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Chapter 1 

 

Introduction 

 

1.1. Background 

 

Boiling heat transfer, especially Pool boiling is one of the most crucial mechanisms in 

heat transfer. Pool boiling is the boiling process that takes place on a solid surface 

immersed in a liquid, typically water, due to a temperature difference between the 

surface and the liquid. Pool boiling occurs when there is no bulk motion of the fluid. 

In pool boiling, the fluid remains stationary and any movement within the fluid is 

caused by the natural convection flow. The reason it is referred to as "pool" boiling is 

because vapour bubbles develop and accumulate on the heated surface before 

separating and moving upwards through the liquid. Pool boiling is a crucial occurrence 

in a variety of industrial applications, such as power production, refrigeration, cooling 

for electronics, nuclear reactions and some other engineering applications [1]. 

Comprehending and managing pool boiling can enhance the effectiveness and 

functionality of the above systems. Nucleate pool boiling is the most important stage 

of pool boiling. The involvement of forced convection, phase change, presence of two 

phases and high rate of heat flux are present here. The significance of nucleate boiling 

comes from its capacity to eliminate large amounts of heat in a short amount of time 

and space from a heated surface, achieving this heat transfer with minimal thermal 

force. The process is used in a range of energy conversion and heat exchange systems 

due to its effectiveness. 

 

Another important regime, which is in a highlight, is the film boiling regime. In this 

region, the involvement of high temperature, conduction-convection through vapour 

film and thermal radiation across the vapour film is present. Film boiling is not widely 

used commercially due to the undesirability of high temperatures. However, film 



Page | 2  
 

boiling is an inevitable mode of boiling heat transfer for severe accident of nuclear 

plants, quenching of components from high temperature etc. 

 

In order to understand the pool boiling mechanism, it is necessary to know about the 

pool boiling curve, pool boiling regimes and the stages of the bubble formation.  

 

1.1.1. Pool Boiling Curve 

 

During the initial stages of investigating heat transfer, scientists witnessed how liquids 

reacted to being heated. It was observed that when a liquid is heated above a specific 

temperature, it begins to boil and bubbles form on the surface being heated. The 

temperature difference between the heated surface or wall and the liquid is referred as 

wall superheat or excess temperature. As the wall superheat increases, there is a 

continuous variation in the heat flux from the heating surface. The nature of variation 

can be shown by a curve, called “Pool boiling curve” [2], which was proposed by 

Nukiyama [3]. The boiling curve in the figure shows the different regimes based on 

heat flux and excess temperature. It was noticed that the bubble formation increased 

with increasing the degree of superheat. Although the pool boiling curve, which is 

shown in the Fig. 1.1, represents water at 1 atm pressure, the overall shape of the 

boiling curve is consistent across various other liquids or coolants. The curve shows 

different stages (natural convection, nucleate boiling, transition boiling, film boiling), 

with each stage having unique heat transfer mechanisms and surface temperature 

variations. 
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Fig. 1.1: Pool Boiling Curve at 1atm Pressure 

 

From the above figure, those stages, nature of heat flux with the wall superheat can be 

observed easily. Factors such as liquid properties, surface roughness, pressure, and 

initial temperature determine the shape and position of the pool boiling curve. 

Measuring heat flux and surface temperature under controlled conditions is necessary 

for the experimental determination of the curve. 

 

1.1.2. Pool Boiling Regimes 

 

The pool boiling curve is separated into four distinct regions based on the excess 

temperature and there is a continuous change in heat flux throughout all the four 

regimes [4]. Variations in pool boiling regimes, such as nucleate boiling and film 

boiling, occur as heat transfer mechanisms and fluid dynamics shift with increasing 

heat flux on a heated surface. Different types of boiling regimes in a pool are necessary 

for maximizing heat transfer, creating heat exchangers, and ensuring the safe 

functioning of systems that involve boiling liquids. The regimes are as follows: 
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i. Natural Convection Boiling- ΔTsat < 5°C 

ii. Nucleate Boiling- 5°C < ΔTsat < 30°C 

iii. Transition Boiling-  30°C < ΔTsat < 200°C 

iv. Film Boiling-  200°C < ΔTsat 

These four regimes can be obtained by increasing the wall superheat gradually. Due to 

the wall superheat, heat flux changes continuously. The highest amount of heat flux is 

achieved in the nucleate boiling stage. Thus, it is more efficient to run the boiler in this 

mode to maximize heat transfer and heat flow. The Fig. 1.2 describes the nature of 

water pool for boiling. 

 

 

 

 

(a) Natural Convection Boiling (b) Nucleate Boiling 

  

(c) Transition Boiling (d) Film Boiling 

Fig. 1.2: Different Pool Boiling Regimes 
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The above figures show the nature of bubble formation with increasing the wall 

temperature for the different regimes of pool boiling. The physical significance of each 

regimes of pool boiling are mentioned below in details: 

 

A. Natural Convection Boiling: For pure substances to boil in heat transfer, a specific 

condition must be met, i.e., wall temperature equals the saturation temperature. 

However, boiling typically doesn't happen until the liquid is heated slightly above 

its saturation temperature in actual experiments. In order to maintain the creation 

of vapour, the temperature of the surface needs to be slightly higher than the 

saturation temperature. When the liquid is heated above its boiling point (for water 

its 100°C), the heat is exchanged between the wall and the liquid with no bubbles 

forming. The liquid near the surface wall heats up slightly above its boiling point 

and turns into vapour at the boundary between liquid and gas. Initially, there is a 

small temperature difference (< 5°C) resulting in a small heat flux. Bubble 

formation will happen once the superheat temperature rises, but before point A in 

Fig. 1.1, the movement of fluid is mainly influenced by single phase natural 

convection currents. Thus, this region is known as the Natural Convection Boiling 

region of boiling curve [5], which is characterized by a small temperature 

difference and the heat is transferred through convective flowing movements in the 

liquid. 

 

B. Nucleate Boiling: Point A in Fig. 1.1 is the beginning of nucleate boiling, when 

bubbles start to develop and separate from a heated surface in a liquid. It is an 

important step during boiling when the temperature at the interface between solid 

and liquid exceeds the saturation temperature of the liquid. In simple words, when 

the liquid is heated, the temperature increases until small bubbles begin to form at 

specific points on the heated surface. These bubbles subsequently disconnect and 

float upwards in the liquid, taking heat with them. This is the process of nucleate 

boiling [6]. Prior to this moment, the liquid could be warmed up, however, it stays 

quite tranquil with no visible signs of bubbling. It is commonly known as the Onset 

of Nucleate Boiling (ONB) [7]. 
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Nucleate boiling involves the creation of steam bubbles on a surface to transfer heat 

into a fluid flow, enhancing heat transfer. The process begins when bubbles form 

at specific locations referred to as Nuclei [8]. These bubbles implode upon contact 

with the liquid, creating turbulence that further increases heat transfer. The increase 

in heat flux with wall superheat leads to the rapid rise of bubbles towards the 

surface until reaching the Critical heat flux (CHF) [9] point, where the heat flux 

reaches its maximum. For nucleation to occur, the liquid must be superheated, with 

two types of nuclei possible: high-energy molecule clusters or voids caused by 

pressure changes within the liquid, or voids on external surfaces created by foreign 

materials. Nucleate boiling is an important area for technical applications due to its 

ability to transfer thermal energy efficiently, but the heat flux cannot be 

continuously increased beyond the CHF point. 

 

In the Nucleate boiling zone, critical heat flux is the maximum heat flux and a 

threshold phenomenon. To increase heat transfer, liquid must be continuously 

heated, but vapor blocking prevents absorption of heat, leading the heater surface 

to absorb heat instead. The surface absorbs excess energy from temperature rise, 

releasing it with further temperature increase. The surface can't handle more heat 

and may not reach the point to turn off before turning to liquid, known as Burnout 

[10]. CHF is burnout heat flux, and most heaters operate below this level to avoid 

catastrophic results. Metals with high melting points can help prevent burnout, but 

it's not a concern for cryogenic applications. 

 

Further increasing the temperature after CHF may result in burnout, which can 

impede the surface's ability to effectively release heat and potentially lead to 

equipment breakdown. In order to prevent this, the majority of boiling processes 

work at levels lower than CHF to ensure consistent heat transfer and avoid the risk 

of burnout.  
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C. Transition Boiling: After passing point C, there is a noticeable shift in heat transfer 

with a steep drop in heat flow as the surface temperature increases from 30°C to 

200°C. The reduction is caused by the creation of a vapour layer between the hot 

surface and the liquid. After surpassing the Critical Heat Flux (CHF), there is a 

quick shift from efficient nucleate boiling to ineffective film boiling. Point D, 

named the Leidenfrost point [11], signifies the point at which liquid droplets float 

above the surface without touching it directly. This vapour film that is not steady 

can cause fluctuations in heat transfer and interrupt the boiling process, known as 

Transition boiling or Unstable film boiling [12]. When the heat flux decreases 

below the Leidenfrost point, the film will break, resulting in the reappearance of 

nucleate boiling, also referred to as Return to Nucleate Boiling (RNB) [13]. The 

transition from nucleate to film boiling is known as Boiling crisis or Departure from 

Nucleate Boiling (DNB) [14], occurring when heat flux exceeds a critical limit. 

Film boiling leads to a significant decrease in heat transfer effectiveness, resulting 

in a quick rise in surface temperature, potentially causing surface burnout or 

equipment malfunction. 

 

D. Film Boiling: After the Leidenfrost point, heat flux results in a complete surface 

coverage with a film of vapour. This greatly decreases the rate of heat transfer 

through convection [15]. In this case, the heat transfer occurs through both radiation 

and conduction to the vapour. This region in the pool boiling is known as Film 

Boiling [16]. Film boiling occurs when the system pressure decreases or the flow 

rate is reduced. In this situation, the bubbles are unable to escape the heat transfer 

surface rapidly [17]. Similarly, raising the temperature of the heat transfer surface 

results in the formation of additional bubbles. When the excess temperature rises 

(more than 200°C), a greater number of bubbles are produced that cannot be 

effectively removed. The bubbles increase in size and cluster, coating small 

sections of the heat transfer surface with a layer of steam [18]. Film boiling serves 

as a barrier between heat surfaces and liquids, crucial for precise thermal control 

and efficient heat transfer in technical applications. Its essential role in industrial 
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and scientific fields lies in managing high thermal loads and regulating heat 

effectively. 

 

1.1.3. Film boiling in vertical flat plate 

 

Film boiling on a vertical flat plate can be observed fwith the presence of stable vapour 

film. By applying heat on a vertical flat plate, the motion of the vapour goes upwards, 

while the bulk liquid stays stationary. The film boiling can be accommodated as 

subcooled, saturated and superheated conditions. The qualitative velocity and the 

temperature profile under film boiling in vapour and liquid phases are shown Fig. 

1.3a). The vapour film goes upwards with a wavy form which is shown in Fig. 1.3 (b). 

A schematic diagram is shown in the below figure to organize the flow nature which 

is taken from Das et al. [19]. 

 

 

 

Fig. 1.3: Film boiling in Vertical Flat Plate 
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1.2. Objective and Motivation 

 

Pool boiling is a highly effective technique for heat dissipation in industrial 

environments because the boiling liquid can reach high heat fluxes while keeping wall 

superheat temperatures low (i.e. the temperature difference between the surface being 

heated and the fluid). The different stages of pool boiling can be observed by the 

physical changes of the liquid pool with changing the temperature. Natural convection 

boiling, Nucleate boiling and Film boiling can be analysed by several experimental 

results and multiple empirical correlations as well. But, sometimes there are few 

difficulties appear in order to analyse the pool boiling heat transfer experimentally, 

such as some external and environmental influences and high set-up cost for 

experiments. Some of the major difficulties come while solving the heat transfer 

problem in pool boiling are mentioned below: 

 

A. Multi-Physics Nature: Pool boiling includes various physical processes like fluid 

dynamics, heat transfer, phase change (boiling and condensation), and occasionally 

radiation. Combining these various elements into a cohesive mathematical 

framework can be complicated and necessitates thorough examination of the role 

of each phenomenon. 

 

B. Phase Change Dynamics: Boiling is a process in which liquid turns into vapour 

on a heated surface. Accurately representing this phase transition requires a 

thorough comprehension of factors like bubble formation, expansion, detachment, 

and their interaction with the surrounding liquid. It can be difficult to capture these 

dynamics in simulations or analytical models, especially when dealing with varying 

heat fluxes and surface conditions. 

 

C. Variation of Heat Transfer Coefficient: The rate at which heat is transferred 

while boiling can change greatly based on factors like temperature, pressure, 

surface roughness, and liquid characteristics. Accurately forecasting these changes 
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in various situations (such as nucleate boiling, transition boiling, and film boiling) 

is crucial but difficult because they rely on local parameters. 

 

D. Flow Regimes and Instabilities: Boiling processes can shift between nucleate 

boiling, transition boiling, and film boiling, each characterized by different heat 

transfer methods. Anticipating these changes with precision and comprehending 

the circumstances in which they happen (such as critical heat flux) is crucial but 

can be difficult because of the intricate connection between physical factors and 

fluid dynamics. 

 

E. Experimental Challenges: Performing experiments to confirm models and 

theories of pool boiling can be complex and require a lot of resources. Precisely 

managing experimental conditions such as pressure, heat flux, and surface 

conditions is necessary to isolate specific phenomena or regimes, which demands 

advanced experimental setups and meticulous data analysis. 

 

Surface effects, scale effects, and numerical simulation through CFD contribute to the 

complexity of solving heat transfer problems. Empirical correlations, such as heat flux, 

Heat Transfer Coefficient (HTC), and Nusselt number (Nu), also involve uncertainty 

when predicting heat transfer nature and amount. These correlations vary in accuracy 

based on the liquid analysed, geometry, physical properties, and other conditions, 

leading to an inherent uncertainty in determining heat transfer rate and efficiency. 

Extensive research and practical experience over a century have not fully explained 

the complexities of pool boiling heat transfer. Theories on boiling phenomena have not 

been very useful, so practical calculations heavily rely on empirical correlations from 

experiments. Global research on boiling phenomena is ongoing to further understand 

this area. 

Further analysis is needed to predict pool boiling efficiency with liquids and coatings, 

and the correlation between heat flux and superheat. Experimental difficulties and 

uncertain correlations complicate analysis. Overcoming challenges in pool boiling heat 
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transfer analysis is crucial. Solving numerically can help find solutions for heat transfer 

in pool boiling. 

This thesis work is taken up to overcome the above obstacles for analysing the heat 

transfer for pool boiling. The objective of the thesis is to predict the Nusselt number 

with better accuracy for different pool boiling regimes for different conditions than the 

standard empirical correlations through non-dimensional analysis and to compare 

those results with the experimental results. The aim of the thesis is to fulfil the research 

gap found in order to solve the problems on pool boiling heat transfer, especially the 

nucleate pool boiling and film boiling (both pool boiling and flow film boiling). The 

whole thesis work is based on the prediction of heat transfer using artificial neural 

network (ANN). 

 

1.3. Literature Review 

 

Numerous scientists and researchers have conducted experiments to study pool boiling 

behaviour and performance, leading to the development of experimental methods and 

theoretical models. Trials were done to analyse heat transfer, temperature differences, 

bubble movements, and surface properties under various conditions. Mathematical 

models were created to explain heat transfer processes, taking into account factors like 

surface roughness, fluid characteristics, and thermodynamic states. A wide range of 

literature exists that provides analytical or numerical analysis for comparison and 

further research on enhancing boiling heat transfer. 

McAdams [20] developed a natural convective heat transfer relationship using 

experimental data from vertical plates and large diameter tubes. The model is based on 

scale analysis of boundary equations, Boussinesq approximation, and boundary layer 

approximation. The equations that are commonly utilized are as follows: 

           𝑁𝑢 = 0.148 𝑅𝑎1/3                      1010 <  𝑅𝑎 <  1011                        (1.1) 

          𝑁𝑢 = 0.48 𝑅𝑎1/4                       104 <  𝑅𝑎 <  109                        (1.2)                                 
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Fujii et al. [21] developed a correlation for determining the Nusselt number in natural 

convection by the experimental study from a plate heated upwards to establish the 

relationship between heat flux and wall superheat. The correlation is shown as the heat 

flux against the superheat.  

                                                𝑞" =  0.16 𝑘𝑙 [
𝑔𝛽

𝜈𝛼𝑙
]
1/3

𝛥𝑇4/3                              (1.3) 

Based on scale analysis of cylindrical boundary layer equations, Yang [22] 

recommended including the length to diameter ratio in a dimensionless group for 

natural convective heat transfer from a slender cylinder. He suggests a universal 

correlation equation for both laminar and turbulent zones, which is as follows: 

           𝑁𝑢 =  {0.60 (
D

L
)
1/2

+  0.387 [
𝑅𝑎

[1 +(0.492/Pr)9/16 ]
16/9]

1/6

}

2

        (1.4)                         

Numerous correlations have been presented after extensive studies on natural 

convection from a horizontal cylinder to determine the heat transfer coefficient. 

Churchill et al. [223 proposed a single correlation using various Rayleigh numbers as: 

                                  𝑁𝑢 = {0.60 + 
0.387 𝑅𝑎1/6

[1 +(0.599/𝑃𝑟)9/16 ]
8/27}

2

                                 (1.5)      

Tsubouchi [24] presented a relationship for laminar natural convection over a range of 

Rayleigh numbers from 10−6 to 10−9. The correlation is shown below: 

𝑁𝑢 = 0.36 + 0.048 𝑅𝑎0.125 + 0.52 𝑅𝑎0.25                                        (1.6) 

Tadrist et al. [25] conducted an experiment on natural convection boiling to investigate 

the heat transfer in transition regime between natural convection and nucleate boiling. 

Therefore, they have compared the result with the correlation of Fujii et al. [21] 

described in Eq. (1.3). 

 

Obtaining high-quality experimental data on natural convection heat transfer from 

slender tubes, specifically in water, is challenging. Fujii [26] conducted research on 

natural convection heat transfer from a vertical cylinder to water, measuring local heat 
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transfer coefficients during laminar to turbulent flow transitions. "Quasi-steady state" 

was identified as similar to steady state in heat transfer coefficients. 

 

Nucleate boiling heat transfer is analysed several times and multiple number of 

experiments have been done on it. This is the most important region amongst the four 

stages. Many studies have been done and some impressive results has come out. 

Rohsenow [27] developed generalized a heat transfer correlation for surface boiling in 

liquids which includes the surface effects.  

                                 𝑞" =  µ𝑙ℎ𝑓𝑔 [
𝑔(𝜌𝑙−𝜌𝑣)

𝜎
]
1/2

(
𝑐𝑝𝑙 𝛥𝑇

𝐶𝑠𝑓ℎ𝑓𝑔𝑃𝑟𝑙
𝑛)

3

                                  (1.7) 

The correlation has the arbitrary constant 𝐶𝑠𝑓 and the exponent n to account for the 

properties of the nucleation of any particular liquid-surface combination. They are 

determined experimentally. 

There were some possibilities to modify the Rohsenow’s [27] correlation. Pioro [28] 

had done the same. He modified the constant terms in Rohsenow’s [27] correlation and 

expressed as: 

           
ℎ 𝑙∗

𝑘
= 𝐶𝑠𝑓

∗  {
𝑞"

ℎ𝑓𝑔𝜌𝑔
0.5[𝜎𝑔(𝜌𝑙−𝜌𝑣)]

0.25
}
2/3

𝑃𝑟𝑚                                           (1.8) 

where 𝐶𝑠𝑓
∗  is the constant, depended upon the nature of the heating surface–fluid 

combination and m is the power the properties of the nucleation. 

Kruzhilin [29] suggested the correlation without making any specific efforts to 

consider the surface property, which is as follows: 

ℎ 𝑙∗

𝑘
= 0.082 (

ℎ𝑓𝑔𝑞"

𝑔(𝑇𝑠𝑎𝑡)𝑘

𝜌𝑣

(𝜌𝑙−𝜌𝑣)
)
0.7

(
𝑇𝑠𝑎𝑡𝑐𝑝𝑙𝜎𝜌𝑙

ℎ𝑓𝑔
2 𝜌𝑣

2𝐷
)
0.33

𝑃𝑟−0.45               (1.9) 

Kutateladze et al. [30] simplified Kruzhilin's [29] correlation while sacrificing some 

accuracy and development developed a formula for heat transfer coefficient in boiling 

scenarios. In most of the cases, the latent heat of vaporization is one of the most 

important parameters in the correlation. 
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ℎ 𝑙∗

𝑘
 = 0.44 (

10−4𝑞"𝑝

𝑔ℎ𝑓𝑔𝜌𝑣

𝜌𝑙

𝜌𝑙−𝜌𝑣
)
0.7

 𝑃𝑟0.35                                                       (1.10) 

Labuntsov [31] discovered the correlation that doesn't depend on the input of latent 

heat of vaporization. The correlation is expressed below in terms of the boiling heat 

transfer coefficient in nucleate boiling: 

ℎ = 0.075 [1 + 10 (
𝜌𝑣

(𝜌𝑙−𝜌𝑣)
)
0.67

] (
𝑘2

𝜈𝜎(𝑇𝑠𝑎𝑡)
)
0.33

𝑞"0.67                (1.11) 

Mostinki [32] dismissed the surface effects and applied the principle for the respective 

states of pool boiling heat transfer and proposed a correlation including the reduced 

pressure and the critical pressure of the fluid.  

ℎ = 0.00417 𝑞"0.7𝑃𝑐
0.69𝐹𝑃𝐹                                                                            (1.12)  

Where 𝐹𝑃𝐹 is a non-dimensional correction factor that characterizes the pressure effect 

on nucleate boiling. 

A dynamic analysis of vapor bubbles was done by Foster, et al. [33], describing the 

nature of heat flux due to saturation pressure and temperature. The bubble radius and 

the bubble growth velocity hold important role here. They suggested the following 

correlation: 

𝑞" =  0.00122 
𝑘0.79𝑐𝑝𝑙

0.45𝜌𝑙
0.49

𝜎0.5𝜇𝑙
0.29ℎ𝑓𝑔

0.24𝜌𝑣
0.24 ∆𝑇1.24∆𝑃𝑠𝑎𝑡

0.75                                  (1.13) 

The most important feature of this correlation is supposed to be same for different types 

of fluids. The correlation holds an accuracy within ±30%.  

Stephan, et al. [34] suggested four specific relationships utilizing a statistical multiple 

regression method for analysing water, refrigerants, organics, and cryogens. From 

those, the correlation for water is mentioned below: 

ℎ = 207 (
𝑘𝑙

𝐷𝑏
) (

𝑞"𝐷𝑏

𝑘𝑙𝑇𝑠𝑎𝑡
)
0.745

(
𝜌𝑣

𝜌𝑙
)
0.581

𝑃𝑟0.533                                      (1.14) 

The physical characteristics of the liquid are examined at the saturation temperature 

and therefore are considered to be. These correlations based on physical properties. 

They suggested the correlations for refrigerants whose average deviation was 10.6% 

within the decreased pressure range of 0.003-0.78. 
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Cooper [35] developed a precise correlation for predicting heat transfer in nucleate 

pool boiling by examining the relationship between heat transfer efficiency, heat flux, 

pressure, liquid molecular weight, and surface roughness. Increased roughness on a 

surface leads to higher nucleate boiling heat transfer. Surface roughness can be affected 

by fouling, corrosion, and oxidation. 

ℎ = 55.17 (
𝑃𝑠𝑎𝑡

𝑃𝑐
)
0.12− 𝑙𝑜𝑔10

𝑅𝑝

0.4
(−𝑙𝑜𝑔10

𝑃𝑠𝑎𝑡

𝑃𝑐
)
−0.55

𝑀−0.5𝑞"𝑚    (1.15) 

Where m is an exponent use to compensate the relation between the heat flux and heat 

transfer coefficient. 

Gorenflo [36] proposed a fluid-specific correlation for reduced pressure, impacting 

heat transfer coefficient during nucleate boiling. Surface texture, pressure, roughness, 

and temperature affect the flux calculation. 

ℎ =  ℎ0 𝐹𝑃𝐹 (
𝑞"

20000
)
𝑛𝑓

𝑅𝑎0.133                                                                       (1.16) 

Where nf is an exponent use to compensate the relation between the heat flux and heat 

transfer coefficient. 

 

There are numerous number of experiments that describe the heat transfer in nucleate 

pool boiling. A recent experiment was done by Ciloglu [37] for nanofluids in 

hemispherical surface. Thus, the result of the experiment was compared with the most 

widely used nucleate boiling correlation of Rohsenow [27] described in Eq. (1.8). 

 

Over the years, numerous researchers have tried to forecast CHF using different 

models and equations. A lot of these models have been proven to be lacking in 

completely capturing the essence of CHF, so a unified theory and governing equation 

still need to be developed. This shows how intricate the driving forces are in pool 

boiling events. 

Kutateladze [38] suggested that the critical heat flux is caused by a hydrodynamic 

instability when the velocity of the vapour phase reaches a critical value. Following 

dimensional analysis, he suggested the correlation mentioned below: 
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𝑞"𝐶𝐻𝐹 = 0.16 ℎ𝑓𝑔𝜌𝑣
1/2[𝜎𝑔(𝜌𝑙 − 𝜌𝑣)]

1/4                                             (1.17) 

Rohsenow et al. [39] proposed that a higher amount of bubbles formed during high 

heat fluxes hinders the movement of liquid towards the heated surface. They suggested 

the following correlation: 

𝑞"𝐶𝐻𝐹 = 0.012 ℎ𝑓𝑔𝜌𝑣 (
𝑔𝑙

𝑔
)
1/4

[
𝜌𝑙−𝜌𝑣

𝜌𝑣
]
0.6

                                              (1.18) 

Zuber [40] suggested that as hydrodynamic critical heat flux is approached, instability 

occurs between the vapour flow moving away from the heated surface and the liquid 

towards the surface. He also proposed that vapour patches are created and destroyed 

on the heater's surface due to Taylor and Helmholtz instabilities being responsible for 

CHF. He devised a mathematical expression resembling Kutatelazde's [38] equation. 

This is the most widely used correlation proposed by him for horizontal surfaces of 

infinite extent. It is as follows: 

𝑞"𝐶𝐻𝐹 = 0.131 𝜌𝑣ℎ𝑓𝑔 [
𝜎(𝜌𝑙−𝜌𝑣)𝑔

𝜌𝑣
2

]
1/4

(1 +
𝜌𝑣

𝜌𝑙
)
1/4

                           (1.19) 

Critical heat flux has been analysed with some experiment keeping the surface 

roughness as the primary criteria. Ali [41] has investigated the same with an 

experiment and compared the results with some standard pool boiling correlations.  

 

Transition boiling heat transfer occurs after the curve reached the CHF. The slope of 

the curve suddenly decreases. Till now, there are no such correlation perfectly 

describing the nature or behaviour or the rate of heat transfer in transition boiling 

regime. 

 

The Leidenfrost point is the transition from unstable film boiling to the stable film 

boiling. It is the lower limit of film boiling heat transfer, where heat flux reaches the 

minimum value. Zuber [40] also derived the following correlation for calculating the 

minimum heat flux for a large horizontal plate: 



Page | 17  
 

𝑞"𝑚𝑖𝑛 = 0.09 𝜌𝑣ℎ𝑓𝑔 [
𝜎𝑔(𝜌𝑙−𝜌𝑣)

(𝜌𝑙+𝜌𝑣)
2
]
1/4

                                                        (1.20) 

The effect and heat transfer in film boiling was analysed so many times by many 

researchers. This regime depends on the fluid used, surface geometry and some other 

conditions.  

 

One of the most widely used correlation of pool boiling was proposed by Bromley 

[42]. He introduced an early concept for pool film boiling on outer surfaces utilizing 

Nusselt's film condensation theory and data gathered from experiments on tubes 

positioned horizontally. He expressed the heat transfer coefficient as: 

ℎ = 𝐶 [
𝑔𝜌𝑣ℎ"𝑓𝑔𝑘𝑣

3(𝜌𝑙−𝜌𝑣)

∆𝑇𝜇𝑣𝐷
]
1/4

                                                                         (1.21) 

Where, C= 0.62 for cylinder 

  C= 0.67 for sphere 

  And    ℎ"𝑓𝑔 =  ℎ𝑓𝑔 + 0.5 𝑐𝑝𝑣(𝑇𝑤 − 𝑇𝑠𝑎𝑡)                                              (1.22)  

  

Over the years, there are extensive researches have been done based on the experiments 

of film boiling heat transfer for vertical surfaces [43-51] including vertical flat plates.  

                                

Correlations for estimating heat transfer are empirically derived from experimental 

data, with variables like surface geometry, fluid properties, and operating conditions 

influencing the selection. While helpful for estimation, accuracy varies, requiring 

validation with experimental data. 

 

1.4. Organization of the Thesis 

 

This thesis work is organized in such a manner that it contains the following chapters 

and covers the below topic for the purpose of fulfilling all the criteria for successful 

completion: 
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 Introduction: This chapter contains the following topics: 

 

 Background: It describes overview, importance and all the important 

phenomena related to the pool boiling heat transfer. 

 

 Objective and Motivation: The research gap containing existing 

methodologies and the motive and aim to solve the heat transfer problem 

related to pool boiling heat transfer. 

 

 Literature Review: The theoretical concepts, the previous and existing 

works, the experimental and analytical representations are shown here. 

 

 Scale Analysis of Pool Boiling and Film Boiling heat transfer: The analytical 

approaches based on single phase natural convection, nucleate boiling and film 

boiling are shown here. Different methodologies to solve the heat transfer problem 

for pool boiling is also discussed here. The concept of non-dimensional parameters 

and the non-dimensionalization of the existing empirical correlation are done here. 

This segment also focuses on the different types of film boiling heat transfer over 

vertical surfaces. 

 

 Application of Artificial Neural Network on the pool boiling heat transfer: The 

idea of the whole thesis work is to find out the pool boiling (especially nucleate 

boiling and film boiling) heat transfer computationally by using the ANN 

methodology. Thus, this chapter includes all the overview, importance and 

application of the ANN network in heat transfer domain. The problem solving 

approach using the ANN model is also discussed very firmly in this chapter. 

 

 Result and Discussion: This is the most important chapter in the whole thesis 

work, where the outcomes from the ANN network have been shown and the 

discussions have been done on the prediction using the ANN model. 
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 Result: Feedforward ANN network is used in different types of pool boiling 

stages to find out the heat transfer in terms of Nusselt number. The outcomes 

from the simulation of the ANN network using different training algorithms 

for different conditions are shown in figure and table. 

 

 Discussion: To put a clearer vision and compare the predicted result with 

the core experimental data and the existing empirical correlations with scale 

analysis, the outcomes are discussed to finalize the impact of ANN in pool 

boiling heat transfer. 

 

 Conclusion: The whole thesis work is concluded in a manner such that the 

proper judgement for the solution methodology, outcomes from ANN, 

comparison with existing data and the application of the ANN in heat transfer 

field can be made. Also the future scope related to this thesis work is explained 

in this chapter. 

 

 References: In this segment, the list of all sources cited in the work are 

mentioned. Those sources helped extremely in order to understand the problem, 

solution methodologies. Thus, the References give the credit to the original 

authors and researches, whose works are taken as consultants. 
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Chapter 2 

 

Scale Analysis of Pool Boiling and Film Boiling heat transfer 

 

The pool boiling regimes can be analyzed by some standard correlations. Natural 

convection boing and Nucleate boiling heat transfer have such correlations in huge 

numbers. But in order to analyze the Film boiling heat transfer, it was mentioned earlier 

that the unstable film boiling doesn’t have such standard correlations that describe the 

nature of heat transfer in that zone. But stable film boiling can be analyzed non-

dimensionally by scale analysis. Many previous works have been done to investigate 

and to get a clear picture of film boiling heat transfer. Scale analysis makes the heat 

transfer problems easier in order to get the rate of heat transfer, as the heat transfer 

equation are converted into Nusselt number correlation. It involves all the important 

properties of fluid and the conditions of heat transfer. 

 

2.1. Dimensional Analysis of pool boiling and film boiling heat transfer 

 

Scale analysis, also known as dimensional analysis or scaling analysis, is a technique 

utilized in physics, engineering, and applied mathematics to comprehend and simplify 

intricate systems by investigating the connections between variables and their 

measurement units. Scale analysis is based on the concept that many physical 

phenomena can be explained using fundamental dimensions like length, mass, time, 

temperature etc. Scale analysis aims to determine the main forces, parameters, or 

processes that control a system's behaviour by examining the dimensions and units of 

variables, eliminating the need to directly solve complicated equations. 

The analysis focuses on verifying dimensional consistency in equations representing 

physical relationships. This includes verifying that all components in a mathematical 

expression possess identical units, aiding in the recognition of potential connections 
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and interrelations. Non-dimensionalization is a process where variables are frequently 

represented using dimensionless parameters (like Reynolds number, Nusselt number, 

Jakob number etc.) that indicate proportions of important physical quantities. This 

makes the analysis easier and enables generalizations across various scales. 

Scale analysis in fluid mechanics and heat transfer is employed to calculate 

dimensionless figures such as Reynolds number, which identify the flow regime (e.g., 

laminar or turbulent) by comparing inertial forces to viscous forces. Analysing scale 

assists in comprehending heat transfer processes and creating dimensionless ratios like 

the Nusselt number, which connects convective heat transfer with the fluid flow 

conditions and the geometry. 

Thus the correlations got from many experimental and analytical result of pool 

boiling can be modified using scale analysis. 

 

2.1.1. Scale Analysis of Single Phase Natural Convection 

 

Natural convection boiling regimes can be understood by using the empirical 

correlations mention earlier in the Literature Review section. Each correlation can be 

converted in terms of non-dimensional heat transfer i.e., the Nusselt number (Nu) by 

using the heat flux or the heat transfer coefficient. One of the most popular natural 

convection boiling correlation was proposed by Fujii et al. [21], which is discussed 

earlier in Eq. (1.3). That correlation can be further non-dimensionalized. The average 

Nusselt number (Nu) vs. Rayleigh number (Ra) relation illustrates the heat-transfer 

coefficients results. The Nusselt number correlation is shown below: 

Starting from the Eq. (1.3), it can be derived in a manner, 

 (
𝑞"

𝛥𝑇
) (

1

𝑘𝑙
) = 0.16 [

𝑔𝛽𝛥𝑇𝐷3

𝜈2
]
1/3

(
1

𝐷
) (

𝜈

𝛼
)
1/3

                                                     (2.1) 

Or,    
ℎ

𝑘𝑙
 𝐷 = 0.16 𝐺𝑟1/3𝑃𝑟1/3                                                                   (2.2)  

           Hence,   𝑁𝑢𝑛𝑐 = 0.16 𝑅𝑎1/3                                                                (2.3) 
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The above equation was derived by converting the heat flux term into Nusselt number 

(Nu) and by using the bubble diameter relationship, the other parameters are converted 

to Rayleigh number (Ra). This scale analysis indicates that the Nusselt number varies 

with the Rayleigh number (Ra) (which is the product of two other on-dimensional 

numbers, i.e. Grashof number (Gr) and Prandlt nimber (Pr)). From the above equation, 

it can be easily said that the correlation is valid for natural convection in single phase 

only. As the convection is due to the buoyancy force of the liquid, thus Rayleigh (Ra) 

number plays a significant role in order to obtain the heat transfer.  

 

2.1.2. Scale Analysis of Nucleate Boiling 

 

As same as the scale analysis of natural convection, the nucleate boiling correlations 

can also be obtained in non-dimensional form. The most widely used correlation for 

nucleate boiling, i.e., Rohsenow [27] correlation shown in Eq. (1.7) is also converted 

in non-dimensional equation by scale analysis. The above equation can be further non-

dimensionalized and expressed in terms of Nusselt number, which is as follows: 

Starting from the Eq. (1.7), it can be derived in a way, 

𝑞"

𝛥𝑇

1

𝑘𝑙
 =  (

µ𝑙𝑐𝑝𝑙 

𝑘𝑙
) [

𝑔(𝜌𝑙−𝜌𝑣)

𝜎
]
1/2

(
𝑐𝑝𝑙 𝛥𝑇

𝐶𝑠𝑓ℎ𝑓𝑔𝑃𝑟𝑙
𝑛)

3

(
ℎ𝑓𝑔

𝑐𝑝𝑙 𝛥𝑇
)                                        (2.4) 

Or,    
ℎ

𝑘𝑙
 𝐷 =  [

𝐽𝑎𝑠𝑢𝑝

𝐶𝑠𝑓𝑃𝑟𝑙
𝑛]

3

(
𝑃𝑟𝑙

𝐽𝑎𝑠𝑢𝑝
)

1

𝐷
 𝐷                                                      (2.5) 

          Hence,     𝑁𝑢𝑛𝑏 = 
(𝐽𝑎𝑠𝑢𝑝

2 )(𝑃𝑟𝑙
1−3𝑛)

𝐶𝑠𝑓
3                                                                         (2.6)  
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2.1.3. Scale Analysis of Film Boiling on vertical flat plate 

 

Film boiling is a heat transfer process where a hot surface creates a vapour layer with 

a liquid, changing heat dynamics. The film boiling heat transfer is analysed using scale 

analysis multiple times. Das et al. conducted a scale analysis of film boiling using 

water on a vertical plate, simplifying the analysis by omitting vapour inertia and using 

a simplified radiation model. The Nusselt number equation for wall heat transfer was 

determined by a heat ratio criterion and the Grashof number to Reynolds number ratio. 

The research categorized wall superheats into high and low conditions, further 

classifying low superheats into natural and forced convection. The Nusselt number 

model showed strong predictive capability with over 96% alignment to experimental 

data. This analysis is also compared with some of the popular experiments [43-47] on 

film boiling over vertical surfaces. The models are written below as Nusselt number 

correlation which are used to calculate the heat transfer for the above condition: 

 

A. High wall Superheat: There is a common correlation got from the scale analysis 

for film boiling over vertical flat plat for high wall superheat condition, which is 

shown below: 

𝑁𝑢ℎ𝑠 =

[
 
 
 

{(
(3𝑅𝑒𝑙(

𝑣𝑣
𝑣𝑙

)𝑃𝑟𝑣)

𝑅𝑎𝑣
)

2

+ (
12𝐽𝑎𝑠𝑢𝑝

𝑅𝑎𝑣
)}

1

2

− {(
(3𝑅𝑒𝑙(

𝑣𝑣
𝑣𝑙

)𝑃𝑟𝑣)

𝑅𝑎𝑣
)}

]
 
 
 
−

1

2

                (2.7)   

B. Low wall Superheat: The conditions for low superheat is divided into two parts, 

which are: 

a. Liquid-phase natural convection: The correlation for Nusselt number in this 

case can be written as: 

𝑁𝑢𝑙𝑠𝑛𝑐 =
𝜇𝑙

𝜇𝑣

𝐽𝑎𝑠𝑢𝑏

𝐽𝑎𝑠𝑢𝑝

𝑃𝑟𝑣

𝑃𝑟𝑙
𝑅𝑎𝑙

1/4                                                                         (2.8)                     

b. Liquid-phase forced convection: The Nusselt number correlation derived for 

this condition is: 

𝑁𝑢𝑙𝑠𝑓𝑐 =
𝜇𝑙

𝜇𝑣

𝐽𝑎𝑠𝑢𝑏

𝐽𝑎𝑠𝑢𝑝

𝑃𝑟𝑣

𝑃𝑟𝑙
2/3 𝑅𝑒𝑙

1/2
                                                                                   (2.9) 
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Chapter 3 

 

Application of Artificial Neural Network on the pool boiling heat 

transfer 

 

An artificial neural network (ANN) is a group of basic interconnected algorithms that 

analyse data in order to react to external inputs. ANN attempts to mimic the functioning 

of the biological neural networks. Just as biological neural networks, consists of 

interconnected biological neurons, similarly, artificial neural networks feature 

interconnected artificial neurons across multiple layers, which with proper learning 

algorithms can produce accurate mapping of input/output data. There are several 

structures of ANNs. In a feedforward network, neurons of an input layer interact with 

one or subsequent multiple hidden layers which are eventually connected to an output 

layer. Each neuron receives signals from all the neurons of the previous layer weighed 

with suitable weights. The summation of these weighed inputs plus the bias for the 

neuron acts as the argument of the activation function of the particular neuron. The 

output of the neuron is the output of the activation function. Learning of the ANN is 

an optimisation problem which involves the alteration of the connection weights, to 

minimize a suitable error function. Several types of leaning algorithms like supervised 

and unsupervised learning are in practice [52]. A feedforward neural network with 

supervised learning can be used for modelling boiling heat transfer problems. 

 

3.1. Basic ANN Structure 

 

The organization of layers, neurons, and connections within an artificial neural 

network (ANN) is known as its structure [53]. The arrangement dictates the flow of 

information in the network and how it changes inputs to outputs. Here is a summary of 

the elements that determine the framework of an artificial feedforward neural network: 
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Fig. 3.1: A Basic structure of an Artificial Feedforward Neural Network 

 

A. Input Layer 

 The input layer is made up of neurons that receive the unprocessed input data. 

Every neuron represents a specific feature or input parameter [54]. 

 The input layer's quantity of neurons depends on the input data's dimension. 

 

B. Hidden Layers 

 Hidden layers consist of layers of neurons located between the input and output 

layers. 

 Parameters like hidden layer quantity and neuron count can be adjusted based 

on problem complexity and resources [55]. 

 

C. Output Layer 

 The final predictions or outputs of the network are generated by the output layer. 

 The number of output neurons equals the number of inputs of the system [56]. 
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3.2. General ANN Methodology 

 

ANNs are a key element in contemporary machine learning and draw inspiration from 

the human brain's design and operations. Here is a typical approach for creating and 

implementing artificial neural networks (ANNs): 

 

A. Define the Problem: Define the problem or goal for the network, such as 

classification, regression, clustering, or other specific tasks. 

 

B. Data collection and Pre-processing: Gather relevant data on the topic, organizing 

it into tables or leaving it unstructured, cleaning and standardizing as necessary for 

analysis. 

 

C. Select a Network Architecture: Choose the suitable neural network structure for 

your issue. Some of the most frequent categories are: 

 Feedforward Neural Networks (FNNs) [57] 

 Convolutional Neural Networks (CNNs) for image data 

 Recurrent Neural Networks (RNNs) for sequential data 

 Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units 

(GRUs) for addressing the issue of disappearing gradients in recurrent neural 

networks (RNNs) 

 Transformer-based models used for processing tasks in natural language. 

 

D. Model Training: Train a neural network using an optimization algorithm such as 

Bayesian Regularization, Levenberg-Marquardt, Gradient Descent, or variations 

like Adam or Root Mean Squared Propagation (RMSProp). The network adjusts 

weights and biases to minimize a loss function. 
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E. Validation: Assess trained model on validation set to check generalization and 

detect overfitting. Adjust hyper-parameters and model structure to improve 

performance. 

 

F. Testing and Evaluation: Evaluate model on separate test set after performing well 

on validation set to ensure fair assessment of practical performance. Test set not 

used during training or validation. 

 

G. Deployment and Monitoring: Utilize the model if it meets performance needs. 

Monitor real-world performance for quality decline, making adjustments as needed 

for optimization. 

 

H. Iterate: Iterate on model, data pre-processing, and hyper-parameters in machine 

learning to enhance performance based on insights and feedback. 

 

3.3. Selection of Hidden Neurons and Hidden Layers 

 

Hidden neurons and layers are crucial in maintaining accuracy and shaping the 

architecture of Artificial Neural Networks (ANNs). The number of hidden neurons 

depends on inputs, training algorithms, and other parameters. Selecting the right 

number of hidden neurons [58] is vital for a successful network structure. There is no 

fixed rule for determining the ideal number of hidden neurons, as it varies based on the 

complexity of the problem. Starting with a small number of hidden neurons and 

gradually increasing them while monitoring performance can help identify the optimal 

point. Understanding the problem domain and the relationships between input and 

output variables can guide the decision on the number of hidden neurons. Larger 

datasets may require more complex models with more hidden neurons, while smaller 

datasets may benefit from simpler designs to prevent overfitting. 

Selecting the appropriate number of hidden layers in an Artificial Neural Network 

(ANN) is crucial for creating an effective structure. While the number of neurons in a 

hidden layer may vary, the number of hidden layers significantly impacts the network's 
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learning ability. Beginning with a single hidden layer is recommended to capture 

complex relationships and establish a performance foundation [59]. Deeper 

architectures are more effective for complex problems, with experimentation on a 

validation set helping determine the optimal depth. Finding the best architecture for 

optimal performance requires thorough testing and validation. 

 

3.4. Solution Procedure 

 

The solution process mainly distributed in three stages, which are: 

 Training 

 Validation 

 Testing 

 

3.4.1. Training 

 

Training an Artificial Neural Network (ANN) for supervised learning requires 

modifying the network's weights and biases to reduce a specified loss function, thus 

enhancing the model's effectiveness in a particular activity. The model adopts the 

weights and biases and with a summation function, it initiates the training. After the 

function fitted properly, an activation function is loaded upon the adopted values of 

the inputs. In modern day, the most commonly and widely used activation functions 

are Rectified Linear Unit (ReLU) AND Sigmoid. After collecting the data and pre-

processing, we need to go with the most suited algorithms to run the training problem. 

A simple schematic diagram of a feedforward ANN model with weight and bias is 

shown in Fig. 3.2. 
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Fig. 3.2: Weight and Bias in a Feedforward ANN model 

 

3.4.1.1. Training Algorithms 

 

There are several algorithms generally used in ANN operation. In the whole thesis 

work, two types of training algorithms are used as they are familiar and most widely 

used. They are: 

 Backpropagation Algorithm 

 Bayesian Regularisation (BR) 

 Levenberg-Marquardt (LM) 

These algorithms are mainly chosen according to all the conditions and collections of 

dataset we have. The above two are described below: 

A. Backpropagation Algorithm: Backpropagation is a technique used in artificial 

intelligence and machine learning to train neural networks by adjusting errors. The 

process involves computing the loss function, starting from output nodes and 

moving towards input nodes to minimize loss and achieve the desired outcome. It 

helps decrease errors and improve results in machine outputs by examining 

mistakes, matching them with expected outcomes, and iterating until the goal is 

reached [60]. 
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There are two main types of backpropagation: Static backpropagation, used in 

feedforward neural networks to recognize characters and attributes, and recurrent, 

used in dynamic data sequences for tasks like sentiment analysis and speech 

recognition and Recurrent backpropagation, which allows data to flow in a 

feedback loop within hidden nodes, enabling the network to predict outcomes and 

recognize patterns in the data like the human brain learns by trial and error. 

 

B. Bayesian Neural Networks: Bayesian neural networks (BNNs), also called 

Bayesian Regularization, are used in artificial neural networks (ANNs) to prevent 

overfitting and enhance generalization. In contrast to L1 or L2 regularization, 

which penalize big weights with a regularization term in the loss function, Bayesian 

Regularization views network weights as random variables and assigns a prior 

distribution to them. BRANNs, or Bayesian Regularized Artificial Neural 

Networks, are more resilient than traditional back-propagation neural networks, 

reducing the need for extensive cross-validation [61]. By transforming nonlinear 

regression into a statistically well-posed problem, BRANNs resemble ridge 

regression. These networks address challenges in Quantitative Structure-Activity 

Relationship (QSAR) modeling such as model selection, reliability, and validation 

effort [62]. They are resistant to overtraining and overfitting, using evidence 

procedures for objective Bayesian standards. BRANNs efficiently evaluate and 

train with various network parameters, deactivating unimportant weights. 

Additionally, Automatic Relevance Determination (ARD) can be applied to input 

variables in BRANNs, indicating the significance of each input and disregarding 

irrelevant or highly correlated indices [63]. This technique helps determine the 

most important variables for modeling activity data. 

 

C. Levenberg-Marquardt: The Levenberg-Marquardt algorithm, frequently referred 

to as the damped least-squares technique, is a commonly utilized optimization 

method for training artificial neural networks (ANNs) [64]. It is especially favoured 

for teaching feedforward neural networks (FNNs) for regression tasks because of 

its efficiency and effectiveness in reducing the mean squared error (MSE) loss 
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function [65]. The Levenberg-Marquardt algorithm provides a numeric solution for 

reducing nonlinear functions with reliable convergence. Ideal for small to medium-

sized artificial neural network problems, it merges the steepest descent and Gauss-

Newton methods. This algorithm retains the speed benefits of Gauss-Newton and 

reliability of steepest descent, excelling in complex error surfaces. While slower 

than Gauss-Newton, it converges faster than steepest descent [66]. By utilizing a 

dual training approach, it first relies on steepest descent in areas with complex 

curvature before transitioning to Gauss-Newton for quicker convergence. 

Ultimately, the Levenberg-Marquardt algorithm is a powerful tool for optimizing 

neural networks with varying levels of complexity. 

 

3.4.1.2. Weights and Biases 

 

Weights regulate the intensity of links among neurons and represent associations 

among input characteristics and desired results. They determine signal strength in 

neurons, affecting input data influence on output. Biases help neurons be adaptable and 

flexible, enabling them to activate based on different input circumstances. That means, 

Biases add characteristics with a value of 1 to the neural network for efficient 

propagation forward [67]. 

 

3.4.1.3. Summation Functions 

 

The purpose of the summation function is to connect the weights and inputs and 

compute their total. The summed up data further goes for the activation through 

Activation functions. 

  

3.4.1.4. Activation Functions 

 

The activation function determines if a neuron should be activated by computing the 

weighted sum and then adding bias to the result. The activation function's purpose is 
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to add non-linearity to the neuron's output. This implies that it will determine the 

significance of the neuron's input to the network during prediction by utilizing basic 

mathematical operations [68]. Some of the common activation functions are: Linear or 

Identity Activation Function, Non-linear Activation Function, Sigmoid or Logistic 

Activation Function, Tanh or hyperbolic tangent Activation Function, ReLU (Rectified 

Linear Unit) Activation Function, Leaky ReLU etc. 

The input layer simply contains the input data without conducting any calculations. 

Hence, no activation function is utilized in that case. A non-linear activation function 

is necessary for hidden layers in a neural network. This is necessary for incorporating 

non-linear elements into the network in order for it to learn the complex patterns. As 

none of our output is negative as per the source data, thus, we have used the ReLU 

activation function in the hidden layers. 

 

3.4.2. Validation 

 

Validation set is used to monitor the learning and to prevent the overfitting in training 

process. Cross-validation involves dividing data into k folds for testing and training to 

reduce performance estimate variance and enhance data utilization. A more dependable 

assessment of ANN algorithm effectiveness is achieved by calculating performance 

metrics across folds. This method can also help in comparing and choosing the optimal 

ANN models or designs for the particular issue being addressed [69]. Thus, the 

separated data for validation can be validated by using ANN model with the same 

network. 

 

3.4.3. Testing 

 

After the training and validation are done, then the main task is to test the samples 

which were not involved in the network during training. Using the same training 

algorithm and the same number of hidden neurons, the testing should be done with the 

same function fitted neural network. In this case, the number of input variables should 

be as same as the training variables. The testing will be done computationally. It can 
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be done either by “MATLAB-Simulink” or the “MATLAB Code” for implementing 

ANN.  The data enlisted for testing will be done in order to compare the results of 

existing methods. The test would be chosen as more accurate than the scale analysis if 

the statistical analysis stands with the ANN prediction.  

For function fitted neural network, the training, validation and testing samples can be 

distinguished in a percentage form as 70, 10 and 20% respectively. But for the coded 

network, the training and testing can be distributed as nearly 70% and 30% respectively 

for all the problems chosen for prediction. 

 

3.5. Current Problem Architecture 

 

Artificial Neural Network has been used multiple times in the field of heat transfer 

consisting many boiling heat transfer problems [70-72]. ANN model is used in the 

thesis work to predict the heat transfer of different stages of pool boiling and film 

boiling of vertical plate under different conditions. Every stages are oriented with 

specific feedforward ANN models using different algorithms and different number of 

hidden neurons in order to get the accurate predicted result than the scaled data 

comparing with the experimental results. So, different types of network architecture 

are created for different conditions. The algorithms and number of algorithms are 

adjusted according to the conditions. The configuration varies with the number of 

samples, variation of inputs etc. The most fitted architecture for each conditions are 

found by applying different ANN models for numerous times. The selection of the 

inputs was quite challenging, which was overcome by selecting different non-

dimensional parameters. The parametric analysis is done based on the condition sated 

in the experiments for different regimes. The whole procedure of training, testing and 

validation involves the “MATLAB” for simulation of the heat transfer problems. 

MATLAB provides resources for machine learning, deep learning, and data analytics, 

allowing for the creation and implementation of algorithms in these areas. Thus, by 

using the training algorithms in MATLAB, we can have the simulation for training and 

testing. The features of the most suitable training algorithms are discussed earlier. The 

structure of any ANN model in this work is defined by “Training Algorithm-Number 
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of Hidden Neurons”. For training the ANN model, the sources of training data are 

taken from several boiling heat transfer experiments. 

 

3.5.1. Network for Single Phase Natural Convection 

 

The experiment of Tadrist et al. [25] is taken as the source of the training data, where 

due to domination of the buoyancy force, Rayleigh number comes in action for single 

phase natural convection. Thus, Rayleigh numbers are taken as the inputs for single 

phase natural convection. To get more accurate value of Nusselt number than the scale 

analysis, this condition is processed for multiple times. The best outcomes for the 

above mentioned condition has come out to be “LM-5” (means Levenberg-Marquardt 

algorithm is used for training the problem with using 10 hidden neurons). The Rayleigh 

numbers got from the experimental data is taken as input of ANN and Nusselt numbers 

are taken as output of ANN. Hence, randomly selected samples of 70% are taken for 

training of our problem and 30% of the overall data are taken for the testing. Then the 

simulation has been done several times and with using the best training format of ANN, 

the rest of those 30% samples are tested. Thus, as a result, ANN has given different 

Nusselt numbers for different Rayleigh numbers. 

 

 

 

Fig. 3.3:- A basic schematic topology of Feedforward ANN model for 

predicting the Nusselt number for Single phase Natural convection 
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3.5.2. Network for Nucleate Boiling 

 

The Ciloglu [37] is taken as the source of training data. Nucleate boiling heat transfer 

is influenced by the Jakob number and the Prandlt number. The Prandlt number is 

constant (1.863) for the reference taken for ANN modelling. So, Jakob number is taken 

as the input of the architecture. The inputs for this condition are very small ranging 

from 0.02 to 0.038. Thus, the design of the network was a challenging task. “LM-10” 

was fitted as the most accurate network for predicting the output, i.e., the Nusselt 

number. After getting the non-dimensional parameters, the Jakob number for 

superheating condition is taken as the input and the Nusselt numbers are taken as the 

output. The modified data are divided into two parts as same as the previous result, i.e., 

70% of the prior data is taken for training and the rest of the 30% data are taken for 

testing of the network.  

 

3.5.3. Network for Film boiling on vertical flat plate 

 

Several experiments [43-47] on film boiling over vertical surfaces are taken as the 

sources of training data. Film boiling over vertical flat plate was performed by the scale 

analysis [19]. But seeing the outcomes of the scale analysis, the ANN model is 

predicting Nusselt number as the result. Film boiling over a vertical surface has 

different condition of superheating, phases and convection involvement. Thus, a same 

training algorithm is not applicable for all the conditions. The conditions for film 

boiling is mentioned earlier. Four non-dimensional parameters are taken as the inputs 

of the ANN model for film boiling. They are 𝐽𝑎𝑠𝑢𝑝, 𝐽𝑎𝑠𝑢𝑏, 𝑅𝑒𝑙  and 𝐺𝑟𝑣. For different 

values of the inputs, the Nusselt number varies differently. As the above four 

parameters have some influence on the film boiling, thus they are taken as input of the 

ANN network. The data is split into two portions just like before, with 70% used for 

training and the remaining 30% used for testing the network. After simulating 

numerous times, the proper training algorithm and the number of hidden neurons which 
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should be used for the film boiling has come out. A brief description of the network 

architecture for different conditions of film boiling are mentioned below: 

 

A. Network for High wall superheat: It is initiated with “BR-10” configuration as 

the condition is most suited for implementing the algorithms and the number of 

hidden neurons. 

 

B. Network for Low wall superheat: Both of the conditions for low wall superheat 

was analyzed by ANN model using the model configuration of “BR-15”. 

 

For the modeling, the main challenge was to define a proper ANN network architecture 

by choosing most suitable algorithm, proper amount of hidden neuron, exact activation 

functions for the hidden layers and the output layer for the training. As the same 

configurations would be applied while testing the separated data, the training is an 

important task. The below tables describes that how the training is categorized in order 

to solve the chosen problem for pool boiling heat transfer by using the Artificial Neural 

Network. The predictions are done on the basis of the enlisted data set by distributing 

them as the training and testing dataset. Table 3.1 narrates about the chosen activation 

layers and their functional form for the modelling. As the range of output data varies 

above the zero and subsequently the belong to same genus, the same activation layers 

are used for all the four problems. Table 3.2 describes how the arrangements are done 

for the chosen problems.  

 

Table 3.1: Details of the chosen Activation Functions 

Name of the Layer 
Name of the Activation 

Function 

Equation of the Activation 

Function 

Hidden Layers ReLU 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

Output Layer Linear 𝑓(𝑥)  =  𝑥 

 

For the above table, x is the weighted input for training, i.e., Weight * Input + Bias. 
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Table 3.2: ANN model framework used in current problem 

Sl. 

No. 
Problem 

Input 

Variables 

No. of 

Input 

Samples 

No. of 

Hidden 

Neurons 

Training 

Algorithm 

Output 

Variable 

1 

Pool Boiling 

Natural 

Convection 

 𝑅𝑎 44 5  LM  𝑁𝑢𝑛𝑐 

2 
Pool Nucleate 

Boiling 
𝐽𝑎𝑠𝑢𝑝 43 10 LM 𝑁𝑢𝑛𝑏 

3 

Film Boiling over 

Vertical Flat 

Plate – High 

Superheat 

𝐽𝑎𝑠𝑢𝑝, 

𝐽𝑎𝑠𝑢𝑏, 𝑅𝑒𝑙 

and 𝐺𝑟𝑣 

61 10 BR 𝑁𝑢ℎ𝑠 

4 

Film Boiling over 

Vertical Flat 

Plate – Low 

Superheat 

𝐽𝑎𝑠𝑢𝑝, 

𝐽𝑎𝑠𝑢𝑏, 𝑅𝑒𝑙 

and 𝐺𝑟𝑣 

43 15 BR 𝑁𝑢𝑙𝑠 
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Chapter 4 

 

Result and Discussion 

 

The above solution methods are used to obtain the Nusselt number in different pool 

boiling regimes for different conditions. The network framework is organized by doing 

the training until it gives the best result for the test data. The information provided in 

the previous chapter helped to choose the proper networks for every problem. The 

results are also compared to the most accurate correlations which are either widely 

used in the field of heat transfer or useful to determine the rate of heat transfer. 

Depending upon our problems mentioned earlier, we have to use the ANN tool with 

different parameters and algorithms. After running the codes for several times until we 

got the best results, we have got the ANN results for testing samples. 

These results are examined for the above three regimes of pool boiling, for the 

correlations have been proposed. For every time, the ANN methodology have been 

applied to get the result for heat transfer. The primary comparison for any analysis is 

done on the basis of the Mean Squared Error (MSE) amongst all the observations. The 

general formula for calculating the MSE is: 

𝑀𝑆𝐸 =  
1

𝑁
 ∑ (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑁𝑁 𝑅𝑒𝑠𝑢𝑙𝑡)2𝑁

𝑖=1             (4.1) 

Where N is the number of observations and the Σ indicates that a summation is 

performed over all values of i.  

The maximum percentage error is also calculated in order to see the range of errors for 

both the scale analysis and ANN prediction. 
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4.1. Results for Single Phase Natural Convection 

 

The beginning of the analysis was started with examining the Natural convection 

boiling. The data samples extracted from an experimental analysis of Tadrist et al. [25] 

and then examined by the Artificial Neural Network. Basically, Feedforward Neural 

Network is used to run the problem.  

So, to simulate the ANN tool, at first the overall data are collected from the comparison 

curve for experimental and result from scale analysis of the correlation of Fujii et al. 

[21] shown in Eq. (2.3). Both of the extracted data is first non-dimensionalized in terms 

of Rayleigh number and Nusselt number using the properties of the fluid used at 

stipulated conditions. Then the modelling was started with the training. The prediction 

is done with 20 Epochs. After running the model, it gives the MSE and Regression 

value, which are shown in Table 4.1. 

 

Table 4.1: Result for various operations for ANN modelling 

Name of the Operation MSE Regression 

Training 0.0034 0.9999 

Validation 0.0049 0.9899 

Testing 0.0093 0.9687 

 

The above table shows the representation of the MSE and Regression for the problem 

of single phase natural convection by the ANN modelling. Clearly it is showing that 

the regression line is very close to the set of existing data points, which is the desired 

Nusselt number. The table is an example for variation of results for ANN modelling in 

case of single phase natural convection. 

The obtained result by ANN prediction is collected and then compared with the 

experimental data and the results from the scale analysis. The comparison is shown via 

Fig. 4.1 below. 
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Fig. 4.1: Comparison Curve of Nusselt number vs Rayleigh number for 

Experimental data, Result of Eq. (2.3) and ANN predicted result for Single 

phase Natural convection 

 

The above figure shows that the values of Nusselt number is varying with different 

Rayleigh numbers for all the three curves. It clearly shows that the results obtained 

from the ANN analysis are more accurate than the results of scale analysis for the 

empirical correlation of Fujii et al. [21] from Eq. (2.3) comparing with the 

experimental results of Tadrist et al. [25]. In order to compare them statistically, the 

MSE and the Maximum Percentage Error have been calculated. The MSE of the scale 

analysis has come out to be 2.3159, whereas the MSE of the ANN result is 0.0093. The 

maximum percentage error for the above two conditions are 23.68 and 1.74 

respectively. The error band for ANN predicted result shows a great outcome which is 

favorable for the thesis. All of the samples chosen for testing lies within the error range 

of 2%. Thus for the natural convection boiling zone can be simulated using ANN and 
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it gives more accurate value of the output, i.e., Nusselt number compared to the 

empirical correlation. 

 

4.2. Results for Nucleate Boiling 

 

Nucleate boiling heat transfer is also analyzed as the natural convection boiling. The 

process of ANN simulation is applied to get the result. The experiment of Ciloglu [37] 

of nucleate pool boiling of a nanofluid from a hemispherical surface is taken as the 

reference. The whole experiment was done using Deionized water (DI water). To 

compare the result, the most widely used nucleate pool boiling correlation, i.e., the 

Rohsenow [27] correlation has been non-dimensionalized to get the fluid independent 

properties using scale analysis, which is shown in Eq. (2.6). All the constant properties 

are taken as mentioned in the experiment. Then the modelling was started with the 

training. The prediction is done with 25 Epochs.Thus, the test result is obtained from 

ANN modelling and compared with the experimental results and the results from scale 

analysis. The comparison is shown by the Fig. 4.2. 
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Fig. 4.2: Comparison Curve of Nusselt number vs Jakob number for 

Experimental data, Result of Eq. (2.6) and ANN predicted result for Nucleate 

boiling for DI water 

 

The figure above demonstrates how the Nusselt number values change with varying 

Jakob numbers on all three curves. The results from the ANN analysis are evidently 

more precise than the results of the scale analysis for Rohsenow’s [27] empirical 

correlation from Eq. 20. (2.7) in comparison with the findings of Ciloglu [37]. The 

MSE and Maximum Percentage Error were calculated for statistical comparison. The 

MSE of scale analysis is 202.0126, while the ANN result has an MSE of 0.0706. This 

is a huge variation in terms of correctness. The highest percentage error for the two 

conditions mentioned above is 37.64 and 1.17, respectively. The error range of the 

ANN prediction results demonstrates a positive outcome that supports the thesis. All 

the selected samples for testing fall within a margin of error of 2%. Therefore, the 
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nucleate boiling zone can be replicated using artificial neural networks, providing more 

precise results for the Nusselt number compared to the empirical correlation. 

 

4.3. Result for Film Boiling over a Vertical Flat Plate 

 

Film boiling over vertical plate has numerous number of experiments those are 

analyzed to understand the heat transfer in this boiling region. The experiments [43-

47] are taken for training the network and to predict the heat transfer. The comparison 

of the experiment with the scale analysis and the ANN prediction is also done in this 

segment. The experiments are separated and thus the predictions are performed. Each 

of the predictions contains four inputs as 𝐽𝑎𝑠𝑢𝑝, 𝐽𝑎𝑠𝑢𝑏, 𝑅𝑒𝑙  and 𝐺𝑟𝑣. The outputs of the 

predictions are the Nusselt number for convective heat transfer. To calculate the total 

heat transfer for film boiling, a standard correlation is used to obtained the radiative 

Nusselt number and then it was added with the convective heat transfer with another 

correlation. The correlations are: 

𝑁𝑢𝑟𝑎𝑑 =  {𝜀𝑒𝑞𝜎(𝑇𝑤𝑎𝑙𝑙
4 − 𝑇𝑠𝑎𝑡

4 )/(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡)}𝐿𝑐/𝑘𝑣                                               (4.2) 

Where 𝜀𝑒𝑞 =  (
1

𝜀𝑒𝑞
+

1

𝜀𝑒𝑞
− 1)

−1

                                                                           (4.3) 

And     𝑁𝑢𝑒𝑥𝑝𝑡,𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑢𝑒𝑥𝑝𝑡,𝑐𝑜𝑛𝑣 +
3

4
 𝑁𝑢𝑟𝑎𝑑                                                  (4.4) 

Thus, the result of the thesis work is divided into two major parts. These are discussed 

below: 

 

4.3.1. Result for High wall Superheated Film Boiling 

 

This observation is taken for negligible forced convection and the subcooling of water 

is characterized by zero 𝑅𝑒𝑙  and 𝐽𝑎𝑠𝑢𝑏. Thus, the results of the experiments are taken 

for predicting the Nusselt number. Several experiments are taken to perform the ANN 

prediction. Then the modelling was started with the training. The prediction is done 
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with 40 Epochs. Each of the parameters are analyzed, tested and compared with the 

existing experimental data and the equation of scale analysis [19] which is shown in 

Eq. (2.7). 

 

4.3.1.1. Film boiling of Saturated water under Natural convection 

 

A greater Jakob number indicates increased thermal resistance at the wall due to a 

reduced Nusselt number. This is due to the formation of a thicker layer of vapour over 

a wall that is hotter. Thus the variation of the Nusselt number is analyzed with the 

𝐽𝑎𝑠𝑢𝑝. From the bunch of experiments on film boiling over vertical surfaces, two 

experiments are taken as the problems to solve the heat transfer with ANN model for 

the high-superheat film boiling of liquid water at saturated condition under the natural 

convection. 

 

A. Prediction Film boiling for Vertical cylinder: The experiment from Shiotsu et al. 

[43] is taken as the reference in order to solve the problem. Heat transfer in film 

boiling from a vertical cylinder is studied under forced flow of liquids, at both 

saturated and subcooled conditions, and various pressures. This experiment was 

performed at 2.94 bar pressure for boiling of water over vertical cylinder. So far 

the best result had come and the Nusselt number came out in a more accurate 

manner than the scaled data. The inputs and outputs are shown below in a table 

form to visualise the comparison amongst total experimental Nusselt number, total 

scaled Nusselt number and the total ANN Nusselt number: 
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Table 4.2: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for high wall superheat and saturated water under 

natural convection for vertical cylinder 

Sl. 

No. 
𝑱𝒂𝒔𝒖𝒑 𝑱𝒂𝒔𝒖𝒃 𝑹𝒆𝒍 𝑮𝒓𝒗 𝑵𝒖𝒆𝒙𝒑𝒕,𝒕𝒐𝒕 𝑵𝒖𝒔𝒄𝒂𝒍𝒆,𝒕𝒐𝒕 𝑵𝒖𝒂𝒏𝒏,𝒕𝒐𝒕 

1 0.118 0 0 685000 22.955 25.085 21.167 

2 0.155 0 0 591000 19.785 22.575 19.312 

3 0.198 0 0 505000 17.455 20.375 17.604 

4 0.273 0 0 386000 15.45 17.65 15.545 

5 0.31 0 0 344000 14.96 16.65 14.818 

6 0.345 0 0 312000 14.5 15.85 14.274 

 

The above samples shown in the above table are some of the selected tested data for 

ANN prediction. The prediction got the impressive results as the outcomes from ANN 

network got way more accuracy than the scaled data, which can be clearly visible. 

Though the actual statistical comparison would give more clearance to the analysis. 

The MSE for the scaled data has come out to be 5.9210, whereas the MSE for the ANN 

predicted result is 0.2828, which is way better than the scaled result. The maximum 

percentage errors for each of the previous case is 16.72 and 7.86 respectively. Also 

most of the results i.e., 83% from ANN prediction lie within an error band of 3%. The 

above statistical comparison shows that the accuracy of ANN prediction for the stated 

condition is far better than the scaled data comparing with the experimental results. 

 

B. Prediction of Film boiling for Vertical plate: The experiment of Vijaykumar et 

al. [44] is also taken as another reference for solving the problem on film boiling 

heat transfer. A study was conducted on subcooled film boiling on a vertical 

surface, insights on hydrodynamics. This time, the experiment was performed at 

atmospheric pressure for boiling of water. The best result so far was obtained by 

accurately calculating the Nusselt number, compared to the scaled data. The table 

below shows inputs and outputs to visually compare experimental, scaled, and 

ANN Nusselt numbers. 
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Table 4.3: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for high wall superheat and saturated water natural 

convection for vertical plate 

Sl. 

No. 
𝐽𝑎𝑠𝑢𝑝 𝐽𝑎𝑠𝑢𝑏 𝑅𝑒𝑙 𝐺𝑟𝑣 𝑁𝑢𝑒𝑥𝑝𝑡,𝑡𝑜𝑡 𝑁𝑢𝑠𝑐𝑎𝑙𝑒,𝑡𝑜𝑡  𝑁𝑢𝑎𝑛𝑛,𝑡𝑜𝑡 

1 0.131 0 0 310000 18.705 20.075 18.945 

2 0.131 0.003 0 310000 22.345 20.075 22.935 

3 0.131 0.0148 0 312000 18.705 20.075 17.245 

4 0.174 0 0 258000 16.975 17.775 17.257 

5 0.174 0.0046 0 258000 20.455 17.775 21.462 

6 0.263 0 0 184000 13.615 14.775 15.158 

 

The samples displayed in the table above are chosen test data used for predicting with 

ANN. The forecast showed excellent results as the outcomes obtained from the ANN 

network were more accurate than those from the scaled data, making it easily 

noticeable. Although conducting an actual statistical comparison would provide further 

clarity for the analysis. The scaled data produced an MSE of 2.7487, while the ANN 

predicted result had an MSE of 1.3999, which is significantly superior to the scaled 

result. The highest percent errors for all of the prior scenarios is 13.10 and 12.26 

respectively. Additionally, a majority of the outcomes, specifically 57% from artificial 

neural network forecasting, fall within a 5% margin of error. The statistical analysis 

above indicates that the accuracy of the ANN prediction for the specified condition is 

significantly superior to that of the scaled data when compared to the experimental 

results. 

 

4.3.1.2. Film Boiling of Water under Low subcooling and Natural convection 

 

Film boiling for the low subcooling natural convection is taken to analyse and to 

predict the heat transfer for high-superheat condition. It is also done as same as the 
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previous two experiments in terms of calculating the Nusselt number by ANN 

prediction.  

An experiment of Okkonen et al. [45] is taken in order to solve the problem on film 

boiling heat transfer for long vertical surfaces. The above research compares the 

anticipated heat transfer properties with experimental findings in a high wall 

temperature range of 600–1200 °C and stagnant water with minimal subcooling of just 

3 °C. So far, the best result was obtained by accurately calculating the Nusselt number 

compared to the scaled data. The information provided in the table allows for a visual 

comparison of the total experimental, total scaled and total ANN predicted Nusselt 

number. 

 

Table 4.4: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for high wall superheat under low subcooling of water and 

natural convection for long vertical surface 

Sl. 

No. 
𝐽𝑎𝑠𝑢𝑝 𝐽𝑎𝑠𝑢𝑏 𝑅𝑒𝑙 𝐺𝑟𝑣 𝑁𝑢𝑒𝑥𝑝𝑡,𝑡𝑜𝑡 𝑁𝑢𝑠𝑐𝑎𝑙𝑒,𝑡𝑜𝑡  𝑁𝑢𝑎𝑛𝑛,𝑡𝑜𝑡 

1 0.437 0.0056 0 106000 14.27 13.55 14.773 

2 0.532 0.0056 0 83100 14.315 12.775 13.995 

3 0.645 0.0056 0 63300 12.81 12.2 13.344 

4 0.778 0.0056 0 48400 12.705 11.725 12.838 

5 0.856 0.0056 0 41700 12.815 11.675 12.663 

6 1.058 0.0056 0 30000 13.645 11.725 12.504 

 

The test data selected for prediction with ANN is shown in the table above. The 

prediction had great outcomes because the results from the ANN network were more 

precise compared to the ones from the scaled data, which was easily noticeable. While 

carrying out a real statistical comparison would offer more clarity for the analysis. The 

rescaled data yielded an MSE of 1.5347, whereas the ANN predicted outcome obtained 

an MSE of 0.3305, proving to be notably better than the rescaled outcome. The greatest 

percentage deviations observed in previous situations are 14.07 and 8.35, in that order. 
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Moreover, most of the results, specifically 83.33% from predicting with artificial 

neural networks, are within a 5% margin of error. The statistical analysis shows that 

the accuracy of the ANN prediction for the specified condition is much better than that 

of the scaled data in comparison to the experimental results. 

 

4.3.1.3. Film boiling for Mixed water convection 

 

To predict the heat transfer in high superheat and mixed water convection, two 

experiments are taken, where liquid Reynolds numbers have a high range value. In 

these two cases, the variation of Nusselt number occurs significantly which changing 

of the Reynolds number. Both the model and the experiments have successfully 

captured the increase in wall heat transfer with a higher far-stream Reynolds number, 

which is physically feasible. The significant range of Reynolds numbers shows a major 

difference in the Nusselt number coefficient, which may be due to the unstable liquid-

vapour interfacial wave. 

 

A. Prediction of Film boiling for Vertical flat plate: The experiment of Meduri et 

al. [46] is taken as the reference for the prediction of Nusselt number by using ANN 

network. The experiment was done on Partitioning of wall heat flux throughout 

subcooled forced flow film boiling of water on a vertical surface. The experiment 

Data were collected for mass fluxes varying from 0 to 700 kg/m2s, inlet subcoolings 

varying from 0 to 25 °C, and wall superheats varying from 200 to 400 °C. Up to 

this point, the most successful outcome was achieved through precise computation 

of the Nusselt number when compared to the normalized data. The table presents a 

way to visually compare the Nusselt number values from experimental, scaled, and 

ANN predicted data. 
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Table 4.5: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for high wall superheat and mixed water convection for 

vertical flat plate 

Sl. 

No. 
𝐽𝑎𝑠𝑢𝑝 𝐽𝑎𝑠𝑢𝑏 𝑅𝑒𝑙 𝐺𝑟𝑣 𝑁𝑢𝑒𝑥𝑝𝑡,𝑡𝑜𝑡 𝑁𝑢𝑠𝑐𝑎𝑙𝑒,𝑡𝑜𝑡  𝑁𝑢𝑎𝑛𝑛,𝑡𝑜𝑡 

1 0.174 0.0005 2969 259000 18.955 18.775 18.885 

2 0.236 0.0006 2969 204000 17.485 16.175 16.839 

3 0.263 0.0014 2970 185000 16.075 15.375 16.173 

4 0.308 0.0011 2967 157000 14.625 14.175 15.061 

 

The table above displays the test data chosen for prediction using ANN. The forecast 

was successful as the ANN network produced more accurate results than the scaled 

data, which was easily discernible. Conducting an actual statistical comparison would 

provide greater clarity for the analysis. The rescaled data had an MSE of 0.6102, while 

the ANN predicted outcome had a much lower MSE of 0.1555, demonstrating a 

significant improvement over the rescaled result. The highest percentage variances 

noted in earlier cases are 7.49 and 3.69, respectively. Additionally, the majority of the 

outcomes, a precise 100% when using artificial neural networks for prediction, fall 

within a margin of error of 4%. The statistical analysis indicates that the ANN 

prediction's accuracy for the specified condition significantly outperforms the scaled 

data when compared to the experimental results. 

 

B. Prediction of Film boiling for Vertical cylinder: The experiment of Shiotsu et al 

[43] for film boiling from a vertical cylinder is taken another time as a reference to 

get the better outcomes for ANN prediction over scaled data. But this time, the 

condition is for mixed convection. Until now, the best result was obtained by 

accurately calculating the Nusselt number in comparison with the normalized data. 

The table illustrates a method to visually compare few samples of Nusselt number 

values obtained from experimental, scaled, and ANN predicted data. 
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Table 4.6: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for high superheat and mixed water convection for a 

vertical cylinder 

Sl. 

No. 
𝑱𝒂𝒔𝒖𝒑 𝑱𝒂𝒔𝒖𝒃 𝑹𝒆𝒍 𝑮𝒓𝒗 𝑵𝒖𝒆𝒙𝒑𝒕,𝒕𝒐𝒕 𝑵𝒖𝒔𝒄𝒂𝒍𝒆,𝒕𝒐𝒕 𝑵𝒖𝒂𝒏𝒏,𝒕𝒐𝒕 

1 0.167 0 17812 560000 26.045 31.875 26.523 

2 0.197 0 28435 505000 33.885 33.975 33.116 

3 0.207 0 24894 487000 29.045 31.275 29.501 

4 0.235 0 28435 440000 30.705 30.075 30.674 

5 0.273 0 28435 386000 28.3 27.15 28.449 

6 0.316 0 17812 344000 18.58 21.55 18.945 

7 0.35 0 28435 306000 24.52 22.85 24.522 

8 0.424 0 24894 250000 19.89 19.15 19.585 

9 0.436 0 17812 242000 15.56 17.35 15.765 

10 0.477 0 28435 228000 20.19 18.55 20.410 

 

The test data selected for prediction using ANN is shown in the table above. The 

prediction was accurate with the ANN network delivering more precise outcomes 

compared to the scaled data, which was clearly noticeable. Performing a real statistical 

comparison would offer more clarity for the evaluation. The rescaled data had an MSE 

of 5.9210, whereas the ANN predicted outcome showed a considerably lower MSE of 

0.2828, indicating a marked enhancement over the rescaled outcome. The previous 

cases showed the biggest deviations with percentages of 22.38 and 2.84. Furthermore, 

when utilizing artificial neural networks for forecasting, all the results are accurate 

within a 3% margin of error. The statistical analysis shows that the accuracy of the 

ANN prediction is much better than the scaled data in comparison to the experimental 

results for the specified condition. 
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4.3.2. Result for Low wall superheated Film Boiling 

 

The low wall superheat condition is divided into two parts for a comprehensive 

analysis. Both of the conditions are trained with the same network. In both of the cases, 

the network architecture for modelling remains the same. Then the modelling was 

started with the training. The prediction is done with 50 Epochs. 

 

4.3.2.1. Film boiling of Natural Liquid-phase convection 

 

For the prediction of Nusselt number using ANN model for low wall superheat and 

natural convection for liquid phase, the experiment of Okkonen et al. [45] is taken 

again as a reference. After applying the ANN network on the input parameters, the 

value of Nusselt numbers have come out as an impressive outcome. The information 

provided in the table allows for a visual comparison of few samples of the total 

experimental data, total scaled result from Eq. (2.8) and total ANN predicted Nusselt 

number.  

 

Table 4.7: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for low superheat and natural liquid-phase convection 

for a long vertical surface 

Sl. 

No. 
𝑱𝒂𝒔𝒖𝒑 𝑱𝒂𝒔𝒖𝒃 𝑹𝒆𝒍 𝑮𝒓𝒗 𝑵𝒖𝒆𝒙𝒑𝒕,𝒕𝒐𝒕 𝑵𝒖𝒔𝒄𝒂𝒍𝒆,𝒕𝒐𝒕 𝑵𝒖𝒂𝒏𝒏,𝒕𝒐𝒕 

1 0.524 0.0776 0 83200 23.200 28.140 25.667 

2 0.529 0.0776 0 82100 22.169 27.779 25.524 

3 0.944 0.05 0 35600 15.817 8.457 16.334 

4 0.945 0.0776 0 35500 17.329 12.869 18.311 

5 1.001 0.1071 0 32400 19.142 16.502 20.447 

6 1.228 0.0776 0 23500 18.022 9.782 16.111 

7 1.252 0.1071 0 22700 18.677 12.747 17.804 
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The data selected for forecast with ANN is shown in the table provided above. The 

prediction was accurate with the ANN network performing better than the scaled data, 

which was clearly evident. Performing a real statistical comparison would offer more 

clarity on the analysis. The rescaled data had an MSE of 34.0523, whereas the ANN 

predicted outcome achieved a significantly lower MSE of 2.3035, indicating a marked 

enhancement compared to the rescaled result. In previous instances, the largest 

percentage differences were found to be 55.87 and 15.13 respectively. Furthermore, 

almost all results, exactly 78% when employing artificial neural networks for 

forecasting, are contained within a 10% margin of error. The statistical analysis shows 

that the accuracy of the ANN prediction is significantly better for the specified 

condition than the scaled data when compared to the experimental results. 

 

4.3.2.2. Film boiling of Forced Liquid-phase convection 

 

To predict the result of film boiling over vertical surface, low superheat and forced 

convection condition is also used. An experiment of Jouhara et al. [47] has been taken 

to apply the ANN network. An experimental study was performed on transient film 

boiling, using varying coolant velocities, on two spheres of different sizes, two 

cylindrical specimens of different lengths in parallel flow, a cylinder in cross flow, and 

two flat plates of different lengths. Using ANN network with input parameters led to 

remarkable Nusselt number results. The below table compares experimental, scaled, 

and predicted Nusselt numbers visually for few samples. 
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Table 4.8: Comparison table for the total Nusselt number of experiment, scale 

and ANN prediction for low superheat and forced liquid-phase convection for 

a vertical cylinder 

Sl. 

No. 
𝑱𝒂𝒔𝒖𝒑 𝑱𝒂𝒔𝒖𝒃 𝑹𝒆𝒍 𝑮𝒓𝒗 𝑵𝒖𝒆𝒙𝒑𝒕,𝒕𝒐𝒕 𝑵𝒖𝒔𝒄𝒂𝒍𝒆,𝒕𝒐𝒕 𝑵𝒖𝒂𝒏𝒏,𝒕𝒐𝒕 

1 0.196 0.0273 944 236000 31.236 29.486 29.905 

2 0.204 0.0273 944 227000 30.4195 27.939 28.566 

3 0.218 0.0382 915 216000 32.575 35.665 33.000 

4 0.248 0.0273 944 194000 26.287 21.717 25.259 

5 0.256 0.0382 915 188000 27.830 28.890 28.264 

6 0.295 0.0382 915 164000 24.146 23.836 25.829 

 

The table above displays the data chosen for prediction using ANN. The prediction 

was correct, as the ANN network outperformed the scaled data, which was clearly 

visible. Conducting an actual statistical comparison would provide greater insight into 

the analysis. The MSE for the rescaled data was 7.0581, while the ANN predicted 

result had a much lower MSE of 1.7980, showing a significant improvement over the 

rescaled data. In past occasions, the biggest variations were identified as 17.38 and 

8.15. Moreover, nearly all findings, specifically more than 92% with the use of 

artificial neural networks for prediction, fall within the 8% margin of error. Statistical 

analysis indicates that the accuracy of the ANN prediction is notably superior for the 

specified condition compared to the scaled data in relation to the experimental 

outcomes. 

ANN prediction results show consistent accuracy in calculating Nusselt number for 

various film boiling conditions examined over vertical surfaces. Mean Squared Error 

measures proximity of regression line to data points by averaging squared errors, 

indicating expected value of error loss. A column bar graph compares MSE of Scale 

analysis and ANN prediction with experimental results for film boiling over vertical 

flat plate for visual accuracy evaluation.  
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Fig. 4.3: Mean Squared Error bar graph for the results from scale analysis 

and ANN prediction comparing with the experimental data for film boiling 

 

The optical visualization shows the comparison of accuracy in heat transfer calculation 

between Scale analysis and ANN prediction for film boiling conditions. The ANN 

predictions demonstrate superior precision in all conditions, outperforming the scale 

analysis. Despite different network architectures for high and low wall superheat film 

boiling, the ANN model consistently delivers better results. The variation in bar 

heights indicates the reliability of the ANN model. 
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Chapter 5 

 

Conclusion 

 

The overall thesis work is done in order to predict the heat transfer for different stages 

of pool boiling, especially Nucleate boiling and Film boiling heat transfer. Calculation 

of heat transfer in pool boiling is always a challenging problem either by 

experimentally, analytically or numerically. The problem was well defined and the 

solution procedure is analysed precisely. The obstacles for both the experimental and 

scale analysis are mentioned. Thus the aim was to predict the heat transfer by numerical 

simulation using Artificial Neural Network (ANN).  

The results of the prediction are mentioned in the previous chapter. Although all the 

tested dataset was separated from the trained ones, the network gives spectacular 

outcomes for every conditions. This implies the accuracy and precision of the ANN 

network model. The pictorial and the tabular representations report the visual results 

for the three methods for solving the defined problems.  

If the focus is on the statistical errors, then the variation of Mean Squared Errors is the 

primary parameter to define the better method for heat transfer calculation. The overall 

analysis evolves as the highest MSE amongst all the predictions is 2.3035, which is 

statistically fine for a wide range of dataset. The minimum MSE amongst all those 

operations is 0.0093, which is a remarkable outcome and describes about the closeness 

of the ANN predicted result to the existing experimental results. 

The accuracy and the precision of the ANN network can be described by the error band 

calculated previously. The overall tested dataset stands in an extraordinary position in 

case of the range of errors. Overall 93% tested data fall within a 10% margin of error 

for the ANN model. Thus, the statistical approach states that the ANN is a very suitable 

computational tool to predict the heat transfer for the problems mentioned earlier. 
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The ANN is a very fast computational method by which the predictions can be made. 

For the existing dataset, it can train, validate and test the as per requirements. It also 

overcomes all the obstacles come in the way to solve heat transfer problem. It 

overlapped the correctness of scale analysis and stands in a very close position to 

experimental data. Such a computational model with fast processing and fine order of 

accuracy would be very helpful in order to solve the problem related to boiling heat 

transfer. The tool is very useful as it doesn’t have the difficulties of processing. The 

network takes lesser time to forecast the outcome, which is a needy requirement.  

Scope of Future work: 

The present ANN model utilized a host of multiphase boiling problems of complex 

nature with better accuracy as compared to existing correlations. Hence, the ANN 

models can be used for prediction of heat transfer with problems with complexities in 

geometry and/or physics, where experimental correlations show considerable error. 

This method can also be utilized as a tool for solving other problems related to heat 

transfer as well as fluid mechanics, where experimental data are not readily available. 
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