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PREFACE 

Arsenic poses a significant risk to both humans and animals when present in food and drinking 

water. Being dependent on water for survival, aquatic creatures are especially susceptible to 

arsenic contamination. Additionally, animals that humans eat may collect arsenic, 

jeopardizing the safety of this food source. The main strategy for treating arsenic poisoning 

is to extract arsenic from bodily tissues. Chelation therapies have demonstrated some efficacy 

in treating acute arsenic poisoning; however, their usefulness in treating chronic instances 

remains questionable. Novel strategies are required because the majority of chelators have 

drawbacks and negative effects. Given the difficulties in using phytochemicals for treatment, 

investigating probiotics as the main therapy option would make more sense. Probiotics have 

been shown to benefit several liver conditions by lowering fibrosis, inflammation, and 

oxidative stress, by altering the usual gut flora's makeup and roles, which support the upkeep 

of a digestive tract in good condition. This enhances the synthesis of energy and guards the 

liver from damage. By triggering the body's antioxidant system, probiotics also lessen 

oxidative stress in the liver along with activating the synthesis of more antioxidant-producing 

molecules and enzymes. These also improve their capacity to function as antioxidants through 

a metal-chelating effect. To treat liver damage brought on by arsenic and produce more 

effective and secure treatment results, Lactobacillus reuteri and Bacillus subtilis are utilized. 

This thesis, which is divided into 6 individual chapters. A concise overview of the mechanism 

of arsenic-mediated hepatotoxicity and the treatment approaches are discussed in the first 

chapter. A thorough review of the literature on Lactobacillus reuteri and Bacillus subtilis, in 

their pertinent context, is presented in Chapter 2. The materials and techniques used to carry 

out the research are described in Chapter 3. The results are summarized in Chapter 4, which 

also includes pertinent commentary on the same. The study's conclusion is presented in 

Chapter 5, and a list of references supporting the research's significant findings is provided 

in Chapter 6. 
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1. INTRODUCTION 

Arsenic (As), a trace metalloid, occurs naturally as a non-essential environmental toxin (Mirza 

et. al., 2014). It can be observed in the oxidation states as -3, 0, +3, and +5. Arsenious acids, 

arsenic acids, arsenites, arsenates, methyl arsenic acid (MAA), dimethylarsinic acid (DMAA), 

trimethyl arsine oxide (TMAO), and other forms constitute its environmental forms(Akter KF 

et. al., 2005). Arsenite (As III), a hard, deadly acid, and arsenate (As V) are the two most 

common forms of arsenic (Muzaffar et. al., 2023). While arsenite (As III) forms complexes 

with oxides and nitrogen chemical species, arsenate (As V) typically forms complexes with 

sulphides. In both reduced and oxidized states, Arsenic is mobilizable within the pH range of 

6.5–8.5 (Tripathi et. al., 2007). Over 140 million people in at least 70 countries, including 

Afghanistan, Argentina, Bangladesh, Cambodia, Chile, China, India, Mexico, Mongolia, 

Myanmar, Nepal, Pakistan, Taiwan, Vietnam, sub-Saharan Africa, and the United States, are 

afflicted with Arsenicosis (caused by prolonged exposure of Arsenic), which is primarily 

caused by trivalent inorganic arsenicals (arsenite) in subterranean water (Brinkel et. al., 2009; 

Das et. al., 2010). Arsenites are absorbed through the gastrointestinal tract and disseminated 

throughout the body after being consumed orally as tainted drinking water (Ratnaike, 2003). 

Arsenicals could, however, also enter the body through skin cells and through the act of 

inhalation and exhalation. Arsenic takes part in cellular redox mechanisms that result in the 

creation of excess reactive oxygen species (ROS) post-bioaccumulation. Furthermore, Arsenic 

has an augmented affinity towards thiol groups, which corresponds to an additional mechanism 

for the development of oxidative stress in patients suffering from arsenicosis (Rizwan et. al., 

2014). Apoptosis is triggered by the escalating oxidative stress and the depletion of the 

endogenous antioxidant response during arsenic intoxication. Besides damaging cellular 

macromolecules, oxidative stress additionally ends up in peroxidative destruction of membrane 

lipids, oxidative harm to DNA, and carbonylation of proteins, all of which influence cellular 

pathology (Dutta et. al., 2014). Arsenic impacts nearly every vital organ and tissue, including 

the bloodstream, the liver, kidneys, lungs, heart, testes, and brain. Even though Arsenic-

induced toxicity is a ubiquitous issue, there isn't any trustworthy, precise, and safe treatment of 

the same (Dua et. al., 2015). The primary treatment approach to alleviating Arsenic intoxication 

is believed to be Chelation Therapy; however, numerous adverse effects of chelators, which 

include the elimination of vital metals and the redistribution of Arsenic, restrict their clinical 

efficacy (Dua et. al., 2016). Potential therapeutic value in terms of lowered morbidity and 

mortality for chronic Arsenic intoxication is mainly undetermined despite the fact that 
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chelation for arsenic chronic intoxication may expedite metal excretion and diminish metal 

concentration in specific tissues (Kosnett, 2013). Utilizing the prophylactic capabilities of 

natural antioxidants to combat Arsenic intoxication makes good sense, given the crucial role 

that oxidative stress plays in the genesis of Arsenic toxicity (Dua et. al., 2016). Probiotics have 

been shown to possess potential antioxidant properties and can attenuate liver damage which 

makes them a good option for the treatment (Dewanjee et. al., 2022). 

Probiotics consist of living, non-pathogenic microorganisms, such as several commensal 

bacteria, that, when administered in appropriate amounts, confer benefits to the host's health 

and prevent disease (Dewanjee et. al., 2022). Probiotic strains that are precisely described, 

maintain their viability in a formulation thus not altering its shelf life, and have at least one 

successful clinical study to support their efficacy and safety are considered prominent traits of 

those strains (Binda et. al., 2020). Lactic acid bacteria, which comprises various kinds of 

strains of Lactobacillus, Bifidobacterium, Streptococcus, and Enterococcus, make up a major 

chunk of probiotics (Linares et. al., 2017). Among them, Lactobacillus and Bifidobacterium 

are commonly found in various fermented milk goods and are also advertised and 

promoted commercially as nutritious foods or nutraceuticals (Taye et. al., 2021). 

Probiotics have gained attention as possible nutraceuticals with claims to enhance health and 

fend off disease (Cunningham et. al., 2021). Several studies aimed at the gut found that the 

permeability of the gut barrier may be heightened by gut dysbiosis, leading to the translocation 

of bacteria and the leakage of gut-derived products (Meng et. al., 2018). These 

substances penetrate the liver through the portal vein and potentially cause elevated levels of 

oxidative stress and inflammation, endangering the hepatic health of the individual (Yip et. al., 

2018). Pathogenesis of liver diseases can be influenced by changes in the gut microbiota and 

associated metabolites, and vice versa (Qin et. al., 2014). It has been demonstrated that 

probiotic strains such as Lactobacillus alleviate liver complications by modifying the major 

bile acids, enhancing intestinal permeability, and transforming gut flora (Meng et. al., 2018). 

Probiotics can also assist the liver in recovering from illnesses, and oxidative stress-induced 

acute liver toxicity (Dewanjee et. al., 2022). and xenobiotic-induced hepatotoxicity while 

reestablishing healthy liver function (Eslamparast et. al., 2013). Taking into consideration all 

the aforementioned findings, this research aims to study and explore the hepatoprotective roles 

of probiotic Lactobacillus reuteri (L. reuteri) and Bacillus subtilis (B. subtilis) and how these 

probiotics alleviate the detrimental effects of xenobiotic toxicity, in this case, Arsenic, on rats. 
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1.1 Environmental fate and arsenic infiltration 

As is ubiquitous to the environment, however, the quantities vary, which are impacted by the 

proximity of places with anthropogenic or natural spoilage (Flora, 2011). Geological 

formations, which include the deposition of arsenic in sedimentary rocks, volcanic rocks, and 

soils, constitute one of the most significant natural sources of arsenic. (Beck et. al., 

2017). Anthropogenic activities such as mining, coal, and petrochemical extraction have been 

linked to arsenic accumulation in groundwater in 54 nations globally (Punshon et. al., 2017). 

For a large number of individuals, consuming food and water are the principal oral avenues by 

which arsenic enters the body (Clemente et. al., 2016). A recent study employing over 50,000 

consolidated data points revealed that between 94 million and 220 million people worldwide 

are potentially exposed to unacceptably elevated levels of groundwater arsenic (Podgorski and 

Berg, 2020). A maximum of 10 µg/L of Arsenic in drinking water is considered the threshold 

but anything more than this quantity, is alarming (WHO, 2019). The acute toxicity of soluble 

inorganic arsenic is extremely dangerous. Prolonged exposure to arsenic (Arsenicosis) may 

happen from long-term inorganic arsenic ingestion (Ramly et. al., 2023). The Indian state of 

West Bengal was the first to discover the problem of Arsenicosis caused by contaminated 

groundwater in 1984 (Garai et. al., 1984; Saha, 1984).  A survey report from 2001 indicates 

that approximately 150 million people in the combined areas of West Bengal and Bangladesh 

are exposed to risk from arsenic-contaminated groundwater (Rahman et. al., 2001). It's 

interesting to note that the rollercoaster of effects and side effects continues to 

remain functional today (Waxman et. al., 2001). 

Depending on the duration of exposure, effects can take years to manifest. These involve skin 

lesions, peripheral neuropathy, gastrointestinal problems, diabetes, cardiovascular disease, 

developmental damage, and carcinoma of the skin (Khargas et. al., 2015). Other clinical 

features that correspond to arsenic toxicity include peripheral vascular disease 

(Blackfoot disease), noncirrhotic portal hypertension, hepatomegaly, respiratory and renal 

involvement, poor obstetrical outcome, and haematological disturbances (Maharjan et. al., 

2005). The trivalent form of arsenic, referred to as arsenite, is primarily accountable for the 

consequences. It binds with sulfhydryl groups that inhabit a variety of necessary molecules, 

causing inactivation and disruption of bodily processes. Arsenic is generally ingested in its 

pentavalent form, or Arsenate, even though its toxicities are mostly associated with its trivalent 

state (Sengupta et. al., 2008). According to recent studies, the following is the order in which 

acute arsenic intoxication takes place: Mono Methylarsonic Acid(III)>Trivalent 

Arsenic(III)>Pentavalent Arsenic(V)> Dimethylarsinic Acid (V)> Mono Methylarsonic Acid 
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(V), with Mono Methylarsonic Acid also known as MMA(III) being the most hazardous 

metabolite (Kile et. al., 2011). 

1.2 Underlying mechanism of arsenic toxicity 

Arsenic has been associated with modifications in several cellular functions, such as the 

impairment of DNA repair, decreased immunosurveillance, growth factor expression shifts, 

apoptosis resistance, restriction of cell cycle screening proteins, transformed DNA 

methylation, and elevated levels of oxidative stress (Lantz and Hays, 2006). Oxidative stress 

is one of the most researched mechanisms of action (Calatayud et. al., 2013). By cycling 

between the oxidation states of metals such as iron, interfering with intracellular antioxidant 

levels, or triggering inflammation, arsenic may bring about oxidative stress. This may 

culminate in the continuous existence of cells that create radicals and/or growth factors (Flora, 

2011). According to in vitro studies, As(III) alters intercellular junctions, increases 

permeability through the cell monolayer, and causes oxidative stress and pro-inflammatory 

response in body cells(de Matsuoka et. al., 2020). The harmful effects of arsenic are 

significantly influenced by its metabolism. Several mammals, if not all, methylate inorganic 

arsenic in numerous instances (Hughes, 2002). Arsenic's oxidation state and chemical form 

contribute to its acute toxicity. A two-electron reduction of pentavalent arsenic to trivalent 

arsenic and oxidative methylation to pentavalent organic arsenic are the two phases in the 

process of metabolism of inorganic arsenic (Thomas et. al., 2001). The mechanism for toxicity 

is different for both pentavalent and trivalent arsenic (Hughes , 2002). In the case of pentavalent 

arsenic toxicity, arsenate replaces phosphate, which is a key component in a majority of 

biochemical reactions like glycolysis, gluconeogenesis, etc (Tawfik and Viola, 2011). This 

happens because both arsenate and phosphate share similar structural composition and 

properties (Nemeti et. al., 2012). For instance, in vitro reactions among arsenate and glucose 

and gluconate result in the formation of glucose-6-arsenate and 6-arsenogluconate, respectively 

(Gregus, 2009). These substances are similar to glucose-6-phosphate and 6-phosphogluconate, 

in that order. Both glucose-6-phosphate and glucose-6-arsenate can block hexokinase and serve 

as substrates for glucose-6-phosphate dehydrogenase (Nemeti et. al., 2010). In the sodium 

pump and anion exchange transport mechanism of the human erythrocytes, arsenate is also 

capable of taking the place of phosphate (Kenney and Kaplan, 1988). Arsenolysis is a process 

through which arsenate uncouples the in vitro generation of adenosine-5′-triphosphate (ATP) 

(Thomas, 2010). During glycolysis, arsenolysis may take effect at the substrate level. The 

enzymatic linkage between phosphate and d-glyceraldehyde-3-phosphate yields 1,3-

biphospho-d-glycerate, which is one step in the glycolytic pathway (Nemeti et. al., 2002). In 



Chapter 1  Introduction 
 

5 
 

this reaction, arsenate can take precedence over phosphate to generate 1-arsenato-3-phospho-

d-glycerate, an anhydride. When phosphate is abundant during glycolysis, only then is ATP 

generated, but arsenate's presence does not guarantee the same (Drobna et. al., 2009). 

Arsenolysis may happen at the mitochondrial level when oxidative phosphorylation occurs 

(Nemeti et. al., 2002). Compared to ATP, which is produced during oxidative phosphorylation, 

ADP-arsenate hydrolyses more readily (Hughes, 2002). Arsenolysis reduces the amount of 

ATP produced in vitro at both the substrate and mitochondrial levels by substituting arsenate 

for phosphate in the enzymatic processes (Tawfik and Viola, 2011). In cellular systems, 

arsenate has been reported to diminish ATP levels. After repeated exposure to arsenate in vitro, 

human and rabbit erythrocytes have shown alleviated ATP levels. Arsenite, however, fails to 

diminish ATP levels in human erythrocytes (Hughes, 2002). The toxicity and the mechanism 

of action discussed above was of pentavalent arsenic which is the most abundant form of 

arsenic in the environment. However, pentavalent Arsenic, when transforms itself, i.e., 

undergoes biotransformation, gets reduced and converts into an even more toxic form i.e., the 

trivalent arsenite (Thomas et. al., 2001; Hughes et. al., 2011). Because of their strong affinity 

toward SH groups, the trivalent arsenites As (III) and the ensuing trivalent methylated arsenic 

metabolites are extremely noxious and interfere with the operation of essential biological 

proteins (Kitchin and Wallace, 2008). The most prevalent thiol molecule in the body, 

Glutathione (GSH), contributes to pentavalent Arsenic reduction in vivo(Csanaky, Gregus, 

2005). Glutamyl-cysteine synthetase and glutathione synthetase (GS), two ATP-dependent 

enzymes, serve as catalysts for the generation of this tripeptide (Jan et. al., 2015). The primary 

site of arsenic detoxification is the liver because of its high glutathione content(Susan et. al., 

2019). However, the liver is particularly vulnerable to the detrimental effects of arsenic 

poisoning at elevated concentrations (Ratnaike, 2003). Trivalent arsenic that has been 

methylated has been demonstrated to cause hepatotoxicity by employing interactions with 

hepatocyte DNA and protein receptors. This results in diminishing methylation efficacy of the 

liver, which causes arsenic to accumulate in the body (Sharma et. al., 2014). One of the 

principal indicators of arsenic poisoning is liver enlargement, which is followed by recurrent 

dyspepsia and ultimately hepatic fibrosis (Guha, Mazumder, and Dasgupta, 2011). Chronic 

exposure to arsenic induces hepatoportal sclerosis, which frequently coexists with local 

vascular impairment (Banerjee et. al., 2017). Cirrhosis, hepatocellular infiltration, degenerative 

lesions, centralized necrosis, ascites, and cancer of the liver are additional ailments attributed 

to prolonged arsenic exposure. Sustained exposition to arsenic has been demonstrated to lead 

to malignant cell types proliferating in the liver of rats and cause hepatic neoplastic ulcers in 
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female Swiss mice (Lu et. al., 2001). It has been speculated that methylated arsenicals promote 

DNA damage, and that arsenic's liaisons to zinc finger proteins, which play a crucial role in 

DNA repair, degrade DNA repair pathways and trigger carcinoma of the liver (Muenyi et. al., 

2015). Following arsenic exposure, the blood has been found to contain liver enzymes such as 

aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase 

(ALP) as a result of cellular enzyme leakage and cellular integrity loss (Susan et. al., 2019). 

Due to an increase in reactive oxygen species production, arsenic intoxication accelerates lipid 

peroxidation in the liver (Singh et. al., 2011). It has been discovered that exposure to arsenic 

elevates the levels of lipid peroxidation markers such as malondialdehyde and thiobarbituric 

acid (TBAR) (Medda N et. al., 2021). Glutathione peroxidase (GPx) activity and glutathione 

(GSH) levels are both alleviated in arsenic poisoning, despite the fact that both enzymes are 

essential for regulating oxidative stress (Hall et. al., 2013). Arsenic-mediated inhibition of 

glutathione reductase, arsenic-induced inhibition of glutathione production, or arsenic-GSH 

complexation may collectively contribute to the depletion of glutathione levels in the liver 

(Laborde, 2010). A metalloenzyme which is a component of the cell's antioxidant mechanism 

is superoxide dismutase (SOD) (Singh et. al., 2017). Because of the excess of free radicals, 

arsenic poisoning impairs SOD activity within the tissues of the liver and kidneys (Susan et. 

al., 2019). Another enzyme called GPx functions as an antioxidant by neutralizing hydrogen 

peroxides and lipid peroxides. According to recent research, arsenic promotes superoxide 

radicals to flourish, which in turn encourages a rise of hydroxyl radicals, resulting in greater 

ROS accumulation and genotoxicity (Jomova et. al., 2011). 

1.3 Available treatment interventions against arsenic-induced toxicity 

1.3.1 Chelation therapy 

As we know, As is a metalloid, scientists have well-explored the possibilities of employing 

ligands to form a complex with Arsenic in order to remove it from the body’s systems. They 

have termed this approach as the ‘Chelation Therapy’ and the molecules aiding in this 

procedure are referred to as Chelating Agents (Susan et. al., 2019). The chelates thus formed, 

prevent the interaction between Arsenic and its biological targets like proteins and nuclear 

material and facilitate its excretion from the system (Flora et. al., 2007). The primary hurdle in 

eliminating arsenic is deciding on a suitable chelating agent. An ideal chelating agent should 

be lipid-soluble, non-toxic, have a strong affinity towards arsenic, and should be excreted from 

the body in its complex configuration (Aaseth et. al., 2014). It is crucial to consistently remove 

the complex generated between arsenic and the chelating ligand from the system as the 

complexation reactions tend to reach equilibrium (Clarke et. al., 2012). For the chelating ligand 
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to integrate into the cellular compartment and chelate arsenic, lipid solubility is crucial (Sears, 

2013). However, previous research investigations have demonstrated that water-soluble 

chelating compounds are less perilous than their lipophilic analogues(Smith SW, 2013). British 

anti-Lewisite (BAL), also known as dimercaprol or 2,3-dimercapto-1-propanol, was the first 

chelating agent to be used for the removal of arsenic(Kosnett MJ, 2013). A few chelators used 

for the treatment of Arsenic Toxicity are listed below in Table 1. 

Table 1. Effects of Synthetic Chelating Agents against Arsenic-mediated toxicity 

Chelating agents Salient features References 

British anti-Lewisite (BAL) 

BAL has thiol groups which 

form a complex with Arsenic 

which aids in eliminating the 

resultant chelate via urine. 

Kosnett, 2013; 

Susan et. al., 2019. 

2,3-dimercaptopropane-1-

sulphonic acid (DMPS) 

Water soluble BAL 

derivative; forms an 

insoluble Arsenic complex by 

employing an organic 

transport pathway to get into 

the cell. 

Aaseth et. al., 2014; Yadav 

and Flora, 2016. 

Meso-2,3-

dimercaptosuccinic acid 

(DMSA) 

Uses 2 thiol groups to 

chelate Arsenic. However, it 

has the limitation of not 

being able to seep into the 

cell membrane, and thus, it 

cannot chelate Arsenic in the 

intracellular compartments. 

Flora et. al., 2007; Kosnett, 

2013; Susan et. al., 2019. 

D-Penicillamine 

Sulfhydryl groups form a 

chelate with Arsenic and 

eliminate it via urine and 

faeces. 

Flora et. al., 2007; Aaseth et. 

al., 2014. 

Mono isoamyl DMSA 

(MiDMSA) 

Lipophilic derivative of 

DMSA has a high affinity 

towards Arsenic and chelates 

both extracellular and 

Pachauri et. al., 2013, Aaseth 

et. al., 2014. 
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intracellular arsenic through 

the sulfhydryl groups. 

DMSA combined with Mono 

cyclohexyl DMSA 

(MchDMSA) 

Alleviates ROS and elevates 

the levels of anti-apoptotic 

proteins as well as restores 

mitochondrial protection. 

Flora et. al., 2007; Pachauri 

et. al., 2013; Aaseth  et. al., 

2014. 

Zinc and N-acetyl cysteine 

When used combinedly, 

provides enhanced protection 

against D-aminolevulinic acid 

dehydratase (ALAD) 

inhibition by arsenic and 

alleviates oxidative stress. 

Modi et. al., 2006; 

Susan et. al., 2019. 

 

As per the existing literature available on the use of chelating agents, it is evident that a 

vast majority of chelators have different downsides and adverse effects. Therefore, it is 

certainly not feasible to successfully manage arsenic-induced toxicity with these chelating 

substances. 

1.3.2. Anti-oxidant therapy utilizing flavonoids and other phytochemicals 

As oxidative stress is the primary cause of the majority of arsenic's detrimental effects, 

antioxidant therapy has emerged as a successful means to mitigate arsenic's harmful 

consequences. Since arsenic disrupts the intracellular antioxidant framework, pro-oxidant 

stress triggered by arsenic can be countered by exogenous antioxidant supplementation. 

Numerous flavonoids have been demonstrated to have antioxidant abilities, which could 

potentially mitigate the harmful effects of arsenic (Susan et. al., 2019). Along with flavonoids, 

several plant extracts have been studied extensively to investigate their ability to mitigate the 

toxicity associated with heavy metal poisoning because they are rich in chelating and anti-

oxidant properties (Boonpeng et. al., 2014). Numerous plant species have been examined to 

figure out how effective they are at eliminating arsenic (Gupta et. al., 2015). Table 2 comprises 

a list of various flavonoids and phytochemicals used to mitigate Arsenic-induced impairments 

and toxicities. 

Table 2. Therapeutic intervention of flavonoids and phytochemicals used against Arsenic 

induced toxicity 

Anti-Oxidant 

agents 
Salient features References 
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Naringenin 

Restores antioxidant enzymes and liver 

serum biomarkers; minimizes DNA 

breakage and undoes pathological 

alterations brought forth by arsenic 

poisoning in the kidney and liver tissues. 

Mershiba et. al., 2013 

Silymarin 
Lowers the synthesis of conjugated 

dienes and reduces lipid peroxidation. 

Bongiovanni et. al., 

2007 

Silymarin and 

Naringenin 

Restores inflammatory markers like 

SOD, Catalase, and GSH; lowers 

malonaldehyde and arsenic concentration 

in hepatic tissues. 

Jain et. al., 2011 

Epigallocatechin-3-

gallate (EGCG) 

Suppresses LDH, CK, CK-MB, and AST 

levels; inhibits ROS production; 

modulates calcium homeostasis; reverses 

cardiac toxicity; mitigates immune 

suppression, inflammation, and apoptosis 

triggered by sodium arsenite; and lowers 

oxidative stress by 

activating Nrf2 signaling. 

Biswas et. al., 2017; 

Mershiba  et. al., 2013; 

Guvvala et. al., 2017; 

Han et. al., 2017. 

Allicin, allyl 

cysteine, alliin, allyl 

disulfide 

Scavenge superoxide ions and 

hydroxy radicals. 
Chung, 2006 

Quercetin 

Reduces ROS production and 

proliferation and prevents oxidative 

stress. 

Mishram 

and Flora ], 2008 

Proanthocyanidin 

Alleviates the toxicity in the reproductive 

organs, 

stimulates the expression of transcription 

factors such Nrf2, HO1, GST, and NQO1 

that are linked to 

detoxification processes. 

Li et. al., 2015 

1.4. Objectives of the study 
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As everyone knows, Arsenic is a major cause of illnesses and systemic toxicities in an 

enormous percentage of people worldwide. Antioxidant and Chelation Therapy are two 

effective treatment approaches, but they have drawbacks as well, such as removing important 

metal ions in addition to arsenic. Although herbal extracts have been proven to affect 

hepatotoxicity, they have also demonstrated several unfavourable side effects. Given the 

present predicament, a novel approach to treating arsenic-induced hepatotoxicity is required. 

Probiotics have demonstrated enormous promise in modulating the gut microbiome and 

serving as antioxidants and immunomodulators. However, further research is essential to fully 

discover these perks, and in this study, two distinct probiotic strains—Lactobacillus reuteri 

and Bacillus subtilis—are examined to determine their safeguarding against hepatotoxicity. 

The objectives of this research study are enlisted below: 

● To study the hepatoprotective effects of Bacillus subtilis & Lactobacillus reuteri 

against experimentally induced hepatotoxicity using Arsenic.  

● To study the anti-inflammatory properties of Bacillus subtilis & Lactobacillus reuteri. 

● To evaluate the toxicity-ameliorating benefits of probiotic therapy by using strains 

Lactobacillus reuteri and Bacillus subtilis and study its prospects concerning xenobiotic 

toxicity.
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2. LITERATURE REVIEW 

Probiotics are living microorganisms that offer the host substantial health advantages when 

administered in sufficient amounts. Although the notion of utilizing probiotics for medical 

purposes is not novel, interest in the practice has grown substantially in recent years (Islam, 

2016).  This could be partly attributed to the rise of antibiotic resistance, especially when 

treating gastrointestinal (GI) disorders, and a growing consumer appetite for natural health 

boosters (Kechagia et. al., 2013). Probiotics are live, non-pathogenic microorganisms, such as 

certain commensal bacteria, that, when given in the right dosage, provide benefits to the host's 

health and prevent disease (Dewanjee et. al., 2022). Probiotic strains that are well-defined, 

maintain their viability in a formulation for its shelf life, and have at least one successful human 

study to support their efficacy and safety are considered prominent traits (Binda et. al., 2020). 

Liver health is significantly maintained by microbes in the gut (Meng et. al., 2018). Therefore, 

a potential strategy for hepatoprotection is to modify the gut microbiota. Probiotics protect the 

liver from damage by replenishing the gut microbial community, which strengthens the 

intestinal wall, decreasing the spread of bacteria and epithelial encroachment and reducing 

endotoxemia, according to an expanding body of research (Eslamparast et. al., 2013) 

(Twardowska et. al., 2022). They have the ability to both boost the immune system and initiate 

the synthesis of antimicrobial peptides at the same time (Eslamparast et. al., 2013) (Sánchez 

et. al., 2013). Probiotics can also lessen inflammatory and oxidative liver damage (Eslamparast 

et. al., 2013) (Meng et. al., 2018).  

One of the numerous diverse and nonsporulating facultative anaerobic bacteria in the genus 

Lactobacillus which is assimilation-prone is Lactobacillus reuteri. This genus participates in 

food fermentation and is present in varying levels in the gastrointestinal tract of humans and 

animals, depending on the host's age, species, and gut location (Duar et. al., 2017). At the same 

time, the Bacillus species (sp) exhibit impressive resistance to physical and chemical stimuli, 

such as radiation, heat, and toxic chemicals, which are typically thought to be detrimental to 

microbes (Fan et. al., 2019).  

After studying several strains carefully and comprehensively, these two were chosen out of the 

numerous strains present in the market to carry out further research, in order to determine their 

clinical significance and medical applications of these promising strains, on several kinds of 

health conditions. In this study, it has been aimed to determine the positive effects of these 

strains on human health. 
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2.1 Experimentally explored physiological benefits of Lactobacillus reuteri 

2.1.1 Role of Lactobacillus reuteri in Hepatoprotection 

The gut's byproducts, including microbiological components, continuously remain in contact 

with the liver (Balmer et. al., 2014) (Nakamoto, 2014). Pattern recognition receptors, which 

recognize bacterial components like LPS and trigger inflammatory pathways, are expressed by 

hepatocytes (Takeuchi, Akira, 2010). A growing body of investigation has shown that gut 

bacteria and hepatic receptors, such as Toll-like receptors (TLR), are more likely to interact 

when there is a poor gut barrier, or "leaky gut"(Paolella et. al., 2014). Furthermore, TLR signals 

are essential for controlling the liver's innate immune response (Nakamoto, Kanai, 2014). For 

example, LPS activates Kupffer cells' TLR4, which results in the production of pro-

inflammatory cytokines like TNF-α and hepatocyte damage. Therefore, the imbalance in the 

gut-liver axis triggers an inflammatory response that results in the development and 

advancement of liver problems (Cui et. al., 2019), including hepatic encephalopathy (Dalal et. 

al., 2017), non-alcoholic fatty liver diseases (Boursier et. al., 2016), and liver cirrhosis (Shi et. 

al., 2017). Conversely, it has been demonstrated that probiotic-induced alterations in the gut 

microbiota may benefit liver health (Lo et. al., 2014). Hence, a microbial intervention-based 

treatment is a promising way to enhance the liver's disease process (Chen et. al., 2014). 

Probiotics, like Lactobacillus, can enhance the host's immune system and metabolic processes 

while inhibiting the growth of ailments. Numerous strains of Lactobacillus reuteri are found 

in the mammalian gut and are beneficial to health (Mu et. al., 2018). Different studies have 

shown that pretreatment with L. reuteri DSM 17938 decreased tissue abnormalities in the last 

segment of the ileum and liver, as well as gamma-glutamyl transferase, blood levels of alanine 

aminotransferase and aspartate aminotransferase (Jiang et. al., 2021). Furthermore, the 

abundance of several potentially pathogenic taxa, including Actinomycetales, 

Coriobacteriaceae, Staphylococcaceae, and Enterococcaceae, was reduced by L. reuteri DSM 

17938. Moreover, it reduced the hepatic production of various inflammatory genes (Wong et. 

al., 2017). Furthermore, L. reuteri DSM 17938 alleviates liver failure via a number of 

mechanisms, such as the enhancement of viral protein association with cytokines and cytokine 

receptors, the inhibition of retinol metabolism and the peroxisome proliferator-activated 

receptor (PPAR) signaling pathway, and the central carbon metabolism in the cancer signaling 

pathways (Hsieh et. al., 2013) (Hsu et. al., 2017). 

2.1.2 Role of Lactobacillus reuteri in Obesity Control 

Obesity is defined as a detrimental build-up of excess fat in the body that leads to a reduction 

in health and quality of life. It has been established that there is a direct link between obesity 
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and the Western diet (Martinez et. al., 2017). Obesity is a major health worldwide because it 

can cause the onset of hypertension, diabetes mellitus, insomnia, and coronary artery disease. 

Additionally, there is now a significant association between the microbiota of the gut and 

obesity (Daniali et. al., 2020). Specifically, changes in the abundance of gut microbiota play a 

role in obesity. Probiotics have therapeutic value in treating dysbiosis of the gastrointestinal 

tract, which is typified by an abnormal microbial composition, reduced intestinal barrier 

permeability, and activated inflammation (Bäckhed et. al., 2012). Notably, studies have looked 

at Lactobacillus to see if it can balance the microbiota in the intestines and manage obesity 

(Tchernof, Després, 2013) (Dabke et. al., 2019). The L. reuteri MG5149 strain was shown in 

an investigation to lower adipocyte size in epididymal tissue, weight of the body, and fat tissue 

weight. Furthermore, it decreased the expression of lipogenic protein molecules in certain 

tissues, including fatty acid synthase, adipocyte-protein 2, peroxisome proliferator-activated 

receptor, CCAAT/enhancer-binding protein, and AMP-activated protein kinase. Furthermore, 

it decreased the accumulation of fat by elevating the phosphorylation of AMP-activated protein 

kinase and acetyl-CoA carboxylase (Choi et. al., 2021). Additionally, the administration of L. 

reuteri JBD30l reduced the amount of free fatty acids (FFAs) in the gut fluid of the small 

intestine, hence decreasing intestinal FFA absorption and elevating faecal FFA excretion 

(Chung et. al., 2016). Contradictory findings, however, suggest that L. reuteri might strain-

dependently promote the advancement of obesity. The association was verified when it was 

found that the presence of vancomycin-resistant L. reuteri in the gut microbiota predicted an 

elevation in body weight after vancomycin treatment (Million et. al., 2013). Due to the amount 

of fructose consumed, several studies have linked L. reuteri abundance to weight gain (Huerta-

Ávila et. al., 2019). Fructose molecules may be used by L. reuteri as an avenue of energy to 

accelerate its development, which would lead to an elevated uptake of fructose and a boom in 

the generation of intermediary molecules, which would result in the production of triglycerides 

(Huerta-Ávila et. al., 2019). Probiotic-mediated weight reduction has been linked to several 

possible mechanisms of action, including altered gut microbiota layout, production of short-

chain fatty acids (SCFA), disruption of the metabolism of bile acids in the host, and regulation 

of energy homeostasis and satiety. In actuality, one of the probiotic bacteria that can carry out 

these methods to regulate obesity is L. reuteri (Figure 2). Conversely, food components that 

promote the growth of Lactobacillus reuteri in the stomach lead to a reduction in body weight 

(Cerdó et. al., 2019). To find out if weight loss is only due to an increase in L. reuteri or if it is 

substrate-dependent, additional investigation is required. 
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2.1.3 Role of Lactobacillus reuteri in Insulin Sensitivity and Glucose Homeostasis 

Hyperglycaemia and insulin resistance linked to a decreased incretin response, subclinical 

inflammatory reactions, and decreased glucose tolerance are the hallmarks of type 2 diabetes 

mellitus (T2DM) (Cerdó et. al., 2019). In experimental animals, the gut microbiota can be 

modulated to control resistance to insulin (Cani et. al., 2007). Moreover, a reduction in systemic 

and hepatic inflammation as well as portal lipopolysaccharide, or LPS, endotoxin 

concentrations is associated with improved intestinal barrier function (Cani et. al., 

2007). Regular administration of L. reuteri SD5865 boosted glucose-stimulated GLP-1 and 

GLP-2, enhanced insulin sensitivity, and enhanced insulin secretion by elevating incretin 

release, as shown by Simon et. al., 2015. 

2.1.4 Role of Lactobacillus reuteri in Immunomodulation of the Gut Microbiota 

A major contributing reason to the rise in the prevalence of several GI illnesses has been shown 

to be alterations in the intestinal flora (Isolauri, 2001) (Tong et. al., 2007) (McFarland, Dublin, 

2008). The effectiveness of probiotics varies depending on the strain, and each strain may 

support host health differently. Probiotic bacteria have three main metabolic pathways that 

perform duties for modifying the gut microbiota. First, competing microbes for resources and 

available space inhibits the growth of dangerous bacteria, hence reducing their potential for 

pathogenicity (Bron et. al., 2017). Additionally, they may directly affect other bacteria, 

preventing pathogen adhesion and GI tract proliferation (Hemarajata, Versalovic, 2013). The 

synthesis of antimicrobial substances such as bactericides, organic acids, and short-chain fatty 

acids is involved in the second strategy (Cleusix et. al., 2007). Probiotics also stop potentially 

dangerous bacteria from growing in the GI tract by creating a hostile environment that kills off 

pathogens and inactivates their toxins (Bergonzelli et. al., 2005). Probiotics' third role is 

boosting and managing the immune system, encompassing both targeted and non-targeted 

responses. The processes of T cell activation, generation of cytokines, phagocytosis induction, 

and activation of IgA antibody discharge are used to achieve this (Corthésy, 2015) (Rescigno, 

Sabatino, 2009). Through their interactions with several cells in the immune system, probiotics 

cause the body to create lecithin, defensins, and antibacterial proteins. As a result, the body 

gets an advantage from altering the general composition of pro- and anti-inflammatory 

cytokines and from making it possible for potentially dangerous bacteria and/or their toxins to 

be inactivated (Everard et. al., 2014) (Cash et. al., 2006). One of the probiotics with the most 

research done on children and adults with functional gastrointestinal issues is Lactobacillus 

reuteri DSM 17938 (Dargenio et. al., 2022). For a probiotic strain to colonize, interact with 

host cells, reduce pathogens, protect epithelial cells, or modify immune responses, it must be 
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able to stick to the human GI tract (Lebeer et. al., 2008). Numerous investigations have 

confirmed the ability of L. reuteri to adhere to intestinal epithelial cells and to colonize mucus. 

The surface protein, mucus-binding protein (MacKenzie et. al., 2010), the antiadhesive 

characteristics of bacterial exopolysaccharides (reuteran and levan) (Walter et. al., 2008), the 

inulosucrase enzyme (Anwar et. al., 2012), D-alanyl-LTA (Walter et. al., 2007), and 

glucosyltransferase A (Athalye-Jape et .al., 2016) have all been connected to the potential 

mechanism behind adhesion. Furthermore, the antibacterial activity of Lactobacillus reuteri is 

one of the most extensively reported probiotic pathogen-inhibiting techniques. Lactic acid 

(Greifová et. al., 2017), acetic acid (Morita et. al., 2008), ethanol, reuterin, reutericyclin 

(Gänzle et. al., 2000), and histamine (Navarro et. al., 2017) are among the antimicrobial 

substances that L. reuteri produces. One of the best-known uses of Lactobacillus reuteri as a 

probiotic to cure illnesses is the treatment of Helicobacter pylori (Mukai et. al., 2002). 

According to Thomas et. al, 2012, histamine derived from L. reuteri 6475 inhibited the growth 

of tumour necrosis factor (TNF). This suppression required both the inhibition of MEK/ERK 

signaling and the activation of the histamine H2 receptor, which raised intracellular cAMP and 

protein kinase A (Thomas et. al., 2012). The results of this study suggest that L. reuteri may be 

useful in treating patients with gastrointestinal problems. Similarly, L. reuteri protected 

osteoporosis in an animal model of Type 1 diabetes, which is mediated by TNF-α and reduction 

of Wnt10b expression (Zhang et. al., 2015). 

2.1.5 Relationship between Lactobacillus reuteri and the Gut-Brain Axis 

In genetic, environmental, and idiopathic Autism Specific Disorders (ASD), L. reuteri 

has shown advancement in correcting the social deficiency(Sgritta et. al., 2019). The authors 

suggested that the gut-brain axis, in which L. reuteri affected GI function and gut microbiome, 

provided the basis for the physiological comprehension of L. reuteri based on a pilot 

investigation in which children with ASD received oral administration of 1010 colony-forming 

units of L. reuteri daily for a period of three months (Kong et. al., 2020). A lower amount of 

Lactobacillus spp. was seen in an animal model of autism that was genetically modified. 

Animals' unsocial behaviour was reduced when L. reuteri abundance was found, and there was 

a strong correlation found between the abundance of each of the three GABA receptor subunits 

and their expression (Tabouy et. al., 2018).  

2.1.6 Role of Lactobacillus reuteri in Cystic Fibrosis 

Dysbiosis, or alteration of the gut microbiota, has been associated with a reduction in beneficial 

bacteria and an overabundance of potentially dangerous bacteria in the gut of patients suffering 

from cystic fibrosis (Ooi, Durie, 2016). Probiotic therapy is becoming a more popular treatment 
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strategy for maintaining health and curing illnesses by altering the gut flora. When persons 

with cystic fibrosis take antibiotics on a regular basis for the treatment and prevention of 

pulmonary complications, probiotics may help restore the intestinal microbial equilibrium that 

has been upset (Gollwitzer, Marsland, 2014). Certain strains of Lactobacillus reuteri have been 

shown to have immunoregulatory effects and to help improve CF patients' gut health. Studies 

revealed that L. reuteri ATCC55730 was beneficial in reducing the frequency of infections 

associated with respiratory tract and pulmonary flare-ups in cystic fibrosis patients (Nardo et. 

al., 2014). It is now widely acknowledged that probiotics' principal impacts on the intestinal 

and extraintestinal tract are accomplished through their association with gut immunity, despite 

the long-held assumption that they may assist by reducing intestinal permeability (DuPont, 

DuPont, 2011) (Forsythe, 2011). Within this framework, a few researchers have postulated a 

gut-lung axis of probiotic activity, leading to the enhancement of the respiratory tract's innate 

and adaptive immune responses as a consequence of probiotic microorganisms stimulating the 

lymphoid tissues associated with the gut (Nardo et. al., 2014). The bronchial mucosa's elevated 

IgA-secretory cells, the proliferation of natural killer cells, also referred to as NK cells or large 

granular lymphocytes, the growth of T-regulatory cells, the generation of biologically active 

substances against lung infections, the suppression of factors that promote virulence, and the 

elevation of pulmonary macrophages' phagocytic activity could all be contributing factors to 

this gut-lung axis (Harata et. al., 2009) (Koizumi et. al., 2008) (Fink et. al., 2007). L. reuteri 

could potentially be able to alleviate the imbalance of the Cystic Fibrosis gut microbiota, which 

is characterized by a high concentration of proteobacterial species, according to another study. 

Furthermore, there was a substantial decline in inflammation in the intestine, a rise in microbial 

diversity, and a drop in the gut inflammatory marker "calprotectin" levels (Campo et. al., 2014). 

These findings thus corroborate the theory that specific L. reuteri strains affect the GI tract's 

immune response. 

2.2 Experimentally explored physiological benefits of Bacillus subtilis 

As mentioned earlier, apart from having high levels of resistance to both chemical and physical 

stimuli, in comparison to vegetative/active probiotics, spores are more resistant to 

technological stress and storage. Additionally, they are resilient to harsh intestinal and gastric 

conditions (pH, bile acids, and digestive enzymes) (Shinde et. al., 2019). Spore-forming 

probiotic bacteria are therefore seen to be an excellent alternative for strains of Lactobacillus 

and Bifidobacterium, which have the disadvantage of being less stable (Catinean et. al., 2019) 

(Jafari et. al., 2017). The benefits of utilizing Bacillus outlined above help to explain current 

initiatives to provide fresh insights into the application of spore-based probiotics, which show 
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stability comparable to other pharmaceuticals used in the traditional treatment of numerous 

illnesses (Foligné et. al., 2012). 

2.2.1 Role of Bacillus subtilis in the synthesis of anti-microbial agents 

The primary factor influencing Bacillus activity is its potential to synthesize antibiotics. The 

most efficient species is B. subtilis, which produces 66 antibiotics and dedicates 4%–5% of its 

genome to antibiotic synthesis. The antibacterial activity range and structure of Bacillus 

antibiotics vary (Reid et. al., 2003). Over the past 50 years, it has been known that B. subtilis 

has the ability to manufacture antibiotics (Caulier et. al., 2019). B. subtilis synthesizes both 

ribosomal synthesized peptides (Sumi et. al., 2015) and non-ribosomal synthesized peptides 

(Huang et. al., 2013) such as Subtilin, Ericin A and S, Mersacidin, Subtilosin A, Surfactin, 

Bacilysin, etc which have a huge spectrum of antimicrobial activity against gram-positive 

bacteria, viruses, mycoplasmas and several antibiotic-resistant strains too (Stein, 2005) (Xu et. 

al., 2012). Since these compounds are naturally occurring components of the human immune 

system, there is a decreased likelihood of pathogen resistance or undesirable side effects. 

Probiotic B. subtilis is therefore the best choice for treatment due to its wide range of activity 

and quick and targeted pathogen-killing action (Sumi et. al., 2015). The probiotic qualities of 

B. subtilis are strain-specific (Olmos et. al., 2020). B. subtilis has also been used to isolate 

pectinolytic enzymes.  

 

2.2.2 Bacillus subtilis and its immunomodulatory effects 

B. subtilis increases immunity to infections by promoting both specific and nonspecific 

immunity. There is substantial evidence that ingestion of Bacillus spores boosts the immune 

system based on a variety of research conducted in people and animal models. B. subtilis spores 

elicit particular immune responses that are both humoral and cell-mediated (Reid et. al., 2003). 

The host's innate and adaptive immune responses are developed in large part by the relationship 

between B. subtilis spores and macrophages. Activation of macrophages is caused by B. 

subtilis, as numerous investigations have shown (Xu et. al., 2012). Activation of macrophages 

is caused by B. subtilis, as numerous investigations have shown (Zamora-Pineda et. al., 2023). 

The spores of Bacillus subtilis have the potential to modulate immune responses by inducing 

pro-inflammatory cytokines and imparting probiotic effects through activated macrophage 

functions. Furthermore, B. subtilis was deemed harmless because it did not appear to be 

cytotoxic to RAW 264.7 cells (Xu et. al., 2012) (Zhao et. al., 2021). Administration of B. 

subtilis spores increases the response to antibodies (IgG and IgA) and stimulates T lymphocyte 

proliferation, suggesting that B. subtilis spores may enhance humoral and cellular immunity in 
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mice (Zhao et. al., 2021). Commensal bacteria are crucial for both innate and 

acquired immunity, as well as for the growth of the gut-associated lymphoid tissue (GALT). 

Within the GI system, B. subtilis stimulates active lymphocyte infiltration. It has been 

demonstrated that administering B. subtilis to the appendix of germ-free rabbits promotes 

GALT formation. This data demonstrated the significance of Bacillus species for the promotion 

of a strong immunological response and the establishment of a robust gut-associated lymphoid 

system (GALT) (Huang et. al., 2008). In healthy participants, oral administration of B. subtilis 

spores resulted in dose-dependent increases in the production of activation markers in 

lymphocytes (Caruso et. al., 1993). Mice exposed to B. subtilis spores had a widespread 

antibody response to ovalbumin and tetanus toxoid fragment C. According to these findings, 

B. subtilis spores are a useful additive for the mucosa and systemic lining that can be employed 

to boost humoral immune defences (Barnes et. al., 2007). 

2.2.3 Role of Bacillus subtilis in preventing intestinal inflammation and maintaining 

homeostasis 

In the host's intestinal epithelium, quorum-sensing pentapeptide generated from B. subtilis, 

competence, and sporulation factor (CSF) stimulate important survival mechanisms such as 

p38 MAP kinase and protein kinase B (Akt). In addition, CSF triggers the production of heat 

shock proteins, which shield intestinal epithelial cells from damage and the impairment of 

barrier function and allow the body to sustain intestinal homeostasis (Fujiya et. al., 2007). The 

B. subtilis quorum sensing molecule CSF increased the survival rate of animals with fatal colitis 

and decreased intestinal inflammation-induced epithelium damage. This suggests that B. 

subtilis may be advantageous in the management of intestinal inflammation. B. subtilis is useful 

in treating necrotizing enterocolitis and inflammatory bowel disease (IBD), including Crohn's 

disease, ulcerative colitis, and colitis brought on by antibiotics (Okamoto et. al., 2012). In vitro, 

it has been demonstrated that the Bacillus species (Bacillus subtilis, B. firmus, Bacillus 

megaterium, and B. pumilus) may transform genotoxic substances into non-reactive byproducts 

(Hong HA et. al., 2005). In suckling mice infected with Citrobacter rodentium (a model for 

the traveller’s diarrhoea pathogen enterotoxigenic Escherichia coli), which has been found to 

induce epithelial lesions, crypt hyperplasia, and fatalities, oral administration of B. subtilis 

spores was effective in reducing infection and enteropathy (Sanders et. al., 2003) (D'Arienzo 

et. al., 2006).  

2.2.4 Role of Bacillus subtilis against Antibiotic-associated Diarrhoea 

Numerous studies have shown that B. subtilis beneficially regulates the normal gut flora. When 

treating experimental infections in mice, 3 strains of B. subtilis proved to be effective against 
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virulent cultures of E. Coli and Campylobacter species, and it preserved the animals' normal 

microbiota while they were receiving antibiotic therapy (Sorokulova, 2008). One of the most 

significant microbes for the prevention and treatment of intestinal illnesses in humans is B. 

subtilis (Mazza, 1994). When treating acute diarrhoea, B. subtilis responded better than 

lactobacilli (Sorokulova, 2008). Patients suffering from acute intestinal infections were given 

B. subtilis as part of clinical research. The results demonstrated the strong healing impact of 

Bacillus probiotics, as evidenced by a rapid recovery of stool to normal, the alleviation of 

abdominal pain, and the reduction of intestinal dysbiosis. Probiotics from Bacillus were proven 

to be both safe and well-tolerated (Gracheva et. al., 1996). The effects of B. subtilis on the 

microbiota of the intestine in cases of acute gastrointestinal issues and dysbacteriosis in 53 

neonates with perinatal ailments have also been studied. The newborn children's diarrhoea and 

dysbacteriosis responded well to treatment and prophylaxis, with no adverse effects seen 

(Slabospitskaia et. al., 1995). Over 1800 people have participated in 23 clinical trials for 

probiotic preparations featuring B. subtilis R0179 with different probiotics. It has been used as 

a co-adjuvant therapy with sulfasalazine and mesalazine to improve recuperation times in 

minor to moderately severe ulcerative colitis, as well as to enhance adherence with traditional 

triple therapy for Helicobacter pylori elimination. These uses include the amelioration of 

symptoms related to chronic diarrhoea and irritable bowel syndrome(Tompkins et. al., 2010). 

Owing to the substantial medical advantages of probiotic supplements, the global market for 

them has expanded during the past 20 years. The most prevalent genera are Lactobacillus and 

Bifidobacterium, mostly because of their capacity to keep infections out. However, they lack 

B. subtilis's multipurpose therapeutic capabilities. Scientists are becoming increasingly 

intrigued by Bacillus bacteria as potential probiotics because of their potent antimicrobial, 

antidiarrheal, and immunostimulatory attributes, as well as their capacity to promote the growth 

of natural flora, lower intestinal inflammation, and maintain a high degree of balance under 

adverse environmental conditions. Additionally, it has been confirmed and approved by 

regulatory bodies such as the FDA and EFSA due to its proven efficacy and safety in many 

randomized, double-blind clinical trials. Thus, B. subtilis may prove to be the "ideal 

multipurpose and the most versatile class of probiotic" for treating an array of physiological 

ailments in patients. 
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3. MATERIALS AND METHODS 

3.1  Chemicals 

Butanol, Sodium Azide, Pyridine, Glycerol, Hydrogen Peroxide Solution, Hydrochloric 

Acid Solution, and Bovine Serum Albumin (BSA) were procured from Sigma-Aldrich, 

MO, USA. Bioassay Kits were procured from ARKRAY Healthcare Private Limited, India 

to measure several biochemical parameters. Lactobacillus MRS Broth and Tryptone Soya 

Broth were obtained from Himedia Laboratories Private Limited in India. sodium arsenite, 

ethylenediaminetetraacetic acid (EDTA), Tris HCl, potassium dihydrogen phosphate, 5,5’-

disthiobis-(2-nitrobenzoic acid), methanol, nitro blue tetrazolium (NBT), NADH, 

phenazine methosulphate, GSH, 2,4-dinitrophenylhydrazine, trichloroacetic acid, ethanol, 

dischlorodihydrofluorescein diacetate (DCFDA), sodium dodecyl sulphate, and 

thiobarbituric acid (TBA) were obtained from Sisco Research Laboratory, Mumbai, 

India. Every reagent utilized was of analytical grade.  

3.2 Preparation of Bacterial Strain 

Lactobacillus reuteri ATCC 23272 DSM 20016, used in this study, was obtained from the 

American Type Culture Collection (ATCC), The Global Bioresource Centre, USA. The 

frozen stock culture strains were grown overnight on de Man-Rogosa-Sharpe (MRS) broth 

containing 15 mM glucose at 37°C without shaking. Bacillus subtilis MTC 441 strains were 

also used in this study and they were procured from the Microbial Type Culture Collection 

(MTCC), IMTECH Chandigarh, India. All the test strains were cultured on nutrient agar at 

35 ± 1 °C and maintained at 4 ± 1 °C. A single colony of both strains was then transferred 

to MRS Broth and grown at 37°C for 24 hours separately. Following this, the cells were 

inoculated in MRS Broth and then grown for another 24 hours. The cells were harvested 

by centrifugation at 8000×g for 3 min and aliquots of 108 Colony Forming Units (CFU) 

were prepared in Tryptone Soya Broth with 10% Glycerol and stored at -80°C. (Jiang et. 

al., 2021) Before administration, the cells from both strains were washed twice in sterile 

Phosphate Buffer Saline (PBS) and resuspended in 1ml of PBS. Each rat was then orally 

administered with 1ml of PBS containing 2×108 CFU of the probiotic bacterial strains. 

3.3 Experimental Animals 

Twenty-four Male Wistar rats of weight ranging between 180 and 200g were obtained from 

Saha Enterprise, Kolkata, West Bengal, India. The rats were kept in standard polypropylene 

cages of dimensions 29×22×14cm. Animals were maintained under standard laboratory 
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conditions of temperature (20 ± 2 ºC), relative humidity (50 ± 15%), 12 h light-dark cycle, 

standard diet, and water ad libitum and all of these was carried out in the animal house of 

the Department of Pharmaceutical Technology at Jadavpur University, Kolkata. 

Instructions prescribed by our Institutional Animal Ethics Committee (IAEC) (Approval 

number JU/IAEC-22/35) were followed throughout the experiment. All the experimental 

procedures were performed, carefully keeping in mind and by abiding by the Principles of 

Laboratory Animal Care (Public Health Service, 2015). An acclimatization period of 14 

days was observed before starting the in vivo experiment.  

3.4 In vivo Bioassay 

3.4.1 Experimental setup 

The in vivo experiment was performed as per the established protocol in our laboratory 

(Das et. al., 2010). Twenty-four Male Wistar Rats (♂) were divided into 6 groups(n=6) and 

treated as mentioned below: 

Group I: In the control group, rats were fed with 1ml Phosphate Buffer Saline (PBS) via 

an intragastric tube once a day for 10 days; 

Group II: In the toxic control group, rats were treated with sodium arsenite (10mg/kg body 

weight, p.o., once daily) via an intragastric tube once a day for 10 days; 

Group III: In the first treatment group, the rats received a daily dose of sodium arsenite at 

a concentration of 10mg/kg body weight, along with 1mL of Lactobacillus reuteri at a 

concentration of 2×108 CFU/mL administered orally via an intragastric tube, once a day, 

for 10 days. 

Group IV: In the second treatment group, the rats received a daily dose of sodium arsenite 

at a concentration of 10mg/kg body weight, along with 1mL of Bacillus subtilis at a 

concentration of 2×108 CFU/mL administered orally via an intragastric tube, once a day, 

for 10 days. 

The dosage of Lactobacillus reuteri and Bacillus subtilis was calculated after a thorough 

comprehension of the literature available about the therapeutic and protective actions these 

probiotic strains have shown (Das et. al., 2010). The intake of food and water was 

monitored twice a day. After 10 days, at the end of this experiment, rats were fasted 

overnight for around 16 hours, and on the 11th day, they were sacrificed under euthanasia. 

Before sacrificing the rats, their body weight was also calculated. For the measurement of 
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biochemical markers, the blood samples were obtained from the retro-orbital venous plexus 

after applying tetracaine (0.5%) to the eyes (Das et. al., 2018). The livers were excised and 

cleaned with PBS. The weight of each liver was recorded. The liver was then divided into 

2 portions, one was preserved in 10% formalin solution for further histological 

investigations while the other was immediately homogenized in Tris–HCl (0.01 M) + 

EDTA (0.001 M) buffers of pH 7.4 and centrifuged (12,000g) at 4°C for 30 min to obtain 

tissue homogenate. A schematic overview of the in vivo experimental setup is presented 

below: 

 

Figure 1. Schematic overview of the experimental protocol 

3.4.2 Estimation of Serum Biochemical Parameters 

Using commercially available kits (ARKRAY Healthcare Private Limited, India), the 

levels of Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline 

Phosphatase (ALP), Lactate Dehydrogenase (LDH), Creatinine Kinase (CK), and C- 

reactive protein (CRP) in the sera were measured in accordance with the instructions 

provided in the manual by the provider.  
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3.4.3 Assays for Biochemical and Redox Markers in Liver 

The levels of ROS, GSH, SOD, CAT, lipid peroxidation, and protein carbonylation in the 

livers of the rats that received different probiotic treatments were measured according to 

established protocols (Manna et. al., 2022). The levels of SOD and CAT were expressed as 

the inhibition of NBT reduction per minute and H2O2 consumption per minute 

respectively. The extent of lipid peroxidation and protein carbonylation were also estimated 

using established protocols (Manna et. al., 2022). 

3.4.4 Measurement of in-vitro Arsenic Uptake 

The capacity of the probiotic strains Lactobacillus reuteri and Bacillus subtilis to uptake 

different concentrations of Arsenic in different time frames under in vitro conditions also 

mentioned as Biosorption in several works of literature, was measured in UV Double Beam 

Spectrophotometer (Lab India model number 3200, India) explained in the referred 

protocol (Yan et. al., 2010). 

3.4.5 Histological Studies 

To conduct the histological analysis of the liver tissue, a portion of it from experimental 

animals during sacrifice, was carefully washed with ice-cold phosphate buffer solution at a 

pH of 7.4. Later, the tissue was preserved in a 10% formaldehyde solution and subsequently 

mounted in paraffin blocks for sectioning. In accordance with the established protocol, the 

sections were appropriately stained using haematoxylin and eosin(H&E) stains and imaged 

using a Leica DFC 450C microscope at a magnification of 100X (Dewanjee et. al., 2013). 

3.4.6 Statistical Analysis 

Experiments were performed in triplicate. The mean ±SD values were used to represent the 

data obtained from the experiment. The results underwent statistical analysis using one-

way ANOVA followed by Dunnett’s t-test with the assistance of GraphPad InStat (version 

3.05), GraphPad Software, USA. Any p-values below 0.01-0.05 were deemed significant.



 

 
 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

Contents 

4. Results and Discussions 

4.1 Results 

4.1.1 Effect of L. reuteri and B. subtilis on sodium arsenite intoxication 

4.1.1.1 Impact on body weight and liver weight of the rats 

4.1.1.2 Effect on Serum Biochemical Parameters 

4.1.1.3 Effect of Redox Markers in Liver 

4.1.1.4 Effect of L. reuteri and B. subtilis on in-vitro concentrations of arsenic 

4.1.1.5 Effects on Histology of Hepatic Tissue 

4.2 Discussions

 



Chapter 4   Results & Discussion 
   

27 
 

4. RESULTS AND DISCUSSIONS 

4.1  Results 

4.1.1 Effect of L. reuteri and B. subtilis on sodium arsenite intoxication 

4.1.1.1 Impact on body weight and liver weight of the rats 

No major change in the food and water requirements of either of the experimental groups 

was observed throughout the experiment. However, a decrease in the body weight of rats 

treated with sodium arsenite was noticed. But when they were given L. reuteri and B. 

subtilis, they regained weight up to some extent. A reverse pattern was observed in Liver 

weight. A significant increase was observed in rats intoxicated with sodium arsenite as 

compared to the ones given normal food and water i.e., the control group(Group I). 

However, the other 2 groups treated with L. reuteri and B. subtilis, had their liver weights 

similar to the control group. 

 

Figure 2. Impact of sodium arsenite on body weight gain in experimental rats. Values are 

expressed as mean±SD (n=6).  
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 Figure 3. Impact of sodium arsenite Intoxication on the liver of rats. Values are expressed 

as mean±SD (n=6).  

4.1.1.2 Effect on Serum Biochemical Parameters 

Sodium arsenite intoxication damaged hepatocytes which caused enzymes like ALT, AST, 

and  ALP to leak into the bloodstream. Their elevated concentrations increase 

hepatocellular damage. Treatment with L. reuteri and B. subtilis controlled the damage and 

put the enzymatic level nearly back to the control levels, which indicates their beneficial 

effects on hepatotoxicity. The effects of sodium arsenite intoxication on serum biochemical 

parameters are demonstrated by the significant rise of ALT, AST, ALP, LDH, CRP, and 

CK in comparison with the control group but co-administration of L. reuteri and B. subtilis 

reduced all of these to near normal state. The effects of sodium arsenite and treatment with 

L. reuteri and B. subtilis are shown in the Figure 4 given below. 
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Figure 4. Effect of sodium arsenite intoxication and treatment with L. reuteri and B. subtilis 

on serum biochemical parameters in the experimental rats. Values are expressed as 

mean±SD (n=6). * indicates p<0.01 with respect to the control group (Group I); # indicates 

p<0.01 with respect to toxic group(Group II) 

4.1.1.3 Effect of Redox Markers in Liver 

The rats intoxicated with sodium arsenite exhibited an increase in the intracellular levels of 

ROS, lipid peroxidation (TBARS level), and protein carbonylation, within the hepatic 

tissue. However, the rats that were treated with L. reuteri and B. subtilis along with the co-

administration of sodium arsenite, had these redox markers significantly reduced as 

compared to the ones that were not given any treatment. On the contrary, sodium arsenite 

reduced GSH levels and endogenous antioxidant enzymes like SOD and CAT in the hepatic 

tissue, further worsening the condition of the liver. However, simultaneous administration 

of L. reuteri and B. subtilis effectively restored and brought the GSH levels and antioxidant 

enzymes back to normal up to a great extent. Figure 5 below shows the effect of L. reuteri 

and B. subtilis on sodium arsenite-intoxicated experimental rats. 
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Figure 5. Effect of sodium arsenite intoxication and treatment with L. reuteri and B. subtilis 

on redox markers in the liver tissue of the experimental rats. Values are expressed as 

mean±SD (n=6). * indicates p<0.01 with respect to the control group(Group I); # indicates 

p<0.01 with respect to toxic group(Group II) 

4.1.1.4 Effect of L. reuteri and B. subtilis on in-vitro concentrations of Arsenic 

The results indicated that when compared simultaneously, L. reuteri performed better than 

B. subtilis in up taking Arsenic with a contact time ranging from 0 mins to 180 mins at both 

concentrations i.e., 500mg/L sodium arsenite and 1000mg/L sodium arsenite. Figure 6 and 

Figure 7 below show the uptake capacity of both strains under constant temperature and 

pressure conditions. 
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Figure 6. In vitro Arsenic uptake by L. reuteri(Series 1) and B. subtilis(Series 2) at 

500mg/L sodium arsenite concentration. Values are expressed as mean±SD (n=3). 

 

Figure 7. In vitro Arsenic uptake by L. reuteri(Series 1) and B. subtilis(Series 2) at 

1000mg/L sodium arsenite concentration. Values are expressed as mean±SD (n=3). 
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4.1.1.5 Effects on Histology of Hepatic Tissue 

Histological sections (100X) of the experimental animals are given in Figure 8. It provides 

a brief idea of the hepatic injury caused by sodium arsenite intoxication and the 

ameliorative effects when treated with L. reuteri and B. subtilis. The images in the figure 

strengthen the notion of the hepatoprotective effects of L. reuteri and B. subtilis against 

arsenic-induced hepatotoxicity. 

 

Figure 8. Haematoxylin-eosin (H&E) stained histopathological observations of rat liver. 

The hepatic tissue section of a normal rat(Group I) exhibited normal and intact hepatocytes 

(shown by yellow arrows). The liver of rats exposed to sodium arsenite(Group II) showed 

a dilated portal vein (indicated by red arrow) and had several apoptotic anomalies (indicated 

by green arrows) as compared to the control group. However, the livers of the sodium 

arsenite-intoxicated group of rats which were co-administered with L. reuteri (Group III) 

and B. subtilis (Group IV) indicate a possible reversal of the hepatocellular damage caused 

by sodium arsenite(shown by green arrows) and the hepatocytes seem to re-attain their 
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normal morphology (indicated by yellow arrows) when compared to the control group 

(Group I). 

4.2 Discussions 

Arsenic, a naturally occurring metalloid, is known for its toxic effects on various organ 

systems, with the liver being a primary target (Mirza et. al., 2014). Hepatotoxicity, or liver 

damage caused by poisonous substances, due to arsenic exposure is a significant concern, 

especially in areas where drinking water is contaminated with arsenic. Arsenic poisoning 

from drinking water contamination is an enormous problem that affects everyone 

around the globe. The hepatotoxic effects of arsenic are complex and involve multiple 

mechanisms, which can lead to both acute and chronic liver injury. Mechanisms of Arsenic-

Induced Hepatotoxicity involve oxidative stress (Lantz and Hays, 2006).. Arsenic exposure 

leads to the generation of reactive oxygen species (ROS) such as superoxide anions, 

hydrogen peroxide, and hydroxyl radicals. These ROS are highly reactive and can damage 

cellular components, including lipids, proteins, and DNA (Flora, 2011). These ROS can 

further initiate the process of lipid peroxidation, where free radicals attack lipids in cell 

membranes, leading to membrane damage, increased membrane permeability, and 

ultimately cell death. In the liver, this can compromise hepatocyte integrity, leading to cell 

injury and apoptosis. Arsenic interferes with the body's antioxidant defence systems by 

depleting glutathione (GSH) and impairing the function of antioxidant enzymes like 

superoxide dismutase (SOD) and catalase (Laborde, 2010). This exacerbates oxidative 

stress and enhances liver damage. Few studies also indicate that arsenic contamination also 

leads to mitochondrial dysfunction (Nemeti et. al., 2002). Arsenic disrupts mitochondrial 

function by inhibiting the electron transport chain (ETC), particularly complexes I and III. 

This leads to a decrease in ATP production and an increase in electron leakage, further 

contributing to ROS generation. Arsenic has also been related to inducing mitochondrial 

permeability transition, a process that causes the mitochondrial membrane to become 

permeable to small molecules. This can result in the loss of mitochondrial membrane 

potential, release of pro-apoptotic factors like cytochrome c, and activation of the intrinsic 

pathway of apoptosis in hepatocytes. Arsenic exposure can activate various pro-

inflammatory signaling pathways, including nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs). These 

pathways lead to the production of inflammatory cytokines such as tumour necrosis factor-

alpha (TNF-α) and interleukins (IL-1β, IL-6). Kupffer cells, the resident macrophages of 



Chapter 4   Results & Discussion 
   

34 
 

the liver, are activated in response to arsenic-induced oxidative stress and inflammation 

(Cui et. al., 2019). Activated Kupffer cells produce more ROS and release cytokines, 

perpetuating liver inflammation and injury. As a result of all the inflammation and 

depletion of anti-inflammatory markers, mechanisms of cell death also known as apoptosis 

and necrosis are triggered, worsening the situation even more. Arsenic-induced apoptosis 

is mediated by both the intrinsic (mitochondrial) and extrinsic (death receptor) pathways. 

The release of cytochrome c from mitochondria and the activation of caspases (such as 

caspase-3) are key events in this process. In cases of severe arsenic toxicity, the cellular 

damage can overwhelm the apoptotic machinery, leading to necrosis, a form of cell death 

characterized by cell swelling, membrane rupture, and inflammation. Necrosis further 

exacerbates liver damage and can lead to fibrosis over time. Not only cellular but arsenic 

also infiltrates the genetic level thus causing several epigenetic modifications. Arsenic can 

alter the methylation status of DNA, leading to changes in gene expression (Sharma et. al., 

2014). Hypomethylation of oncogenes and hypermethylation of tumour suppressor genes 

have been observed in arsenic-exposed individuals, contributing to the risk of 

hepatocellular carcinoma. Arsenic exposure can also induce histone modifications, such as 

acetylation and methylation, which can affect chromatin structure and gene expression, 

leading to disrupted cellular functions and increased susceptibility to liver damage. Arsenic 

disrupts the hepatic metabolism by interfering with heme synthesis and degradation, 

leading to the accumulation of porphyrins and other intermediates that are toxic to 

hepatocytes. This disruption can also impair the detoxification processes in the liver, 

increasing vulnerability to further toxic results. Arsenic can disrupt the normal synthesis 

and secretion of bile acids, leading to cholestasis (bile flow obstruction) and hepatocyte 

injury. This can further contribute to the development of fibrosis and cirrhosis (Shi et. al., 

2017). There are several clinical implications involved with arsenic toxicity. Some of these 

are symptoms of acute hepatitis, including jaundice, elevated liver enzymes (AST, ALT), 

and abdominal pain. Chronic exposure to lower levels of arsenic is associated with the 

development of liver fibrosis, cirrhosis, and an increased risk of hepatocellular carcinoma 

(HCC). Arsenic exposure has also been linked to the development of non-alcoholic fatty 

liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), conditions characterized 

by fat accumulation in the liver, inflammation, and liver damage(Boursier et. al., 2016). 

Although antioxidant therapy and chelation therapies are already available as treatment 

options, their effectiveness is not as high as it should be (Susan et. al., 2019). For this 

reason, we have investigated the potential of probiotic strains to mitigate arsenic toxicity. 
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Probiotic strains such as Lactobacillus reuteri and Bacillus subtilis have shown promise in 

reducing arsenic-induced hepatotoxicity through various protective mechanisms. These 

probiotics can mitigate liver damage caused by arsenic exposure by modulating gut 

microbiota, enhancing the body's detoxification processes, reducing oxidative stress, and 

modulating the immune response. Arsenic exposure can disrupt the gut microbiota, leading 

to dysbiosis, which is associated with increased intestinal permeability ("leaky gut") and 

systemic inflammation"(Paolella et. al., 2014). Lactobacillus reuteri and Bacillus subtilis 

help restore a healthy balance of gut bacteria, promoting the growth of beneficial microbes 

and inhibiting pathogenic ones. This balance is crucial in preventing the translocation of 

endotoxins and arsenic from the gut into the bloodstream, thereby reducing liver exposure 

to these harmful substances. These probiotics can bind to arsenic in the gut, reducing its 

absorption and promoting its excretion (Lo et. al., 2014). This reduces the overall arsenic 

burden in the body, leading to lower levels of arsenic reaching the liver and other organs. 

By reducing oxidative stress, these probiotics help protect hepatocytes from arsenic-

induced lipid peroxidation and DNA damage. These probiotics can also upregulate the 

expression and activity of the body's antioxidant enzymes, such as superoxide dismutase 

(SOD), catalase, and glutathione peroxidase. Enhanced antioxidant defences help 

counteract the oxidative damage caused by arsenic exposure. As shown in Figure 5, L. 

reuteri and B. subtilis have substantially reduced ROS formation and increased the 

deterring levels of GSH, thus reversing the damage posed to the hepatocytes, which is 

evident in the histopathological images attached in Figure 8. Probiotics may enhance the 

body's natural detoxification pathways. For example, Bacillus subtilis is known to produce 

enzymes that can assist in detoxifying heavy metals and other toxins. This can help in 

reducing the hepatic load of arsenic. Some probiotic strains, including Lactobacillus 

reuteri, have metal-binding properties. They can chelate arsenic ions, thereby reducing 

their bioavailability and toxicity. This binding occurs in the gut, where the chelated arsenic 

is excreted through faeces, reducing the amount that reaches the liver. The findings of this 

investigation indicate that L. reuteri and B. subtilis offer several benefits when it comes to 

liver health, from reversing oxidative injury caused by Arsenic to maintaining antioxidant 

hepatic enzymes and redox markers. The results project that L. reuteri and B. subtilis can 

efficiently act against arsenic intoxication, without compromising the body weight of the 

individual, and by maintaining a healthy liver weight, shape, and morphology. These strains 

proved that they can actively maintain lipid peroxides, protein carbonyls, inflammatory 

redox markers, and the apoptosis of hepatocytes caused by arsenic.  Not only that, these 
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strains can easily help the body recover from hepatic injury by recovering the various 

enzymes such as AST, ALT, ALP, LDH, CRP, and CK. The deterring impact of arsenic on 

the liver and the ameliorative effects of L. reuteri and B. subtilis was properly demonstrated 

by the Haematoxylin & Eosin-stained histopathological investigations.  

 

 

 

 

Figure 9. The deteriorative effects of Arsenic on Liver and the ability of Lactobacillus 

reuteri and Bacillus subtilis to ameliorate the harm.
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5. CONCLUSION 

This extensive research adds to a clearer understanding of the hepatoprotective effects of the 

probiotic strains Lactobacillus reuteri and Bacillus subtilis and offers substantial evidence of 

its intrinsic potential to be used as a treatment alternative for hepatic ailments. Lactobacillus 

reuteri and Bacillus subtilis reduce arsenic-induced hepatotoxicity through multiple 

mechanisms, including modulation of gut microbiota, enhancement of antioxidant defenses, 

promotion of detoxification processes, anti-inflammatory effects, and improvement of 

intestinal barrier function. These protective effects make these probiotics potential candidates 

for mitigating liver damage in individuals exposed to arsenic, especially in regions with high 

levels of environmental arsenic contamination. By their ability to significantly elevate the 

serum biochemical parameters such as AST, ALT, ALP, CK, CRP, and LDH, it is clearly 

evident that they can manage the hepatocellular damage caused by Arsenic toxicity. Along with 

that, employing this investigation, we also derived that Lactobacillus reuteri and Bacillus 

subtilis possess anti-oxidant properties as they restored the normal levels of ROS, lipid 

peroxidation, SOD, CAT, protein carbonylation, and reduced glutathione. This will prove 

advantageous, if, utilized in treating several oxidative stress-related disorders. These strains are 

exceptionally promising and should be studied more to explore more medical benefits that will 

eventually benefit mankind. 
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