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Preface 

 

This dissertation is presented for the partial fulfillment of the degree of Master in Pharmacy in 

Pharmaceutical Chemistry. This research work spans around two years. This present study has 

been explored the development of the predictive in-silico chemometric models for properties 

of some organoleptic compounds by the 2D QSAR statistical approach. This predictive 

approach mainly considers the numerical data of the structural and physiochemical properties 

of the chemical compounds as the descriptors. Apart from that, for the first work the sweet and 

bitter taste and for the second work, the retention index was considered as the endpoint value 

for further in-silico prediction. However, wide-spread use of various chemical compounds in 

day-to-day life insist that chemical-based industries to reevaluate the toxicity, activity, or 

property-based studies for those chemical compounds before marketing. An experimental 

process with manual testing for the same is quite expensive, time-consuming, and needs a lot 

of hard work. In this scenario, QSAR and CAAD had come into the field as an alternative 

method of study.  This new approach regarding the toxicity, activity, and study of the chemical 

compounds is not only effective but also eco-friendly. Chemistry plays a significant role in our 

day-to-day life. The application of chemistry extended to food, pharmaceutical, cosmetics, 

agriculture, biochemistry, and many other different industrial fields. Some industries deal with 

its physical features like solubility, partition coefficient, melting point, boiling point, and 

surface tension for formulation purposes whereas the chemical and therapeutic properties of 

the chemical were used to mitigate and control a range of disorders and diseases. However, 

beyond the physical, chemical, and therapeutic properties, the organoleptic properties of the 

chemical compounds can be used rigorously as a colorant in the cosmetic industries, pigment 



production, fragrance, and flavor compounds for enhancing the sensation of taste and smell. In 

this recent work organoleptic compounds and their properties are investigated. The discussion 

and estimation of the properties of the organoleptic compounds by a synthetic method is a 

tedious job rather the in-silico approach has its enhanced acceptability in the industry, 

regulatory agencies, and different chemical data banks.  The numerical collective chemical 

information from which the QSAR prediction is done is known as feature or descriptors. Now 

the descriptors that are calculated from the simplest 2-dimensional chemical structure 

representation are called 2D- descriptors. This 2D descriptor may be calculated from 

experimental information or theatrical expression. However, the descriptor or features in the 

QSAR-based prediction play a role as an independent variable, and the corresponding activity, 

property, and toxicity act as a dependent variable. The recent works are based on the application 

of the predictive ability of the 2-Dimentional descriptors. Apart from that RASAR is a 

collective mechanistic approach of QSAR and read-across is used in the later phase of the 

investigation. The data of the respective investigation was not only used for the predictive 

model development but also statistically validated with different statistical metrics.  however 

simple 2-D QSAR model and its validation are based on pure statistics but the read across is 

the concept of similarity. The compounds having similar chemical structure, and biological 

responses are used for the further external data set prediction and for the well demarcation of 

the chemical spaces of the predictive investigation. RASAR is a club concept of both the QSAR 

and read across for and reassured prediction purposes. Thus an Insilco approach can be helpful 

to determine the initial data investigation and screening of some potential compounds for 

further synthetic experimentation if it is necessary. The regulatory agencies and data banks 

demand information about a large number of compounds regarding their property, activity, and 

toxicity characteristics. In that case, the initial Insilco screening with reassured synthetic 

experimentation of potential compounds can be a better approach. In our recent study, we have 



investigated and developed the Insilco model of the sweet and bitter organoleptic activity of 

the chemical compounds as well as the estimation of the retention index for the flavor and the 

fragrance compounds. The properties of the organoleptic compounds have their corresponding 

significance throughout the food, flavor, beverage, cosmetics, and fragrance industries.  

Different statistical validation with their core statistical concept was used rigorously to validate 

the developed model in the real-world scenario. The following studies have been done in this 

dissertation: 

Study 1: The first application of machine learning-based classification read-across structure-

property relationship (c-RASPR) modelling for sweet and bitter. 

Study 2: Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance 

Compounds Using 2D Descriptors. 

The accomplished work has been presented in this dissertation in the following segments: 

Chapter 1: Introduction 

Chapter 2: Present work 

Chapter 3: Material and Methods. 

Chapter 4: Result and discussion. 

Chapter 5: Conclusion 

 Chapter 6: References 
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1. Introduction 

The greater advancement in the chemical industries and the wide range of chemical 

applications in our day-to-day lives often indicate the exponential growth of the chemical 

industries and their market worldwide. [1] However, this huge application of the chemicals 

comes with the huge responsibility to properly regulate the safety, efficacy, and effective use 

of the chemical compounds to comply with the environment, human body, and innocent lives. 

[2] The core motivation behind the application of chemicals and chemical industries is to 

minimize the hazardous effects of chemicals on common people and simplify their lives as 

much as possible [3]. However, the chemical compounds have widespread applications for 

estimating physiochemical properties as well as the significance of the application of 

therapeutic characteristics [4].  Apart from that organoleptic chemicals and their uses in 

chemical-based industries like food, pharmaceuticals, cosmetics, and fragrance are raising 

concern for several regulatory agencies and research and development segments to study the 

characteristics of a particular chemical compound [5] The applicability study of several 

chemical compounds in the higher dimension merges the concepts of mathematics, biology, 

agriculture, physics, and all the fundamental concepts of different discipline [6] This focuses 

on enhancing the reliability of the concerned research and application. However, the 

sustainable use of exact data about a chemical compound whether it is activity, property, or 

toxicity can be used for the modification and change of the structural, physical, chemical, 

therapeutic, and organoleptic behaviour of a particular chemical compound. While there is a 

self-diversity of chemistry the core subject often clubs with other fundamental sciences and 

results such as Biochemistry, and the cheminformatics field to be explored. The logical and 

more rational concept of mathematics and statistics when hybridized with the concept of 

chemistry.  it generates a class of chemical informative study known as cheminformatics or 
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chemostatistics that can be further used to study the entire behaviour of a chemical compound 

[7]. This informative study can help develop an industrial product according to its desirability. 

The chemical compounds that are widely used throughout the industries. They are either 

organic compounds or inorganic compounds. Carbon (C) plays a central role in forming any 

organic compounds. The remaining valences are fulfilled by the hydrogen (H) or formation of 

carbon-carbon, carbon-nitrogen, carbon-hydrogen, or carbon-oxygen bonds. Apart from that, 

there can be an inorganic salt form of a compound in the data set to be analyzed. The data 

source that is generally used to study in-silico prediction uses both inorganic and organic 

compounds. The rigorous uses of this chemical product (both organic and inorganic) in day-

to-day life enable us to study its organoleptic properties. Excessive use of flavouring agents, 

colorants, and sweeteners can potentially degrade the taste of packaged food, artificial 

sweeteners, and several masking agents and supplementary food [8]. So in this scenario, an 

estimation of the self-property of the chemical compounds to regulate auto degradation is quite 

essential. Excipients used to mask the bitterness of active pharmaceutical ingredients (APIs) 

are often sweeteners, derived from sugars and starches. Additionally, they are used to enhance 

patient compliance as taking an unpalatable medication can be difficult. The use of artificial 

sweeteners has also become popular among patients suffering from diabetes, and metabolic 

disorders [9]. The use of fragrance and favour (F&F) is widespread in various consumer 

products. Fragrance compounds create pleasant smells, while favour compounds contribute to 

taste sensation [10]. Apart from that the flavour and fragrance industries largely depend on the 

properties of the organic compounds. These compounds have specific structures and activities 

that determine their sensory effects. They include alcohols, aldehydes, ketone esters, and 

lactones [11]. Several experimental techniques are generally used to estimate the qualitative 

standard of a chemical product before marketing. Retention index, elution time, resolution of 

the chemical compound in the process of quality assurance, and quality control all together can 
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be considered as some parameters to ensure the qualitative standard of an industrial product 

The retention time is crucial for formulating new fragrance compounds in the perfume industry. 

It helps identify the chemical structure of a compound and allows comparison of its retention 

data across different GC systems [12]. Chromatography is an important tool in various 

industries for ensuring the production of high-quality products, and it plays a crucial role in 

quality control. This method involves measuring the retention time or retention index of a 

compound as it passes through a gas chromatographic column’s glass capillary. However, 

several qualitative parameters are responsible for quality assurance. Another application of the 

predictive quality suggests to necessary modification of a chemical structure for their desired 

purity in a chromatographic column depending on the nature and the polarity of the 

chromatographic column. As a result, the proper identification and accurate classification of 

the chemical compound is possible. However, more accurate Insilco prediction before a 

traditional synthetic approach and predefined chemical space helps for chemical categorization 

of a chemical even before experimentation or synthesis. The property estimation of thousands 

of compounds whether it is food, pharmaceutical, flavouring agent, masking agent, or fragrance 

compounds needs to be under study. This investigation somehow helps to maintain the optimal 

and desired taste, and quality of any chemical compounds that will be marketed as products. 

For our recent dissertation for the first study, we have used machine learning approaches such 

as incorporating the concept of RASAR, and for the second work the intelligent consensus 

prediction using simple QSAR. However, the idea of RASAR gives the view of QSAR while 

extending its prediction quality using the core concept of read across [13]. The utilization of c-

RASPR in this inquiry will revolutionize the concept of QSPR and demonstrate how the 

fundamental principle of read-across can also be incorporated into a classification-based 

modeling framework. By choosing the best-fit classification algorithms of ML like RFC, SVC, 

LC, and LDA, one can predict the model more accurately. To our knowledge, this is the first 
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c-RASPR work with sweet and bitter compounds. However, the intelligent consensus 

prediction gives the idea about the aggregate judgment from several PLS models using the very 

same initial dataset. Thus a robust, reliable prediction and detailed information of applicability 

domain can be justified by following this methodology. Apart from that an appropriate 

chemical categorization is one of the significant applications of the ICP (intelligent consensus 

prediction) methodology [14]. 

1.1 QSAR (Quantitative Structure-Activity Relationship) as an in-silico chemometric 

approach   

1.1.1 Basic principle 

The core concept of QSAR relies on the structural, chemical, and physical information of any 

chemical compound in terms of numerical entity or descriptors. The response value of the 

compounds largely depends on this numerical information. 

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑐𝑒 = 𝑓(𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) = 𝑓( 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)         (1.1) 

 The responses of this methodology are considered as either activity, toxicity, or the property 

of the chemical compounds. However, those are the dependent identity of the equation, and 

numerical information or descriptors act as the experimental or theoretical entity and the 

independent one of this process. These quantitative structure-based chemometric studies can 

be further classified based on the categorization of the responses. Activity-based quantitative 

structure studies are known as Quantitative Structural Activity Relationship studies (QSAR), 

property-based quantitative structure-based studies are known as (QSPR), and toxicity-based 

quantitative structure-based studies are known as Quantitative Structure Toxicity Relationship 

(QSTR). Apart from that the QSAR-based studies can be regression-based or classification 

based on the type of response value. The graded responses (True or False or 0/1) are responsible 

for classification-based statistical model development while the continuous response values are 
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responsible for regression-based model development. The concept of regression stands on the 

pillar of determining the correlation between the X variable and the Y variable mentioned 

above. Here regression or correlation is a term where we determine a mutual relation of a 

dependent variable based on the previously known variable. This mutual dependency or 

correlation follows the equation of linearity or straight line. However, if the correlation or 

regression is estimated between multiple independent variables concerning a singular endpoint 

or dependent variable then it is called multiple linear regression or MLR. 

𝑌 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛                                                                               (1.2) 

 The classification-based model is nothing but again a correlation estimating and QSAR model 

development approach. The main difference between classification and regression-based 

approaches is to take a graded response value instead of a continuous value and the process 

largely follows the concept of linear discriminating analysis or LDA. The graded value of 1 or 

0 is logistically discriminated into 2 sets of classes depending on the numerical information or 

descriptors of the compounds. In accordance with that QSTR studies include mutagenicity, 

cellular toxicity, developmental toxicity, and carcinogenicity, while QSPR includes Partition 

coefficient, permeability, melting point, boiling point, vapour pressure, refractive index, and 

retention index. Apart from that QSAR includes several biological activities of the chemical 

compounds like anticancer activity, antibacterial activity, and anti-malaria. Quantitative 

structure-based studies are principally statistical studies which also include the validation 

segments for further validating the model based on the different statistical parameters. 

1.1.2 History of QSAR 

With the advancement in chemical science, QSAR as a non-traditional synthetic approach has 

bloomed in the field of science. [15]. discovered the inverse proportionality relationship 

between water solubility and toxicity of chemicals. It was noticed that the toxic potential of 
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alcohol was increased in mammals due to the reduced toxicity. Later in 1868, Crum Brown and 

Fraser [16] discovered that different chemical and structural elements have their impact on 

different physiochemical properties. Again in 1890, Hans Horst Meyer noticed that the toxic 

potential of a chemical was largely affected by the lipophilicity of the organic compound [17]. 

However, after that, the impact of lipophilicity concerning biological activity was studied. 

Louis Hammett [18] estimates the relationship between the electronic characteristics of any 

acid or base impacting their reactivity and equilibrium. This is the fundamental step for the 

development of the mechanistic approach of QSAR. Apart from that, it also gives the idea of 

how the numerical information or chemical features can be correlated and influence the 

chemical, biological, or physiochemical responses of a chemical compound. Later in 1962 

Corwin H. Hansch and co-workers [19] formally introduced the concept of QSAR. The 

fundamental studies regarding QSAR were to study the structure-activity relationship (SAR) 

of verities of natural products and pesticides and its dependence on the Hammett constant [20] 

as well as lipophilicity. Fundamentally Free-Wilson model [21] is a simplistic approach to 

quantitatively describe Structure Activity Relationship (SAR). It describes the differentiability 

between two compounds based on the presence or absence of any functional groups. It is a 

mathematical expression that gives a correlated relationship between different physiochemical 

descriptors and the response value according to the response value following Hansch law [22] 

Both of the models are interconnected both theoretically and practically. In different studies, 

both of the concepts combined to estimate the contribution of different structural influences as 

well as different physiochemical responses according to the Wilson free crick model [22]. 

Some dissimilarities found in the free Wilson model have been recently established and found 

suitable to apply in fragment-based drug design. The concept of QSAR gradually progresses 

following two methodologies. 
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1. The data set progresses from classical to non-classical QSAR [23]. While the initial 

QSAR investigation fundamentally dealt with generally short and congeneric 

compounds (Which have generally similar mechanisms of action) the progress of 

QSAR methodology insisted it towards developing a predictive model with a diverse 

set of chemical compounds (having diverse mechanisms of action) with a bigger size 

of data sets. 

2. Evolution of the study of chemical compounds concerning the structure-activity 

relationship (SAR) of the compound and employing the analytical study of a compound 

regarding SAR to target a biological receptor with a chemical compound. QSAR 

developed more precisely using the same structural activity relation against verities of 

the receptor.   

1.1.3 Core QSAR and its Objectives 

1. For optimization of lead chemical compound according to the necessity and 

desirability. 

2. Do the chemical categorization of the chemical compound based on the chemical space. 

3. Find out a more reliable and potent chemical compound with the least toxicity. 

4.   Understand the mechanism of action of any chemical compound and select the less 

toxic compound accordingly. 

5. Predict the Activity/Property/Toxicity of the desired chemical compounds before the 

synthetic approach  

In the QSAR study, the data of a large no of the chemical compounds are collected. 

Mechanisms of actions, toxicity, activity, and properties of the chemical compounds 

are vividly analyzed and further processed for Quantitative structural studies. Thus the 

QSAR Insilco study can give the forum to study and analyse the lead chemical 

compounds or desired chemical compounds before processing for a synthetic approach.  
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1.1.4 Molecular descriptors 

Molecular descriptors are the integrated structural information of a chemical compound 

presented in a numerical form. However, the biological responses (Activity/ property/ Toxicity) 

of any chemical compound can be defined as the function of the structural or chemical features 

of chemical compounds [24] The concept of QSAR study relies on the concept of similarity of 

a defined chemical space. The chemical compounds that exist within this defined range can be 

further applicable to the developed predictive model. The importance of a defined chemical 

space not only limits up to that but also allows a new molecule to be predicted by the developed 

chemical space. However, the chemical space of a predictive model fundamentally depends on 

the numerical entity of the structural or chemical information of the chemical compounds or 

descriptors.   

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑐𝑒 (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑟 𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦)

= 𝑓(𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑜𝑟 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟) (1.3) 

The nature of the descriptors as the numerical information of the structural attributes plays a 

significant role in a predictive biological response. The descriptors may be structural 

(dependent on the occurrence frequency of a substructure), Functional group count descriptors 

(dependent on the number of functional groups present in a chemical compound), Geometric 

(dependent on the calculation of the molecular surface area), Physiochemical (electronic, steric 

and hydrophobic), topological or simple indicator variable (replicated parameters), electronic 

(based on the calculation of molecular orbital)[25] The significance of a particular descriptor 

can be estimated according to the correlation of the descriptor concerning the response value. 

The most significant descriptor to develop a QSAR model can be estimated by considering 

some characteristics of the features like: 
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1. The descriptor should have easily interpretable characteristics. However, the 

physiochemical interpretation of a chemical compound depends on its structural 

attributes but in a few cases temperature or surrounding environments can be 

responsible for exceptional responses. 

2. A descriptor should be highly correlated with the respective endpoint along with a 

minor dependency on other descriptors. In the case of descriptor dependency, the 

major contributors were taken for predictive model development and the minor 

contributor or the dependent descriptors were removed along with the process of 

pre-treatment. 

3. The descriptor should have covered the largest area of the chemical space or should 

have the largest domain of applicability. 

4. The descriptor should be able to represent the minor structural change of a chemical 

compound and detect a minor error for the slightly structurally diverse compounds. 

5. The descriptors should be easily calculated without depending on the experimental 

value. A numerical feature is a characteristic of an Insilco approach. The logic and 

statistics behind the descriptor computation should have its ultimate role rather than 

a dependency upon an experimental value. 

1.1.4.1 Categorisation of Descriptors 

A descriptor is a numerical entity of the structural information of a chemical compound. A 

feature or descriptor for a chemical compound can be classified in the following manner [25] 

such as physiochemical descriptor (electronic, steric, and hydrophobic), structural (based on 

the occurrence of a functional group, or sub-structural part), electronic (based on the calculation 

of each molecular orbital), geometrical (based on the calculation of molecular surface area), 

topological, or simple indicator variable (replicated parameter). However, the descriptors can 

widely be classified into 1. Whole molecular descriptor and 2. Substituent constant. 
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1. Whole molecular descriptor: Extension of the substituent constant method. 

2. Substituent constants: Physiochemical descriptors that are established depending on 

the physiochemical property of the chemical compound. 

1.1.4.2 2D descriptors 

1.1.4.2.1 Physiochemical descriptor 

These are the numerical entities that are responsible for informing about the physiochemical 

attributes of chemical compounds. The physiochemical alteration of a compound can greatly 

impact the pharmacokinetic parameters of a chemical compound in any biological system 

which includes absorption, distribution, metabolism, and excretion. Other than that the 

electronic phenomenon, steric influence, partition coefficient, and structural and functional 

group attributes of any chemical compound have a significant role in changing the biological 

response against the system.  

1.1.4.2.1.1 Partition coefficient 

The relative affinity of a molecule in a polar medium or a non-polar medium is important. The 

solubility of a drug molecule in a biological system in the presence of several biological 

membranes decides its potential to work in the biological system or its pharmacokinetic 

property. Other than that partition coefficient indicates the polarity of a particular compound 

for rigorous analysis in the process of quality assurance before marketing the product of 

interest. The generalization and representation of partition coefficient is done by logarithmic 

partition coefficient (log P) between n-Octanol and water. 

𝑃 = [𝐶]𝑂𝑐𝑡𝑎𝑛𝑜𝑙/[𝐶]𝑎𝑞𝑢𝑜𝑢𝑠                                                          (1.4) 

The [𝐶]𝑂𝑐𝑡𝑎𝑛𝑜𝑙 indicates the concentration of a compound in the lipid or non-polar phase 

whereas [𝐶]𝐴𝑞𝑢𝑜𝑢𝑠  indicates the concentration of a compound in the polar medium. The P > 1 
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indicates the concentration of the compound is greater in the non-polar medium or the 

compound is nonpolar in nature. The value of P<1 indicates the concentration of the compound 

is greater in the polar medium. Thus the chemical compound is polar in nature.  The polarity 

of a compound is a key regulating authority behind its pharmacokinetic effectivity. It is 

estimated by distribution in a biphasic medium whether it is liquid-liquid (partition coefficient) 

or solid-liquid (the polarity of a compound with respect to the chromatographic stationary 

phase). The descriptor that describes the lipophilic parameter as log p was calculated by Ghosh 

and Crippen’s parameter [26]. 

1.1.4.2.1.2 Hydrophobic substitution constant (π) 

Hydrophobicity is a phenomenon of non-polar compound exerted in the aqueous medium. The 

tendency of aqueous solution to discard the non-polar compound by not participating in the 

solvation process is the core concept of hydrophobicity. The relativity of hydrophobicity 

regarding any particular compound with the hydrophobic substituent called π. π as the value of 

substituent X can be described  

    𝑙𝑜𝑔𝑃𝑅−𝑋 = 𝑙𝑜𝑔𝑃𝑅−𝐻 π𝑋                                                                                           (1.5) 

log𝑃𝑅−𝑋 and log𝑃𝑅−𝐻 represent the partition coefficient of substituted and unsubstituted 

compounds respectively. The π𝑋  is the difference between the lipophilicity of the substituted 

compound and the unsubstituted compound. The substitution can be described as the 

replacement of “H” in “RH” by the substitute ‘X”.   

1.1.4.2.1.3 Hammett electronic constant (σ) 

The electronic constant can be further classified into two different types σ𝑚 and σ𝑝. The 

electronic effects were studied for the meta and para position rather than the position. The 

electronic effect in the ortho position is not considered for further studies because of the steric 
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effect at the ortho position with respect to the origin of the substitute. It is described in the 

following equation 

log𝑘𝑋 = ρσ+ log 𝑘ℎ                                                                                                              (1.6) 

In this equation 𝑘𝑥 and 𝑘ℎ are the reaction rate constant for substitution x and h respectively. 

The term σ is a constant and ρ represents the analogue being studied. However, a positive value 

indicates the electron-withdrawing effect and a negative value denotes the electron-donating 

impact. 

1.1.4.2.1.4 Steric parameter 

The steric parameter or steric effect of a compound is often related to the higher degree of 

molecular weight or bulkiness. Compounds of the homologous series often show different 

biological activity. However, the steric activity resists intermolecular reactions rather it 

positively contributes to the intramolecular reaction. The quantitative indication of the steric 

influence of a compound is estimated by several steric parameters. 

1.1.4.2.1.4.1 STERIMOL parameters 

Verloop and coworkers [27] developed a multipara metric method to characterize the steric 

influence of a substituent in more complex biological systems to go beyond the Taft parameter 

employed for simple homogenous organic reactions. Verloop and their coworkers developed a 

collection of five descriptors (L, B1, B2, B3, B4) to describe the shape or structural 

phenomenon of the substituent (Verloop, 1987). L representative descriptor of the length of the 

substituent along the axis of the bond between the first atom of the substituent and the parent 

molecule. B1-B4 all of these descriptors are the width representator. However, this descriptor 

is all orthogonal to the length denoted or L and forms a 90-degree angle with each other. The 

huge number of descriptors needed to categorize the substituted elements and the huge number 

of compounds should be including those parameters in the final QSAR model. This finally 
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results in thinning of the descriptors to L, B1, and B4 where B1 has the smallest and B5 has 

the highest width parameter which does not have any directional relationship with L [27] 

1.1.4.2.1.4.2 Molar refractivity (MR) 

The molecular refractive index is a molar volume adjusted by the refractive index parameter 

[28]. The molecular refractive index gives the idea of the size and polarity of a compound. 

𝑀𝑅 = (𝑛2-1)/(𝑛2+2)X (MW)/d                                                                                                 (1.7)  

Where n denotes refractive index, MW denotes molecular weight and d denotes the 

density. 

1.1.4.2.2. Topological descriptors 

Topological descriptors mainly depend on the graphical representation of structural 

phenomena. So they do not depend on the physiochemical properties or a computational result 

to be showcased as quantum chemical descriptors. A topological descriptor is all about the 

graphical representation from the 2D topological information which is the information about 

the existing atoms and their adjacent bonds. 

1.1.4.2.2.1 Wiener index (W) 

It is the collective information about the bonds present between each heavy atom that exists in 

a molecule. However, in graph-theoretical terms, it can be elaborated as the summation of the 

minimal path length between each pair of heavy molecular atoms represented in the graph. It 

can be determined as follows:  

𝑊 = 1/2∑𝑖∑𝑗  δ𝑖𝑗                                                                                                             (1.8) 

 δ𝑖𝑗 is represents the shortest distance between the vertices of i and j. 
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𝟏.1.4.2.2.2 Zagreb index (Zagreb) 

It is represented as the summation of the square of the vertex degree δ𝑖
2 [29]. 

𝑧𝑎𝑔𝑟𝑒𝑏 = ∑𝑖δ𝑖
2                                                                                                                  (1.9) 

The Zagreb index is related to the isomeric branching for an isomeric set of molecules. 

1.1.4.2.2.3 Balaban index (J) 

 The balaban index is followed by the following equation 

𝐽 = 𝑀/(µ + 1)∑𝑒𝑑𝑔𝑒𝑠(δ𝑖δ𝑗)−0.5                                                                                      (1.10) 

Where M represents the no of edges, µ represents the cyclometric number, δ𝑖 , δ𝑗  are the vertex 

distance degree of the adjacent vertices. This index is calculated from the matrix of the 

molecular graph. 

1.1.4.2.2.4 Molecular Connectivity Indices 

Molecular connectivity indices can be calculated employing the atomic vertex degree in H 

suppressed molecular graph. This is presented as the geek symbol χ (chi).   

1.1.4.2.2.4.1 Randict connectivity index 

This is also called as branching index or connectivity index. This is also the very first 

introduced connectivity index. The following equation expressed it [30]. 

χR = 1χ=∑𝑖=1
𝑛−1∑𝑗=𝑖+1

𝑛 𝑎𝑖𝑗(𝛅𝑖 δ𝑗)−0.5                                                                                             (1.11) 

Here ‘n’ represents the total no of vertices present in the molecular graph, 𝑎𝑖𝑗 is the adjacency 

matrix element, δ𝑖 , δ𝑗  denotes vertex degree, and the no of other vertices joined with the vertex 

i and j respectively. The element (δ𝑖 δ𝑗)−0.5  can be applied for each pair of adjacent edges or 

vertices of the first order and is termed edge connectivity. Apart from that it can be applied for 
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more than two adjacent vertices. This connectivity phenomenon is mainly related to molecular 

branching. 

1.1.4.2.2.4.2 Kier and Hall’s connectivity index 

It is based on Randic’s principle, developed by a general concept for calculating zero-order and 

higher-order connectivity descriptors. Kier and Hall’s connectivity index is also named as 

molecular connectivity [31]. The following equations are responsible for describing zero-order, 

first-order, and higher-order connectivity expressions. 

 

χ0 = ∑𝑖=1
𝑛 δ𝑖

−0.5                                                                                                                        (1.12) 

χ1 = ∑𝑏=1
𝐵 (δ𝑖  δ𝑗)𝑏

−0.5                                                                                                             (1.13) 

χ2 = ∑𝐾=1
2𝑃 (δ𝑖. δ𝑙.δ𝑗)𝑘

−0.5                                                                                                   (1.14) 

χ =  ∑𝐾=1
𝐾

𝑡
𝑚 (∏𝑖=1

𝑛  δ𝑖) 𝐾
−0.5                                                                                                       (1.15) 

The last equation shows a generalised equation for the higher-order indices where k runs over 

𝑚𝑡ℎ order subgraphs containing n vertices and B edges. The total no of appearing m-th order 

is K.” χ” represents the product of simple vertex degrees (δ). Theχ𝑡 represents the continuous 

type of specific subgraph. The term 2𝑃 defines the 2𝑛𝑑 order index. 2 χ denotes a path length 

of 2 containing 3 vertices. Likewise, for higher order, it will be 𝑚𝑃 added with the specific 

graph fragment type t. 

1.1.5 Classification QSAR analysis  

The chemometric QSAR study can be further subdivided depending on the endpoint (graded 

or continuous numerical endpoint), and type of the dimension (based on the 2-dimensional or 

3-dimensional descriptor). Moreover, based on the types of biological responses (Activity/ 
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Toxicity/ Physiochemical Properties), the classification-based model can be subdivided into 

QASR / QSTR or QSPR model. However, considering the endpoints like adsorption, 

distribution, metabolism and excretion like pharmacokinetic parameters can also be taken as 

biological endpoints. Apart from that the dimensionality of the predictive variables (0D, 1D, 

2D, 3D) can be the preliminary criteria to further categorize the classification-based QSAR 

model. 

 

Fig.1.1 represents several QSAR methods classified based on dimensionality. Apart 

from that many authors have also reported QSAR studies based on the chemical nature 

of the molecules employed for modeling. 

1.1.5.1 Classification based on the type of employed methods 

Classification-based QSAR can be subdivided into the following types such as, Linear method 

(Linear regression), MLR (multiple linear regression), Partial least square (PLS) and 

(PCA/PCR) Principle component analysis or regression, and some nonlinear methods 

(Artificial linear network (ANN), k-nearest neighbour (kNN) and Bayesian neural network [32] 
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1.1.6 Classical QSAR model  

 1.1.6.1 Thermodynamic approach of Hansch analysis 

Hansch first published the mutual dependency and correlation between biological responses 

and phenoxyacetic acid as well as and Hammett substituent constant and the partition 

coefficient [33] 1962. Hansch's analysis can apply to linear, nonlinear, and multiple linear 

analysis. So Hansch's analysis mainly focuses on the establishment of the property relationship. 

All parameters of Hansch are mainly linear free energy-related values (derived from the rate 

constant or equilibrium constant). The linear free energy-related approach [34] is also named 

as Hansch analysis and can be described as follows 

𝑙𝑜𝑔
1

𝑐
= 𝑘1 ( partition parameter)+𝑘2 (electronic parameter)+𝑘3 (steric parameter)+𝑘4    

(1.16) 

Where c is the minimum effective dose responsible for any biological action. 𝑘1,  𝑘2, 

𝑘3, 𝑘4 are the constant term. Hansch's model was again modified by the application of 

bilinear and parabolic terms extended by the term log p. 

1.1.6.2 Additivity model or free Wilson analysis 

The free Wilson model [35] is the true structure-activity relationship model.” Mathematical 

model”, “De novo approach” and “additivity model” all of three are often used synonymously 

to describe the free Wilson model. A pointer or denote variable is created for every substituted 

structure that exists in the parent moiety. The resultant correlation coefficient or regression 

coefficient represents the biological activity contributed by the corresponding elements. The 

free Wilson model can be elaborated by the following equation 

𝐵𝐴 =  ∑𝑎𝑗 𝑋𝑖𝑗+µ                                                                                                                           (1.17) 
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Where BA represents the biological response,𝑋𝑗 is the j th substituent which is considered with 

a value of 1, and being absent the value is regarded as 0. 𝑎𝑗 is the contribution of the jth 

substitution of the biological activity. µ is the overall biological activity of the parent moiety. 

1.1.6.3. Fujita ban analysis 

Fujita Ban had worked with the application part of the free Wilson’s model [36]. The biological 

activity is here represented in the logarithmic scale. It is also a free energy-related term and 

fundamentally additive in nature. 

log 𝐴/𝐴0 = ∑𝐺𝑖𝑋𝑖                                                                                                                          (1.18) 

Here A and 𝐴0   are the magnitude of the activity regarding substituted and unsubstituted 

entities. 𝐺𝑖 is the contributed activity expressed in the logarithmic scale for the ith substitution 

corresponding to the substituent present in the parent molecule (denoted as H). 𝑋𝑖 is considered 

with the value 1 when it is present as substituent otherwise the value is taken as 0 when it is 

absent. 

1.1.7 Brief description of 3D QSAR methods 

The 3D QSAR descriptors are comparatively more complex than the simple 2-dimensional 

descriptors. The calculation of mathematical 3D descriptors involves several steps. Initially, 

the conformation of the molecular entity is done from the structural or molecular mechanics or 

the available experimental data and then filtered by minimizing the energy level [37]. 

Thereafter after the available conformers of the data set were uniformly aligned in the space. 

Then the space containing the conformers was exposed to different types of descriptors. Apart 

from that many more independent molecular alignments have also been developed. 
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 1.1.7.1 CoMFA 

It is also known as comparative molecular field analysis. The application of CoMFA mainly 

focuses on the electrostatic (columbic) steric (Van der Wall) energy expressed by the molecule 

of interest. The aligned molecule is positioned in the 3D grid. At each point of the grid, a probe 

atom with unit charge is placed and the subsequent potential (Coulomb and Lennard Jones) of 

the energy field is determined. Then the resultants act as mathematical descriptors and are 

mainly used for the application of the PLS (partial least square model) based regression model. 

This study enables us to determine the positive and negative substitutional impact on the 

activity of the molecule of interest. Now CoMFA is introduced as the part of 3D QSAR 

approach (Podlogar and Ferguson, 2000). The application of the CoMFA method is generally 

expressed in the software “Sybyl software” (https://mgm.ku.edu/molecular-modeling-tutorial) 

from Tripos Inc. 

1.1.7.2 CoMSIA  

The comparative molecular similarity indices (CoMSIA) are identical to CoMFA as a part of 

the 3D molecular descriptor. The atom probing technique of CoMSIA is similar to CoMFA. In 

the Gaussian type function, in CoMSIA, molecular similarity indices are computed from the 

improved SEAL similarity field and used as descriptors to consider electrostatic, steric, 

hydrogen bonding, and hydrophobic properties. CoMSIA considers that the probe atom has a 

radius of 1 𝐴0,  charge of +1, and hydrophobicity of +1 are positioned at the intersection of the 

surrounding lattice. Moreover, the application of the Gaussian function over the Lenard-Jones 

and Columbic function enables the gathering of perfect information in the grid points placed 

in the molecule.  

 

 

https://mgm.ku.edu/molecular-modeling-tutorial
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1.1.7.3 SOMFA  

It is also known as self–organizing molecular field analysis (SOMFA) [38]. This method has 

also resemblances with CoMFA and CoMSIA. Apart from that hypothetical Active Site Lattice 

(HASL) introduced by Doweyko et al (Doweyko, 1988) has a conceptual similarity with 

SOMFA. The mean-centered activity is decisive in SOMFA. 

1.11.7.4 MFA  

The mechanistic approach of MFA is to quantify the energy of interaction between a probe and 

a set of aligned [39]. This study is effective for the analysis of the data sets in which the activity 

information is present but the receptor or structure of the aligned molecule is unknown. The 

study of MFA tries to make a hypothesis and characterize the significant features of the receptor 

site from the common energy level and molecular features that bind to it. 

1.1.7.5 GRID 

The concept of GRID resembles the CoMFA and it was the first suitable method designed and 

developed for medicinal scientists as the substitution of the original CoMFA method. The 

mechanistic approach of this method determines the energy of interaction fields in molecular 

field analysis and calculates the suitable energetically binding sites on a known molecular 

structure [40]. 

1.1.7.6 VFA 

It is also known as Voronoi Field Analysis (VFA) [41], voronary polyhedral is formed by the 

division of a superimposed set of molecules into subspace. For each Voronoi polyhedral there 

is a single atomic reference point. A cuboid with six tangential sides is divided into a three-

dimensional (3D) lattice with a space of 0.3 𝐴0, neighbouring the union volume of the 
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superimposed set of molecules is built. The potential and electrostatic energy indices at each 

lattice point are calculated following the hard-sphere potential model and Coulomb’s law. 

1.1.7.7. RSA 

It is also known as Receptor Surface Analysis which is a suitable method in conditions where 

the receptor’s 3D structure is not known, [42] since one can create the receptor site’s imaginary 

model. The RSA study focuses on capturing essential information about the receptor, unlike 

pharmacophore. The former captures information about the resemblance of molecules that bind 

to a receptor. 

1.1.7.8 MQSM 

It is also known as Molecular Similarity Measures (MQSM) are computed by the integration 

of volume between the corresponding density function (DF) of the two compared objects, 

weighted by the non-differential positive definite operator, known as Quantum Similarity 

Operator [43]. 

1.1.7.9.1 Alignment independent methods 

The effectivity and significance of alignment-independent descriptors are greater because they 

offer 3D descriptors that are constant to molecule rotation and transformation in space. The 

study suggests there is no requirement for the superposition of the molecule. 

1.1.7.9.1 CoMMA 

The Comparative Molecular Moment Analysis (CoMMA) [44] enables second-order moment 

of charge and mass distributions. The moments correlated to dipole as well as mass centre. The 

CoMMA descriptors comprise principal quadrupole moment magnitudes of dipole moment 

and principal moments of inertia. Moreover, descriptors correlating charge to mass distribution 
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are described, i.e., the magnitude of the projection of dipole upon principle moments of inertia 

and displacement between centre of mass and centre of the dipole.  

1.1.7.9.2 WHIM  

The weighted Holistic Invariant Molecular (WHIM) [45] and Molecular Surface [45] 

descriptors afford the unaltered information using the Principle Component Analysis (PCA) on 

the cantered coordinates of the atoms constituting the molecule. This changes the molecule into 

the space that captures the most alteration. In this space, various statistics are computed and 

act as directional descriptors, containing proportion, variance, kurtosis, and symmetry. By 

merging the directional descriptors, non-directional descriptors are also described. The atoms 

can be weighted by mass, atomic electronegativity, atomic polarizability, van-der-walls 

volume, Kier and Hall’s eletrotopological index, and electrostatic potential of a molecule. 

1.1.7.9.3 VolSurf 

The VolSurf [46] method depends on probing the grid around a molecule with specific probes, 

for instance, hydrogen bond donor and acceptor groups or hydrophobic interactions. The 

resultant lattice boxes are employed to calculate the descriptors depending on surfaces or 

volumes of 3D contours, described by the same probe molecular interaction energy value. By 

applying different probes and cut-off energy values, various molecular properties can be 

measured. 

1.1.7.9.4 Compass 

Compass was developed by Jain and co-workers [47] and is dissimilar from other alignment-

independent methods in the respect that it automatically selects alignments and conformations 

of molecules. In the compass, every molecule is signified by a dissimilar set of feature values. 

1.1.8 Receptor-based 3-D QSAR 



24 
 

Receptor-based methods were implemented after the crystal structure of a receptor was 

available. Protein or receptor-based approaches depend on the information extracted from the 

structure from the X-ray crystallographic and homology protein structures. 

1.1.8.1 Molecular docking 

It is a study of how two or more molecular structure ligands or active chemical compounds, 

drug molecules, and receptors or enzymes of protein bind together [48]. The capacity of 

interaction of a protein with small molecules performs a key role in protein dynamics which 

may modify the biological activity. The capacity of large molecules such as nucleic acids and 

proteins to bind and produce supra-molecular complexes plays a significant part in regulating 

biological activity. The capacity of large molecules such as nucleic acid and proteins to bind 

and to produce supra molecular complex plays an important part in regulating biological 

function. The behaviour of small molecules in binding pockets of target proteins can be defined 

by molecular docking. The docking methodology aims to recognize the exact poses of ligands 

in the binding pocket of a protein and to forecast the affinity between the ligand and the protein 

molecules. Molecular docking can be categorized as (a) protein-nucleic acid docking (b) 

protein-small molecule docking and (3) protein-protein docking. Protein-ligand docking 

signifies a simpler end of the complexity spectrum and there are several programs available 

that can be executed to predict molecules that may potentially prevent proteins. Protein-protein 

docking is usually much more complicated. The cause is proteins are flexible and their 

conformational space is fairly huge. 
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Fig.1.2 Mechanics of Molecular Docking 

Docking can be studied by positioning rigid fragments or molecules into the active site of 

protein employing several methods like geometric hashing, pose clustering, clique search, etc. 

The performing ability of docking is dependent on the search algorithms (like Genetic 

algorithms, Monte Carlo methods, Tabu searches, Distance geometry methods, Fragment-

based methods, etc.) and the scoring function (i.e., Empirical free energy scoring functions, 

Knowledge-based potential of mean force or Force field method). First, the constitution of all 

probable conformations and orientation of the protein binds with the ligand. The scoring 

function receives input and yields a number that shows favourable interaction. The most vital 

use of docking software is a virtual screening of the most promising and interesting molecules 

that are chosen from an available database of auxiliary investigation [48]. 
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1.1.9 Methodology of QSAR                                                                                                                    

There are four fundamental steps of QSAR analysis includes – (1) Data preparation, (2) Data 

processing, (3) Data validation, and (4) Data interpretation (Roy et al., 2015). The step can be 

briefly described by the following: 

1.1.9.1 Data preparation 

Initially, to maintain the uniformity of data, the endpoint is transformed into the obligatory unit 

(micromolar or millimolar). Then the chemical structures are drawn by employing several 

popular software like Marvin Sketch, Chem Sketch, Chem Draw, etc or the structures can be 

downloaded from online public databases like PubChem, ChemSpider, etc. The energy 

minimization and conformational analysis are done if necessary. Next, the file containing the 

structures is employed for descriptor calculation and then the data pre-treatment can be 

performed to eliminate noisy data, constants, etc. Finally, the descriptors comprise dissimilar 

variables and a single worksheet which is called a QSAR data matrix. An extra column 

representing the name or serial numbers of the molecules can be included for fast and easy 

identification of any molecule or compound. 

1.1.9.2. Data processing 

a. Data division 

A robust, well-predicted, and overall validated QSAR model generation is the core objective 

of a QSAR study. In that context a proper division of the dataset into a training set (employed 

to develop a model) and a test set (employed for validation of the developed model). Apart 

from that the most comprehensible technique to select a training set is dependent on an 

important physiochemical descriptor or a cluster of chemical similarity. A large number of 

compounds are selected for the training set which is employed in model development. 

Generally, it is the ratio of 80:20 for considering the chemical compounds as the part of train 
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and test set respectively. The fundamental algorithm is based on the principle that a structurally 

similar molecule to the training set molecules can be predicted confidently because the model 

has learned the features that are shared by the training set molecules and is capable of searching 

them in the new compound. The selection of the training set molecules and test set will be in 

such a way that the test set compounds will fall within the structural domain of the training set 

molecules. The structural alteration in the test set compounds will result in below-quality 

prediction and generation of outliers. Different types of data division procedures can be 

applicable to divide the data set into training and test sets like the Kennard Stone method, 

Activity / Property-based division, Principle Component Analysis (PCA), Kohonen’s Self 

Organizing Map (SOM), D-optimal design, Sphere exclusion, etc [49]. 

b. Feature selection 

A feature selection process can also be named as a dimensionality reduction procedure because 

it reduces the feature space of the dataset to the more reliable and significant descriptor. The 

process follows to directly eliminating the noise and non-significant input features [50] which 

helps for enhanced interpretability in QSAR modelling as well as the predictive capability of 

the model [51]. Several feature selection algorithms can be integrated with one or more model 

development approaches under a similar interface so that the best possible combination of 

descriptors can able to develop a robust and quality predictive model. Several feature selection 

methods employed in the QSAR study include stepwise variable selection, Genetic Algorithm 

(GA), Best Subset Selection (BSS), Variable Subset Selection, Factor analysis, and Most 

Discriminating Feature selection (MDF). Generally, few are noticeably interested in the 

endpoint or response. However, descriptors being inter-correlated have negative influences on 

a QSAR study. A fundamental requirement of several statistical techniques is that the number 

of data points data points should be higher than the number of descriptors/variables. 
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c. Model development 

This process indicates that the best-selected structural features are to be collected in a single 

model using an explicit formalism. However, after completing the descriptor calculation the 

rest of the QSAR study was done by the feature mapping method. The core objective of the 

QSAR study is to establish a correlated mathematical equation between the descriptors and the 

response or endpoint being studied. Different techniques like Multiple Linear Regression 

(MLR), Partial Least Squares (PLS), etc. are applied to develop regression-based models.  

However, Linear Discriminating Analysis (LDA) is employed for the development of a 

classification-based model. The feature selection process is done by statistical assessment of 

the resultant QSAR model and the above-mentioned feature selection procedures were 

employed to conduct the process. Finally, the best model is selected based on quality prediction 

and various validation metrics [52]. 

1.1.9.3 Model validation 

The robustness, quality prediction, and statistical significance of the QSAR models are 

determined depending on the quality of models, as demonstrated by different globally accepted 

internal and external validation metrics. The developed model for the corresponding endpoint 

values is validated, utilizing several internal and external validation metrics. The training set is 

validated using the validation criteria and the responsible validation metrics like the 

determination coefficient (𝑅2), leave one out (LOO), cross-validation (𝑄𝐿𝑂𝑂
2 ), 

𝑟𝑚(𝑡𝑟𝑎𝑖𝑛)
2 ,∆r𝑚(𝑡𝑟𝑎𝑖𝑛)

2 (Roy and Mitra, 2011), root mean square error of calibration (RMSEC), 

standard deviation (SD) of 100% data of training set, mean absolute error at 5%  high residual 

data points (𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 95% ). The test set predictions are evaluated by several external statistical 

metrics like 𝑅𝑃𝑟𝑒𝑑
2 ,𝑄𝐹1

2 , 𝑄𝐹2
2 , 𝑟𝑚(𝑡𝑒𝑠𝑡)

2 (i.e 𝑟𝑚(𝑡𝑒𝑠𝑡0
2 , ∆r𝑚(𝑡𝑒𝑠𝑡)

2 , standard deviation (SD) of 100% 
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of data of the test set, root means square error of prediction (RMSEP), 95% mean absolute 

error of the test set ( 𝑀𝐴𝐸95%), concordance correlation coefficient (CCC), etc. [53].                      

          

Fig 1.3 General workflow of QSAR 

1.1.9.4 Model interpretation 

The QSAR study enables the molecular features to be interpreted rigorously. The correlation 

relationship between the structural attributes and the corresponding response variable 

contributes to understanding the mechanism of action. Subsequently collecting the observation 

and experimental results from the developed and validated model indicates the behavioural 

characteristic of molecules of interest. This information is significant for the further 

modification of the structural attributes of the molecule of interest to achieve the expected goal. 
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1.1.10 Application of QSAR Studies 

  QSAR is an in-silico approach that is effectively used to monitor the activity/   

property/toxicity of chemicals while combining the chemical as well as statistical concepts. 

The consecutive behavioural interpretation of the molecule of study and a fine-tuning with its 

corresponding biological response can be significantly applicable to a large set of chemical 

compounds such as (1) Pharmaceuticals, (2) Food and Nutraceuticals, (3) Flavour and 

Fragrance compounds, (4) Analytical reagents, (5) Solvent, (6) Cosmetic product (7) Surface 

modifying agents, (8) Toxins, Xenobiotic and different biological products, (9) Agricultural 

products. Apart from modelling biological activity and toxicity endpoints, the applicability of 

QSAR                       spread for ADME study involves the pharmacokinetic profile of potential 

drug candidates before its synthesis as well as efficacy in the biological system. 

1.1.11 QSAR and OECD 

The respective OECD encourages the application of QSAR modelling by the financial 

assistance of the European Union (EU) with the core objective of enriching QSAR as the tool 

for risk assessment of the compound of interest. The member countries of the OECD have 

implemented a collective protocol to employ its real use in the ethical background. The OECD 

QSAR venture the QSAR toolbox (https://www.oecd.org/chemicalsafety/risk-

assessment/oecd-qsar-toolbox.htm) the validation principles of evolved models and regulation 

article objects to advance the application of QSAR modelling by industry and governments to 

simplify the assessment of chemical hazards. In the 1990s the OECD investigated the impact 

of QSAR modelling for the assessment of aquatic hazards and pollution caused by some 

contamination of chemicals in a workshop. This is the progression after the employment of 

SAR models on the exposure assessment of biodegradability and environment-friendly 

properties of the chemical compounds by the member countries of the OECD. The next major 

https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
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discussion was held on the Regulatory use of QSAR for Human Health and Environmental 

Endpoints. Again there was a discussion about Chemicals, Pesticides, and Biotechnology. 

Finally, it leads to the conclusion to develop an obvious method to evaluate and rigorously 

validate QSAR models for the constitution of a clear base for their further application.  

The OECD decided on the following five principles to enable the regulatory application of 

QSAR modelling: 

Principle 1: About a defined endpoint: The endpoints/ responses modelled in the current study 

applied to three different data sets. A definite endpoint means a biological, physiochemical, 

and therapeutic response as an endpoint. Both the continuous and graded values are considered 

as a definite endpoint.  

Principle 2: About an unambiguous algorithm: Different computational statics based on 

different algorithms were used to compute different classes of descriptors and successive 

QSAR model development employing particular software tools.  

Principle 3: A defined domain of applicability: The applicability domain (AD) for all the 

statistically relevant developed models. The implementation of the applicability domain is to 

select the outliers of the definite prediction and further chemical categorization based on the 

prediction.   

Principle 4: Appropriate measures of goodness of fit, robustness, and predictive ability. 

Several validation statistics and statistical plots are used to thoroughly validate the quality of 

the prediction and ensure the goodness fit and robustness of the model.  

Principle 5: A mechanistic interpretation, if possible: In our present work all the descriptors 

responsible for the developed model were recognized, correlated with the corresponding 

endpoint and the mathematical relation is established. However, it is helpful to interpret the 

structural attributes as well as the physiochemical attributes of molecules of interest with the 
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respective endpoints. Apart from that molecular interpretation not only indicates the necessary 

optimization mechanism to achieve the desired goal but also gives the idea of chemical 

characterization.  

1.1.12. Read-Across 

Read across is an Insilco chemometric method but while we categorize it in detail it comes 

under a non-statistical algorithm. It is predominantly based on the similarity whether it is 

structural, chemical, or biological activity based on the defined kernel (Euclidean, Gaussian, 

and Laplacian kernel) based similarity [54]. Initially, we considered 10 number of close source 

compounds. Based on the similarity pattern they gave their prediction opinion for a particular 

estimated compound. The resulting outputs are generally taken as weighted average prediction 

value, weighted average standard deviation, and weighted average standard error. 

1.1.13 RASAR 

RASAR is an amalgamated method of both the QSAR and read-across. While QSAR is a 

statistical method read across showcased as a non-statistical method. For the development of 

the RASAR model, the descriptors are calculated from the training set into two segments as 

2D QSAR descriptors in supervised form and the read across based measured from 

unsupervised form[55 ]. After that,  the two types of descriptors are clubbed and further 

proceeds for the RASAR model development. The prediction of the RASAR model is carried 

out following the same mechanistic approach as read across depending on the predictive 

opinion of 10 close source compounds. The validation parameters are considered in terms of 

𝑅2 , 𝑄2  mimicking the validation process of simple QSAR. That’s how RASAR stands as a 

hybrid approach of both QSAR and read-across. The above process is applicable for q-RASAR 

model development. However, the c-RASAR model can be used only using RASAR 
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descriptors. For this scenario accuracy, AUC, MCC, sensitivity, and specificity can be 

considered as the validation statistics. 

1.1.14 ML model development 

Machine Learning is an artificial intelligence-derived computational program, which was used 

here for the purpose, of enhancing the accuracy and prediction quality from the previous c- 

RASAR model [56]. 

1.1.14.1 Random forest- It is a supervised machine learning algorithm based on some decision 

tree. The protagonist's role in this decision tree is to decide the best-fit rule to classify the input 

data based on the features. In the hierarchical arrangement of the decision tree data crosses 

through each event and each event has some probability. However, after completion of the 

whole process, the total probability of that event should be 1. The hierarchical nodes present 

on the decision tree are the root node (does not have any incoming branch), the internal node 

(has one incoming and two or more outgoing branches), terminal branch (one incoming and 

one outgoing branch). In this ensemble method, the decision trees in the forest are protagonists. 

The final decision taken on the majority voting came out from each node. Terminal ends of the 

nodes are connected to the target and non-terminal nodes are the descriptors. Each tree is 

constructed with a training set that has compressed size from the original data by random 

replacement of the original descriptors. Now the new capsized data set is being trained. The 

remaining descriptors are used for external validation or error detection. 

1.1.14.2 Support vector machine- SVM is a labeled or supervised machine learning 

algorithm. It tries to analyze different classes of the compound constructing a hyperplane. The 

advantage of SVM is the efficiency of this algorithm can be shown in a higher dimensional 

data set where no of descriptors is more than the no of samples. But for an input where the no 

of descriptors is much more than the no of observations, the SVM failed to show a good result. 
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Thus from the above algorithm, it can be expected SVM will show an enhancement in accuracy 

when the algorithm is used for such a data set where the no of observations is much more than 

the no of descriptors. The algorithm of SVM is specialized to differentiate between the class 

of compounds that perfectly suit for the classification-based model development. 

     

1.1.14.3 Logistic Regression-It is a statistical classification-based model that measures the 

correlation between the categorical dependent variable and one or more than that independent 

variable but the classes or category is one for this case. It does not necessarily have to linear 

relationship between the dependent and independent variables. The independent variable need 

neither be normally distributed nor linearly related even nor for equal variance for each group. 

Logistic regression can be stated as follows 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑥)] = log [
𝑝(𝑥)

{1 − 𝑃(𝑋)}
] = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ 

Here the logit represents the log with base €, P represents the feature which ranges from 0-1 as 

an intercept 𝑏1, 𝑏2 are the coefficient values related to the corresponding value related to 

corresponding descriptors. The value of 0 of the corresponding coefficients denotes the null 

contribution of the descriptors towards its interpretation while thee with a “+” sign denotes the 

null contribution of the descriptors towards its interpretation. The descriptors with “- 

“coefficients negatively towards the interpretation of the model.  
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                           Present work                                               

A chemical compound has its particular physiochemical behavior, therapeutic potency as well 

as organoleptic characteristics. However, the huge applicability of its particular phenomenon 

suggests studying their qualitative, structural studies to the biological response. In the present 

work, the investigation is predominantly based on the organoleptic properties of different 

chemical compounds. The goal is to achieve the desired product while minimizing the hazards 

and the negative influence of those chemical products in our day-to-day lives. Other than that 

one of the core focuses of this investigation is to achieve a more accurate result while 

simplifying the methodology. However, analysis of the applicability domain helps chemical 

categorization of the chemical compounds that are still not synthesized or yet to be synthesized. 

Structural modification and chemical categorization somehow contribute to the synthesis of 

potentially new safer chemical compounds whether it is organic or inorganic. Therefore, in the 

current study, the possibility of predicting reliable data was checked by the rigorous validation 

of the QSAR model. Apart from that, we used RASAR a concept of both the QSAR and Read 

across. The methodology is predominantly dependent on the prediction ability of the ten close 

source compounds of a chemical of interest. The similarity whether it is chemical, structural, 

or biological contributes to a prediction opinion. Of late several regulatory agencies consider 

the chemometric Insilco (e.g. QSAR, read across) method as one of the significant tools for 

risk assessment even for determining the property or the biological activity of a potential 

chemical. In our present study, the 2D QSAR approach has been used to develop both the 

classification and regression-based model. Apart from that RASAR has also been used as the 

clubbing concept of QSAR and Read Across. Before finalizing the model development a 

variable selection strategy (MDF for classification-based model, MLR genetic pool, Best 
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subset for regression-based model) was applied to select some significant and manageable 

number of descriptors to minimize the noise and correlated descriptors in the data set.  

Development of a validated, predictive model as QSPR / RASAR provides rational estimation 

for property determination of organoleptic compounds. 

2.1. Study 1 Dataset 1 

The data set of the first study mainly deals with 2370 sweet taste compounds and 2431 bitter 

taste compounds. The compounds that show ‘1’ have a taste (sweet or bitter), while the 

compounds that show ‘0’ are non-sweet or non-bitter. The data sets contain diverse compounds, 

including carbohydrates and sweeteners such as D-Xylose, Amylose, D-Mannitol, D-Mannose, 

and Aspartame, as well as some other natural products such as Quinine and xanthotoxins. The 

details of the datasets (both sweet and bitter) are discussed later. 

2.2  Study 2 Dataset 2 

It is essential to have consistent and reliable data for the development of QSPR models. In this 

second study, 1208 data points for aromatic substances were collected which describes the 

experimental property as the Kováts retention index (RI) in a non-polar stationary capillary 

column (0.28 mm ×50 m). They used methyl silicone OV-101 as coating material admixed 

with 1% Carbowax 20 M, and the column was programmed to increase from 80 to 200 °C at a 

rate of 2 °C/min. The RI values used as an endpoint ranged from 350 to 2180. The Kováts 

retention index is independent of individual chromatographic system specifications and allows 

comparing values measured by different analytical laboratories and analysis times. The 

fragrance ingredients are often obtained from commercial suppliers as mixtures of isomers 

(e.g., cis-trans), which the supplier does not separate.  
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3. Materials and method 

The present dissertation was performed with the core objective to showcase the applicability 

of a transparent methodological framework to develop a predictive QSAR as well as RASAR 

model while using simply interpretable two-dimensional (2D) molecular descriptors as well as 

RASAR descriptors. The necessary strategies are taken to be granted for descriptor calculation, 

descriptor pretreatment, or descriptor thinning for the entire data set following the predictive 

judgment and robustness of the models. A details explanation of the working data set, principal, 

and methodology of the recent studies and a precise vivid discussion of the mechanism and 

algorithm of each study have been done. 

3.1 Study1 

3.1.1 Dataset 

Developing an in-silico model requires careful consideration of the data set. In this case, we 

confidently focused on sweet and bitter taste-related compounds to develop a classification-

based model. We extensively validated the model using the estimated required data. To obtain 

the necessary data, we conducted a thorough search on GitHub repositories [57] for Sweet-DB 

(Sweet database) and Bitter-DB (Bitter database). We successfully extracted 2370 compounds 

for the sweet taste and 2431 compounds for the bitter taste from the given data sets. The 

compounds that show ‘1’ have a taste (sweet or bitter), while the compounds that show ‘0’ are 

non-sweet or non-bitter. The data sets contain diverse compounds, including carbohydrates and 

sweeteners such as D-Xylose, Amylose, D-Mannitol, D-Mannose, and Aspartame, as well as 

some other natural products such as Quinine and xanthotoxins. 

3.1.2 Molecular representation and data curation 
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We used Marvin Sketch software (https://chemaxon.com/marvin)  to create a structural 

representation of the sweet and bitter compounds data from their SMILES. To ensure accuracy, 

we curated both data sets using a KNIME workflow (http://teqip.jdvu.ac.in/QSAR_Tools/), 

removing any salt forms related to the chemical structures. We also conducted duplicate 

analysis and removed mixture compounds from both databases (Sweet-DB and Bitter-DB). For 

mixture compounds, we selected the most important fragment for further analysis and used it 

for the in-silico QSPR classification model development. As a result, we reduced the number 

of compounds in the case of Sweet-DB from 2370 to 2311, and in the case of Bitter-DB from 

2431 to 2370. 

3.1.3 Descriptor calculation and pre-treatment 

In the first step of our analysis, the chemical structures of the compounds were considered for 

corresponding descriptors calculation followed by a curation step. 2D structural and 

physicochemical descriptors were calculated using alvaDesc software 

(https://www.alvascience.com/alvadesc/). Constitutional, Ring, Connectivity index, 

Functional group count, Atom centered fragment, Atom type E-state, 2D-atom pair, and 

molecular properties were considered for the descriptor calculation This software not only 

calculates the descriptors of the chemical compounds but also removes the missing, less 

significant and inter-correlated descriptors as the method of pre-treatment. As a result, 573 

descriptors for the chemical compounds were obtained.  In order to filter out the most 

contributing features (descriptors), first the pre-treatment was done to remove the inter-

correlated descriptors with less significance toward model development. 

3.1.4 Data division 

To develop a classification-based QSPR model, it is necessary to divide the dataset into a 

training set and a test set. The training set is used for model development, while the test set is 

used to evaluate the model's predictive [58] In this study, we divided the data sets into a 50-50 

https://chemaxon.com/marvin
https://www.alvascience.com/alvadesc/
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ratio for ease of model development. As a result, both the training and test sets contain 50% of 

the corresponding entire datasets. Therefore, the sweet dataset's training set contains 1156 

compounds, and its test set contains 1155 compounds. Similarly, the bitter dataset's training set 

contains 1186 compounds, and its test set contains 1184 compounds respectively. 

3.1.5 Feature selection 

Chemical compounds have unique features or descriptors that define their characteristics. In 

QSPR analysis, selecting the most important features is crucial to identify the contributing 

factors towards the response. There are several techniques available for feature selection in 

QSPR studies [59] but in this particular study, we have used the most discriminating features 

selection algorithm (MDF) analysis [60].  for stepwise linear discriminant analysis (LDA). In 

this method, the training set is normalized from 0-1, and the compounds are divided into two 

groups - active and inactive - with responses of 1 and 0, respectively. The mean of each 

descriptor for each class is then calculated, and the absolute difference is determined by 

subtracting the mean inactive part from the mean of the active part. The features with the 

highest absolute differences are identified as the most discriminating features and are used in 

the QSPR analysis. Furthermore, for read-across (RA) analysis and RASPR descriptor 

calculation, features from the stepwise LDA model were selected, for further calculation. 

3.1.6 Analysis of unbalanced set 

When performing QSPR modelling based on classification, it is important to balance an 

unbalanced set before developing any model. This means that the number of active compounds 

should be similar to the number of inactive ones. This step is necessary to avoid any bias toward 

any one class of compounds. In the case of the sweet dataset, the number of active and inactive 

compounds was approximately equal, so no balancing was required. However, for the bitter 

dataset, the training set was initially biased towards inactive compounds, with the ratio of 

inactive to active compounds being approximately 2:1. Therefore, balancing the training set 
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was necessary. To balance the dataset, we oversampled the active compounds by duplicating 

them, so that the overall ratio between inactive and active compounds was close to 1:1. The 

modified training set for the bitter dataset was then used for model development. 

3.1.7 Conventional Classical QSPR model 

A linear discriminant analysis (LDA) model [61] was created using the most discriminating 

features (MDF) for both the Sweet-DB and Bitter-DB datasets, using STATISTICA 7.1 

(STATSOFT Inc. USA http://www.statsoft.com). LDA is a statistical method that classifies 

input data into two linear classes. Unlike multiple linear regression (MLR), LDA provides a 

predictive correlation equation that determines the positive and negative influence of a 

descriptor based on the discriminant function. One of the primary principles of LDA is to 

differentiate between classes. The Discriminant Function equation describes the influence of 

each descriptor for the LDA model. The Discriminating Function can be described from the 

equation 

𝐷𝐹 =  𝑐0 +  𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛 

 

1. Here, in equation (1), the DF stands for the Discriminating Function, X1, X2,…, Xn is 

predictor scores for the total n variables, and C1, C2…Cn are the corresponding weights. 

Here, for the current work, while going for the linear discriminating analysis, the tolerance 

limit is set for 0.0001, F to enter for 4.0, and F to remove for 3.9. Later on, the developed 

model was validated using internationally accepted validation metrics like accuracy, 

balanced accuracy, precision, recall, F1-score, Matthews correlation coefficient (MCC), 

Cohen’s κ, and area under the ROC-curve (AUC) [62]. 

 

3.1.9 Development of Read across (RA) based prediction 
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The selected descriptors from the conventional QSPR model generated through stepwise 

regression were used for read-across (RA) analysis [63].  The selected descriptors from both 

the datasets (training and test sets) were utilized for read-across predictions using the tool Read-

Across-v4.2.1 (https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home#h.7hxieb6k5y4b).  This approach utilizes the supervised learning method and 

generates similarity-based predictions based on Euclidean distance-based similarity, the 

Gaussian Kernel similarity, and the Laplacian Kernel similarity. The default settings for the 

Read-Across-based predictions are σ=1, γ=1, No. of close source neighbours = 10. This tool 

utilizes a set of “n” close source compounds for every query or test set compound.  To derive 

the optimum setting for the RA predictions, a hyperparameter optimization was also performed. 

3.1.9.1 RASPAR descriptors calculation 

In addition to the 2D descriptors, we also calculated RASPR descriptors calculated using 

RASPR-Desc-Calc-v3.0.1, which is available from the DTC Lab tools supplementary site 

(https://sites.google.com/jadavpuruniversity.in/dtc-labsoftware/home). We used the default 

setting of the Read-Across hyperparameters to calculate RASAR descriptors for both datasets. 

The standard for RASPR descriptor calculation was based on the suggested Euclidean distance, 

where the number of the closest source compounds was set to ten and the threshold for the 

distance was set to one. The calculation of RASPR descriptors [64]. considered the structural 

and physicochemical features or descriptors from the previously developed QSPR LDA model. 

The calculated c-RASPR descriptors were then used to perform LDA models in conjunction 

with the forward stepwise regression method of variable selection, with the criteria F = 4 for 

inclusion and F = 3.9 for variable exclusion. Unlike QSPR descriptors, the calculated RASPR 

descriptors encode information related to the close source congeners of a particular query 

compound, rather than the query compound itself. The derived descriptors are similar to the 

latent variables that feature all related information of structural and physicochemical 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.7hxieb6k5y4b
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.7hxieb6k5y4b
https://sites.google.com/jadavpuruniversity.in/dtc-labsoftware/home
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descriptors obtained from QSPR models and generate models with a reduced number of 

descriptors that contain all chemical information. 

3.1.8.2 Machine learning-based model development 

1. In our work, we used various machine learning (ML) approaches to test the predictive 

ability of the developed c-RASPR models for both Sweet-DB and Bitter-DB. We 

compared the prediction quality of the developed ML models developed using a support 

vector classifier (SVC) [65]. 

1.  logistic regression (LR) [66] 

2.  and random forest classifier (RFC) [67] 

3.  with the default settings corresponding to hyperparameters using the ML classifier tool 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home/machine-learning-model-development-guis, with the selected descriptors 

derived from the c-RASPR (LDA-RASPR) model. SHAP (Shapley Additive explanation) 

analysis plot was also performed to explain the supervised model (SVC) and assign the 

importance of the modelled descriptors for specific prediction [68]. 

3.1.9 Applicability Domain (AD) 

The concept of applicability domain can be defined based on the molecular descriptor space. 

The reliability of predictions for objects outside the training set chemical space can be 

determined by evaluating the performance of the model on unseen objects during validation. 

However, it is important to note that objects that are further away from the molecular descriptor 

space covered by the training set may result in larger error rates [69]. AD (Applicability 

Domain) aims to identify objects, anomalies, or outliers in the molecular descriptor space. To 

predict the properties of a new or unknown compound, it must fall within the theoretical 

chemical space known as the Applicability Domain (AD) of the model. There are various 

techniques to determine the AD of a model, but we have used the leverage approach for both 
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the training and test sets to determine the structural outliers. We used Hi_Calculator-v2.0 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home) to perform the 

analysis. 

 

                                                         Fig 3.1 Workflow of Study 1 

3.2 Study 2 

3.2.1 Dataset Collection 

It is essential to have consistent and reliable data for the development of QSPR models. In this 

study, 1208 data points for aromatic substances were collected from the literature [70] for 

model development. The researchers [70] reported the experimental property as the Kovar’s 

retention index (RI) in a non-polar stationary capillary column (0.28 mm ×50 m). They used 

methyl silicone OV-101 as coating material admixed with 1% Carbowax 20 M, and the column 

was programmed to increase from 80 to 200 °C at a rate of 2 °C/min. The RI values used as an 

endpoint ranged from 350 to 2180 [71]. Kovart’s retention index is independent of individual 

chromatographic system specification and allows comparing values measured by different 

analytical laboratories and analysis times. The fragrance ingredients are often obtained from 

commercial suppliers as mixtures of isomers (e.g., cis-trans), which the supplier does not 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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separate. However, we cannot neglect the effect of temperature, pH, and surrounding 

environment for transforming a particular isomeric form of a chemical compound to another 

(like a transformation of a cis compound to trans and trans compound to cis form) for a mixture 

of compounds while it was supplied for experimentation. This consequence may result in 

exceptional responses where a single compound represents two different isomeric mixtures 

with the same molecular weight. In this scenario the compounds like Allyl anthranilate 1 and 

Allyl anthranilate 2 may not represent the pure cis or trans isomeric form of a compound rather 

they were represented as a mixture of both the geometrical isomers. In the present study, it was 

interpreted as a single compound with an isomeric mixture while considering the impact of 

other external factors as well. In that case, collecting the average retention index value 

(compounds with quite similar chromatographic peaks) of Rojas et al. is justified for further 

development of an accurate and interpretable model. This kind of approximation is very 

common in any 2D-QSPR analysis. 

3.2.2 Molecular representation and data curation 

A total of 1208 flavour and fragrance compounds, each with its corresponding SMILES, 

chemical names, and retention index, were initially compiled (provided in supplementary 

information 1). To ensure accuracy, for compounds with more than one reported retention 

index value, the average value was calculated, and duplicate entries were removed, resulting 

in a final curated dataset of 1194 compounds. The structural representation of the compounds 

was done using Marvin Sketch software (https://chemaxon.com/marvin). Additionally, a 

curated SDF file of the flavour and fragrance compounds was obtained after incorporating 

explicit hydrogen, ring aromatization, and 2D form cleaning for the descriptor calculations. 

3.2.3 Descriptor calculation 

In this study, we used the Alvadesc software (https://www. alvascience.com/alvadesc) to 

calculate descriptors for flavour and fragrance compounds. These descriptors are numerical 
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values that define the physiochemical properties of a compound. We have used only simple, 

direct mathematical algorithms nature, reproducible, and easily interpretable 2D descriptors 

[72] to avoid the complexity of 3D analysis and energy [73] 2D descriptors have a deluge of 

contributions in extracting chemical attributes and some are capable of representing 3D 

features to some extent [74] 74 However, it is not possible to differentiate between the isomers 

(cis, trans, etc.) of compounds completely using 2D-QSPR models. The work of Rojas et al. 

had already concluded that 3D descriptors did not significantly improve the quality parameters 

of the QSPR model. From the previous conclusion, we have decided to develop simpler 2D-

QSPR models while using the concept of intelligent consensus predictions. Lastly, the 

redirection toward the source data, the unseparated mixture of both the geometrical isomers of 

a particular compound, and their response values indicate an inseparable form of cis and trans 

isomers even after the application of 3D descriptors. In the present study, the isomers were 

recognized as a single compound. In that case, collecting the average retention index value 

(compounds with quite similar chromatographic peaks) of Rojas et al. is justified for further 

development of an accurate and interpretable model. This kind of approximation is very 

common in any 2D-QSPR analysis. A total of 2400 2D descriptors were calculated, including 

constitutional descriptors (molecular composition of a referenced compound), ETA indices 

(extended top chemical atom), ring (information related to the presence of ring descriptors), 

functional group count, atom-centered fragment, connectivity index, atomtype E-state 

(description related to the electronic state of the atoms), 2D atom pair, and molecular properties 

[72]Additionally, data pre-treatment was performed using the DataPreTreatmentGUI_1.2 

(http://teqip.jdvu.ac.in/QSAR_ Tools/) software to eliminate correlated (correlation cut-off of 

0.95) and descriptors having low variance cut-of (less than or equal to 0.01), resulting in a total 

of 309 curated descriptors for further modelling. 
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3.2.4 Dataset division 

Partitioning the dataset is an essential step in developing the QSAR model. A chemometric 

statistical model requires two independent datasets: a training set for developing the model and 

a test set for validating the [75] Generally, the whole dataset was divided into the training and 

test set in the ratio of 70:30 (approx.). In the present investigation, the dataset of fragrance and 

favour compounds was divided into four clusters based on their properties (sorted 

responsebased method.) using the Dataset Division 1.2 tool (http:// 

teqip.jdvu.ac.in/QSAR_Tools/). This property-based data division resulted in a training set of 

896 compounds and a test set of 298 favoured and fragrance compounds. 

3.2.5 Test training pre-treatment 

The training and test set data may contain correlated and noisy descriptors that are not relevant 

to the data modelling purpose. Therefore, pre-treating both the training and test sets is 

necessary. In our study, we utilized the Data Pre-treatment tool 

(http://teqip.jdvu.ac.in/QSAR_Tools/) to pre-treat the training and test sets after division, using 

a variance cut of 0.01 and a correlation cut-off of 0.95. This process resulted in 162 less 

correlated descriptors, ultimately minimizing the error in model development. 

3.2.6 Feature selection and model development 

The selected features after pre-treatment were utilized for the feature selection process. Genetic 

algorithm (GA) followed by BSS (Best Subset Selection) (http://teqip.jdvu.ac. 

in/QSAR_Tools/) was used for feature selection [76] Initially, some features were also selected 

using the stepwise selection method. Stepwise regression can be defined as a multiple linear 

regression which was evolved with the step-by-step mechanism. After removing the selected 

features from the first stepwise run, the stepwise method was again performed with the 

remaining pool of descriptors. Besides stepwise feature selection, GA was also performed for 



49 
 

the feature selection procedure. GA tool has many advantages over other feature selection 

methods. It is based on fitness function on mean absolute error (MAE)-based pick-up criteria. 

We have employed our in-house tool “Genetic Algorithm_v4.1_Train” 

(http://teqip.jdvu.ac.in/QSAR_Tools/) to find the most relevant descriptors with the RI 

endpoint. The best subset selection (BSS) approach was used to find the optimal combination 

of descriptors for a robust prediction model. After selecting the best descriptors from both 

feature selection methods, we performed partial least squares (PLS) regression to build the 

preliminary QSPR models. PLS methods were employed to develop the final robust models to 

avoid any chances of inter-correlation among descriptors. The PLS regression method is a 

generalized technique of the “Multiple Linear Regression (MLR)” method, where we can 

examine strongly collinear, correlated, noisy data and many X variables. The PLS regression 

has been carried out with a Java-based software tool “PLS_SingleY_version” (http:// 

teqip.jdvu.ac.in/QSAR_Tools/). The PLS model was further utilized for best subset selection 

(BSS). The best subset selection was performed with the in-house tool developed in our 

laboratory (http://teqip.jdvu.ac.in/QSAR_Tools/). Six descriptor models (five PLS models) 

were generated based on MAE-based [77] 

3.2.7 Model validation criteria 

The developed QSTR models were rigorously validated via various internationally accepted 

metrics to ensure the robustness, predictability, goodness of fit, and quality of the models. For 

training set compounds, internal validation metrics such as cross-validated correlation 

coefficient Q2 (LOO) (leave one out), 𝑟𝑚𝑙𝑜𝑜
2 , 𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 (mean absolute error),𝑅𝑀𝑆𝐷𝑡𝑟𝑎𝑖𝑛  

(root mean square standard deviation error), and coefficient of determination R2 were 

calculated to measure the robustness and goodness of ft. of the model. For test set compounds, 

we have predicted external set compounds using globally accepted different validation metrics 
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like predictive 𝑀𝐴𝐸𝑡𝑒𝑠𝑡, 𝑅𝑀𝑆𝐷𝑡𝑒𝑠𝑡, 𝑅2(𝑅2 pred), or 𝑄𝐹1
2  and 𝑄𝐹2

2  to judge the predictability of 

the model [78] 

3.2.8 Applicability Domain Assessment  

The applicability domain is the biological, chemical, or physiochemical hypothetical space of 

the training set chemicals through the recently created QSPR model. The main use of this 

domain is to predict the toxicity value of compounds that fall in this domain and have unknown 

values. We have used the DModX (distance to mean X) approach to predict the AD of the PLS 

models (OECD principle 3) using SIMCA-P software [78-80]. The DModX uses Y and X 

residuals as diagnostic values to ensure model quality. If the DModX value is greater than the 

critical value, it means that the query compound is outside the domain of the model [77, 78–

80]: 

𝐷𝑀𝑜𝑑𝑋 =

√ 𝑆𝑆𝐸𝑖

𝐾 − 𝐴

√
𝑆𝑆𝐸

(𝑁 − 𝐴𝐴𝑂)(𝐾 − 𝐴)

 

For observation i, in a model with A component, K variables, and N observations, SSE is the 

Squared sum of the residuals. A0 is 1 if the model was centred and 0 otherwise. It is claimed 

that DModX is approximately F-distributed, so it can be used to check if an observation 

deviates significantly from a normal PLS model. 

3.2.9 Intelligent Consensus Prediction 

This method evaluates the performance of the consensus models in comparison to the 

individual models based on MAE-based criteria (i.e., 95%). It is recognized that a single model 

may not be able to accurately predict all of the test compounds. This implies that one QSPR 

model may be more suitable for one test compound, while another model may be better for a 

different test compound [73,82,83]. A specific QSPR model may not be equally effective in 

predicting all query compounds in the query list. To get the best prediction results, we need to 

consider the consensus of all the predictions made by these four models. For this, consensus 
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prediction should be made intelligently, i.e., in a query compound-specific way, using all or 

most of the valid models. This is different from doing a simple average of predictions from all 

available models. Consensus prediction is better than individual model predictions since it 

combines all the good characteristics of each model. Thus, the drawbacks of one individual 

model are taken care of by other models (s). This makes the predictions less biased, more 

reliable, and more precise. The individual models may have differently defined applicability 

domains, while the consensus method combines the ADs of the individual models, thus 

providing a greater chemical space coverage as well. Moreover, the consensus method does 

not affect the quality of the internal statistical parameters of the individual models [84]. In the 

present study, we have chosen five models (M1–M5) to conduct a consensus prediction using 

the “Intelligent Consensus Predictor” tool that is available on our laboratory website 

(http://teqip.jdvu.ac.in/QSAR_Tools/. The steps involved in developing the models are 

depicted in Fig.  

  

                                                           Fig 3.2 Workflow of study 2 
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                     Result and Discussion 

4.1. Study 1: The first application of machine learning-based classification read-across 

structure-property relationship (c-RASPR) modelling for sweet and bitter 

The aim of the present study was to effectively investigate the applicability of RASAR (a 

hybrid algorithm) along with machine learning over simple QSAR for a quality prediction of a 

given data set. Here we have explored the mechanism of a classification-based model. Finally, 

the obtained results according to the investigation were documented while the detailed 

interpretation of the results from RASAR descriptors was done. This represents the deep 

understanding of statistical phenomenon while considering biological response corresponding 

to the mechanism of RASAR.  

4.1.1. Machine learning-based classification read across structure-property relationship 

(c-RASAR) model: 

In a recent investigation, LDA QSPR models (denoted by equation (2) and equation (3)) were 

developed that included sweet and bitter compounds, respectively, through a stepwise selection 

of descriptors using STATISTICA software (STATISTICA 7.1 STATSOFT Inc., 2023) as 

discussed in the materials and methods section.  A similarity-based approach was then used to 

ensure accuracy and avoid complexity given the high number of descriptors in the model. Thus, 

to improve model interpretability and transferability for each data set, classification LDA 

models were developed using similarity-based measures computed in the c-RASPR approach 

from the selected LDA QSPR descriptors (15 for sweet and 12 for bitter data sets 

(Supplementary file of study 1). The predicted response of an unknown compound was 

determined by using the known response of similar structural analogs. The computation was 

performed based on the basic settings with ED (Euclidean distance-based) similarity 
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computation for sweet and bitter databases. To calculate the RASPR descriptors based on the 

similarity and error-based measures of the close source compounds for each target compound 

obtained from the QSPR model, we used the 15 RASPR features obtained from 

physicochemical variables based on similarity measures of RA (Read- Across) prediction. 

These features extract the information of 2D descriptors based on similarity and error measures 

with the close source chemical as per user-defined input. The obtained models with the 

respective descriptors (LDA-RASPR) show better predictivity compared to the classical LDA 

QSPR models with a smaller number of features 

The developed classical LDA models in this study demonstrated a commendable accuracy of 

0.69-0.73 in predicting the quality; other metrics like precision (0.60-0.77), F1 score (0.69-

0.75), Matthews correlation coefficient (MCC) (0.38-0.69), Cohen’s kappa (0.38-0.41), and 

AUC (0.65-0.74) for both bitter and sweet datasets for training and test sets are represented in 

Table 4.1. Furthermore, the incorporation of c-RASPR descriptors resulted in further 

enhancement of the results for both the sweet and bitter data sets (denoted by equations (4) and 

(5)). Among the machine learning models tested, SVC exhibited the best performance, and 

hence, only the SVC results were reported in this paper. While the results of other models are 

provided in the supplementary section for reference (supplementary file of study 1), the 

present study offers a comparison of the validation results obtained through different 

methodologies, namely LDA-QSPR, LDA-RASPR, and SVC-RASPR, presented in Table 4. 

1 below. The study utilizes sweet and bitter compounds for the first time with a new modelling 

algorithm (c-RASPR) for classification-based modelling. The results of this study demonstrate 

a significant enhancement in the prediction quality for the query set compared to the classical 

QSPR model in terms of different validation metrics. We have also calculated the applicability 

domain, according to the OECD principle for both the datasets and found that 0.031% and 

0.043% compounds were outside the AD for Sweet-DB and Bitter-DB datasets, respectively. 
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4.1.1.1. Result for the classification-based LDA-QSPR model (M 1.1 and M 1.2). 

Model M 1.1 (QSPR model for sweet compounds) 

𝑑𝑓(𝑠𝑤𝑒𝑒𝑡) = −0.74777 − 0.10182 ∗ max
𝑐𝑜𝑛𝑗𝑝𝑎𝑡ℎ

∗∗ − 1.00822 ∗ 𝑁𝑠𝑠𝑠𝑁 + 1.93896

∗ 𝐵03[𝐶 − 𝑂] − 0.00291 ∗ 𝑀𝑊 + 0.79705 ∗ 𝐵02[𝑂 − 𝑂] − 1.3022 ∗ 0

− 062 − 0.11899 ∗ 𝐿𝑂𝐺𝑃𝑐𝑜𝑛 + 0.50642 ∗ 𝑛𝑅𝐶𝑂𝑂𝐻 − 0.962906 ∗ 𝐶 − 018

− 0.4332 ∗ 𝐹01[𝑁 − 𝑂] − 1.2918 ∗ 𝑛𝐴𝑟𝐶𝑂𝑂𝐻 − 1.35446 ∗ 𝑛𝑁𝑞 − 0.8674

∗ 𝐶 − 033 − 1.0149 ∗ 𝑛𝑅𝑁𝐻𝑅 + 0.35148 ∗ 𝑁𝑎𝑎𝑎𝐶. 

Model M 1.2 (QSPR model for bitter compounds) 

𝑑𝑓(𝑏𝑖𝑡𝑡𝑒𝑟) = −0.3624 + 0.1069 ∗ max
𝑐𝑜𝑛𝑗𝑝𝑎𝑡ℎ

∗ + 0.1462 ∗ 𝐹01[𝐶 − 𝑁] − 1.0398

∗ 𝑛𝑅𝐶𝑂𝑂𝐻 + 0.0037 ∗ 𝑀𝑊 − 0.9880 ∗ 𝐵01{𝐶 − 𝑂] + 1.1514 ∗ 𝑂 − 062

− 0.8308 ∗ 𝐵02[𝑂 − 𝑂] − 1.3619 ∗ 𝐶 − 036 + 0.9478 ∗ 𝐵01[𝑂 − 𝑆]

+ 0.7348 ∗ 𝐹02[𝑁 − 𝑆} + 1.0808 ∗ 𝑛𝑅𝑁𝐻𝑅 + 0.5057 ∗ 𝐶 − 019  

The QSPR-LDA models (denoted by equations (2) and (3)) for both sweet and bitter 

compounds data have good statistical metric values including Sensitivity, Specificity, 

Accuracy, and Precision, all of which are above 0.5. For model 1.1 (the QSPR model for sweet 

compounds), descriptors like B03[C-O], B02[O-O], nRCOOH, and NaaaC positively 

contribute to the endpoint. These descriptors suggest that sweetness is influenced by the 

polarity of the compound due to the presence of oxygens and carboxylic acid fragments in the 

aliphatic chain, and electron-richness in the form of aromatic fused carbons in the sweet 

compounds. On the other hand, descriptors like max_conj_path, NsssN, MW, O-062, 

LOGPcon, C-018, F01[N-O], nArCOOH, nNq, C-033, nRNHR contribute negatively to the 

respective endpoint. These descriptors indicate the hydrophobic nature of the compounds. The 

descriptors C-018, nArCOOH, and C-033 represent the presence of electronegativity. Again, 

the presence of hydrogen bonding atoms is represented by NsssN, nNq, and O-062 descriptors.    
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In model 1.2, the core concept of QSPR is applied, and it has been validated similarly to model 

1. It has been found that max_conj_path, F01[C-N], MW, O-062, B01[O-S], F02[N-S], 

nRNHR, and C-019 descriptors showed positive contributions. These features are quite similar 

to the features obtained from model 1.1, which are negatively correlated. These descriptors 

represent hydrophobicity, electronegative nature, hydrogen acceptor, and the presence of a 

more aromatic nature of the compounds. All of these properties are seen to influence the 

generation of a bitter taste. On the other hand, features like nRCOOH, B01 [C-O], B02 [O-O], 

and C-036 are more closely associated with model 1.1 and are positively correlated. It is worth 

noticing that features like polarity, i.e., the presence of oxygen or aliphatic carboxylic acids, 

are negatively correlated to the corresponding endpoint (bitter taste). To obtain better 

classification metrics, the descriptors obtained from both model 1.1 and model 1.2 of the 

QSPR-LDA are highly relevant and have been confidently utilized for the classification-based 

LDA using RASPR descriptors. 

4.1.2. Result for the classification-based LDA RASPR models (M 1.3 and M 1.4). 

Two classification-based LDA RASPR models (denoted by equations (4) and (5)) were created 

using different sets of similarity descriptors for sweet and bitter compounds. The sweet 

compounds were evaluated with 15 QSPR descriptors, while the bitter compounds were 

evaluated with 12 QSPR descriptors. Then, the selected features were used to calculate the 

RASPR descriptors, which resulted in 15 descriptors being generated for both sweet and bitter 

compounds, respectively. Next, the generated 15 descriptors (RASPR) were used to create an 

LDA RASPR model for each of the sweet and bitter compounds. The obtained LDA RASPR 

models (using RASPR descriptors) for sweet and bitter compounds are presented in Equations 

4 and 5, respectively.  Further details of statistical parameters can be found in Table 4.1 

Model M 1.3 (LDA-RASPR model for sweet taste compounds) 
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𝑑𝑓(𝑠𝑤𝑒𝑒𝑡) =  −8.914 + 3.334 ∗ 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 7.445 ∗ 𝑀𝑎𝑥𝑃𝑜𝑠 + 8.105 ∗ 𝑔𝑚

∗ 𝐴𝑣𝑔𝑆𝑖𝑚 − 7.408 ∗ 𝑔𝑚 

Model M 1.4 (LDA-RASPR model for bitter taste compounds 

𝑑𝑓(𝑏𝑖𝑡𝑡𝑒𝑟) = 0.729 + 3.908 ∗ 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 0.718 ∗ 𝑃𝑜𝑠. 𝐴𝑣𝑔

> 𝑆𝑖𝑚 − 8.423 ∗ 𝐴𝑣𝑔. 𝑆𝑖𝑚 + 6.92 ∗ 𝑀𝑎𝑥𝑃𝑜𝑠 − 11.485 ∗ 𝑔𝑚

∗ 𝑆𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 
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Table 4.1. Comparative quality QSPR, LDA-RASPR and SVC-RASPR (ML) models for the sweet and bitter data sets 

Data Model Division AUC Sensitivity Specificity Accuracy Precisi

on 

F-

measure 

G-mean MCC Cohen's 

k 

S
w

ee
t 

LDA QSPR 

(M1) 

Training 0.674 0.747 0.674 0.708 0.674 0.709 0.709 0.693 0.418 

Test 0.651 0.737 0.651 0.692 0.656 0.694 0.693 0.389 0.386 

LDA -RASPR 

(M3) 

Training 0.705 0.780 0.705 0.740 0.705 0.740 0.741 0.485 0.482 

Test 0.666 0.777 0.666 0.719 0.677 0.723 0.719 0.444 0.440 

SVC -RASPR 

(ML) (M5) 

Training 0.797 0.783 0.708 0.744 0.708 0.744 0.744 0.492 0.489 

Test 0.776 0.780 0.677 0.720 0.678 0.726 0.726 0.448 0.443 

B
it

te
r 

LDA QSPR 

(M2) 

Training 0.744 0.729 0.744 0.736 0.773 0.750 0.737 0.472 0.471 

Test 0.717 0.690 0.717 0.706 0.601 0.643 0.704 0.399 0.396 

LDA -RASPR 

(M4) 

Training 0.744 0.725 0.744 0.734 0.772 0.772 0.734 0.467 0.466 

Test 0.749 0.728 0.749 0.741 0.641 0.682 0.738 0.467 0.465 

SVC -RASPR 

(ML) (M6) 

Training 0.870 0.804 0.811 0.807 0.835 0.819 0.808 0.614 0.613 

Test 0.732 0.622 0.793 0.728 0.651 0.636 0.702 0.419 0.419 
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Models 3 and 4 represent the LDA-RASPR models for sweet and bitter taste compounds, 

respectively. Equation 1.4 of (M 1.4) shows that the RA function, Max.Pos, and gm*Avg.Sim 

are positively correlated with the response values, while gm contributes negatively. The LDA-

RASPR model provides better predictions than the corresponding previous LDA QSPR model, 

as confirmed by the significant increase in Cohen's kappa values for both the training and test 

sets. The same methodology was followed for the bitter taste compounds, as indicated in 

Equation 5. The LDA -RASPR model for bitter taste compounds consisted of five descriptors, 

including RA function, Pos.Avg.Sim, and Max.Pos, which showed a positive contribution to the 

bitter taste. Avg.Sim and gm*SD Similarity, on the other hand, negatively contributes to the 

response. Interestingly, the use of RASPR descriptors reduced the number of descriptors from 

15 to 4 for sweet compounds and from 12 to 5 for bitter compounds, while enhancing the 

validation metric values of the previously developed LDA QSPR models of the sweet data set 

(Model 1.1) and also the bitter data set (Model 1.2). In case of the interpretation of models 3 

and 4, first of all we have to consider the constituent descriptors of the model as listed in the 

Table 4.2. 

Table 4.2. Representation of RASPR Descriptors with their respective meaning (for both M 

1.3 and M 1.4). 

RASPR 

Descriptors 
Meaning 

RA function  

 

Read across derived composite feature describing all the structural and 

physiochemical features as a single function 

Pos.Avg.Sim 

 
Average similarity value of the positive close source compounds. 

Max Pos  

 
Similarity value to the closest positive source compound. 

Avg. Sim 

 
Average similarity value of the close source congeners 
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4.1.3 Result for the classification-based ML- based models (M 1.5 and M 1.6) 

For the development of the ML model, the features for the sweet data set and bitter data set 

were separately taken from the previous LDA RASPR models (M 1.3 and M 1.4). Model M 

1.5 was built using the RA function, Max Pos, gm*Avg.Sim, and gm descriptors. On the other 

hand, the M6 model was developed using Avg. Sim, RA function, Pos.Avg.Sim, and gm*SD 

similarity descriptors. Although RF, SVC, and LR analyses were performed, the SVC 

algorithm was found to be the best-performing one for both datasets in terms of both internal 

and external predictions. The results of the SVC-RASPR models are shown in Table 4.1 

showing better quality than the corresponding LDA-RASPR models. The ROC curves of the 

developed SVC-RASPR models are shown in Figures 4.1 and 4.2 and the SHAP (Figures 4.3 

and 4.4) analysis for SVC-RASPR provides insight into each individual RASPR descriptor 

and its corresponding significance. 

gm*Avg.Sim 

 

 

The product of gm and Avg similarity of close source compounds. 

gm 

 
A novel concordance measure (Banerjee-Roy Coefficient). 

gm*SD 

Similarity 

 

Product of gm and standard deviation of similarity values of close source 

compounds. 
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Figure 4.1. ROC curves for Sweet DB compounds (M5) (for both the training set and test set) 

 

Figure 4.2 ROC curve for Bitter DB compounds (M 1.6) (for both the training set and test set) 

4.1.3.1 Interpretation for the ML-RASPR model of sweet data set-related compounds 
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Figure 4.3 SHAP analysis for the sweet compounds (model 1.5). 

                                                            Figure 4.3 here 

The core motive of a SHAP analysis is to determine the individual contribution of the 

descriptors that are responsible for model development. The plots obtained with the SHAP 

value denote the same. The impact of a particular descriptor may vary from model to model. 

The role of the SHAP analysis is like the t-test of statistics to determine the individual 

contribution of the descriptors from the developed model.   

Based on the SHAP (SHapley Additive exPlanation) analysis plot [85] it was evident that the 

feature with the highest significance value is the RA function. This function is a composite 

score of all the individual 2D descriptors that were used to build the model, and it is derived 

from the Euclidean distance-based similarity algorithm. Therefore, it encodes information on 

various structural and physiochemical descriptors and shows a positive contribution to the 

specific endpoint or response. For instance, compound no. 11 with an RA function value of 0.90 

has a higher sweetness activity compared to compound no. 109, which has an RA function value 

of 0.30 and less sweetness activity. 

The SHAP analysis identifies MaxPos as the second-most significant descriptor. MaxPos 

represents the similarity value between the query compound and the closest positive source 

compound. Compounds with higher MaxPos values are expected to have higher response 
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values. For example, compound no. 35 has a MaxPos value of 0.98 and shows a high response 

value. Compound no. 59, with a MaxPos value of 0.99, exhibits sweetness characteristics. 

The next significant descriptor in the order of importance is gm*Avg.Sim. It is a product of two 

primary RASAR descriptors gm and Avg.Sim., which has a significant positive impact on model 

development. This is observed in compound no. 21 (gm*Avg Sim value is 1, indicating the 

presence of sweetness) and compound no. 31 (gm*Avg Sim value is -0.142, indicating the 

absence of sweetness). Thus, these observations help to interpret this secondary cross-product. 

In this series, the last descriptor is gm, also known as the concordance coefficient. As per 

equation 3, the product, gm*Avg.Sim, represents a huge positive contribution, while gm shows 

a negative contribution probably as a penalty factor. For instance, compound no. 15 (with a gm 

value of -0.4, indicating sweetness characteristics) and compound no. 156 (with a gm value of 

0.4, showing no sweetness characteristics) can explain the scenario where the contribution of 

gm is negative.  

4.1.3.2 Interpretation related to ML-RASPR model of bitter taste related compounds 

The Avg. Sim is a significant descriptor in RASPR that is based on similarity. When we 

examine the role of Avg. Sim in the c-RASPR model, it indicates that the similarity value 

between compounds in the bitter data set decreases as the distance between the compounds 

increases. This suggests that as the distance among the ten closest source compounds for the 

query molecule increases, the similarity value decreases. The obtained result shows that the 

distance is inversely proportional to the similarity of the compounds. The negative correlation 

suggests that an increase in the Avg. Sim descriptor indicates the absence of bitter taste, as 

observed in Compound no. 9 with a value of Avg. Sim of 0.986. On the other hand, Compound 

no. 1491 with an Avg. Sim of 0.722 indicates the presence of a bitter taste. 
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Figure. SHAP analysis for the bitter compounds (model 6). 

Figure 4. 4 here 

One of the most significant RASPR descriptors for the model is the RA function. The equation 

shows a positive correlation of this descriptor. RA function is a composite score of all the 2D 

descriptors used to construct the corresponding QSPR model. Therefore, when we assess the 

contribution of the RA function to the model, it indicates a positive effect of all the collective 

descriptors. For instance, compound number 41 (with an RA function value of 0.902) indicates 

the presence of bitter taste, whereas compound number 25 (with an RA function value of 0.20) 

indicates the absence of bitter taste. This can explain the direct proportionality of this descriptor 

to the bitter taste endpoint. 

The third most significant descriptor is Pos. Avg. Sim, and it is positively correlated with the 

bitter taste endpoint or response. Pos. Avg. Sim refers to the average similarity value among 

the positive close-source compounds. This indicates a greater tendency towards positive class 

predictions and less towards negative class predictions. Compound no. 381 with a Pos.Avg.Sim 

value of 0.97 undoubtedly has a bitter taste. In contrast, compound no. 1 with a Pos.Avg.Sim 

value of 0.646 has no taste sensation, making it an excellent and indisputable example of this 

feature. 
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In this series, the final feature to consider is MaxPos, which is the maximum similarity value 

to the closest positive close congener. The higher the MaxPos value, the more likely it is for a 

compound to be positively predicted. For instance, compound no 35 has a Max.Pos value of 1, 

which confidently leads to a positive activity prediction of the compound. On the contrary, 

compound no 1 has a Max.Pos value of 0.721 which confidently leads to a negative activity 

prediction of the model. Therefore, this descriptor holds a great influence in accurately 

predicting the activity of the compounds. 

4.1.5 Comparison with other work 

1.In the previous study, Rojas et al [71]. Conducted a QSPR modelling analysis for both sweet 

and bitter compounds on a total of 566 compounds in a Sweet–Tasteless dataset and 508 

compounds in a Sweet-Bitter dataset. The authors employed sensitivity and specificity as 

classification-based validation parameters to evaluate the quality of their models. However, 

they did not perform dataset balancing; therefore, the computed sensitivity and specificity 

which are the possible indicators of the true positive and true negative predictions may have 

been affected by the nature of the dataset. In the current work, we have applied balancing to 

the imbalanced bitter data set following the method of oversampling. We have also reported 

the values of metrics like MCC, Cohen’s kappa, and AUC_ROC.  Although a direct 

comparison between our study and Rojas et al [71].  was not feasible as a result of variations 

in the methodology and the number of compounds used, we endeavored to assess the difference 

in prediction quality between their models and ours (Table 4. 3). As we know, the study 

conducted by Rojas et al [71] utilized 566 compounds for the sweet dataset and 508 compounds 

for the bitter dataset. In comparison, our study consisted of 2311 compounds for the sweet 

dataset and 2370 compounds for the bitter dataset, which is almost four times larger than the 

previous datasets. The size and diversity of the compounds in the dataset can influence the 

validation parameters, but we were able to generate decent values for the validation parameters, 
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including sensitivity, specificity, MCC, Cohen's kappa, AUC-ROC, precision, F-measure, and 

G- mean. In a recent work, Tuwani et al [86] applied dimensionality reduction techniques like 

the Boruta algorithm and principal component analysis before applying the final machine 

learning classification methods to sweet and bitter data sets but they considered only a very 

limited number of compounds in the test sets (in the order of 1/8 times of our test sets). Thus, 

the quality of our predictions is not directly comparable to their models (however, we have 

shown their best 2D descriptor models based on ROC values of the test sets in Table 4.3). 

When compared to Xiu et [87] work on identifying novel umami molecules using QSAR and 

molecular docking results, our work is reassuring in terms of the controlling features of sweet 

and bitter activity, such as the presence of polar groups (C-018, nArCOOH, C-033, F01[C-N], 

B01[O-S], F02[N-S], nRNHR) and hydrophobicity parameters (max_conj_path, NsssN, MW, 

O-062, C-018, F01[N-O], nArCOOH, nNq, C-033, nRNHR) that are essential factors for 

sweet/bitter molecules for ligand binding. 
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Table 4.3 Comparison with the previous work (Rojas et al. and Tuwani et al.).70,71 

 

Model No. of 

compounds 

(n) 

Division 

(nTrain or 

nTest) 
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Present Work 

Sweet-Nonsweet . 

(SVC-RASPR) 

2311 Train (1156) 0.797 0.783 0.708 0.744 0.708 0.744 0.744 0.492 0.489 

Test (1155) 0.776 0.780 0.677 0.720 0.678 0.726 0.726 0.448 0.443 

Bitter-Nonbitter  . 

(SVC-RASPR) 

2370 

 

Train (1186) 0.870 0.804 0.811 0.807 0.835 0.819 0.808 0.614 0.613 

Test (1184) 0.732 0.622 0.793 0.728 0.651 0.636 0.702 0.419 0.419 

Rojas et al.70 

Sweet -Tasteless 566 Train (396) - 0.89 0.78 - - - - - - 

Test (170) - 0.96 0.77 - - - - - - 

Sweet-Bitter  

 

508 Train (356) - 0.75 0.75 - - - - - - 

Test (152) - 0.95 0.63 - - - - - - 

Tuwani et al.71 

Sweet-Non-sweet 

(2D RF-Boruta) 

2366 Train (2205) 0.923 0.835 0.867 - - 0.847 - - - 

Test (161) 0.863 0.683 0.943 - - 0.798 - - - 

Bitter-Non-bitter 

(2D AB-PCA) 

2411 Train (2257) 0.863 0.723 0.860 .- - 0.737 - - - 

Test (154) 0.868 0.793 0.874 - - 0.849 - - - 
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Study 2 

Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance 

Compounds Using 2D Descriptors 

 The goal of our second study is to predict a dataset effectively following the concept of 

regression while simplifying the overall mechanism and algorithm of the QSAR study. The 

second study is majorly developed on the pillar of 2D descriptors by using Intelligent consensus 

prediction. The necessary strategies like stepwise MLR along with best subset selection were 

taken into consideration for the descriptor thinning procedure. Finally, a consensus model 

results as a collective prediction of individual five PLS models. Later on, a detailed study of 

the corresponding applicability domain was performed. Thus, as a result, a greater area of 

chemical space was well demarcated where performing the chemical categorization was much 

easier.  

4.2.1. Intelligent consensus prediction of the QSAR model while using five independent 

PLS model 

The goal of this study is to create statistical models using simple and easily interpretable 2D 

descriptors. We have established various QSPR (PLS) models and validated them with 

different internationally accepted validation metrics. From the statistical results (summarized 

in Table 4.3), it was concluded that the developed models were accurate, predictive robust, and 

reproducible. Additionally, we have also conducted the applicability domain assessments 

(compounds situated outside the applicability domain criteria were considered outliers) and Y-

randomization tests (to check whether models did not come by any chance) of developed 

models. We have also provided the probable mechanistic interpretation of the modelled 

descriptors that play a key role in determining the retention index of favor and fragrance 

compounds The scatter plots (given in Fig. 4.5) of the established models (M 1–M 5) show that 

the observed and predicted responses are quite similar and exhibit a good correlation. 



69 
 

4.2.2. Developed QSPR model for retention index 

We have developed multiple regression-based QSPR models using the retention index (RI) of 

the favor and fragrance compounds as the endpoint. Intelligent consensus prediction was also 

employed to enhance the external prediction of the developed PLS models. The details of the 

modeled descriptors (models (M 1–M 5)) (provided in Supplementary Information 1) along 

with their meaning, contribution, and mechanistic interpretation of modelled descriptors are 

provided in Tables 4.4 and 4.5. Various PLS plots [88] (VIP plots (given in the supplementary 

file for study 2), loading plots (given in Figs. S6–S10 in Supplementary Information 2), score 

plots (given in the supplementary file of study 2), DModX plots (supplementary file of study 

2), and Y-randomization plots (supplementary file of the study 2) were developed employing 

using SIMCA software (https://www. umetrics.com). The insights obtained from the developed 

models (M 2.1–M 2.5) for the retention index are explained in the Mechanistic interpretation 

section. The Y-randomization test and applicability domain (AD) assessment of the established 

models (M 2.1–M 2.5) were provided in the Y-randomization and Applicability domain 

section.  

4.2.3 Y randomization of the PLS model 

The Y-randomization test acts as a checkpoint whether the developed model is a result of a 

chance correlation or not. The X columns were fixed and the Y column was randomized with 

a different permutation and combination multiple times (here it is 100 times). The resulting 

randomized models were compared with the best-fitted model to analyze the significance of 

the developed models. The randomized model’s fundamental validation statistics (R2 and Q2 

) should be poor when comparing it with the best fit model. The poor quality of the randomized 

models assures that the recently developed model is not a result of a chance correlation [88, 

89]. Thus, the poor result of the randomized models indicates the acceptability of the developed 

model. The intercept value of R2 Y (within 0.3) and the intercept value of Q2 Y (within 0.05) 
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as validation statistics of the randomized models make the best-ftted model acceptable [88,89]. 

The Y randomized plots for each PLS model (model M 1–M 5) were given in (Supplementary 

file of study 2) 
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Table 1. Statistical quality and validation parameters obtained from the developed PLS and consensus models. 

Model 

No. 

Equation Training Set Test Set 

  𝑹𝟐 𝑸𝟐 𝒓𝒎_𝒍𝒐𝒐
𝟐  𝜟𝒓𝒎

𝟐  𝑴𝑨𝑬𝒕𝒓𝒂𝒊𝒏 𝑹𝑴𝑺𝑫𝒕𝒓𝒂𝒊𝒏 𝑸𝟐𝑭𝟏 𝑸𝟐𝑭𝟐 𝑹𝑴𝑺𝑫𝒕𝒆𝒔𝒕 MAEtest 

M1 

(LV-4) 
𝑅𝐼 = 157.448 +

6.555 ×MW+16.207× 

nAA-50.76× 

nR=Cp+94.838× 

nHDon-42.202× 

C-001+52.159× 

SdssC 

0.909 

 

0.907 

 

0.866 0.080 57.126 96.168 0.945 

 

0.945 73.756 52.250 

M2 

(LV-4) 
𝑅𝐼 = −139.993 +
6.52 ×MW+9.966× 

C%-83.309× 

nR=Cp+87.463× 

nHDon-45.335× 

C-001+35.648× 

SdssC 

 

0.918 

 

0.916 0.879 0.073 52.648 91.246 0.945 0.945 73.679 49.835 

M3 

(LV-4) 
𝑅𝐼 = 175.381 +

6.746 ×MW-86.038× 

nR=Cp+83.855× 

nHDon-60.406× 

C-001+58.776× 

SdssC+48.568× 

SaasC 

 

0.915 0.914 0.875 0.075 54.593 92.718 0.943 0.943 74.928 52.039 

M4 

(LV-4) 
𝑅𝐼 = 176.5111 +

6.551 ×MW+14.932× 

0.908 0.907 0.865 0.082 57.196 96.479 0.943 0.943 75.463 53.577 
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nAA-39.752× 

nROR+64.807× 

nHDon-46.849× 

C-001+43.92× 

SdssC 

 

M5 

(LV-4) 
𝑅𝐼 = −45.8096 +

6.5409 ×MW+6.76× 

C%+78.8267× 

nHDon-48.8858× 

C-001+36.6962× 

SdssC+27.4712× 

SaasC 

0.913 0.911 0.872 0.077 54.648 94.188 0.943 0.943 75.372 51.420 

CM0 Cumulative prediction from 

all input individual models. 

- 0.948 0.948 - 41.053 

CM1 Cumulative prediction from 

all individual qualified 

models. 

- 0.948 0.948 - 41.053 

CM2 Weighted average prediction 

from all qualified individual 

models. 

- 0.949 0.949 - 39.930 

CM3 Best selection of prediction 

(compound-wise) from all 

qualified individual models. 

- 0.950 0.950 - 38.447 

Here, LV represents the latent variables, MAE represents the mean absolute error, 𝑹𝟐 is the determination coefficient, 𝑸𝟐 is the leave one out, 

whereas RMSD represents the root mean square standard deviation error. CM0 = Ordinary consensus predictions. CM1 = Average of predictions 

from individual models IM1 through IM5. CM2 = Weighted average predictions from individual models IM1 through IM5. CM3 = Best selection 

of predictions (compound-wise) from individual models IM1 through IM5. *Note that we have run the “Intelligent consensus predictor tool” using 

the options, AD: No; Dixon Q-test: No; Euclidean distance: No 
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                                                          Fig.4.5 Statistical Plots of Study 2 

4.2.4 Applicability Domain Assessment 

The domain of applicability [90] was analyzed with the DModX approach using the SIMCA-

P software (https:// www.umetrics.com). DModX plots of developed models (M1–M5) were 

provided (given in the supplementary file of study 2). From this assessment, it was observed 

that test set compounds 128, 661,745, 1002, and 1027 from Model 1; 361, 448, 745, 1002, and 

1086 from Model 2; 10, 128,661,745 and 1027 from Model 3; 224, 425, 489, 594, 661, 1159, 

and 1170 from Model 4; 10, 128, 361, 656, 766, 1002, 1027, 1086, and 1184 from Model 5 are 

situated outside the domain of applicability (structural out lire). 

4.2.5 Mechanistic interpretation of modelled descriptors 

We have provided a probable mechanistic interpretation of the modelled descriptors, as per 

OECD guidelines 5. The type, meaning, contribution, and probable mechanistic interpretation 

of modelled descriptors are provided in Table. 
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4.2.6 PLS model interpretation 

The first latent variable represents the geometrical property (in the form of MW, C%, nAA) 

and represents the size of molecules which is directly related to lipophilicity and leads h RI 

values (+ve contribution). Bulkiness and Partition coefficient (LOG P) are also dependent on 

molecular weight, leading to high lipophilicity in respective compounds (justified by structures 

of molecules too). The next significant latent variable is contributed by the descriptors SdssC, 

SaasC, nROR nR=Cp, and C-001 descriptors, and all of them together contribute to the 

electronic effect. nROR nR=Cp and C-001 have negative contributions but SdssC and SaasC 

have positive effects with low contribution; therefore, the overall contribution of this latent 

variable is negative toward the property endpoint which is also justified by the structures of 

molecules (presence of such features). 

4.2.7 Comparison of the Recent Work 

It is not possible to provide a strict comparison between the present study with related work 

due to the different composition of training and test set, total number of compounds used, 

number of variables used, etc., but we have tried to provide a possible comparison. Rojas et al. 

(2015) [70 ]and Rojas et al. (2015) [71] reported an in silico model using the retention index 

(RI) of 1184 flavour and fragrance compounds as an endpoint. The statistical results showed 

that the RMSD values for both the training and test sets were higher compared to the present 

work (the lower the RMSD value, the better the model quality). However, some of the previous 

studies lacked the reporting of exhaustive validation results in the form of different 

internationally accepted validation metrics, the use of simple and reproducible descriptors, 

specific findings (features responsible for the design and development of novel and suitable 

F&F compound), consensus prediction, as well as a wide domain of applicability. We have 

developed PLSICP models to assess the retention index (RI) of flavour and fragrance 

compounds. Models were developed using simple, reproducible, and easily interpretable 2D 
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descriptors and retention index (RI) as endpoints. The present work demonstrates better 

robustness, quality, reliability, and predictivity than the previously developed models. Our 

models were developed using a comparatively lower number of variables. Consensus 

predictions (in our case, the winner model is CM3) were also employed to improve the 

predictivity of the models. Our developed models have a wide domain of applicability and 

consist of simple, robust, reproducible, and easily interpretable 2D descriptors. Models were 

rigorously validated using internationally accepted validation metrics which show reliability, 

predictivity, and robustness. Some important features are reported in our study which will help 

design a novel and suitable F&F and related compounds. The comparison of the previous work 

(Rojas et al. (2015[70] and Rojas et al. (2015) [71] with the present study along with different 

validation metrics and ICP results is provided in Table 4.6. 
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Table 4.5. Type, meaning, contribution, and mechanistic interpretation of modeled descriptors. 

Sl. 

No 

Descriptors 

with 

contribution 

Presence in  

developed  

PLS Model 

Meaning of 

the 

descriptors 

Type of 

descriptors 

Mechanistic interpretation  

1. MW (+ve) M1, M2, M3, 

M4, M5 

Molecular 

weight 

Constitutional 

index 

This descriptor is directly related to the hydrophobicity (lipophilicity). Generally, 

lipophilic compounds may take more time for elution from the chromatographic 

column. Thus, a higher numerical value of this descriptor leads to a high RI value 

as shown in compound 2 (MW= 172.3, RI value = 1095) and inversely, it occurs 

in compound 675 (MW= 44.06, RI value=363) (given in Fig.3). 

2. nHDon 

(+ve) 

M1, M2, M3, 

M4, M5 

The number 

of donor 

atoms for H 

bonds 

Functional 

group count 

It was observed from the present dataset that compounds containing a higher 

number of hydrogen bond donors have also high molecular weight (MW) which 

is directly correlated with lipophilicity, resulting in high RI values as shown in 

compound 1191 (nHDon=2, RI value=2091, MW=241.31) and the absence of 

such atoms in any compounds leads to low RI value as shown in compound 674 

(nHDon=0, RI value=350, MW=46.08) (given in Fig.3).  

3. C-001(-ve) M1, M2, M3, 

M4, M5 

The presence 

of 

CH3R/CH4 

group 

Atom-centred 

fragment 

This descriptor signifies the branching in any compound that is inversely 

correlated with hydrophobicity and directly related to hydrophilicity. This 

phenomenon is demonstrated in compound 1192 (C-001=0, RI value=2147), and 

vice-versa occurs in compound 687 (C-001=4, RI value=590) (given in Fig.3). 

4. SdssC (+ve) M1, M2, M3, 

M4, M5 

The sum of 

dssC E-state 

Atom-type E-

state index 

The positive correlation of this descriptor indicates that the presence of such 

fragments in any compound increases the RI value as shown in compound 1056 

(SdssC=3.03, RI value=1802) and the absence of such fragments in any 

compound leads to a low RI value as shown in compound 894 (SdssC=0, RI 

value=1224). The presence of this fragment (=C<) reduces the polarity 

(hydrophilicity) of molecules. Thus, polarity and hydrophobicity are inversely 

related to each other (given in Fig.3). 
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5. nR=Cp (-ve) M1, M2, M3 Number of 

terminal sp2 

carbons 

Functional 

group count 

The presence of terminal sp2 carbon indicates a significant enhancement in 

branching in any molecules which reduces the hydrophobic (lipophilic) character 

of the molecules and ultimately reduces the RI value of the organic flavor and 

fragrance compounds. This phenomenon is demonstrated in compound 1046 

(nR=Cp=0, RI value=2180) and oppositely occurs in compound 192 (nR=Cp=1, 

RI value=1228) (given in Fig.4.6). 

 

5. nR=Cp (-ve) M1, M2, M3 Number of 

terminal sp2 

carbons 

Functional 

group count 

The presence of terminal sp2 carbon indicates a significant enhancement in 

branching in any molecules which reduces the hydrophobic (lipophilic) character 

of the molecules and ultimately reduces the RI value of the organic flavor and 

fragrance compounds. This phenomenon is demonstrated in compound 1046 

(nR=Cp=0, RI value=2180) and oppositely occurs in compound 192 (nR=Cp=1, 

RI value=1228) (given in Fig.4.6). 

6. C% (+ve) M2, M5 The 

percentage of 

C atoms 

Constitutional 

index 

A high percentage of carbon atoms (large-carbon skeleton molecules) in any 

compound leads to enhancement in hydrophobicity (lipophilicity) which leads to 

a high RI value as shown in compound 1192 (C%=48.57, RI value=2147), and 

the inverse phenomenon occurs in compound 674 (C%=22.22, RI value=350) 

(given in Fig.4.6).     

7. nAA (+ve) M1, M4 The number 

of aromatic 

atoms 

Constitutional 

index 

Aromatic compounds contain a hydrophobic nucleus which contributes towards 

non-polarity. Non-polar compounds are hydrophobic (a high RI value) in nature. 

Thus, the presence of more such fragments (aromatic atoms) in compounds leads 

to high RI values as shown in compound 1192 (nAA=12, RI value=2147), and 

vice-versa occurs in compound 276 (nAA=5, RI value=1217) (given in Fig.4.6). 

Presence of aromatic ring lead to increase in size of molecules, ultimately 

enhancing the lophilicity.  

8. SaasC (+ve) M3, M5 The sum of 

aaaC E-states 

Atom-type E-

state index 

This descriptor signifies the presence of an aromatic substitution in any 

compound. Aromaticity is inversely related to polarity [51] and, consequently 

directly related to hydrophobicity. Thus, the presence of such a structure 
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fragment reduces the RI value as demonstrated in compound 360 (SaasC=6.039, 

RI value=1837) and vice-versa occurs in compound 219 (SaasC=2.019, RI 

value=1227) (given in Fig.4.6). 

9. nROR (-ve) M4 The number 

of aliphatic 

ethers 

Functional 

group count 

Generally, ethers (C-O bond of ether) are polar in nature [52]. Therefore, the 

presence of such fragments (aliphatic ethers) in any molecule enhances the 

polarity and consequently hydrophilicity of the compound. Hydrophilicity and 

RI are inversely related to each other. Therefore, the presence of such a fragment 

reduces the RI value as shown in compound 559 (nROR=3, RI value=763) and 

an inverse phenomenon occurs in compound 900 (nROR=1, RI value=1235) 

(given in Fig.4.6). 
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                 Fig 4.6 Structural correlation of chemical compounds with retention index  

4.2.8 Advantages and implementation of the present work 

We have developed regression-based QSPR models using 2D descriptors and the GA-PLS 

method (avoid any chances of inter-correlation among descriptors) to assess the retention index 

of flavour and fragrance compounds. Models were developed using simple, reproducible, and 

easily interpretable 2D descriptors and rigorously validated with various internationally 

accepted validation metrics (both external and internal validation metrics) in compliance with 

the OECD guidelines to check the robustness, reliability, predictivity, and domain of 

applicability. Consensus predictions were also employed to improve the external predictivity 

and domain of applicability of the developed models (in our case, CM3 is the winner model). 

Some important findings regarding RI of F& F compounds were observed from this study: 

hydrophobicity, the presence of larger fragments, high molecular weight, and aromaticity were 

responsible for the high RI value (+ve contribution) of the flavour and fragrance compounds, 

while polarity and hydrophilicity reduce (−ve contribution) the retention index of the flavour 

and fragrance compounds. Hence, this information can be used for the selection and 

optimization of the stationary phase according to the available organic compounds (flavour and 
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fragrance compounds) and for achieving the desired retention index. Finally, developed models 

can be used for data gap fling (prediction of RI value of untested and new compounds within 

the domain of applicability); consequently, this information (with known calculated RI values) 

can be used in the flavour and fragrance industry to identify unknown compounds (by 

comparing with RI values) in complex mixtures by reducing time, cost, the need of highly 

skilled labour, costly instrumentation, and complexity of experimentation. Thus, developed 

models will help design and develop suitable and novel flavours and fragrances that fulfill the 

product’s requirement before experimental verification. 
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Table 4.6.  Comparison with the previous work by Rojas et al. (2015a) and Rojas et al. (2015b). 

Developed 

model 

Total number of 

compounds used 

No. of compounds on 

the training set and test 

set. 

No. of features 

in the initial 

pool 

Type of the 

features 

No. of features 

in the final 

model 

𝑅𝑡𝑟𝑎𝑖𝑛
2  𝑅𝑡𝑒𝑠𝑡

2  𝑅𝑀𝑆𝐷𝑡𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐷𝑡𝑒𝑠𝑡 

Present work   

 

 

 

Initially 1208, and 

after curation 1194. 

 

 

 

 

894 in the training set 

and 298 in the test set. 

 

 

 

 

 

309 

 

 

 

 

 

2D 

 

6 (LV-4) 

 

0.909 

 

- 

 

96.168 

 

73.756 Model 1 

 

Model 2 6  (LV-4) 0.918 - 91.246 73.756 

 

Model 3 6 (LV -4) 

 

0.915 - 92.718 74.928 

Model 4 6 (LV -4) 0.908 - 96.479 

 

75.463 

 

Model 5 

 
6 (LV -4) 

 

0.913 - 94.188 75.372 

Previous 1206 𝑁𝑡𝑟𝑎𝑖𝑛=400, 𝑁𝑣𝑎𝑙=405, 

𝑁𝑡𝑒𝑠𝑡 =403 

1815 

conformational 

descriptors. 

2D 4 0.910 0.93 100.94 82.99 

Rojas et al. 

(2015) [70] 

Rojas et al. 

(2015)[71] 

Initially 1206 and after 

curation 1184 
𝑁𝑡𝑟𝑎𝑖𝑛=395,𝑁𝑣𝑎𝑙=396,

𝑁𝑡𝑒𝑠𝑡=393 

1815 non-

conformational 

descriptors. 

2D 7 0.902 0.904 137.60 121.978 
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5.Conclusion 

A proper investigation of some organoleptic compounds and their impactful properties often 

helps to understand the upcoming effects on the area of their implication. This research work 

was done with the objective of understanding the influence of organoleptic compounds and 

their properties while focusing on the implication of some conceptual, simplest algorithms that 

are predominant for quality prediction. The proper analysis of the organoleptic chemicals 

whether it is physiochemical, or potential helps to better understand their ultimate fate 

considering their utility. Restructure and design of the chemicals according to the resulting 

feature, interpretation, and chemical categorization often help to meet the desired goal of risk 

management and effective use of the chemicals. 

In the first study of the recent dissertation, we have developed a classification-based c-RASPR 

model while employing the concept of machine learning. With the progress of the study, the 

responsible significant features were identified for further detailed interpretation regarding the 

explanation of statistical concepts concerning the corresponding biological responses. 

Moreover, in our second work, we have developed QSPR models with an implication of 

intelligent consensus prediction. For this study also the resulting 2D descriptors were 

recognized and vividly interpreted with the physiochemical and structural phenomenon 

following the respective biological responses.  In these two studies, we have explored the 

predominant concept of QSAR. Intelligent consensus model prediction and RASPR are nothing 

but the extended implications of QSAR. While Intelligent consensus prediction is restricted 

within the idea of QSAR while giving an aggregate judgment of several validated results, the 

concept of RASPR extended towards read across. It’s often taken into account that RASAR 

gives its prediction opinion on the similarity parameter (chemical, biological, and structural) 

of ten close source compounds. In these two studies, we have tried a detailed understanding of 
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the QSAR and RASAR algorithms for estimating the effective use of the chemical compounds 

as well as the necessary optimization of the chemical structures to achieve the desired goal. 

The core objective is to develop a reliable, simplified technique. 

5.1 The first application of machine learning-based classification read-across structure-

property relationship (c-RASPR) modeling for sweet and bitter 

                  The identification of contributing features for both sweet and bitter compounds is 

vital for taste-sensing mechanisms. In the investigation, two large and diverse data sets were 

used to develop classification-based predictive models. Initially, preliminary QSPR models 

were developed using the most discriminating features (MDF), which provided moderate 

prediction results but left suggestions for further improvement. Although the prediction results 

of the models using this QSPR method were of moderate quality, they provided suggestions 

for improving the prediction quality. These QSPR models also give information about the 

important features that regulate the properties of the sweet and bitter tastes of the organic 

compounds. 

In the next segment, the LDA-RASPR model, which combines QSPR and Read-across 

techniques, showed better prediction quality for both sweet and bitter data sets than the 

corresponding LDA-QSPR models. Additionally, machine learning algorithms (ML) were 

applied to both sweet and bitter data sets with RASPR descriptors, and the Support Vector 

Classification (SVC) algorithm provided the best results. The comparison of simple LDA-

QSPR and ML-RASPR methods showed that the latter outperforms the former in terms of 

predictive quality for both data sets. This suggests that the concept of ML itself enhances the 

learning experience and can be used along with the methodology of RASPR for enhanced 

model prediction quality. In general, we reconciled the laboratory studies and developed 

predictive models that suggest that the presence of polar groups (C-018, nArCOOH, C-033, 

F01[C-N], B01[O-S], F02[N-S], nRNHR) and hydrophobicity parameters (max_conj_path, 
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NsssN, MW, O-062, C-018, F01[N-O], nArCOOH, nNq, C-033, nRNHR) are essential factors 

for sweet/bitter compounds molecules for ligand binding for both sweet and bitter activities. In 

conclusion, the hybrid method of the RASPR algorithm, along with ML, provides a more 

authentic and reliable methodology for chemometric model development. The increasing 

prediction quality trend suggests that a hybrid method (ML-RASPR) is preferable over the 

QSPR methodology for model prediction quality enhancement. The developed simple 

classification-based models with a limited number of RASPR descriptors could be an efficient 

alternative approach for the identification of sweet/bitter compounds with a low number of 

regressing variables. 

5.2 Intelligent Consensus Predictions of the Retention Index of Flavour and Fragrance 

Compounds Using 2D Descriptors. 

 In the current study, regression-based QSPR models were developed using the PLS method to 

assess the retention index of flavour and fragrance compounds. Models were developed using 

simple, reproducible, and easily interpretable 2D descriptors and retention index (RI) as 

endpoints. Feature selection was performed using different strategies (such as the stepwise 

selection method and the Genetic Algorithm (GA)) to extract the most significant descriptors 

contributing to the property endpoint (retention index). We have rigorously validated the 

developed models using various globally accepted validation metrics (both external and 

internal validation metrics) in compliance with the OECD (Organization for Economic 

Cooperation and Development) principles. Consensus predictions were also employed to 

improve the external predictiveness of the developed models (in our case, CM3 is the winner 

model). From the statistical results, it was concluded the developed models are robust, reliable, 

predictive, and wide domain of applicability. From the mechanistic interpretation, it was 

observed that hydrophobicity, the presence of larger fragments, high molecular weight, and 

aromaticity enhance the retention index (RI) of the flavour and fragrance compounds. In 
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contrast, polarity and hydrophilicity reduce the retention index of the flavour and fragrance 

compounds. Hence, this information can be used for the selection and optimization of the 

stationary phase according to the available organic compounds (flavour and fragrance 

compounds) and for achieving the desired retention index. Finally, developed models can be 

used to predict the RI values for any new or unknown compound (data gap fling), consequently, 

this information (with known calculated RI values) can be used in the flavour and fragrance 

industry to identify unknown compounds (by comparing with RI values) in complex mixtures 

by reducing the time, cost, and complexity of experimentation. Thus, developed models will 

be helpful in designing suitable and novel flavours and fragrances that fulfill the product’s 

requirements before experimental verification. 
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Abstract
The demand for novel flavors and fragrance (F&F) compounds has increased, highlighting the need for a systematic design 
approach. Currently, the F&F industry relies heavily on experimental approaches without considering the potential conse-
quences of altering the features that contribute to the fragrance of the compound. In silico approaches have great potential 
to identify the necessary features for creating novel F&F compounds. In the present study, Quantitative Structure–Prop-
erty Relationship (QSPR) models were developed using 1208 compounds and simple 2D descriptors, focusing on the RI 
(retention index) as the endpoint to predict the olfactory properties of molecules. Feature selection was initially carried out 
by multi-layered stepwise regression followed by feature thinning using the Genetic Algorithm (GA) and optimal feature 
combination selection using the BSS (best subset selection) method. Final models were developed using the Partial Least 
Squares (PLS) method. Additionally, internal and external validation of the models was performed using different valida-
tion metrics suggesting that the developed models are reliable, predictive, reproducible, and robust. To enhance the external 
prediction of the developed models, an Intelligent Consensus Prediction (ICP) method was employed and CM3 (consensus 
model 3) (best selection of predictions (compound-wise) from individual models) was found to provide the best predictivity. 
The modeling descriptors suggested that the hydrophobicity, high molecular weight, aromaticity, and presence of large-
size fragments (high percentage of carbon) enhance the RI values. Conversely, polarity and hydrophilicity decrease the RI 
values. This study can be used to optimize the stationary phase according to the flavor and fragrance compounds to obtain 
the desired retention index (RI values).

Graphical abstract

Keywords  Flavor and fragrance (F&F) molecules · RI (retention Index) · 2D descriptors · QSAR · ICP (intelligent 
consensus prediction)

Introduction

The use of fragrance and flavor (F&F) is widespread in 
various consumer products. Fragrance compounds create 
pleasant smells, while flavor compounds contribute to taste 
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sensations [1]. These compounds have specific structures 
and activities that determine their sensory effects. They 
include alcohols, aldehydes, ketone esters, and lactones 
[2]. Industries such as food and pharmaceuticals use these 
compounds to mask unpleasant tastes [3]. Fragrances are 
essential in perfume, beverages, cosmetics, food, and phar-
maceuticals. Most synthetic chemical compounds mimick-
ing natural products are used in F&F compound industries 
[4]. The global F&F market is expected to reach USD 36.49 
billion by 2029, with a compound annual growth rate of 
4.7% [5]. The demand for novel F&F compounds is driven 
by safety and environmental regulations. However, design-
ing F&F compounds still relies on empirical techniques, 
which can be tedious and time consuming, leading to lim-
ited exploration of potential candidates [6]. The traditional 
approaches of trial and error are tedious, resource intensive, 
and time consuming [7]. This method also leads to a limited 
exploration of the potential candidates. Thus, there remains 
a high chance of missing a potent candidate for F&F to be 
incorporated into consumer products. The launching of such 
products to the market can also be costly. The retention time 
is crucial for formulating new fragrance compounds in the 
perfume industry. It helps identify the chemical structure 
of a compound and allows comparison of its retention data 
across different GC systems. Chromatography is an impor-
tant tool in various industries for ensuring the production of 
high-quality products, and it plays a crucial role in quality 
control. This method involves measuring the retention time 
or retention index of a compound as it passes through a gas 
chromatographic column’s glass capillary. There is a grow-
ing need and interest in developing structure–odor relation-
ship models using the structure of fragrance compounds. A 
recent study utilized the retention index to develop in silico 
chemometric models for these compounds in the chromato-
graphic column [8]. Manual sniffing and recording can be 
an inefficient and complicated process resulting in numerous 
errors. For example, the ambiguity of gas chromatography or 
gas chromatography–mass spectrometry test values cannot 
alter the real fragrance retention index [9]. Other factors, 
such as environmental conditions and differences in individ-
ual olfactory sensitivity, can also affect the reported reading. 
Therefore, to address the challenges involved in the design 
of fragrance molecules, a systematic framework should be 
developed for designing and screening suitable fragrances 
that fulfill the product’s requirement before experimental 
verification.

Several researchers have tried to develop computational 
techniques to explain the perceptual and physicochemical 
space of fragrance molecules. Rojas et al. (2015) also ana-
lyzed the retention index of 1184 fragrance-like compounds 
on a stationary phase using QSPR methods [8]. Rojas and 
colleagues [10] researched flavor and fragrance compounds 
to develop Quantitative Structure–Property Relationships 

(QSPR) models. Keller et al. (2017) performed a machine 
learning (ML) algorithm to predict intensity, pleasantness, 
and semantic descriptors from the structural information of 
odor compounds [11]. Dua et al. (2008) worked on reten-
tion time by taking 43 aromatic constituents of saffron [12]. 
Furthermore, Sharma et al. (2020) conducted QSPR studies 
to predict the retention indices of fragrance compounds in 
stationary phases with three different polarities [13]. In addi-
tion, Villa et al. (2017) conducted QSPR studies to predict 
the retention indices of fragrance compounds in stationary 
phases with three different polarities [14]. In 2022, Kumar 
et al. (2022) reported QSPR modeling of fragrance com-
pounds on the carbowax glass capillary using gas chroma-
tography using 1179 flavor and fragrance compounds for 
model development [15]. Noorizadeh et al. (2011) also ana-
lyzed the retention index of essential oils using QSPR meth-
ods [16]. Pourbasheer et al. (2015) reported QSPR models 
to calculate the GC retention indices of essential oils [17]. 
Liu et al. (2021) reported a QSPR model for the assess-
ment of fragrance retention grades for monomer flavors [18]. 
Ahmadi et al. (2024) predict the retention indices of volatile 
organic compounds using the QSPR model [19]. Riahi et al. 
(2008) assessed the retention indices of essential oil com-
pounds using GA-MLR methods [20]. Kumar et al. (2022) 
reported QSRR models of flavors and fragrance compounds 
studied on the stationary phase methyl silicone OV-101 col-
umn in gas chromatography using correlation intensity index 
and consensus modeling [21].

Several machine learning methods such as neural net-
works and SVR (support vector machine) have been also 
used to develop QSPR models for the assessment of RI indi-
ces of the various compounds. Keller et al. (2017) applied 
a machine learning (ML) algorithm to predict intensity, 
pleasantness, and semantic descriptors from the structural 
information of odor compounds [11]. Maulana et al. (2020) 
employed an artificial neural network to assess the Kovats 
retention indices for fragrance and flavor [22]. Matyushin 
et al. (2020) used multimodal machine learning for the cal-
culation of the gas chromatographic retention index [23]. 
Wang et al. (2021) reported machine learning models for the 
assessment of RI of compounds in beers [24]. Agustia et al. 
(2022) employed Support Vector Regression to calculate 
the Kovats retention indices of flavors and fragrances [25]. 
Matyushin et al. (2019) estimated the gas chromatographic 
retention indices employing deep convolutional neural net-
works [26]. K et al. (2019) reported machine learning mod-
els for GC–MS fingerprint profiling of food flavor predic-
tion [27]. Vrzal et al. (2021) reported a Deep learning-based 
gas chromatographic retention index predictor (DeepReI) 
[28]. Matyushin et al. (2021) also reported deep learning-
based prediction of gas chromatographic retention indices 
for a wide variety of polar and mid-polar liquid stationary 
phases [29]. Vigneau et al. (2018) employed Random forests 
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(a machine learning methodology) to highlight the volatile 
organic compounds involved in olfactory perception [30]. 
However, some of the previous studies lacked the report-
ing of exhaustive validation results in the form of different 
internationally accepted validation metrics, the use of sim-
ple and reproducible descriptors, specific findings (features 
responsible for the design and development of novel and 
suitable F&F compound), consensus prediction, as well as 
a wide domain of applicability.

The primary objective of the current work is to predict 
the quality and retention index of various compounds with 
unknown retention indexes (new and untested F&F com-
pounds) to avoid the time, complexity of the experimental 
process, high cost, highly skilled labor, and expensive exper-
imental equipment. In this work, we have developed QSPR 
models only using 2D descriptors which are simple due to 
a direct mathematical algorithm for calculation, reproduc-
ible, and easily interpretable, in order to avoid the complex-
ity of 3D analysis and energy minimization. 2D descrip-
tors have a deluge of contributions in extracting chemical 
attributes, and some are also capable of representing 3D 
features to some extent [31]. However, it is not possible to 
differentiate between the isomers (cis, trans, etc.) of com-
pounds completely using 2D-QSPR models. We used only 
2D descriptors and did not use 3D descriptors. This means 
we did not account for the geometric isomers and considered 
them as a pure and individual form. We also did not con-
sider the effect of the cis or trans isomeric form. Therefore, 
it is reasonable for us to gather the average retention index 
value from Rojas et al.[10] to develop a more accurate and 
understandable model. The developed QSPR models will 
help in identifying and distinguishing features of chemical 
compounds, ultimately aiding in determining their retention 
index for both polar and non-polar stationary phases. Thus, 
developed QSPR models can also be used to optimize sta-
tionary phases. The present QSPR models were established 
using 1208 data points (significantly more than previously 
reported) which will provide a wider domain of applicabil-
ity (can calculate the RI of a wide range of F&F and related 
compounds). The models were developed by consider-
ing only simple, reproducible, and easily interpretable 2D 
descriptors, making them simpler, more reliable, robust, and 
more accurate when dealing with medium to large datasets 
with retention index as the endpoint. The developed Partial 
Least Squares (PLS) models were further used for consensus 
modeling to enhance the predictivity of the test set fragrance 
compounds, thus showing higher predictivity and a wide 
domain of applicability. An applicability domain (AD) was 
defined to increase the reliability of the prediction model. 
This work will provide a reliable model for predicting Reten-
tion Index (RI) values for unevaluated and un-synthesized 
flavors and fragrances and related compounds, making 
it a valuable asset for professionals in the field of aroma, 

flavor chemical synthesis, and perfume blending. This 
study also provides detailed and advanced knowledge about 
some important features responsible for the RI of F&F and 
related compounds: hydrophobicity, the presence of larger 
fragments, hydrogen donor groups, and aromaticity were 
responsible for the high RI value (+ ve contribution) of the 
flavor and fragrance compounds, while polarity and hydro-
philicity reduce (-ve contribution) the retention index of the 
flavor and fragrance compounds. Thus, the present study 
aims to develop and design suitable and novel flavors and 
fragrances as per the product’s requirement, data gap filling 
(related to the RI value of new and untested compounds), 
and an alternative to complex, time-consuming, and costly 
analytical testing techniques.

Materials and Methods

Dataset Collection

It is essential to have consistent and reliable data for the 
development of QSPR models. In this study, 1208 data 
points for aromatic substances were collected from the lit-
erature [10] for model development. The researchers [10] 
reported the experimental property as the Kováts reten-
tion index (RI) in a non-polar stationary capillary column 
(0.28 mm × 50 m). They used methyl silicone OV-101 as 
coating material admixed with 1% Carbowax 20 M, and the 
column was programmed to increase from 80 to 200 °C at a 
rate of 2 °C/min. The RI values used as an endpoint ranged 
from 350 to 2180 [8, 10]. The Kováts retention index is 
independent of individual chromatographic system speci-
fications and allows comparing values measured by differ-
ent analytical laboratories and analysis times. The fragrance 
ingredients are often obtained from commercial suppliers 
as mixtures of isomers (e.g., cis–trans), which the supplier 
does not separate. However, we cannot neglect the effect of 
temperature, pH, and surrounding environment for trans-
forming a particular isomeric form of a chemical compound 
to another (like a transformation of a cis compound to trans 
and trans compound to cis form) for a mixture of compounds 
while it was supplied for experimentation. This consequence 
may result in exceptional responses where a single com-
pound represents two different isomeric mixtures with the 
same molecular weight. In this scenario the compounds like 
Allyl anthranilate 1 and Allyl anthranilate 2 may not repre-
sent the pure cis or trans isomeric form of a compound rather 
they were represented as a mixture of both the geometrical 
isomers. In the present study, it was interpreted as a single 
compound with an isomeric mixture while considering the 
impact of other external factors as well. In that case, collect-
ing the average retention index value (compounds with quite 
similar chromatographic peaks) of Rojas et al. is justified 
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for further development of an accurate and interpretable 
model. This kind of approximation is very common in any 
2D-QSPR analysis.

Molecular Representation and Data Curation

A total of 1208 flavor and fragrance compounds, each with 
its corresponding SMILES, chemical names, and retention 
index, were initially compiled (provided in supplementary 
information 1). To ensure accuracy, for compounds with 
more than one reported retention index value, the average 
value was calculated, and duplicate entries were removed, 
resulting in a final curated dataset of 1194 compounds. 
The structural representation of the compounds was done 
using Marvin Sketch software (https://​chema​xon.​com/​mar-
vin). Additionally, a curated SDF file of the flavor and fra-
grance compounds was obtained after incorporating explicit 
hydrogen, ring aromatization, and 2D form cleaning for the 
descriptor calculations.

Descriptor Calculation

In this study, we used the Alvadesc software (https://​www.​
alvas​cience.​com/​alvad​esc) to calculate descriptors for flavor 
and fragrance compounds. These descriptors are numeri-
cal values that define the physiochemical properties of a 
compound. We have used only simple, direct mathematical 
algorithms nature, reproducible, and easily interpretable 2D 
descriptors [32] to avoid the complexity of 3D analysis and 
energy minimization [33]. 2D descriptors have a deluge of 
contributions in extracting chemical attributes and some 
are capable of representing 3D features to some extent 
[31]. However, it is not possible to differentiate between the 
isomers (cis, trans, etc.) of compounds completely using 
2D-QSPR models. The work of Rojas et al. had already con-
cluded that 3D descriptors did not significantly improve the 
quality parameters of the QSPR model. From the previous 
conclusion, we have decided to develop simpler 2D-QSPR 
models while using the concept of intelligent consensus 
predictions. Lastly, the redirection toward the source data, 
the unseparated mixture of both the geometrical isomers of 
a particular compound, and their response values indicate 
an inseparable form of cis and trans isomers even after the 
application of 3D descriptors. In the present study, the iso-
mers were recognized as a single compound. In that case, 
collecting the average retention index value (compounds 
with quite similar chromatographic peaks) of Rojas et al. is 
justified for further development of an accurate and inter-
pretable model. This kind of approximation is very com-
mon in any 2D-QSPR analysis. A total of 2400 2D descrip-
tors were calculated, including constitutional descriptors 
(molecular composition of a referenced compound), ETA 
indices (extended topochemical atom), ring (information 

related to the presence of ring descriptors), functional group 
count, atom-centered fragment, connectivity index, atom-
type E-state (description related to the electronic state of 
the atoms), 2D atom pair, and molecular properties [32, 33]. 
Additionally, data pre-treatment was performed using the 
DataPreTreatmentGUI_1.2 (http://​teqip.​jdvu.​ac.​in/​QSAR_​
Tools/) software to eliminate correlated (correlation cut-off 
of 0.95) and descriptors having low variance cut-off (less 
than or equal to 0.01), resulting in a total of 309 curated 
descriptors for further modeling.

Dataset Division

Partitioning the dataset is an essential step in developing 
the QSAR model. A chemometric statistical model requires 
two independent datasets: a training set for developing the 
model and a test set for validating the model [34]. Generally, 
the whole dataset was divided into the training and test set 
in the ratio of 70:30 (approx.). In the present investigation, 
the dataset of fragrance and flavor compounds was divided 
into four clusters based on their properties (sorted response-
based method.) using the Dataset Division 1.2 tool (http://​
teqip.​jdvu.​ac.​in/​QSAR_​Tools/). This property-based data 
division resulted in a training set of 896 compounds and a 
test set of 298 flavored and fragrance compounds.

Test‑Training Pre‑Treatment

The training and test set data may contain correlated and 
noisy descriptors that are not relevant to the data modeling 
purpose. Therefore, pre-treating both the training and test 
sets is necessary. In our study, we utilized the Data Pre-
treatment tool (http://​teqip.​jdvu.​ac.​in/​QSAR_​Tools/) to pre-
treat the training and test sets after division, using a variance 
cut of 0.01 and a correlation cut-off of 0.95. This process 
resulted in 162 less correlated descriptors, ultimately mini-
mizing the error in model development.

Feature Selection and Model Development

The selected features after pre-treatment were utilized for 
the feature selection process. Genetic algorithm (GA) fol-
lowed by BSS (Best Subset Selection) (http://​teqip.​jdvu.​ac.​
in/​QSAR_​Tools/) was used for feature selection [35]. Ini-
tially, some features were also selected using the stepwise 
selection method. Stepwise regression can be defined as a 
multiple linear regression which was evolved with the step-
by-step mechanism. After removing the selected features 
from the first stepwise run, the stepwise method was again 
performed with the remaining pool of descriptors. Besides 
stepwise feature selection, GA was also performed for the 
feature selection procedure. GA tool has many advantages 
over other feature selection methods. It is based on fitness 

https://chemaxon.com/marvin
https://chemaxon.com/marvin
https://www.alvascience.com/alvadesc
https://www.alvascience.com/alvadesc
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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function on mean absolute error (MAE)-based pick-up cri-
teria. We have employed our in-house tool “GeneticAlgo-
rithm_v4.1_Train” (http://​teqip.​jdvu.​ac.​in/​QSAR_​Tools/) to 
find the most relevant descriptors with the RI endpoint. The 
best subset selection (BSS) approach was used to find the 
optimal combination of descriptors for a robust prediction 
model. After selecting the best descriptors from both feature 
selection methods, we performed partial least squares (PLS) 
regression to build the preliminary QSPR models. PLS 
methods were employed to develop the final robust models 
to avoid any chances of inter-correlation among descriptors. 
The PLS regression method is a generalized technique of the 
“Multiple Linear Regression (MLR)” method, where we can 
examine strongly collinear, correlated, noisy data and many 
X variables. The PLS regression has been carried out with 
a Java-based software tool “PLS_SingleY_version” (http://​
teqip.​jdvu.​ac.​in/​QSAR_​Tools/). The PLS model was fur-
ther utilized for best subset selection (BSS). The best subset 
selection was performed with the in-house tool developed 
in our laboratory (http://​teqip.​jdvu.​ac.​in/​QSAR_​Tools/). Six 
descriptor models (five PLS models) were generated based 
on MAE-based criteria [36].

Model Validation Criteria

The developed QSTR models were rigorously validated via 
various internationally accepted metrics to ensure the robust-
ness, predictivity, goodness of fit, and quality of the models. 
For training set compounds, internal validation metrics such 
as cross-validated correlation coefficient Q2

(LOO) (leave one 
out), r2

m_loo, MAEtrain (mean absolute error), RMSDtrain (root 
mean square standard deviation error), and coefficient of 
determination R2 were calculated to measure the robustness 
and goodness of fit of the model. For test set compounds, 
we have predicted external set compounds using globally 
accepted different validation metrics like predictive MAEtest, 
RMSDtest, R2 (R2

pred), or Q2
F1 and Q2

F2 to judge the predict-
ability of the model [37].

Applicability Domain Assessment

The applicability domain is the biological, chemical, or 
physiochemical hypothetical space of the training set chem-
icals through the recently created QSPR model. The main 
use of this domain is to predict the toxicity value of com-
pounds that fall in this domain and have unknown values. 
We have used the DModX (distance to mean X) approach 
to predict the AD of the PLS models (OECD principle 3) 
using SIMCA-P software [38–40]. The DModX uses Y and 
X residuals as diagnostic values to ensure model quality. If 
the DModX value is greater than the critical value, it means 
that the query compound is outside the domain of the model 
[36, 38–40]:

For observation i, in a model with A component, K vari-
ables, and N observations, SSE is the.squared sum of the 
residuals. A0 is 1 if the model was centered and 0 otherwise. 
It is claimed that DModX is approximately F-distributed, 
so it can be used to check if an observation deviates signifi-
cantly from a normal PLS model.

Intelligent Consensus Predictor (ICP)

This method evaluates the performance of the consensus 
models in comparison to the individual models based on 
MAE-based criteria (i.e., 95%). It is recognized that a single 
model may not be able to accurately predict all of the test 
compounds. This implies that one QSPR model may be more 
suitable for one test compound, while another model may be 
better for a different test compound [33, 41, 42]. A specific 
QSPR model may not be equally effective in predicting all 
query compounds in the query list. To get the best predic-
tion results, we need to consider the consensus of all the 
predictions made by these four models. For this, consensus 
prediction should be made intelligently, i.e., in a query com-
pound-specific way, using all or most of the valid models. 
This is different from doing a simple average of predictions 
from all available models. Consensus prediction is better 
than individual model predictions since it combines all the 
good characteristics of each model. Thus, the drawbacks of 
one individual model are taken care of by other models (s). 
This makes the predictions less biased, more reliable, and 
more precise. The individual models may have differently 
defined applicability domains, while the consensus method 
combines the ADs of the individual models, thus providing 
a greater chemical space coverage as well. Moreover, the 
consensus method does not affect the quality of the internal 
statistical parameters of the individual models [43]. In the 
present study, we have chosen five models (M1–M5) to con-
duct a consensus prediction using the “Intelligent Consensus 
Predictor” tool that is available on our laboratory website 
(http://​teqip.​jdvu.​ac.​in/​QSAR_​Tools/. The steps involved in 
developing the models are depicted in Fig. 1.

Results and Discussion

The goal of this study is to create statistical models using 
simple and easily interpretable 2D descriptors. We have 
established various QSPR (PLS) models and validated 
them with different internationally accepted validation met-
rics. From the statistical results (summarized in Table 1), 

DModX =

√

SSEi

K −A

√

SSE

(N −A−AO)(K −A)

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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it was concluded that the developed models were accu-
rate, predictive robust, and reproducible. Additionally, we 
have also conducted the applicability domain assessments 
(compounds situated outside the applicability domain cri-
teria were considered outliers) and Y-randomization tests 
(to check whether models did not come by any chance) of 
developed models. We have also provided the probable 
mechanistic interpretation of the modeled descriptors that 
play a key role in determining the retention index of flavor 
and fragrance compounds The scatter plots (given in Fig. 2) 
of the established models (M1–M5) show that the observed 
and predicted responses are quite similar and exhibit a good 
correlation.

Developed QSPR Models for the Retention Index (RI)

We have developed multiple regression-based QSPR models 
using the retention index (RI) of the flavor and fragrance 
compounds as the endpoint. Intelligent consensus prediction 
was also employed to enhance the external prediction of the 
developed PLS models. The details of the modeled descrip-
tors (models (M1–M5)) (provided in Supplementary Infor-
mation 1) along with their meaning, contribution, and mech-
anistic interpretation of modeled descriptors are provided 
in Table 2. Various PLS plots [34, 35] (VIP plots (given in 
Figs. S1–S5 in Supplementary Information 2), loading plots 
(given in Figs. S6–S10 in Supplementary Information 2), 
score plots (given in Figs. S11–S15 in Supplementary Infor-
mation 2), DModX plots (given in Figs. S16–S25 in Supple-
mentary Information 2), and Y-randomization plots (given 
in Figs. S26–S30 in Supplementary Information 2) were 

developed employing using SIMCA software (https://​www.​
umetr​ics.​com). The insights obtained from the developed 
models (M1–M5) for the retention index are explained in the 
Mechanistic interpretation section. The Y-randomization test 
and applicability domain (AD) assessment of the established 
models (M1–M5) were provided in the Y-randomization and 
Applicability domain section. 

Y Randomization of the PLS Models

The Y-randomization test acts as a checkpoint whether 
the developed model is a result of a chance correlation 
or not. The X columns were fixed and the Y column was 
randomized with a different permutation and combination 
multiple times (here it is 100 times). The resulting rand-
omized models were compared with the best-fitted model 
to analyze the significance of the developed models. The 
randomized model’s fundamental validation statistics (R2 
and Q2) should be poor while comparing it with the best-
fitted model. The poor quality of the randomized models 
assures that the recently developed model is not a result 
of a chance correlation [34, 44]. Thus, the poor result of 
the randomized models indicates the acceptability of the 
developed model. The intercept value of R2Y (within 0.3) 
and the intercept value of Q2Y (within 0.05) as validation 
statistics of the randomized models make the best-fitted 
model acceptable [34, 44]. The Y randomized plots for 
each PLS model (model M1–M5) were given in (given in 
Figs. S26–S30 in Supplementary Information 2).

Fig. 1   Schematic representation of the present study

https://www.umetrics.com
https://www.umetrics.com


Intelligent Consensus Predictions of the Retention Index of Flavor and Fragrance Compounds…

Ta
bl

e 
1  

S
ta

tis
tic

al
 q

ua
lit

y 
an

d 
va

lid
at

io
n 

pa
ra

m
et

er
s o

bt
ai

ne
d 

fro
m

 th
e 

de
ve

lo
pe

d 
PL

S 
an

d 
co

ns
en

su
s m

od
el

s

H
er

e,
 L

V
 re

pr
es

en
ts

 th
e 

la
te

nt
 v

ar
ia

bl
es

, M
A

E 
re

pr
es

en
ts

 th
e 

m
ea

n 
ab

so
lu

te
 e

rr
or

, R
2
 is

 th
e 

de
te

rm
in

at
io

n 
co

effi
ci

en
t, 
Q

2
 is

 th
e 

le
av

e 
on

e 
ou

t, 
w

he
re

as
 R

M
SD

 re
pr

es
en

ts
 th

e 
ro

ot
 m

ea
n 

sq
ua

re
 

st
an

da
rd

 d
ev

ia
tio

n 
er

ro
r. 

C
M

0 =
 O

rd
in

ar
y 

co
ns

en
su

s 
pr

ed
ic

tio
ns

. C
M

1 =
 A

ve
ra

ge
 o

f p
re

di
ct

io
ns

 fr
om

 in
di

vi
du

al
 m

od
el

s 
IM

1 
th

ro
ug

h 
IM

5.
 C

M
2 =

 W
ei

gh
te

d 
av

er
ag

e 
pr

ed
ic

tio
ns

 fr
om

 in
di

vi
du

al
 

m
od

el
s 

IM
1 

th
ro

ug
h 

IM
5.

 C
M

3 =
 B

es
t s

el
ec

tio
n 

of
 p

re
di

ct
io

ns
 (c

om
po

un
d-

w
is

e)
 fr

om
 in

di
vi

du
al

 m
od

el
s 

IM
1 

th
ro

ug
h 

IM
5.

 *
N

ot
e 

th
at

 w
e 

ha
ve

 r
un

 th
e 

“I
nt

el
lig

en
t c

on
se

ns
us

 p
re

di
ct

or
 to

ol
” 

us
in

g 
th

e 
op

tio
ns

, A
D

: N
o;

 D
ix

on
 Q

-te
st:

 N
o;

 E
uc

lid
ea

n 
di

st
an

ce
: N

o.

M
od

el
 N

o
Eq

ua
tio

n
Tr

ai
ni

ng
 se

t
Te

st 
se

t

R
2

Q
2

r
2 m
_
lo
o

Δ
r
2 m

M
A
E
tr
a
in

R
M
S
D

tr
a
in

Q
2
F
1

Q
2
F
2

R
M
S
D

te
s
t

M
A

E t
es

t

M
1 

(L
V-

3)
R
I
=
1
5
7
.4
4
8
+
6
.5
5
5
×

 M
W

 +
 16

.2
07

 ×
 nA

A
-5

0.
76

 ×
(n

R
 =

 C
p)

 +
 94

.8
38

 ×
 nH

D
on

-
42

.2
02

 ×
 C

-0
01

 +
 52

.1
59

 ×
 S

ds
sC

0.
90

9
0.

90
7

0.
86

6
0.

08
0

57
.1

26
96

.1
68

0.
94

5
0.

94
5

73
.7

56
52

.2
50

M
2 

(L
V-

4)
R
I
=
−
1
3
9
.9
9
3
+
6
.5
2
×

 M
W

 +
 9.

96
6 ×

 C
%

-8
3.

30
9 ×

(n
R

 =
 C

p)
 +

 87
.4

63
 ×

 nH
D

on
-

45
.3

35
 ×

 C
-0

01
 +

 35
.6

48
 ×

 S
ds

sC
0.

91
8

0.
91

6
0.

87
9

0.
07

3
52

.6
48

91
.2

46
0.

94
5

0.
94

5
73

.6
79

49
.8

35

M
3 

(L
V-

4)
R
I
=
1
7
5
.3
8
1
+
6
.7
4
6
×

 M
W

-8
6.

03
8 ×

 (n
R

 =
 C

p)
 +

 83
.8

55
 ×

 nH
D

on
-

60
.4

06
 ×

 C
-0

01
 +

 58
.7

76
 ×

 S
ds

sC
 +

 48
.5

68
 ×

 S
aa

sC
0.

91
5

0.
91

4
0.

87
5

0.
07

5
54

.5
93

92
.7

18
0.

94
3

0.
94

3
74

.9
28

52
.0

39

M
4 

(L
V-

4)
R
I
=
1
7
6
.5
1
1
1
+
6
.5
5
1
×

 M
W

 +
 14

.9
32

 ×
 nA

A
-3

9.
75

2 ×
 nR

O
R

 +
 64

.8
07

 ×
 nH

D
on

-
46

.8
49

 ×
 C

-0
01

 +
 43

.9
2 ×

 S
ds

sC
0.

90
8

0.
90

7
0.

86
5

0.
08

2
57

.1
96

96
.4

79
0.

94
3

0.
94

3
75

.4
63

53
.5

77

M
5 

(L
V-

4)
R
I
=
−
4
5
.8
0
9
6
+
6
.5
4
0
9
×

 M
W

 +
 6.

76
 ×

 C
%

 +
 78

.8
26

7 ×
 nH

D
on

-
48

.8
85

8 ×
 C

-0
01

 +
 36

.6
96

2 ×
 S

ds
sC

 +
 27

.4
71

2 ×
 S

aa
sC

0.
91

3
0.

91
1

0.
87

2
0.

07
7

54
.6

48
94

.1
88

0.
94

3
0.

94
3

75
.3

72
51

.4
20

C
M

0
C

um
ul

at
iv

e 
pr

ed
ic

tio
n 

fro
m

 a
ll 

in
pu

t i
nd

iv
id

ua
l m

od
el

s
–

0.
94

8
0.

94
8

–
41

.0
53

C
M

1
C

um
ul

at
iv

e 
pr

ed
ic

tio
n 

fro
m

 a
ll 

in
di

vi
du

al
 q

ua
lifi

ed
 m

od
el

s
–

0.
94

8
0.

94
8

–
41

.0
53

C
M

2
W

ei
gh

te
d 

av
er

ag
e 

pr
ed

ic
tio

n 
fro

m
 a

ll 
qu

al
ifi

ed
 in

di
vi

du
al

 m
od

el
s

–
0.

94
9

0.
94

9
–

39
.9

30
C

M
3

B
es

t s
el

ec
tio

n 
of

 p
re

di
ct

io
n 

(c
om

po
un

d-
w

is
e)

 fr
om

 a
ll 

qu
al

ifi
ed

 in
di

vi
du

al
 m

od
el

s
–

0.
95

0
0.

95
0

–
38

.4
47



	 D. Bera et al.

Applicability Domain Assessment

The domain of applicability [45] was analyzed with the 
DModX approach using the SIMCA-P software (https://​
www.​umetr​ics.​com). DModX plots of developed models 
(M1–M5) were provided (given in Figs. S16–S25 in sup-
plementary information 2). From this assessment, it was 
observed that test set compounds 128, 661,745, 1002, and 
1027 from Model 1; 361, 448, 745, 1002, and 1086 from 
Model 2; 10, 128,661,745 and 1027 from Model 3; 224, 425, 
489, 594, 661, 1159, and 1170 from Model 4; 10, 128, 361, 
656, 766, 1002, 1027, 1086, and 1184 from Model 5 are situ-
ated outside the domain of applicability (structural outliers).

Mechanistic Interpretation of the Modeled 
Descriptors

We have provided a probable mechanistic interpretation of 
the modeled descriptors, as per OECD guidelines 5. The 
type, meaning, contribution, and probable mechanistic inter-
pretation of modeled descriptors are provided in Table 2.

PLS Model Interpretation

The first latent variable represents the geometrical property 
(in the form of MW, C%, nAA) and represents the size of 
molecules which is directly related to lipophilicity and leads 

to high RI values (+ ve contribution). Bulkiness and Parti-
tion coefficient (LOG P) are also dependent on molecular 
weight, leading to high lipophilicity in respective com-
pounds (justified by structures of molecules too). The next 
significant latent variable is contributed by the descriptors 
SdssC, SaasC, nROR nR = Cp, and C-001 descriptors, and 
all of them together contribute to the electronic effect. nROR 
nR = Cp and C-001 have negative contributions but SdssC 
and SaasC have positive effects with low contribution; there-
fore, the overall contribution of this latent variable is nega-
tive toward the property endpoint which is also justified by 
the structures of molecules (presence of such features).

Comparison of the Recent Work

It is not possible to provide a strict comparison between 
the present study with related work due to the different 
composition of training and test set, total number of com-
pounds used, number of variables used, etc., but we have 
tried to provide a possible comparison. Rojas et al. (2015) 
[8] and Rojas et al. (2015) [10] reported an in silico model 
using the retention index (RI) of 1184 flavor and fragrance 
compounds as an endpoint. The statistical results showed 
that the RMSD values for both the training and test sets 
were higher compared to the present work (the lower the 
RMSD value, the better the model quality). However, 
some of the previous studies lacked the reporting of 

Fig. 2   Scatter plots of the developed models

https://www.umetrics.com
https://www.umetrics.com
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exhaustive validation results in the form of different inter-
nationally accepted validation metrics, the use of simple 
and reproducible descriptors, specific findings (features 
responsible for the design and development of novel and 
suitable F&F compound), consensus prediction, as well as 
a wide domain of applicability. We have developed PLS-
ICP models to assess the retention index (RI) of flavor 
and fragrance compounds. Models were developed using 
simple, reproducible, and easily interpretable 2D descrip-
tors and retention index (RI) as endpoints. The present 
work demonstrates better robustness, quality, reliability, 
and predictivity than the previously developed models. 
Our models were developed using a comparatively lower 
number of variables. Consensus predictions (in our case, 
the winner model is CM3) were also employed to improve 
the predictivity of the models. Our developed models have 
a wide domain of applicability and consist of simple, 
robust, reproducible, and easily interpretable 2D descrip-
tors. Models were rigorously validated using internation-
ally accepted validation metrics which show reliability, 
predictivity, and robustness. Some important features are 
reported in our study which will help design a novel and 
suitable F&F and related compounds. The comparison of 
the previous work (Rojas et al. (2015) [8] and Rojas et al. 
(2015) [10]) with the present study along with different 
validation metrics and ICP results is provided in Table 3. 

Advantages and Implication of the Present Work

We have developed regression-based QSPR models using 
2D descriptors and the GA-PLS method (avoid any chances 
of inter-correlation among descriptors) to assess the reten-
tion index of flavor and fragrance compounds. Models were 
developed using simple, reproducible, and easily interpret-
able 2D descriptors and rigorously validated with various 
internationally accepted validation metrics (both external 
and internal validation metrics) in compliance with the 
OECD guidelines to check the robustness, reliability, pre-
dictivity, and domain of applicability. Consensus predictions 
were also employed to improve the external predictivity and 
domain of applicability of the developed models (in our 
case, CM3 is the winner model). Some important findings 
regarding RI of F& F compounds were observed from this 
study: hydrophobicity, the presence of larger fragments, high 
molecular weight, and aromaticity were responsible for the 
high RI value (+ ve contribution) of the flavor and fragrance 
compounds, while polarity and hydrophilicity reduce (−ve 
contribution) the retention index of the flavor and fragrance 
compounds. Hence, this information can be used for the 
selection and optimization of the stationary phase accord-
ing to the available organic compounds (flavor and fragrance 
compounds) and for achieving the desired retention index. 
Finally, developed models can be used for data gap filling 
(prediction of RI value of untested and new compounds 

Fig. 3   Mechanistic interpretation of the developed models



	 D. Bera et al.

within the domain of applicability); consequently, this infor-
mation (with known calculated RI values) can be used in 
the flavor and fragrance industry to identify unknown com-
pounds (by comparing with RI values) in complex mixtures 
by reducing time, cost, the need of highly skilled labor, 
costly instrumentation, and complexity of experimentation. 
Thus, developed models will help design and develop suita-
ble and novel flavors and fragrances that fulfill the product’s 
requirement before experimental verification.

Conclusion

In the current study, regression-based QSPR models were 
developed using the PLS method to assess the retention 
index of flavor and fragrance compounds. Models were 
developed using simple, reproducible, and easily interpret-
able 2D descriptors and retention index (RI) as endpoints. 
Feature selection was performed using different strategies 
(such as the stepwise selection method and the Genetic 
Algorithm (GA)) to extract the most significant descriptors 
contributing to the property endpoint (retention index). We 
have rigorously validated the developed models using vari-
ous globally accepted validation metrics (both external and 
internal validation metrics) in compliance with the OECD 
(Organization for Economic Cooperation and Development) 
principles. Consensus predictions were also employed to 
improve the external predictivity of the developed models 
(in our case, CM3 is the winner model). From the statistical 
results, it was concluded the developed models are robust, 
reliable, predictive, and wide domain of applicability. From 
the mechanistic interpretation, it was observed that hydro-
phobicity, the presence of larger fragments, high molecular 
weight, and aromaticity enhance the retention index (RI) of 

the flavor and fragrance compounds. In contrast, polarity and 
hydrophilicity reduce the retention index of the flavor and 
fragrance compounds. Hence, this information can be used 
for the selection and optimization of the stationary phase 
according to the available organic compounds (flavor and 
fragrance compounds) and for achieving the desired reten-
tion index. Finally, developed models can be used to predict 
the RI values for any new or unknown compound (data gap 
filling), consequently, this information (with known cal-
culated RI values) can be used in the flavor and fragrance 
industry to identify unknown compounds (by comparing 
with RI values) in complex mixtures by reducing the time, 
cost, and complexity of experimentation. Thus, developed 
models will be helpful in designing suitable and novel fla-
vors and fragrances that fulfill the product’s requirement 
before experimental verification.
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Table 3   Comparison with the previous work by [8, 10]

Developed model Total number of 
compounds used

No. of com-
pounds on the 
training set and 
test set

No. of features in 
the initial pool

Type 
of the 
features

No. of features 
in the final 
model

R
2

train
R
2
test

RMSD
train

RMSD
test

Present work Initially 1208, 
and after cura-
tion 1194

894 in the train-
ing set and 298 
in the test set

309 2D 6 (LV-3) 0.909 – 96.168 73.756
Model 1
Model 2 6 (LV-4) 0.918 – 91.246 73.756
Model 3 6 (LV -4) 0.915 – 92.718 74.928
Model 4 6 (LV -4) 0.908 – 96.479 75.463
Model 5 6 (LV -4) 0.913 – 94.188 75.372
Previous 1206 N

train
 = 400, N

val
 

= 405, N
test

 = 
403

1815 conforma-
tional descrip-
tors

2D 4 0.910 0.93 100.94 82.99
Rojas et al. 

(2015) [8]
Rojas et al. 

(2015)[10]
Initially 1206 and 

after curation 
1184

N
train

 = 395, N
val

 
= 396, N

test
 = 

393

1815 non-
conformational 
descriptors

2D 7 0.902 0.904 137.60 121.978
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value of the entire datasets and model descriptors for QSPR (M1–M5) 
models (training and test set) have been made available in Supporting 
Information 1.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Ethical Approval  Not applicable.

Consent to Participate  This article does not contain any studies with 
human participants or animals, clinical trial registration, or plant repro-
ducibility performed by any author.

Consent for Publication  All authors have approved this paper and agree 
with its publication.

References

	 1.	 Rastogi SC, Heydorn S, Johansen JD, Basketter DA (2001) Fra-
grance chemicals in domestic and occupational products. Contact 
Dermat 45(4):221–225. https://​doi.​org/​10.​1034/j.​1600-​0536.​2001.​
450406.x

	 2.	 https://​www.​google.​co.​in/​books/​editi​on/​Common_​Fragr​ance_​
and_​Flavor_​Mater​ials/​0jFdJ​AooDL​0C?​hl=​en&​gbpv=​1&​dq=​
chemi​cal+​nature+​of+​the+​flavor+​and+​fragr​ance+​compo​und&​
pg=​PP2&​print​sec=​front​cover

	 3.	 Hu S, Liu X, Zhang S, Quan D (2023) An overview of taste-
masking technologies: approaches, application, and assessment 
methods. AAPS PharmSciTech 24(2):67. https://​doi.​org/​10.​1208/​
s12249-​023-​02520-z

	 4.	 Babushok VI (2015) Chromatographic retention indices in iden-
tification of chemical compounds. TrAC Trends Anal Chem 
1(69):98–104. https://​doi.​org/​10.​1016/j.​trac.​2015.​04.​001

	 5.	 Fortune Business Insights. Flavors and fragrances market size, 
share report (2021–2028) (2021). https: //www.​fortu​nebus​iness​
insig​hts.​com/​flavo​rs-​and-​fragr​ances-​market-​102329 Accessed 13 
Jun 2024

	 6.	 Sell CS (2014) Chemistry and the sense of smell. John Wiley & 
Sons. https://​books.​google.​co.​in/​books?​id=​Mpc6A​wAAQB​AJ.

	 7.	 Zhang L, Mao H, Liu L, Du J, Gani R (2018) A machine learning 
based computer-aided molecular design/screening methodology 
for fragrance molecules. Comput Chem Eng 115:295–308. https://​
doi.​org/​10.​1016/j.​compc​hemeng.​2018.​04.​018

	 8.	 Rojas Villa CX, Duchowicz PR, Tripaldi P, Pis Diez R. Quantita-
tive structure-property relationship analysis for the retention index 
of fragrance-like compounds on a polar stationary phase. https://​
ri.​conic​et.​gov.​ar/​handle/​11336/​48829.

	 9.	 Ahmad Dar A, Sangwan PL, Kumar A (2020) Chromatography: 
an important tool for drug discovery. J Sep Sci 43(1):105–119. 
https://​doi.​org/​10.​1002/​jssc.​20190​0656

	10.	 Rojas C, Duchowicz PR, Tripaldi P, Diez RP (2015) QSPR analy-
sis for the retention index of flavors and fragrances on a OV-101 
column. Chemom Intell Lab Syst 140:126–132. https://​doi.​org/​
10.​1016/j.​chemo​lab.​2014.​09.​020

	11.	 Keller A, Gerkin RC, Guan Y, Dhurandhar A, Turu G, Szalai 
B, Mainland JD, Ihara Y, Yu CW, Wolfinger R, Vens C (2017) 
Predicting human olfactory perception from chemical features of 
odor molecules. Science 355(6327):820–826. https://​doi.​org/​10.​
1126/​scien​ce.​aal20​14

	12.	 Du H, Wang J, Hu Z, Yao X (2008) Quantitative structure-
retention relationship study of the constituents of saffron aroma 
in SPME-GC–MS based on the projection pursuit regression 

method. Talanta 77(1):360–365. https://​doi.​org/​10.​1016/j.​talan​
ta.​2008.​06.​038

	13.	 Sharma A, Kumar R, Semwal R, Aier I, Tyagi P, Varadwaj PK 
(2020) DeepOlf: deep neural network-based architecture for pre-
dicting odorants and their interacting olfactory receptors. IEEE/
ACM transactions on computational biology and bioinformat-
ics. 19(1):418–28. https://​ieeex​plore.​ieee.​org/​abstr​act/​docum​
ent/​91158​44.

	14.	 Rojas Villa CX, Duchowicz PR, Tripaldi P, Pis Diez R. Quanti-
tative structure-property relationships for predicting the reten-
tion indices of fragrances on stationary phases of different 
polarity. https://​ri.​conic​et.​gov.​ar/​handle/​11336/​63796.

	15.	 Kumar A, Kumar P, Singh D (2022) QSRR modelling for the 
investigation of gas chromatography retention indices of flavour 
and fragrance compounds on Carbowax 20 M glass capillary 
column with the index of ideality of correlation and the con-
sensus modelling. Chemom Intell Lab Syst 224:104552. https://​
doi.​org/​10.​1016/j.​chemo​lab.​2022.​104552

	16.	 Noorizadeh H, Farmany A, Noorizadeh M (2011) Quantitative 
structure-retention relationships analysis of retention index of 
essential oils. Quim Nova 34:242–249. https://​doi.​org/​10.​1590/​
S0100-​40422​01100​02000​14

	17.	 Pourbasheer E, Beheshti A, Vahdani S, Nekoei M, Danandeh 
M, Abbasghorbani M, Ganjali MR (2015) Simple QSPR mod-
eling for prediction of the GC retention indices of essential oil 
compounds. J Essent Oil Bear Plants 18(6):1298–1309. https://​
doi.​org/​10.​1080/​09720​60X.​2014.​884768

	18.	 Liu Q, Luo D, Wen T, GholamHosseini H, Li J (2021) In silico 
prediction of fragrance retention grades for monomer flavors 
using QSPR models. Chemom Intell Lab Syst 15(218):104424. 
https://​doi.​org/​10.​1016/j.​chemo​lab.​2021.​104424

	19.	 Ahmadi S, Lotfi S, Hamzehali H, Kumar P (2024) A simple and 
reliable QSPR model for prediction of chromatography reten-
tion indices of volatile organic compounds in peppers. RSC Adv 
14(5):3186–3201

	20.	 Riahi S, Ganjali MR, Pourbasheer E et al (2008) QSRR study 
of GC retention indices of essential-oil compounds by multiple 
linear regression with a genetic algorithm. Chroma 67:917–922. 
https://​doi.​org/​10.​1365/​s10337-​008-​0608-4

	21.	 Kumar P, Kumar A, Lal S, Singh D, Lotfi S, Ahmadi S (2022) 
CORAL: quantitative structure retention relationship (QSRR) 
of flavors and fragrances compounds studied on the stationary 
phase methyl silicone OV-101 column in gas chromatography 
using correlation intensity index and consensus modelling. J 
Mol Struct 5(1265):133437

	22.	 Maulana A, Noviandy TR, Idroes R, Sasmita NR, Suhendra R, 
Irvanizam I (2020) Prediction of kovats retention indices for 
fragrance and flavor using artificial neural network. IEEE, New 
York, pp 1–5

	23.	 Matyushin DD, Buryak AK (2020) Gas chromatographic reten-
tion index prediction using multimodal machine learning. IEEE 
Access 8:223140–223155. https://​doi.​org/​10.​1109/​ACCESS.​
2020.​30450​47

	24.	 Wang YT, Yang ZX, Piao ZH, Xu XJ, Yu JH, Zhang YH (2021) 
Prediction of flavor and retention index for compounds in beer 
depending on molecular structure using a machine learning 
method. RSC Adv 11(58):36942–36950. https://​doi.​org/​10.​
1039/​D1RA0​6551C

	25.	 Agustia M et al (2022) Application of Fuzzy Support Vector 
Regression to Predict the Kovats Retention Indices of Flavors 
and Fragrances. IEEE, New York, pp 13–18

	26.	 Matyushin DD, Sholokhova AY, Buryak AK (2019) A deep 
convolutional neural network for the estimation of gas chroma-
tographic retention indices. J Chromatogr A 6(1607):460395. 
https://​doi.​org/​10.​1016/j.​chroma.​2019.​460395

https://doi.org/10.1034/j.1600-0536.2001.450406.x
https://doi.org/10.1034/j.1600-0536.2001.450406.x
https://www.google.co.in/books/edition/Common_Fragrance_and_Flavor_Materials/0jFdJAooDL0C?hl=en&gbpv=1&dq=chemical+nature+of+the+flavor+and+fragrance+compound&pg=PP2&printsec=frontcover
https://www.google.co.in/books/edition/Common_Fragrance_and_Flavor_Materials/0jFdJAooDL0C?hl=en&gbpv=1&dq=chemical+nature+of+the+flavor+and+fragrance+compound&pg=PP2&printsec=frontcover
https://www.google.co.in/books/edition/Common_Fragrance_and_Flavor_Materials/0jFdJAooDL0C?hl=en&gbpv=1&dq=chemical+nature+of+the+flavor+and+fragrance+compound&pg=PP2&printsec=frontcover
https://www.google.co.in/books/edition/Common_Fragrance_and_Flavor_Materials/0jFdJAooDL0C?hl=en&gbpv=1&dq=chemical+nature+of+the+flavor+and+fragrance+compound&pg=PP2&printsec=frontcover
https://doi.org/10.1208/s12249-023-02520-z
https://doi.org/10.1208/s12249-023-02520-z
https://doi.org/10.1016/j.trac.2015.04.001
http://www.fortunebusinessinsights.com/flavors-and-fragrances-market-102329
http://www.fortunebusinessinsights.com/flavors-and-fragrances-market-102329
https://books.google.co.in/books?id=Mpc6AwAAQBAJ
https://doi.org/10.1016/j.compchemeng.2018.04.018
https://doi.org/10.1016/j.compchemeng.2018.04.018
https://ri.conicet.gov.ar/handle/11336/48829
https://ri.conicet.gov.ar/handle/11336/48829
https://doi.org/10.1002/jssc.201900656
https://doi.org/10.1016/j.chemolab.2014.09.020
https://doi.org/10.1016/j.chemolab.2014.09.020
https://doi.org/10.1126/science.aal2014
https://doi.org/10.1126/science.aal2014
https://doi.org/10.1016/j.talanta.2008.06.038
https://doi.org/10.1016/j.talanta.2008.06.038
https://ieeexplore.ieee.org/abstract/document/9115844
https://ieeexplore.ieee.org/abstract/document/9115844
https://ri.conicet.gov.ar/handle/11336/63796
https://doi.org/10.1016/j.chemolab.2022.104552
https://doi.org/10.1016/j.chemolab.2022.104552
https://doi.org/10.1590/S0100-40422011000200014
https://doi.org/10.1590/S0100-40422011000200014
https://doi.org/10.1080/0972060X.2014.884768
https://doi.org/10.1080/0972060X.2014.884768
https://doi.org/10.1016/j.chemolab.2021.104424
https://doi.org/10.1365/s10337-008-0608-4
https://doi.org/10.1109/ACCESS.2020.3045047
https://doi.org/10.1109/ACCESS.2020.3045047
https://doi.org/10.1039/D1RA06551C
https://doi.org/10.1039/D1RA06551C
https://doi.org/10.1016/j.chroma.2019.460395


	 D. Bera et al.

	27.	 Bi K, Zhang D, Qiu T, Huang Y (2019) GC-MS fingerprints pro-
filing using machine learning models for food flavor prediction. 
Processes 8(1):23. https://​doi.​org/​10.​3390/​pr801​0023

	28.	 Vrzal T, Malečková M, Olšovská J (2021) DeepReI: deep learn-
ing-based gas chromatographic retention index predictor. Anal 
Chim Acta 22(1147):64–71. https://​doi.​org/​10.​1016/j.​aca.​2020.​
12.​043

	29.	 Matyushin DD, Sholokhova AY, Buryak AK (2021) Deep learning 
based prediction of gas chromatographic retention indices for a 
wide variety of polar and mid-polar liquid stationary phases. Int 
J Mol Sci 22(17):9194. https://​doi.​org/​10.​3390/​ijms2​21791​94

	30.	 Vigneau E, Courcoux P, Symoneaux R, Guérin L, Villière A 
(2018) Random forests: a machine learning methodology to 
highlight the volatile organic compounds involved in olfactory 
perception. Food Qual Prefer 1(68):135–145. https://​doi.​org/​10.​
1016/j.​foodq​ual.​2018.​02.​008

	31.	 Roy K, Narayan Das R (2014) A review on principles, theory and 
practices of 2D-QSAR. Curr Drug Metab 15(4):346–379

	32.	 Todeschini R, Consonni V (2008) Handbook of molecular descrip-
tors. Wiley

	33.	 Kumar A, Ojha PK, Roy K (2024) The first report on the assess-
ment of maximum acceptable daily intake (MADI) of pesticides 
for humans using intelligent consensus predictions. Environ Sci 
Process Impacts. https://​doi.​org/​10.​1039/​D4EM0​0059E

	34.	 Kumar A, Ojha PK, Roy K (2023) QSAR modeling of chronic rat 
toxicity of diverse organic chemicals. Comput Toxicol 26:100270. 
https://​doi.​org/​10.​1016/j.​comtox.​2023.​100270

	35.	 De P, Bhattacharyya D, Roy K (2020) Exploration of nitroimida-
zoles as radiosensitizers: application of multilayered feature selec-
tion approach in QSAR modeling. Struct Chem 31:1043–1055. 
https://​doi.​org/​10.​1007/​s11224-​019-​01481-z

	36	 Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error 
measures. Further studies on validation of predictive QSAR mod-
els. Chemom Intell Lab Syst 152:18–33. https://​doi.​org/​10.​1016/j.​
chemo​lab.​2016.​01.​008

	37.	 Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR 
for applications in pharmaceutical sciences and risk assessment. 
Academic press, Cambridge

	38.	 Kumar A, Kumar V, Ojha PK, Roy K (2024) Chronic aquatic 
toxicity assessment of diverse chemicals on Daphnia magna 
using QSAR and chemical read-across. Regul Toxicol Pharmacol 
1(148):105572. https://​doi.​org/​10.​1016/j.​yrtph.​2024.​105572

	39.	 Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic 
tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130. 
https://​doi.​org/​10.​1016/​S0169-​7439(01)​00155-1

	40.	 SIMCA-P U.M.E.T.R.I.C.S. (2002) 10.0, info@ umetrics. com: 
www. umetrics. com, Umea.

	41.	 Kumar A, Podder T, Kumar V, Ojha PK (2023) Risk assessment 
of aromatic organic chemicals to T. pyriformis in environmental 
protection using regression-based QSTR and read-across algo-
rithm. Process Saf Environ Prot 170:842–854. https://​doi.​org/​10.​
1016/j.​psep.​2022.​12.​067

	42	 Khan K, Jillella GK, Gajewicz-Skretna A (2024) Integrated mod-
eling of organic chemicals in tadpole ecotoxicological assessment: 
exploring Qstr, Q-Rasar, and intelligent consensus prediction 

techniques. Q-Rasar Intell Consens Predict Tech. https://​doi.​org/​
10.​2139/​ssrn.​47248​72

	43.	 Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve 
the quality of predictions from an “intelligent” use of multiple 
QSAR/QSPR/QSTR models? J Chemom 32(4):e2992. https://​doi.​
org/​10.​1002/​cem.​2992

	44.	 Rücker C, Rücker G, Meringer M (2007) y-Randomization and 
its variants in QSPR/QSAR. J Chem Inf Model 47(6):2345–2357. 
https://​doi.​org/​10.​1021/​ci700​157b

	45.	 Roy K, Kar S, Ambure P (2015) On a simple approach for deter-
mining applicability domain of QSAR models. Chemom Intell 
Lab Syst 145:22–29. https://​doi.​org/​10.​1016/j.​chemo​lab.​2015.​04.​
013

	46.	 Zapadka M, Kaczmarek M, Kupcewicz B, Dekowski P, Walkow-
iak A, Kokotkiewicz A, Łuczkiewicz M, Buciński A (2019) 
An application of QSRR approach and multiple linear regres-
sion method for lipophilicity assessment of flavonoids. J Pharm 
Biomed Anal 164:681–689. https://​doi.​org/​10.​1016/j.​jpba.​2018.​
11.​024

	47.	 Ciura K, Belka M, Kawczak P, Bączek T, Nowakowska J (2018) 
The comparative study of micellar TLC and RP-TLC as poten-
tial tools for lipophilicity assessment based on QSRR approach. 
J Pharm Biomed Anal 149:70–79. https://​doi.​org/​10.​1016/j.​jpba.​
2017.​10.​034

	48.	 Kumar A, Ojha PK, Roy K (2024) First report on pesticide sub-
chronic and chronic toxicities against dogs using QSAR and 
chemical read-across. SAR QSAR Environ Res 35(3):241–263. 
https://​doi.​org/​10.​1080/​10629​36X.​2024.​23201​43

	49.	 Hall LM, Hill DW, Bugden K, Cawley S, Hall LH, Chen MH, 
Grant DF (2018) Development of a reverse phase HPLC reten-
tion index model for nontargeted metabolomics using synthetic 
compounds. J Chem Inf Model 58(3):591–604. https://​doi.​org/​10.​
1021/​acs.​jcim.​7b004​96

	50.	 Braibanti A, Fisicaro E, Compari C (2000) Hydrophobic effect: 
solubility of non-polar substances in water, protein denaturation, 
and micelle formation. J Therm Anal Calorim 61(2):461–481. 
https://​doi.​org/​10.​1023/a:​10101​69417​937

	51.	 Xing B, McGill WB, Dudas MJ (1994) Sorption of α-naphthol 
onto organic sorbents varying in polarity and aromaticity. Chem-
osphere 28(1):145–153. https://​doi.​org/​10.​1016/​0045-​6535(94)​
90208-9

	52.	 Mandal S, Mandal S, Ghosh SK, Sar P, Ghosh A, Saha R, Saha 
B (2016) A review on the advancement of ether synthesis from 
organic solvent to water. RSC Adv 6(73):69605–69614. https://​
doi.​org/​10.​1039/​C6RA1​2914E

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.3390/pr8010023
https://doi.org/10.1016/j.aca.2020.12.043
https://doi.org/10.1016/j.aca.2020.12.043
https://doi.org/10.3390/ijms22179194
https://doi.org/10.1016/j.foodqual.2018.02.008
https://doi.org/10.1016/j.foodqual.2018.02.008
https://doi.org/10.1039/D4EM00059E
https://doi.org/10.1016/j.comtox.2023.100270
https://doi.org/10.1007/s11224-019-01481-z
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.1016/j.yrtph.2024.105572
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.psep.2022.12.067
https://doi.org/10.1016/j.psep.2022.12.067
https://doi.org/10.2139/ssrn.4724872
https://doi.org/10.2139/ssrn.4724872
https://doi.org/10.1002/cem.2992
https://doi.org/10.1002/cem.2992
https://doi.org/10.1021/ci700157b
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1016/j.jpba.2018.11.024
https://doi.org/10.1016/j.jpba.2018.11.024
https://doi.org/10.1016/j.jpba.2017.10.034
https://doi.org/10.1016/j.jpba.2017.10.034
https://doi.org/10.1080/1062936X.2024.2320143
https://doi.org/10.1021/acs.jcim.7b00496
https://doi.org/10.1021/acs.jcim.7b00496
https://doi.org/10.1023/a:1010169417937
https://doi.org/10.1016/0045-6535(94)90208-9
https://doi.org/10.1016/0045-6535(94)90208-9
https://doi.org/10.1039/C6RA12914E
https://doi.org/10.1039/C6RA12914E


Intelligent Consensus Predictions of the Retention Index of Flavor and Fragrance Compounds…

Authors and Affiliations

Doelima Bera1 · Ankur Kumar2 · Joyita Roy1 · Kunal Roy1

 *	 Kunal Roy 
	 kunalroy_in@yahoo.com; kunal.roy@jadavpuruniversity.in

1	 Drug Theoretics and Cheminformatics Laboratory, 
Department of Pharmaceutical Technology, Jadavpur 
University, Kolkata 700032, India

2	 Drug Discovery and Development Laboratory, Department 
of Pharmaceutical Technology, Jadavpur University, 
Kolkata 700032, India


	Intelligent Consensus Predictions of the Retention Index of Flavor and Fragrance Compounds Using 2D Descriptors
	Abstract
	Graphical abstract

	Introduction
	Materials and Methods
	Dataset Collection
	Molecular Representation and Data Curation
	Descriptor Calculation
	Dataset Division
	Test-Training Pre-Treatment
	Feature Selection and Model Development
	Model Validation Criteria
	Applicability Domain Assessment
	Intelligent Consensus Predictor (ICP)

	Results and Discussion
	Developed QSPR Models for the Retention Index (RI)
	Y Randomization of the PLS Models
	Applicability Domain Assessment
	Mechanistic Interpretation of the Modeled Descriptors
	PLS Model Interpretation
	Comparison of the Recent Work
	Advantages and Implication of the Present Work

	Conclusion
	Acknowledgements 
	References


