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Abstract

This thesis presents a comprehensive heat transfer analysis of a porous fin
containing nanofluid flow within its pores. The study considers a time-
dependent, periodically varying base temperature at the fin. A numerical
model has been developed using the finite difference method, employing
the explicit Forward Time Central Space (FTCS) scheme to solve the
governing equations. To validate the numerical model under time-
dependent boundary conditions, an analytical solution using the Laplace
transformation method was derived, which neglects nonlinear terms.
Further validation for the nonlinear terms was achieved using the Adomian
Decomposition Method (ADM) under the assumption of steady-state
conditions with a constant base temperature. The combined analytical
approaches provide a robust validation framework for the complex heat
transfer mechanisms within the porous fin system, contributing valuable
insights into the thermal performance of nanofluid-impregnated porous
structures. Additionally, a numerical analysis was performed to determine
the fin's heat transfer rate and efficiency under time-dependent boundary
conditions, and we also analyzed the impact of nanofluid on the heat
transfer and efficiency of the fin.



Chapter-1

1. INTRODUCTION

Efficient heat transfer is the most crucial thing in thermal engineering
applications. In industrial applications, we must remove a large amount of
heat from the system to avoid any thermal damage due to the development
of excessive temperature or thermal stress and ensure the proper and
seamless functioning of those costly gadgets. In mechanical devices that
operate on cycles, such as engines and power plants, it is necessary to
remove heat from the high-temperature fluid to complete the cycle. On the
other hand, high-end electronic gadgets require rapid cooling technology in
a compact format to accommodate the space limitation of those devices.
Heat transfer augmentation has always been an essential concern for
thermal engineers in real-life scenarios. For this reason, the history of heat
transfer augmentation is full of scientific research proposals and
engineering innovations.

Sir Isaac Newton proposed the formulation of Newton’s Law of cooling in
which he described the rate at which an object gets cooled or heated through
heat transfer with its surroundings. The formula is given by

dQ

— =hA(T - T
o= hA(T = Ty)

dqQ . . .
Where d—‘f is the rate of heat transfer, h is convective heat transfer

coefficient, A is surface area of the body, T is temperature of the body and
T is surrounding temperature.

Joseph Fourier introduced the mathematical formulation for heat
conduction through a solid known as Fourier’s Law of Conduction. The
law states that heat transfer rate per unit area or heat flux through a solid
body is directly proportional to the negative temperature gradient in the
direction of heat flow. Mathematically, it is expressed as:
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q = —kVT

Where q is heat flux, k is thermal conductivity of the material and VT is
temperature gradient. These two laws are the most fundamental laws of heat
transfer which have provided the groundwork for subsequent developments
in the field of thermal design.

1.1 Problem description

Fast cooling is required in many real-world situations to enhance device
efficiency and protect against thermal damage. Fins are commonly utilized
to improve heat transfer effectiveness in such systems. In many practical
scenarios, fins are subjected to varying base temperatures, such as car
engines, electronic gadgets, power plant components, HVAC systems, and
aerospace mechanisms.

Car engines: Effective cooling in automobile engines is crucial for
preserving efficiency and avoiding overheating. In automobile engines, fins
are utilized for cooling. The engine operates on a continuous 4-stroke cycle
of suction, compression, power, and exhaust strokes. During each phase,
the temperature of the engine walls fluctuates. Fins attached to the engine
blocks are thus subjected to these varying base temperatures.

Electronic Devices: Current electronic components like CPUs and GPUs
produce significant amounts of heat while in use. Effective cooling
strategies are needed to prevent hardware damage. Varying computational
loads cause rapid changes in the base temperature of cooling fins in those
devices.

Components of power plants: Power plant components such as turbines
and heat exchangers undergo fluctuating thermal loads while operating.
Effective heat transfer is essential to preserve peak performance and avoid
material deterioration caused by elevated temperatures.

Much research on fins assumes a constant base temperature due to the
difficulty of solving PDEs with time-dependent boundary conditions
despite the practical need for such analysis. Yet, tackling boundary
conditions that vary with time can be very beneficial, leading to a more



thorough examination that encompasses the fixed base temperature as a
specific instance of the broader solution.

Using porous fins and nanofluid flow offers an excellent solution to
enhance heat transfer in these critical applications. These advanced
methods can significantly improve cooling efficiency and overall
performance, making them highly valuable in scenarios where fast and
effective heat dissipation is crucial.

Mathematical Background:

French mathematician Pierre-Simon Laplace introduced a mathematical
technique known as the Laplace Transformation Method to solve partial
differential equations by transforming the time domain into the frequency
domain, which converts the partial differential equation into a simple
ordinary differential equation and then solves that ordinary differential
equation and finally transforms back into the time domain by performing
inverse Laplace operation. This technique is one of the most powerful tools
in mathematics for dealing with complex mathematical models. However,
the method used in this technique was the inverse Laplace operation.
Augustin-Louis Cauchy did some significant research in the field of
complex mathematics, and he proposed Cauchy's Integral Theorem,
Cauchy's Integral Formula, and Cauchy's Residue Theorem to deal with
complex integrations, which became helpful tools for Laplace inversion
operation. George Adomian developed a formula to deal with nonlinear
differential equations by decomposing the nonlinear term into a polynomial
known as the Adomian Decomposition Method. This method can only
provide a rapidly converged solution by considering a few terms in the
polynomial series. In the latter part of the 20th century, computer
technology improvements transformed how complex heat transfer
problems were tackled. The development of numerical methods, including
the finite difference method, finite volume method, and finite element
method, played a crucial role. With the advent of high-performance
computers, the precision of numerical solutions increased while
computation times decreased, making it possible to effectively address a
wide range of intricate and practical heat transfer issues. These
mathematical developments significantly enhanced the accuracy of heat



transfer and fins' performance analysis, making fins suitable for complex
modern applications.

1.2 Literature Review

1.2.1 Some early works

Early research on fins was predominantly focused on material and
geometrical modifications to enhance the performance of fins. Harper and
Brown [1] proposed an analytical solution for a 2-dimensional heat transfer
model for rectangular fin, waged fin, and annular fin of constant thickness.
The solution gave an expression to determine the fin efficiency. Gardner [2]
derived a general expression of temperature for a fin whose thickness varies
with some power of length. Horatio Scott Carslaw and John Conrad Jaeger
described the theoretical aspects of heat transfer in their book Conduction
of Heat in Solid [3]. This book is one of the fundamental books on heat
transfer. Cobble did the first analysis of fin heat transfer by considering the
combined effect of convection and radiation [4]. He analytically solved the
nonlinear differential equation through a numerical approximation of the
nonlinear term. His work closely matched with experimental data.
Cobble [5] tried to find the best geometry through his research. He
developed a steady-state nonlinear differential equation for temperature
distribution and then divided the expression with half-fin length and total
fin volume. The optimization process minimizes fin volume by adjusting
temperature distribution parameters, yielding minimum volume designs.
Ozisik [6] described various techniques to solve differential equations, such
as separation of variables, Laplace transformation, etc., for various
boundary conditions in his book. He solved a wide range of practical
examples in his book. This book serves as a foundational framework for
advancing studies in heat conduction. Minkler and Rouleau [7] analyzed a
rectangular fin by considering volumetric heat generation inside the fin.
Chen and Fluker [8] performed an analysis of a composite fin. They took a
radial fin of two materials and solved the governing differential equation
using the Laplace transformation method. They also compared the results
with the fins made of a single material and found that composite fins can
enhance heat transfer. Heaslet and Lomax [9] observed that thermal
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conductivity varies as temperature changes, so they took thermal
conductivity as a function of temperature and performed the analysis for the
extended surface. They solved the nonlinear governing equation using a
numerical technique.

1.2.2 Numerical Works

Cumo, Lopez, and Pinchera [10] performed the first numerical solution of
an extended surface. They calculated a fin's heat transfer rate and efficiency
by numerical technique. Hung and Appl [11] numerically solved the
governing equation of fin by considering variable thermal conductivity,
heat transfer coefficient, and thermal emissivity. Their work addressed one
of the most general cases of fin heat transfer. Sane and Sukhatme [12]
numerically analyzed short fins under natural convection heat transfer.
They calculated the natural convective heat transfer for a horizontal fin
array. They also determined the effect of various parameters in fin heat
transfer. Their result closely aligned with the experimental data.
Campo [13] solved the fin heat transfer equation for both steady and
transient cases by considering convection and radiation. He solved the
partial differential equation by the finite difference method. This was one
of the earliest works on the finite difference method applied to fins. This
work introduced a new approach to solving the fin heat transfer equation.
Sparrow and Hsu [14] determined the convective heat transfer coefficient
at the fin tip by considering the entire fin is exposed to adiabatic
surroundings. They used the finite difference method to solve the governing
equation. Char and Chen [15] applied the finite difference method to solve
the governing equation of a two-dimensional trapezoidal fin. They
performed transient analysis and determined the heat transfer through the
fin surface.

1.2.3 Studies on Periodic Base Temperature

Researchers observe that in many practical case scenarios, like in
automobile engines, the base temperature of a fin also varies with time. For
this type of case, an unsteady state analysis was required. Chapman [16]
performed a transient analysis for a radial fin subjected to a sudden stepped
increase in base temperature. He solved three types of Bessel functions
using the graphical method. Donaldson and Shouman [17] performed a
transient analysis of a rectangular fin exposed to the environment under
6



starting conditions. Bertz [18] obtained a solution for radial fins of varying
thickness exposed to periodic base temperature. He performed analytical
solutions by Fourier transformation. After one year, Newhouse [19] also
performed a similar kind of analysis but with a constant thickness radial fin
exposed to periodic base temperature. Malikov [20] analyzed a two-
dimensional circular fin subjected to temperature variation in radial and
circumferential direction. He also considered periodic base temperature in
his analysis. Sparrow and Hennecke [21] studied the temperature profile of
a rectangular fin subjected to decreasing base temperature. They thought of
the constant thermal conductivity of the material in their study. Yang [22]
analyzed rectangular fins subjected to periodic boundary conditions. He
solved the steady part and oscillating part individually and then obtained
the complete solution of the governing equation analytically by
superimposition. He also calculated time-averaged efficiency for a
rectangular fin exposed to periodic boundary conditions. He also studied
the effect of various parameters on heat transfer in his analysis. Aziz [23]
performed a similar analysis for radial fin. Sparrow and Lee [24]
analytically solved the heat equation for periodic base temperature by
separating variables for a finned tube wall. Aziz and Na [25] solved the heat
equation for periodic base temperature by a perturbation method. They also
considered the effect of radiation heat transfer in their analysis. Al
Mujahid [26] solved the heat equation for periodic base temperature in a
triangular fin by numerical techniques.

1.2.4 Recent Advancements and Background of Porous Fin and
Nanofluids

In the quest to enhance heat transfer from fins, researchers experimented
with various innovative approaches. They observed that a fin's heat transfer
rate directly depends on its surface area. Therefore, increasing the surface
area could enhance the heat transfer rate. As a result, they developed fins
made of porous materials. Darcy conducted numerous experiments on
water flow through sand and documented the behavior of fluid flow and
heat transfer characteristics through porous media in his book [27] Les
fontaines publiques de la ville de Dijon, which became a foundational text
for understanding heat transfer through porous materials. Donald A. Nield
and Adrian Bejan described the principles and applications of convection
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in porous materials in their book [28] "Convection in Porous Media." It
covered fundamental concepts like Darcy's law, heat, mass transfer, and
different types of convection. The book included mathematical models and
experimental methods, making it essential for researchers and engineers.
M. Kaviany described various numerical methods for solving single-phase
and multiphase flow through a porous medium in his book [29] "Principles
of Heat Transfer in Porous Media." S. Y. Kim and Assoc. Mem [30]
performed an experimental study that explored the influence of porous fins
on pressure drop and heat transfer in plate-fin heat exchangers. They
performed the experiment with 6101 aluminium-alloy foam fins of varying
permeabilities and porosities, revealing similar thermal performance to
conventional fins but with slightly higher pressure drops. They observed
the designs with high pore density and low porosity are the most effective.
In 2011, Blaram Kundu and Dipankar Bhanja [31] performed a steady-state
analytical solution of porous fin heat transfer. They used the domain
decomposition method to deal with the non-linearity of the governing
equation. Using differential transformation and finite difference methods,
Sobamowo et al. [32] examined heat transfer in a moving rectangular
porous fin with temperature-dependent thermal conductivity and internal
heat generation. Their studies indicated increased porosity and convection
enhanced heat transfer and efficiency, whereas higher thermal conductivity
and internal heat generation decreased heat transfer. Recent advancements
in nanofluid research have revealed promising possibilities for enhancing
heat transfer in porous fins. Researchers have noted significant
improvements in heat transfer when nanofluids flow through the pores of
the fins. Mohammad Ghazvini and Hossein Shokouhmand [33]analyzed
CuO-water nanofluids in microchannel heat sinks using analytical and
numerical methods, comparing the Fin model and porous media approach.
They investigated the impact of particle volume fraction, Brownian motion,
channel aspect ratios, and porosities on temperature distribution, heat
transfer, and friction factor and identified an optimal aspect ratio. Sowmya,
Gireesha, and Prasannakumara [34] investigated the thermal behavior of
radial porous fins wetted with nanofluids containing molybdenum disulfide
nanoparticles in water. They explored non-spherical nanoparticle shapes
such as platelets, cylinders, bricks, and blades. They solved the governing
equation numerically using the Runge Kutta Fehlberg method and found
that brick-shaped nanoparticles are the most effective among those
8



examined. Manohar et al. [35] described that semi-spherical fins have been
widely valued for their efficient thermal exchange properties, commonly
applied in aerospace, chemical processing, and electronics. They studied
the performance of hybrid nanofluids over these fins using Darcy's model.
It examined internal heat generation, natural convection, and radiation
effects, analyzing their specific influences on fin surface temperatures
through numerical methods. Baslem et al. [36] analyzed heat transfer
through a fully wetted longitudinal permeable fin using nano liquids
containing titanium dioxide, aluminum oxide, and copper nanoparticles in
water under natural convection and radiation. The energy equation was
numerically solved using the Runge-Kutta-Fehlberg method. Their
graphical analysis detailed the effects of geometric and flow parameters on
fin temperature distribution, emphasizing the enhanced heat transport
capabilities of Cu-water nano liquid. Using ternary hybrid nanofluids,
Suresh et al. [37] investigated thermal behavior in a dovetail fin under fully
wet conditions. They considered temperature and humidity ratio differences
as drivers for heat and mass transfer while analyzing surface convection,
radiation, and internal heat generation effects. They solved the governing
equation using the differential transformation method and the fourth-fifth
order, the Runge-Kutta-Fehlberg (RKF) method. Their study emphasized
ternary hybrid nanofluids' superior thermal response and dispersion
characteristics. In conclusion, these advancements in fin technology enable
the effective management of complex practical scenarios requiring rapid
and substantial heat transfer. These innovations enhance thermal
performance, allowing for swift and efficient handling of high heat loads.
Such progress is crucial for applications needing quick heat dissipation to
maintain optimal operational conditions, demonstrating notable
achievements in this field.

Sowmya et al. [38] performed a transient analysis of porous fins
using the finite difference method. They numerically determined the net
heat transfer from the porous fin under transient conditions. Kheirandish et
al. [39] analyzed solid fins with periodic base temperatures. They
considered the non-Fourier heat conduction model and used the Spectral-
Finite volume approach to perform the analysis. Yildirim et al. [40]
determined thermal stresses in an annular fin with a time-dependent base
temperature. They solved the governing equation using the Laplace
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transformation method.Sahu and Bhowmick [41] numerically solved the
composite fin with time-dependent boundary conditions using the lattice
Boltzmann method and determined the temperature profile for various time-
dependent boundary conditions. Ma et al. [42] performed a non-Fourier
heat conduction analysis of a solid fin subjected to periodic base
temperature. They used the element differential method to analyze and
determine temperature distribution.

10



1.3 Aim of the Thesis

This thesis aims to study heat transfer properties for porous fins, especially
in situations where the fin's base temperature changes over time, like in
electronic devices and car engine blocks. For these applications to function
optimally and prolong the life of the systems, effective and quick heat
dissipation is necessary. For example, the heat produced in car engines must
be quickly removed to avoid overheating and preserve engine efficiency.
Similarly, reliable operation and prevention of thermal damage in electronic
equipment depend on efficient heat management. Porous fins are
advantageous in these situations because of their larger surface area, which
improves heat transfer. Moreover, heat transmission can be greatly
enhanced by adding nanofluid flow through porous fins. Furthermore,
nanofluids have higher thermal conductivity than ordinary fluids, so heat
transfer can be greatly enhanced by adding nanofluid flow through porous
fins. However, there are several difficulties in researching heat transfer in
porous fins with nanofluid flow due to the complexity of the governing
equations, which include nonlinear terms. To complicate matters, the
boundary conditions might also be periodic and frequently dependent on
time. To properly represent the time-dependent aspect of the process,
transient analysis is required, which means we have to solve a partial
differential equation. Despite these obstacles, this thesis aims to close the
current research gaps by creating and resolving the nonlinear partial
differential equations with periodic boundary conditions representing the
practical system and thoroughly examining the associated heat transfer
mechanisms.

11



Chapter-2

2. PROBLEM FORMULATION AND SOLUTION

2.1 Problem Formulation

000Nn0OO0D0O0OO 000000000
00Q i9 0 00 o 00000 QO
000 O o 0 o0 O cond™ 0 0 O
000 o oX°) o #o 9x+dx) 00 o
OOOOOOQ‘q’, [} (9 00 o
0000000 () 00000
0000000 OO0 L0 0000000
00000000 0 ZO 0000 OO0 O
00000000 0000000O0
000000000 00000000
0000000000 ¢ 000000000
0000000000 000000000 O
X dx

Fig.2.1 A schematic diagram of a longitudinal porous fin with a control
volume for the energy balance.

Applying energy balance equation for a samall element length of dx we
get
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(qx - Qx+dx) + QgenWtbdx - mef(T - Ta) -
oT
2hwdx(1 = @)(T = T,) = [pclepy 5y Wty

Applying Taylor’s series expansion for the term g, 4, We get

oq
Qx+dx = dx T a_xxdx

Replacing q,. 4, term in governing equation

_9ax
ox

T
2hwdx(1 — @)(T —T,) = [pc]effawtbdx

dx + qgenwtpdx —mcy (T —T,) —

From Fourier’s law of conduction

aT
qx = _kefthb e

Here effective thermal conductivity of the material is considered to

account for the effects of porosity.

We are assuming effective thermal conductivity is independent of

temperature
d aT
So, - (=kepswty a)dx + qgenwtpdx — mcy (T —

oT
T,) — 2hwdx(1 — @)(T —T,) = [pc]effawtbdx
o%T
Or, (kepfwiy ﬁ)dx + qgenWtpdx — r;wpf(T —T,) —
T
2hwdx(1 — @)(T —T,) = [pc]effawtbdx

The expression for mass flow rate is given by
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m = prv(x)wdx

Where expression for v(x) is
v(x) = ZELRD (7 1) (28]
f
So, m:M(T_T)de
Vf a
Replacing the expression for m in the governing equation we get

a%T
(kefthb ﬁ)dx + qgenwtbdx -

M (T — T,)*wdx — 2hwdx(1 — )(T —
f

ar
To) = [pclefr 5 wipdx

By simplification we get

9T | dgen  9PsK cpysin(y) (T —T,)% — 2h(1-¢)
a

0x2 keff Vftbkeff tbkeff
) = [oclesr OT
a kerr Ot

Now nondimensionalizing the governing equation by putting

x T-T, t
X==;0= “andT=T
L Tpm—Ta MLZ

kerr

By substituting these our governing equation converted into

(Tbm_Ta)az_e + dgen gprBf CpfSin(V)(Tbm_ w)? 92 _

L? ax? Kefr VetpKers
2h(1-¢)(Tpm—Ta) 0 = (Tpm~— a)a_g
thKerf L2 ot
OI', 62_9 Qgean _ gpsKpBr CpfSin(V)(Tbm_Ta)Lz 92 _
0Xx? keff(Tbm_Ta) VetpKers
2h(1-@)L? , _ 06
tpKerr - E
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Let us assume that

_ 9PK By cprsin(y) (Tpm—Ta)L? B= 2h(1-¢)L? dc= qgenl?

A = ‘fgem>
vetpkers ’ tpkess kefrf(Tom=Ta)

So, our governing equation converted into

2
9% _a62-Bo+c=2

o (2.13)
ax2 ot

Equation (2.13) is a non-linear partial differential equation which is
subjected to Periodic boundary condition at X = 0

0 =1+ acos(wr) (2.14)
Insulated tip boundary condition at X = 1
% _ (2.15)

Pl

Initially the entire fin is at atmospheric temperature

g=-ala _ (2.16)
Tpm—Ta
Therefore,at T =10
6=0 (2.17)
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2.2 Solution by Finite Difference Method

The governing equation we're dealing with is a nonlinear partial differential
equation (PDE) characterized by its dependence on spatial and temporal
variables. Additionally, the boundary conditions change over time, adding
another layer of complexity. Nonlinear PDEs are inherently difficult to
solve analytically because their solutions usually follow more complex
methods. In our case, incorporating the effects of porosity into the equation
introduces the nonlinear terms. This term complicates the behavior of the
solution, making it hard to predict and manage through analytical
techniques.

The analytical solution of our governing equation typically relies on
simplifying assumptions or special techniques that only capture part of the
problem's complexity, especially when dealing with nonlinearity and time
dependency. Therefore, analytical solutions are limited to specific cases and
may only be generalizable to some situations.

Given these challenges, a numerical solution becomes a more practical and
effective approach. By applying finite difference method, we have
successfully discretized the governing equation and boundary conditions
into a form that can be handled computationally. This method can also
accommodate the nonlinear nature of the PDE and the time-dependent
boundary conditions more flexibly.

With this approach, we can simulate the system's behavior under various
conditions and obtain approximate solutions that are sufficiently accurate
for practical purposes. This approach enables us to handle the complexities
and intricacies of the governing equation and its boundary conditions,
providing valuable insights and results that would be difficult to achieve
analytically.

To solve the governing equation numerically we have used finite difference
method. As this method can efficiently handle the complexities of the
governing equation and boundary conditions. Therefore, the governing
equation of our problem without any undesired assumption is given by
equation (2.13).
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We have discretized all the terms and converted them into a set of algebraic

equations to solve this nonlinear partial differential equation using the finite
difference method. For discretization, we applied the Forward in Time and
Central in Space (FTCS) scheme, which is second-order accurate in space
and first-order accurate in time. Moreover, we have used the explicit
method for discretizing the governing equation. In the explicit method, we
use all the terms of the nth time step to calculate the terms in (n+1) th time
step.

. . 926 .
Discretizing the oxz term by central difference

2% _ 041-26]+6), (2.18)
axz (Ax)?

Where, j is spatial point and n is time step
: . 20 .
Discretizing the term > by forward difference

%0 6" -6} (2.19)
foka AT

Substituting equations (2.18) and (2.19) into equation (2.13) we obtain

07, —267+6]- 2 o7 107 (2.20)
jt+1 J 71 n\< _ n — 2 J
ax) A(6]')" —BO!' + € =L

By simplification we obtain

n n n
o7, —207+67

1 _ Ly 2 (2.21)
o/ =0 + AT[ T e A(6F)" —BO! + C]

Now, Discretizing the boundary conditions
Boundary condition (2.14) converts into
At j=0,
0} = 1+ a cos(wnAr) (2.22)
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Boundary condition (2.15) converts into

At, j = jmax »
n n
gl'max_el'max—l =0
AX
n — n
OI', ejmax - HJ.max_1

Initial condition (2.17) converts into

Atn=0,

(2.23)

(2.24)

(2.25)

Now we can create a matrix having j,,,, number of column and n,,,,
number of row and we can assign the initial condition and boundary
conditions in that matrix and use Gauss Seidel method to calculate 8 for all

the value of 1 and n.

While selecting the step sizes, we must ensure that the FTCS scheme's
stability criteria are satisfied and that smaller step sizes can provide accurate

results.
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2.3 Determining Heat Transfer Rate Through Fin

To determine the heat transfer rate through the fin, we have performed a
control surface analysis. From the finite difference model, we can obtain
non-dimensional temperature at various locations on the fin. Considering a
small heat transfer surface around a point, we can easily calculate heat
transfer from that surface by applying Newton’s law of cooling. Finally, we
added them to transfer heat from the entire surface.

Fig. 2.2 A lattice point in a fin used in computational purpose.

For a significantly small value of dX, we can assume that the temperature
remains constant within that small region.

Therefore, heat transfer rate through the small region is given by

— ti nanofluid flow
de — dQ]gonvec lon 4 de (2.26)
Or, dQ; = Zthx(l —@)(T —Ty) + (2.27)
yprﬁfUC:fsm(y) (T — T,)?wdx

Again, from nondimensionalization conditions we know that

Xx=2%and 0 =2 and by further simplification
L Thrm=Ta
Therefore, _ tokerr(Tom=Ta) WaX 1, 12 2.28
dQ; = : [467 + B6)] (2.28)

Clearly, if we add dQ; for all values of j then we can get the total heat
transfer from the fin for a particular time.
19



2.4 Case Studies

2.4.1 Steady state solution by Adomian Decomposition method
If we look at our governing equation (2.13), we can see that it is a partial
differential equation with a nonlinear term. The Adomian decomposition
method is a well-established approach for addressing nonlinear terms. This
method provides fast convergence only by considering a few terms in the
series. Adomian decomposition method can provide an analytical solution
by dealing with nonlinear terms. The result obtained by Adomian
decomposition is well known for its high accuracy and close alignment with
experimental studies. We have used this method to solve our governing
equation under special conditions to check the accuracy of our numerical
model. We have assumed a steady-state condition to solve this governing
equation. Again, we must use a constant base temperature to achieve a
steady state.

Our governing equation for steady state is
dze

4 —40°—BO+C=0 (2.29)

Now the governing equation is subjected to modified boundary condition

Insulated tip condition at X = 0

9 _ 0 (2.30)

ax —
Dirichlet boundary condition at X = 1

6=1 (2.31)

In Adomian decomposition method 8 can be decomposed in an infinite
series such as

Adomian polynomial for 82 is given by

U6) = 6% = %o Py (2.33)
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. 2.34
Whete, p _ 1 [GruEore))] (2.34)

Therefore,
Py =1x [;—; U(GO)L=O (2.35)
Or, Py, =U(6,) (2.36)
Or, Py = 6,° (2.37)
Similarly,
Py = 26,6, (2.38)
P, = 6:% + 26,06, (2.39)
Let us assume,
dd_X22 —A (2.40)
and Af(x) = f;c f;cf(u)dudu (2.41)

Applying Adomian decomposition to our governing equation we get

Yn=olAl8y — APy — BOy]+C =0 (2.42)
Or, YN=0lA0y] = XR-0[APy + BOy] - C (2.43)
Or, 00N = Xv=oATHAPy + BOy] —ATIC + Oy_o + (2.44)
X x=0
Therefore,
By = Ox0+ X2 4o (2.45)

Let us assume that temperature of fin tip is
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So,

Now,

Or,

Or,

Similarly,

Or,

Or,

Or,

Again,

Or,

Or,

Or,

0o =¢

6, = A"[APy + BO,] — AIC
0, = A"1[A6,% + BO,| — A7C

0, = (48> + BE - O %

92 = A_l[Apl + Bgl]

92 = A_l[A X 29091 + 391]

0, = A1[A x 28 (A2X2 | BEXE XY |
ety

AE% x4
2X3%4

0, = (2AE + B)(A§2 + BE — C)

93 = A_l[APZ + BGZ]

0; = A1 [A(6,% + 20,0, ) + B6,]

9, =A"1 [A {(AEZ +BE—0) X?}Z + 2A8(AE% +

B¢ - OX + Bag? +BE—C)X7Z]

0; = A(AE? + B¢ — (:)2
B)(A&%2 + BE - C)

2X2X5%X6 + (ZAf +

2X3X4

22

(2.46)

(2.47)
(2.48)

(2.49)

2.51)
(2.52)

(2.53)

(2.54)

(2.55)
(2.56)

(2.57)

(2.58)



Therefore, the final expression for non-dimensional temperature is given
by
2
6=¢+ (A8 +BE -0+ as+Byagz+ (59
BE — )X 4 (g2 + BE — )2 X
2X3x4 L 2x2x5%6
X

(248 + B)(A§* + BE - €)

+

The value of & falls between 0 and 1. To pinpoint the exact value of &, we
have applied the boundary condition where X=1 and 6=1. By inserting this
boundary condition into the equation, we have numerically solved for &.
After finding the value of & we have then substituted it into the final
expression for 0, to accurately determine the temperature profile.

The analysis shows that the Adomian Decomposition Method offers several
advantages, such as effectively handling non-linear terms and achieving
rapid convergence with only a few terms. However, complexities arise
when dealing with partial differential equations, especially when one of the
boundary conditions is time-dependent. In such cases, the Laplace
Transformation Method can be applied to address these complex situations
and obtain transient analysis with periodic boundary conditions.
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2.4.2 Solution by Laplace transformation method

As we have seen, our original governing equation contains a nonlinear term,
but we know the Laplace transformation method cannot handle nonlinear
terms. The Laplace transformation method is one of the most popular
methods for solving partial differential equations, mainly when boundary
condition depends on time. Therefore, with some assumptions, we have
solved our governing equation with the Laplace transformation method and
compared the result with our numerical model. The Laplace transformation
method can provide an accurate analytical study of our governing equation
with periodic base temperature boundary conditions. Applying the Laplace
transformation converts the partial differential equation into an ordinary
one. Hence, the dependent boundary condition is also converted into a
constant boundary condition. That ordinary differential equation can be
casily solved and finally by applying inverse Laplace transformation
solution of the original partial differential equation can be obtained. To
solve the equation using the Laplace transformation method, we neglected
the nonlinear term of our original governing equation (2.13).

Therefore, our governing equation transformed into
%0 _ _ 96 (2.59)
%7 BO +C = aT

Now the governing equation is subjected to boundary condition given by

equation number (2.14), insulated tip boundary condition given by equation
number (2.15) and initial condition given by equation number (2.17)

Now applying Laplace transformation on both side equation (2.59)

2
& —BA+i=s6-0, (2.60)

dx?

By applying initial condition (2.17) our equation coverts into

ae _ C_ g (2.61)
dx2 BO + =s6

Or, c (2.62)
dXz —(B+5)0+=— .

Applying Laplace transformation on the boundary conditions (2.14) and
(2.15)

At,X =0
24



G=ly_0 (2.63)
S S“tw
AL X =1
@ _, (2.64)
ax

Our modified governing equation, given by (2.62), is a non-homogeneous
ordinary differential equation. The solution to this equation includes both a
complementary function and a particular integral.

Solving for complementary function

daze _

- 2.65
S -B+98=0 (2.65)

Aucxiliary equation is given by

[W2—(B+s)]6=0 (2.66)
So, Y=1J(B+s)
Therefore,
CF = (1e(B+s)x + (26—(B+s)x (2.67)

Solving for particular integral

e (2.68)
s(B+s)

The complete solution is given by

0 =CF+PI (2.69)
9‘ — (1ex,/(B+s) + {Ze—xw/(B+s) + C (2.70)
s(B+s)
Applying boundary conditions (2.63) at X = 0

- c
Ox=0 =0+ + SB+s) (2.71)

Or, 1 _as _ _<¢ 2.72
s + s24w? Gt &+ s(B+s) ( )
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OI‘, _ l as _ Cc
Gté= (s + 52+w2) s(B+s)

Applying boundary condition (2.64) at X = 0
2 = {J (B +5)eVE+) — ¢, [(B + 5)e V(E+S)

dXx=1

Or, 0={0\/(B+5)eVEF) — ¢, /(B + s)e VES)
Or, 0 = 526_2‘/(3”)

Substituting the value of {; into equation (2.73) we get
(26—2\/(3?) + (2 = (1+ as ) ¢

s s2+w? s(B+s)

Or, eV(B+s) (1 as c )

2= (e~V(B+5) 4oV (B+s)y s | s2+w?  s(B+s)

Form equation (2.73)

4 = e~V (B+S) (1+ as € )
1= (e—«/(3+5)+e«/(B+S)) s sZ+w?  s(B+s)

Therefore,

e~V(B+s) 1 as
(e_‘/(B+S)+e‘/(B+S)) (

I ) ex\/m n e\/(B+S) (l + as _
s(B+s) (e VEB+) 1oV (B+)y \s  s?+w?

c ) e—xw/(B+s) + _c

s(B+s) s(B+s)

6 =

s s2+w?

By further simplification

= 1
0= (E + sZrw? s(B+s)

as c ) cosh{(x—l)‘/(B+s)} 4 c
cosh./(B+s)

Applying inverse Laplace transformation on each term
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(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)



1 cosh{(x—l)‘/(B+s)} _ . (2.82)
[ oy s Sl Sum of residues at poles
cosh{(x—1)1/(B+s)} .
Scosh JBTe) has simple polesat s = 0 and at s = s,
2
Where, o _ _(2n—1)2 (g) —Bforn=12345.... (2.83)
Or, VB +s) =iz (@2n-1) (2.84)
Residue at simple pole atis s = 0 given by
Resid I (s—0)esT cosh{(x—l)w/(3+s)} (2.85)
esldtbs=o0 = sl—l;r(% scosh./(B+s)
Or, _ cosh{(x-1)VB} (2.86)
Residueg_g = = coshVE

Residue at simple pole at is s = s, given by

lim (s- sn)esrcosh{(x 1)1/(B+s} (2.87)
sLsn scosh/(B+s)

Residues—,

Or, . — (s—sn) (2-88)
ReSldues=sn sll»sn cosh\/(BT
est cosh{(x 1)‘/(BT}
sl?n
Here, sll)sn Coshm sin — format therefore we can apply L’Hospital’s
rule
e =
Residues—; = Sll)rsrll sinh/(B+s) 8
est cosh{(x‘l)M}
m
S

S5—5n
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Or, ; _ 1 (s—sn) (2.90)
Residues_, sllgl—cosh s X
_ esfcosh{(x—1)1/(3+s)}
lim .
S-5Sp
or, Residue,_; = —JE+n) , e" cosh{(x-1)/B+s}  (2.91)

- sinh/(B+sy) Sn
By substituting value of 1/ (B + s,,) from equation(2.84) we get

2xiZ(2n-1) (2.92)
— 7 X
sinh{iE(Zn—l)}
esnt cosh{(x—l)ig(Zn— 1)}

Sn

Residues_g =

Now from the properties of hyperbolic functions we know that
cosh(i®) = cos® and sinh(i@) =isin®

Therefore,

2xZ(2n-1 snT -2 /2n-1) 2.93
Residues—g = Xz @nn x COS{(x Y/ Gn } (2.93)

sin{g(Zn—l)} Sn
We know that
sin {E (2n - 1)} = (—1)n*! (2.94)
2
So, Residues—s, = (—1D)"*! x m(2n — 1) X (2.95)
esn? cos{(x—l)g(Zn—l)}
Sn
Therefore, from (2.82),(2.86) and (2.95) we get
-1 cosh{(x—l)\/(B+s)} __ cosh{(x-1)vB} 4 (2.96)
scosh./(B+s) a coshvB

snt -1)Z%(2n-1
S (L) % p(2n — 1) x oG DEen D)

Sn

Similarly applying inverse Laplace transformation on the next term
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-1 as cosh{(x—l)‘/(B+s)} _ (2.97)
(52+w2) cosh,/(B+s) N

Sum of residues at poles

has poles at s = iw,s = —iw and at s = s,

as cosh{(x—l)w/(B+s)}
(52 +w2) cosh./(B+s)

where s, is given by equation (2.83)

Similarly, residue at pole at is s = iw given by

Residueg_i,, = (2.98)
5% cosh{(x—1)y/(B+s)
lim (s — iw) (52)- coshlc )
s—iw S°tw cosh/(B+s)
Or, . o\ et cosh{(x—l)w/ (B+iw)} (2.99)
Residueg_i,, = (—) -
2 coshJUS+—m)
Again, residue at pole at is s = —iw given by
Residueg—_j,, = (2.100)
ST cosh|(x—1)y/(B+s)
lim (s+iw)(2as z)e = {x S}
so—iw s“+w cosh./(B+s)
Or, . a\ e et cosh{(x—l)w/(B—iw)} (2.101)
Residueg__j,, = (—) .
2 coshm

Residue at simple pole at s = s,, is given by

Residues_ = (2.102)
li as \ e’ cosh{(x—l)M}
slg:l(s - Sn) (52+w2) cosh /(B+s)
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Or, Residues—;, = (2.103)

(s— sn) . as ST .
sllg}l cosh./(B+s) X sl—gl (sz+w2) e cosh {(x
DJB +s }

Previously we have calculated lim ——— (s

5-5p cosh,/(B+

s0, once again repeating all

those steps we get

Residues—;, = (—=1)"*' x m(2n — (2.104)
1) x ( Zi" 2) e*n" cos {(x -1 g (2n — 1)}
From equations (2.97), (2.99), (2.101) and (2.104) we get

-1 as cosh{(x—l)q/(B+s)} _ (2.105)
(52+w2) cosh/(B+s) B
elwt cosh{(x 1)/ (B+iw) }

(2) cosh\/m

(a) —iwt cosh{(x 1)/ (B—iw } Z%o_ ( 1)n+1 y

2 cosh./(B-iw)

7(2n—1) x (Sal) esn? cos {(x -1 2 Z@n- 1)}

2 2
n“tw

Now, applying inverse Laplace transformation on the next term

[t c cosh{(x—l)\/(B+s)} _ (2.106)
{s(B+s)} cosh\/m B

Sum of residues at poles

c cosh{ x—1),/(B+s) }
{s(B+s)} cosh./(B+s)

where s, is given by equation (2.83).

has polesats = 0,s = —Band ats = s,

Residue at simple pole at s = 0 is given by

Resid — 1 (s—O)eSTCxcosh{(x—l)‘/(B+s)} (2.107)
esldUes=0 = l_I)T(l) s(B+s)cosh/(B+s)
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OL  Residues_o = %ﬁl‘g@ (2.108)
Residue at simple pole at is s = —B given by
Residues__p = lim (s+B)e"" Cxcosh(x—1)/(B+s)} (2.109)
$="B T J"B~ s(B+s)coshy/(B+s)
or, i Cxe (2.110)

Residues__p = — -

Residue at simple pole at s = s,, is given by

Residues—; = (2.111)
i c est cosh{(x—l)\/(B+s)}
slgil(s ~ 5n) {S(B+S)} cosh./(B+s)

Or, Residues—;, = (2.112)

(s=s i 4 ST _
shl’srllcoshm Hn{s(m )}e cosh {(x

DJ(B +s }

(s—sn) . .
Previously we have calculated s,lH?n cosh (515 0, once again repeating all
those steps we get
Residues—s, = (—=1)"*' x n(2n — (2.113)

1) x {Sn(3+5n)} e*n? cos {(x -1 g (2n - 1)}

From equations (2.106), (2.108), (2.110) and (2.113) we get

s(B+s) cosh./(B+s) Bxcosh+B
B
+ 2??:1(—1)114-1 X n(Zn —
Cc
1) x {Sn (B+Sn)} e cos{(x — 1) 2 (2n - 1)}
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Now, applying inverse Laplace transformation on the last term

B [S(B+s)] = Sum of residues at poles

s(B+s) has simple poles at s = 0 and at s = —B

Residue at simple pole atis s = 0 given by

. 1. (s—=0)e’TxC
Residue;_y = £1_r)r(1) TS
Or, Residueg_ =§
Residue at simple pole atis s = —B given by

Residue.—_p = lim
s=-B s—»>—B S(B+s)

-BT
. e Cc
Or, Residues—q = — 5

From equation (2.15), (2.17) and (2.19) we get

s(B+s) B B

_1[ c ] c eB¢

By considering all terms the final expression for non-dimensional

temperature is given by
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o= %ﬂéﬁ} FYE () xa@n—1)x 212D
e’n’t cos{(x—l)g(Zn—l)} + (ﬁ) elot cosh{(x—l)\/ (B+iw)} +
Sn 2 cosh./(B+iw)
(g) e~ iwT Cosh{(x—l)ql(B—iw)} n Zoo (_1)n+1 %
2 cosh./(B—iw) n=1

m(2n —1) X ( n )esnT cos{(x — 1)%(211 —

Sp2+w?

Cxcosh{(x—1)vB Cxe~BT o
D+ e e 4 T (D™
m(2n —1) X {SH(BC+Sn)} e5nT cos {(x -1 % (2n —
C —B‘EC
1)} tg~ - B

To determine the temperature profile, we have extracted the real
part of the solution. This involves considering only the real component of
the mathematical expression we obtain from solving the governing
equation. By focusing on the real part, we can accurately represent the
physical temperature distribution in the system. Although the Laplace
transformation method can deal with time-dependent boundary conditions,
it cannot handle the nonlinearity of the governing equation. However, to
incorporate the effect of porosity, we must deal with nonlinear partial
differential equations along with time-dependent boundary conditions. Due
to these complexities, it is very difficult to get an analytical solution to the
problem. In such cases, our numerical solution can efficiently handle the
complexities of the governing equation and boundary condition. But
Laplace transformation and Adomian decomposition methods solution
helped us to check the validity and accuracy of our numerical model.
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Chapter-3

3. RESULTS AND DISCUSSION

Before proceeding with any analysis, we must validate our
numerical model to ensure its accuracy and reliability. Validation involves
comparing the numerical model's results with known solutions to establish
its credibility. In the "Case Studies" section of the previous chapter, we
discussed two distinct analytical solution methods that will serve as
benchmarks for our validation process.

Firstly, we explored the Adomian Decomposition Method (ADM)
applied to the steady-state scenario. This method is particularly effective
for solving nonlinear differential equations, making it suitable for our
purposes. By comparing the numerical model's results with those obtained
from the ADM, we validated the accuracy of the nonlinear term in our
model. This comparison helped us confirm that our model correctly
captures the system's nonlinear behavior under steady-state conditions. We
have also validated our steady-state numerical solution with a published
work.

Again, we examined a solution method using Laplace
Transformation, simplifying the problem by neglecting the nonlinear term.
This approach is useful for scenarios where the base temperature varies
periodically. By validating our numerical model against the results derived
from the Laplace Transformation method, we can ensure that our model
accurately handles cases with periodic base temperature variations, even
when nonlinear effects are not considered.

Together, these three validation steps, compared with the ADM and
published work for steady-state nonlinear scenarios and with the Laplace
Transformation solution for periodic base temperature scenarios, provide a
comprehensive assessment of our numerical model's performance. This
thorough validation process is crucial for establishing confidence in the
model before using it for further analysis.
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3.1 Steady State Validation with Adomian Decomposition

Firstly, we have validated our numerical model with the Adomian
Decomposition Method (ADM) to the steady-state scenario. This method is
particularly effective for solving nonlinear differential equations and is
well-suited for our purposes. By comparing the results of our numerical
model with those obtained from the ADM, we have validated the accuracy
of the nonlinear term in our model. This comparison helped us confirm that
our model accurately captures the system's nonlinear behavior under
steady-state conditions. To perform this validation, we had to slightly
modify our boundary conditions to match those of the Adomian
decomposition solution. Specifically, we had to set @ = 0 in our numerical
model, which converted our periodic base temperature condition into a
constant base temperature condition. Additionally, we had to apply an
insulated tip condition at X = 0 and a constant base temperature condition
at X = 1 in our numerical model. By making these adjustments, we have
compared the results of our numerical model with those obtained from the
Adomian decomposition solution. To perform the validation, we have
assumed A=2 , B=2 and C=2.
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Figure 3.2: Steady state validation with ADM

Figure 3.1 clearly shows that the steady-state results of our numerical model
align closely with those obtained using the Adomian Decomposition
Method. This indicates that our numerical model effectively handles the
nonlinearity of the governing equation. The close alignment between the
steady-state results of our numerical model and the Adomian
Decomposition Method demonstrates the robustness and accuracy of our
approach. The Adomian Decomposition Method is known for its ability to
solve nonlinear equations efficiently, so matching its results confirms that
our numerical model can also tackle the complexities introduced by
nonlinear terms in the governing equation. This validation provides
confidence in the reliability of our numerical model for solving nonlinear
problems.
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3.2 Steady State Validation with Published Work

To enhance the reliability of our numerical model, we have validated our
steady-state results against a published study. Roatamiyan et al. [38].
conducted a steady-state analysis of a porous fin in their paper titled
"Analytical Investigation of Nonlinear Model Arising in Heat Transfer
Through the Porous Fin." They employed the Variational Iteration Method
to solve the steady-state nonlinear governing equations. For a meaningful
comparison between our numerical model and their published results, we
set the parameters in our model to A=0.2, B=1, and C =0, as specified in
their study. The resulting comparison graph is presented below,
demonstrating the alignment between our numerical solutions and the
analytical results obtained by Roatamiyan et al. [43].
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0.9 H

0.8

0.7

0.6

Dimensionless Temperature (6)

0.5 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 3.2 : Steady state validation with published work

From Fig. 3.2, we can clearly see that our numerical solution closely
aligns with the published work.
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3.3 Validation with Laplace Transformation

We have validated our numerical model by comparing it
with the solution obtained using the Laplace Transformation method (Fig.
3.3). The Laplace Transformation simplifies the problem by neglecting the
nonlinear term, making it particularly useful for scenarios where the base
temperature varies periodically. By comparing our numerical model's
results with those derived from the Laplace Transformation method, we can
ensure the accuracy of our model in handling periodic base temperature
variations. This validation process is crucial as it demonstrates that our
model can accurately represent the system's behavior, confirming its
reliability in every scenario. To perform the validation, we have taken A =
0,
B =0.15,C = 0.1, « = 0.5 and w = 0.5. We have plotted the temperature
variation at X = 0.5 for various Fourier Number by using both method and
compared those results.

16
1.5 o Laplace
144 FDM
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124 4
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T
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T

Figure 3.3: Validation with Laplace transformation

Figure 3.3 demonstrates that our numerical model aligns closely with the
Laplace Transformation solution. This study indicates that our model
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accurately captures the system's behavior under periodic base temperature
variations.

With all three validations, we can conclude that our numerical model
provides accurate solutions and is suitable for further analysis and
discussion. The consistency of our model's predictions with the validation
results demonstrates its reliability and effectiveness in capturing the key
aspects of the heat transfer process through the porous fin. Consequently,
we confidently proceed with more detailed investigations and apply our
model to various scenarios for comprehensive understanding and insights.

3.4 Impact of Nano-Fluid Flow

In our study, we have used an Al, Oz-water nanofluid with volume
fraction 0.01 to enhance the heat transfer. Al,03-water nanofluid is
engineered colloidal suspensions of Al, 03 nanoparticles within base fluid
water, have emerged as a promising solution for boosting heat transfer in
various thermal management applications. Al, O3 nanoparticle is composed
of metals oxides exhibit high thermal conductivity, which greatly improves
the thermal performance of the base fluid. Nanoparticles increase thermal
conductivity, enhance convection, and improve thermal dispersion, leading
to more efficient heat transfer.

Properties of the Al, Oz-water nanofluid can be evaluated with the empirical
relations and property of Al, 05 nanoparticle described by Seth et al. [39]

Now, we have examined the temperature profile, heat transfer, and
efficiency of a porous fin subjected to Al,O;-water nanofluid flow through
its pores and a periodic base temperature. Using our numerical model, we
have generated and analyzed the corresponding graphs to gain insights into
the fin's thermal performance and behavior under these conditions.

First, we have determined the values of three arbitrary constants used in our
analysis to plot the temperature profile. Expressions of those constants are
given by

_ 9PKBs cprsin(y) (Tpm—Ta)L? B= 2h(1-¢)L? C = qgenl?

A ;
vftbkeff

tpkesr " keff(Thm—Ta)
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From, the book Drying Phenomena [41], we obtained the properties of
water at ambient conditions and properties of the Al,O;-water nanofluid
has evaluated with the empirical relations and property of Al,0;
nanoparticle described by Seth et al. [44]. Table 3.1 provides these
properties.

Table 3.1: Properties of Water and Al, 05

p (%) c, (k;—K) k (1) B(K™) p (Pas)

mK
Water 995.7 4183 0.603 0.0003051 0.0007977
[41]
Al,04 3970 765 40 0.0000085
[44]

From the analysis of Seth et al. [44], the expressions for nanofluid
properties are given by

Py = (1—-€)ps +ps € (3.1)
PnfBnr = (1—=€)prPr +€ psPs (3.2)
,an(Cp)nf = (1_E)Pf(cp)f t€ ps(cp)s (3-3)
_ ko+2kp—2€(ks—ks) (3.4)
leng = kg % ks+2k p+€(kp—ks) [39]
—__ ks
nuTlf = (1—6)2'5 (35)
Again,
kerr = @knr + (1 — @)ky (3.6)

By substituting all these expressions, we get
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(1_E)+EPS(CP)S] [(1_E)+€Psﬁ’s]

gK(Pprf)(Pfo)Sin(V)LZ(Tbm—Ta)] [ Prlep)y PrBy
Hrtp @ *(kefr), s

_ 2h(1-¢p)L? (3.8)
M ty(kery),,,

— qgenL2 (39)
Cnf (keff)nf(Tbm_Ta)

Let us assume our fin is made of Aluminum having k,; = 237 % [45] and

L=01m, w=0.1m, t, = 0.0lm, (Ty,, —T,) = 50K, siny=1 g=

9.81™ h = 10022 gyen = 1000 L 9 =02 , K =2x 107102 | =
. T) - manen - ﬁ,@ — V.4, =X ? , €=

0.01.

Now using these values, along with @ = 0.5 and w = 0.5 we have plotted

the temperature profile of the fin and performed the further analysis.

Dimensionless Temperature (6)

0.0 T T T T T T

Figure 3.4.1: Non-dimensional temperature vs. Fourier number
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In Fig. 3.4.1, we observe that for a given value of X, the non-dimensional
temperature varies periodically with the Fourier number (or non-
dimensional time). At X=0, the base temperature of the fin is perfectly
following the induced periodic boundary condition. Additionally, as the
value of X increases, meaning as the distance from the fin base increases,
the maximum temperature value decreases. This is due to the nanofluid
flow through the pores and the convection occurring between the fin and its
surroundings, which results in heat loss and consequently lowers the
maximum temperature.

To better understand this phenomenon, we have plotted the non-
dimensional temperature against X for a specific Fourier number as shown
in Fig. 3.4.2. This would illustrate how the temperature distribution changes
along the length of the fin at a particular moment in time.
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L — — Periodic Base temp at Fourier No 1
~ 144 N - - - Periodic Base temp at Fourier No 5
SE, N — - — Periodic Base temp at Fourier No 10
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S‘ N ~ - - === Constant Base temp at Fourier No 1
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Q -
E s \h\ T~ ~
o 0.8 ~. ~ o
= S T~ =~ o
- ~.. - -
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Figure 3.4.2: Non-dimensional temperature vs X at various Fourier
number.

From Fig. 3.4.2 for non-dimensional temperature versus X for a specific
Fourier number, we can clearly observe that the temperature decreases as X
increases. This trend is due to heat loss through convection and the cooling

42



effect of nanofluid flow through the porous fin. As the distance from the fin
base increases, the heat dissipates more, leading to a lower temperature.

Moreover, we can see that the base of the fin varies periodically with the
non-dimensional time or Fourier number. This periodic variation results
from the boundary conditions of our problem, where the base temperature
is influenced by external factors, causing it to fluctuate over time. This
periodic behavior at the base sets the stage for the observed temperature
profile along the fin's length. In addition, the condition of constant base
temperature has been plotted for various Fourier numbers. We can observe
that the fin achieves a steady state with a constant base temperature.

By examining these graphs, we better understand how heat is transferred
and dissipated along the fin. They highlight the impacts of convection, fluid
flow, and boundary conditions on the fin's thermal performance.

We have performed some more calculations to determine the heat transfer
from the fin. We have already derived the equation for heat transfer through
a small control surface in equation (2.28).

By substituting values of all constants, along with dX = 0.02 we have

determined dQ; and total heat transfer through fin is given by Zﬁ:f{’“‘" do;.
Therefore, by using that we have plotted the heat transfer for various
Fourier numbers.
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Figure 3.4.3: Heat transfer rate vs Fourier number

From Fig. 3.4.3 for heat transfer versus Fourier number (non-dimensional
time), it is evident that in porous fin with periodic base temperature
condition the heat transfer rate exhibits a periodic variation, mirroring the
fin base temperature variation. This periodicity indicates that as the base
temperature of the fin varies cyclically, the rate at which heat is transferred
also follows a similar cyclical pattern. A closer inspection of the graph
reveals an interesting observation: the peak value of heat transfer during the
first cycle is slightly lower than that of the second. This phenomenon occurs
because the entire fin is initially at ambient temperature. At the start, the fin
requires time to absorb heat and develop a temperature gradient along its
length, which is essential for effective heat transfer. As the fin gradually
heats up, it establishes a temperature profile, allowing for an increase in
heat transfer rate. Therefore, the heat transfer is lower during the first cycle
than in subsequent cycles. Once the fin has gone through the first cycle, it
no longer starts from the ambient temperature but rather from a higher
initial temperature closer to the periodic base temperature. This allows the
fin to achieve higher heat transfer rates more quickly in subsequent cycles,
resulting in higher peak values. Thus, the graph shows the periodic nature
of heat transfer and highlights the initial lag in heat transfer efficiency due
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to the starting ambient conditions. In the other plot of porous fins with a
constant base temperature, the heat transfer rate gradually achieves a steady
state.

To evaluate the enhancement in heat transfer achieved by introducing a
porous fin with nanofluid flow, we have compared it with a porous fin with
water (base fluid) flow and a solid fin under similar conditions. By
determining the temperature profile and heat transfer rate for the porous fin
with water flow and solid fin, we have effectively compared all the results
and gained insights into the thermal performance improvement provided by
the porous fin with nanofluid flow.

To plot the temperature profile for porous fin with water flow and solid fin
we have determined the values of three arbitrary constants A, B and C used
in our analysis by using table (3.1) for values of properties and equation
(3.6) to determine k,ss. For solid fin A = 0 and ¢ = 0 s0, kerr = kyy. We
have considered all of the other parameters similar to the analysis of porous
fin with nanofluid flow to have a proper comparison.

Now, by substituting all, we have plotted the temperature profile of the solid
fin, porous fin with base fluid flow, and porous fin with nanofluid flow and
compared the result with the porous fin with nanofluid flow as depicted in
Figs. 3.4.4 and 3.4.5.
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From analyzing these two graphs above, it becomes clear that the porous
fin maintains a considerably lower temperature than the solid fin under the
same conditions. This is primarily because the porous fin's structure offers
a much larger surface area, which significantly enhances heat dissipation.
The increased surface area allows for more efficient thermal exchange
between the fin and its surroundings. Furthermore, introducing Al203-
water nanofluid in the porous fin increases heat transfer. As A1203-water
nanofluids have higher thermal conductivity compared to conventional
fluids, which means they can carry heat away from the fin more effectively,
but in A1203 nanofluid, nanoparticles absorb some amount of heat, which
results in the porous fin with A1203-water nanofluid flow operating at a
higher temperature than the solid fin and porous fin with water flow. Due
to this, the temperature difference between the fin and surrounding is
slightly higher, causing higher convection in porous fin with nanofluid than
porous fin with water. We can also observe that a fin with a constant base
temperature gradually achieves a steady state. Still, a fin with a periodic
base temperature follows the periodic temperature pattern with an
increasing Fourier number.

We performed some more calculations to determine the heat transfer from
the solid fin and porous fin with water flow. We have already derived the
equation for heat transfer through a small control surface. By substituting
values of all constants, we have plotted the heat transfer in solid fin and
porous fin with water flow for various Fourier numbers and compare that
with the heat transfer from porous fin with nanofluid flow shown in Fig.
3.4.6.
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Figure 3.4.6: Heat transfer rate vs Fourier number comparison.

Table 3.2: Heat transfer rate vs Fourier number comparison
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Fourier Heat Heat Heat Heat Heat Heat
Numbe transfer transfer transfer transfer transfer transfer
r in Solid in Solid | in Porous in in in Porous
Fin with Fin with Fin with Porous Porous Fin with
Periodic Constan Water Fin with Fin with | Nanoflui
Base temp t Base and Water Nanoflui d and
(Watt) temp Periodic and d and Periodic
(Watt) | Base temp | Constant | Periodic Base
(Watt) Base Base temp
temp temp (Watt)
(Watt) (Watt)
1 114.781 78.731 212.672 127.126 222.454 132.145
2 106.134 80.806 181.291 127.739 189.416 132.853
3 88.292 80.878 138.574 127.739 144.385 132.853
4 68.531 80.879 97.4978 127.739 101.180 132.853
S 51.791 80.879 67.403 127.739 69.626 132.853
6 42.173 80.879 52.492 127.739 54.028 132.853
7 42.032 80.879 53.704 127.739 55.249 132.853
8 51.402 80.879 71.524 127.739 73.799 132.853
9 67.991 80.879 105.073 127.739 108.912 132.853
10 87.735 80.879 148.552 127.739 154.639 132.853




Fig. 3.4.6 and Table 3.2 clearly demonstrate that a porous fin with Al,05
water nanofluid flow significantly enhances heat transfer compared to a
solid fin and substantially improves it compared to a porous fin with water
flow. In this study, we used a nanofluid volume fraction of only 0.01, which
already shows an enhancement in heat transfer. Increasing the volume
fraction of nanoparticles could potentially enhance heat transfer even
further. The study confirms that incorporating a porous fin improves heat
transfer in practical situations, and this enhancement can be amplified by
using nanofluid flow. Again, from Fig. 3.4.6 and Table 3.2, we can see that
fins with constant base temperatures achieve a steady heat transfer rate after
some time, but fins with periodic base temperatures follow a periodic
variation of heat transfer rate and never achieve a steady state.
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Chapter-4

4. FUTURE SCOPE AND CONCLUSION

4.1 Future scope

This thesis studies porous fins with periodic base temperature and
nanofluid flow. Along with the main numerical solution model, a steady-
state solution was obtained using the Adomian Decomposition Method, and
the periodic base temperature solution was derived through Laplace
transformation while neglecting nonlinear terms. The future scope of this
research includes several promising directions:

Combining Solution Methods:

Integration of the Adomian Decomposition Method and Laplace
transformation to solve the nonlinear PDE with time-dependent
boundary conditions might be possible. By utilizing the Laplace
transformation, nonlinear PDE can be converted into a nonlinear
ODE, and then the Adomian Decomposition Method can be applied
to solve the nonlinear ODE. Finally, by performing the inverse
Laplace transformation, the analytical solution of the entire
governing equation without any unnecessary assumptions might be
possible.

Improving Numerical Accuracy:

Applying other discretization schemes, such as the central-in-time
central-in-space scheme or the Crank-Nicolson scheme, might
improve the accuracy of the current finite difference method.

Optimizing the step size to improve the precision of the solution
might be possible.
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Exploring Different Nanofluids:

It might be possible to investigate different nanofluids beyond the
Al203-water nanofluid considered in this study to further enhance
heat transfer.

Examining the impact of nanoparticle volume fraction enhancement
through geometric modifications of nanoparticles might be possible.

Advanced Nanofluid Configurations:

Exploring the potential of hybrid nanofluids and ternary hybrid
nanofluids to achieve superior heat transfer characteristics might be
possible.

Considering the strategic use of magnetic nanofluids, which can be
precisely manipulated using Lorentz forces to significantly boost heat
transfer efficiency, is a technical avenue worth exploring.

By pursuing these avenues, the scope of the research can be
significantly broadened, leading to more comprehensive and
effective heat transfer solutions in practical applications.

4.2 Conclusion

This thesis thoroughly investigates heat transfer dynamics within
porous fins infused with nanofluids under time-dependent base temperature
conditions. The study employs a numerical model based on the finite
volume method with the explicit FTCS scheme to simulate heat transfer
phenomena. An analytical solution using Laplace transformation, which
neglects nonlinear terms, complements the numerical findings.
Furthermore, the Adomian Decomposition Method validates nonlinear
terms under steady-state conditions with a constant base temperature.

This research underscores the practical implications of porous media
with A1203-water nanofluids flow in augmenting heat transfer, a
significant departure from the conventional solid fin and porous fin with

water flow. The insights offered here have the potential to significantly
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impact the practical applications in the field of thermal management. The
numerical analyses delve into the influence of nanofluid properties on heat
transfer rates, thereby opening up opportunities for optimizing thermal
performance in various engineering applications.

In conclusion, this thesis comprehensively analyzes heat transfer
augmentation in A1203-water nanofluid-infused porous fins under dynamic
thermal conditions. By integrating numerical and analytical approaches, the
study contributes insights that could enhance the design and efficiency of
fins for advanced thermal management systems.
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