

**DESIGN AND DEVELOPMENT OF LASER MODULE HOLDER
BRACKET AND Z-AXIS SLIDE OF A MINI LASER ENGRAVER**

*A thesis submitted towards partial fulfilment of the requirements for the
degree of*

Master of Technology in Laser Technology

Course affiliated to the Faculty of Engineering and Technology and offered
by Faculty Council of Interdisciplinary Studies, Law and Management,
Jadavpur University

Submitted by

RITTIK MAITY

Examination Roll No. M4LST24002

Registration No. 163803 of 2022-2023

Under the guidance of

Prof. Dr. SOUMYA SARKAR

(THESIS SUPERVISOR)

School of Laser Science and
Engineering Jadavpur University,
Kolkata - 700032

School of Laser Science and Engineering

Faculty of Interdisciplinary Studies, Law and Management

Jadavpur University

Kolkata -700032

India

2024

**MASTER OF TECHNOLOGY IN LASER SCIENCE & TECHNOLOGY
COURSE AFFILIATED TO
FACULTY COUNCIL OF ENGINEERING & TECHNOLOGY
UNDER
FACULTY COUNCIL OF INTERDISCIPLINARY STUDIES, LAW &
MANAGEMENT**

CERTIFICATE OF RECOMMENDATION

I HEREBY RECOMMEND THAT THE THESIS PREPARED BY **rittik maity** ENTITLED **“OPTIMIZED LASER ENGRAVING SYSTEM DESIGN AND FABRICATION”** UNDER MY SUPERVISION BE ACCEPTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF TECHNOLOGY IN LASER SCIENCE & TECHNOLOGY DURING THE ACADEMIC SESSION 2021-2023.

PROJECT GUIDE

Prof. (Dr.) Soumya Sarkar

Department of Production Engineering
Jadavpur University, Kolkata-700032

Countersigned by-

DIRECTOR

School of Laser Science and Engineering
Jadavpur University, Kolkata-700032

DEAN

Faculty Council of Interdisciplinary Studies, Law & Management
Jadavpur University, Kolkata-700032

MASTER OF TECHNOLOGY IN LASER SCIENCE & TECHNOLOGY
COURSE AFFILIATED TO
FACULTY COUNCIL OF ENGINEERING & TECHNOLOGY
UNDER
FACULTY COUNCIL OF INTERDISCIPLINARY STUDIES, LAW &
MANAGEMENT

CERTIFICATE OF APPROVAL

This foregoing Final thesis is hereby approved as a creditable study of an engineering subject carried out and presented in a manner satisfactory to warrant its acceptance as a prerequisite for the degree and thesis work for which it has been submitted. It is understood that by this approval the undersigned do not necessarily endorse or approve any statement made, opinion expressed or conclusion drawn therein but approved the Final thesis only as a prerequisite for the Thesis Work.

Board of Examiners

** Only in case the recommendation is concurred

DECLARATION OF ORIGINALITY AND COMPLIANCE OF ACADEMIC ETHICS

The author hereby declares that this thesis contains original research work by the undersigned candidate, as part of this **MTECH in LASER SCIENCE AND TECHNOLOGY** studies during the academic session 2022-2024.

All information in the document has been obtained and presented in accordance with academic rules and ethical conduct.

The author also declared that as required by this rule and conduct, the author has fully cited and referred all material and results that are not original to this work.

NAME: RITTIK MAITY

EXAMINATION ROLL NO: M4LST24002

**THESIS TITLE: DESIGN AND DEVELOPMENT OF LASER MODULE HOLDER
BRACKET AND Z-AXIS SLIDE OF A MINI LASER ENGRAVER**

SIGNATURE:

DATE:

ACKNOWLEDGEMENTS

I express my sincere gratitude to my supervisor **PROF. (DR.) SOUMYA SARKAR, DEPARTMENT OF PRODUCTION ENGINEERING, JADAVPUR UNIVERSITY**, for his invaluable guidance, wholehearted support and encouragement for accomplishing the present investigation. His dynamism, fantastic stamina and day-to-day monitoring were a constant source of inspiration to me.

I would also like to express my deep sense of thankfulness to **DIPTEN MISRA Sir, DIRECTOR, SCHOOL OF LASER SCIENCE AND ENGINEERING, JADAVPUR UNIVERSITY**.

I express my heartiest thanks to all the faculties and emeritus professors of the School of Laser Science and Engineering department for their useful assistance help and support.

I am also very much thankful to my seniors **MR SAMAYAN MAZUMDAR (SCHOOL OF LASER SCIENCE AND TECHNOLOGY)** and **MR KINGSHUK MANDAL (RESEARCH SCHOLAR) PRODUCTION ENGINEERING, JADAVPUR UNIVERSITY** for their valuable suggestions in carrying out the course of work and for use of laboratory equipment for conducting experiments.

My special thanks go to my all seniors, especially **MR RUPAM RAKSHIT (RESEARCH SCHOLAR), and MRS UPAMA DEY, M.R SOURADIP PAUL (RESEARCH SCHOLAR) (SCHOOL OF LASER SCIENCE AND TECHNOLOGY)** for their incredible support throughout the period of thesis work. I am also very much thankful to my fellow batch mates for their immense help and support.

I record my acknowledgement to the *School of Laser Science and Engineering* for giving me the opportunity to pursue my research work.

My sincere thanks to Honorable Vice-Chancellor **Prof. Bhaskar Gupta**, Jadavpur University, for the opportunity provided to complete my research work.

Immemorial friendly behaviour and the constant support of all my friends, seniors and juniors of the School of Laser Science and Engineering are highly acknowledged.

All staff members of the School of Laser Science and Technology deserve special thanks for their help in diverse ways during the days of my stay in the department.

Last but not least, I would like to pay my special admiration to my parents for their love And faith towards me. I would have never reached this stage of my life without their support. My inner
Gratitude goes to “**Param Bramha**”.

RITTIK MAITY

Examination Roll No: M4LST24002

Registration No: 163803 of 2022-2023

TABLE OF CONTENT

CHAPTER

1. FUNDAMENTALS OF LASER.....	1
1.1 INTRODUCTION	1
1.2 HISTORY OF LASER	2
1.3 PROPERTIES OF LASER LIGHT.....	5
1.4 BASICS OF LASER OPERATION THEORY.....	7
1.5 BASIC COMPONENTS OF LASER	10
1.6 CLASSIFICATION OF LASERS	12
1.7 APPLICATIONS OF LASERS	15
1.8 LASER CLASSIFICATION FOR SAFETY: INTERNATIONAL AND AMERICAN STADARD ..	17
1.9 LITERATURE REVIEW	19
1.10 OBJECTIVE & SCOPE.....	25
2. LASER ENGRAVING	26
2.1 FUNDAMENTAL ASPECTS AND KEY CONSIDERATION.....	28
2.2 PROPERTIES	31
2.3 THE HISTORY OF LASER ENGRAVING.....	33
2.4 LASER MARKING, ENGRAVING, AND ETCHING THE DISTINCTION	35
2.5 TYPES OF LASER ENGRAVING	37
2.6 APPLICATIONS:.....	39
2.7 ADVANTAGES.....	42
2.8 LIMITATIONS	44
3. DESIGN OF LASER MODULE HOLDER BRACKET AND Z-AXIS SLIDE.....	46
3.1 3D MODELING & DESIGN	48
3.2 OPTIMIZATION	59
3.3 MATERIAL ANALYSIS TO SELECT THE MOST SUITABLE MATERIAL FOR FABRICATION	
78	
3.4 RESULTS AND KEY FINDINGS	82
4. DEVELOPMENT OF LASER MODULE HOLDER BRACKET AND Z-AXIS	
SLIDE OF A MINI LASER ENGRAVER.....	84
4.1 3D PRINTING:.....	84
4.2 APPLICATIONS.....	88
4.3 ULTIMAKER CURA:.....	91
4.4 3D PRINTING OF THE Z-AXIS SLIDE	93
4.5 3D PRINTING OF THE LASER MODULE HOLDER BRACKET	97
5. SUMMARY AND GENERAL CONCLUSION.....	100
6. REFERENCE:	101

7. LIST OF FIGURES.....	104
8. LIST OF TABLE	106

PREFACE

The advent of laser technology has revolutionized various industries by offering precise, efficient, and versatile methods for material processing. Among these, laser engraving stands out as a non-contact technique capable of creating intricate designs and markings on a wide range of materials. As industries and consumer demands evolve, there is a growing need for more accessible and optimized laser engraving systems that balance performance with affordability.

This thesis, titled "Optimized Laser Engraving System Design and Fabrication," represents a comprehensive study aimed at addressing these needs. It explores the design, optimization, and fabrication of a mini laser engraver that leverages the principles of topology optimization and the capabilities of 3D printing. The goal is to develop a cost-effective, lightweight, and efficient laser engraving system that can serve both commercial and personal applications.

The research presented in this thesis is grounded in a deep understanding of laser physics, material properties, and advanced manufacturing techniques. It combines theoretical insights with practical engineering solutions, aiming to push the boundaries of what is achievable in laser engraving technology. By employing state-of-the-art design software and optimization algorithms, this work not only improves the performance of laser engravers but also makes them more accessible to a wider audience, including small businesses, hobbyists, and educational institutions.

Throughout this journey, the support and guidance of numerous individuals and institutions have been invaluable. I extend my deepest gratitude to my supervisor, Prof. (Dr.) Soumya Sarkar, for his unwavering support and insightful guidance. My thanks also go to the faculty and staff of the School of Laser Science and Engineering at Jadavpur University for their assistance and encouragement.

This thesis is the culmination of several years of research and experimentation, and it reflects my commitment to advancing the field of laser technology. I hope that the findings and innovations documented here will inspire further research and development, contributing to the ongoing evolution of laser systems and their applications.

CHAPTER-1

1. FUNDAMENTALS OF LASER

1.1 INTRODUCTION

Lasers, an acronym for Light Amplification by Stimulated Emission of Radiation, produce intense beams of coherent light through stimulated emission. This process was first theorised by Albert Einstein in 1917, but practical implementations emerged in the 1950s and 60s. At the heart of a laser lies the laser medium, which could be a gas, solid-state material, semiconductor, or dye. When energy is applied to the medium, it becomes "excited," causing its atoms or molecules to emit photons of light. In a conventional light source, these photons scatter in random directions, but in a laser, they are harnessed and amplified through stimulated emission. Stimulated emission occurs when a passing photon triggers an excited atom or molecule to release another photon, identical in phase, direction, and wavelength. This creates a cascade effect, resulting in the generation of a highly coherent and focused laser beam. The properties of a laser, such as its wavelength, power, and coherence, depend on the type of laser medium used and the specific design of the laser system. For example, gas lasers, like helium-neon and carbon dioxide lasers, are known for their high power and wide range of wavelengths, while solid-state lasers, such as ruby and Nd lasers, offer compactness and efficiency. Lasers find applications across numerous fields. In telecommunications, they enable high-speed data transmission through optical fibres. In medicine, they facilitate precise surgical procedures, skin treatments, and diagnostics. In manufacturing, lasers are indispensable for cutting, welding, marking, and engraving materials. They also play vital roles in scientific research, defence systems, and entertainment, powering everything from spectroscopy experiments to laser weapons and light shows.

In this project, I am aiming to upgrade a mini laser engraver to give it a more commercial look by redesigning its laser holder module. The process begins with designing the new holder in CAD software, focusing on a sleek and functional aesthetic. To ensure the design is optimised for performance, I will utilize topology optimisation, which helps identify the most efficient material distribution for the required strength and functionality. After refining the design based on these optimizations, I will 3D print the final version. This approach not only

CHAPTER-1

enhances the visual appeal of the laser engraver but also improves its overall efficiency and durability.

1.2 HISTORY OF LASER

- **The Laser: A Journey Through Time and Innovation**

The laser, an acronym for Light Amplification by Stimulated Emission of Radiation, is a technological marvel that has revolutionized countless fields, from medicine and manufacturing to communications and entertainment. The history of the laser is a captivating tale of scientific curiosity, theoretical breakthroughs, and engineering ingenuity, spanning over a century of development and innovation.

- **Inception in Theory: Einstein's Vision**

The genesis of the laser can be traced back to the early 20th century, when Albert Einstein, a towering figure in theoretical physics, laid the groundwork for this groundbreaking invention. In 1917, Einstein proposed the concept of stimulated emission, a fundamental process underpinning lasers' operation. He theorised that under certain conditions, photons, the elementary particles of light, could trigger the emission of identical photons from excited atoms. This cascade of photon emissions, amplified by stimulated emission, would result in a coherent and intense beam of light. Einstein's theory of stimulated emission remained largely a theoretical curiosity for several decades until advancements in quantum mechanics and electronics paved the way for its practical realisation.

- **From Maser to Laser: The Quantum Leap**

In the 1950s, scientists Charles Townes and Arthur Schawlow, building upon Einstein's work, invented the maser, an acronym for Microwave Amplification by Stimulated Emission of Radiation. The maser operated on principles similar to those of the laser but amplified microwaves instead of visible light. This invention, while significant in its own right, served as a critical stepping stone towards the development of the laser.

CHAPTER-1

In 1960, Theodore Maiman, a physicist at Hughes Research Laboratories, achieved a historic breakthrough by constructing the first working laser. Maiman's laser utilised a ruby crystal as the gain medium, a material that could be excited to emit light through stimulated emission. When energized with a flash lamp, the ruby crystal produced a short pulse of intense red light, marking the birth of the laser era.

- **Diversification and Expansion: The Laser Family Grows**

Maiman's ruby laser was just the beginning. The 1960s witnessed a rapid proliferation of laser technologies, each with unique characteristics and applications. Gas lasers, such as the helium-neon laser, offered continuous-wave operation and a wider range of wavelengths. Semiconductor lasers, compact and efficient, found applications in communications and electronics. Other types of lasers, including chemical lasers, dye lasers, and solid-state lasers, emerged, further diversifying the laser landscape.

- **Applications Abound: Lasers in Every Facet of Life**

As laser technology matured, its applications expanded exponentially. In medicine, lasers became indispensable tools for surgery, diagnostics, and therapeutic procedures. They enabled minimally invasive surgeries, improved precision in ophthalmic procedures, and revolutionized dermatological treatments.

In industry, lasers transformed manufacturing processes, enabling cutting, welding, drilling, and marking with unprecedented accuracy and speed. They became integral to the production of electronics, automobiles, and a wide range of consumer goods.

In communications, lasers enabled the development of fibre-optic networks, vastly increasing the capacity and speed of data transmission. Laser-based technologies revolutionized telecommunications, internet connectivity, and data storage.

Lasers also found their way into entertainment, with laser shows, laser pointers, and laser-based displays becoming popular forms of visual spectacle. In scientific research, lasers enabled the exploration of new frontiers in physics, chemistry, biology, and materials science.

CHAPTER-1

- **The Future of Lasers: Unlimited Potential**

The journey of the laser is far from over. Ongoing research and development continue to push the boundaries of laser technology, promising even more remarkable advancements in the years to come. Scientists are exploring novel materials, such as quantum dots and graphene, to create lasers with enhanced properties. Ultrafast lasers, capable of generating pulses of light lasting mere femtoseconds, are opening up new possibilities in imaging, spectroscopy, and materials processing.

The laser, born from Einstein's theoretical vision, has evolved into a ubiquitous tool that permeates nearly every aspect of modern life. Its impact on science, technology, and society is undeniable, and its future potential is boundless. As we continue to harness the power of light, the laser will undoubtedly remain at the forefront of innovation, illuminating the path towards a brighter and more technologically advanced future.

CHAPTER-1

1.3 PROPERTIES OF LASER LIGHT

Laser light possesses unique properties that set it apart from ordinary light sources. These distinct characteristics arise from the fundamental principles of laser operation and make lasers indispensable tools in various scientific, technological, and industrial applications.

1. **Monochromaticity:**

Laser light is highly monochromatic, consisting of a single wavelength or colour. This is in stark contrast to ordinary light sources like the sun or incandescent bulbs, which emit a broad spectrum of wavelengths. The Monochromaticity of laser light is a consequence of stimulated emission, where emitted photons are identical in wavelength to the photons that triggered their emission.

2. **Coherence:**

Laser light is coherent, both spatially and temporally. Spatial coherence refers to the uniform phase relationship of light waves across the beam's cross-section. This property allows laser light to maintain a well-defined beam shape and propagate over long distances without significant spreading. Temporal coherence, on the other hand, refers to the correlation of phases of light waves over time. It is essential for applications that require interference or precise timing, such as holography and interferometry.

3. **Directionality:**

Laser beams are highly directional, meaning they travel in a very narrow, focused path. This is unlike ordinary light sources, which radiate light in all directions. The directionality of laser beams is a consequence of the laser cavity design and the coherence of the emitted light. It enables lasers to deliver energy to a specific target with minimal divergence, making them ideal for applications like laser cutting, welding, and communication.

CHAPTER-1

4. High Intensity:

Laser light can be extremely intense, concentrating a large amount of energy into a small area. This intensity is achieved by the amplification of light within the laser cavity and the focusing of the beam. The high intensity of laser light makes it useful for applications such as laser surgery, materials processing, and scientific research, where precise and localized energy delivery is crucial.

5. Polarization:

Laser light can be polarized, meaning its electric field oscillates in a specific direction. This property is often controlled by the design of the laser cavity and can be useful for various applications. For example, polarized laser light is used in optical communication systems to increase data transmission capacity and in certain medical imaging techniques to improve contrast.

CHAPTER-1

1.4 BASICS OF LASER OPERATION THEORY

Laser operation is an intricate dance of photons, energy levels, and optical feedback, orchestrated by the principles of quantum mechanics and electromagnetism. Delving deeper into this captivating process reveals the intricacies that give rise to the laser's unique properties and its vast range of applications, including the crucial role of spontaneous emission.

1. The Gain Medium:

The Heart of Amplification At the heart of every laser lies the gain medium, a material specially chosen for its ability to amplify light through stimulated emission. This medium can be a solid crystal, like ruby or neodymium-doped glass, a gas like helium-neon or carbon dioxide, or a semiconductor material like gallium arsenide. The choice of gain medium dictates the specific wavelength of light the laser will produce, which in turn determines its applications.

2. Pumping:

Energizing the Atoms Before a laser can emit light, its gain medium must be energized, a process known as "pumping." This involves raising atoms or molecules within the medium to higher energy levels, creating a state of excitation. Pumping can be achieved through various means, depending on the laser type. Flash lamps, electrical discharges, or even other lasers can be used to supply the necessary energy.

3. Stimulated Emission:

The Quantum Cascade The crux of laser operation lies in stimulated emission, a quantum phenomenon predicted by Einstein. When an atom or molecule in an excited state encounters a photon with energy precisely matching the energy difference between its excited and ground states, it releases a second photon identical to the first in energy, phase, and direction. This cascade of identical photons is the amplification process that gives the laser its power and coherence.

CHAPTER-1

4. Spontaneous Emission:

The Seed of Light While stimulated emission is crucial for amplification, it wouldn't be possible without spontaneous emission. Excited atoms or molecules naturally tend to spontaneously decay back to their ground state, releasing photons in random directions. These spontaneously emitted photons act as the initial "seed" for the stimulated emission process. They trigger the cascade of identical photons that ultimately form the laser beam.

5. Population Inversion:

A Necessary Imbalance For sustained laser action, a population inversion must be established within the gain medium. This means that there must be more atoms or molecules in the excited state than in the lower energy state. This inversion is essential because stimulated emission competes with absorption, and a higher population in the excited state ensures that stimulated emission dominates.

6. Optical Cavity:

The Resonator's Role The gain medium is housed within an optical cavity, formed by two mirrors facing each other. One mirror is partially reflective, allowing a fraction of the light to escape as the laser beam, while the other is highly reflective, trapping most of the light within the cavity. This arrangement creates a resonant feedback loop where light bounces back and forth between the mirrors, passing through the gain medium repeatedly.

7. Light Amplification and Beam Formation:

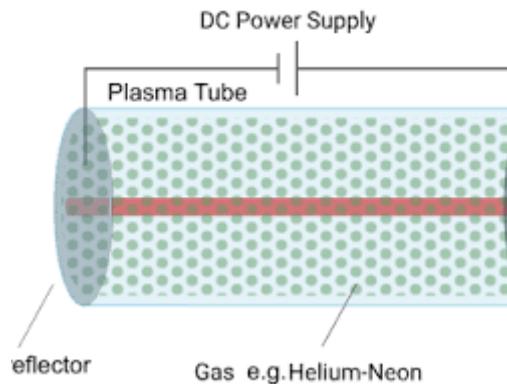
With each pass through the gain medium, the light is amplified through stimulated emission. The photons emitted by excited atoms add to the existing light wave, increasing its intensity while maintaining its coherence. The partially reflective mirror allows a portion of this amplified light to escape as the laser beam, while the rest continues to circulate within the cavity, sustaining the amplification process.

CHAPTER-1

8. Threshold and Output:

Achieving Laser Action As the pumping process continues, the energy stored in the excited atoms builds up. When the rate of stimulated emission exceeds the rate of losses, such as spontaneous emission and absorption, a threshold is reached, and laser oscillation begins. The laser output is a continuous or pulsed beam of light, depending on the pumping scheme and the specific design of the laser.

9. Beam Characteristics:


Monochromaticity, Coherence, Directionality, Intensity. The resulting laser beam possesses several distinct characteristics: it is highly monochromatic (single wavelength), coherent (waves in phase), directional (minimal spreading), and can be focused to extremely high intensities. These characteristics, arising from the interplay of stimulated and spontaneous emission, make laser light an incredibly versatile and powerful tool.

CHAPTER-1

1.5 BASIC COMPONENTS OF LASER

A laser comprises three essential components that work in harmony to produce its characteristic beam of light:

1. **Gain Medium:** This is the heart of the laser, the material responsible for amplifying light. It can be a solid crystal (e.g., ruby, Nd: YAG), a gas (e.g., helium-neon, CO₂), a semiconductor (e.g., gallium arsenide), or a liquid dye. The choice of gain medium determines the wavelength (colour) of the laser light.

FIG 1:1 GAIN MEDIUM

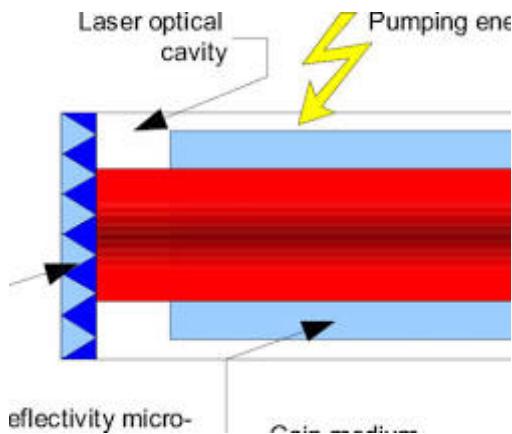

2. **Pump Source:** This provides the energy needed to excite the atoms or molecules in the gain medium to a higher energy level. This "pumping" process creates a population inversion, a necessary condition for laser action. Pump sources can be electrical discharges, flash lamps, other lasers, or chemical reactions.

FIG 1:2 PUMP SOURCE

CHAPTER-1

3. **Optical Cavity (Resonator):** This consists of two mirrors placed at either end of the gain medium. One mirror is partially reflective, allowing a small portion of the light to escape as the laser beam. The other mirror is highly reflective, trapping most of the light within the cavity. The light bounces back and forth between the mirrors, passing through the gain medium repeatedly and getting amplified with each pass. This feedback mechanism sustains the laser oscillation and ensures the coherence and directionality of the emitted beam.

FIG 1:3 RESONATOR

These three components work together in a synchronized manner:

- The pump source energizes the gain medium.
- The excited atoms or molecules in the gain medium spontaneously emit photons.
- These photons trigger stimulated emission, creating a cascade of identical photons.
- The optical cavity provides feedback, amplifying the light and shaping it into a coherent, directional beam.

CHAPTER-1

1.6 CLASSIFICATION OF LASERS

Laser systems can be divided based on

- Density of gain medium
- The state of matter of the active medium: Solid, Liquid, Gas
- based on the output of the laser beam, continuous wave (CW) or pulsed
- Based on region of wavelength: X-ray, Ultraviolet, Visible or Infrared.
- The number of energy levels that participate in the lasing process: three levels or four levels
- The pumping method of the active medium: Optical pumping, Electrical a. Types and operation of Pumping (angle, direct etc.)

1.6.1 Density of Gain Medium

Lasers can indeed be classified based on the density of the gain medium, which typically corresponds to the state of matter of the active medium:

1. Gas Lasers:

- Density: Lowest density among laser gain media.
- Active Medium: Gases such as helium-neon (HeNe), argon (Ar), carbon dioxide (CO₂), and excimer gases.
- Characteristics: High output power, excellent beam quality, and wide range of wavelengths.
- Applications: Scientific research, industrial materials processing, medical procedures.

2. Liquid Lasers (Dye Lasers):

- Density: Higher density than gases, but lower than solids.
- Active Medium: Organic dye molecules dissolved in a solvent.
- Characteristics: Broad tunability of wavelength, high peak power.
- Applications: Spectroscopy, dermatology, photochemistry.

CHAPTER-1

3. Solid-State Lasers:

- Density: Highest density among laser gain media.
- Active Medium: Solid materials like crystals (e.g., ruby, Nd: YAG) and glasses (e.g., Er: glass) doped with ions.
- Characteristics: High power, compact size, versatile applications.
- Applications: Industrial materials processing, medical surgery, laser range finding.

Additional Classification based on Density:

- **Semiconductor Lasers (Diode Lasers):**
- Density: High density, similar to solid-state lasers.
- Active Medium: Semiconductor materials like gallium arsenide (GaAs) or indium gallium arsenide phosphide (InGaAsP).
- Characteristics: Compact size, high efficiency, low cost.
- Applications: Telecommunications, optical storage, barcode scanners.

1.6.2 State of Matter of the Active Medium:

- **Solid-State Lasers:** The gain medium is a solid material, usually a crystal (e.g., ruby, Nd: YAG) or glass (e.g., Er: glass) doped with ions that provide the energy levels for lasing.
- **Gas Lasers:** The gain medium is a gas (e.g., helium-neon, argon, carbon dioxide). These lasers offer a wide range of wavelengths and can produce high-power continuous beams.
- **Liquid Lasers (Dye Lasers):** The gain medium is a liquid solution of organic dye molecules. These lasers are tunable over a broad range of wavelengths and are used in spectroscopy and medical applications.

1.6.3 Output of the Laser Beam:

- **Continuous Wave (CW) Lasers:** These lasers emit a continuous beam of light as long as the pump source is active.

CHAPTER-1

- **Pulsed Lasers:** These lasers emit short bursts of light at regular intervals. They can achieve much higher peak powers than CW lasers.

1.6.4 Region of Wavelength:

- **X-ray Lasers:** Emit radiation in the X-ray region of the spectrum, used for high-resolution imaging and scientific research.
- **Ultraviolet (UV) Lasers:** Emit radiation in the ultraviolet region, used for sterilization, lithography, and laser marking.
- **Visible Lasers:** Emit radiation in the visible spectrum, used for laser pointers, displays, and entertainment.
- **Infrared (IR) Lasers:** Emit radiation in the infrared region, used for telecommunications, surgery, and materials processing.

1.6.5 Number of Energy Levels:

- **Three-Level Lasers:** The lasing process involves three energy levels: a ground state, an excited state, and a metastable state. Examples include ruby lasers.
- **Four-Level Lasers:** The lasing process involves four energy levels, making them more efficient than three-level lasers. Examples include Nd: YAG lasers.

1.6.6 Pumping Method:

- **Optical Pumping:** The gain medium is excited by light from another source, such as a flash lamp or another laser.
- **Electrical Pumping:** An electrical discharge or current excites the gain medium. This method is common in gas and semiconductor lasers.

Types and Operation of Pumping:

Longitudinal (End) Pumping: The pump light enters the gain medium along the axis of the laser resonator.

Transverse (Side) Pumping: The pump light enters the gain medium perpendicular to the laser resonator axis.

Angle Pumping: A variation of transverse pumping where the pump light enters at an angle to the resonator axis.

CHAPTER-1

1.7 APPLICATIONS OF LASERS

Lasers, with their unique properties of Monochromaticity, coherence, and directionality, have found various applications across various fields. Their ability to deliver concentrated energy with precision has revolutionised industries, medicine, communication, and scientific research.

Industry: Lasers are indispensable tools in industrial settings, where their versatility and accuracy are highly valued. They are used for cutting, welding, drilling, and engraving a variety of materials, from metals and plastics to ceramics and composites. Their high precision and non-contact nature make them ideal for intricate and delicate work, as well as large-scale manufacturing processes.

Medicine: In the medical field, lasers have become invaluable for a wide range of procedures. They are used in surgery for precise tissue removal and cauterization, minimizing bleeding and risk of infection. Ophthalmologists use lasers for vision correction procedures like LASIK, while dermatologists employ them for skin resurfacing and hair removal. Lasers also play a crucial role in diagnostic imaging, such as optical coherence tomography (OCT), which provides detailed cross-sectional images of tissues.

Communication: Lasers have revolutionized communication by enabling the development of fibre-optic networks. These networks use laser light to transmit vast amounts of data over long distances with minimal signal loss. They form the backbone of modern Internet infrastructure, enabling high-speed broadband connections and facilitating global communication.

Science and Research: Lasers are essential tools for scientific research and exploration. They are used in spectroscopy to analyse the composition of materials, in microscopy to image biological samples at high resolution, and in particle physics to accelerate and study subatomic particles. Lasers also play a crucial role in cutting-edge research areas like quantum computing and quantum communication.

Consumer Electronics: Lasers are ubiquitous in consumer electronics. They are used in barcode scanners to quickly and accurately read product information, in laser printers to produce high-quality documents, and in optical storage devices like CDs, DVDs, and Blu-ray discs to read and write data. Laser pointers are popular for presentations and even as toys.

CHAPTER-1

Other Applications: Lasers have found numerous other applications in various fields. They are used in entertainment for laser shows, in military and defence for range finding and target designation, and in construction for levelling and alignment.

The continuous development of laser technology promises to expand its applications even further. As lasers become more compact, efficient, and affordable, they will find their way into even more aspects of our daily lives, enhancing our capabilities and transforming the way we interact with the world.

CHAPTER-1

1.8 LASER CLASSIFICATION FOR SAFETY: INTERNATIONAL AND AMERICAN STADARD

Lasers are classified based on their potential hazards to humans, primarily to the eyes and skin. The classification system provides essential information about the safety precautions required when handling and using lasers. Two major classification systems exist: the International Electro-Technical Commission (IEC) system and the American National Standards Institute (ANSI) system.

IEC Laser Classification:

Class	Description	Power Output (mW)	Wavelength (nm)	Example
1	Safe under all conditions of normal use.	< 0.4	Any	Laser printers, barcode scanners
1M	Safe for most conditions, except when viewed with magnifying optics.	< 0.4	Any	Some laser rangefinders
2	Safe for accidental exposure < 0.25 seconds due to blink reflex (visible light only).	< 1	400-700	Laser pointers
2M	Similar to Class 2, but hazardous when viewed with magnifying optics.	< 1	400-700	Some laser levellers
3R	Direct beam exposure can be hazardous. The risk of injury is lower than in higher classes.	< 5	Any	Some laser pointers, laser scanners
3B	Direct beams and specular reflections are hazardous.	< 500	Any	Research lasers, some industrial lasers
4	Most dangerous. Direct, specular, and diffuse reflections are hazardous. Can ignite materials.	> 500	Any	High-power lasers for surgery, cutting, welding

TABLE 1:1 (IEC Laser Classification)

CHAPTER-1

ANSI Laser Classification (Similar to IEC but with different class names):

Class	IEC Equivalent	Description	Power Output (mW)
i	1	Safe under all conditions of normal use.	< 0.4
ii	2	Safe for accidental exposure < 0.25 seconds due to blink reflex (visible light only).	< 1
iiiA	3R	Direct beam exposure can be hazardous. The risk of injury is lower than in higher classes.	< 5
in	3B	Direct beams and specular reflection are hazardous.	< 500
iv	4	Most dangerous. Direct, specular, and diffuse reflections are hazardous. Can ignite materials.	> 500

TABLE 1:2 (ANSI Laser Classification)

Key Points:

- Both systems classify lasers based on their potential hazard.
- Higher classes indicate greater risks of injury.
- Eye protection is crucial when working with lasers above Class 2.
- Always follow safety guidelines and regulations when handling lasers.
- Be aware of the specific laser class you are working with and take appropriate precautions.

CHAPTER-2

1.9 LITERATURE REVIEW

Micro laser engraver machines are specialized tools designed for precision engraving on small objects. These machines utilize laser beams to etch detailed designs onto various surfaces, including metals, plastics, glass, and wood. This literature review evaluates several key studies and articles related to the development and application of micro laser engraver machines.

In their study, Barakat, Aridi, and Moadad (2023) presented a significant advancement in the design of cost-effective laser engraving technology. The researchers focused on developing a mini CNC laser engraver with a reduced cost, aiming to make laser engraving more accessible for various applications. The study addresses the common challenge of high costs associated with laser engraving machines, which often limit their adoption in smaller workshops or by hobbyists. Barakat et al. (2023) detailed their approach to designing a mini CNC laser engraver that maintains functionality and precision while significantly lowering production costs. Their design incorporates affordable materials and components without compromising the performance of the engraver. The researchers evaluated the performance of their low-cost machine in terms of engraving quality, accuracy, and operational efficiency. They reported that the mini CNC laser engraver successfully produced high-quality engravings on various materials, demonstrating its capability to compete with more expensive models. This achievement highlights the potential of the design to democratize access to laser engraving technology, making it viable for small-scale production and individual use. Barakat et al. (2023) also discussed the broader implications of their work, noting that their cost-effective solution could stimulate innovation in fields where laser engraving is used, such as custom manufacturing, prototyping, and small-scale industrial applications. By lowering the entry barriers to laser engraving technology, their design has the potential to encourage more widespread experimentation and utilization of laser engraving in diverse settings. In conclusion, the study by Barakat, Aridi, and Moadad (2023) represents a meaningful contribution to the field of laser engraving technology. Their development of a low-cost mini CNC laser engraver not only addresses the financial constraints faced by potential users but also sets a precedent for future innovations in affordable manufacturing solutions.

CHAPTER-2

Bhanushali, Takarkhede, and Shah's study on a "Portable, Versatile and High Precision Laser Engraver" addresses the growing need for advanced yet adaptable laser engraving solutions in various applications. Their research focuses on the development of a laser engraver that combines portability with high precision, aiming to offer a versatile tool for both industrial and personal use. The study highlights the challenges associated with creating a laser engraver that maintains high accuracy while being portable. The authors propose a design that integrates compact, lightweight components without sacrificing the engraver's performance. This approach allows for high-precision engraving across different materials, making the device suitable for a range of applications from detailed industrial tasks to personalized crafts.

The versatility of the engraver is a key feature of the design. Bhanushali et al. discuss how their system accommodates various materials, including metal, plastic, glass, and wood, by adjusting the laser's parameters and utilizing interchangeable components. This flexibility is crucial for users who require a tool that can handle diverse engraving tasks without the need for multiple machines. Additionally, the study evaluates the performance of the portable laser engraver in terms of accuracy, engraving speed, and ease of use. The authors report that their design achieves high precision, with detailed engravings comparable to those produced by more stationary and expensive models. The portability aspect further enhances the engraver's appeal, making it suitable for on-site work or mobile operations where space and transportation are constraints. Overall, the research by Bhanushali, Takarkhede, and Shah contributes to the field by offering a solution that addresses both the demand for high precision and the need for portability in laser engraving technology. Their work demonstrates that it is possible to create a versatile, high-precision laser engraver that meets the requirements of diverse applications while being compact and easy to transport. This innovation has the potential to expand the use of laser engraving in both professional and personal settings, providing users with a powerful yet flexible tool for their engraving needs. In their study "Design of Low Cost Mini CNC Laser Engraver," presented at the 2023 IEEE 4th International Multidisciplinary Conference on Engineering Technology (IMCET), Barakat, Aridi, and Moadad (2023) address the challenge of making laser engraving technology more affordable and accessible. The researchers developed a mini CNC laser engraver designed to be cost-effective while maintaining high functionality and precision. The study provides a detailed exploration of the design process and the components chosen to

CHAPTER-2

reduce the overall cost of the machine. Barakat et al. (2023) focused on using economically feasible materials and streamlined engineering solutions to lower the production expenses. Their approach is significant because it tackles the financial barriers that typically limit the adoption of laser engraving technology to high-budget industrial settings or specialized applications. The researchers assessed the performance of their low-cost mini CNC laser engraver by evaluating its engraving quality, accuracy, and operational efficiency. Their results indicated that the machine performs well within these parameters, producing high-quality engravings on a variety of materials. This performance is noteworthy given the reduced cost of the machine, highlighting its potential as a viable alternative to more expensive models.

In addition to its technical achievements, the study emphasizes the potential impact of their design on the broader market. By lowering the cost of laser engraving machines, Barakat et al. (2023) argue that their design could democratize access to this technology, enabling a wider range of users, including small businesses and hobbyists, to utilize laser engraving for customized and intricate projects. Overall, the work of Barakat, Aridi, and Moadad (2023) represents a significant advancement in making laser engraving technology more accessible. Their low-cost mini CNC laser engraver not only meets the demands of precision and quality but also makes laser engraving feasible for users with limited budgets. This innovation could stimulate increased experimentation and application of laser engraving in various fields, potentially leading to new developments and uses for this versatile technology.

Yan, Sathya, Yusuf, Lien, and Peng (2022) explored innovative applications of fiber laser engraving in their study titled "Fibercuit: Prototyping High-Resolution Flexible and Kirigami Circuits with a Fiber Laser Engraver," presented at the 35th Annual ACM Symposium on User Interface Software and Technology. This research focuses on utilizing fiber laser technology to create high-resolution, flexible circuits and Kirigami-inspired patterns, demonstrating the versatile applications of laser engraving in modern electronic and design fields.

The study introduces "Fibercuit," a novel method for prototyping intricate and flexible electronic circuits using fiber laser engraving. Yan et al. (2022) emphasize the high precision and adaptability of fiber lasers, which allow for the fabrication of flexible circuits that can conform to various shapes and surfaces. This capability is particularly valuable for

CHAPTER-2

applications in wearable electronics, flexible displays, and other advanced technology sectors where traditional manufacturing methods may fall short.

The research also highlights the use of Kirigami techniques—an art form involving the cutting and folding of paper—to enhance the functionality and aesthetics of the circuits. By integrating these techniques with laser engraving, the authors demonstrate how complex, high-resolution patterns can be created, which not only improve the performance of flexible electronics but also add a new dimension to their design.

Yan et al. (2022) evaluated the effectiveness of their approach by testing the fabricated circuits for various parameters, including flexibility, resolution, and overall performance. Their results show that fiber laser engraving can achieve high levels of detail and accuracy, making it an effective tool for producing advanced electronic components with intricate designs.

The study's findings underscore the potential of fiber laser technology to push the boundaries of electronic circuit design and prototyping. By combining high-resolution engraving with flexible materials and Kirigami-inspired patterns, the research opens up new possibilities for creating innovative and functional electronic devices. This work contributes significantly to the field by showcasing the application of fiber lasers in producing cutting-edge, flexible electronics and provides a foundation for future research in this area.

Putra and Viola (2022) in their paper "Manufacturing System Design of a CNC Laser Engraver," published in *Jurnal Teknik Mesin*, offer a comprehensive examination of the design and manufacturing considerations involved in creating a CNC laser engraver. The study focuses on the intricate aspects of designing a CNC laser engraver system that balances performance, cost, and manufacturability.

The authors detail the key components and engineering processes involved in the design of their CNC laser engraver, including considerations for mechanical structure, control systems, and laser technology. Their approach aims to optimize the machine's performance by addressing common challenges such as precision, stability, and ease of maintenance. By integrating advanced design principles and manufacturing techniques, Putra and Viola (2022) strive to enhance the overall efficiency and functionality of CNC laser engraving systems.

CHAPTER-2

The paper provides insights into the selection of materials and components that influence the quality and durability of the laser engraver. The authors discuss various design strategies employed to ensure that the system meets industry standards while remaining cost-effective. They also explore the impact of different manufacturing methods on the final product's performance, highlighting how design choices can affect the engraver's accuracy and operational lifespan.

Furthermore, Putra and Viola (2022) evaluate the performance of their CNC laser engraver through practical testing and analysis. Their results indicate that the designed system achieves high precision and reliability, making it suitable for a range of applications from industrial production to detailed artistic work. The study emphasizes the importance of a well-rounded design approach that considers both technical specifications and practical manufacturing aspects.

Overall, the work by Putra and Viola (2022) contributes valuable knowledge to the field of CNC laser engraving by presenting a detailed design and manufacturing framework. Their study not only provides practical insights into creating effective laser engravers but also serves as a reference for future developments in CNC laser engraving technology. The research highlights the critical role of design and manufacturing processes in achieving high-performance laser engraving systems and offers a solid foundation for further innovation in the field.

Khan, Rahman, Arabi, Mohammad, Khan, Dey, and Mukherjee (2021) address the development of an affordable CNC laser engraver in their paper titled "Development of a Low-Cost CNC Machine Laser Engraver," presented at the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). The study focuses on overcoming cost barriers in CNC laser engraving technology while maintaining effective performance and functionality.

The authors describe their approach to designing a low-cost CNC laser engraver by carefully selecting components and materials that reduce overall expenses without compromising quality. Their design includes innovative solutions for cost reduction, such as using budget-friendly materials and simplified mechanical components. This approach aims to make laser

CHAPTER-2

engraving technology more accessible to a wider range of users, including small businesses and educational institutions.

Khan et al. (2021) detail the engineering and manufacturing processes involved in creating their low-cost CNC machine. They discuss various design considerations, including the choice of laser modules, motion control systems, and structural elements. The paper provides a thorough examination of how each component affects the engraver's performance and cost, highlighting the trade-offs made to achieve a balance between affordability and functionality.

The study includes performance evaluations of the developed CNC laser engraver, demonstrating its capability to perform precise and high-quality engravings. Khan et al. (2021) present data on the machine's accuracy, reliability, and overall efficiency, showing that their low-cost solution can compete with more expensive systems in terms of performance. Their findings suggest that it is possible to produce a high-quality laser engraver at a reduced cost by optimizing design and component selection.

Overall, the research by Khan et al. (2021) contributes to the field by presenting a viable solution for making CNC laser engraving technology more affordable. Their work emphasizes the potential for low-cost CNC laser engravers to democratize access to this technology, enabling a broader range of applications and users. The study provides valuable insights into cost-effective design strategies and highlights the feasibility of developing high-performance laser engravers within budget constraints.

CHAPTER-2

1.10 OBJECTIVE & SCOPE

Based upon the previous research study it is imperative that there is no cost-effective small laser engraving machine not available in the market to date. In order to improve the functionality and performance of the ongoing development of the mini laser engraving machine the scope of the present research study have been framed as follows.

1. To carryout 3d modeling of the z-axis slide and laser module holder with bracket in order to lay the groundwork for subsequent design optimization.
2. To optimize the designs using topology optimisation algorithms to create lightweight and efficient structures while maintaining desired structural requirement and to conduct a comprehensive material analysis to evaluate properties such as strength, durability and cost, aiding in the selection of the most suitable materials for the components.
3. To fabricate the optimally designed z-axis slide and laser module holder with appropriate manufacturing technologies.
4. To Assemble the fabricated parts and conduct a test run to evaluate the performance and functionality of the proposed upgraded mini laser engraver.

CHAPTER-3

2. LASER ENGRAVING

Laser engraving, a non-contact and remarkably precise material processing technique, has firmly established itself as an indispensable pillar of advanced manufacturing processes. At its core, this innovative method employs a highly focused, high-powered laser beam to interact with a material's surface, leading to localized heating and either vaporization or melting of the targeted area. This meticulously controlled removal of material creates depressions or indentations, resulting in intricate markings, patterns, or designs with exceptional accuracy and speed. A key advantage of laser engraving lies in its non-contact nature, eliminating the risk of surface damage and wear often associated with traditional contact-based engraving methods. This attribute is particularly crucial when working with delicate or sensitive materials, such as electronic components, medical implants, and optical lenses. Moreover, the absence of mechanical stress ensures the preservation of the underlying material's structural integrity, making it a preferred choice for applications where maintaining material properties is paramount. The precision offered by laser engraving is truly remarkable. The laser beam can be focused down to extremely small spot sizes, often on the order of micrometres, enabling the creation of intricate details and fine lines that were previously unattainable. This level of accuracy is indispensable in industries where marking small components, intricate patterns, or high-resolution barcodes is necessary for traceability, quality control, and anti-counterfeiting measures. Additionally, laser engraving showcases exceptional versatility, accommodating a wide range of materials, including metals, plastics, ceramics, glass, wood, leather, and even paper. This adaptability makes it a valuable asset in diverse manufacturing sectors, where marking various products, from industrial components to consumer goods, is essential. Furthermore, the ability to engrave on curved surfaces, irregular shapes, and even inside cavities further broadens its applicability in complex manufacturing scenarios.

In the fast-paced world of modern manufacturing, speed and efficiency are paramount. Laser engraving excels in this regard, as the swift movement of the laser beam across the material's surface enables the creation of intricate markings in a matter of seconds. This rapid turnaround time is a boon for high-volume production lines and just-in-time manufacturing, reducing lead times, improving production efficiency, and minimizing inventory costs. Across industries, laser engraving finds diverse applications.

In the automotive sector, it is employed to mark engine components, chassis parts, and interior trims with identification numbers, barcodes, and logos for traceability and brand

CHAPTER-3

recognition. The aerospace industry leverages laser engraving to mark aircraft components, tools, and panels with serial numbers, part numbers, and other vital information for maintenance and safety. In the electronics industry, it is utilized to mark circuit boards, microchips, and other electronic components with identifiers, production dates, and regulatory compliance information.

The medical device industry is a significant beneficiary of laser engraving, which is employed to mark surgical instruments, implants, and prosthetics with unique identifiers, sterilization codes, and patient information, ensuring traceability, reducing medical errors, and aiding in post-market surveillance. Laser engraving also finds artistic applications, enabling artists and designers to craft intricate artworks, engravings, and sculptures on diverse materials.

Looking ahead, the future of laser engraving in advanced manufacturing is incredibly promising. The emergence of high-power fibre lasers and ultra-fast laser technologies has expanded the capabilities of this process, allowing for deeper engravings, higher precision, and even faster processing speeds. Furthermore, the integration of laser engraving with robotics and automation systems amplifies its potential, enabling the marking of complex geometries and facilitating the mass customization of products. In conclusion, laser engraving has solidified its position as an indispensable tool in advanced manufacturing. Its non-contact nature, precision, versatility, speed, and efficiency have made it a game-changer across industries. As technology continues to evolve, laser engraving is poised to remain at the forefront of manufacturing innovation, driving further advancements in product customization, traceability, and quality control.

CHAPTER-3

2.1 FUNDAMENTAL ASPECTS AND KEY CONSIDERATION

Laser engraving, a versatile and precise material processing technique, has revolutionized numerous industries by enabling the creation of intricate markings, patterns, and designs on a wide array of materials. This technology utilizes a high-powered laser beam to interact with the material's surface, resulting in localized heating and the removal of material through vaporization or melting. Understanding the fundamental aspects of laser engraving, including laser engraving machines, materials, design considerations, and engraving settings, is crucial for achieving optimal results and maximizing the potential of this powerful technology.

Laser Engraving Machines:

At the heart of laser engraving lies the laser engraving machine, a sophisticated device that houses the laser source, focusing optics, and motion control systems. Different types of lasers are employed in engraving, including CO₂ lasers, fibre lasers, and diode lasers, each with specific advantages and limitations. CO₂ lasers are commonly used for engraving non-metals like wood, acrylic, and leather, while fibre lasers are ideal for marking metals. Diode lasers, on the other hand, are often used for low-power applications and marking plastics. The choice of laser type depends on the specific material being engraved and the desired engraving depth and quality. The power of the laser source is a critical factor in determining the engraving speed and depth. Higher-power lasers can engrave deeper and faster, but they may also be more expensive and require additional safety precautions. The focusing optics play a vital role in concentrating the laser beam onto a small spot size, ensuring high precision and fine detail in the engraving. The motion control system precisely directs the laser beam across the material's surface, following the design pattern and ensuring accurate and consistent markings.

Materials:

The range of materials suitable for laser engraving is vast and diverse. Metals, including stainless steel, aluminium, brass, copper, and titanium, are commonly engraved for industrial applications, product labelling, and personalized items. Plastics, such as acrylic, polycarbonate, and ABS, are frequently engraved for signage, trophies, and promotional products. Wood, leather, glass, ceramics, and even some fabrics can also be engraved to create unique designs and patterns. Each material interacts differently with the laser beam, requiring specific engraving parameters and considerations. The absorptivity of the material

CHAPTER-3

at the laser's wavelength determines how much energy is absorbed, influencing the engraving depth and quality. Reflective materials, like polished metals, may require pre-treatment or special coatings to enhance laser absorption. The thermal properties of the material, such as its melting point and thermal conductivity, also affect the engraving process and the final result.

Design Considerations:

Before embarking on laser engraving, careful consideration of the design is paramount. The complexity of the design, the desired level of detail, and the material's properties all influence the engraving process. Vector-based designs, consisting of lines and curves, are well-suited for laser engraving as they can be easily scaled and modified. Raster-based designs, composed of pixels, are typically used for engraving photographs or complex images. However, raster engraving often requires higher resolution and longer processing times compared to vector engraving. The choice of font, line thickness, and spacing between elements are crucial aspects of design consideration. Fine lines and intricate details may not be achievable on certain materials or with lower-power lasers. Additionally, the design should be optimized for the specific material to ensure optimal engraving quality and minimize the risk of material damage.

Engraving Settings:

The engraving settings, including laser power, speed, and frequency, are pivotal in achieving the desired engraving results. Laser power determines the energy delivered to the material, influencing the engraving depth and speed. Higher power settings result in deeper engravings and faster processing times, but they may also cause material discolouration or distortion. Lower power settings are suitable for delicate materials or shallow engravings. Engraving speed refers to the rate at which the laser beam moves across the material's surface. Higher speeds result in faster engraving, but they may compromise the engraving quality, especially for intricate designs. Lower speeds are generally preferred for high-resolution engravings and detailed patterns. Pulse frequency, also known as the laser's firing rate, determines the number of laser pulses per second. Higher frequencies are often used for engraving fine lines and achieving smooth surfaces, while lower frequencies are suitable for deeper engravings or materials that require longer interaction times with the laser beam. In conclusion, laser engraving is a powerful and versatile technology that has found widespread applications

CHAPTER-3

across diverse industries. Understanding the fundamental aspects of laser engraving, including laser engraving machines, materials, design considerations, and engraving settings, is essential for achieving optimal results. By carefully selecting the appropriate laser type, material, design, and engraving parameters, manufacturers, artists, and designers can harness the full potential of laser engraving to create precise, intricate, and aesthetically pleasing markings on a wide range of materials. As technology continues to advance, laser engraving is expected to play an even more significant role in shaping the future of manufacturing, product customization, and artistic expression.

CHAPTER-3

2.2 PROPERTIES

Precision and Accuracy: Laser engraving boasts exceptional precision, enabling the creation of intricate designs, fine lines, and minute details with unparalleled accuracy. The laser beam can be focused to a minuscule spot size, often in the order of micrometres, allowing for high-resolution markings on even the smallest components. This precision is crucial for applications like marking microchips, medical devices, and jewellery, where accuracy is paramount.

Non-Contact Nature: Unlike traditional engraving methods, laser engraving is a non-contact process, eliminating the need for physical contact between the tool and the workpiece. This prevents surface damage, wear, and contamination, making it ideal for delicate or sensitive materials like optical lenses, electronic components, and medical implants. The absence of mechanical stress ensures the preservation of the underlying material's structural integrity.

Versatility: Laser engraving is remarkably versatile and compatible with a wide range of materials, including metals, plastics, ceramics, glass, wood, leather, and even organic materials like paper. This adaptability allows for marking diverse products, from industrial components to consumer goods, catering to the needs of various industries. The ability to engrave on curved surfaces, irregular shapes, and even inside cavities further expands its applicability.

Speed and Efficiency: Laser engraving is a rapid process, with the laser beam swiftly traversing the material's surface to create markings in a matter of seconds. This high-speed operation is advantageous for high-volume production lines and just-in-time manufacturing, reducing lead times and improving overall efficiency. The automation potential of laser engraving systems further enhances productivity, allowing for unattended operation and consistent results.

Permanent and Durable Markings: Laser-engraved markings are permanent and highly durable, resistant to abrasion, fading, and environmental factors. This makes them ideal for applications where traceability, identification, and long-term marking are essential, such as product labelling, serialization, and security markings. The permanence of laser engravings ensures that critical information remains intact throughout the product's lifecycle.

CHAPTER-3

Customization and Personalization: Laser engraving allows for a high degree of customization and personalization. It enables the creation of unique designs, logos, barcodes, QR codes, serial numbers, and even photographs on various materials. This capability is widely utilized in industries like giftware, promotional items, trophies, and awards, where personalized products are highly valued.

Environmental Friendliness: Laser engraving is considered a relatively environmentally friendly process compared to traditional engraving methods. It does not involve the use of harsh chemicals or generate significant waste products. The precise nature of laser engraving minimizes material wastage, contributing to resource conservation and sustainability.

CHAPTER-3

2.3 THE HISTORY OF LASER ENGRAVING

Laser engraving, a modern marvel of material processing, has a fascinating history rooted in scientific discoveries and technological advancements. Its origins can be traced back to the early 20th century, with the development of the theoretical foundations of lasers by Albert Einstein in 1917. However, it wasn't until the 1960s that the first practical lasers were invented, opening up new possibilities for scientific research and industrial applications.

The invention of the ruby laser by Theodore Maiman in 1960 marked a significant milestone in the history of laser technology. This ground-breaking achievement paved the way for the development of various laser types, including the carbon dioxide (CO₂) laser in 1964, which later became instrumental in laser engraving. In the following years, researchers and engineers continued to refine laser technology, improving its power, precision, and versatility.

The first documented use of laser engraving dates back to 1965 when a laser was employed to drill holes in diamond dies. This pioneering application demonstrated the potential of lasers for precise material removal and sparked interest in exploring other industrial uses. Throughout the 1970s and 1980s, laser engraving gradually gained traction in various industries, including aerospace, automotive, and electronics.

In the 1990s, the advent of more powerful and affordable lasers, coupled with advancements in computer-aided design (CAD) software, further accelerated the adoption of laser engraving. This period witnessed the development of dedicated laser engraving machines, capable of producing intricate markings and designs on a wide range of materials. The versatility and precision of laser engraving made it a valuable tool for marking industrial components, creating personalized gifts, and producing artistic engravings.

The 21st century ushered in a new era of laser engraving, marked by the introduction of fibre lasers, diode lasers, and other advanced laser technologies. These innovations significantly improved the speed, accuracy, and efficiency of laser engraving, making it more accessible to a wider range of industries and applications. Today, laser engraving is ubiquitous, finding applications in diverse fields, from medical device manufacturing and aerospace engineering to jewellery making and artistic expression.

CHAPTER-3

The evolution of laser engraving has been driven by continuous advancements in laser technology, optics, and control systems. The development of more powerful and efficient lasers has enabled faster engraving speeds and deeper cuts. Improved focusing optics have enhanced the precision and accuracy of laser engraving, allowing for the creation of finer details and complex patterns. Additionally, sophisticated control systems have made laser engraving more user-friendly and accessible, even for those with limited technical expertise.

As technology continues to evolve, the future of laser engraving looks incredibly promising. Researchers are exploring new laser types, such as ultra-fast lasers, which offer even greater precision and the ability to engrave on a wider range of materials. The integration of artificial intelligence and machine learning algorithms is also expected to revolutionize laser engraving by optimizing engraving parameters, improving process efficiency, and enabling the creation of more complex and personalized designs.

CHAPTER-3

2.4 LASER MARKING, ENGRAVING, AND ETCHING THE DISTINCTION

Laser marking, engraving, and etching are three distinct processes utilized in the realm of laser material processing, each with unique characteristics and applications. While often used interchangeably, they differ fundamentally in the way they interact with the material and the resulting marks they produce.

Laser Marking: Laser marking is a non-invasive process that alters the material's surface appearance without significant material removal. It involves changing the colour or texture of the surface through processes like annealing, foaming, or carbonisation. The marks produced are typically superficial and have minimal depth. Laser marking is commonly used for creating contrasting markings, barcodes, QR codes, serial numbers, logos, and other identifying information on various materials.

Laser Engraving: Laser engraving involves the removal of material from the surface to create a cavity or depression. The laser beam vaporizes the material, leaving a noticeable depth in the engraved area. The resulting marks are permanent, highly visible, and tactile, making them ideal for applications like serial numbers, part numbers, and intricate designs. Laser engraving is widely used in industries like automotive, aerospace, and medical devices for marking components with critical information.

Laser Etching: Laser etching is a subset of laser engraving, but it operates with a lower power density compared to traditional engraving. The laser beam melts the material's surface, causing it to expand and create a raised mark. The marks produced are less deep than engravings and have a smoother, more polished appearance. Laser etching is often preferred for applications that require a subtle, less intrusive marking, such as decorative patterns on jewellery or identification marks on delicate components.

CHAPTER-3

Key difference

Feature	Laser Marking	Laser Engraving	Laser Etching
Material Removal	Minimal	Significant	Minimal
Mark Depth	Shallow	Deep	Shallow
Mark Appearance	Colour/Texture change	Cavity/Depression	Raised mark
Applications	Identification, Barcodes, Logos	Serial numbers, Part numbers, Designs	Decorative patterns, Subtle marks
Material Suitability	Wide range, including plastics and organic materials	Primarily metals, but also some plastics and ceramics	Mostly metals, especially softer metals
Mark Durability	Less durable than engraving, susceptible to wear	Highly durable, resistant to abrasion and fading	Less durable than engraving, but more durable than marking
Process Speed	Fastest	Slower than marking, faster than etching	Slower than marking and engraving
Cost	Typically less expensive than engraving and etching	More expensive than marking, less expensive than etching (depending on depth)	Can be more expensive than marking and engraving due to the finer detail

TABLE 3:1 (KEY DIFFERENCE)

CHAPTER-3

2.5 TYPES OF LASER ENGRAVING

Laser engraving encompasses various techniques that utilize laser beams to create markings on different materials. The primary types of laser engraving include:

1. **Vector Engraving:** This technique involves tracing the outline of a design using a laser beam. The laser follows the vector paths, creating precise lines and curves on the material's surface. Vector engraving is ideal for logos, text, barcodes, and geometric patterns.
2. **Raster Engraving:** Raster engraving is similar to printing an image, where the laser beam moves back and forth across the material, engraving pixel by pixel. This technique is suitable for complex images, photographs, and detailed artwork.
3. **Deep Laser Engraving:** Deep laser engraving utilizes a high-powered laser to penetrate deeper into the material, creating more pronounced and tactile marks. This technique is often used for industrial applications, serial numbers, and high-contrast markings.
4. **Combined Engraving:** Combined engraving blends both vector and raster engraving techniques to create intricate designs that incorporate both precise lines and detailed images. This approach is commonly used for personalized items, trophies, and awards.
5. **3D Laser Engraving:** 3D laser engraving involves creating three-dimensional reliefs or engravings on the material's surface. This technique adds depth and texture to the markings, making them more visually appealing and tactile.
6. **Photo Engraving:** Photo engraving is a specialized form of raster engraving that focuses on reproducing photographs or images with high detail and tonal variations. This technique is often used for personalized gifts, memorials, and artwork.
7. **Laser Marking:** While technically not engraving, laser marking involves changing the material's surface colour or texture without significant material removal. This can be achieved through annealing, foaming, or carbonization processes. Laser marking is often used for creating contrasting markings and identification codes.

CHAPTER-3

The specific type of laser engraving used depends on various factors, including the material being engraved, the desired depth and detail of the marking, and the application's purpose. By understanding the different types of laser engraving, users can select the most appropriate technique to achieve their desired results.

Furthermore, advancements in laser technology have led to the development of specialized laser engraving techniques, such as:

- **MOPA Laser Engraving:** This technique utilizes a master oscillator power amplifier (MOPA) laser source, which offers greater control over pulse duration and frequency. MOPA laser engraving is known for its ability to produce high-contrast markings on various materials, including metals and plastics.
- **Laser Ablation:** Laser ablation involves removing thin layers of material from the surface using short, high-energy laser pulses. This technique is often used in scientific research, micromachining, and medical applications.
- **Laser Cutting:** While not strictly engraving, laser cutting utilizes a focused laser beam to cut through materials. This technique is often used in conjunction with laser engraving to create complex shapes and designs.

CHAPTER-3

2.6 APPLICATIONS:

Laser engraving has emerged as a versatile and indispensable tool across numerous industries, offering a wide range of applications due to its precision, efficiency, and ability to work with diverse materials. Some notable applications include:

Industrial Applications:

- **Marking and Identification:** Laser engraving is extensively used for marking industrial components, tools, and equipment with identification numbers, barcodes, QR codes, serial numbers, logos, and other critical information. This ensures traceability, facilitates inventory management and enhances product authentication.
- **Customization and Personalization:** Laser engraving allows for the creation of unique and personalized products, ranging from customized gifts and promotional items to industrial tools and equipment. This includes engraving names, messages, logos, and even photographs on various materials, adding a personal touch and enhancing brand value.
- **Traceability and Security:** The permanent and tamper-proof nature of laser-engraved markings makes them ideal for traceability and security applications. This is crucial in industries like aerospace, automotive, and medical devices, where tracking and authenticating components are essential for safety and compliance.
- **Decorative and Aesthetic Enhancements:** Laser engraving is used to create intricate designs, patterns, and textures on various materials, enhancing their aesthetic appeal. This is particularly prevalent in the jewellery industry, where laser engraving is used to create detailed patterns on rings, pendants, and other jewellery pieces.
- **Barcode and QR Code Generation:** Laser engraving is a reliable method for creating barcodes and QR codes on products, packaging, and labels, enabling efficient inventory management, tracking, and product authentication.
- **Product Serialization:** Laser engraving is used to mark products with unique serial numbers, ensuring traceability and aiding in warranty tracking, quality control, and anti-counterfeiting efforts.
- **Surface Texturing:** Laser engraving can create specific surface textures on materials, enhancing their functionality or aesthetic appeal. This technique is used in

CHAPTER-3

applications such as creating anti-slip surfaces, improving grip, or creating decorative patterns.

Consumer Goods:

- **Personalized Gifts:** Laser engraving is a popular choice for creating personalized gifts like engraved jewellery, watches, phone cases, wallets, and other accessories. The ability to add names, messages, or special dates makes these gifts unique and memorable.
- **Trophies and Awards:** Laser engraving is widely used for customizing trophies, awards, and plaques with names, dates, logos, and other relevant information. This adds a professional touch and commemorates achievements in sports, academics, and other fields.
- **Promotional Products:** Laser engraving is an effective way to personalize promotional products like pens, keychains, USB drives, and mugs, making them more appealing to customers and enhancing brand recognition.
- **Electronics Personalization:** Laser engraving is used to customize laptops, tablets, smartphones, and other electronic devices with names, initials, or unique designs. This adds a personal touch and makes the devices stand out.

Artistic and Creative Applications:

- **Artwork and Sculptures:** Laser engraving is a powerful tool for artists and designers to create intricate artwork, engravings, and sculptures on various materials like wood, glass, acrylic, and metal. This allows for the creation of unique and visually stunning pieces.
- **Architectural Models:** Laser engraving is used to create detailed architectural models with precise cuts and engravings. This helps architects and designers visualize their projects and make informed decisions.
- **Custom Signage:** Laser engraving is used to create custom signage for businesses, institutions, and public spaces. The ability to engrave on various materials like wood, metal, and acrylic offers flexibility in design and durability.

CHAPTER-3

- **Musical Instruments:** Laser engraving is used to decorate and personalize musical instruments like guitars, violins, and drums. This adds a unique touch and makes the instruments stand out.

Medical and Scientific Applications:

- **Medical Devices:** Laser engraving is used to mark surgical instruments, implants, and other medical devices with unique identifiers, sterilization codes, and patient information, ensuring traceability and patient safety.
- **Scientific Research:** Laser engraving is employed in scientific research for creating precise patterns and structures on microfluidic devices, lab-on-a-chip platforms, and other experimental setups.
- **Dental Implants:** Laser engraving is used to mark dental implants with information such as brand, size, and lot number, aiding in traceability and quality control.

CHAPTER-3

2.7 ADVANTAGES

Laser engraving offers numerous advantages over traditional engraving methods, making it a preferred choice in various industries and applications.

1. Precision and Accuracy:

Laser engraving provides unparalleled precision, enabling the creation of intricate details, fine lines, and complex patterns with exceptional accuracy. The laser beam can be focused to a minuscule spot size, allowing for high-resolution markings on even the smallest components. This precision is crucial for applications that demand intricate designs, such as jewellery, electronics, and medical devices.

2. Versatility:

Laser engraving is compatible with a wide range of materials, including metals, plastics, wood, glass, leather, and ceramics. This versatility makes it a valuable tool across diverse industries, catering to the needs of product marking, customization, and decoration on various surfaces.

3. Non-Contact and Non-Invasive:

Unlike traditional engraving methods that involve physical contact with the material, laser engraving is a non-contact process. This eliminates the risk of surface damage, wear, and contamination, making it ideal for delicate or sensitive materials like optical components, medical implants, and electronic devices.

4. Speed and Efficiency:

Laser engraving is a fast and efficient process, allowing for quick turnaround times and high-volume production. The laser beam moves rapidly across the material's surface, creating markings in a matter of seconds. This speed is particularly advantageous in industrial settings where productivity and efficiency are paramount.

CHAPTER-3

5. Permanent and Durable Markings:

Laser-engraved markings are permanent and highly resistant to abrasion, fading, and environmental factors. This makes them ideal for applications where long-term identification, traceability, and branding are essential. For instance, laser-engraved serial numbers on industrial components can remain legible for years, even in harsh environments.

6. Customization and Personalization:

Laser engraving allows for a high degree of customization and personalization. It enables the creation of unique designs, logos, text, barcodes, QR codes, and even photographs on various materials. This customization capability is valuable for personalized gifts, promotional items, trophies, awards, and other products where a personal touch is desired.

7. Repeatability and Consistency:

Laser engraving offers excellent repeatability and consistency, ensuring that each marking is identical to the previous one. This is crucial for maintaining quality standards and ensuring uniformity in mass production.

8. Environmental Friendliness:

Compared to traditional engraving methods that may involve harsh chemicals or abrasive materials, laser engraving is a relatively environmentally friendly process. It produces minimal waste and does not require the use of harmful substances.

9. Cost-Effectiveness:

While the initial investment in a laser engraving machine might be higher than traditional methods, the long-term cost-effectiveness is significant. Laser engraving eliminates the need for consumables like engraving bits or tools, reducing ongoing operational costs.

CHAPTER-3

2.8 LIMITATIONS

While laser engraving offers numerous advantages, it is essential to acknowledge its limitations to make informed decisions regarding its applicability. Some of the key constraints include:

1. Material Limitations:

Laser engraving is not suitable for all materials. Some materials, such as certain plastics and fabrics, may melt or burn when exposed to the laser beam. Additionally, highly reflective materials might require special coatings or treatments to enhance laser absorption and achieve optimal engraving results.

2. Depth Limitations:

The depth of laser engraving is typically limited depending on the laser power and the material being engraved. While deep engraving is possible, it may require multiple passes or specialized lasers, increasing processing time and cost.

3. Resolution and Detail:

While laser engraving offers high precision, the achievable resolution and level of detail are limited by the laser spot size and the material's properties. Extremely fine details or complex patterns might not be feasible on certain materials or with lower-powered lasers.

4. Cost:

Laser engraving machines can be expensive to purchase and maintain, especially high-powered models capable of deep engraving or working with a wide range of materials. This initial investment can be a barrier for small businesses or individuals.

CHAPTER-3

5. Fume and Debris Generation:

Laser engraving can generate fumes and debris, especially when working with certain materials like plastics or wood. Proper ventilation and filtration systems are necessary to ensure a safe working environment and protect both operators and the equipment.

6. Limited Colour Options:

Laser engraving primarily creates monochromatic markings, typically black, brown, or white, depending on the material. Achieving a broader range of colours might require additional processes like colour filling or using specialized pigments.

7. Heat-Affected Zone:

The heat generated by the laser beam can create a heat-affected zone (HAZ) around the engraved area, potentially altering the material's properties in that region. This can be a concern for certain materials or applications where maintaining material integrity is critical.

8. Expertise and Training:

Operating laser engraving machines effectively and safely requires training and expertise. Users need to understand the various parameters, safety protocols, and material-specific considerations to achieve optimal results.

9. Safety Concerns:

Laser engraving involves the use of high-powered laser beams, which can pose safety risks if not handled properly. Eye protection and other safety measures are crucial to prevent accidents and injuries.

CHAPTER-4

3. DESIGN OF LASER MODULE HOLDER BRACKET AND Z-AXIS SLIDE

Laser engravers have transformed the landscape of personalization and customization, offering a precise and versatile tool for marking, etching, and even cutting a wide array of materials. From industrial applications to artistic endeavours, these devices harness the power of high-intensity laser beams to vaporize or ablate the surface of materials like wood, metal, plastic, leather, and glass, leaving behind intricate designs, logos, text, or even photographs. In recent years, mini laser engravers have emerged as a game-changer, democratizing this technology and making it accessible to a broader audience. These compact and affordable devices retain the precision and versatility of their larger counterparts while offering the added benefits of portability and ease of use. Hobbyists, artisans, small businesses, and educational institutions alike have embraced mini laser engravers for their ability to personalize gifts, create unique products, and even fabricate small-scale prototypes. The user-friendly interfaces and intuitive software of these devices have lowered the barriers to entry, allowing even those with limited experience to unleash their creativity and explore the endless possibilities of laser engraving. Whether etching intricate patterns on jewellery, crafting personalized gifts, or adding a unique touch to everyday objects, mini laser engravers have empowered individuals and businesses to turn their ideas into tangible creations.

The design and development of a cost-effective and optimized mini laser engraver involves a multifaceted approach that considers various factors. These include the selection of appropriate laser sources, focusing optics, beam delivery systems, control electronics, and mechanical components, all while balancing performance, affordability, and safety considerations. However, the traditional design process often relies on iterative prototyping and empirical testing, which can be time-consuming and resource-intensive. To overcome these limitations and achieve a more efficient and optimized design, the integration of topology optimization methods and 3D printing technologies has emerged as a promising solution. Topology optimization is a computational technique that aims to find the optimal distribution of material within a given design space, subject to specific constraints and objectives. By applying topology optimization to the design of mini laser engraver components, it is possible to achieve significant reductions in weight, material usage, and manufacturing costs, while simultaneously improving performance and functionality.

The optimized designs generated through topology optimization can then be readily fabricated using 3D printing technologies, which offer a high degree of design freedom, rapid

CHAPTER-4

prototyping capabilities, and the ability to produce complex geometries with intricate details. This synergistic combination of topology optimization and 3D printing enables the creation of highly efficient, lightweight, and cost-effective mini laser engravers that can meet the specific needs of various applications.

CHAPTER-4

3.1 3D MODELING & DESIGN

3.1.1 AUTODESK FUSION 360:

Autodesk Fusion 360 represents a significant advancement in the realm of computer-aided design (CAD) and engineering software. As a cloud-based platform, Fusion 360 offers a unified solution that integrates CAD, computer-aided manufacturing (CAM), and computer-aided engineering (CAE) into a single, cohesive environment. This integration facilitates a streamlined workflow for designers, engineers, and manufacturers, transforming traditional design processes and fostering innovation across various industries.

Integration of Design and Manufacturing

One of the standout features of Autodesk Fusion 360 is its comprehensive integration of design and manufacturing tools. Unlike traditional CAD software, which often requires separate applications for different aspects of the design process, Fusion 360 combines design, simulation, and production capabilities into one platform. This integration eliminates the need for data translation between different software programs, reducing errors and enhancing efficiency.

Fusion 360's unified environment supports a wide range of design tasks, from creating complex 3D models to generating detailed technical drawings. Users can quickly iterate on designs, run simulations to test performance, and prepare models for manufacturing—all within the same application. This seamless transition from concept to production helps accelerate product development cycles and improves overall design quality.

Cloud-Based Collaboration

Another key advantage of Fusion 360 is its cloud-based architecture. The software leverages cloud computing to enable real-time collaboration among team members, regardless of their physical location. Designers and engineers can work on the same project simultaneously, share updates instantly, and access their work from any device with an internet connection. This collaborative approach fosters greater innovation and ensures that all stakeholders are aligned throughout the design process.

CHAPTER-4

The cloud-based nature of Fusion 360 also facilitates version control and data management. Users can track changes, revert to previous versions, and manage project files more effectively. This reduces the risk of data loss and ensures that everyone involved in a project has access to the most current information.

Advanced Simulation and Analysis

Fusion 360's simulation and analysis tools provide users with powerful capabilities for evaluating the performance of their designs. The software offers a range of simulation options, including stress analysis, thermal analysis, and fluid flow analysis. These tools enable designers to test their models under various conditions and identify potential issues before physical prototypes are created.

The integration of simulation within Fusion 360 allows for iterative testing and optimization, leading to more robust and reliable designs. By performing simulations early in the design process, users can make informed decisions and avoid costly revisions later on. This capability is particularly valuable for industries where performance and safety are critical, such as aerospace, automotive, and consumer products.

Generative Design

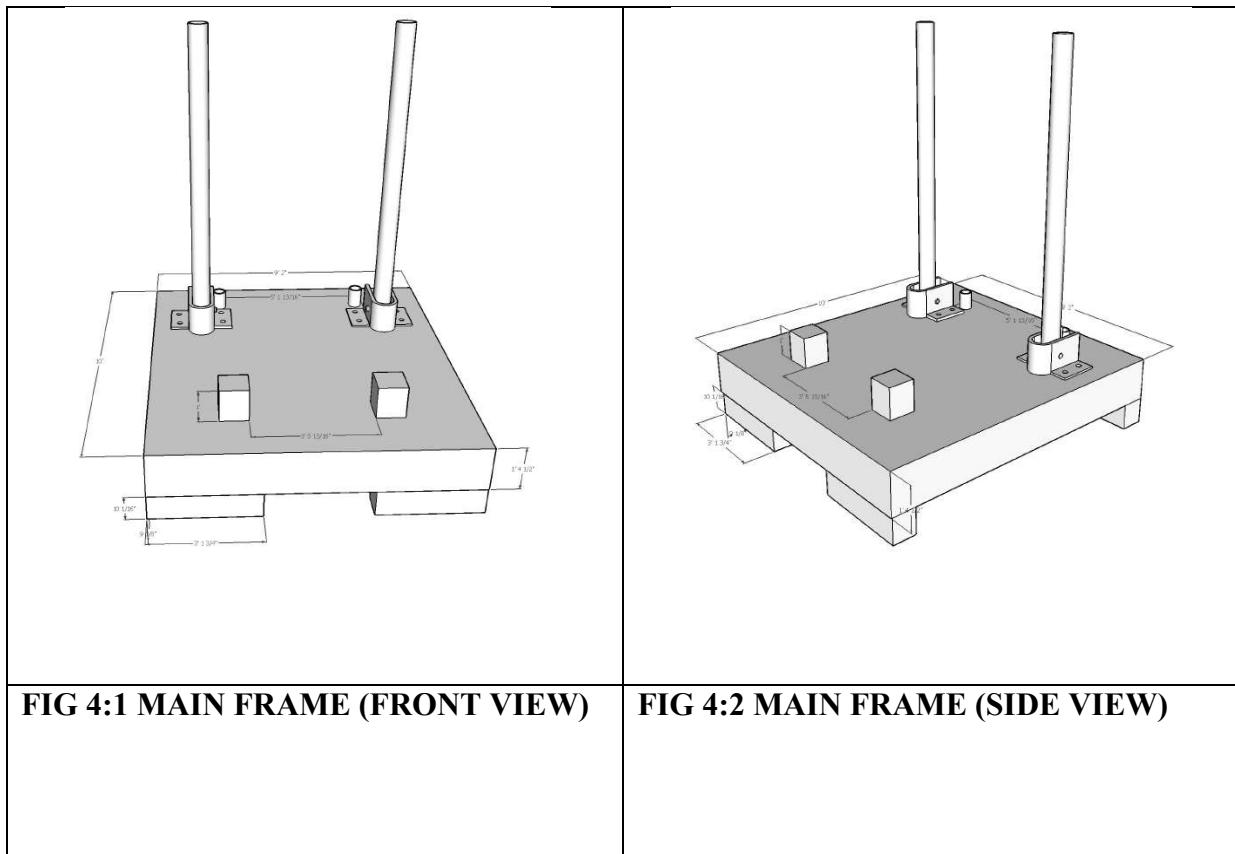
Fusion 360 also introduces the concept of generative design, which represents a revolutionary approach to design optimization. Generative design uses advanced algorithms to explore a vast range of design possibilities based on specified constraints and performance criteria. The software generates multiple design alternatives, each optimized for factors such as weight, strength, and material usage.

This process allows designers to explore innovative solutions that may not be immediately apparent through traditional design methods. By leveraging generative design, users can create more efficient and effective products, reduce material waste, and accelerate the development of cutting-edge technologies.

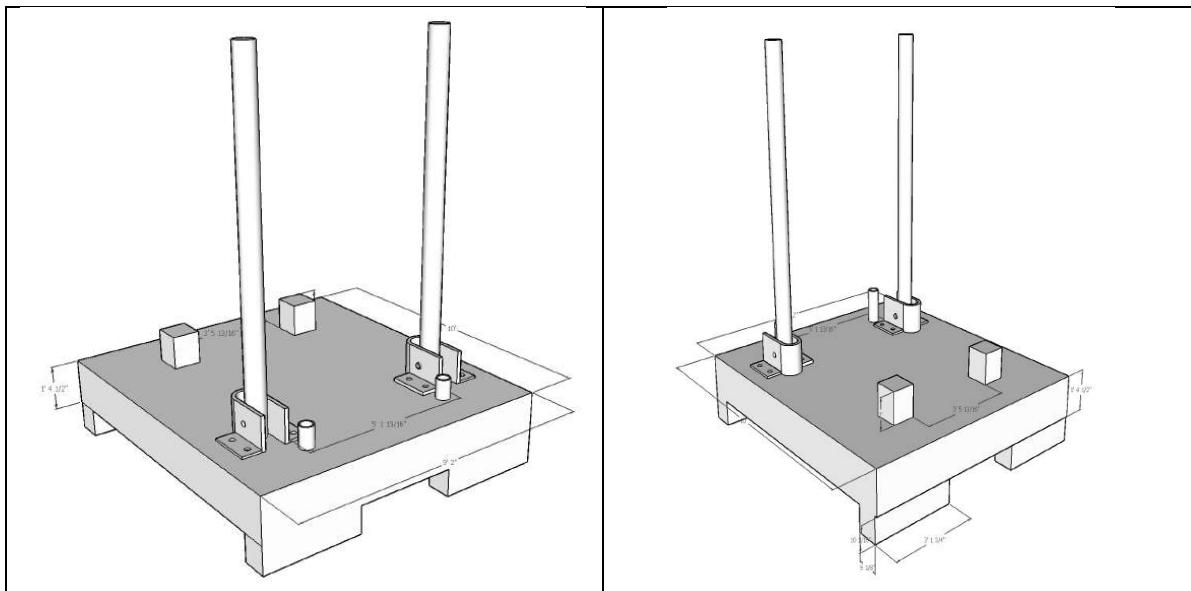
CAM and Manufacturing Integration

The CAM capabilities of Fusion 360 further enhance its utility as a comprehensive design and manufacturing platform. The software provides tools for generating toolpaths and

CHAPTER-4

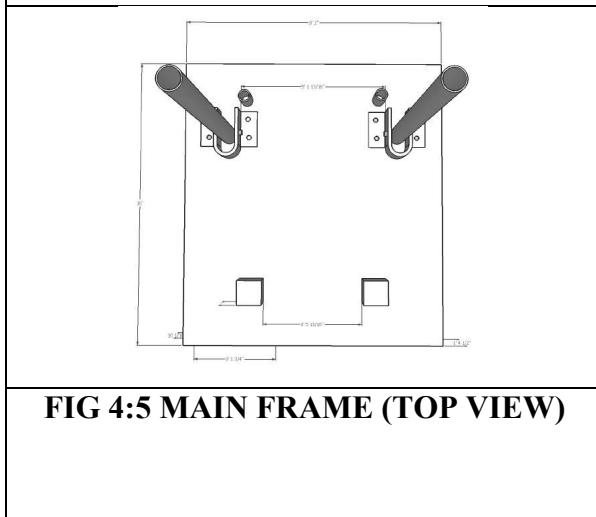

machining operations directly from 3D models. This integration streamlines the transition from digital designs to physical parts, allowing for efficient and precise manufacturing.

Fusion 360 supports a variety of manufacturing processes, including milling, turning, and additive manufacturing (3D printing). Users can create detailed machining setups, simulate toolpaths, and optimize cutting strategies—all within the same environment where the design was created. This integration helps ensure that designs are manufacturable and that production processes are optimized for efficiency.


CHAPTER-4

3.1.2 STRUCTURE OF THE EXISTING FRAME

The initial phase of constructing a mini laser engraver involves utilizing an existing design framework that has been meticulously planned and developed by a previous designer. This established design includes key decisions regarding the machine's dimensions, laser type, control system, and other essential components. By adopting this pre-existing design, the foundational elements of the machine are already well-documented and optimized, allowing for a more efficient construction process as the focus shifts to refining and assembling the components.

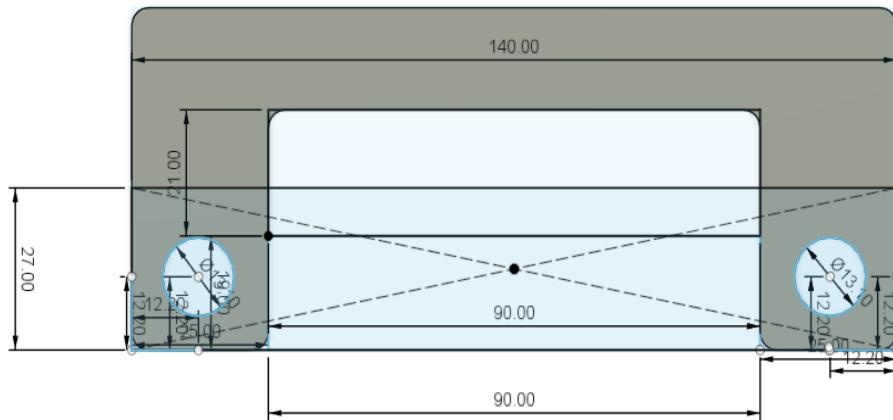
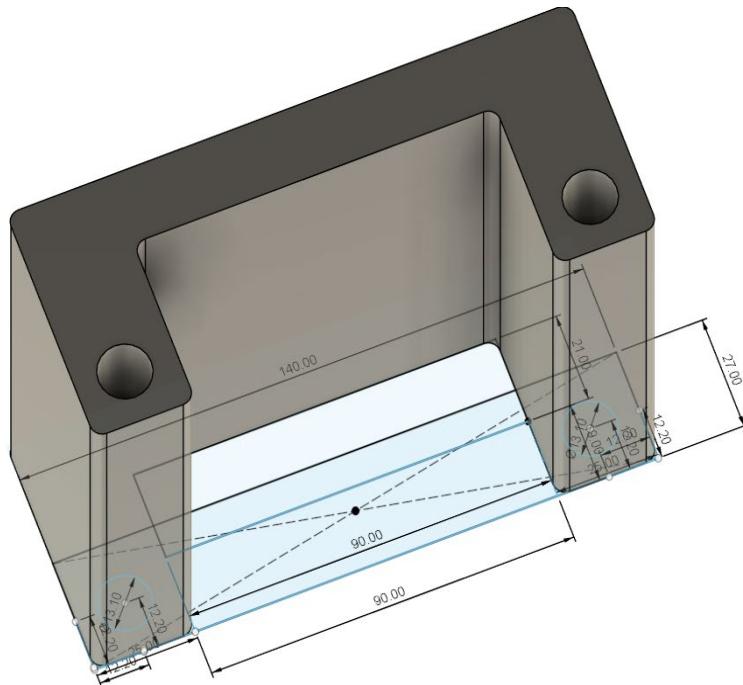


CHAPTER-4

FIG 4:3 MAIN FRAME (BACK VIEW)

FIG 4:4 MAIN FRAME (SIDE VIEW)

FIG 4:5 MAIN FRAME (TOP VIEW)



CHAPTER-4

3.1.3 DESIGN OF THE Z-AXIS SLIDE

The technical drawing illustrates the design and dimensions for a z-axis and x-axis module intended for integration onto a frame holder, with all measurements specified in millimetres (mm). This design has been meticulously crafted within the Autodesk Fusion 360 software environment.

Key Dimensions and Features:

- **Overall Dimensions:** The module measures 140.00 mm in width and 27.00 mm in height.
- **X-Axis Travel:** The x-axis facilitates a travel distance of 90.00 mm in either direction from the centre point, resulting in a total x-axis travel of 180.00 mm.
- **Z-Axis Travel:** The z-axis permits a travel distance of 90.00 mm, presumably upward or downward.
- **Extruded Body (115.00 mm):** A new body has been extruded to a length of 115.00 mm. This extrusion serves a dual purpose:
 - **Frame Fitment:** The extrusion ensures a snug fit within the frame holder, providing stability and preventing unwanted movement.
 - **Component Integration:** The extrusion length is designed to accommodate the z-axis and x-axis modules, providing ample space for their installation and operation.
- **Symmetrical Design:** The design exhibits symmetry along the x and z axes, evident in the mirror-image placement of holes and cut-outs.
- **Holes and Cut-outs:** Various holes and cut-outs are strategically positioned throughout the design. Notably, two prominent circular cut-outs are present, each with a diameter of 13.00 mm. These cut-outs could potentially serve as mounting points or interfaces for other components.
- **Chamfers:** Chamfers have been thoughtfully incorporated at several edges to ensure seamless integration and assembly with adjoining parts.

CHAPTER-4**FIG 4:6 Z-AXIS SLIDE (TOP VIEW)****FIG 4:7 Z-AXIS SLIDE (ORTHOGONAL VIEW)**

CHAPTER-4

3.1.4 DESIGN THE LASER MODULE HOLDER BRACKET

The module is primarily cubic, with overall dimensions in the range of 34.30 mm to 41.00 mm, emphasizing a balanced and symmetrical structure. The design includes multiple views—front, back, top, and bottom—all of which have been meticulously detailed to ensure that each aspect of the module aligns correctly.

Key Features

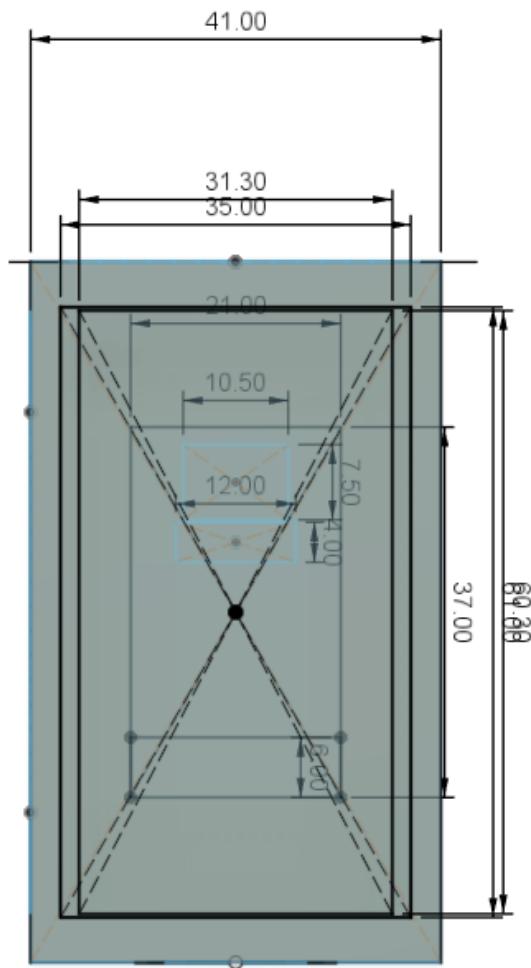
1. Central Aperture:

- The central feature of the design is a circular aperture with a diameter of 20 mm. This likely serves as the main functional element of the laser module, possibly for the emission or focusing of the laser beam.
- The aperture is consistently positioned in the centre across different views, ensuring that it is the focal point of the module.

2. Square and Rectangular Frames:

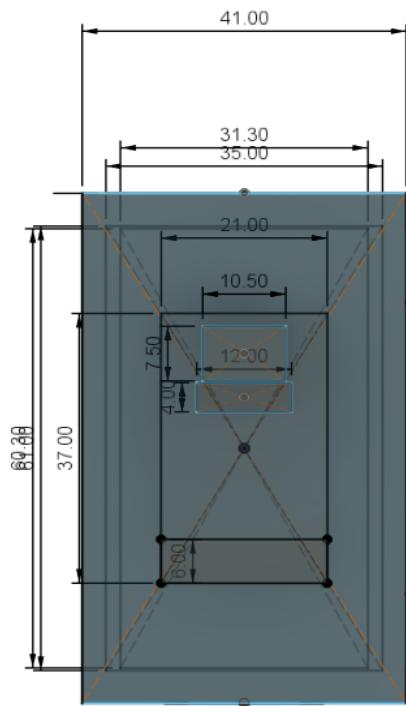
- The module's exterior is defined by square and rectangular frames, with dimensions varying slightly between 34.30 mm to 35.00 mm in width and 35.00 mm to 41.00 mm in height.
- This geometric consistency suggests that the module is designed to fit within a specific housing or to interface with other components that require precise dimensions.

3. Mounting and Alignment Features:


- The design includes various smaller holes and notches, particularly noticeable in the back and bottom views. These features appear to be intended for mounting the module or for securing it within a larger assembly.
- Additionally, the precise alignment of these features across different views indicates that the module is designed to be easily assembled and integrated, with minimal adjustments required.

4. Symmetry and Proportions:

- The design emphasizes symmetry, both in the placement of features and in the overall proportions of the module. This symmetry is crucial for ensuring that the laser module functions correctly and is balanced within its operational environment.


CHAPTER-4

- The top and bottom views mirror each other, reinforcing the design's structural integrity and ease of manufacturing.

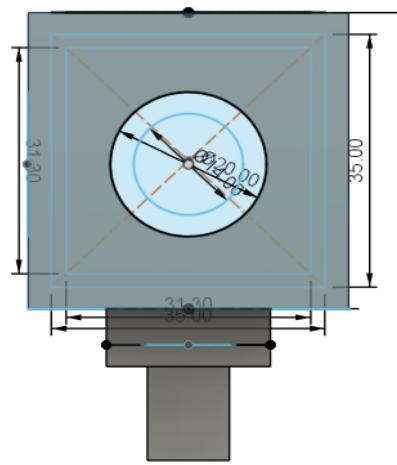


FIG 4:8 FRONT VIEW OF LASER MODULE HOLDER BRACKET

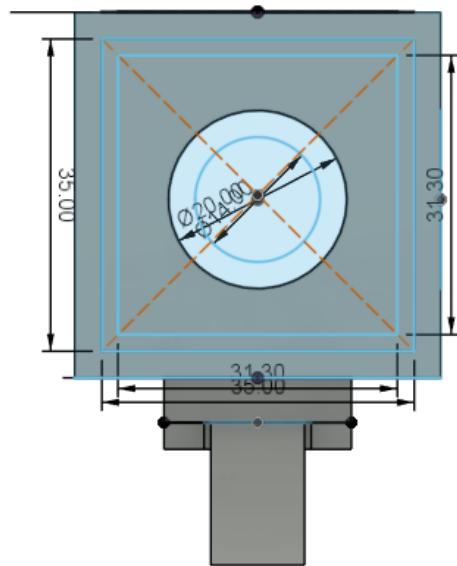

CHAPTER-4

FIG 4:9 BACK VIEW OF LASER MODULE HOLDER BRACKET

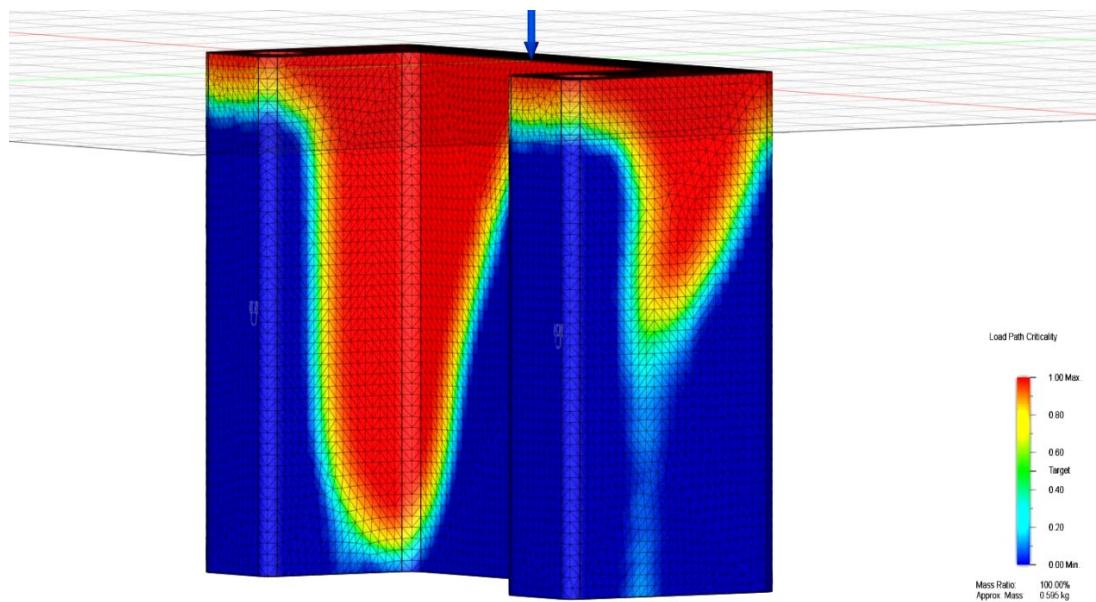
FIG 4:10 TOP VIEW OF THE LASER MODULE HOLDER BRACKET

CHAPTER-4

FIG 4:11 BOTTOM VIEW OF LASER MODULE HOLDER BRACKET

CHAPTER-4

3.2 OPTIMIZATION


3.2.1 TOPOLOGY OPTIMIZATION OF Z-AXIS SLIDE

I optimised the Z-axis slide using Autodesk Fusion 360. With a 29.40 N load in mind, I meticulously prepared my model. Knowing the importance of material selection, I opted for PET plastic, appreciating its lightweight nature and strength.

A critical part of my design was the hollow cylindrical section - I marked this as a 'Preserve Geometry' constraint, recognizing its functional significance. With the model ready, I set up the topology optimization study, carefully applying the load and constraints. My aim was clear: minimize the holder's mass while ensuring it could handle the structural demands.

After hitting 'Solve', I eagerly awaited the results. Fusion 360's visualization tools provided a fascinating glimpse into the optimized shape. Stress distributions and displacements helped me validate the design's integrity.

With the optimized form in hand, I'm now ready to refine and implement these changes into my original model. PET plastic's properties will undoubtedly play a key role as I finalize this design, confident in its optimized performance and efficient use of material.

FIG 4:12 TOPOLOGY STEP 1 OF Z-AXIS SLIDE

CHAPTER-4

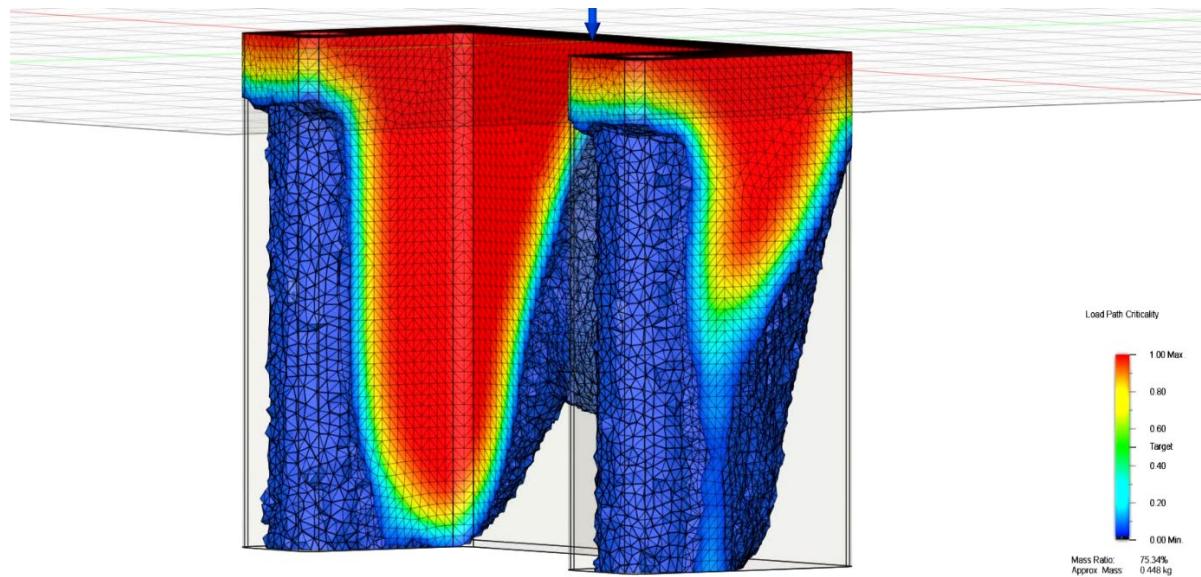


FIG 4:13 TOPOLOGY STEP 2 OF Z-AXIS SLIDE

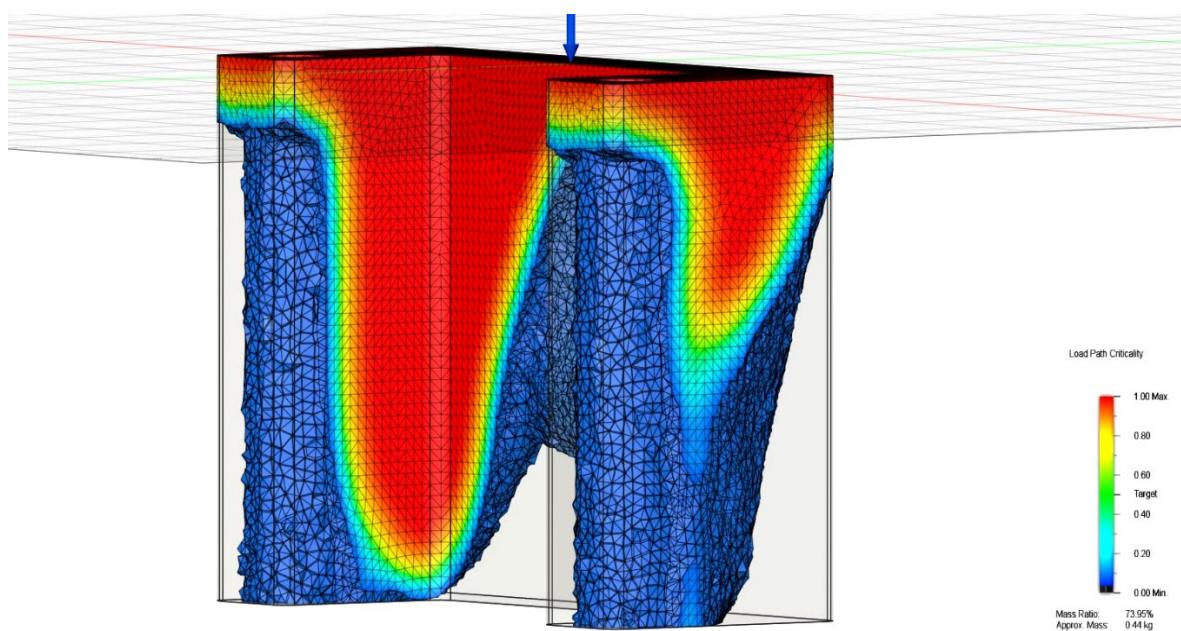


FIG 4:14 TOPOLOGY STEP 3 OF Z-AXIS SLIDE

CHAPTER-4

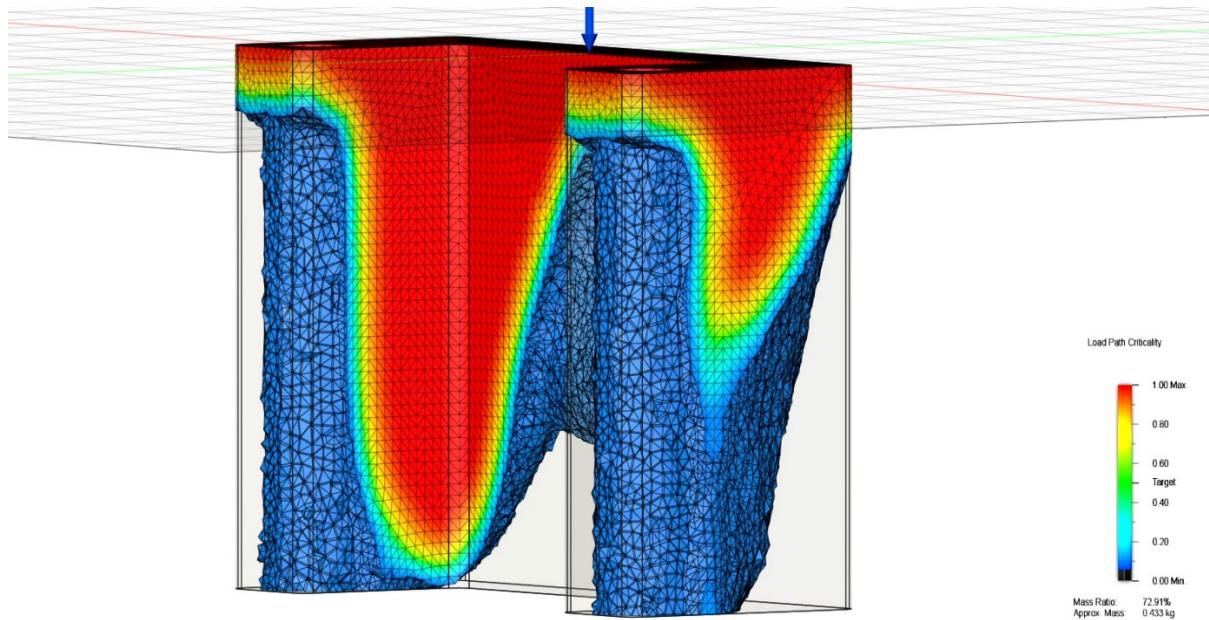


FIG 4:15 TOPOLOGY STEP 4 OF Z-AXIS SLIDE

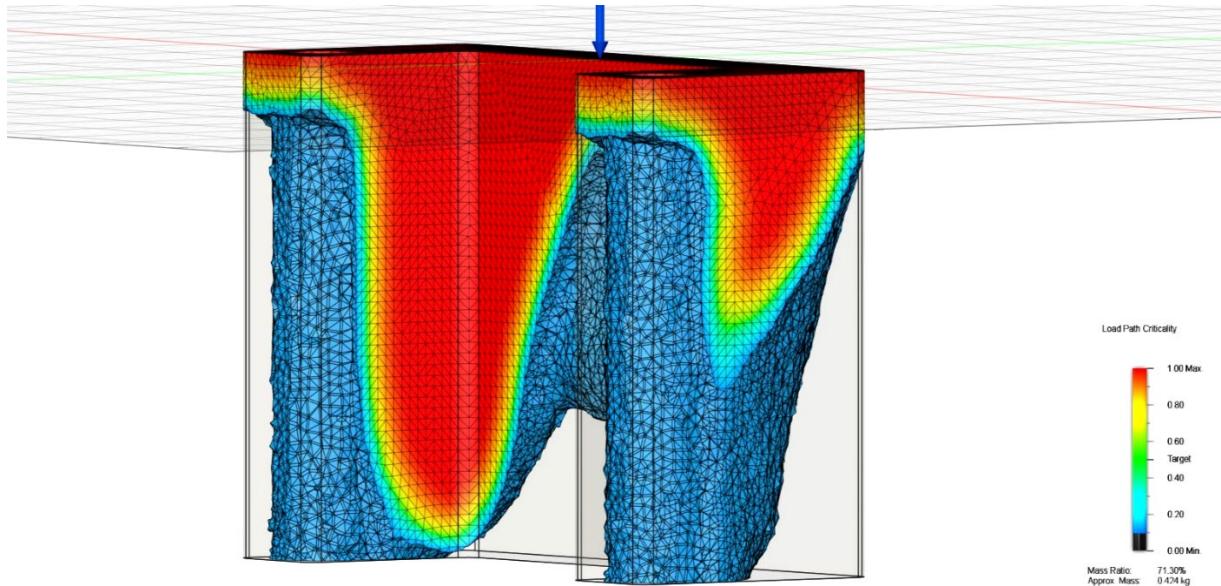


FIG 4:16 TOPOLOGY STEP 5 OF Z-AXIS SLIDE

CHAPTER-4

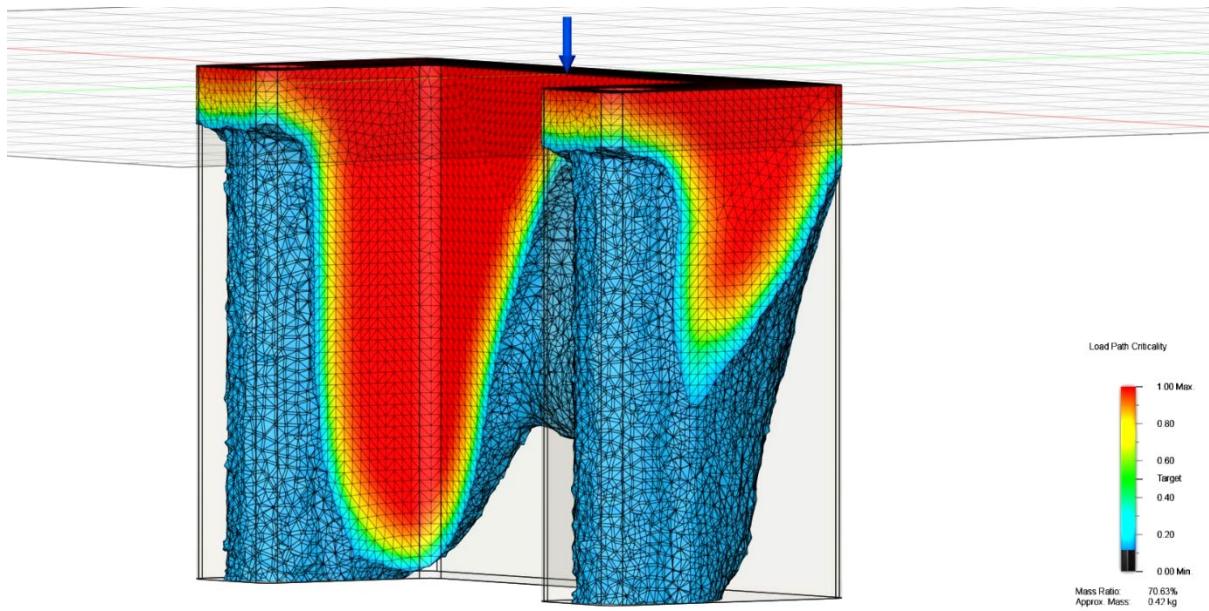


FIG 4:17 TOPOLOGY STEP 6 OF Z-AXIS SLIDE

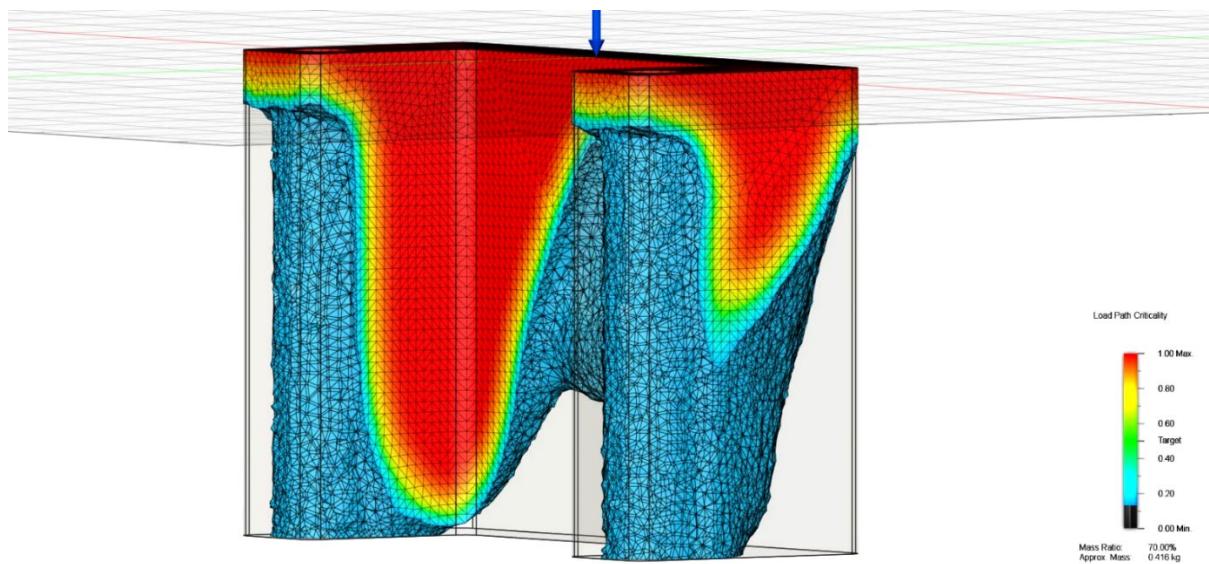


FIG 4:18 TOPOLOGY STEP 7 OF Z-AXIS SLIDE

CHAPTER-4

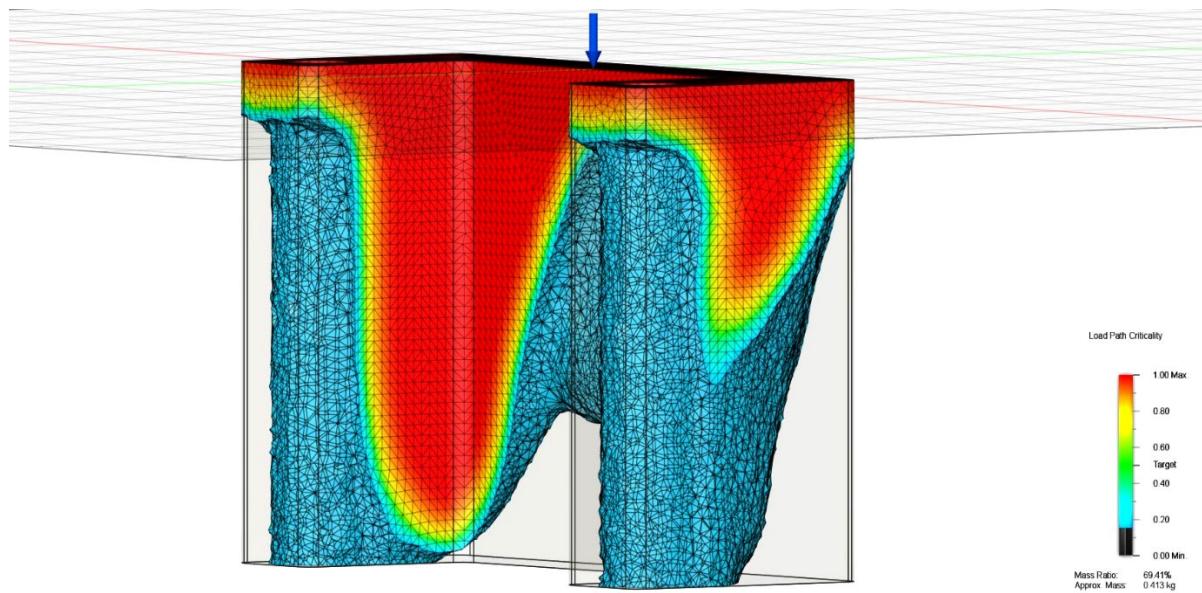


FIG 4:19 TOPOLOGY STEP 8 OF Z-AXIS SLIDE

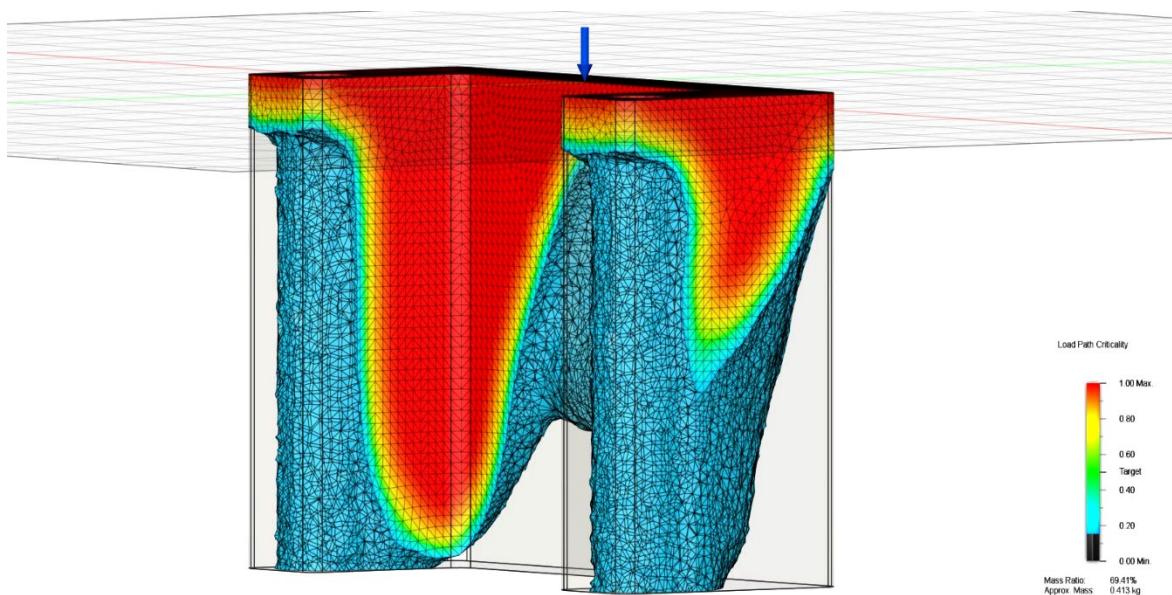
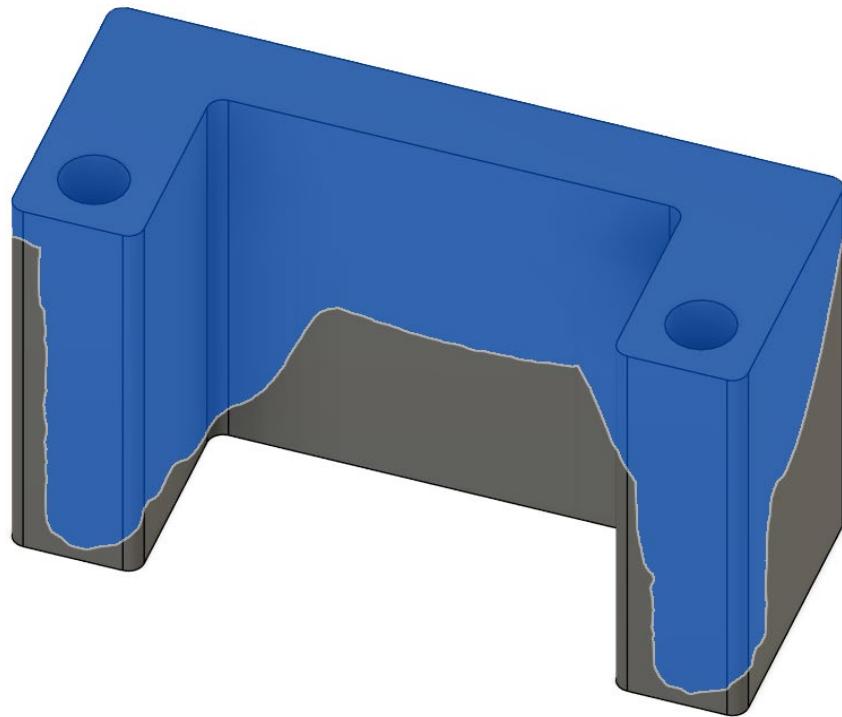
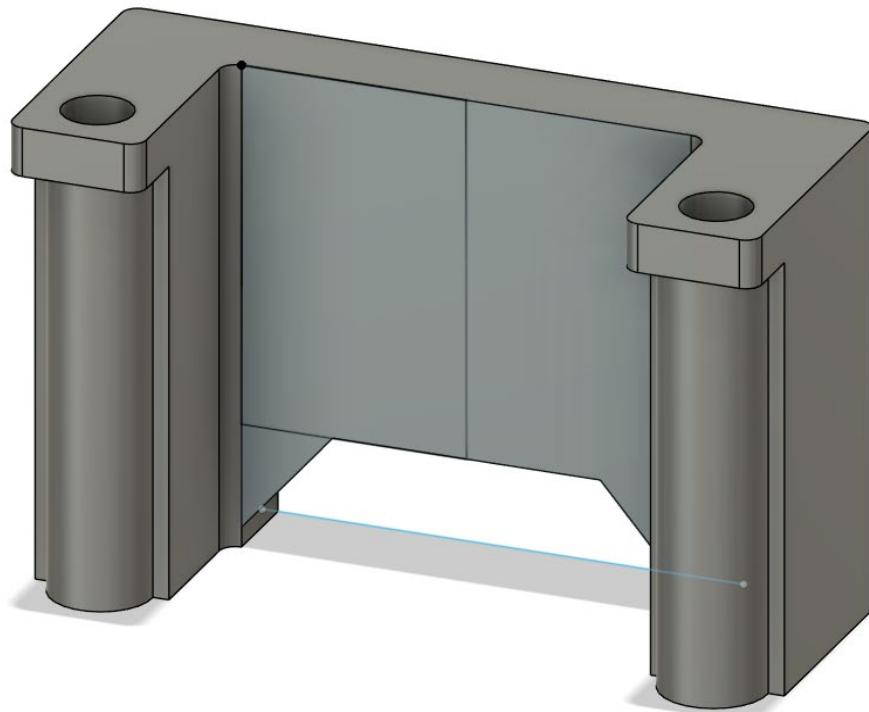




FIG 4:20 TOPOLOGY STEP 9 OF Z-AXIS SLIDE

CHAPTER-4

FIG 4:21 TOPOLOGY MESH OF Z-AXIS SLIDE

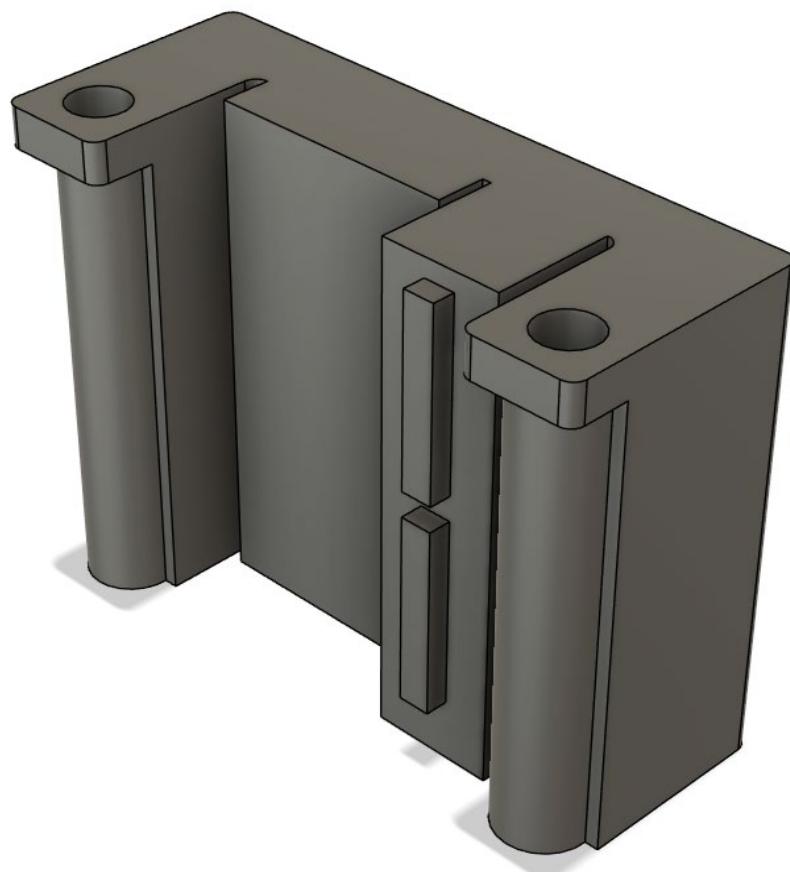


FIG 4:22 OPTMIZED VERSION OF Z-AXIS SLIDE

CHAPTER-4

3.2.2 FINAL DESIGN APPROACH FOR FABRICATION

To accommodate the X and Z-axis modules following topology optimization, the frame holder was redesigned with a central cutout for the Z-axis, horizontal slots for X-axis linear motion components, and vertical posts for support and potential Z-axis drive mechanisms. Additionally, mounting holes were strategically placed, and clearances/tolerances were optimized to ensure seamless module integration and movement. These modifications create a compact and functional frame holder ideal for 3D printing and optimal laser engraver performance.

FIG 4:23 FINAL VERSION OF Z-AXIS SLIDE

CHAPTER-4

3.2.3 TOPOLOGY OPTIMIZATION OF THE LASER MODULE HOLDER BRACKET

After the initial design of the Laser module holder bracket, a topology optimization was performed to refine the structure, enhancing its performance under specific loading conditions. The optimization considered a structural load of 2.45 N applied on the z-axis, simulating the gravitational force or an external load the module might experience during operation. Additionally, a linear global load of 10 mm/s² was applied on the x-axis, representing dynamic forces or accelerations the holder might encounter in real-world conditions.

Optimization Process

1. Objective:

- The primary objective of the topology optimization was to minimize material usage while maintaining structural integrity under the specified loads. This process aims to reduce weight, increase efficiency, and ensure that the holder can withstand operational stresses.

2. Loading Conditions:

- **Z-axis Load (2.45 N):** This load simulates the vertical force acting on the holder, potentially due to the weight of the laser module or other components attached to it.
- **X-axis Load (10 mm/s²):** This global load represents horizontal forces that could occur due to motion, vibrations, or external impacts. The application of this load ensures that the design is resilient to such dynamic conditions.

3. Material Reduction and Redistribution:

- During the optimization process, material was strategically removed from areas that experience low stress while being redistributed or maintained in regions where higher stress concentrations occur. This process ensures that the holder remains robust in critical areas while reducing unnecessary material in less critical zones.

4. Resulting Structure:

CHAPTER-4

- The optimized structure likely features a more skeletal or lattice-like design, with reduced material in low-stress regions. This approach not only decreases the weight of the holder but also improves its overall strength-to-weight ratio.
- The topology optimization may have introduced new geometrical features, such as thinner walls or additional support ribs, which enhance the structural integrity of the holder under the applied loads.

Performance and Benefits

The topology optimization has resulted in a more efficient design, with the following benefits:

- **Weight Reduction:** The optimized holder is lighter, which can contribute to lower overall system weight, reducing energy consumption and improving performance in applications where weight is a critical factor.
- **Enhanced Structural Integrity:** Despite the material reduction, the holder remains structurally sound under the specified loading conditions, ensuring it can handle the operational stresses without failure.
- **Material Efficiency:** The design uses material more effectively, reducing waste and potentially lowering manufacturing costs.

CHAPTER-4

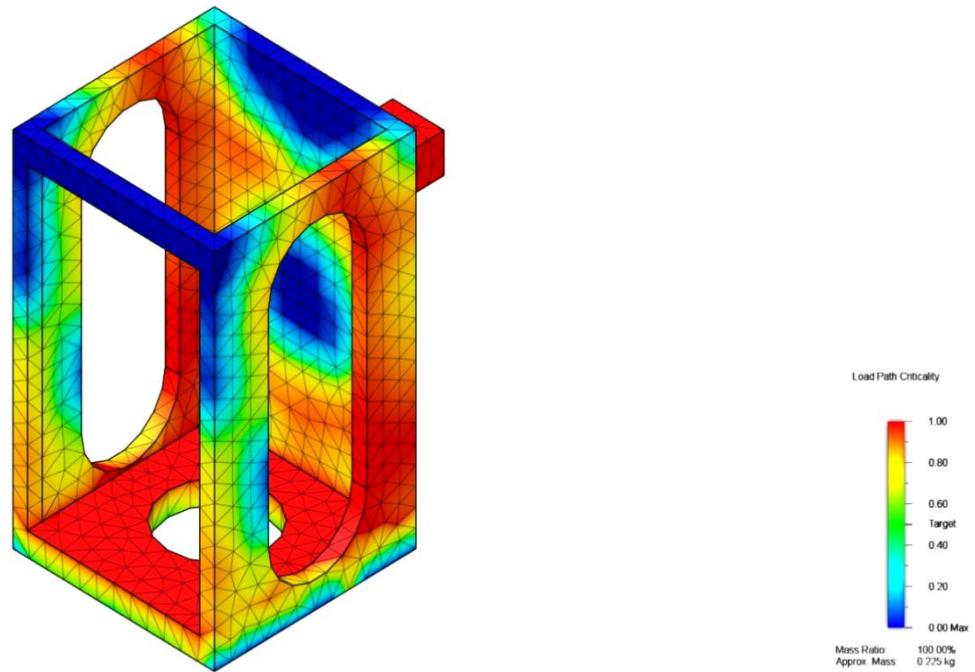


FIG 4:24 TOPOLOGY STEP 1 OF LASER MODULE HOLDER BRACKET

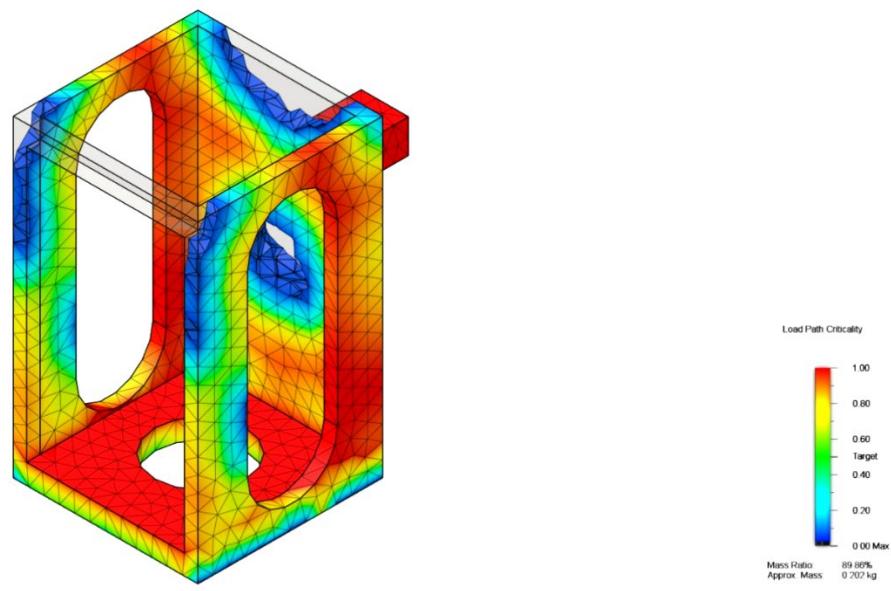
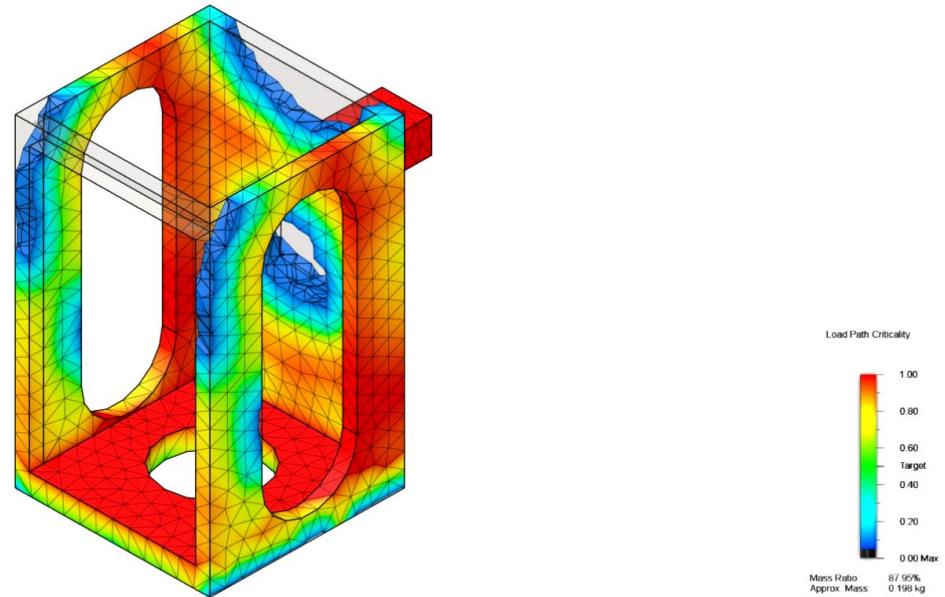
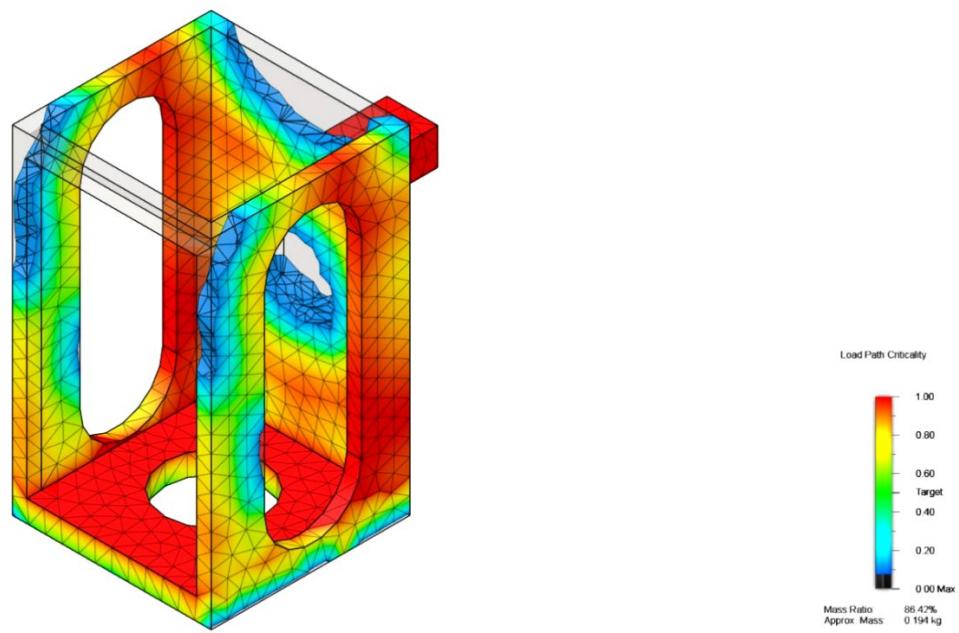




FIG 4:25 TOPOLOGY STEP 2 OF LASER MODULE HOLDER BRACKET

CHAPTER-4**FIG 4:26 TOPOLOGY STEP 3 OF LASER MODULE HOLDER BRACKET****FIG 4:27 TOPOLOGY STEP 4 OF LASER MODULE HOLDER BRACKET**

CHAPTER-4

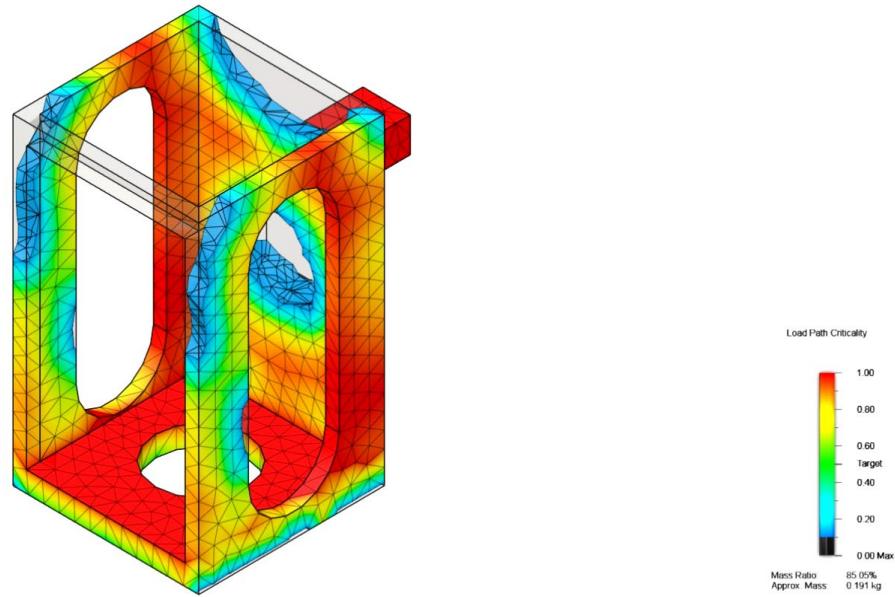


FIG 4:28 TOPOLOGY STEP 5 OF LASER MODULE HOLDER BRACKET

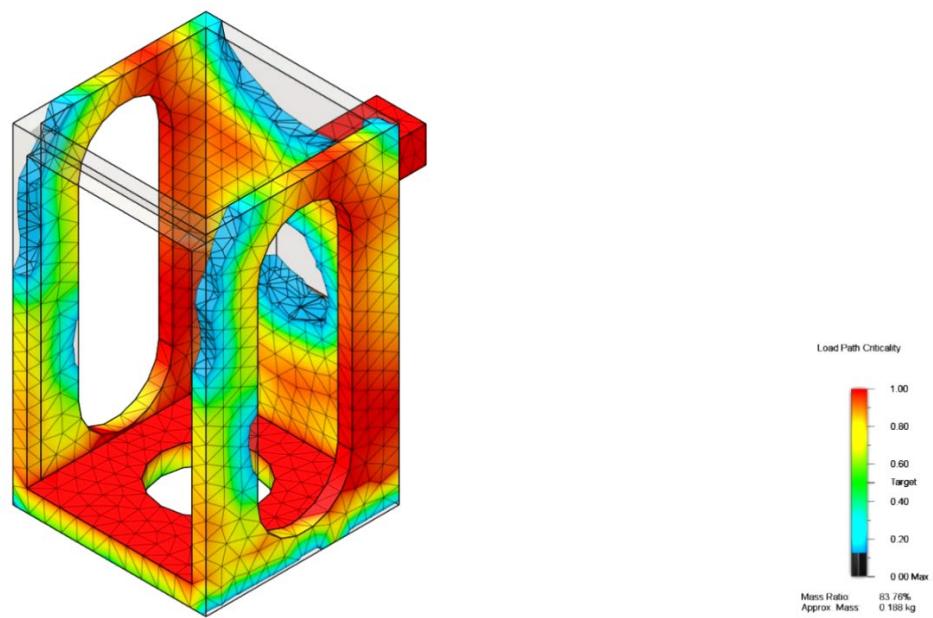


FIG 4:29 TOPOLOGY STEP 6 OF LASER MODULE HOLDER BRACKET

CHAPTER-4

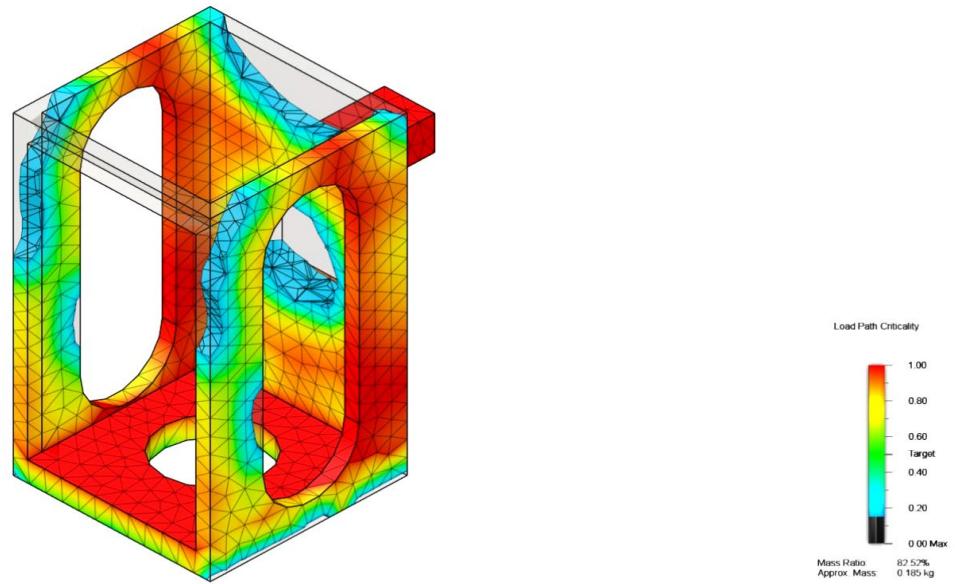


FIG 4:30 TOPOLOGY STEP 7 OF LASER MODULE HOLDER BRACKET

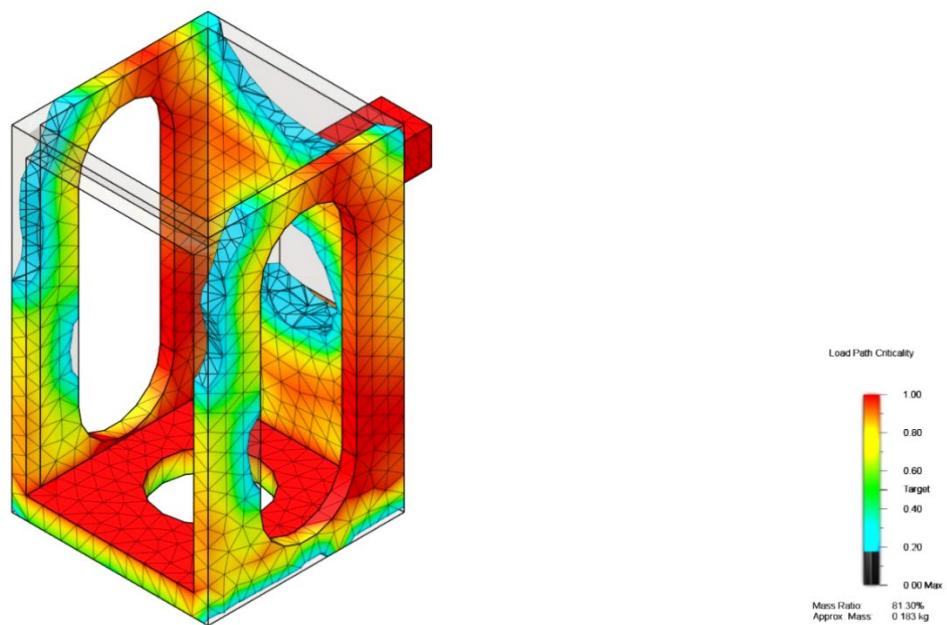
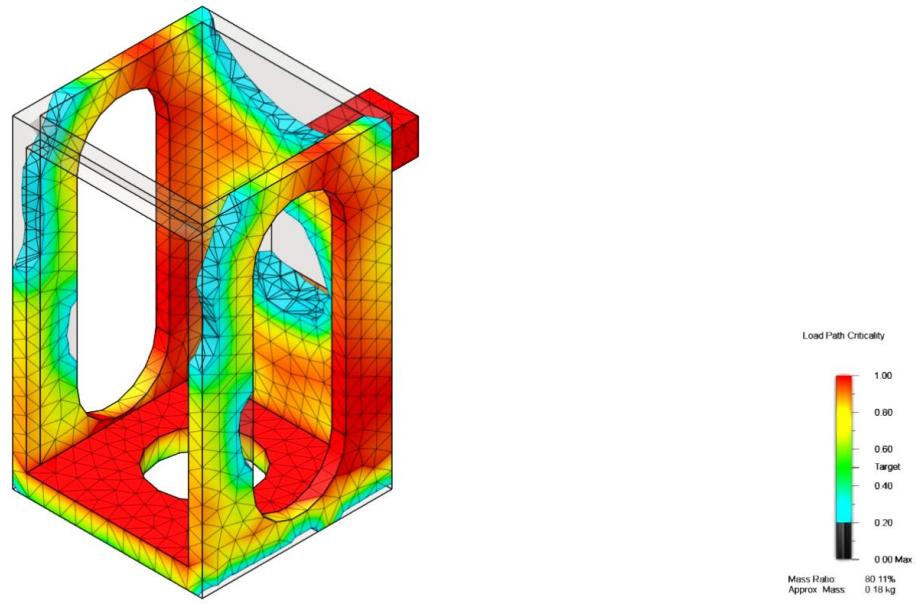
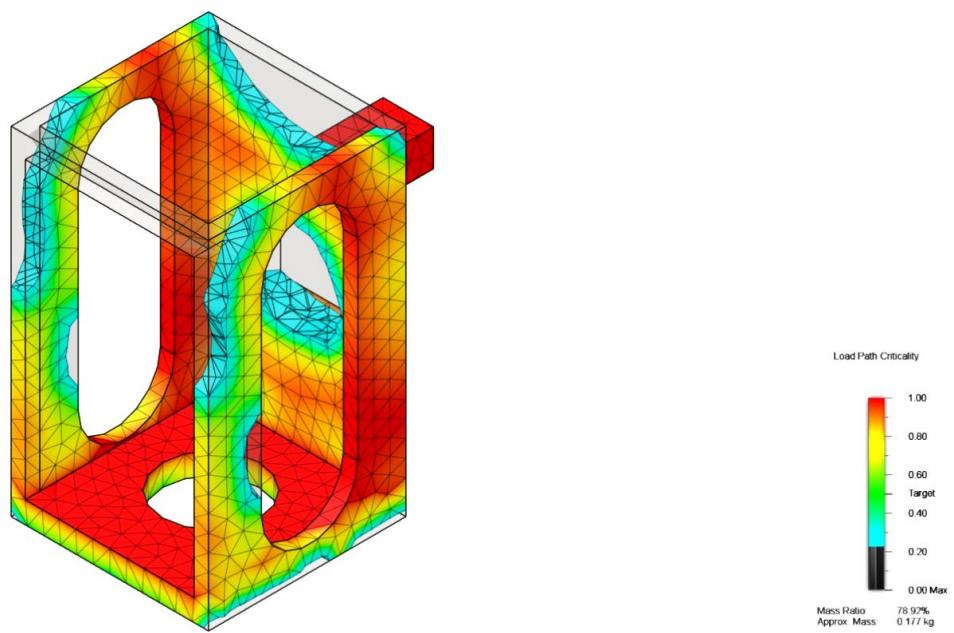
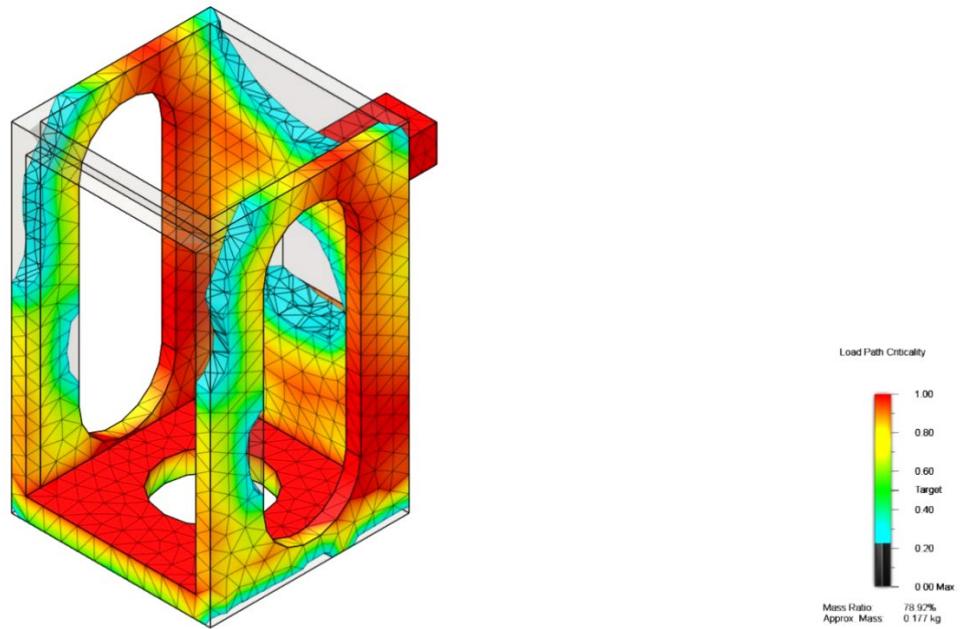
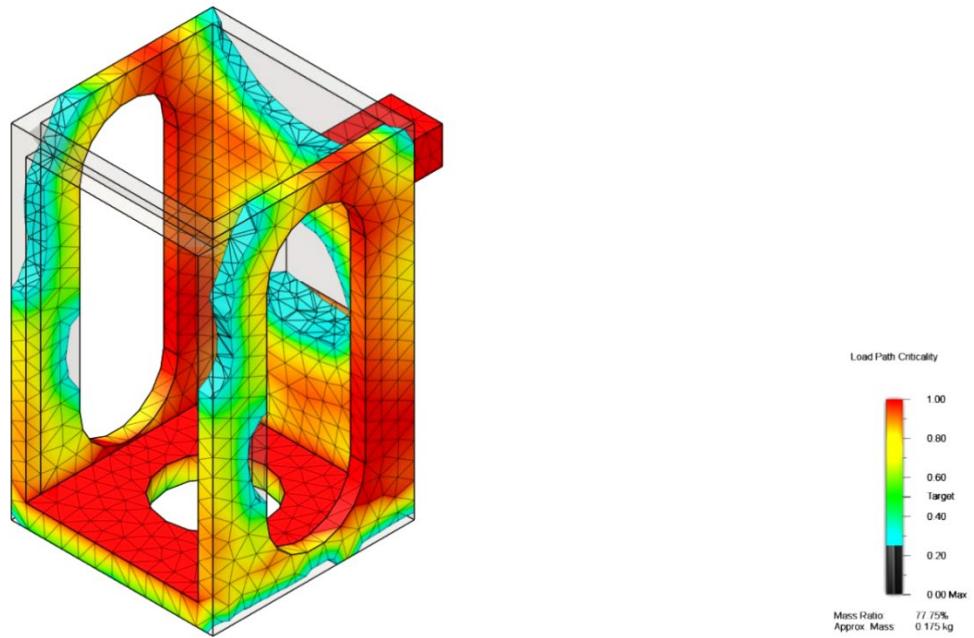
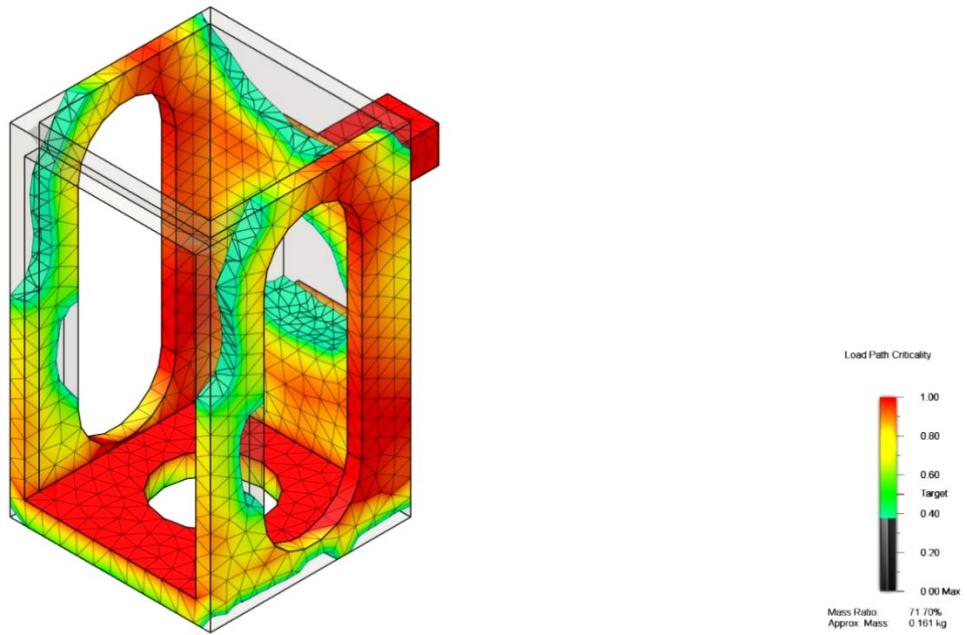
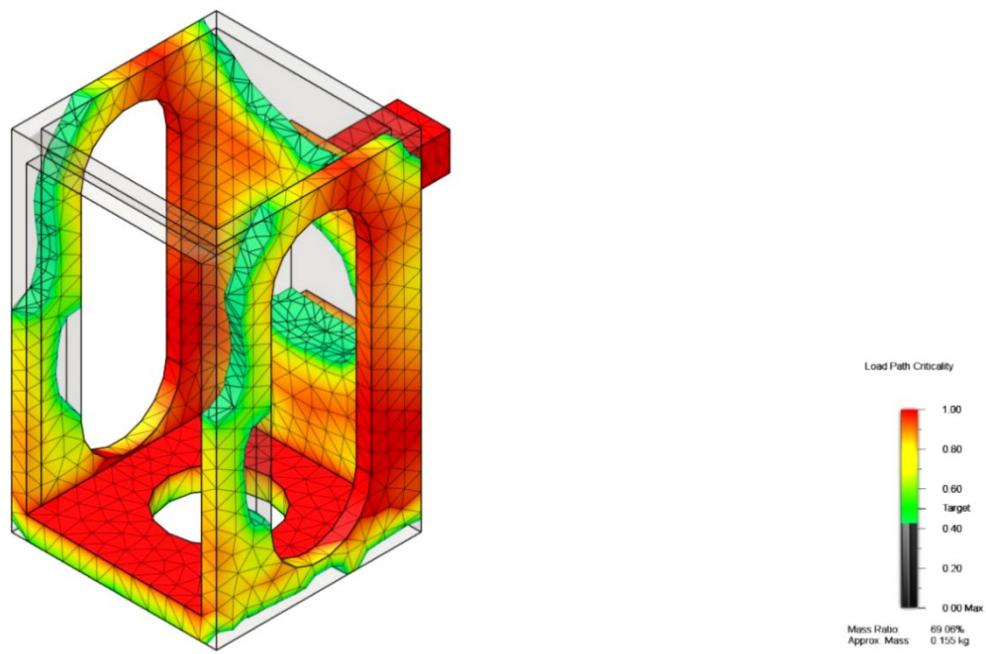







FIG 4:31 TOPOLOGY STEP 8 OF LASER MODULE HOLDER BRACKET


CHAPTER-4**FIG 4:32 TOPOLOGY STEP 9 OF LASER MODULE HOLDER BRACKET****FIG 4:33 TOPOLOGY STEP 10 OF LASER MODULE HOLDER BRACKET**

CHAPTER-4**FIG 4:34 TOPOLOGY STEP 11 OF LASER MODULE HOLDER BRACKET****FIG 4:35 TOPOLOGY STEP 12 OF LASER MODULE HOLDER BRACKET**

CHAPTER-4

FIG 4:36 TOPOLOGY STEP 13 OF LASER MODULE HOLDER BRACKET

FIG 4:37 TOPOLOGY STEP 14 OF LASER MODULE HOLDER BRACKET

CHAPTER-4

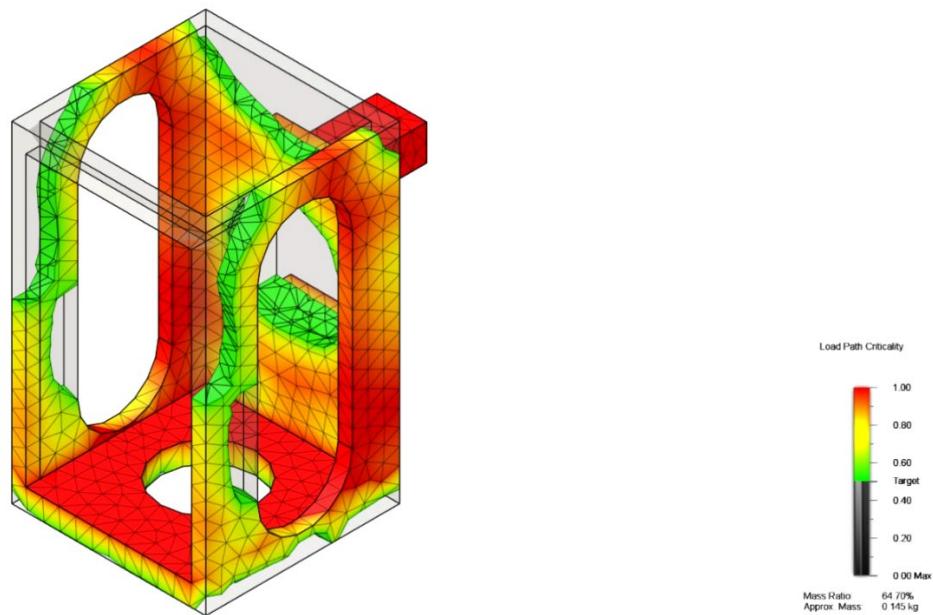


FIG 4:38 TOPOLOGY STEP 15 OF LASER MODULE HOLDER BRACKET

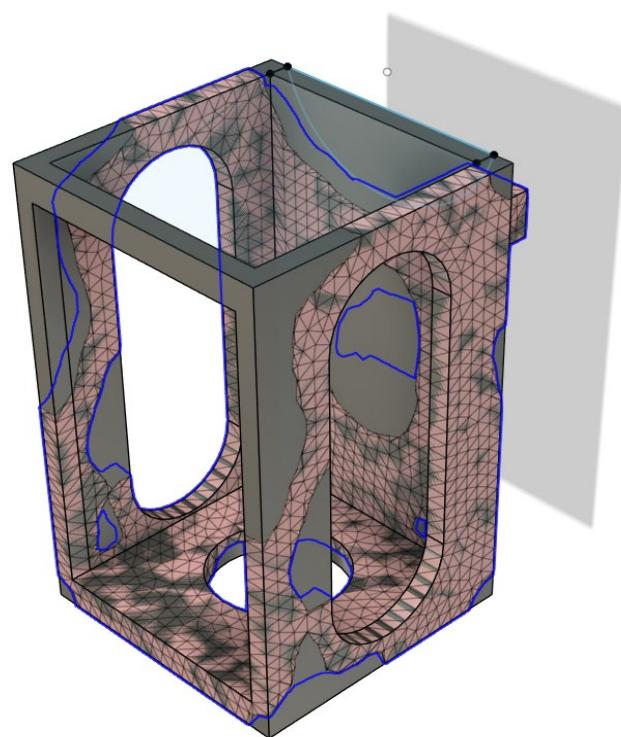
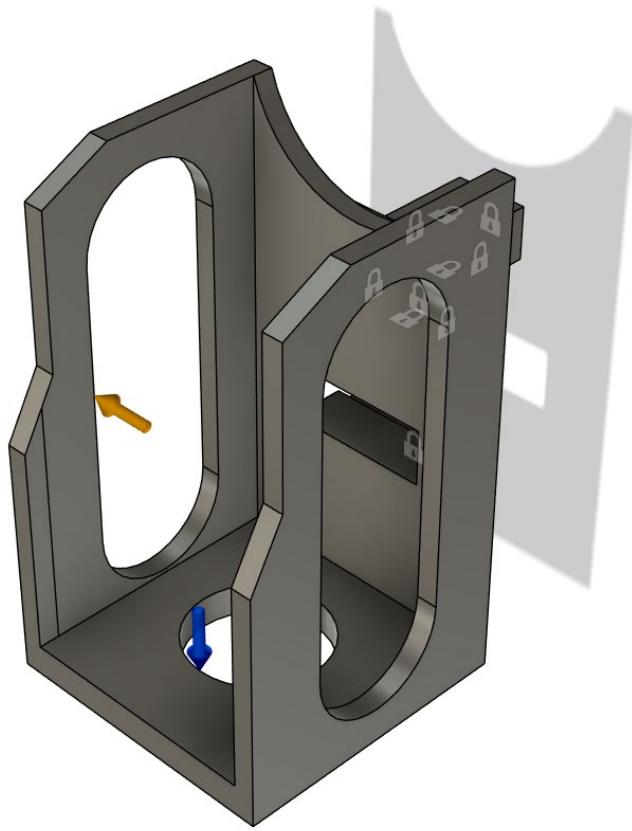



FIG 4:39 TOPOLOGY MESH OF LASER MODULE HOLDER BRACKET

CHAPTER-4

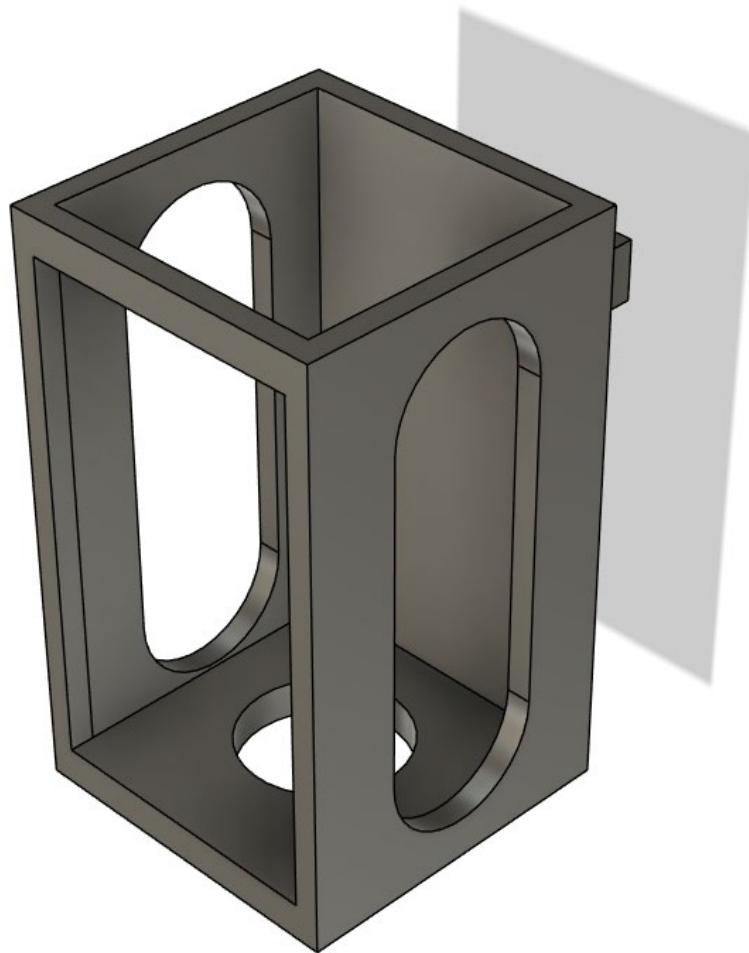


FIG 4:40 OPTIMIZED VERESION OF LASER MODULE HOLDER BRACKET

CHAPTER-4

3.2.4 FINAL DESIGN APPROACH FOR FABRICATION

To accommodate the laser module, the frame holder design has undergone several key modifications following topology optimization. However, the topology-optimized version is not finalized due to the additional goal of ensuring a snug fit for the laser module.

FIG 4:41 FINAL VERSION OF LASER MODULE HOLDER BRACKET

CHAPTER-4

3.3 MATERIAL ANALYSIS TO SELECT THE MOST SUITABLE MATERIAL FOR FABRICATION

3.3.1 MATERIAL ANALYSIS REPORT OF THE Z-AXIS SLIDE

The provided reports detail shape optimization studies conducted on a laser Z-axis and X-axis frame holder using various materials. The primary goal of these studies was to minimize the mass of the holder while maintaining its stiffness under a specific load. The optimization process aimed to achieve a target mass reduction of 40% or a mass ratio of 60%.

Key Findings:

- **Material Impact on Mass Reduction:** The success in achieving the target mass reduction varied depending on the material used.
 - **Steel and Iron (Grey Cast ASTM A48 Grade 20):** Both materials allowed for a mass reduction very close to the target, reaching a mass ratio of approximately 63.9%.
 - **Aluminium 1100-H14:** The optimization with this material resulted in a mass ratio of 66.7%, slightly exceeding the target.
 - **Titanium - High-Strength Alloy and Stainless Steel AISI 202:** These materials showed the least mass reduction, with mass ratios of 70.4% and 68.1%, respectively. The high strength and stiffness of these materials might have limited the potential for further mass reduction while maintaining structural integrity.
 - **PA 12 - Nylon - PA 603-CF and PET Plastic:** The optimization results for these materials were not explicitly stated in the reports. However, given their lower strength and stiffness compared to metals, it's likely that they could achieve significant mass reduction.
- **Optimization Constraints and Loads:** All studies used the same optimization settings, including a fixed constraint on one end of the holder and a downward force of 29.4 N applied to the other end. This consistency allows for a direct comparison of the results across different materials.

CHAPTER-4

- Mesh and Element Settings:** The mesh settings were also consistent across all studies, ensuring that the differences in results were primarily due to the material properties rather than variations in the mesh.

Material	Mass Before (kg)	Mass After (kg)	Mass Ratio (%)
Aluminium 1100-H14	1.05	0.671	63.88
Iron, Grey Cast ASTM A48 Grade 20	2.876	1.838	63.92
Stainless Steel AISI 202	3.055	1.963	63.92
Steel	3.053	1.951	63.91
Titanium - High-Strength Alloy	1.723	1.101	63.89
PA 12 - Nylon - PA 603-CF (with EOS P 3D Printers)	0.428	0.274	63.95
PET Plastic	0.599	0.383	63.86

TABLE 5:1 (MATERIAL ANALYSIS REPORT)

CHAPTER-4

3.3.2 MATERIAL ANALYSIS REPORT OF THE LASER MODULE HOLDER BRACKET

The provided reports detail shape optimisation studies conducted using various materials on a Laser module holder bracket. The primary goal of these studies was to minimize the mass of the holder while maintaining its structural integrity under specific loading conditions. The optimisation aimed to achieve a target mass reduction of 40% (i.e., a mass ratio of 60%).

Key Findings:

- **Successful Mass Reduction:** All studies successfully achieved the target mass reduction of 40% or better. The mass ratio, which compares the optimized mass to the original mass, ranged from approximately 64.95% to 64.98%. This indicates a consistent and significant reduction in material usage across all materials.

Material-Specific Performance: The specific material chosen for the Laser module holder bracket will influence its final properties and suitability for different applications.

- **Strength and Stiffness:** Steel and Titanium alloys generally exhibit higher stiffness and strength compared to plastics and Aluminium. This makes them suitable for applications where high structural rigidity and load-bearing capacity are crucial.
- **Weight Reduction:** Plastics, particularly PET Plastic and PA12-Nylon, offer the most substantial weight reduction due to their low densities. They are ideal for applications where minimizing weight is a priority.
- **Cost and Manufacturability:** Aluminium and Grey Cast Iron strike a balance between cost and mechanical properties, making them suitable for applications where cost-effectiveness is important.

CHAPTER-4

Material	Mass Before (kg)	Mass After (kg)	Mass Ratio (%)
Aluminium 1100-H14	0.077	0.05	64.96
Iron, Grey Cast ASTM A48 Grade 20	0.212	0.137	64.95
Steel	0.225	0.135	60.00
PA 12 - Nylon - PA 603-CF (with EOS P 3D Printers)	0.031	0.020	64.94
PET Plastic	0.044	0.029	64.98
Stainless Steel AISI 202	0.225	0.146	64.95
Titanium - High-Strength Alloy	0.127	0.082	64.96

TABLE 5:2 (MATERIAL ANALYSIS REPORT)

CHAPTER-4

3.4 RESULTS AND KEY FINDINGS

3.4.1 Results for Z-axis slide:

1. Load Response:

- The frame holder was subjected to a structural load of 2.45 N on the z-axis and a linear global load of 10 mm/s² on the x-axis. The topology optimization process successfully redistributed the material to withstand these loads while minimizing weight.
- The optimized design demonstrated an effective load-bearing capability, ensuring that the structural integrity of the frame holder was maintained under the applied conditions.

2. Stress Distribution:

- The stress analysis showed that the optimized frame holder exhibited lower stress concentrations in critical areas, particularly along the z-axis where the load was most significant.
- The material was effectively concentrated in regions where stress was highest, leading to a design that maximized structural efficiency.

3. Weight Reduction:

- The optimization resulted in a significant reduction in material usage, leading to a lighter frame holder without compromising strength. This weight reduction is crucial for improving overall system efficiency, especially in dynamic applications.

4. Stiffness:

- The stiffness of the optimized frame holder was maintained at a level that prevents excessive deformation, ensuring stability and precision during operation.

CHAPTER-4

3.4.2 Results for Laser module holder bracket:

1. Load Response:

- The Laser module holder bracket was optimized considering the same loading conditions as the frame holder. The optimization effectively distributed the material to handle the applied loads while minimizing unnecessary weight.
- The final design ensured that the laser module was securely held in place, with minimal displacement under operational conditions.

2. Stress Distribution:

- Similar to the frame holder, the Laser module holder bracket showed an optimized stress distribution with reduced concentrations in critical areas. The material was allocated to regions where it could best support the loads, leading to a robust design.

3. Weight Reduction:

- The optimization process achieved a substantial weight reduction for the Laser module holder bracket, contributing to the overall efficiency of the system. This reduction is particularly beneficial for maintaining the precision of the laser module, as lighter components can reduce vibrations and enhance stability.

4. Manufacturability:

- The optimized design of the Laser module holder bracket was assessed for manufacturability. While the topology optimization produced a complex shape, the design remains feasible for production using advanced manufacturing techniques such as additive manufacturing.

CHAPTER-5

4. DEVELOPMENT OF LASER MODULE HOLDER BRACKET AND Z-AXIS SLIDE OF A MINI LASER ENGRAVER

4.1 3D PRINTING:

4.1.1 INTRODUCTION

3D printing, also known as additive manufacturing, is a ground-breaking technology that has revolutionized the way objects are created. Unlike traditional subtractive manufacturing methods that involve removing material from a block, 3D printing builds objects layer by layer, based on a digital design file. This innovative approach has opened up new possibilities in various industries, from rapid prototyping and product development to customized manufacturing and medical applications.

The process begins with a digital 3D model, which is sliced into thin cross-sections by specialized software. These slices are then sent to a 3D printer, which deposits material layer by layer according to the instructions in the digital file. Various materials can be used in 3D printing, including plastics, metals, ceramics, and even biological tissues.

There are several 3D printing technologies, each with its own strengths and applications. Fused Deposition Modelling (FDM) is the most common and affordable method, which extrudes a thermoplastic filament through a heated nozzle to build the object layer by layer. Stereolithography (SLA) uses a laser to cure liquid resin into solid layers, offering high-resolution and smooth surface finishes. Selective Laser Sintering (SLS) utilizes a laser to fuse powdered material, making it suitable for complex geometries and durable parts.

The applications of 3D printing are vast and diverse. In the manufacturing industry, 3D printing is used for rapid prototyping, enabling designers and engineers to quickly create and test physical models of their designs. This significantly reduces development time and costs compared to traditional prototyping methods. 3D printing is also used for custom manufacturing, allowing for the creation of unique or personalized products on demand. This is particularly beneficial for industries like healthcare, where custom prosthetics and implants can be created to fit individual patients.

CHAPTER-5

In the medical field, 3D printing has enabled the creation of patient-specific anatomical models, surgical guides, and even implantable devices. This has improved surgical planning and outcomes, as well as enabled the customization of medical devices to fit individual patients' needs. 3D printing has also been used to create bio-printed tissues and organs for research and potential future transplantation.

Beyond manufacturing and medicine, 3D printing has found applications in aerospace, architecture, fashion, and education. In aerospace, 3D printing is used to create lightweight and complex components for aircraft and spacecraft. In architecture, it is used to create detailed models of buildings and structures. In fashion, 3D printing is used to create custom clothing and accessories. In education, 3D printing is used to create interactive learning tools and models.

As 3D printing technology continues to evolve, its potential applications are expanding rapidly. The ability to create complex geometries, customize products, and produce objects on demand has the potential to transform various industries and revolutionize the way we design, manufacture, and consume products.

CHAPTER-5

4.1.2 TYPES OF 3D PRINTING

3D printing encompasses a diverse range of technologies, each with distinct characteristics, materials, and applications. Here's an in-depth look at several major 3D printing methods:

Fused Deposition Modeling (FDM)

FDM, also known as Fused Filament Fabrication (FFF), is one of the most common types of 3D printing. It works by extruding a thermoplastic filament through a heated nozzle, which deposits the material layer by layer to create the object. FDM is popular for its affordability and ease of use, making it widely accessible for both hobbyists and professionals. It is commonly used for prototyping, educational purposes, and creating functional parts.

Stereolithography (SLA)

SLA is the oldest 3D printing technology and uses a process called photopolymerization. In SLA, a UV laser selectively cures and solidifies a liquid resin in a vat, layer by layer, to form the final object. SLA is known for producing parts with high precision and smooth surface finishes. It is often used in industries such as dentistry, jewellery, and engineering for detailed prototypes and small-scale production.

Selective Laser Sintering (SLS)

SLS uses a high-powered laser to fuse small particles of powdered material, such as nylon, into a solid structure. The laser selectively sinters the powder, layer by layer, based on the digital model. SLS does not require support structures, as the surrounding powder provides support during the build. This technology is ideal for creating complex geometries, durable parts, and functional prototypes, especially in the aerospace and automotive industries.

Digital Light Processing (DLP)

Similar to SLA, DLP uses light to cure liquid resin, but instead of a laser, it uses a digital light projector to flash entire layers at once. This allows DLP to be faster than SLA while still producing high-resolution parts with fine details. DLP is commonly used for applications requiring high precision, such as dental models, hearing aids, and jewellery casting.

CHAPTER-5

Binder Jetting

Binder Jetting involves depositing a liquid binding agent onto a bed of powdered material, layer by layer, to bond the particles together and form a solid object. After the printing process, the object is usually cured or sintered to increase strength. Binder Jetting is versatile and capable of working with a wide range of materials, including metals, ceramics, and sand. It is used for creating full-colour prototypes, complex geometries, and metal parts.

Material Jetting

Material Jetting works similarly to inkjet printing but instead of ink, it deposits droplets of photopolymer material, which are then cured by UV light. This process builds the object layer by layer. Material Jetting can produce highly detailed and smooth objects with multiple materials and colours in a single print. It is often used for creating realistic prototypes, medical models, and detailed casting patterns.

Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS)

SLM and DMLS are metal 3D printing technologies that use a laser to fully melt or sinter metal powders, layer by layer, to create solid metal parts. SLM results in fully dense metal parts, while DMLS produces parts with some level of porosity. These technologies are widely used in aerospace, automotive, and medical industries for creating complex metal components, tooling, and functional parts.

Electron Beam Melting (EBM)

EBM is similar to SLM but uses an electron beam instead of a laser to melt metal powders. This technology operates in a vacuum and can achieve high temperatures, making it suitable for producing dense, strong metal parts, especially with materials like titanium. EBM is commonly used in aerospace and medical implant manufacturing.

Laminated Object Manufacturing (LOM)

LOM involves bonding layers of material, typically paper, plastic, or metal, which are cut to shape by a laser or blade. The layers are laminated together to form the final object. LOM is a faster and more affordable 3D printing process.

CHAPTER-5

4.2 APPLICATIONS

3D printing, also known as additive manufacturing, has emerged as a transformative technology with a diverse range of applications across industries. Its ability to create complex geometries, customize products, and produce on-demand has opened up new possibilities for innovation and problem-solving. Let's delve into the multifaceted applications of 3D printing in various sectors:

Healthcare:

- **Prosthetics and Implants:** 3D printing is revolutionizing the field of prosthetics and implants by enabling the creation of personalized, custom-fit devices that enhance patient comfort, functionality, and aesthetics. This includes prosthetic limbs tailored to individual body shapes, cranial implants designed to repair skull defects, and dental implants perfectly matched to patients' mouths. 3D printing also facilitates the production of hearing aids with intricate internal structures for improved sound quality and comfort.
- **Surgical Planning and Guides:** Surgeons utilize 3D-printed models of patients' anatomy to meticulously plan complex surgeries, ensuring greater precision and minimizing risks. 3D-printed surgical guides assist in accurately positioning implants and instruments during procedures, leading to improved outcomes and faster recovery times.
- **Bioprinting:** This emerging field explores the printing of living tissues and organs using biocompatible materials and living cells. While still in its early stages, bioprinting holds immense potential for revolutionizing organ transplantation, tissue regeneration, and drug testing.
- **Pharmaceuticals:** 3D printing allows for the customization of drug delivery systems and dosage forms, tailoring them to individual patient needs. This personalized approach can improve drug efficacy, minimize side effects, and enhance patient compliance.

CHAPTER-5

Aerospace and Automotive:

- **Lightweight Components:** 3D printing enables the production of lightweight, high-strength components with intricate internal structures, such as lattices and honeycombs. This reduces the overall weight of aircraft and vehicles, leading to improved fuel efficiency and reduced emissions.
- **Rapid Prototyping and Tooling:** 3D printing streamlines the design and development process by enabling the rapid creation of prototypes for aerospace and automotive components. Additionally, it allows for the production of custom tooling and moulds, reducing lead times and costs in manufacturing.
- **Customization and Personalization:** 3D printing empowers manufacturers to create personalized components for car interiors, aircraft cabins, and other vehicle parts, offering unique styling options and enhancing the overall user experience.

Architecture and Construction:

- **Architectural Models:** Architects and designers utilize 3D printing to create detailed and accurate models of buildings and structures, aiding in visualization, design validation, and client presentations. These models help stakeholders better understand the spatial relationships and aesthetics of the final structure.
- **Construction Components:** 3D printing is being used to directly construct structural elements like walls, facades, and even entire houses. This innovative approach reduces construction time, minimizes waste, and offers greater design flexibility, allowing for unique architectural styles and customized features.
- **Customization and Design Freedom:** 3D printing empowers architects to break free from the constraints of traditional construction methods, enabling the creation of intricate, organic, and complex shapes that were previously impossible to achieve.

Consumer Goods and Retail:

- **Custom Products:** 3D printing caters to consumer demand for personalization by allowing the creation of unique products like jewellery, phone cases, toys, and home decor items. Customers can design and customize their products, adding a personal touch and creating truly one-of-a-kind items.

CHAPTER-5

- **Rapid Prototyping:** Companies use 3D printing to rapidly prototype new product designs, reducing the time and cost associated with traditional prototyping methods. This allows for faster iteration and testing, leading to more efficient product development cycles.
- **On-Demand Manufacturing:** 3D printing enables retailers to produce items on demand, based on customer orders, eliminating the need for large inventories and reducing waste. This approach is particularly beneficial for small businesses and niche markets.

Education and Research:

- **Learning Tools:** 3D printing provides valuable hands-on learning experiences for students across various disciplines. They can create models, prototypes, and educational aids, fostering creativity and enhancing their understanding of complex concepts.
- **Research:** 3D printing is a valuable tool in research labs, enabling the creation of custom experimental setups, prototypes, and scientific models. This accelerates research and development processes, allowing scientists and engineers to test ideas and iterate on designs quickly and efficiently.

Other Applications:

- **Food:** 3D printing is being explored for creating intricate food designs, personalized nutrition, and even artificial meat, opening up new possibilities for culinary creativity and addressing dietary needs.
- **Fashion:** Designers are utilizing 3D printing to create unique clothing, accessories, and footwear with complex geometries and customizable features, transforming the fashion industry and offering personalized style options.
- **Art:** 3D printing has expanded artistic expression, enabling artists to create sculptures, installations, and other pieces with unparalleled detail and complexity. It has democratized art creation, making it accessible to a wider audience.

CHAPTER-5

4.3 **ULTIMAKER CURA:**

Ultimaker Cura is a widely recognized and influential software tool in the world of 3D printing. Developed by Ultimaker, a leading manufacturer of 3D printers, Cura is renowned for its robust slicing capabilities that convert digital 3D models into instructions that 3D printers can understand. This essay explores the features, benefits, and impact of Ultimaker Cura, emphasizing its role in enhancing the 3D printing experience for both professionals and enthusiasts.

Slicing Technology and Workflow Integration

At the core of Ultimaker Cura's functionality is its advanced slicing technology. Slicing refers to the process of dividing a 3D model into thin, horizontal layers and generating the corresponding G-code—a set of instructions that guide the 3D printer during the printing process. Cura excels in this regard by offering precise control over slicing parameters, which directly influences the quality and efficiency of the final print.

The software's intuitive interface allows users to import 3D models in various formats, including STL, OBJ, and 3MF. Once imported, users can adjust the slicing settings to customize the print according to their needs. Cura offers a range of options for layer height, print speed, infill density, and support structures. This flexibility ensures that users can optimize their prints for factors such as strength, detail, and material usage.

User-Friendly Interface and Customization

One of the standout features of Ultimaker Cura is its user-friendly interface. The software is designed to accommodate both beginners and experienced users, offering a balance between simplicity and advanced functionality. For newcomers, Cura provides a series of pre-configured profiles for popular 3D printers and materials, simplifying the setup process. These profiles come with recommended settings that can be adjusted as needed.

For more advanced users, Cura offers extensive customization options. The software's advanced mode reveals a wealth of additional settings, allowing users to fine-tune every aspect of the printing process. This level of control is essential for complex or highly detailed prints, where precise adjustments can significantly impact the final outcome.

CHAPTER-5

Integration with 3D Printers and Cloud Services

Ultimaker Cura is designed to work seamlessly with Ultimaker's line of 3D printers, ensuring optimal performance and reliability. The software includes built-in profiles for Ultimaker printers, providing tailored settings that maximize the capabilities of each model. Additionally, Cura's compatibility with a wide range of third-party 3D printers expands its utility, making it a versatile tool for users with diverse hardware.

The integration with cloud services is another notable feature of Ultimaker Cura. Users can leverage the Ultimaker Digital Factory, a cloud-based platform that enables remote management of 3D printers, access to a library of printable models, and collaborative features. This integration streamlines the workflow, allowing users to monitor and control their prints from anywhere, facilitating more efficient and flexible production processes.

Support Structures and Advanced Features

Support structures are crucial for successful 3D printing, particularly when dealing with complex geometries or overhangs. Ultimaker Cura provides advanced options for generating and optimizing support structures, including customizable support types, densities, and patterns. The software's ability to create efficient and minimal supports reduces material waste and improves the overall quality of the print.

In addition to support structures, Cura offers features such as adaptive layers, which adjust layer height dynamically based on the geometry of the model. This feature enhances print quality and reduces print time by using finer layers for detailed areas and thicker layers for less detailed sections. Cura also supports multi-material printing, allowing users to print with multiple filaments simultaneously, enabling complex and colorful designs.

Community and Ecosystem

The Ultimaker Cura community is an active and vibrant ecosystem of users, developers, and enthusiasts. The software's open-source nature encourages collaboration and innovation, with users contributing custom profiles, plugins, and enhancements. The Ultimaker Community Forum and online resources provide valuable support and knowledge-sharing opportunities, fostering a collaborative environment for advancing 3D printing technology.

CHAPTER-5

Impact on 3D Printing

Ultimaker Cura has had a profound impact on the 3D printing industry by providing a powerful and accessible slicing solution. Its combination of user-friendly design, advanced features, and seamless integration with 3D printers has set a standard for slicing software. Cura's ability to handle complex models, optimize printing processes, and support diverse hardware makes it an invaluable tool for professionals and hobbyists alike.

4.4 3D PRINTING OF THE Z-AXIS SLIDE

In the development of the mini laser engraver, the Z-axis and X-axis modules play a critical role in the precise movement and positioning of the laser head. These modules need to be both lightweight and structurally robust to handle the operational stresses while maintaining high accuracy. To achieve these requirements, the modules were designed using topology optimization and subsequently fabricated using 3D printing. This report outlines the procedure for 3D printing these modules, including the selection of printing parameters and the rationale behind each choice.

The Z-axis and X-axis modules were designed with specific dimensions and features tailored for their functional roles in the mini laser engraver. The design was optimized to reduce material usage while ensuring the necessary structural integrity. The final design was then exported to Ultimaker Cura, a slicing software used to prepare the 3D model for printing.

Printing Parameters and Setup

The following parameters were selected in Ultimaker Cura for the 3D printing process:

- **Infill Density:** 70%
- **Infill Pattern:** Zigzag
- **Layer Height:** 0.15 mm
- **Wall Thickness:** 0.84 mm

CHAPTER-5

- **Top/Bottom Layer Thickness:** 0.9 mm
- **Printing Temperature:** 200°C
- **Build Plate Temperature:** 60°C
- **Printing Speed:** 250 mm/sec
- **Build Plate Adhesion Type:** Brim

Infill Density (70%)

The infill density determines the internal structure of the print. A 70% infill was chosen to strike a balance between strength and material efficiency. This density provides sufficient internal support to withstand the loads encountered during the operation of the laser engraver, particularly when handling the movement of the laser head along the Z and X axes.

Infill Pattern (Zigzag)

The zigzag pattern was selected for its ability to provide consistent strength throughout the part while maintaining a relatively fast printing speed. This pattern helps distribute the load evenly across the structure, ensuring that the part remains durable under operational stresses.

Layer Height (0.15 mm)

Layer height is crucial for determining the resolution and surface finish of the printed part. A layer height of 0.15 mm was chosen to ensure a fine level of detail, which is important for the precision required in the movement modules. This height also allows for a smooth surface finish, reducing the need for extensive post-processing.

Wall Thickness (0.84 mm)

Wall thickness is a key factor in determining the overall strength of the part. A thickness of 0.84 mm was selected to provide a robust outer shell, protecting the internal structure and ensuring durability. This thickness was calculated based on the need for a balance between strength and print time.

Top/Bottom Layer Thickness (0.9 mm)

CHAPTER-5

A top/bottom layer thickness of 0.9 mm was chosen to ensure that the part's top and bottom surfaces were fully solid. This solidification is critical for creating a strong seal and providing a clean, smooth finish on the outer surfaces. The thickness also contributes to the overall structural integrity of the module.

Printing Temperature (200°C)

The printing temperature was set to 200°C, which is optimal for PLA filament, the material used for this print. This temperature ensures good layer adhesion and consistent extrusion, both of which are necessary for producing a part that is both strong and precise.

Build Plate Temperature (60°C)

The build plate temperature was set to 60°C to help prevent warping, a common issue in 3D printing that can occur when the base of the print cools too quickly. Maintaining this temperature ensures that the first layers adhere properly to the build plate, providing a stable foundation for the rest of the print.

Printing Speed (250 mm/sec)

A printing speed of 250 mm/sec was selected to expedite the manufacturing process. While high speed can sometimes compromise quality, the selected infill pattern and wall thickness helps maintain the integrity of the print even at this faster rate. This speed is particularly advantageous for reducing overall production time, especially when multiple components need to be printed.

Build Plate Adhesion Type (Brim)

A brim adhesion type was used to ensure that the print remained securely attached to the build plate throughout the process. The brim increases the surface area of the initial layers, reducing the likelihood of detachment or warping. This is particularly important for parts with a relatively small footprint like the Z-axis and X-axis modules.

Printing Process

CHAPTER-5

Once all the parameters were set, the slicing process was initiated in Ultimaker Cura, which generated the G-code necessary for the 3D printer to execute the print. The G-code was then transferred to the 3D printer, and the printing process began. The printer followed the specified parameters to create the Z-axis and X-axis modules layer by layer. The brim provided additional stability during the initial layers, ensuring that the modules were printed without any issues related to warping or detachment from the build plate. Throughout the printing process, the temperature and speed settings were monitored to ensure consistent quality. The zigzag infill pattern and 70% density provided a strong internal structure, while the 0.84 mm wall thickness ensured the modules would be durable enough to handle the operational demands of the mini laser engraver.

CHAPTER-5

4.5 3D PRINTING OF THE LASER MODULE HOLDER BRACKET

The Laser module holder bracket is a critical component in the mini laser engraver, designed to securely house the laser module while allowing for precise alignment and stability during operation. This report details the procedure for 3D printing the Laser module holder bracket using the same parameters previously employed for the Z-axis and X-axis modules. The goal is to achieve a structurally sound and lightweight holder that meets the functional requirements of the laser engraver. The Laser module holder bracket was designed with open sections to reduce material usage while maintaining the structural integrity necessary to support the laser module. The holder features a rectangular frame with strategically placed cut-outs to minimize weight without compromising strength. The design ensures that the laser module is securely held in place while allowing for airflow and heat dissipation during operation.

Printing Parameters

The Laser module holder bracket is being printed using the following parameters in Ultimaker Cura:

- **Infill Density:** 70%
- **Infill Pattern:** Zigzag
- **Layer Height:** 0.15 mm
- **Wall Thickness:** 0.84 mm
- **Top/Bottom Layer Thickness:** 0.9 mm
- **Printing Temperature:** 200°C
- **Build Plate Temperature:** 60°C
- **Printing Speed:** 250 mm/sec
- **Build Plate Adhesion Type:** Brim

Explanation of Parameters

- **Infill Density (70%):** The chosen infill density provides a balance between weight reduction and strength. For the Laser module holder bracket, this density is sufficient to ensure the holder can withstand the operational stresses without unnecessary material usage.

CHAPTER-5

- **Infill Pattern (Zigzag):** The zigzag pattern provides uniform internal support, distributing forces evenly across the structure. This is particularly important for a component like the Laser module holder bracket, which must maintain its shape and support the laser module consistently.
- **Layer Height (0.15 mm):** A layer height of 0.15 mm allows for a high-resolution print with a smooth surface finish, which is essential for ensuring the holder's precision fit and overall aesthetic quality.
- **Wall Thickness (0.84 mm):** The 0.84 mm wall thickness provides sufficient rigidity to the outer frame of the holder, ensuring it can handle the weight and vibrations from the laser module during operation.
- **Top/Bottom Layer Thickness (0.9 mm):** This thickness ensures that the top and bottom surfaces are fully solid, contributing to the overall strength of the holder and providing a clean, finished appearance.
- **Printing Temperature (200°C):** This temperature is optimal for printing with PLA, ensuring good layer adhesion and consistent material flow, which are crucial for producing a part with the desired mechanical properties.
- **Build Plate Temperature (60°C):** The build plate temperature helps prevent warping and ensures that the first layer adheres properly to the build plate, providing a stable base for the rest of the print.
- **Printing Speed (250 mm/sec):** The high printing speed allows for rapid production without compromising quality, making it ideal for iterative prototyping processes.
- **Build Plate Adhesion Type (Brim):** The brim adhesion type helps in stabilizing the print, especially given the tall structure of the holder, which could otherwise be prone to warping or detachment from the build plate.

CHAPTER-5

Printing Process

The 3D model of the Laser module holder bracket was loaded into Ultimaker Cura, where it was sliced according to the specified parameters. The G-code generated by the slicing process was then used to control the 3D printer. The print began with the formation of a brim, ensuring that the base layers adhered well to the build plate. As the print progressed, the zigzag infill pattern provided consistent internal support, while the outer walls were printed to the specified thickness, ensuring the part's rigidity. The high printing speed allowed for a relatively quick fabrication process, while the chosen parameters ensured that the print quality remained high, with smooth surfaces and strong structural elements.

CHAPTER-6

5. SUMMARY AND GENERAL CONCLUSION

This research successfully demonstrates the potential of advanced design methodologies in enhancing the functionality and efficiency of mini laser engravers. Key findings and observations include:

1. 3d modelling and designing of laser module holder bracket and Z-axis slide was carried out using Autodesk Fusion 360.
2. The design was optimised considering various materials. Based upon the requirement of a mini laser engraver machine it was found that the PLA is the most suitable material among all other materials considered for design purposes. The dimension was optimised keeping in view the weight and as well as the inertia force of the laser module using Autodesk Fusion 360 topology optimization. It was observed that the use of Autodesk Fusion 360 for topology optimization significantly reduced material usage while preserving structural integrity.
3. The laser module holder bracket and Z-axis slide were successfully fabricated using Ultimaker Cura for slicing software and an FDM 3d printer with Appropriate process parameters.
4. the 3d printed parts were assembled and it was observed that a very stable and smooth z-axis and x-axis movement was achieved.

Finally, some test run was carried out and The z-axis slide and laser module holder bracket were effectively optimized, showcasing improved performance under specific load conditions. The optimized design resulted in a lightweight, cost-effective, and efficient laser engraver, making it more accessible for various applications.

In summary, the integration of topology optimization and 3D printing in the design process offers a valuable approach to producing high-performance and affordable laser engraving systems, paving the way for broader applications in diverse fields.

CHAPTER-6

6. REFERENCE:

1. Barakat, M., Aridi, N., & Moadad, J. (2023, December). Design of Low Cost Mini CNC Laser Engraver. In *2023 IEEE 4th International Multidisciplinary Conference on Engineering Technology (IMCET)* (pp. 81-84). IEEE.
2. Bhanushali, J., Takarkhede, N., & Shah, M. S. Portable, Versatile and High Precision Laser Engraver.
3. Barakat, M., Aridi, N., & Moadad, J. (2023, December). Design of Low Cost Mini CNC Laser Engraver. In *2023 IEEE 4th International Multidisciplinary Conference on Engineering Technology (IMCET)* (pp. 81-84). IEEE.
4. Yan, Z., Sathya, A., Yusuf, S., Lien, J. M., & Peng, H. (2022, October). Fibercuit: Prototyping High-Resolution Flexible and Kirigami Circuits with a Fiber Laser Engraver. In *Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology* (pp. 1-13).
5. Putra, I. M., & Viola, R. O. (2022). Manufacturing System Design of a CNC Laser Engraver. *Jurnal Teknik Mesin*, 12(1), 32-38.
6. Khan, Z. H., Rahman, T., Arabi, S., Mohammad, S., Khan, M. M., Dey, R., ... & Mukherjee, D. (2021, December). Development of a Low-Cost CNC Machine Laser Engraver. In *2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)* (pp. 0376-0382). IEEE.
7. Goel, M. D., Matsagar, V. A., & Gupta, A. K. (2014). Mini Laser Engraving Cutting Machine| Mini Laser Engraving Cutting Machine Suppliers-Ruijie. *Latin American Journal of Solids and Structures*, 11(13), 2497-2515.
8. Fadherizal, M., & Yanto, A. (2023). Performance Testing of The CNC Laser Engraver Machine on Plywood Media. *Jurnal Teknik Mesin*, 13(1), 1-5.
9. Prashant, K., Khatib, M. I., Shahrukh, A., Mirza, N. A., Sattar, S. M., & Muqeeth Kazim, M. A. (2020). Design and Fabrication of Laser Engraving Machine. *International Journal of Scientific Research in Science, Engineering and Technology*, 7(3), 250-262.
10. Dalvi, S., Thigale, D., Totre, C., Auti, H., & Maske, Y. Design, Testing and Simulation of Cost Effective Laser Engraving Machine.
11. Mehra, R., Mohal, S., & Lonia, B. (2019). Design and Fabrication of Laser Engraving Machine. *IUP Journal of Mechanical Engineering*, 12(1).
12. Uh, J., Lee, J. S., Kim, Y. H., Choi, J. T., Joo, M. G., & Lim, C. S. (2002). Laser engraving of micro-patterns on roll surfaces. *ISIJ international*, 42(11), 1266-1272.

CHAPTER-6

13. Gabriel, E. F. M., Coltro, W. K. T., & Garcia, C. D. (2014). Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. *Electrophoresis*, 35(16), 2325-2332.
14. PING, K. (2017). *DESIGN AND FABRICATION OF SMALL SCALE LASER CUTTING MACHINE* (Doctoral dissertation, Universiti Sains Malaysia).
15. Yousif, I. F., Alsudani, M. Q., Waheed, S. R., Khudhair, Z. N., Adnan, M. M., & Al-khaykan, A. (2023). Automatic Laser Engraving Machine for Different Materials based on Microcontroller. *Malaysian Journal of Fundamental and Applied Sciences*, 19(3), 324-331.
16. Li, X., Cui, Y., Qi, M., Wu, H., Xie, Y., Zang, X., ... & Lin, L. (2017, January). A 1000-Volt planar micro-supercapacitor by direct-write laser engraving of polymers. In *2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)* (pp. 821-824). IEEE.
17. Tibbits, S. (2014). *4D Printing: Multi-Material Shape Change*. Architectural Design, 84(1), 116-121.
18. Klocke, F., & Zeis, M. (2012). *Laser-Based Manufacturing Technologies for Aerospace and Automotive Applications*. Springer.
19. Meijer, J. (2004). *Laser Beam Machining (LBM), State of the Art and New Opportunities*. Journal of Materials Processing Technology, 149(1-3), 2-17.
20. Ghazi, Z., & Lim, B. (2020). *Topology Optimization and its Applications in Structural Engineering: A Review*. International Journal of Structural Engineering, 11(3), 189-205.
21. Jain, V., & Pathak, S. (2016). *Laser-Based Advanced Manufacturing Techniques*. Springer.
22. Pereira, A., & Lima, E. (2019). *Laser Engraving on Metal Surfaces: A Review of Techniques and Applications*. Journal of Materials Processing Technology, 267, 214-228.
23. Raviv, D., & Tibbits, S. (2014). *Active Printed Materials for Complex Self-Evolving Deformations*. Scientific Reports, 4, 7422.

CHAPTER-6

24. Schneider, M., & Fischer, A. (2018). *Laser Technology for Complex Component Structures*. *Laser Technik Journal*, 15(3), 30-35.
25. Cheng, G., & Guo, X. (1997). *Structural Optimization and Industrial Applications*. Springer.
26. Campbell, I., & Bourell, D. L. (2012). *Additive Manufacturing: Rapid Prototyping Comes of Age*. *Rapid Prototyping Journal*, 18(4), 255-258.
27. Fang, X., & Sun, J. (2015). *Topology Optimization in Engineering Structures: A Review*. *Procedia Engineering*, 99, 1278-1287.
28. Singh, D., & Tiwari, A. (2017). *Advances in Laser-Based Manufacturing Technologies*. Wiley.
29. Huang, X., & Xie, Y. M. (2010). *Evolutionary Topology Optimization of Continuum Structures: Methods and Applications*. John Wiley & Sons.
30. Leach, R. K., & Brown, C. A. (2013). *Advances in Surface Metrology Techniques Using Lasers*. *Journal of Physics D: Applied Physics*, 46(24), 243001.

CHAPTER-6

7. LIST OF FIGURES

FIG 1:1 GAIN MEDIUM	10
FIG 1:2 PUMP SOURCE	10
FIG 1:3 RESONATOR	11
FIG 4:1 MAIN FRAME (FRONT VIEW)	51
FIG 4:2 MAIN FRAME (SIDE VIEW).....	51
FIG 4:3 MAIN FRAME (BACK VIEW)	52
FIG 4:4 MAIN FRAME (SIDE VIEW).....	52
FIG 4:5 MAIN FRAME (TOP VIEW).....	52
FIG 4:6 Z-AXIS SLIDE (TOP VIEW).....	54
FIG 4:7 Z-AXIS SLIDE (ORTHOGONAL VIEW).....	54
FIG 4:8 TOPOLOGY STEP 1 OF Z-AXIS SLIDE.....	59
FIG 4:9 TOPOLOGY STEP 2 OF Z-AXIS SLIDE.....	60
FIG 4:10 TOPOLOGY STEP 3 OF Z-AXIS SLIDE.....	60
FIG 4:11 TOPOLOGY STEP 4 OF Z-AXIS SLIDE.....	61
FIG 4:12 TOPOLOGY STEP 5 OF Z-AXIS SLIDE.....	61
FIG 4:13 TOPOLOGY STEP 6 OF Z-AXIS SLIDE.....	62
FIG 4:14 TOPOLOGY STEP 7 OF Z-AXIS SLIDE.....	62
FIG 4:15 TOPOLOGY STEP 8 OF Z-AXIS SLIDE.....	63
FIG 4:16 TOPOLOGY STEP 9 OF Z-AXIS SLIDE.....	63
FIG 4:17 TOPOLOGY MESH OF Z-AXIS SLIDE.....	64
FIG 4:18 OPTIMIZED VERSION OF Z-AXIS SLIDE.....	64
FIG 4:19 3D PRINTING VERSION OF Z-AXIS SLIDE.....	65
FIG 4:20 FRONT VIEW OF LASER MODULE HOLDER BRACKET	56
FIG 4:21 BACK VIEW OF LASER MODULE HOLDER BRACKET	57
FIG 4:22 TOP VIEW OF THE LASER MODULE HOLDER BRACKET	57
FIG 4:23 BOTTOM VIEW OF LASER MODULE HOLDER BRACKET	58
FIG 4:24 TOPOLOGY STEP 1 OF LASER MODULE HOLDER BRACKET	68
FIG 4:25 TOPOLOGY STEP 2 OF LASER MODULE HOLDER BRACKET	68
FIG 4:26 TOPOLOGY STEP 3 OF LASER MODULE HOLDER BRACKET	69
FIG 4:27 TOPOLOGY STEP 4 OF LASER MODULE HOLDER BRACKET	69
FIG 4:28 TOPOLOGY STEP 5 OF LASER MODULE HOLDER BRACKET	70

CHAPTER-6

FIG 4:29 TOPOLOGY STEP 6 OF LASER MODULE HOLDER BRACKET	70
FIG 4:30 TOPOLOGY STEP 7 OF LASER MODULE HOLDER BRACKET	71
FIG 4:31 TOPOLOGY STEP 8 OF LASER MODULE HOLDER BRACKET	71
FIG 4:32 TOPOLOGY STEP 9 OF LASER MODULE HOLDER BRACKET	72
FIG 4:33 TOPOLOGY STEP 10 OF LASER MODULE HOLDER BRACKET	72
FIG 4:34 TOPOLOGY STEP 11 OF LASER MODULE HOLDER BRACKET	73
FIG 4:35 TOPOLOGY STEP 12 OF LASER MODULE HOLDER BRACKET	73
FIG 4:36 TOPOLOGY STEP 13 OF LASER MODULE HOLDER BRACKET	74
FIG 4:37 TOPOLOGY STEP 14 OF LASER MODULE HOLDER BRACKET	74
FIG 4:38 TOPOLOGY STEP 15 OF LASER MODULE HOLDER BRACKET	75
FIG 4:39 TOPOLOGY MESH OF LASER MODULE HOLDER BRACKET	75
FIG 4:40 OPTIMIZED VERSION OF LASER MODULE HOLDER BRACKET	76
FIG 4:41 3D PRINTING VERSION OF LASER MODULE HOLDER BRACKET	77

CHAPTER-6**8. LIST OF TABLE**

TABLE 1:1 (IEC Laser Classification).....	17
TABLE 1:2 (ANSI Laser Classification).....	18
TABLE 3:1 (KEY DIFFERENCE)	36
TABLE 5:1 (MATERIAL ANALYSIS REPORT)	79
TABLE 5:2 (MATERIAL ANALYSIS REPORT)	81