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Preface 

Histone deacetylase (HDACs) play a key role in chromatin remodelling, serving as epigenetic 

regulators of gene expression. Since their discovery, HDAC inhibitors has become a prominent 

area of research, particularly for targeted epigenetic modulation related to cancer, 

neurodegenerative disorders, and inflammatory diseases. Histone deacetylase 6 (HDAC6), a 

class IIb member of this metalloenzyme family, has garnered significant interest due to its 

distinctive structure, cytoplasmic localization, and ability to deacetylate specific non-histone 

substrates in the cytoplasm, such as α-tubulin, Hsp90, cortactin, peroxiredoxin, and heat shock 

transcription factor-1 (HSF-1). Elevated levels of HDAC6 have been observed in several 

conditions, including various cancers, neurodegenerative diseases like Alzheimer’s and 

Parkinson’s, and rare disorders such as amyotrophic lateral sclerosis, Rett syndrome, and 

Charcot-Marie-Tooth disease. Over the past decade, researchers have focused on elucidating 

the full spectrum of HDAC6’s physiological functions, particularly in cancer, due to its role in 

coordinating numerous cellular processes critical to cancer development. Despite such diverse 

roles of HDAC6, none of the potential selective inhibitors have been translated in clinics to 

date therefor surging the development of selective HDAC6 inhibitors as potential therapeutic 

agents for these conditions. As an aid to the quest here some computational techniques were 

implemented in a set of quinazoline-hydroxamate based HDAC6 inhibitors hoping to find 

critical structural alerts and non-linear functions ruling the biological activity of HDAC6 

inhibitors.  
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Introduction and Motivations                                                                        

1.1 Drug 

In pharmacology, a drug1 is any chemical substance that upon administration to a living 

organism generates a biological response. There are vast array of drugs capable of 

causing different physiological effects.2   

Drugs are generally used to cure a disease and alleviate many symptoms of illnesses, 

though some are not used to specifically treat a particular disease but rather acts as 

psychoactive chemical substance by impacting the central nervous system. In 

pharmaceutical terms drugs are chemicals substances with known structures used to 

treat, cure, prevent or diagnose a disease or to promote well-being. 

 

 

Figure 1.1: 2D (A) and 3D (B) molecular structure of penicillin G, a marvellous 

engineering by Penicillium chrysogenum, that saved millions of lives during World 

War II. 

1.2 Drug Discovery 

Discovering a drug from scratch is a long road with tremendous uncertainty. Most of 

the time investment of billions of dollars, man power and years of time leads to 

nowhere. As a consequence, number of potential drugs has become low whereas the 

need for newer drug has skyrocketed due to over use and drug tolerance in past few 

decades. Hence healthcare system continuously requires newer drugs to address the 

unmet medical needs across diverse therapeutic areas, and the pharmaceutical 
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industries primarily strive to deliver new drugs to market through complex activities of 

drug discovery.3   

The art of drug discovery is just not only costly but rather goes through very time 

consuming and tedious process. To better shied light into this process Food and Drug 

Administration (FDA) has prescribed a timeline regarding the necessary steps to deliver 

a new drug that meets human requirements.  

• The first stage in drug discovery and development process is to identify 

potential new drug candidates. Generally, researches dose this through new 

insights into the disease process that allows them to efficiently craft a 

product to stop or to optimize the effects of disease. Or else they can try to 

find new ways to evaluate small molecules to screen out beneficial effects 

against vast array of diseases or using cutting-edge technology to efficiently 

manipulate genetic material or target specific site within the body. The 

number of possible ways to identify a potential lead candidate is huge and, 

in this era, of artificial intelligence a lot of new ones are surfacing each and 

every day. In this stage thousands of compounds may be indicated as 

potential candidate for later stage of development to be medical treatment. 

However, after preliminary testing only a handful of compounds remains 

and are called for further development. Once a potential compound is 

identified for development, researchers move on to conduct experiments to 

gather information on the dosage, pharmacokinetic and pharmacodynamic 

properties of the concerned compound. This phase with all its exploratory 

phase takes around 6.5 years to complete.4  

• The second stage is the preclinical research that concerns toxicity of the 

compounds. The number of tests performed is not so large but should 

provide sufficient information to decide whether the researcher should 

proceed to human trial. Typically, this phase can be done in few months.4  

• Then comes the clinical stage where the drug is tested on humans to evaluate 

the effectiveness and possible side effects. Generally, this stage is sub-

divided into 4 stages where a number of increasing volunteers participate in 

the test and correspondingly a number of decreasing drugs goes to the next 

stage. This stage requires around 5 years in order to complete all these 

clinical steps.4 
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• Finally, all the data from the clinical trials are submitted to FDA that decide 

if the study is sufficient and the drug is safe for commercialization or not. 

FDA, in case of an approval, will keep monitoring the new drug to have a 

complete picture, and in some case can change the indication of the drug or 

the dosage if necessary. 

 

 

Figure 1.2: (A) Flowchart of the traditional drug development process. (B) Flowchart 

of drug repurposing 

In the current scenario, all processes are time-consuming and expensive as well and the 

industry is under pressure owing to extremely stringent regulatory requirements, 

environmental concerns, and reduced incomes due to patent expiration. These issues 

have led to reduced R&D productivity in recent decade, hence innovative approaches 
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and increased collaboration between industry, academia, and governmental research 

institutions, with a common objective of constantly delivering quality medicines.3  

1.3 Drug Repurposing       

Drug repurposing also called as drug re-profiling, therapeutic switching or drug re-

tasking is the identification of new therapeutic indications for known drugs. These 

drugs can either be commercially available and used daily in clinical setting or they can 

be drugs that have been “shelved” namely molecules that did not passed in clinical trials 

or for which projects have been discontinued for various reasons. In other words, drug 

repositioning can be defined as renewing failed drugs and expanding successful ones.5  

As mentioned earlier, drug discovery is research and comes with no guarantee of 

success. Being so it is a high risk, slow, and expensive process.3 The risk arises from 

the intense competition within the pharmaceutical sector, where developing a drug for 

an illness becomes a race against time to meet both health and economic demands.6  

As of a report published by Eastern Research Group (ERG) only 2% of new molecule 

succeed in clinical trials and require around 10-15 years to reach the market for 

commercial use.3 Alongside, PhRMA reports (Fig:1.3) shows that the yearly 

investment for drug discovery in USA is increasing year after year with respect to 

number of drugs approved by FDA.7 

Certainly, the global trend is in constant rise with respect to money invested and 

decreasing number of approved drugs, making it harder to find a treatment for rare 

diseases that doesn’t have a big share market. As the number of possible numbers of 

customer is low the volume of information on which researcher can rely becomes 

narrow making it too high-risk process both in health and economic front.  

Drug repurposing seems to be a valid solution as this approach capitalizes on the fact 

that approved drug and many abandoned molecules have already been tested in humans 

and detailed information on their pharmacology, formulation, dose and toxicity is 

already available, making it advantageous in the economic front foot. Whereas, very 

list is known about the new molecules as these are in the preliminary stages of drug 

discovery. So, it is possible to reduce time, cost and risk of failure since the drug is 

already approved and declaring a new indication for a drug is much easier.3  
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Figure 1.3: The amount of investment (in billion dollars) in drug development by 

Pharmaceutical Research and Manufacturers of America (PhRMA)7 member 

companies and the number of approved drugs by FDA from 1984 to 2019. 

1.3.1 Experimental approach towards drug discovery and repurposing   

Historically, drug repurposing has often occurred as chance discoveries or unexpected 

findings. A drug becomes a potential candidate for repurposing when it’s found to have 

off-target effects that could be beneficial for a different medical purpose or when new 

applications are identified. Successful instances of drug repurposing in the past have 

typically not followed a systematic approach but rather was serendipitous. Two classic 

example includes the repurposing of sildenafil citrate for treating erectile dysfunction 

that stemmed from retrospective clinical observations, and the repurposing of 

thalidomide for conditions like erythema nodosum leprosum and multiple myeloma 

which was an accidental discovery. These early successes have spurred efforts to 

develop a more systematic approach for identifying potential repurposable compounds, 

reducing reliance on chance discoveries. These methods have let to identification of 

numerous promising candidate drugs, some of which are undergoing advanced clinical 

trials. These repurposable drugs have the potential to treat both common and rare 

diseases, providing opportunities to bring valuable medications back to use that might 

otherwise have been overlooked.8  
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There are primarily two experimental approaches for the identification of a possible 

candidate for a drug repurposing. Proteomic methods like affinity chromatography and 

mass spectrometry are utilized to identify binding partners, focusing on structural 

compatibility. With the rise of chemical biology for target validation, analysing both 

target and off-targets of drugs and for repurposing has become standard practice. This 

method not only gathers valuable information but also aids in future research 

endeavours by providing a more comprehensive understanding of drug interaction and 

potential applications.8 Phenotypic screening involves identification of compounds that 

exhibit effects relevant to a disease in model systems, regardless of prior knowledge of 

the target. In the realm of drug repurposing, if the screened compounds are either 

approved or under investigation, it can signal potential repurposing opportunities that 

can be readily explored further.8  

1.3.2 Computational approach towards drug discovery and repurposing      

The theory and clinical cases presented the reality of drug repurposing and I tried to 

briefly describe the fundamental reasons enabling new usages while emphasising the 

importance of chance discoveries in the process. Now it’s a day dream of many 

medicinal chemists working in drug discovery field to be able to formally predict such 

repurposing scenarios and unveiling new pharmacology in an automated process. 

Numerous computational approaches have been developed since the beginning of 

cheminformatics in order to materialize this distant goal or at least get closer to it. A 

computational approach to the drug repurposing problem is not only cost-effective and 

time-efficient but can also adapt to different targets without requiring extensive efforts 

in majority of the cases.3   

At the fundamental level, a repurposing initiative aims to connect a drug with a specific 

disease, essentially depicting a potential use or prescription probability for that 

molecule. To computationally generate new hypothesis for potential indications, 

biomedical concepts can be leveraged. Different biomedical concepts correspond to 

varying levels of abstraction within a biological system, ranging from biomedical 

details to broader perspectives, enabling computation or comparison. In general, a 

similarity metric is extracted from the specific property under investigation like 

chemical structure or gene expression levels, that serves as a descriptor to prioritize 

information and forecast potential new indications, resulting in the establishment of 
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connections between drugs, diseases, or molecular targets. These approaches can be 

categorized into groups based on the central property of analysis.  

 

Figure 1.4: Conceptual Map of the relationship between the different biomedical 

concepts. Rational related to the drug and its action are in violate, disease in red and 

biomedical concepts are in blue. Computational drug repositioning methods are based 

on either one or a series of such concepts in order to forward new indication for a 

drug, ultimate goal (green edge). 

1.3.2.1 Chemical structure-based approaches   

Majority of the orally active drugs are small lipophilic molecules.9 So, its logical to 

directly examine the chemical makeup when comparing drugs for similarity: if the 

structure are alike, they’re expected to produce similar biological response. This rule of 

thumb is known as similar property principle10 and it lies at the core of any quantitative 

structure-activity relationship study. Various techniques, such as fingerprints, clustering 

algorithms etc are employed to gauge structural alikeness between two chemicals.11 

These methodologies are instrumental in conducting ligand-based virtual screening, 

where active ligands are used as reference to identify structurally akin molecules within 

a target dataset, believed to possess similar biological activity.  

When it comes to drug repurposing one can search only among approved compounds 

for instance. Noeske et al.12 effectively utilized this strategy implementing an 

unsupervised machine learning algorithm (self-organising map), to group chemicals 

according to their structural characteristics. Molecular scaffolds were converted into 

vectors to be utilised during the clustering process. They were able to identify shared 
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activities among metabotropic glutamate receptor antagonists, observing their effects 

on additional protein targets such as dopamine D2, histamine H1, and muscarinic 

acetylcholine receptors. Though these findings were experimentally validated in vitro 

and shown to be active, yet were pharmacologically irrelevant due to weak binding. 

This new knowledge on off-target binding can pave the way for potential new usage for 

these drugs, by further modification and optimization of the molecular structure for 

instance. 

Working with structural similarity for off-target identification, Keiser et al.13 developed 

another intriguing method. For this project, known ligands were categorized according 

to their binding partners and chemical features. This method is known as similarity 

ensemble approach and calculates whether a molecule will bind to a target based on 

the chemical features it shares with those of known ligands, using a statistical model to 

control for random similarity.14 In case of drug repurposing, researchers focused on 

testing only approved drugs. The findings from similarity analysis uncovered several 

off-target interactions. Subsequent retrospective analysis confirmed the approach’s 

validity, and experimental validation of some predicted off-target bindings provided 

valuable insights into the pharmacological mechanisms of certain drugs. Notably, for 

fabahistin, the affinity for an off-target receptor (5-HT5A) was superior to its known 

primary receptor (H1), suggesting promising alternative therapeutic uses.  

 

Figure 1.5: Drug repurposing using the chemical structure. Compounds with similar 

structures have similar biological activities (similarity principle). Drug A shares 

common scaffold with drug B. This observation leads to conclusion that drug A could 

be active on the canonical target of drug B. 
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This chemical structure-based approaches are intuitive and the foundation of it lies on 

the similar property principle (Fig 1.5). Although in reality, significantly small change 

such as alteration in bond order, an atom or even the nature of bond to a molecular 

structure can drastically change the biological activity. Furthermore, predictions from 

different methodologies show minimal agreement among them stressing the obscurity 

to pick the adequate one for the right scenario.11 Other challenge lies in the fact that 

some compounds undergo chemical modification inside the body prior being 

pharmacologically active, therefore the structure as documented in databases may 

undermine the effectiveness of a predictive statistical model.      

1.3.2.2 Gene expression and functional genomics-based approaches   

Just like computer where each and every task is executed as a result of software 

execution, every living systems behaviour is dictated by its gene expression in a 

particular setting. Expression level of certain genes is very much dependent on the state 

of the system, and can be identified and quantised by the relative number of their 

messenger RNA (mRNA) molecules transcribed. Differently expressed genes can 

function as emissary to pervade a molecular effect, known as gene expression signature. 

This type of experimentation is generally conducted in microarray, containing probes 

for the genes of interest. The method offers a clear understanding of the condition under 

investigation and have been effectively employed (particularly the Connectivity Map)15 

to find indication for marketed drugs.    

The axiom behind CMap stated that the action of a drug can be apprehended and nudged 

by looking at the gene expression level resulting from its administration into the 

biological system. Messenger RNA that function as gene expression signature, not only 

reflect the activity of drug but also can act as proxy of a disease state. Based on this 

assumption, Sirota et al.16 conducted a set of experiments from Gene Expression 

Omnibus to capture disease signatures from gene expression profiles. Further 

integration of this data with similarity values between drugs, derived from the CMap, 

the researchers were able to identify negative correlation between a cluster of related 

diseases and the signatures of current treatment regime. This anti-correlation predicted 

cimetidine (anti-ulcer drug) to be a potential treatment for lung cancer, which was 

further validated by in vitro and in vivo experimentation on a mouse model. The 

research also found that topiramate, typically prescribed as an anticonvulsant, shows 

promise as a therapeutic agent for treating inflammatory bowel disease (IBD), a 
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condition without a current cure.17 This new indication of topiramate was strongly 

supported by in vivo testing in a rodent model. This study underscores a valuable aspect 

of transcriptomics: even when limited molecular knowledge exists about the specific 

disease mechanisms, analysing gene expression patterns can effectively bypass detailed 

mechanistic understanding and accurately pinpoint potential treatment options.      

Gene expression analysis and CMap has paved the way for numerous drug repurposing. 

This technique is very much handy as it does not require much prior knowledge about 

the action of drug or the pathology behind a phenotype; rather it majorly relies on 

creation of signatures directly from mRNA readouts to retrieve unknown drug-disease 

associations. Transcriptomics provides another valuable insight, suggesting that the 

functional role of drugs, rather than their chemical structures, is the primary 

determinant of success. In this approach, drugs are evaluated solely based on their 

impact and function within the biological system, as indicated by their gene expression 

signature. Consequently, the chemical composition of the drug becomes largely 

insignificant for this analysis.  

Irrespective of such massive success, this technique suffers from significant drawbacks 

and requires improvement.18 Firstly, the expression profile of the drug or disease must 

be available. The CMap provides a relatively small list of molecules which is far from 

being representative of all approved and experimental drugs, limiting the compounds 

that can be investigated. Secondly, gene expression profiles can potentially characterize 

disease conditions or drug actions. The CMap resource, however, lacks tissue-specific 

data as it was primarily build using response from cancer cells, limiting its relevance 

across all disease categories. Finally, transcriptomics data also present considerable 

challenges in terms of statistical analysis.15   

1.3.2.3 Protein structure and molecular docking-based approaches 

Majority of the small molecules if not all medicates their pharmacological effect by 

interacting with proteins that can be analysed with certain accuracy using computer 

software by modelling the three-dimensional (3D) structures of the target and the drug. 

This practice is called molecular docking, a commonly used method in drug discovery 

process, mainly used to identify and optimize binding affinities in the active site of the 

target in order to increase the potency of the drug developed.19 Due to the widespread 

use of molecular docking, drug repositioning efforts using this method are quite 

common. Given that many compounds are known to interact with multiple proteins, the 
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objective is to identify these potential off-targets by screening them against the 3D 

structures of proteins in a specific database. If the predicted off-targets are relevant to 

a disease, the drug can be repositioned based on these findings. 

In this context, several recent studies have concentrated on binding sites, comparing 

their relative similarities (Fig 1.6).19 By examining only, the structures of protein active 

sites, researchers ensure they remain as close as possible to the biochemical and 

physical realities of the interaction. From an analysis of over 6000 binding site 

structures, De Franchi et al.20 identified synapsin I, a protein involved in 

neurotransmitter release regulation, as a new target for the drug saturosporine, which is 

known to bind Pim-1 kinase. This finding was experimentally validated in vitro, though 

the pharmacological significance of this new target has yet to be demonstrated.  

 

 

Figure 1.6: Drug repurposing using protein structure and binding site. The 3D 

structure of proteins and their respective binding sites can be compared using scoring 

function. On this basis, it is assumed that similar binding sites can bind same ligand as 

depicted in the picture. 

Zahler et al.21 conducted an inverse screening by docking a single compound across 

multiple binding sites to map the off-target binding landscape of kinase inhibitors. This 

class of drugs, widely used in cancer therapy, is known for its “promiscuous” 

behaviour. The virtual screening identified PDK1 as a new off-target of indirubin. This 
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prediction was validated in vitro using a phenotypic cell proliferation assay, 

demonstrating the effectiveness of the approach and offering insight into the side effects 

of kinase inhibitors.  

Likely, Kinnings et al.22 used molecular docking technique to address drug-resistant 

tuberculosis. It is true that occasionally the bacteria causing the illness will not respond 

to first-line treatment; in these situations, the pathogen must be eradicated. To optimize 

the problem the authors used a technique called ‘selective optimization of side activity’ 

(SOSA), originally developed to progressively move away from the original indication 

and optimize a compound across protein families.23 This methodology goes like this: 

first the binding site extraction from the 3D structure of protein sequence, second search 

for similar binding sites across the proteome using search algorithm, and finally manual 

docking analysis to make sure the physical interaction is possible. Using this method 

the researchers were able to predict the potential implication of two approved drugs 

entacapone and tolcapone in tuberculosis through binding of enoyl-acyl carrier protein 

reductase, an enzyme that facilitates synthesis of fatty acid in Mycobacterium 

tuberculosis. This hypothesis was validated experimentally using commercially 

available tablet, which not only showed effectiveness but also bypassed the drug 

resistance encountered in Mycobacterium tuberculosis making a valuable treatment 

alternative for affected patients.    

Well, no method is absolute, so dose molecular docking, despite such success it also 

not immune to drawbacks. Firstly, 3D structure must be available, though databases 

such as Protein Data Bank (PDB) comes fourth as a saviour still they are very far from 

covering the whole proteome.19 Secondly, automatically recognising a binding site 

possess a real challenge especially when the protein is crystalised without a ligand. 

Finally, as all methodologies are prone to generation of large number of false positives, 

experimental and manual validation become the only viable solution to judge the 

prediction. Furthermore, single amino acid difference can lead to a totally different 

pharmacology of binding site,24 a major pitfall especially when the structures are 

analysed and aligned in an automated fashion.  

Arguably, protein-based approaches are the closest methodology to the actual physical 

interaction between drug and protein target. Docking approaches offer an intricate, 

detailed view of the biochemical complex, but still face challenges in modelling. 

Additionally, identifying off-target proteins does not always led to repositioning 
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opportunities, and the results must always be interpreted within a broader biological 

context.      

1.3.2.4 Phenotype and side-effect-based approaches 

Phenotype is a set of characteristics or traits attributed to an organism, such as 

morphology, developmental, biochemical or physiological properties.25 In biological 

sciences this concept is majorly used to indicate key observation when looking at a 

living organism. The phenotype is perhaps the most fundamental interaction between 

biomedical scientists and their subjects. For instance, as Darwin journeyed around the 

world, he gathered evidence for evolution by studying the phenotypes of barnacles.26 

Similarly, Gregor Mendel first described inheritance based on the traits observed in pea 

plants.27 Though none of those scientists were aware of the molecular mechanism 

underling those observable patterns, yet their phenotypic observations were strong 

enough to forward valid conclusion. This practice is still in use in clinical settings, every 

time a doctor diagnoses a patient, he or she primarily relies on phenotypic signs present 

in the patient. This phenotypic-driven approach is also routinely used in drug discovery, 

interestingly some recent studies suggest that it’s one of the best techniques to bring 

new medicine.28 This high success rate of this method can be attributed to the fact that 

phenotypic observations more accurately reflect the underlying system, preserving the 

physiological context. This contrasts with target-based approach, where in vitro lead 

compound has higher likelihood of remaining active when progressing to animal 

models and, eventually clinical trials.29  

In the context of drug repositioning, side effects can also be considered as phenotypes. 

The story of sildenafil is a classic example: regardless of a drugs potency in animal 

models or in vitro assay, its true pharmacological nature only emerges during clinical 

trials. Accurately characterizing these side effects can aid in repositioning a drug or 

uncovering new interaction patterns (Fig 1.7). 

Drugs with similar target binding profiles tend to cause similar side effects.30,31 Based 

on this justification, Campillos et al.32 defined the adverse effect profiles for medicines 

that were approved and then utilized similarity among these to determine the drug’s 

intended targets. Using text mining on package inserts, the side effects were first 

extracted in order to create a statistical model that would tell us how likely it was the 

two drugs would bind same target. The authors then focused on substances that, based 

on the model, had high likelihood of sharing a target but belonged to distinct therapeutic 
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categories. Twenty of these predictions were validated experimentally confirming 

thirteen of them of which eleven had inhibition constant less than ten micromolar. The 

method’s novelty underscores how side effects are molecularly relevant, offering a 

pathway to identify off-target effects and repurpose therapeutic molecules for new 

indications. An intriguing aspect of this method is how it represents side effects. Like 

any phenotypic trait, words or terms based on observation remain the effective way to 

describe them. In this study the researchers utilized the Unified Medical Language 

System (UMLS),33 a controlled vocabulary provided by the National Institute of Health 

(NIH). The experimental validation by the research team suggested that ontologies and 

controlled vocabularies can indeed produce reliable predictions.  

 

 

 

Figure 1.7: Drug repurposing using phenotype information. Knowledge about the 

phenotypic outcome triggered by a drug can be used in order to establish relative 

similarities. (A) The diagram illustrates a theoretical example using reported side-

effects: the more side-effects are commonly shared by two drugs, the more similar 

these two drugs are. The similarity can be used to either derived potential off-target or 

new indication. 

Another approach was laid down by Yang and Agarwal,34 where they used side-effects 

from SIDER35 database to link diseases in search of potential drug repositioning 

opportunities. Map was created connecting molecules to pathologies based on 

information available in pharmacogenomics knowledge base (PharmGKB).36 This 

method values evidence indicating that drugs used to treat similar diseases tend to have 
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similar side effects. Considering this, it can be hypothesised that drugs having similar 

side-effects may have common mode of action, indicating that two drugs with 

significant number of similar side-effects can be used to treat the same pathology even 

if they belong to different chemical class.   

Half a century ago, drug discovery centered around phenotypes. However, with the rise 

of molecular biology, the art of drug discovery took a sharp turn towards target-based 

approach.29 Despite this shift, phenotype-based approach still remains valuable even 

today as it repots the effect of a given substance on entire organism, which is more 

relevant for clinical application.37,38  

1.3.2.5 Genetic variation-based approaches 

At the molecular level, genetic variations offer significant insights into drug 

repositioning opportunities. With the advent of high-throughput DNA sequencing 

techniques and advanced analysis pipelines, sequencing individuals and studying their 

genotypes has become more accessible, allowing researchers to pinpoint common 

mutations in DNA that are strongly associated with phenotypic traits. This approach, 

known as genome-wide association study (GWAS), is used to link single-nucleotide 

polymorphism (SNPs) to diseases. Information about SNPs and their diseases 

associations are publicly available in databases, such as one maintained by the National 

Human Genome Research Institute (http://www.genome.gov/gwastudies/). Sanseau et 

al.39 utilised this resource to analysis and screen out potential new indications for 

protein targets identified through GWAS. The approach is based on the premise that an 

association between an SNP and a trait identified in a GWAS can be interpreted as a 

link between a gene and a disease (when the traits considered are disease, as depicted 

in Fig: 1.8). Knowing that a drug targets the product of a specific gene, one can infer 

that the drug’s indication might correspond to the disease studied in the GWAS. For 

example, a SNP of the gene encoding 3-hydroxy-3-methylglutaryl-CoA was found 

significantly associated with the trait LDL cholesterol.40 The statins, a class of drug 

known to target this gene product and are prescribes as cholesterol lowering agent 

(hypercholesterolemia). The authors were able to identify 97 cases where SNPs 

supported the current drug indication, providing greater confidence in the biological 

role of the protein. Conversely, they found 123 instances where the trait associated with 

the gene did not match the drug’s current indication, suggesting these associations as 

opportunities for drug repositioning. For instance, denosumab, a monoclonal antibody 

http://www.genome.gov/gwastudies/
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used to treat osteoporosis and bone cancer, targets the protein TNFSF11 (tumour 

necrosis factor superfamily, member 11).  

 

 

Figure 1.8: Drug repurposing using genetic information. (A) Single-nucleotide poly-

morphism (SNP) are associated with phenotypic trait, here LDL cholesterol. The gene 

where the SNP is found (HMGCR) encodes for a protein, targeted by statins. Statins 

are indicated as cholesterol lowering agents, which are confirmed by the trait 

associated with the SNP. (B) sometimes the trait associated with the SNP diverges 

from the indication of the drugs, as shown on the diagram (PTSD against smoking 

cessation). In such case, a repurposing hypothesis can be generated. 

A SNP in this protein has been linked to Crohn’s disease, indicating that denosumab 

could potentially be tested for treating Crohn’s disease.41 Another such example is 

nepicastat, a small molecule primarily indicated for treating cocaine addiction and post-

traumatic stress disorder. Its target, dopamine beta-hydroxylase (DBH), has been 

associated with smoking cessation in a GWAS,41 suggesting a potential new application 

of the drug for those who wants to quit smoking. 

Just like any other methodology it also comes with pitfalls, for example we can take the 

instance of prediction made for NOS2 (nitric oxide synthase 2) inhibitor where GWAS 

predicted it be active against psoriasis though experiments showed no results. In 

practice, the relationship between genes and disease is complex, and additional 

information is often necessary to fully understand a drug’s potential effects. 

Furthermore, GWAS does not indicate the direction of the pharmacological effect, 
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making it troublesome to determine whether the agonist or the antagonist will produce 

the desired results. Despite all these short comings, the remarkable advancements in 

genome sequencing suggest that this approach or a similar methodology, could become 

a major role player in drug repurposing in the coming years.       

1.3.2.6 Disease network-based approaches  

Traditionally, diseases have been classified based on the cause of the pathology (e.g., 

infection) or the observed biological dysfunction (e.g., uncontrolled cell growth). Since 

similar diseases are treated similarly, a more detailed understanding of the relationship 

between pathologies can lead to drug repositioning hypothesis. Here I will briefly 

outline some work done in this area, specifically on constructing a “diseasome” or a 

network of relationships between diseases.   

Chiang and Butte42 defined disease based on the available treatment regime and off-

label indications. Although this approach is relatively simplistic, it is supported by 

successful examples and is commonly practiced in clinical settings. The authors 

proposed the use of medication that is only indicated for one of two similar diseases as 

a therapy for the other, a technique known as associative indication transfer. Using this 

approach on 700 diseases and 2000 medication they were able to generate over 150,000 

new associations. Remarkably, the new indications aligned with the clinical trial data, 

with the predicted new uses frequently being reported by practitioner’s (showing a 12-

fold enrichment compared to random chances). For example, atorvastatin, a 

cholesterol-lowering agent, was predicted to be effective for asthma, Crohn’s disease, 

and myocardial infarction; all these associations have been positively confirmed in 

clinical trials, validating the methodology. For the same drug some new association 

have no clinical knowledge, such as activity in breast cancer and osteosarcoma. Thus, 

it is feasible to explore the effects of a drug on these conditions. This work demonstrates 

on approach to relating diseases. Li and Agarwal43 developed a similar methodology by 

constructing network based on shared pathway, where they created a map linking 

diseases using public resources such as Reactome, KEGG pathways, and text mining. 

Considering diseases with commonly deregulated pathways as similar. The properties 

of the resulting graph were analysed, and the authors showed how their work could 

shed light into disease relationships. Although no analysis for repositioning 

opportunities was conducted, the map can serve as a starting point for identifying such 

possibilities. Suthram et al.44 used a similar approach except they constructed the 
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disease map based on gene expression profile and protein network rather than relying 

on shared pathway like Li and Agarwal. An analysis of such graph reviled 59 functional 

molecules shared by half of the disease studied. These molecules connect pathologies 

at the molecular level, aiding in the understanding of the system’s internal dynamics. 

Similar to aforementioned methods once a disease network is established, it can be 

viewed as a stepping stone for generating drug repositioning hypothesis. In conclusion, 

although disease maps do not directly address drug repositioning, they can offer 

valuable insight into drug usage. These approaches also challenge the current system 

of classifying diseases by considering molecular information as signature of definition.  

1.3.2.7 Machine learning and concepts combination approaches 

Most of the aforementioned approaches heavily relies on concept of the map shown in 

(figure 1.4) and orients their analysis around it. It is completely possible to train a 

machine learning model using these biomedical descriptors to generate predictions. 

Two instances of drug repositioning study have come out from this perspective, where 

firstly a series of biomedical heuristics is defined to train a ML algorithm using known 

data and finally predictions are made using the trained model.   

In the year 2011 Gottlieb et al.45 presented a method called PREDICT based on this 

concept, where to train the ML algorithm they used drug-drug and disease-disease 

association separately. The drug-drug association were characterised using their 

chemical fingerprint followed by reported and predicted list of side effects.  To further 

enrich model, they introduced information related to the targets of the drugs: such as 

the sequence similarity of the protein, distance in the protein-protein interaction 

network along with semantic similarity of their GO annotation. The disease-disease 

associations were defined in a pretty straightforward manner using semantic similarities 

derived from Human Phenotype ontology (HPO), using the annotation from the Online 

Mendelian Inheritance in Man (OMIM) database. The authors then trained a logistic 

regression classifier using this association maps to distinguish genuine association from 

the false ones. The model’s performance was compared to predictions made by other 

methods, such as GUILT-by-association and CMap approaches,15 presented earlier in 

this chapter. The evaluation revealed minimal overlap among the different mythologies, 

indicating difficulties in aligning the various datasets, as the diseases and drugs 

considered often differed. Subsequently, some drug repositioning predictions were 

made and addressed using clinical trials data. Approximately one-third of these 
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predictions had already been investigated, lending confidence to the methodology’s 

outcomes. In the final step of the study, the authors replaced the disease-disease 

associations based on phenotypic similarity with the gene expression profiles. This step 

aimed to test the method for personalised medicine: given a patient’s gene expression 

profile, could PREDICT identify the best drug for the individual? The results were 

promising, with the method achieving high recall and specificity (area under curve of 

0.92 obtained from receiver operating characteristic curve), highlighting a solid proof-

of-concept for the algorithm.  

The second method presented by Napolitano et al.46 is very similar to PREDICT only 

differing in the ML algorithm which was Support Vector Machine in their case. The 

algorithm was employed to predict therapeutic categories within the Anatomical 

Therapeutic Chemical (ATC) Classification system, with misclassifications being 

reinterpreted as drug repositioning hypothesis. The researchers also used structural 

similarity, protein-protein interaction network distance, and gene expression data as 

initial features to train the SVM. Following standard machine learning evaluation 

procedures, the authors generated repositioning predictions. The primary hypothesis 

suggested that anthelmintic compounds could be effective as antineoplastic agents and 

that antineoplastic drugs could be repurposed as systemic antibacterials.   

Machine learning based approaches to drug repositioning offers a means to integrate 

various descriptors into a single statistical model, aiming to improve predictions 

accuracy. However, these techniques encounter significant challenges. One major issue 

is interpreting the repurposing hypothesis: the statistical model functions as a black box, 

obscuring the rationale behind selecting a compound. Many hypotheses turn out to be 

obvious cases that a biologist could easily explain by examining the chemical structure 

or known-off-target effects of the compounds. Thus, outcome may be due to 

overtraining the model. additionally, the biomedical significance of incorporating a 

large number of descriptors is questionable; given the complexity and uniqueness of 

diseases, excessive information may obscure critical biological mechanistic details, 

leading to less meaningful results.  

1.4 Summary  

A large number of approaches have been tried and tested in order to computationally 

repurpose drugs. This field of computational drug repurposing is still in its infancy, as 

revealed by two factors.  
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Firstly, it remains unclear which method yields the best results and why. The only 

definitive way to evaluate these predictions is when a drug, suggested by an in-silico 

hypothesis, becomes routinely used in the clinic. To my knowledge, no compelling 

example of this exists yet. This is not disappointing, as developing a new drug is lengthy 

process, often exceeding twelve years, and is fraught with lengthy legal and economic 

obstacles. Considering that the first study reported by PubMed for the keyword 

“computational drug repositioning” was published in 2006,47 and this trend spiked in 

2021 in the covid period while the world was going through a crisis, it seems reasonable 

not to have much clinical examples yet.  

Secondly, each method tries to answer drug repurposing problem form different 

perspective or biomedical concept, adding multiple layers of complexity in the 

evaluation process. objectively aligning the results from various approaches is 

troublesome as the initial dataset pertain to different molecules and diseases, leading to 

different outcomes. It would be advantageous for the community to have a standardized 

dataset that includes both the legal indications and the known, confirmed alternative 

once. Computational methods could use such a resource to benchmark their 

performance, assess their predictive capabilities, and conduct error analysis. In this 

context, the immaturity of the field also fosters creativity, as evidenced by the numerous 

methods that have been developed.  

    

Figure 1.9: Evolution trend of the documents related to drug repositioning in PubMed 

database since 1980-2024. 

In conclusion, computational drug repositioning is becoming an increasingly popular 

topic with in the scientific community, as illustrated in Figure 1.9. Numerous methods 

have been developed over the past decade which are summarised and discussed in this 
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chapter. Drug repositioning is a small puzzle of a bigger problem known as indication 

discovery and network biology.48 This approach leverages our growing understanding 

of systemic behaviour to computationally design smart drug. Various levels of 

abstraction can be considered, as demonstrated by the range of biomedical concepts 

used as starting points.   
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What makes HDAC6 a good target for drug? 

2.1 Introduction  

Before delving deep into the problem statement why HDAC6 is a good target, lets first 

discuss about what is it, where did it come from? To answer these questions, we have 

to delve into the realms of Epigenetics.  

DNA the central molecule of life, holds the genetic information for all the eukaryotes. 

This DNA upon transcription forms RNA which ultimately forms protein through 

translation and genetic information is expressed in terms of phenotype. This whole 

process is called central dogma.49 Epigenetics is a crucial part of it. Normally in cell 

DNA are supper coiled and is in dormant state. Epigenetic modulator such as HAT and 

HDAC plays the role of unwinding and rewinding of DNA from histone octamer, 

making it accessible to topoisomerase for central dogma to take place.50 This HAT 

family of enzymes catalyses an acetylation reaction at specific lysine residues of 

Histone 2 protein of histone octamer complex.51 This acetylation adds negative charge 

to histone tail, which ultimately repels negatively charged DNA molecule making it 

more accessible to topoisomerase and other enzymes associated with replication and 

transcription. HDAC family dose the simply opposite, it helps to splice of the extra 

acetate group which was added by the HAT enzyme, leading to shift in polarity and 

stable binding of DNA on histone octamer, hence genetic repression.52  

 

Figure 2.1: Central dogma of life. 

Here I will briefly discuss about the HDACs and will focus majorly on HDAC6 as it is 

of our main concern. These Histone deacetylases or HDACs are the key regulator of 

cellular protein acetylation level.51 The name may suggest that they are only specific to 

histone, well that is not the case, besides histones they also deacetylates proteins like 

p53, E2F, α-tubulin, heat shock protein 90 (HSP90), cortactin and Myo D. This wide 
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substrate specificity indicates that HDACs are a major role player in the cellular 

function and homeostasis.53-55 Therefore, dysregulation of HDACs contributes to 

development of several diseases ranging from multiple forms of cancer, neurological 

disorders, inflammatory disease, autoimmune disease, to cardiac and pulmonary 

diseases, making this family of metalloenzyme crucial drug targets.56-59  

To date, 18 HDAC isoforms have been discovered in humans that shows sequence 

homology to yeast protein ortholog hda1. These HDACs have been grouped into four 

different classes based on their co-factors and catalytic domain organisation, of which 

class I (HDAC1, HDAC2, HDAC3 and HDAC8) class IIa (HDAC4, HDAC5, HDAC7 

and HDAC9), class IIb (HDAC6 and HDAC10), and class IV (HDAC11) uses a Zn2+ 

as a cofactor, whereas class III or sirtuins (SIRT1-7) exerts its catalytic functions using 

nicotinamide adenine dinucleotide (NAD+) as co-enzyme.60,61 Since identification of 

this class of enzymes, numerous inhibitors with varying efficiency (at nM to μM 

concentration) have been developed ranging from naturally derived trichostatin A and 

trapoxin to synthesised molecules like butyrate. The therapeutics of these inhibitors are 

judged on the basis of their capacity to acetylate different cellular proteins, upregulation 

of p21 as well as downregulation of tumour proliferation via apoptosis.62 Currently on 

our arsenal we have six FDA approved HDAC inhibitors namely vorinostat (SAHA, 

1), belinostat (2), Panobinostat (3), [FDA has been withdrawn in 2022], romidepsin (4) 

and pracinostat (5) and are primarily indicated for the treatment of refractory or relapsed 

cutaneous and peripheral T cell lymphomas as well as multiple myeloma.58,63 Other 

than this five, chidamide (6) is another potent HDAC inhibitor approved in China for 

similar clinical condition. The major drawback these inhibitors suffer from is lack of 

isoform selectivity, leading to various adverse effects such as fatigue, nausea, vomiting, 

cardiotoxicity, and thrombocytopenia.64,65  

With the advancements in the field of molecular biology and genetics several HDAC 

isoforms have been identified and studied, and of these isoforms class IIb member 

HDAC6 came to the center of attention due to its unique structure since its discovery 

in 1999.66 Another unique aspect of HDAC6 is its cytoplasmic localization whereas 

other HDACs are nuclear enzyme. Being cytoplasmic it deacetylase specific cytosolic 

non-histone substrate such as α-tubulin, Hsp90, cortactin, peroxiredoxin, and heat 

shock transcription factor-1 (HSF-1). 
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Figure 2.2: FDA approved HDAC inhibitors 

The acetylation of lysine 40 on α-tubulin, regulated by HDAC6, is notably the first 

identified and most extensively researched physiological non-histone substrate.63 

Numerous studies have indicated that HDAC6 plays a role in tumorigenesis, 

development, and metastasis through diverse cellular pathway involving proteins like 

tubulin, protein ubiquitination, and Hsp90. Extensive research has also shown that 

selective inhibition of HDAC6 could be an effective treatment for different cancers 

such as malignant melanoma, lung cancer, and bladder cancer, as well as for 

neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), 

and Huntington’s disease.63,67 Recent reports also demonstrated the potential of 

selective HDAC6 inhibitors in rare disease conditions such as amyotrophic lateral 

sclerosis (ALS), Rett syndrome, and Charcot-Marie-Tooth disease.68 Later in this 

chapter, there is a detailed discussion on this disease and the role of HDAC6 in their 

development.  

2.2 Classification of HDACs 

As stated earlier, the 18 HDACs are categorised into class I, II, III and IV based on their 

similarity to yeast orthologues Rpd3, HdaI, and Sir2, respectively. Classes I, II and IV 

are referred to as classical HDACs, comprising 11 family members that are generally 

Zn2+ dependent metalloenzymes. In contrast, class III members are known as sirtuins 
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and require NAD+ as a vital cofactor.60,69 Table 1.1 summarises all the HDAC isoforms, 

their chromosomal location, cellular localization and functions.  

2.2.1 Class I HDACs 

Class I HDAC family comprises of four members namely, HDAC1, HDAC2, HDAC3 

and HDAC8, of these HDAC1, HDAC2, and HDAC3 functions together as subunits of 

multiprotein nuclear complex as a transcriptional repression factor.69 HDAC1 and 

HDAC2 have very similar structure (sequence similarity index 82%) and mainly works 

as subunits of corset complex which upon activation represses the expression of 

neuronal gene in non-neuronal tissue. HDAC3 also functions as a transcription 

repressor. The last member of this family, i.e., HDAC8 though has about 34% sequence 

similarity with HDAC3, is not a component of any repressor complex so far.60  

2.2.2 Class II HDACs    

Class II HDAC family is further divided into two sub classes, Class IIa and Class IIb. 

Class IIa consists of four members namely HDAC4, HDAC5, HDAC7 and HDAC9 

and are characterised by large N-terminal domain with a specific binding site for 

transcription factors like monocyte-specific enhancer factor-2 (MEF-2) and 14-3-3 

protein that facilitates HDAC signalling.60 These Class IIa features three of these 14-3-

3 binding sites, and are majorly responsible for regulating cellular HDAC 

trafficking.60,69 14-3-3 upon activation stimulates the cytoplasmic retention or nuclear 

retention of class IIa HDACs using a phosphorylation-dependent kinase, like 

calcium/calmodulin-dependent protein kinase (CaMK) and protein kinase D (PKD), 

microtubule affinity-regulating kinase (MARK) and checkpoint kinase-1 (CHK-1).70 

Class IIb members i.e., HDAC6 and HDAC10 are similar to each other with 55% 

sequence homology. HDAC6 is mainly cytoplasmic and deacetylase non-histone 

substrates such as α-tubulin, heat shock protein etc.70 This particular isoform of HDAC 

contains two tandem deacetylase domain and a C-terminal zinc finger ubiquitin binding 

domain,67 and is associated with cell mortality, adhesion and chaperone function. 

HDAC6 also regulates aggresome function, autophagy through its zinc finger ubiquitin 

binding domain.69 Like other HDACs, HDAC10 also features an N-terminal catalytic 

domain and a C-terminal leucine-rich domain. The N-terminal catalytic domain of 

HDAC10 resembles the deacetylase domain found in other class II HDACs, whereas 

the C-terminal domain lacks the residues essential for enzymatic activity.71 
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Figure 2.3: Domain organization of human HDACs. The total number of amino acid 

residues is shown on the right of each isoform. Enzymatic domains (or putative 

enzymatic domains) are shown in colour. 

2.2.3 Class III HDACs 

Recently discovered class III HDACs are adenine dinucleotide dependent enzymes, 

better known as sirtuins due to their sequence homology with yeast Sir2 silencing 

protein.61 This class consists of seven members (namely SIRT1, SIRT2, SIRT3, SIRT4, 

SIRT5, SIRT6, SIRT7), and all have specific functions and are associated with various 

age-related neurodegenerative diseases like Alzheimer’s and Parkinson’s disease.72 

This class of HDACs are also involved in various physiological pathway such as 

mitochondrial dysfunction, stress response, oxidative stress, and inflammatory 

processes associated with neurodegeneration.72  

2.2.4 Class IV HDACs 

The sole member of this family, i.e., HDAC11 is the smallest known HDAC enzyme 

with a molecular weight of 39 kilodalton, characterised by an open reading frame 

responsible for encoding a 347-residue protein.73 HDAC11 features a deacetylase 

domain, structurally similar to both class I and class II HDADCs.73 HDAC11 is highly 

expressed is the brain, heart, kidney, muscles and testes, though least is known about 

its physiochemical function.73,74 



28 
 

2.3 Structural biology of HDAC6 

In 1999, Verdel and Khochbin et al.75 along with Grozinger et al.76 identified HDAC6 

following a GenBank database search for human HDACs that exhibited sequence 

similarity to yeast Hda1. The X-linked gene p11.22-23 composed of 21923 base pair 

encodes for HDAC6, that consists 1215 amino acids.63 They observed that this tissue 

specific enzyme is primarily cytoplasmic and has highest expression in the heart, liver, 

kidney and pancreas.76 HDAC6 exclusively contains two highly conserved catalytic 

domains. These domains are homologous to each other and functions independently, 

contributing to the overall activity of HDAC6. The helixes H17 and H18 of catalytic 

domain 1 (CD1) and helixes H36 and H37 of catalytic domain 2 connects these 

homologues domains, and forms a lar domain-domain interface by helices H13, H14, 

H15, and H18N of CD1 and H32, H33, and H34 of CD2.77  

Structurally, HDAC6 contains five domain all total. From N to C terminal, the N 

terminal end is rich in arginine and lysine (A.a: 1-87) and functions as nuclear 

localization signal, followed by a nuclear export signal (A.a: 67-76) which is leucine 

enriched.63,78 The catalytic domain 1 (A.a: 88-447) and catalytic domain 2 (A.a: 482- 

800) are the center of deacetylase activity and are followed by cytoplasmic retention 

signal (SE14; A.a: 884-1022) characterised by a tetra decapeptide serine glutamic acid 

repeat sequence.63,79 At the C-terminus there is a unique zinc finger ubiquitin binding 

domain80 that facilitates misfolded protein degradation through aggresome pathway.81  

With the help of X-ray crystallography Miyake et al.77 was able to image catalytic 

domains of HDAC6 exhibiting different substrate specificity. The catalytic domain 1 

(CD1) comes with narrow substrate specificity primarily due to its active site being 

constricted by K330 making it inaccessible to wider substrate, whereas similar position 

in CD2 is occupied by relatively smaller amino acid L712 thus allowing it to interact 

with wider range of substrates.58 Both of these catalytic domains are highly conserved 

and features a hydrophobic channel connecting the active sites opening and the zinc at 

the base of the pocket, made up of residues Pro83, Gly201, Phe202, and Trp261 in CD1, 

and Pro464, Gly582, Phe583, Phe643, and Leu712 in CD2. The two-charge relay 

system is made up of His192-Asp228 and His193-Gln235 dyads in CD1. In contrast 

CD2 has the classis dyad configuration with His573-Asp610 and His574-Asn617.77 

During the catalytic process, the zinc ion in the active site, coordinated by His573, 
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His574, and Asp612, activates a water molecule. This water molecule, supported by the 

proton relay system involving Tyr745 and Asp705, attacks the carbonyl carbon of the 

Figure 2.4: Mechanistic representation of HDAC6 (left). Catalytic domain 2 of 

HDAC6 with Trichostatin A (right). 

acetyl group on the substrate's lysine residue, leading to the formation of a tetrahedral 

intermediate. The collapse of this intermediate results in the release of an acetate 

molecule and the regeneration of the free lysine residue. Additionally, Phe583 and 

Trp627 contribute to forming a hydrophobic pocket that stabilizes the substrate within 

the active site, ensuring proper orientation for the deacetylation reaction.79 

Understanding the role of these specific residues in the coordination and execution of 

the deacetylation process are essential for developing selective inhibitors for HDAC6. 

To date, researchers have identified a total of 92 X-ray crystal structures of HDAC6, 

derived from both Homo sapiens (humans) and Danio rerio (zebrafish). These structural 

studies have offered invaluable insights into the complex interactions between the 

ligand (inhibitor) and the receptor (HDAC6). The active sites in the catalytic domain 2 

of HDAC6 in humans and zebrafish are nearly identical, with the exception of the 

N645M and N530D substitutions, respectively. This conservation suggests that the 

overall mechanism of action is preserved across species, making zebrafish a useful 

model for studying HDAC6 inhibitors. A comprehensive list of these HDAC6 crystal 

structures is available in the Protein Data Bank and is detailed in Table 2.2. 
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Super family  Family  Group  Class  HDAC 

isoform  

Chromosomal 

location  

Amino 

acids No. 

Cellular 

localization  

Physiological Role  

Arginase/ 

deacetylase 

superfamily 

Histone 

deacetylase 

family  

Zn2+ I HDAC1 1p35 – p35.1 483 Nucleus  Proliferation control, apoptosis, 

transcription regulation, cell survival.  

HDAC2 6q21 488 Proliferation control and apoptosis, 

transcription repressor. 

HDAC3 5q31.3 428 Proliferation, differentiation, 

transcriptional repressor, Fox3 

deacetylation.  

HDAC8 Xq13.1 377 Proliferation, differentiation, and cell 

survival.  

II IIA HDAC4 2q37.3 1084 Nucleus/ 

cytoplasmic  

Differentiation, angiogenesis, 

cytoskeletal dynamics, and 

cell motility. 

HDAC5 17q21.31 1122 Differentiation, lymphocyte 

activation, endothelial cell 

function. 

HDAC7 12q13.11 912 Angiogenesis, Lymphocyte 

activation, thrombocyte 

differentiation. 

HDAC9 7p21 1069 Deacetylates FoxP3, 

Immunosuppressive activity. 

Table 2.1: Classification of HDAC isoforms, their cellular localization and functions  
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IIB HDAC6 Xp11.23 1215 Cytoplasmic  Regulation of protein degradation 

through aggresome 

pathway, Hsp90 chaperone activity, 

cytoskeletal 

dynamics, cell motility, and 

angiogenesis. 

HDAC10 2q13.33 669 Angiogenesis. 

IV HDAC11 3p25.1 347 Nucleus  DNA replication and 

Immunomodulation by regulating the 

expression of IL-1. 

Deoxyhypusine 

synthase 

like NAD/FAD-

binding 

domain 

superfamily 

Sir 2 

regulator 

family 

NAD+ III SIRT1 10q21.3 747 Nucleus/ 

cytoplasmic  

DNA repair, cell survival, 

autoimmunity. 

SIRT2 19q13.2 389 Nucleus  DNA repair, cell survival, cell 

invasion. 

SIRT3 11p15.5 399 Mitochondrial  DNA repair, cell signaling apoptosis. 

SIRT4 12q24.31 314 Energy metabolism. 

SIRT5 6p23 310 Cell signaling pathways. 

SIRT6 19p13.3 355 Nucleus  DNA repair, metabolism regulation 

SIRT7 17q25.3 400 Apoptosis, cellular transformation. 
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Table 2.2: List of reported crystal structures of HDAC6 as available from Protein Data Bank (as accessed on September, 2023)  

SL. 

No 

PDB Domain Mutation Co-crystalized 

with 

Organism Release XRD 

Resolution 

Ligand Structure Ref 

1 6UO2 CD1 - Trichostatin A Danio 

rerio 

04-12-2019 1.65 

 

82 

2 6UO3 CD1 - AR-42 Danio 

rerio 

04-12-2019 1.09 

 

82 

3 5WGK CD2 - HPB Danio 

rerio 

06-12-2017 1.822 

 

83 

4 5WGL CD2 - ACY-1215 Danio 

rerio 

06-12-2017 1.7 

 

83 
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5 5WGM CD2 - ACY-1083 Danio 

rerio 

06-12-2017 1.75 

 

83 

6 6UO4 CD1 Y363F Trichostatin A Danio 

rerio 

04-12-2019 1.268 

 

82 

7 6UO5 CD1 Y363F AR-42 Danio 

rerio 

04-12-2019 1.439 

 

82 

8 6UO7 CD1 K330L AR-42 Danio 

rerio 

04-12-2019 1.395 

 

82 
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9 6UOC CD1 K330L Givinostat Danio 

rerio 

04-12-2019 1.4 

 

82 

10 5WGI CD2 - Trichostatin A Danio 

rerio 

06-12-2017 1.05 

 

83 

11 6UOB CD1 K330L Resminostat Danio 

rerio 

04-12-2019 1.58 

 

82 

12 6CSP CD2 - N-

hydroxycyclohe

x-1-ene-1-

carboxamide 

Danio 

rerio 

30-05-2018 1.237 

 

84 

13 6CSQ CD2 - N-

hydroxycyclohe

x-1-ene-1-

carboxamide 

Danio 

rerio 

30-05-2018 2.031 

 

84 
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14 6CSR CD2 - Phenylhydroxa

mate 

Danio 

rerio 

30-05-2018 1.619 

 

84 

15 6CSS CD2 - Cyclopentenylh

ydroxamate 

Danio 

rerio 

30-05-2018 1.7 

 

84 

16 8D98 CD2 - 3,5-difluoro-N-

hydroxybenzami

de 

Danio 

rerio 

28-09-2022 1.66 

 

85 

17 8D99 CD2 - 2,3,6-trifluoro-

N-

hydroxybenzami

de 

Danio 

rerio 

28-09-2022 1.79 

 

85 

18 8D9A CD2 - 2,3,5-trifluoro-

N-

hydroxybenzami

de 

Danio 

rerio 

28-09-2022 1.75 

 

85 
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19 8D9B CD2 - 2,3,5,6-

tetrafluoro-N-

hydroxybenzami

de 

Danio 

rerio 

28-09-2022 1.63 

 

85 

20 8D9C CD2 - 2,3,4,5,6-

pentafluoro-N-

hydroxybenzami

de 

Danio 

rerio 

28-09-2022 1.82 

 

85 

21 8EQI CD2 - Cyclopeptide 

des4.2.0 

Danio 

rerio 

19-04-2023 2 ----- 86 

22 5G0G CD1 - Trichostatin A Danio 

rerio 

27-07-2016 1.499 

 

77 

23 5G0H CD2 - (S)-Trichostatin 

A 

Danio 

rerio 

27-07-2016 1.6 

 

77 
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24 5G0I CD1 & 

CD2 

(Linker 

cleaved

) 

- Nexturastat A Danio 

rerio 

27-07-2016 1.99 

 

77 

25 5G0J CD1 & 

CD2 

(Linker 

intact) 

- Nexturastat A Danio 

rerio 

27-07-2016 2.88 

 

77 

26 6WYP CD1 K330L SAHA-Bpyne Danio 

rerio 

02-09-2020 2.4 

 

87 

27 6WYQ CD1 K330L 4-iodo-SAHA Danio 

rerio 

02-09-2020 1.9 

 

87 

28 5G0F ZnF-

UBP 

- na Danio 

rerio 

27-07-2016 1.9 ------ 77 
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29 6WYO CD1 H82F, 

F202Y 

Trichostatin A Danio 

rerio 

02-09-2020 2.3 

 

87 

30 6VNR CD2 - N-hydroxy-1-

{[4-

(hydroxycarbam

oyl)phenyl]meth

yl}-1H-indole-

6-carboxamide 

Danio 

rerio 

13-05-2020 1.943 

 

88 

31 6CGP CD2 - MAIP-032 Danio 

rerio 

13-06-2018 2.5 

 

89 

32 6V7A CD2 - NF2657 Danio 

rerio 

02-12-2020 2.08 

 

90 
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33 7JOM CD2 - TO-317 Danio 

rerio 

16-06-2021 1.84 

 

91 

34 6PYE CD2 - NR160 Danio 

rerio 

29-07-2020 1.48 

 

92 

35 7QNO CD1 & 

CD2 

- na Danio 

rerio 

09-02-2022 2.38 ----- 93 

36 6PZO CD2 - YX-153 Danio 

rerio 

02-05-2022 1.5 

 

92 

37 6PZR CD2 - Resminostat Danio 

rerio 

02-05-2022 2.3 

 

92 
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38 6PZS CD2 - JR005 Danio 

rerio 

02-05-2022 1.79 

 

92 

39 6PZU CD2 - AP-1-62-A Danio 

rerio 

02-05-2022 1.74 

 

92 

40 6Q0Z CD2 - JS28 Danio 

rerio 

02-05-2022 1.75 

 

92 

41 7UK2 CD2 - NN-390 Danio 

rerio 

02-11-2011 1.6 

 

94 
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42 6V79 CD2 - NF2376 Danio 

rerio 

02-12-2020 2.039 

 

95 

43 5EF7 CD2 - HPOB Danio 

rerio 

27-07-2016 1.9 

 

96 

44 5EFB CD2 - Oxamflatin Danio 

rerio 

27-07-2016 2.543 

 

96 

45 5EFG CD2 - na Danio 

rerio 

27-07-2016 2.25 ------ 96 

46 8A8Z CD2 - ITF5924 Danio 

rerio 

25-01-2023 1.6 

 

97 
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47 5EEF CD1 - Trichostatin A Danio 

rerio 

27-07-2016 2.151 

 

96 

48 5EEM CD2 - na Danio 

rerio 

27-07-2016 2 ----- 96 

49 5EEN CD2 - Belinostat Danio 

rerio 

27-07-2016 1.861 

 

96 

50 5EFH CD2 - 7-[(3-

aminopropyl)am

ino]-1,1,1-

trifluoroheptane

-2,2-diol 

Danio 

rerio 

27-07-2016 2.162 

 

96 

51 5EFN CD2 H574A 7-amino-4-

methyl-

chromen-2-one 

Danio 

rerio, 

Homo 

sapiens 

27-07-2016 1.804 

 

96 

52 5EEI CD2 - SAHA Danio 

rerio 

27-07-2016 1.32 

 

96 
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53 5EEK CD2 - Trichostatin A Danio 

rerio 

27-07-2016 1.59 

 

96 

54 5EF8 CD2 - Panobinostat Danio 

rerio 

27-07-2016 2.6 

 

96 

55 5EFJ CD2 - - Danio 

rerio, 

Bipolaris 

zeicola 

27-07-2016 1.73 ----- 96 

56 5EFK CD2 Y745F 7-amino-4-

methyl-

chromen-2-one 

Danio 

rerio 

27-07-2016 1.82 

 

96 
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57 7U8Z CD2 - 4-({N-[2-

(benzylamino)-

2-oxoethyl]-4-

(dimethylamino)

benzamido}met

hyl)-3-fluoro-N-

hydroxybenzami

de 

Danio 

rerio 

23-11-2022 1.85 

 

98 

58 7O2R CD2 - ITF3985 Danio 

rerio 

27-10-2021 2.3 

 

98 

59 5W5K CD2 - KV70 Danio 

rerio 

27-06-2018 2.7 

 

99 

60 6WSJ CD2 - Cyclopeptide 

des4.3.1 

Danio 

rerio 

28-04-2021 1.7 ------- 100 
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61 7O2P CD2 - ITF3756 Danio 

rerio 

27-10-2021 1.9 

 

98 

62 6TCY CD2 - SS555 Danio 

rerio 

04-11-2020 1.6 

 

101 

63 6ZW1 CD2 - SW101 Danio 

rerio 

04-08-2021 1.13 

 

102 

64 6DVL CD2 - DDK-115 Danio 

rerio 

29-08-2018 2.1 

 

103 
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65 6DVN CD2 - DDK-137 Danio 

rerio 

29-08-2018 2.2 

 

103 

66 6MR5 CD2 - N-[5-(5,6-

dichloro-1H-

indol-1-

yl)pentyl]-2-

sulfanylacetami

de 

Danio 

rerio 

05-12-2018 1.85 

 

104 

67 6DVM CD2 - DDK-122 Danio 

rerio 

29-08-2018 1.47 

 

103 
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68 6DVO CD2 - Bavarostat Danio 

rerio 

29-08-2018 1.98 

 

103 

69 6THV CD2 - Tubastatin A Danio 

rerio 

15-07-2020 1.1 

 

105 

70 6R0K CD2 - SS208 Danio 

rerio 

09-10-2019 1.15 

 

106 

71 6CW8 CD2 - RTS-V5 Danio 

rerio 

21-11-2018 1.9 

 

107 
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72 8G43 ZnF-

UBP 

- 3-(3-(2-

(methylamino)2

-oxoethyl)-4-

oxo-3,4-

dihydroquinazol

in-2-

yl)propanoic 

acid 

Homo 

sapiens 

03-05-2023 1.55 

 

108 

73 8G44 ZnF-

UBP 

- 3-(3-(2-

(benzylamino)-

2-oxoethyl)-4-

oxo-3,4-

dihydroquinazol

in-2-

yl)propanoic 

acid 

Homo 

sapiens 

03-05-2023 1.55 

 

108 
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74 8G45 ZnF-

UBP 

- 3-[8-chloro-3-

(2-{[(2-

methoxyphenyl)

methyl]amino}-

2-oxoethyl)-4-

oxo-3,4-

dihydroquinazol

in-2-

yl]propanoic 

acid 

Homo 

sapiens 

03-05-2023 1.62 

 

108 

75 6CE6 ZnF-

UBP 

- 3,3'-(benzo[1,2-

d:5,4-

d']bis(thiazole)-

2,6-

diyl)dipropionic 

acid 

Homo 

sapiens 

28-02-2018 1.6 

 

109 

76 6CE8 ZnF-

UBP 

- (1,3-

benzothiazol-2-

yl)acetic acid 

Homo 

sapiens 

28-02-2018 1.55 

 

109 
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77 6CEA ZnF-

UBP 

- 3-(quinolin-2-

yl)propanoic 

acid 

Homo 

sapiens 

28-02-2018 1.6 

 

109 

78 6CEC ZnF-

UBP 

- 3-(3-methoxy-2-

quinoxalinyl)pro

panoic acid 

Homo 

sapiens 

28-02-2018 1.55 

 

109 

79 6CED ZnF-

UBP 

- 3-(3-methyl-4-

oxo-3,4-

dihydroquinazol

in-2-

yl)propanoic 

acid 

Homo 

sapiens 

28-02-2018 1.7 

 

109 

80 6CEE ZnF-

UBP 

- 3-(1-methyl-2-

oxo-1,2-

dihydroquinozal

in-3-

yl)propionic 

acid 

Homo 

sapiens 

28-02-2018 1.55 

 

109 
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81 6CEF ZnF-

UBP 

- 3-(1,3-

benzothiazol-2-

yl)propanoic 

acid 

Homo 

sapiens 

28-02-2018 1.8 

 

109 

82 5B8D ZnF-

UBP 

- N-(4-methyl-

1,3-thiazol-2-

yl)propanamide 

Homo 

sapiens 

27-07-2016 1.05 

 

110 

83 5KH3 ZnF-

UBP 

- 3-(5-chloro-1,3-

benzothiazol-2-

yl)propanoic 

acid 

Homo 

sapiens 

27-07-2016 1.6 

 

110 

84 5KH7 ZnF-

UBP 

- 3-[6-oxo-3-(3-

pyridinyl)-

1(6H)-

pyridazinyl]prop

anoic acid 

Homo 

sapiens 

27-07-2016 1.7 

 

110 

85 5KH9 ZnF-

UBP 

- 5-[(4-

isopropylphenyl

)amino]-6-

methyl-1,2,4-

Homo 

sapiens 

27-07-2016 1.07 

 

110 
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triazin-3(2H)-

one 

86 5WPB ZnF-

UBP 

- 3-(3-(pyridin-2-

ylmethoxy)quin

oxalin-2-

yl)propanoic 

acid 

Homo 

sapiens 

23-08-2017 1.55 

 

110 

87 3PHD Comple

te 

structur

e 

- Ubiquitin Homo 

sapiens 

23-02-2011 3 ----- 111 

88 3CK5 ZnF-

UBP 

- na Homo 

sapiens 

19-02-2008 1.55 ----- -- 

89 3GV4 ZnF-

UBP 

- Ubiquitin C-

terminal peptide 

RLRGG 

Homo 

sapiens 

28-04-2009 1.72 ----- -- 

90 5EDU CD2 - Trichostatin A Homo 

sapiens, 

Escherichi

a coli 

27-07-2016 2.79 

 

96 
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91 5WBN ZnF-

UBP 

- 3-(3-benzyl-2-

oxo-2H-

[1,2,4]triazino[2

,3-c]quinazolin-

6-yl)propanoic 

acid 

Homo 

sapiens 

02-08-2017 1.64 

 

-- 

92 7ZYU ZnF-

UBP 

- DARPin 

(Designed 

Ankyrin repeat 

protein) F10 

Homo 

sapiens 

01-06-2022 2.43 
 

112 
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2.4 Physiological functions of HDAC6  

HDAC6 is a major regulator of cellular proliferation, apoptosis, cellular mortality, 

cellular oxidative stress pathway, misfolded protein degradation and heat shock 

response, in other word it’s a major role player in maintaining cellular homeostasis. 

Histone acetylation and deacetylation are essential for genetic expression and are 

facilitated by histone acetyltransferase and histone deacetylase. As HDAC6 is 

cytoplasmic deacetylase, it primarily maintains acetylation balance of cytosolic non-

histone proteins such as α-tubulin, cortactin, Hsp90, peroxiredoxins, surviving, Miro-

1, ERK-1, HSF-1, Ku-70, etc.113,114 various HDAC6 substrate their functions and its 

related disease conditions have been listed in table 2.3.  

HDAC6 by affecting cytoskeleton (a cross-linking network consisting of microtubules, 

actine filaments etc, provides structural support to the cell) dynamics influences cell 

division, migration, angiogenesis and aggresome formation. α-tubulin is the first 

described and most studied substrate of HDAC6 and happens to be a building block of 

microtubules.79 Hypoacetylation of tubulin promotes cell migration whereas 

hyperacetylation results in excessive accumulation of focal adhesion, thereby causing 

cellular adhesion and its acetylation state overseen by opposing action of α-tubulin 

acetyltransferase and HDAC6. 

 

Figure 2.5: Physiological role of HDAC6 

HDAC6 also regulates actin-dependent cell mortality by altering acetylation state of 

cortactin.115 HDAC6 has also been found to influence PD-L1 expression via the STAT3 

signalling pathway, suggesting its role in immunoregulation.67 
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Substrate  Localization of 

substrate  

Lysine residue 

deacetylated  

Catalytic domain 

involved  

HDAC6 function  Potential therapeutic target 

disease  

α-tubulin  Cytoplasm  Lys 40 CD1 or CD2 Regulation of immune 

synapse formation, cell 

migration and 

chemotaxis, microtube 

dynamics. 

Antigen presentation 

deficiencies, tumor cell 

metastasis (cancer), 

neurodegenerative 

disorders (Parkinson’s 

disease, spinobulbar 

muscular atrophy, CMT 

disease)  

Cortactin  Cytoplasm  Lys 87, 124, 161, 189, 

198, 235, 272, 309, 319  

CD1 + CD2 Regulation of cellular 

migration and F-actin 

binding  

Cell migration and 

adhesion in cancer.  

HSP90  Cytoplasm  Lys 294  CD1 + CD2 + BUZ Misfolded protein 

degradation and clearance 

and regulation of 

glucocorticoid receptor 

and gene transcription 

activation.  

Parkinson’s disease, 

Alzheimer’s disease, and 

cancer.   

Miro-1  Mitochondria  Lys 105   Blocks mitochondrial 

transport and mediates 

axonal growth inhibition.  

Axonal defect in CMT 2.   

Table 2.3: HDAC6 substrates, interacting proteins, and relevant biological functions   
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Peroxiredoxins  Cytoplasm and nucleus  Lys 196, 197 ND Redox regulation  Neurodegenerative 

disorders and cancer.  

Survivin Nucleus  Lys 129 CD2  Anti-apoptotic function.  Breast cancer.  

Ku-70  Cytoplasm  Lys 539, 542  ND Suppression of apoptosis  Colorectal cancer.  

Tat  Nucleus  Lys 28 CD2 + BUZ Suppression of Tat-

mediated transactivation 

of HIV 

HIV 

β-catenin  Cytoplasm  Lys 49 ND Epidermal growth factor-

induced β-catenin nuclear 

localization  

Tumour cell (cancer) 

ERK 1 Cytoplasm  Lys 72   Cell proliferation and 

growth, cell mobility and 

survival. 

Cancer.  

GSK3β Cytoplasm and 

Nucleus 

Ser 22 ND GSK3β phosphorylates 

HDAC6 (Ser 22) to 

enhance tubulin 

deacetylase activity. 

Neurodegenerative 

disorders 

Aurora A Centrosomes of 

interphase cell 

(cytoplasm) 

---- ND Aur A phosphorylates 

HDAC6 to activate 

tubulin deacetylase 

activity 

Polycystic kidney disease 

and colorectal cancer. 

CK2 Nucleus and cytoplasm Ser 485 ND CK2 phosphorylates 

HDAC6 (Ser458) to 

Neurodegenerative 

disorders. 
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*  CD1= Catalytic domain 1, CD2= Catalytic domain 2, BUZ= ubiquitin binding domain, DMB= Dynein motor binding domain, ND = not determined

increase tubulin 

deacetylase activity. 

Ubiquitin  Nucleus and cytoplasm  ---- BUZ Signal for cellular 

processes, such as protein 

degradation and 

endocytosis  

Neurodegenerative 

disorders. 

TRIM50 Cytoplasm  ---- ND E3 ubiquitin ligase in 

aggresome formation and 

protein degradation 

Neurodegenerative 

diseases 

Dynein Cytoplasm  ---- DMB Aggresome formation and 

protein degradation 

Neurodegenerative 

disease. 

LooR Nucleus  ---- ND Cofactor of nuclear 

receptor corepressor 

LCoR 

ER-positive breast cancer 

NFκB cytoplasm ---- ND Transcription factor in 

inflammation and cell 

growth control 

Gene expression-related 

deficiencies. 

BRMS1 Nucleus and cytoplasm  ---- ND Decrease metastasis 

suppressor activity 

Cancer cell metastasis  

Bax Cytoplasm ---- ND Pro-apoptotic protein 

block of apoptosis 

Neuroblastoma  
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Newley synthesised protein chain needs to be folded into tree-dimensional structure 

prior they can exert their biological function, and error in this folding leads to misfolded 

proteins. These misfolded proteins need to be degraded that they can be further 

recycled, and HDAC6 dose this job majorly in three ways.  

 

Figure 2.6: HDAC6 and misfolded protein degradation. 

(a) Under non-stress conditions, to process misfolded proteins, HDAC6 binds with 

AAA-ATPase chaperone p97, a vasolin-containing protein known for its ability to 

disassemble polyubiquitinated proteins/HDAC6 complex.81  

(b) If the proteosome-mediated pathway is inaccessible, then HDAC6 uses its ZBG to 

couple with ubiquitin tagged misfolded protein and carries it to microtubule organizing 

center (MTOC) using the microtubule network, where its cleared away via aggresome 

formation.116   

(c) The third route HDAC6 uses to degrade misfolded protein is via heat shock protein 

90 (Hsp90). HDAC6/Hsp90/HSF1 could promote heat shock transcription factor 1 

(HSF1) which revamps expression of chaperone Hsp27 and Hsp70 down the line 

promoting repair and degradation of misfolded protein.115  
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2.5 The role of HDAC6 in diverse disease process 

HDAC6 has a broad range of cellular substrate, getting it involved in pathophysiology 

of several disease conditions. Keeping this into mind, HDAC6 can be considered as a 

promising target for selective inhibitor design and development.  

2.5.1 HDAC6 and cancer 

HDAC6 overexpression is a characteristic of numerous cancers,117 with studies 

indicating its necessity for effective oncogenic cell transmutation.115 It is prominently 

involved in various signalling pathways, including the oncogenic Ras, AKT, and 

ERK1/2 pathways.118 The above processes vitalize transformed cells to proliferate and 

survive independently of anchorage, bypassing anoikis -a specific type of programmed 

cell death triggered upon detachment of cells from the extracellular matrix and 

surrounding basement membrane.114 Ongoing research on this field indicated that 

HDAC6 has a prominent role I n tumour development and the maintenance of a 

transformed phenotype. Further, many oncogenic proteins, depends on Hsp90-a 

substrate of HDAC6 for structural mutation and activation. Downregulation of HDAC6 

contributes to hyperacetylation of Hsp90 and α-tubulin, thereby impairing the 

chaperone’s function.119   

 

Figure 2.7 Involvement of HDAC6 in the cancer signalling pathway. Proposed model 

for HDAC6i mechanism of action targeting either MAPK/ERK or PI3K/AKT or p53 

signalling pathway. 
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In hepatocellular carcinoma, the overexpression of HDAC6 induced by 

proinflammatory cytokines may enhance cell proliferation by supressing p53’s 

transcriptional activity. HDAC6 inhibitors also function as tumour suppressor by 

reducing the activity of the Wnt/β-catenin signalling pathway in hepatocellular 

carcinoma.63 HDAC6 stimulates cell proliferation, colony formation, cell migration, 

and invasion by directly interacting with the PTTPN1/ERK1/2 pathways, which target 

MMP-9.120  

Recent studies on B16 murine melanoma cells with urea-derived HDAC6 inhibitor 

nexturastat A, have shown inhibition of cancer cell proliferation and induction of 

apoptosis, possibly by upregulation of cell cycle regulators like CYLD and acetylated 

microtubules, resulting in cell cycle disruption.121  

2.5.2 HDAC6 and neurodegenerative diseases  

Many neurodegenerative diseases such as Alzheimer’s disease (AD), Huntington’s 

disease (HD), Parkinson’s disease (PD), and Charcot-Marie-Tooth disease are caused 

by the accumulation of protein aggregates, and HDAC6 due to the presence of ZBG or 

the ubiquitin binding domain is known for its ability to eliminate misfolded protein by 

augmenting autophagy.63,122  

 2.5.2.1 HDAC6 in Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by the 

accumulation of extracellular β-amyloid peptide and intracellular neurofibrillary 

tangles (NFTs), which consists of cross β-fibrils formed by the misfolded protein tau 

(tubulin-associated unit).123,124 Under normal condition, tau regulates microtubule 

dynamics, while HDAC6 controls tau phosphorylation and accumulation. In neuronal 

cells, tau hyperphosphorylation and aggregation lead to synaptic dysfunction, 

mitochondrial damage, and apoptotic cell death.63,125 Studies have shown that HDAC6 

regulates acetylated α-tubulin and Hsp90, playing a key role in mitochondrial axonal 

transport and protein aggregation/degradation by forming complexes with Hsp90, 

ubiquitin, and tau.126 Further, proteasome inhibition results in the interaction between 

HDAC6 and tau, leading to increased co-localization of HDAC6 and tau in a 

perinuclear aggresome-like compartment. This process is independent of HDAC6’s 

tubulin deacetylation activity.127  
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Figure 2.8 HDAC6 in Alzheimer disease pathogenesis. 

Studies have shown that downregulation of HDAC6 in mouse model of Alzheimer’s 

disease significantly improved learning, memory and α-tubulin acetylation.63 It is 

known that HDAC6 directly influence acetylation level of peroxiredoxin 1 and 2 

contributing in redox regulation (oxidative stress) which is a well-defined factor 

causing AD and aging.128 Mitochondrial dysfunction and increased reactive oxygen 

species (ROS)129 might be a possible mechanism in AD development. Further analysis 

using a HDAC6 knock-down mouse model suggested that the loss of HDAC6 activity 

might make neurones resistant to amyloid-β-induced mitochondrial trafficking 

deterioration, thereby restoring cognitive function.130  

2.5.2.2 HDAC6 in Parkinson’s disease  

Parkinson’s disease (PD) is a well-known progressive bradykinetic disorder115 marked 

by gradual degeneration of the nigrostriatal dopaminergic pathway and the presence if 

Lewy bodies (insoluble cytoplasmic inclusion of α-synucleins).131 The abrupt 

accumulation of α-synucleins in different regions of brain like substantia nigra, locus 

coeruleus and nucleus basalis of Meynert are the major contributing factor in the 

development of PD.63,131 A mouse model of PD suggested that HDAC6 guards the 

dopaminergic neurons from cytotoxic α-synucleins aggregates by promoting 

aggresome formation by dissociating Hsp90 from Hsf1 complex.132 Moreover, 

mutations in the DJ-1 gene, which is associated with early-onset of Parkinson’s disease, 

lead to the misfolding and accumulation of this protein. This misfolded protein is 

subsequently targeted for elimination through binding with parkin and HDAC6. Parkin, 

an E3 ligase, forms a complex with the heterodimeric E2 enzyme UbcH13/Uev1a, 
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resulting in K63 linked polyubiquitination of the misfolded protein.133 The 

polyubiquitinated proteins then bind to HDAC6 and DJ-1 aggregates, which are 

transported to aggresomes by the dynein motor complex.134 Further studies have shown 

that parkin facilitates mitophagy (the removal of damage mitochondria) by recruiting 

HDAC6 and p62, which then form juxtanuclear mitochondria inclusion bodies 

resembling aggresomes.131,134 In a recent study using a rat model of Parkinson’s disease 

and Tubastatin A, it was observed that inhibiting HDAC6 increases the acetylation of 

α-synuclein, enhances the levels of Hsc70 and lamp2A (key components of chaperone-

mediated autophagy), and reduces both α-synuclein expression and its toxicity.135 This 

suggests that HDAC6 may be a promising therapeutic target for Parkinson’s disease 

and other α-synucleinopathies. 

2.5.2.3 HDAC6 in Huntington’s disease  

Huntington’s disease (HD) is an autosomal inherited neurodegenerative disorder 

caused by a genetic alteration in the CAG triplet (Cytosine-Adenine-Guanosine), 

leading to the abnormal expansion of polyglutamine in proteins and resulting in the 

accumulation of huntingtin aggregates (HA).131,136 In individuals without Huntington’s 

disease, the CAG repeats range from 7 to 34 and may vary with age. However, CAG 

repeats exceeding 100 are associated with juvenile onset of the disease.137 HD is 

characterised by uncontrolled excessive motor movements, cognitive impairment, and 

emotional deficits.115 In Huntington’s disease, alteration in cellular transport system, 

including microtubule-dependent transport and the intracellular transport of brain-

derived neurotrophic factor (BDNF)-containing vesicles, are linked to the neuronal 

toxicity of huntingtin aggregates (HA).138 Inhibition of HDAC6 is known to enhance 

microtubule-based transport by recruiting kinesin-1 and dynein/dynactin to more 

acetylated microtubules.139 Conversely, studies using HDAC6 knockout mouse models 

shows increased tubulin acetylation but do not affect the progression of the disease.140 

Interestingly, another study suggested that HDAC6 is pivotal for the autophagic 

removal of aggregated huntingtin by recruiting the autophagic degradation machinery 

to the inclusion bodies.141  

2.5.2.4 HDAC6 in Rett syndrome 

Rett syndrome is a rare, progressive neurodevelopmental disorder that arises from a 

loss-of-function mutation in the X-linked MeCp2 gene.142 MecP2 acts as a 

transcriptional repressor by interacting with DNA at CpG islands.143 The loss of 
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functional MeCP2 mutations is linked to impaired BDNF trafficking and disrupted 

microtubule dynamics, highlighting the important role of HDAC6 in the neurobiology 

of Rett syndrome.144 In neuronal cells, the acetylation level of microtubules controls 

the effectiveness of various crucial processes, including differentiation and migration, 

mitochondrial trafficking and the movement of BDNF-containing vesicles.143,145 

Additionally, inhibiting HDAC6 leads to accelerated axonal transport of BDNF and 

mitochondria in both anterograde and retrograde directions, thereby improving synaptic 

plasticity.139,146    

2.5.2.5 HDAC6 in Charcot-Maire-Tooth disease 

Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited disorder affecting 

the peripheral nervous system, caused by mutations in the heat-shock protein genes 

(S135F orP182L). This leads to axonal CMT or distal hereditary motor neuropathy 

(distal HNM), and is characterised by muscle weakness, motor issues, and sensory loss. 

These symptoms have been linked to in vivo studies in transgenic mice.147,148 

Transgenic mice with mutations in this gene showed a reduction in the total number of 

mitochondria and defects in mitochondrial transport, which were improved by 

treatment with the HDAC6 inhibitor tubastatin A.147 Aminoacyl transfer RNA (tRNA) 

synthetases, the largest gene/protein family associated with CMT, recently revealed 

HDAC6 as an intracellular factor interacting with glycyl tRNA synthetase (GlyRS or 

GARS) in CMT.149 Administration of tubastatin A disrupted the interaction between 

GlyRS and HDAC6, leading to restored mitochondrial axonal transport, increased 

acetylation of α-tubulin, and improved muscle strength and motor performance.147 This 

suggested that HDAC6 is highly promising target for treating CMT and potentially 

other peripheral neuropathies linked to axonal transport deficiencies.  

2.5.2.6 HDAC6 in amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is another progressive motor neurone disease caused by 

mutations in genes encoding superoxide dismutase 1 (SOD1), TAR DNA binding 

protein 43 (TDP-43), and fused in sarcoma (FUS).147,150 It is marked by the selective 

degeneration of motor neurones in the motor cortex, brainstem, and spinal cord, 

resulting in progressive muscle weakness, paralysis, and eventually death, typically 

within 2-5 years after diagnosis.147 Transgenic mice with the G93A mutation in 

superoxide dismutase 1 (SOD1) exhibited defects in axonal transport, but genetic 

deletion of HDAC6 significantly slowed disease progression and extended the survival 
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of these mutant SOD1G93A mice.147 Additionally, studies using induced pluripotent stem 

cells (iPSCs) derived from fibroblasts of ALS patients with various FUS mutations 

(R531H and P525L) demonstrated that treatment with HDAC6 inhibitors like tubastatin 

A or ACY-738 restored impaired axonal transport and increased the overlay of 

endoplasmic reticulum (ER) and mitochondria.150,151 In a transgenic mouse model of 

ALS overexpressing wild-type FUS (Tg FUS+/+ mouse),151 which exhibited histone 

hypoacetylation in the spinal cord and cortical tissue associated with progressive 

neurodegeneration, treatment with ACY-738 significantly extended the survival rate of 

the mutant mice. It also reduced neuromuscular denervation and muscle atrophy, 

thereby improving the ALS disease phenotype.147   

2.5.3 HDAC6 in inflammation  

Inflammation is a crucial biological response to infection by bacteria and viruses 

affecting the body surface and organs in mammals.78 Recent research has highlighted 

the significant role of HDAC6 in the innate immune response to intracellular bacterial 

infections, particularly through Toll-like receptor-mediated signalling.152 HDAC6 was 

also found to significantly influence the production of cytokines. This includes both 

pro-inflammatory cytokines (IL-6, IL-1β, TNFα, IL-17) and the anti-inflammatory 

cytokine IL-10. Inhibiting HDAC6 led to a reduction in the production of IL-6, IL-1β, 

and TNF-α in various mouse models of inflammatory diseases.78 Additionally, 

disrupting HDAC6 leads to the recruitment of inflammatory antigen-presenting cells, 

which are essential for initiating T-cell activation and T-cell tolerance.153 The 

suppressive activity of Foxp3+ regulatory T-cells is enhanced when HDAC6 is depleted 

in models of autoimmunity and inflammation.154 Defects in the number or function of 

Foxp3+ regulatory T-cells, which are crucial for maintaining immune homeostasis, can 

result in autoimmunity. Research has also indicated that HDAC6 regulates HIV 

replication by modulating the deacetylation of Tat, thereby inhibiting viral 

transactivation.155,156 HDAC6 has also been implicated in Sendai virus infection by 

deacetylating β-catenin, which serves as a co-activator of IRF-3 mediated 

transcription.157 Due to its regulatory role in inflammation, inhibiting HDAC6 could be 

an effective treatment of various inflammatory disease, including rheumatoid arthritis, 

inflammatory bowel disease, and airway inflammation.  
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Figure 2.9: Role of HDAC6 in the regulation of inflammatory cells (macrophages, 

dendritic cells, γδT cells, and FoxP3+ tregs cells) and cytokines (IL-6, IL-1β, TNF-α, 

IL-10, and IL-17). 

2.5.3.1 HDAC6 in rheumatoid arthritis  

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease marked by 

inflammatory synovitis, proliferation and invasion of synovial tissue, resulting in the 

destruction of bone and cartilage.158 HDAC6 has gained increasing attention in RA 

because it deacetylates not only histone but also non-histone protein such as α-tubulin 

and myeloid differentiation primary response 88 (MyD88). MyD88 is an essential 

adaptor molecule for the Toll-like receptor and IL-1 receptor in the NF-κB signalling 

pathway, and HDAC6 can deacetylate it.159,160 Small molecule inhibitors of HDAC6 

have been shown to reduce the production of pro-inflammatory cytokines IL-6, TNF-

α, and IL-1β, leading to decrease in synovial inflammation and indicating their potential 

role in RA treatment. Tubastatin A, a selective HDAC6 inhibitor, has been 

demonstrated to effectively reduce synovial inflammation and protect against joint 

destruction in a collagen antibody-induced arthritis mouse model. similarly, CDK-l, 

another selective HDAC6 inhibitor, has been found to inhibit the expression of IL-6, 

TNF-α, and IL-1β while increasing IL-10 production. This results in a lower arthritis 

score and reduced proliferation of effector T cells in a collagen-induced arthritis mouse 

model.161  

2.5.3.2 HDAC6 in inflammatory bowel disease 

Inflammatory bowel disease (IBD) encompasses a group of chronic immune-mediated 

disorders affecting the gastrointestinal tract, including Crohn’s disease and ulcerative 

colitis.162 These conditions are characterised by recurrent inflammation and subsequent 
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damage to the gastrointestinal tract.163 Current treatment for IBD, such as anti-

inflammatory drugs, antibiotics, and biologics, often prove ineffective and can have 

adverse effects.164 Research using knockdown mice and small molecule inhibitors has 

revealed that HDAC6 plays a crucial role in the progression of OBD. Selective 

inhibition of HDAC6 with molecules like BML-281 and LTB2 has been shown to 

effectively alleviate colitis induced by dextran sulfate in mouse model, BML-281 

treatment protected against colonic inflammation and prevented the activation of 

inflammatory neutrophils. Similarly, LTB2 treatment was linked to reduced rectal 

bleeding and diarrhoea.165,166 These findings suggest that HDAC6 inhibition may be 

potential in preventing colonic inflammation and treating IND in humans.   

2.5.3.3 HDAC6 in airway inflammation 

Airway inflammation is a key factor in many chromic respiratory diseases, including 

asthma chronic obstructive pulmonary disease (COPD). Asthma is characterised by 

persistent airway inflammation, increased airway responsiveness, and airway 

remodelling. In a mouse model of chronic allergic airway disease, the selective HDAC6 

inhibitor Tubastatin A has been shown to effectively reduce airway inflammation, 

airway remodelling and airway hyperresponsiveness. These results indicate that 

HDAC6 may play a significant role in asthma treatment.167  

Chronic obstructive pulmonary disease (COPD) is marked by epithelial cell 

dysfunction, ciliary shortening, impaired mucociliary clearance, and abnormal airway 

inflammation, primarily due to chronic cigarette smoking exposure. Current treatments 

for COPD are often inadequate and ineffective against exacerbation. However, HDAC6 

inhibition with Tubastatin A has been shown to significantly reduce airway dysfunction 

induced by cigarette smoke, suggesting it could be a promising therapeutic approach 

for COPD.168  

Research has also identified HDAC6 as a common factor in the development of 

dysregulated pro-inflammatory and fibrotic phenotypes in cystic fibrosis (CF), an 

inherited lung disease marked by extensive collagen deposition and tissue 

remodelling.169 Fibrosis in CF is characterised by the excessive growth of tissue, an 

increase in myofibroblasts, and abnormal deposition of extracellular matrix 

components, a process known as epithelial-mesenchymal transition (EMT).170 
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Figure 2.10: Role of HDAC6 in the regulation of the fibrotic process. HDAC6 

inhibitors negatively regulate the fibrotic process by acting at different levels of the 

profibrotic cascade. 

In cystic fibrosis (CF), EMT is a crucial process involving the loss of cell-cell junctions 

and cell surface molecule polarization, leading cells to adopt mesenchymal 

characteristics.171 Recent studies have shown that tubacin, and HDAC6 blocker, 

reduces TGFβ1-induced EMT markers and inhibits SMAD3 activation in response to 

TGFβ1.169 Since SMAD3 is a key component of TGFβ1 signalling, its inhibition 

disrupts HDAC6-dependent deacetylation of α-tubulin, highlighting the essential role 

of HDAC6 in EMT through the TGFβ1-SMAD3 signalling pathway.172  

2.5.4 HDAC in acute kidney injury 

Acute kidney injury (AKI), marked by a rapid decline in glomerular filtration rate, is a 

serious clinical issue associated with sever disease progression, high mortality rates, 

and an increased risk of developing chronic kidney disease (CKD).173 Rhabdomyolysis 

accounts for 15% of AKI174 cases and can be triggered by various factors, including 

metabolic disorders, trauma, infections, drugs and toxins.175,176 While the exact 

mechanism are not fully understood, it is well-established that endoplasmic reticulum 

(ER) stress-induced apoptosis of tubular epithelial cells plays a crucial role in 
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rhabdomyolysis-related AKI.177 Recent research has highlighted organelle-mediated 

stress, particularly ER stress, as a key pathophysiological factor in apoptosis. HDAC6 

activation has been implicated in the development of rhabdomyolysis-induced AKI, 

contributing to renal tubular cell apoptosis, inflammatory responses, macrophage 

infiltration, and oxidative stress.178,179  

Apoptosis or programmed cell death, is typically triggered by changes in the cell 

microenvironment.180,181 It involves the activation of pro-apoptotic molecules and the 

deactivation of pro-survival ones.182 In the tubular epithelium, apoptotic pathways can 

be activated through mechanisms such as caspase cascade activation, mitochondrial 

damage, and endoplasmic reticulum stress.183 Apoptosis leads to the loss of renal 

epithelial cells, a hallmark of acute kidney injury.184,185  Research indicates that caspase 

3 activation is the primary mechanism driving renal tubular cell apoptosis in 

rhabdomyolysis-induced AKI.177,185 Additionally, the Bcl-2 family plays a crucial role 

in regulating apoptosis.  

 

Figure 2.11: The involved mechanism of HDAC6 inhibitor against rhabdomyolysis 

induced-acute kidney injury. 
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Endoplasmic reticulum (ER) stress in acute kidney injury (AKI) can be triggered by 

various factors, including mutant protein aggregation, hypoxia, energy deprivation, and 

metabolic dysfunction.186 A reduced capacity for protein folding in the ER results in 

the accumulation of misfolded proteins and initiates ER stress. Excessive ER stress 

leads to tubular cell apoptosis through three main signalling pathways: PERK-eIF2-

ATF4, IRE1-VBP1, and ATF6.187 HDAC6 primarily located in the cytoplasm, 

contributes to the acetylation of the ER-localized chaperone protein glucose-regulated 

protein (GRP78). Under normal conditions, GRP78 binds to signalling proteins PERK, 

ATF6 and IRE1, inhibiting their activation.188 Research by Feng et al. demonstrated 

that inhibiting HDAC6 reduces ER stress, as indicated by lower GRP78 expression.189 

This suggests that HDAC6 inhibitors could be a promising treatment for 

rhabdomyolysis-induced acute kidney injury.  

2.5.5 HDAC6 in myocardial dysfunction  

Myocardial dysfunction is a major cause of early death after successful 

cardiopulmonary resuscitation (CPR) in patients with cardiac arrest (CA). this 

dysfunction may be driven by cell pyroptosis, a novel type of programmed cell death 

characterised by plasma membrane rupture and the release of inflammatory 

cytokines.190 Pyroptosis is primarily mediated by NOD-like receptor protein 3 

(NLRP3)-caspase-1 pathway. In this process, the NLRP3 inflammasome facilitates the 

conversion of pro-caspase-1 into active caspase-1, which then cleaves pro-

inflammatory cytokines interleukin-1β and interleukin-18, as well as pyroptotic 

substrate gasdermin D. This results in cell death and excessive release of interleukin-

1β and interleukin-18.191 In a study by Jiefeng Xu et al. it was found that inhibiting 

HDAC6 with Tubastatin A blocked the activation of the NLRP3-caspase-1 pathway 

and reduced cell pyroptosis in an H9c2 cardiomyocyte hypoxia/reoxygenation (H/R) 

model.190 additionally, Tubastatin A promoted the acetylation and nuclear translocation 

of transcription factor EB (TFEB), which is crucial pro regulating the autophagy-

lysosome pathway and can inhibit autophagy induction.202,203 The acetylation and 

nuclear translocation of TFEB resulted in the inhibition of NLRP3 inflammasome 

activation, leading to improved myocardial function and reduced cardiac injury 

following cardiac arrest and resuscitation by decreasing pro-inflammatory cytokines.190   



70 
 

 

Figure 2.12: The proposed molecular mechanisms of the protective effect of HDAC6 

inhibitors on myocardial dysfunction after cardiac arrest (CA) and resuscitation. 

2.6 Inhibitors of HDAC6 

A variety of HDAC inhibitors have been identified to date. Six of these- vorinostat, 

romidepsin, belinostat, Panobinostat (withdrawn), pracinostat (FDA-approved), and 

chidamide (approved by the China FDA)-are approved for the clinical treatment of 

refractory or relapsed cutaneous and/or peripheral T-cell lymphomas, or multiple 

myeloma.58 Many other inhibitors are currently undergoing clinical trials. Most of the 

approved HDAC inhibitors are non-selective (pan-HDAC) or selective for class I 

HDACs,194 which often leads to unwanted side effects.115 Therefore, there is a need for 

highly isoform-specific HDAC inhibitors to better understand the biological roles of 

individual HDAC isoforms and to provide targeted therapies with minimal side effects. 

Most HDAC inhibitors share a common pharmacophore that includes a zinc bindi ng 

group (ZBG) or chelating group such as (hydroxamic acid, thiol, carboxylic acid, 

ketones or substituted aniline), a cap group (for surface recognition), and a linker 

connecting the ZBG and cap group.63,194 Modification to any part of this pharmacophore 

can significantly affect potency, stability, and isoform selectivity. Notably, modifying 

the cap group is a promising strategy for enhancing isoform selectivity.194  

2.6.1 Hydroxamic acid based HDAC6 inhibitors  

The chelation of the Zn2+ ion is crucial for the inhibition of classical HDACs. 

Hydroxamic acid, as a zinc-binding group (ZBG), has been the most extensively studied 
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due to its strong ability to chelate Zn2+. Since the discovery of the first hydroxamic 

acid-based HDAC inhibitor, Trichostatin A (TSA), by Yoshida et al.195 in 1990, 

significant advancements have been made in this class of inhibitors. TSA, a faunistic 

antibiotic isolated from Streptomyces hydroscopious by Tsuji et al.196 in 1976, paved 

the way for further development. Following TSA’s discovery, several hydroxamic acid 

inhibitors have been approved, including Vorinostat (2006), Belinostat (2014), 

Pracinostat (2014), and Panobinostat (2015, later withdrawn), for the treatment of 

peripheral T-cell lymphomas and melanoma.58,63 Currently, (R)-Trichostatin A is 

mainly used as a research tool. The availability of its crystal structure complexed with 

an HDAC enzyme has significantly contributed to the development of newer and more 

potent HDAC inhibitors.  

 

Figure 2.13: Trichostatin A 

Trichostatin A features a structure comprising an N-methyl group, a linker with an 

alkenyl group, and a distinct hydroxamic acid tail. The hydroxamate group forms a 

bivalent coordination with the Zn2+ ion located at the base of the catalytic pocket, while 

the 4-dimethylaminobenzoyl moiety in the cap region interacts with residues around 

the channel rim leading to the active site. The linker region occupies the hydrophobic 

channel. 197 Various aryl substitution and structural modifications on the TSA scaffold 

have been explored to assess the structural-activity relationship and enhance 

interactions with the enzyme’s catalytic domain. However, these derivatives generally 

exhibit lower potency compared to the natural TSA.  

Common pharmacophore of HDAC inhibitors typically involves a scaffold composed 

of a six-carbon chain, a hydrophobic capping group, and a chelating group at the 

terminal end. A classic and extensively studied example of this design is 

suberonylanilide hydroxamic acid, known as SAHA (Vorinostat). This synthetic small 

molecule is renowned for its potent HDAC inhibitory activity.198 SAHA was 

engineered to enhance lipophilicity by incorporating a hydrophobic phenyl ring at the 
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opposite end. Additionally, SAHA serves as a key example of an inverse amide 

analogue of trichostatin199 and is notable for being the first HDAC inhibitor approved 

by US-FDA for the treatment of cutaneous T-cell lymphoma.  

Stephen J. Haggarty and colleagues discovered tubacin (8) as the first selective HDAC 

inhibitor through a comprehensive chemical genetic screening of 7392 small molecules. 

Tubacin features a 2,3-dioxane structure and demonstrates up to a 317-fold selectivity 

for HDAC6 over HDAC1 and HDAC2.200,201 Research indicates that the specific 

configuration of the dioxane ring, which interacts with the protein surface, contributing 

to this selectivity.194 Tubacin was shown to inhibit α-tubulin deacetylation, suppress 

cell proliferation, and induce apoptosis without impacting histone acetylation, gene 

expression, or cell cycle progression in mammalian cells. Additionally, it does not 

exhibit toxicity towards normal haematological cells.202 However, due to its high 

lipophilicity, attributed to its large cap group consisting of six lipophilic rings and its 

non-drug-like structure, tubacin is currently used primarily as a research tool.   

 

Figure 2.14: Some selective HDAC6 inhibitors. 
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Ricolinostat (ACY-1215) is the first selective oral HDAC6 inhibitor to advance to 

clinical trials for multiple myeloma (MM). it shares structural similarity with tubacin 

but offers improved drug-like properties.203 As a micromolar dose (0.62μm), 

ricolinostat effectively increases α-tubulin acetylation without affecting histone 

acetylation. It is 12, 10 and 11 times more selective for HDAC6 compared to HDAC1, 

HDAC2, and HDAC3, respectively. Ricolinostat can be used alone or in combination 

with bortezomib, a proteasome inhibitor, for treating MM. The synergistic effect of 

combining HDAC inhibitors with bortezomib is not fully understood yet. Additionally, 

ricolinostat has shown a synergistic anti-MM effect when used with carfilzomib, 

enhancing carfilzomib-induced cell death by inhibiting aggresome formation.204 

Ricolinistat has been extensively studied in Phase I/II clinical trials, either alone or in 

combination with dexamethasone, bortezomib,205 or lenalidomide206 for relapsed or 

refractory multiple myeloma.205 It has also been investigated as an anti-lymphoma 

agent in combination with bendamustine.207 In mouse xenograft models of oral 

squamous cell carcinoma, ricolinostat has demonstrated potential in suppressing 

tumour growth and inducing apoptosis through various pathways involving miR-

30d/PI3K/mTOR and ERK.208 Although ricolinostat shares some structural 

characteristics with the pan-HDAC inhibitor SAHA, such as a long aliphatic linker and 

bivalent zinc binding, it is distinguished by its unique surface recognition domain that 

interacts with the cleft between the L1 and L7 loops of HDAC6, contributing to 

selectivity of HDAC6.83    

As the successor to ACY-1215, an orally active second-generation analogue, ACY-241, 

was developed with an IC50 of 2.6 nM against HDAC6 and over 18-fold reduced 

potency towards Class I HDACs. Both ACY-1215 and ACY-241 features a 2-

(diphenylamino) pyrimidine-5-carboxamide as the surface recognition group, which is 

likely responsible for their HDAC6 inhibitory potency and selectivity. ACY-241 is 

considered sightly superior to ACY-1215 due to the electron-withdrawing chlorine 

substitution on one of the phenyl rings. In Phase Ib clinical trials for multiple 

myeloma,209 and in studies involving solid tumour, ACY-241, when combined with 

paclitaxel, enhanced anti-proliferative activity and increased cell death.210 Additionally, 

in murine xenograft models of multiple myeloma, ACY-241 demonstrated a synergistic 

effect with pomalidomide, enhancing tumour growth inhibition, promoting apoptosis, 

and causing cell cycle arrest both in vitro and in vivo.211 Currently, ACY-241 is being 
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evaluated in phase I clinical trials, either alone or in combination, for treating various 

cancers.212   

Compound 13, a quinazoline hydroxamate, has been identified as a preferentially 

selective HDAC6 inhibitor with an IC50 of 17 nM and 200-fold selectivity over 

HDAC8.213 It exhibits superior anti-proliferative effects against eleven different 

haematological and solid tumour cell lines compared to SAHA and ACY-1215. 

Additionally, Compound 13 has demonstrated 47.0% oral bioavailability in rats, 

indicating a favourable pharmacokinetic profile. Biological evaluations by Feng et al. 

revealed that Compound 13 can regulate endoplasmic reticulum stress and apoptosis, 

leading to the attenuation of rhabdomyolysis-induced acute kidney injury.214 

2.6.2 N-hydroxy benzamide based HDAC6 inhibitors  

Unlike other classical HDAC isoforms, HDAC6 has a wider and shallower channel, 

suggesting that replacing traditional long-chain alkyl linkers with bulkier and shorter 

aromatic moieties can more efficiently achieve HDAC6 selectivity.145 Additionally, a 

rigid and larger surface recognition group is better suited to occupy the rim region of 

HDAC6. To address this, Tubastatin A, a potent HDAC6 inhibitor with improved 

pharmacokinetic properties, was designed and synthesised. Tubastatin A is a 

tetrahydro-γ-carboline derivative with up to 1000-fold selectivity over all HDAC 

isoforms except HDAC8 (57-fold). Studies have shown that Tubastatin A can induce 

hyperacetylation of α-tubulin and slightly induce histone hyperacetylation when tested 

alone. In a homocysteic acid (HCA)-induced oxidative stress model, Tubastatin A 

demonstrated neuroprotective effects without causing neuronal cell death. It also 

exhibits various biological activities, including anti-inflammatory and anti-rheumatic 

effects,215 suppression of hepatitis C virus proliferation,216 and mitigation of stroke-

induced brain inflammation and functional deficits.217 

Following this, the structure of Tubastatin A (9) was modified to develop second-

generation HDAC6 selective inhibitors. Some compounds in this series (compounds 

14, 15, and 16) showed sub-nanomolar inhibitory activity for HDAC6 with over 7000-

fold selectivity over HDAC1. These compounds also enhanced the ability of Fox3+ 

regulatory T cells to suppress the mitotic division of effector T cells, indicating 

potential for further investigation into their use for treating autoimmune disorders.218 
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Figure 2.15: Tubastatin A and Tubastatin A analogues with their respective IC50 

values for different HDAC isoforms. 

Leonhardt et al. designed and synthesized highly potent HDAC6 selective inhibitors 

featuring a large and rigid tetrahydro-β-carboline as the surface recognition group, 

tailored to fit the extensive active binding site of HDAC6. Among these, Compound 17 

stands out as particularly potent, demonstrating superiority over Tubastatin A in cellular 

assays. Compound 17 induces rapid hyperacetylation of tubulin without affecting 

histone H3.219 Additionally, it does not induce apoptosis or cell cycle arrest at sub-

micromolar concentrations. 

Nexturastat A (12), a potent HDAC6 inhibitor, has an IC50 value of 5.02 nM and is 

601-fold more selective over HDAC8, exemplifying this (N-hydroxy benzamide) type 

of structure. Structure-activity relationship studies of Nexturastat A and its derivatives 

have shown that introducing a branching element, particularly to the nitrogen atom near 

the zinc-binding group, significantly enhances potency and selectivity for HDAC6.91 

Nexturastat A effectively increases the acetylation of α-tubulin and inhibits the growth 

of B16 melanoma cells. 
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Figure 2.16: some N-hydroxy benzamide based HDAC6 inhibitor. 

HPOB (18), a compound structurally similar to Nexturastat A, is also an HDAC6 

selective inhibitor with an IC50 value of 56 nM. It effectively induces the acetylation 

of α-tubulin without impacting histone acetylation in both normal (HSF) and 

transformed (LNCAP, U87, and A549) cells. HPOB can be used alone or in 

combination to inhibit the growth of cancer cells. When used alone, HPOB inhibits the 

growth of both normal and transformed cells without causing cell death at 

concentrations ≤ 16 μM. However, when combined with other agents such as etoposide, 

doxorubicin, or SAHA, HPOB enhances the induced cell death in transformed cells.220 

Smil et al. developed novel chiral 3,4-dihydroquinoxalin-2(1H)-one and piperazine-

2,5-dione aryl hydroxamate (19) compounds, which exhibit high affinity and selectivity 

for HDAC6. They discovered that the selectivity and potency of these inhibitors are 

significantly influenced by the stereochemistry of the chiral moiety, while the 

substituent on the cap group has minimal impact on HDAC6 potency and selectivity. 

Additionally, the stereochemistry of the chiral moiety affects the acetylation levels of 

α-tubulin and histone H3.221 

Guozhi Tang and colleagues developed a 2,7-disubstituted tetrahydroisoquinoline 

derivative (compound 20) as a dual HDAC6/HDAC8 inhibitor, which exhibited up to 

426-fold selectivity over HDAC1. However, compound 20 faced challenges such as 

high intrinsic clearance, N-C cleavage on the tetrahydroisoquinoline moiety, and poor 

solubility (<10 μg/ml).222 To address these ADME (Absorption, Distribution, 
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Metabolism, and Excretion) issues, a second series of aminotetralin derivatives was 

designed and synthesized. Among these, aminotetralin-derived hydroxamates, 

particularly compound 21, demonstrated good solubility (66 μg/ml) and metabolic 

stability while maintaining potency and selectivity for HDAC6 and HDAC8. Further 

structural optimization of compound 21 resulted in the development of molecule 22, a 

tetrahydroquinoline-based HDAC6 selective inhibitor, which exhibited improved 

HDAC6 inhibitory activity (IC50 = 12 nM) and solubility (210 μg/ml).223 Subsequently, 

scaffold hopping was employed to design a third series of amino-pyrrolidinone-based 

HDAC6 selective inhibitors, leading to the discovery of compound 23, which displayed 

the highest affinity for HDAC6 in this series.223 

 

Figure 2.17: Some N-hydroxy benzamide based HDAC6 inhibitors with their 

respective IC50 values against different HDAC isoforms 

Dallavalle et al. discovered a series of arylamino/heteroarylamino hydroxamates as 

novel HDAC6 inhibitors.224 Within this series, compound 24 demonstrated exceptional 

inhibitory activity against HDAC6 (IC50 = 0.29 nM) with up to 4000-fold selectivity 

over other HDAC isoforms. As a single agent, compound 24 showed significant anti-
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proliferative activity against human multiple myeloma cell lines (RPMI-8226, U226, 

and NCI-H929), indicating its potential as a therapeutic candidate for multiple 

myeloma. Additionally, it exhibited good hepatocytic stability and high permeability. 

2.6.3 N-hydroxycinnamamide based HDAC6 inhibitors  

ST3595 (25), a N-hydroxycinnamamide based inhibitor capped with a biphenyl group, 

was initially studied as an HDAC2 inhibitor.225 However, it was found to be more 

effective against HDAC6 (IC50 = 100 nM) compared to HDAC2 (IC50 = 1160 nM). 

When combined with paclitaxel, ST3595 exhibited a synergistic anti-tumour effect in 

wild-type p53 ovarian carcinoma cells226 and also showed efficacy against pancreatic 

cancer cells.227 Additionally, in studies involving non-small cell lung cancer (NSCLC) 

cell lines H460 and A549, as well as their cisplatin-resistant variants H460/Pt and 

A549/Pt, ST3595 demonstrated more significant antiproliferative activity in the 

H460/Pt cell subline compared to the other sublines.228 

C1A (26), a weak HDAC6 inhibitor with an IC50 of 479 nM, was developed from the 

structure of the naturally occurring pan-HDAC inhibitor trichostatin A. C1A induces 

acetylation of α-tubulin and HSP-90 in a concentration-dependent manner.229 Notably, 

despite containing a nitrogen mustard moiety, C1A does not cause non-specific DNA 

alkylation. In cellular assays, C1A inhibited the growth of one type of B-cell 

malignancy as well as eight different histological types of solid tumours. Additionally, 

C1A treatment led to an increase in the sub-G1 cell population and activation of 

caspase-3/7, indicating that its anti-proliferative effects may be mediated through an 

apoptotic mechanism. 

A new series of quinazolin-4-one derivatives, featuring a quinazolin-4-one core 

structure and an N-hydroxycinnamamide moiety, has shown high affinity and 

selectivity for HDAC6. Among these, compound 27 stands out for its exceptional 

inhibitory potency against HDAC6 (IC50 = 8 nM). In in vitro biological evaluations, 

several potent compounds from this series induced neurite outgrowth and significantly 

increased acetylation of α-tubulin.230 Following a range of biological assessments, 

compound 28 has emerged as a promising candidate for Alzheimer's disease (AD) 

treatment due to its lack of effect on human ether-a-go-go-related gene (HERG) ion 

channel activity (IC50 > 10 μM) and cytochrome P450 activity (IC50 > 6 μM). 
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Figure 2.18: Some N-hydroxycinnamamide based HDAC6 inhibitors with their 

respective IC50 values. 

BPR0L075 (29) is a novel synthetic compound initially discovered as part of research 

aimed at finding new microtubule inhibitors.231 It binds to the colchicine-binding site 

on tubulin, inhibiting its polymerization, and shows significant anti-proliferative 

activity with IC50 values in the single-digit nanomolar range across various human cell 

lines. Structural modifications of BPR0L075, including the addition of an N-

hydroxycinnamamide group at the N1 position, led to the development of 3-aroylindole 

hydroxamates as HDAC6 inhibitors. Among these, compound 30 emerged as the most 

potent, demonstrating selectivity for HDAC6 while also exhibiting tubulin inhibitory 

activity.232 Additionally, compound 30 shows remarkable anti-proliferative effects in 

vitro and effectively inhibit the growth of multiple myeloma xenografts in vivo.233 

2.6.4 HDAC6 inhibitors with novel ZBG 

HDAC6 inhibitors are commonly utilized for treating central nervous system disorders. 

However, hydroxamates, a prevalent class of HDAC6 inhibitors, are linked with 
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genotoxicity. To address this issue, researchers have explored a range of novel zinc-

binding groups (ZBGs) such as mercaptoacetamide, thiols, trifluoromethylketone, 

hydrazides, hydroxypyridones, hydroxylpyridine-thiones, and hydroxy ketones. These 

alternative ZBGs aim to develop more selective and potent HDAC6 inhibitors that are 

free from the toxicity associated with hydroxamates. 

 

Figure 2.19: Some mercaptoacetamide based HDAC6 inhibitor with quinoline cap 

group. 

Kozikowski et al. developed a series of HDAC inhibitors based on mercaptoacetamide, 

with quinoline emerging as an effective cap group. Compound 31 demonstrated 

significant affinity for HDAC6 (IC50 = 95.3 nM) and exhibited 33-fold and 64-fold 

greater selectivity over HDAC1 and HDAC8, respectively. However, substituting the 

quinoline moiety with other groups (compound 36) resulted in decreased potency 

against HDAC6. Some of these mercaptoacetamide-based inhibitors also showed 

protective effects on cortical neurons subjected to oxidative stress, though they 

exhibited dose-dependent toxicity.234 Additionally, compound 31 was found to 

influence the levels of the amyloid precursor protein (APP), Aβ synthase, and Aβ 

degradation enzymes.235 Further structural modifications led to compound 32, which 
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displayed enhanced potency against HDAC6 (IC50 = 1.3 nM). Compound 32 

effectively induced acetylation of α-tubulin in a dose-dependent manner without 

affecting histone H3 acetylation levels.236 Structure-activity relationship studies 

indicated that compounds with alkyl chain linkers of varying lengths had strong 

inhibitory potency against HDAC6, while benzyl linkers drastically reduced potency. 

To enhance lipophilicity and blood-brain barrier penetration, different halogen 

substitutions were made on the quinoline cap, resulting in compound 33, a potent 

mercaptoacetamide-based HDAC6 selective inhibitor. Various analogues, including 

compounds 34 and 35, exhibited high affinity and selectivity for HDAC6 over 

HDAC1.237 

Trifluoromethyl ketone is another novel zinc-binding group (ZBG), but research has 

shown that it does not effectively achieve selectivity for HDAC6. For example, 

compound 37, which uses a cyclic tetrapeptide as the cap group and trifluoromethyl 

ketone as the ZBG, demonstrated better inhibition of HDAC1 (IC50 = 47 nM) 

compared to HDAC6 (IC50 = 180 nM).238 Similarly, compound 38, which also employs 

trifluoromethyl ketone as the ZBG, exhibited comparable inhibition for both HDAC1 

(IC50 = 19.38 nM) and HDAC6 (IC50 = 17.78 nM).239 

 

Figure 2.20: some Trifluoromethyl ketone based HDAC6 inhibitors. 

Dehmel et al. discovered several series of thiocarbonate analogues as highly effective 

and substrate-competitive HDAC6-selective inhibitors.240 In their initial series, 

compounds with para-methoxy benzene as the cap group and various thiocarbonates as 

the zinc-binding group (ZBG) exhibited notable HDAC inhibitory activity. Among 
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these, compound 39, a dithiocarbonate derivative, showed substantial affinity for 

HDAC6 (IC50 = 94 nM), though there was potential for further improvement. 

Substituting the phenylacetyl-bound sulfur in the headgroup with nitrogen (compound 

40), methylene (compound 41), or oxygen (compound 42) resulted in significant 

enhancements in HDAC6 inhibitory activity, with IC50 values of 18 nM, 23 nM, and 

90 nM, respectively.  

 

Figure 2.21: HDAC6 inhibitors with thiocarbonate as ZBG, and their respective IC50 

values against different HDAC isoforms 

However, the trithiocarbonate derivative (compound 43) demonstrated a decrease in 

inhibitory potency against HDAC6. Subsequently, Dehmel et al.240 investigated 

trithiocarbonates with phenylacetyl as the core structure, incorporating large amide 
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substituents to enhance HDAC inhibitory activity. In their third series of compounds, 

the replacement of the phenylacetyl moiety (compounds 44 and 45) led to improved 

inhibitory potency against HDAC6 compared to compound 43. Further modifications, 

substituting the benzene ring with a 2,5-disubstituted thiophen core in trithiocarbonates, 

produced compounds 46 and 47. These compounds demonstrated strong HDAC6 

inhibitory activity, with compound 47 in particular showing excellent selectivity for 

HDAC6 over HDAC1. 

Patil et al. discovered 3-hydroxypyridin-2-thione (3-HPT, 48) as a novel zinc-binding 

group (ZBG) that effectively inhibits HDAC6 with an IC50 of 681 nM, while showing 

minimal activity against HDAC1.241 Further structural optimization led to compound 

49, a 3-HPT-derived HDAC inhibitor with enhanced inhibitory activity against 

HDAC6. These compounds also demonstrated significant growth inhibition of Jurkat 

cells and induced apoptosis in various cancer cell lines. Compared to 3-HPT, 1-

hydroxypyridine-2-thione (1-HTP) proved to be more effective in achieving HDAC6 

inhibitory potency and selectivity. Specifically, 1-HTP-6-carboxylic acid (compound 

50) showed HDAC6 inhibition with an IC50 value of 150 nM and 286-fold selectivity 

over HDAC1. The high potency, selectivity, and good metabolic stability of 1-HPT 

suggest that these molecules hold potential for further development in leukaemia 

treatment.242 

 

Figure 2.22: HDAC6 inhibitors with other novel ZBG along with their respective IC50 

values against different HDAC isoforms. 
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2.7 Anti-HDAC6 therapy in clinical trials 

Clinically approved HDAC inhibitors like vorinostat (SAHA), romidepsin, belinostat, 

Panobinostat (which has been withdrawn), and chidamide are used for treating T cell 

lymphomas and multiple myeloma. However, their poor isoform selectivity can lead to 

significant toxicity and side effects, which limits their clinical use. 

For example, during clinical trials of Panobinostat in high-risk MDS or AML patients 

following allogenic stem cell transplantation, 52% of participants experienced at least 

one severe (Grade 3 or 4) adverse event (AE) attributed to Panobinostat. The most 

common severe AEs were thrombocytopenia (24%) and neutropenia (19%).243 These 

findings were corroborated by another Phase Ia/II clinical trial of Panobinostat, where 

Grade 3/4 adverse effects included thrombocytopenia (41.5%) and neutropenia 

(21%).244 Similarly, the clinical use of vorinostat is also restricted due to its high rate 

of adverse effects;210,245 for instance, when used in combination with bortezomib, 16% 

of patients experienced Grade 3/4 diarrhea, and 22% had Grade 4 thrombocytopenia.245 

HDAC6 inhibitors (HDAC6is) are a focus of clinical research due to the unique 

structure of HDAC6. Currently, five HDAC6is are in clinical trials for various cancers, 

autoimmune diseases, and peripheral pain, but none have yet advanced for 

neurodegenerative diseases. Clinical trials conducted on various selective HDAC6 

inhibitors are summarized in table 2.4.  

Two notable HDAC6is, ACY-1215 (Ricolinostat) and ACY-241 (Citarinostat), 

developed by Acetylon Pharmaceuticals, are undergoing extensive clinical trials. Both 

share a similar structure with a long-chain hydroxamate scaffold and a large, rigid N,N-

diphenyl 2-aminopyrimidine recognition group. They exhibit nanomolar potency 

against HDAC6 (ACY-1215: IC50 = 4.7 nM; ACY-241: IC50 = 2.6 nM) and 

demonstrate 12 to 13-fold selectivity over HDAC1.211,246 In a Phase Ib clinical trial 

involving 38 patients with relapsed or refractory multiple myeloma, ACY-1215, 

administered at 160 mg daily for 21 days of a 28-day cycle, combined with 

lenalidomide and dexamethasone, achieved a 55% response rate with minimal adverse 

effects.206 Additionally, ACY-1215 has been reported to mitigate nerve damage and 

alleviate pain, numbness, and muscle weakness caused by chemotherapy and 

chemoradiotherapy.246-248 
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KA2507, another HDAC6i developed by Karus Therapeutics, was under Phase II trials 

for biliary tract cancer but has since been withdrawn.249 Chong Kun Dang 

Pharmaceutical Corp. (CKD) in Korea developed CKD-504 (structure not disclosed), 

which is currently in Phase I trials to evaluate its pharmacokinetics, pharmacodynamics, 

and toxicity in healthy adults, with potential applications for Huntington's disease. 

Additionally, CKD-506, a highly selective HDAC6i with at least 400-fold selectivity 

over other HDAC isoforms, has shown significant effects in mouse models of systemic 

lupus erythematosus (SLE) and chronic autoimmune diseases with minimal adverse 

effects.250 This compound is undergoing Phase I studies in Europe and a Phase II trial 

for rheumatoid arthritis.251 

JBI-802, a dual LSD1/HDAC6 inhibitor identified by Jubilant Therapeutics Inc., with 

IC50 values of 50 nM for LSD1 and 11 nM for HDAC6 and more than 100-fold 

selectivity over other HDAC isoforms, is currently in Phase II trials for solid 

tumours.252 
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NCT Number Agent Other Agents Inclusion Phase Start End Enrolment 

NCT02400242 ACY-241 Pomalidomide 

Dexamethasone 

Multiple Myeloma I 07.05.2015 02.07.2023 85 

NCT02935790 ACY-241 Nivolumab 

Ipilimumab 

Malignant Melanoma I 30.09.2016 07.04.2017 1 

NCT02551185 ACY-241 --- Advanced Solid Tumors I 22.12.1015 04.10.2019 20 

NCT02635061 ACY-241 Nivolumab Non-Small Cell Lung Cancer I 25.08.2016 30.06.2023 16 

NCT02091063 ACY-1215 --- Lymphoma 

Lymphoid Malignancies 

I/II 02.04.2014 05.05.2019 24 

NCT02632071 ACY-1215 Nab-paclitaxel Metastatic Breast Cancer 

Breast Carcinoma 

I 01.03.2016 30.09.2020 17 

NCT01997840 ACY-1215 Pomalidomide 

Dexamethasone 

Multiple Myeloma I/II 01.03.2014 30.06.2023 103 

NCT01323751 ACY-1215 --- Multiple Myeloma I/II 7.2011 03.12.2016 120 

NCT02189343 ACY-1215 Pomalidomide 

Dexamethasone 

Multiple Myeloma I 15.09.2014 30.04.2018 16 

NCT02787369 ACY-1215 Ibrutinib 

Idelalisib 

Recurrent Chronic Lymphoid leukemia I May-16 Apr-26 3 

NCT01583283 ACY-1215 Lenalidomide 

Dexamethasone 

Multiple Myeloma I 12.07.2012 24.03.2021 38 

NCT02088398 ACY-1215 --- Healthy I Mar-14 Apr-14 19 

Table 2.4: Clinical Trials conducted on various selective HDAC6 inhibitors 
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NCT03176472 ACY-1215 --- Painful Diabetic Peripheral Neuropathy II 07.12.2020 15.02.2023 282 

NCT02856568 ACY-1215 Cisplatin 

Gemcitabine 

Hydrochloride 

Non-Resectable Cholangiocarcinoma 

Recurrent Cholangiocarcinoma 

Stage III Extrahepatic Bile Duct Cancer 

Stage III Intrahepatic 

Cholangiocarcinoma 

Stage IIIA Hilar cholangiocarcinoma 

Stage IIIB Hilar cholangiocarcinoma 

Stage IVA Extrahepatic Bile Duct 

Cancer 

Stage IVA Hilar cholangiocarcinoma 

Stage IVA Intrahepatic 

Cholangiocarcinoma 

Stage IVB Extrahepatic Bile Duct 

Cancer 

I 01.05.2017 Oct-21 0 

NCT05193851 ACY-1215 --- Peripheral Nervous System Disease I 12.01.2022 06.01.2023 12 

NCT05229042 ACY-1215 --- Peripheral Nervous System Disease I 01.12.2022 28.04.2024 57 

NCT02661815 ACY-1215 Paclitaxel 

Bevacizumab 

Ovarian Cancer 

Fallopian Tube Cancer 

Primary Peritoneal Carcinoma 

I 15.06.2016 28.07.2017 6 

NCT03713892 CKD-504 --- Huntington Disease I 23.05.2018 Dec-20 88 
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NCT04186156 KA2507 --- Biliary Tract Cancer II 05.03.2020 Oct-23 0 

NCT03008018 KA2507 --- Solid Tumor I 07.08.2017 10.06.2020 20 

NCT04204603 CKD-506 --- Rheumatoid Arthurites II 30.11.2018 29.10.2019 122 

NCT05268666 JBI-802 --- Locally Advanced Solid Tumor 

Metastatic Solid Tumor 

I/II 08.04.2022 Aug-25 126 

 

 



89 
 

 

 

 

 

 

 

 

 

Chapter 3 

  



90 
 

Present work & the rationale Behind the work 

Previously in the chapter 1 & 2 I have discussed about various computational 

techniques developed within the last decades for drug designing & repurposing and 

why HDAC6 is a valuable target for drug target. Despite of having such cutting-edge 

computational techniques and understanding of the crucial physiological role HDAC6 

plays no inhibitor has made it to the market. This present work tries to bridge the gap 

between understanding and reality. To do that some of these computational techniques 

was applied to learn more deeply about the structural requirements of a nearly perfect 

HDAC6 inhibitor, both from the ligand perspective and the target perspective. To 

explore the ligand perspective a combination of machine learning algorithms was used 

to learn about non-linear patterns. And to understand how these ligands (inhibitors) and 

target (HDAC6) interact molecular docking and molecular dynamics simulation was 

performed. This knowledge might be helpful in designing new generation of HDAC6 

inhibitors, or can be used as a screening tool in the vast chemical space.   
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Materials and Methods 

4.1 Dataset preparation  

To successfully test if any marketed drug has the potential to bind HDAC6, we need to 

define a hypothesis based on known ligands. In other words, firstly we need to learn 

about the structural attributes to the HDAC6 inhibitors. To do that a dataset of 142 

quinazoline-containing, hydroxamate based HDAC6 inhibitors, exhibiting a wide range 

of HDAC6 inhibitory activities, was compiled from the literature (Appendix Table 

S1).253-258 The structures were drawn and saved in an appropriate format using 

ChemDraw Ultra software (Cambridge soft corporation, U.S.A.). For structural 

refinement of these 142 hydroxamate-based HDAC6 inhibitors “Prepare ligand for 

QSAR” protocol in Discovery Studio 3.0259 was used.   

4.2 Descriptor generation and dataset division  

Descriptors lies at the heart of QSAR, as they represent structural and physiochemical 

qualities or properties of molecules.260,261 Having a set of informative descriptors are of 

outmost importance to build robust QSAR models. In this study, for machine learning-

based regression analysis, we used 1,444 two-dimensional molecular descriptors and 

12,775 fingerprint descriptors calculated by PaDEL descriptor software to represent the 

molecules. These descriptors include constitutional, physicochemical, thermodynamic, 

and topological indices, as well as PubChem Fingerprint (881 bits), Substructural 

Fingerprint (307 bits), Substructural Fingerprint Count (307 bits), Klekota-Roth 

Fingerprint (4,860 bits), Klekota-Roth Fingerprint Count (4,860 bits), Atom-Pairs 2D 

Fingerprint (780 bits), Atom-Pairs 2D Fingerprint Count (780 bits), and others.262 The 

pool of 14,219 calculated descriptors was pre-processed using V-WSP 1.2 software to 

remove highly correlated features and features with no variance. A correlation cut-off 

value of 0.90 and a covariance threshold of 0.001 were applied, resulting in a subset of 

892 descriptors.263 

To conduct the classification-based QSAR study, the dataset molecules were classified 

as active or inactive using a threshold pIC50 of 7.0 (IC50 = 100 nM), based on the 

average pIC50 value of the total dataset molecules (Avg pIC50 = 7.231). Since dataset 

division is crucial for the development and validation of any QSAR model, several 

fundamental molecular properties were considered to achieve a balanced division. 

These properties included lipophilicity (AlogP), molecular weight (Mw), molecular 
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polar surface area (MPSA), number of hydrogen bond donors and acceptors (nHBA, 

nNBD), number of atoms (nAtoms), number of rings (nR), number of aromatic rings 

(nAr), and number of fragments (nFrag). The "generate training and test data" protocol 

of Discovery Studio 3.0259 was used to split the dataset using the random per cluster 

(RPC) method, maintaining a 75:25 ratio for the training and test sets.259 The same 

training and test sets were used to construct both the ML-based QSAR and 

classification-based QSAR models. 

Further the marketed drugs data (3816 molecules) was collected from the CIMS 

database and were saved in appropriate format for future use.264 

4.3 Feature selection and model development  

In most machine learning techniques, feature selection is a crucial step as it reduces the 

risk of overfitting due to noisy, redundant descriptors and increases the interpretability 

and understanding of the resulting models.265 To achieve this, having a good selection 

criterion that can measure the relevance of each descriptor to the desired output is 

essential. In this study, lasso regression was applied to the initial set of 892 pre-

processed descriptors using “Lasso-CV_R_Feature_Selection_UI_v0.24.2.R,” an R-

based in-house software, to identify descriptors of high significance.266 Finally, the 25 

descriptors selected by lasso regression were subjected to the best subset selection 

method using “BestSubsetSelection_v2.1,” with an r² value of >0.6 and q² value of 

>0.5, to correlate and extract the final set of features for the training set molecules.267 

4.4 Development of QSAR models  

In this study I have used four different machine learning algorithms268,269 for regression 

analysis and three different calcification methods to learn about the crucial structural 

contributors of these HDAC6 inhibitors.  

4.4.1 k-nearest neighbour (k-NN) 

K-nearest neighbour (k-NN) is a non-linear, non-parametric, instance-based machine 

learning approach that predicts a ligand’s bioactivity as the distance-weighted average 

of the bioactivity of its k nearest neighbours.268-270 The k-NN method generalizes the 

1-NN rule proposed by Cover and Hart in 1967, which is based on the principle that 

similar compounds exhibit similar properties.271 The performance of k-NN depends on 

the chosen k value and the distance function used. In this study, similarity between 

compounds was determined using the Euclidean distance in a multidimensional 
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descriptor space. Since the Euclidean distances between a compound and its k nearest 

neighbours are not identical, the neighbour closest to the compound is given a higher 

weight in calculating the predicted activity. The equation used for prediction is: 

𝑦̂𝑖 =
∑ 𝑦𝑗𝑤𝑖𝑗

𝑘
𝑗=1

∑ 𝑤𝑖𝑗
𝑘
𝑗=1

 

where yi is the observed activity value for the nearest neighbour j, 𝑦𝑖̂ is the predicted 

activity value for compound i, and wij are the weights defined as: 

wij=(1 + 
𝑑𝑖𝑗

2

∑ 𝑑𝑖𝑗
2𝑘

𝑗′=1

)

−1

 

where dij represents the Euclidean distance between compound i and its k nearest 

neighbour. The value of k (ranging from 1 to n−1, where n is the number of compounds 

in the dataset) is optimized during the model-building process to provide the best 

prediction for the training set. For test data prediction, the same equation and k value 

are used. The k-NN model was developed using WEKA 3.8 software. 

4.4.2 Random Forest (RF) 

Random Forest (RF) is a supervised, parallel, ensemble-based machine learning method 

developed by Breiman that uses decision trees as classifiers.272,273 The fundamental 

concept of this algorithm is to build a collection of independent decision trees from 

random samples of the training data. When a new input sample is introduced, each tree 

provides a prediction, and the final output is determined by averaging the predictions 

of all the decision trees using the following equation: 

𝑦̂(𝑥)  =  
1

𝑛𝑡𝑟𝑒𝑒
∑ 𝑓i

𝑛𝑡𝑟𝑒𝑒

𝑖=1

(𝑥) 

where 𝑓𝑖̂(𝑥) represents the predicted output of the ith tree, and 𝑓𝑖̂(𝑥) is the predicted 

response value by the RF model. The key advantage of the Random Forest algorithm 

over other machine learning techniques, such as artificial neural networks, support 

vector machines, or linear discriminant analysis, is its robustness against overfitting. 

The model tends to converge as the number of trees in the forest increases. During 

model building with WEKA 3.8, parameters such as the number of regression trees 
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(ntree), the number of randomly selected descriptors at each node, and the number of 

training samples in each terminal node (node size) were optimized to achieve the best 

Random Forest model. 

4.4.3 Artificial neural network (ANN) 

Artificial Neural Networks (ANNs)274,275 are supervised machine learning techniques 

inspired by the complex neuronal circuitry of the human brain, capable of modelling 

multidimensional, non-linear relationships between inputs and outputs. There are 

various types of ANNs, including feed-forward backpropagation networks (BP-NN), 

radial basis function networks, and probabilistic neural networks.276,277 In this study, a 

feed-forward backpropagation network was employed, consisting of three layers: input, 

hidden, and output layers, which are connected unidirectionally through coefficients 

known as weights (artificial synapses). This architecture computes a numerical output 

for a given input vector. The input data (In) is processed in each neuron as follows: 

𝑍𝑗 = ∑ 𝑊𝑖𝑗𝐴𝑖

𝑛

𝑖

 

where Zj represents the value of the jth hidden neuron, Wij is the weight linking the ith 

input neuron to the jth hidden neuron, and Ai is the normalized value of the ith input 

variable. 

In the ANN algorithm, input and output values are rescaled to a range from -1 to +1 

using the following formula: 

𝐴𝑖 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
× (𝑟𝑚𝑎𝑥 − 𝑋𝑟𝑚𝑖𝑛) + 𝑟𝑚𝑖𝑛 

where Xi is the ith real variable, Ai is the normalized value of Xi, Xmin and Xmax are the 

minimum and maximum values of Xi, and rmin and rmax are the target range limits for 

scaling. 

During each iteration of the BP-NN algorithm, the weights are adjusted to minimize the 

difference between the actual and predicted outputs. The weight change can be 

described by: 

𝛥𝑊𝑖𝑗 + 𝑊𝑖𝑗 → 𝑊𝑖𝑗 

𝛥𝑊𝑖𝑗 = 𝜂(𝑡 − 𝑜)𝐼𝑛𝑖 
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where t and o are the target and output values of the ANN for each sample, η is the 

learning rate that controls the amount of weight change at each iteration, and ΔWij 

denotes the change in weight Wij. 

4.4.4 Support vector machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm designed 

for classification and regression tasks, developed by Vapnik and colleagues based on 

statistical learning theory.278 SVM works by constructing a hyperplane in a 

multidimensional feature space that maximizes the margin between two classes. For a 

sample data point (xi, yi), where i=1,…n,  x ∈ Rd, and y ∈ (±1), the equation for the 

optimal hyperplane is w⋅x + b = 0. The margin, which is the distance between the 

hyperplane and the nearest data points, is given by 2/∥w∥. Finding the optimal 

hyperplane can be framed as solving the following convex quadratic programming (QP) 

problem: 

𝑚𝑖𝑛
1

2
∥ 𝑤 ∥2, 

Subject to: yi [w.x +b] ≥ 1 

Support Vector Regression (SVR) extends SVM to regression problems by finding a 

hyperplane that minimizes the distance to all data points, as opposed to maximizing the 

margin in classification. For linear regression, the goal is to find an optimal hyperplane 

that estimates y with an ϵ-insensitive loss function, meaning the distance from the 

hyperplane to any data point is less than ϵ. This problem is framed as minimizing the 

model's complexity, equivalent to minimizing 
1

2
∥ 𝑤 ∥2.. The corresponding quadratic 

programming problem is: 

𝑚𝑖𝑛
1

2
∥ 𝑤 ∥2 

Subject to: {
[ 𝑦𝑖─ 𝑤. 𝑥 ─ 𝑏]  ≤  ε

[𝑤. 𝑥 +  𝑏 ─ 𝑦𝑖]  ≤  ε
 

For nonlinear regression, SVM employs a kernel function to map the sample data into 

a higher-dimensional feature space.279,280 The study used the Radial Basis Function 

(RBF) kernel to uncover nonlinear relationships in the data using WEKA 3.8 software. 

The RBF kernel is expressed as:  
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𝑘 (𝑥, 𝑥𝑖) = 𝑒𝑥𝑝(− ‖𝑥 − 𝑥𝑖‖
2) 

where k is the kernel function, x and xi are vectors, and  is a hyperparameter. 

 

Figure 4.1: Graphical schematic representation of (A) k-Nearest neighbour (k-NN); 

(B) Random Forest (RF); (C) Support vector classifier (SVC); (D) Support vector 

regressor (SVR); (E) Artificial neural network (ANN). 

4.4.5 Bayesian classification study  

Bayesian classification employs Bayes' theorem,281 formulated by Thomas Bayes in the 

18th century, to calculate the probability of an event based on two factors: a prior 

probability and a likelihood function derived from a probability model of the observed 

data. Mathematically, it is expressed as:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Here, A represents the hypothesis or model, and B denotes the observed data. P(A) and 

P(B) are the prior belief and the evidence, respectively. P(A∣B) is the posterior 

probability, and P(B∣A) signifies the likelihood. 
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In this classification study, several fundamental molecular properties were calculated 

using Discovery Studio 3.0259 and used as independent variables to construct the 

Bayesian classification model. These properties include lipophilicity (AlogP), 

molecular weight (MW), the number of hydrogen bond donors (nHBD) and acceptors 

(nHBA), the number of rotatable bonds (nRB), the number of rings (nR), and the 

number of aromatic rings (nAR), along with the molecular fractional polar surface area 

(MFPSA). Additionally, a topological descriptor, the atom-type extended connectivity 

fingerprint of diameter 6 (ECFP_6), was employed for fragment-based structural 

assessment in this Bayesian classification study. 

4.4.6 Recursive partitioning study 

Recursive partitioning,281 also known as decision tree analysis, is a statistical learning 

algorithm used to predict an outcome based on a set of covariates (predictors). 

Introduced by Morgan and Sonquist in 1963 with the automatic interaction detection 

(AID) algorithm,283 the main idea behind recursive partitioning is to group individuals 

with similar outcomes using the covariate set. Given an outcome and a covariate, the 

decision tree splits the data into nodes based on each unique value of each covariate, 

aiming to make the outcome homogeneous within each node and heterogeneous 

between nodes until a stopping criterion is met. This stopping criterion can depend on 

cross-validated fit indices (e.g., entropy, mean squared error), node size (e.g., the 

number of participants in a node), and minimum improvement in prediction accuracy. 

In this study, the recursive partitioning (RP) model was developed using the "Create 

Recursive Partitioning Model" protocol in Discovery Studio 3.0.259 The model 

incorporated the same fundamental molecular properties used in the Bayesian 

classification model, along with a topological descriptor called the functional class 

fingerprint of diameter 6 (FCFP_6), to classify the dataset molecules into different 

clusters. The decision tree was constructed using an entropy-based split method and a 

minimum sample per node of 10 as the stopping criterion. 

4.4.7 SARpy analysis 

SARpy, or Structure Activity Relationship in Python, is a QSAR approach that employs 

"String mining" to transparently discover relevant molecular fragments and derive rules 

directly from the data without prior knowledge.282,284 The process of selecting an active 

ruleset involves three steps: 
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1. Fragmenting chemicals of arbitrary complexity to extract all possible substructures 

within a user-defined size range. 

2. Validating the predictive power of each fragment by analysing the correlation 

between the occurrence of each molecular substructure and the experimental 

activity of the compounds containing the fragment. 

3. Selecting the most predictive fragments and listing them as rules in the format "IF 

contains Structural alert THEN apply activity label." 

The Likelihood Ratio (LR) is calculated as:  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑅𝑎𝑡𝑖𝑜 (𝐿𝑅) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
×

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

In this study, SARpy analysis was conducted with OPTIMAL precision using SARpy 

software developed by Gini and colleagues.285 The analysis aimed to identify active 

structural alerts or rules for atoms numbering 2-18, with a minimum of 5 occurrences 

in the given dataset. 

4.5 Evaluation of QSAR models 

According to the OECD principle 2004,286 validating any QSAR model is essential to 

confirm its reliability and predictivity. In this study, the performance and learning 

capability of machine learning models were assessed using the squared correlation 

coefficient (R2) and root mean square error (RMSE). Leave-one-out (LOO) cross-

validation and mean absolute error (MAE) were also employed. For classification-

based models, a Receiver Operating Characteristic (ROC)-based statistical evaluation 

was conducted to assess performance and predictivity. Additionally, to validate the 

performance of SARpy, Bayesian, and RP models, metrics such as sensitivity (Se), 

specificity (Sp), precision (Pr), and accuracy (Acc) were analysed. Statistical properties 

like Matthew’s correlation coefficient (MCC), F1-measure, and balanced accuracy 

(AUCb) were also considered. Table 4.1 provides the mathematical descriptions and 

significance of these statistical validation parameters. 
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4.6 Molecular Docking and Molecular Dynamics (MD) simulation-based 

binding pattern analysis 

Molecular docking is a computational technique that samples conformations of small 

molecules in protein binding site in order to predict the affinity and binding pattern of 

the small molecules through geometric and energy matching and recognition. 

In the current sicario to conduct the molecular docking study, the X-ray diffraction 

solution structure of HDAC6 (PDB ID: 5EDU) was collected from the Protein Data 

Bank (PDB).287 Initially, in order to prepare and optimize the protein molecule, as well 

as to add any missing hydrogens, state generation and structural refinement of the 

protein the “Protein Preparation Wizard” of Schrodinger Maestro v12.5288 was utilised. 

During this process, the OPLS_2005 force field was chosen to perform restrain 

minimization of the protein structure. The “Receptor Grid Generation” wizard of 

Schrodinger Maestro v12.5 software was used to generate the receptor grid for 

molecular docking study. Subsequently, the “Ligprep” module present in maestro 

V12.5 was used to prepare the molecules before docking studies. Finally, the molecular 

docking study was conducted with extra precision (XP) method utilizing the GLIDE 

module of Schrodinger Maestro V 12.5.269,289 Ten poses were generated for each ligand 

during docking process and the best poses were selected based on the docking score 

values and best orientation of the molecule in the active site of HDAC6. 

For the MD simulation study, the best-docked poses of the compounds were selected 

based on their docking scores and binding site interactions with HDAC6 (PDB ID: 

5EDU). Each HDAC6 (PDB ID: 5EDU)-docked compound complex underwent pre-

processing and het-state generation using the Protein Preparation Wizard in 

Schrodinger Maestro v12.5 software.288 During protein pre-processing, hydrogens were 

added, bond orders assigned, and co-crystallized water molecules removed. The Epik 

module of Schrodinger Maestro v12.5 software was employed for het-state generation 

at a pH of 7.0 (± 2.0).288 Subsequently, the complex was optimized, and energy 

minimization was carried out using the OPLS_2005 force field, with the convergence 

of heavy atoms to an RMSD of 0.30 Å. The System Builder wizard in Schrodinger 

Maestro v12.5 software was then used to develop the simulation system. A cubic box 

with a 10 Å buffer distance between the system and the box boundary was chosen. The 

TIP3P solvent system was selected, and isotonic conditions were maintained by adding   
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Parameter Description Equation Significance 

R2 Squared 

correlation 

coefficient 

𝑅2 = 1 − ∑
(𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑)

2

(𝑦𝑜𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛)2
 

Metric to check the goodness-of-fit of a regression 

model by measuring the variation of observed data 

with the predicted once 

𝑸𝑳𝑶𝑶
𝟐  Leave-one-

out cross-

validation 

𝑄𝐿𝑂𝑂
2 = 1 −

∑(𝑦𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝑦𝑝𝑟𝑒𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2

∑(𝑦𝑜𝑏𝑠(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) − 𝑦̅(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2  

Cross-validated R2(Q2) is checked for internal 

validation  

RMSE Root means 

square error 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑜𝑏𝑠)
2𝑛

𝑖=1

𝑛
 

It gives a measure of model external validation. A 

lower value signifies good external predictivity.  

MAE Mean 

absolute 

error 

𝑀𝐴𝐸 =
1

𝑛
× ∑|𝑦𝑜𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑| 

Ensures that the trained model has no outlier 

prediction with huge errors 

SE Sensitivity 
𝑆𝐸 =

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Indicates the accuracy of real prediction 

SP Specificity 
𝑆𝑃 =

𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

Used to calculate the false positive rate 

Table 4.1: The mathematical description and significance of statistical validation parameters used for QSAR model development.  
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PR Precision 

 

𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Indicates the accuracy of predicted class 

Q Accuracy 
𝑄 =

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 

MCC Matthew’s 

correlation 

coefficient 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Used to measure the quality of binary 

classification 

F1 F-measure 

value 
𝐹1 =

2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

Indicates the harmonic mean of recall 

AUCb Balanced 

accuracy 
𝐴𝑈𝐶𝑏 =

(𝑆𝐸 + 𝑆𝑃)

2
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Na+ and Cl¯ ions at a concentration of 0.15 M. Additionally, 5 Na+ ions were included 

to neutralize the system charges, with the OPLS_2005 force field applied.269 

The Desmond module in Schrodinger Maestro v12.536 software was used to conduct 

100 ns MD simulation studies on the docked most active and least active compounds, 

along with HDAC6-bound Trichostatin A (TSA, PDB ID: 5EDU), using the 

OPLS_2005 force field. Each 100 ns MD simulation study was carried out under NPT 

ensemble conditions at a temperature of 37°C (310.15K) and a pressure of 1.01325 bar. 

Additionally, a pre-simulation system relaxation was performed using a 2.0 fs RESPA 

integrator, a Nose-Hoover chain thermostat with a relaxation time of 1.0 ps, and a 

Martyna-Tobias-Klein barostat with a relaxation time of 2.0 ps. 

Additionally, the stability of the complex was verified in terms of conventional root 

mean square deviation (RMSD), fluctuation (RMSF) of amino acid residues, the radius 

of gyration (Rg) of the main chain, Prime290 Molecular Mechanics-Generalized Born 

Surface Area (MM-GBSA)291, and principal component analysis (PCA)-based free 

energy landscape (FEL).29
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Result and Discussion  

5.1 Feature Selection 

The feature selection process was conducted using the training set compounds, and the 

training and test data distributions were validated through logP and molecular weight-

based principal component clustering, as well as fundamental molecular property-based 

t-SNE distribution (Fig. 5.1A and 5.1B, respectively). The main objective of feature 

selection is to identify the most relevant and significant features while preventing data 

overfitting caused by noisy, redundant descriptors. In this study, a LOO-cross-validated 

lasso regression-based feature selection procedure was employed to identify highly 

important molecular descriptors (Fig. 5.1C and 5D) (Appendix Table S2). This was 

followed by best subset selection to filter out the most relevant descriptors for the 

dataset molecules (Appendix Table S3). The reliability and robustness of these selected 

features were further evaluated through the development of MLR models (Appendix 

Table S4).  

5.2 Machine learning model optimization 

Optimizing the learning parameters of machine learning (ML) models is crucial for 

their performance. In this study, the k-NN model was constructed by optimizing the 

number of neighbours, while the RF models were optimized by adjusting the number 

of trees using WEKA 3.8 software. For the SVM model, parameters such as kernel 

complexity (C), kernel width (γ), and the epsilon value for the radial basis function were 

optimized using AUTOWEKA 1.0 software. The same AUTOWEKA 1.0 software was 

also used to optimize the learning rate, learning momentum, number of hidden layer 

nodes, and epoch parameters for the ANN model. The final optimized models were 

selected based on their Q2, R2, and root mean square error (RMSE) values for the 

training set instances. Detailed depictions of the ML model optimization and their 

actual vs. predicted activity for each of the optimized models are provided in Fig. 5.1E 

to 5.1P. 

5.3 Evaluation of Machine Learning (ML) model performance 

All regression-based machine learning models were constructed using the selected ten 

features on the training set molecules (NTraining = 104). The statistical quality of these 

optimized ML models is summarized in Table 5.1. Among the four regression-based 

ML models analysed, the Random Forest (RF) model with 90 trees and the Support 
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Vector Machine (SVM) model with an epsilon of 0.001, an optimal C of 524,288.0 

(2^19), and an optimal γ value of 0.00000762939453125 (2^-17) were found to be the 

most capable of representing the activity variation of these HDAC6 inhibitors both 

internally and externally (Table 5.1). 

Among the twenty k-NN models generated with the selected feature set and varying 

numbers of neighbours, the model with 9 neighbours was found to be the best. It 

exhibited an R² of 0.675 and a Q² of 0.549, with an R²Pred value of 0.385 for the test 

set. 

From the development of the Random Forest (RF) model, the RF model with 90 trees 

produced a Q² of 0.537 and an R²Pred of 0.668 for the test set molecules, while 

maintaining an R² of 0.954 for the training set population.  

Table 5.1: The statistical performance calculated for the optimized ML models 

Model Type R2 RMSE Q2 RMSELOO-CV R2
Pred RMSEPred 

k-NN 0.657 0.404 0.549 0.462 0.385 0.560 

RF 0.954 0.173 0.537 0.463 0.668 0.419 

SVM 0.738 0.348 0.661 0.397 0.564 0.483 

ANN 0.704 0.419 0.655 0.399 0.487 0.525 

       

 

The parameter-optimized Artificial Neural Network (ANN) model, with an optimal 

configuration of 1 hidden layer, a learning rate of 0.1, a momentum of 0.3, and 10 

epochs, exhibited R², Q², and R²Pred values of 0.704, 0.655, and 0.487, respectively. 

Additionally, the optimized Support Vector Machine (SVM) model, with an epsilon of 

0.001, an optimal C of 524,288.0 (2^19), and an optimal γ of 0.00000762939453125 

(2^-17), produced an R² value of 0.738 and a Q² of 0.661, while showing an R²Pred of 

0.564 for the test set. 

5.4 Interpretation of selected features used for machine learning  

By analysing the model's descriptors, it is possible to gain valuable chemical insights 

into the activities and structural requirements that influence the inhibitory activity of 

these quinazoline-based HDAC6 inhibitors. Therefore, a critical examination of these 

selected features is essential not only for a deeper understanding of their inhibitory  
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Fig. 5.1. (A) PCA-based chemical space distribution of training and test set compounds, (B) Molecular property-based t-SNE distribution of the 

training and test set molecules, (C) Mean squared error (MSE) vs log λ values for the LASSO-feature selection, (D) LASSO regression selected 

final set of features, (E) R2 scores vs Number of neighbours for the k-NN model optimization, (F) RMSE scores vs Number of neighbours for the 

k-NN model optimization, (G) R2 scores vs Number of trees for the random forest model optimization, (H) RMSE scores vs Number of trees for 

the random forest model optimization (I) optimization contour surface for the SVM model, (J) R2 scores vs number of hidden layer nodes for the 

ANN model, (K) RMSE scores vs number of hidden layer nodes for the ANN model, (L) RMSE scores vs learning time for the ANN model, 

Observed versus predicted activity for the optimized (M) k-NN model, (N) random forest model, (O) SVM model, (P) ANN model,

 



109 
 

mechanism but also for designing more potent molecules. Consequently, a 

comprehensive discussion of these selected features is provided. 

KRFP363 is a Klekota-Roth fingerprint substructure that indicates the presence or 

absence of the N-methylbutan-1-amine function in a molecule. A detailed analysis of 

the dataset molecules revealed that the presence of this functionality in the linker region 

of compound 30 resulted in lower HDAC6 inhibitory efficacy (IC50 = 1,238 nM) (Fig. 

4). Comparing this with other similar compounds such as compounds 27, 28, and 29, it 

appears that the presence of the amine functionality in the linker region is unfavourable. 

A thorough examination of the crystal structure of HDAC6 (PDB ID: 5G0G & 5G0H) 

showed that both catalytic domains are highly conserved and feature narrow 

hydrophobic channels composed of residues Pro83, Phe202, Trp261, and Gly201 in 

catalytic domain 1, and Pro464, Phe583, Gly582, Leu712, and Phe643 in catalytic 

domain 2. This hydrophobic nature of the channel may be responsible for the 

unfavourable interaction with the amine functionality in the linker region, leading to 

decreased inhibitory potency. 

ATSC8 represents the average Centered Broto-Moreau autocorrelation with a lag of 8, 

weighted by I-state. This 2D autocorrelation descriptor is calculated based on the 

Moreau-Broto autocorrelation, where lag 8 signifies the topological distances between 

two atoms in a molecule. It was observed that dataset molecules with higher negative 

values of this descriptor were effective HDAC6 inhibitors, including compounds 21, 

31, 33, 35, 39, 49, 50, 99, and 137. 

Likewise, minHCsatu is a 2D Atom type Electrotopological state descriptor 

representing the minimum atom-type H E-State: H on C sp3 bonded to unsaturated C. 

It was observed that molecules with higher positive values of this feature were 

promising HDAC6 inhibitors, including compounds 24-26, 31, 40-44, 62, and 66-68. 

PubchemFP686 represents a 4-hydroxy ketone function (Fig. 5.2). It was observed that 

most molecules (compounds 70-77, 109, 113, 117, 120) with this functionality in the 

linker were less effective HDAC6 inhibitors. In comparison to other compounds such 

as 78-95, it appears that the 4-hydroxy ketone functionality may be detrimental to 

HDAC6 inhibition. However, replacing it with a 5-hydroxy ketone (compounds 78-86) 

or a 6-hydroxy ketone (compounds 87-95) leads to a significant improvement in 

HDAC6 inhibitory efficacy. 



110 
 

 

Fig. 5.2. Selected features with negative contributions from the ML model with their 

representative dataset compounds 

PubchemFP372 represents the ethanamine function. This fragment was observed in 

the aryl moiety of the dataset compounds (Fig. 5.3). Detailed analysis revealed that the 

presence of this functionality, particularly in the linker region (as pyridine in 

compounds 24, 26, 36, 45, 46, and as triazole in compounds 96-107), led to more active 

HDAC6 inhibitors. It can be assumed that the lone pair on the nitrogen and the π 

electron cloud of the aromatic ring facilitate favourable electrostatic interactions at the 

HDAC6 active site, contributing to higher HDAC6 inhibition. 

On the other hand, GATS4m is a 2D autocorrelation descriptor representing Geary 

autocorrelation-lag 4, weighted by mass. In this descriptor, the Geary coefficient, a 

distance-type function, can be any physicochemical property calculated for each atom 

in the molecule, such as electronegativity, atomic mass, dipole moment, polarizability, 

etc. Here, the property is atomic masses. It was observed that both increases and 

decreases of this parameter beyond a certain range led to a reduction in HDAC6 

inhibition. This implies that a balanced topological distribution of atomic masses, along 

with the spatial molecular graph, is necessary for effective HDAC6 inhibition. 

Additionally, the seventh selected descriptor, KRFP413, represents the ethylbenzene 

function (Fig. 5.3). It was observed that compounds containing this substructural 
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feature in the 3rd position of the quinazoline ring are more effective HDAC6 inhibitors 

(compounds 128, 130-134, 137, 138, 140-142), with the exception of compound 139 

(IC50 = 747 nM). Further analysis revealed that replacing the ethylbenzene 

functionality with halogen-substituted methylbenzene (compounds 7-10) led to a 

decrease in HDAC6 inhibition efficacy. This suggests that an appropriate degree of 

rotation and optimized lipophilicity for such substitution in the 3rd position of the 

quinazoline ring enhances inhibitory efficacy. 

 

Figure 5.3: Selected features with positive contributions from the ML model with 

their representative dataset compounds 

APC2D6_C_Cl is an atom pair count descriptor indicating the presence of a C-Cl group 

at a topological distance of 6. Structural analysis of the dataset molecules showed that 

both the frequency of the C-Cl feature and its relative position within the molecular 

structure significantly impact inhibitory efficacy. For instance, compound 2, which has 

this feature attached to the 3rd position of the quinazoline ring, is a less effective 

HDAC6 inhibitor (IC50 = 2,385 nM). 

GATS7p is a 2D descriptor representing Geary autocorrelation-lag 7, weighted by 

polarizabilities, which encodes the distribution of polarizability along the molecular 

topology. Polarizability refers to the ability of an atom or molecule to attract and distort 

the electron cloud of neighbouring species, a process known as polarization. It was 
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observed that in our dataset, compounds with values of this descriptor within a specific 

range demonstrated strong inhibitory efficacy. This suggests that an optimal 

distribution of polarizability throughout the molecule’s topology can enhance HDAC6 

inhibitory potency. 

Lastly, the descriptor nHBint3 represents the count of E-State descriptors indicating 

the strength of potential hydrogen bonds with a path length of 3. It was observed that 

an increase in the occurrence rate of this electro-topological state descriptor generally 

corresponds to lower IC50 values, indicating enhanced inhibitory activity. This 

suggests that as the potential for hydrogen bond formation increases, the molecules may 

achieve more thermodynamically stable interactions with the target protein (HDAC6). 

Therefore, for designing more potent HDAC6 inhibitors, it is important to consider an 

optimal number of hydrogen bond donor and acceptor groups. 

5.5 Bayesian Classification model 

In addition to our non-linear QSAR approach, the fragment-dependent Bayesian 

classification analysis proved highly effective in identifying key substructural features 

that influence the HDAC6 inhibitory activity of these hydroxamate derivatives. To 

assess the quality and reliability of the Bayesian classification model, several statistical 

metrics were calculated (Table 4.1), and the results demonstrated statistical reliability. 

The model showed a LOO cross-validation ROC score of 0.873, a ROC score of 0.870 

from five-fold cross-validation, and a ROC score of 0.824 for the test set (Appendix 

Figure S1), highlighting its predictive performance and reliability. Additional statistical 

validation parameters are provided in Table 5.2 and Fig. 5.5(A). 

Table 5.2 Calculated statistical parameters for the classification-based QSAR models 

Model Dataset ROC ROCLOO-

CV 

Se Sp Pr ACC MCC F1 AUCb 

Bayesian 

Classification 

Training 0.870 0.873 0.912 0.833 0.911 0.885 0.745 0.911 0.872 

Test 0.824 - 0.727 0.750 0.800 0.737 0.471 0.761 0.738 

RP 

Decision tree 

1 

Training 0.927 0.820 0.666 0.962 0.944 0.817 0.660 0.781 0.814 

Test 0.767 -- 0.545 0.750 0.750 0.631 0.295 0.631 0.647 

SARpy Training -- -- 0.940 0.830 0.941 0.900 0.785 0.927 0.885 

Test --- -- 0.740 0.730 0.727 0.750 0.471 0.761 0.735 
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Additionally, this analysis identified a total of 40 ECFP_6 substructural fragments of 

the hydroxamate derivatives, which have either positive or negative effects on HDAC6 

inhibition. The 20 beneficial (G1-G20) and 20 detrimental (B1-B20) molecular 

fingerprints are illustrated in table 5.3 and 5.4, respectively. Upon examination, the 20 

beneficial molecular substructures (G1-G20) can be categorized into three groups: 

quinazoline, quinazoline-4-one, and pyrimidine moieties (G1-G4, G6, G8); alkane-

substituted azole moieties (G10, G12-G13, G15-G20); and aliphatic amines (G5, G9, 

G11, G14). 

Conversely, among the features negatively impacting HDAC6 inhibition, the 

pyrimidine moiety was the most frequently observed detrimental feature (B1-B2, B5-

B6, B8, B10, B11-B12, and B14). Additionally, single nitrogen-containing saturated 6-

membered heterocyclic rings (B4), benzyl ethers (B9, B17, B19-B20), and alkyl ethers 

(B13, B15) were also identified as negative regulators of HDAC6 inhibitory activity. 

Further analysis of the substructures and molecules revealed that the most effective 

compounds, 36 and 46 (IC50 = 3 nM), not only feature quinazoline as a central scaffold 

but also include a pyrimidine connected to quinazoline via a secondary amine. 

 

Figure 5.4: Representative dataset molecules with good and bad Bayesian fragments. 

Similarly, compounds 31-35 and 37-45 also possess these structural features and were 

found to be potent HDAC6 inhibitors, with IC50 values ranging from 4 nM to 52 nM. 

This observation aligns with our regression analysis, which indicated that the strength 
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for potential hydrogen bonds of path length 3 (nHBint3) and the ethanamine function 

(PubchemFP372), present in pyridine, pyrimidine, and triazole rings, have a positive 

effect on HDAC6 inhibitory activity (Fig. 5.4). 

Regarding the negative ECFP_6 fragments, it was noteworthy that the quinazoline 

scaffold with ether and tertiary amine functions (B2 and B5) was detrimental to HDAC6 

inhibition. While quinazoline is a common core feature in many HDAC inhibitors, such 

as compounds 71-83, which contain these unfavourable structural features, were found 

to be less effective HDAC6 inhibitors. These findings also suggest that the presence of 

an ether group may negatively impact the HDAC6 inhibitory activity of these 

hydroxamate analogues. 

5.6 Recursive partitioning (RP) study 

The CART-based recursive partitioning method generated four decision trees using 

fundamental molecular features and FCFP_6 to classify active and inactive compounds. 

Among these, the first decision tree, which utilized four substructural features, was 

chosen for further analysis due to its performance. This tree had an ROC of 0.927 and 

a cross-validated ROC (ROCcv) of 0.820 for the training data, and an ROC of 0.767 

for the test set. For the training data, decision tree 1 demonstrated its predictive 

capability with 66.6% sensitivity (Se), 96.2% specificity (Sp), 94.4% precision (Pr), 

and 96.2% accuracy (ACC) (Fig. 5.5 A). During external validation, decision tree 1 

also provided satisfactory predictions with 54.5% sensitivity, 75.0% specificity, 75.0% 

precision, and 63.1% accuracy (Fig. 5.5 A). The statistical validation parameters are 

detailed in Table 5.2. 

Decision tree 1 (Fig. 5.5 B), which incorporates four substructural features, also uses 

nHBA (number of hydrogen bond acceptors), nHBD (number of hydrogen bond 

donors), and Mw (molecular weight) as key factors to classify the dataset molecules 

into seven distinct groups (Fig. 5.5B). This decision tree highlights the significance of 

butyl amine functionality and molecular weight in distinguishing between active and 

inactive compounds. It is noteworthy that while the butyl amine function was identified 

as a favourable feature (G14) in the Bayesian classification study, it appears to have a 

negative impact on HDAC6 inhibitory activity in the current recursive partitioning 

model. 
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Table 5.3: Good ECFP_6 fragments obtained from the Bayesian classification study 

 
 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

G1: 726751110 

14 out of 14 good 

Bayesian Score: 0.368 

G2: -1607747969 

14 out of 14 good 

Bayesian Score: 0.368 

G3: 1569575246 

14 out of 14 good 

Bayesian Score: 0.368 

G6: 573062983 

11 out of 11 good 

Bayesian Score: 0.360 

G7: -219423964 

10 out of 10 good 

Bayesian Score: 0.356 

G8: -1002025377 

10 out of 10 good 

Bayesian Score: 0.356 

G11: -2119310481 

10 out of 10 good 

Bayesian Score: 0.356 

G12: -1731122899 

10 out of 10 good 

Bayesian Score: 0.356 

G13: 816396776 

10 out of 10 good 

Bayesian Score: 0.356 

G16: 121650401 

10 out of 10 good 

Bayesian Score: 0.356 

G17: 2129650112 

10 out of 10 good 

Bayesian Score: 0.356 

G18: 311627079 

10 out of 10 good 

Bayesian Score: 0.356 

G19: -1589534745 

10 out of 10 good 

Bayesian Score: 0.356 

G20: -2041577508 

10 out of 10 good 

Bayesian Score: 0.356 

G14: -2118347459 

10 out of 10 good 

Bayesian Score: 0.356 

G15: 1990926508 

10 out of 10 good 

Bayesian Score: 0.356 

G9: -4235950 

10 out of 10 good 

Bayesian Score: 0.356 

G10: 1278310572 

10 out of 10 good 

Bayesian Score: 0.356 

G5: -592856198 

11 out of 11 good 

Bayesian Score: 0.360 

G4: -1179243667 

12 out of 12 good 

Bayesian Score: 0.363 
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Table 5.4: Bad ECFP_6 fragments obtained from the Bayesian classification study 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

B1: 887355427 

0 out of 12 good 

Bayesian Score: -2.202 

B2: -1796703767 

0 out of 12 good 

Bayesian Score: -2.202 

B6: 1478078755 

0 out of 12 good 

Bayesian Score: -2.202 

B11: -304302513 

1 out of 16 good 

Bayesian Score: -1.768 

B16: -742907450 

1 out of 16 good 

Bayesian Score: -1.768 

B17: -1807893558 

1 out of 16 good 

Bayesian Score: -1.768 

B18: -666326105 

1 out of 16 good 

Bayesian Score: -1.768 

B19: 809943749 

1 out of 16 good 

Bayesian Score: -1.768 

B20: -1393419274 

1 out of 16 good 

Bayesian Score: -1.768 

B15: -1531301414 

1 out of 16 good 

Bayesian Score: -1.768 

B14: 1821498523 

1 out of 16 good 

Bayesian Score: -1.768 

B13: 2055803015 

1 out of 16 good 

Bayesian Score: -1.768 

B12: -249806767 

1 out of 16 good 

Bayesian Score: -1.768 

B7: -1661653144 

1 out of 19 good 

Bayesian Score: -1.927 

B8: -739716278 

1 out of 16 good 

Bayesian Score: -1.768 

B9: 182451333 

1 out of 16 good 

Bayesian Score: -1.768 

B10: 257408491 

1 out of 16 good 

Bayesian Score: -1.768 

B3: 1951894094 

0 out of 12 good 

Bayesian Score: -2.202 

B4: -95545909 

0 out of 12 good 

Bayesian Score: -2.202 

B5: 14006777 

0 out of 12 good 

Bayesian Score: -2.202 
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Figure 5.5: (A) Confusion matrix and calculated statistical parameters for the 

classification-based QSAR models (blue: Training data, red: Test data), (B) 

Schematic representation of RP model generated decision tree 1. 

5.7 SARpy key structural attribute identification study 

The smiles-mediated structural alert mining using SARpy analysis of hydroxamate-

based inhibitors identified nine substructural features in smiles notation as part of the 

active rule set (Table 5.5). For the training set, SARpy analysis achieved 94.0% 

sensitivity (Se), 83.0% specificity (Sp), 94.1% precision (Pr), and 90.0% accuracy 

(ACC). When validated on the test set, the active ruleset showed 74.0% sensitivity, 

73.0% specificity, 72.7% precision, and 75.0% accuracy. Additional statistical 

validation parameters related to SARpy analysis are detailed in Table 5.2. 

Among the nine structural alerts identified by SARpy as part of the active ruleset (Table 

5.5), several were noted for their positive contributions to HDAC6 inhibition. 

Specifically, the alert c12c(c(=O)n(c(n1)C))ccc(c2)C represents the quinazoline-4-one 
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functionality, and c1nnn(c1)CCCCCC denotes 1-hexyl triazole, both of which 

positively impact HDAC6 inhibition. 

Table 5.5: SARpy active ruleset along with their corresponding structures and 

likelihood ratio 

Active Ruleset Structure Likelihood Ratio 

c12c(c(=O)n(c(n1)C))ccc(c2)C 

 

Infinite 

c1nnn(c1)CCCCCC 

 

Infinite 

N(C)c1ccc(cc1)OCCCCC 

 

Infinite 

Cc1ccc(s1)C(=O)NO 

 

Infinite 

C(Nc1c(cnc(n1))[N+]#[C-])C 

 

5.29 

Nc1ccc(cc1) 

 

8.21 

CCc1ccccc1 

 

7.94 

C(=O)NCc1ccc(cc1) 

 

3.18 

c1ccc(cc1)F 

 

3.97 

 

Similarly, Bayesian classification identified analogous features as beneficial fragments 

(G8 and G12-G13, G15-G20) with positive effects on HDAC6 efficacy. The alert 

N(C)c1ccc(cc1)OCCCCC highlights the positive influence of the N-methyl-4-

(pentyloxy)aniline moiety on HDAC6 inhibition, while Cc1ccc(s1)C(=O)NO indicates 

that a 2-methylthiophene-containing hydroxamic acid moiety is favorable for activity. 

Additionally, C(Nc1c(cnc(n1))[N+]#[C-])C and Nc1ccc(cc1) denote N-ethyl-5-

isocyanopyrimidin-4-amine and aniline, respectively, both contributing positively to 

HDAC6 inhibition and also identified as good fragments (G2 and G7) in our Bayesian 
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model. Finally, the structural alerts CCc1ccccc1, C(=O)NCc1ccc(cc1), and 

c1ccc(cc1)F, representing ethylbenzene, N-benzyl formamide, and fluorobenzene, 

respectively, were also positive contributors to HDAC6 inhibition. Notably, the 

common benzyl function among these three alerts was also recognized as a beneficial 

fragment (G7 and G10) in the Bayesian classification model. 

 

Figure 5.6: SARpy generated active fragments containing potent HFAC6 inhibitors. 

Applying the active ruleset to the training set, 70 out of 104 structures matched, while 

20 out of 38 test set molecules matched. Notably, compounds 31, 34, 38, and 44, which 

feature the active ruleset C(Nc1c(cnc(n1))[N+]#[C-])C and Nc1ccc(cc1) identified by 

SARpy structural alert mining, are effective HDAC6 inhibitors. Additionally, 

compounds 96-105 and 131-137, which contain multiple structural alerts, were also 

found to be potent HDAC6 inhibitors (Fig. 5.6). 

5.8 Molecular dynamics (MD) simulation study 

Molecular dynamics (MD) simulations of the most effective (compound 36) and least 

effective (compound 2) quinoline-containing hydroxamate derivatives at the HDAC6 

active site were conducted using the Desmond module of Schrodinger Maestro v12.5 

software. Analysis of the RMSD values of the protein and ligand trajectories during the 

simulation (Fig. 5.7) revealed that the C-α chain of HDAC6 (PDB ID: 5EDU) exhibited 

minimal RMSD fluctuation (< 3Å) when bound to both compounds 36 and 2. However, 
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the RMSD values for the atoms of compound 36 were noticeably higher compared to 

those for compound 2. The RMSD for compound 2, when complexed with HDAC6, 

exhibited similar fluctuations to the C-α chain of the protein, in contrast to the higher 

fluctuations observed with compound 36 (Fig. 5.7B vs 5.7A). 

 

Figure 5.7: 100 ns trajectory RMSD plot for (A) compound 36, and (B) compound 2, 

RMSF plot for the C-α chain residues of HDAC6 (PDB ID: 5EDU) (C) compound 36, 

and (D) compound 2, RMSF of (E) compound 36, and (F) compound 2 for 100 ns 

simulated period 

Interestingly, this suggests that compound 2 binds more stably to the HDAC6 active 

site compared to compound 36, despite being the least effective inhibitor in the series. 

The RMSD fluctuation of the C-α chain residues (Fig. 5.7C and 5.7D) showed similar 

fluctuations for most residues, except for Ser498, His499, Leu495, Trp496, Lys555, 

Ser563, Ser564, Asn565, Phe620, Gly619, Cys618, His610, and His611, which 

exhibited higher fluctuations when bound to compound 36 (Fig. 5.7C) compared to 

compound 2 (Fig. 5.7D). Conversely, residues such as Ser688, Ser689, and Pro708 

showed higher fluctuations in the HDAC6-compound 2 complex compared to the 

HDAC6-compound 36 complex. Additionally, the heavy atoms of the cap group in 

compound 36 (atom numbers 1-20, 23-30, and 39, Fig. 5.7E) exhibited high fluctuations 
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(>2Å), whereas the smaller cap group of compound 2 (atom numbers 1-18, Fig. 5.7F) 

showed minimal fluctuation (< 2Å), except for the chlorine atom. This indicates that 

the high RMSD values observed for the most active compound 36 are due to significant 

fluctuations in the cap group heavy atoms, influenced by the highly flexible ethylene 

spacer connecting the cap to the linker phenyl ring. 

In the analysis of protein-ligand interactions at the HDAC6 active site (Fig. 5.8), 

compound 36 interacted with a larger number of HDAC6 amino acid residues compared 

to compound 2 (Fig. 5.8A vs 5.8B). Specifically, compound 36 formed hydrogen bonds 

with Ser568, His611, Pro717, and His499, while establishing hydrophobic interactions 

with Phe620, His651, Tyr782, Pro501, Tyr570, Leu749, His500, His499, Phe679, 

Phe680, Met682, and Asn494. Additionally, ionic interactions were observed between 

compound 36 and the residues Asp649, His651, Asp742, and Tyr782 of HDAC6 (Fig. 

5.8A). 

 

Figure 5.8: The interaction fraction recorded between (A) compound 36, and (B) 

compound 2 and HDAC6 catalytic site (PDB ID: 5EDU), Overall contact frequency 

for (C) HDAC6-compound 36 complex, and (D) HDAC6-compound 2 complex, 

Contact frequency of (E) compound 36, and (F) compound 2 with HDAC6 catalytic 

site residues 
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Although the least active compound 2 interacted with fewer HDAC6 amino acid 

residues, it established hydrogen bond interactions with only three residues: His610, 

Gly781, and Tyr782, as well as with His651. For hydrophobic interactions, compound 

2 interacted with residues Phe620, Phe680, Leu749, Tyr782, Pro501, and His499. 

Additionally, ionic interactions were observed with Asp649, His651, and Asp782 (Fig. 

5.8A). 

During the 100 ns simulation period, it was observed that while compound 36 interacted 

with a larger number of HDAC6 catalytic site residues, many of these interactions were 

brief. The most significant and stable interactions were with residues Asp649, His651, 

His611, Phe620, Asp742, and Tyr782 (Fig. 5.8E). In contrast, compound 2 formed 

strong interactions primarily with residues Asp649, His651, Asp742, and Phe680 (Fig. 

5.8F). However, compound 2 did not establish strong interactions with residues His610, 

His611, and Phe620 as effectively as compound 36. Molecular generalized Born 

surface area (MM-GBSA) calculations for the ligand-protein binding energy were 

performed using the Prime module of Schrodinger Maestro software with a step of 10 

(nsteps = 10) (Table 5.6). These calculations indicated that the most active compound 

demonstrated stable binding, whereas the least active compound formed a less stable 

complex with HDAC6. The calculated coulombic, van der Waals, and overall binding 

energies for these complexes during the simulation are detailed in Fig. 5.9A and 5.9B. 

Table 5.6 Prime calculated MM-GBSA binding free energies for the simulated 

compounds. 

Complex Energy (kcal/mol) 

Avg. ΔGBinding Avg. ΔGBinding-Coulomb Avg. ΔGBinding-van der Waals 

HDAC6- Compound 36 - 8.575  - 31.378 - 37.976 

HDAC6- Compound 2 + 3.992 -14.673 -31.406 

 

In addition to the basic MD analyses, the trajectory principal component analysis 

(Trajectory PCA) was used to calculate the free energy landscape (FEL) with the 

g_sham script from GROMACS 2020.6. The FEL contour maps reveal that both 

compounds 36 and 2, despite having some unstable high-energy conformations (red to 

reddish brown areas), also exhibited similar stable low-energy conformations (violet to 

bluish violet regions) (Fig. 5.9A and 5.9B). However, although both compounds 
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showed stable binding, the conformation of the compound 2-HDAC6 complex had a 

higher energy (cyan cleft, Fig. 5.9B) compared to the compound 36-HDAC6 complex. 

This indicates that, despite greater fluctuation in the cap group of compound 36, it 

adopted multiple stable low-energy conformations during the simulation, which may 

contribute to its superior HDAC6 inhibitory activity compared to compound 2. 

 

Figure 5.9: The calculated Gibb’s free energy for the simulated (A) HDAC6-

compound 36 complex, and (B) HDAC6 compound 2 complex, the trajectory PCA-

based free energy landscape plot for (C) HDAC6-compound 36 complex, and (D) 

HDAC6 compound 2 complex. 

From Fig. 5.9A and 5.9B, it is evident that the compound 36-HDAC6 complex reached 

its most stable conformation at 26.6 ns, with the least stable conformation occurring at 

68.2 ns (Fig. 5.9A). Conversely, for the compound 2-HDAC6 complex, the initial 

conformation at 0.2 ns was the most stable, while the conformation at 0.3 ns was the 

least stable throughout the 100 ns simulation (Fig. 5.9B). The binding mode analysis of 

both the most active and least active compounds at various time points (Fig. 5.10) 

uncovered several notable observations regarding their interaction with HDAC6 CD1. 
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Figure 5.10: The binding mode of compound 36 at HDAC6 active site (PDB ID: 

5EDU) at (A) 0ns, (B) 26.6 ns, (C) 68.2 ns, (D) 100 ns, the binding mode of 

compound 2 at HDAC6 active site (PDB ID: 5EDU) at (E) 0.03 ns, (F) 0.2 ns, (G) 50 

ns, (H) 100 ns 

For compound 36, with its large and bulky quinazoline cap group, the cap moiety 

exhibited greater fluctuation compared to the smaller cap group in compound 2 (Fig. 

5.10A-D vs 5.10E-H). This increased fluctuation in the cap group is reflected in the 

RMSD plot of the ligand versus the protein (Fig. 5.7). Notably, in the most stable 

conformation at 26.6 ns (Fig. 5.10B), the fused phenyl ring of the quinazoline cap in 

compound 36 was observed to form a π-π interaction with His500 in the proximal loop 

of HDAC6 CD1. However, this interaction was absent in the least stable conformation 

at 68.2 ns (Fig. 5.10C). For the less active compound 2, the ethylene chloride 

substitution in the quinazoline cap was positioned near the carbonyl oxygen between 

Phe679 and Phe780 in the most stable conformation (0.03 ns, Fig. 5.10E), while it was 

significantly displaced in the least stable conformation (0.2 ns, Fig. 5.10F). These 

observations were also supported by the ML models (APC2D6_C_Cl), which 

suggested that such fragments contribute to HDAC6 binding and influence HDAC6 

inhibitory activity and selectivity. 
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Chapter 6 
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Conclusion 

The success of any research lies in the outcomes it produces and the conclusion it draws, which 

can uncover new or unexplored scientific insights. These findings can enhance understanding 

and deepen knowledge in the specific field of study. In response to the economic pressures on 

the drug market to be cost-effective and time-efficient, computational chemistry, including 

techniques like computer aided drug design and molecular modelling, along with virtual 

screening, are now recognised as the most effective and rapid methods for introducing new 

chemical entities into the market. These computational methods may reduce the lead generation 

time but are unable to bypass the clinical trials, as its next to impossible to computationally 

model a whole human body with its ecstatic complexity to understand the effect of human’s 

internal environment on the lead molecule. In other words what a lead molecule and human 

body dose to each other cannot be comprehended by computational study. To reduce time in 

this area of drug discovery, drug repurposing becomes the most obvious option, as the 

knowledge of the drug is already available, the job is to just find a new application for it. This 

computational study on HDAC6 and its inhibitors was quite helpful to widen the understanding 

of HDAC6, its pathophysiology and its inhibitors. The machine learning (ML) and fragment 

based structural analysis study was able to identify key structural features ruling the biological 

activity. In this study substituted quinazoline moiety, ethylene chloride function, piperazine 

ring, heterocyclic nitrogen, and sulfur-containing 6-membered saturated ring, number of 

hydrogen bond donor-acceptor groups, and molecular weight of these compounds came forth 

as a leading factor for HDAC6 activity variation. Finally, the key finding of this study is that 

the quinazoline cap group in HDAC6 inhibitors can lead to strong and selective inhibition of 

HDAC6. Despite its larger size and grater mobility after binding, the bulky quinazoline cap 

can establish multiple interactions with the residues of HDAC6’s pocket-forming loops. These 

interactions between HDAC6 loop residues and a thoughtfully designed cap moiety in 

inhibitors could pave the way for the future development of HDAC6-specific inhibitors.  
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Appendix Table S1. Dataset compounds with their smiles notation, HDAC6 inhibitory 

activity, and binary categories 

Cpd 

No 

Smiles IC50 pIC50 Binary Class Set 

1 c1(ccc2c(c1)c(=O)n(cn2)CC)/C=C/C(=O)NO 1354 5.868 0 Inactive Training 

2 c1(ccc2c(c1)c(=O)n(cn2)CCCl)/C=C/C(=O)NO 2385 5.623 0 Inactive Training 

3 c1(ccc2c(c1)c(=O)n(cn2)CCC)/C=C/C(=O)NO 925 6.034 0 Inactive Test 

4 c1(ccc2c(c1)c(=O)n(cn2)CCCC)/C=C/C(=O)NO 974 6.011 0 Inactive Training 

5 c1(ccc2c(c1)c(=O)n(cn2)CC1CCCC1)/C=C/C(=O)NO 504 6.298 0 Inactive Training 

6 c1(ccc2c(c1)c(=O)n(cn2)Cc1ccccc1)/C=C/C(=O)NO 285 6.545 0 Inactive Test 

7 c1(ccc2c(c1)c(=O)n(cn2)Cc1ccccc1F)/C=C/C(=O)NO 424 6.373 0 Inactive Test 

8 c1(ccc2c(c1)c(=O)n(cn2)Cc1cccc(c1)F)/C=C/C(=O)NO 588 6.231 0 Inactive Training 

9 c1(ccc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)F)/C=C/C(=O)NO 253 6.597 0 Inactive Test 

10 c1(ccc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)Cl)/C=C/C(=O)NO 329 6.483 0 Inactive Training 

11 c1(ccc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)C)/C=C/C(=O)NO 360 6.444 0 Inactive Training 

12 c1c(cc2c(c1)c(=O)n(cn2)CC)/C=C/C(=O)NO 68 7.167 1 Active Training 

13 c1c(cc2c(c1)c(=O)n(cn2)CCCl)/C=C/C(=O)NO 113 6.947 0 Inactive Training 

14 c1c(cc2c(c1)c(=O)n(cn2)CCC)/C=C/C(=O)NO 67 7.174 1 Active Test 

15 c1c(cc2c(c1)c(=O)n(cn2)CCCC)/C=C/C(=O)NO 124 6.907 0 Inactive Training 

16 c1c(cc2c(c1)c(=O)n(cn2)CC1CCCC1)/C=C/C(=O)NO 72 7.143 1 Active Test 

17 c1c(cc2c(c1)c(=O)n(cn2)Cc1ccccc1)/C=C/C(=O)NO 247 6.607 0 Inactive Training 

18 c1c(cc2c(c1)c(=O)n(cn2)Cc1ccccc1F)/C=C/C(=O)NO 98 7.009 1 Active Test 

19 c1c(cc2c(c1)c(=O)n(cn2)Cc1cccc(c1)F)/C=C/C(=O)NO 96 7.018 1 Active Training 

20 c1c(cc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)F)/C=C/C(=O)NO 48 7.319 1 Active Training 

21 c1c(cc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)Cl)/C=C/C(=O)NO 41 7.387 1 Active Test 

22 c1c(cc2c(c1)c(=O)n(cn2)Cc1ccc(cc1)C)/C=C/C(=O)NO 44 7.357 1 Active Test 
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23 c1ccc2c(c1Cc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H](

Nc1ncnc2c1nc[nH]2)CC)c1ccccc1 

889 6.051 0 Inactive Training 

24 c1ccc2c(c1NCc1ncc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1ncnc2c1nc[nH]2)CC)c1ccccc1 

9 8.046 1 Active Training 

25 c1ccc2c(c1CNC(=O)c1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C

@@H](Nc1ncnc2c1nc[nH]2)CC)c1ccccc1 

10 8.000 1 Active Training 

26 c1ccc2c(c1CNC(=O)c1ccc(cn1)C(=O)NO)c(=O)n(c(n2)[C

@@H](Nc1ncnc2c1nc[nH]2)CC)c1ccccc1 

6 8.222 1 Active Training 

27 c1ccc2c(c1CCCCCC(=O)NO)c(=O)n(c(n2)[C@@H](Nc1n

c(nc(c1C#N)N)N)CC)c1ccccc1 

69 7.161 1 Active Training 

28 c1ccc2c(c1CCCCCC(=O)NO)c(=O)n(c(n2)[C@@H](Nc1c

(c(nc(n1)N)C)[N+]#[C-])CC)c1ccccc1 

28 7.553 1 Active Training 

29 c1ccc2c(c1CCCCCC(=O)NO)c(=O)n(c(n2)[C@@H](Nc1c

(cnc(n1)N)[N+]#[C-])CC)c1ccccc1 

45 7.347 1 Active Training 

30 c1ccc2c(c1NCCCCC(=O)NO)c(=O)n(c(n2)[C@@H](Nc1c

(c(nc(n1)N)C)[N+]#[C-])CC)c1ccccc1 

1238 5.907 0 Inactive Training 

31 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)N)[N+]#[C-])CC)c1ccccc1 

4 8.398 1 Active Test 

32 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C)[N+]#[C-])CC)c1ccccc1 

12 7.921 1 Active Test 

33 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1cc(nc(n1)N)C)CC)c1ccccc1 

4 8.398 1 Active Training 

34 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(ncn1)N)[N+]#[C-])CC)c1ccccc1 

4 8.398 1 Active Test 

35 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(ncn1)N)Cl)CC)c1ccccc1 

4 8.398 1 Active Test 

36 c1ccc2c(c1NCc1ncc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(ncn1)N)Cl)CC)c1ccccc1 

3 8.523 1 Active Test 

37 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C)Cl)CC)c1ccccc1 

22 7.658 1 Active Training 



159 
 

38 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)C)N)[N+]#[C-])CC)c1ccccc1 

14 7.854 1 Active Training 

39 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)N)Cl)CC)c1ccccc1 

9 8.046 1 Active Training 

40 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C(F)(F)F)[N+]#[C-])CC)c1ccccc1 

52 7.284 1 Active Training 

41 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C1CC1)[N+]#[C-])CC)c1ccccc1 

47 7.328 1 Active Training 

42 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C(F)F)[N+]#[C-])CC)c1ccccc1 

27 7.569 1 Active Training 

43 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)N)[N+]#[C-])C)c1ccccc1 

6 8.222 1 Active Training 

44 c1ccc2c(c1NCc1ccc(cc1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)C)[N+]#[C-])C)c1ccccc1 

8 8.097 1 Active Training 

45 c1ccc2c(c1CNC(=O)c1ncc(cc1)C(=O)NO)c(=O)n(c(n2)[C

@@H](Nc1c(c(nc(n1)N)N)[N+]#[C-])C)c1ccccc1 

16 7.796 1 Active Training 

46 c1ccc2c(c1CNc1ncc(cn1)C(=O)NO)c(=O)n(c(n2)[C@@H]

(Nc1c(c(nc(n1)N)N)[N+]#[C-])C)c1ccccc1 

3 8.523 1 Active Training 

47 c1ccc2c(c1F)c(=O)n(c(n2)[C@H](CC)Nc1c2c(ncn1)[nH]c

n2)CCCCCC(=O)NO 

121 6.917 0 Inactive Training 

48 c1ccc2c(c1F)c(=O)n(c(n2)[C@H](CC)Nc1c2c(ncn1)[nH]c

n2)Cc1ccc(cc1)C(=O)NO 

45 7.347 1 Active Training 

49 c1ccc2c(c1F)c(=O)n(c(n2)[C@H]1N(c2ncnc3[nH]cnc23)C

C2(C1)CC2)Cc1ccc(cc1)C(=O)NO 

28 7.553 1 Active Training 

50 c1ccc2c(c1F)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)

CC2(C1)CC2)Cc1ccc(cc1)C(=O)NO 

27 7.569 1 Active Training 

51 c1ccc2c(c1F)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)

CC2(C1)CC2)Cc1ccc(s1)C(=O)NO 

32 7.495 1 Active Training 

52 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N

)CCC1)Cc1ccc(cc1)C(=O)NO 

280 6.553 0 Inactive Test 
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53 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N

)CC2(C1)CC2)Cc1ccc(cc1)C(=O)NO 

331 6.480 0 Inactive Test 

54 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@@H](Nc1nc(nc(N)c1C#N)

N)C)Cc1ccc(s1)C(=O)NO 

66 7.180 1 Active Training 

55 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@@H](Nc1nc(nc(N)c1C#N)

N)CC)Cc1ccc(s1)C(=O)NO 

45 7.347 1 Active Training 

56 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N

)CCC1)Cc1ccc(s1)C(=O)NO 

67 7.174 1 Active Training 

57 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N

)CC2(C1)CC2)Cc1ccc(s1)C(=O)NO 

13 7.886 1 Active Training 

58 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N

)CC2(C1)CC2)Cc1onc(c1)C(=O)NO 

604 6.219 0 Inactive Training 

59 c1ccc2c(c1Cl)c(nc(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)CC

C1)NCc1ccc(cc1)C(=O)NO 

267 6.573 0 Inactive Training 

60 c1ccc2c(c1Cl)c(nc(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)CC

2(C1)CC2)NCc1ccc(cc1)C(=O)NO 

398 6.400 0 Inactive Training 

61 c1ccc2c(c1Cl)c(nc(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)CC

2(C1)CC2)NCCc1ccc(cc1)C(=O)NO 

219 6.660 0 Inactive Training 

62 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OC(

=O)NCc1ccc(cc1)C(=O)NO)c1nc(nc(c1C#N)N)N)c1ccccc

1 

87 7.060 1 Active Training 

63 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@H](C1)OC(=O

)NCc1ccc(cc1)C(=O)NO)c1nc(nc(c1C#N)N)N)c1ccccc1 

168 6.775 0 Inactive Training 

64 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OCc

1ccc(cc1)C(=O)NO)c1nc(nc(c1C#N)N)N)C 

13 7.886 1 Active Training 

65 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OCc

1ccc(s1)C(=O)NO)c1nc(nc(c1C#N)N)N)C 

13 7.886 1 Active Test 

66 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OC(

=O)NCc1ccc(cc1)C(=O)NO)c1nc(nc(c1C#N)N)N)C 

27 7.569 1 Active Training 
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67 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OC(

=O)N(Cc1ccc(cc1)C(=O)NO)C)c1nc(nc(c1C#N)N)N)C 

11 7.959 1 Active Training 

68 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OC(

=O)NCCc1ccc(cc1)C(=O)NO)c1nc(nc(c1C#N)N)N)C 

36 7.444 1 Active Test 

69 c1ccc2c(c1Cl)c(=O)n(c(n2)[C@H]1N(C[C@@H](C1)OC(

=O)NCc1ccc(s1)C(=O)NO)c1nc(nc(c1C#N)N)N)C 

43 7.367 1 Active Test 

70 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCCC1)OC 

390 6.409 0 Inactive Test 

71 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCSCC1)OC 

420 6.377 0 Inactive Test 

72 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCOCC1)OC 

350 6.456 0 Inactive Training 

73 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1[C@H](COCC1)C)OC 

360 6.444 0 Inactive Test 

74 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1[C@@H](COCC1)C)OC 

330 6.481 0 Inactive Training 

75 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCN(CC1)C)OC 

650 6.187 0 Inactive Training 

76 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCS(=O)(=O)CC1)OC 

850 6.071 0 Inactive Training 

77 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCC(=O)NO)C)

N1CCC(CC1)(F)F)OC 

730 6.137 0 Inactive Test 

78 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCCC1)OC 

310 6.509 0 Inactive Training 

79 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCCCC1)OC 

480 6.319 0 Inactive Training 

80 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCSCC1)OC 

290 6.538 0 Inactive Test 

81 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCOCC1)OC 

210 6.678 0 Inactive Training 
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82 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1[C@H](COCC1)C)OC 

190 6.721 0 Inactive Training 

83 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1[C@@H](COCC1)C)OC 

220 6.658 0 Inactive Test 

84 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCN(CC1)C)OC 

110 6.959 0 Inactive Training 

85 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCS(=O)(=O)CC1)OC 

130 6.886 0 Inactive Training 

86 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCC(=O)NO)

C)N1CCC(CC1)(F)F)OC 

340 6.469 0 Inactive Test 

87 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCCC1)OC 

101.4 6.994 0 Inactive Training 

88 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCCCC1)OC 

203.5 6.691 0 Inactive Training 

89 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCSCC1)OC 

129.2 6.889 0 Inactive Test 

90 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCOCC1)OC 

119.2 6.924 0 Inactive Training 

91 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1[C@H](COCC1)C)OC 

98.5 7.007 1 Active Training 

92 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1[C@@H](COCC1)C)OC 

101.7 6.993 0 Inactive Training 

93 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCN(CC1)C)OC 

11.68 7.933 1 Active Test 

94 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCS(=O)(=O)CC1)OC 

55.3 7.257 1 Active Test 

95 c1c(cc2c(c1OC)c(nc(n2)c1cc(c(c(c1)C)OCCCCCC(=O)NO

)C)N1CCC(CC1)(F)F)OC 

186.1 6.730 0 Inactive Training 

96 c12c(ncnc1Nc1cc(c(cc1)F)Cl)ccc(c2)c1nnn(c1)CCCCCC(=

O)NO 

9.5 8.022 1 Active Training 
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97 c12c(ncnc1Nc1cc(c(cc1)F)Cl)ccc(c2)c1nnn(c1)CCCCCCC

(=O)NO 

8.4 8.076 1 Active Training 

98 c12c(ncnc1Nc1c(c(ccc1)Cl)F)ccc(c2)c1nnn(c1)CCCCCC(=

O)NO 

4.1 8.387 1 Active Training 

99 c12c(ncnc1Nc1c(c(ccc1)Cl)F)ccc(c2)c1nnn(c1)CCCCCCC

(=O)NO 

3.2 8.495 1 Active Training 

100 c12c(ncnc1Nc1ccc(c(c1)Cl)OCc1cc(ccc1)F)ccc(c2)c1nnn(c

1)CCCCCC(=O)NO 

94.2 7.026 1 Active Training 

101 c12c(ncnc1Nc1ccc(c(c1)Cl)OCc1cc(ccc1)F)ccc(c2)c1nnn(c

1)CCCCCCC(=O)NO 

19.5 7.710 1 Active Training 

102 c12c(ncnc1Nc1ccc(c(c1)Cl)OCc1nccs1)ccc(c2)c1nnn(c1)C

CCCCC(=O)NO 

14.3 7.845 1 Active Training 

103 c12c(ncnc1Nc1ccc(c(c1)Cl)OCc1nccs1)ccc(c2)c1nnn(c1)C

CCCCCC(=O)NO 

13.6 7.866 1 Active Training 

104 c12c(ncnc1Nc1ccc(c(c1)C)Oc1ccc(nc1)C)ccc(c2)c1nnn(c1)

CCCCCC(=O)NO 

12.9 7.889 1 Active Test 

105 c12c(ncnc1Nc1ccc(c(c1)C)Oc1ccc(nc1)C)ccc(c2)c1nnn(c1)

CCCCCCC(=O)NO 

13.8 7.860 1 Active Training 

106 c12c(ncnc1Nc1ccc(c(c1)OC)Oc1ccccc1)ccc(c2)c1nnn(c1)C

CCCCC(=O)NO 

18.5 7.733 1 Active Training 

107 c12c(ncnc1Nc1ccc(c(c1)OC)Oc1ccccc1)ccc(c2)c1nnn(c1)C

CCCCCC(=O)NO 

16 7.796 1 Active Test 

108 c1ccc2c(c1)c(nc(n2)C)N(C)c1ccc(cc1)OCC(=O)NO 8.6 8.066 1 Active Test 

109 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCC(=O)NO)cccc2 196 6.708 0 Inactive Training 

110 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCCC(=O)NO)cccc2 57 7.244 1 Active Training 

111 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCCCC(=O)NO)cccc2 34 7.469 1 Active Training 

112 c1ccc2c(c1)c(ncn2)N(C)c1ccc(cc1)OCC(=O)NO 14 7.854 1 Active Training 

113 c12c(c(ncn1)N(C)c1ccc(cc1)OCCCC(=O)NO)cccc2 34 7.469 1 Active Training 

114 c12c(c(ncn1)N(C)c1ccc(cc1)OCCCCC(=O)NO)cccc2 49 7.310 1 Active Training 
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115 c12c(c(ncn1)N(C)c1ccc(cc1)OCCCCCC(=O)NO)cccc2 19 7.721 1 Active Training 

116 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCC(=O)NO)CCC2 17 7.770 1 Active Training 

117 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCC(=O)NO)CCC2 40 7.398 1 Active Training 

118 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCCC(=O)NO)CCC2 63 7.201 1 Active Test 

119 c12c(c(nc(n1)C)N(C)c1ccc(cc1)OCCCCCC(=O)NO)CCC2 20 7.699 1 Active Training 

120 c12c(c(nc(n1)C)N(C)c1cc(c(cc1)OC)OCCCC(=O)NO)cccc

2 

17 7.770 1 Active Test 

121 c12c(c(nc(n1)C)N(C)c1cc(c(cc1)OC)OCCCCC(=O)NO)cc

cc2 

111 6.955 0 Inactive Test 

122 c12c(c(nc(n1)C)N(C)c1cc(c(cc1)OC)OCCCCCC(=O)NO)c

ccc2 

23 7.638 1 Active Training 

123 c12c(c(=O)n(c(n1)C)c1ccccc1)c(ccc2)/C=C/C(=O)NO 1920 5.717 0 Inactive Training 

124 c12c(c(=O)n(c(n1)C)c1ccccc1)cc(cc2)/C=C/C(=O)NO 32 7.495 1 Active Training 

125 c12c(c(=O)n(c(n1)C)c1ccccc1)ccc(c2)/C=C/C(=O)NO 88 7.056 1 Active Training 

126 c12c(c(=O)n(c(n1)C)c1ccccc1)cccc2/C=C\C(=O)NO 690 6.161 0 Inactive Training 

127 c12c(c(=O)n(c(n1)C)Cc1ccccc1)ccc(c2)/C=C/C(=O)NO 24 7.620 1 Active Training 

128 c12c(c(=O)n(c(n1)C)CCc1ccccc1)ccc(c2)/C=C/C(=O)NO 29 7.538 1 Active Training 

129 c12c(c(=O)n(c(n1)C)CCC1c3c(N=C1)cccc3)ccc(c2)/C=C/

C(=O)NO 

15 7.824 1 Active Training 

130 c12c(c(=O)n(cn1)CCc1ccccc1)ccc(c2)/C=C/C(=O)NO 35 7.456 1 Active Training 

131 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)ccc(c2)/C=C/C(=O)NO 11 7.959 1 Active Training 

132 c12c(c(=O)n(c(n1)CC)CCCc1ccccc1)ccc(c2)/C=C/C(=O)N

O 

33 7.481 1 Active Test 

133 c12c(c(=O)n(c(n1)CCC)CCc1ccccc1)ccc(c2)/C=C/C(=O)N

O 

41 7.387 1 Active Training 

134 c12c(c(=O)n(c(n1)C(C)C)CCc1ccccc1)ccc(c2)/C=C/C(=O)

NO 

13 7.886 1 Active Training 
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135 c12c(c(=O)n(c(n1)CC)CCc1ccc(cc1)OC)ccc(c2)/C=C/C(=

O)NO 

41 7.387 1 Active Test 

136 c12c(c(=O)n(c(n1)CC)CCc1ccc(cc1)F)ccc(c2)/C=C/C(=O)

NO 

43 7.367 1 Active Training 

137 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)cc(c(c2)/C=C/C(=O)N

O)F 

14 7.854 1 Active Training 

138 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)cc(c(c2)F)/C=C/C(=O)

NO 

8 8.097 1 Active Training 

139 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)cc(c(c2)Cl)/C=C/C(=O

)NO 

747 6.127 0 Inactive Test 

140 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)cc(cc2)Cc1ccc(cc1)C(=

O)NO 

11 7.959 1 Active Training 

141 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)ccc(c2)Cc1ccc(cc1)C(=

O)NO 

9 8.046 1 Active Training 

142 c12c(c(=O)n(c(n1)CC)CCc1ccccc1)cccc2Cc1ccc(cc1)C(=O

)NO 

79 7.102 1 Active Training 
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Appendix Table S2. LASSO coefficients of features obtained from LASSO regression 

Selected feature LASSO coefficient 

KRFP363 -0.72921 

AATSC8s -0.55877 

minHCsatu 0.456812 

KRFP1947 0.322965 

PubchemFP686 -0.3124 

PubchemFP372 0.280104 

GATS7m -0.2635 

GATS4m 0.135438 

KRFP4071 0.131816 

KRFP3574 -0.11414 

PubchemFP2 0.104557 

AD2D414 -0.08778 

AD2D413 0.054307 

KRFP2025 0.052232 

KRFP413 0.052191 

KRFP683 0.048442 

APC2D6_C_Cl -0.04093 

APC2D10_O_O -0.04004 

ATSC3e 0.037471 

GATS7p -0.03476 

ATSC3c 0.033796 

AATSC7v 0.019275 

nHBint3 0.015602 

PubchemFP359 -0.01144 

SpMAD_Dzs 0.010697 
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Appendix Table S3: Final selected features set use for ML model development 

Cpd 

No 

KRFP

363 

AATSC8

s 

minHCsat

u 

Pubche

mFP68

6 

PubchemF

P372 

GATS4m KRFP41

3 

APC2

D6_C_

Cl 

GATS7p nHBint

3 

pIC50 

Training set 

1 0 0.975846 0 0 0 1.155545 0 0 1.211365 1 5.868 

2 0 0.99185 0 0 0 0.842496 0 2 1.117043 1 5.623 

4 0 0.755645 0 0 0 1.023775 0 0 1.092702 1 6.011 

5 0 0.653826 0 0 0 0.901953 0 0 1.058371 1 6.298 

8 0 0.574075 0 0 0 1.062331 0 0 1.04934 1 6.231 

10 0 0.623105 0 0 0 1.021685 0 0 0.926777 1 6.483 

11 0 0.622224 0 0 0 1.06159 0 0 0.874368 1 6.444 

12 0 0.050251 0 0 0 1.146667 0 0 1.039849 1 7.167 

13 0 0.025843 0 0 0 0.836867 0 2 0.963803 1 6.947 

15 0 0.039727 0 0 0 1.016773 0 0 0.9707 1 6.907 

17 0 -0.14251 0 0 0 1.070641 0 0 0.933116 1 6.607 

19 0 -0.17533 0 0 0 1.055516 0 0 0.933137 1 7.018 

20 0 0.448495 0 0 0 1.116937 0 0 0.935496 1 7.319 

23 0 0.014383 0.917529 0 0 0.954958 0 0 1.096149 2 6.051 

24 0 0.01387 0.927201 0 1 0.985302 0 0 1.109223 2 8.046 

25 0 0.139627 0.931132 0 0 1.025688 0 0 1.112707 2 8 

26 0 0.1705 0.935265 0 1 1.00901 0 0 1.129503 2 8.222 

27 0 -0.09497 0.621586 0 0 0.908116 0 0 1.127141 2 7.161 

28 0 -0.05475 0.619768 0 0 0.94371 0 0 1.152103 2 7.553 

29 0 -0.03194 0.619768 0 1 0.942216 0 0 1.128084 2 7.347 

30 1 -0.06516 0.639768 0 0 0.947368 0 0 1.132857 2 5.907 

33 0 -0.10355 0.885257 0 0 0.954654 0 0 1.138427 2 8.398 

37 0 -0.09214 0.884269 0 0 1.093569 0 1 1.127915 3 7.658 



168 
 

38 0 -0.07842 0.93609 0 0 0.971959 0 0 1.153737 2 7.854 

39 0 -0.11295 0.898158 0 0 1.016502 0 1 1.12231 4 8.046 

40 0 -0.08141 1.027927 0 0 0.849215 0 0 1.137008 2 7.284 

41 0 -0.05591 0.93609 0 0 0.968614 0 0 1.082268 2 7.328 

42 0 -0.06877 0.997315 0 0 0.887841 0 0 1.140788 2 7.569 

43 0 -0.01154 0.949979 0 0 0.971898 0 0 1.088356 2 8.222 

44 0 -0.00827 0.93609 0 0 0.99129 0 0 1.11038 2 8.097 

45 0 0.18702 0.963042 0 1 1.004232 0 0 1.101754 2 7.796 

46 0 0.039105 0.957588 0 1 0.999584 0 0 1.129193 2 8.523 

47 0 -0.1403 0.641426 0 0 0.986321 0 0 1.052455 2 6.917 

48 0 -0.12967 0.926037 0 0 1.023033 0 0 1.017348 2 7.347 

49 0 -0.15948 0.926037 0 0 0.891206 0 0 1.045996 1 7.553 

50 0 -0.32757 0.950759 0 0 0.866254 0 0 1.053048 1 7.569 

51 0 -0.12996 0.942453 0 0 0.799092 0 0 1.054302 2 7.495 

54 0 0.330075 0.911337 0 0 0.933102 0 2 1.017915 3 7.18 

55 0 0.111355 0.911337 0 0 0.91141 0 2 0.999939 3 7.347 

56 0 0.340541 0.911337 0 0 0.855866 0 2 0.857524 2 7.174 

57 0 0.010251 0.911337 0 0 0.798135 0 2 0.983796 2 7.886 

58 0 -0.0646 0.953434 1 0 0.816648 0 2 1.073414 1 6.219 

59 0 0.048403 0 0 0 0.911722 0 2 0.888335 1 6.573 

60 0 -0.17982 0 0 0 0.856494 0 2 0.992759 1 6.4 

61 0 -0.16984 0 0 0 0.853008 0 2 1.059219 1 6.66 

62 0 -0.01149 1.062858 0 0 0.910302 0 3 0.951027 1 7.06 

63 0 -0.01149 1.062858 0 0 0.910302 0 3 0.951027 1 6.775 

64 0 0.057103 0.967247 0 0 0.943701 0 1 0.799375 1 7.886 

66 0 -0.04367 1.008242 0 0 0.978295 0 1 0.769754 1 7.569 

67 0 0.018763 1.008242 0 0 0.980611 0 1 0.719523 1 7.959 
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72 0 0.047316 0.667989 1 0 1.006226 0 0 1.29176 1 6.456 

74 0 0.03631 0.667989 1 0 1.019132 0 0 1.279273 1 6.481 

75 0 0.045138 0.665767 1 0 0.985661 0 0 1.268346 1 6.187 

76 0 0.2464 0.671664 1 0 0.90409 0 0 1.190748 1 6.071 

78 0 -0.00754 0.624329 0 0 0.96318 0 0 1.257313 1 6.509 

79 0 -0.03355 0.624329 0 0 0.986711 0 0 1.265385 1 6.319 

81 0 -0.0028 0.628235 0 0 0.996058 0 0 1.26353 1 6.678 

82 0 -0.01065 0.628235 0 0 1.009945 0 0 1.253595 1 6.721 

84 0 -0.00462 0.626282 0 0 0.97888 0 0 1.242254 1 6.959 

85 0 0.201026 0.631533 0 0 0.896721 0 0 1.17075 1 6.886 

87 0 0.001456 0.600364 0 0 0.956446 0 0 1.247487 1 6.994 

88 0 -0.02342 0.600364 0 0 0.980132 0 0 1.255923 1 6.691 

90 0 0.005911 0.603824 0 0 0.987454 0 0 1.253688 1 6.924 

91 0 -0.00207 0.603824 0 0 1.00207 0 0 1.244826 1 7.007 

92 0 -0.00207 0.603824 0 0 1.00207 0 0 1.244826 1 6.993 

95 0 0.23684 0.609624 0 0 1.061651 0 0 1.255052 1 6.73 

96 0 0.105926 0.609027 0 1 0.930579 0 1 0.848142 1 8.022 

97 0 -0.09482 0.591642 0 1 0.911888 0 1 0.847545 1 8.076 

98 0 0.033808 0.610257 0 1 0.950846 0 1 0.853124 2 8.387 

99 0 -0.16147 0.592677 0 1 0.930948 0 1 0.852134 2 8.495 

100 0 0.060734 0.613584 0 1 0.967556 0 3 0.961334 1 7.026 

101 0 -0.08723 0.595841 0 1 0.952131 0 3 0.953606 1 7.71 

102 0 0.072794 0.610507 0 1 0.862626 0 1 0.8772 1 7.845 

103 0 -0.08855 0.593013 0 1 0.849061 0 1 0.871311 1 7.866 

105 0 -0.07997 0.594631 0 1 1.060955 0 0 0.909816 1 7.86 

106 0 0.045527 0.614623 0 1 1.037828 0 0 1.003923 1 7.733 

109 0 0.027389 0.650761 1 0 1.160863 0 0 0.990905 1 6.708 
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110 0 0.100747 0.613429 0 0 1.132432 0 0 0.963061 1 7.244 

111 0 0.067849 0.590954 0 0 1.109396 0 0 0.963093 1 7.469 

112 0 0.025671 0.901439 0 0 1.143778 0 0 1.007358 2 7.854 

113 0 0.011644 0.650761 1 0 1.183985 0 0 1.012545 1 7.469 

114 0 0.113012 0.613429 0 0 1.150321 0 0 0.975791 1 7.31 

115 0 0.075919 0.590954 0 0 1.123426 0 0 0.974936 1 7.721 

116 0 0.025135 0.893071 0 0 1.133556 0 0 0.847534 2 7.77 

117 0 0.024424 0.644791 1 0 1.184072 0 0 0.873721 1 7.398 

119 0 0.054876 0.586479 0 0 1.136483 0 0 0.863157 1 7.699 

122 0 0.083624 0.607092 0 0 1.083198 0 0 0.980505 1 7.638 

123 0 0.311838 0.614105 0 0 0.921993 0 0 1.151695 1 5.717 

124 0 0.68001 0.607146 0 0 0.991864 0 0 0.974233 1 7.495 

125 0 0.101273 0.614105 0 0 0.984517 0 0 1.107827 1 7.056 

126 0 0.510553 0.623803 0 0 0.980294 0 0 1.034816 1 6.161 

127 0 -0.03269 0.597488 0 0 1.074918 0 0 1.054966 1 7.62 

128 0 -0.05339 0.587536 0 0 1.106777 1 0 1.057567 1 7.538 

129 0 0.00346 0.597897 0 0 1.15542 0 0 0.971428 1 7.824 

130 0 -0.13122 0 0 0 1.10262 1 0 0.897733 1 7.456 

131 0 -0.06206 0.587536 0 0 1.128684 1 0 0.998319 1 7.959 

133 0 0.002248 0.587536 0 0 1.049409 1 0 1.008555 1 7.387 

134 0 -0.07659 0.587536 0 0 1.068878 1 0 0.956312 1 7.886 

136 0 -0.08629 0.602536 0 0 1.145674 0 0 0.990436 1 7.367 

137 0 -0.3722 0.610974 0 0 1.128217 1 0 0.998525 1 7.854 

138 0 -0.02932 0.611189 0 0 1.124847 1 0 1.008272 1 8.097 

140 0 -0.04993 0.578484 0 0 1.107456 1 0 1.003572 1 7.959 

141 0 2.99E-04 0.584016 0 0 1.103022 1 0 0.926795 1 8.046 

142 0 -0.02903 0.591401 0 0 1.117529 1 0 1.054083 1 7.102 
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     Test set       

3 0 0.863275 0 0 0 1.064066 0 0 1.280938 1 6.034 

6 0 0.593243 0 0 0 1.07774 0 0 1.050959 1 6.545 

7 0 0.439351 0 0 0 1.201827 0 0 1.051699 1 6.373 

9 0 1.132576 0 0 0 1.123751 0 0 1.051699 1 6.597 

14 0 0.03914 0 0 0 1.056253 0 0 1.130139 1 7.174 

16 0 0.029094 0 0 0 0.896199 0 0 0.954204 1 7.143 

18 0 -0.2708 0 0 0 1.195013 0 0 0.935496 1 7.009 

21 0 -0.10928 0 0 0 1.016946 0 0 0.817663 1 7.387 

22 0 -0.03437 0 0 0 1.055386 0 0 0.771571 1 7.357 

31 0 -0.10198 0.949979 0 0 0.960971 0 0 1.143976 2 8.398 

32 0 -0.07842 0.93609 0 0 0.980531 0 0 1.148597 2 7.921 

34 0 -0.05936 0.93609 0 0 0.987637 0 0 1.114491 2 8.398 

35 0 -0.07202 0.884269 0 0 1.037223 0 1 1.105148 4 8.398 

36 0 -0.04999 0.889269 0 1 1.050337 0 1 1.100107 4 8.523 

52 0 0.070647 0.919643 0 0 0.892129 0 2 0.855113 1 6.553 

53 0 -0.18379 0.919643 0 0 0.840533 0 2 1.007333 1 6.48 

65 0 -0.03544 0.960979 0 0 0.874094 0 1 0.735034 2 7.886 

68 0 -0.09733 1.002711 0 0 0.967477 0 1 0.814077 1 7.444 

69 0 0.263724 1.004203 0 0 0.964423 0 1 0.70477 3 7.367 

70 0 0.046627 0.663545 1 0 0.971268 0 0 1.285873 1 6.409 

71 0 0.043544 0.662886 1 0 0.85352 0 0 1.161716 1 6.377 

73 0 0.03631 0.667989 1 0 1.019132 0 0 1.279273 1 6.444 

77 0 0.278811 0.675264 1 0 1.088861 0 0 1.290695 1 6.137 

80 0 -0.01028 0.62375 0 0 0.848806 0 0 1.142193 1 6.538 

83 0 -0.01065 0.628235 0 0 1.009945 0 0 1.253595 1 6.658 

86 0 0.23606 0.63471 0 0 1.074263 0 0 1.264137 1 6.469 
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89 0 -0.00139 0.599852 0 0 0.845091 0 0 1.13796 1 6.889 

93 0 0.004463 0.602094 0 0 0.973113 0 0 1.233587 1 7.933 

94 0 0.202813 0.606799 0 0 0.890587 0 0 1.165915 1 7.257 

104 0 0.061746 0.612296 0 1 1.077487 0 0 0.912311 1 7.889 

107 0 -0.09027 0.596684 0 1 1.021809 0 0 0.995978 1 7.796 

108 0 0.045832 0.901439 0 0 1.113224 0 0 0.984191 2 8.066 

118 0 0.085678 0.608288 0 0 1.15797 0 0 0.856377 1 7.201 

120 0 0.185117 0.677609 1 0 1.12661 0 0 1.004574 1 7.77 

121 0 0.092919 0.633934 0 0 1.102767 0 0 0.981087 1 6.955 

132 0 0.001403 0.581076 0 0 1.11313 1 0 0.984877 1 7.481 

135 0 -0.04021 0.597536 0 0 1.165557 0 0 1.047996 1 7.387 

139 0 0.361198 0.580073 0 0 1.106298 1 1 1.073357 1 6.127 
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Appendix Table S4. Statistical validation parameters for MLR selected features used for the 

ML model development.  

MLR Model 
Validation 

Parameters 
Values 

pIC50 = 7.37902(+/-0.70571) -1.38773(+/-0.36842) 

KRFP363 -0.73307(+/-0.16993) AATSC8s 

+0.67696(+/-0.14479) minHCsatu -0.44968(+/-

0.14359) PubchemFP686 +0.59108(+/-0.10738) 

PubchemFP372 +1.12091(+/-0.49139) GATS4m 

+0.30805(+/-0.13704) KRFP413 -0.1472(+/-0.05717) 

APC2D6_C_Cl -1.8882(+/-0.33024) GATS7p 

+0.256(+/-0.07326) nHBint3 

NTrain 104 

SEE 0.3608 

R2 0.74726 

R2
A 0.72008 

PRESS 12.10657 

F 22.49677 (DF:10 ,93) 

Q2 0.66458 

Avg. rm2
LOO 0.543 

NTest 38 

r2 0.567 

r0
2 0.53683 

RMSEp 0.48286 

R2
pred (Q

2f1) 0.54148 

Q2f2 0.53679 

Avg. rm2
test 0.44624 
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Appendix Fig. S1. ROC plot obtained for (A) training set, and (B) test set for the Bayesian 

classification model.
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