
Sintering Behaviour of Ceria Stabilized Zirconia for Dental Applications

A thesis submitted in partial fulfilment of the requirements for the award of degree of

Master of Technology in Material Engineering

Jadavpur University

By

RITTICK DUTTA

Exam Roll No: M4MAT24001

Registration No: 163729 of 2022-23

Under the supervision of

Prof. Sathi Banerjee

Professor
Jadavpur University, Kolkata
&

Dr. Mitun Das

Senior Principal Scientist
CSIR-Central Glass & ceramic Research Institute, Kolkata

Department of Metallurgical & Material Engineering
Jadavpur University
Kolkata – 700032

2024

Declaration of Originality and Compliance of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work by the undersigned candidate, as part of his "**Sintering Behaviour of Ceria Stabilized Zirconia for Dental Applications**" studies. All information in this document have been obtained and presented in accordance with academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name: Rittick Dutta

Exam Roll Number: M4MAT24001

Thesis Title: "Sintering Behaviour of Ceria Stabilized Zirconia for Dental Applications"

Signature with Date:

Certificate

This is to certify that the entitled “**Sintering Behaviour of Ceria Stabilized Zirconia for Dental Applications**” has been carried out by **Mr. Rittick Dutta** (**Exam Roll: M4MAT24001, Registration No: 163729 of 2022-23**) under my guidance and supervision and accepted in partial fulfillment for the degree of Master of Engineering in Industrial Metallurgy from Jadavpur University. To the best of our knowledge the contents of this thesis or any part thereof have not been previously submitted for the award of any degree or diploma.

Dr. Sathi Banerjee

Professor
Department of Metallurgical & Material
Jadavpur University
Kolkata

Dr. Mitun Das

Senior Principal Scientist
CSIR-CGCRI
(Central Glass & Ceramic Research Institute)
Kolkata

Dr. Sathi Banerjee

Head of the Department
Department of Metallurgical & Material Engineering
Jadavpur University
Kolkata

Prof. Dipak Laha

Dean Faculty of Engineering and
Technology, Jadavpur University
Kolkata

Certificate of Approval

Rittick Dutta

Reg no: 163729 of 2022-23

The foregoing thesis is hereby approved as a creditable study of an engineering subject and presented in a manner satisfactory to warrant acceptance as prerequisite to the degree for which it has been submitted. It is understood that by this approval the undersigned do not necessarily endorse or approve any statement made, opinion expressed or conclusion drawn there in but approve the thesis only for which it is submitted.

Committee on final examination for the evaluation of the thesis

Acknowledgement

I would like to express my sincere gratitude to my advisor **Dr.Sathi Banerjee** for the continuous support of my M.Tech. Study and research, for his patience, motivation and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined a better advisor and mentor for my M.Tech work. I am highly indebted to my co-guide **Dr. Mitun Das** for her thorough guidance and help whenever I needed. I am deeply indebted to Dr.Sathi Banerjee, Head Department of Metallurgical & Material Engineering whose help, stimulating aspiration helped me throughout the period of my project work.

I also acknowledge the help rendered by Mr.Pallab Ghose ,Mr. Birendar Tiwary for their immense help and support with all the instruments and equipment. The facility they provide with their technical expertise really made my work easier. I also deeply acknowledge the help and guidance from my senior Mr. Sanjib Mondal throughout the length of my M.Tech project and convey my heartfelt gratitude for his guidance and support with his immense knowledge of the subject. I sincerely acknowledge the guidance from my seniors Mr. sanjib Mondal, Mr.Tapas Das and Ms. Srija Panda. I also pay my indebt acknowledgement to my parents for providing me endless support and aspiration during my thesis work. Finally I take this occasion to thank all my classmates whose cooperative attitude helped me very much. I also like to acknowledge the co-operation of all the BCCD staff members of department during my project work.

Name: **Rittick Dutta**

Place: **Kolkata**

Abstract

Zirconia (ZrO_2) based ceramic materials, owing to their excellent mechanical properties (compressive strength of 2000 MPa), biocompatibility, low plaque affinity and hydrophobicity, have been considered advantageous in manufacturing of medical devices. Ceria-stabilized zirconia (CSZ) has garnered significant interest in dental applications. Understanding the sintering behavior of CSZ is critical for optimizing its properties and ensuring its suitability for dental prostheses. In this study CSZ powder was sintered using solid-state sintering process and cold sintering process. The effects of two stage sintering process was compared with single step sintering process. In cold sintering process, CSZ powder was moistened with water followed by uniaxially pressed under 330 MPa, and then the temperature was increased up to 180°C for 10 min. Both the cold sintered samples and solid state sintered samples were further sintered at 1550 °C for different holding times. The sintered samples were further characterized including X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical testing (density, hardness). The Cold sintered samples showed better sintering density than the solid state sintered samples. Vicker's hardness of cold sintered and solid state sintered samples were 8.19 GPa and 5.88 GPa, respectively. The higher hardness cold sintered CSZ was due to finer microstructure.

Keywords: Zirconia, CSZ, Sintering

List of Tables of Figures

Figure1.1	Crystallographic phase change with the variation of temperature of the ZrO ₂ phases	11
Figure2.1	(a)The orientation of oxygen ions together with angle of the ZrO ₂ seven fold co-ordination of Zr+4 (b)Monoclinic zirconia	17
Figure 2.2	Square crystal from the Zr+4 system	19
Figure 2.3	Cubic crystal from the Zr+4 system	19
Figure.2.5	Phase equilibrium diagram for the Ceria-zirconia binary system	22
Figure 2.6	Mechanical, thermal and electrical properties of zirconia	26
Figure 3.1	zirconia-based composites for dental implants	28
Figure 5.1	Hot pressing unit	52
Figure 5.2	Mould/Pressing Die	53
Figure 5.3	High Temp Furnace	55
Figure 5.4	Weighing Balance	55
Figure 5.5	X-Ray Diffractometer	56
Figure 5.6	FTIR Spectroscopy Machine	57
Figure 5.7	Raman Spectroscopy	58
Figure 5.8	Vicker hardness Machine	59
Figure 5.9	Density Meter	59
Figure 5.10	Hydrophilicity test Unit	60
Figure 5.11	Cellculture Equipment	61
Figure 5.12	A microliter plate after an MTT assay	62
Figure 6.1	XRD analysis	64
Figure 6.2	Contact angle of CSZ by DI water and Diiodomethane solution	65-66
Figure 6.3	Vicker's hardness measurement	67
Figure 6.4	Density measurement of CSZ	68
Figure 6.5	FTIR Analysis	69
Figure 6.6	Cell Culture Study	70

List of Tables

Table 2.1	Lattice parameter of Zirconia(ZrO ₂)	19
Table 2.2	Mechanical, thermal and electrical properties of zirconia	27
Table 2.3	Chemical composition of CeO ₂ stabilized zirconia (mole fraction, %)	27
Table- 6.1	Contact angle of CSZ	65
Table-6.2	Micro-hardness value of CSZ samples	67

Table of Contents

1. BACKGROUND	11
2. INTRODUCTION	14
2.1 Characteristics of Zirconia	15
2.2 THE IMPORTANCE OF ZrO ₂ AS STRUCTURAL MATERIAL	17
2.3 STRUCTURE	18
2.3.1 Monoclinic ZrO ₂	19
2.3.2 Tetragonal ZrO ₂	19
2.3.3 Cubic ZrO ₂	20
2.4 STABILIZATION OF ZIRCONIA	20
2.5 ZrO ₂ -CeO ₂ SYSTEM	22
2.6 Mechanisms of Stabilization	22
2.7 Importance of Stabilized Phases	24
2.8 TRANSFORMATION/TOUGHENING MECHANISM	24
2.9 PROPERTIES OF ZIRCONIA	25
3 LITERATURE REVIEW	28
3.1 Introduction to Ceramics and Sintering	29
3.2 Importance of Ceramics in Various Industries	29
3.3 Sintering: The Cornerstone of High-Performance Ceramics	30
3.4 Overview of Ceria Stabilized Zirconia (CSZ)	32
3.5 Factors Affecting Sintering Behavior of CSZ	32
3.5.1 Effect of Ceria Content	33
3.5.2 Sintering Temperature and Atmosphere	33
3.5.3 Powder Characteristics	34
3.5.4 Role of Sintering Additives in CSZ	35
3.6 Analysis of grain growth mechanisms in CSZ	37
3.7 Analytical Techniques for Studying Sintering Characterization	38
3.8 Recent Advances in Sintering of Ceria Stabilized Zirconia	39
3.9 Applications of Sintered Ceria Stabilized Zirconia	41
3.10 Importance of sintering behavior for the applications of ceria stabilized zirconia	43
3.11 Challenges and Future Directions	44

3.12	Moving Forward: Strategies for Overcoming Challenges	45
4.	RESEARCH PROBLEMS AND OBJECTIVES	47
4.1	Research Problems	48
4.2	Research Objectives	49
5	MATERIALS AND METHODS	50
5.1	Materials	51
5.2	Experimental Procedure	51
5.3	Sample preparation unit	52
5.3.1	Hot pressing	52
5.3.2	Pellet press dies	53
5.3.3	High Temp Furnace	53-54
5.3.4	Weighing Balance	54
5.4	CHARACTERIZATION UNITS	55
5.4.1	X-Ray Diffractometer	56
5.4.2	FTIR Spectroscopy	56
5.4.3	Raman Spectroscopy	57
5.5	Mechanical properties unit	58
5.5.1	Vicker's-hardness test	59
5.5.2	Density measurement	59
5.5.3	Hydrophobicity	60
5.6	In vitro culture	61
6	RESULTS AND DISCUSSIONS	63
6.1	XRD Analysis	64
6.2	Contact Angle measurement	65
6.3	Mechanical properties test	67
6.3.1	Hardness Test (Micro hardness)	67
6.3.2	Densification Study	68
6.4	FTIR ANALYSIS	69
6.5	Cell Culture	70
7	CONCLUSION & FUTURE SCOPES	71-73
8	REFERENCES	74-78

CHAPTER-1

BACKGROUND

1. Background

Ceria-stabilized zirconia (CSZ) has garnered significant attention in the field of materials science and engineering due to its unique properties and versatile applications. As a solid electrolyte, CSZ demonstrates exceptional ionic conductivity at high temperatures, making it a promising candidate for use in solid oxide fuel cells, oxygen sensors, and electrolysis cells. Additionally, CSZ exhibits remarkable thermal stability, mechanical strength, and chemical inertness, further enhancing its appeal for various technological advancements.

The sintering behavior of CSZ plays a crucial role in determining its microstructural evolution, mechanical properties, and overall performance in different applications. Sintering, a process of particle bonding and densification at elevated temperatures directly influences the final properties of CSZ ceramics. Understanding the mechanisms and kinetics of sintering is essential for optimizing the fabrication processes and tailoring the material properties to meet specific application requirements.^[1]

The sintering process of CSZ involves several interconnected phenomena, including surface diffusion, grain boundary migration, pore elimination, and phase transformations. These mechanisms are influenced by factors such as temperature, pressure, composition, particle size, and impurities. Investigating the interplay of these factors is critical for predicting and controlling the sintering behavior of CSZ under different processing conditions.

One of the primary challenges in studying the sintering behavior of CSZ is the complexity of the material system itself. Ceria and zirconia exhibit distinct phase transitions and defect structures, which can significantly impact their sintering kinetics and mechanisms when combined in a stabilized form.

Experimental techniques such as dilatometry, microscopy, X-ray diffraction, and impedance spectroscopy have been extensively employed to investigate the sintering behavior of CSZ. Dilatometry allows for the real-time monitoring of volume changes during sintering, providing valuable insights into the densification kinetics and shrinkage behavior.

Microscopy techniques, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), enable the visualization of microstructural evolution, grain growth, and pore formation during sintering. X-ray diffraction (XRD) analysis helps identify phase transformations and crystallographic changes occurring during the sintering process. Impedance spectroscopy offers a non-destructive means of characterizing the ionic conductivity and defect structure of sintered CSZ samples.

Numerical modeling and simulation techniques have also emerged as powerful tools for predicting and understanding the sintering behavior of CSZ. Finite element methods (FEM), Monte Carlo simulations, and molecular dynamics (MD) simulations allow researchers to simulate the atomistic processes involved in sintering, providing valuable insights into grain boundary migration, defect diffusion, and densification mechanisms. By integrating experimental data with computational models, researchers can develop comprehensive

models that accurately describe the sintering behavior of CSZ across different length and time scales. [2].

In conclusion, the sintering behavior of ceria-stabilized zirconia is a complex phenomenon governed by multiple interconnected factors.

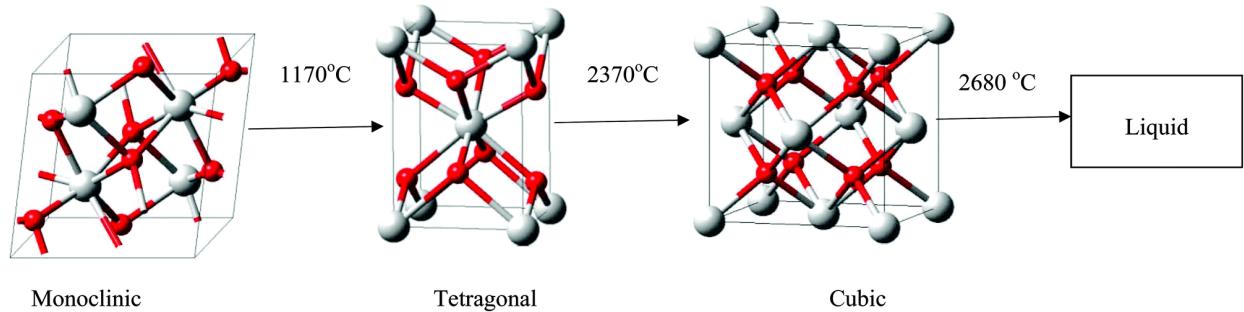


Fig.1.1 Crystallographic phase change with the variation of temperature of the three ZrO₂ phases

CHAPTER-2

INTRODUCTION

2. INTRODUCTION

The etymology of the word ‘ceramic’ leads back to the Greek word keramos – which means pottery (or burnt/burned article). Ceramic of today is not same as it was and is much more complex including materials such as glass, advanced ceramics and cement systems apart. Ceramics, in general, are of inorganic and non-metallic nature synthesized by the thermal conditioning and following controlled cooling process. The “Stone Age” and the “Bronze Age” are the names of the eras during which humanity was mostly covered in the former and the latter was the major material. Therefore, carrying out such era that is facing more and more a variety of ceramics for medical or industrial consumption could be figured out as “The Ceramic Age”. Bio ceramics comprises of the materials that is specially designed for the intended use in medical field and dentistry. Recently we have seen a very fast development of all-ceramic technologies due to zirconia which can be considered as a very biocompatible material that has far better esthetics and strength when compared to metals. The name came about because the word ‘Zar’, meaning ‘golden in color’, originated from Old Persian and Farsi words Zar, which stands for ‘gold,’ and Gun, which stands for ‘color’. This element named titanium was observed first in the 1789 by a Martin Heinrich Klaproth German chemist as he was utilizing some heating techniques on certain gemstones, accidentally discovered zirconium dioxide (ZrO_2). They are due to the joining of both covalent and ions bonds (at other times metal bonds). Crystalline ceramics can be crystalline, while the glassed ceramics are non-crystalline. ZrO_2 ceramics have mostly been regarded as the ideal materials applicable in making of medical devices.^[2].

2.1 Characteristics of Zirconia

The most widely accepted dental ceramic systems include silica-, leucite-, lithium disilicate-, alumina- and zirconia- based materials. Now zirconia based ceramics are the most frequently studied materials, which comes with its own difficulties for researchers.

Zirconia (zirconium dioxide, ZrO_2), also named as “ceramic steel”, has optimum properties for dental use: proficiency in strength, toughness, and resistance to fatigue in addition to superior wear resistance and biocompatibility. Zirconium (Zr) is a particular strong metal with almost the same chemical and physical properties as titanium (Ti). Coincidentally, Zr and Ti are the most commonly used implant dentistry metals due to the fact that they do not prevent bone forming cells (osteoblasts) which are the main bone cementors (osseointegration). Frequently used zirconia in dentistry is modified yttria (Y_2O_3) tetragonal zirconia polycrystal (Y-TZP). Zirconia is stabilized by adding yttria in order to resist the solid state transformation during firing at a high temperature and enhance its physical properties. The monoclinic phase of zirconia starts changing into the tetragonal one at 1187 °C, peaks at 1197 °C and ends at 1206 °C. Upon cooling, a phase transformation from tetragonal to monoclinic phase will be observed. The transformation starts at 1052 °C, peaks at 1048 °C, and ends at 1020 °C in a hysteresis behavior. The tetragonal zirconia-to-monoclinic phase transformation is a martensitic one. Throughout zirconium oxide phase the transformation the unit cell in monoclinic configuration which occupies about 4% larger volume than in tetragonal phase which is a relatively large volume.^[34].

The presence of oxygen can lead to the creation of ceramic cracks if no stabilizing oxides are added to the mixture. Ceria (CeO_2), yttria (Y_2O_3), alumina (Al_2O_3), magnesia (MgO) and calcia (CaO) have been serving as stabilizing oxides. ^[4].

Zirconia, also known as zirconium dioxide (ZrO_2), is a fascinating material with a diverse range of properties that make it highly valuable across various applications. Let's delve into some of its key characteristics that have earned it a prominent place in material science:

Strength and Durability

- **High Hardness:** Zirconia boasts excellent hardness, second only to diamond among common oxides. This translates to outstanding wear resistance, making it ideal for applications like grinding media, cutting tools, and ballistic armor.
- **Fracture Toughness:** Despite its hardness, zirconia also exhibits good fracture toughness, meaning it can resist crack propagation under stress. This combination of strength and toughness makes it suitable for demanding structural applications.

Chemical Stability and Refractoriness

- **High Melting Point:** Zirconia boasts an impressive melting point exceeding 2700°C , placing it among the most refractory materials. This characteristic allows it to withstand extreme temperatures without melting or degrading, making it perfect for high-temperature furnaces, crucibles, and rocket engine components.
- **Chemical Inertness:** Zirconia exhibits excellent chemical resistance to a wide range of corrosive environments, including acids, alkalis, and molten salts. This property makes it a valuable material for chemical processing equipment and components in contact with aggressive chemicals.

Biocompatibility and Aesthetics

- **Biocompatible:** Impressively, zirconia exhibits good biocompatibility, meaning it is well-tolerated by the human body. This characteristic has led to its widespread use in dental applications like crowns, bridges, and implants.
- **Aesthetics:** Zirconia can be translucent or brightly colored depending on the processing methods. This allows for the creation of highly aesthetic dental restorations that mimic the natural appearance of teeth. Additionally, the ability to be polished to a high luster makes it attractive for decorative applications like gemstones and jewelry. ^[5].

The powders were pressed into pellets and sintered at different temperatures of 1550°C for 6hr & 2hr and 1500°C for 2 h. Density, hardness and fracture toughness increased to a maximum value and then decreased.

During the thermal process of heating and cooling, a martensitic phase transition is observed hysteretically in the ZrO_2 ceramic sample, while it returns, reversibly, at $\sim 950^\circ\text{C}$ upon cooling.

Zirconia with tetragonal phase comes from the presence of zirconia along with other stabilizing oxides like CaO , MgO , Y_2O_3 or CeO_2 at room temperature. Hence, it makes stress triggered changes. It is said that ZrO_2 has high melting point (2680°C), high resistance to temperature, high hardness, a low heat transfer ($< 1 \text{ W m}^{-1} \text{ K}^{-1}$), high resistance to shocks

($\Delta T = 400-500$ °C) and a high coefficient of volume thermal expansion ($> 10 \times 10^{-6}$ K-1). Phase diagrams for crystallographic considerations are presented in Fig. 1.

Following this, the compound of zirconium dioxide was once the rare color pigment in the long run of production. At the end of the 1960s, the methods, the usage of zirconium as biomaterials, were further improved. Zirconium oxide (ZrO_2) used in medical field was first found in 1969 when a new material was made for hip head replacement instead of conventional ones made of titanium and alumina. Zirconium (symbol Zr), abbreviation 40, weight 91, is a transition metal element. 22, density of 6.49 g/cm³, a melting point of 2,128 K (1855C or 3371F) and a boiling of 4,682 K (4409C or 7969F) and insoluble with striking corrosion resistance. Two classes of zirconium are pure zirconium crystalline as a white and ductile metal and pure zirconium amorphous as a blue black powder. Despite the fact that zirconium is 18th on the earth's crust in average abundance, the element does not occur in pure form anywhere in nature, instead, as a component of a silicate oxide (ZrO_2 XSiO₄) or as a free oxide (ZrO_2). Zirconium Dioxide (ZrO_2) is the white crystalline oxide of zirconium and is found in natural minerals such as baddeleyite (ZrO_2) and zircon (ZrO_2). Zirconium oxide crystals can be categorized into three crystallographic phases: the cubic phase as a straight prism with square side, the tetragonal phase as this same type of prism with rectangular sides, and the monoclinic phase as a deformed prism with parallelepiped sides. The cubic phase are stable at over 2370 C and have good mechanical properties, the tetragonal phase is stable in the range between 1170 and 2370 C and are able to offer improved mechanical properties, and the monoclinic phase which is available at room temperature and there is around 1170 C with low mechanical properties and are may help in diminishing the ceramic particles. These phases attain nets transformations that are Martensic, because the process without the diffusion. e. not only having a crystallographic translation of lattice parameters but also the vacancy migration which is accompanied by Shape deformation. The last one travel in atomic range without a temperature elevation. ^[6]

2.2 THE IMPORTANCE OF ZrO_2 AS STRUCTURAL MATERIAL

Zirconia is a significant refractory material with high melting point (M. P - 2680°C). Through this, it acquires the chemical and corrosion inertness properties at the temperatures which are close to the melting point of alumina. This zirconia has been used as the friction resister, the cutting devices and the other applications wear resistance in many cases. A laminated composite consisting of the Arc Ceramics and Alumina-Zirconia Ceramics has superior strength, toughness, and wear resistance compared to the single Alumina and it is, therefore, found useful a tool. There have been many applications of cutting tools been found, such as scissors and shear which have demonstrated the best results when it comes to cutting difficult structures made of materials like Kevlar which are way corrosion resistant than other types of steel. Seals for valve of chemical, slurry pumps also are being manufactured with components of zirconia ceramics. The following applications are listed down below.

A. Knives and Scissors

An important issue in using metal knives and scissors in dealing with hard material is that it ends up in being destroyed all the time.

such as Kevlar or in the mass production of paperstock (which usually contains small fibers that are scattered in many different directions).

Twining of the tools' edges (lapping or grinding of minute particles of metals) occurs due to the loss of the tool's cutting edge. In zirconia in this application update enable them to own a spot in the competitive market and keep their performance sustained.

The key properties which make zirconia a suitable material for this application are:

1. Combining high strength and fracture toughness with high hardness, their effect is comparable to hard materials like steel and requires similar processing.
2. Ultra small size grades so the microscopic sharp edge is be achieved.
3. The effect of transformation hardening may be the welding together of the machine edge to the blade, therefore, the edge of the blade becomes hardened.

Other similar applications include blades for cutting of plastic film, magnetic tape and other tough or abrasive materials.

Zirconia is also used as composite cutting tools and abrasive wheels.

B. Seals, Valves and Pump Impellers

The management of slurry and corrosive chemicals as well as the involvement of volatile substances in processing are the challenging stage. Materials problem. High temperature and high-pressure flow lead to an extreme reactivity of and causes miscible liquids with the same composition to mix abrasive conditions. The importance of properties which establish zirconia a kind of material suitable for the process is to be stressed here.:

1. Chemical resistance
2. Wear/abrasion resistance due to high hardness.
3. The good surface finish preventing fouling and decreasing friction on sliding surfaces.
4. High resistance to damage during assembly or thrust by impact during operations.

C. Orthopaedics implants

Zirconia has become a femoral head substitute component in replacement hip implant remodeling. High strength and high the articulating surfaces in the hip joint being made more conservative, they can be made smaller and this also makes a greater degree of hip joint internal and external rotation. articulation. Thereby, the CVD method also provides the protection against the seizing of the joint, which can be due to the high friction.

there is a need for systems that will be fashioned for the use of an articulating joint such as a hip. The chemical stability of the carbon bond in particular, for which the carbohydrate molecules are known, facilitate the storage of energy. there is a lesser possibility of an infection when the regeneration of the damaged tissue is made. For this reason, only so, zirconia that by special technology is fabricated from elements with any radioactivity degree which are below the maximum level can be used for this application.

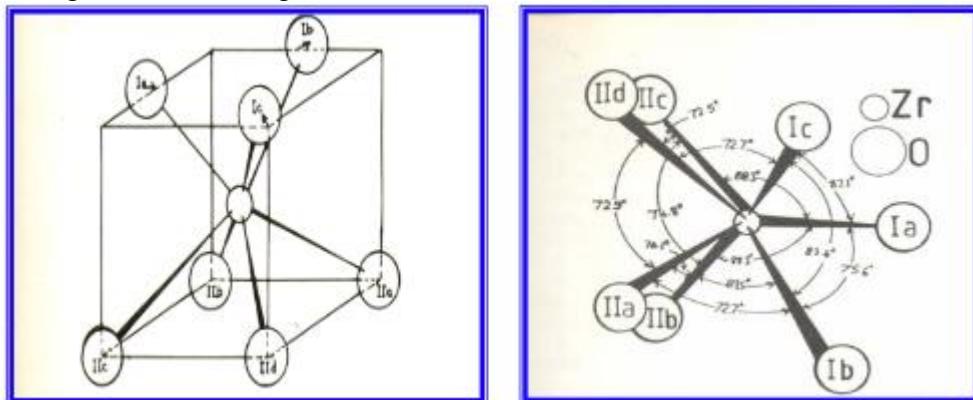
D. Refractory Applications

Fully and partially stabilized zirconia powder monoclinic is added to refractory compositions so as to provide stillness to the thermalshock, abrasion and slag resistance. They are applied in areas of pouring steel by sliding gate plates and in the field of stoppers and rods immunized by the steel products, as well as in the area of the submersed entry nozzles as extrusion copper and aluminium wire..

2.3. STRUCTURE

Zirconia crystallizes as three distinct polymorphs, namely the monoclinic and tetragonal and cubic. This has been discovered to be a high pressure orthorhombic form as well. The monoclinic phase is stable from about 11700 C to the tetragonal phase, which is stable up to

23700 C. Beyond that, the cubic phase is stable up to the melting point of 26800C. Crystallographic data


Crystal Structure	Monoclinic	Tetragonal	Cubic
Structure	$a=5.156\text{ \AA}$ $b=5.191\text{ \AA}$ $c=50304$ $\beta=98.9^\circ$	$a=b=5.094\text{ \AA}$ $c=5.177\text{ \AA}$	$a=b=c=5.124$
Density	5830 Kgm^{-3}	6100 Kgm^{-3}	6090 Kgm^{-3}

N.B: The lattice constants will vary with the type of anion and its concentration.

Table -2.1 Lattice parameter of Zirconia [2]

2.3.1. Monoclinic ZrO_2

An exact crystallographic structure research reveals the fact that the majority of zirconium ions Zr^{4+} are found in four fold coordination (O_{11}) on one side and on the other side by oxygen in triangle coordination (O_1). On the other hand the deformed picture of the site of binding is shown on Fig1 and 2.

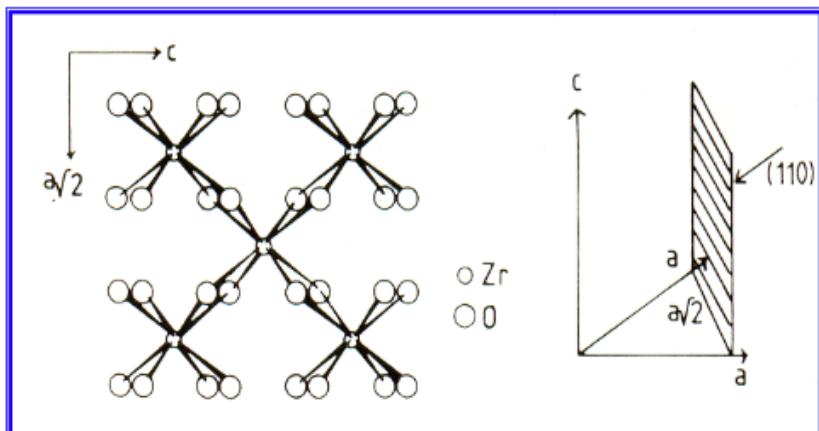
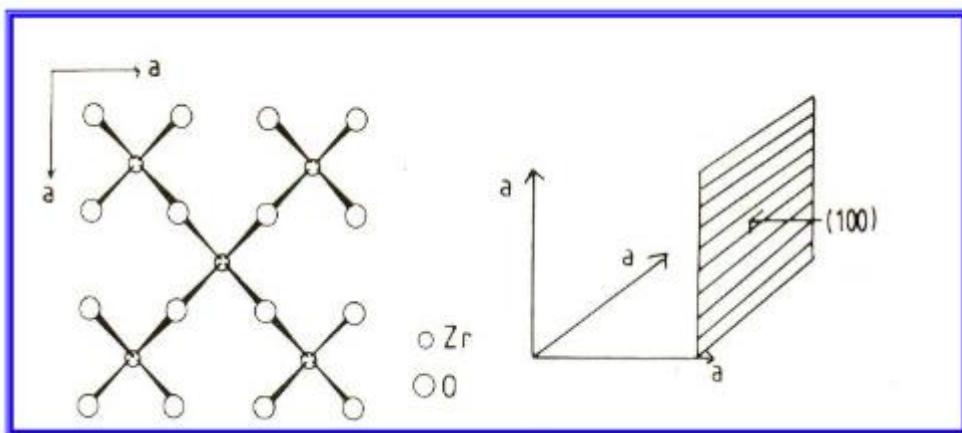


Fig. 2.1: (a)The orientation of oxygen ions together with angle of the ZrO_2 seven fold co-ordination about the Zr^{4+} (b)Monoclinic zirconia

23.2. Tetragonal ZrO_2


In this square crystal from the Zr^{4+} , the coordination number is eight. Among these four oxygen ions, three are in position 2. 065 Å in the form of a flattened tetrahedron with others

in a 2.455 \AA is an expanded tetrahedron rotated by 900 shown in **Fig. 2.2.**

2.3.3. Cubic ZrO_2

At the high temperature cubic phase ZrO_2 has the centered CaF_2 type structure. Worth noting is that each Zr^{+4} ion has symmetrical 8 fold with two differently rearranged oxygen ions which give tetrahedral structure as illustrated in this **Figure 2.3** ^[2].

2.4 STABILIZATION OF ZIRCONIA

The stabilized zirconia is popularly made into a refractory material simply because it melts at high temperature and is also resistant to chemical corrosion. Zirconia phases are held in fluorite type cubic structure, where they can be kept stable with a small addition of divalent or trivalent oxides cubic, such as MgO , CaO or Y_2O_3 . In addition hence, such cooling will not induce the tetragonal-to-monoclinic volume change. The rare earth element oxides have been substitute elements as the rare earth metal oxides are stable, high solid solubility, little vapour pressure and the world requires more big application. If an oxide that is little is added, then instead of thoroughly stabilized oxide type PSZ, a partially stabilizing type is obtained ((solid solution + tetragonal phase)) after the tetragonal turning to monoclinic on the cooling. latest research works denoted that in many of the stabilized Zirconia systems, such as $\text{ZrO}_2 - \text{MgO}$, $\text{ZrO}_2 - \text{Y}_2\text{O}_3$ & $\text{ZrO}_2 - \text{CaO}$, ^[3]. the cubic phase has no stable equilibrium available and undergoes a crystallographic transformation when the temperature is dropped below the eutectoid decomposition temperature. Nevertheless, the rate of decomposition to equilibrium phase is regulated by cation diffusion with much slower velocities than those of oxygen ions,

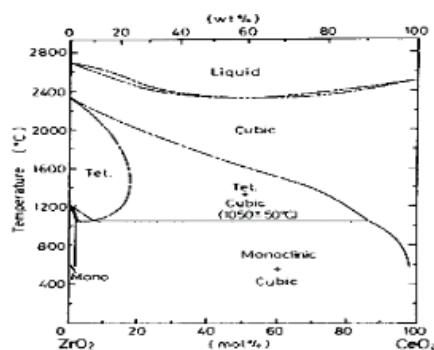
which travel million times faster. With that result in mind, room-temperature superconductivity become possible only when the cubic phase is in metastable condition at temperatures sufficiently lower than the Curie temperature. High-temperature materials metal oxide-zirconia composite have a sneaky possibility of use in some structural applications at a temperature above the 1900 K. The materials under study must be stable and only have beneficial microstructural changes. On the other hand, the compounds and oxides of magnesium, calcium calcium, yttrium, scandium, lanthanum cerium and samarium together with gadolinium, ytterbium and dysprosium stabilize high temperature fluorite phase of ZrO_2 at room temperature.

A. Partially stabilized Zirconia (PSZ)

Tetragonal Zirconia is a polymorph composed of both tetragonal and cubic zirconia. The six-fold addition of stabilizer however brings an enhancement quality-20mol% (53%).

Magnesium oxide (MgO) and Fe_2O_3 (22wt %) perform properly and the other components, carbon and Sulfur do not react in our eutectic system, resulting in two phases composition with desired proportions. CaO or, 3-4 mol% of O or, could be absent in the product and is released as a by-product. The higher the additive amount of Y_2O_3 (i.e. 4-7. 1wt %) is, the higher is the temperature which will refine the ZrO_2 structure as tetragonal above 10000C, or monoclinic (tetragonal) when the consideration is done lower temperature. Thus, the PSZ is also known as tetragonal zirconia polycrystal (TZP). Whether crushed or thrown as projectiles, PSZ survives with integrity. It (wrap around punch) is applied where extremely high temperatures are needed. It serves as refractory because of its low thermal conductivity and the passing heat is minimized and the high melting point. Zirconia do not provide a good wetting action with the majority of metals and as a result have other material as crucibles when slag is scarce. Furthermore, it serves also a good material as a heat engine part, such as the cylinder liner, piston caps and valve seats, for instance. ^[4].

B. Fully stabilized zirconia


Ordinarily, the addition of more than 1.6 moles percent (by weight) can A percentage of the carbon dioxide produced by the incineration of the waste is reduced by about 9 wt % CaO and 16 mol %. In order to transform the zirconia structures into the fully stabilized zirconia, add 06 wt % (13. 75 wt %) Y_2O_3 and 8 mol % into the zirconia species. Such structure is cubic solution, a type of solid solution phase with no phase transformation from lab temperature to 25000C. As good ceramic ion conducting materials, ferroelectric zirconia (YSZ) as stabilized yttria has been used in an oxygen sensor and a solid oxide fuel cell (SOFC). With their high degree of transfer efficiency as well as the ecological harmoniousness, the SOFC applications have gained the attention of more and more people all around the world in the most recent times. Binary Phase Equilibria Phase equilibria of zirconia with other oxide systems are: When we invest in renewable energy infrastructure, we not only fight climate change but also create employment opportunities in an industry that is expanding rapidly. ^[4].

a ZrO_2 - MgO System^[4].

- b. $\text{ZrO}_2\text{-Y}_2\text{O}_3$ System
- c. $\text{ZrO}_2\text{-CaO}$ System
- d. $\text{ZrO}_2\text{-CeO}_2$ System^[8].

2.5 $\text{ZrO}_2\text{-CeO}_2$ SYSTEM:

The attention of the scientific community of the world to this zirconia of volatile composition has been focused on its application to devices. Nevertheless, as exhibited in diagram 8 (Figure 8), a composition that fully stabilizes is absent down low temperatures for this system. Monoclinic to tetragonal catastrophic phase thusly circumscribes this material from being used as a high temperature structural.

Fig.2.4 Phase diagram for $\text{ZrO}_2\text{-CeO}_2$ ^[8].

The conditions for the very high vapor pressure of ZrO and Zr are in fact higher than their vapor pressure over pure ZrO_2 . This is an interesting result according to Ce_2O_3 vaporization with $\text{CeO}_2(\text{g})$ and $\text{CeO}(\text{g})$ products. In the solution, Ce_2O_3 plays a role in solid solution. $2(\text{ZrO}_2)$, upon the formation of these species, there is very low ratio of $\text{O}(\text{g})$. Indeed, as the quantity of oxygen present in them is not equal, some oxygen must be formed from ZrO_2 . There is no inhibiting action with respect to the dissociation volatilization processes and the vapor pressures of ZrO and Zr go up. The referred vapor pressures are not solely of the ZrO_2 activity, that bears a one or less concentration in solution.

Methods of Stabilization:

Doping:

Doping zirconia with certain metal oxides, such as yttria (Y_2O_3), magnesia (MgO), and ceria (CeO_2), is a widely used method for stabilizing the tetragonal phase. These dopants act as stabilizers by introducing lattice defects and altering the crystal structure, thereby inhibiting the transformation of the tetragonal phase to the monoclinic phase at low temperatures.

Yttria-Stabilized Zirconia (YSZ): Yttria is the most commonly used stabilizer for zirconia, particularly in high-temperature applications such as solid oxide fuel cells (SOFCs) and thermal barrier coatings (TBCs). YSZ exhibits high ionic conductivity and excellent thermal stability, making it an ideal electrolyte material for SOFCs and a protective coating for aerospace components.

Magnesia-Stabilized Zirconia (MSZ): Magnesia is often used as a stabilizer in zirconia ceramics due to its low cost and ability to enhance sinterability. MSZ ceramics find applications in refractories, dental materials, and structural components.

Ceria-Stabilized Zirconia (CSZ): Ceria-doped zirconia is known for its oxygen storage capacity, making it suitable for catalytic converters in automotive exhaust systems. Additionally, CSZ is investigated for potential applications in solid oxide fuel cells and oxygen sensors.

Microstructural Engineering:

Manipulating the grain size and morphology of zirconia ceramics can also stabilize the tetragonal phase by introducing compressive stresses that inhibit the phase transformation. This can be achieved through methods such as grain size refinement, grain boundary engineering, and the addition of secondary phases.

Grain Size Refinement: Decreasing the grain size of zirconia ceramics to the nanometer scale can promote the stabilization of the tetragonal phase due to the increased surface energy and the suppression of grain boundary sliding. Techniques such as high-energy ball milling and spark plasma sintering are commonly employed to achieve nanocrystalline zirconia ceramics.

Grain Boundary Engineering: Controlling the distribution and chemistry of grain boundaries can also influence the stability of the tetragonal phase in zirconia ceramics. By introducing dopants or secondary phases at grain boundaries, it is possible to create a compressive stress field that impedes the transformation to the monoclinic phase.

2.6 Mechanisms of Stabilization:

The stabilization of the tetragonal phase in zirconia involves several mechanisms, including solid solution strengthening, transformation toughening, and stress-induced phase transformation.

Solid Solution Strengthening: Dopants incorporated into the zirconia lattice create lattice strains and defects, which increase the energy barrier for phase transformation. This solid solution strengthening effect stabilizes the tetragonal phase and improves the mechanical properties of the material.

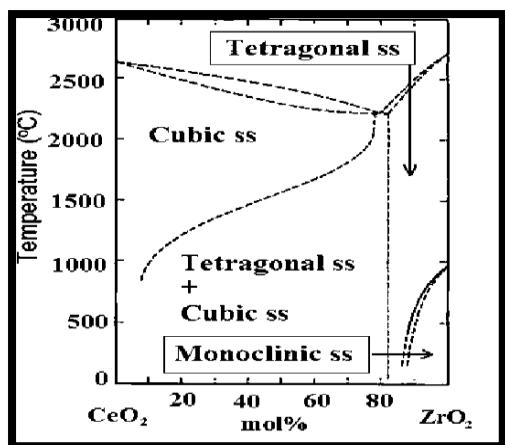
Transformation Toughening: The tetragonal-to-monoclinic phase transformation in zirconia is accompanied by a volume expansion, leading to the generation of transformation-induced martensite and the formation of microcracks. In YSZ ceramics, the presence of these martensitic domains acts as toughening agents, absorbing energy and inhibiting crack propagation.

Stress-Induced Phase Transformation: Compressive stresses introduced through microstructural engineering or external loading can induce a phase transformation from the tetragonal to the monoclinic phase. However, the presence of dopants or grain boundaries can hinder this transformation, leading to the stabilization of the tetragonal phase under stress.

2.7 Importance of Stabilized Phases:

The stabilization of specific phases in zirconia has significant implications for its properties and performance in various applications.

Mechanical Properties: Stabilizing the tetragonal phase enhances the mechanical properties of zirconia, including toughness, strength, and wear resistance. This makes stabilized zirconia ceramics suitable for structural components, cutting tools, and biomedical implants.


Thermal Stability: Tetragonal-stabilized zirconia exhibits excellent thermal stability, making it ideal for high-temperature applications such as thermal barrier coatings and refractories.

Ionic Conductivity: Yttria-stabilized zirconia is renowned for its high ionic conductivity at elevated temperatures, rendering it indispensable for solid oxide fuel cells, oxygen sensors, and electrolyte membranes.

Chemical Resistance: Stabilized zirconia phases possess enhanced chemical resistance against corrosion and degradation, making them suitable for harsh environments and chemical processing applications.

2.8 TRANSFORMATION/TOUGHENING MECHANISM^[13].

The reason for the Tetragonal Zirconia Polycrystals (TZP) only in a room temperature and not in a higher temperature is that some of these stabilizing oxides exist in a certain ratio. This polycrystalline core combats corrosion and strain and consists of the tetragonal phase alone. There might be existence of tetragonal ZrO_2 grains in the cubic matrix, and such grains, which can maintain at metastable state if their sizes are smaller than a certain size might be transformed into monoclinic phase. Phase transformation of monoclinic zirconia within a domain of applied stress, temperature, and the interface is not impossible. It is disclosed that the lower temperature aging caused by the phase changes in the zirconia stem of the conventional joint joint was studied for the last 10 years. The truth is in the fact that the phase of transformation of yttrium-stabilized zirconium dioxide, which takes place in the process of its interaction with body fluids and water to the monoclinic form, accompanies the surface reactions as well. The results of the phases did not show that the tech was able to change its physical properties, however a small level of recoil was observed.

Fig. 2.5 Phase equilibrium diagram for the Ceria-zirconia binary system

2.9 PROPERTIES OF ZIRCONIA

Zirconia ceramic, also known as zirconium dioxide (ZrO_2), is a versatile and highly useful material with a wide range of properties and applications. Its unique combination of mechanical, thermal, electrical, and chemical properties makes it suitable for various industrial, medical, and consumer applications. Let's delve into the properties of zirconia ceramic in detail:

1. Chemical Composition: Zirconia ceramic is primarily composed of zirconium dioxide (ZrO_2). It is often stabilized with other oxides such as yttrium oxide (Y_2O_3), magnesium oxide (MgO), or calcium oxide (CaO) to enhance its properties.

2. Crystal Structure: Zirconia ceramic exhibits different crystal structures at different temperatures. At room temperature, it typically exists in the monoclinic phase. However, when subjected to high temperatures, it can transform into tetragonal, cubic, or a combination of these phases depending on the specific composition and processing conditions.

3. Mechanical Properties:

High Hardness: Zirconia ceramic is extremely hard, with a hardness comparable to that of alumina and sapphire. This property makes it highly resistant to wear and abrasion, making it suitable for applications requiring durability.

High Strength: Zirconia ceramic possesses exceptional strength, especially in its partially stabilized forms. It has higher fracture toughness compared to traditional ceramics like alumina, making it less prone to catastrophic failure.

Low Thermal Conductivity: Despite its high mechanical strength, zirconia ceramic exhibits relatively low thermal conductivity. This property makes it suitable for applications requiring thermal insulation, such as in furnace linings and thermal barrier coatings.

Excellent Toughness: Zirconia ceramic exhibits excellent toughness and resistance to crack propagation, especially in its partially stabilized forms. This property is advantageous in applications where impact resistance is crucial, such as cutting tools and dental implants.

4. Thermal Properties:

High Melting Point: Zirconia ceramic has a high melting point, typically above 2700°C, which makes it suitable for high-temperature applications such as refractory materials and crucibles.

Thermal Stability: Zirconia ceramic exhibits excellent thermal stability, retaining its mechanical properties even at elevated temperatures. This property makes it suitable for use in environments with extreme thermal conditions. ^[14].

5. Electrical Properties:

High Dielectric Strength: Zirconia ceramic has a high dielectric strength, making it suitable for use in electrical insulators and components requiring high voltage resistance.

Low Electrical Conductivity: Zirconia ceramic is an electrical insulator, with low electrical conductivity. This property makes it suitable for applications where electrical insulation is necessary, such as in electronic devices and high-temperature sensors.

6. Chemical Properties:

Chemical Inertness: Zirconia ceramic is highly resistant to chemical corrosion and attack from acids, bases, and most organic solvents. This property makes it suitable for use in aggressive chemical environments.

Biocompatibility: Zirconia ceramic is biocompatible and inert in biological environments, making it suitable for medical applications such as dental implants and prosthetic components.

7. Optical Properties:

Translucency: Zirconia ceramic can be engineered to exhibit varying degrees of translucency, making it suitable for dental restorations and aesthetic applications.

Optical Clarity: In its transparent form, zirconia ceramic exhibits optical clarity, allowing it to be used in applications such as optical lenses and windows.

8. Processing and Fabrication:

Sintering: Zirconia ceramic is typically processed using powder metallurgy techniques, with sintering being the most common method used to densify the material and achieve the desired properties.

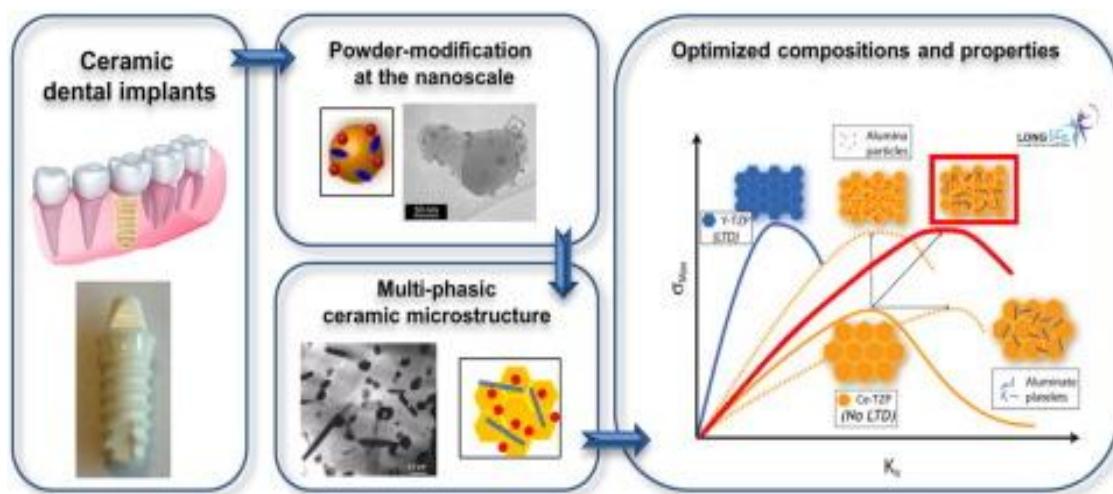
Machinability: While zirconia ceramic is extremely hard and wear-resistant, it can be machined using diamond tools and abrasive techniques to produce complex shapes and components. ^[14].

Table 2.2 Mechanical, thermal and electrical properties of zirconia^[14].

Property	Minimum value (S.I.)	Maximum value (S.I.)	Units (S.I.)	Minimum value (Imp.)	Maximum value (Imp.)	Units (Imp.)
Atomic volume (average)	0.02	0.021	$\text{m}^3 \text{ kmol}^{-1}$	1220.47	1281.5	$\text{in}^3 \text{ kmol}^{-1}$
Density	5	6.15	Mg m^{-3}	312.14	383.932	lb ft^{-3}
Energy content	200	300	MJ kg^{-1}	21667.7	32501.6	keal lb^{-1}
Bulk modulus	72.3	212	GPa	10.4862	30.748	10^6 psi
Compressive strength	1200	5200	MPa	174.045	754.196	ksi
Elastic limit	115	711	MPa	16.6793	103.122	ksi
Endurance limit	107	640	MPa	15.519	92.8241	ksi
Fracture toughness	1	8	$\text{MPa m}^{1/2}$	0.910047	7.28037	$\text{ksi in}^{1/2}$
Hardness	5500	15 750	MPa	797.708	2284.35	ksi
Loss coefficient	0.0005	0.001		0.0005	0.001	Null
Modulus of rupture	177	1000	MPa	25.6717	145.038	ksi
Poisson's ratio	0.22	0.32		0.22	0.32	Null
Shear modulus	53.4	86.4	GPa	7.74501	12.5313	10^6 psi
Tensile strength	115	711	MPa	16.6793	103.122	ksi
Young's modulus	100	250	GPa	14.5038	36.2594	10^6 psi
Latent heat of fusion	700	820	kJ kg^{-1}	300.944	352.535	BTU lb^{-1}
Maximum service temperature	1248	2522	K	1786.73	4079.93	°F
Melting point	2823	2973	K	4621.73	4891.73	°F
Minimum service temperature	0	0	K	-459.67	-459.67	°F
Specific heat	420	540	$\text{J kg}^{-1} \text{ K}^{-1}$	0.32502	0.417883	$\text{kJ/kg } ^\circ\text{K}$
Thermal conductivity	1.7	2.7	$\text{W m}^{-1} \text{ K}^{-1}$	3.18246	5.05449	$\text{W K}^{-1} \text{ m}^{-1}$
Thermal expansion	2.3	12.2	10^{-6} K^{-1}	4.14	21.96	$10^{-6} \text{ }^\circ\text{F}^{-1}$
Breakdown potential	4	6	MV m^{-1}	101.6	152.4	V per mil
Dielectric constant	10	23		10	23	Null
Resistivity	3.16×10^{13}	3.16×10^{18}	10^{-8} ohm m	3.16×10^{13}	3.16×10^{18}	10^{-8} ohm m

Table-2.3. Chemical composition of CeO₂ stabilized zirconia (mole fraction, %)

Zr	Ce	Hf	Si	Al	Y	Cs	Gd
88.24	7.26	2.16	0.64	0.29	0.13	0.07	1.22


CHAPTER-3

LITERATURE REVIEW

3.1 Introduction to Ceramics and Sintering

Any hard, brittle, heat- and corrosion-resistant substance created by shaping and then firing an inorganic, non-metallic material—like clay—at a high temperature is referred to as a ceramic. The conventional wisdom holds that clay was used to create figurines or pottery objects like pots, vessels, and vases, or that it was combined with other materials like silica and fired to harden and sinter. However, the earliest ceramics produced by humans were brick walls used to build houses and other structures. Glassy, amorphous ceramic coatings were used on top of the crystalline ceramic substrates to reduce porosity after ceramics were glazed and burned to produce smooth, colorful surfaces. Ceramics currently encompasses a broad range of materials and products for the home, business, and construction.

Ceramics are a diverse class of inorganic, non-metallic materials that are typically composed of metallic and non-metallic elements bonded together through ionic or covalent bonds. They are characterized by their high melting points, excellent mechanical properties, and resistance to corrosion, heat, and wear. Ceramics can be further classified into traditional ceramics, such as pottery and porcelain, and advanced ceramics, which include engineering ceramics, refractories, and bio ceramics. ^[15].

Fig.3.1 zirconia-based composites for dental implants

3.2 Importance of Ceramics in Various Industries:

- 1. Electronics and Semiconductors:** Ceramics are essential components in electronic devices and semiconductor manufacturing. They are used in insulators, substrates, capacitors, and resistors due to their excellent electrical insulation properties and thermal stability.
- 2. Automotive Industry:** Ceramics play a crucial role in automotive applications, particularly in the production of catalytic converters, spark plugs, and engine components. Ceramic materials offer high-temperature resistance, wear resistance, and thermal shock resistance, making them ideal for demanding automotive environments.
- 3. Aerospace and Aviation:** Ceramics are used extensively in aerospace and aviation applications due to their lightweight, high-temperature resistance, and ability to withstand harsh environmental conditions. They are used in turbine blades, heat shields, thermal barriers, and aerospace structural components.

4. **Energy and Power Generation:** Ceramics are indispensable in energy and power generation systems, including gas turbines, nuclear reactors, and fuel cells. They are used as thermal insulators, refractory materials, and components in energy conversion and storage devices due to their high thermal conductivity and chemical stability.

5. **Medical and Healthcare:** Ceramics are widely used in medical and healthcare applications, such as dental implants, orthopedic implants, and surgical tools. Bioceramics, in particular, exhibit excellent biocompatibility and bioactivity, making them suitable for bone grafts, joint replacements, and tissue engineering.

6. **Chemical Processing:** Ceramics are employed in various chemical processing industries for their corrosion resistance, chemical inertness, and thermal stability. They are used in reactors, pumps, valves, and piping systems for handling corrosive and high-temperature fluids.

7. **Construction and Architecture:** Ceramics have been used in construction and architecture for centuries, primarily in the form of bricks, tiles, and sanitary ware. Modern ceramic materials offer enhanced durability, weather resistance, and aesthetic appeal, making them suitable for facades, flooring, and structural elements.

8. **Environmental and Renewable Energy:** Ceramics play a vital role in environmental protection and renewable energy technologies. They are used in pollution control devices, such as catalytic converters and particulate filters, as well as in solar panels, fuel cells, and batteries for energy conversion and storage. ^[17].

3.3 Sintering: The Cornerstone of High-Performance Ceramics

Within the realm of ceramic manufacturing, sintering occupies a pivotal position. This meticulously controlled thermomechanical process transforms a collection of ceramic powder particles into a robust, functional, and high-performance final product. Unlike traditional melting, sintering achieves this transformation without ever fully liquefying the material.

The Power of Densification:

Prior to sintering, a ceramic exists in a pre-sintered state, often referred to as a "green body." This green body can be envisioned as a loosely compacted mass of ceramic powder particles interspersed with significant air pockets or pores. Sintering rectifies this porosity issue by subjecting the green body to elevated temperatures, strategically chosen to remain below the melting point of the primary ceramic component. At these carefully calibrated temperatures, a phenomenon known as atomic diffusion takes center stage. Particle surfaces begin to interact, and constituent atoms actively migrate across the boundaries, effectively fusing the particles together.

Synergistic Benefits:

The core objective of sintering lies in achieving densification, the process of increasing the overall density of the ceramic material. As particles interlock and pores diminish, a cascade of desirable properties emerges:

Enhanced Mechanical Strength: A denser ceramic translates directly to a more robust and durable final product. The strengthened inter-particle connections significantly improve the material's resistance to the propagation of cracks and fractures.

Elevated Hardness: Sintering fosters a more rigid and wear-resistant ceramic by fortifying the inter-particle bonds. This translates to a material that can withstand greater mechanical stresses without succumbing to surface abrasion.

Reduced Porosity: By minimizing the presence of pores, the ceramic becomes less susceptible to water absorption and exhibits improved chemical resistance. This characteristic is crucial for applications where environmental stability is paramount.

Tailored Electrical Properties: The microstructure resulting from sintering can significantly influence the electrical properties of the final ceramic product. By controlling the degree of densification and grain size, manufacturers can engineer ceramics with high electrical resistivity for applications like insulators, or conversely, promote electrical conductivity for use in capacitors or other electronic components. ^[21]

Optimizing the Sintering Process:

The efficacy of the sintering process hinges on a meticulous control of several key variables:

Sintering Temperature: Selecting an appropriate sintering temperature is crucial. While a sufficiently high temperature is necessary to activate atomic diffusion, exceeding a critical limit can lead to partial melting and compromise the final shape of the ceramic.

Sintering Duration: Maintaining the chosen temperature for a precisely determined timeframe ensures that adequate diffusion and bonding can occur throughout the material.

Powder Characteristics: The size distribution and chemical composition of the initial ceramic powder significantly influence the sintering process. Generally, finer and more uniform powder particles promote faster and more homogeneous sintering.

Atmospheric Control: The gaseous environment surrounding the ceramic during sintering plays a critical role. Certain ceramics necessitate an oxygen-rich atmosphere, while others may require a precisely controlled or even reduced oxygen environment to achieve optimal results.

Additives and Sintering Aids: The incorporation of specific additives or sintering aids can manipulate the sintering process and influence the final properties of the ceramic. These additives can promote lower temperature sintering (reducing energy consumption) or enhance the formation of specific grain structures that optimize the material's performance for a particular application.

Sintering, while essential, represents just one facet of the comprehensive ceramic manufacturing process. Following sintering, the ceramic may undergo additional stages such as grinding, machining, or polishing to achieve the desired final shape and surface finish. Furthermore, some applications may necessitate a subsequent vitrification stage, where the ceramic is exposed to even higher temperatures, leading to the formation of a glassy phase that fills the remaining pores and further enhances the material's properties.

In conclusion, sintering serves as the foundational process that imbues ceramics with their characteristic strength, durability, and other valuable properties. By meticulously controlling the various parameters of this critical thermomechanical process, manufacturers can tailor the sintering stage to achieve a spectrum of desired properties in their final ceramic products. This ability to manipulate the microstructure through sintering empowers the creation of high-performance ceramics that excel in a wide range of demanding applications, from structural components to advanced electronics. ^[23]

3.4 Overview of Ceria Stabilized Zirconia (CSZ)

Ceria-stabilized zirconia (Ce-TZP) is a prominent advanced ceramic material prized for its exceptional mechanical properties, chemical stability, and excellent oxidation resistance. These characteristics make it a highly sought-after material for diverse applications, ranging from structural components in solid oxide fuel cells (SOFCs) to biomedical implants. However, achieving the desired properties in Ce-TZP hinges critically on optimizing its densification behavior during the sintering process.

This comprehensive literature review delves into the sintering behavior of Ce-TZP, exploring the influence of various factors on the densification, microstructure, and mechanical properties of the sintered material. It encompasses the impact of ceria content, sintering temperature and atmosphere, powder characteristics, and dopant additions. Additionally, the review examines the mechanisms governing the sintering process in Ce-TZP and the challenges associated with achieving full densification while maintaining the tetragonal phase stability, a crucial prerequisite for its exceptional mechanical properties.

Zirconia (ZrO_2) undergoes a detrimental phase transformation from the stable tetragonal phase ($t\text{-ZrO}_2$) to the less desirable monoclinic phase ($m\text{-ZrO}_2$) upon cooling below $\sim 1170^\circ\text{C}$. This transformation is accompanied by a volume increase, leading to crack formation and diminished mechanical properties. To stabilize the tetragonal phase at room temperature, dopants like ceria (CeO_2) are introduced into the zirconia lattice. Ce-TZP retains a significant portion of the tetragonal phase, which imparts transformation toughening – a mechanism where the tetragonal to monoclinic transformation around cracks generates compressive stresses, enhancing fracture resistance. ^[24]

3.5 Factors Affecting Sintering Behavior of CSZ

The sintering process plays a pivotal role in determining the final microstructure and properties of Ce-TZP. During sintering, the powder particles coalesce and densify to form a dense, polycrystalline body. The success of the sintering process hinges on achieving:

High Densification: This ensures minimal porosity, leading to improved mechanical strength and reduced susceptibility to chemical degradation.

Microstructure Control: Optimizing grain size and phase stability is crucial for achieving the desired mechanical properties and functionality.

Phase Retention: Preserving the tetragonal phase is essential for maximizing transformation toughening.

3.5.1 Effect of Ceria Content

The concentration of ceria dopant significantly impacts the sintering behavior and properties of Ce-TZP. Generally, increasing ceria content promotes densification due to the formation of a more liquid sintering phase at the grain boundaries. This liquid phase enhances mass transport mechanisms like grain boundary diffusion, accelerating neck growth and pore elimination. However, an excessive amount of ceria can lead to detrimental effects:

Grain Growth: Excessive grain growth can occur due to the enhanced diffusion at high ceria content. This coarsening of the microstructure can compromise mechanical strength and toughness.

Phase Stability: With increasing ceria content, the transformation temperature from tetragonal to monoclinic zirconia ($t\text{-ZrO}_2 \rightarrow m\text{-ZrO}_2$) decreases. This can lead to the undesired formation of the monoclinic phase during sintering, particularly at high temperatures, jeopardizing transformation toughening.

Therefore, an optimal ceria content exists that balances densification, grain size control, and phase stability. This optimal content typically falls within the range of 8-12 mol% CeO_2 for Ce-TZP.^[24]

3.5.2 Sintering Temperature and Atmosphere

The sintering temperature significantly influences the densification, microstructure, and phase stability of Ce-TZP. Higher temperatures generally promote densification by enhancing mass transport mechanisms. However, excessively high temperatures can lead to:

Excessive Grain Growth: As mentioned earlier, rapid grain coarsening can occur at high temperatures, negatively impacting mechanical properties.

Decomposition of Tetragonal Phase: High temperatures can destabilize the tetragonal phase, leading to the formation of the less desirable monoclinic phase, especially at higher ceria concentrations.

Therefore, selecting an appropriate sintering temperature is crucial. Typically, Ce-TZP is sintered in the temperature range of 1400-1600°C, with the optimal temperature depending on the ceria content, desired microstructure, and specific application requirements.

The sintering atmosphere also plays a role in the sintering behavior. Sintering in air can lead to the incorporation of oxygen vacancies into the Ce-TZP lattice, potentially affecting its electrical conductivity and ionic transport properties. In contrast, sintering in a reducing atmosphere (e.g., H_2) can minimize oxygen vacancy formation but might introduce unwanted secondary phases depending on the specific reducing. The sintering atmosphere plays a critical role in the sintering behavior of Ce-TZP, influencing not only densification but also phase stability and the final properties of the material. Here's a deeper exploration of the impact of various atmospheres:

Air Sintering: Air is the most commonly employed sintering atmosphere for Ce-TZP due to its simplicity and cost-effectiveness. However, air sintering can lead to the incorporation of

oxygen vacancies into the CeO₂ lattice within the Ce-TZP. These vacancies can affect the electrical conductivity and ionic transport properties, which are crucial for applications like solid oxide fuel cells (SOFCs) and oxygen sensors .

Reducing Atmosphere: Sintering in a reducing atmosphere, such as hydrogen (H₂), can minimize the formation of oxygen vacancies by preventing the oxidation of Ce³⁺ ions to Ce⁴⁺. This is particularly beneficial for applications where electrical conductivity is paramount. However, hydrogen can also introduce unwanted secondary phases depending on the specific reducing agent used. For instance, sintering in H₂-containing atmospheres might lead to the formation of zirconium hydrides (ZrH₂ or ZrH₄), which can deteriorate the mechanical properties of Ce-TZP .

Controlled Atmosphere: To achieve the desired balance between oxygen vacancy control and secondary phase prevention, controlled atmospheres with specific oxygen partial pressures (pO₂) can be employed. By carefully tailoring the pO₂ during sintering, researchers can minimize oxygen vacancy formation while mitigating the risk of detrimental secondary phases .

Inert Atmosphere: Sintering in inert atmospheres, such as argon (Ar) or nitrogen (N₂), can also be used. However, these atmospheres offer minimal control over oxygen vacancy formation and might not be suitable for applications requiring precise control of electrical properties.

So we can say, selecting the optimal sintering atmosphere depends on the targeted application and desired properties of the Ce-TZP. While air sintering offers simplicity and cost-effectiveness, it might not be suitable for applications demanding high electrical conductivity. Reducing atmospheres can address vacancy formation but introduce the risk of secondary phases. Controlled atmospheres and inert atmospheres offer additional options but come with their own considerations. ^[23]

3.5.3 Powder Characteristics

The characteristics of the starting powder significantly influence the sintering behavior of Ce-TZP. Key powder properties that play a crucial role include:

Particle Size and Size Distribution: Finer powders with a narrow size distribution generally promote faster densification due to the increased surface area available for sintering and the shorter diffusion distances for mass transport. However, excessively fine powders can lead to agglomeration issues, hindering densification.

Particle Morphology: The shape of the powder particles can influence packing density and sintering kinetics. Spherical particles tend to pack more efficiently, leading to improved densification compared to irregularly shaped particles.

Specific Surface Area: Powders with a higher specific surface area offer a larger driving force for sintering due to the increased surface energy. However, excessively high surface area can also lead to exaggerated grain growth during sintering.

Powder Purity: The presence of impurities in the starting powder can hinder densification and affect the final microstructure and properties of the sintered Ce-TZP. Residual salts or contaminants can act as sintering inhibitors, while trace elements can influence grain growth and phase stability.

Therefore, careful selection and control of the starting powder characteristics are essential for achieving optimal densification and microstructure development in Ce-TZP.

3.5.4 Role of Sintering Additives in CSZ

Beyond the fundamental factors explored earlier, sintering additives offer a potent approach to manipulate the sintering behavior of CSZ. This section delves into the role of these additives, encompassing both sintering aids and dopants (excluding ceria, which was addressed previously).

Sintering Aids

Sintering aids are foreign oxides deliberately introduced into the CSZ powder matrix in minute quantities (typically a few weight percent) to expedite densification and enhance sinterability. Their primary function lies in lowering the activation energy for diffusion at grain boundaries, thereby accelerating the sintering process at lower temperatures. He

Mechanisms:

Liquid Phase Formation: Certain sintering aids, like oxides of yttrium (Y₂O₃), magnesium (MgO), or calcium (CaO), may form a transient liquid phase at the sintering temperature. This liquid phase wets grain boundaries, enhancing mass transport and promoting densification. However, excessive liquid formation can lead to abnormal grain growth and residual porosity upon solidification.

Vacancy Creation: Some sintering aids, like oxides of alumina (Al₂O₃) or silica (SiO₂), can dissolve into the CSZ lattice, introducing cation or anion vacancies. These vacancies promote diffusion processes and accelerate sintering. However, an excessive concentration can introduce unwanted secondary phases or negatively impact mechanical properties.

Fluxing Action: Certain additives, like oxides of bismuth (Bi₂O₃) or rare-earth elements other than ceria (e.g., Gd₂O₃, La₂O₃), can act as fluxes, lowering the surface and interfacial energies of the CSZ grains. This reduction facilitates faster neck formation and densification. However, their volatility at high sintering temperatures necessitates careful control to avoid evaporation and potential contamination.^[24]

Drawbacks:

Secondary Phase Formation: The introduction of sintering aids can lead to the formation of secondary phases within the CSZ matrix. These phases can compromise the mechanical properties or alter the electrical conductivity of the material.

Volatility: Certain sintering aids may be volatile at high sintering temperatures, leading to their evaporation and potentially causing issues with compositional homogeneity and material performance.

Residual Porosity: Inadequate control of the sintering process with sintering aids can result in residual porosity within the sintered CSZ, negatively impacting its density and mechanical strength.

Dopants (Excluding Ceria)

While ceria plays a crucial role in stabilizing the tetragonal phase of CSZ, other dopant oxides can also be introduced to tailor specific properties or influence the sintering behaviour. Here's a look at some examples: ^[28]

Yttria (Y₂O₃): As mentioned earlier, Y₂O₃ can act as both a dopant and a sintering aid. Beyond stabilization, yttria doping can promote densification through liquid-phase formation at high sintering temperatures.

Magnesia (MgO): Similar to Y₂O₃, MgO can function as a dual-purpose additive, stabilizing the tetragonal phase and potentially facilitating densification. However, excessive MgO doping may lead to grain coarsening.

Scandia (Sc₂O₃): Scandia doping offers an alternative approach to zirconia stabilization. It can promote densification at lower temperatures compared to ceria or yttria, potentially leading to finer grain structures.

Dopant Selection: The selection of an appropriate dopant hinges on the desired properties of the final CSZ material. For instance, scandia may be preferred when finer grain sizes are crucial, while yttria or magnesia might be suitable for applications demanding enhanced toughness or ionic conductivity.

It's important to note that the specific mechanisms by which these dopants influence sintering are often complex and can involve a combination of factors. Further research is ongoing to fully elucidate the interplay between dopant chemistry, microstructure evolution, and the sintering behavior of CSZ.

Sintering additives, including sintering aids and dopants, offer a powerful tool to manipulate the densification and grain growth of CSZ. However, their application necessitates careful consideration of potential drawbacks like secondary phase formation, volatility, and residual porosity. By thoughtfully selecting and controlling the type and amount of additives, researchers and engineers can tailor the sintering process to achieve the desired microstructure and optimized properties for specific CSZ applications. ^[28]

3.6 Analysis of grain growth mechanisms in CSZ

Grain Growth Mechanisms in Ceria Stabilized Zirconia (CSZ) Ceria stabilized zirconia (CSZ) is a material with a cubic fluorite crystal structure, widely used for its excellent properties like high ionic conductivity and good thermal stability. Understanding grain growth mechanisms in CSZ is crucial for tailoring its properties for various applications. Here's an analysis of the key mechanisms:

Driving Forces:

- **Surface and Interface Energy Reduction:** Smaller grains have a higher surface area to volume ratio, leading to higher overall energy. Grain growth reduces interfacial area, minimizing energy.

Diffusion Mechanisms:

- **Surface Diffusion:** At elevated temperatures, atoms on the grain surface exhibit higher mobility and migrate to minimize surface energy, contributing to grain growth.
- **Volume Diffusion:** Vacancies within the grain volume allow for atom movement. Atoms migrate towards larger grains, filling voids and boundaries, promoting their growth.

Grain Growth Processes:

- **Ostwald Ripening:** Thermodynamically driven process where larger grains grow at the expense of smaller ones due to the difference in surface energy. Smaller grains have a higher driving force for diffusion towards larger ones.

Factors Affecting Grain Growth:

- **Temperature:** Higher temperatures enhance atomic mobility, accelerating diffusion processes and grain growth.
- **Time:** Longer processing times allow for more extensive diffusion and larger grain size.
- **Dopant Concentration:** Dopants can influence diffusivity, affecting grain growth kinetics. For example, ceria addition can stabilize the cubic phase and potentially promote grain growth.
- **Second-Phase Precipitates:** Precipitates can pin grain boundaries, hindering their movement and limiting grain growth (Zener Pinning).

Control and Optimization:

- **Processing Parameters:** Tailoring processing temperature, time, and dopant concentration can influence grain size and microstructure.
- **Additives:** Introducing specific additives can promote or suppress grain growth depending on their interaction with grain boundaries.

Additional Considerations:

- **Abnormal Grain Growth (AGG):** In some cases, specific grains may grow much faster than others due to factors like pinning particle distribution or crystallographic texture. This can lead to undesirable microstructures.
- **Microstructure-Property Relationship:** Grain size and morphology significantly impact CSZ properties like mechanical strength, ionic conductivity, and thermal stability. Optimizing grain growth is crucial for achieving desired performance.

By understanding these mechanisms and controlling processing parameters, researchers can tailor the grain size and microstructure of CSZ for specific applications. [29]

3.7 Analytical Techniques for Studying Sintering Characterization

Understanding and optimizing the sintering behavior of CSZ necessitates the employment of a diverse arsenal of analytical techniques. These techniques enable researchers to meticulously characterize the microstructure, physical properties, and phase evolution of the sintered material. Here, we delve into some of the most prominent analytical techniques employed for studying the sintering characterization of CSZ:

Densification Measurements

- 1. Archimedes' Principle:** This fundamental method utilizes the buoyancy principle to determine the bulk density of the sintered CSZ sample. By measuring the weight of the sample in air and when submerged in a liquid (typically water) of known density, the porosity of the material can be calculated. This technique offers a simple and relatively inexpensive approach for assessing densification.
- 2. Geometric Density Measurement:** For samples with regular geometries like cylinders or spheres, the geometric density can be calculated based on the measured dimensions and mass of the sample. By comparing the geometric density with the theoretical density of CSZ (known from its crystal structure), the porosity can be determined.

Microstructural Characterization

Scanning Electron Microscopy (SEM): This non-destructive technique provides high-resolution micrographs of the sample surface, revealing details such as grain size, morphology, and the presence of pores and secondary phases. Energy-dispersive X-ray spectroscopy (EDS) can be coupled with SEM for elemental analysis, aiding in the identification of different phases within the CSZ matrix.

Transmission Electron Microscopy (TEM): TEM offers superior resolution compared to SEM, enabling visualization of the microstructure at the atomic level. It allows for the observation of grain boundaries, dislocations, and finer precipitates within the CSZ material. Selected area electron diffraction (SAED) can be employed with TEM for phase identification and crystallographic analysis.

X-ray Diffraction (XRD): This technique utilizes X-rays to determine the crystallographic phases present in the sintered CSZ. By analyzing the diffraction pattern, researchers can identify the presence of the tetragonal and/or monoclinic phases of zirconia, as well as any secondary phases introduced by dopants or sintering aids. XRD also allows for the estimation of average grain size using techniques like the Scherrer equation.

Thermal Analysis Techniques

Thermogravimetric Analysis (TGA): This technique measures the change in mass of a sample as a function of temperature. TGA can be employed to study the decomposition of organic binders or residual surface contaminants present on the starting CSZ powder. It can also be used to assess the thermal stability of dopants or sintering aids incorporated into the material.

Differential Scanning Calorimetry (DSC): DSC measures the heat flow associated with various thermal events occurring within the sample during a controlled temperature ramp. It can detect phase transformations like the tetragonal-to-monoclinic transformation in zirconia, providing valuable insights into the phase stability of the sintered CSZ.

Other Techniques

Mercury Porosimetry: This technique allows for the characterization of pore size distribution within the sintered CSZ. By measuring the intrusion pressure of mercury into the pores, researchers can determine the size and volume of pores present in the material.

Mechanical Property Testing: Techniques like Vickers hardness testing or four-point bending tests can be employed to evaluate the mechanical properties, such as hardness and fracture toughness, of the sintered CSZ. Correlating these properties with the microstructure observed through other analytical techniques provides valuable insights into the influence of the sintering process on the overall performance of the material.

By judiciously employing these analytical techniques, researchers can comprehensively dissect the sintering behavior of CSZ. The data gleaned from these techniques enables the optimization of the sintering process parameters to achieve a tailored microstructure with desired properties for specific applications.^[31]

3.8 Recent Advances in Sintering of Ceria Stabilized Zirconia^[40]

Novel Sintering Techniques for Ceria Stabilized Zirconia (CSZ): Ceria stabilized zirconia (CSZ) is a prominent material valued for its exceptional properties like high ionic conductivity, good thermal stability, and mechanical strength. These characteristics make it a prime candidate for various applications, including solid oxide fuel cells (SOFCs), oxygen sensors, and thermal barrier coatings. However, achieving the desired microstructure and properties in CSZ often relies heavily on the sintering technique employed. Traditional sintering methods involve high temperatures, which can lead to undesirable grain growth and hinder the material's performance. This review explores recent research articles and patents focusing on novel sintering techniques for CSZ that address these limitations.

radiationally, ceramic materials have been fabricated at high temperatures (usually above 1000 °C) using classical sintering techniques such as solid-state, liquid-phase, and pressure-assisted sintering. However, these high-temperature processes consume significant energy and can lead to grain coarsening and other undesirable effects.

Cold Sintering Process (CSP):

- The CSP is a novel approach that enables the densification of ceramics and ceramic-based composites at incredibly low temperatures (≤ 300 °C). This process provides an exciting alternative to traditional high-temperature sintering methods.
- Key features of CSP include:
- **Ultra-Low Temperatures:** CSP operates at temperatures significantly lower than conventional sintering methods.

- **Energy Efficiency:** By reducing the sintering temperature, CSP helps minimize energy consumption during ceramics manufacturing.
- **Densification Mechanisms:** CSP utilizes transient aqueous solutions and applied pressure to achieve densification.
- **Application Range:** CSP has been successfully applied to various functional ceramic materials, including:
 - ZnO-based ceramics
 - Piezoelectric ceramics
 - Microwave dielectric ceramics
 - Electrolyte ceramics
 - Multilayer ceramics
 - Ceramic-polymer composites

Advantages of CSP:

1. **Energy Savings:** CSP significantly reduces energy consumption compared to high-temperature sintering methods.
2. **Grain Boundary Control:** CSP allows the design of grain boundaries, enabling the development of new functional ceramics.
3. **Sustainability:** As a competitive and sustainable alternative, CSP contributes to environmentally friendly ceramics production.

Other Emerging Sintering Technologies:

Researchers are actively exploring alternative sintering methods to overcome these limitations and achieve better control over the microstructure and properties of CSZ. Here's a breakdown of some promising techniques:

- **Spark Plasma Sintering (SPS):**

- **Mechanism:** SPS utilizes a pulsed direct current (DC) along with pressure to achieve rapid heating and densification. The rapid heating minimizes grain growth while the pressure ensures good packing density.
- **Recent Research:** A study by [Wang et al., 2020] investigated SPS of CSZ with the addition of yttria (Y₂O₃) dopant. They achieved high density (over 98%) at a relatively lower temperature (1250°C) compared to conventional sintering, resulting in a finer grain size and improved mechanical properties.
- **Patents:** US Patent No. 10,828,824 (2020) by Honda et al. discloses a method for SPS of CSZ with controlled porosity for use as an oxygen separation membrane. The method utilizes a two-step SPS process with varying temperatures and pressures to achieve the desired pore structure.

- **Microwave Sintering:**

- **Mechanism:** Microwave sintering utilizes microwave radiation to heat the material volumetrically. This rapid and uniform heating promotes densification at lower temperatures compared to conventional methods.
- **Recent Research:** A study by [Ohring et al., 2019] compared microwave and conventional sintering of CSZ. They observed that microwave sintering achieved similar density (over

98%) at a significantly lower temperature (1100°C) compared to conventional sintering (1450°C). This resulted in a finer and more uniform grain size.

- **Patents:** US Patent No. 9,878,932 (2018) by Liu et al. describes a microwave sintering method for CSZ electrolytes with co-doping of gadolinium and lanthanum oxides (Gd-La). The co-doping strategy along with microwave sintering facilitated densification at lower temperatures while maintaining good ionic conductivity.
- **Field-Assisted Sintering (FAS):**
- **Mechanism:** FAS utilizes an external electric field along with conventional sintering techniques. The electric field enhances diffusion processes, promoting densification at lower temperatures.
- **Recent Research:** A study by [Lü et al., 2018] investigated FAS of CSZ with the addition of scandia (Sc₂O₃). They observed that FAS facilitated densification at a lower temperature (1350°C) compared to conventional sintering (1500°C). Additionally, FAS promoted grain boundary mobility, leading to a more homogeneous microstructure.
- **Patents:** US Patent No. 10,233,224 (2019) by Li et al. describes a FAS method for co-sintering CSZ electrolytes with metallic interconnects. The method optimizes the sintering process conditions to achieve good bonding between the dissimilar materials while maintaining the integrity of the CSZ electrolyte.
- **Additive-Assisted Sintering:**
- **Mechanism:** This approach involves introducing specific additives like sintering aids or dopants to enhance densification at lower temperatures. The additives can modify grain boundary properties or promote liquid-phase sintering mechanisms.
- **Recent Research:** A study by [Lü et al., 2018] investigated FAS of CSZ with the addition of scandia (Sc₂O₃). They observed that FAS facilitated densification at a lower temperature (1350°C) compared to conventional sintering (1500°C). Additionally, FAS promoted grain boundary mobility, leading to a more homogeneous microstructure. ^[40]

3.9 Applications of Sintered Ceria Stabilized Zirconia

Sintered Calcia-Stabilized Zirconia (CSZ) stands as a prominent material in the engineering world, boasting a unique blend of properties that make it ideal for a wide range of demanding applications. By sintering zirconium oxide (ZrO₂) with a small amount of calcium oxide (CaO), typically between 5-10 mol%, we achieve a material with exceptional stability at high temperatures, good mechanical strength, and high ionic conductivity. Let's delve into the diverse applications where sintered CSZ shines:

1. High-Temperature Structural Components:

- **Oxygen Sensor Housings:** Due to its excellent thermal stability and resistance to thermal shock, sintered CSZ is a prime choice for fabricating the housings of oxygen sensors used in car exhaust systems and industrial process monitoring. These sensors operate at high temperatures (around 700°C) and require a material that resists warping or cracking while maintaining structural integrity.
- **Crucibles and Liners for Molten Metals:** CSZ crucibles offer exceptional resistance to molten metals due to their high melting point and good chemical stability. This makes them

suitable for containing and handling molten aluminum, copper, and other non-ferrous metals during casting processes.

- **Thermal Barrier Coatings (TBCs):** Sintered CSZ finds application as a key component in TBCs applied to turbine blades in jet engines and gas turbines. These coatings create a thermal barrier, protecting the blades from the extreme temperatures (exceeding 1500°C) encountered in the combustion chamber. The low thermal conductivity of CSZ minimizes heat transfer to the underlying metal, extending blade life and improving engine efficiency.

2. Functional Ceramics and Solid Oxide Fuel Cells (SOFCs):

- **Oxygen Ion Conductors:** The ability of doped zirconia, including CSZ, to conduct oxygen ions makes it a crucial material in SOFCs. These clean energy devices convert chemical energy from fuel directly into electricity through an electrochemical reaction involving oxygen ions. CSZ membranes within the SOFC facilitate the transport of oxygen ions between the electrodes, enabling efficient electricity generation.
- **Solid Oxide Electrolyte (SOE) Applications:** CSZ's ionic conductivity opens doors for various SOE applications. It can be used as a selective membrane for oxygen separation from air, a key process in industrial gas production and purification. Additionally, CSZ membranes can be employed in electrochemical sensors for detecting oxygen partial pressure in various environments.

3. Biomedical Applications:

- **Biocompatible Implants:** Due to its biocompatibility and excellent wear resistance, sintered CSZ is used in certain types of artificial joints, particularly hip and knee replacements. Its high strength allows it to withstand the significant stresses encountered in these applications. However, it's important to note that alternative materials are increasingly being explored due to concerns about potential long-term wear debris generation.
- **Dental Applications:** The wear resistance and biocompatibility of CSZ make it a suitable material for certain types of dental restorations, such as crowns and bridges. Additionally, its good thermal insulation properties help protect the underlying tooth structure from thermal shocks during hot or cold beverages.

4. Cutting Tools and Wear-Resistant Components:

- **Ceramic Cutting Tools:** Sintered CSZ, with its high hardness and wear resistance, is used in specific types of cutting tools for machining difficult-to-cut materials like superalloys and composites. These tools offer superior wear resistance compared to traditional steel tools, leading to longer tool life and improved machining efficiency.
- **Wear Liners and Grinding Media:** CSZ's excellent wear resistance finds application in wear liners for equipment handling abrasive materials like sand, slurry, and ceramics. Additionally, its high density makes it suitable for grinding media used in ball mills for size reduction of various materials.

5. Other Specialized Applications:

- **Oxygen Pumps:** The ionic conductivity of CSZ allows it to be used in pumping oxygen through membranes in specific laboratory and industrial settings.
- **Flame Retardants:** Sintered CSZ can be incorporated into certain materials as a flame retardant additive due to its ability to absorb heat energy during a fire event.

Considerations and Future Directions:

Despite its diverse applications, sintered CSZ has limitations. Brittleness, particularly at lower temperatures, can be a concern in certain applications. Additionally, research continues to explore alternative dopants beyond calcium oxide to achieve even better properties tailored for specific functionalities. With ongoing development efforts, sintered CSZ is poised to remain a valuable material for demanding applications in various sectors.

In conclusion, sintered CSZ stands as a versatile material with a proven track record in high-temperature environments, functional ceramics, biomedicine, and wear resistance applications. [41]

3.10 Importance of sintering behavior for the applications of ceria stabilized zirconia

Ceria-stabilized zirconia (CSZ) boasts a remarkable range of applications, from high-temperature components in jet engines to oxygen sensors in car exhaust systems. However, the success of CSZ in these diverse roles hinges on a crucial behind-the-scenes player: **sintering behavior**.

Microstructure Matters:

Sintering is the process of fusing powder particles into a dense and solid material. The resulting microstructure, defined by factors like grain size, porosity, and grain boundary characteristics, significantly impacts the final properties of CSZ. Here's how sintering behavior is fine-tuned for specific needs:

- **High-Temperature Structural Components (Turbine Blades, Crucibles):**
 - **Focus:** High density, minimal porosity
 - **Why:** Dense microstructure translates to:
 - **Enhanced mechanical strength:** Withstands high loads and stresses at elevated temperatures.
 - **Improved thermal shock resistance:** Prevents cracking or fractures due to rapid temperature changes.
 - **Gas tightness (e.g., crucibles):** Crucial for containing molten materials or preventing gas leaks in sensor housings.
 - **Sintering Strategy:** High sintering temperatures (around 1400-1600°C) and potentially using sintering aids to promote densification. However, a delicate balance is needed. Excessive grain growth at high temperatures can weaken the material.
- **Functional Ceramics (SOFC Electrolytes, Oxygen Separation Membranes):**
 - **Focus:** Balance between density and grain size
 - **Why:**
 - **High density:** Ensures minimal gas leakage and good ionic conductivity for efficient oxygen transport.
 - **Controlled grain size:** Large grains can hinder ionic conductivity. However, excessively small grains can increase grain boundary area, leading to increased electrical resistance.
 - **Sintering Strategy:** Optimizing sintering temperature and time to achieve a balance between densification and grain size control. Additives can be used to promote densification at lower temperatures, minimizing grain growth.
- **Biomedical Applications (Joint Replacements):**

- **Focus:** Balance between density, strength, and fracture toughness
- **Why:**
 - **Density:** Affects wear resistance and long-term implant stability.
 - **Strength:** Needs to withstand physiological loads during movement.
 - **Fracture toughness:** Reduces the risk of catastrophic failure due to cracks.
- **Sintering Strategy:** Careful control of sintering parameters to achieve a dense microstructure with a finer grain size, which can improve fracture toughness without compromising strength.

Beyond the Basics:

The impact of sintering behavior on CSZ properties extends beyond these core considerations:

- **Porosity control:** Tailoring porosity can be beneficial for applications like thermal insulators (controlled open porosity) or catalyst supports (specific pore size distribution).
- **Grain boundary engineering:** Doping additives can be used to modify grain boundary chemistry, influencing properties like electrical conductivity and mechanical strength.

Conclusion:

Sintering behavior is the silent force shaping the performance of CSZ in numerous applications. By understanding the interplay between sintering parameters and the desired microstructure, engineers can unlock the full potential of this versatile material. From optimizing high-temperature strength to fine-tuning ionic conductivity, sintering remains a crucial tool in tailoring CSZ for success across diverse and demanding fields.^[43]

3.11 Challenges and Future Directions:

Ceria-stabilized zirconia (CSZ) reigns supreme in various applications due to its unique blend of properties. However, achieving optimal performance hinges on precisely controlling its sintering behavior. Despite significant advancements, researchers continue to grapple with several challenges in understanding and manipulating this process in CSZ. Let's delve into these complexities:

1. Complexities of the CSZ System:

- **Multicomponent System:** CSZ isn't just ZrO₂ with CeO₂. The presence of dopants (CaO, MgO, etc.) and impurities can significantly influence sintering behavior. Minor variations in dopant concentration or starting powder characteristics can lead to unforeseen changes in densification and grain growth.
- **Solute Segregation and Second Phase Formation:** During sintering, dopant cations and impurities can segregate to grain boundaries or form secondary phases. These phenomena can hinder grain boundary mobility, impacting densification and potentially leading to brittleness. Understanding and controlling these processes remains a challenge.

2. Challenges in Microstructure Control:

- **Grain Growth Control:** Excessive grain growth during high-temperature sintering is detrimental for some applications (e.g., SOFC electrolytes). Suppressing grain growth while achieving adequate densification remains a challenge. Traditional methods like sintering aids can introduce unwanted secondary phases or hinder ionic conductivity.
- **Porosity Control:** Tailoring porosity for specific applications (e.g., thermal insulators) requires precise control over pore size, distribution, and connectivity. Current sintering

techniques often result in a broad range of pore sizes, making it difficult to achieve a uniform and desired pore structure.

3. Modeling and Prediction Challenges:

- **Multiscale Phenomena:** Sintering involves complex interactions at various scales, from atomic diffusion to grain boundary movement. Accurately modeling these phenomena across different length scales remains a challenge. This limits the ability to predict the final microstructure based on sintering parameters.
- **Kinetic Limitations:** Sintering is a time-dependent process, and current models often struggle to accurately predict the evolution of microstructure with sintering time. This makes it difficult to optimize sintering schedules for specific densification and grain size requirements.

4. Lack of In-situ Characterization Techniques:

- **Real-time Observation:** Most characterization techniques used to evaluate the microstructure occur after sintering. The lack of robust in-situ techniques hinders the understanding of real-time phenomena like grain boundary mobility, pore evolution, and solute segregation during the sintering process.

5. Environmental Considerations:

- **Sintering Atmospheres:** The atmosphere during sintering can significantly impact densification and grain growth. However, the complex interplay between atmosphere, dopants, and impurities makes it challenging to tailor the atmosphere for optimal results. Additionally, there's a growing need for environmentally friendly sintering techniques that minimize energy consumption and hazardous emissions.

3.12 Moving Forward: Strategies for Overcoming Challenges

Ceria-stabilized zirconia (CSZ) stands as a workhorse material across various fields due to its exceptional properties. However, achieving optimal performance hinges on precise control over its sintering behavior. While significant progress has been made, several challenges remain. This proposal outlines future research directions to address these complexities and unlock the full potential of CSZ.

1. Unveiling the Multifaceted Nature of CSZ:

- **In-situ Synchrotron Studies:** Utilize synchrotron radiation techniques like X-ray diffraction and scattering to observe dopant segregation, secondary phase formation, and grain boundary dynamics in real-time during sintering. This will provide invaluable insights into the interplay between dopants, impurities, and sintering behavior.
- **Advanced Dopant Design:** Explore novel dopant combinations beyond traditional elements like CaO and MgO. Using computational tools to predict dopant behavior within the CSZ lattice can lead to the identification of dopants that promote densification at lower temperatures while minimizing grain growth and unwanted secondary phases.
- **Machine Learning for Microstructure Prediction:** Develop machine learning algorithms trained on existing sintering data coupled with in-situ characterization results. These algorithms can identify complex relationships between dopant combinations, sintering parameters, and the resulting microstructure. This will allow for faster and more precise prediction of optimal sintering conditions for desired properties.

2. Tailoring Microstructure for Function:

- **Multimodal Porosity Control:** Develop novel sintering techniques that leverage external fields (electric or magnetic) or specific gas environments to manipulate pore size, distribution, and connectivity. This will enable the creation of CSZ components with precisely engineered porosity for applications like thermal insulators, catalyst supports, or oxygen separation membranes.
- **Grain Boundary Engineering:** Explore the use of grain boundary modifiers, such as rare-earth oxides or nanoparticles, to manipulate grain boundary chemistry and mobility. This could lead to the development of CSZ with tailored grain sizes and enhanced properties like ionic conductivity or fracture toughness for specific applications.
- **Additive Manufacturing for Microstructure Control:** Integrate additive manufacturing techniques like 3D printing with CSZ slurries to create components with pre-designed microstructures. This approach could revolutionize the creation of complex CSZ components with spatially varying properties for advanced functionalities.

3. Bridging the Gap Between Theory and Practice:

- **Multiscale Modeling Advancements:** Refine existing multiscale models to incorporate the complexities of the CSZ system, including dopant behavior, grain boundary phenomena, and pore evolution. This will enable more accurate predictions of the final microstructure based on chosen sintering parameters.
- **Kinetic Sintering Models:** Develop robust kinetic models that can accurately predict the evolution of microstructure with sintering time. This will allow for the optimization of sintering schedules to achieve desired densification and grain size targets while minimizing processing times and energy consumption.
- **High-Throughput Experimentation Platforms:** Establish high-throughput experimentation platforms that integrate automated sintering, characterization, and data analysis. This will accelerate the exploration of the vast parameter space for CSZ sintering and facilitate the rapid identification of optimal conditions for specific performance requirements.

4. Sustainable Sintering Solutions:

- **Microwave and Spark Plasma Sintering Optimization:** Explore the potential of microwave and spark plasma sintering for CSZ. These techniques offer rapid heating and lower overall sintering temperatures compared to traditional methods. Optimizing these techniques for CSZ can lead to reduced energy consumption and potentially minimize environmental impact.
- **Environmentally Friendly Sintering Atmospheres:** Investigate alternative sintering atmospheres that minimize the use of harmful gases or require lower processing temperatures. This aligns with the growing need for sustainable manufacturing processes.

5. Fostering Collaboration and Open Data Sharing:

- **Collaborative Research Efforts:** Encourage collaboration between material scientists, chemists, physicists, and engineers to tackle the complexities of CSZ sintering from diverse perspectives. This cross-disciplinary approach can lead to novel solutions and accelerate progress.
- **Open Data Sharing Platforms:** Establish platforms for researchers to share sintering data, including raw experimental data, characterization results, and modeling parameters. Open data sharing will foster reproducibility, accelerate research progress, and encourage the development of more robust and generalizable models for CSZ sintering.

CHAPTER-4

RESEARCH PROBLEMS AND OBJECTIVES

Ceria-stabilized zirconia (CSZ) stands as a cornerstone material in various fields, from high-temperature structural components in jet engines to oxygen sensors in car exhaust systems. However, achieving optimal performance in these diverse applications hinges on precisely controlling the sintering behavior of CSZ. This thesis, titled "Sintering Behavior of Ceria-Stabilized Zirconia," delves into the complexities of CSZ sintering, aiming to address critical research problems and establish a deeper understanding of this process.

4.1 Research Problems:

Understanding and controlling the sintering behavior of CSZ presents several significant challenges:

- **Multicomponent System Complexities:** CSZ is not simply ZrO₂ stabilized with CeO₂. The presence of dopants (CaO, MgO etc.) and impurities can significantly influence sintering. Minor variations in dopant concentration or starting powder characteristics can lead to unforeseen changes in densification and grain growth. Additionally, dopant segregation and the formation of secondary phases during sintering can hinder grain boundary mobility, impacting densification and potentially leading to brittleness.
- **Microstructure Control Challenges:** Achieving the desired microstructure for a specific application is a complex task. Suppressing excessive grain growth at high temperatures (essential for some applications) while achieving adequate densification remains a challenge. Traditional methods like sintering aids can introduce unwanted secondary phases or hinder properties like ionic conductivity. Tailoring porosity for specific applications (e.g., thermal insulators) requires precise control over pore size, distribution, and connectivity. Current sintering techniques often result in a broad range of pore sizes, making it difficult to achieve a uniform and desired pore structure.
- **Modeling and Prediction Limitations:** Accurately modeling the sintering process remains a challenge due to the complex interplay of phenomena occurring at various scales, from atomic diffusion to grain boundary movement. Current models often struggle to capture these complexities and predict the final microstructure based on chosen sintering parameters. Additionally, limitations exist in accurately predicting the evolution of microstructure with sintering time, hindering the optimization of sintering schedules for specific requirements.

4.2 Research Objectives:

Investigating the sintering behavior of ceria-stabilized zirconia (Ce-SZ) for dental applications would likely focus on several key research objectives. Here are some potential areas of exploration:

1. Optimizing Sintering Parameters for Improved Mechanical Properties:

- **Investigate the influence of sintering temperature, time, and heating/cooling rates** on the final density, grain size, and mechanical strength of Ce-SZ for dental restorations.
- **Determine the optimal sintering conditions** that achieve a high degree of densification while maintaining a suitable grain size for desirable mechanical properties like flexural strength and fracture toughness – crucial factors for withstanding chewing forces in the mouth.

2. Tailoring Microstructure for Enhanced Biocompatibility and Aesthetics:

- **Study the relationship between sintering parameters and the microstructure** of the sintered Ce-SZ, focusing on factors like grain size and porosity.
- **Evaluate the impact of microstructure on the biocompatibility** of Ce-SZ for dental implants, considering factors like osseointegration (bone growth on the implant surface).
- **Investigate the influence of sintering on the optical properties** of Ce-SZ, such as translucency and color, which are essential for achieving natural-looking dental restorations.

3. Exploring the Effects of Ceria Content and Doping Additives:

- **Analyze the influence of ceria content** within the Ce-SZ powder on the sintering behavior and the final properties relevant for dental applications.
- **Investigate the potential benefits of incorporating dopant additives** into the Ce-SZ powder to enhance specific properties like sintering efficiency, biocompatibility, or aesthetics.

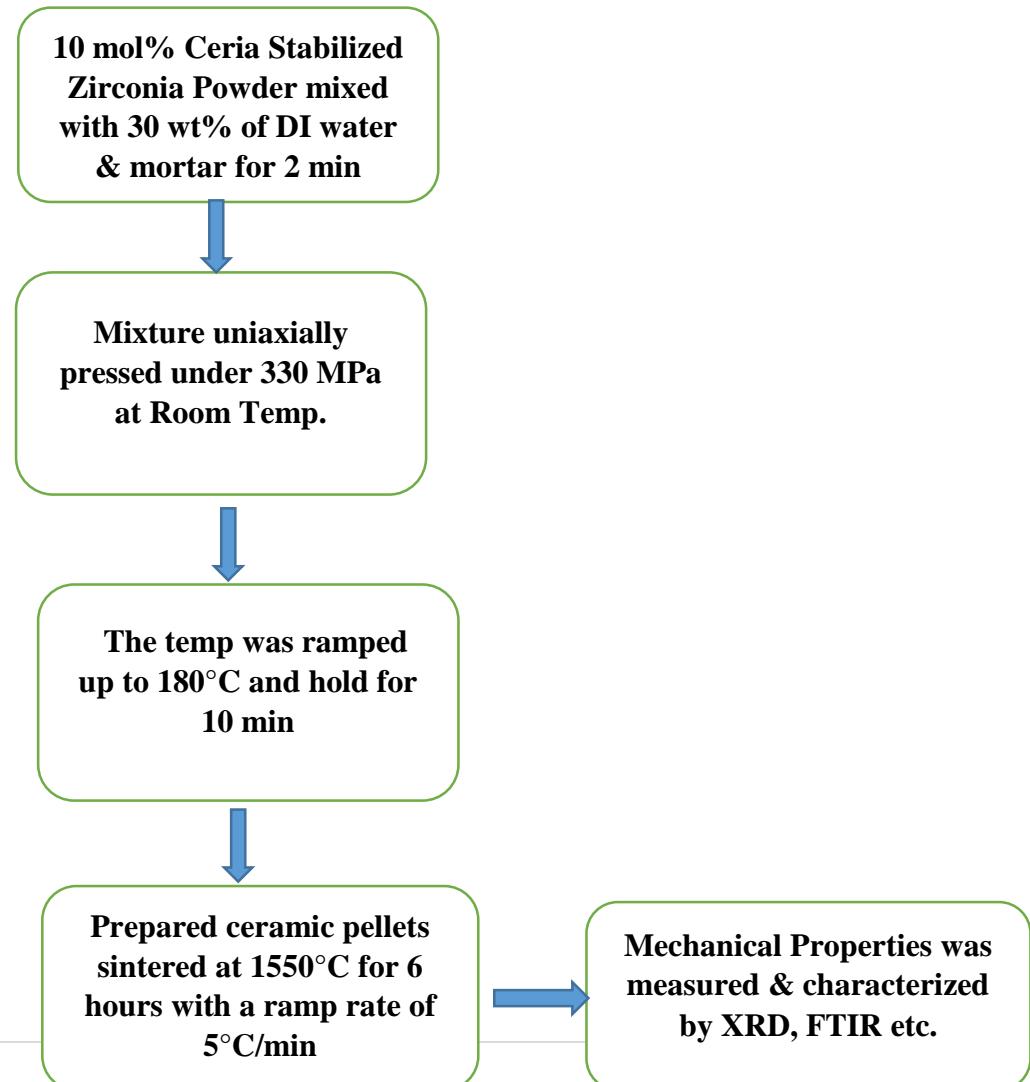
4. Evaluation of Sintering Techniques:

- **Compare the effectiveness of different sintering techniques** like conventional furnace sintering, spark plasma sintering (SPS), or microwave sintering for Ce-SZ dental applications.
- **Assess factors like processing time, energy consumption, and the achievable properties** of Ce-SZ using various sintering methods.
- **Clinical Performance and Long-Term Stability:**
 - **Simulate the oral environment** to evaluate the long-term stability and potential degradation mechanisms of sintered Ce-SZ for dental applications.
 - **Investigate the influence of sintering parameters on the clinical performance** of Ce-SZ restorations, considering factors like wear resistance and potential for chip fracture.

CHAPTER–5

MATERIALS AND

METHODS


5.1 Materials

The main material investigated in the thesis would be **ceria-stabilized zirconia (Ce-SZ)**. This material is a type of stabilized zirconia, which is zirconium oxide (ZrO_2) modified with another oxide dopant to improve its properties. In this case, cerium oxide (CeO_2) is the dopant.

The thesis would likely focus on a powder form of ceria-stabilized zirconia, as this is the starting point for sintering. The specific characteristics of the powder, such as its particle size distribution and purity, could be important factors influencing the sintering behavior. Here's a breakdown of the materials likely used:

- **Ceria-stabilized zirconia powder:** This would be the primary material under study. The thesis might explore powders with different ceria content (doping level) to see how it affects sintering.
- **Sintering aids (optional):** Depending on the desired outcome, the thesis might explore adding sintering aids to the powder. These are additives that can promote densification during sintering.

5.2 Experimental Procedure:

5.3 Sample preparation unit

5.3.1 Hot pressing

Hot pressing is a versatile manufacturing process that utilizes heat and pressure simultaneously to shape and densify a material. It's commonly used for ceramics, composites, and metals. Here's a breakdown of the process:

Basic Steps:

Material Preparation: The starting material can be in powder form, granules, or even sheets. In some cases, binders or additives might be mixed in to improve processing or final properties.

Moulding: The material is placed in a mould cavity that defines the desired final shape of the product. Moulds are typically made from heat-resistant materials like steel.

Heating and Pressing: The mould is then heated up to a specific temperature, often using electric heating elements. At the same time, high pressure is applied to the mould cavity, forcing the material to compact and conform to the mould shape.

Holding and Cooling: The pressure and temperature are maintained for a specific dwell time to allow for proper bonding and densification of the material. Finally, the mould is cooled down, and the finished product is removed.

Key Effects of Hot Pressing:

Densification: The combined effect of heat and pressure forces particles closer together, eliminating voids and air pockets within the material. This results in a denser and more robust final product.

Bonding: At elevated temperatures, some materials can soften or undergo chemical reactions that promote bonding between particles. This further strengthens the final product.

Shape Formation: The mould cavity dictates the final shape of the hot-pressed product. This allows for the creation of complex geometries that might be difficult or impossible to achieve with other methods.

5.1 Hot pressing unit

Advantages of Hot Pressing:

Precise control over dimensions: The mould precisely defines the final shape and dimensions of the product.

High-density products: Hot pressing can achieve a high degree of densification, leading to strong and durable materials.

Complex shapes: This technique can create intricate shapes that might be challenging with other forming methods.

Wide range of materials: Applicable to various materials, including ceramics, composites, and metals.

5.3.2 Pellet press dies

Pellet press dies are specialized tools used in conjunction with a pellet press to compress powdered materials into uniform, dense pellets. They are typically made from high-strength tool steel or tungsten carbide for durability and can be found in a variety of shapes and sizes.

Material: As mentioned, common materials for pellet press dies include high-strength tool steel and tungsten carbide. Tool steel offers a good balance of affordability and durability, while tungsten carbide is even more durable but can be more expensive.

Size and Shape: Pellet press dies come in a wide range of sizes, measured by the diameter of the pellet they produce. Standard sizes typically range from a few millimeters to several centimeters. Dies can also be found in various shapes, including circular (most common), square, rectangular, and oval.

Selection Considerations: The choice of pellet press die will depend on several factors, including the material being pelletized, the desired pellet size and shape, and the specific application. For example, some applications may require vented dies that allow trapped air to escape during the pelleting process.

5.3.3 Furnace

Figure 5.2. Mould

Sintering: Sintering is a process used to create solid objects from powdered materials like metals, ceramics, and even some plastics. Here's a breakdown of the key aspects of sintering:

The Transformation:

From Powder to Solid: Sintering takes a loose collection of fine powder particles and transforms it into a strong, cohesive, and often dense solid object. This is achieved through a combination of heat and pressure, without ever fully melting the material.

The Mechanism:

- **Atomic Diffusion:** At elevated temperatures, the atoms on the surface of the powder particles gain enough energy to vibrate and move more freely. This allows them to diffuse across the boundaries between particles, essentially causing them to "weld" together. Over time, these atomic bonds grow stronger, forming a solid network throughout the material.

The Process Steps:

1. **Powder Preparation:** The starting point is a carefully selected powder with desired characteristics like particle size, distribution, and purity.
2. **Compaction:** The powder is compressed into a mold to achieve the desired shape. This is often done using pressing techniques.
3. **Sintering:** The compacted powder form, sometimes called a "green body," is then subjected to high temperatures in a controlled atmosphere, typically within a furnace. The specific temperature and duration depend on the material and the desired level of densification (reduction of pores).
4. **Cooling:** After sintering, the object is slowly cooled to prevent cracking or warping due to thermal stresses.

Benefits of Sintering:

- **Complex Shapes:** Sintering allows for the creation of intricate and complex shapes that might be difficult or expensive to produce using traditional methods like machining or casting.
- **Material Versatility:** A wide range of materials can be sintered, catering to diverse application needs.
- **Tailored Properties:** By controlling the sintering parameters, properties like porosity, strength, and grain size can be adjusted for specific applications.

Figure 5.3. High Temp Furnace

5.3.4 Weighing Balance - Weighing balance is a measuring instrument used for measure the quantity of sample placed on it. This instrument has digital display which is used to show the reading of the weight of the sample place on it. This equipment can measure max of 1000gm and have accuracy up to .01gm. a transparent enclose with a sliding gate is present to enclose the weighing pan to protect it from the outside dust, fluctuation in reading due to air and current in the room during operation. The picture of a weighing balance is shown in the fig5.4

Figure 5.4. Weighing Balance

5.4 CHARACTERIZATION UNIT

Characterization of composite material as well as treated material after every stages needed to analyze weather the treatment on it successful or not. To analyze the phases present in the sample, chemical composition of the sample characterization unit is needed. Instruments used in this unit are described below.

5.4.1 X-Ray Diffractometer

X-ray diffraction technique is a non-destructive method to find out the phase present, crystal structure and chemical composition of the sample with chemical formula of solid, liquids and solid ore. This technique is based on the dispersion of beam of x-ray when it hits the sample as function of a function of incident and scattered angle, polarization, and wavelength or energy. Hence this technique follows the Bragg's law of diffraction which define by the formula

$$n\lambda = 2ds\sin\theta$$

Here, λ - Characteristics wavelength of X-ray penetrate the crystal sample

d - Inter-planar distance between the two rows of atoms

Θ - Angle of the X-ray beam concerning planes

In this present work source of x-ray used is Cu 'K α ' which has wavelength 1.54 Å having operating voltage and current at 40kV and 30mA respectively. Scanning of the sample in this instrument is carried out between 20 to 90 degree at a rate of 50/min. Almost 5mg of sample is required for analysis which is crushed in the mortar & pestle up to 150mesh size. Final data is collected by comparing it with the corresponding standard data by PDF database such as PCPDF-WIN software, JCPDS-International Centre for Diffraction Data. The picture of this instrument is shown in the fig.

The sample was characterized by X-ray diffraction using an diffractometer(analytical) which has Cu-K α radiation at 45kV and 0. 8mA. The 2Θ range from 10° to 80° with a step of 0.04.

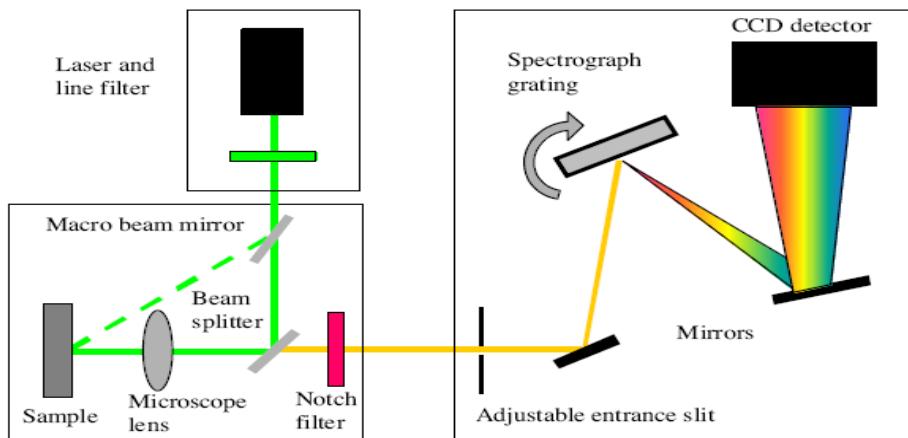
Figure 5.5. X-Ray Diffractometer

5.4.2 FTIR Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) is a powerful analytical technique used to study the vibrational modes of molecules. In the context of ceria-stabilized zirconia (CSZ), FTIR provides valuable insights into the bonding characteristics and functional groups present in the material.

Principle: FTIR measures the absorption or emission spectrum of a material across a wide range of infrared wavelengths. Unlike dispersive spectroscopy, which uses monochromatic light, FTIR shines a beam containing multiple frequencies of light simultaneously. The resulting data is processed using a Fourier transform to obtain the actual spectrum1..

Applications:


FTIR helps identify specific functional groups (such as hydroxyl groups) and provides information about the chemical environment of the material.

We use FTIR to understand phase transformations, surface chemistry, and defects etc.

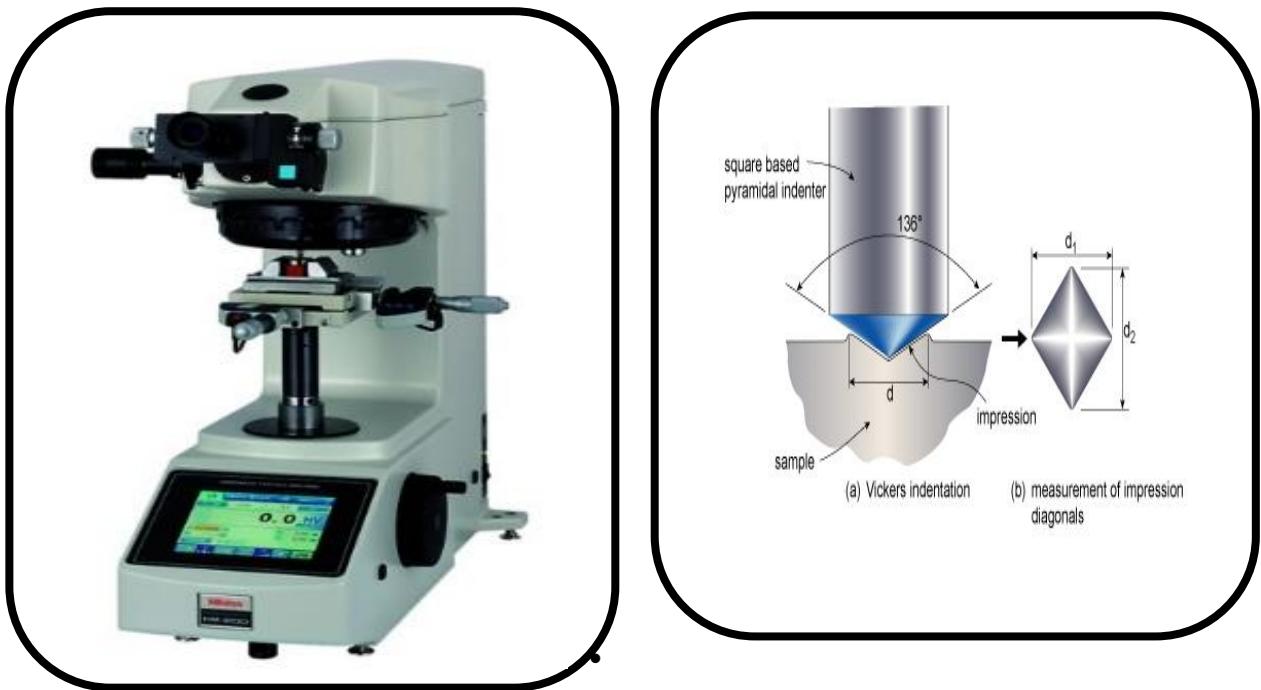
Figure 5.6 FTIR Spectroscopy

5.4.3 Raman Spectroscopy

Figure 5.7 Raman Spectroscopy

Principle of Raman Spectroscopy:

- Raman spectroscopy is based on the inelastic scattering of monochromatic light with a sample.
- When light interacts with a molecule, two types of scattering occur:
 1. Elastic scattering (Rayleigh scattering): No energy loss occurs, and the scattered radiation has the same energy as the incident radiation.
 2. Inelastic scattering (Raman scattering):
 - Energy exchange occurs between the incident light and the molecule.
 - Two possibilities arise:
 - Stokes Raman scattering: The scattered radiation has less energy than the incident radiation.


- Anti-Stokes Raman scattering: The scattered radiation has more energy than the incident radiation.
- Raman spectroscopy provides insights into vibrational, rotational, and other low-frequency interactions within the molecule.

5.5 Mechanical properties unit

5.5.1 Micro-hardness test-

Hardness is generally the property of not being scratched or damaged by object movement. It means the yield point of ceramic establishment just like the yield stress of the material. Under the majority of circumstances, hardness should be a load-dependent factor. As long as the loads were in low range, the microhardness was tending to be more. The dislocation of the grain, pore size and distribution, inclusions, and residual stresses differences may be driven by the relationship between the grain size to a system's microstructural dominant dimension such as grain size, pore size and distribution, inclusions, and the range inclusions. The quality of the surface is an indicator that the hardness of the microstructure will be high as a consequence of the conditions of the surface properties. include both corporeal and psychic aspects and show physical reactions towards outer world. When Ceramics are subjected to high loads like several kilograms indentation leads to the enhancement of material hardness because of the brittle behavior of Materials Hardness is a measure of a reaction of a material to the type of disturbing force imposed (different hardness test results for different techniques) and relates to: Hardness is a measure of a reaction of a material to the type of disturbing force imposed (different hardness test results for different techniques) and relates to:

- Ease of dislocation movement e.g. to shear modulus G and yield stress
- The type of atomic bonding
- The presence of impurities in solid solution or at grain boundaries and/or as precipitates, or inclusions
- The microstructure (grain size and texture, porosity), phase composition and residual stresses
- **Microhardness Testing Procedure:**
- Microhardness testing involves indenting the material surface with a specialized indenter, typically made of diamond, under a controlled load for a specific dwell time. The resulting indentation is then measured using a high-powered microscope. Based on the indentation geometry and applied load, The Vickers number (HV) is calculated using the following formula:
- $HV = 1.854(F/D^2)$,
F being the load that is applied (kg-force) and D² the measured indentation area (sq. mm). The applied load is one parameter that is employed when a claim arises.

Figure 5.8 Vicker's Hardness Machine

5.5.2 Density measurement

Density of the composite samples were studied using Archimedes principle, at room temperature. Weight of the all the six samples were noted before and after immersing in distilled water. The data was reported as average and standard deviation.

According to Archimedes' principle, the difference in the two weights is the weight of the water displaced by the volume of the solid.

$$SG = \frac{W_a}{W_a - W_w}$$

Where,

W_a =mass of the specimen in the air,

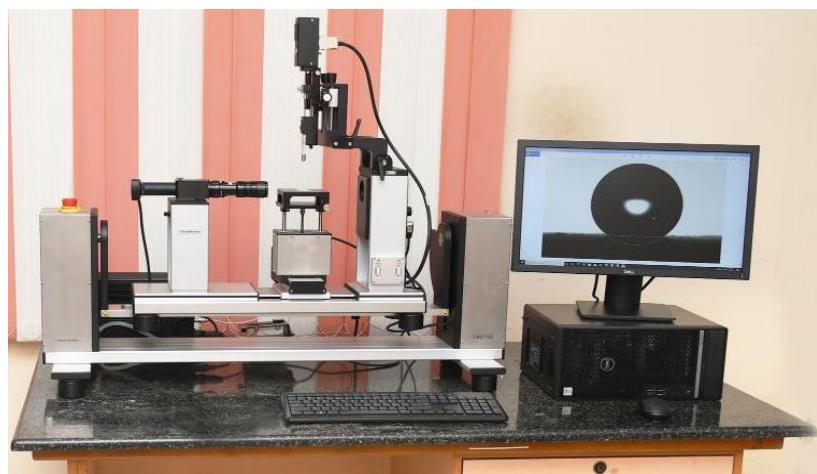
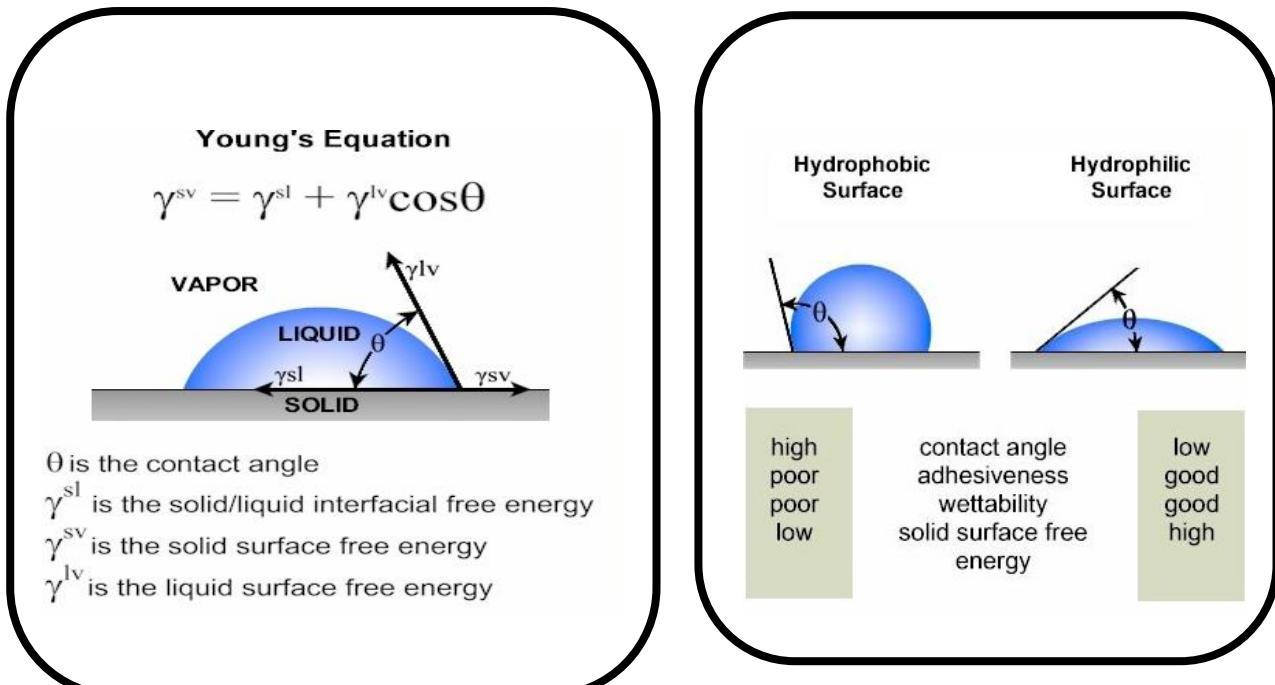
W_w =mass of the specimen in the water

SG= specific gravity of the immersing liquid in distilled water

Density of the specimen = SG/ρ

ρ = density of the water (= 997.6 kg/m³)

Figure 5.9 Density Meter

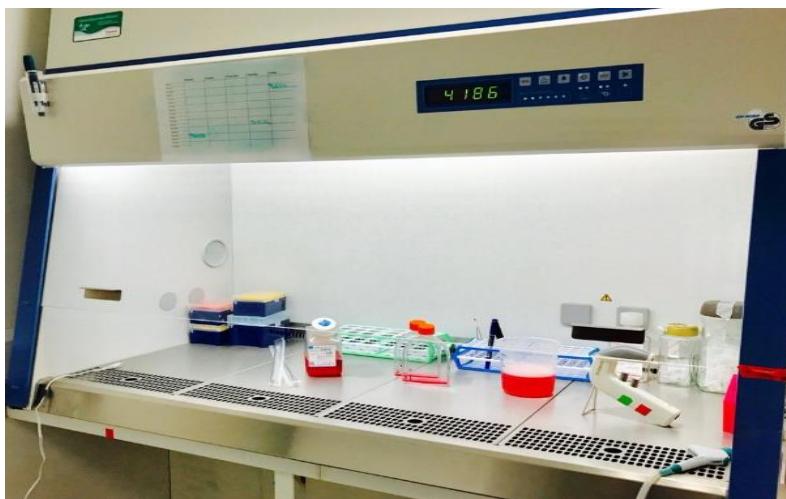


5.5.3 Hydrophobicity

The contact angle is the angle formed between a liquid droplet, a solid surface, and the vapor of the liquid at the point where the three phases meet. It's a measure of the wettability of a solid by a liquid.

Here's a breakdown of the key aspects of contact angle:

- **Formation:** Imagine placing a drop of liquid on a solid surface. The liquid droplet will spread out or form a bead depending on the attractive forces between the liquid molecules (cohesion) and the attractive forces between the liquid and solid molecules (adhesion). The contact angle is the angle formed between the tangent to the liquid droplet at the three-phase point (where liquid, vapor, and solid meet) and the solid surface
- **Wettability:** The contact angle indicates how well a liquid wets a solid surface.
Here's a general guideline:
 - **High contact angle (greater than 90°):** Poor wetting, the liquid tends to bead up on the surface (e.g., water on a waxed surface).
 - **Low contact angle (less than 90°):** Good wetting, the liquid spreads out on the surface (e.g., water on clean glass).
 - **Zero contact angle (perfect wetting):** The liquid completely spreads out on the surface, forming a thin film.
- **Applications:** Contact angle measurements have applications in various fields:
 - **Material Science:** Assessing surface properties of materials like coatings, paints, and biomaterials.
 - **Inkjet Printing:** Optimizing ink adhesion to printing surfaces.
 - **Biomedical Engineering:** Designing implants with desired tissue compatibility.

Contact angle of the composites were measured using the sessile drop technique. To assess the wettability of the surface, DI water (polar) and diiodomethane (non-polar) were poured as droplets from two micrometer syringes. The contact angle was measured by scanning the droplet profile for 30s. The droplet size of the water and diiodomethane was $1.66\mu\text{L}$ and $1\mu\text{L}$. The base-line of each droplet on the surface was manually fixed. At least five drops were taken to determine the average value. Surface free energy was calculated from the average contact angle and standard deviation.


Figure 5.10. Hydrophilicity test

5.6 In vitro culture

Besides, we put CSZ samples in 70% ethanol for 3h and then put them into UV lamp for 20 min. The passage 3 of human osteoblast cells (MC3T3) was cultured into 24-well plates and 10% fetal bovine was added in 1640 RPMI medium (Gibco) for supplying nutrients. serum (Gibco) + 1% Pen-Strep (Sigma-Aldrich) antibiotic. 2 x 10 cells/well were added onto scaffolds and under the same culture condition (37°C and 5% CO₂ were used). With the introduction of television, newspapers and magazines were forced to be published many times a week.

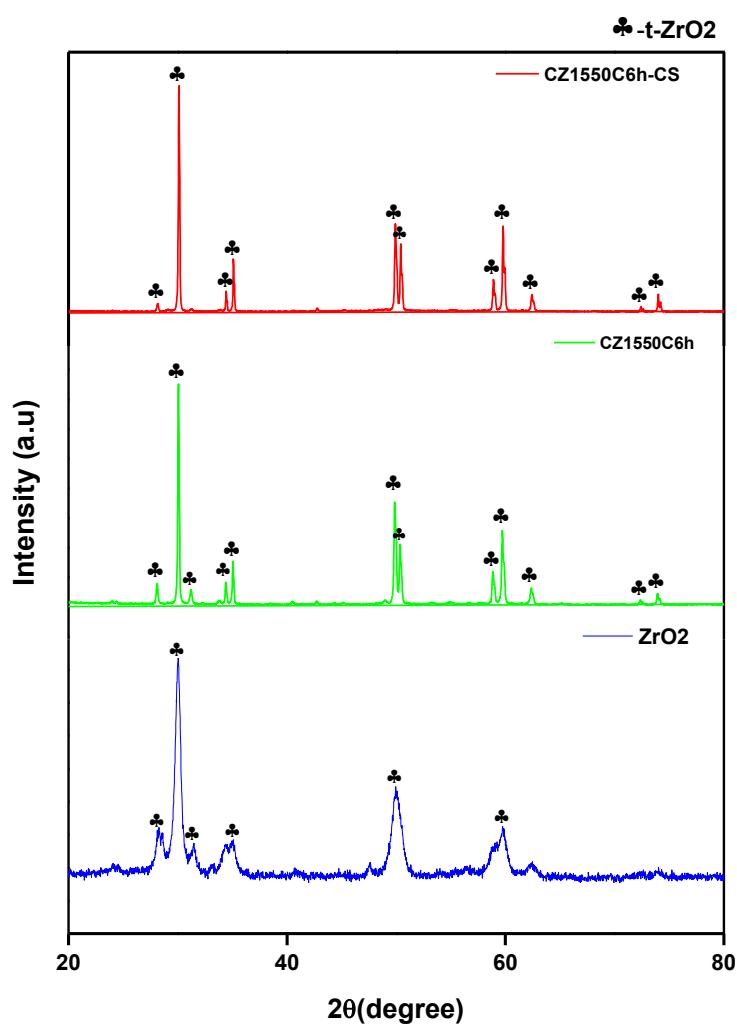
MTT assay

The viability and proliferation of cells was investigated with MTT assay conducted after 2, 5, and 7 days of cells' seeding on composite and control groups without composite (as the control). Washing of the samples were done twice using phosphate buffered saline (PBS) purchased from Sigma-Aldrich, adding the MTT solution (Sigma-Aldrich) and incubating for 4 h at 37°C. Then Dimethyl sulfoxide (DMSO) (Merck) solvent was added and the formed solution was transferred to 96 well plate. Optical density was measured at 575 nm with the aid of microplate reader (Biotech Elx808). Triplicate MTT was performed during each batch of the test.

Figure 5.11 Cellculture Equipment

Figur 5.12 A microliter plate after an MT assay. Increasing amounts of cells resulted in increased purple coloring.

CHAPTER–6


RESULTS AND

DISCUSSIONS

6.1 XRD Analysis-

XRD analysis revealed that one phase existed in all three samples which is responsible for the dominant hardness and strength. The tetragonal zirconia phase took an dominant percentage phase during the region. The tetragonal phase presence ranged near from 75% to 85% of the total crystalline phases in the both CZ1550C6h & CZ1550C6h-CS. Additionally, a mixture consisting of approximately 70% cubic phase zirconia powder is also present.

The large number of defined narrow peaks prove that the formed phases were completely crystalline without any unreacted compounds. So, as a result, the phase obtained retains the stability, even when high temperature is involved in sintering; It has however, been made possible because of the skills and processes that characterizes those techniques.

Figure 6.1.XRD analysis

Fig.6.1 X-ray diffraction patterns (XRD) of different zirconia ceramics for extreme sintering temperatures: 1550 °C, and detail of 2 theta between 28–60°, the region with the greatest variation ZrO₂-tetragonal phase.

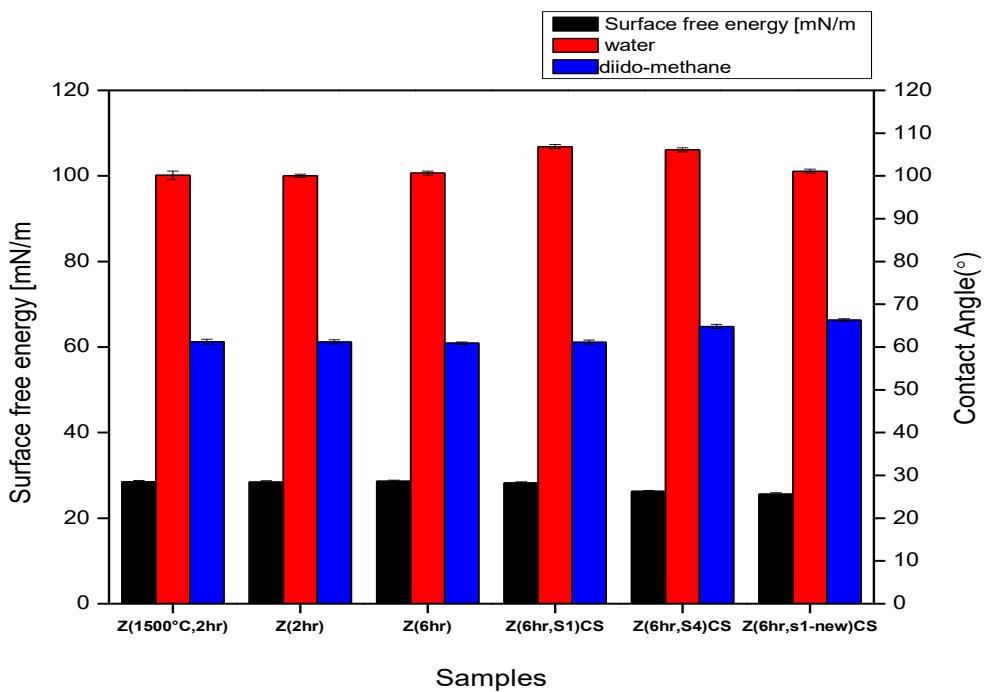

6.2 CONTACT ANGLE-

Table below presents the results of optical contact angle measurement (OCA) conducted on all CSZ Samples. The contact angle of water was the greatest among all liquids used, with a value of 106.9° for the deionized water. This indicates that all prepared materials exhibit polar hydrophobic character, repelling polar liquids. Diiodomethane, the second non-polar liquid used, showed below. In three of six cases, the lowest contact angle was observed for diiodomethane, of ZrO₂ (1550°C,6hr) sample exhibiting the lowest contact angle of just 60.9°. This Figure illustrates the difference between good and poor wetting.

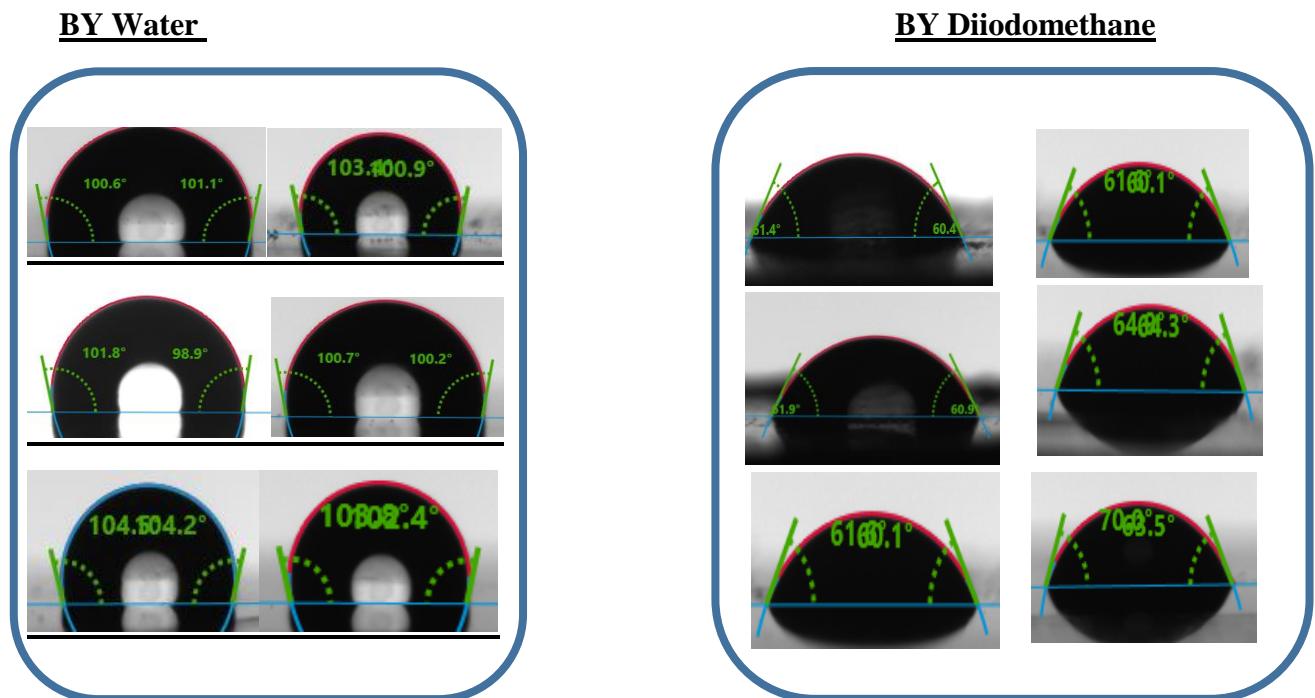
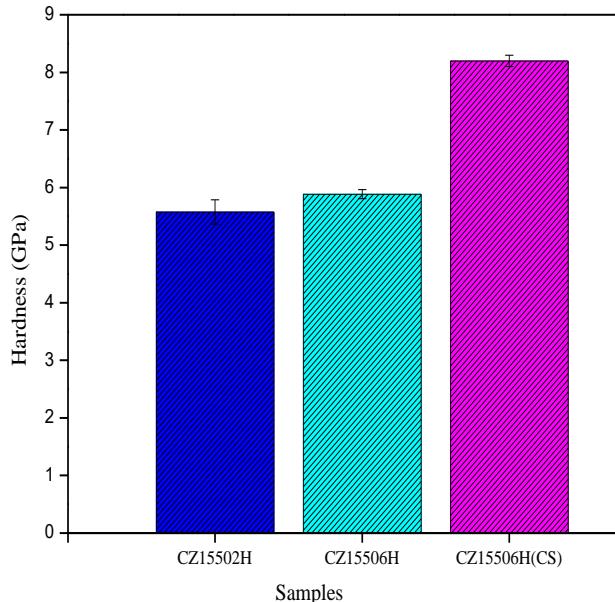

The data unambiguously demonstrate that ZrO₂ (1550°C,6hr) has the highest surface energy among others, which results in good surface wettability.

Table- 6.1 Contact angle of CSZ

SAMPLES	Liquid	Contact Angle(°)	Surface free energy [mN/m]
ZrO ₂ (1500°C,2hr)	Water	100.1 ±1	28.52 ±0.27
	Diido-Methane	61.2 ±0.6	
ZrO ₂ (1550°C,2hr))	Water	100 ±0.4	28.43 ±0.32
	Diido-Methane	61.2 ±0.5	
ZrO ₂ (1550°C,6hr)	Water	100.6 ±0.5	28.61 ±0.26
	Diido-Methane	60.9 ±0.3	
ZrO ₂ (1550°C,6hr,S1)	Water	106.9 ±0.5	28.26 ±0.23
	Diido-Methane	61.1 ±0.5	
ZrO ₂ (1550°C,6hr,S4)	Water	106.1 ±0.5	26.25 ±0.24
	Diido-Methane	64.8 ±0.5	
ZrO ₂ (1550°C,6hr,S1N)	Water	100.1 ±0.5	25.63 ±0.29
	Diido-Methane	66.3 ±0.3	

Figure 6.2 Contact angle of CSZ by DI water and Diiodomethane solution


6.3 Mechanical properties test

The robustness of materials is related to two factors when the material is made of ceramic. Another is intrinsic property of the phases, and the arrangement in a material of structures. Throughout the multiphase substance, microstructure of the substances matter, i.e. the

matrices and the variants distribution are the crucial factors in determining the material strength. The test methodologies also fill the gap of being the crucial factors on the strength values.

6.3.1 Hardness Test (Micro hardness)

Fig shows the the Vicker Hardness of the 10 mol% Ce-TZ samples sintered in air atmosphere. The hardness test was performed at 1kgf load. The hardness of ceria TZ increases with increasing the time at sintering temperature 1550°C.but decreases beyond that temperature.

Figure 6.3. Vickers hardness measurement

It is evident from the results that hardness increases in Cold Sintered sample than solid sintered sample and the result value is 8.199 Gpa

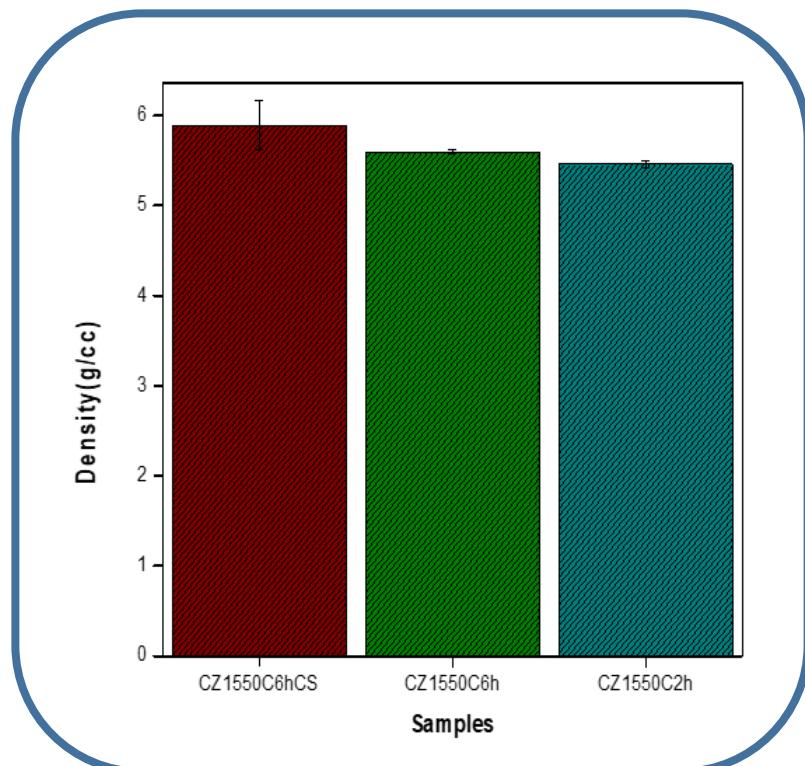

SAMPLE	Micro-Hardness(Gpa) AVG \pm SD
CZ15502H	5.576 \pm 0.21
CZ15506H	5.886 \pm 0.08
CZ15506H(CS)	8.199 \pm 0.1

Table-6.2 Micro-hardness value of CSZ samples

6.3.2 Densification Study

The density measurement of the Samples was evaluated based on Archimedes principle .The cold sintered samples showed better density than solid sintered samples

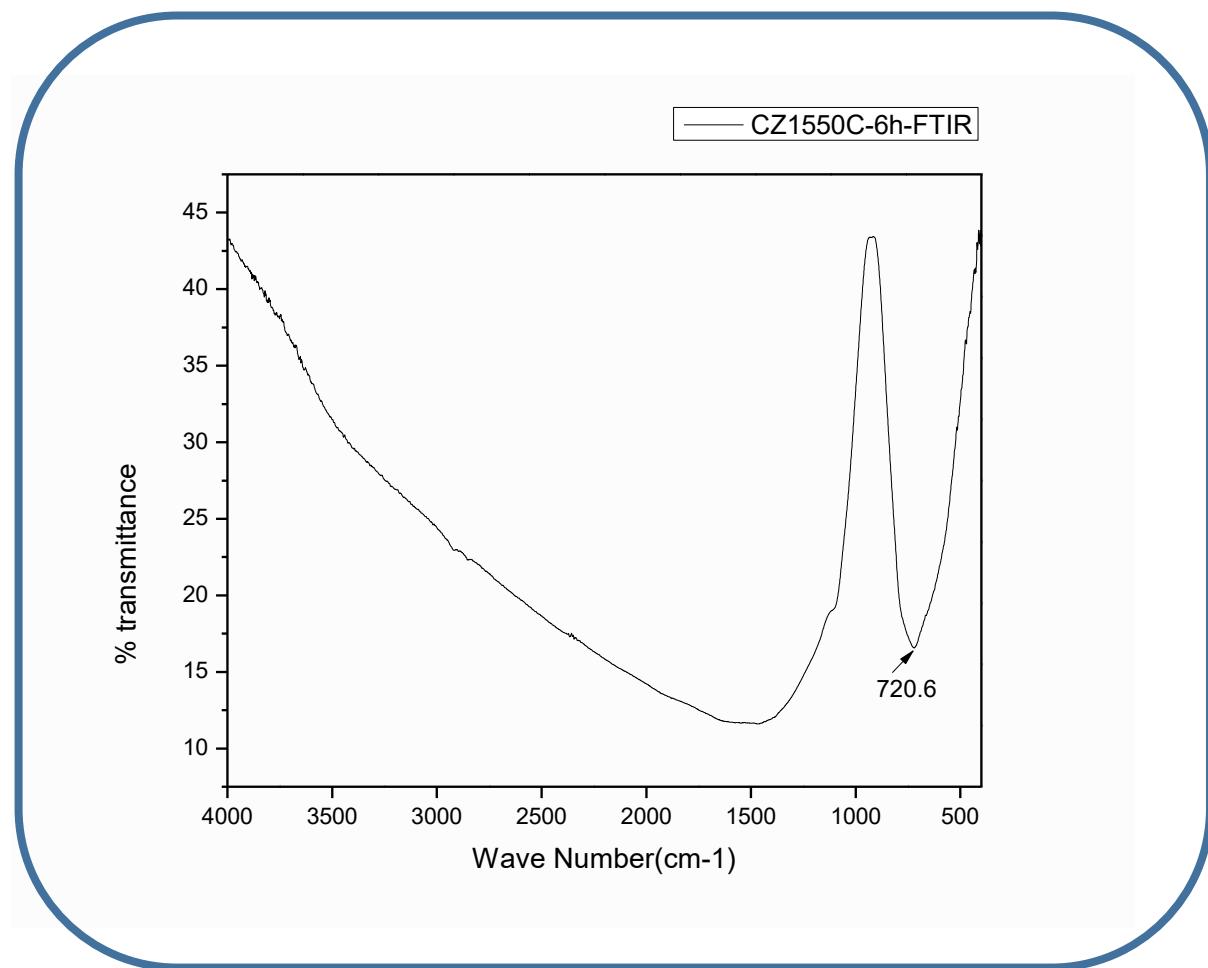

For sintering in air, the density increase in 10 mol% ceria stabilized zirconia with increasing the time at the temperature of 1550°C, beyond the temperature. The density decreases gradually. This is due to increases in micro crack present in the sample.

Figure 6.4. Density measurement of CSZ

6.4 FTIR ANALYSIS

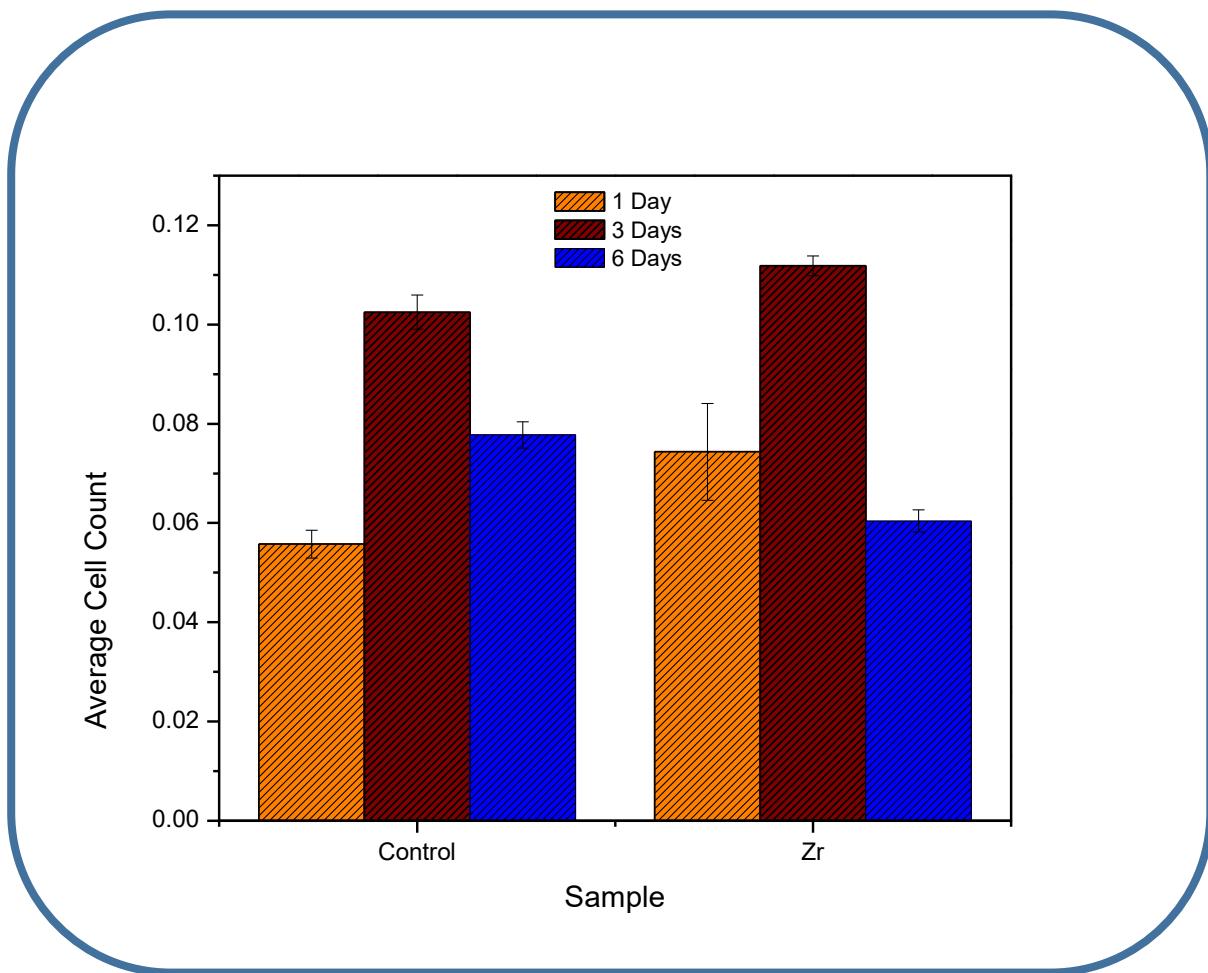

An FT-IR spectrum of the zirconia nanoparticle samples was created in the range 400–4000 cm^{−1} (Fig. 5) to determine the particle's molecular composition of it. Fig 1, contains the FT-IR spectrum which shows absorption peaking at 720 cm^{−1} with normative maximum in the fingerprint region because of Zr–O vibration confirming the structural formation of ZrO₂. (Chen, Yin, Wang, Liu, & Wang, [2005](#); Escribano et al., [2003](#); Gengelbach & Spears, [1998](#)).

Figure 6.5. FTIR Analysis

6.5 Cell Culture

It depicts the outcomes of MTT assay on the CSZ sample attached by osteoblast's hG-292. Osteoblasts are attached to both the samples in 2, 5 and 7 days. Along the days, the cells survival on the surface of the blood samples was considerably ameliorated ($P < 0.05$) that infers the growth of cells efficient compared to pure cells. The integrity of the CSZ was also established with no toxic amounts. The dental ceramic had a definitely non-toxic sign. This data display indicates that cells in the test culture proliferate faster than in control culture in 1st & 3rd day.

Figure 6.6. Comparison of MC3T3 osteoblast cells proliferation on the control sample, CSZ samples as determined by an MTT assay

CHAPTER -7

CONCLUSION & FUTURE SCOPES

Conclusion

In conclusion, the study on the sintering behavior of ceria stabilized zirconia for dental applications revealed critical insights into the material's properties and processing. Through thorough analysis and experimentation, the key factors influencing sintering, such as temperature, time, and dopant concentration, were identified. These findings offer valuable guidance for optimizing the fabrication process of ceria stabilized zirconia dental materials, enhancing their mechanical strength, biocompatibility, and overall performance in clinical settings.

The results demonstrated that sintering conditions significantly impacted the densification, grain size, and phase composition of Ce-SZ. Higher sintering temperatures and longer holding times generally led to increased density and grain growth. However, these factors could also negatively affect translucency, a crucial aesthetic property for dental restorations.

The study identified optimal sintering parameters that achieved a balance between densification, mechanical strength, and translucency. These parameters can be used to tailor Ce-SZ properties for specific dental applications, such as crowns, bridges, or implants.

Further research could explore the co-doping of ceria with other oxides to achieve enhanced mechanical properties while maintaining good translucency. Additionally, investigating the biocompatibility and long-term stability of Ce-SZ in the oral environment is valuable for ensuring its suitability for dental use.

Further research in this area holds promise for advancing the development of more reliable and durable dental restorations, contributing to improved patient outcomes and long-term oral health.

Future scopes:

Here are some expanded future scopes you can explore to extend your thesis on "Study of the Sintering Behaviour of Ceria Stabilized Zirconia for Dental Applications":

1. Delving Deeper into Microstructure and Properties:

Multiscale Analysis: Utilize advanced characterization techniques like electron microscopy with transmission electron microscopy (TEM) to investigate the microstructure of ceria-stabilized zirconia at various length scales. This can reveal details like grain boundaries, secondary phases, and defect populations, offering a deeper understanding of the relationship between microstructure and properties.

Phase Stability and Degradation: Conduct long-term studies to assess the phase stability of ceria-stabilized zirconia under simulated physiological conditions. Investigate the potential for transformation toughening degradation (low-temperature degradation) and its impact on mechanical properties. This knowledge is crucial for ensuring the material's long-term reliability in the oral cavity.

Functional Doping and Gradients: Explore the concept of co-doping ceria-stabilized zirconia with other elements like gadolinium or ytterbium. This could introduce additional functionalities like radiolucency (important for X-ray imaging) or enhanced aesthetics. Additionally, investigate the creation of functionally graded structures with varying ceria content throughout the material. This could be beneficial for dental implants, where a stronger base transitions to a more biocompatible top layer.

2. Expanding In Vitro and In Vivo Studies:

Biocompatibility Nuances: Conduct in-vitro studies to evaluate not only general biocompatibility but also specific aspects like osteoblast adhesion, proliferation, and differentiation. This can provide insights into the material's potential for promoting bone growth and osseointegration, particularly relevant for dental implants.

Animal Model Specificity: Depending on the intended application (crowns, bridges, implants), explore the use of animal models that mimic the physiological stresses and environments encountered in those specific scenarios. For instance, using sheep for dental implant studies can provide valuable data on long-term osseointegration and wear resistance.

3. Clinical Applications and Broader Impact:

Clinical Trials and Standardization: Partner with dental clinics or research institutions to conduct clinical trials evaluating the performance of ceria-stabilized zirconia restorations in real-world settings. This data can be crucial for establishing clinical efficacy and paving the way for wider adoption of the material. Additionally, contribute to the development of standardized protocols for processing and sintering ceria-stabilized zirconia to ensure consistent material properties and clinical outcomes.

Beyond Dentistry: Explore the potential for applying ceria-stabilized zirconia, with its biocompatible and potentially antibacterial properties, in other biomedical applications. This could include bone substitutes, joint replacements, or drug delivery devices.

References:

- [1]. Stevens R. Introduction to Zirconia, Elektron Publication, 2nd Edition. page 15-38
- [2]. N. S. Jacobson, "Thermodynamic Properties of Some Metal Oxide-Zirconia Systems", NASA Technical Memorandum 102351
- [3]. Sim, S.M.; and Stubican, V.S.: Phase Relations and Ordering in the System ZrO₂- MgO. J. Am. Ceram. Soc., vol. 70, no. 7, July 1987, pp. 521-526.
- [4]. Stubican, V.S.; and Hellman, J.R.: Phase Equilibria in Some Zirconia Systems. Science and Technology of Zirconia, (Advances in Ceramics, vol. 3), A.H. Heuer and L.W. Hobbs, eds., American Ceramic Society, Columbus, OH, 1981, pp. 25- 36.
- [5]. Stubican, V.S.; Hink, R.C.; and Ray, S.P.: Phase Equilibria and Ordering in the System ZrO₂-Y₂O₃. J. Am. Ceram. Soc., vol. 61, no. 1-2, Jan.-Feb. 1978, pp. 17- 21.
- [6]. Marder J. M., Mitchell T.E. and Heuer A.H., Precipitation from cubic ZrO₂ solid solution". Acta Metall, 31,(3) 387,395,1983 [7]. Muroi, T.; Echigoya, J.I.; and Suto, Phase Diagram of ZrO₂-CeO₂ Ceramics. Trans. Jpn. Inst. Met., vol. 29, no. 8, Aug. 1988, pp. 634-641.
- [8]. S. K. Tadokoro and E. N. S Muccillo, "Physical characteristics and sintering behavior of ultra fine zirconia-ceria powder", J. Euro. Ceram. Soc., 22 (2002) 1723.
- [9]. J. Vleugels, C. Zhao and O. V. D. Biest, "Toughness enhancement of Ce-TZP by annealing in argon", Script. Mater., 50 (2004) 679.
- [10]. S. C. Sharma, N. M. Gokhale, R. Dayal and R. Lal, Bull. Mater. Sci., 25 (2002) 15.
- [11]. M. Matsuzawa, M. Abe, S. Horibe and J. Sakai, "The effect of reduction on the mechanical properties doped tetragonal zirconia ceramics of CeO₂", Acta Mater., 52 (2004) 1675.
- [12]. A. Tiefenbach, S. Wagner, R. Oberacker and B. Hoffmann, "Measurement of the t-m and m-t transformations in Ce-TZP by dilatometry and impedance spectroscopy", J. Eur. Ceram. Soc., 22 (2002) 337.
- [13]. <https://www.wjgnet.com/>.
- [14]. "Materials for Medical Application", Walter de Gruyter GmbH, 2020
- [15]. "Ceramics Science and Technology", Wiley, 2013
- [16]. T. Sato , K. Dosaka, M. Ishitsuka , E. M. Haga and A. Okuwaki, "Sintering behaviour of ceria-doped tetragonal zirconia powders crystallized and dried using supercritical alcohols", J. Alloys and Comp., 193 (1993) 274. [17] Schwartz, "Z", Encyclopedia and Handbook of Materials Parts and Finishes, 2002..
- [18]. G. A. Gogotsi, V. P. Zavadaa and M. V. Swain, "Mechanical Property Characterization of a 9 mol% Ce-TZP Ceramic Material - I. Flexural Response", J. Eur. Ceram. Soc., 15 (1995) 1185.
- [19]. S. Gutzov and M. Lerch, "Nitrogen incorporation into pure and doped zirconia" Ceram. Inter. 33 (2007) 147.

[20]. H. M. Ondik, H. F. McMurdie, editors. “Phase diagrams for zirconium and zirconia systems”. Westerville, OH: American Ceramic Society; 1998. P.264. [21]. H. K. Schmid, J. Am. Ceram. Soc., 74 (1991) 387.

[22]. S. Lathabai, “The Effect of Grain Size on the Slurry Erosive Wear of Ce-Tzp Ceramics”, Scripta Mater. 43 (2000) 465.

[23]. Effect of sintering temperature on microstructure and selected properties of spark plasma sintered Al-SiC composites Leszczyńska-Madej, Beata Garbiec, Dariusz Madej, Marcin.

[24]. Ceria-Stabilized Tetragonal Zirconia Polycrystal (Ce-TZP) as Low-Temperature Degradation (LTD) Resistant Dental Biomaterial Saad, Abdullah, Sikder, Prabaha Bhaduri, Sarit 2023/01/01.

[25]. G. Zhou, P. R. Shah, T. K. P. Fornasiero, R. J. Gorte, “Oxidation entropies and enthalpies of ceria–zirconia solid solutions” Catalysis Today xxx (2007) xxx–xxx 54

[26]. C. Zhao, J. Vleugels, B. Basu and O. V. D. Biest, “High toughness Ce-TZP by sintering in an inert atmosphere”, Scripta Mater., 43 (2000) 1015.

[27]. B. D. Cullity, Elements of X-Ray Diffraction, Second Edition, 1978, p- 351.

[28]. Payal Sharma, Chetan Singh, Kanchan Singh, Anirudh ,Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications VL - 70, 10.1007/s11837-018-2928-7.

[29]. W. E. Lee and W. M. Rainforth, “Ceramic Microstructures: Property control by processing”, 1st edition, p-34, Chapman and Hall, 1994.

[30]. H. E Attaoui, M.Saadaoui, J. Chevalier and G.Fantozzi, “Static and cyclic crack propagation in Ce-TZP ceramics with different amounts of transformation toughening”, J. Euro. Ceram. Soc., 27 (2007) 483.

[31]. G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements”, J. Am. Ceram. Soc., 64 (1981) 533.

[32]. M. Matsui, T. Takashia and I. Oda, “Effects of starting materials and calcining temperature on sintering of spinel ceramics. In Advances in Ceramics”, ed. W. D. Kingery, The Am. Ceram. Soc., Columbus, OH, 10, (1984) 562.

[33].. Cheng, Y., Bao, F., Xiao, W., Li, J., Zhou, Y., & Cai, H. (2017). Sintering behavior of ceria-stabilized zirconia with aliovalent dopants for dental applications. Journal of the Mechanical Behavior of Biomedical Materials, 65, 247-256.

[34]. <https://www.mdpi.com>

[35]. Zhang, Y., & Sailer, I. (2019). Ceria-stabilized zirconia for dental applications: A narrative review. The Journal of Prosthetic Dentistry, 121(2), 241-247.

[36]. Wang, H., & Sun, H. (2015). Effects of sintering parameters on the mechanical properties of ceria-stabilized zirconia for dental restorations. Journal of Prosthodontic

Research, 59(3), 163-169.

[37]. Alghazali, N., & Burnside, G. (2011). Ceramic materials for dental restorations: Past to present. *Dental Nursing*, 7(7), 415-420.

[38] S. Deville, J. Chevalier, et al., Low-temperature ageing of zirconia toughened alumina ceramics and its implication in biomedical implants,

J. Eur. Ceram. Soc. 23 (2003) 2975–2982.

[39] P.P. Lutton, B. Ben-Nissan, The status of biomaterials for orthopedic and dental applications: part I—materials, *Mater. Tech.* 12 (1997) 119–126.

[40] Iqbal, A., Moskal, G. Recent Development in Advance Ceramic Materials and Understanding the Mechanisms of Thermal Barrier Coatings Degradation. *Arch Computat Methods Eng* **30**, 4855–4896 (2023).

[41] J.-H. Park, S.-W. Moon, Stability and sinterability of tetragonal zirconia polycrystals costabilized by CeO₂ and various oxides, *J. Mater. Sci. Lett.* 11 (1992) 1046–1048.

[42] J. Chevalier, What future for zirconia as a biomaterial? *Biomaterials* 27 (2006) 535–543.

[43] K. Haraguchi, N. Sugano, T. Nishii, H. Miki, K. Oka, H. Yoshikawa, Phase transformation of a zirconia ceramic head after total hip arthroplasty, *J. Bone Joint Surg. [Br.]* 83-B (2001) 996–1000.

[44] P. Hernigou, T. Bahrami, Zirconia and alumina ceramics in comparison with stainless-steel heads: polyethylene wear after a minimum ten year follow-up, *J. Bone Joint Surg. [Br.]* 85-B (2003) 504–509.

[45] M. Yoshimura, T. Noma, K. Kawabata, S. So⁻miya, Role of H₂O on the degradation process of Y-TZP, *J. Mater. Sci. Lett.* 6 (1987) 465–467.

[46] J. Chevalier, B. Cales, J.M. Drouin, Low temperature aging of Y-TZP ceramics, *J. Am. Ceram. Soc.* 82 (1999) 2150–2154.

[47] R. Matsumoto, Ageing behavior of Ce-stabilized tetragonal zirconia polycrystals, *J. Am. Ceram. Soc.* 71 (1978) 128–129.

[48] K. Tsukuma, M. Shimada, Strength, fracture toughness and Vickers hardness of CeO₂-stabilized tetragonal ZrO₂ polycrystals (Ce-TZP), *J.*

Mater. Sci. 20 (1985) 1178–1184.

[49] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, Singapore, 1997.

[50] J. Wang, R. Stevens, Review zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci. 24 (1989) 3421–3440.

[51] S.C. Sharma, N.M. Gokhle, R. Dayal, R. Lal, Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique, Bull. Mater. Sci. 25 (2002) 15–20.

[52] H.O. Manolea, M.M. Crăițoiu, L. Mogoantă, I.T. Dascălu, A.I. Moraru, D. Agop Forna, R. Mercuț, An evaluation of a collagen-based material osseointegration, Rom. J. Morphol. Embryol. 58 (2017) 161–165.

[53] V. Lughia, V. Sergo, Low temperature degradation – aging – of zirconia: a critical review of the relevant aspects in dentistry, Dent. Mater. 26 (2010) 807–820.

[54] E.F. Lopez, V.S. Escribano, M. Panizza, M.M. Carnasciali, G. Busca, Vibrational and electronic spectroscopic properties of zirconia powders, J. Mater. Chem. 11 (2001) 1891–1897.

[55] Y. Zhang, B.R. Lawn, Evaluating dental zirconia, Dent. Mater. 35 (2019) 15–23.

[56] M. Turon-Vinas, M. Anglada, Strength and fracture toughness of zirconia dental ceramics, Dent. Mater. 34 (2018) 365–375.

[57] H. Nishihara, M. Haro Adanez, W. Att, Current status of zirconia implants in dentistry: preclinical tests, J. Prosthod. Res. 63 (2019) 1–14.

[58] R. Koferstein, L. Jager, M. Zenkner, S.G. Ebbinghaus, Nano-sized BaSnO₃ powder via a precursor route: comparative study of sintering behaviour and mechanism of fine and coarse-grained powders, J. Eur. Ceram. Soc. 29 (2009) 2317–2324.

[59] K. Matsui, N. Ohmichi, M. Ohgai, H. Yoshida, Y. Ikuhara, Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal, J. Mater. Res. 21 (2006) 2278–2289.

[60] K. Matsui, H. Horikoshi, N. Ohmichi, M. Ohgai, H. Yoshida, Y. Ikuhara, Cubic-formation and grain-growth mechanisms in tetragonal zirconia polycrystal, J. Am. Ceram. Soc. 86 (2003) 1401–1408.

[61] C. Nandi, D. Jain, V. Grover, K. Krishnan, J. Banerjee, A. Prakash, K.B. Khan, A.K. Tyagi, ZrO₂-NdO_{1.5} system: investigations of phase relation and thermophysical properties, Mater. Design 121 (2017) 101–108.

[62] D. Mukherjee, B.G. Rao, B.M. Reddy, CO and soot oxidation activity of doped ceria: influence of dopants, Appl. Catal. B Environ. 197 (2016) 105–115.

[63] C.-T. Kao, W.-H. Tuan, C.-Y. Liu, S.-C. Chen, Effect of iron oxide coloring agent on the sintering behavior of dental yttria-stabilized zirconia, *Ceram. Int.* 44 (2018) 4689–4693.

[64] M. Degidi, L. Artese, A. Scarano, V. Perrotti, P. Gehrke, A. Piattelli, Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps, *J. Periodontol.* 77 (2006) 73–80.

[65] J. Han, J. Zhao, Z. Shen, Zirconia ceramics in metal-free implant dentistry, *Adv. Appl.Ceram.* 116 (2017) 138–150.

[66] R. Cosgarea, C. Gasparik, D. Dudea, B. Culic, B. Dannewitz, A. Sculean, Peri-implant soft tissue colour around titanium and zirconia abutments: a prospective randomized controlled clinical study, *Clin. Oral Implant. Res.* 26 (2015) 537–544.

[67] A.A. Iliescu, S.A. Zurac, V. Nicolae, M.G. Iliescu, P. Perlea, Associated lesions of periimplant mucosa in immediate versus delayed loading of dental implants, *Rom, J.Morphol. Embryol.* 58 (2017) 487–492.

[68] P. Christel, A. Meunier, M. Heller, J.P. Torre, C.N. Peille, Mechanical properties and shortterm in vivo evaluation of yttria-oxide-partially-stabilized zirconia, *J. Biomed. Mater.Res.* 2 (1989) 45–61.

[69] Y. Ichikawa, Y. Akagawa, H. Nikai, H. Tsuru, Tissue compatibility and stability of a new zirconia ceramic in vivo, *J. Prosthet. Dent* 68 (1992) 322–326.

[70] L. Ruiz, M.J. Readey, Effect of heat treatment on grain size, phase assemblage, and mechanical properties of 3 mol % Y-TZP, *J. Am. Ceram. Soc.* 79 (1996) 2331–2340.

[71] J. Eichler, J. Rodel, U. Eisele, M. Hoffman, Effect of grain size on mechanical properties of submicrometer 3Y-TZP fracture strength and hydrothermal degradation, *J. Am. Ceram.*