PREDICTION OF NUCLEATE AND FILM BOILING
HEAT TRANSFER USING ARTIFICIAL NEURAL
NETWORK

THESIS SUBMITTED IN PARTIAL FULFILMENTS OF THE
REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN
MECHANICAL ENGINEERING UNDER
FACULTY OF ENGINEERING AND TECHNOLOGY

Submitted by
SAPTARSHI DAS
Class Roll Number: 002211202019
Registration No.: 163712 of 2022-23
Exam Roll No.: MAMEC24010
Academic Session: 2022-2024

Under the guidance of
Prof. Koushik Ghosh
and
Prof. Saikat Mookherjee

Department of Mechanical Engineering
Jadavpur University

DEPARTMENT OF MECHANICAL ENGINEERING
FACULTY OF ENGINEERING AND TECHNOLOGY
JADAVPUR UNIVERSITY
KOLKATA - 700032



DECLARATION OF ORIGINALITY AND COMPLIANCE OF
ACADEMIC ETHICS

I hereby declare that the thesis entitled “PREDICTION OF NUCLEATE AND
FILM BOILING HEAT TRANSFER USING ARTIFICIAL NEURAL
NETWORK? contains literature survey and original research work by the undersigned
candidate, as a part of his MASTER OF ENGINEERING IN MECHANICAL
ENGINEERING under the DEPARTMENT OF MECHANICAL ENGINNERING,

studies during academic session 2022-2024.

All information in this document have been obtained and presented in accordance with
the academic rules and ethical conduct.

| also declare that, as required by these rules of conduct, | have fully cited and

referenced all the material and results that are not original to this work.
Name: SAPTARSHI DAS

Class Roll Number: 002211202019

University Registration No: 163712 of 2022-23

Examination Roll No: MAMEC24010

Date:

Signature:



FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING
JADAVPUR UNIVERSITY
KOLKATA

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “PREDICTION OF NUCLEATE AND
FILM BOILING HEAT TRANSFER USING ARTIFICIAL NEURAL
NETWORK?” is a bonafide work carried out by SAPTARSHI DAS under our
supervision and guidance in partial fulfilment of the requirements for awarding the
degree of Master of Engineering in Mechanical Engineering under Department of

Mechanical Engineering, Jadavpur University during the academic session 2022-2024.

THESIS SUPERVISOR THESIS SUPERVISOR

Prof. Koushik Ghosh Prof. Saikat Mookherjee

Department of Mechanical Engineering Department of Mechanical Engineering
Jadavpur University, Kolkata Jadavpur University, Kolkata

Prof. Swarnendu Sen Prof. Dipak Laha

Head of the Department Dean

Department of Mechanical Engineering Faculty of Engineering & Technology
Jadavpur University, Kolkata Jadavpur University, Kolkata



FACULTY OF ENGINEERING & TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING
JADAVPUR UNIVERSITY
KOLKATA-700032

CERTIFICATE OF APPROVAL
The foregoing thesis, entitled “PREDICTION OF NUCLEATE AND FILM
BOILING HEAT TRANSFER USING ARTIFICIAL NEURAL NETWORK?” is
hereby approved as a creditable study in the area of Mechanical Engineering carried
out and presented by SAPTARSHI DAS in a satisfactory manner to warrant its
acceptance as a prerequisite to the degree for which it has been submitted. It is notified
to be understood that by this approval, the undersigned do not necessarily endorse or

approve any statement made, opinion expressed and conclusion drawn therein but

approve the thesis only for the purpose for which it has been submitted.

Committee of final evaluation of thesis:

Signature of Examiners



ACKNOWLEDGEMENT

| would like to record here my gratitude to all who supported me and gave constructive

suggestions during the completion of this paper.

Separately, | express my deepest gratitude to Prof. Koushik Ghosh, Department of
Mechanical Engineering and Prof. Saikat Mookherjee, Department of Mechanical
Engineering, for their invaluable guidance. The regular discussions and idea-sharing
with my thesis supervisors really helped me to improve my knowledge day by day my
research related problems. At the beginning of this work, they gave me the valuable
Instruction that properly guided me in right path to accomplish this paper. It was really

a pleasure work under their supervision.

| sincerely believe that | was fortunate enough to have come across Prof. Koushik
Ghsoh, who can inspire someone to work wonders. It would really have been not
possible for me to complete this thesis without his assistance, proper guidance and
motivation. He always helped me during the critical phase of this thesis and was always
available for me for any query, whether it’s a telephonic or a face to face discussion.

Above all he enhanced my confidence and guided me throughout my work.

| firmly believe that | was fortunate to have met Prof. Saikat Mookherjee, who has
the ability to motivate people to do great things. Without his aid, the right direction,
and the determination to finish this thesis, it would not have been feasible for me to do
so. He always supported me as | worked through the revision process for this thesis
and was always there to answer any questions | had, whether they were best answered
over the phone or in person. Above all, he boosted my confidence and helped me get

the job done.

I truly think it was a stroke of luck that | met Prof. Dipankar Sanyal and Dr. Sourav
Sarkar, Department of Mechanical Engineering, who have the ability to motivate
others to achieve great things. Without their help, the right direction, and the
inspiration they provided, | definitely would not have been able to finish this thesis.

They consistently supported and assisted me during my thesis key stage, always



available for questions via phone or in-person meetings, boosting my confidence along

the way.

| also tender my sincere gratitude to Mr. Saumendra Nath Mishra, PhD scholar,
Department of Mechanical Engineering, whose continuous guidance helped me a lot
in carrying out a major portion of my work. Without his wise and valuable advices, it

would not be possible to prepare such a thesis.

I would like to thank Mr. Manish Kumar Manna and Mr. SK. Hasan Raja, PhD
scholars, Department of Mechanical Engineering, for giving me valuable suggestions

and the instant ideas which played an important part to process the thesis.

| also like to thank Mr. Koushik Samnata, Department of Mechanical Engineering,

for implying his knowledge in the thesis work and his assistance in all over the work.

I would like to thank Mr. Sudipta Saha, PhD scholar, School of Nuclear Studies and

Application, for his instant help and providing ideas.

I am highly indebted to all my professors of NEPTUNE lab, their guidance and
supervision as well as for providing necessary information regarding thesis and also

for their support in completing my master’s thesis.

I would like to express my gratitude towards my parents and my younger brother for
their kind cooperation and encouragement which helped me in the completion of my

master’s thesis.

Finally, my thanks and appreciations also go to my dear friends in developing my

master’s project and people who have willingly helped me out with their abilities.

SAPTARSHI DAS
M.E. (“Mechanical Engineering”)
2nd Year, Final Semester

Department of Mechanical Engineering
Jadavpur University, Kolkata



TABLE OF CONTENTS

Nomenclature, Subscripts and Greek Symbols

List of Figures
List of Table

1.

Introduction

1.1.Background

1.1.1. Pool Boiling Curve

1.1.2. Pool Boiling Regimes

1.1.3. Film boiling in vertical flat plate

1.2. Objective and Motivation

1.3. Literature Review

1.4. Organization of the thesis

Scale Analysis of Pool Boiling and Film Boiling heat transfer
2.1. Dimensional Analysis of pool boiling and film boiling heat transfer
2.1.1. Scale Analysis of Single Phase Natural Convection

2.1.2. Scale Analysis of Nucleate Boiling

2.1.3. Scale Analysis of Film Boiling on vertical flat plate
Application of Artificial Neural Network on the pool boiling heat transfer
3.1. Basic ANN Structure

3.2. General ANN Methodology

3.3. Selection of Hidden Neurons and Hidden Layers

3.4. Solution Procedure

3.4.1. Training

3.4.1.1. Training Algorithms

3.4.1.2. Weights and Biases

3.4.1.3. Summation Functions

3.4.1.4. Activation Functions

3.4.2. Validation

3.4.3. Testing

3.5. Current Problem Architecture

3.5.1. Network for Single Phase Natural Convection

3.5.2. Network for Nucleate Boiling

3.5.3. Network for Film boiling on vertical flat plate

Page | i



4. Result and Discussion 38

4.1. Results for Single Phase Natural Convection 39
4.2. Results for Nucleate Boiling 41
4.3. Result for Film Boiling over a Vertical Flat Plate 43
4.3.1. Result for High wall Superheated Film Boiling 43
4.3.1.1. Film boiling of Saturated water under Natural convection 44
4.3.1.2. Film Boiling of Water under Low subcooling and Natural convection 46
4.3.1.3. Film boiling for Mixed water convection 48
4.3.2. Result for Low wall superheated Film Boiling 51
4.3.2.1. Film boiling of Natural Liquid-phase convection 51
4.3.2.2. Film boiling of Forced Liquid-phase convection 52
5. Conclusion 55
References 57

Page | ii



Nomenclature Subscripts Greek Symbols
q" Heat flux sat Saturation J Vapor film
thickness
Coefficient of
W Boiling heat flux volumetric
4 boiling oiling heat tlu W Wall B thermal
expansion
AT, ATsa Degree of : Kinematic
max | Maximum value v . :
superheat viscosity
Twau Temperate at wall | min | Minimum value a Thefm?'
diffusivity
T Temperature | CHF | Critical heat flux | p Dynamic
VISCOSIty
u, v Velocit . .
y i Interface p Density
components
Stefan—
X,y Coordinates 00 Free stream o Boltzmann
constant
Nu Nusselt number | Liquid-phase € emissivity
Ra Rayleigh number v Vapour-phase o, | Surface tension
Thermal Natural
k . nc .
conductivity convection
Acceleration due .
g to gravity nb | Nucleate boiling
D Diameter hs High superheat
Characteristic
L Is Low superheat
length
Low superheat
Pr Prandlt number Isnc natural
convection
Enthalpy of low superheat
heg o Isfc forced
vaporization .
convection
Specific heat at Superheated
v constant pressure sup condition
Heat transfer Subcooling
h . sub o
coefficient condition
p Pressure conv Convective

Page | iii




P. Critical pressure
Pressure
ap difference
M Molar mass
R, Particle size (nm)
Ja Jakob number
Gr Grashof number
Re Reynolds number
b Reference heat
0 transfer coefficient
D Bubble departure
b diameter
Modified
I* characteristic
length

Nuexpt,totalr

Total experimental

Nueypt tot Nusselt number
Convective
Nu Nusselt number
expt,conv from the
experiment
Nusselt number
Nurad

due to radiation

Nuscale,tot

Total Nusselt
number by scale
analysis

Total Nusselt

NUgnn tot number from
ANN prediction
Instability length
scale
L
c _ [ ot ]1/2
9(P1=pv)

Page | iv



List of Figures

Figure No. Figure Title Page No.
1.1 Pool Boiling Curve at latm Pressure 3
1.2 Different Pool Boiling Regimes 4
1.3 Film boiling in Vertical Flat Plate 8
31 A Basic structure of an Artificial Feedforward Neural -
Network

3.2 Weight and Bias in a Feedforward ANN model 29
A basic schematic topology of Feedforward ANN model for

3.3 predicting the Nusselt number for Single phase Natural 34
convection
Comparison Curve of Nusselt number vs Rayleigh number

4.1 for Experimental data, Result of Eqg. (2.3) and ANN 40
predicted result for Single phase Natural convection
Comparison Curve of Nusselt number vs Jakob number for

4.2 Experimental data, Result of Eq. (2.6) and ANN predicted 42
result for Nucleate boiling for DI water
Mean Squared Error bar graph for the results from scale

4.3 analysis and ANN prediction comparing with the 54
experimental data for film boiling

Page | v



List of Tables

Table No.

Table Title

Page No.

3.1

Details of the chosen Activation Functions

36

3.2

ANN model framework used in current problem

37

4.1

Result for various operations for ANN modelling

39

4.2

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for high wall
superheat and saturated water under natural convection for
vertical cylinder

45

4.3

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for high wall
superheat and saturated water natural convection for
vertical plate

46

4.4

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for high wall
superheat under low subcooling of water and natural
convection for long vertical surface

47

4.5

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for high wall
superheat and mixed water convection for vertical flat
plate

49

4.6

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for high superheat
and mixed water convection for a vertical cylinder

50

4.7

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for low superheat
and natural liquid-phase convection for a long vertical
surface

51

4.8

Comparison table for the total Nusselt number of
experiment, scale and ANN prediction for low superheat
and forced liquid-phase convection for a vertical cylinder

53

Page | vi



Chapter 1

Introduction

1.1. Background

Boiling heat transfer, especially Pool boiling is one of the most crucial mechanisms in
heat transfer. Pool boiling is the boiling process that takes place on a solid surface
immersed in a liquid, typically water, due to a temperature difference between the
surface and the liquid. Pool boiling occurs when there is no bulk motion of the fluid.
In pool boiling, the fluid remains stationary and any movement within the fluid is
caused by the natural convection flow. The reason it is referred to as “pool™ boiling is
because vapour bubbles develop and accumulate on the heated surface before
separating and moving upwards through the liquid. Pool boiling is a crucial occurrence
in a variety of industrial applications, such as power production, refrigeration, cooling
for electronics, nuclear reactions and some other engineering applications [1].
Comprehending and managing pool boiling can enhance the effectiveness and
functionality of the above systems. Nucleate pool boiling is the most important stage
of pool boiling. The involvement of forced convection, phase change, presence of two
phases and high rate of heat flux are present here. The significance of nucleate boiling
comes from its capacity to eliminate large amounts of heat in a short amount of time
and space from a heated surface, achieving this heat transfer with minimal thermal
force. The process is used in a range of energy conversion and heat exchange systems

due to its effectiveness.

Another important regime, which is in a highlight, is the film boiling regime. In this
region, the involvement of high temperature, conduction-convection through vapour
film and thermal radiation across the vapour film is present. Film boiling is not widely

used commercially due to the undesirability of high temperatures. However, film
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boiling is an inevitable mode of boiling heat transfer for severe accident of nuclear

plants, quenching of components from high temperature etc.

In order to understand the pool boiling mechanism, it is necessary to know about the

pool boiling curve, pool boiling regimes and the stages of the bubble formation.

1.1.1. Pool Boiling Curve

During the initial stages of investigating heat transfer, scientists witnessed how liquids
reacted to being heated. It was observed that when a liquid is heated above a specific
temperature, it begins to boil and bubbles form on the surface being heated. The
temperature difference between the heated surface or wall and the liquid is referred as
wall superheat or excess temperature. As the wall superheat increases, there is a
continuous variation in the heat flux from the heating surface. The nature of variation
can be shown by a curve, called “Pool boiling curve” [2], which was proposed by
Nukiyama [3]. The boiling curve in the figure shows the different regimes based on
heat flux and excess temperature. It was noticed that the bubble formation increased
with increasing the degree of superheat. Although the pool boiling curve, which is
shown in the Fig. 1.1, represents water at 1 atm pressure, the overall shape of the
boiling curve is consistent across various other liquids or coolants. The curve shows
different stages (natural convection, nucleate boiling, transition boiling, film boiling),
with each stage having unique heat transfer mechanisms and surface temperature

variations.
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Fig. 1.1: Pool Boiling Curve at latm Pressure

From the above figure, those stages, nature of heat flux with the wall superheat can be
observed easily. Factors such as liquid properties, surface roughness, pressure, and
initial temperature determine the shape and position of the pool boiling curve.
Measuring heat flux and surface temperature under controlled conditions is necessary

for the experimental determination of the curve.

1.1.2. Pool Boiling Regimes

The pool boiling curve is separated into four distinct regions based on the excess
temperature and there is a continuous change in heat flux throughout all the four
regimes [4]. Variations in pool boiling regimes, such as nucleate boiling and film
boiling, occur as heat transfer mechanisms and fluid dynamics shift with increasing
heat flux on a heated surface. Different types of boiling regimes in a pool are necessary
for maximizing heat transfer, creating heat exchangers, and ensuring the safe

functioning of systems that involve boiling liquids. The regimes are as follows:
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I. Natural Convection Boiling- A4Tsat < 5°C
il Nucleate Boiling- 5°C < ATsat < 30°C

iii.  Transition Boiling- 30°C < ATsat < 200°C
iv.  Film Boiling- 200°C < ATsat

These four regimes can be obtained by increasing the wall superheat gradually. Due to
the wall superheat, heat flux changes continuously. The highest amount of heat flux is
achieved in the nucleate boiling stage. Thus, it is more efficient to run the boiler in this

mode to maximize heat transfer and heat flow. The Fig. 1.2 describes the nature of

water pool for boiling.
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Fig. 1.2: Different Pool Boiling Regimes
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The above figures show the nature of bubble formation with increasing the wall
temperature for the different regimes of pool boiling. The physical significance of each

regimes of pool boiling are mentioned below in details:

A. Natural Convection Boiling: For pure substances to boil in heat transfer, a specific
condition must be met, i.e., wall temperature equals the saturation temperature.
However, boiling typically doesn't happen until the liquid is heated slightly above
its saturation temperature in actual experiments. In order to maintain the creation
of vapour, the temperature of the surface needs to be slightly higher than the
saturation temperature. When the liquid is heated above its boiling point (for water
its 100°C), the heat is exchanged between the wall and the liquid with no bubbles
forming. The liquid near the surface wall heats up slightly above its boiling point
and turns into vapour at the boundary between liquid and gas. Initially, there is a
small temperature difference (< 5°C) resulting in a small heat flux. Bubble
formation will happen once the superheat temperature rises, but before point A in
Fig. 1.1, the movement of fluid is mainly influenced by single phase natural
convection currents. Thus, this region is known as the Natural Convection Boiling
region of boiling curve [5], which is characterized by a small temperature
difference and the heat is transferred through convective flowing movements in the

liquid.

B. Nucleate Boiling: Point A in Fig. 1.1 is the beginning of nucleate boiling, when
bubbles start to develop and separate from a heated surface in a liquid. It is an
important step during boiling when the temperature at the interface between solid
and liquid exceeds the saturation temperature of the liquid. In simple words, when
the liquid is heated, the temperature increases until small bubbles begin to form at
specific points on the heated surface. These bubbles subsequently disconnect and
float upwards in the liquid, taking heat with them. This is the process of nucleate
boiling [6]. Prior to this moment, the liquid could be warmed up, however, it stays
quite tranquil with no visible signs of bubbling. It is commonly known as the Onset
of Nucleate Boiling (ONB) [7].
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Nucleate boiling involves the creation of steam bubbles on a surface to transfer heat
into a fluid flow, enhancing heat transfer. The process begins when bubbles form
at specific locations referred to as Nuclei [8]. These bubbles implode upon contact
with the liquid, creating turbulence that further increases heat transfer. The increase
in heat flux with wall superheat leads to the rapid rise of bubbles towards the
surface until reaching the Critical heat flux (CHF) [9] point, where the heat flux
reaches its maximum. For nucleation to occur, the liquid must be superheated, with
two types of nuclei possible: high-energy molecule clusters or voids caused by
pressure changes within the liquid, or voids on external surfaces created by foreign
materials. Nucleate boiling is an important area for technical applications due to its
ability to transfer thermal energy efficiently, but the heat flux cannot be

continuously increased beyond the CHF point.

In the Nucleate boiling zone, critical heat flux is the maximum heat flux and a
threshold phenomenon. To increase heat transfer, liquid must be continuously
heated, but vapor blocking prevents absorption of heat, leading the heater surface
to absorb heat instead. The surface absorbs excess energy from temperature rise,
releasing it with further temperature increase. The surface can't handle more heat
and may not reach the point to turn off before turning to liquid, known as Burnout
[10]. CHF is burnout heat flux, and most heaters operate below this level to avoid
catastrophic results. Metals with high melting points can help prevent burnout, but

it's not a concern for cryogenic applications.

Further increasing the temperature after CHF may result in burnout, which can
impede the surface's ability to effectively release heat and potentially lead to
equipment breakdown. In order to prevent this, the majority of boiling processes
work at levels lower than CHF to ensure consistent heat transfer and avoid the risk

of burnout.
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C. Transition Boiling: After passing point C, there is a noticeable shift in heat transfer
with a steep drop in heat flow as the surface temperature increases from 30°C to
200°C. The reduction is caused by the creation of a vapour layer between the hot
surface and the liquid. After surpassing the Critical Heat Flux (CHF), there is a
quick shift from efficient nucleate boiling to ineffective film boiling. Point D,
named the Leidenfrost point [11], signifies the point at which liquid droplets float
above the surface without touching it directly. This vapour film that is not steady
can cause fluctuations in heat transfer and interrupt the boiling process, known as
Transition boiling or Unstable film boiling [12]. When the heat flux decreases
below the Leidenfrost point, the film will break, resulting in the reappearance of
nucleate boiling, also referred to as Return to Nucleate Boiling (RNB) [13]. The
transition from nucleate to film boiling is known as Boiling crisis or Departure from
Nucleate Boiling (DNB) [14], occurring when heat flux exceeds a critical limit.
Film boiling leads to a significant decrease in heat transfer effectiveness, resulting
in a quick rise in surface temperature, potentially causing surface burnout or

equipment malfunction.

D. Film Boiling: After the Leidenfrost point, heat flux results in a complete surface
coverage with a film of vapour. This greatly decreases the rate of heat transfer
through convection [15]. In this case, the heat transfer occurs through both radiation
and conduction to the vapour. This region in the pool boiling is known as Film
Boiling [16]. Film boiling occurs when the system pressure decreases or the flow
rate is reduced. In this situation, the bubbles are unable to escape the heat transfer
surface rapidly [17]. Similarly, raising the temperature of the heat transfer surface
results in the formation of additional bubbles. When the excess temperature rises
(more than 200°C), a greater number of bubbles are produced that cannot be
effectively removed. The bubbles increase in size and cluster, coating small
sections of the heat transfer surface with a layer of steam [18]. Film boiling serves
as a barrier between heat surfaces and liquids, crucial for precise thermal control

and efficient heat transfer in technical applications. Its essential role in industrial
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and scientific fields lies in managing high thermal loads and regulating heat

effectively.

1.1.3. Film boiling in vertical flat plate

Film boiling on a vertical flat plate can be observed fwith the presence of stable vapour
film. By applying heat on a vertical flat plate, the motion of the vapour goes upwards,
while the bulk liquid stays stationary. The film boiling can be accommodated as
subcooled, saturated and superheated conditions. The qualitative velocity and the
temperature profile under film boiling in vapour and liquid phases are shown Fig.
1.3a). The vapour film goes upwards with a wavy form which is shown in Fig. 1.3 (b).
A schematic diagram is shown in the below figure to organize the flow nature which

is taken from Das et al. [19].
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Fig. 1.3: Film boiling in Vertical Flat Plate
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1.2.  Objective and Motivation

Pool boiling is a highly effective technique for heat dissipation in industrial
environments because the boiling liquid can reach high heat fluxes while keeping wall
superheat temperatures low (i.e. the temperature difference between the surface being
heated and the fluid). The different stages of pool boiling can be observed by the
physical changes of the liquid pool with changing the temperature. Natural convection
boiling, Nucleate boiling and Film boiling can be analysed by several experimental
results and multiple empirical correlations as well. But, sometimes there are few
difficulties appear in order to analyse the pool boiling heat transfer experimentally,
such as some external and environmental influences and high set-up cost for
experiments. Some of the major difficulties come while solving the heat transfer

problem in pool boiling are mentioned below:

A. Multi-Physics Nature: Pool boiling includes various physical processes like fluid
dynamics, heat transfer, phase change (boiling and condensation), and occasionally
radiation. Combining these various elements into a cohesive mathematical
framework can be complicated and necessitates thorough examination of the role

of each phenomenon.

B. Phase Change Dynamics: Boiling is a process in which liquid turns into vapour
on a heated surface. Accurately representing this phase transition requires a
thorough comprehension of factors like bubble formation, expansion, detachment,
and their interaction with the surrounding liquid. It can be difficult to capture these
dynamics in simulations or analytical models, especially when dealing with varying

heat fluxes and surface conditions.

C. Variation of Heat Transfer Coefficient: The rate at which heat is transferred
while boiling can change greatly based on factors like temperature, pressure,

surface roughness, and liquid characteristics. Accurately forecasting these changes
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in various situations (such as nucleate boiling, transition boiling, and film boiling)

Is crucial but difficult because they rely on local parameters.

D. Flow Regimes and Instabilities: Boiling processes can shift between nucleate
boiling, transition boiling, and film boiling, each characterized by different heat
transfer methods. Anticipating these changes with precision and comprehending
the circumstances in which they happen (such as critical heat flux) is crucial but
can be difficult because of the intricate connection between physical factors and

fluid dynamics.

E. Experimental Challenges: Performing experiments to confirm models and
theories of pool boiling can be complex and require a lot of resources. Precisely
managing experimental conditions such as pressure, heat flux, and surface
conditions is necessary to isolate specific phenomena or regimes, which demands

advanced experimental setups and meticulous data analysis.

Surface effects, scale effects, and numerical simulation through CFD contribute to the
complexity of solving heat transfer problems. Empirical correlations, such as heat flux,
Heat Transfer Coefficient (HTC), and Nusselt number (Nu), also involve uncertainty
when predicting heat transfer nature and amount. These correlations vary in accuracy
based on the liquid analysed, geometry, physical properties, and other conditions,
leading to an inherent uncertainty in determining heat transfer rate and efficiency.
Extensive research and practical experience over a century have not fully explained
the complexities of pool boiling heat transfer. Theories on boiling phenomena have not
been very useful, so practical calculations heavily rely on empirical correlations from
experiments. Global research on boiling phenomena is ongoing to further understand

this area.

Further analysis is needed to predict pool boiling efficiency with liquids and coatings,
and the correlation between heat flux and superheat. Experimental difficulties and

uncertain correlations complicate analysis. Overcoming challenges in pool boiling heat
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transfer analysis is crucial. Solving numerically can help find solutions for heat transfer

in pool boiling.

This thesis work is taken up to overcome the above obstacles for analysing the heat
transfer for pool boiling. The objective of the thesis is to predict the Nusselt number
with better accuracy for different pool boiling regimes for different conditions than the
standard empirical correlations through non-dimensional analysis and to compare
those results with the experimental results. The aim of the thesis is to fulfil the research
gap found in order to solve the problems on pool boiling heat transfer, especially the
nucleate pool boiling and film boiling (both pool boiling and flow film boiling). The
whole thesis work is based on the prediction of heat transfer using artificial neural
network (ANN).

1.3. Literature Review

Numerous scientists and researchers have conducted experiments to study pool boiling
behaviour and performance, leading to the development of experimental methods and
theoretical models. Trials were done to analyse heat transfer, temperature differences,
bubble movements, and surface properties under various conditions. Mathematical
models were created to explain heat transfer processes, taking into account factors like
surface roughness, fluid characteristics, and thermodynamic states. A wide range of
literature exists that provides analytical or numerical analysis for comparison and
further research on enhancing boiling heat transfer.

McAdams [20] developed a natural convective heat transfer relationship using
experimental data from vertical plates and large diameter tubes. The model is based on
scale analysis of boundary equations, Boussinesq approximation, and boundary layer

approximation. The equations that are commonly utilized are as follows:
Nu = 0.148 Ra'/3 101° < Ra < 10% (1.1)

Nu = 0.48 Ral/* 10* < Ra < 10° (1.2)
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Fujii et al. [21] developed a correlation for determining the Nusselt number in natural
convection by the experimental study from a plate heated upwards to establish the
relationship between heat flux and wall superheat. The correlation is shown as the heat

flux against the superheat.
1/3
q"= 016k, |2 " AT (1.3)

Based on scale analysis of cylindrical boundary layer equations, Yang [22]
recommended including the length to diameter ratio in a dimensionless group for
natural convective heat transfer from a slender cylinder. He suggests a universal

correlation equation for both laminar and turbulent zones, which is as follows:

D\1/2 Ra 1/6)?
Nu = {0.60(— + 0.387[ T ] 1.4
¢ { (L) [1 +(0.492/Pr)9/16 |**/° (14)

Numerous correlations have been presented after extensive studies on natural
convection from a horizontal cylinder to determine the heat transfer coefficient.

Churchill et al. [223 proposed a single correlation using various Rayleigh numbers as:

0.387 Ral/6 2
s} (L5)

Nu = {0.60 +
[1 +(0.599/Pr)%/16 |

Tsubouchi [24] presented a relationship for laminar natural convection over a range of

Rayleigh numbers from 1076 to 10~°. The correlation is shown below:

Nu = 0.36 + 0.048 Ra®12> + 0.52 Ra®?° (1.6)
Tadrist et al. [25] conducted an experiment on natural convection boiling to investigate
the heat transfer in transition regime between natural convection and nucleate boiling.
Therefore, they have compared the result with the correlation of Fujii et al. [21]
described in Eqg. (1.3).

Obtaining high-quality experimental data on natural convection heat transfer from

slender tubes, specifically in water, is challenging. Fujii [26] conducted research on

natural convection heat transfer from a vertical cylinder to water, measuring local heat
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transfer coefficients during laminar to turbulent flow transitions. "Quasi-steady state"

was identified as similar to steady state in heat transfer coefficients.

Nucleate boiling heat transfer is analysed several times and multiple number of
experiments have been done on it. This is the most important region amongst the four
stages. Many studies have been done and some impressive results has come out.
Rohsenow [27] developed generalized a heat transfer correlation for surface boiling in

liquids which includes the surface effects.

"o 9(P1—pv) 1/2( Cp1 AT )3
T = ulhfg[ ] CsphygPT] (1.7)

The correlation has the arbitrary constant Csr and the exponent n to account for the
properties of the nucleation of any particular liquid-surface combination. They are
determined experimentally.

There were some possibilities to modify the Rohsenow’s [27] correlation. Pioro [28]
had done the same. He modified the constant terms in Rohsenow’s [27] correlation and

expressed as:

h* q" 2/3 m
= C; P 1.8
k $ {hfgpg's[ag(pz—pv)]‘)-zs} r (1.8)

where Cg; is the constant, depended upon the nature of the heating surface—fluid

combination and m is the power the properties of the nucleation.

Kruzhilin [29] suggested the correlation without making any specific efforts to

consider the surface property, which is as follows:

0.33
hl* hfgq" Pv 0.7 (Tsatcplo'pl) -0.45
= 0.082 Pr= 1.9

k (Q(Tsat)k (pl_pv)) h%gpsz r ( )

Kutateladze et al. [30] simplified Kruzhilin's [29] correlation while sacrificing some
accuracy and development developed a formula for heat transfer coefficient in boiling
scenarios. In most of the cases, the latent heat of vaporization is one of the most

Important parameters in the correlation.

Page | 13



. Ca 0.7
bL =044 (ML) pr035 (1.10)
k ghrgpy P1—Py

Labuntsov [31] discovered the correlation that doesn't depend on the input of latent
heat of vaporization. The correlation is expressed below in terms of the boiling heat

transfer coefficient in nucleate boiling:

0.67 2 0.33
_ Py k n0.67
h = 0.075 [1 +10 ((pl—p,,)) ] (= (Tsaa) q (1.11)

Mostinki [32] dismissed the surface effects and applied the principle for the respective
states of pool boiling heat transfer and proposed a correlation including the reduced

pressure and the critical pressure of the fluid.

h = 0.00417 q"%7PO-°F, (1.12)
Where Fpf is a non-dimensional correction factor that characterizes the pressure effect
on nucleate boiling.
A dynamic analysis of vapor bubbles was done by Foster, et al. [33], describing the
nature of heat flux due to saturation pressure and temperature. The bubble radius and
the bubble growth velocity hold important role here. They suggested the following
correlation:

1079 0.45 0.49

Cpl P1

q" = 0.00122 Go_sug_zgh?ﬂpo_“AT1.24APSO(£5 (1.13)
g 4

The most important feature of this correlation is supposed to be same for different types
of fluids. The correlation holds an accuracy within +30%.

Stephan, et al. [34] suggested four specific relationships utilizing a statistical multiple
regression method for analysing water, refrigerants, organics, and cryogens. From

those, the correlation for water is mentioned below:

1 = 207 (1,;_;) (%)0.745 (%)0.581 0533 (1.1

The physical characteristics of the liquid are examined at the saturation temperature
and therefore are considered to be. These correlations based on physical properties.
They suggested the correlations for refrigerants whose average deviation was 10.6%

within the decreased pressure range of 0.003-0.78.
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Cooper [35] developed a precise correlation for predicting heat transfer in nucleate
pool boiling by examining the relationship between heat transfer efficiency, heat flux,
pressure, liguid molecular weight, and surface roughness. Increased roughness on a
surface leads to higher nucleate boiling heat transfer. Surface roughness can be affected

by fouling, corrosion, and oxidation.

R
0.12— log, g2 -0.55
h = 55.17 (—P;“t) Hos (—logw P;“t) M~05g"™m  (1.15)

c c

Where m is an exponent use to compensate the relation between the heat flux and heat
transfer coefficient.

Gorenflo [36] proposed a fluid-specific correlation for reduced pressure, impacting
heat transfer coefficient during nucleate boiling. Surface texture, pressure, roughness,

and temperature affect the flux calculation.

_ a \Y , 0133
h= hoFer (o) " Ra (1.16)

Where nf is an exponent use to compensate the relation between the heat flux and heat

transfer coefficient.

There are numerous number of experiments that describe the heat transfer in nucleate
pool boiling. A recent experiment was done by Ciloglu [37] for nanofluids in
hemispherical surface. Thus, the result of the experiment was compared with the most

widely used nucleate boiling correlation of Rohsenow [27] described in Eq. (1.8).

Over the years, numerous researchers have tried to forecast CHF using different
models and equations. A lot of these models have been proven to be lacking in
completely capturing the essence of CHF, so a unified theory and governing equation
still need to be developed. This shows how intricate the driving forces are in pool

boiling events.

Kutateladze [38] suggested that the critical heat flux is caused by a hydrodynamic
instability when the velocity of the vapour phase reaches a critical value. Following

dimensional analysis, he suggested the correlation mentioned below:

Page | 15



q"cur = 0.16 hegpy*[og(p, — py)]V/* (1.17)

Rohsenow et al. [39] proposed that a higher amount of bubbles formed during high
heat fluxes hinders the movement of liquid towards the heated surface. They suggested

the following correlation:

q"cur = 0.012 h¢gp,, (%)1/4 [plp;:v]% (1.18)

Zuber [40] suggested that as hydrodynamic critical heat flux is approached, instability
occurs between the vapour flow moving away from the heated surface and the liquid
towards the surface. He also proposed that vapour patches are created and destroyed
on the heater's surface due to Taylor and Helmholtz instabilities being responsible for
CHF. He devised a mathematical expression resembling Kutatelazde's [38] equation.
This is the most widely used correlation proposed by him for horizontal surfaces of

infinite extent. It is as follows:

a(pz—pv)g]l/ * (1 n &)1/4 (1.19)

q"CHF = 0_131 pvhfg [ ,sz o1

Critical heat flux has been analysed with some experiment keeping the surface
roughness as the primary criteria. Ali [41] has investigated the same with an

experiment and compared the results with some standard pool boiling correlations.

Transition boiling heat transfer occurs after the curve reached the CHF. The slope of
the curve suddenly decreases. Till now, there are no such correlation perfectly
describing the nature or behaviour or the rate of heat transfer in transition boiling

regime.

The Leidenfrost point is the transition from unstable film boiling to the stable film
boiling. It is the lower limit of film boiling heat transfer, where heat flux reaches the
minimum value. Zuber [40] also derived the following correlation for calculating the

minimum heat flux for a large horizontal plate:
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—p.)11/4
ag(p1—pv) (1.20)

q"min = 009 pyhfg [ (pl+pv)2

The effect and heat transfer in film boiling was analysed so many times by many
researchers. This regime depends on the fluid used, surface geometry and some other

conditions.

One of the most widely used correlation of pool boiling was proposed by Bromley
[42]. He introduced an early concept for pool film boiling on outer surfaces utilizing
Nusselt's film condensation theory and data gathered from experiments on tubes

positioned horizontally. He expressed the heat transfer coefficient as:

" 30, _ 1/4
W= [gpvh sz;vifl Pv) (1.21)
Where, C= 0.62 for cylinder
C=0.67 for sphere
And h"fg = hfg + 0.5 va(TW - Tsat) (122)

Over the years, there are extensive researches have been done based on the experiments

of film boiling heat transfer for vertical surfaces [43-51] including vertical flat plates.

Correlations for estimating heat transfer are empirically derived from experimental
data, with variables like surface geometry, fluid properties, and operating conditions
influencing the selection. While helpful for estimation, accuracy varies, requiring

validation with experimental data.

1.4. Organization of the Thesis

This thesis work is organized in such a manner that it contains the following chapters
and covers the below topic for the purpose of fulfilling all the criteria for successful

completion:
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Introduction: This chapter contains the following topics:

» Background: It describes overview, importance and all the important

phenomena related to the pool boiling heat transfer.

» Objective and Motivation: The research gap containing existing
methodologies and the motive and aim to solve the heat transfer problem

related to pool boiling heat transfer.

» Literature Review: The theoretical concepts, the previous and existing

works, the experimental and analytical representations are shown here.

Scale Analysis of Pool Boiling and Film Boiling heat transfer: The analytical
approaches based on single phase natural convection, nucleate boiling and film
boiling are shown here. Different methodologies to solve the heat transfer problem
for pool boiling is also discussed here. The concept of non-dimensional parameters
and the non-dimensionalization of the existing empirical correlation are done here.
This segment also focuses on the different types of film boiling heat transfer over

vertical surfaces.

Application of Artificial Neural Network on the pool boiling heat transfer: The
idea of the whole thesis work is to find out the pool boiling (especially nucleate
boiling and film boiling) heat transfer computationally by using the ANN
methodology. Thus, this chapter includes all the overview, importance and
application of the ANN network in heat transfer domain. The problem solving

approach using the ANN model is also discussed very firmly in this chapter.

Result and Discussion: This is the most important chapter in the whole thesis
work, where the outcomes from the ANN network have been shown and the

discussions have been done on the prediction using the ANN model.
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» Result: Feedforward ANN network is used in different types of pool boiling
stages to find out the heat transfer in terms of Nusselt number. The outcomes
from the simulation of the ANN network using different training algorithms

for different conditions are shown in figure and table.

» Discussion: To put a clearer vision and compare the predicted result with
the core experimental data and the existing empirical correlations with scale
analysis, the outcomes are discussed to finalize the impact of ANN in pool

boiling heat transfer.

Conclusion: The whole thesis work is concluded in a manner such that the
proper judgement for the solution methodology, outcomes from ANN,
comparison with existing data and the application of the ANN in heat transfer
field can be made. Also the future scope related to this thesis work is explained

in this chapter.

References: In this segment, the list of all sources cited in the work are
mentioned. Those sources helped extremely in order to understand the problem,
solution methodologies. Thus, the References give the credit to the original

authors and researches, whose works are taken as consultants.
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Chapter 2

Scale Analysis of Pool Boiling and Film Boiling heat transfer

The pool boiling regimes can be analyzed by some standard correlations. Natural
convection boing and Nucleate boiling heat transfer have such correlations in huge
numbers. But in order to analyze the Film boiling heat transfer, it was mentioned earlier
that the unstable film boiling doesn’t have such standard correlations that describe the
nature of heat transfer in that zone. But stable film boiling can be analyzed non-
dimensionally by scale analysis. Many previous works have been done to investigate
and to get a clear picture of film boiling heat transfer. Scale analysis makes the heat
transfer problems easier in order to get the rate of heat transfer, as the heat transfer
equation are converted into Nusselt number correlation. It involves all the important

properties of fluid and the conditions of heat transfer.

2.1. Dimensional Analysis of pool boiling and film boiling heat transfer

Scale analysis, also known as dimensional analysis or scaling analysis, is a technique
utilized in physics, engineering, and applied mathematics to comprehend and simplify
Intricate systems Dby investigating the connections between variables and their
measurement units. Scale analysis is based on the concept that many physical
phenomena can be explained using fundamental dimensions like length, mass, time,
temperature etc. Scale analysis aims to determine the main forces, parameters, or
processes that control a system's behaviour by examining the dimensions and units of

variables, eliminating the need to directly solve complicated equations.

The analysis focuses on verifying dimensional consistency in equations representing
physical relationships. This includes verifying that all components in a mathematical

expression possess identical units, aiding in the recognition of potential connections
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and interrelations. Non-dimensionalization is a process where variables are frequently
represented using dimensionless parameters (like Reynolds number, Nusselt number,
Jakob number etc.) that indicate proportions of important physical quantities. This

makes the analysis easier and enables generalizations across various scales.

Scale analysis in fluid mechanics and heat transfer is employed to calculate
dimensionless figures such as Reynolds number, which identify the flow regime (e.g.,
laminar or turbulent) by comparing inertial forces to viscous forces. Analysing scale
assists in comprehending heat transfer processes and creating dimensionless ratios like
the Nusselt number, which connects convective heat transfer with the fluid flow

conditions and the geometry.

Thus the correlations got from many experimental and analytical result of pool

boiling can be modified using scale analysis.

2.1.1. Scale Analysis of Single Phase Natural Convection

Natural convection boiling regimes can be understood by using the empirical
correlations mention earlier in the Literature Review section. Each correlation can be
converted in terms of non-dimensional heat transfer i.e., the Nusselt number (Nu) by
using the heat flux or the heat transfer coefficient. One of the most popular natural
convection boiling correlation was proposed by Fujii et al. [21], which is discussed
earlier in Eq. (1.3). That correlation can be further non-dimensionalized. The average
Nusselt number (Nu) vs. Rayleigh number (Ra) relation illustrates the heat-transfer

coefficients results. The Nusselt number correlation is shown below:

Starting from the Eq. (1.3), it can be derived in a manner,

" 1/3 1/3
"\ (1) _ gBATD? 1\ (v
(E) (k_l) =0.16 [ v2 ] (D) (a) (2.1)
or, kﬁ D = 0.16 Gr'/3pyr1/3 2.2)
l
Hence, Nu,. = 0.16 Ra'/3 (2.3)
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The above equation was derived by converting the heat flux term into Nusselt number
(Nu) and by using the bubble diameter relationship, the other parameters are converted
to Rayleigh number (Ra). This scale analysis indicates that the Nusselt number varies
with the Rayleigh number (Ra) (which is the product of two other on-dimensional
numbers, i.e. Grashof number (Gr) and Prandlt nimber (Pr)). From the above equation,
it can be easily said that the correlation is valid for natural convection in single phase
only. As the convection is due to the buoyancy force of the liquid, thus Rayleigh (Ra)

number plays a significant role in order to obtain the heat transfer.

2.1.2. Scale Analysis of Nucleate Boiling

As same as the scale analysis of natural convection, the nucleate boiling correlations
can also be obtained in non-dimensional form. The most widely used correlation for
nucleate boiling, i.e., Rohsenow [27] correlation shown in Eq. (1.7) is also converted
in non-dimensional equation by scale analysis. The above equation can be further non-

dimensionalized and expressed in terms of Nusselt number, which is as follows:

Starting from the Eq. (1.7), it can be derived in a way,

a1 _ (ulcpz) [g(pl—pv)]l/z( cp1 AT )3 ( hsg ) (2.4)
AT k; k; o CsphrgPry Cp1 AT '
3
or, Lp= [’“S’”’n] ( it )i D (2.5)
k; CsfPry Jasup/ D
2 1-3n
Hence, Nu,,;, = Uasu”)c(: ) (2.6)
sf
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2.1.3. Scale Analysis of Film Boiling on vertical flat plate

Film boiling is a heat transfer process where a hot surface creates a vapour layer with
a liquid, changing heat dynamics. The film boiling heat transfer is analysed using scale
analysis multiple times. Das et al. conducted a scale analysis of film boiling using
water on a vertical plate, simplifying the analysis by omitting vapour inertia and using
a simplified radiation model. The Nusselt number equation for wall heat transfer was
determined by a heat ratio criterion and the Grashof number to Reynolds number ratio.
The research categorized wall superheats into high and low conditions, further
classifying low superheats into natural and forced convection. The Nusselt number
model showed strong predictive capability with over 96% alignment to experimental
data. This analysis is also compared with some of the popular experiments [43-47] on
film boiling over vertical surfaces. The models are written below as Nusselt number

correlation which are used to calculate the heat transfer for the above condition:

A. High wall Superheat: There is a common correlation got from the scale analysis
for film boiling over vertical flat plat for high wall superheat condition, which is

shown below:

o e N I

B. Low wall Superheat: The conditions for low superheat is divided into two parts,

N|R

which are:
a. Liquid-phase natural convection: The correlation for Nusselt number in this
case can be written as:

_ MiJasup Py 1/4
Nujene = ” _]asup P Ra (2.8)

b. Liquid-phase forced convection: The Nusselt number correlation derived for

this condition is:

_ﬂ]asub Pry 1/2
NuleC B Uy JAsyp Prlz/g Rel (29)
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Chapter 3

Application of Artificial Neural Network on the pool boiling heat

transfer

An artificial neural network (ANN) is a group of basic interconnected algorithms that
analyse data in order to react to external inputs. ANN attempts to mimic the functioning
of the biological neural networks. Just as biological neural networks, consists of
interconnected biological neurons, similarly, artificial neural networks feature
interconnected artificial neurons across multiple layers, which with proper learning
algorithms can produce accurate mapping of input/output data. There are several
structures of ANNSs. In a feedforward network, neurons of an input layer interact with
one or subsequent multiple hidden layers which are eventually connected to an output
layer. Each neuron receives signals from all the neurons of the previous layer weighed
with suitable weights. The summation of these weighed inputs plus the bias for the
neuron acts as the argument of the activation function of the particular neuron. The
output of the neuron is the output of the activation function. Learning of the ANN is
an optimisation problem which involves the alteration of the connection weights, to
minimize a suitable error function. Several types of leaning algorithms like supervised
and unsupervised learning are in practice [52]. A feedforward neural network with

supervised learning can be used for modelling boiling heat transfer problems.

3.1. Basic ANN Structure

The organization of layers, neurons, and connections within an artificial neural
network (ANN) is known as its structure [53]. The arrangement dictates the flow of
information in the network and how it changes inputs to outputs. Here is a summary of
the elements that determine the framework of an artificial feedforward neural network:
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Input Layers Hidden Layers Output Layer

Fig. 3.1: A Basic structure of an Artificial Feedforward Neural Network

A. Input Layer
e The input layer is made up of neurons that receive the unprocessed input data.
Every neuron represents a specific feature or input parameter [54].

e The input layer's quantity of neurons depends on the input data’'s dimension.

B. Hidden Layers
e Hidden layers consist of layers of neurons located between the input and output
layers.
e Parameters like hidden layer quantity and neuron count can be adjusted based

on problem complexity and resources [55].
C. Output Layer

e The final predictions or outputs of the network are generated by the output layer.

e The number of output neurons equals the number of inputs of the system [56].

Page | 25



3.2.

General ANN Methodology

ANNS s are a key element in contemporary machine learning and draw inspiration from

the human brain's design and operations. Here is a typical approach for creating and

implementing artificial neural networks (ANNS):

A. Define the Problem: Define the problem or goal for the network, such as

classification, regression, clustering, or other specific tasks.

B. Data collection and Pre-processing: Gather relevant data on the topic, organizing

it into tables or leaving it unstructured, cleaning and standardizing as necessary for

analysis.

C. Select a Network Architecture: Choose the suitable neural network structure for

your issue. Some of the most frequent categories are:

Feedforward Neural Networks (FNNs) [57]

Convolutional Neural Networks (CNNs) for image data

Recurrent Neural Networks (RNNs) for sequential data

Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units
(GRUs) for addressing the issue of disappearing gradients in recurrent neural
networks (RNNs)

Transformer-based models used for processing tasks in natural language.

D. Model Training: Train a neural network using an optimization algorithm such as

Bayesian Regularization, Levenberg-Marquardt, Gradient Descent, or variations

like Adam or Root Mean Squared Propagation (RMSProp). The network adjusts

weights and biases to minimize a loss function.
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E. Validation: Assess trained model on validation set to check generalization and
detect overfitting. Adjust hyper-parameters and model structure to improve

performance.

F. Testing and Evaluation: Evaluate model on separate test set after performing well
on validation set to ensure fair assessment of practical performance. Test set not

used during training or validation.

G. Deployment and Monitoring: Utilize the model if it meets performance needs.
Monitor real-world performance for quality decline, making adjustments as needed

for optimization.

H. Iterate: Iterate on model, data pre-processing, and hyper-parameters in machine

learning to enhance performance based on insights and feedback.

3.3.  Selection of Hidden Neurons and Hidden Layers

Hidden neurons and layers are crucial in maintaining accuracy and shaping the
architecture of Artificial Neural Networks (ANNSs). The number of hidden neurons
depends on inputs, training algorithms, and other parameters. Selecting the right
number of hidden neurons [58] is vital for a successful network structure. There is no
fixed rule for determining the ideal number of hidden neurons, as it varies based on the
complexity of the problem. Starting with a small number of hidden neurons and
gradually increasing them while monitoring performance can help identify the optimal
point. Understanding the problem domain and the relationships between input and
output variables can guide the decision on the number of hidden neurons. Larger
datasets may require more complex models with more hidden neurons, while smaller

datasets may benefit from simpler designs to prevent overfitting.

Selecting the appropriate number of hidden layers in an Artificial Neural Network
(ANN) is crucial for creating an effective structure. While the number of neurons in a

hidden layer may vary, the number of hidden layers significantly impacts the network's
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learning ability. Beginning with a single hidden layer is recommended to capture
complex relationships and establish a performance foundation [59]. Deeper
architectures are more effective for complex problems, with experimentation on a
validation set helping determine the optimal depth. Finding the best architecture for

optimal performance requires thorough testing and validation.

3.4. Solution Procedure

The solution process mainly distributed in three stages, which are:
e Training
e Validation

e Testing

3.4.1. Training

Training an Artificial Neural Network (ANN) for supervised learning requires
modifying the network's weights and biases to reduce a specified loss function, thus
enhancing the model's effectiveness in a particular activity. The model adopts the
weights and biases and with a summation function, it initiates the training. After the
function fitted properly, an activation function is loaded upon the adopted values of
the inputs. In modern day, the most commonly and widely used activation functions
are Rectified Linear Unit (ReLU) AND Sigmoid. After collecting the data and pre-
processing, we need to go with the most suited algorithms to run the training problem.
A simple schematic diagram of a feedforward ANN model with weight and bias is

shown in Fig. 3.2.
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Fig. 3.2: Weight and Bias in a Feedforward ANN model

3.4.1.1. Training Algorithms

There are several algorithms generally used in ANN operation. In the whole thesis
work, two types of training algorithms are used as they are familiar and most widely
used. They are:

e Backpropagation Algorithm

e Bayesian Regularisation (BR)

e Levenberg-Marquardt (LM)

These algorithms are mainly chosen according to all the conditions and collections of

dataset we have. The above two are described below:

A. Backpropagation Algorithm: Backpropagation is a technique used in artificial
intelligence and machine learning to train neural networks by adjusting errors. The
process involves computing the loss function, starting from output nodes and
moving towards input nodes to minimize loss and achieve the desired outcome. It
helps decrease errors and improve results in machine outputs by examining
mistakes, matching them with expected outcomes, and iterating until the goal is
reached [60].
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There are two main types of backpropagation: Static backpropagation, used in
feedforward neural networks to recognize characters and attributes, and recurrent,
used in dynamic data sequences for tasks like sentiment analysis and speech
recognition and Recurrent backpropagation, which allows data to flow in a
feedback loop within hidden nodes, enabling the network to predict outcomes and

recognize patterns in the data like the human brain learns by trial and error.

. Bayesian Neural Networks: Bayesian neural networks (BNNs), also called
Bayesian Regularization, are used in artificial neural networks (ANNS) to prevent
overfitting and enhance generalization. In contrast to L1 or L2 regularization,
which penalize big weights with a regularization term in the loss function, Bayesian
Regularization views network weights as random variables and assigns a prior
distribution to them. BRANNSs, or Bayesian Regularized Artificial Neural
Networks, are more resilient than traditional back-propagation neural networks,
reducing the need for extensive cross-validation [61]. By transforming nonlinear
regression into a statistically well-posed problem, BRANNSs resemble ridge
regression. These networks address challenges in Quantitative Structure-Activity
Relationship (QSAR) modeling such as model selection, reliability, and validation
effort [62]. They are resistant to overtraining and overfitting, using evidence
procedures for objective Bayesian standards. BRANNSs efficiently evaluate and
train with various network parameters, deactivating unimportant weights.
Additionally, Automatic Relevance Determination (ARD) can be applied to input
variables in BRANNS, indicating the significance of each input and disregarding
irrelevant or highly correlated indices [63]. This technique helps determine the

most important variables for modeling activity data.

. Levenberg-Marquardt: The Levenberg-Marquardt algorithm, frequently referred
to as the damped least-squares technique, is a commonly utilized optimization
method for training artificial neural networks (ANNSs) [64]. It is especially favoured
for teaching feedforward neural networks (FNNSs) for regression tasks because of

its efficiency and effectiveness in reducing the mean squared error (MSE) loss
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function [65]. The Levenberg-Marquardt algorithm provides a numeric solution for
reducing nonlinear functions with reliable convergence. Ideal for small to medium-
sized artificial neural network problems, it merges the steepest descent and Gauss-
Newton methods. This algorithm retains the speed benefits of Gauss-Newton and
reliability of steepest descent, excelling in complex error surfaces. While slower
than Gauss-Newton, it converges faster than steepest descent [66]. By utilizing a
dual training approach, it first relies on steepest descent in areas with complex
curvature before transitioning to Gauss-Newton for quicker convergence.
Ultimately, the Levenberg-Marquardt algorithm is a powerful tool for optimizing

neural networks with varying levels of complexity.

3.4.1.2. Weights and Biases

Weights regulate the intensity of links among neurons and represent associations
among input characteristics and desired results. They determine signal strength in
neurons, affecting input data influence on output. Biases help neurons be adaptable and
flexible, enabling them to activate based on different input circumstances. That means,
Biases add characteristics with a value of 1 to the neural network for efficient

propagation forward [67].

3.4.1.3.  Summation Functions

The purpose of the summation function is to connect the weights and inputs and
compute their total. The summed up data further goes for the activation through
Activation functions.

3.4.1.4. Activation Functions

The activation function determines if a neuron should be activated by computing the

weighted sum and then adding bias to the result. The activation function's purpose is
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to add non-linearity to the neuron's output. This implies that it will determine the
significance of the neuron's input to the network during prediction by utilizing basic
mathematical operations [68]. Some of the common activation functions are: Linear or
Identity Activation Function, Non-linear Activation Function, Sigmoid or Logistic
Activation Function, Tanh or hyperbolic tangent Activation Function, ReLU (Rectified
Linear Unit) Activation Function, Leaky RelLU etc.

The input layer simply contains the input data without conducting any calculations.
Hence, no activation function is utilized in that case. A non-linear activation function
Is necessary for hidden layers in a neural network. This is necessary for incorporating
non-linear elements into the network in order for it to learn the complex patterns. As
none of our output is negative as per the source data, thus, we have used the ReLU

activation function in the hidden layers.

3.4.2. Validation

Validation set is used to monitor the learning and to prevent the overfitting in training
process. Cross-validation involves dividing data into k folds for testing and training to
reduce performance estimate variance and enhance data utilization. A more dependable
assessment of ANN algorithm effectiveness is achieved by calculating performance
metrics across folds. This method can also help in comparing and choosing the optimal
ANN models or designs for the particular issue being addressed [69]. Thus, the
separated data for validation can be validated by using ANN model with the same

network.

3.4.3. Testing

After the training and validation are done, then the main task is to test the samples
which were not involved in the network during training. Using the same training
algorithm and the same number of hidden neurons, the testing should be done with the
same function fitted neural network. In this case, the number of input variables should

be as same as the training variables. The testing will be done computationally. It can
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be done either by “MATLAB-Simulink” or the “MATLAB Code” for implementing
ANN. The data enlisted for testing will be done in order to compare the results of
existing methods. The test would be chosen as more accurate than the scale analysis if
the statistical analysis stands with the ANN prediction.

For function fitted neural network, the training, validation and testing samples can be
distinguished in a percentage form as 70, 10 and 20% respectively. But for the coded
network, the training and testing can be distributed as nearly 70% and 30% respectively

for all the problems chosen for prediction.

3.5. Current Problem Architecture

Artificial Neural Network has been used multiple times in the field of heat transfer
consisting many boiling heat transfer problems [70-72]. ANN model is used in the
thesis work to predict the heat transfer of different stages of pool boiling and film
boiling of vertical plate under different conditions. Every stages are oriented with
specific feedforward ANN models using different algorithms and different number of
hidden neurons in order to get the accurate predicted result than the scaled data
comparing with the experimental results. So, different types of network architecture
are created for different conditions. The algorithms and number of algorithms are
adjusted according to the conditions. The configuration varies with the number of
samples, variation of inputs etc. The most fitted architecture for each conditions are
found by applying different ANN models for numerous times. The selection of the
inputs was quite challenging, which was overcome by selecting different non-
dimensional parameters. The parametric analysis is done based on the condition sated
in the experiments for different regimes. The whole procedure of training, testing and
validation involves the “MATLAB” for simulation of the heat transfer problems.
MATLAB provides resources for machine learning, deep learning, and data analytics,
allowing for the creation and implementation of algorithms in these areas. Thus, by
using the training algorithms in MATLAB, we can have the simulation for training and
testing. The features of the most suitable training algorithms are discussed earlier. The

structure of any ANN model in this work is defined by “Training Algorithm-Number
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of Hidden Neurons”. For training the ANN model, the sources of training data are

taken from several boiling heat transfer experiments.

3.5.1. Network for Single Phase Natural Convection

The experiment of Tadrist et al. [25] is taken as the source of the training data, where
due to domination of the buoyancy force, Rayleigh number comes in action for single
phase natural convection. Thus, Rayleigh numbers are taken as the inputs for single
phase natural convection. To get more accurate value of Nusselt number than the scale
analysis, this condition is processed for multiple times. The best outcomes for the
above mentioned condition has come out to be “LM-5" (means Levenberg-Marquardt
algorithm is used for training the problem with using 10 hidden neurons). The Rayleigh
numbers got from the experimental data is taken as input of ANN and Nusselt numbers
are taken as output of ANN. Hence, randomly selected samples of 70% are taken for
training of our problem and 30% of the overall data are taken for the testing. Then the
simulation has been done several times and with using the best training format of ANN,
the rest of those 30% samples are tested. Thus, as a result, ANN has given different

Nusselt numbers for different Rayleigh numbers.

Hidden Layer Output Layer
Input Qutput
={C @/
30 b  — b — 30
10 30

Fig. 3.3:- A basic schematic topology of Feedforward ANN model for

predicting the Nusselt number for Single phase Natural convection
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3.5.2. Network for Nucleate Boiling

The Ciloglu [37] is taken as the source of training data. Nucleate boiling heat transfer
is influenced by the Jakob number and the Prandit number. The Prandlt number is
constant (1.863) for the reference taken for ANN modelling. So, Jakob number is taken
as the input of the architecture. The inputs for this condition are very small ranging
from 0.02 to 0.038. Thus, the design of the network was a challenging task. “LM-10"
was fitted as the most accurate network for predicting the output, i.e., the Nusselt
number. After getting the non-dimensional parameters, the Jakob number for
superheating condition is taken as the input and the Nusselt numbers are taken as the
output. The modified data are divided into two parts as same as the previous result, i.e.,
70% of the prior data is taken for training and the rest of the 30% data are taken for

testing of the network.

3.5.3. Network for Film boiling on vertical flat plate

Several experiments [43-47] on film boiling over vertical surfaces are taken as the
sources of training data. Film boiling over vertical flat plate was performed by the scale
analysis [19]. But seeing the outcomes of the scale analysis, the ANN model is
predicting Nusselt number as the result. Film boiling over a vertical surface has
different condition of superheating, phases and convection involvement. Thus, a same
training algorithm is not applicable for all the conditions. The conditions for film
boiling is mentioned earlier. Four non-dimensional parameters are taken as the inputs
of the ANN model for film boiling. They are Jag,y, Jas,,, Re; and Gr,. For different
values of the inputs, the Nusselt number varies differently. As the above four
parameters have some influence on the film boiling, thus they are taken as input of the
ANN network. The data is split into two portions just like before, with 70% used for
training and the remaining 30% used for testing the network. After simulating

numerous times, the proper training algorithm and the number of hidden neurons which
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should be used for the film boiling has come out. A brief description of the network

architecture for different conditions of film boiling are mentioned below:

A. Network for High wall superheat: It is initiated with “BR-10" configuration as
the condition is most suited for implementing the algorithms and the number of

hidden neurons.

B. Network for Low wall superheat: Both of the conditions for low wall superheat

was analyzed by ANN model using the model configuration of “BR-15".

For the modeling, the main challenge was to define a proper ANN network architecture
by choosing most suitable algorithm, proper amount of hidden neuron, exact activation
functions for the hidden layers and the output layer for the training. As the same
configurations would be applied while testing the separated data, the training is an
important task. The below tables describes that how the training is categorized in order
to solve the chosen problem for pool boiling heat transfer by using the Artificial Neural
Network. The predictions are done on the basis of the enlisted data set by distributing
them as the training and testing dataset. Table 3.1 narrates about the chosen activation
layers and their functional form for the modelling. As the range of output data varies
above the zero and subsequently the belong to same genus, the same activation layers
are used for all the four problems. Table 3.2 describes how the arrangements are done

for the chosen problems.

Table 3.1: Details of the chosen Activation Functions

Name of the Activation Equation of the Activation
Name of the Layer

Function Function
Hidden Layers ReLU f(x) = max(0,x)
Output Layer Linear fx) = x

For the above table, x is the weighted input for training, i.e., Weight * Input + Bias.
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Sl.

No.

Table 3.2: ANN model framework used in current problem

Input
Problem ]
Variables
Pool Boiling
Natural Ra
Convection
Pool Nucleate J
a
Boiling P
Film Boiling over
) Asup
Vertical Flat
Asyp, Re
Plate — High J@sup, Rey
and Gr,
Superheat
Film Boiling over
Asups
Vertical Flat P
aqyup, Re
Plate — Low J@sup: Rey
and Gr,
Superheat

No. of
Input
Samples

44

43

61

43

No. of
Hidden

Neurons

10

10

15

Training

Algorithm

LM

LM

BR

BR

Output
Variable

Nuy,,

Nunb

Nuhs

Nuls
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Chapter 4

Result and Discussion

The above solution methods are used to obtain the Nusselt number in different pool
boiling regimes for different conditions. The network framework is organized by doing
the training until it gives the best result for the test data. The information provided in
the previous chapter helped to choose the proper networks for every problem. The
results are also compared to the most accurate correlations which are either widely
used in the field of heat transfer or useful to determine the rate of heat transfer.
Depending upon our problems mentioned earlier, we have to use the ANN tool with
different parameters and algorithms. After running the codes for several times until we

got the best results, we have got the ANN results for testing samples.

These results are examined for the above three regimes of pool boiling, for the
correlations have been proposed. For every time, the ANN methodology have been
applied to get the result for heat transfer. The primary comparison for any analysis is
done on the basis of the Mean Squared Error (MSE) amongst all the observations. The

general formula for calculating the MSE is:
MSE = % YN .(Experimental Value — Predicted ANN Result)? (4.1)

Where N is the number of observations and the 2 indicates that a summation is

performed over all values of i.

The maximum percentage error is also calculated in order to see the range of errors for

both the scale analysis and ANN prediction.
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4.1. Results for Single Phase Natural Convection

The beginning of the analysis was started with examining the Natural convection
boiling. The data samples extracted from an experimental analysis of Tadrist et al. [25]
and then examined by the Artificial Neural Network. Basically, Feedforward Neural

Network is used to run the problem.

So, to simulate the ANN tool, at first the overall data are collected from the comparison
curve for experimental and result from scale analysis of the correlation of Fujii et al.
[21] shown in Eqg. (2.3). Both of the extracted data is first non-dimensionalized in terms
of Rayleigh number and Nusselt number using the properties of the fluid used at
stipulated conditions. Then the modelling was started with the training. The prediction
is done with 20 Epochs. After running the model, it gives the MSE and Regression

value, which are shown in Table 4.1.

Table 4.1: Result for various operations for ANN modelling

Name of the Operation MSE Regression
Training 0.0034 0.9999
Validation 0.0049 0.9899
Testing 0.0093 0.9687

The above table shows the representation of the MSE and Regression for the problem
of single phase natural convection by the ANN modelling. Clearly it is showing that
the regression line is very close to the set of existing data points, which is the desired
Nusselt number. The table is an example for variation of results for ANN modelling in

case of single phase natural convection.

The obtained result by ANN prediction is collected and then compared with the
experimental data and the results from the scale analysis. The comparison is shown via
Fig. 4.1 below.
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Fig. 4.1: Comparison Curve of Nusselt number vs Rayleigh number for
Experimental data, Result of Eq. (2.3) and ANN predicted result for Single

phase Natural convection

The above figure shows that the values of Nusselt number is varying with different
Rayleigh numbers for all the three curves. It clearly shows that the results obtained
from the ANN analysis are more accurate than the results of scale analysis for the
empirical correlation of Fujii et al. [21] from Eg. (2.3) comparing with the
experimental results of Tadrist et al. [25]. In order to compare them statistically, the
MSE and the Maximum Percentage Error have been calculated. The MSE of the scale
analysis has come out to be 2.3159, whereas the MSE of the ANN result is 0.0093. The
maximum percentage error for the above two conditions are 23.68 and 1.74
respectively. The error band for ANN predicted result shows a great outcome which is
favorable for the thesis. All of the samples chosen for testing lies within the error range

of 2%. Thus for the natural convection boiling zone can be simulated using ANN and
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it gives more accurate value of the output, i.e., Nusselt number compared to the

empirical correlation.

4.2. Results for Nucleate Boiling

Nucleate boiling heat transfer is also analyzed as the natural convection boiling. The
process of ANN simulation is applied to get the result. The experiment of Ciloglu [37]
of nucleate pool boiling of a nanofluid from a hemispherical surface is taken as the
reference. The whole experiment was done using Deionized water (DI water). To
compare the result, the most widely used nucleate pool boiling correlation, i.e., the
Rohsenow [27] correlation has been non-dimensionalized to get the fluid independent
properties using scale analysis, which is shown in Eg. (2.6). All the constant properties
are taken as mentioned in the experiment. Then the modelling was started with the
training. The prediction is done with 25 Epochs.Thus, the test result is obtained from
ANN modelling and compared with the experimental results and the results from scale

analysis. The comparison is shown by the Fig. 4.2.
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Fig. 4.2: Comparison Curve of Nusselt number vs Jakob number for
Experimental data, Result of Eq. (2.6) and ANN predicted result for Nucleate

boiling for DI water

The figure above demonstrates how the Nusselt number values change with varying
Jakob numbers on all three curves. The results from the ANN analysis are evidently
more precise than the results of the scale analysis for Rohsenow’s [27] empirical
correlation from Eq. 20. (2.7) in comparison with the findings of Ciloglu [37]. The
MSE and Maximum Percentage Error were calculated for statistical comparison. The
MSE of scale analysis is 202.0126, while the ANN result has an MSE of 0.0706. This
Is a huge variation in terms of correctness. The highest percentage error for the two
conditions mentioned above is 37.64 and 1.17, respectively. The error range of the
ANN prediction results demonstrates a positive outcome that supports the thesis. All

the selected samples for testing fall within a margin of error of 2%. Therefore, the
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nucleate boiling zone can be replicated using artificial neural networks, providing more

precise results for the Nusselt number compared to the empirical correlation.

4.3. Result for Film Boiling over a Vertical Flat Plate

Film boiling over vertical plate has numerous number of experiments those are
analyzed to understand the heat transfer in this boiling region. The experiments [43-
47] are taken for training the network and to predict the heat transfer. The comparison
of the experiment with the scale analysis and the ANN prediction is also done in this
segment. The experiments are separated and thus the predictions are performed. Each
of the predictions contains four inputs as Jag,;,, Jas,p, Re; and Gr,. The outputs of the
predictions are the Nusselt number for convective heat transfer. To calculate the total
heat transfer for film boiling, a standard correlation is used to obtained the radiative
Nusselt number and then it was added with the convective heat transfer with another

correlation. The correlations are:

Nuygq = {geqo-(Tvlll'/all - Ts4at)/(Twall - Tsat)}Lc/kv (4.2)
1 1 -1
Where &, = (— +—- 1) (4.3)
€eq  Eeq
3
And Nuexpt,total = Nuexpt,conv + Z Nurad (4-4)

Thus, the result of the thesis work is divided into two major parts. These are discussed

below:

4.3.1. Result for High wall Superheated Film Boiling

This observation is taken for negligible forced convection and the subcooling of water
Is characterized by zero Re; and Ja,;,. Thus, the results of the experiments are taken
for predicting the Nusselt number. Several experiments are taken to perform the ANN

prediction. Then the modelling was started with the training. The prediction is done
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with 40 Epochs. Each of the parameters are analyzed, tested and compared with the
existing experimental data and the equation of scale analysis [19] which is shown in
Eq. (2.7).

4.3.1.1. Film boiling of Saturated water under Natural convection

A greater Jakob number indicates increased thermal resistance at the wall due to a
reduced Nusselt number. This is due to the formation of a thicker layer of vapour over
a wall that is hotter. Thus the variation of the Nusselt number is analyzed with the
Jag,,. From the bunch of experiments on film boiling over vertical surfaces, two
experiments are taken as the problems to solve the heat transfer with ANN model for
the high-superheat film boiling of liquid water at saturated condition under the natural

convection.

A. Prediction Film boiling for Vertical cylinder: The experiment from Shiotsu et al.
[43] is taken as the reference in order to solve the problem. Heat transfer in film
boiling from a vertical cylinder is studied under forced flow of liquids, at both
saturated and subcooled conditions, and various pressures. This experiment was
performed at 2.94 bar pressure for boiling of water over vertical cylinder. So far
the best result had come and the Nusselt number came out in a more accurate
manner than the scaled data. The inputs and outputs are shown below in a table
form to visualise the comparison amongst total experimental Nusselt number, total

scaled Nusselt number and the total ANN Nusselt number:
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Table 4.2: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for high wall superheat and saturated water under

natural convection for vertical cylinder

NSL Jasuy  Jag, Re; Gr, Nuexpitot NUgcaietor NUannitor
1 0118 0 0 685000 22.955 25.085 21.167
2 0155 0 0 591000 19.785 22.575 19.312
3 0198 0 0 505000 17.455 20.375 17.604
4 0.273 0 0 386000 15.45 17.65 15.545
5 0.31 0 0 344000 14.96 16.65 14.818
6 0345 0 0 312000 145 15.85 14.274

The above samples shown in the above table are some of the selected tested data for
ANN prediction. The prediction got the impressive results as the outcomes from ANN
network got way more accuracy than the scaled data, which can be clearly visible.
Though the actual statistical comparison would give more clearance to the analysis.
The MSE for the scaled data has come out to be 5.9210, whereas the MSE for the ANN
predicted result is 0.2828, which is way better than the scaled result. The maximum
percentage errors for each of the previous case is 16.72 and 7.86 respectively. Also
most of the results i.e., 83% from ANN prediction lie within an error band of 3%. The
above statistical comparison shows that the accuracy of ANN prediction for the stated

condition is far better than the scaled data comparing with the experimental results.

B. Prediction of Film boiling for Vertical plate: The experiment of Vijaykumar et
al. [44] is also taken as another reference for solving the problem on film boiling
heat transfer. A study was conducted on subcooled film boiling on a vertical
surface, insights on hydrodynamics. This time, the experiment was performed at
atmospheric pressure for boiling of water. The best result so far was obtained by
accurately calculating the Nusselt number, compared to the scaled data. The table
below shows inputs and outputs to visually compare experimental, scaled, and
ANN Nusselt numbers.
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Table 4.3: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for high wall superheat and saturated water natural

convection for vertical plate

S:. Jasup  Jasup Re; Gy Nueypt ot  NUscatetor  NUanntot
1 o131 0 0 310000 18.705 20.075 18.945
2 0131  0.003 0 310000 22.345 20.075 22.935
3 0131 0.0148 0 312000 18.705 20.075 17.245
4 0174 0 0 258000 16.975 17.775 17.257
5 0174 0.0046 0 258000 20.455 17.775 21.462
6 0263 0 0 184000 13.615 14.775 15.158

The samples displayed in the table above are chosen test data used for predicting with
ANN. The forecast showed excellent results as the outcomes obtained from the ANN
network were more accurate than those from the scaled data, making it easily
noticeable. Although conducting an actual statistical comparison would provide further
clarity for the analysis. The scaled data produced an MSE of 2.7487, while the ANN
predicted result had an MSE of 1.3999, which is significantly superior to the scaled
result. The highest percent errors for all of the prior scenarios is 13.10 and 12.26
respectively. Additionally, a majority of the outcomes, specifically 57% from artificial
neural network forecasting, fall within a 5% margin of error. The statistical analysis
above indicates that the accuracy of the ANN prediction for the specified condition is
significantly superior to that of the scaled data when compared to the experimental

results.

4.3.1.2. Film Boiling of Water under Low subcooling and Natural convection

Film boiling for the low subcooling natural convection is taken to analyse and to

predict the heat transfer for high-superheat condition. It is also done as same as the

Page | 46



previous two experiments in terms of calculating the Nusselt number by ANN

prediction.

An experiment of Okkonen et al. [45] is taken in order to solve the problem on film
boiling heat transfer for long vertical surfaces. The above research compares the
anticipated heat transfer properties with experimental findings in a high wall
temperature range of 600-1200 °C and stagnant water with minimal subcooling of just
3 °C. So far, the best result was obtained by accurately calculating the Nusselt number
compared to the scaled data. The information provided in the table allows for a visual
comparison of the total experimental, total scaled and total ANN predicted Nusselt

number.

Table 4.4: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for high wall superheat under low subcooling of water and

natural convection for long vertical surface

I\Sl (I)" Jasup  Jasup Re, Gry Nuexpttor  NUscateror ~ NUanntot
1 0.437  0.0056 0 106000 14.27 13.55 14.773
2 0.532  0.0056 0 83100 14.315 12.775 13.995
3 0.645  0.0056 0 63300 12.81 12.2 13.344
4 0.778  0.0056 0 48400 12.705 11.725 12.838
5 0.856  0.0056 0 41700 12.815 11.675 12.663
6 1.058 0.0056 0 30000 13.645 11.725 12.504

The test data selected for prediction with ANN is shown in the table above. The
prediction had great outcomes because the results from the ANN network were more
precise compared to the ones from the scaled data, which was easily noticeable. While
carrying out a real statistical comparison would offer more clarity for the analysis. The
rescaled data yielded an MSE of 1.5347, whereas the ANN predicted outcome obtained
an MSE of 0.3305, proving to be notably better than the rescaled outcome. The greatest

percentage deviations observed in previous situations are 14.07 and 8.35, in that order.
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Moreover, most of the results, specifically 83.33% from predicting with artificial
neural networks, are within a 5% margin of error. The statistical analysis shows that
the accuracy of the ANN prediction for the specified condition is much better than that

of the scaled data in comparison to the experimental results.

4.3.1.3. Film boiling for Mixed water convection

To predict the heat transfer in high superheat and mixed water convection, two
experiments are taken, where liquid Reynolds numbers have a high range value. In
these two cases, the variation of Nusselt number occurs significantly which changing
of the Reynolds number. Both the model and the experiments have successfully
captured the increase in wall heat transfer with a higher far-stream Reynolds number,
which is physically feasible. The significant range of Reynolds numbers shows a major
difference in the Nusselt number coefficient, which may be due to the unstable liquid-

vapour interfacial wave.

A. Prediction of Film boiling for Vertical flat plate: The experiment of Meduri et
al. [46] is taken as the reference for the prediction of Nusselt number by using ANN
network. The experiment was done on Partitioning of wall heat flux throughout
subcooled forced flow film boiling of water on a vertical surface. The experiment
Data were collected for mass fluxes varying from 0 to 700 kg/m?s, inlet subcoolings
varying from 0 to 25 °C, and wall superheats varying from 200 to 400 °C. Up to
this point, the most successful outcome was achieved through precise computation
of the Nusselt number when compared to the normalized data. The table presents a
way to visually compare the Nusselt number values from experimental, scaled, and
ANN predicted data.
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Table 4.5: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for high wall superheat and mixed water convection for

vertical flat plate

Sl.

No ]asup Jasup Re, Gr, Nuexpt,tot Nuscale,tot Nuann,tot
i 0.174 0.0005 2969 259000 18.955 18.775 18.885
2 0.236 0.0006 2969 204000 17.485 16.175 16.839
3 0.263 0.0014 2970 185000 16.075 15.375 16.173
4 0308 00011 2967 157000 14.625 14.175 15.061

The table above displays the test data chosen for prediction using ANN. The forecast
was successful as the ANN network produced more accurate results than the scaled
data, which was easily discernible. Conducting an actual statistical comparison would
provide greater clarity for the analysis. The rescaled data had an MSE of 0.6102, while
the ANN predicted outcome had a much lower MSE of 0.1555, demonstrating a
significant improvement over the rescaled result. The highest percentage variances
noted in earlier cases are 7.49 and 3.69, respectively. Additionally, the majority of the
outcomes, a precise 100% when using artificial neural networks for prediction, fall
within a margin of error of 4%. The statistical analysis indicates that the ANN
prediction’s accuracy for the specified condition significantly outperforms the scaled

data when compared to the experimental results.

B. Prediction of Film boiling for Vertical cylinder: The experiment of Shiotsu et al
[43] for film boiling from a vertical cylinder is taken another time as a reference to
get the better outcomes for ANN prediction over scaled data. But this time, the
condition is for mixed convection. Until now, the best result was obtained by
accurately calculating the Nusselt number in comparison with the normalized data.
The table illustrates a method to visually compare few samples of Nusselt number

values obtained from experimental, scaled, and ANN predicted data.
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Table 4.6: Comparison table for the total Nusselt number of experiment, scale

and ANN prediction for high superheat and mixed water convection for a

Sl
]asup

=z
©

0.167
0.197
0.207
0.235
0.273
0.316
0.35
0.424
0.436
0.477

© 00 N o o B~ w N P

[EEN
o

] Asub

O O O O O o o o o o

vertical cylinder

Rel

17812
28435
24894
28435
28435
17812
28435
24894
17812
28435

Gr,

560000
505000
487000
440000
386000
344000
306000
250000
242000
228000

N Uexpttot NUscateror NUanniot

26.045
33.885
29.045
30.705
28.3
18.58
24.52
19.89
15.56
20.19

31.875
33.975
31.275
30.075
27.15
21.55
22.85
19.15
17.35
18.55

26.523
33.116
29.501
30.674
28.449
18.945
24.522
19.585
15.765
20.410

The test data selected for prediction using ANN is shown in the table above. The

prediction was accurate with the ANN network delivering more precise outcomes

compared to the scaled data, which was clearly noticeable. Performing a real statistical

comparison would offer more clarity for the evaluation. The rescaled data had an MSE

of 5.9210, whereas the ANN predicted outcome showed a considerably lower MSE of

0.2828, indicating a marked enhancement over the rescaled outcome. The previous

cases showed the biggest deviations with percentages of 22.38 and 2.84. Furthermore,

when utilizing artificial neural networks for forecasting, all the results are accurate

within a 3% margin of error. The statistical analysis shows that the accuracy of the

ANN prediction is much better than the scaled data in comparison to the experimental

results for the specified condition.
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4.3.2. Result for Low wall superheated Film Boiling

The low wall superheat condition is divided into two parts for a comprehensive
analysis. Both of the conditions are trained with the same network. In both of the cases,
the network architecture for modelling remains the same. Then the modelling was

started with the training. The prediction is done with 50 Epochs.

4.3.2.1. Film boiling of Natural Liquid-phase convection

For the prediction of Nusselt number using ANN model for low wall superheat and
natural convection for liquid phase, the experiment of Okkonen et al. [45] is taken
again as a reference. After applying the ANN network on the input parameters, the
value of Nusselt numbers have come out as an impressive outcome. The information
provided in the table allows for a visual comparison of few samples of the total
experimental data, total scaled result from Eq. (2.8) and total ANN predicted Nusselt
number.

Table 4.7: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for low superheat and natural liquid-phase convection
for a long vertical surface

Sl.

o Jasu, Jagup Re, Gr, Nueprior NUscaieror NUannior
1 0.524 0.0776 0 83200 23.200 28.140 25.667
2 0.529 0.0776 0 82100 22.169 27.779 25.524
3 0.944 0.05 0 35600 15.817 8.457 16.334
4 0.945 0.0776 0 35500 17.329 12.869 18.311
5 1.001 0.1071 0 32400 19.142 16.502 20.447
6 1.228 0.0776 0 23500 18.022 9.782 16.111
7 1.252 0.1071 0 22700 18.677 12.747 17.804
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The data selected for forecast with ANN is shown in the table provided above. The
prediction was accurate with the ANN network performing better than the scaled data,
which was clearly evident. Performing a real statistical comparison would offer more
clarity on the analysis. The rescaled data had an MSE of 34.0523, whereas the ANN
predicted outcome achieved a significantly lower MSE of 2.3035, indicating a marked
enhancement compared to the rescaled result. In previous instances, the largest
percentage differences were found to be 55.87 and 15.13 respectively. Furthermore,
almost all results, exactly 78% when employing artificial neural networks for
forecasting, are contained within a 10% margin of error. The statistical analysis shows
that the accuracy of the ANN prediction is significantly better for the specified

condition than the scaled data when compared to the experimental results.

4.3.2.2. Film boiling of Forced Liquid-phase convection

To predict the result of film boiling over vertical surface, low superheat and forced
convection condition is also used. An experiment of Jouhara et al. [47] has been taken
to apply the ANN network. An experimental study was performed on transient film
boiling, using varying coolant velocities, on two spheres of different sizes, two
cylindrical specimens of different lengths in parallel flow, a cylinder in cross flow, and
two flat plates of different lengths. Using ANN network with input parameters led to
remarkable Nusselt number results. The below table compares experimental, scaled,

and predicted Nusselt numbers visually for few samples.
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Table 4.8: Comparison table for the total Nusselt number of experiment, scale
and ANN prediction for low superheat and forced liquid-phase convection for

a vertical cylinder

NSL Jasup Jasup Re, Gr, Nuexpetor  Nuscateror NUann,tor
1 0.196 0.0273 944 236000 31.236 29.486 29.905
2 0.204 0.0273 944 227000 30.4195 27.939 28.566
3 0.218 0.0382 915 216000 32.575 35.665 33.000
4 0.248 0.0273 944 194000 26.287 21.717 25.259
5 0.256 0.0382 915 188000 27.830 28.890 28.264
6 0.295 0.0382 915 164000 24.146 23.836 25.829

The table above displays the data chosen for prediction using ANN. The prediction
was correct, as the ANN network outperformed the scaled data, which was clearly
visible. Conducting an actual statistical comparison would provide greater insight into
the analysis. The MSE for the rescaled data was 7.0581, while the ANN predicted
result had a much lower MSE of 1.7980, showing a significant improvement over the
rescaled data. In past occasions, the biggest variations were identified as 17.38 and
8.15. Moreover, nearly all findings, specifically more than 92% with the use of
artificial neural networks for prediction, fall within the 8% margin of error. Statistical
analysis indicates that the accuracy of the ANN prediction is notably superior for the
specified condition compared to the scaled data in relation to the experimental

outcomes.

ANN prediction results show consistent accuracy in calculating Nusselt number for
various film boiling conditions examined over vertical surfaces. Mean Squared Error
measures proximity of regression line to data points by averaging squared errors,
indicating expected value of error loss. A column bar graph compares MSE of Scale
analysis and ANN prediction with experimental results for film boiling over vertical

flat plate for visual accuracy evaluation.
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Fig. 4.3: Mean Squared Error bar graph for the results from scale analysis

and ANN prediction comparing with the experimental data for film boiling

The optical visualization shows the comparison of accuracy in heat transfer calculation

between Scale analysis and ANN prediction for film boiling conditions. The ANN

predictions demonstrate superior precision in all conditions, outperforming the scale

analysis. Despite different network architectures for high and low wall superheat film

boiling, the ANN model consistently delivers better results. The variation in bar
heights indicates the reliability of the ANN model.
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Chapter 5

Conclusion

The overall thesis work is done in order to predict the heat transfer for different stages
of pool boiling, especially Nucleate boiling and Film boiling heat transfer. Calculation
of heat transfer in pool boiling is always a challenging problem either by
experimentally, analytically or numerically. The problem was well defined and the
solution procedure is analysed precisely. The obstacles for both the experimental and
scale analysis are mentioned. Thus the aim was to predict the heat transfer by numerical

simulation using Artificial Neural Network (ANN).

The results of the prediction are mentioned in the previous chapter. Although all the
tested dataset was separated from the trained ones, the network gives spectacular
outcomes for every conditions. This implies the accuracy and precision of the ANN
network model. The pictorial and the tabular representations report the visual results

for the three methods for solving the defined problems.

If the focus is on the statistical errors, then the variation of Mean Squared Errors is the
primary parameter to define the better method for heat transfer calculation. The overall
analysis evolves as the highest MSE amongst all the predictions is 2.3035, which is
statistically fine for a wide range of dataset. The minimum MSE amongst all those
operations is 0.0093, which is a remarkable outcome and describes about the closeness

of the ANN predicted result to the existing experimental results.

The accuracy and the precision of the ANN network can be described by the error band
calculated previously. The overall tested dataset stands in an extraordinary position in
case of the range of errors. Overall 93% tested data fall within a 10% margin of error
for the ANN model. Thus, the statistical approach states that the ANN is a very suitable

computational tool to predict the heat transfer for the problems mentioned earlier.
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The ANN is a very fast computational method by which the predictions can be made.
For the existing dataset, it can train, validate and test the as per requirements. It also
overcomes all the obstacles come in the way to solve heat transfer problem. It
overlapped the correctness of scale analysis and stands in a very close position to
experimental data. Such a computational model with fast processing and fine order of
accuracy would be very helpful in order to solve the problem related to boiling heat
transfer. The tool is very useful as it doesn’t have the difficulties of processing. The

network takes lesser time to forecast the outcome, which is a needy requirement.
Scope of Future work:

The present ANN model utilized a host of multiphase boiling problems of complex
nature with better accuracy as compared to existing correlations. Hence, the ANN
models can be used for prediction of heat transfer with problems with complexities in
geometry and/or physics, where experimental correlations show considerable error.
This method can also be utilized as a tool for solving other problems related to heat

transfer as well as fluid mechanics, where experimental data are not readily available.

Page | 56



References

1.

Yunus, A. C. (2003). Heat transfer: a practical approach. MacGraw Hill, New
York, 210.

Shojaeian, M., & Kosar, A. (2015). Pool boiling and flow boiling on micro-and
nanostructured surfaces. Experimental Thermal and Fluid Science, 63, 45-73.
Nukiyama, S. (1966). The maximum and minimum values of the heat Q transmitted
from metal to boiling water under atmospheric pressure. International Journal of
Heat and Mass Transfer, 9(12), 1419-1433.

Incropera, F. P., DeWitt, D. P.,, Bergman, T. L., & Lavine, A. S.
(1996). Fundamentals of heat and mass transfer (Vol. 6, p. 116). New York: Wiley.
Frederking, T. H. K., & Clark, J. A. (1963). Natural convection film boiling on a
sphere. In Advances in Cryogenic Engineering: Proceedings of the 1962 Cryogenic
Engineering Conference University of California Los Angeles, California August
14-16, 1962 (pp. 501-506). Springer US.

Rashidi, S., Hormozi, F., & Sarafraz, M. M. (2021). Fundamental and
subphenomena of boiling heat transfer. Journal of Thermal Analysis and
Calorimetry, 143, 1815-1832.

Theofanous, T. G., Tu, J. P., Dinh, A. T., & Dinh, T. N. (2002). The boiling crisis
phenomenon: Part I: nucleation and nucleate boiling heat transfer. Experimental
thermal and fluid science, 26(6-7), 775-792.

Mesler, R. (1982). Nucleate Boiling. Chemical Engineering Education, 16(4), 152-
156.

Xie, S., Beni, M. S., Cai, J., & Zhao, J. (2018). Review of critical-heat-flux
enhancement methods. International Journal of Heat and Mass Transfer, 122, 275-
289.

10.Van Ouwerkerk, H. J. (1972). Burnout in pool boiling the stability of boiling

mechanisms. International Journal of Heat and Mass Transfer, 15(1), 25-34.

11. Gottfried, B. S., Lee, C. J., & Bell, K. J. (1966). The Leidenfrost phenomenon: film

boiling of liquid droplets on a flat plate. International Journal of heat and mass
transfer, 9(11), 1167-1188.

Page | 57



12.Ramilison, J. M., & Lienhard, J. H. (1987). Transition boiling heat transfer and the
film transition regime.

13.Hara, T. (1963). The mechanism of nucleate boiling heat transfer. International
Journal of Heat and Mass Transfer, 6(11), 959-9609.

14.Katto, Y., & Yokoya, S. (1968). Principal mechanism of boiling crisis in pool
boiling. International Journal of Heat and Mass Transfer, 11(6), 993-1002.

15.Chin, P., Hwang, J. Y., & Lin, T. L. (1989). The mechanism of heat transfer in
transition boiling. International journal of heat and mass transfer, 32(7), 1337-
1349.

16. Ellion, M. E. (1953). A study of the mechanism of boiling heat transfer (Doctoral
dissertation, California Institute of Technology).

17.Berenson, P. J. (1961). Film-boiling heat transfer from a horizontal surface.

18. Liu, X., Zou, Q., & Yang, R. (2022). Theoretical analysis of bubble nucleation in
liquid film boiling. International Journal of Heat and Mass Transfer, 192, 122911.

19.Das, D. C., Ghosh, K., & Sanyal, D. (2015). A scale analysis model for film boiling
heat transfer on a vertical flat plate with wide applicability. International Journal
of Heat and Mass Transfer, 90, 40-48.

20. McAdams, W. H. (1954). Heat transmission (Vol. 3). New York: McGraw-hill.

21. Fujii, T., & Imura, H. (1972). Natural-convection heat transfer from a plate with
arbitrary inclination. International journal of heat and mass transfer, 15(4), 755-
767.

22.Yang, S. M. (2001). Improvement of the basic correlating equations and transition
criteria of natural convection heat transfer. Heat Transfer—Asian Research: Co-
sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer
Division of ASME, 30(4), 293-300.

23.Churchill, S. W., & Chu, H. H. (1975). Correlating equations for laminar and
turbulent free convection from a horizontal cylinder. International journal of heat
and mass transfer, 18(9), 1049-1053.

24. Tsubouchi, T., & Masuda, H. (1967). Heat transfer by natural convection from
horizontal cylinders at low Rayleigh numbers. Report of the Institute of High Speed
Mechanics, Tohoku University, 19, 205-219.

Page | 58



25. Tadrist, L., Combeau, H., Zamoum, M., & Kessal, M. (2020). Experimental study
of heat transfer at the transition regime between the natural convection and nucleate
boiling: Influence of the heated wall tilt angle on the onset of nucleate boiling
(ONB) and natural convection (ONC). International Journal of Heat and Mass
Transfer, 151, 119388.

26. Fujii, T., Takeuchi, M., Fujii, M., Suzaki, K., & Uehara, H. (1970). Experiments
on natural-convection heat transfer from the outer surface of a vertical cylinder to
liquids. International Journal of Heat and Mass Transfer, 13(5), 753-787.

27.Rohsenow, W. M. (1952). A method of correlating heat-transfer data for surface
boiling of liquids. Transactions of the American Society of Mechanical
Engineers, 74(6), 969-975.

28.Pioro, 1. (1997, September). Boiling heat transfer characteristics of thin liquid
layers in a horizontally flat two-phase thermosyphon. In Preprints of the 10th
International Heat Pipe Conference, Stuttgart, Germany (pp. 1-5).

29. Kruzhilin, G. N. (1947). Free-convection transfer of heat from a horizontal plate
and boiling liquid. Doklady AN SSSR (Reports of the USSR Academy of
Sciences), 58(8), 1657-1660.

30. Kutateladze, S. S., Borishanskii, V. M., & d JB, A. (2021). A concise encyclopedia
of heat transfer.

31.Labuntsov, D. A. (1973). Heat transfer problems with nucleate boiling of
liquids. Therm. Eng.(USSR)(Engl. Transl.), v. 19, no. 9, pp. 21-28.

32.Mostinski, I. L. (1963). Application of the rule of corresponding states for
calculation of heat transfer and critical heat flux. Teploenergetika, 4(4), 66-71.

33.Forster, H. K., & Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat
transfer. AIChE Journal, 1(4), 531-535.

34.Stephan, K., & Abdelsalam, M. (1980). Heat-transfer correlations for natural
convection boiling. International Journal of Heat and Mass Transfer, 23(1), 73-
87.

35. Cooper, M. G. (1984). Heat flow rates in saturated nucleate pool boiling-a wide-
ranging examination using reduced properties. In Advances in heat transfer (Vol.
16, pp. 157-239). Elsevier.

Page | 59



36. Gorenflo, D. (1997). VDI-Heat At las. VDI-Verlag, Duesseldorf, Germany.

37.Ciloglu, D. (2017). An experimental investigation of nucleate pool boiling heat
transfer of nanofluids from a hemispherical surface. Heat Transfer
Engineering, 38(10), 919-930.

38. Kutateladze, S. S. (1951). Hydrodynamic theory of changes in the boiling process
under free convection conditions. Izv. Akad. Nauk. SSSR, Otd. Tekh. Nauk., 4, 529.

39.Rohsenow, W. M., & Griffith, P. (1955). Correlation of maximum heat flux data
for boiling of saturated liquids. Cambridge, Mass.: Massachusetts Institute of
Technology, Division of Industrial Cooperation, [1955].

40. Zuber, N. (1959). Hydrodynamic aspects of boiling heat transfer (thesis) (No.
AECU-4439). Ramo-Wooldridge Corp., Los Angeles, CA (United States); Univ.
of California, Los Angeles, CA (United States).

41.Ali, B. M. (2024). An Experimental Study of Heat Transfer in Pool Boiling to
Investigate the Effect of Surface Roughness on Critical Heat
Flux. ChemEngineering, 8(2), 44.

42.Bromley, L. A. (1949). Heat transfer in stable film boiling (Vol. 2295). US Atomic
Energy Commission, Technical Information Division.

43. Shiotsu, M., & Hama, K. (2000). Film boiling heat transfer from a vertical cylinder
in forced flow of liquids under saturated and subcooled conditions at
pressures. Nuclear engineering and design, 200(1-2), 23-38.

44.Vijaykumar, R., & Dhir, V. K. (1992). An experimental study of subcooled film
boiling on a vertical surface—hydrodynamic aspects.

45. Okkonen, T., Wennerstrom, H., Hedberg, S., Blomstrand, J., Sehgal, B. R., & Frid,
W. (1996). Film boiling on a long vertical surface under high heat flux and water
subcooling conditions (No. CONF-960815-). American Inst. of Chemical
Engineers, New York, NY (United States).

46. Meduri, P. K., Warrier, G. R., & Dhir, V. K. (2009). Wall heat flux partitioning
during subcooled forced flow film boiling of water on a vertical

surface. International journal of heat and mass transfer, 52(15-16), 3534-3546.

Page | 60



47.Joubhara, H., & Axcell, B. P. (2009). Film boiling heat transfer and vapour film
collapse on spheres, cylinders and plane surfaces. Nuclear engineering and
design, 239(10), 1885-1900.

48.Dhir, V. K., & Purohit, G. P. (1978). Subcooled film-boiling heat transfer from
spheres. Nuclear Engineering and Design, 47(1), 49-66.

49. Kobayasi, K. (1965). Film boiling heat transfer around a sphere in forced
convection. Journal of Nuclear Science and Technology, 2(2), 62-67.

50.de Malmazet, E., & Berthoud, G. (2009). Convection film boiling on horizontal
cylinders. International journal of heat and mass transfer, 52(21-22), 4731-4747.

51. Sakurai, A., Shiotsu, M., & Hata, K. (1986). Effect of subcooling on film boiling
heat transfer from horizontal cylinder in a pool of water. In International Heat
Transfer Conference Digital Library. Begel House Inc..

52.Kohli, S., Miglani, S., & Rapariya, R. (2014). Basics of artificial neural
network. International Journal of Computer Science and Mobile Computing, 3(9),
745-751.

53.Dongare, A. D., Kharde, R. R., & Kachare, A. D. (2012). Introduction to artificial
neural network. International Journal of Engineering and Innovative Technology
(IJEIT), 2(1), 189-194.

54. Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural
network (ANN) modeling and its application in pharmaceutical research. Journal
of pharmaceutical and biomedical analysis, 22(5), 717-727.

55.Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis
of multilayer perceptrons with multiple hidden neurons and hidden
layers. International Journal of Computer Theory and Engineering, 3(2), 332-337.

56. Asadollahfardi, G., & Asadollahfardi, G. (2015). Artificial neural network. Water
Quality Management: Assessment and Interpretation, 77-91.

57.Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks. leee
Potentials, 13(4), 27-31.

58. Sheela, K. G., & Deepa, S. N. (2013). Review on methods to fix number of hidden
neurons in neural networks. Mathematical problems in engineering, 2013(1),
425740.

Page | 61



59.Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis
of multilayer perceptrons with multiple hidden neurons and hidden
layers. International Journal of Computer Theory and Engineering, 3(2), 332-337.

60. Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network.
In Neural networks for perception (pp. 65-93). Academic Press.

61.Burden, F., & Winkler, D. (2009). Bayesian regularization of neural
networks. Artificial neural networks: methods and applications, 23-42.

62. Abbas, Q., Bangyal, W. H., & Ahmad, J. (2013). The impact of training iterations
on ANN applications using BPNN algorithm. International Journal of Future
Computer and Communication, 2(6), 567.

63.Yan, D., Zhou, Q., Wang, J., & Zhang, N. (2017). Bayesian regularisation neural
network based on artificial intelligence optimisation. International Journal of
Production Research, 55(8), 2266-2287.

64.Sapna, S., Tamilarasi, A., & Kumar, M. P. (2012). Backpropagation learning
algorithm based on Levenberg Marquardt Algorithm. Comp Sci Inform Technol
(CSand IT), 2, 393-398.

65. Yu, H., & Wilamowski, B. M. (2018). Levenberg—marquardt training. In Intelligent
systems (pp. 12-1). CRC Press.

66.Luo, X. L., Liao, L. Z., & Wah Tam, H. (2007). Convergence analysis of the
Levenberg—Marquardt method. Optimization Methods and Software, 22(4), 659-
678.

67.Pundhir, S., Kumari, V., & Ghose, U. (2022, April). Performance Interpretation of
Supervised Atrtificial Neural Network Highlighting Role of Weight and Bias for
Link Prediction. In International Conference on Artificial Intelligence and
Sustainable Engineering: Select Proceedings of AISE 2020, Volume 1 (pp. 109-
119). Singapore: Springer Nature Singapore.

68. Braspenning, P. J., Thuijsman, F., & Weijters, A. J. M. M. (1995). Artificial neural
networks: an introduction to ANN theory and practice. Springer Verlag.

69.Liu, F., & Yang, M. (2005, December). Verification and validation of artificial
neural network models. In Australasian Joint Conference on Artificial

Intelligence (pp. 1041-1046). Berlin, Heidelberg: Springer Berlin Heidelberg.

Page | 62



70. Ertunc, H. M. (2006). Prediction of the pool boiling critical heat flux using artificial
neural network. IEEE Transactions on Components and Packaging
Technologies, 29(4), 770-777.

71.Hakeem, M. A., Kamil, M., & Asif, M. (2014). Prediction of boiling heat transfer
coefficients in pool boiling of liquids using artificial neural network.

72.Zarei, M. J., Ansari, H. R., Keshavarz, P., & Zerafat, M. M. (2020). Prediction of
pool boiling heat transfer coefficient for various nano-refrigerants utilizing
artificial neural networks. Journal of Thermal Analysis and Calorimetry, 139,
3757-3768.

Page | 63



