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Preface 

This dissertation is presented to partially fulfill the Master of Pharmacy degree in Pharmaceutical 

Technology. The work spanned over one year and six months. The present study was executed by 

developing in silico predictive models to derive better RASPR descriptors in the quantitative 

structure-property relationship (QSPR) paradigm. We considered various material properties for 

the development of the predictive models.  

The general comprehension of the various material types mostly depends on understanding 

microstructure and atomic and molecular structure. Earlier, experimentation was the only route for 

detecting material properties that utilized a lot of time, capital, and resources. Despite all this, these 

experimental procedures are prone to error and sometimes fail to explore the desired outcomes, 

leading to a loss of capital and resources. Prior knowledge of materials' intrinsic and extrinsic 

properties would benefit their application in the required field of interest. Knowledge about the 

structural chemistry/features of the compounds that correspond to the materials property can 

provide a brief account of how to improve the required property and/or reduce the redundant 

property. Development of new materials with desired properties is the need of hour in various 

fields due to increased applications of materials in electrical, energy, health care, and 

manufacturing industries. So, to reduce the cost of failure and resources, different computational 

methods are used to develop new efficient materials before their synthesis. 

The application of various computational approaches for the prediction of the properties of 

chemical substances has been an effective alternative to experimental methods. Quantitative 

structure-property relationship (QSPR) is a statistical method widely used to predict different 

property-based endpoints. Read-across (RA) is a similarity-based approach for predictions and 

data gap-filling. It does not involve the development of a mathematical model and, thus, is not a 

statistical technique. It simply generates the consensus-based predictions of the query compounds. 

Recently, the concepts of quantitative structure-property relationship (QSPR) and read-across 

(RA) methods were merged to develop a new emerging cheminformatic tool: read-across 

structure-property relationship (RASPR).  

In the present study, we have modeled different properties of materials (especially, energetic 

compounds and p-type semiconductors) by using the q-RASPR method. The models developed 
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have shown acceptable statistical significance. The models developed were also validated 

rigorously based on internal and external validation strategies. The following analyses have been 

performed in this dissertation: 

Study 1: Machine learning-based q-RASPR predictions of detonation heat for nitrogen-containing 

compounds. 

Study 2: Predicting the performance and stability parameters of energetic materials (EMs) using 

a machine learning-based q-RASPR approach. 

Study 3: Predictive cheminformatics modeling of reorganization energy (RE) for p-type organic 

semiconductors: Integration of quantitative read-across structure-property relationship (q-RASPR) 

and stacking regression analysis. 

The accomplished work has been presented in this dissertation under the following sections: 

Chapter 1: Introduction 

Chapter 2: Present Work 

Chapter 3: Materials and Methods 

Chapter 4: Result and Discussion 

Chapter 5: Conclusion 

Chapter 6: References 

Appendix: Reprints 
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Abbreviations 
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Analysis 
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Genetic Algorithm 
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1. INTRODUCTION 

1.1 Materials science 

Materials have always played a crucial role in the development of human civilization. The 

development of new objects can't be processed without any prior knowledge of the properties 

of the materials to be used. Materials possess unique physical, chemical, mechanical, 

thermodynamic, and electronic properties that can be harnessed to create new materials or 

improve existing ones, resulting in innovative and practical applications (Yu et. al., 2021). The 

nature of chemical bonds, atom ordering, and microstructure of the materials are the key 

components for determining materials' properties. So, one can consider that the behavior of 

materials limits the development and performance of the machine and/or equipment. 

Understanding materials' properties is required to develop new technologies and improve the 

quality of life worldwide. The chemical space of materials is so vast due to their broad 

composition and configurational degree of freedom (Pilania et. al., 2013). 

Materials science is a multidisciplinary field that combines chemistry, physics, engineering, 

and many other sciences to study the properties of solid materials and how the material's 

composition and structure are linked to those properties. Materials properties can be specified 

using either the microscopic or the macroscopic attributes. Features like electron affinity, band 

energy, molecular atomization energy, lattice constant, etc. are used to define the microscopic 

attributes. The link between the physical and mechanical properties of the materials 

characterizes the macroscopic view of the materials. The microscopic features influence the 

macroscopic performance of the materials (Stergiou et. al., 2023.). The primary objective of 

materials science is to determine the relationships between a material's composition, atomic or 

molecular structure, microstructure, and macroscopic characteristics. Knowledge about 

materials and their respective intrinsic or extrinsic properties is necessary for their application 

in a particular field. Materials science is enhanced by materials engineering, as it deals with 

processes that involve manufacturing, transformation, and shaping of materials. As shown in 

Figure 1.1, the four major aspects related to materials science and technology are (Mercier et. 

al., 2002):- 

i. Composition, structure 

ii. Synthesis, manufacturing, processing 

iii. Properties 
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iv. Performances 

 

Figure 1.1: Major aspects of materials science 

With the fast development and technological advancement in recent years, the rate of material 

discovery has increased to multiples. Materials property prediction is a complex task as 

materials' properties depend on various factors like geometry, material constitution, electronic 

characteristics, etc. Prediction of property and its optimization is essential for the development 

of new advanced/innovative entities. A long time ago, experiments were the only way to 

analyze different properties associated with compounds. There is no doubt that experiments 

provide us with the exact knowledge of the property, but at the same time, it requires a lot more 

time, capital, manpower, resources, and proper experimental set-up to carry out the 

experiments. Experimental procedures may give rise to errors (mechanical, human, or 

instrumental) in predictions arising due to instrument faults, inappropriate testing procedures, 

changes in environmental factors, etc. (Yu et. al., 2021). 

Table 1.1 lists some of the commonly used material types in materials science and their relative 

properties of concern. 

Type of material Related properties References 

Ceramics Hardness, thermal conductivity, thermal 

expansion, porosity, creep, chemical stability, 

optical properties, brittleness, entropy 

Wachtman et. 

al., 2009 

Polymers Glass transition temperature, refractive index, 

Young’s modulus, transparency, Melt Flow Index 

(MFI), absorption and swelling, decomposition 

rate 

Askadskiĭ, 2003 
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Light absorbing 

materials 

Band gap, absorption spectra, power conversion 

efficiency, optical density 

Yu et. al., 2012 

Energetic materials/ 

High energy density 

materials  (HEDMs) 

Detonation velocity, detonation pressure, density, 

thermal decomposition, impact sensitivity, melting 

point, detonation heat, heat of formation 

Agrawal, 2010 

Nanomaterials Shape and size, surface area to volume ratio, 

magnetic properties, electronic properties, 

catalytic properties, toxicity and biocompatibility, 

surface charge 

Asha and 

Narain, 2020 

Semiconductors Band gap, carrier mobility, thermal conductivity, 

photoelectric effect characteristics 

Peter and 

Cardona, 2010 

Composites High strength-to-weight ratio, corrosion 

resistance, electrical insulation, ductility, 

hardness, temperature resistance (high/low), 

damping capacity, biocompatibility, porosity 

Clyne and Hull, 

2019; 

Chawla, 2012 

1.2 Materials Informatics (MI) 

As the experimental procedures are prone to errors and are long time consuming, researchers 

nowadays have shifted towards data-driven approaches to predict the materials' properties. In-

silico methods have revolutionized the field of material science. Advancements in 

computational power and the development of new software tools enable researchers to access 

the materials on a large scale. Scientists have relied on different computational approaches 

because of the high cost of material synthesis and poor success rate (Ramakrishna et al., 2019). 

Materials science, in collaboration with information science, has led to the development of a 

new branch of materials science called "Materials informatics" (MI) (Takahashi and Tanaka, 

2016). MI aims to develop a relationship between the molecular structures and properties 

associated with materials (Agarwal and Choudhary, 2019). Accessibility to the publicly 

available large databases generated through experimental results and/or computational 

simulations is advantageous for the development of MI. These large databases containing 

information on the properties of materials help the researchers to identify and correlate the 

patterns of the compounds. These correlations are further used for the development of 

predictive models to determine the behaviors of the materials (Lopez-Bezanilla and Littlewood, 

2020). MI leverages advanced computational techniques and data-driven methods to accelerate 

the discovery, development, and optimization of materials. This emerging field addresses the 
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challenges faced in traditional materials science approaches, such as the time-consuming and 

costly nature of experimental trial and error. MI is applied across various industries, including 

electronics, energy, healthcare, and manufacturing, where the demand for innovative materials 

with specific functionalities continues to grow. Collaborations between materials scientists, 

chemists, physicists, computer scientists, and engineers are crucial for advancing the field and 

realizing its full potential. 

The density functional theory (DFT) is one of the oldest computational methods used to predict 

the physical and chemical characteristics of crystalline materials (Kohn, 1999; Hafner et. al., 

2006). Using DFT, approximately 104-106 materials properties have been calculated that are 

stored in large databases like Open Quantum Materials Database (OQMD) (Saal et. al., 2013; 

Kirlin et. al., 2015), the Automatic Flow of Materials Discovery Library (AFLOWLIB) 

(Curtarolo et. al., 2012), the Materials Project (Jain et. al., 2013), Joint Automated Repository 

for Various Integrated Simulations (JARVIS) (Choudhary et al., 2017; Choudhary et al., 2018), 

and the Novel Materials Discovery (NoMaD) (http://nomad-repository.eu/cms/.). With the 

availability of such large data sets, in-silico approaches can be used to design, optimize, and/or 

discover properties of de novo designed or untested compounds. Applying the cheminformatics 

approach in materials science helps to analyze and model the structural and electronic 

characteristics of materials for a particular physical, chemical, or mechanical property. 

Computational methodologies such as DFT, MD (molecular dynamics), Monte Carlo 

techniques, phase-field method, etc., are some of the existing theories that can be used to 

predict the property. Cheminformatics has been used in different fields for materials property 

prediction of nanomaterials (Malkiel et. al., 2018), microplastics (Li et. al., 2022), polymers 

(Doan Tran et. al., 2020), composites (Liu et. al., 2022), ceramics (Han et. al., 2022), 

photovoltaic cells (Gregg and Hanna, 2003), energetic materials, light-emitting diodes, etc. 

Due to more experimental and simulation data availability, ML (machine learning) provides an 

interesting platform for determining material behavior under different conditions and property 

predictions (Tercan et. al., 2018). Investigation of physical, chemical, and mechanical 

properties like Young's modulus of elasticity, yield strength, thermal conductivity, high thermal 

stability, and impact sensitivity are being calculated using computer simulations (Xie et. al., 

2021). Some electrical, optical, phase-transitions, and crystal structure characteristics of 

materials can also be identified using simulation techniques (Stein et. al., 2019). 

http://nomad-repository.eu/cms/
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1.2.1 Quantitative structure-property relationship (QSPR) 

Most molecular discoveries today are the results of an iterative, three-phase cycle of design, 

synthesis, and testing. Analysis of the results from one phase provides knowledge that enables 

the next cycle of discovery to be initiated and further improvement to be achieved. A common 

feature of this analysis stage is the construction of some form of model that enables the 

observed activity or properties to be related to the molecular structure. Such models are often 

referred to as Quantitative Structure-Activity Relationships. 

The Quantitative Structure-Activity Relationship (QSAR) paradigm is based on the hypothesis 

that a fundamental relationship exists between the molecular structure and biological activity. 

Based on this assumption, QSAR attempts to establish a correlation between the various 

molecular properties of a set of molecules and their experimentally known biological activity. 

According to the type of response, or "endpoint," there are three main classes of studies: 

quantitative structure-property/activity/toxicity relationship (QSPR/QSAR/QSTR) studies that 

take into account the modeling of physicochemical property, biological activity, and 

toxicological data, respectively (Roy et. al., 2015). However, the term QSAR can be used in 

general to refer to all three studies. The QSPR (Ferreira, 2001) study deals with the molecular 

features governing their physicochemical properties. The descriptors measure the properties of 

the molecules and their hydrophobic, steric, and electronic features in addition to the various 

structural patterns. The QSTR (Carlsen et. al., 2009) technique determines the structural 

attributes of the molecules responsible for their toxicity profile. The pharmacophoric features 

and descriptors obtained from the developed QSAR models may also be utilized for the virtual 

screening of large numbers of diverse compounds for a definite response parameter. Besides 

this, identifying the prime features providing improved activity to the molecules under a 

particular study facilitates the in-silico design of new molecules with enhanced potency. Thus, 

a focused library (Tikhonova et. al., 2004) may be developed by compiling the newly designed 

molecules with a specific response. 

This kind of relationship between molecular structures and changes in their property developed 

on a quantitative basis is the focus for quantitative relationship-based studies. Such correlation 

represents predictive models derived from applying statistical tools correlating response data 

of molecules (including therapeutic activity, property, and toxicity) of chemicals with 

descriptors representative of molecular structure and/or property (Selassie and Verma, 2003). 

These correlations may be qualitative (simple SAR) or quantitative (QSAR). This quantitative 
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technique of analyzing the structure-based analysis of molecules enables us to identify the 

structure-property relationships of molecules in a precise way. QSAR analysis is based on the 

notion that activity (A) depends on structure (C) and physicochemical properties (P) of the 

molecules: 

Chemical Response (Chemical attributes) =f (Chemical attributes) = f (Structure, Property)             

(1.1) 

The fact that a molecular structure determines its physicochemical properties is well imitated 

from Mendeleev’s periodic table. The advent of QSAR can be dated back to the era of Hansch 

when Hansch and co-workers correlated the plant growth regulatory activity of phenoxyacetic 

acids to Hammett constants and partition coefficient (Hansch et. al., 1962). They showed that 

biological activity could be correlated linearly with free-energy-related terms, a model referred 

to as the Linear Free Energy Relationship (LFER) model. The introduction of Hansch’s linear 

and parabolic models considerably impacted the understanding of how chemical structures 

influenced biological activity. The Free-Wilson approach determined the contributions made 

by various structural fragments to the molecules' overall biological activity (Heritage and 

Lowis, 1999). Hansch and Free-Wilson analyses thus proposed the concepts of classical QSAR 

involving structure-activity relationships in terms of physicochemical parameters, steric 

properties, and certain structural features. Later, Fujita-Ban (Leonard and Roy, 2004) modified 

the approach of the Free-Wilson model and proposed a substituent-based structure-activity 

relationship that determines the type and position of the substituents exerting the prime 

influence on the activity profile of these molecules. QSAR models are pattern recognition 

models that identify trends in structural features correlating with the experimental property. 

QSAR models are useful in several cases, such as suggesting structural modifications to 

enhance molecular property. Such quantitative approaches are being applied in many 

disciplines like risk assessment, toxicity prediction, and regulatory decisions (Tong et. al., 

2005) apart from drug discovery and lead optimization. In ’80s, several 3D (three dimensional) 

quantitative relationship approaches like molecular shape analysis (MSA), distance geometry, 

comparative molecular field analysis (CoMFA) comparative molecular similarity indices 

analysis (CoMSIA), hypothetical active site lattice (HASL), receptor surface analysis (RSA), 

molecular similarity matrices, comparative binding energy (COMBINE) have emerged 

(Geronikaki et. al., 2004). 
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 Quantitative structure-property relationships (QSPRs) studies undeniably are of great 

importance in the field of materials science. Quantitative structure–property relationship 

(QSPR) models are quantitative regression methods that endeavor to relate chemical structure 

to property. Quantitative structure-property relationship and related methods have been applied 

extensively in a wide range of scientific disciplines, including material informatics, drug 

discovery, chemical property prediction, etc. (Wu et. al., 2013). QSPR models are now 

regarded as scientifically credible tools for predicting and classifying the properties of untested 

chemicals. QSPR method has become an essential tool in different industries, from discovering 

new material with desired properties to developing that material (Sukumar et al., 2012; Du et 

al., 2021; Le and Winkler, 2018). For example, a growing trend is to use QSPR early in the 

material development process as a screening and enrichment tool to eliminate from further 

development those chemicals lacking desired properties or predicted to have poor outcomes.  

1.2.1.1 Objectives of QSPR 

The principal objectives of QSPR analysis are: 

1. Prediction of new analogues of compounds with better property 

2. Better understanding and exploration of the effect of molecular structure on material 

property 

3. Optimization of the chemical structure to get the desired properties. 

4. Reduction of cost, time, and manpower requirements by developing more effective 

compounds using a scientifically less exhaustive approach. 

To achieve the objectives as mentioned earlier, it is necessary to have a detailed knowledge of 

the following aspects: 

(i) Various factors controlling the experimental condition of the molecules. 

(ii) A thorough examination of molecular structures and their properties. Quantitative structure-

property relationship is an interdisciplinary study of chemistry, statistics, and computer 

science. By the prediction of the essential structural requirements needed for obtaining a 

molecule with optimized properties, QSPR analysis provides a good platform for the synthesis 

of a relatively lower number of chemicals with an improved property of interest. 
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1.2.1.2 Descriptors 

Molecular descriptors are terms that characterize specific information about a studied 

molecule. They are the “numerical values associated with the chemical constitution for 

correlation of chemical structure with various physical properties, chemical reactivity, or 

biological activity” (Van de Waterbeemd et. al., 1997; Randic, 1997). In other words, the 

modeled property is represented as a function of quantitative values of structural features or 

properties that are termed descriptors for a QSPR model. Cheminformatics methods depend on 

generating chemical reference spaces into which new chemical entities are predictable by the 

developed QSPR model. The definition of chemical spaces significantly depends on the use of 

computational descriptors of studied molecular structure, physical or chemical properties, or 

specific features. 

Response (property) = f (information in the form of chemical structure or property) = f 

(descriptors)   (1.2) 

The type of descriptors used and the extent to which they can encode the structural features of 

the molecules correlated to the property are critical determinants of the quality of any QSPR 

model. The descriptors may be physicochemical (hydrophobic, steric, or electronic), structural 

(based on the frequency of occurrence of a substructure), topological, electronic (based on 

molecular orbital calculations), geometric (based on a molecular surface area calculation), or 

simple indicator parameters (dummy variables). 

It is interesting to point out that the efficacy of a descriptor can rely heavily on the problem 

being considered. More precisely, specific endpoints may need to consider exact molecular 

features. The best possible features that make a descriptor ideal for the construction of a QSPR 

model are summarized here: 

1. A descriptor must be correlated with the structural features for a specific endpoint and show 

negligible correlation with other descriptors. 

2. A descriptor should apply to a broad class of compounds. 

3. A descriptor that can be calculated rapidly and does not depend on experimental properties 

can be considered more suitable than one that is computationally exhaustive and relies heavily 

on experimental results. 
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4. A descriptor should generate dissimilar values for structurally different molecules, even if 

the structural differences are small. This means that the descriptor should show minimal 

degeneracy. In addition to degeneracy, a descriptor should be continuous. It signifies that small 

structural changes should lead to small changes in the value of the descriptor. 

5. It is always important that the descriptor has some form of physical interpretability to encode 

the query features of the studied molecules. 

6. Another significant aspect is the ability to map descriptor values back to the structure for 

visualization purposes (Segall et. al., 2009). These visualizations are only sensible when 

descriptor values are associated with structural features. 

1.2.2 Read-Across (RA) 

Among the various in-silico approaches, the QSPR method is one of the most popular methods 

for developing predictive models. QSPR is a statistical model-building approach that requires 

significant data points to build a meaningful model. In addition, the whole dataset needs to be 

divided into training and test sets for validation purposes to fulfill the requirements as 

recommended by OECD guidelines (https://www.oecd.org/chemicalsafety/risk-

assessment/validationofqsarmodels.htm) (Cherkasov et. al., 2014). Thus, a part of the dataset 

is kept aside for model validation that cannot be used for model building. In the case of small 

datasets, this type of data loss may lead to the development of a statistically unreliable model 

due to lower degrees of freedom. In such cases, different similarity-based approaches are used 

for the prediction that involves simple algebraic operations, and no data points are wasted 

(Chatterjee et al., 2022). 

Read-across is a similarity-based grouping technique that involves simple algebraic operations 

and uses the similarity between two chemical compounds to make predictions (Berggren et al., 

2015). It is a non-experimental data gap-filling method that provides information for the 

property of a target compound derived from known property data of source compounds with a 

similar chemical profile. It is one of the most essential in-silico methods used for data 

generation, data gap-filling, and regulatory decision-making (Kovarich et. al., 2019). Read-

across method can be classified into two groups, one is qualitative read-across and the other is 

quantitative read-across (Patlewicz et. al., 2018). The target compounds are generally known 

as query chemicals and structural analogues which have known property data are known as 

source compounds. The predictions from this method are generally obtained by either analogue 

https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
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or category approach. The analogue approach considers only one source compound but in the 

category approach multiple close source compounds are considered depending on the 

availability of data which makes it more reliable and robust (Patlewicz et. al., 2017).  

Although this method involves only simple algebraic calculations, the algorithm becomes 

computationally inexpensive and can be used for small datasets. The read-across prediction of 

a compound can be calculated in different ways one of the methods is by taking the similarity 

weightage of the response value of the close source compound (Chatterjee et. al., 2022), which 

is calculated by using the following equation: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥𝑤𝑡)̅̅ ̅̅ ̅̅ =  
∑ 𝑊𝑖×𝑌𝑖

∑ 𝑊𝑖
  (1.3) 

𝑊𝑖 = weightage of ith source compounds which is calculated based on the similarity with the 

target compound, 𝑌𝑖 = property value of the ith source compound 

1.2.3 Read-across structure-property relationship (RASPR) 

Although the read-across method is useful for the dataset with a limited number of data points 

with experimental data, the main disadvantage of this method is that it does not provide any 

information on the quantitative contribution of each descriptor. Another similarity-based 

approach like the read-across structure-property relationship (RASPR) – similar to the read-

across structure-activity relationship (RASAR), generates a mathematical model using the 

similarity and error-based measures as descriptors and has been used for predictive modeling. 

The RASAR method was first introduced by Luechtefeld et al. (Luechtefeld et al., 2018) who 

developed the classification-based RASAR models. In contrast, Banerjee and Roy were the 

first to develop the regression-based quantitative RASAR (q-RASAR) models (Banerjee and 

Roy, 2022). The RASPR method is a combined method of read-across and QSPR that 

encapsulates the advantages of both of these methods and generates enhanced predictivity. This 

method uses selected structural and physicochemical descriptors to generate different similarity 

and error-based measures (known as RASPR descriptors) from the similarity-based read-across 

approach (Banerjee et. al., 2022). These measures are merged with the initial structural and 

physicochemical descriptors, and further feature selection algorithms are employed to develop 

RASPR models. The description of the RASPR descriptors is shown in Table 1.2. 
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Table 1.2: Definition of RASPR descriptors 

RASPR 

descriptors 
Description Mathematical Equation 

SD_similarity 
It represents the standard deviation of the similarity levels of the selected close training 

compounds (CTCs). 

𝑆𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = √
∑ (𝑓𝑖 − 𝑓)̅2𝑛

𝑖=1

𝑛 − 1
 

n = number of CTC  

fi = similarity level of selected CTC 

𝑓 ̅= mean similarity levels of CTC 

CV similarity 

(CVsim) 
It represents the coefficient of variation of the similarity levels of the selected CTCs 𝐶𝑉𝑠𝑖𝑚 =

𝑆𝐷_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

𝑓̅
 

Avg.Sim It is the mean of the similarity levels to the selected CTCs 𝐴𝑣𝑔. 𝑆𝑖𝑚. (𝑓)̅  =  
∑ 𝑓𝑖

𝑛
𝑖=1

𝑛
 

Pos.Avg.Sim It is the mean of the similarity levels to the positive CTCs  

Neg.Avg.Sim It is the mean of the similarity levels to the negative CTCs  

MaxPos 
It is the maximum similarity level to the CTC with response value of more than the 

average response value of the training set. 
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MaxNeg 
It is the minimum similarity level to the CTC with response value of less than the average 

response value of the training set. 
 

Abs MaxPos-

MaxNeg 
It is the absolute difference of the MaxPos and the MaxNeg values. 𝐴𝑏𝑠 𝐷𝑖𝑓𝑓 =  |𝑀𝑎𝑥𝑃𝑜𝑠 − 𝑀𝑎𝑥𝑁𝑒𝑔| 

sm
1 Banerjee-Roy similarity coefficient 1 (can be used to analyze modelability of a set) 𝑠𝑚

1 =
𝑀𝑎𝑥𝑃𝑜𝑠 − 𝑀𝑎𝑥𝑁𝑒𝑔

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑀𝑎𝑥𝑃𝑜𝑠, 𝑀𝑎𝑥𝑁𝑒𝑔)
 

sm
2 Banerjee-Roy similarity coefficient 2 (can be used to analyze modelability of a set) 𝑠𝑚

2 =
𝑃𝑜𝑠. 𝐴𝑣𝑔. 𝑆𝑖𝑚 − 𝑁𝑒𝑔. 𝐴𝑣𝑔. 𝑆𝑖𝑚

𝐴𝑣𝑔. 𝑆𝑖𝑚
 

RA function 

It is a composite function of all the selected molecular features that is derived from read-

across. 

 

𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

𝑤𝑖 =
𝑆𝑖

∑ 𝑆𝑖
𝑛
𝑖=1

 

Where, wi= weightage of each CTC, Si = 

similarity between each CTC and query 

compound, andxi = observed response 

values of CTC 

SD_activity It represents the weighted standard deviation of response values of the selected CTCs. 𝑆𝐷𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = √
∑ (𝑥𝑖 − 𝑥𝑤𝑡̅̅ ̅̅ ̅)2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

×
𝑛

𝑛 − 1
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CV_activity It represents the coefficient of variance of response values of the selected CTCs. 𝐶𝑉𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑆𝐷_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑥𝑤𝑡̅̅ ̅̅̅
 

gm Banerjee-Roy concordance coefficient 

𝑔𝑚 = (−1)𝑛|𝑃𝑜𝑠𝑓𝑟𝑎𝑐 − 0.5| 

Where, n = 1 if MaxPos<MaxNeg, n = 

2 if MaxPos>MaxNeg, and Posfrac is 

the fraction of CTC with response value 

more than the mean response of the 

training set. 

gm
*SD_similarity It is the product of gm and SD_Similarity  

gm
*Avg.Sim It is the product of gm and Avg. Sim  

gm_class 
A modified form of gm describing the propensity of a query compound to be positive or 

negative 
 

SE It represents the weighted standard error of the response values of the selected CTCs. 𝑆𝐸 =
𝑆𝐷_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

√𝑛
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1.2.4 Machine learning (ML) 

ML is a part of artificial intelligence (AI) that enables machines to learn from previous data, 

improve performance based on previous experiences, and predict new data points. At its core, 

ML involves the development of algorithms and models that enable computers to recognize 

patterns, make predictions, and make decisions based on data. The process begins with the 

collection and preparation of relevant data serving as the foundation for training these 

algorithms. Through exposure to this data, ML models can identify underlying patterns and 

relationships, allowing them to generalize their understanding and make accurate predictions 

or classifications when tested with new and unseen data (Jordan and Mitchell, 2015). For 

different types of data problems, ML relies on different types of algorithms that are classified 

into three main groups – supervised, unsupervised, and reinforcement ML algorithms. In the 

supervised ML algorithm, the labelled data is used to train the algorithm, whereas, in 

unsupervised ML, the data is unlabelled. The reinforcement algorithm is a feedback-based 

learning method where the learning agent is rewarded for every right action and gets a penalty 

for the wrong action (Geron, 2022). Currently, ML algorithms have moved beyond purely 

theoretical applications to practical applications like the creation of new molecules (Lo et. al., 

2018). ML models and methods have proven to be effective for solving complicated problems 

by learning from the data; however, there are also some disadvantages associated with different 

ML models including the need for large amounts of high-quality data, complex algorithms, and 

difficulty in interpretation of results (Geron, 2022). Despite these challenges, ML methods have 

grown rapidly with more powerful algorithms and techniques. Currently, the field of 

“explainable AI” has attracted lots of attention, which helps ML models to provide 

interpretable explanations for particular predictions (Linardatos et. al., 2020). SHAP or Shapley 

additive explanation analysis is one of the important methods used for the interpretation of the 

ML models (Yosipof et. al., 2016).
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2. PRESENT WORK 

The limited resources and cost involved in experimentation have slowed down the process of 

development of new materials. The development of new materials is successful through a lot 

of trial and error during experimentation. Due to the loss of resources, time, money, manpower, 

etc., different molecular modeling techniques are being increasingly used as an alternative to 

experimentation. In the last few decades, the advent of computational tools such as quantitative 

structure-property relationship (QSPR) has provided significant insight into materials science 

(Yosipof et. al., 2016). QSPR can be simply defined as mathematical relationships linking a 

compound's property with its chemical structure in a qualitative/quantitative manner. The 

guidelines specified by the Organization for Economic Cooperation and Development (OECD) 

(https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm) are 

followed to develop a QSPR model. Performing QSPR analysis for small datasets is always 

possible, so one can use different similarity-based prediction approaches to develop predictive 

models. Read-across (RA) is one of the most popular similarity-based methods that can be used 

for data generation and data gap-filling (Chatterjee et. al., 2022). The read-across structure-

property relationship (RASPR) is another approach that incorporates both structural and 

physiochemical features of QSPR and similarity and error measures of RA for the development 

of the model. The RA-based similarity and error measures are also known as RASPR 

descriptors. 

The development of predictive models in the form of RASPR analysis provides a well-

validated rational platform for the determination of the properties of all the new chemicals and 

to fill data gaps. 

In this present study, we have utilized the quantitative read-across structure-property 

relationship (q-RASPR) algorithm to determine or predict the properties of materials like 

energetic compounds and p-type semiconductors. For the energetic materials, various 

properties related to their performance and stability were calculated using the q-RASPR models 

developed in the studies. For the p-type semiconductors, the mobility of charge carriers is 

determined through the prediction of reorganization energy (RE) using the q-RASPR model 

developed via stacking regression. During the analysis of the models, we found that the 

incorporation of the similarity and error measures derived from RA had led to the enhancement 

in the external predictivity of the models. We have used the Euclidean distance-based, Gaussian 

https://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm
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kernel-based, and Laplacian kernel-based similarity algorithms for the calculation of RASPR 

descriptors. 

2.1 Study 1 

High energy density materials (HEDMs) are a class of compounds or combinations of 

compounds with explosive groups or oxidants and incendiary materials (He et. al., 2021). The 

performance and stability of these energetic materials (EMs) depend on several parameters 

such as detonation heat, detonation pressure, detonation velocity, density, the heat of formation, 

impact sensitivity, chemical degradation/decomposition, electrostatic discharge, etc. (Huang et 

al., 2021). The wide applications of these EMs are in civil, military, and industrial fields. 

In this study, we have opted for the quantitative read-across structure-property relationship (q-

RASPR) approach [an analog to quantitative read-across structure-activity relationship (q-

RASAR)] to develop a predictive model for the prediction of detonation heat of different N-

containing compounds. The heat of detonation (Q) refers to the quantity of heat energy 

liberated by an energetic compound per unit when detonated (Infante-Catillo and Hernandez-

Rivera, 2012). The incorporation of nitrogen into the parent structure or the addition of a 

nitrogen-containing substituent enhances the heat of detonation of the EMs as their energy 

content is predominantly derived from the heat of formation due to a large number of dynamic 

N–N and C–N bonds instead of coming thoroughly from the heat of combustion. Also, the final 

detonation product of these nitrogenous compounds is dinitrogen (N2), which is less toxic to 

the environment (Jaidann et. al., 2010; Yin et. al., 2016). A set of 162 nitrogenous compounds 

was used in this study, collected from the work of He et. al. (He et. al., 2021). The data set 

contains information on detonation heat (expressed in KJ/kg) for 162 compounds, both 

aromatic and non-aromatic.  

2.2 Study 2 

In this study, we had developed several predictive models for the prediction of different 

properties of EMs corresponding to their performance and stability. The predictive models 

were developed using the RASPR approach. Here, performance parameters such as density and 

heat of formation were used while for the thermal stability decomposition temperature and 

melting point were used for the modeling purpose. The datasets were collected from 2 different 

literature sources containing the experimental values for each dataset (Wespiser and Mathieu, 

2023). The in-house data derived by Wespiser et. al. was used for the decomposition 

temperature, the Bradley melting point dataset was used in previous work by Wespiser et. al. 
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for melting point, the Crystallography Open Database was used to collect the data for the 

density dataset, and experimental data for the heat of formation was collected from the work 

of D. Mathieu (Mathieu, 2018). 

2.3 Study 3 

Organic semiconductors (OSCs), being light in weight, decomposable, cheap, and flexible, can 

be an excellent replacement for inorganic semiconductors. The p-type semiconductors are a 

crucial component in semiconductor physics and device engineering. They represent a class of 

semiconductors where most charge carriers responsible for electrical conduction are positively 

charged "holes" rather than negatively charged electrons (n-type SCs). The p-type 

semiconductors play a fundamental role in semiconductor technology, offering versatility and 

enabling the design and fabrication of diverse electronic devices essential to modern life. 

Organic semiconductors' reorganization energy (RE) is a critical parameter that influences their 

charge transport properties. RE (λ) can be defined as the energy required for the geometric 

relaxation during charge transfer. Since OSCs are used as an active layer for many OLEDs, 

OFETs, etc., they can contribute to developing efficient renewable energy sources with better 

energy efficiency, and reduced toxicity (as it does not contain any heavy material). 

In this study, we have used a set of 173 molecular p-type OSCs which contains a diverse set of 

organic compounds having moieties of acenes, thiophenes, thienoacenes, and some anti-

aromatic pantalenes.  The experimental RE values for the compounds were collected from 

previously published literature (Atahan-Evrenk, 2018).  

Table 2.1 provides a brief overview of the type of materials, their related properties, and the 

number of data points used in the above-mentioned studies.
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Table 2.1: Description of the datasets. 

Study 
Material 

type 
Property Unit 

No. of 

compounds 
Reference 

1 
N-containing 

EMs 

Heat of 

detonation 
kJ/kg 162 

Pandey et. 

al., 2023 

2 
Energetic 

materials 

Decomposition 

temperature 

oC 565 

Pandey and 

Roy, 2024 

Melting point oC 19667 

Density g/cm3 12805 

Enthalpy of 

formation 
kJ/mol 2565 

3 p-type OSCs 
Reorganization 

energy 
LogmeV 173 - 
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3. MATERIALS & METHODS 

The main aim of the present study is the implementation of a transparent methodological 

framework for the development of predictive models using RASPR descriptors. We have 

endeavored to maintain explicitness for computation of the descriptors, thinning of the variable 

matrix, selection of potential features as well as judgment of robustness and predictivity of the 

models. The section has been divided into the following parts: 

 Details of datasets. 

 Study-wise specific description of methodologies utilized in each study. 

3.1 Details of datasets 

3.1.1 Dataset for the nitrogen-containing energetic compounds (Study 1) 

This dataset includes 162 nitrogen-containing energetic compounds. 122 compounds were 

present in the training set, and 40 compounds were in the test set. The detailed dataset used in 

the study is given in Table 3.1. 

Table 3.1: Details of N-containing energetic compounds. 

S. 

No. 

Observed value of 

detonation heat ( kJ/kg ) 
SMILES strings 

1 3446.08 NNC1=NN=C(NN)N=N1 

2 5042.26 [O-][N+]1=C(N)C(C[O-])=NC([N+]([O-])=O)=C1N 

3 5380.67 O=[N+](C1=C(N)C([N+]([O-])=O)=NN1)[O-] 

4 432.83 ClC1=NC(Cl)=NC(Cl)=N1 

5 4316.69 O=C1C=NN([N+]([O-])=O)N1 

6 9040.43 
O=[N+](N1N=C(/N=N/C2=NN([N+]([O-

])=O)C=N2)N=C1)[O-] 

7 5079.97 
O=[N+](C1=C(N3N=C([N+]([O-

])=O)N=C3N)N=CN=C1N2N=C([N+]([O-])=O)N=C2N)[O-] 
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8 5142.22 O=[N+](C1=NNC=N1)[O-] 

9 4332.7 O=[N+](C1=NC(N)=NN1)[O-] 

10 4141.69 [O-][N+]1=C(N)[N+]([O-])=C(N)C([N+]([O-])=O)=C1N 

11* 5769.03 
O=[N+](C1=NC(/N=N/C2=NNC([N+]([O-

])=O)=N2)=NN1)[O-] 

12 3926.25 NN1NC(N3N=NN=C3)=NN=C1N2N=NN=C2 

13 4587.84 NC1=NN=C(/N=N/C2=NN=C(N)N=N2)N=N1 

14* 4583.73 [O-][N+]1=NN(N)[NH+]([O-])C=C1N 

15 5978.72 O=[N+](C1=NNC2=C1NN=C2[N+]([O-])=O)[O-] 

16 4679.37 
OCC(C(OC(C)=O)N=[N+]=[N-])(CO)C(N=[N+]=[N-

])(N=[N+]=[N-])ON=[N+]=[N-] 

17 5893.03 O=[N+](C1=CC([N+]([O-])=O)=CC=C1)[O-] 

18 6479.23 O=[N+](C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1)[O-] 

19 5685.92 O=[N+](C1=CC=C(C)C([N+]([O-])=O)=C1)[O-] 

20 6342.3 CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O 

21 6241.88 
O=[N+](C1=C(C)C([N+]([O-])=O)=C(C)C([N+]([O-

])=O)=C1)[O-] 

22* 4734.16 O=[N+](C1=CC=C(Cl)C([N+]([O-])=O)=C1)[O-] 

23 5602.02 
O=[N+](C1=CC([N+]([O-])=O)=C(Cl)C([N+]([O-

])=O)=C1)[O-] 

24 6269.8 
O=[N+](C1=C(O)C([N+]([O-])=O)=CC([N+]([O-

])=O)=C1)[O-] 

25 5291.44 O=[N+](C1=C(O)C(C)=CC([N+]([O-])=O)=C1)[O-] 
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26 6218.08 
O=[N+](C1=C(O)C([N+]([O-])=O)=C(C)C([N+]([O-

])=O)=C1)[O-] 

27 5774.82 COC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O 

28 6384.33 
O=[N+](C1=CC([N+]([O-])=O)=C(OC)C([N+]([O-

])=O)=C1)[O-] 

29* 6620.19 
NC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C([N+]([O-

])=O)=C1[N+]([O-])=O 

30 5277.62 
O=[N+](C1=C(N)C([N+]([O-])=O)=C(N)C([N+]([O-

])=O)=C1)[O-] 

31* 4849.82 
O=[N+](C1=C(N)C([N+]([O-])=O)=C(N)C([N+]([O-

])=O)=C1N)[O-] 

32 5400.78 NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O 

33 6013.23 
O=C(O)C1=C([N+]([O-])=O)C=C([N+]([O-

])=O)C=C1[N+]([O-])=O 

34 5627.11 O=[N+](C1=CC=CC2=C([N+]([O-])=O)C=CC=C12)[O-] 

35 5727.06 O=[N+](C1=CC=CC2=CC=CC([N+]([O-])=O)=C12)[O-] 

36 6523.65 
O=[N+](C1=CC([N+]([O-])=O)=CC2=CC([N+]([O-

])=O)=CC([N+]([O-])=O)=C12)[O-] 

37* 6897.36 

O=[N+](C1=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+]([O-

])=O)C([N+]([O-])=O)=C1OC2=CC=CC=C2[N+]([O-

])=O)[O-] 

38 6212.12 

O=[N+](C1=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+]([O-

])=O)C([N+]([O-])=O)=C1SC2=CC=CC=C2[N+]([O-])=O)[O-

] 

39 6784.2 
NC1([N+]([O-])=O)C=C([N+]([O-

])=O)C(C2=CC=C(N)C=C2)=C([N+]([O-])=O)C1 
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40 7105.37 

O=[N+](C1=C([N+]([O-])=O)C([N+]([O-])=O)=C([N+]([O-

])=O)C([N+]([O-])=O)=C1/N=N/C2=CC=CC=C2[N+]([O-

])=O)[O-] 

41 6426.36 

O=[N+](C1=CC([N+]([O-])=O)=CC([N+]([O-

])=O)=C1NC2=NON=C2NC3=C([N+]([O-

])=O)C=C([N+]([O-])=O)C=C3[N+]([O-])=O)[O-] 

42 5271.44 
O=[N+](N2CN([N+]([O-])=O)C1=NON=C1N([N+]([O-

])=O)C2)[O-] 

43 7153.57 
O=[N+](N(CCN3[N+]([O-])=O)C2C3N([N+]([O-

])=O)C1=NON=C1N2[N+]([O-])=O)[O-] 

44 7445.56 
O=[N+](N1C(N([N+]([O-])=O)C2=NON=C2N3[N+]([O-

])=O)C3N([N+]([O-])=O)C1)[O-] 

45 7390.33 
O=C3N([N+]([O-])=O)C2NC1=NON=C1N([N+]([O-

])=O)C2N3[N+]([O-])=O 

46 7603.01 
O=[N+](N2C1=NON=C1N([N+]([O-])=O)C4C2N([N+]([O-

])=O)C3=NON=C3N4[N+]([O-])=O)[O-] 

47 7830.64 

O=[N+](N(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)C1=NON=C1C2=NON=C2N([N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 

48 6795.58 

O=[N+](N(C1=NON=C1N([N+]([O-])=O)CC([N+]([O-

])=O)([N+]([O-])=O)[N+]([O-])=O)CC([N+]([O-

])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 

49 7706.95 [O][N]1=C([N+]([O-])=O)C([N+]([O-])=O)=NO1 

50 6326.21 
[O][N]1=C2C(C(N)=C([N+]([O-])=O)C=C2[N+]([O-

])=O)=NO1 

51 7588.94 [O][N]4=C3C1=NO[N]([O])=C1C2=NO[N]([O])=C2C3=NO4 
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52 5787.93 
NC2=C([N+]([O-])=O)C(N)=C([N+]([O-

])=O)C1=NO[N]([O])=C12 

53 7710.74 NC1=NON=C1/[N]([O])=N\C2=NON=C2N 

54 6645.14 N#CC1=NO[N]([O])=C1C#N 

55 8250.98 
[O][N]1=C([N+]([O-

])=O)C(/N=N\C2=NO[N]([O])=C2[N+]([O-])=O)=NO1 

56* 7331.25 

O=C(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)OC1=NO[N]([O])=C1OC(CC([N+]([O-])=O)([N+]([O-

])=O)[N+]([O-])=O)=O 

57* 5502.45 
O=[N+](N(CC([N+]([O-])=O)(F)[N+]([O-])=O)CC([N+]([O-

])=O)(F)[N+]([O-])=O)[O-] 

58 5667.22 
FC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CCN([N+]([O-])=O)CC([N+]([O-])=O)([N+]([O-])=O)F 

59 5964 

O=C1N([N+]([O-])=O)C(N(CC([N+]([O-])=O)(F)[N+]([O-

])=O)[N+]([O-])=O)C(N(CC([N+]([O-])=O)(F)[N+]([O-

])=O)[N+]([O-])=O)N1[N+]([O-])=O 

60 6226.58 

FC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)F 

61 4142.13 
O=C(N(CN(F)F)C1[N][N+]([O-])=O)N([N+]([O-

])=O)C1(CN(F)F)NC=O 

62* 4958.57 
O=[N+](C([N+]([O-])=O)(F)COCOCC([N+]([O-

])=O)(F)[N+]([O-])=O)[O-] 

63* 1181.38 
FC(C1(C(F)(F)F)OC[C]([N+]([O-])=O)([N+]([O-

])=O)(F)CO1)(F)F 
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64 3242.55 
O=[C](F)(CC([N+]([O-])=O)(F)[N+]([O-])=O)(CC([N+]([O-

])=O)(F)[N+]([O-])=O)F 

65 127.94 O=S(C(F)(F)F)(OCC(F)(F)[N+]([O-])=O)=O 

66 4840.04 
FC([N+]([O-])=O)([N+]([O-])=O)OC(C)OC(F)([N+]([O-

])=O)[N+]([O-])=O 

67 3162.74 O=[N+](C([N+]([O-])=O)(F)OCC(F)(F)[N+]([O-])=O)[O-] 

68 5069.14 
O=[N+](C([N+]([O-])=O)(F)COCC([N+]([O-

])=O)(F)[N+]([O-])=O)[O-] 

69* 5802.63 
O=[N+](C([N+]([O-])=O)(F)COCC([N+]([O-])=O)([N+]([O-

])=O)COCC([N+]([O-])=O)(F)[N+]([O-])=O)[O-] 

70 3913.33 O=[N+]([O-])OCC([N+]([O-])=O)(F)[N+]([O-])=O 

71 4329.86 
O=S(OCC([N+]([O-])=O)(F)[N+]([O-])=O)(OCC([N+]([O-

])=O)(F)[N+]([O-])=O)=O 

72 665.02 O=[N+](C([N+]([O-])=O)(F)OCC(F)(F)F)[O-] 

73 5225.75 
O=[N+](C([N+]([O-])=O)(F)COCOCCOCOCC([N+]([O-

])=O)(F)[N+]([O-])=O)[O-] 

74* 3726.09 
O=[N+](C([N+]([O-])=O)(F)COC(C)OCC(F)(F)[N+]([O-

])=O)[O-] 

75 3242.38 
O=[N+](C([N+]([O-])=O)(F)COCOCC(F)(F)[N+]([O-

])=O)[O-] 

76 4097.77 O=C(OC)CCC([N+]([O-])=O)(F)[N+]([O-])=O 

77 4822.29 
O=[N+](C([N+]([O-])=O)(F)COC(OC)OCC([N+]([O-

])=O)(F)[N+]([O-])=O)[O-] 

78* 1610.1 
O=[N+](C(F)(F)COC(F)(F)OCC([N+]([O-])=O)(F)[N+]([O-

])=O)[O-] 
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79 1270.04 

O=[N+](C(COC(F)(F)F)([N+]([O-

])=O)COC(F)(F)OCC([N+]([O-])=O)([N+]([O-

])=O)COC(F)(F)F)[O-] 

80 1172.33 O=C(OCC(F)(F)F)CCC([N+]([O-])=O)(F)[N+]([O-])=O 

81 3068.09 O=[N+](C([N+]([O-])=O)([N+]([O-])=O)COC(F)(F)F)[O-] 

82 641.43 O=[N+](C([N+]([O-])=O)(F)COC(F)(F)F)[O-] 

83 1503.22 CC([N+]([O-])=O)([N+]([O-])=O)COC(F)(F)F 

84* 624.78 O=[N+](C(COC(F)(F)F)([N+]([O-])=O)COC(F)(F)F)[O-] 

85* 5956.91 
COCC([N+]([O-])=O)([N+]([O-])=O)CC([N+]([O-

])=O)(F)[N+]([O-])=O 

86 4997.84 

O=[N+](C([N+]([O-

])=O)(F)COC(N(F)F)(N(F)F)OCC([N+]([O-])=O)(F)[N+]([O-

])=O)[O-] 

87 2244.93 
O=[N+](C(COC(F)(F)F)([N+]([O-])=O)COCOCC([N+]([O-

])=O)([N+]([O-])=O)COC(F)(F)F)[O-] 

88* 2656.09 
FC(C(OCC([N+]([O-])=O)(F)[N+]([O-])=O)OCC([N+]([O-

])=O)(F)[N+]([O-])=O)(F)F 

89* 1276.16 FC(C1OC[C]([N+]([O-])=O)([N+]([O-])=O)(F)CO1)(F)F 

90 1295 
CCOC(C(F)(F)F)(C(F)(F)[N+]([O-])=O)OCC([N+]([O-

])=O)(F)[N+]([O-])=O 

91 651.1 O=[N+](C([N+]([O-])=O)(F)COC(F)(F)OCC(F)(F)F)[O-] 

92* 3272.66 
O=[N+](C([N+]([O-])=O)([N+]([O-

])=O)COCOCC(F)(F)F)[O-] 

93 4724.64 
O=[N+](N1CC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CC(N(F)F)(N(F)F)C1)[O-] 



  

 

 
30 

 

94 7147.42 
O=[N+]([O-])N(C1C2N(C4C3N2[N+]([O-])=O)[N+]([O-

])=O)C(N3[N+]([O-])=O)C(N4[N+]([O-])=O)N1[N+]([O-])=O 

95 6422.31 
O=[N+](N1N3C([N+]([O-])=O)([N+]([O-])=O)C2([N+]([O-

])=O)N([N+]([O-])=O)N(C3)N([N+]([O-])=O)N1C2)[O-] 

96* 7112.75 
O=[N+](N([N+]([O-])=O)[NH]1([N+]([O-])=O)[NH]([N+]([O-

])=O)([N+]([O-])=O)N=NN=C1[N+]([O-])=O)[O-] 

97 9275.51 

O=[N+](C12C3([N+]([O-])=O)C5([N+]([O-])=O)C([N+]([O-

])=O)1C4([N+]([O-])=O)C([N+]([O-])=O)2C([N+]([O-

])=O)3C45[N+]([O-])=O)[O-] 

98* 8691.12 
O=[N+](C1(C2)CC(C3)([N+]([O-])=O)CC2([N+]([O-

])=O)CC3([N+]([O-])=O)C1)[O-] 

99 5740.49 O=[N+](N1C([N+]([O-])=O)C1)[O-] 

100* 4162.22 NC(N[N+]([O-])=O)=N 

101 6555.39 O=[N+](N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1)[O-] 

102 5901.58 O=NN1C(N=O)(N=O)CC1 

103 6626.72 
O=[N+](N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-

])=O)C1)[O-] 

104 5947.78 
NC1([N+]([O-])=O)C=C([N+]([O-

])=O)C(C2=CC=C(N)C=C2)=C([N+]([O-])=O)C1 

105* 6808.48 N[N+]([O-])=O.O=[N+]([O-])OCC.O[N+]([O-])=O 

106* 6510.31 
O=[N+](N1CN([N+]([O-])=O)CN([N+]([O-])=O)C1=C=O)[O-

] 

107 5412.47 O=C(NC1N2[N+]([O-])=O)N([N+]([O-])=O)C1NC2=O 

108 6558.11 
O=C(N([N+]([O-])=O)C([N+]([O-])=O)1N2[N+]([O-

])=O)N([N+]([O-])=O)C1NC2=O 
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109 6923.13 
O=C(N([N+]([O-])=O)C2N1[N+]([O-])=O)N([N+]([O-

])=O)C(C2)N([N+]([O-])=O)C1=O 

110 7202.02 
O=[N+](C1([N+]([O-])=O)CN([N+]([O-])=O)CC([N+]([O-

])=O)([N+]([O-])=O)CN([N+]([O-])=O)C1)[O-] 

111 6577.12 
O=[N+]([O-])NC1=CC=C([N+]([O-])=O)C([N+]([O-

])=O)=C1[N+]([O-])=O 

112 7001.75 
O=[N+]([O-])N([N+]([O-])=O)C1=CC=CC([N+]([O-

])=O)=C1[N+]([O-])=O.O=[N+]([O-])OCC 

113 6049.45 
O=[N+](C([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 

114 7362.91 
O=[N+](C1([N+]([O-])=O)CN([N+]([O-])=O)CC([N+]([O-

])=O)([N+]([O-])=O)CN(N=O)C1)[O-] 

115* 7613.27 
O=[N+](C1([N+]([O-])=O)CN(N=O)CC([N+]([O-

])=O)([N+]([O-])=O)CN(N=O)C1)[O-] 

116 6996.43 
O=[N+](C1([N+]([O-])=O)CN([N+]([O-])=O)CC([N+]([O-

])=O)([N+]([O-])=O)CN(C(O[N+]([O-])=O)C)C1)[O-] 

117* 6934.62 
O=[N+](C1([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-

])=O)C=C1)[O-] 

118 6745.61 
O=[N+](N1CC([N+]([O-])=O)([N+]([O-])=O)CN([N+]([O-

])=O)CC1)[O-] 

119* 5516.18 N/C(N[N+]([O-])=O)=N\[N+]([O-])=O 

120 6043.37 [N-]=[N+]=NC1CN([N+]([O-])=O)C1 

121 7350.6 O=[N+](C1([N+]([O-])=O)CN([N+]([O-])=O)C1)[O-] 

122 3579.88 
O=[N+](C([N+]([O-])=O)([N+]([O-])=O)C([N+]([O-

])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 
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123 7413.06 
CN([N+]([O-])=O)CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O 

124 7724.79 

NCC(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)N[N+]([O-])=O 

125 7296.96 
O=C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O 

126* 7131 
O=[N+](C([N+]([O-])=O)([N+]([O-])=O)COCOCC([N+]([O-

])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 

127 7476.78 
O=[N+](CCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O)[O-

] 

128* 6051.35 
O=[N+](N(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O)[O-] 

129 7456.29 

O=[N+](C1=C(C([N+]([O-])=O)=CC([N+]([O-

])=O)=C1)N(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)[N+]([O-])=O)[O-] 

130 7000.29 

O=C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CN(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)[N+]([O-])=O 

131 6644.73 

O=C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CCCCC(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)=O 

132 6991.77 
O=C(N)N(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O 

133* 6361.9 
O=C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-])=O)=O 
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134 6953.54 

O=C(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)CCC(OCC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)=O 

135 7356.67 
O=[N+]([O-])OCC(CO[N+]([O-])=O)(CO[N+]([O-

])=O)CO[N+]([O-])=O 

136 7007.4 O=[N+]([O-])OCC(O[N+]([O-])=O)CO[N+]([O-])=O 

137 7400.5 
O=[N+]([O-])OC(C([N+]([O-])=O)C(C)C)C(O[N+]([O-

])=O)CO[N+]([O-])=O 

138* 6510.14 O=[N+](C([N+]([O-])=O)(OS(O)=O)C[N+]([O-])=O)[O-] 

139* 4779.26 
O=S(C1=CC=CC=C1)(OCC([N+]([O-])=O)([N+]([O-

])=O)[N+]([O-])=O)=O 

140 6742.93 
O=S(C1=CC=CC([N+]([O-])=O)=C1)(OCC([N+]([O-

])=O)([N+]([O-])=O)[N+]([O-])=O)=O 

141 6342.09 
CC1=CC=C(S(=O)(OCC([N+]([O-])=O)([N+]([O-

])=O)[N+]([O-])=O)=O)C=C1 

142 7159.54 
CC1=CC(CC([N+]([O-])=O)([N+]([O-])=O)[N+]([O-

])=O)=C(S(=O)(O[N+]([O-])=O)=O)C([N+]([O-])=O)=C1 

143 5052.5 
O=[N+](C1C([N+]([O-])=O)N([N+]([O-])=O)C([N+]([O-

])=O)C([N+]([O-])=O)N1[N+]([O-])=O)[O-] 

144* 7207 

O=[N+](/N=C1/N([N+]([O-])=O)C(CCO[N+]([O-

])=O)([N+]([O-])=O)C(CCO[N+]([O-])=O)([N+]([O-

])=O)N1[N+]([O-])=O)[O-] 

145* 6598.08 OCC(O[N+]([O-])=O)CO[N+]([O-])=O 

146 5374.26 OCC(O[N+]([O-])=O)C(O[N+]([O-])=O)Cl 

147 5984.08 CC(OCC(O[N+]([O-])=O)CO[N+]([O-])=O)=O 
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148* 7100.3 
O=[N+]([O-])O[C@H](CO[N+]([O-

])=O)COC[C@@H](O[N+]([O-])=O)CO[N+]([O-])=O 

149* 7064.18 O=[N+]([O-])OCCO[N+]([O-])=O 

150 6465.27 O=[N+]([O-])OCCOCCO[N+]([O-])=O 

151* 6151.87 O=[N+]([O-])OCCOCCOCCO[N+]([O-])=O 

152 6676.02 O=[N+]([O-])OCCCO[N+]([O-])=O 

153 6680.69 CC(O[N+]([O-])=O)CO[N+]([O-])=O 

154* 6390.64 CC(O[N+]([O-])=O)CCO[N+]([O-])=O 

155 7121.1 O=[N+]([O-])OCC(O[N+]([O-])=O)CCO[N+]([O-])=O 

156 6869.41 CC(C)CC(O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O 

157* 6790.3 CCC(CO[N+]([O-])=O)(CO[N+]([O-])=O)CO[N+]([O-])=O 

158 6452.55 O=[N+]([O-])OC 

159 5947.78 O=[N+]([O-])OCC 

160 5303.14 O=[N+]([O-])OCCC 

161* 5124.94 O=[N+]([O-])OC(C)C 

162* 6323.65 
O=[N+]([O-])OC([N+]([O-])=O)([N+]([O-

])=O)COC1=CC=CC=C1 

‘*’ represent the test set compound  

3.1.2 Datasets used in Study 2 

We have used 4 datasets for four different properties (i.e. decomposition temperature, melting 

point, density, and heat of formation) that were studied in this work. The overview on the 

number of compounds in each dataset is already given in Table 2.1. The dataset used in this 

work can be retrieved from the supplementary material section of our published literature 

entitled "Predicting the performance and stability parameters of energetic materials (EMs) 

using a machine learning-based q-RASPR approach" (Pandey and Roy, 2024). 
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3.1.3 p-type organic semiconductors (OSCs) dataset (Study 3) 

This dataset consists of 171 compounds, among which 129 compounds were present in the 

training set and 42 compounds were in the test set. Detailed information on compounds in the 

study is given in Table 3.2. 

Table 3.2: Details of p-type OSCs dataset. 

S. 

no. 
Smiles 

RE 

(meV) 

1 S1C=CC=C1 403 

2* C1=CC2=CC=CC=C2C=C1 185 

3* S1C=CC2=C1C=CS2 409 

4 C1=CC=C(C=C1)C1=CC=CC=C1 358 

5 S1C=CC=C1C1=CC=CS1 420 

6 C1=CC=C2C(C=CC3=CC=CC=C23)=C1 218 

7 C1=CC2=CC3=CC=CC=C3C=C2C=C1 138 

8 S1C=CC2=C3SC=CC3=CC=C12 230 

9* S1C=CC2=C3C=CSC3=CC=C12 288 

10 S1C=CC2=CC3=C(SC=C3)C=C12 108 

11* S1C=CC2=CC3=C(C=CS3)C=C12 165 

12 S1C=C2SC3=C(C=CS3)C2=C1 193 

13 S1C=CC2=C1C1=C(S2)C=CS1 352 

14 S1C=C2SC3=C(SC=C3)C2=C1 209 

15 S1C=C2SC3=CSC=C3C2=C1 187 

16 C1=C2C(=CC3=CC=CC=C23)C2=CC=CC=C12 279 

17 C1=CC=C2C(C=CC3=C2C=CC2=CC=CC=C32)=C1 165 

18 C1=CC2=CC3=CC4=CC=CC=C4C=C3C=C2C=C1 111 

19 S1C=CC2=CC3=CC4=CC=CC=C4C=C3C=C12 110 

20 S1C=CC2=C3C=CC4=C(C=CS4)C3=CC=C12 243 

21 S1C=CC2=C1C1=C(C=CS1)C1=CC=CC=C21 238 

22 S1C=CC2=CC3=CC4=C(SC=C4)C=C3C=C12 100 

23 S1C=CC2=CC3=CC4=C(C=CS4)C=C3C=C12 105 

24* S1C=CC2=C1C1=CC=C3C=CSC3=C1C=C2 280 
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25* S1C2=CC=CC=C2C2=C1C1=C(S2)C=CC=C1 225 

26 S1C=C2SC3=CSC4=C3C2=C1\C=C/C=C\4 378 

27 S1C=CC=C1C1=CC=C(S1)C1=CC=CS1 373 

28 C1=CC2=C3C(C=CC=C3C3=C4C(C=CC=C24)=CC=C3)=C1 145 

29 S1C=CC2=C1SC1=C2C2=C(SC=C2)S1 301 

30* S1C=CC2=C1C1=C(S2)C2=C(S1)C=CS2 326 

31* S1C2=C(SC(=C2)C2=CC=CC=C2)C2=CC=CC=C12 299 

32 S1C=C(C2=CSC3=CC=CC=C23)C2=CC=CC=C12 302 

33 S1C=C2C3=CSC4=C3C(=CS4)C3=CSC1=C23 183 

34 C\C=C\C1=CC2=C(S1)SC1=C2C=C(S1)\C=C\C 215 

35 C1=CC=C2C(C=CC3=C4C=CC5=CC=CC=C5C4=CC=C23)=C1 185 

36 C1=CC=C2C(C=CC3=CC4=C(C=CC5=CC=CC=C45)C=C23)=C1 168 

37* C1=CC=C2C=C3C(C=CC4=CC5=CC=CC=C5C=C34)=CC2=C1 178 

38 C1=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C2C=C1 93 

39 S1C=CC2=C1C=C(S2)C1=CC2=C(S1)C=CS2 365 

40 S1C=CC2=C1C(=CS2)C1=CSC2=C1SC=C2 256 

41* S1C=CC=C1C1=CC2=C(S1)C1=C(S2)C=CS1 359 

42 S1C=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C12 96 

43* S1C2=C(C=C3C=CC=CC3=C2)C2=C1C=C1C=CC=CC1=C2 118 

44* S1C=CC2=C3C=C4C=CC5=C(C=CS5)C4=CC3=CC=C12 155 

45 S1C=CC2=CC3=C4C=C5C=CSC5=CC4=CC=C3C=C12 200 

46 S1C=CC2=CC3=CC4=CC5=C(SC=C5)C=C4C=C3C=C12 94 

47* S1C=CC2=CC3=CC4=CC5=C(C=CS5)C=C4C=C3C=C12 95 

48 S1C=CC2=CC3=CC=C4C=C5C=CSC5=CC4=C3C=C12 182 

49* S1C=CC2=C1C1=CC3=CC=C4C=CSC4=C3C=C1C=C2 134 

50 S1C2=CC3=CC=CC=C3C=C2C2=C1C1=C(S2)C=CC=C1 153 

51 S1C2=CC=CC=C2C2=CC3=C(C=C12)C1=C(S3)C=CC=C1 117 

52* S1C2=CC=CC=C2C2=CC3=C(SC4=C3C=CC=C4)C=C12 87 

53 S1C=C(C2=C1SC=C2C1=CC=CC=C1)C1=CC=CC=C1 266 

54 S1C=CC2=CC3=C(SC4=C3C=C3C=CSC3=C4)C=C12 149 

55 S1C=CC2=CC3=C(C=C12)C1=C(S3)C=C2C=CSC2=C1 118 

56 C1=C2C(C=CC3=CC=CC=C23)=C2C=C3C(C=CC4=CC=CC=C34)=C12 208 
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57 C1=C2C(=CC3=CC4=CC=CC=C4C=C23)C2=CC3=CC=CC=C3C=C12 115 

58 S1C=CC2=C1C=C(S2)C#CC1=CC2=C(S1)C=CS2 293 

59* S1C=CC2=C1C1=CC3=C(C=C1S2)C1=C(S3)C=CS1 231 

60 C1C2=CC=CC=C2C2=CC(=CC=C12)C1=CC2=C(SC=C2)S1 320 

61 S1C=CC=C1C1=CC=C(S1)C1=CC2=C(S1)C=CS2 362 

62 C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=CC=C1 309 

63* S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C=CS1 307 

64* S1C(=CC=C1C1=CC=CC=C1)C1=CC=C(S1)C1=CC=CC=C1 318 

65* S1C(=CC2=CC=CC=C12)C1=CC2=C(S1)C1=C(S2)C=CC=C1 266 

66 S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=CC=C1 339 

67 

C1=CC=C2C(=C1)C1=CC=CC=C1C1=C2C2=CC=CC=C2C2=CC=CC=C1

2 
193 

68* 

C1=CC=C2C(C=CC3=C4C=CC5=C(C=CC6=CC=CC=C56)C4=CC=C23)=

C1 
148 

69 C1=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C2C=C1 79 

70 

C1=CC=C(C=C1)C1=C2C=CC=CC2=C(C2=CC=CC=C2)C2=CC=CC=C1

2 
255 

71* S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=CS1 348 

72 S1C=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C12 85 

73 S1C=CC2=CC3=CC4=CC5=CC6=C(C=CS6)C=C5C=C4C=C3C=C12 87 

74* S1C2=CC3=CC4=C(C=CC=C4)C=C3C=C2C2=C1C1=C(S2)C=CC=C1 114 

75* S1C2=C(C3=C1C1=C(S3)C=CC3=CC=CC=C13)C1=CC=CC=C1C=C2 196 

76* S1C2=C(C3=C1C=CC1=CC=CC=C31)C1=C(S2)C=CC2=CC=CC=C12 187 

77 S1C2=C(SC3=C2C=CC2=CC=CC=C32)C2=C1C1=CC=CC=C1C=C2 189 

78 S1C2=CC3=CC=CC=C3C=C2C2=C1C1=C(S2)C=C2C=CC=CC2=C1 130 

79 S1C2=CC3=C(SC(=C3)C3=CC=CC=C3)C=C2C=C1C1=CC=CC=C1 267 

80 S1C(\C=C\C2=CC=CC=C2)=CC2=C1C=C(S2)\C=C\C1=CC=CC=C1 252 

81 S1C2=C(SC(=C2)C2=CC=CC=C2)C2=C1C=C(S2)C1=CC=CC=C1 312 

82 S1C2=C(C=C(S2)C2=CC=CC=C2)C2=C1SC(=C2)C1=CC=CC=C1 225 

83 S1C=C(C2=C1SC1=C2C(=CS1)C1=CC=CC=C1)C1=CC=CC=C1 212 

84* S1C=CC2=C3C(SC4=C3C3=C5C=CSC5=CC=C3S4)=CC=C12 211 
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85 

C1=CC=C(C=C1)C1=C2C3=CC=CC=C3C(=C2C2=CC=CC=C12)C1=CC=

CC=C1 
320 

86 

C1=CC2=CC3=CC=C(C=C3C=C2C=C1)C1=CC2=CC3=CC=CC=C3C=C2

C=C1 
103 

87 S1C=CC=C1C1=CC2=C(S1)C1=C(S2)C=C(S1)C1=CC=CS1 328 

88* S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C=CS2 291 

89 

S1C=CC2=C(C3=C4SC=CC4=C(C3=C12)C1=CC=CC=C1)C1=CC=CC=C

1 
414 

90 

S1C2=C3C(C=CC4=C3C(C=C2)=C(S4)C2=CC=CC=C2)=C1C1=CC=CC=

C1 
160 

91 

C1C2=C(C3=C(S2)C2=C(S3)C3=C(CC4=CC=CC=C34)S2)C2=CC=CC=C

12 
237 

92* S1C2=C(SC(=C2)C2=CC=C3C=CC=CC3=C2)C2=C1C1=CC=CC=C1S2 262 

93 

C1=CC=C2C(C=CC3=C4C=CC5=C6C=CC7=CC=CC=C7C6=CC=C5C4=

CC=C23)=C1 
152 

94 S1C2=C(SC(=C2)C2=CC3=C(S2)C2=C(S3)C=CC=C2)C2=CC=CC=C12 281 

95 S1C(=CC2=CC=CC=C12)C1=CC2=C(S1)C1=C(S2)C2=CC=CC=C2S1 264 

96 S1C=CC2=CC3=C(C=C(S3)C3=CC4=CC5=C(C=CS5)C=C4S3)C=C12 230 

97 

C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1

=CC=CC=C1 
288 

98* 

S1C=CC2=CC3=CC4=CC5=CC6=CC7=C(C=CS7)C=C6C=C5C=C4C=C3

C=C12 
79 

99* 

S1C2=CC3=CC4=CC=CC=C4C=C3C=C2C2=C1C1=C(S2)C=C2C=CC=C

C2=C1 
103 

100* S1C=CC2=C1SC1=C2C=C(S1)C1=CC2=C(SC3=C2C=CS3)S1 372 

101 S1C=CC2=C1C1=C(S2)C=C(S1)C1=CC2=C(S1)C1=C(S2)C=CS1 337 

102* 

S1C(=CC2=C1C1=CC=C3C=C(SC3=C1C=C2)C1=CC=CC=C1)C1=CC=C

C=C1 
253 

103 

S1C2=CC3=CC4=C(SC(=C4)C4=CC=CC=C4)C=C3C=C2C=C1C1=CC=C

C=C1 
155 

104 

S1C2=CC3=CC4=C(C=C(S4)C4=CC=CC=C4)C=C3C=C2C=C1C1=CC=C

C=C1 
116 
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105 

S1C2=CC=C3C4=C(SC(=C4)C4=CC=CC=C4)C=CC3=C2C=C1C1=CC=C

C=C1 
232 

106 

S1C2=CC3=C(SC4=C3C=CC=C4)C=C2C2=CC3=C(C=C12)C1=C(S3)C=

CC=C1 
106 

107 

S1C2=CC3=C(C=C2C2=CC4=C(C=C12)C1=C(S4)C=CC=C1)C1=C(S3)C

=CC=C1 
110 

108 

S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C2=C1C1=CC=CC=C

1S2 
292 

109 S1C=CC2=C1C1=C(C=CS1)C1=CC3=C4C=CSC4=C4SC=CC4=C3C=C21 132 

110 S1C=CC2=C1C1=CC3=C4SC=CC4=C4C=CSC4=C3C=C1C1=C2C=CS1 124 

111 

S1C2=CC=CC=C2C2=C1C1=C(S2)C=C2C(SC3=C2SC2=C3C=CC=C2)=C

1 
179 

112 

S1C=CC2=C1C=C(S2)C1=CC2=CC=C(C=C2C=C1)C1=CC2=C(S1)C=CS

2 
305 

113* 

S1C2=CC=CC=C2C2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C=CC=C

2 
241 

114* S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=CS1 309 

115* S1C=CC2=C1C1=C(S2)C2=CC3=C(C=C2S1)C1=C(S3)C2=C(S1)C=CS2 236 

116 S1C=CC2=C1SC1=C2C=C(S1)\C=C\C1=CC2=C(SC3=C2C=CS3)S1 308 

117 S1C=CC2=C1C(=CS2)C1=CSC2=C1SC=C2C1=CSC2=C1SC=C2 160 

118* S1C=CC2=C1SC1=C2SC2=C1C1=C(S2)SC2=C1SC1=C2C=CS1 207 

119 S1C=CC2=C1SC1=C2C2=C(S1)SC1=C2C2=C(SC3=C2C=CS3)S1 210 

120 S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C1=C(S2)C=CS1 280 

121 

C1C2=C(C3=C(S2)C2=C(S3)C3=C(S2)C2=C(CC4=C2C=CC=C4)S3)C2=C

1C=CC=C2 
134 

122 

S1C2=C(SC3=C2C2=CC=CC=C2C2=CC=CC=C32)C2=C1C1=CC=CC=C

1C1=CC=CC=C21 
186 

123 

S1C2=CC=C3C(C=CC4=CC=CC=C34)=C2C2=C1C1=C(S2)C=CC2=C1C

=CC1=CC=CC=C21 
181 

124 

S1C2=C(SC3=C4C=CC5=CC=CC=C5C4=CC=C23)C2=C1C1=C(C=C2)C

2=CC=CC=C2C=C1 
181 
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125 

S1C2=CC3=CC4=CC=CC=C4C=C3C=C2C2=C1C1=C(S2)C=C2C=C3C=

CC=CC3=CC2=C1 
85 

126 

S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C=C1C1=CC=C(C=C

1)C1=CC=CC=C1 
311 

127 

S1C2=C(SC(=C2C2=CC=CC=C2)C2=CC=CC=C2)C(=C1C1=CC=CC=C1)

C1=CC=CC=C1 
290 

128 

S1C2=C(SC(=C2)C2=CC=C3C=CC=CC3=C2)C2=C1C=C(S2)C1=CC=C2

C=CC=CC2=C1 
261 

129* 

S1C2=CC=CC=C2C2=C1C1=C(S2)C=C2C=C3C(SC4=C3SC3=C4C=CC=

C3)=CC2=C1 
124 

130 

C1=CC=C(C=C1)C1=C2C(C=CC3=CC=CC=C23)=C2C1=C1C=CC3=CC=

CC=C3C1=C2C1=CC=CC=C1 
242 

131* 

C1=CC=C(C=C1)C1=C2C3=CC4=CC=CC=C4C=C3C(=C2C2=CC3=CC=

CC=C3C=C12)C1=CC=CC=C1 
141 

132 

S1C=CC2=C1C=C(S2)C1=CC2=CC3=CC=C(C=C3C=C2C=C1)C1=CC2=

C(S1)C=CS2 
240 

133 

S1C(\C=C\C2=CC=CC=C2)=CC2=C1C1=C(S2)C2=C(S1)C=C(S2)\C=C\C

1=CC=CC=C1 
232 

134 

S1C(=CC2=C1C=C(S2)C1=CC=C(S1)C1=CC=CC=C1)C1=CC=C(S1)C1=

CC=CC=C1 
301 

135 

C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1=CC=C(C=C1)C1

=CC=C(C=C1)C1=CC=CC=C1 
254 

136* 

S1C2=C(SC(=C2)C2=CC3=CC=CC=C3S2)C2=C1C=C(S2)C1=CC2=CC=

CC=C2S1 
257 

137 

S1C2=CC=CC=C2C2=C1C1=C(C3=C(SC4=C3C=CC=C4)C1=C2C1=CC=

CC=C1)C1=CC=CC=C1 
348 

138 

S1C2=C3C(C=CC4=C3C(C=C2)=C(S4)C2=CC3=C(C=CC=C3)C=C2)=C1

C1=CC2=CC=CC=C2C=C1 
165 

139 

C1C2=CC=CC=C2C2=CC=C(C=C12)C1=CC2=C(S1)C=C(S2)C1=CC=C2

C(CC3=CC=CC=C23)=C1 
300 

140 

S1C=CC=C1C1=C2C(=S=C(C3=CC=CS3)C2=C(S1)C1=CC=CS1)C1=CC

=CS1 
182 
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141 

S1C=CC=C1C1=C(C2=CC=CS2)C2=C(S1)C(C1=CC=CS1)=C(S2)C1=CC

=CS1 
452 

142 

S1C(=CC=C1C1=CC=C(C=C1)C1=CC=CC=C1)C1=CC=C(S1)C1=CC=C(

C=C1)C1=CC=CC=C1 
309 

143 

S1C=CC2=C1C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)C1=C(S2)C2=C(S1)

C=CS2 
268 

144 

S1C(\C=C\C2=CC=CC=C2)=CC2=C1C=C(S2)C1=CC2=C(S1)C=C(S2)\C=

C\C1=CC=CC=C1 
232 

145 

S1C=CC=C1C1=CC=C(C=C1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(C=

C1)C1=CC=CS1 
323 

146 c1csc(c1)-c1ccc(s1)-c1ccc(cc1)-c1ccc(cc1)-c1ccc(s1)-c1cccs1 287 

147 
S1C2=C(SC3=C4C=CC5=CC=CC6=CC=C(C=C23)C4=C56)C2=C1C1=C

C=C3C=CC=C4C=CC(=C2)C1=C34 
76 

148 

S1C2=CC3=CC=C4C=CC=C5C=CC(=C2C2=C1C1=C(S2)C=C2C=CC6=C

C=CC7=CC=C1C2=C67)C3=C45 
140 

149 

S1C2=C(SC3=C2C2=CC=CC4=CC=C5C=CC=C3C5=C24)C2=C1C1=CC=

CC3=CC=C4C=CC=C2C4=C13 
123 

150 

S1C(=CC2=C1C1=C(S2)C2=CC=CC=C2S1)C1=CC2=C(S1)C1=C(S2)C2=

C(S1)C=CC=C2 
270 

151 

S1C2=CC3=CC(=CC=C3C=C2C2=C1C1=C(S2)C=C2C=C(C=CC2=C1)C1

=CC=CC=C1)C1=CC=CC=C1 
145 

152* 

S1C2=CC3=CC=C(C=C3C=C2C2=C1C1=C(S2)C=C2C=CC(=CC2=C1)C1

=CC=CC=C1)C1=CC=CC=C1 
108 

153 

S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1

=CC=CS1 
258 

154 

S1C2=C(SC(=C2)C2=CC=C(C=C2)C2=CC=CC=C2)C2=C1C=C(S2)C1=C

C=C(C=C1)C1=CC=CC=C1 
293 

155 

S1C2=C(SC(=C2)C2=CC=CC=C2C2=CC=CC=C2)C2=C1C=C(S2)C1=CC

=CC=C1C1=CC=CC=C1 
305 

156 

S1C=CC=C1C1=C(C2=C(S1)C1=C(S2)C(=C(S1)C1=CC=CS1)C1=CC=CC

=C1)C1=CC=CC=C1 
481 
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157 

S1C2=CC=CC=C2C2=C1C1=C(S2)C2=C(S1)C=C1C(SC3=C1SC1=C3SC3

=C1C=CC=C3)=C2 
205 

158* 

S1C2=C3C(C=CC4=C3C(C=C2)=C(S4)C2=CC=C(C=C2)C2=CC=CC=C2)

=C1C1=CC=C(C=C1)C1=CC=CC=C1 
181 

159 

S1C=CC2=C1SC1=C2C=C(S1)\C=C\C1=CC=C(\C=C\C2=CC3=C(S2)SC2

=C3C=CS2)C=C1 
257 

160 

S1C=CC2=C3C=CSC3=C3C(SC4=C3SC3=C4SC4=C3C3=C(C=CS3)C3=

C4SC=C3)=C12 
199 

161 

C1C2=CC=CC=C2C2=CC=C(C=C12)C1=CC2=C(S1)C1=C(S2)C=C(S1)C

1=CC=C2C(CC3=CC=CC=C23)=C1 
275 

162 

S1C=CC=C1C1=CC=C(S1)C1=CC2=C(S1)C1=C(S2)C=C(S1)C1=CC=C(S

1)C1=CC=CS1 
290 

163 

C1=CC2=CC3=CC=C(C=C3C=C2C=C1)C1=CC2=CC3=CC=C(C=C3C=C

2C=C1)C1=CC2=CC3=CC=CC=C3C=C2C=C1 
83 

164 

C1=CC=C(C=C1)C1=C2C(C3=CC=CC=C3)=C3C=CC=CC3=C(C3=CC=C

C=C3)C2=C(C2=CC=CC=C2)C2=CC=CC=C12 
147 

165* 

S1C=CC2=C1C=C(S2)C1=CC2=C(S1)C=C(S2)C1=CC2=C(S1)C=C(S2)C1

=CC2=C(S1)C=CS2 
301 

166 

S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1

=CC=C(S1)C1=CC=CS1 
265 

167 

S1C2=C(C=CC=C2)C2=C1C1=C(C3=C4SC5=C(SC6=C5C=CC=C6)C4=C

(C3=C1S2)C1=CC=CC=C1)C1=CC=CC=C1 
308 

168 

S1C2=CC=C(C=C2C2=C1C1=C(S2)C=C2C=C3C(SC4=C3SC3=C4C=CC(

=C3)C3=CC=CC=C3)=CC2=C1)C1=CC=CC=C1 
133 

169 

S1C2=C(SC(=C2)C2=C(C=CC=C2C2=CC=CC=C2)C2=CC=CC=C2)C2=C

1C=C(S2)C1=C(C=CC=C1C1=CC=CC=C1)C1=CC=CC=C1 
363 

170* 

S1C=CC=C1C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1=CC=C(S1)C1

=CC=C(S1)C1=CC=C(S1)C1=CC=CS1 
268 

171 

S1C2=CC=CC=C2C2=C1C1=C(S2)C2=C(C3=C4SC5=C(SC6=C5SC5=CC

=CC=C65)C4=C(C3=C2S1)C1=CC=CC=C1)C1=CC=CC=C1 
266 
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3.2 Study wise specific description of methodologies utilized in each study 

3.2.1 Study -1 

3.2.1.1 Data collection 

The values of detonation heat (expressed in KJ/kg) of 162 N-containing compounds were 

collected from previously published literature (He et. al., 2021) and are listed in Table 3.1. The 

structures were prepared in MarvinSketch (version- 5.5.0.1) https://www.chemaxon.com, 

added the explicit hydrogen, cleaned the structure, and aromatized the aromatic rings as 

applicable. A chemical diversity plot (Figure 3.1) was prepared using the molecular weight 

and logPcons which shows the diversity in the chemical nature of the compounds. 

 

Figure 3.1: Chemical diversity plot 

3.2.1.2 Descriptor calculation and data pre-treatment 

Molecular descriptors are the quantitative values derived from the structural information of the 

molecules. Different classes of 2D descriptors like molecular properties, 2D atom pairs, atom 

type E-state indices, atom-centered fragments, functional group counts, connectivity indices, 

ring descriptors, constitutional indices, and extended topochemical atom (ETA) indices were 

calculated using alvaDesc v2.0.6 (Mauri, 2020). These different classes of descriptors are so 

chosen as they are highly interpretable and also are efficient in the development of models as 

https://www.chemaxon.com/
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evident from our previous experiences. A total of 689 molecular descriptors were calculated 

initially. 

The obtained descriptors were then subjected to a pretreatment process using a java-based tool 

DataPreTreatmentGUI 1.2 available from http://teqip.jdvu.ac.in/QSAR_Tools/ to remove the 

intercorrelated descriptors with a variance cut-off of 0.0001 and a correlation coefficient cut-

off value of 0.95. In this process, descriptors that are highly inter-correlated to each other and 

descriptors with null or constant values for each data point are obviated. After the pre-treatment 

process, a total of 473 descriptors were left which were used for further study. 

3.2.1.3 Data division  

The division of the dataset is a necessary step prior to the model development. To establish a 

powerful QSPR model with good predictive ability the data set is divided into a training set 

and a test set. In this work, the dataset was divided in a ratio of 75:25, constituting 122 

compounds in the training set and 40 compounds in the test set using the Euclidean Distance-

based division algorithm (Danielsson, 1980) with the help of a java-based tool 

datasetDivisionGUI1.2 available from http://teqip.jdvu.ac.in/QSAR_Tools/. After division, the 

training and the test sets were subjected to pretreatment with the help of 

dataPreTreatmentTrainTest1.0 tool from http://teqip.jdvu.ac.in/QSAR_Tools/ to remove 

intercorrelated descriptors. The development of the model is done using the training set 

whereas the test set is used to check the predictive ability and external validation of the 

developed model. 

3.2.1.4 Feature selection and QSPR model development 

The selection of important features contributing to the property of compounds is a crucial step 

during the development of a QSPR model (Bursac et. al., 2008). We have prepared several 

Genetic Algorithm (GA) (Katoch et. al., 2021) models using a java-based tool 

GeneticAlgorithm_v4.1 from http://teqip.jdvu.ac.in/QSAR_Tools/ and selected the descriptors 

that appeared frequently in a maximum number of models. The generation of GA models and 

feature selection is done using the training set only without the involvement of the test set. The 

training set and test set matrices with the selected features were prepared. Further, we have 

used the Best Subset Selection v2.1 tool available from http://teqip.jdvu.ac.in/QSAR_Tools/ to 

generate different MLR models with all possible combinations of a given number of 

descriptors. A good robust model was selected based on the cross-validation result which is 

used for further q-RASPR analysis. 

https://dtclab.webs.com/%20software-tools
https://dtclab.webs.com/%20software-tools
https://dtclab.webs.com/%20software-tools
https://dtclab.webs.com/%20software-tools
https://dtclab.webs.com/%20software-tools
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3.2.1.5 Optimization of the Read-Across hyperparameters 

Identifying the optimized setting of hyperparameters (σ, γ, number of close source/training 

compounds, and best similarity-based algorithm) is an essential step for Read-Across based 

prediction. Per the QSPR prediction principles, hyperparameter optimization should be done 

based on training/source set only without any involvement of the test/query set. The training 

set containing the descriptors involved in the QSPR model was further divided into 

corresponding sub-train and sub-test sets. With the help of a java-based tool 

Auto_RA_Optimizer-v1.0, available from https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home,  we have selected the values for σ and γ to be 0.5, number of close training 

compounds be 8, and Gaussian kernel-based similarity as our best similarity-based algorithm. 

Here, the selection of hyperparameters was based on the maximum occurrence frequency of 

individual hyperparameters obtained during optimization using different sub-training and sub-

test sets prepared through the division of the training set via different algorithms.  

3.2.1.6 Calculation of the RASPR descriptors 

Before proceeding with the q-RASPR study, the prominent step is calculating the similarity 

and error-based RASPR descriptors (Banerjee and Roy, 2023) for the individual training and 

test sets. Unlike structural and physiological descriptors, the RASPR descriptors are calculated 

after the division process. This is so because the RASPR descriptors are calculated based on 

the similarity of test set compounds to the training set compounds. The Gaussian kernel-based 

similarity descriptors with σ value 0.5 were calculated using a java-based tool RASAR-Desc-

Calc-v2.0, available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home. For the calculation of RASPR descriptors for the test set, we have used the 

training set and the test set containing the selected physiochemical descriptors as input, whereas 

for the computation of training set RASPR descriptors, only the training set is used as input. 

3.2.1.7 Feature selection and development of the q-RASPR model 

Since, the q-RASPR study is the combination of both QSPR and RA-based predictions, it is 

necessary to combine the structural and physiological descriptors with the similarity and error-

based RASPR descriptors. The 15 similarity and error-based descriptors are fused with the 

previously selected structural and physiological descriptors for respective training and test sets. 

A grid search was performed to generate a MLR q-RASPR model with all the possible 

combinations of a given number of descriptors using the Best Subset Selection v2.1 tool 

available from http://teqip.jdvu.ac.in/QSAR_Tools/. Descriptor optimization was based on the 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://dtclab.webs.com/%20software-tools


  

 

 
46 

 

Q2
LOO (cross-validation) metric. The final PLS q-RASPR model was developed with the 

selected features.  

3.2.1.8 Application of other machine learning (ML) algorithms 

The predictive performance of the developed q-RASPR model was further evaluated by 

applying various supervised Machine Learning (ML) algorithms. We have used 7 different ML 

algorithms to develop various regression models such as Random Forest (RF) (Breiman, 2001), 

Adaptive Boosting (AdaBoost/AB) (Wu wt. al., 2010), Gradient boosting (GB) (Friedman et. 

al., 2002), Extreme Gradient Boosting (XGB) (Chen and Guestrin, 2016), Support Vector 

Machine (SVM) (Noble, 2006), Linear Support Vector Machine (LSVM), and Ridge 

Regression (RR) (Hoerl and Kennard, 1970). Scaling of the training and test sets data values 

was achieved using a Java-based tool Scale1.0 

fromhttps://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. With the help of a 

Python-based tool Hyperparameter Optimizer v1.2 and the scaled data of the training set, we 

have calculated the optimized hyperparameters for each ML algorithm. The selection of the 

hyper-parameters was based on the MAE results. Using the optimized settings of the 

hyperparameters and the scaled training and test sets, we have developed several ML models 

using a Python-based tool Machine Learning Regressor v 2.0 available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The final selection of 

the best predictive model was done based on MAETest results. 

3.2.1.9 Statistical validation metrics 

The developed models were evaluated for their predictability and reliability in terms of various 

internal and external validation parameters. Internally the model was evaluated on the basis of 

determination coefficient (R2), adjusted R2 (R2
adj), Leave-One-Out cross-validated Q2 (Q2

LOO), 

and root mean squared error of calibration (RMSEC) while the external statistical parameters 

involve the calculation of R2
pred or Q2

F1, Q
2

F2, and root mean squared error of prediction 

(RMSEP) (Roy, 2007). Both internal and external validation tests were done using the mean 

absolute error (MAE) based criteria (Roy et. al., 2016) as Q2
ext does not always provide exact 

prediction quality because of its dependence on the response range and response value 

distribution in the training and test set compounds. 

3.2.1.10 Applicability domain (AD) 

The validity of the q-RASPR model is denoted by a defined domain of applicability (OECD 

principle 3) (Roy et. al., 2015a). AD (Roy et. al., 2015b) represents the response and chemical 

mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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structure space which is defined by the chemicals used in the development of the model (in the 

training set). The distance to model X (DModX) approach (Roy et. al., 2015c) was used with 

a 99% confidence level with the help of SIMCA software 

(https://landing.umetrics.com/downloads-simca) to check whether the compounds in the sets 

are within the AD. In the DModX technique, the residuals of X and Y act as diagnostic values 

for the quality of the model. The standard deviation (SD) of X-residuals corresponds to the 

respective row of residual matrix E. As SD is directly proportional to the distance between the 

data points and the model plane in X-space, it is commonly called DModX (distance to the 

model in X-space). Those compounds which are present in the chemical space can be predicted 

precisely and those lying outside the AD are termed as outliers.  

The detailed workflow is represented in Figure 3.2. 

 

Figure 3.2: Workflow of the q-RASPR model development to estimate the detonation heat 

of N-containing compounds 

3.2.2 Study 2 

3.2.2.1 Data set preparation, curation, and structural representation 

It is crucial to have high-quality data while building computational models. Therefore, we 

collected four data sets with their experimental data, each containing information about the one 

of the properties like decomposition temperature, melting point, density, and heat of formation, 

from previously published literature sources (Mathieu, 2018; Wespiser and Mathieu, 2013). 

file:///C:/Users/Prof.%20K.%20Roy/Downloads/(https:/landing.umetrics.com/downloads-simca
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The data taken from the 2 literature sources are all experimental data. The Tdec data was derived 

in-house by Wespiser et. al., the Bradley melting point data set was used by Wespiser et. al. for 

the melting point data set, the density data set was collected from Crystallography open 

database by Wespiser et. al., and the heat of formation data contains different types of 

compounds with their experimental data which is also clearly mentioned in the literature 

(Mathieu, 2018). The data set used by Wespiser et al. contains some other organic compounds 

also with their experimental data for the heat of formation and densities. This was done so to 

extract the features which correspond to high positive heat of formation and higher densities of 

the compounds. These features can help to get insights into how the densities and heat of 

formation are affected by the presence of certain features in the compounds. The determination 

of these features will help to design new better performing EMs with less sensitivity. 

 

To ensure accuracy, we curated the collected data to remove any duplicates, inorganic 

compounds, or mixtures, if present. After the curation process, we were left with 656, 19667, 

12805, and 2565 data points for the decomposition temperature (˚C), melting point (˚C), 

density (g/cm3), and gas phase enthalpy of formation data (kJ/mol) sets, respectively. We made 

all the curated data sets available in the Excel sheets of Supplementary Materials (SI-1) 

(Pandey and Roy, 2024). The SMILES (Simplified Molecular Identity Line Entry System) 

notation was used for the representation of all data points, and MarvinSketch v-5.11.5 

https://www.chemaxon.com was used to prepare the structures, which were then subjected to 

aromatization, the addition of explicit hydrogens and 2D cleaning as necessary. 

3.2.2.2 Descriptor calculation and data pre-treatment 

The molecular structures so prepared were used to calculate the descriptors (quantitative values 

derived from the molecular structural information) for the respective data sets using the 

AlvaDesc software v2.0.6. (Mauri, 2020). Nine different classes of highly interpretable 2D 

descriptors like molecular properties, functional group counts, atom type E-state indices, atom-

centered fragments, 2D atom pairs, connectivity indices, constitutional indices, ring 

descriptors, and Extended Topochemical Atom (ETA) indices were calculated for all data sets.  

The calculated descriptors set was then subjected to the pre-treatment process where the 

descriptors having high inter-correlation (>0.8) or having constant/null values were removed 

from the descriptors set. The final pre-treated files were used for further division of the data set 

into training and test sets.   

https://www.chemaxon.com/
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3.2.2.3 Dataset division 

To check the predictive power of the model, there is a requirement to check the predictions for 

external compounds in addition to those included in the development of the model. To do so, 

the data set was divided into training and test sets. The training set was used for the 

development of the model while the test set validates the predictivity of the developed model. 

We have divided all the data sets into respective training and test sets in a 3:1 ratio. Based on 

different algorithms, the data sets were divided with the help of the Dataset-

DivisionGUI1.2tool freely available from http://teqip.jdvu.ac.in/QSAR_Tools/. The 

information on the number of compounds in the individual training and test sets after the 

division, along with the division algorithm applied, is enlisted in Table 3.3. The details of the 

data sets are provided in Supplementary Information SI-1 (Pandey and Roy, 2024). 

Additionally, for the density data set, we have also prepared a true external set of 37 energetic 

compounds with their experimental density (g/cm3) collected from Rice and Brydr. (Rice et. 

al., 2007). 

Table 3.3: List of training and test compounds in data sets and the applied division 

algorithm  

Data Set 

No. of compounds 

Division algorithm 

Training Test 

Decomposition temperature 

(Tdec) 
424 141 Property-sorted 

Melting point (Tm) 14750 4917 Property-sorted 

Density 9604 3201 Property-sorted 

Heat of formation (ΔH˚f) 

(gas phase) 
1923 642 Kennard-Stone 

 

After the division of the dataset into respective training and test sets, we further pre-treated the 

training and test set descriptor matrix to remove the null/constant descriptors, and the final 

training and test set so obtained were used for the feature selection process. 

 

http://teqip.jdvu.ac.in/QSAR_Tools/
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Figure 3.3 presents the chemical diversity plot (MW vs LOGPcons) prepared using the 

molecular weight and LOGPcons for all the data sets to see the diversity in the chemical nature 

of the compounds present in the respective training and test sets of the individual data set.  

 

Figure 3.3. Chemical diversity plots 

3.2.2.4 Feature selection and QSPR model development 

The selection of the potential features from the descriptor pool that are closely related to the 

activity/property/toxicity of the compound is a key step during the development of a QSAR 

model (Bursac et. al., 2008). There are several variable selection methods like step-wise 

selection, all possible subset selection, genetic algorithm, factor analysis, etc. (Roy et. al., 

2015c). In this work, we used step-wise and genetic algorithms to prepare a pool of important 

descriptors and then used the all-subset selection method to finalize the set of descriptors for 

the final models. The features are selected based on the MAE-based criteria (training set only 

without any involvement of the test set. A pool of features was prepared through various feature 

selection processes. A grid search was performed using the pool of selected features for the 

generation of several MLR models using the Best Subset Selection tool v2.1 available 
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from http://teqip.jdvu.ac.in/QSAR_Tools/. The final robust PLS QSPR model was selected 

based on the cross-validation (Q2
LOO) result with a lower number of latent variables (LVs). The 

final model so obtained was then used for Read-across-based similarity prediction. 

3.2.2.5 RA predictions 

For the calculation of RA-based similarity predictions, we have used the default values of the 

hyperparameters, i.e. σ=1, γ=1, and the number of closed training/source compounds (CTC) to 

be 10. Using the default hyperparameters and a Java-based tool Read-Across-v4.2 available 

from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, we have 

calculated the similarity predictions of the test set compounds for different similarity 

algorithms such as Gaussian kernel-based, Laplacian kernel-based, and Euclidean distance-

based similarity. Further, based on the MAEtest results, we have selected the best similarity 

measure for the individual data set.  

3.2.2.6 RASPR descriptor calculation 

The calculation of the similarity and error-based RASPR descriptors is the first and foremost 

step needed to build a q-RASPR model (Banerjee and Roy, 2023). The calculation of the 

RASPR descriptors (for the best similarity measure obtained from RA prediction) is done after 

the division process which is different from the calculation of structural and physiochemical 

descriptors that are calculated before the data set division. This is because here the test/query 

set RASPR descriptors are calculated based on their similarity to the training/query set 

compounds. For the calculation of the test set RASPR descriptors, both the training as well as 

test sets (containing the structural and physiochemical descriptors) were used while the training 

set RASPR descriptors were calculated from itself only. 

3.2.2.7 Feature selection and q-RASPR model development 

The descriptor matrix of the QSPR model was fused with the 18 calculated similarity and error-

based RASPR descriptors. The prepared descriptor pool was then used for the feature selection 

using a step-wise process or performing a grid search through the Best Subset Selection tool 

v2.1 available from http://teqip.jdvu.ac.in/QSAR_Tools/. The optimal number of descriptors 

selected in the model was based on the leave-one-out cross-validated (Q2
LOO) results, and the 

same features were used to develop the final PLS model. The PLS model was developed for 

all sets except the melting point data set where a univariate model was developed. 

http://teqip.jdvu.ac.in/QSAR_Tools/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://teqip.jdvu.ac.in/QSAR_Tools/
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3.2.2.8 Statistical quality and validation metrics 

After the development of a model, the model needs to be validated internally as well as 

externally. The OECD principle 4 describes the different validation metrics needed to judge 

the predictive potential of a model (Gramatica, 2007). To check the statistical quality and 

validate the model internally, we have used the determination coefficient (R2), leave-one-out 

cross-validated Q2 (Q2
LOO), mean absolute error (MAEtrain), and root mean squared error of 

calibration set (RMSEC) (Roy, 2007). The external validation was done based on Q2
F1, Q

2
F2, 

mean absolute error (MAEtest), and root mean squared error of prediction set (RMSEP). Both 

the internal and external validation tests were done based on the MAE-based criteria as Q2 

metrics do not always provide a good reflection of the prediction quality (Roy et. al., 2016). 

3.2.2.9 Application of ML algorithms 

We have also applied different machine learning algorithms to check the predictivity of our 

developed PLS q-RASPR model. Here, we have used 7 different supervised ML algorithms 

such as Random Forest (RF), Support Vector Machine (SVM), Linear Support Vector Machine 

(LSVM), Adaptive Boosting (AB), Gradient Boosting (GB), Extreme Gradient Boosting 

(XGB), and Ridge Regression (RR) to build various regression models. These machine 

learning modeling methods are described in Supplementary Materials SI-2(Pandey and Roy, 

2024). The training and test set descriptors and response values of the developed PLS model 

were scaled before the application of ML algorithms using a Java-based tool Scale1.0 freely 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. 

Different ML models were developed for each property data set (except Tm) with the help of 

a Python-based tool RSLv2.2 available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. We have used the 

default setting of the hyperparameters for the development of the ML models. 

3.2.2.10 Applicability Domain (AD) 

As per the OECD principle 3, the defined applicability domain (AD) represents the validity of 

the developed q-RASPR model. The chemicals employed in the model development define the 

chemical structure space, which is represented by AD (Roy et. al., 2015b). To check whether 

the compounds in the test set are within the chemical space of the training set used for the 

modeling, we have used the DModX (distance to model X) approach with 99% confidence 

level (only for the PLS models) using the SIMCA software 

https://landing.umetrics.com/downloads-simca. (Wold et. al., 2001). The compounds within the 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://landing.umetrics.com/downloads-simca.56
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AD can be predicted precisely whereas the compounds outside the AD are termed outliers. The 

DModX approach was used for defining the AD of Tdec, density, and ΔHf˚ data sets, while for 

the Tm data set, we used the leverage approach (Roy et. al., 2015c) for determining the AD.  

The detailed workflow we have used during the model development is represented in Figure 

3.4. 

 

Figure 3.4: Schematic workflow for the model development 

3.2.3 Study 3 

3.2.3.1 Dataset preparation and molecular representations 

The authors have collected experimental data on the RE for 173 molecular p-type OSCs from 

the previously published literature (Atahan-Evrenk, 2018). The data set contains a diverse set 

of organic compounds with acenes, thiophenes, thienoacenes, and anti-aromatic pentalenes 

with their experimental RE measured in mili electron-volt (meV). The logarithmic 

transformation of the RE was performed to reduce the range of the response value. Simplified 

molecular identity line-entry system (SMILES) notations were used for the molecular 

representation of the entities in the data set, which were then used to prepare the molecular 

structures of the compounds by using MarvinSketch (https://www.chemaxon.com) v-5.11.5.40. 

https://www.chemaxon.com/
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The prepared structures were aromatized in appropriate cases, added with explicit hydrogen, 

and cleaned in the 2D-space. 

3.2.3.2 Calculation of structural and physiochemical descriptors 

Molecular descriptors are required to generate mathematical correlations between the 

molecular structure information and the response values. Molecular descriptors are the 

quantitative values used to define/quantify/represent various structural features and are derived 

from the structural representation of the molecules. In this study, we have calculated a total of 

nine classes of highly interpretable 2D structural and physiochemical descriptors using the 

AlvaDesc software v2.0.641, (Mauri, 2020) namely 2D atom pairs, molecular properties, 

functional group counts, constitutional indices, atom-centered fragments, connectivity indices, 

ring descriptors, Extended Topochemical Atom (ETA) indices, and atom type E-state indices.  

After calculating the above-mentioned descriptors, they were subjected to a data pre-treatment 

process to remove the descriptors with null and/or constant values and features having high 

inter-correlation between them. Here, we have used the inter-correlation cut-off of 0.95. The 

descriptor file after the pre-treatment process was further used for the dataset division purpose. 

3.2.3.3 Division of the dataset 

Splitting the dataset into a training set and a test set is a very important step required for the 

development of a well-validated model. The division of the dataset should ensure that the 

compounds in the training and the test sets are distributed within the entire descriptor space of 

the compounds in the whole dataset. In this work, we have applied the property-sorted 

response-based division to divide the data set into a 3:1 ratio using a java based tool Dataset-

DivisionGUI1.2 freely available from http://teqip.jdvu.ac.in/QSAR_Tools/. The compounds in 

the training set were used for the development of the model whereas the test set compounds 

were used to validate the model externally. 

3.2.3.4 Variable selection and QSPR model development 

The process of variable selection refers to the extraction of important features from the whole 

descriptor pool that are highly correlated to the response (here, RE). The feature selection is 

performed using only the training set and does not involve the test set (Bursac et. al., 2008). 

Among various feature selection techniques, we have used the step-wise feature selection and 

genetic algorithm (GA) method to pool out significant descriptors (Roy et. al., 2015c; Rogers 

and Hopfinger, 1994). Through GA feature selection, the descriptors that frequently appeared 

http://teqip.jdvu.ac.in/QSAR_Tools/
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were selected via the generation of several GA models. The descriptor pool formed after the 

feature selection was then used for performing a grid search using the Best Subset Selection 

tool v2.1 available from http://teqip.jdvu.ac.in/QSAR_Tools/ to generate different MLR 

models. Soon after the selection of the best MLR model, the same descriptor combination was 

used to develop the final PLS QSPR model, the latter being more robust and generalized 

version of the former. The PLS QSPR model was developed with a lower number of latent 

variables (LVs) on the basis of the cross-validation (Q2
LOO) result. The descriptors appearing 

in the developed QSPR model were then used for further read-across (RA) based similarity 

predictions. 

3.2.3.5 Read-across similarity predictions 

Before proceeding with the similarity calculations, tuning the hyperparameters associated with 

different similarity measures is necessary. Per the QSPR prediction principles, the 

hyperparameters are optimized using only the source/training set. The training set of the final 

QSPR model was further divided into several sub-training and validation sets. Using the sub-

training and validation sets as input files in a Java-based tool Auto_RA_Optimizer-v1.0, 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home, we have 

optimized the hyperparameters for Gaussian kernel-based similarity, Laplacian kernel-based 

similarity, and Euclidean distance-based similarity measures. The hyperparameters such as the 

number of close training compounds (CTC), sigma (σ) value [for Gaussian kernel], and gamma 

(γ) value [for Laplacian kernel] were selected based on the frequency of the value occurring 

the maximum number of times when ran with different sub-train and validation sets (Chatterjee 

et. al., 2022). 

After the selection of the hyperparameters for the individual similarity measure, these tuned 

hyperparameters were then used to calculate the prediction of the query/test set previously 

obtained from the division of the whole dataset. The prediction of the individual query set 

compound is done based on its similarity with the close source compound in the training set. 

The RA predictions were performed using a Java-based tool Read-Across-v4.1 available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The prediction of the 

query/test set was obtained individually for the above-mentioned three similarity measures. 

3.2.3.6 Computation of RASPR descriptors 

To develop a q-RASPR model, similarity and error-based features, also known as RASPR 

descriptors, are calculated for each similarity measure (with their optimized hyperparameters) 

http://teqip.jdvu.ac.in/QSAR_Tools/
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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for the individual training/source set and for the test/query set (Banerjee and Roy, 2023). The 

calculation of the RASPR descriptors is done after the division process which differs from the 

calculation of the structural and physiochemical descriptors in a conventional QSPR analysis 

before the division of training and test sets. With the help of a Java-based tool RASAR-Desc-

Calc-v3.0.2 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home, we have calculated the RASPR descriptors for each similarity measure. To 

calculate the RASPR descriptor for the training set, the training set with structural and 

physiochemical features of the final QSPR model itself was used as an input, whereas the 

RASPR descriptors for the test set were calculated using both the training set and test set files 

of the QSPR model. 

3.2.3.7 Development of the q-RASPR models 

A q-RASPR model contains information on both the structural and physicochemical features 

and similarity information. Therefore, the amalgamation of the structural and physiochemical 

descriptors of the QSPR model with the similarity and error-based RASPR descriptors becomes 

a necessary step. The newly prepared descriptor matrix of the training set and the test set were 

then used for performing a grid search for descriptors with the help of the Best Subset Selection 

v2.1 tool available from http://teqip.jdvu.ac.in/QSAR_Tools/ where different MLR models 

were developed with a certain number of features. The best model was selected based on the 

cross-validation metric; Q2
LOO. The same descriptors were then used to develop the PLS q-

RASPR model with a lower number of LVs. 

It should be noted here that we have developed three different q-RASPR models for the three 

different similarity measures. To do this, we combined the structural and physiochemical 

features of the QSPR model's training and test sets with the RASPR descriptors for each 

similarity measure individually to obtain three different sets of training and test sets. 

The predictions of the compounds present in both the training and the test sets were calculated 

using the above 3 models separately. Furthermore, we have used the predictions obtained from 

the individual PLS models to perform stacking. The final stacking q-RASPR model was 

developed using the PLS regression algorithm as the stacking regressor. The developed 

stacking PLS q-RASPR model contains information on the structural and physiochemical 

features along with the different similarities (Euclidean, Gaussian, and Laplacian) between the 

source and the query compounds. 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
http://teqip.jdvu.ac.in/QSAR_Tools/
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3.2.3.8 ML predictions 

We have also applied several ML algorithms to perform the stacking regression to enhance the 

quality of the developed model. Tree-based methods (RF, AB, GB, XGB), and kernel-based 

methods (SVM, LSVM, RR) were used to evaluate our developed models. Before applying the 

supervised ML algorithms, the training and the test sets were scaled with the help of a Java-

based tool Scale1.0 freely available from https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home. The ML models were developed using the above-mentioned ML 

algorithms with the help of RSLv2.2 (a Python-based tool) available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The ML models use the 

default hyperparameters during the learning process. 

3.2.3.9 Validation of the developed models 

As per the OECD principle 4, the acceptance of a developed model relies on validating the 

model both internally (based on the training set) as well as externally (based on the test set). 

The evaluation of the predictivity, goodness of fit, and robustness of the developed model was 

done through the internal and external validation of the models. Statistical quality and 

validation metrics like the determination coefficient (R2), adjusted R2 (R2
adj), and leave-one-

out squared correlation coefficient (Q2
LOO) were used to judge the goodness of fit and 

robustness of the developed model. For the external validation Q2
F1 (or R2

pred), Q
2

F2, Q
2

F3, and 

concordance correlation coefficient (CCC) were calculated to determine the predictivity of the 

model (Roy, 2007). Error metrics such as mean absolute error (MAE) and root mean squared 

error (RMSE) were also used for the validation of the models both internally and externally 

(Roy et. al., 2016). 

3.2.3.10 Applicability domain 

The applicability domain (AD) (Roy et. al., 2015b) is defined as a chemical structure space 

represented by the chemicals that are present in the training set.  According to OECD principle 

3, one should perform the AD study to validate their developed model (Roy et. al., 2015a). In 

this study, we have used the distance to model in X space (DModX) approach (Roy et. al., 

2015c) with a 99% confidence level to evaluate whether the compounds in the training and test 

sets are within the domain of applicability. SIMCA software 

(https://landing.umetrics.com/downloads-simca) was used for performing the DModX-AD 

analysis. For the precise prediction of a compound, the compound must lie within the AD of 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://landing.umetrics.com/downloads-simca
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the model, and if they do not, their predictions are not reliable and hence, termed as outliers or 

outside the applicability domain. 

The detailed workflow of the current study is shown in Figure 3.5. 

 

Figure 3.5: Sequential steps for model development and its validation 
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4. RESULT & DISCUSSION 

4.1 Study 1: Machine learning-based q-RASPR predictions of detonation heat for 

nitrogen-containing compounds 

4.1.1 QSPR model development 

The data set comprising 162 compounds with the detonation heat energy and computed 

descriptors is provided in the Supplementary Materials section. The training set consists of 122 

compounds, while the predictions and external validation were done using a test set having 40 

compounds. After the feature selection process, a total of 6 descriptors were used to develop 

the final PLS QSAR model with 5 latent variables as shown in Equation (4.1) 

𝑄 = 2504.432 + 264.478 × 𝐹01[𝑁 − 𝑂] − 151.749 × 𝑋% + 156.626 × 𝑆𝑑𝑑𝑠𝑁

+ 297.997 × 𝑛𝐶𝑡 + 2393.524 × 𝐸𝑡𝑎𝑒𝑝𝑠𝑖𝐷
− 284.446 × 𝐹01[𝐶 − 𝐹]   (4.1) 

𝑛(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 122, 𝑛(𝑇𝑒𝑠𝑡) = 40 

𝑅(𝑇𝑟𝑎𝑖𝑛)
2 = 0.851, 𝑄(𝐿𝑂𝑂)

2 = 0.832, 𝑅(𝑎𝑑𝑗)
2 = 0.843, 𝑀𝐴𝐸(𝑇𝑟𝑎𝑖𝑛) = 482.451 

𝑄𝐹1
2 = 0.921, 𝑄𝐹2

2 = 0.920, 𝑄𝐹3
2 = 0.916, 𝐶𝐶𝐶 = 0.960, 𝑀𝐴𝐸(𝑇𝑒𝑠𝑡) = 430.542 

The developed model was statistically reliable as the internal as well as external validation 

metrics were far above the required threshold values. 

4.1.2 Chemical Read-Across (RA) prediction 

To perform the similarity-based Read-Across predictions, the structural and physiochemical 

parameters of the developed QSPR model were used. Hyper-parameters (similarity approach, 

the number of close source compounds, σ, and γ) optimization was done using the training set 

containing the selected variables. The training and test sets with the selected features were used 

as the inputs for the RA predictions based on the different similarity approaches like Euclidean 

distance-based similarity, Gaussian kernel-based similarity, and Laplacian kernel-based 

similarity. The results obtained show that the Gaussian kernel-based similarity has the best 

predictive quality for the test set (or query set) using the default hyper-parameters (close source 

compounds=8, σ=0.5, and γ=0.5) with Q2
F1=0.906, Q2

F2=0.905, MAETest=418.004, and 

RMSEP=580.938. The same information of the hyper-parameters and Laplacian kernel-based 
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similarity were used to calculate the similarity and error-based RASPR descriptors for 

individual training and test sets respectively. 

 

4.1.3 q-RASPR model development 

Clubbing of the structural and physiochemical features with the similarity and error-based 

measures was done before further model development. The new descriptor matrix contains 

information on both QSPR and RA-based predictions. The training set formed after clubbing 

the features is used for the selection of the important contributing descriptors for the 

development of the models. A 5 descriptors combination MLR model was prepared based on 

internal validation metrics. Finally, a PLS model was developed using the selected 5 descriptors 

with 4 latent variables and was evaluated for its robustness, reliability, and predictive ability 

using various internal and external validation parameters. Equation (4.2) (vide infra) shows 

the corresponding q-RASPR model and the descriptors involved. The detailed information on 

the descriptors is listed in Table 4.1. The Scatter plot (Figure 4.1) represents the observed 

and predicted detonation heat energy values of individual training and test set compounds. The 

graph infers that there is a low difference between observed and corresponding predicted values 

of compounds present in both the training set and the test set. 

 

𝑄 =  1930.622 + 217.106 × 𝐹01[𝑁 − 𝑂] − 78.832 × 𝑋% + 130.881 × 𝑆𝑑𝑑𝑠𝑁

+  237.814 × 𝑛𝐶𝑡 + 0.536 × 𝑅𝐴𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐺𝐾)                (4.2) 

𝑛(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) = 122, 𝑛(𝑇𝑒𝑠𝑡) = 40 

𝑅(𝑇𝑟𝑎𝑖𝑛)
2 = 0.846, 𝑄(𝐿𝑂𝑂)

2 = 0.828, 𝑅(𝑎𝑑𝑗)
2 = 0.839 

𝑄𝐹1
2 = 0.927, 𝑄𝐹2

2 = 0.927, 𝑄𝐹3
2 = 0.923, 𝐶𝐶𝐶 = 0.963 

𝑀𝐴𝐸(𝑇𝑟𝑎𝑖𝑛) = 489.865, 𝑀𝐴𝐸(𝑇𝑒𝑠𝑡) = 395.705, 𝑅𝑀𝑆𝐸𝑐 = 723.177, 𝑅𝑀𝑆𝐸𝑃 = 510.755 
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Table 4.1: List of descriptors and their contribution in the final PLS q-RASPR model  

S. 

No. 
Descriptor Type Description Contribution 

1. X% 
Constitutional 

indices 
Percentage of halogen atoms Negative (-ve) 

2. F01[N-O] 2D Atom Pairs 
Frequency of N - O at 

topological distance 1 
Positive (+ve) 

3. nCt 
Functional group 

counts 
Total number of tertiary carbon Positive (+ve) 

4. SddsN 
Atom-type E-

state indices 
Sum of ddsN E-states (-N==) Positive (+ve) 

5. 
RA function 

(GK) 

RASPR 

descriptor 
All structural information Positive (+ve) 

 

 

Figure 4.1: Scatter Plot (Yobs vs Ypred) for Eq. (4.2) 
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Additionally, we have also checked for the structural outliers in the training and test sets using 

the Williams Plot (Figure 4.2). The plot infers that two of the compounds from the training 

set and one compound from the test set are structural outliers. 

 

Figure 4.2: Williams plot (standardized cross-validated residuals vs. leverage values) 

4.1.4 Descriptors interpretation of the PLS q-RASPR model 

The descriptor RA function (GK) is a composite RASPR descriptor that contains all the 

selected atomic as well as structural information of the compounds. The RA function (GK) 

descriptor contributes positively to the prediction of detonation heat energy of N-containing 

compounds which is easily visualized in 3,6-Bis(1H-1,2,3,4-tetrazolyl-5-amino)-1,2,4,5-

tetrazine (12) where the value of RA function (GK) is more resulting in high detonation heat 

energy while in 3,3'-Azobis(6-amino-1,2,4,5-tetrazine) (13), RA function (GK)is low resulting 

in a low detonation heat energy.  

The descriptor nCt defines the number of tertiary carbons in the compound and it contributes 

positively to the prediction of detonation heat energy. Octanitrocubane (97) due to its cage-

like structure represents a total of 8 such tertiary carbons in its structure present at the vertices. 

Compounds having a ring/cage structures can liberate more energy at the time of detonation 

because of the excess strain energy associated with the ring (Li, 2009). In 

Isopentanetrioltrinitrate (156), the value of detonation heat energy is less as it contains only a 

single tertiary-Carbon. 
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The descriptor F01[N-O] defines the frequency of N-O bonds at the topological distance 1. 

This descriptor contributes positively to the value of detonation heat energy which can be seen 

in 4,4'-heavy (N-trinitroethyl-N-nitro)-3,3'-difurazan (47) and Heavy (N-trinitroethyl-N-

nitro)furazan (48) having 20 and 18 N-O bonds respectively and high detonation heat values, 

while 3-nitro-1,2,4-triazole (8) and 1-methyl-2,4-dinitrobenzene (19) have 2 and 4 N-O in their 

structures respectively; hence, they have low values of detonation heat. In the compounds, 

F01[N-O] corresponds to the presence of explosophores in the form of nitro (NO2), nitrito 

(ONO2), furazan ring, furaxan ring, etc. leading to the production of more detonation heat 

energy (Wang et. al., 2022). 

 The descriptor X% depicts the percentage of halogen present in the compound. This descriptor 

contributes negatively to the value of detonation heat energy. This can be seen in 2,2-Difluoro-

2-nitroethyl trifluoromethane-sulfonate (65) having a high halogen percentage and showing 

the least value of detonation heat among all the 162 compounds whereas Methyl 4-fluoro-4,4-

dinitrobutyrate (76) has the lowest halogen percentage and have more value of detonation heat 

energy. In trifluoromethane-sulfonate (65), the electronegative fluorine atom is situated close 

to the positively charged nitrogen (more energy, less stable), therefore stabilizing its energy 

due to ion-dipole interaction resulting in a decrease in detonation energy.  

The descriptor SddsN describes the atom-type E-state index for -N== groups (nitro) and 

contributes positively to the detonation energy. The nitrogen present in the form of the nitro 

group is ina high energy state (higher oxidation state in nitro) which after explosion forms inert 

N2 gas (lowest oxidation state) and hence releases more energy (Kumar and Elias, 2019). 

Pentaerythritoltetranitrate (135) and1-Nitropiperazine-2,3-co(1',3'-dinitroimidazolidinone-

2')-5,6-nafurazan (45) have higher SddsN values compared to Hexanitrodiphenylsulfide (38) 

and Tetranitroglycoluril (108) respectively, having lower E-state index for the –N== group 

showing lower detonation energy.  

 

The descriptors with their respective VIP levels and compounds with higher and lower 

detonation heat energy values associated with individual descriptors are represented in Figure 

4.3. 
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Figure 4.3: Variable importance plot with structural representations of molecules with 

higher and lower Q values 
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4.1.5 Predictions through various ML models 

We have also employed different machine-learning algorithms for the prediction of the 

detonation heat energy of N-containing compounds. Here, in this work, we have applied 7 

different ML algorithms to develop our models and check their predictive performance. Before 

applying different ML methods, we have scaled both the descriptor matrix and the response 

values of individual training and test sets using a java-based tool Scale1.0 available 

fromhttps://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. For the 

optimization process, we have used a python-based tool Hyperparameter Optimizer v1.2 

available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home and 

performed a grid search for optimizing the hyper-parameters of each method using the scaled 

training set as input. The results of RF and Adaboost/AB show that these models are not robust 

as the difference between the values of R2 and Q2
LOO is high and hence are not reliable. The 

predictive performance of Gradient boost, XGBoost, and ridge regression are almost similar to 

our developed PLS model. Based on the MAETest results, the Gradient boost model shows the 

best predictive performance with the lowest error. To check the quality of the models we have 

performed the MAE cross-validation (CV), i.e. leave-one-out CV, 20 times 5-fold CV, and 

shuffle-split CV with n_splits =1000. The MAE CV results of RF, AB, GB, and SVM models 

have increased significantly which shows the models are of inferior quality in comparison to 

other models. On comparison, it was found that the PLS and RR models have efficient 

predictive performance in terms of Q2
F1 and MAEP. So, on the basis of RMSEP criteria, we have 

selected the PLS q-RASPR model as the best model for the prediction of both the training and 

test sets. The validation metrics of all the models are represented in Table 4.2. 

mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://drive.google.com/file/d/1PEly8kCFxVi-_vyYrmC2edTk-PwNI8KM/view?usp=sharing
mailto:https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Table 4.2: Comparison between performances of different q-RASPR models 

q-RASPR 

MODELS 

Training Set Statistics Test Set Statistics 
Optimized 

Hyperparameters 
R2 Q2

LOO MAEC MAELOO RMSEC Q2
F1 Q2

F2 MAEP RMSEP 

PLS 0.846 0.828 0.265 0.28 0.391 0.927 0.927 0.214 0.276 (LV=4) 

RF 0.957 0.722 0.142 0.36 0.206 0.885 0.884 0.242 0.347 
(n=120, leaf=1, split=3, 

depth=none) 

AB 0.864 0.677 0.301 0.41 0.367 0.859 0.858 0.284 0.385 (n=60, loss=linear) 

GB 0.878 0.750 0.226 0.33 0.349 0.925 0.925 0.199 0.280 
(n=150, leaf=1, split=2, 

depth=1) 

XGB 0.840 0.825 0.267 0.28 0.399 0.926 0.925 0.213 0.279 

(n=60, depth=5, 

booster=gblinear, learning 

rate=0.1) 

SVM 0.885 0.747 0.212 0.31 0.337 0.854 0.853 0.224 0.391 
(C=5.0, Degree=2, 

Gamma=auto) 

LSVM 0.831 0.824 0.270 0.28 0.409 0.916 0.915 0.223 0.297 (C=25.0) 

RR 0.847 0.829 0.264 0.28 0.390 0.927 0.926 0.214 0.277 (α=1.0) 
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4.1.6 Interpretation of the PLS plots 

To identify the outliers in the respective training set and test set, the DModX (distance to model 

X) AD plots (Figure 4.4) were prepared for each training set and each test set, and it shows that 

there are 2 outlier compounds in the training set while no compounds from the test set were outside 

the applicability domain (AD). To find the relation between the X-variables (descriptors) and the 

Y-variable (property) and also get an idea about the variable importance, we have prepared the 

loading plot (Figure 4.5) developed using the first and second PLS components. The 

interpretation of the plot depicts that the descriptors situated at a greater distance from the origin 

have more impact on the Y-variable (here property). In the plot, RA function (GK) and X% 

descriptors were the farthest from the origin showing their larger impact on the prediction of 

detonation heat which can also be verified from the VIP plot (Figure 4.3) showing their VIP score 

>1. The coefficient plot (Figure 4.6) shows the standardized regression coefficient values of each 

descriptor of the model. The bubble plot (Figure 4.7) shows the standardized regression 

coefficient of the descriptors on the Y-axis and the size of the bubble corresponds to their 

importance (VIP levels). The score plot (Figure 4.8) was prepared using the first two PLS 

components for the training set. The score plot for the training set contains a total of 4 outliers. We 

have also performed the Shapley Additive exPlanations (SHAP) analysis (Rodriguez-Perez and 

Bajorath, 2020) (Figures 4.9) to see the contribution of each feature to the outcome of the model 

(i.e. detonation heat). The SHAP analysis for the training set shows that the F01[N-O] is the most 

important descriptor for the prediction of detonation heat while in the case of the test set, the RA 

function (GK) has the highest impact on the detonation heat prediction. The nCt descriptor is of 

the least importance for both the training and test set. 
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Figure 4.4: DModX AD plot 
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Figure 4.5: Loading plot 

 

 

Figure 4.6: Coefficient plot 



  

 

 
72 

 

 

Figure 4.7: Bubble plot of the q-RASPR model depicting the contribution of the descriptors 

 

Figure 4.8: Score plot of q-RASPR model for training set 
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Figure 4.9: SHAP analysis for training set (A) and test set (B) for the developed PLS model 

4.1.7 Comparison of the q-RASPR model with other models 

4.1.7.1 Comparison with the present QSPR model  

We have compared the results of the developed q-RASPR model with our own QSPR model 

(section 3.1). The chemical information associated with both the models is same as the features 

appearing in the QSPR model were used for the RASPR descriptor calculation and further model 

development. Although the internal validation metrics were comparable for both QSPR (R2
(Train) = 
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0.851, Q2
(LOO) =0.832, MAE(Train) = 482.451) and q-RASPR (R2

(Train) = 0.846, Q2
(LOO) = 0.828, 

MAE(Train) = 489.865) models, the results of the test set prediction of the q-RASPR model (Q2
F1 

=0.927, Q2
F2 = 0.927, MAE(Test) = 395.705) were better than the QSPR model (Q2

F1 =0.921, Q2
F2 

=0.920, MAE(Test) = 430.542) in terms of MAE(Test). The external validation results show that there 

is an enhancement in the prediction quality of the q-RASPR model. It should also be noted that 

the q-RASPR model is developed using 5 descriptors while the QSPR model has 6 descriptors. 

This depicts that the q-RASPR model with a lower number of descriptors is more efficient in the 

prediction of detonation heat with same type of chemical information. 

4.1.7.2 Comparison with the previous model 

The previous QSPR study was performed using the random forest (RF) algorithm using a set of 

3D-descriptors. Our q-RASPR model shows better predictive results in terms of Q2
F1 and RMSEP 

with a lower number of descriptors. It should also be noted here that we have only used the 2D-

descriptors, which do not need prior structure optimization, unlike computing3D-descriptors. A 

comparison of our model's different validation metrics with those of the previously developed 

model is given in Table 4.3. 

Table 4.3: Comparative results of previous model with our q-RASPR model 

Models No. of descriptors R2 RMSEC Q2F1 RMSEP 

He et al., 2021 7 0.965 377.8 0.880 641.8 

Our q-RASPR 

model 
5 0.846 723.177 0.927 510.755 

4.2 Study 2: Predicting performance and stability parameters of energetic materials (EMs) 

using the machine learning-based q-RASPR approach 

4.2.1 QSPR model development 

We have developed 4 different QSPR models for the prediction of 4 different properties of 

energetic compounds. Three models (Tdec, density, and ΔHf˚) were developed using the PLS 

regression algorithm while one of the models [for the melting point (Tm)] was developed using 

Multiple Linear Regression (MLR). 
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A 10-descriptor MLR model for decomposition temperature (Tdec) was selected after the feature 

selection process by performing a grid-search using the Best Subset Selection tool v2.1 available 

from http://teqip.jdvu.ac.in/QSAR_Tools/. The same descriptor set was used to develop the final 

PLS QSAR model with 5 latent variables (LVs) which are optimized by LOO Q2. The equation 

for the model is given in Table 4.4. The training set of the melting point (Tm) temperature data set 

was subjected to a forward step-wise feature selection process to enlist the prominent features 

closely related to the melting point. A 29-descriptor MLR QSPR model was developed to predict 

the melting point temperature of the compounds. The MLR equation for the model is shown in 

Table 4.4. The feature selection of the density data set was performed through step-wise selection 

using the training set. After the feature selection process, a 6-descriptor MLR model was prepared 

and further, PLS regression was used to develop the QSPR model with 5 LVs. The PLS equation 

of the model is given in Table 4.4. For the enthalpy of formation (∆𝐻𝑓°), a step-wise feature 

selection process was performed after the division of the data set. The pool of descriptors so 

obtained from the step-wise selection was then used to develop several MLR models through a 

grid-search approach using a java based tool Best Subset Selection tool v2.1 available from 

http://teqip.jdvu.ac.in/QSAR_Tools/. An 11-descriptor MLR model was selected based on the 

cross-validation result (Q2
LOO), and further with the same set of descriptors, a PLS QSPR model 

was developed with 3 LVs. The PLS equation is given in Table 4.4.                                      

http://teqip.jdvu.ac.in/QSAR_Tools/
http://teqip.jdvu.ac.in/QSAR_Tools/
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Table 4.4: Model equations and validation metrics of the developed QSPR models 

Property Model equation 
Training set 

metrics 
Test set metrics 

Tdec 

(PLS model) 

𝑇𝑑𝑒𝑐 = 436.990 + 3.952 × 𝐶% − 142.266 × 𝐵01[𝑂 − 𝑂] − 28.762

× 𝐵03[𝑁 − 𝑂] + 9.558 × 𝐻𝑦 − 14.993 × 𝐿𝑂𝐺𝑃99

+ 34.492 × 𝑛𝐴𝑟𝑁𝑂2 + 24.399 × 𝐶 − 005 − 25.504 × 𝑛𝑁

± 39.061 × 𝐵01[𝑁 − 𝑁] − 34.360 × 𝐵01[𝑁 − 𝑂] 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 10, 𝐿𝑉𝑠 = 5 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 424 

𝑅2 = 0.578 

𝑄𝐿𝑂𝑂
2 = 0.557 

𝑀𝐴𝐸𝑡𝑟 = 45.257 

𝑅𝑀𝑆𝐸𝐶 = 57.971 

𝑛𝑡𝑒𝑠𝑡 = 141 

𝑄𝐹1
2 = 0.621 

𝑄𝐹2
2 = 0.621 

𝑀𝐴𝐸𝑡𝑒 = 44.919 

𝑅𝑀𝑆𝐸𝑃 = 54.814 

Tm 

(MLR 

model) 

 

𝑇𝑚 = 291.1 + 13.46 × 𝑈𝑖 +  22.98 × 𝑛𝐻𝐷𝑜𝑛 +  15.08 × 𝑅𝑏𝑟𝑖𝑑 

+  26.5 × 𝐵03[𝐶 − 𝑂]  +  19.12 × 𝑛𝑁 +  50

× 𝑛𝐴𝑟𝐶𝑂𝑂𝐻 +  2.1 × 𝐴𝑀𝑊 −  0.212 × 𝑇(𝑁. . 𝑂)  

+  5.27 × 𝑅𝑝𝑟𝑖𝑚 +  23 × 𝑛𝑅𝐶𝑂𝑂𝐻 −  0.28

× 𝐹10[𝐶 − 𝑂]  +  6.95 × 𝑁𝑑𝑠𝑠𝐶 −  31.3 × 𝑛𝑅

= 𝐶𝑝 −  4.25 × 𝐹07[𝐶 − 𝑁]  −  38.1 × 𝑚𝑖𝑛𝑠𝑠𝑠𝐵 

+  1.539 × 𝑀𝐿𝑂𝐺𝑃2 −  350 × 𝑀𝑖 −  3.69 × 𝑛𝐶𝑏𝐻 

−  16.7 × 𝑀𝑎𝑥𝑠𝑠𝐶𝐻2 +  11.57 × 𝑁 − 072 +  1.79

× 𝑂% −  3.76 × 𝐹05[𝑂 − 𝑂]  −  1.3 × 𝐹10[𝐶 − 𝐶]  

+  32.7 × 𝐵02[𝐶 − 𝐶]  −  14.8 × 𝐹02[𝑂 − 𝐶𝑙]  +  86

× 𝑁𝑠𝑠𝑠𝑠𝑁+  +  1.79 × 𝑆𝑡𝑁 −  4.64 × 𝐹10[𝑂 − 𝑂]

−  9.4 × 𝑛𝑂𝐻𝑠 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 29 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 14750 

𝑅2 = 0.679 

𝑄𝐿𝑂𝑂
2 = 0.676 

𝑀𝐴𝐸𝑡𝑟 = 39.633 

𝑅𝑀𝑆𝐸𝐶 = 51.686 

𝑛𝑡𝑒𝑠𝑡 = 4917 

𝑄𝐹1
2 = 0.670 

𝑄𝐹2
2 = 0.670 

𝑀𝐴𝐸𝑡𝑒 = 39.626 

𝑅𝑀𝑆𝐸𝑃 = 52.501 
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Density 

(PLS model) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1.235 + 0.120 × 𝐴𝑀𝑊 − 1.409 × 𝑀𝑝 + 0.015 × 𝑛𝑋 − 0.008

× 𝑋% + 0.196 × 𝑀𝐶𝐷 − 0.015 × 𝑁𝑅𝑆 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 6, 𝐿𝑉𝑠 = 5 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 9604 

𝑅2 = 0.924 

𝑄𝐿𝑂𝑂
2 = 0.922 

𝑀𝐴𝐸𝑡𝑟 = 0.037 

𝑅𝑀𝑆𝐸𝐶 = 0.053 

𝑛𝑡𝑒𝑠𝑡 = 3201 

𝑄𝐹1
2 = 0.928 

𝑄𝐹2
2 = 0.928 

𝑀𝐴𝐸𝑡𝑒 = 0.037 

𝑅𝑀𝑆𝐸𝑃 = 0.051 

∆𝑯𝒇° 

(PLS model) 

 

∆𝐻𝑓° = −25.420 − 196.661 × 𝑛𝐹 − 71.385 × 𝐹01[𝐶 − 𝑂] − 23.045

× 𝑛𝐶𝑠𝑝3 + 91.062 × 𝑛𝐶𝐼𝐶 + 187.180 × 𝐹01[𝑁 − 𝐹]

− 115.277 × 𝑂 − 058 + 57.671 × 𝐹01[𝑁 − 𝑁]

− 83.572 × 𝑁𝑠𝑂𝐻 + 32.203 × 𝑁𝑑𝑠𝐶𝐻 + 128.918

× 𝑛𝐶𝑠𝑝 + 32.832 × 𝑛𝑁 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 11, 𝐿𝑉𝑠 = 3 

 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 1924 

𝑅2 = 0.967 

𝑄𝐿𝑂𝑂
2 = 0.966 

𝑀𝐴𝐸𝑡𝑟 = 53.553 

𝑅𝑀𝑆𝐸𝐶 = 78.571 

𝑛𝑡𝑒𝑠𝑡 = 643 

𝑄𝐹1
2 = 0.932 

𝑄𝐹2
2 = 0.931 

𝑀𝐴𝐸𝑡𝑒 = 47.903 

𝑅𝑀𝑆𝐸𝑃 = 67.412 
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4.2.2 Chemical Read-Across (RA) predictions 

The structural and physiochemical features of the developed QSPR model were used to evaluate 

the similarity-based RA predictions. The default setting of the hyperparameters (σ=1, γ=1, no. of 

close source/training compounds=10) was used to perform the Read-across predictions for the 3 

different similarity approaches like Laplacian kernel-based (LK), Gaussian kernel-based (GK), 

and Euclidean distance-based (ED) similarity. The prediction results show that the Laplacian 

kernel-based similarity has the best predictivity for Tdec, Tm, and ΔHf˚ whereas the Gaussian 

kernel-based similarity has the best performance for the density data set. The results of RA 

predictions are shown in Table 4.5. The default hyperparameters of each similarity measure were 

used to calculate the RASPR descriptors for each of the data sets. 

Table 4.5: Read-across predictions for different data sets 

Metrics 

 

 

Property 

Q2
F1 Q2

F2 MAEP
*
 RMSEP* 

Similarity 

measure 

𝐓𝐝𝐞𝐜 0.645 0.645 41.756 53.037 LK 

𝐓𝐦 0.736 0.736 34.075 46.520 LK 

Density 0.925 0.925 0.039 0.052 GK 

∆𝐇𝐟° 0.924 0.924 49.100 70.787 LK 

*Non-standardized values  

4.2.3 q-RASPR model development  

The motive behind the development of the q-RASPR model is to increase the external predictivity 

of the model over the traditional QSPR model. The calculated RASPR descriptors are composed 

of different similarity, error, concordance as well as predictive functions from the structural and 

physiochemical descriptors. These calculated RASPR descriptors were clubbed with the 

previously selected structural and physiochemical descriptors to form the new descriptor matrix 

for the individual training and test set. The prepared training set was further used for the selection 

of the prominent features for the development of the model. To develop the q-RASPR model for 
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Tdec and ΔHf˚, a grid search was performed on the fused descriptor matrix (obtained from the fusion 

of QSPR and RASPR descriptors)to develop several MLR models using the Best Subset Selection 

tool v2.1 freely available from http://teqip.jdvu.ac.in/QSAR_Tools/. The best MLR model was 

selected based on the leave-one-out (LOO) cross-validation result, and the same was used further 

to develop the final PLS q-RASPR model with a lower number of LVs which are optimized using 

LOO Q2. For the density dataset, a forward step-wise feature selection method was used to develop 

the MLR model, and further, the PLS algorithm was applied to obtain the final PLS q-RASPR 

model. Both grid-search and step-wise selection were performed for the Tm dataset, and in both 

cases a univariate q-RASPR model with RA function (LK) as the only descriptor was obtained. The 

final model equations for individual models with their internal and external validation metrics are 

tabulated in Table 4.6. 

Additionally, to evaluate the predictivity of the developed PLS q-RASPR model for the density 

dataset, we have collected a true external set of 37 energetic compounds from Rice and Byrd43and 

calculated the validation metrics for the same. The result shows that our model can predict new 

compounds accurately.  

𝑄𝐹1
2 = 0.883, 𝑀𝐴𝐸 = 0.073, 𝑅𝑀𝑆𝐸 = 0.088 

The scatter plots shown in Figure 4.10 represent that there is a high correlation between the 

observed and predicted values. As in the individual plots, the scattering is not much which 

represents that the quality of the developed models was good.  The distribution of the heat of 

formation data set in Figure 4.10 shows that only a few (approx. 14) compounds are present far 

from the clusters of training (1924) and test (643) sets which are very small in number w.r.t. the 

whole training set compounds. Also, the division algorithm used here was based on the Kennard-

Stone method which divides the data set based on the descriptor matrix, and not based on 

property/response.

http://teqip.jdvu.ac.in/QSAR_Tools/
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Table 4.6: Model equations and validation metrics for the developed q-RASPR models 

Property Model equation Training set metrics* Test set metrics* 

Tdec 

(PLS model) 

 

𝑇𝑑𝑒𝑐 = 144.449 + 2.684 × 𝐶% − 43.374 × 𝐵01[𝑂 − 𝑂]

− 15.109 × 𝐵03[𝑁 − 𝑂] + 8.425 × 𝐻𝑦

− 8.311 × 𝐿𝑂𝐺𝑃99 + 19.520 × 𝑛𝐴𝑟𝑁𝑂2

+ 16.965 × 𝐶 − 005 − 8.233 × 𝐵01[𝑁 − 𝑁]

+ 0.596 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐿𝐾) − 0.870

× 𝑆𝐸 (𝐿𝐾) 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 10, 𝐿𝑉𝑠 = 5 

 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 424 

𝑅2 = 0.620 

𝑄𝐿𝑂𝑂
2 = 0.600 

𝑀𝐴𝐸𝑡𝑟 = 42.313 

𝑅𝑀𝑆𝐸𝐶 = 55.013 

𝑛𝑡𝑒𝑠𝑡 = 141 

𝑄𝐹1
2 = 0.676 

𝑄𝐹2
2 = 0.676 

𝑀𝐴𝐸𝑡𝑒 = 41.383 

𝑅𝑀𝑆𝐸𝑃 =  50.683 

Tm 

(Univariate model) 

𝑇𝑚 = 9.081 + 0.952 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐿𝐾) 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 = 1 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 14750 

𝑅2 = 0.746 

𝑄𝐿𝑂𝑂
2 = 0.746 

𝑀𝐴𝐸𝑡𝑟 = 33.959 

𝑅𝑀𝑆𝐸𝐶 = 46.005 

𝑛𝑡𝑒𝑠𝑡 = 4917 

𝑄𝐹1
2 = 0.741 

𝑄𝐹2
2 = 0.741 

𝑀𝐴𝐸𝑡𝑒 = 34.297 

𝑅𝑀𝑆𝐸𝑃 = 46.520 
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Density 

(PLS model) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 0.425 + 0.042 × 𝐴𝑀𝑊 − 0.690 × 𝑀𝑝 + 0.082

× 𝑀𝐶𝐷 + 0.741 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐺𝐾)

− 0.049 × 𝐶𝑉𝑠𝑖𝑚(𝐺𝐾) 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 5, 𝐿𝑉𝑠 = 4 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 9604 

𝑅2 = 0.940 

𝑄𝐿𝑂𝑂
2 = 0.940 

𝑀𝐴𝐸𝑡𝑟 = 0.035 

𝑅𝑀𝑆𝐸𝐶 = 0.047 

𝑛𝑡𝑒𝑠𝑡 = 3201 

𝑄𝐹1
2 = 0.939 

𝑄𝐹2
2 = 0.939 

𝑀𝐴𝐸𝑡𝑒 = 0.035 

𝑅𝑀𝑆𝐸𝑃 = 0.047 

∆𝑯𝒇° 

(PLS model) 

∆𝐻𝑓° = 28.972 + 1.020 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐿𝐾) − 0.298

× 𝑆𝐷 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐿𝐾) − 1.884 × 𝑛𝐶𝑠𝑝3 

 

𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 3, 𝐿𝑉𝑠 = 2 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 1924 

𝑅2 = 0.943 

𝑄𝐿𝑂𝑂
2 = 0.942 

𝑀𝐴𝐸𝑡𝑟 = 61.718 

𝑅𝑀𝑆𝐸𝐶 = 103.603 

𝑛𝑡𝑒𝑠𝑡 = 643 

𝑄𝐹1
2 = 0.931 

𝑄𝐹2
2 = 0.931 

𝑀𝐴𝐸𝑡𝑒 = 47.158 

𝑅𝑀𝑆𝐸𝑃 = 67.630 

*Non-standardized MAE and RMSEP values are shown 
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Figure 4.10: Scatter plots for the individual PLS models 

The violin plots shown in Figure 4.11 represent the frequency of compounds with the residual 

values (i.e. observed – predicted) in the training and test sets of respective models for each 

property. The graph seems to be more flattened in the middle portion representing that there are 

more compounds in the training and test sets with lower residual values, and the tapered end at 

both the ends of the violin represents the lower number of compounds with high residuals.   

4.2.4 PLS plot interpretation 

Models were developed from all the datasets, except for the melting point (Tm) dataset, using PLS 

regression, as the final model of the Tm data set contains only a single descriptor. Hence, a 

univariate model has been reported got Tm instead of reporting it in the form of a PLS model, 

which represents several original descriptors into a lower number of latent variables (LVs). 
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Figure 4.11: The violin plot of each model represents the variation in the residual values for 

compounds in the respective training and test sets. The width of the plot represents the 

frequency/number of data points for the given residuals. 

We have used the DModX (Distance to Model X) approach to check the numbers of outliers 

present in the training and test sets, respectively (except for the melting point data set). The 

DModX-AD plots of the developed PLS models are given in supplementary materials (Figures 
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4.12, 4.13, and 4.14). The applicability domain of the univariate model for melting point was 

calculated using the leverage approach. The leverage values for the individual data points of 

training and test set were calculated using the Java-based tool Hi_Calculator-v2.0 (accessible from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home). William’s plot (Figures 

4.15) represents the outliers from the training and test sets of the melting point data set with 

leverage values higher than the critical h* value (0.0004). The percentage (%) of compounds as 

outliers in the training and test sets of the respective models is shown in the bar graph in Figure 

4.16. 

 

Figure 4.12: AD plot for Tdec 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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Figure 4.13: AD plot for Density 
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Figure 4.14: AD plot for ΔHf˚ 
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Figure 4.15: Williams plot for Tm 

 

 

Figure 4.16: AD status for individual models. It represents the percentage (%) of compounds 

as outliers in training and test sets of the respective model. 
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To check the impact of the descriptors (i.e. X-variables) on the property (Y-variable), we have 

developed the loading plot (Figure 4.17) using the first 2 PLS components. The variables that are 

more dispersed from the origin have a high impact on the model. We have also used the VIP plot 

(Figure 4.18) to interpret the importance of respective descriptors according to their VIP values 

in the model. The coefficient plot representing the standardized regression coefficient values for 

each descriptor of the individual model and the score plots for each model are given in the 

supplementary materials (Figures 4.19 and 4.20, respectively). As the score plot for each model 

(Figure 4.20) has been developed using the first 2 components (t1 and t2) of the model, the 

compounds outside the ellipse can be considered outliers for the model with 2 latent variables. The 

ellipse indicates the model's applicability domain, as defined by Hotelling’s t2 (a multivariate 

generalization of Student’s- t-tests). The AD study shows that the compounds present far away 

from the ellipse are just not outliers based on the two components of the model. Still, they are also 

outliers for the whole descriptor space shown in the DModX applicability domain (AD) plots 

(Figures 4.12, 4.13 and 4.14). 

 

Figure 4.17: Loading Plots for different PLS q-RASPR models 
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Figure 4.18: VIP plots for different PLS models 

 

Figure 4.19: Coefficient Plots for each PLS model 
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Figure 4.20: PLS Score Plots for respective models 
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The bubble plot (Figure 4.21) collectively represents the VIP values (size of bubble) of the 

descriptors with their standardized regression coefficient values (Y-axis) of the PLS models. 

 

Figure 4.21: Bubble Plots for the respective PLS models representing variable importance 

and standardized regression coefficients 
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4.2.5 Prediction through ML models  

We have also developed various ML models for the individual data sets (except Tm) to predict the 

respective properties. Here, 7 different ML algorithms were used to develop the models. Scale1.0 

(a Java-based tool) was used to scale the descriptors and response values of both the training and 

test sets. The default values of the hyperparameters for each algorithm were used during the model 

development process. The statistics for the model quality and predictivity are reported in Tables 

4.7, 4.8, and 4.9 given below. We have also performed 5-fold and 10-fold cross-validation and 

noted MAEC (CV) to check the quality of our developed models. For the density and ΔHf˚ data 

sets, 5-fold and 10-fold cross-validated R2 values were determined to check the robustness of the 

developed models, as LOO-CV is not appropriate for such large data sets. The graphical 

representation of various quality and error metrics for different ML-based q-RASPR models is 

shown in Figure 4.22. 

In the case of Tdec, the external validation metrics of the PLS model infer that it has better 

predictivity in comparison to the other developed ML models in terms of Q2
F1, Q

2
F2, and RMSEP. 

For the density data set, the external predictions of the LSVM, RR, and PLS models were similar 

in terms of Q2
F1 and Q2

F2 but the error for the LSVM model in terms of MAEP was the least among 

all the models. Therefore, the LSVM model can be considered to be the best-performing model 

for the prediction of density.   

For the prediction of gas-phase heat of formation, the RR model shows its better predictivity with 

the least error in terms of MAEP and cross-validated MAEC. 

We have also performed the Shapley Additive exPlanations (SHAP) analysis (Rodroguez-Perez 

and Bajorath, 2020) (Figure 4.23) for the final ML models to see the impact/importance of the 

descriptors on the model predictions. It was found in all the 3 models that the descriptors having 

high feature values and positive SHAP values contribute positively to the predictions and vice-

versa. The features which are more dispersed along the X-axis have a high impact on the model. 
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Table 4.7: Comparison between the performances of different q-RASPR models for decomposition temperature (Tdec) 

 

 

 

Tdec 

Models 

Training set statistics Test set statistics 

R2 Q2
LOO MAEC 

MAEC± SEM 

(5-foldCV) 

MAEC± SEM 

(10-foldCV) 

RMSEC Q2
F1 Q2

F2 MAEP RMSEP 

RF 0.935 0.527 0.187 0.54 ± 0.036 0.53 ± 0.035 0.254 0.633 0.633 0.477 0.604 

AB 0.632 0.496 0.505 0.58 ± 0.036 0.56 ± 0.028 0.606 0.564 0.564 0.557 0.658 

GB 0.853 0.559 0.295 0.54 ± 0.036 0.53 ± 0.038 0.383 0.594 0.594 0.507 0.635 

XGB 0.937 0.501 0.189 0.56 ± 0.040 0.55 ± 0.035 0.250 0.591 0.591 0.523 0.637 

SVM 0.687 0.544 0.409 0.54 ± 0.031 0.54 ± 0.032 0.559 0.674 0.674 0.456 0.569 

LSVM 0.613 0.605 0.469 0.49 ± 0.031 0.48 ± 0.028 0.621 0.662 0.662 0.468 0.574 

RR 0.621 0.600 0.474 0.50 ± 0.027 0.49 ± 0.028 0.615 0.674 0.674 0.468 0.569 

PLS 0.620 0.600 0.474 0.49 ± 0.027 0.49 ± 0.028 0.616 0.676 0.676 0.463 0.567 
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Table 4.8: Comparison between the performances of different q-RASPR models for density (Den) 

 

 

 

Density 

Models 

Training set statistics Test set statistics 

R2 
R2 ± SEM 

(5-fold CV) 

R2± SEM 

(10-fold CV) 

MAEC 

MAEC ± SEM 

(5-fold CV) 

MAEC ± SEM 

(10-fold CV) 

RMSEC Q2
F1 Q2

F2 MAEP RMSEP 

RF 0.991 0.92 ± 0.004 0.92 ± 0.006 0.066 0.19±0.009 0.19±0.006 0.931 0.936 0.931 0.182 0.250 

AB 0.913 0.89 ± 0.013 0.88 ± 0.009 0.224 0.23±0.004 0.23±0.006 0.295 0.905 0.905 0.227 0.305 

GB 0.947 0.92 ± 0.004 0.92 ± 0.006 0.172 0.19±0.004 0.19±0.006 0.230 0.932 0.932 0.184 0.257 

XGB 0.911 0.87 ± 0.004 0.88 ± 0.009 0.205 0.23±0.009 0.22±0.009 0.298 0.905 0.905 0.215 0.303 

SVM 0.915 0.87 ± 0.022 0.88 ± 0.016 0.172 0.19±0.009 0.19±0.009 0.292 0.916 0.916 0.178 0.286 

LSVM 0.940 0.93± 0.004 0.92 ± 0.003 0.178 0.18±0.004 0.18±0.006 0.247 0.939 0.939 0.177 0.245 

RR 0.940 0.93 ± 0.004 0.93 ± 0.006 0.179 0.18±0.004 0.18±0.006 0.244 0.939 0.939 0.178 0.243 

PLS 0.940 0.93 ± 0.004 0.92 ± 0.006 0.180 0.18±0.004 0.18±0.006 0.246 0.939 0.939 0.180 0.244 
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Table 4.9: Comparison between the performance of different q-RASPR models for the heat of formation (ΔHf˚) 

 

  

 

ΔHf˚ 

Models 

Training set statistics Test set statistics 

R2 Q2
LOO 

R2 ± SEM 

(5-fold CV) 

R2 ± SEM 

(10-fold CV) 

MAEC 

MAEC ± SEM 

(5-foldCV) 

MAEC ± SEM 

(10-foldCV) 

RMSEC Q2
F1 Q2

F2 MAEP RMSEP 

RF 0.991 0.934 0.86 ± 0.004 0.87 ± 0.013 0.054 0.18± 0.0031 0.17± 0.028 0.096 0.913 0.913 0.123 0.1758 

AB 0.926 0.905 0.82 ± 0.022 0.83 ± 0.016 0.190 0.22± 0.027 0.21± 0.022 0.271 0.879 0.879 0.156 0.207 

GB 0.968 0.933 0.88 ± 0.009 0.88 ± 0.016 0.118 0.17± 0.027 0.16± 0.025 0.180 0.925 0.925 0.114 0.163 

XGB 0.935 0.897 0.82 ± 0.027 0.79 ± 0.028 0.146 0.20± 0.036 0.20± 0.028 0.255 0.899 0.899 0.137 0.189 

SVM 0.827 0.761 0.74 ± 0.094 0.79 ± 0.054 0.154 0.21± 0.058 0.15± 0.044 0.416 0.928 0.928 0.110 0.159 

LSVM 0.942 0.942 0.91 ± 0.013 0.90 ± 0.013 0.141 0.14± 0.018 0.19±0.019 0.240 0.930 0.930 0.108 0.157 

RR 0.943 0.942 0.91 ± 0.013 0.90 ± 0.013 0.142 0.14± 0.018 0.14± 0.016 0.239 0.931 0.931 0.108 0.156 

PLS 0.943 0.942 0.91 ± 0.013 0.90 ± 0.013 0.143 0.15± 0.018 0.14± 0.016 0.239 0.931 0.931 0.109 0.156 
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Figure 4.22: Comparison of quality and error metrics of different q-RASPR models
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Figure 4.23: Determination of feature importance through the SHAP summary plots
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Table 4.10: List of descriptors with their definition and contribution to the PLS q-RASPR models 

Descriptor Definition Type Model Contribution 

C% Percentage of Carbon atom Constitutional indices Tdec Positive (+ve) 

B01[O-O] Presence/absence of O-O at topological distance 1 2D atom pairs Tdec Negative (-ve) 

B01[N-O] Presence/absence of N-O at topological distance 3 2D atom pairs Tdec Negative (-ve) 

Hy Hydrophilic factor Molecular property Tdec Positive (+ve) 

LOGP99 Wildmann-Crippen octanol-water coefficient (LogP) Molecular property Tdec Negative (-ve) 

nArNO2 Number of nitro (-NO2) groups (Aromatic) Functional group count Tdec Positive (+ve) 

C-005 CH3X Atom centered fragment Tdec Positive (+ve) 

B01[N-N] Presence/absence of N-N at topological distance 1 2D atom pairs Tdec Negative (-ve) 

AMW Average molecular weight Constitutional indices Density Positive (+ve) 

Mp Mean atomic polarizability (scaled on C-atom) Constitutional indices Density Negative (-ve) 

MCD Molecular cyclized degree Ring Descriptor Density Positive (+ve) 
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nCsp3 Number of sp3 hybridized C-atom Constitutional indices ΔHf˚ Negative (-ve) 

RA function A composite function derived from Read-Across RASPR descriptor 
Tdec, Tm, 

Density, ΔHf˚ 
Positive (+ve) 

SE (LK) 
Weighted standard error of the close source 

compounds' response values 
RASPR descriptor Tdec Negative (-ve) 

CVsim(GK) 
Coefficient of variance of similarity values of close 

source compounds' 
RASPR descriptor Density Negative (-ve) 

SD_Activity (LK) 
Weighted standard deviation of the close source 

compounds' observed response values 
RASPR descriptor ΔHf˚ Negative (-ve) 
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4.2.6 Descriptor Interpretation of the PLS q-RASPR models 

The final PLS q-RASPR models for different properties of EMs have been presented in the form 

of mathematical equations in Table 4.6. In contrast, the descriptions of the descriptors with their 

contribution to the models are listed in Table 4.10. The descriptor influences on the properties 

with suitable examples are discussed below: 

4.2.6.1 Interpretation of descriptors for the Tdec model 

In the decomposition temperature (Tdec) model, the descriptors RA function (LK), C%, nArNO2, 

Hy, and C-005 are contributing positively to the decomposition temperature which means that any 

increase or decrease in the values of the descriptors mentioned above will result in the 

simultaneous increase or decrease, respectively, in the Tdec of the compounds. On the other hand, 

the descriptors B01[N-N], B01[O-O], B03[N-O], LOGP99, and SE(LK) have negative 

contributions to the Tdec. The positive contribution of the RA function (LK) can be represented by 

compound 452(RA function (LK) = 673.168, Tdec = 608.15˚C), 151(RA function (LK) = 587.517, 

Tdec = 573.15˚C), and 19(RA function (LK) = 378.162, Tdec = 397.15˚C). The presence of 55.56% 

and 6.67% of carbon in compounds187 (Tdec = 536.55˚C) and 78 (Tdec = 383.15˚C) confirms the 

positive contribution of the descriptor C%. The presence of 8 nitro groups in 300 (Tdec = 

658.15˚C), 3 in 262 (Tdec = 587.15˚C), and none in 343 (Tdec = 526.65˚C) shows the positive 

contribution of the descriptor nArNO2 in the model. The hydrophilic factor Hy, contributes 

positively to the model which can be represented by the compound 113 (Hy = 6.992, Tdec = 

511.15˚C) and 11 (Hy = -0.200, Tdec = 468.15˚C). The atom-centered fragment C-005 represents 

the fragment CH3X (where X is an electronegative atom, here oxygen). The positive contribution 

of CH3X can be represented by the compound 536 (CH3X = 3, Tdec = 655.15˚C) and 223 (CH3X = 

0, Tdec = 623.15˚C). The Tdec value of 180 is 620.95˚C, and it does not contain any N-N, O-O, and 

N-O bonds at the topological distances of 1, 1, and 3, respectively. But in compounds 51 (Tdec = 

461.15˚C), 184(Tdec = 471.15˚C), and 103 (Tdec = 381.15˚C) the presence of these bonds 

corresponds to a decrease in their Tdec. The negative contribution of LOGP99 can be presented by 

the compound 177 (LOGP99 = 7.830, Tdec = 359.15˚C) and 443 (LOGP99 = -0.882, Tdec = 

503.65˚C). Also, the negative contribution of the RASPR descriptor SE (LK) can be described by 

the compound 364 (SE (LK) = 88.991, Tdec = 364.65˚C) and 277 (SE (LK) = 22.036, Tdec = 

448.15˚C) 
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4.2.6.2 Interpretation of the RA function descriptor in the Tm model 

The RASPR descriptor, RA function(LK)is the only descriptor in the univariate model for melting 

point. This RA-derived composite function contributes positively towards the property prediction. 

The positive contribution of RA function(LK) can be represented by compounds 19458 (Tm= 

481˚C), 12637 (Tm = 360˚C), 17948 (Tm= 117.5˚C), and 16 (Tm = -100.67˚C) with their respective 

feature values 491.162, 328.358, 114.91, and -108.684. 

4.2.6.3 Interpretation of descriptors for the density model 

The density of a compound can be calculated as the ratio of molecular mass to its volume.   The 

descriptor AMW in the developed model stands for the Average Molecular Weight of the 

compound and contributes positively to the prediction of the density. As we know density is 

directly correlated with the mass of the compound, as the AMW increases the density of the 

molecule also increases simultaneously. The compound 223 and 551with molecular densities of 

3.866 and 3.546, have an average molecular weight of 53.57 and 41.53, respectively. Again, 

compounds 12764 and 12765, with densities of 1.027 and 1.03, have AMW of 4.88 and 4.89, 

respectively. The constitutional descriptor Mp represents the mean atomic polarizability (Scaled 

on C-atom) and contributes negatively to the model prediction. The polarizability is directly 

proportional to the compound's volume, which is indirectly related to the density. So, the increase 

in the polarizability indicates a decrease in the density of the compound. It can be easily illustrated 

by337with a mean polarizability value of 0.532, having a molecular density of 1.859 g/cm3, while 

12351 has a molecular density of 1.696 g/cm3 with only 0.852 Mp value. The descriptor MCD 

(Molecular Cyclized Degree) positively impacts the model predictivity. MCD represents the ratio 

of number of atoms present in the ring to the total number of atoms in the molecule. The cyclic 

molecules have a higher density due to the stronger London forces because the ring system allows 

for a larger area of contact. The density of 11446 is 1.254 g/cm3 with a degree of cyclization of 

0.857 whereas with 0.75 degree of cyclization, 8403 has a density of 1.171 g/cm3. The RASPR 

descriptor, RA function (GK) is a composite descriptor derived from the Read-Across and is 

contributing positively to the prediction of density. It can be seen in 223, 7347,8127, and 12773 

having descriptor values of 3.546, 1.715, 1.268, and 1.024 corresponding to their densities in the 

order of 3.866, 1.764, 1.325, and 1.041, respectively. CVsim (GK) indicates the coefficient of 

variance of the similarity values of the close source compounds and shows a negative contribution 
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in the model. When the variation between the similarity values increases among the close training 

compounds, it indicates that the prediction is not so reliable for the test set compound. The 

compounds 9129 (CVsim (LK) = 0.005, d = 1.323 g/cm3) and 1335 (CVsim (LK) = 3.162, d = 1.184 

g/cm3) verify the negative contribution of CVsim (LK). 

4.2.6.4 Interpretation of descriptors for the ΔHf˚ model 

In the ΔHf˚ model, the descriptor RA function LK) contributes positively to the model. The 

compounds849, 569, and 102 with the descriptor value of 693.341, 407.732, and -4455.65 have 

their enthalpy of formation 681.4 kJ/mol, 364 kJ/mol, and -4806.4 kJ/mol respectively. Another 

RASPR descriptor SD_Activity (LK) has a negative contribution to the model. The compounds 120 

(SD_Activity (LK) = 876.004, ΔHf˚ = -1551 kJ/mol), 2353 (SD_Activity (LK) = 62.293, ΔHf˚ = -

272 kJ/mol), and 1825 (SD_Activity (LK) = 6.991,  ΔHf˚ = -227.4kJ/mol) confirms that the increase 

in the weighted standard deviation of close source compounds response values results in the 

decrease in the amount of ΔHf˚. The descriptor nCsp3 represents the number of sp3 hybridized C-

atom in the molecule and represents a negative contribution to the model. The ΔHf˚ of compound 

279 (nCsp3 = 0, ΔHf˚ = 147.45 kJ/mol) and 280(nCsp3 = 6, ΔHf˚ = -48.9 kJ/mol) shows that the 

hydrogenation in the later compound increases the number of sp3 hybridized carbon from 0 to 6 

which leads to decrease in the value of ΔHf˚ of the molecules. 

4.2.7 Comparison of the quality of q-RASPR models with QSPR models 

4.2.7.1 Comparison with our QSPR models  

We have compared the q-RASPR models with our own developed QSPR models for all 4 

properties. The validation metrics for all the developed models are shown in Table 4.4 (QSPR 

model) and Table 4.6 (q-RASPR model).  The comparative results depict that the prediction 

quality has been enhanced for all the q-RASPR models when compared to their corresponding 

QSPR models. The number of descriptors in the q-RASPR models was also lower than the 

descriptors present in the QSPR models which shows that with a lower number of regressors 

(except in the case of decomposition temperature), our q-RASPR models can efficiently predict 

the compounds having identical chemical information. 
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4.2.7.2 Comparison with the previous models 

The process of performing curation is most important to obtain a noise-free data set, to develop a 

relevant model with a high degree of acceptance. While performing curation on the obtained data 

set, we have found that the data set used by the authors (Wespiser and Mathieu, 2023) contains 

several duplicate compounds and mixtures as well. Previously, the authors (Wespiser and Mathieu, 

2023) prepared two QSPR models for the Tdec and Tm data sets, and two semi-empirical additivity 

scheme models for the density and ΔHf˚ data sets. Apart from this, they developed deep-learning 

models using the MPNN (Message Passing Neural Network) algorithm for all the data sets. The 

validation metrics of the training sets were not reported by the authors and at the same time, the 

feature selection process or the final features in the developed models were also not reported. Also, 

for the Tdec and ΔHf˚ data sets, only the external test set results were reported.   

For easy interpretability and reproducibility of our developed models, we have mentioned the 

descriptors (both the number and types) of our QSPR as well as of q-RASPR models (Table 4.10). 

This information can be used for the prediction of properties of newly developed compounds or 

compounds whose properties are not known yet using our models. Wespiser et. al. did not mention 

the descriptor number and type for the models, which challenges the reproducibility of their 

developed models. 

A comparison of the results for the test set prediction quality of our QSPR and q-RASPR models 

with the previously developed QSPR and MPNN models is presented in Table 4.11. We can state 

that our Tdec q-RASPR model reports a lower RMSEP error compared to the QSPR and MPNN 

models developed previously. The q-RASPR model for Tm shows a good predictive quality with 

only a single descriptor [i.e. RA function (LK)] for a very large data set. Although the prediction 

quality of our q-RASPR model does not exceed the previous QSPR and/or MPNN models, a model 

with a single descriptor with this much accuracy for a large data set is quite remarkable. Comparing 

the results for the density data set, we infer that with only 5 descriptors in the final model, the 

model shows a very minute difference in the error estimation both with respect to MAE and RMSE. 

Also, the quality and prediction of our PLS q-RASPR model for ΔHf˚ was almost similar to the 

MPNN DL model.  
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Therefore, we can infer that, with much less model complexity, our q-RASPR models with few 

features can efficiently predict the enlisted properties, and the developed models are also easily 

reproducible.  

Table 4.11: Comparison of our q-RASPR models with our own QSPR models and previously 

developed models 

Property Models 
No. of 

descriptors 
R2 MAEP RMSEP 

Tdec 

QSPR (Wespiser and Mathieu, 2023) Not defined 0.82 39 53.6 

MPNN (Wespiser and Mathieu, 2023) Not defined 0.83 40 53 

QSPR (our work) 10 0.621 44.919 54.814 

q-RASPR (our work) 10 0.676 41.383 50.683 

Tm 

QSPR (Wespiser and Mathieu, 2023) Not defined 0.93 25.2 35.8 

MPNN (Wespiser and Mathieu, 2023) Not defined 0.95 20.2 30.1 

QSPR (our work) 29 0.67 39.626 52.501 

q-RASPR (our work) 1 0.741 34.3 46.52 

Density 

QSPR (Wespiser and Mathieu, 2023) Not defined 0.98 0.031 0.040 

MPNN (Wespiser and Mathieu, 2023) Not defined 0.98 0.034 0.046 

QSPR (our work) 6 0.928 0.037 0.051 

q-RASPR (our work) 5 0.939 0.035 0.047 

ΔHf˚ 

QSPR (Wespiser and Mathieu, 2023) Not defined 0.972 23.4 30.8 

MPNN (Wespiser and Mathieu, 2023) Not defined 0.94 47.9 67.4 

QSPR (our work) 11 0.932 47.903 67.412 

q-RASPR (our work) 3 0.931 47.158 67.63 
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4.3 Study 3: Predictive cheminformatics modeling of reorganization energy (RE) for p-type 

organic semiconductors: Integration of quantitative read-across structure-property 

relationship (q-RASPR) and stacking regression analysis 

4.3.1 QSPR modeling 

The feature selection process was applied to the training set with 129 compounds. A pool of 28 

significant descriptors was prepared through step-wise and GA feature selection algorithms. The 

same pool of descriptors was then subjected to a grid search, and a 9 descriptor MLR model was 

selected based on the cross-validated (Q2
LOO) result. Finally, the same descriptor combination was 

used to construct a PLS regression model with 7 LVs. The PLS equation (Equation 4.3) and the 

validation metrics are mentioned below: 

𝐿𝑜𝑔𝑅𝐸 = −18.051 − 0.453 × 𝑅𝐶𝐼 − 57.7 × 𝐸𝑡𝑎𝐵𝐴
+ 48.316 × 𝐸𝑡𝑎𝑒𝑝𝑠𝑖3

+ 3.105 × 𝐸𝑡𝑎𝐷𝑒𝑝𝑠𝑖𝐵

− 0.018 × (𝑛𝐶𝑏 −) + 0.063 × 𝐻 − 046 + 0.0667 × 𝑀𝑎𝑥𝑎𝑎𝑠𝐶 + 0.055

× 𝐵03[𝑆 − 𝑆] − 0.029 × 𝐹06[𝑆 − 𝑆]                                                          (4.3) 

𝑁𝑡𝑟𝑎𝑖𝑛 = 129, 𝑁𝑡𝑒𝑠𝑡 = 42, 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 9, 𝐿𝑉𝑠 = 7 

𝑅2 = 0.731, 𝑄𝐿𝑂𝑂
2 = 0.688, 𝑀𝐴𝐸𝐶 = 0.078, 𝑅𝑀𝑆𝐸𝐶 = 0.099 

𝑄𝐹1
2 = 0.741, 𝑄𝐹2

2 = 0.741, 𝑀𝐴𝐸𝑃 = 0.075, 𝑅𝑀𝑆𝐸𝑃 = 0.095 

4.3.2 Similarity predictions 

The descriptors of the PLS QSPR model were used to perform RA-based similarity predictions of 

the query set compounds. The predictions for each compound were made using Euclidean distance, 

Gaussian kernel, and Laplacian kernel-based similarity of the query compound with its close 

source compounds. Following the optimization of RA hyperparameters for different similarity 

measures, we have obtained the values for σ be 2 for the Gaussian kernel, γ be 2 for the Laplacian 

kernel, and the number of CTC be 3. These hyperparameters were used to compute the similarity 

predictions of the query set compounds for each similarity measure, and the results are shown in 

Table 4.12. The results for the Laplacian kernel-based similarity were found to be superior to the 

other similarity parameters. 
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Table 4.12: Results for the RA-based similarity predictions 

Validation 

Metrics↓ 

Similarity measures 

Euclidean distance 

(ED) 

Gaussian kernel 

(GK) 

Laplacian kernel 

(LK) 

Q2
F1 0.640521 0.637524 0.669772 

Q2
F2 0.640302 0.637304 0.66957 

RMSEP 0.112152 0.112619 0.107493 

MAEP 0.088217 0.088818 0.086095 

 

4.3.3 q-RASPR modeling 

The q-RASPR model development aims to incorporate the advantages of both QSPR and RA-

based similarity. The q-RASPR descriptor matrix was prepared by combining the structural and 

physiochemical features with the RASPR descriptors. The newly prepared descriptor matrix of the 

training set was further used for the variable selection process to select the significant features 

through a grid search. Based on the cross-validation (Q2
LOO) results, we have selected three MLR 

models (one for each similarity measure) with 7-descriptors. The same descriptor combination was 

then used to generate the PLS regression models with the least number of LVs optimized using 

LOO Q2. The PLS equations of the models for each similarity function are given in Table 4.13 

along with their validation metrics. 

 

 

 



  

 

 
107 

 

Table 4.13: Model equations and metrics for the PLS q-RASPR models 

Model PLS Equation 

Validation metrics 

Training set Test set 

q-RASPR 

(ED) 

𝐿𝑜𝑔𝑅𝐸 = −20.855 − 0.442 × 𝑅𝐶𝐼 − 50.463

× 𝐸𝑡𝑎_𝐵_𝐴 + 53.217 × 𝐸𝑡𝑎_𝐸𝑝𝑠𝑖_3

− 0.021 × (𝑛𝐶𝑏 −) + 0.051 × 𝐻

− 046 − 0.022 × 𝐹06[𝑆 − 𝑆]

+ 0.364 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐸𝐷) 

Descriptors=7, LVs=6 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 129 

𝑅2 = 0.707 

𝑄𝐿𝑂𝑂
2 = 0.668 

𝑀𝐴𝐸𝐶 = 0.083 

𝑅𝑀𝑆𝐸𝐶 = 0.104 

𝑛𝑡𝑒𝑠𝑡 = 42 

𝑄𝐹1
2 = 0.750 

𝑄𝐹2
2 = 0.750 

𝑀𝐴𝐸𝑃 = 0.073 

𝑅𝑀𝑆𝐸𝑃 = 0.094 

q-RASPR 

(GK) 

𝐿𝑜𝑔𝑅𝐸 = −20.492 − 0.428 × 𝑅𝐶𝐼 − 49.969

× 𝐸𝑡𝑎_𝐵_𝐴 + 52.316 × 𝐸𝑡𝑎_𝐸𝑝𝑠𝑖_3

− 0.021 × (𝑛𝐶𝑏 −) + 0.049 × 𝐻

− 046 − 0.022 × 𝐹06[𝑆 − 𝑆]

+ 0.371 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐺𝐾) 

Descriptors=7, LVs=6 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 129 

𝑅2 = 0.707 

𝑄𝐿𝑂𝑂
2 = 0.667 

𝑀𝐴𝐸𝐶 = 0.083 

𝑅𝑀𝑆𝐸𝐶 = 0.104 

𝑛𝑡𝑒𝑠𝑡 = 42 

𝑄𝐹1
2 = 0.748 

𝑄𝐹2
2 = 0.748 

𝑀𝐴𝐸𝑃 = 0.074 

𝑅𝑀𝑆𝐸𝑃 = 0.094 

q-RASPR 

(LK) 

𝐿𝑜𝑔𝑅𝐸 = −23.544 − 0.587 × 𝑅𝐶𝐼 − 54.149

× 𝐸𝑡𝑎_𝐵_𝐴 + 60.285 × 𝐸𝑡𝑎_𝐸𝑝𝑠𝑖_3

− 0.023 × (𝑛𝐶𝑏 −) + 0.058 × 𝐻

− 046 − 0.027 × 𝐹06[𝑆 − 𝑆]

+ 0.263 × 𝑅𝐴 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐿𝐾) 

Descriptors=7, LVs=6 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 129 

𝑅2 = 0.706 

𝑄𝐿𝑂𝑂
2 = 0.666 

𝑀𝐴𝐸𝐶 = 0.083 

𝑅𝑀𝑆𝐸𝐶 = 0.104 

𝑛𝑡𝑒𝑠𝑡 = 42 

𝑄𝐹1
2 = 0.753 

𝑄𝐹2
2 = 0.753 

𝑀𝐴𝐸𝑃 = 0.073 

𝑅𝑀𝑆𝐸𝑃 = 0.093 

 

The results of these models suggest that the prediction quality of the q-RASPR model is better 

than the previously developed QSPR model. Also, the q-RASPR models contains a lower number 

of variables compared to the number of descriptors in the QSPR model. 

4.3.4 Predictions through stacking regressor 

Soon after the development of q-RASPR models using different similarity approaches, the 

predictions from the individual models were used for stacking. Using the predictions as the 
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descriptors, we have calculated the RE (in logarithmic terms). The stacking regression was 

performed using the PLS algorithm and the number of LVs was optimized based on the leave-one-

out squared correlation coefficient (Q2
LOO). The validation metrics for the stacked-PLS model are 

given in Table 4.14: 

Table 4.14: Statistical results of the stacked-PLS q-RASPR model 

Training set Test set 

𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 129 

𝑅2 = 0.708 

𝑄𝐿𝑂𝑂
2 = 0.698 

𝑀𝐴𝐸𝐶 = 0.083 

𝑅𝑀𝑆𝐸𝐶 = 0.104 

𝑛𝑡𝑒𝑠𝑡 = 42 

𝑄𝐹1
2 = 0.753 

𝑄𝐹2
2 = 0.753 

𝑀𝐴𝐸𝑃 = 0.073 

𝑅𝑀𝑆𝐸𝑃 = 0.093 

The scatter plot (Figure 4.24) represents the correlation between the observed and predicted RE 

of the molecules in the dataset for the stacking PLS q-RASPR model. 

 

Figure 4.24: Scatter plot for the Stacking PLS q-RASPR model 



  

 

 
109 

 

4.3.5 Interpretation of the PLS plots 

The final stacking PLS model was developed using the predictions of 3 PLS q-RASPR models 

with different similarity measures. We have analyzed the PLS plots for each PLS q-RASPR model, 

and the following conclusions were drawn:  

i. The variable importance (VIP) scores of the descriptors in all the models (Figure 4.25) 

signifies that the RASPR descriptor RA_function is the most important descriptor followed 

by nCb-, RCI, eta_epsi_3, eta_B_A, and H-046 while the descriptor F06[S-S] was of the 

least importance. 

ii. The loading plots (Figure 4.26) signify that the descriptors that are dispersed more away 

from the origin have more impact on the property. In all the 3 PLS q-RASPR models, the 

X-variables (descriptors) dispersion is almost similar w.r.t the Y-variable (property). 

iii. The coefficient plots (Figure 4.27) represent the standardized regression coefficients of 

the descriptors and their respective contribution (+ve/-ve) to the models.  

iv. In the score plots (Figure 4.28), compounds 1, 119, and 143 were found to be outliers for 

all the 3 models constructed using the first 2 PLS components. The AD study performed 

using the DModX approach (Figure 4.29 and 4.30) shows that only one compound 

(Compound 1) is present out of the AD and is present in the training set. This can be 

because of the fact that compound 1 is the only monocyclic compound in the dataset 

whereas all other compounds consist of 2 or more rings. In the test set, all the compounds 

were present within the AD of the respective models. 

v. We have also performed the Y-Randomization test (Figure 4.31) to check whether our 

model has any chance correlation or not. 
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Figure 4.25: VIP plots for the individual PLS q-RASPR models 
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Figure 4.26: Loading plots for the individual PLS q-RASPR models 
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Figure 4.27: Coefficient plots for the individual PLS q-RASPR models 
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Figure 4.28: Score plots for the individual PLS q-RASPR models 
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Figure 4.29: DModX-AD plots for the training set of individual PLS q-RASPR models 
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Figure 4.30: DModX-AD plots for the test set of individual PLS q-RASPR models 
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Figure 4.31: Y-randomization plots for the individual PLS q-RASPR models 
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4.3.6 Interpretation of the modeled features 

Stacking was performed using the predictions of the different models that were developed using 

different structural and physiochemical features, and similarity measures. Here, in this section, we 

will discuss the contribution of different features influencing the RE of organic semiconductors. 

Among the descriptor set of the PLS q-RASPR models, the descriptors RCI, Eta_B_A, nCb-, and 

F06[S-S] contribute negatively to the prediction of RE whereas the descriptors Eta_epsi_3, H-046, 

and RA_function contribute positively. The detailed information on the modeled descriptors is 

given in Table 4.15. 

Table 4.15: List of descriptors of the q-RASPR models 

Descriptor Description Contribution 

RA_function RA-derived composite function +ve 

nCb- Number of substituted benzene C (sp2) -ve 

RCI Ring complexity index -ve 

Eta_epsi_3 Eta electronegativity measure 3 +ve 

Eta_B_A Eta average branching index -ve 

H-046 H attached to C0 (sp3), no X  attached to next C +ve 

F06[S-S] Frequency of S-S at topological distance 6 -ve 

 

The RASPR descriptor RA_function is an RA-derived composite function that contains 

information of all the other structural and physiochemical features. This descriptor contributes 

positively to the prediction of the RE,as can be seen in molecule 67 (RA_function = 2.110, RE = 

193 meV) and 69 (RA_function = 2.047, RE = 79 meV). 

The descriptor RCI represents the Ring Complexity Index of the molecule. The OSCs constitute 

of conjugated π-systems and the electronic structures of these OSCs are affected due to the size 

and complexity of these conjugated π-systems. The longer conjugated systems provide a larger 
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surface area for the delocalization of e-, thus reducing the energy required for electronic 

reorganization (Salaneck et. al., 2001). The negative impact of RCI can be seen in compounds149 

(RCI = 1.611, RE = 123 meV), 111 (RCI = 1.461, RE = 179 meV), and 97 (RCI = 1, RE = 288 

meV) (see Figure 4.32). 

 

Figure 4.32: Compounds representing ring complexity 

The substitution of benzene carbon represented by the descriptor nCb-has a negative contribution 

to the model predictivity. In the dataset, the molecules with benzene substitution show the fusion 

of the benzene ring with another conjugated ring system (i.e. thiophene) which further enhances 

the complexity of the molecule which results in lowering their RE,e.g., compound 50 (nCb- = 6, 

RE = 117 meV) and 51 (nCb- = 8, RE = 153 meV) (see Figure 4.33). The negative contribution 

of nCb- also supports/validates the contribution of the RCI descriptor as both these descriptors 

reflect the molecular complexity due to the increased π-conjugated system. 

 

Figure 4.33: Compounds showing substitution of benzene carbon (highlighted) 

The atom-centered fragment descriptor H-046 shows the presence of attached H-atom to a sp3 

hybridized C-atom. The positive contribution of H-046 is represented in molecules139 (H-046 = 

4, RE = 300 meV), 161 (H-046 = 4, RE = 275 meV), and 60 (H-046 = 2, RE = 320 meV) (see 
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Figure 4.34). Due to the presence of sp3 carbon between the 2 benzene rings, there is a 

discontinuity of conjugation between the rings which results in an increase in RE. Again, in 

molecule 86 (H-046 = 0, RE = 103 meV), no such hydrogen atom was there, so the π-conjugation 

is maintained throughout the molecule exhibiting a lower RE. 

 

Figure 4.34: Compounds representing hydrogen substitution at C-atom (sp3) 

The 2D atom pair descriptor F06[S-S] which represents the frequency of S-S at the topological 

distance 6 contributes negatively to the model predictions. In both compounds119 (RE = 210 meV) 

and 120 (RE = 280 meV), 7 thiophene rings are present but compound 119 has 4 F06[S-S] and 

compound 120has 3 F06[S-S] atom pairs (see Figure 4.35). This shows that the arrangement of 

the thiophene ring within the molecule is an essential feature governing the RE. Since the sulfur 

atom in the thiophene rings lowers the HUMO-LOMO gap because of its electron-donating nature 

and presence of π-conjugation, it tends to lower the RE of the semiconductors (Mamada and 

Yamashita, 2015). 

 

Figure 4.35: Compounds highlighting S-S pair at 6 topological distance. Sulfur highlighted 

with similar colours are paired with each other. 



  

 

 
120 

 

The descriptor Eta_epsi_3 represents the ETA electronegativity measure of 3. This positive 

contribution of this descriptor can be visualized from compound 143 (RE = 268 meV, Eta_epsi_3 

= 0.463) and 153 (RE = 258 meV, Eta_epsi_3 = 0.45) (see Figure 4.36). In compound 143, the 

steric hindrance is more due to the presence of fused thiophene rings whereas in compound 153, 

where each thiophene ring is separated by a single bond lowers the steric hindrance of the molecule 

thus reducing the RE. 

 

Figure 4.36: Compounds representing steric hindrance in the molecule 

The descriptor Eta_B_A which shows the ETA average branching index (here fusion pattern) in 

the molecule has a negative impact on the model predictivity, and the same can be represented by 

the compound 125 (RE = 85 meV, Eta_B_A = 0.025), 122 (RE = 186 meV, Eta_B_A = 0.022), 

and 8 (RE = 230 meV, Eta_B_A = 0.019) (see Figure 4.37).  

 

Figure 4.37: Compounds representing ETA_B_A indices 
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4.3.7 Predictions through different ML algorithms 

We have also applied various ML algorithms to perform stacking regression. This was done so to 

improve the model's quality and predictivity. Before applying the ML algorithms, the data of the 

training set and the test set are needed to be scaled. Scaling of descriptors and response values was 

performed using the Java-based tool Scale1.0available from 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. The machine learning 

models were developed using the default hyperparameters while performing the regression 

algorithms. The statistical values representing the model quality and predictivity of the individual 

ML models are given in Table 4.16, from which we can conclude that the tree-based methods such 

as RF, AB, GB, and XGB showed an excellent model quality in terms of R2. Still, their respective 

LOO-CV results confirm that these models are not statistically robust. The results for the RR and 

PLS models are statistically similar but their predictivity is somewhat compromised when 

compared to the other models like SVM and LSVM. So, based on the cross-validated results and 

the predictive power of the models, the model developed using the stacking support vector 

regression (i,e. SVM) was selected as the best-performing model. This SVM model is of good 

statistical quality, robust, and highly predictive. 

Table 4.16: ML prediction results of the models developed using different algorithms 

Stacking 

regressor 

models 

Validation Metrics 

Training set Test set 

R2 Q2
LOO MAEC

* RMSEC
* Q2

F1 Q2
F2 MAEP

* RMSEP
* 

RF 0.965 0.725 0.141 0.186 0.742 0.742 0.380 0.494 

AB 0.842 0.695 0.343 0.396 0.737 0.736 0.395 0.499 

GB 0.966 0.718 0.145 0.184 0.746 0.746 0.382 0.490 

XGB 0.980 0.642 0.114 0.143 0.681 0.681 0.423 0.549 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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* Standardized values of MAE and RMSE are reported. 

4.3.8 Validation of model using a true external set 

We have also validated our model by using a set of 10888 compounds collected from the work of 

Chen et. al. (Chen et. al., 2022). This dataset comprises 10900 flexible π-conjugated organic 

molecules generated through molecular transformation operation on benzene. A total of 12 

compounds were present in the dataset for which structural information in the form of SMILES 

strings was not available; therefore, such compounds were excluded from the dataset. For more 

information on the dataset, one can refer to (Chen et. al., 2022). The RE was calculated using DFT 

and generic force-field (GFN-FF) for the molecules that were collected. Using the DFT calculated 

RE as a reference we have calculated the MAE of the predictions of all compounds using our 

model and the prediction using the GFN model of Chen et. al. 

For the total 10888 compounds, the MAE for our stacking-SVM q-RASPR model was found to be 

87.946 meV whereas it was 150.083 meV for the GFN model (Chen et. al., 2022). The results thus 

obtained suggest that the prediction using our stacking-SVM q-RASPR model was better than 

those predicted using the GFN model.  

4.3.9 Comparison of model quality with other developed models 

We have compared the model quality of our q-RASPR models with the other models that were 

developed by Sule Atahan-Evrenk (Atahan-Evrenk, 2018). Previously, Sule Atahan-Evrenk 

developed several models by using signature descriptors and 3D molecular transforms calculated 

from molecular mechanics force-field (MMFF94) and DFT. The statistical parameters of the 

previous models have been compared with our own developed stacking q-RASPR models. The 

comparison of the model parameters is shown in Table 4.17, which shows that our stacking q-

RASPR model developed using support vector regression has given the best results for both the 

SVM 0.735 0.709 0.384 0.513 0.801 0.801 0.312 0.433 

LSVM 0.699 0.686 0.419 0.547 0.774 0.774 0.347 0.462 

RR 0.708 0.696 0.430 0.538 0.753 0.753 0.378 0.483 

PLS 0.708 0.698 0.430 0.538 0.753 0.753 0.378 0.483 
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calibration set and the prediction set with low error measures (MAE and RMSE). Our model was 

developed from 2D descriptors only that do not involve the calculation of any signature descriptors 

for certain heights (σ03, σ04) or molecular optimization for calculating 3D molecular transforms 

that were done by the previous authors. Also, our PLS model was developed using a single LV 

while their best PLS model consists of 8 LVs. 

Table 4.17: Statistical comparison between different models with the current model 

Descriptor 

type 
Model (LVs) R2

train R2
test RMSE# MAE# 

Signatures 

(Atahan-

Evrenk, 2018) 

σ03 PLS (5) 0.96 0.69 55 41 

σ03 PCR (8) 0.62 0.57 57 43 

σ04 PLS (8) 0.99 0.70 54 39 

σ04 PCR (16) 0.67 0.58 56 42 

3D- 

transforms 

(Atahan-

Evrenk, 2018) 

DFT-PLS (7) 0.85 0.66 60 43 

MM-PLS (5) 0.79 0.62 60 44 

2D 

(our work) 

Stacking 

q-RASPR 

  RMSEC
# RMSEP

# MAEC
# MAEP

# 

PLS (1) 0.708 0.753 54.176 46.916 40.911 34.856 

SVM 0.735 0.801 50.118 41.587 36.457 29.134 

# MAE and RMSE are reported in meV units.
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5. CONCLUSION 

In the present study, we have developed different predictive models using RASPR descriptors, 

derived from the similarity-based read-across (RA) method. The RASPR descriptors were 

calculated from different physicochemical and structural descriptors using various non-linear 

similarity functions. Here, we implemented a simple and straightforward yet robust formalism in 

computing descriptors, developing models, evaluating their prediction reliability in defined 

chemical space, and diagnosing chemical information in accordance with OECD guidelines. The 

models were developed using various chemometric tools and were subjected to internal and 

external validation to confirm their unbiased predictability. In some cases, developed models were 

also tested for validation using a Y-randomization test. 

5.1 Machine learning-based q-RASPR predictions of detonation heat for nitrogen-containing 

compounds 

The present work reports a q-RASPR model developed using a step-wise process of data point 

collection, computation of molecular structures, descriptor calculation, pre-treatment, data 

division, feature selection, QSPR model development, Read-Across predictions, calculation of 

RASPR descriptors, data fusion and finally feature selection to develop the final q-RASPR model. 

Initially, an MLR q-RASPR model was selected based on the cross-validation result and after that 

the corresponding PLS model was developed with fewer latent variables. The authors have also 

employed various ML algorithms for predicting the detonation heat through the generation of 

different ML-based models. Further, different cross-validation strategies such as leave-one-out 

(LOO), 20 times 5-fold CV, and shuffle-split CV (n-splits=1000) were performed for each model 

to detect any over-fitting in the models. A comparison between the predictive performances of all 

the developed models was done as shown in Table 3. The selection of the final model (here PLS) 

was done on the ground of an error-based measure, i.e. Root Mean Squared Error of Predictions 

(RMSEP) of the test set compounds, i.e. RMSEP. The purpose of this study was to develop an 

efficient model to predict the detonation property of N-containing compounds in terms of 

detonation heat. The study represents the development of a novel q-RASPR model in accordance 

with the OECD guidelines and is highly robust, easily interpretable, and reproducible. The 

developed model can be used to prepare new and efficient nitrogenous compounds with better 
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detonation performance in measures of the detonation heat and to predict the detonation heat of a 

new compound.  

5.2 Predicting performance and stability parameters of energetic materials (EMs) using the 

machine learning-based q-RASPR approach 

In the present work, the authors report the development of q-RASPR models for predicting 

different properties of energetic compounds associated with their energetic performance and 

thermal stability. We have used properties like decomposition temperature and melting point for 

the prediction of the thermal stability of compounds. For the evaluation of performance, we have 

used density and gas phase heat of formation. Firstly, we developed QSPR models through a 

feature selection process for individual data sets and then used the developed models' structural 

and physiochemical features to calculate the RASPR descriptors. The calculated RASPR 

descriptors were then fused with those structural and physiochemical descriptors. Again for each 

modeled response, the feature selection process was employed to the fused descriptor matrix to 

develop an MLR q-RASPR model based on the cross-validated result. Finally, with a lower 

number of LVs, a PLS q-RASPR model was developed. Several ML-based models were also 

prepared to predict the properties associated with the energetic compounds. Furthermore, we have 

also checked the model quality by using 5-fold and 10-fold cross-validation tests (in terms of R2 

and MAE) which also reflect the absence of any over-fitting.  

The models so developed in the study were found to be robust and predictive, and they can be used 

during the early developmental stages of energetic compounds for screening purposes. This will 

help to select the best compound with better performance and thermal stability. These models can 

also be used for the development of new efficient, energetic materials or the prediction of the 

property for newly developed molecules. Thus, the models can be useful for the designing and 

manufacturing of new energetic compounds at a low cost, and a fast rate with a decrease in the 

hazards associated with them during the experiments. 
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5.3 Predictive cheminformatics modeling of reorganization energy (RE) for p-type organic 

semiconductors: Integration of quantitative read-across structure-property relationship (q-

RASPR) and stacking regression analysis 

The current study describes the method for the development of a q-RASPR model via stacking 

regression for predicting the RE of OSCs. RE is an essential parameter to study the ease of charge 

transport in the semiconductors. The work presents the collection of the dataset, development of 

the QSPR model, RA predictions, RASPR descriptor calculation, q-RASPR predictions using 

different similarity measures, and stacking regression predictions through various regression 

algorithms. The authors used the features of the QSPR model to perform the RA-based similarity 

predictions, and further, the features were used to calculate the RASPR descriptors. The RASPR 

descriptors were calculated for three different similarity measures namely; Euclidean distance, 

Gaussian kernel, and Laplacian kernel-based similarity (Banerjee and Roy, 2024). After that, the 

RASPR descriptors for each similarity were fused with the descriptors of the QSPR model, and a 

grid search was performed using the fused descriptor matrix to get the q-RASPR model with good 

quality and predictivity. A total of 3 PLS q-RASPR models (one for each similarity measure) were 

selected, and the predictions from each model were used to perform final stacking. Initially, the 

PLS algorithm was used to develop the stacking model using 3 predictions (as variables) and only 

1 LV. The PLS model developed using stacking shows an enhancement in the prediction compared 

to the individual q-RASPR models. To increase the quality of the predictions of the model, the 

authors have also applied several ML algorithms to train the model as a stacking regressor. It was 

found that when the stacking was performed using the SVM regression algorithm, there was an 

improvement in both model quality and predictivity showing a decrease in the model errors. 

The study fulfills the aim of the authors, i.e., developing a high-quality, robust, interpretable, and 

reproducible statistical model that can efficiently predict the RE of the p-type OSCs with the least 

error. Thus, the study can be used further to evaluate the mobility of charge carriers by predicting 

the RE of the molecules (more precisely acenes, thiophenes, thienoacenes, and pantalenes). 

Screening of large databases or prediction of new compounds can be done using our model within 

a short time without any experimental procedure or high-end computations.
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