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PREFACE

Research is carried out to design and develop newer drugs in academic institutions and
pharmaceutical industry. The new drug design involves in modifying the existing
bioactive drugs to change their therapeutic effects along with developing new bioactive

chemical molecules.

Antifungal resistance is now well documented for many pathogens, and studies with a
variety of fungi indicate that resistance can develop within just a few years. Resistance
against many members of azoles, particularly older ones, such as miconazole is
increasing. Cancer is still one of the leading cause of deaths worldwide. Adverse
cytotoxicity is one of the worst outcomes of anticancer agents. So, there is ongoing
research for the synthesis of less resistant antifungal agents and also anticancer agents

with less cytotoxicity and better efficacy.

The heterocyclic compounds display various biological activity. Among the
heterocyclic compounds, 1,3,4-oxadiazole molecule exhibits versatile biological

activities including antifungal and anticancer activity.

The present work entitled " Synthesis, characterization, molecular docking and in

silico ADME studies of 1,3,4-oxadiazole Derivatives " undertaken with an aim to
synthesize a suitable lead compound which can be exploited to develop novel

antimicrobial and/or anticancer agents.
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Introduction

1.1) Introduction

Because of their biological significance, a number of physiologically significant compounds
containing heteroatoms, such as those containing nitrogen, oxygen, and sulfur, have piqued the
curiosity of researchers over time. These molecules that include heteroatoms have exceptional
biological activities, such as antibacterial, anticancer, antidiabetic, and antiepileptic properties.
An essential class of heterocyclic compounds, oxadiazoles have a five-membered ring
containing two nitrogen atoms and one oxygen atom.[1] Oxadiazole has four isomers. Out of
these, the 1,2,3-isomer has exhibited instability because it shows diazoketone tautomerism
(ring opening). But, 1,3,4 oxadiazole is more stable than the rest of the isomers. In the realm
of energetic materials, oxadiazole-based energetic compounds have garnered a lot of attention
lately. Among these, 1,3,4-oxadiazole exhibits moderate energy levels and superior stability
because it lacks easily cleaved N—O bonds in contrast to other oxadiazole isomers. Ainsworth
et al. synthesized this heterocyclic ring for the first time in 1965 using the hydrazine thermal
breakdown mechanism. The moiety oxadiazole has the formula C2ZH20ON2, a molecular weight

of 70.05 g/mol, and it is soluble in water. The four isomers are shown in Figurel.[2][3]

NN )\ \FN /A
[\ /N [ N
ko) kC)’ ( /N N\O/

1.3.4-oxadiazole |.2.4-oxadiazole 1.2 3-oxadiazole 1.2.5-oxadiazole

Figurel; Isomers of 1,3,4-oxadiazole

1,3,4 oxadiazole is an aromatic heterocycle, having resonance energy around 167.4 kJ/mol,
which is the reason of it being thermostable. It is noticed that substitution at the second position

boosts its thermal stability.[4] Salts of 1,3,4-oxadiazolium are produced when electrophilic

l|Page
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reactions at carbon atoms are difficult due to the decreased electron cloud density in the carbon
centres of the oxadiazole moiety. In halogenated oxadiazole, on the other hand, nucleophilic

substitution processes continue by substituting the halogen atom (Figure 2).[5]

0
N-N*

Oxadiazolium salt

R4
R4X
R
=
N%O
X
Nu R (0] -X R

@)
A el
Nu

Nucleophillic substitution

Figure2: Substitution reaction given by 1,3,4-oxadiazole

The characteristics of the 1,3,4-oxadiazole core resemble those of an aromatic heterocycle. As
a result, it exhibits typical aromatic system interactions with hydrophobic amino acids like
tyrosine, phenylalanine, and tryptophan, such as m-m stacking. A group of 1,3,4-oxadiazoles
were created by Dhumal et al. with the intention of blocking the action of Mycobacterium
tuberculosis's mycobacterial enoyl reductase (InhA). Dhumal ef al.'s docking investigations on
InhA revealed that the oxadiazole core interacts with Tyr158 and Phe149 via a n-n stacking(Fig
3). The authors' other 1,3,4-oxadiazoles likewise exhibit this type of interaction; the only
relevant modifications occur at the level of the other structural decorations, such as a pyridine

ring.[6] The cation-m interaction is another potential interaction between 1,3,4-oxadiazoles and

2|Page
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proteins A series of a-glucosidase inhibitors was synthesized by Taha et al. using a 5-aryl2-(6'-
nitrobenzofuran-2'-yl)-1,3,4-oxadiazole scaffold. According to docking studies, residue His279

and the 1,3,4-oxadiazole moiety interacted through a cation-rn interaction.(Fig 4) [7]

— Tyr \
158
( )
—N
Fig3; n-n stacking of Fig4; cation-n interaction of
1,3,4oxadiazole 1,3,4-oxadiazole

Because of the diverse binding properties with proteins, 1,3,4 oxadiazole is established as a
very important scaffold as a building block a pharmacophore. The hetero atoms increase
hydrogen bond interactions with amino acids. Various marketed drugs have this 1,3,4
oxadiazole moiety showing diverse pharmacological significance. 1,3,4-oxadiazole is ruling in
the sectors of antimicrobial, antihypertensive, anticancer, analgesics. These are depicted in

figure 5. [8]
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1,3,4- Oxadiazole containing
marketed drugs
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Fig5; Marketed drugs having 1,3,4-oxadiazole scaffold

There are lots of feasible synthetic pathway available for fetching this 1,3,4 oxadiazole moiety.
Most widely used is cyclization of acyl hydrazides as depicted in literature.[9] Because of the
stability, diverse biological properties which have gained commercialization and synthetic
feasibility, 1,3,4 oxadiazole has gained lots of attention in the field of medicinal chemistry. It
is already established that this scaffold has antimicrobial, anticancer, antitubercular,
antiepileptic as well as analgesic properties. Researchers are working vigorously to synthesize
new derivatives of 1,3,4 oxadiazole and evaluating their biological properties. My work is

dedicated to synthesize 1,3,4 oxadiazole derivatives and perform their characterization.
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2.1) Pharmacological attributes of 1.3.4-oxadiazole derivatives

In medicinal chemistry, we use heterocyclic aromatic rings rather than normal aryl groups, as
the lone pair of electrons on the heteroatoms(N,O,S) can act as hydrogen bond acceptors, and
show higher degree of interaction with the protein. There are lot’s of commercially available
drugs containing 1,3,4-oxadiazole moiety like Furamizole (potent antibacterial action),
Nesapidil (anti-arrhythmic action), Raltegravir (antiviral drug),Tiodazosin, (antihypertensive
agent), and the most promising FDA-approved derivative, the anticancer agent Zibotentan. .
The 1,3,4-oxadiazole containing compounds have showed various pharmacological
significances in recent research activities by various researchers.

Owing to different activities 1,3,4-oxadiazole possess, we classify them as follows.

2.1.1) ANTIMICROBIAL ACTIVITY

2.1.1.1) Antibacterial activity

Kumar ef al. used a serial tube dilution procedure to screen their synthesized 2,5 substituted
oxadiazole derivatives for antimicrobial activities. "The erstwhile screening against Gram
(+ve) and Gram-negative (-ve) bacterium strains, compound 1[Fig 6] displayed moderate
antibacterial reaction against S. aureus, E. faecalis, E. coli, and K. pneumoniae with MIC 7.55
uM. Along the same lines, compound 2[Fig 7] exhibited light antimicrobial reaction against

S. aureus, E. faecalis, E. coli, K. pneumoniae, and T. harzianum with MIC 7.76 uM. [1]

O:(\S O:{\S
N N
o:\ﬁ\l O/\<N
N \N,

Cl

O,N

Fig 6; Compound1 Fig7; Compound2
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Kim et al. synthesized pyrrole ligated 1,3,4 oxadiazole compounds. They performed one-pot
Maillard reaction between D-Ribose and an L-amino methyl ester in DMSO in presence of
oxalic acid at 2.5 atm and 80° C to produced pyrrole-2-carbaldehyde platform chemicals, which
were then utilised to. Then they took benzohydrazide, and reacted with the formyl group of the
pyrrole platforms to provide the corresponding imine intermediates, which underwent lodine-
mediated oxidative cyclization to produce the pyrrole-ligated 1,3,4-oxadiazole skeleton. The
MIC values of <2 pg/mL for compound 3 (Fig 8) and 8 ug/mL for compound 4 (Fig 9) against
A. baumannii were much lower than those of the positive controls (>1024 pg/mL for
vancomycin and 128 pg/mL for erythromycin). They also produced remarkable effects against

S.aureus [2]

| \ OH | \ o on

Fig8; Compound 3 Fig9; Compound 4

In 2017, World Health Organization declared MRSA (Methicillin resistant Staphylococcus
aureus) as one of the 12 deadliest antibiotic resistant bacterial strains. Guo et al. combined
norfloxacin (2" generation broad spectrum fluoroquinolone) with 1,3,4 oxadiazole moiety and
investigated this combination against MRSA. Compound 5 (Fig 10) exhibited excellent
antibacterial activities against S. aureus (MIC: 2 ng/mL) and MRSA1-3 (MIC: 0.25-1 pg/mL).
The time-kill kinetics which they have used, demonstrated that compound 5 had an advantage
over commonly used antibiotics vancomycin in killing S. aureus and MRSA. Moreover,
compound S could inhibit the bacteria and destroy their membranes in a short time, and

showed very low cytotoxicity to NRK-52E [3]

7|Page
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Fig10; Compound 5

2.1.1.2) Antifungal activity

Fungal infections have become a major problem worldwide, specially for
immunocompromised patients. With the aim of discovering novel anti candidal agents,
Karaburun et al. synthesized a series of benzimidazole-oxadiaazole hybrid compounds and
evaluated their antifungal activities in vitro against various Candida strains including C.
albicans (ATCC 90030), C. krusei (ATCC 6258) and C. parapsilopsis (ATCC 22019) biding
by the protocol of the EUCAST. They found that Compound 6 was the most potent derivative
of the series, with MIC50 values of 1.95 ug/mL, 7.8 pg/mL and 31.25 pg/mL against C.
albicans, C. krusei and C. parapsilopsis, respectively. The cytotoxicity profiling of compound
6 against NH/3T3 cells proved that compound 6 (Fig 11) is nontoxic to mammalian cells at

it’s active concentration.[4]

T-O<XT L

Figll; Compound 6
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Liao et al. designed and synthesized novel series of fluconazole based mimics incorporating
1,3,4-oxadiazole moiety and tested their antifungal activity against seven human pathogenic
fungi, Candida albican SC5314, Candida albican Y0109, Cryptococcus neoformans, Candida
parapsilosis, Candida glabrata, Trichophyton rubrum, and Microsporum gypseum. They kept
itraconazole and fluconazole as positive controls. The MIC80 values of compound 7 (Fig 12)
and 8 (Fig 13) (0.125 pg/mL) against the listed fungal strains indicated that they were up to

64-fold more potent than fluconazole and itraconazole.[5]

O

Figl12; Compound 7 Fig13; Compound 8

2.1.1.3) Antiviral activity

Masouri et al. synthesized a new series of furo[2,3-d]pyrimidine—1,3,4-oxadiazole hybrid
derivatives via environmentally friendly multistep synthetic tool and one pot Sonoashira-
Heterocyclization. Compounds 9-11 (Fig 14-16) demonstrated low micromolar EC50 values
and broad-spectrum action against both wild and mutant strains of the varicella-zoster virus
(VZV). The compound 11 reached three times more effective against thymidine kinase
deficient VZV strains than the benchmark medication acyclovir. Significantly, derivative 9b
exhibited a satisfactory selectivity index value of up to 7.8 and was not cytostatic at the highest

tested concentration (CC50 > 100 uM). [6]

9| Page
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Figl4; Compound 9 Figl5; Compound 10 Figl6; Compound 11

A well-known plant virus called tobacco mosaic virus (TMV) can spread to at least 400 distinct
species, including numerous decorative flowers, tobacco, cucumbers, and tomatoes. Gan et al.
synthesized a number of new 1,3,4-oxadiazole/thiadiazole—chalcone conjugates. The half-leaf
method and microscale thermophoresis method were used to assess each compound's antiviral
activity in vivo and in vitro, respectively. According to the in vitro data, compounds 12 (Fig
17) and 13 (Fig 18) had strong antiviral activity against TMV, with binding constant values of
5.93 and 6.15, respectively. These values were superior to those of ribavirin (99.25 uM) and
equivalent to those of ninnanmycin (6.78 uM). With EC50 values of 33.66 and 33.97 mg/mL,
respectively, compounds 12 (Fig 17) and 13 (Fig 18) showed outstanding anti-TMV activity
in the in vivo results. These values were equal to those of Ningnanmycin (36.85 mg/mL) and

superior to ribavirin (88.52ug/ml). [7]
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Fig17; Compound12 Fig18; Compound 13

2.1.2) ANTITUBERCULAR ACTIVITY:

Desai et al. synthesized and assessed the in vitro antitubercular activity of a series of indole-
and pyridine-based 1,3,4-oxadiazole derivatives against both active and dormant forms of
Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Ra (MTB). Compounds 14
(Fig 19) and 15 (Fig 20) demonstrated excellent antitubercular efficacy. Using a modified MTT
assay, all of the newly synthesized compounds were determined to be noncytotoxic after being
further assessed for their anti-proliferative efficacy against HeLa, A549, and PANC-1 cell
lines. Compound 14 came out as the most active compound against active M. bovis BCG with
MIC of 0.94 pg/mL while, compound 15 was most active against dormant M. bovis BCG with

MIC of 0.85 pug/mL. [8]
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Fig 19; Compound14 Fig 20; Compound 15

Das et al. performed an experiment to synthesize and assess several new compounds' for
antitubercular and antibacterial  properties.  3-[4-(5-pyrazin-2-yl]-3-chloro-4-aryl-1-
[1,3,4]Oxadiazole: 2-ylmethoxy)-phenyl]-azetidin-2-one derivatives are made using the well-
known antitubercular drug pyrazinoic acid as a precursor. Among the synthesized derivative,

16 (Fig 21) and 17 (Fig 22) were found to be prominent compounds which have potential

antibacterial, antifungal and antitubercular activity (with near about MIC 3.12 pg/ml) [9]

Ny Oﬁ/ N 07)
O I
Cl )

Fig 21; Compound 16 Fig 22; Compound 17

Pflegr et al. synthesized N-alkyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amines and their
analogues by cyclizing prepared  N-alkyl-2-(pyrimidine-5-carbonyl)hydrazine-1-
carboxamides. Out of 48 compounds, the most effective ones at a concentration of 2 uM were

oxadiazoles and C8-C12 alkyls compound 18 (Fig 23) against Mycobacterium avium,
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Mycobacterium kansasii, and Mycobacterium TB H37Rv. The same concentrations that
inhibited the susceptible strain also inhibited the multidrug-resistant strain. The mechanism of
action for the most powerful N-dodecyl-5-(pyrimidin-5-yl)-1,3,4-oxadiazol-2-amine was

studied in relation to cell wall production.[10]

N
QY ’
= (0]
LN
L0 o

Fig 23; Compound18

Ahsan et al. investigated a sequence of {[(5-aryl-1,3,4-oxadiazol-2-yl)methyl] amino} 1,5-
dimethyl-2-phenyl-4-{-1,2-dihydro-3H-pyrazol-3-one for lipophilicity, drug likeness using
software from Molinspiration (Molinspiration, 2008) and MolSoft (MolSoft, 2007), and they
did molecular properties prediction and solubility metrics with the use of the ALOGPS 2.1
software. The compounds were produced as oral bioavailable drugs/leads, adhering to the
Lipinski "Rule of Five" for antibacterial and antitubercular screening. Following mass spectral,
IR, and NMR analysis, all of the produced compounds were screened for microbes and
mycobacteria. Compound 19 (Fig 24), one of the title compounds, shown strong efficacy
against isoniazid-resistant M. tuberculosis (INHR-TB) and Mycobacterium tuberculosis
H37Rv, with minimum inhibitory concentrations (MICs) of 1.52 pyM and 0.78 uM,

respectively. [11]

—N
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Fig 24; Compound 19
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2.1.3) ANTIDIABETIC ACTIVITY:

Gani et al. synthesized and analysed a series of new 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-
1,3,4-oxadiazole-2-thiol derivatives. Its bioactivity was assessed by evaluating its in vitro o-
amylase and a-glycosidase inhibitory activity. Drosophila melanogaster, a genetic model, was
used in an in vivo investigation to evaluate the antihyperglycemic effects. In comparison to
standard acarbose (IC50 = 34.71 ug/ml), the compounds exhibited a-amylase inhibitory
activity in the range of 1C50 = 40.00-80.00 pg/ml and a-glucosidase inhibitory activity in the
range of 1C50 = 46.01-81.65 pg/ml. Out of all the produced compounds, compounds 20 (Fig

25) and 21 (Fig 26) showed superior activity, according to the in vitro experiments. [12]

CF, CF,
0 0
e | )—S
FsC._O N\N>—’ FsC._©O N\N>/

Fig 25; Compound 20 Fig 26; Compound 21

As prospective anti-a-glucosidase drugs, a series of novel benzofuran-1,3,4-oxadiazole
containing 1,2,3-triazole-acetamides was designed and synthesized by Abedinifar et al. The a-
glucosidase inhibition assay revealed that all of the synthesized compounds were more potent
than the standard inhibitor acarbose (IC50 = 750.0 = 12.5 uM), with half-maximal inhibitory
concentration (IC50) values in the range of 40.7 £ 0.3-173.6 £ 1.9 uM. Compound 22 (Fig
27) was the most potent of them all, with an inhibitory action that was approximately 19 times

greater than that of acarbose. A docking investigation of the most powerful chemical into the
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active site of a-glucosidase was also conducted, as it inhibited the enzyme in a competitive

fashion. The title compounds' in vitro and in silico toxicity tests were also carried out.[13]

N=N,
N
@%OTSW o
B S

Fig 27; Compound 22

A new series of quinoxalin-1,3,4-oxadiazole derivatives was synthesized and evaluated by
Mirzazadeh et al. against some metabolic enzymes including human a-glucosidase. Obtained
data revealed that all the synthesized compounds were more potent as compared with the used
standard inhibitors against studied target enzyme. Among the synthesized compounds, 3-
bromo derivative 23 (Fig 28) against a-glucosidase were the most potent compounds with
inhibitory activity around 1.8- to 7.37-fold better than standard inhibitor with 1C50 37.17 nM.
Furthermore, docking studies of these compounds were performed at the active site of their

target enzyme.[14]

N-N
N L D—s
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Fig 28; Compound 23
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A library of brand-new bis-heterocycles based on 2-4-thiazolidinedione and 1,3,4-oxadiazole
has been synthesized by Nazreen et al., which demonstrated PPAR-y transactivation and blood
glucose lowering effects comparable to those of the prescription medications pioglitazone and
rosiglitazone. Compounds 7m and 7r did not produce weight gain in the body and were shown
to have no hepatotoxic or cardiotoxic adverse effects. PPAR-y gene expression was elevated
by compounds 24 (Fig 29) and 25 (Fig 30) by 2.10 and 2.00 folds, respectively, in contrast to
the conventional medication pioglitazone (1.5 fold) and rosiglitazone (1.0 fold). Thus, the

molecules 24 and 25 could be taken into consideration as possible leads for the creation of

8
o
o cl
O N

/ /N
ofN O\):N

novel antidiabetic drugs.[15]
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Fig 29; Compound 24 Fig 30; Compound 25

2.1.4) ANTICANCER ACTIVITY:

Despite significant progress in the development of drugs for the prevention and treatment of
cancer, it remains one of the deadliest diseases in the world. Global data show that cancer is
the world's biggest cause of mortality, with an estimated 10 million deaths from the disease in
2020. The lack of selectivity of anticancer medications, which causes numerous side effects, is
another factor contributing to the cancer problem in addition to the disease's spreading and

metastasis. Furthermore, the issue gets worse because anticancer medication targets are
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constantly changing and leading to resistance4. Currently, medicinal chemists are working to
create novel, highly selective anticancer drugs that can circumvent the development of

treatment resistance.

As VEGFR-2 inhibitors, some 1,3,4-oxadiazole-naphthalene hybrids were created and
synthesized by Hagras et al., and were assessed in vitro for their ability to inhibit the growth
of two human cancer cell lines, specifically HepG-2 and MCF-7. The potential cytotoxicity of
compounds was assessed further, and their VEGFR-2 inhibitory properties were also assessed.
Compound 26 (Fig 31) demonstrated strong inhibitory action on VEGFR-2 and
antiproliferative efficacy against both cell lines. Furthermore, it caused 22.86% more apoptosis
in the treated cells than in the control group (HepG2). The amount of caspase-3 increased 5.61
times more in the treated cells than in the control group, indicating an apoptotic effect.

Furthermore, it primarily stopped HepG2 cell development at the Pre-G1lstage. [16]

Fig 31; Compound 26

17| Page

Chapter 2



Literature Review

Herein, Kandukuri ef al. synthesised some oxadiazole compounds and evaluated their potency
against A549 (lung), MCF-7 (breast), HeLa (cervical) and HEK-293 (embryonic kidney) and
etoposide acts as a standard drug. The most potent compound 27 (Fig 32) showed potency
against all cell lines than the standard Etoposide with IC50 ranging from 0.93 (A549), 1.95
(MCF-7), 1.87 (HeLa) and 2.13 (HEK-293) respectively in micro molar concentration. The
second most potent compound was 28 (Fig 33) with ICso (uM) 1.46 (A549), 2.45 (MCF-7),

2.45 (HeLa) and 2.67 (HEK-293). [17]

Fig 32; Compound 27

Fig 33; Compound 28

A novel class of 1,3,4-oxadiazole carrying pyrimidine-pyrazine derivatives were synthesized
by Rachala et al., and bio evaluated against four human cancer cell lines, including PC3 &DU-

145 (prostate cancer), Ab549 (lung cancer) and MCF-7 (breast cancer).

The popular chemotherapy drug etoposide is utilized as the positive control. The target

compounds' IC50 values range from 9.44 + 5.36 mM to 0.05 £ 0.007 mM, while the positive
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control showed results ranging, respectively, from 1.97 + 0.45 mM to 3.08 + 0.135 mM. One

molecule, 29 (Fig 34), shown better activity primarily.[18]
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Fig 34; Compound 29

Agarwal et al. used scaffold hopping to design novel 1,3,4-oxadiaazole derivatives, synthesized
them and evaluated their anticancer activity. N-(Dimethylphenyl-2,4)1-3,4-oxadiazol-2-amine
and 5-(3,4,5-trifluorophenyl) compound 30 (Fig 35) showed moderate anticancer efficacy
against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, and considerable anticancer
activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of
86.61, 85.26, and 75.99. With PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4,
and 51.88, A549/ATCC, HCT-116, MDA-MB-231, and SF-295, correspondingly. Additionally,
compound 30 demonstrated superior anticancer activity against CNS, ovarian, renal, breast,
and prostate cancers compared to imatinib with average PGIs of 56.18, 40.41, 36.36, 27.61,

22.61, and 10.33 for melanoma tumors, respectively.[19]
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Fig 35; Compound 30

This study was done by Basappa et al. which used click chemistry to synthesize methyl-thiol-
bridged oxadiazole and triazole heterocycles. It was found that the lead structure, 2-((1-(3,4-
dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5-(4-methoxybenzyl)-1,3,4-oxadiazole

(4c), decreased the viability of MCF-7 cells with an IC50 value of 7.4 ~M. In addition,
compound 31 led to a concentration-dependent decrease in the viability of CML (chronic
myelogenous leukemia) cells. Furthermore, nuclear translocation and DNA binding
experiments revealed that compound 31 reduced NF-B activation in human CML cells.
Functionally, compound 31 caused PARP cleavage and inhibited the production of VEGF,

MMP-9, COX-2, survivin, and Bcl-2/x1, which caused CML cells to undergo apoptosis.[20]
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Fig 36; Compound 31
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Afzal and colleagues created and produced a number of novel compounds of 1,3,4-oxadiazole.
The oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332 served
as the basis for the creation of the novel compounds, which were made in five steps and further
described using spectrum analyses.The chemicals' efficacy was evaluated against multiple
cancer cell lines from nine distinct panels in accordance with National Cancer Institute (NCI
US) guidelines.Against SNB-19, 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-
yl)amino)phenol, compound 32 (Fig 37) showed strong anticancer activity at 10 uM, NCI-

H460 (PGI = 55.61), SNB-75 (PGI = 54.68), and (PGI = 65.12).[21]
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Fig 37; Compound 32

2.1.5) ANTIEPILEPTIC ACTIVITY:

In this work, Wang et al. developed and synthesized a series of 1,3,4-oxadiazole derivatives
and tested the anticonvulsant activity of the target compounds in vivo utilizing subcutaneous
pentylenetetrazole (scPTZ) and maximum electroshock (MES) models. The rotating rod (ROT)
method was utilized to quantify the neurotoxicity (NT) of the target chemicals. In order to
determine the 50% toxic dosage (TD50) and 50% effective dose (ED50), seven substances with
possible action were chosen. Pharmacological tests demonstrated that compound 33 (Fig 38)

had superior anticonvulsant activity (MES, ED50 % 8.9 mg/kg; scPTZ, ED50 4 10.2 mg/kg),
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surpassing the actions of ethosuximide and carbamazepine. In vitro binding tests revealed that

compound 33 had the most affinity for the GABAA receptor (IC50 %2 0.11 mM).[22]
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Fig 38; Compound 33

Khoramjouy et al. developed, produced, and assessed novel diphenyl 1,3,4-oxadiazole
compounds as BZD ligands, taking into account the pharmacophore model of BZD binding to
GABA-A receptor. Through in-vitro experiments, they examined the compounds' affinity for
BZD receptors using the radioligand [3H]-flumazenil. In both the MES and PTZ produced
seizure tests, compounds 34 (Fig 39) and 35 (Fig 40) demonstrated the highest potency as

anticonvulsant drugs among the synthesized compounds.[23]
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Fig 39; Compound 34 Fig 40; Compound35
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Kikkheri et al. produced a number of novel 2-methyl-2-[3-(5-piperazin-1-yl-[1,3,4]oxadiazol-
2-yl)-phenyl]-propionitrile derivatives in order to satisfy the structural conditions necessary for
the anticonvulsant property. Mass spectroscopy, |lH NMR, and 13C NMR were used to confirm
the structures of all the produced compounds. The anticonvulsant activity of each chemical was
tested using the maximum electroshock (MES) seizure method, and the rotorod test was used
to assess any neurotoxic consequences. The compounds with the highest potency in this series
were discovered to be 36 (Fig 41), 37 (Fig 42), and 38 (Fig 43). The identical substances
exhibited no neurotoxicity when given up to the maximal dosage (100 mg/kg). Additionally,
an attempt was made to determine the correlations between the synthesized compounds'

structures and activities.[24]

CN
CN

Fig 41; Compound 36 Fig 42; Compound 37

CN

Fig 43; Compound 38
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2.1.6) ANTI-INFLAMMATORY ACTIVITY:

Recent research has attempted to substitute the carboxylate functionality of nonsteroidal anti-
inflammatory medications with less acidic heterocyclic bioisosteres, such as 1,3,4-oxadiazole,
in order to produce novel anti-inflammatory compounds while shielding the stomach mucosa
from free carboxylate moieties. Koksal et al. created and synthesized a series of 3,5-
disubstituted 1,3,4-oxadiazole derivatives with an enhanced activity profile to decrease the
formation of prostaglandin E2 (PGE2) and NO in light of these observations. The results of the
biological experiments demonstrated that compounds 39 (Fig 44), 40 (Fig 45), and 41 (Fig
46) had anti-inflammatory efficacy comparable to indomethacin and considerably suppressed
NO generation with 12.61 = 1.16, 12.61 £+ 1.16, and 18.95 + 3.57 uM, respectively, when

compared to indomethacin.[25]
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Fig 44; Compound 39 Fig 45; Compound 40 Fig 46; Compound 41

Swiatek et al. reported the design, synthesis, and biological evaluation of a new series of Schiff
base-type hybrid compounds containing 4,6-dimethylpyridine core, 1,3,4-oxadiazole ring, and
differently substituted N-acyl hydrazone moieties in order to develop powerful, safe, and non-
toxic chemopreventive compounds. Studies were conducted on the anti-COX-1/COX-2,
antioxidant, and anticancer properties. At a lower dose than typical medications, Schiff base 42

(Fig 47), which contains 2-bromobenzylidene residue, inhibited the activity of both
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isoenzymes, COX-1 and COX-2. Its COX-2/COX-1 selectivity ratio was comparable to that of

meloxicam. [26]
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Abd-Ellah et al. created a number of novel 1,3,4-oxadiazole/oxime hybrids and engineered
them to be highly effective COX inhibitors. The synthesized compounds' anti-inflammatory
effects were evaluated. After four hours, the synthesized compounds showed impressive anti-
inflammatory action, with 69.60—109.60% of indomethacin activity, according to the data.
Compounds 43 (Fig 48) and 44 (Fig 49) are strong COX inhibitors, as demonstrated by an in
vitro COX inhibitory test, with IC50 values of 1.10-0.94 and 2.30-5.00 mM on both COX-1
and COX-2, in that order. It was discovered that compound 44 inhibited both COXs non-

competitively with 89 mM and 73 mM are the Ki values. The majority of the substances that

Fig 47; Compound 42

were examined had stomachs free of ulcers.[27]
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Fig 48; Compound 43

Fig 49; Compound 44
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2.2) Synthesis of 1,3.4 oxadiazole derivatives

2.2.1) From Acyl hydrazides

A novel path for the synthesis of 1,3,4-oxadiazoles was designed by Gao et al, (scheme 1)
through direct annulation of hydrazides with methyl ketones. Potassium Carbonate (K2CO3)
was used as a base, and achieved an unexpected and highly efficient C—C bond cleavage. This
reaction is proposed to go through oxidative cleavage of Csp3—H bonds, followed by

cyclization and deacylation.[28]

o )O]\ I,/K,CO3 Ra__0
)K R N _N H2 » | />
Ketone acyl hydrazide 1,3,4 oxadiazole

Scheme 1; Synthesis of 1,3,4-oxadiazole by direct annulation of hydrazide

A high-yielding and efficient methodology has been established for the synthesis of a-keto-
1,3,4-oxadiazoles by Kumar et al. The oxidative cyclization of hydrazide-hydrazones, which
are produced in situ by the interaction of aryl glyoxal with hydrazides, is mediated by 2-
iodoxybenzoic acid and tetraecthylammonium bromide and results in the formation of a-keto-
1,3,4-oxadiazoles (Scheme 2). This one-pot procedure is quite universal for the manufacturing

of a-keto-1,3,4-oxadiazoles in moderate circumstances in rapid response times. [29]

? R,CONHNH o 0 BX. TEAB Q
H 2 2 : )X\(o R
R1)J\[( > R‘])J\?N\N)J\ rt 3h > R1 \ b/ 2
o) MeCN, r.t 3h H : N—N
Glyoxal Hydrazide-hydrazone 2-keto-1,3,4-oxadiaole

Scheme 2; Synthesis of 1,3,4-oxadizole by oxidative cyclization of hydrazide-hydrazones
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2.2.2) From hydrazones

To synthesise 2,5-disubstituted 1,3,4-oxadiazole derivatives, a facile and effective cationic
Fe(IIT)/TEMPO-catalyzed oxidative cyclization of aroyl hydrazones has been developed by
Zhang et al. (scheme 3). Under benign circumstances with O, the reaction provides a wide

range, good functional-group tolerance, and high yields.[30]

N SR iron salt, TEMPO, MgSO,

T
/

o
R, | )R
DCE (or CH,Cly), O, 35°C NN

Hydrazone 2,5 di substituted
1,3,4-oxadiazole

Scheme 3; Synthesis of 1,3,4-oxadiazole from aroyl hydrazone

In a "metal-free" atmosphere, isobutyraldehyde underwent auto-oxidation to produce an
acyloxy  radical ~when  molecular  oxygen  was  present. They  were
then used on-site to produce hypervalent iodines combined with p-anisolyl iodide to produce
substituted 1,3,4-oxadiazoles from N'-arylidene acetohydrazide in moderate to good yields
(scheme 4) . The response plan allowed for a variety of replacement on the substrates of

hydrazides.[31]

Isobutyraldehyde (2eq)

H
\N/Nm/ p-anisolyliodide (0.1 eq) \O\U/
©/\ o) O, Acetone, 6-8 hr - N-N

substituted 1,3,4-oxadiazole

Hydrazone

Scheme 4; Synthesis of 1,3,4-oxadiazole from hydrazone
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2.2.3) From semicarbazides

Condensation of semicarbazide and the associated aldehydes was used to create 1,3,4-
oxadiazoles by Niu et al, which were then formed via I>-mediated oxidative C—O bond
synthesis (scheme 5). This rapid and scalable sequential synthesis method without the need for

transition metals works with aromatic, aliphatic, and cinnamic aldehydes to yield a wide range

of diazole derivatives with a 2-amino substituent.[32]

Literature Review

O AcOH, MeOH/H,0 H,N—_©
; 2 R
RicHo + HaN. L . > R
H NH, l,, K,CO3  1,4-dioxane N—N
Aldehyde semicarbazide 2-amino 1,3,4-oxadiazole

Scheme 5; Synthesis of 1,3,4-oxadiazole by condensation of semicarbazide

2.2.4) From Thiosemicarbazides

Dolman et al. reported a simple and universal methodology for the synthesis of 2-aminol,3,4-
oxadiazoles. This technique is based on the cyclization of a thiosemicarbazide by tosyl

chloride/pyridine, which can be easily synthesized by acylating a specific hydrozide with the

right isothiocyanate (scheme 6). [33]

Chapter 2
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R'—NC _R' 1 equiv pyridine
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THF, 22°C HH H THF, 65-70°C N
thiosemicarbazide 2-amino-1,3,4-oxadiazole

Scheme 6; Synthesis of 1,3,4-oxadiazole by cyclization of thiosemicarbazide
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Oxone and iodobenzene have been combined to create oxadiazole heterocycles by Patel et al
through the process of oxidative desulfurization. The desulfurization reaction method is made
easy and adaptable by the use of iodobenzene and Oxone, which is an inexpensive and easily

accessible oxidant (scheme 7).[34]

2eq Phl
o S R 4eq Oxone o H
s Ar N
Ar N — N
_<N—N>\_H 2eq NEt; \E_,\/?/ R
H H MeOH, r.t 40min
thiosemicarbazide 2-amino-1,3,4-oxadiazole

Scheme 7; Synthesis of 1,3,4-oxadiazole by oxidative desulfuration

2.2.5) Miscellaneous

A one-pot and three-component synthesis of 2-aryl-5- hydroxyalkyl-1,3,4-oxadiazoles(D) has
been reported by Adib et al. N-Isocyaniminotriphenylphosphorane(B), an aldehyde(C), and a
carboxylic acid(A) undergo addition reaction in normal conditions to make the title compound

in good yields (scheme 8). [35]

o)
J_+ PHP=N-NC . j\ ChClL, Ar\(o>/<
rt 24hr \

OH R™ 'H
A B C D

Ar

Scheme 8; A one pot three component synthesis of 1,3,4-oxadiazole
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By sequentially inserting isocyanides into the N-H and O-H bonds of hydrazides, Fang et al.
established an effective palladium-catalyzed oxidative annulation procedure that efficiently

yields useful 2-amino-1,3,4-oxadiazoles and their derivatives (scheme 9). [36]

Q H
Pd(OAc O
J NHAC . RNC (OAc), - Af\« N
Ar ” toluene, O,(1 atm) N—N R
o -
Hydrazide 80°C 2-31hr 2-amino-1,3,4-oxadiazole

Scheme 9; Synthesis of 1,3,4-oxadiazole by insertion of isocyanides into hydrazide

Here, Zhao et al. describe a visible light-induced [3 + 2] cycloaddition of a-ketoacids with a
hypervalent iodine(Ill) reagent to create 5-CF3-1,3,4-oxadiazoles (scheme 10), which are
important in medicinal chemistry. In mild conditions, the process proceeds without a
photocatalyst, metal, or additive. In contrast to the well-known trifluorodiazoethane (CF
3CHN?2), the current reaction system involves the diazotrifluoroethyl radical [CF3C(-)N2], a

trifluoroethylcarbyne (CF3 CC:) equivalent, and an uncommon CF 3-containing building

Chapter 2

block.[37]
o CF;
O—I% O

Ar CF

OH N hv (blue LEDs 3
AI’)H( + 0) ( ) ’ \E_'\/?/
o DCM rt., 36h
keto acid hypervalent iodine 5-CF;-1,3,4-oxadiazole

Scheme 10; Synthesis of 1,3,4-oxadiazoles via [3+2] cycloaddition
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3.1) Plan of work:

In my M.Pharm work, I am planning for design and synthesis pf some 1,3,4-oxadizole
derivatives having suitable functional group, which might be important for various biological
activities. After synthesis will be characterised by I.R spectroscopy and NMR spectroscopy

(1H NMR, 13C NMR) for structural elucidation.

3.2) Materials used:

All the chemicals required for this research work were reagent grade and used without further
purification. KOH, EtOH, MeOH, hydrazine hydrate was purchased from Merck, USA. 4-
chlorobenzoic acid, CS; was purchased from Lobe chemicals, 4-chloro benzaldehyde, 4-nitro
benzaldehyde, 3-methoxy benzaldehyde, 3,4-dimethoxy benzaldehyde, 4-methoxy

benzaldehyde was bought from Spectro Chem.

3.3) Scheme for synthesis of 1.3.4-oxadiazole

Chapter 3

o o o KOH, CS, o~
I conc HySO4 I MeOH, NH,NH, ! EtOH SN

c. C. C. _ BoH O
OH OCH e ——— NHNH
cl rt ehr cl cl

] 2 r.t 5-6hr
4-chlorobenzoic acid

Ethyl chloroacetate

K.CO 80-90°C
2C03
Dry acetone rt éhr
Cl
cl [¢]]
Compound R CHO
N" o
BA 3-OCH3 ‘o R N7
N=( N""o MeOH, NH,NH, N 0o
6B 4-OCHj4 S - N= -
gzo MeOH, Glacial acetic acid S 70-80°C r.t 6hr 3
6C 3,4-di-OCH3 room temp, 70-76hr
HN 0o (¢]
oD 4-Cl N H NHN C,HsO
5 4
R
6E 4NO 6A-6E

38| Page



Experimental Work | Chapter 3

3.4) Novelty check

For checking the novelty, the structures of the final compounds were searched in SciFinder
where we found that the structures are not reported. We can conclude, that the structures are

completely novel.

CAS 'z’t SciFinder Task History
Initiating Search August 20, 2024, 5:13 PM

References:

°
Filtered By: )
TSN—N
; N

N
N
S o/
l
Structure Match: As Drawn
Search Tasks
Task Search Type View
Exported: Returned Reference Results + Filters (0) & References View Results

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.
Internal use only. Redistribution is subject to the terms of your CAS Scifinder License Agreement and CAS information Use Policies.

CAS SciFinder® Page 2
CAS ?/ SciFinder
ﬁ] REferenCES (0) View in CAS SciFinder

We couldn't find any results. Please update your search query and try again.

References with (0) results

Copyright © 2024 American Chemical Society (AC5). All Rights Reserved.
Internal use only. Redistribution is subject to the terms of your CAS Scifinder License Agreement and CAS information Use Policies.
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Table 1; Novelty check of synthesized compounds

Compound Structure SciFinder status | Biological
activity
6A JO\\NE— Not Reported | Not Reported
6B S}Nﬂb Not Reported | Not Reported

6C }Ni'-l\l‘z Not Reported | Not Reported
S

6D }N§~ﬁ< Not Reported | Not Reported

6E }N.’Hﬂ? Not Reported | Not Reported

3.5) Procedure:
3.5.1) Synthesis of methyl 4-chlorobenzoate(1):

4-chlorobenzoic acid (0.01mol) was reacted with methanol (15ml) in the presence of
concentrated H2SO4 (1ml). The reaction mixture was taken in a flat bottom flask and was
refluxed at 60-65°C for 5-6 hours with continuous stirring. The progress of the reaction was
monitored with the help of TLC. After completion, crushed ice was poured and a solid was

separated which was then filtered and dried.

3.5.2) Synthesis of 4-chlorobenzohydrazide (2):

4-chlorobenzoate (0.01 mol) was taken in a flat bottom flask and was dissolved in 20ml of

methanol. Then hydrazine hydrate (4ml) was added. The whole reaction mixture was refluxed
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at 80°C with continuous stirring for 5 hours. The reaction was monitored through TLC and
after completion, crushed ice was added. A solid product was then filtered and dried.

3.5.3) Synthesis of 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3):
4-chlorobenzohydrazide (0.005 mol) was taken in a reaction vessel where KOH (3 pellets) and
carbon disulfide (2ml) were added in the presence of ethanol (10ml) as solvent. The reaction
mixture was refluxed at 90-95°C for 5-6 hours with continuous stirring. TLC was used to
monitor the reaction. After completion, the reaction mixture was neutralized with few drops of

concentrated HCL. Then crushed ice was poured and a solid product was separated and dried.

3.5.4) Synthesis of ethyl 2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetate (4):5-(4-
chlorophenyl)-1,3,4-oxadiazole-2-thiol (0.005 mol) was taken in a reaction vessel where 0.7ml
of ethylchloroacetate and 1.4g of KoCO3 was added. Dry acetone (12ml) was taken as a solvent.
The reaction mixture was refluxed at 80-90°C for 6 hours with continuous stirring. The reaction
was monitored by TLC. After completion of the reaction, crushed ice was added and a solid
product was separated which was then filtered and dried.

3.5.5) Synthesis of 2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide (5):
0.005 mole of 2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetate was taken in a reaction
vessel. 15ml of methanol and 2.5ml of hydrazine hydrate was added. The reaction mixture was
refluxed at 80-90°C for 6 hours with continuous stirring. The reaction was monitored by TLC.
After completion of the reaction, crushed ice was added and a solid product was separated

which was then filtered and dried.

3.5.6) Synthesis of substituted N'-benzylidene-2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-
yDthio)acetohydrazide (6A,6B,6C,6D,6E):

2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide was taken in 0.001mol and

was reacted with substituted benzaldehydes (0.001 mol) in the presence of methanol(15ml) and
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glacial acetic acid (few drops). The reaction mixture was continuously stirred in room
temperature for 70-75 hours to get the final products. The final products were recrystallized in

ethanol, filtered, dried and were sent for characterization.
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4.1) Chemistry:

4-chlorobenzoic acid was reacted with methanol in presence of concentrated sulfuric acid to
give 4-chlorobenzoate (1). This was an esterification reaction. Then (1) was reacted with
hydrazine in the presence of methanol. It was a substitution reaction at the carbon centre of
carbonyl group to give us 4-chlorobenzohydrazide (2) which was then refluxed with carbon
disulfide in ethanol, using KOH as a base in the next step. The reaction went through
cyclization mechanism and yielded 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3). Then in
the next step, K2CO3 was used to abstract the proton next to sulfur of (3) which then attacks the
carbon next to chlorine of ethyl chloroacetate to give us 2-((5-(4-chlorophenyl)-1,3,4-
oxadiazol-2-yl)thio)acetate (4). Then (4) was subjected to hydrazine in presence of methanol.
Again a substitution by NHNH> happens at the carbon centre of carbonyl group to yield 2-((5-
(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide(5). In the final step, the
penultimate compound (5) was reacted with various substituted benzaldehyde (3-methoxy
benzaldehyde, 4-methoxy benzaldehyde, 3.,4-dimethoxy benzaldehyde, 4-chloro
benzaldehyde, 4-nitro benzaldehyde) to give 2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-
yDthio)-N'-(3-methoxybenzylidene)acetohydrazide(6A), 2-((5-(4-chlorophenyl)-1,3,4-
oxadiazol-2-yl)thio)-N'-(4-methoxybenzylidene)acetohydrazide(6B), 2-((5-(4-chlorophenyl)-
1,3,4-oxadiazol-2-yl)thio)-N'-(3,4-dimethoxybenzylidene)acetohydrazide(6C), N'-(4-
chlorobenzylidene)-2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide(6D) and
2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)-N'-(4-nitrobenzylidene)acetohydrazide

(6E) respectively. The 'TH NMR spectrum of compounds 6A, 6B and 6C showed peaks near §,
3.84 suggesting the presence of the OCHj3 protons. All the compounds showed a peak near 9,
4.64 ppm suggesting the S-CH»- protons, the O=C-NH protons showed their presence near 9,

7.7-7.8 ppm. The aromatic peaks were found in 6, 6.5-8.0 ppm. In FTIR spectrum, all
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compounds showed an absorption band near 1700-1790 cm™! suggesting the presence of C=0

group. The physical properties of the synthesized compounds are discussed in table 2.

Table 2; Physical properties of synthesized compounds

Compound | %Yield Melting Solubility | Recrystallized
Point (°C) in

6A 72% 178-180 CHCls, Ethanol
DMF, THF

6B 68% 174-176 CHCls, Ethanol
DMF, THF

6C 75% 177-179 CHCls, Ethanol
DMF, THF

6D 72% 180-182 CHCls, Ethanol
DMF, THF

6E 62% 168-171 CHCls, Ethanol
DMF, THF

2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)-N'-(3-
methoxybenzylidene)acetohydrazide(6A):

Off white solid; Yield 72%, Mp 178-180 °C: Solubility: CHCl;, DMF, THF ; FTIR
(cm'):3260.20, 3078.81, 2877.44, 1760.19, 16794.94, 1651.45, 1546.53, 1515.71, 696.87, 'H
NMR (400 MHz, CDCl3) du: 3.84 (s, 3H), 4.02 (s, 1H), 4.64 (s, 2H), 6.76 (s, 1H), 6.94-6.96
(m, 1H), 7.20-7.33 (m, 2H), 7.472 (d, J = 8.4 Hz, 1H), 7.81(s, 1H), 7.94-7.90 (m, 2H), "*C
NMR (100 MHz, CDCl3) &: 38.8, 55.5, 112.6, 116.8, 120.6, 122.1, 128.1(2C), 129.6 (2C),

129.8, 130.0 (2C), 134.4, 136.7, 145.4, 160.0.

2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)-N'-(4-
methoxybenzylidene)acetohydrazide(6B)

Off white solid; Yield 68%, Mp 174-176 °C; CHCls, DMF, THF; ; FTIR (cm™):3226.60,
3078.81, 2877.44, 1760.19, 1694.94, 1651.45, 1546.53, 1515.71, 696.87 'H NMR (400 MHz,
CDCls) 11: 3.84 (s, 3H), 4.00 (s, 1H), 4.64(s, 2H), 6.90 (d.J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz,
2H), 7.51-7.44 (m, 2H), 7.59 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.76 (s, 1H), 7.92
(d, J = 8.4 Hz, 2H), 13C NMR (100 MHz, CDCI3) &: 35.3, 55.5, 114.2, 114.4(2C), 122.1,

125.7,128.1 (2C), 129.1 (2C), 129.5 (2C), 129.7, 129.8, 138.0 145.1, 161.7
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2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)-N'-(3,4-
dimethoxybenzylidene)acetohydrazide(6C):

Off white solid; Yield 75%, Mp 177-179 °C; CHCls, DMF, THF; FTIR (cm™):3226.60,
3078.81, 2877.44, 1760.19, 1694.94, 1651.45, 1546.53, 1515.71, 696.87 'H NMR(400 MHz,
CDCl3) du: 3.90 (s, 1H), 3.92 (s, 3H), 3.95 (s, 3H), 4.54 (s, 1H), 4.64 (s, 1H), 6.86-6.82(m,
1H), 7.13-7.09 (m, 1H), 7.51-7.44(m, 3H), 7.74(s, 1H), 7.95-7.90(m, 2H), 13C NMR (100
MHz, CDCI3) &: 35.4, 56.0, 56.1, 108.2, 110.7(2C), 122.3(2C),127.9(2C), 129.4 (2C), 129.6

(20), 145.2, 145.3, 149.4, 156.4, 168.2

N'-(4-chlorobenzylidene)-2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-
yDthio)acetohydrazide(6D):

Off white solid; Yield 72%, Mp 180-182 °C; CHCl;, DMF, THF; FTIR (cm) 3392.11,
2991.15, 2883.31, 1750.98, 1694.22, 1513.55, 695.14, 'H NMR (400 MHz, CDCl3) &u: 4.01
(s, 1H), 4.63 (s, 2H), 7.37-7.32 (m, 2H), 7.45 (d, J= 8.8 Hz, 1H), 7.50 (d, J = 5.2 Hz, 1H), 7.77
(d,7=10.4, 1H), 7.86 (d, ] = 1.2 Hz), 7.925 (d, ] = 8 Hz, 2H), 13C NMR (100 MHz, CDCI3)
5:35.1,122.0,125.8, 127.1(2C), 128.1 (2C), 128.3 (2C), 129.6, 129.8(2C), 130.2, 130.7, 130.8,

143.9, 163.8

2-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)-N'-(4-nitrobenzylidene)acetohydrazide
(6E):

Off white solid; Yield 62%, Mp 168-171 °C; CHCls, DMF, THF; FTIR (cm™) 3390.66,
3020.65, 2878.65, 1740.71, 1694.06, 1582.39, 1518.30, 691.36, 'H NMR (400 MHz, CDCLs)
Su: 4.11 (s, 2H), 4.99-4.91 (m, 1H), 7.49-7.46 (d, J = 8.8 Hz, 5H), 7.94 (d, J = 8.8 Hz, 4H), 13C
NMR (100 MHz, CDCI3) 8: 35.0, 102.9, 122.0, 125,7 (2C), 127.1 (2C), 128.0 (2C), 128.3,

129.5 (2C), 129.7,130.2, 130.7, 130.8, 143.9 165.3
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4.2) Spectral data of synthesized compounds

I'H NMR spectra of synthesized compounds (6A-6E)
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13C NMR spectra of synthesized compounds (6A-6E) :
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FT-IR spectra of synthesized compounds
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ADME Studies

5.1) In silico ADME studies of synthesized compounds

ADME stands for absorption, distribution, metabolism, excretion which basically explains
the pharmacokinetics of the drugs. Here, we have studied the pharmacokinetics (table 3) and
drug likeness studies (table 4) of our synthesized compounds with the help of a widely used
webserver SwissADME. These data are fully predicted by this webserver.

PharmacoKkinetic studies

Table 3; Pharmacokinetic studies of the synthesized compounds

Compounds | G.I BBB CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4 | Log
absorption | permeant | inhibitor | inhibitor | inhibitor | inhibitor | inhibitor | Ky(cm/sec)

6A High No Yes Yes Yes No Yes -6.04

6B High No Yes Yes Yes No Yes -6.04

6C High No Yes Yes Yes No Yes -6.24

6D High No Yes Yes Yes No Yes -5.60

6E Low No Yes Yes Yes No Yes -6.23

Drug likeness studies

Table 4; Drug-likeness studies of the synthesized compounds
Compounds Molecular Lipinski Ghose Veber Bioavailability | Synthetic
Weight(g/mol) score accessibility

6A 402.85 Yes Yes Yes 0.55 3.39

6B 402.85 Yes Yes Yes 0.55 3.39

6C 432.88 Yes Yes Yes 0.55 3.54

6D 407.27 Yes Yes Yes 0.55 3.33

6E 417.83 Yes Yes Yes 0.55 3.35

5.2 Discussion:-

The ADME studies revealed that none of the synthesized compound are going to cross blood-
brain barrier. Except 6E, every compound has high G.I absorption and none of the compounds
are P-gp substrate. Drug likeness study revealed that all the synthesized compounds are
following Lipinski, Ghose and Veber rules which suggests they have drug-like property with
very good bioavailability score of 0.55 suggesting, they are going to be absorbed pretty well in

the human body.
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Docking Studies

6) Docking studies of the final compounds with Vascular Endothelial Growth Factor
Receptor-2 (VEGFR-2)

VEGFR-2 is a key mediator of tumour angiogenesis and reported as a major therapeutic target
for anticancer drug development. The synthesized compounds were docked within the receptor

which gave us appreciable binding energies and interactions.

6.1) Procedure:

The receptor protein was taken from Protein Data Bank, had a co-crystallized benzimidazole
ligand. This ligand directed us to the active binding site. PDB ID of the protein is 20H4. The
protein was prepared using BIOVIA Discovery Studio Visualiser. Protein preparation took few
steps like water removal, addition of polar hydrogen, addition of gasteiger charges and
minimization. The synthesized compounds were taken in mol2 format and energies were

minimized. The docking was performed via PyRx tool.

6.2) Results and discussion:

The best binding affinity was shown by 6A (-9.5 kcal/mol) followed by 6C (-9.3 kcal/mol), 6D
(-9.0 kcal/mol), 6E (-8.6 kcal/mol) and 6B (-8.3 kcal/mol). As it was a localized docking, each
and every compound showed interaction more or less, with the active site predicted by DS
Visualizer. The active site consists of, LEU838, GLY839, ARG840, VAL846, ALA864,
GLUS883, VAL 896, VAL897, VAL914, GLU915, PHE916, CYS917, LYS918, GLY 920,
LEUI1017, HIS 1024, LEU1033, ILE1042, CYS 1043, ASP 1044, PHE1045, GLY 1046, LEU
1047, ALA1048, ARG1049. Interaction of the synthesized compounds with amino acids are

listed in table 5.
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Interaction with 6E
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Table 5; Docking interaction of synthesized compounds with VEGFR-

Compound Binding affinity(kcal/mol) | Interaction with amino acid

6A 95 ALAS864, VAL846, LEU838, LEU1033, PHE916,
VALS97, LEU887, ASP1044, CYS1043, LEU1017,
ILE890, CYS1022

6B 93 LEUS838, ALA879, VAL846, ALAR64, VALI14,
PHE1045, CYS1043, VAL897, GLU883, LEU&87,
ASP1044

6C 9.0 CYS1022, LEU1017, ILE890, ASP1044, LEU&87,

VAL897, GLU883, CYS1043, PHE1045, VALS46,
ALAB864, LEU838, PHE916, LEU1033, CYS917
6D 8.6 PHE916, CYS917, LEU838, LEU1033, VAL846,
ALAS64, PHE1045, VAL914, LYS866, GLUSS3,
ILE886, ASP1044

6E 83 ILE886, GLUS83, ASP1044, VAL914, LYS866,
VALS46, PHE1045, ALA864, LEU1033, LEUS38,
PHE916
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7) CONCLUSION and FUTURE PERSPECTIVES:

As a part of my research work, | have synthesized some 2,5-disubstituted 1,3,4-
oxadiazole derivatives and characterized by H NMR, ¥C NMR and FT-IR
Spectroscopy. The in silico ADME profiling was done, along with molecular docking
with VEGFR-2. According to the literature review, 1,3,4-oxadiazole derivatives are
found to be pharmacologically more useful due to their wide range of biological
activities and chemical stability. Modification of 1,3,4-oxadiazole moiety produces
valuable pharmacological activity, mostly due to the presence of heteroatoms and
substitution at different position in heterocycle. The synthesized compounds followed
the parameters of being drug-like and showed appreciable bioavailability. ADME
profiling showed none of the synthesized compounds are going to cross blood-brain
barrier. Docking study showed good interaction with VEGFR-2. All these results

indicate the compounds can be assumed as promising drug candidates.

In future, 1 will evaluate the antifungal and anticancer activity of these synthesized
compounds. Antifungal activity will be tested against various pathogenic fungal strains
like C. albicans, C. krusei, C. parapsilopsis, etc. in terms of MIC values or Zone of
inhibition. Anticancer studies will be held against various human cancer cell lines like
A549 (lung), MCF-7 (breast), HeLa (cervical) and HEK-293 (embryonic kidney) in

terms of ICso or percentage growth inhibition (PGI)
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