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ABSTRACT 

 

During secondary steelmaking operations, argon gas is introduced into steelmaking 

ladles to speed up mass and heat transmission in the melt. Additionally, slag eye 

development and wall shear stresses are caused by ladle hydrodynamics, which lowers 

the quality of the steel.  

A mathematical model is developed in this study to forecast the wall shear stress, slag 

opening area, and mixing time in single and dual bottom purged industrial steelmaking 

ladles. 

To estimate the same, dimensional less empirical correlations have also been 

suggested. Further to minimize the objective functions i.e., mixing time, slag opening 

area, and wall shear stress, some multi-objective optimization techniques based on 

evolutionary algorithms have been introduced.  

Because the objective functions were opposing in nature, a Pareto optimum solution 

set—which included simultaneous optimal solutions is produced. Additionally, the 

ideal process parameters for the ladle's best performance were determined. Further 

an analysis is done using ANSYS software. 
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                                                                                                       CHAPTER 1 

INTRODUCTION 

 

1. Introduction 

 In the secondary metallurgy of steel making, gas stirring is extensively employed to 

attain a homogenous distribution of alloying elements and temperature of bath. It is 

employed for the process of deoxidation, desulphurisation and removal of inclusions 

and it intensifies the rate of reactions. Argon gas is injected through a nozzle located 

at the bottom of the ladle and this breaks up and forms gas bubbles. The rising bubbles 

tends to move upwards, forming a turbulent plume, and subsequently, a circulatory 

movement of the steel within the ladle. This reduces the time required to homogenize 

the chemical composition of alloying elements and the temperature. Meanwhile at 

sufficiently high flow rates, the bubbles moving upwards break the slag layer forming 

an open-eye as shown in figure 1.  

      

      

 

Fig.1 Schematic illustrating the ladle gas stirring process 

Ladle purging is an essential process in steelmaking, specifically in secondary 

metallurgy, where the primary goal is to refine the molten steel to achieve the desired 

chemical composition and temperature before casting. The process involves injecting 

an inert gas (usually argon or nitrogen) through the bottom of the ladle to promote 

homogenization, remove non-metallic inclusions, and control the temperature. Here’s 

a detailed explanation: 
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1.1 Purpose of Ladle Purging 

I. Homogenization of the Molten Steel: 

• Temperature Uniformity: Ladle purging ensures that the temperature of 

the molten steel is uniform throughout the ladle. Since steelmaking 

involves handling large quantities of molten metal, temperature 

differences can exist between different layers. Purging helps in equalizing 

these temperature gradients. 

• Chemical Composition: Purging also aids in mixing the steel, ensuring that 

the   alloying elements are evenly distributed, leading to a uniform chemical 

composition. 

II. Removal of Non-Metallic Inclusions: 

• Floatation of Inclusions: Non-metallic inclusions, such as oxides, sulphides, 

and nitrides, can negatively affect the mechanical properties of the steel. 

Purging with an inert gas helps these inclusions float to the surface, where 

they can be removed as slag. 

• Inclusion Shape Control: The process also helps modify the shape of 

inclusions, which can be beneficial for improving the steel's ductility and 

toughness. 

III. Desulfurization and Deoxidation: 

• Chemical Reactions: Purging can be used to promote chemical reactions that 

reduce the sulphur and oxygen content in the steel. For instance, injecting 

argon can help remove dissolved gases like hydrogen and oxygen, improving 

the steel's quality. 

IV. Temperature Control: 

• Heat Transfer: Purging can also be used to control the heat transfer in the 

ladle. If the molten steel is too hot, purging can help dissipate some of the 

heat, whereas, in some cases, controlled purging can prevent excessive heat 

loss. 

 

1.2 Ladle Purging Process 

I. Ladle Design: 

• Porous Plugs: The ladle is equipped with porous plugs or tuyeres at the 

bottom through which the inert gas is injected. These plugs are designed 

to withstand the high temperatures and corrosive nature of the molten 

steel. 

• Gas Supply System: An argon or nitrogen supply system is connected to 

the ladle, allowing for precise control of gas flow. 

II. Gas Injection: 

• Flow Rate: The flow rate of the inert gas is carefully controlled. A low flow 

rate is typically used to avoid excessive turbulence, which could lead to 

unwanted reoxidation or excessive slag entrapment in the steel. 

• Bubble Formation: The injected gas forms bubbles in the molten steel, 

which rise to the surface, promoting mixing and the removal of inclusions. 

III. Monitoring and Control: 
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• Process Monitoring: The process is closely monitored to ensure that the 

desired effects are being achieved. Sensors may be used to measure the 

temperature, chemical composition, and other parameters. 

• Automated Control: In modern steel plants, the purging process is often 

automated, with computer systems controlling the gas flow based on real-

time data from the ladle. 

IV. Post-Purging Operations: 

• Slag Removal: After purging, the slag that has formed on the surface is 

removed. This slag contains the non-metallic inclusions and impurities that 

have been floated to the surface. 

• Further Refinement: Depending on the steel grade and final requirements, 

additional treatments, such as alloying or vacuum degassing, may be 

performed after purging. 

 

1.3 Advantages of Ladle Purging 

• Improved Steel Quality: By promoting homogenization and removing   

inclusions, ladle purging improves the overall quality of the steel, leading to 

better mechanical properties. 

• Efficiency: Ladle purging can reduce the time required for downstream 

processes, such as casting, by ensuring that the steel is in optimal condition. 

• Cost-Effectiveness: By improving the efficiency of the steelmaking process and 

reducing defects, ladle purging contributes to cost savings in the production 

process. 

• Improved homogeneity: Ladle purging helps to distribute alloying elements 

and temperature evenly throughout the molten metal. This uniformity in 

composition and temperature leads to better control over the final properties 

of the steel and prevents quality issues caused by inconsistencies. 

• Reduced slag entrapment: By purging, the molten metal is kept in a more 

agitated state, which helps prevent slag from being entrapped in the metal, 

resulting in fewer inclusions and defects. 

            In summary, ladle purging is a critical process in steelmaking that enhances the 

quality and uniformity of molten steel by promoting homogenization, removing 

impurities, and controlling the temperature and chemical composition of the steel 

before casting. 
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1.4. Literature Review 

        1.4.1 Modelling of two-phase flows in gas-stirred ladles 

The studies related to describing two-phase flow phenomena in a gas-stirred system 

are discussed in this section. 

Szekely, Wang and Kiser [1] carried out experiments and numerical simulations for a 

water model of an argon-stirred ladle system. The simulation was performed by solving 

turbulent Navier-Stokes equations and were based on using Spalding’s k-ε turbulent 

model. The results showed good agreement of flow velocity and gas fractions when 

compared to the experimental measurements. A similar kind of work was also done 

by Ilegbusi et al. [2] investigating the flow velocities in a water model of an argon gas-

stirred ladle through experiments and simulations. The simulation results were 

compared for two different turbulent models (k-ε and anisotropic eddy viscosity 

model). The predicted simulation results of the mean velocity and turbulent 

parameters were compared to experimental measurements. 

 

Xie and Oeters [3] and Xie, Orsten and Oeters [4] carried out experimental 

measurements to investigate the flow velocity in a ladle with liquid Wood’s metal with 

nitrogen gas injected through centric blowing. The liquid flow field was measured 

using magnetic probes for various blowing conditions. Measurements were taken for 

the bubble behaviour, as well as the local gas fraction and the rising velocity of gas 

bubbles for different gas flow rates and nozzle diameters. The results were presented 

in the form of axial and radial velocities, the gas volume fraction and the turbulent 

kinetic energy at different heights of the ladle. The results showed that the flow is 

axially symmetric when gas was blown through a nozzle at a centric location. The flow 

velocity on the vessel axis was almost constant over the height and increased with an 

increasing gas flow rate and the nozzle diameter did not influence the flow velocity in 

the ladle. 

 

Xia, Ahokainen and Holappa [5] carried out numerical simulations and validated the 

experimental measurements an axial and radial velocity profiles of Xie and Oeters [3], 

and Xie, Orsten and Oeters [4]. A Euler-Euler multi-phase model was used to describe 

the air and water phase in the ladle. Drag, lift and turbulent dispersion forces were 

used describe the momentum exchange between the two phases. The simulation 

results showed that the developed model provided an acceptable prediction of the 

fluid flow in the liquid region and a relatively large 22 deviation in the gas-liquid plume. 

To describe two-phase flow phenomena in a gas stirred system for steel making Lou 

and Zhu [6] studied the influence of the turbulent dispersion force, as well as drag and 

lift forces on the liquid flow velocity, gas fraction and turbulent kinetic energy. The 

mathematical model developed was based on the Eulerian approach and the 

simulation results were compared to experimental results. 

Mendez, Nigro and Cardona [7] performed a numerical simulation to study the effects 

of non-drag forces (virtual mass, lift and turbulent dispersion forces) on the gas 

fraction and liquid flow velocities in the ladle. A Eulerian modelling approach was used 

by Turkoglu and Farouk [8] to investigate the liquid flow velocity, gas fraction and 
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temperature fields in a cylindrical ladle through bottom air injection. The turbulence 

in the liquid phase was modelled using a two-equation k-ε turbulence model. The 

simulation results of the radial distribution of gas volume fraction and velocity 

measurements at specific axial locations were compared with experimental 

measurements available in the literature. The simulation results agreed well with the 

experimental results. 

 

Davidson [9] conducted numerical simulations to investigate the magnitude of bubble 

rise velocity, centreline void fraction and the central plume in a liquid bath where gas 

was injected from the bottom. Domgin, Gardin and Brunet [10] carried out a detailed 

experimental and numerical study to investigate the mean velocity distribution and 

turbulent kinetic energy in a cylindrical steel bath where gas was injected through the 

bottom. The numerical simulations were performed based on Euler-Euler and Euler-

Lagrange approaches. The simulations result of mean velocity profiles using the Euler-

Euler approach were in good agreement compared to the Euler-Lagrangian approach 

when compared to with experimental results. A study of two different turbulence-

modelling approaches (k-ε and RSM) was conducted by Park and Yang [11] for a gas 

stirred ladle system. The investigations included the flow velocities, gas fraction and 

turbulent kinetic energies. The results showed that the k-ε turbulence model was not 

suitable for predicting highly swirling flows, even though it yielded results that were in 

agreement with measurements in less swirling flows. The results also showed that the 

turbulent kinetic energies predicted by the k-ε model were higher than those 

predicted by the Reynolds stress model. 

 

Recently Liu et al. [12] reviewed the research work carried out over a few decades into 

gas stirring in ladle metallurgy. This work presented the complete physical modelling 

and numerical simulations for four major areas: (1) mixing and homogenization in the 

ladle, (2) gas bubble formation, transformation, and 23 interactions in the plume zone; 

(3) inclusion behaviour at the steel-slag interface and molten steel; and (4) formation. 

They concluded that the mathematical models focusing on inclusion behaviour at the 

steel-slag interface needed to be improved. 
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1.4.2 Modelling of the fluid flow and open-eye formation in water model 

of a steel making ladle. 
Studies related to open-eye formation in a water model ladle through physical 

modelling [13-22] and numerical simulations [25-33] have been performed extensively 

in the past three decades. 

 

Yonezawa and Schwerdtfeger [13-15] carried out cold model measurements to 

investigate the open-eye size in a ladle using mercury and silicone oil to represent 

liquid metal and slag. The results concluded that the open-eye increased with an 

increase in the gas flow rate. A non-dimensional correlation was developed to 

represent the time-averaged open-eye size area. They also performed measurements 

to study the dynamics of spouts of gas plumes in a large-scale water model. In their 

work, a non-dimensional height, which is independent of the Froude number and 

nozzle diameter, was defined. 

 

Based on the experimental data by Yonezawa and Schwerdtfeger [13-15], Krishna-

pisharody and Irons [16] proposed a model for estimating the plume eye area, which 

expresses the dimensionless eye area in terms of a density ratio of the fluids and 

Froude number shown in Equation (1). 

 

𝐴∗ =
𝐴𝑒

𝐻2
= 𝛼 + 𝛽 (

𝜌

∆𝜌
)

1÷2

(𝐹𝑟)1/2 … … … … … … . . (1) 

where, 𝛼 and 𝛽 are numerical constants, 𝐴∗ is the non-dimensional eye area, 𝐴􀯘 is 

the open-eye area, 𝐻 is height of the ladle, 𝜌 is the density of water, Δ𝜌 is the 

density difference between water and oil, and 𝐹𝑟 is the Froude number. 

 

Krishnapisharody and Irons [17] further extended this model, developed a new one to 

predict the open-eye size from the primary operating variables of the ladle, and 

demonstrated its reliable predictive ability in a variety of multi-phase systems shown 

in Equation (2). 

𝐴𝑒
∗

𝐴𝑝
∗

= 𝛼 + 𝛽(1 − 𝜌∗)−1÷2(𝑄∗)1÷3 (
𝐻

ℎ
)

1/2

… … … … . . (2) 

 

The experimental studies that Krishnapisharody and Irons [16-17] performed in a 

cylindrical water model ladle concluded that the open-eye area increased with 

increasing the gas flow rates in all cases and decreased when the top phase thickness 

increased. An increase in the size of the open-eye with the increasing height of the 

water bath was also predicted from the results, although the enlargement is not linear. 

To study the effect of slag (oil) properties, three liquid-liquid systems were used: (1) a 

water-paraffin oil system; (2) an aqueous CaCl2 solution-paraffin oil system; (3) water-

heavy motor oil. The results showed that the systems with less dense top phase 

systems had smaller s than denser top phase systems. 

Wu, Valentin and Sichen [18] studied the open-eye formation in an argon stirred ladle 

using two physical models. To simulate liquid steel, water was used in both models. To 

simulate the slag, silicon oil was used in the first model and a Ga-In-Sn alloy was used 
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in the second model. The results showed that the open-eye size highly depends on the 

gas flow rate, the height of the lower liquid and the height of the top liquid. In contrast, 

the viscosity of the top liquid and interfacial tension between the two liquids has only 

a slight effect on the open-eye size. Similar work was carried out by Thuman et al. [19] 

where they used Ga–In–Sn alloy with a melting temperature of 283 K (10 °C) to 

simulate liquid steel and an MGCL2-glycerol (87%) solution to simulate the slag. It was 

found that no open-eye formed at lower flow rates, but that it did occur when the gas 

flow reached a critical rate. The critical flow rates were in the range of 0.7 to 4.0 NL/min 

and were found to depend greatly on the height of the top liquid. 

 

Amaro-Villeda, Ramirez-Argaez and Conejo [20] studied the effect of the slag thickness 

on the open-eye area and the mixing time in the water model ladle. The slag thickness 

was varied in order to study its effect on the open-eye area and mixing time in a single 

plug system with a constant flow rate. A decrement of the open-eye area with an 

increase in slag thickness was observed. Maruyama and Iguchi [21] also performed 

cold model experiments in cylindrical vessel with a mercury-silicon oil system to study 

the effect of slag properties on the open-eye area. The results showed that the open-

eye decreases with increases in the slag thickness and the density of the slag has effect 

on the open-eye size only when the thickness of slag exceeds a critical value. 

Mazumdar, Dhandpani and Saravanakumar [22] carried out experiments to measure 

the open-eye area in two different water models with a gas injection nozzle located at 

the mid bath radius position. Liu, Li and Li [23] performed measurements in a water 

model for studying the formation of the open-eye with different gas flow rates, slag 

layer thicknesses and number of nozzles. The results showed that the open-eye area 

increases approximately linearly as the gas flow rate increases. The open-eye area 

increases quickly with a reduction in the slag layer thickness showing that the slag layer 

thickness has a great influence on the open-eye area. 

 

Several mathematical models have been developed to study the flow in the ladle. Li, 

Liu and Li [24] developed a mathematical model by using a multiphase volume of fluid 

(VOF) method coupled with a population balance model (PBM) to investigate the effect 

of the gas flow rate and plug radial position on the gas bubble diameter, and the open-

eye size in the ladle. The open-eye size predicted by the numerical model agreed well 

with the experimental results and a critical gas flow rate to form a steady open-eye 

was found for the present water mode condition. Li et al. [25] developed a 

mathematical model based on large eddy simulations (LES) coupled with discrete 

particle modelling (DPM) and a VOF model to investigate the bubble movement and 

slag layer behaviour during the gas stirring process in the ladle. In this approach, a VOF 

model was used to track the liquid-slag-air interface and the Lagrangian DPM was used 

for describing the bubble movement. The simulation results showed that the bubbles 

were found to be moving in curved paths and that they induced many eddies in the 

region near the bubble plume. The shape and size of the open-eye was found to be 

irregular. At low flow rates, the open-eye formed and collapsed alternately and at high 

flow rates, the slag layer fluctuated and an open-eye was formed. The predicted 

simulation results of the formation and closing of the open-eye qualitatively agreed 
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with the experimental results from the water model. Li and Li [26] further extended 

the model developed by Li et al. [25] to investigate the bubble transport, bubble 

diameter redistribution, slag layer fluctuation and slag droplet generation in the water 

model ladle. 

 

Calderon-Hurtadao et al. [27] performed both experiments and simulations to 

investigate the open-eye formation for different gas flow rates and slag layer 

thicknesses. For the experimental measurements, a velocity probe was placed close to 

the interface to monitor any turbulence. The results showed that the open-eye was 

found to be strongly dependent on the gas flow rate and slag layer thickness. Liu et al. 

[28] and Li, Li and Liu [29] investigated the effect of the gas flow rate and oil layer on 

the size, bubble movement and mixing time in a water model ladle through both 

physical and numerical modelling. The effect of the oil layer thickness was investigated 

by varying it from 20 to 40 mm and 50 mm for a constant flow rate in single-plug-

stirred system. The results showed the oil thickness has a large influence on the open-

eye area. The open-eye area increases quickly when the oil thickness decreases and 

vice-versa, although the increment is not linear. 

 

Lv et al. [30] performed numerical simulations for a cold-water model, where water 

and sodium tungstate were employed to simulate liquid steel, and silicon oil was 

employed to simulate slag. The simulation results showed that the gas flow rate, bath 

height and slag layer thickness had strong effects on the open-eye size. Mazumdar and 

Guthrie [31-33], Mazumdar, Yadhav and Mahato [34], Mazumdar and Evans [35], 

Mandal, Madan and Mazumdhar [36], Peranadhanthan and Mazumdhar [37], Madan, 

Satish and Mazumdhar [38], Patil et al. [39], Subagyo, Brooks and Irons [40] and Guo, 

Gu and Irons [41] contributed to a greater extent towards investigating the fluid flow 

analysis and open-eye formation in the ladle. Furthermore, the work also extended to 

developing mathematical models to investigate the mixing time in ladles. 
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1.4.3 Modelling of the fluid flow and open-eye formation in an industrial 

scale ladle. 
For industrial scale ladles, there are fewer experimental measurements for the open-

eye formation available in the literature when the compared to water model ladle. This 

is due to the difficult conditions (e.g., high temperatures, process gases and dust) on 

the ladle surface, which make it quite hard to capture the process with a video camera. 

 

Valentin et al. [42] captured the open-eye formation process in a 170-ton steelmaking 

ladle. The measurements included studying the effect of the stirring rate on the 

formation in the ladle. The trials were carried out by increasing the gas flow rate from 

0 to 35 STP m3/h (583 SLM). At a flow rate of 15 STP m3/h (250 SLM), a circular shaped 

open-eye was generated approximately after two minutes of gas injection, shown in 

Figure 2. An increase of the flow rate to 25 STP m3/h (417 SLM) resulted in the 

formation of larger open-eyes and the change of the shape from circular to oval. A 

further increase of the flow rate to 35 STP m3/h (583 SLM) resulted in the formation 

of strong movements and turbulence on the surface and in the top slag as well as 

splashing and smoke formation. During the stirring process, circulating waves were 

detected on the surface at higher gas flow rates. Furthermore, numerical simulations 

were carried out to study the flow patterns for different gas flow rates. 

 

Liu, Qi and Xu [43] numerically investigated a quasi-steady fluid flow and interfacial 

behaviour on the industrial scale ladle with argon gas injection through one plug, and 

two plugs placed in 1800 and 900 configurations, respectively. A VOF model was used 

to track the slag/steel/gas interface behaviour. The simulations were performed by 

increasing the flow rates from 50 to 400 L/min. The results showed that the bubble 

plume was not able to break the slag layer for a gas flow rate of 50 L/min. A small 

open-eye occurred when the flow rate was increased to 150 L/min and the open-eye 

size enlarged with an increase of the flow rate to 500 L/min. At high flow rates, the 

thickness of the slag layer became very thin near the sidewall of the ladle indicating a 

strong flow in the molten steel, which could damage the ladle wall refractory and 

reduce the ladle life. The results also concluded that the flow pattern of the molten 

steel was dependent on the plug configurations and gas flow rates. To avoid significant 

deformation of the slag layer, it was suggested to divide the gas flow into two 

weakened plumes by using a dual plug configuration. For a better refining process, the 

proper selection of the gas flow rate and plug configurations were proposed. 

 

Li et al. [44] developed a mathematical model to analyse the transient three 

dimensional and three-phase flow in an argon stirred ladle with one and two off 

centred, porous plugs. Simulations were performed on a 220-ton industrial scale ladle, 

increasing the gas flow rates from 100 to 300 NL/min. The simulation results showed 

that the injected flow rate of argon gas had a significant effect on the spout peak height 

and the open-eye area. The diameter of the open-eye changed from 0.43 m to 0.81 m 

when the flow rate of argon gas varied from 100 to 300 NL/min. When argon gas was 

injected through two-plugs for a flow rate of 300 NL/min, two open-eyes were 

generated with diameters of about 0.6 m. As concluded by Liu, Qi and Xu [43], the 
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simulation results by Li et al. [44] also resulted in significant deformation of the slag 

layer during the stirring operation, and the slag thickness became thinner near the slag 

eye and thicker near the wall. 

 

Singh et al. [45] developed a mathematical model to analyse a transient three phase 

flow in an industrial scale ladle with argon gas injecting from off-centred plugs. The 

VOF model, which was used by Liu, Qi and Xu [43] and Li et al. [44] was also used in 

this work to track the behaviour of the slag, steel and argon gas interfaces. At first, the 

simulation results of the open-eye area for different operating parameters were 

validated with the results by Liu, Qi and Xu [43]. The results showed that the open-eye 

area is very much dependent on the argon-stirring rate and slag layer thickness. 

Furthermore, the model predicted the desulfurization rate using chemical kinetic 

equations, as well as the interfacial area calculated from the CFD, and thermodynamic 

data obtained from the Thermo-Calc software. The results demonstrated that dual-

plug configurations are more suitable for larger open-eye areas, which are needed for 

desulfurization, than the single plug configuration. 

 

Gonzalez et al. [46] performed numerical simulations to study the flow pattern and 

open-eye formation in a steelmaking ladle under non-isothermal conditions. The 

results of thermal stratification and velocity fields were plotted on two vertical planes. 

The shape of the thermal stratification layers depends on the holding time owing to 

convective movement of steel according to the density difference. The flow field in the 

ladle reached a quasi-steady state condition after 20 seconds of argon gas injection. 

 

Cloete, Eksteen and Bradshaw [47] also developed a full-scale, three-dimensional, 

transient mathematical model to study the fluid flow analysis in industrial scale ladles. 

The Lagrangian discrete phase model (DPM) was used to describe the bubble plume 

and the Eulerian VOF model for tracking the slag/steel/gas interface behaviour. The 

standard 𝑘 􀯘 𝜀 model was used for modelling the turbulence. The results concluded 

that the model developed was computationally efficient for investigating the influence 

of a large number of operating and design variables on the fluid flow analysis and 

open-eye formation in the ladle. Cloete, Eksteen and Bradshaw [48] further extended 

this model to study the effect of plug arrangement on the flow analysis in the ladle. 

 

Cao and Nastac [49] numerically investigated the fluid flow, mass transfer and slag-

steel interface behaviour in a steelmaking ladle. In the first step, a Euler-Euler model 

was used to simulate the multi-phase flow in a water model and the results were 

validated with experimental results available from the literature. The Euler- Lagrange 

approach was used to study the effect of the free surface setup, injected bubble size, 

gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer 

behaviour. The argon gas floating process and open-eye formation process was 

investigated using both the VOF and DPM model. The gas rising upwards in the VOF 

model was continuous and concentrated and in the DPM model, the floating gas 

bubbles were dispersive and random. The decrement of the slag layer thickness 

resulted in the reduction in open-eye area and mass transfer coefficient in the molten 
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steel. When the gas flow rate was increased, the mass transfer coefficient and 

volumetric mass transfer coefficient in the molten steel became larger, and the open-

eye area enlarged. Increase in the bubble size resulted in turbulence in the ladle 

becoming weaker and consequently the mass transfer coefficient in steel was reduced. 

Cao and Nastac [50] also modelled the transport and removal of inclusions in an 

industrial gas-stirred ladle. The effect of the gas flow rate, injected bubble diameters 

and the inclusion size on various removal mechanisms including slag capture, bubble 

attachment and ladle wall adhesion on the removal of inclusions was investigated. 
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1.4.4 Mixing and homogenization in the ladle 
 

The studies related to describing the mixing phenomena in a water model and 

steelmaking ladle are discussed in this section. 

 

Palovaara, Visuri and Fabritius [51] performed physical modelling measurements in a 

1:5 scale water model of a 150-ton ladle to study the effect of the gas flow rate on the 

mixing phenomena. The mixing time was determined based on the change of the pH 

of the water bath using sulphuric acid as a tracer substance. The results indicated that 

the average mixing time decreases with increases in the gas flow rate non-linearly. 

Michaelek, Gryc and Moravka [52] studied the mixing phenomena through physical 

modelling in 1:10 scale water model. The mixing time was evaluated based on 

electrical conductivity and temperature changes, which were measured at three points 

in the ladle. The results obtained illustrated that the time required for homogenization 

decreased with an increase in the gas flow rate. Joo and Guthrie [53] investigated the 

mixing behaviour and mixing mechanisms as a function of the location of a porous 

plug, the tracer injection point, and ladle monitoring point. From the results, it was 

shown that eccentric bubbling gives steady results in terms of reducing the mixing 

times, since an angular momentum intermixes fluid across the width of the ladle. 

 

Terrazas and Conejo [54] investigated mixing phenomena in a water model ladle. The 

measurements included studying the effect of process variables such as the nozzle 

diameter, gas flow rate and nozzle radial position on the mixing time. The mixing time 

decreased with an increase the nozzle diameter at low stirring rates, but at high stirring 

rates this effect was found to be relatively significant. The nozzle plug location played 

a pivotal role in the mixing time, and it is found that there was a large decrement in 

the mixing time when the radial position of the nozzle was changed from the centre 

of the ladle to a half radius position (i.e. to an eccentric position). 

 

Conejo et al. [55] studied the effect of the top layer, nozzle arrangement, number of 

nozzles and gas flow rate on the mixing time in a 1:18 scale water model. The 

experimental results suggested that one nozzle located eccentrically at a distance of 

0.67 R, with no slag, results in a shorter mixing time in comparison to two nozzles with 

separation angles of 180, 120, and 60 degrees, located at any radial distance. The 

mixing time decreased at low gas flow rates and increased at high gas flow rates, and 

in some cases, the slag layer thickness promoted a decrease in the mixing time. 

Pan, Chaing and Hwang [56] investigated the effects of injection conditions on the 

mixing efficiency of the gas injection treatment in a water model. The results of these 

measurements concluded that the mixing efficiency was improved with increments of 

the gas flow rate and that an off-centre injection was better than centreline injection. 

Aoki et al. [57] investigated mixing phenomena in a bottom gas-stirred ladle through 

experiments and theoretical studies. Liu, Li and Li [23] studied the effect of gas flow 

rates and the number of porous plugs on the mixing time in a water model through 

physical modelling measurements. 
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Cao and Nastac [58] developed three-dimensional DPM-VOF coupled model to study 

the mixing phenomena in the industrial scale ladle. From the simulation results, it was 

found that two symmetrical plugs configuration provides higher mixing efficiency in 

the ladle when compared to one centric or one eccentric plug configuration. Lou and 

Zhu [59] developed a coupled model based computational fluid dynamics and 

population balance model (CFD-PBM) to investigate the effects of different numbers 

and positions of the nozzles, and the gas flow rate on the mixing phenomena in the 

150-ton steelmaking ladle. The simulation results revealed that dual blowing gives a 

shorter mixing time in comparison to centric blowing configurations. The mixing time 

decreases with increase in the gas flow rate, and when the gas glow rate exceeds 300 

NL/min the change in mixing time is small. 

 

Geng, Lei and He [60] developed a mathematical model based on a two-phase fluid 

(Eulerian-Eulerian) to investigate the effect of the offset of dual plugs and the gas flow 

rate on the mixing time in a ladle with dual plugs. Ramirez-Argaez [61] performed 

calculations to study the effect of the gas flow rate, injector position, number of 

injectors, and ladle geometry on the mixing time. The simulation results showed that 

increments in the number of porous plugs resulted in longer mixing times. Haiyan et 

al. [62] numerically studied the effect of the gas flow rate, number, position and 

relative angle of porous plugs on the mixing time in the ladle. Zhu et al. [63] performed 

experiments and numerical simulations to study the mixing phenomena in an argon-

stirred ladle with six types of porous plug arrangements. It was found that the porous 

plug arrangement has a significant effect on the mixing time. 

 

Over the past decade, there have been relatively few studies on both physical and CFD 

modelling together with strong validation in studying the gas-steel-slag interface 

behaviour in the ladle. Moreover, the studies have focused more on modelling water 

models when compared to the modelling industrial ladles. In the current work, the 

simulation results of open-eye behaviour and mixing phenomena are provided with 

strong experimental data measured for validation and vice-versa. As for the 

experimental part, the work focuses on measuring the open-eye size for different flow 

rates, slag layer thickness and slag layer properties (density and viscosity) in water 

model and industrial measurements. The industrial measurements were performed at 

Outokumpu Stainless Oy in Tornio, Finland. As for the simulation part, the work 

focused on the development of the CFD model with the VOF approach to track the 

slag/steel/gas interface behaviour and species transport model for calculating the 

mixing time in the gas-stirred ladle. 
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1.5. Objectives of the work 
The main objective of this thesis is to study the effect of different operating parameters 

i.e., argon gas purging rate, initial slag thickness, radial position(s) of the gas inlet(s) on 

the mixing time, wall shear stress and open eye formation process in a gas-stirred 

ladle. 

The aims of this work are subdivided into three tasks shown below: 

1. To formulate the mixing time, slag opening area and wall shear stress, dimensional 

analysis and empirical correlation has to use. because of their dependency on a 

number of parameters, including the angle of separation between the gas inlets, 

the radial position(s) of the gas inlet(s), the initial slag layer thickness and the argon 

gas purging rate. 

2. To minimize the mixing time, slag opening area and wall shear stress, constrained 

multi-objective optimization with various optimization techniques i.e.genetic 

algorithm, particle swarm optimization, cuckoo-search optimization and teaching 

learning based optimization have to use to identify the optimal solution set. 

3. To analyse the obtained optimal solution ANSYS software has to use for the 

validation.  
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CHAPTER 2 

MATHEMATICAL MODELLING 

 
2. Mathematical modelling 
 

2.1Dimensional Analysis 
 

The mixing time, slag opening area, and the maximum wall shear stress depend on 

several geometric and operating parameters like the radial and angular positions of 

the gas inlets, gas purging rate, slag layer thickness, and the metal bath height. A 

functional relationship was established   between these variables, and Buckingham’s P 

theorem was used to formulate a relationship between them in terms of 

dimensionless parameters as 
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Here, to maintain dimensional consistency, the variable 𝜃 is replaced                                                                                 

with the distance between the two gas inlets, which is defined as 

 

𝑅3 =  √𝑅1
2 + 𝑅2

2 − 2𝑅1𝑅2𝐶𝑜𝑠𝜃 

 

The eqn. (1) can be written in simplified form as 

 

[𝑡𝑚𝑖𝑥, 𝐴𝑠, 𝜏𝑚𝑎𝑥] =  𝑘𝑗 × 𝑄𝑎𝑗 × ℎ𝑏𝑗 × 𝑅1

𝑐𝑗 × 𝑅2

𝑑𝑗 × 𝑅3

𝑒𝑗; 𝑗 = 1 − 6 … . (4) 

 

Here, one must note that in the case of single purged ladle the second gas inlet does 

not exist and hence 𝑑𝑗 and 𝑒𝑗 becomes zero. A non-linear multiple regression analysis 

was done to determine the exponents 𝑎𝑗-𝑒𝑗 and the pre-exponent constant 𝑘𝑗. 

 

2.2 Empirical Correlation 
From the above analysis, it is clear that the mean shear stress depends on the design 

and operating parameters. A correlation was developed to predict the dimensionless 

wall shear stress for any configuration and operating conditions based on non-linear 

multiple regression analysis, as shown in Eqn. (3). To determine the constants c1, a, b, 

c, d, e in Eq. (4), as many as 40 numerical simulations were performed at various gas 
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flow rates, metal bath depth, slag thickness and inlet con-figurations. Based on the 

regression analysis, Eq. (4) can be rewritten as 

 

𝜏𝑚𝑎𝑥 = 0.0014 × 𝑄0.516 × ℎ−0.228 × 𝑅1
0.121 … … … … … … . . (5) 

 

 

 

                  
 

                                         Regression Analysis fig. (2) 

 

Eq. (5) provides the desired relationship between the wall shear stress and the design 

and operating variables, in dimensionless form. The maximum skin friction coefficient 

values that are predicted by the above equation, are shown in this Fig. 2, along with 

the maximum skin friction coefficient values that were obtained from numerical 

simulations. It is clear from this figure that Eq. (5) is adequate to characterize wall shear 

stresses in dual plug fitted industrial scale steel making ladles, at various operating 

conditions, with in the range of values considered in the present study. 

 

Fig. (3) shows the variation of maximum skin friction coefficient with dimensionless 

values of gas flow rate, metal bath depth, slag thickness and configuration of gas inlets. 

The maximum skin friction coefficient increases by increasing the dimensionless gas 

flow rate, dimensionless radial distance of injectors from the base centre or by 

decreasing the dimensionless distance between both the inlets and dimensionless slag 

thickness. From these figures, as well as from Eq. (5), it is clear that the dimensionless 

skin friction coefficient is largely dependent on the dimensionless gas purging rate and 

on the dimensionless radial distance of injectors from the centre of the gas inlets. 

 



17 
 

 
 

                          Fig. (3) Variation of maximum skin friction coefficient 

 

Variation of maximum skin friction coefficient with non-dimensional design and 

operating parameters. 

 

Similarly, based on non-linear multiple regression analysis the exponents 𝑎𝑗-𝑒𝑗 and the 

preexponent constant 𝑒𝑗 in eqn. (4) were determined. Accordingly, the empirical 

correlations for estimating the value of mixing time, slag opening area, and maximum 

wall shear stress respectively in single purged industrial ladles are obtained as 

 

 

 

 

 

 

 

 



18 
 

2.2.1 Objective Functions for single purged ladle 
 

𝑡𝑚𝑖𝑥 = 15.48 × 𝑄−0.319 × ℎ0.086 × 𝑅1
−0.037 … … … … … . . (6) 

 

               𝐴𝑠 = 2.991 × 𝑄0.745 × ℎ−0.882 × 𝑅1
0.036 … … … … … … … . . (7) 

 

               𝜏𝑚𝑎𝑥 = 0.0014 × 𝑄0.516 × ℎ−0.228 × 𝑅1
0.121 … … … … … … . . (8) 

 

Subjected to, 

                          

                          2.02 X 10−4 ≤   Q∗  ≤ 20.20 X 10−4 

 

                               0.025 ≤  h∗ ≤ 0.10   

 

                              3.25 X 10−4  ≤  R1∗  ≤ 0.325 

  

                               9.60 𝑋 10−2  ≤  𝑅2∗ ≤ 0.325 

 

2.2.2 Objective Functions for Dual Purged Ladle 
 

     𝑡𝑚𝑖𝑥 = 15.96 × 𝑄−0.324 × ℎ0.055 × 𝑅1
−0.061 × 𝑅2

−0.069 ×  𝑅3
0.113 … … . . (9) 

 

𝐴𝑆 = 0.566 × 𝑄−0.685 × ℎ−1.061 × 𝑅1
0.079 × 𝑅2

0.057 × 𝑅3
−0.207 … … … … (10) 

                𝜏𝑚𝑎𝑥 = 0.1883 × 𝑄0.7494 × ℎ−0.0194 × 𝑅1
0.8548 × 𝑅2

0.6572 ×

                                                                                                𝑅3
−0.0742 … … … … … … … … (11)   

 

   Subjected to, 

                        2.02 X 10−4 ≤   Q∗  ≤ 20.20 X 10−4 

 

                               0.025 ≤  h∗ ≤ 0.10   

 

                               3.25 X 10−4  ≤  R1∗  ≤ 0.325 

  

                             9.60 𝑋 10−2  ≤  𝑅2∗ ≤ 0.325 

 

                             9.56 𝑋 10−2  ≤  𝑅3∗ ≤ 0.650 

 

The coefficient of determination R2 of the regression obtained for all the above 

correlations ranges between 0.80 and 0.94. it can be seen from eqn. 6-11 that in the 

mixing time increases with an increase in the slag layer thickness or with a decrease in 

the gas purging rate and the radial distance of the gas inlet. In dual purged ladles, the 

mixing time increases with the angle between the two gas inlets. Similarly, the slag 

opening area and the maximum wall shear stress increases with an increase in the inlet 
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gas purging rate and the radial distance of the gas inlet from the centre and decreases 

with an increase in initial slag layer thickness. During dual bottom purging the slag 

opening area and the maximum wall shear stress also decreases with an angle 

between the gas inlets. 

 

Equations 6–8 and Equations. 9–11 is considered the objective functions for the 

optimization problem in single purged and dual purged ladles, respectively. 

From the exponents of the variables in these equations, one can observe that the 

objective functions have opposing natures. Therefore, a unique optimal solution does 

not exist. Instead, a collection of many solutions is produced, and at each point, the 

objective functions are optimum. Such a set of solutions is called a Pareto optimal 

solution set. Pareto optimal solutions are those where an improvement in one 

objective function can only be achieved with a deterioration of at least one of the other 

objective functions. In the objective space, all the Pareto optimal solution points 

together form a Pareto front. With the constraints to the decision variables, the Pareto 

optimal solution set is obtained by solving the multi-objective optimization problem. 
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CHAPTER 3 

OPTIMIZATION 

 
3. Optimization 
 

3.1 Optimization by genetic algorithm 
 
A Genetic Algorithm (GA) is a search heuristic that is inspired by Charles Darwin's 
theory of natural evolution. It reflects the process of natural selection where the fittest 
individuals are selected for reproduction to produce offspring of the next generation. 
Genetic algorithms are widely used for optimization and search problems where 
traditional methods may not be as effective. 
 

3.1.1 Steps and Concepts in Genetic Algorithms 

 

I. Population: 

• A set of potential solutions to the problem at hand. Each individual in the 

population represents a possible solution. 

• These individuals are typically represented by chromosomes, which can be 

strings of binary, real numbers, or other formats depending on the problem. 

II. Chromosome: 

• A chromosome is a single solution to the problem, often represented as a string 

(binary, real numbers, or other forms). 

• Each chromosome consists of genes, which are individual elements of the string, 

representing specific characteristics of the solution. 

III. Gene: 

• A gene is a part of the chromosome, representing a specific trait or decision 

variable in the solution. 

IV. Fitness Function: 

• The fitness function evaluates how good or bad a solution (chromosome) is. It 

assigns a fitness score to each individual in the population. 

• The goal is to maximize or minimize the fitness function depending on the 

problem. 

V. Selection: 

• The selection process chooses the fittest individuals from the population to be 

parents and pass their genes to the next generation. 

• Common selection methods include roulette wheel selection, tournament 

selection, and rank-based selection. 

VI. Crossover (Recombination): 

• Crossover is a genetic operator used to combine the genetic information of two 

parent chromosomes to produce new offspring. 

• There are several types of cross-over, such as single-point crossover, two-point 

crossover, and uniform crossover. 

VII. Mutation: 
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• Mutation introduces diversity into the population by randomly altering the 

genes of a chromosome. 

• It helps to prevent the algorithm from becoming stuck in local optima by 

exploring new regions of the solution space. 

VIII. Termination: 

• The algorithm continues to evolve the population through selection, crossover, 

and mutation until a termination condition is met. 

• Common termination conditions include reaching a maximum number of 

generations, achieving a satisfactory fitness level, or convergence of the 

population. 

                         

 

Fig.4 Flow chart of GA 
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            3.1.2 Advantages 

• Versatility: GAs can be applied to a wide range of optimization problems. 

• Global Search Capability: Genetic algorithms are less likely to get stuck in local 

optima compared to traditional optimization methods. 

• Parallelism: GAs can be easily parallelized, making them efficient for large-scale 

problems. 

 

Genetic Algorithms are powerful tools for solving complex optimization problems, 

particularly when the solution space is large, and traditional methods are not feasible. 

They mimic the process of natural evolution, making them flexible and adaptable to a 

wide range of applications. 

          Genetic Algorithms are powerful tools for solving complex optimization problems, 

particularly when the solution space is large, and traditional methods are not feasible. 

They mimic the process of natural evolution, making them flexible and adaptable to a 

wide range of applications. 
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3.2 Optimization by particle swarm algorithm 
 

Particle Swarm Optimization (PSO) is a computational method used for solving 

optimization problems, inspired by the social behaviour of birds flocking or fish 

schooling. It was developed by James Kennedy and Russell Eberhart in 1995. PSO is a 

population-based stochastic optimization technique, meaning it uses a population of 

candidate solutions (particles) that move around in the search space to find the 

optimal solution. 

 

3.2.1 Steps and Concepts in Particle Swarm Optimization 

I.  Particles: 

•  Each particle represents a potential solution to the optimization problem. 

•  Particles are characterized by their position (which represents a candidate 

solution) and velocity (which determines how the particle moves through 

the search space). 

II.  Swarm: 

•  The entire group of particles is called the swarm. 

•  The swarm collectively moves through the solution space, searching for the 

optimal solution. 

III.  Fitness Function: 

• The fitness function evaluates how good a particular solution (particle’s 

position) is. It assigns a fitness value to each particle. 

• The goal is to maximize or minimize the fitness function depending on the 

problem. 

IV.  Velocity Update: 

• The velocity of each particle is updated based on three components: 

• Inertia: This represents the particle's tendency to continue moving in the same 

direction as before. 

• Cognitive Component (Self-knowledge): This component drives the particle 

towards its best-known position (personal best, 𝑝𝑏𝑒𝑠𝑡 ). 

• Social Component (Swarm Influence): This component drives the particle 

towards the best-known position in the entire swarm (global best, 𝑔𝑏𝑒𝑠𝑡). 

• The velocity update equation is typically given by: 

 

                    𝑣𝑖(𝑡 + 1) = 𝜔. 𝑣𝑖(𝑡) + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖(𝑡)) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡 −

                                                                                                                              𝑥𝑖(𝑡)) 

                    𝑣𝑖(𝑡) is current velocity of particle i. 

                    𝜔 is the inertia weight 

                    𝑐1 and 𝑐2 are cognitive and social coefficient respectively. 

                    𝑟1 and 𝑟2 are random numbers uniformly distributed in the range [0,1] 

                 𝑥𝑖(𝑡) is the current position of particle i. 
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V.  Position Update: 

• After updating the velocity, the particle’s position is updated by: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) 

 

This new position represents the particle's new potential solution. 

 

VI.  Personal Best 

• Each particle keeps track of its own best position (i.e., the position that has 

given the best fitness value so far). 

VII.  Global Best 

• The swarm also keeps track of the best position encountered by any particle in 

the swarm (i.e., the best fitness value found by any particle). 

VIII. Swarm Convergence: 

• Over time, particles tend to converge towards the best solutions found by the 

swarm, which ideally leads to finding the optimal solution. 

 

   

 
 

Fig.5 Flow chart of PSO 
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        3.2.2 Advantages 

• Simplicity: PSO is easy to implement and requires few parameters to adjust. 

• Efficiency: It is computationally less expensive compared to other evolutionary 

algorithms like Genetic Algorithms (GAs). 

• Parallelism: Like GAs, PSO can be easily parallelized, making it suitable for large-

scale problems. 

• No Derivatives Needed: PSO does not require the gradient of the fitness 

function, making it suitable for non-differentiable, noisy, or complex objective 

functions. 

 

Particle Swarm Optimization is a robust and versatile optimization technique, making 

it suitable for a wide range of applications, particularly when the problem landscape is 

complex or poorly understood. 
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3.3 Optimization by teaching learning - based algorithm 
 

Teaching-Learning-Based Optimization (TLBO) is a population-based optimization 

algorithm inspired by the teaching and learning process in a classroom. It was 

introduced by R. V. Rao, V. J. Savsani, and D. P. Vakharia in 2011. TLBO mimics the 

influence of a teacher on learners and the interactions among learners to improve 

their knowledge, which is analogous to finding an optimal solution in the search space. 

 

3.3.1 Steps and Concepts in TLBO 

I. Population (Classroom): 

• The population in TLBO is analogous to a classroom of students (learners), 

where each learner represents a candidate solution to the optimization 

problem. 

• The quality of each learner's solution is analogous to the learner’s knowledge 

or performance, evaluated using a fitness function. 

II. Teacher: 

• The teacher is the best solution in the current population (the learner with the 

highest fitness). 

• The role of the teacher is to enhance the knowledge level of the learners by 

moving them towards the teacher's level. 

III. Learners: 

• Learners are the individuals in the population, each representing a potential 

solution to the problem. 

• Learners interact with the teacher and with other learners to improve their 

knowledge (i.e., improve their solutions). 

 

IV. Fitness Function: 

• The fitness function evaluates how good or bad a particular solution is. It 

assigns a fitness value to each learner (solution). 

• The goal is to maximize or minimize the fitness function depending on the 

problem. 

❖ Phases in TLBO 

• TLBO operates in two main phases: the Teacher Phase and the Learner 

Phase. 

I. Teacher Phase: 

• In this phase, the teacher (best solution) tries to improve the knowledge of the 

learners. 

• The teacher influences the learners by moving them closer to the teacher's 

knowledge level. This is done by adjusting the learners' positions in the search 

space based on the difference between the mean knowledge level of the class 

and the teacher's knowledge level. 

• The position update for a learner i is given by: 
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𝑿𝒊,𝒏𝒆𝒘 = 𝑿𝒊 + 𝒓. (𝑿𝒕𝒆𝒂𝒄𝒉𝒆𝒓 − 𝑻𝒇. 𝑿𝒎𝒆𝒂𝒏) 

 

Where; 

                𝑿𝒊,𝒏𝒆𝒘 is the updated position of learner i. 

                𝑿𝒊 is the current position of learner i. 

                𝑿𝒕𝒆𝒂𝒄𝒉𝒆𝒓 is the position of teacher. 

                𝑿𝒎𝒆𝒂𝒏 is the mean position of all learners. 

                𝑻𝒇 is the teaching factor, usually set to either 1or 2 representing the  

                Level of influence the teacher can have. 

                r is a random number in the range [0,1] 

• After updating the learners’ positions, their fitness values are evaluated, 

and the best solution (teacher) is updated if necessary. 

 

II. Learner Phase: 

• In the learner phase, learners interact with each other to enhance their 

knowledge. 

• A learner i interacts with another randomly selected learner j. If learner j has 

a better fitness, learner i moves closer to j's position. Otherwise, learner i 

moves away from j's position to explore a different region of the search space. 

• The position update for a learner iii after interaction with learner j is given by: 

 

If 𝑓(𝑋𝑗) < 𝑓(𝑋𝑖) 

                             

                              𝑋𝑖,𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟 . (𝑋𝑗 − 𝑋𝑖) 

 

If 𝑓(𝑋𝑗) ≥ 𝑓(𝑋𝐼)  

                              

                             𝑋𝑖,𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟 . (𝑋𝑖 − 𝑋𝑗)  

 

Where; 

 

𝑋𝑖,𝑛𝑒𝑤 is the updated position of learner i. 

𝑋𝑖 and 𝑋𝑗 are the current positions of learners I and j respectively. 

𝑓(𝑋𝑖) and  𝑓(𝑋𝑗) are the fitness value of learner I and j, respectively. 

r is the random number in the range [0,1]. 

 

After the interaction, the new positions are evaluated and the best solution (teacher) 

is updated if necessary. 

III. Termination: 
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• The TLBO process is repeated, cycling through the Teacher and Learner phases 

until a termination condition is met. Common termination conditions include 

reaching a maximum number of iterations, achieving a satisfactory fitness level, 

or observing convergence in the population. 

 

 

 
 

Fig.6 Flow chart of TLBO 
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3.3.2 Advantages 
• Simple and Easy to Implement: TLBO does not require tuning of algorithm-

specific parameters (like crossover rate, mutation rate, etc.), making it easy to 

implement and apply. 

• No Algorithm-Specific Parameters: TLBO is free from algorithm-specific 

parameters, which simplifies the tuning process and makes it easier to apply 

across different problems. 

• Effective for Various Optimization Problems: TLBO has been successfully applied 

to a wide range of optimization problems, including constrained, unconstrained, 

and multi-objective problems. 

• Efficient: TLBO generally converges quickly, making it computationally efficient. 

 

Teaching-Learning-Based Optimization is a powerful and versatile optimization 

technique that mimics the educational process. Its simplicity, lack of algorithm-specific 

parameters, and effectiveness in solving a wide range of optimization problems make 

it an attractive choice for researchers and practitioners alike. 
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3.4 Optimization by cuckoo search algorithm 
 

Cuckoo Search (CS) is a nature-inspired optimization algorithm developed by Xin-She 

Yang and Suash Deb in 2009. It is based on the brood parasitism of some cuckoo 

species, particularly their habit of laying eggs in the nests of other birds. The CS 

algorithm also incorporates the Lévy flight behaviour of birds and fruit flies, which is a 

type of random walk where the step lengths have a probability distribution that is 

heavy-tailed. 

 

3.4.1 Steps and Concepts in Cuckoo Search 

I. Cuckoo Behaviour: 

• Some species of cuckoos lay their eggs in the nests of other host birds (of 

different species). If the host bird discovers the egg is not its own, it may either 

throw the egg away or abandon the nest and build a new one elsewhere. 

• Cuckoo Search simulates this parasitic behaviour where each cuckoo 

represents a solution, and its egg represents a new candidate solution. The goal 

is to replace worse solutions (host bird’s eggs) with better ones (cuckoo’s eggs). 

II. Lévy Flights: 

• Lévy flight is a random walk where the steps are drawn from a Lévy distribution, 

which is a heavy-tailed probability distribution. This means that the cuckoos 

can make large jumps, allowing for a more extensive exploration of the search 

space. 

• In the context of optimization, Lévy flights help the algorithm escape local 

optima and explore new regions of the solution space. 

III. Fitness Function: 

• The fitness function evaluates how good a solution is, assigning a fitness 

value to each cuckoo (solution). 

• The goal is to maximize or minimize the fitness function, depending on the 

problem. 

 

 

IV. Host Nests: 

• The population of potential solutions in CS is referred to as nests. Each nest 

contains an egg representing a solution to the optimization problem. 

• The quality of the nests is evaluated based on the fitness function. 

V. Termination: 

• The process of generating new solutions via Lévy flights, evaluating fitness, 

replacing nests, and abandoning poor nests continues until a termination 

condition is met. 

• Common termination conditions include reaching a maximum number of 

iterations, achieving a satisfactory fitness level, or observing convergence in 

the population. 

 

❖ Steps in cuckoo search 
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I. initialization 

• A population of nests (solutions) is initialized with random positions in the 

search space. 

• Each nest contains an egg, which represents a candidate solution. 

II. Cuckoo generation (via levy flights); 

• A new solution (cuckoo egg) is generated by performing a Lévy flight from the 

current solution. 

• The position update for a solution is given by; 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝛼. 𝐿𝑒𝑣𝑦(𝜆) 
 

Where; 

𝛼 is the step size scaling factor. 

𝐿𝑒𝑣𝑦(𝜆) represents a step drawn from a levy distribution with exponent 𝜆 

• Lévy flights result in occasional large steps, allowing for global exploration 

of the search space. 

 

III. Fitness evaluation and replacement 

• The fitness of the newly generated cuckoo (new solution) is compared to 

the fitness of a randomly chosen nest. 

• If the new solution is better (has a higher fitness), it replaces the existing 

solution in the nest. 

IV. Host nest abandonment 

• A fraction 𝑝𝛼 of the worst nests is abandoned, and new nests are built 

randomly in different locations (random solutions are generated). 

• This step introduces diversity into the population and helps the algorithm 

escape local optima. 

V. Termination 

• The process of generating new solutions via Lévy flights, evaluating fitness, 

replacing nests, and abandoning poor nests continues until a termination 

condition is met. 

• Common termination conditions include reaching a maximum number of 

iterations, achieving a satisfactory fitness level, or observing convergence 

in the population. 
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Fig.7 Flow chart of CSO 

 

 

              3.4.2 Advantages 

• Global Search Capability: The use of Lévy flights allows Cuckoo Search to 

perform a global search and avoid getting stuck in local optima, making it 

effective for complex optimization problems. 

• Simple and Easy to Implement: CS has few parameters to adjust, making it 

simple and easy to implement. 

• Efficient Exploration and Exploitation: The balance between exploration (global 

search) and exploitation (local search) is effectively managed by the Lévy flight 

mechanism and the host nest replacement strategy. 

• Good Performance on Multimodal Functions: CS is particularly effective in 

handling multimodal functions, where the search space has multiple peaks and 

valleys. 

 

Cuckoo Search is a powerful and versatile optimization technique, particularly suited 

for solving complex, multimodal optimization problems. Its simplicity, efficiency, and 

ability to avoid local optima make it a valuable tool for a wide range of applications. 
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CHAPTER 4 
ANALYSIS 

 
4. Analysis using Ansys software 
 

4.1 Description of the analysis 
 

In the current work, a VOF model was used to solve the three-phase flow and to track 

the slag/steel/gas interface behaviour in the ladle. The following governing equations 

of the VOF model and turbulence model need to be solved. 

 

4.1.1 Conservation equations 
 

The continuity and momentum equations are shown in Equations (3) and (4), 

respectively. 

 

Continuity equation 

 

                                   
𝜕𝜌

𝜕𝑡
+  

𝜕(𝜌𝑥𝑖)

𝜕𝑥𝑖
= 0    ………………… (12) 

 

. Momentum equation 

 

𝜕(𝜌𝑢𝑖 )

𝜕𝑡
+ 

𝜕(𝑢𝑖  𝑢𝑗)

𝜕𝑥𝑗
=  −

𝜕𝜌

𝜕𝑥𝑖
+  

𝜕

𝜕𝑥𝑗
 [𝜇𝑒𝑓𝑓. (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] + 𝐹𝑖 + 𝐹𝑣𝑜𝑙,  

 

                                                                                                   ………………. (13) 

 

where 𝐹𝑖  is the body force in the case of gas blowing in the ladle and 𝐹𝑣𝑜𝑙 is the volume 

force which the source term for surface tension, given by 

 

                                                  𝐹𝑖 =  𝛼𝜌𝑙𝑔𝑖         ……………….. (14) 

 

                                                  𝐹𝑣𝑜𝑙 =  𝜎𝑖𝑗  
𝜌𝑘𝑖∇𝛼𝑖

1÷2 (𝜌𝑖 + 𝜌𝑗 )
  ……….. (15) 
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4.2.2 Turbulence models 
 

The standard 𝑘-𝜀 equation is used to model the turbulence, which solves two 

equations for the transport of turbulent kinetic energy and its dissipation rate to obtain 

the effective viscosity field. 

 

         𝜌 
𝜕𝑘

𝜕𝑡
+  

𝜕( 𝜌𝑘𝑢𝑖 )

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
 [( 𝜇 +  

𝜇𝑡

𝜎𝑘
 )

𝜕𝑘

𝜕𝑥𝑖
] +  𝐺𝑘 −  𝜌𝜀   …………. (16) 

 

       𝜌 
𝜕𝜀

𝜕𝑡
+  

𝜕(𝜌𝜀𝑢𝑖)

𝜕𝑥𝑖
=  

𝜕

𝜕𝑥𝑖
[(𝜇 +  

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑖
] + ∁1𝜀

𝜀

𝑘
 ( 𝐺𝑘 +  ∁3𝜀𝐺𝑏) −

                                                                                                         ∁2𝜀𝜌 (
𝜀2

𝑘
) … . . (17) 

 

where 𝑘 is the turbulent kinetic energy, 𝜀 is the turbulent dissipation rate, and 

𝑥𝑖 represents the spatial coordinates for different directions. 𝐺𝑘 is the turbulent kinetic 

energy source term caused by mean velocity gradients, and 𝐺𝑏 is the turbulent kinetic 

energy source term caused by buoyancy. These terms are calculated by Equations (9) 

and (10). 

 

                                      𝐺𝑘 =  −𝜌𝑢𝑖𝑢𝑗
𝜕𝑢𝑖

𝜕𝑢𝑗
   ……………. (18) 

 

                                           𝐺𝑏 =  −𝑔𝑖(
𝜇𝑡

𝜌
𝑃𝑟𝑡)

𝜕𝜌

𝜕𝑥𝑖
   ………… (19) 

 

                                            𝜇𝑡 =  
𝜌∁𝑢𝑘2

𝜀
    …………………… (20) 

 

The turbulent viscosity is calculated by Equation (20) using 𝑘 and 𝜀 from Equations (16) 

and (17) respectively. The constants 𝑘 and 𝜀 used in the present study were 

recommended by Launder and Spalding [79]. 
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4.2.3 The volume of fluid model 
 

The Volume of Fluid (VOF) model can be used to track the interface between the 

phases by solving a single set of momentum equation. In this work, the tracking of the 

interfaces between liquid steel/slag/top-gas is accomplished using this model. The 

governing equation can be written as follows: 

 

   
1

𝜌𝑘
[

𝜕

𝜕𝑡
 (𝛼𝑞𝜌𝑞) +  ∇ .  𝛼𝑞𝜌𝑞𝑣𝑞] = 𝑆𝛼𝑞

+  ∑ ( 𝑚̇𝑛
𝜌=1 𝑝𝑞 −  𝑚̇𝑞𝑝)……… (21) 

 

 

 

where 𝑚̇𝑝𝑞, 𝑚̇𝑞𝑝 represent the mass transfer from phase 𝑝 to 𝑞 and phase 𝑞 to 𝑝 in 

unit time and volume, respectively;  𝛼𝑞 is the volume fraction of phase 𝑞, 𝜌𝑞 is the 

density of phase 𝑞, 𝑆𝛼𝑞
 is the source term taken as 0 in the Fluent software. The volume 

fraction of the main phase is not calculated in the Fluent software, while it can be 

acquired by Equation (22). When the volume fractions are summing the following 

equation is satisfied: 

 

                                 ∑ 𝛼𝑞
𝑛
𝑞=1 = 1 …………… (22) 

 

 

4.2.4 Species transport model 
 

To calculate the mixing process in the ladle, the species transport model was solved 

throughout the computational domain 

 

                       
𝜕(𝜌𝑐)

𝜕𝑡
+  ∇. (𝜌𝑢𝑐) =  ∇. [𝜌 (𝐷 +

𝜇𝑡

𝜌𝑆𝑐𝑡
) ∇𝑐 ] …………….. (23) 

 

 

where D is the mass diffusion coefficient and 𝑆𝑐𝑡 is the turbulent Schmidt number with 

a default value of 0.7 (𝑆𝑐𝑡 =  
𝜇𝑡

𝜌𝐷𝑡
 = where 𝐷𝑡 is the turbulent diffusivity). 
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4.3 Geometry Meshing and Boundary conditions 
 

4.3.1 Industrial scale model 

 

A160 tonne capacity, industrial scale ladle has been considered for the present study. 

The geometry details and the properties of all the constituent phases are obtained 

from the literature (Liu et al., 2011; Llanos et al.,2010). Multiple gas inlets were 

considered at various radial and angular positions. The schematic representation of 

the computational domain and the gas inlet configuration on the base of the ladle are 

shown in Fig. (5). A com-bination of any two of the inlets was used for purging of argon 

gas into the metal bath, for a single case. 

 

Initially, the ladle was filled with molten steel, with a floating slag layer on the top 

which was open to the atmosphere. 

 

                          
 

                         Table 1: Fluid properties 

          Property                Value 

Steel density 7020 kg/m3 

Steel viscosity 0.006 kg/m-s 

Slag density 3500 kg/m3 

Slag viscosity 0.2664 kg/m-s 

Argon density 1.6228 kg/m3 

Argon viscosity 0.000021 kg/m-s 

Surf. Tension slag/steel  0.12 N/m 

Surf. Tension steel/argon 1.192 N/m 

Air density 1.225 kg/m3 

 

Fig.8 Geometry 
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                                                      Fig.9 3D VIEW 

 

 

                    
 

 

Fig.10 Volume fraction distribution 

 

 

 
Fig.11 
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The computational domain and mesh 

 

Figure 11 displays the boundary conditions and computational mesh for the industrial 

scale ladle setups. Hexahedral elements were created in a structured mesh using the 

ANSYS ICEM CFD program. By establishing the maximum mesh size of 8 mm for the 

entire domain and 4 mm for the inlet and slag layer, a mesh with roughly 1 million cells 

was produced. With an explicit geo-construct scheme, the interface was tracked during 

the simulations using the volume of fluid (VOF) model in the ANSYS Fluent program. 

For the industrial size ladle, the same boundary conditions as in the water model 

covered in section 3.3.1 above were applied. 

 

 
 

Fig. 12 Mesh geometry of single purged ladle 

 

 
 

Fig.13 Mesh geometry of dual purged ladle 
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CHAPTER 5 
RESULTS AND VALIDATION 

 
5. Optimum Results 
5.1 Genetic Algorithm 

 
 

Fig.14 Mixing time vs slag opening area 

1 2 
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Fig.15 Mixing time vs wall shear stress 

 

 

Fig. 16 Slag opening Area vs wall shear stress 

 

1 

1 
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TABLE 2: Some Optimal Results 

  

 

 

5.2 Cuckoo-search optimization 

 

 
Fig. 17 Mixing time vs slag opening area 

𝑡𝑚𝑖𝑥 𝜏𝑚𝑎𝑥    Q h R1 

229.0737 0.00001 0.0002 0.0888 0.0012 

217.7713 0.00002 0.0002 0.0538 0.0026 

225.5558 0.00001 0.0002 0.0936 0.0021 

85.6456 0.00004 0.0020 0.0264 0.3193 

88.6302 0.00001 0.0020 0.0272 0.1548 

162.3860 0.00004 0.0005 0.0502 0.0036 

184.9356 0.00003 0.0003 0.0651 0.0216 

197.5981 0.00002 0.0003 0.0711 0.0106 

202.3084 0.00001 0.0003 0.0508 0.0034 

213.7006 0.00005 0.0002 0.0339 0.0022 

94.1502 0.00006 0.0020 0.0351 0.0503 

223.2137 0.00001 0.0002 0.0768 0.0034 

96.0846 0.00001 0.0019 0.0419 0.0560 

1 

2 
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Fig. 18 Mixing time vs wall shear stress 

 

 
Fig.19 slag opening area vs wall shear stress 
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5.3 Teaching-learning based optimization 

 

 
 

Fig.20 Mixing time vs slag opening area 

 

 

1 2 

1 2 

Fig.21 
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Fig.22 slag opening area vs wall shear stress 
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5.4 Particle Swarm Optimization 

 

 
Fig.23 Mixing time vs slag opening area 

 

 
 

                                       Fig.24 Slag opening area vs wall shear stress 

1 
2 

3 
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Fig.25 Mixing time vs wall shear stress 

 

Table 3; Comparison of optimum results of all optimization techniques (tmix. Vs τmax) 

 

Optimization techniques                                     Optimum Results 

tmix. (s) τmax(pa)   Q(m3s-1)        h(m)     R1(m) 

Genetic Algorithm 130 2.7 0.0002 0.0502 0.0036 

Particle-swarm optimization 103 0.23 0.0015 0.0312 0.0181 

TLBO 118 3 0.0010 0.0302 0.0117 

Cuckoo-search optimization 115 0.3 0.0023 0.0203 0.0114 

 

Table 4: Comparison of optimum results of all optimization techniques (tmix vs As) 

 

Optimization techniques                                     Optimum Results 

 tmix(s)  As(m2) Q(m3s-1)        h(m)     R1(m) 

Genetic Algorithm 95 0.22 0.0001 0.0432 0.0043 

Particle-swarm optimization 103 0.22 0.0014 0.0137 0.0432 

TLBO 105 0.19 0.0040 0.0123 0.0112 

Cuckoo-search optimization 110 0.15 0.0021 0.0112 0.0110 

 

 

 

 

1 

2 

3 
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Table 5: Comparison of optimum results of all optimization techniques (As vs τmax) 

 

Optimization techniques                                     Optimum Results 

As(m2) τmax(pa)   Q(m3s-1)        h(m)     R1(m) 

Genetic Algorithm 0.05 1.25 0.0013 0.0411 0.0034 

Particle-swarm optimization 0.194 4.38 0.0012 0.0312 0.0123 

TLBO 0.06 1.6 0.0023 0.0012 0.0121 

Cuckoo-search optimization 0.025 0.25 0.0014 0.0023 0.0211 

 

 

 

5.5. Optimum Results (For dual gas purging) 
5.5.1 Genetic Algorithm 

 

 
 

Fig.26 Mixing time vs slag opening area 
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Fig.27 Mixing time vs wall shear stress 

 

 
Fig.28 Slag opening area vs wall shear stress 
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Table 6: Optimal solutions 

 

𝑡𝑚𝑖𝑥 𝜏𝑚𝑎𝑥          Q           h        R1         R2    R3 

88.8520    0.3 0.0020 0.0272   0.2652 0.2997 0.1008 

352.2606    0.1 0.0002 0.0960 0.0007 0.1180 0.6029 

353.0345    0.3 0.0002 0.0948 0.0007 0.1180 0.6184 

92.6916      0.4 0.0020 0.0455 0.3109 0.3134 0.1258 

346.0577    0.1 0.0003 0.0918 0.0006 0.1236 0.6309 

94.1032    0.3 0.0019 0.0281 0.2626 0.2661 0.1190 

312.1546    0.3  0.0003 0.0846 0.0019 0.1437 0.5895 

110.7133    0.1 0.0019   0.0313 0.0752 0.1514 0.1876 

88.8520    0.3 0.0020 0.0272 0.2652 0.2997 0.1008 

99.0650    0.2 0.0020 0.0495 0.1394 0.2854 0.1276 

132.5725    0.5 0.0017 0.0233 0.0380 0.0372 0.7604 

 

5.5.2 Cuckoo-search optimization 

 

 
 

Fig.29 Mixing time vs slag opening area 
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Fig.30 Slag opening area vs wall shear stress 

 

 

 
Fig.31 Mixing time vs wall shear stress 
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5.6 Results and Validation 

5.6.1 For single purged ladle (Q= 0.0015 m3s h=0.0312 R1=0.0181m from table 3) 

 

 
 

Fig.32 Shear stress distribution in single purged ladle 

 

 

 
 

Fig.33 Velocity distribution in single purged ladle 
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Fig.34 Contour of phase index 

 

 

        
 

Fig.35 Contour of static pressure in single purged ladle 
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5.6.2 For Dual Purged ladle (Q=0.0017 h=0.0233 R1=0.0380 R2=0.0370 R3=0.0604) 

 

 
 

Fig.36 Wall shear stress distribution in dual purged ladle 

 

 
 

Fig. 37 Contours of phase index in dual purged ladle 
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Fig. 38 Contours of total pressure in dual purged ladle 
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CHAPTER 6 
CONCLUSIONS AND FUTURE WORK 

 
6. Conclusions and Future work  
A mathematical model is formulated to predict the mixing time, slag opening area, and 

wall shear stress in single and dual purged industrial steelmaking ladles is as following- 

 

• For Single purged ladle 

𝑡𝑚𝑖𝑥 = 15.48 × 𝑄−0.319 × ℎ0.086 × 𝑅1
−0.037 

 

                                     𝐴𝑠 = 2.991 × 𝑄0.745 × ℎ−0.882 × 𝑅1
0.036 

 

                                    𝜏𝑚𝑎𝑥 = 0.0014 × 𝑄0.516 × ℎ−0.228 × 𝑅1
0.121 

 

• For Dual Purged ladle 

 

   𝑡𝑚𝑖𝑥 = 15.96 × 𝑄−0.324 × ℎ0.055 × 𝑅1
−0.061 × 𝑅2

−0.069 ×  𝑅3
0.113 

 

𝐴𝑆 = 0.566 × 𝑄−0.685 × ℎ−1.061 × 𝑅1
0.079 × 𝑅2

0.057 × 𝑅3
−0.207 

 

                      𝜏𝑚𝑎𝑥 = 0.1883 × 𝑄0.7494 × ℎ−0.0194 × 𝑅1
0.8548 × 𝑅2

0.6572 ×

                                                                                                𝑅3
−0.0742  

Further, Optimization techniques i.e., Genetic algorithm, particle swarm optimization, 

cuckoo-search optimization and teaching learn based optimization is performed to 

optimize the ladle objectives functions.  

After that comparison is taken place of all optimization techniques and the best 

optimal solution is achieved as following- 

 

For single purged ladle 

 

                                          tmix. (s)            τmax(pa)          Q(m3s-1)      h(m)            R1(m)     

                                            103                 0.23                0.0015        0.0312       0.0181 

 

For dual purged ladle   

 

     tmix. (s)            τmax(pa)          Q(m3s-1)      h(m)          R1(m)         R2(m)            R3(m) 

    132.57             0.50                0.0017        0.0233       0.0380          0.0372        0.0604 

 

Further an analysis is done for achieving the above optimized results and is shown in 

fig.32 and fig.36  
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6.1 Future work 
• In future analysis of mixing time and slag opening area have to perform 

because if slag opening area is maximum then there will be chance of oxidation 

in the liquid steel and then quality of the liquid steel will decrease. 

• Analysis of slag opening area vs wall shear stress that means due to wall shear 

stress how much slag opening area is generating because if these two will 

increase then ladle life and quality of the steel will decrease. 
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Appendix 1(MATLAB code) 

% Define the objective functions 
f1 = @(x,y,z) 15.48 * x.^(-0.319) .* y.^(0.086) .* z.^(-0.037); 
f2 = @(x,y,z) 2.991 * x.^(0.745) .* y.^(-0.882) .* z.^(0.036); 
f3 = @(x,y,z) 0.0014 * x.^(0.516) .* y.^(0.0228) .* z.^(0.021); 

 
% Combine objective functions into a multi-objective function handle 
multiObjFunc = @(x) [f1(x(1), x(2), x(3)), f2(x(1), x(2), x(3)), f3(x(1), 
x(2), x(3))]; 

 
% Define the bounds for the decision variables 
lb = [2.02e-4, 0.025, 3.25e-4]; % Lower bounds for x, y, z 
ub = [20.20e-4, 0.10, 0.325];   % Upper bounds for x, y, z 

 
% Define options for the multi-objective optimization 
options = optimoptions('paretosearch', 'Display', 'iter'); 

 
% Perform multi-objective optimization using paretosearch (constrained) 
[x, fval, exitflag, output] = paretosearch(multiObjFunc, 3, [], [], [], [], 
lb, ub, []); 

 
% Display the results 
disp('Optimal Solution (x, y, z):'); 
disp(x); 
disp('Objective Function Values (f1, f2, f3):'); 
disp(fval); 
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Appendix 2 

% Define the objective functions 
F1 = @(x) 15.96 * x(1)^-0.324 * x(2)^0.055 * x(3)^-0.061 * x(4)^-0.069 * 
x(5)^0.113; 
F2 = @(x) 0.566 * x(1)^0.685 * x(2)^-1.061 * x(3)^0.079 * x(4)^0.057 * 
x(5)^-0.207; 
F3 = @(x) 0.1883 * x(1)^0.7494 * x(2)^-0.0194 * x(3)^0.8548 * x(4)^0.6572 * 
x(5)^-0.0742; 

 
% Combine the objective functions into a single function handle 
objectiveFunction = @(x) [F1(x), F2(x), F3(x)]; 

 
% Define the bounds for the variables 
lb = [2.02e-4, 0.025, 3.25e-4, 9.60e-2, 9.56e-2]; 
ub = [20.20e-4, 0.10, 0.325, 0.325, 0.650]; 

 
% Set options for the genetic algorithm 
options = optimoptions('gamultiobj', ... 

    'PopulationSize', 100, ... 
    'MaxGenerations', 500, ... 
    'Display', 'iter', ... 
    'UseParallel', true); 

 
% Run the genetic algorithm 
[x, fval] = gamultiobj(objectiveFunction, 5, [], [], [], [], lb, ub, 
options); 

 
% Display the results 
disp('Optimal solution:') 
disp(x) 
disp('Objective function values at the optimal solution:') 
disp(fval) 
% Plotting the 2D Pareto front 
figure; 
plot(fval(:,1), fval(:,3), 'bo', 'MarkerSize', 6, 'MarkerFaceColor', 'b'); 
xlabel('F1(x)'); 
ylabel('F3(x)'); 
title('2D Pareto Front between F1 and F3'); 
grid on; 

 


