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Abstract  

 

This thesis presents a comprehensive heat transfer analysis of a porous fin 

containing nanofluid flow within its pores. The study considers a time-

dependent, periodically varying base temperature at the fin. A numerical 

model has been developed using the finite difference method, employing 

the explicit Forward Time Central Space (FTCS) scheme to solve the 

governing equations. To validate the numerical model under time-

dependent boundary conditions, an analytical solution using the Laplace 

transformation method was derived, which neglects nonlinear terms. 

Further validation for the nonlinear terms was achieved using the Adomian 

Decomposition Method (ADM) under the assumption of steady-state 

conditions with a constant base temperature. The combined analytical 

approaches provide a robust validation framework for the complex heat 

transfer mechanisms within the porous fin system, contributing valuable 

insights into the thermal performance of nanofluid-impregnated porous 

structures. Additionally, a numerical analysis was performed to determine 

the fin's heat transfer rate and efficiency under time-dependent boundary 

conditions, and we also analyzed the impact of nanofluid on the heat 

transfer and efficiency of the fin. 
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Chapter-1 

 

1. INTRODUCTION 

 

Efficient heat transfer is the most crucial thing in thermal engineering 

applications. In industrial applications, we must remove a large amount of 

heat from the system to avoid any thermal damage due to the development 

of excessive temperature or thermal stress and ensure the proper and 

seamless functioning of those costly gadgets. In mechanical devices that 

operate on cycles, such as engines and power plants, it is necessary to 

remove heat from the high-temperature fluid to complete the cycle. On the 

other hand, high-end electronic gadgets require rapid cooling technology in 

a compact format to accommodate the space limitation of those devices. 

Heat transfer augmentation has always been an essential concern for 

thermal engineers in real-life scenarios. For this reason, the history of heat 

transfer augmentation is full of scientific research proposals and 

engineering innovations. 

Sir Isaac Newton proposed the formulation of Newton’s Law of cooling in 

which he described the rate at which an object gets cooled or heated through 

heat transfer with its surroundings. The formula is given by 

𝑑𝑄

𝑑𝑡
= ℎ𝐴(𝑇 − 𝑇𝑆) 

Where 
𝑑𝑄

𝑑𝑡
 is the rate of heat transfer, h is convective heat transfer 

coefficient, A is surface area of the body, T is temperature of the body and 

𝑇𝑆 is surrounding temperature.  

Joseph Fourier introduced the mathematical formulation for heat 

conduction through a solid known as Fourier’s Law of Conduction. The 

law states that heat transfer rate per unit area or heat flux through a solid 

body is directly proportional to the negative temperature gradient in the 

direction of heat flow. Mathematically, it is expressed as: 



3 

 

𝑞 = −𝑘∇𝑇 

Where q is heat flux, k is thermal conductivity of the material and ∇𝑇 is 

temperature gradient. These two laws are the most fundamental laws of heat 

transfer which have provided the groundwork for subsequent developments 

in the field of thermal design.  

1.1 Problem description 

Fast cooling is required in many real-world situations to enhance device 

efficiency and protect against thermal damage. Fins are commonly utilized 

to improve heat transfer effectiveness in such systems. In many practical 

scenarios, fins are subjected to varying base temperatures, such as car 

engines, electronic gadgets, power plant components, HVAC systems, and 

aerospace mechanisms. 

Car engines: Effective cooling in automobile engines is crucial for 

preserving efficiency and avoiding overheating. In automobile engines, fins 

are utilized for cooling. The engine operates on a continuous 4-stroke cycle 

of suction, compression, power, and exhaust strokes. During each phase, 

the temperature of the engine walls fluctuates. Fins attached to the engine 

blocks are thus subjected to these varying base temperatures. 

Electronic Devices: Current electronic components like CPUs and GPUs 

produce significant amounts of heat while in use. Effective cooling 

strategies are needed to prevent hardware damage. Varying computational 

loads cause rapid changes in the base temperature of cooling fins in those 

devices. 

Components of power plants: Power plant components such as turbines 

and heat exchangers undergo fluctuating thermal loads while operating. 

Effective heat transfer is essential to preserve peak performance and avoid 

material deterioration caused by elevated temperatures. 

Much research on fins assumes a constant base temperature due to the 

difficulty of solving PDEs with time-dependent boundary conditions 

despite the practical need for such analysis. Yet, tackling boundary 

conditions that vary with time can be very beneficial, leading to a more 
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thorough examination that encompasses the fixed base temperature as a 

specific instance of the broader solution. 

Using porous fins and nanofluid flow offers an excellent solution to 

enhance heat transfer in these critical applications. These advanced 

methods can significantly improve cooling efficiency and overall 

performance, making them highly valuable in scenarios where fast and 

effective heat dissipation is crucial. 

Mathematical Background: 

French mathematician Pierre-Simon Laplace introduced a mathematical 

technique known as the Laplace Transformation Method to solve partial 

differential equations by transforming the time domain into the frequency 

domain, which converts the partial differential equation into a simple 

ordinary differential equation and then solves that ordinary differential 

equation and finally transforms back into the time domain by performing 

inverse Laplace operation. This technique is one of the most powerful tools 

in mathematics for dealing with complex mathematical models. However, 

the method used in this technique was the inverse Laplace operation. 

Augustin-Louis Cauchy did some significant research in the field of 

complex mathematics, and he proposed Cauchy's Integral Theorem, 

Cauchy's Integral Formula, and Cauchy's Residue Theorem to deal with 

complex integrations, which became helpful tools for Laplace inversion 

operation. George Adomian developed a formula to deal with nonlinear 

differential equations by decomposing the nonlinear term into a polynomial 

known as the Adomian Decomposition Method. This method can only 

provide a rapidly converged solution by considering a few terms in the 

polynomial series. In the latter part of the 20th century, computer 

technology improvements transformed how complex heat transfer 

problems were tackled. The development of numerical methods, including 

the finite difference method, finite volume method, and finite element 

method, played a crucial role. With the advent of high-performance 

computers, the precision of numerical solutions increased while 

computation times decreased, making it possible to effectively address a 

wide range of intricate and practical heat transfer issues. These 

mathematical developments significantly enhanced the accuracy of heat 
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transfer and fins' performance analysis, making fins suitable for complex 

modern applications.  

 

1.2 Literature Review 

1.2.1 Some early works 

Early research on fins was predominantly focused on material and 

geometrical modifications to enhance the performance of fins. Harper and 

Brown [1] proposed an analytical solution for a 2-dimensional heat transfer 

model for rectangular fin, waged fin, and annular fin of constant thickness. 

The solution gave an expression to determine the fin efficiency. Gardner [2] 

derived a general expression of temperature for a fin whose thickness varies 

with some power of length. Horatio Scott Carslaw and John Conrad Jaeger 

described the theoretical aspects of heat transfer in their book Conduction 

of Heat in Solid [3]. This book is one of the fundamental books on heat 

transfer. Cobble did the first analysis of fin heat transfer by considering the 

combined effect of convection and radiation  [4]. He analytically solved the 

nonlinear differential equation through a numerical approximation of the 

nonlinear term. His work closely matched with experimental data. 

Cobble [5] tried to find the best geometry through his research. He 

developed a steady-state nonlinear differential equation for temperature 

distribution and then divided the expression with half-fin length and total 

fin volume. The optimization process minimizes fin volume by adjusting 

temperature distribution parameters, yielding minimum volume designs. 

Ozisik [6] described various techniques to solve differential equations, such 

as separation of variables, Laplace transformation, etc., for various 

boundary conditions in his book. He solved a wide range of practical 

examples in his book. This book serves as a foundational framework for 

advancing studies in heat conduction. Minkler and Rouleau [7] analyzed a 

rectangular fin by considering volumetric heat generation inside the fin. 

Chen and Fluker [8] performed an analysis of a composite fin. They took a 

radial fin of two materials and solved the governing differential equation 

using the Laplace transformation method. They also compared the results 

with the fins made of a single material and found that composite fins can 

enhance heat transfer. Heaslet and Lomax [9] observed that thermal 
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conductivity varies as temperature changes, so they took thermal 

conductivity as a function of temperature and performed the analysis for the 

extended surface. They solved the nonlinear governing equation using a 

numerical technique. 

1.2.2 Numerical Works  

Cumo, Lopez, and Pinchera [10] performed the first numerical solution of 

an extended surface. They calculated a fin's heat transfer rate and efficiency 

by numerical technique. Hung and Appl [11] numerically solved the 

governing equation of fin by considering variable thermal conductivity, 

heat transfer coefficient, and thermal emissivity. Their work addressed one 

of the most general cases of fin heat transfer. Sane and Sukhatme [12] 

numerically analyzed short fins under natural convection heat transfer. 

They calculated the natural convective heat transfer for a horizontal fin 

array. They also determined the effect of various parameters in fin heat 

transfer. Their result closely aligned with the experimental data. 

Campo [13] solved the fin heat transfer equation for both steady and 

transient cases by considering convection and radiation. He solved the 

partial differential equation by the finite difference method. This was one 

of the earliest works on the finite difference method applied to fins. This 

work introduced a new approach to solving the fin heat transfer equation. 

Sparrow and Hsu [14] determined the convective heat transfer coefficient 

at the fin tip by considering the entire fin is exposed to adiabatic 

surroundings. They used the finite difference method to solve the governing 

equation. Char and Chen [15] applied the finite difference method to solve 

the governing equation of a two-dimensional trapezoidal fin. They 

performed transient analysis and determined the heat transfer through the 

fin surface. 

1.2.3 Studies on Periodic Base Temperature  

Researchers observe that in many practical case scenarios, like in 

automobile engines, the base temperature of a fin also varies with time. For 

this type of case, an unsteady state analysis was required. Chapman [16] 

performed a transient analysis for a radial fin subjected to a sudden stepped 

increase in base temperature. He solved three types of Bessel functions 

using the graphical method. Donaldson and Shouman [17] performed a 

transient analysis of a rectangular fin exposed to the environment under 
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starting conditions. Bertz [18] obtained a solution for radial fins of varying 

thickness exposed to periodic base temperature. He performed analytical 

solutions by Fourier transformation. After one year, Newhouse [19] also 

performed a similar kind of analysis but with a constant thickness radial fin 

exposed to periodic base temperature. Malikov [20] analyzed a two-

dimensional circular fin subjected to temperature variation in radial and 

circumferential direction. He also considered periodic base temperature in 

his analysis. Sparrow and Hennecke [21] studied the temperature profile of 

a rectangular fin subjected to decreasing base temperature. They thought of 

the constant thermal conductivity of the material in their study. Yang [22] 

analyzed rectangular fins subjected to periodic boundary conditions. He 

solved the steady part and oscillating part individually and then obtained 

the complete solution of the governing equation analytically by 

superimposition. He also calculated time-averaged efficiency for a 

rectangular fin exposed to periodic boundary conditions. He also studied 

the effect of various parameters on heat transfer in his analysis. Aziz [23] 

performed a similar analysis for radial fin. Sparrow and Lee [24] 

analytically solved the heat equation for periodic base temperature by 

separating variables for a finned tube wall. Aziz and Na [25] solved the heat 

equation for periodic base temperature by a perturbation method. They also 

considered the effect of radiation heat transfer in their analysis. Al 

Mujahid [26] solved the heat equation for periodic base temperature in a 

triangular fin by numerical techniques. 

1.2.4 Recent Advancements and Background of Porous Fin and 

Nanofluids 

In the quest to enhance heat transfer from fins, researchers experimented 

with various innovative approaches. They observed that a fin's heat transfer 

rate directly depends on its surface area. Therefore, increasing the surface 

area could enhance the heat transfer rate. As a result, they developed fins 

made of porous materials. Darcy conducted numerous experiments on 

water flow through sand and documented the behavior of fluid flow and 

heat transfer characteristics through porous media in his book [27] Les 

fontaines publiques de la ville de Dijon, which became a foundational text 

for understanding heat transfer through porous materials. Donald A. Nield 

and Adrian Bejan described the principles and applications of convection 
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in porous materials in their book [28] "Convection in Porous Media." It 

covered fundamental concepts like Darcy's law, heat, mass transfer, and 

different types of convection. The book included mathematical models and 

experimental methods, making it essential for researchers and engineers. 

M. Kaviany described various numerical methods for solving single-phase 

and multiphase flow through a porous medium in his book [29] "Principles 

of Heat Transfer in Porous Media." S. Y. Kim and Assoc. Mem [30] 

performed an experimental study that explored the influence of porous fins 

on pressure drop and heat transfer in plate-fin heat exchangers. They 

performed the experiment with 6101 aluminium-alloy foam fins of varying 

permeabilities and porosities, revealing similar thermal performance to 

conventional fins but with slightly higher pressure drops. They observed 

the designs with high pore density and low porosity are the most effective. 

In 2011, Blaram Kundu and Dipankar Bhanja [31] performed a steady-state 

analytical solution of porous fin heat transfer. They used the domain 

decomposition method to deal with the non-linearity of the governing 

equation. Using differential transformation and finite difference methods, 

Sobamowo et al. [32] examined heat transfer in a moving rectangular 

porous fin with temperature-dependent thermal conductivity and internal 

heat generation. Their studies indicated increased porosity and convection 

enhanced heat transfer and efficiency, whereas higher thermal conductivity 

and internal heat generation decreased heat transfer. Recent advancements 

in nanofluid research have revealed promising possibilities for enhancing 

heat transfer in porous fins. Researchers have noted significant 

improvements in heat transfer when nanofluids flow through the pores of 

the fins. Mohammad Ghazvini and Hossein Shokouhmand [33]analyzed 

CuO-water nanofluids in microchannel heat sinks using analytical and 

numerical methods, comparing the Fin model and porous media approach. 

They investigated the impact of particle volume fraction, Brownian motion, 

channel aspect ratios, and porosities on temperature distribution, heat 

transfer, and friction factor and identified an optimal aspect ratio. Sowmya, 

Gireesha, and Prasannakumara [34] investigated the thermal behavior of 

radial porous fins wetted with nanofluids containing molybdenum disulfide 

nanoparticles in water. They explored non-spherical nanoparticle shapes 

such as platelets, cylinders, bricks, and blades. They solved the governing 

equation numerically using the Runge Kutta Fehlberg method and found 

that brick-shaped nanoparticles are the most effective among those 
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examined. Manohar et al. [35] described that semi-spherical fins have been 

widely valued for their efficient thermal exchange properties, commonly 

applied in aerospace, chemical processing, and electronics. They studied 

the performance of hybrid nanofluids over these fins using Darcy's model. 

It examined internal heat generation, natural convection, and radiation 

effects, analyzing their specific influences on fin surface temperatures 

through numerical methods. Baslem et al. [36] analyzed heat transfer 

through a fully wetted longitudinal permeable fin using nano liquids 

containing titanium dioxide, aluminum oxide, and copper nanoparticles in 

water under natural convection and radiation. The energy equation was 

numerically solved using the Runge-Kutta-Fehlberg method. Their 

graphical analysis detailed the effects of geometric and flow parameters on 

fin temperature distribution, emphasizing the enhanced heat transport 

capabilities of Cu-water nano liquid. Using ternary hybrid nanofluids, 

Suresh et al. [37] investigated thermal behavior in a dovetail fin under fully 

wet conditions. They considered temperature and humidity ratio differences 

as drivers for heat and mass transfer while analyzing surface convection, 

radiation, and internal heat generation effects. They solved the governing 

equation using the differential transformation method and the fourth-fifth 

order, the Runge-Kutta-Fehlberg (RKF) method. Their study emphasized 

ternary hybrid nanofluids' superior thermal response and dispersion 

characteristics. In conclusion, these advancements in fin technology enable 

the effective management of complex practical scenarios requiring rapid 

and substantial heat transfer. These innovations enhance thermal 

performance, allowing for swift and efficient handling of high heat loads. 

Such progress is crucial for applications needing quick heat dissipation to 

maintain optimal operational conditions, demonstrating notable 

achievements in this field. 

 Sowmya et al. [38] performed a transient analysis of porous fins 

using the finite difference method. They numerically determined the net 

heat transfer from the porous fin under transient conditions. Kheirandish et 

al. [39] analyzed solid fins with periodic base temperatures. They 

considered the non-Fourier heat conduction model and used the Spectral-

Finite volume approach to perform the analysis. Yildirim et al. [40] 

determined thermal stresses in an annular fin with a time-dependent base 

temperature. They solved the governing equation using the Laplace 
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transformation method.Sahu and Bhowmick [41] numerically solved the 

composite fin with time-dependent boundary conditions using the lattice 

Boltzmann method and determined the temperature profile for various time-

dependent boundary conditions. Ma et al. [42] performed a non-Fourier 

heat conduction analysis of a solid fin subjected to periodic base 

temperature. They used the element differential method to analyze and 

determine temperature distribution. 
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1.3 Aim of the Thesis 

This thesis aims to study heat transfer properties for porous fins, especially 

in situations where the fin's base temperature changes over time, like in 

electronic devices and car engine blocks. For these applications to function 

optimally and prolong the life of the systems, effective and quick heat 

dissipation is necessary. For example, the heat produced in car engines must 

be quickly removed to avoid overheating and preserve engine efficiency. 

Similarly, reliable operation and prevention of thermal damage in electronic 

equipment depend on efficient heat management. Porous fins are 

advantageous in these situations because of their larger surface area, which 

improves heat transfer. Moreover, heat transmission can be greatly 

enhanced by adding nanofluid flow through porous fins. Furthermore, 

nanofluids have higher thermal conductivity than ordinary fluids, so heat 

transfer can be greatly enhanced by adding nanofluid flow through porous 

fins. However, there are several difficulties in researching heat transfer in 

porous fins with nanofluid flow due to the complexity of the governing 

equations, which include nonlinear terms. To complicate matters, the 

boundary conditions might also be periodic and frequently dependent on 

time. To properly represent the time-dependent aspect of the process, 

transient analysis is required, which means we have to solve a partial 

differential equation. Despite these obstacles, this thesis aims to close the 

current research gaps by creating and resolving the nonlinear partial 

differential equations with periodic boundary conditions representing the 

practical system and thoroughly examining the associated heat transfer 

mechanisms. 

 

 

  



12 

 

Chapter-2 

 

2. PROBLEM FORMULATION AND SOLUTION 

 

2.1 Problem Formulation 

 

 

Fig.2.1 A schematic diagram of a longitudinal porous fin with a control 

volume for the energy balance. 

 

Applying energy balance equation for a samall element length of dx we 

get 
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 (𝑞𝑥 −  𝑞𝑥+𝑑𝑥) + 𝑞𝑔𝑒𝑛𝑤𝑡𝑏𝑑𝑥 − 𝑚𝑐𝑝𝑓(𝑇 − 𝑇𝑎) −

2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 − 𝑇𝑎) = [𝜌𝑐]𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
𝑤𝑡𝑏𝑑𝑥  

 

(2.1) 

 

Applying Taylor’s series expansion for the term 𝑞𝑥+𝑑𝑥 we get 

 𝑞𝑥+𝑑𝑥 = 𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥  (2.2) 

Replacing 𝑞𝑥+𝑑𝑥 term in governing equation  

 −
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 + 𝑞𝑔𝑒𝑛𝑤𝑡𝑏𝑑𝑥 − 𝑚𝑐𝑝𝑓(𝑇 − 𝑇𝑎) −

2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 − 𝑇𝑎) = [𝜌𝑐]𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
𝑤𝑡𝑏𝑑𝑥  

 

(2.3) 

 

From Fourier’s law of conduction 

 𝑞𝑥 = −𝑘𝑒𝑓𝑓𝑤𝑡𝑏
𝜕𝑇

𝜕𝑥
  (2.3) 

 

Here effective thermal conductivity of the material is considered to 

account for the effects of porosity. 

We are assuming effective thermal conductivity is independent of 

temperature 

So, −
𝜕

𝜕𝑥
(−𝑘𝑒𝑓𝑓𝑤𝑡𝑏

𝜕𝑇

𝜕𝑥
)𝑑𝑥 + 𝑞𝑔𝑒𝑛𝑤𝑡𝑏𝑑𝑥 − 𝑚𝑐𝑝𝑓(𝑇 −

𝑇𝑎) − 2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 − 𝑇𝑎) = [𝜌𝑐]𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
𝑤𝑡𝑏𝑑𝑥  

 

(2.4) 

Or, (𝑘𝑒𝑓𝑓𝑤𝑡𝑏
𝜕2𝑇

𝜕𝑥2)𝑑𝑥 + 𝑞𝑔𝑒𝑛𝑤𝑡𝑏𝑑𝑥 − 𝑚𝑐𝑝𝑓(𝑇 − 𝑇𝑎) −

2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 − 𝑇𝑎) = [𝜌𝑐]𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
𝑤𝑡𝑏𝑑𝑥  

 

(2.5) 

The expression for mass flow rate is given by 
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 𝑚 = 𝜌𝑓𝑣(𝑥)𝑤𝑑𝑥  

 

(2.6) 

Where expression for 𝑣(𝑥) is 

 𝑣(𝑥) =
𝑔𝐾𝛽𝑓 sin(𝛾)

𝑣𝑓
(𝑇 − 𝑇𝑎) [28] 

 

(2.7) 

So, 𝑚 =
𝑔𝜌𝑓𝑘𝑓𝛽𝑓 sin(𝛾)

𝑣𝑓
(𝑇 − 𝑇𝑎)𝑤𝑑𝑥  

 

(2.8) 

Replacing the expression for m in the governing equation we get 

 (𝑘𝑒𝑓𝑓𝑤𝑡𝑏
𝜕2𝑇

𝜕𝑥2)𝑑𝑥 + 𝑞𝑔𝑒𝑛𝑤𝑡𝑏𝑑𝑥 −
𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)

𝑣𝑓
(𝑇 − 𝑇𝑎)2𝑤𝑑𝑥 − 2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 −

𝑇𝑎) = [𝜌𝑐]𝑒𝑓𝑓
𝜕𝑇

𝜕𝑡
𝑤𝑡𝑏𝑑𝑥  

 

(2.9) 

By simplification we get 

 𝜕2𝑇

𝜕𝑥2 +
𝑞𝑔𝑒𝑛

𝑘𝑒𝑓𝑓
−

𝑔𝜌𝑓𝐾 𝑐𝑝𝑓sin(𝛾)

𝑣𝑓𝑡𝑏𝑘𝑒𝑓𝑓
(𝑇 − 𝑇𝑎)2 −

2ℎ(1−𝜑)

𝑡𝑏𝑘𝑒𝑓𝑓
(𝑇 −

𝑇𝑎) =
[𝜌𝑐]𝑒𝑓𝑓

𝑘𝑒𝑓𝑓

𝜕𝑇

𝜕𝑡
  

 

(2.10) 

Now nondimensionalizing the governing equation by putting  

𝑋 =
𝑥

𝐿
 ;  𝜃 =

𝑇−𝑇𝑎

𝑇𝑏𝑚−𝑇𝑎
 and 𝜏 =

𝑡
[𝜌𝑐]𝑒𝑓𝑓

𝑘𝑒𝑓𝑓
𝐿2

 

By substituting these our governing equation converted into 

 (𝑇𝑏𝑚−𝑇𝑎)

𝐿2

𝜕2𝜃

𝜕𝑋2 +
𝑞𝑔𝑒𝑛

𝑘𝑒𝑓𝑓
−

𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)(𝑇𝑏𝑚−𝑇𝑎)2

𝑣𝑓𝑡𝑏𝑘𝑒𝑓𝑓
𝜃2 −

2ℎ(1−𝜑)(𝑇𝑏𝑚−𝑇𝑎)

𝑡𝑏𝑘𝑒𝑓𝑓
𝜃 =

(𝑇𝑏𝑚−𝑇𝑎)

𝐿2

𝜕𝜃

𝜕𝜏
  

 

(2.11) 

Or, 𝜕2𝜃

𝜕𝑋2 +
𝑞𝑔𝑒𝑛𝐿2

𝑘𝑒𝑓𝑓(𝑇𝑏𝑚−𝑇𝑎)
−

𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)(𝑇𝑏𝑚−𝑇𝑎)𝐿2

𝑣𝑓𝑡𝑏𝑘𝑒𝑓𝑓
𝜃2 −

2ℎ(1−𝜑)𝐿2

𝑡𝑏𝑘𝑒𝑓𝑓
𝜃 =

𝜕𝜃

𝜕𝜏
  

 

(2.12) 
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Let us assume that 

 𝐴 =
𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)(𝑇𝑏𝑚−𝑇𝑎)𝐿2

𝑣𝑓𝑡𝑏𝑘𝑒𝑓𝑓
 ; 𝐵 =

2ℎ(1−𝜑)𝐿2

𝑡𝑏𝑘𝑒𝑓𝑓
 and  𝐶 =

𝑞𝑔𝑒𝑛𝐿2

𝑘𝑒𝑓𝑓(𝑇𝑏𝑚−𝑇𝑎)
 

 

So, our governing equation converted into  

 𝜕2𝜃

𝜕𝑋2 − 𝐴𝜃2 − 𝐵𝜃 + 𝐶 =
𝜕𝜃

𝜕𝜏
  

 

(2.13) 

Equation (2.13) is a non-linear partial differential equation which is 

subjected to Periodic boundary condition at 𝑋 = 0 

 𝜃 = 1 + 𝛼 cos(𝜔𝜏)  (2.14) 

Insulated tip boundary condition at 𝑋 = 1 

 𝜕𝜃

𝜕𝑥
= 0  

 

(2.15) 

Initially the entire fin is at atmospheric temperature 

 𝜃 =
𝑇𝑎−𝑇𝑎

𝑇𝑏𝑚−𝑇𝑎
= 0  

 

(2.16) 

Therefore, at  𝜏 = 0 

 𝜃 = 0  (2.17) 
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2.2 Solution by Finite Difference Method 

The governing equation we're dealing with is a nonlinear partial differential 

equation (PDE) characterized by its dependence on spatial and temporal 

variables. Additionally, the boundary conditions change over time, adding 

another layer of complexity. Nonlinear PDEs are inherently difficult to 

solve analytically because their solutions usually follow more complex 

methods. In our case, incorporating the effects of porosity into the equation 

introduces the nonlinear terms. This term complicates the behavior of the 

solution, making it hard to predict and manage through analytical 

techniques. 

The analytical solution of our governing equation typically relies on 

simplifying assumptions or special techniques that only capture part of the 

problem's complexity, especially when dealing with nonlinearity and time 

dependency. Therefore, analytical solutions are limited to specific cases and 

may only be generalizable to some situations. 

Given these challenges, a numerical solution becomes a more practical and 

effective approach. By applying finite difference method, we have 

successfully discretized the governing equation and boundary conditions 

into a form that can be handled computationally. This method can also 

accommodate the nonlinear nature of the PDE and the time-dependent 

boundary conditions more flexibly. 

With this approach, we can simulate the system's behavior under various 

conditions and obtain approximate solutions that are sufficiently accurate 

for practical purposes. This approach enables us to handle the complexities 

and intricacies of the governing equation and its boundary conditions, 

providing valuable insights and results that would be difficult to achieve 

analytically. 

To solve the governing equation numerically we have used finite difference 

method. As this method can efficiently handle the complexities of the 

governing equation and boundary conditions. Therefore, the governing 

equation of our problem without any undesired assumption is given by 

equation (2.13). 
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 We have discretized all the terms and converted them into a set of algebraic 

equations to solve this nonlinear partial differential equation using the finite 

difference method. For discretization, we applied the Forward in Time and 

Central in Space (FTCS) scheme, which is second-order accurate in space 

and first-order accurate in time. Moreover, we have used the explicit 

method for discretizing the governing equation. In the explicit method, we 

use all the terms of the nth time step to calculate the terms in (n+1) th time 

step. 

Discretizing the  
𝜕2𝜃

𝜕𝑋2  term by central difference 

 𝜕2𝜃

𝜕𝑋2 ≈
𝜃𝑗+1

𝑛 −2𝜃𝑗
𝑛+𝜃𝑗−1

𝑛

(∆𝑋)2   

 

(2.18) 

Where, j is spatial point and n is time step 

Discretizing the term 
𝜕𝜃

𝜕𝜏
  by forward difference 

 𝜕𝜃

𝜕𝜏
≈

𝜃𝑗
𝑛+1−𝜃𝑗

𝑛

∆𝜏
  

 

(2.19) 

Substituting equations (2.18) and (2.19) into equation (2.13) we obtain 

 𝜃𝑗+1
𝑛 −2𝜃𝑗

𝑛+𝜃𝑗−1
𝑛

(∆𝑋)2 − 𝐴(𝜃𝑗
𝑛)

2
− 𝐵𝜃𝑗

𝑛 + 𝐶 =
𝜃𝑗

𝑛+1−𝜃𝑗
𝑛

∆𝜏
  

 

(2.20) 

By simplification we obtain 

 
𝜃𝑗

𝑛+1 = 𝜃𝑗
𝑛 + ∆𝜏 [

𝜃𝑗+1
𝑛 −2𝜃𝑗

𝑛+𝜃𝑗−1
𝑛

(∆𝑋)2 − 𝐴(𝜃𝑗
𝑛)

2
− 𝐵𝜃𝑗

𝑛 + 𝐶]  

 

(2.21) 

Now, Discretizing the boundary conditions 

Boundary condition (2.14) converts into 

At j=0,     

 𝜃0
𝑛 = 1 + 𝛼 cos(𝜔𝑛∆𝜏)  (2.22) 
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Boundary condition (2.15) converts into 

At, 𝑗 = 𝑗𝑚𝑎𝑥 ,    

 𝜃𝑗𝑚𝑎𝑥
𝑛 −𝜃𝑗𝑚𝑎𝑥−1

𝑛

∆𝑋
= 0  

(2.23) 

Or, 𝜃𝑗𝑚𝑎𝑥

𝑛 = 𝜃𝑗𝑚𝑎𝑥−1
𝑛   (2.24) 

Initial condition (2.17) converts into 

At 𝑛 = 0 ,  

  𝜃𝑗
0 = 0   (2.25) 

Now we can create a matrix having 𝑗𝑚𝑎𝑥 number of column and 𝑛𝑚𝑎𝑥 

number of row and we can assign the initial condition and boundary 

conditions in that matrix and use Gauss Seidel method to calculate 𝜃 for all 

the value of i and n. 

While selecting the step sizes, we must ensure that the FTCS scheme's 

stability criteria are satisfied and that smaller step sizes can provide accurate 

results. 
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2.3 Determining Heat Transfer Rate Through Fin 
To determine the heat transfer rate through the fin, we have performed a 

control surface analysis. From the finite difference model, we can obtain 

non-dimensional temperature at various locations on the fin. Considering a 

small heat transfer surface around a point, we can easily calculate heat 

transfer from that surface by applying Newton’s law of cooling. Finally, we 

added them to transfer heat from the entire surface. 

 

 

 

 

 

 

 

Fig. 2.2 A lattice point in a fin used in computational purpose.  

 

For a significantly small value of dX, we can assume that the temperature 

remains constant within that small region. 

Therefore, heat transfer rate through the small region is given by 

   𝑑𝑄𝑗 = 𝑑𝑄𝑗
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑑𝑄𝑗

𝑛𝑎𝑛𝑜𝑓𝑙𝑢𝑖𝑑 𝑓𝑙𝑜𝑤
 

 

(2.26) 

Or, 𝑑𝑄𝑗 = 2ℎ𝑤𝑑𝑥(1 − 𝜑)(𝑇 − 𝑇𝑎) +
𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)

𝑣𝑓
(𝑇 − 𝑇𝑎)2𝑤𝑑𝑥  

 

(2.27) 

Again, from nondimensionalization conditions we know that 

𝑋 =
𝑥

𝐿
  and  𝜃 =

𝑇−𝑇𝑎

𝑇𝑏𝑚−𝑇𝑎
 and by further simplification  

Therefore,  𝑑𝑄𝑗 =
𝑡𝑏𝑘𝑒𝑓𝑓(𝑇𝑏𝑚−𝑇𝑎) 𝑤𝑑𝑋

𝐿
[𝐴𝜃𝑗

2 + 𝐵𝜃𝑗] 

 

(2.28) 

Clearly, if we add 𝑑𝑄𝑗 for all values of j then we can get the total heat 

transfer from the fin for a particular time. 

dx 

𝑗𝑡ℎ𝑛𝑜𝑑𝑒 
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2.4 Case Studies 

2.4.1 Steady state solution by Adomian Decomposition method 

If we look at our governing equation (2.13), we can see that it is a partial 

differential equation with a nonlinear term. The Adomian decomposition 

method is a well-established approach for addressing nonlinear terms. This 

method provides fast convergence only by considering a few terms in the 

series. Adomian decomposition method can provide an analytical solution 

by dealing with nonlinear terms. The result obtained by Adomian 

decomposition is well known for its high accuracy and close alignment with 

experimental studies. We have used this method to solve our governing 

equation under special conditions to check the accuracy of our numerical 

model. We have assumed a steady-state condition to solve this governing 

equation. Again, we must use a constant base temperature to achieve a 

steady state. 

Our governing equation for steady state is 

  
𝑑2𝜃

𝑑𝑋2 − 𝐴𝜃2 − 𝐵𝜃 + 𝐶 = 0 

 

(2.29) 

Now the governing equation is subjected to modified boundary condition 

Insulated tip condition at 𝑋 = 0 

 𝑑𝜃

𝑑𝑋
= 0   

 

(2.30) 

Dirichlet boundary condition at 𝑋 = 1 

 𝜃 = 1 (2.31) 

In Adomian decomposition method 𝜃 can be decomposed in an infinite 

series such as 

 𝜃 = 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3 + ⋯  (2.32) 

Adomian polynomial for 𝜃2 is given by 

 𝑈(𝜃) = 𝜃2 = ∑ 𝑃𝑁
∞
N=0   

 

(2.33) 
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Where, 𝑃𝑁 =
1

N!
× [

𝑑𝑁

𝑑𝜆𝑁 𝑈(∑ 𝜆𝐽𝜃𝐽
∞
J=0 )]

𝜆=0
  

 

(2.34) 

 

Therefore,  

 𝑃0 =
1

0!
× [

𝑑0

𝑑𝜆0 𝑈(𝜃0)]
𝜆=0

  (2.35) 

Or, 𝑃0 = 𝑈(𝜃0)  (2.36) 

Or, 𝑃0 = 𝜃0
2
  (2.37) 

Similarly,  

 𝑃1 = 2𝜃0𝜃1  (2.38) 

 𝑃2 = 𝜃1
2 + 2𝜃0𝜃2  (2.39) 

Let us assume,  

 𝑑2

𝑑𝑋2 = ∆  

 

(2.40) 

and ∆−1𝑓(𝑥) = ∫ ∫ 𝑓(𝑢)𝑑𝑢𝑑𝑢
𝑥

0

𝑥

0
  

 

(2.41) 

Applying Adomian decomposition to our governing equation we get 

 ∑ [∆𝜃𝑁 − 𝐴𝑃𝑁 − 𝐵𝜃𝑁]∞
𝑁=0 + 𝐶 = 0  

 

(2.42) 

Or, ∑ [∆𝜃𝑁] = ∑ [𝐴𝑃𝑁 + 𝐵𝜃𝑁] − 𝐶∞
𝑁=0

∞
𝑁=0   

 

(2.43) 

Or, ∑ 𝜃𝑁 = ∑ ∆−1[𝐴𝑃𝑁 + 𝐵𝜃𝑁] − ∆−1𝐶 + 𝜃𝑋=0 +∞
𝑁=0

∞
𝑁=0

𝑋
𝑑𝜃

𝑑𝑋
 𝑋=0  

 

(2.44) 

Therefore,  

 𝜃0 = 𝜃𝑋=0 + 𝑋
𝑑𝜃

𝑑𝑋
 𝑋=0  

 

(2.45) 

Let us assume that temperature of fin tip is 𝜉 
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So, 𝜃0 = 𝜉  

 

(2.46) 

 

Now, 𝜃1 = ∆−1[𝐴𝑃0 + 𝐵𝜃0] − ∆−1𝐶  (2.47) 

Or, 𝜃1 = ∆−1[𝐴𝜃0
2 + 𝐵𝜃0] − ∆−1𝐶  (2.48) 

Or, 𝜃1 = (𝐴𝜉2 + 𝐵𝜉 − 𝐶)
𝑋2

2
  

 

(2.49) 

Similarly, 

 𝜃2 = ∆−1[𝐴𝑃1 + 𝐵𝜃1]  (2.51) 

Or, 𝜃2 = ∆−1[𝐴 × 2𝜃0𝜃1 + 𝐵𝜃1]  (2.52) 

Or, 𝜃2 = ∆−1 [𝐴 × 2𝜉 (
𝐴𝜉2𝑋2

2
+

𝐵𝜉𝑋2

2
−

𝐶𝑋2

2
) +

𝐵 (
𝐴𝜉2𝑋2

2
+

𝐵𝜉𝑋2

2
−

𝐶𝑋2

2
)]  

 

(2.53) 

Or, 𝜃2 = (2𝐴𝜉 + 𝐵)(𝐴𝜉2 + 𝐵𝜉 − 𝐶)
𝐴𝜉2𝑋4

2×3×4
  

 

(2.54) 

Again, 

 𝜃3 = ∆−1[𝐴𝑃2 + 𝐵𝜃2]  
 

(2.55) 

Or, 𝜃3 = ∆−1[𝐴(𝜃1
2 + 2𝜃0𝜃2 ) + 𝐵𝜃2]  

 

(2.56) 

Or, 
𝜃3 = ∆−1 [𝐴 {(𝐴𝜉2 + 𝐵𝜉 − 𝐶)

𝑋2

2
}

2

+ 2𝐴𝜉(𝐴𝜉2 +

𝐵𝜉 − 𝐶)
𝑋2

2
+ 𝐵(𝐴𝜉2 + 𝐵𝜉 − 𝐶)

𝑋2

2
]  

 

(2.57) 

Or, 𝜃3 = 𝐴(𝐴𝜉2 + 𝐵𝜉 − 𝐶)2 𝑋6

2×2×5×6
+ (2𝐴𝜉 +

𝐵)(𝐴𝜉2 + 𝐵𝜉 − 𝐶)
𝑋4

2×3×4
  

 

(2.58) 
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Therefore, the final expression for non-dimensional temperature is given 

by 

 𝜃 = 𝜉 + (𝐴𝜉2 + 𝐵𝜉 − 𝐶)
𝑋2

2
+ (2𝐴𝜉 + 𝐵)(𝐴𝜉2 +

𝐵𝜉 − 𝐶)
𝐴𝜉2𝑋4

2×3×4
+ (𝐴𝜉2 + 𝐵𝜉 − 𝐶)2 𝑋6

2×2×5×6
+

(2𝐴𝜉 + 𝐵)(𝐴𝜉2 + 𝐵𝜉 − 𝐶)
𝑋4

2×3×4
  

(2.59) 

The value of ξ falls between 0 and 1. To pinpoint the exact value of ξ, we 

have applied the boundary condition where X=1 and θ=1. By inserting this 

boundary condition into the equation, we have numerically solved for ξ. 

After finding the value of ξ, we have then substituted it into the final 

expression for θ, to accurately determine the temperature profile. 

The analysis shows that the Adomian Decomposition Method offers several 

advantages, such as effectively handling non-linear terms and achieving 

rapid convergence with only a few terms. However, complexities arise 

when dealing with partial differential equations, especially when one of the 

boundary conditions is time-dependent. In such cases, the Laplace 

Transformation Method can be applied to address these complex situations 

and obtain transient analysis with periodic boundary conditions. 
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2.4.2 Solution by Laplace transformation method 

As we have seen, our original governing equation contains a nonlinear term, 

but we know the Laplace transformation method cannot handle nonlinear 

terms. The Laplace transformation method is one of the most popular 

methods for solving partial differential equations, mainly when boundary 

condition depends on time. Therefore, with some assumptions, we have 

solved our governing equation with the Laplace transformation method and 

compared the result with our numerical model. The Laplace transformation 

method can provide an accurate analytical study of our governing equation 

with periodic base temperature boundary conditions. Applying the Laplace 

transformation converts the partial differential equation into an ordinary 

one. Hence, the dependent boundary condition is also converted into a 

constant boundary condition. That ordinary differential equation can be 

easily solved and finally by applying inverse Laplace transformation 

solution of the original partial differential equation can be obtained. To 

solve the equation using the Laplace transformation method, we neglected 

the nonlinear term of our original governing equation (2.13). 

Therefore, our governing equation transformed into 

 𝜕2𝜃

𝜕𝑋2 − 𝐵𝜃 + 𝐶 =
𝜕𝜃

𝜕𝜏
  (2.59) 

Now the governing equation is subjected to boundary condition given by 

equation number (2.14), insulated tip boundary condition given by equation 

number (2.15) and initial condition given by equation number (2.17) 

Now applying Laplace transformation on both side equation (2.59) 

 𝑑2𝜃̅

𝑑𝑋2 − 𝐵𝜃̅ +
𝐶

𝑠
= 𝑠𝜃̅ − 𝜃𝜏=0  (2.60) 

By applying initial condition (2.17) our equation coverts into 

 𝑑2𝜃̅

𝑑𝑋2 − 𝐵𝜃̅ +
𝐶

𝑠
= 𝑠𝜃̅  (2.61) 

Or, 𝑑2𝜃̅

𝑑𝑋2 − (𝐵 + 𝑠)𝜃̅+= −
𝐶

𝑠
  (2.62) 

Applying Laplace transformation on the boundary conditions (2.14) and 

(2.15) 

At, 𝑋 = 0 
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 𝜃̅ =
1

𝑠
+

𝛼𝑠

𝑠2+𝜔2  (2.63) 

At, 𝑋 = 1 

 𝑑𝜃̅

𝑑𝑋
= 0  (2.64) 

Our modified governing equation, given by (2.62), is a non-homogeneous 

ordinary differential equation. The solution to this equation includes both a 

complementary function and a particular integral. 

Solving for complementary function 

 

 𝑑2𝜃̅

𝑑𝑋2 − (𝐵 + 𝑠)𝜃̅ = 0  (2.65) 

Auxiliary equation is given by 

 [𝜓2 − (𝐵 + 𝑠)]𝜃̅ = 0  (2.66) 

So, 𝜓 = ±√(𝐵 + 𝑠)   

Therefore, 

 𝐶𝐹 = 𝜁1𝑒(𝐵+𝑠)𝑥 + 𝜁2𝑒−(𝐵+𝑠)𝑥  (2.67) 

Solving for particular integral 

 𝑃𝐼 =
𝐶

𝑠(𝐵+𝑠)
  (2.68) 

The complete solution is given by 

 𝜃̅ = 𝐶𝐹 + 𝑃𝐼  (2.69) 

 𝜃̅ = 𝜁1𝑒𝑥√(𝐵+𝑠) + 𝜁2𝑒−𝑥√(𝐵+𝑠) +
𝐶

𝑠(𝐵+𝑠)
  (2.70) 

Applying boundary conditions (2.63) at 𝑋 = 0 

 𝜃̅𝑋=0 = 𝜁1 + 𝜁2 +
𝐶

𝑠(𝐵+𝑠)
  (2.71) 

Or, 1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 = 𝜁1 + 𝜁2 +
𝐶

𝑠(𝐵+𝑠)
  (2.72) 
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Or, 𝜁1 + 𝜁2 = (
1

𝑠
+

𝛼𝑠

𝑠2+𝜔2) −
𝐶

𝑠(𝐵+𝑠)
  (2.73) 

Applying boundary condition (2.64) at 𝑋 = 0 

 𝑑𝜃̅

𝑑𝑋𝑋=1
= 𝜁1√(𝐵 + 𝑠)𝑒√(𝐵+𝑠) − 𝜁2√(𝐵 + 𝑠)𝑒−√(𝐵+𝑠)  (2.74) 

Or, 0 = 𝜁1√(𝐵 + 𝑠)𝑒√(𝐵+𝑠) − 𝜁2√(𝐵 + 𝑠)𝑒−√(𝐵+𝑠)  

 

(2.75) 

Or, 𝜁1 = 𝜁2𝑒−2√(𝐵+𝑠)  (2.76) 

 

Substituting the value of 𝜁1 into equation (2.73) we get 

 𝜁2𝑒−2√(𝐵+𝑠) + 𝜁2 = (
1

𝑠
+

𝛼𝑠

𝑠2+𝜔2) −
𝐶

𝑠(𝐵+𝑠)
  (2.77) 

Or, 
𝜁2 =

𝑒√(𝐵+𝑠)

(𝑒−√(𝐵+𝑠)+𝑒√(𝐵+𝑠))
(

1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 −
𝐶

𝑠(𝐵+𝑠)
)  

 

(2.78) 

Form equation (2.73) 

 
𝜁1 =

𝑒−√(𝐵+𝑠)

(𝑒−√(𝐵+𝑠)+𝑒√(𝐵+𝑠))
(

1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 −
𝐶

𝑠(𝐵+𝑠)
)  

 

(2.79) 

Therefore, 

 
𝜃̅ =

𝑒−√(𝐵+𝑠)

(𝑒−√(𝐵+𝑠)+𝑒√(𝐵+𝑠))
(

1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 −

𝐶

𝑠(𝐵+𝑠)
) 𝑒𝑥√(𝐵+𝑠) +

𝑒√(𝐵+𝑠)

(𝑒−√(𝐵+𝑠)+𝑒√(𝐵+𝑠))
(

1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 −

𝐶

𝑠(𝐵+𝑠)
) 𝑒−𝑥√(𝐵+𝑠) +

𝐶

𝑠(𝐵+𝑠)
  

 

(2.80) 

By further simplification 

 
𝜃̅ = (

1

𝑠
+

𝛼𝑠

𝑠2+𝜔2 −
𝐶

𝑠(𝐵+𝑠)
) [

cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
] +

𝐶

𝑠(𝐵+𝑠)
  

 

(2.81) 

Applying inverse Laplace transformation on each term 
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𝐿−1 [

cosh{(𝑥−1)√(𝐵+𝑠)}

scosh √(𝐵+𝑠)
] = 𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠  

(2.82) 

cosh{(𝑥−1)√(𝐵+𝑠)}

scosh √(𝐵+𝑠)
  has simple poles at 𝑠 = 0 and at 𝑠 = 𝑠𝑛  

Where, 
𝑠𝑛 = −(2𝑛 − 1)2 (

𝜋

2
)

2
− 𝐵 for 𝑛 = 1,2,3,4,5 … … 

(2.83) 

Or, √(𝐵 + 𝑠𝑛) = 𝑖
𝜋

2
(2𝑛 − 1)  (2.84) 

 

Residue at simple pole at is 𝑠 = 0  given by 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 = lim

𝑠→0

(𝑠−0)𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

scosh √(𝐵+𝑠)
  

 

(2.85) 

Or, 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 =

cosh{(𝑥−1)√𝐵}

cosh √𝐵
  

 

(2.86) 

Residue at simple pole at is 𝑠 = 𝑠𝑛given by 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛

= lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

scosh √(𝐵+𝑠)
  

 

(2.87) 

Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛
= lim

𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
×

lim
𝑠→𝑠𝑛

𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

𝑠
  

(2.88) 

Here, lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
 is in  

0

0
  format therefore we can apply L’Hospital’s 

rule 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛

= lim
𝑠→𝑠𝑛

2×√(𝐵+𝑠)

sinh √(𝐵+𝑠)
×

lim
𝑠→𝑠𝑛

𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

𝑠
  

 

(2.89) 
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Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛
= lim

𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
×

lim
𝑠→𝑠𝑛

𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

𝑠
  

(2.90) 

Or, 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛

=
2×√(𝐵+𝑠𝑛)

sinh √(𝐵+𝑠𝑛)
×

𝑒𝑠𝑛𝜏 cosh{(𝑥−1)√(𝐵+𝑠𝑛)}

𝑠𝑛
  

(2.91) 

By substituting value of √(𝐵 + 𝑠𝑛) from equation(2.84) we get 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛

=
2×𝑖

𝜋

2
(2𝑛−1)

sinh{𝑖
𝜋

2
(2𝑛−1)}

×

𝑒𝑠𝑛𝜏 cosh{(𝑥−1)𝑖
𝜋

2
(2𝑛−1)}

𝑠𝑛
  

 

(2.92) 

Now from the properties of hyperbolic functions we know that 

cosh(𝑖∅) =  cos ∅  and  sinh(𝑖∅) = 𝑖 sin ∅ 

Therefore, 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛

=
2×

𝜋

2
(2𝑛−1)

sin{
𝜋

2
(2𝑛−1)}

×
𝑒𝑠𝑛𝜏 cos{(𝑥−1)

𝜋

2
√(2𝑛−1)}

𝑠𝑛
  

 

(2.93) 

We know that  

 sin {
𝜋

2
(2𝑛 − 1)} = (−1)𝑛+1  

 

(2.94) 

So, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛
= (−1)𝑛+1 × 𝜋(2𝑛 − 1) ×

𝑒𝑠𝑛𝜏 cos{(𝑥−1)
𝜋

2
(2𝑛−1)}

𝑠𝑛
  

(2.95) 

Therefore, from (2.82),(2.86) and (2.95) we get 

 
𝐿−1 [

cosh{(𝑥−1)√(𝐵+𝑠)}

scosh √(𝐵+𝑠)
] =

cosh{(𝑥−1)√𝐵}

cosh √𝐵
+

∑ (−1)𝑛+1 × 𝜋(2𝑛 − 1) ×
𝑒𝑠𝑛𝜏 cos{(𝑥−1)

𝜋

2
(2𝑛−1)}

𝑠𝑛

∞
𝑛=1   

(2.96) 

 

Similarly applying inverse Laplace transformation on the next term 
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𝐿−1 [(

𝛼𝑠

𝑠2+𝜔2)
cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
] =

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠  

 

(2.97) 

 

(
𝛼𝑠

𝑠2+𝜔2)
cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
 has poles at 𝑠 = 𝑖𝜔, 𝑠 = −𝑖𝜔 and at 𝑠 = 𝑠𝑛  

where  𝑠𝑛 is given by equation (2.83) 

 

Similarly, residue at pole at is 𝑠 = 𝑖𝜔  given by  

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑖𝜔  =

lim
𝑠→𝑖𝜔

(𝑠 − 𝑖𝜔) (
𝛼𝑠

𝑠2+𝜔2)
𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
  

(2.98) 

Or, 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑖𝜔  = (

𝛼

2
)

𝑒𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵+𝑖𝜔)}

cosh √(𝐵+𝑖𝜔)
  

 

(2.99) 

Again, residue at pole at is 𝑠 = −𝑖𝜔  given by 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=−𝑖𝜔  =

lim
𝑠→−𝑖𝜔

(𝑠 + 𝑖𝜔) (
𝛼𝑠

𝑠2+𝜔2)
𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
  

  

(2.100) 

Or, 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=−𝑖𝜔  = (

𝛼

2
)

𝑒−𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵−𝑖𝜔)}

cosh √(𝐵−𝑖𝜔)
  

 

(2.101) 

 

Residue at simple pole at 𝑠 = 𝑠𝑛  is given by 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 =

lim
𝑠→𝑠𝑛

(𝑠 − 𝑠𝑛) (
𝛼𝑠

𝑠2+𝜔2)
𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
  

(2.102) 
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Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 =

lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
× lim

𝑠→𝑠𝑛

(
𝛼𝑠

𝑠2+𝜔2) 𝑒𝑠𝜏 cosh {(𝑥 −

1)√(𝐵 + 𝑠)}  

(2.103) 

Previously we have calculated lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
 so, once again repeating all 

those steps we get 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 = (−1)𝑛+1 × 𝜋(2𝑛 −

1) × (
𝛼𝑠𝑛

𝑠𝑛
2+𝜔2) 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 − 1)}  

  

(2.104) 

From equations (2.97), (2.99), (2.101) and (2.104) we get 

 
𝐿−1 [(

𝛼𝑠

𝑠2+𝜔2)
cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
] =

(
𝛼

2
)

𝑒𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵+𝑖𝜔)}

cosh √(𝐵+𝑖𝜔)
+

 (
𝛼

2
)

𝑒−𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵−𝑖𝜔)}

cosh √(𝐵−𝑖𝜔)
+ ∑ (−1)𝑛+1 ×∞

𝑛=1

𝜋(2𝑛 − 1) × (
𝛼𝑠𝑛

𝑠𝑛
2+𝜔2) 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 − 1)}  

  

(2.105) 

 

Now, applying inverse Laplace transformation on the next term 

 
𝐿−1 [{

𝐶

𝑠(𝐵+𝑠)
}

cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
] =

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠  

  

(2.106) 

{
𝐶

𝑠(𝐵+𝑠)
}

cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
 has poles at 𝑠 = 0, 𝑠 = −𝐵 and at 𝑠 = 𝑠𝑛  

where  𝑠𝑛 is given by equation (2.83). 

Residue at simple pole at 𝑠 = 0  is given by 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 = lim

𝑠→0

(𝑠−0)𝑒𝑠𝜏 C×cosh{(𝑥−1)√(𝐵+𝑠)}

s(B+s)cosh √(𝐵+𝑠)
  

(2.107) 
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Or, 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 =

C×cosh{(𝑥−1)√𝐵}

B×cosh √𝐵
  

(2.108) 

Residue at simple pole at is 𝑠 = −𝐵  given by 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=−𝐵 = lim

𝑠→−𝐵

(𝑠+𝐵)𝑒𝑠𝜏 C×cosh{(𝑥−1)√(𝐵+𝑠)}

s(B+s)cosh √(𝐵+𝑠)
  

  

(2.109) 

Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=−𝐵 = −
C×𝑒−𝐵𝜏

B
  

(2.110) 

 

 

Residue at simple pole at 𝑠 = 𝑠𝑛 is given by 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 =

lim
𝑠→𝑠𝑛

(𝑠 − 𝑠𝑛) {
𝐶

𝑠(𝐵+𝑠)
}

𝑒𝑠𝜏 cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
  

(2.111) 

Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 =

lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
× lim

𝑠→𝑠𝑛

{
𝐶

𝑠(𝐵+𝑠)
} 𝑒𝑠𝜏 cosh {(𝑥 −

1)√(𝐵 + 𝑠)}  

(2.112) 

Previously we have calculated lim
𝑠→𝑠𝑛

(𝑠−𝑠𝑛)

cosh √(𝐵+𝑠)
 so, once again repeating all 

those steps we get 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=𝑠𝑛 = (−1)𝑛+1 × 𝜋(2𝑛 −

1) × {
𝐶

𝑠𝑛(𝐵+𝑠𝑛)
} 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 − 1)}  

  

(2.113) 

From equations (2.106), (2.108), (2.110) and (2.113) we get 

 
𝐿−1 [{

𝐶

𝑠(𝐵+𝑠)
}

cosh{(𝑥−1)√(𝐵+𝑠)}

cosh √(𝐵+𝑠)
] =

C×cosh{(𝑥−1)√𝐵}

B×cosh √𝐵
−

C×𝑒−𝐵𝜏

B
+ ∑ (−1)𝑛+1 × 𝜋(2𝑛 −∞

𝑛=1

1) × {
𝐶

𝑠𝑛(𝐵+𝑠𝑛)
} 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 − 1)}  

(2.114) 



32 

 

 

Now, applying inverse Laplace transformation on the last term 

 𝐿−1 [
𝐶

𝑠(𝐵+𝑠)
] = 𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠  (2.115) 

𝐶

𝑠(𝐵+𝑠)
  has simple poles at 𝑠 = 0 𝑎𝑛𝑑 𝑎𝑡 𝑠 = −𝐵 

Residue at simple pole at is 𝑠 = 0  given by 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 = lim
𝑠→0

(𝑠−0)𝑒𝑠𝜏×𝐶

s(B+s)
  (2.116) 

Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 =
𝐶

B
  

 

(2.117) 

 

Residue at simple pole at is 𝑠 = −𝐵  given by 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=−𝐵 = lim
𝑠→−𝐵

(𝑠+𝐵)𝑒𝑠𝜏×𝐶

s(B+s)
  

  

(2.118) 

Or, 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠=0 = −
𝑒−𝐵𝜏𝐶

B
  

 

(2.119) 

From equation (2.15), (2.17) and (2.19) we get 

 𝐿−1 [
𝐶

𝑠(𝐵+𝑠)
] =

𝐶

B
−

𝑒−𝐵𝜏𝐶

B
  

(2.120) 

By considering all terms the final expression for non-dimensional 

temperature is given by 



33 

 

 
𝜃 =

cosh{(𝑥−1)√𝐵}

cosh √𝐵
+ ∑ (−1)𝑛+1 × 𝜋(2𝑛 − 1) ×∞

𝑛=1

𝑒𝑠𝑛𝜏 cos{(𝑥−1)
𝜋

2
(2𝑛−1)}

𝑠𝑛
+ (

𝛼

2
)

𝑒𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵+𝑖𝜔)}

cosh √(𝐵+𝑖𝜔)
+

 (
𝛼

2
)

𝑒−𝑖𝜔𝜏 cosh{(𝑥−1)√(𝐵−𝑖𝜔)}

cosh √(𝐵−𝑖𝜔)
+ ∑ (−1)𝑛+1 ×∞

𝑛=1

𝜋(2𝑛 − 1) × (
𝛼𝑠𝑛

𝑠𝑛
2+𝜔2) 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 −

1)} +
C×cosh{(𝑥−1)√𝐵}

B×cosh √𝐵
−

C×𝑒−𝐵𝜏

B
+ ∑ (−1)𝑛+1 ×∞

𝑛=1

𝜋(2𝑛 − 1) × {
𝐶

𝑠𝑛(𝐵+𝑠𝑛)
} 𝑒𝑠𝑛𝜏 cos {(𝑥 − 1)

𝜋

2
(2𝑛 −

1)} +
𝐶

B
−

𝑒−𝐵𝜏𝐶

B
  

(2.121) 

To determine the temperature profile, we have extracted the real 

part of the solution. This involves considering only the real component of 

the mathematical expression we obtain from solving the governing 

equation. By focusing on the real part, we can accurately represent the 

physical temperature distribution in the system. Although the Laplace 

transformation method can deal with time-dependent boundary conditions, 

it cannot handle the nonlinearity of the governing equation. However, to 

incorporate the effect of porosity, we must deal with nonlinear partial 

differential equations along with time-dependent boundary conditions. Due 

to these complexities, it is very difficult to get an analytical solution to the 

problem. In such cases, our numerical solution can efficiently handle the 

complexities of the governing equation and boundary condition. But 

Laplace transformation and Adomian decomposition methods solution 

helped us to check the validity and accuracy of our numerical model.  
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Chapter-3 

 

3. RESULTS AND DISCUSSION 
 

Before proceeding with any analysis, we must validate our 

numerical model to ensure its accuracy and reliability. Validation involves 

comparing the numerical model's results with known solutions to establish 

its credibility. In the "Case Studies" section of the previous chapter, we 

discussed two distinct analytical solution methods that will serve as 

benchmarks for our validation process. 

Firstly, we explored the Adomian Decomposition Method (ADM) 

applied to the steady-state scenario. This method is particularly effective 

for solving nonlinear differential equations, making it suitable for our 

purposes. By comparing the numerical model's results with those obtained 

from the ADM, we validated the accuracy of the nonlinear term in our 

model. This comparison helped us confirm that our model correctly 

captures the system's nonlinear behavior under steady-state conditions. We 

have also validated our steady-state numerical solution with a published 

work. 

Again, we examined a solution method using Laplace 

Transformation, simplifying the problem by neglecting the nonlinear term. 

This approach is useful for scenarios where the base temperature varies 

periodically. By validating our numerical model against the results derived 

from the Laplace Transformation method, we can ensure that our model 

accurately handles cases with periodic base temperature variations, even 

when nonlinear effects are not considered. 

Together, these three validation steps, compared with the ADM and 

published work for steady-state nonlinear scenarios and with the Laplace 

Transformation solution for periodic base temperature scenarios, provide a 

comprehensive assessment of our numerical model's performance. This 

thorough validation process is crucial for establishing confidence in the 

model before using it for further analysis. 
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3.1 Steady State Validation with Adomian Decomposition 
Firstly, we have validated our numerical model with the Adomian 

Decomposition Method (ADM) to the steady-state scenario. This method is 

particularly effective for solving nonlinear differential equations and is 

well-suited for our purposes. By comparing the results of our numerical 

model with those obtained from the ADM, we have validated the accuracy 

of the nonlinear term in our model. This comparison helped us confirm that 

our model accurately captures the system's nonlinear behavior under 

steady-state conditions. To perform this validation, we had to slightly 

modify our boundary conditions to match those of the Adomian 

decomposition solution. Specifically, we had to set 𝛼 = 0 in our numerical 

model, which converted our periodic base temperature condition into a 

constant base temperature condition. Additionally, we had to apply an 

insulated tip condition at 𝑋 = 0 and a constant base temperature condition 

at 𝑋 = 1 in our numerical model. By making these adjustments, we have 

compared the results of our numerical model with those obtained from the 

Adomian decomposition solution. To perform the validation, we have 

assumed A=2 , B=2 and C=2. 
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Figure 3.2: Steady state validation with ADM 

Figure 3.1 clearly shows that the steady-state results of our numerical model 

align closely with those obtained using the Adomian Decomposition 

Method. This indicates that our numerical model effectively handles the 

nonlinearity of the governing equation. The close alignment between the 

steady-state results of our numerical model and the Adomian 

Decomposition Method demonstrates the robustness and accuracy of our 

approach. The Adomian Decomposition Method is known for its ability to 

solve nonlinear equations efficiently, so matching its results confirms that 

our numerical model can also tackle the complexities introduced by 

nonlinear terms in the governing equation. This validation provides 

confidence in the reliability of our numerical model for solving nonlinear 

problems. 
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3.2 Steady State Validation with Published Work 
To enhance the reliability of our numerical model, we have validated our 

steady-state results against a published study. Roatamiyan et al. [38]. 

conducted a steady-state analysis of a porous fin in their paper titled 

"Analytical Investigation of Nonlinear Model Arising in Heat Transfer 

Through the Porous Fin." They employed the Variational Iteration Method 

to solve the steady-state nonlinear governing equations. For a meaningful 

comparison between our numerical model and their published results, we 

set the parameters in our model to A = 0.2, B = 1, and C = 0, as specified in 

their study. The resulting comparison graph is presented below, 

demonstrating the alignment between our numerical solutions and the 

analytical results obtained by Roatamiyan et al. [43]. 

 

Figure 3.2 : Steady state validation with published work 

From Fig. 3.2, we can clearly see that our numerical solution closely 

aligns with the published work. 
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3.3 Validation with Laplace Transformation 
 We have validated our numerical model by comparing it 

with the solution obtained using the Laplace Transformation method (Fig. 

3.3). The Laplace Transformation simplifies the problem by neglecting the 

nonlinear term, making it particularly useful for scenarios where the base 

temperature varies periodically. By comparing our numerical model's 

results with those derived from the Laplace Transformation method, we can 

ensure the accuracy of our model in handling periodic base temperature 

variations. This validation process is crucial as it demonstrates that our 

model can accurately represent the system's behavior, confirming its 

reliability in every scenario. To perform the validation, we have taken 𝐴 =

0, 

𝐵 = 0.15, 𝐶 = 0.1, 𝛼 = 0.5 and 𝜔 = 0.5. We have plotted the temperature 

variation at 𝑋 = 0.5 for various Fourier Number by using both method and 

compared those results. 

 

Figure 3.3: Validation with Laplace transformation 

Figure 3.3 demonstrates that our numerical model aligns closely with the 

Laplace Transformation solution. This study indicates that our model 
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accurately captures the system's behavior under periodic base temperature 

variations.  

With all three validations, we can conclude that our numerical model 

provides accurate solutions and is suitable for further analysis and 

discussion. The consistency of our model's predictions with the validation 

results demonstrates its reliability and effectiveness in capturing the key 

aspects of the heat transfer process through the porous fin. Consequently, 

we confidently proceed with more detailed investigations and apply our 

model to various scenarios for comprehensive understanding and insights. 

3.4 Impact of Nano-Fluid Flow  

In our study, we have used an 𝐴𝑙2𝑂3-water nanofluid with volume 

fraction 0.01 to enhance the heat transfer. 𝐴𝑙2𝑂3-water nanofluid is 

engineered colloidal suspensions of 𝐴𝑙2𝑂3 nanoparticles within base fluid 

water, have emerged as a promising solution for boosting heat transfer in 

various thermal management applications. 𝐴𝑙2𝑂3 nanoparticle is composed 

of metals oxides exhibit high thermal conductivity, which greatly improves 

the thermal performance of the base fluid. Nanoparticles increase thermal 

conductivity, enhance convection, and improve thermal dispersion, leading 

to more efficient heat transfer. 

Properties of the 𝐴𝑙2𝑂3-water nanofluid can be evaluated with the empirical 

relations and property of 𝐴𝑙2𝑂3 nanoparticle described by Seth et al. [39] 

Now, we have examined the temperature profile, heat transfer, and 

efficiency of a porous fin subjected to 𝐴𝑙2𝑂3-water nanofluid flow through 

its pores and a periodic base temperature. Using our numerical model, we 

have generated and analyzed the corresponding graphs to gain insights into 

the fin's thermal performance and behavior under these conditions. 

First, we have determined the values of three arbitrary constants used in our 

analysis to plot the temperature profile. Expressions of those constants are 

given by 

 𝐴 =
𝑔𝜌𝑓𝐾𝛽𝑓 𝑐𝑝𝑓sin(𝛾)(𝑇𝑏𝑚−𝑇𝑎)𝐿2

𝑣𝑓𝑡𝑏𝑘𝑒𝑓𝑓
 ; 𝐵 =

2ℎ(1−𝜑)𝐿2

𝑡𝑏𝑘𝑒𝑓𝑓
 and  𝐶 =

𝑞𝑔𝑒𝑛𝐿2

𝑘𝑒𝑓𝑓(𝑇𝑏𝑚−𝑇𝑎)
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From, the book Drying Phenomena [41], we obtained the properties of 

water at ambient conditions and properties of the 𝐴𝑙2𝑂3-water nanofluid 

has evaluated with the empirical relations and property of 𝐴𝑙2𝑂3 

nanoparticle described by Seth et al. [44]. Table 3.1 provides these 

properties.  

Table 3.1: Properties of Water and 𝐴𝑙2𝑂3 

 
𝝆 (

𝒌𝒈

𝒎𝟑
) 𝒄𝒑 (

𝑱

𝒌𝒈𝑲
) 𝒌 (

𝑾

𝒎𝑲
) 

𝜷 (𝑲−𝟏) 𝝁 (𝑷𝒂𝒔) 

Water 

[41] 
995.7 4183 0.603 0.0003051 0.0007977 

𝑨𝒍𝟐𝑶𝟑 

[44] 

3970 765 40 0.0000085  

 

From the analysis of Seth et al. [44], the expressions for nanofluid 

properties are given by 

 𝜌𝑛𝑓 = (1−∈)𝜌𝑓 + 𝜌𝑠 ∈  (3.1) 

 𝜌𝑛𝑓𝛽𝑛𝑓 = (1−∈)𝜌𝑓𝛽𝑓 +∈ 𝜌𝑠𝛽𝑠  (3.2) 

 𝜌𝑛𝑓(𝑐𝑝)
𝑛𝑓

= (1−∈)𝜌𝑓(𝑐𝑝)
𝑓

+∈ 𝜌𝑠(𝑐𝑝)
𝑠
  (3.3) 

 
𝑘𝑛𝑓 = 𝑘𝑓 ×

𝑘𝑠+2𝑘𝑓−2∈(𝑘𝑓−𝑘𝑠)

𝑘𝑠+2𝑘𝑓+∈(𝑘𝑓−𝑘𝑠)
 [39] 

(3.4) 

 𝜇𝑛𝑓 =
𝜇𝑓

(1−∈)2.5  (3.5) 

 

 

Again, 

 𝑘𝑒𝑓𝑓 = 𝜑𝑘𝑛𝑓 + (1 − 𝜑)𝑘𝐴𝑙  (3.6) 

By substituting all these expressions, we get 
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 𝐴𝑛𝑓 =

[
𝑔𝐾(𝜌𝑓𝑐𝑝𝑓)(𝜌𝑓𝛽𝑓 )sin(𝛾)𝐿2(𝑇𝑏𝑚−𝑇𝑎)

𝜇𝑓𝑡𝑏
]

[(1−∈)+
∈𝜌𝑠(𝑐𝑝)

𝑠
 

𝜌𝑓(𝑐𝑝)
𝑓

] [(1−∈)+
∈𝜌𝑠𝛽𝑠 

𝜌𝑓𝛽𝑓
]

1

(1−∈)2.5 ×(𝑘𝑒𝑓𝑓)
𝑛𝑓

  

 

(3.7) 

 𝐵𝑛𝑓 =
2ℎ(1−𝜑)𝐿2

𝑡𝑏(𝑘𝑒𝑓𝑓)
𝑛𝑓

  (3.8) 

 𝐶𝑛𝑓 =
𝑞𝑔𝑒𝑛𝐿2

(𝑘𝑒𝑓𝑓)
𝑛𝑓

(𝑇𝑏𝑚−𝑇𝑎)
  

(3.9) 

Let us assume our fin is made of Aluminum having 𝑘𝐴𝑙 = 237
𝑊

𝑚𝑘
 [45] and 

𝐿 = 0.1𝑚, 𝑤 = 0.1𝑚, 𝑡𝑏 = 0.01𝑚, (𝑇𝑏𝑚 − 𝑇𝑎) = 50𝐾, sin 𝛾 = 1 𝑔 =

9.81
𝑚2

𝑠
,ℎ = 100

𝑊

𝑚2𝐾
,𝑞𝑔𝑒𝑛 = 1000

𝑊

𝑚3,𝜑 = 0.2 , 𝐾 = 2 × 10−10 𝑚

𝑠
 , ∈=

0.01. 

Now using these values, along with 𝛼 = 0.5 and 𝜔 = 0.5  we have plotted 

the temperature profile of the fin and performed the further analysis. 

 

Figure 3.4.1: Non-dimensional temperature vs. Fourier number 

𝜏 
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In Fig. 3.4.1, we observe that for a given value of X, the non-dimensional 

temperature varies periodically with the Fourier number (or non-

dimensional time). At X=0, the base temperature of the fin is perfectly 

following the induced periodic boundary condition. Additionally, as the 

value of X increases, meaning as the distance from the fin base increases, 

the maximum temperature value decreases. This is due to the nanofluid 

flow through the pores and the convection occurring between the fin and its 

surroundings, which results in heat loss and consequently lowers the 

maximum temperature. 

To better understand this phenomenon, we have plotted the non-

dimensional temperature against X for a specific Fourier number as shown 

in Fig. 3.4.2. This would illustrate how the temperature distribution changes 

along the length of the fin at a particular moment in time. 

 

Figure 3.4.2: Non-dimensional temperature vs X at various Fourier 

number. 

From Fig. 3.4.2 for non-dimensional temperature versus X for a specific 

Fourier number, we can clearly observe that the temperature decreases as X 

increases. This trend is due to heat loss through convection and the cooling 
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effect of nanofluid flow through the porous fin. As the distance from the fin 

base increases, the heat dissipates more, leading to a lower temperature. 

Moreover, we can see that the base of the fin varies periodically with the 

non-dimensional time or Fourier number. This periodic variation results 

from the boundary conditions of our problem, where the base temperature 

is influenced by external factors, causing it to fluctuate over time. This 

periodic behavior at the base sets the stage for the observed temperature 

profile along the fin's length. In addition, the condition of constant base 

temperature has been plotted for various Fourier numbers. We can observe 

that the fin achieves a steady state with a constant base temperature. 

By examining these graphs, we better understand how heat is transferred 

and dissipated along the fin. They highlight the impacts of convection, fluid 

flow, and boundary conditions on the fin's thermal performance. 

We have performed some more calculations to determine the heat transfer 

from the fin. We have already derived the equation for heat transfer through 

a small control surface in equation (2.28).  

By substituting values of all constants, along with 𝑑𝑋 = 0.02 we have 

determined 𝑑𝑄𝑖 and total heat transfer through fin is given by ∑ 𝑑𝑄𝑖
𝑖=𝑖𝑚𝑎𝑥
𝑖=0 . 

Therefore, by using that we have plotted the heat transfer for various 

Fourier numbers.  
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Figure 3.4.3: Heat transfer rate vs Fourier number 

From Fig. 3.4.3 for heat transfer versus Fourier number (non-dimensional 

time), it is evident that in porous fin with periodic base temperature 

condition the heat transfer rate exhibits a periodic variation, mirroring the 

fin base temperature variation. This periodicity indicates that as the base 

temperature of the fin varies cyclically, the rate at which heat is transferred 

also follows a similar cyclical pattern. A closer inspection of the graph 

reveals an interesting observation: the peak value of heat transfer during the 

first cycle is slightly lower than that of the second. This phenomenon occurs 

because the entire fin is initially at ambient temperature. At the start, the fin 

requires time to absorb heat and develop a temperature gradient along its 

length, which is essential for effective heat transfer. As the fin gradually 

heats up, it establishes a temperature profile, allowing for an increase in 

heat transfer rate. Therefore, the heat transfer is lower during the first cycle 

than in subsequent cycles. Once the fin has gone through the first cycle, it 

no longer starts from the ambient temperature but rather from a higher 

initial temperature closer to the periodic base temperature. This allows the 

fin to achieve higher heat transfer rates more quickly in subsequent cycles, 

resulting in higher peak values. Thus, the graph shows the periodic nature 

of heat transfer and highlights the initial lag in heat transfer efficiency due 

𝜏 

 

H
ea

t 
tr

an
sf

er
 r

at
e 

(W
at

t)
 



45 

 

to the starting ambient conditions. In the other plot of porous fins with a 

constant base temperature, the heat transfer rate gradually achieves a steady 

state. 

To evaluate the enhancement in heat transfer achieved by introducing a 

porous fin with nanofluid flow, we have compared it with a porous fin with 

water (base fluid) flow and a solid fin under similar conditions. By 

determining the temperature profile and heat transfer rate for the porous fin 

with water flow and solid fin, we have effectively compared all the results 

and gained insights into the thermal performance improvement provided by 

the porous fin with nanofluid flow. 

To plot the temperature profile for porous fin with water flow and solid fin 

we have determined the values of three arbitrary constants A, B and C used 

in our analysis by using table (3.1) for values of properties and equation 

(3.6) to determine 𝑘𝑒𝑓𝑓. For solid fin 𝐴 = 0 and 𝜑 = 0  so, 𝑘𝑒𝑓𝑓 = 𝑘𝐴𝑙. We 

have considered all of the other parameters similar to the analysis of porous 

fin with nanofluid flow to have a proper comparison. 

Now, by substituting all, we have plotted the temperature profile of the solid 

fin, porous fin with base fluid flow, and porous fin with nanofluid flow and 

compared the result with the porous fin with nanofluid flow as depicted in 

Figs. 3.4.4 and 3.4.5. 
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Figure 3.4.4: Non-dimensional temperature vs X  Comparison for Fourier 

number 10. 

 

Figure 3.4.5: Non-dimensional temperature vs Fourier number 

Comparison at X=0.5 

𝜏 
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From analyzing these two graphs above, it becomes clear that the porous 

fin maintains a considerably lower temperature than the solid fin under the 

same conditions. This is primarily because the porous fin's structure offers 

a much larger surface area, which significantly enhances heat dissipation. 

The increased surface area allows for more efficient thermal exchange 

between the fin and its surroundings. Furthermore, introducing Al2O3-

water nanofluid in the porous fin increases heat transfer. As Al2O3-water 

nanofluids have higher thermal conductivity compared to conventional 

fluids, which means they can carry heat away from the fin more effectively, 

but in Al2O3 nanofluid, nanoparticles absorb some amount of heat, which 

results in the porous fin with Al2O3-water nanofluid flow operating at a 

higher temperature than the solid fin and porous fin with water flow. Due 

to this, the temperature difference between the fin and surrounding is 

slightly higher, causing higher convection in porous fin with nanofluid than 

porous fin with water. We can also observe that a fin with a constant base 

temperature gradually achieves a steady state. Still, a fin with a periodic 

base temperature follows the periodic temperature pattern with an 

increasing Fourier number. 

We performed some more calculations to determine the heat transfer from 

the solid fin and porous fin with water flow. We have already derived the 

equation for heat transfer through a small control surface. By substituting 

values of all constants, we have plotted the heat transfer in solid fin and 

porous fin with water flow for various Fourier numbers and compare that 

with the heat transfer from porous fin with nanofluid flow shown in Fig. 

3.4.6. 
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Figure 3.4.6: Heat transfer rate vs Fourier number comparison. 

Table 3.2: Heat transfer rate vs Fourier number comparison 

Fourier 

Numbe

r 

Heat 

transfer 

in Solid 

Fin with 

Periodic 

Base temp 

 (Watt) 

Heat 

transfer 

in Solid 

Fin with 

Constan

t Base 

temp 

 (Watt) 

Heat 

transfer 

in Porous 

Fin with 

Water 

and 

Periodic 

Base temp 

(Watt) 

Heat 

transfer 

in 

Porous 

Fin with 

Water 

and 

Constant 

Base 

temp 

(Watt) 

Heat 

transfer 

in 

Porous 

Fin with 

Nanoflui

d and 

Periodic 

Base 

temp 

(Watt) 

Heat 

transfer 

in Porous 

Fin with 

Nanoflui

d and 

Periodic 

Base 

temp 

(Watt) 

1 114.781 78.731 212.672 127.126 222.454 132.145 
2 106.134 80.806 181.291 127.739 189.416 132.853 
3 88.292 80.878 138.574 127.739 144.385 132.853 
4 68.531 80.879 97.4978 127.739 101.180 132.853 
5 51.791 80.879 67.403 127.739 69.626 132.853 
6 42.173 80.879 52.492 127.739 54.028 132.853 
7 42.032 80.879 53.704 127.739 55.249 132.853 
8 51.402 80.879 71.524 127.739 73.799 132.853 
9 67.991 80.879 105.073 127.739 108.912 132.853 
10 87.735 80.879 148.552 127.739 154.639 132.853 
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Fig. 3.4.6 and Table 3.2 clearly demonstrate that a porous fin with 𝐴𝑙2𝑂3 

water nanofluid flow significantly enhances heat transfer compared to a 

solid fin and substantially improves it compared to a porous fin with water 

flow. In this study, we used a nanofluid volume fraction of only 0.01, which 

already shows an enhancement in heat transfer. Increasing the volume 

fraction of nanoparticles could potentially enhance heat transfer even 

further. The study confirms that incorporating a porous fin improves heat 

transfer in practical situations, and this enhancement can be amplified by 

using nanofluid flow. Again, from Fig. 3.4.6 and Table 3.2, we can see that 

fins with constant base temperatures achieve a steady heat transfer rate after 

some time, but fins with periodic base temperatures follow a periodic 

variation of heat transfer rate and never achieve a steady state. 

  



50 

 

Chapter-4 

 

4. FUTURE SCOPE AND CONCLUSION 

 

4.1 Future scope 

 This thesis studies porous fins with periodic base temperature and 

nanofluid flow. Along with the main numerical solution model, a steady-

state solution was obtained using the Adomian Decomposition Method, and 

the periodic base temperature solution was derived through Laplace 

transformation while neglecting nonlinear terms. The future scope of this 

research includes several promising directions: 

Combining Solution Methods: 

Integration of the Adomian Decomposition Method and Laplace 

transformation to solve the nonlinear PDE with time-dependent 

boundary conditions might be possible. By utilizing the Laplace 

transformation, nonlinear PDE can be converted into a nonlinear 

ODE, and then the Adomian Decomposition Method can be applied 

to solve the nonlinear ODE. Finally, by performing the inverse 

Laplace transformation, the analytical solution of the entire 

governing equation without any unnecessary assumptions might be 

possible. 

Improving Numerical Accuracy: 

Applying other discretization schemes, such as the central-in-time 

central-in-space scheme or the Crank-Nicolson scheme, might 

improve the accuracy of the current finite difference method. 

Optimizing the step size to improve the precision of the solution 

might be possible. 
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Exploring Different Nanofluids: 

It might be possible to investigate different nanofluids beyond the 

Al2O3-water nanofluid considered in this study to further enhance 

heat transfer. 

Examining the impact of nanoparticle volume fraction enhancement 

through geometric modifications of nanoparticles might be possible. 

Advanced Nanofluid Configurations: 

Exploring the potential of hybrid nanofluids and ternary hybrid 

nanofluids to achieve superior heat transfer characteristics might be 

possible. 

Considering the strategic use of magnetic nanofluids, which can be 

precisely manipulated using Lorentz forces to significantly boost heat 

transfer efficiency, is a technical avenue worth exploring. 

By pursuing these avenues, the scope of the research can be 

significantly broadened, leading to more comprehensive and 

effective heat transfer solutions in practical applications. 

 

4.2 Conclusion 

This thesis thoroughly investigates heat transfer dynamics within 

porous fins infused with nanofluids under time-dependent base temperature 

conditions. The study employs a numerical model based on the finite 

volume method with the explicit FTCS scheme to simulate heat transfer 

phenomena. An analytical solution using Laplace transformation, which 

neglects nonlinear terms, complements the numerical findings. 

Furthermore, the Adomian Decomposition Method validates nonlinear 

terms under steady-state conditions with a constant base temperature. 

This research underscores the practical implications of porous media 

with Al2O3-water nanofluids flow in augmenting heat transfer, a 

significant departure from the conventional solid fin and porous fin with 

water flow. The insights offered here have the potential to significantly 
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impact the practical applications in the field of thermal management. The 

numerical analyses delve into the influence of nanofluid properties on heat 

transfer rates, thereby opening up opportunities for optimizing thermal 

performance in various engineering applications. 

In conclusion, this thesis comprehensively analyzes heat transfer 

augmentation in Al2O3-water nanofluid-infused porous fins under dynamic 

thermal conditions. By integrating numerical and analytical approaches, the 

study contributes insights that could enhance the design and efficiency of 

fins for advanced thermal management systems. 
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