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Abstract

The thesis focuses on developing a duality for Fitting’s many-valued modal logic
in a bitopological framework and exploring modal fuzzy geometric logic using coal-
gebraic logic approaches. There are many applications of the notion of duality in
several pure and applied sciences. For instance, there is a duality in logic between
syntax and semantics, a duality in mathematics between spaces and algebra, and
a duality in information science between systems and observable properties. The
current thesis explores and articulates the structure of duality for many-valued logic
and many-valued modal logic by drawing on category theory and universal algebra.
Since categorical relationships between systems and algebras, also referred to as
frames, already exist in the literature, it is expected that these relationships can be
extended to many-valued contexts. This is the goal that this thesis pursues in the
first step. However, the investigation of duality for many-valued logic and many-
valued modal logic using the methods of bitopological spaces, has drawn greater
attention from scholars recently due to the fact that it can offer a more compre-
hensive viewpoint in this context. In this thesis, natural duality theory and modal
natural duality theory are generalized in a bitopological framework by studying
bitopological duality theory for Fitting’s many-valued logic and many-valued modal
logic. Thus, a coalgebraic duality theory is explored for multi-valued modal logics
to shed light on more subtle aspects of bitopological duality. Coalgebraic logic is a
proven framework that facilitates the development of an extended version of modal
logic. In light of this, the thesis investigates the connections between fuzzy geomet-
ric logic and coalgebraic logic.
The thesis is divided into seven main chapters, excluding the introduction and con-
clusion.

• Chapter 2 presents the idea of lattice-valued Boolean systems and examines
the adjoint and co-adjoint properties of functors that are defined on them.
Consequently, a duality for algebras of lattice-valued logic is obtained.
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• Chapter 3 introduces the concept of lattice-valued relational systems, intending
to demonstrate a duality between systems and algebras of Fitting’s lattice-
valued modal logic.

• Chapter 4 establishes a duality for algebras of Fitting’s Heyting-valued logic
within the scope of bitopological techniques. In actuality, it extends the nat-
ural duality theory in a bi-topological context.

• Chapter 5 focuses on the extension of the natural duality theory for ISPI(L),
the class of all isomorphic copies of sub-algebras of intuitionistic power of L.
Thus, an intuitionistic version of the natural duality theory is developed.

• Chapter 6 aims to develop a bitopological duality for algebras of Fitting’s
many-valued modal logic. This has led to an extension of the natural duality
theory for modal algebras.

• Chapter 7 sheds light on a coalgebraic description of the bitopological duality
for Fitting’s many-valued modal logic. This yields a coalgebraic duality for
Fitting’s many-valued modal logic.

• In Chapter 8, we investigate modal fuzzy geometric logic by applying coalge-
bra theory. In other words, this chapter introduces modal operators to the
language of fuzzy geometric logic using the methods of coalgebraic logic, to
examine how these logics are interpreted in specific fuzzy topological coalge-
bras.

viii



List of Papers included in the thesis

1. Das, Litan Kumar., Ray, Kumar Sankar. : Bitopological duality for algebras
of Fitting’s logic and natural duality extension. Acta Informatica 58, 571–584
(2020). https://doi.org/10.1007/s00236-020-00384-5

2. Ray, Kumar Sankar., Das, Litan Kumar. : Categorical study for algebras of
Fitting’s lattice-valued logic and lattice-valued modal logic. Ann Math Artif
Intell , 89, 409–429 (2021). https://doi.org/10.1007/s10472-020-09707-1

3. Das, Litan Kumar., Ray, Kumar Sankar., Mali, Prakash Chandra. : Bisim-
ulations for Fuzzy Geometric Models. In: Tiwari, R.K., Sahoo, G. (eds)
Recent Trends in Artificial Intelligence and IoT. ICAII 2023. Communica-
tions in Computer and Information Science, vol 1822. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-37303-9−12

4. Das, Litan Kumar., Ray, Kumar Sankar., Mali, Prakash Chandra. : Duality for
Fitting’s Heyting-valued modal logic via Bitopology and Bi-Vietoris coalgebra.
Theoretical Computer Science, Elsevier (Under Review).

5. Das, Litan Kumar., Ray, Kumar Sankar., Mali, Prakash Chandra. : Coalge-
braic Fuzzy geometric logic. International Journal of Information technology,
Springer (accepted).

ix



Contents

Certificate i

Dedication ii

Acknowledgements iii

List of Symbols vi

Abstract vii

List of Papers included in the thesis ix

1 Introduction 1

2 Category of lattice-valued Boolean systems 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 L-VL-algebras, L-Boolean Spaces, L-Boolean Systems, and Categor-

ical interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 L-VL-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Lattice-valued Boolean spaces . . . . . . . . . . . . . . . . . . 17
2.2.3 L-Boolean systems . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Functorial relationships . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Category of L-relational systems 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 L-ML-algebras, L-relational systems, L-relational spaces and their

Categorical interconnections . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 L-ML-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 32

x



3.2.2 L-relational spaces . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 L-relational systems . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Functorial relationships . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Bitopological Duality for multi-valued logic 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 L-VL-algebras, L-pairwise Boolean spaces and their categorical in-

terconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 L-VL-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 L-pairwise Boolean spaces . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Functorial relationships . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Bitopological duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Intuitionistic version of Natural Duality Theory 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 The concept of ISPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Duality for ISP(L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Duality for ISPI(L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Bitopological duality for many-valued modal logic 68
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 The notion of Bitopological spaces . . . . . . . . . . . . . . . . . . . . 69
6.3 Fitting’s Heyting-valued modal logic . . . . . . . . . . . . . . . . . . 70
6.4 Bitopological duality for Fitting’s Heyting-valued logic . . . . . . . . 73

6.4.1 Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Bitopological duality for Fitting’s modal logic . . . . . . . . . . . . . 74
6.5.1 Category PRBSL . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.3 Bitopological Duality for Fitting’s Heyting-valued modal logic 79

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Coalgebraic Duality for many-valued modal logic 82
7.1 The notions of Coalgebra and Bitopological spaces . . . . . . . . . . . 83

xi



7.2 The structure of the endofunctor V bi
L . . . . . . . . . . . . . . . . . . 84

7.3 Coalgebraic duality for Fitting’s many-valued modal logic . . . . . . . 88
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Coalgebraic Fuzzy geometric logic 92
8.1 The preliminary findings from Fuzzy Set Theory, Fuzzy topological

spaces and Coalgebra theory . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Coalgebraic logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3 Final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4 Bisimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Concluding Remarks and Future Research Directions 114

Bibliography 117

Index 125

xii



Chapter 1

Introduction

The main objective of this thesis is to develop duality theory for Fitting’s many-
valued modal logic and investigate coalgebraic fuzzy geometric logic. Category
theory is useful in numerous domains of science beyond mathematics. Categorical
duality is the main focus of this thesis, and it is certainly present outside of
mathematics.
The initial spark of our interest comes from the informational duality between
systems and observable properties. Vickers proposed the notion of topological
system in his book “Topology via Logic” [98] and highlighted its relationship to
geometric logic. To study geometric logic (topology through logic), it is crucial
to understand the links between topological space, topological system, frame, and
geometric logic. An extension of topological system to lattice-valued topological
system was performed in [16, 17, 18]. Additionally, a categorical relationship
between the spaces and systems has been studied. Thus, the issue emerges: is
it possible to build a duality for many-valued logic by establishing a categorical
relationship between algebras of many-valued logic and appropriate topological
systems? This question drives our first study. As an initial step, we introduce some
relevant topological systems and establish their interrelationship with appropriate
topological spaces and algebraic structures. These relationships are investigated in
a categorical framework. As such, the study of duality is an important aspect of
this thesis.
In [21], the concept of lattice-valued Boolean spaces and lattice-valued Boolean
spaces with a relation has been utilized to establish a duality for the algebras of
Fitting’s many-valued logic and many-valued modal logic, respectively. We have
contributed to an area of considerable interest which is the categorical relationship
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Introduction

between the categories of lattice-valued Boolean spaces, lattice-valued Boolean
systems, and algebras of many-valued logic (see Chapters 2, 3).This leads to the
presentation of yet another proof of the duality provided in [21].

The thesis has been pursuing another interesting duality theory for Fitting’s
many-valued modal logic in the context of bitopological languages. As a conse-
quence, natural duality theory [13] has been extended for modal algebras in a
bitopological context. In the framework of natural duality theory, possibly the
most successful theory of dualities for finitely generated quasi-varieties of algebras,
we look at a more nuanced duality mechanism. Natural duality theory extends
Stone-Priestley-type dualities through universal algebra approaches. In the realm
of Botopological techniques, the thesis introduces modal natural duality theory.
Moreover, the thesis incorporates an intuitionistic interpretation of natural duality
theory. The first step is to develop a duality for algebras of a version of Fitting’s
many-valued logic via bitopological techniques. A topological duality theorem is
also derived for the class of all isomorphic copies of subalgebras of the intuitionistic
power of Heyting algebra, leading to the development of an intuitionistic version of
natural duality theory.
By establishing a concept of PRBSL as a category of L-valued pairwise Boolean
spaces with a relation, we intend to achieve a bitopological duality for algebras
of Fitting’s Heyting-valued modal logic in the second place. So, in the setting
of bitopological languages, the natural duality theory for modal algebras is ex-
tended. The main results are bitopological and coalgebraic dualities for Fitting’s
many-valued modal logic, where L is a semi-primal algebra having a bounded
lattice reduct. Our general theory extends both the Jónsson-Tarski duality and
the Abramsky-Kupke-Kurz-Venema coalgebraic duality [1, 55] in the setting of
bitopological language. It also proposes a new coalgebraic duality for algebras of
many-valued modal logics.

The thesis will also focus on the development of coalgebraic fuzzy geometric logic.
Fuzzy geometric logic is presented in [77] as a logical progression of propositional
geometric logic [98]. Propositional geometric logic developed from the interaction of
(pointfree) topology, logic, and the logic of finite observations [4, 98]. The formulae
of this logic are generated from a collection of proposition letters using proposi-
tional connectives: finite conjunctions and arbitrary disjunctions, that preserve the
property of finite observability. It is important to emphasize that geometric logic
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Introduction

has no universal quantifier, negation, implication. With the appropriate topological
connection, formulas of geometric logic can be interpreted in an algebraic structure
(frame) of open sets in a topological space. A topological system is defined as a
triple (X, |=, A), where X is a non-empty set, A is a frame and |= is a satisfaction
relation from X to A. Chakraborty et al. [77] generalized geometric logic to the
many-valued context by extending the notion of satisfaction relation.

It came to light that when the satisfaction relation is fuzzy, the related conse-
quence relation (⊢) can be either crisp or fuzzy. As a result, fuzzy geometric logic
and fuzzy geometric logic with graded consequences were introduced.
Within the context of coalgebraic logic, modal logics are produced parametrically
in the signature of the language and through an endofunctor T : C → C on a base
category C. Coalgebraic logic for endofunctors on the category of sets has been thor-
oughly researched and remains an active research topic (e.g. see [66, 67]). Within
this framework, the concept of relation lifting [86] or predicate lifting [87] can be
applied to define modal operators. Coalgebraic logic in the category of Stone coal-
gebras has been dealt with in [55, 68, 69, 73]. Many studies have been conducted on
the development of a coalgebraic modal logic based on the Stone-type duality (for
example, [72, 71, 70]).
The thesis attempts to investigate some relationships between fuzzy geometric logic
and coalgebraic logic. In other words, we incorporate modal operators into the lan-
guage of fuzzy geometric logic using the methods of coalgebraic logic, intending to
examine how these logics are interpreted in fuzzy topological coalgebras. So, the
aim of this study is to develop a framework for coalgebraic fuzzy geometric logics
arising from extending fuzzy geometric logic with modalities that are generated by
suitable predicate liftings.

Motivation

We now give some background information on the motivation for studying bitopo-
logical duality of many-valued modal logic.
The Stone duality [51] between Boolean algebras and sets represents the syntax and
semantics of a propositional logic. The algebras and coalgebras of the endofunctors
define the syntax and semantics of the modal propositional logic. As an illustration,
the modal logic K and Kripke semantics derive from the Stone duality by taking
an endofunctor on sets. So, in acceptable circumstances, we can achieve duality
between the relevant algebras and coalgebras. In addition to demonstrating the fact

3



Introduction

that the widely recognized Stone duality could be articulated in coalgebraic terms,
Abramsky [1] also showed that a coalgebraic formulation could be provided for the
Jónsson-Tarski duality between descriptive general Kripke frames and modal alge-
bras (see also [55] for further information). In particular, the category of descriptive
general Kripke frames is isomorphic to the category of Boolean spaces. Esakia
[64] also noticed this connection. Therefore, coalgebras for the Vietoris functor on
the category of Boolean spaces can represent sound and complete semantics for
modal logic. In [65], the author showed that coalgebras of a Vietoris functor on
the category of Priestley spaces, i.e., compact, totally ordered disconnected spaces,
provide sound and complete semantics for positive modal logic. The objective of
this study is to combine the idea that the semantics of Fitting’s many-valued modal
logic can be understood as coalgebras for the bi-Vietoris functor on the category
PBSL of L-valued pairwise Boolean spaces and pairwise continuous maps.

An overview of the motivation for studying coalgebraic fuzzy geometric logic is
given here.
An illustration of the requirement for generalization in the satisfiability relation of
a topological system may be found in [83]. We look at Vicker’s interpretation [98]
of topological systems. Let M be a collection of computer programs that generate
0’s and 1’s, and A be the assertions about the sequence of bits produced by those
computer programs. Consider an assertion a = starts1010. Then, the assertion a

is true if a computer program, say m, generates sequence of bits 101010101...... So,
in this case, m |= starts1010. Suppose that a computer program m1 produces an
infinite sequence of bits in which the initial four bits are similar to but not equal
to 1010. In this case, m1 |= start1010 to some extent. To deal with this kind of
situation, the fuzzy topological system notion is therefore essential.
Based on the definition of |=, we can consider if an assertion holds to some degree
in a single state in M , we look at all states in M . As a result, an assertion a is true
in M ⇐⇒ it is satisfiable at some state. So we can construct a model structure
W = (M,R, V ), where M is a set of states i.e., each state is a computer program,
R is relation on M and V is valuation map from Φ × W to [0, 1], Φ is a set of
propositional variables. This fact leads us to believe that it would be beneficial to
incorporate modal operators into the fuzzy geometric logic language. As a result, we
develop modal fuzzy geometric logic using coalgebra theory, known as coalgebraic
fuzzy geometric logic.
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Introduction

Preliminaries

Almost every ground idea that could be needed to make this thesis self-contained
is covered in this section. We review the fundamental concepts of lattice, frame,
Boolean algebra, category theory, topological spaces, and topological systems.

Lattice, Frame and Boolean Algebra

We refer the reader to [36] for lattice theory.

Definition 1.0.1. A partially ordered set or poset is a tuple (S,⪯) where ⪯⊆
S × S is a binary relation such that for any a, b, c ∈ S

• a ⪯ a (reflexivity);

• a ⪯ b and b ⪯ c =⇒ a ⪯ c (transitivity);

• a ⪯ b and b ⪯ a =⇒ a = b (antisymmetry).

The binary relation ⪯ on S is called a partial order relation. An element s of S
is said to be a least upper bound (l.u.b) of a, b ∈ S if and only if a ⪯ s and b ⪯ s

and for any t ∈ S if a ⪯ t, b ⪯ t then s ⪯ t. Note that the least upper bound for
any two elements in a poset may or may not exist, and if it does, it will be unique.
Similarly, an element r ∈ S is called a greatest lower bound (g.l.b) of a, b ∈ S if and
only if r ⪯ a, r ⪯ b and for any t ∈ S if t ⪯ a, t ⪯ b then t ⪯ r. In this instance,
the greatest lower bound for any two elements in a poset may or may not exist; if
it does, it will be unique.
Any two elements a, b ∈ S that have l.u.b and g.l.b are represented by a ∨ b (join)
and a ∧ b (meet), respectively. The representation of an arbitrary join (if it exists)
for any subset R of S is

∨
R =

∨
r∈R{r}, while the representation of an arbitrary

meet (if it exists) is
∧
R =

∧
r∈R{r}. Additionally, if arbitrary joins and arbitrary

meets of any subset of S are exist then they are also unique.

Definition 1.0.2. A poset (L,⪯) is said to be lattice if for any two elements ℓ1, ℓ2
of L, ℓ1 ∨ ℓ2 (join) and ℓ1 ∧ ℓ2 (meet) exist.

A lattice L is said to be distributive if for any ℓ1, ℓ2, ℓ3 ∈ L, ℓ1 ∧ (ℓ2 ∨ ℓ3) =

(ℓ1 ∧ ℓ2) ∨ (ℓ1 ∧ ℓ3) or ℓ1 ∨ (ℓ2 ∧ ℓ3) = (ℓ1 ∨ ℓ2) ∧ (ℓ1 ∨ ℓ3) satisfies.
A lattice L is said to be bounded if it has a greatest (top) and least (bottom)
element, designated as ⊤, and ⊥, respectively. A lattice in which all subsets have
both a supremum (join) and an infimum (meet) is said to be complete lattice.
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Definition 1.0.3. A bounded lattice L is said to be complemented if every element
of it has a complement i.e., for each ℓ ∈ L ∃ an element ℓc ∈ L such that ℓ∨ ℓc = ⊤
and ℓ ∧ ℓc = ⊥.

Definition 1.0.4 ([98]). A poset(partially ordered set) S is said to be a frame if and
only if

(i) any subset X of S has a supremum (join) i.e.,
∨
X exists,

(ii) any finite subset X ′ of S has an infimum (meet) i.e.,
∧

X ′ exists,

(iii) meet distribute over arbitrary join i.e.,

s ∧
∨

X =
∨

{s ∧ x : x ∈ X}.

A frame homomorphism is defined as follows:

Definition 1.0.5 ([98]). A function f from a frame F1 to a frame F2 is said to be
a frame homomorphism if the function f preserves finite meets and arbitrary joins.

The collection of frames and frame homomorphisms forms a category, denoted
by FRM.
Similar to other algebraic structures, frames may be presented by generators and
relations ⟨GR⟩, where G denotes the set of generators, and R is the set of relations
between expressions generated by G. One can find a detailed description of frame
presentations in [100].

Note 1.0.1 ([89]). Consider a frame F1. Now, ⟨GR⟩ presents the frame F1 if ∃ an
assignment h : G → F ∗

1 , where F ∗
1 denotes the underlying set of F1, such that the

following properties hold:

(i) F1 is generated by the set {h(s) : s ∈ G};

h can be extended to an assignment ĥ for any expression r that is generated by
G.

(ii) If r∗ = r′∗ is a relation in R, then ĥ(r∗) = ĥ(r′∗) in F1;

(iii) For a frame F2 and an assignment h′ : G → F ∗
2 that satisfies (ii) there is a

unique frame homomorphism g : F1 → F2 such that g∗ ◦ h = h′, where g∗ is a
mapping from F ∗

1 to F ∗
2 . So, the diagram shown in Fig. 1.1 commutes.
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G F ∗
1

F ∗
2

h′

h

g∗

Figure 1.1: Illustration of frame presentation

Remark 1.0.1. We can define a frame homomorphism f : F1 → F2 from a frame
F1 to a frame F2, where ⟨GR⟩ presents the frame F1. According to Note 1.0.1, it
is sufficient to provide an assignment f̂ : G→ F2 that satisfies the condition that if
r∗ = r′∗ is a relation in R, then f̂(r∗) = f̂(r′∗) in F2.

A complemented distributive lattice is said to be a Boolean lattice.

Definition 1.0.6. A Boolean algebra is defined by a structure (B,∨,∧, 0, 1) such
that the following conditions are met:

(i) (B,∨,∧) is a distributive lattice;

(ii) a ∨ 0 = a and a ∧ 1 = a ∀a ∈ B;

(iii) a ∨ ac = 1 and a ∧ ac = 0 ∀a ∈ B.

A Boolean algebra homomorphism is a function between two Boolean algebras
such that it preserves join(∨), meet(∧) and complementation.
Arend Heyting introduced Heyting algebras in 1930 as a framework for intuitionistic
logic.

Definition 1.0.7. A Heyting lattice or Heyting algebra is a bounded distributive
lattice H equipped with a binary operation → called implication, such that c ≤ (a→
b) ⇐⇒ (a ∧ c) ≤ b.

It is clear that any finite distributive lattice is a finite Heyting algebra. Heyting
algebras that are complete as a lattice are called complete Heyting algebras.
It should be mentioned that a complete Heyting algebra is a frame.

7
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Category Theory

For category theory, we refer the reader to [2, 3].

Definition 1.0.8 ([2]). A category is a quadruple C = (O, HOM, ID, ◦) which
includes the following:

1. a class O, whose elements are called C-objects,

2. for each pair (P,Q) of C-objects, a set HOM(P,Q), whose members are re-
ferred to as C-morphisms from P to Q (the sets HOM(P,Q) are pairwise
disjoint),

3. for any three C-objects P,Q,R, a map ◦ : HOM(P,Q) × HOM(Q,R) →
HOM(P,R), called composition, is defined by ◦(f, g) = g ◦ f , such that

(a) composition is associative i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f for all morphisms
f ∈ HOM(P,Q), g ∈ HOM(Q,R), and h ∈ HOM(R, T ),

(b) for each C-object P there exists IDP ∈ HOM(P, P ), called C-identity on
P , such that for a C-morphisms f : P → Q, we have IDQ ◦ f = f and
f ◦ IDP = f

Definition 1.0.9. For a category C = (O, HOM, ID, ◦) the dual or opposite cate-
gory of C is the category Cop with the same objects as C but for any C-morphisms
f : P → Q in C, there is only one morphism f op : Q→ P and f op ◦ gop = (g ◦ f)op,
where g ∈ HOM(Q,R).

Definition 1.0.10. Let C and D be categories. A functor F : C → D is a function
such that

1. F carries each C-object P to D-objects F (P ),

2. F carries each C-morphism f ∈ HOM(P,Q) to D-morphisms F (f) ∈
HOM(F (P ), F (Q)) such that

(i) F (g ◦ f) = F (g) ◦ F (f) for all f ∈ HOM(P,Q), g ∈ HOM(Q,R), i.e.,
F preserves compositions,

(ii) F (IDP ) = IDF (P ) for all P ∈ C i.e., F preserves identity morphisms.

8
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Definition 1.0.11. Let F and G be functors from a category C to a category D. A
natural transformation ζ : F → G is a class of morphisms that satisfies the following
condition:

• ζ must associates each C-object P , a D-morphism ζP : F (P ) → G(P ) such
that for every C-morphism f : P → Q we have ζQ ◦F (f) = G(f) ◦ ζP i.e., the
following diagram commutes.

P F (P ) G(P )

Q F (Q) G(Q)

f

ζP

F (f) G(f)

ζQ

Figure 1.2: Representation of Natural transformation

Note that the D-morphism ζP is said to be component of ζ at P .

Definition 1.0.12. Let f : G −→ H be a functor, and H be a H-object.

(i) A f -structured arrow with domain H is a pair (g,G) consisting of a G-object
G and a H-morphism g : H −→ f(G).

(ii) A f -structured arrow with domain H is called a f -universal arrow for H pro-
vided that for each f -structured arrow (g′, G′) with domain H there exists a
unique G-morphism g̃ : G −→ G′ with g′ = f(g̃) ◦ g. In other words the
triangle as shown in Fig. 1.3 commutes.

H f(G)

f(G′)

G G′

g′

g

f(g̃)

g̃

Figure 1.3: Representation of Universal arrow

(iii) A f -costructured arrow with codomain H is a pair (G, g) consisting of a G-
object G and a H-morphism g : f(G) −→ H.

9
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(iv) A f -costructured arrow (G, g) with codomain H is called a f -couniversal arrow
for H provided that for each f -costructured arrow (G′, g′) with codomain H

there exists a unique G-morphism f̃ : G′ −→ G such that g′ = g ◦ f(g̃).

Definition 1.0.13. A functor f : G−→ H is said to be adjoint if for every H-object
H there exists a f -universal arrow with domain H. Consequently, there exists a
natural transformation, called the unit(see Fig. 1.4) ηH : IDH(H) −→ ff1(H),
where IDH is an identity morphism from H to H and f1 : H −→ G is a functor.
More precisely, for a given morphism g :H−→ f(G) there is a unique G-morphism
g̃ : f1(H) −→ G such that the triangle of Fig. 1.4 commutes i.e., g = f(g̃) ◦ ηH .

H ff1(H)

f(G)

f1(H) G

g

ηH

f(g̃)

g̃

Figure 1.4: Illustration of the unit

Definition 1.0.14. A functor f : G−→ H is said to be co-adjoint if for every H-
object H there exists a f -couniversal arrow with codomain H. As a result, there
exists a natural transformation, called the counit(see Fig. 1.5) ξG : f1 ◦ f(G) −→
IDG(G), where IDG is an identity morphism from G to G, and f1 : H −→ G is a
functor. More precisely, for a given morphism g : f1(H) −→ G, there is a unique
H-morphism g̃ : H −→ f(G) such that the triangle of Fig. 1.5 commutes. In other
words g = ξG ◦ f1(g̃).

f1f(G) G

f1(H)

H f(G)

ξG

f1(g̃) g

g̃

Figure 1.5: Illustration of the counit

10
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Topological Spaces
We refer to [8] for general topology.

Definition 1.0.15. Let X be a set. A collection τX of some subsets of X is said to
be a topology on X if and only if

1. ∅, X ∈ τX ,

2. τX is closed under arbitrary union,

3. τX is closed under finite intersection.

If τX is a topology on X then the pair (X, τX) is called a topological space. The
members of τX are called open sets.

Note 1.0.2. For a topological space (X, τX), (τX ,⊆) forms a frame.

Definition 1.0.16. Let τX and τY be two topologies on X and Y , respectively.
A mapping f : X → Y is said to be continuous if and only if for every open set
UY ∈ τY , f−1(UY ) ∈ τX

The concept of lattice-valued topological spaces was presented in [17]. Let us go
over the concept of lattice-valued topology.
Let L be a lattice. A lattice-valued topology, L-TOP, on X is a collection T ⊆ LX

such that T is closed under arbitrary join (
∨

) and finite meet (∧). Then (X, T ) is
said to be L-topological space.

Definition 1.0.17 ([18]). Let S1 and S2 be two sets, and L be a lattice. For a func-
tion ψ : S1 −→ S2, the Zadeh image operator ψL : LS1 −→ LS2 and inverse image
operator ψ−1

L : LS2 −→ LS1 are defined by ψL(σ)(s2) =
∨
{σ(s′) : s′ ∈ ψ−1({s2})},

ψ−1
L (φ) = φ ◦ ψ.

Definition 1.0.18. Let (X, T1) and (Y, T2) be two L-topological spaces. A mapping
f : X → Y is said to be L-continuous if and only if for every v ∈ T2, f−1(v) =

v ◦ f ∈ T1.

11
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Topological Systems

Vickers developed the notion of topological systems in his work on topology via
logic [98]. A Topological system is defined by a mathematical structure as (S,F , |=),
where S is a non-empty set, F is a frame, and |= is a binary relation from S to F
such that

1. for any finite subset X of F , s |=
∧
X ⇐⇒ s |= x, ∀x ∈ X;

2. for any subset X of F , s |=
∨
X ⇐⇒ s |= x, for some x ∈ X

We write s |= x for (s, x) ∈|= and call it as s satisfies x. Thus the relation |= satisfies
both join and finite meet interchange laws.
The set S can be understood as the collection of objects, and the set F as the
collection of properties. Then |= states which properties are satisfied by which
object. It should be noted that

∧
X = ⊤ if X = ∅.

Observation 1.0.1. 1. s |= ⊤, ∀s ∈ S.

2. s |= ⊥, for no s ∈ S.

3. if s |= g and g ≤ h then s |= h.

Proposition 1.0.1. Let (S, τS) be a topological space. Then (S, |=, τS) is a topo-
logical system, where the satisfaction relation |= is defined as s |= U ⇐⇒ s ∈ U ,
s ∈ S and U ∈ τS.

Example 1.0.1. Let A be a frame. Then it can be shown that (HOM(A, {0, 1}), |=
,A) is a topological systems, where HOM(A, {0, 1}) is the set of all frame homo-
morphisms from A to {0, 1} and ψ |= a ⇐⇒ ψ(a) = 1, ψ ∈ HOM(A, {0, 1}).

We now review the concept of extent in a topological systems.

Definition 1.0.19. Let (S, |=,F) be a topological system and g ∈ F . The extent of
g, denoted as ext(g), is defined by ext(g) = {s ∈ S : s |= g}.

Thus, ext(F) = {ext(g) : g ∈ F}

Proposition 1.0.2. Let (S, |=,F) be a topological system. Then ext(F) forms a
topology on S i.e., (S, ext(F)) is a topological space.

12



Introduction

Proof. Since F is a frame, so ⊤,⊥ ∈ F . Now, ext(⊤) = {s ∈ S : s |= ⊤} = S ∈
ext(F), and ext(⊥) = {s ∈ S : s |= ⊥} = ∅ ∈ ext(F). Let {ext(gλ) : λ ∈ Λ} be an
arbitrary collection of elements in ext(F). Then,

⋃
λ

ext(gλ) =
⋃
λ

{s ∈ S : s |= gλ} =

{s ∈ S : s |=
∨
λ

gλ} = ext(
∨
λ

gλ) ∈ ext(F). Similarly, if ext(g1), ext(g2) ∈ ext(F)

then ext(g1 ∧ g2) ∈ ext(F). Thus, ext(F) is closed under arbitrary join and finite
meet.

Definition 1.0.20. A continuous map Φ from a topological system (S,F , |=) to a
topological system (S ′,F ′, |=′) is defined by a pair of maps (f, g) such that

• f : S → S ′ is a set function,

• g is a frame homomorphism from F ′ to F satisfying s |= g(t) ⇐⇒ f(s) |=′ t

for any s ∈ S and t ∈ F ′.

13



Chapter 2

Category of lattice-valued Boolean
systems

2.1 Introduction

This chapter explores categorical interconnections between lattice-valued Boolean
systems and algebras of Fitting’s lattice-valued logic. After introducing lattice-
valued Boolean systems, we discuss the adjointness and co-adjointness of the functors
defined on these systems.

In the study of geometric logic, Vickers [98] proposed the idea of topological
systems, which was later explored in [100]. A topological system is a mathematical
structure (S,F , |=), where S is a non-empty set, F is a frame, and |= is a satis-
faction relation on S × F . We read s |= g as ”s satisfies g”. Denniston et al. [16]
established the concept of lattice-valued topological systems by extending the sat-
isfaction relation to a lattice-valued satisfaction relation. Furthermore, as noted by
Vickers, topological spaces constitute a special kind of topological system; this was
also reported in [16] for lattice-valued topological spaces.

To establish a categorical relationship between the systems and spaces, the au-
thors in [16, 17, 18] make use of the concept of lattice-valued topological systems.
Furthermore, as an additional generalization of lattice-valued topological systems,
variable-basis topological systems were presented in [19]. These systems were then
examined from a different angle in [22].

The outcomes of this chapter appear in [57] Ray, Kumar Sankar., Das, Litan Kumar. :
Categorical study for Algebras of lattice-valued logic and lattice-valued modal logic.
Annals of Mathematics and Artificial Intelligence, Springer, 89, 409-429 (2021).
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From an additional perspective, it is also important to generalize topological systems
to lattice-valued topological systems. It is conscious that semantic-consequence re-
lation in first-order logic is defined in the context of satisfaction relation. The
associated consequence relation may be conventional or many-valued when the sat-
isfaction relation is many-valued. Regarding the nature of logical consequence, there
are numerous many-valued logics. Thus, it is possible to think of lattice-valued topo-
logical systems as a generalization of many-valued logics. However, we will not go
into detail on this topic.
For a finite distributive lattice L, Fitting presented the concept of L-valued logic and
L-valued modal logic in [23], where the elements of L are regarded as truth constants.
Fitting’s logic has been the subject of numerous research (e.g., [24, 25, 28, 30]).
However, this chapter will not address L-valued modal logic.

Maruyama [20] defined L-VL-algebras as an algebraic structure of Fitting’s L-
valued logic and thus established a duality in [21] between the category of L-VL-
algebras and homomorphisms of L-VL-algebras and the category L-BS of lattice-
valued versions of Boolean spaces by employing the theory of natural dualities [13].

Our motivation to consider if there exist systems that are categorically connected
with algebras of Fitting’s multi-valued logic comes from the work of [17]. Our goal is
to characterize such systems and prove that they are categorically equivalent to the
lattice-valued Boolean spaces. This will lead to the establishment of duality between
the category of L-VL-algebras and the category of lattice-valued Boolean spaces.
This outcome provides an additional evidence for the duality established in [21].
The idea of lattice-valued Boolean systems is helpful in obtaining the conclusions
presented in this chapter.

2.2 L-VL-algebras, L-Boolean Spaces, L-Boolean
Systems, and Categorical interconnections

Throughout this section, L denotes a finite distributive lattice with top element 1

and bottom element 0 (1 ̸= 0). Consequently, L forms a complete Heyting algebra.
Let a→ b represent the pseudo-complement of a with respect to b for all a, b ∈ L.

Definition 2.2.1. For all ℓ ∈ L, the unary operation Tℓ : L → L equipped with L

is defined as Tℓ(x) =

1 if x = ℓ

0 if x ̸= ℓ

15
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2.2.1 L-VL-algebras

A L-valued logic L-VL is basically a many-valued logic and the operations of L-
VL are ∨,∧,→, 0, 1 and TL(L ∈ L), where ∧,∨,→ are binary operations, 0, 1 are
nullary operations and for each L ∈ L, TL is a unary operation.

The concept of L-VL-algebras, initially laid out in [20], provides a sound and
complete algebraic semantics for L-valued logic L-VL.
Now let us review the notion of L-VL-algebra. Let a ≤ b denote a ∧ b = a and
a↔ b denote (a→ b) ∧ (b→ a).

Definition 2.2.2 ([20]). An algebraic system (A,∧,∨,→, TL(L ∈ L), 0, 1) forms a
L-VL-algebra if and only if for any L1, L2 ∈ L, and a, b ∈ A the following axioms
hold:

(i) the algebraic structure (A,∧,∨,→, 0, 1) forms a Heyting algebra;

(ii) TL1(a) ∧ TL2(b) ≤ TL1→L2(a→ b) ∧ TL1∧L2(a ∧ b) ∧ TL1∨L2(a ∨ b);
TL2(a) ≤ TTL1

(L2)(TL1(a));

(iii) T0(0) = 1; TL(0) = 0 (L ̸= 0), T1(1) = 1, TL(1) = 0, L ̸= 1;

(iv)
∨
{TL(a) : L ∈ L} = 1, TL1(a) ∨ (TL2(a) → 0) = 1;

TL1(a) ∧ TL2(a) = 0 (L1 ̸= L2);

(v) T1(TL(a)) = TL(a), T0(TL(a)) = TL(a) → 0, TL2(TL1(a)) = 0 (L2 ̸= 0, 1);

(vi) T1(a) ≤ a, T1(a ∧ b) = T1(a) ∧ T1(b);

(vii)
∧
L∈L

(TL(a) ↔ TL(b)) ≤ (a↔ b).

Definition 2.2.3 ([20]). A L-VL-algebras homomorphism is a mapping f between
L-VL-algebras which preserves the operations ∨,∧,→, TL(L ∈ L), 0, 1.

Definition 2.2.4 ([21]). Let A be a L-VL-algebra. A non-empty subset F of A
is called a L-filter iff F is a filter of lattices which is closed under T1. Let P be a
proper L-filter of A. Then

(i) P is a prime L-filter of A iff for any L ∈ L, TL(x ∨ y) ∈ P, then there exist
L1, L2 ∈ L with L1 ∨ L2 = L such that TL1(x) ∈ P and TL2(y) ∈ P.

(ii) P is an ultra L-filter of A iff ∀x ∈ A, ∃L ∈ L such that TL(x) ∈ P.
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(iii) P is a maximal L-filter iff P is maximal with respect to inclusion.

Proposition 2.2.1 ([21]). (a) Let A be a L-VL-algebra. For any two distinct
members x, y of A ,there exist L ∈ L and a prime L-filter P of A such that
TL(x) ∈ P and TL(y) /∈ P.

(b) For a prime L-filter P of a L-VL-algebra A, define ΘP : A −→ L by ΘP(x) =

q ⇔ Tq(x) ∈ P. Then, ΘP is a homomorphism of L-VL-algebras.

(c) Let A be a L-VL-algebra. A bijective mapping exists from the set of all prime
L-filters of A to the set of all homomorphisms from A to L.

Definition 2.2.5 ([21]). For a L-VL-algebra A, define B(A) = {a ∈ A : T1(a) =

a}. Then B(A) is a Boolean algebra.

The spectrum of a L-VL-algebra A is designated by SpecL(A).

Definition 2.2.6 ([21]). Let A be a L-VL-algebra. If K is a sub-algebra of L, then
SpecK(A) = {f : A −→ K| f is a L-VL-algebras homomorphism }.

Remark 2.2.1. L and L-VL-algebra are frames.

Category VAL

Definition 2.2.7 ([21]). L-VL-algebras together with L-VL-algebras homomor-
phisms form the category VAL.

Definition 2.2.8. The opposite category of the category VAL is denoted by (VAL)op,
and which is defined as follows:

(i) objects in (VAL)
op are objects in VAL;

(ii) arrows in (VAL)
op are arrows in VAL but acting in reverse direction.

2.2.2 Lattice-valued Boolean spaces

The concept of lattice-valued topological space can be found in [17]. For a lattice-
valued topological space (E, τ), Cont(E, τ) is taken as the collection of all continuous
functions from E to L.

Definition 2.2.9 ([27]). A lattice-valued topological space (E, τ) is said to be Kol-
mogorov ⇐⇒ for any e1, e2 ∈ E with e1 ̸= e2, there exists an open L-valued map
µ : E → L such that µ(e1) ̸= µ(e2).

17
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Definition 2.2.10 ([27]). A lattice-valued topological space (E, τ) is said to be Haus-
dorff ⇐⇒ for any e1, e2 ∈ E with e1 ̸= e2, there are ℓ ∈ L and an open L-valued
maps µ1 and µ2 on E such that µ1(e1) ≥ ℓ , µ2(e2) ≥ ℓ and µ1 ∧ µ2 < ℓ.

Definition 2.2.11 ([27]). A lattice-valued topological space (E, τ) is said to be com-
pact ⇐⇒ 1E =

∨
λ∈Λ

uλ, where each µλ is an open L-valued map on E, then there

exists a finite collection Λ∗ of Λ such that 1E =
∨
λ∈Λ∗

µλ, 1E is a constant map on E

that maps each element of E to 1.

Definition 2.2.12. A lattice-valued topological space (E, τ) is said to be zero-
dimensional ⇐⇒ Cont(E, τ) forms a clopen basis of (E, τ).

Definition 2.2.13. A lattice-valued topological space (E, τ) is said to be lattice-
valued Boolean space denoted by L-Boolean space ⇐⇒ (E, τ) is compact, zero-
dimensional and Hausdorff.

If B is a L-Boolean space, then the collection of all closed subspaces of B is
denoted by Ω(B). Now it is easy to follow that each member of Ω(B) is also a
L-Boolean space.
Let the subalgebras of L be denoted by Subalg(L).
Now, we define the category L-BS of L-Boolean spaces.

Definition 2.2.14. (a) An objects in L-BS is defined by a tuple (X, β), where X
is a L-Boolean space and β : Subalg(L) −→ Ω(X) is a mapping which has
the following properties:

(i) β(L) = X;

(ii) β(L1) ⊂ β(L2) whenever L1,L2 ∈ Subalg(L) and L1 is a subalgebra of L2;

(iii) β(L3) = β(L1) ∩ β(L2) whenever L3 = L1 ∩ L2.

(b) An arrow in L-BS is defied by a map ψ : (X1, β1) −→ (X2, β2) such that ψ :

X1 −→ X2 is a L-valued continuous map and for each member K of Subalg(L),
if s1 ∈ β1(K) then ψ(s1) ∈ β2(K), in other words, ψ preserves corresponding
subspaces.

Remark 2.2.2. Here L and subalgebras of L are taken with discrete topology. Then
L with discrete topology forms a Boolean space and hence (L, ϕL) is an object in the
category L-BS, where ϕL : Subalg(L) −→ Ω(L) is a mapping defined by ϕL(K) = K,
K ∈ Subalg(L).
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Definition 2.2.15. Let (O, ϕ) be an object in the category L-BS. Cont(O, ϕ) is the
collection of all continuous functions ψ : (O, ϕ) −→ (L, β) which preserve subspaces.

Remark 2.2.3. The algebraic structure (Cont(O, ϕ),∧,∨,→, TL(L ∈ L), 0, 1)
forms a L-VL-algebra. Operations are defined as follows:
Let ξ1, ξ2 ∈ Cont(O, ϕ). Then (ξ1 ∗ ξ2)(O) = ξ1(O) ∗ ξ2(O), ∗ = ∧,∨,→, and
(TL(ξ1))(O) = TL(ξ1(O)).

2.2.3 L-Boolean systems

We now introduce the notion of L-Boolean systems in Definition 2.2.16.

Definition 2.2.16. Let E be a non-empty set, and let A be a L-VL-algebra. A
L-Boolean system is defined by a mathematical structure (E,A, |=(E×A)), where
|=(E×A) is a L-valued satisfaction relation on (E,A), which satisfies the following
conditions:

(i) if {aλ}λ∈J( J is an index set) be a collection of members of A, then |=(E×A)

(e,
∨
λ∈J

aλ) =
∨
λ∈J

|=(E×A) (e, aλ);

if a1, a2 be any two members of A, then |=(E×A) (e, a1 ∧ a2) =|=(E×A)

(e, a1)∧ |=(E×A) (e, a2);

(ii) if e1 ̸= e2 in E then there is a ∈ A, such that |=(E×A) (e1, a) ̸=|=(E×A) (e2, a);

(iii) |=(E×A) (e, a1 → a2) =|=(E×A) (e, a1) →|=(E×A) (e, a2);

(iv) |=(E×A) (e, Ts(a)) = Ts(|=(E×A) (e, a)), for a ∈ A and s ∈ L;

(v) |=(E×A) (e, 0) = 0, |=(E×A) (e, 1) = 1.

As it develops, a L- Boolean system is essentially a L- topological system
with certain further conditions.

Definition 2.2.17. The category L-BSYM of L-Boolean systems is defined as
follows:

(i) An object in L-BSYM is a L-Boolean systems (E,A, |=(E×A));

(ii) An arrow in L-BSYM is a continuous map (ψ1, ψ2) : (E1,A, |=(E1×A)) −→
(E2,B, |=(E2×B)) between any two objects in L-BSYM, where

19



Category of lattice-valued Boolean systems

(a) ψ1 : E1 −→ E2 is a set map;

(b) ψ2 : B −→ A is a L-VL-algebras homomorphism;

(c) |=(E1×A) (e1, ψ2(y)) =|=(E2×B) (ψ1(e1), y), for e1 ∈ E1 and y ∈ B.

(iii) For each object P = (E,A, |=(E×A)), the identity arrow IP : P −→ P is defined
as (I ′P , I

′′
P ), where I ′P : E −→ E is an identity mapping;

I ′′P : A −→ A is an identity mapping that is L-VL-algebras homomorphism .

(iv) For the given objects P ′ = (E1,A, |=(E1×A)), Q′ = (E2,B, |=(E2×B)) and R′ =

(E3, C, |=(E3×C)) in L-BSYM , let us take two arrows (ψ1, ψ2) : P ′ → Q′

and (ϕ1, ϕ2) : Q′ → R′. The composition of these two arrows is defined as
(ϕ1, ϕ2) ◦ (ψ1, ψ2) : P

′ → R′ such that

ϕ1 ◦ ψ1 : E1 −→ E3;
ψ2 ◦ ϕ2 : C −→ A.

Definition 2.2.18. We now introduce the notion of extent in the category L-
BSYM. If P = (E,A, |=(E×A)) is an object in L-BSYM, then for each x in A, its
extent in P is a function extL(x) : E → L defined by extL(x)(e) =|=(E×A) (e, x).
Thus, extL(A) = {extL(x) : x ∈ A}. On the set extL(A), the operations
(∧,∨,→, TL(L ∈ L), 0, 1) are defined pointwise. Therefore, extL : A −→ LE is
a L-VL-algebras homomorphism.

Definition 2.2.19. A continuous map ψ = (ψ1, ψ2) : E ′ = (E1,A, |=(E1×A)) −→
E ′′ = (E2,B, |=(E2×B)) is called a homeomorphism if and only if there exists an arrow
ψ̃ = (ψ′

1, ψ
′
2) : E

′′ −→ E ′ such that ψ̃ ◦ ψ = IdE′, and ψ ◦ ψ̃ = IdE′′.
E ′ and E ′′ are said to be homeomorphic if there exists a homeomorphism between
E ′ and E ′′.

Remark 2.2.4. If the systems E ′ and E ′′ are homeomorphic then the systems are
structurally equivalent, i.e.,

(a) there exists a bijective mapping between E1 and E2;

(b) L-VL-algebras A and B are isomorphic;

(c) |=(E1×A) (e1, ψ2(b)) =|=(E2×B) (ψ1(e1), b).

Theorem 2.2.1. If (E,A, |=(E×A)) is a L-Boolean systems then (E, extL(A)) is
a lattice-valued Boolean space, where A is a L-VL-algebra.
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Proof. We shall show that (E, extL(A)) is compact, zero-dimensional and Hausdorff
space.
First, we show that (E, extL(A)) is compact.
Let 1E =

∨
λ∈Λ

extL(aλ), where aλ ∈ A and 1E is a constant map on E whose value is

always 1. Now, 1 = T1◦1E = T1◦
∨
λ∈Λ

extL(aλ) =
∨
λ∈Λ

T1◦extL(aλ) =
∨
λ∈Λ

extL(T1(aλ)).

Thus, 0E = (
∨
λ∈Λ

extL(T1(aλ)))
⊥ =

∧
λ∈Λ

extL((T1(aλ))
⊥). Therefore

0 = 0E(x) = (
∧
λ∈Λ

extL((T1(aλ))
⊥))(x)

Thus for a fixed x ∈ E, we have

0 = (
∧
λ∈Λ

extL((T1(aλ))
⊥))(x) =

∧
λ∈Λ

extL((T1(aλ))
⊥)(x) =

∧
λ∈Λ

|=E×A (x, (T1(aλ))
⊥).

(2.1)
Let there exist a L-VL-algebras homomorphism v : A → L defined by
v((T1(aλ))

⊥) = 1, for all λ ∈ Λ. Then

|=E×A (x, (T1(aλ))
⊥) = 1 = v((T1(aλ))

⊥).

As a result,
∧
λ∈Λ

|=E×A (x, v((T1(aλ))
⊥)) = 1, which contradict 2.1. Thus, there does

not exist a L-VL-algebras homomorphism v : A → L such that v((T1(aλ))⊥) = 1, for
all λ ∈ Λ. Then by Proposition 2.2.1 there is no prime L-filter of A which contains
{(T1(aλ))⊥ : λ ∈ Λ}. So the collection {(T1(aλ))⊥ : λ ∈ Λ} does not have finite
intersection property with respect to ∧ (meet) otherwise we get a contradiction.
Therefore, there exists a finite collection {λ1, λ2, · · · , λn} of Λ such that

(T1(aλ1))
⊥ ∧ (T1(aλ2))

⊥ ∧ (T1(aλ3))
⊥ ∧ · · · ∧ (T1(aλn))

⊥ = 0

Thus,

T1(aλ1) ∨ T1(aλ2) ∨ T1(aλ3) ∨ · · · ∨ T1(aλn) = 1 i.e., T1(aλ1 ∨ aλ2 ∨ · · · ∨ aλn) = 1

So, aλ1 ∨ aλ2 ∨ · · · ∨ aλn = 1. Therefore, extL(aλ1 ∨ aλ2 ∨ · · · ∨ aλn) = 1.
Second, we show that (E, extL(A)) is zero-dimensional.
We shall show that Cont(E, extL(A)) forms a clopen basis of (E, extL(A)). It is
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already defined that for µ1, µ2 ∈ Cont(E, extL(A)), (µ1 ∧ µ2)(e) = µ1(e) ∧ µ2(e).
Thus, in order to prove that Cont(E, extL(A)) forms a clopen basis of (E, extL(A)),
it is sufficient to show that, for every a ∈ A, extL(a) ∈ Cont(E, extL(A)).
Let µ : L → L be an open continuous map. Now extL(a)

−1(µ)(e) = µ ◦
extL(a)(e) = µ(extL(a)(e)) =

∨
L∈L

Tµ(L)(extL(a)(e)) =
∨
L∈L

Tµ(L)(|= (e, a)) =∨
L∈L

(|= (e, Tµ(L)(a)) =
∨
L∈L

extL(Tµ(L)(a))(e) = extL(
∨
L∈L

Tµ(L)(a))(e). There-

fore, extL(a)
−1(µ) = extL(

∨
L∈L Tµ(L)(a)) ∈ extL(A). Hence, extL(a) ∈

Cont(E, extL(A)).
Lastly, we demonstrate that (E, extL(A)) is Hausdorff. Since (E, extL(A)) is zero-
dimensional, it is sufficient to demonstrate that (E, extL(A)) is Kolmogorov.
Consider e1, e2 ∈ E such that e1 ̸= e2. Then ∃a ∈ A such that |=E×A (e1, a) ̸=|=E×A

(e2, a). Consequently, extL(a)(e1) ̸= extL(a)(e2).

2.2.4 Functorial relationships

We shall now explore functorial relationships between the categories L-BSYM, L-
BS and VAL.

Definition 2.2.20. We define a functor ExtL : L-BSYM−→ L-BS as follows:

(i) ExtL(S,A1, |=(S×A1)) = ((S, extL(A1)), β), where (S,A1, |=(S×A1)) is an object
in L-BSYM and the mapping β : Subalg(L) −→ Ω((S , extL(A1 )) is defined
by β(K) = (S, extK(A1)), where K ∈ Subalg(L);

(ii) ExtL(ϕ1, ϕ2) = ϕ1, where (ϕ1, ϕ2) : (S
′,A1, |=(S′×A1)) −→ (S ′′,A2, |=(S′′×A2)) is

an arrow in L-BSYM, and ϕ1 : ((S ′, extL(A1)), β1) −→ ((S ′′, extL(A2)), β2)

is a L-valued continuous map which preserves subspaces.

The well-definedness of the functor ExtL is shown by Theorem 2.2.1 and the
following Proposition 2.2.2

Proposition 2.2.2. Let A1 and A2 be an objects in VAL and (ϕ1, ϕ2) :

(S ′,A1, |=(S′×A1)) −→ (S ′′,A2, |=(S′′×A2)) is an arrow in L-BSYM. Then
ExtL(ϕ1, ϕ2) is an arrow in L-BS.
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Proof. ϕ1 : ((S ′, extL(A1)), β1) −→ ((S ′′, extL(A2), β2) is indeed a L-valued contin-
uous map, since ϕ−1

1 (extL(y))(s1) = extL(y)ϕ1(s1) =|=(S′′×A2) (ϕ1(s1), y) =|=(S′×A1)

(s1, ϕ2(y)) = extL(ϕ2(y))(s1), y ∈ A2 and s1 ∈ S ′. Therefore ϕ−1
1 (extL(y)) =

extL(ϕ2(y)) ∈ extL(A1). It is easy to follow that ϕ1 is a subspace-preserving
map.

Lemma 2.2.1. For an object (R, β) in L-BS, (R, Cont(R, β), |=) is an object in
L-BSYM.

Proof. Define |= (t, ψ) = ψ(t), where ψ ∈ Cont(R, β). Now we verify that
Cont(R, β) is an object in L-BSYM.

(i) For a collection {uλ}λ∈J (J is an index set) of Cont(R, β), we have |=
(t,∨λ∈Juλ) = (∨λ∈Juλ)(t) = ∨λ∈Juλ(t) = ∨λ∈J |= (t, uλ).
For any ψ1, ψ2 ∈ Cont(R, β), |= (t, ψ1 ∧ψ2) = (ψ1 ∧ψ2)(t) = ψ1(t)∧ψ2(t) =|=
(t, ψ1)∧ |= (t, ψ2).

(ii) As R is a L-Boolean space i.e., a zero-dimensional and Hausdorff space and
hence Kolmogorov, we have for t1 ̸= t2 in R there exists ψ ∈ Cont(R, β) for
which ψ(t1) ̸= ψ(t2). So |= (t1, ψ) ̸=|= (t2, ψ).

(iii) TL(|= (t, ψ)) = TL(ψ(t)) = TL(ψ)(t) =|= (t, TL(ψ)), L ∈ L.

(iv) |= (t, ψ → ψ′) = (ψ → ψ′)(t) = ψ(t) → ψ′(t).

Definition 2.2.21. A functor G : L-BS −→ L-BSYM is defined as follows:

(a) G(P, β) = (P,Cont(P, β), |=), where (P, β) is an object in L-BS;

(b) For an arrow h̃ : (P1, β1) −→ (P2, β2) in L-BS, G(h̃) = (h̃, h̃−1) :

(P1, Cont(P1, β1), |=1) −→ (P2, Cont(P2, β2), |=2), where

(i) h̃ : P1 −→ P2, a set function;

(ii) h̃−1 : Cont(P2, β2) −→ Cont(P1, β1) is a L-VL-algebras homomorphism, and
which is defined by h̃−1(g) = g ◦ h̃, g ∈ Cont(P2, β2).

Proposition 2.2.3. G(h̃) = (h̃, h̃−1) is an arrow in L-BSYM, whenever h̃ is an
arrow in the category L-BS.
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Proof. Here h̃ : P1 −→ P2 is a set function and the mapping h̃−1 : Cont(P2, β2) −→
Cont(P1, β1) is a L-VL-algebras homomorphism defined by h̃−1(g) = g ◦ h̃. Now we
observe that |=2 (h̃(p1), g) = g(h̃(p1)) = h̃−1(g)(p1) =|=1 (p1, h̃

−1(g)). So (h̃, h̃−1) is
a L-valued continuous map and hence an arrow in L-BSYM.

So the functor G is well-defined by Lemma 2.2.1 and Proposition 2.2.3.

Definition 2.2.22. A functor H : L-BSYM −→ (VAL)
op is defined as follows:

(i) H(S,B, |=(S×B)) = B, where (S,B, |=(S×B)) is an object in L-BSYM and B is
a L-VL-algebra;

(ii) H(g̃1, g̃2) = g̃op2 : A −→ B, where (g̃1, g̃2) : (S1,A, |=(S1×A)) −→ (S2,B, |=(S2×B)

) is an arrow in L-BSYM and g̃op2 is a L-VL-algebras homomorphism in
(VAL)

op

It is easy to follow that the functor H is well-defined.

Definition 2.2.23. A functor R : (VAL)
op −→ L-BSYM is defined as follows:

(i) R(A) = (SpecL(A),A, |=(SpecL(A)×A)), where A is an object in (VAL)
op;

(ii) R(f) = (f−1, f op), where f : A −→ B is an arrow in (VAL)
op.

The well-definedness of the functor R is shown by Proposition 2.2.4 and Propo-
sition 2.2.5.

Proposition 2.2.4. Let A be a L-VL-algebra. Then (SpecL(A),A, |=(SpecL(A)×A))

is an object in the category L-BSYM.

Proof. Here SpecL(A) is a set. For some member s̃ of SpecL(A), we define
|=(SpecL(A)×A) (s̃, b) = s̃(b). Now we verify the following:

(i) For a collection {bj}j∈J of elements of A, where J is an index set, we have
|=(SpecL(A)×A) (s̃,

∨
j∈J

bj) = s̃(
∨
j∈J

bj) =
∨
j∈J

s̃(bj) =
∨
j∈J

|=(SpecL(A)×A) (s̃, bj).

For any two elements b1, b2 ∈ A, we get |=(SpecL(A)×A) (s̃, b1∧ b2) = s̃(b1∧ b2) =
s̃(b1) ∧ s̃(b2) =|=(SpecL(A)×A) (s̃, b1)∧ |=(SpecL(A)×A) (s̃, b2).

(ii) For p ∈ L, Tp(|=(SpecL(A)×A) (s̃, b)) = Tp(s̃(b)) = s̃(Tp(b)), and |=(SpecL(A)×A)

(s̃, Tp(b)) = s̃(Tp(b)). Therefore, |=(SpecL(A)×A) (s̃, Tp(b)) = Tp(|=(SpecL(A)×A)

(s̃, b)).
Others properties can be verified easily.
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Proposition 2.2.5. For an arrow f : A −→ B in (VAL)
op, R(f) is an arrow in

L-BSYM.

Proof. Recall that R(f) = (f−1, f op), where f op is a L-VL-algebras homomorphism
and f−1 is a mapping from SpecL(A) to SpecL(B) defined by f−1(v) = v ◦ f op,
where v ∈ SpecL(A). Now we see that |=(SpecL(B)×B) (f−1(v), b) = f−1(v)(b) =

v ◦ f op(b) = v(f op(b)) =|=(SpecL(A)×A) (v, f
op(b)). It shows that R(f) is an arrow in

L-BSYM.

Theorem 2.2.2. ExtL is a co-adjoint to the functor G.

Proof. We prove the theorem by presenting the co-unit of the adjunction. Figure
2.1 illustrates the counit.

G(ExtL(S ,A, |=(S×A))) (S,A, |=(S×A))

G(P, β)

(P, β) ExtL(S ,A, |=(S×A))

Υ(S,A,|=(S×A))

G(ϕ̃)=(ϕ1,ϕ
−1
1 ) (ϕ1,ϕ2)

ϕ̃=ϕ1

Figure 2.1: Illustration of the counit

Recall that G(P, β) = (P,Cont(P, β), |=) and ExtL(S,A, |=(S×A)) =

(S, extL(A), β). Hence G(ExtL(S,A, |=(S×A))) = G((S, extL(A)), β) =

(S,Cont((S, extL(A)), β), |=). Here Counit is taken by Υ and defined by
Υ(S,A,|=(S×A)) = (IDS, extL) : G(ExtL(S,A, |=(S×A))) −→ (S,A, |=(S×A)), where

(i) IDS : S −→ S;

(ii) extL : A −→ Cont((S, extL(A)), β).

Let σ : L −→ L be an open continuous map in (L, βL). We show that
extL(a) ∈ Cont((S, extL(A)), β). Now extL(a)

−1(σ)(s) = σ ◦ extL(a)(s) =

σ(extL(a)(s)) =
∨
L∈L

Tσ(L)(extL(a)(s)) =
∨
L∈L

Tσ(L)(|= (s, a)) =
∨
L∈L

(|= (s, Tσ(L)(a)) =
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∨
L∈L

extL(Tσ(L)(a))(s) = extL(
∨
L∈L

Tσ(L)(a))(s). Therefore extL(a)
−1(σ) =

extL(
∨
L∈L Tσ(L)(a)) ∈ extL(A). Also extL(a) is a subspace preserving mapping.

Now we claim that (IDS, extL) is a continuous map in L-BSYM. To establish
the claim, it is necessary to observe that |= (s, extL(a)) = extL(a)(s) =|=(S×A)

(s, a) =|=(S×A) (IDS(s), a). For a given arrow (ϕ1, ϕ2) : G(P, β) −→ (S,A, |=(S×A))

in L-BSYM there exists an arrow, which we define ϕ̃ = ϕ1 : (P, β) −→
ExtL(S,A, |=(S×A)) in L-BS. We now show that the triangle of Figure 2.1 com-
mutes i.e., (ϕ1, ϕ2) = (IDS, extL) ◦ (ϕ1, ϕ

−1
1 ). We see that IDS ◦ ϕ1 = ϕ1. Now we

have to prove that ϕ−1
1 ◦ extL = ϕ2.

As (IDS, extL) is continuous, we get extL(a) = a. Now, for each a ∈ A,
ϕ−1
1 ◦ (extL(a)) = ϕ−1

1 (a). Since (ϕ1, ϕ2) is continuous, we have for any p ∈ P ,
and a ∈ A, |=(S×A) (ϕ1(p), a) =|= (p, ϕ2(a)) i.e., ϕ−1

1 (a) = ϕ2(a). Hence-
forth, we get ϕ−1

1 ◦ (extL(a)) = ϕ2(a). Therefore, ϕ−1
1 ◦ extL = ϕ2. Hence,

Υ(S,A,|=(S×A)) = (IDS, extL) is the counit and as a result ExtL is a co-adjoint to
the functor G.

Also, G is an adjoint to the functor ExtL. Unit of the adjunction is shown in
Figure 2.2.

(P, β) ExtL(G(P , β))

ExtL(S ,A, |=(S×A))

G(P, β) (S,A, |=(S×A))

η(P,β)

ψ
ExtL(ψ̂)=ψ

ψ̂=(ψ,ψ−1)

Figure 2.2: Illustration of the unit

Theorem 2.2.3. H is an adjoint to the functor R.

Proof. We prove the theorem by presenting unit of the adjunction. Figure 2.3 illus-
trates the unit.
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(S,A, |=(S×A)) RH(S,A, |=(S×A))

R(B)

H(S,A, |=(S×A)) B

Γ(S,A,|=(S×A))

(γ1,γ2) R(γ̃)=(γ−1
2 ,γ2)

γ̃=γop2

Figure 2.3: Illustration of the unit

We recall that R(B) = (SpecL(B),B, |=(SpecL(B)×B)), where |=(SpecL(B)×B) (φ, b) =

φ(b). So, RH(S,A, |=(S×A)) = R(A) = (SpecL(A),A, |=(SpecL(A)×A)). Unit is taken
by Γ and defined as Γ(S,A,|=(S×A)) = (γ, IDA) : (S,A, |=(S×A)) −→ RH(S,A, |=(S×A)),
where the mapping γ : S −→ SpecL(A) is defined by γ(s) = γs, for each
s ∈ S, γs : A −→ L is defined by γs(a) =|=(S×A) (s, a). We claim that for
each s ∈ S, γs is a L-VL-algebras homomorphism. Now for any a, b ∈ A,
γs(a ∨ b) =|=(S×A) (s, a ∨ b) =|=(S×A) (s, a)∨ |=(S×A) (s, b) = γs(a) ∨ γs(b). Also
γs(a ∧ b) = γs(a) ∧ γs(b) and γs(a → b) = γs(a) → γs(b). We observe that
γs(TL(a)) =|=(S×A) (s, TL(a)) = TL(|=(S×A) (s, a)) = TL(γs(a)), where L ∈ L.
Therefore γs is a L-VL-algebras homomorphism. The unit Γ(S,A,|=(S×A)) = (γ, IDA)

is a continuous map in L-BSYM, since |=(SpecL(A)×A) (γ(s), a) = γs(a) =|=(S×A)

(s, a) =|=(S×A) (s, IDA(a)). For a given arrow (γ1, γ2) : (S,A, |=(S×A)) −→ R(B),
we define γ̃ = (γ2)

op in (L-VA)op. Now we show that the triangle of Figure 2.3 com-
mutes i.e., (γ1, γ2) = R(γ̃)◦Γ(S,A,|=(S×A)) = (γ−1

2 , γ2)◦ (γ, IDA) = (γ−1
2 ◦γ, IDA ◦γ2).

It clearly shows that IDA ◦ γ2 = γ2. Now we are to show that γ1 = γ−1
2 ◦ γ.

For each s ∈ S, γ1(s) = γ−1
2 ◦ γ(s) = γ−1

2 ◦ γs = γs ◦ γ2, and for all b ∈ B,
(γs ◦ γ2)(b) = γs(γ2(b)) =|=(S×A) (s, γ2(b)) =|=(SpecL(A)×A) (γ1(s), b) = γ1(s)(b).
Therefore γs ◦ γ2 = γ1(s). Hence γ−1

2 ◦ γ = γ1, and as a result Γ(S,A,|=(S×A)) is the
unit. Therefore H is an adjoint to the functor R.

Theorem 2.2.4. R is a co-adjoint to the functor H

Proof. It is also possible to prove the theorem by counit of the adjunction. The
counit is illustrated in Figure 2.4.
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HR(A) A

H(Z,B, |=(Z×B))

(Z,B, |=(Z×B)) R(A)

Υ̃A

H(ϕ)=gop g̃=gop

ϕ=(g−1
SpecL(A)

,g)

Figure 2.4: Illustration of the counit

The counit is taken by Υ̃ and defined as Υ̃A = IDA. For a given arrow g̃ = gop in
(VAL)

op, we define ϕ = (g−1
SpecL(A), g) in L-BSYM, where g−1

SpecL(A) : Z −→ SpecL(A)

and g : A −→ B. Now we define the map g−1
SpecL(A). For each z ∈ Z, ζz : A −→ L

is defined by ζz(a) =|=(Z×A) (z, a) and henceforth g−1
SpecL(A)(ζz) = ζz ◦ gop, where

ζz ∈ SpecL(A), and gop is a L-VL-algebras homomorphism from B to A in (VAL)
op.

Thus, it is simple to show that the triangle of Figure 2.4 commutes i.e., Υ̃A ◦H(ϕ) =

g̃.

Theorem 2.2.5. The categories L-BS and L-BSYM are equivalent.

Proof. We choose two identity functors ID(S,A,|=(S×A)) and ID(P,β) on L-BSYM
and L-BS, respectively. We get two natural transformations Υ and η such that
Υ : G ◦ ExtL −→ ID(S,A,|=(S×A)) and η : ID(P,β) −→ ExtL ◦ G. We show that
Υ(S,A,|=(S×A)) : G(ExtL(S,A, |=(S×A))) −→ (S,A, |=(S×A)) is a natural isomorphism.
We recall that G(ExtL(S,A, |=(S×A))) = (S,Cont((S, extL(A)), β), |=) and
Υ(S,A,|=(S×A)) = (IDS, extL). We show that Υ(S,A,|=(S×A)) is a homeomorphism.
Now, extL : A −→ Cont((S, extL(A)), β) is a L-VL-algebras homomorphism. The
mapping IDS is definitely both injective and surjective. The only part we have to
show is that extL is an isomorphism. Let p1, p2 ∈ A, and p1 ̸= p2. We show that
extL(p1) ̸= extL(p2). Suppose extL(p1) = extL(p2). As p1 ̸= p2, then p1 ↔ p2 ̸= 1.
So by Definition 2.2.2, we have

∧
L∈L

(TL(p1) ↔ TL(p2)) ̸= 1, and then there exists

k ∈ L such that Tk(p1) ̸= Tk(p2). Now for each s ∈ S, extL(p1)(s) = extL(p2)(s), and
hence |=(S×A) (s, p1) =|=(S×A) (s, p2). So Tk(|=(S×A) (s, p1)) = Tk(|=(S×A) (s, p2)),
and by Definition 2.2.16 we have |=(S×A) (s, Tk(p1)) =|=(S×A) (s, Tk(p2)). It shows
that Tk(p1) = Tk(p2), and which contradicts the assumption that Tk(p1) ̸= Tk(p2).
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Therefore extL(p1) ̸= extL(p2), and hence extL is injective. Clearly extL is surjec-
tive. Finally Υ(S,A,|=(S×A)) satisfies the continuity condition, since |= (s, extL(a)) =

extL(a)(s) =|=(S×A) (s, a) =|=(S×A) (IDS(s), a). Therefore Υ(S,A,|=(S×A)) is an iso-
morphism. As a result Υ is a natural isomorphism.
Now we shall show that η is a natural isomorphism.
We recall that ExtL(G(P, β)) = (P, extL(Cont(P, β)), β

′), where the function β′ :

Subalg(L) −→ Ω(P, extL(Cont(P, β)) is defined by β′(M) = (P, extM(Cont(P, β)))

for M ∈ Subalg(L). Define η(P,β) : (P, β) −→ ExtL◦G(P, β) by η(P,β)(p)(ψ) = ψ(p),
where p ∈ P and ψ ∈ Cont(P, β). It is easy to verify that η is a homeomorphism.
Also, η satisfies the naturality condition. Hence, η is a natural isomorphism.

Theorem 2.2.6. (VAL)
op is equivalent to L-BSYM.

Proof. We have two natural transformations Γ and Υ̃ such that Γ(S,A,|=(S×A)) :

(S,A, |=(S×A)) −→ (SpecL(A),A, |=(SpecL(A)×A)) and Υ̃A = ID : HR(A) −→ A .
It is clear that Υ̃ is a natural isomorphism. We show that Γ(S,A,|=(S×A)) is a natural
isomorphism between objects in L-BSYM. We define Γ(S,A,|=(S×A)) = (γ, IDA) such
that

• γ : S −→ SpecL(A) is a mapping between sets;

• IDA : A −→ A is a L-VL-algebras homomorphism.

We have to show that Γ(S,A,|=(S×A)) is a homeomorphism. First, we show that γ is
bijective. Claim: γ is injective and surjective. Let s1 ̸= s2 in S. Then by Defi-
nition 2.2.16 we have |=(S×A) (s1, a) ̸=|=(S×A) (s2, a), for some a ∈ A. Therefore
γ(s1)(a) ̸= γ(s2)(a), for some a ∈ A. As a result γ is injective. The mapping γ is
already defined in the proof of Theorem 2.2.3, and we can say that γ is also surjec-
tive. Hence our claim is now established.
Finally, we observe that γ(s)(a) = γs(a) =|=(S×A) (s, a) and γs(a) =|=(SpecL(A)×A)

(γ(s), a). Therefore |=(SpecL(A)×A) (γ(s), a) =|=(S×A) (s, IDA(a)). Hence
Γ(S,A,|=(S×A)) is an isomorphism and therefore VAL is dually equivalent to L-
BSYM.

Ultimately, we arrive at the following outcome:

Theorem 2.2.7. (VAL)
op is equivalent to L-BS.

Proof. As adjunctions can be composed, hence the composition of equivalences of
Theorems 2.2.5 and 2.2.6 shows the result.
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Remark 2.2.5. The duality discovered in [21] is also shown in Theorem 2.2.7;
however, our methodology is not the same as that of [21].

2.3 Conclusion

In this chapter, we have introduced the idea of lattice-valued Boolean systems, which
are represented by the notation L-Boolean systems, where L is a finite distribu-
tive lattice. In this context, the concept of lattice-valued topological systems gives
rise to lattice-valued Boolean systems, which are useful for proving duality between
algebras of Heyting-valued logic and systems. We have considered algebras of Fit-
ting’s style many-valued logic. A thorough analysis of the categorical relationships
among L-BSYM, L-BS, and VAL has been accomplished. We have created a du-
ality for Fitting’s multi-valued logic in light of Vickers’ work on the “logic of finite
observations” [98], as well as the work of Denniston et al. [17].
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Chapter 3

Category of L-relational systems

3.1 Introduction

Maruyama [20] defined L-ML-algebras as an algebraic structure of Fitting’s L-
valued modal logic for a finite distributive lattice L. Subsequently, in [21], a dual-
ity for the algebras of Fitting’s L-valued modal logic was found, which generalizes
Jónsson-Tarski duality for modal algebras (e.g., [35, 15, 54, 29]). This chapter intro-
duces the concept of L-relational systems, building upon the idea of L-Boolean
systems (see Chapter 2) to establish a duality between systems and algebras for Fit-
ting’s L-valued modal logic. Furthermore, it will be demonstrated that the category
of L-relational systems is equivalent to the category L-RS of L-relational spaces.
This leads to the demonstration of the duality between the category L-RS and the
category of L-ML-algebras. This outcome provides an alternative demonstration of
the duality established in [21].

3.2 L-ML-algebras, L-relational systems, L-
relational spaces and their Categorical in-
terconnections

Throughout this section L denotes a finite distributive lattice. Thus L is a finite
Heyting algebra.

The outcomes of this chapter can be found in [57] Ray, Kumar Sankar., Das, Litan
Kumar. : Categorical study for Algebras of lattice-valued logic and lattice-valued
modal logic. Annals of Mathematics and Artificial Intelligence, Springer, 89, 409-
429 (2021).
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3.2.1 L-ML-algebras

L-ML denotes the L-valued modal logic, which is defined by L-valued Kripke se-
mantics. The set of all formulas of L-valued modal logic is denoted by FORM□.
We now introduce the notion of L-valued Kripke model from [20].

Definition 3.2.1 ([20]). Let (Z,W) be a Kripke frame. Then q is a Kripke L-
valuation on (Z,W) iff q : Z × FORM□ −→ L is a function such that for any
z ∈ Z and x ∈ FORM□ satisfies the following conditions:

(i) q(z,□x) =
∧
{q(z′, x) : zWz′};

(ii) q(z, Ta(x)) = Ta(q(z, x));

(iii) q(z, x ∨ y) = q(z, x) ∨ q(z, y), q(z, x ∧ y) = q(z, x) ∧ q(z, y), q(z, x → y) =

q(z, x) → q(z, y);

(iv) q(z, t) = t where t = 0, 1.

Then (Z,W , q) is called a L-valued Kripke model.

We now recall the notion of L-ML-algebras, which provides a sound and complete
algebraic semantics for L-valued modal logic L-ML.

Definition 3.2.2 ([20]). An algebraic system (A,∧,∨,→, TL(L ∈ L),□, 0, 1) is said
to be a L-ML-algebra iff it satisfies the following conditions:

(i) (A,∧,∨,→, TL(L ∈ L), 0, 1) is a L-VL-algebra;

(ii) □(a1 ∧ a2) = □a1 ∧□a2 and □1 = 1;

(iii) for all L ∈ L, UL(□a) = □UL(a), where UL(a) =
∨
{TL1(a)|L ≤ L1}.

Definition 3.2.3 ([21]). A L-ML-algebras homomorphism is a homomorphism of
L-VL-algebras which also preserves the unary operation □.

Definition 3.2.4 ([21]). Let A be a L-ML-algebra. A binary relation W on
SpecL(A) is defined as follows:
fWg ⇔ ∀L ∈ L,∀a ∈ A, f(□a) ≥ L ⇒ g(a) ≥ L. Then (SpecL(A),W , q) is a
L-valued canonical model of A, where q is a Kripke L-valuation on (SpecL(A),W)

defined as q(f, a) = f(a), ∀f ∈ SpecL(A).

Proposition 3.2.1 ([21]). The L-valued canonical model (SpecL(A),W , q) of A is
a L-valued Kripke model. In other words, q(f,□a) = f(□a) =

∧
{g(a)|fWg}.

Proposition 3.2.2 ([21]). The Boolean algebra B(A) is a modal algebra, whenever
A is a L-ML-algebra.
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The category MAL

The category MAL of L-ML-algebras is defined as follows.

Definition 3.2.5 ([21]). L-ML-algebras together with L-ML-algebras homomor-
phisms form the category MAL.

(MAL)
op is the opposite category of the category MAL.

3.2.2 L-relational spaces

The fundamental structure of L-relational spaces is a L-Boolean spaces with a
relation defined on it that satisfies specific axioms.

The category L-RS

First, let us review the definition below.

Definition 3.2.6 ([21]). Let (Z,W) be a Kripke frame and ψ ∈ LZ. Then a unary
operation □W on LZ is defined as follows:
□Wψ : Z −→ L is defined by (□Wψ)(z) =

∧
{ψ(z′) : zWz′}

Let (Z,W) be a Kripke frame. Then for z ∈ Z, W [z] = {z′ ∈ Z : zWz′}. For a
subset X ⊂ Z, W−1[X] = {z ∈ Z : ∃z′ ∈ XzWz′}.

Definition 3.2.7. The category L-RS is defined as follows:

(a) Objects: An object in L-RS is defined by (Z, β,W), where (Z, β) is an object in
L-BS and W is a binary relation on Z which has the following properities:

(i) if ∀f ∈ Cont(Z, β), (□Wf)(z) = 1 ⇒ f(z′) = 1 then (z, z′) ∈ W;

(ii) if Z ′ is a clopen subset of Z then W−1[Z ′] is a clopen subset of Z;

(iii) Let L′ ∈ Subalg(L). If z ∈ β(L′) then W [z] ⊂ β(L′);

(b) Arrows: An arrow f : ((Z1, β1),W1) −→ ((Z2, β2),W2) in L-RS is an arrow
f : (Z1, β1) −→ (Z2, β2) in L-BS which has the following properties;

(i) if zW1t then f(z)W2f(t);

(ii) if f(z1)W2z2 then there exists a t1 ∈ Z1 such that z1W1t1 and f(t1) = z2.
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3.2.3 L-relational systems

We now introduce the notion of L-relational systems.

Definition 3.2.8. A L-relational systems is a triple (Z,A, |=(Z×A)) where Z is a
nonempty set, A is a L-ML-algebra and |=(Z×A) is a L-valued satisfaction relation
from Z to A such that the following hold:

(i) |=(Z×A) (z,
∨
r∈J

ar) =
∨
r∈J

|=(Z×A) (z, ar), J is an index set;

|=(Z×A) (z,
∧
λ∈J

aλ) =
∧
λ∈J

|=(Z×A) (z, aλ);

(ii) |=(Z×A) (z,□a) =
∧
{|=(Z×A) (z

′, a)|zW0z
′}, where W0 is a binary relation on

Z;

(iii) |=(Z×A) (z, TL(a)) = TL(|= (z, a));

(iv) |=(Z×A) (z, 0) = 0, |=(Z×A) (z, 1) = 1;

(v) |=(Z×A) (z, a→ b) =|=(Z×A) (z, a) →|=(Z×A) (z, b).

We construct a category L-RSYM of L-relational systems, in accordance with
the Definition 2.2.17.

Definition 3.2.9. We define the category L-RSYM as follows:

1. Object: An object in L-RSYM is a L-relational systems (Z,A, |=(Z×A)).

2. Arrow: An arrow (ψ1, ψ2) : (Z1,A, |=(Z1×A)) −→ (Z2,B, |=(Z2×B)) in L-
RSYM is a continuous map between any two objects, where

(i) ψ1 : Z1 −→ Z2 is a set map;

(ii) ψ2 : B −→ A is a L-ML-algebras homomorphism;

(iii) |=(Z1×A) (z1, ψ2(b)) =|=(Z2×B) (ψ1(z1), b), for z1 ∈ Z1 and b ∈ B.

3.2.4 Functorial relationships

In this section we shall explore functorial relationships between the categories L-
RSYM, L-RS and MAL.
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Definition 3.2.10. A binary relation W□ on (Z, extL(A)) is defined as follows:
zW□w ⇔ ∀L ∈ L, ∀a ∈ A, extL(□a)(z) ≥ L⇒ extL(a)(w) ≥ L.

Definition 3.2.11. A functor Ext∗L : L-RSYM −→ L-RS is defined as follows:

(i) Ext∗L(Z,A, |=(Z×A)) = ((Z, extL(A)), β,W□), where (Z,A, |=(Z×A)) is an ob-
ject in L-RSYM;

(ii) Ext∗L(ϕ1, ϕ2) = ϕ1, where (ϕ1, ϕ2) : (Z,A, |=(Z×A)) −→ (W,B, |=(W×B)) is an
arrow in L-RSYM.

The well-definedness of the functor Ext∗L is shown by the Lemma 3.2.1 and
Lemma 3.2.2.

Lemma 3.2.1. ((Z, extL(A)), β,W□) is an object in L-RS.

Proof. We verify the first condition in the object section of Definition 3.2.7. More
precisely, if for all h ∈ Cont((Z, extL(A)), β), (□Wh)(z) = 1 ⇒ h(z′) = 1, then
zW□z

′. We prove the contrapositive statement. Suppose (z, z′) ̸∈ W□. Then there
exists L ∈ L and a ∈ A such that extL(□a)(z) ≥ L ⇒ extL(a)(z

′) ≱ L. Now
UL(extL(□a)(z)) = 1 ⇒ extL(UL(□a))(z) = 1, but extL(UL(a))(z′) ̸= 1. De-
fine h : ((Z, extL(A), β) −→ (L, βL) by h(z) = extL(UL(a))(z). Then we have
(□Wh)(z) =

∧
{h(y) : zW□y} =

∧
{extL(UL(a))(y) : zW□y} = extL(□UL(a))(z) =

1, but h(z′) = extL(UL(a))(z
′) ̸= 1. As we know extL(a) ∈ Cont((Z, extL(A)), β),

so by definition of h, we have h ∈ Cont((Z, extL(A)), β).
Now we verify the second condition in the object section of Definition 3.2.7.
For each L ∈ L, (extL(a))

−1({L}) = (TL ◦ extL(a))−1({1}) is a clopen set
i.e., both open and closed (since TL ◦ extL(a) ∈ Cont((Z, extL(A)), β)). Now
we are to show that W−1

□ [(extL(a)
−1({L}))] = W−1

□ [(TL ◦ extL(a))−1({1})] is
clopen in Z. It suffices to show that W−1

□ [(extL(a)
−1({1}))] is clopen in

Z. We claim that W−1
□ [(extL(a)

−1({1}))] = extL(¬□¬T1(a))−1({1}). It
is clear that extL(¬□¬T1(a))−1({1}) is clopen in Z. Now assume that
z ∈ extL(¬□¬T1(a))−1({1}). Then extL(¬□¬T1(a))(z) = 1 and hence
extL(□¬T1(a))(z) = 0. Now

0 = extL(□¬T1(a))(z)
=|=(Z×A) (z,□¬T1(a))

=
∧

{|=(Z×A) (z
′,¬T1(a)) : zW□z

′} [By Definition 3.2.8]

=
∧

{extL(¬T1(a))(z′) : zW□z
′}
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Since extL(¬T1(a))(z′) is either 0 or 1, therefore there exists w ∈ Z and zW□w

such that extL(¬T1(a))(w) = 0. Now extL(¬T1(a))(w) = 0 ⇒ extL(T1(a))(w) = 1.
Henceforth, extL(a)(w) = 1. Therefore z ∈ W−1

□ [(extL(a)
−1({1}))]. Similarly it can

be proved the converse part.
After this, we verify the third condition in the object section of Definition 3.2.7.

Here β(L′) = (Z, extL′(A)), L′ is a subalgebra of L. Let z ∈ (Z, extL′(A)) and
W□[z] − β(L′) ̸= ϕ. Then for any w ∈ W□[z] − β(L′), we have extL′(a)(w) /∈ L′.
Define extL′(a)(w) = L. For w′ ∈ (Z, extL(A)),

extL(TL(a) → a)(w′) =

1, if extL(a)(w′) ̸= L

L, if extL(a)(w′) = L

Now extL′(□(TL(a) → a))(z) =|= (z,□(TL(a) → a)) =
∧
{|= (w′, TL(a) →

a)|zW□w
′} =

∧
{extL(TL(a) → a)(w′)|zW□w

′} = L. But this contradicts our
assumption that extL′(□(TL(a) → a))(z) ∈ L′ . Therefore, if z ∈ β(L′) then
W□[z] ⊂ β(L′).

Lemma 3.2.2. For an arrow (ϕ1, ϕ2) : (Z,A, |=(Z×A)) −→ (W,B, |=(W×B)) in L-
RSYM, Ext∗L(ϕ1, ϕ2) is an arrow in L-RS.

Proof. We verify the first condition in the arrow section of Definition 3.2.7. In
particular, Ext∗L(ϕ1, ϕ2) = ϕ1 : ((Z, extL(A)), β1,W1□) −→ ((W, extL(B)), β2,W2□)

is an arrow in L-RS. Here we note that ϕ1 : ((Z, extL(A)), β1) −→ ((W, extL(B)), β2)
is an arrow in L-BS. Assume zW1□w. Claim: ϕ1(z)W2□ϕ1(w). By Definition 3.2.10,
we have extL(□a)(z) ≥ L ⇒ extL(a)(w) ≥ L. Now if for all b ∈ B and L1 ∈ L,
extL(□b)ϕ1(z) ≥ L1, then |=(W×B) (ϕ1(z),□b) ≥ L1.
By Definition 3.2.8, we have |=(W×B) (ϕ1(z),□b) =

∧
{|=(W×B) (ϕ1(y), b)|zW1□y} ≥

L1. This shows that extL(b)(ϕ1(w)) ≥ L1 and hence ϕ1(z)W2□ϕ1(w).
We next verify that Ext∗L(ϕ1, ϕ2) satisfies the second condition in the ar-

row section of Definition 3.2.7. Assume ϕ1(z1)W2□w. Define Ext2(ϕ
∗
1, ϕ

∗
2) :

(Z, ext2(B(A1)), β
∗
1 ,W∗

1□
) −→ (W, ext2(B(A2)), β

∗
2 ,W∗

1□
) by Ext2(ϕ

∗
1, ϕ

∗
2) = ϕ∗

1,
where ϕ∗

1(z) = ϕ1(z) for z ∈ (Z, ext2(B(A1))). So Ext2(ϕ
∗
1, ϕ

∗
2) is an arrow in

L′′-RS (L′′ is a set of two elements {0, 1}), and if ϕ∗
1(z1)W∗

2□
w then there is z

in (Z, ext2(B(A1))) such that z1W∗
1□
z and ϕ∗

1(z) = w. Now extL(a1)(z) = L ⇔
ext2(TL(a1))(z) = 1. We claim z1W1□z and ϕ1(z) = w. If extL(□a)(z1) ≥ L

then T1 ◦ (extL(□UL(a)))(z1) = 1. Therefore extL(□T1(UL(a))(z1) = 1. Since
z1W∗

1□
z, we have ext2(UL(a))(z) = 1 ⇒ extL(a)(z) ≥ L. Therefore z1W1□z. Let
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extL(b)(ϕ1(z)) = L.
Then ext2(TL(b))(ϕ∗

1(z)) = 1 ⇒ ext2(TL(b))(w) = 1. Hence extL(b)(w) = L. Now

extL(b)(w) = extL(b)(ϕ1(z)) ⇒|=(W×B) (w, b) =|=(W×B) (ϕ1(z), b) ⇒ ϕ1(z) = w

So the claim is now established.

Definition 3.2.12. A functor G∗ : L-RS −→ L-RSYM is defined as follows:

(i) G∗(P, β,W□) = (P, (Cont(P, β),□W), |=), where (P, β,W□) is an object in L-
RS. For p ∈ P , and Θ ∈ Cont(P, β), define |= (p,Θ) = Θ(p).

(ii) For an arrow ϕ : (P1, β1,W1□) −→ (P2, β2,W2□) in L-RS, G∗(ϕ) = (ϕ, ϕ−1),

where

• ϕ : P1 −→ P2 is a set function;

• ϕ−1 : (Cont(P2, β2),□W2) −→ (Cont(P1, β1),□W1) is a L-ML-algebras homo-
morphism, which is defined by ϕ−1(Θ) = Θ ◦ ϕ, Θ ∈ Cont(P2, β2).

Note 3.2.1. Remark 2.2.3 indicates that (Cont(P, β),∧,∨,→, Tℓ(ℓ ∈ L), 0, 1)
is a L-VL-algebra. Thus, it is easy to follow that (Cont(P, β),∧,∨,→, Tℓ(ℓ ∈
L),□W , 0, 1) is a L-ML-algebra.

The well-definedness of the functor G∗ is shown by the Lemma 3.2.3 and Lemma
3.2.4.

Lemma 3.2.3. Let (P, β,W□) be an object in L-RS. Then, G∗(P, β,W□) is an
object in L-RSYM.

Proof. We recall that G∗(P, β,W□) = (P, (Cont(P, β),□W), |=) and |= (p,Θ) =

Θ(p), where Θ ∈ (Cont(P, β),□W). In order to prove (P, (Cont(P, β),□W), |=) is
an object in L-RSYM, we verify the conditions given in Definition 3.2.8.

(i) |= (p,
∨
r∈J

Θr) = (
∨
r∈J

Θr)(p) =
∨
r∈J

Θr(p), where p ∈ P , and for each r ∈

J (where J is an index set) Θr ∈ (Cont(P, β),□W). Also we observe that
|= (p,

∧
r∈J ′

Θr) = (
∧
r∈J ′

Θr)(p) =
∧
r∈J ′

Θr(p), where J ′ is a finite set of natural

numbers.
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(ii) |= (p,□WΘ) = (□WΘ)(p). Now

(□WΘ)(p) =
∧

{Θ(p′) : pWp′}( by Definition 3.2.6 )

=
∧

{|= (p′,Θ) : pWp′}

(iii) For p ∈ P and L ∈ L, |= (p, TL(Θ)) = TL(Θ)(p) = TL(Θ(p)) = TL(|= (p,Θ)).

(iv) It is easy to observe that |= (p, 0) = 0, |= (p, 1) = 1, where 0 and 1 are the
constant functions whose values are always 0 and 1, respectively.

(v) |= (p, f → g) = (f → g)(p) = f(p) → g(p) =|= (p, f) →|= (p, g).

Lemma 3.2.4. Let ϕ : (P1, β1,W1□) −→ (P2, β2,W2□) be an arrow in L-RS. Then
G∗(ϕ) is an arrow in L-RSYM.

Proof. Recall that G∗(ϕ) = (ϕ, ϕ−1), where ϕ : P1 −→ P2 is a set function and ϕ−1 :

(Cont(P2, β2),□W2) −→ (Cont(P1, β1),□W1) is a L-ML-algebras homomorphism,
which is defined by ϕ−1(Θ) = Θ ◦ ϕ, Θ ∈ Cont(P2, β2). Now we observe that

|= (p1, ϕ
−1(Θ)) = (Θ ◦ ϕ)(p1)

= Θ(ϕ(p1))

=|= (ϕ(p1),Θ)

Therefore (ϕ, ϕ−1) is a continuous map in L-RSYM, and hence G∗(ϕ) is an arrow
in L-RSYM.

Definition 3.2.13. A functor H∗ : L-RSYM −→ (MAL)
op is defined as follows:

(i) H∗(S,A, |=(S×A)) = A, where (S,A, |=(S×A)) is an object in L-RSYM;

(ii) H∗(g1, g2) = gop2 , where (g1, g2) : (S1,A, |=(S1×A)) −→ (S2,B, |=(S2×B)) is an
arrow in L-RSYM.

It is easy to observe that the functor H∗ is well-defined.

Definition 3.2.14. A functor R∗ : (MAL)
op −→ L-RSYM is defined as follows:

(i) R∗(A) = (SpecL(A),A, |=(SpecL(A)×A)), where A is an object in (L-MA)op;
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(ii) R∗(ψ) = (ψ−1, ψop), ψ : A −→ B is an arrow in (L-MA)op.

The well-definedness of the functor R∗ is shown by the Lemma 3.2.5 and Lemma
3.2.6.

Lemma 3.2.5. Let A be a L-ML-algebra. Then (SpecL(A),A, |=(SpecL(A)×A)) is an
object in L-RSYM.

Proof. We define |=(SpecL(A)×A) (h, a) = h(a), h ∈ SpecL(A). Clearly SpecL(A) is a
set. Next we show that

(i) |=(SpecL(A)×A) (h,
∨
j∈J

aj) = h(
∨
j∈J

aj) =
∨
j∈J

h(aj) =
∨
j∈J

|=(SpecL(A)×A) (h, aj), (J

is an index set). Also |=(SpecL(A)×A) (h, a1∧ a2) = h(a1)∧h(a2) =|=(SpecL(A)×A)

(h, a1)∧ |=(SpecL(A)×A) (h, a2).

(ii) We observe that

|=(SpecL(A)×A) (h,□a) = h(□a)

=
∧

{h1(a) : hWh1}( using Proposition 3.2.1)

=
∧

{|=(SpecL(A)×A) (h1, a) : hWh1}

(iii) |=(SpecL(A)×A) (h, TL(a)) = h(TL(a)) = TL(h(a)) = TL(|=(SpecL(A)×A) (h, a)).

(iv) It is clear that |=(SpecL(A)×A) (h, 0) = 0 and |=(SpecL(A)×A) (h, 1) = 1

(v) |=(SpecL(A)×A) (h, a → b) = h(a → b) = h(a) → h(b) =|=(SpecL(A)×A)

(h, a) →|=(SpecL(A)×A) (h, b).

Therefore (SpecL(A),A, |=(SpecL(A)×A)) is an object in L-RSYM

Lemma 3.2.6. (ψ−1, ψop) is a continuous map in L-RSYM, whenever ψ is a L-
ML-algebras homomorphism.

Proof. Here ψ−1 : SpecL(A) −→ SpecL(B) is a set map, and ψop : B −→ A is a
L-ML-algebras homomorphism.
Now, |=(SpecL(A)×A) (h, ψop(b)) = h(ψop(b)) = (h ◦ ψop)(b) =

ψ−1(h)(b) =|=(SpecL(B)×B) (ψ−1(h), b). Thus, (ψ−1, ψop) is a continuous map
in L-RSYM.

Theorem 3.2.1. Ext∗L is a co-adjoint to the functor G∗.
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Proof. We first define the counit of the adjunction. Figure 3.1 illustrates the counit.

G∗(Ext∗L(Z,A, |=(Z×A))) (Z,A, |=(Z×A))

G∗(P, β,W□)

(P, β,W□) Ext∗L(Z ,A, |=(Z×A))

Υ∗
(Z,A,|=(Z×A))

G∗(ϕ̂)=(ϕ1,ϕ
−1
1 ) (ϕ1,ϕ2)

ϕ̂=ϕ1

Figure 3.1: Illustration of the counit

Recall that G∗(P, β,W□) = (P, (Cont(P, β),□W), |=) and
Ext∗L(Z,A, |=(Z×A)) = (((Z, extL(A)), β),W□). So G∗(Ext∗L(Z,A, |=(Z×A))) =

(Z, (Cont(Z, extL(A), β),□W), |=).
We show that the counit Υ∗

(Z,A,|=(Z×A))
= (ID∗

Z , ext
∗
L) : G∗(Ext∗L(Z,A, |=(Z×A)

)) −→ (Z,A, |=(Z×A)) is a continuous map in L-RSYM, where

(i) ID∗
Z : Z −→ Z is a set function;

(ii) ext∗L : A −→ (Cont(Z, extL(A), β),□W) is a L-ML-algebras homomorphism,
where ext∗L(a) = extL(a), ∀a ∈ A.

It is known that ext∗L is a L-VL-algebras homomorphism. We have to show
that it preserves the unary operation □ i.e., ext∗L(□a) = □(ext∗L(a)). Now
ext∗L(□a)(z) =|=(Z×A) (z,□a) =

∧
{|=(Z×A) (z′, a) : zW□z

′} =
∧
{extL(a)(z′) :

zW□z
′}. Using Definition 3.2.6, we have □(ext∗L(a))(z) =

∧
{extL(a)(z′) : zW□z

′}.
Therefore, ext∗L(□a) = □(ext∗L(a)). So ext∗L is a L-ML-algebras homomorphism.
To prove the continuity of Υ∗

(Z,A,|=(Z×A))
, it is enough to show that |=(Z×A)

(ID∗
Z(z), a) =|= (z, ext∗L(a)). We see that |=(Z×A) (ID∗

Z(z), a) =|=(Z×A) (z, a) =

extL(a)(z) =|= (z, extL(a)) =|= (z, ext∗L(a)).
Next we prove that the triangle of Figure 3.1 commutes i.e., for a given arrow
(ϕ1, ϕ2) : G∗(P, β,W□) −→ (Z,A, |=(Z×A)) in L-RSYM there is an arrow, which
we take ϕ̂ = ϕ1 in L-RS such that (ϕ1, ϕ2) = Υ∗

(Z,A,|=(Z×A))
◦ G∗(ϕ̂).

Now

(ϕ1, ϕ2) = (ID∗
Z , ext

∗
L) ◦ (ϕ1, ϕ

−1
1 )

= (ID∗
Z ◦ ϕ1, ϕ

−1
1 ◦ ext∗L)
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It is clear that ID∗
Z ◦ϕ1 = ϕ1. The only part we have to show is that ϕ2 = ϕ−1

1 ◦ext∗L.
Now as (ID∗

Z , ext
∗
L) is continuous, so |=(Z×A) (ID

∗
Z(z), a) =|= (z, ext∗L(a)). Therefore

ext∗L(a) = a.
We observe that for each a ∈ A,

ϕ−1
1 ◦ ext∗L(a) = ϕ−1

1 (a)

= ϕ2(a) ( as (ϕ1, ϕ2) is continuous)

Hence Υ∗
(Z,A,|=(Z×A))

is the counit and as a result Ext∗L is a co-adjoint to the
functor G∗.

Theorem 3.2.2. G∗ is an adjoint to the functor Ext∗L

Proof. It is also possible to prove the theorem by unit of the adjunction. Figure 3.2
illustrates the unit.

(P, β,W□) Ext∗L(G
∗(P, β,W□))

Ext∗L(Z ,A, |=(Z×A))

G∗(P, β,W□) (Z,A, |=(Z×A))

η∗
(P,β,W□)

ψ∗
Ext∗L(ψ̃)=ψ

∗

ψ̃=(ψ∗,ψ∗−1)

Figure 3.2: Illustration of the unit

For a given arrow ψ∗ : (P, β,W□) −→ Ext∗L(Z,A, |=(Z×A)) there is an arrow,
which we take ψ̃ : G∗(P, β,W□) −→ (Z,A, |=(Z×A)) such that Ext∗L(ψ̃) = ψ∗. It can
be shown that the triangle of Figure 3.2 commutes i.e., Ext∗L(ψ̃) ◦ η∗(P,β,W□) = ψ∗.

Theorem 3.2.3. The category L-RSYM is equivalent to the category L-RS.

Proof. Let ID∗
(Z,A,|=(Z×A))

and ID∗ be two identity functors on L-RSYM and L-RS,
respectively. Υ∗ and η∗ are two natural transformations such that Υ∗

(Z,A,|=(Z×A))
:

G∗(Ext∗L(Z,A, |=(Z×A))) −→ (Z,A, |=(Z×A)) and η∗(P,β,W□) : (P, β,W□) −→
Ext∗L(G

∗(P, β,W□)). Now we show that Υ∗ and η∗ are natural isomorphism.
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Υ∗
(Z,A,|=(Z×A))

is a natural transformation between objects in L-RSYM. We note
that Υ∗

(Z,A,|=(Z×A))
is similar to Υ(Z,A,|=(Z×A)), as defined in the proof of Theorem

2.2.5. So, by Theorem 2.2.5, Υ∗
(Z,A,|=(Z×A))

is an isomorphism and hence Υ∗ is a
natural isomorphism.
Now we prove that η∗ is a natural isomorphism.
Here η∗(P,β,W□) : (P, β,W□) −→ ((P, ext∗L(Cont(P, β),□W)), β′,W ′

□)

(W ′
□ is a binary relation on (P, ext∗L(Cont(P, β),□W))), and is defined by

η∗(P,β,W□)(p)(ψ) = ψ(p), ψ ∈ (Cont(P, β),□W).
Define β′ : Subalg(L) −→ Ω(P, extL(Cont(P, β),□W)) by β′(M) =

(P, extM(Cont(P, β),□W)). Since ext∗L(ψ)(p) = ψ(p), so η∗(P,β,W□) is well-defined.
Here η∗(P,β,W□) is very similar to η(P,β), which is defined in the proof of Theorem
2.2.5. So by Theorem 2.2.5, η∗(P,β,W□) is an isomorphism between objects in L-BS.
We have to show that η∗(P,β,W□) and η∗−1

(P,β,W□) satisfy the first and second conditions
in the arrow section of Definition 3.2.7. Assume for any p1, p2 ∈ P , p1W□p2. Then
for any L ∈ L, and ψ ∈ Cont(P, β), η∗(P,β,W□)(p1)(□Wψ) = ext∗L(□Wψ)(p1) ≥ L ⇒
(□Wψ)(p1) ≥ L. Now (□Wψ)(p1) =

∧
{ψ(p′) : p1W□p

′}. Since p1W□p2, we have
ψ(p2) ≥ L.
Therefore extL(ψ)(p2) ≥ L and hence η∗(P,β,W□)(p1)W ′

□η
∗
(P,β,W□)(p2). Again we ob-

serve that if (p1, p2) /∈ W□ then by the first condition in the object section of
Definition 3.2.7 there exists ψ∗ ∈ Cont(P, β) such that (□Wψ

∗)(p1) = 1 but
ψ∗(p2) ̸= 1. Therefore ext∗L(□Wψ

∗)(p1) = 1 and ext∗L(ψ
∗)(p2) ̸= 1. Therefore

(η∗(P,β,W□)(p1), η
∗
(P,β,W□)(p2)) /∈ W ′

□. So we get for any p1, p2 ∈ P , p1W□p2 iff
η∗(P,β,W□)W ′

□η
∗
(P,β,W□).

Now we verify the second condition in the arrow section of Definition 3.2.7. Sup-
pose η∗(P,β,W□)(p)W ′

□t. Since η∗(P,β,W□) is surjective, there is t1 ∈ P such that
η∗(P,β,W□)(t1) = t and pW□t1. Analogously we can verify for η∗−1

(P,β,W□), and hence
η∗ is a natural isomorphism.

Theorem 3.2.4. H∗ is an adjoint to the functor R∗.

Proof. We define the unit of the adjunction. Figure 3.3 illustrates the unit.
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(S,A, |=(S×A)) R∗H∗(S,A, |=(S×A))

R∗(B)

H∗(S,A, |=(S×A)) B

Γ∗
(S,A,|=(S×A))

(ϕ1,ϕ2) R∗(ψ̃)=(ϕ−1
2 ,ϕ2)

ψ̃=ϕop2

Figure 3.3: Illustration of the unit

Now R∗(B) = (SpecL(B),B, |=(SpecL(B)×B)), and |=(SpecL(B)×B) (φ, b) = φ(b).
So R∗H∗(S,A, |=(S×A)) = R∗(A) = (SpecL(A),A, |=(SpecL(A)×A)).
Here the unit is taken by Γ∗. For an object (S,A, |=(S×A)) in L-RSYM, define
Γ∗
(S,A,|=(S×A))

: (S,A, |=(S×A)) −→ R∗H∗(S,A, |=(S×A)) by Γ∗
(S,A,|=(S×A))

= (g, IDA),
where

(i) g : S −→ SpecL(A) is a set map. For each s ∈ S, define g(s) = gs, where
gs : A −→ L is defined by gs(a) =|=(S×A) (s, a);

(ii) IDA : A −→ A is a L-ML-algebras homomorphism.

It is already known that for each s ∈ S, gs is a L-VL-algebras homomorphism.
From the proof of Theorem 2.2.3, we observe that (g, IDA) is a continuous map in
L-RSYM. Now we shall show that the triangle of Figure 3.3 commutes i.e., for a
given arrow (ϕ1, ϕ2) : (S,A, |=(S×A)) −→ R∗(B) there is an arrow ψ̃, which we define
ψ̃ = ϕop2 : H∗(S,A, |=(S×A)) −→ B such that (ϕ1, ϕ2) = R∗(ψ̃) ◦ Γ∗

(S,A,|=(S×A))
. Now

R∗(ψ̃) = R∗(ϕop2 ) = (ϕ−1
2 , ϕ2). It is clear that ϕ2 = IDA ◦ ϕ2. Claim: ϕ1 = ϕ−1

2 ◦ g.
For each s ∈ S, ϕ1(s) = ϕ−1

2 ◦ g(s) = ϕ−1
2 ◦ gs = gs ◦ϕ2. Now for each b ∈ B, we have

gs ◦ ϕ2(b) = gs(ϕ2(b)) =|=(S×A) (s, ϕ2(b)). As (ϕ1, ϕ2) is continuous in L-RSYM,
so |=(S×A) (s, ϕ2(b)) =|=(SpecL(B)×B) (ϕ1(s), b) = ϕ1(s)(b). Therefore ϕ1 = ϕ−1

2 ◦ g.
Hence the theorem is proved.

Theorem 3.2.5. R∗ is a co-adjoint to the functor H∗.

Proof. It is also possible to prove the theorem by counit of the adjunction. Figure
3.4 illustrates the counit.
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H∗R∗(A) A

H∗(Y,B, |=(Y×B))

(Y,B, |=(Y×B)) R∗(A)

Υ̃∗
A=IDA

H∗(ϕ∗)=f f̃∗=f

ϕ∗=(f−1
SpecL(A)

,fop)

Figure 3.4: Illustration of the counit

Here the counit Υ̃∗ is defined by Υ̃∗
A = IDA. For a given arrow f̃ ∗ in (MAL)

op

there is an arrow ϕ∗ in L-RSYM, which is defined by ϕ∗ = (f−1
SpecL(A), f

op) such
that H∗(ϕ∗) = f . It is now easy to see that the triangle of Figure 3.4 commutes i.e.,
Υ̃∗

A ◦ H∗(ϕ∗) = f̃ ∗.

Theorem 3.2.6. The category (MAL)
op is equivalent to the category L-RSYM.

Proof. We get two natural transformations Υ̃∗ and Γ∗ such that Υ̃∗
A = IDA :

H∗R∗(A) −→ A and Γ∗
(S,A,|=(S×A))

: (S,A, |=(S×A)) −→ R∗H∗(S,A, |=(S×A)). Here
Υ̃∗

A is of course a natural isomorphism. We have to show that Γ∗
(S,A,|=(S×A))

is a
natural isomorphism between two objects in L-RSYM.
Here Γ∗

(S,A,|=(S×A))
= (g, IDA). Using the proof of Theorem 2.2.6, we can say that

Γ∗
(S,A,|=(S×A))

is a homeomorphism and hence Γ∗
(S,A,|=(S×A))

is a natural isomorphism.
Therefore (MAL)

op is equivalent to the category L-RSYM. Consequently, MAL

is dually equivalent to the category L-RSYM.

Theorem 3.2.7. (MAL)
op is equivalent to L-RS.

Proof. The result can be obtained as the composition of equivalences of Theorem
3.2.3 and Theorem 3.2.6. Hence MAL is dually equivalent to L-RS.

Remark 3.2.1. The same process can also be used to develop a duality for L-
ML-algebras with truth constants. The idea of L-ML-algebras with truth constants
appears in [21].
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3.3 Conclusion

We have seen in Chapter 2 that the concept of lattice-valued Boolean systems, which
originates from lattice-valued topological systems, plays an essential role in proving
duality between systems and algebras of multi-valued logic. The approach has then
been extended to algebras of multi-valued modal logic. Introducing the notion of
lattice-valued relational systems, we have found the categorical equivalence between
systems and algebras of Fitting’s multi-valued modal logic. This in turn establishes
the duality between L-RS and MAL.
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Chapter 4

Bitopological Duality for
multi-valued logic

4.1 Introduction

The groundwork for duality theory was laid in 1937 by Stone [51], who demonstrated
the dual equivalence between the categories of Boolean algebras and homomorphisms
and the category of Stone spaces (compact, zero-dimensional and Hausdorff spaces)
and continuous mappings. Furthermore, Stone developed a general work for the
category of bounded distributive lattices in 1937 [43]. With the aid of ordered Stone
spaces (also known as Priestley spaces), Priestley explored a different duality for
the category of bounded distributive lattices in 1970 [50], resolving issues in Stone’s
work [43]. Esakia [10] discovered a duality for Heyting algebras, which is a limitation
of Priestley duality.

From a logical perspective, topological dualities have been used to establish a
relationship between syntax and semantic of a propositional logic. Several authors
have approached the development of topological duality from various perspectives
(e.g., [21, 53, 29]).

From a computer science perspective, topological dualities serve as the foun-
dation for semantics of programming language (e.g., [14, 32, 33]). Abramsky [14]
extended Smyth’s concepts [34] by developing programming logic from denotational
semantics. Stone-type dualities played crucial roles in Abramsky’s ground breaking

The results of this chapter can be found in [58] Das, Litan Kumar., Ray, Kumar Sankar. :
Bitopological duality for algebras of Fitting’s logic and natural duality extension. Acta
Informatica, 58(5), 571-584 (2021).
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work [14] to derive the relationship between program logic and denotational seman-
tics.
The concept of bi-topological spaces was introduced in [38]. Bitopological spaces
may be employed to represent distributive lattices, as demonstrated by Jung and
Moshier in [48]. As a result, the authors investigated a different explanation of
Esakia duality in a bi-topological context in [40]. The objective of this chapter is to
use bi-topological techniques to construct a duality for algebras of Fitting’s multi-
valued logic. In actuality, it extends the natural duality theory in a bi-topological
context. We shall introduce a category PBSL of lattice-valued pairwise Boolean
spaces, and relate it to the category VAL of algebras of Fitting’s multi-valued logic
using appropriate functors. This leads us to propose a duality for Fitting’s multi-
valued logic in a bitopological setting.

4.2 L-VL-algebras, L-pairwise Boolean spaces and
their categorical interconnections

Throughout this section L denotes a finite distributive lattice. Henceforth, L is a
finite Heyting algebra.

4.2.1 L-VL-algebras

In order to obtain algebraic axiomatization of Fitting’s Heyting valued logic,
Maruyama in [20] modified Fitting’s L-valued logic by removing fuzzy truth con-
stants (except bottom and top elements 0, 1 respectively) and adding a new unary
operation Tℓ(−). From the logical point of view Tℓ(p) means the truth value of a
proposition p is exactly ℓ. Such operations Tℓ(−) were introduced with reference to
the Post algebras [37].

Definition 4.2.1. For each ℓ ∈ L, the mapping Tℓ : L −→ L is defined by

Tℓ(r) =

{
1 r = ℓ

0 r ̸= ℓ

Now let us review the algebraic structure of Fitting’s Heyting-valued logic.

Definition 4.2.2 ([20]). (A,∧,∨,→, TL(L ∈ L), 0, 1) forms a L-VL-algebra if and
only if for any L1, L2 ∈ L, and a, b ∈ A, it satisfies the following axioms:
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(i) the algebraic structure (A,∧,∨,→, TL(L ∈ L), 0, 1) is a Heyting algebra;

(ii) TL1(a) ∧ TL2(b) ≤ TL1→L2(a→ b) ∧ TL1∧L2(a ∧ b) ∧ TL1∨L2(a ∨ b);
TL2(a) ≤ TTL1

(L2)(TL1(a));

(iii) T0(0) = 1; TL(0) = 0 (L ̸= 0); T1(1) = 1; TL(1) = 0, if L ̸= 1;

(iv)
∨
{TL(a) : L ∈ L} = 1; TL1(a) ∨ (TL2(a) → 0) = 1;

TL1(a) ∧ TL2(a) = 0, (L1 ̸= L2);

(v) T1(TL(a)) = TL(a), T0(TL(a)) = TL(a) → 0, TL2(TL1(a)) = 0, (L2 ̸= 0, 1);

(vi) T1(a) ≤ a, T1(a ∧ b) = T1(a) ∧ T1(b);

(vii)
∧
L∈L

(TL(a) ↔ TL(b)) ≤ (a↔ b).

Definition 4.2.3 ([20]). A L-VL-algebras homomorphism is a mapping f between
two L-VL-algebras such that the mapping f preserves the operations ∧,∨,→, TL(L ∈
L), 0, 1.

Definition 4.2.4 ([20]). A non-empty subset S of A, where A is a L-VL-algebra,
is said to be a L-valued filter if the following hold:

(i) if s ∈ S and s ≤ t, then t ∈ S;

(ii) s ∧ t ∈ S whenever s, t ∈ S;

(iii) T1(s) ∈ S whenever s ∈ S.

Definition 4.2.5 ([20]). A non-empty subset S of A, where A is a L-VL-algebra,
is said to be a prime L-valued filter if the following hold:

(i) S ≠ A;

(ii) if for any r ∈ L, Tr(s∨ t) ∈ S then there exists r1, r2 ∈ L with r1∨ r2 = r such
that Tr1(s) ∈ S and Tr2(t) ∈ S.

Theorem 4.2.1 ([21]). Let a and b be any two different elements of a L-VL-algebra
A. Then, there exits r ∈ L and a prime L-valued filter S of A such that Tr(a) ∈ S
but Tr(b) /∈ S.

Proposition 4.2.1 ([21]). For each prime L-valued filter S of a L-VL-algebra A,
there is a homomorphism hS : A −→ L defined by hS(a) = r ⇐⇒ Tr(a) ∈ S.
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The category VAL

Definition 4.2.6. L-VL-algebras together with L-VL-algebras homomorphisms
form a category VAL.

4.2.2 L-pairwise Boolean spaces

A bitopological space is defined by a triple (X, τ1, τ2), where X is a set and τ1, τ2
are two topologies on X. We now review the several key ideas about bitopological
spaces pertinent to our work.

Definition 4.2.7 ([39]). A bitopological space (S, τS1 , τS2 ) is said to be pairwise Haus-
dorff if for any two different points s1, s2 of S there exist a disjoint open sets
O1 ∈ τS1 , and O2 ∈ τS2 containing s1 and s2, respectively.

Definition 4.2.8 ([39]). A bitopological space (S, τS1 , τS2 ) is said to be pairwise zero-
dimensional if the collection BS

1 of τS1 -open sets which are τS2 -closed, is a basis for
the topology τS1 , and the collection BS

2 of τS2 -open sets which are τS1 -closed, is a
basis for the topology τS2 , i.e., we can write BS

1 = τS1 ∩ ϱ2, and BS
2 = τS2 ∩ ϱ1.

Here we designate ϱ1, and ϱ2 as the collections of τS1 -closed sets, and τS2 -closed sets,
respectively.

Definition 4.2.9 ([39]). A bitopological space (S, τS1 , τS2 ) is said to be pairwise com-
pact if every open cover {Oi : i ∈ J,Oi ∈ τS1 ∪ τS2 } of S has a finite sub-cover.

Proposition 4.2.2 ([40]). A bitopological space (S, τS1 , τS2 ) is pairwise compact if
and only if ϱ1 ⊂ Υ2 and ϱ2 ⊂ Υ1, where Υ1, and Υ2 are denote respectively the set
of all compact subsets of (S, τS1 ), and (S, τS2 ).

Definition 4.2.10. If a bitopological space is pairwise compact, pairwise Hausdorff,
and pairwise zero-dimensional, then it is called pairwise Boolean space.

For a pairwise Boolean space B, we denote the set of all pairwise closed sub-
spaces of B by ΩB. As a pairwise closed subset of a pairwise compact space is also
a pairwise compact [62], so each member of ΩB is a pairwise Boolean space. Let ΣL

represent the set of all sub-algebras of L.

Definition 4.2.11. A pairwise Boolean space together with a mapping α from ΣL

to ΩB that meets certain conditions form a L-valued pairwise Boolean space, denoted
as L-pairwise Boolean space.
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Definition 4.2.12. We define a category PBSL of L-pairwise Boolean spaces as
follows:

1. An object in PBSL is defined by a tuple (B, αB), where B is a pairwise Boolean
space, and αB is a mapping from ΣL to ΩB which satisfies the following con-
ditions:

(i) αB(L) = B;

(ii) for any L1,L2,L3 ∈ ΣL, if L1 = L2∧L3, then αB(L1) = αB(L2)∩αB(L3).

2. A morphism f : (B, αB) −→ (B′, αB′) in PBSL is a pairwise continuous map
f : B −→ B′ which satisfies;

(i) if x ∈ αB(L′), L′ ∈ ΣL, then f(x) ∈ αB′(L′).

Remark 4.2.1. We consider a bitopological space (L, τ, τ), where τ is the discrete
topology, and consequently, (L, αL), where the mapping αL : ΣL −→ ΩL is defined
by αL(L′) = L′, is an object in PBSL.

4.2.3 Functorial relationships

In order to determine the functorial relationships between the categories PBSL and
VAL, we will need to construct two functors: F from the category PBSL to the
category VAL of L-VL-algebras, as well as G from the category VAL to the category
PBSL.

Definition 4.2.13. We define a functor F : PBSL −→ VAL as follows:

(i) F acts on an object (B, αB) in PBSL as F (B, αB) =

(HomPBSL((B, αB), (L, αL)),∨,∧,→, Tp(p ∈ L), 0, 1), where (B, αB) is
an object in PBSL. The operations ∨,∧,→, Tp(p ∈ L), 0, 1 on the set
HomPBSL((B, αB), (L, αL)) are defined pointwise i.e., (ϕ∨ η)(b) = ϕ(b)∨ η(b),
(ϕ ∧ η)(b) = ϕ(b) ∧ η(b), (ϕ → η)(b) = ϕ(b) → η(b), Tp(ϕ)(b) = Tp(ϕ(b)), and
the operations 0, 1 are considered to be constant functions, whose values are
zero and one, respectively.

(ii) F acts on an arrow ϕ : (B, αB) −→ (B′, αB′) in PBSL as follows:
F (ϕ) : F (B′, αB′) −→ F (B, αB) defined by F (ϕ)(η) = η ◦ ϕ, where η ∈
HomPBSL((B′, αB′), (L, αL)).
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The well-definedness of the functor F is shown by Proposition 4.2.3 and Propo-
sition 4.2.4.

Proposition 4.2.3. For an object (B, αB) in PBSL, F (B, αB) is an object in VAL.

Proof. If ϕ, η : ((B, τB1 , τB2 ), αB) −→ ((L, τ, τ), αL), where τ is the dis-
crete topology on L, are both pairwise continuous maps, then ϕ ∨ η, ϕ ∧
η, ϕ → η, Tp(ϕ) are also pairwise continuous maps. As a result, it
can be shown that if ϕ, η ∈ HomPBSL((B, αB), (L, αL)), then ϕ ∨ η, ϕ ∧
η, ϕ → η, Tp(ϕ) ∈ HomPBSL((B, αB), (L, αL)). Now it is being observed that
(HomPBSL((B, αB), (L, αL)),∨,∧,→, Tp(p ∈ L), 0, 1) is a L-VL-algebra.

Proposition 4.2.4. For an arrow ϕ : (B, αB) −→ (B′, αB′) in PBSL, F (ϕ) is an
arrow in VAL.

Proof. We recall that F (ϕ) : F (B′, αB′) −→ F (B, αB) is defined by F (ϕ)(η) = η ◦ ϕ,
where η ∈ HomPBSL((B′, αB′), (L, αL)). Now F (ϕ)(η1 ∨ η2) = (η1 ∨ η2) ◦ ϕ = (η1 ◦
ϕ)∨ (η2 ◦ϕ) = F (ϕ)(η1)∨F (ϕ)(η2). Similarly, F (ϕ)(η1 ∧ η2) = F (ϕ)(η1)∧F (ϕ)(η2),
F (ϕ)(η1 → η2) = F (ϕ)(η1) → F (ϕ)(η2), F (ϕ)(Tp(η)) = Tp(η) ◦ ϕ = Tp(η ◦ ϕ) =

Tp(F (ϕ)(η)), F (ϕ)(0) = 0, F (ϕ)(1) = 1. Therefore, F (ϕ) preserves all the operations
∧,∨,→, Tp(p ∈ L), 0, 1. Henceforth, F (ϕ) is an arrow in VAL.

Definition 4.2.14. We define a functor G : VAL −→ PBSL as follows:

(i) G(A) = (HomVAL(A,L), σ1, σ2, αA), where A is an object in VAL. The map-
ping αA : ΣL −→ ΩHomVAL (A,L) is defined by αA(L′) = HomVAL(A,L′).

(ii) For an arrow g : A1 −→ A2 in VAL, define G(g) : G(A2) −→ G(A1) by
G(g)(µ) = µ ◦ g, where µ ∈ G(A2).

Remark 4.2.2. In the first part of the above Definition 4.2.14, we take αA(L′) =

HomVAL(A,L′), where L′ is a sub-algebra of L. We note that the subset
HomVAL(A,L′) of HomVAL(A,L) is σ1-closed and σ2-closed i.e., pairwise closed,
where the topologies σ1, and σ2 are generated by the bases {⟨x⟩ : x ∈ A} and
{⟨T1(x) → 0⟩ : x ∈ A}, respectively.

Remark 4.2.3. For a L-VL-algebra A, (HomVAL(A,L), σ1, σ2) is a bitopological
space. The topologies σ1 and σ2 are generated by the bases Bσ1 = {⟨a⟩ : a ∈ A},
where ⟨a⟩ = {v ∈ HomVAL(A,L) : v(a) = 1}, and Bσ2 = {Oc : O ∈ Bσ1},
respectively.
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Well-definedness of the functor G is shown by Proposition 4.2.5 and Proposition
4.2.6.

Proposition 4.2.5. For an object A in VAL, G(A) is an object in PBSL.

Proof. We recall from Definition 4.2.14 that G(A) = (HomVAL(A,L), σ1, σ2, αA).
First, we show that (HomVAL(A,L), σ1, σ2) is a pairwise Hausdorff space. Let
v1, v2 ∈ HomVAL(A,L) such that v1 ̸= v2. Then there exists an element a ∈ A
such that v1 ∈ ⟨a⟩, but v2 /∈ ⟨a⟩, and thus there exists disjoint open sets U ∈ σ1,
V ∈ σ2 such that v1 ∈ U , and v2 ∈ V .
Second, we show that (HomVAL(A,L), σ1, σ2) is pairwise compact. In this instance,
we see that σ1 ∪ σ2 ⊂ σ1. Since, (HomVAL(A,L), σ1) is compact, it follows that
(HomVAL(A,L), σ1, σ2) is pairwise compact.
Finally, we prove that (HomVAL(A,L), σ1, σ2) is a pairwise zero-dimensional. To
prove that (HomVAL(A,L), σ1, σ2) is a pairwise zero-dimensional, we shall show
that Bσ1 = σ1 ∩ ϱ2, and Bσ2 = σ2 ∩ ϱ1. We find that if u ∈ Bσ1 , then u ∈ σ1.
Since u ∈ Bσ1 , we have u = ⟨a⟩, for some a ∈ A. Now uc = ⟨T1(a) → 0⟩, and
hence uc ∈ Bσ2 . As a result, u ∈ ϱ2. Therefore, we have u ∈ σ1 ∩ ϱ2. Next we take
u ∈ σ1 ∩ ϱ2, and prove that u ∈ Bσ1 . Since Bσ1 is the basis for the topology σ1, so
u can be expressed as the union of the members of Bσ1 . As (HomVAL(A,L), σ1, σ2)
is pairwise compact, so by Proposition 4.2.2, we have u is compact. Therefore, u
can be covered by the finite collection of that members of Bσ1 . As the finite union
of the members of Bσ1 is also in Bσ1 , hence u ∈ Bσ1 . Consequently, Bσ1 = σ1 ∩ ϱ2.
Analogously, we can show that Bσ2 = σ2 ∩ ϱ1. Therefore, we can conclude that
(HomVAL(A,L), σ1, σ2) is a pairwise Boolean space.
It is easy to follow that the mapping αA : ΣL −→ ΩHomVAL (A,L) satisfies the condi-
tions given in the object part of Definition 4.2.12. Henceforth, G(A) is an object in
PBSL.

Proposition 4.2.6. For an arrow g : A1 −→ A2 in VAL, G(g) : G(A2) −→ G(A1)

is an arrow in PBSL.

Proof. For a basis open set ⟨x⟩, where x ∈ A1, in the topology σA1
1 on G(A1), we

get

G(g)−1(⟨x⟩) = {ϕ ∈ HomVAL(A2,L) : G(g)(ϕ) ∈ ⟨x⟩}
= {ϕ ∈ HomVAL(A2,L) : ϕ ◦ g ∈ ⟨x⟩}
= ⟨g(x)⟩ ∈ σA2

1 .
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Next we see that for a basis open set ⟨x⟩c, where x ∈ A1, in the topology σA1
2 on

G(A1)

G(g)−1(⟨x⟩c) = {ϕ ∈ HomVAL(A2,L) : G(g)(ϕ) ∈ ⟨x⟩c}
= {ϕ ∈ HomVAL(A2,L) : ϕ ◦ g ∈ ⟨T1(x) → 0⟩}
= ⟨T1(g(x)) → 0⟩ ∈ σA2

2 .

Therefore, the mapping G(g) is pairwise continuous. We also observe that, if ξ ∈
αA2(L′), then G(g)(ξ) ∈ αA1(L′). As a result, G(g) is an arrow in PBSL.

4.3 Bitopological duality

We now establish a duality for algebras of Fitting’s many-valued logic in a bitopo-
logical setting.

Theorem 4.3.1. The category VAL is dually equivalent to the category PBSL.

Proof. We shall prove this theorem by defining two natural isomorphisms β :

IdA −→ F ◦ G and ζ : IdPBSL −→ G ◦ F , where IdA and IdPBSL are respec-
tively the identity functors on the categories VAL, and PBSL. Now for a L-VL
algebra A, define βA : A −→ F ◦ G(A) by βA(a)(ϕ) = ϕ(a), where a ∈ A and
ϕ ∈ G(A) = HomVAL(A,L). It is straightforward to demonstrate that βA is a
homomorphism. Using Theorem 4.2.1 and Proposition 4.2.3, we can establish that
βA is one-one and onto. Consequently, βA is an isomorphism. The fact that β is a
natural transformation is easily verified. Consequently, β is a natural isomorphism.
Again, for an object (S, αS) in PBSL, define ζ(S,αS) : (S, αS) −→ G ◦
F (S, αS) by ζ(S,αS)(s)(ψ) = ψ(s), where s ∈ S and ψ ∈ F (S, αS) =

(HomPBSL((S, αS), (L, αL)),∨,∧,→, Tp(p ∈ L), 0, 1). We shall show that ζ(S,αS)

is a bi-homeomorphism. As ψ ∈ HomPBSL((S, αS), (L, αL)), so for each s ∈ S,
ζ(S,αS)(s) is a L-VL-algebras homomorphism. Henceforth, ζ(S,αS) is well-defined.
To prove the pairwise continuity of ζ(S,αS), we show that ζ−1

(S,αS)
(⟨v⟩),

where v ∈ HomPBSL((S, αS), (L, αL)) is τS1 -open and ζ−1
(S,αS)

(⟨v⟩c), v ∈
HomPBSL((S, αS), (L, αL)) is τS2 -open.
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Now

ζ−1
(S,αS)

(⟨v⟩) = {s ∈ S : ζ(S,αS)(s) ∈ ⟨v⟩}

= {s ∈ S : ζ(S,αS)(s)(v) = 1}
= v−1({1}).

As v−1({1}) is τS1 -open, so ζ−1
(S,αS)

(⟨v⟩) is τS1 -open.
Also we get,

ζ−1
(S,αS)

(⟨v⟩c) = {s ∈ S : ζ(S,αS)(s) ∈ ⟨T1(v) → 0⟩}

= {s ∈ S : ζ(S,αS)(s)(T1(v) → 0) = 1}
= (T1(v) → 0)−1({1}).

Since (T1(v) → 0)−1({1}) is τS2 -open, henceforth ζ−1
(S,αS)

(⟨v⟩c) is τS2 -open.

Now we show that ζ(S,αS) is injective. For any two points s, s′ ∈ S, let s ̸=
s′. Then, ζ(S,αS)(s), ζ(S,αS)(s

′) ∈ G ◦ F (S, αS). We shall show that ζ(S,αS)(s) ̸=
ζ(S,αS)(s

′). Suppose for contradiction, we take ζ(S,αS)(s) = ζ(S,αS)(s
′). Now {⟨v⟩ :

v ∈ HomPBSL((S, αS), (L, αL))}, and {⟨v⟩c : v ∈ HomPBSL((S, αS), (L, αL))} are
the bases for the topologies σ1 and σ2 on G◦F (S, αS), respectively. So, ζ(S,αS)(s) can
be expressed by σ1-basis open sets. Also, it can be expressed by σ2-basis open sets.
Let ζ(S,αS)(s) ∈ ⟨v⟩. Then, we get v(s) = v(s′) = 1. Since S is pairwise Hausdorff,
we get s = s′. Similarly, if ζ(S,αS)(s) ∈ ⟨v⟩c, then we get s = s′. Consequently, ζ(S,αS)

is injective.
Next we show that ζ(S,αS) is onto. Let ϕ ∈ G ◦ F (S, αS). Define S1 = {v−1({1}) ∈
βS
1 : ϕ(v) = 1} and S2 = {u ∈ βS

2 : uc /∈ S1}, where βS
1 , and βS

2 are the bases
for the topologies τS1 and τS2 , respectively. We show that S1 ∪ S2 has the finite
intersection property. Since, (S1 ∪ S2) ∩ (S ′

1 ∪ S ′
2) = (S1 ∩ S ′

1) ∪ (S2 ∩ S ′
2), and

v−1({1}) ∩ v′−1({1}) = (v ∧ v′)−1({1}), we have to show that v−1({1}) ̸= ∅ under
the condition that ϕ(v) = 1. Suppose ϕ(v) = 1 but v−1({1}) = ∅. Then we have
T1(v) = 0, and henceforth T1(ϕ(v)) = ϕ(T1(v)) = 0 ⇒ ϕ(v) = 0, which contradicts
the assumption that ϕ(v) = 1. Thus, S1 ∪ S2 has the finite intersection property.

As S is pairwise compact and pairwise Hausdorff, thus there exists s ∈ S such
that {s} =

⋂
(S1 ∪ S2). If s ∈ S1, then we get v(s) = 1, whenever ϕ(v) = 1. More-

over, we can get if v(s) = 1, then ϕ(v) = 1. For contradiction we take ϕ(v) ̸= 1.
Then T1(ϕ(v)) = 0, and hence ϕ(T1(v)) = 0. Now ϕ(T1(v)) → 0 = 1, and thus we get
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ϕ(T1(v) → 0) = 1. Since, ϕ(T1(v) → 0) = 1, according to definition of S1, we have
(T1(v) → 0)(s) = 1. As a result, we get T1(v(s)) = 0. Now T1(v(s)) = 0 ⇒ v(s) ̸= 1.
Hence, for any v ∈ HomPBSL((S, αS), (L, αL)), ϕ(v) = 1 ⇔ v(s) = 1. Thus, we have
ζ(S,αS)(s) = ϕ. Similarly, if s ∈ S2, then we can also get ζ(S,αS)(s) = ϕ. Therefore,
ζ(S,αS) is onto.
Finally, we show that ζ−1

(S,αS)
is pairwise continuous. It can be shown by verify-

ing that ζ(S,αS) is a bi-closed map. Let U be a τS1 -closed set. Since (S, τS1 , τS2 )
is a pairwise Boolean space, both (S, τS1 ) and (S, τS2 ) are compact. Consequently,
ζ(S,αS)(U) is compact in HomVAL(HomPBSL((S, αS), (L, αL)),L). We observe that
the topological space (HomVAL(HomPBSL((S, αS), (L, αL)),L), σ1) with basis {⟨v⟩ :
v ∈ HomPBSL((S, αS), (L, αL))} is itself a Hausdorff space, and thus ζ(S,αS)(U) is
closed. The topological space (HomVAL(HomPBSL((S, αS), (L, αL)),L), σ2) with
basis {⟨T1(v) → 0⟩ : v ∈ HomPBSL((S, αS), (L, αL))} is itself a Hausdorff space, so
for a τ2-closed set U ′, ζ(S,αS)(U

′) is closed. Therefore, ζ(S,αS) is a bi-homeomorphism.
It is simple to verify that ζ(S,αS), and ζ−1

(S,αS)
satisfy the condition given in item 2

of Definition 4.2.12. The verification that ζ is a natural transformation is simple.
Hence, ζ is a natural isomorphism.

4.4 Conclusion

The primary outcome of this chapter is a duality for Fitting’s Heyting-valued logic,
which is obtained using an expanded form of the theory of natural dualities based
on the theory of bitopology. We have proposed the category PBSL of L-pairwise
Boolean spaces and linked it to the category VAL of algebras of Fitting’s Heyting-
valued logic via suitable functors. We have therefore discovered a duality for Fit-
ting’s Heyting-valued logic. Throughout this chapter, we have tried to show how
logic, algebra, and bitopology are conceptually and technically related through the
extended version of Stone-type duality in a bitopological context.
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Chapter 5

Intuitionistic version of Natural
Duality Theory

5.1 Introduction

The primary objective of this chapter is to extend the natural duality theory for
ISPI(L), the class of all isomorphic copies of sub-algebras of intuitionistic power of
finite algebra L. This will allow the theory of natural dualities to incorporate Esakia
duality for Heyting algebras [64]. Let us begin by discussing an aspect of natural
duality theory and the difficulties of incorporating it into the Esakia duality for the
class of all Heyting algebras. We will then see how ISPI can help us address the
challenge.
The natural duality theory [13] offers a potent comprehensive explanation of Stone-
Priestley-type dualities based on the methods of universal algebra. It primarily cov-
ers duality theory of ISP(L). This approach proves beneficial in discovering novel
dualities. It encompasses several previously established dualities, such as Stone du-
ality for Boolean algebras [51], Priestley duality for distributed lattices [56], among
others (see [45, 46, 47] for additional examples). However, it fails to incorporate
Esakia duality for the class of all Heyting algebras. Although algebras of L-valued
logic can be loosely characterized as ISP(L), it is not able to represent the class
of all Heyting algebras for any finite algebra L. It is important to point out that
the implication operation of a Heyting algebra cannot be defined pointwise on the

The results of this chapter can be found in [58] Das, Litan Kumar., Ray, Kumar Sankar. :
Bitopological duality for algebras of Fitting’s logic and natural duality extension. Acta
Informatica, 58(5), 571-584 (2021).
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topological space of prime filters of the Heyting algebra. For that same reason, it is
not possible to describe the class of all Heyting algebras as ISP(L). Maruyama [41]
also brought attention to this issue and proposed the concept of ISPI(L).
Maruyama [41] utilized Hu-duality [44] to develop a duality for ISPM(L), a modal-
ization of the notion of ISP(L). This allowed for the successfully unification of
Jónsson-Tarski duality(e.g., [35, 54, 29]) and Abramsky-Kupke-Kurz-venema dual-
ity(e.g., [1, 55]). Furthermore, he proposed the ideas of ISRP(L) and ISPI(L), which
reflected two alternative viewpoints on intuitionistic logic: the former, residuation-
based, and the latter, Kripke semantic-based. Maruyama [52] obtained a duality
for ISRP(L), and incorporated Esakia duality into natural duality theory. In this
chapter, we consider the notion of ISPI(L) as a means of extending the theory of
natural dualities, which in turn incorporates the Esakia duality. A noteworthy ob-
servation is that ISPI(L) coincides with the class of all Heyting algebras if L is the
two-element distributive lattice. In order to develop a duality for ISPI(L), we first
set up a duality for ISP(L).

5.2 The concept of ISPI

Throughout this section, let L refer to a finite algebra with a bounded lattice
reduct. Logically, one would anticipate that there is a bounded lattice reduct as
most logics are endowed with the lattice connectives meet(∧) and join(∨), along
with the truth constants 0 and 1. From the viewpoint of logic, we may perceive L
as an algebra of truth values. Let ISP(L) represent the class of all isomorphic copies
of sub-algebras of direct powers of finite single algebra L. For the 2-element dis-
tributive lattice {0, 1}, ISP({0, 1}) coincides with the class of all distributive lattices.

The category ISP (L) is defined as follows:

Definition 5.2.1. (i) Objects: objects in ISP (L) are algebras in ISP(L);

(ii) Arrows: arrows in ISP (L) are homomorphisms, where a homomorphism is
defined by a function between the objects, which preserve the operations defined
on L.

An intuitionistic Kripke frame can be defined by the tuple (W,R), where W is
a non-empty set and R is a partial order relation on it. Consider (L,≤) is a poset
such that ℓ1 ≤ ℓ2 iff ℓ1 ∨ ℓ2 = ℓ2, equivalently, ℓ1 ∧ ℓ2 = ℓ1. For any two elements
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r1, r2 ∈ L, r1 → r2 =
∨
{ℓ ∈ L : r1 ∧ ℓ ≤ r2}.

We now define the notion of intuitionistic power.

Definition 5.2.2 ([41]). The intuitionistic power of L with respect to an intuition-
istic frame (W,R) is defined as LW ∈ ISP(L) equipped with the binary operation
→ (intuitionistic implication) on LW defined as (f → g)(w) =

∧
{f(w′) → g(w′) :

wRw′}, where f, g ∈ LW .

The concept of ISPI(L) is given in the following definition.

Definition 5.2.3. ISPI(L) represents the class of all isomorphic copies of sub-
algebras of intuitionistic power of L.

The category ISPI(L) is defined as follows.

Definition 5.2.4. ISPI(L) denotes the category of algebras in ISPI(L) and homo-
morphisms between algebras, where a homomorphism is defined by a function that
preserves the implication operation → and all the other operations of L.

For an object A in ISP (L), HOMISP (L)(A,L) denotes the set of all homomor-
phisms between algebras A and L.

Definition 5.2.5. We define an order relation R on HomISP (L)(A,L) as follows:
for any v1, v2 ∈ HomISP (L)(A,L), v1Rv2 iff v1(x) ≤ v2(x), for all x ∈ A. Then
(HomISP (L)(A,L), R) is a poset.

Definition 5.2.6. For any object (A,→) of ISPI(L), and v ∈ HomISP (L)(A,L),
ISPI(L) satisfies the intuitionistic Kripke model condition iff v(x → y) =∧
{w(x) →L w(y) : vRw}.

A zero-dimensional compact Hausdorff space is called a Stone space [7]. An
ordered topological space is defined by a triple (X, τ,R), where the tuple (X, τ) is
a topological-space and (X,R) is a partially ordered set. For an ordered set (X,R),
we have R(x) = {y ∈ X : xRy} and R−1(X0) = {y ∈ X : yRx, for some x ∈ X0},
where X0 ⊂ X. Then R(x) is an up-set, and R−1(X0) is a down-set.

5.3 Duality for ISP(L)
In this section, we shall establish a duality for ISP(L). To establish a duality for
ISP(L), we consider some term functions. It is important to note that L is dualizable
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in terms of discrete topology. The term function (also known as a polynomial
function) is defined according to [5]. We now recall the concept of topological
dualizability from [52].

Definition 5.3.1 ([52]). Let F be a finite algebra. Then F is said to be dualizable
in respect of a topology defined on F if and only if ∀n ∈ ω, Tf(F) = C(Fn,F),
where Tf(F), and C(Fn,F) are denote the set of all n-ary term functions on F ,
and the set of all continuous functions from Fn to F , respectively.

Definition 5.3.2. For each ℓ ∈ L, we consider a term function Tℓ : L −→ L defined
by

Tℓ(s) =

{
1 s = ℓ

0 s ̸= ℓ

From a logical perspective, Tℓ(s) suggests that the truth value of a proposition
s is exactly ℓ, where ℓ is an element of L which is the algebra of truth values.

Definition 5.3.3. For each ℓ ∈ L, we consider a term function χℓ : L −→ L defined
by

χℓ(s) =

{
ℓ s = 1

0 otherwise

It should be emphasized that homomorphism commutes with the term functions.

Category:Pspa

Definition 5.3.4. We consider a category PSpa as follows:

1. Object: An object in PSpa is a triple (X, τ,R), where (X, τ) is a compact
space, and R is a partial order relation on X such that the following condition
hold:

(i) if x ̸ Ry, then for some clopen up-set W of X such that x ∈ W but
y /∈ W .

2. Arrow: An arrow ψ : (X, τ1, R1) −→ (Y, τ2, R2) in PSpa is a continuous map
ψ : (X, τ1) −→ (Y, τ2), which is order preserving i.e., for any x, y ∈ X, if
xR1y then ψ(x)R2ψ(y).
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For A ∈ ISP(L), (HOMISP (L)(A,L), τ, R) is an ordered topological space, where
the topology τ is generated by {⟨a⟩ : a ∈ A}, ⟨a⟩ = {v ∈ HOMISP (L)(A,L) : v(a) =
1}. Then for each a ∈ A, the set ⟨a⟩ is a clopen up-set.

Functors: G and C
Definition 5.3.5. We define a functor G : ISP (L) −→ PSpa as follows:

• G acts on an object A in ISP (L) as G(A) = (HOMISP (L)(A,L), τ, RA).

• G acts on an arrow f : A −→ B in ISP (L) as G(f) : G(B) −→ G(A) defined
by G(f)(ϕ) = ϕ ◦ f , ϕ ∈ G(B).

We shall now verify the well-definedness of the functor G.

Lemma 5.3.1. For an object A in ISP (L), (HOMISP (L)(A,L), RA) is an object in
PSpa.

Proof. HOMISP (L)(A,L) is a compact set as LA with the product topology is com-
pact, andHOMISP (L)(A,L) is closed in the defined topology τ , which can be induced
by the product topology on LA.
Now, if v ̸ RAw, then there exists an element a ∈ A such that v(a) = 1 and w(a) ̸= 1.
Thus v ∈ ⟨a⟩, and w ∈ ⟨a⟩c.

Lemma 5.3.2. For an arrow f in ISP (L), G(f) is an arrow in PSpa.

Proof. For a given arrow f : A −→ B in ISP (L), G acts on f as G(f) : G(B) −→
G(A) defined by G(f)(ϕ) = ϕ ◦ f . It is observed that for each a ∈ A, G(f)−1(⟨a⟩) =
{v ∈ G(B) : v ◦ f(a) = 1} = ⟨f(a)⟩. Thus, G(f) is a continuous map.
Now for any two members v, w of G(B), if vRBw, then we have v(b) ≤ w(b), ∀b ∈ B.
Henceforth, v(f(a)) ≤ w(f(a)), ∀a ∈ A, and thus G(f)(v)RAG(f)(w).

Therefore, the functor G is well-defined by Lemma 5.3.1 and Lemma 5.3.2.

Definition 5.3.6. We define a functor C : PSpa −→ ISP (L) as follows:

• C acts on an object (S,R) in PSpa as C(S,R) = HOMPSpa((S,R), (L,≤)).

• C acts on an arrow f : (S1, R1) −→ (S2, R2) in PSpa as C(f) : C(S2, R2) −→
C(S1, R1) defined by C(f)(ϕ) = ϕ ◦ f , ϕ ∈ C(S2, R2).
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Note 5.3.1. For each object (S,R) in PSpa, the set HOMPSpa((S,R), (L,≤)) is
endowed with operations ∨,∧, 0, 1 which are defined pointwise i.e., for any f, g ∈
HOMPSpa((S,R), (L,≤)), (f ∨ g)(s) = f(s)∨ g(s), (f ∧ g)(s) = f(s)∧ g(s) and the
operations 0, 1 are treated as constant functions with values 0 and 1, respectively.

The following Lemmas 5.3.3 and 5.3.4 show the well-definedness of the functor
C.

Lemma 5.3.3. For an object (S,R) in PSpa, (HOMPSpa((S,R), (L,≤)),∨,∧, 0, 1)
is an object in ISP (L).

Proof. This arises from the fact that (HOMPSpa((S,R), (L,≤)),∨,∧, 0, 1) is a subal-
gebra of a direct power LS of L. Consequently, (HOMPSpa((S,R), (L,≤)),∨,∧, 0, 1)
is an object in ISP (L).

Lemma 5.3.4. For an arrow f : (S1, R1) −→ (S2, R2) in PSpa, C(f) is an arrow
in ISP (L).

Proof. Well-definedness of the map C(f) is followed by the construction of C(f),
and the fact that ϕ is an order-preserving continuous map. It is easy to follow that
C(f) preserves all the defined operations. Thus, C(f) is a homomorphism between
objects in ISP (L). Consequently, C(f) is an arrow in ISP (L).

Theorem 5.3.1. For an object A in ISP (L), A is isomorphic to C◦G(A) in ISP (L).

Proof. Define a map σA : A −→ C ◦ G(A) by σA(a)(v) = v(a), where a ∈ A, and
v ∈ G(A). Now it is easily observed that, for each a ∈ A, σA(a) ∈ C ◦ G(A). For
each a ∈ A, and s ∈ L, σA(a)−1({s}) = {v ∈ HOMISP (L)(A,L) : v(a) = s} =

{v ∈ HOMISP (L)(A,L) : Ts(v(a)) = 1} = ⟨Ts(a)⟩. Henceforth, {σA(a) : a ∈ A} ⊆
C ◦ G(A). So, σA is well-defined. Since the operations are defined point-wise on
C ◦ G(A), σA preserves all the operations. Thus, σA is a homomorphism.
We now show that σA is one-one. For any members a, b ∈ A, if a ̸= b, then we
claim that σA(a) ̸= σA(b). As A ∈ ISP(L), by definition of ISP(L) we have A is
isomorphic to a sub-algebra of direct power LJ of L. Therefore, a, b ∈ LJ , and thus
a(λ) ̸= b(λ), for some λ ∈ J . Define a homomorphism v : A −→ L by v(a) = a(λ).
Then, v is well-defined, since the operations are defined pointwise on LJ . Henceforth,
σA(a)(v) ̸= σA(b)(v).
Now if ψ ∈ C ◦G(A), we claim that ψ = σA(a), for some a ∈ A. For ℓ ∈ L, ψ−1({ℓ})
is a clopen subset of G(A), and hence ψ−1({ℓ}) is a compact subset of G(A). So,
ψ−1({ℓ}) can be expressed as finite union of basis open sets in HOMISP (L)(A,L).
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Let ψ−1({ℓ}) = ⟨aℓ⟩. Now we claim that σA(
∨
ℓ∈L

χℓ(aℓ)) = ψ. If v ∈ ψ−1({ℓ}),

then σA(
∨
ℓ∈L

χℓ(aℓ))(v) = ψ(v). Also, if v ∈ ψ−1({p}), then v(χℓ(aℓ)) = ℓ, if ℓ = p,

and v(χℓ(aℓ)) = 0, if ℓ ̸= p. Consequently, σA(
∨
ℓ∈L

χℓ(aℓ))(v) = v(
∨
ℓ∈L

χℓ(aℓ)) =∨
ℓ∈L

v(χℓ(aℓ)) = p = ψ(v). Therefore, ψ = σA(a), where a =
∨
ℓ∈L

χℓ(aℓ). Hence, σA is

surjective. Finally, we have σA is an isomorphism. This completes the proof.

Theorem 5.3.2. For an object (S,R) in PSpa, (S,R) is homeomorphic to G ◦
C(S,R).

Proof. Define a map δS : (S,R) −→ G ◦ C(S,R) by δS(s)(f) = f(s). For each
s ∈ S, δS(s) is a homomorphism, as the operations are defined pointwise on C(S,R).
Therefore, δS is well-defined. Now we observe that if f ∈ C(S,R), then δ−1

S (⟨f⟩) =
{s ∈ S : δS(s)(f) = 1} = f−1({1}), is an open up-set in (S,R). δS is also an order
preserving map, because if s1Rs2 then f(s1) ≤ f(s2). Therefore, δS(s1)R′δS(s2),
where R′ is interpreted as a partial order relation on G ◦ C(S,R) in accordance with
Definition 5.2.5.
Let s ̸= t in S. We claim that δS(s) ̸= δS(t). The claim is demonstrated by the
fact that G ◦ C(S,R) is an object in PSpa, ensuring that it is zero-dimensional and
Hausdorff. Thus, there exists ϕ ∈ C(S,R) such that ϕ(s) ̸= ϕ(t). As a result, δS is
one-one.
We now show that δS is surjective. We already observe that {δS(s) : s ∈ S} ⊆
G ◦ C(S,R). As δS(S) is compact subset of G ◦ C(S,R), hence δS(S) is closed. If
δS is not surjective, then there exists v ∈ G ◦ C(S,R) such that v /∈ δS(S) i.e.,
v ̸= δS(s), for any s ∈ S. Therefore, there exists a clopen up-set W in G ◦ C(S,R)
containing v, but not δS(S). As W is compact, so W can be expressed as finite
union of basis open sets. We may consider W = ⟨f⟩ ∧ ⟨g⟩c, for some f, g ∈ C(S,R).
Now δ−1

S (W ) = δ−1
S (⟨f⟩) ∧ δ−1

S (⟨g⟩c). Since δ−1
S (W ) = ∅, hence δ−1

S (⟨f⟩) ⊆ δ−1
S (⟨g⟩).

Therefore, we have f−1({1}) ⊆ g−1({1}). Then, T1(f) ≤ T1(g). Consequently, we
get v(T1(f)) = 1 and v(T1(g)) = 1. Since, v(g) ̸= 1, this contradicts the fact that
v(T1(g)) = 1. Therefore, δS(S) = G ◦ C(S,R).
It is easy to observed that δS is a closed map.
We now demonstrate that for any two members s1, s2 ∈ S, if δS(s1)R′δS(s2) then
s1Rs2. We demonstrate an equivalent statement, which reads as follows: if s1 ̸ Rs2,
then δS(s1) ̸ R′δS(s2). Since s1 ̸ Rs2, then there exists a clopen set U ⊂ S such that
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s2 ∈ U and U ∩R(s1) = ∅. Define f : S −→ L by

f(s) =

{
0 s ∈ U
1 s /∈ U

Then, f is continuous, and f(s1) ≰ f(s2). Hence, δS(s1)(f) ̸ R′δS(s2)(f). Therefore,
for any s1, s2 ∈ S, s1Rs2 iff δS(s1)R

′δS(s2). Now δ−1
S is an order-preserving map,

since δS is bijective, and the relation s1Rs2 ⇐⇒ δS(s1)R
′δS(s2) holds.

Theorem 5.3.3. The category ISP (L) is dually equivalent to the category PSpa.

Proof. Let IDISP (L), and IDPSpa denote the identity functors on ISP (L) and PSpa,
respectively. We consider two natural transformations σ : IDISP (L) −→ C ◦ G, and
δ : IDPSpa −→ G ◦ C. Now for each object A of ISP (L), we consider σA : A −→
C ◦ G(A) by σA(a)(v) = v(a), where v ∈ G(A). Moreover, for an object (S,R) of
PSpa, consider δS(s)(f) = f(s), where f ∈ C(S,R). Then, it is easily shown that
σ and δ are natural transformations. Also, σ and δ are natural isomorphisms by
Theorem 5.3.1, and Theorem 5.3.2. Therefore, we can conclude that the category
ISP (L) is dually equivalent to the category PSpa.

We now use Theorem 5.3.3 to develop a duality for ISPI(L).

5.4 Duality for ISPI(L)

Category: Hspa

Definition 5.4.1. We take a category HSpa as follows.

1. Object: An object in HSpa is defined by a triple (S, τ, R) such that (S, τ, R) is
an object in PSpa which additionally satisfies the following condition:

(i) if C is a clopen subset of S, then R−1(C) is a clopen down-set of S.

2. Arrow: An arrow ϕ : (S1, τ1, R1) −→ (S2, τ2, R2) in HSpa is an arrow in PSpa
which satisfies the following condition:

(i) for any members s1 ∈ S1, and s2 ∈ S2, if ϕ(s1)R2s2 then there exists
s ∈ S1 such that s1R1s and ϕ(s) = s2.
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Functors: GI and CI
Definition 5.4.2. We define a functor GI : ISPI(L) −→ HSpa as follows:

• GI acts on an object (A,→) in ISPI(L) as GI(A) = (HOMISPI(L)(A,L), RA).

• GI acts on an arrow f : A −→ B in ISPI(L) as GI(f) : GI(B) −→ GI(A)
defined by GI(f)(ϕ) = ϕ ◦ f , ϕ ∈ GI(B).

Lemma 5.4.1. For an object (A,→) in ISPI(L), GI(A) is an object in HSpa.

Proof. By Lemma 5.3.1, GI(A) is an object in PSpa. We shall show that for each
clopen subset U of S, R−1

A (U) is a clopen down-set. Since, {⟨a⟩ : a ∈ A} is a clopen
basis for the topology on HOMISP (L)(A,L), and R−1

A preserves union, therefore
we show that R−1

A (⟨a⟩) is a clopen down-set, for each a ∈ A. We now verify that
R−1
A (⟨a⟩) = ⟨a → 0⟩c. If v ∈ ⟨a → 0⟩c, then v(a → 0) ̸= 1. By Definition 5.2.6,

we have v(a → 0) =
∧
{u(a → 0) : vRAu} =

∧
{u(a) → 0 : vRAu}. Since,

u(a) → 0 = 0 or 1, so that there exists u ∈ HOMISP (L)(A,L) such that vRAu and
u(a) → 0 = 0. Thus, u(a) = 1. Henceforth v ∈ R−1

A (⟨a⟩). Again, if v ∈ R−1
A (⟨a⟩),

then there exists u ∈ ⟨a⟩ such that vRAu. So v(a → 0) = 0. Hence, v ∈ ⟨a → 0⟩c.
Finally, we have R−1

A (⟨a⟩) = ⟨a→ 0⟩c, a clopen down-set.

Lemma 5.4.2. For an arrow f : (A,→) −→ (B,→) in ISPI(L), GI(f) is an arrow
in HSpa.

Proof. Here GI(f) : GI(B) −→ GI(A) is defined as GI(f)(ϕ) = ϕ ◦ f , where
ϕ ∈ GI(B). Then by Lemma 5.3.2, GI(f) is an arrow in PSpa. Next, we show
the condition found in the arrow part of Definition 5.4.1. We demonstrate the
equivalent condition that GI(f)(RB(v)) = RA(GI(f)(v)), ∀v ∈ GI(B). We verify
that if ψ /∈ GI(f)(RB(v)), then ψ /∈ RA(GI(f)(v)). Since, ψ /∈ GI(f)(RB(v)), then
ψ ̸= GI(f)(w), for any w ∈ HOMISP (L)(B,L) such that vRBw. Then by the object
part of Definition 5.3.4, we can take ψ ∈ ⟨a⟩ and GI(f)(w) ∈ ⟨a⟩c. Suppose for con-
tradiction, if ψ ∈ RA(GI(f)(v)), then (v ◦f)RAψ. Therefore, by definition of RA, we
have (v ◦ f)(a) ≤ ψ(a), ∀a ∈ A. Then (v ◦ f)(a→ 0) ≤ ψ(a→ 0). But ψ(a→ 0) =

ψ(a) → 0 = 0, as ψ(a) = 1. Now GI(f)(v)(a → 0) =
∧
{GI(f)(w)(a → 0) : vRBw}.

Since GI(f)(v)(a → 0) = 0, hence there exists w ∈ HOMISP (L)(B,L) such that
vRBw and GI(f)(w)(a → 0) = 0. We see that GI(f)(w)(a → 0) = GI(f)(w)(a) →
0 = 0 ⇒ GI(f)(w)(a) = 1. This contradicts the assumption that GI(f)(w) ∈ ⟨a⟩c.
Hence ψ /∈ RA(GI(f)(v)). Thus equivalently we have, if ψ ∈ RA(GI(f)(v)) then
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ψ ∈ GI(f)(RB(v)). Therefore, RA(GI(f)(v)) ⊆ GI(f)(RB(v)). It is easy to show
that GI(f)(RB(v)) ⊆ RA(GI(f)(v)).

Therefore, the functor GI is well-defined by Lemma 5.4.1, and Lemma 5.4.2.

Definition 5.4.3. We define a functor CI : HSpa −→ ISPI(L) as follows:

• CI acts on an object (S,R) in HSpa as CI(S,R) = (HOMPSpa((S,R), (L,≤
)),→).

• CI acts on an arrow f : (S1, R1) −→ (S2, R2) in HSpa as CI(f) :

CI(S2, R2) −→ CI(S1, R1) defined by CI(f)(ϕ) = ϕ ◦ f , where ϕ ∈ CI(S2, R2).

Lemma 5.4.3. For an object (S,R) in HSpa, CI(S,R) is an object in ISPI(L).

Proof. As per Note 5.3.1,HOMPSpa((S,R), (L,≤)) is an object in ISP (L). To prove
CI(S,R) is an object in ISPI(L), we shall demonstrate that if f, g ∈ CI(S,R), then
f → g ∈ CI(S,R). Now (f → g)−1({ℓ}) = {s ∈ S : (f → g)(s) = ℓ}. By Definition
5.2.2, we observe that (f → g)−1({ℓ}) = R−1(g−1({ℓ})) ∩ (R−1(f−1({ℓ})))c. Then
by Definition 5.4.1, R−1(g−1({ℓ})) ∩ (R−1(f−1({ℓ})))c is a clopen set in S. Hence
f → g ∈ CI(S,R). As a result, the intuitionistic implication operation(→) is well-
defined. Therefore, CI(S,R) is a sub-algebra of intuitionistic power LS of L. So,
CI(S,R) is an object in ISPI(L).

Lemma 5.4.4. For an arrow f : (S1, R1) −→ (S2, R2) in HSpa, CI(f) is an arrow
in ISPI(L).

Proof. CI(f) is an arrow in ISP (L), according to Lemma 5.3.4. The only thing
left to prove is that CI(f)(g1 → g2) = CI(f)(g1) → CI(f)(g2). Now for s1 ∈ S1,
CI(f)(g1 → g2)(s1) = (g1 → g2) ◦ f(s1) =

∧
{g1(y) → g2(y) : f(s1)R2y}, and

(CI(f)(g1) → CI(f)(g2))(s1) = (g1 ◦ f → g2 ◦ f)(s1) =
∧
{(g1 ◦ f)(s2) → (g2 ◦

f)(s2) : s1R1s2} =
∧
{g1(f(s2)) → g2(f(s2)) : s1R1s2}. Because f is an order

preserving map, we notice that
∧
{g1(y) → g2(y) : f(s1)R2y} ≤

∧
{g1(f(s2)) →

g2(f(s2)) : s1R1s2}. Furthermore, f meets the requirement stated in the arrow part
of Definition 5.4.1, so we have

∧
{g1(f(s2)) → g2(f(s2)) : s1R1s2} ≤

∧
{g1(y) →

g2(y) : f(s1)R2y}. Thus CI(f)(g1 → g2) = CI(f)(g1) → CI(f)(g2).

Therefore, the functor CI is well-defined by Lemma 5.4.3, and Lemma 5.4.4.

Theorem 5.4.1. For an object (A,→) in ISPI(L), A is isomorphic to CI ◦ GI(A)
in ISPI(L).
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Proof. Define σ(A,→) : A −→ CI ◦ GI(A) by σ(A,→)(a)(v) = v(a), where a ∈ A, and
v ∈ GI(A). Theorem 5.3.1 proves that σ(A,→) is an isomorphism in ISP (L). It is
therefore necessary to demonstrate that σ(A,→)(a → b) = σ(A,→)(a) → σ(A,→)(b).
Now [σ(A,→)(a) → σ(A,→)(b)](v) =

∧
{σ(A,→)(a)(w) → σ(A,→)(b)(w) : vRAw} =∧

{w(a) → w(b) : vRAw}, where RA is a partial order relation on HOMISPI(L)(A,L)
defined in line with Definition 5.2.5. It is seen from Definition 5.2.6 that

∧
{w(a) →

w(b) : vRAw} = v(a → b) = σ(A,→)(a → b)(v). Hence, σ(A,→)(a → b) = σ(A,→)(a) →
σ(A,→)(b).

Theorem 5.4.2. For an object (S,R) in HSpa, (S,R) is isomorphic to GI ◦CI(S,R)
in the category HSpa.

Proof. Define δ(S,R) : (S,R) −→ GI ◦ CI(S,R) by δ(S,R)(s)(f) = f(s), where s ∈ S,
and f ∈ CI(S,R). It is observed from Theorem 5.3.2 that δ(S,R) is an isomorphism
in the category PSpa. In Theorem 5.3.2, we see that the relation s1Rs2 ⇐⇒
δS(s1)R

′δS(s2) holds for all s1, s2 ∈ S, where R′ is the partial order relation on
G ◦ C(S,R). So by definition of δ(S,R), we can conclude that δ(S,R) satisfies the
relation s1Rs2 ⇐⇒ δ(S,R)(s1)R

′δ(S,R)(s2). Because δ(S,R) is bijective and fulfils the
relation s1Rs2 ⇐⇒ δ(S,R)(s1)R

′δ(S,R)(s2), it is readily proved that δ(S,R) and δ−1
(S,R)

satisfy the requirement stated in the arrow part of Definition 5.4.1. Thus, δ(S,R) is
an isomorphism in Hspa. This wraps up the proof.

Finally, we obtain the duality theorem for ISPI(L).

Theorem 5.4.3. The category ISPI(L) is dually equivalent to the category HSpa.

Proof. Let IDISPI(L), and IDHSpa denote the identity functors on ISPI(L) and
HSpa, respectively. We consider two natural transformations σ : IDISPI(L) −→
CI ◦ GI , and δ : IDHSpa −→ GI ◦ CI . Then for each object (A,→) of ISPI(L), we
define σ(A,→) : A −→ CI ◦GI(A) by σ(A,→)(a)(v) = v(a), v ∈ GI(A). Moreover, for an
object (S,R) in HSpa, we define δ(S,R) : (S,R) −→ GI ◦ CI(S,R) by δ(S,R)(s)(f) =

f(s), f ∈ CI(S,R). Then, it is simple to verify that σ and δ are, in fact, natural
transformations. Theorems 5.4.1 and 5.4.2 demonstrate that σ and δ are natural
isomorphisms. Thus, the categories ISPI(L) and HSpaop are equivalent.

We have extended the duality: ISP (L) ≡ Pspaop to the duality: ISPI(L) ≡
Hspaop. It would be difficult to achieve an intuitionistic version of natural duality
theory without the innovative concept of ISPI.
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5.5 Conclusion

To wrap up this chapter, we have introduced the novel notion of ISPI and developed
an intuitionistic version of natural duality theory. As a result, this extended version
of the natural duality theory incorporated the Esakia duality for the class of all
Heyting algebras into the natural duality theory. ISPI thus serves as a natural
foundation for the theory of intuitionistic natural dualities. Technically, we have
began by developing duality theory for ISP(L). While switching our interest from
ISP(L) to ISPI(L), we indicated the intutionistic Kripke condition for ISPI(L), where
L is a finite algebra with a bounded lattice reduct. As a major finding, we obtained
a duality for ISPI(L).
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Chapter 6

Bitopological duality for
many-valued modal logic

6.1 Introduction

This chapter aims to demonstrate an intriguing duality theory for algebras of Fit-
ting’s many-valued modal logic in the context of bitopological languages. Thus,
this has led to an extension of the natural duality theory for modal algebras in
bitopological context. Algebraic axiomatization of a modified version of Fitting’s
Heyting-valued modal logic has already been addressed in [20]. In addition to alge-
braic axiomatizations with the completeness of Fitting’s Heyting-valued modal logic,
topological duality theorems have also been developed. Bitopological methods have
already been employed to investigate duality theory for Fitting’s Heyting-valued
logic ( see Chapter 4 ). However, bitopological approaches have not been used to
develop duality for Fitting’s many-valued modal logic. This chapter attempts to fill
that gap.
Maruyama [21] proposed Jónsson-Tarski topological duality (see [9, 29, 54]) for L-
ML-algebras (algebras of Fitting’s Heyting-valued modal logic). Jónsson-Tarski
duality for L-ML-algebras is essentially a L-valued version of Jónsson-Tarski dual-
ity for modal algebras.
We aim to construct a bitopological duality for algebras of Fitting’s Heyting- valued
modal logic by setting up a notion of PRBSL as a category of L-valued pairwise

The results of this chapter appear in [61] Das, Litan Kumar., Ray, Kumar sanakar., Mali,
Prakash Chandra. : Duality for Fitting’s Heyting-valued modal logic via Bitopology
and Bi-Vietoris coalgebra. Theoretical Computer Science, Elsevier (Under Review).
https://doi.org/10.48550/arXiv.2312.16276
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Boolean spaces with a relation. As a result, natural duality theory for modal al-
gebras is extended in the context of bitopological languages. The main result is
bitopological duality for L-ML-algebras, where L is a semi-primal algebra having
a bounded lattice reduct. Our general theory extends the Jónsson-Tarski duality in
the setting of bitopological language.

6.2 The notion of Bitopological spaces

We assume that the readers are familiar with the basic concepts of topology and
category theory. We refer the reader to [5, 36] for information on universal algebra
and lattice theory. For category theory, we refer to [2].
A bitopological space is defined as a triple (X, τ1, τ2) in which (X, τ1) and (X, τ2)

are topological spaces. Consider δ1 and δ2 represent, respectively, the collections of
τ1-closed sets and τ2-closed sets. We set β1 = τ1 ∩ δ2 and β2 = τ2 ∩ δ1.

Definition 6.2.1 ([39]). (i) A bitopological space (X, τ1, τ2) is said to be pairwise
Hausdorff space if for every pair (x, y) of distinct points x, y ∈ X there exists
disjoint open sets Ux ∈ τ1 and Uy ∈ τ2 containing x and y, respectively.

(ii) A bitopological space (X, τ1, τ2) is said to be pairwise zero-dimensional if β1 is
a basis for τ1 and β2 is a basis for τ2.

(iii) A bitopological space (X, τ1, τ2) is said to be pairwise compact if the topological
space (X, τ), where τ = τ1 ∨ τ2, is compact.

According to Alexander’s Lemma (a classical result in general topology), the idea
of pairwise compactness described in Definition 7.1.3 is equivalent to the condition
that every cover {U : U ∈ τ1 ∪ τ2} of X has a finite subcover. A pairwise Boolean
space is a bitopological space that is pairwise Hausdorff, pairwise zero-dimensional,
and pairwise compact. A map f : (P, τ1, τ2) → (P1, τ

1
1 , τ

1
2 ) is said to be pairwise

continuous if the map f : (P, τi) → (P1, τ
1
i ) is continuous for i ∈ {1, 2}. Pairwise

Boolean spaces and pairwise continuous maps form a category, denoted by PBS.

Proposition 6.2.1 ([49]). If T1 and T2 are subbasis for the topologies τ1 and τ2,
respectively, then T1 ∪ T2 is a subbasis for the topology τ1 ∨ τ2.

Proposition 6.2.2 ([49]). Let (X, τ1, τ2) be a pairwise compact bitopological space.
Consider a finite collection {Ci : Ci ∈ δ1 ∪ δ2, i = 1, 2, · · · , n} of subsets of X. Then
n⋂
i=1

Ci is pairwise compact.
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It is clear from the above proposition that any τ1-closed or τ2-closed subset of a
pairwise compact space X is pairwise compact.

6.3 Fitting’s Heyting-valued modal logic

Fitting [23] proposed L-valued logics and L-valued modal logics for a finite dis-
tributive lattice L (i.e., L is a Heyting algebra) in 1991. Maruyama [20] introduced
algebraic axiomatization of Fitting’s logics. In [20] the author studied Fitting’s
Heyting-valued logic and Heyting-valued modal logic without regard for fuzzy truth
constants other than 0 and 1, and added a new operation Tℓ(−), ℓ ∈ L. From a
logical perspective, Tℓ(p) infers that the truth value of a proposition p is ℓ. The
operations of L-valued logic, denoted by L-VL, are ∨,∧,→, 0, 1 and Tℓ(−), ℓ ∈ L,
where ∨,∧,→ are binary operations, 0 and 1 are nullary operations and Tℓ is
a unary operation. For ℓ1, ℓ2 ∈ L, ℓ1 → ℓ2 means the pseudo-complement of ℓ1
relative to ℓ2.

In universal algebra, the concept of semi-primal algebra holds great significance.
The semi-primal algebra concept will now be defined as follows.

Definition 6.3.1. Let A be an algebra. Then a function f : An → A, n ∈ N, is
said to be conservative ⇐⇒ for any a1, a2, · · · , an ∈ A, f(a1, a2, · · · an) is in the
subalgebra of A generated by {a1, a2, · · · , an}. A finite algebra A is said to be a
semi-primal algebra if every conservative function f : An → A, n ∈ N, is a term
function of A.

The following lemmas describe some term functions.

Lemma 6.3.1. Let L be a semi-primal algebra having bounded lattice reduct. Define
a function f : L4 → L by

f(ℓ1, ℓ2, ℓ3, ℓ4) =

{
ℓ3 (ℓ1 = ℓ2)

ℓ4 (ℓ1 ̸= ℓ2)

Then, f is a term function of L.

Lemma 6.3.2. Let L be a semi-primal algebra having bounded lattice reduct. For
every ℓ ∈ L, define Tℓ : L → L by

Tℓ(ℓ
′) =

{
1 (ℓ′ = ℓ)

0 (ℓ′ ̸= ℓ)

70



Bitopological duality for many-valued modal logic

Then, Tℓ is a term function of L.

Lemma 6.3.3. Let L be a semi-primal algebra having bounded lattice reduct. Let
ℓ ∈ L. Then the function Uℓ : L → L defined by

Uℓ(ℓ
′) =

{
1 (ℓ′ ≥ ℓ)

0 (ℓ′ ≱ ℓ)

, is a term function of L.

Observation 6.3.1. The term function Uℓ : L → L can alternatively be defined
using Tℓ as follows:

Uℓ(ℓ
′) =

∨
{Tℓ1(ℓ′) : ℓ ≤ ℓ1, ℓ1 ∈ L}

It is simple to demonstrate that Uℓ commutes with ∧, i.e., Uℓ(a∧ b) = Uℓ(a)∧Uℓ(b)
for all a ∈ A, where A is a L-VL- algebra. Furthermore, we note that U1(a) = T1(a).

We now recall the idea of L-VL-algebras, which provides sound and complete
semantics of L-valued logic L-VL.

Definition 6.3.2 ([20]). An algebraic structure (A,∧,∨,→, Tℓ(ℓ ∈ L), 0, 1) is said
to be a L-VL-algebra iff for any ℓ1, ℓ2 ∈ L, and a, b ∈ A, the following conditions
hold :

(i) (A,∧,∨,→, Tℓ(ℓ ∈ L), 0, 1) is a Heyting algebra;

(ii) Tℓ1(a) ∧ Tℓ2(b) ≤ Tℓ1→ℓ2(a→ b) ∧ Tℓ1∧ℓ2(a ∧ b) ∧ Tℓ1∨ℓ2(a ∨ b);
Tℓ2(a) ≤ TTℓ1 (ℓ2)(Tℓ1(a));

(iii) T0(0) = 1; Tℓ(0) = 0 (ℓ ̸= 0); T1(1) = 1; Tℓ(1) = 0, if ℓ ̸= 1;

(iv)
∨
{Tℓ(a) : ℓ ∈ L} = 1; Tℓ1(a) ∨ (Tℓ2(a) → 0) = 1;

Tℓ1(a) ∧ Tℓ2(a) = 0, (ℓ1 ̸= ℓ2);

(v) T1(Tℓ(a)) = Tℓ(a), T0(Tℓ(a)) = Tℓ(a) → 0, Tℓ2(Tℓ1(a)) = 0, (ℓ2 ̸= 0, 1);

(vi) T1(a) ≤ a, T1(a ∧ b) = T1(a) ∧ T1(b);

(vii)
∧
ℓ∈L

(Tℓ(a) ↔ Tℓ(b)) ≤ (a↔ b).
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Note 6.3.1. The class of all L-VL-algebras forms a variety (in the sense of universal
algebra). If L = {0, 1}, then L-VL-algebras becomes Boolean algebras.

Definition 6.3.3. A function between L-VL-algebras is said to be homomorphism
if it preserves the operations ∨,∧,→, Tℓ(ℓ ∈ L), 0, 1.

Let VAL denote the category of L-VL-algebras and homomorphisms between
them.
L-valued modal logic denoted by L-ML, is defined by L-valued Kripke semantics.
The idea of L-valued Kripke semantics can be found in [21]. The operations of
L-valued modal logic L-ML are the operations of L-VL and a unary operation □,
called modal operation. We now recall the concept of L-ML-algebras, which define
a sound and complete semantics for L-ML.

Definition 6.3.4 ([20]). An algebraic structure (A,∧,∨,→, Tℓ(ℓ ∈ L),□, 0, 1) is
said to be a L-ML-algebra iff it satisfies the following conditions:

(i) (A,∧,∨,→, Tℓ(ℓ ∈ L), 0, 1) is a L-VL-algebra;

(ii) □(a ∧ b) = □a ∧□b;

(iii) □Uℓ(a) = Uℓ(□a), ∀ℓ ∈ L, where the unary operation Uℓ(ℓ ∈ L) is defined by
Uℓ(a) =

∨
{Tℓ′(a) : ℓ ≤ ℓ′, ℓ′ ∈ L}, a ∈ A. Logically, it means that the truth

value of a is greater than or equal to ℓ.

A homomorphism of L-ML-algebras is a function that preserves all the opera-
tions of L-VL-algebras and the modal operation □. Let MAL denote the category
of L-ML-algebras and homomorphisms of L-ML-algebras.
For a Kripke frame (P,R), R[x] = {y ∈ P : xRy}, where x ∈ P , and
R−1[P ′] = {y ∈ P : ∃x ∈ P ′, yRx}, where P ′ ⊆ P . We recall a modal opera-
tion □R on L-valued powerset algebra LP of P .

Definition 6.3.5 ([20]). Let (P,R) be a Kripke frame and f ∈ LP . Then □Rf :

P → L is defined by (□Rf)(x) =
∧
{f(y) : y ∈ R[x]}.

Definition 6.3.6 ([21]). Let A be an object in MAL. A binary relation R□ on
HOMVAL(A,L) is defined as follows:
ψR□ϕ ⇐⇒ ∀ℓ ∈ L,∀a ∈ A, ψ(□a) ≥ ℓ⇒ ϕ(a) ≥ ℓ.

A L-valued map D : HOMVAL(A,L)×A → L is defined by D(ψ, a) = ψ(a), ψ ∈
HOMVAL(A,L).

Lemma 6.3.4 ([21]). The L-valued canonical model (HOMVAL(A,L),R□,D) of A
is a L-valued Kripke model. Then, D(ψ,□a) = ψ(□a) =

∧
{ϕ(a) : ϕ ∈ R□[ψ]}.
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6.4 Bitopological duality for Fitting’s Heyting-
valued logic

We will introduce the key ideas and findings from the bitopological duality theory
for Fitting’s Heyting-valued logic. We refer to Chapter 4 for a more thorough
explanation of the bitopological duality for Fitting’s Heyting-valued logic. Let SL

denote the collection of subalgebras of L. For a pairwise Boolean space B, ΛB denotes
the collection of pairwise closed subspaces of B. It is shown in [62] that a pairwise
closed subset of a pairwise compact space is also pairwise compact. Hence, each
member of ΛB is a pairwise Boolean space. A finite distributive lattice L endowed
with unary operation Tℓ(ℓ ∈ L) forms a semi-primal algebra. We have expanded the
theory of natural duality [13] by creating a bitopological duality for L-VL-algebras
[58].
We now recall the category PBSL from [58].

6.4.1 Category

Definition 6.4.1 ([58]). The category PBSL is defined as follows:

(1) Objects : An object in PBSL is a tuple (B, αB) where B is a pairwise Boolean
space and a mapping αB : SL → ΛB satisfies the following conditions:

(i) αB(L) = B;

(ii) if L1 = L2 ∧ L3(L1,L2,L3 ∈ L), then αB(L1) = αB(L2) ∩ αB(L3).

(2) Arrows : An arrow ψ : (B1, αB1) → (B2, αB2) in PBSL is a pairwise continuous
map ψ : B1 → B2 that satisfies the criterion that if x ∈ αB1(L1)(L1 ∈ SL), then
ψ(x) ∈ αB2(L1) i.e., ψ is a subspace preserving map.

Note 6.4.1. (1) The bitopological space (L, τ, τ), where τ is the discrete topology
on L, is a pairwise Boolean space. Hence, (L, τ, τ, αL), where αL is a mapping
from SL to ΛL that is defined by αL(L′) = L′, is an object in PBSL.

(2) For an object A in VAL , consider a bitopological space (HOMVAL(A,L), τ1, τ2),
where the topologies τ1 and τ2 are generated by the bases Bτ1 = {⟨a⟩ : a ∈ A},
where ⟨a⟩ = {h ∈ HOMVAL(A,L) : h(a) = 1}, and Bτ2 = {Bc : B ∈ Bτ1},
respectively. Here, Bc denotes the complement of B.

Fact 6.4.1 ([58]). The bitopological space (HOMVAL(A,L), τ1, τ2) is a pairwise
Boolean space.
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6.4.2 Functors

The duality between the categories VAL and PBSL is obtained via the following
functors.

Definition 6.4.2 ([58]). A contravariant functor F : PBSL → VAL is defned as
follows:

(i) For an object (B, αB) in PBSL, define F(B, αB) =

(HOMPBSL((B, αB), (L, αL)),∨,∧,→, Tℓ(ℓ ∈ L), 0, 1), where ∨,∧,→, Tℓ(ℓ ∈
L), 0, 1 are pointwise operations on the set HOMPBSL((B, αB), (L, αL)). The
operations 0 and 1 are regarded as constant functions, with 0 and 1 being their
respective values.

(ii) For an arrow ϕ : (B, αB) → (B′, αB′) in PBSL, define F(ϕ) : F((B′, αB′)) →
F((B, αB)) by F(ϕ)(ζ) = ζ ◦ ϕ, where ζ ∈ HOMPBSL((B′, αB′), (L, αL)).

Definition 6.4.3 ([58]). A contravariant functor G : VAL → PBSL is defined as
follows:

(i) G acts on an object A in VAL as G(A) = (HOMVAL(A,L), τ1, τ2, αA), where
αA is a mapping from SL to ΛHOMVAL (A,L) which is defined by αA(L∗) =

HOMVAL(A,L∗), L∗ ∈ SL.

(ii) G acts on an arrow ψ : A → A∗ in VAL as follows: G(ψ) : G(A∗) → G(A) is
defined by G(ψ)(ϕ) = ϕ ◦ ψ, ϕ ∈ G(A∗).

In [58], the following duality result is proved for L-VL-algebras:

Theorem 6.4.1. The categories VAL and PBSL are dually equivalent.

6.5 Bitopological duality for Fitting’s modal logic

In this section, we use bitopological approaches to demonstrate a duality for Fitting’s
many-valued modal logic. This extends Jónsson-Tarski topological duality for modal
algebras from the standpoint of universal algebra.
Let R be a relation on P and C ⊆ P . We define [R]C = {p ∈ P : R[p] ⊆ C} and
⟨R⟩C = {p ∈ P : R[p] ∩ C ̸= ∅}.
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6.5.1 Category PRBSL

Definition 6.5.1. We define a category PRBSL as follows:

(1) Objects: An object in PRBSL is a triple (P, αP ,R) such that (P, αP ) is an object
in PBSL and R is a binary relation on P that satisfies the following conditions:

(i) for each p in P , R[p] is a pairwise compact subset of P ;

(ii) ∀C ∈ β1, [R]C, ⟨R⟩C ∈ β1;

(iii) for any L′ ∈ SL, if m ∈ αP (L′) then R[m] ⊆ αP (L′).

(2) Arrows: An arrow f : (P, αP ,R) → (P ′, αP ′ ,R′) in PRBSL is an arrow in
PBSL which additionally satisfies the following conditions:

(i) if p1Rp2 then f(p1)R′f(p2);

(ii) if f(p)R′p′ then ∃p∗ ∈ P such that pRp∗ and f(p∗) = p′.

Note 6.5.1. We see that [R]U c = (⟨R⟩U)c, and ⟨R⟩U c = ([R]U)c. Since β2 =

{U c : U ∈ β1}, hence if the relation R satisfies condition (ii) that is given in the
object part of Definition 6.5.1, then [R]Q, ⟨R⟩Q ∈ β2, ∀Q ∈ β2.

6.5.2 Functors

In this subsection, we introduce functors F and G to establish the dual equivalence
between the categories MAL and PRBSL.

Definition 6.5.2. We define a functor G : MAL → PRBSL.

(i) G acts on an object (A,□) in MAL as G(A) =

(HOMVAL(A,L), τ1, τ2, αA,R□), where αA is a mapping from SL to
ΛHOMVAL (A,L) defined by αA(L1) = HOMVAL(A,L1), and R□ is a binary
relation on HOMVAL(A,L) that is described in Definition 6.3.6.

(ii) G acts on an arrow ψ : A1 → A2 in MAL as follows:
Define G(ψ) : G(A2) → G(A1) by G(ψ)(ϕ) = ϕ◦ψ, where ϕ ∈ HOMVAL(A2,L).

Lemma 6.5.1 and Lemma 6.5.2 demonstrate the well-definedness of G.

Lemma 6.5.1. For an object (A,□) in MAL, G(A) is an object in PRBSL.
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Proof. Definition 6.4.3 shows that (HOMVAL(A,L), τ1, τ2, αA) is an object in PBSL.
So it is enough to show that R□ meets the conditions specified in the object part
of Definition 6.5.1. We first show that for W ∈ HOMVAL(A,L), R□[W ] ∈ δ1 ∪ δ2.
Let U ̸∈ R□[W ]. Then by Definition 6.3.6, there is an element a ∈ A such that
there is L1 ∈ L, for which W(□a) ≥ L1 but U(a) ̸≥ L1. It follows that U ∈
⟨¬UL1(a)⟩ ∈ τ2 and R□[W ] ∩ ⟨¬UL1(a)⟩ = ∅ i.e., ⟨¬UL1(a)⟩ ⊆ (R□[W ])c. Hence,
U ̸∈ R□[W ]

τ2 , where R□[W ]
τ2 denotes the closure of R□[W ] in (HOMVAL(A,L), τ2)

. Equivalently, we have R□[W ]
τ2 ⊂ R□[W ]. Therefore, R□[W ] is τ2-closed. Since

(HOMVAL(A,L), τ1, τ2) is pairwise compact, by Proposition 6.2.2, we have R□[W ]

is pairwise compact.
Now we verify the condition (ii) in the object part of Definition 6.5.1. Since {⟨a⟩ :
a ∈ A} ∈ β1 and {⟨T1(a) → 0⟩ : a ∈ A} ∈ β2 are the basis for the topologies τ1 and
τ2, respectively, so we show that for each a ∈ A, ⟨R□⟩(⟨a⟩) ∈ β1 and [R□]⟨a⟩ ∈ β1.
We see that

⟨R□⟩⟨a⟩ = {W ∈ HOMVAL(A,L) : R□[W ] ∩ ⟨a⟩ ≠ ∅}
= ([R□]⟨T1(a) → 0⟩)c

= {W ∈ HOMVAL(A,L) : R□[W ] ̸⊂ ⟨T1(a) → 0⟩}

We show that ([R□]⟨T1(a) → 0⟩)c is τ1-open and τ2-closed. Let U ∈ ([R□]⟨T1(a) →
0⟩)c. Then R□[U ] ̸⊂ ⟨T1(a) → 0⟩. It is easy to see that ∃ τ1-open set ⟨□T1(a)⟩
such that U ∈ ⟨□T1(a)⟩. Let E ∈ ⟨□T1(a)⟩. Then E(□T1(a)) = 1. Using the
Kripke condition we have 1 = E(□T1(a)) =

∧
{U(T1(a)) : ER□U}. According to

Lemma 6.3.2, U(T1(a)) is either 0 or 1. Henceforth, for all U ∈ HOMVAL(A,L)
with ER□U we have U(T1(a)) = 1. As a result, R□[E ] ̸⊂ ⟨T1(a) → 0⟩ i.e., E ∈
([R□]⟨T1(a) → 0⟩)c. Henceforth, U ∈ ⟨□T1(a)⟩ ⊂ ([R□]⟨T1(a) → 0⟩)c. Therefore,
[R□]⟨T1(a) → 0⟩)c is τ1-open i.e., ⟨R□⟩⟨a⟩ is τ1-open.
Let W ∈ (⟨R□⟩⟨a⟩)c. Then R□[W ] ∩ ⟨a⟩ = ∅. It is easy to see that there is
τ1-open set ⟨□(T1(a) → 0)⟩ such that W ∈ ⟨□(T1(a) → 0)⟩. Also, by applying
the Kripke condition, we have ⟨□(T1(a) → 0)⟩ ⊂ (⟨R□⟩⟨a⟩)c. Therefore, W ∈
⟨□(T1(a) → 0)⟩ ⊂ (⟨R□⟩⟨a⟩)c. It shows that (⟨R□⟩⟨a⟩)c is τ1-open i.e., ⟨R□⟩⟨a⟩ is
τ1-closed. It follows from Proposition 6.2.2 that ⟨R□⟩⟨a⟩ is pairwise compact. Since
the topological space (HOMVAL(A,L), τ2) with basis {⟨T1(a) → 0⟩ : a ∈ A} is a
Hausdorff space, so ⟨R□⟩⟨a⟩ is τ2-closed. Hence, ⟨R□⟩⟨a⟩ ∈ β1.
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Next, we show that [R□]⟨a⟩ ∈ β1. We see that

[R□]⟨a⟩ = {W ∈ HOMVAL(A,L) : R□[W ] ⊆ ⟨a⟩}
= (⟨R□⟩⟨T1(a) → 0⟩)c

We claim that ⟨R□⟩⟨T1(a) → 0⟩ = ⟨□T1(a) → 0⟩. Let W ∈ ⟨□T1(a) → 0⟩. Then
W(□T1(a) → 0) = 1. Hence, W(□T1(a)) = 0. Using the Kripke condition, we
have, 0 = W(□T1(a)) =

∧
{U(T1(a)) : WR□U}. Since U(T1(a)) = 0 or 1, hence ∃

U ∈ HOMVAL(A,L) with WR□U such that U(T1(a)) = 0. Then U ∈ ⟨T1(a) → 0⟩.
Therefore, R□[W ] ∩ ⟨T1(a) → 0⟩ ̸= ∅. Thus, W ∈ ⟨R□⟩⟨T1(a) → 0⟩. Similarly, by
employing the Kripke condition, we can show that if W ∈ ⟨R□⟩⟨T1(a) → 0⟩ then
W ∈ ⟨□T1(a) → 0⟩. Since ⟨□T1(a) → 0⟩ ∈ β2, we have ⟨R□⟩⟨T1(a) → 0⟩ ∈ β2. As
a result, [R□]⟨a⟩ ∈ β1.
Finally, we demonstrate that G(A) meets condition (iii) in the object part of Def-
inition 6.5.1. Let u ∈ αA(L′) = HOMVAL(A,L′). Suppose R□[u] ̸⊂ αA(L′). Then
∃v ∈ R□[u] such that v /∈ αA(L′). Hence, ∃a∗ ∈ A such that v(a∗) /∈ L′. Let
v(a∗) = ℓ∗. Now for any element ψ ∈ αA(L′),

ψ(Tℓ∗(a
∗) → a∗) =

{
ℓ∗ if ψ(a∗) = ℓ∗

1 if ψ(a∗) ̸= ℓ∗

Using Kripke condition, we have u(□(Tℓ∗(a
∗) → a∗)) =

∧
{ψ(Tℓ∗(a∗) → a∗) : ψ ∈

R□[u]}. This shows that u(□(Tℓ∗(a
∗) → a∗)) = ℓ∗ /∈ L′. But this contradicts the

fact that u ∈ αA(L′). As a result, G(A) satisfies condition (iii).

Lemma 6.5.2. Let (A1,□1), (A2,□2) be the objects in MAL and ψ : A1 → A2 an
arrow in MAL. Then, G(ψ) is an arrow in PRBSL.

Proof. Here G(ψ) : G(A2) → G(A1) is defined by G(ψ)(ϕ) = ϕ ◦ ψ, ϕ ∈
HOMVAL(A2,L). It follows from Definition 6.4.3 that G(ψ) is an arrow in PBSL.
Therefore, it is still necessary to demonstrate that G(ψ) satisfies conditions (i) and
(ii) listed in the arrow portion of Definition 6.5.1. We first check condition (i).
Let v1R□2v2, where v1, v2 ∈ G(A2). We are to show that G(ψ)(v1)R□1G(ψ)(v2).
Now, if v1 ◦ ψ(□1a1) ≥ ℓ for a1 ∈ A1 and ℓ ∈ L, then we have v1(□2ψ(a1)) ≥
ℓ. As v1R□2v2, so we get v2(ψ(a1)) ≥ ℓ. Hence, G(ψ)(v1)R□1G(ψ)(v2). We
then check condition (ii), which is mentioned in the arrow part of Definition
6.5.1. This is equivalent to verifying R□1 [G(ψ)(v1)] = G(ψ)(R□2 [v1]). Let
W ∈ R□1 [v1 ◦ ψ], where W ∈ HOMVAL(A1,L). Then (v1 ◦ ψ)R□1W . Suppose

77



Bitopological duality for many-valued modal logic

W /∈ G(ψ)(R□2 [v1]). Then W ̸= G(ψ)(v∗), ∀v∗ ∈ HOMVAL(A2,L) such that
v1R□2v

∗. As (HOMVAL(A1,L), τ1, τ2) is a pairwise Hausdorff space, so we can
consider W ∈ ⟨a1⟩ and G(ψ)(v∗) = v∗ ◦ψ ∈ ⟨T1(a1) → 0⟩. Since W ∈ R□1 [G(ψ)(v1)]
and W(a1) = 1, we have G(ψ)(v1)(□1a1) = 1 i.e., (v1◦ψ)(□1a1) = 1. Since v1R□2v

∗,
we have G(ψ)(v1)R□1G(ψ)(v∗) using the condition (i) specified in the arrow part of
Definition 6.5.1. As G(ψ)(v1)(□1a1) = 1, Lemma 6.3.4 shows that G(ψ)(v∗)(a1) = 1,
i.e., v∗◦ψ ∈ ⟨a1⟩. This contradicts the fact that G(ψ)(v∗) ∈ ⟨T1(a1) → 0⟩. Therefore,
R□1 [G(ψ)(v1)] ⊆ G(ψ)(R□2 [v1]). Similarly, we can show the reverse direction.

Definition 6.5.3. We define a functor F : PRBSL → MAL.

(i) Define F(P, αP ,R) = (HOMPBSL((P, αP ), (L, αL)),∧,∨,→, Tℓ(ℓ ∈
L), 0, 1,□R) for an object (P, αP ,R) in PRBSL. Definition 6.3.5 de-
scribes the modal operation □R. Here ∧,∨,→, Tℓ are pointwise operations
defined on the set HOMPBSL((P, αP ), (L, αL)).

(ii) Let ψ : (P1, αP1 ,R1) → (P2, αP2 ,R2) be an arrow in PRBSL. Define F(ψ) :

F(P2, αP2 ,R2) → F(P1, αP1 ,R1) by F(ψ)(ϕ) = ϕ ◦ ψ for ϕ ∈ F(P2, αP2 ,R2).

Note 6.5.2. If ψ, ϕ : (P, τP1 , τ
P
2 , αP ) → (L, τ, τ, αL) are pairwise continuous

maps then ψ ∧ ϕ, ψ ∨ ϕ, ψ → ϕ, Tℓ(ψ) are also pairwise continuous maps. Thus,
(HOMPBSL((P, αP ), (L, αL)),∧,∨,→, Tℓ(ℓ ∈ L), 0, 1) is a L-VL-algebra.

The following lemmas (Lemma 6.5.3 and Lemma 6.5.4) show that the functor F
is well-defined.

Lemma 6.5.3. Let (P, αP ,R) be an object in PRBSL. Then, F(P, αP ,R) is an
object in MAL.

Proof. It is clear from Definition 6.4.2 that F(P, αP ) is an object in VAL. We
need to show that the modal operation □R on F(P, αP ,R) is well-defined. Let
η ∈ F(P, αP ,R). We then verify □Rη ∈ F(P, αP ,R). For any ℓ ∈ L,

(□Rη)
−1({ℓ}) = {p ∈ P :

∧
{η(p′) : p′ ∈ R[p] = ℓ}

= ⟨R⟩((Tℓ(η))−1({1})) ∩ (⟨R⟩((Uℓ(η))−1({0})))c

As both Tℓ(η) and Uℓ(η) are pairwise continuous maps, henceforth (Tℓ(η))
−1({1}) ∈

βP1 ∩ βP2 and (Uℓ(η))
−1({0}) ∈ βP1 ∩ βP2 , where βP1 = τP1 ∩ δP2 and βP2 = τP2 ∩ δP1 .

Therefore, (□Rη)
−1({ℓ}) ∈ τP1 . Also, (□Rη)

−1({ℓ}) ∈ τP2 . As a result, □Rη is a
pairwise continuous map from P to L. Furthermore, by applying condition (iii)
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that is stated in the object part of Definition 6.5.1, we see that for any subalgebra
M ∈ SL, and if m ∈ αL(M) then (□Rη)(m) =

∧
{η(m′) : m′ ∈ R[m]} ∈ αL(M).

Thus □Rη is a subspace preserving map. Hence, □Rη ∈ F(P, αP ,R).

Lemma 6.5.4. Let ψ : (P1, αP1 ,R1) → (P2, αP2 ,R2) be an arrow in PRBSL. Then,
F(ψ) is an arrow in MAL.

Proof. According to Definition 6.4.2, F(ψ) is an arrow in VAL. Therefore, it
is sufficient to demonstrate that F(ψ)(□R2ϕ2) = □R1(F(ψ)ϕ2), where ϕ2 ∈
HOMPBSL((P2, αP2), (L, αL)). For any p1 ∈ P1, we have F(ψ)(□R2ϕ2)(p1) =

□R2ϕ2 ◦ ψ(p1) =
∧
{ϕ2(p2) : p2 ∈ R2[ψ(p1)]}, and □R1(F(ψ)ϕ2)(p1) = □R1(ϕ2 ◦

ψ)(p1) =
∧
{ϕ2 ◦ ψ(p) : p ∈ R1[p1]}. As ψ satisfies conditions (i) and (ii)

listed in item 2 of Definition 6.5.1, it is easy to show that (F(ψ)(□R2ϕ2))(p1) ≤
□R1(F(ψ)ϕ2)(p1) and □R1(F(ψ)ϕ2)(p1) ≤ (F(ψ)(□R2ϕ2))(p1). As a result,
F(ψ)(□R2ϕ2) = □R1(F(ψ)ϕ2).

6.5.3 Bitopological Duality for Fitting’s Heyting-valued
modal logic

In this subsection, we develop bitopological duality for algebras of Fitting’s Heyting-
valued modal logic.

Theorem 6.5.1. Let A be a L-ML algebra. Then A is isomorphic to F ◦ G(A) in
MAL.

Proof. We define γA : A → F ◦ G(A) by γA(a)(g) = g(a), where a ∈ A and
g ∈ HOMVAL(A,L). It is known from Theorem 6.4.1 that γA is an isomorphism
in the category VAL. The only thing left to prove is that γA preserves the modal
operation □, i.e., γA(□a) = □R□

γA(a), a ∈ A. Let g ∈ G(A). Then

(□R□
γA(a))(g) =

∧
{γA(g∗) : g∗ ∈ R□[g]}

=
∧

{g∗(a) : g∗ ∈ R□[g]}

= g(□a) (by Lemma 6.3.4)

= γA(□a)(g)

Hence the result follows.

Theorem 6.5.2. Consider an object (P, αP ,R) in PRBSL. Then, (P, αP ,R) is
isomorphic to G ◦ F(P, αP ,R) in the category PRBSL.
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Proof. Define ζ(P,αP ,R) : (P, αP ,R) → G ◦ F(P, αP ,R) by ζ(P,αP ,R)(p)(ψ) = ψ(p),
where p ∈ P and ψ ∈ HOMPBSL((P, αP ), (L, αL)). Theorem 6.4.1 shows that
ζ(P,αP ,R) is a bi-homeomorphism in the category PBSL. We show that ζ(P,αP ,R)

and ζ−1
(P,αP ,R) satisfy the conditions given in item 2 of Definition 6.5.1. We claim

that for any p, p′ ∈ P , p′ ∈ R[p] ⇐⇒ ζ(P,αP ,R)(p
′) ∈ R□R [ζ(P,αP ,R)(p)].

Let p′ ∈ R[p]. Suppose ζ(P,αP ,R)(p)(□Rψ) ≥ ℓ, where ℓ ∈ L and ψ ∈
HOMPBSL((P, αP ), (L, αL)). Then ζ(P,αP ,R)(p)(□Rψ) = (□Rψ)(p) =

∧
{ψ(p∗) :

p∗ ∈ R[p]}. Since p′ ∈ R[p] and ζ(P,αP ,R)(p)(□Rψ) ≥ ℓ, we have ζ(P,αP ,R)(p
′)(ψ) ≥ ℓ.

Hence, ζ(P,αP ,R)(p)R□Rζ(P,αP ,R)(p
′), i.e., ζ(P,αP ,R)(p

′) ∈ R□R [ζ(P,αP ,R)(p)]. Now we
verify if ζ(P,αP ,R)(p

′) ∈ R□R [ζ(P,αP ,R)(p)] then p′ ∈ R[p]. We verify its contraposi-
tive statement. Suppose p′ /∈ R[p]. By Definition 6.5.1, R[p] is a pairwise compact
subset of pairwise Boolean space P . Then it is easy to show that R[p] is pairwise
closed. Therefore we can get a τP1 -basis open set O ∈ βP1 such that p′ ∈ O and
O ⊆ P −R[p], i.e., O ∩R[p] = ∅. Define a mapping f : P → L by

f(p) =

{
0 if p ∈ O
1 if p ∈ Oc

Then f is a pairwise continuous map from (P, τP1 , τ
P
2 ) to (L, τ, τ). As a result, it

can be shown that f ∈ HOMPBSL((P, αP ), (L, αL)). Now, □Rf(p) =
∧
{f(z) : z ∈

R[p]} = 1 and f(p′) = 0. Hence, ζ(P,αP ,R)(p)(□Rf) = 1 but ζ(P,αP ,R)(p
′)(f) ̸= 1.

Therefore, ζ(P,αP ,R)(p
′) /∈ R□R [ζ(P,αP ,R)(p)]. Hence, we have for any p, p′ ∈ P ,

p′ ∈ R[p] ⇐⇒ ζ(P,αP ,R)(p
′) ∈ R□R [ζ(P,αP ,R)(p)]. As a result, ζ(P,αP ,R) and ζ−1

(P,αP ,R)

satisfy conditions (i) and (ii) mentioned in item 2 of Definition 6.5.1. Thus, ζ(P,αP ,R)

is a homeomorphism. This finishes the proof.

Finally, we obtain the bitopological duality for Fitting’s Heyting-valued modal
logic.

Theorem 6.5.3. The categories MAL and PRBSL are dually equivalent.

Proof. Let ID1 and ID2 be the identity functors on MAL and PRBSL, respectively.
This theorem will be proved by defining two natural isomorphisms, γ : ID1 → F ◦G
and ζ : ID2 → G ◦ F . For an object A in MAL define γA : A → F ◦ G(A) by
γA(a)(g) = g(a), where a ∈ A and g ∈ G(A). For an object (P, αP ,R) in PRBSL

define ζ(P,αP ,R) : (P, αP ,R) → G ◦ F(P, αP ,R) by ζ(P,αP ,R)(p)(ψ) = ψ(p), where
p ∈ P and ψ ∈ HOMPBSL((P, αP ), (L, αL)). Then it can be shown that γ and ζ

are natural transformations. According to Theorems 6.5.1 and 6.5.2, γ and ζ are
natural isomorphisms.
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Thus we have extended bitopological duality for Fitting’s many-valued logic:

VAL ≡ PBSopL

to the duality for Fitting’s many-valued modal logic:

MAL ≡ PRBSopL

We have obtained a duality for the class of all algebras of a version of Fitting’s
Heyting-valued modal logic in bitopological language via the novel notion of PRBSL,
without which it would be challenging to achieve such a modalized version of the
bitopological duality for many-valued logic. This has led to an extension of the
natural duality theory for modal algebras.
In the next chapter, we shall demonstrate how to characterize the category PRBSL

using the coalgebra theory, thereby obtaining a coalgebraic interpretation of the
duality MAL ≡ PRBSopL .

6.6 Conclusion

We have defined the category PRBSL and connected it to the category VAL using
the appropriate functors. Consequently, we have found a duality for the class of
all algebras of a version of Fitting’s Heyting-valued modal logic in a bitopological
setting. This has led to an extension of the natural duality theory for modal algebras.
It has been noted that the methodology laid out in this chapter extends the Jonssion-
Tarski duality for algebras of Fitting’s Heyting-valued modal logic (e.g., see [21]) in
a bitopological context.
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Chapter 7

Coalgebraic Duality for many-valued
modal logic

This chapter is primarily concerned with establishing a coalgebraic duality for
Fitting’s many-valued modal logic. In chapter 6, we have established a bitopological
duality for algebras of Fitting’s Heyting-valued modal logic by building up a notion
of PRBSL as a category of L-valued pairwise Boolean spaces with a relation. This
chapter will show how the category PRBSL can be characterized using the theory
of coalgebras, leading to a coalgebraic description of the bitopological duality for
Fitting’s Heyting-valued modal logic.

We aim to construct a bi-Vietoris functor on the category PBSL of L-valued (L
is a Heyting algebra) pairwise Boolean spaces. Finally, we obtain a dual equivalence
between categories of biVietoris coalgebras and algebras of Fitting’s Heyting-valued
modal logic. Thus, we conclude that Fitting’s many-valued modal logic is sound
and complete with respect to the coalgebras of a biVietoris functor. The key con-
clusion is coalgebraic duality for algebras of Fitting’s Heyting-valued modal logic
represented by L-ML-algebras, where L is a semi-primal algebra having a bounded
lattice reduct. Our general theory extends the Abramsky-Kupke-Kurz-Venema
coalgebraic duality [1, 55] in the setting of bitopological language. Furthermore, it
introduces a novel coalgebraic duality for L-ML-algebras.
An exemplary story in coalgebraic logic can be found in [63]. The Stone duality [51]
between Boolean algebras and sets represents the syntax and semantics of a propo-

The outcomes of this chapter appear in [61] Das, Litan Kumar., Ray, Kumar sanakar.,
Mali, Prakash Chandra. : Duality for Fitting’s Heyting-valued modal logic via Bitopol-
ogy and Bi-Vietoris coalgebra. Theoretical Computer Science, Elsevier (Under Re-
view). https://doi.org/10.48550/arXiv.2312.16276
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sitional logic. The algebras and coalgebras of the endofunctors define the syntax
and semantics of the modal propositional logic. As an illustration, the modal logic
K and Kripke semantics derive from the Stone duality by taking an endofunctor on
sets. So, in acceptable circumstances, we can achieve duality between the relevant
algebras and coalgebras. In addition to demonstrating the fact that the widely
recognized Stone duality could be articulated in coalgebraic terms, Abramsky [1]
also showed that a coalgebraic formulation could be provided for the Jónsson-Tarski
duality between descriptive general Kripke frames and modal algebras (see also [55]
for further information). In particular, the category of descriptive general Kripke
frames is isomorphic to the category of Boolean spaces. Esakia [64] also noticed
this connection. Therefore, coalgebras for the Vietoris functor on the category of
Boolean spaces can represent sound and complete semantics for modal logic. In
[65], the author showed that coalgebras of a Vietoris functor on the category of
Priestley spaces, i.e., compact, totally ordered disconnected spaces, provide sound
and complete semantics for positive modal logic. The objective of this chapter is
to combine the idea that the semantics of Fitting’s many-valued modal logic can
be understood as coalgebras for the bi-Vietoris functor on the category PBSL of
L-valued pairwise Boolean spaces and pairwise continuous maps.

We first define an endofunctor V bi
L : PBSL → PBSL, called L-biVietoris

functor. Then we demonstrate that the category COALG(V bi
L ) of coalgebras for

the endofunctor V bi
L is isomorphic to the category PRBSL.

7.1 The notions of Coalgebra and Bitopological
spaces

The notion of Coalgebra

Let’s review the definitions of coalgebra and coalgebra morphisms. We refer the
reader to [6] for an overview of coalgebras.

Definition 7.1.1. A coalgebra for an endofunctor T : C → C on a category C,
called T-coalgebra, is defined by a tuple (C, T ), where C is an object in C and
T : C → T(C) is an arrow in C.

Definition 7.1.2. Let (C1, T1) and (C2, T2) be any two T-coalgebras. Then f :
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(C1, T1) → (C2, T2) is said to be a T-coalgebra morphism if f : C1 → C2 is an arrow
in C which satisfies T2 ◦ f = T(f) ◦ T1, i.e., the following diagram commutes:

C1 C2

f(C1) f(C2)

f

T1 T2

T(f)

T-coalgebras and T-coalgebra morphisms form a category, denoted by
COALG(T).

Basic concept of Bitopological spaces

A bitopological space is defined by a triple (X, τ1, τ2) in which (X, τ1) and (X, τ2)

are topological spaces. Consider δ1 and δ2 represent, respectively, the collections of
τ1-closed sets and τ2-closed sets. We set β1 = τ1 ∩ δ2 and β2 = τ2 ∩ δ1.

Definition 7.1.3 ([39]). (i) A bitopological space (X, τ1, τ2) is said to be pairwise
Hausdorff space if for every pair (x, y) of distinct points x, y ∈ X there exists
disjoint open sets Ux ∈ τ1 and Uy ∈ τ2 containing x and y, respectively.

(ii) A bitopological space (X, τ1, τ2) is said to be pairwise zero-dimensional if β1 is
a basis for τ1 and β2 is a basis for τ2.

(iii) A bitopological space (X, τ1, τ2) is said to be pairwise compact if the topological
space (X, τ), where τ = τ1 ∨ τ2, is compact.

7.2 The structure of the endofunctor V bi
L

In this section, we introduce the concept of pairwise Vietoris spaces and construct
an endofunctor V bi

L on the category PBSL.

We define the pairwise Vietoris space as follows:

Definition 7.2.1. Let (S, τS1 , τ
S
2 ) be a pairwise topological space and K(S) the set

of all pairwise closed subsets of S. We define □U = {C ∈ K(S) : C ⊆ U} and
♢U = {C ∈ K(S) : C ∩ U ̸= ∅}, U ⊆ S. Let βS1 and βS2 be the basis for the
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topologies τS1 and τS2 , respectively. The pairwise Vietoris space VP (S) of the pairwise
topological space (S, τS1 , τ

S
2 ) is defined as a pairwise topological space (K(S), τV1 , τ

V
2 ),

where τV1 is the topology on K(S) generated by subbasis {□U,♢U : U ∈ βS1 } and the
topology τV2 on K(S) is generated by subbasis {□U,♢U : U ∈ βS2 }.

We then show that VP (S) is a pairwise Boolean space whenever S is a pairwise
Boolean space.

Lemma 7.2.1. If (S, τS1 , τ
S
2 ) is a pairwise Boolean space then VP (S) =

(K(S), τV1 , τ
V
2 ) is pairwise zero-dimensional.

Proof. We shall show that βV1 = τV1 ∩ δV2 is a basis for τV! , where δV2 is the set of τV2 -

closed sets. Let O ∈ τV1 . Then O can be expressed as O =
⋃
λ∈Λ

(

nλ⋂
j=1

□Uj ∩
mλ⋂
k=1

♢Uk),

Uj, Uk ∈ βS1 = τS1 ∩ δS2 . In order to show that βV1 is a basis for τV1 , it is necessary to
show that

⋂nλ

j=1□Uj∩
⋂mλ

k=1 ♢Uk ∈ βV1 . Because the finite intersection of the members
of βV1 is again in βV1 , it is sufficient to establish that for U ∈ βS1 , □U,♢U ∈ βV1 . As τV1
is the topology generated by the subbasis {□U,♢U : U ∈ βS1 }, hence □U,♢U ∈ τV1 .
Now we see that (□U)c = ♢U c and (♢U)c = □U c. Since U ∈ βS1 , so U c ∈ βS2 . As
a result, □U,♢U ∈ δV2 . Henceforth, □U,♢U ∈ βV1 . Similarly, it can be shown that
βV2 = τV2 ∩ δV1 , δV1 is the set of τV1 -closed sets, is a basis for τV2 .

Lemma 7.2.2. If (S, τS1 , τ
S
2 ) is a pairwise Boolean space then VP (S) =

(K(S), τV1 , τ
V
2 ) is pairwise Hausdorff.

Proof. Let C,C ′ ∈ K(S) and C ̸= C ′. Let z ∈ C such that z ̸= z′, ∀z′ ∈ C ′. For
each point z′ ∈ C ′, we choose disjoint open sets U c

z′ ∈ βS2 and Uz′ ∈ βS1 (using the
condition that (S, τS1 , τ

S
2 ) is pairwise Hausdorff space.) containing points z′ and z,

respectively. So the collection {U c
z′ : z

′ ∈ C ′} is τS2 -open covering of C ′. As C ′ is
pairwise compact, so there is a finite collection {U c

z′i
: i = 1, 2, · · · , n} such that

C ′ ⊆
⋃n
i=1 U

c
z′i
. Let V ′ =

n⋃
i=1

U c
z′i

and U =
n⋂
i=1

Uz′i . As z ∈ C ∩ U , hence C ∩ U ̸= ∅.

Also, C ′ ∩ U = ∅ because C ′ ⊆ U c. It follows that C ∈ ♢U ∈ τV1 and C ′ /∈ ♢U i.e.,
C ′ ∈ (♢U)c = □U c ∈ τV2 . So we have two disjoint open sets ♢U ∈ τV1 and □U c ∈ τV2
containing C and C ′, respectively.

Lemma 7.2.3. If (S, τS1 , τ
S
2 ) is a pairwise Boolean space then VP (S) =

(K(S), τV1 , τ
V
2 ) is pairwise compact.
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Proof. It is known from Proposition 6.2.1 that {□U,♢U : U ∈ βS1 ∪βS2 } is a subbasis
for the topology τS1 ∨ τS2 . We shall show that every cover of K(S) by subbasis-
open sets has a finite subcover. Let K(S) =

⋃
λ∈Λ□Uλ ∪

⋃
i∈I ♢Vi. Consider S1 =

S −
⋃
i∈I Vi. Then S1 is a pairwise closed subset of S. Hence, S1 ∈ K(S). Since,

S1 /∈ ♢Vi for each i ∈ I, so that S1 ∈
⋃
λ∈Λ□Uλ. Then for some λ′ ∈ Λ, S1 ∈ □Uλ′ .

As a result, S1 ⊆ Uλ′ and hence S−Uλ′ ⊆ S−S1 =
⋃
i∈I

Vi. Then, S = Uλ′∪
⋃
i∈I

Vi. As

S is pairwise compact, we have S = Uλ′ ∪
⋃n
i=1 Vi. Let A be an arbitrary element of

K(S). If A ⊆ Uλ′ then A ∈ □Uλ′ otherwise A ⊆
⋃
i∈I Vi i.e., A∩ Vi ̸= ∅ for some i ∈

{1, 2, · · · , n}. As a result, A ∈ □Uλ′ ∪
⋃
i∈I ♢Vi. Therefore, VP (S) = (K(S), τV1 , τ

V
2 )

is pairwise compact.

Lemmas 7.2.1, 7.2.2 and 7.2.3 establish the following result:

Theorem 7.2.1. If (S, τS1 , τ
S
2 ) is a pairwise Boolean space then VP (S) =

(K(S), τV1 , τ
V
2 ) is also a pairwise Boolean space.

We now construct the L-biVietoris functor V bi
L .

Definition 7.2.2. We define a L-biVietoris functor V bi
L : PBSL → PBSL as fol-

lows:

(i) For an object (S, τS1 , τ
S
2 , αS) in PBSL, we define V bi

L (S, τS1 , τ
S
2 , αS) =

(VP (S), VP ◦αS) where αS is a mapping from SL to ΛS, then for any L1 ∈ SL,
VP ◦ αS(L1) is the pairwise Vietoris space of a pairwise closed subspace (i.e.,
pairwise Boolean subspace) αS(L1) of S;

(ii) For an arrow f : (S1, τ
S1
1 , τS1

2 , αS1) → (S2, τ
S2
1 , τS2

2 , αS2) in PBSL, V bi
L (f) :

(VP (S1), VP ◦αS1) → (VP (S2), VP ◦αS2) is defined by V bi
L (f)(K) = f [K], where

K ∈ VP (S1).

We verify the well-definedness of the functor V bi
L .

Lemma 7.2.4. Let (S, τS1 , τS2 , αS) be an object in PBSL. Then V bi
L (S, τS1 , τ

S
2 , αS) is

an object in PBSL.

Proof. Theorem 7.2.1 shows that VP (S) is a pairwise Boolean space. Now we shall
show that VP ◦ αS is a pairwise closed subspace of VP (S). For L1 ∈ SL, an ele-
ment of VP (S) ◦ αS(L1) is a pairwise compact subset of αS(L1). As αS(L1) is also
pairwise compact subspace of S, so that an element of VP ◦ αS(L1) is a pairwise
compact subset of S. As a result, VP ◦ αS(L1) is a subset of VP (S). For U ∈ βS1 ,
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we get □U ∩ VP ◦ αS(L1) = {C ∈ VP ◦ αS(L1) : C ⊂ U} = □(U ∩ αS(L1)) and
♢U ∩ VP ◦ αS(L1) = {C ∈ VP ◦ αS(L1) : C ∩ U ̸= ∅} = ♢(U ∩ αS(L1)). Similarly
for U ∈ βS2 . Hence, VP ◦ αS(L1) is a pairwise subspace of VP (S). Since αS(L1) is a
pairwise Boolean subspace of S, by Theorem 7.2.1 we have VP ◦αS(L1) is a pairwise
Boolean space. Henceforth, VP ◦ αS(L1) is a pairwise closed subspace of VP (S).
Now we show that VP ◦ αS satisfies the conditions given in the object part of Defi-
nition 6.4.1. If αS(L) = S then VP ◦ αS(L) = VP (S).
Let L1,L2,L3 ∈ SL. If L1 = L2∩L3 then we show that VP (αS(L1)) = VP (αS(L2))∩
VP (αS(L3)). Now VP (αS(L1)) = VP (αS(L2 ∩ L3)) = VP (αS(L2) ∩ αS(L3)). The
element structure of VP (αS(L2) ∩ αS(L3)) is of the form P ∩ (αS(L2) ∩ αS(L3))

and Q ∩ (αS(L2) ∩ αS(L3)), where P and Q are τS1 -closed set and τS2 -closed
set, respectively. The elements of VP (αS(L2)) ∩ VP (αS(L3)) are of the form
(P1 ∩ αS(L2)) ∩ (P2 ∩ αS(L3)) and (Q1 ∩ αS(L2)) ∩ (Q2 ∩ αS(L3)), where P1, P2 are
τS1 -closed and Q1, Q2 are τS2 -closed. Then it is straightforward to demonstrate that
VP (αS(L2) ∩ αS(L3)) ⊆ VP (αS(L2)) ∩ VP (αS(L3)) and VP (αS(L2)) ∩ VP (αS(L3)) ⊆
VP (αS(L2) ∩ αS(L3)).

Lemma 7.2.5. Let f : (S1, τ
S1
1 , τS1

2 , αS1) → (S2, τ
S2
1 , τS2

2 , αS2) be an arrow in PBSL.
Then V bi

L (f) is an arrow in PBSL.

Proof. Given that f is a pairwise continuous map from a pairwise Boolean space
S1 to a pairwise Boolean space S2. Let K ∈ VP (S1). Then K is a pairwise closed
subset of S1 and hence K is pairwise compact. Now V bi

L (f)(K) = f [K] is a pairwise
compact subset of S2. Since S2 is a pairwise Boolean space, f [K] is a pairwise
closed subset of S2. As a result, V bi

L (f)(K) ∈ VP (S2). To show that V bi
L (f) is

pairwise continuous, let U ∈ βS2
1 and V ∈ βS2

2 . Then

V bi
L (f)−1(□U) = {K ∈ VP (S1) : V

bi
L (f)(K) ∈ □U}

= {K ∈ K(S1) : f [K] ⊆ U}
= {K ∈ K(S1) : K ⊆ f−1(U)}
= □f−1(U)
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and

V bi
L (f)−1(♢U) = {K ∈ VP (S1) : V

bi
L (f)(K) ∈ ♢U}

= {K ∈ K(S1) : f [K] ∩ U ̸= ∅}
= {K ∈ K(S1) : K ∩ f−1(U) ̸= ∅}
= ♢f−1(U)

Similarly, V bi
L (f)−1(□V ) = □f−1(V ) and V bi

L (f)−1(♢V ) = ♢f−1(V ). Therefore,
V bi
L (f) is pairwise continuous. It is still necessary to demonstrate that V bi

L (f) is
subspace preserving. Let M ∈ VP ◦ αS1(L1), L1 ∈ SL. Then M ⊆ αS1(L1). As f is
an arrow in PBSL, hence f is a subspace preserving map. Thus, f(M) ⊆ αS2(L1).
It shows that V bi

L (f)(M) ⊆ αS2(L1). Thus we have V bi
L (f)(M) ∈ VP ◦ αS2(L1).

7.3 Coalgebraic duality for Fitting’s many-valued
modal logic

We first introduce two functors B and C between the categories PRBSL and
COALG(V bi

L ) to show that these two categories are isomorphic.

Functors: B and C

Definition 7.3.1. We define a functor B : PRBSL → COALG(V bi
L ) as follows:

(i) For an object (S, αS,R) in PRBSL, define B(S, αS,R) = (S, αS,R[−]), where
R[−] : (S, αS) → V bi

L (S, αS) is an arrow in PBSL defined by R[s] = {p ∈ S :

sRp}, s ∈ S;

(ii) For an arrow f : (S1, αS1 ,R1) → (S2, αS2 ,R2) in PRBSL, define B(f) :

(S1, αS1 ,R1[−]) → (S2, αS2 ,R2[−]) by B(f) = f .

The well-definedness of the functor B is shown by the following two lemmas:

Lemma 7.3.1. Let (S, αS,R) be an object in PRBSL. Then B(S, αS,R) is an
object in COALG(V bi

L ) .

Proof. We shall show that R[−] : (S, αS) → V bi
L (S, αS) is an arrow in PBSL. By

the conditions given in the object part of Definition 6.5.1, we know that for each
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s ∈ S, R[s] is pairwise compact subset of S. As S is pairwise Boolean space, hence
R[s] is a pairwise closed subset of S. Thus R[s] ∈ VP (S). Let U ∈ βS1 . Then

R[−]−1(□U) = {s ∈ S : R[s] ∈ □U}
= {s ∈ S : R[s] ⊆ U}
= [R]U ∈ βS1 [by Definition 6.5.1]

and

R[−]−1(♢U) = {s ∈ S : R[s] ∈ ♢U}
= {s ∈ S : R[s] ∩ U ̸= ∅}
= ⟨R⟩U ∈ βS1 [by Definition 6.5.1]

Similarly, for U ∈ βS2 , R[−]−1(□U) = [R]U ∈ βS2 and R[−]−1(♢U) = ⟨R⟩U ∈ βS2 .
Henceforth, R[−] is a pairwise continuous map. Now we show that R[−] is subspace
preserving. Let s ∈ αS(L′), L′ ∈ SL. It is known from Definition 6.5.1 that R[s] is
a pairwise compact subset of αS(L′). Since αS(L′) is itself a pairwise Boolean space,
thus we have R[s] ∈ VP ◦ αS(L′). Therefore, B(S, αS,R) is a V bi

L -coalgebra.

Lemma 7.3.2. Let f : (S1, αS1 ,R1) → (S2, αS2 ,R2) be an arrow in PRBSL. Then
B(f) is an arrow in COALG(V bi

L ).

Proof. As f is an arrow in PRBSL, so B(f) = f : (S1, αS1 ,R1[−]) →
(S2, αS2 ,R2[−]) is a pairwise continuous map. Now using the conditions men-
tioned in the arrow part of Definition 6.5.1, it is straightforward to verify that
R2[−] ◦ f = V bi

L ◦ R1[−]. Thus B(f) is an arrow in COALG(V bi
L ).

Definition 7.3.2. We define a functor C : COALG(V bi
L ) → PRBSL as follows:

(i) For an object ((C, αC), ξ) in COALG(V bi
L ), define C((C, αC), ξ) = (C, αC ,Rξ),

where Rξ is a binary relation on C defined by d ∈ Rξ[c] ⇐⇒ d ∈ ξ(c),
c, d ∈ C;

(ii) For an arrow f : ((C1, αC1), ξ1) → ((C2, αC2), ξ2) in COALG(V bi
L ), define

C(f) : (C1, αC1 ,Rξ1) → (C2, αC2 ,Rξ2) by C(f) = f .

The well-definedness of the functor C is shown by Lemma 7.3.3 and Lemma 7.3.4.

Lemma 7.3.3. For an object ((C, αC), ξ) in COALG(V bi
L ), C((C, αC), ξ) =

(C, αC ,Rξ) is an object in PRBSL.
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Proof. In order to show that C((C, αC), ξ) is an object in PRBSL, we must verify
that C((C, αC), ξ) satisfies the conditions given in the object part of Definition 6.5.1.
For each c ∈ C, Rξ[c] = ξ(c) ∈ VP (C). Hence, Rξ[c] is a pairwise closed subset of
C. Thus Rξ[c] is pairwise compact. Let U ∈ βC1 . Then

[Rξ](U) = {c ∈ C : Rξ[c] ⊆ U}
= {c ∈ C : ξ(c) ⊆ U}
= {c ∈ C : ξ(c) ∈ □U}
= ξ−1(□U) ∈ βC1

and

⟨Rξ⟩U = {c ∈ C : Rξ[c] ∩ U ̸= ∅}
= {c ∈ C : ξ(c) ∩ U ̸= ∅}
= {c ∈ C : ξ(c) ∈ ♢U}
= ξ−1(♢U) ∈ βC1

Finally, let m ∈ αC(L′) for L′ ∈ SL. As ξ is a subspace preserving map from
(C, αC) to V bi

L (C, αC), we have Rξ[m] = ξ(m) ∈ VP ◦ αC(L′). Henceforth, Rξ[m] ⊂
αC(L′).

Lemma 7.3.4. For an arrow f : ((C1, αC1), ξ1) → ((C2, αC2), ξ2) in COALG(V bi
L ),

C(f) : (C1, αC1 ,Rξ1) → (C2, αC2 ,Rξ2) is an arrow in PRBSL.

Proof. It is straightforward to prove that C is an arrow in PRBSL.

Now we obtain the following result:

Theorem 7.3.1. The categories PRBSL and COALG(V bi
L ) are isomorphic.

Proof. We shall show that the categories PRBSL and COALG(V bi
L ) are isomor-

phic via the functors B and C. Let (S, αS,R) be an object in PRBSL. Then
C ◦ B(S, αS,R) = C(S, αS,R[−]) = (S, αS,RR[−]). Now t ∈ RR[−](s) ⇐⇒
t ∈ R[s]. Thus, (S, αS,R) = C ◦ B(S, αS,R). Let ((C, αC), ξ) be an object in
COALG(V bi

L ). Then B◦C((C, αC), ξ) = B(C, αC ,Rξ) = ((C, αC),Rξ[−]). We have
c2 ∈ Rξ[c1] ⇐⇒ c2 ∈ ξ(c1). As a result, ((C, αC), ξ) = B ◦C((C, αC), ξ). It is clear
that for an arrow f in COALG(V bi

L ), B ◦ C(f) = f and for an arrow f in PRBSL,
C ◦B(f) = f .
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Coalgebraic Duality

Using Theorems 6.5.3 and 7.3.1, we arrive at the following duality theorem:

Theorem 7.3.2. The categories MAL and COALG(V bi
L ) are dually equivalent.

Thus the modal semi-primal duality for algebras of Fitting’s Heyting-valued
modal logic (for more information, see [21]) can potentially be represented in terms
of the coalgebras of L-biVietoris functor V bi

L .
Finally, based on the preceding theorems, we can conclude:

Theorem 7.3.3. Fitting’s Heyting-valued modal logic is sound and complete with
respect to coalgebras of the biVietoris functor V bi

L .

7.4 Conclusion

We have demonstrated how the theory of coalgebras can be used to characterise the
category PRBSL and thus obtained a coalgebraic description of the bitopological
duality for Fitting’s Heyting-valued modal logic. In this chapter, we have explicitly
constructed the Vietoris functor on the category PBSL of L-pairwise Boolean spaces
and we have finally concluded that coalgebras for this functor provide sound and
complete semantics for Fitting’s Heyting-valued modal logic.
As an application of this coalgebraic duality, we may establish the existence of a
final coalgebra and cofree coalgebras in the category COALG(V bi

L ), and we can
also develop the coalgebraic duality theorem for many-valued modal logics in a
bitopological scenario.
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Chapter 8

Coalgebraic Fuzzy geometric logic

The goal of this chapter is to develop coalgebraic fuzzy geometric logic by incor-
porating modalities into the language of fuzzy geometric logic. A generalized form
of modal logic can be created within the context of coalgebraic logic. Coalgebraic
geometric logic was recently developed by adding modalities to the language of
propositional geometric logic using the coalgebra approach. However, as far as we
are aware, no studies have been done specifically on modal fuzzy geometric logic.
This chapter study the modal fuzzy geometric logic using coalgebra theory. This
new logic might potentially be used to model and reason about transition systems
that involve uncertainty in behaviour. We propose a theoretical framework based
on coalgebra theory to add modalities into the language of fuzzy geometric logic.
Coalgebras for an endofunctor on a category of fuzzy topological spaces and fuzzy
continuous maps serve as the foundation for models of this logic. Our key finding is
the existence of a final model in the category of models for endofunctors defined on
sober fuzzy topological spaces. Furthermore, we present a comparative analysis of
the notions of behavioural equivalence, bisimulation, and modal equivalence on the
resulting class of models.
In [77], fuzzy geometric logic is introduced as a natural extension of propositional
geometric logic [98]. Vickers in [98] developed geometric logic based on point-free
topology, propositional logic, and the logic of finite observations [4]. Several stud-
ies have mentioned it (e.g., [74, 11, 12, 99, 100]). The language of geometric logic

The outcomes of this chapter can be found in [60] Das, Litan Kumar., Ray, Kumar
Sankar., Mali, Prakash Chandra. : Coalgebraic Fuzzy geometric logic. International
Journal of Information Technology, Springer (accepted). and [59] Das, Litan Kumar.,
Ray, Kumar Sankar., Mali, Prakash Chandra. : Bisimulations for Fuzzy Geometric
Models. International Conference on Recent Trends in Artificial Intelligence and
IoT, 1822, 152-163, CCIS, Springer, 2023.
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is created on a collection of propositional variables by applying propositional con-
nectives: finite conjunction (∧) and arbitrary disjunction (

∨
). These connectives

preserve the property of finite observability. Vickers [98] investigated the connection
between topological spaces, topological systems, and geometric logic. A topological
system is defined by a triple (X, |=, A) in which X occurs as a non-empty set of
objects, A defines a frame and |= is a satisfaction relation from X to A.
The authors in [77] have generalized geometric logic to the many-valued context by
extending the notion of satisfiability relation. They noticed that if the satisfaction
relation is fuzzy, there are two possible outcomes for the related consequence rela-
tion: crisp or fuzzy. They consequently introduced general fuzzy geometric logic
as well as fuzzy geometric logic with graded consequences. In addition, their work
demonstrated the link between fuzzy geometric logic, fuzzy topology, and fuzzy topo-
logical systems. The concept of fuzzy topological spaces has introduced in [78] and
has been the focus of numerous studies (e.g. [79, 80, 81, 82, 83]). A comprehensive
explanation of graded consequences and associated issues can be found in [84].
A thorough literature review on several aspects of coalgebraic logic has been ac-
complished, and its findings have been compiled in Table 8.1. The literature survey
makes clear that the coalgebraization of fuzzy geometric logic has not been studied.
Consequently, the goal of the current study is to investigate modal fuzzy geometric
logic using the coalgebra process and to establish a criterion for the existence of final
fuzzy geometric models.

We extend the predicate lifting approach [87] and apply it to build modal oper-
ators for fuzzy geometric logic, which can be interpreted in coalgebra-based models
with a fuzzy topological space as the state space. The structures, known as fuzzy
geometric models, provide the semantics of our coalgebraic logic. Final models are
important in “state-based systems” because they create what is commonly referred
to as minimal representations: they are canonical interpretations that include ev-
ery possible behaviours that a system could exhibit. The duality between sober
fuzzy topological spaces and spatial frames (cf. Theorem 8.1.1) enables us to ap-
proach challenges from several angles. As an instance, the duality between sober
fuzzy spaces and spatial frames leads to the concrete creation of a final model (see
Section 8.3). The concept of bisimulation [91] is widely used in computer science
and mathematics. Bisimulation between coalgebras is a fundamental idea in “state-
based systems” that associates states with the same behaviour. In [95], the author
established various conceptions of coalgebraic bisimulation and investigated their
relationship. In the current chapter, we study the notions of bisimulation for fuzzy
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Table 8.1: Literature review (tabular form).
Sr. No. Inves-

tigator
logic Findings

of the
study

1 [98] Propositional Geomet-
ric logic: logic of finite
observations

Interrelation between
systems and spaces

2 [77] Fuzzy geometric logic Interrelation among
fuzzy geometric logic,
fuzzy systems, and
fuzzy spaces

3 [63] Coalgebraic logic Coalgebra is excellent
for reasoning concepts
relating to behaviour
and observable indis-
tinguishability.

4 [66, 67] Coalgebraic modal
logic

Coalgebraic logic on
the category of sets
is constructed, and
modal operators are
defined using the
methods of predicate
lifting.

5 [69] Stone-based coalge-
braic logic

Clopen-predicate lift-
ings are used to define
modal operators and
explore various con-
cepts of bisimulation.

6 [88, 89] Coalgebraic geometric
logic

Investigate open-
predicate lifting and
create a criterion
to demonstrate the
existence of final
geometric models. .

geometric models. Our aim here is to show that the concepts of fuzzy geometric
modal equivalence, bisimulation, and behavioural equivalence coincide on the cate-
gories of fuzzy topological spaces and the category of sober fuzzy topological spaces,
provided the set of fuzzy predicate liftings and the endofunctors satisfy certain re-
quirements.
Our research is comparable to that found in [88, 89]. From a mathematical perspec-
tive, the findings in this chapter might be referred to as generalizations of relevant
classical concepts to the many-valued setting.
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8.1 The preliminary findings from Fuzzy Set The-
ory, Fuzzy topological spaces and Coalgebra
theory

Fuzzy set theory

Zadeh [107] explored fuzzy set theory. We review some essential concepts in fuzzy
set theory.

Definition 8.1.1 ([107]). A fuzzy set f̃ on a set S is defined by the membership
function f̃ : S → [0, 1].

Let f̃ c denote the complement of f̃ . Define f̃ c : S → [0, 1] by f̃ c(s) = 1 − f̃(s),
∀s ∈ S. f̃ c is a fuzzy set on S.

Note 8.1.1. If f̃1 and f̃2 are fuzzy sets on S, then f̃1 ∨ f̃2 and f̃1 ∧ f̃2 are fuzzy sets
on S, where the fuzzy sets f̃1∨ f̃2 and f̃1∧ f̃2 are defined by (f̃1∨ f̃2)(s) = f̃1(s)∨ f̃2(s)
and (f̃1 ∧ f̃2)(s) = f̃1(s) ∧ f̃2(s), respectively.

Remark 8.1.1. For each s ∈ S, the grade of membership of s in the fuzzy set f̃ is
given by the value f̃(s). It is represented by the symbol gr(s ∈ f̃).

Definition 8.1.2 ([107]). Let S1 and S2 be two sets and f : S1 → S2 be a given
function. For a fuzzy set s̃1 on S1, the direct image f(s̃1) : S2 → [0, 1] of the fuzzy
set s̃1 under the function f is defined by f(s̃1)(s) =

∨
{s̃1(t) : t ∈ f−1({s})}, where

s ∈ S2.

Definition 8.1.3 ([107]). Let S1 and S2 be two sets and f : S1 → S2 be a given
function. For a fuzzy set s̃2 on S2, the inverse image f−1(s̃2) : S1 → [0, 1] of the
fuzzy set s̃2 under the function f is defined by f−1(s̃2) = s̃2 ◦ f .

Definition 8.1.4 ([107]). Let µ and η be fuzzy sets on S. Then, µ is a fuzzy subset
of η, denoted by µ ≤ η, ⇐⇒ µ(s) ≤ η(s), ∀s ∈ S.

Definition 8.1.5 ([107]). Consider a mapping f : S → T and a collection {µi : i ∈
I, I is an index set } of fuzzy sets on T . Then

(i) f−1(
∨
i∈I

µi) =
∨
i∈I

f−1(µi);

(ii) f−1(
∧
i∈I

µi) =
∧
i∈I

f−1(µi).
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Goguen first considered the category of fuzzy sets in [102]. Several authors
studied on the category of fuzzy sets (e.g.,[104, 105, 106]). Let FS denote the
category of fuzzy sets.

Definition 8.1.6 ([104]). The category FS is defined as follows:

(i) An object in FS is a pair (S, g̃), where S is a set and g̃ : S → [0, 1] is a
membership function;

(ii) A morphism f : (S, g̃) → (T, h̃) in FS is a function f : S → T such that
g̃(s) ≤ f−1(h̃)(s).

Fuzzy topological spaces

We recall the definition of fuzzy topological spaces from [78].

Definition 8.1.7 ([78]). Let S be a set. A collection τS of fuzzy sets on S is said
to be fuzzy topology on S if the following conditions hold:

(i) ∅̃, S̃ ∈ τS, where ∅̃(s) = 0, ∀s ∈ S and S̃(s) = 1, ∀s ∈ S;

(ii) if g̃1, g̃2 ∈ τs then g̃1 ∧ g̃2 ∈ τS, where (g̃1 ∧ g̃2)(s) = g̃1(s) ∧ g̃2(s);

(iii) if g̃j ∈ τS for j ∈ Λ, Λ is an index set, then
∨
j∈Λ

g̃j ∈ τS, where
∨
j∈Λ

g̃j(s) =

sup
j∈Λ

{g̃j(s)}.

Then, the pair (S, τS) is referred to as a fuzzy topological space and members of
τS are said to be fuzzy open sets on (S, τS).

Note 8.1.2. Let (S, τS) be a fuzzy topological space. Then, the fuzzy topology τS on
S can be considered as a frame.

Definition 8.1.8 ([103]). Let (S, τS) be a fuzzy topological space. Then a subset B
of τS is called a basis for (S, τS) if it satisfies the following conditions:

(i) if b̃1, b̃2 ∈ B then b̃1 ∧ b̃2 ∈ B;

(ii) for each member t̃ ∈ τS, there exists a subcollection C = {t̃j ∈ B : j ∈ Λ} such
that t̃ =

∨
j∈Λ

t̃j.
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Definition 8.1.9 ([103]). Let τS be a fuzzy topology on S and S ⊂ τS. Then, S is a
subbasis for a fuzzy space (S, τS) ⇐⇒ the collection of all finite meets of members
of S is a basis for (S, τS).

Definition 8.1.10. A fuzzy topological space (S, τS) is said to be Kolmogorov space
or T0-space if for any pair (x, y) of distinct points in S, there is a fuzzy open set g̃
on S such that g̃(x) ̸= g̃(y).

Definition 8.1.11. Let (F, τF ) and (G, τG) be fuzzy topological spaces. A mapping
f : F → G is fuzzy continuous if and only if, for every fuzzy open set g̃ on (G, τG),
f−1(g̃) is a fuzzy open set on (F, τF ).

Let Fuzzy-Top denote the category of fuzzy topological spaces.

Definition 8.1.12. The category Fuzzy-Top is defined as follows:

(i) Objects in Fuzzy-Top are fuzzy topological spaces (S, τS);

(ii) Morphisms f : (S, τS) → (T, τT ) in Fuzzy-Top are fuzzy continuous mappings.

Definition 8.1.13. A functor Q from the category Fuzzy-Top to the category FS
of fuzzy sets can be defined as follows:

(i) For an object (S, τS) in Fuzzy-Top, define Q(S) =

set of fuzzy open sets on (S, τS);

(ii) For a morphism ϕ : (S, τS) → (T, τT ) in Fuzzy-Top, define Q(ϕ) = ϕ−1 :

Q(T ) → Q(S) by ϕ−1(µ) = µ ◦ ϕ, µ ∈ Q(T ).

Definition 8.1.14. We define a functor P : Fuzzy-Top → FRM as follows:

(i) For an object S in Fuzzy-top, define P(S) = τS;

(ii) For an arrow η : S1 → S2 in Fuzzy-top, define P(η) : P(S2) → P(S1) by
P(η)(ξ) = ξ ◦ η, where ξ ∈ P(S2).

Note 8.1.3. Let F be a frame and (S, τS) be a fuzzy topological space. Then, the
frame F is spatial if there is an isomorphism from F to P(S).

Consider that S-FRM is the category of spatial frames and homomorphisms
between frames. Let F denote a frame and PTF denote the collection of frame
homomorphisms h from F to [0, 1]. Then the collection {Ψ(a) : a ∈ F} is a fuzzy
topology on PTF , where for each a ∈ F , Ψ(a) is a membership function from PTF
to [0, 1] which is defined by Ψ(a)(h) = h(a).
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Definition 8.1.15 ([97]). Let τ be a fuzzy topology on S. Assume that T̃ ∈ τ . A
membership function Ψ(T̃ ) : PTτ → [0, 1] can be defined as Ψ(T̃ )(h) = h(T̃ ). Then,
Ψ(T̃ ) is a fuzzy set on PTτ .

The collection {Ψ(T̃ ) : T̃ ∈ τ} is a fuzzy topology on PTτ .

Corollary 8.1.1 ([97]). Consider a fuzzy topological space (S, τ). A mapping f :

S → PTτ is defined by f(s)(ϕ̃) = ϕ̃(s), where ϕ̃ ∈ τ . Then, (S, τ) becomes a sober
space ⇐⇒ f is bijective.

The category of sober fuzzy topological spaces and fuzzy continuous maps is
denoted by SFuzzy-Top.

Definition 8.1.16. We define a functor PT : FRM → Fuzzy-Top as follows:

(i) For an object F in FRM, define PT(F ) = PTF ;

(ii) For an arrow f : F → F ′ in FRM, define PT(f) : PTF ′ → PTF by
PT(f)(h) = h ◦ f , where h ∈ PTF ′.

Theorem 8.1.1. The category S-FRM is dually equivalent to the category SFuzzy-
Top.

Proof. Let id1 and id2 be the identity functors on S-FRM and SFuzzy-Top, respec-
tively. We define two natural transformations ζ : id1 → P◦PT and η : id2 → PT◦P .
For a spatial frame F , we define ζF : F → P ◦ PT(F ) by ζF (u)(h) = h(u), where
h ∈ PTF . Since F is a spatial frame, we have ζF is an isomorphism. It becomes
easy to observe that ζ is a natural transformation. As a result, ζ is a natural iso-
morphism.
For an object S in SFuzzy-Top, define ηS : S → PT◦PS by ηS(s)(g̃) = g̃(s), ∀s ∈ S

and g̃ ∈ P(S). As S is sober, so ηS is bijective. We observe that, for g̃ ∈ P(S),
η−1
S (Ψ(g̃))(s) = Ψ(g̃)(ηS(s)) = ηS(s)(g̃) = g̃(s). Therefore, η−1

S (Ψ(g̃)) = g̃. More-
over, ηS is an open map because ηS(g̃)(h) =

∨
{g̃(s) : s ∈ η−1

S (h)} = h(g̃) = Ψ(g̃)(h).
Therefore, ηS(g̃) = Ψ(g̃). Consequently, ηS is a fuzzy homeomorphism. It can be
shown that η is a natural transformation. Hence, η is a natural isomorphism.

Coalgebra

Coalgebras are categorical structures that are dual or opposite (in the sense of cat-
egory theory) to the notion of algebras. The coalgebraic approach is abundantly
applied in computer science and artificial intelligence (e.g., knowledge representa-
tion, concurrency, logical reasoning, automata theory, etc.).
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Definition 8.1.17 ([6]). Assume that T is an endofunctor on a category S. A T -
coalgebra is a pair (A, ζ), where A is an object in S and ζ : A→ T (A) is a morphism
in S.

Definition 8.1.18 ([6]). A morphism between T -coalgebras (A, δ) and (B, β) is
defined by a morphism ψ : A → B in S satisfying the equation T (ψ) ◦ δ = β ◦ ψ,
i.e., the Fig. 8.1 commutes.

A B

T (A) T (B)

ψ

δ β

T (ψ)

Figure 8.1: Illustration of coalgebra morphism

T -coalgebras and morphisms between T -coalgebras form a category, denoted by
COALG(T ).
A final coalgebra is a final or terminal object in COALG(T ). It has a significant
impact on computer science. The final coalgebra is crucial as it makes sense of
behaviourally equivalent states in coalgebras.

Definition 8.1.19 ([6]). A final coalgebra in COALG(T ) is a T -coalgebra (A, δ)

which satisfies that for each T -coalgebra (B, β), a unique morphism exists from
(B, β) to (A, δ).

Definition 8.1.20 ([96]). Let (A, δ) and (B, β) be objects in COALG(T ). We say
that any two states a ∈ A and b ∈ B are behaviourally equivalent if there exists an
object (C, α) in COALG(T ) and T -coalgebra morphisms g : (A, δ) → (C, α) and
h : (B, β) → (C, α) such that g(a) = h(b).

Definition 8.1.21 ([96]). Let (A, δ) and (B, β) be two T -coalgebras. Then a relation
R ⊆ A × B is said to be a bisimulation between (A, δ) and (B, β) if there exists a
T -coalgebra (R, γ) such that the projection maps π1 : R → A and π2 : R → B are
coalgebra morphisms and satisfy the relations δ ◦ π1 = T (π1) ◦ γ, β ◦ π2 = T (π2) ◦ γ.
So, the diagram shown in Fig. 8.2 is commutative.
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A R B

T (A) T (R) T (B)

δ

π1

γ

π2

β

T (π1) T (π2)

Figure 8.2: Illustration of coalgebraic bisimulation

8.2 Coalgebraic logic

It is assumed for this section that T is an arbitrary endofunctor on the category
C = Fuzzy-Top. We define coalgebraic logic for Fuzzy-Top-coalgebras. First, we
introduce a notion of a predicate lifting for the endofunctor T , called fuzzy-open
predicate lifting.

Definition 8.2.1. A natural transformation λ : Qn → Q ◦ T is called a fuzyy-open
predicate lifting. So, by the naturality law the following diagram commutes:

Y QnX Q ◦ T (X)

X QnY Q ◦ T (Y )

λX

ϕ Qnϕ

λY

ϕ−1

Let λ̆ is the dual of λ. Define λ̆ as λ̆(µ1, µ2, · · · , µn) = 1−λ(1−µ1, 1−µ2, · · · , 1−µn),
where µi ∈ Q(S), i = 1, 2, · · · , n and S is an object in Fuzzy-Top.

Definition 8.2.2. The fuzzy-open predicate lifting λ is

(i) monotone if for every object S in Fuzzy-Top and µi, ηi ∈ Q(S), i = 1, 2, · · · , n
such that µ1 ≤ η1, · · · , µn ≤ ηn ⇒ λS(µ1, · · · , µn) ≤ λS(η1, · · · , ηn).

Let Σ be a collection of fuzzy-open predicate liftings for T . Then, the collection
Σ is said to be a fuzzy geometric modal signature for T . Σ is referred to be monotone
whenever every member of Σ is monotone.

Definition 8.2.3. The collection Σ for an endofunctor T on Fuzzy-Top is con-
sidered to be characteristic for T if for each object S in Fuzzy-Top, the collection
{λS(µ1, · · · , µn) : λ ∈ Σ, µi ∈ Q(S)} meets the subbasis criteria for the fuzzy topol-
ogy on TS.
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Let L(Σ) denote the modal language generated by Σ.

Definition 8.2.4. The modal language L(Σ) is the collection FGML(Σ) of formulas
defined as follows:
β ::= ⊤|p|β1 ∧ β2|

∨
j∈J βj|♡λ(β1, β2, · · · , βn), where λ ∈ Σ, Φ represents the set of

propositional variables p and J represents an index set.

Definition 8.2.5. A fuzzy geometric model for the functor T is a mathematical
structure S = (S, σ,V) consisting of a T -coalgebra (S, σ), and valuation mapping
V : Φ → Q(S) ⊆ [0, 1]S.

We now define a category FMOD(T ) as follows.

Definition 8.2.6. The following describes a category FMOD(T ):

1. Objects : An object in FMOD(T ) is a fuzzy geometric model for T ;

2. Arrows : An arrow f : (S, σ1,VS) → (S ′, σ2,V ′
S′) in FMOD(T ) is a coalgebra

morphism f : (S, σ1) → (S ′, σ2) which satisfies the condition: f−1 ◦ V ′
S′ = VS.

Definition 8.2.7. Consider a formula α in FGML(Σ). The semantics of α in
terms of fuzzy geometric model S = (S, σ,V) is defined as shown below:

(i) [[⊤]]S(s) = 1;

(ii) [[p]]S(s) = V(p)(s);

(iii) [[α1 ∧ α2]]S(s) = [[α1]]S(s) ∧ [[α2]]S(s);

(iv) [[
∨
i∈J αi]]S(s) = Sup{[[αi]]S(s)};

(v) [[♡λ(α1, α2, · · · , αn)]]S(s) = λS([[α1]]S , [[α2]]S , · · · , [[αn]]S) ◦ σ(s).

Grade of a formula α satisfied by a state or world s in S is denoted by gr(s |= α)

and defined by gr(s |= α) = [[α]]S(s). Two states s and t in S are modally equivalent
if gr(s |= α) = gr(t |= α), ∀α in FGML(Σ). We express it by the notation s ≡Σ t.

Definition 8.2.8. Let B = (B, σ1,VB) and B′ = (B′, σ2,VB′) be fuzzy geometric
models for T . States b ∈ B and b′ ∈ B′ are said to be behaviourally equivalent in
FMOD(T ) if there exists an object C = (C, γ,VC) in FMOD(T ) and morphisms
g : B → C and h : B′ → C in FMOD(T ) such that g(b) = h(b′).

In Proposition 8.2.1, we shall demonstrate that fuzzy geometric model morphisms
preserve truth degrees.
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Proposition 8.2.1. Assume that f : S = (S, σ1,VS) → K = (K, σ2,VK) is a mor-
phism in FMOD(T ). Then, we have gr(s |= α) = gr(f(s) |= α), ∀α ∈ FGML(Σ)
and s ∈ S.

Proof. We are to show that for all formulas α, [[α]]S(s) = [[α]]K(f(s)). If p is a
propositional variable then by using Definition 8.2.6, we can show that [[p]]S(s) =

[[p]]K(f(s)) i.e., gr(s |= p) = gr(f(s) |= p). It is straightforward to demonstrate that
gr(s |=

∨
j∈J αj) = gr(f(s) |=

∨
j∈J αj) and gr(s |= α1 ∧ α2) = gr(f(s) |= α1 ∧ α2).

The only part we have to show is that gr(s |= ♡λ(α1, α2, · · · , αn) = gr(f(s) |=
♡λ(α1, α2, · · · , αn)). Since f is the coalgebra morphism, henceforth Tf ◦σ1 = σ2◦f .
So, the following diagram ( Fig.8.3) commutes.

S K

TS TK

f

σ1 σ2

Tf

Figure 8.3: Coalgebra morphism

Applying the functor Q to the previous diagram (Fig. 8.3) yields the following
diagram, which commutes as well.

QS QK

Q(TS) Q(TK)

Qf=f−1

Qσ1=σ−1
1

Q(Tf)=(Tf)−1

Qσ2=σ−1
2

Now,

[[♡λ(α1, α2, · · · , αn)]]S(s)
= λS([[α1]]S , · · · , [[αn]]S) ◦ σ1(s)
= λS([[α1]]K ◦ f, · · · , [[αn]]K ◦ f) ◦ σ1(s) [ as f−1([[α]]K) = [[α]]S ]

= λK([[α1]]K, · · · , [[αn]]K) ◦ Tf ◦ σ1(s) [ by naturality of λ ]

= λK([[α1]]K, · · · , [[αn]]K) ◦ σ2 ◦ f(s)
= [[♡λ(α1, · · · , αn)]]K(f(s))

Therefore, gr(s |= ♡λ(α1, α2, · · · , αn)) = gr(f(s) |= ♡λ(α1, α2, · · · , αn)).
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We now arrive at the following outcome by utilizing Proposition 8.2.1.

Proposition 8.2.2. Behaviourally equivalent states are modally equivalent.

Proof. Let B = (B, σ1,VB) and B′ = (B′, σ2,VB′) be fuzzy geometric models for
T . Consider b ∈ B and b′ ∈ B′ are two states. Suppose, the states b and b′ are
behaviourally equivalent. We shall show that they are modally equivalent. Since
b and b′ are behaviourally equivalent in FMOD(T ), so there exists an object C =

(C, γ,VC) in FMOD(T ) and morphisms g : B → C and h : B′ → C in FMOD(T )

such that g(b) = h(b′). Now, by Proposition 8.2.1, we have gr(b |= α) = gr(g(b) |=
α) and gr(b′ |= α) = gr(h(b′) |= α), ∀α ∈ FGML(Σ). As g(b) = h(b′), hence
gr(b |= α) = gr(b′ |= α), ∀α ∈ FGML(Σ). Therefore, the states b and b′ are
modally equivalent.

8.3 Final model

In this section, we assume that T is an endofunctor on SFuzzy-Top, the category of
sober fuzzy topological spaces, and consider a characteristic fuzzy geometric modal
signature Σ for the endofunctor T . We shall create a final model in FMOD(T ) for
the endofunctor T . Let B = (B, γ,VB) be a fuzzy geometric model for T .

Definition 8.3.1. Any two formulas α and β are equivalent in FMOD(T ) iff gr(b |=
α) = gr(b |= β), ∀b ∈ B. Let α ≡ β denote the formulas α and β are equivalent.

Let [α] denote the equivalence class of a formula α ∈ FGML(Σ). Let E be the
collection of equivalence classes of formulas in FGML(Σ). We define gr(b |= [α]) =

gr(b |= α), for any b ∈ B.
We shall now show that E is a frame.

Proposition 8.3.1. E is a frame.

Proof. The order relation on E is defined as: [α] ≤ [β] ⇐⇒ gr(b |= α) ≤ gr(b |= β),
∀b ∈ B. As gr(b |= α) = gr(b |= α), the order relation ≤ is reflexive. It is easy to
see that if [α1] ≤ [β1] and [β1] ≤ [β3] then [α1] ≤ [β3]. Thus the order relation ≤
is transitive. Now, if [α] ≤ [β] and [β] ≤ [α] then by the defined order relation we
have gr(b |= α) = gr(b |= β), ∀b ∈ B. Hence, α ≡ β. As a result, [α] = [β]. So the
order relation ≤ is antisymmetric. Therefore, E is a poset with this order relation.
As gr(b |= α ∧ β) = [[α ∧ β]]B(b) = [[α]]B(b) ∧ [[β]]B(b) = gr(b |= α) ∧ gr(b |= β),
hence [α ∧ β] ∈ E . As a result, [α] ∧ [β] ∈ E . Similarly, arbitrary join exists in
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E . We observe that, [α] ∧
∨
j∈J

[βj] = [α] ∧ [
∨
j∈J

βj] = [α ∧
∨
j∈J

βj]. Now, we have

gr(b |= α ∧
∨
j∈J βj) = gr(b |= α) ∧ gr(b |=

∨
j∈J βj) = [[α]]B(b) ∧ [[

∨
j∈J

βj]]B(b) =

[[α]]B(b) ∧ Supj∈J{[[βj]]B(b)} = Supj∈J{[[α]]B(b) ∧ [[βj]]B(b)} = [[
∨
j∈J

(α ∧ βj)]](b) =

gr(b |=
∨
j∈J

(α ∧ βj)), ∀b ∈ B. Consequently, [α ∧
∨
j∈J

βj] = [
∨
j∈J

(α ∧ βj)]. Henceforth,

[α]∧
∨
j∈J

[βj] = [
∨
j∈J

(α∧βj)] =
∨
j∈J

[α∧βj] =
∨
j∈J

([α]∧ [βj]). Therefore, E is a frame.

Definition 8.3.2. Let F = PT (E). A map f̃ : B → F is defined by f̃(b) = hb,
where hb is a frame homomorphism from E to [0, 1] defined by hb([α]) = gr(b |= α).

Note 8.3.1. The mapping f̃ : B → F is fuzzy continuous. Let [α] ∈ E. Then we
show that f̃−1(Ψ([α])) = [[α]]B by the following:

f̃−1(Ψ([α]))(b) = Ψ([α])f̃(b) = f̃(b)([α]) = gr(b |= α) = [[α]]B(b).

Hence, ∀α ∈ FGML(Σ), f̃−1(Ψ([α])) is a fuzzy open set on B. Therefore, f̃ is a
fuzzy continuous map.

Let G = P ◦ T ◦ PT . Then G : FRM → FRM is a functor. Since the category
S-FRM of spatial frames is equivalent to the opposite category of SFuzzy-Top,
the endofunctor defined on the category S-FRM is a restriction of G. As Σ is
characteristic, so the collection {λB([̂α1], · · · , [̂αn]) : λ ∈ Σ, αi ∈ FGML(Σ), [̂αi] ∈
Q(PTE), i = 1, · · · , n} generates the frame G(E). So, an assignment can be defined
on the generators of G(E), and by Remark 1.0.1, it can be extended to a frame
homomorphism from G(E) to E .

Definition 8.3.3. Define a morphism ξ : G(E) → E in FRM by
ξ(λF([̂α1], [̂α2], · · · , [̂αn])) = [♡λ(α1, α2, · · · , αn)].

The well-definedness of the morphism ξ is shown by Lemma 8.3.1.

Lemma 8.3.1. Suppose
∨
i∈Λ

(
∧
j∈Ki

λi,jF ([̂α1]
i,j
, [̂α2]

i,j
, · · · , [̂αni,j

]
i,j

)) =∨
r∈I

(
∧
s∈Jr

λr,sF ([̂α′
1]
r,s
, [̂α′

2]
r,s
, · · · , [̂α′

nr,s
]
r,s

)), where Λ and I are the arbi-

trary index sets, and Ki, Jr are the finite index sets. Then, formulas∨
i∈Λ

(
∧
j∈Ki

♡λi,j(αi,j1 , α
i,j
2 , · · · , αi,jni,j

)) and
∨
r∈I

(
∧
s∈Jr

♡λr,s(α′r,s
1 , α′r,s

2 , · · · , α′r,s
nr,s

)) are

equivalent in FMOD(T ).
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Proof. We shall show that, for an object B = (B, γ,VB) in FMOD(T ), gr(b |=∨
i∈Λ

(
∧
j∈Ki

♡λi,j(αi,j1 , α
i,j
2 , · · · , αi,jni,j

))) = gr(b |=
∨
r∈I

(
∧
s∈Jr

♡λr,s(α′r,s
1 , α′r,s

2 , · · · , α′r,s
nr,s

))),

∀b ∈ B.
Now we observe that,∨
i∈Λ

(
∧
j∈Ki

λi,jB ([[αi,j1 ]]B, [[α
i,j
2 ]]B, · · · , [[αi,jni,j

]]B))

=
∨
i∈Λ

(
∧
j∈Ki

λi,jB (f̃−1(Ψ([αi,j1 ])), f̃−1(Ψ([αi,j2 ])), · · · , f̃−1(Ψ([αi,jni,j
])))) [By Note 8.3.1]

=
∨
i∈Λ

(
∧
j∈Ki

(T f̃)−1(λi,jF (Ψ([αi,j1 ]),Ψ([αi,j2 ]), · · · ,Ψ([αi,jni,j
]))) [ By naturality of λ ]

= (T f̃)−1(
∨
i∈Λ

(
∧
j∈Ki

λi,jF (Ψ([αi,j1 ]),Ψ([αi,j2 ]), · · · ,Ψ([αi,jni,j
])))) [ By Definition 8.1.5 ]

= (T f̃)−1(
∨
r∈I

(
∧
s∈Jr

λr,sF (Ψ([α′r,s
1 ]),Ψ([α′r,s

2 ]), · · · ,Ψ([α′r,s
nr,s

])))) [ By the given hypothesis]

=
∨
r∈I

(
∧
s∈Jr

(T f̃)−1(λr,sF (Ψ([α′r,s
1 ]),Ψ([α′r,s

2 ]), · · · ,Ψ([α′r,s
nr,s

])))) [ By Definition 8.1.5]

=
∨
r∈I

(
∧
s∈Jr

λr,sB (f̃−1(Ψ([α′r,s
1 ])), f̃−1(Ψ([α′r,s

2 ])), · · · , f̃−1(Ψ([α′r,s
nr,s

])))) [ By naturality of λ ]

=
∨
r∈I

(
∧
s∈Jr

λr,sB ([[α′r,s
1 ]]B, [[α

′r,s
2 ]]B, · · · , [[α′r,s

nr,s
]]B))

Therefore, for a fuzzy geometric model B, we have gr(b |=∨
i∈Λ

(
∧
j∈Ki

♡λi,j(αi,j1 , α
i,j
2 , · · · , αi,jni,j

))) = gr(b |=
∨
r∈I

(
∧
s∈Jr

♡λr,s(α′r,s
1 , α′r,s

2 , · · · , α′r,s
nr,s

))),

∀b ∈ B.

So, (E , ξ) is a G-algebra. Now we construct a T -coalgebra structure on F = PTE .

Definition 8.3.4. Consider a morphism ϕ = η−1
TF ◦ PT (ξ) : F →

TF , where the morphism PT (ξ) : PT (E) → PT (G(E)) is defined by
PT (ξ)(h)(λF([̂α1 ], [̂α2 ], · · · , [̂αn ])) = gr([♡λ(α1 , α2 , · · · , αn)] ∈ h), where h ∈
PT(E) = PTE, and the morphism ηTF : TF → PT (G(E)) is defined by
ηTF(h

∗)(λF([̂α1], [̂α2], · · · , [̂αn])) = λF([̂α1], [̂α2], · · · , [̂αn])(h∗), where h∗ ∈ TF .

Note 8.3.2. Since TF is a sober fuzzy topological space, so by Theorem 8.1.1, ηTF
is an isomorphism. Consequently, the morphism ϕ is well-defined.
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Definition 8.3.5. The triple (F , ϕ,VF) is an object in FMOD(T ), where (F , ϕ) is
a T -coalgebra and the valuation function VF : Φ → Q(F) is defined by VF(p)(g̃) =

gr(p ∈ g̃) = g̃(p), where p ∈ Φ and g̃ ∈ Q(F).

Proposition 8.3.2. The mapping f̃ : B → (F , ϕ,VF) is a morphism in FMOD(T ).

Proof. We are to show that f̃ is a coalgebra morphism from B to F , and f̃−1 ◦VF =

VB. It is observed that for every propositional variable p,

f̃−1 ◦ VF(p)(b) = f̃−1(VF(p))(b)

= VF(p)(f̃(b))

= gr(p ∈ f̃(b))

= f̃(b)(p)

= gr(b |= p) [ By Definition 8.3.2 ]

= VB(p)(b).

Henceforth, f̃−1 ◦ VF = VB. To prove f̃ is a T -coalgebra morphism, we show that
T f̃ ◦ γ = ϕ ◦ f̃ i.e., the diagram shown in Fig.8.4 commutes.

B F

TB TF

f̃

γ ϕ

T f̃

Figure 8.4: Illustration of T -coalgebra morphism

Now we observe that,

gr(T f̃ ◦ γ(b) ∈ λF(Ψ([α1]),Ψ([α2]), · · · ,Ψ([αn])))

= gr(γ(b) ∈ (T f̃)−1 ◦ λF(Ψ([α1]),Ψ([α2]), · · · ,Ψ([αn])))

= gr(γ(b) ∈ λB([[α1]]B, [[α2]]B, · · · , [[αn]]B)) [Since λ is the natural transformation ]

= λB([[α1]]B, [[α2]]B, · · · , [[αn]]B) ◦ γ(b)
= [[♡λ(α1, α2, · · · , αn)]]B(b)
= gr(b |= ♡λ(α1, α2, · · · , αn))
= f̃(b)([♡λ([α1], [α2], · · · , [αn])]) [By Definition 8.3.2 ]

= gr(ϕ ◦ f̃(b) ∈ λF(Ψ([α1]),Ψ([α2]), · · · ,Ψ([αn])) [ By Definition 8.3.4 ]
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As TF is a sober fuzzy topological space, hence it is a T0-space (Kolmogorov space).
Therefore, we have T f̃ ◦ γ = ϕ ◦ f̃ .

Theorem 8.3.1. The fuzzy geometric model F = (F , ϕ,VF) in FMOD(T ) is a final
model in FMOD(T ).

Proof. We prove it by showing that for an object B = (B, γ,VB) in FMOD(T ), a
unique T -coalgebra morphism exists from B to F. Following the Proposition 8.3.2,
a T -coalgebra morphism f̃ : B → F exists. The only part that remains to be proven
here is that f̃ is unique. Consider a morphism f ∗ : B → F in FMOD(T ). By
Proposition 8.2.1, we have gr(b |= α) = gr(f ∗(b) |= [α]). Now gr(f̃(b) |= [α]) =

f̃(b)[α] = gr(b |= α) = gr(f ∗(b) |= [α]). Consequently, f̃(b) = f ∗(b). Therefore, F is
final in FMOD(T ).

By Theorem 8.3.1, we derive the following result.

Theorem 8.3.2. Modal equivalence implies behavioural equivalence.

Proof. Let B = (B, γ,VB) and B1 = (B1, γ1,VB1) be fuzzy geometric models for
T . Let b ∈ B and b1 ∈ B1 be states. If b and b1 are modally equivalent then we
have gr(b |= α) = gr(b1 |= α), for all formulas α. By Proposition 8.3.2, there exist
morphisms f̃ : B → F and f̃1 : B1 → F in FMOD(T ). Using Proposition 8.2.1, we
have gr(f̃(b) |= [α]) = gr(b |= α) = gr(b1 |= α) = gr(f̃1(b1) |= [α]), for all formulas
α. Therefore, f̃(b) = f̃1(b1). Hence, b and b1 are behaviourally equivalent.

Remark 8.3.1. The converse of the statement mentioned in Theorem 8.3.2 is true
by Proposition 8.2.2. Thus, modal equivalence and behavioural equivalence coincide
when the endofunctor T is specified on SFuzzy-Top.

8.4 Bisimulations

The aim of this section is to develop bisimulations for fuzzy geometric models for
an endofunctor T , where T is defined on Fuzzy-Top.

Definition 8.4.1 ([102]). Consider that F and F ′ are any two sets, and R is a
relation between F and F ′. Then, for a subset E of F , R[E] = {d′ ∈ F ′ : ∃ e ∈
E, eRd′} and for a subset E ′ of F ′ R−1[E ′] = {d ∈ F : ∃ e′ ∈ E ′, dRe′}.
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Let µ be a fuzzy set on F . Then a fuzzy set R[µ] on F ′ can be defined by
R[µ](d′) =

∨
d∈F

{µ(d) : dRd′}. For a fuzzy set η on F ′, we define an inverse image of

η under the relation R by R−1[η](d) =
∨
d′∈F ′

{η(d′) : dRd′}. It is clear that R−1[η] is

a fuzzy set on F .

We define the Aczel-Mendler bisimulation between fuzzy geometric models for
T .

Definition 8.4.2. Let B1 = (B1, γ1,VB1) and B2 = (B2, γ2,VB2) be two fuzzy ge-
ometric models for T . Then, a relation R ⊆ B1 × B2 is said to be an Aczel-
Mendler bisimulation between B1 and B2 if for each (b1, b2) ∈ R and p ∈ Φ,
VB1(p)(b1) = VB2(p)(b2), i.e., gr(b1 |= p) = gr(b2 |= p) and there exists a coal-
gebra morphism γ∗ : R → TR for which the projection maps π1 : R → B1 and
π2 : R → B2 are coalgebra morphisms and satisfy the relations γ1 ◦ π1 = T (π1) ◦ γ∗,
γ2 ◦ π2 = T (π2) ◦ γ∗, i.e. the diagram shown in Fig. 8.5 commutes:

B1 R B2

TB1 TR TB2

γ1

π1 π2

γ∗ γ2

Tπ1 Tπ2

Figure 8.5: Illustration of Aczel-Mendler bisimulation between fuzzy geometric mod-
els

We now introduce a notion of Σ-bisimulation between fuzzy geometric models
for T , adapting the “Λ-bisimulation” concepts discussed in [75, 76].
First, we introduce the notion of coherent pairs.

Definition 8.4.3. Assume that R is a relation between B and B′. Let π1 : R → B

and π2 : R → B′ be projection maps. Then, a pair (r̃1, r̃2), where r̃1 and r̃2 are
respectively the fuzzy sets on B and B′, is called R-coherent if R[r̃1] ≤ r̃2 and
R−1[r̃2] ≤ r̃1.

Definition 8.4.4. Let B1 = (B1, γ1,VB1) and B2 = (B2, γ2,VB2) be two fuzzy ge-
ometric models for T . A relation R ⊆ B1 × B2 is said to be a Σ-bisimulation
between B1 and B2 if for all (b1, b2) ∈ R, p ∈ Φ and each pair of fuzzy open sets
(µi, ηi) ∈ Q(B1)×Q(B2) such that R[µi] ≤ ηi and R−1[ηi] ≤ µi, we have :
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(i) gr(b1 |= p) = gr(b2 |= p), and

(ii) gr(γ1(b1) ∈ λB1(µ1, µ2, · · · , µn)) = gr(γ2(b2) ∈ λB2(η1, η2, · · · , ηn)).

Two states b1 ∈ B1 and b2 ∈ B2 are said to be Σ-bisimilar if there exists a Σ-
bisimulation R such that (b1, b2) ∈ R.
We now require the following observation:

Lemma 8.4.1. Consider R ⊆ B1 × B2 is a relation that is equipped with the fuzzy
subspace topology. Let π1 : R → B1 and π2 : R → B2 be projection maps. Then, a
pair of fuzzy open sets (µ, η) ∈ Q(B1)×Q(B2) is R-coherent ⇐⇒ π−1

1 (µ) = π−1
2 (η).

Proof. Suppose the pair of fuzzy open sets (µ, η) is R-coherent. We shall show
that π−1

1 (µ) = π−1
2 (η). First, we show that π−1

1 (µ) is a fuzzy subset of π−1
2 (η), i.e.

π−1
1 (µ) ≤ π−1

2 (η). We notice that π2(π−1
1 (µ)) and R[µ] are both fuzzy sets on B2. It

is simple to demonstrate that π2(π−1
1 (µ)) = R[µ].

Now,

π−1(µ) ≤ π−1
2 (π2(π

−1
1 (µ)))

= π−1
2 (R[µ]) [As π2(π−1

1 (µ)) = R[µ] ]

≤ π−1
2 (η) [ As R[µ] ≤ η ]

Similarly, we can show that π−1
2 (η) ≤ π−1

1 (µ). It is straightforward to verify that if
π−1
1 (µ) = π−1

2 (η) then the pair (µ, η) is R-coherent.

Now, we shall show that Σ-bisimilar states are modally equivalent.

Corollary 8.4.1. Assume that T is an endofunctor on Fuzzy-Top. Then Σ-
bisimilarity implies modal equivalence.

Proof. Let R be a Σ-bisimulation between fuzzy geometric models B1 = (B1, γ1,VB1)

and B2 = (B2, γ2,VB2). Let b1 ∈ B1 and b2 ∈ B2 be two states. Suppose b1Rb2.
We shall show that gr(b1 |= α) = gr(b2 |= α), ∀α ∈ FGML(Σ). If p is a
propositional variable, then it follows from the definition of Σ-bisimulation that
gr(b1 |= p) = gr(b2 |= p). It can be easily shown that gr(b1 |= α1 ∧ α2) =

gr(b2 |= α1 ∧ α2) and gr(b1 |=
∨
j∈J

αj) = gr(b2 |=
∨
j∈J

αj), J is an index set. Now,

gr(b1 |= ♡λ(α1, α2, · · · , αn)) = gr(γ1(b1) ∈ λB1([[α1]]B1 , [[α2]]B1 , · · · , [[αn]]B1)). By
induction principle, we can show that, for each i = 1, 2, · · · , n, R[[[αi]]B1 ] ≤ [[αi]]B2

and R−1[[[αi]]B2 ] ≤ [[αi]]B1 . As R is a Σ-bisimulation, we have gr(γ1(b1) ∈
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λB1([[α1]]B1 , [[α2]]B1 , · · · , [[αn]]B1)) = gr(γ2(b2) ∈ λB2([[α1]]B2 , [[α2]]B2 , · · · , [[αn]]B2).
Consequently, gr(b1 |= ♡λ(α1, α2, · · · , αn)) = gr(b2 |= ♡λ(α1, α2, · · · , αn)). There-
fore, b1 and b2 are modally equivalent.

Combining the results from Remark 8.3.1 and Corollary 8.4.1 yields the following
result:

Corollary 8.4.2. For an endofunctor T on SFuzzy-Top, Σ-bisimilarity implies
behavioural equivalence.

Corollary 8.4.3. Let T be an endofunctor on Fuzzy-Top; let Σ be a monotone
fuzzy geometric modal signature for T . Then Aczel-Mendler bisimulation is a Σ-
bisimulation.

Proof. Consider B1 = (B1, γ1,VB1) and B2 = (B2, γ2,VB2) are fuzzy geometric mod-
els for T . Let R be an Aczel-Mendler bisimulation between B1 and B2. Then the
diagram shown in Fig.8.6 commutes.

B1 R B2

TB1 TR TB2

γ1

π1 π2

γ∗ γ2

Tπ1 Tπ2

Figure 8.6: Illustration of Aczel-Mendler bisimulation between fuzzy geometric mod-
els

We are to show that, R is a Σ-bisimulation. Consider b1Rb2, where b1 ∈ B1 and
b2 ∈ B2 are the states. Given that R is an Aczel-Mendler bisimulation, we have for
any propositional variable p ∈ Φ, gr(b1 |= p) = gr(b2 |= p). Assume that for each
pair of fuzzy open sets (ξi, ζi) ∈ Q(B1)×Q(B2), R[ξi] ≤ ζi and R−1[ζi] ≤ ξi.
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Now,

gr(γ1(b1) ∈ λB1(ξ1, ξ2, · · · , ξn))
= λB1(ξ1, ξ2, · · · , ξn)(γ1(b1))
= λB1(ξ1, ξ2, · · · , ξn)(Tπ1)(γ∗(b1, b2)) [ As γ1 ◦ π1 = Tπ1 ◦ γ∗]
= gr(γ∗(b1, b2) ∈ (Tπ1)

−1(λB1(ξ1, ξ2, · · · , ξn)))
= gr(γ∗(b1, b2) ∈ λR(ξ1 ◦ π1, ξ2 ◦ π1, · · · , ξn ◦ π1)) [As λ is a natural transformation]

≤ gr(γ∗(b1, b2) ∈ λR(π
−1
2 (π2(π

−1
1 (ξ1)))), · · · , π−1

2 (π2(π
−1
1 (ξn))) [As λ is monotone]

= gr(γ∗(b1, b2) ∈ λR(π
−1
2 (R[ξ1]), π

−1
2 (R[ξ2]), · · · , π−1

2 (R[ξn])))

≤ gr(γ∗(b1, b2) ∈ λR(π
−1
2 (ζ1), π

−1
2 (ζ2), · · · , π−1

2 (ζn)))[As λ is monotone ]

= gr(γ∗(b1, b2) ∈ λR(ζ1 ◦ π2, · · · , ζn ◦ π2))
= gr(γ∗(b1, b2) ∈ (Tπ2)

−1(λB2(ζ1, ζ2, · · · , ζn))) [As λ is natural]

= gr(γ2(b2) ∈ λB2(ζ1, ζ2, · · · , ζn))

Therefore, gr(γ1(b1) ∈ λB1(ξ1, ξ2, · · · , ξn)) ≤ gr(γ2(b2) ∈ λB2(ζ1, ζ2, · · · , ζn)).
Similarly, it can be shown that gr(γ2(b2) ∈ λB2(ζ1, ζ2, · · · , ζn)) ≤ gr(γ1(b1) ∈
λB1(ξ1, ξ2, · · · , ξn)). Finally, we have gr(γ1(b1) ∈ λB1(ξ1, ξ2, · · · , ξn)) = gr(γ2(b2) ∈
λB2(ζ1, ζ2, · · · , ζn)). Hence, the result follows.

We now have all of the necessary components to define a bisimilarity concept for
fuzzy geometric models.

Theorem 8.4.1. Let B = (B, γ,VB) be a fuzyy geometric model for T . Then
R′ =

⋃
{R : R is a Σ-bisimulation from B to B } is a Σ-bisimulation from B to

itself.

Proof. Consider for each pair of fuzzy open sets (µi, µ
′
i) in B, R′[µi] ≤ µ′

i and
R′−1[µ′

i] ≤ µi. Let (b1, b2) ∈ R′. Then there exists R ∈ R′ such that (b1, b2) ∈ R.
Since R is Σ-bisimulation, we have VB(p)(b1) = VB(p)(b2) i.e., gr(b1 |= p) = gr(b2 |=
p). We observe that R[µi] ≤ R′[µi] ≤ µ′

i and R−1[µ′
i] ≤ R′−1[µ′

i] ≤ µi. Now, we get
gr(γ(b1) ∈ λB(µ1, µ2, · · · , µn)) = gr(γ(b2) ∈ λB(µ

′
1, µ

′
2, · · · , µ′

n)). It follows that R′

is Σ-bisimulation from B to itself.

We emphasize that the above result is important for further progress of this work.
The above finding paves the way for future theoretical advancements, notably the
co-inductive proof principle [90].
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8.5 Applications

The following is a hypothetical application of fuzzy geometric modal logic.

Example 8.5.1. Assume that a serious virus has infected a particular location. Sci-
entists believe that three medications m1,m2, and m3 may be given in treating this
condition. Furthermore, the scientists evaluate the patient’s state after administer-
ing these medications and determine whether their health conditions: “no-change”,
“partially change”, “change”, which are denoted by e1, e2, e3, respectively. So, the
above scenario may lead a “State-based system” with truth degrees. For example,
|= (e2,m2) =

1
2

means that the patient’s health condition is changed partially after
applying the medicine m2 with possibility 1

2
. Let S = set of states = {e1, e2, e3}. By

defining an endofunctor T on a category S ′ of fuzzy topological spaces which con-
tains S as a sub-category, we can construct a fuzzy geometric model (S, σ,V), where
V is a valuation mapping. When a patient’s health changes, we naturally consider
whether that shift is favourable or negative. Thus, an observer is required in this
case. We may utilize our coalgebraic bisimulation theory to determine whether an
observer exists between states.

Another possible applications are listed below:

• We can also build fuzzy geometric models and develop bisimulation theorem
to deal with erroneous and unpredictable featured values in multi-document
summarising techniques [101].

• We can theoretically apply our coalgebraic logic to a fuzzy search query (e.g.,
[85, 93, 94, 92]) and use the coalgebraic bisimulation concept to assess whether
the meaning of two keywords or strings is identical.
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8.6 Conclusion

We have discussed coalgebraic logic for fuzzy-topological coalgebras. The structures
referred to as the fuzzy geometric models for T , provide the semantics for our coal-
gebraic logics. We have shown that a final model exists in the category FMOD(T )

of fuzzy geometric models, where T is an endofunctor on SFuzzy-Top. Finally,
we have studied bisimulations for fuzzy geometric models. In addition, we have
demonstrated that for an endofunctor T on SFuzzy-Top, Σ-bisimilarity implies
behavioural equivalence.
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Chapter 9

Concluding Remarks and Future
Research Directions

This chapter addresses several noteworthy queries and possible avenues for future
research.

1. The dualities discussed in Chapter 2 and Chapter 3 are fundamentally distinct
from those developed in [21]. The dualities delineated in [21] are grounded on
the idea of natural dualities, whereas the dualities addressed in Chapters 2, 3
draw upon Vickers’ concept [98].
Several parallel studies (e.g., [31, 83, 26, 27] ) were conducted during the ad-
vancement of the works reported in Chapters 2, 3. Some of these studies intro-
duced more generalized concepts such as variety-based topology and topolog-
ical systems rather than lattice-valued topology and topological systems (see
[31]) to present a categorical connection between systems and spaces, whereas
others shed light on fuzzy environments (e.g., see [83, 26, 27]) to accomplish
the same purpose. In light of this, it is worth mentioning that similar research
can be conducted by establishing a categorical link between the categories of
variety-based topological spaces, variety-based topological systems, and alge-
bras of many-valued-modal logics.
It might be possible to develop modal geometric logic by adhering to our pro-
cedures covered in Chapter 3.

2. Concerning the findings presented in Chapter 4, we hope to have shown how
the methods of universal algebra and bitopology provide an intriguing view-
point on Fitting’s many-valued logic.
The findings in Chapter 4 and Chapter 5 can be extended in various ways.
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(a) By establishing an appropriate Vietoris functor, Maruyama in [41] created
a coalgebraic duality for the category ISPM(L). In this regard, we believe
that modalizing the concept of ISPI(L) will produce a tenable outcome. A
coalgebraic duality may be developed for the modalized notion of ISPI(L)
by constructing an appropriate bi-Vietoris functor.

(b) The NU duality theorem was established in [42]. It seems that the intu-
itionistic version of natural duality theory allows for the generalization of
the NU duality theorem to ISPI. It could be possible to accomplish this
using the methods of bitopology.

(c) It might be conceivable to connect categorically with ISPI(L) by creating
an intuitionistic topological system (within the context of Vicker’s work
[98]). Therefore, there is a another method for developing a duality for
ISPI(L).

3. In light of our work discussed in Chapters 6, 7, we can suggest some future
research directions.

(a) As an application of this coalgebraic duality, we may establish the
existence of a final coalgebra and cofree coalgebras in the category
COALG(V bi

L ), and we can also develop the coalgebraic duality theorem
for many-valued modal logics in a bitopological scenario.

(b) Another interesting line of research would be to show that coalgebras of an
endofunctor V on the category BES of bi-topological Esakia spaces (the
idea of bitopological Esakia spaces can be found in [40]) can characterise
lattice-valued intuitionistic modal logic. However, it is unclear to us how
to characterise the relation R on bitopological Esakia spaces in terms of
coalgebras of the functor V , and this appears to be an open problem at
the moment.

4. In Chapter 8, we have started to lay the groundwork for coalgebraic fuzzy ge-
ometric logic. However, there are still many interesting, unresolved questions.

(a) We have not addressed the completeness of modal fuzzy geometric logic.
However, it would be interesting to know under which conditions the com-
pleteness result will be attained.

(b) We have not examined the possibility that the notion of behavioural equiv-
alence implies the Σ-bisimilarity idea. We may define a stronger fuzzy-
open predicate lifting idea for endofunctors on Fuzzy-Top by emulating
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the topological predicate lifting notion for an endofunctor on the category
of Stone spaces as stated in [69]. It may therefore be demonstrated that
behavioural equivalence indicates Σ-bisimilarity.

(c) Considering an endofunctor T on the category of compact fuzzy Hausdorff
spaces, we can show the bi-implication between modal equivalence and
Σ-bisimilarity. In this case, it will be fruitful to adopt a stronger notion
of fuzzy geometric modal signature Σ.

(d) We have already observed that if T is an endofunctor on SFuzzy-Top
then behavioural equivalence coincides with modal equivalence. We will
attempt to circumvent this limitation by determining whether behavioral
equivalence and modal equivalence coincide when T is an endofunctor on
the category of compact fuzzy Hausdorff spaces.
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