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PREFACE

Research is carried out to design and develop newer drugs in academic institutions and
the pharmaceutical industry. The new drug design involves in modifying the existing
bioactive drugs to change their therapeutic effects along with developing new bioactive
chemical molecules.

Cuminaldehyde (CUM) is a bioactive compound majorly present in the seeds of Cuminum
cyminum. The plant C. cyminum is the hub of numerous bioactive compounds that have
various pharmacological significance, and Cuminaldehyde is one of them. There are
several bioactive secondary metabolites discovered in C. cyminum seeds, which have
been shown to have antibacterial, anti-inflammatory, antioxidant, anti-cancer, and anti-
diabetic effects. The composition of essential oil components has been studied using GC-
MS, and the analytical result indicates that cuminaldehyde is a prominent chemical in
essential oil components. As a result, scientists believe cuminaldehyde has potential
benefits as an antioxidant, antibacterial, and anti-diabetic agent.

The heterocyclic compounds display various biological activity. Among the heterocyclic
Thiazolidine-2,4-diones, a significant class of heterocyclic compounds, have garnered
considerable interest due to their potent biological actions, including antidiabetic,
anticancer, antioxidative, and anti-inflammatory effects. Thiazolidine-2,4-dione presents
potential a-glucosidase inhibitory activity but also can bind with the residues of the -
glucosidase active pockets.

The present work entitled " Synthesis, In Silico and In Vitro Studies of
Cuminaldehyde-Thiazolidinedione Hybrids as a-Glucosidase Inhibitors'" was
undertaken with an aim to synthesize a suitable lead compound with a-glucosidase

inhibitory activity, which can be exploited to develop novel antidiabetic agents.
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CHAPTER: 1 | [Introduction]

1. Introduction:

Heterocyclic compounds that include nitrogen and sulfur, particularly those in the thiazole
family, have drawn significant attention in synthetic chemistry due to their pharmacological
activities and potency as agrochemicals and pharmaceuticals [1]. For the purpose of creating
novel drugs to treat a variety of pathological conditions, such as melanoma, type-II diabetes
and its complications, cancer, arthritis, and inflammation-related illnesses; the heterocyclic
nucleus thiazolidine-2,4-dione (TZD) has been the subject of extensive research. Aside
from pharmaceuticals, TZD is used as a brightener in the electroplating industry, a highly
sensitive reagent for heavy metals, and for preventing the corrosion of mild steels [2,3]. The
well-studied anti-hyperglycemic effect of TZD derivatives is one of them; this effect has
also prompted the creation of therapeutically used "glitazone" drugs, including
rosiglitazone, pioglitazone, lobeglitazone, troglitazone, etc. (Figure 1) [4].

Diabetes is a metabolic disease that can be deadly and is typified by ongoing hyperglycemia.
Type 2 diabetes mellitus (T2DM) is brought on by insulin's inability to reach its target
tissues, whereas Type 1 diabetes mellitus (T1DM) is brought on by a partial or complete
lack of insulin secretion. Diabetes increases the risk of serious, life-threatening
consequences, which degrade quality of life, increase medical costs, and shorten life
expectancy. Some diabetics are not diagnosed until they experience consequences including
kidney failure, foot ulcers, or visual abnormalities [5]. As of right now, 537 million people
worldwide suffer from diabetes, by 2045, that number is expected to rise to 783 million,
based on the statistics released by the International Diabetes Federation (IDF). About 90%
of all cases of diabetes are currently caused by type 2 diabetes (T2DM), whose incidence
has increased dramatically over the past three decades. Effective anti-diabetic medications

that don't have harmful side effects are therefore necessary [6].
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Figure 1: Examples of antidiabetic medications containing TZD moiety.

Metformin is the primary line therapy for high blood sugar; however, it should not be used
if lactic acidosis is present. Alpha-glucosidase inhibitors, DPP4 inhibitors,
thiazolidinediones, and meglitinides are further classes of antihyperglycemic drugs that are
frequently prescribed. These drugs can be taken either on their own or in addition to
metformin. Recently, a number of new and unique pharmaceutical targets have been
discovered for the treatment of type 2 diabetes (T2D). These targets include glycogen
synthase kinase 3, fructose-1, 6-bisphosphatase, glucagonlike peptide-1, glucokinase, G

protein-coupled receptor 119, PTP1B, SGLT2, and many others [7].
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In the current study, I developed derivatives of cuminaldehyde—thiazolidinedione hybrids
and assessed them in vitro for their ability to inhibit the a-glucosidase enzyme. In addition,
I carried out in silico studies of synthesized compounds (molecular docking and ADMET)
for its identification of protein-inhibitor interactions, safety profile, and drug-likeness
characteristics.
1.1. Brief history of thiazolidine-2,4-dione (TZD) scaffold:

In 1954, an Italian scientist named "Vistentini" presented the first pharmacological
assessment, or anti-TB activity, of any TZD derivative. This discovery brought attention to
the pentacyclic moiety known as thiazolidine-2,4-dione. Several TZD derivatives' anti-
convulsant effects were documented by Marshall and Vallance that same year. Further
studies of the pharmacological and toxicological effects of TZD compounds were
conducted in the 1960s and 1970s by additional research groups [2]. Ciglitazone was the
first anti-diabetic medication to be commercialized; however, it was later removed due to
hepatotoxicity. Following that, in 1988, the Shankyo Company created troglitazone, a
medication that also induced hepatotoxicity and had a TZD scaffold. Two pharmaceutical
companies, Pfizer and Takeda, created pioglitazone and englitazone, respectively, in 1999.
These compounds were comparable to one another. Pioglitazone established itself in the
market since it showed no signs of liver damage. However, the same unfavorable events led
to the withdrawal of englitazone from the market. Fortunately, Pfizer and SmithKline
created two additional medications in that same year that belong to the same class:
rosiglitazone and darglitazone. While rosiglitazone was promptly taken off the market in
1999, darglitazone was not. In 2001, the Food and Drug Administration (FDA) reported
certain cases of heart failure and fluid retention, which led to restrictions. in 2010. However,

the FDA eventually removed the limits as a result of a lack of evidence (Figure 2) [8].
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Figure 2: The historical background of Thiazolidinediones (TZDs).

1.2. Chemistry and reactivity of thiazolidine-2,4-dione (TZD):
1.2.1. Chemistry of TZDs:
Thiazolidine-2,4-dione is a five-member heterocyclic ring bearing one sulfur, nitrogen,
methylene, and carbonyl groups. The molecular formula of thiazolidine-2,4-dione is
C3H3NO.S. The pharmacological properties of thiazolidine-2,4-dione make it an
appealing scaffold that has attracted a lot of interest and been the subject of substantial
investigation. The thiazolidine-2,4-dione nucleus can be synthesized from
thiosemicarbazone, thiourea, or thiocarbamate as starting chemicals. Nonetheless, the
most popular method of synthesizing thiazolidinedione is to reflux thiourea and a-
chloroacetic acid for 12 hours. An additional benefit of this approach is its ability to
expedite the rate of reaction through the adoption of a microwave-assisted technique
(Figure 3) [9].

The nucleus of thiazolidinedione was found to have a pKa value of 6.82 and a melting

point range of 120—122 °C. The thiazolidine-2,4-dione core has one a hydrogen and two
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carbonyl groups [3]. Thiazolidine-2,4-dione experiences distinct tautomerism as a

result, which includes amide-imidol and keto-enol (Figure 4).

H,O S + S
a5 j\ 2 /J/: >=NH H £ =0
0 H,N” "NH, 20-25°C o) E 100-110°C O ﬁ

2-chloroacetic acid thiourea 2-iminothiazolidin-4-one thiazolidine-2.4-dione

Figure 3: Synthesis of thiazolidine-2,4-dione (TZD) using thiourea and a-chloroacetic acids.

H g
L T =0
o NH

Amide-imidol

s O H
H \f S
HﬂrNH - _ \[N/}OH
o OH
Both

H

H
Hy s H s

_ =0 »-OH
oH N o N
Keto-enol Keto-enol

Figure 4: Tautomeric structure of TZD.

1.2.2. Reactivity of TZDs:
The substantial number of recorded substitutions on the central TZD structure can result

in alterations in chemical properties, the formation of novel compounds, and the
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possible development of bioactive candidates. Modifications at the nitrogen site N-3,
the C-2 carbonyl, and the methylene group have been detected. The carbonyl group
positioned at C-4 is regarded as extremely unreactive [10]. In conclusion, the
thiazolidinedione core has two potential sites for substitution.

1.2.2.1. Reactivity at the -NH group of TZD core:
Substitution at NH- group can be done by aryl or alkyl halides, in the presence of a base
and a solvent. Extensive studies have been conducted to explore the N-alkylation of
TZD frameworks, resulting in the screening of several bases. Currently, it is widely
acknowledged that various appropriate bases, such as potassium carbonate,
tetrabutylammonium iodide, NEt3, or even sodium hydride, are considered acceptable.
Additionally, it has been established that appropriate solvents for this purpose are
acetone and DMF [10].

1.2.2.2. Reactivity at the -CH2 moiety of TZD core:
The methylene moiety can be substituted by aromatic aldehydes or ketones and the
formation of arylidene derivative of thiazolidinedione. The process described is
commonly referred to as the 'Knoevenagel condensation'. This specific condensation
reaction can be conducted under many conditions. The reagents most frequently
employed are piperidine (as a base) and either ethanol or methanol as solvents.
Similarly, the use of anhydrous sodium acetate in glacial acetic acid presented an
alternative method for the condensation of TZD with aldehyde. For the condensation
reaction involving a ketone, either ammonium acetate or piperidinium acetate was
employed in toluene or ethyl acetate as the solvent (Figure 5) [2].
The most significant structural and physical changes in thiazolidine-2,4-dione are
caused by replacement at position 2, while dynamic variations occur at positions 3 and

5. Rhodanine derivatives are formed when sulfur replaces oxygen at position 2, while
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oxazolidinedione derivatives are formed when oxygen removes sulfur at position

1(Figure 6) [11].

0 f\ . .
Can be substituted with aldehydes orm »’C | Canbealkylated using alkyl or aryl halides

. . . o2 in th f alkali I
ketones, leading to the formation of arylidene NH S in the presence of alkali and a solvent

derivatives, via 'Knoevenagel condensation'

thiazolidine-2,4-dione

Figure 5: Reactivity of TZD at -CH» and -NH.

O b (0]
([( ()//(
S NH - — NH
S E (0]
) Thiazolidine-2,4-dione .. . .. .
Rhodanine (TZD) Oxazolidinedione

Figure 6: Dynamic alterations of TZD.

1.3. Therapeutic targets in the management of type 2 diabetes mellitus:

1.3.1. Role of alpha-glucosidase as a target in diabetes:
a-glucosidase (EC 3.2.1.20) is an enzyme that is part of the glycoside hydrolase family.
It 1s found chiefly at the intestinal brush border and breaks down polysaccharides into
monosaccharides. The process of breakdown of disaccharide and polysaccharide into
easily absorbed monosaccharide units is carried out by a-Glucosidase, which regulates
the amount of glucose available after meals and the severity of postprandial
hyperglycemia. It works by cleaving the a-glucopyranoside linkage (Figure 7) [12].
Alpha-glucosidase inhibitors have a structure similar to saccharides and have the ability

to attach to a-active glucosidase's site, generating complexes with a higher affinity than
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the complex formed by carbohydrates and a-glucosidase. This causes a competitive

inhibition of the enzyme, which in turn reduces the rate at which carbohydrates are

hydrolyzed and delays the absorption of glucose. Studies also show that a-glucosidase

stimulates L cells in the intestine, which suppresses glucagon secretion while enhancing

insulin secretion [13]. However, a-glucosidase inhibitors have an insulin-independent

hypoglycemic effect. As a result, they are used as monotherapy in moderate cases of

diabetes and are regarded as first-line oral sugar-reducing medications. In contrast, they

are used in combination therapy with insulin or other drugs in cases of acute diabetic

complications [14].
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Figure 7: Role of alpha-glucosidase and alpha-amylase in diabetes.
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1.3.2. Role of alpha-amylase as a target in diabetes:
One of the most important digestive enzymes in humans is pancreatic alpha-amylase
(EC 3.2.1.1), which catalyzes the reaction that breaks down starch, amylopectin,
amylose, glycogen, and numerous maltodextrins through the hydrolysis of their alpha-
1,4 glycosidic linkages (Figure 7). Taka-amylase A is another name for -amylase,
honoring its discoverer Takamine. The main digesting enzyme found in saliva is
amylase. Amylase becomes inactive in the stomach due to gastric acid. Because of this,
the optimal pH for -amylase is slightly alkaline. Since glucose must travel to the brain,
big molecules like starch are unable to penetrate the blood-brain barrier. To solve this
issue, alpha-amylase breaks the giant starch molecules down into smaller sugar pieces.
The job of insulin is to direct cells to metabolize the extra sugar moieties and store them
as energy sources, such as glycogen if there is an excessive amount of starch conversion
to sugars, which raises the blood sugar level. But in some circumstances, the amylase
enzyme over-activates, there is a lack of insulin, or there is insulin resistance, and this
can cause blood sugar levels to rise and lead to hyperglycemia. Thus, by inhibiting the

enzyme we can control diabetes [15,16,17].
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2. Literature review:

2.1. Cuminaldehyde:
Cuminaldehyde (CUM; CAS Registry Number: 122-03-2 and PubChem CID: 326; (Figure
8) is a terpenoid class of compounds isolated from essential oil components and is found in
cumin (C. cyminum) seeds and other plants [1]. Structurally, CUM is a member of the
benzaldehyde class, where the isopropyl group is attached at position 4. The structure,
chemical formula, molecular weight, melting point, log P, and tPSA of CUM is depicted in
Figure 8. Traditionally, fruits and seeds of C. cyminum were used for the treatment of
cough, inflammation, ulcers, and boils. Recent research studies revealed that CUM has also
been demonstrated to have phytotoxic action, preventing the growth of a variety of plant
species and promoting the generation of reactive oxygen species (ROS) and programmed
cell death in the roots of onions [2]. Furthermore, against Pseudomonas aeruginosa, CUM
has shown antibiofilm efficacy by preventing ROS buildup, which prevents biofilm

development [3].

Chemical Formula CloleO
o
H Molecular Weight 148.21
Melting Point 267.9 [K]
4-isopropylbenzaldehyde Log P 3.02
(Cuminaldehyde)
tPSA 17.07

Figure 8: Structure, chemical formula, molecular weight, melting point, log P, and tPSA of
CUM calculated from ChemBioDraw Ultra 12.0.

Figure 9 illustrates the various pharmacological effects that CUM provides, together with their
mechanisms of action.
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Figure 9: Therapeutic potential of CUM with its schematic mode of action.

2.2. Synthetic analogues of Cuminaldehyde:

Meenatchi et al. synthesized cuminaldehyde-3-hydroxy-2-napthoichydrazone (Compound
1) (Figure 10), a new essential oil component derivative, using the ultrasonication method.
The CUM derivatives have been evaluated for antibacterial activity using the agar-well
diffusion method, which showed a significant growth inhibition zone against B. subtilis (21
+ 0.2 mm) and E. coli (18 = 0.3 mm). These bactericidal effects may be attributed to the
disruption of the cell wall and cytoplasmic membranes, as well as the release of pathogen
cytoplasm. In addition, it has been determined that the biological activity of an essential oil
component, CUM was retained even if its derivative was synthesized by condensation with
polycyclic aryl hydrazide. This novel CUM derivative has also shown remarkable promise
as an antioxidant with nonlinear optical activity [4].

By modifying the natural scaffold CUM, a series of oxadiazoles were designed, synthesized

by Hamdy et al, and evaluated for antifungal activity. At sub-micromolar MICso
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concentrations, the novel series inhibited Candida albicans and Candida auris, with
compound 2 (Figure 10) being the most potent analogue that did not exhibit toxicity on
normal mammalian cells. Additionally, they carried out molecular dynamics simulations of
the C. auris CYP51 enzyme using molecular docking and homology modeling,
demonstrating the stability and effectiveness of compound 2. Furthermore, a 70% decrease
in the fungal ergosterol content was shown by compound 2, and the ADME prediction
suggested that compound 2 meets the requirements for drug resemblance as a potential
antifungal medication [5].

Zhang et al. planned and created two sets of new CUM derivatives, which include
pyrazoline and isoxazoline components. They assessed their antifungal activity against six
plant-pathogenic fungal strains. Compounds 3 and 4 (Figure 10) with potent antifungal
properties should undergo further assessment in vivo and field conditions, as reported.
Remarkably, compound 3, which has a fluorine atom, exhibited significant antifungal
properties, surpassing those of commercially available fungicides. The CUM derivatives in
this research showed notable antifungal activity against the fungi that were examined.
Compared to CUM alone, around half of the reported compounds showed more potent
inhibitory effects. Specifically, compound 3 outperformed CUM by 3.5 times in activities
against Ph. Piricola (7.25 vs. 25.50 pg-mL—1), while compound 4 outperformed CUM by
around five times in potential against S. sclerotiorum (12.75 vs. 63.62 pg-mL—1) [6].
Francesca and his fellow researchers have effectively synthesized semi-carbazone, a
compound derived from CUM thiosemicarbazone (compound 5; Figure 10), in which the
sulfur atom has been replaced with an oxygen atom. This modification aimed to investigate
the role of sulfur and oxygen in forming hydrogen bonds of varying strength, as well as
their redox potentials. Typically, sulfur has weaker hydrogen bonds compared to oxygen

because of its lower electronegativity. Additionally, sulfur is more prone to oxidation by
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creating disulfide bridges. Thiosemicarbazones may function as reducers due to their ability
to undergo thione-thiol tautomerism in their thiolic form. As a result, they can also operate
as producers of ROS or scavengers of radicals. The selection of the ortho-Htcum and meta-
Htcum isopropyl derivatives of Htcum is determined by the similarity in hydrophobicity to
CUM while exhibiting distinct geometries. This study seeks to determine if the position of
the i1sopropyl group serves as a general hydrophobic segment that enables the molecule to
enter the cell or whether its placement is part of a more specialized molecule recognition
process [7].

Regarding the biochemical characterization of hydrazide with thiophene moiety produced
from CUM, no research has been done until Rajavel et al. reported a synthesis of compound
6; [(E)-N-(4-isopropyl benzylidene) thiophene-2-carbohydrazide] (Figure 10). CUM and
2-thiophenecarboxylic acid hydrazide were condensed to create compound 6. The findings
indicate that compound 6 exhibits lower activity against the tested microorganisms in
comparison to the standards. In addition, compound 6 has modest efficacy against two
bacterial strains (P. aeruginosa and E. coli) and two fungus strains (Mucor sp. and Rhizopus
sp.), as seen by the minimum inhibitory concentration values. The compound 6 also
exhibited a mild antioxidant property. The compound's notable activity may be attributed
to the existence of the thiophene ring [8].

Witold and his colleagues researched the stereoisomers of CUM derivatives. They showed
trans-lactones with a (4S,5R,6S)-framework more activity than other compounds. The
trans-lactone and cis-lactone enantiomers with a 1,3-benzodioxole substituent (compound
7; Figure 10) showed a moderate variation (ICso = 34.75 and 14.48 vs. 38.93 and 20.28 for
the Jurkat and GL-1 cancer lines, respectively). The observed relationship in the case of cis-

isomers was dependent on an aryl substituent and tested cancer line [9].
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Figure 10: Structure of potential Cuminaldehyde analogues.

Arish et al. developed a Schiff base (L) by the condensation of CUM and L-histidine as
antimicrobial agents. This Schiff-base ligand is synthesized and characterized by elemental
analysis, molar conductance, mass, IR, electronic spectra, magnetic moment, electron spin
resonance (ESR), CV, TG/DTA, granular XRD, and SEM. The complexes of Co (II), Ni
(IT), Cu (1), and Zn (IT) are also involved. The Schiff base is a tridentate monobasic donor,
as IR data indicates. It coordinates through carboxylate oxygen, imidazole nitrogen, and

azomethine nitrogen. The crystalline nature of the Co (II), Cu (II), and Zn (IT) complexes is

demonstrated by XRD and SEM. In contrast, the Ni (II) complex is amorphous, and the
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particles are in the nanocrystalline phase. The disc diffusion method was employed to
evaluate the in vitro biological activities of the synthesized compounds against the bacterial
species. The biological investigation suggests complexes demonstrate more significant
activity than their ligand counterparts. In the presence and absence of H>O., the nuclease
activity of the ligand and its complexes is evaluated on CT DNA using gel electrophoresis.
Experiments on CT-DNA cleavage and antimicrobial activity indicate that the complex
(Compound 8; Figure 10) exhibits more significant activity than the ligand [10].

2.3. TZD as alpha-glucosidase inhibitors:
Patil et al. developed 32 molecules of 5-benzylidine-2,4-thiazolidinedione derivatives to
investigate their a-glucosidase inhibitory activity. From in vitro studies, it was confirmed
that compound 9 (Figure 11) is the most potent among others. compound 9 has a chloro
group at the 4™ position of the phenyl ring and two methyl groups at the 5th and 6th position
of benzothiazole moiety. Out of 32 compounds, compound 9 satisfactorily inhibits the o-
glucosidase enzyme when compared with standard acarbose. Docking studies were
performed to defend in vitro results through which it was found that binding energy was
between -7.9 to -9.2 kcal/mol of all ligand-enzyme complexes [11].
Thiazolidinedione, rhodanine, hydantoin, and thiohydantoin-containing novel chemical
entities that are connected to benzoxazolyl via meta- and para substitution were developed
by Singh and co-workers. Compounds were tested for alpha-glucosidase inhibitory activity
and compound 10 (Figure 11) which is a rhodanine moiety substituted at the meta-position
of phenyl ring was found to be the most potent inhibitor of a-glucosidase. Further, in vitro
results were confirmed by correlating with docking results which showed a good correlation
(R?=0.883) [12].
Hussain et al. synthesized molecules containing thiazolidine-2,4-dione and

dihydropyrimidine. Compounds were screened for alpha-glucosidase inhibition properties
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and from the results it was found that compound 11 (Figure 11) showed the highest
potency with ICso of 0.98 uM. In vivo, studies on alloxan-induced diabetic mice model
confirmed the anti-diabetic potential of the compound. Moreover, toxicity studies ensured
the safety of these compounds. SAR studies revealed that N-phenyl, C-phenyl, and ethoxy
substitution showed better inhibition [13].

Wang et al. developed new series of thiazolidine-2,4-dione or rhodanine moieties.
Compounds were screened for a-glucosidase inhibitory potential and compound 12
(Figure 11) (ICso = 5.44 uM) was found to be most active. Other compounds in the series
showed moderate to high inhibitory activity when compared to acarbose (ICso = 817.38
puM). SAR studies revealed that TZD or rhodanine at the 4-position and electron-

withdrawing group at the 2-position of phenyl enhances activity [ 14].

Compound 9
IC50=29.91 pM Compound 10
( IC59=9.48 pM
S0 0
NI ©
': 0'. / N—
0 0 N
/"0 N
.S
Compound 11 Compound 12 s
IC5y=0.98 uM IC5) =5.44 pM

Figure 11: Compounds inhibiting a-glucosidase.
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2.4. TZD as alpha-amylase inhibitors:

Manasa and co-workers synthesized a series of 20 compounds of 2,4-thiazolidinedione-
phenothiazine moiety. Compounds were tested for alpha-amylase and glucose uptake
activity by taking acarbose and metronidazole as positive controls respectively. After
testing the compounds for amylase inhibition with the 3,5, di-nitro salicylic acid (DNS)
method it was found that four compounds with electron-withdrawing groups on phenylene
moiety of thiazolidinedione enhance inhibition activity reporting ICso of 83.7-60.8 uM
which were more than acarbose (101.7 uM) with compound 13 (Figure 12) being the most
potent inhibitor. Glucose uptake studies revealed that the electron-releasing group increases
glucose uptake activity in yeast. The role of the 3-nitro, 2-chloro-6-fluoro, 4-nitro, and 2,3-
dichloro groups on the phenylene moiety of thiazolidinedione in the inhibition of -amylase
enzymes was demonstrated by docking experiments [15].

Addanki et al. designed some phosphorylated derivatives of a thiazolidinedione and i silico
ADMET and molecular docking, results showed drug likeliness and good oral
bioavailability. Molecules were subjected to in-vitro a-amylase inhibition activity taking
acarbose as standard (ICso = 110.5 pg/ml) and compound 14 (Figure 12) was found to be
the most potent inhibitor (ICso = 113.1 pg/ml). It was also reported that synthesized
compounds are poorly absorbed through the GI tract and unable to cross the BBB, making
them unsuitable as P-glycoprotein substrates [16].

Chirag et al. developed a series of 10 compounds of biphenyl carbonitrile-thiazolidinedione
moiety by using a combination technique by combining two privileged scaffolds one being
a glitazone scaffold and other with PPAR a/y agonist and PDF inhibition property. It was
speculated that the N-atom of biphenyl carbonitrile-thiazolidinedione moiety comes up with
a better spatial arrangement to bind with the a-amylase active site. From the results of in-

vitro a-amylase studies, it was revealed that compound 15 and 16 (Figure 12) showed high
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potency with an ICso value of 0.13 pM. SAR studies revealed that methoxy and phenoxy

were most potent and the electron-withdrawing nitro group is least potent [17].

Thiazolidinedione-containing compounds were created and synthesized by Sameeh and co-

workers. Compounds demonstrated low to moderate anti-hyperglycemic potency, with

compound 17 (Figure 12) being the most potent in contrast to standard, according to an

evaluation of their radical scavenging and a-amylase inhibitory capabilities. /n vivo tests

using an alloxan-induced diabetic rat model were carried out, and compound 17 showed a

69.55% reduction in blood glucose levels. Compounds also demonstrated good results when

measured against several biological indicators. (CH, LDL, and HDL) [18].

<

Ve o NH 0o RO
Compound 14
Compound 13 IC59 = 113.1 pg/ml

ICs) = 60.8 + 2.0 uM

Compound 16

Compound 15

IC5=0.13 pM IC59=0.13 uM
Y ’O~ \OE %\/\@
O 0= P N s
N L]
ol S>=O’ NH 0> o- ?fs

0 -------

Compound 18
ICSO =15.8 ug/ml

Compound 17
IC50=10.26 pg/ml

Figure 12: Compounds inhibiting a-amylase.
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Phosphonates containing thiazolidinedione moiety were formed by Sujatha and co-workers.
Docking studies revealed that compounds showed better binding in comparison to standard
rosiglitazone against PPARy. Compounds were subjected to in-vitro a-amylase inhibition
activity and compound 18 (Figure 12) was found to be most potent among others with ICsg
= 15.8 pg/ml which is much less than standard acarbose (47.8 pg/ml) [19].

2.5. TZD as dual alpha-glucosidase and alpha-amylase inhibitors:
Arineitwe et al. developed four compounds using a pharmacophore hybridization technique
based on N-aryl pyrrole and TZD. Compounds were then evaluated for anti-diabetic
properties by inhibiting various enzymes viz. a-amylase, a-glucosidase, aldose reductase,
dipeptidyl peptidase-4(DPP4), and PTP1B. It was revealed that Compound 19 (Figure 13)
was most potent for a-amylase inhibition (18.24 pg/ml) and Compound 20 (Figure 13)
was most potent for a-glucosidase inhibition (56.82 pg/ml). Furthermore, molecules were
docked with PPAR-y and they showed good binding much like rosiglitazone [20].
Huneif et al. continued their study on a multitarget inhibitor of a thiazolidine-vanillin hybrid
molecule by replacing vanillin with a succinimide-based substitute. They developed five
molecules by substituting moieties on the N-atom of succinimide. Compounds were tested
for a-amylase, a-glucosidase, aldose reductase, and DPP4, and compound 21 (Figure 13)
was found to be the most effective anti-diabetic agent. Furthermore, in silico, in vivo, and
docking results gave promising results after which it was concluded that benzyl group
containing compound 21 can be further substituted [21].
Srinivasa et al. synthesized some hybrid molecules containing thiazolidinediones and
oxadiazoles that can inhibit a-amylase and a-glucosidase. The compounds were subjected
to in vitro a-amylase and o-glucosidase inhibitory assays and in vivo anti-hyperglycemic
activity study. The results showed the good inhibitory potential of the compounds out of

which compound 22 (Figure 13) (a-amylase; ICso = 18.42 uM and a-glucosidase; ICso =
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17.21 uM) showed the highest potency. /n vivo studies, also revealed a considerable
reduction of blood glucose levels after treatment with the compounds on Drosophila
melanogaster. SAR studies revealed that methylene linker between thiazolidinedione and
oxadiazole enhances activity. It was also found that withdrawing groups at ortho and para
positions and the presence of electronegative groups increase activity whereas activity

decreases because of electron-donating and phenyl groups at the para position [22].

Compound 19 Compound 20
Alpha-amylase; ICsy = 18.24 + 0.10 pg/ml Alpha-amylase; 1C5y = 27.97+0.76 pg/ml
Alpha-glucosidase; IC5y = 174.39 £+ 4.35 pg/ml Alpha-glucosidase; IC5y = 56.82+0.40 pg/ml

PTP1B; IC5,=136.80 £+ 4.06 pg/ml

oH NN
1 D=
N ...
OH O:\/ l
Compound 21 Compound 22 ."'~"
Alpha-amylase; IC5y=12 nM Alpha-amylase; 1C5, = 18.42 pM
Alpha-glucosidase; IC5y =10 pM Alpha-glucosidase; IC5y=17.21 pM

Compound 23 (.?Ompound 24
% reduction of glucose = 43.7% % reduction of glucose = 45.6%

Figure 13: Compounds having dual a-glucosidase and a-amylase inhibitory activity.
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A series of compounds containing thiazolidinedione and quinoline were designed and
synthesized by Angajala et al. by Knoevenagel condensation and N-alkylation, a novel one-
pot three-component technique was used and catalyzed by ANAP (Aspergillus niger from
alkaline protease). After performing in vitro a-amylase and a-glucosidase inhibitory assays
and in vivo evaluation of hypoglycemic activity it was found that compound 23 and 24
(Figure 13) showed better hypoglycemic activity in comparison to the standard

pioglitazone [23].
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3. Materials and Methods:

3.1. General:
All reagents and solvents used were of laboratory (LR) grade, obtained from Sisco Research
Laboratories Pvt. Ltd. (Mumbeai, India) and Merck Limited (Mumbai, India), Avra Research
Laboratories Pvt. Ltd. (Hyderabad, India) and were used without further purification. The
progress of the reaction and purity of the synthesized compounds were checked on the
precoated silica gel Fas4 plates obtained from Merck (Mumbai, India) using hexane and
ethyl acetate (1:4) as mobile phase. The iodine chamber and UV lamp (A = 254 nm) were
used for visualization of the spots. Melting points were determined in an open capillary tube
on the VEEGO VMP-DS melting point apparatus and were uncorrected. IR spectra were
recorded on a Bruker, FT-IR spectrophotometer using KBr optics. "H NMR and 13C NMR
spectra were recorded on a Bruker FT-NMR Spectrometer (400 MHz) in CDCl3. Chemical
shifts (8) are given in ppm relative to TMS and coupling constants (J) are expressed in Hz.
Mass spectra (m/z) were recorded using an LC-MS ESI (Q-TOF and Orbitrap, positive ion
mode) mass spectrometry instrument (Applied Biosystems, MDS SCIEX).

3.2. Rationale of design:
In 2005, Hoi-Seon Lee isolated Cuminum cyminum seed and tested it for a-glucosidase
inhibitory activity. The active component of C. cyminum seed oil was reported as
cuminaldehyde. The ICso value was reported as 0.5 mg/ml. cuminaldehyde was 1.8 times
less active than standard acarbose. Simultaneously, it was also evaluated for aldose
reductase inhibition and gave satisfactory results. Finally, it can be concluded that
cuminaldehyde can be a lead compound and a new agent for the treatment of diabetes [1].
Garg et al. synthesized a group of compounds named 5-substituted-arylidene-3-substituted
benzyl-thiazolidine-2, 4-dione derivatives. These compounds were created via a chemical

reaction called Knoevenagel condensation. The researchers then tested the compounds on
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rats with diabetes induced by alloxan to see if they could lower glucose levels and found
that some substances had significant antidiabetic action that was similar to the standard drug
rosiglitazone [2].

Saima and her colleagues have effectively created a collection of 18 Schiff base derivatives
by combining isatin with ibuprofen and mefenamic pharmaceuticals. They have then
studied the effectiveness of these derivatives as inhibitors of both a—glucosidase and urease.
Their findings demonstrated that those substances exhibited significant a-glucosidase
inhibitory activity. The synthesized compounds may have a synergistic effect in controlling
glucose levels and lowering gastrointestinal illnesses by simultaneously inhibiting o-
glucosidase and urease enzymes [3].

After a thorough search using Sci-Finder, we have designed ten derivatives of
cuminaldehyde-thiazolidine-2,4-dione hybrid and the rational design for the target

compounds has been presented in Figure 14.

R = 4-NOy; 4-Cl : o, o~ i

o P
- I, | R,=40CH; 4OH,3.0CH; | | "
P : ; 3,4-di-OCH, : : N7
: : Anti-Hyperglycemic Agents : : o

H Garg et al., 2012
Cuminaldehyde : PO, !

i Alpha-glucosidase inhibitor : Alpha-glucosidase inhibitor :
: IC5p = 0.50 mg/mL i I : IC5p =28.2 £1.62

Daud et al., 2024

-----------------------------------------

Hoi-Seon Lee, 2005

.
........................................

w@ﬂ"p

0 | Substituted

. : 3 Benzyl
Cuminaldehyde, 1zp ! I Alkyl G!:oup

Designed molecules

<

Alpha-glucosidase inhibition

Figure 14: The rationale behind the designing of compounds.
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3.3. Synthetic scheme:

The synthesis of derivatives of cuminaldehyde-thiazolidine-2,4-dione hybrid was achieved

through a three-step reaction in good yields. Scheme 1 showed the original synthetic route

to prepare the final compound, starting from the chloroacetic acid and thiourea to form

TZD, then hybridization of TZD with Cuminaldehyde, and then finally substituting it with

various side chains.

SAI-2, R=H

SAI-8, R = 4-bromo

SAI-9, R = isobutyl
SAI-10, R = isopentyl
SAI-11, R = butyl

S Conc. HCI/H,O

- . -
U\)kon HzN)LNHz Reflux !

(8-10hrs)

Thiourea

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SAI-3, R = 4-methyl
SAl-4, R = 4-chloro
SAI-5, R = 2,4-dichloro
SAIl-6, R = 4-fluro
SAIl-7, R = 3-chloro

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0
S/_{\JH + o
m \
TZD Cuminaldehyde
Reflux | (i) Urea :

(24hrs) | (ii) Acetic acid

O
X
NH
S
\§O
,,,,,,,,,,,,, SAI1

RT | () K,CO,

(24hrs)| (ii) DMF

3.4. Novelty search:

Scheme 1: Synthetic scheme for SAI-1 to SAI-11.

Every synthesized compound was searched in sci finder (Figure 15) for their novelty and

reported activity which is compiled in Table 1:
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reported

CAS '3' SciFinder Substances ~ | Enter a query. Q a ‘.
€ Return to Home
® Substances search for drawn structure
Edit Drawing Remove Iil i I
N — 0 Results Search Patent Markush
. We couldn't find any results. Please update your search
Substructure (4) query and try again.
Similarity (123K) Download Task History for this search or Save your Search to be
informed when new content is published.
Filter Content Report
Download filter data from
this result se: t li‘
Figure 15: Figure showing novelty report of SAI-9 in Sci-Finder.
Table 1: Sci-Finder novelty report of designed compounds with activity status.
SI. | Compound Status in Reported
Structure J . .
No. name Sci Finder activity
(0]
X
NH
S« .. .
1 SAI-1 S Present Antimicrobial
Chemical Formula: C13H13N02S
Molecular Weight: 247.31
(0]
o N
No activit
2 SAI-2 S \< Present y
reported
0]
Chemical Formula: C,yH4NO,S
Molecular Weight: 337.44
O f ;
AN ..
No activit
3 SAI-3 S «N Present y
(0]

Chemical Formula: C,;H,;NO,S
Molecular Weight: 351.46

Page | 32



CHAPTER: 3 | [Materials and Methods]

SAI-4

Sope,

Present

No activity

reported

reported
Chemical Formula: C,yH;3CINO,S
Molecular Weight: 371.88
Cl
¢
N é Cl No activit
SAI-5 S«N Present reporte dy
o
Chemical Formula: C20H17C12NOZS
Molecular Weight: 406.32
F
¢
N j No activit
SAI-6 S«N Present reporte dy
o
Chemical Formula: C,,H3sFNO,S
Molecular Weight: 355.43
o Cl
A N
No activit
SAI-7 S~ Present 4
5 reported
Chemical Formula: C,)H3CINO,S
Molecular Weight: 371.88
Br
¢
N j No activit
SAI-8 S«N Present y
O

Chemical Formula: C,,HgBrNO,S
Molecular Weight: 416.33
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o]

\ N
S ..
9 SAI-9 «o/>/ Not No activity

Present reported

Chemical Formula: C{;H,;NO,S
Molecular Weight: 303.42

0]
S N
S /\/< .
10 | SAI-10 j{o Not No activity

Present reported

Chemical Formula: C;gH,3NO,S
Molecular Weight: 317.45

O

o N
S /\/\ L
11 | SALIl Kﬁo Prosent | Antimicrobial

Antifungal

Chemical Formula: C{7H,;NO,S
Molecular Weight: 303.42

3.5. Chemistry:
In this work, I have synthesized a series of 4-isopropylbenzaldehyde containing TZD
hybrids in high yields with simple chemistry.

3.5.1. Methodology:
Step 1: An equimolar amount of chloroacetic acid and thiourea will be reacted to carry out
the cyclization of chloroacetic acid and it will give the parent scaffold thiazolidine-2,4-
dione.
Step 2: The methylene group (-CHz-) of thiazolidine-2,4-dione is substituted with 4-
isopropylbenzaldehyde using urea as catalyst and acetic acid as solvent to form (Z)-5-(4-
isopropylbenzylidene) thiazolidine-2,4-dione.
Step 3: N-3 position of compounds will be substituted by ten different side chains in the

presence of DMF and K>COs to obtain the target compounds.
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3.5.1.1. Synthesis of thiazolidine-2,4-dione (TZD):

In a 150 mL round-bottomed flask, 28.35 g chloroacetic acid (0.3 mol) and 22.83 g thiourea
(0.3 mol) were dissolved in 35 mL of water. The mixture was stirred for 1 h to form a white
precipitate, accompanied by considerable cooling. To the contents of the flask, 18mL of
concentrated hydrochloric acid was then added slowly from a dropping funnel, the flask was
then connected with a reflux condenser, and gentle heat was applied to effect a complete
solution, after which the reaction mixture was stirred and refluxed for 810 hrs. at 100-110 °C.
The progress of the reaction was monitored by using TLC using n-hexane/ethyl acetate 3:2 as
an eluent. On cooling the contents of the flask solidified to a cluster of white needles, the
product was filtered and washed with double distilled water to remove traces of hydrochloric
acid and dried. It was purified by recrystallization from ethyl alcohol.

3.5.1.2. Synthesis of 5-(4-isopropylbenzylidene) thiazolidine-2,4-dione:

Acetic acid (50 ml) and 3.04 g urea (0.051 mol) were taken in a 250 ml round-bottomed flask
and stirred for 15 mins. To the same flask 3.95 g 2,4-thiazolidinedione (0.034 mol) was added
and again stirred for 15 mins. 5 g of 4-isopropyl benzaldehyde (0.034 mol) was added and kept
for reflux at 100 °C for 24 hrs (Figure 16). The reaction mixture was then cooled to room
temperature (RT) and then poured into ice-cold water and the beige color precipitate was

recovered by filtering under a vacuum, washing with water several times, and drying at RT.

Figure 16: Reaction setup of 5-(4-isopropylbenzylidene) thiazolidine-2,4-dione.
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3.5.1.3. Synthesis of 3-substituted-5-(4-isopropyl benzylidene) thiazolidine-2,4-dione:

1.12g of potassium carbonate (0.008 mol) and 15 ml of dimethylformamide was taken in a 50
ml round bottom flask and stirred for 15 mins. 1 g of (Z)-5-(4-isopropylbenzylidene)
thiazolidine-2,4-dione (0.004 mol) was added and stirred for 20-30 mins. The calculated
amount of substituted compound was added dropwise at an interval of 5 mins. The reaction
mixture was left steering for 24 hrs at RT (Figure 17). After completion of the reaction, the
reaction mixture was extracted with Ethyl Acetate and Water using a separating funnel,
followed by evaporation of the solvent under vacuum using a rotary evaporator. The crude
material was air dried at RT and then purified by recrystallization using methanol as solvent, to

achieve a shiny needle-shaped crystal.

Figure 17: Reaction setup of 3-substituted-5-(4-isopropylbenzylidene) thiazolidine-2,4-dione.

3.6. In vitro assay of a-glucosidase inhibitory activity:
The study on a-glucosidase inhibition was conducted using 96-well plates, with minor
modifications to the methodology used in past methods [4,5]. The a-glucosidase (Maltase)
enzyme extracted from Yeast was purchased from Sisco Research Laboratories Pvt. Ltd,
while the substrate employed was p-nitrophenyl-a-d-glucopyranoside (pNPG), and

acarbose served as the positive control. For the experiment, 20 uL of various concentrations
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of test samples or acarbose which were made by dissolving it in MeOH, were placed in 96-
well plates. Additionally, 10 pL of a-glucosidase solution (0.1 U/mL) in 0.1 mM phosphate
buffer (pH 6.8) was added to each well. The plates were then incubated at 37 °C for 10
minutes. Following pre-incubation, 20 uL. of PNPG substrate solution (1.25 mM) in
potassium phosphate buffer (pH 6.8) was introduced into each well and subjected to
mcubation at 37 °C for 30 minutes. In the end, the alteration in the absorbance was assessed
at a wavelength of 405 nm using a microplate reader (Spectramax M5, Molecular
Devices, USA). The percentage of inhibition for the target molecules, control, and positive
control was computed and reported as a percentage of inhibition. The calculation method

used was as follows:

(AbS control ~— Abssamples ) x

100
Abs control

%Inhibition =

Using the Logit approach, the ICso values of the samples under study or positive control
were determined from the linear regression curve.
3.7. Molecular docking studies:

Predicting the potential orientation and binding affinity analysis of a ligand against a
receptor (target) to create a stable complex is a common use of molecular docking. The
LeDock software was used to carry out docking studies. LeDock is a GUI-based docking
program that is accurate, user-friendly, and semi-flexible (ligand complexes attach flexibly
towards the active site whereas proteins are considered stiff). The maltase-glucoamylase
protein was chosen from the LeDock "LePro" module, and the grid box parameters were
automatically chosen by overlapping the geometric pattern in the PDB ID: 3AXH crystal
structure that the prototype in-bound ligand occupied. (Where Xmin =-23.758, Xmax =-
11.956, Ymin = -13.772, Ymax = -2.695, Zmin = -26.123, Zmax =-12.612; with an RMSD

cut-off range of 1.0 to reduce the redundancy of docking poses), and then started the
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docking [6]. In addition to reporting the final docking findings with the docking score
expressed in terms of binding affinity (kcal/mol), PyMOL allowed for the visual inspection
of the compounds' docked postures and Discovery Studio Visualiser version 3.0 produced
2D binding interaction graphs.
3.8. In silico ADMET predictions:

Pharmacokinetic (pK) and pharmacodynamic (pD) profiles of any compounds provide
confidence for the development of the clinics in the indication of various diseases. In drug
discovery and development, the absorption, distribution, metabolism, excretion, and
toxicity (ADMET) profiles of compounds have a significant role [7]. Orally accessible
molecules are more likely to have drug-like characteristics and satisfy the Lipinski and
Veber criteria. Because of their drug-like characteristics, molecules may be as good as or
even better than commercially available drugs. The compound must adhere to all Lipinski
parameters since drug bioavailability drops with increasing parameter violations. It is
essential to conduct in silico research before performing the pK-pD properties in an in vivo
model [8,9,10].

So, we have forecasted the ADMET profiles of all the synthesized compounds using the in

silico SwissADME [11] and Deep-PK [12] webserver.
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4. Results and discussion:

4.1. Structure, physicochemical properties and physical appearance of synthesized

compounds:

1) Thiazolidine-2,4-dione (TZD):

S

o

.
Y

O

Thiazolidine-2,4-dione

Melting | Recrystallization Percentage
TLC Solubility Color
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 113-120 °C EtOH White 65%
Ethyl  "DMSO | Soluble
tat
acet "EtOH | Slightly
4:1
(4:1) Soluble
Rf=0.6 -
MeOH | Slightly
Soluble
2) SAI-1

Oy

S

WNH

(0]

(£)-5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

Melting | Recrystallization Percentage
TLC Solubility Color
Point Solvent of yield

Hexane: | CHCI; | Soluble | 160-162 °C MeOH Cream 98.32%

Ethyl | EtOAc | Soluble color

acetate | EtOH | Soluble powder

(4:1) | MeOH | Slightly
Rf=0.7 Soluble
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3) SAI-2
o
X «N
S
. O
(Z)-3-benzyl-5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)
thiazolidine-2,4-dione
Melting | Recrystallization Percentage
TLC Solubility Color
Point Solvent of yield
Hexane: | CHCl; | Soluble | 138-140 °C MeOH White 79.12%
Ethyl 50 Ac [ Soluble Needle
acetate shaped
(4:1) EtOH | Soluble crystal
Rf=0.6 | MeOH | Slightly
Soluble
4) SAI-3
(0]
X \<?
S
(0]
(Z)-5-((4-isopropylcyclohexa-2.,4-dien-1-yl)methylene)-
3-(4-methylbenzyl)thiazolidine-2,4-dione
TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 130-132 °C MeOH White 76.82%
Ethyl EtOAc | Soluble Needle
acetate shaped
EtOH | Solubl
(4:1) oubie crystal
Rf=0.5 | MeOH | Slightly
Soluble
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5) SAI-4

o

S N
S
«O

Cl

(Z)-3-(4-chlorobenzyl)-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 158-160 °C MeOH White 77.22%
Ethyl - "0 A¢ [ Soluble Needle
acetate shaped
EtOH | Solubl
(4:1) ouble crystal
Rf=0.6 | MeOH | Slightly
Soluble
6) SAI-5
o
N \\<N Cl
S
o}
Cl

(Z2)-3-(2,4-dichlorobenzyl)-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCL; | Soluble | 142-144 °C MeOH White 75.81%
Ethyl  "E{OAc | Soluble Needle
acetate shaped
EtOH | Soluble
(4:1) crystal
RE07 MeOH | Slightly
Soluble
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0]

N N
S
B!

(Z2)-3-(4-fluorobenzyl)-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 125-127 °C MeOH White 72.35%
Ethyl Needle
EtOAc | Soluble
acetate shaped
(4:1)  "EtOH [ Soluble crystal
Rf=0.6
MeOH | Slightly
Soluble
8) SAI-7
o

s

(Z)-3-(3-chlorobenzyl)-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCI; | Soluble | 118-120 °C MeOH White 74.71%
Ethyl | EtOAc | Soluble Needle
acetate [ E(OH | Soluble shaped
@1 Nicom [ Stightly crystal
RE=0.6 Soluble
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9) SAI-8
O
\S N
A
Br

(Z)-3-(4-bromobenzyl)-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 158-160 °C MeOH White 77.42%
Ethyl Needl
" ['EtOAc | Soluble eede
acetate shaped

(4:1) EtOH | Soluble crystal

Rf=0.7 "MeOH | Slightly
Soluble

10) SAI-9
(0]
X «N’>/
S
o
(Z)-3-isobutyl-5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)
thiazolidine-2,4-dione
TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl;3 | Soluble | 104-106 °C MeOH White 75.34%
Ethyl EtOAc | Soluble Needle
acetate shaped
(4:1) EtOH | Soluble crystal
Rf=0.6 | MeOH | Slightly
Soluble
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11) SAI-10

o
X j<N’\/<
S
(0]
(Z)-3-isopentyl-
5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)thiazolidine-2,4-dione

TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl3 | Soluble | 109-111 °C MeOH White 72.41%
Ethyl Needl
" [EtOAc | Soluble sede
acetate shaped

(4:1) EtOH | Soluble crystal

RE=0.5 "VeOH | Slightly
Soluble

12) SAI-11
0
\S N’\/\
«O
(Z2)-3-butyl-5-((4-isopropylcyclohexa-2,4-dien-1-yl)methylene)
thiazolidine-2,4-dione
TLC Solubility Melting | Recrystallization | Color | Percentage
Point Solvent of yield
Hexane: | CHCl; | Soluble | 80-82 °C MeOH White 73.58%
Ethyl EtOAc | Soluble Needle
acetate shaped
(4:1) EtOH | Soluble crystal
Rf=0.6 | MeOH | Slightly
Soluble
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Figure 18: Picture of synthesized crude compounds.

Figure 19: Picture of recrystallized compounds.

4.2. Characterization of synthesized compounds via NMR, FT-IR spectra, and Mass
spectrometry:
1) Thiazolidine-2,4-dione (TZD):
'"H NMR (DMSO-d6) &u: 4.01 (2H, d,J= 12.3 Hz) 8.68 (1H, s). FTIR (cm-1);
2978.35,2885.66 (Ar-H), 3543.28 (-NH), 1808.99 (-C=0). FT-IR (ATR) vmax/cm:

2978.35, 2885.66 (CHz str.), 3543.28 (-NH str.), 1736.51, 1808.99 (-C=0 str.)
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2) SAI-1:
"H NMR (300 MHz, CDCl) 6 9.48 (s, 1H), 7.87 (s, 1H), 7.47 — 7.42 (m, 2H), 7.37 —
7.32 (m, 2H), 2.96 (p, J = 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H). *C NMR (101 MHz,
CDCl) 6 167.60, 167.02, 152.44, 134.70, 130.61, 130.54, 127.48, 121.09, 34.22, 29.72,
23.67. FT-IR (ATR) vmax/cm’': 3739.49 (-NH str.), 2385.53, 2312.26 (C-H str.),
1694.79, 1516.27 (CH3-CH3 str.)

3) SAI-2:
"H NMR (400 MHz, CDCls) § 7.89 (s, 1H), 7.45 (d, J= 1.8 Hz, 1H), 7.44 (s, 1H), 7.43
(s, 1H), 7.42 (s, 1H), 7.36 (d, /= 1.9 Hz, 1H), 7.34 (s, 1H), 7.32 (s, 1H), 7.29 (d, /= 7.8
Hz, 1H), 4.90 (s, 2H), 2.95 (p, J= 6.9 Hz, 1H), 1.27 (d, /= 6.9 Hz, 6H). '*C NMR (101
MHz, CDClL) & 168.01, 166.33, 152.15, 145.38, 135.22, 134.24, 130.81, 130.50,
128.90, 128.76, 128.26, 127.43, 120.19, 45.24, 34.19, 23.68, 22.72. FT-IR (ATR)
vmax/cm': 3850.88, 3739.03, 3600.03 (Benzyl C-H str.), 2810.88 (CH: str.), 2312.29
(C-H str.), 1643.35 (C=O str.), 1513.07, 1378.21 (CH3-CHs str.), 1169.35 (Benzyl C-H
str.), 833.83 (Benzyl C-H str.)

4) SAI-3:
'H NMR (400 MHz, CDCl;) § 7.88 (s, 1H), 7.44 (s, 1H), 7.42 (s, 1H), 7.35 (s, 1H), 7.33
(s, 1H), 7.31 (s, 1H), 7.15 (s, 1H), 7.13 (s, 1H), 4.86 (s, 2H), 2.95 (p, J = 7.0 Hz, 1H),
2.32 (s, 3H), 1.27 (d, J = 6.9 Hz, 6H). *C NMR (101 MHz, CDCl3) § 167.99, 166.34,
152.08, 138.07, 134.09, 132.29, 130.86, 130.48, 129.40, 128.92, 127.41, 120.31, 45.02,
34.19, 23.68, 21.18. FT-IR (ATR) vmax/cm™: 3862.36, 3735.88 (Benzyl C-H str.),
3390.32 (CH2 str.), 2311.48 (C-H str.), 1660.63 (C=0 str.), 1516.37, 1375.09 (CH3-CH3

str.), 1160.64 (Benzyl C-H str.), 829.02 (Benzyl C-H str.)
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SAI-4:

"H NMR (400 MHz, CDCls) & 7.89 (s, 1H), 7.43 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 8.0
Hz, 2H), 7.31 (t, J = 9.3 Hz, 4H), 4.86 (s, 2H), 2.95 (p, J = 7.0 Hz, 1H), 1.27 (s, 3H),
1.26 (s, 3H). BC NMR (101 MHz, CDCl) & 167.96, 166.21, 152.28, 134.51, 134.28,
133.65, 130.73, 130.52, 130.40, 128.94, 127.45, 119.97, 60.43, 44.50, 34.20, 29.72,
23.67, 22.71, 21.07. FT-IR (ATR) vmax/cm-1: 3863.32, 3736.45 (Benzyl C-H str.),
3613.06 (CH2 str.), 2384.68, 2311.68 (C-H str.), 1667.07 (C=0 str.), 1517.55, 1376.96
(CH3-CHS3 str.), 1153.29 (Benzyl C-H str.), 698.46 (Benzyl C-H str.).

SAI-S:

'"H NMR (400 MHz, CDCl3) § 7.92 (d, J= 1.9 Hz, 1H), 7.48 — 7.43 (m, 2H), 7.41 (d, J
=2.7 Hz, 1H), 7.37 — 7.33 (m, 2H), 7.21 (d, J= 8.3 Hz, 1H), 7.16 (d, /= 1.9 Hz, 1H),
5.00 (d, J=2.0 Hz, 2H), 3.00 — 2.92 (m, 1H), 1.29 — 1.28 (m, 3H), 1.26 (d, /= 2.1 Hz,
3H). 3C NMR (101 MHz, CDCls) § 167.67, 166.06, 152.42, 134.84, 134.45, 133.97,
130.96, 130.67, 130.59, 129.75, 129.65, 127.49, 127.35, 119.63, 42.39, 37.11, 34.22,
29.72, 23.67, 22.72. FT-IR (ATR) vmax/cm™': 3850.82, 3736.94 (Benzyl C-H str.),
3598.64 (CH; str.), 2385.05, 2311.75 (C-H str.), 1696.13 (C=0 str.), 1516.40, 1378.58
(CH3-CHjs str.), 704.09 (Benzyl C-H str.).

SAI-6:

'H NMR (400 MHz, CDCl;) § 7.89 (s, 1H), 7.45 (d, J = 5.8 Hz, 2H), 7.42 (d, J = 1.7
Hz, 2H), 7.33 (d, J= 7.3 Hz, 2H), 7.05 — 6.98 (m, 2H), 4.86 (s, 2H), 2.95 (p, /= 6.8 Hz,
1H), 1.27 (s, 3H), 1.26 (d, J = 1.6 Hz, 3H).'3C NMR (101 MHz, CDCL) § 167.99,
166.26, 163.87, 161.42, 152.23, 134.41, 131.11, 131.08, 130.97, 130.88, 130.75,
130.51, 127.44, 120.06, 115.75, 115.54, 44.47, 34.19, 23.67, 22.71. FT-IR (ATR)

vmax/cm™: 3859.39, 3736.35 (Benzyl C-H str.), 3609.23 (CH; str.), 2387.81, 2309.36
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(C-H str.), 1689.27 (C=O0 str.), 1513.01, 1378.06 (CH3-CHs str.), 1158.86 (Benzyl C-H
str.), 704.74 (Benzyl C-H str.).

SAI-7:

"H NMR (400 MHz, CDCls) & 7.90 (s, 1H), 7.45 (s, 1H), 7.43 (s, 2H), 7.33 (d, J= 8.1
Hz, 3H), 7.28 (s, 2H), 4.86 (s, 2H), 2.95 (p, /= 6.9 Hz, 1H), 1.28 (s, 3H), 1.26 (s, 3H).
BCNMR (101 MHz, CDCl3) § 167.92, 166.16, 152.29, 137.01, 134.60, 134.59, 130.73,
130.53, 130.04, 128.96, 128.53, 127.46, 127.06, 119.93, 44.57, 34.20, 31.95, 30.95,
23.67, 22.72. FT-IR (ATR) vmax/cm™': 3851.20, 3736.95 (Benzyl C-H str.), 3598.85
(CHz str.), 2311.78 (C-H str.), 1697.32 (C=0 str.), 1516.57, 1378.48 (CH3-CH3 str.),
1168.88 (Benzyl C-H str.), 705.13 (Benzyl C-H str.).

SAI-8:

'"H NMR (400 MHz, CDCl;) § 7.89 (s, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.43 (d, J= 7.8
Hz, 2H), 7.32 (dd, J = 8.3, 3.2 Hz, 3H), 4.84 (s, 2H), 3.00 — 2.88 (m, 1H), 1.27 (d, J =
7.0 Hz, 6H). *C NMR (101 MHz, CDCl) § 167.95, 166.20, 162.08, 156.98, 152.29,
138.62, 134.88, 134.54, 134.15, 131.91, 130.71, 130.52, 127.45, 122.45, 119.95,
118.03, 44.55,34.20, 23.66,22.71. FT-IR (ATR) vmax/cm™': 3864.50, 3736.83 (Benzyl
C-H str.), 3613.69 (CHz: str.), 2385.16, 2311.72 (C-H str.), 1674.27 (C=0 str.), 1516.47,

1378.20 (CH3-CHj3 str.), 1161.49 (Benzyl C-H str.), 697.62 (Benzyl C-H str.).

10) SAI-9:

'H NMR (400 MHz, CDCls) § 7.87 (s, 1H), 7.45 (d, J = 7.9 Hz, 2H), 7.33 (d, J= 7.9
Hz, 2H), 3.58 (dd, J= 7.5, 1.3 Hz, 2H), 2.95 (p, J= 7.0 Hz, 1H), 2.18 — 2.10 (m, 1H),
1.27 (dd, J = 7.0, 1.3 Hz, 6H), 0.94 (dd, J = 6.7, 1.2 Hz, 6H). 3C NMR (101 MHz,
CDCL) & 168.33, 166.80, 152.02, 133.82, 130.92, 130.47, 127.40, 120.28, 114.92,
94.17, 49.04, 34.18, 30.94, 29.72, 27.24, 23.69, 19.98. FT-IR (ATR) vmax/cm:

3864.47, 3736.81 (Benzyl C-H str.), 3391.67 (CH, str.), 2311.75 (C-H str.), 1696.46
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(C=0 str.), 1516.36, 1376.79 (CH3-CHs str.), 1166.91 (CH-CH3-CH3 C-H str.), 830.57
(C-H str.).

11) SAI-10:
"H NMR (400 MHz, CDCL) § 7.87 (d, J= 2.0 Hz, 1H), 7.45 (dd, J = 8.3, 2.1 Hz, 2H),
7.33 (dd, J=8.3, 2.1 Hz, 2H), 3.80 — 3.73 (m, 2H), 2.94 (dt, J=13.1, 6.4 Hz, 1H), 1.62
(s, 1H), 1.59 — 1.51 (m, 2H), 1.27 (dd, J = 7.0, 2.0 Hz, 6H), 0.96 (dd, J = 6.4, 2.0 Hz,
6H). *C NMR (101 MHz, CDCl;) & 168.08, 166.54, 152.01, 133.73, 130.91, 130.47,
127.40, 120.42, 86.66, 40.57, 36.47, 34.19, 25.97, 23.70, 22.37. FT-IR (ATR)
vmax/cm™': 3864.23, 3736.39 (Benzyl C-H str.), 3598.58 (CH, str.), 2311.45 (C-H str.),
1696.27 (C=0 str.), 1516.65, 1377.66 (CH3-CH3s str.), 1167.76 (CH-CH3-CH3 C-H str.),
831.40 (C-H str.).

12) SAI-11:
'"H NMR (400 MHz, CDCl;) & 7.81 (s, 1H), 7.40 — 7.36 (m, 2H), 7.27 (d, J = 7.1 Hz,
2H), 3.69 (t, J= 7.3 Hz, 2H), 2.89 (p, /= 6.7 Hz, 1H), 1.64 — 1.57 (m, 2H), 1.30 (h, J =
7.7 Hz, 2H), 1.23 — 1.18 (m, 6H), 0.89 (t, /= 7.3 Hz, 3H). 3C NMR (101 MHz, CDCl3)
0 168.16, 166.60, 152.02, 133.76, 130.91, 130.47, 127.40, 120.40, 41.82, 34.19, 29.84,
29.73, 23.70, 20.00, 13.65. FT-IR (ATR) vmax/cm™': 3850.85, 3736.24 (Benzyl C-H
str.), 3391.53 (CHz str.), 2311.70 (C-H str.), 1641.03 (C=0 str.), 1375.72 (CH3-CH3

str.), 1259.77, 1166.60 (CH,-CH,-CH,-CH; C-H str.), 830.04 (C-H str.).
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4.2.1. 'H NMR spectra of the synthesized compounds:

1) Thiazolidine-2,4-dione (TZD):

TZD, 1H

Figure 20:

2) SAI-1:

"H NMR spectra of Thiazolidine-2,4-dione.
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Figure 21: 'H NMR spectra of SAI-1.
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SAI-2, 1H
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Figure 22:

"H NMR spectra of SAI-2.
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5) SAI-4

SAl-4, 1H

= o = 1= = = o
8 8 8 8 8 8 8 1=
8 8 8 8 8 8 8 8
(=3 o [=3 (=3 [=3 o [=1 o
(=3 i=3 [=3 (=3 i=3 i=3 [=3 i=3
8 2 =1 2 =1 ] g e
2 3 R < 5] 2 S ] o
Y | f A ) | " f T
Tl J
uc,_v/ ———— Ry
viZ'L
P62y
LE6'2
8Y6'2—¢ -===TL61)
996'Z
€862
958t — ——=62C
2621 5
pies L
gee Lp ;
IR = — Km".m
D = — —
ozy & z o
ory L L
188, — ———————= 0}

CH,

HC

2.0 1.5 1.0 0.5 0.0

25

5.0 4.5 4.0 35

f1 (ppm)

5.5

"H NMR spectra of SAI-4.

Figure 24

6) SAI-S
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SAI-6:

SAlI-6, 1H
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Figure 26: 'H NMR spectra of SAI-6.
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SAI-8, 1H
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10) SAI-9:

Figure 28: 'H NMR spectra of SAI-8.
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Figure 29: 'H NMR spectra of SAI-9.
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4.2.2. 3C NMR spectra of the synthesized compounds:
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Figure 32: '°C NMR spectra of SAI-1.
2) SAI-2:
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Figure 33: *C NMR spectra of SAI-2.
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4) SAI-4:

Figure 34: '°C NMR spectra of SAI-3.
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Figure 35: *C NMR spectra of SAI-4.
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Figure 36: °C NMR spectra of SAI-5.
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Figure 37: *C NMR spectra of SAI-6.
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Figure 38: °C NMR spectra of SAI-7.
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Figure 39: *C NMR spectra of SAI-S.
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10) SAI-10:

Figure 40: '°C NMR spectra of SAI-9.
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Figure 41: *C NMR spectra of SAI-10.
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11) SAI-11:
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Figure 42: '°C NMR spectra of SAI-11.
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FT-IR spectra of the synthesized compounds:
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Figure 43: FT-IR spectra of TZD.
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Figure 44: FT-IR spectra of SAI-1.
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Figure 45: FT-IR spectra of SAI-2.
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4) SAI-3:
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Figure 46: FT-IR spectra of SAI-3.
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Figure 47: FT-IR spectra of SAI-4.
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6) SAI-5:
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Figure 48: FT-IR spectra of SAI-5.
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Figure 49: FT-IR spectra of SAI-6.
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Figure 50: FT-IR spectra of SAI-7.
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Figure 51: FT-IR spectra of SAI-S.
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Figure 52: FT-IR spectra of SAI-9.
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Figure 53: FT-IR spectra of SAI-10.
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Figure 54: FT-IR spectra of SAI-11.
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4.2.4. Mass spectrometry of the most potent compound:

1) SAIL-9:
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Figure 55: Mass spectra of SAI-9.

4.3. In vitro assay of a-glucosidase inhibitory activity:
The inhibitory ability of all the synthesized compounds was assessed against yeast o-
glucosidase. Acarbose was used as the control medication in this investigation. The 1Cso

values of compounds are tabulated in Table 2. Several of the newly synthesized compounds
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exhibited remarkable a-glucosidase inhibitory action. Among the all, SAI-3, SAI-8, SAI-

9, and SAI-10 showed good a- glucosidase inhibitory activity with ICso values of 26.61

pg/ml, 28.67 pg/ml, 9.494 pg/ml, 36.94 ng/ml respectively. SAI-9 displayed the most

potent a-glucosidase inhibitory activity (ICso = 9.494 pg/ml).

Table 2: The a-glucosidase inhibitory activity (ICso values) in vitro of SAI-1 to SAI-11.

SL No. Compound Name R ICso (ug/ml)
1 SAI-1 - 48.66
2 SAI -2 H >250
3 SAI -3 4-methyl 26.61
4 SAI -4 4-chloro >250
5 SAI -5 2,4-dichloro >250
6 SAI -6 4-fluro >250
7 SAI -7 3-chloro >250
8 SAI -8 4-bromo 28.67
9 SAI -9 isobutyl 9.494
10 SAI -10 isopentyl 36.94
11 SAI -11 butyl >250
12 Acarbose - 39.54

4.4. Molecular docking studies:

In the case of SAI-3, amino residue R315 interacts with methyl benzyl through alkyl and

Pi-alkyl interaction in Figure 56. Amino acid F178 is involved in Pi-Pi T-shaped interaction

with the 4-isopropyl benzylidene ring of the compound whereas V216 formed an alkyl

bridge with the same scaffold. Additionally, amino residue D352 was involved in Pi-anion

interaction with 4-isopropyl benzylidene ring and residue Y72 formed a Pi-sigma bond with
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the isopropyl terminal. A conventional H-bond is formed between Q279 and the Ketone

group of the thiazolidine ring.

SAI-3

Figure 56: 3D & 2D binding interaction of SAI-3.

SAI-8

SER
A:311

Figure 57: 3D & 2D binding interaction of SAI-8.

Furthermore, the docking interaction of SAI-8 is nicely represented in Figure 57. Amino
acids F178, V216, and, Y72 are involved in alkyl and Pi-alkyl bond formation with the
bromobenzyl group of SAI-8. Whereas, amino residue D352 formed a Pi-anion bridge with

the same ring scaffold. On the other hand, amino acid R315 interacts with the 4-isopropyl
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benzylidene ring and isopropyl terminal separately through Alkyl and Pi-alkyl bond
formation.

In Figure 58, amino acids R442 and R213 formed a conventional H bond with both sides’
ketone group of thiazolidine of compound SAI-9. Whereas amino residue D352 interacts
with thiazolidine via Pi-anion interaction and F178 is involved in Pi-sigma bond formation
with isobutyl terminal. Additionally, amino acid Y72 interacts with the isobutyl terminal
through Pi-alkyl interaction. There are several amino residues (F159, Y158, Q353, H280,
and D307, etc.) involved in weak interaction (e.g. van der Waals interaction) with all three

compounds (SAI-3, SAI-8, and SAI-9)

SAI-9

TYR
A:158

P GLN
A GLN A:353

A:279

PHE
A:303

ASP
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ASP

| vALAB52  GLU HSD

A:216 A1 Az280
ARG ARG
A:213 A:315

HSE
A:351

Figure 58: 3D & 2D binding interaction of SAI-9.

4.5. In silico ADMET predictions:
The synthesized compounds were studied in silico for their drug-like characteristics. The
predicted physicochemical properties, pharmacokinetics (absorption, distribution,
metabolism, excretion), drug-likeness, and toxicity of the synthesized compounds are
presented in Table 3 (a, b, ¢) which shows the excellent bioavailability and drug-like

characteristics of all the compounds.
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5. Conclusion and future perspectives:

In this research work, we have designed and synthesized, a series of cuminaldehyde-
thiazolidinedione hybrids and characterized the compounds through elemental analysis such
as TLC, and melting points. All the recrystallized products were characterized and analyzed
by FT-IR, '"H NMR, '*C NMR, and mass spectroscopy (summarized in Chapter 4). In
addition, we carried out in vitro assessments to determine the inhibitory activity of all the
synthesised compounds against a-glucosidase. The in vitro inhibitory study result revealed
that the SAI-9 with an isobutyl side chain on the 3™ position of the thiazolidinedione ring
exhibited the most potent against a-glucosidase enzyme, with an ICso values 0f9.494 pg/ml.
Similarly, molecular docking investigations of SAI-9, SAI-3, and SAI-8 with -
glucosidase enzyme also showed better interactions which provided valuable information
for the further development of a-glucosidase inhibitors. Furthermore, we have predicted in
silico pharmacokinetics and toxicity characteristics for all the synthesized compounds and
found that the potential compound (SAI-9) possessed good bioavailability, drug-like
characteristics, and permissible toxicity toward the liver and skin.

During our work, we learned that synthesis with TZD is simple and versatile. The TZD
scaffold can be modified by substituting different moieties at the third (-N) and fifth (-CH>)
positions to create unique TZD molecules. If we explore the third and fifth positions with
different heterocyclic rings and substitute those with various other moieties viz -OCH3s, -
NOg, etc. may result in large no. of compounds increasing the chemical space TZD
derivatives enormously.

In the future, we want to investigate these synthesized molecules' anti-diabetic properties
against other targets such as a-amylase, aldose reductase, PTP1b, etc. On the other hand,
enzyme kinetics, fluorescence quenching, and circular dichroism spectroscopy need to be

studied to understand enzyme inhibition with protein folding changes. Similarly, in vivo,
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anti-diabetic activity and toxicity will be evaluated and compared to the data derived from
the in silico ADMET studies indicating drug-likeness nature. These findings will lead to the
identification of the most promising compound, with minimal toxicity and maximum

potency, for the treatment of type 2 diabetes.
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