Multi-Objective Optimization and Analysis of Bottom Purged
Steelmaking ladles

BY
BIRANJAY KUMAR
B.TECH (MECHANICAL ENGINEERING), 2020

G.B.PANT ENGINEERING COLLEGE GHURDAURI, PAURI

EXAMINATION ROLL NO. - M4PRD24001B

THESIS

SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE AWARD
OF THE DEGREE OF MASTER OF PRODUCTION ENGINEERING IN THE FACULTY OF
ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

2024

DEPARTMENT OF PRODUCTION ENGINEERING
JADAVPUR UNIVERSITY
KOLKATA - 700032

INDIA



JADAVPUR UNIVERSITY
FACULTY OF ENGINEERING AND TECHNOLOGY
DATE-

CERTIFICATE OF RECOMMENDATION

| HEREBY RECOMMEND THAT THE THESIS ENTITLED “MULTI-OBJECTIVE
OPTIMIZATION AND ANALYSIS OF BOTTOM PURGED STEELMAKING LADLES”
CARRIED OUT UNDER MY/OUR GUIDANCE BY MR. BIRANJAY KUMAR MAY BE
ACCEPTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF “MASTER OF PRODUCTION ENGINEERING".

COUNTER SIGNED BY-

HEAD, DEAN,
Dept. of Production Engineering Faculty of Engg. & Technology
Jadavpur university Jadavpur University
Kolkata-700032 Kolkata- 700032

THESIS ADVISORS-

Prof. Arunanshu Shekhar Kuar Dr. Asim Gopal Barman
PROFESSOR ASSOCIATE PROFESSOR
Dept. of Production Engineering Dept. of Production Engineering
Jadavpur University Jadavpur university

Kolkata- 700032 Kolkata- 700032



JADAVPUR UNIVERSITY
FACULTY OF ENGINEERING & TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing thesis is hereby approved as a creditable study of an engineering
subject carried out and presented in a manner satisfactory to warrant its
acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval, the undersigned do not necessarily endorse or
approve any statement made, opinion expressed and conclusion drawn therein
but thesis only for the purpose for which it has been submitted.

COMMITTEE ON FINAL EXAMINATION FOR

EVALUATION OF THE THESIS

(External Examiner)

(Internal Examiners)



ACKNOWLEDGEMENT

| would like to express my profound gratitude and thanks to my project guide Prof.
Arunanshu Shekhar Kuar and Dr. Asim Gopal Barman, Department of Production
Engineering, Jadavpur University, Kolkata for introducing the present topic and
intellectual support, inspiring guidance and his invaluable encouragement,
suggestions and cooperation helps a lot to completion of my project work successfully.

| am also thankful to Prof. Bijoy Bhattacharyya, Former Head of Department,
Production Engineering, Jadavpur University, Kolkata, for providing necessary
information and guidance regarding the project. | would like to express my warmest
gratitude to Prof. Bijan Sarkar, Head of Department, Production Engineering, Jadavpur
University, Kolkata, for providing great support and guidance regarding the thesis. | am
thankful to all respected professors and teachers of the department of Production
Engineering who took keen interest in the work and gave their valuable suggestions.

| would like to thank Jadavpur University for providing me this wonderful opportunity
and all my friends for their kind cooperation which helps me to complete my project.

| feel pleased and privileged to fulfil my parents' ambition, and | am greatly indebted
to them for bearing the inconvenience during my M.Prod.E course. Thank you, my
beloved parents.

(BIRANJAY KUMAR)



ABSTRACT

During secondary steelmaking operations, argon gas is introduced into steelmaking
ladles to speed up mass and heat transmission in the melt. Additionally, slag eye
development and wall shear stresses are caused by ladle hydrodynamics, which lowers
the quality of the steel.

A mathematical model is developed in this study to forecast the wall shear stress, slag
opening area, and mixing time in single and dual bottom purged industrial steelmaking

ladles.

To estimate the same, dimensional less empirical correlations have also been
suggested. Further to minimize the objective functions i.e., mixing time, slag opening
area, and wall shear stress, some multi-objective optimization techniques based on
evolutionary algorithms have been introduced.

Because the objective functions were opposing in nature, a Pareto optimum solution
set—which included simultaneous optimal solutions is produced. Additionally, the
ideal process parameters for the ladle's best performance were determined. Further

an analysis is done using ANSYS software.
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CHAPTER 1

INTRODUCTION

1. Introduction

In the secondary metallurgy of steel making, gas stirring is extensively employed to
attain a homogenous distribution of alloying elements and temperature of bath. It is
employed for the process of deoxidation, desulphurisation and removal of inclusions
and it intensifies the rate of reactions. Argon gas is injected through a nozzle located
at the bottom of the ladle and this breaks up and forms gas bubbles. The rising bubbles
tends to move upwards, forming a turbulent plume, and subsequently, a circulatory
movement of the steel within the ladle. This reduces the time required to homogenize
the chemical composition of alloying elements and the temperature. Meanwhile at
sufficiently high flow rates, the bubbles moving upwards break the slag layer forming
an open-eye as shown in figure 1.
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Fig.1 Schematic illustrating the ladle gas stirring process

Ladle purging is an essential process in steelmaking, specifically in secondary
metallurgy, where the primary goal is to refine the molten steel to achieve the desired
chemical composition and temperature before casting. The process involves injecting
an inert gas (usually argon or nitrogen) through the bottom of the ladle to promote
homogenization, remove non-metallic inclusions, and control the temperature. Here’s
a detailed explanation:



1.1 Purpose of Ladle Purging

Homogenization of the Molten Steel:

Temperature Uniformity: Ladle purging ensures that the temperature of
the molten steel is uniform throughout the ladle. Since steelmaking
involves handling large quantities of molten metal, temperature
differences can exist between different layers. Purging helps in equalizing
these temperature gradients.

Chemical Composition: Purging also aids in mixing the steel, ensuring that
the alloying elements are evenly distributed, leading to a uniform chemical
composition.

Removal of Non-Metallic Inclusions:

Floatation of Inclusions: Non-metallic inclusions, such as oxides, sulphides,
and nitrides, can negatively affect the mechanical properties of the steel.
Purging with an inert gas helps these inclusions float to the surface, where
they can be removed as slag.

Inclusion Shape Control: The process also helps modify the shape of
inclusions, which can be beneficial for improving the steel's ductility and
toughness.

Desulfurization and Deoxidation:

Chemical Reactions: Purging can be used to promote chemical reactions that
reduce the sulphur and oxygen content in the steel. For instance, injecting
argon can help remove dissolved gases like hydrogen and oxygen, improving
the steel's quality.

IV. Temperature Control:

Heat Transfer: Purging can also be used to control the heat transfer in the
ladle. If the molten steel is too hot, purging can help dissipate some of the
heat, whereas, in some cases, controlled purging can prevent excessive heat
loss.

1.2 Ladle Purging Process

Ladle

Design:
Porous Plugs: The ladle is equipped with porous plugs or tuyeres at the
bottom through which the inert gas is injected. These plugs are designed
to withstand the high temperatures and corrosive nature of the molten
steel.
Gas Supply System: An argon or nitrogen supply system is connected to
the ladle, allowing for precise control of gas flow.

Gas Injection:

Flow Rate: The flow rate of the inert gas is carefully controlled. A low flow
rate is typically used to avoid excessive turbulence, which could lead to
unwanted reoxidation or excessive slag entrapment in the steel.

Bubble Formation: The injected gas forms bubbles in the molten steel,
which rise to the surface, promoting mixing and the removal of inclusions.

Monitoring and Control:



V.

e Process Monitoring: The process is closely monitored to ensure that the
desired effects are being achieved. Sensors may be used to measure the
temperature, chemical composition, and other parameters.

e Automated Control: In modern steel plants, the purging process is often
automated, with computer systems controlling the gas flow based on real-
time data from the ladle.

Post-Purging Operations:

e Slag Removal: After purging, the slag that has formed on the surface is
removed. This slag contains the non-metallic inclusions and impurities that
have been floated to the surface.

e Further Refinement: Depending on the steel grade and final requirements,
additional treatments, such as alloying or vacuum degassing, may be
performed after purging.

1.3 Advantages of Ladle Purging

Improved Steel Quality: By promoting homogenization and removing
inclusions, ladle purging improves the overall quality of the steel, leading to
better mechanical properties.

Efficiency: Ladle purging can reduce the time required for downstream
processes, such as casting, by ensuring that the steel is in optimal condition.
Cost-Effectiveness: By improving the efficiency of the steelmaking process and
reducing defects, ladle purging contributes to cost savings in the production
process.

Improved homogeneity: Ladle purging helps to distribute alloying elements
and temperature evenly throughout the molten metal. This uniformity in
composition and temperature leads to better control over the final properties
of the steel and prevents quality issues caused by inconsistencies.

Reduced slag entrapment: By purging, the molten metal is kept in a more
agitated state, which helps prevent slag from being entrapped in the metal,
resulting in fewer inclusions and defects.

In summary, ladle purging is a critical process in steelmaking that enhances the
quality and uniformity of molten steel by promoting homogenization, removing
impurities, and controlling the temperature and chemical composition of the steel
before casting.



1.4. Literature Review
1.4.1 Modelling of two-phase flows in gas-stirred ladles

The studies related to describing two-phase flow phenomena in a gas-stirred system
are discussed in this section.

Szekely, Wang and Kiser [1] carried out experiments and numerical simulations for a
water model of an argon-stirred ladle system. The simulation was performed by solving
turbulent Navier-Stokes equations and were based on using Spalding’ s k-¢ turbulent
model. The results showed good agreement of flow velocity and gas fractions when
compared to the experimental measurements. A similar kind of work was also done
by llegbusi et al. [2] investigating the flow velocities in a water model of an argon gas-
stirred ladle through experiments and simulations. The simulation results were
compared for two different turbulent models (k- ¢ and anisotropic eddy viscosity
model). The predicted simulation results of the mean velocity and turbulent
parameters were compared to experimental measurements.

Xie and Oeters [3] and Xie, Orsten and Oeters [4] carried out experimental
measurements to investigate the flow velocity in a ladle with liquid Wood’s metal with
nitrogen gas injected through centric blowing. The liquid flow field was measured
using magnetic probes for various blowing conditions. Measurements were taken for
the bubble behaviour, as well as the local gas fraction and the rising velocity of gas
bubbles for different gas flow rates and nozzle diameters. The results were presented
in the form of axial and radial velocities, the gas volume fraction and the turbulent
kinetic energy at different heights of the ladle. The results showed that the flow is
axially symmetric when gas was blown through a nozzle at a centric location. The flow
velocity on the vessel axis was almost constant over the height and increased with an
increasing gas flow rate and the nozzle diameter did not influence the flow velocity in
the ladle.

Xia, Ahokainen and Holappa [5] carried out numerical simulations and validated the
experimental measurements an axial and radial velocity profiles of Xie and Oeters [3],
and Xie, Orsten and Oeters [4]. A Euler-Euler multi-phase model was used to describe
the air and water phase in the ladle. Drag, lift and turbulent dispersion forces were
used describe the momentum exchange between the two phases. The simulation
results showed that the developed model provided an acceptable prediction of the
fluid flow in the liquid region and a relatively large 22 deviation in the gas-liquid plume.
To describe two-phase flow phenomena in a gas stirred system for steel making Lou
and Zhu [6] studied the influence of the turbulent dispersion force, as well as drag and
lift forces on the liquid flow velocity, gas fraction and turbulent kinetic energy. The
mathematical model developed was based on the Eulerian approach and the
simulation results were compared to experimental results.

Mendez, Nigro and Cardona [7] performed a numerical simulation to study the effects
of non-drag forces (virtual mass, lift and turbulent dispersion forces) on the gas
fraction and liquid flow velocities in the ladle. A Eulerian modelling approach was used
by Turkoglu and Farouk [8] to investigate the liquid flow velocity, gas fraction and
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temperature fields in a cylindrical ladle through bottom air injection. The turbulence
in the liquid phase was modelled using a two-equation k- turbulence model. The
simulation results of the radial distribution of gas volume fraction and velocity
measurements at specific axial locations were compared with experimental
measurements available in the literature. The simulation results agreed well with the
experimental results.

Davidson [9] conducted numerical simulations to investigate the magnitude of bubble
rise velocity, centreline void fraction and the central plume in a liquid bath where gas
was injected from the bottom. Domgin, Gardin and Brunet [10] carried out a detailed
experimental and numerical study to investigate the mean velocity distribution and
turbulent kinetic energy in a cylindrical steel bath where gas was injected through the
bottom. The numerical simulations were performed based on Euler-Euler and Euler-
Lagrange approaches. The simulations result of mean velocity profiles using the Euler-
Euler approach were in good agreement compared to the Euler-Lagrangian approach
when compared to with experimental results. A study of two different turbulence-
modelling approaches (k-€ and RSM) was conducted by Park and Yang [11] for a gas
stirred ladle system. The investigations included the flow velocities, gas fraction and
turbulent kinetic energies. The results showed that the k- turbulence model was not
suitable for predicting highly swirling flows, even though it yielded results that were in
agreement with measurements in less swirling flows. The results also showed that the
turbulent kinetic energies predicted by the k-¢ model were higher than those
predicted by the Reynolds stress model.

Recently Liu et al. [12] reviewed the research work carried out over a few decades into
gas stirring in ladle metallurgy. This work presented the complete physical modelling
and numerical simulations for four major areas: (1) mixing and homogenization in the
ladle, (2) gas bubble formation, transformation, and 23 interactions in the plume zone;
(3) inclusion behaviour at the steel-slag interface and molten steel; and (4) formation.
They concluded that the mathematical models focusing on inclusion behaviour at the
steel-slag interface needed to be improved.



1.4.2 Modelling of the fluid flow and open-eye formation in water model

of a steel making ladle.
Studies related to open-eye formation in a water model ladle through physical
modelling [13-22] and numerical simulations [25-33] have been performed extensively
in the past three decades.

Yonezawa and Schwerdtfeger [13-15] carried out cold model measurements to
investigate the open-eye size in a ladle using mercury and silicone oil to represent
liquid metal and slag. The results concluded that the open-eye increased with an
increase in the gas flow rate. A non-dimensional correlation was developed to
represent the time-averaged open-eye size area. They also performed measurements
to study the dynamics of spouts of gas plumes in a large-scale water model. In their
work, a non-dimensional height, which is independent of the Froude number and
nozzle diameter, was defined.

Based on the experimental data by Yonezawa and Schwerdtfeger [13-15], Krishna-
pisharody and Irons [16] proposed a model for estimating the plume eye area, which
expresses the dimensionless eye area in terms of a density ratio of the fluids and
Froude number shown in Equation (1).

A= ayp (Aﬁp)m FOY2 oo (1)

where, a and § are numerical constants, Ax is the non-dimensional eye area, ARl is
the open-eye area, H is height of the ladle, p is the density of water, Ap is the
density difference between water and oil, and Fr is the Froude number.

Krishnapisharody and Irons [17] further extended this model, developed a new one to
predict the open-eye size from the primary operating variables of the ladle, and
demonstrated its reliable predictive ability in a variety of multi-phase systems shown
in Equation (2).

1/2

Ae_ *\—1+ *\1+ H
7o = @B p)TEQY! (2) e @

*

The experimental studies that Krishnapisharody and lrons [16-17] performed in a
cylindrical water model ladle concluded that the open-eye area increased with
increasing the gas flow rates in all cases and decreased when the top phase thickness
increased. An increase in the size of the open-eye with the increasing height of the
water bath was also predicted from the results, although the enlargement is not linear.
To study the effect of slag (oil) properties, three liquid-liquid systems were used: (1) a
water-paraffin oil system; (2) an aqueous CaCl2 solution-paraffin oil system; (3) water-
heavy motor oil. The results showed that the systems with less dense top phase
systems had smaller s than denser top phase systems.

Wu, Valentin and Sichen [18] studied the open-eye formation in an argon stirred ladle
using two physical models. To simulate liquid steel, water was used in both models. To
simulate the slag, silicon oil was used in the first model and a Ga-In-Sn alloy was used
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in the second model. The results showed that the open-eye size highly depends on the
gas flow rate, the height of the lower liquid and the height of the top liquid. In contrast,
the viscosity of the top liquid and interfacial tension between the two liquids has only
a slight effect on the open-eye size. Similar work was carried out by Thuman et al. [19]
where they used Ga-In-Sn alloy with a melting temperature of 283 K (10 °C) to
simulate liquid steel and an MGCL2-glycerol (87%) solution to simulate the slag. It was
found that no open-eye formed at lower flow rates, but that it did occur when the gas
flow reached a critical rate. The critical flow rates were in the range of 0.7 to 4.0 NL/min
and were found to depend greatly on the height of the top liquid.

Amaro-Villeda, Ramirez-Argaez and Conejo [20] studied the effect of the slag thickness
on the open-eye area and the mixing time in the water model ladle. The slag thickness
was varied in order to study its effect on the open-eye area and mixing time in a single
plug system with a constant flow rate. A decrement of the open-eye area with an
increase in slag thickness was observed. Maruyama and Iguchi [21] also performed
cold model experiments in cylindrical vessel with a mercury-silicon oil system to study
the effect of slag properties on the open-eye area. The results showed that the open-
eye decreases with increases in the slag thickness and the density of the slag has effect
on the open-eye size only when the thickness of slag exceeds a critical value.
Mazumdar, Dhandpani and Saravanakumar [22] carried out experiments to measure
the open-eye area in two different water models with a gas injection nozzle located at
the mid bath radius position. Liu, Li and Li [23] performed measurements in a water
model for studying the formation of the open-eye with different gas flow rates, slag
layer thicknesses and number of nozzles. The results showed that the open-eye area
increases approximately linearly as the gas flow rate increases. The open-eye area
increases quickly with a reduction in the slag layer thickness showing that the slag layer
thickness has a great influence on the open-eye area.

Several mathematical models have been developed to study the flow in the ladle. Li,
Liu and Li [24] developed a mathematical model by using a multiphase volume of fluid
(VOF) method coupled with a population balance model (PBM) to investigate the effect
of the gas flow rate and plug radial position on the gas bubble diameter, and the open-
eye size in the ladle. The open-eye size predicted by the numerical model agreed well
with the experimental results and a critical gas flow rate to form a steady open-eye
was found for the present water mode condition. Li et al. [25] developed a
mathematical model based on large eddy simulations (LES) coupled with discrete
particle modelling (DPM) and a VOF model to investigate the bubble movement and
slag layer behaviour during the gas stirring process in the ladle. In this approach, a VOF
model was used to track the liquid-slag-air interface and the Lagrangian DPM was used
for describing the bubble movement. The simulation results showed that the bubbles
were found to be moving in curved paths and that they induced many eddies in the
region near the bubble plume. The shape and size of the open-eye was found to be
irregular. At low flow rates, the open-eye formed and collapsed alternately and at high
flow rates, the slag layer fluctuated and an open-eye was formed. The predicted
simulation results of the formation and closing of the open-eye qualitatively agreed



with the experimental results from the water model. Li and Li [26] further extended
the model developed by Li et al. [25] to investigate the bubble transport, bubble
diameter redistribution, slag layer fluctuation and slag droplet generation in the water
model ladle.

Calderon-Hurtadao et al. [27] performed both experiments and simulations to
investigate the open-eye formation for different gas flow rates and slag layer
thicknesses. For the experimental measurements, a velocity probe was placed close to
the interface to monitor any turbulence. The results showed that the open-eye was
found to be strongly dependent on the gas flow rate and slag layer thickness. Liu et al.
[28] and Li, Li and Liu [29] investigated the effect of the gas flow rate and oil layer on
the size, bubble movement and mixing time in a water model ladle through both
physical and numerical modelling. The effect of the oil layer thickness was investigated
by varying it from 20 to 40 mm and 50 mm for a constant flow rate in single-plug-
stirred system. The results showed the oil thickness has a large influence on the open-
eye area. The open-eye area increases quickly when the oil thickness decreases and
vice-versa, although the increment is not linear.

Lv et al. [30] performed numerical simulations for a cold-water model, where water
and sodium tungstate were employed to simulate liquid steel, and silicon oil was
employed to simulate slag. The simulation results showed that the gas flow rate, bath
height and slag layer thickness had strong effects on the open-eye size. Mazumdar and
Guthrie [31-33], Mazumdar, Yadhav and Mahato [34], Mazumdar and Evans [35],
Mandal, Madan and Mazumdhar [36], Peranadhanthan and Mazumdhar [37], Madan,
Satish and Mazumdhar [38], Patil et al. [39], Subagyo, Brooks and Irons [40] and Guo,
Gu and Irons [41] contributed to a greater extent towards investigating the fluid flow
analysis and open-eye formation in the ladle. Furthermore, the work also extended to
developing mathematical models to investigate the mixing time in ladles.



1.4.3 Modelling of the fluid flow and open-eye formation in an industrial
scale ladle.

For industrial scale ladles, there are fewer experimental measurements for the open-
eye formation available in the literature when the compared to water model ladle. This
is due to the difficult conditions (e.g., high temperatures, process gases and dust) on
the ladle surface, which make it quite hard to capture the process with a video camera.

Valentin et al. [42] captured the open-eye formation process in a 170-ton steelmaking
ladle. The measurements included studying the effect of the stirring rate on the
formation in the ladle. The trials were carried out by increasing the gas flow rate from
0to 35 STP m3/h (583 SLM). At a flow rate of 15 STP m3/h (250 SLM), a circular shaped
open-eye was generated approximately after two minutes of gas injection, shown in
Figure 2. An increase of the flow rate to 25 STP m3/h (417 SLM) resulted in the
formation of larger open-eyes and the change of the shape from circular to oval. A
further increase of the flow rate to 35 STP m3/h (583 SLM) resulted in the formation
of strong movements and turbulence on the surface and in the top slag as well as
splashing and smoke formation. During the stirring process, circulating waves were
detected on the surface at higher gas flow rates. Furthermore, numerical simulations
were carried out to study the flow patterns for different gas flow rates.

Liu, Qi and Xu [43] numerically investigated a quasi-steady fluid flow and interfacial
behaviour on the industrial scale ladle with argon gas injection through one plug, and
two plugs placed in 1800 and 900 configurations, respectively. A VOF model was used
to track the slag/steel/gas interface behaviour. The simulations were performed by
increasing the flow rates from 50 to 400 L/min. The results showed that the bubble
plume was not able to break the slag layer for a gas flow rate of 50 L/min. A small
open-eye occurred when the flow rate was increased to 150 L/min and the open-eye
size enlarged with an increase of the flow rate to 500 L/min. At high flow rates, the
thickness of the slag layer became very thin near the sidewall of the ladle indicating a
strong flow in the molten steel, which could damage the ladle wall refractory and
reduce the ladle life. The results also concluded that the flow pattern of the molten
steel was dependent on the plug configurations and gas flow rates. To avoid significant
deformation of the slag layer, it was suggested to divide the gas flow into two
weakened plumes by using a dual plug configuration. For a better refining process, the
proper selection of the gas flow rate and plug configurations were proposed.

Li et al. [44] developed a mathematical model to analyse the transient three
dimensional and three-phase flow in an argon stirred ladle with one and two off
centred, porous plugs. Simulations were performed on a 220-ton industrial scale ladle,
increasing the gas flow rates from 100 to 300 NL/min. The simulation results showed
that the injected flow rate of argon gas had a significant effect on the spout peak height
and the open-eye area. The diameter of the open-eye changed from 0.43 m to 0.81 m
when the flow rate of argon gas varied from 100 to 300 NL/min. When argon gas was
injected through two-plugs for a flow rate of 300 NL/min, two open-eyes were
generated with diameters of about 0.6 m. As concluded by Liu, Qi and Xu [43], the
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simulation results by Li et al. [44] also resulted in significant deformation of the slag
layer during the stirring operation, and the slag thickness became thinner near the slag
eye and thicker near the wall.

Singh et al. [45] developed a mathematical model to analyse a transient three phase
flow in an industrial scale ladle with argon gas injecting from off-centred plugs. The
VOF model, which was used by Liu, Qi and Xu [43] and Li et al. [44] was also used in
this work to track the behaviour of the slag, steel and argon gas interfaces. At first, the
simulation results of the open-eye area for different operating parameters were
validated with the results by Liu, Qi and Xu [43]. The results showed that the open-eye
area is very much dependent on the argon-stirring rate and slag layer thickness.
Furthermore, the model predicted the desulfurization rate using chemical kinetic
equations, as well as the interfacial area calculated from the CFD, and thermodynamic
data obtained from the Thermo-Calc software. The results demonstrated that dual-
plug configurations are more suitable for larger open-eye areas, which are needed for
desulfurization, than the single plug configuration.

Gonzalez et al. [46] performed numerical simulations to study the flow pattern and
open-eye formation in a steelmaking ladle under non-isothermal conditions. The
results of thermal stratification and velocity fields were plotted on two vertical planes.
The shape of the thermal stratification layers depends on the holding time owing to
convective movement of steel according to the density difference. The flow field in the
ladle reached a quasi-steady state condition after 20 seconds of argon gas injection.

Cloete, Eksteen and Bradshaw [47] also developed a full-scale, three-dimensional,
transient mathematical model to study the fluid flow analysis in industrial scale ladles.
The Lagrangian discrete phase model (DPM) was used to describe the bubble plume
and the Eulerian VOF model for tracking the slag/steel/gas interface behaviour. The
standard k @ € model was used for modelling the turbulence. The results concluded
that the model developed was computationally efficient for investigating the influence
of a large number of operating and design variables on the fluid flow analysis and
open-eye formation in the ladle. Cloete, Eksteen and Bradshaw [48] further extended
this model to study the effect of plug arrangement on the flow analysis in the ladle.

Cao and Nastac [49] numerically investigated the fluid flow, mass transfer and slag-
steel interface behaviour in a steelmaking ladle. In the first step, a Euler-Euler model
was used to simulate the multi-phase flow in a water model and the results were
validated with experimental results available from the literature. The Euler- Lagrange
approach was used to study the effect of the free surface setup, injected bubble size,
gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer
behaviour. The argon gas floating process and open-eye formation process was
investigated using both the VOF and DPM model. The gas rising upwards in the VOF
model was continuous and concentrated and in the DPM model, the floating gas
bubbles were dispersive and random. The decrement of the slag layer thickness
resulted in the reduction in open-eye area and mass transfer coefficient in the molten
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steel. When the gas flow rate was increased, the mass transfer coefficient and
volumetric mass transfer coefficient in the molten steel became larger, and the open-
eye area enlarged. Increase in the bubble size resulted in turbulence in the ladle
becoming weaker and consequently the mass transfer coefficient in steel was reduced.
Cao and Nastac [50] also modelled the transport and removal of inclusions in an
industrial gas-stirred ladle. The effect of the gas flow rate, injected bubble diameters
and the inclusion size on various removal mechanisms including slag capture, bubble
attachment and ladle wall adhesion on the removal of inclusions was investigated.
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1.4.4 Mixing and homogenization in the ladle

The studies related to describing the mixing phenomena in a water model and
steelmaking ladle are discussed in this section.

Palovaara, Visuri and Fabritius [51] performed physical modelling measurements in a
1:5 scale water model of a 150-ton ladle to study the effect of the gas flow rate on the
mixing phenomena. The mixing time was determined based on the change of the pH
of the water bath using sulphuric acid as a tracer substance. The results indicated that
the average mixing time decreases with increases in the gas flow rate non-linearly.
Michaelek, Gryc and Moravka [52] studied the mixing phenomena through physical
modelling in 1:10 scale water model. The mixing time was evaluated based on
electrical conductivity and temperature changes, which were measured at three points
in the ladle. The results obtained illustrated that the time required for homogenization
decreased with an increase in the gas flow rate. Joo and Guthrie [53] investigated the
mixing behaviour and mixing mechanisms as a function of the location of a porous
plug, the tracer injection point, and ladle monitoring point. From the results, it was
shown that eccentric bubbling gives steady results in terms of reducing the mixing
times, since an angular momentum intermixes fluid across the width of the ladle.

Terrazas and Conejo [54] investigated mixing phenomena in a water model ladle. The
measurements included studying the effect of process variables such as the nozzle
diameter, gas flow rate and nozzle radial position on the mixing time. The mixing time
decreased with an increase the nozzle diameter at low stirring rates, but at high stirring
rates this effect was found to be relatively significant. The nozzle plug location played
a pivotal role in the mixing time, and it is found that there was a large decrement in
the mixing time when the radial position of the nozzle was changed from the centre
of the ladle to a half radius position (i.e. to an eccentric position).

Conejo et al. [55] studied the effect of the top layer, nozzle arrangement, number of
nozzles and gas flow rate on the mixing time in a 1:18 scale water model. The
experimental results suggested that one nozzle located eccentrically at a distance of
0.67 R, with no slag, results in a shorter mixing time in comparison to two nozzles with
separation angles of 180, 120, and 60 degrees, located at any radial distance. The
mixing time decreased at low gas flow rates and increased at high gas flow rates, and
in some cases, the slag layer thickness promoted a decrease in the mixing time.

Pan, Chaing and Hwang [56] investigated the effects of injection conditions on the
mixing efficiency of the gas injection treatment in a water model. The results of these
measurements concluded that the mixing efficiency was improved with increments of
the gas flow rate and that an off-centre injection was better than centreline injection.
Aoki et al. [57] investigated mixing phenomena in a bottom gas-stirred ladle through
experiments and theoretical studies. Liu, Li and Li [23] studied the effect of gas flow
rates and the number of porous plugs on the mixing time in a water model through
physical modelling measurements.
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Cao and Nastac [58] developed three-dimensional DPM-VOF coupled model to study
the mixing phenomena in the industrial scale ladle. From the simulation results, it was
found that two symmetrical plugs configuration provides higher mixing efficiency in
the ladle when compared to one centric or one eccentric plug configuration. Lou and
Zhu [59] developed a coupled model based computational fluid dynamics and
population balance model (CFD-PBM) to investigate the effects of different numbers
and positions of the nozzles, and the gas flow rate on the mixing phenomena in the
150-ton steelmaking ladle. The simulation results revealed that dual blowing gives a
shorter mixing time in comparison to centric blowing configurations. The mixing time
decreases with increase in the gas flow rate, and when the gas glow rate exceeds 300
NL/min the change in mixing time is small.

Geng, Lei and He [60] developed a mathematical model based on a two-phase fluid
(Eulerian-Eulerian) to investigate the effect of the offset of dual plugs and the gas flow
rate on the mixing time in a ladle with dual plugs. Ramirez-Argaez [61] performed
calculations to study the effect of the gas flow rate, injector position, number of
injectors, and ladle geometry on the mixing time. The simulation results showed that
increments in the number of porous plugs resulted in longer mixing times. Haiyan et
al. [62] numerically studied the effect of the gas flow rate, number, position and
relative angle of porous plugs on the mixing time in the ladle. Zhu et al. [63] performed
experiments and numerical simulations to study the mixing phenomena in an argon-
stirred ladle with six types of porous plug arrangements. It was found that the porous
plug arrangement has a significant effect on the mixing time.

Over the past decade, there have been relatively few studies on both physical and CFD
modelling together with strong validation in studying the gas-steel-slag interface
behaviour in the ladle. Moreover, the studies have focused more on modelling water
models when compared to the modelling industrial ladles. In the current work, the
simulation results of open-eye behaviour and mixing phenomena are provided with
strong experimental data measured for validation and vice-versa. As for the
experimental part, the work focuses on measuring the open-eye size for different flow
rates, slag layer thickness and slag layer properties (density and viscosity) in water
model and industrial measurements. The industrial measurements were performed at
Outokumpu Stainless Oy in Tornio, Finland. As for the simulation part, the work
focused on the development of the CFD model with the VOF approach to track the
slag/steel/gas interface behaviour and species transport model for calculating the
mixing time in the gas-stirred ladle.
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1.5. Objectives of the work

The main objective of this thesis is to study the effect of different operating parameters

i.e., argon gas purging rate, initial slag thickness, radial position(s) of the gas inlet(s) on

the mixing time, wall shear stress and open eye formation process in a gas-stirred

ladle.

The aims of this work are subdivided into three tasks shown below:

1. To formulate the mixing time, slag opening area and wall shear stress, dimensional
analysis and empirical correlation has to use. because of their dependency on a
number of parameters, including the angle of separation between the gas inlets,
the radial position(s) of the gas inlet(s), the initial slag layer thickness and the argon
gas purging rate.

2. To minimize the mixing time, slag opening area and wall shear stress, constrained
multi-objective optimization with various optimization techniques i.e.genetic
algorithm, particle swarm optimization, cuckoo-search optimization and teaching
learning based optimization have to use to identify the optimal solution set.

3. To analyse the obtained optimal solution ANSYS software has to use for the
validation.
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CHAPTER 2

MATHEMATICAL MODELLING

2. Mathematical modelling
2.1Dimensional Analysis

The mixing time, slag opening area, and the maximum wall shear stress depend on
several geometric and operating parameters like the radial and angular positions of
the gas inlets, gas purging rate, slag layer thickness, and the metal bath height. A
functional relationship was established between these variables, and Buckingham’s P
theorem was used to formulate a relationship between them in terms of
dimensionless parameters as

g As Tmax _ Q aj
tix |7 g2 5 g | = B %
Pstg JgH?

()7 (2)7 (%) (22) 7 = 1= 6 e enn (3D

Here, to maintain dimensional consistency, the variable 6 is replaced
with the distance between the two gas inlets, which is defined as

R; = JRf + R5 — 2R,R,Cos0
The eqgn. (1) can be written in simplified form as
[timiz> Ass Tmax] = Kkj X Q% X h% X RV X Ry X RY;j =1 6....(4)

Here, one must note that in the case of single purged ladle the second gas inlet does
not exist and hence d; and e; becomes zero. A non-linear multiple regression analysis
was done to determine the exponents a;-¢; and the pre-exponent constant k;.

2.2 Empirical Correlation

From the above analysis, it is clear that the mean shear stress depends on the design
and operating parameters. A correlation was developed to predict the dimensionless
wall shear stress for any configuration and operating conditions based on non-linear
multiple regression analysis, as shown in Eqn. (3). To determine the constants c1, g, b,
¢, d, e in Eg. (4), as many as 40 numerical simulations were performed at various gas
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flow rates, metal bath depth, slag thickness and inlet con-figurations. Based on the
regression analysis, Eqg. (4) can be rewritten as

Tax = 0.0014 X Q0516 x p=0228 5 ROA21 . (5)

x 107

max
[ ]

simulated 7

R%=0.8312

0 1
0 1 2 3
: * -4
predicted 7 %10
max

Regression Analysis fig. (2)

Eq. (5) provides the desired relationship between the wall shear stress and the design
and operating variables, in dimensionless form. The maximum skin friction coefficient
values that are predicted by the above equation, are shown in this Fig. 2, along with
the maximum skin friction coefficient values that were obtained from numerical
simulations. Itis clear from this figure that Eq. (5) is adequate to characterize wall shear
stresses in dual plug fitted industrial scale steel making ladles, at various operating
conditions, with in the range of values considered in the present study.

Fig. (3) shows the variation of maximum skin friction coefficient with dimensionless
values of gas flow rate, metal bath depth, slag thickness and configuration of gas inlets.
The maximum skin friction coefficient increases by increasing the dimensionless gas
flow rate, dimensionless radial distance of injectors from the base centre or by
decreasing the dimensionless distance between both the inlets and dimensionless slag
thickness. From these figures, as well as from Eq. (5), it is clear that the dimensionless
skin friction coefficient is largely dependent on the dimensionless gas purging rate and
on the dimensionless radial distance of injectors from the centre of the gas inlets.
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Variation of maximum skin friction coefficient with non-dimensional design and

operating parameters.

Similarly, based on non-linear multiple regression analysis the exponents a;-e; and the
preexponent constant e; in eqn. (4) were determined. Accordingly, the empirical
correlations for estimating the value of mixing time, slag opening area, and maximum

wall shear stress respectively in single purged industrial ladles are obtained as
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2.2.1 Objective Functions for single purged ladle

tmix = 15.48 x Q70319 x p0.086 x R70037 = .. ....(6)
Ag = 2.991 X Q0745 x h0882 5 RO036 . (D)
Tmax = 0.0014 x Q0516 x p=0228 5 RO121 . ......(8)

Subjected to,
2.02X107* < Q" <20.20X107*
0.025 < h* <£0.10
3.25X107* < R1* <0.325
9.60 X 1072 < R2* <0.325
2.2.2 Objective Functions for Dual Purged Ladle
tmix = 15.96 x Q0324 x p0-055  R0.061 5 p=0069 0113~  (9)

Ag = 0.566 x Q0685 x p=1.061 5 RO.079 5 RO057 5 p=0207 .. ..(10)

Tonax = 0.1883 x Q0.7494 X h—0.0194 X R?'8548 X Rg.6572 X
R300742 i (1)

Subjected to,
2.02X107* < Q" <20.20x107*

0.025 < h* <0.10
3.25X10™* < R1* <£0.325
9.60 X 1072 < R2* <0.325

9.56 X 1072 < R3* < 0.650

The coefficient of determination R2 of the regression obtained for all the above
correlations ranges between 0.80 and 0.94. it can be seen from eqn. 6-11 that in the
mixing time increases with an increase in the slag layer thickness or with a decrease in
the gas purging rate and the radial distance of the gas inlet. In dual purged ladles, the
mixing time increases with the angle between the two gas inlets. Similarly, the slag
opening area and the maximum wall shear stress increases with an increase in the inlet
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gas purging rate and the radial distance of the gas inlet from the centre and decreases
with an increase in initial slag layer thickness. During dual bottom purging the slag
opening area and the maximum wall shear stress also decreases with an angle
between the gas inlets.

Equations 6-8 and Equations. 9-11 is considered the objective functions for the
optimization problem in single purged and dual purged ladles, respectively.

From the exponents of the variables in these equations, one can observe that the
objective functions have opposing natures. Therefore, a unique optimal solution does
not exist. Instead, a collection of many solutions is produced, and at each point, the
objective functions are optimum. Such a set of solutions is called a Pareto optimal
solution set. Pareto optimal solutions are those where an improvement in one
objective function can only be achieved with a deterioration of at least one of the other
objective functions. In the objective space, all the Pareto optimal solution points
together form a Pareto front. With the constraints to the decision variables, the Pareto
optimal solution set is obtained by solving the multi-objective optimization problem.

19



CHAPTER 3

OPTIMIZATION

3. Optimization
3.1 Optimization by genetic algorithm

A Genetic Algorithm (GA) is a search heuristic that is inspired by Charles Darwin's
theory of natural evolution. It reflects the process of natural selection where the fittest
individuals are selected for reproduction to produce offspring of the next generation.
Genetic algorithms are widely used for optimization and search problems where
traditional methods may not be as effective.

3.1.1 Steps and Concepts in Genetic Algorithms

I.  Population:
e A set of potential solutions to the problem at hand. Each individual in the
population represents a possible solution.
e These individuals are typically represented by chromosomes, which can be
strings of binary, real numbers, or other formats depending on the problem.
II.  Chromosome:
e Achromosome is a single solution to the problem, often represented as a string
(binary, real numbers, or other forms).
e Each chromosome consists of genes, which are individual elements of the string,
representing specific characteristics of the solution.
lll.  Gene:
e A gene is a part of the chromosome, representing a specific trait or decision
variable in the solution.
IV.  Fitness Function:
e The fitness function evaluates how good or bad a solution (chromosome) is. It
assigns a fitness score to each individual in the population.
e The goal is to maximize or minimize the fitness function depending on the
problem.
V. Selection:
e The selection process chooses the fittest individuals from the population to be
parents and pass their genes to the next generation.
e Common selection methods include roulette wheel selection, tournament
selection, and rank-based selection.
VI.  Crossover (Recombination):
e Crossover is a genetic operator used to combine the genetic information of two
parent chromosomes to produce new offspring.
e There are several types of cross-over, such as single-point crossover, two-point
crossover, and uniform crossover.
VIl.  Mutation:
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e Mutation introduces diversity into the population by randomly altering the
genes of a chromosome.
e It helps to prevent the algorithm from becoming stuck in local optima by
exploring new regions of the solution space.
VIIl.  Termination:
e The algorithm continues to evolve the population through selection, crossover,
and mutation until a termination condition is met.
e Common termination conditions include reaching a maximum number of
generations, achieving a satisfactory fitness level, or convergence of the
population.

Input objective
function

Generate initial
population
Evaluate fitness function
min(tr‘riix ’ A:- ’ Tl.naa')

|

Generation of next population by

a) Passing elite individuals directly.
b) Evaluating mutation and crossover functions
to generate offspring population

Termination criteria
based on population
spread convergence

Not satisfied

Satishied

Output Pareto optimal solution
set, and the corresponding
decision variables

Fig.4 Flow chart of GA
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3.1.2 Advantages

e Versatility: GAs can be applied to a wide range of optimization problems.

e Global Search Capability: Genetic algorithms are less likely to get stuck in local
optima compared to traditional optimization methods.

e Parallelism: GAs can be easily parallelized, making them efficient for large-scale
problems.

Genetic Algorithms are powerful tools for solving complex optimization problems,
particularly when the solution space is large, and traditional methods are not feasible.
They mimic the process of natural evolution, making them flexible and adaptable to a
wide range of applications.

Genetic Algorithms are powerful tools for solving complex optimization problems,
particularly when the solution space is large, and traditional methods are not feasible.
They mimic the process of natural evolution, making them flexible and adaptable to a
wide range of applications.
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3.2 Optimization by particle swarm algorithm

Particle Swarm Optimization (PSO) is a computational method used for solving
optimization problems, inspired by the social behaviour of birds flocking or fish
schooling. It was developed by James Kennedy and Russell Eberhart in 1995. PSO is a
population-based stochastic optimization technique, meaning it uses a population of
candidate solutions (particles) that move around in the search space to find the
optimal solution.

3.2.1 Steps and Concepts in Particle Swarm Optimization

Particles:
Each particle represents a potential solution to the optimization problem.
Particles are characterized by their position (which represents a candidate
solution) and velocity (which determines how the particle moves through
the search space).
Swarm:
The entire group of particles is called the swarm.
The swarm collectively moves through the solution space, searching for the
optimal solution.
Fitness Function:
The fitness function evaluates how good a particular solution (particle’s
position) is. It assigns a fitness value to each particle.
The goal is to maximize or minimize the fitness function depending on the
problem.
Velocity Update:
The velocity of each particle is updated based on three components:
Inertia: This represents the particle's tendency to continue moving in the same
direction as before.
Cognitive Component (Self-knowledge): This component drives the particle
towards its best-known position (personal best, ppest )-
Social Component (Swarm Influence): This component drives the particle
towards the best-known position in the entire swarm (global best, gjest)-
The velocity update equation is typically given by:

vi(t+1) = w.v;(t) + cq.771. (pbest,i - xi(t)) + Cy.75. (gbest -

xi(t))

v;(t) is current velocity of particle i.

w is the inertia weight

¢, and ¢, are cognitive and social coefficient respectively.

r; and r, are random numbers uniformly distributed in the range [0,1]

x;(t) is the current position of particle i.
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V. Position Update:
e After updating the velocity, the particle’s position is updated by:

This new position represents the particle's new potential solution.

VI. Personal Best
Each particle keeps track of its own best position (i.e., the position that has

given the best fitness value so far).

VII. Global Best
The swarm also keeps track of the best position encountered by any particle in

the swarm (i.e., the best fitness value found by any particle).

VIIl.  Swarm Convergence:
Over time, particles tend to converge towards the best solutions found by the

swarm, which ideally leads to finding the optimal solution.

7 Initialization:

\
I(Position, velocity, local best calculation, global |
\_ bestis setto the best local best ~/
>
v

Update particles velocity

)

Update particles position

Update local best and
global best

<__Stopping Criteria met?
i Yes
(/ Solution is global best
\ SR /

Fig.5 Flow chart of PSO
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3.2.2 Advantages

e Simplicity: PSO is easy to implement and requires few parameters to adjust.

e Efficiency: It is computationally less expensive compared to other evolutionary
algorithms like Genetic Algorithms (GAs).

e Parallelism: Like GAs, PSO can be easily parallelized, making it suitable for large-
scale problems.

e No Derivatives Needed: PSO does not require the gradient of the fitness
function, making it suitable for non-differentiable, noisy, or complex objective
functions.

Particle Swarm Optimization is a robust and versatile optimization technique, making

it suitable for a wide range of applications, particularly when the problem landscape is
complex or poorly understood.
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3.3 Optimization by teaching learning - based algorithm

Teaching-Learning-Based Optimization (TLBO) is a population-based optimization
algorithm inspired by the teaching and learning process in a classroom. It was
introduced by R. V. Rao, V. J. Savsani, and D. P. Vakharia in 2011. TLBO mimics the
influence of a teacher on learners and the interactions among learners to improve
their knowledge, which is analogous to finding an optimal solution in the search space.

3.3.1 Steps and Concepts in TLBO

Population (Classroom):

The population in TLBO is analogous to a classroom of students (learners),
where each learner represents a candidate solution to the optimization
problem.

The quality of each learner's solution is analogous to the learner’s knowledge
or performance, evaluated using a fitness function.

Teacher:

The teacher is the best solution in the current population (the learner with the
highest fitness).

The role of the teacher is to enhance the knowledge level of the learners by
moving them towards the teacher's level.

Learners:

Learners are the individuals in the population, each representing a potential
solution to the problem.

Learners interact with the teacher and with other learners to improve their
knowledge (i.e., improve their solutions).

Fitness Function:
The fitness function evaluates how good or bad a particular solution is. It
assigns a fitness value to each learner (solution).
The goal is to maximize or minimize the fitness function depending on the
problem.
Phases in TLBO

e TLBO operates in two main phases: the Teacher Phase and the Learner

Phase.

Teacher Phase:
In this phase, the teacher (best solution) tries to improve the knowledge of the
learners.
The teacher influences the learners by moving them closer to the teacher's
knowledge level. This is done by adjusting the learners' positions in the search
space based on the difference between the mean knowledge level of the class
and the teacher's knowledge level.
The position update for a learner i is given by:
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Xi,new =X;+r. (Xteacher - Tf-Xmean)

Where;
X new is the updated position of learner i.
X is the current position of learner i.
Xteacner IS the position of teacher.
Xmean 1S the mean position of all learners.
Ty is the teaching factor, usually set to either 1lor 2 representing the
Level of influence the teacher can have.

ris a random number in the range [0,1]

e After updating the learners’ positions, their fitness values are evaluated,
and the best solution (teacher) is updated if necessary.

Il Learner Phase:

e In the learner phase, learners interact with each other to enhance their
knowledge.

e Alearner iinteracts with another randomly selected learner j. If learner j has
a better fitness, learner i moves closer to j's position. Otherwise, learner i
moves away from j's position to explore a different region of the search space.

e The position update for a learner iii after interaction with learner j is given by:

If £(X;) < F(X)
Xi,new = XL' + 7. (X] — Xl)
If £(X;) = F(X)
Kinew =X + 7. (Xl' - Xj)
Where;
X new is the updated position of learner i.
X; and X; are the current positions of learners | and j respectively.
f(Xi) and f(X;) are the fitness value of learner | and j, respectively.

r is the random number in the range [0,1].

After the interaction, the new positions are evaluated and the best solution (teacher)
is updated if necessary.
lll. Termination:
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The TLBO process is repeated, cycling through the Teacher and Learner phases
until a termination condition is met. Common termination conditions include
reaching a maximum number of iterations, achieving a satisfactory fitness level,
or observing convergence in the population.

I Initialize number of students (population), termination criterion

L

I Calculate the mean of each design variable }( \

L

I Identify the best solution (teacher)

"

Modify solution based on best solution
Xpew = Xotat(Xieacher=(T p)mean)

aseyd sayoea],

Is new solution better than
existing?

s e

Select any two solutions randomly X;and X;;,

Is X; better than X,

2
g
Xnew = Xoa#r(Xi=X;) Xpew = Xoia#1(X;=X;) =

Is new solution better than
existing?

Is termination criteria satisfied?

| Final value of solutions |

Fig.6 Flow chart of TLBO
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3.3.2 Advantages

Simple and Easy to Implement: TLBO does not require tuning of algorithm-
specific parameters (like crossover rate, mutation rate, etc.), making it easy to
implement and apply.

No Algorithm-Specific Parameters: TLBO is free from algorithm-specific
parameters, which simplifies the tuning process and makes it easier to apply
across different problems.

Effective for Various Optimization Problems: TLBO has been successfully applied
to a wide range of optimization problems, including constrained, unconstrained,
and multi-objective problems.

Efficient: TLBO generally converges quickly, making it computationally efficient.

Teaching-Learning-Based Optimization is a powerful and versatile optimization
technique that mimics the educational process. Its simplicity, lack of algorithm-specific
parameters, and effectiveness in solving a wide range of optimization problems make
it an attractive choice for researchers and practitioners alike.
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3.4 Optimization by cuckoo search algorithm

Cuckoo Search (CS) is a nature-inspired optimization algorithm developed by Xin-She
Yang and Suash Deb in 2009. It is based on the brood parasitism of some cuckoo
species, particularly their habit of laying eggs in the nests of other birds. The CS
algorithm also incorporates the Lévy flight behaviour of birds and fruit flies, which is a
type of random walk where the step lengths have a probability distribution that is
heavy-tailed.

3.4.1 Steps and Concepts in Cuckoo Search
I. Cuckoo Behaviour:

e Some species of cuckoos lay their eggs in the nests of other host birds (of
different species). If the host bird discovers the egg is not its own, it may either
throw the egg away or abandon the nest and build a new one elsewhere.

e Cuckoo Search simulates this parasitic behaviour where each cuckoo
represents a solution, and its egg represents a new candidate solution. The goal
is to replace worse solutions (host bird’s eggs) with better ones (cuckoo’s eggs).

II. Lévy Flights:

e Lévyflightisarandom walk where the steps are drawn from a Lévy distribution,
which is a heavy-tailed probability distribution. This means that the cuckoos
can make large jumps, allowing for a more extensive exploration of the search
space.

e In the context of optimization, Lévy flights help the algorithm escape local
optima and explore new regions of the solution space.

lll. Fitness Function:
e The fitness function evaluates how good a solution is, assigning a fitness
value to each cuckoo (solution).
e The goal is to maximize or minimize the fitness function, depending on the
problem.

IV. Host Nests:

e The population of potential solutions in CS is referred to as nests. Each nest
contains an egg representing a solution to the optimization problem.

o The quality of the nests is evaluated based on the fitness function.

V. Termination:

e The process of generating new solutions via Lévy flights, evaluating fitness,
replacing nests, and abandoning poor nests continues until a termination
condition is met.

e Common termination conditions include reaching a maximum number of
iterations, achieving a satisfactory fitness level, or observing convergence in
the population.

7/

s Steps in cuckoo search
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l.initialization
e A population of nests (solutions) is initialized with random positions in the
search space.
e Each nest contains an egg, which represents a candidate solution.
II. Cuckoo generation (via levy flights);

e A new solution (cuckoo egg) is generated by performing a Lévy flight from the
current solution.

e The position update for a solution is given by;

Xnew = Xo1a + @. Levy(A)

Where;
a is the step size scaling factor.
Levy(A) represents a step drawn from a levy distribution with exponent 4

e Lévy flights result in occasional large steps, allowing for global exploration
of the search space.

lll.  Fitness evaluation and replacement

e The fitness of the newly generated cuckoo (new solution) is compared to
the fitness of a randomly chosen nest.
e If the new solution is better (has a higher fitness), it replaces the existing
solution in the nest.
IV.  Host nest abandonment
e A fraction p, of the worst nests is abandoned, and new nests are built
randomly in different locations (random solutions are generated).
e This step introduces diversity into the population and helps the algorithm
escape local optima.
V.  Termination
e The process of generating new solutions via Lévy flights, evaluating fitness,
replacing nests, and abandoning poor nests continues until a termination
condition is met.
e Common termination conditions include reaching a maximum number of

iterations, achieving a satisfactory fitness level, or observing convergence
in the population.
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Fig.7 Flow chart of CSO

3.4.2 Advantages

o Global Search Capability: The use of Lévy flights allows Cuckoo Search to
perform a global search and avoid getting stuck in local optima, making it
effective for complex optimization problems.

e Simple and Easy to Implement: CS has few parameters to adjust, making it
simple and easy to implement.

e Efficient Exploration and Exploitation: The balance between exploration (global
search) and exploitation (local search) is effectively managed by the Lévy flight
mechanism and the host nest replacement strategy.

e Good Performance on Multimodal Functions: CS is particularly effective in
handling multimodal functions, where the search space has multiple peaks and
valleys.

Cuckoo Search is a powerful and versatile optimization technique, particularly suited

for solving complex, multimodal optimization problems. Its simplicity, efficiency, and
ability to avoid local optima make it a valuable tool for a wide range of applications.
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CHAPTER 4
ANALYSIS

4. Analysis using Ansys software

4.1 Description of the analysis

In the current work, a VOF model was used to solve the three-phase flow and to track
the slag/steel/gas interface behaviour in the ladle. The following governing equations
of the VOF model and turbulence model need to be solved.

4.1.1 Conservation equations

The continuity and momentum equations are shown in Equations (3) and (4),
respectively.

Continuity equation

9, 2px) _
ot + dx; =0 i, (12)

. Momentum equation

d(pu;) | 0w w)) op 0 du; Oy
= T3, T 3. — +t F, + F
at + ax] axi + ax] 'ueff + X + 1 + vol»

where F; is the body force in the case of gas blowing in the ladle and F,,,; is the volume
force which the source term for surface tension, given by

Fi= apg; e (14)

— PkiVa;
Fyo1 = 0 o2 (0 00} pitp (15)
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4.2.2 Turbulence models

The standard k-& equation is used to model the turbulence, which solves two
equations for the transport of turbulent kinetic energy and its dissipation rate to obtain
the effective viscosity field.

ok d( pku; a ok
pa-l_(gT‘lu):a_xl[(udl_g_; a_xl:|+ Gk—pg ............. (16)

ds | d(peu;) a Hey O¢ £
3t ot = an| e+ 295+ G (Gt Ge) -

Coep (2) . (17)

O¢ axl-

where k is the turbulent kinetic energy, € is the turbulent dissipation rate, and
x; represents the spatial coordinates for different directions. Gy is the turbulent kinetic
energy source term caused by mean velocity gradients, and G, is the turbulent kinetic

energy source term caused by buoyancy. These terms are calculated by Equations (9)
and (10).

ou;
G = —puiuja—zj cerereeenenenes (18)
— —g.(*pr)o2
G, = —gi pPrt By (19)
Cukz
fe = B2 e (20)

The turbulent viscosity is calculated by Equation (20) using k and & from Equations (16)
and (17) respectively. The constants k and & used in the present study were
recommended by Launder and Spalding [79].
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4.2.3 The volume of fluid model

The Volume of Fluid (VOF) model can be used to track the interface between the
phases by solving a single set of momentum equation. In this work, the tracking of the
interfaces between liquid steel/slag/top-gas is accomplished using this model. The
governing equation can be written as follows:

1[0 ) )
;[a (aquI) t V. aq,Dqu] = Sq, t Yp=1(mMpy — Mmqp)......... (21)

where mpq, mqp represent the mass transfer from phase p to g and phase g to p in
unit time and volume, respectively; « is the volume fraction of phase g, p; is the
density of phase g, Saq is the source term taken as 0 in the Fluent software. The volume

fraction of the main phase is not calculated in the Fluent software, while it can be
acquired by Equation (22). When the volume fractions are summing the following
equation is satisfied:

4.2.4 Species transport model

To calculate the mixing process in the ladle, the species transport model was solved
throughout the computational domain

% + V.(puc) = V. [p (D + ﬁ) Vc] ................. (23)

where D is the mass diffusion coefficient and Sc; is the turbulent Schmidt number with
He

a default value of 0.7 (S¢;, = —=
pD¢

where D; is the turbulent diffusivity).
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4.3 Geometry Meshing and Boundary conditions
4.3.1 Industrial scale model

A160 tonne capacity, industrial scale ladle has been considered for the present study.
The geometry details and the properties of all the constituent phases are obtained
from the literature (Liu et al., 2011; Llanos et al.,2010). Multiple gas inlets were
considered at various radial and angular positions. The schematic representation of
the computational domain and the gas inlet configuration on the base of the ladle are
shown in Fig. (5). A com-bination of any two of the inlets was used for purging of argon
gas into the metal bath, for a single case.

Initially, the ladle was filled with molten steel, with a floating slag layer on the top
which was open to the atmosphere.

~ outiet

- 'in!f'! il o

R

Fig.8 Geometry
Table 1: Fluid properties

Property Value
Steel density 7020 kg/m3
Steel viscosity 0.006 kg/m-s
Slag density 3500 kg/m3
Slag viscosity 0.2664 kg/m-s
Argon density 1.6228 kg/m3
Argon viscosity 0.000021 kg/m-s
Surf. Tension slag/steel 0.12 N/m
Surf. Tension steel/argon | 1.192 N/m
Air density 1.225 kg/m?3
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Fig.9 3D VIEW
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Fig.10 Volume fraction distribution

Boundary conditions

S.No Boundary name Boundary condition
1 Inlet Por @g Vi = constant;
2,

k= §(UM1 0%
w=000" 7%

2 Base 1=0,k=0,w=0

3 Walls UI=0k=0,w=0

4 Outlet P =101325 Pa,

Fig.11
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The computational domain and mesh

Figure 11 displays the boundary conditions and computational mesh for the industrial
scale ladle setups. Hexahedral elements were created in a structured mesh using the
ANSYS ICEM CFD program. By establishing the maximum mesh size of 8 mm for the
entire domain and 4 mm for the inlet and slag layer, a mesh with roughly 1 million cells
was produced. With an explicit geo-construct scheme, the interface was tracked during
the simulations using the volume of fluid (VOF) model in the ANSYS Fluent program.
For the industrial size ladle, the same boundary conditions as in the water model
covered in section 3.3.1 above were applied.
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Fig. 12 Mesh geometry of single purged ladle
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Fig.13 Mesh geometry of dual purged ladle
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CHAPTER 5
RESULTS AND VALIDATION

5. Optimum Results
5.1 Genetic Algorithm

Mixing time vs slag opening area
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Fig.14 Mixing time vs slag opening area
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Mixing time vs wall stress

w "QOO

@] C%}
Og %
o0 O%@@

80

-5
55 > 10

100

120 140 160 180 200 220 240 260

Fig.15 Mixing time vs wall shear stress

Slag opn. area Vs Wall shear stress
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Fig. 16 Slag opening Area vs wall shear stress
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TABLE 2: Some Optimal Results

tmix Tmax Q h R1
229.0737 0.00001 0.0002 0.0888 0.0012
217.7713 0.00002 0.0002 0.0538 0.0026
225.5558 0.00001 0.0002 0.0936 0.0021
85.6456 0.00004 0.0020 0.0264 0.3193
88.6302 0.00001 0.0020 0.0272 0.1548
162.3860 0.00004 0.0005 0.0502 0.0036
184.9356 0.00003 0.0003 0.0651 0.0216
197.5981 0.00002 0.0003 0.0711 0.0106
202.3084 0.00001 0.0003 0.0508 0.0034
213.7006 0.00005 0.0002 0.0339 0.0022
94.1502 0.00006 0.0020 0.0351 0.0503
223.2137 0.00001 0.0002 0.0768 0.0034
96.0846 0.00001 0.0019 0.0419 0.0560

5.2 Cuckoo-search optimization
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Fig. 17 Mixing time vs slag opening area
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o <107 Mixing time vs wall shear stress
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Fig.19 slag opening area vs wall shear stress
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5.3 Teaching-learning based optimization
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%10 As vs wall stress
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5.4 Particle Swarm Optimization
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Table 3; Comparison of optimum results of all optimization techniques (tmix. VS Tmax)

Optimization techniques

Optimum Results

tmix. (S) | Tmax(pa) | Q(m’s™) h(m) R1(m)
Genetic Algorithm 130 2.7 0.0002 0.0502 0.0036
Particle-swarm optimization | 103 0.23 0.0015 0.0312 0.0181
TLBO 118 3 0.0010 0.0302 0.0117
Cuckoo-search optimization | 115 0.3 0.0023 0.0203 0.0114

Table 4: Comparison of optimum results of all optimization techniques (tmix vs As)

Optimization techniques

Optimum Results

tmix(s) As(m?) | Q(m3s) h(m) R1(m)
Genetic Algorithm 95 0.22 0.0001 0.0432 0.0043
Particle-swarm optimization | 103 0.22 0.0014 0.0137 0.0432
TLBO 105 0.19 0.0040 0.0123 0.0112
Cuckoo-search optimization | 110 0.15 0.0021 0.0112 0.0110
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Table 5: Comparison of optimum results of all optimization techniques (As VS Tmax)

Optimization techniques Optimum Results
As(m?) | tmax(pa) | Q(M3s™) h(m) R1(m)
Genetic Algorithm 0.05 1.25 0.0013 0.0411 0.0034
Particle-swarm optimization | 0.194 4.38 0.0012 0.0312 0.0123
TLBO 0.06 1.6 0.0023 0.0012 0.0121
Cuckoo-search optimization | 0.025 0.25 0.0014 0.0023 0.0211
5.5. Optimum Results (For dual gas purging)
5.5.1 Genetic Algorithm
Mixing time vs slag opening area
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Fig.26 Mixing time vs slag opening area
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Table 6: Optimal solutions

Emix Tomax Q h R1 R2 R3
88.8520 | 0.3 0.0020 0.0272 0.2652 0.2997 0.1008
352.2606 | 0.1 0.0002 0.0960 0.0007 0.1180 0.6029
353.0345 | 0.3 0.0002 0.0948 0.0007 0.1180 0.6184
92,6916 | 0.4 0.0020 0.0455 0.3109 0.3134 0.1258
346.0577 | 0.1 0.0003 0.0918 0.0006 0.1236 0.6309
94.1032 | 03 0.0019 0.0281 0.2626 0.2661 0.1190
312.1546 | 0.3 0.0003 0.0846 0.0019 0.1437 0.5895
110.7133 | 0.1 0.0019 0.0313 0.0752 0.1514 0.1876
88.8520 | 0.3 0.0020 0.0272 0.2652 0.2997 0.1008
99.0650 | 0.2 0.0020 0.0495 0.1394 0.2854 0.1276
1325725 | 05 0.0017 0.0233 0.0380 0.0372 0.7604

5.5.2 Cuckoo-search optimization
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Fig.29 Mixing time vs slag opening area
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<10 2D Pareto Front (F2 vs F3)
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5.6 Results and Validation
5.6.1 For single purged ladle (Q= 0.0015 m3s h=0.0312 R1=0.0181m from table 3)

1: Contours of Wall Shear St v

1.782400 {
1.19e400

z °
5.94e-01 .t_.}
0.00e+00

Fig.32 Shear stress distribution in single purged ladle

Fig.33 Velocity distribution in single purged ladle
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1: Contours of Phase ID (mix v
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Fig.34 Contour of phase index

1: Contours of Static Pressur v

-5.01e414
-5.40e+04
-5.80e404

Y
-6.19e+04 Z_'_l
-6.50e404

Fig.35 Contour of static pressure in single purged ladle
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5.6.2 For Dual Purged ladle (Q=0.0017 h=0.0233 R1=0.0380 R2=0.0370 R3=0.0604)
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Fig.36 Wall shear stress distribution in dual purged ladle
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Fig. 37 Contours of phase index in dual purged ladle
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1: Contours of Total Pressure
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Fig. 38 Contours of total pressure in dual purged ladle
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6. Conclusions and Future work
A mathematical model is formulated to predict the mixing time, slag opening area, and
wall shear stress in single and dual purged industrial steelmaking ladles is as following-

e For Single purged ladle
ti = 15.48 x Q0319 x p0.086  R=0.037

AS = 2991 X Q0.74-5 X h—0.882 X R:(L).036

Toax = 0.0014 x Q0.516 X h—0.228 X Ri).lZl

e For Dual Purged ladle
Emix = 15.96 X Q70324 x R0.055 i Rr0.061 5 p-0.069 5 R0.113
As = 0.566 X Q0685 x p=1.061 x RO.079 5 RO0S7 5 p=0207

Tmax = 0.1883 x Q0.74-94- X h—0.0194- X R{J.8548 X Rg'6572 X
R3—0.074—2

Further, Optimization techniques i.e., Genetic algorithm, particle swarm optimization,
cuckoo-search optimization and teaching learn based optimization is performed to
optimize the ladle objectives functions.

After that comparison is taken place of all optimization techniques and the best
optimal solution is achieved as following-

For single purged ladle

tmix. (S) Tmax(pa) Q(m3s™)  h(m) R1(m)
103 0.23 0.0015 0.0312 0.0181
For dual purged ladle
tmix. (S) Tmax(pa) Q(m3s?) h(m) R1(m) R2(m) R3(m)
132.57 0.50 0.0017 0.0233 0.0380 0.0372 0.0604

Further an analysis is done for achieving the above optimized results and is shown in
fig.32 and fig.36
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6.1Future work
e In future analysis of mixing time and slag opening area have to perform
because if slag opening area is maximum then there will be chance of oxidation
in the liquid steel and then quality of the liquid steel will decrease.
e Analysis of slag opening area vs wall shear stress that means due to wall shear
stress how much slag opening area is generating because if these two will
increase then ladle life and quality of the steel will decrease.
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Appendix 1(MATLAB code)

% Define the objective functions

f1l = @(x,y,z) 15.48 * x.~(-0.319) .* y.”~(0.086) .* z.”~(-0.037);
f2 = @(x,y,z) 2.991 * x.~(0.745) .* y.~(-0.882) .* z.7~(0.036);

f3 = @(x,y,z) 0.0014 * x.~(0.516) .* y.”~(0.0228) .* z.”(0.021);

% Combine objective functions into a multi-objective function handle
multiObjFunc = @(x) [f1(x(1), x(2), x(3)), f2(x(1), x(2), x(3)), f3(x(1),
x(2), x(3))1;

% Define the bounds for the decision variables
1b = [2.02e-4, 0.025, 3.25e-4]; % Lower bounds for x, vy, z
ub = [20.20e-4, 0.10, 0.325]; % Upper bounds for x, y, z

% Define options for the multi-objective optimization
options = optimoptions('paretosearch', 'Display', 'iter');

% Perform multi-objective optimization using paretosearch (constrained)
[x, fval, exitflag, output] = paretosearch(multiObjFunc, 3, []1, [1, [1, [1,
1b, ub, [1);

% Display the results

disp('Optimal Solution (x, y, z):');

disp(x);

disp('Objective Function Values (f1, f2, f3):');
disp(fval);
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Appendix 2

% Define the objective functions

F1 = @(x) 15.96 * x(1)"-08.324 * x(2)70.055 * x(3)"-0.061 * x(4)"-0.069 *

x(5)"0.113;

F2 = @(x) ©.566 * x(1)"0.685 * x(2)"-1.061 * x(3)"0.079 * x(4)"0.057 *

x(5)"-0.207;

F3 = @(x) ©.1883 * x(1)"8.7494 * x(2)"-0.0194 * x(3)70.8548 * x(4)"0.6572 *

x(5)"-0.0742;

% Combine the objective functions into a single function handle
objectiveFunction = @(x) [F1(x), F2(x), F3(x)];

% Define the bounds for the variables
1b = [2.02e-4, 0.025, 3.25e-4, 9.60e-2, 9.56e-2];
ub = [20.20e-4, 0.10, 0.325, 0.325, 0.650];

% Set options for the genetic algorithm
options = optimoptions('gamultiobj"’,
PopulationSize', 100,

MaxGenerations', 500,

Display', 'iter',

'UseParallel’, true);

% Run the genetic algorithm
[x, fval] = gamultiobj(objectiveFunction, 5, [], [1, [1, [], 1lb, ub,
options);

% Display the results

disp('Optimal solution:")

disp(x)

disp('Objective function values at the optimal solution:')
disp(fval)

% Plotting the 2D Pareto front

figure;

plot(fval(:,1), fval(:,3), 'bo', 'MarkerSize', 6, 'MarkerFaceColor’,
xlabel('F1(x)");

ylabel('F3(x)");

title('2D Pareto Front between F1 and F3');

grid on;
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