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  Chapter 1 
 

INTRODUCTION 
 
 
 
1.1 Introduction 
 Thin beams are common structural elements used in micro-electro-mechanical systems 
(MEMS) that have garnered a lot of attention because of their high-precision measurement 
capabilities (Kong et al. (2008)). Owing to their numerous advantages, they are extensively 
employed in micro- and nanoscale technologies, including micro-electro-mechanical transducers 
and atomic force microscopy (AFM), which serve as the foundation for chemical and biological 
sensors (Abbasion et al. (2009)). 
 Micro-beams, function at micron and submicron scales, where behaviour is greatly 
influenced by small-scale effects. Experimental studies have shown that size-dependent static 
and vibration behaviours observed in micro-structures are poorly captured by traditional 
continuum theories. As a result, nonclassical continuum theories have gained popularity in the 
study of micro-scaled structures. Examples of these theories include nonlocal, strain gradient, 
and couple stress theories. Classical couple stress theory was founded by Mindlin and Tiersten 
(1962) and other scholars, including Toupin (1962). In comparison to Lame constants for 
isotropic elastic materials, their formulations incorporate higher-order rotation gradients as the 
anti-symmetric element of second-order deformation gradients, resulting in the introduction of 
four material constants. 

Modified couple stress theory (MCST) was proposed by Yang et al. (2002) by 
introducing a new, higher-order equilibrium equation while considering the equilibrium equation 
of moments of couples. Unlike the classical couple stress theory, this modification includes only 
one internal material length scale parameter and employs a symmetric couple stress tensor. The 
inclusion of an asymmetric couple stress tensor and the involvement of a single length scale 
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parameter are the two primary benefits of the MCST over the classical couple stress theory, as 
noted by Ma et al. (2008). This is because the strain energy density function is solely dependent 
on the strain and the symmetric part of the curvature tensor. The effect of micro-structural 
elements on the overall mechanical response of the material is taken into account by the internal 
material length scale parameter ( l ). By adding this parameter to the theory, MCST aims to 
include size-dependent effects that are ignored by classical continuum mechanics. This internal 
material length scale is a critical parameter in MCST. Several experimental investigations were 
carried out by researchers to ascertain this material length scale parameter for a particular 
material. The micro-bend test was one of several common techniques, along with the micro-
torsion and micro-/nano-indentation tests, that Stolken and Evans used back in 1998 to measure 
this crucial parameter, Additionally, scientists have discovered that a material's material length 
scale parameter varies depending on how it is measured rather than having a fixed value. For 
instance, Park and Gao's (2006) research on epoxy micro-beams discovered a value of 17.6 
micrometers (µm), but only for beams with a thickness of 20-115 µm. The investigation of 
vibrations in thin copper micro-beams by Li et al. (2018) yielded a value of 1.422 µm for its 
material length scale parameter. So, in addition to being a material constant, the material length 
scale parameter used in couple stress theories also depend on the size of the structure (Khorshidi 
(2018)). 

Functionally graded materials (FGMs) have special thermo-mechanical properties that 
make them a revolutionary development in material engineering. Because of their 
microscopically diverse compositions, FGMs exhibit a continuously varying mechanical profile 
in contrast to traditional composites. The problem of high transverse shear stresses that are 
generally present when bonding dissimilar materials with notable differences in properties is 
lessened by this gradient compositional variation. FGMs avoid issues related to stress 
concentration by smoothly varying the volume fractions of component materials, such as metals 
and ceramics, guaranteeing the maintenance of continuous stress fields throughout their 
structure. This novel micro-structural design creates new opportunities in several engineering 
and scientific domains. FGMs exhibit potential for use in AFM, micro- and nano-structures, 
micro-sensors and micro-actuators, as well as MEMS (Ke and Wang (2011)). Component design 
for these systems can be made with an unprecedented degree of flexibility due to their ability to 
precisely tune material properties at the microscopic level. Modern developments in material 
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processing methods have improved the viability and usefulness of FGMs even more. In micro-
systems, FGMs of thin films containing shape memory alloys have shown impressive potential 
(Fu et al. (2003)). The combination of material science and structural design represents a 
paradigm shift in the way we approach materials and structures in a variety of applications, as 
well as an extension of engineering possibilities. 

The goal of the current work is to determine the nonlinear static deflection and natural 
frequency of a Timoshenko beam under uniformly distributed loading for four different types of 
boundary conditions, namely, Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged 
(HH) and Clamped-Free (CF). The formulation takes into account the moderate rotation of the 
transverse normal through the von Kármán nonlinear strain and the through-thickness power-law 
variation of a two-constituent material for four different combinations. The formulation is based 
on Timoshenko beam theory, the von Kármán geometric nonlinearity, power-law variation of the 
material, and a modified couple stress theory. The governing equations for the static deflection 
are derived using principle of minimum potential energy, whereas the governing equations for 
free vibration are derived using Hamilton’s principle. The solutions of the governing equations 
are obtained using Ritz method. 
 
1.2 Literature Review 
 For the past few decades, a large number of researchers have focused on the static, 
dynamic and buckling analysis of homogeneous and non-homogeneous micro-beams using a 
range of analysis techniques. In this section, very brief review of those works is provided. 
 
1.2.1 Static, Dynamic and Buckling Behaviour of Homogeneous Beams 

We've selected a few recent papers in which the researchers reported very high-quality 
work on the mechanical behaviour of homogeneous beams, including their static, dynamic and 
buckling behaviour. Hariz et al. (2022) presented buckling solutions for a quasi-static 
Timoshenko beam subjected to longitudinal force and an elastic wall. It analysed Haringx and 
Engesser models, derives buckling stress and shape expressions, establishes wall rigidity 
relations, and introduces a yield limit. Loya et al. (2022) examined the dynamic behaviour of 
cracked Timoshenko beams in a Winkler elastic medium, focusing on obtaining their natural 
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frequencies of bending vibration. The beam was modeled as two segments connected by 
massless springs, with stiffnesses proportional to shear force and bending moment. The 
methodology calculated natural frequencies based on various parameters. Li et al. (2023) 
examined the vibration modes of thin web gears in aerospace transmission systems, focusing on 
their impact on system stability. It suggested instability in out-of-plane vibration, with discrete 
springs worsening it. Frequency veering was observed, and a Timoshenko gear pair model with a 
coupling mesh stiffness matrix provided valuable insights for designing thin web gear 
transmission systems in aerospace applications. Cannizzaro et al. (2023) introduced a 
distributional model that considers both flexural and shear concentrated flexibilities in 
Timoshenko beams, enhancing their governing equations. It used generalized function theory to 
provide a closed-form solution for vibration modes and frequency equations, offering insights for 
structural analysis and design. 
 Rodríguez-Cruz et al. (2023) demonstrated that degenerate states of a beam with free 
ends, with anti-symmetrical transverse mode shape, tended asymptotically to the thickness-shear 
mode in the infinitely long beam limit. Wriggers (2023) explored the use of the virtual element 
method (VEM) to develop Timoshenko beam elements, a straightforward and exact formulation 
that can be integrated into classical finite element codes. This method was particularly useful for 
nonlinear structural problems involving large deflections and rotations. The Theory of Functional 
Connections (TFC) was used by Yassopoulos et al. (2023) to analyze static beams, incorporating 
von Kármán nonlinearity and Timoshenko–Ehrenfest beam theory. The authors compared TFC 
results with Finite Element Method (FEM) solutions, highlighting its advantages for stress 
analysis and solving buckling and free vibration problems. TFC offered more accurate solutions 
and faster solution times. Sabzehzar et al. (2024) introduced the equivalent beam approach for 
assessing truss structures strength and deflection. It revealed that the Euler-Bernoulli beam 
model was inadequate and had a high error rate. The Timoshenko beam method's accuracy 
depended on the selection of the Timoshenko shear coefficient. The paper proposed an 
exponential relationship for optimizing this coefficient. Torres-Guzmán et al. (2024) obtained 
closed-form expressions for the transfer matrix of free oscillations in finite periodic Timoshenko-
Ehrenfest beams. It used the Cayley-Hamilton theorem to derive a fourth-order recursive relation 
for matrix coefficients, leading to the definition of Tetranacci Polynomials. The recursive 
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relation allowed for computing the ܰth power of the transfer matrix without requiring the matrix 
product. The formalism can be extended to waves propagating in finite periodic layers. 
 
1.2.2 Static, Dynamic and Buckling Behaviour of FGM Beams 

In addition, we have chosen a few recent papers where the researchers have conducted 
excellent research on the static, dynamic and buckling behaviours of FGM beams. Rahimi et al. 
(2013) examined post-buckling behaviour of functionally graded (FG) beams using an exact 
solution method. It employed nonlinear strain-displacement relationships and Hamilton's 
principle. The study also analyses linear vibration, examining the influence of parameters like 
power-law exponent, boundary conditions, and beam geometry on static deflection and vibration 
frequencies. Mohanty et al. (2023) examined the parametric stability of a Timoshenko non-
uniform sandwich beam on a Pasternak foundation, using extended Hamilton's principle, 
Galerkin method, and Hills equations. The results were visualized through plots and analyzed 
using MATLAB programming. Yee et al. (2023) presented a new theoretical approach to model 
the free vibrations of FG graphene platelets reinforced thick beams with a single-edge crack. The 
crack was modelled using strain-displacement, strain-stress, velocity-momentum, and dynamic 
equilibrium equations, resulting in complex coupled motion equations. The methodology was 
verified through simplified models and comparisons with literature and finite element software 
results. Patil et al. (2023) investigated the influence of porosity and temperature on the buckling 
and vibration properties of FG sandwich beams in a thermal environment. It used finite element 
(FE) analysis and FE solutions to analyze buckling and vibration. Shan et al. (2023) proposed a 
Timoshenko-beam FE model for shear-wall structures to accurately capture shear-flexure 
coupling behaviour for long-term structural health monitoring. Parametric identification 
framework and particle swarm optimization were used to update the model using vibration data. 
The model's accuracy is validated using data from the Walnut Creek building, showing good 
performance in predicting the building's response. Comparisons with shear-beam and Euler-
Bernoulli-beam models further supported its superiority.  

Zhang et al. (2023) presented a numerical method for analyzing the static, dynamic, and 
buckling behaviour of FG beams reinforced with graphene platelets. It used micro-scale 
homogenization and structural analysis to predict the elastic moduli of nanocomposite layers and 
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develop composite finite elements. The method was validated against existing literature and 3D 
printing results, showing good agreement. The study also examined the effects of boundary 
conditions, gradient distributions of graphene platelets and pores, microscopic parameters, and 
structural geometric dimensions on the static and dynamic performance of FG beams. Bi-
directional gradient distribution patterns showed significant improvements in bending and 
dynamic performance. Xu et al. (2024) investigated FG beams reinforced with graphene 
platelets, porosity, and origami inclusions. It develops analytical solutions for static, dynamic, 
and buckling responses. A theoretical framework is established, including the principle of virtual 
work, reciprocal theorem of work, minimum potential, and complementary energies. The Ritz 
method is applied to derive expressions for transverse bending, rotation, frequencies and critical 
loads. Micromechanics approaches like the Halpin-Tsai expression were used to predict 
mechanical responses. Liu et al. (2024) introduced a variational framework based on 
Timoshenko-Ehrenfest beam theory and Hamilton's principle was used to study the dynamics of 
the Langevin transducer. By comparing computed resonance frequencies to 3D finite element 
models and laser Doppler vibrometry data, the framework's application using the FEM was 
validated. This approach provided a fast and accurate analysis of the free vibrations and 
dynamics of the transducer by taking into account the axial vibrations of the piezoelectric 
ceramic stack. Molina-Villegas et al. (2024) introduced the Green's Functions Stiffness Method 
(GFSM), a versatile approach for analyzing linear elastic static problems in non-uniform 
Timoshenko beams and frames, demonstrating its effectiveness in analyzing non-uniform 
structures under various loads. 

 
1.2.3 Static Behaviour of Homogeneous Micro-/Nano-Beams 

Ma et al. (2008) presented a microstructure-dependent Timoshenko beam model that 
considerd bending and axial deformations, including the Poisson effect, and incorporates a 
material length scale parameter. When normalcy was restored, the model became a 
microstructure-dependent Bernoulli-Euler beam model. The model predicted smaller deflection 
and rotation than the classical Timoshenko model, especially for very thin beams. The static and 
dynamic problems of Bernoulli-Euler beams were analysed by Kong et al. (2009) using the strain 
gradient elasticity theory. For cantilever beams, it evaluated the effects of size on bending 
response and natural frequencies and solved boundary value problems. Asghari et al. (2010) 
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presented a nonlinear Timoshenko beam model, incorporating MCST for size effects. It analyzed 
hinged-hinged beams, demonstrating nonlinear size-dependent static and free-vibration 
behaviours, using numerical and analytical methods. Karparvarfard et al. (2015) presented a non-
linear differential equation of motion for small-scale Euler-Bernoulli beams using the second 
strain gradient theory, a non-classical continuum theory that accurately assesseed behaviour in 
structures, using a hinged-hinged beam. A microscale Timoshenko beam model for surface 
effects and flexoelectricity in piezoelectricity was presented by Yue et al. (2016). It resolved the 
issues of free vibration and static bending in a piezoelectric nano-beam under uniform load. The 
model showed that surface effects and flexoelectricity had a major impact on beam deformations, 
underscoring the significance of taking material properties into account when analysing 
piezoelectric nano-beams. A modified semi-continuum Euler beam model was developed by 
Shen and Li (2017) to study bending deformation of extremely thin beams at micro-/nano-scale 
thicknesses. The model considered external loads and boundary constraints, and its 
normalization was refined. The model also introduced a nonlinear semi-continuum model to 
predict elastic carrying capacity and analyse nonlinear bending deflections in extreme-thin 
beams. Comparisons with classical and nonlocal continuum models showed good agreement. 
Sobhy and Zenkour (2020) utilised MCST to investigate the bending behaviour of viscoelastic 
nano-beams on visco-Pasternak elastic foundations. The model included a material length scale 
coefficient and used Hamilton's principle. The study investigated how strains, damping structure, 
and material length scale affected nano-beam deflection and stresses, and it compared the 
expected outcomes with earlier studies. 
 
1.2.4 Static Behaviour of FGM Micro-/Nano-Beams 

Asghari et al. (2011) used MCST to provide a size-dependent formulation for FG 
Timoshenko beams that took thickness-related changes in beam attributes into account. The 
process yielded closed-form analytic formulations for static response parameters and generated 
governing differential equations. Chen et al. (2011) developed a model for composite laminated 
beams with first-order shear deformation using MCST. Compared to standard beam models, the 
model reduced deflections and stresses by properly capturing microstructure size effects. The 
MCST was applied by Salamat-talab et al. (2012) to analyse third-order shear deformation in FG 
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micro-beams. It applied Hamilton's principle to the analysis of bending and free vibration. The 
research deviated from the accepted models and revealed a significant size-dependency as the 
beam thickness got closer to the material length scale parameter. Mao et al. (2013) examined a 
mixed hardening plastic model, based on mechanism-based strain gradient plasticity, to 
dynamically assess FGM micro-beams. The model incorporated the effects of plastic strain 
gradients on flow stress, enabling both static and dynamic research. Utilising strain gradient 
theory, Tajalli et al. (2013) investigated a size-dependent formulation for FGM Timoshenko 
beams that captured the size-effects of micro-scaled structures. Five comparable length scale 
parameters were presented together with governing differential equations and boundary 
conditions. In this work, the results were evaluated using modified pair stress and classical 
theories. In order to evaluate micro- and macro-structural reactions, Romanoff et al. (2016) 
presented advanced non-local sandwich beam theories that included thick-faces beam, modified 
couple stress, and homogenization–localization. Convergence was demonstrated 
computationally, extending to different plates and microstructures. Yang et al. (2017) combined 
the zigzag and couple stress theories to provide a composite laminated beam model. By applying 
Reissner's Mixed Variational Theorem, it made precise displacement and stress predictions. 
Scale effects affected stiffness, displacements, and stresses, according to analytical solutions. 
Nguyen et al. (2018) investigated size-dependent behaviours in micro laminated composite 
beams. Ritz functions were presented in this article. It included the Lagrange equations, the 
displacement field, and the modified couple stress theory. The model offered effective solutions 
by forecasting size-dependent reactions in buckling, vibration, and bending. Sahmani et al. 
(2018) predicted nonlinear bending behaviour of porous micro-/nano-beams reinforced with 
graphene platelets using the nonlocal strain gradient theory of elasticity. It considered three 
different porosity distributions and Hamilton's principle. Using MCST, Babaei and Eslami 
(2022) examined nonlinear bending of functionally graded porous elastic tubes. The microtubes 
featured uniformly distributed porosity and temperature-dependent characteristics. Constitutive 
equations and nonlinear differential equations were derived using virtual displacement principle, 
uncoupled thermoelasticity theory, von Kármán kinematic assumptions, and higher-order shear 
deformation theory. 
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1.2.5 Dynamic Behaviour of Homogeneous Micro-/Nano-Beams 
Kong et al. (2008) solved dynamic problems of FGM Bernoulli-Euler beams using 

MCST. It resolved two cantilever and simply supported beam boundary value issues. The new 
model predicted natural frequencies that showed size dependence. Ma et al. (2008) presented a 
microstructure-dependent Timoshenko FG beam model that considered bending and axial 
deformations, including the Poisson effect, and incorporated a material length scale parameter. 
When normalcy was restored, the model became a microstructure-dependent Bernoulli-Euler 
beam model. The model predicts smaller deflection and rotation than the classical Timoshenko 
model, especially for very thin beams. Abbasion et al. (2009) presented a model that considered 
surface elasticity and residual surface tension on the frequency of flexural vibrations in micro-
beams. The study revealed that the frequency of micro and nano-scaled vibrations was size-
dependent. The static and dynamic problems of Bernoulli-Euler beams were analysed by Kong et 
al. (2009) using the strain gradient elasticity theory. For cantilever beams, it evaluated the effects 
of size on bending response and natural frequencies and solved boundary value problems.  

Asghari et al. (2010) presented a nonlinear Timoshenko beam model, incorporating 
modified couple stress theory for size effects. It analysed hinged-hinged beams, demonstrating 
nonlinear size-dependent static and free-vibration behaviours, using numerical and analytical 
methods. Sharma and Grover (2011) investigated the effects of surface conditions, beam 
dimensions, relaxation times, voids, and thermomechanical coupling on energy dissipation in 
thermoelastic damping in resonators of micro- and nano-electromechanical systems. It offered 
numerical outcomes from MATLAB simulations as well as analytical expressions. Using an 
Euler-Bernoulli model, Hendou and Mohammadi (2014) analysed the vibration of micro-beams 
with significant transverse deflection. Thermoelastic damping, integrated as imaginary stiffness, 
was the predominant damping mechanism. Using the Galerkin procedure and nonlinear normal 
mode theory, the equation of motion wass analysed. It was found that nonlinear modal analysis 
predicted extreme points in parameters such as frequency shift and inverse quality factor. Using 
Euler-Bernoulli theory, Sharma and Kaur (2014) examined transverse vibrations in a 
homogeneous isotropic, thermoelastic-diffusive thin beam. It looked at thermoelastic-diffusion-
related deflection, thermal moment, mass moment, frequency shift, and damping. 



 10 

In order to provide insights for the sensitivity design of resonant micro-gas sensors, Xu 
and Yang (2015) presented a multi-field coupled dynamics equation for a micro-beam and 
examined its natural frequencies, amplitude-frequency relationship, and system parameters. 
Karparvarfard et al. (2015) presented a non-linear differential equation of motion for small-scale 
Euler-Bernoulli beams using the second strain gradient theory, a non-classical continuum theory 
that accurately assessed behaviour in structures, using a hinged-hinged beam. Noori et al. (2016) 
explored the free vibration of micro-beams using three beam models, focusing on the first five 
natural frequencies, considering three length-scale-parameter/height ratios and five different 
boundary conditions, and solving equations using Hamilton's principle. A microscale 
Timoshenko beam model for surface effects and flexoelectricity in piezoelectricity was presented 
by Yue et al. (2016). It resolved the issues of free vibration and static bending in a piezoelectric 
nano-beam under uniform load. The model showed that surface effects and flexoelectricity had a 
major impact on beam deformations, underscoring the significance of taking material properties 
into account when analysing piezoelectric nano-beams. Habibi et al. (2019) investigated the size-
dependent free vibration characteristics of magneto-electro-elastic nano-beams in a thermal 
environment, using MCST and Euler–Bernoulli beam model. Results showed increased length 
and decreased thickness decrease nano-beam natural frequencies. Using MCST, Ghasemi and 
Mohandes (2020) analysed the frequencies of cylindrical shells made of micro- and nano-fiber-
metal laminate. It examined composites made of glass/epoxy, aramid/epoxy, and carbon/epoxy, 
with aluminium serving as the metal component. The micro and nano cylinders made of aramid 
reinforced aluminium laminate exhibited higher frequencies, and the results exhibited excellent 
agreement with previous research. Esen (2020) investigated the dynamic behaviour of size-
dependent Timoshenko micro-beams under moving loads using the FEM. It focused on the 
interaction between the load and the beam, considering mass inertia effects. The study explored 
various parameters' effects on beam dynamics across various scenarios. 
 
1.2.6 Dynamic Behaviour of FGM Micro-/Nano-Beams 
 Asghari et al. (2011) used MCST to provide a size-dependent formulation for 
Timoshenko FGM beams that took thickness-related changes in beam attributes into account. 
The process yielded closed-form analytic formulations for static response parameters and 
generates governing differential equations. Ke and Wang (2011) investigated the dynamic 
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stability of micro-beams made of FGM using MCST and Timoshenko beam theory. Using 
differential quadrature, Hamilton's concept, Bolotin's approach, and Mori-Tanaka 
homogenization, it examined free vibration. Ke et al. (2012) investigated the nonlinear free 
vibration of FGM micro-beams by the use of von Kármán geometric nonlinearity and MCST. To 
find vibration frequencies under various boundary conditions, it used Hamilton principle, a non-
classical Timoshenko beam model, the Mori-Tanaka homogenization technique, and a numerical 
approach. A MCST based approach was applied by Salamat-talab et al. (2012) to analyse third-
order shear deformation in FG microbeams. It applied Hamilton's principle to the analysis of 
bending and free vibration. The research deviated from the accepted models and reveals a 
significant size dependency as the beam thickness got closer to the material length scale 
parameter. Using Euler–Bernoulli beam theory and von Kármán geometric nonlinearity, Jia et al. 
(2015) examined the impacts of size effects on the free vibration of FG micro-beams under 
coupled forces such as electrostatic force, temperature changes, and Casimir force. The study 
emphasized how these elements interact significantly. Nguyen et al. (2016) used the Micro 
Genetic Algorithm (micro-GA) in conjunction with conventional beam theory to optimise 
vibration and lateral buckling in laminated composite beams. The ideal solution is strongly 
influenced by geometric factors, and micro-GA outperformed ordinary GA in terms of 
convergence rate and optimal solution. 
 Shafiei et al. (2016) integrated the MCST, von-Kármán geometric nonlinearity, and 
Euler-Bernoulli beam theory to investigate the nonlinear vibration of axially functionally graded 
(AFG) micro-beams. The model takes Hamilton's principle and a number of boundary conditions 
into account. According to the study, fundamental and second frequencies are impacted by the 
rate of cross-section change, which has implications for microstructure design. Simsek (2016) 
presented a new size-dependent beam model for analyzing the nonlinear free vibration of a FG 
nano-beam. It integrated nonlocal strain gradient theory (NLSGT) and Euler-Bernoulli beam 
theory, considering geometric nonlinearity. The model addressed coupling effects from 
unsymmetrical material variation and used Hamilton's principle to derive motion equations. The 
study presented a closed-form solution for nonlinear frequency. Using MCST, Ghasemi and 
Mohandes (2020) investigated the frequency of micro and nano fiber-metal laminate (FML) 
cylindrical shells. It studied vibrations in composites such as carbon/epoxy, glass/epoxy, and 
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aramid/epoxy using Love's first approximation shell theory and beam modal functions. Al-
shujairi and Mollamahmutoğlu (2018) examined the dynamic stability of a FG sandwich micro-
beam under parametric axial excitation and boundary conditions, including thermal effects. It 
used nonlocal strain gradient theory, first-order shear deformation beam theory, Hamilton's 
principle, and differential quadrature method to derive governing equations and solve differential 
equations. The study contributed to the field by providing insights into parametric instability 
regions. Nguyen et al. (2018) investigated size-dependent behaviours in micro laminated 
composite beams using Ritz functions. It included the Lagrange equations and the MCST. The 
model offered effective solutions by forecasting size-dependent reactions in buckling, vibration, 
and bending. Using a sophisticated mathematical model, Bhattacharya and Das (2019) 
investigated the free vibration behaviour of a spinning micro-beam. It dealt with Coriolis 
acceleration, geometric non-linearity, spin-softening, and high operating temperatures. In order 
to gain an understanding of the behaviour of the system in the non-dimensional speed vs 
frequency plane, the model was examined for different parameters and verified using the Ritz 
approach. Gul and Aydogdu (2021) investigated the free vibration analysis of FG periodic 
structure nano-beams via doublet mechanics theory, where the periodic FG nano-beams are 
modelled as a simple crystal lattice type. They derived micro strains and strains by expanding in 
Taylor series and obtained micro relations transformed to macro stress-strain relations. Saimi et 
al. (2023) examines the free vibratory behaviour of defective bidirectionally graded micro-beams 
with fractures using the MCST, and the Quasi-3D shear and normal deformation beam idea. It 
constructed mass and stiffness matrices using Gauss-Lobatto node architecture, DQ and Gauss-
Lobatto quadrature techniques, and Lagrange's rule. The results offer a numerical basis for 
porous FG microstructure design. 
 
1.2.7 Buckling Behaviour of Homogeneous and FGM Micro-/Nano-Beams 
 Akgöz and Civalek (2011) applied couple stress theories and strain gradient elasticity to 
study the stability of micro-sized beams. It used Bernoulli-Euler beam theory to present 
analytical solutions for nano-sized beams that are axially loaded. The research advanced the 
mechanical modelling of structures at the micro- and nanoscale. Using MCST and considering 
the theories of Euler-Bernoulli and Timoshenko beams as well as minimum potential energy, 
Abadi and Daneshmehr (2014) examined buckling in composite laminated beams. Size effects 



Chapter 1 
 

13 
 

and Fourier series expansions were included. The study examined the effects of material length, 
beam thickness, and length on the behaviour of micro composite laminated beams and compared 
its findings with previous research. Using MCST, Mohammadabadi et al. (2015) investigated the 
effect of temperature on size-dependent buckling in micro composite laminated beams. It used 
different cross-ply laminates to examine lamination, boundary conditions, and shear 
deformation. For hinged-hinged conditions, the governing equations and boundary conditions 
were solved analytically, and the generalised differential quadrature (GDQ) method was utilised 
to solve them numerically. Nguyen et al. (2016) used the Micro Genetic Algorithm (micro-GA) 
in conjunction with conventional beam theory to optimise vibration and lateral buckling in 
laminated composite beams. The ideal solution was strongly influenced by geometric factors, 
and micro-GA outperformed ordinary GA in terms of convergence rate and optimal solution. 
Shafiei and Kazemi (2017) investigated the nonlinear buckling behaviour of FG micro- and 
nano-beams composed of porous materials. It used MCST, Eringen's nonlocal theory, von 
Kármán geometric nonlinearity, and Euler-Bernoulli beam theory. Zandekarimi et al. (2018) 
investigated a circular microplate's thermal buckling and post-buckling behaviour under clamped 
boundary conditions and a uniform temperature rise. It analysed the behaviour in terms of length 
scale parameter, power law index, and thickness ratio using variational method, differential 
quadrature method, and iterative analysis. Under thermo-mechanical loading and boundary 
conditions, Taati (2018) provided an exact solution for the size-dependent buckling and post-
buckling behaviour of FG micro-beams. It solved nonlinear equations by applying the minimum 
total potential energy principle and MCST. The study also emphasized how the lack of 
consideration for the stiffness of the flexural-extensional coupling limited the predictive power 
of Fourier series solutions in post-buckling behaviour. 
 
1.3 Mathematical Background 

` The mathematical formulation of the current thesis work is based on two energy 
principles of structural mechanics: minimum total potential energy principle and Hamilton's 
principle. The governing equations for the static deflection are derived using principle of 
minimum potential energy, whereas the governing equations for free vibration are derived using 
Hamilton’s principle. The solutions of the governing equations are obtained using Ritz method. 
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The solutions to the governing equations are obtained by approximating the displacement fields 
using the Ritz method. The displacement fields are approximated by using the orthogonal 
admissible functions that are produced by the Gram-Schmidt algorithm. In the end, the 
governing equations of the free vibration problem are transformed into an eigenvalue problem. A 
brief summary of the many principles and methods applied in the current thesis work is given in 
this section. 
 
1.3.1 Minimum Total Potential Energy Principle 

The principle of Minimum Potential Energy (MPE), states that: For conservative 
structural systems, of all the kinematically admissible deformations, those corresponding to the 
equilibrium state extremize (i.e., minimize or maximize) the total potential energy. If the 
extremum is a minimum, the equilibrium state is stable. In other words, the potential energy is 
stationary, and it could be maximum or minimum (Shames and Dym (2009)). For stable 
structures, it undergoes minimum value with respect to displacements.  
The principle of virtual work, in variational form (first variation), is given as: 

 
.i i i i ij ij

s v v
T u ds f u dv dv              (1.1) 

Here u  is the virtual displacement; i i
s
T u ds  and i i

v
f u dv  are the virtual work by those 

vectors which are present in the surface and by body force respectively; ij ij
v

dv  is the internal 
virtual work. For elastic materials, the expression for stress is given by: 
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where oU  is the strain energy density. Putting ij  in the Eq. (1.1), we get,  
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The variation in strain energy density is given by 
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Putting it in Eq. (1.3), we get, 
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 0i i i i
s v v
T u ds f u dv U dv             (1.5) 

By the properties of the calculus of variation, we can write,  

 0i i i i
s v v
T u ds f u dv U dv               

    V U      
   0.U V            (1.6) 
Here V is the potential of the external loads. It is negative of the external load acting on the 
structure. The strain energy U is the elastic energy stored in deformed structure. So, the potential 
energy ( ) of a structural system is defined as the sum of the strain energy (U) and the work 
potential (V), i.e., 
 .U V             (1.7) 
At equilibrium, we know that the potential energy is minimum (extremum). Hence,  
     0U V              (1.8) 
This expression only says that   is stationary with respect to variations in the displacement field 
when the body is in equilibrium. So in structural problems, variational approach is used to find 
the displacement (dependent) functions that make the potential energy value stationary and this 
principle is only valid for elastic materials. 
 
1.3.2 Hamilton's Principle 

Hamilton’s principle states that, of all the paths of admissible configurations that the 
body can take as it goes from configuration 1 at time 1t  to configuration 2 at time 2t , the path 
that satisfies Newton’s law at each instant during the interval is the path that extremizes the time 
integral of the Lagrangian during the interval (Shames and Dym (2009)). 
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dt                 (1.9) 

where   is the Lagrangian which is given by, T   , i.e., T U V    . 
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Here T is the kinetic energy. Putting the value of  in Eq. (1.9), the final expression of 
Hamilton’s principle is given as follows 

 
 2

1

0
t

t
T U V dt        .        (1.10) 

 
1.3.3 Ritz Method 

The Ritz method is an approximation method for solving variational problems (Shames 
and Dym (2009)). Instead of focusing on the differential equation, the Ritz method looks for a 
solution to the variational problem directly on the functional of the form given below:  
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(1.11) 

The fundamental concept in Ritz method is to use a linear combination of n known functions
 i x  to approximate the solution function  y x , i.e., 
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(1.12) 

Here  i x  must satisfy the essential boundary conditions for  y x .  y x indicates that the 
solution is approximate solution and the coefficients iC  are unknown scalars. These scalars are 
determined by substituting the linear combination  y x  into the functional (1.11). Since the 
functions  i x are known, so their derivatives are  i x  . The derivative of  y x can therefore 
be written as 
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Substituting the expression  y x  and  y x into Eq. (1.11), we get the functional depending on 
y(x) which is converted into a function  of the n variables  i x given as below: 
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Here the functions  i x are known, and the integration can be carried out with respect to the 
variable x. The variational problem has been reduced to finding the coefficients iC for which the 
function attains an extreme value, subject to the boundary conditions. 
In structural mechanics problems, this functional is the potential energy  , which has to be 
minimized to get stable equilibrium state. From Eq. (1.14), to extremize  , i.e., minimizing or 
maximizing the  , we can write ( ) 0   . It implies: 

 1 2 3 4
0, 0, 0, 0,... 0.

nC C C C C
                   

(1.15) 
Solution of equation (1.15) results in a series of n-equations, which can be solved to determine 
the parameters iC . Putting the value of iC  along with  i x in Eq. (1.12) yields the final 
approximate solution of  y x . 
 
1.3.4 Modified Couple Stress Theory (MCST) 
 The MCST presented by Yang et al. (2002) evolved from the classical couple stress 
theory proposed by Mindlin (1964). The leading advantage of the MCST over the classical 
couple stress theory is the involvement of only one additional material length scale parameter l. 
According to the MCST, the strain energy density is a function of both strain tensor (conjugated 
with stress tensor) and curvature tensor (conjugated with couple stress tensor) (Yang et al. 
(2002)). So the strain energy in an isotropic linear elastic material is given as below: 
 1 2 ,U U U            (1.16) 
where 1U  is the classical strain energy, 2U  is the non-classical strain energy. The expression for 

1U and 2U  are given as follows: 

 
 1

1
2 V

U dV   
         

(1.17) 

 
 2

1
2 V

U m dV  
         

(1.18) 
Here V denotes volume, σ and ε are classical stress and strain tensors respectively; m and χ are 
couple stress and curvature tensors respectively. Their forms are given as follows: 



 

   1 ,2
Tu u       

 ,E     
 22 ,m Gl     

   1 .2
T        

Here ׏ൌ ݅ ப
ப୶൅ ݆ డ

డ௬ ൅ ݇ డ
డ௭; u is the displacement vector; 

modulus respectively; l is the material length scale parameter and 
is given as follows: 

  1
2 curl u    

 
1.4 Description of the 
 In the present thesis work, 
behaviour of FG Timoshenko 
Clamped-Clamped (CC), Clamped
It is assumed that the beam is subjected to uniformly distributed loading.
metal-ceramic FGM compositions are considered, for which the 
material gradation is assumed following power law variation of volume fraction of the 
constituents. The size effect has been incorporated into the formulation using modified couple 
stress theory (MCST).  
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is the material length scale parameter and ߠ is the rotation vector which 

       

Description of the Problem 
In the present thesis work, we have studied the static deflection and 

 micro-beam for four different boundary conditions namely 
Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped

It is assumed that the beam is subjected to uniformly distributed loading. In all these problems, 
ceramic FGM compositions are considered, for which the through-thickness continuous 

material gradation is assumed following power law variation of volume fraction of the 
The size effect has been incorporated into the formulation using modified couple 

: Beam with dimensions and coordinate axes. 

  (1.19) 
  (1.20) 
  (1.21) 

  (1.22) 
Young’s modulus and shear 
is the rotation vector which 

  (1.23) 

tatic deflection and free vibration 
different boundary conditions namely 

Hinged (HH) and Clamped-Free (CF). 
In all these problems, 
thickness continuous 

material gradation is assumed following power law variation of volume fraction of the 
The size effect has been incorporated into the formulation using modified couple 
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 For the present study, a beam (Fig.1.1) having length L, thickness h and width b is 
considered. The axial, width and thickness coordinates are denoted by x, y and z respectively, 
where the origin lies at the left end in the mid-plane of the beam. The mathematical formulation 
is based on Timoshenko Beam theory (TBT). The governing equations for static deflection are 
derived using minimum potential energy principle. These governing equations are non-linear in 
nature as von Kármán type non-linearity has been incorporated in the expression of classical 
strain. For the free vibration problem, small amplitude free vibration behaviour of the pre-loaded 
beam is studied using Hamilton’s principle. In both these problems, the governing equations are 
solved by approximating the displacement fields following Ritz method. The main objective of 
the thesis work is to determine static deflection and the free bending vibration frequencies of FG 
micro-beam. The model is successfully validated with the available results. An extensive set of 
results are presented for predicting the static deflection and free vibration frequency of the FGM 
micro-beam. The results are presented to show the effects of size-dependent thickness, material 
gradation index, FG composition and boundary conditions. 
 
1.5 Chapter Summary 

The introduction outlines the increasing use of thin beams in micro-electro-mechanical 
systems (MEMS) and nano-scale technologies, highlighting their significance in various 
applications. It also emphasizes the importance of non-classical continuum theories in capturing 
the size-dependent static and vibration behaviours observed in microstructures, leading to the 
development of the modified couple stress theory (MCST). The literature review provides a 
detailed overview of the research conducted on the static, dynamic, and buckling behaviour of 
both homogeneous and FG micro-/nano-beams. It covers the application of advanced theories 
such as strain gradient elasticity theory, modified couple stress theory, and nonlocal sandwich 
beam theories in analysing the behaviour of micro-beams. Additionally, the chapter delves into 
the mathematical background, describing the principles of minimum total potential energy, 
Hamilton's principle and the Ritz method. Furthermore, it introduces the MCST, outlining its 
formulation and the strain energy density function. The problem description section outlines the 
specific focus of the thesis work, detailing the investigation of the static deflection and free 
vibration behaviour of FG micro-beams under various boundary conditions. In summary, the 
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chapter provides a comprehensive overview of the study's background, literature review, 
mathematical formulation, and the specific problems addressed, offering a clear and structured 
insight into the research focus and objectives. 



 
MATHEMATICAL FORMULATION
 
 
2.1 Introduction 
 We have studied the static deflection and 
micro-beams for four different boundary conditions namely 
Hinged (CH), Hinged-Hinged (HH) and Clamped
subjected to uniformly distributed loading. M
which the through-thickness continuous material gradation is assumed following power law
variation of volume fraction of the constituents.
formulation using modified couple stress theory (MCST)

Fig. 2.1: Beam with dimensions and coordinate axes.
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2.2 FGM Modeling  
 The beam material is assumed to be functionally graded along the z direction. The power 
law variation of the volume fraction of the metallic and ceramic phases is considered. Hence, any 
effective material property fM , following Voigt model (Shen (2009)) is given as follows: 

   1( ) 2
k

f m c m
zM z M M M h

              
(2.1)  

where, k  0 k    is the volume fraction index, and the subscripts c and m denote the ceramic 
and metallic constituents respectively. The top layer  / 2z h  is purely ceramic and the 
bottom layer is pure metallic  / 2z h  . The effective elastic modulus ( fE ), effective 
Poisson’s ratio (ߤ௙), effective density ( f ) and effective shear modulus (ܩ௙) are therefore given 
by the following equations. 

   1
2 ,f m c m

kzE (z)= E + E - E +h
           (2.2a) 

 1( ) ( ) ,2f m c m
kzz +h                  (2.2b) 

 
1 ,( ) ( ) 2f m c m

kzz h                  (2.2c) 

 / 2(1 ).f f fG E            (2.2d) 
It is to be noted that k =0 implies a purely ceramic beam, and as the value of k increases, the 
volume fraction of the metal increases. In the present work, we have taken four FG materials. 
They are given as follows: Stainless Steel/Alumina (SUS304/Al2O3) [FGM1], Stainless 
Steel/Silicon Nitride (SUS304/Si3N4) [FGM2], Stainless Steel/Zirconia (SUS304/ZrO2) [FGM3] 
and Titanium Alloy/Zirconia (Ti-6Al-4V/ZrO2) [FGM4]. Table 2.1 shows the material properties 
of different constituents at room temperature i.e., 300 K. 
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Table 2.1: Material properties of FGM constituents at 300 K. 

Property Stainless Steel 
(SUS304) 

Titanium Alloy 
(Ti-6Al-4V) 

Silicon Nitride 
(Si3N4) 

Zirconia 
(ZrO2) 

Alumina  
(Al2O3) E  (GPa) 207.79 105.70 322.27 168.06 320.24 

  0.318 0.298 0.240 0.298 0.260 
  (kg/m3) 8166 4429 2370 3000 3750 

 
2.3 Displacement Fields 
 The displacements fields  ,u w along the axial and transverse directions for the 
Timoshenko beam model are given as follows, 

0( , , ) ( , ) ( , ),u x z t u x t z x t          (2.3a) 
   0,w x t w .          (2.3b)   
Here 0 ( , )u x t  is the axial displacement of the mid-plane and  x  is the rotation of the 
transverse normal. 
 
2.4 Strain and Curvature Fields 
2.4.1 Strain Fields 
 Strain in the x-direction with von Kármán non-linearity is given by 

21 .2xx
u w
x x                  

(2.4) 

Putting Eqs. (2.3a) and (2.3b) into Eq. (2.4), the final expression of strain in x-direction is given 
as follows, 

2
0 01 .2xx

u wzx x x
                    

(2.5) 
The shear strain in z-direction and in x-plane is given as below, 
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xz
w u
x z     0 .w

x           (2.6) 
Due to symmetry, we can write, 

0 .xz zx
w
x              (2.7) 

It is mentioned that the other components of the strain are zero. 
 
2.4.2 Curvature Fields 
Using the relations (1.22) and (1.23), and substituting the displacement fields given by Eqs. 
(2.3a) and (2.3b), the components of curvature tensor are given as below:  

2
0

2
1 ,4xy yx

w
x x

                   
(2.8a) 

0.xx yy zz xz zx yz zy                   (2.8b) 
  2.5 Stress and Couple Stress Fields 
2.5.1 Stress Fields 
 The stress in the x direction and in plane normal to x is given by,  

.xxxx fE            (2.9) 
By putting the value of xx from Eq. (2.4) into Eq. (2.9), we get, 

2
0 01 .2xx f

u wE zx x x
                      

(2.10) 

The shear stress in x plane and in z direction is same as in z plane along x direction. It is given 
by, 

.xz zx f s xzG k             (2.11) 
Here sk is the shear correction factor. By putting the value of xz or zx  from Eq. (2.7), we get, 

0 .xz zx f s
wG k x                

(2.12) 
 

2.5.2 Couple Stress Fields 
 The nonzero component of couple stress tensor is given as below: 
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 22xy f xym G l           (2.13) 
By putting the value of xy , which is given in Eq. (2.8a), the expression for xym  is given as 
below: 

2 2
0

22
f

xy
G l wm x x

                
(2.14) 

The components of couple stress tensor other than xym and yxm are equal to zero, i.e., 
 0xx yy zz xz zx zy yzm m m m m m m             (2.15) 
 
2.6 Strain Energy, Work Potential and Kinetic Energy 
2.6.1 Strain Energy 
 According to MCST, the strain energy in the combination of classical strain energy and 
non-classical strain energy is as given below:  
 1 2U U U       (2.16) 
Here 1U  and 2U  are the classical and non-classical strain energies respectively.  
 The expression for 1U  is derived as follows: 

 
 
 

1

2 2

22 2
0 0 0
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1
2
1
2
1 1
2 2
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 
 


 
 
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.
L

o
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          (2.17) 

Here f
A

EA E dA  , f
A

EQ E zdA  , 2
f

A
EI E z dA  , and .f

A
GA G dA     

(2.18) 

 The expression for 2U  is derived as follows: 
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2.6.2 Work Potential 
 The work potential of the uniformly distributed load (UDL) is given below,  

0
0

,
L

V p w dx            
 

(2.20) 
where p is the intensity of the uniformly distributed load (N/m). 
 
2.6.3 Kinetic Energy 

The expression for kinetic energy  T  is derived as follows:
2 2

0
2 2

0 0
0

2 2 2
20 0 0

0

1
2

1
2
1 22

L
f f

A
L

f f
A

L
f f

A

w uT dAdxt t
w u z dAdxt t t
w u uz z dAdxt t t t t

 
 

  

                
                   
                                           

 
 
 

2 2 2
0 0 0

0

1 2 .2
L w u uRA RA RI RQ dxt t t t t

                                             (2.21)  

Here f
A

RA dA  , f
A

RQ z dA   and 2
f

A
RI z dA  .     (2.22) 

 
2.7 Determination of Static Deflection 
 The minimum potential energy principle can be expressed mathematically as, 
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     0U V     .     (2.23) 
The displacement fields are approximated using Ritz method as follows: 
    0

1
,nw w

i i
i

w x c x


       (2.24a)

    0
1

,nu u
nw i i

i
u x c x

      
(2.24b) 

    
1

.n
nw nu i i

i
x c x   
      

(2.24c) 

Here w
i , u

i  and i
  are the set of orthogonal admissible functions, ܿ௜ is the set of generalized 

coordinates, and nw , nu and n  are the number of the respective functions. The set of 
orthogonal functions w

i , u
i  and i

  are generated numerically from the lowest order 
admissible functions by Gram-Schmidt orthogonalization scheme.The selected lowest order 
functions satisfying different boundary conditions are given in Table 2.2. 
 

Table 2.2: List of lowest order functions for different boundary conditions. 
 
Boundary Condition 1

w  1
u  1

  
CC 1x x

L L
     1x x

L L
     sin x

L
     

CH 1x x
L L
     1x x

L L
     sin 2

x
L

     

HH 1x x
L L
     1x x

L L
     cos x

L
     

CF x
L  1x x

L L
     sin 2

x
L

     
 
 

 Substituting the assumed displacement fields given by Eqs. (2.24a)-(2.24c) into Eqs. 
(2.17), (2.19), (2.20), and using Eq. (2.23), the set of governing equations are given in the matrix 
form as follows:  

     .l nl
cl cl nclk k k c P                (2.25) 
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Here l
clk    is the stiffness matrix due to classical strain energy which contains the linear terms 

of the classical strain energy; nl
clk    is the stiffness matrix due to classical strain energy that  

contains the nonlinear terms of the classical strain energy;  nclk  is the stiffness matrix due to 
non-classical strain energy;  P  is the load vector. 

The set of equations given by Eq. (2.25) is nonlinear. It is solved using a substitution 
method with successive relaxation (Das et al. (2008)). The solution yields  c , which is used to 
calculate  0 0, ,w u   using Eqs. (2.24a)-(2.24c). The elements of the l

clk   , nl
clk   ,  nclk  and 

 P  are given in the Appendix 2A. 
 

2.8 Determination of Free Vibration  
 Hamilton principle is mathematically expressed as, 
  2

1

0.
t

t
T U V dt       

     
(2.26) 

For the present problem involving free vibration, the work potential (V) is taken as zero. 
It is assumed that the dynamic displacement fields for the free vibration problem are separable in 
both space and time. Assuming harmonic vibration for elastic system, the dynamic displacement 
fields are assumed as shown below: 

   0
1

, ,nwt w
i i

i
w x t e d x 


 i

        
(2.27a) 

   0
1

, ,nut u
nw i i

i
u x t e d x 

 i         (2.27b) 

   
1

, .nt
nw nu i i

i
x t e d x   

 i
       

(2.27c) 

Here 1 i , and   is the frequency of the free vibration.  
 As the micro-beam executes small amplitude free vibration about its deformed 
configuration, its tangent stiffness is responsible for free vibratory motion that would occur in 
the neighborhood of the deformed configuration. Hence, in the final form of Eq. (2.26), the part 
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corresponding to the strain energy (U) is associated with the tangent stiffness of the deformed 
configuration. The tangent stiffness Tk    of the deformed beam is derived using the following 
relationship (Das (2018): 

   .T r
ji j

i
k Pc

               (2.28) 

In Eq. (2.28),  r
jP  is the restoring force vector for the deformed configuration given by 

      .r l nl
j cl cl ncl ijiP k k k c          The elements of Tk    in subscripted form are given in 

Appendix 2B. As the deformed configuration is already known from the previous static analysis, 
the elements of Tk    are fully known so that it can be used in the governing equations for the 
free vibration problem. 
 Substituting the dynamic displacement fields given by Eqs. (2.27a)-(2.27c) into Eq. 
(2.21), incorporating the tangent stiffness of the micro-beam, and applying the Hamilton’s 
principle given by Eq. (2.26), an eigenvalue problem is obtained as follows: 

      2 0 .Tk M d            (2.29) 
Here  M is the mass matrix, Tk    is the tangent stiffness matrix, 2  is the eigenvalue, and 
 d is the eigenvector. It is noted that the nonlinear tangent stiffness matrix Tk    appearing in 
Eq. (2.29) is linearized using the solution coefficients  c  of the deformed configuration of the 
micro-beam to take into the effect of pre-stress induced due to static loading. The square roots of 
the eigenvalues  2  signify the frequencies of vibratory motion of the deformed micro-beam, 
and the eigenvectors i.e.,  d represent the corresponding mode-shapes of vibration. These 
eigenvectors when used in Eqs. (2.27a)-(2.27c) generate the mode-shapes of vibration. Eq. (2.29) 
is solved using a standard eigen-solver of MATLAB. 
 
2.9 Chapter Summery        
 The static and vibration behaviour of a FG Timoshenko micro-beam under various 
boundary conditions is mathematically formulated in this chapter, taking metal-ceramic FGM 
compositions into account and using the MCST to account for size effects. It starts by outlining 
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the FGM modelling and taking into account the power law variation of the volume fractions of 
the metallic and ceramic phases, which results in the effective material properties. The 
formulation of strain energy, work potential, and kinetic energy is presented in detail, as are the 
displacement, strain, curvature, stress, and couple stress fields. The governing equations for the 
static problem and vibration problem are derived. They are solved following Ritz method. Two 
appendices describing the non-zero components of different matrices and the load vector rounds 
off the chapter. 
 
 
Appendix 2A 
Non-zero components of l

clk    

  1,
01,

,
wL w jl icl sj nwji

i nw

ddk GAk dxdx dx





       

  1,
01,

,
wL jl

cl s i nw nuj nwji
i nw nu nw nu n

dk GAk dxdx




  
    

        

  1,
01,

,
uL u j nwl i nwcl j nw nw nuji

i nw nw nu

ddk EA dxdx dx
   

  
       

  1,
01,

,
uL j nwl i nw nucl j nw nw nuji

i nw nu nw nu n

ddk EA dxdx dx




    
    

     
 

  1,
01,

,
L wl icl s j nw nuj nw nu nw nu nji

i nw

dk GAk dxdx



       


      

 
  1,

01,
,

L u j nw nul i nwcl j nw nu nw nu nji
i nw nw nu

ddk EQ dxdx dx



      

  
        

  1,
0 01,

.
L Lj nw nul i nw nucl s i nw nu j nw nuj nw nu nw nu nji

i nw nu nw nu n

ddk EI dx GAk dxdx dx
  




            
    

         

 
Non-zero components of nl

clk    
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  2
0 0

1,
0 0 01,

,2
w w wL L Lw w wj j jnl i i icl j nwji

i nw

d d ddu d d dw dd EAk EA dx EQ dx dxdx dx dx dx dx dx dx dx dx
    




                     
  0

1,
01,

,2
uL w j nwnl icl j nw nw nuji

i nw

ddw dEAk dxdx dx dx
 

  


           

  0
1,

01,
.2

L w j nw nunl icl j nw nu nw nu nji
i nw

ddw dEQk dxdx dx dx



  

    


          
 

Non-zero components of  nclk  

  222
1, 2 2
1, 0

,4
wL w jij nwncl ji

i nw

ddGAlk dxdx dx





      
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1, 2
1, 0

,4
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i nw nu nw nu n

ddGAlk dxdx dx



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    
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
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1, 0

.4
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ddGAlk dxdx dx
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
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       
    
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Components of Load Vector 

  1, 0
,

L
w

j jj nwp p dx    

  1, 0,j j nw nw nup      
  1, 0.j j nw nu nw nu np        
 
Appendix 2B 
Nonzero components of Mass Matrix  

  1,
1,

,
L

w wj nw i ji nw o
M RA dx 


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  1,
1,

,
L

u uj nw nu nw i nw j nwi nw nw nu o
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L
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M RQ dx           
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Nonzero components of Tangent Stiffness Matrix  
Linear Terms (Classical)  
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Nonlinear Terms (Classical)  
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0 01,
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Linear Terms (Nonclassical)  
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  Chapter 3 
 

RESULTS FOR STATIC DEFLECTION BEHAVIOUR  
 
 
3.1 Introduction 

A theoretical investigation examines the static deflection of a Timoshenko micro-beam 
made of functionally graded material (FGM), where the volume fraction varies according to a 
power law along the thickness direction. To capture geometric non-linearity, the von Kármán 
non-linear strain-displacement relationship is utilized. The governing equation is derived using 
the minimum potential energy principle. We explored four different boundary conditions namely 
Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF). 
The study evaluates the static deflection of four different FGMs: Stainless Steel/Alumina 
(SUS304/Al2O3) [FGM1], Stainless Steel/Silicon Nitride (SUS304/Si3N4) [FGM2], Stainless 
Steel/Zirconia (SUS304/ZrO2) [FGM3] and Titanium Alloy/Zirconia (Ti-6Al-4V/ZrO2) [FGM4]. 
The mathematical formulation for static deflection is presented in Chapter 2 along with the 
mechanical properties of four FGMs.  

 
3.2 Validation Study  

We have compared our result with Paul and Das (2016). The validation plots for Stainless 
Steel/Zirconia [FGM3] Timoshenko micro-beam are presented in Figs. 3.1(a)–(c) where the plots 
of p  vs. w  for k = 2.0 are shown. Here p  is the non-dimensional uniform transverse pressure 
and w  is the normalized maximum transverse deflection. These are defined as follows: 

4
( )m

Lp p E bh
      

and w w h , where p is the intensity of the uniformly distributed load in 
N/m, w is the maximum transverse deflection, L is the length of beam, h is the height of beam 
section and b is the width of the beam. The material properties for FGM3 are given as follows:



 

mE =207.79GPa, cE =168.06GPa
 3kg m . Figs. 3.1(a)-(c) show the plot of 
respectively. Figs. 3.1(a)–(c) show excellent agreement with present model and thus it validates 
the present model. 

 

Fig. 3.1. Validation plots for static deflection
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GPa, m =0.318, c =0.298, m =8166  3kg m

show the plot of p  vs. w  for CC, CH and HH micro
show excellent agreement with present model and thus it validates 

 

 
static deflection for different boundary conditions: (a) CC, (b) CH

(c) HH. 
 

3kg m  and c =3000
, CH and HH micro-beams 

show excellent agreement with present model and thus it validates 

 

: (a) CC, (b) CH, 
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We have also compared our model with Reddy (2011) for a homogeneous beam (k=0) for 
which the geometric and material properties are given as follows: mE = cE =E=1.44 GPa, 

m c    =0.38,   5 1 6 5sk     , b = 2h, L=20h and p=1.0 N/m. The validation details are 
given in the Tables 3.1 and 3.2 for uniformly distributed load and sinusoidal load respectively for 
different l h  values with its corresponding normalized central deflection  4 210w w E I pL 
,where w is the maximum transverse deflection. Tables 3.1 and 3.2 show excellent agreement 
with present model and thus validate the present model. 

 
Table 3.1: Comparison of normalized central deflection of a simply supported homogeneous 

(k=0) micro-beam under uniformly distributed load. 
l/h Reddy (2011) Present 
0.0 1.3103 1.3103 
0.2 1.1162 1.1162 
0.4 0.7731 0.7731 
0.6 0.5116 0.5116 
0.8 0.3475 0.3475 
1.0 0.2464 0.2464 

 
Table 3.2: Comparison of normalized central deflection of a simply supported homogeneous 

(k=0) micro-beam under sinusoidal load. 
l/h Reddy (2011) Present 
0.0 1.0333 1.033 
0.2 0.8802 0.8802 
0.4 0.6096 0.6096 
0.6 0.4034 0.4034 
0.8 0.2741 0.2741 
1.0 0.1943 0.1943 

 
 



 

Fig. 3.2: Validation plots for static deflection

Figs. 3.2(a)-(b) show comparison 
sinusoidally distributed transverse load 
given material properties: cE =
b=2h, L=20h and p=1.0 N/m. The deflection is shown 
coordinate x/L for various l/h values
with present model and hence validates 
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static deflection for different size effect: (a) l/h = 0.2, (b) 

(c) l/h = 1. 
 

(b) show comparison of normalized deflection w w E I pL
sinusoidally distributed transverse load with Reddy (2011) for a homogeneous

cE = mE =E=1.44 GPa, m c    =0.38, 5 1 / 6 5sk   
The deflection is shown as a function of the non-dimensional
values which are 0.2, 0.6 and 1. Fig. 3.2 shows excellent agreement 

and hence validates our model. 

 

= 0.2, (b) l/h = 0.6, 

 4w w E I pL  under 
a homogeneous beam having 

  5 1 / 6 5    , 
dimensional beam 

excellent agreement 
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3.3 Results for Different Parameters 
The present work is carried out to determine the static deflection of FGM micro beams. 

The static behaviour is presented graphically in non-dimensional p  vs. w  plane, where p  is the 
non-dimensional uniform transverse pressure and w  is the normalized maximum transverse 
deflection. The expression for p  and w  are as follows:    4/ / cp p L h E b  and max /w w h , 
where p is the intensity of the UDL in N/m, L is the length of the beam which is related to 
thickness of beam h as follows L/h=25, cE is the Young’s modulus of ceramic, b is the width of 
the beam which is also related to h as follows b/h=2 and maxw is the maximum transverse 
deflection. To incorporate the size effect, the material length scale parameter l is taken as 17.6 
micron. 

The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary 
conditions are shown in Figs. 3.3(a)–(f), 3.4(a)–(f), 3.5(a)–(f) and 3.6(a)–(f) respectively. These 
curves for figures (a)-(f) correspond to different values of the material gradation index which are: 
k=0.0, 0.1, 0.5, 1.0, 2.0, 5.0 respectively. Figs. 3.3-3.6 are presented for a Stainless Steel/Silicon 
Nitride [FGM2] micro-beam. Each figure in Figs. 3.3-3.6 shows how size affects the non-
dimensional load-deflection behaviour by varying the size-dependent thickness (h/l) values as 
h/l=1.0, 2.0, 5.0, 10.0, and for classical FG beam (l = 0). 
 In Figs. 3.3–3.6 for different boundary conditions, the non-dimensional load-deflection 
curves for various values of the material gradation index, k =0.0, 0.1, 0.5, 1.0, 2.0, and 5.0 are 
shown. In each of the figures in Figs. 3.3-3.6, the size-dependent thickness (h/l) values are 
varied. It should be noted that the size-effect decreases as the h/l value increases. It is also to be 
noted that as k increases, the metal volume fractions in the beam increase. Because the metal 
component has a lower elastic modulus than its ceramic counterpart, the beam becomes more 
elastically flexible as k increases. For any particular boundary condition and for any given k 
value, it is observed that the micro-beam becomes more stiff with increasing size-effect, and that 
it is found to be maximum at h/l=1. At h/l=10, the micro-effect almost disappears as the curves at 
these values become almost coincident with the classical behaviour. When k increases for a 
given value of h/l, the curve becomes steeper, which indicates that the beam's stiffness decreases. 



 

From Figs. 3.3-3.6, it is seen that 
compared to other boundary condition

Fig. 3.3: Effect of size on non
(a) k=0, (b) k=0.1, (c) 
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it is seen that the non-dimensional pressure is very less for 
compared to other boundary conditions, which means that the stiffness is very less for 

 
Effect of size on non-dimensional load-deflection curves for CC micro

=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) k=5.0. 

less for CF boundary as 
, which means that the stiffness is very less for CF beams. 

 

 

 
C micro-beams:  



 

Fig. 3.4: Effect of size on non
(a) k=0, (b) k=0.1, (c) 
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Effect of size on non-dimensional load-deflection curves for CH micro
=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) k=5.0. 
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 H micro-beams: 



 

Fig. 3.5: Effect of size on non
(a) k=0, (b) k=0.1, (c) 
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Effect of size on non-dimensional load-deflection curves for HH micro
=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) k=5.0. 

 

 

 
HH micro-beams: 



 

Fig. 3.6: Effect of size on non
(a) k=0, (b) 
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Effect of size on non-dimensional load-deflection curves for CF micro
=0, (b) k=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) k=5.0
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 CF micro-beams: 
=5.0. 
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The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary 

conditions are shown in Figs. 3.7(a)–(e), 3.8(a)–(e), 3.9(a)–(e) and 3.10(a)–(e) respectively. 
These curves for figures (a)-(e) correspond to different values of size-dependent thickness (h/l) 
which are: h/l=1.0, 2.0, 5.0, 10.0, and for classical FG micro-beam (l = 0) respectively. Figs. 3.7-
3.10 are presented for a Stainless Steel/Silicon Nitride [FGM2] micro-beam. Each figure in Figs. 
3.7-3.10 shows how material gradation index affects the non-dimensional load-deflection 
behaviour by varying the material gradation index, which are: k=0.0, 0.1, 0.5, 1.0, 2.0, 5.0. 
 In Figs. 3.7–3.10 for different boundary conditions, the non-dimensional load-deflection 
curves for various values of the size dependent thickness  (h/l), that is  h/l = 1, 2, 5, 10, and for 
classical beam (l = 0) are shown. In each of the figures in Figs. 3.7-3.10, the material gradation 
index (k) values are varied. With k = 0.0, 0.1, 0.5, 1.0, 2 and 5, it demonstrates the effect of 
material gradation index (k) on the non-dimensional load-deflection behaviour. For any given h/l 
value, it is observed that the steepness of the curve increases which means that the stiffness of 
the beam decreases so it becomes more flexible with increasing k. It is found to be maximum at k 
=5 whereas at k = 0.0, the beam rigidity is maximum as the curve is flat at k = 0.0. It is also 
observed from the figures that for any particular value of k, as the size effect increases that is 
value of h/l decreases, the stiffness of the beam increases and it is maximum for h/l = 1 and 
minimum for h/l = 10 as it approaches to same stiffness as a classical beam. From Figs. 3.7-3.10, 
the non-dimensional pressure is very less for CF beam as compared to other boundary 
conditions, which means that the stiffness is very less for CF micro-beams.  

 



 

Fig. 3.7: Effect of material gradation index on non
micro-beams: (a) Classical
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 Effect of material gradation index on non-dimensional load-deflection curves for CC 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e) h/l
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deflection curves for CC 
h/l =10. 



 

Fig. 3.8: Effect of material gradation index on non
micro-beams: (a) Classical
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 Effect of material gradation index on non-dimensional load-deflection 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e) h/l

 

deflection curves for CH 
h/l =10. 



 

Fig. 3.9: Effect of material gradation index on non
micro-beams: (a) Classical
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 Effect of material gradation index on non-dimensional load-deflection curves for 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e) h/l
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deflection curves for HH 
h/l =10. 



 

Fig. 3.10: Effect of material gradation index on non
micro-beams: (a) Classical
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 Effect of material gradation index on non-dimensional load-deflection curves for C
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e) h/l

 

 

deflection curves for CF 
h/l =10. 
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The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary 
conditions are shown in Figs. 3.11(a)–(f), 3.12(a)–(f), 3.13(a)–(f) and 3.14(a)–(f) respectively. 
These curves for figures (a)-(f) correspond to different values of material gradation index, i.e., 
k=0.0, 0.1, 0.5, 1.0, 2.0, and 5.0 respectively. Figs. 3.11-3.14 are presented for h/l=1. Each figure 
in Figs. 3.11-3.14 shows how different functionally graded material affects the non-dimensional 
load-deflection behaviour. The FGMs considered are as follows: Stainless Steel/Alumina 
[FGM1], Stainless Steel/Silicon Nitride [FGM2], Stainless Steel/Zirconia [FGM3] and Titanium 
Alloy/Zirconia [FGM4]. 
 In Figs. 3.11–3.14 for different boundary conditions, the non-dimensional load-deflection 
curves for various values of the material gradation index (k), that is k = 0.0, 0.1, 0.5, 1, 2 and 5 
are shown. Each of the Figs. 3.11-3.14 demonstrates the effect of different FGMs on the non-
dimensional load-deflection behaviour. At k=0, almost all curves of different FGMs are 
coincident. As the value of k increases, the deviation of FGM 3 from other FGMs increases, and 
it is maximum at k = 5. So at k=5.0, the steepness of the curve corresponding to FGM 3 is lowest 
so its stiffness is maximum. But curves for other FGMs are coincident with each other, and have 
lower stiffness compared to FGM 3. For FGM 1, FGM 2 and FGM 4, as the material gradation 
index value (k) increases, the stiffness of the micro-beam decreases. But for FGM 3, as the value 
of material gradation index (k) increases, the stiffness of the micro-beam increases. 

The non-dimensional load-deflection curves for the CC, CH, HH and CF boundary 
conditions are shown in Figs. 3.15(a)–(e), 3.16(a)–(e), 3.17(a)–(e) and 3.18(a)–(e) respectively. 
These curves for figures (a)-(e) correspond to different values of the size dependent thickness h/l, 
which are: h/l=1.0, 2.0, 5.0, 10.0, and for classical FG micro-beam (l = 0). Figs. 3.15-3.18 are 
presented for k=1. Each figure in Figs. 3.15-3.18 shows how different functionally graded 
material affects the non-dimensional load-deflection behaviour. The FGMs considered are as 
follows: Stainless Steel/Alumina [FGM1], Stainless Steel/Silicon Nitride [FGM2], Stainless 
Steel/Zirconia [FGM3] and Titanium Alloy/Zirconia [FGM4]. 
 In Figs. 3.15–3.18 for different boundary conditions, the non-dimensional load-deflection 
curves for various values of the size dependent thickness (h/l), that is h/l=1, 2, 5, 10, and for 
classical beam (l = 0) are shown. Each of the figures of Figs. 3.15-3.18 demonstrate the effect of 



 

different FGMs on the non-dimensional load
material, as the size effect increases

Fig. 3.11: Effect of different FGM
CC micro-beams: (a) k
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dimensional load-deflection behaviour. For any 
as the size effect increases, i.e., as h/l decreases, the stiffness of the beam increases.

Effect of different FGM compositions on non-dimensional load-deflection curves for 
k=0, (b) k=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) 

any particular FG 
stiffness of the beam increases.   

 

 

 deflection curves for 
(f) k=5.0. 



 

Fig. 3.12: Effect of different FGM
CH micro-beams: (a) k
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Effect of different FGM compositions on non-dimensional load-deflection curves for 
k=0, (b) k=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) 
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 deflection curves for 
(f) k=5.0. 



 

Fig. 3.13: Effect of different FGM
HH micro-beams: (a) k
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Effect of different FGM compositions on non-dimensional load-deflection curves for 
k=0, (b) k=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) 

 

 

 deflection curves for 
(f) k=5.0. 



 

Fig. 3.14: Effect of different FGM
CF micro-beams: (a) k=0, (b) 
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Effect of different FGM compositions on non-dimensional load-deflection curves for 
k=0, (b) k=0.1, (c) k=0.5, (d) k=1.0, (e) k=2.0, (f) 
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 deflection curves for 
(f) k=5.0. 



 

Fig. 3.15: Effect of different FGM
CC micro-beams: (a) Classical
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 Effect of different FGM compositions on non-dimensional load-deflection curves for 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e)

 

 

 

deflection curves for 
=5, (e) h/l =10. 



 

Fig. 3.16: Effect of different FGM
CH micro-beams: (a) Classical
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 Effect of different FGM compositions on non-dimensional load-deflection curves for 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e)
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deflection curves for 
=5, (e) h/l =10. 



 

Fig. 3.17: Effect of different FGM
HH micro-beams: (a) Classical
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 Effect of different FGM compositions on non-dimensional load-deflection curves for 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e)

 

 

deflection curves for 
=5, (e) h/l =10. 



 

Fig. 3.18: Effect of different FGM
CF micro-beams: (a) Classical
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 Effect of different FGM compositions on non-dimensional load-deflection curves for 
Classical (l=0), (b) h/l =1, (c) h/l =2, (d) h/l =5, (e)
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deflection curves for 
=5, (e) h/l =10. 
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3.4 Chapter Summary 
In this chapter we discussed the static deflection behaviour of Timoshenko micro-beams 

made of functionally graded materials (FGMs). It presented theoretical investigation using the 
von Kármán non-linear strain-displacement relationship and the minimum potential energy 
principle to derive the governing equation for static deflection. The study evaluated four different 
FGMs under various boundary conditions. Validation of the model is conducted against previous 
studies, demonstrating excellent agreement and thereby validating the present model. The results 
are presented graphically as well as in tabulated form. The findings suggest that as the material 
gradation index increases, the stiffness of the micro-beam decreases for most FGMs, except for 
FGM 3, where stiffness increases with the material gradation index. Additionally, it is observed 
that the stiffness of the beam decreases as the size effect decreases, approaching the stiffness of a 
classical beam. Furthermore, for specific boundary conditions, the non-dimensional pressure is 
significantly lower for the CF beams, indicating lower stiffness compared to other boundary 
conditions. The study provides valuable insights into the static deflection behaviour of FGM 
micro beams, elucidating the influence of material gradation, size-dependent thickness, and 
boundary conditions on the non-dimensional load-deflection behaviour.  



  Chapter 4 
 

RESULTS FOR FREE VIBRATION OF PRE-LOADED MICRO-
BEAM 
 
 
4.1 Introduction 

A theoretical investigation examines the free vibration of pre-loaded Timoshenko micro-
beam made of functionally graded material (FGM), where the volume fraction varies according 
to a power law along the thickness direction. To capture geometric non-linearity, the von 
Kármán non-linear strain-displacement relationship is utilized. The governing equation is 
derived using the Hamilton’s principle. We explored four different boundary conditions namely 
Clamped-Clamped (CC), Clamped-Hinged (CH), Hinged-Hinged (HH) and Clamped-Free (CF).  
The study evaluates the free vibration of pre-loaded beam made of four different FGMs: 
Stainless Steel/Alumina (SUS304/Al2O3) [FGM1], Stainless Steel/Silicon Nitride 
(SUS304/Si3N4) [FGM2], Stainless Steel/Zirconia (SUS304/ZrO2) [FGM3] and Titanium 
Alloy/Zirconia (Ti-6Al-4V/ZrO2) [FGM4]. The mathematical formulation for free vibration 
presented in the Chapter 2 along with the mechanical properties of four FGMs. 

 
4.2 Validation 

We have compared our result with Paul and Das (2016). The validation plots for Stainless 
Steel/Zirconia (FGM3) Timoshenko beam are presented in Figs. 4.1(a)–(c), which show the plot 
of  - w  for k = 2.0 where  is the non-dimensional loaded natural frequency and w  is the 
normalized maximum transverse deflection which are defined as follows 

   2
m mL A E I   and w w h , where   natural frequency of vibration of the beam, L is 

the length of the beam, w is the maximum transverse deflection, A is the cross sectional area 
(A=bh), I is the area moment of inertia about centroidal axis ( 3 12I bh ), h is the thickness of 



 

beam (h=0.01 m) and b is the width of the beam
are given as follows: mE =207.79
 3kg m and c  =3000  3kg m

beams respectively. Excellent agreement with the current model can be seen in Fig. 
validates the classical beam model for pre

Fig 4.1: Validation plots for free vibration of preloaded beam 

     
Furthermore, we compared our model to that of 

presented below shows the non-
which is given as follows:   
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is the width of the beam (b=0.02 m). The material properties 
207.79GPa, cE =168.06 GPa, m =0.318, c =0.298
3kg m . Figs. 4.1(a)-(c) shows the plot of  - w  for 

Excellent agreement with the current model can be seen in Fig. 
validates the classical beam model for pre-loaded conditions. 

 
free vibration of preloaded beam for various boundary conditions

(a) CC, (b) CH, (c) HH. 

Furthermore, we compared our model to that of Hemmatnezhad et al. (2013). The table 
-dimensional frequency parameter of undeformed

   2 2
s sL A E I   ,where  is the natural frequency of 

material properties for FGM3 
 0.298, m =8166

 CC, CH and HH 
Excellent agreement with the current model can be seen in Fig. 4.1, which 

 

boundary conditions: 

Hemmatnezhad et al. (2013). The table 
of undeformed FGM beam, 

is the natural frequency of 
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vibration of beam, L is the length of the beam, A is the cross sectional area (A=bh), I is the area 
moment of inertia about centroidal axis ( 3 12I bh ), h is the thickness of beam (h=0.01 m) and 
b is the width of the beam (b=0.02 m). The comparison is made for various volume fraction 
indices (k) as well as various boundary conditions. Alumina–Steel FGM beams with varying 
length-to-thickness (L/h) ratios are compared. The following material properties were used for 
comparison: mE =210 GPa, cE  = 390 GPa, m  = 0.29, c = 0.22, m = 7800  3kg m  and c = 
3960  3kg m . Table 4.1 provides evidence of a good agreement between the current findings 
and those of Hemmatnezhad et al (2013). This shows that the free vibration dynamic behaviour 
of the classical beam, as determined by the current methodology, is valid for the undeformed 
FGM beam. 

Table 4.1: Comparison of frequency parameters for various L/h values. 
 

L/h 
 Hemmatnezhad 

et al. (2013) 
Present Hemmatnezhad 

et al. (2013) 
Present Hemmatnezhad 

et al. (2013) 
Present 

k = 0 k= 0 k= 0.5 k= 0.5 k= 5 k=5 
 

20 
HH 4.3371 4.3362 3.8554 3.8413 3.3803 3.3643 
CC 6.4971 6.4912 5.7575 5.7511 5.0390 5.0333 
CH 5.4086 5.4058 4.7951 4.7891 4.1990 4.1931 

 
50 

HH 4.3435 4.3433 3.8611 3.8476 3.3857 3.3703 
CC 6.5343 6.5333 5.7899 5.7878 5.0706 5.0691 
CH 5.4268 5.4263 4.8111 4.8071 4.2145 4.2105 

 
100 

HH 4.3444 4.3443 3.8619 3.8485 3.3864 3.3711 
CC 6.5397 6.5394 5.7946 5.7931 5.0752 5.0743 
CH 5.4295 5.4293 4.8134 4.8097 4.2167 4.2130 

 
Additionally, we contrasted the analytical solutions provided by Ansari et al. (2011) with 

our current analysis. The comparison is carried out for a HH isotropic homogeneous Timoshenko 
micro-beam with sk  = 5/6, L/h = 10,   = 0.38,  = 1220 kg/m3, E = 1.44 GPa and l = 17.6 m , 
for various h/l ratios. Table 4.2 presents the initial two natural frequencies (MHz) for a range of 
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h/l values. It demonstrates a high degree of agreement with our current model, thereby validating 
our micro beam model. 

 
Table 4.2: Comparison of first two natural frequencies (MHz) for isotropic homogeneous 

microbeams. 

Mode 
h/l=10 h/l=5 h/l=3.33 

Present Ansari et al. 
(2011) Present Ansari et al. 

(2011) Present Ansari et al. 
(2011)) 

1 0.0377 0.0376 0.0778 0.0778 0.1229 0.1229 
2 0.1397 0.1397 0.2887 0.2888 0.4561 0.4561 

 
Table 4.3: Comparison of the initial five natural frequencies (MHz) for isotropic homogeneous 

microbeams with respect to variation in h/l values. 

Mode 
h/l=3 h/l=1 

Present Ke et al. 
(2012) 

Ma et al. 
(2008) Present Ke et al. 

(2012) 
Ma et al. 
(2008) 

1 0.1391 0.1391 0.1391 0.6723 0.6724 0.6723 
2 0.5163 0.5163 0.5163 2.4529 2.4533 2.4530 
3 1.0519 1.0519 1.0519 4.9368 4.9374 4.9374 
4 1.6813 1.6814 1.6814 7.8606 7.8615 7.8606 
5 2.3693 2.3677 2.3677 11.116 11.1057 11.1045 

 
 To validate our micro beam model, we have also compared our model with Ke et al. 
(2012) and Ma et al. (2008) for simply-supported isotropic homogeneous Timoshenko micro-
beam with sk  = 5/6, L/h = 10,   = 0.38,  = 1220 kg/m3, E = 1.44 GPa and l = 17.6 m  for 
various h/l ratios.  Table 4.3 also shows good agreement and thus validates our micro-beam 
model. 
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Table 4.4: Comparison of first three non-dimensional natural frequency of functionally graded 
simply supported micro-beam. 

k l/h 
Reddy 
(2011) 

Present Reddy 
(2011) 

Present Reddy 
(2011) 

Present 

1  1  2  2  3  3  
 
 

0 

0.0 9.83 9.83 38.82 38.82 85.63 85.63 
0.2 10.65 10.65 42.06 42.06 92.78 92.78 
0.4 12.80 12.79 50.52 50.51 111.34 111.34 
0.6 15.73 15.73 62.01 62.01 136.39 136.39 
0.8 19.08 19.08 75.05 75.05 164.51 164.50 
1.0 22.66 22.66 88.84 88.84 193.82 193.82 

 
 

1 

0.0 8.67 8.66 34.29 34.27 75.79 75.56 
0.2 9.59 9.58 37.93 37.91 83.84 83.46 
0.4 11.93 11.92 47.16 47.14 104.15 110.94 
0.6 15.04 15.03 59.35 59.31 130.77 131.90 
0.8 18.52 18.51 72.91 72.83 160.69 160.84 
1.0 22.28 22.19 87.42 86.89 190.99 190.96 

 
 
 

10 

0.0 10.28 10.28 40.47 40.45 88.80 87.83 
0.2 11.07 11.06 43.56 43.53 95.58 93.96 
0.4 13.14 13.14 51.70 51.65 113.38 104.82 
0.6 16.00 16.00 62.88 62.80 137.66 139.42 
0.8 19.30 19.30 75.67 75.49 165.14 166.50 
1.0 22.92 22.84 89.57 88.83 194.63 195.18 

 
 To validate FGM Timoshenko micro-beam model, we compared our model with Reddy 
(2011). The comparison details are given in the Table 4.4. The material properties for FGM 
beam is given as follows: 1E =14.4 GPa, 2E =1.44 GPa, 3 3

1 12.2 10 kg m   , 



 

3 3
2 1.22 10 kg m   ,  = 0.38, 

first three non-dimensional natural frequencies which is given as follows
where n is the non-dimensional natural frequency, 
A  is the area (A=bh) and I is the moment of inertia about centroidal axis (
comparison is shown for a range of
(k). The comparison of the first three non
demonstrates strong agreement with our current model, validating our micro

Fig. 4.2A: Effect of size on non
k=0: (a) first mode, (b) second mode
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0.38,   5 1 6 5sk     , b = 2h, L=20h. Table 4.
dimensional natural frequencies which is given as follows: n n  

dimensional natural frequency, n  is the natural frequency, 
I is the moment of inertia about centroidal axis ( I b h

for a range of h/l values along with variation in material gradation index 
The comparison of the first three non-dimensional natural frequencies shown 

demonstrates strong agreement with our current model, validating our micro-beam model.  

non-dimensional deflection-frequency curves for C
(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

Table 4.4 presents the 
2

2 2/n nL A E I   , 
s the natural frequency, L  is the length,

3 12I b h ). The 
along with variation in material gradation index 

shown in Table 4.4 
beam model.   

 

 
for CC beams with 

(d) fourth mode. 



Chapter 4 
 

65 
 

4.3 Results for Different Parameters 
The present work is carried out to determine the free vibration frequencies of FGM micro 

beams. The dynamic behaviour is presented graphically in non-dimensional w -  plane, where 
w  is the normalized maximum transverse deflection and   is the non-dimensional frequency. 
The expression for w  and   are as follows: max /w w h  and 2 c

c

AL E I
  . Here   is the 

natural frequency of vibration of micro-beam, L is the length of the beam which is related to 
thickness of beam h as follows: L/h=25, cE  is the Young’s modulus of ceramic, A is the area of 
the beam (A= bh), b is the width of the beam which is also related to h as follows b/h=2 and maxw
is the maximum transverse deflection. To incorporate the size effect, the material length scale 
parameter l is taken as 17.6 micron. Unless specified, the results are generated for a Stainless 
Steel/Silicon Nitride [FGM2] micro-beam.  

The non-dimensional deflection-frequency curves for the first four modes of the CC, CH, 
HH and CF boundary conditions are shown in Figs. 4.2A-C, 4.3A-C, 4.4A–C and 4.5A–C 
respectively. Figures A-C correspond to different values of the material gradation index which 
are: k=0.0, 1.0, 5.0. In each of the figures A-C, plots are presented for the first four modes, 
indicated by (a)-(d) respectively. Each figure in Figs. 4.2-4.5 shows how size affects the non-
dimensional deflection-frequency behaviour by varying the size-dependent thickness (h/l) values 
as h/l=1.0, 2.0, 5.0, 10.0, and for classical FG beam (l = 0). 

The non-dimensional deflection-frequency curves for the first four modes of the CC, CH, 
HH and CF boundary conditions are shown in Figs. 4.6A-C, 4.7A-C, 4.8A–C and 4.9A–C 
respectively. Figures A-C correspond to different values of size-dependent thickness (h/l) such 
as: h/l=1.0, 5.0, and for classical FG beam (l = 0). In each of the figures A-C, plots are presented 
for the first four modes, indicated by (a)-(d) respectively. Each figure in Figs. 4.6-4.9 shows how 
the material gradation index affects the non-dimensional deflection-frequency behaviour by 
varying the material gradation index which are: k=0.0, 0.1, 0.5, 1.0, 2.0, and 5.0. 
 For a particular mode and particular material gradation index (k), natural frequency 
increases as size effect increases and it is maximum for h/l = 1, and deceases as size effect 
decreases and approaches to the natural frequency of the classical beam at h/l=10. We compared 



 

the difference between max and 
defined as the maximum and minimum values of vibration frequencies at 
respectively. This is highest for the
increases,   decreases and vice versa.

H H  > C F  . For any particular mode

Fig. 4.2B: Effect of size on non
k=1: (a) first mode, (b) second mode
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and min , defined as max min     , where 
defined as the maximum and minimum values of vibration frequencies at w

. This is highest for the classical beam and lowest for h/l = 1. A
and vice versa. For any particular mode, it is found that: 

particular mode, it is found that: H H  > C H  > C C 

 
non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

max and min  are 
maxw = 0 and 1.5 

= 1. As the size effect 
For any particular mode, it is found that: C C  > C H  >

C C > C F  . 

 

 
frequency curves for CC beams with 

(d) fourth mode. 



 

Fig. 4.2C: Effect of size on non
k=5: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CC beams with 

(d) fourth mode. 



 

Fig. 4.3A: Effect of size on non
k=0: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 
frequency curves for CH beams with 

(d) fourth mode. 



 

Fig. 4.3B: Effect of size on non
k=1: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CH beams with 

mode. 



 

 

Fig. 4.3C: Effect of size on non
k=5: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 
frequency curves for CH beams with 

(d) fourth mode. 



 

Fig. 4.4A: Effect of size on non
k=0: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for HH beams 

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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for HH beams with 

(d) fourth mode. 



 

 

Fig. 4.4B: Effect of size on non
k=1: (a) first mode, (b) second 
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non-dimensional deflection-frequency curves for HH beams 

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 
for HH beams with 

(d) fourth mode. 



 

Fig. 4.4C: Effect of size on non
k=5: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for HH beams 
(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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for HH beams with 

(d) fourth mode. 



 

 

Fig. 4.5A: Effect of size on non
k=0: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 
frequency curves for CF beams with 

(d) fourth mode. 



 

Fig. 4.5B: Effect of size on non
k=1: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C

mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CF beams with 

(d) fourth mode. 



 

 

Fig. 4.5C: Effect of size on non
k=5: (a) first mode, (b) second mode
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non-dimensional deflection-frequency curves for C
(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 
frequency curves for CF beams with 

(d) fourth mode. 



 

 

Fig. 4.6A: Effect of material gradation on non
beams with h/l=1.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency
(a) first mode, (b) second mode, (c) third mode, (d) fourth 
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frequency curves for CC 

(d) fourth mode. 



 

Fig. 4.6B Effect of material gradation on non
beams with h/l=5.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C
(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 
 
 
 
 
 

 

 
frequency curves for CC 

(d) fourth mode. 



 

Fig. 4.6C: Effect of material gradation on non
beams with l=0 (classical): (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C
(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CC 

(d) fourth mode. 



 

Fig. 4.7A: Effect of material gradation on non
beams with h/l=1.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
 
 
 
 
 
 

 

 

frequency curves for CH 
(d) fourth mode. 



 

Fig. 4.7B Effect of material gradation on non
beams with h/l=5.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CH 
(d) fourth mode. 



 

Fig. 4.7C: Effect of material gradation on non
beams with l=0 (classical): (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
 
 
 

 

 

frequency curves for CH 
(d) fourth mode. 



 

Fig. 4.8A: Effect of material gradation on non
beams with h/l=1.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for 

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for HH 

(d) fourth mode. 



 

Fig. 4.8B Effect of material gradation on non
beams with h/l=5.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for 

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
 
 
 
 
 
 

 

 

frequency curves for HH 
(d) fourth mode. 



 

Fig. 4.8C: Effect of material gradation on non
beams with l=0 (classical): (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for 

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for HH 
(d) fourth mode. 



 

Fig. 4.9A: Effect of material gradation on non
beams with h/l=1.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
 
 
 
 
 
 

 

 
frequency curves for CF 

(d) fourth mode. 



 

Fig. 4.9B Effect of material gradation on non
beams with h/l=5.0: (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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frequency curves for CF 
(d) fourth mode. 



 

Fig. 4.9C: Effect of material gradation on non
beams with l=0 (classical): (a) first mode, (b) second mode
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Effect of material gradation on non-dimensional deflection-frequency curves for C

(a) first mode, (b) second mode, (c) third mode, (d) fourth mode.

 

 

frequency curves for CF 
(d) fourth mode. 



 

The non-dimensional deflection
HH and CF boundary conditions are shown in Figs. 
respectively for k=1. Figures A-C 
such as: h/l=1.0, 5.0, and for classical FG beam (
presented for the first four modes, indicated by (a)
shows how different functionally graded materials
frequency behaviour. 

Fig. 4.10A: Effect of different FGM
curves for CC beams with h/l=1: 

89 

deflection-frequency curves for the first four modes of
boundary conditions are shown in Figs. 4.10A-C, 4.11A-C, 4.12A–

C correspond to different values of size-dependent thickness (
classical FG beam (l = 0). In each of the figures A

presented for the first four modes, indicated by (a)-(d) respectively. Each figure in Fig
different functionally graded materials affect the non-dimensional deflection

Effect of different FGM compositions on non-dimensional deflection
=1: (a) first mode, (b) second mode, (c) third mode

mode. 
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the first four modes of the CC, CH, 
–C and 4.13A–C 

dependent thickness (h/l) 
In each of the figures A-C, plots are 

Each figure in Figs. 4.6-4.9 
dimensional deflection-

 

 
dimensional deflection-frequency 

(c) third mode, (d) fourth 



 

Fig. 4.10B: Effect of different FGM
curves for CC beams with h/l=5: 

90 

 
 

 

 
Effect of different FGM compositions on non-dimensional deflection

=5: (a) first mode, (b) second mode, (c) third mode
mode. 

 
 
 
 

 

 

dimensional deflection-frequency 
(c) third mode, (d) fourth 



 

Fig. 4.10C: Effect of different FGM
curves for CC beams with l=0 
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Effect of different FGM compositions on non-dimensional deflection

 (classical): (a) first mode, (b) second mode, (c) third mode
fourth mode. 
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dimensional deflection-frequency 
(c) third mode, (d) 



 

Fig. 4.11A: Effect of different FGM
curves for CH beams with h/l=1: 
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Effect of different FGM compositions on non-dimensional deflection

=1: (a) first mode, (b) second mode, (c) third mode
mode. 

 
 
 
 

 

 

dimensional deflection-frequency 
(c) third mode, (d) fourth 



 

Fig. 4.11B: Effect of different FGM
curves for CH beams with h/l=5: 
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Effect of different FGM compositions on non-dimensional deflection

=5: (a) first mode, (b) second mode, (c) third mode
mode. 
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dimensional deflection-frequency 
(c) third mode, (d) fourth 



 

Fig. 4.11C: Effect of different FGM
curves for CH beams with l=0 

94 

 
 

 

 
Effect of different FGM compositions on non-dimensional deflection

 (classical): (a) first mode, (b) second mode, (c) third mode
fourth mode. 

 
 
 

 

 

dimensional deflection-frequency 
(c) third mode, (d) 



 

Fig. 4.12A: Effect of different FGM compositions on non
curves for HH beams with h/l=1: 
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Effect of different FGM compositions on non-dimensional deflection

l=1: (a) first mode, (b) second mode, (c) third mode, (d) fourth 
mode. 
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dimensional deflection-frequency 
(a) first mode, (b) second mode, (c) third mode, (d) fourth 



 

Fig. 4.12B: Effect of different FGM
curves for HH beams with h/l=5: 
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Effect of different FGM compositions on non-dimensional deflection

l=5: (a) first mode, (b) second mode, (c) third mode
mode. 

 
 
 
 
 
 

 

 
dimensional deflection-frequency 

(c) third mode, (d) fourth 



 

Fig. 4.12C: Effect of different FGM
curves for HH beams with l=0 
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Effect of different FGM compositions on non-dimensional deflection

 (classical): (a) first mode, (b) second mode, (c) third mode
fourth mode. 
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dimensional deflection-frequency 

(c) third mode, (d) 



 

Fig. 4.13A: Effect of different FGM
curves for CF beams with h/l=1: 
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Effect of different FGM compositions on non-dimensional deflection

=1: (a) first mode, (b) second mode, (c) third mode
mode. 

 
 
 
 

 

 
dimensional deflection-frequency 

(c) third mode, (d) fourth 



 

Fig. 4.13B: Effect of different FGM
curves for CF beams with h/l=5: 
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Effect of different FGM compositions on non-dimensional deflection

=5: (a) first mode, (b) second mode, (c) third mode
mode. 
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dimensional deflection-frequency 

(c) third mode, (d) fourth 



 

Fig. 4.13C: Effect of different FGM
curves for CF beams with l=0 (classical): 
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Effect of different FGM compositions on non-dimensional deflection

(classical): (a) first mode, (b) second mode, (c) third mode
fourth mode.  

 

 

dimensional deflection-frequency 
(c) third mode, (d) 
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4.4 Chapter Summary 
 In this chapter we discussed the free vibration of Timoshenko microbeams made of 
functionally graded materials (FGMs). It presents a theoretical investigation using the von 
Kármán non-linear strain-displacement relationship and the Hamilton’s principle to derive the 
governing equation for vibration. The study evaluates four different FGMs under various 
boundary conditions. The results are presented in normalized deflection-frequency plane for 
incorporating the size effect on natural frequency. Validation of the model is conducted against 
previous studies, demonstrating excellent agreement, and thereby validating the present model. 
The results are presented graphically as well as in tabulated form. The findings suggest that for 
any particular mode and h/l value, as material gradation index increases, the non-dimensional 
natural frequency deceases, and for any particular mode and particular material gradation index 
(k), natural frequency increases as size effect increases. The study provides valuable insights into 
the free vibration behaviour of FGM micro beams, elucidating the influence of material 
gradation, size-dependent thickness, and boundary conditions on the non-dimensional deflection-
frequency behaviour. 
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  Chapter 5 
 

CONCLUSIONS 
 
 
5.1 Conclusions 

Micro-beams, essential for high-precision measurements in technologies like atomic 
force microscopy (AFM) and various sensors, exhibit size-dependent behaviors that traditional 
continuum theories fail to capture. Non-classical continuum theories, such as modified couple 
stress theory (MCST) and nonlocal strain gradient theory, address these limitations. For micro- 
and nano-scale applications, functionally graded materials (FGMs) offer increased design 
flexibility, making them suitable for MEMS, micro-sensors, and micro-actuators. 

Therefore, analyzing the static and dynamic behavior of functionally graded (FG) micro-
beams is crucial for modeling and effectively using them in various microsystems. In this work, 
we have studied the nonlinear static deflection and free vibration behaviour of a Timoshenko FG 
micro-beam which is subjected to uniformly distributed load. In this analysis, we assumed that 
the beam follows the Timoshenko beam model and incorporated size effects using MCST. The 
governing equations for static behaviour are derived using the principle of minimum potential 
energy, while the governing equations for free vibration are derived using Hamilton’s principle. 
These equations are nonlinear due to the incorporation of von Kármán-type nonlinearity in the 
classical strain expression. The solutions to the governing equations are obtained by 
approximating the displacement fields using the Ritz method. We have taken four different 
boundary conditions and four different FGMs into our consideration. 
 From our analysis, we have found that: 
 For any given material gradation index (k) value, the micro-beam becomes more stiff with 

increasing size-effect, and that it is found to be maximum at h/l=1, but at h/l=10, the micro-
effect almost disappears. 
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 When the material gradation index increases for a given value of the h/l, the stiffness of the 
beam decreases. This is because an increase in k results in a higher metal volume fraction 
within the beam. Since the metal component has a lower elastic modulus compared to the 
ceramic component, the beam becomes more elastically flexible. 

 For a particular mode and particular material gradation index, natural frequency increases as 
size effect increases and it is maximum for h/l = 1, and deceases as the size effect decreases 
and approaches to the natural frequency of the classical beam at h/l=10. 

 For a particular mode and given h/l, as the material gradation index increases, the non-
dimensional natural frequency decreases. This decrease in natural frequency is due to the 
reduction in the beam's stiffness, which occurs because the material gradation leads to a 
higher proportion of the metal within the beam. 

 As the material gradation index increases, the stiffness of the micro-beam decreases for most 
FGMs considered, except for FGM 3, where stiffness increases with the material gradation 
index. 

 
5.2 Future Scope of Work 
 This study has shown that preloading the beam causes a hardening effect that raises the 
beam's natural frequency. The effects of temperature variations on the static and dynamic 
behaviour of micro-beams should be explored in future studies. To be more precise, examining 
the effects of temperature variations above and below room temperature on the mechanical 
characteristics and functionality of functionally graded micro-beams would offer a thorough 
grasp of how they behave in various thermal environments. This could entail examining the joint 
effects of preloading and thermal stresses on the natural frequency and stiffness, as well as 
investigating the possibility of thermally adjusting the properties of micro-beams in real-world 
applications. Furthermore, the study can be extended to include nonlocal theory of elasticity and 
strain gradient theory to address the size-effect. 
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