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Chapter 1

INTRODUCTION

1.1 Introduction

Thin beams are common structural elements used in micro-electro-mechanical systems
(MEMS) that have garnered a lot of attention because of their high-precision measurement
capabilities (Kong et al. (2008)). Owing to their numerous advantages, they are extensively
employed in micro- and nanoscale technologies, including micro-electro-mechanical transducers
and atomic force microscopy (AFM), which serve as the foundation for chemical and biological
sensors (Abbasion et al. (2009)).

Micro-beams, function at micron and submicron scales, where behaviour is greatly
influenced by small-scale effects. Experimental studies have shown that size-dependent static
and vibration behaviours observed in micro-structures are poorly captured by traditional
continuum theories. As a result, nonclassical continuum theories have gained popularity in the
study of micro-scaled structures. Examples of these theories include nonlocal, strain gradient,
and couple stress theories. Classical couple stress theory was founded by Mindlin and Tiersten
(1962) and other scholars, including Toupin (1962). In comparison to Lame constants for
isotropic elastic materials, their formulations incorporate higher-order rotation gradients as the
anti-symmetric element of second-order deformation gradients, resulting in the introduction of
four material constants.

Modified couple stress theory (MCST) was proposed by Yang et al. (2002) by
introducing a new, higher-order equilibrium equation while considering the equilibrium equation
of moments of couples. Unlike the classical couple stress theory, this modification includes only
one internal material length scale parameter and employs a symmetric couple stress tensor. The

inclusion of an asymmetric couple stress tensor and the involvement of a single length scale



parameter are the two primary benefits of the MCST over the classical couple stress theory, as
noted by Ma et al. (2008). This is because the strain energy density function is solely dependent
on the strain and the symmetric part of the curvature tensor. The effect of micro-structural
elements on the overall mechanical response of the material is taken into account by the internal
material length scale parameter (/). By adding this parameter to the theory, MCST aims to
include size-dependent effects that are ignored by classical continuum mechanics. This internal
material length scale is a critical parameter in MCST. Several experimental investigations were
carried out by researchers to ascertain this material length scale parameter for a particular
material. The micro-bend test was one of several common techniques, along with the micro-
torsion and micro-/nano-indentation tests, that Stolken and Evans used back in 1998 to measure
this crucial parameter, Additionally, scientists have discovered that a material's material length
scale parameter varies depending on how it is measured rather than having a fixed value. For
instance, Park and Gao's (2006) research on epoxy micro-beams discovered a value of 17.6
micrometers (um), but only for beams with a thickness of 20-115 um. The investigation of
vibrations in thin copper micro-beams by Li et al. (2018) yielded a value of 1.422 um for its
material length scale parameter. So, in addition to being a material constant, the material length
scale parameter used in couple stress theories also depend on the size of the structure (Khorshidi
(2018)).

Functionally graded materials (FGMs) have special thermo-mechanical properties that
make them a revolutionary development in material engineering. Because of their
microscopically diverse compositions, FGMs exhibit a continuously varying mechanical profile
in contrast to traditional composites. The problem of high transverse shear stresses that are
generally present when bonding dissimilar materials with notable differences in properties is
lessened by this gradient compositional variation. FGMs avoid issues related to stress
concentration by smoothly varying the volume fractions of component materials, such as metals
and ceramics, guaranteeing the maintenance of continuous stress fields throughout their
structure. This novel micro-structural design creates new opportunities in several engineering
and scientific domains. FGMs exhibit potential for use in AFM, micro- and nano-structures,
micro-sensors and micro-actuators, as well as MEMS (Ke and Wang (2011)). Component design
for these systems can be made with an unprecedented degree of flexibility due to their ability to

precisely tune material properties at the microscopic level. Modern developments in material
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processing methods have improved the viability and usefulness of FGMs even more. In micro-
systems, FGMs of thin films containing shape memory alloys have shown impressive potential
(Fu et al. (2003)). The combination of material science and structural design represents a
paradigm shift in the way we approach materials and structures in a variety of applications, as
well as an extension of engineering possibilities.

The goal of the current work is to determine the nonlinear static deflection and natural
frequency of a Timoshenko beam under uniformly distributed loading for four different types of
boundary conditions, namely, Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged
(HH) and Clamped-Free (CF). The formulation takes into account the moderate rotation of the
transverse normal through the von Kérman nonlinear strain and the through-thickness power-law
variation of a two-constituent material for four different combinations. The formulation is based
on Timoshenko beam theory, the von Karmén geometric nonlinearity, power-law variation of the
material, and a modified couple stress theory. The governing equations for the static deflection
are derived using principle of minimum potential energy, whereas the governing equations for
free vibration are derived using Hamilton’s principle. The solutions of the governing equations

are obtained using Ritz method.

1.2 Literature Review

For the past few decades, a large number of researchers have focused on the static,
dynamic and buckling analysis of homogeneous and non-homogeneous micro-beams using a

range of analysis techniques. In this section, very brief review of those works is provided.

1.2.1 Static, Dynamic and Buckling Behaviour of Homogeneous Beams

We've selected a few recent papers in which the researchers reported very high-quality
work on the mechanical behaviour of homogeneous beams, including their static, dynamic and
buckling behaviour. Hariz et al. (2022) presented buckling solutions for a quasi-static
Timoshenko beam subjected to longitudinal force and an elastic wall. It analysed Haringx and
Engesser models, derives buckling stress and shape expressions, establishes wall rigidity
relations, and introduces a yield limit. Loya et al. (2022) examined the dynamic behaviour of

cracked Timoshenko beams in a Winkler elastic medium, focusing on obtaining their natural
3



frequencies of bending vibration. The beam was modeled as two segments connected by
massless springs, with stiffnesses proportional to shear force and bending moment. The
methodology calculated natural frequencies based on various parameters. Li et al. (2023)
examined the vibration modes of thin web gears in aerospace transmission systems, focusing on
their impact on system stability. It suggested instability in out-of-plane vibration, with discrete
springs worsening it. Frequency veering was observed, and a Timoshenko gear pair model with a
coupling mesh stiffness matrix provided valuable insights for designing thin web gear
transmission systems in aerospace applications. Cannizzaro et al. (2023) introduced a
distributional model that considers both flexural and shear concentrated flexibilities in
Timoshenko beams, enhancing their governing equations. It used generalized function theory to
provide a closed-form solution for vibration modes and frequency equations, offering insights for
structural analysis and design.

Rodriguez-Cruz et al. (2023) demonstrated that degenerate states of a beam with free
ends, with anti-symmetrical transverse mode shape, tended asymptotically to the thickness-shear
mode in the infinitely long beam limit. Wriggers (2023) explored the use of the virtual element
method (VEM) to develop Timoshenko beam elements, a straightforward and exact formulation
that can be integrated into classical finite element codes. This method was particularly useful for
nonlinear structural problems involving large deflections and rotations. The Theory of Functional
Connections (TFC) was used by Yassopoulos et al. (2023) to analyze static beams, incorporating
von Karman nonlinearity and Timoshenko—Ehrenfest beam theory. The authors compared TFC
results with Finite Element Method (FEM) solutions, highlighting its advantages for stress
analysis and solving buckling and free vibration problems. TFC offered more accurate solutions
and faster solution times. Sabzehzar et al. (2024) introduced the equivalent beam approach for
assessing truss structures strength and deflection. It revealed that the Euler-Bernoulli beam
model was inadequate and had a high error rate. The Timoshenko beam method's accuracy
depended on the selection of the Timoshenko shear coefficient. The paper proposed an
exponential relationship for optimizing this coefficient. Torres-Guzman et al. (2024) obtained
closed-form expressions for the transfer matrix of free oscillations in finite periodic Timoshenko-
Ehrenfest beams. It used the Cayley-Hamilton theorem to derive a fourth-order recursive relation

for matrix coefficients, leading to the definition of Tetranacci Polynomials. The recursive
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relation allowed for computing the N power of the transfer matrix without requiring the matrix

product. The formalism can be extended to waves propagating in finite periodic layers.

1.2.2 Static, Dynamic and Buckling Behaviour of FGM Beams

In addition, we have chosen a few recent papers where the researchers have conducted
excellent research on the static, dynamic and buckling behaviours of FGM beams. Rahimi et al.
(2013) examined post-buckling behaviour of functionally graded (FG) beams using an exact
solution method. It employed nonlinear strain-displacement relationships and Hamilton's
principle. The study also analyses linear vibration, examining the influence of parameters like
power-law exponent, boundary conditions, and beam geometry on static deflection and vibration
frequencies. Mohanty et al. (2023) examined the parametric stability of a Timoshenko non-
uniform sandwich beam on a Pasternak foundation, using extended Hamilton's principle,
Galerkin method, and Hills equations. The results were visualized through plots and analyzed
using MATLAB programming. Yee et al. (2023) presented a new theoretical approach to model
the free vibrations of FG graphene platelets reinforced thick beams with a single-edge crack. The
crack was modelled using strain-displacement, strain-stress, velocity-momentum, and dynamic
equilibrium equations, resulting in complex coupled motion equations. The methodology was
verified through simplified models and comparisons with literature and finite element software
results. Patil et al. (2023) investigated the influence of porosity and temperature on the buckling
and vibration properties of FG sandwich beams in a thermal environment. It used finite element
(FE) analysis and FE solutions to analyze buckling and vibration. Shan et al. (2023) proposed a
Timoshenko-beam FE model for shear-wall structures to accurately capture shear-flexure
coupling behaviour for long-term structural health monitoring. Parametric identification
framework and particle swarm optimization were used to update the model using vibration data.
The model's accuracy is validated using data from the Walnut Creek building, showing good
performance in predicting the building's response. Comparisons with shear-beam and Euler-
Bernoulli-beam models further supported its superiority.

Zhang et al. (2023) presented a numerical method for analyzing the static, dynamic, and
buckling behaviour of FG beams reinforced with graphene platelets. It used micro-scale
homogenization and structural analysis to predict the elastic moduli of nanocomposite layers and
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develop composite finite elements. The method was validated against existing literature and 3D
printing results, showing good agreement. The study also examined the effects of boundary
conditions, gradient distributions of graphene platelets and pores, microscopic parameters, and
structural geometric dimensions on the static and dynamic performance of FG beams. Bi-
directional gradient distribution patterns showed significant improvements in bending and
dynamic performance. Xu et al. (2024) investigated FG beams reinforced with graphene
platelets, porosity, and origami inclusions. It develops analytical solutions for static, dynamic,
and buckling responses. A theoretical framework is established, including the principle of virtual
work, reciprocal theorem of work, minimum potential, and complementary energies. The Ritz
method is applied to derive expressions for transverse bending, rotation, frequencies and critical
loads. Micromechanics approaches like the Halpin-Tsai expression were used to predict
mechanical responses. Liu et al. (2024) introduced a variational framework based on
Timoshenko-Ehrenfest beam theory and Hamilton's principle was used to study the dynamics of
the Langevin transducer. By comparing computed resonance frequencies to 3D finite element
models and laser Doppler vibrometry data, the framework's application using the FEM was
validated. This approach provided a fast and accurate analysis of the free vibrations and
dynamics of the transducer by taking into account the axial vibrations of the piezoelectric
ceramic stack. Molina-Villegas et al. (2024) introduced the Green's Functions Stiffness Method
(GFSM), a versatile approach for analyzing linear elastic static problems in non-uniform
Timoshenko beams and frames, demonstrating its effectiveness in analyzing non-uniform

structures under various loads.

1.2.3 Static Behaviour of Homogeneous Micro-/Nano-Beams

Ma et al. (2008) presented a microstructure-dependent Timoshenko beam model that
considerd bending and axial deformations, including the Poisson effect, and incorporates a
material length scale parameter. When normalcy was restored, the model became a
microstructure-dependent Bernoulli-Euler beam model. The model predicted smaller deflection
and rotation than the classical Timoshenko model, especially for very thin beams. The static and
dynamic problems of Bernoulli-Euler beams were analysed by Kong et al. (2009) using the strain
gradient elasticity theory. For cantilever beams, it evaluated the effects of size on bending

response and natural frequencies and solved boundary value problems. Asghari et al. (2010)
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presented a nonlinear Timoshenko beam model, incorporating MCST for size effects. It analyzed
hinged-hinged beams, demonstrating nonlinear size-dependent static and free-vibration
behaviours, using numerical and analytical methods. Karparvarfard et al. (2015) presented a non-
linear differential equation of motion for small-scale Euler-Bernoulli beams using the second
strain gradient theory, a non-classical continuum theory that accurately assesseed behaviour in
structures, using a hinged-hinged beam. A microscale Timoshenko beam model for surface
effects and flexoelectricity in piezoelectricity was presented by Yue et al. (2016). It resolved the
issues of free vibration and static bending in a piezoelectric nano-beam under uniform load. The
model showed that surface effects and flexoelectricity had a major impact on beam deformations,
underscoring the significance of taking material properties into account when analysing
piezoelectric nano-beams. A modified semi-continuum Euler beam model was developed by
Shen and Li (2017) to study bending deformation of extremely thin beams at micro-/nano-scale
thicknesses. The model considered external loads and boundary constraints, and its
normalization was refined. The model also introduced a nonlinear semi-continuum model to
predict elastic carrying capacity and analyse nonlinear bending deflections in extreme-thin
beams. Comparisons with classical and nonlocal continuum models showed good agreement.
Sobhy and Zenkour (2020) utilised MCST to investigate the bending behaviour of viscoelastic
nano-beams on visco-Pasternak elastic foundations. The model included a material length scale
coefficient and used Hamilton's principle. The study investigated how strains, damping structure,
and material length scale affected nano-beam deflection and stresses, and it compared the

expected outcomes with earlier studies.

1.2.4 Static Behaviour of FGM Micro-/Nano-Beams

Asghari et al. (2011) used MCST to provide a size-dependent formulation for FG
Timoshenko beams that took thickness-related changes in beam attributes into account. The
process yielded closed-form analytic formulations for static response parameters and generated
governing differential equations. Chen et al. (2011) developed a model for composite laminated
beams with first-order shear deformation using MCST. Compared to standard beam models, the
model reduced deflections and stresses by properly capturing microstructure size effects. The
MCST was applied by Salamat-talab et al. (2012) to analyse third-order shear deformation in FG
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micro-beams. It applied Hamilton's principle to the analysis of bending and free vibration. The
research deviated from the accepted models and revealed a significant size-dependency as the
beam thickness got closer to the material length scale parameter. Mao et al. (2013) examined a
mixed hardening plastic model, based on mechanism-based strain gradient plasticity, to
dynamically assess FGM micro-beams. The model incorporated the effects of plastic strain
gradients on flow stress, enabling both static and dynamic research. Utilising strain gradient
theory, Tajalli et al. (2013) investigated a size-dependent formulation for FGM Timoshenko
beams that captured the size-effects of micro-scaled structures. Five comparable length scale
parameters were presented together with governing differential equations and boundary
conditions. In this work, the results were evaluated using modified pair stress and classical
theories. In order to evaluate micro- and macro-structural reactions, Romanoff et al. (2016)
presented advanced non-local sandwich beam theories that included thick-faces beam, modified
couple stress, and homogenization—localization. = Convergence was demonstrated
computationally, extending to different plates and microstructures. Yang et al. (2017) combined
the zigzag and couple stress theories to provide a composite laminated beam model. By applying
Reissner's Mixed Variational Theorem, it made precise displacement and stress predictions.
Scale effects affected stiffness, displacements, and stresses, according to analytical solutions.
Nguyen et al. (2018) investigated size-dependent behaviours in micro laminated composite
beams. Ritz functions were presented in this article. It included the Lagrange equations, the
displacement field, and the modified couple stress theory. The model offered effective solutions
by forecasting size-dependent reactions in buckling, vibration, and bending. Sahmani et al.
(2018) predicted nonlinear bending behaviour of porous micro-/nano-beams reinforced with
graphene platelets using the nonlocal strain gradient theory of elasticity. It considered three
different porosity distributions and Hamilton's principle. Using MCST, Babaei and Eslami
(2022) examined nonlinear bending of functionally graded porous elastic tubes. The microtubes
featured uniformly distributed porosity and temperature-dependent characteristics. Constitutive
equations and nonlinear differential equations were derived using virtual displacement principle,
uncoupled thermoelasticity theory, von Kérman kinematic assumptions, and higher-order shear

deformation theory.
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1.2.5 Dynamic Behaviour of Homogeneous Micro-/Nano-Beams

Kong et al. (2008) solved dynamic problems of FGM Bernoulli-Euler beams using
MCST. It resolved two cantilever and simply supported beam boundary value issues. The new
model predicted natural frequencies that showed size dependence. Ma et al. (2008) presented a
microstructure-dependent Timoshenko FG beam model that considered bending and axial
deformations, including the Poisson effect, and incorporated a material length scale parameter.
When normalcy was restored, the model became a microstructure-dependent Bernoulli-Euler
beam model. The model predicts smaller deflection and rotation than the classical Timoshenko
model, especially for very thin beams. Abbasion et al. (2009) presented a model that considered
surface elasticity and residual surface tension on the frequency of flexural vibrations in micro-
beams. The study revealed that the frequency of micro and nano-scaled vibrations was size-
dependent. The static and dynamic problems of Bernoulli-Euler beams were analysed by Kong et
al. (2009) using the strain gradient elasticity theory. For cantilever beams, it evaluated the effects
of size on bending response and natural frequencies and solved boundary value problems.

Asghari et al. (2010) presented a nonlinear Timoshenko beam model, incorporating
modified couple stress theory for size effects. It analysed hinged-hinged beams, demonstrating
nonlinear size-dependent static and free-vibration behaviours, using numerical and analytical
methods. Sharma and Grover (2011) investigated the effects of surface conditions, beam
dimensions, relaxation times, voids, and thermomechanical coupling on energy dissipation in
thermoelastic damping in resonators of micro- and nano-electromechanical systems. It offered
numerical outcomes from MATLAB simulations as well as analytical expressions. Using an
Euler-Bernoulli model, Hendou and Mohammadi (2014) analysed the vibration of micro-beams
with significant transverse deflection. Thermoelastic damping, integrated as imaginary stiffness,
was the predominant damping mechanism. Using the Galerkin procedure and nonlinear normal
mode theory, the equation of motion wass analysed. It was found that nonlinear modal analysis
predicted extreme points in parameters such as frequency shift and inverse quality factor. Using
Euler-Bernoulli theory, Sharma and Kaur (2014) examined transverse vibrations in a
homogeneous isotropic, thermoelastic-diffusive thin beam. It looked at thermoelastic-diffusion-

related deflection, thermal moment, mass moment, frequency shift, and damping.



In order to provide insights for the sensitivity design of resonant micro-gas sensors, Xu
and Yang (2015) presented a multi-field coupled dynamics equation for a micro-beam and
examined its natural frequencies, amplitude-frequency relationship, and system parameters.
Karparvarfard et al. (2015) presented a non-linear differential equation of motion for small-scale
Euler-Bernoulli beams using the second strain gradient theory, a non-classical continuum theory
that accurately assessed behaviour in structures, using a hinged-hinged beam. Noori et al. (2016)
explored the free vibration of micro-beams using three beam models, focusing on the first five
natural frequencies, considering three length-scale-parameter/height ratios and five different
boundary conditions, and solving equations using Hamilton's principle. A microscale
Timoshenko beam model for surface effects and flexoelectricity in piezoelectricity was presented
by Yue et al. (2016). It resolved the issues of free vibration and static bending in a piezoelectric
nano-beam under uniform load. The model showed that surface effects and flexoelectricity had a
major impact on beam deformations, underscoring the significance of taking material properties
into account when analysing piezoelectric nano-beams. Habibi et al. (2019) investigated the size-
dependent free vibration characteristics of magneto-electro-elastic nano-beams in a thermal
environment, using MCST and Euler—Bernoulli beam model. Results showed increased length
and decreased thickness decrease nano-beam natural frequencies. Using MCST, Ghasemi and
Mohandes (2020) analysed the frequencies of cylindrical shells made of micro- and nano-fiber-
metal laminate. It examined composites made of glass/epoxy, aramid/epoxy, and carbon/epoxy,
with aluminium serving as the metal component. The micro and nano cylinders made of aramid
reinforced aluminium laminate exhibited higher frequencies, and the results exhibited excellent
agreement with previous research. Esen (2020) investigated the dynamic behaviour of size-
dependent Timoshenko micro-beams under moving loads using the FEM. It focused on the
interaction between the load and the beam, considering mass inertia effects. The study explored

various parameters' effects on beam dynamics across various scenarios.

1.2.6 Dynamic Behaviour of FGM Micro-/Nano-Beams

Asghari et al. (2011) used MCST to provide a size-dependent formulation for
Timoshenko FGM beams that took thickness-related changes in beam attributes into account.
The process yielded closed-form analytic formulations for static response parameters and

generates governing differential equations. Ke and Wang (2011) investigated the dynamic
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stability of micro-beams made of FGM using MCST and Timoshenko beam theory. Using
differential quadrature, Hamilton's concept, Bolotin's approach, and Mori-Tanaka
homogenization, it examined free vibration. Ke et al. (2012) investigated the nonlinear free
vibration of FGM micro-beams by the use of von Karméan geometric nonlinearity and MCST. To
find vibration frequencies under various boundary conditions, it used Hamilton principle, a non-
classical Timoshenko beam model, the Mori-Tanaka homogenization technique, and a numerical
approach. A MCST based approach was applied by Salamat-talab et al. (2012) to analyse third-
order shear deformation in FG microbeams. It applied Hamilton's principle to the analysis of
bending and free vibration. The research deviated from the accepted models and reveals a
significant size dependency as the beam thickness got closer to the material length scale
parameter. Using Euler—Bernoulli beam theory and von Karman geometric nonlinearity, Jia et al.
(2015) examined the impacts of size effects on the free vibration of FG micro-beams under
coupled forces such as electrostatic force, temperature changes, and Casimir force. The study
emphasized how these elements interact significantly. Nguyen et al. (2016) used the Micro
Genetic Algorithm (micro-GA) in conjunction with conventional beam theory to optimise
vibration and lateral buckling in laminated composite beams. The ideal solution is strongly
influenced by geometric factors, and micro-GA outperformed ordinary GA in terms of
convergence rate and optimal solution.

Shafiei et al. (2016) integrated the MCST, von-Karman geometric nonlinearity, and
Euler-Bernoulli beam theory to investigate the nonlinear vibration of axially functionally graded
(AFG) micro-beams. The model takes Hamilton's principle and a number of boundary conditions
into account. According to the study, fundamental and second frequencies are impacted by the
rate of cross-section change, which has implications for microstructure design. Simsek (2016)
presented a new size-dependent beam model for analyzing the nonlinear free vibration of a FG
nano-beam. It integrated nonlocal strain gradient theory (NLSGT) and Euler-Bernoulli beam
theory, considering geometric nonlinearity. The model addressed coupling effects from
unsymmetrical material variation and used Hamilton's principle to derive motion equations. The
study presented a closed-form solution for nonlinear frequency. Using MCST, Ghasemi and
Mohandes (2020) investigated the frequency of micro and nano fiber-metal laminate (FML)
cylindrical shells. It studied vibrations in composites such as carbon/epoxy, glass/epoxy, and
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aramid/epoxy using Love's first approximation shell theory and beam modal functions. Al-
shujairi and Mollamahmutoglu (2018) examined the dynamic stability of a FG sandwich micro-
beam under parametric axial excitation and boundary conditions, including thermal effects. It
used nonlocal strain gradient theory, first-order shear deformation beam theory, Hamilton's
principle, and differential quadrature method to derive governing equations and solve differential
equations. The study contributed to the field by providing insights into parametric instability
regions. Nguyen et al. (2018) investigated size-dependent behaviours in micro laminated
composite beams using Ritz functions. It included the Lagrange equations and the MCST. The
model offered effective solutions by forecasting size-dependent reactions in buckling, vibration,
and bending. Using a sophisticated mathematical model, Bhattacharya and Das (2019)
investigated the free vibration behaviour of a spinning micro-beam. It dealt with Coriolis
acceleration, geometric non-linearity, spin-softening, and high operating temperatures. In order
to gain an understanding of the behaviour of the system in the non-dimensional speed vs
frequency plane, the model was examined for different parameters and verified using the Ritz
approach. Gul and Aydogdu (2021) investigated the free vibration analysis of FG periodic
structure nano-beams via doublet mechanics theory, where the periodic FG nano-beams are
modelled as a simple crystal lattice type. They derived micro strains and strains by expanding in
Taylor series and obtained micro relations transformed to macro stress-strain relations. Saimi et
al. (2023) examines the free vibratory behaviour of defective bidirectionally graded micro-beams
with fractures using the MCST, and the Quasi-3D shear and normal deformation beam idea. It
constructed mass and stiffness matrices using Gauss-Lobatto node architecture, DQ and Gauss-
Lobatto quadrature techniques, and Lagrange's rule. The results offer a numerical basis for

porous FG microstructure design.

1.2.7 Buckling Behaviour of Homogeneous and FGM Micro-/Nano-Beams

Akgoz and Civalek (2011) applied couple stress theories and strain gradient elasticity to
study the stability of micro-sized beams. It used Bernoulli-Euler beam theory to present
analytical solutions for nano-sized beams that are axially loaded. The research advanced the
mechanical modelling of structures at the micro- and nanoscale. Using MCST and considering
the theories of Euler-Bernoulli and Timoshenko beams as well as minimum potential energy,

Abadi and Daneshmehr (2014) examined buckling in composite laminated beams. Size effects
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and Fourier series expansions were included. The study examined the effects of material length,
beam thickness, and length on the behaviour of micro composite laminated beams and compared
its findings with previous research. Using MCST, Mohammadabadi et al. (2015) investigated the
effect of temperature on size-dependent buckling in micro composite laminated beams. It used
different cross-ply laminates to examine lamination, boundary conditions, and shear
deformation. For hinged-hinged conditions, the governing equations and boundary conditions
were solved analytically, and the generalised differential quadrature (GDQ) method was utilised
to solve them numerically. Nguyen et al. (2016) used the Micro Genetic Algorithm (micro-GA)
in conjunction with conventional beam theory to optimise vibration and lateral buckling in
laminated composite beams. The ideal solution was strongly influenced by geometric factors,
and micro-GA outperformed ordinary GA in terms of convergence rate and optimal solution.
Shafiei and Kazemi (2017) investigated the nonlinear buckling behaviour of FG micro- and
nano-beams composed of porous materials. It used MCST, Eringen's nonlocal theory, von
Karman geometric nonlinearity, and Euler-Bernoulli beam theory. Zandekarimi et al. (2018)
investigated a circular microplate's thermal buckling and post-buckling behaviour under clamped
boundary conditions and a uniform temperature rise. It analysed the behaviour in terms of length
scale parameter, power law index, and thickness ratio using variational method, differential
quadrature method, and iterative analysis. Under thermo-mechanical loading and boundary
conditions, Taati (2018) provided an exact solution for the size-dependent buckling and post-
buckling behaviour of FG micro-beams. It solved nonlinear equations by applying the minimum
total potential energy principle and MCST. The study also emphasized how the lack of
consideration for the stiffness of the flexural-extensional coupling limited the predictive power

of Fourier series solutions in post-buckling behaviour.

1.3 Mathematical Background

The mathematical formulation of the current thesis work is based on two energy
principles of structural mechanics: minimum total potential energy principle and Hamilton's
principle. The governing equations for the static deflection are derived using principle of
minimum potential energy, whereas the governing equations for free vibration are derived using

Hamilton’s principle. The solutions of the governing equations are obtained using Ritz method.
13



The solutions to the governing equations are obtained by approximating the displacement fields
using the Ritz method. The displacement fields are approximated by using the orthogonal
admissible functions that are produced by the Gram-Schmidt algorithm. In the end, the
governing equations of the free vibration problem are transformed into an eigenvalue problem. A
brief summary of the many principles and methods applied in the current thesis work is given in

this section.

1.3.1 Minimum Total Potential Energy Principle

The principle of Minimum Potential Energy (MPE), states that: For conservative
structural systems, of all the kinematically admissible deformations, those corresponding to the
equilibrium state extremize (i.e., minimize or maximize) the total potential energy. If the
extremum is a minimum, the equilibrium state is stable. In other words, the potential energy is
stationary, and it could be maximum or minimum (Shames and Dym (2009)). For stable
structures, it undergoes minimum value with respect to displacements.

The principle of virtual work, in variational form (first variation), is given as:

[Touds + [ f5udv=|oc,de,dv. (1.1)
Here ou is the virtual displacement;J.Zé‘uids and J. J:0u,dv are the virtual work by those

vectors which are present in the surface and by body force respectively; j 0,0¢,dv is the internal

virtual work. For elastic materials, the expression for stress is given by:

— a(]0

. , 1.2
where U, is the strain energy density. Putting o, in the Eq. (1.1), we get,
[Touds+ [ foudv=[roz,av. (1.3)
K v v 68!]'
The variation in strain energy density is given by
oU, :%5‘%" (1.4)
os;

i

Putting it in Eq. (1.3), we get,
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[Touds + | foudv=[oU,dv (1.5)

By the properties of the calculus of variation, we can write,

5( [Tuds+ ] fiuidvj = 5[_“U0dv}

=6(-V)=6(U)

= 5(U+V)=0. (1.6)
Here V is the potential of the external loads. It is negative of the external load acting on the
structure. The strain energy U is the elastic energy stored in deformed structure. So, the potential
energy (IT) of a structural system is defined as the sum of the strain energy (U) and the work
potential (), i.e.,

[n=u+Vr. (1.7)
At equilibrium, we know that the potential energy is minimum (extremum). Hence,

S(IM)=6(U+V)=0 (1.8)
This expression only says that IT is stationary with respect to variations in the displacement field
when the body is in equilibrium. So in structural problems, variational approach is used to find

the displacement (dependent) functions that make the potential energy value stationary and this

principle is only valid for elastic materials.

1.3.2 Hamilton's Principle
Hamilton’s principle states that, of all the paths of admissible configurations that the

body can take as it goes from configuration 1 at time ¢, to configuration 2 at time ¢,, the path

that satisfies Newton’s law at each instant during the interval is the path that extremizes the time

integral of the Lagrangian during the interval (Shames and Dym (2009)).

5“@;} =0, (1.9)

where ¢ is the Lagrangian which is given by, { =T -11,ie., {=T-U-V.
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Here T is the kinetic energy. Putting the value of {in Eq. (1.9), the final expression of

Hamilton’s principle is given as follows

5[T(T—U—V)dt]=0. (1.10)

4

1.3.3 Ritz Method
The Ritz method is an approximation method for solving variational problems (Shames
and Dym (2009)). Instead of focusing on the differential equation, the Ritz method looks for a

solution to the variational problem directly on the functional of the form given below:

I[y(x)]::JQF(x,y(x),y(x)’)dx. (1.11)

The fundamental concept in Ritz method is to use a linear combination of » known functions

¢,(x) to approximate the solution function y(x), i.e.,
=2 G (x); (1.12)
-1

Here glﬁl(x) must satisfy the essential boundary conditions for y(x). )7(x) indicates that the
solution is approximate solution and the coefficients C; are unknown scalars. These scalars are

determined by substituting the linear combination }(x) into the functional (1.11). Since the

functions ¢, (x)are known, so their derivatives are ¢’ (x). The derivative of 7(x)can therefore

be written as
x) =2 Cé(x). (1.13)

Substituting the expression j(x) and y(x)into Eq. (1.11), we get the functional depending on

»(x) which is converted into a function ¥ of the n variables ¢, (x)given as below:

¥(C,,C,,..C,) IF[ ZC¢ ZC¢ ] (1.14)

16



Chapter 1

Here the functions ¢, (x)are known, and the integration can be carried out with respect to the

variable x. The variational problem has been reduced to finding the coefficients C, for which the

function attains an extreme value, subject to the boundary conditions.
In structural mechanics problems, this functional is the potential energy IT, which has to be

minimized to get stable equilibrium state. From Eq. (1.14), to extremize YV  i.e., minimizing or

maximizing the ¥, we can write (W) =0. It implies:

a\P:O, oF =0, oF =0, oF :O,...:a—\P:O. (1.15)
oC, oC, oC, oC, oC,
Solution of equation (1.15) results in a series of n-equations, which can be solved to determine

the parameters C,. Putting the value of C, along with ¢l.(x)in Eq. (1.12) yields the final

approximate solution of 7 (x).

1.3.4 Modified Couple Stress Theory (MCST)

The MCST presented by Yang et al. (2002) evolved from the classical couple stress
theory proposed by Mindlin (1964). The leading advantage of the MCST over the classical
couple stress theory is the involvement of only one additional material length scale parameter /.
According to the MCST, the strain energy density is a function of both strain tensor (conjugated
with stress tensor) and curvature tensor (conjugated with couple stress tensor) (Yang et al.

(2002)). So the strain energy in an isotropic linear elastic material is given as below:

U=U +U,, (1.16)
where U, is the classical strain energy, U, is the non-classical strain energy. The expression for

U,and U, are given as follows:

Ul=%£(a:g)d1/ (1.17)

U, =%}[(m:;()dV (1.18)

Here V' denotes volume, o and ¢ are classical stress and strain tensors respectively; m and y are

couple stress and curvature tensors respectively. Their forms are given as follows:
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gzé(v“(w)r), (1.19)

o =Fs, (1.20)

m=2Gl’y, (1.21)
1 T

ZZE(VH+(V9) ) (1.22)

.9, .0 a_ . .
Here V= it E +k oo U1s the displacement vector; £ and G are Young’s modulus and shear

modulus respectively; / is the material length scale parameter and 6 is the rotation vector which

is given as follows:

Gzécurl(u) (1.23)

1.4 Description of the Problem

In the present thesis work, we have studied the static deflection and free vibration
behaviour of FG Timoshenko micro-beam for four different boundary conditions namely
Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF).
It is assumed that the beam is subjected to uniformly distributed loading. In all these problems,
metal-ceramic FGM compositions are considered, for which the through-thickness continuous
material gradation is assumed following power law variation of volume fraction of the
constituents. The size effect has been incorporated into the formulation using modified couple

stress theory (MCST).

— - -

Fig. 1.1: Beam with dimensions and coordinate axes.
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For the present study, a beam (Fig.1.1) having length L, thickness 4 and width b is
considered. The axial, width and thickness coordinates are denoted by x, y and z respectively,
where the origin lies at the left end in the mid-plane of the beam. The mathematical formulation
is based on Timoshenko Beam theory (TBT). The governing equations for static deflection are
derived using minimum potential energy principle. These governing equations are non-linear in
nature as von Karman type non-linearity has been incorporated in the expression of classical
strain. For the free vibration problem, small amplitude free vibration behaviour of the pre-loaded
beam is studied using Hamilton’s principle. In both these problems, the governing equations are
solved by approximating the displacement fields following Ritz method. The main objective of
the thesis work is to determine static deflection and the free bending vibration frequencies of FG
micro-beam. The model is successfully validated with the available results. An extensive set of
results are presented for predicting the static deflection and free vibration frequency of the FGM
micro-beam. The results are presented to show the effects of size-dependent thickness, material

gradation index, FG composition and boundary conditions.

1.5 Chapter Summary

The introduction outlines the increasing use of thin beams in micro-electro-mechanical
systems (MEMS) and nano-scale technologies, highlighting their significance in various
applications. It also emphasizes the importance of non-classical continuum theories in capturing
the size-dependent static and vibration behaviours observed in microstructures, leading to the
development of the modified couple stress theory (MCST). The literature review provides a
detailed overview of the research conducted on the static, dynamic, and buckling behaviour of
both homogeneous and FG micro-/nano-beams. It covers the application of advanced theories
such as strain gradient elasticity theory, modified couple stress theory, and nonlocal sandwich
beam theories in analysing the behaviour of micro-beams. Additionally, the chapter delves into
the mathematical background, describing the principles of minimum total potential energy,
Hamilton's principle and the Ritz method. Furthermore, it introduces the MCST, outlining its
formulation and the strain energy density function. The problem description section outlines the
specific focus of the thesis work, detailing the investigation of the static deflection and free

vibration behaviour of FG micro-beams under various boundary conditions. In summary, the
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chapter provides a comprehensive overview of the study's background, literature review,
mathematical formulation, and the specific problems addressed, offering a clear and structured

insight into the research focus and objectives.
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Chapter 2

MATHEMATICAL FORMULATION

2.1 Introduction

We have studied the static deflection and free vibration behaviour of FG Timoshenko
micro-beams for four different boundary conditions namely Clamped-Clamped (CC), Clamped-
Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF). It is assumed that the beam is
subjected to uniformly distributed loading. Metal-ceramic FGM compositions are considered, for
which the through-thickness continuous material gradation is assumed following power law
variation of volume fraction of the constituents. The size effect has been incorporated into the

formulation using modified couple stress theory (MCST).

& Ir‘r

,}__ i o i s i il S -

— - -

Fig. 2.1: Beam with dimensions and coordinate axes.

For the present study, a beam (Fig.2.1) having length L, thickness # and width b is
considered. The axial, width and thickness coordinates are denoted by x, y and z respectively,

where the origin lies at the left end in the mid-plane of the beam.



2.2 FGM Modeling

The beam material is assumed to be functionally graded along the z direction. The power

law variation of the volume fraction of the metallic and ceramic phases is considered. Hence, any

effective material property M ., following Voigt model (Shen (2009)) is given as follows:

k
Mf(z)sz+(Mc—Mm)(%+%j (2.1)
where, k (O <k< oo) is the volume fraction index, and the subscripts ¢ and m denote the ceramic
and metallic constituents respectively. The top layer (z =+h/ 2) is purely ceramic and the
bottom layer is pure metallic (z =—h/ 2) . The effective elastic modulus (E,), effective

Poisson’s ratio (uy), effective density (0, ) and effective shear modulus (Gy) are therefore given

by the following equations.

Ef(z)ZEer(EC—Em)(iJrlj , (2.22)
- ho2
1 k
w(ﬂz#ﬂ(%-m)(%ﬂ ) (2.2b)
1 k
p,»(2)=pm+(pc—pm)(%+5] ; (2.2¢)
G, =E, /2(1+u,). (2.2d)

It is to be noted that k=0 implies a purely ceramic beam, and as the value of k increases, the
volume fraction of the metal increases. In the present work, we have taken four FG materials.
They are given as follows: Stainless Steel/Alumina (SUS304/A1,0;) [FGMI1], Stainless
Steel/Silicon Nitride (SUS304/Si3N4) [FGM2], Stainless Steel/Zirconia (SUS304/ZrO;) [FGM3]
and Titanium Alloy/Zirconia (Ti-6Al-4V/ZrO,) [FGM4]. Table 2.1 shows the material properties

of different constituents at room temperature i.e., 300 K.
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Table 2.1: Material properties of FGM constituents at 300 K.

Chapter 2

Propert Stainless Steel | Titanium Alloy | Silicon Nitride Zirconia Alumina
perty (SUS304) (Ti-6A1-4V) (SisNy) (Z10,) (ALO3)
E (GPa) 207.79 105.70 322.27 168.06 320.24
H 0.318 0.298 0.240 0.298 0.260
3
p (kg/m’) 8166 4429 2370 3000 3750

2.3 Displacement Fields

The displacements fields {u,w} along the axial and transverse directions for the

Timoshenko beam model are given as follows,

u(x,z,t) =u,(x,t) -z g(x,1),

(2.3a)

(2.3b)

w(x,t):wo.
Here u,(x,t) 1s the axial displacement of the mid-plane and ¢(x) is the rotation of the

transverse normal.

2.4 Strain and Curvature Fields

2.4.1 Strain Fields

Strain in the x-direction with von Karman non-linearity is given by

ou I(GWJZ
& =—+—| —|.

= 2.4
= ox 2\ 0x @H

Putting Egs. (2.3a) and (2.3b) into Eq. (2.4), the final expression of strain in x-direction is given
as follows,

; _%_Z%Jrl(%j _ 2.5)

= ox ox 2\ ox

The shear strain in z-direction and in x-plane is given as below,
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_Oow Ou %_(,5

AT 2.6
. ox 0z Ox 2.6)
Due to symmetry, we can write,
ow,
yxzzyzx:_0_¢' (27)
ox

It is mentioned that the other components of the strain are zero.

2.4.2 Curvature Fields
Using the relations (1.22) and (1.23), and substituting the displacement fields given by Eqgs.

(2.3a) and (2.3b), the components of curvature tensor are given as below:

1(8*w, o4
X=X = —Z(?;Wa}, (2.8a)
Zxx :lyy :Izz :lxz :sz :Zyz :lzy :0 (28b)

2.5 Stress and Couple Stress Fields
2.5.1 Stress Fields

The stress in the x direction and in plane normal to x is given by,

o,=E . (2.9)
By putting the value of ¢ from Eq. (2.4) into Eq. (2.9), we get,
2
o.=E, %—z%+l(%] . (2.10)
| ox ox 2\ ox

The shear stress in x plane and in z direction is same as in z plane along x direction. It is given
by,
t.=7,.=Gky.. (2.11)

Here k_is the shear correction factor. By putting the value of y_or y_ from Eq. (2.7), we get,

ow,
sz = sz = Gfkv (_O - ¢j (212)

2.5.2 Couple Stress Fields

The nonzero component of couple stress tensor is given as below:

24



Chapter 2

m, =2G, Iy

Xy

(2.13)

By putting the value of y,, which is given in Eq. (2.8a), the expression for m,, is given as

below:

G,I'(d*w, o4
oSt

The components of couple stress tensor other than m and m are equal to zero, ie.,
m_=m =m_=m_=m_=m_=m_=0 (2.15)

xx vy zz Xz zx zy yz

2.6 Strain Energy, Work Potential and Kinetic Energy
2.6.1 Strain Energy

According to MCST, the strain energy in the combination of classical strain energy and

non-classical strain energy is as given below:
U=U+U, (2.16)
Here U, and U, are the classical and non-classical strain energies respectively.

The expression for U, is derived as follows:

U, =%;|:(a:g)dV

= %J.(Jxxgxx + szj/xz )dV

Vv

B %J‘(Efgxxz + Gfks7x22 )dV

Vv

2\? 2
:lJ' E, %_Z%_,_l(%j +Gfks(%_¢j %
25 ox ox 2\ ox : Oox
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e e -
on{(5) %)
Bl R R
A )
+G k, (( ‘Z;O j —2¢(‘ch° j + ¢2}

d dx J\ dx dx dx dx
_17 dg)(dw, Y 1 (dw,Y 2.17
_2! EQ(dxj[ dxj +4EA[dxj dx. (2.17)
GAkY(dW ] ~2GAk ¢(dw0] GAkﬁzl
T\ dx dx ‘
(2.18)

Here EA=[E,dA, EQ=[E,zdA, EI = [E,z’dA, and GA=[G,dA
A A A A

The expression for U, is derived as follows:

1
= % J(mozy+m, 2, )aV
o8] A2
270 7L 4l o ox g o’ ox
Gl (&w, L 0¢ azwu@
IJ. 2 | a? 8x ox*  oOx
S “B( =2
2 o’ ox 4\ ax*  ox
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2.6.2 Work Potential
The work potential of the uniformly distributed load (UDL) is given below,

L
V=- pj w,dx,

0
(2.20)

where p is the intensity of the uniformly distributed load (N/m).

2.6.3 Kinetic Energy

The expression for  kinetic  energy (T ) is  derived as

(32
ol oo o< 2] ) s
() () (2

Here RA=Ip/.dA, RQ=Izp/.dA and Rl=jzzp/.dA.
A A

A

2.7 Determination of Static Deflection

The minimum potential energy principle can be expressed mathematically as,
27
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(2.19)

follows:

(2.21)

(2.22)



S(I)=6(U+V)=0. (2.23)

The displacement fields are approximated using Ritz method as follows:

w, (x)= icl.(piw (x), (2.24a)

4y (%)= Y G () (2.24b)
ng

() =2 i (%) (2.24¢)

Here ¢",p" and ¢’ are the set of orthogonal admissible functions, c; is the set of generalized
coordinates, and nw, nuand n¢ are the number of the respective functions. The set of

orthogonal functions ¢" ¢" and ¢’ are generated numerically from the lowest order

admissible functions by Gram-Schmidt orthogonalization scheme.The selected lowest order

functions satisfying different boundary conditions are given in Table 2.2.

Table 2.2: List of lowest order functions for different boundary conditions.

Boundary Condition o o of
X X X X . [ 7x
CC —|1-= —|1-= sin| —
L L L L L
X X X X . [ mx
CH ~Zl1-= —1-= sin| —
L IAS (2Lj
X X X X X
HH —|1-= —|1-— CoS| —
L L L L j
X X X . [ mx
CF — —|1-= sin| —
L L\ L (2Lj

Substituting the assumed displacement fields given by Eqgs. (2.24a)-(2.24c) into Egs.
(2.17), (2.19), (2.20), and using Eq. (2.23), the set of governing equations are given in the matrix

form as follows:

(k' [ T+ R ) (e} = P (2.25)
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Here [kd’ ] is the stiffness matrix due to classical strain energy which contains the linear terms
of the classical strain energy; [kd”l ] is the stiffness matrix due to classical strain energy that

contains the nonlinear terms of the classical strain energy; [km,,] is the stiffness matrix due to

non-classical strain energy; {P} is the load vector.

The set of equations given by Eq. (2.25) is nonlinear. It is solved using a substitution

method with successive relaxation (Das et al. (2008)). The solution yields {c} , which is used to
calculate {wy,u,,#} using Eqs. (2.24a)-(2.24c). The elements of the [kd’} [kd”l ], [k,,] and

{P} are given in the Appendix 2A.

2.8 Determination of Free Vibration

Hamilton principle is mathematically expressed as,

5(T(T—U— V)dt] =0. (2.26)

it
For the present problem involving free vibration, the work potential (V) is taken as zero.
It is assumed that the dynamic displacement fields for the free vibration problem are separable in
both space and time. Assuming harmonic vibration for elastic system, the dynamic displacement

fields are assumed as shown below:

w, (x,1) = ei”tnzw:dl.(piw (x), (2.27a)
-1
uy (x,1) = ei”’idnwﬂgoi“ (x), (2.27b)
i=1
. 1
P(x0)=e" Y d,, i (%). (2.27¢)
i=1

Here i =+v-1, and @ is the frequency of the free vibration.
As the micro-beam executes small amplitude free vibration about its deformed
configuration, its tangent stiffness is responsible for free vibratory motion that would occur in

the neighborhood of the deformed configuration. Hence, in the final form of Eq. (2.26), the part
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corresponding to the strain energy (U) is associated with the tangent stiffness of the deformed

configuration. The tangent stiffness [kT ] of the deformed beam is derived using the following

relationship (Das (2018):
[(kﬁ)T} zé{Pf} (2.28)

In Eq. (2.28), {P]’} is the restoring force vector for the deformed configuration given by

(B} = (ks o [ ]+ )

Appendix 2B. As the deformed configuration is already known from the previous static analysis,

“{cl.}. The elements of [kT ] in subscripted form are given in
Jt
the elements of [kT ] are fully known so that it can be used in the governing equations for the

free vibration problem.
Substituting the dynamic displacement fields given by Egs. (2.27a)-(2.27c) into Eq.
(2.21), incorporating the tangent stiffness of the micro-beam, and applying the Hamilton’s

principle given by Eq. (2.26), an eigenvalue problem is obtained as follows:

[« ]-@*[M]]{a}={0}. (2.29)
Here [M ] is the mass matrix, [kT] is the tangent stiffness matrix, @’ is the eigenvalue, and
{d } is the eigenvector. It is noted that the nonlinear tangent stiffness matrix [kT ] appearing in

Eq. (2.29) is linearized using the solution coefficients {c} of the deformed configuration of the
micro-beam to take into the effect of pre-stress induced due to static loading. The square roots of

the eigenvalues ((02) signify the frequencies of vibratory motion of the deformed micro-beam,

and the eigenvectors i.e., {d} represent the corresponding mode-shapes of vibration. These

eigenvectors when used in Egs. (2.27a)-(2.27c) generate the mode-shapes of vibration. Eq. (2.29)
is solved using a standard eigen-solver of MATLAB.

2.9 Chapter Summery

The static and vibration behaviour of a FG Timoshenko micro-beam under various
boundary conditions is mathematically formulated in this chapter, taking metal-ceramic FGM

compositions into account and using the MCST to account for size effects. It starts by outlining
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the FGM modelling and taking into account the power law variation of the volume fractions of
the metallic and ceramic phases, which results in the effective material properties. The
formulation of strain energy, work potential, and kinetic energy is presented in detail, as are the
displacement, strain, curvature, stress, and couple stress fields. The governing equations for the
static problem and vibration problem are derived. They are solved following Ritz method. Two
appendices describing the non-zero components of different matrices and the load vector rounds

off the chapter.

Appendix 2A

Non-zero components of [kdl]

(k') ] Ldp" do,”
_(kd/)/i_{__ll:’:': = GA kv.([ %d—;d)ﬁ

— _ L . .
—(kdl )]l _ j=l,nw = _GA kSJ‘ ¢zfnw—nu CZ dXJ

i=nw+nu+l,nw+nu+ng

! - nw
(kd ) . — AI 1 nw / dx,
ji j:nw+1,nw+nu

i=nw+l,nw+nu

L ¢ d u
l _ d(Di—nw—nu Q/‘"W
(kCl )ji Jj=nw+l,nw+nu - EAI dx’

- 4 dx dx
i=nw+nu+l,nw+nu+ng 0
- 1 _ dw]
(kd )/‘i Jj=nwHnu+l,nw+nu+ng =-G4 k d ¢J nw—nu dx,
- - i=l,nw 0 X

d iu—nw d¢¢—nw—nu
_(kC// )ji = nu e nung = _EQJ. (;x jdx dx,

i=nw+1,nw+nu

[
[ dgpznw—nu d¢]

(kcll ) i | j=nw+nu+l,nw+nu+ng = E]J‘
L Jji | ’ 0 dx dx

i=nw+nu+1l,nw+nu+ng

—— d +GAk J‘ qu —nw— nu(oj dx'

nw—nu

Non-zero components of [kd”l]

31



] _ EQT (dwo
o | j=nwenu+lnwnu+ng -
| 23

- L ‘w d 'w

o = EA[ [dﬂd@ i -
S o \dx ) dx dx o \dx ) dx
| - E_AL (dwo j de!" d@; dx

i _j:nw+1,nw+nu 2 dx dx dx ’

i=l,nw 0

jd(DiW dgof—nw—nu dx

dx ) dx dx

i=l,nw

Non-zero components of [k”d]

(kncl ) ji

(kncl ) ji

(kncl )ﬁ i

(knc’l ) ji

2 L 2 wd2 w
_GAP k&g o)

j=law —
- 4 x> dx’
i=1,nw 0
2 L P 2w
_ GAI d(oi—nw—nu d (Dj d
i=l,nw - X,
- 4 dx  dx’
i=nw+nu+1,nw+nu+ng 0

w ¢
GAI* ¢ d*" do].,, .,

dx,

J=nw+nu+l,nw+nu+ng —

2
- 4 dx dx
i=l,nw 0
2L # ¢
— GAZ dqpi—nw—nu d(oj_nw'_"u dx
J=nw+nu+lnw+nu+ng 4 d d .
i=nw+nu+l,nw+nu+ng 0 X X

Components of Load Vector

L
{pj }FLW = pj @,"dx,
0

A =0
{p] }j=nw+l,nw+nu i

{pj }j:nw+nu+l,nw+nu+n¢

=0.

Appendix 2B

Nonzero components of Mass Matrix

L
[M]j:l,nw = RAJ quw(ojw dx,

i=1,nw

o
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[M]j nw+1,nu+nw = RAJ(DZ nW(D] —aw dx

i=nw+l,nw+nu

L
[M] Jj=nw+l,nu+nw = —RQJ. ¢i¢_nw_nu¢j_nw dx,
0

i=nw+nu+1,nu+nw+ng

[M]] nw+nu+1,nu+nw+ng = —RQJ- ¢z anJ —w—nu dx,

i=nw+l,nu+nw

[M]] nw+nu+1,nu+nw+ng = RIJ. ¢z e nu¢] w—nu dx.

i=nw+nu+1,nu+nw+ng

Nonzero components of Tangent Stiffness Matrix
Linear Terms (Classical)

(kq/ )Tﬂ i _ GAij- %ﬂdx,

L ji 7=t y dx dx

i=l,nw

_ . dp”

i=nw+nu+l,nw+nu+ng

{ 4P 4P
_(kdl )Tﬁ |l = EA.(')- i—dexa

i=nw+1,nw+nu

(4ol 490
_(k"ll )Tji | J=nw+l,nw+nu = EA_([ ¢dx d]x dX,

i=nw+nu+l,nw+nu+ng

= —GAk j a0” =

k')
( cl ) ji |J=nwtnutlnwtnu+ng

i=1,nw
- - ¢
T d(p
k 1) AJ‘ i—nw ] nw—nu dx
_( cl Ji | j:nw+nu+1,nw+nu+n¢ dx 2

i=nw+l,nw+nu

L # do’ L
T do’ [
(k') = El | = I G GAK [ @ s @
cl i |j=nwnu+l,nw+nu+ng s i—nw—nu't’ j—nw—nu .
L Ji o dx dx 0

i=nw+nu+1,nw+nu+ng

Nonlinear Terms (Classical)
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Chapter 3

RESULTS FOR STATIC DEFLECTION BEHAVIOUR

3.1 Introduction

A theoretical investigation examines the static deflection of a Timoshenko micro-beam
made of functionally graded material (FGM), where the volume fraction varies according to a
power law along the thickness direction. To capture geometric non-linearity, the von Karman
non-linear strain-displacement relationship is utilized. The governing equation is derived using
the minimum potential energy principle. We explored four different boundary conditions namely
Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF).
The study evaluates the static deflection of four different FGMs: Stainless Steel/Alumina
(SUS304/A1,05) [FGM1], Stainless Steel/Silicon Nitride (SUS304/Si3N4) [FGM2], Stainless
Steel/Zirconia (SUS304/ZrO,) [FGM3] and Titanium Alloy/Zirconia (Ti-6A1-4V/ZrO,) [FGM4].
The mathematical formulation for static deflection is presented in Chapter 2 along with the

mechanical properties of four FGMs.

3.2 Validation Study

We have compared our result with Paul and Das (2016). The validation plots for Stainless
Steel/Zirconia [FGM3] Timoshenko micro-beam are presented in Figs. 3.1(a)—(c) where the plots

of p vs. w for k = 2.0 are shown. Here p is the non-dimensional uniform transverse pressure

and w is the normalized maximum transverse deflection. These are defined as follows:
—_ L 4 J—
p= p(h) /(Em b) and w=w/h, where p is the intensity of the uniformly distributed load in

N/m, w is the maximum transverse deflection, L is the length of beam, / is the height of beam

section and b is the width of the beam. The material properties for FGM3 are given as follows:



E,=207.79GPa, E,=168.06GPa, 1,=0318, £,=0.298, p,=8166(kgm™) and p,=3000

(kgm’3). Figs. 3.1(a)-(c) show the plot of ; vs. w for CC, CH and HH micro-beams

respectively. Figs. 3.1(a)—(c) show excellent agreement with present model and thus it validates

the present model.

15
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Fig. 3.1. Validation plots for static deflection for different boundary conditions: (a) CC, (b) CH,
(c) HH.

36



Chapter 3

We have also compared our model with Reddy (2011) for a homogeneous beam (£=0) for
which the geometric and material properties are given as follows: E =FE =E=1.44 GPa,
H =1 =1=038, k = (5(1 + ,u)/6 + 5/1) , b=2h, L=20h and p=1.0 N/m. The validation details are
given in the Tables 3.1 and 3.2 for uniformly distributed load and sinusoidal load respectively for

different 1/ values with its corresponding normalized central deflection w = w(E 1/ pL“)x 10?

,where w is the maximum transverse deflection. Tables 3.1 and 3.2 show excellent agreement

with present model and thus validate the present model.

Table 3.1: Comparison of normalized central deflection of a simply supported homogeneous

(k=0) micro-beam under uniformly distributed load.

l/h Reddy (2011) Present
0.0 1.3103 1.3103
0.2 1.1162 1.1162
0.4 0.7731 0.7731
0.6 0.5116 0.5116
0.8 0.3475 0.3475
1.0 0.2464 0.2464

Table 3.2: Comparison of normalized central deflection of a simply supported homogeneous

(k=0) micro-beam under sinusoidal load.

l/h Reddy (2011) Present
0.0 1.0333 1.033

0.2 0.8802 0.8802
0.4 0.6096 0.6096
0.6 0.4034 0.4034
0.8 0.2741 0.2741
1.0 0.1943 0.1943
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Fig. 3.2: Validation plots for static deflection for different size effect: (a) /42 = 0.2, (b) I/h = 0.6,
() /h=1.

Figs. 3.2(a)-(b) show comparison of normalized deflection w= w(E 1 / pL4) under
sinusoidally distributed transverse load with Reddy (2011) for a homogeneous beam having
given material properties: E =FE =E=1.44 GPa, y =p=4p=038, k = (5(1+y)/(6+5,u)) ,

b=2h, L=20h and p=1.0 N/m. The deflection is shown as a function of the non-dimensional beam
coordinate x/L for various //h values which are 0.2, 0.6 and 1. Fig. 3.2 shows excellent agreement

with present model and hence validates our model.
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3.3 Results for Different Parameters

The present work is carried out to determine the static deflection of FGM micro beams.
The static behaviour is presented graphically in non-dimensional ; vs. w plane, where ; is the
non-dimensional uniform transverse pressure and w is the normalized maximum transverse
deflection. The expression for p and w are as follows: p = p(L/ h)4 /(Eb) and w=w,, /h,

where p is the intensity of the UDL in N/m, L is the length of the beam which is related to

thickness of beam /4 as follows L/h=25, E_is the Young’s modulus of ceramic, b is the width of

the beam which is also related to 4 as follows b/h=2 and w_,  is the maximum transverse

deflection. To incorporate the size effect, the material length scale parameter / is taken as 17.6
micron.

The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary
conditions are shown in Figs. 3.3(a)—(f), 3.4(a)—(f), 3.5(a)—(f) and 3.6(a)—(f) respectively. These
curves for figures (a)-(f) correspond to different values of the material gradation index which are:
k=0.0, 0.1, 0.5, 1.0, 2.0, 5.0 respectively. Figs. 3.3-3.6 are presented for a Stainless Steel/Silicon
Nitride [FGM2] micro-beam. Each figure in Figs. 3.3-3.6 shows how size affects the non-
dimensional load-deflection behaviour by varying the size-dependent thickness (4//) values as
h/1=1.0, 2.0, 5.0, 10.0, and for classical FG beam (/= 0).

In Figs. 3.3-3.6 for different boundary conditions, the non-dimensional load-deflection
curves for various values of the material gradation index, £ =0.0, 0.1, 0.5, 1.0, 2.0, and 5.0 are
shown. In each of the figures in Figs. 3.3-3.6, the size-dependent thickness (//[) values are
varied. It should be noted that the size-effect decreases as the /4// value increases. It is also to be
noted that as & increases, the metal volume fractions in the beam increase. Because the metal
component has a lower elastic modulus than its ceramic counterpart, the beam becomes more
elastically flexible as k increases. For any particular boundary condition and for any given &
value, it is observed that the micro-beam becomes more stiff with increasing size-effect, and that
it is found to be maximum at 4//=1. At h/[=10, the micro-effect almost disappears as the curves at
these values become almost coincident with the classical behaviour. When k& increases for a

given value of //l, the curve becomes steeper, which indicates that the beam's stiffness decreases.
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From Figs. 3.3-3.6, it is seen that the non-dimensional pressure is very less for CF boundary as

compared to other boundary conditions, which means that the stiffness is very less for CF beams.
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Fig. 3.4: Effect of size on non-dimensional load-deflection curves for CH micro-beams:
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The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary
conditions are shown in Figs. 3.7(a)—(e), 3.8(a)—(e), 3.9(a)—(e) and 3.10(a)—(e) respectively.
These curves for figures (a)-(e) correspond to different values of size-dependent thickness (///)
which are: 4/[=1.0, 2.0, 5.0, 10.0, and for classical FG micro-beam (/ = 0) respectively. Figs. 3.7-
3.10 are presented for a Stainless Steel/Silicon Nitride [FGM2] micro-beam. Each figure in Figs.
3.7-3.10 shows how material gradation index affects the non-dimensional load-deflection
behaviour by varying the material gradation index, which are: £=0.0, 0.1, 0.5, 1.0, 2.0, 5.0.

In Figs. 3.7-3.10 for different boundary conditions, the non-dimensional load-deflection
curves for various values of the size dependent thickness (%4/]), thatis A/l =1, 2, 5, 10, and for
classical beam (/ = 0) are shown. In each of the figures in Figs. 3.7-3.10, the material gradation
index (k) values are varied. With £ = 0.0, 0.1, 0.5, 1.0, 2 and 5, it demonstrates the effect of
material gradation index (k) on the non-dimensional load-deflection behaviour. For any given //]
value, it is observed that the steepness of the curve increases which means that the stiffness of
the beam decreases so it becomes more flexible with increasing k. It is found to be maximum at &
=5 whereas at k£ = 0.0, the beam rigidity is maximum as the curve is flat at £ = 0.0. It is also
observed from the figures that for any particular value of %, as the size effect increases that is
value of A4/l decreases, the stiffness of the beam increases and it is maximum for 4/ = 1 and
minimum for 4// = 10 as it approaches to same stiffness as a classical beam. From Figs. 3.7-3.10,
the non-dimensional pressure is very less for CF beam as compared to other boundary

conditions, which means that the stiffness is very less for CF micro-beams.
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Chapter 3

The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary
conditions are shown in Figs. 3.11(a)—(f), 3.12(a)(f), 3.13(a)—~(f) and 3.14(a)—(f) respectively.
These curves for figures (a)-(f) correspond to different values of material gradation index, i.e.,
k=0.0, 0.1, 0.5, 1.0, 2.0, and 5.0 respectively. Figs. 3.11-3.14 are presented for 4//=1. Each figure
in Figs. 3.11-3.14 shows how different functionally graded material affects the non-dimensional
load-deflection behaviour. The FGMs considered are as follows: Stainless Steel/Alumina
[FGM1], Stainless Steel/Silicon Nitride [FGM2], Stainless Steel/Zirconia [FGM3] and Titanium
Alloy/Zirconia [FGM4].

In Figs. 3.11-3.14 for different boundary conditions, the non-dimensional load-deflection
curves for various values of the material gradation index (k), that is k£ = 0.0, 0.1, 0.5, 1, 2 and 5
are shown. Each of the Figs. 3.11-3.14 demonstrates the effect of different FGMs on the non-
dimensional load-deflection behaviour. At k=0, almost all curves of different FGMs are
coincident. As the value of k increases, the deviation of FGM 3 from other FGMs increases, and
it is maximum at k = 5. So at £=5.0, the steepness of the curve corresponding to FGM 3 is lowest
so its stiffness is maximum. But curves for other FGMs are coincident with each other, and have
lower stiffness compared to FGM 3. For FGM 1, FGM 2 and FGM 4, as the material gradation
index value (k) increases, the stiffness of the micro-beam decreases. But for FGM 3, as the value
of material gradation index (k) increases, the stiffness of the micro-beam increases.

The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary
conditions are shown in Figs. 3.15(a)—(e), 3.16(a)—(e), 3.17(a)—~(e) and 3.18(a)—(e) respectively.
These curves for figures (a)-(e) correspond to different values of the size dependent thickness 4/1,
which are: 4/[=1.0, 2.0, 5.0, 10.0, and for classical FG micro-beam (/ = 0). Figs. 3.15-3.18 are
presented for k=1. Each figure in Figs. 3.15-3.18 shows how different functionally graded
material affects the non-dimensional load-deflection behaviour. The FGMs considered are as
follows: Stainless Steel/Alumina [FGMI], Stainless Steel/Silicon Nitride [FGM2], Stainless
Steel/Zirconia [FGM3] and Titanium Alloy/Zirconia [FGM4].

In Figs. 3.15-3.18 for different boundary conditions, the non-dimensional load-deflection
curves for various values of the size dependent thickness (%4/]), that is A/[=1, 2, 5, 10, and for

classical beam (1 = 0) are shown. Each of the figures of Figs. 3.15-3.18 demonstrate the effect of
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3.4 Chapter Summary

In this chapter we discussed the static deflection behaviour of Timoshenko micro-beams
made of functionally graded materials (FGMs). It presented theoretical investigation using the
von Karman non-linear strain-displacement relationship and the minimum potential energy
principle to derive the governing equation for static deflection. The study evaluated four different
FGMs under various boundary conditions. Validation of the model is conducted against previous
studies, demonstrating excellent agreement and thereby validating the present model. The results
are presented graphically as well as in tabulated form. The findings suggest that as the material
gradation index increases, the stiffness of the micro-beam decreases for most FGMs, except for
FGM 3, where stiffness increases with the material gradation index. Additionally, it is observed
that the stiffness of the beam decreases as the size effect decreases, approaching the stiffness of a
classical beam. Furthermore, for specific boundary conditions, the non-dimensional pressure is
significantly lower for the CF beams, indicating lower stiffness compared to other boundary
conditions. The study provides valuable insights into the static deflection behaviour of FGM
micro beams, elucidating the influence of material gradation, size-dependent thickness, and

boundary conditions on the non-dimensional load-deflection behaviour.
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Chapter 4

RESULTS FOR FREE VIBRATION OF PRE-LOADED MICRO-
BEAM

4.1 Introduction

A theoretical investigation examines the free vibration of pre-loaded Timoshenko micro-
beam made of functionally graded material (FGM), where the volume fraction varies according
to a power law along the thickness direction. To capture geometric non-linearity, the von
Kéarman non-linear strain-displacement relationship is utilized. The governing equation is
derived using the Hamilton’s principle. We explored four different boundary conditions namely
Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF).
The study evaluates the free vibration of pre-loaded beam made of four different FGMs:
Stainless  Steel/Alumina  (SUS304/A1,03;) [FGMI1], Stainless Steel/Silicon Nitride
(SUS304/Si3N4) [FGM2], Stainless Steel/Zirconia (SUS304/ZrO,) [FGM3] and Titanium
Alloy/Zirconia (Ti-6Al-4V/ZrO,) [FGM4]. The mathematical formulation for free vibration
presented in the Chapter 2 along with the mechanical properties of four FGMs.

4.2 Validation
We have compared our result with Paul and Das (2016). The validation plots for Stainless

Steel/Zirconia (FGM3) Timoshenko beam are presented in Figs. 4.1(a)—(c), which show the plot

of A- w for k = 2.0 where Ais the non-dimensional loaded natural frequency and w is the

normalized maximum  transverse deflection which are defined as  follows
A=l ( pmA) / (Eml ) and w= w/h, where @ natural frequency of vibration of the beam, L is

the length of the beam, w is the maximum transverse deflection, 4 is the cross sectional area

(A=bh), I is the area moment of inertia about centroidal axis (I = bk’ / 12), h is the thickness of



beam (£=0.01 m) and b is the width of the beam (6=0.02 m). The material properties for FGM3

are given as follows: E =207.79GPa, E_=168.06 GPa, pu =0.318, u =0.298, p =8166

(kg m‘3)and o, =3000(kg m’3). Figs. 4.1(a)~(c) shows the plot of A- w for CC, CH and HH

beams respectively. Excellent agreement with the current model can be seen in Fig. 4.1, which

validates the classical beam model for pre-loaded conditions.
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Fig 4.1: Validation plots for free vibration of preloaded beam for various boundary conditions:

(a) CC, (b) CH, (c) HH.

Furthermore, we compared our model to that of Hemmatnezhad et al. (2013). The table

presented below shows the non-dimensional frequency parameter A of undeformed FGM beam,

which is given as follows: A*=wl’\/(p, 4)/(E,I) where @is the natural frequency of
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vibration of beam, L is the length of the beam, A is the cross sectional area (4=bh), I is the area
moment of inertia about centroidal axis (/ = bk’ / 12), & is the thickness of beam (4=0.01 m) and
b is the width of the beam (»=0.02 m). The comparison is made for various volume fraction
indices (k) as well as various boundary conditions. Alumina—Steel FGM beams with varying

length-to-thickness (L/h) ratios are compared. The following material properties were used for

comparison: E, =210 GPa, E, =390 GPa, s, =0.29, p1,= 022, p,=7800 (kgm™) and p,=

3960 (kg m> ) Table 4.1 provides evidence of a good agreement between the current findings

and those of Hemmatnezhad et al (2013). This shows that the free vibration dynamic behaviour
of the classical beam, as determined by the current methodology, is valid for the undeformed
FGM beam.

Table 4.1: Comparison of frequency parameters for various L/A values.

Hemmatnezhad | Present | Hemmatnezhad | Present | Hemmatnezhad | Present
I etal. (2013) et al. (2013) et al. (2013)
k=0 k=0 k=0.5 k=0.5 k=5 k=5
HH 4.3371 4.3362 3.8554 3.8413 3.3803 3.3643
20 | CC 6.4971 6.4912 5.7575 5.7511 5.0390 5.0333
CH 5.4086 5.4058 4.7951 4.7891 4.1990 4.1931
HH 4.3435 4.3433 3.8611 3.8476 3.3857 3.3703
50 | CC 6.5343 6.5333 5.7899 5.7878 5.0706 5.0691
CH 5.4268 5.4263 48111 4.8071 4.2145 4.2105
HH 4.3444 4.3443 3.8619 3.8485 3.3864 3.3711
100 | CC 6.5397 6.5394 5.7946 5.7931 5.0752 5.0743
CH 5.4295 5.4293 4.8134 4.8097 4.2167 4.2130

Additionally, we contrasted the analytical solutions provided by Ansari et al. (2011) with
our current analysis. The comparison is carried out for a HH isotropic homogeneous Timoshenko

micro-beam with &k =5/6, L/h =10, u =0.38, p=1220kg/m3, E=1.44 GPaand [=17.6 um,

for various /// ratios. Table 4.2 presents the initial two natural frequencies (MHz) for a range of
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h/l values. It demonstrates a high degree of agreement with our current model, thereby validating

our micro beam model.

Table 4.2: Comparison of first two natural frequencies (MHz) for isotropic homogeneous

microbeams.
h/I=10 h/1=5 h/1=3.33
Mode Present Ansari et al. Present Ansari et al. Present Ansari et al.
(2011) (2011) (2011))
1 0.0377 0.0376 0.0778 0.0778 0.1229 0.1229
2 0.1397 0.1397 0.2887 0.2888 0.4561 0.4561

Table 4.3: Comparison of the initial five natural frequencies (MHz) for isotropic homogeneous

microbeams with respect to variation in 4// values.

h/I=3 h/1=1
Mode Present Keetal. Ma et al. Present Keetal. Ma et al.
(2012) (2008) (2012) (2008)
1 0.1391 0.1391 0.1391 0.6723 0.6724 0.6723
2 0.5163 0.5163 0.5163 2.4529 2.4533 2.4530
3 1.0519 1.0519 1.0519 4.9368 4.9374 4.9374
4 1.6813 1.6814 1.6814 7.8606 7.8615 7.8606
5 2.3693 2.3677 23677 11.116 11.1057 11.1045

To validate our micro beam model, we have also compared our model with Ke et al.

(2012) and Ma et al. (2008) for simply-supported isotropic homogeneous Timoshenko micro-
beam with k, = 5/6, L/h =10, u = 0.38, p= 1220 kg/m3, E = 1.44 GPa and / = 17.6 um for

various A// ratios.

model.
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Table 4.4: Comparison of first three non-dimensional natural frequency of functionally graded

simply supported micro-beam.

Reddy Present Reddy Present Reddy Present
K h (2011) (2011) (2011)
@, @, @, @, @, @,
0.0 9.83 9.83 38.82 38.82 85.63 85.63
0.2 10.65 10.65 42.06 42.06 92.78 92.78
0 0.4 12.80 12.79 50.52 50.51 111.34 111.34
0.6 15.73 15.73 62.01 62.01 136.39 136.39
0.8 19.08 19.08 75.05 75.05 164.51 164.50
1.0 22.66 22.66 88.84 88.84 193.82 193.82
0.0 8.67 8.66 34.29 34.27 75.79 75.56
0.2 9.59 9.58 37.93 37.91 83.84 83.46
1 0.4 11.93 11.92 47.16 47.14 104.15 110.94
0.6 15.04 15.03 59.35 59.31 130.77 131.90
0.8 18.52 18.51 72.91 72.83 160.69 160.84
1.0 22.28 22.19 87.42 86.89 190.99 190.96
0.0 10.28 10.28 40.47 40.45 88.80 87.83
0.2 11.07 11.06 43.56 43.53 95.58 93.96
0.4 13.14 13.14 51.70 51.65 113.38 104.82
10 0.6 16.00 16.00 62.88 62.80 137.66 139.42
0.8 19.30 19.30 75.67 75.49 165.14 166.50
1.0 22.92 22.84 89.57 88.83 194.63 195.18

To validate FGM Timoshenko micro-beam model, we compared our model with Reddy
(2011). The comparison details are given in the Table 4.4. The material properties for FGM
follows: E, =144 GPa, E,=1.44 GPa,p,=122x10° kg/m’,

beam is given as
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p,=1.22x10° kg/m*, =038, k, =(5(1+u)/6+5,u), b = 2h, L=20h. Table 4.4 presents the
first three non-dimensional natural frequencies which is given as follows: @, =, L’/ p,A/ E,I ,

where @, is the non-dimensional natural frequency, o, is the natural frequency, L is the length,

A is the area (4=bh) and [ is the moment of inertia about centroidal axis (/ =bh’ /12). The

comparison is shown for a range of 4// values along with variation in material gradation index
(k). The comparison of the first three non-dimensional natural frequencies shown in Table 4.4

demonstrates strong agreement with our current model, validating our micro-beam model.
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Fig. 4.2A: Effect of size on non-dimensional deflection-frequency curves for CC beams with
k=0: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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4.3 Results for Different Parameters
The present work is carried out to determine the free vibration frequencies of FGM micro
beams. The dynamic behaviour is presented graphically in non-dimensional w- plane, where

w is the normalized maximum transverse deflection and @ is the non-dimensional frequency.

. — — _ — 4 .
The expression for w and @ are as follows: w=w__/h and o=l % Here o is the

c

natural frequency of vibration of micro-beam, L is the length of the beam which is related to

thickness of beam # as follows: L/A=25, E, is the Young’s modulus of ceramic, 4 is the area of
the beam (4= bh), b is the width of the beam which is also related to % as follows b/h=2 and w,_,_

is the maximum transverse deflection. To incorporate the size effect, the material length scale
parameter / is taken as 17.6 micron. Unless specified, the results are generated for a Stainless
Steel/Silicon Nitride [FGM2] micro-beam.

The non-dimensional deflection-frequency curves for the first four modes of the CC, CH,
HH and CF boundary conditions are shown in Figs. 4.2A-C, 4.3A-C, 44A-C and 4.5A-C
respectively. Figures A-C correspond to different values of the material gradation index which
are: k=0.0, 1.0, 5.0. In each of the figures A-C, plots are presented for the first four modes,
indicated by (a)-(d) respectively. Each figure in Figs. 4.2-4.5 shows how size affects the non-
dimensional deflection-frequency behaviour by varying the size-dependent thickness (4//) values
as h/1=1.0, 2.0, 5.0, 10.0, and for classical FG beam (/= 0).

The non-dimensional deflection-frequency curves for the first four modes of the CC, CH,
HH and CF boundary conditions are shown in Figs. 4.6A-C, 4.7A-C, 4.8A-C and 4.9A-C
respectively. Figures A-C correspond to different values of size-dependent thickness (4//) such
as: h/[=1.0, 5.0, and for classical FG beam (/ = 0). In each of the figures A-C, plots are presented
for the first four modes, indicated by (a)-(d) respectively. Each figure in Figs. 4.6-4.9 shows how
the material gradation index affects the non-dimensional deflection-frequency behaviour by
varying the material gradation index which are: £=0.0, 0.1, 0.5, 1.0, 2.0, and 5.0.

For a particular mode and particular material gradation index (k), natural frequency
increases as size effect increases and it is maximum for A/[ = 1, and deceases as size effect

decreases and approaches to the natural frequency of the classical beam at 4//=10. We compared
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the difference between @ and @,

min °

defined as Aw=0,  —®

min >

where @ _and @, are
defined as the maximum and minimum values of vibration frequencies at w,__= 0 and 1.5

respectively. This is highest for the classical beam and lowest for 4// = 1. As the size effect

increases, A@ decreases and vice versa. For any particular mode, it is found that: @, .>®._,>

@, _y > @ . For any particular mode, it is found that: Aw,, , >Aw._,> Ao, > Ao, .
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85



12

55
B 3 [®
; 103 l: 18 F
5 2y -
3 - T
=3 T o =
2 86 B AL —— =00
—g E e k=0.1
% 69 2 ke - =05~
— —in1
5 E F—-—==- = —}=30
£ 52 B Uk . — =50
z -3 S — ——
35 i 1 A 1 L 1 L 1 M 20 " 1 A 1 A 1 . 1 .
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Nomnalized Deflection (W) Normalized Deflection (W)
140 264
g (c) =1 l'? [
o 1244} € v = = 2352} hi =1
Jiee B Sl e e e =] .
R e S n 2 EEE B
3, m==== k=01 = i ————— k=01
P 1088F — = =k=05 2 2064F TR =
= — — k=10 = . — —k=10
E —_=20] _ g — 220
= OB e i e Sty @ 1TT6F ————— == =
§ =50 § - = k=50
2 716} = 1488}
Z e Emm D R V=5 B z = R == == ==K ===
62_-_"_-'_"_.'_i_"—'._"_ o L e
0 02 04 0.6 08 1 0 0.2 04 0.6 08 1
Nomnalized Deflection (W) Normmalized Deflection ()

Fig. 4.9A: Effect of material gradation on non-dimensional deflection-frequency curves for CF

beams with 4//=1.0: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

86



Chapter 4

30
B B [ (b) y
B ~ 262k k=0.0
: p _//’/ ----- =0
é 2,,:, - _—,4—'“—.;‘;0,5
E B 24} = = k10
“;”3 = — k=20
@ 2 186} W
z 5 _ = _
E E | -
5 B Mil L mm T e
z .’J:—_ . i L cam —— ,_.-u-—‘ B = -
1.5 e e T 11 [ 1—’ PR DR T
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Nommnalized Deflection (W) Nofmalize& De ﬂeﬁion (#)
70
B W=5 0 [ (d)
= | (c) & E] :
-?; 62.2 s EQﬁ_- ‘; 1176 F Wl =5 i
S bemmmmmmmmmmmmem k=0.1 3 S Al
=3 - — -k=05 = | === k=0.1
g 34 — —k=10| | B 1032} PR
E — =20 = — — k=10
2 a66F  _ __ ____|=e—=k=0T| 5 — k=20]
5 = B e N ke -
g - 2
s 2 (SR UGS TR 2 M (N N
z = = == =T = o 2 R = g ——
31_"_"__'_'l L L L . . 60"‘."|"'1_'1_'._'i"_.‘_l’—n.r
0 0.2 04 0.6 0.8 1 0 02 0.4 06 08 1
Nomnalized Deflection (W) Nomalized Deflection ()

Fig. 4.9B Effect of material gradation on non-dimensional deflection-frequency curves for CF

beams with 4//=5.0: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

87



I @ [ classical
B k=0.0 PGS
o T5F [e2=22= - g =
: o/ Iy I
[ + R ot 'd,- g
5 ef T > 5 208 =
& —_ . -l £ 208 s
;, L =y ’," ~ o [ Classical
5 ke .| ST B =00/
= 45F A e ") S ek |- ====%=0.1
ISl I B SRS SRR |
8 gla™ e T o 5 i +—"=— k=10
s 3F = 2 136k - - =L
- - T e — =204
Z e e = e i =
= s W —_—  — . == k=50
]5 I '-} L L 1 1 10 = = - -I-" ‘l E - :
Poum e S 8 2 0 02 04 06 08 1
Nommalized Deflection () Nomalized Deflection (%)
65 125
© e @ e
(3 | Classical B d -
- 576} k=0.0 = 1k Classical
? —mzred=1]" ,5‘ FO-O‘ _
E i ~ — k=05 S pemmmmmmeme- == —marpag §
2 5021 — —k10| | B 97} oty -i‘i—g
= ! — =20 | = = i
g --—-k=50l| § — k=
2 28F - B L C ) S |~ [ =)
ERETF] __ | B e i e
R IR il - B S
23—-_1-“—.1_“_; PR 55 e e e - S
0 0.2 04 0.6 08 1 0 0.2 04 0.6 08 1

Nomnalized Deflection (W)

Nommalized Deflection (W)

Fig. 4.9C: Effect of material gradation on non-dimensional deflection-frequency curves for CF

beams with /=0 (classical): (a) first mode, (b) second mode, (¢) third mode, (d) fourth mode.

88



Chapter 4

The non-dimensional deflection-frequency curves for the first four modes of the CC, CH,
HH and CF boundary conditions are shown in Figs. 4.10A-C, 4.11A-C, 4.12A-C and 4.13A-C
respectively for k=1. Figures A-C correspond to different values of size-dependent thickness (4/)
such as: 4/[=1.0, 5.0, and for classical FG beam (/ = 0). In each of the figures A-C, plots are
presented for the first four modes, indicated by (a)-(d) respectively. Each figure in Figs. 4.6-4.9

shows how different functionally graded materials affect the non-dimensional deflection-

frequency behaviour.
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Fig. 4.10A: Effect of different FGM compositions on non-dimensional deflection-frequency
curves for CC beams with 4//=1: (a) first mode, (b) second mode, (c) third mode, (d) fourth

mode.
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4.4 Chapter Summary

In this chapter we discussed the free vibration of Timoshenko microbeams made of
functionally graded materials (FGMs). It presents a theoretical investigation using the von
Kéarman non-linear strain-displacement relationship and the Hamilton’s principle to derive the
governing equation for vibration. The study evaluates four different FGMs under various
boundary conditions. The results are presented in normalized deflection-frequency plane for
incorporating the size effect on natural frequency. Validation of the model is conducted against
previous studies, demonstrating excellent agreement, and thereby validating the present model.
The results are presented graphically as well as in tabulated form. The findings suggest that for
any particular mode and A4// value, as material gradation index increases, the non-dimensional
natural frequency deceases, and for any particular mode and particular material gradation index
(k), natural frequency increases as size effect increases. The study provides valuable insights into
the free vibration behaviour of FGM micro beams, elucidating the influence of material
gradation, size-dependent thickness, and boundary conditions on the non-dimensional deflection-

frequency behaviour.
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Chapter 5

CONCLUSIONS

5.1 Conclusions

Micro-beams, essential for high-precision measurements in technologies like atomic
force microscopy (AFM) and various sensors, exhibit size-dependent behaviors that traditional
continuum theories fail to capture. Non-classical continuum theories, such as modified couple
stress theory (MCST) and nonlocal strain gradient theory, address these limitations. For micro-
and nano-scale applications, functionally graded materials (FGMs) offer increased design
flexibility, making them suitable for MEMS, micro-sensors, and micro-actuators.

Therefore, analyzing the static and dynamic behavior of functionally graded (FG) micro-
beams is crucial for modeling and effectively using them in various microsystems. In this work,
we have studied the nonlinear static deflection and free vibration behaviour of a Timoshenko FG
micro-beam which is subjected to uniformly distributed load. In this analysis, we assumed that
the beam follows the Timoshenko beam model and incorporated size effects using MCST. The
governing equations for static behaviour are derived using the principle of minimum potential
energy, while the governing equations for free vibration are derived using Hamilton’s principle.
These equations are nonlinear due to the incorporation of von Karman-type nonlinearity in the
classical strain expression. The solutions to the governing equations are obtained by
approximating the displacement fields using the Ritz method. We have taken four different
boundary conditions and four different FGMs into our consideration.

From our analysis, we have found that:
= For any given material gradation index (k) value, the micro-beam becomes more stiff with

increasing size-effect, and that it is found to be maximum at 4//=1, but at 4//=10, the micro-

effect almost disappears.



=  When the material gradation index increases for a given value of the 4/, the stiffness of the
beam decreases. This is because an increase in k results in a higher metal volume fraction
within the beam. Since the metal component has a lower elastic modulus compared to the
ceramic component, the beam becomes more elastically flexible.

= For a particular mode and particular material gradation index, natural frequency increases as
size effect increases and it is maximum for /#// = 1, and deceases as the size effect decreases
and approaches to the natural frequency of the classical beam at 4//=10.

* For a particular mode and given A//, as the material gradation index increases, the non-
dimensional natural frequency decreases. This decrease in natural frequency is due to the
reduction in the beam's stiffness, which occurs because the material gradation leads to a
higher proportion of the metal within the beam.

= As the material gradation index increases, the stiffness of the micro-beam decreases for most
FGMs considered, except for FGM 3, where stiffness increases with the material gradation

index.

5.2 Future Scope of Work

This study has shown that preloading the beam causes a hardening effect that raises the
beam's natural frequency. The effects of temperature variations on the static and dynamic
behaviour of micro-beams should be explored in future studies. To be more precise, examining
the effects of temperature variations above and below room temperature on the mechanical
characteristics and functionality of functionally graded micro-beams would offer a thorough
grasp of how they behave in various thermal environments. This could entail examining the joint
effects of preloading and thermal stresses on the natural frequency and stiffness, as well as
investigating the possibility of thermally adjusting the properties of micro-beams in real-world
applications. Furthermore, the study can be extended to include nonlocal theory of elasticity and

strain gradient theory to address the size-effect.
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