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Preface

Histone deacetylase (HDACs) play a key role in chromatin remodelling, serving as epigenetic
regulators of gene expression. Since their discovery, HDAC inhibitors has become a prominent
area of research, particularly for targeted epigenetic modulation related to cancer,
neurodegenerative disorders, and inflammatory diseases. Histone deacetylase 6 (HDACS), a
class Ilb member of this metalloenzyme family, has garnered significant interest due to its
distinctive structure, cytoplasmic localization, and ability to deacetylate specific non-histone
substrates in the cytoplasm, such as a-tubulin, Hsp90, cortactin, peroxiredoxin, and heat shock
transcription factor-1 (HSF-1). Elevated levels of HDAC6 have been observed in several
conditions, including various cancers, neurodegenerative diseases like Alzheimer’s and
Parkinson’s, and rare disorders such as amyotrophic lateral sclerosis, Rett syndrome, and
Charcot-Marie-Tooth disease. Over the past decade, researchers have focused on elucidating
the full spectrum of HDAC6’s physiological functions, particularly in cancer, due to its role in
coordinating numerous cellular processes critical to cancer development. Despite such diverse
roles of HDACSG, none of the potential selective inhibitors have been translated in clinics to
date therefor surging the development of selective HDACG inhibitors as potential therapeutic
agents for these conditions. As an aid to the quest here some computational techniques were
implemented in a set of quinazoline-hydroxamate based HDACG6 inhibitors hoping to find
critical structural alerts and non-linear functions ruling the biological activity of HDAC6

inhibitors.
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Chapter 1




Introduction and Motivations

1.1 Drug

In pharmacology, a drug' is any chemical substance that upon administration to a living
organism generates a biological response. There are vast array of drugs capable of
causing different physiological effects.>

Drugs are generally used to cure a disease and alleviate many symptoms of illnesses,
though some are not used to specifically treat a particular disease but rather acts as
psychoactive chemical substance by impacting the central nervous system. In
pharmaceutical terms drugs are chemicals substances with known structures used to

treat, cure, prevent or diagnose a disease or to promote well-being.

Figure 1.1: 2D (A) and 3D (B) molecular structure of penicillin G, a marvellous
engineering by Penicillium chrysogenum, that saved millions of lives during World

War 1I1.

1.2 Drug Discovery
Discovering a drug from scratch is a long road with tremendous uncertainty. Most of
the time investment of billions of dollars, man power and years of time leads to
nowhere. As a consequence, number of potential drugs has become low whereas the
need for newer drug has skyrocketed due to over use and drug tolerance in past few
decades. Hence healthcare system continuously requires newer drugs to address the

unmet medical needs across diverse therapeutic areas, and the pharmaceutical




industries primarily strive to deliver new drugs to market through complex activities of

drug discovery.’

The art of drug discovery is just not only costly but rather goes through very time

consuming and tedious process. To better shied light into this process Food and Drug

Administration (FDA) has prescribed a timeline regarding the necessary steps to deliver

a new drug that meets human requirements.

The first stage in drug discovery and development process is to identify
potential new drug candidates. Generally, researches dose this through new
insights into the disease process that allows them to efficiently craft a
product to stop or to optimize the effects of disease. Or else they can try to
find new ways to evaluate small molecules to screen out beneficial effects
against vast array of diseases or using cutting-edge technology to efficiently
manipulate genetic material or target specific site within the body. The
number of possible ways to identify a potential lead candidate is huge and,
in this era, of artificial intelligence a lot of new ones are surfacing each and
every day. In this stage thousands of compounds may be indicated as
potential candidate for later stage of development to be medical treatment.
However, after preliminary testing only a handful of compounds remains
and are called for further development. Once a potential compound is
identified for development, researchers move on to conduct experiments to
gather information on the dosage, pharmacokinetic and pharmacodynamic
properties of the concerned compound. This phase with all its exploratory
phase takes around 6.5 years to complete.*

The second stage is the preclinical research that concerns toxicity of the
compounds. The number of tests performed is not so large but should
provide sufficient information to decide whether the researcher should
proceed to human trial. Typically, this phase can be done in few months.*
Then comes the clinical stage where the drug is tested on humans to evaluate
the effectiveness and possible side effects. Generally, this stage is sub-
divided into 4 stages where a number of increasing volunteers participate in
the test and correspondingly a number of decreasing drugs goes to the next
stage. This stage requires around 5 years in order to complete all these

clinical steps.*




e Finally, all the data from the clinical trials are submitted to FDA that decide
if the study is sufficient and the drug is safe for commercialization or not.
FDA, in case of an approval, will keep monitoring the new drug to have a

complete picture, and in some case can change the indication of the drug or

the dosage if necessary.
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Figure 1.2: (A) Flowchart of the traditional drug development process. (B) Flowchart

of drug repurposing

In the current scenario, all processes are time-consuming and expensive as well and the
industry is under pressure owing to extremely stringent regulatory requirements,
environmental concerns, and reduced incomes due to patent expiration. These issues

have led to reduced R&D productivity in recent decade, hence innovative approaches




and increased collaboration between industry, academia, and governmental research

institutions, with a common objective of constantly delivering quality medicines.®

1.3 Drug Repurposing
Drug repurposing also called as drug re-profiling, therapeutic switching or drug re-
tasking is the identification of new therapeutic indications for known drugs. These
drugs can either be commercially available and used daily in clinical setting or they can
be drugs that have been “shelved” namely molecules that did not passed in clinical trials
or for which projects have been discontinued for various reasons. In other words, drug

repositioning can be defined as renewing failed drugs and expanding successful ones.’

As mentioned earlier, drug discovery is research and comes with no guarantee of
success. Being so it is a high risk, slow, and expensive process.® The risk arises from
the intense competition within the pharmaceutical sector, where developing a drug for

an illness becomes a race against time to meet both health and economic demands.®

As of a report published by Eastern Research Group (ERG) only 2% of new molecule
succeed in clinical trials and require around 10-15 years to reach the market for
commercial use.> Alongside, PhRMA reports (Fig:1.3) shows that the yearly
investment for drug discovery in USA is increasing year after year with respect to
number of drugs approved by FDA.’

Certainly, the global trend is in constant rise with respect to money invested and
decreasing number of approved drugs, making it harder to find a treatment for rare
diseases that doesn’t have a big share market. As the number of possible numbers of
customer is low the volume of information on which researcher can rely becomes

narrow making it too high-risk process both in health and economic front.

Drug repurposing seems to be a valid solution as this approach capitalizes on the fact
that approved drug and many abandoned molecules have already been tested in humans
and detailed information on their pharmacology, formulation, dose and toxicity is
already available, making it advantageous in the economic front foot. Whereas, very
list is known about the new molecules as these are in the preliminary stages of drug
discovery. So, it is possible to reduce time, cost and risk of failure since the drug is

already approved and declaring a new indication for a drug is much easier.®




Historical View of Yearly FDA Approvals and R&D Spending
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Figure 1.3: The amount of investment (in billion dollars) in drug development by
Pharmaceutical Research and Manufacturers of America (PhRMA)” member

companies and the number of approved drugs by FDA from 1984 to 2019.

1.3.1 Experimental approach towards drug discovery and repurposing

Historically, drug repurposing has often occurred as chance discoveries or unexpected
findings. A drug becomes a potential candidate for repurposing when it’s found to have
off-target effects that could be beneficial for a different medical purpose or when new
applications are identified. Successful instances of drug repurposing in the past have
typically not followed a systematic approach but rather was serendipitous. Two classic
example includes the repurposing of sildenafil citrate for treating erectile dysfunction
that stemmed from retrospective clinical observations, and the repurposing of
thalidomide for conditions like erythema nodosum leprosum and multiple myeloma
which was an accidental discovery. These early successes have spurred efforts to
develop a more systematic approach for identifying potential repurposable compounds,
reducing reliance on chance discoveries. These methods have let to identification of
numerous promising candidate drugs, some of which are undergoing advanced clinical
trials. These repurposable drugs have the potential to treat both common and rare
diseases, providing opportunities to bring valuable medications back to use that might
otherwise have been overlooked.®




There are primarily two experimental approaches for the identification of a possible
candidate for a drug repurposing. Proteomic methods like affinity chromatography and
mass spectrometry are utilized to identify binding partners, focusing on structural
compatibility. With the rise of chemical biology for target validation, analysing both
target and off-targets of drugs and for repurposing has become standard practice. This
method not only gathers valuable information but also aids in future research
endeavours by providing a more comprehensive understanding of drug interaction and
potential applications.® Phenotypic screening involves identification of compounds that
exhibit effects relevant to a disease in model systems, regardless of prior knowledge of
the target. In the realm of drug repurposing, if the screened compounds are either
approved or under investigation, it can signal potential repurposing opportunities that

can be readily explored further.®

1.3.2 Computational approach towards drug discovery and repurposing

The theory and clinical cases presented the reality of drug repurposing and I tried to
briefly describe the fundamental reasons enabling new usages while emphasising the
importance of chance discoveries in the process. Now it’s a day dream of many
medicinal chemists working in drug discovery field to be able to formally predict such
repurposing scenarios and unveiling new pharmacology in an automated process.
Numerous computational approaches have been developed since the beginning of
cheminformatics in order to materialize this distant goal or at least get closer to it. A
computational approach to the drug repurposing problem is not only cost-effective and
time-efficient but can also adapt to different targets without requiring extensive efforts
in majority of the cases.’

At the fundamental level, a repurposing initiative aims to connect a drug with a specific
disease, essentially depicting a potential use or prescription probability for that
molecule. To computationally generate new hypothesis for potential indications,
biomedical concepts can be leveraged. Different biomedical concepts correspond to
varying levels of abstraction within a biological system, ranging from biomedical
details to broader perspectives, enabling computation or comparison. In general, a
similarity metric is extracted from the specific property under investigation like
chemical structure or gene expression levels, that serves as a descriptor to prioritize

information and forecast potential new indications, resulting in the establishment of




connections between drugs, diseases, or molecular targets. These approaches can be

categorized into groups based on the central property of analysis.

Protein
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Figure 1.4: Conceptual Map of the relationship between the different biomedical
concepts. Rational related to the drug and its action are in violate, disease in red and
biomedical concepts are in blue. Computational drug repositioning methods are based
on either one or a series of such concepts in order to forward new indication for a

drug, ultimate goal (green edge).

1.3.2.1 Chemical structure-based approaches

Majority of the orally active drugs are small lipophilic molecules.” So, its logical to
directly examine the chemical makeup when comparing drugs for similarity: if the
structure are alike, they’re expected to produce similar biological response. This rule of
thumb is known as similar property principle'® and it lies at the core of any quantitative
structure-activity relationship study. Various techniques, such as fingerprints, clustering
algorithms etc are employed to gauge structural alikeness between two chemicals.!!
These methodologies are instrumental in conducting ligand-based virtual screening,
where active ligands are used as reference to identify structurally akin molecules within
a target dataset, believed to possess similar biological activity.

When it comes to drug repurposing one can search only among approved compounds

for instance. Noeske et al.'?

effectively utilized this strategy implementing an
unsupervised machine learning algorithm (self-organising map), to group chemicals
according to their structural characteristics. Molecular scaffolds were converted into

vectors to be utilised during the clustering process. They were able to identify shared




activities among metabotropic glutamate receptor antagonists, observing their effects
on additional protein targets such as dopamine D2, histamine HI, and muscarinic
acetylcholine receptors. Though these findings were experimentally validated in vitro
and shown to be active, yet were pharmacologically irrelevant due to weak binding.
This new knowledge on off-target binding can pave the way for potential new usage for
these drugs, by further modification and optimization of the molecular structure for
instance.

Working with structural similarity for off-target identification, Keiser et al.!3 developed
another intriguing method. For this project, known ligands were categorized according
to their binding partners and chemical features. This method is known as similarity
ensemble approach and calculates whether a molecule will bind to a target based on
the chemical features it shares with those of known ligands, using a statistical model to
control for random similarity.}* In case of drug repurposing, researchers focused on
testing only approved drugs. The findings from similarity analysis uncovered several
off-target interactions. Subsequent retrospective analysis confirmed the approach’s
validity, and experimental validation of some predicted off-target bindings provided
valuable insights into the pharmacological mechanisms of certain drugs. Notably, for
fabahistin, the affinity for an off-target receptor (5-HT5A) was superior to its known

primary receptor (H1), suggesting promising alternative therapeutic uses.

Mebhydrolin (Drug A) Serotonin (Drug B)
q :
Similarity e
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Figure 1.5: Drug repurposing using the chemical structure. Compounds with similar
structures have similar biological activities (similarity principle). Drug A shares
common scaffold with drug B. This observation leads to conclusion that drug A could

be active on the canonical target of drug B.
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This chemical structure-based approaches are intuitive and the foundation of it lies on
the similar property principle (Fig 1.5). Although in reality, significantly small change
such as alteration in bond order, an atom or even the nature of bond to a molecular
structure can drastically change the biological activity. Furthermore, predictions from
different methodologies show minimal agreement among them stressing the obscurity
to pick the adequate one for the right scenario.'! Other challenge lies in the fact that
some compounds undergo chemical modification inside the body prior being
pharmacologically active, therefore the structure as documented in databases may

undermine the effectiveness of a predictive statistical model.

1.3.2.2 Gene expression and functional genomics-based approaches

Just like computer where each and every task is executed as a result of software
execution, every living systems behaviour is dictated by its gene expression in a
particular setting. Expression level of certain genes is very much dependent on the state
of the system, and can be identified and quantised by the relative number of their
messenger RNA (mRNA) molecules transcribed. Differently expressed genes can
function as emissary to pervade a molecular effect, known as gene expression signature.
This type of experimentation is generally conducted in microarray, containing probes
for the genes of interest. The method offers a clear understanding of the condition under
investigation and have been effectively employed (particularly the Connectivity Map)!®
to find indication for marketed drugs.

The axiom behind CMap stated that the action of a drug can be apprehended and nudged
by looking at the gene expression level resulting from its administration into the
biological system. Messenger RNA that function as gene expression signature, not only
reflect the activity of drug but also can act as proxy of a disease state. Based on this
assumption, Sirota et al.'® conducted a set of experiments from Gene Expression
Omnibus to capture disease signatures from gene expression profiles. Further
integration of this data with similarity values between drugs, derived from the CMap,
the researchers were able to identify negative correlation between a cluster of related
diseases and the signatures of current treatment regime. This anti-correlation predicted
cimetidine (anti-ulcer drug) to be a potential treatment for lung cancer, which was
further validated by in vitro and in vivo experimentation on a mouse model. The
research also found that topiramate, typically prescribed as an anticonvulsant, shows

promise as a therapeutic agent for treating inflammatory bowel disease (IBD), a




condition without a current cure.!” This new indication of topiramate was strongly
supported by in vivo testing in a rodent model. This study underscores a valuable aspect
of transcriptomics: even when limited molecular knowledge exists about the specific
disease mechanisms, analysing gene expression patterns can effectively bypass detailed
mechanistic understanding and accurately pinpoint potential treatment options.

Gene expression analysis and CMap has paved the way for numerous drug repurposing.
This technique is very much handy as it does not require much prior knowledge about
the action of drug or the pathology behind a phenotype; rather it majorly relies on
creation of signatures directly from mRNA readouts to retrieve unknown drug-disease
associations. Transcriptomics provides another valuable insight, suggesting that the
functional role of drugs, rather than their chemical structures, is the primary
determinant of success. In this approach, drugs are evaluated solely based on their
impact and function within the biological system, as indicated by their gene expression
signature. Consequently, the chemical composition of the drug becomes largely
insignificant for this analysis.

Irrespective of such massive success, this technique suffers from significant drawbacks

and requires improvement.'®

Firstly, the expression profile of the drug or disease must
be available. The CMap provides a relatively small list of molecules which is far from
being representative of all approved and experimental drugs, limiting the compounds
that can be investigated. Secondly, gene expression profiles can potentially characterize
disease conditions or drug actions. The CMap resource, however, lacks tissue-specific
data as it was primarily build using response from cancer cells, limiting its relevance

across all disease categories. Finally, transcriptomics data also present considerable

challenges in terms of statistical analysis.!”

1.3.2.3 Protein structure and molecular docking-based approaches
Majority of the small molecules if not all medicates their pharmacological effect by
interacting with proteins that can be analysed with certain accuracy using computer
software by modelling the three-dimensional (3D) structures of the target and the drug.
This practice is called molecular docking, a commonly used method in drug discovery
process, mainly used to identify and optimize binding affinities in the active site of the
target in order to increase the potency of the drug developed.!® Due to the widespread
use of molecular docking, drug repositioning efforts using this method are quite

common. Given that many compounds are known to interact with multiple proteins, the
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objective is to identify these potential off-targets by screening them against the 3D
structures of proteins in a specific database. If the predicted off-targets are relevant to
a disease, the drug can be repositioned based on these findings.

In this context, several recent studies have concentrated on binding sites, comparing
their relative similarities (Fig 1.6).!° By examining only, the structures of protein active
sites, researchers ensure they remain as close as possible to the biochemical and
physical realities of the interaction. From an analysis of over 6000 binding site
structures, De Franchi et al?® identified synapsin I, a protein involved in
neurotransmitter release regulation, as a new target for the drug saturosporine, which is
known to bind Pim-1 kinase. This finding was experimentally validated in vitro, though

the pharmacological significance of this new target has yet to be demonstrated.
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Figure 1.6: Drug repurposing using protein structure and binding site. The 3D
structure of proteins and their respective binding sites can be compared using scoring
function. On this basis, it is assumed that similar binding sites can bind same ligand as

depicted in the picture.

Zahler et al.?* conducted an inverse screening by docking a single compound across
multiple binding sites to map the off-target binding landscape of kinase inhibitors. This
class of drugs, widely used in cancer therapy, is known for its “promiscuous”

behaviour. The virtual screening identified PDK1 as a new off-target of indirubin. This
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prediction was validated in vitro using a phenotypic cell proliferation assay,
demonstrating the effectiveness of the approach and offering insight into the side effects
of kinase inhibitors.

1.22 used molecular docking technique to address drug-resistant

Likely, Kinnings et a
tuberculosis. It is true that occasionally the bacteria causing the illness will not respond
to first-line treatment; in these situations, the pathogen must be eradicated. To optimize
the problem the authors used a technique called ‘selective optimization of side activity’
(SOSA), originally developed to progressively move away from the original indication
and optimize a compound across protein families.> This methodology goes like this:
first the binding site extraction from the 3D structure of protein sequence, second search
for similar binding sites across the proteome using search algorithm, and finally manual
docking analysis to make sure the physical interaction is possible. Using this method
the researchers were able to predict the potential implication of two approved drugs
entacapone and tolcapone in tuberculosis through binding of enoyl-acyl carrier protein
reductase, an enzyme that facilitates synthesis of fatty acid in Mycobacterium
tuberculosis. This hypothesis was validated experimentally using commercially
available tablet, which not only showed effectiveness but also bypassed the drug
resistance encountered in Mycobacterium tuberculosis making a valuable treatment
alternative for affected patients.

Well, no method is absolute, so dose molecular docking, despite such success it also
not immune to drawbacks. Firstly, 3D structure must be available, though databases
such as Protein Data Bank (PDB) comes fourth as a saviour still they are very far from
covering the whole proteome.!” Secondly, automatically recognising a binding site
possess a real challenge especially when the protein is crystalised without a ligand.
Finally, as all methodologies are prone to generation of large number of false positives,
experimental and manual validation become the only viable solution to judge the
prediction. Furthermore, single amino acid difference can lead to a totally different

pharmacology of binding site,?*

a major pitfall especially when the structures are
analysed and aligned in an automated fashion.

Arguably, protein-based approaches are the closest methodology to the actual physical
interaction between drug and protein target. Docking approaches offer an intricate,
detailed view of the biochemical complex, but still face challenges in modelling.

Additionally, identifying off-target proteins does not always led to repositioning
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opportunities, and the results must always be interpreted within a broader biological

context.

1.3.2.4 Phenotype and side-effect-based approaches

Phenotype is a set of characteristics or traits attributed to an organism, such as
morphology, developmental, biochemical or physiological properties.?> In biological
sciences this concept is majorly used to indicate key observation when looking at a
living organism. The phenotype is perhaps the most fundamental interaction between
biomedical scientists and their subjects. For instance, as Darwin journeyed around the
world, he gathered evidence for evolution by studying the phenotypes of barnacles.?°
Similarly, Gregor Mendel first described inheritance based on the traits observed in pea
plants.?” Though none of those scientists were aware of the molecular mechanism
underling those observable patterns, yet their phenotypic observations were strong
enough to forward valid conclusion. This practice is still in use in clinical settings, every
time a doctor diagnoses a patient, he or she primarily relies on phenotypic signs present
in the patient. This phenotypic-driven approach is also routinely used in drug discovery,
interestingly some recent studies suggest that it’s one of the best techniques to bring
new medicine.?® This high success rate of this method can be attributed to the fact that
phenotypic observations more accurately reflect the underlying system, preserving the
physiological context. This contrasts with target-based approach, where in vitro lead
compound has higher likelihood of remaining active when progressing to animal
models and, eventually clinical trials.?’

In the context of drug repositioning, side effects can also be considered as phenotypes.
The story of sildenafil is a classic example: regardless of a drugs potency in animal
models or in vitro assay, its true pharmacological nature only emerges during clinical
trials. Accurately characterizing these side effects can aid in repositioning a drug or
uncovering new interaction patterns (Fig 1.7).

Drugs with similar target binding profiles tend to cause similar side effects.>**! Based
on this justification, Campillos et al.*? defined the adverse effect profiles for medicines
that were approved and then utilized similarity among these to determine the drug’s
intended targets. Using text mining on package inserts, the side effects were first
extracted in order to create a statistical model that would tell us how likely it was the
two drugs would bind same target. The authors then focused on substances that, based

on the model, had high likelihood of sharing a target but belonged to distinct therapeutic
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categories. Twenty of these predictions were validated experimentally confirming
thirteen of them of which eleven had inhibition constant less than ten micromolar. The
method’s novelty underscores how side effects are molecularly relevant, offering a
pathway to identify off-target effects and repurpose therapeutic molecules for new
indications. An intriguing aspect of this method is how it represents side effects. Like
any phenotypic trait, words or terms based on observation remain the effective way to
describe them. In this study the researchers utilized the Unified Medical Language
System (UMLS),** a controlled vocabulary provided by the National Institute of Health
(NIH). The experimental validation by the research team suggested that ontologies and

controlled vocabularies can indeed produce reliable predictions.

W A Headache, Nausea,
J Hyperlipidemia

I

Side effects Side effects

Similarity

Figure 1.7: Drug repurposing using phenotype information. Knowledge about the
phenotypic outcome triggered by a drug can be used in order to establish relative
similarities. (A) The diagram illustrates a theoretical example using reported side-
effects: the more side-effects are commonly shared by two drugs, the more similar
these two drugs are. The similarity can be used to either derived potential off-target or
new indication.

Another approach was laid down by Yang and Agarwal,**

where they used side-effects
from SIDER* database to link diseases in search of potential drug repositioning
opportunities. Map was created connecting molecules to pathologies based on
information available in pharmacogenomics knowledge base (PharmGKB).*® This

method values evidence indicating that drugs used to treat similar diseases tend to have
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similar side effects. Considering this, it can be hypothesised that drugs having similar
side-effects may have common mode of action, indicating that two drugs with
significant number of similar side-effects can be used to treat the same pathology even
if they belong to different chemical class.

Half a century ago, drug discovery centered around phenotypes. However, with the rise
of molecular biology, the art of drug discovery took a sharp turn towards target-based
approach.?’ Despite this shift, phenotype-based approach still remains valuable even
today as it repots the effect of a given substance on entire organism, which is more

relevant for clinical application.?”-*8

1.3.2.5 Genetic variation-based approaches
At the molecular level, genetic variations offer significant insights into drug
repositioning opportunities. With the advent of high-throughput DNA sequencing
techniques and advanced analysis pipelines, sequencing individuals and studying their
genotypes has become more accessible, allowing researchers to pinpoint common
mutations in DNA that are strongly associated with phenotypic traits. This approach,
known as genome-wide association study (GWAS), is used to link single-nucleotide
polymorphism (SNPs) to diseases. Information about SNPs and their diseases
associations are publicly available in databases, such as one maintained by the National

Human Genome Research Institute (http://www.genome.gov/gwastudies/). Sanseau et

al.’? utilised this resource to analysis and screen out potential new indications for
protein targets identified through GWAS. The approach is based on the premise that an
association between an SNP and a trait identified in a GWAS can be interpreted as a
link between a gene and a disease (when the traits considered are disease, as depicted
in Fig: 1.8). Knowing that a drug targets the product of a specific gene, one can infer
that the drug’s indication might correspond to the disease studied in the GWAS. For
example, a SNP of the gene encoding 3-hydroxy-3-methylglutaryl-CoA was found

significantly associated with the trait LDL cholesterol.*’

The statins, a class of drug
known to target this gene product and are prescribes as cholesterol lowering agent
(hypercholesterolemia). The authors were able to identify 97 cases where SNPs
supported the current drug indication, providing greater confidence in the biological
role of the protein. Conversely, they found 123 instances where the trait associated with
the gene did not match the drug’s current indication, suggesting these associations as

opportunities for drug repositioning. For instance, denosumab, a monoclonal antibody
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http://www.genome.gov/gwastudies/

used to treat osteoporosis and bone cancer, targets the protein TNFSF11 (tumour

necrosis factor superfamily, member 11).
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Figure 1.8: Drug repurposing using genetic information. (A) Single-nucleotide poly-
morphism (SNP) are associated with phenotypic trait, here LDL cholesterol. The gene
where the SNP is found (HMGCR) encodes for a protein, targeted by statins. Statins
are indicated as cholesterol lowering agents, which are confirmed by the trait
associated with the SNP. (B) sometimes the trait associated with the SNP diverges
from the indication of the drugs, as shown on the diagram (PTSD against smoking
cessation). In such case, a repurposing hypothesis can be generated.

A SNP in this protein has been linked to Crohn’s disease, indicating that denosumab
could potentially be tested for treating Crohn’s disease.*! Another such example is
nepicastat, a small molecule primarily indicated for treating cocaine addiction and post-
traumatic stress disorder. Its target, dopamine beta-hydroxylase (DBH), has been
associated with smoking cessation in a GWAS,*' suggesting a potential new application

of the drug for those who wants to quit smoking.

Just like any other methodology it also comes with pitfalls, for example we can take the
instance of prediction made for NOS2 (nitric oxide synthase 2) inhibitor where GWAS
predicted it be active against psoriasis though experiments showed no results. In
practice, the relationship between genes and disease is complex, and additional
information is often necessary to fully understand a drug’s potential effects.

Furthermore, GWAS does not indicate the direction of the pharmacological effect,
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making it troublesome to determine whether the agonist or the antagonist will produce
the desired results. Despite all these short comings, the remarkable advancements in
genome sequencing suggest that this approach or a similar methodology, could become

a major role player in drug repurposing in the coming years.

1.3.2.6 Disease network-based approaches

Traditionally, diseases have been classified based on the cause of the pathology (e.g.,
infection) or the observed biological dysfunction (e.g., uncontrolled cell growth). Since
similar diseases are treated similarly, a more detailed understanding of the relationship
between pathologies can lead to drug repositioning hypothesis. Here I will briefly
outline some work done in this area, specifically on constructing a “diseasome” or a
network of relationships between diseases.

Chiang and Butte*? defined disease based on the available treatment regime and off-
label indications. Although this approach is relatively simplistic, it is supported by
successful examples and is commonly practiced in clinical settings. The authors
proposed the use of medication that is only indicated for one of two similar diseases as
a therapy for the other, a technique known as associative indication transfer. Using this
approach on 700 diseases and 2000 medication they were able to generate over 150,000
new associations. Remarkably, the new indications aligned with the clinical trial data,
with the predicted new uses frequently being reported by practitioner’s (showing a 12-
fold enrichment compared to random chances). For example, atorvastatin, a
cholesterol-lowering agent, was predicted to be effective for asthma, Crohn’s disease,
and myocardial infarction; all these associations have been positively confirmed in
clinical trials, validating the methodology. For the same drug some new association
have no clinical knowledge, such as activity in breast cancer and osteosarcoma. Thus,
it is feasible to explore the effects of a drug on these conditions. This work demonstrates

on approach to relating diseases. Li and Agarwal*

developed a similar methodology by
constructing network based on shared pathway, where they created a map linking
diseases using public resources such as Reactome, KEGG pathways, and text mining.
Considering diseases with commonly deregulated pathways as similar. The properties
of the resulting graph were analysed, and the authors showed how their work could
shed light into disease relationships. Although no analysis for repositioning
opportunities was conducted, the map can serve as a starting point for identifying such

1.4

possibilities. Suthram et al.** used a similar approach except they constructed the
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disease map based on gene expression profile and protein network rather than relying
on shared pathway like Li and Agarwal. An analysis of such graph reviled 59 functional
molecules shared by half of the disease studied. These molecules connect pathologies
at the molecular level, aiding in the understanding of the system’s internal dynamics.
Similar to aforementioned methods once a disease network is established, it can be
viewed as a stepping stone for generating drug repositioning hypothesis. In conclusion,
although disease maps do not directly address drug repositioning, they can offer
valuable insight into drug usage. These approaches also challenge the current system

of classifying diseases by considering molecular information as signature of definition.

1.3.2.7 Machine learning and concepts combination approaches

Most of the aforementioned approaches heavily relies on concept of the map shown in
(figure 1.4) and orients their analysis around it. It is completely possible to train a
machine learning model using these biomedical descriptors to generate predictions.
Two instances of drug repositioning study have come out from this perspective, where
firstly a series of biomedical heuristics is defined to train a ML algorithm using known
data and finally predictions are made using the trained model.

In the year 2011 Gottlieb et al.*® presented a method called PREDICT based on this
concept, where to train the ML algorithm they used drug-drug and disease-disease
association separately. The drug-drug association were characterised using their
chemical fingerprint followed by reported and predicted list of side effects. To further
enrich model, they introduced information related to the targets of the drugs: such as
the sequence similarity of the protein, distance in the protein-protein interaction
network along with semantic similarity of their GO annotation. The disease-disease
associations were defined in a pretty straightforward manner using semantic similarities
derived from Human Phenotype ontology (HPO), using the annotation from the Online
Mendelian Inheritance in Man (OMIM) database. The authors then trained a logistic
regression classifier using this association maps to distinguish genuine association from
the false ones. The model’s performance was compared to predictions made by other
methods, such as GUILT-by-association and CMap approaches,'® presented earlier in
this chapter. The evaluation revealed minimal overlap among the different mythologies,
indicating difficulties in aligning the various datasets, as the diseases and drugs
considered often differed. Subsequently, some drug repositioning predictions were

made and addressed using clinical trials data. Approximately one-third of these
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predictions had already been investigated, lending confidence to the methodology’s
outcomes. In the final step of the study, the authors replaced the disease-disease
associations based on phenotypic similarity with the gene expression profiles. This step
aimed to test the method for personalised medicine: given a patient’s gene expression
profile, could PREDICT identify the best drug for the individual? The results were
promising, with the method achieving high recall and specificity (area under curve of
0.92 obtained from receiver operating characteristic curve), highlighting a solid proof-
of-concept for the algorithm.

The second method presented by Napolitano et al.*¢ is very similar to PREDICT only
differing in the ML algorithm which was Support Vector Machine in their case. The
algorithm was employed to predict therapeutic categories within the Anatomical
Therapeutic Chemical (ATC) Classification system, with misclassifications being
reinterpreted as drug repositioning hypothesis. The researchers also used structural
similarity, protein-protein interaction network distance, and gene expression data as
initial features to train the SVM. Following standard machine learning evaluation
procedures, the authors generated repositioning predictions. The primary hypothesis
suggested that anthelmintic compounds could be effective as antineoplastic agents and
that antineoplastic drugs could be repurposed as systemic antibacterials.

Machine learning based approaches to drug repositioning offers a means to integrate
various descriptors into a single statistical model, aiming to improve predictions
accuracy. However, these techniques encounter significant challenges. One major issue
is interpreting the repurposing hypothesis: the statistical model functions as a black box,
obscuring the rationale behind selecting a compound. Many hypotheses turn out to be
obvious cases that a biologist could easily explain by examining the chemical structure
or known-off-target effects of the compounds. Thus, outcome may be due to
overtraining the model. additionally, the biomedical significance of incorporating a
large number of descriptors is questionable; given the complexity and uniqueness of
diseases, excessive information may obscure critical biological mechanistic details,

leading to less meaningful results.

1.4 Summary

A large number of approaches have been tried and tested in order to computationally
repurpose drugs. This field of computational drug repurposing is still in its infancy, as

revealed by two factors.
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Firstly, it remains unclear which method yields the best results and why. The only
definitive way to evaluate these predictions is when a drug, suggested by an in-silico
hypothesis, becomes routinely used in the clinic. To my knowledge, no compelling
example of this exists yet. This is not disappointing, as developing a new drug is lengthy
process, often exceeding twelve years, and is fraught with lengthy legal and economic
obstacles. Considering that the first study reported by PubMed for the keyword
“computational drug repositioning” was published in 2006,*” and this trend spiked in
2021 in the covid period while the world was going through a crisis, it seems reasonable
not to have much clinical examples yet.

Secondly, each method tries to answer drug repurposing problem form different
perspective or biomedical concept, adding multiple layers of complexity in the
evaluation process. objectively aligning the results from various approaches is
troublesome as the initial dataset pertain to different molecules and diseases, leading to
different outcomes. It would be advantageous for the community to have a standardized
dataset that includes both the legal indications and the known, confirmed alternative
once. Computational methods could use such a resource to benchmark their
performance, assess their predictive capabilities, and conduct error analysis. In this
context, the immaturity of the field also fosters creativity, as evidenced by the numerous
methods that have been developed.

900 e Drug Repurposing Computational Drug Repurposing
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Figure 1.9: Evolution trend of the documents related to drug repositioning in PubMed
database since 1980-2024.

In conclusion, computational drug repositioning is becoming an increasingly popular

topic with in the scientific community, as illustrated in Figure 1.9. Numerous methods

have been developed over the past decade which are summarised and discussed in this
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chapter. Drug repositioning is a small puzzle of a bigger problem known as indication
discovery and network biology.*® This approach leverages our growing understanding
of systemic behaviour to computationally design smart drug. Various levels of
abstraction can be considered, as demonstrated by the range of biomedical concepts

used as starting points.
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Chapter 2
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What makes HDACG6 a good target for drug?

2.1 Introduction
Before delving deep into the problem statement why HDACSG is a good target, lets first
discuss about what is it, where did it come from? To answer these questions, we have

to delve into the realms of Epigenetics.

DNA the central molecule of life, holds the genetic information for all the eukaryotes.
This DNA upon transcription forms RNA which ultimately forms protein through
translation and genetic information is expressed in terms of phenotype. This whole
process is called central dogma.*® Epigenetics is a crucial part of it. Normally in cell
DNA are supper coiled and is in dormant state. Epigenetic modulator such as HAT and
HDAC plays the role of unwinding and rewinding of DNA from histone octamer,
making it accessible to topoisomerase for central dogma to take place.®® This HAT
family of enzymes catalyses an acetylation reaction at specific lysine residues of
Histone 2 protein of histone octamer complex.>! This acetylation adds negative charge
to histone tail, which ultimately repels negatively charged DNA molecule making it
more accessible to topoisomerase and other enzymes associated with replication and
transcription. HDAC family dose the simply opposite, it helps to splice of the extra
acetate group which was added by the HAT enzyme, leading to shift in polarity and
stable binding of DNA on histone octamer, hence genetic repression.>?
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Figure 2.1: Central dogma of life.

Here | will briefly discuss about the HDACs and will focus majorly on HDACSG as it is
of our main concern. These Histone deacetylases or HDACs are the key regulator of
cellular protein acetylation level.>* The name may suggest that they are only specific to
histone, well that is not the case, besides histones they also deacetylates proteins like
p53, E2F, a-tubulin, heat shock protein 90 (HSP90), cortactin and Myo D. This wide
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substrate specificity indicates that HDACs are a major role player in the cellular
function and homeostasis.>**® Therefore, dysregulation of HDACs contributes to
development of several diseases ranging from multiple forms of cancer, neurological
disorders, inflammatory disease, autoimmune disease, to cardiac and pulmonary

diseases, making this family of metalloenzyme crucial drug targets.>¢->°

To date, 18 HDAC isoforms have been discovered in humans that shows sequence
homology to yeast protein ortholog hdal. These HDACs have been grouped into four
different classes based on their co-factors and catalytic domain organisation, of which
class | (HDAC1, HDAC2, HDAC3 and HDACS) class Ila (HDAC4, HDACS5, HDAC7
and HDACY9), class IIb (HDAC6 and HDAC10), and class IV (HDAC11) uses a Zn?
as a cofactor, whereas class I11 or sirtuins (SIRT1-7) exerts its catalytic functions using
nicotinamide adenine dinucleotide (NAD™) as co-enzyme.®®! Since identification of
this class of enzymes, numerous inhibitors with varying efficiency (at nM to uM
concentration) have been developed ranging from naturally derived trichostatin A and
trapoxin to synthesised molecules like butyrate. The therapeutics of these inhibitors are
judged on the basis of their capacity to acetylate different cellular proteins, upregulation
of p21 as well as downregulation of tumour proliferation via apoptosis.®? Currently on
our arsenal we have six FDA approved HDAC inhibitors namely vorinostat (SAHA,
1), belinostat (2), Panobinostat (3), [FDA has been withdrawn in 2022], romidepsin (4)
and pracinostat (5) and are primarily indicated for the treatment of refractory or relapsed
cutaneous and peripheral T cell lymphomas as well as multiple myeloma.>®®3 Other
than this five, chidamide (6) is another potent HDAC inhibitor approved in China for
similar clinical condition. The major drawback these inhibitors suffer from is lack of
isoform selectivity, leading to various adverse effects such as fatigue, nausea, vomiting,

cardiotoxicity, and thrombocytopenia.®+%°

With the advancements in the field of molecular biology and genetics several HDAC
isoforms have been identified and studied, and of these isoforms class Ilb member
HDACG6 came to the center of attention due to its unique structure since its discovery
in 1999.% Another unique aspect of HDACG is its cytoplasmic localization whereas
other HDAC:s are nuclear enzyme. Being cytoplasmic it deacetylase specific cytosolic
non-histone substrate such as a-tubulin, Hsp90, cortactin, peroxiredoxin, and heat

shock transcription factor-1 (HSF-1).
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Figure 2.2: FDA approved HDAC inhibitors

The acetylation of lysine 40 on a-tubulin, regulated by HDACS, is notably the first
identified and most extensively researched physiological non-histone substrate.®®
Numerous studies have indicated that HDAC6 plays a role in tumorigenesis,
development, and metastasis through diverse cellular pathway involving proteins like
tubulin, protein ubiquitination, and Hsp90. Extensive research has also shown that
selective inhibition of HDACG6 could be an effective treatment for different cancers
such as malignant melanoma, lung cancer, and bladder cancer, as well as for
neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington’s disease.*%” Recent reports also demonstrated the potential of
selective HDACS6 inhibitors in rare disease conditions such as amyotrophic lateral
sclerosis (ALS), Rett syndrome, and Charcot-Marie-Tooth disease.%® Later in this
chapter, there is a detailed discussion on this disease and the role of HDACES in their

development.

2.2 Classification of HDACs
As stated earlier, the 18 HDACS are categorised into class I, Il, 111 and 1V based on their
similarity to yeast orthologues Rpd3, Hdal, and Sir2, respectively. Classes I, 1l and IV
are referred to as classical HDACs, comprising 11 family members that are generally

Zn?* dependent metalloenzymes. In contrast, class 111 members are known as sirtuins
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and require NAD+ as a vital cofactor.%%®° Table 1.1 summarises all the HDAC isoforms,

their chromosomal location, cellular localization and functions.

2.2.1 Class | HDACs
Class I HDAC family comprises of four members namely, HDAC1, HDAC2, HDAC3
and HDACS, of these HDAC1, HDAC2, and HDACS functions together as subunits of
multiprotein nuclear complex as a transcriptional repression factor.®® HDAC1 and
HDAC?2 have very similar structure (sequence similarity index 82%) and mainly works
as subunits of corset complex which upon activation represses the expression of
neuronal gene in non-neuronal tissue. HDAC3 also functions as a transcription
repressor. The last member of this family, i.e., HDACS though has about 34% sequence

similarity with HDAC3, is not a component of any repressor complex so far.%°

2.2.2 Class Il HDACs

Class Il HDAC family is further divided into two sub classes, Class Ila and Class Ilb.
Class Ila consists of four members namely HDAC4, HDAC5, HDAC7 and HDAC9
and are characterised by large N-terminal domain with a specific binding site for
transcription factors like monocyte-specific enhancer factor-2 (MEF-2) and 14-3-3
protein that facilitates HDAC signalling.®® These Class Ila features three of these 14-3-
3 binding sites, and are majorly responsible for regulating cellular HDAC
trafficking.®%%® 14-3-3 upon activation stimulates the cytoplasmic retention or nuclear
retention of class Ila HDACs using a phosphorylation-dependent kinase, like
calcium/calmodulin-dependent protein kinase (CaMK) and protein kinase D (PKD),
microtubule affinity-regulating kinase (MARK) and checkpoint kinase-1 (CHK-1).”

Class Ilb members i.e., HDAC6 and HDAC10 are similar to each other with 55%
sequence homology. HDACG6 is mainly cytoplasmic and deacetylase non-histone
substrates such as a-tubulin, heat shock protein etc.’”® This particular isoform of HDAC
contains two tandem deacetylase domain and a C-terminal zinc finger ubiquitin binding
domain,®” and is associated with cell mortality, adhesion and chaperone function.
HDACS also regulates aggresome function, autophagy through its zinc finger ubiquitin
binding domain.®® Like other HDACs, HDAC10 also features an N-terminal catalytic
domain and a C-terminal leucine-rich domain. The N-terminal catalytic domain of
HDAC10 resembles the deacetylase domain found in other class Il HDACSs, whereas

the C-terminal domain lacks the residues essential for enzymatic activity.”
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Figure 2.3: Domain organization of human HDACs. The total number of amino acid
residues is shown on the right of each isoform. Enzymatic domains (or putative

enzymatic domains) are shown in colour.

2.2.3 Class Il HDACs

Recently discovered class |1l HDACs are adenine dinucleotide dependent enzymes,
better known as sirtuins due to their sequence homology with yeast Sir2 silencing
protein.®! This class consists of seven members (namely SIRT1, SIRT2, SIRT3, SIRT4,
SIRTS5, SIRT6, SIRT7), and all have specific functions and are associated with various
age-related neurodegenerative diseases like Alzheimer’s and Parkinson’s disease.’?
This class of HDACs are also involved in various physiological pathway such as
mitochondrial dysfunction, stress response, oxidative stress, and inflammatory

processes associated with neurodegeneration.’

2.2.4 Class IV HDACs

The sole member of this family, i.e., HDACL11 is the smallest known HDAC enzyme
with a molecular weight of 39 kilodalton, characterised by an open reading frame
responsible for encoding a 347-residue protein.” HDAC11 features a deacetylase
domain, structurally similar to both class I and class Il HDADCs.”® HDAC11 is highly
expressed is the brain, heart, kidney, muscles and testes, though least is known about

its physiochemical function.”*
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2.3 Structural biology of HDAC6

In 1999, Verdel and Khochbin et al.”™ along with Grozinger et al.”® identified HDAC6
following a GenBank database search for human HDACs that exhibited sequence
similarity to yeast Hdal. The X-linked gene p11.22-23 composed of 21923 base pair
encodes for HDACSG, that consists 1215 amino acids.?® They observed that this tissue
specific enzyme is primarily cytoplasmic and has highest expression in the heart, liver,
kidney and pancreas.”® HDAC6 exclusively contains two highly conserved catalytic
domains. These domains are homologous to each other and functions independently,
contributing to the overall activity of HDACG6. The helixes H17 and H18 of catalytic
domain 1 (CD1) and helixes H36 and H37 of catalytic domain 2 connects these
homologues domains, and forms a lar domain-domain interface by helices H13, H14,
H15, and H18N of CD1 and H32, H33, and H34 of CD2."’

Structurally, HDACG6 contains five domain all total. From N to C terminal, the N
terminal end is rich in arginine and lysine (A.a: 1-87) and functions as nuclear
localization signal, followed by a nuclear export signal (A.a: 67-76) which is leucine
enriched.%®"® The catalytic domain 1 (A.a: 88-447) and catalytic domain 2 (A.a: 482-
800) are the center of deacetylase activity and are followed by cytoplasmic retention
signal (SE14; A.a: 884-1022) characterised by a tetra decapeptide serine glutamic acid
repeat sequence.®®® At the C-terminus there is a unique zinc finger ubiquitin binding

domain®° that facilitates misfolded protein degradation through aggresome pathway.

With the help of X-ray crystallography Miyake et al.”” was able to image catalytic
domains of HDACG6 exhibiting different substrate specificity. The catalytic domain 1
(CD1) comes with narrow substrate specificity primarily due to its active site being
constricted by K330 making it inaccessible to wider substrate, whereas similar position
in CD2 is occupied by relatively smaller amino acid L712 thus allowing it to interact
with wider range of substrates.>® Both of these catalytic domains are highly conserved
and features a hydrophobic channel connecting the active sites opening and the zinc at
the base of the pocket, made up of residues Pro83, Gly201, Phe202, and Trp261in CD1,
and Pro464, Gly582, Phe583, Phe643, and Leu712 in CD2. The two-charge relay
system is made up of His192-Asp228 and His193-GIn235 dyads in CD1. In contrast
CD2 has the classis dyad configuration with His573-Asp610 and His574-Asn617.”’

During the catalytic process, the zinc ion in the active site, coordinated by His573,
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His574, and Asp612, activates a water molecule. This water molecule, supported by the

proton relay system involving Tyr745 and Asp705, attacks the carbonyl carbon of the

1 14-59 67-76 87 447 482 800 884-1022 1049-1058  1131-1192 1215

N — -Gl C TR C >-CC-EE-Glil —

NLS NES1 CD1 DMB CD2 SE14 NES2 ZnF-UBP

Figure 2.4: Mechanistic representation of HDAC6 (left). Catalytic domain 2 of
HDACSG6 with Trichostatin A (right).

acetyl group on the substrate's lysine residue, leading to the formation of a tetrahedral
intermediate. The collapse of this intermediate results in the release of an acetate
molecule and the regeneration of the free lysine residue. Additionally, Phe583 and
Trp627 contribute to forming a hydrophobic pocket that stabilizes the substrate within
the active site, ensuring proper orientation for the deacetylation reaction.”
Understanding the role of these specific residues in the coordination and execution of

the deacetylation process are essential for developing selective inhibitors for HDACS.

To date, researchers have identified a total of 92 X-ray crystal structures of HDACS,
derived from both Homo sapiens (humans) and Danio rerio (zebrafish). These structural
studies have offered invaluable insights into the complex interactions between the
ligand (inhibitor) and the receptor (HDACSG). The active sites in the catalytic domain 2
of HDACS6 in humans and zebrafish are nearly identical, with the exception of the
N645M and N530D substitutions, respectively. This conservation suggests that the
overall mechanism of action is preserved across species, making zebrafish a useful
model for studying HDACS6 inhibitors. A comprehensive list of these HDACG6 crystal

structures is available in the Protein Data Bank and is detailed in Table 2.2.
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Table 2.1: Classification of HDAC isoforms, their cellular localization and functions

Super family Family Group | Class HDAC Chromosomal | Amino Cellular Physiological Role
isoform location acids No. | localization
Arginase/ Histone Zn? I HDACL1 1p35-p35.1 | 483 Nucleus Proliferation ~ control,  apoptosis,
deacetylase deacetylase transcription regulation, cell survival.
superfamily family HDAC2 6021 488 Proliferation control and apoptosis,
transcription repressor.

HDAC3 5031.3 428 Proliferation, differentiation,
transcriptional ~ repressor,  Fox3
deacetylation.

HDACS Xq13.1 377 Proliferation, differentiation, and cell
survival.

Il IHA | HDAC4 2037.3 1084 Nucleus/ Differentiation, angiogenesis,
cytoplasmic cytoskeletal dynamics, and
cell motility.

HDACS 17¢g21.31 1122 Differentiation, lymphocyte
activation, endothelial cell
function.

HDAC7 12g13.11 912 Angiogenesis, Lymphocyte
activation, thrombocyte
differentiation.

HDAC9 7p21 1069 Deacetylates FoxP3,

Immunosuppressive activity.
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1B | HDAC6 Xpl1.23 1215 Cytoplasmic Regulation of protein degradation
through aggresome
pathway, Hsp90 chaperone activity,
cytoskeletal
dynamics, cell  motility, and
angiogenesis.
HDAC10 2013.33 669 Angiogenesis.
v HDAC11 3p25.1 347 Nucleus DNA replication and
Immunomodulation by regulating the
expression of I1L-1.
Deoxyhypusine | Sir NAD* | 11l SIRT1 10g21.3 747 Nucleus/ DNA repair, cell survival,
synthase regulator cytoplasmic autoimmunity.
like NAD/FAD- | family SIRT2 19g13.2 389 Nucleus DNA repair, cell survival, cell
binding invasion.
domain SIRT3 11p15.5 399 Mitochondrial | DNA repair, cell signaling apoptosis.
superfamily SIRT4 12024.31 314 Energy metabolism.
SIRT5 6p23 310 Cell signaling pathways.
SIRT6 19p13.3 355 Nucleus DNA repair, metabolism regulation
SIRT7 17g925.3 400 Apoptosis, cellular transformation.
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Table 2.2: List of reported crystal structures of HDACG6 as available from Protein Data Bank (as accessed on September, 2023)

SL. PDB | Domain | Mutation | Co-crystalized | Organism Release XRD Ligand Structure Ref
No with Resolution
1 6U02 CD1 - Trichostatin A Danio 04-12-2019 1.65 i i 82
rerio S N ”/OH
\N
2 6U03 CD1 - AR-42 Danio 04-12-2019 1.09 i 82
/OH
rerio Qf\/ij)‘\u
3 5WGK CD2 - HPB Danio 06-12-2017 1.822 o 83
rerio "
H H\OH
4 5WGL CD2 - ACY-1215 Danio 06-12-2017 1.7 83
rerio
m
"l = "\/\/\/\H/N\
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5WGM | CD2 - ACY-1083 Danio 06-12-2017 1.75 83
rerio
N\_7
6UO4 CD1 Y363F Trichostatin A Danio 04-12-2019 1.268 i i 82
; /O)H/\(\J\/
N
6UO5 CD1 Y363F AR-42 Danio 04-12-2019 1.439 e 82
rerio /@)‘\ OH
(0] N
H
N
H
6UO7 CD1 K330L AR-42 Danio 04-12-2019 1.395 Q 82
rerio /@* OH
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9 6UOC CD1 K330L Givinostat Danio 04-12-2019 1.4 il N 82
rerio )k v
|
10 SWGI CD2 - Trichostatin A Danio 06-12-2017 1.05 83
rerio v ”
N
11 6UOB CD1 K330L Resminostat Danio 04-12-2019 1.58 82
rerio H/OH
/\Q\O
0
12 6CSP CD2 - N- Danio 30-05-2018 1.237 84
hydroxycyclohe rerio
x-1-ene-1-
carboxamide
13 6CSQ CD2 - N- Danio 30-05-2018 2.031 84
hydroxycyclohe rerio
x-1-ene-1-

carboxamide
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14 6CSR CD2 Phenylhydroxa Danio 30-05-2018 1.619 Q 84
mate rerio N _OH
H
15 6CSS CD2 Cyclopentenylh Danio 30-05-2018 1.7 O 84
ydroxamate rerio @)‘\N P
H
16 8D98 CD2 3,5-difluoro-N- Danio 28-09-2022 1.66 Q 85
hydroxybenzami rerio N _OH
de H
17 8D99 CD2 2,3,6-trifluoro- Danio 28-09-2022 1.79 o 85
N- rerio . _~OH
hydroxybenzami :
de
18 8D9A CD2 2,3,5-trifluoro- Danio 28-09-2022 1.75 i 85
N- rerio o
H
hydroxybenzami
de
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19 8D9B CD2 2,3,5,6- Danio 28-09-2022 1.63 85
tetrafluoro-N- rerio "
hydroxybenzami )
de
20 8D9C CD2 2,3,4,5,6- Danio 28-09-2022 1.82 85
pentafluoro-N- rerio "
hydroxybenzami "
de
21 8EQI CD2 Cyclopeptide Danio 19-04-2023 2 | e 86
des4.2.0 rerio
22 5G0G CD1 Trichostatin A Danio 27-07-2016 1.499 i i 77
rerio Wu/ o
\N
23 5GOH CD2 (S)-Trichostatin Danio 27-07-2016 1.6 i i 77
A rerio
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24 5G0I CD1 & - Nexturastat A Danio 27-07-2016 1.99 il 77
CD2 rerio N
(Linker
cleaved ©/N\"/N\/\/
)
25 5G0J CDl1 & - Nexturastat A Danio 27-07-2016 2.88 i 77
CD2 rerio W
(Linker
intact) ©/H\"/N\/\/
26 6WYP CD1 K330L SAHA-Bpyne Danio 02-09-2020 2.4 87
rerio ) )
27 6WYQ CD1 K330L 4-iodo-SAHA Danio 02-09-2020 1.9 o 'l 87
rerio . /H\”/\/\/\)‘\N
N
28 5GOF ZnF- - na Danio 27-07-2016 19 | e 77
UBP rerio
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29 6WYO | CD1 H82F, Trichostatin A Danio 02-09-2020 2.3 i i 87
F202Y rerio NN W
~
30 6VNR CD2 - N-hydroxy-1- Danio 13-05-2020 1.943 7 88
{[4- rerio \—OH
(hydroxycarbam HO ! "
oyl)phenyl]meth Y,
yI}-1H-indole-
6-carboxamide
31 6CGP CD2 - MAIP-032 Danio 13-06-2018 2.5 N 89
rerio /
HN\Q\(H\OH
%
32 6V7A CD2 - NF2657 Danio 02-12-2020 2.08 / 90
rerio //Q/( T
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33 7JOM CD2 TO-317 Danio 16-06-2021 1.84 "~ 91
rerio 7 \/©)‘\N/°H
NP
\\o
34 6PYE CD2 NR160 Danio 29-07-2020 1.48 92
rerio
s Yads
N
35 7QNO | CD1 & na Danio 09-02-2022 238 | e 93
CD2 rerio
36 6PZ0O CD2 YX-153 Danio 02-05-2022 1.5 92
rerio AN Y
37 6PZR CD2 Resminostat Danio 02-05-2022 2.3 ) i 92
rerio Il .
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38 6PZS CD2 JRO05 Danio 02-05-2022 1.79 92
rerio N
HO/ H
(o]
39 6PZU CD2 AP-1-62-A Danio 02-05-2022 1.74 o 92
rerio )j\(
40 6Q0Z CD2 JS28 Danio 02-05-2022 1.75 0 \ AN—on 92
rerio ﬁN o
Br
41 7TUK2 CD2 NN-390 Danio 02-11-2011 1.6 94
rerio 5
V4
O// \N
/K H\OH
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42 6V79 CD2 NF2376 Danio 02-12-2020 2.039 N\ 95

rerio N N
Ho/n

43 5EF7 CD2 HPOB Danio 27-07-2016 1.9 i 96

rerio o N
HO\/\N
44 5EFB CD2 Oxamflatin Danio 27-07-2016 2.543 i 96
. \ /OH
rerio N
AP 7 H
o4

45 5EFG CD2 na Danio 27-07-2016 225 | e 96
rerio

46 8A8Z CD2 ITF5924 Danio 25-01-2023 1.6 N=" 97
rerio
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47 S5EEF CD1 - Trichostatin A Danio 27-07-2016 2.151 i 96
rerio A H/OH
\N
48 SEEM CD2 - na Danio 27-07-2016 2 - 96
rerio
49 S5EEN CD2 - Belinostat Danio 27-07-2016 1.861 96
rerio ©\ A N
N I
50 5EFH CD2 - 7-[(3- Danio 27-07-2016 2.162 96
aminopropyl)am rerio HZN/\/\N
ino]-1,1,1- " HO  OH
trifluoroheptane
-2,2-diol
51 5EFN CD2 H574A 7-amino-4- Danio 27-07-2016 1.804 96
methyl- rerio, X
chromen-2-one Homo o 5 .
sapiens
52 SEEI CD2 - SAHA Danio 27-07-2016 1.32 96
rerio

O\Z I
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53

SEEK

CD2

Trichostatin A

Danio

rerio

27-07-2016

1.59

96

54

SEF8

CD2

Panobinostat

Danio

rerio

27-07-2016

2.6

96

55

SEFJ

CD2

Danio
rerio,
Bipolaris

zeicola

27-07-2016

1.73

96

56

SEFK

CD2

Y 745F

7-amino-4-
methyl-

chromen-2-one

Danio

rerio

27-07-2016

1.82

96
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57 7U8Z CD2 4-({N-[2- Danio 23-11-2022 1.85 N 3 98
(benzylamino)- rerio
2-oxoethyl]-4- \/@
(dimethylamino) N/\n/H
benzamido}met /@o O
\N
hyl)-3-fluoro-N- |
hydroxybenzami
de
58 702R CD2 ITF3985 Danio 27-10-2021 2.3 i 98
HO
rerio Sy n=N N
H l /
k@[/N\N/ \
59 5W5K CD2 KV70 Danio 27-06-2018 2.7 i 99
rerio
AN |
N X
60 6WSJ CD2 Cyclopeptide Danio 28-04-2021 .7 0 e 100
des4.3.1 rerio
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61 702P CD2 ITF3756 Danio 27-10-2021 19 i 98
rerio e v@AkH/
\ N
=
62 6TCY CD2 SS555 Danio 04-11-2020 1.6 i 101
N/OH
rerio :
oYY
63 6ZW1 CD2 SW101 Danio 04-08-2021 1.13 i N 102
N/
rerio KQ)I\
64 oDVL CD2 DDK-115 Danio 29-08-2018 2.1 . i: 103
rerio
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65 6DVN CD2 DDK-137 Danio 29-08-2018 2.2 1 N 103
rerio
e
T
|
66 6MR5 CD2 N-[5-(5,6- Danio 05-12-2018 1.85 104
dichloro-1H- rerio 0
indol-1-
yl)pentyl]-2- ﬁ/\/\/\N
sulfanylacetami =
de
67 6DVM | CD2 DDK-122 Danio 29-08-2018 1.47 ° ) 103
rerio
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68 6DVO CD2 Bavarostat Danio 29-08-2018 1.98 & / \ 103
rerio >_<_>_\
HO——NH — N
N/ "
H
69 6THV CD2 Tubastatin A Danio 15-07-2020 1.1 i 105
rerio ’/©)‘\ N
Sy
AN
70 6ROK CD2 SS208 Danio 09-10-2019 1.15 106
rerio :@\’(H o
=
| \/\Q%HN’OH
71 6CW8 CD2 RTS-V5 Danio 21-11-2018 19 i 107
rerio ~
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72

8G43

ZnF-
uBP

3-(3-(2-
(methylamino)2
-oxoethyl)-4-
0x0-3,4-
dihydroquinazol
in-2-
yl)propanoic

acid

Homo

sapiens

03-05-2023

1.55

OH

108

73

8G44

ZnF-
UBP

3-(3-(2-
(benzylamino)-
2-oxoethyl)-4-

0x0-3,4-

dihydroquinazol
in-2-
yl)propanoic

acid

Homo

sapiens

03-05-2023

1.55

OH

108
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74

8G45

ZnF-
uBP

3-[8-chloro-3-
2-{l(2-
methoxyphenyl)
methyl]amino}-
2-oxoethyl)-4-
0x0-3,4-
dihydroquinazol
in-2-
yl]propanoic

acid

Homo

sapiens

03-05-2023

1.62

108

75

6CE6

ZnkF-
UBP

3,3'-(benzo[1,2-
d:5,4-
d']bis(thiazole)-
2,6-
diyl)dipropionic

acid

Homo

sapiens

28-02-2018

1.6

109

76

6CES8

ZnF-
UBP

1,3-
benzothiazol-2-

yl)acetic acid

Homo

sapiens

28-02-2018

1.55

109
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77 6CEA | ZnF- 3-(quinolin-2- Homo 28-02-2018 1.6 il 109
UBP yl)propanoic sapiens "~ oH
acid F
78 6CEC ZnF- 3-(3-methoxy-2- Homo 28-02-2018 1.55 il 109
UBP quinoxalinyl)pro | sapiens ©1NI\)‘\OH
panoic acid e
79 6CED ZnF- 3-(3-methyl-4- Homo 28-02-2018 1.7 i 109
UBP 0X0-3,4- sapiens N
dihydroquinazol /‘\/\H/OH
in-2- "
yl)propanoic °
acid
80 6CEE ZnF- 3-(1-methyl-2- Homo 28-02-2018 1.55 | 109
UBP 0x0-1,2- sapiens

dihydroquinozal
in-3-
yl)propionic
acid
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81 6CEF ZnF- 3-(1,3- Homo 28-02-2018 1.8 109
UBP benzothiazol-2- sapiens (j: />—\_<o
yl)propanoic N
acid or
82 5B8D ZnF- N-(4-methyl- Homo 27-07-2016 1.05 />\ 110
uBP 1,3-thiazol-2- sapiens )J\ /g
yl)propanamide H "
83 5KH3 ZnF- 3-(5-chloro-1,3- Homo 27-07-2016 1.6 110
UBP benzothiazol-2- sapiens
yl)propanoic
acid
84 5KH7 ZnF- 3-[6-0x0-3-(3- Homo 27-07-2016 1.7 110
UBP pyridinyl)- sapiens
1(6H)-
pyridazinyl]prop
anoic acid
85 5KH9 ZnF- 5-[(4- Homo 27-07-2016 1.07 110
UBP isopropylphenyl | sapiens HN/Nji
)amino]-6-
methyl-1,2,4- N/ N
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triazin-3(2H)-

one

86 SWPB | ZnF- 3-(3-(pyridin-2- Homo 23-08-2017 1.55 110
UBP ylmethoxy)quin sapiens :
oxalin-2- ©iN o
yl)propanoic
acid
87 3PHD | Comple Ubiquitin Homo 23-02-2011 3 | e 111
te sapiens
structur
e
88 3CK5 ZnF- na Homo 19-02-2008 5 | e --
UBP sapiens
89 3GV4 ZnF- Ubiquitin C- Homo 28-04-2009 172 0 e -
UBP terminal peptide | sapiens
RLRGG
90 5EDU CD2 Trichostatin A Homo 27-07-2016 2.79 96
sapiens, X
Escherichi
a coli
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91 5WBN | ZnF- 3-(3-benzyl-2- Homo 02-08-2017 1.64 --
UBP 0X0-2H- sapiens ° "~
[1,2,4]triazino[2 Q\IN =N
,3-c]quinazolin-
6-yl)propanoic ; .
acid
92 7Z2YU ZnF- DARPIn Homo 01-06-2022 2.43 112
UBP (Designed sapiens

Ankyrin repeat
protein) F10
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2.4 Physiological functions of HDAC6

HDACSG6 is a major regulator of cellular proliferation, apoptosis, cellular mortality,
cellular oxidative stress pathway, misfolded protein degradation and heat shock
response, in other word it’s a major role player in maintaining cellular homeostasis.
Histone acetylation and deacetylation are essential for genetic expression and are
facilitated by histone acetyltransferase and histone deacetylase. As HDACG6 is
cytoplasmic deacetylase, it primarily maintains acetylation balance of cytosolic non-
histone proteins such as a-tubulin, cortactin, Hsp90, peroxiredoxins, surviving, Miro-
1, ERK-1, HSF-1, Ku-70, etc.1*314 various HDACG6 substrate their functions and its
related disease conditions have been listed in table 2.3.

HDACSG by affecting cytoskeleton (a cross-linking network consisting of microtubules,
actine filaments etc, provides structural support to the cell) dynamics influences cell
division, migration, angiogenesis and aggresome formation. a-tubulin is the first
described and most studied substrate of HDACG6 and happens to be a building block of
microtubules.”® Hypoacetylation of tubulin promotes cell migration whereas
hyperacetylation results in excessive accumulation of focal adhesion, thereby causing
cellular adhesion and its acetylation state overseen by opposing action of a-tubulin
acetyltransferase and HDACSG.

a® —
Cancer

Survivin

Axonal -— C:D
Defect Miro-1 \
—O

Ku-70

Cellular

mortality — @-
Cortactin

] a-tubulin
=

Figure 2.5: Physiological role of HDAC6

Aggresome
Formation

HDACSG also regulates actin-dependent cell mortality by altering acetylation state of
cortactin.'®* HDACS has also been found to influence PD-L1 expression via the STAT3

signalling pathway, suggesting its role in immunoregulation.®’
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Table 2.3: HDACS substrates, interacting proteins, and relevant biological functions

Substrate Localization of | Lysine residue | Catalytic domain | HDACS6 function Potential therapeutic target
substrate deacetylated involved disease
a-tubulin Cytoplasm Lys 40 CD1or CD2 Regulation of immune | Antigen presentation
synapse formation, cell | deficiencies, tumor cell
migration and | metastasis (cancer),
chemotaxis, = microtube | neurodegenerative
dynamics. disorders (Parkinson’s
disease, spinobulbar
muscular atrophy, CMT
disease)
Cortactin Cytoplasm Lys 87, 124, 161, 189, | CD1 + CD2 Regulation of cellular | Cell migration and
198, 235, 272, 309, 319 migration and F-actin | adhesion in cancer.
binding
HSP90 Cytoplasm Lys 294 CD1 + CD2 + BUZ | Misfolded protein | Parkinson’s disease,
degradation and clearance | Alzheimer’s disease, and
and regulation of | cancer.
glucocorticoid  receptor
and gene transcription
activation.
Miro-1 Mitochondria Lys 105 Blocks mitochondrial | Axonal defect in CMT 2.

transport and mediates

axonal growth inhibition.
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Peroxiredoxins Cytoplasm and nucleus | Lys 196, 197 ND Redox regulation Neurodegenerative
disorders and cancer.
Survivin Nucleus Lys 129 CD2 Anti-apoptotic function. | Breast cancer.
Ku-70 Cytoplasm Lys 539, 542 ND Suppression of apoptosis | Colorectal cancer.
Tat Nucleus Lys 28 CD2 + BUZ Suppression  of  Tat- | HIV
mediated transactivation
of HIV
[-catenin Cytoplasm Lys 49 ND Epidermal growth factor- | Tumour cell (cancer)
induced B-catenin nuclear
localization
ERK 1 Cytoplasm Lys 72 Cell proliferation and | Cancer.
growth, cell mobility and
survival.
GSK3p Cytoplasm and | Ser 22 ND GSK3p  phosphorylates | Neurodegenerative
Nucleus HDAC6 (Ser 22) to | disorders
enhance tubulin
deacetylase activity.
Aurora A Centrosomes of | ---- ND Aur A phosphorylates | Polycystic kidney disease
interphase cell HDAC6 to activate | and colorectal cancer.
(cytoplasm) tubulin deacetylase
activity
CK2 Nucleus and cytoplasm | Ser 485 ND CK2 phosphorylates | Neurodegenerative

HDAC6  (Serd58) to

disorders.
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increase tubulin

deacetylase activity.

Ubiquitin

Nucleus and cytoplasm

BUZ

Signal for cellular
processes, such as protein
degradation and

endocytosis

Neurodegenerative

disorders.

TRIM50

Cytoplasm

ND

E3 ubiquitin ligase in
aggresome formation and

protein degradation

Neurodegenerative

diseases

Dynein

Cytoplasm

DMB

Aggresome formation and

protein degradation

Neurodegenerative

disease.

LooR

Nucleus

ND

Cofactor of nuclear
receptor corepressor
LCoR

ER-positive breast cancer

NFkB

cytoplasm

ND

Transcription factor in
inflammation and cell

growth control

Gene expression-related

deficiencies.

BRMS1

Nucleus and cytoplasm

ND

Decrease metastasis

suppressor activity

Cancer cell metastasis

Bax

Cytoplasm

ND

Pro-apoptotic protein
block of apoptosis

Neuroblastoma

* CD1= Catalytic domain 1, CD2= Catalytic domain 2, BUZ= ubiquitin binding domain, DMB= Dynein motor binding domain, ND = not determined
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Newley synthesised protein chain needs to be folded into tree-dimensional structure
prior they can exert their biological function, and error in this folding leads to misfolded
proteins. These misfolded proteins need to be degraded that they can be further
recycled, and HDACS6 dose this job majorly in three ways.
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Figure 2.6: HDAC6 and misfolded protein degradation.

(@) Under non-stress conditions, to process misfolded proteins, HDAC6 binds with
AAA-ATPase chaperone p97, a vasolin-containing protein known for its ability to

disassemble polyubiquitinated proteins/HDAC6 complex.8!

(b) If the proteosome-mediated pathway is inaccessible, then HDACG6 uses its ZBG to
couple with ubiquitin tagged misfolded protein and carries it to microtubule organizing
center (MTOC) using the microtubule network, where its cleared away via aggresome

formation.16

(c) The third route HDACG uses to degrade misfolded protein is via heat shock protein
90 (Hsp90). HDACG6/Hsp90/HSF1 could promote heat shock transcription factor 1
(HSF1) which revamps expression of chaperone Hsp27 and Hsp70 down the line

promoting repair and degradation of misfolded protein.1%®
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2.5 The role of HDACSG in diverse disease process
HDACSG has a broad range of cellular substrate, getting it involved in pathophysiology
of several disease conditions. Keeping this into mind, HDAC6 can be considered as a

promising target for selective inhibitor design and development.

2.5.1 HDACS6 and cancer
HDACG6 overexpression is a characteristic of numerous cancers,*’ with studies
indicating its necessity for effective oncogenic cell transmutation.!™® It is prominently
involved in various signalling pathways, including the oncogenic Ras, AKT, and
ERK1/2 pathways.'*® The above processes vitalize transformed cells to proliferate and
survive independently of anchorage, bypassing anoikis -a specific type of programmed
cell death triggered upon detachment of cells from the extracellular matrix and
surrounding basement membrane.!'* Ongoing research on this field indicated that
HDACG6 has a prominent role | n tumour development and the maintenance of a
transformed phenotype. Further, many oncogenic proteins, depends on Hsp90-a
substrate of HDACS for structural mutation and activation. Downregulation of HDAC6
contributes to hyperacetylation of Hsp90 and a-tubulin, thereby impairing the

chaperone’s function.!®
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Figure 2.7 Involvement of HDACEG in the cancer signalling pathway. Proposed model
for HDACG6i mechanism of action targeting either MAPK/ERK or PI3K/AKT or p53
signalling pathway.
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In hepatocellular carcinoma, the overexpression of HDAC6 induced by
proinflammatory cytokines may enhance cell proliferation by supressing p53’s
transcriptional activity. HDACG6 inhibitors also function as tumour suppressor by
reducing the activity of the Wnt/B-catenin signalling pathway in hepatocellular
carcinoma.® HDACS6 stimulates cell proliferation, colony formation, cell migration,
and invasion by directly interacting with the PTTPN1/ERK1/2 pathways, which target
MMP-9.120

Recent studies on B16 murine melanoma cells with urea-derived HDACS6 inhibitor
nexturastat A, have shown inhibition of cancer cell proliferation and induction of
apoptosis, possibly by upregulation of cell cycle regulators like CYLD and acetylated

microtubules, resulting in cell cycle disruption.t?

2.5.2 HDACG6 and neurodegenerative diseases
Many neurodegenerative diseases such as Alzheimer’s disease (AD), Huntington’s
disease (HD), Parkinson’s disease (PD), and Charcot-Marie-Tooth disease are caused
by the accumulation of protein aggregates, and HDACG6 due to the presence of ZBG or
the ubiquitin binding domain is known for its ability to eliminate misfolded protein by

augmenting autophagy. %3122

2.5.2.1 HDACG6 in Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by the
accumulation of extracellular B-amyloid peptide and intracellular neurofibrillary
tangles (NFTs), which consists of cross B-fibrils formed by the misfolded protein tau
(tubulin-associated unit).?3124 Under normal condition, tau regulates microtubule
dynamics, while HDACS6 controls tau phosphorylation and accumulation. In neuronal
cells, tau hyperphosphorylation and aggregation lead to synaptic dysfunction,
mitochondrial damage, and apoptotic cell death.3?> Studies have shown that HDAC6
regulates acetylated a-tubulin and Hsp90, playing a key role in mitochondrial axonal
transport and protein aggregation/degradation by forming complexes with Hsp90,
ubiquitin, and tau.?® Further, proteasome inhibition results in the interaction between
HDAC6 and tau, leading to increased co-localization of HDAC6 and tau in a
perinuclear aggresome-like compartment. This process is independent of HDAC6’s
tubulin deacetylation activity.*?’
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Figure 2.8 HDACS in Alzheimer disease pathogenesis.

Studies have shown that downregulation of HDAC6 in mouse model of Alzheimer’s
disease significantly improved learning, memory and a-tubulin acetylation.®® It is
known that HDACG6 directly influence acetylation level of peroxiredoxin 1 and 2
contributing in redox regulation (oxidative stress) which is a well-defined factor
causing AD and aging.'?® Mitochondrial dysfunction and increased reactive oxygen
species (ROS)*?° might be a possible mechanism in AD development. Further analysis
using a HDACS6 knock-down mouse model suggested that the loss of HDACS6 activity
might make neurones resistant to amyloid-B-induced mitochondrial trafficking

deterioration, thereby restoring cognitive function.'*

2.5.2.2 HDACG6 in Parkinson’s disease
Parkinson’s disease (PD) is a well-known progressive bradykinetic disorder'® marked
by gradual degeneration of the nigrostriatal dopaminergic pathway and the presence if
Lewy bodies (insoluble cytoplasmic inclusion of a-synucleins).'¥ The abrupt
accumulation of a-synucleins in different regions of brain like substantia nigra, locus
coeruleus and nucleus basalis of Meynert are the major contributing factor in the
development of PD.%3%¥ A mouse model of PD suggested that HDAC6 guards the
dopaminergic neurons from cytotoxic a-synucleins aggregates by promoting
aggresome formation by dissociating Hsp90 from Hsfl complex.’®? Moreover,
mutations in the DJ-1 gene, which is associated with early-onset of Parkinson’s disease,
lead to the misfolding and accumulation of this protein. This misfolded protein is
subsequently targeted for elimination through binding with parkin and HDACSG. Parkin,

an E3 ligase, forms a complex with the heterodimeric E2 enzyme UbcH13/Uevla,

61




resulting in K63 linked polyubiquitination of the misfolded protein.*® The
polyubiquitinated proteins then bind to HDAC6 and DJ-1 aggregates, which are
transported to aggresomes by the dynein motor complex.t3* Further studies have shown
that parkin facilitates mitophagy (the removal of damage mitochondria) by recruiting
HDACG6 and p62, which then form juxtanuclear mitochondria inclusion bodies
resembling aggresomes.®*>13 In a recent study using a rat model of Parkinson’s disease
and Tubastatin A, it was observed that inhibiting HDACS6 increases the acetylation of
a-synuclein, enhances the levels of Hsc70 and lamp2A (key components of chaperone-
mediated autophagy), and reduces both a-synuclein expression and its toxicity.**® This
suggests that HDAC6 may be a promising therapeutic target for Parkinson’s disease

and other a-synucleinopathies.

2.5.2.3 HDACG6 in Huntington’s disease

Huntington’s disease (HD) is an autosomal inherited neurodegenerative disorder
caused by a genetic alteration in the CAG triplet (Cytosine-Adenine-Guanosine),
leading to the abnormal expansion of polyglutamine in proteins and resulting in the
accumulation of huntingtin aggregates (HA).311% In individuals without Huntington’s
disease, the CAG repeats range from 7 to 34 and may vary with age. However, CAG
repeats exceeding 100 are associated with juvenile onset of the disease.’® HD is
characterised by uncontrolled excessive motor movements, cognitive impairment, and
emotional deficits.!*> In Huntington’s disease, alteration in cellular transport system,
including microtubule-dependent transport and the intracellular transport of brain-
derived neurotrophic factor (BDNF)-containing vesicles, are linked to the neuronal
toxicity of huntingtin aggregates (HA).**® Inhibition of HDACSG is known to enhance
microtubule-based transport by recruiting kinesin-1 and dynein/dynactin to more
acetylated microtubules.'3® Conversely, studies using HDAC6 knockout mouse models
shows increased tubulin acetylation but do not affect the progression of the disease.'*°
Interestingly, another study suggested that HDACG6 is pivotal for the autophagic
removal of aggregated huntingtin by recruiting the autophagic degradation machinery

to the inclusion bodies.'*!

2.5.2.4 HDACEG in Rett syndrome

Rett syndrome is a rare, progressive neurodevelopmental disorder that arises from a
loss-of-function mutation in the X-linked MeCp2 gene.!*? MecP2 acts as a

transcriptional repressor by interacting with DNA at CpG islands.'*® The loss of

62




functional MeCP2 mutations is linked to impaired BDNF trafficking and disrupted
microtubule dynamics, highlighting the important role of HDACS in the neurobiology
of Rett syndrome.}** In neuronal cells, the acetylation level of microtubules controls
the effectiveness of various crucial processes, including differentiation and migration,
mitochondrial trafficking and the movement of BDNF-containing vesicles.4314
Additionally, inhibiting HDACS6 leads to accelerated axonal transport of BDNF and
mitochondria in both anterograde and retrograde directions, thereby improving synaptic

plasticity, 13146

2.5.2.5 HDACSG in Charcot-Maire-Tooth disease
Charcot-Marie-Tooth (CMT) disease is the most prevalent inherited disorder affecting
the peripheral nervous system, caused by mutations in the heat-shock protein genes
(S135F orP182L). This leads to axonal CMT or distal hereditary motor neuropathy
(distal HNM), and is characterised by muscle weakness, motor issues, and sensory loss.
These symptoms have been linked to in vivo studies in transgenic mice 147148
Transgenic mice with mutations in this gene showed a reduction in the total number of
mitochondria and defects in mitochondrial transport, which were improved by
treatment with the HDACS inhibitor tubastatin A.**” Aminoacyl transfer RNA (tRNA)
synthetases, the largest gene/protein family associated with CMT, recently revealed
HDACSG as an intracellular factor interacting with glycyl tRNA synthetase (GIyRS or
GARS) in CMT.1*® Administration of tubastatin A disrupted the interaction between
GlyRS and HDACS, leading to restored mitochondrial axonal transport, increased
acetylation of a-tubulin, and improved muscle strength and motor performance.'*’ This
suggested that HDACSG is highly promising target for treating CMT and potentially

other peripheral neuropathies linked to axonal transport deficiencies.

2.5.2.6 HDACG6 in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis is another progressive motor neurone disease caused by
mutations in genes encoding superoxide dismutase 1 (SOD1), TAR DNA binding
protein 43 (TDP-43), and fused in sarcoma (FUS).*71%0 It is marked by the selective
degeneration of motor neurones in the motor cortex, brainstem, and spinal cord,
resulting in progressive muscle weakness, paralysis, and eventually death, typically
within 2-5 years after diagnosis.}*’ Transgenic mice with the G93A mutation in
superoxide dismutase 1 (SOD1) exhibited defects in axonal transport, but genetic
deletion of HDACSG significantly slowed disease progression and extended the survival
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of these mutant SOD1%%*A mice.**’ Additionally, studies using induced pluripotent stem
cells (iPSCs) derived from fibroblasts of ALS patients with various FUS mutations
(R531H and P525L) demonstrated that treatment with HDACG inhibitors like tubastatin
A or ACY-738 restored impaired axonal transport and increased the overlay of
endoplasmic reticulum (ER) and mitochondria.’>>*®! In a transgenic mouse model of
ALS overexpressing wild-type FUS (Tg FUS+/+ mouse),'®* which exhibited histone
hypoacetylation in the spinal cord and cortical tissue associated with progressive
neurodegeneration, treatment with ACY-738 significantly extended the survival rate of
the mutant mice. It also reduced neuromuscular denervation and muscle atrophy,

thereby improving the ALS disease phenotype.'4’

2.5.3 HDACEG in inflammation
Inflammation is a crucial biological response to infection by bacteria and viruses
affecting the body surface and organs in mammals.’® Recent research has highlighted
the significant role of HDACSG in the innate immune response to intracellular bacterial
infections, particularly through Toll-like receptor-mediated signalling.*®> HDAC6 was
also found to significantly influence the production of cytokines. This includes both
pro-inflammatory cytokines (IL-6, IL-1B, TNFa, IL-17) and the anti-inflammatory
cytokine IL-10. Inhibiting HDACSG led to a reduction in the production of IL-6, IL-1B,
and TNF-a in various mouse models of inflammatory diseases.”® Additionally,
disrupting HDACSG leads to the recruitment of inflammatory antigen-presenting cells,
which are essential for initiating T-cell activation and T-cell tolerance.!®® The
suppressive activity of Foxp3+ regulatory T-cells is enhanced when HDACEG is depleted
in models of autoimmunity and inflammation.*>* Defects in the number or function of
Foxp3+ regulatory T-cells, which are crucial for maintaining immune homeostasis, can
result in autoimmunity. Research has also indicated that HDAC6 regulates HIV
replication by modulating the deacetylation of Tat, thereby inhibiting viral
transactivation.'>>!% HDACS6 has also been implicated in Sendai virus infection by
deacetylating pB-catenin, which serves as a co-activator of IRF-3 mediated
transcription.®™” Due to its regulatory role in inflammation, inhibiting HDAC6 could be
an effective treatment of various inflammatory disease, including rheumatoid arthritis,

inflammatory bowel disease, and airway inflammation.
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Figure 2.9: Role of HDACS in the regulation of inflammatory cells (macrophages,
dendritic cells, y3T cells, and FoxP3™ tregs cells) and cytokines (IL-6, IL-1pB, TNF-a,
IL-10, and IL-17).

2.5.3.1 HDACSG in rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease marked by
inflammatory synovitis, proliferation and invasion of synovial tissue, resulting in the
destruction of bone and cartilage.*®® HDAC6 has gained increasing attention in RA
because it deacetylates not only histone but also non-histone protein such as a-tubulin
and myeloid differentiation primary response 88 (MyD88). MyD88 is an essential
adaptor molecule for the Toll-like receptor and IL-1 receptor in the NF-xB signalling
pathway, and HDAC6 can deacetylate it.1>*6° Small molecule inhibitors of HDAC6
have been shown to reduce the production of pro-inflammatory cytokines IL-6, TNF-
a, and IL-1p, leading to decrease in synovial inflammation and indicating their potential
role in RA treatment. Tubastatin A, a selective HDACG6 inhibitor, has been
demonstrated to effectively reduce synovial inflammation and protect against joint
destruction in a collagen antibody-induced arthritis mouse model. similarly, CDK-I,
another selective HDACG inhibitor, has been found to inhibit the expression of IL-6,
TNF-a, and IL-1B while increasing IL-10 production. This results in a lower arthritis
score and reduced proliferation of effector T cells in a collagen-induced arthritis mouse

model 161

2.5.3.2 HDACES in inflammatory bowel disease
Inflammatory bowel disease (IBD) encompasses a group of chronic immune-mediated
disorders affecting the gastrointestinal tract, including Crohn’s disease and ulcerative

colitis.’®? These conditions are characterised by recurrent inflammation and subsequent
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damage to the gastrointestinal tract.®® Current treatment for IBD, such as anti-
inflammatory drugs, antibiotics, and biologics, often prove ineffective and can have
adverse effects.’®* Research using knockdown mice and small molecule inhibitors has
revealed that HDACG6 plays a crucial role in the progression of OBD. Selective
inhibition of HDAC6 with molecules like BML-281 and LTB2 has been shown to
effectively alleviate colitis induced by dextran sulfate in mouse model, BML-281
treatment protected against colonic inflammation and prevented the activation of
inflammatory neutrophils. Similarly, LTB2 treatment was linked to reduced rectal
bleeding and diarrhoea.®>% These findings suggest that HDACG inhibition may be

potential in preventing colonic inflammation and treating IND in humans.

2.5.3.3 HDACSG in airway inflammation
Airway inflammation is a key factor in many chromic respiratory diseases, including
asthma chronic obstructive pulmonary disease (COPD). Asthma is characterised by
persistent airway inflammation, increased airway responsiveness, and airway
remodelling. In a mouse model of chronic allergic airway disease, the selective HDAC6
inhibitor Tubastatin A has been shown to effectively reduce airway inflammation,
airway remodelling and airway hyperresponsiveness. These results indicate that

HDACG6 may play a significant role in asthma treatment.26’

Chronic obstructive pulmonary disease (COPD) is marked by epithelial cell
dysfunction, ciliary shortening, impaired mucociliary clearance, and abnormal airway
inflammation, primarily due to chronic cigarette smoking exposure. Current treatments
for COPD are often inadequate and ineffective against exacerbation. However, HDAC6
inhibition with Tubastatin A has been shown to significantly reduce airway dysfunction
induced by cigarette smoke, suggesting it could be a promising therapeutic approach
for COPD.1¢8

Research has also identified HDAC6 as a common factor in the development of
dysregulated pro-inflammatory and fibrotic phenotypes in cystic fibrosis (CF), an
inherited lung disease marked by extensive collagen deposition and tissue
remodelling.!®® Fibrosis in CF is characterised by the excessive growth of tissue, an
increase in myofibroblasts, and abnormal deposition of extracellular matrix

components, a process known as epithelial-mesenchymal transition (EMT).17°
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Figure 2.10: Role of HDACSG in the regulation of the fibrotic process. HDAC6
inhibitors negatively regulate the fibrotic process by acting at different levels of the

profibrotic cascade.

In cystic fibrosis (CF), EMT is a crucial process involving the loss of cell-cell junctions
and cell surface molecule polarization, leading cells to adopt mesenchymal
characteristics.'”* Recent studies have shown that tubacin, and HDAC6 blocker,
reduces TGFB1-induced EMT markers and inhibits SMAD3 activation in response to
TGFB1.1%° Since SMAD3 is a key component of TGFB1 signalling, its inhibition
disrupts HDACG6-dependent deacetylation of a-tubulin, highlighting the essential role
of HDACG in EMT through the TGFB1-SMAD3 signalling pathway.'"?

2.5.4 HDAC in acute kidney injury
Acute kidney injury (AKI), marked by a rapid decline in glomerular filtration rate, is a
serious clinical issue associated with sever disease progression, high mortality rates,
and an increased risk of developing chronic kidney disease (CKD).}”® Rhabdomyolysis
accounts for 15% of AKI*"* cases and can be triggered by various factors, including
metabolic disorders, trauma, infections, drugs and toxins.}’>'® While the exact
mechanism are not fully understood, it is well-established that endoplasmic reticulum

(ER) stress-induced apoptosis of tubular epithelial cells plays a crucial role in
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rhabdomyolysis-related AKI.1"" Recent research has highlighted organelle-mediated
stress, particularly ER stress, as a key pathophysiological factor in apoptosis. HDAC6
activation has been implicated in the development of rhabdomyolysis-induced AKI,
contributing to renal tubular cell apoptosis, inflammatory responses, macrophage

infiltration, and oxidative stress.! 8179

Apoptosis or programmed cell death, is typically triggered by changes in the cell
microenvironment.'8%18! |t involves the activation of pro-apoptotic molecules and the
deactivation of pro-survival ones.'®? In the tubular epithelium, apoptotic pathways can
be activated through mechanisms such as caspase cascade activation, mitochondrial
damage, and endoplasmic reticulum stress.'® Apoptosis leads to the loss of renal
epithelial cells, a hallmark of acute kidney injury.'®18 Research indicates that caspase
3 activation is the primary mechanism driving renal tubular cell apoptosis in

rhabdomyolysis-induced AKI1.17718 Additionally, the Bcl-2 family plays a crucial role
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Figure 2.11: The involved mechanism of HDACS inhibitor against rhabdomyolysis

induced-acute kidney injury.
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Endoplasmic reticulum (ER) stress in acute kidney injury (AKI) can be triggered by
various factors, including mutant protein aggregation, hypoxia, energy deprivation, and
metabolic dysfunction.!® A reduced capacity for protein folding in the ER results in
the accumulation of misfolded proteins and initiates ER stress. Excessive ER stress
leads to tubular cell apoptosis through three main signalling pathways: PERK-elF2-
ATF4, IRE1-VBP1, and ATF6.'¥” HDACG6 primarily located in the cytoplasm,
contributes to the acetylation of the ER-localized chaperone protein glucose-regulated
protein (GRP78). Under normal conditions, GRP78 binds to signalling proteins PERK,
ATF6 and IRE1, inhibiting their activation.'®® Research by Feng et al. demonstrated
that inhibiting HDACSG reduces ER stress, as indicated by lower GRP78 expression.'&
This suggests that HDAC6 inhibitors could be a promising treatment for
rhabdomyolysis-induced acute kidney injury.

2.5.5 HDACG6 in myocardial dysfunction
Myocardial dysfunction is a major cause of early death after successful
cardiopulmonary resuscitation (CPR) in patients with cardiac arrest (CA). this
dysfunction may be driven by cell pyroptosis, a novel type of programmed cell death
characterised by plasma membrane rupture and the release of inflammatory
cytokines.?® Pyroptosis is primarily mediated by NOD-like receptor protein 3
(NLRP3)-caspase-1 pathway. In this process, the NLRP3 inflammasome facilitates the
conversion of pro-caspase-1 into active caspase-1, which then cleaves pro-
inflammatory cytokines interleukin-18 and interleukin-18, as well as pyroptotic
substrate gasdermin D. This results in cell death and excessive release of interleukin-
1B and interleukin-18.1%" In a study by Jiefeng Xu et al. it was found that inhibiting
HDACG6 with Tubastatin A blocked the activation of the NLRP3-caspase-1 pathway
and reduced cell pyroptosis in an H9c2 cardiomyocyte hypoxia/reoxygenation (H/R)
model .1 additionally, Tubastatin A promoted the acetylation and nuclear translocation
of transcription factor EB (TFEB), which is crucial pro regulating the autophagy-
lysosome pathway and can inhibit autophagy induction.?%22%% The acetylation and
nuclear translocation of TFEB resulted in the inhibition of NLRP3 inflammasome
activation, leading to improved myocardial function and reduced cardiac injury

following cardiac arrest and resuscitation by decreasing pro-inflammatory cytokines.1®
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Figure 2.12: The proposed molecular mechanisms of the protective effect of HDAC6

inhibitors on myocardial dysfunction after cardiac arrest (CA) and resuscitation.

2.6 Inhibitors of HDACG6

A variety of HDAC inhibitors have been identified to date. Six of these- vorinostat,
romidepsin, belinostat, Panobinostat (withdrawn), pracinostat (FDA-approved), and
chidamide (approved by the China FDA)-are approved for the clinical treatment of
refractory or relapsed cutaneous and/or peripheral T-cell lymphomas, or multiple
myeloma.>® Many other inhibitors are currently undergoing clinical trials. Most of the
approved HDAC inhibitors are non-selective (pan-HDAC) or selective for class |
HDACs,* which often leads to unwanted side effects.*® Therefore, there is a need for
highly isoform-specific HDAC inhibitors to better understand the biological roles of
individual HDAC isoforms and to provide targeted therapies with minimal side effects.
Most HDAC inhibitors share a common pharmacophore that includes a zinc bindi ng
group (ZBG) or chelating group such as (hydroxamic acid, thiol, carboxylic acid,
ketones or substituted aniline), a cap group (for surface recognition), and a linker
connecting the ZBG and cap group.®!%* Modification to any part of this pharmacophore
can significantly affect potency, stability, and isoform selectivity. Notably, modifying

the cap group is a promising strategy for enhancing isoform selectivity.'%

2.6.1 Hydroxamic acid based HDACS6 inhibitors
The chelation of the Zn?* ion is crucial for the inhibition of classical HDACs.

Hydroxamic acid, as a zinc-binding group (ZBG), has been the most extensively studied
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due to its strong ability to chelate Zn?*. Since the discovery of the first hydroxamic
acid-based HDAC inhibitor, Trichostatin A (TSA), by Yoshida et al.*® in 1990,
significant advancements have been made in this class of inhibitors. TSA, a faunistic
antibiotic isolated from Streptomyces hydroscopious by Tsuji et al.*% in 1976, paved
the way for further development. Following TSA’s discovery, several hydroxamic acid
inhibitors have been approved, including Vorinostat (2006), Belinostat (2014),
Pracinostat (2014), and Panobinostat (2015, later withdrawn), for the treatment of
peripheral T-cell lymphomas and melanoma.®®® Currently, (R)-Trichostatin A is
mainly used as a research tool. The availability of its crystal structure complexed with
an HDAC enzyme has significantly contributed to the development of newer and more
potent HDAC inhibitors.
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Figure 2.13: Trichostatin A

Trichostatin A features a structure comprising an N-methyl group, a linker with an
alkenyl group, and a distinct hydroxamic acid tail. The hydroxamate group forms a
bivalent coordination with the Zn?* ion located at the base of the catalytic pocket, while
the 4-dimethylaminobenzoyl moiety in the cap region interacts with residues around
the channel rim leading to the active site. The linker region occupies the hydrophobic
channel. " Various aryl substitution and structural modifications on the TSA scaffold
have been explored to assess the structural-activity relationship and enhance
interactions with the enzyme’s catalytic domain. However, these derivatives generally

exhibit lower potency compared to the natural TSA.

Common pharmacophore of HDAC inhibitors typically involves a scaffold composed
of a six-carbon chain, a hydrophobic capping group, and a chelating group at the
terminal end. A classic and extensively studied example of this design is
suberonylanilide hydroxamic acid, known as SAHA (Vorinostat). This synthetic small
molecule is renowned for its potent HDAC inhibitory activity.'® SAHA was

engineered to enhance lipophilicity by incorporating a hydrophobic phenyl ring at the
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opposite end. Additionally, SAHA serves as a key example of an inverse amide

199

analogue of trichostatin*” and is notable for being the first HDAC inhibitor approved

by US-FDA for the treatment of cutaneous T-cell lymphoma.

Stephen J. Haggarty and colleagues discovered tubacin (8) as the first selective HDAC
inhibitor through a comprehensive chemical genetic screening of 7392 small molecules.
Tubacin features a 2,3-dioxane structure and demonstrates up to a 317-fold selectivity
for HDAC6 over HDAC1 and HDAC2.20%20! Research indicates that the specific
configuration of the dioxane ring, which interacts with the protein surface, contributing
to this selectivity.!® Tubacin was shown to inhibit a-tubulin deacetylation, suppress
cell proliferation, and induce apoptosis without impacting histone acetylation, gene
expression, or cell cycle progression in mammalian cells. Additionally, it does not
exhibit toxicity towards normal haematological cells.2> However, due to its high
lipophilicity, attributed to its large cap group consisting of six lipophilic rings and its

non-drug-like structure, tubacin is currently used primarily as a research tool.
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Figure 2.14: Some selective HDACG inhibitors.
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Ricolinostat (ACY-1215) is the first selective oral HDACG6 inhibitor to advance to
clinical trials for multiple myeloma (MM). it shares structural similarity with tubacin
but offers improved drug-like properties.?® As a micromolar dose (0.62um),
ricolinostat effectively increases a-tubulin acetylation without affecting histone
acetylation. Itis 12, 10 and 11 times more selective for HDAC6 compared to HDAC1,
HDAC?2, and HDACS3, respectively. Ricolinostat can be used alone or in combination
with bortezomib, a proteasome inhibitor, for treating MM. The synergistic effect of
combining HDAC inhibitors with bortezomib is not fully understood yet. Additionally,
ricolinostat has shown a synergistic anti-MM effect when used with carfilzomib,
enhancing carfilzomib-induced cell death by inhibiting aggresome formation.?%
Ricolinistat has been extensively studied in Phase I/l clinical trials, either alone or in
combination with dexamethasone, bortezomib,?® or lenalidomide®®® for relapsed or
refractory multiple myeloma.?®® It has also been investigated as an anti-lymphoma
agent in combination with bendamustine.?’” In mouse xenograft models of oral
squamous cell carcinoma, ricolinostat has demonstrated potential in suppressing
tumour growth and inducing apoptosis through various pathways involving miR-
30d/PI3K/mTOR and ERK.?® Although ricolinostat shares some structural
characteristics with the pan-HDAC inhibitor SAHA, such as a long aliphatic linker and
bivalent zinc binding, it is distinguished by its unique surface recognition domain that
interacts with the cleft between the L1 and L7 loops of HDACS, contributing to
selectivity of HDAC6.83

As the successor to ACY-1215, an orally active second-generation analogue, ACY-241,
was developed with an ICsg of 2.6 nM against HDAC6 and over 18-fold reduced
potency towards Class | HDACs. Both ACY-1215 and ACY-241 features a 2-
(diphenylamino) pyrimidine-5-carboxamide as the surface recognition group, which is
likely responsible for their HDACG6 inhibitory potency and selectivity. ACY-241 is
considered sightly superior to ACY-1215 due to the electron-withdrawing chlorine
substitution on one of the phenyl rings. In Phase Ib clinical trials for multiple
myeloma,?®® and in studies involving solid tumour, ACY-241, when combined with
paclitaxel, enhanced anti-proliferative activity and increased cell death.?'® Additionally,
in murine xenograft models of multiple myeloma, ACY-241 demonstrated a synergistic
effect with pomalidomide, enhancing tumour growth inhibition, promoting apoptosis,
and causing cell cycle arrest both in vitro and in vivo.?!! Currently, ACY-241 is being
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evaluated in phase I clinical trials, either alone or in combination, for treating various

cancers.?12

Compound 13, a quinazoline hydroxamate, has been identified as a preferentially
selective HDACS6 inhibitor with an IC50 of 17 nM and 200-fold selectivity over
HDACS8.2 It exhibits superior anti-proliferative effects against eleven different
haematological and solid tumour cell lines compared to SAHA and ACY-1215.
Additionally, Compound 13 has demonstrated 47.0% oral bioavailability in rats,
indicating a favourable pharmacokinetic profile. Biological evaluations by Feng et al.
revealed that Compound 13 can regulate endoplasmic reticulum stress and apoptosis,
leading to the attenuation of rhabdomyolysis-induced acute kidney injury.?*

2.6.2 N-hydroxy benzamide based HDACSG inhibitors
Unlike other classical HDAC isoforms, HDAC6 has a wider and shallower channel,
suggesting that replacing traditional long-chain alkyl linkers with bulkier and shorter
aromatic moieties can more efficiently achieve HDACS selectivity.'* Additionally, a
rigid and larger surface recognition group is better suited to occupy the rim region of
HDACSG6. To address this, Tubastatin A, a potent HDACG6 inhibitor with improved
pharmacokinetic properties, was designed and synthesised. Tubastatin A is a
tetrahydro-y-carboline derivative with up to 1000-fold selectivity over all HDAC
isoforms except HDACS8 (57-fold). Studies have shown that Tubastatin A can induce
hyperacetylation of a-tubulin and slightly induce histone hyperacetylation when tested
alone. In a homocysteic acid (HCA)-induced oxidative stress model, Tubastatin A
demonstrated neuroprotective effects without causing neuronal cell death. It also
exhibits various biological activities, including anti-inflammatory and anti-rheumatic
effects,?™® suppression of hepatitis C virus proliferation,?® and mitigation of stroke-

induced brain inflammation and functional deficits.?’

Following this, the structure of Tubastatin A (9) was modified to develop second-
generation HDACG6 selective inhibitors. Some compounds in this series (compounds
14, 15, and 16) showed sub-nanomolar inhibitory activity for HDACG6 with over 7000-
fold selectivity over HDACL. These compounds also enhanced the ability of Fox3+
regulatory T cells to suppress the mitotic division of effector T cells, indicating

potential for further investigation into their use for treating autoimmune disorders.?8
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Figure 2.15: Tubastatin A and Tubastatin A analogues with their respective ICso
values for different HDAC isoforms.

Leonhardt et al. designed and synthesized highly potent HDACG6 selective inhibitors
featuring a large and rigid tetrahydro-p-carboline as the surface recognition group,
tailored to fit the extensive active binding site of HDAC6. Among these, Compound 17
stands out as particularly potent, demonstrating superiority over Tubastatin A in cellular
assays. Compound 17 induces rapid hyperacetylation of tubulin without affecting
histone H3.21° Additionally, it does not induce apoptosis or cell cycle arrest at sub-

micromolar concentrations.

Nexturastat A (12), a potent HDACS6 inhibitor, has an IC50 value of 5.02 nM and is
601-fold more selective over HDACS, exemplifying this (N-hydroxy benzamide) type
of structure. Structure-activity relationship studies of Nexturastat A and its derivatives
have shown that introducing a branching element, particularly to the nitrogen atom near
the zinc-binding group, significantly enhances potency and selectivity for HDAC6.%
Nexturastat A effectively increases the acetylation of a-tubulin and inhibits the growth

of B16 melanoma cells.
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Figure 2.16: some N-hydroxy benzamide based HDACS inhibitor.

HPOB (18), a compound structurally similar to Nexturastat A, is also an HDAC6
selective inhibitor with an IC50 value of 56 nM. It effectively induces the acetylation
of a-tubulin without impacting histone acetylation in both normal (HSF) and
transformed (LNCAP, U87, and A549) cells. HPOB can be used alone or in
combination to inhibit the growth of cancer cells. When used alone, HPOB inhibits the
growth of both normal and transformed cells without causing cell death at
concentrations < 16 uM. However, when combined with other agents such as etoposide,

doxorubicin, or SAHA, HPOB enhances the induced cell death in transformed cells.22°

Smil et al. developed novel chiral 3,4-dihydroquinoxalin-2(1H)-one and piperazine-
2,5-dione aryl hydroxamate (19) compounds, which exhibit high affinity and selectivity
for HDACG6. They discovered that the selectivity and potency of these inhibitors are
significantly influenced by the stereochemistry of the chiral moiety, while the
substituent on the cap group has minimal impact on HDACG6 potency and selectivity.
Additionally, the stereochemistry of the chiral moiety affects the acetylation levels of

a-tubulin and histone H3.%%

Guozhi Tang and colleagues developed a 2,7-disubstituted tetrahydroisoquinoline
derivative (compound 20) as a dual HDAC6/HDACS inhibitor, which exhibited up to
426-fold selectivity over HDAC1. However, compound 20 faced challenges such as
high intrinsic clearance, N-C cleavage on the tetrahydroisoquinoline moiety, and poor
solubility (<10 pg/ml).??? To address these ADME (Absorption, Distribution,
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Metabolism, and Excretion) issues, a second series of aminotetralin derivatives was
designed and synthesized. Among these, aminotetralin-derived hydroxamates,
particularly compound 21, demonstrated good solubility (66 pg/ml) and metabolic
stability while maintaining potency and selectivity for HDAC6 and HDACS. Further
structural optimization of compound 21 resulted in the development of molecule 22, a
tetrahydroquinoline-based HDACG6 selective inhibitor, which exhibited improved
HDACS inhibitory activity (IC50 = 12 nM) and solubility (210 pug/ml).?% Subsequently,
scaffold hopping was employed to design a third series of amino-pyrrolidinone-based

HDACSG selective inhibitors, leading to the discovery of compound 23, which displayed
Z N

the highest affinity for HDACS in this series.??3
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Figure 2.17: Some N-hydroxy benzamide based HDACS inhibitors with their

respective 1Cso values against different HDAC isoforms

Dallavalle et al. discovered a series of arylamino/heteroarylamino hydroxamates as
novel HDACS inhibitors.?>* Within this series, compound 24 demonstrated exceptional
inhibitory activity against HDAC6 (IC50 = 0.29 nM) with up to 4000-fold selectivity
over other HDAC isoforms. As a single agent, compound 24 showed significant anti-
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proliferative activity against human multiple myeloma cell lines (RPMI-8226, U226,
and NCI-H929), indicating its potential as a therapeutic candidate for multiple

myeloma. Additionally, it exhibited good hepatocytic stability and high permeability.

2.6.3 N-hydroxycinnamamide based HDACS6 inhibitors
ST3595 (25), a N-hydroxycinnamamide based inhibitor capped with a biphenyl group,
was initially studied as an HDAC2 inhibitor.??® However, it was found to be more
effective against HDAC6 (IC50 = 100 nM) compared to HDAC2 (IC50 = 1160 nM).
When combined with paclitaxel, ST3595 exhibited a synergistic anti-tumour effect in
wild-type p53 ovarian carcinoma cells??® and also showed efficacy against pancreatic
cancer cells.??” Additionally, in studies involving non-small cell lung cancer (NSCLC)
cell lines H460 and A549, as well as their cisplatin-resistant variants H460/Pt and
Ab549/Pt, ST3595 demonstrated more significant antiproliferative activity in the
H460/Pt cell subline compared to the other sublines.??

C1A (26), a weak HDACEG inhibitor with an 1C50 of 479 nM, was developed from the
structure of the naturally occurring pan-HDAC inhibitor trichostatin A. C1A induces
acetylation of a-tubulin and HSP-90 in a concentration-dependent manner.??® Notably,
despite containing a nitrogen mustard moiety, C1A does not cause non-specific DNA
alkylation. In cellular assays, C1A inhibited the growth of one type of B-cell
malignancy as well as eight different histological types of solid tumours. Additionally,
C1A treatment led to an increase in the sub-G1 cell population and activation of
caspase-3/7, indicating that its anti-proliferative effects may be mediated through an

apoptotic mechanism.

A new series of quinazolin-4-one derivatives, featuring a quinazolin-4-one core
structure and an N-hydroxycinnamamide moiety, has shown high affinity and
selectivity for HDAC6. Among these, compound 27 stands out for its exceptional
inhibitory potency against HDAC6 (IC50 = 8 nM). In in vitro biological evaluations,
several potent compounds from this series induced neurite outgrowth and significantly
increased acetylation of a-tubulin.?*® Following a range of biological assessments,
compound 28 has emerged as a promising candidate for Alzheimer's disease (AD)
treatment due to its lack of effect on human ether-a-go-go-related gene (HERG) ion
channel activity (IC50 > 10 uM) and cytochrome P450 activity (IC50 > 6 uM).
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Figure 2.18: Some N-hydroxycinnamamide based HDACS inhibitors with their

respective 1C50 values.

BPROLO75 (29) is a novel synthetic compound initially discovered as part of research
aimed at finding new microtubule inhibitors.?®! It binds to the colchicine-binding site
on tubulin, inhibiting its polymerization, and shows significant anti-proliferative
activity with 1C50 values in the single-digit nanomolar range across various human cell
lines. Structural modifications of BPROLO75, including the addition of an N-
hydroxycinnamamide group at the N1 position, led to the development of 3-aroylindole
hydroxamates as HDACSG inhibitors. Among these, compound 30 emerged as the most
potent, demonstrating selectivity for HDACG6 while also exhibiting tubulin inhibitory
activity.?®2 Additionally, compound 30 shows remarkable anti-proliferative effects in

vitro and effectively inhibit the growth of multiple myeloma xenografts in vivo.?3

2.6.4 HDACSG inhibitors with novel ZBG
HDACS inhibitors are commonly utilized for treating central nervous system disorders.

However, hydroxamates, a prevalent class of HDACG6 inhibitors, are linked with
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genotoxicity. To address this issue, researchers have explored a range of novel zinc-
binding groups (ZBGs) such as mercaptoacetamide, thiols, trifluoromethylketone,
hydrazides, hydroxypyridones, hydroxylpyridine-thiones, and hydroxy ketones. These
alternative ZBGs aim to develop more selective and potent HDACG inhibitors that are

free from the toxicity associated with hydroxamates.
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Figure 2.19: Some mercaptoacetamide based HDACS6 inhibitor with quinoline cap
group.

Kozikowski et al. developed a series of HDAC inhibitors based on mercaptoacetamide,
with quinoline emerging as an effective cap group. Compound 31 demonstrated
significant affinity for HDACG6 (IC50 = 95.3 nM) and exhibited 33-fold and 64-fold
greater selectivity over HDAC1 and HDACS, respectively. However, substituting the
quinoline moiety with other groups (compound 36) resulted in decreased potency
against HDACG6. Some of these mercaptoacetamide-based inhibitors also showed
protective effects on cortical neurons subjected to oxidative stress, though they
exhibited dose-dependent toxicity.?* Additionally, compound 31 was found to
influence the levels of the amyloid precursor protein (APP), AP synthase, and A
degradation enzymes.?*® Further structural modifications led to compound 32, which
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displayed enhanced potency against HDAC6 (IC50 = 1.3 nM). Compound 32
effectively induced acetylation of a-tubulin in a dose-dependent manner without
affecting histone H3 acetylation levels.?® Structure-activity relationship studies
indicated that compounds with alkyl chain linkers of varying lengths had strong
inhibitory potency against HDACG, while benzyl linkers drastically reduced potency.
To enhance lipophilicity and blood-brain barrier penetration, different halogen
substitutions were made on the quinoline cap, resulting in compound 33, a potent
mercaptoacetamide-based HDACG6 selective inhibitor. Various analogues, including
compounds 34 and 35, exhibited high affinity and selectivity for HDAC6 over
HDAC1.%’

Trifluoromethyl ketone is another novel zinc-binding group (ZBG), but research has
shown that it does not effectively achieve selectivity for HDAC6. For example,
compound 37, which uses a cyclic tetrapeptide as the cap group and trifluoromethyl
ketone as the ZBG, demonstrated better inhibition of HDAC1 (IC50 = 47 nM)
compared to HDAC6 (IC50 = 180 nM).238 Similarly, compound 38, which also employs
trifluoromethyl ketone as the ZBG, exhibited comparable inhibition for both HDAC1
(1C50 = 19.38 nM) and HDACS6 (IC50 = 17.78 nM).>*

o Y
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Figure 2.20: some Trifluoromethyl ketone based HDACS6 inhibitors.

Dehmel et al. discovered several series of thiocarbonate analogues as highly effective
and substrate-competitive HDACS6-selective inhibitors.?®® In their initial series,
compounds with para-methoxy benzene as the cap group and various thiocarbonates as

the zinc-binding group (ZBG) exhibited notable HDAC inhibitory activity. Among
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these, compound 39, a dithiocarbonate derivative, showed substantial affinity for
HDACG6 (IC50 = 94 nM), though there was potential for further improvement.

Substituting the phenylacetyl-bound sulfur in the headgroup with nitrogen (compound

40), methylene (compound 41), or oxygen (compound 42) resulted in significant
enhancements in HDACSG inhibitory activity, with IC50 values of 18 nM, 23 nM, and

90 nM, respectively.
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Figure 2.21: HDACS inhibitors with thiocarbonate as ZBG, and their respective ICso

values against different HDAC isoforms

However, the trithiocarbonate derivative (compound 43) demonstrated a decrease in

inhibitory potency against HDACG6. Subsequently, Dehmel et al.?®® investigated

trithiocarbonates with phenylacetyl as the core structure, incorporating large amide
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substituents to enhance HDAC inhibitory activity. In their third series of compounds,
the replacement of the phenylacetyl moiety (compounds 44 and 45) led to improved
inhibitory potency against HDAC6 compared to compound 43. Further modifications,
substituting the benzene ring with a 2,5-disubstituted thiophen core in trithiocarbonates,
produced compounds 46 and 47. These compounds demonstrated strong HDACG6
inhibitory activity, with compound 47 in particular showing excellent selectivity for
HDACG6 over HDAC1.

Patil et al. discovered 3-hydroxypyridin-2-thione (3-HPT, 48) as a novel zinc-binding
group (ZBG) that effectively inhibits HDACG6 with an 1C50 of 681 nM, while showing
minimal activity against HDAC1.2#! Further structural optimization led to compound
49, a 3-HPT-derived HDAC inhibitor with enhanced inhibitory activity against
HDACSG6. These compounds also demonstrated significant growth inhibition of Jurkat
cells and induced apoptosis in various cancer cell lines. Compared to 3-HPT, 1-
hydroxypyridine-2-thione (1-HTP) proved to be more effective in achieving HDAC6
inhibitory potency and selectivity. Specifically, 1-HTP-6-carboxylic acid (compound
50) showed HDACSG inhibition with an IC50 value of 150 nM and 286-fold selectivity
over HDACL1. The high potency, selectivity, and good metabolic stability of 1-HPT
suggest that these molecules hold potential for further development in leukaemia

treatment. 242
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Figure 2.22: HDACS inhibitors with other novel ZBG along with their respective 1Csg

values against different HDAC isoforms.
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2.7 Anti-HDACSG therapy in clinical trials
Clinically approved HDAC inhibitors like vorinostat (SAHA), romidepsin, belinostat,
Panobinostat (which has been withdrawn), and chidamide are used for treating T cell
lymphomas and multiple myeloma. However, their poor isoform selectivity can lead to

significant toxicity and side effects, which limits their clinical use.

For example, during clinical trials of Panobinostat in high-risk MDS or AML patients
following allogenic stem cell transplantation, 52% of participants experienced at least
one severe (Grade 3 or 4) adverse event (AE) attributed to Panobinostat. The most
common severe AEs were thrombocytopenia (24%) and neutropenia (19%).24® These
findings were corroborated by another Phase la/ll clinical trial of Panobinostat, where
Grade 3/4 adverse effects included thrombocytopenia (41.5%) and neutropenia
(21%).%** Similarly, the clinical use of vorinostat is also restricted due to its high rate
of adverse effects;?1%%4 for instance, when used in combination with bortezomib, 16%

of patients experienced Grade 3/4 diarrhea, and 22% had Grade 4 thrombocytopenia.?*®

HDACES6 inhibitors (HDACSGis) are a focus of clinical research due to the unique
structure of HDACS. Currently, five HDACGis are in clinical trials for various cancers,
autoimmune diseases, and peripheral pain, but none have yet advanced for
neurodegenerative diseases. Clinical trials conducted on various selective HDAC6

inhibitors are summarized in table 2.4.

Two notable HDACG6is, ACY-1215 (Ricolinostat) and ACY-241 (Citarinostat),
developed by Acetylon Pharmaceuticals, are undergoing extensive clinical trials. Both
share a similar structure with a long-chain hydroxamate scaffold and a large, rigid N,N-
diphenyl 2-aminopyrimidine recognition group. They exhibit nanomolar potency
against HDAC6 (ACY-1215: IC50 = 4.7 nM; ACY-241: IC50 = 2.6 nM) and
demonstrate 12 to 13-fold selectivity over HDAC1.212%¢ |n a Phase Ib clinical trial
involving 38 patients with relapsed or refractory multiple myeloma, ACY-1215,
administered at 160 mg daily for 21 days of a 28-day cycle, combined with
lenalidomide and dexamethasone, achieved a 55% response rate with minimal adverse
effects.?®® Additionally, ACY-1215 has been reported to mitigate nerve damage and
alleviate pain, numbness, and muscle weakness caused by chemotherapy and

chemoradiotherapy.246-248
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KA2507, another HDACGi developed by Karus Therapeutics, was under Phase Il trials
for biliary tract cancer but has since been withdrawn.?*® Chong Kun Dang
Pharmaceutical Corp. (CKD) in Korea developed CKD-504 (structure not disclosed),
which is currently in Phase I trials to evaluate its pharmacokinetics, pharmacodynamics,
and toxicity in healthy adults, with potential applications for Huntington's disease.
Additionally, CKD-506, a highly selective HDACGi with at least 400-fold selectivity
over other HDAC isoforms, has shown significant effects in mouse models of systemic
lupus erythematosus (SLE) and chronic autoimmune diseases with minimal adverse
effects.?° This compound is undergoing Phase | studies in Europe and a Phase |1 trial

for rheumatoid arthritis.??

JBI-802, a dual LSD1/HDACES inhibitor identified by Jubilant Therapeutics Inc., with
IC50 values of 50 nM for LSD1 and 11 nM for HDAC6 and more than 100-fold
selectivity over other HDAC isoforms, is currently in Phase Il trials for solid

tumours.2>2
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Table 2.4: Clinical Trials conducted on various selective HDACSG6 inhibitors

NCT Number Agent Other Agents Inclusion Phase Start End Enrolment

NCTO02400242 | ACY-241 | Pomalidomide Multiple Myeloma I 07.05.2015 | 02.07.2023 85
Dexamethasone

NCT02935790 | ACY-241 Nivolumab Malignant Melanoma I 30.09.2016 | 07.04.2017 1

Ipilimumab

NCT02551185 | ACY-241 Advanced Solid Tumors I 22.12.1015 | 04.10.2019 20

NCT02635061 | ACY-241 Nivolumab Non-Small Cell Lung Cancer I 25.08.2016 | 30.06.2023 16

NCT02091063 | ACY-1215 Lymphoma I/11 02.04.2014 | 05.05.2019 24

Lymphoid Malignancies
NCT02632071 | ACY-1215 | Nab-paclitaxel Metastatic Breast Cancer I 01.03.2016 | 30.09.2020 17
Breast Carcinoma

NCTO01997840 | ACY-1215 | Pomalidomide Multiple Myeloma I/11 01.03.2014 | 30.06.2023 103
Dexamethasone

NCT01323751 | ACY-1215 Multiple Myeloma I/11 7.2011 | 03.12.2016 120

NCT02189343 | ACY-1215 | Pomalidomide Multiple Myeloma I 15.09.2014 | 30.04.2018 16
Dexamethasone

NCT02787369 | ACY-1215 Ibrutinib Recurrent Chronic Lymphoid leukemia I May-16 Apr-26 3

Idelalisib

NCTO01583283 | ACY-1215 | Lenalidomide Multiple Myeloma I 12.07.2012 | 24.03.2021 38
Dexamethasone

NCT02088398 | ACY-1215 Healthy I Mar-14 Apr-14 19
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NCT03176472

ACY-1215

Painful Diabetic Peripheral Neuropathy

07.12.2020

15.02.2023

282

NCT02856568

ACY-1215

Cisplatin
Gemcitabine

Hydrochloride

Non-Resectable Cholangiocarcinoma
Recurrent Cholangiocarcinoma
Stage 111 Extrahepatic Bile Duct Cancer
Stage Il Intrahepatic
Cholangiocarcinoma
Stage I11A Hilar cholangiocarcinoma
Stage I11B Hilar cholangiocarcinoma
Stage VA Extrahepatic Bile Duct
Cancer
Stage IVA Hilar cholangiocarcinoma
Stage IVA Intrahepatic
Cholangiocarcinoma
Stage IVB Extrahepatic Bile Duct
Cancer

01.05.2017

Oct-21

NCT05193851

ACY-1215

Peripheral Nervous System Disease

12.01.2022

06.01.2023

12

NCT05229042

ACY-1215

Peripheral Nervous System Disease

01.12.2022

28.04.2024

57

NCT02661815

ACY-1215

Paclitaxel

Bevacizumab

Ovarian Cancer
Fallopian Tube Cancer

Primary Peritoneal Carcinoma

15.06.2016

28.07.2017

NCTO03713892

CKD-504

Huntington Disease

23.05.2018

Dec-20
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NCTO04186156 | KA2507 --- Biliary Tract Cancer I 05.03.2020 Oct-23 0

NCTO03008018 | KA2507 --- Solid Tumor I 07.08.2017 | 10.06.2020 20
NCTO04204603 | CKD-506 --- Rheumatoid Arthurites I 30.11.2018 | 29.10.2019 122
NCT05268666 | JBI-802 Locally Advanced Solid Tumor I/ 08.04.2022 | Aug-25 126

Metastatic Solid Tumor
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Chapter 3
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Present work & the rationale Behind the work

Previously in the chapter 1 & 2 | have discussed about various computational
techniques developed within the last decades for drug designing & repurposing and
why HDACS is a valuable target for drug target. Despite of having such cutting-edge
computational techniques and understanding of the crucial physiological role HDAC6
plays no inhibitor has made it to the market. This present work tries to bridge the gap
between understanding and reality. To do that some of these computational techniques
was applied to learn more deeply about the structural requirements of a nearly perfect
HDACSG inhibitor, both from the ligand perspective and the target perspective. To
explore the ligand perspective a combination of machine learning algorithms was used
to learn about non-linear patterns. And to understand how these ligands (inhibitors) and
target (HDACSG) interact molecular docking and molecular dynamics simulation was
performed. This knowledge might be helpful in designing new generation of HDAC6

inhibitors, or can be used as a screening tool in the vast chemical space.
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Chapter 4
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Materials and Methods

4.1 Dataset preparation
To successfully test if any marketed drug has the potential to bind HDAC6, we need to
define a hypothesis based on known ligands. In other words, firstly we need to learn
about the structural attributes to the HDACS6 inhibitors. To do that a dataset of 142
quinazoline-containing, hydroxamate based HDACSG inhibitors, exhibiting a wide range
of HDACES inhibitory activities, was compiled from the literature (Appendix Table
S1).2%%28 The structures were drawn and saved in an appropriate format using
ChemDraw Ultra software (Cambridge soft corporation, U.S.A.). For structural
refinement of these 142 hydroxamate-based HDACG6 inhibitors “Prepare ligand for

OSAR” protocol in Discovery Studio 3.0%%° was used.

4.2 Descriptor generation and dataset division

Descriptors lies at the heart of QSAR, as they represent structural and physiochemical
qualities or properties of molecules.?®%?%! Having a set of informative descriptors are of
outmost importance to build robust QSAR models. In this study, for machine learning-
based regression analysis, we used 1,444 two-dimensional molecular descriptors and
12,775 fingerprint descriptors calculated by PaDEL descriptor software to represent the
molecules. These descriptors include constitutional, physicochemical, thermodynamic,
and topological indices, as well as PubChem Fingerprint (881 bits), Substructural
Fingerprint (307 bits), Substructural Fingerprint Count (307 bits), Klekota-Roth
Fingerprint (4,860 bits), Klekota-Roth Fingerprint Count (4,860 bits), Atom-Pairs 2D
Fingerprint (780 bits), Atom-Pairs 2D Fingerprint Count (780 bits), and others.?®? The
pool of 14,219 calculated descriptors was pre-processed using V-WSP 1.2 software to
remove highly correlated features and features with no variance. A correlation cut-off
value of 0.90 and a covariance threshold of 0.001 were applied, resulting in a subset of
892 descriptors.?®3

To conduct the classification-based QSAR study, the dataset molecules were classified
as active or inactive using a threshold pIC50 of 7.0 (IC50 = 100 nM), based on the
average pIC50 value of the total dataset molecules (Avg pIC50 = 7.231). Since dataset
division is crucial for the development and validation of any QSAR model, several
fundamental molecular properties were considered to achieve a balanced division.

These properties included lipophilicity (AlogP), molecular weight (Mw), molecular
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polar surface area (MPSA), number of hydrogen bond donors and acceptors (nHBA,
nNBD), number of atoms (nAtoms), number of rings (nR), number of aromatic rings
(nAr), and number of fragments (nFrag). The "generate training and test data" protocol
of Discovery Studio 3.0%° was used to split the dataset using the random per cluster
(RPC) method, maintaining a 75:25 ratio for the training and test sets.?®® The same
training and test sets were used to construct both the ML-based QSAR and

classification-based QSAR models.

Further the marketed drugs data (3816 molecules) was collected from the CIMS

database and were saved in appropriate format for future use.?%*

4.3 Feature selection and model development
In most machine learning techniques, feature selection is a crucial step as it reduces the
risk of overfitting due to noisy, redundant descriptors and increases the interpretability
and understanding of the resulting models.?®® To achieve this, having a good selection
criterion that can measure the relevance of each descriptor to the desired output is
essential. In this study, lasso regression was applied to the initial set of 892 pre-
processed descriptors using “Lasso-CV_R_Feature Selection UI v0.24.2.R,” an R-
based in-house software, to identify descriptors of high significance.?® Finally, the 25
descriptors selected by lasso regression were subjected to the best subset selection
method using “BestSubsetSelection v2.1,” with an r* value of >0.6 and g* value of

>0.5, to correlate and extract the final set of features for the training set molecules.?’

4.4 Development of QSAR models
In this study | have used four different machine learning algorithms?%:2%° for regression
analysis and three different calcification methods to learn about the crucial structural
contributors of these HDACS inhibitors.

4.4.1 k-nearest neighbour (k-NN)
K-nearest neighbour (k-NN) is a non-linear, non-parametric, instance-based machine
learning approach that predicts a ligand’s bioactivity as the distance-weighted average
of the bioactivity of its k nearest neighbours.?®82"0 The k-NN method generalizes the
1-NN rule proposed by Cover and Hart in 1967, which is based on the principle that
similar compounds exhibit similar properties.?’* The performance of k-NN depends on
the chosen k value and the distance function used. In this study, similarity between

compounds was determined using the Euclidean distance in a multidimensional
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descriptor space. Since the Euclidean distances between a compound and its k nearest
neighbours are not identical, the neighbour closest to the compound is given a higher

weight in calculating the predicted activity. The equation used for prediction is:

k
. i=1YjWij
i = J
J:l 5]

where y; is the observed activity value for the nearest neighbour j, yt is the predicted

activity value for compound i, and wij; are the weights defined as:

-1
wi=| 1 + a
ij= ST
Zjl=1dij

where dij represents the Euclidean distance between compound i and its k nearest
neighbour. The value of k (ranging from 1 to n—1, where n is the number of compounds
in the dataset) is optimized during the model-building process to provide the best
prediction for the training set. For test data prediction, the same equation and k value

are used. The k-NN model was developed using WEKA 3.8 software.

4.4.2 Random Forest (RF)
Random Forest (RF) is a supervised, parallel, ensemble-based machine learning method
developed by Breiman that uses decision trees as classifiers.?’>2® The fundamental
concept of this algorithm is to build a collection of independent decision trees from
random samples of the training data. When a new input sample is introduced, each tree
provides a prediction, and the final output is determined by averaging the predictions

of all the decision trees using the following equation:

1 Ntree
() = — > fix)
ntree =1

where f,(x) represents the predicted output of the i tree, and £, (x) is the predicted
response value by the RF model. The key advantage of the Random Forest algorithm
over other machine learning techniques, such as artificial neural networks, support
vector machines, or linear discriminant analysis, is its robustness against overfitting.
The model tends to converge as the number of trees in the forest increases. During

model building with WEKA 3.8, parameters such as the number of regression trees
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(Ntree), the number of randomly selected descriptors at each node, and the number of
training samples in each terminal node (node size) were optimized to achieve the best

Random Forest model.

4.4.3 Artificial neural network (ANN)
Artificial Neural Networks (ANNs)?"427 are supervised machine learning techniques
inspired by the complex neuronal circuitry of the human brain, capable of modelling
multidimensional, non-linear relationships between inputs and outputs. There are
various types of ANNSs, including feed-forward backpropagation networks (BP-NN),
radial basis function networks, and probabilistic neural networks.2’®27" In this study, a
feed-forward backpropagation network was employed, consisting of three layers: input,
hidden, and output layers, which are connected unidirectionally through coefficients
known as weights (artificial synapses). This architecture computes a numerical output

for a given input vector. The input data (In) is processed in each neuron as follows:

n
i

where Z; represents the value of the j™" hidden neuron, Wi; is the weight linking the i*"
input neuron to the j hidden neuron, and A; is the normalized value of the i input

variable.

In the ANN algorithm, input and output values are rescaled to a range from -1 to +1

using the following formula:

Xi - Xmin
A; = X — X X (Tmax - erin) * Tmin
max min

where X is the it real variable, A; is the normalized value of Xi, Xmin and Xmax are the
minimum and maximum values of Xi, and rmin and rmax are the target range limits for

scaling.

During each iteration of the BP-NN algorithm, the weights are adjusted to minimize the
difference between the actual and predicted outputs. The weight change can be
described by:

AWU = T](t - O)Inl’
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where t and o are the target and output values of the ANN for each sample, 1 is the
learning rate that controls the amount of weight change at each iteration, and AWj;

denotes the change in weight Wj;.

4.4.4 Support vector machine (SVM)
Support Vector Machine (SVM) is a supervised machine learning algorithm designed
for classification and regression tasks, developed by Vapnik and colleagues based on
statistical learning theory.?’® SVM works by constructing a hyperplane in a
multidimensional feature space that maximizes the margin between two classes. For a
sample data point (xi, yi), where i=1/,...n, x €RY andy &€ (x1), the equation for the
optimal hyperplane is w-x + b = 0. The margin, which is the distance between the
hyperplane and the nearest data points, is given by 2/]lwll. Finding the optimal
hyperplane can be framed as solving the following convex quadratic programming (QP)

min— )
l w

Subject to: yi [w.x +b] >1
Support Vector Regression (SVR) extends SVM to regression problems by finding a
hyperplane that minimizes the distance to all data points, as opposed to maximizing the
margin in classification. For linear regression, the goal is to find an optimal hyperplane
that estimates y with an e-insensitive loss function, meaning the distance from the

hyperplane to any data point is less than €. This problem is framed as minimizing the
model's complexity, equivalent to minimizing % Il w II%.. The corresponding quadratic

2 w

[yi—w.x—Db] €

. , <
Subject to: {[W.x +b—y] < ¢

For nonlinear regression, SVM employs a kernel function to map the sample data into
a higher-dimensional feature space.?’%?° The study used the Radial Basis Function
(RBF) kernel to uncover nonlinear relationships in the data using WEKA 3.8 software.

The RBF kernel is expressed as:
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k (x,x) = exp(=yllx — x;I*)

where k is the kernel function, x and x; are vectors, and y is a hyperparameter.
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Figure 4.1: Graphical schematic representation of (A) k-Nearest neighbour (k-NN);
(B) Random Forest (RF); (C) Support vector classifier (SVC); (D) Support vector
regressor (SVR); (E) Artificial neural network (ANN).

4.4.5 Bayesian classification study

Bayesian classification employs Bayes' theorem,?®! formulated by Thomas Bayes in the

18th century, to calculate the probability of an event based on two factors: a prior

probability and a likelihood function derived from a probability model of the observed

data. Mathematically, it is expressed as:

P(AIB) =

P(B|A)P(A)
P(B)

Here, A represents the hypothesis or model, and B denotes the observed data. P(A) and

P(B) are the prior belief and the evidence, respectively. P(A/B) is the posterior
probability, and P(B/A) signifies the likelihood.
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In this classification study, several fundamental molecular properties were calculated
using Discovery Studio 3.0%° and used as independent variables to construct the
Bayesian classification model. These properties include lipophilicity (AlogP),
molecular weight (MW), the number of hydrogen bond donors (nHBD) and acceptors
(nHBA), the number of rotatable bonds (nRB), the number of rings (nR), and the
number of aromatic rings (NAR), along with the molecular fractional polar surface area
(MFPSA). Additionally, a topological descriptor, the atom-type extended connectivity
fingerprint of diameter 6 (ECFP_6), was employed for fragment-based structural

assessment in this Bayesian classification study.

4.4.6 Recursive partitioning study

Recursive partitioning,?® also known as decision tree analysis, is a statistical learning
algorithm used to predict an outcome based on a set of covariates (predictors).
Introduced by Morgan and Sonquist in 1963 with the automatic interaction detection
(AID) algorithm,?3 the main idea behind recursive partitioning is to group individuals
with similar outcomes using the covariate set. Given an outcome and a covariate, the
decision tree splits the data into nodes based on each unique value of each covariate,
aiming to make the outcome homogeneous within each node and heterogeneous
between nodes until a stopping criterion is met. This stopping criterion can depend on
cross-validated fit indices (e.g., entropy, mean squared error), node size (e.g., the

number of participants in a node), and minimum improvement in prediction accuracy.

In this study, the recursive partitioning (RP) model was developed using the "Create
Recursive Partitioning Model" protocol in Discovery Studio 3.0.2° The model
incorporated the same fundamental molecular properties used in the Bayesian
classification model, along with a topological descriptor called the functional class
fingerprint of diameter 6 (FCFP_6), to classify the dataset molecules into different
clusters. The decision tree was constructed using an entropy-based split method and a

minimum sample per node of 10 as the stopping criterion.

4.4.7 SARpy analysis

SARpy, or Structure Activity Relationship in Python, is a QSAR approach that employs
"String mining" to transparently discover relevant molecular fragments and derive rules
directly from the data without prior knowledge.??28* The process of selecting an active

ruleset involves three steps:
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1. Fragmenting chemicals of arbitrary complexity to extract all possible substructures

within a user-defined size range.

2. Validating the predictive power of each fragment by analysing the correlation
between the occurrence of each molecular substructure and the experimental

activity of the compounds containing the fragment.

3. Selecting the most predictive fragments and listing them as rules in the format "IF

contains Structural alert THEN apply activity label.”

The Likelihood Ratio (LR) is calculated as:

True positive x Negatives

Likelihood Ratio (LR) =

False positive Positives

In this study, SARpy analysis was conducted with OPTIMAL precision using SARpy
software developed by Gini and colleagues.?®® The analysis aimed to identify active
structural alerts or rules for atoms numbering 2-18, with a minimum of 5 occurrences

in the given dataset.

4.5 Evaluation of QSAR models

According to the OECD principle 2004,%8¢ validating any QSAR model is essential to
confirm its reliability and predictivity. In this study, the performance and learning
capability of machine learning models were assessed using the squared correlation
coefficient (R2) and root mean square error (RMSE). Leave-one-out (LOO) cross-
validation and mean absolute error (MAE) were also employed. For classification-
based models, a Receiver Operating Characteristic (ROC)-based statistical evaluation
was conducted to assess performance and predictivity. Additionally, to validate the
performance of SARpy, Bayesian, and RP models, metrics such as sensitivity (Se),
specificity (Sp), precision (Pr), and accuracy (Acc) were analysed. Statistical properties
like Matthew’s correlation coefficient (MCC), F1-measure, and balanced accuracy
(AUCD) were also considered. Table 4.1 provides the mathematical descriptions and

significance of these statistical validation parameters.
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4.6 Molecular Docking and Molecular Dynamics (MD) simulation-based

binding pattern analysis
Molecular docking is a computational technique that samples conformations of small
molecules in protein binding site in order to predict the affinity and binding pattern of
the small molecules through geometric and energy matching and recognition.

In the current sicario to conduct the molecular docking study, the X-ray diffraction
solution structure of HDACG6 (PDB ID: 5EDU) was collected from the Protein Data
Bank (PDB).?®" Initially, in order to prepare and optimize the protein molecule, as well
as to add any missing hydrogens, state generation and structural refinement of the
protein the “Protein Preparation Wizard” of Schrodinger Maestro v12.5%% was utilised.
During this process, the OPLS 2005 force field was chosen to perform restrain
minimization of the protein structure. The “Receptor Grid Generation” wizard of
Schrodinger Maestro v12.5 software was used to generate the receptor grid for
molecular docking study. Subsequently, the “Ligprep” module present in maestro
V12.5 was used to prepare the molecules before docking studies. Finally, the molecular
docking study was conducted with extra precision (XP) method utilizing the GLIDE
module of Schrodinger Maestro V 12.5.26°28 Ten poses were generated for each ligand
during docking process and the best poses were selected based on the docking score

values and best orientation of the molecule in the active site of HDACS6.

For the MD simulation study, the best-docked poses of the compounds were selected
based on their docking scores and binding site interactions with HDAC6 (PDB ID:
5EDU). Each HDACG6 (PDB ID: 5EDU)-docked compound complex underwent pre-
processing and het-state generation using the Protein Preparation Wizard in
Schrodinger Maestro v12.5 software.?®® During protein pre-processing, hydrogens were
added, bond orders assigned, and co-crystallized water molecules removed. The Epik
module of Schrodinger Maestro v12.5 software was employed for het-state generation
at a pH of 7.0 (+ 2.0).288 Subsequently, the complex was optimized, and energy
minimization was carried out using the OPLS_2005 force field, with the convergence
of heavy atoms to an RMSD of 0.30 A. The System Builder wizard in Schrodinger
Maestro v12.5 software was then used to develop the simulation system. A cubic box
with a 10 A buffer distance between the system and the box boundary was chosen. The

TIP3P solvent system was selected, and isotonic conditions were maintained by adding
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Table 4.1: The mathematical description and significance of statistical validation parameters used for QSAR model development.

Parameter

RZ

2
QLOO

RMSE

MAE

SE

SP

Description

Squared
correlation

coefficient

Leave-one-
out cross-

validation

Root means

square error

Mean
absolute

error

Sensitivity

Specificity

Equation

2
(yobs - ypred)
(yobs - ymean)2

R?=1-

2
2 (yobs(training) — Ypred (training))

500 =1- _ 2
Z(yobs(training) - y(training))

2
RMSE — \/Z?=1(Ypred - yobs)
n

1
MAE = E X Z|yobs — Ypred

op TP

~ (TP + FN)
oo TN

" (TN + FP)
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Significance

Metric to check the goodness-of-fit of a regression
model by measuring the variation of observed data

with the predicted once

Cross-validated R?(Q?) is checked for internal

validation

It gives a measure of model external validation. A

lower value signifies good external predictivity.

Ensures that the trained model has no outlier

prediction with huge errors

Indicates the accuracy of real prediction

Used to calculate the false positive rate




PR

MCC

F1

AUCp

Precision

Accuracy

Matthew’s
correlation

coefficient

F-measure

value

Balanced

accuracy

MCC

TP

PR= ———
(TP + FP)

B (TP +TN)
" (TP +TN + FP + FN)

Q

(TP X TN) — (FP x FN)

~ J(TP + FP)(TP + FN)(TN + FP)(IN + FN)

2TP

F1 =
(2TP + FP + FN)

(SE + SP)

AUC, = ~—
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Indicates the accuracy of predicted class

Used to measure the quality of binary

classification

Indicates the harmonic mean of recall




Na+ and CI ions at a concentration of 0.15 M. Additionally, 5 Na+ ions were included

to neutralize the system charges, with the OPLS_2005 force field applied.?®°

The Desmond module in Schrodinger Maestro v12.5% software was used to conduct
100 ns MD simulation studies on the docked most active and least active compounds,
along with HDACG6-bound Trichostatin A (TSA, PDB ID: 5EDU), using the
OPLS_2005 force field. Each 100 ns MD simulation study was carried out under NPT
ensemble conditions at a temperature of 37°C (310.15K) and a pressure of 1.01325 bar.
Additionally, a pre-simulation system relaxation was performed using a 2.0 fs RESPA
integrator, a Nose-Hoover chain thermostat with a relaxation time of 1.0 ps, and a

Martyna-Tobias-Klein barostat with a relaxation time of 2.0 ps.

Additionally, the stability of the complex was verified in terms of conventional root
mean square deviation (RMSD), fluctuation (RMSF) of amino acid residues, the radius
of gyration (Rg) of the main chain, Prime?®® Molecular Mechanics-Generalized Born
Surface Area (MM-GBSA)?, and principal component analysis (PCA)-based free
energy landscape (FEL).?°
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Result and Discussion

5.1 Feature Selection

The feature selection process was conducted using the training set compounds, and the
training and test data distributions were validated through logP and molecular weight-
based principal component clustering, as well as fundamental molecular property-based
t-SNE distribution (Fig. 5.1A and 5.1B, respectively). The main objective of feature
selection is to identify the most relevant and significant features while preventing data
overfitting caused by noisy, redundant descriptors. In this study, a LOO-cross-validated
lasso regression-based feature selection procedure was employed to identify highly
important molecular descriptors (Fig. 5.1C and 5D) (Appendix Table S2). This was
followed by best subset selection to filter out the most relevant descriptors for the
dataset molecules (Appendix Table S3). The reliability and robustness of these selected
features were further evaluated through the development of MLR models (Appendix
Table S4).

5.2 Machine learning model optimization

Optimizing the learning parameters of machine learning (ML) models is crucial for
their performance. In this study, the k-NN model was constructed by optimizing the
number of neighbours, while the RF models were optimized by adjusting the number
of trees using WEKA 3.8 software. For the SVM model, parameters such as kernel
complexity (C), kernel width (y), and the epsilon value for the radial basis function were
optimized using AUTOWEKA 1.0 software. The same AUTOWEKA 1.0 software was
also used to optimize the learning rate, learning momentum, number of hidden layer
nodes, and epoch parameters for the ANN model. The final optimized models were
selected based on their Q2, R2, and root mean square error (RMSE) values for the
training set instances. Detailed depictions of the ML model optimization and their
actual vs. predicted activity for each of the optimized models are provided in Fig. 5.1E
to 5.1P.

5.3 Evaluation of Machine Learning (ML) model performance
All regression-based machine learning models were constructed using the selected ten
features on the training set molecules (Ntraining = 104). The statistical quality of these
optimized ML models is summarized in Table 5.1. Among the four regression-based

ML models analysed, the Random Forest (RF) model with 90 trees and the Support
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Vector Machine (SVM) model with an epsilon of 0.001, an optimal C of 524,288.0
(2719), and an optimal y value of 0.00000762939453125 (2~-17) were found to be the
most capable of representing the activity variation of these HDACS6 inhibitors both
internally and externally (Table 5.1).

Among the twenty k-NN models generated with the selected feature set and varying
numbers of neighbours, the model with 9 neighbours was found to be the best. It
exhibited an R2 of 0.675 and a Q2 of 0.549, with an R2Pred value of 0.385 for the test

set.

From the development of the Random Forest (RF) model, the RF model with 90 trees
produced a Q2 of 0.537 and an R2Pred of 0.668 for the test set molecules, while

maintaining an R2 of 0.954 for the training set population.

Table 5.1: The statistical performance calculated for the optimized ML models

Model Type R? RMSE Q? RMSELoo-cv R%pred RMSEpreq
k-NN 0.657 0.404 0.549 0.462 0.385 0.560
RF 0.954 0.173 0.537 0.463 0.668 0.419
SVM 0.738 0.348 0.661 0.397 0.564 0.483
ANN 0.704 0.419 0.655 0.399 0.487 0.525

The parameter-optimized Artificial Neural Network (ANN) model, with an optimal
configuration of 1 hidden layer, a learning rate of 0.1, a momentum of 0.3, and 10
epochs, exhibited R2, Q2, and R2Pred values of 0.704, 0.655, and 0.487, respectively.
Additionally, the optimized Support Vector Machine (SVM) model, with an epsilon of
0.001, an optimal C of 524,288.0 (2*19), and an optimal y of 0.00000762939453125
(27-17), produced an Rz value of 0.738 and a Q2 of 0.661, while showing an R2Pred of
0.564 for the test set.

5.4 Interpretation of selected features used for machine learning
By analysing the model's descriptors, it is possible to gain valuable chemical insights
into the activities and structural requirements that influence the inhibitory activity of
these quinazoline-based HDACSG inhibitors. Therefore, a critical examination of these

selected features is essential not only for a deeper understanding of their inhibitory
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training and test set molecules, (C) Mean squared error (MSE) vs log / values for the LASSO-feature selection, (D) LASSO regression selected
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mechanism but also for designing more potent molecules. Consequently, a

comprehensive discussion of these selected features is provided.

KRFP363 is a Klekota-Roth fingerprint substructure that indicates the presence or
absence of the N-methylbutan-1-amine function in a molecule. A detailed analysis of
the dataset molecules revealed that the presence of this functionality in the linker region
of compound 30 resulted in lower HDACS6 inhibitory efficacy (IC50 = 1,238 nM) (Fig.
4). Comparing this with other similar compounds such as compounds 27, 28, and 29, it
appears that the presence of the amine functionality in the linker region is unfavourable.
A thorough examination of the crystal structure of HDACG6 (PDB ID: 5G0G & 5GO0OH)
showed that both catalytic domains are highly conserved and feature narrow
hydrophobic channels composed of residues Pro83, Phe202, Trp261, and Gly201 in
catalytic domain 1, and Pro464, Phe583, Gly582, Leu712, and Phe643 in catalytic
domain 2. This hydrophobic nature of the channel may be responsible for the
unfavourable interaction with the amine functionality in the linker region, leading to

decreased inhibitory potency.

ATSCS represents the average Centered Broto-Moreau autocorrelation with a lag of 8,
weighted by I-state. This 2D autocorrelation descriptor is calculated based on the
Moreau-Broto autocorrelation, where lag 8 signifies the topological distances between
two atoms in a molecule. It was observed that dataset molecules with higher negative
values of this descriptor were effective HDACSG inhibitors, including compounds 21,
31, 33, 35, 39, 49, 50, 99, and 137.

Likewise, minHCsatu is a 2D Atom type Electrotopological state descriptor
representing the minimum atom-type H E-State: H on C sp3 bonded to unsaturated C.
It was observed that molecules with higher positive values of this feature were
promising HDACSG inhibitors, including compounds 24-26, 31, 40-44, 62, and 66-68.

PubchemFP686 represents a 4-hydroxy ketone function (Fig. 5.2). It was observed that
most molecules (compounds 70-77, 109, 113, 117, 120) with this functionality in the
linker were less effective HDACG inhibitors. In comparison to other compounds such
as 78-95, it appears that the 4-hydroxy ketone functionality may be detrimental to
HDACSG inhibition. However, replacing it with a 5-hydroxy ketone (compounds 78-86)
or a 6-hydroxy ketone (compounds 87-95) leads to a significant improvement in
HDACG inhibitory efficacy.
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Fig. 5.2. Selected features with negative contributions from the ML model with their
representative dataset compounds

PubchemFP372 represents the ethanamine function. This fragment was observed in
the aryl moiety of the dataset compounds (Fig. 5.3). Detailed analysis revealed that the
presence of this functionality, particularly in the linker region (as pyridine in
compounds 24, 26, 36, 45, 46, and as triazole in compounds 96-107), led to more active
HDACS6 inhibitors. It can be assumed that the lone pair on the nitrogen and the =
electron cloud of the aromatic ring facilitate favourable electrostatic interactions at the
HDACSG active site, contributing to higher HDACG inhibition.

On the other hand, GATS4m is a 2D autocorrelation descriptor representing Geary
autocorrelation-lag 4, weighted by mass. In this descriptor, the Geary coefficient, a
distance-type function, can be any physicochemical property calculated for each atom
in the molecule, such as electronegativity, atomic mass, dipole moment, polarizability,
etc. Here, the property is atomic masses. It was observed that both increases and
decreases of this parameter beyond a certain range led to a reduction in HDACG6
inhibition. This implies that a balanced topological distribution of atomic masses, along

with the spatial molecular graph, is necessary for effective HDACSG inhibition.

Additionally, the seventh selected descriptor, KRFP413, represents the ethylbenzene

function (Fig. 5.3). It was observed that compounds containing this substructural
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feature in the 3rd position of the quinazoline ring are more effective HDACS inhibitors
(compounds 128, 130-134, 137, 138, 140-142), with the exception of compound 139
(IC50 = 747 nM). Further analysis revealed that replacing the ethylbenzene
functionality with halogen-substituted methylbenzene (compounds 7-10) led to a
decrease in HDACS inhibition efficacy. This suggests that an appropriate degree of
rotation and optimized lipophilicity for such substitution in the 3rd position of the

quinazoline ring enhances inhibitory efficacy.

Compound 24 Compound 36 Compound 137
IC50=9 ICJ-Q=3 ICJ_@=I4

Figure 5.3: Selected features with positive contributions from the ML model with

their representative dataset compounds

APC2D6_C_Clis an atom pair count descriptor indicating the presence of a C-Cl group
at a topological distance of 6. Structural analysis of the dataset molecules showed that
both the frequency of the C-Cl feature and its relative position within the molecular
structure significantly impact inhibitory efficacy. For instance, compound 2, which has
this feature attached to the 3rd position of the quinazoline ring, is a less effective
HDACS6 inhibitor (IC50 = 2,385 nM).

GATS7p is a 2D descriptor representing Geary autocorrelation-lag 7, weighted by
polarizabilities, which encodes the distribution of polarizability along the molecular
topology. Polarizability refers to the ability of an atom or molecule to attract and distort

the electron cloud of neighbouring species, a process known as polarization. It was
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observed that in our dataset, compounds with values of this descriptor within a specific
range demonstrated strong inhibitory efficacy. This suggests that an optimal
distribution of polarizability throughout the molecule’s topology can enhance HDAC6
inhibitory potency.

Lastly, the descriptor nHBInt3 represents the count of E-State descriptors indicating
the strength of potential hydrogen bonds with a path length of 3. It was observed that
an increase in the occurrence rate of this electro-topological state descriptor generally
corresponds to lower IC50 values, indicating enhanced inhibitory activity. This
suggests that as the potential for hydrogen bond formation increases, the molecules may
achieve more thermodynamically stable interactions with the target protein (HDACG).
Therefore, for designing more potent HDACS inhibitors, it is important to consider an

optimal number of hydrogen bond donor and acceptor groups.

5.5 Bayesian Classification model

In addition to our non-linear QSAR approach, the fragment-dependent Bayesian
classification analysis proved highly effective in identifying key substructural features
that influence the HDACSG6 inhibitory activity of these hydroxamate derivatives. To
assess the quality and reliability of the Bayesian classification model, several statistical
metrics were calculated (Table 4.1), and the results demonstrated statistical reliability.
The model showed a LOO cross-validation ROC score of 0.873, a ROC score of 0.870
from five-fold cross-validation, and a ROC score of 0.824 for the test set (Appendix
Figure S1), highlighting its predictive performance and reliability. Additional statistical
validation parameters are provided in Table 5.2 and Fig. 5.5(A).

Table 5.2 Calculated statistical parameters for the classification-based QSAR models

Model Dataset ROC ROCioo- Se Sp Pr ACC McCC F: AUG»
v

Bayesian Training 0.870 0.873 0.912 0.833 0911 0.885 0.745 0.911 0.872

Classification Test 0.824 - 0.727 0.750 0.800 0.737 0471 0.761 0.738
RP Training 0.927 0.820 0.666 0.962 0.944 0.817 0.660 0.781 0.814
Decision tree Test 0.767 - 0.545 0.750 0.750 0.631 0.295 0.631 0.647

1
SARpy Training - - 0.940 0.830 0.941 0.900 0.785 0.927 0.885
Test - 0.740 0.730 0.727 0.750 0.471 0.761 0.735
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Additionally, this analysis identified a total of 40 ECFP_6 substructural fragments of
the hydroxamate derivatives, which have either positive or negative effects on HDAC6
inhibition. The 20 beneficial (G1-G20) and 20 detrimental (B1-B20) molecular
fingerprints are illustrated in table 5.3 and 5.4, respectively. Upon examination, the 20
beneficial molecular substructures (G1-G20) can be categorized into three groups:
quinazoline, quinazoline-4-one, and pyrimidine moieties (G1-G4, G6, G8); alkane-
substituted azole moieties (G10, G12-G13, G15-G20); and aliphatic amines (G5, G9,
G11, G14).

Conversely, among the features negatively impacting HDAC6 inhibition, the
pyrimidine moiety was the most frequently observed detrimental feature (B1-B2, B5-
B6, B8, B10, B11-B12, and B14). Additionally, single nitrogen-containing saturated 6-
membered heterocyclic rings (B4), benzyl ethers (B9, B17, B19-B20), and alkyl ethers
(B13, B15) were also identified as negative regulators of HDACS inhibitory activity.

Further analysis of the substructures and molecules revealed that the most effective
compounds, 36 and 46 (IC50 = 3 nM), not only feature quinazoline as a central scaffold

but also include a pyrimidine connected to quinazoline via a secondary amine.

o) NH / N

2 [|JH J\
Compound 46 G8 Compound 33 4 BS g Y Compound 76

1€ =3 \_ Bayesian Score: 0.356 1G5 =4 \ Bayesian Score: -2.202 1€y =450

Figure 5.4: Representative dataset molecules with good and bad Bayesian fragments.

Similarly, compounds 31-35 and 37-45 also possess these structural features and were
found to be potent HDACS6 inhibitors, with 1C50 values ranging from 4 nM to 52 nM.

This observation aligns with our regression analysis, which indicated that the strength
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for potential hydrogen bonds of path length 3 (nHBint3) and the ethanamine function
(PubchemFP372), present in pyridine, pyrimidine, and triazole rings, have a positive
effect on HDACS inhibitory activity (Fig. 5.4).

Regarding the negative ECFP_6 fragments, it was noteworthy that the quinazoline
scaffold with ether and tertiary amine functions (B2 and B5) was detrimental to HDAC6
inhibition. While quinazoline is a common core feature in many HDAC inhibitors, such
as compounds 71-83, which contain these unfavourable structural features, were found
to be less effective HDACS inhibitors. These findings also suggest that the presence of
an ether group may negatively impact the HDACG6 inhibitory activity of these
hydroxamate analogues.

5.6 Recursive partitioning (RP) study

The CART-based recursive partitioning method generated four decision trees using
fundamental molecular features and FCFP_6 to classify active and inactive compounds.
Among these, the first decision tree, which utilized four substructural features, was
chosen for further analysis due to its performance. This tree had an ROC of 0.927 and
a cross-validated ROC (ROCcv) of 0.820 for the training data, and an ROC of 0.767
for the test set. For the training data, decision tree 1 demonstrated its predictive
capability with 66.6% sensitivity (Se), 96.2% specificity (Sp), 94.4% precision (Pr),
and 96.2% accuracy (ACC) (Fig. 5.5 A). During external validation, decision tree 1
also provided satisfactory predictions with 54.5% sensitivity, 75.0% specificity, 75.0%
precision, and 63.1% accuracy (Fig. 5.5 A). The statistical validation parameters are
detailed in Table 5.2.

Decision tree 1 (Fig. 5.5 B), which incorporates four substructural features, also uses
nHBA (number of hydrogen bond acceptors), nHBD (number of hydrogen bond
donors), and Mw (molecular weight) as key factors to classify the dataset molecules
into seven distinct groups (Fig. 5.5B). This decision tree highlights the significance of
butyl amine functionality and molecular weight in distinguishing between active and
inactive compounds. It is noteworthy that while the butyl amine function was identified
as a favourable feature (G14) in the Bayesian classification study, it appears to have a
negative impact on HDACS6 inhibitory activity in the current recursive partitioning
model.
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Table 5.3: Good ECFP_6 fragments obtained from the Bayesian classification study

G1: 726751110
14 out of 14 good
Bayesian Score: 0.368

G6: 573062983
11 out of 11 good
Bayesian Score: 0.360

G11:-2119310481
10 out of 10 good
Bayesian Score: 0.356

G16: 121650401
10 out of 10 good
Bayesian Score: 0.356

I

G2: -1607747969
14 out of 14 good
Bayesian Score: 0.368

G7:-219423964
10 out of 10 good
Bayesian Score: 0.356

G12:-1731122899
10 out of 10 good
Bayesian Score: 0.356
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G17: 2129650112
10 out of 10 good
Bayesian Score: 0.356

G3: 1569575246
14 out of 14 good
Bayesian Score: 0.368

G8: -1002025377
10 out of 10 good
Bayesian Score: 0.356
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G13: 816396776
10 out of 10 good
Bayesian Score: 0.356
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G18: 311627079
10 out of 10 good
Bayesian Score: 0.356

G4:-1179243667
12 out of 12 good
Bayesian Score: 0.363

G9: -4235950
10 out of 10 good
Bayesian Score: 0.356
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G14: -2118347459
10 out of 10 good
Bayesian Score: 0.356
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G19: -1589534745
10 out of 10 good
Bayesian Score: 0.356

Gb5: -592856198
11 out of 11 good
Bayesian Score: 0.360

G10: 1278310572
10 out of 10 good
Bayesian Score: 0.356
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G15: 1990926508
10 out of 10 good
Bayesian Score: 0.356
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G20: -2041577508
10 out of 10 good
Bayesian Score: 0.356




Table 5.4: Bad ECFP_6 fragments obtained from the Bayesian classification study

B1: 887355427
0 out of 12 good
Bayesian Score: -2.202

B6: 1478078755
0 out of 12 good
Bayesian Score: -2.202

B11: -304302513
1 out of 16 good
Bayesian Score: -1.768

B16: -742907450
1 out of 16 good
Bayesian Score: -1.768

B2: -1796703767
0 out of 12 good
Bayesian Score: -2.202

B7:-1661653144
1 out of 19 good
Bayesian Score: -1.927

Y

B12: -249806767
1 out of 16 good
Bayesian-Score: -1.768

B17: -1807893558
1 out of 16 good
Bayesian Score: -1.768

WY

o
-

B3: 1951894094
0 out of 12 good
Bayesian Score: -2.202

B8: -739716278
1 out of 16 good
Bayesian Score: -1.768

B13: 2055803015
1 out of 16 good
Bayesian-Score: -1.768

B18: -666326105
1 out of 16 good
Bayesian Score: -1.768

B4: -95545909
0 out of 12 good
Bayesian Score: -2.202

B9: 182451333
1 out of 16 good
Bayesian Score: -1.768

B14: 1821498523
1 out of 16 good
Bayesian-Score: -1.768

B19: 809943749
1 out of 16 good
Bayesian Score: -1.768

B5: 14006777
0 out of 12 good
Bayesian Score: -2.202

B10: 257408491
1 out of 16 good
Bayesian Score: -1.768

B15: -1531301414
1 out of 16 good
Bayesian Score: -1.768

B20: -1393419274
1 out of 16 good
Bayesian Score: -1.768
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Figure 5.5: (A) Confusion matrix and calculated statistical parameters for the
classification-based QSAR models (blue: Training data, red: Test data), (B)

Schematic representation of RP model generated decision tree 1.

5.7 SARpy key structural attribute identification study

The smiles-mediated structural alert mining using SARpy analysis of hydroxamate-
based inhibitors identified nine substructural features in smiles notation as part of the
active rule set (Table 5.5). For the training set, SARpy analysis achieved 94.0%
sensitivity (Se), 83.0% specificity (Sp), 94.1% precision (Pr), and 90.0% accuracy
(ACC). When validated on the test set, the active ruleset showed 74.0% sensitivity,
73.0% specificity, 72.7% precision, and 75.0% accuracy. Additional statistical

validation parameters related to SARpy analysis are detailed in Table 5.2.

Among the nine structural alerts identified by SARpy as part of the active ruleset (Table
5.5), several were noted for their positive contributions to HDACG6 inhibition.
Specifically, the alert c12¢c(c(=0)n(c(n1)C))ccc(c2)C represents the quinazoline-4-one
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functionality, and clnnn(c1l)CCCCCC denotes 1-hexyl triazole, both of which
positively impact HDACS inhibition.

Table 5.5: SARpy active ruleset along with their corresponding structures and

likelihood ratio

Active Ruleset Structure Likelihood Ratio
c12¢(c(=0)n(c(n1)C))ccc(c2)C i Infinite
0
)\
N
clnnn(cl)CCCCCC = Infinite
SN
N(C)clccc(ccl)OCCCCC

NG Infinite
NN :
Cclcce(s1)C(=0)NO i Infinite
N/OH
T

C(Nclc(cne(nl))[N+]#[C-])C N Z 5.29
PN
Nclcce(ccl) M 8.21

CCclcceecl O\/ 7.94

C(=0O)NCclcec(ccl) O\/ 3.18
N
clcee(ccl)F O/F 3.97

Similarly, Bayesian classification identified analogous features as beneficial fragments
(G8 and G12-G13, G15-G20) with positive effects on HDACG6 efficacy. The alert
N(C)clcee(ccl)OCCCCC highlights the positive influence of the N-methyl-4-
(pentyloxy)aniline moiety on HDACS inhibition, while Cclccc(s1)C(=0)NO indicates
that a 2-methylthiophene-containing hydroxamic acid moiety is favorable for activity.
Additionally, C(Nclc(cnc(nl))[N+]#[C-])C and Nclccc(ccl) denote N-ethyl-5-
isocyanopyrimidin-4-amine and aniline, respectively, both contributing positively to

HDACS6 inhibition and also identified as good fragments (G2 and G7) in our Bayesian
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model. Finally, the structural alerts CCclcccecl, C(=0O)NCclcecc(ccl), and
clccc(ccl)F, representing ethylbenzene, N-benzyl formamide, and fluorobenzene,
respectively, were also positive contributors to HDACG6 inhibition. Notably, the
common benzyl function among these three alerts was also recognized as a beneficial

fragment (G7 and G10) in the Bayesian classification model.

o
X

Likelihood ratio:8.21

Likelihood ratio: 5.29 ‘ Likelihood ratio: inf /

HO

Compound 31 Compound 34 Compound 137
ICjﬂ:4 Ing:4 IC50214

Figure 5.6: SARpy generated active fragments containing potent HFAC6 inhibitors.

Applying the active ruleset to the training set, 70 out of 104 structures matched, while
20 out of 38 test set molecules matched. Notably, compounds 31, 34, 38, and 44, which
feature the active ruleset C(Nclc(cnc(nl))[N+]#[C-])C and Nclcce(ccl) identified by
SARpy structural alert mining, are effective HDACG6 inhibitors. Additionally,
compounds 96-105 and 131-137, which contain multiple structural alerts, were also
found to be potent HDACSG inhibitors (Fig. 5.6).

5.8 Molecular dynamics (MD) simulation study
Molecular dynamics (MD) simulations of the most effective (compound 36) and least
effective (compound 2) quinoline-containing hydroxamate derivatives at the HDAC6
active site were conducted using the Desmond module of Schrodinger Maestro v12.5
software. Analysis of the RMSD values of the protein and ligand trajectories during the
simulation (Fig. 5.7) revealed that the C-a chain of HDAC6 (PDB ID: SEDU) exhibited

minimal RMSD fluctuation (< 3A) when bound to both compounds 36 and 2. However,
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the RMSD values for the atoms of compound 36 were noticeably higher compared to
those for compound 2. The RMSD for compound 2, when complexed with HDACS,
exhibited similar fluctuations to the C-a chain of the protein, in contrast to the higher

fluctuations observed with compound 36 (Fig. 5.7B vs 5.7A).
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Figure 5.7: 100 ns trajectory RMSD plot for (A) compound 36, and (B) compound 2,
RMSF plot for the C-a chain residues of HDAC6 (PDB ID: SEDU) (C) compound 36,
and (D) compound 2, RMSF of (E) compound 36, and (F) compound 2 for 100 ns

simulated period

Interestingly, this suggests that compound 2 binds more stably to the HDACG6 active

site compared to compound 36, despite being the least effective inhibitor in the series.
The RMSD fluctuation of the C-a chain residues (Fig. 5.7C and 5.7D) showed similar
fluctuations for most residues, except for Ser498, His499, Leu495, Trp496, Lys555,
Ser563, Ser564, Asn565, Phe620, Gly619, Cys618, His610, and His611, which
exhibited higher fluctuations when bound to compound 36 (Fig. 5.7C) compared to

compound 2 (Fig. 5.7D). Conversely, residues such as Ser688, Ser689, and Pro708

showed higher fluctuations in the HDAC6-compound 2 complex compared to the

HDAC6-compound 36 complex. Additionally, the heavy atoms of the cap group in
compound 36 (atom numbers 1-20, 23-30, and 39, Fig. 5.7E) exhibited high fluctuations
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(>2A), whereas the smaller cap group of compound 2 (atom numbers 1-18, Fig. 5.7F)
showed minimal fluctuation (< 2A), except for the chlorine atom. This indicates that
the high RMSD values observed for the most active compound 36 are due to significant
fluctuations in the cap group heavy atoms, influenced by the highly flexible ethylene

spacer connecting the cap to the linker phenyl ring.

In the analysis of protein-ligand interactions at the HDACG active site (Fig. 5.8),
compound 36 interacted with a larger number of HDAC6 amino acid residues compared
to compound 2 (Fig. 5.8A vs 5.8B). Specifically, compound 36 formed hydrogen bonds
with Ser568, His611, Pro717, and His499, while establishing hydrophobic interactions
with Phe620, His651, Tyr782, Pro501, Tyr570, Leu749, His500, His499, Phe679,
Phe680, Met682, and Asn494. Additionally, ionic interactions were observed between
compound 36 and the residues Asp649, His651, Asp742, and Tyr782 of HDACS6 (Fig.
5.8A).

(E) (F)

Figure 5.8: The interaction fraction recorded between (A) compound 36, and (B)
compound 2 and HDACS6 catalytic site (PDB ID: 5EDU), Overall contact frequency
for (C) HDACG6-compound 36 complex, and (D) HDAC6-compound 2 complex,
Contact frequency of (E) compound 36, and (F) compound 2 with HDACG catalytic

site residues
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Although the least active compound 2 interacted with fewer HDAC6 amino acid
residues, it established hydrogen bond interactions with only three residues: His610,
Gly781, and Tyr782, as well as with His651. For hydrophobic interactions, compound
2 interacted with residues Phe620, Phe680, Leu749, Tyr782, Pro501, and His499.
Additionally, ionic interactions were observed with Asp649, His651, and Asp782 (Fig.
5.8A).

During the 100 ns simulation period, it was observed that while compound 36 interacted
with a larger number of HDACS catalytic site residues, many of these interactions were
brief. The most significant and stable interactions were with residues Asp649, His651,
His611, Phe620, Asp742, and Tyr782 (Fig. 5.8E). In contrast, compound 2 formed
strong interactions primarily with residues Asp649, His651, Asp742, and Phe680 (Fig.
5.8F). However, compound 2 did not establish strong interactions with residues His610,
His611l, and Phe620 as effectively as compound 36. Molecular generalized Born
surface area (MM-GBSA) calculations for the ligand-protein binding energy were
performed using the Prime module of Schrodinger Maestro software with a step of 10
(nsteps = 10) (Table 5.6). These calculations indicated that the most active compound
demonstrated stable binding, whereas the least active compound formed a less stable
complex with HDACSG. The calculated coulombic, van der Waals, and overall binding
energies for these complexes during the simulation are detailed in Fig. 5.9A and 5.9B.

Table 5.6 Prime calculated MM-GBSA binding free energies for the simulated

compounds.
Complex Energy (kcal/mol)
Avg. AGsinding Avg. AGBinding-Coulomb Avg. AGBinding-van der Waals
HDACS6- Compound 36 - 8.575 -31.378 -37.976
HDACG6- Compound 2 +3.992 -14.673 -31.406

In addition to the basic MD analyses, the trajectory principal component analysis
(Trajectory PCA) was used to calculate the free energy landscape (FEL) with the
g_sham script from GROMACS 2020.6. The FEL contour maps reveal that both
compounds 36 and 2, despite having some unstable high-energy conformations (red to
reddish brown areas), also exhibited similar stable low-energy conformations (violet to

bluish violet regions) (Fig. 5.9A and 5.9B). However, although both compounds
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showed stable binding, the conformation of the compound 2-HDAC6 complex had a
higher energy (cyan cleft, Fig. 5.9B) compared to the compound 36-HDAC6 complex.
This indicates that, despite greater fluctuation in the cap group of compound 36, it
adopted multiple stable low-energy conformations during the simulation, which may

contribute to its superior HDACSG inhibitory activity compared to compound 2.
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Figure 5.9: The calculated Gibb’s free energy for the simulated (A) HDAC6-
compound 36 complex, and (B) HDAC6 compound 2 complex, the trajectory PCA-
based free energy landscape plot for (C) HDAC6-compound 36 complex, and (D)
HDACG6 compound 2 complex.

From Fig. 5.9A and 5.9B, it is evident that the compound 36-HDACG6 complex reached
its most stable conformation at 26.6 ns, with the least stable conformation occurring at
68.2 ns (Fig. 5.9A). Conversely, for the compound 2-HDAC6 complex, the initial
conformation at 0.2 ns was the most stable, while the conformation at 0.3 ns was the
least stable throughout the 100 ns simulation (Fig. 5.9B). The binding mode analysis of
both the most active and least active compounds at various time points (Fig. 5.10)

uncovered several notable observations regarding their interaction with HDAC6 CD1.
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Figure 5.10: The binding mode of compound 36 at HDACS active site (PDB ID:
5EDU) at (A) Ons, (B) 26.6 ns, (C) 68.2 ns, (D) 100 ns, the binding mode of
compound 2 at HDACS6 active site (PDB ID: 5EDU) at (E) 0.03 ns, (F) 0.2 ns, (G) 50
ns, (H) 100 ns

For compound 36, with its large and bulky quinazoline cap group, the cap moiety
exhibited greater fluctuation compared to the smaller cap group in compound 2 (Fig.
5.10A-D vs 5.10E-H). This increased fluctuation in the cap group is reflected in the
RMSD plot of the ligand versus the protein (Fig. 5.7). Notably, in the most stable
conformation at 26.6 ns (Fig. 5.10B), the fused phenyl ring of the quinazoline cap in
compound 36 was observed to form a n-n interaction with His500 in the proximal loop
of HDAC6 CD1. However, this interaction was absent in the least stable conformation
at 68.2 ns (Fig. 5.10C). For the less active compound 2, the ethylene chloride
substitution in the quinazoline cap was positioned near the carbonyl oxygen between
Phe679 and Phe780 in the most stable conformation (0.03 ns, Fig. 5.10E), while it was
significantly displaced in the least stable conformation (0.2 ns, Fig. 5.10F). These
observations were also supported by the ML models (APC2D6 _C_CI), which
suggested that such fragments contribute to HDACG6 binding and influence HDAC6

inhibitory activity and selectivity.
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Conclusion

The success of any research lies in the outcomes it produces and the conclusion it draws, which
can uncover new or unexplored scientific insights. These findings can enhance understanding
and deepen knowledge in the specific field of study. In response to the economic pressures on
the drug market to be cost-effective and time-efficient, computational chemistry, including
techniques like computer aided drug design and molecular modelling, along with virtual
screening, are now recognised as the most effective and rapid methods for introducing new
chemical entities into the market. These computational methods may reduce the lead generation
time but are unable to bypass the clinical trials, as its next to impossible to computationally
model a whole human body with its ecstatic complexity to understand the effect of human’s
internal environment on the lead molecule. In other words what a lead molecule and human
body dose to each other cannot be comprehended by computational study. To reduce time in
this area of drug discovery, drug repurposing becomes the most obvious option, as the
knowledge of the drug is already available, the job is to just find a new application for it. This
computational study on HDACG6 and its inhibitors was quite helpful to widen the understanding
of HDACS, its pathophysiology and its inhibitors. The machine learning (ML) and fragment
based structural analysis study was able to identify key structural features ruling the biological
activity. In this study substituted quinazoline moiety, ethylene chloride function, piperazine
ring, heterocyclic nitrogen, and sulfur-containing 6-membered saturated ring, number of
hydrogen bond donor-acceptor groups, and molecular weight of these compounds came forth
as a leading factor for HDACS activity variation. Finally, the key finding of this study is that
the quinazoline cap group in HDACS inhibitors can lead to strong and selective inhibition of
HDACSG. Despite its larger size and grater mobility after binding, the bulky quinazoline cap
can establish multiple interactions with the residues of HDAC6’s pocket-forming loops. These
interactions between HDACG6 loop residues and a thoughtfully designed cap moiety in
inhibitors could pave the way for the future development of HDACG6-specific inhibitors.
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Appendix Table S1. Dataset compounds with their smiles notation, HDACG6 inhibitory

activity, and binary categories

Cpd  Smiles 1Cs0 plCsy  Binary Class Set

No

1 cl(ccc2c(cl)c(=0)n(cn2)CC)/C=C/C(=0O)NO 1354 5868 0 Inactive  Training
2 cl(ccc2c(cl)c(=0)n(cn2)CCCI)/C=C/C(=0)NO 2385 5623 0 Inactive  Training
3 cl(ccc2c(cl)c(=0)n(cn2)CCC)/C=C/C(=0O)NO 925 6.034 0 Inactive  Test

4 cl(ccc2c(cl)c(=0)n(cn2)CCCC)/C=C/C(=O)NO 974 6.011 O Inactive  Training
5 c1(cce2e(cl)c(=0)n(cn2)CC1CCCCL)/C=C/C(=0)NO 504 6.298 0 Inactive  Training
6 cl(ccc2c(cl)c(=0)n(cn2)Cclcceccl)/C=C/C(=0)NO 285 6545 0 Inactive  Test

7 cl(ccc2c(cl)c(=0)n(cn2)CclccceclF)/C=C/C(=O)NO 424 6.373 0 Inactive  Test

8 cl(ccc2c(cl)c(=0)n(cn2)Cclccee(cl)F)/C=C/C(=O)NO 588 6.231 O Inactive  Training
9 cl(ccc2c(cl)c(=0)n(cn2)Cclcce(ccl)F)/C=C/C(=0O)NO 253 6597 O Inactive  Test

10 cl(ccc2c(cl)c(=0)n(cn2)Cclcce(ccl)Cl)/C=C/C(=O)NO 329 6483 0 Inactive  Training
11 cl(ccc2c(cl)c(=0)n(cn2)Cclcee(ccl)C)/C=C/C(=0)NO 360 6.444 0 Inactive  Training
12 clc(cc2c(cl)c(=0)n(cn2)CC)/C=C/C(=0O)NO 68 7.167 1 Active Training
13 clc(cc2c(cl)c(=0)n(cn2)CCCI/C=C/C(=0)NO 113 6.947 O Inactive  Training
14 clc(cc2c(cl)c(=0)n(cn2)CCC)/C=C/C(=0)NO 67 7174 1 Active Test

15 clc(cc2c(cl)c(=0)n(cn2)CCCC)/C=C/C(=O)NO 124 6.907 O Inactive  Training
16 clc(cc2c(cl)c(=0)n(cn2)CCLCCCCL)/C=C/C(=0O)NO 72 7143 1 Active Test

17 clc(cc2c(cl)c(=0)n(cn2)Cclcceccl)/C=C/C(=0)NO 247 6.607 O Inactive  Training
18 clc(cc2c(cl)c(=0)n(cn2)CclccccclF)/C=C/C(=O)NO 98 7009 1 Active Test

19 clc(cc2c(cl)c(=0)n(cn2)Cclccee(cl)F)/C=C/C(=O)NO 96 7018 1 Active Training
20 clc(cc2c(cl)c(=0)n(cn2)Cclccc(ccl)F)/C=C/C(=O)NO 48 7319 1 Active Training
21 clc(cc2c(cl)c(=0)n(cn2)Cclcee(ccl)Cl)/C=C/C(=O)NO 41 7387 1 Active Test

22 clc(cc2e(cl)c(=0)n(cn2)Cclecec(ccl)C)/C=C/C(=0)NO 44 7357 1 Active Test
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Nclncnc2clne[nH]2)CC)clecceel

clcec2e(cINCelnee(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclncnc2clnc[nH]2)CC)clcceecl

clcec2c(c1CNC(=0)clcecc(ccl)C(=0)NO)c(=0O)n(c(n2)[C
@@H](Nclnenc2clne[nH]2)CC)cleececl

clcec2c(cICNC(=0)clcec(cnl)C(=0)NO)c(=0)n(c(n2)[C
@@H](Nclnenc2clne[nH]2)CC)cleececl

clcec2c(c1CCCCCC(=0O)NO)c(=0)n(c(n2)[C@@H](Ncln
c(nc(c1LC#N)N)N)CC)clcececl

clcec2c(c1CCCCCC(=0O)NO)c(=0)n(c(n2)[C@@H](Nclc
(c(nc(n1)N)C)[N+]#[C-])CC)clcceecl

clcec2c(c1CCCCCC(=0)NO)c(=0)n(c(n2)[C@@H](Nclc
(cnc(n1)N)[N+]J#[C-])CC)clcceccl

clcec2c(cINCCCCC(=0)NO)c(=0)n(c(n2)[C@@H](Nclc
(c(nc(n1)N)C)[N+]#[C-])CC)clcceecl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)N)[N+]#[C-])CC)clcceecl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)C)[N+]J#[C-])CC)clcccccl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclce(ne(nl)N)C)CC)cleceecl

clcec2e(cINCceleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(ncnl)N)[N+]#[C-])CC)clcccecl

clcec2e(cINCelceec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(ncnl)N)CHCC)clcceecl

clcec2e(cINCelnec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(ncnl)N)CHCC)clcceecl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(nl)N)C)CIl)CC)clcccecl

158

889

»

69

28

45

1238

12

22

6.051

8.046

8.000

8.222

7.161

7.553

7.347

5.907

8.398

7.921

8.398

8.398

8.398

8.523

7.658

Inactive

Active

Active

Active

Active

Active

Active

Inactive

Active

Active

Active

Active

Active

Active

Active

Training

Training

Training

Training

Training

Training

Training

Training

Test

Test

Training

Test

Test

Test

Training




38

39

40

41

42

43

44

45

46

47

48

49

50

o1

52

clcec2e(cINCelceec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)C)N)[N+]J#[C-])CC)clcccccl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)N)CIHCC)clcceecl

clcec2e(cINCcelceec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)C(F)(F)F)[N+]#[C-])CC)clcceccl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)CLCCL)[N+]J#[C-])CC)clcceccl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)C(F)F)[N+]J#[C-])CC)clcceccl

clcec2e(cINCceleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)N)[N+]#[C-])C)clcceecl

clcec2e(cINCeleec(ccl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)C)[N+]#[C-])C)cleccecl

clcec2c(c1CNC(=0)clnce(ccl)C(=0)NO)c(=0)n(c(n2)[C
@@H](Nclc(c(nc(n1)N)N)[N+]J#[C-])C)clcceecl

clcec2e(c1CNelnee(enl)C(=0)NO)c(=0)n(c(n2)[C@@H]
(Nclc(c(nc(n1)N)N)[N+]#[C-])C)clcceecl

clcec2e(c1F)e(=0)n(c(n2)[C@H](CC)Nclc2c(nenl)[nH]c
n2)CCCCCC(=0)NO

clcec2e(c1F)e(=0)n(c(n2)[C@H](CC)Nclc2c(nenl)[nH]c
n2)Cclceec(ccl)C(=0)NO

clcec2e(c1F)e(=0)n(c(n2)[C@H]1N(c2ncne3[nH]cnc23)C
C2(C1)CC2)Cclcee(ccl)C(=0)NO

clcec2e(c1F)e(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N)
CC2(C1)CC2)Cclcce(ccl)C(=0O)NO

clcec2e(c1F)e(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N)
CC2(C1)CC2)Cclcee(s1)C(=0)NO

clcec2e(c1Cle(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N
)CCC1)Cclcce(ccl)C(=0O)NO

159

14

52

47

27

16

121

45

28

27

32

280

7.854

8.046

7.284

7.328

7.569

8.222

8.097

7.796

8.523

6.917

7.347

7.553

7.569

7.495

6.553

Active

Active

Active

Active

Active

Active

Active

Active

Active

Inactive

Active

Active

Active

Active

Inactive

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Test




53

54

55

56

57

58

59

60

61

62

63

64

65

66

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]1N(c2nc(nc(N)c2C#N)N
)CC2(C1)CC2)Cclcce(ccl)C(=0)NO

clcec2e(c1Cle(=0)n(c(n2)[C@@H](Nclnc(nc(N)c1C#N)
N)C)Cclcce(s1)C(=0)NO

clcec2e(c1Cl)e(=0)n(c(n2)[C@@H](Nclnc(nc(N)c1C#N)
N)CC)Cclccc(s1)C(=0)NO

clcec2e(c1Cle(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N
)CCC1)Cclcee(s1)C(=0O)NO

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N
)CC2(C1)CC2)Cclcce(s1)C(=0)NO

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]LN(c2nc(nc(N)c2C#N)N
)CC2(C1)CC2)Cclonc(cl)C(=O)NO

clcec2e(c1Cl)e(ne(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)CC
C1)NCclcce(ccl)C(=0)NO

clcec2e(c1Cl)e(ne(n2)[C@H]LN(c2nc(nc(N)c2C#N)N)CC
2(C1)CC2)NCclcee(ccl)C(=0)NO

clcec2e(c1Cl)e(ne(n2)[C@H]1N(c2nc(nc(N)c2C#N)N)CC
2(C1)CC2)NCCclcce(ccl)C(=0)NO

clccc2e(c1Cl)e(=0)n(c(n2)[C@H]1N(C[C@@H](C1)OC(
=0)NCclcce(ccl)C(=0)NO)cinc(nc(c1C#N)N)N)cleecce
1

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]IN(C[C@H](C1)OC(=0
)JNCclcce(ccl)C(=0O)NO)cinc(nc(cIC#N)N)N)clceceel

clccc2e(c1Cl)e(=0)n(c(n2)[C@H]1N(C[C@@H](C1)OCc
1cee(ccl)C(=0O)NO)clnc(nc(cIC#N)N)N)C

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]LIN(C[C@@H](C1)OCc
1cee(s1)C(=0)NO)cinc(nc(c1C#N)N)N)C

clcec2e(c1Cle(=0)n(c(n2)[C@H]LN(C[C@@H](C1)OC(
=0)NCclcce(ccl)C(=0)NO)clne(nc(clC#N)N)N)C

160

331

604

267

398

219

87

168

27

6.480

7.180

7.347

7.174

7.886

6.219

6.573

6.400

6.660

7.060

6.775

7.886

7.886

7.569

Inactive

Active

Active

Active

Active

Inactive

Inactive

Inactive

Inactive

Active

Inactive

Active

Active

Active

Test

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Test

Training




67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]1IN(C[C@@H](C1)OC(
=0)N(Cclccc(ccl)C(=0O)NO)C)clnc(nc(cICEN)N)N)C

clcec2e(c1Cle(=0)n(c(n2)[C@H]LN(C[C@@H](C1)OC(
=0)NCCclcce(ccl)C(=0)NO)cinc(nc(cLC#N)N)N)C

clcec2e(c1Cl)e(=0)n(c(n2)[C@H]LIN(C[C@@H](C1)OC(
=0)NCclccc(s1)C(=0O)NO)clnc(nc(cICEN)N)N)C

clc(cc2c(c10C)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1CCCC1l)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1CCSCC1)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1CCOCC1)0C

clc(cc2c(c10C)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1[C@H](COCC1)C)OC

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1l[C@@H](COCC1)C)OC

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCC(=0)NO)C)
N1CCN(CC1)C)0oC

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCC(=0)NO)C)
N1CCS(=0)(=0)CC1)0C

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCC(=0)NO)C)
N1CCC(CC1)(F)F)OC

clc(cec2c(c1OC)c(nc(n2)clee(c(c(c1)C)OCCCCC(=0)NO)
C)N1CCCC1)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1CccCcCcC1)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1CCscCC1)0C

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1Ccocc1)oC

161

11

36

43

390

420

350

360

330

650

850

730

310

480

290

210

7.959

7.444

7.367

6.409

6.377

6.456

6.444

6.481

6.187

6.071

6.137

6.509

6.319

6.538

6.678

Active

Active

Active

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Training

Test

Test

Test

Test

Training

Test

Training

Training

Training

Test

Training

Training

Test

Training




82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1[C@H](COCC1)C)OC

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1[C@@H](COCC1)C)oC

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1CCN(CC1)C)0oC

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1CCS(=0)(=0)CC1l)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCC(=0)NO)
C)N1CCC(CCL)(F)F)OC

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCCC1)0C

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCCCC1)0C

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCSCC1)0C

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCOCC1)0C

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCCC(=0)NO
)C)N1[C@H](COCC1)C)OC

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCCCC(=0)NO
)C)N1[C@@H](COCC1)C)OC

clc(cec2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCN(CC1)C)OC

clc(cc2c(c10C)c(nc(n2)clec(c(c(cl)C)OCCCCCC(=0O)NO
)C)N1CCS(=0)(=0)CC1)0C

clc(cc2c(c1OC)c(nc(n2)clee(c(c(cl)C)OCCCCCC(=0)NO
)C)N1CCC(CC1)(F)F)OC

cl2c(ncncINclcee(c(ccl)F)Cl)cee(c2)clnnn(cl)CCCCCC(=
O)NO

162

190

220

110

130

340

101.4

203.5

129.2

119.2

98.5

101.7

11.68

55.3

186.1

9.5

6.721

6.658

6.959

6.886

6.469

6.994

6.691

6.889

6.924

7.007

6.993

7.933

7.257

6.730

8.022

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Active

Inactive

Active

Active

Inactive

Active

Training

Test

Training

Training

Test

Training

Training

Test

Training

Training

Training

Test

Test

Training

Training




97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

cl2c(ncncINclcee(c(ccl)F)Cl)eec(c2)clnnn(cl)CCCCCCC
(=O)NO

cl2c(ncncINclc(c(ceccl)ChF)cee(c2)clnnn(cl)CCCCCC(=
O)NO

cl2c(ncncINclc(c(cecl)ClF)cec(c2)clnnn(cl)CCCCCCC
(=O)NO

cl2c(ncncINcleec(c(cl)ClOCclec(cecl)F)cee(c2)clnnn(c
1)CCCCCC(=0O)NO

cl2c(ncncINclcee(c(cl)ClOCclcc(ceecl)F)cee(c2)clnnn(c
1)CCCCCCC(=0O)NO

cl2c(ncncINclcee(c(cl)ClOCclncesl)cee(c2)cinnn(cl)C
CCCCC(=0O)NO

cl2c(ncncINclcece(c(cl)ChHOCclncesl)cee(c2)cinnn(cl)C
CCCCCC(=0O)NO

cl2c(ncncINcleece(c(cl)C)Oclcec(ncl)C)eec(c2)cinnn(cl)
CCCCCC(=O)NO

cl2c(ncncINclceec(c(cl)C)Ocleec(ncl)C)ece(c2)clnnn(cl)
CCCCCCC(=0)NO

cl2c(ncncINclceee(c(cl)OC)Ocleccecl)cec(c2)clnnn(cl)C
CCCCC(=0O)NO

cl2c(ncncINcleee(c(c1)OC)Ocleccecl)cec(c2)clnnn(cl)C
CCCCCC(=0O)NO

cleee2¢(c1)c(nc(n2)C)N(C)elece(ce1)OCC(=0)NO
c12¢(c(nc(n1)C)N(C)cleee(cel) OCCCC(=0)NO)ccee2
c12¢(c(nc(n1)C)N(C)cleee(ce1) OCCCCC(=0)NO)ccec2
c12¢(c(nc(n1)C)N(C)cleec(ce1)OCCCCCC(=0)NO)ccee2
clcec2e(cl)c(nen2)N(C)eleec(cel)OCC(=0)NO
c12¢(c(nen1)N(C)cleee(ccl)OCCCC(=0)NO)ceee2

c12c¢c(c(ncn1)N(C)cleec(ccl)OCCCCC(=0)NO)ceec2

163

8.4

4.1

3.2

94.2

19.5

14.3

13.6

12.9

13.8

18.5

16

8.6

196

57

34

14

34

49

8.076

8.387

8.495

7.026

7.710

7.845

7.866

7.889

7.860

7.733

7.796

8.066

6.708

7.244

7.469

7.854

7.469

7.310

Active

Active

Active

Active

Active

Active

Active

Active

Active

Active

Active

Active

Inactive

Active

Active

Active

Active

Active

Training

Training

Training

Training

Training

Training

Training

Test

Training

Training

Test

Test

Training
Training
Training
Training
Training

Training




115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

c12¢(c(nen1)N(C)cleec(ccl)OCCCCCC(=0)NO)ceee2
c12¢(c(nc(n1)C)N(C)cleec(cel)OCC(=0)NO)CCC2
c12¢(c(nc(n1)C)N(C)cleee(ce1)OCCCC(=0)NO)CCC2
c12¢(c(nc(n1)C)N(C)cleee(ce1)OCCCCC(=0)NO)CCC2
c12¢(c(nc(n1)C)N(C)cleec(cel)OCCCCCC(=0)NO)CCC2

c12¢(c(nc(n1)C)N(C)clee(c(ccl)OC)OCCCC(=0O)NO)ccecee
2

c12c¢(c(nc(n1)C)N(C)clee(c(ccl)OC)OCCCCC(=0)NO)ce

cc2

c12¢(c(nc(n1)C)N(C)clee(c(ccl)OC)OCCCCCC(=0)NO)c
ccc2

c12¢(c(=0)n(c(n1)C)clecceel)e(cee2)/C=C/C(=0)NO
c12¢(c(=0)n(c(n1)C)clecceel)ec(ce2)/C=C/C(=0)NO
c12¢(c(=0)n(c(n1)C)clccceed)cee(c2)/C=C/C(=0)NO
c12¢(c(=0)n(c(n1)C)clccceel)ecec2/C=C\C(=0)NO
c12¢(c(=0)n(c(n1)C)Celccceel)eee(c2)/C=C/C(=0)NO
c12¢(c(=0)n(c(n1)C)CCelccceet)ece(c2)/C=C/C(=0)NO

c12¢c(c(=0)n(c(n1)C)CCC1lc3c(N=C1)ccce3)cee(c2)/C=C/
C(=O)NO

c12c¢c(c(=0)n(cn1)CCclcccccl)ccc(c2)/C=C/C(=O)NO
c12¢(c(=0)n(c(n1)CC)CCclcccecl)cee(c2)/C=C/C(=0)NO

c12¢c(c(=0)n(c(n1)CC)CCCclcccecl)eee(c2)/C=C/C(=0O)N
o)

c12¢c(c(=0)n(c(n1)CCC)CCclcccecl)cec(c2)/C=C/C(=0O)N
o)

c12¢c(c(=0)n(c(n1)C(C)C)CCclcceeel)ccce(c2)/C=C/C(=0)
NO

164

19

17

40

63

20

17

111

23

1920

32

88

690

24

29

15

35

11

33

41

13

7.721

7.770

7.398

7.201

7.699

7.770

6.955

7.638

5.717

7.495

7.056

6.161

7.620

7.538

7.824

7.456

7.959

7.481

7.387

7.886

Active

Active

Active

Active

Active

Active

Inactive

Active

Inactive

Active

Active
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Appendix Table S2. LASSO coefficients of features obtained from LASSO regression

Selected feature LASSO coefficient
KRFP363 -0.72921
AATSCS8s -0.55877
minHCsatu 0.456812
KRFP1947 0.322965
PubchemFP686 -0.3124
PubchemFP372 0.280104
GATS7m -0.2635
GATS4m 0.135438
KRFP4071 0.131816
KRFP3574 -0.11414
PubchemFP2 0.104557
AD2D414 -0.08778
AD2DA413 0.054307
KRFP2025 0.052232
KRFP413 0.052191
KRFP683 0.048442
APC2D6_C_ClI -0.04093
APC2D10 O O -0.04004
ATSC3e 0.037471
GATS7p -0.03476
ATSC3c 0.033796
AATSC7v 0.019275
nHBInt3 0.015602
PubchemFP359 -0.01144
SpMAD_Dzs 0.010697
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Appendix Table S3: Final selected features set use for ML model development

Cpd KRFP AATSC8 minHCsat PubchemF GATS4m KRFP41 APC2 GATS7p p1Cso
No 363 s u D6 _C_

Cl
Training set
1 0 0.975846 0 1.155545 0 1.211365 5.868
2 0 0.99185 0 0.842496 2 1.117043 5.623
4 0 0.755645 0 1.023775 0 1.092702 6.011
5 0 0.653826 O 0.901953 0 1.058371 6.298
8 0 0.574075 0 1.062331 0 1.04934 6.231
10 0 0.623105 0 1.021685 0 0.926777 6.483
11 0 0.622224 0 1.06159 0 0.874368 6.444
12 0 0.050251 O 1.146667 0 1.039849 7.167
13 0 0.025843 0 0.836867 2 0.963803 6.947
15 0 0.039727 0 1.016773 0 0.9707 6.907
17 0 -0.14251 0 1.070641 0 0.933116 6.607
19 0 -0.17533 0 1.055516 0 0.933137 7.018
20 0 0.448495 O 1.116937 0 0.935496 7.319
23 0 0.014383 0.917529 0.954958 0 1.096149 6.051
24 0 0.01387 0.927201 0.985302 0 1.109223 8.046
25 0 0.139627 0.931132 1.025688 0 1.112707 8
26 0 0.1705 0.935265 1.00901 0 1.129503 8.222
27 0 -0.09497 0.621586 0.908116 0 1.127141 7.161
28 0 -0.05475 0.619768 0.94371 0 1.152103 7.553
29 0 -0.03194 0.619768 0.942216 0 1.128084 7.347
30 1 -0.06516  0.639768 0.947368 0 1.132857 5.907
33 0 -0.10355  0.885257 0.954654 0 1.138427 8.398
37 0 -0.09214  0.884269 1.093569 1 1.127915 7.658
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-0.07842

-0.11295

-0.08141

-0.05591

-0.06877

-0.01154

-0.00827

0.18702

0.039105

-0.1403

-0.12967

-0.15948

-0.32757
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0.330075

0.111355

0.340541

0.010251

-0.0646

0.048403

-0.17982

-0.16984

-0.01149

-0.01149

0.057103

-0.04367

0.018763

0.93609

0.898158

1.027927

0.93609

0.997315

0.949979

0.93609

0.963042

0.957588

0.641426

0.926037

0.926037

0.950759

0.942453

0.911337

0.911337

0.911337

0.911337

0.953434

1.062858

1.062858

0.967247

1.008242

1.008242
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0.971959

1.016502

0.849215

0.968614

0.887841

0.971898

0.99129

1.004232

0.999584

0.986321

1.023033

0.891206

0.866254

0.799092

0.933102

0.91141

0.855866

0.798135
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0.888335
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1.059219
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0.799375

0.769754

0.719523

7.854

8.046

7.284

7.328

7.569

8.222

8.097

7.796

8.523

6.917

7.347

7.553

7.569

7.495

7.18

7.347

7.174

7.886

6.219

6.573

6.4

6.66

7.06

6.775
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7.569
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0.047316

0.03631

0.045138
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-0.00754

-0.03355
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-0.01065

-0.00462

0.201026
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1.006226

1.019132

0.985661

0.90409

0.96318

0.986711

0.996058

1.009945

0.97888

0.896721

0.956446

0.980132

0.987454
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1.061651

0.930579

0.911888

0.950846
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1.060955
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1.29176
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1.26353
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0.848142

0.847545

0.853124

0.852134

0.961334

0.953606

0.8772

0.871311

0.909816

1.003923

0.990905

6.456

6.481

6.187

6.071

6.509

6.319
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6.721

6.959
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6.994
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6.924
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0.100747

0.067849

0.025671

0.011644

0.113012

0.075919

0.025135

0.024424

0.054876

0.083624

0.311838

0.68001

0.101273

0.510553

-0.03269

-0.05339

0.00346

-0.13122

-0.06206

0.002248

-0.07659

-0.08629

-0.3722

-0.02932

-0.04993

2.99E-04

-0.02903

0.613429

0.590954

0.901439

0.650761

0.613429

0.590954

0.893071

0.644791

0.586479

0.607092

0.614105

0.607146

0.614105

0.623803

0.597488

0.587536

0.597897

0.587536
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0.602536
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0.578484

0.584016

0.591401

1.132432

1.109396

1.143778

1.183985

1.150321

1.123426

1.133556

1.184072

1.136483

1.083198

0.921993

0.991864

0.984517

0.980294

1.074918

1.106777

1.15542

1.10262

1.128684

1.049409

1.068878

1.145674

1.128217

1.124847

1.107456

1.103022

1.117529

0.963061

0.963093

1.007358

1.012545

0.975791

0.974936

0.847534

0.873721

0.863157

0.980505

1.151695

0.974233

1.107827

1.034816

1.054966

1.057567

0.971428

0.897733

0.998319

1.008555

0.956312

0.990436

0.998525

1.008272

1.003572

0.926795

1.054083

7.244

7.469

7.854

7.469

7.31

7.721

7.77

7.398

7.699

7.638

5.717

7.495

7.056

6.161

7.62

7.538

7.824

7.456
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7.854

8.097

7.959

8.046

7.102

170




Test set

14

16

18

21

22

31

32

34

35

36

52

53

65

68

69

70

71

73

77

80

83

86

0.863275
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0.439351

1.132576

0.03914
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-0.10928

-0.03437
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-0.09733

0.263724
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0.628235

0.63471
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Appendix Table S4. Statistical validation parameters for MLR selected features used for the

ML model development.

Validation
MLR Model Values
Parameters
NTrain 104
SEE 0.3608
R? 0.74726
R% 0.72008
PRESS 12.10657
plCso = 7.37902(+/-0.70571) -1.38773(+/-0.36842)
F 22.49677 (DF:1
KRFP363 -0.73307(+/-0.16993) AATSCS8s %677 ( 0.,93)
+0.67696(+/-0.14479) minHCsatu -0.44968(+/- | Q2 0.66458
0.14359)  PubchemFP686  +0.59108(+/-0.10738)
Avg. rm?.oo 0.543
PubchemFP372  +1.12091(+/-0.49139) GATS4m
+0.30805(+/-0.13704) KRFP413 -0.1472(+/-0.05717) | Nrest 38
APC2D6 _C CI -1.8882(+/-0.33024) GATSTp 2 0.567
+0.256(+/-0.07326) nHBInt3
ro? 0.53683
RMSE, 0.48286
Rpred (Q%f2) 0.54148
Qf, 0.53679
AVg. rMPest 0.44624
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(A)

(B)

Appendix Fig. S1. ROC plot obtained for (A) training set, and (B) test set for the Bayesian

classification model.
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ABSTRACT

Human meprin B is a Zn?"-containing multidomain metalloprotease enzyme that belongs to the asta-
cin family of the metzincin endopeptidase superfamily. Meprin B, with its diverse tissue expression pat-
tern and wide substrate specificity, plays a significant role in various biological processes, including
regulation of IL-6R pathways, lung fibrosis, collagen deposition, cellular migration, neurotoxic amyloid
B levels, and inflammation. Again, meprin B is involved in Alzheimer's disease, hyperkeratosis, glomer-
ulonephritis, diabetic kidney injury, inflammatory bowel disease, and cancer. Despite a crucial role in
diverse disease processes, no such promising inhibitors of meprin 8 are marketed to date. Thus, it is
an unmet requirement to find novel promising meprin B inhibitors that hold promise as potential
therapeutics. In this study, a series of arylsulfonamide and tertiary amine-based hydroxamate deriva-
tives as meprin B inhibitors has been analyzed through ligand-based and structure-based in silico
approaches to pinpoint their structural and physiochemical requirements crucial for exerting higher
inhibitory potential. This study identified different crucial structural features such as arylcarboxylic acid,
sulfonamide, and arylsulfonamide moieties, as well as hydrogen bond donor and hydrophobicity, inev-
itable for exerting higher meprin B inhibition, providing valuable insight for their further future
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development.

1. Introduction

Every single cell of a living organism goes through various
reversible or irreversible modifications throughout its life
cycle. Proteolysis by proteases is an irreversible post-transla-
tional modulation among them. During the last decade,
enzymes involved in proteolysis have been pointed out to
be key components not only in the modulation of the
immune system, both the development of neurons as well as
neurodegeneration but also in taking part crucial roles in
apoptosis and cancer progression by extracellular matrix
(ECM) remodeling (Broder & Becker-Pauly, 2013). Sterchi and
Bond in the early 1980s noticed unexpected proteolysis in
the intestine of patients after pancreatic surgery (Sterchi
et al, 1982) as well as in mouse kidneys (Beynon et al,
1981), respectively. This observation led to the discovery of
novel multidomain zinc-dependent metalloproteases later
named meprin (metalloprotease from renal tissue). Meprins
are among the astacin family of the metzincin endopepti-
dases. Shortly thereafter, two individual genes (namely
MEP1A and MEP1B) from different chromosomes where a
41% similarity in sequence was noticed for the meprin o and

meprin B proteases (Bond & Beynon, 1995). Mature meprin f3
has a very characteristic structure with an N-terminal signal
peptide accompanied by a pro-peptide domain, as well as an
astacin-like protease domain with a Zn?*-dependent catalytic
site, a MAM domain, a TRAF domain, an EGF-like domain,
and also a transmembrane domain along with a cytosolic tail
at the C-terminal region (Figure 1) (Banerjee et al, 2023;
Broder & Becker-Pauly, 2013). The only differentiating factor
between meprin o and meprin B is the presence of an
inserted domain in meprin o between the TRAF and the EGF
domains.

The meprins are majorly expressed in the enterocyte in
the small intestine and colon, brush border membrane of
the kidney proximal tubule, and to a small extent in the epi-
dermis, blood vessels, lungs, brain, and immune cells (Peters
& Becker-Pauly, 2019; Sterchi et al., 1982). Due to this diverse
expression, meprin B regulates a number of substrates such
as procollagen |, collagen IV, TREM 2, IL-6R, CD109, CD99,
MUC-2, amyloid precursor protein (APP), E-cadherin, and IL-
1B (Banerjee et al., 2023; Broder & Becker-Pauly, 2013). This
diverse tissue expression pattern and wide substrate specifi-
city give meprin B the privilege of influencing various
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ARTICLE INFO ABSTRACT

Keywords: Amidst the Zn®*-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated
HDAC6 o with an array of diseases, especially cancer and neuronal disorders like Rett’s Syndrome, Alzheimer’s disease,
HDAC6 m.hxbltor Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-
Classification-QSAR

selective nature has restricted their use in different disease conditions. In this situation, the development of
selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In
this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-
containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD
simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and
modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present
at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-
acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors,
subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the
chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino
acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can
lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by
the aryl hydroxamate linker-ZBG functions.

Non-linear pattern recognition
Molecular docking
Molecular dynamics simulation

1. Introduction dynamics of these enzymes regulate the equilibrium between the acet-

ylation levels of nuclear and cytoplasmic proteins, which is pivotal for

Epigenetics, a heritable change in genetic regulation, functioning
through the phenotypic change in chromatin structure without altering
DNA sequence, influences fundamental cellular and molecular regula-
tion processes necessary for life to exist (Jones, 2007). It is actively
influenced by post-translational modifications, such as DNA methylation
(Law and Jacobsen, 2009), histone modification (Kouzarides, 2007),
chromatin structure remodeling (Goldberg et al., 2007), and noncoding
RNA regulation (Hirota et al., 2008). Among these post-translational
modifications, the dynamically reversible acetylation of «-amino
termini of the lysine residue in histone, catalyzed by histone acetyl-
transferase (HAT) and histone deacetylase (HDAC) is probably the best
understood and widely occurring process (Zhao et al., 2010). The
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maintaining cellular homeostasis (Yoshida et al., 2001). The shift in
equilibrium towards HAT contributes to hyperacetylation of the target
gene resulting in continuous genetic expression whereas the shift to-
wards HDAC results in continuous genetic repression (Park and Kim,
2020). Therefore, dysregulation of HDAC leads to the development of
several diseases, including several forms of cancer, neurological ab-
normalities, autoimmune disease, as well as cardiac and pulmonary
disease (Shakespear et al., 2011; Bagchi and Weeks, 2019; Zhang et al.,
2021; Sarkar et al., 2020). Not only histone but also several other
non-histone substrates of HDACs are heat shock protein 90 (Hsp90),
a-tubulin, p53, E2F, cortactin, and Myo-D, leading to much more diverse
and complicated functions in cellular processes (Glozak et al., 2005;
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