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Preface

This dissertation is presented to partially fulfill the Master of Pharmacy degree in Pharmaceutical
Technology. The work spanned over one year and six months. The present study was executed by
developing in silico predictive models to derive better RASPR descriptors in the quantitative
structure-property relationship (QSPR) paradigm. We considered various material properties for

the development of the predictive models.

The general comprehension of the various material types mostly depends on understanding
microstructure and atomic and molecular structure. Earlier, experimentation was the only route for
detecting material properties that utilized a lot of time, capital, and resources. Despite all this, these
experimental procedures are prone to error and sometimes fail to explore the desired outcomes,
leading to a loss of capital and resources. Prior knowledge of materials' intrinsic and extrinsic
properties would benefit their application in the required field of interest. Knowledge about the
structural chemistry/features of the compounds that correspond to the materials property can
provide a brief account of how to improve the required property and/or reduce the redundant
property. Development of new materials with desired properties is the need of hour in various
fields due to increased applications of materials in electrical, energy, health care, and
manufacturing industries. So, to reduce the cost of failure and resources, different computational
methods are used to develop new efficient materials before their synthesis.

The application of various computational approaches for the prediction of the properties of
chemical substances has been an effective alternative to experimental methods. Quantitative
structure-property relationship (QSPR) is a statistical method widely used to predict different
property-based endpoints. Read-across (RA) is a similarity-based approach for predictions and
data gap-filling. It does not involve the development of a mathematical model and, thus, is not a
statistical technique. It simply generates the consensus-based predictions of the query compounds.
Recently, the concepts of quantitative structure-property relationship (QSPR) and read-across
(RA) methods were merged to develop a new emerging cheminformatic tool: read-across
structure-property relationship (RASPR).

In the present study, we have modeled different properties of materials (especially, energetic
compounds and p-type semiconductors) by using the g-RASPR method. The models developed




have shown acceptable statistical significance. The models developed were also validated
rigorously based on internal and external validation strategies. The following analyses have been

performed in this dissertation:

Study 1: Machine learning-based q-RASPR predictions of detonation heat for nitrogen-containing

compounds.

Study 2: Predicting the performance and stability parameters of energetic materials (EMs) using

a machine learning-based g-RASPR approach.

Study 3: Predictive cheminformatics modeling of reorganization energy (RE) for p-type organic
semiconductors: Integration of quantitative read-across structure-property relationship (g-RASPR)

and stacking regression analysis.
The accomplished work has been presented in this dissertation under the following sections:

Chapter 1: Introduction

Chapter 2: Present Work

Chapter 3: Materials and Methods
Chapter 4: Result and Discussion
Chapter 5: Conclusion

Chapter 6: References

Appendix: Reprints
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1. INTRODUCTION

1.1 Materials science

Materials have always played a crucial role in the development of human civilization. The
development of new objects can't be processed without any prior knowledge of the properties
of the materials to be used. Materials possess unique physical, chemical, mechanical,
thermodynamic, and electronic properties that can be harnessed to create new materials or
improve existing ones, resulting in innovative and practical applications (Yu et. al., 2021). The
nature of chemical bonds, atom ordering, and microstructure of the materials are the key
components for determining materials' properties. So, one can consider that the behavior of
materials limits the development and performance of the machine and/or equipment.
Understanding materials' properties is required to develop new technologies and improve the
quality of life worldwide. The chemical space of materials is so vast due to their broad
composition and configurational degree of freedom (Pilania et. al., 2013).

Materials science is a multidisciplinary field that combines chemistry, physics, engineering,
and many other sciences to study the properties of solid materials and how the material's
composition and structure are linked to those properties. Materials properties can be specified
using either the microscopic or the macroscopic attributes. Features like electron affinity, band
energy, molecular atomization energy, lattice constant, etc. are used to define the microscopic
attributes. The link between the physical and mechanical properties of the materials
characterizes the macroscopic view of the materials. The microscopic features influence the
macroscopic performance of the materials (Stergiou et. al., 2023.). The primary objective of
materials science is to determine the relationships between a material's composition, atomic or
molecular structure, microstructure, and macroscopic characteristics. Knowledge about
materials and their respective intrinsic or extrinsic properties is necessary for their application
in a particular field. Materials science is enhanced by materials engineering, as it deals with
processes that involve manufacturing, transformation, and shaping of materials. As shown in
Figure 1.1, the four major aspects related to materials science and technology are (Mercier et.
al., 2002):-

i.  Composition, structure
ii.  Synthesis, manufacturing, processing

iii.  Properties




iv.  Performances

Performances
, Properties
Synthesis P
Manufacturin
Processing
Composition
Structure

Figure 1.1: Major aspects of materials science

With the fast development and technological advancement in recent years, the rate of material
discovery has increased to multiples. Materials property prediction is a complex task as
materials' properties depend on various factors like geometry, material constitution, electronic
characteristics, etc. Prediction of property and its optimization is essential for the development
of new advanced/innovative entities. A long time ago, experiments were the only way to
analyze different properties associated with compounds. There is no doubt that experiments
provide us with the exact knowledge of the property, but at the same time, it requires a lot more
time, capital, manpower, resources, and proper experimental set-up to carry out the
experiments. Experimental procedures may give rise to errors (mechanical, human, or
instrumental) in predictions arising due to instrument faults, inappropriate testing procedures,

changes in environmental factors, etc. (Yu et. al., 2021).

Table 1.1 lists some of the commonly used material types in materials science and their relative

properties of concern.

Type of material Related properties References

Ceramics Hardness, thermal  conductivity, thermal Wachtman et.
expansion, porosity, creep, chemical stability, al., 2009

optical properties, brittleness, entropy

Polymers Glass transition temperature, refractive index, Askadskii, 2003
Young’s modulus, transparency, Melt Flow Index
(MFI), absorption and swelling, decomposition

rate




Light absorbing Band gap, absorption spectra, power conversion Yu et. al., 2012

materials efficiency, optical density

Energetic materials/ Detonation velocity, detonation pressure, density, Agrawal, 2010
High energy density thermal decomposition, impact sensitivity, melting

materials (HEDMs) point, detonation heat, heat of formation

Nanomaterials Shape and size, surface area to volume ratio, Asha and
magnetic  properties, electronic  properties, Narain, 2020
catalytic properties, toxicity and biocompatibility,

surface charge

Semiconductors Band gap, carrier mobility, thermal conductivity, Peter and
photoelectric effect characteristics Cardona, 2010
Composites High  strength-to-weight  ratio,  corrosion Clyne and Hull,

resistance,  electrical  insulation, ductility, 2019;

hardness, temperature resistance (high/low), Chawla, 2012

damping capacity, biocompatibility, porosity
1.2 Materials Informatics (Ml)
As the experimental procedures are prone to errors and are long time consuming, researchers
nowadays have shifted towards data-driven approaches to predict the materials' properties. In-
silico methods have revolutionized the field of material science. Advancements in
computational power and the development of new software tools enable researchers to access
the materials on a large scale. Scientists have relied on different computational approaches
because of the high cost of material synthesis and poor success rate (Ramakrishna et al., 2019).
Materials science, in collaboration with information science, has led to the development of a
new branch of materials science called "Materials informatics" (MI) (Takahashi and Tanaka,
2016). MI aims to develop a relationship between the molecular structures and properties
associated with materials (Agarwal and Choudhary, 2019). Accessibility to the publicly
available large databases generated through experimental results and/or computational
simulations is advantageous for the development of MI. These large databases containing
information on the properties of materials help the researchers to identify and correlate the
patterns of the compounds. These correlations are further used for the development of
predictive models to determine the behaviors of the materials (Lopez-Bezanilla and Littlewood,
2020). Ml leverages advanced computational techniques and data-driven methods to accelerate

the discovery, development, and optimization of materials. This emerging field addresses the

3



challenges faced in traditional materials science approaches, such as the time-consuming and
costly nature of experimental trial and error. Ml is applied across various industries, including
electronics, energy, healthcare, and manufacturing, where the demand for innovative materials
with specific functionalities continues to grow. Collaborations between materials scientists,
chemists, physicists, computer scientists, and engineers are crucial for advancing the field and
realizing its full potential.

The density functional theory (DFT) is one of the oldest computational methods used to predict
the physical and chemical characteristics of crystalline materials (Kohn, 1999; Hafner et. al.,
2006). Using DFT, approximately 10%-10° materials properties have been calculated that are
stored in large databases like Open Quantum Materials Database (OQMD) (Saal et. al., 2013;
Kirlin et. al., 2015), the Automatic Flow of Materials Discovery Library (AFLOWLIB)
(Curtarolo et. al., 2012), the Materials Project (Jain et. al., 2013), Joint Automated Repository
for Various Integrated Simulations (JARVIS) (Choudhary et al., 2017; Choudhary et al., 2018),
and the Novel Materials Discovery (NoMaD) (http://nomad-repository.eu/cms/.). With the

availability of such large data sets, in-silico approaches can be used to design, optimize, and/or
discover properties of de novo designed or untested compounds. Applying the cheminformatics
approach in materials science helps to analyze and model the structural and electronic
characteristics of materials for a particular physical, chemical, or mechanical property.
Computational methodologies such as DFT, MD (molecular dynamics), Monte Carlo
techniques, phase-field method, etc., are some of the existing theories that can be used to
predict the property. Cheminformatics has been used in different fields for materials property
prediction of nanomaterials (Malkiel et. al., 2018), microplastics (Li et. al., 2022), polymers
(Doan Tran et. al., 2020), composites (Liu et. al., 2022), ceramics (Han et. al., 2022),
photovoltaic cells (Gregg and Hanna, 2003), energetic materials, light-emitting diodes, etc.
Due to more experimental and simulation data availability, ML (machine learning) provides an
interesting platform for determining material behavior under different conditions and property
predictions (Tercan et. al., 2018). Investigation of physical, chemical, and mechanical
properties like Young's modulus of elasticity, yield strength, thermal conductivity, high thermal
stability, and impact sensitivity are being calculated using computer simulations (Xie et. al.,
2021). Some electrical, optical, phase-transitions, and crystal structure characteristics of

materials can also be identified using simulation techniques (Stein et. al., 2019).



http://nomad-repository.eu/cms/

1.2.1 Quantitative structure-property relationship (QSPR)

Most molecular discoveries today are the results of an iterative, three-phase cycle of design,
synthesis, and testing. Analysis of the results from one phase provides knowledge that enables
the next cycle of discovery to be initiated and further improvement to be achieved. A common
feature of this analysis stage is the construction of some form of model that enables the
observed activity or properties to be related to the molecular structure. Such models are often

referred to as Quantitative Structure-Activity Relationships.

The Quantitative Structure-Activity Relationship (QSAR) paradigm is based on the hypothesis
that a fundamental relationship exists between the molecular structure and biological activity.
Based on this assumption, QSAR attempts to establish a correlation between the various
molecular properties of a set of molecules and their experimentally known biological activity.
According to the type of response, or “endpoint,” there are three main classes of studies:
quantitative structure-property/activity/toxicity relationship (QSPR/QSAR/QSTR) studies that
take into account the modeling of physicochemical property, biological activity, and
toxicological data, respectively (Roy et. al., 2015). However, the term QSAR can be used in
general to refer to all three studies. The QSPR (Ferreira, 2001) study deals with the molecular
features governing their physicochemical properties. The descriptors measure the properties of
the molecules and their hydrophobic, steric, and electronic features in addition to the various
structural patterns. The QSTR (Carlsen et. al., 2009) technique determines the structural
attributes of the molecules responsible for their toxicity profile. The pharmacophoric features
and descriptors obtained from the developed QSAR models may also be utilized for the virtual
screening of large numbers of diverse compounds for a definite response parameter. Besides
this, identifying the prime features providing improved activity to the molecules under a
particular study facilitates the in-silico design of new molecules with enhanced potency. Thus,
a focused library (Tikhonova et. al., 2004) may be developed by compiling the newly designed

molecules with a specific response.

This kind of relationship between molecular structures and changes in their property developed
on a quantitative basis is the focus for quantitative relationship-based studies. Such correlation
represents predictive models derived from applying statistical tools correlating response data
of molecules (including therapeutic activity, property, and toxicity) of chemicals with
descriptors representative of molecular structure and/or property (Selassie and Verma, 2003).

These correlations may be qualitative (simple SAR) or quantitative (QSAR). This quantitative




technique of analyzing the structure-based analysis of molecules enables us to identify the
structure-property relationships of molecules in a precise way. QSAR analysis is based on the
notion that activity (A) depends on structure (C) and physicochemical properties (P) of the

molecules:

Chemical Response (Chemical attributes) =f (Chemical attributes) = f (Structure, Property)
(1.1)

The fact that a molecular structure determines its physicochemical properties is well imitated
from Mendeleev’s periodic table. The advent of QSAR can be dated back to the era of Hansch
when Hansch and co-workers correlated the plant growth regulatory activity of phenoxyacetic
acids to Hammett constants and partition coefficient (Hansch et. al., 1962). They showed that
biological activity could be correlated linearly with free-energy-related terms, a model referred
to as the Linear Free Energy Relationship (LFER) model. The introduction of Hansch’s linear
and parabolic models considerably impacted the understanding of how chemical structures
influenced biological activity. The Free-Wilson approach determined the contributions made
by various structural fragments to the molecules' overall biological activity (Heritage and
Lowis, 1999). Hansch and Free-Wilson analyses thus proposed the concepts of classical QSAR
involving structure-activity relationships in terms of physicochemical parameters, steric
properties, and certain structural features. Later, Fujita-Ban (Leonard and Roy, 2004) modified
the approach of the Free-Wilson model and proposed a substituent-based structure-activity
relationship that determines the type and position of the substituents exerting the prime
influence on the activity profile of these molecules. QSAR models are pattern recognition
models that identify trends in structural features correlating with the experimental property.
QSAR models are useful in several cases, such as suggesting structural modifications to
enhance molecular property. Such quantitative approaches are being applied in many
disciplines like risk assessment, toxicity prediction, and regulatory decisions (Tong et. al.,
2005) apart from drug discovery and lead optimization. In *80s, several 3D (three dimensional)
quantitative relationship approaches like molecular shape analysis (MSA), distance geometry,
comparative molecular field analysis (CoOMFA) comparative molecular similarity indices
analysis (CoMSIA), hypothetical active site lattice (HASL), receptor surface analysis (RSA),
molecular similarity matrices, comparative binding energy (COMBINE) have emerged
(Geronikaki et. al., 2004).




Quantitative structure-property relationships (QSPRs) studies undeniably are of great
importance in the field of materials science. Quantitative structure—property relationship
(QSPR) models are quantitative regression methods that endeavor to relate chemical structure
to property. Quantitative structure-property relationship and related methods have been applied
extensively in a wide range of scientific disciplines, including material informatics, drug
discovery, chemical property prediction, etc. (Wu et. al., 2013). QSPR models are now
regarded as scientifically credible tools for predicting and classifying the properties of untested
chemicals. QSPR method has become an essential tool in different industries, from discovering
new material with desired properties to developing that material (Sukumar et al., 2012; Du et
al., 2021; Le and Winkler, 2018). For example, a growing trend is to use QSPR early in the
material development process as a screening and enrichment tool to eliminate from further

development those chemicals lacking desired properties or predicted to have poor outcomes.

1.2.1.1 Objectives of QSPR

The principal objectives of QSPR analysis are:
1. Prediction of new analogues of compounds with better property

2. Better understanding and exploration of the effect of molecular structure on material
property

3. Optimization of the chemical structure to get the desired properties.

4. Reduction of cost, time, and manpower requirements by developing more effective

compounds using a scientifically less exhaustive approach.

To achieve the objectives as mentioned earlier, it is necessary to have a detailed knowledge of

the following aspects:
(i) Various factors controlling the experimental condition of the molecules.

(i) A thorough examination of molecular structures and their properties. Quantitative structure-
property relationship is an interdisciplinary study of chemistry, statistics, and computer
science. By the prediction of the essential structural requirements needed for obtaining a
molecule with optimized properties, QSPR analysis provides a good platform for the synthesis
of a relatively lower number of chemicals with an improved property of interest.




1.2.1.2 Descriptors

Molecular descriptors are terms that characterize specific information about a studied
molecule. They are the “numerical values associated with the chemical constitution for
correlation of chemical structure with various physical properties, chemical reactivity, or
biological activity” (Van de Waterbeemd et. al., 1997; Randic, 1997). In other words, the
modeled property is represented as a function of quantitative values of structural features or
properties that are termed descriptors for a QSPR model. Cheminformatics methods depend on
generating chemical reference spaces into which new chemical entities are predictable by the
developed QSPR model. The definition of chemical spaces significantly depends on the use of
computational descriptors of studied molecular structure, physical or chemical properties, or

specific features.

Response (property) = f (information in the form of chemical structure or property) = f
(descriptors) (1.2)

The type of descriptors used and the extent to which they can encode the structural features of
the molecules correlated to the property are critical determinants of the quality of any QSPR
model. The descriptors may be physicochemical (hydrophobic, steric, or electronic), structural
(based on the frequency of occurrence of a substructure), topological, electronic (based on
molecular orbital calculations), geometric (based on a molecular surface area calculation), or

simple indicator parameters (dummy variables).

It is interesting to point out that the efficacy of a descriptor can rely heavily on the problem
being considered. More precisely, specific endpoints may need to consider exact molecular
features. The best possible features that make a descriptor ideal for the construction of a QSPR

model are summarized here:

1. A descriptor must be correlated with the structural features for a specific endpoint and show

negligible correlation with other descriptors.
2. A descriptor should apply to a broad class of compounds.

3. A descriptor that can be calculated rapidly and does not depend on experimental properties
can be considered more suitable than one that is computationally exhaustive and relies heavily

on experimental results.




4. A descriptor should generate dissimilar values for structurally different molecules, even if
the structural differences are small. This means that the descriptor should show minimal
degeneracy. In addition to degeneracy, a descriptor should be continuous. It signifies that small
structural changes should lead to small changes in the value of the descriptor.

5. Itis always important that the descriptor has some form of physical interpretability to encode
the query features of the studied molecules.

6. Another significant aspect is the ability to map descriptor values back to the structure for
visualization purposes (Segall et. al., 2009). These visualizations are only sensible when
descriptor values are associated with structural features.

1.2.2 Read-Across (RA)

Among the various in-silico approaches, the QSPR method is one of the most popular methods
for developing predictive models. QSPR is a statistical model-building approach that requires
significant data points to build a meaningful model. In addition, the whole dataset needs to be
divided into training and test sets for validation purposes to fulfill the requirements as
recommended by OECD  guidelines  (https://www.oecd.org/chemicalsafety/risk-

assessment/validationofgsarmodels.htm) (Cherkasov et. al., 2014). Thus, a part of the dataset

is kept aside for model validation that cannot be used for model building. In the case of small
datasets, this type of data loss may lead to the development of a statistically unreliable model
due to lower degrees of freedom. In such cases, different similarity-based approaches are used
for the prediction that involves simple algebraic operations, and no data points are wasted
(Chatterjee et al., 2022).

Read-across is a similarity-based grouping technique that involves simple algebraic operations
and uses the similarity between two chemical compounds to make predictions (Berggren et al.,
2015). It is a non-experimental data gap-filling method that provides information for the
property of a target compound derived from known property data of source compounds with a
similar chemical profile. It is one of the most essential in-silico methods used for data
generation, data gap-filling, and regulatory decision-making (Kovarich et. al., 2019). Read-
across method can be classified into two groups, one is qualitative read-across and the other is
quantitative read-across (Patlewicz et. al., 2018). The target compounds are generally known
as query chemicals and structural analogues which have known property data are known as

source compounds. The predictions from this method are generally obtained by either analogue



https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm

or category approach. The analogue approach considers only one source compound but in the
category approach multiple close source compounds are considered depending on the

availability of data which makes it more reliable and robust (Patlewicz et. al., 2017).

Although this method involves only simple algebraic calculations, the algorithm becomes
computationally inexpensive and can be used for small datasets. The read-across prediction of
a compound can be calculated in different ways one of the methods is by taking the similarity
weightage of the response value of the close source compound (Chatterjee et. al., 2022), which
is calculated by using the following equation:

Z WiXY;

“Sw, 19

Weighted Average Prediction (x,,;) =

W; = weightage of i source compounds which is calculated based on the similarity with the

target compound, Y; = property value of the i source compound

1.2.3 Read-across structure-property relationship (RASPR)

Although the read-across method is useful for the dataset with a limited number of data points
with experimental data, the main disadvantage of this method is that it does not provide any
information on the quantitative contribution of each descriptor. Another similarity-based
approach like the read-across structure-property relationship (RASPR) — similar to the read-
across structure-activity relationship (RASAR), generates a mathematical model using the
similarity and error-based measures as descriptors and has been used for predictive modeling.
The RASAR method was first introduced by Luechtefeld et al. (Luechtefeld et al., 2018) who
developed the classification-based RASAR models. In contrast, Banerjee and Roy were the
first to develop the regression-based quantitative RASAR (q-RASAR) models (Banerjee and
Roy, 2022). The RASPR method is a combined method of read-across and QSPR that
encapsulates the advantages of both of these methods and generates enhanced predictivity. This
method uses selected structural and physicochemical descriptors to generate different similarity
and error-based measures (known as RASPR descriptors) from the similarity-based read-across
approach (Banerjee et. al., 2022). These measures are merged with the initial structural and
physicochemical descriptors, and further feature selection algorithms are employed to develop
RASPR models. The description of the RASPR descriptors is shown in Table 1.2.
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Table 1.2: Definition of RASPR descriptors

RASPR

descriptors

Description

Mathematical Equation

SDsimilarity = n—1
SD similarit It represents the standard deviation of the similarity levels of the selected close training
_similarity =
compounds (CTCs). n = number of CTC
fi = similarity level of selected CTC
f = mean similarity levels of CTC
CV similarity o o o ) SD_similarity
) It represents the coefficient of variation of the similarity levels of the selected CTCs CVsim = —
(CVsim) f
. . . _ *fi
Avg.Sim It is the mean of the similarity levels to the selected CTCs Avg.Sim. (f) = Si=17t
n
Pos.Avg.Sim It is the mean of the similarity levels to the positive CTCs
Neg.Avg.Sim It is the mean of the similarity levels to the negative CTCs
MaxP It is the maximum similarity level to the CTC with response value of more than the
axPos

average response value of the training set.

11



It is the minimum similarity level to the CTC with response value of less than the average

MaxNeg -
response value of the training set.
Abs MaxPos- ] )
MaxN It is the absolute difference of the MaxPos and the MaxNeg values. Abs Dif f = |MaxPos — MaxNeg|
axNeg
' Banerjee-Roy similarity coefficient 1 (can be used to analyze modelability of a set) ! MaxPos — Maxleg
- arity coefficient 1 (can be used to analyze modelability of a se
om anerjec-oy simiartty ( y y Sim argmax (MaxPos, MaxNeg)
? . N .. - , Pos.Avg.Sim — Neg.Avg.Sim
Sm Banerjee-Roy similarity coefficient 2 (can be used to analyze modelability of a set) Sh Avg.Sim
*owix
RA function = 1;11 —
i=1 Wi
. . . . Si
It is a composite function of all the selected molecular features that is derived from read- Wi=Sn o
i=1v1
RA function across. Where, wi= weightage of each CTC, Si=
similarity between each CTC and query
compound, andx; = observed response
values of CTC
. . . (i —%)? n
SD_activity It represents the weighted standard deviation of response values of the selected CTCs. SDactiviey = - X T
i=1 Wi n-—

12



CV_activity

It represents the coefficient of variance of response values of the selected CTCs.

SD_activity
CVactivity = o
wt

Om

Banerjee-Roy concordance coefficient

Im = (=D)"|Posfrac — 0.5|
Where, n = 1 if MaxPos<MaxNeg, n =
2 if MaxPos>MaxNeg, and Posfrac is
the fraction of CTC with response value

more than the mean response of the

training set.
gm SD_similarity It is the product of gm and SD_Similarity
Om Avg.Sim It is the product of gm and Avg. Sim
| A modified form of gm describing the propensity of a query compound to be positive or
class
In- negative

) SD_activity

SE It represents the weighted standard error of the response values of the selected CTCs. SE = ————

13
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1.2.4 Machine learning (ML)

ML is a part of artificial intelligence (Al) that enables machines to learn from previous data,
improve performance based on previous experiences, and predict new data points. At its core,
ML involves the development of algorithms and models that enable computers to recognize
patterns, make predictions, and make decisions based on data. The process begins with the
collection and preparation of relevant data serving as the foundation for training these
algorithms. Through exposure to this data, ML models can identify underlying patterns and
relationships, allowing them to generalize their understanding and make accurate predictions
or classifications when tested with new and unseen data (Jordan and Mitchell, 2015). For
different types of data problems, ML relies on different types of algorithms that are classified
into three main groups — supervised, unsupervised, and reinforcement ML algorithms. In the
supervised ML algorithm, the labelled data is used to train the algorithm, whereas, in
unsupervised ML, the data is unlabelled. The reinforcement algorithm is a feedback-based
learning method where the learning agent is rewarded for every right action and gets a penalty
for the wrong action (Geron, 2022). Currently, ML algorithms have moved beyond purely
theoretical applications to practical applications like the creation of new molecules (Lo et. al.,
2018). ML models and methods have proven to be effective for solving complicated problems
by learning from the data; however, there are also some disadvantages associated with different
ML models including the need for large amounts of high-quality data, complex algorithms, and
difficulty in interpretation of results (Geron, 2022). Despite these challenges, ML methods have
grown rapidly with more powerful algorithms and techniques. Currently, the field of
“explainable AI” has attracted lots of attention, which helps ML models to provide
interpretable explanations for particular predictions (Linardatos et. al., 2020). SHAP or Shapley
additive explanation analysis is one of the important methods used for the interpretation of the
ML models (Yosipof et. al., 2016).

14
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2. PRESENT WORK

The limited resources and cost involved in experimentation have slowed down the process of
development of new materials. The development of new materials is successful through a lot
of trial and error during experimentation. Due to the loss of resources, time, money, manpower,
etc., different molecular modeling techniques are being increasingly used as an alternative to
experimentation. In the last few decades, the advent of computational tools such as quantitative
structure-property relationship (QSPR) has provided significant insight into materials science
(Yosipof et. al., 2016). QSPR can be simply defined as mathematical relationships linking a
compound's property with its chemical structure in a qualitative/quantitative manner. The
guidelines specified by the Organization for Economic Cooperation and Development (OECD)
(https://www.oecd.org/chemicalsafety/risk-assessment/validationofgsarmodels.htm) are

followed to develop a QSPR model. Performing QSPR analysis for small datasets is always
possible, so one can use different similarity-based prediction approaches to develop predictive
models. Read-across (RA) is one of the most popular similarity-based methods that can be used
for data generation and data gap-filling (Chatterjee et. al., 2022). The read-across structure-
property relationship (RASPR) is another approach that incorporates both structural and
physiochemical features of QSPR and similarity and error measures of RA for the development
of the model. The RA-based similarity and error measures are also known as RASPR

descriptors.

The development of predictive models in the form of RASPR analysis provides a well-
validated rational platform for the determination of the properties of all the new chemicals and

to fill data gaps.

In this present study, we have utilized the quantitative read-across structure-property
relationship (gq-RASPR) algorithm to determine or predict the properties of materials like
energetic compounds and p-type semiconductors. For the energetic materials, various
properties related to their performance and stability were calculated using the g-RASPR models
developed in the studies. For the p-type semiconductors, the mobility of charge carriers is
determined through the prediction of reorganization energy (RE) using the g-RASPR model
developed via stacking regression. During the analysis of the models, we found that the
incorporation of the similarity and error measures derived from RA had led to the enhancement
in the external predictivity of the models. We have used the Euclidean distance-based, Gaussian
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kernel-based, and Laplacian kernel-based similarity algorithms for the calculation of RASPR

descriptors.

2.1 Study 1

High energy density materials (HEDMs) are a class of compounds or combinations of
compounds with explosive groups or oxidants and incendiary materials (He et. al., 2021). The
performance and stability of these energetic materials (EMs) depend on several parameters
such as detonation heat, detonation pressure, detonation velocity, density, the heat of formation,
impact sensitivity, chemical degradation/decomposition, electrostatic discharge, etc. (Huang et
al., 2021). The wide applications of these EMs are in civil, military, and industrial fields.

In this study, we have opted for the quantitative read-across structure-property relationship (g-
RASPR) approach [an analog to quantitative read-across structure-activity relationship (g-
RASAR)] to develop a predictive model for the prediction of detonation heat of different N-
containing compounds. The heat of detonation (Q) refers to the quantity of heat energy
liberated by an energetic compound per unit when detonated (Infante-Catillo and Hernandez-
Rivera, 2012). The incorporation of nitrogen into the parent structure or the addition of a
nitrogen-containing substituent enhances the heat of detonation of the EMs as their energy
content is predominantly derived from the heat of formation due to a large number of dynamic
N-N and C—N bonds instead of coming thoroughly from the heat of combustion. Also, the final
detonation product of these nitrogenous compounds is dinitrogen (N2), which is less toxic to
the environment (Jaidann et. al., 2010; Yin et. al., 2016). A set of 162 nitrogenous compounds
was used in this study, collected from the work of He et. al. (He et. al., 2021). The data set
contains information on detonation heat (expressed in KJ/kg) for 162 compounds, both

aromatic and non-aromatic.

2.2 Study 2

In this study, we had developed several predictive models for the prediction of different
properties of EMs corresponding to their performance and stability. The predictive models
were developed using the RASPR approach. Here, performance parameters such as density and
heat of formation were used while for the thermal stability decomposition temperature and
melting point were used for the modeling purpose. The datasets were collected from 2 different
literature sources containing the experimental values for each dataset (Wespiser and Mathieu,
2023). The in-house data derived by Wespiser et. al. was used for the decomposition

temperature, the Bradley melting point dataset was used in previous work by Wespiser et. al.
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for melting point, the Crystallography Open Database was used to collect the data for the
density dataset, and experimental data for the heat of formation was collected from the work
of D. Mathieu (Mathieu, 2018).

2.3 Study 3

Organic semiconductors (OSCs), being light in weight, decomposable, cheap, and flexible, can
be an excellent replacement for inorganic semiconductors. The p-type semiconductors are a
crucial component in semiconductor physics and device engineering. They represent a class of
semiconductors where most charge carriers responsible for electrical conduction are positively
charged "holes" rather than negatively charged electrons (n-type SCs). The p-type
semiconductors play a fundamental role in semiconductor technology, offering versatility and
enabling the design and fabrication of diverse electronic devices essential to modern life.
Organic semiconductors' reorganization energy (RE) is a critical parameter that influences their
charge transport properties. RE (1) can be defined as the energy required for the geometric
relaxation during charge transfer. Since OSCs are used as an active layer for many OLEDs,
OFETs, etc., they can contribute to developing efficient renewable energy sources with better
energy efficiency, and reduced toxicity (as it does not contain any heavy material).

In this study, we have used a set of 173 molecular p-type OSCs which contains a diverse set of
organic compounds having moieties of acenes, thiophenes, thienoacenes, and some anti-
aromatic pantalenes. The experimental RE values for the compounds were collected from

previously published literature (Atahan-Evrenk, 2018).

Table 2.1 provides a brief overview of the type of materials, their related properties, and the

number of data points used in the above-mentioned studies.
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Table 2.1: Description of the datasets.

Material _ No. of
Study Property Unit Reference
type compounds
N-containing Heat of Pandey et.
1 _ kJ/kg 162
EMs detonation al., 2023
Decomposition
°C 565
temperature
5 Energetic Melting point °C 19667 Pandey and
materials Density glcm3 12805 Roy, 2024
Enthalpy of
p-y kJ/mol 2565
formation
Reorganization
3 p-type OSCs LogmeV 173 -

energy
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3. MATERIALS & METHODS

The main aim of the present study is the implementation of a transparent methodological
framework for the development of predictive models using RASPR descriptors. We have
endeavored to maintain explicitness for computation of the descriptors, thinning of the variable
matriXx, selection of potential features as well as judgment of robustness and predictivity of the

models. The section has been divided into the following parts:

e Details of datasets.

e Study-wise specific description of methodologies utilized in each study.
3.1 Details of datasets

3.1.1 Dataset for the nitrogen-containing energetic compounds (Study 1)
This dataset includes 162 nitrogen-containing energetic compounds. 122 compounds were
present in the training set, and 40 compounds were in the test set. The detailed dataset used in

the study is given in Table 3.1.

Table 3.1: Details of N-containing energetic compounds.

S. Observed value of

_ SMILES strings
No. | detonation heat ( kd/kg)

1 3446.08 NNC1=NN=C(NN)N=N1

2 5042.26 [O-][N+]1=C(N)C(C[O-])=NC([N+]([0-])=0)=CIN

3 5380.67 O=[N+](C1=C(N)C([N+]([0-])=0)=NN1)[O-]

4 432.83 CIC1=NC(CI)=NC(CI)=N1

5 4316.69 O=C1C=NN([N+]([O-])=O)N1

] 001043 O=[N+](NIN=C(/N=N/C2=NN([N+]([O-
1)=0)C=N2)N=C1)[O-]

, c079.7 O=[N+](C1=C(N3N=C([N+]([O-

1)=0)N=C3N)N=CN=C1N2N=C([N+]([0-])=0)N=C2N)[O-]
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8 5142.22 O=[N+](CI=NNC=N1)[O-]
9 4332.7 O=[N+](C1=NC(N)=NN1)[O-]
10 414169 [O-1[N+T1=C(N)[N+]([O-1)=C(N)C(IN+]([0-1)=0)=C1N
11" 5769.03 ]C))ig\)t]N(j)l:NNNcl()/[l\:_I]\l e
12 3926.25 NNINC(N3N=NN=C3)=NN=CIN2N=NN=C2
13 4587.84 NC1=NN=C(/N=N/C2=NN=C(N)N=N2)N=N1
14 4583.73 [O-]IN+]1=NN(N)[NH+]([0-])C=C1N
15 5078.72 O=[N+](C1I=NNC2=C1NN=C2[N+]([O-])=0)[O-]
16 4679.37 ;&C:([Cl\ff]iEEI)_]:)%)NN:[[S:]]:[[IL\':]])(CO)C(N=[N+]=[N-
17 5893.03 O=[N+](C1=CC([N+]([0-])=0)=CC=C1)[O-]
18 6479.23 O=[N+](C1=CC([N+]([0-])=0)=CC([N+]([0-])=0)=C1)[O-]
19 5685.92 O=[N+](C1=CC=C(C)C([N+]([0-])=0)=C1)[O-]
20 6342.3 CC1=C([N+]([O-])=0)C=C([N+]([0-])=0)C=C1[N+]([0-])=0
21 6241.88 ;:g\)':g:(lc);i(c)c(['\'Jf]([O-])=O)=C(C)C([N+]([O-
27 4734.16 O=[N+](C1=CC=C(CC([N+]([0-])=0)=C1)[O]
23 5602.02 ;z[o'\)'i(lc);ic([wfl([O-])=0)=C(CI)C([N+]([O-
24 6269.8 ;:[O’\)':::(St;:(o)c([NJf]([0-])=O)=CC([N+]([O-
25 5291.44 O=[N+](C1=C(0)C(C)=CC([N+]([0-])=0)=C1)[O-]
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O=[N+](C1=C(O)C([N+]([O-])=0)=C(C)C(IN+]([O-

26 6218.08
1)=0)=C1)[O-]

27 5774.82 COC1=CC=C([N+]([0-])=0)C=C1[N+]([0-])=O

- 6384.33 O=[N+](C1=CC([N+]([O-])=0)=C(OC)C([N+]([O-
1)=0)=C1)[O-]

29" 6620.19 NC1=C([N+]([O-])=0)C=C([N+]([O-])=O)C(IN+]([O-
1)=0)=C1[N+]([O-])=O

30 — O=[N+](C1=C(N)C([N+]([O-])=0)=C(N)C([N+]([O-
1)=0)=C1)[O-]

a1 1849.82 O=[N+](C1=C(N)C([N+]([O-])=0)=C(N)C([N+]([O-
1)=0)=C1IN)[O-]

32 5400.78 NNC1=CC=C([N+]([O-])=0)C=C1[N+]([0-])=O

33 6013.23 O0=C(0O)C1=C([N+]([O-])=0)C=C([N+]([O-
1)=0)C=C1[N+]([O-])=O

34 5627.11 0=[N+](C1=CC=CC2=C([N+]([0-])=0)C=CC=C12)[O-]

35 5727.06 O=[N+](C1=CC=CC2=CC=CC([N+]([0-])=0)=C12)[O-]

N . O=[N+](C1=CC([N+]([0-])=0)=CC2=CC([N+]([O-
1)=0)=CC([N+]([O-])=0)=C12)[O-]
O=[N+](C1=C([N+]([O-])=O)C([N+]([O-])=0O)=C([N~+]([O-

37 6897.36 1)=0)C([N+]([0-])=0)=C10C2=CC=CC=C2[N+]([O-
D=0)[0-]
O=[N+](C1=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+]([O-

38 6212.12 1)=0)C([N+]([0-])=0)=C1SC2=CC=CC=C2[N+]([O-])=0)[O-
]

29 57842 NC1([N+]([O-])=0)C=C([N+]([O-

1)=0)C(C2=CC=C(N)C=C2)=C([N+]([0-])=0)C1
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O=[N+](C1=C([N+]([O-])=0)C(IN+]([O-])=0)=C([N+]([O-

40 7105.37 1)=0)C([N+]([0-])=0)=C1/N=N/C2=CC=CC=C2[N+]([O-
1=0)[O-]
O=[N+](C1=CC([N+]([O-])=0)=CC([N+]([O-

41 6426.36 1)=0)=C1NC2=NON=C2NC3=C([N+]([O-
1)=0)C=C([N+]([O-])=0)C=C3[N+]([O-])=0)[O-]

i o1 4 O=[N+](N2CN([N+]([0-])=0)C1=NON=C1IN([N+]([O-
1)=0)C2)[O-]

i . O=[N+](N(CCN3[N+]([0-])=0)C2C3N([N+]([O-
1)=0)C1=NON=C1N2[N+]([0-])=0)[O-]

1 445 56 O=[N+](NLC(N([N+]([0-])=0)C2=NON=C2N3[N+]([O-
1=0)C3N([N+]([O-])=0)C1)[O]

.5 739033 O=C3N([N+]([0-])=0)C2NC1=NON=C1IN([N+]([O-
1)=O)C2N3[N+]([O-])=0O

16 603,01 O=[N+](N2C1=NON=CIN([N+]([0-])=0)C4C2N([N+]([O-
1)=0)C3=NON=C3N4[N+]([0-])=0)[O-]
O=[N+](N(CC([N+]([O-])=O)(IN+]([O-])=O)[N+]([O-

47 7830.64 1)=0)C1=NON=C1C2=NON=C2N([N+]([O-
D=0)CC(IN+]([O-])=O)(IN+]([O-])=O)[N+]([O-])=0)[O-]
O=[N+](N(C1=NON=CIN([N+]([O-])=O)CC([N+]([O-

48 6795.58 D=0)(IN+]([O-])=O)[N+]([O-])=O)CC([N+]([O-
D=0)(IN+]([O-])=O)IN+]([O-])=O)[O-]

49 7706.95 [O][N]J1=C([N+]([O-])=0)C([N+]([O-])=0)=NO1

- s 91 [O][N]1=C2C(C(N)=C([N+]([0-])=0)C=C2[N+]([O-
1)=0)=NO1

51 7588.94 [O][N]4=C3C1=NO[N]([0])=C1C2=NO[N]([0])=C2C3=NO4
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NC2=C([N+]([O-1)=0)C(N)=C([N+]([O-

52 5787.93
1)=0)C1=NO[N]([O])=C12

53 7710.74 NC1=NON=C1/[N]([O])=N\C2=NON=C2N

54 664514 N#CC1=NO[N]([0])=C1C#N

55 8250.98 [OJNJ1=C{N+]([O-
1)=0)C(/N=N\C2=NO[N]([O])=C2[N+]([0-])=0)=NO1
O=C(CC([N+]([O-)=O)(IN+]([O-])=O)[N+]([O-

56" 7331.25 1)=0)0C1=NO[N]([0])=C10C(CC(IN+]([O-])=0)(IN+]([O-
1)=0)[N+]([O-])=0)=0

- E502.45 O=[N+](N(CC(IN+]([O-])=O)(F)[N+]([O-])=O)CC([N+]([O-
1)=0O)(F)[N+]([O-])=0)[O-]

- 5667 20 FC(IN+]([O-)=O)(IN+]([O-])=O)CN([N+]([O-
1)=0O)CCN([N+]([O-])=O)CC(IN+]([O-])=O)(IN+]([O-])=O)F
O=CIN([N+]([O-])=0)C(N(CC([N+]([O-])=O)(F)[N+]([O-

59 5964 1)=0)[N+]([O-])=0)C(N(CC([N+]([O-])=O)(F)[N+]([O-
1)=0O)IN+]([O-])=O)N1[N+]([O-])=0O
FC(IN+]([O-)=O)(IN+]([O-])=O)CN([N+]([O-

60 6226.58 1)=O)CC(IN+]([O-])=O)([N+]([O-])=O)CN([N+]([O-
1)=O)CC(IN+]([O-])=O)(IN+]([O-])=O)F

61 114213 O=C(N(CN(F)F)C1[N]J[N+]([O-])=O)N([N+]([O-
1)=0)CL(CN(F)F)NC=0

62" 4958.57 O=[N+](C(IN+]([O-])=O)(F)COCOCC([N+]([O-
1)=0)(F)[N+]([O-])=0)[O-]

63" 118138 FC(CL(C(F)(F)F)OCICI(IN+I([O-])=O)(IN+I([C-

)=0)(F)COL)(F)F
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O=[C](F)(CC(IN+]([O-])=O)(F)[N+]([O-1)=0O)(CC(IN+]([O-

64 3242.55
D=0)(F)IN+]([O-])=O)F

65 127.94 0=S(C(F)(F)F)(OCC(F)(F)[N+]([0-])=0)=0

66 4840.04 FC(IN+]([O-])=O)(IN+]([O-])=0)OC(C)OC(F)([N+]([O-
D=0O)IN+]([O-])=O

67 3162.74 O=[N+](C([N+]([O-])=0O)(F)OCC(F)(F)[N+]([O-])=0)[O-]

63 £069.14 O=[N+](C([N+]([O-])=O)(F)COCC([N+]([O-
D=0)(F)[N+]([O-])=0)[O-]

69" £802.63 O=[N+](C([N+]([O-])=O)(F)COCC([N+]([O-])=O)(IN+]([O-

' 1)=0)COCC([N+]([O-)=0)(F)[N+]([O-])=0)[O-]

70 3913.33 O=[N+]([0-])OCC([N+]([0-])=0)(F)[N+]([0-])=O

- 4309.86 O=S(OCC([N+]([O-])=O)(F)[N+]([O-])=O)(OCC([N+]([O-
D=0)(F)IN+]([O-])=0)=0

72 665.02 O=[N+](C(IN+]([O-])=0)(F)OCC(F)(F)F)[O-]

s 05 75 O=[N+](C([N+]([0-])=0)(F)COCOCCOCOCC([N+]([O-
D=0)(F)[N+]([O-])=0)[O-]

4 3726.00 O=[N+](C(IN+]([O-])=O)(F)COC(C)OCC(F)(F)[N+]([O-
1=0)[O-]

- 324238 O=[N+](C([N+]([O-])=O)(F)COCOCC(F)(F)[N+]([O-
D=0)[O-]

76 4097.77 0=C(OC)CCC([N+]([0-])=0)(F)[N+]([0-])=0

27 480229 O=[N+](C(IN+]([O-])=O)(F)COC(OC)OCC([N+]([O-
D=0)(F)[N+]([O-])=0)[O-]

-g" 16101 O=[N+](C(F)(F)COC(F)(F)OCC([N+]([O-])=O)(F)[N+]([O-

D=0)[O-]
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O=[N+](C(COC(F)(F)F)(IN+I([O-

79 1270.04 1)=0)COC(F)(F)OCC(IN+]([O-])=0)(IN+]([O-
1)=0)COC(F)(F)F)[O-]

80 1172.33 0=C(OCC(F)(F)F)CCC([N+]([0-])=0)(F)[N+]([0-])=O

81 3068.09 O=[N+](C([N+]([O-])=O)([N+]([O-])=O)COC(F)(F)F)[O-]

82 641.43 O=[N+](C([N+]([O-])=0)(F)COC(F)(F)F)[O-]

83 1503.22 CC([N+]([0-])=O)([N+]([0-])=0)COC(F)(F)F

84" 624.78 O=[N+](C(COC(F)(F)F)([N+]([0-])=0)COC(F)(F)F)[O-]

g5 £956.91 COCC([N+]([O-])=O)(IN+]([O-])=O)CC([N+]([O-
D=0)(F)[N+]([O-])=0
O=[N+](C([N+]([O-

86 4997.84 1)=0)(F)COC(N(F)F)(N(F)F)OCC([N+]([0-])=0)(F)[N+]([O-
1)=0)[O-]

- 294493 O=[N+](C(COC(F)(F)F)([N+]([O-])=0)COCOCC([N+]([O-
D=O)(IN+]([O-])=O)COC(F)(F)F)[O-]

88" 2656.00 FC(C(OCC(IN+]([O-])=O)(F)[N+]([O-])=O)OCC([N+]([O-
D=0)(F)[N+]([O-])=O)(F)F

89" 1276.16 FC(CLOC[C]([N+]([0-])=O)([N+]([O-])=0)(F)CO1)(F)F

%0 1295 CCOC(C(F)(F)F)(C(F)(F)IN+]([O-])=0)OCC([N+]([O-
D=0)(F)[N+]([O-])=0

91 651.1 O=[N+](C([N+]([0-])=0)(F)COC(F)(F)OCC(F)(F)F)[O-]

- 397966 O=[N+](C([N+]([O-])=O)([N+]([O-
1)=0)COCOCC(F)(F)F)[O-]

03 4724.64 O=[N+](N1ICC([N+]([O-])=O)(IN+]([O-])=O)CN([N~+]([O-

D=0)CC(N(F)F)(N(F)F)C1)[O-]
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O=[N+]([O-])N(C1C2N(C4C3N2Z[N+]([O-])=O)[N+]([O-

94 7147.42
D=0)C(N3[N+]([O-])=O)C(NA[N+]([O-])=O)N1[N+]([O-])=O
o5 642231 O=[N+](NIN3C([N+]([O-])=O)(IN+]([O-])=O)C2(IN+]([O-
' D=O)N(IN+]([O-])=O)N(C3)N([N+]([O-])=O)N1C2)[O-]
96" 211275 O=[N+](N([N+]([O-])=O)INH]J1([N+]([O-])=O) INH]([N+]([O-
' D=0)(IN+]([O-])=O)N=NN=C1[N+]([O-])=0)[O-]
O=[N+](C12C3([N+]([O-])=O)C5([N+]([O-])=O)C(IN+]([O-
97 9275.51 1)=0)1C4([N+]([0-])=0)C(IN+]([O-])=0)2C([N+]([O-
1)=0)3C45[N+]([O-])=0)[O-]
08" 869112 O=[N+](C1(C2)CC(C3)([N+]([O-])=O)CC2([N+]([O-
D=0)CC3(IN+]([O-])=0)C1)[O-]
99 5740.49 O=[N+](N1C([N+]([O-])=0)C1)[O-]
100 4162.22 NC(N[N+]([0-])=0)=N
101 6555.39 O=[N+](NICN([N+]([O-])=O)CN([N+]([0-])=0)C1)[O-]
102 5901.58 0=NN1C(N=0)(N=0)CC1
103 6626.72 O=[N+](NICN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-
1)=0)C1)[O-]
104 £947 78 NC1([N+]([O-])=0)C=C([N+]([O-
])=0)C(C2=CC=C(N)C=C2)=C([N+]([O-])=0)C1
105" 6808.48 N[N+]([O-])=0.0=[N+]([O-])OCC.O[N+]([0-])=0
106" 6510.31 ]O:[N+](N1CN([N+]([O-]):O)CN([N+]([O-]):O)01:C:O)[O-
107 5412.47 O=C(NCIN2[N+]([0-])=0O)N([N+]([O-])=0O)CINC2=0
108 655811 O=C(N([N+]([O-])=O)C([N+]([O-])=O)IN2[N+]([O-

D=0)N([N+]([0-])=0)CINC2=0
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O=C(N(IN+]([O-])=0)C2N1[N+]([O-])=O)N([N+]([O-

109 6923.13
D=0)C(C2)N([N+]([O-])=0)C1=0

110 202,02 O=[N+](CL([N+]([O-])=O)CN([N+]([O-])=O)CC(IN+]([O-
D=O)(IN+]([O-])=O)CN([N+]([O-])=0)C1)[O-]

11 6577 12 O=[N+]([O-])NC1=CC=C([N+]([O-])=O)C(IN+]([O-
1)=0)=C1[N+]([O-])=0O

112 00175 O=[N+]([O-])N([N+]([O-])=0)C1=CC=CC([N+]([O-
1)=0)=C1[N+]([O-])=0.0=[N+]([O-])OCC

113 6049.45 O=[N+](C([N+]([O-])=O)(IN+]([O-])=O)CN([N+]([O-
1)=O)CC(IN+]([O-])=O)(IN+]([O-])=O)[N+]([O-])=0)[O-]

114 136291 O=[N+](CL([N+]([O-])=O)CN([N+]([O-])=O)CC([N+]([O-
D=O)(IN+]([O-])=O)CN(N=0)C1)[O-]

115" 2613.27 O=[N+](CL([N+]([O-])=O)CN(N=O)CC([N+]([O-
D=O)(IN+]([O-])=O)CN(N=0)C1)[O-]

116 6996.43 O=[N+](CL([N+]([O-])=O)CN([N+]([O-])=O)CC([N+]([O-
D=O)(IN+]([O-])=O)CN(C(O[N+]([O-])=0)C)C1)[O]

17 693462 O=[N+](CL([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-
1)=0)C=C1)[O-]

118 6745 61 O=[N+](N1CC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-
])=0)CCL[O-]

119° 5516.18 N/C(N[N+]([O-])=0)=N\[N+]([O-])=O

120 6043.37 [N-]=[N+]J=NCLCN([N+]([0-])=0)C1

121 7350.6 O=[N+](CL([N+]([O-])=0)CN([N+]([0-])=0)C1)[O-]

129 3579.88 O=[N+](C([N+]([O-])=O)(IN+]([O-])=O)C(IN+]([O-

D=0)(IN+]([O-])=O)[N+]([O-])=0)[O-]
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CN([N+]([O-))=0)CC(IN+]([O-])=O)([N+]([O-])=0)[N+]([O-

123 7413.06
D=0
NCC(CC([N+]([O-)=O)(IN+]([O-])=O)[N+]([O-

124 7724.79 1=O)(CC(IN+]([O-])=O)(IN+]([O-])=O)[N+]([O-
D=O)N[N+]([O-])=0

125 106,96 O=C(OCC([N+]([O-])=O)(IN+]([O-])=O)[N+]([O-
1)=O)CCC(IN+]([O-])=O)(IN+]([O-])=O)[N+]([O-])=0

126" 2131 O=[N+](C([N+]([O-])=O)([N+]([O-])=O)COCOCC([N+]([O-
D=0O)(IN+]([O-])=O)IN+]([O-])=O)[O-]

197 2476.78 ;3=[N+](CCC([N+]([O-])=O)([N+]([0-])=O)[N+]([0-])=O)[0-

128" 505135 O=[N+](N(CC([N+]([O-])=O)(IN+]([O-])=O)[N+]([O-
D=0)CC(IN+]([O-])=O)(IN+]([O-])=O)[N+]([O-])=0)[O-]
O=[N+](C1=C(C([N+]([O-])=0)=CC([N+]([O-

129 7456.29 1)=0)=CL)N(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-
D=0)[N+]([O-])=0)[O-]
O=C(OCC([N+]([O-])=O)(IN+]([O-])=O)[N+]([O-

130 7000.29 D=O)CN(CC(IN+]([O-])=O)([N+]([O-])=O)IN+]([O-
D=0O)IN+]([O-])=O
O=C(OCC([N+]([O-])=O)(IN+]([O-])=O)IN+]([O-

131 6644.73 1)=0)CCCCC(OCC(IN+]([0-])=0)([N+]([0-])=0)[N+]([O-
1)=0)=0

132 699177 O=C(N)N(CC([N+]([O-])=O)(IN+]([O-])=O)[N~+]([O-
D=0)CC(IN+]([O-])=O)(IN+)([O-])=O)[N+]([O-])=0O

133" 63619 O=C(OCC([N+]([O-])=O)(IN+]([O-])=O)[N+]([O-

1)=0)C(OCC(IN+]([O-])=O)(IN+]([O-)=0)IN+]([O-])=0)=0
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O=C(OCC(IN+]([O-))=O)([N+]([O-)=O)[N+]([O-

134 6953.54 1)=0)CCC(OCC(IN+]([0-])=0)([N+]([0-])=O)[N+]([O-
1)=0)=0

135 1356.67 O=[N+]([O-])OCC(CO[N+]([O-])=O)(CO[N+]([O-
1)=O)CO[N+]([O-])=0

136 7007.4 O=[N+]([0-])OCC(O[N+]([0-])=0)CO[N+]([0-])=O

137 24005 O=[N+]([O-])OC(C([N+]([O-])=0)C(C)C)C(O[N+]([O-
1)=O)CO[N+]([O-])=0

138" 6510.14 O=[N+](C([N+]([0-])=0)(OS(0)=0)C[N+]([0-])=0)[0-]

- 1779 6 0=S(C1=CC=CC=C1)(OCC([N+]([0-])=O)([N+]([O-
D=0)IN+]([O-])=0)=0

0 74203 0=S(C1=CC=CC([N+]([0-])=0)=C1)(OCC([N+]([O-
D=0)(IN+]([O-])=O)IN+]([O-])=0)=0

141 6342.00 CC1=CC=C(S(=0)(OCC(IN+]([O-])=O)(IN~+]([O-
D=0)IN+]([O-])=0)=0)C=C1

147 15054 CC1=CC(CC(IN+]([O-])=O)(IN+]([O-])=O)IN+]([O-
1)=0)=C(S(=0)(O[N+]([O-])=0)=0)C([N+]([O-])=0)=C1

143 — O=[N+](C1C([N+]([O-])=O)N([N+]([O-])=O)C([N+]([O-
D=0)C(IN+]([O-])=O)N1[N+]([O-])=0)[O-]
O=[N+](/N=CL/N([N+]([O-])=0)C(CCO[N+]([O-

144° 7207 D=0)(IN+]([O-])=0)C(CCO[N+]([O-])=O)([N+]([O-
D=O)N1[N+]([O-])=O)[O-]

145" 6598.08 OCC(O[N+]([0-])=0)CO[N+]([0-])=0O

146 5374.26 OCC(O[N+]([0-])=O0)C(O[N+]([O-])=O)CI

147 5984.08 CC(OCC(O[N+]([0-])=0)CO[N+]([0-])=0)=0

33




SINH (O Aio-
18 e ;;:gjc]cg[cotc]ggﬁ:vlgﬁfl[(’?o?]()[fomo[N+]([O-])=o
149" 7064.18 O=[N+]([O-])OCCO[N+]([O-])=0
150 6465.27 O=[N+]([0-])OCCOCCO[N+]([0-])=0
1517 6151.87 0=[N+]([0-])OCCOCCOCCO[N+]([0-])=0
152 6676.02 O=[N+]([O-])OCCCOI[N+]([0-])=0
153 6680.69 CC(O[N+]([0-])=0)CO[N+]([0-])=0
154" 6390.64 CC(O[N+]([O-])=0)CCO[N+]([0-])=O
155 7121.1 O=[N+]([0-])OCC(O[N+]([0-])=0)CCO[N+]([0-])=O
156 6869.41 CC(C)CC(O[N+]([O-])=0)(O[N+]([0-])=0)O[N+]([0-])=O
157" 6790.3 CCC(CO[N+]([O-])=0)(CO[N+]([0-])=0)CO[N+]([0-])=O
158 6452.55 O=[N+]([O-])OC
159 5947.78 O=[N+]([O0-])OCC
160 5303.14 O=[N+]([0-])OCCC
161" 5124.94 O=[N+]([0-])OC(C)C

STNAI(0- A([0-D=0)(IN+]([O-

“*’ represent the test set compound

3.1.2 Datasets used in Study 2

We have used 4 datasets for four different properties (i.e. decomposition temperature, melting

point, density, and heat of formation) that were studied in this work. The overview on the

number of compounds in each dataset is already given in Table 2.1. The dataset used in this

work can be retrieved from the supplementary material section of our published literature

entitled "Predicting the performance and stability parameters of energetic materials (EMs)

using a machine learning-based g-RASPR approach” (Pandey and Roy, 2024).
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3.1.3 p-type organic semiconductors (OSCs) dataset (Study 3)

This dataset consists of 171 compounds, among which 129 compounds were present in the

training set and 42 compounds were in the test set. Detailed information on compounds in the

study is given in Table 3.2.

Table 3.2: Details of p-type OSCs dataset.

S. Smiles RE
no. (meV)
1 S1C=CC=C1 403
2% | C1=CC2=CC=CC=C2C=C1 185
3x | S1C=CC2=C1C=CS2 409
4 | C1=CC=C(C=C1)C1=CC=CC=C1 358
5 | S1C=CC=C1C1=CC=CS1 420
g | C1=CC=C2C(C=CC3=CC=CC=C23)=C1 218
7 | C1=CC2=CC3=CC=CC=C3C=C2C=C1 138
g | S1C=CC2=C3SC=CC3=CC=C12 230
g* | S1C=CC2=C3C=CSC3=CC=C12 288
10 | S1IC=CC2=CC3=C(SC=C3)C=C12 108
11* | SIC=CC2=CC3=C(C=CS3)C=C12 165
12 | S1IC=C2SC3=C(C=CS3)C2=C1 193
13 | S1C=CC2=C1C1=C(S2)C=CSs1 352
14 | S1C=C2SC3=C(SC=C3)C2=C1 209
15 | S1IC=C2SC3=CSC=C3C2=C1 187
16 | C1=C2C(=CC3=CC=CC=C23)C2=CC=CC=C12 279
17 | C1=CC=C2C(C=CC3=C2C=CC2=CC=CC=C32)=C1 165
18 | C1=CC2=CC3=CC4=CC=CC=C4C=C3C=C2C=C1 111
19 | S1C=CC2=CC3=CC4=CC=CC=C4C=C3C=C12 110
20 | S1C=CC2=C3C=CC4=C(C=CS4)C3=CC=C12 243
21 | S1C=CC2=C1C1=C(C=CS1)C1=CC=CC=C21 238
29 | S1C=CC2=CC3=CC4=C(SC=C4)C=C3C=C12 100
23 | S1IC=CC2=CC3=CC4=C(C=CS4)C=C3C=C12 105
o4* | S1IC=CC2=C1C1=CC=C3C=CSC3=C1C=C2 280
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o5+ | S1C2=CC=CC=C2C2=C1C1=C(S2)C=CC=C1 225
26 | S1C=C2SC3=CSC4=C3C2=C1\C=C/C=C\ 378
»7 | SIC=CC=C1C1=CC=C(S1)C1=CC=CS1 373
g | C1I=CC2=C3C(C=CC=C3C3=CAC(C=CC=C24)=CC=C3)=C1 145
59 | SIC=CC2=C1SC1=C2C2=C(SC=C2)S1 301
30% | SIC=CC2=C1C1=C(S2)C2=C(S1)C=CS2 326
31* | S1C2=C(SC(=C2)C2=CC=CC=C2)C2=CC=CC=C12 299
32 | SIC=C(C2=CSC3=CC=CC=C23)C2=CC=CC=C12 302
33 | S1C=C2C3=CSC4=C3C(=CS4)C3=CSC1=C23 183
34 | C\C=C\C1=CC2=C(S1)SC1=C2C=C(S1)\C=C\C 215
35 | C1=CC=C2C(C=CC3=C4C=CC5=CC=CC=C5C4=CC=C23)=C1 185
36 | C1I=CC=C2C(C=CC3=CC4=C(C=CC5=CC=CC=C45)C=C23)=C1 168
37+ | C1I=CC=C2C=C3C(C=CC4=CC5=CC=CC=C5C=C34)=CC2=C1 178
38 | C1=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C2C=C1 93
39 | SIC=CC2=C1C=C(S2)C1=CC2=C(S1)C=CS2 365
40 | SIC=CC2=C1C(=CS2)C1=CSC2=C1SC=C2 256
41* | SIC=CC=CIC1=CC2=C(S1)C1=C(S2)C=CS1 359
42 | SIC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12 96
43* | S1C2=C(C=C3C=CC=CC3=C2)C2=C1C=C1C=CC=CC1=C2 118
44* | SIC=CC2=C3C=C4C=CC5=C(C=CS5)C4=CC3=CC=C12 155
45 | SIC=CC2=CC3=C4C=C5C=CSC5=CC4=CC=C3C=C12 200
46 | SIC=CC2=CC3=CC4=CC5=C(SC=C5)C=CAC=C3C=C12 94
47% | S1IC=CC2=CC3=CC4=CC5=C(C=CS5)C=C4C=C3C=C12 95
48 | SIC=CC2=CC3=CC=C4C=C5C=CSC5=CC4=C3C=C12 182
49% | S1C=CC2=C1C1=CC3=CC=C4C=CSC4=C3C=C1C=C2 134
50 | S1C2=CC3=CC=CC=C3C=C2C2=C1C1=C(S2)C=CC=C1 153
51 | S1IC2=CC=CC=C2C2=CC3=C(C=C12)C1=C(S3)C=CC=C1 117
5ox | S1C2=CC=CC=C2C2=CC3=C(SC4=C3C=CC=C4)C=C12 87
53 | SIC=C(C2=C1SC=C2C1=CC=CC=C1)C1=CC=CC=C1 266
54 | SIC=CC2=CC3=C(SC4=C3C=C3C=CSC3=C4)C=C12 149
55 | S1IC=CC2=CC3=C(C=C12)C1=C(S3)C=C2C=CSC2=C1 118
56 | C1=C2C(C=CC3=CC=CC=C23)=C2C=C3C(C=CC4=CC=CC=C34)=C12 208
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57 | C1I=C2C(=CC3=CC4=CC=CC=C4C=C23)C2=CC3=CC=CC=C3C=C12 115
5g | S1C=CC2=C1C=C(S2)C#CC1=CC2=C(S1)C=CS2 293
59* | S1IC=CC2=C1C1=CC3=C(C=C1S2)C1=C(S3)C=CS1 231
60 | C1C2=CC=CC=C2C2=CC(=CC=C12)C1=CC2=C(SC=C2)S1 320
61 | SIC=CC=CIC1=CC=C(S1)C1=CC2=C(S1)C=CS2 362
62 | CI=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=CC=C1 309
63* | SIC=CC2=C1CI1=C(S2)C2=C(S1)C1=C(S2)C=CS1 307
64* | SIC(=CC=C1C1=CC=CC=CI)C1=CC=C(S1)C1=CC=CC=C1 318
65+ | SIC(=CC2=CC=CC=C12)C1=CC2=C(S1)C1=C(S52)C=CC=C1 266
66 | SIC=CC=CIC1=CC=C(S1)C1=CC=C(S1)C1=CC=CC=C1 339
o C1=CC=C2C(=C1)C1=CC=CC=C1C1=C2C2=CC=CC=C2C2=CC=CC=CL | _

2

C1=CC=C2C(C=CC3=C4C=CC5=C(C=CC6=CC=CC=C56)C4=CC=C23)=
6% | oy 148
69 | C1I=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C2C=C1 79
N C1=CC=C(C=C1)C1=C2C=CC=CC2=C(C2=CC=CC=C2)C2=CC=CC=C1 o

2
71* | SIC=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=CS1 348
79 | S1IC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=CAC=C3C=C12 85
73 | S1C=CC2=CC3=CC4=CC5=CC6=C(C=CS6)C=C5C=C4C=C3C=C12 87
74% | S1C2=CC3=CC4=C(C=CC=C4)C=C3C=C2C2=C1C1=C(S2)C=CC=C1 114
75+ | S1C2=C(C3=C1C1=C(S3)C=CC3=CC=CC=C13)C1=CC=CC=C1C=C2 196
76% | S1C2=C(C3=C1C=CC1=CC=CC=C31)C1=C(S2)C=CC2=CC=CC=C12 187
77 | S1C2=C(SC3=C2C=CC2=CC=CC=C32)C2=C1C1=CC=CC=C1C=C2 189
78 | S1C2=CC3=CC=CC=C3C=C2C2=C1C1=C(S2)C=C2C=CC=CC2=C1 130
79 | S1C2=CC3=C(SC(=C3)C3=CC=CC=C3)C=C2C=C1C1=CC=CC=C1 267
80 | SIC(\C=C\C2=CC=CC=C2)=CC2=C1C=C(S2)\C=C\C1=CC=CC=C1 252
81 | S1C2=C(SC(=C2)C2=CC=CC=C2)C2=C1C=C(S2)C1=CC=CC=C1 312
g2 | S1C2=C(C=C(S2)C2=CC=CC=C2)C2=C1SC(=C2)C1=CC=CC=C1 225
83 | SIC=C(C2=C1SC1=C2C(=CS1)C1=CC=CC=C1)C1=CC=CC=C1 212
g4* | SIC=CC2=C3C(SC4=C3C3=C5C=CSC5=CC=C354)=CC=C12 211
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C1=CC=C(C=C1)C1=C2C3=CC=CC=C3C(=C2C2=CC=CC=C12)C1=CC=

8 | cc=ct 320
N C1=0C2=CC3=CC=C(C=C3C=C2C=CC1=CC2=CC3=CC=CC=CaC=C2 [ _
c=C1
g7 | SIC=CC=CIC1=CC2=C(S1)C1=C(S2)C=C(S1)C1=CC=CS1 328
gg* | S1IC=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C=CS2 291
N S1C=CC2=C(C3=CASC=CC4=C(C3=C12)C1=CC=CC=Cl)CI=CC=CC=C |
1
S1C2=C3C(C=CC4=C3C(C=C2)=C(S4)C2=CC=CC=C2)=C1C1=CC=CC=
0 | o 160
C1C2=C(C3=C(S2)C2=C(S3)C3=C(CC4=CC=CC=C34)S2)C2=CC=CC=C
o |, 237
9o* | S1IC2=C(SC(=C2)C2=CC=C3C=CC=CC3=C2)C2=C1C1=CC=CC=C1S2 262
C1=CC=C2C(C=CC3=C4C=CC5=C6C=CC7=CC=CC=C7C6=CC=C5Cd=
3 | ce=c23)=c1 12
94 | S1IC2=C(SC(=C2)C2=CC3=C(S2)C2=C(S3)C=CC=C2)C2=CC=CC=C12 281
95 | SIC(=CC2=CC=CC=C12)C1=CC2=C(S1)C1=C(S2)C2=CC=CC=C2S1 264
96 | SIC=CC2=CC3=C(C=C(S3)C3=CC4=CC5=C(C=CS5)C=C4S3)C=C12 230
N C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1 .
=CC=CC=C1
o S1C=CC2=CC3=CC4=CC5=CC6=CC7=C(C=CS7)C=C6C=C5C=C4C=C3 .
C=C12
o S1C2=CC3=CC4=CC=CC=C4C=C3C=C2C2=C1C1=C(S2)C=C2C=CC=C 103
C2=C1
100* | SIC=CC2=C1SC1=C2C=C(S1)C1=CC2=C(SC3=C2C=CS3)S1 372
101 | SIC=CC2=C1C1=C(S2)C=C(S1)C1=CC2=C(S1)C1=C(S2)C=CS1 337
S1C(=CC2=C1C1=CC=C3C=C(SC3=C1C=C2)C1=CC=CC=C1)C1=CC=C
102% | ~_ oy 253
S1C2=CC3=CC4=C(SC(=C4)C4=CC=CC=C4)C=C3C=C2C=C1C1=CC=C
103 | _y 155
o $1C2=CC3=CCA=C(C=C(S4)CA=CC=CC=CA)C=CIC=C2C=CICI=CC=C |

C=C1
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S1C2=CC=C3C4=C(SC(=C4)C4=CC=CC=C4)C=CC3=C2C=C1C1=CC=C

105 | ~_cy 232

. S1C2=CC3=C(SC4=C3C=CC=C4)C=C2C2=CC3=C(C=C12)C1=C(S3)C= 106
cc=C1

. S1C2=CC3=C(C=C2C2=CC4=C(C=C12)C1=C(S4)C=CC=C1)C1=C(S3)C 10
=CC=C1
S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C2=C1C1=CC=CC=C

108 | 1o 292

109 | S1C=CC2=C1C1=C(C=CS1)C1=CC3=C4C=CSC4=C4SC=CC4=C3C=C21 132

110 | S1C=CC2=C1C1=CC3=C4SC=CC4=C4C=CSC4=C3C=C1C1=C2C=CS1 124
$1C2=CC=CC=C2C2=C1C1=C(S2)C=C2C(SC3=C2SC2=C3C=CC=C2)=C

11 |, 179
S1C=CC2=C1C=C(S2)C1=CC2=CC=C(C=C2C=C1)C1=CC2=C(S1)C=CS

112 ) 305
$1C2=CC=CC=C2C2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C=CC=C

113* | 241

114* | S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=CS1 309

115* | S1C=CC2=C1C1=C(S2)C2=CC3=C(C=C251)C1=C(S3)C2=C(S1)C=CS2 236

116 | S1C=CC2=C1SC1=C2C=C(S1)\C=C\C1=CC2=C(SC3=C2C=CS3)S1 308

117 | S1C=CC2=C1C(=CS2)C1=CSC2=C1SC=C2C1=CSC2=C1SC=C2 160

118* | S1C=CC2=C1SC1=C2SC2=C1C1=C(S2)SC2=C1SC1=C2C=CS1 207

119 | S1C=CC2=C1SC1=C2C2=C(S1)SC1=C2C2=C(SC3=C2C=CS3)S1 210

120 | S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C1=C(S2)C=CS1 280

. C1C2=C(C3=C(S2)C2=C(S3)C3=C(S2)C2=C(CC4=C2C=CC=C4)S3)C2=C -
1C=CC=C2

s S1C2=C(SC3=C2C2=CC=CC=C2C2=CC=CC=C32)C2=C1C1=CC=CC=C 186
1C1=CC=CC=C21

. $1C2=CC=C3C(C=CC4=CC=CC=C34)=C2C2=C1C1=C(S2)C=CC2=C1C 81
=CC1=CC=CC=C21

s S1C2=C(SC3=C4C=CC5=CC=CC=C5C4=CC=C23)C2=C1C1=C(C=C2)C a1

2=CC=CC=C2C=C1
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S1C2=CC3=CC4=CC=CC=C4C=C3C=C2C2=C1C1=C(S2)C=C2C=C3C=

125 | cc=ce3=cco=c1 %
S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C=C1C1=CC=C(C=C

126 | 1yc1=cc=cc=c1 st

| SICZCC(CaC-CC=CC-CaI02-C0-CO-CAC(-CICI-CO-CO-CT) |
C1=CC=CC=C1

. | SICZCC(=CAIC2-CE-CaC-CO-CEa-CACECIC-CEACICCCE |
C=CC=CC2=C1
S1C2=CC=CC=C2C2=C1C1=C(S2)C=C2C=C3C(SC4=C3SC3=C4C=CC=

129" 1 cay=cco=c1 124

. | CLFCC=C(C=CICI=-C2C(C=CCa=CC-CC-Ca)=CaLI-CICCaace= |
CC=C3C1=C2C1=CC=CC=C1
C1=CC=C(C=C1)C1=C2C3=CC4=CC=CC=CAC=C3C(=C2C2=CC3=CC=

131"} cc=cac=c12)c1=cc=cc=c1 il
S1C=CC2=C1C=C(S2)C1=CC2=CC3=CC=C(C=C3C=C2C=C1)C1=CC2=

132 1 cs1yc=cs? 240

. | SIC(C=CIC2=CC=CC=Ca)=CO2-CICI-CSAC2-CISIE-CENCCE |
1=CC=CC=C1

s | SICECC2=CIC=CS2ICI=CE-CICI-CO-CO-CIICI=CC-CEICE |
cc=cc=c1
C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1

135 | _ce=c(c=c1)c1=cc=cc=c1 24

e | SICZCISCIECAICE-CCI-CC-CE-CIAC2CIC-CEACI-CO2C0= |
cC=C2s1
S1C2=CC=CC=C2C2=C1C1=C(C3=C(SC4=C3C=CC=C4)C1=C2C1=CC=

137 1 ce=c1)c1=cc=cc=c1 348

., | SICZCIC(C-CCa=CIT(C-CO-CEACECCICC-CC-CICCHCL ||
C1=CC2=CC=CC=C2C=C1
C1C2=CC=CC=C2C2=CC=C(C=C12)C1=CC2=C(S1)C=C(S2)C1=CC=C2

139 1 c(ces=cc=cc=c23)=c1 300

| SIC=CCRCICI=CAC(S=C(C3-CO-CAC2-CISICI-CC=CICI=Ce |

=CS1
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S1C=CC=C1C1=C(C2=CC=CS2)C2=C(S1)C(C1=CC=CS1)=C(S2)C1=CC

141 | _ cs1 452

" S1C(=CC=C1C1=CC=C(C=C1)C1=CC=CC=C1)C1=CC=C(S1)C1=CC=C( 309
C=C1)C1=CC=CC=C1

” S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1) 268
C=CS2

» S1C(\C=C\C2=CC=CC=C2)=CC2=C1C=C(S2)C1=CC2=C(S1)C=C(S2)\C= 237
C\C1=CC=CC=C1
S1C=CC=C1C1=CC=C(C=C1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(C=

1451 c1)c1=cc=cs1 323

146 | clesc(cl)-cleee(sl)-cleec(cel)-clece(cel)-clecce(sl)-clecesl 287
S1C2=C(SC3=C4C=CC5=CC=CC6=CC=C(C=C23)C4=C56)C2=C1C1=C

147 C=C3C=CC=C4C=CC(=C2)C1=C34 E
S1C2=CC3=CC=C4C=CC=C5C=CC(=C2C2=C1C1=C(S2)C=C2C=CC6=C

148 C=CC7=CC=C1C2=C67)C3=C45 140

» S1C2=C(SC3=C2C2=CC=CC4=CC=C5C=CC=C3C5=C24)C2=C1C1=CC= 123
CC3=CC=C4C=CC=C2C4=C13
S1C(=CC2=C1C1=C(S2)C2=CC=CC=C2S1)C1=CC2=C(S1)C1=C(S2)C2=

150 C(S1)c=CcC=C2 210
S1C2=CC3=CC(=CC=C3C=C2C2=C1C1=C(S2)C=C2C=C(C=CC2=C1)C1

151 =CC=CC=C1)C1=CC=CC=C1 1
S1C2=CC3=CC=C(C=C3C=C2C2=C1C1=C(S2)C=C2C=CC(=CC2=C1)C1

152% =CC=CC=C1)C1=CC=CC=C1 108

- S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1 258
=CC=CS1
S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C2=C1C=C(S2)C1=C

154 C=C(C=C1)C1=CC=CC=C1 293

- S1C2=C(SC(=C2)C2=CC=CC=C2C2=CC=CC=C2)C2=C1C=C(S2)C1=CC 205
=CC=Cl1Cl=CC=CC=C1

- S1C=CC=C1C1=C(C2=C(S1)C1=C(S2)C(=C(S1)C1=CC=CSsl1)Cc1=CCc=CC 481

=C1)C1=CC=CC=C1
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S1C2=CC=CC=C2C2=C1C1=C(S2)C2=C(S1)C=C1C(SC3=C1SC1=C3SC3

157 1 c1c=cc=c3)=C2 205
S1C2=C3C(C=CC4=C3C(C=C2)=C(S4)C2=CC=C(C=C2)C2=CC=CC=C?)

158" | _c1c1=cc=c(c=c1)c1=cc=cc=c1 ot

-, | SIC=CC2-CISCI=C2C-CS\C-CICI-CO=CC-CIC-CCaC6DSC2 |
~C3C=CS2)C=C1
S1C=CC2=C3C=CSC3=C3C(SCA=C3SC3=C4SCA=C3C3=C(C=CS3)Ca=

160 | casc=ca)=c12 199
C1C2=CC=CC=C2C2=CC=C(C=C12)C1=CC2=C(S1)C1=C(S2)C=C(S1)C

161 14 _cc=coc(cea=ce=cc=c23)=C1 2>
S1C=CC=C1C1=CC=C(S1)C1=CC2=C(S1)C1=C(S2)C=C(S1)C1=CC=C(S

162 1 1yc1=cc=cs1 290
C1=CC2=CC3=CC=C(C=C3C=C2C=C1)C1=CC2=CC3=CC=C(C=C3C=C

163 | sc=c1)c1=cc2=cc3=cc=cc=cac=c2c=C1 5
C1=CC=C(C=C1)C1=C2C(C3=CC=CC=C3)=C3C=CC=CC3=C(C3=CC=C

164 1 c=c3)co=c(co=cc=cc=c2)c2=cc=cc=C12 17
S1C=CC2=C1C=C(S2)C1=CC2=C(S1)C=C(S2)C1=CC2=C(S1)C=C(S2)CL

165" | _ceo=c(s1)c=cs? -
S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1

166 | _cc=c(s1)c1=cc=cs1 265
S1C2=C(C=CC=C2)C2=C1C1=C(C3=CASC5=C(SC6=C5C=CC=C6)CA=C

167 1 (c3=c1s2)C1=CC=CC=C1)C1=CC=CC=C1 308
S1C2=CC=C(C=C2C2=C1C1=C(S2)C=C2C=C3C(SC4=C3SC3=C4C=CC(

168 | _c3)c3=cc=cc=ca3)=cc2=C1)C1=CC=CC=C1 133
S1C2=C(SC(=C2)C2=C(C=CC=C2C2=CC=CC=C2)C2=CC=CC=C2)C2=C

169 1 1 c=c(s2)c1=C(C=CC=C1C1=CC=CC=C1)C1=CC=CC=C1 303
S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1

170" | _cc=c(s1)c1=Cce=c(s1)C1=CC=CS1 208

| SICZCC=CC=CaC-CICI-C(S2IC2-C(CA-CASCE-CISCE=CESCE=CC |

=CC=C65)C4=C(C3=C2S1)C1=CC=CC=C1)C1=CC=CC=C1
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3.2 Study wise specific description of methodologies utilized in each study

3.2.1 Study -1

3.2.1.1 Data collection

The values of detonation heat (expressed in KJ/kg) of 162 N-containing compounds were
collected from previously published literature (He et. al., 2021) and are listed in Table 3.1. The

structures were prepared in MarvinSketch (version- 5.5.0.1) https://www.chemaxon.com,

added the explicit hydrogen, cleaned the structure, and aromatized the aromatic rings as
applicable. A chemical diversity plot (Figure 3.1) was prepared using the molecular weight
and logPcons Which shows the diversity in the chemical nature of the compounds.

Chemical diversity plot
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Figure 3.1: Chemical diversity plot

3.2.1.2 Descriptor calculation and data pre-treatment

Molecular descriptors are the quantitative values derived from the structural information of the
molecules. Different classes of 2D descriptors like molecular properties, 2D atom pairs, atom
type E-state indices, atom-centered fragments, functional group counts, connectivity indices,
ring descriptors, constitutional indices, and extended topochemical atom (ETA) indices were
calculated using alvaDesc v2.0.6 (Mauri, 2020). These different classes of descriptors are so

chosen as they are highly interpretable and also are efficient in the development of models as
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evident from our previous experiences. A total of 689 molecular descriptors were calculated

initially.

The obtained descriptors were then subjected to a pretreatment process using a java-based tool

DataPreTreatmentGUI 1.2 available from http://teqip.jdvu.ac.in/OSAR Tools/ to remove the

intercorrelated descriptors with a variance cut-off of 0.0001 and a correlation coefficient cut-
off value of 0.95. In this process, descriptors that are highly inter-correlated to each other and
descriptors with null or constant values for each data point are obviated. After the pre-treatment

process, a total of 473 descriptors were left which were used for further study.

3.2.1.3 Data division

The division of the dataset is a necessary step prior to the model development. To establish a
powerful QSPR model with good predictive ability the data set is divided into a training set
and a test set. In this work, the dataset was divided in a ratio of 75:25, constituting 122
compounds in the training set and 40 compounds in the test set using the Euclidean Distance-
based division algorithm (Danielsson, 1980) with the help of a java-based tool
datasetDivisionGUI1.2 available from http://tegip.jdvu.ac.in/fQSAR_Tools/. After division, the

training and the test sets were subjected to pretreatment with the help of

dataPreTreatmentTrainTest1.0 tool from http://teqip.jdvu.ac.in/OSAR Tools/ to remove

intercorrelated descriptors. The development of the model is done using the training set
whereas the test set is used to check the predictive ability and external validation of the

developed model.

3.2.1.4 Feature selection and QSPR model development

The selection of important features contributing to the property of compounds is a crucial step
during the development of a QSPR model (Bursac et. al., 2008). We have prepared several
Genetic Algorithm (GA) (Katoch et. al.,, 2021) models using a java-based tool
GeneticAlgorithm_v4.1 from http://teqip.jdvu.ac.in/QSAR_Tools/ and selected the descriptors

that appeared frequently in a maximum number of models. The generation of GA models and
feature selection is done using the training set only without the involvement of the test set. The
training set and test set matrices with the selected features were prepared. Further, we have

used the Best Subset Selection v2.1 tool available from http://teqip.jdvu.ac.in/QOSAR Tools/ to

generate different MLR models with all possible combinations of a given number of
descriptors. A good robust model was selected based on the cross-validation result which is
used for further g-RASPR analysis.
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3.2.1.5 Optimization of the Read-Across hyperparameters

Identifying the optimized setting of hyperparameters (o, y, number of close source/training
compounds, and best similarity-based algorithm) is an essential step for Read-Across based
prediction. Per the QSPR prediction principles, hyperparameter optimization should be done
based on training/source set only without any involvement of the test/query set. The training
set containing the descriptors involved in the QSPR model was further divided into
corresponding sub-train and sub-test sets. With the help of a java-based tool
Auto_RA_Optimizer-v1.0, available from https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home, we have selected the values for ¢ and vy to be 0.5, number of close training

compounds be 8, and Gaussian kernel-based similarity as our best similarity-based algorithm.
Here, the selection of hyperparameters was based on the maximum occurrence frequency of
individual hyperparameters obtained during optimization using different sub-training and sub-

test sets prepared through the division of the training set via different algorithms.

3.2.1.6 Calculation of the RASPR descriptors

Before proceeding with the q-RASPR study, the prominent step is calculating the similarity
and error-based RASPR descriptors (Banerjee and Roy, 2023) for the individual training and
test sets. Unlike structural and physiological descriptors, the RASPR descriptors are calculated
after the division process. This is so because the RASPR descriptors are calculated based on
the similarity of test set compounds to the training set compounds. The Gaussian kernel-based
similarity descriptors with ¢ value 0.5 were calculated using a java-based tool RASAR-Desc-
Calc-v2.0, available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home. For the calculation of RASPR descriptors for the test set, we have used the
training set and the test set containing the selected physiochemical descriptors as input, whereas

for the computation of training set RASPR descriptors, only the training set is used as input.

3.2.1.7 Feature selection and development of the g-RASPR model

Since, the g-RASPR study is the combination of both QSPR and RA-based predictions, it is
necessary to combine the structural and physiological descriptors with the similarity and error-
based RASPR descriptors. The 15 similarity and error-based descriptors are fused with the
previously selected structural and physiological descriptors for respective training and test sets.
A grid search was performed to generate a MLR g-RASPR model with all the possible
combinations of a given number of descriptors using the Best Subset Selection v2.1 tool

available from http://teqip.jdvu.ac.in/QSAR_Tools/. Descriptor optimization was based on the
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Q?Loo (cross-validation) metric. The final PLS g-RASPR model was developed with the

selected features.

3.2.1.8 Application of other machine learning (ML) algorithms

The predictive performance of the developed g-RASPR model was further evaluated by
applying various supervised Machine Learning (ML) algorithms. We have used 7 different ML
algorithms to develop various regression models such as Random Forest (RF) (Breiman, 2001),
Adaptive Boosting (AdaBoost/AB) (Wu wt. al., 2010), Gradient boosting (GB) (Friedman et.
al., 2002), Extreme Gradient Boosting (XGB) (Chen and Guestrin, 2016), Support Vector
Machine (SVM) (Noble, 2006), Linear Support Vector Machine (LSVM), and Ridge
Regression (RR) (Hoerl and Kennard, 1970). Scaling of the training and test sets data values
was achieved using a Java-based tool Scalel.0

fromhttps://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. With the help of a

Python-based tool Hyperparameter Optimizer v1.2 and the scaled data of the training set, we
have calculated the optimized hyperparameters for each ML algorithm. The selection of the
hyper-parameters was based on the MAE results. Using the optimized settings of the
hyperparameters and the scaled training and test sets, we have developed several ML models
using a Python-based tool Machine Learning Regressor v 2.0 available from

https://sites.qoogle.com/jadavpuruniversity.in/dtc-lab-software/home. The final selection of

the best predictive model was done based on MAETest results.

3.2.1.9 Statistical validation metrics

The developed models were evaluated for their predictability and reliability in terms of various
internal and external validation parameters. Internally the model was evaluated on the basis of
determination coefficient (R?), adjusted R? (R%gj), Leave-One-Out cross-validated Q? (Q?Loo),
and root mean squared error of calibration (RMSEc) while the external statistical parameters
involve the calculation of R%yes or Q%1 Q% and root mean squared error of prediction
(RMSEp) (Roy, 2007). Both internal and external validation tests were done using the mean
absolute error (MAE) based criteria (Roy et. al., 2016) as Q%x: does not always provide exact
prediction quality because of its dependence on the response range and response value

distribution in the training and test set compounds.

3.2.1.10 Applicability domain (AD)
The validity of the g-RASPR model is denoted by a defined domain of applicability (OECD
principle 3) (Roy et. al., 2015a). AD (Roy et. al., 2015b) represents the response and chemical
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structure space which is defined by the chemicals used in the development of the model (in the
training set). The distance to model X (DModX) approach (Roy et. al., 2015c¢) was used with
a 99%  confidence level with the help of SIMCA  software
(https://landing.umetrics.com/downloads-simca) to check whether the compounds in the sets

are within the AD. In the DModX technique, the residuals of X and Y act as diagnostic values
for the quality of the model. The standard deviation (SD) of X-residuals corresponds to the
respective row of residual matrix E. As SD is directly proportional to the distance between the
data points and the model plane in X-space, it is commonly called DModX (distance to the
model in X-space). Those compounds which are present in the chemical space can be predicted

precisely and those lying outside the AD are termed as outliers.

The detailed workflow is represented in Figure 3.2.
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Figure 3.2: Workflow of the g-RASPR model development to estimate the detonation heat
of N-containing compounds

3.2.2 Study 2

3.2.2.1 Data set preparation, curation, and structural representation

It is crucial to have high-quality data while building computational models. Therefore, we
collected four data sets with their experimental data, each containing information about the one
of the properties like decomposition temperature, melting point, density, and heat of formation,
from previously published literature sources (Mathieu, 2018; Wespiser and Mathieu, 2013).
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The data taken from the 2 literature sources are all experimental data. The Tqec data was derived
in-house by Wespiser et. al., the Bradley melting point data set was used by Wespiser et. al. for
the melting point data set, the density data set was collected from Crystallography open
database by Wespiser et. al., and the heat of formation data contains different types of
compounds with their experimental data which is also clearly mentioned in the literature
(Mathieu, 2018). The data set used by Wespiser et al. contains some other organic compounds
also with their experimental data for the heat of formation and densities. This was done so to
extract the features which correspond to high positive heat of formation and higher densities of
the compounds. These features can help to get insights into how the densities and heat of
formation are affected by the presence of certain features in the compounds. The determination

of these features will help to design new better performing EMs with less sensitivity.

To ensure accuracy, we curated the collected data to remove any duplicates, inorganic
compounds, or mixtures, if present. After the curation process, we were left with 656, 19667,
12805, and 2565 data points for the decomposition temperature (°C), melting point (°C),
density (g/cm?), and gas phase enthalpy of formation data (kJ/mol) sets, respectively. We made
all the curated data sets available in the Excel sheets of Supplementary Materials (S1-1)
(Pandey and Roy, 2024). The SMILES (Simplified Molecular Identity Line Entry System)
notation was used for the representation of all data points, and MarvinSketch v-5.11.5
https://www.chemaxon.com was used to prepare the structures, which were then subjected to

aromatization, the addition of explicit hydrogens and 2D cleaning as necessary.

3.2.2.2 Descriptor calculation and data pre-treatment

The molecular structures so prepared were used to calculate the descriptors (quantitative values
derived from the molecular structural information) for the respective data sets using the
AlvaDesc software v2.0.6. (Mauri, 2020). Nine different classes of highly interpretable 2D
descriptors like molecular properties, functional group counts, atom type E-state indices, atom-
centered fragments, 2D atom pairs, connectivity indices, constitutional indices, ring

descriptors, and Extended Topochemical Atom (ETA) indices were calculated for all data sets.

The calculated descriptors set was then subjected to the pre-treatment process where the
descriptors having high inter-correlation (>0.8) or having constant/null values were removed
from the descriptors set. The final pre-treated files were used for further division of the data set

into training and test sets.
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3.2.2.3 Dataset division

To check the predictive power of the model, there is a requirement to check the predictions for
external compounds in addition to those included in the development of the model. To do so,
the data set was divided into training and test sets. The training set was used for the
development of the model while the test set validates the predictivity of the developed model.
We have divided all the data sets into respective training and test sets in a 3:1 ratio. Based on
different algorithms, the data sets were divided with the help of the Dataset-
DivisionGUI1.2tool  freely  available  from http://teqip.jdvu.ac.in/QSAR_Tools/. The

information on the number of compounds in the individual training and test sets after the
division, along with the division algorithm applied, is enlisted in Table 3.3. The details of the
data sets are provided in Supplementary Information SI-1 (Pandey and Roy, 2024).
Additionally, for the density data set, we have also prepared a true external set of 37 energetic
compounds with their experimental density (g/cm?®) collected from Rice and Brydr. (Rice et.
al., 2007).

Table 3.3: List of training and test compounds in data sets and the applied division
algorithm

No. of compounds

Data Set Division algorithm
Training Test
Decomposition temperature
424 141 Property-sorted
(Tdec)
Melting point (Tm) 14750 4917 Property-sorted
Density 9604 3201 Property-sorted
Heat of formation (AH’f)
1923 642 Kennard-Stone
(gas phase)

After the division of the dataset into respective training and test sets, we further pre-treated the
training and test set descriptor matrix to remove the null/constant descriptors, and the final

training and test set so obtained were used for the feature selection process.
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Figure 3.3 presents the chemical diversity plot (MW vs LOGPcons) prepared using the
molecular weight and LOGPcons for all the data sets to see the diversity in the chemical nature

of the compounds present in the respective training and test sets of the individual data set.
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Figure 3.3. Chemical diversity plots

3.2.2.4 Feature selection and QSPR model development
The selection of the potential features from the descriptor pool that are closely related to the

activity/property/toxicity of the compound is a key step during the development of a QSAR
model (Bursac et. al., 2008). There are several variable selection methods like step-wise
selection, all possible subset selection, genetic algorithm, factor analysis, etc. (Roy et. al.,
2015c¢). In this work, we used step-wise and genetic algorithms to prepare a pool of important
descriptors and then used the all-subset selection method to finalize the set of descriptors for
the final models. The features are selected based on the MAE-based criteria (training set only
without any involvement of the test set. A pool of features was prepared through various feature
selection processes. A grid search was performed using the pool of selected features for the
generation of several MLR models using the Best Subset Selection tool v2.1 available
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from http://teqip.jdvu.ac.in/fQSAR_Tools/. The final robust PLS QSPR model was selected

based on the cross-validation (Q?.oo) result with a lower number of latent variables (LVs). The

final model so obtained was then used for Read-across-based similarity prediction.

3.2.2.5 RA predictions

For the calculation of RA-based similarity predictions, we have used the default values of the
hyperparameters, i.e. 6=1, y=1, and the number of closed training/source compounds (CTC) to
be 10. Using the default hyperparameters and a Java-based tool Read-Across-v4.2 available

from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, we have

calculated the similarity predictions of the test set compounds for different similarity
algorithms such as Gaussian kernel-based, Laplacian kernel-based, and Euclidean distance-
based similarity. Further, based on the MAEts results, we have selected the best similarity

measure for the individual data set.

3.2.2.6 RASPR descriptor calculation

The calculation of the similarity and error-based RASPR descriptors is the first and foremost
step needed to build a g-RASPR model (Banerjee and Roy, 2023). The calculation of the
RASPR descriptors (for the best similarity measure obtained from RA prediction) is done after
the division process which is different from the calculation of structural and physiochemical
descriptors that are calculated before the data set division. This is because here the test/query
set RASPR descriptors are calculated based on their similarity to the training/query set
compounds. For the calculation of the test set RASPR descriptors, both the training as well as
test sets (containing the structural and physiochemical descriptors) were used while the training

set RASPR descriptors were calculated from itself only.

3.2.2.7 Feature selection and g-RASPR model development

The descriptor matrix of the QSPR model was fused with the 18 calculated similarity and error-
based RASPR descriptors. The prepared descriptor pool was then used for the feature selection
using a step-wise process or performing a grid search through the Best Subset Selection tool
v2.1 available from http://tegip.jdvu.ac.in/QSAR_Tools/. The optimal number of descriptors

selected in the model was based on the leave-one-out cross-validated (Q?Loo) results, and the
same features were used to develop the final PLS model. The PLS model was developed for

all sets except the melting point data set where a univariate model was developed.
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3.2.2.8 Statistical quality and validation metrics

After the development of a model, the model needs to be validated internally as well as
externally. The OECD principle 4 describes the different validation metrics needed to judge
the predictive potential of a model (Gramatica, 2007). To check the statistical quality and
validate the model internally, we have used the determination coefficient (R?), leave-one-out
cross-validated Q? (Q%Loo), mean absolute error (MAEtain), and root mean squared error of
calibration set (RMSEc) (Roy, 2007). The external validation was done based on Q%1, Q%
mean absolute error (MAEtst), and root mean squared error of prediction set (RMSEp). Both
the internal and external validation tests were done based on the MAE-based criteria as Q?

metrics do not always provide a good reflection of the prediction quality (Roy et. al., 2016).

3.2.2.9 Application of ML algorithms

We have also applied different machine learning algorithms to check the predictivity of our
developed PLS g-RASPR model. Here, we have used 7 different supervised ML algorithms
such as Random Forest (RF), Support Vector Machine (SVM), Linear Support Vector Machine
(LSVM), Adaptive Boosting (AB), Gradient Boosting (GB), Extreme Gradient Boosting
(XGB), and Ridge Regression (RR) to build various regression models. These machine
learning modeling methods are described in Supplementary Materials SI-2(Pandey and Roy,
2024). The training and test set descriptors and response values of the developed PLS model
were scaled before the application of ML algorithms using a Java-based tool Scalel.0 freely

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home.

Different ML models were developed for each property data set (except Tm) with the help of
a Python-based tool RSLv2.2 available from

https://sites.qoogle.com/jadavpuruniversity.in/dtc-lab-software/home. We have used the

default setting of the hyperparameters for the development of the ML models.

3.2.2.10 Applicability Domain (AD)

As per the OECD principle 3, the defined applicability domain (AD) represents the validity of
the developed g-RASPR model. The chemicals employed in the model development define the
chemical structure space, which is represented by AD (Roy et. al., 2015b). To check whether
the compounds in the test set are within the chemical space of the training set used for the
modeling, we have used the DModX (distance to model X) approach with 99% confidence
level (only  for the PLS  models) using the SIMCA  software

https://landing.umetrics.com/downloads-simca. (Wold et. al., 2001). The compounds within the
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AD can be predicted precisely whereas the compounds outside the AD are termed outliers. The
DModX approach was used for defining the AD of Tgec, density, and AH¢* data sets, while for
the Trm data set, we used the leverage approach (Roy et. al., 2015c) for determining the AD.

The detailed workflow we have used during the model development is represented in Figure
3.4.
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Figure 3.4: Schematic workflow for the model development

3.2.3 Study 3

3.2.3.1 Dataset preparation and molecular representations

The authors have collected experimental data on the RE for 173 molecular p-type OSCs from
the previously published literature (Atahan-Evrenk, 2018). The data set contains a diverse set
of organic compounds with acenes, thiophenes, thienoacenes, and anti-aromatic pentalenes
with their experimental RE measured in mili electron-volt (meV). The logarithmic
transformation of the RE was performed to reduce the range of the response value. Simplified
molecular identity line-entry system (SMILES) notations were used for the molecular
representation of the entities in the data set, which were then used to prepare the molecular

structures of the compounds by using MarvinSketch (https://www.chemaxon.com) v-5.11.5.40.
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The prepared structures were aromatized in appropriate cases, added with explicit hydrogen,

and cleaned in the 2D-space.

3.2.3.2 Calculation of structural and physiochemical descriptors

Molecular descriptors are required to generate mathematical correlations between the
molecular structure information and the response values. Molecular descriptors are the
quantitative values used to define/quantify/represent various structural features and are derived
from the structural representation of the molecules. In this study, we have calculated a total of
nine classes of highly interpretable 2D structural and physiochemical descriptors using the
AlvaDesc software v2.0.641, (Mauri, 2020) namely 2D atom pairs, molecular properties,
functional group counts, constitutional indices, atom-centered fragments, connectivity indices,

ring descriptors, Extended Topochemical Atom (ETA) indices, and atom type E-state indices.

After calculating the above-mentioned descriptors, they were subjected to a data pre-treatment
process to remove the descriptors with null and/or constant values and features having high
inter-correlation between them. Here, we have used the inter-correlation cut-off of 0.95. The
descriptor file after the pre-treatment process was further used for the dataset division purpose.

3.2.3.3 Division of the dataset

Splitting the dataset into a training set and a test set is a very important step required for the
development of a well-validated model. The division of the dataset should ensure that the
compounds in the training and the test sets are distributed within the entire descriptor space of
the compounds in the whole dataset. In this work, we have applied the property-sorted
response-based division to divide the data set into a 3:1 ratio using a java based tool Dataset-

DivisionGUI1.2 freely available from http://tegip.jdvu.ac.in/fQSAR_Tools/. The compounds in

the training set were used for the development of the model whereas the test set compounds
were used to validate the model externally.

3.2.3.4 Variable selection and QSPR model development

The process of variable selection refers to the extraction of important features from the whole
descriptor pool that are highly correlated to the response (here, RE). The feature selection is
performed using only the training set and does not involve the test set (Bursac et. al., 2008).
Among various feature selection techniques, we have used the step-wise feature selection and
genetic algorithm (GA) method to pool out significant descriptors (Roy et. al., 2015c; Rogers
and Hopfinger, 1994). Through GA feature selection, the descriptors that frequently appeared

54


http://teqip.jdvu.ac.in/QSAR_Tools/

were selected via the generation of several GA models. The descriptor pool formed after the
feature selection was then used for performing a grid search using the Best Subset Selection

tool v2.1 available from http://teqip.jdvu.ac.in/fQSAR_Tools/ to generate different MLR

models. Soon after the selection of the best MLR model, the same descriptor combination was
used to develop the final PLS QSPR model, the latter being more robust and generalized
version of the former. The PLS QSPR model was developed with a lower number of latent
variables (LVs) on the basis of the cross-validation (Q?.00) result. The descriptors appearing
in the developed QSPR model were then used for further read-across (RA) based similarity

predictions.

3.2.3.5 Read-across similarity predictions

Before proceeding with the similarity calculations, tuning the hyperparameters associated with
different similarity measures is necessary. Per the QSPR prediction principles, the
hyperparameters are optimized using only the source/training set. The training set of the final
QSPR model was further divided into several sub-training and validation sets. Using the sub-
training and validation sets as input files in a Java-based tool Auto RA_Optimizer-v1.0,

available from https://sites.qgoogle.com/jadavpuruniversity.in/dtc-lab-software/home, we have

optimized the hyperparameters for Gaussian kernel-based similarity, Laplacian kernel-based
similarity, and Euclidean distance-based similarity measures. The hyperparameters such as the
number of close training compounds (CTC), sigma (o) value [for Gaussian kernel], and gamma
(y) value [for Laplacian kernel] were selected based on the frequency of the value occurring
the maximum number of times when ran with different sub-train and validation sets (Chatterjee
et. al., 2022).

After the selection of the hyperparameters for the individual similarity measure, these tuned
hyperparameters were then used to calculate the prediction of the query/test set previously
obtained from the division of the whole dataset. The prediction of the individual query set
compound is done based on its similarity with the close source compound in the training set.
The RA predictions were performed using a Java-based tool Read-Across-v4.1 available from

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The prediction of the

query/test set was obtained individually for the above-mentioned three similarity measures.

3.2.3.6 Computation of RASPR descriptors
To develop a g-RASPR model, similarity and error-based features, also known as RASPR

descriptors, are calculated for each similarity measure (with their optimized hyperparameters)
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for the individual training/source set and for the test/query set (Banerjee and Roy, 2023). The
calculation of the RASPR descriptors is done after the division process which differs from the
calculation of the structural and physiochemical descriptors in a conventional QSPR analysis
before the division of training and test sets. With the help of a Java-based tool RASAR-Desc-

Calc-v3.0.2 available from https://sites.qgoogle.com/jadavpuruniversity.in/dtc-lab-

software/home, we have calculated the RASPR descriptors for each similarity measure. To

calculate the RASPR descriptor for the training set, the training set with structural and
physiochemical features of the final QSPR model itself was used as an input, whereas the
RASPR descriptors for the test set were calculated using both the training set and test set files
of the QSPR model.

3.2.3.7 Development of the g-RASPR models

A g-RASPR model contains information on both the structural and physicochemical features
and similarity information. Therefore, the amalgamation of the structural and physiochemical
descriptors of the QSPR model with the similarity and error-based RASPR descriptors becomes
a necessary step. The newly prepared descriptor matrix of the training set and the test set were
then used for performing a grid search for descriptors with the help of the Best Subset Selection
v2.1 tool available from http://teqip.jdvu.ac.in/QSAR_Tools/ where different MLR models

were developed with a certain number of features. The best model was selected based on the
cross-validation metric; Q% 0o. The same descriptors were then used to develop the PLS g-
RASPR model with a lower number of LVs.

It should be noted here that we have developed three different g-RASPR models for the three
different similarity measures. To do this, we combined the structural and physiochemical
features of the QSPR model's training and test sets with the RASPR descriptors for each

similarity measure individually to obtain three different sets of training and test sets.

The predictions of the compounds present in both the training and the test sets were calculated
using the above 3 models separately. Furthermore, we have used the predictions obtained from
the individual PLS models to perform stacking. The final stacking q-RASPR model was
developed using the PLS regression algorithm as the stacking regressor. The developed
stacking PLS gq-RASPR model contains information on the structural and physiochemical
features along with the different similarities (Euclidean, Gaussian, and Laplacian) between the

source and the query compounds.
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3.2.3.8 ML predictions

We have also applied several ML algorithms to perform the stacking regression to enhance the
quality of the developed model. Tree-based methods (RF, AB, GB, XGB), and kernel-based
methods (SVM, LSVM, RR) were used to evaluate our developed models. Before applying the
supervised ML algorithms, the training and the test sets were scaled with the help of a Java-

based tool Scalel.0 freely available from https:/sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home. The ML models were developed using the above-mentioned ML

algorithms with the help of RSLv2.2 (a Python-based tool) available from

https://sites.qoogle.com/jadavpuruniversity.in/dtc-lab-software/home. The ML models use the

default hyperparameters during the learning process.

3.2.3.9 Validation of the developed models

As per the OECD principle 4, the acceptance of a developed model relies on validating the
model both internally (based on the training set) as well as externally (based on the test set).
The evaluation of the predictivity, goodness of fit, and robustness of the developed model was
done through the internal and external validation of the models. Statistical quality and
validation metrics like the determination coefficient (R?), adjusted R? (R%qj), and leave-one-
out squared correlation coefficient (Q%.00) were used to judge the goodness of fit and
robustness of the developed model. For the external validation Q%1 (or R%pred), Q%2, Q?%ss, and
concordance correlation coefficient (CCC) were calculated to determine the predictivity of the
model (Roy, 2007). Error metrics such as mean absolute error (MAE) and root mean squared
error (RMSE) were also used for the validation of the models both internally and externally
(Roy et. al., 2016).

3.2.3.10 Applicability domain

The applicability domain (AD) (Roy et. al., 2015b) is defined as a chemical structure space
represented by the chemicals that are present in the training set. According to OECD principle
3, one should perform the AD study to validate their developed model (Roy et. al., 2015a). In
this study, we have used the distance to model in X space (DModX) approach (Roy et. al.,
2015c) with a 99% confidence level to evaluate whether the compounds in the training and test
sets are within the domain of applicability. SIMCA software

(https://landing.umetrics.com/downloads-simca) was used for performing the DModX-AD

analysis. For the precise prediction of a compound, the compound must lie within the AD of
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the model, and if they do not, their predictions are not reliable and hence, termed as outliers or
outside the applicability domain.

The detailed workflow of the current study is shown in Figure 3.5.
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Figure 3.5: Sequential steps for model development and its validation
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4. RESULT & DISCUSSION

4.1 Study 1: Machine learning-based g-RASPR predictions of detonation heat for

nitrogen-containing compounds

4.1.1 QSPR model development

The data set comprising 162 compounds with the detonation heat energy and computed
descriptors is provided in the Supplementary Materials section. The training set consists of 122
compounds, while the predictions and external validation were done using a test set having 40
compounds. After the feature selection process, a total of 6 descriptors were used to develop
the final PLS QSAR model with 5 latent variables as shown in Equation (4.1)

Q = 2504.432 + 264.478 x FO1[N — 0] — 151.749 X X% + 156.626 X SddsN
+297.997 X nCt + 2393.524 X Etagyg;, — 284.446 x FO1[C — F] (4.1)

N(Training) = 122:"(Test) =40
Rerrainy = 0.851,Q0,00y = 0.832,R% ;) = 0.843, MAE 1rqiny = 482.451
Q% = 0.921,Q3, = 0.920, Q% = 0.916,CCC = 0.960, MAE 1os) = 430.542

The developed model was statistically reliable as the internal as well as external validation

metrics were far above the required threshold values.

4.1.2 Chemical Read-Across (RA) prediction

To perform the similarity-based Read-Across predictions, the structural and physiochemical
parameters of the developed QSPR model were used. Hyper-parameters (similarity approach,
the number of close source compounds, o, and y) optimization was done using the training set
containing the selected variables. The training and test sets with the selected features were used
as the inputs for the RA predictions based on the different similarity approaches like Euclidean
distance-based similarity, Gaussian kernel-based similarity, and Laplacian kernel-based
similarity. The results obtained show that the Gaussian kernel-based similarity has the best
predictive quality for the test set (or query set) using the default hyper-parameters (close source
compounds=8, 6=0.5, and y=0.5) with Q%1=0.906, Q%»=0.905, MAET=418.004, and

RMSEp=580.938. The same information of the hyper-parameters and Laplacian kernel-based
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similarity were used to calculate the similarity and error-based RASPR descriptors for

individual training and test sets respectively.

4.1.3 g-RASPR model development

Clubbing of the structural and physiochemical features with the similarity and error-based
measures was done before further model development. The new descriptor matrix contains
information on both QSPR and RA-based predictions. The training set formed after clubbing
the features is used for the selection of the important contributing descriptors for the
development of the models. A 5 descriptors combination MLR model was prepared based on
internal validation metrics. Finally, a PLS model was developed using the selected 5 descriptors
with 4 latent variables and was evaluated for its robustness, reliability, and predictive ability
using various internal and external validation parameters. Equation (4.2) (vide infra) shows
the corresponding q-RASPR model and the descriptors involved. The detailed information on
the descriptors is listed in Table 4.1. The Scatter plot (Figure 4.1) represents the observed
and predicted detonation heat energy values of individual training and test set compounds. The
graph infers that there is a low difference between observed and corresponding predicted values

of compounds present in both the training set and the test set.

Q = 1930.622 + 217.106 X FO1[N — 0] — 78.832 X X% + 130.881 X SddsN
+ 237.814 X nCt + 0.536 X RAfunction(GK) (4.2)

N(Training) = 122, N(Test) = 40
Rirrain) = 0846, Q(i00) = 0.828, R(yqj) = 0.839
Q2, = 0.927,Q2%, = 0.927,Q%; = 0.923,CCC = 0.963

MAE (7rqin) = 489.865, MAE (posr) = 395.705, RMSE, = 723.177, RMSEp = 510.755
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Table 4.1: List of descriptors and their contribution in the final PLS q-RASPR model

S.
N Descriptor Type Description Contribution
0.
Constitutional _
1. X% Percentage of halogen atoms Negative (-ve)

indices

) Frequency of N - O at o
2. FO1[N-O] 2D Atom Pairs ] _ Positive (+ve)
topological distance 1

Functional group ) o
3. nCt . Total number of tertiary carbon  Positive (+ve)
counts

Atom-type E- o
4, SddsN o Sum of ddsN E-states (-N== Positive (+ve)
state indices

RA function RASPR

] All structural information Positive (+ve)
(GK) descriptor
Scatter Plot
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Figure 4.1: Scatter Plot (Yobs VS Ypred) for Eq. (4.2)
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Additionally, we have also checked for the structural outliers in the training and test sets using
the Williams Plot (Figure 4.2). The plot infers that two of the compounds from the training

set and one compound from the test set are structural outliers.

Williams Plot
2 .
E . . hd # Train
= 0.4 0.6 0.8 1 M Test
< *
g
7

HAT (h*=0.148)

Figure 4.2: Williams plot (standardized cross-validated residuals vs. leverage values)

4.1.4 Descriptors interpretation of the PLS g-RASPR model

The descriptor RA function (GK) is a composite RASPR descriptor that contains all the
selected atomic as well as structural information of the compounds. The RA function (GK)
descriptor contributes positively to the prediction of detonation heat energy of N-containing
compounds which is easily visualized in 3,6-Bis(1H-1,2,3,4-tetrazolyl-5-amino)-1,2,4,5-
tetrazine (12) where the value of RA function (GK) is more resulting in high detonation heat
energy while in 3,3'-Azobis(6-amino-1,2,4,5-tetrazine) (13), RA function (GK)is low resulting

in a low detonation heat energy.

The descriptor nCt defines the number of tertiary carbons in the compound and it contributes
positively to the prediction of detonation heat energy. Octanitrocubane (97) due to its cage-
like structure represents a total of 8 such tertiary carbons in its structure present at the vertices.
Compounds having a ring/cage structures can liberate more energy at the time of detonation
because of the excess strain energy associated with the ring (Li, 2009). In
Isopentanetrioltrinitrate (156), the value of detonation heat energy is less as it contains only a

single tertiary-Carbon.
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The descriptor FO1[N-O] defines the frequency of N-O bonds at the topological distance 1.
This descriptor contributes positively to the value of detonation heat energy which can be seen
in 4,4'-heavy (N-trinitroethyl-N-nitro)-3,3'-difurazan (47) and Heavy (N-trinitroethyl-N-
nitro)furazan (48) having 20 and 18 N-O bonds respectively and high detonation heat values,
while 3-nitro-1,2,4-triazole (8) and 1-methyl-2,4-dinitrobenzene (19) have 2 and 4 N-O in their
structures respectively; hence, they have low values of detonation heat. In the compounds,
FO1[N-O] corresponds to the presence of explosophores in the form of nitro (NOz), nitrito
(ONO:), furazan ring, furaxan ring, etc. leading to the production of more detonation heat

energy (Wang et. al., 2022).

The descriptor X% depicts the percentage of halogen present in the compound. This descriptor

contributes negatively to the value of detonation heat energy. This can be seen in 2,2-Difluoro-
2-nitroethyl trifluoromethane-sulfonate (65) having a high halogen percentage and showing
the least value of detonation heat among all the 162 compounds whereas Methyl 4-fluoro-4,4-
dinitrobutyrate (76) has the lowest halogen percentage and have more value of detonation heat
energy. In trifluoromethane-sulfonate (65), the electronegative fluorine atom is situated close
to the positively charged nitrogen (more energy, less stable), therefore stabilizing its energy
due to ion-dipole interaction resulting in a decrease in detonation energy.

The descriptor SddsN describes the atom-type E-state index for -N== groups (nitro) and
contributes positively to the detonation energy. The nitrogen present in the form of the nitro
group is ina high energy state (higher oxidation state in nitro) which after explosion forms inert
N2 gas (lowest oxidation state) and hence releases more energy (Kumar and Elias, 2019).
Pentaerythritoltetranitrate (135) andl1-Nitropiperazine-2,3-co(1',3'-dinitroimidazolidinone-
2')-5,6-nafurazan (45) have higher SddsN values compared to Hexanitrodiphenylsulfide (38)
and Tetranitroglycoluril (108) respectively, having lower E-state index for the -N== group

showing lower detonation energy.

The descriptors with their respective VIP levels and compounds with higher and lower
detonation heat energy values associated with individual descriptors are represented in Figure
4.3.
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Figure 4.3: Variable importance plot with structural representations of molecules with

higher and lower Q values
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4.1.5 Predictions through various ML models

We have also employed different machine-learning algorithms for the prediction of the
detonation heat energy of N-containing compounds. Here, in this work, we have applied 7
different ML algorithms to develop our models and check their predictive performance. Before
applying different ML methods, we have scaled both the descriptor matrix and the response
values of individual training and test sets using a java-based tool Scalel.0 available

fromhttps://sites.qoogle.com/jadavpuruniversity.in/dtc-lab-software/home. For the

optimization process, we have used a python-based tool Hyperparameter Optimizer v1.2

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and

performed a grid search for optimizing the hyper-parameters of each method using the scaled
training set as input. The results of RF and Adaboost/AB show that these models are not robust
as the difference between the values of R? and Q2.0 is high and hence are not reliable. The
predictive performance of Gradient boost, XGBoost, and ridge regression are almost similar to
our developed PLS model. Based on the MAEres results, the Gradient boost model shows the
best predictive performance with the lowest error. To check the quality of the models we have
performed the MAE cross-validation (CV), i.e. leave-one-out CV, 20 times 5-fold CV, and
shuffle-split CV with n_splits =1000. The MAE CV results of RF, AB, GB, and SVM models
have increased significantly which shows the models are of inferior quality in comparison to
other models. On comparison, it was found that the PLS and RR models have efficient
predictive performance in terms of Q% and MAEp. So, on the basis of RMSEp criteria, we have
selected the PLS g-RASPR model as the best model for the prediction of both the training and

test sets. The validation metrics of all the models are represented in Table 4.2.
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Table 4.2: Comparison between performances of different g-RASPR models

-RASPR Training Set Statistics Test Set Statistics Obtimized
MODELS R? Q%oo | MAEc | MAELoo | RMSEc | Q%1 | Q% | MAEs | RMSEp Hyperparameters
PLS 0.846 0.828 0.265 0.28 0.391 | 0.927 | 0.927 0.214 0.276 (LV=4)
(n=120, leaf=1, split=3,
RF 0.957 0.722 0.142 0.36 0.206 | 0.885 | 0.884 0.242 0.347
depth=none)
AB 0.864 0.677 0.301 0.41 0.367 0.859 | 0.858 0.284 0.385 (n=60, loss=linear)
(n=150, leaf=1, split=2,
GB 0.878 0.750 0.226 0.33 0.349 | 0.925 | 0.925 0.199 0.280
depth=1)
(n=60, depth=5,
XGB 0.840 0.825 0.267 0.28 0.399 0.926 | 0.925 0.213 0.279 booster=gblinear, learning
rate=0.1)
(C=5.0, Degree=2,
SVM 0.885 0.747 0.212 0.31 0.337 0.854 | 0.853 0.224 0.391
Gamma=auto)
LSVM 0.831 0.824 0.270 0.28 0.409 | 0.916 | 0.915 0.223 0.297 (C=25.0)
RR 0.847 0.829 0.264 0.28 0.390 | 0.927 | 0.926 0.214 0.277 (0=1.0)

68




4.1.6 Interpretation of the PLS plots

To identify the outliers in the respective training set and test set, the DModX (distance to model
X) AD plots (Figure 4.4) were prepared for each training set and each test set, and it shows that
there are 2 outlier compounds in the training set while no compounds from the test set were outside
the applicability domain (AD). To find the relation between the X-variables (descriptors) and the
Y-variable (property) and also get an idea about the variable importance, we have prepared the
loading plot (Figure 4.5) developed using the first and second PLS components. The
interpretation of the plot depicts that the descriptors situated at a greater distance from the origin
have more impact on the Y-variable (here property). In the plot, RA function (GK) and X%
descriptors were the farthest from the origin showing their larger impact on the prediction of
detonation heat which can also be verified from the VIP plot (Figure 4.3) showing their VIP score
>1. The coefficient plot (Figure 4.6) shows the standardized regression coefficient values of each
descriptor of the model. The bubble plot (Figure 4.7) shows the standardized regression
coefficient of the descriptors on the Y-axis and the size of the bubble corresponds to their
importance (VIP levels). The score plot (Figure 4.8) was prepared using the first two PLS
components for the training set. The score plot for the training set contains a total of 4 outliers. We
have also performed the Shapley Additive exPlanations (SHAP) analysis (Rodriguez-Perez and
Bajorath, 2020) (Figures 4.9) to see the contribution of each feature to the outcome of the model
(i.e. detonation heat). The SHAP analysis for the training set shows that the FO1[N-O] is the most
important descriptor for the prediction of detonation heat while in the case of the test set, the RA
function (GK) has the highest impact on the detonation heat prediction. The nCt descriptor is of

the least importance for both the training and test set.
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Figure 4.4: DModX AD plot
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Figure 4.7: Bubble plot of the g-RASPR model depicting the contribution of the descriptors
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Figure 4.9: SHAP analysis for training set (A) and test set (B) for the developed PLS model
4.1.7 Comparison of the g-RASPR model with other models

4.1.7.1 Comparison with the present QSPR model

We have compared the results of the developed g-RASPR model with our own QSPR model
(section 3.1). The chemical information associated with both the models is same as the features
appearing in the QSPR model were used for the RASPR descriptor calculation and further model

development. Although the internal validation metrics were comparable for both QSPR (R?(train) =
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0.851, Q?%wo0) =0.832, MAE (train) = 482.451) and q-RASPR (R%(train) = 0.846, Q%Loo) = 0.828,
MAE rin) = 489.865) models, the results of the test set prediction of the g-RASPR model (Q%k
=0.927, Q%2 = 0.927, MAE esty = 395.705) were better than the QSPR model (Q?%r1 =0.921, Q%
=0.920, MAETest) = 430.542) in terms of MAE rest). The external validation results show that there
is an enhancement in the prediction quality of the g-RASPR model. It should also be noted that
the g-RASPR model is developed using 5 descriptors while the QSPR model has 6 descriptors.
This depicts that the g-RASPR model with a lower number of descriptors is more efficient in the

prediction of detonation heat with same type of chemical information.

4.1.7.2 Comparison with the previous model

The previous QSPR study was performed using the random forest (RF) algorithm using a set of
3D-descriptors. Our g-RASPR model shows better predictive results in terms of Q% and RMSEp
with a lower number of descriptors. It should also be noted here that we have only used the 2D-
descriptors, which do not need prior structure optimization, unlike computing3D-descriptors. A
comparison of our model's different validation metrics with those of the previously developed

model is given in Table 4.3.

Table 4.3: Comparative results of previous model with our g-RASPR model

Models No. of descriptors R? RMSEc Q%F1 RMSEp
He et al., 2021 7 0.965 377.8 0.880 641.8
Our g-RASPR
5 0.846 723.177 0.927 510.755
model

4.2 Study 2: Predicting performance and stability parameters of energetic materials (EMs)
using the machine learning-based g-RASPR approach

4.2.1 QSPR model development

We have developed 4 different QSPR models for the prediction of 4 different properties of
energetic compounds. Three models (Tqec, density, and AHf") were developed using the PLS
regression algorithm while one of the models [for the melting point (Tm)] was developed using
Multiple Linear Regression (MLR).
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A 10-descriptor MLR model for decomposition temperature (Tqec) Was selected after the feature
selection process by performing a grid-search using the Best Subset Selection tool v2.1 available
from http://teqip.jdvu.ac.in/fQSAR_Tools/. The same descriptor set was used to develop the final
PLS QSAR model with 5 latent variables (LVs) which are optimized by LOO Q2. The equation

for the model is given in Table 4.4. The training set of the melting point (Tm) temperature data set

was subjected to a forward step-wise feature selection process to enlist the prominent features
closely related to the melting point. A 29-descriptor MLR QSPR model was developed to predict
the melting point temperature of the compounds. The MLR equation for the model is shown in
Table 4.4. The feature selection of the density data set was performed through step-wise selection
using the training set. After the feature selection process, a 6-descriptor MLR model was prepared
and further, PLS regression was used to develop the QSPR model with 5 LVs. The PLS equation
of the model is given in Table 4.4. For the enthalpy of formation (AH°), a step-wise feature
selection process was performed after the division of the data set. The pool of descriptors so
obtained from the step-wise selection was then used to develop several MLR models through a
grid-search approach using a java based tool Best Subset Selection tool v2.1 available from
http://teqip.jdvu.ac.in/QSAR_Tools/. An 11-descriptor MLR model was selected based on the

cross-validation result (Q%.00), and further with the same set of descriptors, a PLS QSPR model

was developed with 3 LVs. The PLS equation is given in Table 4.4.
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Table 4.4: Model equations and validation metrics of the developed QSPR models

. Training set .
Property Model equation _g Test set metrics
metrics
Tgec = 436.990 + 3.952 X €% — 142.266 X B01[0 — 0] — 28.762 _
Ntraining = 424 Neest = 141
X BO3[N — 0] +9.558 x Hy — 14.993 X LOGP99 RZ = 0.578 02, = 0.621
Taec + 34.492 X nArNO2 + 24.399 X C — 005 — 25.504 X nN 0? 0557 Q’;l 0621
PLS model +39.061 X BO1[N — N] — 34.360 x BO1[N — O Loo = % Fz— =
( ) T [ ] [ ] MAE,, = 45.257 MAE,, = 44.919
Descriptors = 10,LVs = 5 RMSE, = 57.971 RMSEp = 54.814
Ty =291.1 +13.46 X Ui + 2298 X nHDon + 15.08 X Rbrid
+ 26.5x B03[C — 0] + 19.12xnN + 50
X nArCOOH + 2.1 X AMW — 0.212 X T(N..0)
+ 5.27 X Rprim + 23 X nRCOOH — 0.28
X F10[C — 0] + 6.95 X NdssC — 31.3 x nR Neraining = 14750 Neost = 4917
Tm =Cp — 4.25 x FO7[C — N] — 38.1 X minsssB R2 =0.679 Q%, = 0.670
(MLR + 1.539 X MLOGP2 — 350 x Mi — 3.69 X nChH Q% = 0.676 Qf, = 0.670
model) — 16.7 X MaxssCH2 + 11.57 x N — 072 + 1.79 MAE,, = 39.633 MAE,, = 39.626

X 0% — 3.76 X FO5[0 — 0] — 1.3 X F10[C — C]
+ 32.7 X B02[C —C] — 14.8 X FO2[0 — CI] + 86
X NssssNt + 1.79 x StN — 4.64 x F10[0 — 0]
— 9.4 X nOHs

Descriptors = 29

RMSE; = 51.686
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Ntraining = 9604

Npose = 3201

Density = 1.235 + 0.120 X AMW — 1.409 x Mp + 0.015 X nX — 0.008
: ey N P . R? = 0.924 Q2 = 0928
Density X X% + 0.196 X MCD — 0.015 X NRS ; i
(PLS model) Q%0 = 0.922 Qf, = 0.928
Descriptors = 6,LVs =5 MAE = 0.037 MAE = 0.037
RMSE, = 0.053 RMSEp = 0.051
AH;° = —25.420 — 196.661 X nF — 71.385 x FO1[C — 0] — 23.045
X nCsp3 + 91.062 X nCIC + 187.180 x FO1[N — F] Neraining = 1924 Neest = 643
AH .0 —115.277 X 0 — 058 + 57.671 X FO1[N — N] R? = 0.967 Q2, = 0.932
(PLS mfodel) — 83.572 x NsOH + 32.203 x NdsCH + 128.918 Q700 = 0.966 Q%, = 0.931
X nCsp + 32.832 X nN MAE,, = 53.553 MAE,, = 47.903

Descriptors = 11,LVs =3

RMSE. = 78.571
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4.2.2 Chemical Read-Across (RA) predictions

The structural and physiochemical features of the developed QSPR model were used to evaluate
the similarity-based RA predictions. The default setting of the hyperparameters (c=1, y=1, no. of
close source/training compounds=10) was used to perform the Read-across predictions for the 3
different similarity approaches like Laplacian kernel-based (LK), Gaussian kernel-based (GK),
and Euclidean distance-based (ED) similarity. The prediction results show that the Laplacian
kernel-based similarity has the best predictivity for Tgec, Tm, and AHf" whereas the Gaussian
kernel-based similarity has the best performance for the density data set. The results of RA
predictions are shown in Table 4.5. The default hyperparameters of each similarity measure were

used to calculate the RASPR descriptors for each of the data sets.

Table 4.5: Read-across predictions for different data sets

Metrics
Q%r1 Q%r2 MAEp” RMSEp* Similarity
measure
Property

Tgec 0.645 0.645 41.756 53.037 LK
T 0.736 0.736 34.075 46.520 LK
Density 0.925 0.925 0.039 0.052 GK
AH¢° 0.924 0.924 49.100 70.787 LK

*Non-standardized values

4.2.3 q-RASPR model development

The motive behind the development of the g-RASPR model is to increase the external predictivity
of the model over the traditional QSPR model. The calculated RASPR descriptors are composed
of different similarity, error, concordance as well as predictive functions from the structural and
physiochemical descriptors. These calculated RASPR descriptors were clubbed with the
previously selected structural and physiochemical descriptors to form the new descriptor matrix
for the individual training and test set. The prepared training set was further used for the selection

of the prominent features for the development of the model. To develop the g-RASPR model for
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Tdec and AH¢", a grid search was performed on the fused descriptor matrix (obtained from the fusion
of QSPR and RASPR descriptors)to develop several MLR models using the Best Subset Selection
tool v2.1 freely available from http://teqip.jdvu.ac.infQSAR_Tools/. The best MLR model was

selected based on the leave-one-out (LOO) cross-validation result, and the same was used further
to develop the final PLS g-RASPR model with a lower number of LVs which are optimized using
LOO Q2. For the density dataset, a forward step-wise feature selection method was used to develop
the MLR model, and further, the PLS algorithm was applied to obtain the final PLS g-RASPR
model. Both grid-search and step-wise selection were performed for the T dataset, and in both
cases a univariate g-RASPR model with RA function (LK) as the only descriptor was obtained. The
final model equations for individual models with their internal and external validation metrics are
tabulated in Table 4.6.

Additionally, to evaluate the predictivity of the developed PLS g-RASPR model for the density
dataset, we have collected a true external set of 37 energetic compounds from Rice and Byrd“3and
calculated the validation metrics for the same. The result shows that our model can predict new

compounds accurately.

Q%, = 0.883, MAE = 0.073,RMSE = 0.088
The scatter plots shown in Figure 4.10 represent that there is a high correlation between the
observed and predicted values. As in the individual plots, the scattering is not much which
represents that the quality of the developed models was good. The distribution of the heat of
formation data set in Figure 4.10 shows that only a few (approx. 14) compounds are present far
from the clusters of training (1924) and test (643) sets which are very small in number w.r.t. the
whole training set compounds. Also, the division algorithm used here was based on the Kennard-
Stone method which divides the data set based on the descriptor matrix, and not based on

property/response.
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Table 4.6: Model equations and validation metrics for the developed g-RASPR models

Model equation

Training set metrics*

Test set metrics*

Tdec
(PLS model)

Tyec = 144.449 + 2.684 X C% — 43.374 x B0O1[0 — 0]
—15.109 x BO3[N — 0] + 8.425 x Hy
—8.311 x LOGP99 + 19.520 X nArNO2
+16.965 X C — 005 — 8.233 X BO1[N — N]

+ 0.596 X RA function (LK) — 0.870
x SE (LK)

Descriptors = 10,LVs =5

Neraining = 424
R? = 0.620
02, = 0.600
MAE,, = 42.313
RMSE. = 55.013

Neest = 141
Q% = 0.676
Qz, = 0.676

MAE,, = 41.383
RMSEp, = 50.683

Tm

(Univariate model)

T,, = 9.081 + 0.952 X RA function(LK)

Descriptor = 1

Ntraining = 14750
R? = 0.746
02, = 0.746
MAE,, = 33.959
RMSE, = 46.005
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Niest = 4917
02, = 0.741
02, = 0.741

MAE,, = 34.297
RMSEp = 46.520



Density = 0.425 + 0.042 x AMW — 0.690 x Mp + 0.082

Ntraining = 9604

Niest — 3201

Sen X MCD + 0.741 x RA function(GK) R? = 0.940 Q2, = 0.939
ensity
— 0.049 x CVsim(GK) 2 o =0.940 Z, =0.939
(PLS model) Qioo CF
MAE,, = 0.035 MAE,, = 0.035
Descriptors = 5,LVs = 4 RMSE; = 0.047 RMSEp, = 0.047
Nergining = 1924 Npoey = 643
AH.° = 28.972 + 1.020 X RA function(LK) — 0.298 framing rest
R? = 0.943 Q% = 0.931
AH;° x SD Activity (LK) — 1.884 X nCsp3
Q200 = 0.942 Q%, = 0.931
(PLS model)
MAE,, = 61.718 MAE,, = 47.158
RMSEp = 67.630

Descriptors = 3,LVs = 2

RMSE. = 103.603

*Non-standardized MAE and RMSEP values are shown
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Scatter Plots
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Figure 4.10: Scatter plots for the individual PLS models

The violin plots shown in Figure 4.11 represent the frequency of compounds with the residual
values (i.e. observed — predicted) in the training and test sets of respective models for each
property. The graph seems to be more flattened in the middle portion representing that there are
more compounds in the training and test sets with lower residual values, and the tapered end at

both the ends of the violin represents the lower number of compounds with high residuals.

4.2.4 PLS plot interpretation

Models were developed from all the datasets, except for the melting point (Tm) dataset, using PLS
regression, as the final model of the Tm data set contains only a single descriptor. Hence, a
univariate model has been reported got Tm instead of reporting it in the form of a PLS model,

which represents several original descriptors into a lower number of latent variables (LVS).
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Residuals
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Figure 4.11: The violin plot of each model represents the variation in the residual values for
compounds in the respective training and test sets. The width of the plot represents the

frequency/number of data points for the given residuals.

We have used the DModX (Distance to Model X) approach to check the numbers of outliers
present in the training and test sets, respectively (except for the melting point data set). The

DModX-AD plots of the developed PLS models are given in supplementary materials (Figures
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4.12, 4.13, and 4.14). The applicability domain of the univariate model for melting point was
calculated using the leverage approach. The leverage values for the individual data points of
training and test set were calculated using the Java-based tool Hi_Calculator-v2.0 (accessible from

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home). William’s plot (Figures

4.15) represents the outliers from the training and test sets of the melting point data set with
leverage values higher than the critical h* value (0.0004). The percentage (%) of compounds as
outliers in the training and test sets of the respective models is shown in the bar graph in Figure

4.16.

DModX-AD Plot for Decomposition temperature
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Figure 4.12: AD plot for Tdec
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DModX-AD Plot for Density
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Figure 4.13: AD plot for Density
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DModX-AD Plot for Heat of formation (gas phase)
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Figure 4.14: AD plot for AH¢’
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Figure 4.16: AD status for individual models. It represents the percentage (%) of compounds

as outliers in training and test sets of the respective model.
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To check the impact of the descriptors (i.e. X-variables) on the property (Y-variable), we have
developed the loading plot (Figure 4.17) using the first 2 PLS components. The variables that are
more dispersed from the origin have a high impact on the model. We have also used the VIP plot
(Figure 4.18) to interpret the importance of respective descriptors according to their VIP values
in the model. The coefficient plot representing the standardized regression coefficient values for
each descriptor of the individual model and the score plots for each model are given in the
supplementary materials (Figures 4.19 and 4.20, respectively). As the score plot for each model
(Figure 4.20) has been developed using the first 2 components (t1 and t2) of the model, the
compounds outside the ellipse can be considered outliers for the model with 2 latent variables. The
ellipse indicates the model's applicability domain, as defined by Hotelling’s t> (a multivariate
generalization of Student’s- t-tests). The AD study shows that the compounds present far away
from the ellipse are just not outliers based on the two components of the model. Still, they are also
outliers for the whole descriptor space shown in the DModX applicability domain (AD) plots
(Figures 4.12, 4.13 and 4.14).

Loading Plots
Tdec
0.8
0.6 RA function(LK)
e Hy >
0.4
g 02 b
%  BO3N-O ’ nArNO2
& B9 o Boipyy . C-005¢ o C%
2 [ &
0.4 0.2 - 0 0.2 0.4 0.6 0.8
¢SE(LK)
+B01[0-0] 0.4
#LOGP99
0.6
Ml.w*c[1]
Density
o
0.6 RA function(GK) AH'¢
SD 0.8
Exp. Density ¢ Activity(LK) ™ 2 z
= 03 @ 0.6 RA function(LK)#
2 © <y -
3 AMW = s *
z .
b o 3 nCsp3¢ 04 Exp. AH',
- —
0IMCD 01 03 05 07 | = S
0.3 0
-0.5 -0.2 0.1 0.4 0.7 ¢
06 CVsim(GK)® o Mp Ml.w*c[1]

Ml.w*c[1]

Figure 4.17: Loading Plots for different PLS g-RASPR models
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VIP Plots
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Figure 4.18: VIP plots for different PLS models
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Figure 4.19: Coefficient Plots for each PLS model
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Figure 4.20: PLS Score Plots for respective models
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The bubble plot (Figure 4.21) collectively represents the VIP values (size of bubble) of the

descriptors with their standardized regression coefficient values (Y-axis) of the PLS models.

Variable importance of the PLS models
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Figure 4.21: Bubble Plots for the respective PLS models representing variable importance

and standardized regression coefficients
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4.2.5 Prediction through ML models

We have also developed various ML models for the individual data sets (except Tm) to predict the
respective properties. Here, 7 different ML algorithms were used to develop the models. Scalel.0
(a Java-based tool) was used to scale the descriptors and response values of both the training and
test sets. The default values of the hyperparameters for each algorithm were used during the model
development process. The statistics for the model quality and predictivity are reported in Tables
4.7, 4.8, and 4.9 given below. We have also performed 5-fold and 10-fold cross-validation and
noted MAEc (CV) to check the quality of our developed models. For the density and AHf data
sets, 5-fold and 10-fold cross-validated R? values were determined to check the robustness of the
developed models, as LOO-CV is not appropriate for such large data sets. The graphical
representation of various quality and error metrics for different ML-based g-RASPR models is

shown in Figure 4.22.

In the case of Tgec, the external validation metrics of the PLS model infer that it has better

predictivity in comparison to the other developed ML models in terms of Q%r1, Q%2 and RMSEp.

For the density data set, the external predictions of the LSVM, RR, and PLS models were similar
in terms of Q%1 and Q%2 but the error for the LSVM model in terms of MAEp was the least among
all the models. Therefore, the LSVM model can be considered to be the best-performing model
for the prediction of density.

For the prediction of gas-phase heat of formation, the RR model shows its better predictivity with

the least error in terms of MAEp and cross-validated MAEc.

We have also performed the Shapley Additive exPlanations (SHAP) analysis (Rodroguez-Perez
and Bajorath, 2020) (Figure 4.23) for the final ML models to see the impact/importance of the
descriptors on the model predictions. It was found in all the 3 models that the descriptors having
high feature values and positive SHAP values contribute positively to the predictions and vice-
versa. The features which are more dispersed along the X-axis have a high impact on the model.
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Table 4.7: Comparison between the performances of different g-RASPR models for decomposition temperature (T dec)

Training set statistics Test set statistics

Tdec
MAEct SEM MAEct SEM
Models R?2 Q%00 MAEc RMSEc Q% Q% MAEp RMSEp
(5-foldCV) (10-foldCV)
RF 0.935 0.527 0.187 0.54 + 0.036 0.53+0.035 0.254 0.633 0.633 0.477 0.604
AB 0.632 0.496 0.505 0.58 + 0.036 0.56 + 0.028 0.606 0.564 0.564 0.557 0.658
GB 0.853 0.559 0.295 0.54 + 0.036 0.53+0.038 0.383 0.594 0.594 0.507 0.635
XGB 0.937 0.501 0.189 0.56 = 0.040 0.55+0.035 0.250 0.591 0.591 0.523 0.637
SVM 0.687 0.544 0.409 0.54 £ 0.031 0.54 + 0.032 0.559 0.674 0.674 0.456 0.569
LSVM 0.613 0.605 0.469 0.49 +0.031 0.48 £ 0.028 0.621 0.662 0.662 0.468 0.574
RR 0.621 0.600 0.474 0.50 = 0.027 0.49 £ 0.028 0.615 0.674 0.674 0.468 0.569
PLS 0.620 0.600 0.474 0.49 £ 0.027 0.49 £ 0.028 0.616 0.676 0.676 0.463 0.567
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Table 4.8: Comparison between the performances of different g-RASPR models for density (Den)

Training set statistics

Test set statistics

Density
R%+ SEM R%+ SEM MAEc £+ SEM  MAEc + SEM
Models R? MAEc RMSEc Q% Q% MAEr RMSEp
(5-fold CV) (10-fold CV) (5-fold CV) (10-fold CV)
RF 0.991 0.92+0.004 0.92+0.006 0.066 0.19+0.009 0.19+0.006 0.931 0936 0931 0.182 0.250
AB 0.913 0.89+0.013 0.88 +0.009 0.224 0.23+0.004 0.23+0.006 0.295 0.905 0905 0.227 0.305
GB 0.947 092+0.004 0.92+0.006 0.172 0.19+0.004 0.19+0.006 0.230 0932 0932 0.184  0.257
XGB 0.911 0.87+0.004 0.88 +0.009 0.205 0.23+0.009 0.22+0.009 0.298 0.905 0905 0.215 0.303
SVM 0.915 0.87+0.022 0.88+0.016 0.172 0.19+0.009 0.19+0.009 0.292 0916 0916 0.178 0.286
LSVM 0.940 0.93+0.004 0.92+0.003 0.178 0.18+0.004 0.18+0.006 0.247 0939 0939 0.177 0.245
RR 0.940 0.93+0.004 0.93+0.006 0.179 0.18+0.004 0.18+0.006 0.244 0939 0939 0.178 0.243
PLS 0.940 0.93+0.004 0.92+0.006 0.180 0.18+0.004 0.18+0.006 0.246 0939 0939 0.180 0.244
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Table 4.9: Comparison between the performance of different g-RASPR models for the heat of formation (AHs")

Training set statistics

Test set statistics

. R?+ SEM R?+ SEM MAEc £ SEM MAEc £ SEM
Models R? Q%Loo MAEc RMSEc Q%1 Q% MAEr RMSEp
(5-foldCV)  (10-fold CV) (5-foldCV) (10-foldCV)
RF 0.991 0934 0.86+0.004 0.87+0.013 0.054 0.18+0.0031 0.17+0.028 0.096 0.913 0.913 0.123 0.1758
AB 0.926 0905 0.82+0.022 0.83+£0.016 0.190 0.22+ 0.027 0.21+ 0.022 0.271 0.879 0.879 0.156 0.207
GB 0.968 0933 0.88+£0.009 0.88+0.016 0.118 0.17+ 0.027 0.16x 0.025 0.180 0.925 0.925 0.114 0.163
XGB 0.935 0.897 0.82+0.027 0.79+£0.028 0.146 0.20+ 0.036 0.20x 0.028 0.255 0.899 0.899 0.137 0.189
SVM 0.827 0.761 0.74+£0.094 0.79x0.054 0.154 0.21£ 0.058 0.15+£ 0.044 0.416 0.928 0.928 0.110 0.159
LSVM 0942 0942 0.91+£0.013 0.90x0.013 0.141 0.14+£0.018 0.19+0.019 0.240 0.930 0.930 0.108 0.157
RR 0.943 0942 0.91+£0.013 0.90x0.013 0.142 0.14+£0.018 0.14+£ 0.016 0.239 0.931 0.931 0.108 0.156
PLS 0.943 0942 0.91+£0.013 0.90x0.013 0.143 0.15+£0.018 0.14+£ 0.016 0.239 0.931 0.931 0.109 0.156
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Table 4.10: List of descriptors with their definition and contribution to the PLS g-RASPR models

Descriptor Definition Type Model Contribution
C% Percentage of Carbon atom Constitutional indices Tdec Positive (+ve)
B01[0-0O] Presence/absence of O-O at topological distance 1 2D atom pairs Tdec Negative (-ve)
BO1[N-O] Presence/absence of N-O at topological distance 3 2D atom pairs Tdec Negative (-ve)
Hy Hydrophilic factor Molecular property Tdec Positive (+ve)
LOGP99 Wildmann-Crippen octanol-water coefficient (LogP) Molecular property Tdec Negative (-ve)
nArNO> Number of nitro (-NO2) groups (Aromatic) Functional group count Tdec Positive (+ve)
C-005 CH3X Atom centered fragment Tdec Positive (+ve)
BO1[N-N] Presence/absence of N-N at topological distance 1 2D atom pairs Tdec Negative (-ve)
AMW Average molecular weight Constitutional indices Density Positive (+ve)
Mp Mean atomic polarizability (scaled on C-atom) Constitutional indices Density Negative (-ve)
MCD Molecular cyclized degree Ring Descriptor Density Positive (+ve)
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nCsp3 Number of sp3 hybridized C-atom

Constitutional indices

AHf

Negative (-ve)

RA function A composite function derived from Read-Across

RASPR descriptor

Tdec, Tm,

Density, AH¢"

Positive (+ve)

Weighted standard error of the close source

SE (LK) RASPR descriptor Tdec Negative (-ve)
compounds' response values
) Coefficient of variance of similarity values of close ) _ _
CVsim(GK) RASPR descriptor Density Negative (-ve)
source compounds'’
o Weighted standard deviation of the close source ) _
SD_Activity (LK) RASPR descriptor AHf Negative (-ve)

compounds' observed response values
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4.2.6 Descriptor Interpretation of the PLS g-RASPR models

The final PLS q-RASPR models for different properties of EMs have been presented in the form
of mathematical equations in Table 4.6. In contrast, the descriptions of the descriptors with their
contribution to the models are listed in Table 4.10. The descriptor influences on the properties

with suitable examples are discussed below:

4.2.6.1 Interpretation of descriptors for the Tdec model

In the decomposition temperature (Tqgec) model, the descriptors RA function (LK), C%, nArNO»,
Hy, and C-005 are contributing positively to the decomposition temperature which means that any
increase or decrease in the values of the descriptors mentioned above will result in the
simultaneous increase or decrease, respectively, in the Tgec Of the compounds. On the other hand,
the descriptors BO1[N-N], BO01[O-O], BO3[N-O], LOGP99, and SE(LK) have negative
contributions to the Tqec. The positive contribution of the RA function (LK) can be represented by
compound 452(RA function (LK) = 673.168, Tgec = 608.15°C), 151(RA function (LK) = 587.517,
Tdec = 573.15°C), and 19(RA function (LK) = 378.162, Tgec = 397.15°C). The presence of 55.56%
and 6.67% of carbon in compounds187 (Tdec = 536.55°C) and 78 (Tdec = 383.15°C) confirms the
positive contribution of the descriptor C%. The presence of 8 nitro groups in 300 (Tgec =
658.15°C), 3 in 262 (Tgec = 587.15°C), and none in 343 (Tdec = 526.65°C) shows the positive
contribution of the descriptor NArNO:2 in the model. The hydrophilic factor Hy, contributes
positively to the model which can be represented by the compound 113 (Hy = 6.992, Tgec =
511.15°C) and 11 (Hy = -0.200, Tgec = 468.15°C). The atom-centered fragment C-005 represents
the fragment CHsX (where X is an electronegative atom, here oxygen). The positive contribution
of CH3X can be represented by the compound 536 (CH3X = 3, Tgec = 655.15°C) and 223 (CH3X =
0, Tdec = 623.15°C). The Tdec value of 180 is 620.95°C, and it does not contain any N-N, O-O, and
N-O bonds at the topological distances of 1, 1, and 3, respectively. But in compounds 51 (Tgec =
461.15°C), 184(Tgec = 471.15°C), and 103 (Tdec = 381.15°C) the presence of these bonds
corresponds to a decrease in their Tqec. The negative contribution of LOGP99 can be presented by
the compound 177 (LOGP99 = 7.830, Tgec = 359.15°C) and 443 (LOGP99 = -0.882, Tgec =
503.65°C). Also, the negative contribution of the RASPR descriptor SE (LK) can be described by
the compound 364 (SE (LK) = 88.991, Tgec = 364.65°C) and 277 (SE (LK) = 22.036, Tgec =
448.15°C)
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4.2.6.2 Interpretation of the RA function descriptor in the Tm model

The RASPR descriptor, RA function(LK)is the only descriptor in the univariate model for melting
point. This RA-derived composite function contributes positively towards the property prediction.
The positive contribution of RA function(LK) can be represented by compounds 19458 (Tm=
481°C), 12637 (Tm =360°C), 17948 (Tm=117.5°C), and 16 (Tm = -100.67°C) with their respective
feature values 491.162, 328.358, 114.91, and -108.684.

4.2.6.3 Interpretation of descriptors for the density model

The density of a compound can be calculated as the ratio of molecular mass to its volume. The
descriptor AMW in the developed model stands for the Average Molecular Weight of the
compound and contributes positively to the prediction of the density. As we know density is
directly correlated with the mass of the compound, as the AMW increases the density of the
molecule also increases simultaneously. The compound 223 and 551with molecular densities of
3.866 and 3.546, have an average molecular weight of 53.57 and 41.53, respectively. Again,
compounds 12764 and 12765, with densities of 1.027 and 1.03, have AMW of 4.88 and 4.89,
respectively. The constitutional descriptor Mp represents the mean atomic polarizability (Scaled
on C-atom) and contributes negatively to the model prediction. The polarizability is directly
proportional to the compound's volume, which is indirectly related to the density. So, the increase
in the polarizability indicates a decrease in the density of the compound. It can be easily illustrated
by337with a mean polarizability value of 0.532, having a molecular density of 1.859 g/cm3, while
12351 has a molecular density of 1.696 g/cm? with only 0.852 Mp value. The descriptor MCD
(Molecular Cyclized Degree) positively impacts the model predictivity. MCD represents the ratio
of number of atoms present in the ring to the total number of atoms in the molecule. The cyclic
molecules have a higher density due to the stronger London forces because the ring system allows
for a larger area of contact. The density of 11446 is 1.254 g/cm?® with a degree of cyclization of
0.857 whereas with 0.75 degree of cyclization, 8403 has a density of 1.171 g/cm®. The RASPR
descriptor, RA function (GK) is a composite descriptor derived from the Read-Across and is
contributing positively to the prediction of density. It can be seen in 223, 7347,8127, and 12773
having descriptor values of 3.546, 1.715, 1.268, and 1.024 corresponding to their densities in the
order of 3.866, 1.764, 1.325, and 1.041, respectively. CVsim (GK) indicates the coefficient of

variance of the similarity values of the close source compounds and shows a negative contribution
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in the model. When the variation between the similarity values increases among the close training
compounds, it indicates that the prediction is not so reliable for the test set compound. The
compounds 9129 (CVsim (LK) = 0.005, d = 1.323 g/cm?®) and 1335 (CVsim (LK) =3.162, d = 1.184
g/cm?) verify the negative contribution of CVsim (LK).

4.2.6.4 Interpretation of descriptors for the AHs* model

In the AHf* model, the descriptor RA function LK) contributes positively to the model. The
compounds849, 569, and 102 with the descriptor value of 693.341, 407.732, and -4455.65 have
their enthalpy of formation 681.4 kJ/mol, 364 kJ/mol, and -4806.4 kJ/mol respectively. Another
RASPR descriptor SD_Activity (LK) has a negative contribution to the model. The compounds 120
(SD_Activity (LK) = 876.004, AHs* = -1551 kJ/mol), 2353 (SD_Activity (LK) = 62.293, AHf" = -
272 kJ/mol), and 1825 (SD_Activity (LK) =6.991, AHs* =-227.4kJ/mol) confirms that the increase
in the weighted standard deviation of close source compounds response values results in the
decrease in the amount of AH¢". The descriptor nCsp3 represents the number of sp3 hybridized C-
atom in the molecule and represents a negative contribution to the model. The AHf" of compound
279 (nCsp3 = 0, AHf" = 147.45 kJ/mol) and 280(nCsp3 = 6, AHs* = -48.9 kJ/mol) shows that the
hydrogenation in the later compound increases the number of sp3 hybridized carbon from 0 to 6

which leads to decrease in the value of AHs® of the molecules.
4.2.7 Comparison of the quality of g-RASPR models with QSPR models

4.2.7.1 Comparison with our QSPR models

We have compared the g-RASPR models with our own developed QSPR models for all 4
properties. The validation metrics for all the developed models are shown in Table 4.4 (QSPR
model) and Table 4.6 (g-RASPR model). The comparative results depict that the prediction
quality has been enhanced for all the g-RASPR models when compared to their corresponding
QSPR models. The number of descriptors in the g-RASPR models was also lower than the
descriptors present in the QSPR models which shows that with a lower number of regressors
(except in the case of decomposition temperature), our q-RASPR models can efficiently predict

the compounds having identical chemical information.
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4.2.7.2 Comparison with the previous models

The process of performing curation is most important to obtain a noise-free data set, to develop a
relevant model with a high degree of acceptance. While performing curation on the obtained data
set, we have found that the data set used by the authors (Wespiser and Mathieu, 2023) contains
several duplicate compounds and mixtures as well. Previously, the authors (Wespiser and Mathieu,
2023) prepared two QSPR models for the Tqec and Tm data sets, and two semi-empirical additivity
scheme models for the density and AHs" data sets. Apart from this, they developed deep-learning
models using the MPNN (Message Passing Neural Network) algorithm for all the data sets. The
validation metrics of the training sets were not reported by the authors and at the same time, the
feature selection process or the final features in the developed models were also not reported. Also,

for the Tqec and AHs™ data sets, only the external test set results were reported.

For easy interpretability and reproducibility of our developed models, we have mentioned the
descriptors (both the number and types) of our QSPR as well as of g-RASPR models (Table 4.10).
This information can be used for the prediction of properties of newly developed compounds or
compounds whose properties are not known yet using our models. Wespiser et. al. did not mention
the descriptor number and type for the models, which challenges the reproducibility of their
developed models.

A comparison of the results for the test set prediction quality of our QSPR and g-RASPR models
with the previously developed QSPR and MPNN models is presented in Table 4.11. We can state
that our Tdec G-RASPR model reports a lower RMSEp error compared to the QSPR and MPNN
models developed previously. The g-RASPR model for Trm shows a good predictive quality with
only a single descriptor [i.e. RA function (LK)] for a very large data set. Although the prediction
quality of our g-RASPR model does not exceed the previous QSPR and/or MPNN models, a model
with a single descriptor with this much accuracy for a large data set is quite remarkable. Comparing
the results for the density data set, we infer that with only 5 descriptors in the final model, the
model shows a very minute difference in the error estimation both with respect to MAE and RMSE.
Also, the quality and prediction of our PLS g-RASPR model for AHf* was almost similar to the
MPNN DL model.
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Therefore, we can infer that, with much less model complexity, our g-RASPR models with few

features can efficiently predict the enlisted properties, and the developed models are also easily

reproducible.

Table 4.11: Comparison of our g-RASPR models with our own QSPR models and previously

developed models

Property Models No. of R2  MAEr RMSEp
descriptors
QSPR (Wespiser and Mathieu, 2023)  Not defined  0.82 39 53.6
MPNN (Wespiser and Mathieu, 2023)  Not defined  0.83 40 53
T QSPR (our work) 10 0.621 44919 54.814
g-RASPR (our work) 10 0.676 41.383 50.683
QSPR (Wespiser and Mathieu, 2023)  Not defined 0.93  25.2 35.8
MPNN (Wespiser and Mathieu, 2023)  Not defined 0.95  20.2 30.1
i QSPR (our work) 29 0.67 39.626 52.501
g-RASPR (our work) 1 0.741 343 46.52
QSPR (Wespiser and Mathieu, 2023)  Not defined 0.98 0.031  0.040
_ MPNN (Wespiser and Mathieu, 2023)  Not defined 0.98 0.034  0.046
Density
QSPR (our work) 6 0.928 0.037 0.051
g-RASPR (our work) 5 0.939 0.035 0.047
QSPR (Wespiser and Mathieu, 2023)  Not defined 0.972 234 30.8
] MPNN (Wespiser and Mathieu, 2023)  Notdefined 0.94  47.9 67.4
At QSPR (our work) 11 0.932 47903 67.412
g-RASPR (our work) 3 0.931 47.158 67.63

104



4.3 Study 3: Predictive cheminformatics modeling of reorganization energy (RE) for p-type
organic semiconductors: Integration of quantitative read-across structure-property

relationship (g-RASPR) and stacking regression analysis

4.3.1 QSPR modeling

The feature selection process was applied to the training set with 129 compounds. A pool of 28
significant descriptors was prepared through step-wise and GA feature selection algorithms. The
same pool of descriptors was then subjected to a grid search, and a 9 descriptor MLR model was
selected based on the cross-validated (Q?_oo) result. Finally, the same descriptor combination was
used to construct a PLS regression model with 7 LVs. The PLS equation (Equation 4.3) and the

validation metrics are mentioned below:

LogRE = —18.051 — 0.453 X RCI — 57.7 X Etag, + 48.316 X Etacpg;, + 3.105 X Etap, .

—0.018 X (nCh —) + 0.063 X H — 046 + 0.0667 X MaxaasC + 0.055
x BO3[S — S] — 0.029 X FO6[S — S] (4.3)

Nirain = 129, Nose = 42, Descriptors = 9,LVs =7
R? =0.731,Q%, = 0.688, MAE. = 0.078, RMSE; = 0.099
Q% = 0.741,Q%, = 0.741, MAE, = 0.075,RMSE, = 0.095

4.3.2 Similarity predictions

The descriptors of the PLS QSPR model were used to perform RA-based similarity predictions of
the query set compounds. The predictions for each compound were made using Euclidean distance,
Gaussian kernel, and Laplacian kernel-based similarity of the query compound with its close
source compounds. Following the optimization of RA hyperparameters for different similarity
measures, we have obtained the values for ¢ be 2 for the Gaussian kernel, y be 2 for the Laplacian
kernel, and the number of CTC be 3. These hyperparameters were used to compute the similarity
predictions of the query set compounds for each similarity measure, and the results are shown in
Table 4.12. The results for the Laplacian kernel-based similarity were found to be superior to the

other similarity parameters.
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Table 4.12: Results for the RA-based similarity predictions

Similarity measures

Validation
Metrics| Euclidean distance ~ Gaussian kernel Laplacian kernel
(ED) (GK) (LK)
Q%1 0.640521 0.637524 0.669772
Q% 0.640302 0.637304 0.66957
RMSEp 0.112152 0.112619 0.107493
MAEp 0.088217 0.088818 0.086095

4.3.3 g-RASPR modeling

The g-RASPR model development aims to incorporate the advantages of both QSPR and RA-
based similarity. The g-RASPR descriptor matrix was prepared by combining the structural and
physiochemical features with the RASPR descriptors. The newly prepared descriptor matrix of the
training set was further used for the variable selection process to select the significant features
through a grid search. Based on the cross-validation (Q?Loo) results, we have selected three MLR
models (one for each similarity measure) with 7-descriptors. The same descriptor combination was
then used to generate the PLS regression models with the least number of LVs optimized using

LOO Q2. The PLS equations of the models for each similarity function are given in Table 4.13

along with their validation metrics.
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Table 4.13: Model equations and metrics for the PLS q-RASPR models

Validation metrics

Model PLS Equation
Training set Test set
LogRE = —20.855 — 0.442 x RCI — 50.463 Neraining = 129 Npep = 42
x Eta_B_A + 53.217 X Eta_Epsi_3 , 2 _ 0750
g-RASPR —0.021 x (nCh —) + 0.051 x H R®=10707 Qf1 = 0.
(ED) — 046 — 0.022 X FO6[S — S] Qfoo = 0.668 Qf, = 0.750
+ 0.364 x RA function(ED) MAE. = 0.083 MAEp = 0.073
Descriptors=7, LVs=6 RMSE. = 0.104 RMSEp = 0.094
LogRE = —20.492 — 0.428 x RCI — 49.969 Neraining = 129 Moy = 42
X Eta_B_A + 52.316 X Eta_Epsi_3 ) 2
q-RASPR —0.021 x (nCh —) + 0.049 x H R®=10707 QF, = 0.748
(GK) — 046 — 0.022 X FO6[S — S] Qfoo = 0.667 Qf, = 0.748
+ 0.371 X RA function(GK) MAE; = 0.083 MAE, = 0.074
Descriptors=7, LVe=6 RMSE; = 0.104 | RMSE, = 0.094
LogRE = —23.544 — 0.587 x RCI — 54.149 Neraining = 129 Nppep = 42
x Eta_B_A + 60.285 x Eta_Epsi_3 , 2 _ g7c3
g-RASPR —0.023 x (nCh —) + 0.058 x H Rk*=10.706 Qf1 = 0.
(LK) — 046 — 0.027 X FO6[S — S] Qfoo = 0.666 Qf, = 0.753
+ 0.263 X RA function(LK) MAE; = 0.083 MAE, = 0.073
RMSE; = 0.104 | RMSEp = 0.093

Descriptors=7, LVs=6

The results of these models suggest that the prediction quality of the g-RASPR model is better

than the previously developed QSPR model. Also, the g-RASPR models contains a lower number

of variables compared to the number of descriptors in the QSPR model.

4.3.4 Predictions through stacking regressor

Soon after the development of g-RASPR models using different similarity approaches, the

predictions from the individual models were used for stacking. Using the predictions as the
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descriptors, we have calculated the RE (in logarithmic terms). The stacking regression was
performed using the PLS algorithm and the number of LVs was optimized based on the leave-one-
out squared correlation coefficient (Q?Loo). The validation metrics for the stacked-PLS model are

given in Table 4.14:

Table 4.14: Statistical results of the stacked-PLS g-RASPR model

Training set Test set
Neraining = 129 Neest = 42
R? = 0.708 Q% = 0.753
02,, = 0.698 Q%, = 0.753
MAE, = 0.083 MAE, = 0.073
RMSE; = 0.104 RMSEp = 0.093

The scatter plot (Figure 4.24) represents the correlation between the observed and predicted RE

of the molecules in the dataset for the stacking PLS g-RASPR model.

Scatter Plot ® Train
79 0 Test

1.9

Predicted RE (Log meV)

1.7
1.7 1.9 2.1 2.3 2.5 2.7 2.9

Observed RE (Log meV")

Figure 4.24: Scatter plot for the Stacking PLS g-RASPR model
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4.3.5 Interpretation of the PLS plots

The final stacking PLS model was developed using the predictions of 3 PLS g-RASPR models

with different similarity measures. We have analyzed the PLS plots for each PLS g-RASPR model,

and the following conclusions were drawn:

The variable importance (VIP) scores of the descriptors in all the models (Figure 4.25)
signifies that the RASPR descriptor RA_function is the most important descriptor followed
by nChb-, RCI, eta_epsi_3, eta B_A, and H-046 while the descriptor FO6[S-S] was of the
least importance.

The loading plots (Figure 4.26) signify that the descriptors that are dispersed more away
from the origin have more impact on the property. In all the 3 PLS q-RASPR models, the
X-variables (descriptors) dispersion is almost similar w.r.t the Y-variable (property).

The coefficient plots (Figure 4.27) represent the standardized regression coefficients of
the descriptors and their respective contribution (+ve/-ve) to the models.

In the score plots (Figure 4.28), compounds 1, 119, and 143 were found to be outliers for
all the 3 models constructed using the first 2 PLS components. The AD study performed
using the DModX approach (Figure 4.29 and 4.30) shows that only one compound
(Compound 1) is present out of the AD and is present in the training set. This can be
because of the fact that compound 1 is the only monocyclic compound in the dataset
whereas all other compounds consist of 2 or more rings. In the test set, all the compounds
were present within the AD of the respective models.

We have also performed the Y-Randomization test (Figure 4.31) to check whether our

model has any chance correlation or not.
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Figure 4.25: VIP plots for the individual PLS g-RASPR models
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Loading Plots
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Figure 4.26: Loading plots for the individual PLS g-RASPR models
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Coefficient Plots
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Figure 4.27: Coefficient plots for the individual PLS q-RASPR models
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Figure 4.28: Score plots for the individual PLS q-RASPR models
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DModX-AD plots for the training set
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Figure 4.29: DModX-AD plots for the training set of individual PLS g-RASPR models
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DModX-AD plots for the test set
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Figure 4.30: DModX-AD plots for the test set of individual PLS g-RASPR models
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Y-Randomization plots
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Figure 4.31: Y-randomization plots for the individual PLS q-RASPR models
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4.3.6 Interpretation of the modeled features

Stacking was performed using the predictions of the different models that were developed using
different structural and physiochemical features, and similarity measures. Here, in this section, we
will discuss the contribution of different features influencing the RE of organic semiconductors.
Among the descriptor set of the PLS g-RASPR models, the descriptors RCI, Eta_ B_A, nCb-, and
FO6[S-S] contribute negatively to the prediction of RE whereas the descriptors Eta_epsi_3, H-046,
and RA_function contribute positively. The detailed information on the modeled descriptors is
given in Table 4.15.

Table 4.15: List of descriptors of the g-RASPR models

Descriptor Description Contribution
RA_function RA-derived composite function +ve
nCb- Number of substituted benzene C (sp?) -ve
RCI Ring complexity index -ve
Eta_epsi_3 Eta electronegativity measure 3 +ve
Eta B A Eta average branching index -ve
H-046 H attached to CO (sp®), no X attached to next C +ve
FO6[S-S] Frequency of S-S at topological distance 6 -ve

The RASPR descriptor RA_function is an RA-derived composite function that contains
information of all the other structural and physiochemical features. This descriptor contributes
positively to the prediction of the RE,as can be seen in molecule 67 (RA_function = 2.110, RE =
193 meV) and 69 (RA_function = 2.047, RE = 79 meV).

The descriptor RCI represents the Ring Complexity Index of the molecule. The OSCs constitute
of conjugated n-systems and the electronic structures of these OSCs are affected due to the size

and complexity of these conjugated n-systems. The longer conjugated systems provide a larger
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surface area for the delocalization of e, thus reducing the energy required for electronic
reorganization (Salaneck et. al., 2001). The negative impact of RCI can be seen in compounds149
(RCI = 1.611, RE = 123 meV), 111 (RCI = 1.461, RE = 179 meV), and 97 (RCI = 1, RE = 288
meV) (see Figure 4.32).

149

Figure 4.32: Compounds representing ring complexity

The substitution of benzene carbon represented by the descriptor nCb-has a negative contribution
to the model predictivity. In the dataset, the molecules with benzene substitution show the fusion
of the benzene ring with another conjugated ring system (i.e. thiophene) which further enhances
the complexity of the molecule which results in lowering their RE,e.g., compound 50 (nCb- =6,
RE = 117 meV) and 51 (nCb- = 8, RE = 153 meV) (see Figure 4.33). The negative contribution
of nCh- also supports/validates the contribution of the RCI descriptor as both these descriptors

reflect the molecular complexity due to the increased m-conjugated system.

Figure 4.33: Compounds showing substitution of benzene carbon (highlighted)

The atom-centered fragment descriptor H-046 shows the presence of attached H-atom to a sp®
hybridized C-atom. The positive contribution of H-046 is represented in molecules139 (H-046 =
4, RE = 300 meV), 161 (H-046 = 4, RE = 275 meV), and 60 (H-046 = 2, RE = 320 meV) (see
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Figure 4.34). Due to the presence of sp® carbon between the 2 benzene rings, there is a
discontinuity of conjugation between the rings which results in an increase in RE. Again, in
molecule 86 (H-046 = 0, RE = 103 meV), no such hydrogen atom was there, so the m-conjugation
is maintained throughout the molecule exhibiting a lower RE.

Figure 4.34: Compounds representing hydrogen substitution at C-atom (sp?)

The 2D atom pair descriptor FO6[S-S] which represents the frequency of S-S at the topological
distance 6 contributes negatively to the model predictions. In both compounds119 (RE =210 meV)
and 120 (RE = 280 meV), 7 thiophene rings are present but compound 119 has 4 FO6[S-S] and
compound 120has 3 FO6[S-S] atom pairs (see Figure 4.35). This shows that the arrangement of
the thiophene ring within the molecule is an essential feature governing the RE. Since the sulfur
atom in the thiophene rings lowers the HUMO-LOMO gap because of its electron-donating nature
and presence of m-conjugation, it tends to lower the RE of the semiconductors (Mamada and
Yamashita, 2015).

Figure 4.35: Compounds highlighting S-S pair at 6 topological distance. Sulfur highlighted
with similar colours are paired with each other.
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The descriptor Eta_epsi_3 represents the ETA electronegativity measure of 3. This positive
contribution of this descriptor can be visualized from compound 143 (RE = 268 meV, Eta_epsi_3
= 0.463) and 153 (RE = 258 meV, Eta_epsi_3 = 0.45) (see Figure 4.36). In compound 143, the
steric hindrance is more due to the presence of fused thiophene rings whereas in compound 153,
where each thiophene ring is separated by a single bond lowers the steric hindrance of the molecule
thus reducing the RE.

H

o050,

143 e

Figure 4.36: Compounds representing steric hindrance in the molecule

The descriptor Eta_B_A which shows the ETA average branching index (here fusion pattern) in
the molecule has a negative impact on the model predictivity, and the same can be represented by
the compound 125 (RE = 85 meV, Eta B_A = 0.025), 122 (RE = 186 meV, Eta B_A = 0.022),
and 8 (RE =230 meV, Eta_B_A = 0.019) (see Figure 4.37).

Figure 4.37: Compounds representing ETA_B_A indices
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4.3.7 Predictions through different ML algorithms

We have also applied various ML algorithms to perform stacking regression. This was done so to
improve the model's quality and predictivity. Before applying the ML algorithms, the data of the
training set and the test set are needed to be scaled. Scaling of descriptors and response values was
performed using the Java-based tool Scalel.0available from

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/nome. The machine learning

models were developed using the default hyperparameters while performing the regression
algorithms. The statistical values representing the model quality and predictivity of the individual
ML models are given in Table 4.16, from which we can conclude that the tree-based methods such
as RF, AB, GB, and XGB showed an excellent model quality in terms of R2. Still, their respective
LOO-CV results confirm that these models are not statistically robust. The results for the RR and
PLS models are statistically similar but their predictivity is somewhat compromised when
compared to the other models like SVM and LSVM. So, based on the cross-validated results and
the predictive power of the models, the model developed using the stacking support vector
regression (i,e. SVM) was selected as the best-performing model. This SVM model is of good
statistical quality, robust, and highly predictive.

Table 4.16: ML prediction results of the models developed using different algorithms

Validation Metrics

Stacking
regressor Training set Test set
models . . _ _
Q?Loo MAEc RMSEc Q%r1 Q%r2 MAEp RMSEp
RF 0.965 0.725 0.141 0.186 0.742 0.742 0.380 0.494
AB 0.842 0.695 0.343 0.396 0.737 0.736 0.395 0.499
GB 0.966 0.718 0.145 0.184 0.746 0.746 0.382 0.490
XGB 0.980 0.642 0.114 0.143 0.681 0.681 0.423 0.549
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SVM 0.735 0.709 0.384 0.513 0.801 0.801 0.312 0.433

LSVM 0.699 0.686 0.419 0.547 0.774 0.774 0.347 0.462
RR 0.708 0.696 0.430 0.538 0.753 0.753 0.378 0.483
PLS 0.708 0.698 0.430 0.538 0.753 0.753 0.378 0.483

* Standardized values of MAE and RMSE are reported.

4.3.8 Validation of model using a true external set

We have also validated our model by using a set of 10888 compounds collected from the work of
Chen et. al. (Chen et. al., 2022). This dataset comprises 10900 flexible w-conjugated organic
molecules generated through molecular transformation operation on benzene. A total of 12
compounds were present in the dataset for which structural information in the form of SMILES
strings was not available; therefore, such compounds were excluded from the dataset. For more
information on the dataset, one can refer to (Chen et. al., 2022). The RE was calculated using DFT
and generic force-field (GFN-FF) for the molecules that were collected. Using the DFT calculated
RE as a reference we have calculated the MAE of the predictions of all compounds using our

model and the prediction using the GFN model of Chen et. al.

For the total 10888 compounds, the MAE for our stacking-SVM g-RASPR model was found to be
87.946 meV whereas it was 150.083 meV for the GFN model (Chen et. al., 2022). The results thus
obtained suggest that the prediction using our stacking-SVM g-RASPR model was better than
those predicted using the GFN model.

4.3.9 Comparison of model quality with other developed models

We have compared the model quality of our g-RASPR models with the other models that were
developed by Sule Atahan-Evrenk (Atahan-Evrenk, 2018). Previously, Sule Atahan-Evrenk
developed several models by using signature descriptors and 3D molecular transforms calculated
from molecular mechanics force-field (MMFF94) and DFT. The statistical parameters of the
previous models have been compared with our own developed stacking g-RASPR models. The
comparison of the model parameters is shown in Table 4.17, which shows that our stacking g-

RASPR model developed using support vector regression has given the best results for both the
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calibration set and the prediction set with low error measures (MAE and RMSE). Our model was

developed from 2D descriptors only that do not involve the calculation of any signature descriptors

for certain heights (co3, 6o4) Or molecular optimization for calculating 3D molecular transforms

that were done by the previous authors. Also, our PLS model was developed using a single LV

while their best PLS model consists of 8 LVs.

Table 4.17: Statistical comparison between different models with the current model

Descriptor
Model (LVS) RPtrain R2test RMSE* MAE*
type
603 PLS (5) 0.96 0.69 55 41
Signatures "G, PCR(8)  0.62 0.57 57 43
(Atahan-
Evrenk, 2018) 604 PLS (8) 0.99 0.70 54 39
cos PCR (16) 0.67 0.58 56 42
3D- DFT-PLS (7) 0.85 0.66 60 43
transforms
(Atahan- MM-PLS (5) 0.79 0.62 60 44
Evrenk, 2018)
Stacking
RMSEc* RMSEr* MAEcC* MAER
2D q-RASPR
(our work) PLS (1) 0.708 0.753 54.176  46.916 40.911 34.856
SVM 0.735 0.801 50.118  41.587 36.457 29.134

# MAE and RMSE are reported in meV units.
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5. CONCLUSION

In the present study, we have developed different predictive models using RASPR descriptors,
derived from the similarity-based read-across (RA) method. The RASPR descriptors were
calculated from different physicochemical and structural descriptors using various non-linear
similarity functions. Here, we implemented a simple and straightforward yet robust formalism in
computing descriptors, developing models, evaluating their prediction reliability in defined
chemical space, and diagnosing chemical information in accordance with OECD guidelines. The
models were developed using various chemometric tools and were subjected to internal and
external validation to confirm their unbiased predictability. In some cases, developed models were

also tested for validation using a Y-randomization test.

5.1 Machine learning-based g-RASPR predictions of detonation heat for nitrogen-containing
compounds

The present work reports a q-RASPR model developed using a step-wise process of data point
collection, computation of molecular structures, descriptor calculation, pre-treatment, data
division, feature selection, QSPR model development, Read-Across predictions, calculation of
RASPR descriptors, data fusion and finally feature selection to develop the final g-RASPR model.
Initially, an MLR g-RASPR model was selected based on the cross-validation result and after that
the corresponding PLS model was developed with fewer latent variables. The authors have also
employed various ML algorithms for predicting the detonation heat through the generation of
different ML-based models. Further, different cross-validation strategies such as leave-one-out
(LOO), 20 times 5-fold CV, and shuffle-split CV (n-splits=1000) were performed for each model
to detect any over-fitting in the models. A comparison between the predictive performances of all
the developed models was done as shown in Table 3. The selection of the final model (here PLS)
was done on the ground of an error-based measure, i.e. Root Mean Squared Error of Predictions
(RMSEP) of the test set compounds, i.e. RMSEp. The purpose of this study was to develop an
efficient model to predict the detonation property of N-containing compounds in terms of
detonation heat. The study represents the development of a novel g-RASPR model in accordance
with the OECD guidelines and is highly robust, easily interpretable, and reproducible. The
developed model can be used to prepare new and efficient nitrogenous compounds with better
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detonation performance in measures of the detonation heat and to predict the detonation heat of a

new compound.

5.2 Predicting performance and stability parameters of energetic materials (EMs) using the
machine learning-based g-RASPR approach

In the present work, the authors report the development of g-RASPR models for predicting
different properties of energetic compounds associated with their energetic performance and
thermal stability. We have used properties like decomposition temperature and melting point for
the prediction of the thermal stability of compounds. For the evaluation of performance, we have
used density and gas phase heat of formation. Firstly, we developed QSPR models through a
feature selection process for individual data sets and then used the developed models' structural
and physiochemical features to calculate the RASPR descriptors. The calculated RASPR
descriptors were then fused with those structural and physiochemical descriptors. Again for each
modeled response, the feature selection process was employed to the fused descriptor matrix to
develop an MLR g-RASPR model based on the cross-validated result. Finally, with a lower
number of LVs, a PLS g-RASPR model was developed. Several ML-based models were also
prepared to predict the properties associated with the energetic compounds. Furthermore, we have
also checked the model quality by using 5-fold and 10-fold cross-validation tests (in terms of R?

and MAE) which also reflect the absence of any over-fitting.

The models so developed in the study were found to be robust and predictive, and they can be used
during the early developmental stages of energetic compounds for screening purposes. This will
help to select the best compound with better performance and thermal stability. These models can
also be used for the development of new efficient, energetic materials or the prediction of the
property for newly developed molecules. Thus, the models can be useful for the designing and
manufacturing of new energetic compounds at a low cost, and a fast rate with a decrease in the

hazards associated with them during the experiments.
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5.3 Predictive cheminformatics modeling of reorganization energy (RE) for p-type organic
semiconductors: Integration of quantitative read-across structure-property relationship (g-
RASPR) and stacking regression analysis

The current study describes the method for the development of a g-RASPR model via stacking
regression for predicting the RE of OSCs. RE is an essential parameter to study the ease of charge
transport in the semiconductors. The work presents the collection of the dataset, development of
the QSPR model, RA predictions, RASPR descriptor calculation, g-RASPR predictions using
different similarity measures, and stacking regression predictions through various regression
algorithms. The authors used the features of the QSPR model to perform the RA-based similarity
predictions, and further, the features were used to calculate the RASPR descriptors. The RASPR
descriptors were calculated for three different similarity measures namely; Euclidean distance,
Gaussian kernel, and Laplacian kernel-based similarity (Banerjee and Roy, 2024). After that, the
RASPR descriptors for each similarity were fused with the descriptors of the QSPR model, and a
grid search was performed using the fused descriptor matrix to get the q-RASPR model with good
quality and predictivity. A total of 3 PLS g-RASPR models (one for each similarity measure) were
selected, and the predictions from each model were used to perform final stacking. Initially, the
PLS algorithm was used to develop the stacking model using 3 predictions (as variables) and only
1 LV. The PLS model developed using stacking shows an enhancement in the prediction compared
to the individual g-RASPR models. To increase the quality of the predictions of the model, the
authors have also applied several ML algorithms to train the model as a stacking regressor. It was
found that when the stacking was performed using the SVM regression algorithm, there was an

improvement in both model quality and predictivity showing a decrease in the model errors.

The study fulfills the aim of the authors, i.e., developing a high-quality, robust, interpretable, and
reproducible statistical model that can efficiently predict the RE of the p-type OSCs with the least
error. Thus, the study can be used further to evaluate the mobility of charge carriers by predicting
the RE of the molecules (more precisely acenes, thiophenes, thienoacenes, and pantalenes).
Screening of large databases or prediction of new compounds can be done using our model within

a short time without any experimental procedure or high-end computations.
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