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Preface

This dissertation is presented for the partial fulfillment of the degree of Master in Pharmacy in
Pharmaceutical Chemistry. This research work spans around two years. This present study has
been explored the development of the predictive in-silico chemometric models for properties
of some organoleptic compounds by the 2D QSAR statistical approach. This predictive
approach mainly considers the numerical data of the structural and physiochemical properties
of the chemical compounds as the descriptors. Apart from that, for the first work the sweet and
bitter taste and for the second work, the retention index was considered as the endpoint value
for further in-silico prediction. However, wide-spread use of various chemical compounds in
day-to-day life insist that chemical-based industries to reevaluate the toxicity, activity, or
property-based studies for those chemical compounds before marketing. An experimental
process with manual testing for the same is quite expensive, time-consuming, and needs a lot
of hard work. In this scenario, QSAR and CAAD had come into the field as an alternative
method of study. This new approach regarding the toxicity, activity, and study of the chemical
compounds is not only effective but also eco-friendly. Chemistry plays a significant role in our
day-to-day life. The application of chemistry extended to food, pharmaceutical, cosmetics,
agriculture, biochemistry, and many other different industrial fields. Some industries deal with
its physical features like solubility, partition coefficient, melting point, boiling point, and
surface tension for formulation purposes whereas the chemical and therapeutic properties of
the chemical were used to mitigate and control a range of disorders and diseases. However,
beyond the physical, chemical, and therapeutic properties, the organoleptic properties of the

chemical compounds can be used rigorously as a colorant in the cosmetic industries, pigment



production, fragrance, and flavor compounds for enhancing the sensation of taste and smell. In
this recent work organoleptic compounds and their properties are investigated. The discussion
and estimation of the properties of the organoleptic compounds by a synthetic method is a
tedious job rather the in-silico approach has its enhanced acceptability in the industry,
regulatory agencies, and different chemical data banks. The numerical collective chemical
information from which the QSAR prediction is done is known as feature or descriptors. Now
the descriptors that are calculated from the simplest 2-dimensional chemical structure
representation are called 2D- descriptors. This 2D descriptor may be calculated from
experimental information or theatrical expression. However, the descriptor or features in the
QSAR-based prediction play a role as an independent variable, and the corresponding activity,
property, and toxicity act as a dependent variable. The recent works are based on the application
of the predictive ability of the 2-Dimentional descriptors. Apart from that RASAR is a
collective mechanistic approach of QSAR and read-across is used in the later phase of the
investigation. The data of the respective investigation was not only used for the predictive
model development but also statistically validated with different statistical metrics. however
simple 2-D QSAR model and its validation are based on pure statistics but the read across is
the concept of similarity. The compounds having similar chemical structure, and biological
responses are used for the further external data set prediction and for the well demarcation of
the chemical spaces of the predictive investigation. RASAR is a club concept of both the QSAR
and read across for and reassured prediction purposes. Thus an Insilco approach can be helpful
to determine the initial data investigation and screening of some potential compounds for
further synthetic experimentation if it is necessary. The regulatory agencies and data banks
demand information about a large number of compounds regarding their property, activity, and
toxicity characteristics. In that case, the initial Insilco screening with reassured synthetic

experimentation of potential compounds can be a better approach. In our recent study, we have



investigated and developed the Insilco model of the sweet and bitter organoleptic activity of
the chemical compounds as well as the estimation of the retention index for the flavor and the
fragrance compounds. The properties of the organoleptic compounds have their corresponding
significance throughout the food, flavor, beverage, cosmetics, and fragrance industries.
Different statistical validation with their core statistical concept was used rigorously to validate
the developed model in the real-world scenario. The following studies have been done in this

dissertation:

Study 1: The first application of machine learning-based classification read-across structure-
property relationship (c-RASPR) modelling for sweet and bitter.

Study 2: Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance
Compounds Using 2D Descriptors.

The accomplished work has been presented in this dissertation in the following segments:
Chapter 1: Introduction

Chapter 2: Present work

Chapter 3: Material and Methods.

Chapter 4: Result and discussion.

Chapter 5: Conclusion

Chapter 6: References

Appendix: Reprint
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1. Introduction

The greater advancement in the chemical industries and the wide range of chemical
applications in our day-to-day lives often indicate the exponential growth of the chemical
industries and their market worldwide. [1] However, this huge application of the chemicals
comes with the huge responsibility to properly regulate the safety, efficacy, and effective use
of the chemical compounds to comply with the environment, human body, and innocent lives.
[2] The core motivation behind the application of chemicals and chemical industries is to
minimize the hazardous effects of chemicals on common people and simplify their lives as
much as possible [3]. However, the chemical compounds have widespread applications for
estimating physiochemical properties as well as the significance of the application of
therapeutic characteristics [4]. Apart from that organoleptic chemicals and their uses in
chemical-based industries like food, pharmaceuticals, cosmetics, and fragrance are raising
concern for several regulatory agencies and research and development segments to study the
characteristics of a particular chemical compound [5] The applicability study of several
chemical compounds in the higher dimension merges the concepts of mathematics, biology,
agriculture, physics, and all the fundamental concepts of different discipline [6] This focuses
on enhancing the reliability of the concerned research and application. However, the
sustainable use of exact data about a chemical compound whether it is activity, property, or
toxicity can be used for the modification and change of the structural, physical, chemical,
therapeutic, and organoleptic behaviour of a particular chemical compound. While there is a
self-diversity of chemistry the core subject often clubs with other fundamental sciences and
results such as Biochemistry, and the cheminformatics field to be explored. The logical and
more rational concept of mathematics and statistics when hybridized with the concept of

chemistry. it generates a class of chemical informative study known as cheminformatics or



chemostatistics that can be further used to study the entire behaviour of a chemical compound
[7]. This informative study can help develop an industrial product according to its desirability.
The chemical compounds that are widely used throughout the industries. They are either
organic compounds or inorganic compounds. Carbon (C) plays a central role in forming any
organic compounds. The remaining valences are fulfilled by the hydrogen (H) or formation of
carbon-carbon, carbon-nitrogen, carbon-hydrogen, or carbon-oxygen bonds. Apart from that,
there can be an inorganic salt form of a compound in the data set to be analyzed. The data
source that is generally used to study in-silico prediction uses both inorganic and organic
compounds. The rigorous uses of this chemical product (both organic and inorganic) in day-
to-day life enable us to study its organoleptic properties. Excessive use of flavouring agents,
colorants, and sweeteners can potentially degrade the taste of packaged food, artificial
sweeteners, and several masking agents and supplementary food [8]. So in this scenario, an
estimation of the self-property of the chemical compounds to regulate auto degradation is quite
essential. Excipients used to mask the bitterness of active pharmaceutical ingredients (APISs)
are often sweeteners, derived from sugars and starches. Additionally, they are used to enhance
patient compliance as taking an unpalatable medication can be difficult. The use of artificial
sweeteners has also become popular among patients suffering from diabetes, and metabolic
disorders [9]. The use of fragrance and favour (F&F) is widespread in various consumer
products. Fragrance compounds create pleasant smells, while favour compounds contribute to
taste sensation [10]. Apart from that the flavour and fragrance industries largely depend on the
properties of the organic compounds. These compounds have specific structures and activities
that determine their sensory effects. They include alcohols, aldehydes, ketone esters, and
lactones [11]. Several experimental techniques are generally used to estimate the qualitative
standard of a chemical product before marketing. Retention index, elution time, resolution of

the chemical compound in the process of quality assurance, and quality control all together can



be considered as some parameters to ensure the qualitative standard of an industrial product
The retention time is crucial for formulating new fragrance compounds in the perfume industry.
It helps identify the chemical structure of a compound and allows comparison of its retention
data across different GC systems [12]. Chromatography is an important tool in various
industries for ensuring the production of high-quality products, and it plays a crucial role in
quality control. This method involves measuring the retention time or retention index of a
compound as it passes through a gas chromatographic column’s glass capillary. However,
several qualitative parameters are responsible for quality assurance. Another application of the
predictive quality suggests to necessary modification of a chemical structure for their desired
purity in a chromatographic column depending on the nature and the polarity of the
chromatographic column. As a result, the proper identification and accurate classification of
the chemical compound is possible. However, more accurate Insilco prediction before a
traditional synthetic approach and predefined chemical space helps for chemical categorization
of a chemical even before experimentation or synthesis. The property estimation of thousands
of compounds whether it is food, pharmaceutical, flavouring agent, masking agent, or fragrance
compounds needs to be under study. This investigation somehow helps to maintain the optimal
and desired taste, and quality of any chemical compounds that will be marketed as products.
For our recent dissertation for the first study, we have used machine learning approaches such
as incorporating the concept of RASAR, and for the second work the intelligent consensus
prediction using simple QSAR. However, the idea of RASAR gives the view of QSAR while
extending its prediction quality using the core concept of read across [13]. The utilization of c-
RASPR in this inquiry will revolutionize the concept of QSPR and demonstrate how the
fundamental principle of read-across can also be incorporated into a classification-based
modeling framework. By choosing the best-fit classification algorithms of ML like RFC, SVC,

LC, and LDA, one can predict the model more accurately. To our knowledge, this is the first



c-RASPR work with sweet and bitter compounds. However, the intelligent consensus
prediction gives the idea about the aggregate judgment from several PLS models using the very
same initial dataset. Thus a robust, reliable prediction and detailed information of applicability
domain can be justified by following this methodology. Apart from that an appropriate
chemical categorization is one of the significant applications of the ICP (intelligent consensus

prediction) methodology [14].

1.1 QSAR (Quantitative Structure-Activity Relationship) as an in-silico chemometric

approach

1.1.1 Basic principle

The core concept of QSAR relies on the structural, chemical, and physical information of any
chemical compound in terms of numerical entity or descriptors. The response value of the

compounds largely depends on this numerical information.

Chemical Responce = f(Chemical attribute) = f( Structure, property) (1.1)

The responses of this methodology are considered as either activity, toxicity, or the property
of the chemical compounds. However, those are the dependent identity of the equation, and
numerical information or descriptors act as the experimental or theoretical entity and the
independent one of this process. These quantitative structure-based chemometric studies can
be further classified based on the categorization of the responses. Activity-based quantitative
structure studies are known as Quantitative Structural Activity Relationship studies (QSAR),
property-based quantitative structure-based studies are known as (QSPR), and toxicity-based
guantitative structure-based studies are known as Quantitative Structure Toxicity Relationship
(QSTR). Apart from that the QSAR-based studies can be regression-based or classification
based on the type of response value. The graded responses (True or False or 0/1) are responsible

for classification-based statistical model development while the continuous response values are



responsible for regression-based model development. The concept of regression stands on the
pillar of determining the correlation between the X variable and the Y variable mentioned
above. Here regression or correlation is a term where we determine a mutual relation of a
dependent variable based on the previously known variable. This mutual dependency or
correlation follows the equation of linearity or straight line. However, if the correlation or
regression is estimated between multiple independent variables concerning a singular endpoint

or dependent variable then it is called multiple linear regression or MLR.

Y =ag+a;x; +axx, +azx; + -+ ayx, (1.2)

The classification-based model is nothing but again a correlation estimating and QSAR model
development approach. The main difference between classification and regression-based
approaches is to take a graded response value instead of a continuous value and the process
largely follows the concept of linear discriminating analysis or LDA. The graded value of 1 or
0 is logistically discriminated into 2 sets of classes depending on the numerical information or
descriptors of the compounds. In accordance with that QSTR studies include mutagenicity,
cellular toxicity, developmental toxicity, and carcinogenicity, while QSPR includes Partition
coefficient, permeability, melting point, boiling point, vapour pressure, refractive index, and
retention index. Apart from that QSAR includes several biological activities of the chemical
compounds like anticancer activity, antibacterial activity, and anti-malaria. Quantitative
structure-based studies are principally statistical studies which also include the validation

segments for further validating the model based on the different statistical parameters.

1.1.2 History of QSAR

With the advancement in chemical science, QSAR as a non-traditional synthetic approach has
bloomed in the field of science. [15]. discovered the inverse proportionality relationship

between water solubility and toxicity of chemicals. It was noticed that the toxic potential of



alcohol was increased in mammals due to the reduced toxicity. Later in 1868, Crum Brown and
Fraser [16] discovered that different chemical and structural elements have their impact on
different physiochemical properties. Again in 1890, Hans Horst Meyer noticed that the toxic
potential of a chemical was largely affected by the lipophilicity of the organic compound [17].
However, after that, the impact of lipophilicity concerning biological activity was studied.
Louis Hammett [18] estimates the relationship between the electronic characteristics of any
acid or base impacting their reactivity and equilibrium. This is the fundamental step for the
development of the mechanistic approach of QSAR. Apart from that, it also gives the idea of
how the numerical information or chemical features can be correlated and influence the
chemical, biological, or physiochemical responses of a chemical compound. Later in 1962
Corwin H. Hansch and co-workers [19] formally introduced the concept of QSAR. The
fundamental studies regarding QSAR were to study the structure-activity relationship (SAR)
of verities of natural products and pesticides and its dependence on the Hammett constant [20]
as well as lipophilicity. Fundamentally Free-Wilson model [21] is a simplistic approach to
quantitatively describe Structure Activity Relationship (SAR). It describes the differentiability
between two compounds based on the presence or absence of any functional groups. It is a
mathematical expression that gives a correlated relationship between different physiochemical
descriptors and the response value according to the response value following Hansch law [22]
Both of the models are interconnected both theoretically and practically. In different studies,
both of the concepts combined to estimate the contribution of different structural influences as
well as different physiochemical responses according to the Wilson free crick model [22].
Some dissimilarities found in the free Wilson model have been recently established and found
suitable to apply in fragment-based drug design. The concept of QSAR gradually progresses

following two methodologies.



1. The data set progresses from classical to non-classical QSAR [23]. While the initial
QSAR investigation fundamentally dealt with generally short and congeneric
compounds (Which have generally similar mechanisms of action) the progress of
QSAR methodology insisted it towards developing a predictive model with a diverse
set of chemical compounds (having diverse mechanisms of action) with a bigger size
of data sets.

2. Evolution of the study of chemical compounds concerning the structure-activity
relationship (SAR) of the compound and employing the analytical study of a compound
regarding SAR to target a biological receptor with a chemical compound. QSAR
developed more precisely using the same structural activity relation against verities of

the receptor.

1.1.3 Core QSAR and its Objectives

1. For optimization of lead chemical compound according to the necessity and
desirability.

2. Do the chemical categorization of the chemical compound based on the chemical space.

3. Find out a more reliable and potent chemical compound with the least toxicity.

4. Understand the mechanism of action of any chemical compound and select the less
toxic compound accordingly.

5. Predict the Activity/Property/Toxicity of the desired chemical compounds before the
synthetic approach
In the QSAR study, the data of a large no of the chemical compounds are collected.
Mechanisms of actions, toxicity, activity, and properties of the chemical compounds
are vividly analyzed and further processed for Quantitative structural studies. Thus the
QSAR Insilco study can give the forum to study and analyse the lead chemical
compounds or desired chemical compounds before processing for a synthetic approach.

8



1.1.4 Molecular descriptors

Molecular descriptors are the integrated structural information of a chemical compound
presented in a numerical form. However, the biological responses (Activity/ property/ Toxicity)
of any chemical compound can be defined as the function of the structural or chemical features
of chemical compounds [24] The concept of QSAR study relies on the concept of similarity of
a defined chemical space. The chemical compounds that exist within this defined range can be
further applicable to the developed predictive model. The importance of a defined chemical
space not only limits up to that but also allows a new molecule to be predicted by the developed
chemical space. However, the chemical space of a predictive model fundamentally depends on
the numerical entity of the structural or chemical information of the chemical compounds or

descriptors.

Biological Responce (Activity, Property or Toxicity)

= f(Chemical structure or property information or descriptor) (1.3)

The nature of the descriptors as the numerical information of the structural attributes plays a
significant role in a predictive biological response. The descriptors may be structural
(dependent on the occurrence frequency of a substructure), Functional group count descriptors
(dependent on the number of functional groups present in a chemical compound), Geometric
(dependent on the calculation of the molecular surface area), Physiochemical (electronic, steric
and hydrophobic), topological or simple indicator variable (replicated parameters), electronic
(based on the calculation of molecular orbital)[25] The significance of a particular descriptor
can be estimated according to the correlation of the descriptor concerning the response value.
The most significant descriptor to develop a QSAR model can be estimated by considering

some characteristics of the features like:



The descriptor should have easily interpretable characteristics. However, the
physiochemical interpretation of a chemical compound depends on its structural
attributes but in a few cases temperature or surrounding environments can be
responsible for exceptional responses.

. A descriptor should be highly correlated with the respective endpoint along with a
minor dependency on other descriptors. In the case of descriptor dependency, the
major contributors were taken for predictive model development and the minor
contributor or the dependent descriptors were removed along with the process of
pre-treatment.

The descriptor should have covered the largest area of the chemical space or should
have the largest domain of applicability.

The descriptor should be able to represent the minor structural change of a chemical
compound and detect a minor error for the slightly structurally diverse compounds.
The descriptors should be easily calculated without depending on the experimental
value. A numerical feature is a characteristic of an Insilco approach. The logic and
statistics behind the descriptor computation should have its ultimate role rather than

a dependency upon an experimental value.

1.1.4.1 Categorisation of Descriptors

A descriptor is a numerical entity of the structural information of a chemical compound. A

feature or descriptor for a chemical compound can be classified in the following manner [25]

such as physiochemical descriptor (electronic, steric, and hydrophobic), structural (based on

the occurrence of a functional group, or sub-structural part), electronic (based on the calculation

of each molecular orbital), geometrical (based on the calculation of molecular surface area),

topological, or simple indicator variable (replicated parameter). However, the descriptors can

widely be classified into 1. Whole molecular descriptor and 2. Substituent constant.

10



1. Whole molecular descriptor: Extension of the substituent constant method.
2. Substituent constants: Physiochemical descriptors that are established depending on

the physiochemical property of the chemical compound.
1.1.4.2 2D descriptors
1.1.4.2.1 Physiochemical descriptor

These are the numerical entities that are responsible for informing about the physiochemical
attributes of chemical compounds. The physiochemical alteration of a compound can greatly
impact the pharmacokinetic parameters of a chemical compound in any biological system
which includes absorption, distribution, metabolism, and excretion. Other than that the
electronic phenomenon, steric influence, partition coefficient, and structural and functional
group attributes of any chemical compound have a significant role in changing the biological

response against the system.
1.1.4.2.1.1 Partition coefficient

The relative affinity of a molecule in a polar medium or a non-polar medium is important. The
solubility of a drug molecule in a biological system in the presence of several biological
membranes decides its potential to work in the biological system or its pharmacokinetic
property. Other than that partition coefficient indicates the polarity of a particular compound
for rigorous analysis in the process of quality assurance before marketing the product of
interest. The generalization and representation of partition coefficient is done by logarithmic

partition coefficient (log P) between n-Octanol and water.

P = [C]Octanol/[c]aquous (1.4)

The [Cloctanor INdicates the concentration of a compound in the lipid or non-polar phase

whereas [C] 4quous iNdicates the concentration of a compound in the polar medium. The P > 1
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indicates the concentration of the compound is greater in the non-polar medium or the
compound is nonpolar in nature. The value of P<1 indicates the concentration of the compound
is greater in the polar medium. Thus the chemical compound is polar in nature. The polarity
of a compound is a key regulating authority behind its pharmacokinetic effectivity. It is
estimated by distribution in a biphasic medium whether it is liquid-liquid (partition coefficient)
or solid-liquid (the polarity of a compound with respect to the chromatographic stationary
phase). The descriptor that describes the lipophilic parameter as log p was calculated by Ghosh

and Crippen’s parameter [26].
1.1.4.2.1.2 Hydrophobic substitution constant ()

Hydrophobicity is a phenomenon of non-polar compound exerted in the aqueous medium. The
tendency of aqueous solution to discard the non-polar compound by not participating in the
solvation process is the core concept of hydrophobicity. The relativity of hydrophobicity
regarding any particular compound with the hydrophobic substituent called x. 7 as the value of

substituent X can be described
logPr-x = logPg_y Tix (1.5)

logPr_x and logPr_y represent the partition coefficient of substituted and unsubstituted
compounds respectively. The my is the difference between the lipophilicity of the substituted
compound and the unsubstituted compound. The substitution can be described as the

replacement of “H” in “RH” by the substitute ‘X”.
1.1.4.2.1.3 Hammett electronic constant (o)

The electronic constant can be further classified into two different types o,,, and o,. The
electronic effects were studied for the meta and para position rather than the position. The

electronic effect in the ortho position is not considered for further studies because of the steric
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effect at the ortho position with respect to the origin of the substitute. It is described in the

following equation

logky = pot log ky, (1.6)

In this equation k, and k,, are the reaction rate constant for substitution x and h respectively.
The term o is a constant and p represents the analogue being studied. However, a positive value
indicates the electron-withdrawing effect and a negative value denotes the electron-donating

impact.

1.1.4.2.1.4 Steric parameter

The steric parameter or steric effect of a compound is often related to the higher degree of
molecular weight or bulkiness. Compounds of the homologous series often show different
biological activity. However, the steric activity resists intermolecular reactions rather it
positively contributes to the intramolecular reaction. The quantitative indication of the steric

influence of a compound is estimated by several steric parameters.

1.1.4.2.1.4.1 STERIMOL parameters

Verloop and coworkers [27] developed a multipara metric method to characterize the steric
influence of a substituent in more complex biological systems to go beyond the Taft parameter
employed for simple homogenous organic reactions. Verloop and their coworkers developed a
collection of five descriptors (L, B1, B2, B3, B4) to describe the shape or structural
phenomenon of the substituent (Verloop, 1987). L representative descriptor of the length of the
substituent along the axis of the bond between the first atom of the substituent and the parent
molecule. B1-B4 all of these descriptors are the width representator. However, this descriptor
is all orthogonal to the length denoted or L and forms a 90-degree angle with each other. The
huge number of descriptors needed to categorize the substituted elements and the huge number

of compounds should be including those parameters in the final QSAR model. This finally
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results in thinning of the descriptors to L, B1, and B4 where B1 has the smallest and B5 has

the highest width parameter which does not have any directional relationship with L [27]
1.1.4.2.1.4.2 Molar refractivity (MR)

The molecular refractive index is a molar volume adjusted by the refractive index parameter

[28]. The molecular refractive index gives the idea of the size and polarity of a compound.
MR = (n2-1)/(n?+2)X (MW)/d 1.7)

Where n denotes refractive index, MW denotes molecular weight and d denotes the

density.
1.1.4.2.2. Topological descriptors

Topological descriptors mainly depend on the graphical representation of structural
phenomena. So they do not depend on the physiochemical properties or a computational result
to be showcased as quantum chemical descriptors. A topological descriptor is all about the
graphical representation from the 2D topological information which is the information about

the existing atoms and their adjacent bonds.
1.1.4.2.2.1 Wiener index (W)

It is the collective information about the bonds present between each heavy atom that exists in
a molecule. However, in graph-theoretical terms, it can be elaborated as the summation of the
minimal path length between each pair of heavy molecular atoms represented in the graph. It

can be determined as follows:

8;; is represents the shortest distance between the vertices of i and j.
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1.1.4.2.2.2 Zagreb index (Zagreb)
It is represented as the summation of the square of the vertex degree &7 [29].

zagreb = ¥;6? (1.9)
The Zagreb index is related to the isomeric branching for an isomeric set of molecules.
1.1.4.2.2.3 Balaban index (J)
The balaban index is followed by the following equation

J=M/(k+ DY eages(8:8)7°° (1.10)

Where M represents the no of edges, p represents the cyclometric number, §; , §; are the vertex

distance degree of the adjacent vertices. This index is calculated from the matrix of the

molecular graph.
1.1.4.2.2.4 Molecular Connectivity Indices

Molecular connectivity indices can be calculated employing the atomic vertex degree in H

suppressed molecular graph. This is presented as the geek symbol y (chi).
1.1.4.2.2.4.1 Randict connectivity index

This is also called as branching index or connectivity index. This is also the very first

introduced connectivity index. The following equation expressed it [30].
XR=1,= ?;1127]‘1=i+1aij(5i 8,705 (1.11)

Here ‘n’ represents the total no of vertices present in the molecular graph, a;; is the adjacency
matrix element, §; , §; denotes vertex degree, and the no of other vertices joined with the vertex
i and j respectively. The element (8; 6;)~%> can be applied for each pair of adjacent edges or

vertices of the first order and is termed edge connectivity. Apart from that it can be applied for
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more than two adjacent vertices. This connectivity phenomenon is mainly related to molecular

branching.

1.1.4.2.2.4.2 Kier and Hall’s connectivity index

It is based on Randic’s principle, developed by a general concept for calculating zero-order and
higher-order connectivity descriptors. Kier and Hall’s connectivity index is also named as
molecular connectivity [31]. The following equations are responsible for describing zero-order,

first-order, and higher-order connectivity expressions.

O = T 5708 (112)
Xt =2h=1(8: 8)p*° (1.13)
X2 =Y&21(8: 8.6))x%° (1.14)
" = Yk=1([Tq 8) &*° (1.15)

The last equation shows a generalised equation for the higher-order indices where k runs over
m®™ order subgraphs containing n vertices and B edges. The total no of appearing m-th order
is K.” x” represents the product of simple vertex degrees (6). Theyx, represents the continuous
type of specific subgraph. The term 2, defines the 2™ order index. 2 x denotes a path length
of 2 containing 3 vertices. Likewise, for higher order, it will be mp, added with the specific

graph fragment type t.
1.1.5 Classification QSAR analysis

The chemometric QSAR study can be further subdivided depending on the endpoint (graded
or continuous numerical endpoint), and type of the dimension (based on the 2-dimensional or

3-dimensional descriptor). Moreover, based on the types of biological responses (Activity/
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Toxicity/ Physiochemical Properties), the classification-based model can be subdivided into
QASR / QSTR or QSPR model. However, considering the endpoints like adsorption,
distribution, metabolism and excretion like pharmacokinetic parameters can also be taken as
biological endpoints. Apart from that the dimensionality of the predictive variables (0D, 1D,
2D, 3D) can be the preliminary criteria to further categorize the classification-based QSAR

model.

1.0D- Chemical formula

2.1D- Sub structural fragments
3.2D-Graph theory

4.3D- Spatial geometry

5.4D- Conformation,
Orientation, Protonation state
6.5D-Induced fit feature

7.6D- 5D + Solvation feature
8.7D- Real target receptor
model.

Fig.1.1 Classification of QSAR based on dimensionality

Fig.1.1 represents several QSAR methods classified based on dimensionality. Apart
from that many authors have also reported QSAR studies based on the chemical nature

of the molecules employed for modeling.

1.1.5.1 Classification based on the type of employed methods

Classification-based QSAR can be subdivided into the following types such as, Linear method
(Linear regression), MLR (multiple linear regression), Partial least square (PLS) and
(PCA/PCR) Principle component analysis or regression, and some nonlinear methods

(Artificial linear network (ANN), k-nearest neighbour (kNN) and Bayesian neural network [32]
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1.1.6 Classical QSAR model
1.1.6.1 Thermodynamic approach of Hansch analysis

Hansch first published the mutual dependency and correlation between biological responses
and phenoxyacetic acid as well as and Hammett substituent constant and the partition
coefficient [33] 1962. Hansch's analysis can apply to linear, nonlinear, and multiple linear
analysis. So Hansch's analysis mainly focuses on the establishment of the property relationship.
All parameters of Hansch are mainly linear free energy-related values (derived from the rate
constant or equilibrium constant). The linear free energy-related approach [34] is also named

as Hansch analysis and can be described as follows

log% = k, ( partition parameter)+k, (electronic parameter)+k; (steric parameter)+k,

(1.16)

Where c is the minimum effective dose responsible for any biological action. k,, ks,
ks, k, are the constant term. Hansch's model was again modified by the application of

bilinear and parabolic terms extended by the term log p.
1.1.6.2 Additivity model or free Wilson analysis

The free Wilson model [35] is the true structure-activity relationship model.” Mathematical
model”, “De novo approach” and “additivity model” all of three are often used synonymously
to describe the free Wilson model. A pointer or denote variable is created for every substituted
structure that exists in the parent moiety. The resultant correlation coefficient or regression
coefficient represents the biological activity contributed by the corresponding elements. The

free Wilson model can be elaborated by the following equation
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Where BA represents the biological response, X; is the j th substituent which is considered with
a value of 1, and being absent the value is regarded as 0. a; is the contribution of the jn

substitution of the biological activity. u is the overall biological activity of the parent moiety.
1.1.6.3. Fujita ban analysis

Fujita Ban had worked with the application part of the free Wilson’s model [36]. The biological
activity is here represented in the logarithmic scale. It is also a free energy-related term and

fundamentally additive in nature.

Here A and A, are the magnitude of the activity regarding substituted and unsubstituted
entities. G; is the contributed activity expressed in the logarithmic scale for the it substitution
corresponding to the substituent present in the parent molecule (denoted as H). X; is considered
with the value 1 when it is present as substituent otherwise the value is taken as 0 when it is

absent.
1.1.7 Brief description of 3D QSAR methods

The 3D QSAR descriptors are comparatively more complex than the simple 2-dimensional
descriptors. The calculation of mathematical 3D descriptors involves several steps. Initially,
the conformation of the molecular entity is done from the structural or molecular mechanics or
the available experimental data and then filtered by minimizing the energy level [37].
Thereafter after the available conformers of the data set were uniformly aligned in the space.
Then the space containing the conformers was exposed to different types of descriptors. Apart

from that many more independent molecular alignments have also been developed.
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1.1.7.1 CoMFA

It is also known as comparative molecular field analysis. The application of COMFA mainly
focuses on the electrostatic (columbic) steric (Van der Wall) energy expressed by the molecule
of interest. The aligned molecule is positioned in the 3D grid. At each point of the grid, a probe
atom with unit charge is placed and the subsequent potential (Coulomb and Lennard Jones) of
the energy field is determined. Then the resultants act as mathematical descriptors and are
mainly used for the application of the PLS (partial least square model) based regression model.
This study enables us to determine the positive and negative substitutional impact on the
activity of the molecule of interest. Now CoMFA is introduced as the part of 3D QSAR
approach (Podlogar and Ferguson, 2000). The application of the COMFA method is generally

expressed in the software “Sybyl software” (https://mgm.ku.edu/molecular-modeling-tutorial)

from Tripos Inc.
1.1.7.2 CoMSIA

The comparative molecular similarity indices (CoMSIA) are identical to COMFA as a part of
the 3D molecular descriptor. The atom probing technique of COMSIA is similar to COMFA. In
the Gaussian type function, in CoMSIA, molecular similarity indices are computed from the
improved SEAL similarity field and used as descriptors to consider electrostatic, steric,
hydrogen bonding, and hydrophobic properties. CoMSIA considers that the probe atom has a
radius of 1 A%, charge of +1, and hydrophobicity of +1 are positioned at the intersection of the
surrounding lattice. Moreover, the application of the Gaussian function over the Lenard-Jones
and Columbic function enables the gathering of perfect information in the grid points placed

in the molecule.
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1.1.7.3 SOMFA

It is also known as self-organizing molecular field analysis (SOMFA) [38]. This method has
also resemblances with COMFA and CoMSIA. Apart from that hypothetical Active Site Lattice
(HASL) introduced by Doweyko et al (Doweyko, 1988) has a conceptual similarity with

SOMFA. The mean-centered activity is decisive in SOMFA.
1.11.7.4 MFA

The mechanistic approach of MFA is to quantify the energy of interaction between a probe and
a set of aligned [39]. This study is effective for the analysis of the data sets in which the activity
information is present but the receptor or structure of the aligned molecule is unknown. The
study of MFA tries to make a hypothesis and characterize the significant features of the receptor

site from the common energy level and molecular features that bind to it.
1.1.7.5 GRID

The concept of GRID resembles the CoMFA and it was the first suitable method designed and
developed for medicinal scientists as the substitution of the original COMFA method. The
mechanistic approach of this method determines the energy of interaction fields in molecular
field analysis and calculates the suitable energetically binding sites on a known molecular

structure [40].
1.1.7.6 VFA

It is also known as Voronoi Field Analysis (VFA) [41], voronary polyhedral is formed by the
division of a superimposed set of molecules into subspace. For each VVoronoi polyhedral there
is a single atomic reference point. A cuboid with six tangential sides is divided into a three-

dimensional (3D) lattice with a space of 0.3 A°, neighbouring the union volume of the
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superimposed set of molecules is built. The potential and electrostatic energy indices at each

lattice point are calculated following the hard-sphere potential model and Coulomb’s law.

1.1.7.7. RSA

It is also known as Receptor Surface Analysis which is a suitable method in conditions where
the receptor’s 3D structure is not known, [42] since one can create the receptor site’s imaginary
model. The RSA study focuses on capturing essential information about the receptor, unlike
pharmacophore. The former captures information about the resemblance of molecules that bind

to a receptor.

1.1.7.8 MQSM

It is also known as Molecular Similarity Measures (MQSM) are computed by the integration
of volume between the corresponding density function (DF) of the two compared objects,
weighted by the non-differential positive definite operator, known as Quantum Similarity

Operator [43].

1.1.7.9.1 Alignment independent methods

The effectivity and significance of alignment-independent descriptors are greater because they
offer 3D descriptors that are constant to molecule rotation and transformation in space. The

study suggests there is no requirement for the superposition of the molecule.

1.1.7.9.1 CoMMA

The Comparative Molecular Moment Analysis (CoMMA) [44] enables second-order moment
of charge and mass distributions. The moments correlated to dipole as well as mass centre. The
CoMMA descriptors comprise principal quadrupole moment magnitudes of dipole moment

and principal moments of inertia. Moreover, descriptors correlating charge to mass distribution

22



are described, i.e., the magnitude of the projection of dipole upon principle moments of inertia

and displacement between centre of mass and centre of the dipole.

1.1.7.9.2 WHIM

The weighted Holistic Invariant Molecular (WHIM) [45] and Molecular Surface [45]
descriptors afford the unaltered information using the Principle Component Analysis (PCA) on
the cantered coordinates of the atoms constituting the molecule. This changes the molecule into
the space that captures the most alteration. In this space, various statistics are computed and
act as directional descriptors, containing proportion, variance, kurtosis, and symmetry. By
merging the directional descriptors, non-directional descriptors are also described. The atoms
can be weighted by mass, atomic electronegativity, atomic polarizability, van-der-walls

volume, Kier and Hall’s eletrotopological index, and electrostatic potential of a molecule.

1.1.7.9.3 VolSurf

The VolSurf [46] method depends on probing the grid around a molecule with specific probes,
for instance, hydrogen bond donor and acceptor groups or hydrophobic interactions. The
resultant lattice boxes are employed to calculate the descriptors depending on surfaces or
volumes of 3D contours, described by the same probe molecular interaction energy value. By
applying different probes and cut-off energy values, various molecular properties can be

measured.

1.1.7.9.4 Compass

Compass was developed by Jain and co-workers [47] and is dissimilar from other alignment-
independent methods in the respect that it automatically selects alignments and conformations

of molecules. In the compass, every molecule is signified by a dissimilar set of feature values.

1.1.8 Receptor-based 3-D QSAR

23



Receptor-based methods were implemented after the crystal structure of a receptor was
available. Protein or receptor-based approaches depend on the information extracted from the

structure from the X-ray crystallographic and homology protein structures.

1.1.8.1 Molecular docking

It is a study of how two or more molecular structure ligands or active chemical compounds,
drug molecules, and receptors or enzymes of protein bind together [48]. The capacity of
interaction of a protein with small molecules performs a key role in protein dynamics which
may modify the biological activity. The capacity of large molecules such as nucleic acids and
proteins to bind and produce supra-molecular complexes plays a significant part in regulating
biological activity. The capacity of large molecules such as nucleic acid and proteins to bind
and to produce supra molecular complex plays an important part in regulating biological
function. The behaviour of small molecules in binding pockets of target proteins can be defined
by molecular docking. The docking methodology aims to recognize the exact poses of ligands
in the binding pocket of a protein and to forecast the affinity between the ligand and the protein
molecules. Molecular docking can be categorized as (a) protein-nucleic acid docking (b)
protein-small molecule docking and (3) protein-protein docking. Protein-ligand docking
signifies a simpler end of the complexity spectrum and there are several programs available
that can be executed to predict molecules that may potentially prevent proteins. Protein-protein
docking is usually much more complicated. The cause is proteins are flexible and their

conformational space is fairly huge.
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Target Ligand complex

Fig.1.2 Mechanics of Molecular Docking

Docking can be studied by positioning rigid fragments or molecules into the active site of
protein employing several methods like geometric hashing, pose clustering, clique search, etc.
The performing ability of docking is dependent on the search algorithms (like Genetic
algorithms, Monte Carlo methods, Tabu searches, Distance geometry methods, Fragment-
based methods, etc.) and the scoring function (i.e., Empirical free energy scoring functions,
Knowledge-based potential of mean force or Force field method). First, the constitution of all
probable conformations and orientation of the protein binds with the ligand. The scoring
function receives input and yields a number that shows favourable interaction. The most vital
use of docking software is a virtual screening of the most promising and interesting molecules

that are chosen from an available database of auxiliary investigation [48].
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1.1.9 Methodology of QSAR

There are four fundamental steps of QSAR analysis includes — (1) Data preparation, (2) Data
processing, (3) Data validation, and (4) Data interpretation (Roy et al., 2015). The step can be

briefly described by the following:
1.1.9.1 Data preparation

Initially, to maintain the uniformity of data, the endpoint is transformed into the obligatory unit
(micromolar or millimolar). Then the chemical structures are drawn by employing several
popular software like Marvin Sketch, Chem Sketch, Chem Draw, etc or the structures can be
downloaded from online public databases like PubChem, ChemSpider, etc. The energy
minimization and conformational analysis are done if necessary. Next, the file containing the
structures is employed for descriptor calculation and then the data pre-treatment can be
performed to eliminate noisy data, constants, etc. Finally, the descriptors comprise dissimilar
variables and a single worksheet which is called a QSAR data matrix. An extra column
representing the name or serial numbers of the molecules can be included for fast and easy

identification of any molecule or compound.
1.1.9.2. Data processing
a. Data division

A robust, well-predicted, and overall validated QSAR model generation is the core objective
of a QSAR study. In that context a proper division of the dataset into a training set (employed
to develop a model) and a test set (employed for validation of the developed model). Apart
from that the most comprehensible technique to select a training set is dependent on an
important physiochemical descriptor or a cluster of chemical similarity. A large number of
compounds are selected for the training set which is employed in model development.

Generally, it is the ratio of 80:20 for considering the chemical compounds as the part of train
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and test set respectively. The fundamental algorithm is based on the principle that a structurally
similar molecule to the training set molecules can be predicted confidently because the model
has learned the features that are shared by the training set molecules and is capable of searching
them in the new compound. The selection of the training set molecules and test set will be in
such a way that the test set compounds will fall within the structural domain of the training set
molecules. The structural alteration in the test set compounds will result in below-quality
prediction and generation of outliers. Different types of data division procedures can be
applicable to divide the data set into training and test sets like the Kennard Stone method,
Activity / Property-based division, Principle Component Analysis (PCA), Kohonen’s Self

Organizing Map (SOM), D-optimal design, Sphere exclusion, etc [49].

b. Feature selection

A feature selection process can also be named as a dimensionality reduction procedure because
it reduces the feature space of the dataset to the more reliable and significant descriptor. The
process follows to directly eliminating the noise and non-significant input features [50] which
helps for enhanced interpretability in QSAR modelling as well as the predictive capability of
the model [51]. Several feature selection algorithms can be integrated with one or more model
development approaches under a similar interface so that the best possible combination of
descriptors can able to develop a robust and quality predictive model. Several feature selection
methods employed in the QSAR study include stepwise variable selection, Genetic Algorithm
(GA), Best Subset Selection (BSS), Variable Subset Selection, Factor analysis, and Most
Discriminating Feature selection (MDF). Generally, few are noticeably interested in the
endpoint or response. However, descriptors being inter-correlated have negative influences on
a QSAR study. A fundamental requirement of several statistical techniques is that the number

of data points data points should be higher than the number of descriptors/variables.
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c. Model development

This process indicates that the best-selected structural features are to be collected in a single
model using an explicit formalism. However, after completing the descriptor calculation the
rest of the QSAR study was done by the feature mapping method. The core objective of the
QSAR study is to establish a correlated mathematical equation between the descriptors and the
response or endpoint being studied. Different techniques like Multiple Linear Regression
(MLR), Partial Least Squares (PLS), etc. are applied to develop regression-based models.
However, Linear Discriminating Analysis (LDA) is employed for the development of a
classification-based model. The feature selection process is done by statistical assessment of
the resultant QSAR model and the above-mentioned feature selection procedures were
employed to conduct the process. Finally, the best model is selected based on quality prediction

and various validation metrics [52].
1.1.9.3 Model validation

The robustness, quality prediction, and statistical significance of the QSAR models are
determined depending on the quality of models, as demonstrated by different globally accepted
internal and external validation metrics. The developed model for the corresponding endpoint
values is validated, utilizing several internal and external validation metrics. The training set is
validated using the validation criteria and the responsible validation metrics like the
determination coefficient (R?), leave one out (LOO), cross-validation (QZ,),
T (train) Al m(erainy(ROY @nd Mitra, 2011), root mean square error of calibration (RMSEC),
standard deviation (SD) of 100% data of training set, mean absolute error at 5% high residual
data points (MAE:,4in 950, )- The test set predictions are evaluated by several external statistical

metrics like R3,¢q,QF1, QF2, Timrest)(i-€ Trestor Almrest, Standard deviation (SD) of 100%
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of data of the test set, root means square error of prediction (RMSEP), 95% mean absolute

error of the test set ( MAEqso,), concordance correlation coefficient (CCC), etc. [53].

Data set selection under defined end point

| } OECD Principle 1
Molecular structure representation

Descriptors calculation
) Division of data set OECD Principle2
Training set ,—'
Test set
Chemo metric tool for Prediction
model development —
Regression hased( MLR,PLS) ‘ VALIDATION ‘ } Principle 4
Classification hased( LDA, -
Clustering)
Machine leaming ( ANN, RF, SVM,
LR,
) Internal validation Validation statistics
statistics for regression for classification
based model hased model
Accuracy, specificity,
) sensitivity, Cohen's
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Tnt100) (100, PRESS
MAErri

|- Where the model is External validation
NO acceptable? statistics for regression
based model
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Reveqs Qs MAErgr CCC

prediction Applicability domain
[r=]
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Fig 1.3 General workflow of QSAR
1.1.9.4 Model interpretation

The QSAR study enables the molecular features to be interpreted rigorously. The correlation
relationship between the structural attributes and the corresponding response variable
contributes to understanding the mechanism of action. Subsequently collecting the observation
and experimental results from the developed and validated model indicates the behavioural
characteristic of molecules of interest. This information is significant for the further

modification of the structural attributes of the molecule of interest to achieve the expected goal.
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1.1.10 Application of QSAR Studies

QSAR is an in-silico approach that is effectively used to monitor the activity/
property/toxicity of chemicals while combining the chemical as well as statistical concepts.
The consecutive behavioural interpretation of the molecule of study and a fine-tuning with its
corresponding biological response can be significantly applicable to a large set of chemical
compounds such as (1) Pharmaceuticals, (2) Food and Nutraceuticals, (3) Flavour and
Fragrance compounds, (4) Analytical reagents, (5) Solvent, (6) Cosmetic product (7) Surface
modifying agents, (8) Toxins, Xenobiotic and different biological products, (9) Agricultural
products. Apart from modelling biological activity and toxicity endpoints, the applicability of
QSAR spread for ADME study involves the pharmacokinetic profile of potential

drug candidates before its synthesis as well as efficacy in the biological system.

1.1.11 QSAR and OECD

The respective OECD encourages the application of QSAR modelling by the financial
assistance of the European Union (EU) with the core objective of enriching QSAR as the tool
for risk assessment of the compound of interest. The member countries of the OECD have
implemented a collective protocol to employ its real use in the ethical background. The OECD

QSAR venture the QSAR toolbox  (https://www.oecd.org/chemicalsafety/risk-

assessment/oecd-gsar-toolbox.htm) the validation principles of evolved models and regulation
article objects to advance the application of QSAR modelling by industry and governments to
simplify the assessment of chemical hazards. In the 1990s the OECD investigated the impact
of QSAR modelling for the assessment of aquatic hazards and pollution caused by some
contamination of chemicals in a workshop. This is the progression after the employment of
SAR models on the exposure assessment of biodegradability and environment-friendly

properties of the chemical compounds by the member countries of the OECD. The next major
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discussion was held on the Regulatory use of QSAR for Human Health and Environmental
Endpoints. Again there was a discussion about Chemicals, Pesticides, and Biotechnology.
Finally, it leads to the conclusion to develop an obvious method to evaluate and rigorously

validate QSAR models for the constitution of a clear base for their further application.

The OECD decided on the following five principles to enable the regulatory application of

QSAR modelling:

Principle 1: About a defined endpoint: The endpoints/ responses modelled in the current study
applied to three different data sets. A definite endpoint means a biological, physiochemical,
and therapeutic response as an endpoint. Both the continuous and graded values are considered

as a definite endpoint.

Principle 2: About an unambiguous algorithm: Different computational statics based on
different algorithms were used to compute different classes of descriptors and successive

QSAR model development employing particular software tools.

Principle 3: A defined domain of applicability: The applicability domain (AD) for all the
statistically relevant developed models. The implementation of the applicability domain is to
select the outliers of the definite prediction and further chemical categorization based on the

prediction.

Principle 4: Appropriate measures of goodness of fit, robustness, and predictive ability.
Several validation statistics and statistical plots are used to thoroughly validate the quality of

the prediction and ensure the goodness fit and robustness of the model.

Principle 5: A mechanistic interpretation, if possible: In our present work all the descriptors
responsible for the developed model were recognized, correlated with the corresponding
endpoint and the mathematical relation is established. However, it is helpful to interpret the

structural attributes as well as the physiochemical attributes of molecules of interest with the
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respective endpoints. Apart from that molecular interpretation not only indicates the necessary
optimization mechanism to achieve the desired goal but also gives the idea of chemical

characterization.
1.1.12. Read-Across

Read across is an Insilco chemometric method but while we categorize it in detail it comes
under a non-statistical algorithm. It is predominantly based on the similarity whether it is
structural, chemical, or biological activity based on the defined kernel (Euclidean, Gaussian,
and Laplacian kernel) based similarity [54]. Initially, we considered 10 number of close source
compounds. Based on the similarity pattern they gave their prediction opinion for a particular
estimated compound. The resulting outputs are generally taken as weighted average prediction

value, weighted average standard deviation, and weighted average standard error.
1.1.13 RASAR

RASAR is an amalgamated method of both the QSAR and read-across. While QSAR is a
statistical method read across showcased as a non-statistical method. For the development of
the RASAR model, the descriptors are calculated from the training set into two segments as
2D QSAR descriptors in supervised form and the read across based measured from
unsupervised form[55 ]. After that, the two types of descriptors are clubbed and further
proceeds for the RASAR model development. The prediction of the RASAR model is carried
out following the same mechanistic approach as read across depending on the predictive
opinion of 10 close source compounds. The validation parameters are considered in terms of
R? , Q? mimicking the validation process of simple QSAR. That’s how RASAR stands as a
hybrid approach of both QSAR and read-across. The above process is applicable for g-RASAR

model development. However, the c-RASAR model can be used only using RASAR
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descriptors. For this scenario accuracy, AUC, MCC, sensitivity, and specificity can be

considered as the validation statistics.

1.1.14 ML model development

Machine Learning is an artificial intelligence-derived computational program, which was used
here for the purpose, of enhancing the accuracy and prediction quality from the previous c-

RASAR model [56].

1.1.14.1 Random forest- It is a supervised machine learning algorithm based on some decision
tree. The protagonist's role in this decision tree is to decide the best-fit rule to classify the input
data based on the features. In the hierarchical arrangement of the decision tree data crosses
through each event and each event has some probability. However, after completion of the
whole process, the total probability of that event should be 1. The hierarchical nodes present
on the decision tree are the root node (does not have any incoming branch), the internal node
(has one incoming and two or more outgoing branches), terminal branch (one incoming and
one outgoing branch). In this ensemble method, the decision trees in the forest are protagonists.
The final decision taken on the majority voting came out from each node. Terminal ends of the
nodes are connected to the target and non-terminal nodes are the descriptors. Each tree is
constructed with a training set that has compressed size from the original data by random
replacement of the original descriptors. Now the new capsized data set is being trained. The

remaining descriptors are used for external validation or error detection.

1.1.14.2 Support vector machine- SVM is a labeled or supervised machine learning
algorithm. It tries to analyze different classes of the compound constructing a hyperplane. The
advantage of SVM is the efficiency of this algorithm can be shown in a higher dimensional
data set where no of descriptors is more than the no of samples. But for an input where the no

of descriptors is much more than the no of observations, the SVM failed to show a good result.
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Thus from the above algorithm, it can be expected SVM will show an enhancement in accuracy
when the algorithm is used for such a data set where the no of observations is much more than
the no of descriptors. The algorithm of SVVM is specialized to differentiate between the class

of compounds that perfectly suit for the classification-based model development.

1.1.14.3 Logistic Regression-It is a statistical classification-based model that measures the
correlation between the categorical dependent variable and one or more than that independent
variable but the classes or category is one for this case. It does not necessarily have to linear
relationship between the dependent and independent variables. The independent variable need
neither be normally distributed nor linearly related even nor for equal variance for each group.

Logistic regression can be stated as follows

logit[p(x)] = log [ﬂ

=a+ bixy + byx, + b3xz + -+
{1—P(X)} 141 242 343

Here the logit represents the log with base €, P represents the feature which ranges from 0-1 as
an intercept b;, b, are the coefficient values related to the corresponding value related to
corresponding descriptors. The value of 0 of the corresponding coefficients denotes the null
contribution of the descriptors towards its interpretation while thee with a “+” sign denotes the
null contribution of the descriptors towards its interpretation. The descriptors with “-

“coefficients negatively towards the interpretation of the model.
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Present work

A chemical compound has its particular physiochemical behavior, therapeutic potency as well
as organoleptic characteristics. However, the huge applicability of its particular phenomenon
suggests studying their qualitative, structural studies to the biological response. In the present
work, the investigation is predominantly based on the organoleptic properties of different
chemical compounds. The goal is to achieve the desired product while minimizing the hazards
and the negative influence of those chemical products in our day-to-day lives. Other than that
one of the core focuses of this investigation is to achieve a more accurate result while
simplifying the methodology. However, analysis of the applicability domain helps chemical
categorization of the chemical compounds that are still not synthesized or yet to be synthesized.
Structural modification and chemical categorization somehow contribute to the synthesis of
potentially new safer chemical compounds whether it is organic or inorganic. Therefore, in the
current study, the possibility of predicting reliable data was checked by the rigorous validation
of the QSAR model. Apart from that, we used RASAR a concept of both the QSAR and Read
across. The methodology is predominantly dependent on the prediction ability of the ten close
source compounds of a chemical of interest. The similarity whether it is chemical, structural,
or biological contributes to a prediction opinion. Of late several regulatory agencies consider
the chemometric Insilco (e.g. QSAR, read across) method as one of the significant tools for
risk assessment even for determining the property or the biological activity of a potential
chemical. In our present study, the 2D QSAR approach has been used to develop both the
classification and regression-based model. Apart from that RASAR has also been used as the
clubbing concept of QSAR and Read Across. Before finalizing the model development a

variable selection strategy (MDF for classification-based model, MLR genetic pool, Best
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subset for regression-based model) was applied to select some significant and manageable
number of descriptors to minimize the noise and correlated descriptors in the data set.
Development of a validated, predictive model as QSPR / RASAR provides rational estimation

for property determination of organoleptic compounds.

2.1. Study 1 Dataset 1

The data set of the first study mainly deals with 2370 sweet taste compounds and 2431 bitter
taste compounds. The compounds that show ‘1’ have a taste (sweet or bitter), while the
compounds that show ‘0’ are non-sweet or non-bitter. The data sets contain diverse compounds,
including carbohydrates and sweeteners such as D-Xylose, Amylose, D-Mannitol, D-Mannose,
and Aspartame, as well as some other natural products such as Quinine and xanthotoxins. The
details of the datasets (both sweet and bitter) are discussed later.

2.2 Study 2 Dataset 2

It is essential to have consistent and reliable data for the development of QSPR models. In this
second study, 1208 data points for aromatic substances were collected which describes the
experimental property as the Kovats retention index (RI) in a non-polar stationary capillary
column (0.28 mm x50 m). They used methyl silicone OV-101 as coating material admixed
with 1% Carbowax 20 M, and the column was programmed to increase from 80 to 200 °C at a
rate of 2 °C/min. The RI values used as an endpoint ranged from 350 to 2180. The Kovats
retention index is independent of individual chromatographic system specifications and allows
comparing values measured by different analytical laboratories and analysis times. The
fragrance ingredients are often obtained from commercial suppliers as mixtures of isomers

(e.q., cis-trans), which the supplier does not separate.
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3. Materials and method

The present dissertation was performed with the core objective to showcase the applicability
of a transparent methodological framework to develop a predictive QSAR as well as RASAR
model while using simply interpretable two-dimensional (2D) molecular descriptors as well as
RASAR descriptors. The necessary strategies are taken to be granted for descriptor calculation,
descriptor pretreatment, or descriptor thinning for the entire data set following the predictive
judgment and robustness of the models. A details explanation of the working data set, principal,
and methodology of the recent studies and a precise vivid discussion of the mechanism and

algorithm of each study have been done.
3.1 Studyl
3.1.1 Dataset

Developing an in-silico model requires careful consideration of the data set. In this case, we
confidently focused on sweet and bitter taste-related compounds to develop a classification-
based model. We extensively validated the model using the estimated required data. To obtain
the necessary data, we conducted a thorough search on GitHub repositories [57] for Sweet-DB
(Sweet database) and Bitter-DB (Bitter database). We successfully extracted 2370 compounds
for the sweet taste and 2431 compounds for the bitter taste from the given data sets. The
compounds that show ‘1’ have a taste (sweet or bitter), while the compounds that show ‘0’ are
non-sweet or non-bitter. The data sets contain diverse compounds, including carbohydrates and
sweeteners such as D-Xylose, Amylose, D-Mannitol, D-Mannose, and Aspartame, as well as
some other natural products such as Quinine and xanthotoxins.

3.1.2 Molecular representation and data curation
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We used Marvin Sketch software (https://chemaxon.com/marvin) to create a structural

representation of the sweet and bitter compounds data from their SMILES. To ensure accuracy,
we curated both data sets using a KNIME workflow (http://teqip.jdvu.ac.in/fQSAR_Tools/),
removing any salt forms related to the chemical structures. We also conducted duplicate
analysis and removed mixture compounds from both databases (Sweet-DB and Bitter-DB). For
mixture compounds, we selected the most important fragment for further analysis and used it
for the in-silico QSPR classification model development. As a result, we reduced the number
of compounds in the case of Sweet-DB from 2370 to 2311, and in the case of Bitter-DB from
2431 to 2370.

3.1.3 Descriptor calculation and pre-treatment

In the first step of our analysis, the chemical structures of the compounds were considered for
corresponding descriptors calculation followed by a curation step. 2D structural and
physicochemical descriptors  were calculated using alvaDesc  software

(https://www.alvascience.com/alvadesc/).  Constitutional, Ring, Connectivity index,

Functional group count, Atom centered fragment, Atom type E-state, 2D-atom pair, and
molecular properties were considered for the descriptor calculation This software not only
calculates the descriptors of the chemical compounds but also removes the missing, less
significant and inter-correlated descriptors as the method of pre-treatment. As a result, 573
descriptors for the chemical compounds were obtained. In order to filter out the most
contributing features (descriptors), first the pre-treatment was done to remove the inter-
correlated descriptors with less significance toward model development.

3.1.4 Data division

To develop a classification-based QSPR model, it is necessary to divide the dataset into a
training set and a test set. The training set is used for model development, while the test set is

used to evaluate the model's predictive [58] In this study, we divided the data sets into a 50-50
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ratio for ease of model development. As a result, both the training and test sets contain 50% of
the corresponding entire datasets. Therefore, the sweet dataset's training set contains 1156
compounds, and its test set contains 1155 compounds. Similarly, the bitter dataset's training set
contains 1186 compounds, and its test set contains 1184 compounds respectively.

3.1.5 Feature selection

Chemical compounds have unique features or descriptors that define their characteristics. In
QSPR analysis, selecting the most important features is crucial to identify the contributing
factors towards the response. There are several techniques available for feature selection in
QSPR studies [59] but in this particular study, we have used the most discriminating features
selection algorithm (MDF) analysis [60]. for stepwise linear discriminant analysis (LDA). In
this method, the training set is normalized from 0-1, and the compounds are divided into two
groups - active and inactive - with responses of 1 and O, respectively. The mean of each
descriptor for each class is then calculated, and the absolute difference is determined by
subtracting the mean inactive part from the mean of the active part. The features with the
highest absolute differences are identified as the most discriminating features and are used in
the QSPR analysis. Furthermore, for read-across (RA) analysis and RASPR descriptor
calculation, features from the stepwise LDA model were selected, for further calculation.
3.1.6 Analysis of unbalanced set

When performing QSPR modelling based on classification, it is important to balance an
unbalanced set before developing any model. This means that the number of active compounds
should be similar to the number of inactive ones. This step is necessary to avoid any bias toward
any one class of compounds. In the case of the sweet dataset, the number of active and inactive
compounds was approximately equal, so no balancing was required. However, for the bitter
dataset, the training set was initially biased towards inactive compounds, with the ratio of

inactive to active compounds being approximately 2:1. Therefore, balancing the training set
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was necessary. To balance the dataset, we oversampled the active compounds by duplicating
them, so that the overall ratio between inactive and active compounds was close to 1:1. The
modified training set for the bitter dataset was then used for model development.

3.1.7 Conventional Classical QSPR model

A linear discriminant analysis (LDA) model [61] was created using the most discriminating
features (MDF) for both the Sweet-DB and Bitter-DB datasets, using STATISTICA 7.1
(STATSOFT Inc. USA http://www.statsoft.com). LDA is a statistical method that classifies
input data into two linear classes. Unlike multiple linear regression (MLR), LDA provides a
predictive correlation equation that determines the positive and negative influence of a
descriptor based on the discriminant function. One of the primary principles of LDA is to
differentiate between classes. The Discriminant Function equation describes the influence of
each descriptor for the LDA model. The Discriminating Function can be described from the
equation

DF = ¢y + c1x1 + Caxp + C3X3 + -+ + CpXp

1. Here, in equation (1), the DF stands for the Discriminating Function, X1, Xa,..., Xn is
predictor scores for the total n variables, and Ci, C»...Cy are the corresponding weights.
Here, for the current work, while going for the linear discriminating analysis, the tolerance
limit is set for 0.0001, F to enter for 4.0, and F to remove for 3.9. Later on, the developed
model was validated using internationally accepted validation metrics like accuracy,
balanced accuracy, precision, recall, F1-score, Matthews correlation coefficient (MCC),

Cohen’s k, and area under the ROC-curve (AUC) [62].

3.1.9 Development of Read across (RA) based prediction
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The selected descriptors from the conventional QSPR model generated through stepwise
regression were used for read-across (RA) analysis [63]. The selected descriptors from both
the datasets (training and test sets) were utilized for read-across predictions using the tool Read-

Across-v4.2.1 (https://sites.qgoogle.com/jadavpuruniversity.in/dtc-lab-

software/home#h.7hxieb6k5y4b). This approach utilizes the supervised learning method and

generates similarity-based predictions based on Euclidean distance-based similarity, the
Gaussian Kernel similarity, and the Laplacian Kernel similarity. The default settings for the
Read-Across-based predictions are 6=1, y=1, No. of close source neighbours = 10. This tool
utilizes a set of “n” close source compounds for every query or test set compound. To derive
the optimum setting for the RA predictions, a hyperparameter optimization was also performed.
3.1.9.1 RASPAR descriptors calculation

In addition to the 2D descriptors, we also calculated RASPR descriptors calculated using
RASPR-Desc-Calc-v3.0.1, which is available from the DTC Lab tools supplementary site

(https://sites.qgoogle.com/jadavpuruniversity.in/dtc-labsoftware/home). We used the default

setting of the Read-Across hyperparameters to calculate RASAR descriptors for both datasets.
The standard for RASPR descriptor calculation was based on the suggested Euclidean distance,
where the number of the closest source compounds was set to ten and the threshold for the
distance was set to one. The calculation of RASPR descriptors [64]. considered the structural
and physicochemical features or descriptors from the previously developed QSPR LDA model.
The calculated c-RASPR descriptors were then used to perform LDA models in conjunction
with the forward stepwise regression method of variable selection, with the criteria F = 4 for
inclusion and F = 3.9 for variable exclusion. Unlike QSPR descriptors, the calculated RASPR
descriptors encode information related to the close source congeners of a particular query
compound, rather than the query compound itself. The derived descriptors are similar to the

latent variables that feature all related information of structural and physicochemical
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descriptors obtained from QSPR models and generate models with a reduced number of

descriptors that contain all chemical information.

3.1.8.2 Machine learning-based model development

1.

In our work, we used various machine learning (ML) approaches to test the predictive
ability of the developed c-RASPR models for both Sweet-DB and Bitter-DB. We
compared the prediction quality of the developed ML models developed using a support
vector classifier (SVC) [65].

logistic regression (LR) [66]

and random forest classifier (RFC) [67]

with the default settings corresponding to hyperparameters using the ML classifier tool
available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-
software/home/machine-learning-model-development-guis, with the selected descriptors
derived from the c-RASPR (LDA-RASPR) model. SHAP (Shapley Additive explanation)
analysis plot was also performed to explain the supervised model (SVC) and assign the

importance of the modelled descriptors for specific prediction [68].

3.1.9 Applicability Domain (AD)

The concept of applicability domain can be defined based on the molecular descriptor space.

The reliability of predictions for objects outside the training set chemical space can be

determined by evaluating the performance of the model on unseen objects during validation.

However, it is important to note that objects that are further away from the molecular descriptor

space covered by the training set may result in larger error rates [69]. AD (Applicability

Domain) aims to identify objects, anomalies, or outliers in the molecular descriptor space. To

predict the properties of a new or unknown compound, it must fall within the theoretical

chemical space known as the Applicability Domain (AD) of the model. There are various

techniques to determine the AD of a model, but we have used the leverage approach for both
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the training and test sets to determine the structural outliers. We used Hi_Calculator-v2.0

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) to  perform the
analysis.
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Fig 3.1 Workflow of Study 1

3.2 Study 2

3.2.1 Dataset Collection

It is essential to have consistent and reliable data for the development of QSPR models. In this
study, 1208 data points for aromatic substances were collected from the literature [70] for
model development. The researchers [70] reported the experimental property as the Kovar’s
retention index (RI) in a non-polar stationary capillary column (0.28 mm x50 m). They used
methyl silicone OV-101 as coating material admixed with 1% Carbowax 20 M, and the column
was programmed to increase from 80 to 200 °C at a rate of 2 °C/min. The RI values used as an
endpoint ranged from 350 to 2180 [71]. Kovart’s retention index is independent of individual
chromatographic system specification and allows comparing values measured by different
analytical laboratories and analysis times. The fragrance ingredients are often obtained from
commercial suppliers as mixtures of isomers (e.g., cis-trans), which the supplier does not
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separate. However, we cannot neglect the effect of temperature, pH, and surrounding
environment for transforming a particular isomeric form of a chemical compound to another
(like a transformation of a cis compound to trans and trans compound to cis form) for a mixture
of compounds while it was supplied for experimentation. This consequence may result in
exceptional responses where a single compound represents two different isomeric mixtures
with the same molecular weight. In this scenario the compounds like Allyl anthranilate 1 and
Allyl anthranilate 2 may not represent the pure cis or trans isomeric form of a compound rather
they were represented as a mixture of both the geometrical isomers. In the present study, it was
interpreted as a single compound with an isomeric mixture while considering the impact of
other external factors as well. In that case, collecting the average retention index value
(compounds with quite similar chromatographic peaks) of Rojas et al. is justified for further
development of an accurate and interpretable model. This kind of approximation is very
common in any 2D-QSPR analysis.

3.2.2 Molecular representation and data curation

A total of 1208 flavour and fragrance compounds, each with its corresponding SMILES,
chemical names, and retention index, were initially compiled (provided in supplementary
information 1). To ensure accuracy, for compounds with more than one reported retention
index value, the average value was calculated, and duplicate entries were removed, resulting
in a final curated dataset of 1194 compounds. The structural representation of the compounds
was done using Marvin Sketch software (https://chemaxon.com/marvin). Additionally, a
curated SDF file of the flavour and fragrance compounds was obtained after incorporating
explicit hydrogen, ring aromatization, and 2D form cleaning for the descriptor calculations.
3.2.3 Descriptor calculation

In this study, we used the Alvadesc software (https://www. alvascience.com/alvadesc) to

calculate descriptors for flavour and fragrance compounds. These descriptors are numerical
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values that define the physiochemical properties of a compound. We have used only simple,
direct mathematical algorithms nature, reproducible, and easily interpretable 2D descriptors
[72] to avoid the complexity of 3D analysis and energy [73] 2D descriptors have a deluge of
contributions in extracting chemical attributes and some are capable of representing 3D
features to some extent [74] 74 However, it is not possible to differentiate between the isomers
(cis, trans, etc.) of compounds completely using 2D-QSPR models. The work of Rojas et al.
had already concluded that 3D descriptors did not significantly improve the quality parameters
of the QSPR model. From the previous conclusion, we have decided to develop simpler 2D-
QSPR models while using the concept of intelligent consensus predictions. Lastly, the
redirection toward the source data, the unseparated mixture of both the geometrical isomers of
a particular compound, and their response values indicate an inseparable form of cis and trans
isomers even after the application of 3D descriptors. In the present study, the isomers were
recognized as a single compound. In that case, collecting the average retention index value
(compounds with quite similar chromatographic peaks) of Rojas et al. is justified for further
development of an accurate and interpretable model. This kind of approximation is very
common in any 2D-QSPR analysis. A total of 2400 2D descriptors were calculated, including
constitutional descriptors (molecular composition of a referenced compound), ETA indices
(extended top chemical atom), ring (information related to the presence of ring descriptors),
functional group count, atom-centered fragment, connectivity index, atomtype E-state
(description related to the electronic state of the atoms), 2D atom pair, and molecular properties
[72]Additionally, data pre-treatment was performed using the DataPreTreatmentGUI_1.2
(http://teqip.jdvu.ac.in/QSAR_ Tools/) software to eliminate correlated (correlation cut-off of
0.95) and descriptors having low variance cut-of (less than or equal to 0.01), resulting in a total

of 309 curated descriptors for further modelling.
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3.2.4 Dataset division

Partitioning the dataset is an essential step in developing the QSAR model. A chemometric
statistical model requires two independent datasets: a training set for developing the model and
a test set for validating the [75] Generally, the whole dataset was divided into the training and
test set in the ratio of 70:30 (approx.). In the present investigation, the dataset of fragrance and
favour compounds was divided into four clusters based on their properties (sorted
responsebased  method.) using the Dataset Division 1.2 tool  (http://
teqgip.jdvu.ac.infQSAR_Tools/). This property-based data division resulted in a training set of
896 compounds and a test set of 298 favoured and fragrance compounds.

3.2.5 Test training pre-treatment

The training and test set data may contain correlated and noisy descriptors that are not relevant
to the data modelling purpose. Therefore, pre-treating both the training and test sets is
necessary. In  our study, we utilized the Data Pre-treatment tool
(http://teqip.jdvu.ac.infQSAR_Tools/) to pre-treat the training and test sets after division, using
a variance cut of 0.01 and a correlation cut-off of 0.95. This process resulted in 162 less
correlated descriptors, ultimately minimizing the error in model development.

3.2.6 Feature selection and model development

The selected features after pre-treatment were utilized for the feature selection process. Genetic
algorithm (GA) followed by BSS (Best Subset Selection) (http://teqip.jdvu.ac.
in/QSAR_Tools/) was used for feature selection [76] Initially, some features were also selected
using the stepwise selection method. Stepwise regression can be defined as a multiple linear
regression which was evolved with the step-by-step mechanism. After removing the selected
features from the first stepwise run, the stepwise method was again performed with the

remaining pool of descriptors. Besides stepwise feature selection, GA was also performed for
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the feature selection procedure. GA tool has many advantages over other feature selection
methods. It is based on fitness function on mean absolute error (MAE)-based pick-up criteria.
We have employed our in-house tool “Genetic  Algorithm v4.1 Train”
(http://teqip.jdvu.ac.in/fQSAR_Tools/) to find the most relevant descriptors with the RI
endpoint. The best subset selection (BSS) approach was used to find the optimal combination
of descriptors for a robust prediction model. After selecting the best descriptors from both
feature selection methods, we performed partial least squares (PLS) regression to build the
preliminary QSPR models. PLS methods were employed to develop the final robust models to
avoid any chances of inter-correlation among descriptors. The PLS regression method is a
generalized technique of the “Multiple Linear Regression (MLR)” method, where we can
examine strongly collinear, correlated, noisy data and many X variables. The PLS regression
has been carried out with a Java-based software tool “PLS SingleY version” (http://
teqgip.jdvu.ac.infQSAR_Tools/). The PLS model was further utilized for best subset selection
(BSS). The best subset selection was performed with the in-house tool developed in our
laboratory (http://tegip.jdvu.ac.infQSAR_Tools/). Six descriptor models (five PLS models)
were generated based on MAE-based [77]

3.2.7 Model validation criteria

The developed QSTR models were rigorously validated via various internationally accepted
metrics to ensure the robustness, predictability, goodness of fit, and quality of the models. For
training set compounds, internal validation metrics such as cross-validated correlation
coefficient Q2 (LOO) (leave one out), rm%,, MAE 4, (mean absolute error),RMSD;,qin
(root mean square standard deviation error), and coefficient of determination R2 were
calculated to measure the robustness and goodness of ft. of the model. For test set compounds,

we have predicted external set compounds using globally accepted different validation metrics
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like predictive MAE, .5, RMSD,.¢, R*(R? pred), or Q2, and Q2, to judge the predictability of
the model [78]
3.2.8 Applicability Domain Assessment
The applicability domain is the biological, chemical, or physiochemical hypothetical space of
the training set chemicals through the recently created QSPR model. The main use of this
domain is to predict the toxicity value of compounds that fall in this domain and have unknown
values. We have used the DModX (distance to mean X) approach to predict the AD of the PLS
models (OECD principle 3) using SIMCA-P software [78-80]. The DModX uses Y and X
residuals as diagnostic values to ensure model quality. If the DModX value is greater than the
critical value, it means that the query compound is outside the domain of the model [77, 78—
80]:

SSE;

K—-A

SSE
(N — Ay0)(K — 4)

DModX =

For observation i, in a model with A component, K variables, and N observations, SSE is the
Squared sum of the residuals. AQ is 1 if the model was centred and O otherwise. It is claimed
that DModX is approximately F-distributed, so it can be used to check if an observation
deviates significantly from a normal PLS model.

3.2.9 Intelligent Consensus Prediction

This method evaluates the performance of the consensus models in comparison to the
individual models based on MAE-based criteria (i.e., 95%). It is recognized that a single model
may not be able to accurately predict all of the test compounds. This implies that one QSPR
model may be more suitable for one test compound, while another model may be better for a
different test compound [73,82,83]. A specific QSPR model may not be equally effective in
predicting all query compounds in the query list. To get the best prediction results, we need to

consider the consensus of all the predictions made by these four models. For this, consensus
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prediction should be made intelligently, i.e., in a query compound-specific way, using all or
most of the valid models. This is different from doing a simple average of predictions from all
available models. Consensus prediction is better than individual model predictions since it
combines all the good characteristics of each model. Thus, the drawbacks of one individual
model are taken care of by other models (s). This makes the predictions less biased, more
reliable, and more precise. The individual models may have differently defined applicability
domains, while the consensus method combines the ADs of the individual models, thus
providing a greater chemical space coverage as well. Moreover, the consensus method does
not affect the quality of the internal statistical parameters of the individual models [84]. In the
present study, we have chosen five models (M1-M5) to conduct a consensus prediction using
the “Intelligent Consensus Predictor” tool that is available on our laboratory website
(http://teqip.jdvu.ac.infQSAR_Tools/. The steps involved in developing the models are

depicted in Fig.
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Result and Discussion

4.1. Study 1: The first application of machine learning-based classification read-across

structure-property relationship (c-RASPR) modelling for sweet and bitter

The aim of the present study was to effectively investigate the applicability of RASAR (a
hybrid algorithm) along with machine learning over simple QSAR for a quality prediction of a
given data set. Here we have explored the mechanism of a classification-based model. Finally,
the obtained results according to the investigation were documented while the detailed
interpretation of the results from RASAR descriptors was done. This represents the deep
understanding of statistical phenomenon while considering biological response corresponding

to the mechanism of RASAR.

4.1.1. Machine learning-based classification read across structure-property relationship

(c-RASAR) model:

In a recent investigation, LDA QSPR models (denoted by equation (2) and equation (3)) were
developed that included sweet and bitter compounds, respectively, through a stepwise selection
of descriptors using STATISTICA software (STATISTICA 7.1 STATSOFT Inc., 2023) as
discussed in the materials and methods section. A similarity-based approach was then used to
ensure accuracy and avoid complexity given the high number of descriptors in the model. Thus,
to improve model interpretability and transferability for each data set, classification LDA
models were developed using similarity-based measures computed in the c-RASPR approach
from the selected LDA QSPR descriptors (15 for sweet and 12 for bitter data sets
(Supplementary file of study 1). The predicted response of an unknown compound was
determined by using the known response of similar structural analogs. The computation was

performed based on the basic settings with ED (Euclidean distance-based) similarity
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computation for sweet and bitter databases. To calculate the RASPR descriptors based on the
similarity and error-based measures of the close source compounds for each target compound
obtained from the QSPR model, we used the 15 RASPR features obtained from
physicochemical variables based on similarity measures of RA (Read- Across) prediction.
These features extract the information of 2D descriptors based on similarity and error measures
with the close source chemical as per user-defined input. The obtained models with the
respective descriptors (LDA-RASPR) show better predictivity compared to the classical LDA
QSPR models with a smaller number of features

The developed classical LDA models in this study demonstrated a commendable accuracy of
0.69-0.73 in predicting the quality; other metrics like precision (0.60-0.77), F1 score (0.69-
0.75), Matthews correlation coefficient (MCC) (0.38-0.69), Cohen’s kappa (0.38-0.41), and
AUC (0.65-0.74) for both bitter and sweet datasets for training and test sets are represented in
Table 4.1. Furthermore, the incorporation of c-RASPR descriptors resulted in further
enhancement of the results for both the sweet and bitter data sets (denoted by equations (4) and
(5)). Among the machine learning models tested, SVC exhibited the best performance, and
hence, only the SVC results were reported in this paper. While the results of other models are
provided in the supplementary section for reference (supplementary file of study 1), the
present study offers a comparison of the validation results obtained through different
methodologies, namely LDA-QSPR, LDA-RASPR, and SVC-RASPR, presented in Table 4.
1 below. The study utilizes sweet and bitter compounds for the first time with a new modelling
algorithm (c-RASPR) for classification-based modelling. The results of this study demonstrate
a significant enhancement in the prediction quality for the query set compared to the classical
QSPR model in terms of different validation metrics. We have also calculated the applicability
domain, according to the OECD principle for both the datasets and found that 0.031% and

0.043% compounds were outside the AD for Sweet-DB and Bitter-DB datasets, respectively.

54



4.1.1.1. Result for the classification-based LDA-QSPR model (M 1.1 and M 1.2).

Model M 1.1 (QSPR model for sweet compounds)

df (sweet) = —0.74777 — 0.10182 * max ** — 1.00822 *x NsssN + 1.93896

conjpatn
« BO3[C — 0] — 0.00291 * MW + 0.79705 * B02[0 — 0] — 1.3022 % 0

— 062 — 0.11899 x LOGPcon + 0.50642 x nRCOOH — 0.962906  C — 018
— 0.4332 % FO1[N — 0] — 1.2918 * nArCOOH — 1.35446 « nNq — 0.8674

* C — 033 —1.0149 * nRNHR + 0.35148 * NaaaC.

Model M 1.2 (QSPR model for bitter compounds)

df (bitter) = —0.3624 + 0.1069 * max *+ 0.1462 * FO1[C — N] — 1.0398

conjpath
* nNRCOOH + 0.0037 x MW — 0.9880 * BO1{C — 0] + 1.1514 « 0 — 062
—0.8308 * B02[0 — 0] — 1.3619 * C — 036 + 0.9478 = BO1[0 — S]

+ 0.7348 * FO2[N — S} + 1.0808 * nRNHR + 0.5057 « C — 019

The QSPR-LDA models (denoted by equations (2) and (3)) for both sweet and bitter
compounds data have good statistical metric values including Sensitivity, Specificity,
Accuracy, and Precision, all of which are above 0.5. For model 1.1 (the QSPR model for sweet
compounds), descriptors like BO3[C-O], B02[O-O], nRCOOH, and NaaaC positively
contribute to the endpoint. These descriptors suggest that sweetness is influenced by the
polarity of the compound due to the presence of oxygens and carboxylic acid fragments in the
aliphatic chain, and electron-richness in the form of aromatic fused carbons in the sweet
compounds. On the other hand, descriptors like max_conj_path, NsssN, MW, 0-062,
LOGPcon, C-018, FO1[N-O], nArCOOH, nNg, C-033, nRNHR contribute negatively to the
respective endpoint. These descriptors indicate the hydrophobic nature of the compounds. The
descriptors C-018, nArCOOH, and C-033 represent the presence of electronegativity. Again,
the presence of hydrogen bonding atoms is represented by NsssN, nNg, and O-062 descriptors.
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In model 1.2, the core concept of QSPR is applied, and it has been validated similarly to model
1. It has been found that max_conj_path, FO1[C-N], MW, 0-062, B01[O-S], FO2[N-S],
NRNHR, and C-019 descriptors showed positive contributions. These features are quite similar
to the features obtained from model 1.1, which are negatively correlated. These descriptors
represent hydrophobicity, electronegative nature, hydrogen acceptor, and the presence of a
more aromatic nature of the compounds. All of these properties are seen to influence the
generation of a bitter taste. On the other hand, features like nRCOOH, B01 [C-O], B02 [O-0O],
and C-036 are more closely associated with model 1.1 and are positively correlated. It is worth
noticing that features like polarity, i.e., the presence of oxygen or aliphatic carboxylic acids,
are negatively correlated to the corresponding endpoint (bitter taste). To obtain better
classification metrics, the descriptors obtained from both model 1.1 and model 1.2 of the
QSPR-LDA are highly relevant and have been confidently utilized for the classification-based
LDA using RASPR descriptors.

4.1.2. Result for the classification-based LDA RASPR models (M 1.3 and M 1.4).

Two classification-based LDA RASPR models (denoted by equations (4) and (5)) were created
using different sets of similarity descriptors for sweet and bitter compounds. The sweet
compounds were evaluated with 15 QSPR descriptors, while the bitter compounds were
evaluated with 12 QSPR descriptors. Then, the selected features were used to calculate the
RASPR descriptors, which resulted in 15 descriptors being generated for both sweet and bitter
compounds, respectively. Next, the generated 15 descriptors (RASPR) were used to create an
LDA RASPR model for each of the sweet and bitter compounds. The obtained LDA RASPR
models (using RASPR descriptors) for sweet and bitter compounds are presented in Equations
4 and 5, respectively. Further details of statistical parameters can be found in Table 4.1

Model M 1.3 (LDA-RASPR model for sweet taste compounds)
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df (sweet) = —8.914 + 3.334 * RA function + 7.445 * MaxPos + 8.105 * g,,
* AvgSim — 7.408 * g,
Model M 1.4 (LDA-RASPR model for bitter taste compounds
df (bitter) = 0.729 + 3.908 * RA function + 0.718 * Pos. Avg
> Sim — 8.423 * Avg.Sim + 6.92 x MaxPos — 11.485 * g,

* SDsimilarity
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Table 4.1. Comparative quality QSPR, LDA-RASPR and SVC-RASPR (ML) models for the sweet and bitter data sets

Data Model Division AUC | Sensitivity | Specificity | Accuracy Precisi | F- G-mean | MCC | Cohen's
on measure k
LDA QSPR Training 0.674 0.747 0.674 0.708 0.674 0.709 0.709 0.693 0.418
(M1) Test 0.651 0.737 0.651 0.692 0.656 0.694 0.693 0.389 0.386
= LDA -RASPR Training 0.705 0.780 0.705 0.740 0.705 0.740 0.741 0.485 0.482
D

% (M3) Test 0.666 0.777 0.666 0.719 0.677 0.723 0.719 0.444 0.440
SVC -RASPR Training 0.797 0.783 0.708 0.744 0.708 0.744 0.744 0.492 0.489
(ML) (M5) Test 0.776 0.780 0.677 0.720 0.678 0.726 0.726 0.448 0.443
LDA QSPR Training 0.744 0.729 0.744 0.736 0.773 0.750 0.737 0.472 0.471
(M2) Test 0.717 0.690 0.717 0.706 0.601 0.643 0.704 0.399 0.396
_ LDA -RASPR Training 0.744 0.725 0.744 0.734 0.772 0.772 0.734 0.467 0.466
% (M4) Test 0.749 0.728 0.749 0.741 0.641 0.682 0.738 0.467 0.465
SVC -RASPR Training 0.870 0.804 0.811 0.807 0.835 0.819 0.808 0.614 0.613
(ML) (M6) Test 0.732 0.622 0.793 0.728 0.651 0.636 0.702 0.419 0.419
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Models 3 and 4 represent the LDA-RASPR models for sweet and bitter taste compounds,
respectively. Equation 1.4 of (M 1.4) shows that the RA function, Max.Pos, and gm*Avg.Sim
are positively correlated with the response values, while gm contributes negatively. The LDA-
RASPR model provides better predictions than the corresponding previous LDA QSPR model,
as confirmed by the significant increase in Cohen's kappa values for both the training and test
sets. The same methodology was followed for the bitter taste compounds, as indicated in
Equation 5. The LDA -RASPR model for bitter taste compounds consisted of five descriptors,
including RA function, Pos.Avg.Sim, and Max.Pos, which showed a positive contribution to the
bitter taste. Avg.Sim and gn*SD Similarity, on the other hand, negatively contributes to the
response. Interestingly, the use of RASPR descriptors reduced the number of descriptors from
15 to 4 for sweet compounds and from 12 to 5 for bitter compounds, while enhancing the
validation metric values of the previously developed LDA QSPR models of the sweet data set
(Model 1.1) and also the bitter data set (Model 1.2). In case of the interpretation of models 3
and 4, first of all we have to consider the constituent descriptors of the model as listed in the
Table 4.2.

Table 4.2. Representation of RASPR Descriptors with their respective meaning (for both M

1.3and M 1.4).
RASPR )
Descriptors Meaning
RA function Read across derived composite feature describing all the structural and

physiochemical features as a single function

Pos.Avg.Sim o N
Average similarity value of the positive close source compounds.
Max Pos o N
Similarity value to the closest positive source compound.
Avg. Sim

Average similarity value of the close source congeners
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gm*Avg.Sim

The product of gm and Avg similarity of close source compounds.

gm . -
A novel concordance measure (Banerjee-Roy Coefficient).
gm*SD - o
Similarity Product of gm and standard deviation of similarity values of close source

compounds.

4.1.3 Result for the classification-based ML- based models (M 1.5 and M 1.6)

For the development of the ML model, the features for the sweet data set and bitter data set
were separately taken from the previous LDA RASPR models (M 1.3 and M 1.4). Model M
1.5 was built using the RA function, Max Pos, gm*Avg.Sim, and gm descriptors. On the other
hand, the M6 model was developed using Avg. Sim, RA function, Pos.Avg.Sim, and gm*SD
similarity descriptors. Although RF, SVC, and LR analyses were performed, the SVC
algorithm was found to be the best-performing one for both datasets in terms of both internal
and external predictions. The results of the SVC-RASPR models are shown in Table 4.1
showing better quality than the corresponding LDA-RASPR models. The ROC curves of the
developed SVC-RASPR models are shown in Figures 4.1 and 4.2 and the SHAP (Figures 4.3
and 4.4) analysis for SVC-RASPR provides insight into each individual RASPR descriptor

and its corresponding significance.
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Figure 4.1. ROC curves for Sweet DB compounds (M5) (for both the training set and test set)
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Figure 4.2 ROC curve for Bitter DB compounds (M 1.6) (for both the training set and test set)

4.1.3.1 Interpretation for the ML-RASPR model of sweet data set-related compounds
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Figure 4.3 SHAP analysis for the sweet compounds (model 1.5).
Figure 4.3 here

The core motive of a SHAP analysis is to determine the individual contribution of the
descriptors that are responsible for model development. The plots obtained with the SHAP
value denote the same. The impact of a particular descriptor may vary from model to model.
The role of the SHAP analysis is like the t-test of statistics to determine the individual
contribution of the descriptors from the developed model.

Based on the SHAP (SHapley Additive exPlanation) analysis plot [85] it was evident that the
feature with the highest significance value is the RA function. This function is a composite
score of all the individual 2D descriptors that were used to build the model, and it is derived
from the Euclidean distance-based similarity algorithm. Therefore, it encodes information on
various structural and physiochemical descriptors and shows a positive contribution to the
specific endpoint or response. For instance, compound no. 11 with an RA function value of 0.90
has a higher sweetness activity compared to compound no. 109, which has an RA function value
of 0.30 and less sweetness activity.

The SHAP analysis identifies MaxPos as the second-most significant descriptor. MaxPos
represents the similarity value between the query compound and the closest positive source

compound. Compounds with higher MaxPos values are expected to have higher response
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values. For example, compound no. 35 has a MaxPos value of 0.98 and shows a high response
value. Compound no. 59, with a MaxPos value of 0.99, exhibits sweetness characteristics.
The next significant descriptor in the order of importance is gm*Avg.Sim. It is a product of two
primary RASAR descriptors gm and Avg.Sim., which has a significant positive impact on model
development. This is observed in compound no. 21 (gm*Avg Sim value is 1, indicating the
presence of sweetness) and compound no. 31 (gm*Avg Sim value is -0.142, indicating the
absence of sweetness). Thus, these observations help to interpret this secondary cross-product.
In this series, the last descriptor is gm, also known as the concordance coefficient. As per
equation 3, the product, gm*Avg.Sim, represents a huge positive contribution, while gm shows
a negative contribution probably as a penalty factor. For instance, compound no. 15 (with a gm
value of -0.4, indicating sweetness characteristics) and compound no. 156 (with a gm value of
0.4, showing no sweetness characteristics) can explain the scenario where the contribution of
gm IS negative.

4.1.3.2 Interpretation related to ML-RASPR model of bitter taste related compounds
The Avg. Sim is a significant descriptor in RASPR that is based on similarity. When we
examine the role of Avg. Sim in the c-RASPR model, it indicates that the similarity value
between compounds in the bitter data set decreases as the distance between the compounds
increases. This suggests that as the distance among the ten closest source compounds for the
query molecule increases, the similarity value decreases. The obtained result shows that the
distance is inversely proportional to the similarity of the compounds. The negative correlation
suggests that an increase in the Avg. Sim descriptor indicates the absence of bitter taste, as
observed in Compound no. 9 with a value of Avg. Sim of 0.986. On the other hand, Compound

no. 1491 with an Avg. Sim of 0.722 indicates the presence of a bitter taste.
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Figure. SHAP analysis for the bitter compounds (model 6).
Figure 4. 4 here

One of the most significant RASPR descriptors for the model is the RA function. The equation
shows a positive correlation of this descriptor. RA function is a composite score of all the 2D
descriptors used to construct the corresponding QSPR model. Therefore, when we assess the
contribution of the RA function to the model, it indicates a positive effect of all the collective
descriptors. For instance, compound number 41 (with an RA function value of 0.902) indicates
the presence of bitter taste, whereas compound number 25 (with an RA function value of 0.20)
indicates the absence of bitter taste. This can explain the direct proportionality of this descriptor
to the bitter taste endpoint.

The third most significant descriptor is Pos. Avg. Sim, and it is positively correlated with the
bitter taste endpoint or response. Pos. Avg. Sim refers to the average similarity value among
the positive close-source compounds. This indicates a greater tendency towards positive class
predictions and less towards negative class predictions. Compound no. 381 with a Pos.Avg.Sim
value of 0.97 undoubtedly has a bitter taste. In contrast, compound no. 1 with a Pos.Avg.Sim
value of 0.646 has no taste sensation, making it an excellent and indisputable example of this

feature.
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In this series, the final feature to consider is MaxPos, which is the maximum similarity value
to the closest positive close congener. The higher the MaxPos value, the more likely it is for a
compound to be positively predicted. For instance, compound no 35 has a Max.Pos value of 1,
which confidently leads to a positive activity prediction of the compound. On the contrary,
compound no 1 has a Max.Pos value of 0.721 which confidently leads to a negative activity
prediction of the model. Therefore, this descriptor holds a great influence in accurately
predicting the activity of the compounds.

4.1.5 Comparison with other work

1.In the previous study, Rojas et al [71]. Conducted a QSPR modelling analysis for both sweet
and bitter compounds on a total of 566 compounds in a Sweet-Tasteless dataset and 508
compounds in a Sweet-Bitter dataset. The authors employed sensitivity and specificity as
classification-based validation parameters to evaluate the quality of their models. However,
they did not perform dataset balancing; therefore, the computed sensitivity and specificity
which are the possible indicators of the true positive and true negative predictions may have
been affected by the nature of the dataset. In the current work, we have applied balancing to
the imbalanced bitter data set following the method of oversampling. We have also reported
the values of metrics like MCC, Cohen’s kappa, and AUC ROC. Although a direct
comparison between our study and Rojas et al [71]. was not feasible as a result of variations
in the methodology and the number of compounds used, we endeavored to assess the difference
in prediction quality between their models and ours (Table 4. 3). As we know, the study
conducted by Rojas et al [71] utilized 566 compounds for the sweet dataset and 508 compounds
for the bitter dataset. In comparison, our study consisted of 2311 compounds for the sweet
dataset and 2370 compounds for the bitter dataset, which is almost four times larger than the
previous datasets. The size and diversity of the compounds in the dataset can influence the

validation parameters, but we were able to generate decent values for the validation parameters,
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including sensitivity, specificity, MCC, Cohen's kappa, AUC-ROC, precision, F-measure, and
G- mean. In a recent work, Tuwani et al [86] applied dimensionality reduction techniques like
the Boruta algorithm and principal component analysis before applying the final machine
learning classification methods to sweet and bitter data sets but they considered only a very
limited number of compounds in the test sets (in the order of 1/8 times of our test sets). Thus,
the quality of our predictions is not directly comparable to their models (however, we have
shown their best 2D descriptor models based on ROC values of the test sets in Table 4.3).
When compared to Xiu et [87] work on identifying novel umami molecules using QSAR and
molecular docking results, our work is reassuring in terms of the controlling features of sweet
and bitter activity, such as the presence of polar groups (C-018, nArCOOH, C-033, FO1[C-N],
BO1[O-S], FO2[N-S], nRNHR) and hydrophobicity parameters (max_conj_path, NsssN, MW,
0-062, C-018, FO1[N-O], nArCOOH, nNqg, C-033, nRNHR) that are essential factors for

sweet/bitter molecules for ligand binding.
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Table 4.3 Comparison with the previous work (Rojas et al. and Tuwani et al.).”%"

Model No. of Division

— — © —_ o -
(n) NTest) n n < a8 S O
Present Work
Sweet-Nonsweet . | 2311 Train (1156) | 0.797 | 0.783 | 0.708 0.744 | 0.708 0.744 0.744 |0.492 | 0.489
(SVC-RASPR) Test (1155) 0.776 | 0.780 | 0.677 0.720 | 0.678 0.726 0.726 | 0.448 | 0.443
Bitter-Nonbitter . | 2370 Train (1186) |0.870 |0.804 |0.811 |0.807 |0.835 |0.819 0.808 | 0.614 | 0.613
(SVC-RASPR) Test (1184) 0.732 | 0.622 | 0.793 0.728 | 0.651 0.636 0.702 | 0.419 | 0.419
Rojas et al.”
Sweet -Tasteless | 566 Train (396) - 0.89 |0.78 - - - - - -
Test (170) - 096 |0.77 - - - - - -
Sweet-Bitter 508 Train (356) - 0.75 |0.75 - - - - - -
Test (152) - 095 |0.63 - - - - - -
Tuwani et al.”
Sweet-Non-sweet | 2366 Train (2205) | 0.923 | 0.835 | 0.867 - - 0.847 - - -
(2D RF-Boruta) Test (161) 0.863 |0.683 |0.943 |- - 0.798 - - -
Bitter-Non-bitter 2411 Train (2257) | 0.863 | 0.723 | 0.860 - - 0.737 - - -
(2D AB-PCA) Test (154) | 0.868 |0793 | 0874 |- : 0849 |- : :
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Study 2

Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance
Compounds Using 2D Descriptors

The goal of our second study is to predict a dataset effectively following the concept of
regression while simplifying the overall mechanism and algorithm of the QSAR study. The
second study is majorly developed on the pillar of 2D descriptors by using Intelligent consensus
prediction. The necessary strategies like stepwise MLR along with best subset selection were
taken into consideration for the descriptor thinning procedure. Finally, a consensus model
results as a collective prediction of individual five PLS models. Later on, a detailed study of
the corresponding applicability domain was performed. Thus, as a result, a greater area of
chemical space was well demarcated where performing the chemical categorization was much
easier.

4.2.1. Intelligent consensus prediction of the QSAR model while using five independent
PLS model

The goal of this study is to create statistical models using simple and easily interpretable 2D
descriptors. We have established various QSPR (PLS) models and validated them with
different internationally accepted validation metrics. From the statistical results (summarized
in Table 4.3), it was concluded that the developed models were accurate, predictive robust, and
reproducible. Additionally, we have also conducted the applicability domain assessments
(compounds situated outside the applicability domain criteria were considered outliers) and Y-
randomization tests (to check whether models did not come by any chance) of developed
models. We have also provided the probable mechanistic interpretation of the modelled
descriptors that play a key role in determining the retention index of favor and fragrance
compounds The scatter plots (given in Fig. 4.5) of the established models (M 1-M 5) show that

the observed and predicted responses are quite similar and exhibit a good correlation.
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4.2.2. Developed QSPR model for retention index

We have developed multiple regression-based QSPR models using the retention index (RI) of
the favor and fragrance compounds as the endpoint. Intelligent consensus prediction was also
employed to enhance the external prediction of the developed PLS models. The details of the
modeled descriptors (models (M 1-M 5)) (provided in Supplementary Information 1) along
with their meaning, contribution, and mechanistic interpretation of modelled descriptors are
provided in Tables 4.4 and 4.5. Various PLS plots [88] (VIP plots (given in the supplementary
file for study 2), loading plots (given in Figs. S6-S10 in Supplementary Information 2), score
plots (given in the supplementary file of study 2), DModX plots (supplementary file of study
2), and Y-randomization plots (supplementary file of the study 2) were developed employing
using SIMCA software (https://www. umetrics.com). The insights obtained from the developed
models (M 2.1-M 2.5) for the retention index are explained in the Mechanistic interpretation
section. The Y-randomization test and applicability domain (AD) assessment of the established
models (M 2.1-M 2.5) were provided in the Y-randomization and Applicability domain
section.

4.2.3'Y randomization of the PLS model

The Y-randomization test acts as a checkpoint whether the developed model is a result of a
chance correlation or not. The X columns were fixed and the Y column was randomized with
a different permutation and combination multiple times (here it is 100 times). The resulting
randomized models were compared with the best-fitted model to analyze the significance of
the developed models. The randomized model’s fundamental validation statistics (R2 and Q2
) should be poor when comparing it with the best fit model. The poor quality of the randomized
models assures that the recently developed model is not a result of a chance correlation [88,
89]. Thus, the poor result of the randomized models indicates the acceptability of the developed

model. The intercept value of R2 Y (within 0.3) and the intercept value of Q2 Y (within 0.05)

69



as validation statistics of the randomized models make the best-ftted model acceptable [88,89].
The Y randomized plots for each PLS model (model M 1-M 5) were given in (Supplementary

file of study 2)
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Table 1. Statistical quality and validation parameters obtained from the developed PLS and consensus models.

Traini

ng Set

Test Set

Model

Equation

Q*F,

Q*F,

RMSD,.

MAEtest

No.

R? Q

2 r

2
m_loo

0.866

Ar?,

0.080 5

MAE train

7.126

RMSDtrain

96.168

0.945

0.945

73.756

52.250

M1
(LV-4)

RI = 157.448 +
6.555 xMW+16.207x
NAA-50.76x
NR=Cp+94.838x
nHDon-42.202x
C-001+52.159x
SdssC

0.909

0.907

91.246

0.945

0.945

73.679

49.835

M2
(LV-4)

RI = —139.993 +
6.52 XxMW+9.966x
C%-83.309x
NR=Cp+87.463x
nHDon-45.335x
C-001+35.648x
SdssC

0.918

0.916

0.879

0.073

0.075

52.648

54.593

92.718

0.943

0.943

74.928

52.039

M3
(LV-4)

RI =175.381 +
6.746 x MW-86.038x%
NR=Cp+83.855x
nHDon-60.406x
C-001+58.776x
SdssC+48.568x
SaasC

0.915

0.914

0.907

0.875

0.865

0.082

57.196

96.479

0.943

0.943

75.463

53.577

M4

Rl =176.5111 +

0.908

(LV-4)

6.551 XxMW+14.932x
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NAA-39.752x
NROR+64.807x
nHDoN-46.849x

C-001+43.92x%

SdssC

M5
(LV-4)

RI = —45.8096 +
6.5409 XxMW+6.76x
C%+78.8267x%
nHDon-48.8858x
C-001+36.6962x
SdssC+27.4712x
SaasC

0.913

0.911

0.872

0.077

54.648

94.188

0.943

0.943

75.372

51.420

CMO

Cumulative prediction from
all input individual models.

0.948

0.948

41.053

CM1

Cumulative prediction from
all individual qualified
models.

0.948

0.948

41.053

CM2

Weighted average prediction
from all qualified individual
models.

0.949

0.949

39.930

CM3

Best selection of prediction
(compound-wise) from all

qualified individual models.

0.950

0.950

38.447

Here, LV represents the latent variables, MAE represents the mean absolute error, R? is the determination coefficient, Q2 is the leave one out,
whereas RMSD represents the root mean square standard deviation error. CMO = Ordinary consensus predictions. CM1 = Average of predictions
from individual models IM1 through IM5. CM2 = Weighted average predictions from individual models IM1 through IM5. CM3 = Best selection
of predictions (compound-wise) from individual models IM1 through IM5. *Note that we have run the “Intelligent consensus predictor tool” using
the options, AD: No; Dixon Q-test: No; Euclidean distance: No
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Fig.4.5 Statistical Plots of Study 2

4.2.4 Applicability Domain Assessment

The domain of applicability [90] was analyzed with the DModX approach using the SIMCA-
P software (https:// www.umetrics.com). DModX plots of developed models (M1-M5) were
provided (given in the supplementary file of study 2). From this assessment, it was observed
that test set compounds 128, 661,745, 1002, and 1027 from Model 1; 361, 448, 745, 1002, and
1086 from Model 2; 10, 128,661,745 and 1027 from Model 3; 224, 425, 489, 594, 661, 1159,
and 1170 from Model 4; 10, 128, 361, 656, 766, 1002, 1027, 1086, and 1184 from Model 5 are
situated outside the domain of applicability (structural out lire).

4.2.5 Mechanistic interpretation of modelled descriptors

We have provided a probable mechanistic interpretation of the modelled descriptors, as per

OECD guidelines 5. The type, meaning, contribution, and probable mechanistic interpretation

of modelled descriptors are provided in Table.
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4.2.6 PLS model interpretation

The first latent variable represents the geometrical property (in the form of MW, C%, nAA)
and represents the size of molecules which is directly related to lipophilicity and leads h RI
values (+ve contribution). Bulkiness and Partition coefficient (LOG P) are also dependent on
molecular weight, leading to high lipophilicity in respective compounds (justified by structures
of molecules too). The next significant latent variable is contributed by the descriptors SdssC,
SaasC, nROR nR=Cp, and C-001 descriptors, and all of them together contribute to the
electronic effect. NROR nR=Cp and C-001 have negative contributions but SdssC and SaasC
have positive effects with low contribution; therefore, the overall contribution of this latent
variable is negative toward the property endpoint which is also justified by the structures of
molecules (presence of such features).

4.2.7 Comparison of the Recent Work

It is not possible to provide a strict comparison between the present study with related work
due to the different composition of training and test set, total number of compounds used,
number of variables used, etc., but we have tried to provide a possible comparison. Rojas et al.
(2015) [70 Jand Rojas et al. (2015) [71] reported an in silico model using the retention index
(R) of 1184 flavour and fragrance compounds as an endpoint. The statistical results showed
that the RMSD values for both the training and test sets were higher compared to the present
work (the lower the RMSD value, the better the model quality). However, some of the previous
studies lacked the reporting of exhaustive validation results in the form of different
internationally accepted validation metrics, the use of simple and reproducible descriptors,
specific findings (features responsible for the design and development of novel and suitable
F&F compound), consensus prediction, as well as a wide domain of applicability. We have
developed PLSICP models to assess the retention index (RI) of flavour and fragrance

compounds. Models were developed using simple, reproducible, and easily interpretable 2D
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descriptors and retention index (RI) as endpoints. The present work demonstrates better
robustness, quality, reliability, and predictivity than the previously developed models. Our
models were developed using a comparatively lower number of variables. Consensus
predictions (in our case, the winner model is CM3) were also employed to improve the
predictivity of the models. Our developed models have a wide domain of applicability and
consist of simple, robust, reproducible, and easily interpretable 2D descriptors. Models were
rigorously validated using internationally accepted validation metrics which show reliability,
predictivity, and robustness. Some important features are reported in our study which will help
design a novel and suitable F&F and related compounds. The comparison of the previous work
(Rojas et al. (2015[70] and Rojas et al. (2015) [71] with the present study along with different

validation metrics and ICP results is provided in Table 4.6.
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Table 4.5. Type, meaning, contribution, and mechanistic interpretation of modeled descriptors.

SI. | Descriptors | Presence in Meaning of Type of Mechanistic interpretation
No with developed the descriptors
contribution | PLS Model descriptors
1. MW (+ve) M1, M2, M3, Molecular | Constitutional | This descriptor is directly related to the hydrophobicity (lipophilicity). Generally,
M4, M5 weight index lipophilic compounds may take more time for elution from the chromatographic
column. Thus, a higher numerical value of this descriptor leads to a high R1 value
as shown in compound 2 (MW= 172.3, Rl value = 1095) and inversely, it occurs
in compound 675 (MW= 44.06, RI value=363) (given in Fig.3).
2. nHDon M1, M2, M3, | The number Functional | It was observed from the present dataset that compounds containing a higher
(+ve) M4, M5 of donor group count | number of hydrogen bond donors have also high molecular weight (MW) which
atoms for H is directly correlated with lipophilicity, resulting in high RI values as shown in
bonds compound 1191 (nHDon=2, RI value=2091, MW=241.31) and the absence of
such atoms in any compounds leads to low RI value as shown in compound 674
(nHDon=0, RI value=350, MW=46.08) (given in Fig.3).
3. C-001(-ve) | M1, M2, M3, | The presence | Atom-centred | This descriptor signifies the branching in any compound that is inversely
M4, M5 of fragment correlated with hydrophobicity and directly related to hydrophilicity. This
CH3R/CH4 phenomenon is demonstrated in compound 1192 (C-001=0, Rl value=2147), and
group vice-versa occurs in compound 687 (C-001=4, RI value=590) (given in Fig.3).
4. SdssC (+ve) | M1, M2, M3, The sum of | Atom-type E- | The positive correlation of this descriptor indicates that the presence of such
M4, M5 dssC E-state state index | fragments in any compound increases the RI value as shown in compound 1056

(SdssC=3.03, RI value=1802) and the absence of such fragments in any
compound leads to a low RI value as shown in compound 894 (SdssC=0, RI
value=1224). The presence of this fragment (=C<) reduces the polarity
(hydrophilicity) of molecules. Thus, polarity and hydrophobicity are inversely
related to each other (given in Fig.3).
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nR=Cp (-ve) | M1, M2, M3 Number of Functional | The presence of terminal sp? carbon indicates a significant enhancement in
terminal sp> | group count | branching in any molecules which reduces the hydrophobic (lipophilic) character
carbons of the molecules and ultimately reduces the RI value of the organic flavor and
fragrance compounds. This phenomenon is demonstrated in compound 1046
(nR=Cp=0, RI value=2180) and oppositely occurs in compound 192 (nR=Cp=1,
RI value=1228) (given in Fig.4.6).
nR=Cp (-ve) | M1, M2, M3 Number of Functional | The presence of terminal sp? carbon indicates a significant enhancement in
terminal sp> | group count | branching in any molecules which reduces the hydrophobic (lipophilic) character
carbons of the molecules and ultimately reduces the RI value of the organic flavor and
fragrance compounds. This phenomenon is demonstrated in compound 1046
(nR=Cp=0, RI value=2180) and oppositely occurs in compound 192 (nR=Cp=1,
RI value=1228) (given in Fig.4.6).
C% (+ve) M2, M5 The Constitutional | A high percentage of carbon atoms (large-carbon skeleton molecules) in any
percentage of index compound leads to enhancement in hydrophobicity (lipophilicity) which leads to
C atoms a high RI value as shown in compound 1192 (C%=48.57, Rl value=2147), and
the inverse phenomenon occurs in compound 674 (C%=22.22, Rl value=350)
(given in Fig.4.6).
nAA (+ve) M1, M4 The number | Constitutional | Aromatic compounds contain a hydrophobic nucleus which contributes towards
of aromatic index non-polarity. Non-polar compounds are hydrophobic (a high RI value) in nature.
atoms Thus, the presence of more such fragments (aromatic atoms) in compounds leads
to high RI values as shown in compound 1192 (nAA=12, Rl value=2147), and
vice-versa occurs in compound 276 (nAA=5, RI value=1217) (given in Fig.4.6).
Presence of aromatic ring lead to increase in size of molecules, ultimately
enhancing the lophilicity.
SaasC (+ve) M3, M5 The sum of | Atom-type E- | This descriptor signifies the presence of an aromatic substitution in any
aaaC E-states | state index | compound. Aromaticity is inversely related to polarity [51] and, consequently

directly related to hydrophobicity. Thus, the presence of such a structure
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fragment reduces the R1 value as demonstrated in compound 360 (SaasC=6.039,
RI value=1837) and vice-versa occurs in compound 219 (SaasC=2.019, RI
value=1227) (given in Fig.4.6).

NROR (-ve)

M4

The number
of aliphatic
ethers

Functional
group count

Generally, ethers (C-O bond of ether) are polar in nature [52]. Therefore, the
presence of such fragments (aliphatic ethers) in any molecule enhances the
polarity and consequently hydrophilicity of the compound. Hydrophilicity and
RI are inversely related to each other. Therefore, the presence of such a fragment
reduces the RI value as shown in compound 559 (nROR=3, RI value=763) and
an inverse phenomenon occurs in compound 900 (nROR=1, RI value=1235)
(given in Fig.4.6).
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Fig 4.6 Structural correlation of chemical compounds with retention index

4.2.8 Advantages and implementation of the present work

We have developed regression-based QSPR models using 2D descriptors and the GA-PLS
method (avoid any chances of inter-correlation among descriptors) to assess the retention index
of flavour and fragrance compounds. Models were developed using simple, reproducible, and
easily interpretable 2D descriptors and rigorously validated with various internationally
accepted validation metrics (both external and internal validation metrics) in compliance with
the OECD guidelines to check the robustness, reliability, predictivity, and domain of
applicability. Consensus predictions were also employed to improve the external predictivity
and domain of applicability of the developed models (in our case, CM3 is the winner model).
Some important findings regarding R1 of F& F compounds were observed from this study:
hydrophobicity, the presence of larger fragments, high molecular weight, and aromaticity were
responsible for the high RI value (+ve contribution) of the flavour and fragrance compounds,
while polarity and hydrophilicity reduce (—ve contribution) the retention index of the flavour
and fragrance compounds. Hence, this information can be used for the selection and

optimization of the stationary phase according to the available organic compounds (flavour and
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fragrance compounds) and for achieving the desired retention index. Finally, developed models
can be used for data gap fling (prediction of RI value of untested and new compounds within
the domain of applicability); consequently, this information (with known calculated RI values)
can be used in the flavour and fragrance industry to identify unknown compounds (by
comparing with RI values) in complex mixtures by reducing time, cost, the need of highly
skilled labour, costly instrumentation, and complexity of experimentation. Thus, developed
models will help design and develop suitable and novel flavours and fragrances that fulfill the

product’s requirement before experimental verification.
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Table 4.6. Comparison with the previous work by Rojas et al. (2015a) and Rojas et al. (2015b).

descriptors.

Developed Total number of No. of compounds on | No. of features | Type of the | No. of features | RZ. .., | RZ%s | RMSDirain | RMSDy e,
model compounds used the training set and test in the initial features in the final
set. pool model
Present work
Model 1 6 (LV-4) 0.909 - 96.168 73.756
Model 2 6 (LV-4) 0.918 - 91.246 73.756
Initially 1208, and 894 in the training set
Model 3 after curation 1194. | and 298 in the test set. 309 2D 6 (LV -4) 0.915 - 92.718 74.928
Model 4 6 (LV -4) 0.908 - 96.479 75.463
Model 5 6 (LV -4) 0.913 - 94.188 75.372
Previous 1206 Niqin=400, N,;=405, 1815 2D 4 0.910 | 0.93 |100.94 82.99
Rojas et al. Niese =403 conformational
(2015) [70] descriptors.
Rojas et al. Initially 1206 and after | N;.qin=395,N,,4;=396, 1815 non- 2D 7 0.902 | 0.904 | 137.60 121.978
(2015)[71] curation 1184 Niest=393 conformational
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5.Conclusion

A proper investigation of some organoleptic compounds and their impactful properties often
helps to understand the upcoming effects on the area of their implication. This research work
was done with the objective of understanding the influence of organoleptic compounds and
their properties while focusing on the implication of some conceptual, simplest algorithms that
are predominant for quality prediction. The proper analysis of the organoleptic chemicals
whether it is physiochemical, or potential helps to better understand their ultimate fate
considering their utility. Restructure and design of the chemicals according to the resulting
feature, interpretation, and chemical categorization often help to meet the desired goal of risk
management and effective use of the chemicals.

In the first study of the recent dissertation, we have developed a classification-based c-RASPR
model while employing the concept of machine learning. With the progress of the study, the
responsible significant features were identified for further detailed interpretation regarding the
explanation of statistical concepts concerning the corresponding biological responses.
Moreover, in our second work, we have developed QSPR models with an implication of
intelligent consensus prediction. For this study also the resulting 2D descriptors were
recognized and vividly interpreted with the physiochemical and structural phenomenon
following the respective biological responses. In these two studies, we have explored the
predominant concept of QSAR. Intelligent consensus model prediction and RASPR are nothing
but the extended implications of QSAR. While Intelligent consensus prediction is restricted
within the idea of QSAR while giving an aggregate judgment of several validated results, the
concept of RASPR extended towards read across. It’s often taken into account that RASAR
gives its prediction opinion on the similarity parameter (chemical, biological, and structural)

of ten close source compounds. In these two studies, we have tried a detailed understanding of
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the QSAR and RASAR algorithms for estimating the effective use of the chemical compounds
as well as the necessary optimization of the chemical structures to achieve the desired goal.

The core objective is to develop a reliable, simplified technique.

5.1 The first application of machine learning-based classification read-across structure-

property relationship (c-RASPR) modeling for sweet and bitter

The identification of contributing features for both sweet and bitter compounds is
vital for taste-sensing mechanisms. In the investigation, two large and diverse data sets were
used to develop classification-based predictive models. Initially, preliminary QSPR models
were developed using the most discriminating features (MDF), which provided moderate
prediction results but left suggestions for further improvement. Although the prediction results
of the models using this QSPR method were of moderate quality, they provided suggestions
for improving the prediction quality. These QSPR models also give information about the
important features that regulate the properties of the sweet and bitter tastes of the organic
compounds.

In the next segment, the LDA-RASPR model, which combines QSPR and Read-across
techniques, showed better prediction quality for both sweet and bitter data sets than the
corresponding LDA-QSPR models. Additionally, machine learning algorithms (ML) were
applied to both sweet and bitter data sets with RASPR descriptors, and the Support Vector
Classification (SVC) algorithm provided the best results. The comparison of simple LDA-
QSPR and ML-RASPR methods showed that the latter outperforms the former in terms of
predictive quality for both data sets. This suggests that the concept of ML itself enhances the
learning experience and can be used along with the methodology of RASPR for enhanced
model prediction quality. In general, we reconciled the laboratory studies and developed
predictive models that suggest that the presence of polar groups (C-018, nArCOOH, C-033,
FO1[C-N], B01[O-S], FO2[N-S], nRNHR) and hydrophobicity parameters (max_conj_path,
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NsssN, MW, O-062, C-018, FO1[N-O], nArCOOH, nNg, C-033, nRNHR) are essential factors
for sweet/bitter compounds molecules for ligand binding for both sweet and bitter activities. In
conclusion, the hybrid method of the RASPR algorithm, along with ML, provides a more
authentic and reliable methodology for chemometric model development. The increasing
prediction quality trend suggests that a hybrid method (ML-RASPR) is preferable over the
QSPR methodology for model prediction quality enhancement. The developed simple
classification-based models with a limited number of RASPR descriptors could be an efficient
alternative approach for the identification of sweet/bitter compounds with a low number of
regressing variables.

5.2 Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance
Compounds Using 2D Descriptors.

In the current study, regression-based QSPR models were developed using the PLS method to
assess the retention index of flavour and fragrance compounds. Models were developed using
simple, reproducible, and easily interpretable 2D descriptors and retention index (RI) as
endpoints. Feature selection was performed using different strategies (such as the stepwise
selection method and the Genetic Algorithm (GA)) to extract the most significant descriptors
contributing to the property endpoint (retention index). We have rigorously validated the
developed models using various globally accepted validation metrics (both external and
internal validation metrics) in compliance with the OECD (Organization for Economic
Cooperation and Development) principles. Consensus predictions were also employed to
improve the external predictiveness of the developed models (in our case, CM3 is the winner
model). From the statistical results, it was concluded the developed models are robust, reliable,
predictive, and wide domain of applicability. From the mechanistic interpretation, it was
observed that hydrophobicity, the presence of larger fragments, high molecular weight, and

aromaticity enhance the retention index (RI) of the flavour and fragrance compounds. In
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contrast, polarity and hydrophilicity reduce the retention index of the flavour and fragrance
compounds. Hence, this information can be used for the selection and optimization of the
stationary phase according to the available organic compounds (flavour and fragrance
compounds) and for achieving the desired retention index. Finally, developed models can be
used to predict the RI values for any new or unknown compound (data gap fling), consequently,
this information (with known calculated RI values) can be used in the flavour and fragrance
industry to identify unknown compounds (by comparing with RI values) in complex mixtures
by reducing the time, cost, and complexity of experimentation. Thus, developed models will
be helpful in designing suitable and novel flavours and fragrances that fulfill the product’s

requirements before experimental verification.
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Abstract

The demand for novel flavors and fragrance (F&F) compounds has increased, highlighting the need for a systematic design
approach. Currently, the F&F industry relies heavily on experimental approaches without considering the potential conse-
quences of altering the features that contribute to the fragrance of the compound. In silico approaches have great potential
to identify the necessary features for creating novel F&F compounds. In the present study, Quantitative Structure—Prop-
erty Relationship (QSPR) models were developed using 1208 compounds and simple 2D descriptors, focusing on the RI
(retention index) as the endpoint to predict the olfactory properties of molecules. Feature selection was initially carried out
by multi-layered stepwise regression followed by feature thinning using the Genetic Algorithm (GA) and optimal feature
combination selection using the BSS (best subset selection) method. Final models were developed using the Partial Least
Squares (PLS) method. Additionally, internal and external validation of the models was performed using different valida-
tion metrics suggesting that the developed models are reliable, predictive, reproducible, and robust. To enhance the external
prediction of the developed models, an Intelligent Consensus Prediction (ICP) method was employed and CM3 (consensus
model 3) (best selection of predictions (compound-wise) from individual models) was found to provide the best predictivity.
The modeling descriptors suggested that the hydrophobicity, high molecular weight, aromaticity, and presence of large-
size fragments (high percentage of carbon) enhance the RI values. Conversely, polarity and hydrophilicity decrease the RI
values. This study can be used to optimize the stationary phase according to the flavor and fragrance compounds to obtain
the desired retention index (RI values).
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Introduction

The use of fragrance and flavor (F&F) is widespread in
various consumer products. Fragrance compounds create
pleasant smells, while flavor compounds contribute to taste
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sensations [1]. These compounds have specific structures
and activities that determine their sensory effects. They
include alcohols, aldehydes, ketone esters, and lactones
[2]. Industries such as food and pharmaceuticals use these
compounds to mask unpleasant tastes [3]. Fragrances are
essential in perfume, beverages, cosmetics, food, and phar-
maceuticals. Most synthetic chemical compounds mimick-
ing natural products are used in F&F compound industries
[4]. The global F&F market is expected to reach USD 36.49
billion by 2029, with a compound annual growth rate of
4.7% [5]. The demand for novel F&F compounds is driven
by safety and environmental regulations. However, design-
ing F&F compounds still relies on empirical techniques,
which can be tedious and time consuming, leading to lim-
ited exploration of potential candidates [6]. The traditional
approaches of trial and error are tedious, resource intensive,
and time consuming [7]. This method also leads to a limited
exploration of the potential candidates. Thus, there remains
a high chance of missing a potent candidate for F&F to be
incorporated into consumer products. The launching of such
products to the market can also be costly. The retention time
is crucial for formulating new fragrance compounds in the
perfume industry. It helps identify the chemical structure
of a compound and allows comparison of its retention data
across different GC systems. Chromatography is an impor-
tant tool in various industries for ensuring the production of
high-quality products, and it plays a crucial role in quality
control. This method involves measuring the retention time
or retention index of a compound as it passes through a gas
chromatographic column’s glass capillary. There is a grow-
ing need and interest in developing structure—odor relation-
ship models using the structure of fragrance compounds. A
recent study utilized the retention index to develop in silico
chemometric models for these compounds in the chromato-
graphic column [8]. Manual sniffing and recording can be
an inefficient and complicated process resulting in numerous
errors. For example, the ambiguity of gas chromatography or
gas chromatography—mass spectrometry test values cannot
alter the real fragrance retention index [9]. Other factors,
such as environmental conditions and differences in individ-
ual olfactory sensitivity, can also affect the reported reading.
Therefore, to address the challenges involved in the design
of fragrance molecules, a systematic framework should be
developed for designing and screening suitable fragrances
that fulfill the product’s requirement before experimental
verification.

Several researchers have tried to develop computational
techniques to explain the perceptual and physicochemical
space of fragrance molecules. Rojas et al. (2015) also ana-
lyzed the retention index of 1184 fragrance-like compounds
on a stationary phase using QSPR methods [8]. Rojas and
colleagues [10] researched flavor and fragrance compounds
to develop Quantitative Structure—Property Relationships

@ Springer

(QSPR) models. Keller et al. (2017) performed a machine
learning (ML) algorithm to predict intensity, pleasantness,
and semantic descriptors from the structural information of
odor compounds [11]. Dua et al. (2008) worked on reten-
tion time by taking 43 aromatic constituents of saffron [12].
Furthermore, Sharma et al. (2020) conducted QSPR studies
to predict the retention indices of fragrance compounds in
stationary phases with three different polarities [13]. In addi-
tion, Villa et al. (2017) conducted QSPR studies to predict
the retention indices of fragrance compounds in stationary
phases with three different polarities [14]. In 2022, Kumar
et al. (2022) reported QSPR modeling of fragrance com-
pounds on the carbowax glass capillary using gas chroma-
tography using 1179 flavor and fragrance compounds for
model development [15]. Noorizadeh et al. (2011) also ana-
lyzed the retention index of essential oils using QSPR meth-
ods [16]. Pourbasheer et al. (2015) reported QSPR models
to calculate the GC retention indices of essential oils [17].
Liu et al. (2021) reported a QSPR model for the assess-
ment of fragrance retention grades for monomer flavors [18].
Ahmadi et al. (2024) predict the retention indices of volatile
organic compounds using the QSPR model [19]. Riahi et al.
(2008) assessed the retention indices of essential oil com-
pounds using GA-MLR methods [20]. Kumar et al. (2022)
reported QSRR models of flavors and fragrance compounds
studied on the stationary phase methyl silicone OV-101 col-
umn in gas chromatography using correlation intensity index
and consensus modeling [21].

Several machine learning methods such as neural net-
works and SVR (support vector machine) have been also
used to develop QSPR models for the assessment of RI indi-
ces of the various compounds. Keller et al. (2017) applied
a machine learning (ML) algorithm to predict intensity,
pleasantness, and semantic descriptors from the structural
information of odor compounds [11]. Maulana et al. (2020)
employed an artificial neural network to assess the Kovats
retention indices for fragrance and flavor [22]. Matyushin
et al. (2020) used multimodal machine learning for the cal-
culation of the gas chromatographic retention index [23].
Wang et al. (2021) reported machine learning models for the
assessment of RI of compounds in beers [24]. Agustia et al.
(2022) employed Support Vector Regression to calculate
the Kovats retention indices of flavors and fragrances [25].
Matyushin et al. (2019) estimated the gas chromatographic
retention indices employing deep convolutional neural net-
works [26]. K et al. (2019) reported machine learning mod-
els for GC-MS fingerprint profiling of food flavor predic-
tion [27]. Vrzal et al. (2021) reported a Deep learning-based
gas chromatographic retention index predictor (DeepRel)
[28]. Matyushin et al. (2021) also reported deep learning-
based prediction of gas chromatographic retention indices
for a wide variety of polar and mid-polar liquid stationary
phases [29]. Vigneau et al. (2018) employed Random forests



Intelligent Consensus Predictions of the Retention Index of Flavor and Fragrance Compounds. ..

(a machine learning methodology) to highlight the volatile
organic compounds involved in olfactory perception [30].
However, some of the previous studies lacked the report-
ing of exhaustive validation results in the form of different
internationally accepted validation metrics, the use of sim-
ple and reproducible descriptors, specific findings (features
responsible for the design and development of novel and
suitable F&F compound), consensus prediction, as well as
a wide domain of applicability.

The primary objective of the current work is to predict
the quality and retention index of various compounds with
unknown retention indexes (new and untested F&F com-
pounds) to avoid the time, complexity of the experimental
process, high cost, highly skilled labor, and expensive exper-
imental equipment. In this work, we have developed QSPR
models only using 2D descriptors which are simple due to
a direct mathematical algorithm for calculation, reproduc-
ible, and easily interpretable, in order to avoid the complex-
ity of 3D analysis and energy minimization. 2D descrip-
tors have a deluge of contributions in extracting chemical
attributes, and some are also capable of representing 3D
features to some extent [31]. However, it is not possible to
differentiate between the isomers (cis, trans, etc.) of com-
pounds completely using 2D-QSPR models. We used only
2D descriptors and did not use 3D descriptors. This means
we did not account for the geometric isomers and considered
them as a pure and individual form. We also did not con-
sider the effect of the cis or trans isomeric form. Therefore,
it is reasonable for us to gather the average retention index
value from Rojas et al.[10] to develop a more accurate and
understandable model. The developed QSPR models will
help in identifying and distinguishing features of chemical
compounds, ultimately aiding in determining their retention
index for both polar and non-polar stationary phases. Thus,
developed QSPR models can also be used to optimize sta-
tionary phases. The present QSPR models were established
using 1208 data points (significantly more than previously
reported) which will provide a wider domain of applicabil-
ity (can calculate the RI of a wide range of F&F and related
compounds). The models were developed by consider-
ing only simple, reproducible, and easily interpretable 2D
descriptors, making them simpler, more reliable, robust, and
more accurate when dealing with medium to large datasets
with retention index as the endpoint. The developed Partial
Least Squares (PLS) models were further used for consensus
modeling to enhance the predictivity of the test set fragrance
compounds, thus showing higher predictivity and a wide
domain of applicability. An applicability domain (AD) was
defined to increase the reliability of the prediction model.
This work will provide a reliable model for predicting Reten-
tion Index (RI) values for unevaluated and un-synthesized
flavors and fragrances and related compounds, making
it a valuable asset for professionals in the field of aroma,

flavor chemical synthesis, and perfume blending. This
study also provides detailed and advanced knowledge about
some important features responsible for the RI of F&F and
related compounds: hydrophobicity, the presence of larger
fragments, hydrogen donor groups, and aromaticity were
responsible for the high RI value (+ ve contribution) of the
flavor and fragrance compounds, while polarity and hydro-
philicity reduce (-ve contribution) the retention index of the
flavor and fragrance compounds. Thus, the present study
aims to develop and design suitable and novel flavors and
fragrances as per the product’s requirement, data gap filling
(related to the RI value of new and untested compounds),
and an alternative to complex, time-consuming, and costly
analytical testing techniques.

Materials and Methods
Dataset Collection

It is essential to have consistent and reliable data for the
development of QSPR models. In this study, 1208 data
points for aromatic substances were collected from the lit-
erature [10] for model development. The researchers [10]
reported the experimental property as the Kovats reten-
tion index (RI) in a non-polar stationary capillary column
(0.28 mm x 50 m). They used methyl silicone OV-101 as
coating material admixed with 1% Carbowax 20 M, and the
column was programmed to increase from 80 to 200 °C at a
rate of 2 °C/min. The RI values used as an endpoint ranged
from 350 to 2180 [8, 10]. The Kovats retention index is
independent of individual chromatographic system speci-
fications and allows comparing values measured by differ-
ent analytical laboratories and analysis times. The fragrance
ingredients are often obtained from commercial suppliers
as mixtures of isomers (e.g., cis—trans), which the supplier
does not separate. However, we cannot neglect the effect of
temperature, pH, and surrounding environment for trans-
forming a particular isomeric form of a chemical compound
to another (like a transformation of a cis compound to trans
and trans compound to cis form) for a mixture of compounds
while it was supplied for experimentation. This consequence
may result in exceptional responses where a single com-
pound represents two different isomeric mixtures with the
same molecular weight. In this scenario the compounds like
Allyl anthranilate 1 and Allyl anthranilate 2 may not repre-
sent the pure cis or trans isomeric form of a compound rather
they were represented as a mixture of both the geometrical
isomers. In the present study, it was interpreted as a single
compound with an isomeric mixture while considering the
impact of other external factors as well. In that case, collect-
ing the average retention index value (compounds with quite
similar chromatographic peaks) of Rojas et al. is justified
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for further development of an accurate and interpretable
model. This kind of approximation is very common in any
2D-QSPR analysis.

Molecular Representation and Data Curation

A total of 1208 flavor and fragrance compounds, each with
its corresponding SMILES, chemical names, and retention
index, were initially compiled (provided in supplementary
information 1). To ensure accuracy, for compounds with
more than one reported retention index value, the average
value was calculated, and duplicate entries were removed,
resulting in a final curated dataset of 1194 compounds.
The structural representation of the compounds was done
using Marvin Sketch software (https://chemaxon.com/mar-
vin). Additionally, a curated SDF file of the flavor and fra-
grance compounds was obtained after incorporating explicit
hydrogen, ring aromatization, and 2D form cleaning for the
descriptor calculations.

Descriptor Calculation

In this study, we used the Alvadesc software (https://www.
alvascience.com/alvadesc) to calculate descriptors for flavor
and fragrance compounds. These descriptors are numeri-
cal values that define the physiochemical properties of a
compound. We have used only simple, direct mathematical
algorithms nature, reproducible, and easily interpretable 2D
descriptors [32] to avoid the complexity of 3D analysis and
energy minimization [33]. 2D descriptors have a deluge of
contributions in extracting chemical attributes and some
are capable of representing 3D features to some extent
[31]. However, it is not possible to differentiate between the
isomers (cis, trans, etc.) of compounds completely using
2D-QSPR models. The work of Rojas et al. had already con-
cluded that 3D descriptors did not significantly improve the
quality parameters of the QSPR model. From the previous
conclusion, we have decided to develop simpler 2D-QSPR
models while using the concept of intelligent consensus
predictions. Lastly, the redirection toward the source data,
the unseparated mixture of both the geometrical isomers of
a particular compound, and their response values indicate
an inseparable form of cis and trans isomers even after the
application of 3D descriptors. In the present study, the iso-
mers were recognized as a single compound. In that case,
collecting the average retention index value (compounds
with quite similar chromatographic peaks) of Rojas et al. is
justified for further development of an accurate and inter-
pretable model. This kind of approximation is very com-
mon in any 2D-QSPR analysis. A total of 2400 2D descrip-
tors were calculated, including constitutional descriptors
(molecular composition of a referenced compound), ETA
indices (extended topochemical atom), ring (information
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related to the presence of ring descriptors), functional group
count, atom-centered fragment, connectivity index, atom-
type E-state (description related to the electronic state of
the atoms), 2D atom pair, and molecular properties [32, 33].
Additionally, data pre-treatment was performed using the
DataPreTreatmentGUI_1.2 (http://teqip.jdvu.ac.in/QSAR_
Tools/) software to eliminate correlated (correlation cut-off
of 0.95) and descriptors having low variance cut-off (less
than or equal to 0.01), resulting in a total of 309 curated
descriptors for further modeling.

Dataset Division

Partitioning the dataset is an essential step in developing
the QSAR model. A chemometric statistical model requires
two independent datasets: a training set for developing the
model and a test set for validating the model [34]. Generally,
the whole dataset was divided into the training and test set
in the ratio of 70:30 (approx.). In the present investigation,
the dataset of fragrance and flavor compounds was divided
into four clusters based on their properties (sorted response-
based method.) using the Dataset Division 1.2 tool (http://
teqip.jdvu.ac.in/QSAR_Tools/). This property-based data
division resulted in a training set of 896 compounds and a
test set of 298 flavored and fragrance compounds.

Test-Training Pre-Treatment

The training and test set data may contain correlated and
noisy descriptors that are not relevant to the data modeling
purpose. Therefore, pre-treating both the training and test
sets is necessary. In our study, we utilized the Data Pre-
treatment tool (http://teqip.jdvu.ac.in/QSAR_Tools/) to pre-
treat the training and test sets after division, using a variance
cut of 0.01 and a correlation cut-off of 0.95. This process
resulted in 162 less correlated descriptors, ultimately mini-
mizing the error in model development.

Feature Selection and Model Development

The selected features after pre-treatment were utilized for
the feature selection process. Genetic algorithm (GA) fol-
lowed by BSS (Best Subset Selection) (http://teqip.jdvu.ac.
in/QSAR_Tools/) was used for feature selection [35]. Ini-
tially, some features were also selected using the stepwise
selection method. Stepwise regression can be defined as a
multiple linear regression which was evolved with the step-
by-step mechanism. After removing the selected features
from the first stepwise run, the stepwise method was again
performed with the remaining pool of descriptors. Besides
stepwise feature selection, GA was also performed for the
feature selection procedure. GA tool has many advantages
over other feature selection methods. It is based on fitness
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function on mean absolute error (MAE)-based pick-up cri-
teria. We have employed our in-house tool “GeneticAlgo-
rithm_v4.1_Train” (http://teqip.jdvu.ac.in/QSAR_Tools/) to
find the most relevant descriptors with the RI endpoint. The
best subset selection (BSS) approach was used to find the
optimal combination of descriptors for a robust prediction
model. After selecting the best descriptors from both feature
selection methods, we performed partial least squares (PLS)
regression to build the preliminary QSPR models. PLS
methods were employed to develop the final robust models
to avoid any chances of inter-correlation among descriptors.
The PLS regression method is a generalized technique of the
“Multiple Linear Regression (MLR)” method, where we can
examine strongly collinear, correlated, noisy data and many
X variables. The PLS regression has been carried out with
a Java-based software tool “PLS_SingleY_version” (http://
teqip.jdvu.ac.in/QSAR_Tools/). The PLS model was fur-
ther utilized for best subset selection (BSS). The best subset
selection was performed with the in-house tool developed
in our laboratory (http://teqip.jdvu.ac.in/fQSAR_Tools/). Six
descriptor models (five PLS models) were generated based
on MAE-based criteria [36].

Model Validation Criteria

The developed QSTR models were rigorously validated via
various internationally accepted metrics to ensure the robust-
ness, predictivity, goodness of fit, and quality of the models.
For training set compounds, internal validation metrics such
as cross-validated correlation coefficient QZ(LOO) (leave one
out), r2m_100’ MAE,,,;, (mean absolute error) RMSD,;, (root
mean square standard deviation error), and coefficient of
determination R? were calculated to measure the robustness
and goodness of fit of the model. For test set compounds,
we have predicted external set compounds using globally
accepted different validation metrics like predictive MAE,_,
RMSD,,, R* (R?,,). or Q°; and Q, to judge the predict-

test>

ability of the model [37].

train train

Applicability Domain Assessment

The applicability domain is the biological, chemical, or
physiochemical hypothetical space of the training set chem-
icals through the recently created QSPR model. The main
use of this domain is to predict the toxicity value of com-
pounds that fall in this domain and have unknown values.
We have used the DModX (distance to mean X) approach
to predict the AD of the PLS models (OECD principle 3)
using SIMCA-P software [38—40]. The DModX uses Y and
X residuals as diagnostic values to ensure model quality. If
the DModX value is greater than the critical value, it means
that the query compound is outside the domain of the model
[36, 38—40]:

DModX =
SSE

(N-A-AO)K-A)

For observation i, in a model with A component, K vari-
ables, and N observations, SSE is the.squared sum of the
residuals. AQ is 1 if the model was centered and O otherwise.
It is claimed that DModX is approximately F-distributed,
so it can be used to check if an observation deviates signifi-
cantly from a normal PLS model.

Intelligent Consensus Predictor (ICP)

This method evaluates the performance of the consensus
models in comparison to the individual models based on
MAE-based criteria (i.e., 95%). It is recognized that a single
model may not be able to accurately predict all of the test
compounds. This implies that one QSPR model may be more
suitable for one test compound, while another model may be
better for a different test compound [33, 41, 42]. A specific
QSPR model may not be equally effective in predicting all
query compounds in the query list. To get the best predic-
tion results, we need to consider the consensus of all the
predictions made by these four models. For this, consensus
prediction should be made intelligently, i.e., in a query com-
pound-specific way, using all or most of the valid models.
This is different from doing a simple average of predictions
from all available models. Consensus prediction is better
than individual model predictions since it combines all the
good characteristics of each model. Thus, the drawbacks of
one individual model are taken care of by other models (s).
This makes the predictions less biased, more reliable, and
more precise. The individual models may have differently
defined applicability domains, while the consensus method
combines the ADs of the individual models, thus providing
a greater chemical space coverage as well. Moreover, the
consensus method does not affect the quality of the internal
statistical parameters of the individual models [43]. In the
present study, we have chosen five models (M1-MS5) to con-
duct a consensus prediction using the “Intelligent Consensus
Predictor” tool that is available on our laboratory website
(http://teqip.jdvu.ac.in/QSAR_Tools/. The steps involved in
developing the models are depicted in Fig. 1.

Results and Discussion

The goal of this study is to create statistical models using
simple and easily interpretable 2D descriptors. We have
established various QSPR (PLS) models and validated
them with different internationally accepted validation met-
rics. From the statistical results (summarized in Table 1),
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Fig.1 Schematic representation of the present study

it was concluded that the developed models were accu-
rate, predictive robust, and reproducible. Additionally, we
have also conducted the applicability domain assessments
(compounds situated outside the applicability domain cri-
teria were considered outliers) and Y-randomization tests
(to check whether models did not come by any chance) of
developed models. We have also provided the probable
mechanistic interpretation of the modeled descriptors that
play a key role in determining the retention index of flavor
and fragrance compounds The scatter plots (given in Fig. 2)
of the established models (M1-M5) show that the observed
and predicted responses are quite similar and exhibit a good
correlation.

Developed QSPR Models for the Retention Index (RI)

We have developed multiple regression-based QSPR models
using the retention index (RI) of the flavor and fragrance
compounds as the endpoint. Intelligent consensus prediction
was also employed to enhance the external prediction of the
developed PLS models. The details of the modeled descrip-
tors (models (M1-M5)) (provided in Supplementary Infor-
mation 1) along with their meaning, contribution, and mech-
anistic interpretation of modeled descriptors are provided
in Table 2. Various PLS plots [34, 35] (VIP plots (given in
Figs. S1-S5 in Supplementary Information 2), loading plots
(given in Figs. S6-S10 in Supplementary Information 2),
score plots (given in Figs. S11-S15 in Supplementary Infor-
mation 2), DModX plots (given in Figs. S16-S25 in Supple-
mentary Information 2), and Y-randomization plots (given
in Figs. S26-S30 in Supplementary Information 2) were
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developed employing using SIMCA software (https://www.
umetrics.com). The insights obtained from the developed
models (M1-MS5) for the retention index are explained in the
Mechanistic interpretation section. The Y-randomization test
and applicability domain (AD) assessment of the established
models (M1-M5) were provided in the Y-randomization and
Applicability domain section.

Y Randomization of the PLS Models

The Y-randomization test acts as a checkpoint whether
the developed model is a result of a chance correlation
or not. The X columns were fixed and the Y column was
randomized with a different permutation and combination
multiple times (here it is 100 times). The resulting rand-
omized models were compared with the best-fitted model
to analyze the significance of the developed models. The
randomized model’s fundamental validation statistics (R>
and Q?) should be poor while comparing it with the best-
fitted model. The poor quality of the randomized models
assures that the recently developed model is not a result
of a chance correlation [34, 44]. Thus, the poor result of
the randomized models indicates the acceptability of the
developed model. The intercept value of R%Y (within 0.3)
and the intercept value of Q%Y (within 0.05) as validation
statistics of the randomized models make the best-fitted
model acceptable [34, 44]. The Y randomized plots for
each PLS model (model M1-M5) were given in (given in
Figs. S26-S30 in Supplementary Information 2).
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Fig.2 Scatter plots of the developed models

Applicability Domain Assessment

The domain of applicability [45] was analyzed with the
DModX approach using the SIMCA-P software (https://
www.umetrics.com). DModX plots of developed models
(M1-M5) were provided (given in Figs. S16—S25 in sup-
plementary information 2). From this assessment, it was
observed that test set compounds 128, 661,745, 1002, and
1027 from Model 1; 361, 448, 745, 1002, and 1086 from
Model 2; 10, 128,661,745 and 1027 from Model 3; 224, 425,
489, 594, 661, 1159, and 1170 from Model 4; 10, 128, 361,
656, 766, 1002, 1027, 1086, and 1184 from Model 5 are situ-
ated outside the domain of applicability (structural outliers).

Mechanistic Interpretation of the Modeled
Descriptors

We have provided a probable mechanistic interpretation of
the modeled descriptors, as per OECD guidelines 5. The
type, meaning, contribution, and probable mechanistic inter-
pretation of modeled descriptors are provided in Table 2.

PLS Model Interpretation
The first latent variable represents the geometrical property

(in the form of MW, C%, nAA) and represents the size of
molecules which is directly related to lipophilicity and leads
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to high RI values (+ ve contribution). Bulkiness and Parti-
tion coefficient (LOG P) are also dependent on molecular
weight, leading to high lipophilicity in respective com-
pounds (justified by structures of molecules too). The next
significant latent variable is contributed by the descriptors
SdssC, SaasC, nROR nR=Cp, and C-001 descriptors, and
all of them together contribute to the electronic effect. nROR
nR=Cp and C-001 have negative contributions but SdssC
and SaasC have positive effects with low contribution; there-
fore, the overall contribution of this latent variable is nega-
tive toward the property endpoint which is also justified by
the structures of molecules (presence of such features).

Comparison of the Recent Work

It is not possible to provide a strict comparison between
the present study with related work due to the different
composition of training and test set, total number of com-
pounds used, number of variables used, etc., but we have
tried to provide a possible comparison. Rojas et al. (2015)
[8] and Rojas et al. (2015) [10] reported an in silico model
using the retention index (RI) of 1184 flavor and fragrance
compounds as an endpoint. The statistical results showed
that the RMSD values for both the training and test sets
were higher compared to the present work (the lower the
RMSD value, the better the model quality). However,
some of the previous studies lacked the reporting of
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Fig. 3 Mechanistic interpretation of the developed models

exhaustive validation results in the form of different inter-
nationally accepted validation metrics, the use of simple
and reproducible descriptors, specific findings (features
responsible for the design and development of novel and
suitable F&F compound), consensus prediction, as well as
a wide domain of applicability. We have developed PLS-
ICP models to assess the retention index (RI) of flavor
and fragrance compounds. Models were developed using
simple, reproducible, and easily interpretable 2D descrip-
tors and retention index (RI) as endpoints. The present
work demonstrates better robustness, quality, reliability,
and predictivity than the previously developed models.
Our models were developed using a comparatively lower
number of variables. Consensus predictions (in our case,
the winner model is CM3) were also employed to improve
the predictivity of the models. Our developed models have
a wide domain of applicability and consist of simple,
robust, reproducible, and easily interpretable 2D descrip-
tors. Models were rigorously validated using internation-
ally accepted validation metrics which show reliability,
predictivity, and robustness. Some important features are
reported in our study which will help design a novel and
suitable F&F and related compounds. The comparison of
the previous work (Rojas et al. (2015) [8] and Rojas et al.
(2015) [10]) with the present study along with different
validation metrics and ICP results is provided in Table 3.

Advantages and Implication of the Present Work

We have developed regression-based QSPR models using
2D descriptors and the GA-PLS method (avoid any chances
of inter-correlation among descriptors) to assess the reten-
tion index of flavor and fragrance compounds. Models were
developed using simple, reproducible, and easily interpret-
able 2D descriptors and rigorously validated with various
internationally accepted validation metrics (both external
and internal validation metrics) in compliance with the
OECD guidelines to check the robustness, reliability, pre-
dictivity, and domain of applicability. Consensus predictions
were also employed to improve the external predictivity and
domain of applicability of the developed models (in our
case, CM3 is the winner model). Some important findings
regarding RI of F& F compounds were observed from this
study: hydrophobicity, the presence of larger fragments, high
molecular weight, and aromaticity were responsible for the
high RI value (4 ve contribution) of the flavor and fragrance
compounds, while polarity and hydrophilicity reduce (—ve
contribution) the retention index of the flavor and fragrance
compounds. Hence, this information can be used for the
selection and optimization of the stationary phase accord-
ing to the available organic compounds (flavor and fragrance
compounds) and for achieving the desired retention index.
Finally, developed models can be used for data gap filling
(prediction of RI value of untested and new compounds
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Table 3 Comparison with the previous work by [8, 10]

Developed model Total number of  No. of com- No. of features in Type No. of features tzrain erm RMSD,,;, RMSD,,,
compounds used  pounds on the the initial pool of the in the final
training set and features  model
test set
Present work Initially 1208, 894 in the train- 309 2D 6 (LV-3) 0.909 - 96.168 73.756
Model 1 and after cura- ing set and 298
Model 2 tion 1194 in the test set 6 (LV-4) 0918 — 91246  73.756
Model 3 6 (LV -4) 0915 - 92.718 74.928
Model 4 6 (LV -4) 0.908 - 96.479 75.463
Model 5 6 (LV -4) 0913 - 94.188 75.372
Previous 1206 N,uin =400, N,,; 1815 conforma- 2D 4 0910 0.93 100.94 82.99
Rojas et al. =405, N, = tional descrip-
(2015) [8] 403 tors
Rojas et al. Initially 1206 and N,,,;, = 395, N,, 1815 non- 2D 7 0.902 0.904 137.60 121.978
(2015)[10] after curation =396, N, = conformational
1184 393 descriptors

within the domain of applicability); consequently, this infor-
mation (with known calculated RI values) can be used in
the flavor and fragrance industry to identify unknown com-
pounds (by comparing with RI values) in complex mixtures
by reducing time, cost, the need of highly skilled labor,
costly instrumentation, and complexity of experimentation.
Thus, developed models will help design and develop suita-
ble and novel flavors and fragrances that fulfill the product’s
requirement before experimental verification.

Conclusion

In the current study, regression-based QSPR models were
developed using the PLS method to assess the retention
index of flavor and fragrance compounds. Models were
developed using simple, reproducible, and easily interpret-
able 2D descriptors and retention index (RI) as endpoints.
Feature selection was performed using different strategies
(such as the stepwise selection method and the Genetic
Algorithm (GA)) to extract the most significant descriptors
contributing to the property endpoint (retention index). We
have rigorously validated the developed models using vari-
ous globally accepted validation metrics (both external and
internal validation metrics) in compliance with the OECD
(Organization for Economic Cooperation and Development)
principles. Consensus predictions were also employed to
improve the external predictivity of the developed models
(in our case, CM3 is the winner model). From the statistical
results, it was concluded the developed models are robust,
reliable, predictive, and wide domain of applicability. From
the mechanistic interpretation, it was observed that hydro-
phobicity, the presence of larger fragments, high molecular
weight, and aromaticity enhance the retention index (RI) of

@ Springer

the flavor and fragrance compounds. In contrast, polarity and
hydrophilicity reduce the retention index of the flavor and
fragrance compounds. Hence, this information can be used
for the selection and optimization of the stationary phase
according to the available organic compounds (flavor and
fragrance compounds) and for achieving the desired reten-
tion index. Finally, developed models can be used to predict
the RI values for any new or unknown compound (data gap
filling), consequently, this information (with known cal-
culated RI values) can be used in the flavor and fragrance
industry to identify unknown compounds (by comparing
with RI values) in complex mixtures by reducing the time,
cost, and complexity of experimentation. Thus, developed
models will be helpful in designing suitable and novel fla-
vors and fragrances that fulfill the product’s requirement
before experimental verification.
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