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ANALYSIS OF MULTI-PHASE 

INCOMPRESSIBLE FLUID FLOW IN A 

RECTANGULAR GEOMETRY USING LEVEL 

SET METHOD WITH AND WITHOUT SURFACE 

TENSION. 

By 

HARADHAN SANTRA 

 

ABSTRACT: 

Multi-phase fluid flows can be observed almost everywhere in nature and have a 

wide of range applications in engineering and natural processes such as 

atomization of jets and sprays, breaking waves, emulsions, boiling phenomenon, 

ship hydrodynamics, waterfalls and bubbly motion in cooling towers of nuclear 

power plants etc. In this paper, a physically possible mass conservative level set 

method of COMSOL multi-physics software has been illustrated to numerically 

investigate multi-phase fluid flow problem with and without considering surface 

tension concentrated on the interface. Here, the interface is represented by 0.5 

iso-contour of the level set function 𝜙 where the value of  𝜙 is zero for the fluid 

inside the interface and 1 for the fluid outside the interface. In order to preserve 

the mass of the individual fluid phase present in actual physical problem, re-

initialization procedure is made integral to the level set advection equation which 

is also known as governing equation of the dynamically evolving moving 

interface to keep the thickness (i.e. 𝜖) of the interface constant across which the 

level set function 𝜙 varies smoothly from 0 to 1.The re-initialization process 

which is also called intermediate step consists of an artificial compressive flux 

try to compress the interface when its width is enhanced by the diffusion term, 

thus they are acting in opposite sense. When these two terms are in equilibrium 

then only finite thickness of the moving interface (i.e. 𝜖)  will be obtained. 

“P1+P1” discretization scheme is employed to discretize the incompressible 

Navier stokes equation whereas “linear” discretization technique is implemented 

to discretize the governing equation for the dynamically evolving interface. 

Single bubble rising problem in a matrix involving large density ratio (i.e. 1000) 

with and without considering surface tension have been numerically investigated 
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using the proposed physically possible mass conservative level set method. 

However, transient evolution of a single bubble in a horizontal developing flow 

field without considering surface tension has also been numerically simulated to 

illustrate the robustness of this proposed numerical method. In all these case 

studies excellent mass conservation of the secondary fluid i.e. the bubble has been 

reported by using the proposed mass conservative level set method. Few 

benchmark incompressible two-phase flow problems in a rectangular geometry 

which includes merging of two-bubble having same density in a matrix with and 

without considering surface tension and rising of a single bubble involving 

different density ratios, viscosity ratios and also different magnitude of surface 

tension have been numerically computed for the purpose of proposed model 

validation. 

 

 

 

INTRODUCTION: 

Multi-phase fluid flows can be observed almost everywhere in nature and have a 

wide of range applications in engineering and natural processes such as 

atomization of jets and sprays, breaking waves, emulsions, boiling phenomenon, 

ship hydrodynamics, waterfalls and bubbly motion in cooling towers of nuclear 

power plants etc. These flows not only involve fluids with distinct physical 

properties but also complex interfacial motion between them with sharp changes 

in properties across the interface. Experimental investigation of this type of 

problems is difficult as well as expensive and that’s why numerical methods are 

open used by researcher to analyse aforementioned problems. Discontinuities at 

the interface and the inherent multiscale nature of two-phase fluid flow problems 

throw numerous challenges to computational scientists and researchers across the 

globe. Recently, effect of large density ratio and high Reynolds number on multi-

phase flow problem [37] has been numerically computed. In literature, two types 

of approaches have been found to handle the two-phase flow problems, namely 

the Front capturing method (Eulerian framework) [1] and the Front tracking 

method (Lagrangian framework) [2]. The front-tracking Method works well for 

multi-phase flow problems without any complex topological changes. In contrast, 

the front-capturing Method works well for multi-phase flow with complex 

topological changes. Front capturing methods are broadly classified into different 
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categories such as a Volume of fluid (VOF) method, a Level Set Method (LS), a 

Phase Field Method (FP), and Hybrid Methods Such as a Coupled Level Set and 

Volume of Fluid method (CLSVOF) and a Coupled Volume of Fluid and Level 

Set Method (VOFSET), where the two methods are combined to have the 

advantages of both methods. Level Set method (LS) and Volume of Fluid 

(VOF)method are the two most widely used methods to handle interfacial flow 

problems among all front capturing methods. 

In the Volume of Fluid Method, the complex interfacial motion of multi-phase 

flow problems is addressed by using the volume fraction function of one fluid in 

each computational cell which is later defined as the colour function. This method 

was first introduced by Hirt and Nichols [3] and they emphasized the need for 

numerical stability for accurate calculations and accordingly the choice of mesh 

increment, time increment, and upstream differencing parameters to prevent 

numerical instabilities were also included there. Although the VOF method is 

globally mass conserving and preserving the volume fraction of each phase near 

the interface, however, it suffers a lot when it comes to estimating surface tension 

and curvature/ normal to the interface. The interface reconstruction problem of 

the Volume of fluid method is overcome by introducing different variants of the 

VOF method [18], where the comparison of all variants is done in the CLSVOF 

(coupled level set and Volume of Fluid) Framework. Deviating from the above, 

Xiaosong et.al [21] introduced a new numerical method based on VOF and 

immersed boundary method to solve the two-phase flow problems involving 

complex geometries. Recently Faroog et.al [29] has introduced an improved 

version of the Volume of Fluid method for numerical modelling of multi-phase 

flows and transport problems where the pressure-velocity coupling is handled 

using a new algorithm called PISOR (Revised version of the PISO algorithm). 

 The Level Set Method was first introduced in 1987 by Osher and Sethian [2] for 

numerical modelling of dynamically evolving interfaces, which is based on the 

Eulerian framework of fluid dynamics, where the interface is defined as the zero-

contour of the level set function. Level Set function is nothing but a scalar 

function and it is defined as the signed normal distance function from the 

pertinent location of the interface. One of the major reasons for using the Level 

Set method is that it can accurately calculate interface curvature and 

automatically deal with problems involving topology changes such as merging or 

breaking of bubbles. Despite this great advantage, the main problem of the level 

Set method is that it is not conservative. In the case of incompressible immiscible 
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two-phase flow, the volume of the individual phase is constant but there is loss 

or gain of mass of the individual phase during numerical simulation using the 

level set method, which is physically unrealistic. Several suggestions haven been 

proposed by the researchers to address the above problem. The first attempt to 

mitigate the mass conservation problem of the level set method was executed by 

Sussman,1994, [4] using the iterative Re-initialization procedure of the level set 

equation which governs the motion of the dynamic interface. Although this 

approach was capable of reducing the mass loss or gain problem to a great extent 

still some significant amount of error was there in their solution. Later Chang et. 

al,1995, [5] introduced a new approach consisting of a new re-initialization 

equation for mass conservation which resembles the perturbed Hamilton-Jacobi 

equation in addition to the re-initialization of the level set function. This method 

involves complex mathematical calculations and is also difficult to understand 

physically. However, in [6], [26], [31] the main focus was placed on the Level 

Set Re-distancing Method to get accurate mass conservation during numerical 

simulation of incompressible two-phase flow problems. In the Level set Re-

distancing Method, the re-initialization procedure of the level set function was 

modified by imposing a new constraint as a corrective measure of the mass loss 

problem. Yap et.al in the year 2007, [16] introduced a Finite volume-based Global 

mass conservation scheme to overcome the mass loss problem of the level-set 

method where CLAM schemes were used to model the convection of the level-

set equations. 

Apart from the approaches as mentioned above, few conservative approaches are 

there in literature to ensure mass conservation of the level set method.  In [14] 

Olsson modified the standard level set method by introducing a new conservative 

scheme to discretize the level set advection equation and used an intermediate 

step to keep the shape and thickness of interface constant which results in good 

conservation of area (volume in case 3D) occupied by the interface. Despite good 

mass conservation, the above method suffers from a slow convergence rate 

problem. In [15] corrective measures for the above problem were taken by 

considering diffusion only normal to the interface and also adaptive mesh control 

technique was included to find accurate information near the interface using grid 

refinement. The conservative methods proposed by Olsson et.al [14,15] was not 

based on any physical basis, so exact mass conservativeness may not be possible 

always from the above methods. This problem was resolved by Majumder and 

Chakraborty in 2005 [13] by introducing a physically based mass conservative 

Level set method for incompressible two-phase flows where the Heaviside 
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function was replaced by volume-fraction based function to ensure the accurate 

mass conservation of individual phase present in the actual physical problem. 

Although the above method provides a good understanding of numerical 

simulation because of its simplicity but it suffers from local mass conservation 

problems and most importantly this method was not tested to handle three-

dimensional multi-phase problem. However, in 2016, Mahmoudi et.al., [23] 

developed a novel conservative level set method to overcome the problem 

regarding mass conservation of the standard level set method, where the 

hyperbolic tangent function is used as a level set function, High order compact 

(HOC) difference scheme is used to transport the level set function and combined 

conservative difference scheme (CCD) is used to re-initialize the level set 

function. 

Mass conservation in the standard level set method can also be achieved using 

the combined level set and volume of fluid method (CLSVOF) or the Combined 

Volume of Fluid and Level set method (VOFSET). Bourlioux [5] was the first 

one to introduce the coupled Level Set (LS) and Volume of fluid (VOF) known 

as the CLSVOF method where they developed the combination of these two 

superior methods to overcome the problem associated with mass conservation in 

the numerical simulation of incompressible two-phase flow. This Combined 

method utilized the advantages of both methods. In subsequent times, Sussman 

and Puckett [8] established a Coupled Level Set and Volume of Fluid (CLSVOF) 

for numerical simulation of 3D axisymmetric incompressible two-phase flows 

involving a large density ratio (1000:1). By seeing the great advantages of the 

CLSVOF method, Son and Hur [11] also initiated a new CLSVOF method for 

numerical simulation of buoyancy-driven flow. It is very important to note that 

all of the above-coupled methods proposed by eminent researchers are limited to 

first-order accuracy. The problem related to the accuracy of the aforementioned 

CLSVOF methods was mitigated by the development of a Second-order accurate 

Coupled Level set and Volume of Fluid (CLSVOF) method [12]. In recent times, 

dam-break flow-induced wave problems have been numerically investigated by 

Y.L.Li et al [29], using an improved version of the CLSVOF method where the 

Tangent of Hyperbola for Interface capturing/Weighted Line Interface 

Calculation (THINC/WLIC) Scheme is taken for accurate interface 

representation and ensuring excellent mass conservation. Apart from the 

CLSVOF method, the Coupled Volume of Fluid and Level Set (VOFSET) 

method proposed by Sun and Tao in 2010 [18] has drawn a lot of attention from 

computational scientists because of its simplicity and is numerically inexpensive. 
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In the VOFSET Method, the interface is advected by the Volume of fluid (VOF) 

method, and the level set (LS) function near the interface is calculated from an 

iterative geometric approach which is utilized to calculate the accurate interface 

curvature and smoothens the discontinuous physical properties across the 

interface. Recently Cao et al [27] have introduced an improved version of the 

VOFSET method for the numerical simulation of incompressible two-phase flow 

using unstructured quadrilateral grids in irregular domains. The analytic piece-

wise linear interface calculation (PLIC) method is included here to enhance the 

speed of numerical computation. 

In contrast to the above level set methods, Enright et al in 2002 [10] first 

developed a hybrid particle level set (PLS) method, where Lagrangian markers 

were used to correct the front location predicted by the Eulerian approach for 

ensuring accurate mass conservation in the standard level set formulation of 

incompressible two-phase flow problems. Based on this PLS method a wide 

range of practical problems, including rotation of Zalesak’s disk, deformation of 

circular bubbles, and deformation of rotation field involving a moving interface 

were numerically simulated. The major drawback of the PLS method proposed 

by Enright is the misplacement of newly seeded particles in the opposite signed 

domain which as a result degrades the performance of the corresponding method. 

This problem was overcome by Archer and Bai in 2015 [20] by using a non-

overlapping concept, which judges the suitability of potential new particles based 

on the information contained within the particle representation of the interface. 

Liang et al,2015, [21] got some satisfactory results from the numerical simulation 

of multi-phase flow problems using an optimized particle level set method. For 

optimization of the computational efficiency of the original PLS method 

introduced by Enright [10], Lanhao et.al in 2018 [28] had developed a new 

method known as One Layer Particle Level Set method (OPLS) where 

Lagrangian particle-based correction procedure is performed after the Level Set 

advection and re-distancing steps. 

Now in this paper, Single bubble rising problem in a matrix involving large 

density ratio (i.e. 1000) with and without considering surface have been 

numerically investigated using the physically possible mass conservative level 

set method of COMSOL multi-physics software version 6.2. However, transient 

evolution of a single bubble in a horizontal developing flow field has also been 

taken to illustrate the robustness of this proposed numerical method. In these all 

case studies excellent mass conservation of individual fluid phase has been 
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reported by using the proposed mass conservative level set method. Few 

benchmark incompressible two-phase flow problems in a rectangular geometry 

which includes merging of two-bubble having same density in a matrix with and 

without considering surface tension and rising of a single bubble involving 

different density ratio, viscosity ratio and also different magnitude of surface 

tension have been numerically solved for the purpose of proposed model 

validation. 

 

MATHEMATICAL MODELLING: 

For mathematical modelling of multi-phase flow problems, the individual fluid 

phase is assumed to be incompressible, viscous, and immiscible, and the flow is 

considered to be laminar. However, it is also important to note that here the 

numerical simulation has been executed in two-dimensional geometry. 

Governing Equations: 

The governing equations for unsteady multiphase flow problems are the 

continuity and the incompressible Navier-stokes equation. Now the governing 

equations for individual fluid phases are given below; 

For fluid-1; 

Continuity equation; 

As the individual fluid phase is assumed as incompressible so the velocity field 

is divergence free and the continuity equation becomes as follows. 

∇. 𝒖𝟏=0            (1) 

Where 𝒖𝟏 is the velocity field of the fluid-1 region. 

Momentum equation; 

𝜌1
𝐷𝒖1

𝐷𝑡
= −∇𝑃1 + 2𝜇1∇𝒟 + 𝜌1𝑔 , 𝒙 ∈  𝑓𝑙𝑢𝑖𝑑 1     (2) 

For fluid-2; 

Continuity equation; 

∇. 𝐮𝟐=0           (3) 

Momentum equation; 
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𝜌2
𝐷𝒖𝟐

𝐷𝑡
= −∇𝑃2 + 2𝜇2∇𝒟 + 𝜌2𝑔 , 𝒙 ∈  𝑓𝑙𝑢𝑖𝑑 2     (4) 

Where 𝒟 is the deformation rate tensor and its components are defined as    𝒟 =
1

2
 [

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
] , g is the acceleration due to gravity,  𝜌 𝑎𝑛𝑑 𝜇  are the density and 

viscosity of the fluids respectively and it is important to note that these density 

and viscosity are different for different fluid phases. 
𝐷

𝐷𝑡
  present in the above 

mathematical equations is known as material derivative and the subscripts 1 and 

2 denote the fluid region 1 and 2 respectively.  

Effect of surface tension present at the interface between two-distinct phases is to 

balance the normal stress across the interface Γ  and creates the interface 

boundary condition. Now, the interface boundary condition [32,33] is given as 

follows; 

2𝑛̂(𝜇1𝒟 − 𝜇2𝒟) = (𝑃1 − 𝑃2 + 𝜎𝜅)𝑛̂        (5) 

And 𝒖𝟏 = 𝒖𝟐 , x ∈  Γ 

Where 𝑛̂ is the outward drawn unit normal vector to the interface which is defined 

by Γ and   𝑃1, 𝑃2 are the pressure at the interface on fluid 1 and fluid2 side 

respectively.  𝜎  is the coefficient of surface tension and 𝜅 is the curvature to the 

interface between two distinct phases. The domain containing two -distinct fluid 

phases is denoted as Ω and its boundary is denoted by 𝜕Ω. Since, there is no 

penetration of fluid flow across the boundaries of the flow domain so we have the 

following boundary condition given below. 

            (6) 

Level Set Formulation; 

The Level set method is a Eulerian computational approach for capturing the 

moving interface, which is a very famous method especially in the field of 

incompressible multi-phase flow problems. There are three functions in this novel 

method; 

• Level set function to represent the interface between two distinct phases. 

• Heaviside function to calculate any physical properties within the flow 

domain. 

• Dirac delta function to model surface tension concentrated on the interface 

as a source term in the momentum equation. 

𝒖. 𝒏̂ = 0 on 𝜕Ω. 
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Level set Function; 

The fundamental concept of interface representation using the level set function 

is based on the concept of implicit surfaces. Level set function is denoted by 𝜙 

and it is defined at every point within the flow domain and have a fixed value at 

the interface. Level set function is the scalar function defined as  

 

 

 

 

 

 

 

signed normal distance function measured from the pertinent location of the 

interface between two distinct phases. The absolute value of the level set 

function, 𝜙  at any point within the flow domain is defined as the normal distance 

of this point from the pertinent location of the interface.  

 It is assumed that if the point is taken inside the interface, 𝜙 is assigned negative 

value whereas it is assigned positive value when the point is lying outside the 

interface and the points lying on the interface having the value of  𝜙 equal to zero. 

Thus, the interface Γ at any instant of time can easily be represented by the zero-

level set of  𝜙 without any disturbance encountered during interface re-

construction. Now the fluid region lies inside the interface is represented as fluid 

region-1 and the fluid lies outside the interface as region-2. The interface between 

two-distinct phases is driven by the existing velocity field u present in the flow 

domain.  

Velocity field for the individual fluid phase is defined based on the sign of 𝜙 as 

shown below; 

                                                  u = 𝒖𝟏 when 𝜙 < 0 

                                                        𝒖𝟐 when  𝜙 >  0 

In order to capture the dynamic evaluation of the moving interface, we have to 

compute the evolution of the points corresponding to 𝜙=0 with respect to time. 

 

𝜙 < 0 

𝜙 > 0 

𝜙 = 0 

Fig-1; Interface representation using level set function 

𝜕𝜙

𝜕𝑡
+ 𝒖.∇𝜙 =0       

(7) 
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Now the governing equation for the dynamic evolution of the moving interface is 

given as follows; 

 

           

The equation (7) moves the interface (i.e. 𝜙 = 0) based on the existing velocity 

field u accurately even in case of merging and breaking of bubbles. However, 

position of the interface at different instant of times can be computed by solving 

the above equation to the corresponding time step. 

Now the outward drawn unit normal vector to the interface 𝑛̂  and local curvature 

of the interface 𝜅(𝜙)  in terms of level set function 𝜙 is defined as follows; 

Outward drawn unit normal vector, 𝑛̂ = 
∇ϕ

|∇𝜙|
 . 

 local curvature of the interface, 𝜅 is given as follows; 

        𝜅(𝜙) =∇. 𝑛̂=∇. (
∇ϕ

|∇𝜙|
). 

     = 
𝜙𝑦

2𝜙𝑥𝑥−2𝜙𝑥𝜙𝑦𝜙𝑥𝑦+𝜙𝑥
2𝜙𝑦𝑦

(𝜙𝑥
2+𝜙𝑦

2)
3
2

 

The governing equation for flow field u along with interface boundary condition 

can be written as a single equation [6] as shown below. 

 𝜌(𝜙)
𝐷𝒖

𝐷𝑡
= −∇𝑝 + ∇. (2𝜇(𝜙)𝒟) − 𝜎𝜅(𝜙)𝛿(𝜙)∇𝜙 + 𝜌(𝜙)𝑔                          (8) 

In the above equation,  𝛿(𝜙) is the Dirac delta function used to incorporate the 

surface tension concentrated at the interface between two-distinct phases into the 

momentum equation as a source term based on continuum surface force (CSF) 

model as described by Brackbill [32]. 𝜌 , 𝜇 are the constant density and viscosity 

of the individual fluid phase and these properties being different for different fluid 

regions exist in the actual physical problem. That’s why calculation of any 

physical properties like density, viscosity etc. at any point within the flow domain 

requires good choice of Heaviside function. The Heaviside function is a unit step 

function and its value depend on the sign of 𝜙 .  

Now the density and viscosity at any point within the flow domain is given as 

follows; 

𝜌(𝜙)=𝜌1 + (𝜌2 − 𝜌1)𝐻(𝜙)                (9a) 
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𝜇(𝜙)=𝜇1 + (𝜇2 − 𝜇1)𝐻(𝜙)               (9b) 

Where H (𝜙) 𝑖𝑠 𝑡ℎ𝑒 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and its value according to the sign of 

the level set function 𝜙 is defined as [4]. 

 H (𝜙)  =  {

0 𝜙 < 0
0.5 𝜙 = 0
1 𝜙 > 0

}                  (10) 

This representation of the Heaviside function is also known as sharp 

representation because it causes sharp change of physical properties across the 

interface which in result creates numerical instabilities during numerical 

simulation of actual physical problem using the level set method [4,6]. Now to 

mitigate the numerical instability induced in the level set method due to the usage 

of the above sharp Heaviside function, a smooth Heaviside function is required 

for continuous variation of any physical properties like density, viscosity etc. 

across the interface. 

The smooth Heaviside function as described in [4,6] is given below; 

𝐻𝜖(𝜙) = {

0 𝑖𝑓 𝜙 < −𝜖

  
𝜙+𝜖

2𝜖
+

1

2𝜋
sin (

𝜋𝜙

𝜖
) 𝑖𝑓 |𝜙| ≤ 𝜖

1 𝑖𝑓 𝜙 > 𝜖

}             (11) 

Now this equation shows that the interface between two-distinct phases is 

diffused and having finite thickness 2𝜖 across which the Heaviside function is 

smoothed and resulting in continuous variation of physical properties of the 

individual fluid phase across the interface, thus avoiding numerical instabilities 

during mathematical modelling of the actual physical problem. However, it is 

important to note that the interface thickness is defined normal to the interface 

(𝜙 = 0) within the region -𝜖 < 𝜙 < 𝜖 where 𝜖 is considered as factor of grid size. 

From the work of Sussman et.al [4] a correlation between finite interface 

thickness and grid size is taken and i.e. 2𝜖 = 3Δ𝑥 where Δ𝑥 is the grid size. From 

this correlation it can be easily concluded that with grid refinement the interface 

thickness will be reduced to a great extent and we can move toward the 

mathematical modelling of sharp interface without any numerical instability. 

Now, it should also be noted that 𝜙 = 0 is the physically relevant interface and 

the value of the level set function (𝜙) within the diffused interface is numerically 

relevant because it is used to smooth the properties across the interface to avoid 

numerical instability. So, the value of the level set function outside the diffused 
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interface have nothing to do in the numerical simulation of multi-phase flow 

problems. 

Fig-2a shows the diffused interface where interface is represented by circular 

shape (𝜙 = 0) and having finite thickness of 0.8 unit. Representation of smooth 

the Heaviside function based on the sign of the level set function is shown below 

in fig-2b. Smooth Heaviside function within the diffused interface has two parts, 

the first part (i.e. linear part) has sudden change in slope at the ends of the 

interface whereas the second part (i.e. the sinusoidal part) varies smoothly. The 

addition of the sinusoidal part with the linear part of the Heaviside function makes 

its smooth variation across the diffused interface as shown in fig-2b. 

Dirac delta function 𝛿(𝜙) in the equation (7) is used to model the surface tension 

concentrated on the interface as a source term into the momentum equation must 

be computed carefully because it is non-zero only on the interface and thus creates 

discontinuity across the interface, resulting numerical instability during 

mathematical modelling of multi-phase flow problems using level set method. As 

described in [34], the Dirac delta function 𝛿(𝜙) can be evaluated from the 

Heaviside function 𝐻(𝜙) during the Level set formulation of multi-phase flow 

problems as; 

                                                                                         (12)

  

Now, in order to avoid the numerical instability due to this sharp Dirac delta 

function as described in the equation (12), smoothing of 𝛿(𝜙) is required similar 

to H(𝜙) as shown in equation (11). From [4] the smooth Dirac delta function can 

be defined as; 

𝛿𝜀(𝜙) = {
1

2𝜖
 +

1

2𝜖
cos (

𝜋𝜙

𝜖
) 𝑖𝑓 |𝜙| < 𝜖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                      (13) 

Fig-2c shows the variation of smooth Dirac delta function across the diffused 

interface of thickness 2𝜖, where the 𝛿𝜀(𝜙) decreases smoothly about 𝜙 = 0 

across the interface. 

 

𝛿(𝜙) ≡
𝑑𝐻(𝜙)

𝑑𝜙
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Re-initialization procedure; 

From the above discussion, it is seen that to overcome numerical instability 

because of sharp changes of physical properties across the interface during 

numerical simulation of multi-phase flow problems using the level set method, 

the Heaviside function and the Dirac delta function must be smoothed over a 

finite thickness of the interface (i.e. 2𝜖). So, the mathematical modelling should 

be implemented in such a way that the required thickness of the interface will be 

independent of time. The thickness of the interface will be independent of time if 

the level set function acts as the signed distance function during the time domain 

of our interest. Although the level set function (𝜙) is initially defined as signed 

normal distance function from the pertinent location of the interface but it will 

not remain so after few iterations because of numerical diffusion. The problem of 

Fig-2; Smoothing in level set method. (a) Representation of diffused interface as a concentric circles (b) 

Representation of smooth Heaviside function (c) representation of smooth dirac delta function. 
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maintaining level set function as signed distance function was first resolved by 

Mark Sussman in1994 [4] by introducing re-initialization procedure. In this re-

initialization procedure [4], an irregular level set function (𝜙) is re-initialized to 

signed normal distance function (𝜓) by solving the following partial differential 

equation (PDE) under steady state condition. 

𝜕𝜓

𝜕𝜏
= 𝑆(𝜙) (1 − |∇𝜓|) 

and  |∇𝜓| = √(
𝜕𝜓

𝜕𝑥
)

2
+ (

𝜕𝜓

𝜕𝑦
)

2
 

Subjected to the following initial condition; 

𝜓(𝒙, 0) = 𝜙(𝒙, 𝑡 + Δ𝑡) 

Where, 𝜏  is the pseudo time and S is the sign function. For the ease of numerical 

simulation, the sign function is smoothed as follows [4]. 

𝑆𝜖 =
𝜙

√𝜙2+𝜖2
  , where, 𝑆𝜖 is the smooth sign function. 

It is essential to note that during the re-initialization procedure, the location of the 

interface obtained after solving the advection equation (7) is not changed. From 

Fig. 3a and Fig. 3b, it has been observed that the location of zero-level set (i.e. 

the interface location) is not changed during re-initialization procedure. From 

equation (14), it is clear that the pseudo steady state solution of the same is the 

required signed distance function as it satisfies the advection equation (7). The 

initial condition of 𝜓 ensures that the interface value of the same is equal to the 

value of 𝜙 at the interface. That’s why the values of 𝜓 obtained from the pseudo-

steady state condition of the equation (14) are the values of the 𝜙 for t+Δ𝑡 time 

step. Thus, by following the above re-initialization procedure, the level set 

function can easily be maintained as a distance function which is essential for 

accurate numerical simulation of multi-phase flow problems using the level set 

method. Now, the following condition is an essential criterion for the level set 

function to be a signed distance function from the interface location. 

|∇𝜙|=1 

 
(15) 

(14) 
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Representation of mathematical model inside COMSOL. 

 In this paper, applications of the mass conservative level set method in 

rectangular geometries are executed using COMSOL multi-physics software 

version 6.2. That’s why, it is important to know the scenario taking place inside 

this CFD software while solving the incompressible two-phase flow problems in 

rectangular geometries using the mass-conservative level set method. In 

COMSOL multi-physics, the interface between two different phases is 

represented by 0.5 level set of 𝜙, where 𝜙 varies smoothly from 0 to 1. For one 

fluid domain it is equal to zero and one for other fluid domain. Now, whatever 

governing equations are described above for general description of the mass 

conservative level set method, the same set of equations are also solved in this 

CFD software but there is a major difference, which lies on description of the 

moving the interface. 

For accurate mathematical modelling of the moving interface without any 

numerical diffusion, the following equation is solved in COMSOL two-phase 

level set module. 

𝜕𝜙

𝜕𝑡
+ 𝒖. ∇𝜙 = 𝛾∇. (𝜖∇𝜙 − 𝜙(1 − 𝜙)

∇𝜙

|∇𝜙|
) 

Fig. 3; Diffused interface (a) after advection (b) after re-initialization 

(16) 
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Where,  𝒖 is the velocity of the existing flow field. Left hand side of the above 

equation gives the accurate motion of the moving interface whereas the right-

hand part provides the numerical stability of the interface. The parameter 

𝜖 represents the thickness of the interface within which the level set function 𝜙 

varies smoothly from 0 to 1. If the value of this parameter is too small or too large 

then numerical simulation will provide inaccurate resuls regarding the interface 

capturing and mass conservation. That’s why optimization of 𝜖  is an essential 

requirement to capture the moving interface accurately. In COMSOL, the 

optimum value 𝜖 is set as half of the maximum element size (ℎ𝑚𝑎𝑥) within the 

flow domain. However, another parameter 𝛾  determines the re-initialization or 

stabilization of the level set function and its value is changing based on the nature 

of the problems. The value of 𝛾 is playing a very critical role during mathematical 

simulation of moving interface, if its value is too small then oscillations in 𝜙 

taking place due to numerical diffusion and as a result the thickness of the 

interface is not maintained as constant whereas if its value is too large then the 

interface moves inaccurately. That’s why optimization of 𝛾 is also an essential 

criterion for capturing the interface accurately during numerical simulation of 

multi-phase flow problems especially while using the COMSOL multi-physics 

software. Therefore, in COMSOL the optimum value of the re-initialization 

parameter (𝛾) is taken as the expected maximum value of the velocity field 

present within the flow domain. 

Representation of geometric properties of the interface like interface normal and 

local curvature of the interface in COMSOL is given as follows; 

Outward drawn unit normal vector to the interface is: 𝑛̂ =
∇𝜙

|∇𝜙|𝜙=0.5
 

Local curvature of the interface is:      𝜅 =  −∇. (
∇𝜙

|∇𝜙|
)

𝜙=0.5
 

                                                                  = −
𝜙𝑦

2 𝜙𝑥𝑥−2𝜙𝑥𝜙𝑦𝜙𝑥𝑦+𝜙𝑥
2𝜙𝑦𝑦

(𝜙𝑥
2+𝜙𝑦

2)
3
2

 

Since, we are dealing with the incompressible multi-phase flow problems, so the 

velocity field is divergence free and it is defined as follows; 

     ∇. 𝒖 = 0. 
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As the velocity field is divergence free, so the equation (16) can be written in the 

following conservative form. 

𝜕𝜙

𝜕𝑡
+ ∇. (𝒖ϕ) = 𝛾∇. (𝜖∇𝜙 − 𝜙(1 − 𝜙)

∇𝜙

|∇𝜙|
) 

This conservative form of the level set advection equation with re-initialization 

is helpful when exact numerical conservation is essential, especially for the exact 

area (or volume in 3D) conservation bounded by the interface when there is no 

inflow or outflow across the interface. By using the equation (17), accurate mass 

conservation of individual fluid phase is achieved during our numerical 

simulation of incompressible immiscible multi-phase flow problems with and 

without surface tension using two-phase level set module of COMSOL multi-

physics software version 6.2, a Finite element method based CFD software. 

During numerical simulation of time dependent multi-phase flow problems using 

mass conservative level set method of COMSOL multi-physics CFD software 

version 6.2, following equations are numerically computed inside this 

commercial CFD software. 

Continuity equation; ∇. 𝒖 =0. 

Momentum equation; 𝜌(𝜙)
𝐷𝒖

𝐷𝑡
= −∇𝑝 + ∇. (2𝜇(𝜙)𝒟) + 𝜎𝜅(𝜙)𝛿(𝜙)∇𝜙 +

𝜌(𝜙)𝑔. 

There is a slight difference between the momentum equation used in COMSOL 

as compared to that of the general description by equation (8). This occurs 

because of the difference in convention used during representation of the local 

curvature of the moving interface. 

Level set advection equation with re-initialization;  
𝜕𝜙

𝜕𝑡
+ ∇. (𝒖ϕ) =

𝛾∇. (𝜖∇𝜙 − 𝜙(1 − 𝜙)
∇𝜙

|∇𝜙|
). 

Representation of level set advection equation which is also known as the 

governing equation for transport of moving interface is also quite different from 

that of the general description defined in the Equation (7). The reason is that in 

COMSOL re-initialization procedure for maintaining constant thickness of the 

moving interface is made integral to the level set advection equation by setting 

artificial time equal to real time whereas there is a separate representation of re-

initialization procedure in general description as represented in equation (14). 

(17) 

 



Page No.29 

 

 

“P1+p1” discretization technique is used to discretize the aforementioned 

continuity and momentum equation, where P1+p1 means both linear elements are 

used to solve the velocity and pressure field involving in the actual physical 

problem. However, “linear” discretization technique is used to discretize the level 

set advection equation with re-initialization while solving the multi-phase flow 

problem using the proposed mass conservative level set method of COMSOL 

Multiphysics version 6.2, a Finite element method (FEM) based CFD software. 

 

Overall solution procedure using COMSOL multi-physics software version 

6.2. 

During numerical simulation of multi-phase flow problems using FEM based 

CFD software COMSOL, we have to follow the simple steps given below 

sequentially. Like any other CFD software, COMSOL has also three stages to 

solve any physical problem numerically and that are given below; 

First; Pre-processing.  

Second; Problem set up and computation. 

Third; Post-processing. 

First, we have to decide nature the problem (i.e. 2D or 3D) then accordingly 

selecting the type of geometry from model wizard section. After doing so we to 

have to add the physics of the problem going to be solved. Generally, based on 

suitable assumptions of the actual physical problem, we add the physics to the 

corresponding geometric model. Since we are dealing two-dimensional transient 

incompressible laminar two-phase flow problem, so we have added this physics 

to our suitable geometric model. 

After completion of physics selection, the next step is the selection of nature of 

study (i.e. Stationary or time-dependent). By looking the actual physical problem, 

this study nature is considered. As mentioned earlier that we are dealing with 

unsteady two-phase flow problem, that’s why we have added “time-dependent 

phase initialization” section in our numerical simulation. 

After completion of the above-mentioned steps, a new window of this software 

will open.  From this window we can setup the desired problem by providing 

valuable inputs like desired material properties, physically relevant boundary 

conditions, initial conditions and get the desired results upon successful 

completion of numerical computation. However, we can figure out valuable 
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insights from these results by proper utilizing the various post-processing tools 

available in this CFD software like other commercial CFD software has. 

 

 

 

RESULTS AND DISCUSSIONS: 

Model validation and Representative case studies; 

The mathematical model used in this report is validated by comparing the results 

of the present method with the numerical results on merging of two bubbles with 

same density with and without consideration of the effect of surface tension by 

Chang et. al [6]. The problem geometry is shown in the fig. 4, where it is seen 

that the given problem is solved in a rectangular domain of non-dimensional size 

1*1, non-dimensional radius of the upper bubble is 0.15 unit and its non-

dimensional position is (0.5,0.65), non-dimensional radius of the lower bubble is 

0.10 unit and its non-dimensional position is (0.5,0.35). Two-bubbles of same 

density are rising under the influence of gravity, the density ratio of the bubble 

and that of the surrounding medium is taken as 1:10. Viscosity of the fluid inside 

the bubble is 0.00025 unit whereas the viscosity of the surrounding medium is 

0.0005 unit. It is important to note that in this problem the effect of surface tension 

is not considered. This problem is solved using free triangular mesh with 

maximum element size of 0.01 in COMSOL at different non-dimensional time 

steps i.e. t =0,0.1,0.2,0.3. As the bubble is lighter in weight than that of the 

surrounding medium, the bubble rises in the upward direction within the flow 

domain and results in different configurations of the moving interface at different 

time instances shown in the given fig. 5. The same problem has been numerically 

executed by Chang.et.al [6] at various time steps and their results are shown in 

fig. 6. Figures 5 and 6 show that the results obtained by the present method match 

excellently well with those obtained by Chang.et.al. [6], which validates the 

numerical method proposed in this report. The same problem has been 

numerically investigated with considering the effect of surface tension using the 

proposed method. In this case, surface tension is taken to be 0.005 and keeping 

all other parameters same. Fig. 7 shows the results of our numerical simulation 

using the proposed mass conservative level set method, whereas Fig. 8 shows the 

results of the same problem obtained by Chang. et.al [6]. Figures 7 and 8 show 

that the results obtained using the proposed numerical method match exactly with 

that of Chang.et.al [6], which also ensures the validity of our presented numerical 

method. 
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t = 0  t = 0.1  t = 0.18  t = 0.25 

s 

Fig. 5; Two bubbles of same density rising up. Density ratio between the bubbles and the 

background is 1:10, viscosity of the bubbles is 0.000 25 units and that of the background is 

0.0005-unit, Surface tension is zero. Free triangular mesh of maximum element size= 0.01 unit 

is used. Solution is obtained using COMSOL, a FEM based CFD software. 

Fig. 4; Geometry of rising of two-bubbles 

problem. 
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Fig. 6; Two bubbles of same density rising up. Density ratio between the bubbles and the 

background is 1:10, viscosity of the bubbles is 0.000 25 unit and that of the background is 

0.0005 unit. This result was obtained by Chang et.al. using 256*256 grid size and there was 

no surface tension. 

t = 0  t = 0.1  t = 0.2  t = 0.3  

t=0 t=0.1 t =0.18 t = 0.25 

Fig. 7; Two bubbles of same density rising up. Density ratio between the bubbles and the 

background is 1:10, viscosity of the bubbles is 0.000 25 unit and that of the background is 

0.0005 unit. Surface tension of 0.005. 



Page No.33 

 

 

 

 

 

 

 

 

 

However, the proposed numerical method has been validated by comparing its 

results with respect to the numerical simulation results of a single bubble rising 

problem in two-dimensional rectangular geometry by Hysing et.al., [36]. Initial 

configuration and boundary conditions of the single bubble rising problem under 

non-dimensional atmosphere are represented in the Fig.9. This problem was 

evaluated numerically under two test categories by Hysing et.al., [36]. The 

parameters defining these two test cases are shown in table-1. Here, we have 

evaluated this problem using same set of problem data as that used by Hysing et. 

al., [36]. The problem has been numerically simulated using unstructured 

quadrilateral mesh of grid size 0.0125 up to time t = 3. Fig.10(a) and Fig.10(b) 

depicts the numerical simulation result of the proposed method and result of 

Hysing et. al., [36] respectively for the first test case at time, t = 3. These two 

figures show that result from the proposed mass conservative level set method 

matches excellently well with those by Hysing et.al., [36].   

t = 0 t = 0.1 t = 0.2 t = 0.3 

Fig. 8; Two bubbles of same density rising up. Density ratio between the bubbles and the 

background is 1:10, viscosity of the bubbles is 0.000 25 unit and that of the background is 

0.0005-unit, Surface tension is 0.005. These results were obtained by chang et.al., 
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Test case 𝜌1 𝜌2 𝜇1 𝜇2 𝜎 g 

1 1000 100 10 1 24.5 0.98 

2 1000 1 10 0.1 1.96 0.98 

 

 

 

Fig. 9; Initial configuration along with boundary 

conditions for two test cases of single bubble rising 

problem. 

Table-1 

Fig 10 (a) Fig 10 (b) Fig. 10; Bubble shape for first test case at t=3. (a)  result of the proposed Numerical 

method. (b) result from the numerical computation by Hysing et. al., 
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In the second test case, bubble rising under large density ratio, viscosity ratio and 

small surface tension is numerically computed using our proposed method. 

Shapes of the bubble at different time instances computed by the proposed 

numerical method are shown in Fig.11. It is found that our results are in good 

agreement with those obtained by Hysing et.al., [36]. The results from the 

numerical computation by Hysing et. al., [36] are shown in the Fig.12. Now, it is 

also clearly visible that the originall circular shape of the bubble is getting 

disturbed and break up takes place due to the smaller value of surface tension 

concentrated on the interface between two-distinct phases.  

In these two test cases, results of our proposed method match excellently well 

with those by Hysing et. al., [36], which validates our proposed mass conservative 

level set to handle single bubble rising problem. 
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Fig. 11; Bubble configuration at different time instances for second test 

case using the proposed numerical method. 



Page No.37 

 

 

 

  

 

Three case studies have been executed to check capability of the proposed mass 

conservative level set method of the COMSOL multi-physics software version 

6.2. The first two case studies consider a single bubble rising problem in a 

vertically placed rectangular geometry. In the first case, the problem is 

numerically solved without considering the effect of surface tension whereas in 

the next case study, the effect of surface tension force concentrated on the 

interface between two different phases is considered. However, in the third case 

study, the transient evolution of a circular (spherical in the case of 3D) bubble in 

Fig. 12; Bubble shapes at different time instances for second case study by 

Hysing et. al., 
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a developing flow field subjected to inlet shear flow is investigated numerically 

without considering the effect of surface tension. The influence of surface tension 

on mean rising velocity of air bubble, volume fraction of air bubble and vorticity 

magnitude of the entire flow domain is revealed in the second case study. Now, 

it is important to note that the all case studies here have been numerically 

computed up to 0.2 sec with time interval of 0.001sec. 

Case study-1; 

 In the first case study, we have computed single air bubble rising problem in a 

vertically placed rectangular geometry with water as surrounding medium under 

the influence of gravity without considering the effect of surface tension. Initially 

both the fluids are at rest. The dimension of the rectangular geometry used in this 

case is of width =8 cm and height =20cm. The radius of air bubble is of 1cm and 

its centre located at (4cm,4cm). Density of the air bubble is taken as 1.225 kg/m3 

whereas the density of the surrounding water medium is 1000 kg/m3. Now the 

viscosity of the fluid inside the bubble (air) and the viscosity of the surrounding 

medium (water) are 1e-5 pa-s and 0.001 pa-s respectively. In order to solve this 

problem, the entire flow domain is discretized into number of small elements 

using “free triangular” mesh technique i.e. unstructured triangular mesh where 

maximum element size is denoted by “hmax”.  In order to get grid independent 

result, the numerical computation is executed by using three different values of 

hmax i.e. hmax = 0.15cm,0.12cm,0.10cm. The results obtained by using these 

three different values of hmax (maximum element size) are shown in the fig. 13, 

where it is seen that the results obtained using hmax=0.12cm and 0.10cm are 

indistinguishable, which ensures that the solution is independent of grid points 

present within the entire geometry. That’s why instead of using very fine mesh, 

relatively coarse mesh of maximum element size =0.12cm has been used to solve 

the given problem because of its numerical inexpensiveness and gives faster 

results as compared to that of hmax = 0.10 cm. 
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 Geometrical description of the aforementioned problem along with discretization 

using unstructured triangular mesh without mesh refinement is shown in the 

figures given below. Fig. 14 shows the rectangular geometry, where the 

dimension is measured in centimetre, discretization of the problem geometry 

using unstructured triangular mesh having maximum element size of 0.12cm, 

without mesh refinement is shown in the Fig. 15. Now it is important to note that 

mesh refinement is essential to obtain accurate details of interface movement and 

local curvature of the interface, that’s why the simple discretization of the 

rectangular geometry is refined using mesh refinement technique of the 

COMSOL software and the entire geometry is refined. After mesh refinement, 

we have seen that the number of elements through which the rectangular 

geometry is discretised is increased to 117024 from 29586. All three case studies 

as mentioned earlier have been executed using 117024 elements. However, it is 

also important to note that we have taken wetted wall boundary conditions on left 

and right wall of the rectangular geometry as shown in Fig. 14 and no slip 

boundary condition on the top and bottom walls. 

 

Fig. 13; Grid independence study for single air bubble rising problem without 

considering Surface tension. 
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Fig-14; Geometrical description of the problem taken as first case study. 
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In this problem as the air is lighter in weight as compared to that of the 

surrounding water medium, so the air bubble rises continuously with respect to 

time and its configuration at different instant of times are captured using the 

present numerical method, these different configurations are nothing but the 

variation of volume fraction of air bubble with respect to time. However, it is also 

important to note that in this specific problem, there is no mass interaction across 

the moving interface because the fluid phases present in this case are immiscible 

in nature. That’s why the mass of the individual phase must be preserved after 

completion of numerical simulation. Mass of air bubble per unit volume has been 

Fig-15; Discretization of the above geometry using Free-triangular mesh without 

mesh refinement. 
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evaluated by using the proposed numerical method to ensure its mass 

conservativeness characteristics. Fig. 16 illustrates the variation of the mass of air 

bubble per unit volume as a function of time, from this representation it can be 

easily ensured that the proposed numerical method for handling multi-phase flow 

problem is a mass conservative one. 

 

 

 

In Fig. 17 (a) the bubble is rising and the theoretical analysis has been done 

without considering the effect of surface tension. It has been found that the nearly 

20% rise of the bubble there is a symmetric deformation of the bubble from the 

lower side and this is clear with much more elbow formation as seen in Fig. 17(c). 

In the Fig. 17 (d) the fragmentation of the bubble into two parts starts which 

completes with the separation in the axial top most position from the upper side. 

In Fig. 17 (g) we can see that it is almost separated. But two-portions have two 

masses in a curve contour with lower contour containing more mass than the 

upper one. It is the initiation of the fragmentation of the bubble with axisymmetric 

orientation. Fig. 17 (h) and Fig. (i) clearly show that due to the deformation of 

the shearing forces (with axisymmetric activities of the shear forces) there are 

almost two bubbles in the lower portion and two cusp contour or concave shape 

to the lower direction two smaller fragmentation of the bubble exist. However, 

their deformation as well as movement occur with unison. The lower two bubbles 

Fig-16; Mass of the bubble per unit volume as function of time. 
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orient themselves with the upward direction at a cox angle of 30° - 35°. Usually 

this cox angle becomes 45° at any deforming motion of a bubble in a matrix. 

The same thing can be explained from the velocity vectors. The velocity vector 

shows there are two vortices generated by the velocity field which are acting in 

opposite sense. This means if one vortex is clockwise than other is in anti-

clockwise direction. However, along the centreline the velocity gradient is 

additive in nature. So, the shear stress is maximum along the axial direction. 

Eventually the deformation forces maximum along the axial direction to upward. 

This can be clearly understood from the figures 18 (a) – 18 (j). 

In the streamline the same physical phenomenon clearly observed with certainty 

from the figures 19 (a) – 19 (k). 

The pressure field 20 (a) – 20 (i) are also corroborating this physical phenomenon 

absolutely. 
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Volume fraction of air bubble; 

 

 

 

 

 

 

 

Fig-17 (a) Fig-17 (b) 

 

Fig-17 (c) 

 

Fig-17 (d) 
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Fig-17 (e) 

 

Fig-17 (f) 

 

Fig-17 (g) 

 

Fig-17 (h) 
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Velocity field; 

 

 

Fig-17 (a-i); Transient evolution of the air bubble using 

volume fraction of fluid inside the bubble(air). 

Fig-18 (a) Fig-18 (b) 

 

Fig-17 (i) 
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 Fig-18 (e) 

 

Fig-18 (f) 

 

Fig-18 (c) 

 

Fig-18 (d) 
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Fig-18 (g) 

 

Fig-18 (h) 

 

Fig-18 (i) 

 

Fig-18 (j) 

 
Fig-18 (a-j); Representation of velocity field during evolution of air bubble. 



Page No.49 

 

 

Streamline;  

 

 

 

 

Fig-19 (a) Fig-19 (b) 

 

Fig-19 (c) 

 

Fig-19 (d) 
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Fig-19 (e) 

 

Fig-19 (f) 

 

Fig-19 (g) 

 

Fig-19 (h) 
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Pressure field; 

Fig-19 (i) 

 

Fig-19 (j) 

 

Fig-19 (k) 

 

Fig-19 (a-k); Representation of Streamline at different time instances. 
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Fig-20 (a) Fig-20 (b) 

 

Fig-20 (c) 

 

Fig-20 (d) 
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Fig-20 (e) 

 

Fig-20 (f) 

 

Fig-20 (g) 

 

Fig-20 (h) 
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Case study-2; 

In order to check the capability of our mass conservative level set method to 

understand the effect of surface tension on multi-phase flow problem, the bubble 

rising problem as mentioned in earlier case study has been numerically 

investigated here by considering the effect of surface tension present on the 

interface between two different phases and keeping all other parameters 

unchanged. Surface tension of 0.07 N/m is considered during numerical 

simulation. Here also we see that the deformation starts but at a little bit higher 

position than the earlier case of zero surface tension. Also, the cusping 

phenomenon happens in a different mode. Since surface tension is active here so 

in the sharp edge of the top position, surface tension activity is much more 

dominant than the lower line of the cusp. That’s why in this case the upper portion 

is not easily fragmented although the lower portion is fragmented easily into two 

parts. The upper portion takes a configuration of a partial moon but it is not 

Fig-20 (a-i); Representation of pressure field of 

case study-1. 

Fig-20 (i) 
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bifurcated. It can be observed that it takes a shape of an umbrella which is 

symmetric much healthier than the other two fragmented portions. The velocity 

field though seem identical magnitude wise they are re-adjustment such that the 

velocity gradient is very very dominant in the lower portion rather than in the 

upper portion so there is a fragmentation of the second fluid i.e. The bubble from 

the lower side. 

The streamline and pressure variation completely corroborate this physical 

finding which can be understood right from the figures 23 (a) – 23 (k). Fig. 27 

depicts the effect of surface tension on the vorticity magnitude of the fluid inside 

the bubble. It has been found that the vorticity of the bubble is almost 10% more 

with surface tension in the journey of the bubble almost 30-40% of the time. 

There is a band of time may be around 10% around which this difference in 

vorticity occur. In nutshell, we can say that the vorticity magnitude is more with 

surface tension for 10% of the total time duration which causes the difference in 

the bubble deformation considering with and without surface tension. 

 

Volume fraction of air bubble; 

 

 

 
Fig-21 (a) Fig-21 (b) 
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Fig-21 (c) Fig-21 (d) 

 

Fig-21 (e)  Fig-21 (f) 
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 Fig-21(a-i); Representation of interface evolution under the 

influence of Surface tension of 0.07 N/m. 

Fig-21 (g) 

 

Fig-21 (h) 

 

Fig-21 (i) 
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Effect of surface tension on volume fraction of air bubble; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-22 (a); Shape of the bubble at time t 

= 0.1 sec with Surface tension = 0.07N/m 

Fig- 22(b); Shape of the bubble at time, t 

= 0.1 sec without any surface tension. 

Fig. 22; Shape of the bubble at time, t = 3 with and without 

considering surface tension. 
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Velocity field;  

 

 

 

 

 

 

Fig-23 (a) Fig-23 (b) 

 

Fig-23 (c) 

 

Fig-23 (d) 
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Fig-23 (e) 

 

Fig-23 (f) 

 

Fig-23 (g) 

 

Fig-23 (h) 
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Fig-23 (i) 

 

Fig-23 (j) 

 

Fig-23 (k) 

 

Fig-23 (a-k); Representation of Velocity field at different time instances 

of bubble rising problem, considering surface tension of 0.07 N/m. 
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Effect of surface tension on Mean rising velocity of air bubble; 

 

 

 

Streamline; 

 

 

 

Fig-25 (a) Fig-25 (b) 

 

Fig-24; Effect of surface tension on centre line velocity of air bubble. 
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Fig-25(c) 

 

Fig-25(d) 

 

Fig-25(e) 

 

Fig-25(f) 
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Pressure field; 

Fig-25 (g) 

 

Fig-25 (h) 

 

Fig-25 (i) 

 

Fig-25 (j) 

 

Fig-25 (a-j); Representation of flow pattern using streamline during rising of air 

bubble with consideration of surface tension of 0.07 N/m. 



Page No.65 

 

 

 

 

 

 

 

 

Fig-26 (a) Fig-26 (b) 

 

Fig-26 (c) 

 

Fig-26 (d) 
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Fig-26 (e) 

 

Fig-26 (f) 

 

Fig-26 (g) 

 

Fig-26 (h) 
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Effect of surface tension on vorticity field. 

 

Fig-26 (a-i); Representation of Pressure contour at different time instances within the flow 

domain, considering the surface tension of 0.07 N/m. 

Fig-27; Effect of surface tension on vorticity magnitude of air bubble. 

Fig-26 (i) 
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Case study-3; 

Apart from the above two-case studies, a new case study has been executed to 

test the robustness of the present mass conservative numerical method. In this 

new study, movement of a circular bubble (spherical in 3D) in a developing bulk 

flow field is numerically investigated by using the proposed mass conservative 

level set method. Density of the fluid inside the bubble and outside the bubble is 

taken as same i.e. 1kg/m^3, whereas their viscosities are considered to be 

different 0.1 kg/m-s for the bulk fluid and 0.001 kg/m-s for the bubble. The flow 

domain is assumed to be rectangular in nature, where length=2.5 m, width=1m. 

Left hand side of the geometry is the inlet section and the right-hand side is the 

outlet section. Velocity at the inlet section is varying linearly from zero to one as 

one moves from bottom to the top of the flow domain. Top and bottom portion of 

the flow domain are the rigid walls subjected to no-slip boundary condition and 

the outlet is subjected to normal atmospheric pressure. 

The initial circular shape of the bubble is deformed and is displaced with the 

movement of the developing flow. Transient evolution of the circular bubble in 

the existing developing flow field are expressed by representing the volume 

fraction of the fluid inside the bubble as shown in the Fig. 28. Flow pattern at 

different time instances during evolution of the bubble are expressed with help of 

velocity vector and streamline as shown in the figures 29 and 30 respectively. 

Similarly, pressure field are also expressed at different time instances using 

pressure contours as shown in the Fig. 31. It is important to note that the 

deformation of the bubble, as applicable in such a situation, can be explained with 

the formation of Cox angle [35] which can be properly captured by the present 

method. A cox angle is the indicator of the shearing force and deformation of the 

bubble. It can be clearly observed that after some time the secondary bubble due 

to the action of the shear force becomes elliptic with its major axis orienting with 

the direction of flow at an angle of 45°. This means the shear force which is 

usually maximum at 45° is acting on the bubble with the same physical logic in 

a similar fashion. Hence this is a major booster for the research work that finally 

the cox angle is also estimated with maximum accuracy. All this physical 

phenomenon can be clearly observed from the Fig. 28(a)- 28(k) and Fig. 29 (a)- 

29(k) with the corroboration of the streamline represented by the Fig. 30(a)- 30(i) 

and pressure variation or pressure contours by the Fig. 31(a)-31(k). To test the 

robustness of mass conservation approach used in the proposed numerical 

method, mass of the bubble per unit volume is evaluated as a function of time as 
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shown in the fig-32. In this figure the mass variation of the bubble is in 

rectangular hyperbola fashion but the percentage of mass loss of the bubble is 

very small i.e. 0.01% which is negligible for practical purposes. 

 

Volume fraction of air bubble; 

 

 

 

 

 

 

 

 

Fig-28(a) Fig-28(b) 

 

Fig-28 (c) 

 

Fig-28 (d) 
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Fig-28 (e) 

 

Fig-28 (f) 

 

Fig-28 (g) 

 

Fig-28 (h) 

 

Fig-28 (i) 

 

Fig-28 (j) 
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Velocity field; 

 

 

 

 

Fig-29 (a) Fig-29 (b) 

 

Fig-28 (k) 

 
Fig-24(a-k); Transient evolution of a circular bubble using the volume fraction 

of fluid inside the bubble in a developing flow field subjected to inlet shear flow. 
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Fig-29 (c) 

 

Fig-29 (d) 

 

Fig-29 (e) 

 

Fig-29 (f) 
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Fig-29 (g) 

 

Fig-29 (h) 

 

Fig-29 (i) 

 

Fig-29 (j) 
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Streamline; 

 

 

 

Fig-29 (k) 

 
Fig-29 (a-k); Velocity field during transient evolution of a circular bubble 

in a developing flow field subjected to inlet shear flow. 

Fig-30 (a) Fig-30 (b) 
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Fig-30 (c) 

 

Fig-30 (d) 

 

Fig-30 (e) 

 

Fig-30 (f) 

 

Fig-30 (g) 

 

Fig-30 (h) 

 



Page No.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-30 (i) 

 

Fig-30 (j) 

 

Fig-30 (k) 

 

Fig-30 (l) 

 

Fig-30 (a-l); Representation of flow pattern at different time instances during transient 

evolution of a circular bubble in a developing flow field subjected inlet shear flow. 



Page No.77 

 

 

Pressure contour; 

 

 

 

 

 

 

 

 

Fig-31 (a) Fig-31 (b) 

 

Fig-31 (c) 

 

Fig-31 (d) 
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Fig-31 (e) 

 

Fig-31 (f) 

 

Fig-31 (g) 

 

Fig-31 (h) 

 

Fig-31 (i) 

 

Fig-31 (j) 
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Fig-31 (k) 

 

Fig-31 (a-k); Pressure contours at different time instances during evolution of a circular 

bubble in a developing flow field subjected to inlet shear flow. 

Fig-32; Representation of total mass of the bubble per unit volume as a function of 

time. Total mass loss of the bubble during the simulation is very small i.e. 0.01%. 
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CONCLUSION: 

A numerical study has been completed for the analysis of the two-phase flow 

using the level set method with physical possible conservation of mass. The 

present results have been validated using some benchmark problems considering 

grid independence study. A few case studies have numerically experimented 

considering with and without surface tension. It has been found that the rising 

bubble has been fragmented. The rising bubble fragmentation with no surface 

tension is dramatically different from with surface tension. With surface tension 

the bubble is more sturdy with respect to without surface tension. This means 

surface tension resists the fragmentation of the bubble which we have clearly 

shown in this analysis. Also, the popular notion that the shear force acts at angle 

of 45 and the cox angle is clearly observed in this analysis. 

The work is considered to be 2D for the purpose of the present requirement with 

restriction of time and CPU available. In future the authors have a plan to study 

this two-phase complicated flow considering 3D. Also, a laminar flow condition 

has been considered for simplicity but in future turbulent flow should be 

incorporated for analysing the real-life flow. 
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