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Abstract

The thesis focuses on developing a duality for Fitting’s many-valued modal logic
in a bitopological framework and exploring modal fuzzy geometric logic using coal-
gebraic logic approaches. There are many applications of the notion of duality in
several pure and applied sciences. For instance, there is a duality in logic between
syntax and semantics, a duality in mathematics between spaces and algebra, and
a duality in information science between systems and observable properties. The
current thesis explores and articulates the structure of duality for many-valued logic
and many-valued modal logic by drawing on category theory and universal algebra.
Since categorical relationships between systems and algebras, also referred to as
frames, already exist in the literature, it is expected that these relationships can be
extended to many-valued contexts. This is the goal that this thesis pursues in the
first step. However, the investigation of duality for many-valued logic and many-
valued modal logic using the methods of bitopological spaces, has drawn greater
attention from scholars recently due to the fact that it can offer a more compre-
hensive viewpoint in this context. In this thesis, natural duality theory and modal
natural duality theory are generalized in a bitopological framework by studying
bitopological duality theory for Fitting’s many-valued logic and many-valued modal
logic. Thus, a coalgebraic duality theory is explored for multi-valued modal logics
to shed light on more subtle aspects of bitopological duality. Coalgebraic logic is a
proven framework that facilitates the development of an extended version of modal
logic. In light of this, the thesis investigates the connections between fuzzy geomet-
ric logic and coalgebraic logic.

The thesis is divided into seven main chapters, excluding the introduction and con-
clusion.

e Chapter [2] presents the idea of lattice-valued Boolean systems and examines
the adjoint and co-adjoint properties of functors that are defined on them.
Consequently, a duality for algebras of lattice-valued logic is obtained.
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Chapter [3introduces the concept of lattice-valued relational systems, intending
to demonstrate a duality between systems and algebras of Fitting’s lattice-

valued modal logic.

Chapter [4 establishes a duality for algebras of Fitting’s Heyting-valued logic
within the scope of bitopological techniques. In actuality, it extends the nat-
ural duality theory in a bi-topological context.

Chapter |5 focuses on the extension of the natural duality theory for ISPy(L),
the class of all isomorphic copies of sub-algebras of intuitionistic power of L.
Thus, an intuitionistic version of the natural duality theory is developed.

Chapter [0] aims to develop a bitopological duality for algebras of Fitting’s
many-valued modal logic. This has led to an extension of the natural duality
theory for modal algebras.

Chapter [7] sheds light on a coalgebraic description of the bitopological duality
for Fitting’s many-valued modal logic. This yields a coalgebraic duality for

Fitting’s many-valued modal logic.

In Chapter [§] we investigate modal fuzzy geometric logic by applying coalge-
bra theory. In other words, this chapter introduces modal operators to the
language of fuzzy geometric logic using the methods of coalgebraic logic, to
examine how these logics are interpreted in specific fuzzy topological coalge-
bras.
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Chapter 1

Introduction

The main objective of this thesis is to develop duality theory for Fitting’s many-
valued modal logic and investigate coalgebraic fuzzy geometric logic. Category
theory is useful in numerous domains of science beyond mathematics. Categorical
duality is the main focus of this thesis, and it is certainly present outside of
mathematics.

The initial spark of our interest comes from the informational duality between
systems and observable properties. Vickers proposed the notion of topological
system in his book “Topology via Logic” [98] and highlighted its relationship to
geometric logic. To study geometric logic (topology through logic), it is crucial
to understand the links between topological space, topological system, frame, and
geometric logic. An extension of topological system to lattice-valued topological
system was performed in [I6, 17, 18]. Additionally, a categorical relationship
between the spaces and systems has been studied. Thus, the issue emerges: is
it possible to build a duality for many-valued logic by establishing a categorical
relationship between algebras of many-valued logic and appropriate topological
systems? This question drives our first study. As an initial step, we introduce some
relevant topological systems and establish their interrelationship with appropriate
topological spaces and algebraic structures. These relationships are investigated in
a categorical framework. As such, the study of duality is an important aspect of
this thesis.

In [21], the concept of lattice-valued Boolean spaces and lattice-valued Boolean
spaces with a relation has been utilized to establish a duality for the algebras of
Fitting’s many-valued logic and many-valued modal logic, respectively. We have

contributed to an area of considerable interest which is the categorical relationship



Introduction

between the categories of lattice-valued Boolean spaces, lattice-valued Boolean
systems, and algebras of many-valued logic (see Chapters , .This leads to the
presentation of yet another proof of the duality provided in [21].

The thesis has been pursuing another interesting duality theory for Fitting’s

many-valued modal logic in the context of bitopological languages. As a conse-
quence, natural duality theory [13] has been extended for modal algebras in a
bitopological context. In the framework of natural duality theory, possibly the
most successful theory of dualities for finitely generated quasi-varieties of algebras,
we look at a more nuanced duality mechanism. Natural duality theory extends
Stone-Priestley-type dualities through universal algebra approaches. In the realm
of Botopological techniques, the thesis introduces modal natural duality theory.
Moreover, the thesis incorporates an intuitionistic interpretation of natural duality
theory. The first step is to develop a duality for algebras of a version of Fitting’s
many-valued logic via bitopological techniques. A topological duality theorem is
also derived for the class of all isomorphic copies of subalgebras of the intuitionistic
power of Heyting algebra, leading to the development of an intuitionistic version of
natural duality theory.
By establishing a concept of PRBS, as a category of L-valued pairwise Boolean
spaces with a relation, we intend to achieve a bitopological duality for algebras
of Fitting’s Heyting-valued modal logic in the second place. So, in the setting
of bitopological languages, the natural duality theory for modal algebras is ex-
tended. The main results are bitopological and coalgebraic dualities for Fitting’s
many-valued modal logic, where £ is a semi-primal algebra having a bounded
lattice reduct. Our general theory extends both the Joénsson-Tarski duality and
the Abramsky-Kupke-Kurz-Venema coalgebraic duality [Il B5] in the setting of
bitopological language. It also proposes a new coalgebraic duality for algebras of
many-valued modal logics.

The thesis will also focus on the development of coalgebraic fuzzy geometric logic.
Fuzzy geometric logic is presented in [77] as a logical progression of propositional
geometric logic [98]. Propositional geometric logic developed from the interaction of
(pointfree) topology, logic, and the logic of finite observations [4, 08]. The formulae
of this logic are generated from a collection of proposition letters using proposi-
tional connectives: finite conjunctions and arbitrary disjunctions, that preserve the
property of finite observability. It is important to emphasize that geometric logic
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has no universal quantifier, negation, implication. With the appropriate topological
connection, formulas of geometric logic can be interpreted in an algebraic structure
(frame) of open sets in a topological space. A topological system is defined as a
triple (X, =, A), where X is a non-empty set, A is a frame and = is a satisfaction
relation from X to A. Chakraborty et al. [77] generalized geometric logic to the
many-valued context by extending the notion of satisfaction relation.

It came to light that when the satisfaction relation is fuzzy, the related conse-
quence relation (F) can be either crisp or fuzzy. As a result, fuzzy geometric logic
and fuzzy geometric logic with graded consequences were introduced.

Within the context of coalgebraic logic, modal logics are produced parametrically
in the signature of the language and through an endofunctor 7 : C — C on a base
category C. Coalgebraic logic for endofunctors on the category of sets has been thor-
oughly researched and remains an active research topic (e.g. see [66, 67]). Within
this framework, the concept of relation lifting [86] or predicate lifting [87] can be
applied to define modal operators. Coalgebraic logic in the category of Stone coal-
gebras has been dealt with in [55] 68, 69, [73]. Many studies have been conducted on
the development of a coalgebraic modal logic based on the Stone-type duality (for
example, [72, [71] [70]).

The thesis attempts to investigate some relationships between fuzzy geometric logic
and coalgebraic logic. In other words, we incorporate modal operators into the lan-
guage of fuzzy geometric logic using the methods of coalgebraic logic, intending to
examine how these logics are interpreted in fuzzy topological coalgebras. So, the
aim of this study is to develop a framework for coalgebraic fuzzy geometric logics
arising from extending fuzzy geometric logic with modalities that are generated by

suitable predicate liftings.

Motivation

We now give some background information on the motivation for studying bitopo-
logical duality of many-valued modal logic.

The Stone duality [51] between Boolean algebras and sets represents the syntax and
semantics of a propositional logic. The algebras and coalgebras of the endofunctors
define the syntax and semantics of the modal propositional logic. As an illustration,
the modal logic K and Kripke semantics derive from the Stone duality by taking
an endofunctor on sets. So, in acceptable circumstances, we can achieve duality

between the relevant algebras and coalgebras. In addition to demonstrating the fact
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that the widely recognized Stone duality could be articulated in coalgebraic terms,
Abramsky [I] also showed that a coalgebraic formulation could be provided for the
Jonsson-Tarski duality between descriptive general Kripke frames and modal alge-
bras (see also [55] for further information). In particular, the category of descriptive
general Kripke frames is isomorphic to the category of Boolean spaces. Esakia
[64] also noticed this connection. Therefore, coalgebras for the Vietoris functor on
the category of Boolean spaces can represent sound and complete semantics for
modal logic. In [65], the author showed that coalgebras of a Vietoris functor on
the category of Priestley spaces, i.e., compact, totally ordered disconnected spaces,
provide sound and complete semantics for positive modal logic. The objective of
this study is to combine the idea that the semantics of Fitting’s many-valued modal
logic can be understood as coalgebras for the bi-Vietoris functor on the category
PBS, of L-valued pairwise Boolean spaces and pairwise continuous maps.

An overview of the motivation for studying coalgebraic fuzzy geometric logic is
given here.
An illustration of the requirement for generalization in the satisfiability relation of
a topological system may be found in [83]. We look at Vicker’s interpretation [9§]
of topological systems. Let M be a collection of computer programs that generate
0’s and 1’s, and A be the assertions about the sequence of bits produced by those
computer programs. Consider an assertion a = starts1010. Then, the assertion a
is true if a computer program, say m, generates sequence of bits 101010101...... So,
in this case, m = starts1010. Suppose that a computer program m; produces an
infinite sequence of bits in which the initial four bits are similar to but not equal
to 1010. In this case, m; |= start1010 to some extent. To deal with this kind of
situation, the fuzzy topological system notion is therefore essential.
Based on the definition of =, we can consider if an assertion holds to some degree
in a single state in M, we look at all states in M. As a result, an assertion a is true
in M <= it is satisfiable at some state. So we can construct a model structure
W = (M, R,V), where M is a set of states i.e., each state is a computer program,
R is relation on M and V is valuation map from ® x W to [0,1], ® is a set of
propositional variables. This fact leads us to believe that it would be beneficial to
incorporate modal operators into the fuzzy geometric logic language. As a result, we
develop modal fuzzy geometric logic using coalgebra theory, known as coalgebraic

fuzzy geometric logic.
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Preliminaries

Almost every ground idea that could be needed to make this thesis self-contained
is covered in this section. We review the fundamental concepts of lattice, frame,
Boolean algebra, category theory, topological spaces, and topological systems.

Lattice, Frame and Boolean Algebra

We refer the reader to [36] for lattice theory.

Definition 1.0.1. A partially ordered set or poset is a tuple (S, <) where <C
S x S is a binary relation such that for any a,b,c € S

e a = a (reflexivity);
e a=xbandb=c = a = c (transitivity);
e a=bandb=<a = a=> (antisymmetry).

The binary relation < on S is called a partial order relation. An element s of S
is said to be a least upper bound (l.u.b) of a,b € S if and only if a < s and b < s
and for any t € S'if a < t, b <t then s < t. Note that the least upper bound for
any two elements in a poset may or may not exist, and if it does, it will be unique.
Similarly, an element r € S is called a greatest lower bound (g.1.b) of a,b € S if and
only if r < a,r < b and for any t € S if t < a,t < b then ¢t < r. In this instance,
the greatest lower bound for any two elements in a poset may or may not exist; if
it does, it will be unique.
Any two elements a,b € S that have l.u.b and ¢.l.b are represented by a V b (join)
and a A b (meet), respectively. The representation of an arbitrary join (if it exists)
for any subset R of S is \/ R = \/,.p{r}, while the representation of an arbitrary
meet (if it exists) is A R = A,cp{r}. Additionally, if arbitrary joins and arbitrary
meets of any subset of S are exist then they are also unique.

Definition 1.0.2. A poset (£, <) is said to be lattice if for any two elements £y, (s
of £, l1V Uy (join) and {1 N\ Uy (meet) exist.

A lattice £ is said to be distributive if for any 01,0y, 05 € L, {1 A (b2 V l3) =
(by Nly) V (€1 AN lg) or 4V (Uy Nl3) = (L1 V £y) A (€1 V £3) satisfies.
A lattice £ is said to be bounded if it has a greatest (top) and least (bottom)
element, designated as T, and L, respectively. A lattice in which all subsets have

both a supremum (join) and an infimum (meet) is said to be complete lattice.
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Definition 1.0.3. A bounded lattice £ is said to be complemented if every element
of it has a complement i.e., for each ¢ € £ 3 an element (¢ € £ such that (N (¢ =T
and 0 N0¢ = 1.

Definition 1.0.4 ([98]). A poset(partially ordered set) S is said to be a frame if and
only if

(1) any subset X of S has a supremum (join) i.e., \|] X exists,
(i1) any finite subset X' of S has an infimum (meet) i.e., \ X' exists,

(11i) meet distribute over arbitrary join i.e.,
s/\\/X:\/{s/\:p:mE X}

A frame homomorphism is defined as follows:

Definition 1.0.5 ([98]). A function f from a frame Fy to a frame Fy is said to be
a frame homomorphism if the function f preserves finite meets and arbitrary joins.

The collection of frames and frame homomorphisms forms a category, denoted
by FRM.
Similar to other algebraic structures, frames may be presented by generators and
relations (G|R), where G denotes the set of generators, and R is the set of relations
between expressions generated by G. One can find a detailed description of frame
presentations in [100].

Note 1.0.1 (|89]). Consider a frame Fy. Now, (GIR) presents the frame Fy if 3 an
assignment h : G — FY, where F denotes the underlying set of Fy, such that the
following properties hold:

(i) Fy is generated by the set {h(s):s € G};

h can be extended to an assignment h for any expression r that is generated by

G.
(it) If r+ = 1'% is a relation in R, then h(rx) = h(r's) in F\;

(i1i) For a frame Fy and an assignment h' : G — Fy that satisfies (ii) there is a
unique frame homomorphism g : Fy — Fy such that g* o h = h/, where g* is a
mapping from FY to Fy. So, the diagram shown in Fig. commutes.



Introduction

G —L— Fr

h/ /
g
! *

Figure 1.1: Ilustration of frame presentation

Remark 1.0.1. We can define a frame homomorphism [ : Fy — Fy from a frame
Fy to a frame Fy, where (G|R) presents the frame Fy. According to Note m it
18 sufficient to provide an assignment f : G — Iy that satisfies the condition that if
r = r'x is a relation in R, then f(r+) = f(r's) in Fy.

A complemented distributive lattice is said to be a Boolean lattice.

Definition 1.0.6. A Boolean algebra is defined by a structure (B,V,A,0,1) such
that the following conditions are met:

(1) (B,V,A) is a distributive lattice;
(1) aV0=aandaNl=aVa € B;
(iii) aVa®=1and aNa®=0 Va € B.

A Boolean algebra homomorphism is a function between two Boolean algebras
such that it preserves join(V), meet(A) and complementation.
Arend Heyting introduced Heyting algebras in 1930 as a framework for intuitionistic
logic.

Definition 1.0.7. A Heyting lattice or Heyting algebra is a bounded distributive
lattice H equipped with a binary operation — called implication, such that ¢ < (a —
b) < (aNc)<bh.

It is clear that any finite distributive lattice is a finite Heyting algebra. Heyting
algebras that are complete as a lattice are called complete Heyting algebras.

It should be mentioned that a complete Heyting algebra is a frame.
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Category Theory

For category theory, we refer the reader to [2] 3].

Definition 1.0.8 (|2]). A category is a quadruple C = (O,HOM,ID,o) which
includes the following:

1. a class O, whose elements are called C-objects,

2. for each pair (P, Q) of C-objects, a set HOM (P, Q), whose members are re-
ferred to as C-morphisms from P to @ (the sets HOM(P,Q) are pairwise
disjoint),

3. for any three C-objects P,Q, R, a map o : HOM(P,Q) x HOM(Q,R) —
HOM(P, R), called composition, is defined by o(f,g) = go f, such that

(a) composition is associative i.e., ho (go f) = (hog)o f for all morphisms

fe€ HOM(P,Q), g€ HOM(Q,R), and h € HOM(R,T),

(b) for each C-object P there exists IDp € HOM (P, P), called C-identity on
P, such that for a C-morphisms f : P — @, we have IDgo f = f and
folDp=f

Definition 1.0.9. For a category C = (O, HOM, 1D, o) the dual or opposite cate-
gory of C is the category C°P with the same objects as C' but for any C-morphisms
f:P —Q inC, there is only one morphism f:Q — P and f o g°? = (go f)°,
where g € HOM(Q, R).

Definition 1.0.10. Let C' and D be categories. A functor F : C'— D is a function
such that

1. F carries each C-object P to D-objects F(P),

2. F carries each C-morphism f € HOM(P,Q) to D-morphisms F(f) €
HOM(F(P),F(Q)) such that

(i) F(go f) = F(g) o F(f) for all f € HOM(P,Q),g € HOM(Q.R), i.c.,
F' preserves compositions,

(it) F(IDp) = IDp(py for all P € C i.e., F' preserves identity morphisms.
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Definition 1.0.11. Let F' and G be functors from a category C to a category D. A
natural transformation ¢ : F' — G s a class of morphisms that satisfies the following

condition:

e ( must associates each C-object P, a D-morphism (p : F(P) — G(P) such
that for every C-morphism f : P — Q we have (oo F(f) = G(f)o(p i.e., the
following diagram commutes.

P F(P) — 5 G(P)
fl P a)
Q  FQ (G0

Figure 1.2: Representation of Natural transformation

Note that the D-morphism (p is said to be component of ¢ at P.
Definition 1.0.12. Let f: G — H be a functor, and H be a H-object.

(i) A f-structured arrow with domain H is a pair (g, G) consisting of a G-object
G and a H-morphism g : H — f(G).

(i) A f-structured arrow with domain H is called a f-universal arrow for H pro-
vided that for each f-structured arrow (¢',G') with domain H there exists a
unique G-morphism g : G — G’ with ¢ = f(g) o g. In other words the
triangle as shown in Fig. commutes.

H J > f(G
X %)
f(G")

)

@

G s G

Figure 1.3: Representation of Universal arrow

(i) A f-costructured arrow with codomain H is a pair (G,g) consisting of a G-
object G and a H-morphism g : f(G) — H.

9
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(iv) A f-costructured arrow (G, g) with codomain H is called a f-couniversal arrow
for H provided that for each f-costructured arrow (G',q") with codomain H
there exists a unique G-morphism f : G' — G such that ¢’ = g o f(9).

Definition 1.0.13. A functor f: G— H is said to be adjoint if for every H-object
H there exists a f-universal arrow with domain H. Consequently, there exists a
natural transformation, called the unit(see Fig. ng : IDy(H) — ffi(H),
where I Dy is an identity morphism from H to H and f; : H — G is a functor.
More precisely, for a given morphism g :H— f(G) there is a unique G-morphism
g: fi(H) — G such that the triangle of Fig. commutes i.e., g = f(g) ony.

» ffi(H)

H nH
f(G)

fi(H) g y G

Figure 1.4: Hlustration of the unit

Definition 1.0.14. A functor f: G— H is said to be co-adjoint if for every H-
object H there exists a f-couniversal arrow with codomain H. As a result, there
exists a natural transformation, called the counit(see Fig. o fio f(G) —
IDg(G), where I D¢ is an identity morphism from G to G, and f1 : H— G is a
functor. More precisely, for a given morphism g : fi(H) — G, there is a unique
H-morphism g : H — f(G) such that the triangle of Fig. commutes. In other
words g = & o f1(7):

Hf(G) to s (G
fi1(H)
H d y £(Q)

Figure 1.5: Hlustration of the counit

10
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Topological Spaces

We refer to [8] for general topology.

Definition 1.0.15. Let X be a set. A collection 7% of some subsets of X is said to
be a topology on X if and only if

1. 0, X € ¥,
2. 7% is closed under arbitrary union,

3. ™% is closed under finite intersection.

If 7% is a topology on X then the pair (X, 7%) is called a topological space. The
members of 7% are called open sets.

Note 1.0.2. For a topological space (X, 7X), (X, C) forms a frame.

Definition 1.0.16. Let 7% and 7 be two topologies on X and Y, respectively.
A mapping f : X — Y is said to be continuous if and only if for every open set
Uy ey, f[FYUy) e ¥

The concept of lattice-valued topological spaces was presented in [17]. Let us go
over the concept of lattice-valued topology.
Let £ be a lattice. A lattice-valued topology, £-TOP, on X is a collection 7 C £
such that 7 is closed under arbitrary join (\/) and finite meet (A). Then (X,7T) is
said to be £-topological space.

Definition 1.0.17 ([I8]). Let S; and Sy be two sets, and £ be a lattice. For a func-
tion ¢ : S — So, the Zadeh image operator g : £ — £ and inverse image
operator g 1 £52 — €51 are defined by e(0)(se) = V{o(s') : s’ € v ({s2})},
Ve () = por.

Definition 1.0.18. Let (X, T;) and (Y, T3) be two £-topological spaces. A mapping
f: X — Y is said to be L£-continuous if and only if for every v € Ty, f~1(v) =
vofeT.

11
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Topological Systems

Vickers developed the notion of topological systems in his work on topology via
logic [98]. A Topological system is defined by a mathematical structure as (S, F, =),
where S is a non-empty set, F is a frame, and [= is a binary relation from S to F
such that

1. for any finite subset X of F, s E A X <= sEz,Vre X;
2. for any subset X of F, s =\/ X <= s}z, for some x € X

We write s =z for (s,2) € and call it as s satisfies z. Thus the relation |= satisfies
both join and finite meet interchange laws.

The set S can be understood as the collection of objects, and the set F as the
collection of properties. Then |= states which properties are satisfied by which
object. It should be noted that A X = T if X = 0.

Observation 1.0.1. 1. sET,VseS.
2. sk 1, fornoseS.
3. if s g and g < h then s |= h.

Proposition 1.0.1. Let (S,7%) be a topological space. Then (S, |=,7°) is a topo-
logical system, where the satisfaction relation |= is defined as s F U <= s € U,
sc€SandU € 7°.

Example 1.0.1. Let A be a frame. Then it can be shown that (HOM (A, {0,1}), =
,A) is a topological systems, where HOM (A,{0,1}) is the set of all frame homo-
morphisms from A to {0,1} and ¥ = a < ¢(a) =1, ¢ € HOM(A,{0,1}).

We now review the concept of extent in a topological systems.

Definition 1.0.19. Let (S, |=, F) be a topological system and g € F. The extent of
g, denoted as ext(g), is defined by ext(g) ={s €S :s = g}.

Thus, ext(F) = {ext(g): g € F}

Proposition 1.0.2. Let (S,|=,F) be a topological system. Then ext(F) forms a
topology on S i.e., (S, ext(F)) is a topological space.

12
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Proof. Since F is a frame, so T,1L € F. Now, ext(T) ={se€ S:sET} =5 ¢

ext(F), and ext(L) ={s€ S:sk= L} =0 € ext(F). Let {ext(g)) : A € A} be an

arbitrary collection of elements in ext(F). Then, U ext(gy) = U{S €S :sEg}l=
Y A

{seS:skE \/g,\} = e:ct(\/ gx) € ext(F). Similarly, if ext(g), ext(gs) € ext(F)
A

A
then ext(gy A g2) € ext(F). Thus, ext(F) is closed under arbitrary join and finite
meet. O

Definition 1.0.20. A continuous map ® from a topological system (S, F,|=) to a
topological system (S’, F', ') is defined by a pair of maps (f,g) such that

o [:5— 5" is a set function,

e g is a frame homomorphism from F' to F satisfying s = g(t) <= f(s) E't
forany s € S andt e F'.

13



Chapter 2

Category of lattice-valued Boolean

systems

2.1 Introduction

[This chapter explores categorical interconnections between lattice-valued Boolean
systems and algebras of Fitting’s lattice-valued logic. After introducing lattice-
valued Boolean systems, we discuss the adjointness and co-adjointness of the functors
defined on these systems.

In the study of geometric logic, Vickers [98] proposed the idea of topological
systems, which was later explored in [100]. A topological system is a mathematical
structure (S, F, =), where S is a non-empty set, F is a frame, and |= is a satis-
faction relation on S x F. We read s = g as ”s satisfies ¢”. Denniston et al. [16]
established the concept of lattice-valued topological systems by extending the sat-
isfaction relation to a lattice-valued satisfaction relation. Furthermore, as noted by
Vickers, topological spaces constitute a special kind of topological system; this was
also reported in [I6] for lattice-valued topological spaces.

To establish a categorical relationship between the systems and spaces, the au-
thors in 16} [I7, 18] make use of the concept of lattice-valued topological systems.
Furthermore, as an additional generalization of lattice-valued topological systems,
variable-basis topological systems were presented in [19]. These systems were then

examined from a different angle in [22].

The outcomes of this chapter appear in [57] Ray, Kumar Sankar., Das, Litan Kumar.:
Categorical study for Algebras of lattice-valued logic and lattice-valued modal logic.
Annals of Mathematics and Artificial Intelligence, Springer, 89, 409-429 (2021).

14
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From an additional perspective, it is also important to generalize topological systems
to lattice-valued topological systems. It is conscious that semantic-consequence re-
lation in first-order logic is defined in the context of satisfaction relation. The
associated consequence relation may be conventional or many-valued when the sat-
isfaction relation is many-valued. Regarding the nature of logical consequence, there
are numerous many-valued logics. Thus, it is possible to think of lattice-valued topo-
logical systems as a generalization of many-valued logics. However, we will not go
into detail on this topic.

For a finite distributive lattice £, Fitting presented the concept of L-valued logic and
L-valued modal logic in [23], where the elements of £ are regarded as truth constants.
Fitting’s logic has been the subject of numerous research (e.g., [24], 25, 28] B0]).
However, this chapter will not address £-valued modal logic.

Maruyama [20] defined £-VL-algebras as an algebraic structure of Fitting’s £-
valued logic and thus established a duality in [21I] between the category of £-VL-
algebras and homomorphisms of £-VL-algebras and the category £-BS of lattice-
valued versions of Boolean spaces by employing the theory of natural dualities [13].

Our motivation to consider if there exist systems that are categorically connected
with algebras of Fitting’s multi-valued logic comes from the work of [17]. Our goal is
to characterize such systems and prove that they are categorically equivalent to the
lattice-valued Boolean spaces. This will lead to the establishment of duality between
the category of £-VL-algebras and the category of lattice-valued Boolean spaces.
This outcome provides an additional evidence for the duality established in [21].
The idea of lattice-valued Boolean systems is helpful in obtaining the conclusions

presented in this chapter.

2.2 [-VL-algebras, L-Boolean Spaces, L-Boolean

Systems, and Categorical interconnections

Throughout this section, £ denotes a finite distributive lattice with top element 1
and bottom element 0 (1 # 0). Consequently, £ forms a complete Heyting algebra.
Let a — b represent the pseudo-complement of a with respect to b for all a,b € L.

Definition 2.2.1. For all ¢ € L, the unary operation T, : L — L equipped with L
1 ifx=14

is defined as Ty(x) = ta
0 ifex#/4

15
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2.2.1 L-VL-algebras

A L-valued logic £-VL is basically a many-valued logic and the operations of L-
VL are V,A,—,0,1 and T;(L € L), where A,V,— are binary operations, 0,1 are
nullary operations and for each L € L, T}, is a unary operation.

The concept of £-VL-algebras, initially laid out in [20], provides a sound and
complete algebraic semantics for £-valued logic £L-VL.
Now let us review the notion of £-VL-algebra. Let a < b denote a A b = a and
a <> b denote (a — b) A (b — a).

Definition 2.2.2 ([20]). An algebraic system (A, A\,V,—,T(L € L£),0,1) forms a
L-VL-algebra if and only if for any Ly, Ly € L, and a,b € A the following axioms
hold:

(i) the algebraic structure (A, A\,V,—,0,1) forms a Heyting algebra;

(ZZ) TL1 (a) A TLQ(b) < TL1—>L2 ((1 — b) VAN TL1/\L2 (a N b) A TLlVLQ ((I V b),
TL2 (a) < TTLl(L2)<TL1 (a));

(iii) Ty(0) = 1; Tp(0) =0 (L #0), Ty(1) = 1, Tr(1) = 0, L # 1;

() \[{Tr(a): Le L} =1, Ty, (a)V (Tr,(a) = 0) = 1;
T, (a) ANTr,(a) = 0 (Ly # La);

(v) Ti(Ti(a)) = Ti(a), To(Tr(a)) = Ti(a) = 0, Ty, (T, (a)) =0 (Lr #0,1);
(vi) Ti(a) < a, Ti(a Ab) =Ti(a) NT1(D);

(vii) N\ (Ti(a) <> Tp(b)) < (a > b).
Lel

Definition 2.2.3 ([20]). A L£-VL-algebras homomorphism is a mapping f between
L-VL-algebras which preserves the operations V,\,—, Ty (L € L),0, 1.

Definition 2.2.4 ([21]). Let A be a L-VL-algebra. A non-empty subset F' of A
s called a L-filter off F' 1s a filter of lattices which is closed under Ty. Let P be a
proper L-filter of A. Then

(i) P is a prime L-filter of A iff for any L € L, Tr(x V y) € P, then there exist
Ll, LQ € L with L1 V L2 = L such that TL1 (I) € P and TLQ(:I/) eP.

(it) P is an ultra L-filter of A iff Vx € A, 3L € L such that Tp(x) € P.

16
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(111) P is a mazximal L-filter iff P is mazximal with respect to inclusion.

Proposition 2.2.1 (|21]). (a) Let A be a L-VL-algebra. For any two distinct
members x,y of A ,there exist L € L and a prime L-filter P of A such that
Tr(x) € P and TL(y) ¢ P.

(b) For a prime L-filter P of a L-VL-algebra A, define Op : A — L by Op(z) =
q & T,(x) € P. Then, Op is a homomorphism of L-VL-algebras.

(c) Let A be a L-VL-algebra. A bijective mapping exists from the set of all prime
L-filters of A to the set of all homomorphisms from A to L.

Definition 2.2.5 ([2I]). For a L-VL-algebra A, define B(A) = {a € A: Ti(a) =
a}. Then B(A) is a Boolean algebra.

The spectrum of a £-VL-algebra A is designated by Spec,(A).

Definition 2.2.6 (|21]). Let A be a L-VL-algebra. If K is a sub-algebra of L, then
Speck(A) ={f: A— K| [ is a L-VL-algebras homomorphism }.

Remark 2.2.1. £ and L-VL-algebra are frames.

Category VA,

Definition 2.2.7 (|21]). £-VL-algebras together with L-VL-algebras homomor-
phisms form the category V. A,.

Definition 2.2.8. The opposite category of the category VA, is denoted by (VA ),
and which is defined as follows:

(1) objects in (VAL)P are objects in VAL;

(i1) arrows in (VAL)P are arrows in VA but acting in reverse direction.

2.2.2 Lattice-valued Boolean spaces

The concept of lattice-valued topological space can be found in [I7]. For a lattice-
valued topological space (E, ), Cont(F, T) is taken as the collection of all continuous
functions from E to L.

Definition 2.2.9 ([27]). A lattice-valued topological space (E,T) is said to be Kol-
mogorov <= for any ey, es € E with ey # eq, there exists an open L-valued map
p: E— L such that p(ey) # u(eq).

17
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Definition 2.2.10 ([27]). A lattice-valued topological space (E, T) is said to be Haus-
dorff <= for any ei,es € E with ey # es, there are { € L and an open L-valued
maps py and py on E such that py(e1) > €, po(ea) > € and py A s < L.

Definition 2.2.11 ([27]). A lattice-valued topological space (E,T) is said to be com-

pact < lp = \/ uy, where each py s an open L-valued map on E, then there
AEA
exists a finite collection A* of A such that 1 = \/ i, 1g 1s a constant map on E
AEA*

that maps each element of E to 1.
Definition 2.2.12. A lattice-valued topological space (E,T) is said to be zero-
dimensional <= Cont(E,T) forms a clopen basis of (E,T).

Definition 2.2.13. A lattice-valued topological space (E,T) is said to be lattice-
valued Boolean space denoted by L-Boolean space <= (E,T) is compact, zero-
dimensional and Hausdorff.

If B is a £L-Boolean space, then the collection of all closed subspaces of B is
denoted by Q(B). Now it is easy to follow that each member of 2(B) is also a
L-Boolean space.

Let the subalgebras of £ be denoted by Subalg(L).
Now, we define the category £-BS of £-Boolean spaces.

Definition 2.2.14. (a) An objects in L-BS is defined by a tuple (X, ), where X
is a L-Boolean space and [ : Subalg(L) — Q(X) is a mapping which has
the following properties:

(i) B(L) = X;
(i1) B(Ly) C B(Ly) whenever Ly, Ly € Subalg(L) and Ly is a subalgebra of Ly;
(111) B(L3) = B(L1) N PB(L2) whenever L3 = L1 N Ly.

(b) An arrow in L-BS is defied by a map ¥ : (X1, 1) — (Xa, B2) such that ¥ :
X7 — Xy is a L-valued continuous map and for each member K of Subalg(L),
if s1 € B1(K) then ¢(s1) € B2(K), in other words, ¢ preserves corresponding
subspaces.

Remark 2.2.2. Here L and subalgebras of L are taken with discrete topology. Then
L with discrete topology forms a Boolean space and hence (L, ¢r) is an object in the
category L-BS, where ¢ : Subalg(L) — (L) is a mapping defined by ¢.(K) = K,
K € Subalg(L).

18
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Definition 2.2.15. Let (O, ¢) be an object in the category L-BS. Cont(QO, ¢) is the
collection of all continuous functions ¢ : (O, ¢) — (L, B) which preserve subspaces.

Remark 2.2.3. The algebraic structure (Cont(O,¢),N\,V,—,T(L € L),0,1)
forms a L-VL-algebra. Operations are defined as follows:

Let &,& € Cont(O,¢). Then (& * £)(0) = &(0) x &(0), * = AV, —, and
(TL(£))(0) = TL(&(0)).

2.2.3 L-Boolean systems

We now introduce the notion of £-Boolean systems in Definition [2.2.16]

Definition 2.2.16. Let E be a non-empty set, and let A be a L-VL-algebra. A
L-Boolean system is defined by a mathematical structure (E, A, |[=gx.a)), where
= (exa) 15 a L-valued satisfaction relation on (E,A), which satisfies the following
conditions:

(i) if {ax}res( J is an index set) be a collection of members of A, then |=(gxa)

(e, \ an) = \/ E@mxa (e.a));
AeJ AEJ
if ai, as be any two members of A, then |Emxay (e,a1 A a2) =F(pxa)

(e;a1)N E@xa) (e, a2);
(ii) if e1 # ey in E then there is a € A, such that |=(gxa) (e1,0) #FE(Exa) (62,a);
(i) FEExa (6,01 = a2) =F(mxa) (€, a1) = @xa) (€ a2);
(iv) EExa (e,Ts(a)) = Ts(FExa) (e,a)), fora e A and s € L;
(v) EExa (€,0) =0, FEmxa) (e,1) = 1.

As it develops, a £- Boolean system is essentially a £- topological system
with certain further conditions.

Definition 2.2.17. The category L-BSYM of L-Boolean systems is defined as
follows:

(i) An object in L-BSYM is a L-Boolean systems (E, A, \=(px4));

(it) An arrow in L-BSYM is a continuous map (V1,v2) : (Ev, A, Em xa)) —
(E2, B, =(m,x)) between any two objects in L-BSYM, where
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(a) 1 : By — E5 is a set map;
(b) Vo : B — A is a L-VL-algebras homomorphism;
(c) Emixa) (e1,%2(y) =Fmxn) (V1(e1),y), forei € Ey and y € B.

(iii) For each object P = (E, A, |=(px.a)), the identity arrow Ip : P — P is defined
as (I, I1}), where I, : E — E is an identity mapping;
I}« A — Ais an identity mapping that is L£-V L-algebras homomorphism .

(iv) For the given objects P' = (E1, A, =(mxa)), Q" = (E2, B, E(E,xp)) and R’ =
(E3,C, E(rsxe)) in L-BSYM | let us take two arrows (i1,v2) : P' — @'
and (¢1,¢2) : Q" — R'. The composition of these two arrows is defined as
(1, d2) o (1,109) : P — R’ such that

p1oYy 1 By — Bs;
77Z)20¢2:C—>A.

Definition 2.2.18. We now introduce the notion of extent in the category L-
BSYM. If P = (E, A, |=(x.a)) is an object in L-BSYM, then for each x in A, its
extent in P is a function exty(x) : E — L defined by exty(x)(e) =F(mxa) (e, 1).
Thus, extp(A) = {exte(z) : © € A}. On the set exty(A), the operations
(A V, =, Tr(L € L£),0,1) are defined pointwise. Therefore, exty : A — LF is
a L-VL-algebras homomorphism.

Definition 2.2.19. A continuous map ¥ = (Y1,v¢2) : E' = (E1, A, EExa)) —
E" = (Es, B, =(g,xn)) is called a homeomorphism if and only if there exists an arrow
= W, )« B — E' such that ¥ o = Idg, and 1 o) = Idgn.

E" and E" are said to be homeomorphic if there exists a homeomorphism between
E" and E".

Remark 2.2.4. If the systems E' and E" are homeomorphic then the systems are
structurally equivalent, i.e.,

(a) there exists a bijective mapping between Ey and Es;
(b) L-VL-algebras A and B are isomorphic;

(¢) BEmixa (e1,¢2(b) =F(E,xp5) (¥1(e1),d).

Theorem 2.2.1. If (E, A, =(gxa)) is a L-Boolean systems then (E,exts(A)) is
a lattice-valued Boolean space, where A is a L-VL-algebra.
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Proof. We shall show that (F, exts(.A)) is compact, zero-dimensional and Hausdorff
space.
First, we show that (E, ext,(A)) is compact.

Let 1 = \/ extr(ay), where ay € A and 1 is a constant map on E whose value is
AEA

always 1. Now, 1 = Tyolg = Tlo\/ exte(ay) = \/ Tioextrs(ay) = \/ exte(Ti(ay)).
AEA AEA AEA
Thus, 0 = (\/ exty(Ti(ay)))* = /\ exts((T1(ay))™). Therefore
AEA A€A
0 =0p(x) = (/\ exte((Ti(ar)))(x)
AEA

Thus for a fixed = € E, we have

0= (/\ exte((Ti(a) (@) = N\ exte(Ti(a)) ) (@) = \ Frxa (@ (Ti(ax)*h):

AEA AEA AEA
(2.1)

Let there exist a L-VL-algebras homomorphism v : A — L defined by
v((Ty(ay))t) = 1, for all A € A. Then

Frxa (2, (Ti(a)h) = 1= o((Ti(ax)").

As a result, /\ Epxa (z,0((Ti(ax))")) = 1, which contradict [2.1, Thus, there does
AeA
not exist a £-VL-algebras homomorphism v : A — £ such that v((T}(ay))*) = 1, for

all A € A. Then by Proposition there is no prime L-filter of A which contains
{(Ty(ax))* : X € A}. So the collection {(Ti(ay))* : A € A} does not have finite
intersection property with respect to A (meet) otherwise we get a contradiction.
Therefore, there exists a finite collection {Ay, Ay, -+, A, } of A such that

(Ti(ax))* A (Ti(ax,)™ A (Ti(ax))" A A (Ti(an,)" =0
Thus,
Ti(ay )V Ti(ay,)VTi(an,) V---VTi(ay,) =1ie, Ti(ay, Vay,V---Vay,)=1
So, ax, Vay, V -+ Vay, = 1. Therefore, exts(ay, Vay, V- -Vay,)=1.

Second, we show that (E,exts(.A)) is zero-dimensional.
We shall show that Cont(F,ext;(A)) forms a clopen basis of (E,exts(A)). It is
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already defined that for py,us € Cont(E,exts(A)), (u1 A pu2)(e) = (e

Thus, in order to prove that Cont(E, exts(.A)) forms a clopen basis of (E, ext, (A

it is sufficient to show that, for every a € A, exts(a) € Cont(F,

Let o : L — L be an open continuous map NOW exte(a)” 1(u)(e) = po
= (

exte(a)(e) = p(exte(a) \/ w() (extz(a \/T e,a)) =
Ve (eTam@) = vext/;(Tu(ma))(e) - e:cm\/ T,y (@)(e).  There
fore, exty(a) ™' (pn) = exte(V e Tury(a)) € extz(A). Hence, extr(a) €

Cont(E, exts(A)).

Lastly, we demonstrate that (E,extz(A)) is Hausdorff. Since (E, exts(A)) is zero-
dimensional, it is sufficient to demonstrate that (F,ext,(A)) is Kolmogorov.
Consider ey, e5 € E such that e; # e;. Then da € A such that g4 (e1,a) #Fpxa

(e9,a). Consequently, exty(a)(er) # exte(a)(es).
0

2.2.4 Functorial relationships

We shall now explore functorial relationships between the categories L-BSYM, L-
BS and VA,.

Definition 2.2.20. We define a functor Ext; : L-BSYM— L-BS as follows:

(i) Exte(S, A1, FEsxan) = (S, exts(Ar)), B), where (S, A1, E(sxa,)) s an object
in L-BSYM and the mapping B : Subalg(L) — 2((S, extz(A;)) is defined
by B(K) = (S, exti(Ar)), where K € Subalg(L);

(i) Exte(1, ¢2) = ¢1, where (¢1, ¢2) = (57, A1, Frsrxar)) — (8", Az, F(srxay)) 8
an arrow in L-BSYM, and ¢y : ((S,exts (A1), B1) — ((S”, extr(As)), B2)
is a L-valued continuous map which preserves subspaces.

The well-definedness of the functor Ext, is shown by Theorem 1] and the
following Proposition [2.2.2]

Proposition 2.2.2. Let A; and Ay be an objects in VAr and (¢1,¢2)
(S AL Ewxan) — (8", As, E(srxa,)) s an arrow in L-BSYM. Then
Exte(¢1, ¢2) is an arrow in L-BS.
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Proof. ¢y : (S, extrs(Ar)), 1) — ((S”, exts(Az), o) is indeed a L-valued contin-

1
uous map, since ¢y (exte(y))(s1) = exte(y)i(s1) =F(srxan (91(51),9) =Fsrxa
(51, 02(y)) = exte(da(y))(s1), y € Ay and s; € S’. Therefore ¢] ' (ext,(y)) =
exte(da(y)) € extp(Ar). Tt is easy to follow that ¢; is a subspace-preserving
map. ]

Lemma 2.2.1. For an object (R, () in L-BS, (R,Cont(R, ), ) is an object in
L-BSYM.

Proof. Define = (t,¢) = 1(t), where v € Cont(R,5). Now we verify that
Cont(R, ) is an object in L-BSYM.

(i) For a collection {uy}res (J is an index set) of Cont(R,[), we have |=
(t, Vaesun) = (Vaesur)(t) = Vaesua(t) = Vaes = (L un).
For any 1,1y € Cont(R, ), = (t,¢1 Aha) = (11 Aha)(t) = Y1 (t) Aa(t) ==
(&, Y1)A = (E ).

(ii) As R is a L-Boolean space i.e., a zero-dimensional and Hausdorff space and
hence Kolmogorov, we have for ¢; # t5 in R there exists ¢ € Cont(R, ) for

which ¢ (t1) # ¢ (t2). So = (41, V) #= (2, 9).
(iti) To(F= (¢,9)) = T (1) = To(¥)(t) =F (1, TL(¥)), L € L.
(iv) v =) = (= ¢) () =v() = ')

Definition 2.2.21. A functor G: L-BS — L-BSYM is defined as follows:
(a) G(P, )= (P,Cont(P,p), =), where (P, () is an object in L-BS;

(b) For an arrow h : (P1,f) — (Py,f3) in L£-BS, G(h) = (h,h™")
(Pl,COTLt(Pl,ﬁ1>, ):1> — (PQ,COTLt(PQ,ﬁQ), ’:2), where

(i) h: P, — Py, a set function;

(i) h=' : Cont(Py, B2) — Cont(Py, 1) is a L-VL-algebras homomorphism, and
which, is defined by h™'(g) = go h, g € Cont(Ps, B2).

Proposition 2.2.3. G(h) = (h,h™") is an arrow in L-BSYM, whenever h is an
arrow in the category L-BS.
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Proof. Here h: P, —s P, is a set function and the mapping Rt Cont(Py, Bs) —
Cont(Py, 1) is a £-VL-algebras homomorphism defined by A~ (g) = go h. Now we

observe that =, (h(p1),g) = g(h( 1)) = h=(g )(p1) =F=1 (p1,h7(g)). So (h,h7Y) is

a L-valued continuous map and hence an arrow in £-BSYM. n
So the functor G is well-defined by Lemma and Proposition [2.2.3]
Definition 2.2.22. A functor H: L-BSYM — (V. A;) is defined as follows:

(i) H(S, B, =sxp)) = B, where (S, B, =(sxp)) is an object in L-BSYM and B is
a L-VL-algebra;

(ii) H(§1>§2) = ggp : A — B, where (§1a§2) : (517“4’ ’:(Sle)) — (52787 ):(SQXB)
) is an arrow in L-BSYM and g3° is a L-VL-algebras homomorphism in
(VAL)P

It is easy to follow that the functor H is well-defined.
Definition 2.2.23. A functor R: (VA;)? — L-BSYM s defined as follows:
(i) R(A) = (Specs(A), A, E(specs(a)x4)), where A is an object in (VAz)?
(ii) R(f) = (f~1, fP), where f: A — B is an arrow in (V.Az)

The well-definedness of the functor R is shown by Proposition [2.2.4] and Propo-
sition 2.2.5

Proposition 2.2.4. Let A be a L-VL-algebra. Then (Specs(A), A, = (spece(A)xA))
is an object in the category L-BSYM.

Proof. Here Specy(A) is a set. For some member § of Specy(A), we define
= (spece(A)xa) (8,0) = 5(b). Now we verify the following:

(i) For a collection {b;};es of elements of A, where J is an index set, we have

= (spece (A) \/ b;) = 5( \/ b;) \/ 5(b;) = \/ = (Spece(A)xa) (5,05).

JjeJ jeJ jeJ jeJ
For any two elements b1, by € A, we get [=(gpec,(A)x4) (5,01 Abg) = 5(b1 Aby) =

§(b1> A §<b2) :):(SpecL(A)X.A) (ga bl)/\ ):(Specg(.A)X.A) (§7 b2)

(i) For p € L, Tp(F(specs()xa) (3,0)) = Tp(3(b)) = 3(T,(b)), and F(specs (4)x4)
(8,T5(b)) = 3(Tp(b)). Therefore F(spece(ayxa) (5, Tp(0) = Tp(F(specs(A)xA)
(5,0)).

Others properties can be verified easily.
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]

Proposition 2.2.5. For an arrow f : A — B in (VAL)P, R(f) is an arrow in
L-BSYM.

Proof. Recall that R(f) = (f~1, fP), where f° is a £L-VL-algebras homomorphism
and f~! is a mapping from Spec.(A) to Specy(B) defined by f~'(v) = v o fo,
where v € Specg(A). Now we see that =(spec.(g)xn) (f7H(v),0) = f1(v)(b) =

vo fP(b) = v(fP(b)) =F(specc(a)xa) (v, fP(b)). It shows that R(f) is an arrow in
L-BSYM. [l

Theorem 2.2.2. Ext, is a co-adjoint to the functor G.

Proof. We prove the theorem by presenting the co-unit of the adjunction. Figure
2.1l illustrates the counit.

Yis.ak(sxa)

G(Ezxtr(S, A, Eisxa)))

’ (Sa A7 }Z(SXA))

G(d)=(d1,67 ") (¢1,02)

(P, ) o » Extre (S, A, F(sxa))

Figure 2.1: lustration of the counit

Recall that G(P,8) = (P,Cont(P,B),E) and FEuts(S, A, Fsxa)
(S, exts(A),B). Hence G(Exzts(S, A FEisxa)) = G((S,extz(A),B) =
(S, Cont((S,exts(A)),B),|=). Here Counit is taken by T and defined by
T(SA|: (Sxa) = (]Dg,e:ptg) G(E:L‘tg(s, A, ):(SX.A))) — (S, A, ):(SX.A))y where

(ii) exty: A — Cont((S,exts(A)), 5).

Let ¢ : L — L be an open continuous map in (£,5,). We show that
exte(a) € Cont((S extrs(A)), B). Now extl;( )_1(0)(3) = o o exte(a)(s)

o(eate(a)(s)) = \/ Towy(eate(a)(s)) = \/ Toe ) = \/ (F (5, Tow(a) =

LeLl Lel LeL
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\/ exte(Tyy(a))(s) = 6$t5<\/ Try(a))(s). Therefore extp(a) (o) =
Lec Lec
extr(V pep Toy(a)) € extr(A). Also exty(a) is a subspace preserving mapping.

Now we claim that (IDg,ext;) is a continuous map in £-BSYM. To establish
the claim, it is necessary to observe that = (s,extz(a)) = extz(a)(s) =F(sxa)
(s,a) =F(sxa) (IDs(s),a). For a given arrow (¢, ¢s) : G({D,ﬂ) — (S, A, FEsxa)
in £-BSYM there exists an arrow, which we define ¢ = ¢; : (P,f) —
Ext, (S, A, E@sxa)) in L-BS. We now show that the triangle of Figure com-
mutes i.e., (¢1,¢2) = (IDg, exty) o (¢, 07 "). We see that IDg o ¢1 = ¢1. Now we
have to prove that ¢;' o ext, = ¢y.
As (IDg,exts) is continuous, we get exts(a) = a. Now, for each a € A,
o7t o (extp(a)) = ¢y (a). Since (¢1,¢s) is continuous, we have for any p € P,
and a € A, FEixa (61(p),a) =F (p,d2(a)) ie., ¢7'(a) = ¢o(a). Hence-
forth, we get ¢;' o (extz(a)) = ¢2(a). Therefore, ¢;' o exty = ¢o. Hence,
T(S»A»':(SxA)) = (IDg,extr) is the counit and as a result Ezt, is a co-adjoint to
the functor G.

[

Also, G is an adjoint to the functor Fxt,;. Unit of the adjunction is shown in

Figure 2.2

(P, B) A y Bzt (G(P,J))

P A

Extr ()=
Ext (S, A FE(sxa)

P=(p,p~ "
G(P, B) )

’ (Sv A, ):(SX-A))

Figure 2.2: Illustration of the unit

Theorem 2.2.3. H is an adjoint to the functor R.

Proof. We prove the theorem by presenting unit of the adjunction. Figure illus-
trates the unit.
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Tis Ak (sxa))

(S, A, E(sxa)) RH(S, A, =(sxa))

(71,72)

H(S, A, E(sx4)) it > B

Figure 2.3: Illustration of the unit

We recall that R(B) = (Specs(B), B, = (spece(8)xB))s Where =(spec.8)xB) (¢,b0) =
@(b). So, RH(S, A, E(sxa)) = R(A) = (Specs(A), A, E(spece(4)xa))- Unit is taken
by I' and defined as I'(s 4= 5, 1)) = (7, IDA) : (S, A, E(sxa)) — RH(S, A, E(sx.)),
where the mapping v : S — Specs(A) is defined by ~(s) = ~s, for each
s €85, 7 : A — L is defined by 7s(a) =Fxa) (s,a). We claim that for
each s € S, v, is a L-VL-algebras homomorphism. Now for any a,b € A,
Vs(a vV b) =Fsxa) (s,aVb) =Fsxa) (s,0)V FExa (5,0) = 7s(a) V 7s(b). Also
vs(a A b) = vs(a) A vs(b) and ys(a — b) = ~s(a) — 7s(b). We observe that
Vs(TL(a)) =Fixa (5,Ti(a)) = Ti(Esxa) (s.a)) = TL(vs(a)), where L € L.
Therefore v is a £-VL-algebras homomorphism. The unit I'(s 4 s, 1)) = (7, 1Da)
is a continuous map in L-BSYM, since =(spec,(a)xa) (7(5),a) = vs(a) =F(sxa)
(S7a) :):(SXA) (Sle.A<a))' For a given arrow (71772) : (Su A, ): SXA) — R<B)7
we define 4 = (72)° in (£-VA)°?. Now we show that the triangle of Figure [2.3| com-
mutes i.e., (71,72) = R(7)ol'(s.4, Esxa) — (72 1 72) 0 (7, 1D 4) = (73 07, ID 40 7).
It clearly shows that ID4 o 75 = 75. Now we are to show that 7, = 75! o 7.
For each s € S, 11(s) = v, 07(s) = 75 07 = 7s 07, and for all b € B,
(75 ©92)(0) = 7s(72(0)) =F(sxa) (5.72(0)) =FE(specciayxa) (11(s),0) = 71(s)(b).
Therefore v, 0 75 = 71(s). Hence ;' oy = v, and as a result D (5.4, sy4) 18 the
unit. Therefore H is an adjoint to the functor R.

O

Theorem 2.2.4. R is a co-adjoint to the functor H

Proof. 1t is also possible to prove the theorem by counit of the adjunction. The
counit is illustrated in Figure [2.4]
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Ta

HR(A) > A

H(¢)=g°" g=9°*

H<Za Ba ):(ZXB))

—1
¢:(gSpec£(A)’g)

(Z7 B, ):(ZXB)> ’ R(A)

Figure 2.4: lustration of the counit

The counit is taken by T and defined as T 4 = ID 4. For a given arrow § = ¢g°” in
(VA)P, we define ¢ = (g;}}ecﬁ(A), g) in L-BSYM, where g;}}ecﬁ(m : Z — Spece(A)
and g : A — B. Now we define the map g;}}ecﬁ(A). Foreach ze€ Z,(, : A — L
is defined by (.(a) =F(zxa) (2,a) and henceforth ggplecﬁ(A)(Cz) = (, o g°?, where
¢, € Spece(A), and ¢g? is a L-VL-algebras homomorphism from B to A in (V.Az).
Thus, it is simple to show that the triangle of Figure commutes i.e., T 40 H(¢) =
j.

O

Theorem 2.2.5. The categories L-BS and L-BSYM are equivalent.

Proof. We choose two identity functors ID(s 4=, 4) and IDpg on L-BSYM
and L£-BS, respectively. We get two natural transformations YT and n such that
T :Go Extp — ID(SvAv':(SX.A)) and 1 : IDpg — Exty o G. We show that
T(sAkswa) @ GETLL(S, A Fsxa))) — (5, A, F(sx4)) is a natural isomorphism.
We recall that G(Extz(S, A, Eixa))) = (S, Cont((S,exts(A)),5), =) and
T (s Aksea) = (I Ds, exte). We show that Y(s 41 g, ) is @ homeomorphism.

Now, ext; : A — Cont((S,exts(A)), B) is a L-VL-algebras homomorphism. The
mapping [ Dg is definitely both injective and surjective. The only part we have to
show is that ext, is an isomorphism. Let p;,ps € A, and p; # po. We show that
extr(p1) # extr(pe). Suppose extp(pr) = extp(ps). As py # po, then py <> po # 1.

So by Definition [2.2.2) we have /\ (Tr(p1) <> Tr(p2)) # 1, and then there exists

Ler
k € L such that Ty (p1) # Tr(p2). Now for each s € S, exts(p1)(s) = extrs(p2)(s), and

hence F=(sxa) (5,01) =Fsxa) (5,02). So Tu(FEsxay (5,01)) = Th(FEsxa) (5,02)),

and by Definition [2.2.16{ we have =(gx.4) (5, Tx(p1)) =F(sxa) (5, Tk(p2)). It shows
that Ty (p1) = Tk(p2), and which contradicts the assumption that Ty (p1) # Tk(p2).
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Therefore ext,(p1) # exts(p2), and hence ext, is injective. Clearly ext, is surjec-
tive. Finally T (s 4 g, satisfies the continuity condition, since = (s,extz(a)) =
exte(a)(s) =F(sxa) (8,a) =F(sxa) (IDs(s),a). Therefore T (s 4, 4, 15 an iso-
morphism. As a result T is a natural isomorphism.
Now we shall show that n is a natural isomorphism.
We recall that Exty(G(P,3)) = (P, exts(Cont(P,3)), '), where the function g :
Subalg(L) — Q(P,ext (Cont(P,3)) is defined by /(M) = (P, ext py(Cont(P, 3)))
for M € Subalg(L). Define npg) : (P, 3) — Ext oG(P, B) by nps) (p) (V) = ¥(p),
where p € P and ¢ € Cont(P, ). It is easy to verify that n is a homeomorphism.
Also, n satisfies the naturality condition. Hence, 7 is a natural isomorphism.

0

Theorem 2.2.6. (V. A)? is equivalent to L-BSYM.

Proof. We have two natural transformations I' and T such that Lisaksxa)
(9, A, Fsxa) — (Spece(A), A, Espee (a)xa)) and Ta = 1D : HR(A) — A .
It is clear that T is a natural isomorphism. We show that I'(g, Af=(sxay) 18 @ natural
isomorphism between objects in L-BSYM. We define I'(g 4 = ., 4) = (v, IDy) such
that

e v:S — Specs(A) is a mapping between sets;
o IDy: A— Ais a L-VL-algebras homomorphism.

We have to show that I'(s 4, ) 18 @ homeomorphism. First, we show that ~ is
bijective. Claim: -~ is injective and surjective. Let s; # sy in S. Then by Defi-
nition we have |=(gx4) (51,a) #F(sxa) (s2,a), for some a € A. Therefore
v(s1)(a) # v(s2)(a), for some a € A. As a result v is injective. The mapping 7 is
already defined in the proof of Theorem [2.2.3] and we can say that ~ is also surjec-
tive. Hence our claim is now established.

Finally, we observe that v(s)(a) = vs(a) =F(sx4) (5,a) and v5(a) =F(specs(4)x4)
(v(s),a).  Therefore =(spec,(ayxa) (V(s),a) =F(sxa) (s,1D4(a)). Hence
D(sAsea) IS an isomorphism and therefore VA, is dually equivalent to L-
BSYM. [

Ultimately, we arrive at the following outcome:
Theorem 2.2.7. (VA)? is equivalent to L-BS.

Proof. As adjunctions can be composed, hence the composition of equivalences of

Theorems 2.2.5] and 2.2.6] shows the result. O
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Remark 2.2.5. The duality discovered in [21] is also shown in Theorem [2.2.7;

however, our methodology is not the same as that of [21).

2.3 Conclusion

In this chapter, we have introduced the idea of lattice-valued Boolean systems, which
are represented by the notation £-Boolean systems, where £ is a finite distribu-
tive lattice. In this context, the concept of lattice-valued topological systems gives
rise to lattice-valued Boolean systems, which are useful for proving duality between
algebras of Heyting-valued logic and systems. We have considered algebras of Fit-
ting’s style many-valued logic. A thorough analysis of the categorical relationships
among L-BSYM, £-BS, and VA, has been accomplished. We have created a du-
ality for Fitting’s multi-valued logic in light of Vickers” work on the “logic of finite
observations” [98], as well as the work of Denniston et al. [17].
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Chapter 3

Category of L-relational systems

3.1 Introduction

| Maruyama [20] defined £-ML-algebras as an algebraic structure of Fitting’s £-
valued modal logic for a finite distributive lattice £. Subsequently, in [21], a dual-
ity for the algebras of Fitting’s £-valued modal logic was found, which generalizes
Jonsson-Tarski duality for modal algebras (e.g., |35, 15, 54, 29]). This chapter intro-
duces the concept of L-relational systems, building upon the idea of £-Boolean
systems (see Chapter [2)) to establish a duality between systems and algebras for Fit-
ting’s L-valued modal logic. Furthermore, it will be demonstrated that the category
of L-relational systems is equivalent to the category £-RS of L-relational spaces.
This leads to the demonstration of the duality between the category £-RS and the
category of £L-ML-algebras. This outcome provides an alternative demonstration of
the duality established in [21].

3.2 L-ML-algebras, L-relational systems, /(-
relational spaces and their Categorical in-

terconnections

Throughout this section £ denotes a finite distributive lattice. Thus £ is a finite
Heyting algebra.

The outcomes of this chapter can be found in [67] Ray, Kumar Sankar., Das, Litan
Kumar.: Categorical study for Algebras of lattice-valued logic and lattice-valued
modal logic. Annals of Mathematics and Artificial Intelligence, Springer, 89, 409-
429 (2021).
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3.2.1 L-ML-algebras

L-ML denotes the L-valued modal logic, which is defined by L-valued Kripke se-
mantics. The set of all formulas of £-valued modal logic is denoted by FORMp.
We now introduce the notion of £-valued Kripke model from [20].

Definition 3.2.1 ([20]). Let (Z,W) be a Kripke frame. Then q is a Kripke L-
valuation on (Z, W) iff ¢ : Z x FORMn — L is a function such that for any
z € Z and x € FORMy satisfies the following conditions:

(1) q(z,0x) = Nq(#,z) - 22"}
(i) 4(2,Ta(2)) = Ta(q(z,2));
(i) 4z, V ) = q(52) V a(2), 40 Ay) = 4(52) Ad(ay), aes - y) =
q(z,x) = q(2,9);
(v) q(z,t) =t where t =0, 1.
Then (Z, W, q) is called a L-valued Kripke model.

We now recall the notion of £-ML-algebras, which provides a sound and complete
algebraic semantics for £-valued modal logic £-ML.
Definition 3.2.2 (|20]). An algebraic system (A, A,V,—,Tr(L € £),03,0,1) is said
to be a L-ML-algebra iff it satisfies the following conditions:

(i) (AN, V,— T(L € L),0,1) is a L-VL-algebra,
(17) O(ay A ag) = Oay A Oay and O1 = 1;

(111) for all L € L, Ur(Oa) = OUL(a), where Ur(a) = \/{TL,(a)|L < Ly}.

Definition 3.2.3 (|21]). A £L-ML-algebras homomorphism is a homomorphism of
L-VL-algebras which also preserves the unary operation .

Definition 3.2.4 (|21]). Let A be a L-ML-algebra. A binary relation VW on
Specy(A) is defined as follows:

Wg & VL € LVa € A, f(Oa) > L = g(a) > L. Then (Specc(A),W,q) is a
L-valued canonical model of A, where q is a Kripke L-valuation on (Specg(A), W)
defined as q(f,a) = f(a), Vf € Specs(A).

Proposition 3.2.1 (|21]). The L-valued canonical model (Specs(A), W, q) of A is
a L-valued Kripke model. In other words, q(f,0a) = f(Oa) = A{g(a)|fWg}.

Proposition 3.2.2 ([21]). The Boolean algebra B(.A) is a modal algebra, whenever
A is a L-ML-algebra.
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The category MA,
The category MA, of £L-ML-algebras is defined as follows.

Definition 3.2.5 (|2I]). £-ML-algebras together with L-ML-algebras homomor-
phisms form the category MA .

(MA,)P is the opposite category of the category MA.

3.2.2 [-relational spaces

The fundamental structure of L-relational spaces is a £L-Boolean spaces with a

relation defined on it that satisfies specific axioms.

The category L-RS

First, let us review the definition below.

Definition 3.2.6 ([21]). Let (Z,W) be a Kripke frame and ¢ € LZ. Then a unary
operation Oyy on LZ is defined as follows:
Owt : Z — L is defined by (Ow)(2) = A{w(2) : 2 W2}

Let (Z,W) be a Kripke frame. Then for z € Z, W[z] = {’ € Z : 2WZ'}. For a
subset X C Z, WlX] ={z€ Z:32 € X2W}.

Definition 3.2.7. The category L-RS is defined as follows:

(a) Objects: An object in L-RS is defined by (Z, 3,WWV), where (Z,3) is an object in
L-BS and W is a binary relation on Z which has the following properities:

(1) ifVf e Cont(Z,5), (Owf)(z) =1= f(2') =1 then (2,2") € W;
(ii) if Z' is a clopen subset of Z then W™[Z'] is a clopen subset of Z;
(i11) Let L' € Subalg(L). If z € (L") then W[z] C B(L);

(b) Arrows: An arrow f : ((Z1,51),W1) — ((Zs, 52), Ws) in L-RS is an arrow
f:(Zy, 1) — (Za, B2) in L-BS which has the following properties;

(i) if Wt then f(2)Waf(1);
(11) if f(21)Wazo then there exists a t; € Zy such that zy Wity and f(t1) = 2.
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3.2.3 L-relational systems

We now introduce the notion of L-relational systems.

Definition 3.2.8. A L-relational systems is a triple (Z, A, |=(zx)) where Z is a
nonempty set, A is a L-ML-algebra and |=(zx 4y i a L-valued satisfaction relation
from Z to A such that the following hold:

(i) ):(ZxA) (z, \/ a,) = \/ }Z(ZXA) (z,a,), J is an index set;

reJ reJ
):(ZX.A) (27 /\ (l)\) = /\ ):(ZXA) (Z,CLA),'
AedJ Aed

(ii) FEzxay (z,0a) = N{F@zxa) (#/,a)[2Woz'}, where Wy is a binary relation on
7

(ii1) Fzxa) (2,Ti(a)) = TL(FE (2, 0));
(iv) FEzxa) (2,0) =0, Fzxa) (2,1) =1;
(v) E@zxa) (2.0 = b) =F(zx4) (2,a) =F@zxa) (2,0).

We construct a category L-RSYM of L-relational systems, in accordance with
the Definition 2.2.17

Definition 3.2.9. We define the category L-RSYM as follows:
1. Object: An object in L-RSYM is a L-relational systems (Z, A, =(zx4))-

2. Arrow: An arrow (Y1,v2) : (Z1, A Fzixa) — (22, B, F(zxp) in L-
RSYM is a continuous map between any two objects, where

(i) U1 : Zy — Zy is a set map;
(i1) ¥y : B — A is a L-ML-algebras homomorphism;
(ii1) =z, x4y (21,1%2(b)) =F(z,x8) (V1(21),b), for 21 € Zy and b € B.

3.2.4 Functorial relationships

In this section we shall explore functorial relationships between the categories £-

RSYM, £L-RS and MA,.
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Definition 3.2.10. A binary relation Wo on (Z,ext(A)) is defined as follows:
Wow < VL € L,Va € Ajextp(Qa)(z) > L = exte(a)(w) > L.

Definition 3.2.11. A functor Ext} : L-RSYM — L-RS is defined as follows:

(i) Ext;(Z, A =izxa) = (Z,ext(A)), B, W), where (Z, A, =(zx.a)) is an ob-
ject in L-RSYM;

(i) Ewt*ﬁ(¢la¢2) = ¢1, where (¢1,¢2) : (Z, A, |:(ZxA)) — (W, B, ):(szs)) s an
arrow in L-RSYM.

The well-definedness of the functor Ext} is shown by the Lemma [3.2.1] and
Lemma [3.2.21

Lemma 3.2.1. ((Z,ext,(A)), 3, Wn) is an object in L-RS.

Proof. We verify the first condition in the object section of Definition [3.2.7 More
precisely, if for all h € Cont((Z,exts(A)),B), (Owh)(z) = 1 = h(z') = 1, then
2Whz'. We prove the contrapositive statement. Suppose (z,2’) € Wg. Then there
exists L € £ and a € A such that ezt (0a)(z) > L = extr(a)(z’) # L. Now
Up(extz(Oa)(z)) = 1 = exty(Ur(Oa))(z) = 1, but exts(Ur(a))(z') # 1. De-
fine h : ((Z,extz(A),B) — (L£,B8z) by h(z) = extz(Ur(a))(z). Then we have
Owh)(2) = AAly) - Wy} = Meate(Un(@)(y) - Woy} = exte(OUL()(2) =
1, but h(z") = exts(Ur(a))(2') # 1. As we know extz(a) € Cont((Z, extr(A)), B),
so by definition of h, we have h € Cont((Z, ext:(A)), B).

Now we verify the second condition in the object section of Definition [3.2.7]

For each L € L, (exts(a)) *({L}) = (Tp o ewte(a))*({1}) is a clopen set
i.e., both open and closed (since T, o exte(a) € Cont((Z,exts(A)),5)). Now
we are to show that W5'l(ewtz(a)Y({L}))] = W5'[(Ty o exte(a)) t({1})] is
clopen in Z. It suffices to show that W35'[(exts(a)"*({1}))] is clopen in
Z.  We claim that W3'(exts(a) ' ({1}))] = ewte(-0-Ti(a))*({1}). It
is clear that ext,(=0-Ti(a))"'({1}) is clopen in Z. Now assume that
z € ewxte(-0-Ti(a))"'({1}). Then ext,(=0-Ti(a))(z) = 1 and hence
exts(O0-T1(a))(z) = 0. Now

0 = ext,(O0-T1(a))(2)
=F(zx4) (2,0-T1(a))
= N{FE@xa (7, 7Ti(a)) : 22"} [By Definition [3.2.8]
= /\{extg(—'Tl(a))(z') 1 2Whe'}
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Since exty(—Ti(a))(2’) is either 0 or 1, therefore there exists w € Z and z2Whw
such that ext,(—T1(a))(w) = 0. Now exty(—-Ti(a))(w) =0 = exts(Ti(a))(w) = 1.
Henceforth, ext,(a)(w) = 1. Therefore z € W5'[(extz(a)"*({1}))]. Similarly it can
be proved the converse part.

After this, we verify the third condition in the object section of Definition [3.2.7]
Here S(L') = (Z,extr(A)), L is a subalgebra of L. Let z € (Z,exts(A)) and
Wholz] — B(L') # ¢. Then for any w € Wn[z] — B(L), we have extp(a)(w) ¢ L.
Define ext,/(a)(w) = L. For w' € (Z, exts(A)),

1, ifexte(a)(w') # L

exte(Tr(a) — a)(w') = {L if exty(a)(w') = L

Now exty (d(Tp(a) — a))(z) =F (2,0Tr(a) = a)) = N{F (W, Tp(a) —
a)|2Wow'} = N exte(Tr(a) — a)(w')|z2Wow'} = L. But this contradicts our
assumption that exty(0(Tp(a) — a))(z) € L' . Therefore, if z € B(L') then
Whlz] C B(L).

[

Lemma 3.2.2. For an arrow (¢1,¢2) : (Z, A, Fzxa) — W, B, Fwxs)) in L-
RSYM, Ext}(é1,¢2) is an arrow in L-RS.

Proof. We verify the first condition in the arrow section of Definition [3.2.7] In
particular, Ext} (o1, ¢2) = ¢1 1 ((Z, exts(A)), b1, Why) — (W, exts(B)), B2, Way)
is an arrow in £-RS. Here we note that ¢ : ((Z,extz(A)), B1) — (W, exts(B)), 52)
is an arrow in £-BS. Assume 2 W, w. Claim: ¢ (2)Wa¢1(w). By Definition (3.2.10),
we have exty(0a)(z) > L = exte(a)(w) > L. Now if for all b € B and L; € L,
ext,(Ob)d1(2) > Ly, then Favwp) (01(2),0b) > Ly.

By Definition [3.2.8, we have =g (61(2),00) = A{Ewxs) (61(y),b)[ Wiy} >
Ly. This shows that ext,(b)(¢1(w)) > Ly and hence ¢1(2)Wa o1 (w).

We next verify that Ext].(¢1,¢2) satisfies the second condition in the ar-
row section of Definition 3.2.7  Assume ¢1(z1)Wyyw. Define Exty(¢], ¢5)
(Z, exta(B(A)), B i) — (W, eata(D(As)), 85, W) by Eata(d},63) = o1,
where ¢7(2) = ¢1(2) for z € (Z,exta(B(A1))). So Exty(di, ¢s) is an arrow in
L"-RS (L" is a set of two elements {0,1}), and if ¢j(21)W;_ w then there is z
in (7, exty(B(A1))) such that 2y Wi 2z and ¢i(z) = w. Now extr(ar)(z) = L &
exta(Tr(a1))(z) = 1. We claim z; Wy 2z and ¢1(2) = w. If ext (0a)(z) > L
then T3 o (exty(OUL(a)))(z1) = 1. Therefore ext (0T (UL(a))(z1) = 1. Since
21Wi_ 2z, we have exty(Up(a))(2) = 1 = extr(a)(z) > L. Therefore 2 W 2. Let
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extr(b)(d1(2)) = L.
Then exty(TL(0))(¢5(2)) = 1 = exta(TL(b))(w) = 1. Hence ext,(b)(w) = L. Now

cate(b)(w) = extr(b)(61(2)) = Fawxm) (w,0) =Fwxp) (61(2),0) = ¢1(2) = w

So the claim is now established.

Definition 3.2.12. A functor G* : L-RS — L-RSYM is defined as follows:

(i) G*(P,B,Wn) = (P,(Cont(P,5),0w), ), where (P, 3, Wn) is an object in L-
RS. Forp e P, and © € Cont(P,3), define = (p,©) = O(p).

(ir) For an arrow ¢ : (Py, 1, Wi) — (P2, B2, W) in L-RS, G*(¢) = (¢, 07",
where
o ¢: P — P is a set function;

e o' (Cont(Py, 2),Ow,) — (Cont(Py, B1),0Ow,) is a L-ML-algebras homo-
morphism, which is defined by ¢~1(0) = O o ¢, © € Cont(Py, o).

Note 3.2.1. Remark indicates that (Cont(P,5),\,V,—,T,({ € L),0,1)
is a L-VL-algebra. Thus, it is easy to follow that (Cont(P,S),N\,V,—, Tl €
L), 0w, 0,1) is a L-ML-algebra.

The well-definedness of the functor G* is shown by the Lemma and Lemma
3.2.4

Lemma 3.2.3. Let (P,5,Wgn) be an object in L-RS. Then, G*(P,3,Wn) is an
object in L-RSYM.

Proof. We recall that G*(P, 5, Wnh) = (P,(Cont(P,3),0w), =) and = (p,©) =
O(p), where © € (Cont(P,5),0y). In order to prove (P, (Cont(P,3),0w), =) is
an object in £L-RSYM, we verify the conditions given in Definition [3.2.§

(i) = (p,\/@r) = (\/ ©,)(p) = \/@,,(p), where p € P, and for each r €

reJ reJ reJ

J (where J is an index set) O, € (Cont(P,[),0). Also we observe that
= (p, /\ 0,) = (/\ ©,)(p) = /\ ©,(p), where J' is a finite set of natural

reJ’ reJ’ reJ’
numbers.
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(ii) = (p,Ow®) = (OwO)(p). Now

(OwO)(p) = A\{O() : pWp'}( by Definition B.2.6))
= N\ @, 0): pwp'}

(i) For pe P and L € £, = (p, T,(0)) = TL(O)(p) = T1(O(p)) = Tu(= (p, ©)).

(iv) It is easy to observe that = (p,0) = 0, (p,1) = 1, where 0 and 1 are the

constant functions whose values are always 0 and 1, respectively.
v) E . f—9)=(—=9)p)=fp) = 9p) =F (.f) = 9)
O

Lemma 3.2.4. Let ¢ : (P, /1, Wiy) — (P2, B2, Way) be an arrow in L-RS. Then
G*(¢) is an arrow in L-RSYM.

Proof. Recall that G*(¢)) = (¢, 1), where ¢ : P, — P is a set function and ¢! :
(Cont(Pa, 2), Ow,) — (Cont(Py, f1),0w,) is a L-ML-algebras homomorphism,
which is defined by ¢~1(0) = © 0 ¢, © € Cont (P, 32). Now we observe that

= (p1,671(©)) = (© 0 ¢)(p1)
= 0(¢(p1))
=F (¢(p1),0)

Therefore (¢, ¢~1) is a continuous map in L-RSYM, and hence G*(¢) is an arrow
in L-RSYM.
[

Definition 3.2.13. A functor H : L-RSYM — (MAL)? is defined as follows:
(i) H'(S, A, E(sxa)) = A, where (S, A, E(sx.a)) is an object in L-RSYM;

(ii) H*(gng) = ggp’ where (g17g2> : (Slv'Av ):(51><-A)> — (52787 |:(5'2><3)) s an
arrow in L-RSYM.

It is easy to observe that the functor H* is well-defined.
Definition 3.2.14. A functor R* : (MA)? — L-RSYM is defined as follows:

(i) R*(A) = (Spece(A), A, E(specs(a)xa)), where A is an object in (L-MA)?;
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(ii) R*(¢) = (v~ 0%), v : A —> B is an arrow in (L-MA).

The well-definedness of the functor R* is shown by the Lemma[3.2.5]and Lemma
0.2.0l

Lemma 3.2.5. Let A be a L-ML-algebra. Then (Specy(A), A, = (spece(a)x.a)) 15 an
object in L-RSYM.

Proof. We define = (spec,(a)xa) (h,a) = h(a), h € Specg(A). Clearly Specy(A) is a

set. Next we show that

(1) Especcxa) (b \/ @) = b\ @) = \/ Bla;) = \/ Especca) (hra), (J

jeJ jGJ jeJ jeJ
is an index set). Also [=(specs(4)x.a) (B, a1 Aag) = h(ar) Ah(az) =F(spec, (4)x.A)

(ha al)/\ ):(SpecL(.A )x.A) (h> a2)-

(ii) We observe that
):(SPSC[:(A)X.A) (ha Da) = h(Da)

= /\{hl(a) : hWhy }( using Proposition
= /\{):(Specg(A)xA) (hi,a) : hWhy}

(ill) E(specc(axa) (h, Tr(a)) = h(Ti(a)) = TL(h(a)) = To(F(specc(ayxa) (h; a)).
(iv) It is clear that =(spec,(a)xa) (h,0) = 0 and =(spec, (a)xa) (h, 1) =1

(V) E(specc(ayxa) (hya — b) = h(a — b) = h(a) — h(b) =F(specs(4)xA)
(h, CL) _>|:(SpecE(A)><A) (h7 b)

Therefore (Spec(A), A, E(specs(4)x.a)) is an object in L-RSYM O

Lemma 3.2.6. (¢ "1,9) is a continuous map in L-RSYM, whenever v is a L-
ML-algebras homomorphism.

Proof. Here ¢! : Specy(A) — Spece(B) is a set map, and P : B — A'is a
L-ML-algebras homomorphism.

Now, (specs(yxay — (h,0™(0)) = hY?*®) = (b o 7)) =
VHR)(b) =F(specemyxy (W), b).  Thus, (¥~ ¢) is a continuous map
in L. RSYM. O

Theorem 3.2.1. Ext} is a co-adjoint to the functor G*.
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Proof. We first define the counit of the adjunction. Figure [3.1]illustrates the counit.

TZZ»AJ:(ZxA))

G*(Ext;(Z, A, Fzxa)) » (Z, A FE(zxa)

G*(éa)=<m %

G*(Paﬁvwlj)

(P, B, Wq) i s Exts(Z, A, = (zxn)

Figure 3.1: Hlustration of the counit

Recall ~ that  G*(P,5,Wn) = (P, (Cont(P,B3),0w), =)  and
El’tZ(Z, A, ):(ZXA)) = (((27 6Itﬁ<A))7ﬁ)7 WD) So G*(EZ‘tZ(Z, A, ):(ZX.A)>> =
(Z,(Cont(Z,exts(A), B),Ow), E).

We show that the counit T?Z,A#(zm)) = (IDy,exty) : G*(Eaty(Z, A, Ezxa)
) — (Z, A, [=(zx.4)) is a continuous map in L-RSYM, where

(i) ID} : Z — Z is a set function;

(ii) exty : A — (Cont(Z,exts(A), 5),0w) is a L-ML-algebras homomorphism,
where ext}.(a) = extr(a), Va € A.

It is known that ext} is a L-VL-algebras homomorphism. We have to show
that it preserves the unary operation O i.e., exti(0da) = O(exty(a)). Now
eat;(0)(2) =z (500) = Mz (£1a) : Mo} = Merte(a)(?)
2Wpz'}. Using Definition we have O(ext?(a))(z) = N{exte(a)(2') : 2Wa2'}.
Therefore, ext].(Oa) = O(extl(a)). So ext} is a L-ML-algebras homomorphism.
To prove the continuity of T?Z,A,HZX,@)’ it is enough to show that =z,
(ID%(2),a) =F (z,ext;(a)). We see that |=zxa) (ID%(2),a) =F@zxa) (2,a) =
exte(a)(z) =F (2, exte(a)) =F (2, ext(a)).

Next we prove that the triangle of Figure [3.I] commutes i.e., for a given arrow
(1, 02) : G*(P, B, Wn) — (Z, A, [=(zxa)) in L.RSYM there is an arrow, which
we take ¢ = ¢ in L-RS such that (¢q, ¢2) = TE(ZN‘L):(ZX.A)) o G*(¢).

Now

(¢1,¢2) = (IDy, exty) o (1, ¢7")
= (ID} 0 ¢y, 07" o extsh)
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It is clear that D% 0¢; = ¢;. The only part we have to show is that ¢y = ¢; ' oets.
Now as (I D7, ext}) is continuous, so F=(zx4) (1D%(2),a) =F (2, ext};(a)). Therefore
exts(a) = a.

We observe that for each a € A,

o1 o exty(a) =¢;'(a)
= ¢o(a) ((as (41, ¢2) is continuous)
Hence 17, A zen) is the counit and as a result Ezt} is a co-adjoint to the

functor G*.
Il

Theorem 3.2.2. G* is an adjoint to the functor Ext}

Proof. 1t is also possible to prove the theorem by unit of the adjunction. Figure [3.2
illustrates the unit.

NP,
(Puﬁuwm) SRl ? Eth(G*(P757WD))
w*
Eth(Za-Aa ):(ZX-A))
G*(Pv/gaWD) ) ? (Za "47 ):(ZX.A))

Figure 3.2: Illustration of the unit

For a given arrow ¢* : (P, 5, Wn) — FEut;(Z, A, =(zxa)) there is an arrow,
which we take ¢ : G*(P, 3, Wn) — (Z, A, =(zx.4)) such that Exti(¥) = ¢*. It can

be shown that the triangle of Figure commutes i.e., E:r;t}}(zﬁ) oMy = ¥
]

Theorem 3.2.3. The category L-RSYM is equivalent to the category L-RS.

Proof. Let I DZ‘Z’ A n) and I D* be two identity functors on L-RSYM and £L-RS,

respectively. T* and n* are two natural transformations such that T’(kZ Abn)

G (Eaty(Z, A Ewzxa)) — (Z,A Eizxay) and Mepwy (P, Wh) —
Ext(G*(P,,Wn)). Now we show that Y* and n* are natural isomorphism.
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sz A en) is a natural transformation between objects in L-RSYM. We note
that T?nyl,):(zm)) is similar to T(Z7A7l=<zm>)v as defined in the proof of Theorem
. So, by Theorem W, T, A=) 1S a0 isomorphism and hence T* is a
natural isomorphism.

Now we prove that n* is a natural isomorphism.

Here n(p 5y« (P, B, W) — (P, ext;(Cont(P, 8),Ow)), 8/, Wh)

(WL is a binary relation on (P, extl(Cont(P,),0y))), and is defined by
U?P,,@,W@(P)W) = T/J(P% ¢ € (COTLt(P, 6)7 DW)

Define ' :  Subalg(L) — QP exte(Cont(P,5),0w)) by p'(M) =
(P, extm(Cont(P, 8),0w)). Since ext(¥)(p) = ¥(p), 50 1{p gy is well-defined.
Here 17p 5y, 18 very similar to 7(p), which is defined in the proof of Theorem
2.2.5 So by Theorem 2.2.5, 1(p g i an isomorphism between objects in L-BS.
We have to show that NP5 We) and 77?;7 llﬁ,Wu) satisfy the first and second conditions
in the arrow section of Definition [3.2.7 Assume for any p1,p2 € P, pyWnpa. Then
for any L € £, and ¢ € Cont(P. B), 1750, (1) Oow) = extp(Cw)(pn) > L =
(Owy)(p1) > L. Now (Owv)(p1) = N{v®') : ppWop'}. Since pyWaops, we have
¥(p2) > L.

Therefore extz(y)(p2) = L and hence n{p 5y ) (P1)Win(p s ) (P2). Again we ob-
serve that if (pi,p2) ¢ Who then by the first condition in the object section of
Definition there exists ¢* € Cont(P,3) such that (Oywy*)(p1) = 1 but
Y*(p2) # 1. Therefore exty(Chwt*)(p1) = 1 and ext}(v*)(p2) # 1. Therefore
((p.500) P NP govy) (P2)) & WG So we get for any pi,p2 € P, piWop, iff
U?P7B7WD)W[/:|7]EKP’57WD)-

Now we verify the second condition in the arrow section of Definition [3.2.7, Sup-
pose N(p 5wy (P)Wht.  Since nip g5,y Is surjective, there is &1 € P such that

Mpswe(t) = t and pWit. Analogously we can verify for 772‘;; )» and hence

Vo
n* is a natural isomorphism.

O
Theorem 3.2.4. H* is an adjoint to the functor R".

Proof. We define the unit of the adjunction. Figure [3.3]illustrates the unit.
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FzS,A,D:(sXA))

(S, A, FE(sxa) » R"H*(S, A, = (sx4))

(p1,92)

oV

H*(Sa A: ):(SXA))

Figure 3.3: Illustration of the unit

Now R*(B) = (Spece(B), B, = (spece(8)xB))s and [=(spec.8)xB) (¢, 0) = ©(b).
So R™H"(S, A, F(sxa)) = R"(A) = (Specc(A), A, E(specs (A)xA))-
Here the unit is taken by I'*. For an object (S, A, F(sx4)) in L-RSYM, define
Pt (54 Fisen) — RH(S A Fisen) b Tisap .y = (91040,
where

(i) g : S — Specr(A) is a set map. For each s € S, define g(s) = g5, where
gs : A — L is defined by gs(a) =F=(sx.) (s, a);

(ii) ID4: A— Ais a L-ML-algebras homomorphism.

It is already known that for each s € S, g, is a £-VL-algebras homomorphism.
From the proof of Theorem , we observe that (g, /D 4) is a continuous map in
L-RSYM. Now we shall show that the triangle of Figure |3.3| commutes i.e., for a
given arrow (¢1, ¢2) : (S, A, F(sxa)) — R*(B) there is an arrow ¢, which we define
) = ¢+ H'(S, A, F(sxa)) — B such that (¢1,¢2) = R* (1)) o Ty Aoy Now
R*(¢)) = R*(¢F) = (¢35, ¢2). It is clear that ¢y = ID 40 ¢y. Claim: ¢y = ¢; 0 g.
For each s € S, ¢1(s) = ¢5 ' 0g(s) = ¢ 0gs = gs 0 da. Now for each b € B, we have
Gs © 92(b) = gs(P2(b)) =F(sxa) (s, ¢2(D)). As (¢1,¢2) is continuous in L-RSYM,
SO IZ(SX.A) (S,qbg(b)) :):(Specg(B)XB) (¢1(S),b) = gbl(s)(b) Therefore gbl = g252_1 0g.

Hence the theorem is proved.

O
Theorem 3.2.5. R* is a co-adjoint to the functor H*.

Proof. Tt is also possible to prove the theorem by counit of the adjunction. Figure
B.4] illustrates the counit.
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T*=IDA

H'R*(A) s A

H*<Yv 87 ):(YXB))

" =(f5pec () S ")
(Y, B, E(yxs)) Zpeeetd » R*(A)

Figure 3.4: Illustration of the counit

Here the counit T* is defined by T*% = ID4. For a given arrow f* in (MA.)%
there is an arrow ¢* in L-RSYM, which is defined by ¢* = ( f§p160£( ) f°P) such
that H*(¢*) = f. It is now easy to see that the triangle of Figure commutes i.e.,
Ty o H(¢7) = f*.

]

Theorem 3.2.6. The category (MA)P is equivalent to the category L-RSYM.

Proof. We get two natural transformations T* and T'* such that Tj\ = IDy :
IjI*R*<'A> — A and TS (S, A, E(sxa)) — RH*(S, A, F(sx.)). Here
T7% is of course a natural isomorphism. We have to show that FE*S’ A= se) is a
natural isomorphism between two objects in L-RSYM.

Here F?SaAa):(Sx.A)) = (g9,ID4). Using the proof of Theorem we can say that

* *

r is a homeomorphism and hence I" is a natural isomorphism.
(SAE(s%x4)) (S, AE(5x4))

Therefore (M.A,) is equivalent to the category L-RSYM. Consequently, MA,

is dually equivalent to the category £L-RSYM. O]

Theorem 3.2.7. (MA,)? is equivalent to L-RS.

Proof. The result can be obtained as the composition of equivalences of Theorem
B.2.3] and Theorem [3.2.6] Hence MA, is dually equivalent to £-RS. O

Remark 3.2.1. The same process can also be used to develop a duality for L-
ML-algebras with truth constants. The idea of L-ML-algebras with truth constants
appears in [21)].
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3.3 Conclusion

We have seen in Chapter[2|that the concept of lattice-valued Boolean systems, which
originates from lattice-valued topological systems, plays an essential role in proving
duality between systems and algebras of multi-valued logic. The approach has then
been extended to algebras of multi-valued modal logic. Introducing the notion of
lattice-valued relational systems, we have found the categorical equivalence between
systems and algebras of Fitting’s multi-valued modal logic. This in turn establishes
the duality between £-RS and MA,.
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Chapter 4

Bitopological Duality for
multi-valued logic

4.1 Introduction

| The groundwork for duality theory was laid in 1937 by Stone [51], who demonstrated
the dual equivalence between the categories of Boolean algebras and homomorphisms
and the category of Stone spaces (compact, zero-dimensional and Hausdorff spaces)
and continuous mappings. Furthermore, Stone developed a general work for the
category of bounded distributive lattices in 1937 [43]. With the aid of ordered Stone
spaces (also known as Priestley spaces), Priestley explored a different duality for
the category of bounded distributive lattices in 1970 [50], resolving issues in Stone’s
work [43]. Esakia [10] discovered a duality for Heyting algebras, which is a limitation
of Priestley duality.

From a logical perspective, topological dualities have been used to establish a
relationship between syntax and semantic of a propositional logic. Several authors
have approached the development of topological duality from various perspectives
(e.g., |21}, 53], 29]).

From a computer science perspective, topological dualities serve as the foun-
dation for semantics of programming language (e.g., [14] 32, 33]). Abramsky [I4]
extended Smyth’s concepts [34] by developing programming logic from denotational

semantics. Stone-type dualities played crucial roles in Abramsky’s ground breaking

The results of this chapter can be found in [58] Das, Litan Kumar., Ray, Kumar Sankar.:
Bitopological duality for algebras of Fitting’s logic and natural duality extension. Acta
Informatica, 58(5), 571-584 (2021).
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work [I4] to derive the relationship between program logic and denotational seman-
tics.

The concept of bi-topological spaces was introduced in [38]. Bitopological spaces
may be employed to represent distributive lattices, as demonstrated by Jung and
Moshier in [48]. As a result, the authors investigated a different explanation of
Esakia duality in a bi-topological context in [40]. The objective of this chapter is to
use bi-topological techniques to construct a duality for algebras of Fitting’s multi-
valued logic. In actuality, it extends the natural duality theory in a bi-topological
context. We shall introduce a category PBS, of lattice-valued pairwise Boolean
spaces, and relate it to the category VA, of algebras of Fitting’s multi-valued logic
using appropriate functors. This leads us to propose a duality for Fitting’s multi-

valued logic in a bitopological setting.

4.2 L-VL-algebras, L-pairwise Boolean spaces and

their categorical interconnections

Throughout this section £ denotes a finite distributive lattice. Henceforth, £ is a
finite Heyting algebra.

4.2.1 L-VL-algebras

In order to obtain algebraic axiomatization of Fitting’s Heyting valued logic,
Maruyama in [20] modified Fitting’s £-valued logic by removing fuzzy truth con-
stants (except bottom and top elements 0, 1 respectively) and adding a new unary
operation Ty(—). From the logical point of view Ty(p) means the truth value of a
proposition p is exactly . Such operations Ty(—) were introduced with reference to
the Post algebras [37].

Definition 4.2.1. For each ¢ € L, the mapping T, : L — L 1is defined by

O By

Now let us review the algebraic structure of Fitting’s Heyting-valued logic.

Definition 4.2.2 ([20]). (A, A,V,—,TL(L € £),0,1) forms a L-VL-algebra if and
only if for any L1, Ly € L, and a,b € A, it satisfies the following axioms:
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(i) the algebraic structure (A, A\,V,—,Tr(L € L£),0,1) is a Heyting algebra;

(ZZ) TL1 (CL) A TL2(b) < ,TLlﬁL2 (CL — b) N TL1/\L2 (a A\ b) A TLl\/Lg (CL V b),
TL2 (a’) < TTLl(L2)<TL1 (a>);

(iii) To(0) =1; Tp(0) =0 (L #0); Ty(1) =1; T;,(1) =0, if L # 1;

() [{T(a) : L e L} =1;Tr,(a)V (T,(a) = 0) =1;
TLl(a) A TL2(G) =0, (Ll 7£ L2>;

(v) Tyi(Tr(a)) = Tr(a), To(Tr(a)) = Tr(a) = 0, Tr,(Tr,(a)) =0, (L2 # 0,1);
(vi) Ti(a) < a, Ti(a Ab) =Ti(a) NT1(D);

(vii) N\ (Ti(a) > Tp(b)) < (a > b).

Lel

Definition 4.2.3 (|20]). A £-VL-algebras homomorphism is a mapping [ between
two L-VL-algebras such that the mapping f preserves the operations \,V,—, T (L €
L£),0,1.

Definition 4.2.4 (J20]). A non-empty subset S of A, where A is a L-VL-algebra,
is said to be a L-valued filter if the following hold:

(i) ifs€S and s <t, thent € S;
(i1) s\t €S whenever s,t € S;
(11i) Ty(s) € S whenever s € S.

Definition 4.2.5 (J20]). A non-empty subset S of A, where A is a L-VL-algebra,
is said to be a prime L-valued filter if the following hold:

(i) S # A;

(i1) if for anyr € L, T,(sVt) €S then there exists ri,ro € L with ri\V 1o =1 such
that T,,(s) € S and T,,(t) € S.

Theorem 4.2.1 (|21]). Let a and b be any two different elements of a L-VL-algebra
A. Then, there exits v € L and a prime L-valued filter S of A such that T,.(a) € S
but T,.(b) ¢ S.

Proposition 4.2.1 (|21]). For each prime L-valued filter S of a L-VL-algebra A,
there is a homomorphism hs : A — L defined by hs(a) =r <= T.(a) € S.
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The category VA,

Definition 4.2.6. L£-VL-algebras together with L-VL-algebras homomorphisms
form a category VA,.

4.2.2 L-pairwise Boolean spaces

A bitopological space is defined by a triple (X, 7, 72), where X is a set and 71, 73
are two topologies on X. We now review the several key ideas about bitopological
spaces pertinent to our work.

Definition 4.2.7 ([39]). A bitopological space (S,77,75) is said to be pairwise Haus-
dorff if for any two different points s1, sy of S there exist a disjoint open sets

O, € 7'13, and Oy € 7'25 containing s, and So, respectively.

Definition 4.2.8 ([39]). A bitopological space (S, 7,75 ) is said to be pairwise zero-
dimensional if the collection BS of T8 -open sets which are T35 -closed, is a basis for
the topology ¢, and the collection By of 75-open sets which are 78 -closed, is a
basis for the topology 15, i.e., we can write B = 7° M 0o, and BS = 75 N 1.
Here we designate o1, and oy as the collections of T°-closed sets, and 75 -closed sets,
respectively.

Definition 4.2.9 ([39]). A bitopological space (S, 7L, 75) is said to be pairwise com-
pact if every open cover {O; i € J,0; € 7 UTS} of S has a finite sub-cover.

Proposition 4.2.2 ([40]). A bitopological space (S,78,79) is pairwise compact if
and only if 01 C Yo and po C Y1, where Ty, and Yo are denote respectively the set
of all compact subsets of (S,7F), and (S,75).

Definition 4.2.10. If a bitopological space is pairwise compact, pairwise Hausdorff,
and pairwise zero-dimensional, then it is called pairwise Boolean space.

For a pairwise Boolean space B, we denote the set of all pairwise closed sub-
spaces of B by Q5. As a pairwise closed subset of a pairwise compact space is also
a pairwise compact [62], so each member of ()5 is a pairwise Boolean space. Let ¥,
represent the set of all sub-algebras of L.

Definition 4.2.11. A pairwise Boolean space together with a mapping o from .
to Qg that meets certain conditions form a L-valued pairwise Boolean space, denoted
as L-pairwise Boolean space.
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Definition 4.2.12. We define a category PBS; of L-pairwise Boolean spaces as

follows:

1. An object in PBS is defined by a tuple (B, ap), where B is a pairwise Boolean
space, and ap is a mapping from X, to Qg which satisfies the following con-

ditions:

(i) as(L) = B;
(ii) for any Ly, Ly, Ls € Xg, if L1 = LoNLs, then ap(Ly) = a(Le)Na(Ls).

2. A morphism [ : (B,ag) — (B',ag) in PBS; is a pairwise continuous map
f B — B’ which satisfies;

(1) ifv € ag(L'), L' € X, then f(z) € ap(L').

Remark 4.2.1. We consider a bitopological space (L, T,T), where T is the discrete
topology, and consequently, (L,ar), where the mapping ar @ Xy — Qp is defined
by ac(L') = L', is an object in PBSy.

4.2.3 Functorial relationships

In order to determine the functorial relationships between the categories PB.S, and
VA;, we will need to construct two functors: F from the category PBS, to the
category VA, of L-VL-algebras, as well as GG from the category V. A, to the category
PBS;,.

Definition 4.2.13. We define a functor F : PBS; — VA, as follows:

(1) F acts on an object (B,ag) in PBS; as F(B,ag) =
(Hompps,.((B,ag), (L,ag)),V,\,—,T,(p € £L),0,1), where (B,ap) is
an object in PBSp. The operations V,N\,—,T,(p € L),0,1 on the set
Hompps,((B,ag), (L,ar)) are defined pointwise i.e., (¢ V n)(b) = ¢(b) Vn(b),
(@ An)(b) = ¢(b) An(b), (¢ — n)(b) = ¢(b) = n(b), T,(¢)(b) = T,(¢(b)), and
the operations 0,1 are considered to be constant functions, whose values are

zero and one, respectively.

(i) F acts on an arrow ¢ : (B,ag) — (B',ap) in PBS, as follows:
F(¢) : F(B,am) — F(B,as) defined by F(¢)(n) = o 6, where 1 €
HOmpBSL((B,,OéB/),(E, C(g)).
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The well-definedness of the functor F' is shown by Proposition [4.2.3] and Propo-
sition [£.2.4]

Proposition 4.2.3. For an object (B, ap) in PBS,, F(B,ag) is an object in VA,.

Proof. 1t ¢,n : ((B,78,78),a5) — ((L,7,7),ar), where 7 is the dis-
crete topology on L, are both pairwise continuous maps, then ¢ V n,¢ A
n,¢ — n,T,(¢) are also pairwise continuous maps. As a result, it
can be shown that if ¢,n € Hompps.((B,ag),(L,az)), then ¢ V n,¢ A
n,¢ — 1n,T,(¢) € Hompps.((B,ag),(L,ar)). Now it is being observed that
(Hompps,((B,ag), (L,az)),V,\,—,Ty(p € £),0,1) is a L-VL-algebra. O

Proposition 4.2.4. For an arrow ¢ : (B,ag) — (B',ag) in PBS., F(¢) is an
arrow in VA,.

Proof. We recall that F(¢) : F(B',ar) — F(B,ag) is defined by F(¢)(n) =no ¢,
where n € Hompgps, ((B',ap), (L, or)). Now F(@)(n V n2) = (m Vnz)o¢ = (mo
@)V (20 ¢) = F(¢)(m)V F(¢)(n2). Similarly, F'(¢)(m Anz) = F(¢)(m) A F()(n2),
F(¢)(m — m) = F(o)(m) = F(9)(n2), F(¢)(Tp(n)) = Tp(n) o ¢ = Tp(no ) =
T,(F(¢)(n), F(¢)(0) =0, F(¢)(1) = 1. Therefore, F'(¢) preserves all the operations
NV, =, T,(p € L£),0,1. Henceforth, F(¢) is an arrow in V. A,.

L]

Definition 4.2.14. We define a functor G : VA — PBS; as follows:

(1) G(A) = (Homya,.(A,L),01,09,c4), where A is an object in VA;. The map-
ping aa: X — Qromy ., (Ac) 8 defined by ax(L') = Homya, (A, L').

(i) For an arrow g : Ay — As in VA, define G(g) : G(A2) — G(A1) by
G(g)(n) = po g, where p € G(Ay).

Remark 4.2.2. In the first part of the above Definition [4.2.1]), we take as(L') =
Homya, (A, L"), where L' is a sub-algebra of L. We note that the subset
Homyu, (A, L") of Homya, (A, L) is o1-closed and o9-closed i.e., pairwise closed,
where the topologies o1, and oy are generated by the bases {{(z) : = € A} and
{{T\(x) = 0) : x € A}, respectively.

Remark 4.2.3. For a L-VL-algebra A, (Homya, (A, L),01,02) is a bitopological
space. The topologies o1 and oo are generated by the bases B = {{a) : a € A},
where (a) = {v € Homya, (A, L) : v(a) = 1}, and B> = {O° : O € B},

respectively.
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Well-definedness of the functor G is shown by Proposition [4.2.5] and Proposition
4.2.0l

Proposition 4.2.5. For an object A in VA, G(A) is an object in PBS;.

Proof. We recall from Definition that G(A) = (Homya, (A, L), 01,02, a4).
First, we show that (Homya,(A,L),01,02) is a pairwise Hausdorff space. Let
v1,v2 € Homya, (A, L) such that v; # vy. Then there exists an element a € A
such that vy € (a), but vy ¢ (a), and thus there exists disjoint open sets U € oy,
V € 0y such that v; € U, and v, € V.
Second, we show that (Homy 4, (A, L), 01, 09) is pairwise compact. In this instance,
we see that oy U oy C o0y. Since, (Homya,. (A, L),01) is compact, it follows that
(Homy, (A, L),01,0,) is pairwise compact.
Finally, we prove that (Homya,(A, L), 01,02) is a pairwise zero-dimensional. To
prove that (Homya, (A, L),01,0,) is a pairwise zero-dimensional, we shall show
that B = o1 N g9, and B?2 = 09N 0;. We find that if u € B, then u € o;.
Since u € B?', we have u = (a), for some a € A. Now u¢ = (Ti(a) — 0), and
hence u® € B?2. As a result, u € po. Therefore, we have u € o1 N 5. Next we take
u € o1 N g9, and prove that u € B?'. Since B! is the basis for the topology o1, so
u can be expressed as the union of the members of B7. As (Homya, (A, L),01,0)
is pairwise compact, so by Proposition [4.2.2] we have u is compact. Therefore, u
can be covered by the finite collection of that members of B?'. As the finite union
of the members of B! is also in B!, hence u € B?'. Consequently, B7* = g1 N 0s.
Analogously, we can show that B??2 = o, N p;. Therefore, we can conclude that
(Homya,.(A, L),01,09) is a pairwise Boolean space.
It is easy to follow that the mapping a4 : Xz — Qrom, ap (AL) satisfies the condi-
tions given in the object part of Definition Henceforth, G(.A) is an object in
PBS,.

]

Proposition 4.2.6. For an arrow g : Ay — Ay in VA, G(g) : G(Az) — G(A)

1s an arrow in PBS,.

Proof. For a basis open set (x), where x € A;, in the topology afl on G(A;), we
get

G(g9)"'((z)) = {¢ € Homya,(As, L) : G(g)(9) € (x)}
={p € Homya, (A2, L) : pog € (x)}
= (g(x)) € 07",
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Next we see that for a basis open set (x)¢, where = € Aj;, in the topology 0541 on

G(A)

G(g9) " ((x)) = {¢ € Hompa,(As, L) : Gg)(¢) € (x)°}
={¢p € Homya,(As,L) : poge (Ti(x) = 0)}
= (Ti(g(x)) = 0) € 03°.

Therefore, the mapping G(g) is pairwise continuous. We also observe that, if £ €
a4, (L), then G(g)(€) € aq (L). As a result, G(g) is an arrow in PBS.
m

4.3 Bitopological duality

We now establish a duality for algebras of Fitting’s many-valued logic in a bitopo-
logical setting.

Theorem 4.3.1. The category VA, is dually equivalent to the category PBS,.

Proof. We shall prove this theorem by defining two natural isomorphisms [ :
Idy — F oG and ¢ : Idpps, — G o I, where Ids and Idpps, are respec-
tively the identity functors on the categories VA, and PBS.. Now for a L-VL
algebra A, define g4 : A — F o G(A) by f4(a)(¢) = ¢(a), where a € A and
¢ € G(A) = Homya, (A, L). It is straightforward to demonstrate that 54 is a
homomorphism. Using Theorem and Proposition we can establish that
(4 is one-one and onto. Consequently, 5 is an isomorphism. The fact that 3 is a
natural transformation is easily verified. Consequently, 5 is a natural isomorphism.
Again, for an object (S,as) in PBSg, define (505 @ (S,as) — G o
F(S,as) by (sas)(s)(®) = 9(s), where s € S and ¢ € F(S,as) =
(Hompps,((S,as), (L£,az)),V,A,—,T,(p € L£),0,1). We shall show that (s ag)
is a bi-homeomorphism. As ¢y € Hompgs,((S,as), (L, ar)), so for each s € S,
((s,a5)(8) is a L-VL-algebras homomorphism. Henceforth, (s ay) is well-defined.
To prove the pairwise continuity of ((sa.s), we show that (&as)(@»,
where v € Hompgs,((S,as),(L,az)) is 70-open and C(Tsl,as)(@)C)? v
Hompps,((S,as), (L, ar)) is 75 -open.
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Now

(Bag) ((0) = {5 € S : ((s,a6)(5) € (v)}
={s €S (sas)(s)(v) =1}
=v ' ({1}).

As v71({1}) is 7-open, so Q(}las)(@» is 77-open.
Also we get,

(o) (1)) = {5 € 8 : ((s,8)(5) € (T2 (v) = 0)}
={s€8: (s05)(5)(T1(v) = 0) =1}
= (Tv(v) = 0)~'({1}).

Since (T3 (v) — 0)~({1}) is 75-open, henceforth C(gl’as)(@f) is 79-open.

Now we show that ((s.g) is injective. For any two points s,5" € S, let s #
s'. Then, ((s,05)(5):((s,05)(5") € G o F(S,as). We shall show that ((sag)(s) #
((s,a5)(8"). Suppose for contradiction, we take ((s.a5)(5) = ((s,a5)(s"). Now {(v) :
v € Hompps,((S,as),(L,ac))}, and {{(v)¢ : v € Hompps, ((S,as), (L,az))} are
the bases for the topologies 0y and o, on GoF(S, as), respectively. So, ((s,qs)(s) can
be expressed by o1-basis open sets. Also, it can be expressed by oo-basis open sets.
Let ((s,05)(5) € (v). Then, we get v(s) = v(s’) = 1. Since S is pairwise Hausdorff,
we get s = s'. Similarly, if {(s,04)(5) € ()¢, then we get s = s’. Consequently, ((sas)
is injective.
Next we show that ((sg) is onto. Let ¢ € G o F/(S, ). Define S; = {v7'({1}) €
B p(v) = 1} and Sy = {u € B5 : u® ¢ Si}, where 87, and 37 are the bases
for the topologies 7{ and 75, respectively. We show that S; U S, has the finite
intersection property. Since, (S; U S2) N (S7USE) = (S1 NS U (S2NSY), and
v ({1} N {1}) = (v AV)TH({1}), we have to show that v~ ({1}) # () under
the condition that ¢(v) = 1. Suppose ¢(v) = 1 but v *({1}) = (. Then we have
Ti(v) = 0, and henceforth T1(¢(v)) = ¢(T1(v)) = 0 = ¢(v) = 0, which contradicts
the assumption that ¢(v) = 1. Thus, S; U Sy has the finite intersection property.

As § is pairwise compact and pairwise Hausdorff, thus there exists s € S such
that {s} = ((S1 U S2). If s € S, then we get v(s) = 1, whenever ¢(v) = 1. More-
over, we can get if v(s) = 1, then ¢(v) = 1. For contradiction we take ¢(v) # 1.
Then T1(¢(v)) = 0, and hence ¢(71(v)) = 0. Now ¢(73(v)) — 0 = 1, and thus we get
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¢(T1(v) — 0) = 1. Since, ¢(T1(v) — 0) = 1, according to definition of S;, we have
(T (v) = 0)(s) = 1. As aresult, we get T1(v(s)) = 0. Now Ti(v(s)) =0 = v(s) # 1.
Hence, for any v € Hompps, ((S,as), (L, az)), ¢(v) =1 < v(s) = 1. Thus, we have
((S,a5)(8) = ¢. Similarly, if s € Sy, then we can also get ((s,a5)(5) = ¢. Therefore,
((5,as) is onto.
Finally, we show that C(;as) is pairwise continuous. It can be shown by verify-
ing that ((sag) is a bi-closed map. Let U be a 77-closed set. Since (S,79,75)
is a pairwise Boolean space, both (S,77) and (S,75) are compact. Consequently,
((s,a5)(U) is compact in Homya,(Hompps,((S,as), (£, o)), L). We observe that
the topological space (Homy ,.(Hompgs, ((S,as), (L, ar)), L), o1) with basis {(v) :
v € Hompps,((S,as), (L, ar))} is itself a Hausdorff space, and thus ((sas)(U) is
closed. The topological space (Homya,(Hompps,((S,as),(L,ar)),L),02) with
basis {(T1(v) = 0) : v € Hompps,((S,as), (L, ar))} is itself a Hausdorff space, so
for a my-closed set U’, ((s,a5)(U’) is closed. Therefore, (s ay) is a bi-homeomorphism.
It is simple to verify that (s ), and g(jsl,as) satisfy the condition given in item 2
of Definition The verification that ¢ is a natural transformation is simple.
Hence, ( is a natural isomorphism.

[

4.4 Conclusion

The primary outcome of this chapter is a duality for Fitting’s Heyting-valued logic,
which is obtained using an expanded form of the theory of natural dualities based
on the theory of bitopology. We have proposed the category PBS, of L-pairwise
Boolean spaces and linked it to the category V. A, of algebras of Fitting’s Heyting-
valued logic via suitable functors. We have therefore discovered a duality for Fit-
ting’s Heyting-valued logic. Throughout this chapter, we have tried to show how
logic, algebra, and bitopology are conceptually and technically related through the
extended version of Stone-type duality in a bitopological context.
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Chapter 5

Intuitionistic version of Natural
Duality Theory

5.1 Introduction

[The primary objective of this chapter is to extend the natural duality theory for
ISP1(L), the class of all isomorphic copies of sub-algebras of intuitionistic power of
finite algebra £. This will allow the theory of natural dualities to incorporate Esakia
duality for Heyting algebras [64]. Let us begin by discussing an aspect of natural
duality theory and the difficulties of incorporating it into the Esakia duality for the
class of all Heyting algebras. We will then see how ISP; can help us address the
challenge.

The natural duality theory [13] offers a potent comprehensive explanation of Stone-
Priestley-type dualities based on the methods of universal algebra. It primarily cov-
ers duality theory of ISP(L). This approach proves beneficial in discovering novel
dualities. It encompasses several previously established dualities, such as Stone du-
ality for Boolean algebras [51], Priestley duality for distributed lattices [56], among
others (see [45, 146, [47] for additional examples). However, it fails to incorporate
Esakia duality for the class of all Heyting algebras. Although algebras of £-valued
logic can be loosely characterized as ISP(L), it is not able to represent the class
of all Heyting algebras for any finite algebra £. It is important to point out that
the implication operation of a Heyting algebra cannot be defined pointwise on the

The results of this chapter can be found in [58] Das, Litan Kumar., Ray, Kumar Sankar.:
Bitopological duality for algebras of Fitting’s logic and natural duality extension. Acta
Informatica, 58(5), 571-584 (2021).
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topological space of prime filters of the Heyting algebra. For that same reason, it is
not possible to describe the class of all Heyting algebras as ISP(£). Maruyama [41]
also brought attention to this issue and proposed the concept of ISP;(L).
Maruyama [41] utilized Hu-duality [44] to develop a duality for ISPy (L), a modal-
ization of the notion of ISP(L). This allowed for the successfully unification of
Jonsson-Tarski duality(e.g., [35, 54, 29]) and Abramsky-Kupke-Kurz-venema dual-
ity(e.g., [1,55]). Furthermore, he proposed the ideas of ISgIP(£) and ISP;(L£), which
reflected two alternative viewpoints on intuitionistic logic: the former, residuation-
based, and the latter, Kripke semantic-based. Maruyama [52] obtained a duality
for ISgP(L), and incorporated Esakia duality into natural duality theory. In this
chapter, we consider the notion of ISP(L) as a means of extending the theory of
natural dualities, which in turn incorporates the Esakia duality. A noteworthy ob-
servation is that ISP;(£) coincides with the class of all Heyting algebras if £ is the
two-element distributive lattice. In order to develop a duality for ISP;(L), we first
set up a duality for ISP(L).

5.2 The concept of ISPy

Throughout this section, let £ refer to a finite algebra with a bounded lattice
reduct. Logically, one would anticipate that there is a bounded lattice reduct as
most logics are endowed with the lattice connectives meet(A) and join(V), along
with the truth constants 0 and 1. From the viewpoint of logic, we may perceive L
as an algebra of truth values. Let ISP(L) represent the class of all isomorphic copies
of sub-algebras of direct powers of finite single algebra £. For the 2-element dis-
tributive lattice {0, 1}, ISP({0, 1}) coincides with the class of all distributive lattices.

The category [SP(L) is defined as follows:
Definition 5.2.1. (i) Objects: objects in ISP(L) are algebras in ISP(L);

(i1) Arrows: arrows in ISP(L) are homomorphisms, where a homomorphism is

defined by a function between the objects, which preserve the operations defined

on L.

An intuitionistic Kripke frame can be defined by the tuple (W, R), where W is
a non-empty set and R is a partial order relation on it. Consider (£, <) is a poset
such that ¢ < 0y iff 41 V 5 = {5, equivalently, /1 A {5 = £;. For any two elements
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ri,re € Loy = ro=\{l0EL:r N <13}
We now define the notion of intuitionistic power.

Definition 5.2.2 ([41]). The intuitionistic power of L with respect to an intuition-
istic frame (W, R) is defined as LY € ISP(L) equipped with the binary operation
— (intuitionistic implication) on LY defined as (f — g)(w) = AN{f(w') — g(w') :
wRw'}, where f, g € LY.

The concept of ISPy(L) is given in the following definition.

Definition 5.2.3. ISP(L) represents the class of all isomorphic copies of sub-

algebras of intuitionistic power of L.
The category I.SPr(L) is defined as follows.

Definition 5.2.4. ISP;(L) denotes the category of algebras in ISP1(L) and homo-
morphisms between algebras, where a homomorphism is defined by a function that

preserves the implication operation — and all the other operations of L.

For an object A in ISP(L), HOM;sp(r)(A, L) denotes the set of all homomor-
phisms between algebras A and L.

Definition 5.2.5. We define an order relation R on Homisp)(A, L) as follows:
for any vi,v, € Homispr)(A, L), viRvy iff vi(x) < ve(x), for all v € A. Then
(Homysp)(A, L), R) is a poset.

Definition 5.2.6. For any object (A, —) of ISPi(L), and v € Homsp)(A, L),
ISPy(L) satisfies the intuitionistic Kripke model condition iff v(zx — y) =

N w(z) =, w(y) : vRw}.

A zero-dimensional compact Hausdorff space is called a Stone space [7]. An
ordered topological space is defined by a triple (X, 7, R), where the tuple (X, 1) is
a topological-space and (X, R) is a partially ordered set. For an ordered set (X, R),
we have R(x) = {y € X : xRy} and R~'(X,) = {y € X : yRx, for some z € X;},
where Xy C X. Then R(z) is an up-set, and R7!(X) is a down-set.

5.3 Duality for ISP(L)

In this section, we shall establish a duality for ISP(L). To establish a duality for
ISP(L), we consider some term functions. It is important to note that £ is dualizable
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in terms of discrete topology. The term function (also known as a polynomial
function) is defined according to [5]. We now recall the concept of topological
dualizability from [52].

Definition 5.3.1 (|52]). Let F be a finite algebra. Then F is said to be dualizable
in respect of a topology defined on F if and only if Vn € w, Tf(F) = C(F",F),
where T f(F), and C(F™, F) are denote the set of all n-ary term functions on F,
and the set of all continuous functions from F™ to F, respectively.

Definition 5.3.2. For each ¢ € L, we consider a term function Ty : L — L defined
by
1 s=1¢
To(s) —
() { 0 54/

From a logical perspective, T;(s) suggests that the truth value of a proposition
s is exactly ¢, where ¢ is an element of £ which is the algebra of truth values.

Definition 5.3.3. For each { € L, we consider a term function x, : L — L defined

by
{ s=1
Xels) = { 0 otherwise
It should be emphasized that homomorphism commutes with the term functions.
Category:Pspa

Definition 5.3.4. We consider a category PSpa as follows:

1. Object: An object in PSpa is a triple (X, 7, R), where (X,T) is a compact
space, and R is a partial order relation on X such that the following condition

hold:

(i) if © /Ry, then for some clopen up-set W of X such that x € W but

2. Arrow: An arrow ¢ : (X, 711, R1) — (Y, 72, R2) in PSpa is a continuous map
Y (X,n) — (Y, 7)), which is order preserving i.e., for any x,y € X, if
xRy then ¢ (x) Ryt (y).
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For A € ISP(L), (HOM;sp)(A, L), 7, R) is an ordered topological space, where
the topology 7 is generated by {(a) : a € A}, (a) = {v € HOM;sp)(A, L) : v(a) =
1}. Then for each a € A, the set (a) is a clopen up-set.

Functors: G and C

Definition 5.3.5. We define a functor G : ISP(L) — PSpa as follows:
e G acts on an object A in ISP(L) as G(A) = (HOMisp)(A, L), T, Ra).

e G acts on an arrow f: A — B in ISP(L) as G(f) : G(B) — G(A) defined
by G(f)(¢) =do f, ¢ €G(B).

We shall now verify the well-definedness of the functor G.

Lemma 5.3.1. For an object A in ISP(L), (HOM;sp)(A, L), Ra) is an object in
PSpa.

Proof. HOMigp)(A, L) is a compact set as L4 with the product topology is com-
pact, and HOM;spr)(A, L) is closed in the defined topology 7, which can be induced
by the product topology on L£A.

Now, if v R w, then there exists an element a € A such that v(a) = 1 and w(a) # 1.
Thus v € {a), and w € (a)°. O

Lemma 5.3.2. For an arrow f in ISP(L), G(f) is an arrow in PSpa.

Proof. For a given arrow f: A — Bin ISP(L), G acts on f as G(f) : G(B) —
G(A) defined by G(f)(¢) = ¢ o f. It is observed that for each a € A, G(f) "' ({a)) =
{veg(B):vo f(a)=1} = {(f(a)). Thus, G(f) is a continuous map.

Now for any two members v, w of G(B), if vRpw, then we have v(b) < w(b), Vb € B.
Henceforth, v(f(a)) < w(f(a)), Va € A, and thus G(f)(v)RaG(f)(w). O

Therefore, the functor G is well-defined by Lemma [5.3.1] and Lemma [5.3.2]
Definition 5.3.6. We define a functor C : PSpa — ISP(L) as follows:
e C acts on an object (S, R) in PSpa as C(S,R) = HOMpgp.((S, R), (L, <)).

e C acts on an arrow [ : (S1, R1) — (S2, R2) in PSpa as C(f) : C(Sz, R2) —>
C(S1, Ry) defined by C(f)(¢) = do f, ¢ € C(S2, Ra).

60



Intuitionistic version of Natural Duality Theory

Note 5.3.1. For each object (S, R) in PSpa, the set HOMpg,q((S, R), (L, <)) is
endowed with operations V,A\,0,1 which are defined pointwise i.e., for any f,g €

HOMpspa((S, R), (£,<)), (fVg)(s) = f(s)Vg(s), (f Ng)(s) = f(s) Ng(s) and the
operations 0,1 are treated as constant functions with values 0 and 1, respectively.

The following Lemmas [5.3.3| and [5.3.4] show the well-definedness of the functor
C.

Lemma 5.3.3. For an object (S, R) in PSpa, (HOMpgs,.((S, R), (L, <)),V,A,0,1)
is an object in ISP(L).

Proof. This arises from the fact that (HOMpgp.((S, R), (£, <)), V,A,0,1) is a subal-
gebra of a direct power £ of £. Consequently, (HOMpg,.((S, R), (£,<)),V,A,0,1)
is an object in ISP(L). O

Lemma 5.3.4. For an arrow f : (S, R1) — (S, R2) in PSpa, C(f) is an arrow
in ISP(L).

Proof. Well-definedness of the map C(f) is followed by the construction of C(f),
and the fact that ¢ is an order-preserving continuous map. It is easy to follow that
C(f) preserves all the defined operations. Thus, C(f) is a homomorphism between
objects in I.SP(L). Consequently, C(f) is an arrow in ISP(L). O

Theorem 5.3.1. For an object A in ISP(L), A is isomorphic to CoG(A) in ISP(L).

Proof. Define a map 04 : A — C 0 G(A) by ga(a)(v) = v(a), where a € A, and
v € G(A). Now it is easily observed that, for each a € A, 04(a) € C o G(A). For
each a € A, and s € L, o4(a) ' ({s}) = {v € HOMspc)(A, L) : v(a) = s} =
{v e HOMspy(A, L) : Ty(v(a)) = 1} = (Ts(a)). Henceforth, {oa(a):a € A} C
C o G(A). So, o4 is well-defined. Since the operations are defined point-wise on
CoG(A), o4 preserves all the operations. Thus, 04 is a homomorphism.

We now show that o4 is one-one. For any members a,b € A, if a # b, then we
claim that o4(a) # oa(b). As A € ISP(L), by definition of ISP(L) we have A is
isomorphic to a sub-algebra of direct power £7 of £. Therefore, a,b € £7, and thus
a(A) # b(\), for some A € J. Define a homomorphism v : A — L by v(a) = a(A).
Then, v is well-defined, since the operations are defined pointwise on £7. Henceforth,
oa(a)(v) # oa(b)(v).

Now if ¢ € CoG(A), we claim that 1) = o 4(a), for some a € A. For £ € L, = ({(})
is a clopen subset of G(A), and hence "' ({¢}) is a compact subset of G(A). So,
Y1 ({¢}) can be expressed as finite union of basis open sets in HOMsp(z)(A, £).
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Let ¥ *({¢}) = (as). Now we claim that aA(\/ xelag)) = . It v e v {{}),

then O'A(\/ xe(ae))(v) = ¥(v). Also, if v € v ({p}), then v(x,(ar)) = ¢, if £ = p,

and v(xe(ag)) = 0, if £ # p. Consequently, O'A(\/ xe(ae))(v) = v(\/ Xe(ag)) =
teL teL

\/ v(xe(ap)) = p = ¥(v). Therefore, 1) = o4(a), where a = \/ Xe(ap). Hence, o4 is

teL teL
surjective. Finally, we have o4 is an isomorphism. This completes the proof. O]

Theorem 5.3.2. For an object (S, R) in PSpa, (S, R) is homeomorphic to G o
C(S,R).

Proof. Define a map dg : (S,R) — G o C(S,R) by és(s)(f) = f(s). For each
s € S, d5(s) is a homomorphism, as the operations are defined pointwise on C(.S, R).
Therefore, dg is well-defined. Now we observe that if f € C(S, R), then d5'((f)) =
{s €8 :6d5(s)(f) =1} = f~*({1}), is an open up-set in (S, R). ds is also an order
preserving map, because if s;Rso then f(s;) < f(s2). Therefore, dg(s1)R ds(s2),
where R’ is interpreted as a partial order relation on G o C(S, R) in accordance with
Definition [£.2.5]

Let s # t in S. We claim that d5(s) # dg(t). The claim is demonstrated by the
fact that G o C(.S, R) is an object in PSpa, ensuring that it is zero-dimensional and
Hausdorff. Thus, there exists ¢ € C(S, R) such that ¢(s) # ¢(t). As a result, dg is
one-one.

We now show that dg is surjective. We already observe that {dg(s) : s € S} C
GoC(S,R). As d5(S) is compact subset of G o C(S, R), hence dg(S) is closed. If
ds is not surjective, then there exists v € G o C(S, R) such that v ¢ 0g(S) i.e.,
v # dg5(s), for any s € S. Therefore, there exists a clopen up-set W in G o C(S, R)
containing v, but not J¢(S). As W is compact, so W can be expressed as finite
union of basis open sets. We may consider W = (f) A (g)¢, for some f, g € C(S, R).
Now 351 (1) = 851 ((f)) A 65 ((9)°). Since 85" (W) = b, hence 55'((f)) € 65 ((9))
Therefore, we have f~1({1}) C g '({1}). Then, T1(f) < Ti(g). Consequently, we
get v(T1(f)) = 1 and v(T1(g)) = 1. Since, v(g) # 1, this contradicts the fact that
v(T1(g)) = 1. Therefore, 65(S) =G oC(S, R).

It is easy to observed that g is a closed map.

We now demonstrate that for any two members s1,s55 € S, if dg(s1)R'd5(s2) then
s1Rsy. We demonstrate an equivalent statement, which reads as follows: if s; Rss,
then dg(s1) R'0s(s2). Since s; MRSy, then there exists a clopen set U C S such that
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sy €U and U N R(s1) = . Define f: S — L by

R

Then, f is continuous, and f(s1) £ f(s2). Hence, ds(s1)(f) AR'ds(s2)(f). Therefore,
for any s1,s2 € S, s1Rsq iff dg(s1)R d5(s2). Now (5§1 is an order-preserving map,
since dg is bijective, and the relation s;Rsy <= dg(s1)R'0s(s2) holds. O

Theorem 5.3.3. The category ISP(L) is dually equivalent to the category PSpa.

Proof. Let IDrsp(r), and I Dpgp, denote the identity functors on ISP(L) and PSpa,
respectively. We consider two natural transformations o : IDrgps) —+ C o G, and
0 : IDpgpa —> G o C. Now for each object A of ISP(L), we consider o4 : A —
C o G(A) by ga(a)(v) = v(a), where v € G(A). Moreover, for an object (S, R) of
PSpa, consider d5(s)(f) = f(s), where f € C(S, R). Then, it is easily shown that
o and 0 are natural transformations. Also, ¢ and  are natural isomorphisms by

Theorem and Theorem [5.3.2 Therefore, we can conclude that the category
ISP(L) is dually equivalent to the category PSpa. ]

We now use Theorem to develop a duality for ISPy(L).

5.4 Duality for ISPy(L)

Category: Hspa
Definition 5.4.1. We take a category HSpa as follows.

1. Object: An object in HSpa is defined by a triple (S, T, R) such that (S, T, R) is
an object in PSpa which additionally satisfies the following condition:

(1) if C is a clopen subset of S, then R~(C) is a clopen down-set of S.

2. Arrow: An arrow ¢ : (Sy, 11, R1) — (S, T2, Ra) in HSpa is an arrow in PSpa

which satisfies the following condition:

(i) for any members s; € Sy, and sy € Sa, if ¢(s1)Rase then there exists
s € 51 such that sy Rys and ¢(s) = s.
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Functors: G; and C;

Definition 5.4.2. We define a functor Gy : ISP(L) — HSpa as follows:
e G; acts on an object (A, —) in ISP(L) as Gr(A) = (HOM;sp,)(A, L), Ra).

e G; acts on an arrow f : A — B in ISP(L) as Gi(f) : G/(B) — G;(A)
defined by Gi(f)(¢) = ¢o f, ¢ € Gi(B).

Lemma 5.4.1. For an object (A, —) in ISP;(L), Gi(A) is an object in HSpa.

Proof. By Lemma , Gr(A) is an object in PSpa. We shall show that for each
clopen subset U of S, R,;'(U) is a clopen down-set. Since, {{a) : a € A} is a clopen
basis for the topology on HOM;sp()(A, L), and RAfl preserves union, therefore
we show that R;'({a)) is a clopen down-set, for each a € A. We now verify that
Ry'({a)) = (a — 0)°. If v € (a — 0)¢, then v(a — 0) # 1. By Definition [5.2.6]
we have v(a — 0) = A{u(a — 0) : vRau} = A{u(a) — 0 : vR u}. Since,
u(a) = 0 =0 or 1, so that there exists u € HOM sp(r)(A, £) such that vR u and
u(a) — 0 = 0. Thus, u(a) = 1. Henceforth v € R;*((a)). Again, if v € R;'({(a)),
then there exists v € (a) such that vRqu. So v(a — 0) = 0. Hence, v € (a — 0)°.
Finally, we have R;'((a)) = (a — 0)¢, a clopen down-set. O

Lemma 5.4.2. For an arrow f : (A,—) — (B, —) in ISP;(L), G/(f) is an arrow
m HSpa.

Proof. Here G;(f) : Gi(B) — Gi(A) is defined as G;(f)(¢) = ¢ o f, where
¢ € Gi(B). Then by Lemma [5.3.2) G;(f) is an arrow in PSpa. Next, we show
the condition found in the arrow part of Definition [5.4.1 We demonstrate the
equivalent condition that G;(f)(Rg(v)) = Ra(Gi(f)(v)), Vv € G(B). We verify
that if ¢ ¢ G;(f)(Rp(v)), then ¥ ¢ R4(Gr(f)(v)). Since, ¥ ¢ Gi(f)(Rp(v)), then
Y # Gi(f)(w), for any w € HOM gpr)(B, L) such that vRgw. Then by the object
part of Definition [5.3.4] we can take ¢ € (a) and G;(f)(w) € (a)‘. Suppose for con-
tradiction, if ¢ € R4(G;(f)(v)), then (vo f)Ra1. Therefore, by definition of R4, we
have (vo f)(a) < ¥(a), Va € A. Then (vo f)(a — 0) < (a— 0). But ¢(a — 0) =
YP(a) = 0=0,as ¥(a) = 1. Now G;(f)(v)(a = 0) = A{G:(f)(w)(a — 0) : vRpw}.
Since Gr(f)(v)(a — 0) = 0, hence there exists w € HOM;gp() (B, L) such that
vRpw and Gr(f)(w)(a — 0) = 0. We see that G;(f)(w)(a — 0) = G;(f)(w)(a) —
0=0= G;(f)(w)(a) = 1. This contradicts the assumption that G;(f)(w) € (a)°.
Hence ¢ ¢ Ra(G;(f)(v)). Thus equivalently we have, if ¥ € RA(G;(f)(v)) then
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v € Gi(f)(Rp(v)). Therefore, Ra(G;(f)(v)) € Gi(f)(Rp(v)). It is easy to show
that G;(f)(Rp(v)) € Ra(Gr(f)(v))- O

Therefore, the functor Gy is well-defined by Lemma [5.4.1, and Lemma |5.4.2]
Definition 5.4.3. We define a functor C; : HSpa — ISP;(L) as follows:

e C; acts on an object (S, R) in HSpa as C;(S,R) = (HOMpg,a((S, R), (L, <
), =)

e C; acts on an arrow f : (S1,R1) — (S2,Ry) in HSpa as Ci(f)
Cr(Sa, Ro) — Cr(S1, Ra) defined by Cr(f)(¢) = ¢ o f, where ¢ € C1(S2, Ry).

Lemma 5.4.3. For an object (S, R) in HSpa, C;(S, R) is an object in ISP;(L).

Proof. As per Note[p.3.1, HOMpgpa((S, R), (£, <)) is an object in ISP(L). To prove
Cr(S, R) is an object in ISP;(L), we shall demonstrate that if f,g € C;(S, R), then
f—=g€Ci(S,R). Now (f = g)"'({¢}) ={s € S: (f = g)(s) = £}. By Definition
b.2.2 we observe that (f — ¢)7({¢}) = R (¢ ({¢})) N (R1(f*({¢})))°. Then
by Definition 5.4.1, R™'(¢7*({¢})) N (R™*(f~'({¢})))¢ is a clopen set in S. Hence
f — g €Cr(S,R). As a result, the intuitionistic implication operation(—) is well-
defined. Therefore, C;(S, R) is a sub-algebra of intuitionistic power £% of L. So,
Cr(S, R) is an object in ISPr(L). O

Lemma 5.4.4. For an arrow f : (S1, Ry) — (S2, R2) in HSpa, C;(f) is an arrow

Proof. C;(f) is an arrow in ISP(L), according to Lemma [5.3.4, The only thing
left to prove is that C;(f)(g1 — g2) = Ci(f)(g1) — Ci(f)(g2). Now for s; € Sj,
Cr(N)gr = g)(s1) = (g1 = g) o fls1) = NMoi(y) = 92(y) = f(s1) Ry}, and
Cr(f)gr) = Ci(f)(g2))(s1) = (grof = g20 [)(s1) = N{(g10f)(s2) = (g2 0
(s2) = siRise} = A{g1(f(s2)) = g2(f(s2)) : s1Rise}. Because f is an order
preserving map, we notice that A{gi1(y) — g2(y) : f(s1)Ray} < N{o1(f(s2)) —
g2(f(s2)) : s1Rys2}. Furthermore, f meets the requirement stated in the arrow part
of Definition [5.4.1, so we have A{gi(f(s2)) — g2(f(s2)) : s1Ris2} < A{o1(y) —
92(y) = f(s1)Ray}. Thus Ci(f)(g1 = g2) = Ci(f)(g1) = Cr(f)(g2)- 0

Therefore, the functor C; is well-defined by Lemma [5.4.3] and Lemma [5.4.4]

Theorem 5.4.1. For an object (A, —) in ISP;(L), A is isomorphic to C;r o G;(A)
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Proof. Define o4, : A — C; 0 Gi(A) by 0(a—(a)(v) = v(a), where a € A, and
v € Gr(A). Theorem m proves that (4 _,) is an isomorphism in ISP(L). It is
therefore necessary to demonstrate that o4 )(a — b) = o,)(a) = o (D).
Now [o(a)(a) = o)) = Mo (a)(w) = ou-b)(w) : vRaw} =
MNMw(a) = w(b) : vRaw}, where R4 is a partial order relation on HOM sp,(z)(A, L)
defined in line with Definition [5.2.5] It is seen from Definition that A{w(a) —
w(b) : vRayw} = v(a — b) = 0(a,)(a = b)(v). Hence, o4, )(a = b) = (a5 (a) =
o(a,-)(b). O

Theorem 5.4.2. For an object (S, R) in HSpa, (S, R) is isomorphic to GroC;(S, R)
i the category HSpa.

Proof. Define 6(gr) : (S, R) — GroC;(S,R) by 0(s,r)(5)(f) = f(s), where s € 5,
and f € C;(S, R). It is observed from Theorem that d(s r) is an isomorphism
in the category PSpa. In Theorem [5.3.2] we see that the relation s;Rsy; <=
ds(s1)R'ds(s2) holds for all s1,so € S, where R’ is the partial order relation on
G o C(S,R). So by definition of d(spr), we can conclude that (s r) satisfies the
relation sy Rsy <= 0(g,r)(51)R'0(s,r)(52). Because és gy is bijective and fulfils the
relation sy Rsy <= 0(s,r)(51)R'0(s,r)(52), it is readily proved that d(g g) and 5(_31,1%)
satisfy the requirement stated in the arrow part of Definition [5.4.1 Thus, (g r) is

an isomorphism in Hspa. This wraps up the proof.
m

Finally, we obtain the duality theorem for ISPy(L).

Theorem 5.4.3. The category 1SP;(L) is dually equivalent to the category HSpa.

Proof. Let IDgp,(r), and IDpgg,, denote the identity functors on ISP;(L) and
HSpa, respectively. We consider two natural transformations o : IDjgp,(s) —
CroGr, and 0 : IDyspe —> Gr o Cr. Then for each object (A, —) of ISP[(L), we
define o4,y : A — Cr0G(A) by 0(a)(a)(v) =v(a), v € G/(A). Moreover, for an
object (S, R) in HSpa, we define 6(gr) : (S, R) — Gr o C;(S, R) by d(s,r)(s)(f) =
f(s), f € Ci(S,R). Then, it is simple to verify that ¢ and ¢ are, in fact, natural
transformations. Theorems [5.4.1] and 5.4.2] demonstrate that ¢ and ¢ are natural
isomorphisms. Thus, the categories I.SP;(L£) and HSpa® are equivalent. m

We have extended the duality: ISP(L) = Pspa® to the duality: ISP;(L) =
Hspa?. Tt would be difficult to achieve an intuitionistic version of natural duality
theory without the innovative concept of ISIP;.
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5.5 Conclusion

To wrap up this chapter, we have introduced the novel notion of ISP} and developed
an intuitionistic version of natural duality theory. As a result, this extended version
of the natural duality theory incorporated the Esakia duality for the class of all
Heyting algebras into the natural duality theory. ISP} thus serves as a natural
foundation for the theory of intuitionistic natural dualities. Technically, we have
began by developing duality theory for ISP(L£). While switching our interest from
ISP(L) to ISPy (L), we indicated the intutionistic Kripke condition for ISP;(L£), where
L is a finite algebra with a bounded lattice reduct. As a major finding, we obtained

a duality for ISPy(L).
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Chapter 6

Bitopological duality for
many-valued modal logic

6.1 Introduction

| This chapter aims to demonstrate an intriguing duality theory for algebras of Fit-
ting’s many-valued modal logic in the context of bitopological languages. Thus,
this has led to an extension of the natural duality theory for modal algebras in
bitopological context. Algebraic axiomatization of a modified version of Fitting’s
Heyting-valued modal logic has already been addressed in [20]. In addition to alge-
braic axiomatizations with the completeness of Fitting’s Heyting-valued modal logic,
topological duality theorems have also been developed. Bitopological methods have
already been employed to investigate duality theory for Fitting’s Heyting-valued
logic ( see Chapter [4] ). However, bitopological approaches have not been used to
develop duality for Fitting’s many-valued modal logic. This chapter attempts to fill
that gap.

Maruyama [2I] proposed Jonsson-Tarski topological duality (see [9], 29, [54]) for £-
ML-algebras (algebras of Fitting’s Heyting-valued modal logic). Jonsson-Tarski
duality for £-M/L-algebras is essentially a L£-valued version of Jonsson-Tarski dual-
ity for modal algebras.

We aim to construct a bitopological duality for algebras of Fitting’s Heyting- valued
modal logic by setting up a notion of PRBS, as a category of L-valued pairwise

The results of this chapter appear in [61] Das, Litan Kumar., Ray, Kumar sanakar., Mali,
Prakash Chandra.: Duality for Fitting’s Heyting-valued modal logic via Bitopology
and Bi-Vietoris coalgebra. Theoretical Computer Science, Elsevier (Under Review).
https://doi.org/10.48550/arXiv.2312.16276
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Boolean spaces with a relation. As a result, natural duality theory for modal al-
gebras is extended in the context of bitopological languages. The main result is
bitopological duality for £-ML-algebras, where L is a semi-primal algebra having
a bounded lattice reduct. Our general theory extends the Jonsson-Tarski duality in
the setting of bitopological language.

6.2 The notion of Bitopological spaces

We assume that the readers are familiar with the basic concepts of topology and
category theory. We refer the reader to [5], [36] for information on universal algebra
and lattice theory. For category theory, we refer to [2].

A bitopological space is defined as a triple (X, 7, 72) in which (X, 7) and (X, )
are topological spaces. Consider d; and d, represent, respectively, the collections of
T1-closed sets and 7o-closed sets. We set 51 = 71 Ny and [y = 75 N 7.

Definition 6.2.1 ([39]). (i) A bitopological space (X, Ti,T) is said to be pairwise
Hausdorff space if for every pair (x,y) of distinct points x,y € X there exists

disjoint open sets U, € 71 and U, € 7o containing x and y, respectively.

(i1) A bitopological space (X, T1,T2) is said to be pairwise zero-dimensional if By is

a basis for 71 and Py is a basis for To.

(11i) A bitopological space (X, T1,Ts) is said to be pairwise compact if the topological

space (X, T), where T = 1V 79, is compact.

According to Alexander’s Lemma (a classical result in general topology), the idea
of pairwise compactness described in Definition is equivalent to the condition
that every cover {U : U € 11 Uy} of X has a finite subcover. A pairwise Boolean
space is a bitopological space that is pairwise Hausdorff, pairwise zero-dimensional,
and pairwise compact. A map f : (P,71,72) — (P, 7{,7) is said to be pairwise
continuous if the map f : (P,7;) — (P, 7}) is continuous for i € {1,2}. Pairwise

Boolean spaces and pairwise continuous maps form a category, denoted by PBS.

Proposition 6.2.1 ([49]). If Ty and Ty are subbasis for the topologies 11 and T,
respectively, then Ty UTs is a subbasis for the topology 71 V Ts.

Proposition 6.2.2 ([49]). Let (X, 7, 72) be a pairwise compact bitopological space.
Consider a finite collection {C; : C; € 6 Udg, i =1,2,--- n} of subsets of X. Then

ﬂ C; is pairwise compact.
i=1
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It is clear from the above proposition that any 7-closed or 7»-closed subset of a

pairwise compact space X is pairwise compact.

6.3 Fitting’s Heyting-valued modal logic

Fitting [23] proposed L-valued logics and L-valued modal logics for a finite dis-
tributive lattice £ (i.e., £ is a Heyting algebra) in 1991. Maruyama [20] introduced
algebraic axiomatization of Fitting’s logics. In [20] the author studied Fitting’s
Heyting-valued logic and Heyting-valued modal logic without regard for fuzzy truth
constants other than 0 and 1, and added a new operation Ty(—), ¢ € L. From a
logical perspective, Ty(p) infers that the truth value of a proposition p is ¢. The
operations of L-valued logic, denoted by L-VL, are V,A,—,0,1 and Ty(—), ¢ € L,
where V, A, — are binary operations, 0 and 1 are nullary operations and 7} is
a unary operation. For (1,05 € L, {1 — {5 means the pseudo-complement of ¢;
relative to fs.

In universal algebra, the concept of semi-primal algebra holds great significance.

The semi-primal algebra concept will now be defined as follows.

Definition 6.3.1. Let A be an algebra. Then a function f : A" — A, n € N, is
said to be conservative <= for any ay,as, - ,a, € A, f(ai,as,---ay) is in the
subalgebra of A generated by {ai,as, - ,a,}. A finite algebra A is said to be a
semi-primal algebra if every conservative function f : A" — A, n € N, is a term
function of A.

The following lemmas describe some term functions.

Lemma 6.3.1. Let L be a semi-primal algebra having bounded lattice reduct. Define
a function f: L* — L by

ly (l=10)

fly, b, b3, 4y) = { by (b1 # Co)

Then, f is a term function of L.

Lemma 6.3.2. Let L be a semi-primal algebra having bounded lattice reduct. For
every £ € L, define Ty : L — L by

T(¢') ={ LY
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Then, T, is a term function of L.

Lemma 6.3.3. Let L be a semi-primal algebra having bounded lattice reduct. Let
t e L. Then the function U, : L — L defined by

NN ERUEY)
(M“‘{o<@z@

, 18 a term function of L.

Observation 6.3.1. The term function U, : L — L can alternatively be defined

using Ty as follows:
U(l) = \[{T0o,(¢)) : € < 1y, 41 € L}

It is simple to demonstrate that Uy commutes with A, i.e., Us(a ANb) = Up(a) A Uy(b)
foralla € A, where A is a L-VL- algebra. Furthermore, we note that Uy(a) = Ty (a).

We now recall the idea of L£-V/L-algebras, which provides sound and complete
semantics of L-valued logic L-VL.

Definition 6.3.2 (|20]). An algebraic structure (A, A\,V,—,T,(¢ € L£),0,1) is said
to be a L-VL-algebra iff for any l1,0y € L, and a,b € A, the following conditions
hold :

(i) (AN, V,— T,(¢ € L£),0,1) is a Heyting algebra;

(ii) T€1 <a> A Tzz (b) < T41—>f2 (CL - b) A Tfl/\b (CL A b) A Tfl\/€2 (a \% b),
Tiy(a) < Ty, (00)(T, (@)

(iii) To(0) = 1; T,(0) =0 (£ £0); (1) =1; T,(1) =0, if £ # 1;

(iv) V{Ty(a) : € € £} = 1: Ty () V (Ty,(a) — 0) = 1;
Tfl <a> A sz(a) =0, (61 7é EQ);

(v) Ta(Ti(a)) = Ti(a), To(Te(a)) = Ti(a) — 0, Tt, (T, (a)) = 0, (2 # 0,1);
(vi) Ti(a) < a, Ti(a ANb) =Ti(a) NT1(D);

(vii) \(Tula) & Ti(b)) < (a > b).

el
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Note 6.3.1. The class of all L-V L-algebras forms a variety (in the sense of universal
algebra). If L = {0,1}, then L-VL-algebras becomes Boolean algebras.

Definition 6.3.3. A function between L-VL-algebras is said to be homomorphism
if it preserves the operations V, N\, —,T;(¢ € L),0, 1.

Let VA, denote the category of L£-)VL-algebras and homomorphisms between
them.
L-valued modal logic denoted by £L-ML, is defined by L-valued Kripke semantics.
The idea of L-valued Kripke semantics can be found in [2I]. The operations of
L-valued modal logic £L-ML are the operations of £-V L and a unary operation [,
called modal operation. We now recall the concept of £- M L-algebras, which define
a sound and complete semantics for £-ML.

Definition 6.3.4 ([20]). An algebraic structure (A, A, V,—,T,(¢ € L£),00,0,1) is
said to be a L-ML-algebra iff it satisfies the following conditions:

(i) (AN, V,— T,(¢ € L£),0,1) is a L-VL-algebra;
(1) O(a A b) = Oa A Ob;

(11i) OUi(a) = Ug(Oa), Y0 € L, where the unary operation Uy(¢ € L) is defined by
Ua) = \{Tw(a) : ¢ < U0 € L}, a € A. Logically, it means that the truth

value of a is greater than or equal to £.

A homomorphism of £-ML-algebras is a function that preserves all the opera-
tions of L-V/L-algebras and the modal operation [J. Let M.A, denote the category
of L-M/L-algebras and homomorphisms of £-M/L-algebras.

For a Kripke frame (P,R), Rlz] = {y € P : xRy}, where z € P, and
RYP) ={y € P: 3z € P ,yRa}, where PP C P. We recall a modal opera-
tion (g on L-valued powerset algebra £ of P.

Definition 6.3.5 ([20]). Let (P,R) be a Kripke frame and f € LF. Then Ogf :
P — L is defined by (Or f)(z) = A{f(y) : y € Rz]}.

Definition 6.3.6 ([21]). Let A be an object in MA;. A binary relation Rp on
HOMy,. (A, L) is defined as follows:

YRop <= Yl e L,Vae AY(da) > 1= ¢(a) > L.

A L-valued map D : HOMy 4, (A, L) x A — L is defined by D(¢,a) = ¥(a),1 €
HOMya, (A, L).

Lemma 6.3.4 (|21]). The L-valued canonical model (HOMy 4, (A, L), Ra, D) of A
is a L-valued Kripke model. Then, D(¢,0a) = ¢ (a) = N{é(a) : ¢ € Ro[¥]}.
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6.4 Bitopological duality for Fitting’s Heyting-
valued logic

We will introduce the key ideas and findings from the bitopological duality theory
for Fitting’s Heyting-valued logic. We refer to Chapter [ for a more thorough
explanation of the bitopological duality for Fitting’s Heyting-valued logic. Let &,
denote the collection of subalgebras of L. For a pairwise Boolean space B, Ag denotes
the collection of pairwise closed subspaces of B. It is shown in [62] that a pairwise
closed subset of a pairwise compact space is also pairwise compact. Hence, each
member of A is a pairwise Boolean space. A finite distributive lattice £ endowed
with unary operation T;(¢ € £) forms a semi-primal algebra. We have expanded the
theory of natural duality [13] by creating a bitopological duality for £-V/L-algebras
[58].

We now recall the category PBS, from [58].

6.4.1 Category

Definition 6.4.1 ([58]). The category PBS; is defined as follows:

(1) Objects: An object in PBS; is a tuple (B, ap) where B is a pairwise Boolean
space and a mapping ap : Sy — Ag satisfies the following conditions:

(Z) QB(‘C) = B;
(ZZ) Zf Ly =Ly N £3(£1,£2,£3 S ,C), then alg(ﬁl) = O[B(ﬁz) N O./B(;Cg).

(2) Arrows: An arrow ¢ : (By,ap,) — (B, ap,) in PBS; is a pairwise continuous
map 1 : By — By that satisfies the criterion that if © € ag, (L£1)(Ly1 € &), then
W(z) € ag,(Ly) i.e., 1 is a subspace preserving map.

Note 6.4.1. (1) The bitopological space (L,T,T), where T is the discrete topology
on L, is a pairwise Boolean space. Hence, (L,T,T,ar), where a, is a mapping
from &, to Ap that is defined by ap (L) = L', is an object in PBS;.

(2) For an object A in VA, , consider a bitopological space (HOMy 4, (A, L), T1,T2),
where the topologies T and Ty are generated by the bases B™ = {(a) : a € A},
where (a) = {h € HOMy4,.(A,L) : h(a) = 1}, and B™ = {B°: B € B™},
respectively. Here, B¢ denotes the complement of B.

Fact 6.4.1 ([58]). The bitopological space (HOMya, (A, L), T1,T2) is a pairwise

Boolean space.
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6.4.2 Functors

The duality between the categories VA, and PBS, is obtained via the following
functors.

Definition 6.4.2 ([58]). A contravariant functor § : PBS; — VA, is defned as
follows:

(i) For —an  object (B,ag) in PBSg, define  §(B,ap) =
(HOMpps,.((B,ag), (L, ar)),V,\,—,T,(¢ € L£),0,1), where V,A\,—,T;({ €
L£),0,1 are pointwise operations on the set HOMpps,((B,ag), (L, ac)). The
operations O and 1 are regarded as constant functions, with 0 and 1 being their

respective values.

(i) For an arrow ¢ : (B,ap) — (B',ap) in PBS,, define §(¢) : (B ap)) —
S((B,ag)) by §(¢)(C) = (o ¢, where ( € HOMpps, (B, ap), (L, ar)).

Definition 6.4.3 ([58]). A contravariant functor & : VA, — PBS, is defined as
follows:

(i) & acts on an object A in VA, as &(A) = (HOMya, (A, L), 71,72, 4), where
aq 1S a mapping from S, to AHOMVAL(AL) which is defined by as(L*) =
HOMya,. (A L*), L € &.

(i) & acts on an arrow ¢ : A — A* in VA, as follows: &(¢) : B(A*) — B(A) is
defined by &(1p)(¢) = po1h, p € B(A").

In [58], the following duality result is proved for £-VL-algebras:

Theorem 6.4.1. The categories VAy and PBS; are dually equivalent.

6.5 Bitopological duality for Fitting’s modal logic

In this section, we use bitopological approaches to demonstrate a duality for Fitting’s
many-valued modal logic. This extends Jonsson-Tarski topological duality for modal
algebras from the standpoint of universal algebra.

Let R be a relation on P and C' C P. We define [R|C' = {p € P : R[p] C C} and
(R)YC ={pe P:Rlp|nC #0}.
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6.5.1 Category PRBS,
Definition 6.5.1. We define a category PRBS, as follows:

(1) Objects: An object in PRBS, is a triple (P, ap, R) such that (P, ap) is an object
in PBS, and R is a binary relation on P that satisfies the following conditions:

(i) for each p in P, Rp| is a pairwise compact subset of P;
(1i) ¥C € B, [RIC,(R)C € py;
(iii) for any L' € S, if m € ap(L') then Rlm| C ap(L').

(2) Arrows: An arrow f : (P,ap,R) — (P ap,R') in PRBS; is an arrow in
PBS which additionally satisfies the following conditions:

(i) if p1Rpa then f(p)R'f(p2);
(i) if f(p)R'p" then Ip* € P such that pRp* and f(p*) =p'.

Note 6.5.1. We see that [RIU® = ((R)U)°, and (R)U¢ = ([R]U)°. Since Py =
{U°: U € By}, hence if the relation R satisfies condition (ii) that is given in the
object part of Definition[6.5.1], then [R]Q, (R)Q € Ba, VQ € [s.

6.5.2 Functors

In this subsection, we introduce functors F and G to establish the dual equivalence
between the categories M A, and PRBS,.

Definition 6.5.2. We define a functor G : MA; — PRBS,.

(i) G acts on an  object (A0) in MA as G(A) =
(HOMya,. (A, L), T1,T2,an, Ro), where a4 is a mapping from Sg to
Aromya,(ac) defined by ax(Li) = HOMya, (A L1), and Ro is a binary
relation on HOMy 4, (A, L) that is described in Definition .

(i) G acts on an arrow ¢ : Ay — Ay in MA, as follows:
Define G(¢) : G(Az) = G(Ay) by G(¢)(¢) = ¢porp, where p € HOMy 4, ( Az, L).

Lemma and Lemma demonstrate the well-definedness of G.

Lemma 6.5.1. For an object (A,0) in MAg, G(A) is an object in PRBS.
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Proof. Definition[6.4.3|shows that (HOMy.4, (A, L), 71, T2, a4) is an object in PBS,.
So it is enough to show that Ry meets the conditions specified in the object part
of Definition We first show that for W € HOMyp 4, (A, L), Ro|W] € 61 U 0.
Let U ¢ Ra[W)]. Then by Definition [6.3.6] there is an element a € A such that
there is L; € L, for which W(Oa) > Ly but U(a) # L;. It follows that U €
(=Ur,(a)) € 7o and RpW| N (-UL,(a)) = 0 ie., (-Ur,(a)) € (Ro[W])¢. Hence,
U ¢ RaW]", where RgWV] " denotes the closure of Rg[W] in (HOMya,.(A, L), T2)
. Equivalently, we have RoW]~ € Rao[W)]. Therefore, Ro[W] is m-closed. Since
(HOMya,(A, L), 71, 72) is pairwise compact, by Proposition [6.2.2] we have Rp[W]
is pairwise compact.

Now we verify the condition (i7) in the object part of Definition Since {(a) :
a € A} € pfy and {(T1(a) — 0) : a € A} € By are the basis for the topologies 7 and
o, respectively, so we show that for each a € A, (Ro)({a)) € £ and [Rpo](a) € fi.
We see that

(Ro)(a) = {W € HOMy(A, L) : RoV] N (a) £ 0}
= ([Rol(T1(a) = 0))°
= {W € HOMVAE(.A, [,) : RD[W] ¢ <T1(a) — O>}

We show that ([Rg](Ti(a) — 0))¢ is 71-open and 7o-closed. Let U € ([Ro](Ti(a) —
0))¢. Then RolU] ¢ (Ti(a) — 0). It is easy to see that 3 m-open set (7} (a))
such that U € (OTy(a)). Let £ € (OTi(a)). Then £(0Ti(a)) = 1. Using the
Kripke condition we have 1 = £(071(a)) = N{U(Ti(a)) : ERU}. According to
Lemma U(Ti(a)) is either 0 or 1. Henceforth, for all Y € HOMy 4, (A, L)
with ERgU we have U(T1(a)) = 1. As a result, Rol€] ¢ (Ti(a) — 0) ie., € €
([Ra){Ti(a) — 0))¢. Henceforth, U € (OTi(a)) C ([Ro){Ti(a) — 0))¢. Therefore,
[Ro)(T1(a) — 0))¢ is 7-open i.e., (Rn){(a) is Ti-open.

Let W € ((Ro)(a))¢. Then RoW| N {(a) = 0. It is easy to see that there is
m-open set (J(71(a) — 0)) such that W € (O(T1(a) — 0)). Also, by applying
the Kripke condition, we have (O(Ti(a) — 0)) C ((Ro){(a))¢. Therefore, W €
(O(Ti(a) — 0)) € ((Ro){a))c. It shows that ((Rn)(a))® is m-open i.e., (Ro){a) is
1-closed. It follows from Proposition [6.2.2) that (Rg)(a) is pairwise compact. Since
the topological space (HOMy 4, (A, L), 7o) with basis {(T1(a) — 0) : a € A} is a
Hausdorff space, so (Rg)(a) is 1o-closed. Hence, (Rp){a) € f.
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Next, we show that [Rp(a) € 1. We see that

[Ro](a) = {W € HOMya, (A, L) : Ro]W] C (a)}
= ((Ro)(T1(a) — 0))°

We claim that (Rp)(Ti(a) — 0) = (OT1(a) — 0). Let W € (OTi(a) — 0). Then
W(OT (a) — 0) = 1. Hence, W(OTi(a)) = 0. Using the Kripke condition, we
have, 0 = W(OTi(a)) = N{U(T1(a)) : WRpU}. Since U(T1(a)) = 0 or 1, hence 3
Uec HOMya, (A, L) with WRpU such that U(T(a)) = 0. Then U € (T1(a) — 0).
Therefore, Rg[W] N (T1(a) — 0) # . Thus, W € (Rg)(Ti(a) — 0). Similarly, by
employing the Kripke condition, we can show that if W € (Rp)(Ti(a) — 0) then
W e (OT1(a) — 0). Since (OT1(a) — 0) € B2, we have (Ro)(T1(a) — 0) € fBy. As
a result, [Rpl(a) € .

Finally, we demonstrate that G(A) meets condition (ii7) in the object part of Def-
inition [6.5.1] Let u € aa(L') = HOMy4, (A, L'). Suppose Rplu] ¢ aa(L’). Then
Jv € Rplu| such that v ¢ ay(L’). Hence, Ja* € A such that v(a*) ¢ L'. Let
v(a*) = £*. Now for any element ¢ € a4(L'),

¢ ifp(a¥) = £

Y(Te(a”) = @) :{ 1 ifap(a*) # 0

Using Kripke condition, we have u(0(Ty«(a*) — a*)) = N{W(Tp(a*) — a*) 1 ¢ €
Rpolu]}. This shows that u(O(Ty«(a*) — a*)) = ¢* ¢ L. But this contradicts the
fact that u € a4(L'). As a result, G(.A) satisfies condition (ii). O

Lemma 6.5.2. Let (A;,0), (A2, [s) be the objects in MAz and ¢ : Ay — Ay an
arrow in MAg. Then, G(v) is an arrow in PRBS.

Proof. Here G(v) : G(Ay) — G(A;) is defined by G(¥)(¢p) = ¢potp, ¢ €
HOMy,(As, L). It follows from Definition that G(¢) is an arrow in PBS,.
Therefore, it is still necessary to demonstrate that G(v) satisfies conditions (i) and
(i) listed in the arrow portion of Definition [6.5.1 We first check condition (z).
Let vyRo,va, where v, v € G(Ay). We are to show that G(v)(v1)Ro,G(¢)(va).
Now, if v; o ¥(Oyay) > £ for a; € Ay and ¢ € L, then we have vy(Ost(ay)) >
0. As v1Ro,ve, so we get ve(t(ay)) > ¢. Hence, G(¢)(v1)Rn,G(¢¥)(v2). We
then check condition (ii), which is mentioned in the arrow part of Definition
6.5.1l  This is equivalent to verifying Rp,[G(¢)(v1)] = G(¥)(Ro,[vi1]).  Let
W € Rpo,[vi o ¢], where W € HOMy, (A1, L). Then (vy o )R, W. Suppose
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W & G()(Ro,[v1]). Then W # G(¢)(v*), Yo' € HOMya,(As, L) such that
1 Ro,v*. As (HOMya,.(Ay, L), 11, 7) is a pairwise Hausdorff space, so we can
consider W € (a1) and G(¢)(v*) = v*oyp € (T1(ay) — 0). Since W € Ry, [G(¢)(v1)]
and W(ay) = 1, we have G(¢)(v1)(Cha1) = 1 ie., (v109)(01a1) = 1. Since v1Rp,v*,
we have G(¢)(v1)Rn,G(v)(v*) using the condition (i) specified in the arrow part of
Definition[6.5.1 As G(¢)(v1)(0har) = 1, Lemmal6.3.4] shows that G(¢)(v*)(a1) = 1,
i.e., v*o1) € (ay). This contradicts the fact that G(¢)(v*) € (T1(ay) — 0). Therefore,
R, [G(¥)(v1)] € G(¥)(Rp,[v1]). Similarly, we can show the reverse direction. [

Definition 6.5.3. We define a functor F : PRBS; — MA,.
(i) Define F(P,ap,R) = (HOMpps.((P,ap),(L,az)),\,V,—= Tyl €
£),0,1,0x) for an object (P,ap,R) in PRBS;. Definition de-

scribes the modal operation Ug. Here N\, V,—,Ty are pointwise operations

defined on the set HOMpps,.((P,ap), (L, ar)).

(ii) Let ¢ : (Py,ap,R1) = (P2, ap,, Ra) be an arrow in PRBS,. Define F (1) :
f(PQ,&PQ,RQ) — F(Pl,OéPI,R1> by f(w)(¢) = ¢Ow f07’¢ € .F(PQ,O(PQ,RQ).

Note 6.5.2. If v,¢ : (P,mf,7F,ap) — (L,7,7,ar) are pairwise continuous
maps then ¥ N ¢,V ¢, — ¢, T,(¥) are also pairwise continuous maps. Thus,
(HOMpgs,((P,ap), (L,az)),\,V,—, Ty € £),0,1) is a L-VL-algebra.

The following lemmas (Lemma and Lemma[6.5.4]) show that the functor F
is well-defined.

Lemma 6.5.3. Let (P,ap,R) be an object in PRBS,. Then, F(P,ap,R) is an
object in MA,.

Proof. 1t is clear from Definition that F(P,ap) is an object in VA,. We
need to show that the modal operation Ogr on F(P,ap, R) is well-defined. Let
n e F(P,ap,R). We then verify Ogn € F(P,ap,R). For any ¢ € L,

(Orm) ({0 ={pe P: N{n) : v € Rlp| = {}
= (R)((Te(n)) " ({11) N ((RY((Ue(m)~ ({0})))*
As both Ty(n) and Uy(n) are pairwise continuous maps, henceforth (T,(n))~*({1}) €
Bl N B3 and (Ue(n))~'({0}) € B N B, where B = 7' N 67 and By = 3" N o7
Therefore, (Orn)~1({¢}) € 7. Also, (Orn)~t({¢}) € =F. As a result, g7 is a
pairwise continuous map from P to L. Furthermore, by applying condition (7i7)
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that is stated in the object part of Definition we see that for any subalgebra
M € &, and if m € ag(M) then (Ogn)(m) = A{n(m') : m' € Rim]} € az(M).
Thus Oxn is a subspace preserving map. Hence, Ogn € F(P,ap, R). O

Lemma 6.5.4. Let ¢ : (P, ap,,R1) — (P, ap,, R2) be an arrow in PRBS,. Then,
F () is an arrow in MA,.

Proof. According to Definition F(¢) is an arrow in VAg. Therefore, it
is sufficient to demonstrate that F(¢)(Or,02) = Or,(F(¥)¢2), where ¢o €
HOMpps,.((Py,ap,), (L,az)). For any py € P, we have F(¢)(Or,¢2)(p1) =

Oryd2 0 ¥(p1) = A{¢2(p2) : p2 € Ro[¢(p1)]}, and Og, (F(¥)¢2)(p1) = Ugr,(¢2 ©
V)(p1) = N{d2 0 ¥(p) : p € Rilp1]}. As 1 satisfies conditions (i) and (i)
listed in item 2 of Definition [6.5.1] it is easy to show that (F(¢)(Or,2))(p1) <

Or, (F(¥)d2)(p1) and O, (F(¥)d2)(pm1) < (F()(Orye2))(p1). As a result,

6.5.3 Bitopological Duality for Fitting’s Heyting-valued
modal logic

In this subsection, we develop bitopological duality for algebras of Fitting’s Heyting-

valued modal logic.

Theorem 6.5.1. Let A be a L-ML algebra. Then A is isomorphic to F o G(A) in
MA,.

Proof. We define y* : A — F o G(A) by v*(a)(g9) = g(a), where a € A and
g € HOMy, (A, L). Tt is known from Theorem that 74 is an isomorphism
in the category VA,. The only thing left to prove is that y* preserves the modal
operation 0, i.e., v4(0a) = Or y*(a), a € A. Let g € G(A). Then

(Orar™( = A (9" : g7 € Ralg)}
=/\{g (a): g" € Ralg]}

= g(0Oa) (by Lemma
v (Ca)(g)

Hence the result follows. O]

Theorem 6.5.2. Consider an object (P,ap,R) in PRBS;. Then, (P,ap,R) is
isomorphic to G o F(P,ap, R) in the category PRBS.
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Proof. Define ((papr) 1 (P,ap,R) = G o F(P,ap,R) by ((papr)(p)(¥) = ¥(p),
where p € P and v € HOMpps,((P,ap),(L,az)). Theorem [6.4.1] shows that
((Pap,R) 18 a bi-homeomorphism in the category PBS;. We show that ((pa,r)
and C(zvl,ap,n) satisfy the conditions given in item 2 of Definition We claim
that for any p,p’ € P, p' € Rlpl <= (raprrP) € Ropl(parr) (P)]-
Let p' € R[pl. Suppose ((papr)(p)(Ory) > €, where { € L and ¢ €
HOMpps,((P,ap),(L,ar)). Then (papr)(p)(Bry) = (Or¥)(p) = A{v() :
px € Rp]}. Since p’ € R[p] and {(pap,r)(p)(OrY) > ¢, we have ((pa, r)(p")(¢) > .
Hence, ((papr)(P)Rorl(Parr)(P); 1€, (Papr) (D) € Rogl((Parr)(p)]. Now we
verify if ((papr)(P) € Rogl((parr)(p)] then p' € Rlp]. We verify its contraposi-
tive statement. Suppose p’ ¢ R[p]. By Definition [6.5.1 R[p] is a pairwise compact
subset of pairwise Boolean space P. Then it is easy to show that R[p| is pairwise
closed. Therefore we can get a 7{-basis open set O € Bf such that p’ € O and
O C P —Rlp|, ie., ONR[p] = 0. Define a mapping f : P — L by

] 0 ifpeO
f<p)_{1 if pe O°

Then f is a pairwise continuous map from (P, 7{,7f) to (£,7,7). As a result, it
can be shown that f € HOMpps, ((P,ap), (L, ar)). Now, Orf(p) = N{f(2) : z €
Rlpl} = 1 and f() = 0. Hence, ) (0)(Trf) = 1 but Cpapy (0)(f) # 1
Therefore, ((papr)(P) ¢ Rogl{rapr)(p)]. Hence, we have for any p,p’ € P,
p/ € R[p] — <(P,ap,R) (p/) S RDR [C(P,QP,R) (p)] As a I'E‘:Slllt, C(P,ap,R) and C(_Pl’apjz)
satisfy conditions (i) and (ii) mentioned in item 2 of Definition [6.5.1] Thus, ((pap.r)
is a homeomorphism. This finishes the proof. O]

Finally, we obtain the bitopological duality for Fitting’s Heyting-valued modal
logic.

Theorem 6.5.3. The categories MA, and PRBS, are dually equivalent.

Proof. Let I Dy and I Dy be the identity functors on MA, and PRBS/, respectively.
This theorem will be proved by defining two natural isomorphisms, v : ID; = FogG
and ¢ : IDy; — G o F. For an object A in MA, define v* : A — F o G(A) by
vA(a)(g) = g(a), where a € A and g € G(A). For an object (P,ap,R) in PRBS,
define ((papr) : (P,ap,R) = Go F(P,ap,R) by {(paprr)(»)(¥) = ¥(p), where
p € Pand ¢ € HOMpps,((P,ap),(L,az)). Then it can be shown that v and
are natural transformations. According to Theorems [6.5.1] and [6.5.2, v and ¢ are

natural isomorphisms. ]
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Thus we have extended bitopological duality for Fitting’s many-valued logic:
VA; = PBSY
to the duality for Fitting’s many-valued modal logic:
MA; = PRBSY

We have obtained a duality for the class of all algebras of a version of Fitting’s
Heyting-valued modal logic in bitopological language via the novel notion of PRBS,,
without which it would be challenging to achieve such a modalized version of the
bitopological duality for many-valued logic. This has led to an extension of the
natural duality theory for modal algebras.

In the next chapter, we shall demonstrate how to characterize the category PRBS,
using the coalgebra theory, thereby obtaining a coalgebraic interpretation of the
duality MA, = PRBS}.

6.6 Conclusion

We have defined the category PRBS, and connected it to the category VA, using
the appropriate functors. Consequently, we have found a duality for the class of
all algebras of a version of Fitting’s Heyting-valued modal logic in a bitopological
setting. This has led to an extension of the natural duality theory for modal algebras.
It has been noted that the methodology laid out in this chapter extends the Jonssion-
Tarski duality for algebras of Fitting’s Heyting-valued modal logic (e.g., see [21]) in
a bitopological context.
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Chapter 7

Coalgebraic Duality for many-valued
modal logic

| This chapter is primarily concerned with establishing a coalgebraic duality for
Fitting’s many-valued modal logic. In chapter [0 we have established a bitopological
duality for algebras of Fitting’s Heyting-valued modal logic by building up a notion
of PRBS, as a category of L-valued pairwise Boolean spaces with a relation. This
chapter will show how the category PRBS, can be characterized using the theory
of coalgebras, leading to a coalgebraic description of the bitopological duality for
Fitting’s Heyting-valued modal logic.

We aim to construct a bi-Vietoris functor on the category PBS, of L-valued (£
is a Heyting algebra) pairwise Boolean spaces. Finally, we obtain a dual equivalence
between categories of biVietoris coalgebras and algebras of Fitting’s Heyting-valued
modal logic. Thus, we conclude that Fitting’s many-valued modal logic is sound
and complete with respect to the coalgebras of a biVietoris functor. The key con-
clusion is coalgebraic duality for algebras of Fitting’s Heyting-valued modal logic
represented by £-ML-algebras, where L is a semi-primal algebra having a bounded
lattice reduct. Our general theory extends the Abramsky-Kupke-Kurz-Venema
coalgebraic duality [I, 55] in the setting of bitopological language. Furthermore, it
introduces a novel coalgebraic duality for £-M/L-algebras.

An exemplary story in coalgebraic logic can be found in [63]. The Stone duality [51]
between Boolean algebras and sets represents the syntax and semantics of a propo-

The outcomes of this chapter appear in [6I] Das, Litan Kumar., Ray, Kumar sanakar.,
Mali, Prakash Chandra.: Duality for Fitting’s Heyting-valued modal logic via Bitopol-
ogy and Bi-Vietoris coalgebra. Theoretical Computer Science, Elsevier (Under Re-
view). https://doi.org/10.48550/arXiv.2312.16276
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sitional logic. The algebras and coalgebras of the endofunctors define the syntax
and semantics of the modal propositional logic. As an illustration, the modal logic
K and Kripke semantics derive from the Stone duality by taking an endofunctor on
sets. So, in acceptable circumstances, we can achieve duality between the relevant
algebras and coalgebras. In addition to demonstrating the fact that the widely
recognized Stone duality could be articulated in coalgebraic terms, Abramsky [I]
also showed that a coalgebraic formulation could be provided for the Jonsson-Tarski
duality between descriptive general Kripke frames and modal algebras (see also [55]
for further information). In particular, the category of descriptive general Kripke
frames is isomorphic to the category of Boolean spaces. Esakia [64] also noticed
this connection. Therefore, coalgebras for the Vietoris functor on the category of
Boolean spaces can represent sound and complete semantics for modal logic. In
[65], the author showed that coalgebras of a Vietoris functor on the category of
Priestley spaces, i.e., compact, totally ordered disconnected spaces, provide sound
and complete semantics for positive modal logic. The objective of this chapter is
to combine the idea that the semantics of Fitting’s many-valued modal logic can
be understood as coalgebras for the bi-Vietoris functor on the category PBS, of
L-valued pairwise Boolean spaces and pairwise continuous maps.

We first define an endofunctor Vﬁbi . PBS; — PBS,, called L-biVietoris
functor. Then we demonstrate that the category COALG(V}?) of coalgebras for
the endofunctor V2 is isomorphic to the category PRBS,.

7.1 The notions of Coalgebra and Bitopological

spaces

The notion of Coalgebra

Let’s review the definitions of coalgebra and coalgebra morphisms. We refer the
reader to [6] for an overview of coalgebras.

Definition 7.1.1. A coalgebra for an endofunctor € : C — C on a category C,
called T-coalgebra, is defined by a tuple (C,T), where C' is an object in C and
T:C — %(C) is an arrow in C.

Definition 7.1.2. Let (C1,T1) and (Cy,Ts) be any two ¥-coalgebras. Then f :
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(C1,T1) = (Cy,Ty) is said to be a T-coalgebra morphism if f : Cy — Cy is an arrow
in C which satisfies Ty o f = T(f) o1y, i.e., the following diagram commutes:

01;)02

| |~

F(C) g F(Co)

T-coalgebras and %-coalgebra morphisms form a category, denoted by
COALG(T).

Basic concept of Bitopological spaces

A bitopological space is defined by a triple (X, 7, 72) in which (X, 7) and (X, 1)
are topological spaces. Consider d; and d, represent, respectively, the collections of
T1-closed sets and 7o-closed sets. We set 57 = 71 Ny and [y = 75 M 7.

Definition 7.1.3 (|39]). (i) A bitopological space (X, T, 72) is said to be pairwise
Hausdorff space if for every pair (x,y) of distinct points x,y € X there exists
disjoint open sets U, € 71 and U, € 7o containing x and y, respectively.

(ii) A bitopological space (X, T, 72) is said to be pairwise zero-dimensional if By is
a basis for 71 and By is a basis for 7.

(iii) A bitopological space (X, 11, T2) is said to be pairwise compact if the topological
space (X, T), where T =T V T, is compact.

7.2 The structure of the endofunctor V'

In this section, we introduce the concept of pairwise Vietoris spaces and construct

an endofunctor V2 on the category PBS;.

We define the pairwise Vietoris space as follows:

Definition 7.2.1. Let (S,7,75) be a pairwise topological space and K(S) the set
of all pairwise closed subsets of S. We define OU = {C € K(S) : C C U} and
OU = {C € K(S) : CNU # 0}, U C S. Let 3 and B35 be the basis for the
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topologies T and 75, respectively. The pairwise Vietoris space Vp(S) of the pairwise
topological space (S, 77,75 is defined as a pairwise topological space (K(S), 7,75 ),
where ) is the topology on K(S) generated by subbasis {0OU, QU : U € 57} and the

topology T3 on K(S) is generated by subbasis {OU, OU : U € 37}

We then show that Vp(S) is a pairwise Boolean space whenever S is a pairwise
Boolean space.

Lemma 7.2.1. If (S,7°,75) is a pairwise Boolean space then Vp(S) =
(K(S), 7/, 7)) is pairwise zero-dimensional.

Proof. We shall show that 3} = 7" N} is a basis for 7}, where 8y is the set of 7y -

ny my

closed sets. Let O € 7). Then O can be expressed as O = U (ﬂ OuU; N ﬂ OUL),
AEA j=1 k=1

U;, Uy € B = 7 Nd5. In order to show that 3] is a basis for 7\, it is necessary to

show that (72, OU;NM;2, QU € Y. Because the finite intersection of the members
of A} is again in 3}, it is sufﬁ(nent to establish that for U € 57, OU, QU € BY. As 1)
is the topology generated by the subbasis {{0U, QU : U € 37}, hence OU, QU € 7/
Now we see that (OU)¢ = QU and (QU)¢ = U®. Since U € 37, so U¢ € B5. As
a result, OU, QU € 6. Henceforth, U, QU € BY. Similarly, it can be shown that
BY =1y NdY, 6} is the set of 7)-closed sets, is a basis for 75 . O

Lemma 7.2.2. If (S,77,75) is a pairwise Boolean space then Vp(S) =
(K(S), 7, 7)) is pairwise Hausdorff.

Proof. Let C,C" € K(S) and C # C’. Let z € C such that z # 2/, V2/ € C'. For
each point 2z’ € C’, we choose disjoint open sets US € B5 and U, € 37 (using the
condition that (S, 7, 7) is pairwise Hausdorff space.) containing points 2’ and z,
respectively. So the collection {U¢ : 2’ € C'} is 75-open covering of C'. As C' is
pairwise compact, so there is a finite collection {UC :4 = 1,2,--- ,n} such that

C'C UL, US. Tet V! = UUC,andU ﬂU As 2 € CNU, hence CNU # 0.

Also C'NnU =10 because C’ CUe. It follows that C € QU € 7/ and C’ ¢ OU i.e.,
€ (QU)° =0U° € 7). So we have two disjoint open sets QU € 7" and OU® € 1)
Containing C and (', respectively. O

Lemma 7.2.3. If (S,7°,75) is a pairwise Boolean space then Vp(S) =

(K(S), ), 7)) is pairwise compact.
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Proof. It is known from Proposition[6.2.1|that {OU, QU : U € 7 U5} is a subbasis
for the topology 7 V 75'. We shall show that every cover of K(S) by subbasis-
open sets has a finite subcover. Let K(S) = (U,co OUN U U,¢; OVi. Consider S, =
S — U,y Vi- Then S is a pairwise closed subset of S. Hence, S; € K(S). Since,
Sy ¢ QV; for each i € I, so that Sy € |J,., OU,. Then for some X' € A, Sy € OUy.
As aresult, S; C Uy and hence S—Uy C S— 57 = UV;. Then, S = U,\/UU Vi. As
S is pairwise compact, we have S = Uy UJ._, Vi. Izzft A be an arbitrary eigfnent of
K(S). If A C Uy then A € OUy otherwise A C | J,., Vi i.e., ANV; # 0 for some i €
{1,2,--- ,n}. As aresult, A € OUy UJ,.; OVi. Therefore, Vp(S) = (K(S), 7, 75)
is pairwise compact. ]

Lemmas [7.2.], [7.2.2] and [7.2.3] establish the following result:

Theorem 7.2.1. If (S,77,75) is a pairwise Boolean space then Vp(S) =

(K(S), ), 7)) is also a pairwise Boolean space.
We now construct the £-biVietoris functor V2.

Definition 7.2.2. We define a L-biVietoris functor V¥ : PBS; — PBS as fol-

lows:

(i) For an object (S,7°, 75, as) in PBSp, we define VE(S, 70,75, as) =
(Vp(S),Vpoag) where ag is a mapping from S, to Ag, then for any L, € S,
Vp o ag(Ly) is the pairwise Vietoris space of a pairwise closed subspace (i.e.,
pairwise Boolean subspace) as(L1) of S;

(ii) For an arrow f : (51,7'151,7'251,0451) — (52,7'152,7252,0452) in PBSg, Vﬁbl(f) :
(Vp(Sy),Vpoas,) = (Vp(S2), Vepoas,) is defined by VY (f)(K) = f[K], where
K e Vp(Sl)

We verify the well-definedness of the functor V.

Lemma 7.2.4. Let (S, 77,75, as) be an object in PBS;. Then VE(S, 77,75, ag) is
an object in PBSy.

Proof. Theorem shows that Vp(9S) is a pairwise Boolean space. Now we shall
show that Vp o g is a pairwise closed subspace of Vp(S). For £, € &, an ele-
ment of Vp(S) o ag(Ly) is a pairwise compact subset of ag(L1). As ag(Ly) is also
pairwise compact subspace of S, so that an element of Vp o ag(Ly) is a pairwise
compact subset of S. As a result, Vp o ag(L;) is a subset of Vp(S). For U € 37,
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we get QU NVpoag(Ly) = {C € Vpoag(Ly) : C C U} = O(U Nas(Ly)) and
QUNVpoag(L)) ={C € Vpoag(Ly): CNU # 0} = O(U N ag(Ly)). Similarly
for U € 85. Hence, Vp o ag(L;) is a pairwise subspace of Vp(S). Since ag(L) is a
pairwise Boolean subspace of S, by Theorem we have Vpoag(Ly) is a pairwise
Boolean space. Henceforth, Vp o ag(L;) is a pairwise closed subspace of Vp(.S).
Now we show that Vp o aig satisfies the conditions given in the object part of Defi-
nition [6.4.1] If ag(L) = S then Vp o ag(L) = Vp(S).

Let L1, Lo, L3 € Sp. If L1 = L2N L3 then we show that Vp(ag(L1)) = Ve(as(L2))N
Ve(as(Ls)). Now Vp(ag(Ly)) = Vp(as(La N Ls)) = Vp(as(L2) Nas(Ls3)). The
element structure of Vp(ag(L2) N ag(L3)) is of the form P N (ag(L2) N as(Ls))
and Q N (as(Ls) N as(Ls)), where P and @ are 79-closed set and 75-closed
set, respectively. The elements of Vp(ag(Ly)) N Ve(as(Ls3)) are of the form
(PrNas(Le))N(PyNasg(Ls)) and (Q1 Nas(L2)) N (Q2Nas(Ls)), where Py, Py are
mP-closed and @1, Q, are 75-closed. Then it is straightforward to demonstrate that
Vp(as(L2) Nas(Ls)) C Ve(as(L2)) NVe(as(Ls3)) and Ve(as(L2)) N Ve(as(Ls3)) C
Vp(as(L2) Nag(L3)). O

Lemma 7.2.5. Let f: (Sy, 7%, 75", g, ) — (So, 742, 752, ais,) be an arrow in PBS,.
Then VEi(f) is an arrow in PBS;.

Proof. Given that f is a pairwise continuous map from a pairwise Boolean space
S to a pairwise Boolean space S;. Let K € Vp(S;). Then K is a pairwise closed
subset of S} and hence K is pairwise compact. Now V2 (f)(K) = f[K] is a pairwise
compact subset of Sy. Since Sy is a pairwise Boolean space, f[K] is a pairwise
closed subset of Sy. As a result, VZ(f)(K) € Vp(Sy). To show that VE(f) is
pairwise continuous, let U € ﬁls 2and V € ﬁf? Then

VE(f)7HOU) = {K € Vp(S)) : V'(f)(K) € OU}
={KeK(S): f[K] C U}
—{K €K(S): K C f(U)}
=0f7'(U)
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and

VE()THOU) = {K € Vp(S)) - VE(f)(K) € OU}
={K eK(S): fIKINU # 0}
={K € K(S): Knf(U)# 0}
=07 )
Similarly, V2(f)~"4(OV) = OfY(V) and V2(f)"H(OV) = Of (V). Therefore,
VE(f) is pairwise continuous. It is still necessary to demonstrate that V2(f) is
subspace preserving. Let M € Vp o ag, (L£1), £1 € &¢. Then M C ag, (L1). As fis

an arrow in PBS,, hence f is a subspace preserving map. Thus, f(M) C ag,(L).
It shows that V2 (f)(M) C as,(L£1). Thus we have VX(f)(M) € Vpoas,(L£y). O

7.3 Coalgebraic duality for Fitting’s many-valued

modal logic

We first introduce two functors B and € between the categories PRBS, and
COALG(V}) to show that these two categories are isomorphic.

Functors: ‘B and €
Definition 7.3.1. We define a functor B : PRBS; — COALG(VE) as follows:

(i) For an object (S, as,R) in PRBS., define B(S,as,R) = (S, as, R[—]), where
R[] : (S, as) — VE(S, as) is an arrow in PBS, defined by R[s] ={p € S :
sRp}, s € S;

(i) For an arrow f : (S1,as,R1) — (S2,as,, Ra) in PRBS., define B(f) :
(SlaaSNRl[_]) - <S2>a52’R2[_D by %<f) =

The well-definedness of the functor B is shown by the following two lemmas:

Lemma 7.3.1. Let (S,as,R) be an object in PRBS;. Then B(S,as,R) is an
object in COALG(V}Y) .

Proof. We shall show that R[—] : (S, as) — V2(S,as) is an arrow in PBS;. By
the conditions given in the object part of Definition [6.5.1, we know that for each
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s € S, R][s] is pairwise compact subset of S. As S is pairwise Boolean space, hence
R|[s] is a pairwise closed subset of S. Thus R[s] € Vp(S). Let U € 3. Then

R[-]7H(QOU) = {s € S: R[s] € OU}
={se S:R[s] CU}
= [R]JU € 3} |by Definition

and

R[-]"HOU) = {s € S: R[s] € OU}
={se S:R[s|NU # 0}
= (R)U € 37 |by Definition

Similarly, for U € 85, R[-]"1(OU) = [R]U € B5 and R[-]"H(QU) = (R)U € f35.
Henceforth, R[—] is a pairwise continuous map. Now we show that R[—] is subspace
preserving. Let s € ag(L'), L € &,. It is known from Definition that R[s] is
a pairwise compact subset of ag(L’). Since ag(L') is itself a pairwise Boolean space,
thus we have R[s] € Vp o ag(L'). Therefore, B(S, ag, R) is a V}i-coalgebra. O

Lemma 7.3.2. Let f: (S1,ag,,R1) — (S2, as,, Re) be an arrow in PRBS.. Then
B(f) is an arrow in COALG(VE).

Proof. As f is an arrow in PRBS., so B(f) = f : (Si,as,Ri[-]) —
(Ss, as,, Ro[—]) is a pairwise continuous map. Now using the conditions men-
tioned in the arrow part of Definition [6.5.1] it is straightforward to verify that
Ro[—] o f = V}ioRy[~]. Thus B(f) is an arrow in COALG(V}). O

Definition 7.3.2. We define a functor € : COALG(V}') — PRBS. as follows:

(i) For an object ((C,ac),&) in COALG(V}Y), define €((C, ac),€) = (C, ac, Re),
where Re is a binary relation on C defined by d € Re¢lc] <= d € &(c),
c,d e C;

(ii) For an arrow f : ((C1,ac,),&) — ((Co,aq,),&) in COALG(VE), define
C(f) : (ClvaCMRél) - (027a0277?'§2) by €(f) = f

The well-definedness of the functor € is shown by Lemma and Lemmal[7.3.4]

Lemma 7.3.3. For an object ((C,ac),€) in COALG(VEY), €((C,ac),§) =
(C,ac, Re) is an object in PRBS,.
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Proof. In order to show that €((C, a¢),€) is an object in PRBS,, we must verify
that €((C, ac), £) satisfies the conditions given in the object part of Definition [6.5.1]
For each ¢ € C, Re¢[c] = £(c) € Vp(C). Hence, R¢lc] is a pairwise closed subset of
C. Thus R¢[c] is pairwise compact. Let U € 8. Then

[Re](U) = {c € C:Re[d] C U}

and

(Re)U ={ce€ C:Rele] NU # 0}
={ceC:&c)NU # 0}
={ceC:&(c) e QU}
=¢7(0U) € B

Finally, let m € ac(L') for £’ € &,. As ¢ is a subspace preserving map from
(C,ac) to VE(C, ac), we have Re[m] = £(m) € Vp o ac(L'). Henceforth, Re¢[m] C
ac(L:/). ]

Lemma 7.3.4. For an arrow f : ((C1,a¢,),&1) — ((Ca, ac,), &) in COALG(VE),
C(f) : (Ch, a0, Rey) = (Cayac,, Re,) is an arrow in PRBS.

Proof. 1t is straightforward to prove that € is an arrow in PRBS. n
Now we obtain the following result:
Theorem 7.3.1. The categories PRBS; and COALG(V}) are isomorphic.

Proof. We shall show that the categories PRBS,; and COALG(V}) are isomor-
phic via the functors B and €. Let (S,ag,R) be an object in PRBS,. Then
CoB(S as,R) = €S, ag,R[—]) = (S,as,Rri-]). Now t € Rr(s) =
t € R[s]. Thus, (S,as,R) = €0 B(S,as,R). Let ((C,ac),§) be an object in
COALG(V}Y). Then Bo€((C,ac), &) = B(C,ac, Re) = ((C,ac), Re|—]). We have
c2 € Reler] <= 2 € {(c1). Asaresult, ((C,ac),&) =Bol&((C,ac),§). It is clear
that for an arrow f in COALG(V}), B o €(f) = f and for an arrow f in PRBS;,
CoB(f) = f. 0
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Coalgebraic Duality

Using Theorems [6.5.3| and [7.3.1 we arrive at the following duality theorem:

Theorem 7.3.2. The categories M Az and COALG(V}) are dually equivalent.

Thus the modal semi-primal duality for algebras of Fitting’s Heyting-valued
modal logic (for more information, see [21]) can potentially be represented in terms
of the coalgebras of £-biVietoris functor V2.

Finally, based on the preceding theorems, we can conclude:

Theorem 7.3.3. Fitting’s Heyting-valued modal logic is sound and complete with
respect to coalgebras of the biVietoris functor V.

7.4 Conclusion

We have demonstrated how the theory of coalgebras can be used to characterise the
category PRBS, and thus obtained a coalgebraic description of the bitopological
duality for Fitting’s Heyting-valued modal logic. In this chapter, we have explicitly
constructed the Vietoris functor on the category PBS of L-pairwise Boolean spaces
and we have finally concluded that coalgebras for this functor provide sound and
complete semantics for Fitting’s Heyting-valued modal logic.

As an application of this coalgebraic duality, we may establish the existence of a
final coalgebra and cofree coalgebras in the category COALG(VE), and we can
also develop the coalgebraic duality theorem for many-valued modal logics in a

bitopological scenario.
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Chapter 8

Coalgebraic Fuzzy geometric logic

[The goal of this chapter is to develop coalgebraic fuzzy geometric logic by incor-
porating modalities into the language of fuzzy geometric logic. A generalized form
of modal logic can be created within the context of coalgebraic logic. Coalgebraic
geometric logic was recently developed by adding modalities to the language of
propositional geometric logic using the coalgebra approach. However, as far as we
are aware, no studies have been done specifically on modal fuzzy geometric logic.
This chapter study the modal fuzzy geometric logic using coalgebra theory. This
new logic might potentially be used to model and reason about transition systems
that involve uncertainty in behaviour. We propose a theoretical framework based
on coalgebra theory to add modalities into the language of fuzzy geometric logic.
Coalgebras for an endofunctor on a category of fuzzy topological spaces and fuzzy
continuous maps serve as the foundation for models of this logic. Our key finding is
the existence of a final model in the category of models for endofunctors defined on
sober fuzzy topological spaces. Furthermore, we present a comparative analysis of
the notions of behavioural equivalence, bisimulation, and modal equivalence on the
resulting class of models.

In [77], fuzzy geometric logic is introduced as a natural extension of propositional
geometric logic [08]. Vickers in [98] developed geometric logic based on point-free
topology, propositional logic, and the logic of finite observations [4]. Several stud-
ies have mentioned it (e.g., [74} 111 12], 99, 100]). The language of geometric logic

The outcomes of this chapter can be found in [60] Das, Litan Kumar., Ray, Kumar
Sankar., Mali, Prakash Chandra.: Coalgebraic Fuzzy geometric logic. International
Journal of Information Technology, Springer (accepted). and [59] Das, Litan Kumar.,
Ray, Kumar Sankar., Mali, Prakash Chandra.: Bisimulations for Fuzzy Geometric
Models. International Conference on Recent Trends in Artificial Intelligence and
IoT, 1822, 152-163, CCIS, Springer, 2023.
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is created on a collection of propositional variables by applying propositional con-
nectives: finite conjunction (A) and arbitrary disjunction (\/). These connectives
preserve the property of finite observability. Vickers [98] investigated the connection
between topological spaces, topological systems, and geometric logic. A topological
system is defined by a triple (X, =, A) in which X occurs as a non-empty set of
objects, A defines a frame and |~ is a satisfaction relation from X to A.

The authors in [77] have generalized geometric logic to the many-valued context by
extending the notion of satisfiability relation. They noticed that if the satisfaction
relation is fuzzy, there are two possible outcomes for the related consequence rela-
tion: crisp or fuzzy. They consequently introduced general fuzzy geometric logic
as well as fuzzy geometric logic with graded consequences. In addition, their work
demonstrated the link between fuzzy geometric logic, fuzzy topology, and fuzzy topo-
logical systems. The concept of fuzzy topological spaces has introduced in [78] and
has been the focus of numerous studies (e.g. [79] 80, 81, 82, [83]). A comprehensive
explanation of graded consequences and associated issues can be found in [84].

A thorough literature review on several aspects of coalgebraic logic has been ac-
complished, and its findings have been compiled in Table The literature survey
makes clear that the coalgebraization of fuzzy geometric logic has not been studied.
Consequently, the goal of the current study is to investigate modal fuzzy geometric
logic using the coalgebra process and to establish a criterion for the existence of final
fuzzy geometric models.

We extend the predicate lifting approach [87] and apply it to build modal oper-
ators for fuzzy geometric logic, which can be interpreted in coalgebra-based models
with a fuzzy topological space as the state space. The structures, known as fuzzy
geometric models, provide the semantics of our coalgebraic logic. Final models are
important in “state-based systems” because they create what is commonly referred
to as minimal representations: they are canonical interpretations that include ev-
ery possible behaviours that a system could exhibit. The duality between sober
fuzzy topological spaces and spatial frames (cf. Theorem enables us to ap-
proach challenges from several angles. As an instance, the duality between sober
fuzzy spaces and spatial frames leads to the concrete creation of a final model (see
Section [8.3). The concept of bisimulation [91] is widely used in computer science
and mathematics. Bisimulation between coalgebras is a fundamental idea in “state-
based systems” that associates states with the same behaviour. In [95], the author
established various conceptions of coalgebraic bisimulation and investigated their
relationship. In the current chapter, we study the notions of bisimulation for fuzzy
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Table 8.1: Literature review (tabular form).

Sr. No. Inves-
tigator

logic

Findings
of the
study

1 [98]

2 (rded

3 [63]

4 [66] 67

5 [69]

6 [8R1 8]

Propositional Geomet-
ric logic: logic of finite
observations

Fuzzy geometric logic

Coalgebraic logic

Coalgebraic modal
logic

Stone-based coalge-
braic logic

Coalgebraic geometric
logic

Interrelation between
systems and spaces

Interrelation among
fuzzy geometric logic,
fuzzy systems, and
fuzzy spaces

Coalgebra is excellent
for reasoning concepts
relating to behaviour
and observable indis-
tinguishability.

Coalgebraic logic on
the category of sets
is constructed, and
modal operators are
defined using the
methods of predicate
lifting.

Clopen-predicate lift-
ings are used to define
modal operators and
explore various con-
cepts of bisimulation.

Investigate open-
predicate lifting and
create a criterion

to demonstrate the
existence of final
geometric models. .

geometric models. Our aim here is to show that the concepts of fuzzy geometric
modal equivalence, bisimulation, and behavioural equivalence coincide on the cate-
gories of fuzzy topological spaces and the category of sober fuzzy topological spaces,
provided the set of fuzzy predicate liftings and the endofunctors satisfy certain re-
quirements.

Our research is comparable to that found in [88],[89]. From a mathematical perspec-
tive, the findings in this chapter might be referred to as generalizations of relevant
classical concepts to the many-valued setting.
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8.1 The preliminary findings from Fuzzy Set The-
ory, Fuzzy topological spaces and Coalgebra

theory

Fuzzy set theory

Zadeh [107] explored fuzzy set theory. We review some essential concepts in fuzzy
set theory.

Definition 8.1.1 ([I07]). A fuzzy set f on a set S is defined by the membership
function f: S —[0,1].

Let f¢ denote the complement of f. Define f¢: S — [0,1] by f¢(s) = 1 — f(s),
Vs € S. f¢is a fuzzy set on S.

Note 8.1.1. If fi and fy are fuzzy sets on S, then fiV fo and fi A fo are fuzzy sets
on S, where the fuzzy sets fl\/fg and fl /\fg are defined by (fl \/fQ)(s) = fl(s)\/fg(s)
and (f1 A fz)(s) = fl(s) A fg(s), respectively.

Remark 8.1.1. For each s € S, the grade of membership of s in the fuzzy set f is
given by the value f(s) It is represented by the symbol gr(s € f)

Definition 8.1.2 ([I07]). Let Sy and Sy be two sets and f : S — Sy be a given
function. For a fuzzy set §1 on Sy, the direct image f($1) : Sa — [0,1] of the fuzzy
set §1 under the function f is defined by f(s1)(s) = \/{s1(t) : t € f~1({s})}, where
S € SQ.

Definition 8.1.3 ([107]). Let S; and Sy be two sets and f : S; — Sy be a given
function. For a fuzzy set sy on Sy, the inverse image f~1(s3) : S1 — [0,1] of the
fuzzy set S under the function f is defined by f~1(s3) = Sy 0 f.

Definition 8.1.4 ([107]). Let p and n be fuzzy sets on S. Then, p is a fuzzy subset
of n, denoted by p <n, <= u(s) <n(s), Vs € S.

Definition 8.1.5 ([107]). Consider a mapping f : S — T and a collection {p; : i €
Z,7 is an index set } of fuzzy sets on T'. Then

(i) fﬁl(\/ﬂi) = \/f_l(,uz‘);

€L 1€T

(it) f_l(/\ﬂz') = /\fﬁl(ﬂz‘)-

€L €T
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Goguen first considered the category of fuzzy sets in [I02]. Several authors
studied on the category of fuzzy sets (e.g.,[104, 105, 106]). Let FS denote the
category of fuzzy sets.

Definition 8.1.6 ([104]). The category FS is defined as follows:

(i) An object in FS is a pair (S,g), where S is a set and g : S — [0,1] is a
membership function;

(ii) A morphism f : (S,3) — (T,h) in FS is a function f : S — T such that
g(s) < 7 (A)(s).

Fuzzy topological spaces

We recall the definition of fuzzy topological spaces from [7§].

Definition 8.1.7 ([78]). Let S be a set. A collection Ts of fuzzy sets on S is said
to be fuzzy topology on S if the following conditions hold:

(i) 0,5 € 75, where §(s) =0, Vs € S and S(s) =1, Vs € S;

(11) if g1, G2 € T then §1 N g2 € Ts, where (g1 A §2)(s) = G1(s) A Ga(s);
(111) if §; € ¢ for j € A, A is an index set, then \/g} € 15, where \/g}(s) =

jeA jeA
sup{g;(s)}-
jen

Then, the pair (S, 7g) is referred to as a fuzzy topological space and members of
Tg are said to be fuzzy open sets on (5, 7g).

Note 8.1.2. Let (S, 1s) be a fuzzy topological space. Then, the fuzzy topology Ts on
S can be considered as a frame.

Definition 8.1.8 ([I03]). Let (S,7s) be a fuzzy topological space. Then a subset B
of Ts is called a basis for (S,Ts) if it satisfies the following conditions:

(Z) ’I;fgl,gg € B then Bl VAN 52 € EB,’
(ii) for each member t € g, there exists a subcollection C = {t; € B : j € A} such

that t = \/ ;.

JEA
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Definition 8.1.9 ([103]). Let 75 be a fuzzy topology on S and & C 1s. Then, & is a
subbasis for a fuzzy space (S,Ts) <= the collection of all finite meets of members

of S is a basis for (S,7g).

Definition 8.1.10. A fuzzy topological space (S, Ts) is said to be Kolmogorov space
or Ty-space if for any pair (x,y) of distinct points in S, there is a fuzzy open set §
on S such that §(x) # g(y).

Definition 8.1.11. Let (F,7r) and (G, 7¢) be fuzzy topological spaces. A mapping
f: F — G is fuzzy continuous if and only if, for every fuzzy open set g on (G, 1q),
F7Xg) is a fuzzy open set on (F,Tr).

Let Fuzzy-Top denote the category of fuzzy topological spaces.
Definition 8.1.12. The category Fuzzy-Top is defined as follows:
(i) Objects in Fuzzy-Top are fuzzy topological spaces (S, Ts);
(i) Morphisms f : (S, 7s) — (T, 7r) in Fuzzy-Top are fuzzy continuous mappings.

Definition 8.1.13. A functor Q from the category Fuzzy-Top to the category FS
of fuzzy sets can be defined as follows:

(i) For —an  object (S,75) in  Fuzzy-Top, define  Q(S) =
set of fuzzy open sets on (S, Ts);
(ii) For a morphism ¢ : (S,7s) — (T,7r) in Fuzzy-Top, define Q(¢) = ¢~ :
QT) = Q(S) by ¢~ (p) = po o, ue Q).
Definition 8.1.14. We define a functor P : Fuzzy-Top — FRM as follows:
(i) For an object S in Fuzzy-top, define P(S) = 7s;

(i) For an arrow n : S; — So in Puzzy-top, define P(n) : P(Sy) — P(S1) by
P(n) (&) = Eon, where £ € P(S,).

Note 8.1.3. Let F be a frame and (S,7s) be a fuzzy topological space. Then, the
frame F is spatial if there is an isomorphism from F to P(S5).

Consider that S-FRM is the category of spatial frames and homomorphisms
between frames. Let F' denote a frame and PTF denote the collection of frame
homomorphisms h from F' to [0,1]. Then the collection {¥(a) : a € F'} is a fuzzy
topology on PTF', where for each a € F', U(a) is a membership function from PTF
to [0, 1] which is defined by ¥(a)(h) = h(a).
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Definition 8.1.15 ([97]). Let 7 be a fuzzy topology on S. Assume that T € 7. A

membership function W(T) : PTT — [0, 1] can be defined as V(T')(h) = h(T'). Then,
U(T) is a fuzzy set on PTr.

The collection {U(T) : T € 7} is a fuzzy topology on PTr.

Corollary 8.1.1 ([97]). Consider a fuzzy topological space (S,7). A mapping f :
S — PTr is defined by f(s)(¢) = ¢(s), where ¢ € 7. Then, (S,T) becomes a sober
space <= f s bijective.

The category of sober fuzzy topological spaces and fuzzy continuous maps is
denoted by SFuzzy-Top.

Definition 8.1.16. We define a functor PT: FRM — Fuzzy-Top as follows:
(i) For an object F' in FRM, define PT(F) = PTF;

(it) For an arrow f : F — F' in FRM, define PT(f) : PTF' — PTF by
PT(f)(h) = ho f, where h € PTF".

Theorem 8.1.1. The category S-FRM is dually equivalent to the category SFuzzy-
Top.

Proof. Let id; and idy be the identity functors on S-FRM and SFuzzy-Top, respec-
tively. We define two natural transformations ( : idy — PoPT and n : idy — PToP.
For a spatial frame F', we define (p : ' — P o PT(F) by (p(u)(h) = h(u), where
h € PTF. Since F is a spatial frame, we have (r is an isomorphism. It becomes
easy to observe that ( is a natural transformation. As a result,  is a natural iso-
morphism.

For an object S in SFuzzy-Top, define ng : S — PToPS by ns(s)(g) = g(s), Vs € S
and g € P(S). As S is sober, so ng is bijective. We observe that, for g € P(S5),
151 (W(3)(s) = W(@)(ns(s)) = ns()(3) = §(s). Therefore, 55" (¥(5)) = §. More-
over, 1g is an open map because 175(7)(h) = \/{g(s) : s € ng*(h)} = h(g) = ¥(g)(h).
Therefore, ng(g) = ¥(g). Consequently, ng is a fuzzy homeomorphism. It can be
shown that 7 is a natural transformation. Hence, 7 is a natural isomorphism. O]

Coalgebra

Coalgebras are categorical structures that are dual or opposite (in the sense of cat-
egory theory) to the notion of algebras. The coalgebraic approach is abundantly
applied in computer science and artificial intelligence (e.g., knowledge representa-

tion, concurrency, logical reasoning, automata theory, etc.).
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Definition 8.1.17 ([0]). Assume that T is an endofunctor on a category S. A T-

coalgebra is a pair (A, (), where A is an object in S and { : A — T(A) is a morphism
n S.

Definition 8.1.18 ([6]). A morphism between T-coalgebras (A,d) and (B, ) is
defined by a morphism ¢ : A — B in S satisfying the equation T'(1)) o § = B o1,
i.e., the Fig. commutes.

Figure 8.1: Illustration of coalgebra morphism

T-coalgebras and morphisms between T-coalgebras form a category, denoted by
COALG(T).
A final coalgebra is a final or terminal object in COALG(T'). It has a significant
impact on computer science. The final coalgebra is crucial as it makes sense of
behaviourally equivalent states in coalgebras.

Definition 8.1.19 ([6]). A final coalgebra in COALG(T) is a T-coalgebra (A, 9)
which satisfies that for each T-coalgebra (B, ), a unique morphism exists from

(B, ) to (A,9).

Definition 8.1.20 ([90]). Let (A,d) and (B, ) be objects in COALG(T). We say
that any two states a € A and b € B are behaviourally equivalent if there exists an
object (C, ) in COALG(T) and T-coalgebra morphisms g : (A,d) — (C,«) and
h:(B,B) — (C,«a) such that g(a) = h(b).

Definition 8.1.21 ([96]). Let (A,d) and (B, 5) be two T-coalgebras. Then a relation
R C A x B is said to be a bisimulation between (A, ) and (B, ) if there exists a
T-coalgebra (R,~y) such that the projection maps w1 : R — A and m : R — B are
coalgebra morphisms and satisfy the relations  omy = T(my) oy, fomy = T(ms) 0.
So, the diagram shown in Fig. 15 commutative.
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A < e R e » B

5l Y lﬁ
T(4) = T(R) T(B)

T(71'2)

Figure 8.2: Illustration of coalgebraic bisimulation

8.2 Coalgebraic logic

It is assumed for this section that 7" is an arbitrary endofunctor on the category
C = Fuzzy-Top. We define coalgebraic logic for Fuzzy-Top-coalgebras. First, we
introduce a notion of a predicate lifting for the endofunctor 7', called fuzzy-open
predicate lifting.

Definition 8.2.1. A natural transformation A : Q" — Qo T is called a fuzyy-open
predicate lifting. So, by the naturality law the following diagram commutes:

Y Q"X —2X 4 QoT(X)
1 o e
X QY ———— QoT(Y)

Let X is the dual of \. Define A as iy, pia, -+ fin) = 1=A1—pur, 1=, - -+, 1= 1),
where p; € Q(S), i =1,2,--- ,n and S is an object in Fuzzy-Top.

Definition 8.2.2. The fuzzy-open predicate lifting \ is

(i) monotone if for every object S in Fuzzy-Top and j;,n; € Q(S), i =1,2,--- |n
such that piy <y, i <0 = As(pn, 5 pn) < As(a, =+ M)

Let X be a collection of fuzzy-open predicate liftings for T'. Then, the collection
Y} is said to be a fuzzy geometric modal signature for T'. ¥ is referred to be monotone

whenever every member of Y is monotone.

Definition 8.2.3. The collection ¥ for an endofunctor T on Fuzzy-Top is con-
sidered to be characteristic for T if for each object S in Fuzzy-Top, the collection
{As(por, -+ s ) = N € X u; € Q(S)} meets the subbasis criteria for the fuzzy topol-
ogy on T'S.
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Let £(X) denote the modal language generated by 3.

Definition 8.2.4. The modal language L(X) is the collection FGML(X) of formulas
defined as follows:

B = Tlp|p A 62|\/j€J Bi|ON By, B2, -+, Bu), where X € X, ® represents the set of
propositional variables p and J represents an index set.

Definition 8.2.5. A fuzzy geometric model for the functor T is a mathematical

structure S = (S,0,V) consisting of a T-coalgebra (S, o), and valuation mapping

V:®— Q(S) Clo,1]5,
We now define a category FMOD(T) as follows.
Definition 8.2.6. The following describes a category FMOD(T):
1. Objects: An object in FMOD(T) is a fuzzy geometric model for T';

2. Arrows: An arrow f: (S,01,Vs) = (5,02, V%) in FMOD(T) is a coalgebra
morphism f : (S,01) — (S, 02) which satisfies the condition: f~ o Vi = Vs.

Definition 8.2.7. Consider a formula o in FGML(Y). The semantics of o in

terms of fuzzy geometric model S = (S,0,V) is defined as shown below:
(i) [[Tlls(s) = 1;

(ii) [[plls(s) = V(p)(s);

(iii) [[a1 A az]]s(s) = [[aa]]s(s) A [[ea]]s(s);

(iv) [[Vies ills(s) = Sup{[[i]ls(s)};
(v) [OMay, @z, -+ an)lls(s) = As([[an]ls, [[aalls, - -, [[am]]s) 0 o (s).

Grade of a formula « satisfied by a state or world s in S is denoted by gr(s = «)
and defined by gr(s | «) = [[a]]s(s). Two states s and ¢ in S are modally equivalent
if gr(s E a) = gr(t E a), Ya in FGML(X). We express it by the notation s =y, t.

Definition 8.2.8. Let B = (B,01,Vg) and B’ = (B',09,Vp/) be fuzzy geometric
models for T. States b € B and V' € B’ are said to be behaviourally equivalent in
FMOD(T) if there exists an object C = (C,v,Ve) in FMOD(T) and morphisms
g:B—=Candh:B — C in FMOD(T) such that g(b) = h(V').

In Proposition|8.2.1} we shall demonstrate that fuzzy geometric model morphisms
preserve truth degrees.
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Proposition 8.2.1. Assume that f : S = (S,01,Vs) = K = (K, 09, Vk) is a mor-
phism in FMOD(T). Then, we have gr(s = a) = gr(f(s) E «), Yoo € FGML(X)
and s € 5.

Proof. We are to show that for all formulas «, [[a]]s(s) = [[a]]c(f(s)). If pis a
propositional variable then by using Definition we can show that [[p]ls(s) =
[Pl (f(s)) ie., gr(s = p) =gr(f(s) E p). It is straightforward to demonstrate that
gr(s F Vjes05) = gr(f(s) F Vjesya5) and gr(s | ar Aaz) = gr(f(s) | a1 A az).
The only part we have to show is that gr(s | QMay, ag, -+, ) = gr(f(s) E
OMay, g, -+ ,a,)). Since f is the coalgebra morphism, henceforth T foo; = gq0 f.
So, the following diagram ( Fig commutes.

s —1 Kk

all le

Figure 8.3: Coalgebra morphism

Applying the functor Q to the previous diagram (Fig. yields the following
diagram, which commutes as well.

Qo‘lzal_lT TQ0'220-2_1

ATS) sap=ap ATK)

Now,
H@A(%azw- yom)]ls (s)
= As([lon]ls, -+, [laml]s) © 01 (s)
= As({[en]lc o £, [lawllic o f) 0 ou(s) [as [ ([[a]lx) = [[a]]s ]
= Ax([lea]]c, - [laml]ic) © Tf 0 01(s) | by naturality of A |
= Ax([[eallie, -+, [lamllic) 0 02 0 f(s)

= [[©an, - an)l]k(f(5))
Therefore, gr(s = QMay, ag, -+ ,a,)) = gr(f(s) B QMay,ag, -, ap)). O

102



Coalgebraic Fuzzy geometric logic

We now arrive at the following outcome by utilizing Proposition [8.2.1]
Proposition 8.2.2. Behaviourally equivalent states are modally equivalent.

Proof. Let B = (B,01,Vp) and B’ = (B',09,Vp) be fuzzy geometric models for
T. Consider b € B and V' € B’ are two states. Suppose, the states b and b’ are
behaviourally equivalent. We shall show that they are modally equivalent. Since
b and O’ are behaviourally equivalent in FMOD(T'), so there exists an object C =
(C,v,Ve) in FMOD(T) and morphisms g : B — C and h: B' — C in FMOD(T)
such that g(b) = h(d'). Now, by Proposition we have gr(b = «a) = gr(g(b) E
a) and gr(t/ E a) = gr(h(t/) E «), Va € FGML(X). As g(b) = h(b), hence
gr(b = a) = gr(t/ = a), Va € FGML(X). Therefore, the states b and b are
modally equivalent. ]

8.3 Final model

In this section, we assume that 7" is an endofunctor on SFuzzy-Top, the category of
sober fuzzy topological spaces, and consider a characteristic fuzzy geometric modal
signature ¥ for the endofunctor 7. We shall create a final model in FMOD(T) for
the endofunctor 7. Let B = (B, , V) be a fuzzy geometric model for T

Definition 8.3.1. Any two formulas a and 3 are equivalent in FMOD(T) iff gr(b =
a)=gr(bE B), Vb € B. Let a« = 8 denote the formulas o and 3 are equivalent.

Let [a] denote the equivalence class of a formula & € FGML(X). Let £ be the
collection of equivalence classes of formulas in FGML(X). We define gr(b |= [a]) =
gr(b E «), for any b € B.

We shall now show that £ is a frame.

Proposition 8.3.1. £ is a frame.

Proof. The order relation on £ is defined as: [a] <[] <= gr(b E a) < gr(b E B),
Vb € B. As gr(b = a) = gr(b = «), the order relation < is reflexive. It is easy to
see that if [ay] < [51] and [B;1] < [Bs] then [ay] < [B3]. Thus the order relation <
is transitive. Now, if [a] < [8] and [3] < [« then by the defined order relation we
have gr(b = a) = gr(b = ), Vb € B. Hence, o = . As a result, [o] = [5]. So the
order relation < is antisymmetric. Therefore, £ is a poset with this order relation.
As gr(b = anp) = [[an Bllsb) = [[ed]s(b) Al[Blls(b) = gr(b = a) A gr(b = B),
hence [a A B] € €. As a result, [a] A [f] € €. Similarly, arbitrary join exists in
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E. We observe that, [a] A \/[ﬁj] = la] A [\/ Bl = [an \/ B;]. Now, we have
jeJ jeg JEJ

grib E anVe, B) = grib E ) Agr(b = Ve, ) = AV Bills(0) =

jedJ

[e]l5(0) A Supses{[18i]ls(0)} = Supses{llalls(®) A [13]]s(0)} = [[\/(a A BIIB) =
r(b = \/(a A B;)), ¥b € B. Consequently, [a A \/ Bl = [\/(a AJZ)]. Henceforth,
a]/\\/[Z] = [\/(aAﬁj)] = \/[a/\ B8] = V([a] ie[;j]). Tﬁ;efore, £ isaframe. [
Deﬁfiiion 8:; Let F :J;JT(S). A ;:c;]p f: B — F is defined by f(b) = hy,
where hy, is a frame homomorphism from € to [0,1] defined by hy([a]) = gr(b = ).

Note 8.3.1. The mapping f : B — F is fuzzy continuous. Let [a] € £. Then we
show that f~1(¥([a])) = [[o]]s by the following:

F7H () (®) = ¥([a]) f(b) = f(0)([a]) = gr(b | @) = [[a]]s(D).

Hence, Yoo € FGML(Y), f‘l(\IJ([a])) is a fuzzy open set on B. Therefore, [ is a

fuzzy continuous map.

Let G=PoT o PT. Then G : FRM — FRM is a functor. Since the category
S-FRM of spatial frames is equivalent to the opposite category of SFuzzy-Top,
the endofunctor defined on the category S-FRM is a restriction of G. As X is
characteristic, so the collection {)\B([/o;], e ,[E:]) tA€eEX o € FGML(Z),[T)Q\] €
Q(PTE),i=1,---,n} generates the frame G(€). So, an assignment can be defined
on the generators of G(£), and by Remark it can be extended to a frame
homomorphism from G(&) to £.

Definition 8.3.3. Define a morphism § Gg& — & in FRM by
€(>\]-'([051], [052], U 7[an])) - [Q?)‘<O[17052, U 7an)]-

The well-definedness of the morphism ¢ is shown by Lemma [8.3.1]
Lemma 8.3.1.  Suppose \/( /\ )\E’Cj(@z’],@l’]’ . ,@m)) —
i€A jeK;
\/( /\ NE([ed] 7 [od] - o, ")), where A and I are the arbi-

reZl seJr

trary index sets, and K;, J. are the finite index sets. Then, formulas
A6 J z NI 1,7 AT 3 /r S /7’ S s

VOA 90,0t )) and VO 905 o o a2)) am

€N jeK; reZ s€Jr

equivalent in FMOD(T).
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Proof. We _shall show that, for an object B = (B,~,Vp) in FMOD(T), gr(b =
VA O (0 o0l ) = grb = \/(N\ O (a8 - a?),

€N jEK; rel seJr

Vb e B.
Now we observe that,

V(A A ([[ad]]s, 055, - . [[ai ]]s))

EA\ZE{Q( N (PN ([e]), FH W (037]), -+ F 1 ([057 1)) [By Note B3]
= L\/A(%Q(Z(Tf)‘l(kéﬁ(\If([o/fjm U([ay’]), -+ ¥ ([ey? 1)) [ By naturality of A |

: 11(!(4\( N (U ([r?]), U([e3”)), -, ¥([a}? 1)) | By Definition [8.1.5]]
- (Tf)l(\/z(j/g AF (U ([of]), U([az™]), - ¥([af7])))) [ By the given hypothesis]
- \/I /> T TA”(\IJ([ 7D, 9([057]), -+, ¥([ef2]))) | By Definition .15
= \G/I ;> X (PR D), FH (a5, -+, FH (¥ ([errs])))) [ By naturality of A |
= \:/Z Z\7 Ng ([ ]]s, [0 ]]s, - - [l 1]s))
Therefore, for a fuzzy geometric model we have gr(b
%\/A(jé\(i@”” (ai?, a4’ 0l ))) = gr(b | MSQT@ATS Al ),
Vb € B. O

So, (£,&) is a G-algebra. Now we construct a T-coalgebra structure on F = PTE.

Definition 8.3.4. Consider a morphism ¢ = npr o PT() : F —
TF, where the morphism PT(§) : PT(E) — PT(G(E)) is defined by
PT(&)(h)(Az([as], [ae], -+ [an])) = gr([OMes, 0z, )] € h), where h €
PT(€) = PTE, and the morphism nry : TF — PT(G(E)) is defined by
e (h) Or (ol [0+ [on]) = Ar(fo, [0, -+ [an]) (%), where h* € TF.

Note 8.3.2. Since T'F is a sober fuzzy topological space, so by Theorem [8.1.1, nrr
s an 1somorphism. Consequently, the morphism ¢ is well-defined.
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Definition 8.3.5. The triple (F, ¢, Vz) is an object in FMOD(T), where (F, ¢) is
a T-coalgebra and the valuation function Vr : ® — Q(F) is defined by Vr(p)(g) =
gr(p € g) = g(p), where p € ® and g € Q(F).

Proposition 8.3.2. The mapping f : B — (F, ¢, Vr) is a morphism in FMOD(T).

Proof. We are to show that f is a coalgebra morphism from B to F, and f “loVr =
Vg. It is observed that for every propositional variable p,

FHoVe(p)(b) = f7 (VE(p) (D)
= Vf( )(f (b))
= gr(p € f(b))
= f(0)(p)
= gr(b = p) | By Definition [8.3.2]
= Vi(p)(b).

Henceforth, f~ o Vr = V5. To prove [ is a T-coalgebra morphism, we show that
Tfo y=¢o f i.e., the diagram shown in Fig. commutes.

f

B F
| s
TB ——— TF

Figure 8.4: Illustration of T-coalgebra morphism

Now we observe that,

gr(Tfor(b) € Ar(¥([ea]), ¥([aa]), -, ¥([an])))
= gr(y(b) € (Tf) ™" o Ap(¥([eu]), W([aa)), -, U([awn])))
= gr(v(b) € Ag([[a1l]s, [[a2]]B, - - -, [[an]]8)) [Since A is the natural transformation |
= A([[aa]ls, [lev2]]s, - - - [[an]]B) © (D)
=[O, a2, -+, a,)]ls(D)
= gr(b = QMay, ag, -+ ,0))
= FO)([@*([au]; ], -+, [@a])]) [By Definition 8:3.2]]
— gr(60 F(8) € Ar(W([en]), B([as]), -, ¥([a])) | By Definition F3)|
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As T'F is a sober fuzzy topological space, hence it is a Ty-space (Kolmogorov space).
Therefore, we have Tf oy = ¢ o f. O

Theorem 8.3.1. The fuzzy geometric model § = (F, ¢, Vx) in FMOD(T) is a final
model in FMOD(T).

Proof. We prove it by showing that for an object B = (B,~,Vg) in FMOD(T), a
unique T-coalgebra morphism exists from B to §. Following the Proposition [8.3.2]
a T-coalgebra morphism f : B — § exists. The only part that remains to be proven
here is that f is unique. Consider a morphism f* : B — § in FMOD(T). By

Proposition , we have gr(b E «) = gr(f*(b) [?c]) Now gr(f(b) k= [a]) =

f)a] = gr(b = a) = gr(f*(b) k= [a]). Consequently, f(b) = f*(b). Therefore, § is
final in FMOD(T). O

By Theorem [8.3.1] we derive the following result.

Theorem 8.3.2. Modal equivalence implies behavioural equivalence.

Proof. Let B = (B,~,Vg) and By = (B1,71,Vp,) be fuzzy geometric models for
T. Let b € B and b; € B; be states. If b and b; are modally equivalent then we
have gr(b = a) = gr(b; |= @), for all formulas a. By Proposition [8.3.2] there exist
morphisms f :B — § and fl : By — §F in FMOD(T). Using Proposition , we
have gr(f(b) = [a]) = gr(b = a) = gr(b, = a) = gr(fi(b1) = [a]), for all formulas
. Therefore, f(b) = f1(by). Hence, b and b, are behaviourally equivalent. O

Remark 8.3.1. The converse of the statement mentioned in Theorem[8.3.3 is true
by Proposition[8.2.3. Thus, modal equivalence and behavioural equivalence coincide
when the endofunctor T is specified on SFuzzy-Top.

8.4 Bisimulations

The aim of this section is to develop bisimulations for fuzzy geometric models for
an endofunctor T', where T is defined on Fuzzy-Top.

Definition 8.4.1 ([102]). Consider that F' and F' are any two sets, and R is a
relation between F and F'. Then, for a subset E of F, RIE] = {d € F' : J e €
E.eRd'} and for a subset E' of ' R7'[E'|={d € F:3 ¢ € E',dRe}.
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Let 1 be a fuzzy set on F. Then a fuzzy set R[u] on F’ can be defined by

Rlu|(d') = \/ {u(d) : dRd'}. For a fuzzy set n on F’, we define an inverse image of
deF

n under the relation R by R7[n](d) = \/ {n(d") : dRd'}. Tt is clear that R™1[n] is
deF
a fuzzy set on F'.

We define the Aczel-Mendler bisimulation between fuzzy geometric models for
T.

Definition 8.4.2. Let By = (By,71,Vp,) and By = (Bg, 72, Vp,) be two fuzzy ge-
ometric models for T. Then, a relation R C By X By is said to be an Aczel-
Mendler bisimulation between By and By if for each (by,by) € R and p € @,
Vi, (p)(b1) = Vp,(p)(ba), i.e., gr(by | p) = gr(bs = p) and there exists a coal-
gebra morphism ~v* : R — TR for which the projection maps m : R — B; and
7o : R — By are coalgebra morphisms and satisfy the relations vy o my = T(my) o v*,
a0y = T(mg) 0 v*, i.e. the diagram shown in Fig. commutes:

™ w
Bl< : R 2>Bg

a | |

TBy m TR 2 15

Figure 8.5: Illustration of Aczel-Mendler bisimulation between fuzzy geometric mod-
els

We now introduce a notion of »-bisimulation between fuzzy geometric models
for T, adapting the “A-bisimulation” concepts discussed in [75] [76].
First, we introduce the notion of coherent pairs.

Definition 8.4.3. Assume that R is a relation between B and B'. Let my : R — B
and mo : R — B’ be projection maps. Then, a pair (71,73), where 1 and 75 are
respectively the fuzzy sets on B and B', is called R-coherent if Rlri] < 75 and
R ) < 7.

Definition 8.4.4. Let By = (B1,71,Vp,) and By = (Bs, 72, Vg,) be two fuzzy ge-
ometric models for T. A relation R C By X By is said to be a X-bisimulation
between By and By if for all (b,by) € R, p € ® and each pair of fuzzy open sets
(pi,mi) € Q(By) x Q(Bsy) such that Rlw;] < n; and R [n;] < w;, we have :
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(i) gr(by = p) = gr(bs =p), and
(i) gr(v1(b1) € Ag, (pt1, iy = 5 ) = gr(v2(b2) € Ay (M1, M2, -+ 1))

Two states b; € B; and by € By are said to be X-bisimilar if there exists a X-
bisimulation R such that (by,bs) € R.
We now require the following observation:

Lemma 8.4.1. Consider R C By X By is a relation that is equipped with the fuzzy
subspace topology. Let w1 : R — By and my : R — By be projection maps. Then, a
pair of fuzzy open sets (u,n) € Q(By) x Q(By) is R-coherent <= 77 (u) = 7, (n).

Proof. Suppose the pair of fuzzy open sets (u,7n) is R-coherent. We shall show
that 7' (u) = 7, ' (n). First, we show that 7' (u) is a fuzzy subset of 7, '(n), i.e.
7 (p) < 7y H(n). We notice that (7, (1)) and R[u] are both fuzzy sets on By. It
is simple to demonstrate that m (7, (1)) = R[u).

Now,

7 (p) < my(ma(my (1)
= my (Ru]) [As mo(my (1) = Rip] |
<m'(n) [ As Rlu] <7 |

Similarly, we can show that 7, (1) < 77 '(u). It is straightforward to verify that if
7' (1) = 75 (n) then the pair (u1,7) is R-coherent. O

Now, we shall show that Y-bisimilar states are modally equivalent.

Corollary 8.4.1. Assume that T is an endofunctor on Fuzzy-Top. Then -
bistmilarity tmplies modal equivalence.

Proof. Let R be a X-bisimulation between fuzzy geometric models By = (B1, 71, Vg, )
and By = (Ba2,72,Vp,). Let by € By and by € By be two states. Suppose by Rbs.
We shall show that gr(by F a) = gr(by E «), Va € FGML(X). If p is a
propositional variable, then it follows from the definition of Y-bisimulation that
gr(by = p) = gr(bs = p). It can be easily shown that gr(by E a1 A az) =
gr(by = aq A ag) and gr(b; = \/ozj) = gr(bs = \/ a;), J is an index set. Now,

jeJ jeJ
gr(bl >: (?)\(O‘h g, - >an)) = 97“(71(51) S >‘B1(Ha1]]317 HOZQHBU T Han]]Bl)) By
induction principle, we can show that, for each i = 1,2,--- ,n, R[[[a]]s,] < [[e]]s,
and R7[[ai]]s,] < [[cu]ls,: As R is a X-bisimulation, we have gr(y(b) €
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)‘31([[a1]]317 [[QQ]]B17 ) [[an]]31)> = gT(’h(b?) S /\BQ(HQIHBw [[OQ]]BQ’ Tt Han“@z)'
Consequently, gr(b; | QMay, ag, -+, ) = gr(bs = OMay, as, -+ ,a,)). There-
fore, b; and by are modally equivalent. O

Combining the results from Remark and Corollary yields the following
result:

Corollary 8.4.2. For an endofunctor T' on SFuzzy-Top, X-bisimilarity implies
behavioural equivalence.

Corollary 8.4.3. Let T' be an endofunctor on Fuzzy-Top; let > be a monotone
fuzzy geometric modal signature for T'. Then Aczel-Mendler bisimulation is a Y-
bisimulation.

Proof. Consider By = (B1,71, Vp,) and By = (Bs, 72, Vp,) are fuzzy geometric mod-
els for T. Let R be an Aczel-Mendler bisimulation between B, and B,. Then the
diagram shown in Fig[8.6] commutes.

™ w
Bl< . R 2>Bg

S ]

TBy - TR 2 15

Figure 8.6: Illustration of Aczel-Mendler bisimulation between fuzzy geometric mod-
els

We are to show that, R is a X-bisimulation. Consider b;Rby, where b; € By and
by € By are the states. Given that R is an Aczel-Mendler bisimulation, we have for

any propositional variable p € ®, gr(b; = p) = gr(by = p). Assume that for each
pair of fuzzy open sets (&, () € Q(B1) x Q(Bs), R[&] < ¢ and R[] < &.
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Now,

gr(m(bi) € A, (1,62, ;&)

=g, (61,6, &) (b))

= Ap, (61, &2, -, &) (Tm) (77 (b1, b)) [ As yomy = T'my 0]

= gr(7" (b1, b2) € (Tm) ™ (Apy (&1, &2, - ,€n)))

= gr(7*(by,b2) € Ag(& 0y, & 0y, - n o)) [As A is a natural transformation]

“(b1,by) € Ar(my ! (ma(my ! (51)))) -,y (Mo (€n))) [As A is monotone]

“(b, b2) € Ar(my (RIE]), my  (R[&2]), -+ ma  (RIEA])))
)
)
) €

(
< gr(v(
( [
(b1, by) € Ar(myt(C 1),7r_1(§°2) 75 H(¢)))[As A is monotone |
(
(
(

(
(
= gr(
< gr(
= gr(v"(b1,b2) € Ar(Groma, -+, ¢y O7T2))
= gr(7v* (b1, by) € (Tma) "N,y (C1, Coy -+, Cn))) [As A is natural]
= gr(7a(b2) € AB,(C1, o5 5 Cn))

~y
~y
v
~
~
v

Therefore, gr(vi(b1) € Ap (&,&2, - ,&)) < gr(ne(b) € Ap,(Ci o, G)).
Similarly, it can be shown that gr(y2(b2) € Ap,(Ci,Co,-++,Cn)) < gr(m(b) €

A, (&1,&2, 7+, &n)). Finally, we have gr(vi(b1) € Ap, (&1,&2, -+ ,&n)) = gr(12(b2) €
A, (C1,Cay -+, (). Hence, the result follows. []

We now have all of the necessary components to define a bisimilarity concept for
fuzzy geometric models.

Theorem 8.4.1. Let B = (B,v,Vg) be a fuzyy geometric model for T. Then
= JH{R : R is a X-bisimulation from B to B } is a X-bisimulation from B to
itself.

Proof. Consider for each pair of fuzzy open sets (u;, p;) in B, R'[p;] < w} and
R’fl[,u;] < ;. Let (by,b9) € R’. Then there exists R € R’ such that (by,bs) € R.
Since R is X-bisimulation, we have Vg (p)(b1) = Vp(p)(be) i.c., gr(by = p) = gr(bs =
p). We observe that R[u;] < R'[w;] < pi and R [u!] < R'~Hul] < pi. Now, we get
gr(y(b1) € Ap(pa, pa; -+ pin)) = gr(v(b2) € Ap(py, py, - -+, piy,))- 1t follows that R’
is X-bisimulation from B to itself. O

We emphasize that the above result is important for further progress of this work.
The above finding paves the way for future theoretical advancements, notably the
co-inductive proof principle [90].
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8.5 Applications

The following is a hypothetical application of fuzzy geometric modal logic.

Example 8.5.1. Assume that a serious virus has infected a particular location. Sci-
entists believe that three medications mq, ms, and msg may be given in treating this
condition. Furthermore, the scientists evaluate the patient’s state after administer-
ing these medications and determine whether their health conditions: “no-change”,
“partially change”, “change”, which are denoted by ey, es, e3, respectively. So, the
above scenario may lead a “State-based system” with truth degrees. For example,
E (e2,mg) = % means that the patient’s health condition is changed partially after
applying the medicine mo with possibility % Let S = set of states = {e1, eq,e3}. By
defining an endofunctor T on a category S" of fuzzy topological spaces which con-
tains S as a sub-category, we can construct a fuzzy geometric model (S, 0,V), where
V s a valuation mapping. When a patient’s health changes, we naturally consider
whether that shift is favourable or negative. Thus, an observer is required in this
case. We may utilize our coalgebraic bisimulation theory to determine whether an
observer exists between states.

Another possible applications are listed below:

e We can also build fuzzy geometric models and develop bisimulation theorem
to deal with erroneous and unpredictable featured values in multi-document

summarising techniques [101].

e We can theoretically apply our coalgebraic logic to a fuzzy search query (e.g.,
[85, 93], [04] 92]) and use the coalgebraic bisimulation concept to assess whether

the meaning of two keywords or strings is identical.
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8.6 Conclusion

We have discussed coalgebraic logic for fuzzy-topological coalgebras. The structures
referred to as the fuzzy geometric models for T, provide the semantics for our coal-
gebraic logics. We have shown that a final model exists in the category FMOD(T)
of fuzzy geometric models, where 7' is an endofunctor on SFuzzy-Top. Finally,
we have studied bisimulations for fuzzy geometric models. In addition, we have
demonstrated that for an endofunctor 7' on SFuzzy-Top, >-bisimilarity implies
behavioural equivalence.
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Chapter 9

Concluding Remarks and Future
Research Directions

This chapter addresses several noteworthy queries and possible avenues for future
research.

1. The dualities discussed in Chapter [2]and Chapter [3] are fundamentally distinct
from those developed in [21]. The dualities delineated in [21] are grounded on
the idea of natural dualities, whereas the dualities addressed in Chapters
draw upon Vickers’ concept [98)].

Several parallel studies (e.g., [31], 83, 26l 27] ) were conducted during the ad-
vancement of the works reported in Chapters 2] 3l Some of these studies intro-
duced more generalized concepts such as variety-based topology and topolog-
ical systems rather than lattice-valued topology and topological systems (see
[31]) to present a categorical connection between systems and spaces, whereas
others shed light on fuzzy environments (e.g., see [83] 26, 27]) to accomplish
the same purpose. In light of this, it is worth mentioning that similar research
can be conducted by establishing a categorical link between the categories of
variety-based topological spaces, variety-based topological systems, and alge-
bras of many-valued-modal logics.

It might be possible to develop modal geometric logic by adhering to our pro-
cedures covered in Chapter [3|

2. Concerning the findings presented in Chapter [4] we hope to have shown how
the methods of universal algebra and bitopology provide an intriguing view-
point on Fitting’s many-valued logic.

The findings in Chapter |4 and Chapter [5| can be extended in various ways.
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(a)

By establishing an appropriate Vietoris functor, Maruyama in [41] created
a coalgebraic duality for the category ISPy (L£). In this regard, we believe
that modalizing the concept of ISP;(L£) will produce a tenable outcome. A
coalgebraic duality may be developed for the modalized notion of ISP;(L)
by constructing an appropriate bi-Vietoris functor.

The NU duality theorem was established in [42]. It seems that the intu-
itionistic version of natural duality theory allows for the generalization of
the NU duality theorem to ISP;. It could be possible to accomplish this
using the methods of bitopology.

It might be conceivable to connect categorically with I.SP;(L) by creating
an intuitionistic topological system (within the context of Vicker’s work
[98]). Therefore, there is a another method for developing a duality for
ISPi(L).

. In light of our work discussed in Chapters [0], [7], we can suggest some future

research directions.

()

As an application of this coalgebraic duality, we may establish the
existence of a final coalgebra and cofree coalgebras in the category
COALG(V}Y), and we can also develop the coalgebraic duality theorem
for many-valued modal logics in a bitopological scenario.

Another interesting line of research would be to show that coalgebras of an
endofunctor V' on the category BES of bi-topological Esakia spaces (the
idea of bitopological Esakia spaces can be found in [40]) can characterise
lattice-valued intuitionistic modal logic. However, it is unclear to us how
to characterise the relation R on bitopological Esakia spaces in terms of
coalgebras of the functor V', and this appears to be an open problem at

the moment.

. In Chapter [§ we have started to lay the groundwork for coalgebraic fuzzy ge-

ometric logic. However, there are still many interesting, unresolved questions.

(a)

(b)

We have not addressed the completeness of modal fuzzy geometric logic.
However, it would be interesting to know under which conditions the com-

pleteness result will be attained.

We have not examined the possibility that the notion of behavioural equiv-
alence implies the Y-bisimilarity idea. We may define a stronger fuzzy-

open predicate lifting idea for endofunctors on Fuzzy-Top by emulating
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the topological predicate lifting notion for an endofunctor on the category
of Stone spaces as stated in [69]. It may therefore be demonstrated that

behavioural equivalence indicates X-bisimilarity.

Considering an endofunctor 7" on the category of compact fuzzy Hausdorft
spaces, we can show the bi-implication between modal equivalence and
Y-bisimilarity. In this case, it will be fruitful to adopt a stronger notion

of fuzzy geometric modal signature .

We have already observed that if 7" is an endofunctor on SFuzzy-Top
then behavioural equivalence coincides with modal equivalence. We will
attempt to circumvent this limitation by determining whether behavioral
equivalence and modal equivalence coincide when T is an endofunctor on

the category of compact fuzzy Hausdorff spaces.
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