromethyl) sulfone 0.142
212* Grotan 0.094
213 Lambda-Cyhalothrin 0.022
214 Azimsulfuron 0.258
215 Nitenpyram 0.214
216 MCPP Isooctyl ester 0.097
217 1,3-dibromo-5,5- dimethylhydantoin (DBDMH) -0.008
218 Fluazinam 0.214
219* Terbuthylazine 0.244
220 Bitertanol -0.096
221 POE Isooctadecanol 0.270
222 Zineb -0.004
223 Cycloate -0.064
224 Ethirimol 0.014
225* Fenothiocarb 0.249
226 Iprodione 0.319
227 Chlorthal-dimethyl 0.104
228 Haloxyfop 0.141
229 Dipropyl isocinchomero-nate 0.205
230* SDDC 0.019
231 Napthaleneacetic acid -0.047
232 PNMDC/DCDMC -0.034
233 Neurolidol -0.003
234 Pymetrozine 0.019
235* Daimuron 0.063
236 Tefluthrin 0.370
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237 Diiodomethyl p-tolyl sulfone 0.161
238* Diniconazole 0.259
239 Cyprodinil 0.034
240 Clopyralid -0.001
241 Tralkoxydim 0.054
242 Etofenprox 0.291
243 Flucycloxuron 0.400
244 DBNPA 1.024
245 Teflubenzuron 0.237
246 Bensulfuron-methyl 0.297
247 Oxadixyl 0.271
248 Gibberellic acid 0.122
249 2,4-D diolamine 0.505
250 Mecoprop 0.417
251 Mefenpyr-diethyl 0.286
252* Hexaconazole -0.095
253 Nicosamide-olamine 0.149
254 Fluoroglycofen-ethyl 0.086
255 Bronopol 0.610
256 Indole-3-butyric acid -0.089
257* Tetramethrin 0.079
258 Molinate -0.058
259 Lindane 1.442
260 Potassium salts of fatty acids -0.165
261 Quizalofop-ethyl 0.253
262 Pyrazosulfuron-ethyl 0.200
263* Quinmerac -0.020
264* Fenpyroximate 0.307
265* Quinclorac 0.071
266* Tribufos 0.789
267 Strychnine 2.507
268* Vinclozolin -0.008
269 Heptachlor 2.032
270 Benzisothiazolin-3-one 0.324
271* Cypermethrin -0.143
272* Warfarin 0.409
273 Cinosulfuron 0.331
274* Flazasulfuron 0.324
275 Guanidine (iodine free base) 0.206
276 TDE 0.892
277 Primisulfuron-methyl 0.321
278 Dimepiperate 0.135
279 Triclosan 0.320
280 Cinmethylin 0.041
281 Fluometuron 0.081
282 Novaluron 0.408
283 Uniconazole 0.183
284 MCPA-thioethyl -0.073
285 Triflusulfuron 0.310
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286 Hexaflumuron 0.346
287 Ethametsulfuron-methyl 0.196
288* Mepronil 0.112
289 Dichloropropene/ 0.479
290 Imazapyr 0.067
291 Triflumuron 0.237
292 Flumequine 0.432
293* Diuron 0.082
294 Pyridaben 0.116
295 Esfenvalerate 0.505
296 Pyriminobac-methyl 0.272
297* Dazomet 0.483
298* Terrazole 0.395
299* Metiram -0.074
300* Trans-1,2-bis(n-propyl sulfonyl ethene 0.096
301 Amidosulfuron 0.172
302 Imibenconazole 0.245
303 Bromoxynil 1.106
304 Bromoxynil Phenol 1.106
305 Difenoconazol 0.293
306 Diethofencarb 0.058
307 Chloretazate 0.148
308* SZI-121 0.198
309 Propiconazole 0.062
310* Chlorsulfuron -0.129
311* Paclobutrazol 0.182
312 Dimethenamid (SAN 0.095
313 1,2-Benzenedicarbox- 0.276
314 Fluvalinate 0.237
315* Tau-Fluvalinate 0.237
316 Flufenoxuron 0.323
317* Ethofumesate -0.218
318* Bispyribac-sodium 0.217
319 Folpet 0.399
320* Oxasulfuron 0.273
321 Fluoxypyr-meptyl 0.247
322* Chlorhexidine diacetate 0.335
323 Capric acid/pelargonic -0.115
324* Farnesol -0.003
325 Quizalofop 0.219
326 Norflurazon 0.365
327 Triflusulfuron-methyl 0.323
328 TFM (4-Nitro-3-[trifluoromethyl]phenol) 0.672
329 Terbacil -0.083
330 6-Benzylaminopurine (N6-Benzuladenine) 0.084
331 4,4-Dimethyloxazolidine 0.042
332 Fenazaquin 0.197
333 Metazachlor 0.076
334* Pefurazoate 0.177
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335 Tebufenpyrad 0.205
336* Fluridone 0.152
337 Metsulfuron 0.182
338 Thifensulfuron 0.189
339 Muscalure 0.143
340 Dimethipin 0.395
341 Triflumizole 0.074
342 Bromoxynil octanoate 1.396
343 Isouron -0.041
344 Pencycuron 0.073
345* Metosulam 0.278
346 Thenylchlor 0.144
347 Tridemorph 0.235
348 Bromonitrostyrene 0.675
349 2,4-D 0.221
350 Halosulfuron-methyl 0.221
351* Paranitrophenol 0.317
352 Cycloprothrin 0.000
353* Propineb -0.333
354* Clofencet 0.202
355* Asulam sodium -0.269
356 2,4-D Butotyl 0.141
357 BHAP (Bromohydroxya- 0.447
358 Chloramben 0.111
359 Cafenstrole -0.138
360 Hydrogen cyanamide 0.165
361 Methoprene 0.207
362 Oxazolidine E 0.091
363 Imazethabenz-methyl 0.110
364* Imazamethabenz-methyl 0.110
365 Nicosulfuron 0.295
366* Polychlorocamphanes Potassium salt of oleic acid 0.058
367* Flurazole 0.043
368 Mepanipyrim -0.021
369 Copper sulfate (basic) 0.309
370* Pyriproxyfen 0.189
371 Chlordecone 1.269
372 Codlemone -0.137
373 Karbutilate -0.317
374* Imazapic (AC 263,222) 0.090
375 Oxine-copper 0.099
376 Thiophanate-methyl -0.149
377* Thiram 0.815
378 Monolinuron 0.073
379* Aldrin 2.501
380 Pentoxazone 0.132
381 Tebuconazole -0.052
382* Bioban P-1487 0.291
383 Calcium tetrathiocarba-mate 0.280
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384* Benzyl benzoate -0.039
385 Piperonyl butoxide 0.112
386 Pyrazophos 1.148
387 ADBAC 0.826
388 Halfenprox 0.339
389 Polyethoxylated aliphatic 0.065
390 Fluoroglycofen 0.292
391 Clomazone -0.037
392 Diquat (dibromide) 1.015
393 Z-11-Hexadecanol 0.011
394 Bifenthrin 0.315
395 Lactofen 0.200
396 Esprocarb 0.138
397 Tetradec-11-en-1-yl 0.008
398 Endothall 0.805
399* Dimethomorph 0.270
400* Methyl nonyl ketone -0.138
401 Bioallethrin 0.108
402 Zinc oxide 0.093
403 Phenothrin [(1R)-trans-isomer 0.080
404 2-(Octylthio)ethanol -0.090
405 Flumetsulam 0.095
406 Fluxofenim 0.125
407* Phenmedipham 0.001
408 Sodium 2-phenylphenate 0.163
409 2-Phenylphenol 0.163
410 Thifensulfuron-methyl 0.171
411* Chlorfluazuron 0.349
412 Anthraguinone 0.033
413* Chlorimuron-ethyl 0.234
414> Rimsulfuron 0.429
415 Thiobencarb 0.059
416 N,N-Diethyl-M-Toluamide 0.078
417 Chloroxuron -0.004
418 ZX18901 1.212
419 Butoxypolypropylene glycol -0.138
420* 2,4-DB 0.145
421 Methabenzthiazuron 0.360
422 Flurprimidol 0.129
423 Alloxydim-sodium 0.053
424 Pyrimethanil -0.019
425 Sulcotrione 0.258
426 Butroxydim 0.390
427 Phosacetim 2.962
428* Desmedipham 0.065
429 Fomesafen -0.041
430 Pyrazole 0.156
431 Allethrin 0.196
432 Brodifacoum 2.810
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433 Metolachlor 0.070
434 Phenyl-indole-3-thiobutyrate 0.134
435* Brofenprox 0.374
436* DMPA 1.094
437 Propham -0.032
438 Dichlone 0.071
439 Sodium dodecylbenzene-sulfonate 0.315
440* Azafenidin 0.160
441* Tribenuron 0.164
442 Silafluofen 0.326
443 Imazethapyr 0.112
444* DDT 0.460
445 PHMB -0.054
446 Imazosulfuron 0.246
447 Fluazuron 0.386
448 Procymidone -0.351
449* Flusilazole 0.314
450 DTEA 0.001
451 Bensultap 3.022
452* Endothall (dimethylal- 0.687
453 Acetates of Z/E 8-dodecenyl and Z 8-dodecenol -0.011
454 Pyrifenox 0.152
455 Flumiclorac-pentyl 0.210
456 Chlorpropham 0.044
457 Orbencarb 0.093
458 Fenoxaprop -0.120
459 Tridec-4-en-1-yl acetate 0.050
460* Triasulfuron 0.254
461* TEPA 1.590
462 Clethodim 0.190
463 Methyl anthralinate 0.264
464 Tribenuron-methyl 0.180
465 Sulfometuron-methyl -0.121
466 Flupyrsulfuron-methyl- 0.332
467 Irgarol -0.013
468* Fenoxaprop-ethyl -0.085
469 Isoxaflutole 0.239
470 DMDM hydantoin 0.124
471 Sulfentrazone 0.171
472* Diafenthiuron 0.392
473 Dimethirimol 0.014
474 Imazamox 0.154
475 Pebulate 0.023
476* Isoxaben 0.156
477 Maneb -0.215
478* lodine complex 0.127
479* Prosulfocarb 0.033
480* Bupirimate -0.183

* Test set compounds
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3.2.2. Descriptor calculation

A comprehensive set of molecular descriptors for each compound was calculated using alvaDesc
software [64]. These descriptors included physicochemical properties, structural features, and
electronic properties. Redundant and non-informative descriptors were eliminated based on

correlation analysis and feature importance metrics.
3.2.3. Dataset division

The modeling process involves dividing the data into a training set for model development and a
test set for model validation. In this study, various approaches were used for the data set division
namely Kennard stone, activity property-based, and Euclidean distance methods using Dataset
Division GUI 1.2 software (http://tegip.jdvu.ac.in/QSAR_Tools/). The optimal division was

achieved using the activity property-based approach.
3.2.4. Feature selection and development of the QSTR model

Feature selection is a technique that reduces the dimensionality of the feature space by eliminating
noisy and insignificant descriptors. To develop the robust, interpretable model, the choice of an
appropriate descriptor is important. In the present study, we conducted a stepwise regression (using
Minitab 14 software) and selected some descriptors. After removing the selected descriptors
obtained from the first stepwise regression run, we repeated the stepwise regression using the
remaining pool of descriptors. We repeated the same procedure and selected a manageable number
of descriptors to create a reduced pool. The obtained reduced pool of descriptors was subjected to
best subset selection to identify the most significant descriptors for model building using Best-
Subset selection 2.1. software (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). The PLS

regression approach was adopted to construct the final QSTR models.
3.2.5. Read-Across and calculation of the RASTR descriptor

Read-across approach is quite different from the QSAR/QSTR approach. Read-across assumes
similar structural features in two compounds lead to the same biological activities. Optimization
of hyperparameters for obtaining the read-across prediction is essential. The training set was
divided into sub-train and sub-test sets for the weightage average prediction. Based on the quality
of prediction for the validation set, laplacian kernel-driven similarity with =0.75; y=0.75, and 10
close training compounds were chosen as hyperparameters. During the hyperparameters
optimization, MAE-based (95%) criteria and external metrics (Q?r1 and Q?r2) were used for the
selection. To perform g-RASTR modeling, RASTR descriptors were calculated using "RASAR

Descriptor Calculator v2.0" tool (available from:
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https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) for both the training and

test compounds with optimized hyperparameters based on similarity and error.
3.2.6. g- RASTR feature selection and model development

A set of 15 descriptors was computed using optimized hyperparameters for the individual training
set and the test set. The RASTR descriptors that were calculated earlier were combined with the
model descriptors and the resulting pool was analyzed by the BestSubsetSelectionModified_v2.1
tool (available from: http://teqip.jdvu.ac.in/QSAR_Tools/) for g-RASTR model development. The

best features were then used to create the final PLS-based q-RASTR model using the PLS_Single
Y _version 1.0 software.

3.2.7. Statistical validation of the constructed model

This study employs various statistical validation approaches to measure robustness and prediction
accuracy, establishing the significance and reliability of the constructed model using standard
validation metrics. For statistical quality assessment as well as internal validation, we calculated
metrics such as the determination coefficient (R?), leave one out cross-validated correlation
coefficient (Q%.00), and MAEwain. Internal validation metrics are not true assessments of the
robustness and predictivity of the model. Therefore, the developed models were validated using
test set compounds employing various external validation parameters such as Q%1 Q% and
MAE: . The approved threshold value for Q%Loo), Q%1, and Q% is 0.5.

3.2.8. Screening of the PPDB database

We obtained 1903 chemicals data from the PPDB database (http://sitem.herts.ac.uk/aeru/ppdb/).

We used a KNIME workflow to curate the dataset, eliminating duplicates, inorganic salts, and
mixtures. The dataset was curated and 1694 compounds were selected for screening to ensure the
model's reliability. We calculated the molecules’ descriptors using the same process as in -RASTR
modeling. We used the g-RASTR model and the PRI tool to make predictions and assess their
reliability. The tool evaluates the quality of predictions using AD and provides qualitative
prediction indicators, such as ‘Good’, 'Moderate’, and '‘Bad'.

3.2.9. Applicability domain (AD) study

AD is a specific region in chemical space where confident predictions can be made based on model
descriptors and responses. To make an accurate prediction, the target compounds should closely
resemble the training compounds in terms of structure. Therefore, it is crucial to validate the
applicability domain for the statistical model as advised by OECD Principle 3 (*Validation of
(Q)SAR Models - OECD," 2004). To adhere to the OECD guidelines, an applicability domain
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analysis of the PLS-based q-RASTR model was conducted using DModX technique implemented
in Simca-P software at a 99% confidence level.

3.2.10 Y-randomization study

Y-randomization study has been performed to analyze and confirm whether the developed models
are produced by any chance. Y-randomization plots are generated for final PLS-based models
through the SIMCA-P software. In randomization, the dependent variables are scrambled randomly
while keeping the descriptor matrix constant, and by using the same set of variables from the
original set, new models are built. The validation metrics obtained from the randomized model
should be poorer than the original model otherwise that model should be considered to be
developed by chance. The workflow for this entire study has been illustrated in Figure. 3.2.

RASTR .
—trai Model’s train
Descriptor Optimization of Sub-train [ further divided
calculation h t
yperparameter
using RASAR- s wing Read- - for RA
Desc-Cale-v2.0 Across-vd.1 prediction
software
Sub-test |
I Data fusion and q-RASTR B hasedas b ol QSTR model
—— model development using model development using development using
¥ | |‘ BestSubsetSelectionModifi PLS software and : h
) ed_v2.1 software Screened PPDB database TRl ARRaL

Data curation 1%

‘ using developed model '
» Test set /
AlvaDesc software j GA

o was used for s . /\ .

descriptor - o - - "‘7‘ Step i

Ghvuscience E C\ wis:!/[
|8 | Training set L

e calculation

Feature selection using
Stepwise and genetic
algorithm

Descriptor calculation Data pretreatment Dataset division

Figure 3.2. Schematic workflow of the g-RASTR model development.
3.3 Study 3
3.3.1. Preparation of dataset & curation

Here, we developed models using datasets with toxicity endpoint (LCso; defined as the lethal
concentration in 50% population) for toxicity prediction in multiple avian species collected from
literature [73] which was originally collected from the EPA, Ecotox database

(http://cfpub.epa.gov/ecotox/). In this study; 556 pesticides for BQ and 117 pesticides for JQ, were

taken for the development of the model. The toxicity endpoint values range from 0.082 to 4.957 in
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BQ, and 0.162 t0 4.968 in JQ. The two-dimensional structures of the pesticides were sketched using
Marvin Sketch 5.5.0.1 (https://chemaxon.com) with the addition of explicit hydrogen atoms as well

as proper aromatization. The conversion of structure file formats was carried out using Open Babel

v.2.3.2 [74]. Knime workflow (https://www.knime.com/cheminformatics-extensions) was

employed for data curation which removes unwanted salts and duplicate compounds. Toxicity in
an avian species characterized as an endpoint value (LCsp) was converted to millimolar (mM)
concentration followed by converting to a negative logarithmic scale, pLCso, for easy

interpretation. Some compounds were omitted from the datasets due to high residual values.

Table 3.5. Compounds smile with respective experimental pLCso values for BQ.

SI.No Canonical _smiles pLCso
1 COP(=0)(OC)OC(=CC(=0O)N(C)C)C 4.261
2 COP(=S)(0C)Oclcce(ccl)[N+](=0)[0-] 4.958
3 COP(=S)(0OC)Oclcce(SC)e(C)el 4.133
4 CCN(CC)C(=0)\C(=C(/C)\OP(=0)(0C)OC)\CI 4.097
5 CCOP(=S)(0CC)Oclccc(ccl)S(=0)C 3.945
6 CCOP(=0)(NC(C)C)Oc1cec(SC)c(C)el 3.902
7 CCCSP(=0)(0CccC)sccce 3.866
8* CCCSP(=0)(0CC)Oc1cce(Br)cclCl 3.817
9* Nclc(c(nnl-c1c(Cl)ce(cclCHC(F)(F)F)C#N)S(=0)C(F)(F)F 3.716
10 COP(=S)(0C)0clcce(Sc2cec(OP(=S)(0C)OC)cc2)ccl 3.705
11 CCOP(=S)(0OCC)Oc1ccc2C(=C(CI)C(=0)Oc2c1)C 3.630
12 CNC(=0)O\N=C(/SC)\C(=O)N(C)C 3.609
13 CIC1C=CC2C1C3(ChCc(=Cc(cnhcz(cncscnencl 3.608
14 CCOP(=S)(0OCC)Oclcncenl 3.582
15 COP(=S)(0C)Oclnc(CIhn(n1)C(C)C 3.569

16* COP(=0)(N)SC 3.526
17 CCCSP(=S)(0OCC)Oclcce(SC)ecl 3.513
18 CCOCnlc(c2ccc(Cl)cc2)c(C#N)c(Br)c1C(F)(F)F 3.490
19 CN(clc(Br)cc(Br)cclBr)c2c(cc(cc2C(F)(F)F)[N+](=O)[O-][N+](=0)[O-] 3.440
20 CCOP(=S)(NC(C)C)OclccceclC(=0)0OC(C)C 3.377
21* CCOP(=S)(0OCcC)oc(cnc(cncncl 3.356
22* | [0]S(=0)(=0)C(R)(F)C(F)(F)C(F)(F)C(F)(FIC(F)(FICF)(FIC(A(F)C(F)(F)F | 3.356
23 CCOP(=S)(0CC)Oclcc(C)nc(nl)C(C)C 3.337
24 CCOP(=0)(SC(C)CC)N1CCsC1=0 3.319
25* CCOP(=S)(OCC)SCsc(C)(e)c 3.305
26* CCOP(=S)(CC)Sclcccccl 3.268
27 | CCNS(=0)(=0)C(F)(F)C(F)(FC(F)(ACF)(F)CF)(FCF)FCHF)(F)CF)(F) | 3.266
F
28 COP(=S)(0C)Oclcce(c(C)cl)[N+](=0)[O-] 3.247
29 CCOP(=S)(0OC(C)C)Oclcnc(ncl)C(C)(C)C 3.222
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30 Clclcee(ccl)C(C(=0)C2C(=0)c3cceccc3C2=0)c4cccccs 3.190
31 CNC(=0)CSP(=S)(0C)0OC 3.184
32 CCOP(=S)(0CC)Oc1ccc(ccl)[N+](=0)[O-] 3.177
33 CCN(CC)clnc(C)ce(OP(=S)(0C)OC)n1 3.169
34 COC1=NN(CSP(=S)(0OC)OC)C(=0)S1 3.130
35 ClC2C(C(c1cncncs(c(=c(cz(cscnenenenencl 3.093
36 CCNP(=S)(OC)O\C(=C\C(=0)OC(C)O)\C 3.038
37 CCOP(=S)(Oclccc(ccl)[N+](=0O)[O-])c2ccecc2 2.967
38 CCOC(=0)CSclnc(nn1C(=0)N(C)C)C(C)(C)C 2.884
39* CCOP(=S)(0CcC)scsce 2.844
40 COP(=S)(OC)SCN1N=Nc2ccccc2C1=0 2.813
41 COP(=S)(OC)SCN1C(=0)c2ccccc2C1=0 2.802
42 CNC(=0)Oclcccc2CC(C)(C)Oc12 2.796
43 Clclcece(ccl)C(c2cec(Cl)ecc2)C(ChH(ChHCI 2.764
44* CCS(=0)CCSP(=0)(0C)0C 2.754
45 Clclcce(c(ClhclCl)c2cecce(Clyc2Cl 2.733
46 CIC1=C(CI)C2(CI)C3COS(=0)0ccs3ci(cnecz(cncl 2.704
47 CCOP(=S)(0CC)scesce 2.692
48* CC(=0)CC(C1=C([O-])c2cccec20C1=0)clcccccl 2.692
49* Clclcce(c(ClhclCl)c2eee(Clyc(Clhc2Cl 2.684
50 FC(F)(F)clcec(OCCCOc2¢(Cl)cc(OCC=C(ChHChcc2Clncl 2.644
51* | CC1(C)CNC(=NN=C(\C=C\c2ccc(cc2)C(F)(F)F)\C=C\c3ccc(cc3)C(F)(F)F)N | 2.639
Cl
52 CCOP(=0)(0OCcC)sccescce 2.637
53 CC(C)(C)C(O)C(Oc1ccece(ccl)c2ececc2)n3cenen3 2.621
54* CIC(=C(clccc(Cl)ecl)c2cec(Cl)ec2)Cl 2.586
55 CC(C1CC1)C(0O)(Cn2cncn2)c3cec(Clhee3 2.553
56 COP(=0)(0C)c(o)c(cncncl 2.553
57* Cl(C(c(c(c(crcnenenenencl 2.518
58 CCS(=0)(=0)clccenclS(=0)(=0)NC(=0)Nc2nc(0OC)cc(0OC)n2 2.508
59 CCCCCCCC(=0)Oc1c(Br)cc(cclBr)C#N 2.487
60 CNC(=0)Oclcc(C)e(N(C)C)c(C)cl 2.484
61* CCCILCN(CCOL)c2nce(cc2C#N)[N+](=0)[0O-] 2.479
62 CNC(=0)Oclcccc20C(C)(C)Oc12 2.474
63 CC1(C)CCC(Cc2cce(Cl)cc2)C1(0)Cn3cenen3 2.472
64 CNC(=0)Oclcc(C)c(SC)c(C)el 2.457
65 C\C(=N/NC(=0O)Nclcc(F)cc(F)cl)cinceeclC([O-])=0 2.429
66* C1CN2CC3=CCOC4CC(=0O)N5C6C4C3CC2C61CT7=CC=CC=C75 2.427
67 Clclcc(Cl)ce(cl)c2ec(Clyee(Cl)c2 2.395
68 CIC(CI)(CI)C(NC=0)N1CCN(CC1)C(NC=0)C(Ch(chcl 2.372
69 COC(=0)C=C(C)OP(=0)(0C)0OC 2.351
70* CIC1(ChC2(ChC3(Chc4(ChCc(Ch(chcs(Chc(cn(ca(cncsscnca4acl 2.337
71 CCC(C)cleccec(OC(=0)N(C)Sc2ceccec2)cl 2.330
72 CCCCSP(=0)(sccceysccecece 2.316

Page 56



Chapter 3 Materials and methods

73 | CC1(C)[C@H](\C=C(/CI)\C(F)(F)F)[C@@H]1C(=0)O[C@H](C#N)c2ccee( | 2.281

Oc3cccecec3)c2
74* Cclccec2sc3nnen3cl?2 2.277
75 CC1(C)ccee(ecr=ce=0 2.275
76* CCOP(=S)(OCC)SCN1C(=0)Oc2cc(Cl)ccc12 2.258
77 COP(=0)(OC)OC(Br)C(Clh(ChBr 2.255
78* C\C=C\C(=0)Oclc(CCCCCC(C)C)cc(ccl[N+](=0)[O-DIN+](=0)[0O-] 2.253
79 COP(=S)(0OC)Oclnc(Chec(ClhcclCl 2.245
80 Nclc(Cl)ce(cclCHN+](=0)[0-] 2.230
81 [O-][N+](=O)N=C1NCCN1Cc2ccc(Cl)nc2 2.221
82 [O-][N+](=O)NC1=NCCN1Cclccc(Cl)ncl 2.221
83* COclccc(ccINNC(=0)OC(C)C)c2cccecec2 2.208
84 | CCL(C(CLC(=0)OC(C#N)C2=CC(=CC=C2)0OC3=CC=CC=C3)C=C(C(F)(F) | 2.207
F)ChHC
85 [O-]1C(=O)CF 2.200
86 CC1(C(CLC(=0)OC(C#N)C2=CC(=CC=C2)0C3=CC=CC=C3)C(C(Br)(Br) | 2.198
Br)Br)C
87 CC1:C(C(:O)CC1OC(:O))C2():(C2(C)C)C:C(C)C)CC:C 2.173
88 O=C1NSc2cccccl?2 2.171
89 CC(C)(C)C(=0)C1C(=0)c2cceec2C1=0 2.169
90 CNC(=0)ON=C(C)SC 2.169
91 CIC(CIHC(clcce(Cl)eel)c2ecce(Cl)ec2 2.167
92* CON(C)C(=0)Ncicce(Clye(Clyel 2.166
93 COP(=0O)(NC(=0)C)SC 2.156
94 CN1C(=0)ON(C1=0)c2ccc(Cl)c(Cl)c2 2.155

95* | CC[C@H]LICCCC(O[C@H]2CC[C@@H]([C@@H](C)02)N(C)C)[C@@H] | 2.152
(C)C(=0)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3[C@@
H]2CC(=0)01)0[C@@H]10[C@@H](C)[C@H](OC)[C@@H](OC)[C@H]

10C
96 Clclcce(c(Cl)cl)c2ecee(Cl)c2Cl 2.144
97* Oclc(Br)cc(cclBr)C#N 2.139
98 CCCCCCCCCCCCCCIN+](C)(C)Cclcceecl 2.136
99 CN(C)C(=0O)Nclcce(Clye(Clcl 2.130
100 CCN(Cclccee(cl)S([O- 2.124

1)(=0)=0O)clece(cc1)C(=C1C=CC(C=C1)=[N+](CC)Cclccee(c1)S([O-
])(=0)=0)clccecclS([0-])(=0)=0

101 | Cclec(cccINC(=0)clccee()c1C(=0)NC(C)(C)CS(C)(=0)=0)C(F)(C(F)(F)F | 2.118

C(F)(F)F
102 CC(C)[C@H](C(:O)OC(C#N)3:1(502:5:(2)02&0002)cl)CSCcc(OC(F)F)cc3 2.118
103* CIC(CI)(CI)SN1C(=0)C2CC=CCC2C1=0 2.098
104* [0-]1S(=0)(=0)clcc(Cl)ccclOc2ceec(Cl)cc2NC(=0)Nce3cec(Cl)e(Che3 2.094
105 OC(clcce(Cleel)(c2cec(Chec2)C(Ch(ChCl 2.090
106 CCCCOCCOC(=0)C(C)Oclcc(Clc(Cl)cerCl 2.086
107 COC(=0)clcce(l)eeclS(=0)(=0)[N-]C(=0)Nc2nc(C)nc(OC)n2 2.065
108 CCCC(=0)Oclc(Br)cc(cclBr)C#N 2.041
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109* COclenc(OC)N2nc(NS(=0)(=0)c3c(OCC(F)F)ccee3C(F)(F)F)nc12 2.040

110* Clclccec(nl)C(CH(CDCI 2.034
111 Cclcce2nc3SC(=0)Sc3nc2cl 2.033
112* OC(=0)C1(CC1)C(=0O)Nc2ccc(Clycc2Cl 2.026

113* | CC=C(C)C(=0)OC1CC(C2(COC3C2C1(C(C4(C30C5C4=C(C(C5)C6=COC | 2.026
=C6)C)C)CC(=0)OC)C)C)OC(=0)C

114 CC1(C)C(C=C(CHCNHC1LC(=0)OC(C#N)c2ccee(Oc3cceccee3)c2 2.023
115 | COC(=0)clccc(CNS(=0)(=0)C)cclS(=0)(=0)NC(=0)Nc2nc(OC)cc(OC)n2 | 2.021
116* CCCCOCCOC(=0)COclcc(Che(CheclCl 2.020

117* | CCC1C(CCC2(01)CC3CC(02)CC=C(CC(C=CC=C4COC5C4(C(C=C(C50) | 2.019
C)C(=0)03)0)C)C)C

118 | CCIC(C(C(O1)OC2C(C(C(C(C20)0)N=C(N)N)O)N=C(N)NYOC3C(C(C(C( | 2.015
03)CO)0)0)NC)(C=0)0

119 CCCCCCCC[N+](C)(c)ccececececcce 2.013
120 CC(C)(C)cleec(OC2CCLCCC20S(=0)0CCHC)ecl 2.013
121 COC(=0)c1csc(C)cl1S(=0)(=0)NC(=0)N2N=C(OC)N(C)C2=0 2.006
122 Cclcc(Cl)ccclOCC(=0)0 2.001
123 CN(\C=N\clccc(C)eeclC)\C=N\c2cce(C)ec2C 1.979
124 | CC(C)N(C)S(=0)(=0O)NC(=0)clcc(N2C(=0)C=C(N(C)C2=0)C(F)(F)F)c(F) | 1.978
cclCl
125 Cclc(COC(=0)C2C(\C=C(/CH\C(F)(F)F)C2(C)C)ccccle3cccecec3 1.978
126 CCCCCCCcCcceceeecp+](ceee)(ceeeyececece 1.977
127* FC(OC(F)(F)F)C(F)(F)Oclccc(NC(=0O)NC(=0)c2c(F)cccc2F)cclCl 1.977
128 CO\N=C(\C1=NOCCO1)/c2ccccc20c3nenc(Oc4cccecaCl)c3F 1.976
129 CCCN(CCcC)C(=0)sccC 1.976
130 CCOC(=0)CC(SP(=S)(0OC)0OC)C(=0)0cCC 1.975
131* CCC(=0O)Nclccc(Cl)c(Clycl 1.975
132 COclcc(OC)Nc(NC(=0)NS(=0)(=0)c2cc(NC=0)ccc2C(=0)N(C)C)nl 1.963
133 CNC(=0O)N(C)clnnc(s1)C(C)(C)C 1.961
134 CCNclnc(Clnc(NC(C)(C)C#N)Nn1 1.958
135 CN1C(=NN(C1=0)C(=0O)[N- 1.957
1S(=0)(=0)C2=CC=CC=C20C(F)(F)F)OC.[Na+]
136 CCOclnc(F)cc2nc(nn12)S(=0)(=0O)Nc3c(Cl)ceec3Cl 1.956

137 | CC1(C(C1C(=0)OC(C#N)C2=CC(=CC=C2)0C3=CC=CC=C3)C=C(Br)Br\C | 1.954

138 CC(C)C(Nclcee(cclCHC(F)(F)F)C(=0)OC(C#N)c2ccee(Oc3ceccec3)c2 1.951

139 | CC(CICCC(C(O1)0OC2C(CC(C(C20)OC3C(C(C(CO3)(C)O)NC)O)N)N)N) | 1.949

NC
140* CC(Oclcc(Clyc(ClycciChHC(=0)0 1.949
141* CCS(=0)(=0)clnc2cceen2clS(=0)(=0)NC(=0)Nc3nc(OC)cc(0C)n3 1.948

142 CCN(Ccle(F)ccecIClc2e(ce(cc2[N+](=0)[0-])C(F) (F)F) [N+](=0)[O-] 1.944

143 | CC(C)[C@@]1(0)[C@@H](OC(=0)c2cec[nH]2)[C@@]3(0)[C@@]4(C)C[ | 1.944
C@]5(0)0[C@@]6([C@H](O)[C@@H](C)CC[C@]460)[C@@]3(O)[C@

@]15C
144 COC(=0)clceec(C)c1S(=0)(=0O)NC(=O)Nc2nc(OCC(F)(F)F)nc(n2)N(C)C 1.943
145 OC(=0)COclnc(Cl)c(Cl)cclCl 1.942
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146 COclcc(OC)N2nc(NS(=0)(=0)c3c(OC)ncec3C(F)(F)F)nc2nl 1.939
147* | CC1(C(C1C(=0O)OC(C#N)C2=CC(=C(C=C2)F)0C3=Cc=Ccc=C3)c=Cc(ChCc | 1.939
C
148 CCCCCCC(:O)Oc)lc(Br)cc(cclBr)C#N 1.934
149 CCOC(=0)C(0)(clcce(Checl)c2ccec(Clyec2 1.934
150* COclce(OC)Nc(NC(=0)NS(=0)(=0O)Nc2cceecc2C(=0)N(C)C)nl 1.931
151 CS(=0)(=0)clcc(cecclC(=0)c2cnoc2C3CCI)C(F)(F)F 1.927
152 CIC1=C(ChHC(ChH(C(=Cc1chchcz(chc(=c(cnc=cz2cnencl 1.927
153 | CN1C(=O)N(C(=0)C=C1C(F)(F)F)c2ccc(Cl)c(c2)C(=0)OC(C)(C)C(=0)0C | 1.926
c=C
154 Cclnn(C)c(Oc2cceec2)c1\C=N\OCc3cce(ce3)C(=0)OC(C)(C)C 1.926
155 CCSC(C)CCLCC(=C(C(=NOCc\c=C\Chco)c(=0)Cc1)0o 1.926
156 CC(C)C(C(=0)OC(C#N)clceee(Oc2cceeec2)cl)c3cec(Clyee3 1.924
157 COc1nc(C)nc(NC(=0O)NS(=0)(=0)c2ccccc2CCC(F)(F)F)n1 1.924
158* Clclcee(CCC(Cn2cenen2)(C#N)c3ccccee3)ccl 1.920
159* FC(F)(F)clenc(CCNC(=0)c2ccecc2C(F)(F)F)c(Chel 1.919
160 CCOC(=0)COclcc(c(F)cciClhe2nn(C)e(OC(F)F)c2Cl 1.917
161* CCOC(=0)C(C)OC(=0)clcc(Oc2ccc(cc2ClC(F)(F)F)cecl[N+](=0)[0-] 1.915
162 COclce(OC)Nc(NC(=0)NS(=0)(=0)c2ncccc2C(=0)N(C)C)nl 1.914

163* | CN(CO)[C@H]1[C@@H]2[C@@H](O)[C@H]3C(=C(O)[C@]2(0)C(=0)C(C | 1.913
(N)=0)=C10)C(=0)c1c(O)ccecl[C@@]3(C)0

164* | COC1=CC(=NC(=N1)NC(=0)NS(=0)(=0)C2=C(N=C3N2C=CC=C3)CI)OC | 1.913

165 CI\C=C\C[N+]12CN3CN(CN(C3)C1)C2 1.912
166 CON=C(C(=0)OC)clccccclCON=C(C)c2ccce(c2)C(F)(F)F 1.908
167* COc1nc(C)nc(NC(=0O)NS(=0)(=0)c2ccccc20CCCl)nl 1.905
168 CC(=0)CC(C1=C(O)c2ccecec20C1=0)c3cccecce3 1.898
169 Oclc(Cl)c(Che(Che(ClycaCl 1.894
170 CO\C=C(\C(=0)0OC)/c1ccceclOc2cc(Oc3ceccc3C#N)Nnen2 1.890
171 CON(C(=0)0C)clccececclCOc2ceen(n2)c3cec(Cl)ec3 1.890
172 COC(=0)c1c(ChHnn(C)c1S(=0)(=0)NC(=0O)Nc2nc(OC)cc(OC)n2 1.889
173* CCOclnc(F)cc2nc(nn12)S(=0)(=0O)Nc3c(Cl)ceccc3C(=0)0C 1.884
174 COclcc(OC)nc(Oc2ceec(0c3nc(0C)cc(0C)N3)c2C(=0)[O-])nl 1.883
175* CS(=0)(=0)clcec(C(=0)C2C(=0)CCCC2=0)c(Cl)c1COCC(F)(F)F 1.882
176 O=C(C(clccececl)c2cececc2)C3C(=0)cdcccccdC3=0 1.880
177 CCCCCCCCSC(=0)Oclcc(Chnnclc2ceccc? 1.880
178 CN1C=C(C(=0)C(=C1)c2cccc(c2)C(F)(F)F)c3cceeee3 1.879
179* CCCCCOC(=0)COclcc(N2C(=0)C3=C(CCCC3)C2=0)c(F)ccliCl 1.878
180* Clclccee(c(Cl)c1)C2(Cn3cnen3)CC(Br)CO2 1.877
181 CCOclcce(ccl)C(C)(C)COCc2ccec(Oc3ccececcel)c2 1.877
182 CC1(C)C(C=C(ChHChHC1C(=0)OCc2cccc(Oc3cccecece3)c2 1.877
183 Cclcce(cel)S(=0)(=0)C(I 1.876
184 Cclcc(C)c(C2=C(OC(=0)C(C)(C)C)C3(CCCC3)0C2=0)c(C)c1 1.874

185 | CCOC(=0)OC1=C(C(=O)N[C@@]12CC[C@@H](CC2)OC)c3cc(C)ccc3C | 1.873

186 CC(C)[C@H](C(=0)O[C@H](C#N)ciccee(Oc2ccccc2)cl)c3cec(Clyee3 1.873
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187* CC12C(C=CC3(C1C(C45C3CCLC(Ca)(C(=C)CH)O)C(=0)0)0C2=0)0 1.873
188 CCOC(=0)C(C)Oclcec(Oc2enc3cc(Cl)eee3n2)ccl 1.873
189 Cclnn(C)c(0)c1lC(=0)c2cce(cc2S(=0)(=0)C)C(F)(F)F 1.868
190 CCOC(=0)C(CI)Cclcc(N2N=C(C)N(C(F)F)C2=0)c(F)cc1Cl 1.865
191 CCCCOC(=0)C(C)Oclcce(Oc2cee(cn2)C(F)(F)F)ccl 1.865
192 COP(=0)(0C)OC(=CCl)clcc(Cl)c(Cl)celCl 1.864
193* COclcee(cclOC)\C(=C\C(=0)N2CCOCC2)\c3cce(Cl)ee3 1.864
194 CCOc1nc(NC)nc(NC(=0O)NS(=0)(=0)c2cceec2C(=0)0C)nl 1.864
195 COC(=0)clccecclCS(=0)(=0)NC(=0O)Nclnc(OC)cc(0OC)nl 1.864
196* CNC(=0)Oclcc(C)e(C)e(C)cl 1.863
197 COclcc(OC)Nc(NC(=0)NS(=0)(=0)c2ncccc2C(F)(F)F)nl 1.863
198 CC(C)C(O)(c1cec(OC(F)(F)F)ccl)c2enenc2 1.860
199 CCCCNC(=0)OcCcCHCl 1.860
200 CCOclcce(Oc2cec(cc2Cl)C(F)(F)F)cccl[N+](=0)[0-] 1.859
201* CSC(=0)c1c(CC(C)C)c(C(=0)SC)c(nclC(F)F)C(F)(F)F 1.854
202 Clclcee(ccl)S(=0)(=0)c2ce(Cl)c(Clhcc2Cl 1.853
203 CS(=0)(=0)clcec(C(=0)C2C(=0)CCCC2=0)c(c1)[N+](=0)[O-] 1.852
204* CCOclce(ccc1C2COC(=N2)c3c(F)ceecc3F)C(C)(C)C 1.851
205* CC(C)OP(=S)(OC(C)C)SCCNS(=0)(=0O)clcccecl 1.850
206* CN1CSC(=S)N(C)C1 1.848
207 COC(=0)c1c(CC(C)C)c(C2=NCCS2)c(nclC(F)F)C(F)(F)F 1.848
208 CCclcee(ccl)C(=O)NN(C(=0)c2cc(C)ec(C)ec2)C(C)(C)C 1.848
209* COC(=0)clccecclS(=0)(=O)NC(=0)N(C)c2nc(C)nc(OC)n2 1.847
210 CC(=CC1C(C1(C)C)C(=0)OCC2=CC(=CC=C2)0C3=CC=CC=C3)C 1.846
211 COC(=0O)clcc(Clycc(N)ciCl 1.843
212 CN(C)C(=0)Oc1nc(nc(C)c1C)N(C)C 1.843
213* CCCcCcCccececeeceecee=ccececececececece 1.842
214 CCCN(CCC)clc(ce(ccl[N+](=0)[0-DS(=0)(=0)N)[N+](=0)[O-] 1.841
215 COclcce(ccl)C(c2cec(OC)ec2)C(Ch(ChCl 1.840
216* OC(CNINC=NC1=S)(Cc2ccccc2Cl)C3(Cl)CC3 1.839
217 CC(C)Oclcc(N2N=C(0OC2=0)C(C)(C)C)c(Clh)ccl1Cl 1.839
218 CCCCC(O)(Cnlcnenl)c2cec(Chec2Cl 1.839
219 COC(=0)c1sccclS(=0)(=0)NC(=0O)Nc2nc(C)nc(OC)n2 1.838
220 CC1=NN(C(=O)N1C(F)F)c2cc(NS(=0)(=0)C)c(Clhcc2Cl 1.838
221 CCCCCC(C)OC(=0)COc1cce(Clhc2ecenc12 1.837
222 Clclcece(ccl)c2ceccc2NC(=0)c3ceenc3Cl 1.837
223 Cclc(cee(clC2=NOCC2)S(=0)(=0)C)C(=0)c3cnn(C)c30 1.836
224 COC(=0)clce(Oc2cec(Clycc2Cl)cccl[N+](=0)[O-] 1.835
225* CC(C(=0)OCC#C)OC1=CC=C(C=C1)0C2=C(C=C(C=N2)CHF 1.835
226 CC(Oclcce(Oc2ncee(Cl)ec2F)ccl)C(=0)0CCHC 1.835
227 COC(=0)clcceecclS(=0)(=O)NC(=0)Nc2nc(C)nc(OC)n2 1.832
228* COclcc(OCC#C)ccclCCNC(=0)C(OCC#C)c2ccec(Clyec2 1.831
229 COclce(C)e(C(=0)c2c(C)e(Br)ccc20C)c(0C)c10C 1.829

Page 60



Chapter 3 Materials and methods

230* CCC(CC)Nclc(cc(C)ec(C)cI[N+](=0)[O-DIN+](=0)[0-] 1.827
231 CCclcc(C)cc(CC)ec1C2=C(OC(=0)C(C)(C)C)N3CCOCCN3C2=0 1.827
232 CCCCN(CC)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.826
233 CCCN(CCC)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.826
234 CC(COclcce(cecl)C(C)(C)C)OS(=0)occcl 1.826
235 Fclccec(F)c1C(=0O)NC(=0O)Nc2cce(Cl)cc2 1.826
236 CN(C)C(=O)Nciccee(cl)C(F)(F)F 1.825
237 CC(=CC1C(C(=0)OC(C#N)c2ccee(Oc3cececce3)c2)CL(C)C)C 1.825
238* CCc1nn(C)c(C(=0O)NCc2ccc(cc2)C(C)(C)C)clCl 1.825
239 CCN(CC(=C)C)clc(cc(ccl[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.824
240* CC1(OC(=0O)N(Nc2cccec2)C1=0)c3ccc(Oc4cceccd)cc3 1.824
241 CCC(C)(CC)cleec(NC(=0)c2c(0C)ceec20C)onl 1.823
242 FC(F)(F)clcnc(CNC(=0)c2c(Cl)ceec2Cl)e(Cl)cl 1.821
243 CCCCOCCOC(=0)COclnc(Cl)c(ClycclCl 1.820
244* BrCC(Br)(CCC#N)C#N 1.818
245 CCCCCCCCN1sC=CC1=0 1.815
246* CC(C)(C)NIN=CC(=C(CI)C1=0)SCc2ccc(cc2)C(C)(C)C 1.813
247 Nclcc(Clee(C(=0)[O-])cl1Cl 1.812
248* COC(=0)clccecclS(=0)(=O)NC(=0)Nc2nc(C)ce(C)n2 1.812
249 CCN(CC)clc(cc(c(N)CI[N+](=O)[O-DC(F)(F)F)[N+](=0)[0O-] 1.809
250 CCOC(=0)C(C)Oclcee(Oc2oc3cc(Cl)eec3n2)ccl 1.809
251 CC(Oclcce(Oc2nee(cc2Cl)C(F)(F)F)cecl)C(=0)0 1.809
252 CCCCOCCOC(=0)COclcce(ClycclCl 1.808
253 [O-]1C(=0)clcc(Oc2ccc(cc2ClC(F)(F)F)cccl[N+](=0)[O-] 1.807
254* CCC(C)(NC(=0O)clcc(Clyc(C)e(Clhcr)C(=0)CCl 1.807
255 COc1nc(C)nc(NC(=0O)NS(=0)(=0)c2ccccc2Cl)nl 1.804
256* CCCCOC(=0)C(C)OC1=CC=C(C=C1)0C2=C(C=C(C=C2)C#N)F 1.803
257 CC1(C)CCC(=Cc2ccc(Cl)cc2)C1(0)Cn3cnen3 1.803
258 CC(C)(C)C(=0)C(Oc1cee(Clyeecl)n2enen?2 1.802
259 CS\C(=N\OC(=0O)N(C)SN(C)C(=0)ON=C(C)SC)\C 1.800
260 Fclcc20CC(=0)N(CC#C)c2ccIN3C(=0)C4=C(CCCC4)C3=0 1.800
261 CCCCC(CC)COC(=0O)cinc(Clhc(Chec(N)cacl 1.799
262* Cc(C)cececececececececececececcocco 1.799
263* CC1C(SC(=0O)N1C(=0O)NC2CcCcCCC2)Cc3=CC=C(C=C3)Cl 1.798
264 COclccec(C(=O)NN(C(=0)c2cc(C)ec(C)ec2)C(C)(C)C)clC 1.798
265* CCCCOCCOCCOCCclcc20C0c2ccicce 1.797
266 CON=C(C(=0)0C)clcccecclCOc2ccccc2C 1.797
267 CC(C)CCCCCOC(=0)COclccce(ClhyeclC 1.796
268 COCclc(F)c(F)c(COC(=0)[C@@H]2[C@@H](C=CC)C2(C)C)c(F)clF 1.796
269 CC(C)C1(C)N=C(NC1=0)c2nc3ccccc3cc2C(=0)0 1.794
270 C1C=CCC2C1C(=0O)N(C2=0)Ssc(c(cncncnci 1.793
271 CIC(CIHC(CH(CISN1C(=0)C2CcCc=Cccc2C1=0 1.793
272 CC(C)CC(C)clscccINC(=0)c2en(C)nc2C(F)(F)F 1.793
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273 CCCN(CCC)clc(cc(ccl[N+](=0)[O-])C(C)C)[N+](=0)[O-] 1.792
274 CC(COclccee(Oc2ceccc2)ecl)Oc3cecend 1.791
275 CCCCC(CC)COC(=0)Cc(C)oc1=Cc(Cc=C(c=Ccr)CcNnCl 1.791
276 CC(C)CCCCCOC(=0)C(C)Oc1ccc(ClycclCl 1.791
277 CC(C)Oclccec(NC(=0)c2ccecc2C(F)(F)F)cl 1.790
278 CCCOCC(=Nclcce(CheclC(F)(F)F)n2cenc2 1.789
279 CCclccc(ccl)C(C(ChCl)c2cee(CC)ec2 1.789
280 CC1CCCCN1CCCOC(=0)c2ccece(Clyc(Cl)c2 1.788
281 CCCC1CO0OC(Cn2cncn2)(01)c3cee(Clyce3Cl 1.785
282 CN(C)C(=S)SSC(=S)N(C)C 1.784
283 CCCCCCCCN1SC(=C(CIhHC1=0)ClI 1.784
284 COC(=0)C(C)Oclcce(Oc2cec(Clycc2Clyecl 1.783
285 CCCCOCCOCCOCclcc20C0c2cc1cCC 1.780
286 CC1CC2=C(CINC3=NC(=NC(=N3)N)C(C)F)C=C(C=C2)C 1.780
287 CCOC(=0O)Nclccec(OC(=0)Nc2ceeec2)cl 1.779
288 CCOC(=0O)CN(C(=0)CCl)clc(CC)cccclCC 1.778
289 CC(C)CCCC(C)C\C=C\C(=C\C(=0)OCccHC)\C 1.775
290 CC(=NNC(=0O)Nclcc(F)cc(F)cl)clneeeclC(0)=0 1.774
291 CIC(CI(CI)SN1C(=0)c2ccccc2C1=0 1.773
292 CCCCC(CC)COC(=0)COclccce(ClycclCl 1.773
293* CC(C)(C)C(O)C(Oc1cee(Checl)n2enen2 1.772
294* CCOC(=0)C1=NOC(C1)(c2cccec2)c3cccec3 1.771
295* COC(=0)c1c(Clyc(Cl)c(C(=0)OC)c(Cl)c1Cl 1.771
296 [O-][N+](=O)clc(Cl)c(Chc(Clye(ChclCl 1.771
297 CC(=CC1C(C1(C)C)C(=0)OCN2C(=0)C3=C(C2=0)Ccccea)c 1.771
298 CC(C)NC(=O)N1CC(=0O)N(C1=0)c2cc(Cl)cc(Cl)c2 1.769
299* CCOCN(C(=0)CCl)cic(C)cceclCC 1.767
300 CC(C)C1CcCC(Cc2ccc(Chec2)C1(0)Cn3cenen3 1.767
301 CC1C(OC(=0)C2C(C=C(C)C)C2(C)C)C=C(Ccc=CCc=C)C1=0 1.767
302 N#CSCSC#N 1.766
303 CCCC(=NOCC)C1=C(O)Cc(cc(Cc)scoycei=0 1.766
304* CC(C)NI\C(=N\C(C)(C)C)\SCN(C1=0)c2cccec? 1.765
305 CCN1C(=CC(=0)C(=C1lc2ccc(Cl)cc2)C(=0)[0-])C 1.765
306 CCCCCCCCCC[N+](C)(C)cccececececececce 1.764
307 COclcc(OC)nce(Sc2ccee(Che2C(=0)[0-])nl 1.763
308 Oclcc(Cl)ceeclOc2ccc(Clycc2Cl 1.763
309 Cclcen2ne(nc2nl)S(=0)(=0)Nc3c(F)ccec3F 1.763
310 CCclcenc(C2=NC(C)(C(C)C)C(=0)N2)c(c1)C(=0)O 1.762
311 CC1=C(C(=CC=Cl)C)N([C@H](C)C(=0O)OC)C(=0)Cc0oC 1.762
312 CCCCC(Cnlcncnl)(C#N)c2cee(Cl)ec2 1.762
313* COC(=0)clcec(C)eclC1=NC(=0)C(C)(N1)C(C)C 1.761
314* CCC1=C(C(=0)[O-])C(=0O)C=NN1c2ccc(Cl)cc2 1.761
315 COCC(=0O)N(N1CCOC1=0)c2c(C)cccc2C 1.760
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316* CC1=C(SCCO01)C(=0O)Nc2ccccc2 1.758
317 CCC(=NOC\C=C\Cl)C1=C(O)CC(CC1=0)Cc2Cccocce2 1.756
318 [S-]IC(=S)NCCNC(=9)[S-] 1.753
319 CC(=CC1C(C1(C)C)C(=0O)OCN2C(=0O)CN(C2=0)CC#C)C 1.753
320 CCCCCcccecececeic(oyceeecec(oe 1.752
321 Cnlcc(C(=0O)Nc2ccecc2C3CC3C4ACCA)c(n1)C(F)F 1.752
322* CN1COCN(Cc2cnc(Cl)s2)C1=N[N+](=0)[O-] 1.749
323 [S-]C1Nc2ccccc2S1 1.747
324* CNC(=0)Oclccee(cl)\N=C\N(C)C 1.747
325 CCCCCCCCCCIN+](C)(c)ceceececec(e)e 1.745
326* ClclceecccINe2ne(Chne(Clhn2 1.741
327* CCOC10c2ccc(0S(=0)(=0)C)cc2C1(C)C 1.741
328 CCON=C(CC)C1=C(O)CC(CC1=0)c2c(C)cc(C)cc2C 1.740
329 CC1=CC(=C(N=C1)C2=NC(C(=0O)N2)(C)C(C)C)C(=0)[O-] 1.739
330 CC(C)C1(C)NC(=NC1=0)clncc(C)cclC([O-])=0 1.739
331 Fclcce(Oc2cenc3cc(Cl)ee(Cl)e23)ccl 1.739
332 COCclenc(C2=NC(C)(C(C)C)C(=0O)N2)c(c1)C(=0)O 1.739
333* CC(C)N(C(C)C)C(=0)scc(=c(cnencl 1.734
334* OC(clcce(Cl)ecel)(c2enenc2)c3cceec3Cl 1.733
335 CCclccec(CC)cIN(COC)C(=0)CCI 1.732
336 | CC(C)=C[C@H]1[C@H](C(=0)0[C@@H]2CC(=0)C(CC=C)=C2C)C1(C)C | 1.731
337 CSC1=NN=C(C(=O)N1IN)C(C)(C)C 1.729
338 CIC(CDH(CDHS(=0)(=0)C(Ch(cnhcl 1.729
339* | CC(=C[C@H]1[C@H](C(=0)O[C@@H]2CC(=0)C(=C2C)CC#C)CL(C)C)C | 1.728
340 CCCCCCcCcce=cceeecececce(=0)[0-] 1.727
341 N#CSCSclnc2cceec2sl 1.724
342 COC(=0)Nclccee(OC(=0O)Nc2ceee(C)e2)cl 1.723
343* CC1=CC(=0)C(=NN1c2ccc(Cl)cc2)C(=0)[O-] 1.722
344 COclcc(Cl)c(OC)cciCl 1.719
345 CN1SC=CC1=0 1.719
346 CC(C)C1(C)N=C(NC1=0)c2ncccc2C(=0)0 1.718
347 CCOCCOCCOC(=0O)Nclnc2ccecc2[nH]1 1.718
348 CC(C)COC(=0)COc1cce(CleclC 1.711
349 Clclc(Chc(C#N)c(Clhe(C#N)c1Cl 1.709
350 Nclc(Cl)c(F)nc(OCC(=0)O)ci1Cl 1.708
351 CCC(CN1CCOCC1)[N+](=0)[0O-] 1.707
352 CC1(OC(=0O)N(C1=0)c2cc(Cl)cc(Cl)c2)C=C 1.707
353 CC1(C)N(Br)C(=O)N(Br)C1=0 1.707
354* CCC1=CC=CC(=CIN(C(C)coL)Cc(=0)CcCIC 1.703
355 CN(C)C1=NC(=0O)N(C2CCCCC2)C(=0O)N1C 1.703
356 CC(C)(C)[C@H](O)C(=Cclccc(Checl)nlcenenl 1.703
357 CNC(=9)[S-] 1.702
358 CCCC\C=C\CCC=Cccceeeoc(=0)c 1.698
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359 OC(=0)CCCOclccc(ClycclCl 1.697
360 FC(F)(F)clcencclC(=O)NCC#:N 1.696
361 OCNC(=O)N(CO)CIN(CO)C(=O)N(CO)C1=0 1.695
362 CCOclnc(ns1)C(CI)(CI)CI 1.695
363 COclcce(ccl)C(0)(C2CC2)c3cnenc3 1.693
364 COC[C@H](C)N(C(=0O)CCl)c1c(C)csclC 1.691
365 COCC(C)N(C(=0O)CClI)clc(C)esclC 1.691
366 CCCCC(CC)CN1C(=0)Cc2c3ce(c=Cc3)c2c1=0 1.690
367 CCOC(=0)C1CC(=0)C(=C(0O)Cc2CcC2)Cc(=0)C1 1.686
368 OC(=0)clc(Cl)cec2ec(Cl)encl2 1.685
369 CCL(C)N(CHC(=O)N(Br)C1=0 1.684
370 Nclc(Cl)c(Cl)nc(C(=0)0)c1Cl 1.684
371 CCN(CC)C(=0)C(C)Oclcccc2cecceecl2 1.684
372* CSclnc(NC(C)C)nc(NC(C)C)n1 1.684
373* CC(C)OC(=0)COc1ccc(ClycclCl 1.683
374 OC(=0)Cclc(Cl)cce(Clyc1Cl 1.680
375 CC(C)N1C(=0)c2ccecc2[N-]1S1(=0)=0 1.680
376 CNC(=N[N+](=0)[O-])NCclcnc(Cl)s1 1.679
377 CNC(NCclcnc(Cls1)=N[N+]([O-)=0 1.679
378 FC1(F)Oc2ccec(c201)c3c[nH]cc3C#N 1.679
379 COP(=0)(0C)oc=C(ChcClI 1.678
380 OC(Cnlcnenl)(c2cec(F)cc2)c3ceecc3F 1.676
381 Clclcee(C(Cn2cenc2)OCC=C)c(Cl)cl 1.674
382 CCCCcCcCcCCCclcec(0OCCO)ccl 1.673
383* CIN1C(=O)N(CNHC(=O)N(CI)C1=0 1.667
384 Nclnc(NCl)nc(n1)N(CI)CI 1.662
385 CINc1nc(NCI)nc(NCI)n1 1.662
386 Cclcc(Cl)ceclOCCCC(=0)0 1.660
387 Cclcc(Cl)ccclOCCCC(=0)[0-] 1.658
388 COC(=0)Nclnc2ccccc2[nH]1 1.658
389 CCCOP(=S)(OCCC)OP(=S)(OCCC)occe 1.658
390 CIC1=C(CIC(=0)c2ccccc2C1=0 1.657
391 CSclnc(NC2CC2)nc(NC(C)(C)C)nl 1.654
392 Cclcc(O)ccclCl 1.652
393 CCN(CC)C(=S)sCcC(=C)ClI 1.651
394* CCCOC(=0)clcce(ncl)C(=0)0OCCC 1.650
395 C[C@H](clccccclCNCCN)[N+](=0)[O-] 1.650
396 OCC(Br)(CO)[N+](=0)[0-] 1.649
397* CN(Cclcce(Clncl)C(=NC#N)C 1.649
398 CC(=CCC\C(=C\CCC(C)(0)Cc=0C)\C)C 1.648
399 CC(=CCC\C(=C\CC\C(=C\cO)\C)\C)C 1.648
400 | [O-][N+](=O)clcc(c(Cl)c(cINc2nec(cc2CHC(F)(F)F)[N+](=0)[O-DC(F)(F)F | 1.646
401 Clclcc(NC(=O)Nc2ccecc2)cenl 1.644
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402 O=C(Nclcccccl)Nc2enns2 1.644
403* COclc(Cl)cee(Clc1C(=0)[0O-] 1.644
404 Clclccc(CN2CCSC2=NC#N)cnl 1.643
405* Cclcc(nc(Nc2ceeeec2)n1)C3CC3 1.638
406 CCNclnc(Cl)nc(NC(C)C)nl 1.635
407 NC(=0)C(Br)(Br)C#N 1.634
408 CC1(C)N(Br)C(=O)N(CI)C1=0 1.633
409* CC(Oclcce(Cl)eclC)C(0)=0 1.633
410 Nclc(Clc(Cl)nc(C(=0)[O-])c1ClI 1.631
411 CCCCCCcCcCC=CcccocC(=0)C 1.631
412* CCCCCCcCc\c=Cc\ccecoc(e)=0 1.631
413 CC1(C)CON(Cc2ccccc2Cl)C1=0 1.630
414* O=C(OCclccceel)c2ceccc2 1.628
415 CCCccC=Cccceececececececece=0 1.628
416* CC1=NNC(=0O)N(C1)\N=C\c2cccnc2 1.627
417 CC(C)N(C(=0O)CCl)clcceecl 1.627
418 CSC(=0)clccee2nnscl? 1.624
419 CC1=C(C)S(=0)(=0)CCS1(=0)=0 1.624
420 CC(CN1COoc(C)cryocococo 1.622
421* CCC12COCN1cOoc2 1.621
422 CC1CCCCCINC(=0O)Nc2ccecc2 1.616
423 Cclcc(C)nc(Nc2ceeec2)nl 1.616
424> CCNclnc(Cl)nc(NC(C)(C)C)nl 1.612
425* OC(=0)CCCclc[nH]c2cccecl2 1.609
426 [O-][N+](=O)\C(=C\clcccecl)\Br 1.608
427* CCNclnc(NC(C)C)ne(SC)n1 1.607
428 Nclnc(nc(C(=0)0O)cl1Cl)C2CC2 1.606
429 CCNclnc(Cl)nc(NCC)n1 1.606
430 CNC(=0)Oclcccc2cccccl? 1.605
431 COclnc(NC(C)C)nc(NC(C)C)n1 1.603
432 C(Ncl[nH]cnc2nencl2)c3cceeee3 1.603
433 CCCCCccceeece(=0)[04] 1.601
434 CN(C)C(=O)Nclcce(Cl)ccl 1.599
435* CCN(CC)CCOCclcce(C)ecl 1.597
436 CIN1C(=O)[N-]C(=O)N(CI)C1=0 1.595
437* OC(=0)COclccc(ClycclCl 1.595
438 CCCCN(CC)C(=0)sccce 1.592
439 OCCN1CN(CCO)CN(CCcOo)C1 1.501
440* CNC(=0)O\N=C\C(C)(C)S(=0)(=0)C 1.591
441 Oclcce(Cl)eclCc2ccccc2 1.590
442 [O-]IN1C=CC=CC1=S 1.590
443 CCCCN1Sc2ceccc2C1=0 1.589
444 CCSC(=0O)N(Cc(C)c)cc(o)c 1.588
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445 CCCOC1=NN(C(=0O)[N-]S(=0)(=0)c2ccccc2C(=0)0OC)C(=0O)N1C 1.585
446 CCCOC(=O)NCCCN(C)C 1.585
447 CCSC(=0O)N(ccC)c1cceeceel 1.584
448 Oclcce(cecl)C(=0)CBr 1.583
449 CCOC(=0)Cclcccc2eccecl?2 1.581
450* CC(C)OC(=0O)Nclccee(Clel 1.580
451 CC1(C)N(CO)C(=0O)N(CO)C1=0 1.576
452 CIC1=C(CI)C(=0)ss1 1.573
453* Nclcc(Clhnc(C(=0)0)c1ClI 1.571
454 OC(=0)C1C2CCC(02)C1C(=0)O 1.571
455* Clclcc(Cl)ce(cl)C2(CC(Ch(Chcnco2 1.570
456 CCOclccc2NC(C)(C)C=C(C)c2cl 1.570
457 NC(=0)Cclcccc2cecccl2 1.569
458 CCccccececicec(=0)o1 1.567
459 [O-]C(=0)C1C2CCC(02)C1C(=0)[O-] 1.566
460 [O-][N+](=O)\C=C/1\NCCCS1 1.565
461* C1=CC2C(C(C102)C(=0)[O-])C(=0)[O-] 1.561
462 CCCI[N+](C)(C)CCIN+](C)(C)CcCcOo 1.561
463 CCCSC(=0O)N(cce)ccece 1.559
464 CP(=0)(O)CCC(N)C(=0)[0O-] 1.557
465* clccc2[nH]c(nc2cl)c3csen3 1.554
466 CC(Oclccce(Cl)cl)C(=0)0 1.553
467 Cccccececececececec(o)=0 1.552
468 CCNC(=O)NC(=0)\C(=N\OC)\C#N 1.547
469 CCCcCcCcceeN1ceeece=0 1.546
470* CCL(C)N(CHC(=O)N(ChHC1=0 1.545
471 CCCN(CCC)clc(ce(c(N)cI[N+](=0)[O-])C(F)(F)F)[N+](=0)[O-] 1.544
472 CC1(C)C(C(=0O)OC(C#N)c2ccec(Oc3ccececce3)c2)CL(C)C 1.543
473 CCN1CN(CC)CN(CO)C1 1.535
474 COC(=0O)NC(=S)NclcccccINC(=S)NC(=0)0C 1.535
475 Cclncc([N+](=0)[O-])n1CCO 1.534
476* CC(0)CSS(=0)(=0)C 1.5632
477 CCSC(=0O)N1cccecececet 1.528
478 OCOCC12COCN1COC2 1.528
479 CCCCOCCOC(=0)C(C)Oclcee(ClhcelCl 1.525
480 CC(=0)Nclcc(NS(=0)(=0)C(F)(F)F)c(C)cclC 1.523
481 Clclccec(Cl)c1C#N 1.520
482 CCCCCCNC(=N)NC(=N)N 1.518
483 CN(C)C(=0O)Nclcccccl 1.516
484 CCC(C)(CCC(C)C)C(=0O)NC 1.514
485 OC(=0O)CNCP(=0)(0)O 1.512
486 CC1(C)COCN1 1.493
487 COC(C)(C)Ccee(e)e\e=C\C(=C\c(=0)0oCc(C)O)\C 1.492
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488 CC1CC(OC(=0)C)0oCc(C)01 1.491
489 CNC1=C(CHC(=O)N(N=C1)c2cccc(c2)C(F)(F)F 1.482
490 CCCcccecececec(=0)c 1.482
491 Oclccececlc2ccccc? 1.481
492 OCC(CO)(CO)[N+](=0)[0-] 1.480
493 [O-]clcececlc2ecccec2 1.479
494 Nclnc(N)nc(NC2CC2)nl 1.471
495* CCC(C)Nclc(cc(ccl[N+](=0)[O-DC(C)(C)O)[N+](=0)[0O-] 1.470
496* OCCN(CC[O-]CC[O-] 1.469
497 OC(=0)clcceecclC(=0)Nc2ccec3ceccc23 1.464
498* CCccceececescco 1.463
499* CCCCNC(=0)n1c(NC(=0)OC)nc2cceccl2 1.463
500 OP(=0)(O)CCClI 1.461
501 CN(C)NC(=0)CCC(=0)O 1.455
502 CCclccec(C)cIN(C(C)COoC)C(=0)CcCl 1.453
503 CCCCccccec(=0)o 1.450
504 clccc2cecec2el 1.449
505 CCccceececo 1.448
506 COCC(=O)N(C(C)C(=0)OC)c1c(C)ccec1C 1.446
507 Cclc(F)c(F)c(COC(=0)C2C(\C=C(/CN\C(F)(F)F)C2(C)C)c(F)c1F 1.446
508* Cclcc(O)cc(C)clCl 1.445
509 CN1SC2=C(CCC2)C1=0 1.441
510 CCOP(=0)([O-)C(=O)N 1.432
511* CC1=C(C(=0)Nc2ccccc2)S(=0)(=0)CCo1 1.427
512 CCC(C)N1C(=O)NC(=C(Br)C1=0)C 1.417
513 CCOC(=0O)NCCOclcce(Oc2ceecc2)ccl 1.416
514 CC(=0)Nclccc(O)ccl 1.409
515* CC(C)(NC(=0O)clcc(Clycc(Clhcl)Cc#C 1.408
516 Oclcce(ccl)[N+](=0)[O-] 1.394
517* OCCNCO 1.385
518 CC(=C)C1Cccc(=CccCa)c 1.385
519 CC(C)N1C(=0)c2ccecc2NS1(=0)=0 1.381
520* cc(cnencl 1.375
521 CC(Oclcce(ClheclChHC(=0)0 1.375
522 CCCcocc(C)o 1.372
523 0O=C\C=C\clcccccl 1.371
524* [S-]IC(=NC#N)[S-] 1.366
525* CN(C)C(=9)[S-] 1.364
526 BrCC(=0)OCclccccecl 1.360
527* Cclcc(C)n(CO)Nn1 1.351
528 COclc(Cl)cee(Cl)clC(=0)0 1.344
529* CCCCOC(=0)[C@@H](C)Oc1cce(Oc2cee(cn2)C(F)(F)F)ccl 1.343
530* CS(=0)(=0)NC(=0)clcc(Oc2cce(cc2Cl)C(F)(F)F)cccl[N+](JO-])=0 1.341
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531 CS(=0)(=0)[N-]C(=0)clcc(Oc2cce(cc2ClC(F)(F)F)cccl[N+](=0)[O-] 1.340
532* OC(=0O)clcccccl 1.337
533* CCCCOC(=0)COclccc(Clyccicl 1.329
534 CC(Oclccee(Cl)c1)C(=0)[0-] 1.300
535 O=CCcCcCC=0 1.293
536 CCCC(C)CL(CC=C)C(=0O)NC(=NC1=0)[0O] 1.285
537* CC1=CC(=O)NO1 1.280
538* OCNCC(=0)[0O-] 1.268
539 Oc1nc(O)nc(O)nl 1.251
540 Nclnc[nH]nl 1.226
541 CC(C(=0)0O)0O 1.205
542 Ccceceececececo 1.200
543* Clclcceccle2nnce(nn2)c3ceccc3Cl 1.184
544* CCCCCCCCCCCCNC(N)=N 1.181
545 CCCCC(CC)COC(=0)COclccce(ClyecaC 1.153
546 CN(C)C(=0)C(clcceeel)c2ccececc2 1.124
547 [S-]C#N 1.065
548 C[N+]1(C)Ccccccel 1.058
549 CCC=C 1.050
550 O=C1INNC(=0)C=C1 1.050
551 CIC\C=C\CI 1.045
552 NC(=O)N 1.029
553 NC#N 0.925
554 CCC(=0)0O 0.870
555 Oclcce(c(cl)C(F)(F)F)[N+](=0)[O-] 0.714
556 C=CCN=C=S 0.083

*Test set compounds

Table 3.6. Compounds smile with respective experimental pLCso values for JQ.

SI.No. Canonical_smiles pLCso
1 Clclcee(ccl)C(c2cec(Clhec2)C(ChH(CHCI 2.795
2* COP(=0)(OC)Cc(o)c(cn(cncl 2.132
3* COP(=S)(0C)0Oclcce(ccl)S(=0)(=O)N(C)C 3.680
4* COP(=S)(0C)0Oclcce(SC)e(C)el 3.510
5* CCOP(=S)(0OCC)Oclcce(ccl)[N+](=0)[O-] 3.821
6 CCOP(=S)(0OCC)Oclccc2C(=C(ChHC(=0)Oc2c1)C 3.207
7* ClC2C(c(c1cnencs(c(=c(cz(c3(cnenenencencl 3.068
8 Cl(c(c(c(c(crenenenenenc 2.835
9 CNC(=0)CSP(=S)(0C)0C 2.821
10 Nclnc[nH]nl 1.226
11 COP(=0)(OC)oc=C(ChcCl 2.870
12 CNC(=0)Oclccec2ceccecl? 1.605
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13 CC(=0)C 0.162
14 COclcee(ccl)C(c2cec(OC)ec2)C(Ch(ChCl 1.840
15 CIC(CIC(clcce(Clhecl)c2eec(Cl)ec2 2.005
16 CIC(=C(clccc(Cl)ccl)c2cec(Clyec2)Cl 2.371
17 CCclcec(ccl)C(C(ChCl)c2cec(CC)ec2 1.789
18 CC(Ch(ChHC(=0)O 1.456
19 CIC1C=CC2C1C3(Chc(=Cc(cncz(cnecscnencl 3.604
20* CCOP(=S)(0OCC)SC10CCOC1SP(=S)(OCC)0oCcC 1.837
21 CC(=C)C1CC2=C(01)C=CC3=C20C4COCH=CC(=C(C=C5C4C3=0)0C) | 2.321
oC
22 OC(=0)Cclc(Cl)ccc(Cl)clCl 1.680
23 COP(=S)(OC)SCN1N=Nc2ccccc2C1=0 2.696
24* Oclc(Chc(Che(Che(ChelCl 1.709
25* CCC(C)cilce(cc(c1O)[N+](=0)[O-]D[N+](=0)[O-] 2.769
26 CC(Oclcc(Clhc(CleeclChC(=0)0 1.732
27 clcc(c(cclChHCHOCC(=0)0 1.646
28 Cclcc(Cl)ceclOCCCC(=0)0 1.660
29 OC(=0)CCCOclccc(ClycclCl 1.697
30 CN(C)C(=O)Nclcceecl 1.516
31* CC10C(C)OoCc(Cc)oc(c)o1 1.707
32 CNC(=0)OclcccecclOC(C)C 1.622
33 CIC1=C(Ch)C2(Cl)C3COos(=0)occ3ci(cnez(cncl 2.513
34 OC(clcce(Checel)(c2cec(Chec2)C(Chy(ChCl 2.612
35* CCOP(=S)(0OCC)0Oclcce(ccl)S(=0)C 3.570
36* CNC(=0)O\N=C\C(C)(C)SC 2.887
37 Clclcce(ccl)S(=0)(=0)c2cc(Cl)c(Clycc2Cl 1.853
38 CIC1=C(CI)C(=0)c2ccccc2C1=0 1.657
39 CC(Oclccc(ClhecclChC(=0)0 1.584
40* CCOC(=0)CC(SP(=S)(0OC)OC)C(=0)0CC 2.191
41* COP(=S)(0C)Oclcce(c(C)cl)[N+](=0)[0O-] 2.799
42* CCNclnc(Cl)nc(NCC)nl 1.734
43 CC(Ch(ChHC(=0)[O-] 1.453
44 CIC(CI)(CI)SN1C(=0)C2CC=CCC2C1=0 1.779
45* CN(C)C(=S)SSC(=S)N(C)C 1.682
46* CNC(=9)[S-] 1.327
47* CC(COclccece(ccl)C(C)(C)C)OSs(=0)occcl 1.826
48 COP(=0)(OC)OC(=CC(=0O)N(C)C)C 3.870
49* [S-]C(=S)NCCNC(=S)[S-] 1.624
50* CN(C)C(=0O)Nclcce(Cl)ecl 1.599
51 CCOP(=S)(0CC)Oclcncenl 3.948
52 COP(=S)(0C)Oclcce(ccl)[N+](=0)[0-] 3.758
53 CCOP(=S)(0CC)scscce 3.115
54* CCOP(=S)(0OCC)sccscce 2.916
55* COP(=0)(OC)OC(Br)C(Cl)(Clh)Br 2.458
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56* CCS(=0)CCSP(=0)(0C)0OC 2.275
57 C1C2C=CC1C3C2C4(C(=Cc(c3(ca(cncnenenencl 4.031
58 CNC(=0)Oclcc(C)c(N(C)C)c(C)el 2.648
59 CN(C)C(=0O)Nclcce(Clyc(Cl)cl 1.669
60* CON(C)C(=0)Nclcce(Che(Clycl 1.697
61 CCOP(=S)(0OCC)0Oclcc(C)nc(nl)C(C)C 3.811
62 CCOP(=S)(0OCC)SCSP(=S)(0ccC)occe 1.886
63 COP(=S)(0OC)SCN1C(=0)c2cceccc2C1=0 2.416
64* CCOP(=S)(CC)Sclcccecl 2.922
65 COP(=S)(0OC)SCSclcce(Cl)ecl 1.998
66 C[N+](C)(C)CccCl 1.390
67 CCCS(=0)(=0)\C=C\S(=0)(=0)CCC 1.682
68 Clclccec(Cl)clC#N 1.537
69 CNC(=0)0Oclcccc2CC(C)(C)Oc12 2.937
70* CCNclnc(Cl)nc(NC(C)C)nl 1.635
71 Nclc(Clc(Clnc(C(=0)0)c1ClI 1.684
72* CCCCOCCOC(=0)COclcce(ClycclCl 1.808
73 Clclccec(nl)C(ChH(CHCI 2.450
74 NC(=0)COC1CcCc(cnceacl 1.644
75 CNC(=0)Oclcc(C)c(SC)e(C)el 2.274
76 CCOP(=S)(Oclccc(ccl)[N+](=0)[O-])c2ccecc2 2.863
77 CCCC(C)clceec(OC(=0O)NC)cl 1.646
78 CICL(ChC2(ChC3(Chc4(Cnhc(chncscne(cn(cy(cnesscnea4ct | 2.038
79 CCCCOCCOC(=0)COclcc(Cl)c(ClcelCl 1.852
80 CNC(=0)Oclcc(C)c(C)e(C)el 1.984
81 CCOP(=S)(0CC)Oclnc(Cl)c(ClycclCl 3.069
82 CCCOP(=S)(OCCC)OP(=S)(0OCce)ocee 1.879
83 COP(=S)(0OC)0Oclcce(Sc2cec(OP(=S)(0C)OC)cc2)ccl 3.254
84 Clclcee(ccl)C(C(=0)C2C(=0)c3ccccc3C2=0)c4cccecd 3.796
85 COP(=S)(0C)Oc1nc(Clhc(ClycclCl 1.810
86* CN(C)C=Nclccc(ClycclC 2.051
87 CNC(=0)C=C(C)OP(=0)(0C)0OC 4.968
88 Cclccc(N)cclCl 3.789
89 COC(=0)C=C(C)OP(=0)(0C)OC 2.794
90* CICCL(CChC(=C)c2(cnc(cnc(ecnecicnezecncl 2.778
91 CC1C(OC(=0)C2Cc(C=C(C)C)Cc2(C)C)C=C(Ccc=Cc=C)C1=0 1.818
92* CCOP(=0)(OCcC)scesce 2.973
93 COP(=0O)(N)SC 3.186
94 CC(=CC1C(C(=0)0OCc2coc(Cc3ccceeld)c2)CL(C)C)C 1.831
95 Clclcce(c(ChclClc2ceee(Clyc(Che2Cl 2.218
96* Clclcce(c(ChclCl)c2ccec(Cl)c2Cl 2.052
97* CC1=CC(=C(C(=C1)OC(=0O)NC)C)C 1.984
98* Clclcc(Cl)ce(cl)c2ec(Cl)ee(Cl)c2 1.780
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99 CCN(CC)C(=0)\C(=C(/C)\OP(=0)(0OC)0C)\CI 3.527
100 CCCSP(=0)(0CcC)sccce 3.694
101 CC(=NOC(=0O)NC)SC 1.715
102 CCOP(=0)(Sclcccecl)Sc2ccccc? 2.088
103* CCCCOCCOC(=0)C(C)Oclcc(Clhye(CheclcCl 1.869
104 COP(=S)(Oclcc(Clhc(Br)cciCl)c2ceeec?2 2.439
105* CCOP(=0O)(NC(C)C)Oclcce(SC)c(C)el 3.711
106 COP(=0)(0OC)OC(=CCl)clce(Che(ClycclCl 1.864
107 CCOP(=S)(0CcC)sccCl 1.672
108 CCC(C)cleeec(OC(=0)N(C)Sc2cccecc2)cl 2.370
109 CN(\C=N\clccc(C)eclC)\C=N\c2cee(C)ec2C 2.212
110 COC(=0)C(C)Oclccc(Oc2cec(Chec2Clecl 1.232
111 CC1(C)C(C=C(CI)CI)C1C(=0)OCc2cccc(Oc3cccecece3)c2 1.231
112 Clclcee(c(Clhel)c2ecce(Cl)c2Cl 1.687
113 COCC(=0O)N(C(C)C(=0)0OC)clc(C)cceclC 1.446
114 CP(=0)(0)CCC(N)C(=0)[O-] 1.557
115 COC(=0)cl1cee(l)cclS(=0)(=0)[N-]C(=0)Nc2nc(C)nc(OC)n2 2.002
116 COclncc(F)c2nc(nn12)S(=0)(=0)Nc3c(F)ccec3F 1.857
117 CN\C(=N\[N+](=0)[O-])\NCC1CCOC1 1.607

*Test set compounds
3.3.2. Descriptor calculation & data pre-treatment

Descriptors are the numerical presentation in which we correlate the chemical structure with any
physiochemical property/biological activity/ toxicity. In this work, a total of 9 classes of descriptors

were calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/alvadesc/). In each dataset,

the defective and inter-correlated chemical descriptors were eliminated by V-WSP1.2
(http://teqip.jdvu.ac.infOSAR Tools/) software with a standard deviation less than 0.0001 or

correlation coefficient greater than 0.95.

3.3.3. Dataset division

Dataset division is crucial for QSTR model development. Normally, training set compounds are
used to develop the model and test compounds for validation. The validation set is used to assess
the model performance and fine-tune the parameters of the model. It tells us how well the model is
learning and adapting, allowing for adjustments and optimizations to be made to the model's
parameters and hyperparameters (the latter in the case of machine learning-based models) before
it is finally tested. The test data set mirrors real-world data the model has never seen before, i.e.: a
separate sample of unseen data. Its primary purpose is to offer a fair and final assessment of how
the model would perform when it encounters new data in a live, operational environment. This is
especially critical to evaluate models effectively along with preventing overfitting. We performed

dataset division of four datasets by using rational methods such as the Kennard stone, activity
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property-based, and Euclidean distance method using Dataset Division GUI 1.2 software as well
as using random division method. We also employed modified k-medoid clustering by using
Modified k-Medoid 1.3 (http://teqip.jdvu.ac.in/fQSAR_Tools/). After that, the final selection of

data-set division methods was done based on the statistical results. In this process of dataset

division, the datasets are divided into 75:25 ratios of training and test sets compounds respectively.

3.3.4. Selection of features and model building

In the case of model building, feature selection is one of the vital steps by which we can find
significant descriptors to boost the interpretability and predictive ability of the model. Primarily,
we performed stepwise regression method and genetic algorithm (GA) for feature selection, and
then we employed the regression-based partial least square (PLS) method through the Partial least
squares v1.0 tool (http://tegip.jdvu.ac.in/fQSAR_Tools/) for model building.

3.3.5. Validation metrics of QSTR models

A significant step in the creation of a QSTR model is statistical validation, which demonstrates its
reliability and predictivity. Various internal validation parameters were calculated which involve
determination coefficient (R?), and leave-one-out (LOO) cross-validated correlation coefficient
(Q%oo)to judge the reliability and importance of the model. External validation parameters
demonstrate the predictivity of QSTR models. The model’s external validation is determined using
parameters such as Q%; and Q%, [75]. For both internal (Q?;5o) and external predictive parameters
(Q%,, Q%,), the approved threshold value is 0.5.

3.3.6. Prediction using read-across algorithm

According to the fundamental tenet of read-across, substances with similar chemical structures will
also have comparable attributes and it is not utilized in the model development process. Read-
across prediction is a similarity-based non-testing technique that is widely used in eco-toxicological
data-gap filling. Initially, the training set of the best model was split into sub-training and sub-test
sets. These sets were again used to optimize the hyperparameters through Read-Across-v3.1
(http://tegip.jdvu.ac.in/fQSAR_Tools/). After similarity-based sorting, similarity threshold values

(0 to 1), various distance threshold values (1 to 0), and the numbers of most similar training
compounds (2 to 10) were applied. The best setting of hyperparameters obtained from sub-training

and sub-test was applied to the original training and test set for the final prediction.

3.3.7. Model’s applicability domain study
The applicability domain (AD) of a QSAR model has been defined as the chemical structure and
response space, considered by the properties of the molecules in the training set. The AD expresses

the fact that QSARs are undeniably associated with restrictions in the categories of
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physicochemical properties, chemical structures, and mechanisms of action for which the models
can generate reliable predictions. In the current study, distance to the model in X-space (DModx)
has been utilized for AD estimation of constructed PLS models which rely on residuals of response

and predictive variables.
3.3.8 Y-randomization study

Y-randomization study was carried out to check the chance correlation of the QSTR models with
the help of SIMCA-P software [76]. In the Y-randomization test, the descriptor matrix X is kept
constant but only the vector Y is scrambled randomly, and a new model is developed using the
same set of descriptors. The original model is considered as robust if its validation metrics are
better than the random models [77]. The values of the R?yang intercept and Q2yrang intercept should
not be more than 0.3 and 0.05 respectively.

3.3.9 Application of other machine learning (ML) algorithms

To estimate the prediction performance of other algorithms, we have employed two different state-
of-the-art ML algorithms namely support vector machine (SVM) and random forest (RF) using the
Orange data mining tool [78]. The hyperparameters were adjusted to tune the model for optimal
performance. The prediction qualities of the ML models were evaluated in terms of R2, Q?Lo0, and
MAE values.

3.3.10 Classification-based QSTR (LDA-QSTR) model development

In the present work, we have developed a classification-based linear discriminant analysis
(LDA) QSTR model from the selected set of features and evaluated its performance for its
predictive ability. The model development is done using ClassificationBasedQSAR_v1.0.0 tools
(available at http://tegip.jdvu.ac.infQSAR_Tools/). The model was extensively validated based on

different internal and external classification metrics (area under the ROC curve (AUC), accuracy,

precision, sensitivity, F-measure, and Matthews correlation coefficient (MCC) [79-80].
3.3.11 Screening of the Pesticide Properties DataBase

We have collected 1903 chemical data from Pesticide Properties DataBase (PPDB) available in

(http://sitem.herts.ac.uk/aeru/ppdb/). Knime curation was done to remove duplicates, inorganic
salts, and mixtures using the KNIME workflow. Due to the knime curation, some compounds were
removed. After the curation, the remaining 1694 compounds were used for the screening process
to check the developed model’s reliability. The descriptors for these molecules were calculated
using the same procedure as in the QSAR modeling process. The predictions were made through
the use of individual PLS-based QSTR models with the help of the PRI (Prediction Reliability
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Indicator) tool (http://teqip.jdvu.ac.in/QSAR_Tools/). PRI tool categorizes the predictions into

three distinct groups: good (composite score 3), moderate (composite score 2), and bad (composite
score 1). Additionally, the tool determines the localization of compounds inside the AD. The
screened compounds were ranked based on their predicted toxicity and the twenty highest and least
toxic compounds which exhibited toxicity towards all four avian species were analysed. The results
were further validated extensively based on experimental data reported previously, to establish the
real-world applicability of the developed final PLS-based QSTR models. A detailed flow diagram
of this study has been given in Figure 3.3.

Data collection from literature with experimental
log(LCsp) value

‘ Chemical structures were downloaded from “pubchem” and drawn using Marvin Sketch i

T e

WORK FLOW

.
s

Train Test

Pesticide
Properti
Data

| Explanation of Encoded Features I

Figure 3.3. Workflow of QSTR model development.
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Chapter 4 Results and discussions

4.1. Study 1
In this present study, we have developed QSTR and g-RASTR models for pLOEL and pNOEL
endpoints using the PLS method and strictly obeying the OECD guidelines. We have
additionally applied two different ML algorithms (SVM, RR) to check model performances.
4.1.1. PLS-based QSTR and q-RASTR models
The divided dataset is used to develop the QSTR and g-RASTR models for two endpoints
(pLOEL and pNOEL) of chicken species. After the feature selection process, the PLS-based
QSTR model was developed employing 3 and 5 descriptors with two and one latent variables
for pLOEL (MODEL 1) and pNOEL (MODEL 2), respectively.
PLS-based QSTR model for pLOEL and pNOEL endpoints:
Model 1 (pLOEL endpoint):

PLOEL = 4.75827 + 0.50323 X NsOH — 0.191 X MaxsCH3 — 0.64324 x BO1[C

- 0]

Model 2 (pNOEL endpoint):

PNOEL = 5.08369 + 0.16353 X H — 050 + 0.35253 X NsssN — 0.62789

X BO5[C — 0] + 0.80035 x BO5[0 — 0] — 0.8449 x BO8[C — P]

After the development of the QSTR models, similarity and error-based RASTR descriptors
were calculated for both training and test sets compounds of pLOEL and pNOEL endpoints
models using "RASAR Descriptor Calculator v2.0 tool

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) with the optimized

hyperparameters. After that, we clubbed the RASTR descriptors and Alvadesc descriptors for
the final g-RASTR model development [81]. Finally, PLS-based q-RASTR models were
developed using 3 and 4 descriptors with one and two latent variables as shown in model 3 and
model 4 respectively for pLOEL and pNOEL endpoint models,
PLS-based g-RASTR model for pLOEL and pNOEL endpoints:
Model 3 (pLOEL endpoint):
PLOEL = 5.1136 — 1.51275 X SD similarity(GK) + 0.41951 X NsOH — 0.75444
X BO1[C — 0]
Model 4 (pNOEL endpoint):
pNOEL = 5.78412 — 2.04509 x SE (LK) + 1.18371 x B05[0 — 0] — 0.74259
X B02[C — 0] + 0.03736 X T(N..S)

Page 76


https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home

Chapter 4 Results and discussions

Each model has been rigorously validated following the OECD protocols. The computed
internal and external validation metrics along with the optimum number of latent variables have
been shown in the following Table 4.1. The PLS-based q-RASTR models 3 and 4 show strong
fit and predictability with uniform scattering observed along the line, going through the origin
of Cartesian coordinates (Figure. 4.1).

Table 4.1. QSTR and g-RASTR model's statistical quality.

Validation QSTR model's statistical quality | PLS gq-RASTR model's statistical
Metrics quality
Model name Model 1 Model 2 Model 3 Model 4
(pLOEL) (pNOEL) (pLOEL) (pPNOEL)
No of LVs 2 1 1 2
R?(train) 0.748 0.669 0.734 0.603
Q?Loo (train) 0.672 0.582 0.665 0.526
Q%F1 (test) 0.608 0.643 0.844 0.762
Q%F2 (test) 0.577 0.640 0.831 0.759
Q%3 (test) 0.692 0.790 0.877 0.860
MAE est 0.309 0.225 0.214 0.195
CCC 0.818 0.730 0.909 0.845
r2 0.637 0.415 0.740 0.560
m(test)
Arm(test) 0.035 0.318 0.136 0.220
MAE-based MODERATE GOOD GOOD GOOD
prediction quality

7 6.5
Scatter Plot of model M3 (pLOEL endpoint ) Scatter Plot of model M4 (pNOEL endpoint ) e
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Figure 4.1. Scatter plots of developed models.

Here, we have seen that for both datasets, the external validation metrics were significantly
improved for the PLS-based q-RASTR models as compared to the PLS-based QSTR models,
indicating the significance of the RASTR descriptors. We have also validated all the models
(PLS-based QSTR and g-RASTR models for the pLOEL and pNOEL endpoints) using
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Golbraikh and Tropsha criteria and the results are given in Tables 4.2-4.5. The results showed
that the PLS-based g-RASTR models for both endpoints are acceptable based on the Golbraikh
and Tropsha’s criteria [82]. Hence, we have generalized that the PLS-based g-RASTR models
are better as compared to the corresponding QSTR models.

Table 4.2. Results of the final PLS-based q-RASTR (pLOEL) model obtained according to
Golbraikh and Tropsha's criteria.

SI.No Parameters PLS g-RASTR | Remarks Threshold value
(pLOEL)

1 Q?Loo (train) 0.665 Pass Q%L00>0.5

2 R?(test) 0.844 Pass R?(test)>0.6

3 [(r>-re)/ r?] 0.001 Pass <0.1

4 [(r>r¢®)/ 1?] 0.038 Pass <0.1

5 Kk 0.986 Pass 0.85<k<1.15

6 k’ 1.011 Pass 0.85 <k’<l1.15

Table 4.3. Results of the final PLS-based g-RASTR (pNOEL) model obtained according to
Golbraikh and Tropsha's criteria.

SI.No Parameters PLS g-RASTR | Remarks Threshold value
(PNOEL)

1 Q?Loo (train) 0.526 Pass Q?L.00>0.5

2 R?(test) 0.779 Pass R?(test)>0.6

3 [(r>-re)/ r?] 0.024 Pass <0.1

4 [(r>r¢®)/ 1?] 0.269 Fail <0.1

5 k 0.997 Pass 0.85 <k <1.15

6 K’ 1.036 Pass 0.85 <k’<1.15

Table 4.4. Results of the final PLS-based QSTR (pLOEL) model obtained according to
Golbraikh and Tropsha's criteria.

SI.No Parameters PLS QSTR Remarks Threshold value
(pLOEL)

1 Q?Loo (train) 0.672 Pass Q?L00>0.5

2 R?(test) 0.733 Pass R?(test)>0.6

3 [(r>-re)/ r7] 0.060 Pass <0.1

4 [(r2-r’ )] 17 0.007 Pass <0.1

5 k 0.960 Pass 0.85<k<1.15

6 K’ 1.036 Pass 0.85 <k’<l.15

Table 4.5. Results of the final PLS-based QSTR (pNOEL) model obtained according to
Golbraikh and Tropsha's criteria.

SI.No Parameters PLS QSTR Remarks Threshold value
(pPNOEL)

1 Q?Loo (train) 0.582 Pass Q%L00>0.5

2 R?(test) 0.765 Pass R2(test)>0.6

3 [(r*-re®)/ 1?] 0.123 Fail <0.1
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4 [(r>-r¢®)/ 1?] 1.023 Fail <0.1
5 k 1.016 Pass 0.85<k<1.15
6 k’ 0.981 Pass 0.85 <k’<1.15

4.1.2. Results of ML-based g-RASTR model

As previously stated, we used two different ML algorithms to evaluate their effectiveness in
model construction and prediction. Based on the internal validation, v-SVM was the best-
performing model toward the pLOEL endpoint, and Ridge regression was the best-performing
model toward the pNOEL endpoint based on internal and external validation metrics. In terms
of external validation metric, Q% [28], the ability to efficiently predict the response values for
the target (query) compounds, the best-performing models were the PLS-based g-RASTR
models. Furthermore, the PLS-based q-RASTR models produce the lowest prediction error for
the query set compounds, as indicated by the MAEtest value [29]. Thus, to assess the overall
performance of the models for both endpoints, the PLS-based g-RASTR models are superior
than QSTR models. The results of ML models are presented in Table 4.6.

Table 4.6. ML-based g-RASTR model's statistical quality.

Validation ML model's statistical quality
Metrics

Model name SVM SVM RR RR

(pLOEL) (pPNOEL) (pLOEL) (pPNOEL)
R2Loo (train) 0.831 0.695 0.776 0.758
Q2100 (train) 0.746 0.585 0.746 0.604
RMSEC (train) 0.245 0.245 0.283 0.218
Q%1 (test) 0.742 0.718 0.725 0.653
Q%2 (test) 0.721 0.715 0.703 0.650
Q%3 (test) 0.797 0.835 0.784 0.796
MAE st (test) 0.273 0.169 0.300 0.216
CCC 0.893 0.856 0.850 0.804
2 0.725 0.659 0.626 0.541

m(test)

Ar’m(test) 0.101 0.071 0.033 0.148
Optimum v-SVM v-SVM Alpha-0.001 Alpha-0.001
hyperparameters | Regression Regression cost-

cost-0.50 2.50

Complexity Complexity

bound-0.65 bound-0.70

Kernel- Kernel-Linear

Linear
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4.1.3. Regression coefficient plot

The plot describes the descriptor’s positive/negative contribution towards the toxicity [30]. In
this study, the descriptor NsOH contributed positively while the descriptors SD similarity (GK)
and BO1[C-O] contributed negatively toward the toxicity in case of Model 3. In case of Model
4, the descriptors B0O5[O-0], T(N..S) contributed positively while the descriptors SE(LK),
B02[C-0O] contributed negatively towards the toxicity. All the relevant plots have been
provided in Figures 4.2.-4.3.

Regression coefficient plot of model M3
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Figure 4.2. Regression coefficient plot of model M3.
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Figure 4.3. Regression coefficient plot of model M4.
4.1.4. Variable importance plot (VIP)
The respective descriptor contribution towards the model response is described by the variable
importance plot, and the most and least important descriptors are recognized appropriately [31].
In this present study, NsOH and B02[C-O] depicting electronegativity and hydrophilicity were
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identified as the most important descriptors for Model 3 and Model 4 respectively as shown in

Figures 4.4.-4.5.

VIP plot of model M3
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Figure 4.4. The variable_importance plot of model M3 (pLOEL).
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Figure 4.5. The variable_importance plot of model M4 (pNOEL).

4.1.5. Loading plot
The plot describes the correlation between the X and Y variables, illustrating the effect of

various model descriptors. The first two components were used to create the loading plot. A
descriptor is supposed to have a stronger effect on response value if it is situated far from the
origin of the plot and near the modeled endpoint. All the relevant plots have been provided in

Figures 4.6-4.7.
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Figure 4.6. The loading plot of the model M3 (pLOEL).
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Figure 4.7. The loading plot of the model M4 (pNOEL).

4.1.6. Applicability domain (AD)
AD is the hypothetical region in chemical space specified by the respective model descriptors

and responses where predictions may be made with confidence. To obtain a reliable prediction,

the target compounds must have the highest structural similarity to the training compounds. As

a result, validating the applicability domain is a fundamental prerequisite for every statistical
model, as recommended by OECD principle 3 ("Validation of (Q)SAR Models - OECD,"
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2004). To comply with the OECD guidelines, an applicability domain analysis of the created
PLS-based g-RASTR model was done with SIMCA-P software using the DModX technique

at a 99% confidence level.

SSEi

DModX=z — K4
SSE
\/ (N-A-AO0)(K-A)

For observation i, in a model with A component, K variables, and N observations, SSE is the

squared sum of the residuals. AO is 1 if the model was centered and O otherwise. It is claimed
that DModX is approximately F-distributed, so it can be used to check if an observation
deviates significantly from a normal PLS model. The DModX (distance to model in X-space)
plots for both the training and test sets have been showcased in Figures 4.8-4.11. (shows the
AD plots of the Model 3 and Model 4). In this study, all the compounds from the training set
(given in Figure. 4.8.) and test set (given in Figure. 4.9.) for the pLOEL endpoint model
(model M3) are inside the applicability domain (below the D-Critical line) which indicates the
reliability of predictions by the model. In the case of the pNOEL endpoint model (model M4),
compounds 28 and 33 of the training set (given in Figure. 4.10.) are outside the applicability
domain (above the D-critical line) due to the structural dissimilarity. All the compounds from
the test set (given in Figure. 4.11.) of the pNOEL endpoint (model M4) are within the

applicability domain.

DModX plot of model M3 ( training set )
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Figure 4.8. DModx plot (pLOEL) of the model M3 (training set).
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DModX plot of model M3 ( test set)

D-Crit(0.05)

2.007

1.807
1.60:
1.40j
l.20:

1.00¢

DModXPS[1](Norm)

0.80}

0.60}

M1-D-Crit[1] = 2.073

Figure 4.9. DModx plot (pLOEL) of the model M3 (test set).
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Figure 4.10. DModx plot (pNOEL) of the model M4 (training set).
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DModX plot of model M4 ( test set)
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Figure 4.11. DModx plot (pPNOEL) of the model M4 (test set).

4.1.7. Mechanistic interpretation
The details of the descriptors obtained from the M3 (pLOEL endpoint) and M4 models
(pPNOEL endpoint), their contribution, description, and probable mechanistic interpretation

(according to OECD principle 5) are provided in Table 4.7.
4.1.7.1. Mechanistic interpretation of descriptors employed in Model M3 (pLOEL)

SD similarity (GK) is a RASTR descriptor that denotes the typical deviation of similarity levels
among closely related compounds. It has a negative contribution to the toxicity endpoint.
Higher standard deviation (SD) similarity shows that the distribution among the close source
compounds is high thereby reducing prediction reliability as demonstrated in compound 30 and

conversely shown in compound 3 (depicted in Figure. 4.12).

The descriptor NsOH defines the number of atoms of type sOH in the compound and it
contributes positively towards the toxicity endpoint. This fragment enhances the compound
toxicity due to the presence of an electronegative atom (Oxygen) as demonstrated in compound
42 and the absence of this fragment decreases the toxicity as represented in compound 18

(shown in Figure. 4.12).

The descriptor BO1[C-O] is a 2D atom pair descriptor that shows the occurrence of C-O at
topological distance 1 and gives negative contribution towards the endpoint. The presence of

polar bond [C-O] increases the hydrophilicity of the compound [34] and thus toxicity will
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decrease which is evidenced by compound 27 and vice versa in case of compound 36

(represented in Figure. 4.12).
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Fig 4.12. Contribution of the model descriptors towards pLOEL in chicken
4.1.7.2. Mechanistic interpretation of descriptors employed in Model M4 (pNOEL)

The SE(LK) isa RASTR descriptor that denotes the weighted standard error about the response
values of adjacent source compounds. It shows negative contribution toward the endpoint. The
presence of this high standard error based on the response values of the proximate source
compound decreases the compound toxicity as demonstrated in compound 8 and the less
standard error based on response enhances the toxicity as represented in compound 40 (given
in Figure. 4.13).
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The 2D atom pair descriptor, BO5[O-O] shows the occurrence of two oxygen atoms at
topological distance 5. The presence of two electronegative atoms increases the
electronegativity rendering the compounds more electronegative [35]. The presence of large
number of fragments in chemical structure will also increase the lipophilicity, ultimately
enhancing the penetration ability of chemicals into the cell of the reference organism. Thus,
the existence of oxygen atoms at the specified topological distance is associated with increased
toxicity in pesticides as illustrated by compound 4, while the opposite was characterized in
compound 48 (provided in Figure. 4.13).

Another 2D atom pair descriptor, B02[C-O], indicates the occurrence of C-O at topological
distance 2. It shows negative contribution toward the endpoint. This descriptor is related to
hydrophilicity (oxygen is responsible for hydrogen bonding with water, and is easily excreted
out from the body) [34]. Small fragments (occurrence of C-O at topological separation 2) are
less lipophilic, as a result, toxicity will decrease which is evidenced by compound 30, and the

opposite was shown in compound 34 (represented in Figure. 4.13).

The T(N..S) descriptor denotes the summation of the topological distance between N..S and it
contributed positively toward the endpoint. The occurrence of nitrogen and sulphur atoms in a
compound increases its electronegativity, leading to oxidative stress and cell death [34-35].
Sulphur itself is toxic. Therefore, overall toxicity will increase as demonstrated in compound
33. On the other hand, the compound containing less number of this fragment may exhibit less

toxicity as shown in compound 53 (demonstrated in Figure. 4.13).
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Figure 4.13 Contributions of the model descriptors towards pNOEL in chicken.

4.1.8. Pesticide Properties DataBase screening
The PPDB compounds were screened using developed models considering both the toxicity

endpoints namely, pLOEL and pNOEL assisted by the Java-based tool “Prediction reliability

indicator” (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). The applicability domain of
the compounds was assessed to ascertain the reliability of the obtained prediction values and it
was found that 100% and 55% of compounds lie within the chemical space of the developed
pLOEL and pNOEL models respectively. The predicted pLOEL and pNOEL values of the
respective compounds were cumulatively assessed. Then, based on the cumulative predictions,
the top 20 and least 20 toxic compounds (compounds that are toxic for both pLOEL and
pPNOEL endpoints and lie within the AD of both models) with their CAS numbers, molecular

weight, and pesticide groups have been provided in Table 4.8. Considering the top twenty
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highest toxic compounds, our models’ pLOEL and pNOEL prediction values were in complete
coherence with the experimental toxicity data. From the results, it can be stated that our model
predictions are correlated to real-world data and can be considered suitable for the
identification of potential toxicants alongside less ones. Upon further validation, all predicted

toxicities, demonstrate the practical applicability of the developed models.

Table 4.8. Twenty most and least toxic screened pesticides from the Pesticide Properties
DataBase (PPDB).
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Sl. | Pesticide name | CASnoand | Safety and Hazards Sources
No (Group) Molecular
mass
Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)
1 Flumetsulam 98967-40-9 | Toxic to rats, rabbits, | https://pubchem.ncbi.nlm.nih.g
(Molecular | quail, ducks, and ov/compound/91759#section=
mass-325.29) | Environmental hazard GHS-
Classification&fullscreen=true
2 Dipyrithione 3696-28-4 | Environmental hazard, | https://pubchem.ncbi.nim.nih.g
(Molecular irritant ov/compound/3109#section=G
mass-252.31) HS-
Classification&fullscreen=true
3 Sulfoxaflor 946578-00-3 | Environmental hazard, | https://pubchem.ncbi.nim.nih.g
(Molecular irritant ov/compound/16723172#sectio
mass-277.27) n=GHS-
Classification&fullscreen=true
4 Flusulfamide 106917-52-6 Acute toxic to rats, https://pubchem.ncbi.nim.nih.g
(Molecular mice, and ov/compound/86268#section=
mass-415.17) | Environmental hazard GHS-
Classification&fullscreen=true
5 Benzofluor 68672-17-3 Threshold of http://sitem.herts.ac.uk/aeru/pp
(Molecular Toxicological db/en/Reports/2711.htm
mass-299.33) Concern (Cramer
Class- High (class I11)
6 Nithiazine 58842-20-9 Acute toxic to aves | https://pubchem.ncbi.nlm.nih.g
(Molecular and irritants ov/compound/42853#section=
mass-216.24) EPA-
Ecotoxicity&fullscreen=true
7 Perfluidone 37924-13-3 Acute toxic to rats, https://pubchem.ncbi.nim.nih.g
(Molecular rabbits, mice, and ov/compound/37869#section=
mass-379.4) irritants Acute-Effects&fullscreen=true
8 Fluensulfone 318290-98-1 | Acute toxic to fish and | https://pubchem.ncbi.nlm.nih.g
(Molecular | environmental hazard | ov/compound/11534927#sectio
mass-291.70) n=GHS-
Classification&fullscreen=true
9 1,3- 99-65-0 Acute toxic, Health | https://pubchem.ncbi.nlm.nih.g
dinitrobenzene (Molecular hazard, and ov/compound/7452#section=G
mass-168.12) | environmental hazard HS-
Classification&fullscreen=true
10 Ampropylfos 16606-64-7 Corrosive https://pubchem.ncbi.nim.nih.g
(Molecular ov/compound/178368#section=
mass-139.09) GHS-
Classification&fullscreen=true
11 | Azoxybenzene 495-48-7 Acute toxic to rats, https://pubchem.ncbi.nlm.nih.g
(Molecular mice, and rabbits ov/compound/10316#section=

mass-198.22)

Acute-Effects&fullscreen=true
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12 Benfluralin 1861-40-1 Acute toxic to rats, https://pubchem.ncbi.nlm.nih.g
(Molecular mice, rabbits and ov/compound/2319#section=G
mass-335.28) | environmental hazard HS-
Classification&fullscreen=true
13 Benzamorf 12068-08-5 | Corrosive and Irritant | https://pubchem.ncbi.nim.nih.g
(Molecular ov/compound/20055166#sectio
mass-413.6) n=GHS-
Classification&fullscreen=true
14 | Bis(methylmerc | 3810-81-9 Threshold of http://sitem.herts.ac.uk/aeru/pp
ury) sulphate (Molecular Toxicological db/en/Reports/2716.htm
mass-527.31) Concern (Cramer
Class- High (class I11)
15 Bis- 3064-70-8 Acute toxic to rats, https://pubchem.ncbi.nim.nih.g
trichloromethyl (Molecular mice, rabbits and ov/compound/62478#section=
sulfone mass-300.80) | environmental hazard GHS-
Classification&fullscreen=true
16 Bromethalin 63333-35-7 Acute toxic to rats, https://pubchem.ncbi.nim.nih.g
(Molecular mice, dogs and ov/compound/44465#section=
mass-577.9) | environmental hazard GHS-
Classification&fullscreen=true
17 Butralin 33629-47-9 | Environmental hazard, | https://pubchem.ncbi.nlm.nih.g
(Molecular Health hazard and ov/compound/36565#section=
mass-295.33) | Acute toxic to rats, GHS-
rabbits Classification&fullscreen=true
18 | Cacodylic acid 75-60-5 Acute toxic to rats, https://pubchem.ncbi.nim.nih.g
(Molecular mice and ov/compound/2513#section=G
mass-138.00) | environmental hazard HS-
Classification&fullscreen=true
19 Chloropicrin 76-06-2 Acute toxic to https://pubchem.ncbi.nim.nih.g
(Molecular | humans, rats and mice | ov/compound/6423#section=G
mass-164.37) HS-
Classification&fullscreen=true
20 Dicloran 99-30-9 Environmental hazard, | https://pubchem.ncbi.nim.nih.g
(Molecular Health hazard and ov/compound/7430#section=G
mass-207.01) | acute toxic to rat, mice HS-
Classification&fullscreen=true
20 least screened pesticides from Pesticide Properties DataBase (PPDB)
1 Zarilamid 84527-51-5 The predictive value
( Molecular for both endpoints
mass-238.67) | indicates this pesticide | —--mmemmmmmmeee-
is less toxic for both
endpoints.
2 Xylylcarb 2425-10-7 Low toxic (Cramer https://sitem.herts.ac.uk/aeru/p
( Molecular Class): | pdb/en/Reports/2556.htm
mass-179.22)
3 Xylachlor 63114-77-2 | The test results show | https://www3.epa.gov/pesticide
( Molecular that metolachlor is | s/chem_search/cleared_reviews

mass-239.77)

practically non-toxic
to birds. From the

/csr PC-108801 21-Mar-
94 205.pdf
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concept of structure-
activity relationship,
we can say xylachlor
may also be non-toxic
to birds.

4 XMC 2655-14-3 It has a low toxicity | https://www.sciencedirect.com/

(Molecular | and is relatively stable | science/article/abs/pii/S138614
mass-179.22) 2521007654

5 Warfarin 81-81-2 It is practically non- | http://extoxnet.orst.edu/pips/wa
(Molecular toxic rfarin.htm

mass-
308.35)

6 Vinegar 90132-02-8 Vinegar is used to https://haithspro.wordpress.co
(Molecular | promote the health of m/category/vinegar-bird-
mass-60.06) the birds health/

7 Vinclozolin 50471-44-8 Vinclozolin is https://archive.epa.gov/pesticid
(Molecular | practically nontoxic to | es/chemicalsearch/chemical/foi

mass-286.12) birds a/web/pdf/113201/113201-
142.pdf

8 Uniconazole 83657-22-1 | Uniconazole-p is non- | https://apvma.gov.au/sites/defa
(Molecular toxic to birds ult/files/publication/14096-prs-

mass-291.81) uniconazole-p.pdf

9 Umifoxolaner | 2021230-37- Low toxic https://www.ema.europa.eu/en/

3 documents/assessment-
(Molecular report/nexgard-spectra-epar-

mass-299.64)

public-assessment-
report en.pdf

10 Triticonazole 131983-72-7 | Triticonazole is non- | https://downloads.requlations.g
(Molecular toxic to pollinating oV/EPA-HQ-OPP-2015-0602-
mass-317.82) insects 0039/content.pdf
11 Triprene 40596-80-3 Low toxic https://hal.science/hal-
(Molecular 00891905/document
mass-312.52)
12 Trimethacarb 12407-86-2 Birds were not as https://escholarship.org/uc/item
(Molecular sensitive to [91t7r9mv
mass-312.52) trimethacarb
13 | Triisopropanola 122-20-3 Practically non-toxic | https://downloads.requlations.g
mine (Molecular to birds, fish, ov/EPA-HQ-OPPT-2013-
mass-191.27) honeybees 0739-0140/attachment_1.pdf
14 Triflumuron 64628-44-0 Triflumuron is not http://dissemination.echa.europ
(Molecular classified as toxic or | a.eu/Biocides/ActiveSubstance
mass-358.70) highly toxic s/1407-18/1407-
18 Assessment Report.pdf
15 Triflumizole 99387-89-0 Triflumizole is https://nepis.epa.gov/Exe/ZyP
(Molecular categorized as URL.cgi?Dockey=2000QRHX.

mass-345.75)

being moderately

IXT
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toxic to fish
16 | Triflumezopyri | 1263133-33- Triflumezopyrim https://pubmed.ncbi.nlm.nih.go
m 0 was harmless to v/29404868/
(Molecular Anagrus nilaparvatae
mass-398.34)

17 | Trifloxystrobin | 141517-21-7 Trifloxystrobin https://www.apvma.gov.au/site
(Molecular is practically non- s/default/files/publication/1408
mass-408.37) toxic to birds 1-prs-trifloxystrobin.pdf

18 Trifenofos 38524-82-2 Profenofos has a https://apps.who.int/pesticide-

(Molecular moderate toxic residues-jmpr-
mass-363.63) database/Document/123

19 Trifenmorph 1420-06-0 Trifenmorph http://erepository.uonbi.ac.ke/b
(Molecular is hydrolysed at acid | itstream/handle/11295/21816/B

mass-329.43)

pH to relatively non -
toxic compounds

enigna_Lethal%20and%?20sub
%20-
%20lethal%20effects%200f%2
0dot%2C%?20carbofuran%2C
%20trifenmorph%20and%20ni
closamide%200n%200reochro
mis%20niger%20guther%20%
281898%29.pdf?sequence=3&i

sAllowed=y

20 Tridiphane

58138-08-2
(Molecular
mass-320.43)

The predictive value
for both endpoints
indicates this pesticide
is less toxic for both
endpoints.

4.2 Study 2

4.2.1. PLS-based QSTR Model

A PLS-based QSTR model was developed using the PLS regression method with four latent
variables from ten different features identified using the best subset selection tool against avian

species. The developed PLS-based QSTR model is given below:
PLS-based QSTR model:

Model M1 =0.14334 + 0.17079*X5v + 0.56174*Br-094 - 0.28210*B07[C-C] +
1.85683*nPyrrolidines + 0.65279*F02[S-F] +0.18407*C-003 - 0.39449*nCrq +
1.85133*BO3[N-P] + 0.17754*nCXr -0.31913*nR0O7

The model’s performance has been thoroughly evaluated using rigorous internal and external
validation methods following the guidelines of the OECD. The determination coefficient (R*=
0.624) and leave one out cross-validated correlation coefficient (Q?.0o= 0.538) indicate the

model’s goodness of fit and robustness, whereas the mean absolute error of the training set
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predictions (MAEw.in = 0.247) indicates the predictive error. In addition to these, external
validation metrics, such as the external predicted variance (Q%r1= 0.539 and Q?r= 0.538), and
mean absolute error of test set prediction (MAEtst= 0.268), which are the standard markers of

good external predictability, have also been calculated.
4.2.2. PLS-based g-RASTR Model

In this study, we aimed to create a q-RASTR model to improve the external predictability of
the corresponding QSTR model. To achieve this, we integrated the calculated read-across-
based RASTR descriptor with the pull of ten alvaDesc descriptors. Using the best subset
selection method, we obtained a new combination of descriptors. We then used PLS regression
to model eight descriptors with the optimal number of latent variables (four LVs). The
statistical metrics of the PLS-based QSTR and g-RASTR models are presented in Table 4.9.
The resulting PLS-based g-RASTR model is given below:

PLS-based g-RASTR model:

Model M2 =0.14648 + 0.53019* CVsim(LK) - 0.75982* SD similarity(LK) + 0.04142*
gm*Avg.Sim + 0.12455* X5v -0.17495* BO7[C-C] + 1.61151* nPyrrolidines + 0.08476*
C-003 -0.46958* nCrq

Table 4.9. Statistical quality of QSTR and g-RASTR model.

Algorith Training set Test set
m Nuain/ | DES/ R? le,oo MAE(train) ngl QI%Z MAE(test)
A ) Ntes[ LVS
vian
Species PLS- 360/ | 10/4 | 0.624 | 0.538 | 0.247 0.539 |[0.538 | 0.268
QSTR 120
PLS g-|360/ |8/4 0.623 | 0.569 | 0.247 0.541 | 0.540 | 0.261
RASTR 120

The PLS-based g-RASTR model shown superior performance than the corresponding QSTR
model in terms of internal validation metrics (Q?Loo =0.569) as well as external validation
metrics (Q%r1=0.541, Q% =0.540). The model also produced the lowest prediction error for the
test compounds as indicated by MAEtst = 0.261. The results of our study indicate that the best-
performing models for predicting the response values of target compounds were found to be
the PLS-based g-RASTR model. Y-randomization was carried out to investigate the chance
occurrence of the developed model R?yrand and Q?yrang Were found to be less than the standard

threshold, which assures that the generated models were not obtained by any chance as depicted
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in Figure.4.14. The PLS-based g-RASTR model's goodness-of-fit has been confirmed by

evaluating the correlation between the observed and predicted values as shown in Figure. 4.15.

Y randomization plot of PLS-RASTR model
pHD5(50%) Intercepts: R2=(0.0, -0.0033), Q2=(0.0, -0.119)

R2
Qz

Lo0

0.80]

0.60}

0.407

0.207
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e T.-"’
Figure 4.14. Y-randomization plot of PLS-based g-RASTR model.
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Figure 4.15. Scatter plot of established model.
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4.2.3 PLS plots

The comprehensive use of PLS plots in SIMCA-P facilitated a detailed exploration of the
dataset, providing valuable insights into the relationships between variables and the toxicity
response. Each type of PLS plot played a crucial role in enhancing the understanding and
reliability of the predictive models. The outcomes of these analyses contribute not only to
model interpretation but also guide further refinement and optimization for robust predictive

performance.
4.2.3.1 Regression coefficient plot

Employed SIMCA-P to generate regression coefficient plots, illustrating the contribution of
each variable on the response variable. Evaluated the sign and magnitude of regression
coefficients to discern the variables positively or negatively influencing the toxicity, offering
valuable insights for understanding the underlying mechanisms. The descriptors CVsim(LK),
gm*Avg.Sim, X5v, nPyrrolidines, and C-003 contributed positively towards the toxicity which
indicates that the toxicity enhanced with increasing the numerical value of these descriptors
while the descriptors SD similarity(LK), BO7[C-C], and nCrq showed negative contribution
towards the toxicity which indicated that the toxicity reduced with increasing the numerical

value of these descriptors. The regression coefficient plot is provided in Figure. 4.16.

Regression coefficient plot of PLS-RASTR model

1.00
0.90 T
0.80
0.70
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0.50
0.40
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0.00 * + + * * + +

-0.20

CoelfCS[4](PHDS(50%))

-0.30
-0.40

-0.50

-0.60

CVsim(LK) SD similar am_Avg.Sim XSv BO7[C-C] nPyrrolidi C-003 nCrq
Var ID (Primary)

Figure 4.16. Regression coefficient plot of PLS-based g-RASTR model.
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4.2.3.2. Variable importance plot (VIP)

Utilized the SIMCA-P software to generate VIP plots, quantifying the importance of each
variable in explaining the variations observed in the data. Variables with higher VIP scores
were considered more influential, aiding in feature selection and enhancing the interpretability
of the predictive models. The influential descriptors toward toxicity of the developed model
are CVsim(LK)> X5v> nCrg> SD similarity(LK)> C-003> nPyrrolidines> BO07[C-C]>
gm*Avg.Sim (arranged in higher to lower order as per their VIP score). The VIP plots are

depicted in Figure. 4.17.

VIP plot of PLS-RASTR model
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Figure. 4.17. Variable_importance plot PLS-based g-RASTR model.
4.2.3.3. Loading plot

The loading plot, portrayed in Figure. 4.18. identifies the relationship between the model's X-
variables (independent variables) and Y-variables (dependent variables). The first two
components of the developed model were used to generate the loading plot. This plot clarifies
how various variables impact the models. The descriptors with maximum distance from the
origin are thought to have a higher influence on response value as well as on models. According
to the loading plot, CVsim(LK) descriptor is the most impactful variable for the PLS-based g-
RASTR models as it is present farthest from the origin.
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Loading plot of PLS-RASTR model
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Figure 4.18. Loading plot of the model PLS-based g-RASTR model.

4.2.4. Mechanistic interpretation

The information regarding the descriptors gained from the developed model, their contribution,
description, and probable mechanistic interpretation are provided in Table 4.10 and presented

in Figure. 4.19.
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Figure. 4.19. Mechanistic introspection of modeled descriptors.
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Table 4.10. Mechanistic introspection of modeled descriptors.

SI.No. | Descriptor | Type | Description | Contribution
Various types of bird species
Coefficient and variation of
CVsim(LK) RASTR the similarity values of the Positive
close source compounds.
Mechanistic introspection:
The descriptor "CVsim (LK)" quantifies the coefficient of variation in similarity
values for chemicals resembling the target molecule. A high value of this
descriptor suggests that the target molecule exhibits significant deviations in

! similarity to related chemicals, which may correlate with increased toxicity
towards the endpoint. For example, compound 10 (Isobenzan) shows considerable
variability in similarity measures among its close chemical analogs, indicating
potential toxicity. In contrast, compound 25 (Coumatetralyl) demonstrates a
lower coefficient of variation in similarity values, suggesting reduced toxicity
towards the endpoint.

sD The standard variation in
. RASTR similarity measures among Negative
similarity(LK)
closely related compounds
Mechanistic introspection:

2 The extensive variability observed among closely related source compounds is a
significant factor that reduces the prediction reliability. This fact is evident in
compound 14 (Metconazole), whereas compound 30 (Furilazole) does not
demonstrate such phenomenon.

Product of the gm and Avg.Sim
gm*Avg.Sim RASTR levels Positive
Mechanistic introspection:
Increasing the numerical value of this variable enhanced the compound’s toxicity

3 (directly related to the toxicity as indicated by the positive regression coefficient)
as represented in compound 1 (bromomethane) and oppositely occurs in
compound 283 (Uniconazole).

Connectivit | Valence connectivity index of
X5v y indices order 5 Positive

4

Mechanistic introspection:
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The symbol X5v is commonly used to represent the valence connectivity index of
order 5. However, based on the study of certain organic compounds, it can be
inferred that X5v represents the extent of branching or molecular surface area. It
has been observed that X5v has a positive correlation with the endpoint. This
means when the numerical value of X5v increases (branching increases), the
toxicity also increases [83] as traced in compound 267 (Strychnine) and
conversely in compound 16 (Dicofol).

2D Atom

BO7[C-C] Paiirs Presence/absence of C — C at

topological distance 7 Negative

Mechanistic introspection:
This descriptor is inversely correlated with the toxicity as indicated by its negative

regression coefficient. Thus, an increased number of this fragment correlates with
decreased toxicity, as illustrated by compound 136 (Bifenazate (D2341), while the

opposite effect is observed in compound 133 (Toxaphene).

Functional

group

nPyrrolidines
counts

number of Pyrrolidines Positive

Mechanistic introspection:

The nPyrrolidines alvaDesc descriptor positively contributed to the endpoint. This
suggests that the presence of pyrrolidine rings enhances toxicity, as exemplified
by compound 204 (Nicotine), whereas the reverse effect is observed in compound
215 (Nitenpyram).

Atom-
C-003 centred CHR3 Positive
fragments

Mechanistic introspection:
The positive regression coefficient for this descriptor suggests that it enhances the
toxicity profile of the chemicals, as evidenced by compound 87 (Endrin) and

conversely in compound 143 (2,4-D lIsooctyl ester).

Functional
group number of ring quaternary

nCrq counts C(sp3)

Negative

Mechanistic introspection:

Generally, the Sp® hybridized compound is more stable and less reactive due to the
presence of a sigma bond. The less reactivity of any compound indicates that it is
potentially less toxic. This feature has a positive contribution towards the response
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as depicted in compounds 248 (Gibberellic acid) and conversely for compound
173 (Prallethrin).

4.2.5. Pesticide Properties DataBase screening

The developed PLS-based q-RASTR model was utilized to screen the PPDB database using
PRI tool (available from: http://teqip.jdvu.ac.in/QSAR_Tools/). We have ensured the utmost

reliability of the prediction values by thoroughly assessing the applicability domain of the
compounds and discovering that 92.08% of the compounds fall within the chemical space of
the developed model. The HDs values of the compounds were evaluated and the twenty highest
and least toxic compounds have been provided with their respective CAS numbers, molecular
weight, and pesticide groups in Tables 4.11 and 4.12. respectively. Our predictions were
rigorously validated by corroborating them with the real-world experimental data available in
the PubChem online repository, as well as in literature and references. We observed complete
coherence between our predictions and the experimental toxicity data, particularly for the top
twenty highest and least twenty toxic compounds. Therefore, we confidently state that our
model predictions are reliable and can be considered highly suitable for identifying potential

toxicants.

Table 4.11 Top twenty toxic screened pesticides from Pesticide Properties DataBase (PPDB).

Sl. | Pesticide CAS no and | Safety and Sources
No | name Molecular Hazards
mass
Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)
1 Chlorbicycle 103-17-3 Acute toxic | https://pubchem.ncbi.nlm.nih.gov/com
n (Molecular (Dermal, pound/17357#section=GHS-
mass- Inhalation) Classification&fullscreen=true
269.19)
2 Dialifos 10311-84-9 | Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular rats, mice, pound/25146#section=GHS-
mass- dogs, rabbits, Classification&fullscreen=true
393.85) and an
Environmenta
| hazard
3 Schradan 152-16-9 Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | man, rats, etc. pound/9037#section=GHS-
mass- Classification&fullscreen=true
286.25)
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4 Bromethalin | 63333-35-7 | Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular rats, mice, pound/44465#section=GHS-
mass-577.9) dogs, and Classification&fullscreen=true
Environmenta
| hazard
5 Imicyafos 140163-89-9 | Acute toxic, | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular Irritant pound/18772487#section=GHS-
mass- Classification&fullscreen=true
304.35)
6 Bromocycle 1715-40-8 | Inhalation https://www.hpc-
n (Molecular | May be standards.com/shop/ReferenceMaterial
mass- harmful if s/Pesticides/Bromocyclen_Ethylacetate
393.75) inhaled. 1.htm
7 Phosalone 2310-17-0 | Acute toxic, https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | Environmenta pound/4793#section=GHS-
mass-367.8) | | Hazard, Classification&fullscreen=true
Irritant
8 Prothidathio | 20276-83-9 | Threshold of | http://sitem.herts.ac.uk/aeru/ppdb/en/R
n (Molecular | Toxicological | eports/2847.htm
mass-358.4) | Concern
(Cramer
Class)- High
(class 111)
9 Mazidox 7219-78-5 Threshold of | http://sitem.herts.ac.uk/aeru/ppdb/en/R
(Molecular | Toxicological | eports/2870.htm
mass- Concern
177.15) (Cramer
Class)- High
(class 111)
10 | Pyrafluprole | 315208-17-4 | (Cramer http://sitem.herts.ac.uk/aeru/ppdb/en/R
(Molecular | Class)- High | eports/3071.htm
mass- (class 111)
477.27)
11 | Diazinon 333-41-5 Irritant, https://pubchem.ncbi.nim.nih.gov/com
(Molecular | Health hazard, | pound/3017#section=GHS-
mass- Environmenta | Classification&fullscreen=true
304.35) | hazard
12 | Athidathion | 19691-80-6 | Acute toxic https://pubchem.nchi.nim.nih.gov/com
(Molecular | (dermal, oral, | pound/88197#section=GHS-
mass-330.4) | Environmenta | Classification&fullscreen=true
| hazard
13 | Azinphos- 2642-71-9 Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
ethyl (Molecular | rat,dog and pound/17531#section=GHS-
mass- environmental | Classification&fullscreen=true
345.38) hazard
14 | Fosmethilan | 83733-82-8 | Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | quail, bird- pound/55138#section=Acute-
mass-367.8 | domestic and | Effects&fullscreen=true

rat
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15 | Benzobicycl | 156963-66-5 | Toxic for aves | https://pubchem.ncbi.nlm.nih.gov/com
on (Molecular pound/11236201#section=Toxicity&fu
mass- lIscreen=true
446.96)

16 | Phosmet 732-11-6 Acute toxic, https://pubchem.ncbi.nlm.nih.gov/com
(Molecular Irritant, pound/12901#section=GHS-
mass- Health hazard, | Classification&fullscreen=true
317.33) Environmenta

| hazard

17 | Tralopyril 122454-29-9 | Acute toxic, https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | Health hazard, | pound/183559#section=GHS-
mass- Classification&fullscreen=true
349.53)

18 | Halacrinate | 34462-96-9 | Acute toxic to | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | rat pound/114868#section=Acute-
mass- Effects&fullscreen=true
312.55)

19 | Fluazolate 174514-07-9 | Threshold of | http://sitem.herts.ac.uk/aeru/ppdb/en/R
(Molecular | Toxicological | eports/326.htm
mass- Concern
443.62) (Cramer

Class)- High
(class 111)

20 | Bromophos | 2104-96-3 Environmenta | https://pubchem.ncbi.nlm.nih.gov/com
(Molecular | | hazard and pound/16422#section=Acute-
mass- acute toxic to | Effects&fullscreen=true
366.00) rat

Table 4.12 Least twenty screened pesticides from Pesticide Properties DataBase (PPDB).

Sl. | Pesticide CAS no and | Safety and Sources (all references available
No | name Molecular Hazards in Supplementary 2)
mass
Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)
1 Isophorone 2104-96-3 | Isophorone doe | https://www.inchem.org/documents
(Molecular | s not affect the /hsg/hsg/hsg91 _e.htm
mass- fertility or cause
366.00) developmental
toxicity in
experimental an
imals (Rats,
Mice)
2 Empenthrin 54406-48-3 | Emperithrin has | http://sitem.herts.ac.uk/aeru/ppdb/e
(Molecular | alow mammali n/Reports/1596.htm
mass- an toxicity. It
274.40) is not highly to
xic to birds
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3 Profluthrin 223419-20-3 | Metofluthrin, | https://www3.epa.gov/pesticides/ch
(Molecular like other em_search/reg_actions/registration/
mass- synthetic fs PC-109709 01-Sep-06.pdf
330.32) pyrethroids, is
practically non-
toxic
4 Heptafluthrin | 1130296-65- | The substance | http://sitem.herts.ac.uk/aeru/ppdb/e
9 has no n/docs/Data_alerts_rules.pdf
(Molecular implications
mass- for human
414.12) health,
biodiversity or
the environment
5 Metofluthrin 240494-70-6 | The substance | http://sitem.herts.ac.uk/aeru/ppdb/e
(Molecular has no n/docs/Data_alerts_rules.pdf
mass- implications
360.34) for human
health,
biodiversity or
the environment
6 Epsilon- 240494-71-7 | Epsilon- https://echa.europa.eu/documents/1
metofluthrin (Molecular | momfluorothrin | 0162/e81b30al-400a-9fed-b8dd-
mass- has low acute to 362a3a54f08b
360.34) xicity
7 Imiprothrin 72963-72-5 | The chemical is | https://wwwa3.epa.gov/pesticides/ch
(Molecular | practically non- | em_search/reg_actions/registration/
mass- toxic to birds fs_PC-004006_01-Mar-98.pdf
318.37)
8 Transfluthrin | 118712-89-3 | Transfluthrin https://downloads.regulations.gov/E
(Molecular | is classified as | PA-HQ-OPP-2016-0581-
mass- practically 0007/content.pdf
371.15) non-toxic to
birds and
mammals,
9 Tefluthrin 79538-32-2 | Tefluthrin is https://www.sciencedirect.com/scie
(Molecular | nontoxic to nce/article/abs/pii/S0013935120308
mass- birds 884
371.15)
10 | Kappa- 391634-71-2 | Nontoxic to https://patents.google.com/patent/E
tefluthrin (Molecular | mammals P3696177Al/en
mass-418.7)
11 | Fenfluthrin 75867-00-4 | Practically non- | http://npic.orst.edu/factsheets/cyflut
(Molecular | toxic to slightly | hringen.html
mass- toxic when
389.16) eaten by birds
12 | Renofluthrin 352271-52-4 | No data found
(Molecular
mass- | | e —-mmmmmmees
415.22)

Page 105



https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-109709_01-Sep-06.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
http://sitem.herts.ac.uk/aeru/ppdb/en/docs/Data_alerts_rules.pdf
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://echa.europa.eu/documents/10162/e81b30a1-400a-9fed-b8dd-362a3a54f08b
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-004006_01-Mar-98.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://downloads.regulations.gov/EPA-HQ-OPP-2016-0581-0007/content.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://www.sciencedirect.com/science/article/abs/pii/S0013935120308884
https://patents.google.com/patent/EP3696177A1/en
https://patents.google.com/patent/EP3696177A1/en
http://npic.orst.edu/factsheets/cyfluthringen.html
http://npic.orst.edu/factsheets/cyfluthringen.html

Chapter 4 Results and discussions
13 | Meperfluthrin | 915288-13-0 | Metofluthrin, https://www3.epa.gov/pesticides/ch
(Molecular | like other em_search/reg_actions/registration/
mass- synthetic fs PC-109709 01-Sep-06.pdf
415.21) pyrethroids, is
practically non-
toxic
14 | S-bioallethrin | 28434-00-6 | Bioallethrinis | http://sitem.herts.ac.uk/aeru/ppdb/e
(Molecular | less toxic n/Reports/80.htm
mass- to birds and
302.41) honeybees.
15 | Bioallethrin 260359-57-7 | Bioallethrin is | http://sitem.herts.ac.uk/aeru/ppdb/e
(Molecular | less toxic n/Reports/80.htm
mass- to birds and
302.41) honeybees.
16 | Allethrin 584-79-2 | Allethrin is http://extoxnet.orst.edu/pips/allethri
(Molecular | practically non- | .htm
mass- toxic to birds
302.41)
17 | Momfluorothr | 609346-29-4 | Momfluorothri | https://downloads.regulations.gov/E
in (Molecular | nis considered | PA-HQ-OPP-2013-0478-
mass- practically non- | 0020/content.pdf
385.35) toxic to birds a
nd mammals
18 | Chloropralleth | 250346-55-5 | Prallethrin is https://en.wikipedia.org/wiki/Prallet
rin (Molecular | of low mammal | hrin
mass- ian toxicity
341.23)
19 | Acrinathrin 101007-06-1 | It https://luxembourg.co.il/wp-
(Molecular | is not considere | content/uploads/2020/02/Rufast-
mass- d as harmful 1212.pdf
541.44) to birds
20 | Formetanate 23422-53-9 | Toxic https://archive.epa.gov/pesticides/re
hydrochloride | (Molecular | compounds registration/web/html/formetanateh
mass- 257.8) cl_fs.html
4.3 Study 3

In this study, we have developed PLS models utilizing the toxicity of pesticides (LogLCs,) on

four different avians (BQ and JQ) employing a reduced pool of chemical descriptors. The

created model’s quality is measured by using different internal (R?, QZ,,,) and external

(Q%,, Q3,,) statistical parameters. The results obtained from PLS models indicated the model’s

robustness, reliability, and predictivity. All the metrics obtained from QSTR models are

depicted in Table 4.13. Read-Across algorithm was employed to improve the model’s external

predictivity External predictivity was improved for both datasets (BQ, JQ) in Read-Across

prediction, and results are provided in Table 4.14. The obtained results from the Y-
randomization test were found to be R?=-0.01, Q%= -0.0531, (for BQ), R? =0.0194, Q% = -
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0.215 (for JQ) which demonstrated that the models were not formed by any chance. A visual
representation of the correlation between observed and predicted toxicity values has been
depicted in the scatter plot (provided in Figure 4.20). Additionally, we used two different ML
algorithms namely support vector machine and random forest to evaluate their effectiveness in
model construction and prediction. The PLS-based QSTR models with read-across predictions
produce the lowest prediction error for the test set compounds, as indicated by the
MAE:est value. The equations of the final developed models of BQ and JQ, are provided below:
Model BQ:

pLC50 (BQ) = 1.25782 + 0.43538 X FO2[C — P] 4+ 0.00176 X MW + 0.5691 x FO9[S —
F] — 1.15994 x BO9[C — P] — 0.55509 x FO3[0 — P] — 0.046 x T(P..Cl)

Model JQ:

pLC50 (JQ) = 4.15712 + 0.74137 x B01[0 — P] — 6.67929 x X2A + 1.18073 X
BO5[N — P] — 0.28037 x H — 048 — 0.00675 X T(O..Cl) + 0.44076 x nBridgeHead
Table 4.13. Statistical parameter of developed PLS models.

Avian Training set Test set
Species | Nirain/Nwst | LVS | R2 Q%00 Q% Q%; | MAE s | Quality(esy
BQ 411/137 2 0.643 | 0.603 0.613 0.613 | 0.186 Good
JQ 77/34 2 0.630 | 0.552 0.534 0.519 | 0.403 Moderate
Table 4.14. Read-across based predictions for four species.
Optimized settings | Metrics | Ygk (Test)
Bobwhite qualil
Ygk (Test) Q% 0.690
¢ =0.25 Q2|:2 0.690
Y =0.25 RMSEp 0.279
No. of similar compounds [ MAE 0.179
=10
Japanese qualil
Optimized settings Metrics Y1k (Test)
6=0.25 Q%m1 0.707
v=10.25 Q% 0.698
No. of similar compounds RMSEp 0.394
=10 MAE 0.307

Page 107



Chapter 4 Results and discussions

4.5
4
3.5
3
225
[*]
s 2 @ Trainnig
E 1.5 Set
. @ Test set
0.5
0@
0 1 2 3 4 5 BQ
Observed
6
S 9
[
- 4 o9 ®
3 % e o ..
5 5 - @ Trainnig
: 2 95 QY W Set
» @ Test set
o
2 8 o
(>
1 - o
[ 1Q
0@
0 1 Obsdrved S 6

Figure 4.20. Scatter plots of developed models.

Several classification-based metrics have been computed with the PLS-based QSTR-read
across models for all (BQ, and JQ) the avian species and reported in the following Table 4.15
Good sensitivity, specificity, and accuracy values indicate the good classification ability of the
model. The computed values of the Matthews correlation coefficient [49] indicate an
acceptable prediction and an agreement between observed and predicted classification for all

the developed models against avian species.
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Table 4.15. Statistics of the classification-based QSTR models.

Sl LDA- AUC | SENSITIVIT | ACCURAC | PRECISION F- MCC
no. QSTR -ROC Y Y MEASUR
MODEL E
S
1 BQ 0.80 54.54 83.33 88.00 67.35 0.59
(train)
BQ 0.83 52.17 85.36 92.30 66.67 0.62
(test)
2 JQ 0.82 62.50 80.76 86.95 72.73 0.60
(train)
JQ 0.80 75.00 84.84 81.81 78.26 0.66
(test)

4.3.1. Regression coefficient plot

The descriptor’s positive/negative contribution towards toxicity is provided via a regression
coefficient plot. In this investigation, the descriptors FO2[C-P], MW and FO9[S-F]) contributed
positively while the descriptors BO9[C-P], FO3[O-P], and T(P..Cl) contributed negatively
towards toxicity of pesticides in case, of BQ. In JQ, the descriptors which contributed positively
toward the toxicity are BO1[O-P], BO5[N-P], nbridgehead and X2A, whereas the descriptors
H-048 and T(O..Cl) contributed negatively towards the toxicity.

4.3.2. Variable importance plot (VIP)

The relative importance of model descriptors is illustrated with VIP [51]. Descriptors having
the highest and lowest impact on avian species can be recognized from these plots. The
significance of the variable is higher the VIP score is greater than 1. In VIP plot, the descriptors
are presented concerning their significance (higher contribution to lower contribution) and their
importance which is in the following order: FO2[C-P], T(P..Cl), MW, B09[C-P], FO3 [O-P],
FO9[S-F] (in case of BQ), BO1[O-P], BO5[N-P], X2A, nBridgeHead, H-048, T(O..Cl) (in case
of JQ).

4.3.3. Loading plot

The loading plot shows how the independent variables (descriptors) are related to the response
variable. The first two components were used to create the loading plot. A descriptor is assumed
to have a stronger effect on response value if it is located far from the origin of the plot. Based
on the loading plot; it is interpreted that the X-variables FO2[C-P] and MW have more influence

on the Y-variable as traced from the proximity with the response variable and the presence of
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these features elevated pesticide toxicity towards BQ. Similarly, BO1[O-P] are the most

influential descriptors in the case of JQ.

4.3.4. Mechanistic interpretation of PLS models

Table 4.16. and Figures 4.21.-4.22. provide a detailed account of the model descriptors

followed by mechanistic interpretations important to identify major structural and

physicochemical features.

Table 4.16. Mechanistic analysis of model descriptors of all species.

S.no | Descriptor Type Function Contribution
BQ oral pLCso
1 FO2[C-P] 2D Atom pair Frequency of carbon and +ve
phosphorus atoms at topological
distance 2
Mechanistic introspection
Generally, the phosphate group is toxic. The presence of more phosphate groups in a
molecule tends to increase its toxicity as evidenced in compound 442. On the other hand,
the presence of less number of these fragments in a compound may result in low toxicity
values, as seen in compound 501 (depicted in Figure. 4.21).
2 MW Constitutional Molecular weight +ve
descriptor
Mechanistic introspection
This descriptor is directly related to the molecular size and bulkiness of molecules. It may
influence diffusion in biological membranes and fluid media. So the drug may easily cross
the biological membrane of species and retain in the body of reference species for a long
time, which ultimately enhances the toxicity as demonstrated in compound 381 and vice
versa in compound 239 (given in Figure. 4.21).
3 FO9[S-F] 2D Atom pair Frequency of sulfur and fluorine +ve
atoms at topological distance 9
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Mechanistic introspection

Lipophilic substances have a greater susceptibility to accumulation within the cells,
resulting in a higher pesticide concentration inside the organism, which ultimately leads
to enhanced toxic effects. The presence of two highly electronegative atoms (fluorine and
sulfur) as well as a long carbon chain (lipophilicity) in a compound tend to make it more
reactive and potentially more toxic as shown in compound 23 and oppositely occurs in
compound 523 (shown in Figure. 4.21).

4 BO9[C-P] 2D Atom pair Presence/absence of carbon and -ve
phosphorus atoms at topological
distance 9

Mechanistic introspection

The negative regression coefficient of this descriptor indicates that the presence of carbon
and phosphorus atoms at the topological distance 9 may decrease the pesticide’s toxicity
towards avian species as shown in compound 296 while the absence of this fragment in a
chemical may have higher toxicity values as shown in the case of compound 11 (described
in Figure. 4.21).

5 FO3[O-P] 2D Atom pair Frequency of oxygen and -ve
phosphorus atoms at topological
distance 3

Mechanistic introspection

The negative regression coefficient of this descriptor indicates that it inversely correlated
with the pesticide’s toxicity towards avian species. Thus, the presence of this fragment
reduces the compound toxicity as demonstrated in compound 487 and the absence of this

fragment enhances the toxicity as represented in compound 52 (given in Figure. 4.21).

6 T(P..CI) 2D Atom pair Sum of topological distances -ve
between P..Cl

Mechanistic introspection

The two-dimensional atom pair descriptor, T(P---Cl) accounts for the topological distances
between phosphorus and chlorine atoms. Reduction of inductivity in chlorine substituents
causes a decrease in electron density for the relevant compounds. Therefore, the incidence
of the P—ClI bond in aromatic chemicals reduces the electron density of the aromatic ring,
thus, electron-donor-acceptor interactions cannot happen easily between pesticides and
the reference species. This descriptor has a negative regression coefficient, indicating that

the presence of this fragment will result in a decrease in pesticide toxicity profile, as
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exemplified by compound 243, while it would have the opposite effect when present, as

proven by compound 441 (provided in Figure. 4.21).

JQ oral pLCso

1 B0O1[O-P] 2D Atom pair Presence/absence of O — P at +ve
topological distance 1

Mechanistic introspection

The presence of two electronegative atoms (O and P) in a compound makes it more
electronegative which leads to oxidative stress and the death of the reference species. This
phenomenon is demonstrated in compound 81 and inversely occurs in compound 113
(shown in Figure. 4.22).

2 X2A Connectivity Average connectivity index of -ve
indices descriptor | order 2

Mechanistic introspection

X2A represents the degree of branching in molecules, which is inversely correlated with
hydrophobic interaction as well as toxicity. Thus, the higher numerical value of this
descriptor leads to a decrease in toxicity value as shown in compound 13 and vice versa

occurs in compound 57 (given in Figure. 4.22).

3 BO5[N-P] 2D Atom pair Incidence of N — P at topological +ve
distance 5

Mechanistic introspection

The presence of two electronegative atoms (N and P) in a compound makes it more
electronegative which leads to oxidative stress and the death of the reference species. This
phenomenon is demonstrated in compound 88. On the other hand, the compound
containing less number of this fragment may exhibit less toxicity as shown in compound
66 (demonstrated in Figure. 4.22).

4 H-048 Atom-centered H attached to -ve
fragments C2(sp3)/C1(sp2)/CO(sp)

Mechanistic introspection

H-048 has the potential to make compounds electronically conductive as well as
hydrophilic. Hydrophilicity and toxicity are inversely related to each other. Thus the
presence of a greater number of this descriptor in a molecule makes it less toxic as shown
in compound 67. On the other side, the presence of less number of hydrophilic groups in
a molecule leads to an increase the toxicity as shown in compound 11 (depicted in Figure.
4.22).

5 T(O..Cl) 2D Atom pair Sum of topological distances -ve
between O..CI
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Mechanistic introspection

occurs in compound 84 (depicted in Figure. 4.22).

The negative regression coefficient of this descriptor indicates that it is inversely
correlated with the pesticide's toxicity towards avian species thus the presence of more of

this fragment makes the compound less toxic as shown in compound 33 and conversely

6 nBridgeHead

Ring descriptors

Number of bridgehead atoms

t+ve

Mechanistic introspection

Usually, bridgehead atoms have a complex structure as well as toxic which is
demonstrated in compound 19. Conversely, the absence of bridgehead atoms makes the

compound less toxic as shown in compound 110 (demonstrated in Figure. 4.22).
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Figure 4.21. Positive and negative contribution of model descriptors towards .
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Figure 4.22. Positive and negative contribution of model descriptors towards JQ.

4.3.5. Pesticide Properties DataBase screening

Pesticide Properties DataBase was screened through the developed models with the help of the
software “PRI Tool PLSversion” (available from http://teqip.jdvu.ac.in/QSAR Tools/) using the
developed PLS models. The categorization threshold (mean value of the training set compound)
for avian toxicity against BQ; JQ; > 1.883; 2.236; was applied for prioritization purposes. From
the prediction, it was seen that maximum compounds are within the domain of applicability and
show prediction quality as “good”. The compounds were ranked in decreasing order of predicted
toxicity for each avian species. The top 20 and least 20 toxic pesticides for all four avian species
from the PPDB database are provided in Table. 4.17. Further validation of the predicted toxicity
of the selected pesticides revealed that apart from fluoroacetamide and sodium
monofluoroacetate, all the predicted toxicity corroborated with the previous experimental
findings, indicating the practical applicability of the developed models.

Table. 4.17. Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase
(PPDB).

Sl. no. Pesticide Safety and Sources
Hazards

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)

1 Imicyafos Acute  toxic, | https://pubchem.ncbi.nlm.nih.gov/co
Irritant. mpound/18772487#section=Safety-
and-Hazards&fullscreen=true

Page 114


http://teqip.jdvu.ac.in/QSAR%20Tools/
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/18772487#section=Safety-and-Hazards&fullscreen=true

Chapter 4 Result and discussion
2 Pirimiphos-ethyl Acute  toxic, | https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/31957#section=Safety-and-
Hazard. Hazards&fullscreen=true
3 Quinothion Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/89714#section=Toxicity&ful
Iscreen=true
4 Pirimiphos-methyl Irritant, Health | https://pubchem.ncbi.nlm.nih.gov/co
hazard, mpound/34526#section=Safety-and-
Environmental | Hazards&fullscreen=true
hazard
5 Etrimfos Irritant, https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/37995#section=Safety-and-
Hazard Hazards&fullscreen=true
6 Buminafos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/39966#section=Toxicity&ful
Iscreen=true
7 Diazinon Irritant, https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/3017#section=Safety-and-
hazard Hazards&fullscreen=true
8 Quintiofos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/72069#section=Toxicity&ful
Iscreen=true
9 Phoxim Irritant, Health | https://pubchem.ncbi.nlm.nih.gov/co
hazard, and | mpound/9570290#section=Safety-
Environmental | and-Hazards&fullscreen=true
hazard
10 Inezin Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/30772#section=Toxicity&ful
Iscreen=true
11 Dufulin Oxidative Y Yuetal. [67]
stress inducer
12 Chlorphoxim Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/5360461#section=Safety-
and-Hazards&fullscreen=true
13 Pyridaphenthion Irritant https://pubchem.ncbi.nlm.nih.gov/co
mpound/8381#section=Safety-and-
Hazards&fullscreen=true
14 Triazophos Acute  toxic, | https://pubchem.nchi.nlm.nih.gov/co
Environmental | mpound/32184#section=Safety-and-
hazard Hazards&fullscreen=true
15 Isoxathion Acute  toxic, | https://pubchem.nchi.nlm.nih.gov/co
Environmental | mpound/29307#section=Safety-and-
hazard Hazards&fullscreen=true
16 Naftalofos Acute toxic https://pubchem.ncbi.nlm.nih.gov/co
mpound/15148#section=Safety-and-
Hazards&fullscreen=true
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https://pubchem.ncbi.nlm.nih.gov/compound/29307#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/29307#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/15148#section=Safety-and-Hazards&fullscreen=true
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17 Quinalphos Acute  toxic, | https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/26124#section=Safety-and-
hazard Hazards&fullscreen=true
18 Butamifos Irritant, https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/37419#section=Safety-and-
hazard Hazards&fullscreen=true
19 Sulprofos Acute  toxic, | https://pubchem.ncbi.nlm.nih.gov/co
Environmental | mpound/37125#section=Safety-and-
hazard Hazards&fullscreen=true
20 Edifenphos Acute  toxic, | https://pubchem.ncbi.nim.nih.gov/co
Environmental | mpound/28292#section=Safety-and-
hazard Hazards&fullscreen=true
Sl. no. | Pesticide Safety and | Sources
Hazards
Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)
1 Ferbam non-toxic https://www3.epa.gov/pesticides/chem_s
earch/reg_actions/reregistration/fs_PC-
034801 _01-Sep-05.pdf
2 Hexylene glycol less toxic https://hpvchemicals.oecd.org/ui/handler
.axd?id=3c2a8190-8500-467c-af27-
a636e6636¢38
3 Bisthiosemi moderate https://www.drugfuture.com/toxic/dir/50
toxic 61.html
4 Choline chloride less toxic http://sitem.herts.ac.uk/aeru/iupac/Repor
ts/161.htm
5 Glutaraldehyde less toxic https://archive.epa.gov/pesticides/rereqis
tration/web/pdf/glutaraldehyde-red.pdf
6 Fumaric acid less toxic https://www.sciencedirect.com/science/a
rticle/pii/S0095955315310854
7 Lime sulphur less toxic https://www.ams.usda.gov/sites/default/f
iles/media/Lime%20Sulfur%20Evaluati
on%20TR.pdf
8 Methyl isobutyl ketone | less toxic https://www.epa.gov/sites/default/files/2
016-09/documents/methyl-isobutyl-
ketone.pdf
9 Sodium moderate https://www.sciencedirect.com/topics/ag
tetrathiocarbonate toxic ricultural-and-biological-
sciences/thiocarbonate
10 1,2-dichloropropane less toxic https://wedocs.unep.org/bitstream/handl
e/20.500.11822/29625/HSG76.pdf?sequ
ence=1&isAllowed=y
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https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-034801_01-Sep-05.pdf
https://hpvchemicals.oecd.org/ui/handler.axd?id=3c2a8190-8500-467c-af27-a636e6636c38
https://hpvchemicals.oecd.org/ui/handler.axd?id=3c2a8190-8500-467c-af27-a636e6636c38
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https://www.drugfuture.com/toxic/dir/5061.html
https://www.drugfuture.com/toxic/dir/5061.html
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https://www.ams.usda.gov/sites/default/files/media/Lime%20Sulfur%20Evaluation%20TR.pdf
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https://www.epa.gov/sites/default/files/2016-09/documents/methyl-isobutyl-ketone.pdf
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https://wedocs.unep.org/bitstream/handle/20.500.11822/29625/HSG76.pdf?sequence=1&isAllowed=y
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11 Metam less toxic https://archive.epa.gov/pesticides/chemi
calsearch/chemical/foia/web/pdf/039003
/039003-028.pdf
12 Methylene less toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re
bisthiocyanate ports/2905.htm
13 Bentonite Nontoxic https://digitalfire.com/hazard/bentonite+
toxicity#:~:text=Bentonite%20is%20a%
20ground%?20naturally,flush%20t0%20r
emove%20the%20particles.
14 Butanethiol moderate https://pubchem.ncbi.nim.nih.gov/comp
toxic ound/1-Butanethiol
15 Sodium moderate https://tera.org/OARS/Sodium%20Chlor
monochloroacetate toxic oacetate%20(3926-62-
3)%20WEEL%202016%20public%20co
mment.pdf
16 Fluoroacetamide high toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re
ports/338.htm
17 Sodium high toxic http://sitem.herts.ac.uk/aeru/ppdb/en/Re
monofluoroacetate ports/3160.htm
18 Propylene glycol less toxic https://downloads.regulations.gov/EPA-
HQ-OPP-2013-0218-0007/content.pdf
19 Peroxyacetic acid moderate https://www.federalregister.gov/docume
toxic nts/2000/12/01/00-30679/peroxyacetic-
acid-exemption-from-the-requirement-
of-a-
tolerance#:.~:text=Because%200f%20the
%20low%20toxicity,not%20pose%20a
%?20dietary%20risk
20 2-hydrazinoethanol moderate http://sitem.herts.ac.uk/aeru/ppdb/en/Re
toxic ports/2803.htm
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5. Conclusions
In the present work, we have utilized different 2D descriptors including both the ETA and non —ETA
indices to develop our models. We have developed QSTR and g-RASTR models in our study to
investigate the structural characteristics that cause acute oral toxicity in multiple avian species and
interpret the descriptors mechanistically to determine how these structural characteristics influence
acute oral toxicity in birds. The ecotoxicity of pesticides was regulated by various physicochemical
and chemical properties such as lipophilicity, electronegativity, polarity, steric hindrance, and
branching. The model developed in our study was rigorously validated by using both internal (using
different internal validation metrics) and external (using different external validation metrics)
validation strategies.
5.1. Study 1
This work reports the first PLS g-RASTR model for acute toxicity in chicken, the widely
consumed source of animal protein. The study's importance lies in the direct link between
chemical toxicity in chicken, human intake, and environmental damage. In this study, we can be
concluded that the present research is significant and novel because of the following reasons:

I. By utilizing mathematical models, we got a comprehensive knowledge of how certain
chemicals impact chicken species on a toxicological level. This knowledge is crucial in
developing effective measures to protect the health of chicken species as well as human
beings.

Il.  From this study, it was found that lipophilicity and electronegativity are responsible for
the toxicity of pesticides towards chickens. On the other hand, polarity, hydrophilicity,
and large numerical value of SE (LK) & SD similarity (GK) descriptors will reduce the
toxicity of pesticides towards chickens.

1. The ability of models to identify specific features contributing to chicken toxicity will aid
in creating safer, environmentally friendly chemicals.
IV.  The developed g-RASTR model is robust and practical for toxicity & risk assessment.

V. The closeness of the acute toxicity prediction by the g-RASTR model with real-world
data demonstrates its feasibility for screening acute toxicants in chickens.

VI.  Models can be used for data-gap filling as well as predicting the toxicity of chemicals
even before their synthesis.

5.2. Study 2

The current work demonstrates the suitability of amalgamation of RA and QSTR i.e. g-RASTR

based model for efficient and reliable ecotoxicological risk assessment of diverse pesticides in

avian species. The robustness, predictive ability, and reproducibility of the model were
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meticulously evaluated by globally accepted internal and external validation metrics. As a critical
step in ensuring the real-world applicability, the PLS-based g-RASTR model was deployed for
reliable prediction of HDs values of the pesticides from the Pesticide Properties Database
(PPDB), within the applicability domain. The high accuracy of the obtained predictions in
comparison to the experimental toxicity data, demonstrated the true predictive capability of the
g-RASTR model. Although LDso is crucial for general comparisons, HDs provides a more
cautious and safety-oriented approach, making it valuable for risk assessment and decision-
making in developing effective measures to safeguard the health of avian species. Through the
use of mathematical models, we have gained a comprehensive understanding of how certain
chemicals affect avian species on a toxicological level. We found that the presence of high
coefficient and variation of the similarity values of the close source compounds, product of the
gm, and Avg.Sim levels, number of Pyrrolidines, and increases in branching influence the toxicity
towards avian species. Conversely, the high distribution among the close source compounds,
Presence/absence of C — C bonds at topological distance 7, and degree of saturation decrease the
toxicity toward avian species. This approach offers a cost-effective and ethical alternative to
traditional in vivo testing, aiding regulatory bodies, researchers, and industries in assessing the

potential ecological risks associated with pesticide use.

5.3. Study 3

In summary, this study employs a range of chemometric tools to predict pesticide toxicity for
four different avian species. The research focuses on creating robust and easily interpretable
QSTR models based on OECD principles. The study's statistical validation parameters
consistently demonstrate the strength and reliability of the constructed PLS-based QSTR-read
across models. External validation metrics, employing the read-across algorithm, show slightly
superior performance in predicting toxicity, except for the mallard duck dataset. Additionally, we
have developed classification models and employed two Machine Learning algorithms SVM and
RF to evaluate their effectiveness in constructing models and making predictions. The PLS-based
QSTR models with read-across predictions produce better statistical results (such as the lowest
prediction error for the test set compounds, as indicated by the MAEest value) as compared to

ML-based models against all of the avian species.

Furthermore, this research develops regression-based models, surpassing previous studies in
terms of the dataset's size, the variety of avian species examined, domain of applicability features
responsible for toxicity, model quality, algorithm used as well as the endpoint (LCso). The

findings highlight the significance of electronegativity, molecular weight, imide count,
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lipophilicity, and steric effects in avian toxicity. Additional findings (descriptors) such as C-012,
BO7[O-P], Br-094, BO5[C-P], FO4[C-CI], NRCONHR, nN(CO)2, and BO5[P-CI] were observed in
this study which is related to pesticides toxicity towards avian species. Notably, the presence of
C-P fragments at specific topological distances and electronegative groups intensifies toxicity,

while features like branching and hydrogen bond acceptor characteristics reduce it.

The validation of the predicted toxicity of the screened compounds by experimental data
demonstrated the reliability and feasibility of applying the developed models for screening
pesticides, offering valuable support to researchers striving to design eco-friendly and safe
chemical pesticides. They effectively bridge gaps in toxicity data and simplify the evaluation of
novel pesticides for various bird species. Moreover, these models significantly reduce the time,
resources, costs, and the need for animal testing, aligning with the principles of reduction,

refinement, and replacement (RRR) in research practices.

This thesis presents a comprehensive investigation into the acute toxicity of pesticides in avian
species, utilizing a variety of 2D descriptors, including ETA and non-ETA indices, to develop
QSTR and g-RASTR models. These models enable a detailed understanding of the structural
characteristics that influence toxicity, providing significant insights into the ecotoxicity of
pesticides regulated by properties such as lipophilicity, electronegativity, polarity, steric
hindrance, and branching. This thesis advances the field of ecotoxicology by providing novel,
validated models that offer accurate predictions of pesticide toxicity in avian species. These
models not only enhance our understanding of toxicological mechanisms but also contribute to
the development of safer pesticides and more ethical research practices. The integration of
chemometric tools and rigorous validation strategies ensures the reliability and applicability of
these models in real-world scenarios, ultimately supporting the goal of protecting both avian

species and human health from the adverse effects of pesticide exposure.
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1. Introduction

The most commonly consumed meat in the world is broiler chicken
[1]. To fulfill the demand for meat, different types of bird diets (espe-
cially supplements) as well as other medicines are used for fast and
healthy growth of chickens. These food supplements and medicines
contain diverse types of pesticides and other chemicals. Pesticides are
substances that are used to control or eliminate pests, such as insects,
weeds, and fungi, in agriculture. While they can be effective in pro-
tecting crops, have the potential to impact both chickens and humans as
well, primarily through residues in food products and environmental
exposure [2,3]. One of the main concerns for humans is the presence of
pesticide residues in food. If chickens consume feed containing pesti-
cides, residues can be transferred to eggs and meat. Humans can then
ingest these residues when consuming poultry products. Thus,
consuming the meats of these chickens will affect the health of human
beings too. There have been several concerns raised about the impact of
pesticides on birds as well as on human beings. Such concerns arise due
to the possible negative unintended impacts of pesticides on a variety of
birds or the direct injurious effects of pesticides on human health [4].
Regulatory bodies have, therefore, underscored the need to carry out
toxicity testing on current and new chemical pesticides to assess their
impact on the environment [5]. Exposure to pesticides is severe and
dangerous and can lead to death. While there are established techniques
for evaluating avian toxicity through both in vivo and in vitro approaches,
they are costly, time-consuming, and immoral [5]. To investigate the
inherent properties of chemicals concerning toxicological prediction,
governing bodies such as the Environmental Protection Agency (EPA),
Registration, Evaluation, Authorization and Restriction of Chemicals
(REACH), European Chemicals Bureau (ECB), and European Food Safety
Authority (EFSA) advise using computational tools such as read-across
and QSAR [6]. Among the various in-silico techniques, QSAR is widely
employed to predict the toxicity of test chemicals. By using this tech-
nique, a scientific model is developed from a compound series having
experimentally derived endpoint values. Due to the reproducibility,
simplicity, and transferability of the model, this technique is used
widely. Current chemical risk assessment relies on similarity-driven
methods like Read-Across, avoiding the need for mathematical models
[7]. This approach assumes that compounds with similar structures have
comparable biological activities, making emerging similarity-driven
systems more suitable for consistent compound prediction. Often,
Read-Across predicts probe compounds more reliably than QSAR
models; however, one of the main limitations of Read-Across is that it
lacks the ability to interpret essential features [8]. To overcome this
problem, a novel approach, Read-Across Structure-Activity Relationship
(RASAR), was introduced to combine the benefits of QSAR and
Read-Across algorithms, which often results in better predictive ability
and reduced mean absolute error (MAE) [9]. They utilized
classification-based models that produced predictions on a graded scale.
Banerjee and Roy [10] introduced q-RASAR modeling with descriptors
based on similarity and error measures. The q-RASAR methodology
utilizes similarity and error-based measures to produce simple, conve-
nient, interpretable, and reproducible models with better predictivity.
q-RASAR models can be developed using a variety of statistical tech-
niques like MLR, PLS, etc. apart from sophisticated machine learning
(ML) techniques. Machine learning is a growing technology that uses
various algorithms for building models and making predictions using
data. Support vector machines (SVM), artificial neural networks (ANN),
and others are commonly used machine learning algorithms for
numerous experimental studies [11,12]. There are various journals
[13-15] present related to the in-silico prediction of acute toxicity of
different species but concerning chicken, there are no in-silico reports
available to date.

In this work, we investigated the toxicity of several pesticides on
chickens and developed a logical and trustworthy method for assessing
ecotoxicological risk. Based on the OECD rules, we have developed q-
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RASTR models to predict pesticide ecotoxicity on bird species. RASTR
combines the read-across and QSTR approaches to improve predict-
ability. The pLOEL and pNOEL (the negative logarithm of Lowest
Observed Effect Level and No Observed Effect Level values respectively)
values have been used as endpoints in this study. NOEL is defined as the
highest dose of the toxicant that does not cause any toxicity or harm and
LOEL stands for the lowest concentration of a substance that can cause
an effect under specific exposure conditions. To successfully create the
models, we used PLS for the initial model development. Further, RASAR
descriptors were estimated using the optimal hyperparameters and
incorporated to improve the external predictivity of the model. Addi-
tionally, support vector machine and Ridge regression machine learning
(ML) approaches were employed with the optimization of hyper-
parameters using cross-validation. The final test set predictions were
then compared. After evaluating the test set predictions and interpret-
ability, we have selected the PLS-based q-RASTR model as the final
model. Using, globally accepted parameters, the robustness, reproduc-
ibility, and predictivity of the PLS-based q-RASTR models were thor-
oughly validated. It can be confidently affirmed that the models are
reliable and accurate. The developed model was utilized to screen the
Pesticide Properties Database (PPDB) to identify potential avian toxi-
cants and promote the use of safer chemicals. The true predictive ability
of the g-RASTR model was established by revalidating the real-world
toxicity profiles of the most and least toxic screened compounds from
the Pesticide Properties Database (PPDB).

2. Methods and materials
2.1. Collection and curation of toxicity data of diverse pesticides

The required toxicity data of diverse pesticides against chicken
(Gallus gallus) were retrieved from the ECOTOX repository (https://cf
pub.epa.gov/ecotox/). The collected experimental toxicity data was
expressed as LOEL and NOEL in micromolar (M) concentration, which
were transformed into molar concentrations and then their negative
logarithmic equivalents (pLOEL and pNOEL) to reduce the data range.
After excluding any outlier value(s), all available values for a particular
chemical were averaged to generate a single value. We only included
values that were numerically close to each other when calculating the
average. After curating the primary data, we selected 43 pLOEL and 56
PNOEL compounds for modeling.

2.2. Descriptor calculation

A single .sdf file of all the compounds was compiled which is
essential to Alvadesc software for descriptor calculation. AlvaDesc
software [16] was used to evaluate 2400 descriptors based on structural
and physicochemical parameters. We removed the unnecessary de-
scriptors columns using DataPreTreatmentGUI 1.2 software [17].

2.3. Dataset division and descriptor selection

Division of dataset is a crucial component of statistical modeling,
particularly in the context of QSARs. The modeling data is divided into
two parts, the training set for model development and the test set to
validate the developed model. In this present study, different dataset
division techniques such as the clustering technique, Euclidean-
distance-based method, Kennard-stone-based method, activity
property-sorted, and random-division methods were employed for
dataset division into training and test sets. Among these techniques, the
best result was obtained from the Kennard stone division method in case
of the pLOEL endpoint and random selection in case of the pNOEL
endpoint [17,18]. The training/test sets compounds for pLOEL endpoint
and pNOEL endpoint are 30/13 and 44/12 respectively. The divided
training and test sets were also pre-treated using the tool data-
PreTreatmentTrainTest1.0 (available from https://teqip.jdvu.ac.in/QS
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AR _Tools/). These final pre-treated training and test sets were used for
further analysis. Preliminary multiple linear regression models were
generated for two datasets using MINITAB software. After that, PLS
(Partial Least Square) method was used to generate the final models for
both datasets using the software PLS_Single Y_version 1.0 [17].

2.4. Read - Across and calculation of the RASTR descriptor

Optimizing hyperparameters (similarity-based algorithm; o, y, and
number of close source compounds) is crucial for read-across prediction
[19]. The descriptor involved in the QSTR model was used to create
sub-train and sub-test sets from the training data. We have chosen a
Gaussian kernel-driven similarity, with ¢ = 0.75; y = 0.75, and 9 close
training compounds for pLOEL data points & Laplacian kernel-based
similarity, with 6 = 0.25 and y = 0.25, and 4 close training com-
pounds for pNOEL data points. During optimization, the hyper-
parameters were selected based on MAE-based (95%) criteria and
external metrics (Q% and Q%). To perform q-RASTR modeling, simi-
larity, and error-based RASTR descriptors were calculated for both
training and test compounds with "RASAR Descriptor Calculator v2.0
tool using the optimized hyperparameters [17,20].

2.5. q- RASTR feature selection and model development

A total of 15 descriptors (Table S1 in supplementary information 2)
were computed based on three similarity-based approaches (Euclidean
Distance-based, Gaussian Kernel similarity-based, and Laplacian Kernel
similarity-based) and a given set of source compounds for the individual
training set and the test set [21]. The calculated RASTR descriptors were
integrated with the model descriptors and the combined pool was sub-
jected to best subset selection using BestSubsetSelectionModified v2.1
tool [17] for model development. The final PLS-based q-RASTR model
was developed with the best features using the PLS_Single Y_version 1.0
software.

2.6. Application of other machine learning (ML) algorithms

To estimate the prediction performance of other algorithms, we have
employed two different state-of-the-art ML algorithms namely support
vector machine (SVM) and Ridge Regression (RR) using the Orange data
mining tool [22]. The hyperparameters were adjusted to tune the model
for optimal performance. The prediction qualities of the ML models were
evaluated in terms of Q#, Qf, and MAE. values.

2.7. Statistical validation metrics and Y-randomization

Validation metrics are the key parameters for the recognition of any
predictive model. For internal validation (for the training set), we
evaluated the model using various internationally accepted internal
validation metrics including the determination coefficient (R?) and
leave-one-out cross-validated Q? (Q70). R? and Q7 are the measures of
goodness-of-fit, and robustness, respectively. In machine learning (SVM,
RR) approaches, the root means squared error of calibration (RMSEC)
metric was also calculated by the Orange data mining tool. A lower
RMSEc indicates a better model fit, showing that the model’s predictions
are, on average, closer to the true values. For external validation (for the
test set), we calculated various globally accepted external validation
metrics such as Rlznred or Q%l, Q%z, Q12:3, MAE-based criteria, % Ar,z,n and
concordance correlation coefficient (CCC) [21]. External correlation
coefficients such as Q%l, Q%g, and Q%g are well-known prediction in-
dicators. In usual practice, the optimal value of these three measures
(R3,eq Or QF1, Qfo, Q%g) for model selection should be more than 0.5 [21,
22]. Error measures such as mean absolute error (MAE ) are frequently
used to assess the accuracy of projected outputs, and they should be low
for a strong model. The CCC measures both precision and accuracy,
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detecting the distance of the observations from the fitting line and the
degree of deviation of the regression line from that passing through the
origin, respectively. The concordance correlation coefficient (CCC) is an
external validation measure proposed by Gramatica et.al. [9]. We have
calculated the external coefficients (R3req or Qf1, Qfs, Qfs, and CCC)
using “PLS_Single Y” v1.0 software (available from: http://teqip.jdvu.
ac.in/QSAR _Tools/). External validation is undertaken to ensure the
predictability of the created model, and only the test set chemicals are

employed for this purpose. Aside from traditional measures, r2, metrics

(rﬁl(m), Arﬁ,st) are calculated for external validation. When the %,
values are quite good, the ArZ values may serve as an additional metric
for judging the quality of predictions [18]. The acceptability of the
model was also checked using an external validation parameter pro-
posed by Golbraikh and Tropsha [23,24]. Based on Golbraikh and
Tropsha criteria, the model will be acceptable if:

1. Qoo (train) > 0.5.

2. R¥(test) > 0.6.

3. [(%13)/ ] < 0.1 or [(*rB)/ r?1<0.1

4.1.15>k > 0.85 or 1.15 > k'> 0.85.

Y-randomization study was performed using "SIMCA-P" software to
investigate the probability of chance occurrence in the final model.
Herein, the response data are altered, without scrambling the de-
scriptors, for a total of 100 times. After shuffling the original model is
refitted to compute the R? and Q2 values, and the intercept values of R>
< 0.3 and Q? < 0.05 indicate no chance of correlation in a statistically
significant model [24,25].

2.8. Screening of the Pesticide Properties DataBase (PPDB)

We have collected 1903 chemical data from the Pesticide Properties
DataBase (PPDB) which is accessible through the PPDB website (http://
sitem.herts.ac.uk/aeru/ppdb/). KNIME curation was carried out using a
KNIME workflow to eliminate any duplicates, inorganic salts, and mix-
tures [26]. As a result of the KNIME curation process, some compounds
have been eliminated. After curating the dataset, the enduring 1694
compounds were screened to verify model reliability. The descriptors of
the molecules were calculated using the same procedure that was used in
q-RASTR modeling as discussed earlier. The individual PLS-based
q-RASTR models were used to make predictions, assisted by the PRI
tool [17] which provided a reliable indication of the prediction’s ac-
curacy. The tool assesses the reliability of predictions using AD and
furnishes qualitative prediction indicators categorized as ’Good’,
"Moderate’, and ’Bad. A detailed flow diagram of this study has been
given in Fig. 1.

2.9. Software used

We have used different software’s in this research work namely:

i.“AlvaDesc” software (available from https://www.alvascience.
com/alvadesc/) was used for descriptor calculation.

ii.“Best Subset Selection Modified” v2.1 (available from: http://
teqip.jdvu.ac.in/QSAR _Tools/) was used for model development.

iii.“Dataset Division GUI” v1.2 (available from: http://teqip.jdvu.ac.
in/QSAR_Tools/) was used to divide the dataset into training and test
sets.

iv. “Minitab” v14 (available from:
com/en-us/) was used for model development.

v. “PLS_Single Y” v1.0 (available from: http://teqip.jdvu.ac.in/QS
AR _Tools/) was used to develop the PLS-based QSTR and q-RASTR
models.

vi. “Read-Across-v4.1" (available from: http://teqip.jdvu.ac.in/QS
AR _Tools/) was used for obtaining the optimized hyperparameters
necessary for RASTR descriptor calculation.

vii.“RASAR Descriptor Calculator” v2.0 (available from: https://sites
.google.com/jadavpuruniversity.in/dtc-lab-software/home) was used

https://www.minitab.
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Fig. 1. Schematic workflow of q-RASTR model development.

for RASTR descriptors calculation.

viii. “Prediction Reliability Indicator” (available from: http://teqip.
jdvu.ac.in/QSAR _Tools/) was used to evaluate the localization in AD
of the test compounds to ascertain the reliability of prediction of final
PLS-based q-RASTR model.

ix. “SIMCA-P” (available from: https://www.sartorius.com/en/pro
ducts/process-analytical-technology/data-analytics-software/mvda-so
ftware/simca) was used for the randomization test.

3. Results and discussion

In this present study, we have developed QSTR and q-RASTR models
for pLOEL and pNOEL endpoints using the PLS method and strictly
obeying the OECD guidelines. We have additionally applied two
different ML algorithms (SVM, RR) to check model performances.

3.1. PLS-based QSTR and q-RASTR models

The divided dataset is used to develop the QSTR and g-RASTR
models for two endpoints (pLOEL and pNOEL) of chicken species. After
the feature selection process, the PLS-based QSTR model was developed
employing 3 and 5 descriptors with two and one latent variables for
pLOEL (MODEL 1) and pNOEL (MODEL 2), respectively.

3.1.1. PLS-based QSTR model for pLOEL and pNOEL endpoints
Model 1 (pLOEL endpoint):
PLOEL = 4.75827 4+ 0.50323 x NsOH — 0.191 x MaxsCH3 — 0.64324
x BO1[C — O]

Model 2 (pNOEL endpoint):

PNOEL = 5.08369 +0.16353 x H — 050 + 0.35253 x NsssN — 0.62789
x BO5[C — 0] +0.80035 x BO5[O — 0] — 0.8449 x BO8[C — P]

After the development of the QSTR models, similarity and error-
based RASTR descriptors were calculated for both training and test
sets compounds of pLOEL and pNOEL endpoints models using "RASAR
Descriptor Calculator v2.0 tool (https://sites.google.com/jadavpur
university.in/dtc-lab-software/home) with the optimized

hyperparameters. After that, we clubbed the RASTR descriptors and
Alvadesc descriptors for the final g-RASTR model development [27].
Finally, PLS-based q-RASTR models were developed using 3 and 4 de-
scriptors with one and two latent variables as shown in model 3 and
model 4 respectively for pLOEL and pNOEL endpoint models,

3.1.2. PLS-based q-RASTR model for pLOEL and pNOEL endpoints
Model 3 (pLOEL endpoint):

PLOEL =5.1136 — 1.51275 x SD  similarity(GK) +0.41951
x NsOH —0.75444 x BO1[C — O]

Model 4 (pNOEL endpoint):

PNOEL = 5.78412 — 2.04509 x SE(LK) + 1.18371 x B05[0 — O]
x B02[C — 0] +0.03736 x T(N..S)

—0.74259

Each model has been rigorously validated following the OECD pro-
tocols. The computed internal and external validation metrics along
with the optimum number of latent variables have been shown in the
following Table 1. The PLS-based q-RASTR models 3 and 4 show strong
fit and predictability with uniform scattering observed along the line,
going through the origin of Cartesian coordinates (Fig. 2).

Here, we have seen that for both the datasets, the external validation
metrics were significantly improved for the PLS-based q-RASTR models
as compared to the PLS-based QSTR models, indicating the significance
of the RASTR descriptors. We have also validated all the models (PLS-
based QSTR and q-RASTR models for the pLOEL and pNOEL endpoints)
using Golbraikh and Tropsha criteria and the results are given in
Tables S2-S5 (Supplementary information 2). The results showed that
the PLS-based q-RASTR models for both endpoints are acceptable based
on the Golbraikh and Tropsha’s criteria [24]. Hence, we have general-
ized that the PLS-based q-RASTR models are better as compared to the
corresponding QSTR models.

3.2. Results of ML-based q-RASTR model

As previously stated, we used two different ML algorithms to eval-
uate their effectiveness in model construction and prediction. Based on


http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Table 1
QSTR and q-RASTR model’s statistical quality.

Validation Metrics ~ QSTR model’s statistical PLS-based q-RASTR model’s

quality statistical quality
Model name Model 1 Model 2 Model 3 Model 4
(pLOEL) (pNOEL) (pLOEL) (pNOEL)
No of LVs 2 1 1 2
R(train) 0.748 0.669 0.734 0.603
Q?oo (train) 0.672 0.582 0.665 0.526
Q¥ (test) 0.608 0.643 0.844 0.762
Q% (testy 0.577 0.640 0.831 0.759
Q3 test) 0.692 0.790 0.877 0.860
MAEqest 0.309 0.225 0.214 0.195
CcC 0.818 0.730 0.909 0.845
rrzn(lm) 0.637 0.415 0.740 0.560
Ar(test) 0.035 0.318 0.136 0.220
MAE-based MODERATE GOOD GOOD GOOD
prediction
quality

the internal validation, v-SVM was the best-performing model toward
the pLOEL endpoint, and Ridge regression was the best-performing
model towards the pNOEL endpoint based on internal and external
validation metrics. In terms of external validation metric, Q%g [28], the
ability to efficiently predict the response values for the test set com-
pounds, the best-performing models were the PLS-based q-RASTR
models. Furthermore, the PLS-based q-RASTR models produce the
lowest prediction error for the test set compounds, as indicated by the
MAE;s value [29]. Thus, to assess the overall performance of the
models for both endpoints, the PLS-based q-RASTR models are superior
than QSTR models. The results of ML models are presented in Table 2.

3.3. Regression coefficient plot

The plot describes descriptor’s positive/negative contribution to-
wards the toxicity [30]. In this study, the descriptor NsOH contributed
positively while the descriptors SD similarity (GK) and B01[C-O]
contributed negatively towards the toxicity in case of Model 3. In case
of Model 4, the descriptors BO5[0-O], T(N.S) contributed positively
while the descriptors SE(LK) and BO2[C-O] contributed negatively to-
wards the toxicity. All the relevant plots have been provided in
Figs. S1-S2 in supplementary information 2.

~
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3.4. Variable importance plot (VIP)

The respective descriptor contribution towards the model response is
described by the variable importance plot, and the most and least
important descriptors are recognized appropriately [31]. In this study,
NsOH and B02[C-O] depicting electronegativity and hydrophilicity
were identified as the most important descriptors for Model 3 and Model
4 respectively as shown in Figs. S3-S4 in supplementary information 2.

3.5. Loading plot

The plot describes the correlation between the X and Y variables
[32], illustrating the effect of various model descriptors. The first two
components were used to create the loading plot. A descriptor is sup-
posed to have a stronger effect on response value if it is situated far from
the origin of the plot and near the modeled endpoint. All the relevant
plots have been provided in Figs. S5-S6 in supplementary information 2.

3.6. Applicability domain (AD)

AD is the hypothetical region in chemical space specified by the
respective model descriptors and responses where predictions may be
made with confidence [33]. To obtain a reliable prediction, the test

Table 2
ML-based q-RASTR model’s statistical quality.

Validation Metrics ML model’s statistical quality

Model name SVM (pLOEL) SVM (pNOEL) RR RR
(pLOEL)  (pNOEL)
Rioo (train) 0.831 0.695 0.776 0.758
Qfo0 ctraim) 0.746 0.585 0.746 0.604
RMSECc (train) 0.245 0.245 0.283 0.218
QA (testy 0.742 0.718 0.725 0.653
Q2 (test) 0.721 0.715 0.703 0.650
Qfs (test) 0.797 0.835 0.784 0.796
MAE st (test) 0.273 0.169 0.300 0.216
CCC 0.893 0.856 0.850 0.804
2 0.725 0.659 0.626 0.541
m(test)
Ar2(test) 0.101 0.071 0.033 0.148
Optimum v-SVM v-SVM Alpha- Alpha-
hyperparameters Regression Regression 0.001 0.001
cost-0.50 cost-2.50
Complexity Complexity
bound-0.65 bound-0.70
Kernel- Linear Kernel-Linear
6.5
Scatter Plot of model M4 (pNOEL endpoint ) @
e -
5.5 v
=
& S5
2 XTE o
= .
S 45 . o oCazae N
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Fig. 2. Scatter plots of developed models.
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compounds must have the highest structural similarity to the training
compounds. As a result, validating the applicability domain is a funda-
mental prerequisite for every statistical model, as recommended by
OECD principle 3 ("Validation of (Q)SAR Models - OECD," 2004). To
comply with the OECD guidelines, an applicability domain analysis of
the created PLS-based q-RASTR model was done with SIMCA-P software
using the DModX technique at a 99% confidence level.
DModX = —
SSE
(N—A—A0)(K—A)

For observation i, in a model with A component, K variables, and N
observations, SSE is the

squared sum of the residuals. AO is 1 if the model was centered and
0 otherwise. It is claimed that DModX is approximately F-distributed, so
it can be used to check if an observation deviates significantly from a
normal PLS model. The DModX (distance to model in X-space) plots for
both the training and test sets have been showcased in Figs. S7-S10 in
supplementary information 2 (shows the AD plots of the Model 3 and
Model 4). In this study, all the compounds from the training set (given in
Fig. S7 in supplementary information 2) and test set (given in Fig. S8 in
supplementary information 2) for the pLOEL endpoint model (model
M3) are inside the applicability domain (below the D-Critical line)
which indicates the reliability of predictions by the model. In the case of
the pNOEL endpoint model (model M4), compounds 28 and 33 of the
training set (given in Fig. S9 in supplementary information 2) are
outside the applicability domain (above the D-critical line) due to the
structural dissimilarity. All the compounds from the test set (given in
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Fig. S9 in supplementary information 2) of the pNOEL endpoint (model
M4) are within the applicability domain.

3.7. Mechanistic interpretation

The details of the descriptors obtained from the M3 (pLOEL
endpoint) and M4 models (pNOEL endpoint), their contribution,
description, and probable mechanistic interpretation (according to
OECD principle 5) are provided in Table 3.

3.7.1. Mechanistic interpretation of descriptors employed in Model M3
(pLOEL)

SD similarity (GK) is a RASTR descriptor that denotes the typical
deviation of similarity levels among closely related compounds. It has a
negative contribution to the toxicity endpoint. Higher standard devia-
tion (SD) similarity shows that the distribution among the close source
compounds is high thereby reducing prediction reliability as demon-
strated in compound 30 and conversely shown in compound 3 (depicted
in Fig. 3).

The descriptor NsOH defines the number of atoms of type sOH in the
compound and it contributes positively towards the toxicity endpoint.
This fragment enhances the compound toxicity due to the presence of an
electronegative atom (Oxygen) as demonstrated in compound 42 and
the absence of this fragment decreases the toxicity as represented in
compound 18 (shown in Fig. 3).

The descriptor BO1[C-O] is a 2D atom pair descriptor that shows the
occurrence of C-O at topological distance 1 and gives negative contri-
bution towards the endpoint. The presence of polar bond [C-O] increases

Table 3

Mechanistic analysis of modeled descriptors.
S. Descriptor Type Description
NO

Contribution

Mechanistic introspection

CHICKEN - pLOEL

1 SD similarity =~ RASTR The typical deviation of similarity levels
(GK) among closely related compounds
2 NsOH Functional Number of atoms of type sOH
group counts
3 B0O1[C-O] 2D Atom Pairs Occurrence of C-O at topological

separation of 1

CHICKEN - pNOEL

1 SE(LK) RASTR The weighted standard error pertains to
the response values of adjacent source
compounds.

2 B05[0-0] 2D Atom Pairs Occurrence of single bond oxygen-
oxygen topological distance 5

3 B02[C-0O] 2D Atom Pairs Occurrence of C-O at topological
separation 2

4 T(N.S) 2D Atom Pairs Summation of topological separation

between N.S

Higher standard deviation (SD) similarity shows that the distribution among
the close source compounds is high thereby reducing prediction reliability as
demonstrated in compound 30 and conversely shown in compound 3 (given
in Fig. 3).

(+)ve This fragment enhances the compound toxicity due to the presence of an

electronegative atom (Oxygen) as demonstrated in compound 42 and in
absence of this fragment decreases the toxicity as represented in compound
18 (given in Fig. 3).

In the case of BO1[C-O] descriptor, the presence of polar bond [C-O]
increases the hydrophilicity of the compound [34] and thus toxicity will
decrease which is evidenced by compound 27 and vice versa in case of
compound 36 (represented inFig. 3).

The presence of this high standard error based on the response values of the
proximate source compound decreases the compound toxicity as
demonstrated in compound 8 and the less standard error based on response
enhances the toxicity as represented in compound 40 (given in Fig. 4).

(+)ve The presence of two electronegative atoms increases the electronegativity

rendering the compounds more electronegative[35]. The presence of large
fragments in chemical structure will also increase the lipophilicity,
ultimately enhancing the penetration ability of chemicals into the cell of
reference organism. Thus existence of oxygen atoms at the specified
topological distance is associated with increased toxicity in pesticides, as
illustrated by compound 4, while the opposite was characterized in
compound 48 (provided in Fig. 4).

This descriptor is related to hydrophilicity (oxygen is responsible for
hydrogen bonding with water, and is easily excreted out from the body) [34,
35]. Small fragments (Occurrence of C-O at topological separation 2) are less
lipophilic, as a result, toxicity will decrease which is evidenced by
compound 30, and the opposite was shown in compound 34 (represented in
Fig. 4).

(+)ve The occurrence of nitrogen and sulphur atoms in a compound increases its

electronegativity, leading to oxidative stress and cell death [34]. Sulphur
itself is toxic. Therefore, overall toxicity will increase as demonstrated in
compound 33. On the other hand, the compound containing less number of
this fragment may exhibit less toxicity as shown in compound 53
(demonstrated in Fig. 4).
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Fig. 3. Contribution of the model descriptors towards pLOEL in chicken.

the hydrophilicity of the compound [34] and thus toxicity will decrease
which is evidenced by compound 27 and vice versa in case of compound
36 (represented in Fig. 3).

3.7.2. Mechanistic interpretation of descriptors employed in Model M4
(pNOEL)

The SE(LK) is a RASTR descriptor that denotes the weighted standard
error about the response values of adjacent source compounds. It shows
negative contribution toward the endpoint. The presence of this high
standard error based on the response values of the proximate source
compound decreases the compound toxicity as demonstrated in com-
pound 8 and the less standard error based on response values of the
proximate source compound enhances the toxicity as represented in
compound 40 (given in Fig. 4).

The 2D atom pair descriptor, BO5[0-O], shows the occurrence of two
oxygen atoms at topological distance 5. The presence of two electro-
negative atoms increases the electronegativity rendering the compounds
more electronegative [35]. The presence of large number of fragments in
chemical structure will also increase the lipophilicity, ultimately
enhancing the penetration ability of chemicals into the cell of the
reference organism. Thus, the existence of oxygen atoms at the specified
topological distance is associated with increased toxicity in pesticides as
illustrated by compound 4, while the opposite was characterized in
compound 48 (provided in Fig. 4).

Another 2D atom pair descriptor, BO2[C-O], indicates the occurrence
of C-O at topological distance 2. It shows negative contribution toward

the endpoint. This descriptor is related to hydrophilicity (oxygen is
responsible for hydrogen bonding with water, and is easily excreted out
from the body) [34]. Small fragments (occurrence of C-O at topological
separation 2) are less lipophilic, as a result, toxicity will decrease which
is evidenced by compound 30, and the opposite was shown in compound
34 (represented in Fig. 4).

The T(N.S) descriptor denotes the summation of the topological
distance between N.S and it contributed positively towards the
endpoint. The occurrence of nitrogen and sulphur atoms in a compound
increases its electronegativity, leading to oxidative stress and cell death
[34,35]. Sulphur itself is toxic. Therefore, overall toxicity will increase
as demonstrated in compound 33. On the other hand, the compound
containing less number of this fragment may exhibit less toxicity as
shown in compound 53 (demonstrated in Fig. 4).

3.8. Pesticide Properties DataBase screening

The PPDB compounds were screened using developed models
considering both the toxicity endpoints namely, pLOEL and pNOEL
assisted by the Java-based tool “Prediction reliability indicator” (avail-
able from: http://teqip.jdvu.ac.in/QSAR _Tools/). The applicability
domain of the compounds was assessed to ascertain the reliability of the
obtained prediction values and it was found that 100% and 55% of
compounds lie within the chemical space of the developed pLOEL and
PNOEL models respectively. The predicted pLOEL and pNOEL values
(predicted value provided in Supplementary Information 1) of the
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Fig. 4. Contributions of the model descriptors towards pNOEL in chicken.

respective compounds were cumulatively assessed. Then, based on the
cumulative predictions, the top 20 and least 20 toxic compounds
(compounds that are toxic for both pLOEL and pNOEL endpoints and lie
within the AD of both models) with their CAS numbers, molecular
weight, and pesticide groups have been provided in Table 4. Descriptor
values of the top 20 and least 20 toxic pesticides are provided in sup-
plementary information 1. Further, to validate our findings, an attempt
was made to corroborate our predictions to the real-world experimental
data available in the PubChem online repository, and literature and
references of these findings are provided in Table S6 of Supplementary
Information 2. Considering the top twenty highest toxic compounds, our
models’ pLOEL and pNOEL prediction values were in complete coher-
ence with the experimental toxicity data. From the results, it can be
stated that our model predictions are correlated to real-world data and
can be considered suitable for the identification of potential toxicants
alongside less ones. Upon further validation, all predicted toxicities,
demonstrate the practical applicability of the developed models.

4. Conclusions

This work reports the first PLS-based q-RASTR model for acute
toxicity in chicken, the widely consumed source of animal protein. The
study’s importance lies in the direct link between chemical toxicity in
chicken, human intake, and environmental damage. In this study, we
can be concluded that the present research is significant and novel

because of the following reasons:

I. By utilizing mathematical models, we got a comprehensive
knowledge of how certain chemicals impact chicken species on a
toxicological level. This knowledge is crucial in developing
effective measures to protect the health of chicken species as well
as human beings.

II. From this study, it was found that lipophilicity and electronega-
tivity are responsible for the toxicity of pesticides towards
chickens. On the other hand, polarity, hydrophilicity, and large
numerical value of SE (LK) & SD similarity (GK) descriptors will
reduce the toxicity of pesticides towards chickens.

III. The ability of the models to identify specific features contributing
to chicken toxicity will aid in creating safer, environmentally
friendly chemicals.

IV. The developed q-RASTR models are robust and practical for
toxicity & risk assessment.

V. The closeness of the acute toxicity prediction by the q-RASTR
model with real-world data demonstrates its feasibility for
screening acute toxicants in chickens.

VI. The models can be used for data-gap filling as well as predicting
the toxicity of chemicals even before their synthesis.
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Table 4

Twenty most and least toxic screened pesticides from the Pesticide Properties DataBase (PPDB).
SL Pesticide name (Group) CAS no and Safety and Hazards Sources (all references available
No Molecular mass in Supplementary 2)

Top 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB)
1 Flumetsulam 98967-40-9 Toxic to rats, rabbits, quail, ducks, and Environmental hazard 1
(Molecular mass-
325.29)
2 Dipyrithione 3696-28-4 Environmental hazard, irritant i
(Molecular mass-
252.31)
3 Sulfoxaflor 946578-00-3 Environmental hazard, irritant I
(Molecular mass-
277.27)
4 Flusulfamide 106917-52-6 Acute toxic to rats, mice, and Environmental hazard v
(Molecular mass-
415.17)
5 Benzofluor 68672-17-3 Threshold of Toxicological Concern (Cramer Class- High (class III)) \"
(Molecular mass-
299.33)
6 Nithiazine 58842-20-9 Acute toxic to aves and irritants VI
(Molecular mass-
216.24)
7 Perfluidone 37924-13-3 Acute toxic to rats, rabbits, mice, and irritants vIL
(Molecular mass-
379.4)
8 Fluensulfone 318290-98-1 Acute toxic to fish and environmental hazard VIII
(Molecular mass-
291.70)
9 1,3-dinitrobenzene 99-65-0 Acute toxic, Health hazard, and environmental hazard X
(Molecular mass-
168.12)
10 Ampropylfos 16606-64-7 Corrosive X
(Molecular mass-
139.09)
11 Azoxybenzene 495-48-7 Acute toxic to rats, mice, and rabbits XI
(Molecular mass-
198.22)
12 Benfluralin 1861-40-1 Acute toxic to rats, mice, rabbits and environmental hazard XII
(Molecular mass-
335.28)
13 Benzamorf 12068-08-5 Corrosive and Irritant XIIT
(Molecular mass-
413.6)
14 Bis(methylmercury) 3810-81-9 Threshold of Toxicological Concern (Cramer Class- High (class III)) XIV
sulphate (Molecular mass-
527.31)
15 Bis-trichloromethyl 3064-70-8 Acute toxic to rats, mice, rabbits and environmental hazard XV
sulfone (Molecular mass-
300.80)
16 Bromethalin 63333-35-7 Acute toxic to rats, mice, dogs and environmental hazard XVI
(Molecular mass-
577.9)
17 Butralin 33629-47-9 Environmental hazard, Health hazard and Acute toxic to rats, rabbits XVII
(Molecular mass-
295.33)
18 Cacodylic acid 75-60-5 Acute toxic to rats, mice and environmental hazard XVIIL
(Molecular mass-
138.00)
19 Chloropicrin 76-06-2 Acute toxic to humans, rats and mice XIX
(Molecular mass-
164.37)
20 Dicloran 99-30-9 Environmental hazard, Health hazard and acute toxic to rat, mice XX
(Molecular mass-
207.01)
Least 20 screened pesticides from Pesticide Properties DataBase (PPDB)
1 Zarilamid 84527-51-5 The predictive value for both endpoints indicates this pesticide is less toxic for both XX1
(Molecular mass- endpoints.
238.67)
2 Xylylcarb 2425-10-7 Low toxic (Cramer Class): I XXII
(Molecular mass-
179.22)
3 Xylachlor 63114-77-2 The test results show that metolachlor is practically non-toxic to birds. From the XXIII
(Molecular mass- concept of structure-activity relationship, we can say xylachlor may also be non-toxic
239.77) to birds.

(continued on next page)
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Table 4 (continued)
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CAS no and
Molecular mass

SL Pesticide name (Group)
No

Safety and Hazards

Sources (all references available
in Supplementary 2)

4 XMC 2655-14-3
(Molecular mass-
179.22)
81-81-2
(Molecular mass-
308.35)
90132-02-8
(Molecular mass-
60.06)
50471-44-8
(Molecular mass-
286.12)
83657-22-1
(Molecular mass-
291.81)
2021230-37-3
(Molecular mass-
299.64)
131983-72-7
(Molecular mass-
317.82)
40596-80-3
(Molecular mass-
312.52)
12407-86-2
(Molecular mass-
312.52)
122-20-3
(Molecular mass-
191.27)
64628-44-0
(Molecular mass-
358.70)
99387-89-0
(Molecular mass-
345.75)
1263133-33-0
(Molecular mass-
398.34)
141517-21-7
(Molecular mass-
408.37)
38524-82-2
(Molecular mass-
363.63)
1420-06-0
(Molecular mass-
329.43)
58138-08-2
(Molecular
mass-320.43)

5 Warfarin

6 Vinegar

7 Vinclozolin
8 Uniconazole
9 Umifoxolaner
10 Triticonazole
11 Triprene
12 Trimethacarb
13 Triisopropanolamine
14

Triflumuron

15 Triflumizole

16 Triflumezopyrim
17 Trifloxystrobin
18 Trifenofos
19

Trifenmorph

20 Tridiphane

It has a low toxicity and is relatively stable

It is practically non-toxic

Vinegar is used to promote the health of the birds

Vinclozolin is practically nontoxic to birds

Uniconazole-p is non-toxic to birds

Triticonazole is non-toxic to pollinating insects

Birds were not as sensitive to trimethacarb

Practically non-toxic to birds, fish, honeybees

Triflumuron is not classified as toxic or highly toxic

Triflumizole is categorized as being moderately toxic to fish

Triflumezopyrim was harmless to Anagrus nilaparvatae

Trifloxystrobin is practically non-toxic to birds

Profenofos has a moderate toxic

Trifenmorph is hydrolysed at acid pH to relatively non - toxic compounds

The predictive value for both endpoints indicates this pesticide is less toxic for both

XXIV

XXV

XXVI

XXVII

XXVIIT

XXIX

Low toxic

XXXI

Low toxic

XXXIT

XXXIII

XXXIV

XXXV

XXXVI

XXXVII

XXXVIII

XXXIX

XL
endpoints.

Environmental implications

The significance of this study lies in establishing a direct connection
between chemical toxicity in chickens, human consumption, and envi-
ronmental harm. Accurate assessment of compound toxicity is vital for
managing various adverse effects such as carcinogenicity, genotoxicity,
immunotoxicology, and reproductive toxicity. This is not only safe-
guards of avian species and public health but also addresses challenges
like animal testing, time, and cost constraints. The developed PLS-based
q-RASTR models emerges as a valuable tool, circumventing these limi-
tations and enabling effective prediction of toxicity. The predictive
models, along with the key structural insights gained in the present
study, can contribute to develop environmentally friendly and safer
chemicals, filling data gaps, and promoting the responsible use of eco-
toxic substances.
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The rapid increase in the use of pesticides is driven by the growing demand in the agricultural sector. However,
the widespread application of these pesticides and their inherent toxicity have significant repercussions on the
ecosystem, particularly impacting animal and bird species. In this present study, we have developed four 2D
quantitative structure-toxicity relationships (QSTRs) models for four different avian species using the largest
number of available experimental data points to date employing the partial least squares (PLS) algorithm.
Furthermore, we have also performed the read-across algorithm to improve the test set results. Based on the
information derived from the models, it was found that hydrophilic characteristics, the presence of molecular
branching and thio imide groups impact negatively to the pesticide toxicity, while the presence of phosphate
group, presence of halogens viz. chlorine and bromine atoms, presence of hetero atoms, high molecular weight,
presence of bridgehead atoms, presence of secondary aliphatic amide and fragments like RCONHR escalates
avian toxicity. The developed QSTR models were further employed to predict the Pesticide Properties DataBase
(PPDB) for all four avian species as a measure of data gap-filling and risk assessment. Thus, the developed models
can be utilized for eco-toxicological data-gap filling, prediction of toxicity of untested pesticides as well as the
development of novel and safe environmental-friendly pesticides.

1. Introduction

Pesticides encompass a wide range of chemicals, which are typically
employed to control or kill pests viz. insects, rodents, fungi, weeds, etc.
for effective crop management. The use of pesticides has increased
significantly in recent decades, particularly in agriculturally dependent
developing countries (Singh et al., 2014). Due to the inherent charac-
teristics, a significant portion of the applied dose continues to remain as
remnants on crops and fields (Basant et al., 2015). As a result, large
amounts of pesticides have been found in crops, vegetation, and further

edible products causing exposure to both animals and humans. Ac-
cording to reports, prolonged exposure to these substances can harm a
person’s nervous, endocrine, reproductive, immunological, cardiovas-
cular, renal, and respiratory systems (Mostafalou and Abdollahi, 2013).
In light of the aforementioned, various regulatory authorities have
emphasized the need for the toxicity evaluation of both new and existing
pesticides. The avian toxicity tests are essential for regulatory approval
and licensing of the active ingredients of pesticides. Aves are significant
for ecology and have a huge contribution to biodiversity by performing
pollination of plants, rodent control, seed dispersal, and spreading

Abbreviations: BQ, Bobwhite quail; JQ, Japanese quail; MD, Mallard duck; RNP, Ring-necked pheasant; 2D descriptors, Two-dimensional descriptors; 2D-QSTR,
Two dimensional- quantitative structure- toxicity relationship; AD, Applicability domain; DModx, Distance to model X; GA, Genetic algorithm; Log[LCsl, loga-
rithmic value of the 50% Lethal concentration LCso; OECD, The Organisation for Economic Cooperation and Development; PLS, partial least square; QSAR,
Quantitative structure-activity relationship; QSTR, Quantitative structure-toxicity relationship; REACH, Registration, Evaluation, Authorisation, and Restrictions of
Chemicals; RMSEP, root mean square error of prediction; EPA, Environmental Protection Agency; PPDB, Pesticide Properties DataBase.
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nutrients (Mukherjee et al., 2021). According to today’s scenario, one in
every eight bird species faces extinction (Saxena et al., 2015). Therefore,
birds are used as a model organism to evaluate toxicity. Oral toxicity
testing is important for determining avian species’ toxicological signif-
icance. Northern bobwhite quail (Colinus virginianus) [BQ], Japanese
quail (Coturnix japonica) [JQ], ring-necked pheasant (Phasianus colchi-
cus) [RNP], and mallard duck (Anas platyrhynchos) [MD] are the major
test species as per OECD norms (OECD, 2010). The validated wet-lab
techniques for the evaluation of compound toxicity towards avians are
expensive, unethical, and require a significant amount of time and
effort. So the relevant regulatory bodies encourage the employment of
potential alternative strategies to achieve the objective. Regulatory
agencies like the Environmental Protection Agency (EPA), European
Food Safety Authority (EFSA), Registration, Evaluation, Authorization,
and Restriction of Chemicals (REACH), and European Chemicals Bureau
(ECB), have emphasized the potential of computational tools like QSTR,
read-across, and alternative approaches for investigating the inherent
characteristics of chemicals within the realm of toxicokinetics (Nicolotti
et al., 2014; Pandey et al., 2020). Some alternatives in silico-based ap-
proaches were reported previously that offer significant improvements
over single-output models for regulatory purposes (Speck-Planche et al.,
2011; Speck-Planche et al., 2011, 2012; Speck-Planche, 2020; Jiang
etal., 2020; Jain et al., 2021). Speck-Planche et al. (Speck-Planche et al.,
2011) reported the discriminant model based on substructural de-
scriptors for the rational design of new agrochemical fungicides.
Speck-Planche et al. (Speck-Planche et al., 2011) also worked on new
in-silico methods for the rational design of new insecticidal agents.
Speck-Planche et al. (Speck-Planche et al., 2012) further reported the
multi-species chemoinformatic methods for assessing the various eco-
toxicological profiles in agrochemical fungicides. Speck-Planche et al.
(Speck-Planche, 2020) also published a work regarding multi-scale
QSAR methodology for simultaneous ecotoxicological modeling of
pesticides. Jiang et al. (Jiang et al., 2020) worked on boosting
tree-assisted multitask deep learning methods for small scientific data-
sets. A consensus multitask deep learning method was used to model
multispecies acute toxic effects by Jain et al (Jain et al., 2021). Even
other alternative modeling approaches based on machine learning (ML)
tools that have demonstrated significant advancements, particularly in
handling nonlinearity aspects and improving predictions were also re-
ported earlier (Jiang et al., 2020; Jain et al., 2021; Halder et al., 2023;
Samanipour et al., 2022). Halder et al. (Halder et al., 2023) reported the
global models employing in-silico methods for predicting the ecotoxicity
of endocrine disruptive chemicals. Samanipour et al. (Samanipour et al.,
2022) worked on alternative methods for chemical prioritization using
molecular descriptors and intrinsic fish toxicity of chemicals.

These in silico techniques examine significant structural features that
are essential for predicting the biological activity, toxicity, and other
characteristics of untested substances. Several research teams published
in silico predictions of acute oral toxicity in various species, including
rats, mice, and fish (Banjare et al., 2021; Song et al., 2011; Hamadache
et al., 2016; Wang et al., 2021). But in the case of avian oral toxicity,
very few in-silico reports are available (Basant et al., 2015; Mukherjee
et al., 2021; Saxena et al., 2015; Banjare et al., 2021; Zhang et al., 2015;
Podder et al., 2023).

Herein, we developed QSTR models to interpret the major structural
and physicochemical features responsible for their toxicity followed by
assessing the toxicity of external datasets in BQ, JQ, RNP, and MD avian
species following the OECD guidelines strictly (OECD, 2007). Alterna-
tive tools, such as read-across, are widely used for hazard assessment to
fill the data gaps. The read-across-based predictions assume that a
molecule with an unreported experimental endpoint value should have a
value similar to molecules that are structurally and/or biologically
similar to the query molecule. So, we have conducted the read-across
predictions to improve the test set results. The main motive for
choosing the regression-based QSTR approach over others (e.g.:
regarding its effectiveness, coping with chemical heterogeneity, and
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several different species) (Karpov et al., 2020; Jaganathan et al., 2022)
was to develop a linear relationship between the descriptors and the
defined endpoints (pLCsp) to identify the important features responsible
for toxicity towards avian species (BQ, JQ, RNP, and MD) as well as
data-gap filling. Classification-based approaches also excel in handling
similar challenges, and both methodologies come with distinct advan-
tages and disadvantages. For example, classification models are typi-
cally more robust to outliers and data errors than regression models.
This is because classification models only focus on the categorical
relationship between the input and output variables rather than the
exact numerical relationship. On the other hand, regression models can
identify the most important features or predictors driving the outcome
variable. This information can be used to inform decision-making and
guide further investigations. Sometimes, it may be beneficial to convert
a classification problem into a regression problem or vice versa. By
doing so, one can gain additional insights into the data and improve the
accuracy of our predictions. Nevertheless, the decision to convert a
problem type should be based on the specific problem at hand and the
characteristics of the data. Additionally, we have also developed clas-
sification models as well as employed two different ML algorithms
namely SVM, and RF to evaluate their effectiveness in model construc-
tion and prediction. The present work aimed to design a logical method
to assess pesticide toxicity towards avians. Furthermore, screening of the
Pesticide Properties DataBase (PPDB) was conducted to evaluate the
avian toxicity following the prediction reliability assessment of the
QSTR models by the PRI (prediction reliability indicator) tool (http://
teqip.jdvu.ac.in/QSAR _Tools/) as a measure of data gaps filling and
risk assessment (Kumar et al., 2023). The robustness, reproducibility,
and predictivity of QSTR models were thoroughly validated using
globally accepted statistical parameters.

2. Methods and materials
2.1. Preparation of dataset & curation

Here, we developed models using datasets with toxicity endpoint
(LCs0; defined as the lethal concentration in 50% population) for toxicity
prediction in multiple avian species collected from literature (Zhang
et al., 2015) which was originally collected from the EPA, Ecotox
database (http://cfpub.epa.gov/ecotox/). In this study; 112 pesticides
for RNP, 117 pesticides for JQ, 556 pesticides for BQ, and 564 pesticides
for MD were taken for the development of the model. The toxicity
endpoint values ranges from 0.082-4.957 in BQ, 0.162-4.968 in JQ,
0.27-4.67 in MD, and 0.162-4.857 in RNP. The two-dimensional
structures of the pesticides were sketched using Marvin Sketch 5.5.0.1
(https://chemaxon.com) software with the addition of explicit hydrogen
atoms as well as proper aromatization. The conversion of structure file
formats was carried out using Open Babel v.2.3.2 (O’Boyle et al., 2011).
Knime workflow (https://www.knime.com/cheminformatics-exte
nsions) was employed for data curation which removes unwanted salts
and duplicate compounds. Toxicity in an avian species characterized as
an endpoint value (LCsg) was converted to millimolar (mM) concen-
tration followed by converting to a negative logarithmic scale, pLCs, for
easy interpretation. Some compounds were omitted from the datasets
due to high residual values.

2.2. Descriptor calculation & data pre-treatment

Descriptors are the numerical presentation in which we correlate the
chemical structure with any physiochemical property/biological activ-
ity/ toxicity. In this work, a total of 9 classes of descriptors were
calculated utilizing AlvaDesc 2.02 (https://www.alvascience.com/
alvadesc/) software (Mauri, 2020). In each dataset, the defective and
inter-correlated chemical descriptors were eliminated by V-WSP1.2
(http://teqip.jdvu.ac.in/QSAR Tools/) software with a standard devia-
tion less than 0.0001 or correlation coefficient greater than 0.95.
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2.3. Dataset division

Dataset division is crucial for QSTR model development. Normally,
training set compounds are used to develop the model and test set
compounds for validation. The validation set is used to assess the model
performance and fine-tune the parameters of the model. It tells us how
well the model is learning and adapting, allowing for adjustments and
optimizations to be made to the model’s parameters and hyper-
parameters (the latter in the case of machine learning-based models)
before it is finally tested. The test data set mirrors real-world data the
model has never seen before, i.e.: a separate sample of unseen data. Its
primary purpose is to offer a fair and final assessment of how the model
would perform when it encounters new data in a live, operational
environment. This is especially critical to evaluate models effectively
along with preventing overfitting (Martin et al., 2012). We performed
dataset division of four datasets by using rational methods such as the
Kennard stone, activity property-based, and Euclidean distance based
method using Dataset Division GUI 1.2 software as well as using random
division method (Martin et al., 2012; Ambure et al., 2015). We also
employed modified k-medoid clustering by using Modified k-Medoid 1.3
(http://teqip.jdvu.ac.in/QSAR _Tools/) (Park and Jun, 2009). After that,
the final selection of data-set division methods was done based on the
statistical results. The best results come in the Kennard stone method for
the MD and JQ data set, the activity property-based method for the BQ
dataset, and the random division method for the RNP dataset. In this
process of dataset division, the datasets are divided into 75:25 ratios of
training and test sets compounds respectively (Jillella et al., 2021).

2.4. Selection of features and model building

In the case of model building, feature selection is one of the vital
steps by which we can find significant descriptors to boost the inter-
pretability and predictive ability of the model (Roy et al., 2008). Pri-
marily, we performed stepwise regression method and genetic algorithm
(GA) for feature selection (Ojha and Roy, 2011) and then we employed
the regression-based partial least square (PLS) (Wold et al., 2001)
method through the partial least squares v1.0 tool (http://teqip.jdvu.ac.
in/QSAR _Tools/) for model building.

2.5. Validation metrics of QSTR models

A significant step in the creation of a QSTR model is statistical
validation, which demonstrates its reliability and predictivity (Roy
et al., 2015a). Various internal validation parameters were calculated
which involve determination coefficient (R?), leave-one-out (LOO)
cross-validated correlation coefficient (QZ,) to judge the reliability and
importance of the model. External validation parameters demonstrate
the predictivity of QSTR models. The model’s external validation is
determined using parameters such as Q% and QZ, (Todeschini et al.,
2016). For both internal (QZ,,) and external predictive parameters

(Q%,Q%), the approved threshold value is 0.5.
2.6. Prediction using read-across algorithm

According to the fundamental tenet of read-across, substances with
similar chemical structures will also have comparable attributes and it is
not utilized in the model development process (Banerjee et al., 2022).
Read-across prediction is a similarity-based non-testing technique that is
widely used in eco-toxicological data-gap filling. Initially, the training
set of the best model was split into sub-training and sub-test sets. These
sets were again used to optimize the hyperparameters through
Read-Across-v3.1  (http://teqip.jdvu.ac.in/QSAR_Tools/)  software.
After similarity-based sorting, similarity threshold values (0—1), various
distance threshold values (1-0), and the numbers of most similar
training compounds (2—10) were applied. The best setting of
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hyperparameters obtained from sub-training and sub-test was applied to
the original training and test sets for the final prediction (Chatterjee
et al., 2022).

2.7. Model’s applicability domain study

The applicability domain (AD) of a QSAR model has been defined as
the chemical structure and response space, considered by the properties
of the molecules in the training set (Roy et al., 2015a). The AD expresses
the fact that QSARs are undeniably associated with restrictions in the
categories of physicochemical properties, chemical structures, and
mechanisms of action for which the models can generate reliable pre-
dictions. In the current study, distance to the model in X-space (DModx)
has been utilized for AD estimation of constructed PLS models which
rely on residuals of response and predictive variables (Roy et al., 2015b).

2.8. Y-randomization study

Y-randomization study was carried out to check the chance corre-
lation of the QSTR models with the help of SIMCA-P software (SIMCA-P,
2002). In the Y-randomization test, the descriptor matrix X is kept
constant but only the vector Y is scrambled randomly, and a new model
is developed using the same set of descriptors. The original model is
considered as robust if its validation metrics are better than the random
models (Paul et al., 2022). The values of the R2yrand intercept and
QZYrand intercept should not be more than 0.3 and 0.05 respectively.

2.9. Analysis of parametric assumptions of the developed models

To ensure that our model is reliable we carried out some diagnostic
tests to check for the existence of multicollinearity, normal distribution,
and homoscedasticity (Dillon and Goldstein, 1984; Morales Helguera
et al., 2008). Multicollinearity is defined as predictor variables within a
regression model that are highly correlated with each other, leading to
inaccurate results in regression analysis. To identify multicollinearity,
we used the variation inflation factor (VIF) which is a widely used
metric. If the VIF is higher than 5, multicollinearity is considered to be
present (Kim, 2019). In statistical regression models, exhibiting multi-
collinearity can lead to misleading results. For each modeled descriptor,
we found that the VIF values were very close to 1. So, it can be concluded
that all the independent variables are not collinear with the dependent
variable. The function values follow a multidimensional normal distri-
bution with a mean and covariance matrix that depends on the
descriptor vectors. We have plotted the normal distribution curve for
each (BQ, JQ, MD, and RNP) avian species and provided in Fig. S1 of
supplementary information 2. Homoscedasticity refers to the equal
variance of an error in a regression model was assessed using the
Breusch-Pagan test in our study. A p-value of more than 0.05 indicates
the homoscedasticity of the model. In our study, the calculated p-values
were not less than 0.05 (0.093-0.209) for all the developed models.
Therefore, we fail to reject the null hypothesis, and the model can be
considered homoscedastic. All the statistical results of homoscedasticity
and multicollinearity for each model are provided in Tables S1 and S2 of
supplementary information 2.

2.10. Application of other machine learning (ML) algorithms

To estimate the prediction performance of other algorithms, we have
employed two different state-of-the-art ML algorithms namely support
vector machine (SVM) and random forest (RF) using the Orange data
mining tool (Demsar et al., 2013, Senanayake et al., 2022). The hyper-
parameters were adjusted to tune the model for optimal performance.
The prediction qualities of the ML models were evaluated in terms of R?,
Qﬁoo, and MAE values.
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2.11. Classification based QSTR (LDA-QSTR) model development

In the present work, we have developed a classification-based linear
discriminant analysis (LDA) QSTR model from the selected set of fea-
tures and evaluated its performance for its predictive ability. The model
development is done using ClassificationBasedQSAR _v1.0.0 tools
(available at http://teqip.jdvu.ac.in/QSAR Tools/). The model was
extensively validated based on different internal and external classifi-
cation metrics (area under the ROC curve (AUC), accuracy, precision,
sensitivity, F-measure, and Matthews correlation coefficient (MCC))
(Fawcett, 2006; Matthews, 1975).

2.12. Screening of the Pesticide Properties DataBase

We have collected 1903 chemical data from Pesticide Properties
DataBase (PPDB) available in (http://sitem.herts.ac.uk/aeru/ppdb/).
Knime curation was done to remove duplicates, inorganic salts, and
mixtures using the KNIME workflow. Due to the knime curation, some
compounds were removed. After the curation, the remaining 1694
compounds were used for the screening process to check the developed
model’s reliability. The descriptors for these molecules were calculated
using the same procedure as in the QSAR modeling process. The pre-
dictions were made through the use of individual PLS-based QSTR
models with the help of the PRI (Prediction Reliability Indicator) tool
(http://teqip.jdvu.ac.in/QSAR _Tools/). PRI tool categorizes the pre-
dictions into three distinct groups: good (composite score 3), moderate
(composite score 2), and bad (composite score 1). Additionally, the tool
determines the localization of compounds inside the AD. The screened
compounds were ranked based on their predicted toxicity and the
twenty highest and least toxic compounds which exhibited toxicity to-
wards all four avian species were analysed. The results were further
validated extensively based on experimental data reported previously,
to establish the real-world applicability of the developed final PLS-based
QSTR models. Detailed discussions on the results can be found in Section
3 (Roy et al., 2018). A detailed flow diagram of this study has been given
in Fig. 1.
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3. Results and discussion

In this study, we have developed PLS models utilizing the toxicity of
pesticides (LogLCs,) on four different avians (BQ, JQ, MD, and RNP)
employing a reduced pool of chemical descriptors. The created model’s
quality is measured by using different internal (R?, Q%,,) and external
(Q%, Q%)) statistical parameters. The results obtained from PLS
models indicated the model’s robustness, reliability, and predictivity.
All the metrics obtained from QSTR models are depicted in Table 1.
Read-across algorithm was employed to improve the model’s external
predictivity. External predictivity was improved for all three datasets
(BQ, JQ, RNP) except MD in read-across prediction, and results are
provided in Table 2. The obtained results from the Y-randomization test
were found to be R?= -0.01, Q%= -0.0531, (for BQ), R?> = 0.0194, Q> =
-0.215 (for JQ), R? = -0.008, Q? = -0.0377 (for MD), and R? = 0.028,
Q? = -0.213 (for RNP) which demonstrated that the models were not
formed by any chance. AD study depicted that compounds 26, 112, and
113 in BQ, compounds 31 and 103 in JQ, compound 468 in MD, and
compound 88 in RNP from the test set are outside the AD as depicted in
Figs: S1-S4 in supplementary information 2. The tentative reasons or
characteristics that designate certain compounds as outliers in each
model (above the D-critical line) is due to some structural dissimilarity.
As for example, in case of the BQ model; [O-P] fragment at topological
distance 3 is absent for compounds 26,112 and 113; for the JQ model;
nBridgeHead, [N-P] fragment at topological distance 5 and [O-P] frag-
ment at topological distance 1 are absent; in the case of MD model; C-
012, [O-P] fragment at topological distance 7, [C-P] fragment at topo-
logical distance 5 and [C-Cl] fragment at topological distance 4 are
absent and lastly, for RNP model; nRCONHR, [C-P] fragment at topo-
logical distance 4, [P-Cl] fragment at topological distance 5, and [O-S]
fragment at topological distance 3 is absent. We have developed new
QSTR models without the identified outliers and checked the statistical
metrics (provided in Table S3 of Supplementary Information 2). A vi-
sual representation of the correlation between observed and predicted
toxicity values has been depicted in the scatter plot (provided in Fig. 2).
Additionally, we used two different ML algorithms namely support

WORK FLOW

Data collection from literature with experimental

log(LCs) value

| Chemical structures were downloaded from “pubchem” and drawn using Marvin Sketch

Data set Division
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odel
Devolopment
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R T
I
Train Test ‘

Explanation of Encoded Features |

Fig. 1. Workflow of QSTR model development.
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Table 1

Statistical parameter of developed PLS models.
Avian Species Training set Test set

Nirain/Neest Lvs R? Qoo Q% Q, MAE jcs) Quality(cesty

BQ 411/137 2 0.643 0.603 0.613 0.613 0.186 Good
JQ 77/34 2 0.630 0.552 0.534 0.519 0.403 Moderate
RNP 82/30 2 0.635 0.531 0.604 0.600 0.349 Moderate
MD 377/162 1 0.606 0.588 0.752 0.637 0.060 Good

vector machine and random forest to evaluate their effectiveness in

;ab;e 2 based predictions for f . model construction and prediction. The PLS-based QSTR models with
cad-across based predictions for four species. read-across predictions produce the lowest prediction error for the test
Optimized settings Metrics Ygk (Test) set compounds, as indicated by the MAE;e; value compared to ML-based
Bobwhite quail models against all of the avian species provided in Table S4 of Supple-
Ygk (Test) le 0.690 mentary information 2. The equations of the final developed models of

6=0.25 Qf2 0.690 BQ, JQ, RNP, and MD are provided below:
¥=0.25 RMSEp 0.279 Model BO:
No. of similar compounds =10 MAE 0.179 odel BQ:
Japanese quail _ _
Optimized settings Metrics Y1k (Test) PLC50 (BQ) = 1.25782 +0.43538 x FO2[C — P] +0.00176
6=0.25 Qh 0.707 x MW 4+ 0.5691 x F09[S — F] — 1.15994
¥=0.25 Q% 0.698
No. of similar compounds =10 RMSEp 0.394 x B0O9[C —P] —0.55509 x FO3[0 —P] —0.046 x T(P..Cl)
MAE 0.307
Ring-necked pheasant Model JQ:
Optimized settings METRICS Ylk (Test)
¢ =0.5 Q% 0.714 PLC50 (JQ) = 415712+ 0.74137 x BO1[O — P] — 6.67929
¥ =0.5 Q% 0.714
No. of similar compounds =10 RMSEp 0.392 x X2A +1.18073 x BO5|N —P] —0.28037
MAE 0.290 x H— 048 — 0.00675 x T(0..Cl) +0.44076
Mallard duck .
Optimized settings METRICS Yeuc (Test) x nBridgeHead
¢ =0.75 Q%4 0.686
1 =0.75 0% 0.540 Model RNP:
No. of similar compounds =10 RMSEp 0.114
MAE 0.081
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Fig. 2. Scatter plots of developed models.
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PLC50 (RNP) = 4.19704 — 6.73075 x X2A +1.81161
x nRCONHR — 0.99523 x nN(CO)2 + 0.84946
x BO4[C — P] — 0.81404 x BO5[P — Cl] — 0.42293
x FO3[0 —§]

Model MD:

PLC50 (MD) = 1.31098 + 0.00138 x MW + 0.19812
x C—012+1.25421 x BO7[O — P] + 0.27204
x Br— 094 + 0.5788 x BO5[C — P] +0.01952
x FO4[C — Cl]

Several classification-based metrics have been computed with the
PLS-based QSTR-read across models for all (BQ, JQ, MD, and RNP) the
avian species and reported in the following Table 3. Good sensitivity,
specificity, and accuracy values indicate the good classification ability of
the model. The computed values of the Matthews correlation coefficient
(Matthews, 1975) indicate an acceptable prediction and an agreement
between observed and predicted classification for all the developed
models against avian species.

3.1. Regression coefficient plot

The descriptor’s positive/negative contribution towards the toxicity
is provided via a regression coefficient plot. In this investigation, the
descriptors, FO2[C-P], MW and FO9[S-F]) contributed positively while
the descriptors, BO9[C-P], FO3[O-P], and T(P.Cl) contributed negatively
towards the toxicity of pesticides in case of BQ. In JQ, the descriptors
which contributed positively toward the toxicity are BO1[O-P], BO5[N-
P], nbridgehead and X2A, whereas the descriptors H-048 and T(O.Cl)
contributed negatively towards the toxicity. In the case of MD, the de-
scriptors MW, C-012, B07[O-P], Br-094, BO5[C-P], and F04[C-Cl]
contributed positively towards the toxicity. In case of RNP, the de-
scriptors, nRCONHR and B04[C-P] contributed positively whereas the
descriptors X2A, nN(CO)2, BO5[P-Cl], and FO3[O-S] contributed nega-
tively towards the toxicity. All the relevant plots have been provided in
Figs S5-S8 in supplementary information 2.

3.2. Variable importance plot (VIP)

The relative importance of model descriptors is illustrated with VIP
(Akarachantachote et al., 2014). Descriptors having the highest and
lowest impact on avian species can be recognized from these plots. The
significance of the variable is higher if the VIP score is greater than 1. In
VIP plot, the descriptors are presented concerning their significance
(higher contribution to lower contribution) and their importance which
is in the following order: FO2[C-P], T(P.Cl), MW, BO9[C-P], FO3 [O-P],
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FO9[S-F] (in case of BQ), BO1[O-P], BO5[N-P], X2A, nBridgeHead,
H-048, T(0.Cl) (in case of JQ), BO5[C-P], MW, BO7[O-P], C-012, Br-094,
F04[C-CI)] (in case of MD) and B04[C-P], X2A, nRCONHR, F03[O-S],
BO5[P-Cl], Nn(CO)2 (in case of RNP) as depicted in Figs: $§9-S12 in
supplementary information 2.

3.3. Loading plot

The loading plot shows how the independent variables (descriptors)
are related to the response variable. The first two components were used
to create the loading plot. A descriptor is assumed to have a stronger
effect on response value if it is located far from the origin of the plot. On
the basis of the loading plot as shown in Figs. $13-S16 in supplementary
information 2; it is interpreted that the X-variables FO2[C-P] and MW
have more influence to the Y-variable as traced from the proximity with
response variable and the presence of these features elevated pesticide
toxicity towards BQ. Similarly, BO1[O-P], BO5[C-P], and B04[C-P] are
the most influential descriptors in the case of JQ, MD, and RNP
respectively.

3.4. Mechanistic interpretation of PLS models

Table 4 and Figs. 3-6 provide a detailed account of the model de-
scriptors followed by mechanistic interpretations important to identify
major structural and physicochemical features.

3.5. Pesticide Properties DataBase screening

Pesticide Properties DataBase was screened through the developed
models with the help of the software “PRI Tool_PLSversion” (available
from http://teqip.jdvu.ac.in/QSAR Tools/) using the developed PLS
models. The categorization threshold (mean value of the training set
compound) for avian toxicity against BQ; JQ; MD; RNP > 1.883; 2.236;
1.845; 2.191 respectively was applied for prioritization purposes. From
the prediction, it was seen that maximum compounds are within the
domain of applicability and show prediction quality as “good”. The
screened chemicals from the Pesticide Properties DataBase with their
respective predicted toxicity against BQ, JQ, MD, and RNP are shown in
supplementary information 1. The compounds were ranked in
decreasing order of predicted toxicity for each avian species. The top 20
and least 20 toxic pesticides for all four avian species from the PPDB
database are provided in Table 4. Further validation of the predicted
toxicity of the selected pesticides revealed that apart from fluo-
roacetamide and sodium monofluoroacetate, all the predicted toxicity
corroborated with the previous experimental findings, indicating the
practical applicability of the developed models as shown in Table 5.

Table 3
Statistics of the classification-based QSTR models.
Sl no. LDA-QSTR MODELS AUC-ROC SENSITIVITY ACCURACY PRECISION F-MEASURE MCC
1 BQ 0.80 54.54 83.33 88.00 67.35 0.59
(train)
BQ 0.83 52.17 85.36 92.30 66.67 0.62
(test)
2 JQ 0.82 62.50 80.76 86.95 72.73 0.60
(train)
JQ 0.80 75.00 84.84 81.81 78.26 0.66
(test)
3 MD 0.88 75.00 83.59 82.60 78.62 0.65
(train)
MD 0.86 75.71 85.71 89.83 82.17 0.71
(test)
4 RNP (train) 0.83 63.88 79.74 88.46 74.19 0.60
RNP 0.87 76.92 84.84 83.33 80.00 0.67
(test)
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Table 4

Mechanistic analysis of model descriptors of all species.
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S.
no

Descriptor

Type

Function

Contribution

Mechanistic introspection

BQ oral pLCso

1

FO2[C-P]

MW

FO9[S-F]

BO9[C-P]

FO3[0-P]

T(P.CD

JQ oral pLCso

1

BO1[O-P]

X2A

BO5[N-P]

H-048

T(0.CD)

2D Atom pair

Constitutional
descriptor

2D Atom pair

2D Atom pair

2D Atom pair

2D Atom pair

2D Atom pair

Connectivity indices

descriptor

2D Atom pair

Atom-centered
fragments

2D Atom pair

Frequency of carbon and phosphorus
atoms at topological distance 2

Molecular weight

Frequency of sulfur and fluorine
atoms at topological distance 9

Presence/absence of carbon and
phosphorus atoms at topological
distance 9

Frequency of oxygen and phosphorus
atoms at topological distance 3

Sum of topological distances between
P.Cl

Presence/absence of O — P at
topological distance 1

Average connectivity index of order 2

Incidence of N - P at topological
distance 5

H attached to C2(sp3)/C1(sp2)/CO
(sp)

Sum of topological distances between
0.ql

+ve

+ve

+ve

+ve
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Generally, the phosphate group is toxic (Vervloet, 2019a).The presence
of more phosphate groups in a molecule tends to increase its toxicity as
evidenced in compound 442. On the other hand, the presence of less
number of these fragments in a compound may result in low toxicity
values, as seen in compound 501 (depicted in Fig. 3).

This descriptor is directly related to the molecular size and bulkiness of
molecules. It may influence diffusion in biological membranes and fluid
media (Hou et al., 2004; Khan et al., 2019). So the chemicals may easily
cross the biological membrane of species and retain in the body of
reference species for a long time, which ultimately enhances the toxicity (
Basant et al., 2015) as demonstrated in compound 381 and vice versa in
compound 239 (given in Fig. 3).

Lipophilic substances have a greater susceptibility to accumulation
within the cells, resulting in a higher pesticide concentration inside the
organism, which ultimately leads to enhanced toxic effects. The presence
of two highly electronegative atoms (fluorine and sulfur) as well as a long
carbon chain (lipophilicity) in a compound tend to make it more reactive
and potentially more toxic (Mukherjee et al., 2021; Ghosh et al., 2020) as
shown in compound 23 and oppositely occurs in compound 523 (shown
in Fig. 3).

The negative regression coefficient of this descriptor indicates that the
presence of carbon and phosphorus atoms at the topological distance 9
may decrease the pesticide’s toxicity towards avian species as shown in
compound 296 while the absence of this fragment in a chemical may have
higher toxicity values as shown in the case of compound 11 (described in
Fig. 3).

The negative regression coefficient of this descriptor indicates that it
inversely correlated with the pesticide’s toxicity towards avian species.
Thus, the presence of this fragment reduces the compound toxicity as
demonstrated in compound 487 and the absence of this fragment
enhances the toxicity as represented in compound 52 (given in Fig. 3).
The two-dimensional atom pair descriptor, T(P---Cl) accounts for the
topological distances between phosphorus and chlorine atoms. Reduction
of inductivity in chlorine substituents causes a decrease in electron
density for the relevant compounds. Therefore, the incidence of the P-Cl
bond in aromatic chemicals reduces the electron density of the aromatic
ring, thus, electron-donor-acceptor interactions cannot happen easily
between pesticides and the reference species (Ghosh et al., 2020). This
descriptor has a negative regression coefficient, indicating that the
presence of this fragment will result in a decrease in pesticide toxicity
profile, as exemplified by compound 243, while it would have the
opposite effect when present, as proven by compound 441 (provided in
Fig. 3).

The presence of two electronegative atoms (O and P) in a compound
makes it more electronegative which leads to oxidative stress and the
death of the reference species (Kumar et al., 2023; Roy and Roy, 2021).
This phenomenon is demonstrated in compound 81 and inversely occurs
in compound 113 (shown in Fig. 4).

X2A represents the degree of branching in molecules, which is inversely
correlated with hydrophobic interaction as well as toxicity (Arvidsson
etal., 1971; Roy and Das, 2013). Thus, the higher numerical value of this
descriptor leads to a decrease in toxicity value as shown in compound 13
and vice versa occurs in compound 57 (given in Fig. 4).

The presence of two electronegative atoms (N and P) in a compound
makes it more electronegative which leads to oxidative stress and the
death of the reference species (Zhang et al., 2015; Roy and Roy, 2021).
This phenomenon is demonstrated in compound 88. On the other hand,
the compound containing less number of this fragment may exhibit less
toxicity as shown in compound 66 (demonstrated in Fig. 4).

H-048 has the potential to make compounds electronically conductive as
well as hydrophilic (Kumar et al., 2013). Hydrophilicity and toxicity are
inversely related to each other (Li et al., 2022). Thus the presence of a
greater number of this descriptor in a molecule makes it less toxic as
shown in compound 67. On the other side, the presence of less number of
hydrophilic groups in a molecule leads to an increase the toxicity as
shown in compound 11 (depicted in Fig. 4)

The negative regression coefficient of this descriptor indicates that it is
inversely correlated with the pesticide’s toxicity towards avian species
thus the presence of more of this fragment makes the compound less toxic
as shown in compound 33 and conversely occurs in compound 84
(depicted in Fig. 4).

(continued on next page)
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Table 4 (continued)
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S. Descriptor
no

Type

Function

Contribution

Mechanistic introspection

6 nBridgeHead

MD oral pLCso

1 MwW

2 C-012

3 B07[0-P]

4 Br-094

5 BO5[C-P]

6 F04[C-Cl]

RNP oral pLCsg
1 X2A

2 nRCONHR

3 nN(C0)2

4 B04[C-P]

5 BO5[P-Cl]

6 FO3[0-S]

Ring descriptors

Constitutional
descriptor

Atom-centered
fragments

2D Atom Pair

Atom-centered
fragments

2D Atom pair

2D Atom pair

Connectivity indices

descriptor

Functional group
count

Functional group
count

2D Atom pair

2D Atom pair

2D Atom pair

Number of bridgehead atoms

Molecular weight

CR2X2 (X is a hetero atom (O, N, S, P,
Se, or halogens) and R is a carbon-
linked group)

presence of O — P at topological
distance 7

Br attached to C1(sp2)

C - P situated at topological distance
5

C - Cl situated at topological distance
4

Average connectivity index of order 2

Presence of secondary aliphatic
amides

Number of imides (-thio)

C - P situated at topological distance
4

Presence of P — Cl at topological
distance 5

Frequency of oxygen and sulfur which
are situated at topological distance 3.

+ve

+ve

+ve

+ve

+ve

+ve

+ve

+ve

+ve

Usually, bridgehead atoms have a complex structure as well as toxic (
Kumar et al., 2023) which is demonstrated in compound 19. Conversely,
the absence of bridgehead atoms makes the compound less toxic as shown
in compound 110 (demonstrated in Fig. 4).

This descriptor is directly related to molecular bulkiness and lipophilicity
(Hou et al., 2004; Khan et al., 2019). Usually, lipophilic compounds easily
cross the lipophilic membrane of the reference species which ultimately
leads to enhancement in toxicity as demonstrated in compound 546 and
oppositely occurs in compound 503 (given in Fig. 5).

This descriptor enhances the molecular size as well as the
electronegativity of the compound due to the presence of heteroatom,
which ultimately leads to enhancement in toxicity of diverse pesticides
against avian species by incorporating oxidative stress (Kar et al., 2020)
as demonstrated in compound 445, and vice-versa occurs in compound
144 (depicted in Fig. 5).

Oxygen and phosphorus are highly electronegative atoms and their
presence makes the compound more toxic (due to increment in oxidative
stress in reference species) (Roy and Roy, 2021). The presence of a long
carbon chain (lipophilicity) also contributes to toxicity. This
phenomenon is demonstrated in compound 3 and vice versa occurs in the
case of compound 145 (illustrated in Fig. 5).

The Br-094 descriptor refers to the presence of the halogen group
(bromine). Thus, the presence of more electronegative/halogen atoms
(bromine) makes the compound more toxic as demonstrated in
compound 28. Conversely, absence of this atom/fragment tends to
decrease the toxicity as shown in compound 408 (depicted in Fig. 5).
The presence of the phosphate group enhances the toxicity of the
compound (Vervloet, 2019b). This is evidenced in compound 4. In
opposition, absence of this fragment tends to decrease the toxicity as
shown in compound 530 (provided in Fig. 5).

This descriptor refers to the existence of a large electronegative atom
such as chlorine, which has a high atomic refractivity and
electronegativity (Khan and Roy, 2019). Thus, the presence of a greater
number of this fragment results in high toxicity toward avian species as
shown in compound 24 and vice versa occurs in compound 562
(provided in Fig. 5).

The negative regression coefficient of this descriptor indicates that higher
numerical value of this descriptor leads to a decrease in toxicity as shown
in compound 13 and vice versa in the case of compound 51 (given in
Fig. 6). X2A is inversely correlated with hydrophobic interaction as well
as toxicity (Arvidsson et al., 1971; Roy and Das, 2013).

Aliphatic amides are considered to be toxic as well as reactive (Schultz
et al., 2006). The positive regression coefficient of this descriptor
indicates that presence of this fragment may increase the toxicity as
demonstrated in compound 90 and toxicity value may be decreased if the
compounds have no such fragment as represented in compound 104
(shown in Fig. 6).

Generally, this feature helps to facilitate hydrolysis of the compounds
which facilitates quick excretion from the body of the reference organism
resulting in a reduction of their toxic effects (Krishna et al., 2020) as
demonstrated in compound 58 and the absence of this fragment tends to
increase the toxicity as shown in compound 101 (illustrated in Fig. 6).
The presence of an electronegative atom (like phosphorous) enhances the
toxicity of the diverse pesticides by incorporating oxidative stress in
avian species (Mukherjee et al., 2021; Kumar et al., 2024) as evidenced
by compound 3. On the other hand, the absence of this fragment leads to
a decrease the toxicity as shown in compound 10 (described in Fig. 6).
The negative regression coefficient of this descriptor indicates that
presence of more number of this fragment reduces the toxicity as
demonstrated in compound 105 and oppositely occurs in case of
compound 62 (depicted in Fig. 6).

This descriptor is directly related to the polarity (presence of polar bond)
(Mukherjee et al., 2021) of the compound, as a result the hydrophilicity
of the compound increase and thus toxicity will decrease which is
evidenced by compound 85 and vice versa in case of compound 9.
(represented in Fig. 6).

3.6. Comparison with previous work

As the composition of the training and test sets, endpoints used, as
well as the algorithms used for model development are not the same, we
can’t perform a rigorous comparison, so we have attempted to represent

some simple comparative studies between the current work and previ-
ously reported literature. Mukherjee et al. (Mukherjee et al., 2021)
developed the models using small data sets in comparison with current
work. Basanta et al. (Basant et al., 2015) used tree-based approaches to
build QSTR and i-QSTR models for various avian species. Banjare et al.
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(Banjare et al., 2021) presented QSTR and i-QSTR models for three avian
species using a classification approach. Podder et al. (Podder et al.,
2023; O’Boyle et al., 2011) developed a regression-based QSTR and
i-QSTR models against multiple avian species (MD, BQ, and ZF).
Leszczynski et al. (Kar and Leszczynski, 2020) reported ecotoxicity
QSTR and i-QSTR modeling of chemicals to avian species. While

regression

models

provide

explicit

quantitative

predictions,

47

classification approaches can be useful for data filtering at the outset of
research. The current models are built using a regression-based method
and a limited number of simple, 2D, and easily interpretable descriptors.
In this work, we have tried to develop first PLS-based QSTR model
considering LCsg as an endpoints to assess the toxicity of diverse pesti-
cides against multiple avian species. Regression-based technique is an
assertive and effective approach that can confidently tackle challenges
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such as descriptor inter-correlation, high levels of noise, collinearity, accepted and recommended by regulatory bodies Apart from the pre-
and a large number of descriptors. In the present work, we have vious studies, and consequently read-across prediction shows a better
developed the models using large datasets of different avian species. So, result than the previous model except for MD. Apart from the previous
it has a wide domain of applicability compared to previous studies. studies, we get additionally some new findings (specifically observation)
Additionally, we used read-across algorithm to enhance the external which are related to pesticide toxicity towards avian species such as

predictivity and it is widely used for data-gap filing as well as widely presence of C-012 (CR2X2), BO7[O-P] (Presence/absence of O-P at
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Table 5
Top 20 and least 20 toxic screened pesticides from Pesticide Properties DataBase
(PPDB).

Sl Pesticide Safety and Sources

no. Hazards

Top 20 most toxic screened pesticides from Pesticide Properties DataBase

(PPDB).
1 Imicyafos
2 Pirimiphos-ethyl
3 Quinothion
4 Pirimiphos-methyl
5 Etrimfos
6 Buminafos
7 Diazinon
8 Quintiofos
9 Phoxim
10 Inezin
11 Dufulin
12 Chlorphoxim
13 Pyridaphenthion
14 Triazophos
15 Isoxathion
16 Naftalofos
17 Quinalphos
18 Butamifos
19 Sulprofos

Acute toxic,
Irritant.

Acute toxic,
Environmental
Hazard.

Acute toxic

Irritant, Health
hazard,
Environmental
hazard
Irritant,
Environmental
Hazard

Acute toxic

Irritant,
Environmental
hazard

Acute toxic

Irritant, Health
hazard, and
Environmental
hazard

Acute toxic

Oxidative stress
inducer
Acute toxic

Irritant

Acute toxic,
Environmental
hazard

Acute toxic,
Environmental
hazard

Acute toxic

Acute toxic,
Environmental
hazard

Irritant,
Environmental
hazard

Acute toxic,
Environmental
hazard

https://pubchem.ncbi.nlm.nih.

gov/compound/18772487#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/31957#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/89714+#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/34526#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37995#s
ection=_Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/39966#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/3017#s
ection=_S8afety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/72069#secti
on=Toxicity&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/9570290#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/30772#secti
on=Toxicity&fullscreen=true
(Yu et al., 2021).

https://pubchem.ncbi.nlm.nih.

gov/compound/5360461#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/8381#s
ection=_Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/32184#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/29307#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/15148#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/26124#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37419#s
ection=Safety-and-Hazards
&fullscreen=true

https://pubchem.ncbi.nlm.nih.

gov/compound/37125#s
ection=Safety-and-Hazards
&fullscreen=true
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Table 5 (continued)

Sl Pesticide Safety and Sources
no. Hazards
20 Edifenphos Acute toxic, https://pubchem.ncbi.nlm.nih.

Environmental
hazard

gov/compound/28292#s
ection=Safety-and-Hazards
&fullscreen=true

Least 20 toxic screened pesticides from Pesticide Properties DataBase (PPDB).

1

10

11

12

13

14

15

16

17

18

19

20

Ferbam

Hexylene glycol

Bisthiosemi
Choline chloride

Glutaraldehyde

Fumaric acid

Lime sulphur

Methyl isobutyl
ketone

Sodium
tetrathiocarbonate
1,2-

dichloropropane

Metam

Methylene
bisthiocyanate
Bentonite

Butanethiol
Sodium
monochloroacetate

Fluoroacetamide

Sodium
monofluoroacetate
Propylene glycol

Peroxyacetic acid

2-hydrazinoethanol

non-toxic

less toxic

moderate toxic
less toxic

less toxic

less toxic

less toxic

less toxic

moderate toxic

less toxic

less toxic

less toxic

Nontoxic

moderate toxic

moderate toxic

high toxic

high toxic

less toxic

moderate toxic

moderate toxic

https://www?3.epa.gov/pestici
des/chem search/reg actions/re
registration/fs_PC-034801_0
1-Sep-05.pdf
https://hpvchemicals.oecd.
org/ui/handler.axd?id=3c
2a8190-8500-467c-af27-a636e
663638
https://www.drugfuture.com/
toxic/dir/5061.html
http://sitem.herts.ac.uk/aeru
/iupac/Reports/161.htm
https://archive.epa.
gov/pesticides/reregistration/w
eb/pdf/glutaraldehyde-red.pdf
https://www.sciencedirect.co
m/science/article/pii/S0095
955315310854
https://www.ams.usda.gov/s
ites/default/files/media/Lime%
20Sulfur%20Evaluation%20TR.
pdf

https://www.epa.gov/sites
/default/files/2016-09/docu
ments/methyl-isobutyl-ketone.
pdf
https://www.sciencedirect.co
m/topics/agricultural-and-biolo
gical-sciences/thiocarbonate
https://wedocs.unep.org/bitstre
am/handle/20.500.11822/
29625/HSG76.pdf?sequence
=1&isAllowed=y
https://archive.epa.gov/pes
ticides/chemicalsearch/chemic
al/foia/web/pdf/039003/0
39003-028.pdf
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/2905.htm
https://digitalfire.com/h
azard/bentonite+toxicity#:~:te
xt=Bentonite%20i5s%20a%20
ground%20naturally,flush%20t
0%20remove%20the%20part
icles.
https://pubchem.ncbi.nlm.nih.
gov/compound/1-Butanethiol
https://tera.org/OARS/Sodium
%20Chloroacetat%20
(3926-62-3)%20WEEL%2020
16%20public%20comment.pdf
http://sitem.herts.ac.uk
/aeru/ppdb/en/Reports/338.ht
m
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/3160.htm
https://downloads.regulations.
gov/EPA-HQ-OPP
-2013-0218-0007/content.pdf
https://www.federalregister.
gov/document
$/2000/12/01/00-30679/pe
roxyacetic-acid-exempti
on-from-the-requirement-of-a-t
olerance#:~:text=Because%
200f%20the%20low%20toxicit
y,n0t%20pose%20a%20dietary
%20risk
http://sitem.herts.ac.uk/aeru/
ppdb/en/Reports/2803.htm
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topological distance 7), Br-094 (Br attached to Cl(sp2)), BO5[C-P]
(Presence/absence of C-P at topological distance 5), FO4[C-Cl] (Fre-
quency of C-Cl at topological distance 4) and nRCONHR (number of
secondary amides (aliphatic)) enhances the pesticides toxicity towards
avian species; on the other hands, presence of nN(CO)2 (number of
imides (-thio)) and BO5[P-Cl] (Presence/absence of P-Cl at topological
distance 5) reduces the pesticides toxicity towards avian species.
Furthermore, our work highlighted some extra features not mentioned
in the previous studies, which are useful for pesticide toxicity assessment
viz. molecular weight, presence of heteroatom, presence of bridgehead
atoms, secondary aliphatic amide, and molecular refractivity. On the
other hand, features like molecular branching and the presence of thio
imides contribute negatively towards the toxicity. The PPDB database
was screened using developed models to show the predictivity as well as
application in the real-world data of the developed models. The current
study’s comparison to previously published studies is depicted in
Table 6.

4. Conclusion

In summary, this study employs a range of chemometric tools to
predict pesticide toxicity for four different avian species. The research
focuses on creating robust and easily interpretable QSTR models based
on OECD principles. The study’s statistical validation parameters
consistently demonstrate the strength and reliability of the constructed
PLS-based QSTR-read across models. External validation metrics,
employing the read-across algorithm, show slightly superior perfor-
mance in predicting toxicity, except for the mallard duck dataset.
Additionally, we have developed classification models and employed
two Machine Learning algorithms SVM and RF to evaluate their effec-
tiveness in constructing models and making predictions. The PLS-based
QSTR models with read-across predictions produce better statistical
results (such as the lowest prediction error for the test set compounds, as
indicated by the MAE,. value) as compared to ML-based models against
all of the avian species.

Furthermore, this research develops regression-based models, sur-
passing previous studies in terms of the dataset’s size, the variety of
avian species examined, domain of applicability features responsible for
toxicity, model quality, algorithm used as well as the endpoint (LCsg).

Process Safety and Environmental Protection 188 (2024) 39-52

The findings highlight the significance of electronegativity, molecular
weight, imide count, lipophilicity, and steric effects in avian toxicity.
Additional findings (descriptors) such as C-012, BO7[O-P], Br-094, B05
[C-P], FO4[C-Cl], nRCONHR, nN(CO),, and BO5[P-Cl] were observed in
this study which is related to pesticides toxicity towards avian species.
Notably, the presence of C-P fragments at specific topological distances
and electronegative groups intensifies toxicity, while features like
branching and hydrogen bond acceptor characteristics reduce it.

The validation of the predicted toxicity of the screened compounds
by experimental data demonstrated the reliability and feasibility of
applying the developed models for screening pesticides, offering valu-
able support to researchers striving to design eco-friendly and safe
chemical pesticides. They effectively bridge gaps in toxicity data and
simplify the evaluation of novel pesticides for various bird species.
Moreover, these models significantly reduce the time, resources, costs,
and the need for animal testing, aligning with the principles of reduc-
tion, refinement, and replacement (RRR) in research practices.
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Table 6
Comparison table with previous work.
Source Organisms Defined Model LV  Features Training set Test set
:‘: et:llis endpou.lt Ntrain Rz Q%oo Niest Q%l Q]%Z
study

In this present BQ LCso PLS-Read across 2 6 411 0.64 0.60 137 0.61-0.69 0.61-0.69

study JQ 2 6 77 0.63 0.55 34 0.53-0.70 0.51-0.69
RNP 2 6 82 0.63 0.53 30 0.60-0.71 0.60-0.71
MD 1 6 377 0.60 0.58 162 0.71-0.75 0.63-0.68

(Mukherjee BQ LDso PLS 3 10 103 0.65 0.58 25 0.64 0.64

et al., 2021) JQ 2 3 - 0.73 0.59 - - -
RNP 2 4 22 0.76 0.60 7 0.64 0.64
MD 2 7 49 0.65 0.56 13 0.65 0.57
HS 1 2 - 0.91 0.86 - 0.94 0.88

Mazzatortaetal (  BQ LDsg GA-SVM - - 94 - - 19 — —
Kim, 2019).

Podder et BQ LDso MLR 7 278 0.715-0.719  0.694-0.700 88 0.722-0.732  0.722-0.732
al (O’Boyle MD 8 182 0.689-0.708 0.626-0.695 65 0.620-0.639 0.620-0.638
et al., 2011). ZF 5 40 0.754-0.758  0.697-0.722 13 0.787-0.830  0.786-0.829

(Banjare et al., BQ LDso GA-LDA along with 203 - - 67 - -

2021). MD interspecies 143 - 60
ZF correlation 31 - 12

(Basant et al., BQ LDsg Tree-based QSAR 98 - 33
2015). approaches

(Kar and BQ LDso GFA-PLS 3 5 41 0.67 0.63 15 0.70 0.68
Leszczynski, MD 2 5 42 0.75 0.67 14 0.88 0.87
2020). RNH 3 4 20 0.89 0.80 7 0.87 0.87

LV: Latent variable; PLS: Partial least square; SVM: Support vector machine.
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