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                                                                                                               Abstract 

Infectious diseases have posed the greatest threat to survival and wellbeing during human 

evolution. Natural selection is thus expected to exert a major influence on host defence genes, 

specifically on the genes involve in innate immunity, whose products intervene direct 

interactions between the host and the pathogen. Toll-like receptors (TLRs) are well-known for 

their roles in innate immunity, where they recognise pathogens and initiate a signalling 

response. These receptors can recognize a different types of pathogen-associated molecular 

patterns (PAMPs) as their ligands and are implicated in immunological response, signalling 

process development, and cell adhesion. Mammalian TLRs recognise molecular signatures 

linked with infections and trigger an innate immune response. This study emphasised the 

significance of evolutionary selection on the diverse mutation of TLR genes from mammals.  

In my study I have noted difference in amino acid usage between primate and non-primate 

mammalian TLR genes. The GC content of TLR genes and the hydrophobicity of encoded 

proteins are the important factors in determining the distinct pattern of amino acid usage. The 

GC-content was found to be consistent evolutionary force throughout the course of evolution 

of TLR genes between primate and non-primate mammalian species. I have observed TLR 

genes are generally under purifying selection, however several positively selected sites have 

been found in the ligand binding domain. My study also presented that the amino acid usage 

pattern of TLRs are influenced by their subcellular location. Different branching patterns of 

primate and non-primate mammalian TLRs have also been demonstrated through phylogenetic 

tree. These findings clearly indicate that natural selection influenced the evolution of primate 

and non-primate mammalian TLR genes. 
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Following these findings, an amino acid usage analysis of all mammalian TLRs was done to 

investigate the evolutionary diversity of mammalian TLRs and differences in immunological 

response. A detailed examination of mammalian TLRs found that TLR9 evolved in a 

completely different way compared to other mammalian TLRs. Different sequence-based 

features, including amino acid usage, hydrophobicity, GC content, and evolutionary 

parameters, have been identified to impact the divergence of TLR9 from other TLRs. 

Reconstructing ancestral sequences is an important component of molecular evolution of TLR 

because it allows to follow changes across genes. Ancestral sequence reconstruction study also 

demonstrated that TLR genes evolved gradually across numerous ancestral lineages, resulting 

in the distinct TLR9 pattern. It exhibits evolutionary divergence, with the gradual accumulation 

of mutations resulting in the specific pattern of TLR9.  

The evolutionary genetics approach to determine the magnitude of natural selection operating 

on TLR genes and the progressive changes that lead to divergence will help us better 

understand the mechanism of host defence mediated by TLRs. 
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                                                                                                      Introduction 

The immune system comprises of two components such as innate immunity and acquired 

immunity. Both of these components are responsible for host defence against invading 

microbial pathogens by triggering immune responses to remove the invading pathogen that is 

identified as non-self. So far both components have been characterised individually, and the 

majority of research in the immunology area has focused on acquired immunity. In acquired 

immunity, B and T lymphocytes recognise non-self by using antigen receptors such as 

immunoglobulin and T cell receptors. The processes by which these antigen receptors 

recognise foreign antigens have been extensively studied. The major mechanisms are diversity, 

clonality, and memory being well understood. Though, these receptors are predominantly 

found in vertebrates, and in less evolved organisms the recognition process of non-self is not 

well identified. 

Since their emergence, multicellular hosts have developed defence mechanisms to survive in 

optimal symbiosis with parasitizing microbes. On the other hand, microbes have evolved 

constantly to escape the protective host barriers. The host has evolved a highly developed 

immune system, known as the innate immune system, that is encoded with germlines as a result 

of this continuous evolutionary arms race. The innate immune system uses a vast array of 

pattern recognition receptors (PRR) to identify and respond to threats in the environment as 

well as to distinguish between beneficial and harmful bacteria. Toll-like receptors (TLRs), 

RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors are some of the 

germline-encoded receptors that regulate pathogen detection and host-microbiome balance.  

These PRRs have developed the ability to identify highly conserved microbe associated 

molecular patterns (MAMPs) as a result of host-microbe coevolution. Nucleic acid or cell-wall 

structures are necessary for microbial survival and their alteration by microbes are challenging. 

It is possible to identify a variety of microorganisms with a minimal number of receptors by 

detecting the MAMPs. The innate immune system depends on host cell receptors to detect both 

advantageous and pathogenic microbes by recognising definite MAMPs and pathogen-
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associated molecular patterns (PAMPs) including nucleic acids, proteins, lipids, and 

lipoproteins. Among these, TLRs are intensively investigated as main mediators of innate 

immunity in species ranging from insects to humans (Brennan & Gilmore, 2018). 

One of the well explored family of PRRs, TLRs are the type I membrane-spanning 

glycoproteins usually contain three domains: extracellular domain (ECD), transmembrane 

domain and intracellular signalling domain. Though TLR genes are conserved across the 

animal kingdom (Leulier & Lemaitre, 2008), their structural and functional evolution have 

occured in response to varying environmental conditions and habitats. Presence of Toll protein 

in fruit fly Drosophila melanogaster led to the discovery of TLRs. Toll was found to be a 

regulator in the developing embryo (Anderson et al. 1985). Spätzle, the natural ligand of the 

Toll protein, was later discovered to be responsible for activating the protein after a fungal 

infection. In D. melanogaster (Lemaitre et al. 1996) such activation triggered the synthesis of 

antimicrobial peptides, deliberating immunity to fungi. Exploration of proteins similar to Toll 

in other species lead to in the detection of murine Toll-like receptors (TLR4). It has been 

established that TLR4 is essential for the natural identification of bacterial lipopolysaccharide 

(LPS). Numerous TLRs and their corresponding microbial ligands have been recognized and 

characterised in a widespread range of species since TLR4 was known as the LPS receptor 

(Poltorak et al. 1998). Studies on TLR evolution across many phyla are now possible because 

of the remarkable developments in whole genome sequencing. Bioinformatics analysis of 

whole genome data showed fungi and prokaryotes lack TLR orthologs. Receptors with low 

sequence resemblance to TLRs are found in the plant kingdom; these receptors are known as 

Receptor-like kinases or Nucleotide-binding site LRRs. They contain LRR motifs attached to 

different signalling domains. Comparing these plant receptors to animal TLRs, functional 

studies reveal that they respond to distinct microbial patterns and use fundamentally different 

signalling networks. This suggests that the plant receptors that contain LRRs are not ancient 

orthologs of TLRs, but rather belong to distinct classes of plant-specific receptors that have 

undergone convergent evolution and developed a function similar to that of TLRs (Ausubel, 
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2005; Boller & Felix 2009). TLRs are consequently originated from the animal kingdom 

(Metazoa). 

There have been 16 TLRs found in the jawless vertebrate (lamprey), 13 TLRs in mammals, 10 

TLRs in birds, 21 TLRs in amphibians and 20 TLRs in teleost fish. It is predicted that reptiles 

have a minimum of 9 TLR genes (Rauta et al. 2014, Alcaide & Edwards, 2011, Babik et al. 

2015, Kasamatsu et al. 2010). Vertebrate TLRs have been categorised into six major families 

based on their sequence homology (Roach et al. 2005). In general, these TLRs have managed 

to retain their capability to identify unique ligands. The large family of TLR1 contain TLR1, 

TLR2, TLR6, TLR10, TLR14, TLR15, TLR16, TLR18 and TLR25 responsible for the 

recognition of lipoproteins (such as di- and triacylated lipopeptides). TLR15 is the members of 

this family is activated by proteolytic cleavage of pathogen and TLR10 negatively regulate of 

TLR2 (Zoete et al. 2011, Oosting et al. 2014). Double-stranded RNA, LPS and bacterial agents 

are recognised by the TLR3, TLR15 activated by microbial proteolytic cleavage TLR4 and 

TLR5 families. TLR7 family includes TLR7, TLR8, TLR9 are able to identify nucleic acid 

motifs (Quiniou et al. 2013, Kucera et al. 2010). The members of TLR11, TLR12, TLR13, 

TLR19, TLR20, TLR21, TLR22, TLR23, and TLR26 comprise the sixth major family. The 

functionally characterised receptors in this family detect either nucleic acid patterns or protein. 

Certain TLR genes, particularly those belonging to the extensive TLR1 and TLR11 families, 

seem to have disappeared in different lineages, possibly as a result of functional redundancy. 

Nevertheless, practically every species of vertebrate possesses minimum one gene each from 

the main families of TLR, highlighting significance of innate immune recognition of a wide 

variety of microbial ligands (Raetz M et al. 2013, Keestra et al. 2010).  

Lack of TLR4 in certain teleost fish like Takifugu rubripes cause a prominent deviation from 

the conservation of TLRs in vertebrate TLR groups. The ability of TLR4 to recognise LPS, 

together with its coreceptors MD-2 and CD14, is crucial for the response of the mammalian 

immune system to bacterial infections. Certain fish, such as common carp (Cyprinus carpio) 

and zebrafish (Danio rerio), do have several copies of TLR4, but they do not have TLR4 

coreceptor genes (Kanwal et al. 2014). For this reason, TLR4 does not facilitate LPS detection 
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in fish. Rather, it seems that fish TLR4 negatively regulate of the transcription factor NF-kB, 

which promotes inflammation (Sepulcre et al. 2009). The reasons behind this divergent 

evolution is not clear and might be anticipated by the analysis of TLR4 in intermediary 

amphibian and reptile species. 

TLR15 in birds and reptiles provides another illustration of dynamic TLR evolution in 

vertebrates. The TIR domain of TLR15 is related to members of the TLR1 family and it is 

exclusively found in the genomes of birds and reptiles (Boyd et al. 2012). However, substantial 

sequence variation of LRR motifs of TLR15 has resulted in the unusual capability of this 

receptor to be triggered by bacterial proteases unlike TLR1 family members that recognise 

lipopeptides. The reason for the development of this characteristic among diapsid animals and 

whether it offers any major immunological benefit to these animals is not clear (Zoete et al. 

2011). 

During evolution microbes and their hosts compete together in order to prevent their extinction. 

Microbes develop ways to overcome host defences to survive and proliferate, while hosts must 

retaliate these strategies in order to avoid being overexploited. For all TLRs this fact is correct. 

One of the key functions of TLRs is the detection of microorganisms and limiting their numbers 

by stimulating the immune system. In contrast, microbes also have advanced different 

strategies to get around the TLR system.  

The diversity of microorganisms and the evasion strategies of TLR exert selection pressure on 

the evolution of the TLR system. Using phylogeny-based analysis of site-specific codon 

substitutions, one can ascertain the "direction" of this selective pressure. Comparison of TLR 

sequence among species identified sites subjected to positive selection when the ratio of 

nonsynonymous over synonymous codon substitutions is more than 1. This suggests that a site 

has maintained its polymorphism and could offer a fitness benefit as a result of adaptive 

evolution. A codon is considered to have experienced purifying selection if the ratio of 

nonsynonymous to synonymous codon substitutions is less than 1. This suggests that 

polymorphisms would typically be harmful in such a site, and therefore the site evolves under 
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functional constraints (Yang et al. 2002). Because of their nonredundant roles in signal 

transduction, TLR adaptor proteins, particularly MyD88 and TRIF evolve under functional 

constraints (Nakajima et al. 2008, Fornarino et al. 2011). 

Since the TLR adaptors interact with a variety of proteins, polymorphisms would most likely 

affect their interaction with some of these proteins. Because the TIR domain exhibits a high 

degree of similarity across a wide range of species and can become inactive by substituting 

even a single critical site, maintaining function also controls the evolution of the TIR domain 

(Nakajima et al. 2008, Mikami et al. 2012). Moreover, polymorphisms are present in the ligand-

binding region of the ECD of nucleic acid detecting TLRs (such as TLR3, TLR7, TLR8, and 

TLR9) although they are almost ever detected there, suggesting influence of functional 

restrictions on the ligand binding by these TLRs (Keestra et al. 2008). This restriction is most 

likely caused by the extremely similar structures of host and microbial nucleic acids, which 

poses the risk of triggering autoimmune reactions. Detrimental mutations that would have 

enhanced binding to self-nucleic acids probably been eliminated from the population by 

purifying selection, reducing the likelihood of identifying self-nucleic acids while preserving 

sufficient detection of microbial nucleic acids (Wlasiuk & Nachman, 2010; Vinkler et al. 2014; 

Fornůsková et al. 2013; Webb et al. 2015). 

The ECD of surface expressed TLRs (such as TLR2, TLR4 and TLR5) shows a robust 

diversified evolution propelled by positive selection of beneficial mutations, in contrast to 

nucleic acid-sensing intracellular TLRs. Positively selected sites in TLR genes from a variety 

of species including fish, cattle, pigs, birds, rodents and primates have been identified from the 

genomic data (Werling et al. 2009). The majority of these sites are situated inside the ligand-

binding domain or quite close to it. The need to distinguish between host-specific commensals 

and pathogens, as well as antagonistic coevolution with host-specific pathogens, may have 

contributed to the highly variable nature of TLR ligand-binding domains among hosts. The 

polymorphic nature of ligand-binding domains of TLR among hosts might have been driven 

by antagonistic coevolution through host-specific pathogens and/or the need to distinguish 

among host-specific commensals and pathogens. 
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TLRs are among the widely investigated innate immune receptors. More studies are yet to be 

done about the evolutionary aspect of this receptor family. Substantially broader functional 

studies incorporating ligands from a wide range of microorganisms would greatly benefit in 

our understanding of the evolution of TLRs. Residues with possible importance for TLR 

function can be predicted using phylogeny-based assessments of the evolution of molecular 

TLRs. Functional analyses could reveal the selective factors underlying the purifying or 

diversifying selection of TLRs and offer experimental support for their findings. As a whole, 

these analyses may be crucial in understanding the molecular foundation of antagonistic host-

specific coevolution with microorganisms and the ensuing natural resistance to disease.  
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                                                                                      Review of literature 

Innate immune cells in mammal including dendritic cells and macrophages are activated by the 

microbial components recognised as nonself such as lipopolysaccharide (LPS) from Gram 

negative bacteria. Toll was discovered during the end of the 20th century as a crucial receptor 

for host defence against fungal infection in Drosophila species having only innate immunity 

(Lemaitre et al. 1996). One year later, a homolog of Toll receptor (now known as TLR4) in 

mammal of the was found to trigger the gene expression implicated in inflammatory responses 

(Medzhitov et al. 1997). Furthermore, a point mutation in the TLR4 gene has been discovered 

in a mouse strain that is unresponsive to LPS (Poltorak et al. 1998). These results have made 

innate immunity an interesting research topic, and during recent time, significant progress has 

been made to understand that the innate immune system has a complex strategy that detects 

microbial pathogen invasion via Toll-like receptors (TLRs). Furthermore, innate immunity 

activation is essential for the establishment of acquired immunity for specific antigen. 

Identification of the Toll like Receptor (TLR) family 

Following its identification of TLR4, the first mammalian TLR, numerous proteins with 

structural similarity to TLR4 were discovered and termed Toll-like receptors (Rock et al. 1998). 

Mammalian TLRs form a broad family with 11 members. In humans and mice TLR1-TLR9 

are conserved. Though it has been thought that in humans TLR10 is functional, substitution 

with a dissimilar and non-productive region at the C terminal of the mouse TLR10 gene 

indicated non-functionality of mouse TLR10. Likewise, TLR11 in mouse is functional, but in 

human TLR11 is absent due to presence of a stop codon in gene (Zhang et al. 2004). The 

cytoplasmic part of TLRs is highly similar to the IL-1 receptor family, and is known as a 

Toll/IL-1 receptor (TIR) domain. In spite of their similarities, structural differences have been 

found in extracellular part of both receptors. An immunoglobulin-like domain is found in IL-1 

receptors, while the TLRs have leucine-rich repeats (LRRs) in the extracellular domain. 

Functional role of TLR4 in recognising the microbial component LPS was first characterised 

(Poltorak et al. 1998). Individual TLRs are now known to play key roles in recognising distinct 
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microbial components generated from pathogens such as bacteria, fungus, protozoa, and 

viruses. 

Toll-like Receptors (TLRs) in Invertebrates 

TLR types and numbers across invertebrates differ by species, ranging from one to hundreds. 

Two types of TLRs have been categorized depending on the CF motif numbers (LRRCT, 

containing C terminal end of LRRs with cysteine clusters), protostome type (P-type or 

mccTLR) and vertebrate type (V-type or sccTLR) (Maaser et al. 2004). P-type TLRs include 

just one cluster of cysteine at LRRCT, whereas V-type TLRs contain numerous clusters of 

cysteine at LRRCT and, in certain cases LRRNT at the N terminal end. P-type TLRs have only 

been found in invertebrates, suggesting that they are an old variety of TLR. In contrast, most 

vertebrate and some invertebrate TLRs are V-type (Hawn et al. 2003). It has been proposed 

that, unlike vertebrate V-type TLRs, P-type TLRs do not directly bind PAMPs, as evidenced 

by Drosophila Toll-1, the most well-studied P-type TLR (Anderson et al. 1985). Most TLRs 

have been detected in the invertebrate phyla such as Porifera, Coelenterata, Platyhelminthes, 

Nematoda, Annelida, Echinodermata, Mollusca, and Arthropoda. 

Porifera 

TLRs from porifera have primarily been recorded on Amphimedon queenslandica and 

Suberites domuncula. A. queenslandica has been found to harbour two TIR domain containing 

proteins with N terminal IL-1R-like Ig domains and an LRR domain-containing protein with 

Ig and epidermal growth factor (EGF) like domains (Gauthier et al. 2010; Hentschel et al. 

2012; Srivastava et al. 2010). Similarly, the sponge S. domuncula has been found to harbour a 

TIR only protein (Sd-TLR) with a transmembrane domain; however, no proteins containing an 

LRR domain have been found in this species (Wiens et al. 2007). The presence of NF-κB 

homologs and Myeloid differentiation primary response protein 88 in the TLR to NF-κB route 

in A. queenslandica and S. domuncula suggests that the MyD88-mediated TLR signalling 

pathway already has been observed in poriferans (Gauthier et al. 2010; Gilmore & Wolenski, 

2012; Song et al. 2012). Furthermore, during the early stages of A. queenslandica development, 
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expressions of additional adaptor proteins implicated in the TLR-to-NF-κB pathway are seen, 

indicating that this route is related to development (Gauthier et al. 2010). Sd-TLR has been 

shown to engage in ongoing interactions with microorganisms and may have a role in S. 

domuncula immune modulation (Wiens et al. 2005; Wiens et al. 2007). 

Cnidaria 

Around 10,000 aquatic organisms that comprise the phylum Cnidaria that are morphologically 

primeval outgroup to bilaterians include corals, Hydra, sea anemones, and jellyfish (Putnam et 

al. 2007). No classical TLRs, but a large number of proteins have been found in Hydra species 

connected to the TLR to NF-κB pathway. Furthermore, Hydra has been found to have two 

transmembrane TIR domain-containing proteins and two LRR domain-containing proteins 

(Bosch et al. 2009; Augustin et al. 2010). In HEK293 cells, a chimeric protein called HyLRR-

2, can activate the NF-κB reporter in response to flagellin by combining the human TIR domain 

with LRR protein of Hydra, but not LPS (Putnam et al. 2007). Thus, flagellin could be the 

HyLRR-2 ligand that starts innate immune signalling. The genome of the sea anemone 

Exaiptasia pallida contains two TIR domain-only genes that may encode the same protein 

(Poole & Weis, 2014; Baumgarten et al. 2015). Recent transcriptome study has shown that a 

number of additional cnidarians, such as the corals Acropora digitifera, Acropora millepora, 

and Orbicella faveolata express classical TLR members and elements linked to NF-κB 

activation (Miller et al. 2007; Rauta et al. 2014). 

Platyhelminthes 

The functions of TLRs in platyhelminth has been explored on planarians, turbellarians, and 

rotifers. Since they are non-parasitic flatworms, Planarians are evolutionary important to the 

study of immune responses triggered by injury and the process of metazoan regeneration 

(Riutort et al. 2012; Sánchez, 2003). Many proteins implicated in the TLR to NF-κB pathway 

have been found in the freshwater planarian Schmidtea mediterranea; though, the TLRs of this 

flatworm are TIR and LRR-only proteins rather than canonical TLRs (Peiris & Hoyer, 2014; 

Forsthoefel et al. 2012). Throughout S. mediterranea head regeneration, TLRs, MyD88, 
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TRAF, and IRAK are all upregulated, suggesting that the TLR-initiated signalling pathway is 

probably involved in avoiding infection throughout the regeneration process (Peiris & Hoyer, 

2014). Therefore, further research is required to fully understand the immunological responses 

that TLRs trigger against infections or PAMP activation, as well as the mechanisms underlying 

the phylum Platyhelminthes.  

Nematoda 

The traditional model organism for studying nematodes is Caenorhabditis elegans. It has been 

shown that C. elegans expresses a protein that contains a TIR domain, a canonical P-type TLR 

(TOL-1), and other elements that are similar to those seen in TLR signalling pathways in 

mammals (Forsthoefel et al. 2012; Brandt & Ringstad, 2015; Gissendanner & Kelley, 2013; 

Irazoqui et al. 2010; Liu & Shen, 2012; Mancuso et al. 2012; Pradel et al. 2007; Pujol et al. 

2001). However, it appears that TOL-1 does not start the NF-κB-dependent signalling 

pathways since C. elegans lacks several components of the TLR-to-NF-κB signalling 

pathways, including MyD88, IKK, and NF-κB. The downstream pathways that TOL-1 

activates during early development are still unknown, despite the fact that prior research has 

demonstrated the importance of TOL-1 for C. elegans pathogen identification and early 

development (Gissendanner & Kelley, 2013; Mancuso et al. 2012). 

Annelida 

Davidson et al. provided initial evidence of the presence of TLRs in the genomes of annelids, 

such as the leech Helobdella robusta and the polychete worm Capitella capitata. The high 

number of TLR-like genes found in the genome of C. capitata is probably due to the fact that 

its TLR sequences are quite similar and may have resulted from recent gene duplications 

(Davidson et al. 2008, Simakov et al. 2013). A TLR known as Hm-TLR1 has been found in 

Hirudo medicinalis seems to be a chimeric mix of the cytoplasmic portion of TLR13 and the 

intra endosomal region of human TLR3. Microglial cells and neurons have been shown to 

express Hm-TLR1, and it has been proposed that Hm-TLR1 is involved in immunity 
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(Schikorski et al. 2009; Cuvillier-Hot et al. 2011). Overall, a number of studies showed that 

annelid TLRs are essential for neurogenesis and neuroimmunity. 

Mollusca 

So far, molluscan species such as Cyclina sinensis, Biomphalaria glabrata, Chlamys farreri 

and Crassostrea gigas have been found to contain TLR. The genome of B. glabrata contains 

56 TLR-encoding genes, 27 encoding full TLRs, together with 2 P-type and 25 V-type TLRs 

(Adema et al. 2017). B. glabrata has been shown to harbour a novel snail TLR called Bg-TLR. 

B. glabrata becomes more susceptible to parasites when Bg-TLR is knocked down, suggesting 

that Bg-TLR may be important for immunological response of B. glabrata after infection (36). 

It has been shown that C. sinensis hemocytes include a pathogen-responsive TLR13-MyD88-

NF-κB pathway, and absence of TLR13 results in the reduced expression of other adaptors in 

this signalling network (Ren et al. 2016; Ren et al. 2017). Research suggests that MyD88-

dependent signalling pathway mediate the activation of downstream immunological processes 

in C. sinensis, particularly the antibacterial response (Ren et al. 2016). Further study is required 

for better understanding of the developmental roles of molluscan TLRs. 

Arthropoda 

Comparatively few studies have been conducted so far on toll-like receptors of Merostomata 

species. The horseshoe crab Tachypleus tridentatus has been shown to possess a TLR gene 

(tToll) that is similar in length and structure to Drosophila Toll-1 (Inamori et al. 2010). 

Interestingly, the LRRs of tToll-1 protein do not involve PAMP binding; instead, they bind to 

molecules that resemble Drosophila Spätzle (Kurata et al. 2006; Coscia et al. 2011). 

Within Arthropoda, Insecta is so far the major group of hexapod invertebrates with over a 

million species. Insects possess the ability to develop a quick antimicrobial response upon 

infection (Belinda et al. 2008; Brennan et al. 2004; Dan, 2003; Tanji & Ip, 2005; Royet et al. 

2005). There is evidence that the mammalian innate immune response and the insect 

antimicrobial response are similar (Hargreaves & Medzhitov, 2005). Research on the model 
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organism D. melanogaster has laid the groundwork for our comprehension of the basic 

mechanisms underlying the immune response in insects. Study has shown that D. melanogaster 

induction of expression of antimicrobial peptide is mediated by the Toll pathways (Gottar et 

al. 2002; Tzou et al. 2002). Toll-1, the first TLR to be identified, was found in D. melanogaster 

embryos in 1985. Its function was to specify the dorsal ventral polarity of the embryo. 

Subsequently, the genome of D. melanogaster was found to contain genes corresponding to 

other members of the Toll family (Toll-2–9), whose dual roles in immune response and 

embryogenesis have been gradually validated (Hoffmann, 2003; Valanne et al. 2011). 

Furthermore, a number of Drosophila TLRs perform significant roles in the preservation of 

tissue integrity by triggering the NF-κB-dependent apoptosis of unsuitable or mutant cells 

(Ferrandon et al. 2007; Meyer et al. 2014). 

In crustacean species such as copepods, shrimps and crabs various TLRs have been found. 

Amid these TLRs found in shrimp species, such as Litopenaeus vannamei, Procambarus 

clarkii, Penaeus monodon, Fenneropenaeus chinensis, Macrobrachium rosenbergii, and 

Marsupenaeus japonicus are widely studied (Yang et al. 2007; Arts et al. 2007; Yang et al. 

2008; Wang et al. 2015; Mekata et al. 2008; Srisuk et al. 2014; Sun et al. 2017). NF-κB is a 

typical downstream transcriptional component in the shrimp Toll signalling pathway, which is 

consistent with findings in other species (Wang et al. 2011; Li et al. 2014; Matsuo et al. 2008). 

Echinodermata 

The utmost evolved invertebrate group, echinoderms have a common evolutionary ancestor 

with chordates. According to reports, TLRs are essential for metazoan immunity which 

includes echinoderm, sea urchins and sea cucumbers (Buckley et al. 2012). It is notable that the 

purple sea urchin S. purpuratus has such a greatly increased innate receptor repertoire. 

Molecular phylogenetic tree analysis has identified 222 TLR-like genes in total (8 P-type TLRs 

and 214 V-type TLRs) that are present in the S. purpuratus genome and can be classified into 

seven broad categories (Buckley et al. 2012; Hibino et al. 2006). 
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TLRs in amphioxus 

Amphioxus, a typical cephalochordate that is evolutionarily located in the invertebrate–

vertebrate transition point, is a significant organism for studying the evolution of the TLR-

associated immune system (Li et al. 2011). An incredibly intricate TLR system, comprising 

over 40 TIR adaptors and at least 48 TLRs, is encoded by the amphioxus genome (Huang et 

al. 2008). Together, the observations offer a point of reference for exploring the intricacy of 

the amphioxus innate immunity and suggest fresh avenues for investigating comparable 

vertebrate topics. 

Toll-like Receptors (TLRs) in non-mammalian vertebrates  

The classifications Cyclostomata, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, and 

Aves comprise non-mammalian vertebrates. So far 28 functioning TLRs have been found in 

these classes in a variety of species. There have been six major subfamilies of TLRs such as 

TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11. The large TLR1 subfamily includes TLR1, 

TLR2, TLR6, TLR10, TLR14, TLR15, TLR16, TLR25, TLR27, and TLR28 primarily 

recognises lipoproteins. While the TLR3, TLR4, and TLR5 subfamilies recognise dsRNA, LPS 

(but not in fish or amphibians) and bacterial flagellin respectively. TLR7, TLR8 and TLR9 are 

members of the TLR7 subfamily, which is involved in nucleic acid motif recognition. TLR11, 

TLR12, TLR13, TLR19– TLR23, and TLR26 are members of the TLR11 subfamily, which is 

the sixth main subfamily. Members of this family perform a variety of tasks ranging from 

sensing nucleic acid motifs to proteins. 

Fishes 

In the lowest class of vertebrates, Cyclostomata comprise two families of jawless fish that have 

survived: the lamprey and hagfish (Kuraku et al. 2009). Through polymerase chain reaction-

based cloning, two TLRs (laTLR14a and laTLR14b) have been discovered in the Japanese 

lamprey (Lampreta japonica). The encoding gene for TLR14, which is interestingly a member 

of the TLR1 subfamily, is found in the genomes of teleosts and amphibians (Ishii et al. 2007). 
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This suggests that the existing subsets of TLRs in vertebrates evolved prior to the divergence 

of the jawless fish ancestor from the mammalian ancestor. 

Chondrichthyes or jawed cartilaginous fish are a notable group of animals in immunological 

research field. They are regarded as the initial species that have developed immune responses 

that are adaptive. It is also interesting that the innate immune system exists at this critical stage 

of evolution. Based on a study of transcriptome data TLR2, TLR3, TLR6 and TLR9 have been 

found in the grey bamboo shark Chiloscyllium griseum (Anandhakumar et al. 2012; 

Krishnaswamy et al. 2014). While TLR3 of C. griseum is closely connected to homologs in 

Rattus norvegicus and Canis lupus familiaris, TLR2 of C. griseum is closely related to 

homologs in Sus scrofa and Gallus gallus. The most resemblance between TLR6 and its 

homologs in Felis catus and Bos tarus and between TLR9 and its homologs in Andrias 

davidianus is found. 

Osteichthyes or teleost fish contain over 23,500 species and are extraordinarily diverse (Volff, 

2005). About 21 TLRs (TLR1–TLR5, TLR5S, TLR7-TLR9, TLR13, TLR14, TLR18–TLR23, 

and TLR25–TLR28) have been found in a variety of teleost fish species. These TLRs include 

"teleost-specific" TLRs as well as orthologs of mammalian TLRs (Quiniou et al. 2013; 

Boudinot et al. 2014; Zhang et al. 2013). While teleost TLR4 appears to be structurally 

preserved and does not recognise LPS, unlike its mammalian counterparts, TLR1-TLR3, TLR5 

and TLR7–TLR9 have structural and functional similarities with their mammalian 

counterparts. "Teleost-specific" TLRs include TLR5S, TLR18–TLR20, TLR23 and TLR25–

TLR28. Despite their designation as "specific," these TLRs have a significant degree of 

structural similarity with the TLR system found in mammals (Palti, 2011; Iliev et al. 2005). 

Teleost TLR1 subfamily contain TLR1, TLR2, TLR14, TLR18, TLR25, TLR27, and TLR28. 

Amphibian 

There are currently at least 20 TLRs known to exist in amphibians, including TLR1, TLR2.1– 

TLR2.2, TLR3–TLR5, TLR6.1–TLR6.2, TLR7, TLR8.1–TLR8.2, TLR9, TLR12, TLR13, 

TLR14.1–TLR14.4, TLR21 and TLR22. Also, a number of soluble LRR-only TLR varieties 
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have been identified. In amphibians, TLR2, TLR6 and TLR8 may be duplicated and the TLR14 

subfamily appears to be expanded. A putative soluble short form of TLR5 (TLRS5) is present 

in amphibians. It has been confirmed that TLR4 is present in the Xenopus genome but not 

CD14 or MD2 which are necessary for TLR4-mediated recognition of LPS (Ishii et al. 2007; 

Boudinot et al. 2014). 

Reptilia 

Reptiles hold a pivotal role in the evolution of vertebrates, owing to their distinct physiology 

and status as the sole poikilothermic amniotes. Nevertheless, little is known about the 

composition, role, and ligand specificity of TLRs in reptiles (Zimmerman et al. 2010). Only 

one species, the green anole lizard Anolis carolinensis, has been found in searches for reptile 

TLRs; they are annotated as molecules similar to mammalian TLR2, 3, 4, 5, 6, 7, and 13. The 

cloning, characterization, and functional analysis of A. carolinensis TLR5 were recently 

reported (Fink et al. 2016). The receptor or acTLR5, has a typical TLR protein structure with 

22 extracellular LRRs flanked by N- and C-terminal LRR domains, an intracellular TIR 

domain, and a transmembrane region. From a phylogenetic perspective, acTLR5 is most 

separated from fish TLR5 and most similar to avian TLR5. Experiments using PAMPs to 

stimulate acTLR5 showed that it responded differently to bacterial flagellin (Nie et al. 2018). 

Aves  

The immunological responses of avian (birds) and mammals are essentially similar, despite 

their divergence approximately 300 million years ago (Brownlie & Allan, 2011; Kaiser, 2007). 

Studies on the junglefowl G. gallus, which is the antecedent of domestic chicken, have 

generated most of the knowledge about avian immunology (Hillier et al. 2004). Knowledge 

regarding the identified ligands of avian TLRs has been expanded. Ten avian Toll-like 

receptors (TLR1La, TLR1Lb, TLR2a, TLR2b, TLR3, TLR4, TLR5, TLR7, TLR15 and 

TLR21) have been identified by different studies. Six of them (TLR2a, TLR2b, TLR3, TLR4, 

TLR5 and TLR7) are structurally distinct orthologs of TLRs from mammal (Brownlie & Allan, 

2011; Smith et al. 2004; Yilmaz et al. 2005; Boyd et al. 2007). Avian TLR15 a member of the 
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TLR1 subfamily appears to be exclusive to birds. Avian TLR21 is an ortholog of teleosts and 

amphibians TLR21. TLR4 and MD2 expressed in chickens. These proteins are involved in the 

activation of NF-κB in response to LPS stimulation, but not in the synthesis of IFN1 

(Temperley et al. 2008). Nevertheless, the poly (I:C) activation of chicken leukocytes and 

ensuing upregulation of IFN1 point to the presence of the TRIF signalling pathway. As a result, 

the immune system of chickens may react to LPS in a TRIF-independent, MyD88-dependent 

manner. The reason that other than in mammals TRIF does not contribute in LPS–TLR4 

signalling in chickens may be partially attributed to the lack of TICAM2 ortholog in the chicken 

genome. Furthermore, a large number of positively selected sites have been recorded to known 

ligand binding regions, representing that species-specific changes in PAMP recognition are 

responsible for the variations (Keestra & van Putten, 2008; Grueber et al. 2014). 

Toll-like Receptors (TLRs) in mammals 

TLRs belong to the class of pattern recognition receptors (PRRs) that sense conserved 

molecular patterns to trigger the innate immune response in the event of an early pathogen 

detection. Leucine-rich repeats (LRRs) motif, transmembrane domain, and cytoplasmic 

Toll/IL-1 receptor (TIR) domain are the three structural domains found in typical TLRs. While 

the TIR domain interacts with signal transduction adaptors to commence signalling, the LRRs 

motif is in charge of pathogen recognition (Takeda et al. 2003). 

Following the initial discovery of a Toll protein in the fruit fly Drosophila melanogaster 

(Anderson et al. 1985), 10 human TLRs (TLR1–TLR10) and 13 mouse TLRs (TLR1–TLR13) 

have been identified. With a few notable exceptions, the majority of mammalian species seem 

to have a similar repertoire of TLR homologs (Du et al. 2000; Tabeta et al. 2004). For example, 

a mouse gene encoding the human TLR10 homolog is also found, but it seems that the gene 

altered by a retrovirus latter (Basith et al. 2011). Additionally, TLR11–TLR13 are expressed 

in mice but not in humans (Mahla et al. 2013). TLRs are able to identify molecules that are 

often shared by infections, referred to as pathogen associated molecular patterns (PAMPs), as 

well as host endogenous damage associated molecular patterns (DAMPs). Depending on the 
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TLR type, there are many different types of recognition. For instance, lipopolysaccharide (LPS) 

a constituent of Gram-negative bacteria is detected by mammalian TLR4, although bacterial 

23S rRNA is recognised by murine TLR13 (Vidya et al. 2018). 

 

Figure 1: TLRs and their ligands. TLR2 is crucial for the identification of microbial 

lipopeptides. TLR1 and TLR6 work in tandem with TLR2 in order to distinguish between 

triacyl and diacyl lipopeptides respectively. TLR4 is receptor of LPS. TLR9 is necessary for 

the identification of CpG DNA. While TLR7 and TLR8 are linked to the recognition of viral-

derived ssRNA, TLR3 is involved in the identification of viral dsRNA. Flagellin is recognised 

by TLR5. As a result, members of the TLR family are able to identify particular microbial 

component patterns (Takeda and Akira 2005). 

TLR1, TLR2 and TLR6 

TLR2 recognizes wide range of microbial components. These comprise peptidoglycan and 

lipoteichoic acid from Gram-positive bacteria, as well as lipoproteins and lipopeptides from 

different pathogens (Takeda et al. 2003). Furthermore, it is claimed that LPS preparations from 

non-enterobacteria are recognised by TLR2. The quantity of acyl chains in the lipid A 

component of these LPS is different compared to the typical LPS of Gram-negative bacteria 

that TLR4 recognises and this difference leads to the differential recognition (Netea et al. 
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2002). TLR1 and TLR6 distinguish between diacyl and triacyl lipopeptides by functionally 

interacting with TLR2. Furthermore, TLR1 play role in identifying the outer surface lipoprotein 

(Alexopoulou et al. 2002). Additionally, TLR2 has been demonstrated to have functional 

interaction with other kinds of receptors including a lectin family receptor dectin-1 for the b-

glucan constituent of fungal cell walls. As a result, TLR2 functions in concert with many 

proteins that are either physically related or unrelated to each other to recognise a broad variety 

of microbial products. 

TLR3 

Human TLR3 expression in the double-stranded RNA (dsRNA) non-responsive cell line 293 

exhibits elevated activation of NF-kB responding to dsRNA. Furthermore, TLR3 deficient 

mice have shown reduced ability in response to dsRNA (Alexopoulou et al. 2001). Most viruses 

generate double-stranded RNA (dsRNA) while replication which triggers the synthesis of type 

I interferons (IFN-a/b) that have both immunostimulatory and antiviral properties. TLR3 is 

therefore involved in the detection of viruses and dsRNA.  

TLR4 

TLR4 is a crucial receptor for the recognition of LPS (Hoshino et al. 1999). Additionally, it 

has been demonstrated that TLR4 has a role in the endogenous ligand recognition, including 

HSP60 and HSP70 (heat shock proteins) additional domain A of fibronectins, hyaluronic acid 

oligosaccharides, heparan sulphate and fibrinogen. To activate TLR4, concentration of all of 

the endogenous ligands should to be very high. Furthermore, it has been demonstrated that the 

LPS contamination in the HSP70 preparation gives it the capacity to activate TLR4 (Gao & 

Tsan, 2003). Since LPS is a highly powerful immuno-activator, even minute amounts of LPS 

can activate TLR4, contaminating these endogenous ligand formulations. Hence, 

understanding of endogenous ligand recognition by TLR4 require more detailed investigation. 
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TLR5 

The sensitivity the monomeric component of bacterial flagella is conferred by enforced 

expression of human TLR5 in CHO cells (Hayashi & Smith, 2001). Through a close physical 

interaction between TLR5 and flagellin it has also been demonstrated that TLR5 recognises an 

evolutionarily conserved region of flagellin (Smith et al. 2004). Intestinal epithelial cells 

express TLR5 on their basolateral side but not on their apical side (Gewirtz et al. 2001). 

Additionally, intestinal endothelial cells in the subepithelial compartment express TLR5 

(Maaser et al. 2004). Furthermore, flagellin stimulates the production of inflammatory 

cytokines by lung epithelial cells (Hawn et al. 2003). These results highlight the significant 

role of TLR5 in mucosal surface microbial identification. 

TLR7 and TLR8 

Both TLR7 and TLR8 are structurally conserved and in some cases recognise the same ligand. 

Compounds imidazoquinoline are recognised by human TLR7 and TLR8, but not by mouse 

TLR8 (Jurk et al. 2002). It has also been demonstrated that loxoribine, a synthetic substance 

with antiviral and antitumor properties, is recognised by mouse TLR7 (Lee et al. 2003; Heil et 

al. 2003) Guanosine nucleoside and imidazoquinoline share a structural similarity. 

Consequently, it was predicted that TLR7 and human TLR8 would be able to identify the 

nucleic acid like structure of virus. The findings that TLR7 and human TLR8 recognise 

guanosine or uridine rich single stranded RNA (ssRNA) from viruses such the influenza virus, 

vesicular stomatitis virus and human immunodeficiency virus (Heil et al. 2004; Diebold et al. 

2004) has demonstrated the validity of this prediction. Although the host contains a large 

amount of ssRNA, TLR7 and TLR8 typically do not recognise host-derived ssRNA (Lund et 

al. 2004). This could be because host-derived ssRNA is not transported to the endosome, 

despite the expression of TLR7 and TLR8 in the endosome (Nie et al. 2018). 
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TLR9 

Analysis of TLR9-deficient mice exhibited that TLR9 is a CpG DNA receptor (Hemmi et al. 

2001). Unmethylated CpG patterns give bacterial DNA its immunostimulatory properties. The 

immunostimulatory action of CpG motifs is abrogated in vertebrates due to a significant 

reduction in their frequency and a high degree of methylation of their cysteine residues. CpG 

DNA comes in minimum two types termed as A or D type and B or K type. Conventional B or 

K-type CpG DNA was the first to be discovered and strongly induce inflammatory cytokines 

like TNF-a and IL-12. A or D type CpG DNA differs structurally from ordinary CpG DNA and 

is more effective in stimulating plasmacytoid dendritic cells (PDC) to produce IFN-a, but less 

effective in stimulating IL-12 production (Krug et al. 2001; Verthelyi et al. 2001).  

It has been demonstrated that TLR9 is necessary for the identification of both forms of CpG 

DNA (Hemmi et al. 2003). Apart from CpG DNA originating from bacteria and viruses, TLR9 

is probably involved in pathogenesis of autoimmune disorders. Hence, TLR9 seems to have a 

role in the numerous autoimmune diseases by detecting the structure of chromatin. The 

mechanisms of chloroquine, that is used clinically to treat SLE and rheumatoid arthritis are not 

known. Chloroquine blocks TLR9 dependent signalling by inhibiting the pH-dependent 

maturation of endosomes act as a basic element to neutralize acidification in the vesicle 

(Häcker et al. 1998). For this, chloroquine may be an anti-inflammatory agent that inhibit 

TLR9 dependent immune responses. 

TLR11 

Recently identified TLR11 has shown its expression in epithelial cells of bladder and mediates 

resistance to mouse infection to uropathogenic bacteria. TLR11 deficient mice had high 

susceptibility to uropathogenic bacterial infections. These results suggest that mouse TLR11 

mediates anti-uropathogenic bacterial response, even though the ligand is yet unknown. Studies 

have been suggested that humans lack a functioning TLR11 protein. These findings could 

suggest that the human TLR11 protein was lost to evolution because it was futile in the human 

context (Zhang et al. 2004). 



25 
 

Subcellular localization of Toll-like Receptors (TLRs)  

Individual TLRs have different distribution within the cell. The expression of TLR1, TLR2, 

and TLR4 on the cell surface is shown by the positively staining cell surface with specific 

antibodies. Contrary, it has been shown that intracellular compartments including endosomes 

express TLR3, TLR7, TLR8, and TLR9 (Heil et al. 2003; Matsumoto et al. 2003). It has been 

demonstrated that endosomal maturation is necessary for TLR3, TLR7, or TLR9 mediated 

recognition of their ligands (Heil et al. 2003; Diebold et al. 2004; Lund et al. 2004; Ahmad-

Nejad et al. 2002). TLR9 is drawn from the endoplasmic reticulum following non-specific 

absorption of CpG DNA, which is initially non-specifically trapped into endosomes by the 

TLR9 ligand CpG DNA (Latz et al. 2004). Therefore, it is can be hypothesized that during 

bacterial infection dendritic cells and macrophages engulf bacteria through phagocytosis. 

Following bacterial degradation in phagosomes/lysosomes or endosomes/lysosomes CpG 

DNA is exposed, where TLR9 is expressed or recruited. When a virus infects a cell, it enters 

through receptor-mediated endocytosis and the viral membrane fuses with the endosomal 

membrane to expose the viral contents to the cytoplasm. Sometimes in endosomal compartment 

viral particles degradation results in the exposure of TLR ligands such dsRNA, ssRNA, and 

CpG DNA. After being exposed to zymosan cell surface expressed TLR2 is attracted to the 

phagosomal compartment of macrophages (Underhill et al. 1999). TLR recognition of 

microbial components may therefore primarily occur in the phagosomal/lysosomal or 

endosomal/lysosomal compartments. 

Toll-like Receptors (TLRs) Signaling 

The immune system "senses" risk through TLRs, which are crucial molecular sensors in order 

to defend the host against pathogenic microbes or endogenous threats (Hug et al. 2018). TLRs 

have been shown to play a wide range of functions including identification of self and non-self 

antigens, invasive pathogen detection, connecting the gap between innate and adaptive 

immunity and controlling the generation, proliferation, and survival of cytokines (Vidya et al. 

2018; Bhattacharyya et al. 2018; Ruysschaert & Lonez, 2015; Reuven et al. 2014). Different 
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cytokines and chemokines are produced as a result of signalling pathways that are subsequently 

started and mediate TLR activities. TIR domain-containing adaptor-inducing IFNβ (TRIF) 

dependent pathways and myeloid differentiation primary response protein 88 (MyD88)-

dependent pathways are the two main categories into which TLR signalling pathways are 

currently classified (Akira & Takeda, 2004). 

Except TLR3, all TLRs mostly use the MyD88-dependent response. MyD88 interacts to the 

TIR domain of the conforming TLR by homotypic or heterotypic interactions following ligand 

recognition and TLR dimerization. The death domain of MyD88 then recruits IL-1 receptor-

associated kinase 4 (IRAK4), which results in the creation of a Myddosome complex (Lin et 

al. 2010) and the autophosphorylation of IL-1 receptor associated kinase 1 (IRAK1). Then, by 

K-63-linked polyubiquitination of TAK1 and TRAF6, the protein tumour necrosis factor (TNF) 

receptor associated factor 6 (TRAF6) gets activated, which then activates the TAK1 or TGF-

β-activated kinase (TAB) complex (Gorjestani et al. 2012). The subsequent process involves 

the phosphorylation and destruction of I kappa B alpha (IκBα) by IκB kinase (IKK). Finally, 

the transcription factor NF-κB translocate to the nucleus upon degradation of this inhibitor, 

triggering the transcription of genes that code for inflammatory cytokines (Wang et al. 2001). 

The TRIF dependent pathway is generally thought to be exclusive to a few numbers of TLRs, 

including TLR3 and TLR4 in mammals. The TRIF-dependent pathway can activate 

transcription factors such as NF-κB, activating protein 1 (AP-1) and members of the interferon 

(IFN) regulatory factor (IRF) family, which together can induce the production of pro-

inflammatory cytokines and/or type I IFN (IFN1) (Hoebe et al. 2003). The recognition of 

double-stranded RNA (dsRNA) activates TLR3, following the recruitment of TRIF. A branch 

in the signalling pathway is created when TRIF activates receptor interacting serine or 

threonine kinase 1 (RIPK1) and TANK-binding kinase 1 (TBK1). IRF3 is phosphorylated by 

the TRIF/TBK1 signalling complex, which permits the translocation to nucleus and the 

synthesis of IFN1. 
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Similar to the MyD88-dependent pathway, RIPK1 activation results in a series of signal 

transduction events (Kawai & Akira, 2010). Mammals use TLR4 as an LPS receptor. After 

MyD88 and MyD88-adapter-like (MAL) adaptors are recruited, the TLR4-myeloid 

differentiation protein 2 (MD2)-LPS complex activates early phase NF-κB and mitogen-

activated protein kinase (MAPK). The TLR4-MD2-LPS complex interacts with TRAM (TRIF 

and TIR domain containing adapter molecule 2) adaptors once it has entered the cell by 

endocytosis. This TRIF-dependent pathway activates late-phase NF-κB and IRF7 in addition 

to inducing IFN1 production (Shuang et al. 2015). Ultimately, TLR signalling leads to the 

activation or suppression of genes that control the inflammatory response. 

 

Figure 2: Adaptors involved in TLR signalling. With the exception of the TLR3 ligand, 

MyD88 is required for the generation of inflammatory cytokines in response to all TLR ligands. 

TIRAP/Mal does not participate in the MyD88-independent TLR4 signalling pathway, but it is 

necessary for the production of inflammatory cytokines that are dependent on TLR2 and TLR4. 

Both the MyD88-independent TLR4 signalling pathway and TLR3 signalling depend on TRIF. 

Other adaptor(s) may be involved in the induction of interferons through TLRs other than 

TLR7 and TLR9 (Takeda and Akira 2005). 
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Structural Biology of Toll-like Receptors (TLRs)  

Type I integral membrane receptors, TLRs have three distinct domains: a single transmembrane 

helix, a C-terminal cytoplasmic signalling domain and an N-terminal ligand recognition region 

(Bell et al., 2003). Because they resemble the signalling domains of members of the IL-1R 

family, the signalling domains of TLRs are referred to as Toll IL-1 receptor (TIR) domains. 

TIR domains are also present in a large number of adaptor proteins, which initiate the signalling 

cascade by homotypic interaction with TLR and IL-1 receptor TIR domains. Each TLR 

transmembrane domain has a normal stretch of 20 uncharged, primarily hydrophobic residues 

in it. Through their transmembrane domains, TLRs that identify PAMPs in nucleic acids 

interact with UNC93B, a multispan transmembrane protein that guides these TLRs to endocytic 

compartments. The remaining TLR paralogs pass straight to the cell surface and do not engage 

in interaction with UNC93B. With 550–800 amino acid residues, glycoproteins make up the 

N-terminal ectodomains (ECDs) of TLRs (O'Neill & Bowie, 2007). These ectodomains are 

found in endosomes or extracellular environments, where they come into contact with and 

identify chemicals secreted by invasive infections. 

Leucine-Rich Repeats (LRRs) - the building blocks of TLRs 

The LRRs usually 22–29 residues long and they contain hydrophobic residues set apart at 

specific intervals. TLR ECDs are made of tandem copies of such repeats (Figure 3A). Various 

proteins in plants, animals and microbes contain this motif, including many proteins involved 

in immunological recognition (O'Neill & Bowie, 2007). Recent review reported that all LRRs 

adopt a loop structure in three dimensions, starting with an extended stretch with three residues 

in the β strand configuration (Bella et al. 2008) (Figure 3B). While getting assembled into a 

protein numerous succeeding LRRs produce a solenoid structure where the β strands are 

aligned to form a hydrogen bonded parallel β sheet and the consensus hydrophobic residues 

point to the inside to form a stable core. The β sheet forms the concave surface of the solenoid, 

forcing it into a curved structure because the β strands of the LRR loops are more densely 

packed than the non-β parts (Kajava, 1998) (Figure 3C). Each LRR protein comprises four 
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surfaces: a concave surface, a convex surface, an ascending lateral surface made up of loops 

connecting the β strand to the convex surface and a descending lateral surface on the other side 

(O'Neill and Bowie, 2007).  

Ribonuclease inhibitor (RI) was the first LRR protein structure to be described (Kobe & 

Deisenhofer, 1995). This protein has comparatively long LRRs with an average length of 27–

29 amino acids. Each LRR contain three to four a-helix turns on its convex surface, opposite 

the b sheet. The 16 LRRs in RI form a "horseshoe"-shaped structure (Figure 3C). Like RI, the 

19–25 LRRs that make up the TLR-ECDs also form horseshoe structures. Unlike RI, the 

consensus LRR of the TLRs is 24 residues long (Figure 3A), preventing the development of 

multi-turn helices on their convex sides. On their convex sides, the 24-residue consensus LRRs 

take on a variety of configuration, often containing bits of secondary structure like β strands, 

310 helices, and polyproline II helices (Botos et al. 2011). 

 

Figure 3: The Structure of Leucine-Rich Repeats. (A) LRR consensus sequences for TLR3 

and ribonuclease inhibitor. (B) A LRR loop from hTLR3 and a LRR loop from RI, with the 

conserved residues forming a hydrophobic core. The boxed regions form the surfaces involved 

in ligand binding. (C) Ribbon diagram of TLR3 (2A0Z) and ribonuclease inhibitor (Botos et 

al. 2011). 
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TLR-ECDs are distinguished by the prevalence of LRRs that are significantly larger than the 

consensus 24 residues, particularly in TLRs 7, 8, and 9. These additional residues frequently 

form loops that protrude from the TLR-ECD horseshoe, typically on the ascending or convex 

side of the LRR (Figure 3B). The TLR-ECDs also have structures that cap the N and C-terminal 

ends, known as the LRR-NT and LRR-CT motifs (Figure 4). The LRR-NTs are disulphide-

linked b-hairpins, whereas the LRR-CTs are globular structures with two helices held together 

by two disulphide bonds. Similar capping motifs have been found in numerous additional 

proteins with 24-residue LRRs (He et al. 2003; Huizinga et al. 2002). Most ligands bind on the 

concave surfaces of LRR proteins. In contrast, ligand binding is most frequently observed on 

the ascending lateral surface of the TLR-ECD (Jin et al. 2007; Kang et al. 2009) (Figure 4). 

This surface particularly lacks N-linked glycan and is therefore are free to interact with a ligand. 

 

Figure 4: The Structure of a TLR-ECD (hTLR3). Top and side views of the TLR3-ECD, with 

the N-linked glycosyl moieties (2A0Z). The LRRs are capped by the LRR-NT and LRR-CT 

motifs (Botos et al. 2011). 
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Figure 5: The main features of ten Human TLR molecules (Botos et al. 2011). 

Structure of TLRs 

Based on sequence homologies, vertebrate TLRs can be divided into six subfamilies: TLR1/ 

TLR2/TLR6/TLR10, TLR3, TLR4, TLR5, TLR7/TLR8/ TLR9, and TLR11/ TLR12/TLR13/ 

TLR21/TLR22/TLR23 (Matsushima et al., 2007; Roach et al., 2005). TLR paralogs are not 

expressed by all vertebrate species. For example, humans lack all TLR11 family members. 

ECDs of the ten human TLRs differ in terms of LRR counts and N-linked glycosylation. To 

date, the ECD structures of TLRs TLR1, TLR2, TLR3, TLR4 and TLR6 (human or mouse) 

have been published. All ECDs have the usual horseshoe form, the structures cannot be 

superimposed due to variances in curvature. Glycans are spread throughout the molecule in the 

known structures, with the exception of the lateral face produced by the ascending loops of 

LRRs. This glycan free face participates in dimerization upon ligand binding in known TLR-

ligand complexes. 

TLR2 is located on the plasma membrane and responds to lipid containing PAMPs such as 

lipoteichoic acid and di and triacylated cysteine containing lipopeptides (Takeda et al., 2003). 

It accomplishes this by creating dimeric complexes with either TLR1 or TLR6 at the plasma 

membrane. The TLR1/2 complex recognises tri-acylated lipopeptides like Pam3CSK4, while 
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the TLR2/6 complex recognises the di-acylated ligand, Pam2CSK4. According to phylogenetic 

studies, TLR10 belongs to the TLR-1 family (Roach et al., 2005).  

Lipopolysaccharide (LPS), an essential component of outer membrane Gram-negative bacteria, 

causes a strong inflammatory response that can result in septic shock and mortality (Beutler 

and Rietschel, 2003). LPS communicates with TLR4 via the complexing coreceptor MD-2, 

which is bound to the lateral and concave surfaces TLR4 ECD by numerous hydrogen bonds. 

TLR5 is one of the few TLRs that recognises the protein PAMP bacterial flagellin (Hayashi et 

al., 2001). It is highly expressed in the gut, particularly in lamina propria dendritic cells 

(Uematsu and Akira, 2009), where it regulates microbiota composition (Vijay Kumar et al., 

2010). 

TLR3 recognises dsRNA, which is produced by most viruses at some stages during their life 

cycles and is a strong indicator of viral infection. TLR3, unlike numerous other cytoplasmic 

dsRNA receptors, is localised to endosomes and recognises dsRNA there. Like TLR3, 

members of the TLR7, TLR8, and TLR9 subfamilies are found in endosomes and recognise 

nucleic acid PAMPs. However, the amino acid sequences indicate that the architectures of ECD 

of TLR7- TLR9 differ significantly from TLR3 (Bell et al., 2003). 

Evolution of toll-like receptor (TLR) genes 

TLR diversity has been seen among species as well as within individuals, in recognition and 

downstream signalling pathways. This information can be valuable in determining how 

infectious diseases spread between species. Understanding the development of TLR genes 

across animals can provide us with a comprehensive understanding of changes in ligand 

detecting properties and host-pathogen interactions (Miller et al. 2005). Immunologists and 

evolutionary biologists are particularly interested in genetic diversity in functional immunity-

associated genes like TLRs because they provide a good model for studying the selection 

pressure exerted by microbes on the host genome (Quintana-Murci et al. 2013). In response to 

ever-changing pathogens, these genes appear to evolve more quickly than other locations in 

the genome.  
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Evolutionary rate of a gene is expressed as the ratio of its nonsynonymous substitutions to its 

synonymous substitutions, and it reveals the selection constraints that act on genes. The ratio 

will indicate either positive or purifying selection. In comparison to mutation, selection is the 

dominating mechanism governing the rate of evolution of TLRs and TLRs are under strong 

selection for maintaining their activities (Roach et al. 2005). The innate immune response 

varies amongst mammals and TLRs change between species (Jungi et al. 2011). This 

variability is due to selective pressure on immunity-related genes, which reflect the specific 

conditions encountered by each species (Zhang et al. 2010). 

Phylograms show that TLRs cluster in close species such as primates, rodents, ruminants, and 

cetaceans, as expected given the conserved nature of TLR sequences. Despite evolutionary 

restrictions, TLR evolution has resulted in variations and mutations within or between different 

species. A molecular tree representing all full vertebrate TLRs in GenBank has been created. 

The molecular tree shows six key families that encompass nearly all vertebrate TLRs (Figure 

6). TLRs within a family recognise a broad class of pathogen-associated molecular patterns 

(PAMPs) common to that family (Roach et al., 2005). 

 

Figure 6: Molecular tree of the vertebrate TLR. Branches of each major family are shown with 

colors (Roach et al., 2005).  
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The TLR2 subfamily (lipopeptide), the TLR3 family (dsRNA), the TLR4 family (LPS), the 

TLR5 family (flagellin), and the TLR7 to TLR 9 subfamilies (nucleic acid and heme motifs) 

have all been dominated by selective pressure, most likely to maintain unique PAMP 

recognition. TLR1, TLR2, TLR6, TLR10 and TLR14 are all members of the lipopeptide 

PAMP-specific TLR family. This family, like the other TLR families, has evolved through 

strong selection, although it has additional species-specific adaptations. The TLRs of the TLR1 

family work as heterodimeric receptors, with TLR2 paired with other member of TLR1 

subfamily. Because it evolved in tandem with species phylogeny, the TLR2 subfamily appears 

to be subject to increased selection pressure. 

The TLR14 subfamily in fish might have been lost in amniotes but extended in amphibians. 

Since TLR14 is connected to the TLR1 subfamily, it has been hypothesised that it also interacts 

with TLR2. TLR15 in chicken are distant molecularly from all other TLRs. It could be resulting 

from the TLR1 family. Major family remained includes the TLR11-TLR13 and TLR21-TLR23 

subfamilies is characterized in humans only through a pseudogene. The major divides of the 

TLR11 family are evidently very ancient, as most TLR11 subclades include representatives 

from fish and frogs, although TLR11 appears to recognise uropathogenic bacteria. The TLR16 

subfamily, which is molecularly distinct from all other TLRs, may belong to the TLR11 family. 

TLR11 family contain more subfamilies with respect to other family, and it has comparable 

diversity to the TLR1 family. Also, it includes mouse TLR11 and TLR12, the most diverse 

vertebrate TLRs. Therefore, the TLR11 family may face fewer purifying selection than other 

TLR families. The considerable diversity of TLR11, TLR12 and TLR16 could possibly 

ambiguous orthology for TLR21, TLR22 or TLR23. The TLR11 family has a similar number 

and diversity of subfamilies to the TLR1 family, which may indicate that TLR11 family 

members function as heterodimeric partners with each other (Roach et al., 2005; Areal et al. 

2011). 

TLRs are a class of conserved pattern recognition receptor that initiate innate and acquired 

immune responses. Because the TLRs play an important role in host defence, such genes 
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developed increasing interest in the evolutionary and population genetics literature, with 

variation representing a possible target of adaptive evolution. Though importance of selection 

that are pathogen mediated (i.e. episodic positive selection) need to be studied as these genes 

are not understood and not well explored in species mammals. Currently increasing bird species 

for which TLR sequences are available allowed investigation of the selective processes that 

shaped the development of the known avian TLR genes. It has been evaluated for episodic 

positive selection in order to find codons that have undergone purifying selection for the 

majority of their evolution, scattered with bursts of positive selection that may only occur in 

specific lineages. Genes with sequence coverage that encompassed both the extracellular 

leucine-rich repeat region (LRR) and intracellular domains of protein showed greater positive 

selection in the extracellular domain. It was reliable with theoretical estimates. These findings 

suggest that episodic positive selection had a significant role in the evolution of most avian 

TLRs, which is consistent with the loci's involvement in pathogen identification and a host-

pathogen coevolution mechanism (Grueber et al. 2014). 

The innate immune system is the first line of host defence against infections. TLRs play crucial 

roles in the innate immune system by recognizing molecules derived from pathogens. Studies 

have showed evidence that TLR-related genes have been subjected to natural selection during 

primate evolution. Analysis of the nucleotide sequences of 16 TLR-related genes, including 

TLRs (TLR1-TLR10), MYD88, TILAP, TICAM1, TICAM2, MD2 and CD14 from seven 

primate species. 16 TLR-related genes, included ten TLRs (TLR1–10), four genes linked to 

signal transduction (MYD88, TILAP, TICAM1, and TICAM2) and two genes linked to TLR4 

(MD2 and CD14) in primates. MD2 and CD14 are key molecules of the LPS signaling through 

TLR4 (Poltorak et al. 1998; Shimazu et al. 1999; Nagai et al. 2002). The analysis of the non-

synonymous/synonymous substitution ratio revealed that TLR-related genes contain both 

strictly conserved and rapidly evolving regions. Genomic regions of Toll/interleukin 1 receptor 

domains having lower frequencies of nonsynonymous substitution have undergone purifying 

selection. In contrast, TLR4 has a large fraction of non-synonymous changes in the 

extracellular domain spanning 200 amino acids, was discovered to be a likely target of positive 
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Darwinian selection in primate evolution. However, sequence analyses of 25 primate species, 

including eight hominoids, six Old World monkeys, eight New World monkeys and three 

prosimians found no evidence that positive Darwinian selection influenced the pattern of TLR4 

sequence variations among New World monkeys and prosimians. This study revealed the 

molecular evolution of TLR-related genes in primates and determined that while natural 

selection did impact the sequence patterns of TLR-related genes during primate evolution, 

positive selection pressure was limited across the TLR family (Nakajima et al. 2008). 

Studies have been conducted on how natural selection has worked on human TLRs in order to 

estimate the redundancy in their biological level. Sequencing of ten human TLRs in a group of 

158 entities from different populations around the world, and it was discovered that 

intracellular TLRs activated by nucleic acids and predominantly specialised in viral recognition 

evolved under strong purifying selection, indicating their essential non-redundant role in host 

survival. Conversely, the selection restrictions on TLRs expressed on the cell surface and 

activated by substances other than nucleic acids have been significantly more relaxed, with 

larger frequencies of harmful nonsynonymous and stop mutations permitted, indicating greater 

redundancy. Finally, it was investigated if TLRs have undergone spatially varied selection in 

human populations, and it was discovered that the region comprising TLR10-TLR1-TLR6 has 

recently been the target of positive selection among non-Africans. Study data show that the 

immunological redundancy of the individual TLRs varies, indicating their unique contributions 

to host defence. These findings encourage the development of novel concepts for clinical and 

epidemiological genetics of infectious diseases (Barreiro et al. 2009). 

Immunologists and evolutionary biologists are particularly interested in genetic variation in 

functional immunity-associated genes like TLRs because they provide an excellent model for 

studying the selection pressure exerted by microbes on the host genome (Quintana-Murci & 

Clark, 2013). In response to continuously evolving pathogens (Lively & Dybdahl, 2000; Kuijl 

& Neefjes, 2009), these genes appear to develop quicker than other locations in the genome 

(Khakoo et al. 2000; Zelus et al. 2000; Sachidanandam et al. 2001; Downing et al. 2009). The 

evolutionary rate of a gene is denoted as the ratio of its nonsynonymous substitutions to its 
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synonymous substitutions and it reveals the selection constraints that act on genes. The ratio 

will indicate either positive or purifying (stabilising) selection. In comparison to mutation, 

selection is the dominating force in regulating the rate of evolution of TLRs, and TLRs are 

subjected to intense selection to maintain their activities (Roach et al. 2005). The innate 

immune response is not the same in all animals and there is species wise variation in TLRs 

(Jungi et al. 2011). This variability is due to selective pressure on immunity-related genes, 

which reflect the unique conditions encountered by each species (Zhang et al. 2010). 

For many years, TLR genes were assumed to be ideal functional candidates for increasing 

susceptibility or resistance to infections and inflammatory disorders. In recent years increased 

focus has been dedicated to understanding the precise function of these receptors. To determine 

the function of TLR polymorphisms in infectious disease susceptibility, relationships between 

various studies and populations needs to be accumulated. Various molecular phylogenetic 

investigations have revealed that the evolution of both cell-surface and intracellular TLRs in 

various species follows an almost unique paradigm. The majority of research have confirmed 

purifying selection as the principal force acting on TLRs. However, positive selection 

signatures have been identified in all TLRs from various species. The majority of the positively 

selected sites were located in cell-surface TLRs rather than intracellular TLRs, demonstrating 

the conserved characteristics of viral PAMPs recognised on intracellular TLRs versus fast 

escaping bacterial PAMPs detected on cell surface TLRs. Thus, viral infections are expected 

to have a stronger selection force on TLRs than bacterial infections. Pathogen mediated 

positive selection has shaped variety in mammalian TLRs. Furthermore, the selective 

divergence of TLRs in particular species was most likely caused by the diverse pathogenic 

environments that they experience. Positively selected settings are intended to improve species 

adaption in new environments. In other words, differences in selection limitations influence 

the ability of TLRs to recognise and respond to specific pathogenic profiles in their respective 

niches (Priyam et al. 2018). Various studies have suggested mostly similar trend for TLR 

evolution among different species, few studies on a wider range of mammalian species finds a 
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contradiction. It was revealed that both viral and non-viral TLRs are subject to positive 

selection owing to the inclusion of a broader range of species impacted by various diseases.  

Although many articles have recommended a typically similar pattern for TLR evolution 

between diverse species, inconsistency found from the study on a large group of mammalian 

species. Similarity in positive selection among viral and non-viral TLRs was not aligned with 

preceding studies. Inclusion of greater number of species group might have affected such 

observations. Most of the previous studies mentioned homogeneous group of species probably 

get affected by a restricted number of similar viruses. Possibility of removal of non-

synonymous fatal mutations by purifying selection and fixation of beneficial mutations might 

have caused the differences among these mammalian species (Roach et al. 2005). Perhaps, the 

extensive difference among the mammals under study, their surroundings and interaction with 

viruses accounted higher positively selected sites observed in viral and non-viral TLRs. 

Orthologs TLR share sequence and structural similarities and recognise nearly identical forms 

of PAMP in different species (Keestra et al. 2007), there are certain structural differences 

between TLRs and their signal transduction pathways that result in functional variability 

(Bagheri & Zahmatkesh, 2018). 

Genes carry biological functions through pathways in complicated networks involving many 

interacting components. Studies on the effect of network design on the evolution of individual 

proteins aid to the understanding of the creation and evolution of signalling pathways, as well 

as their functional conservation. However, the relationship between network architecture and 

individual protein sequence evolution is still poorly understood. A network-level molecular 

evolution analysis was performed on the TLR signalling pathways, which is critical for innate 

immunity in insects and humans. It has been found that the selection constraint of genes was 

negatively correlated with its position along TLR signaling pathway. All genes in the TLR 

signalling system were highly conserved and experienced substantial purifying selection. 

Different nonsynonymous substitution levels determined the distribution of selective pressure 

throughout the pathway. The TLR signalling pathway may have existed in a common ancestor 

of sponges and eumetazoa, and it evolved through the TLR, IKK, IkB, and NF-kB genes, which 
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underwent duplication events as well as adaptor molecular enlargement, and the gene structure 

and conservation motif of NF-kB genes shifted throughout their evolutionary history. These 

findings will help us better understand the evolutionary history of the animal TLR signalling 

system, as well as the relationship between network design and protein sequence evolution 

(Song et al., 2012). 

TLRs that initiate innate immune response have two domains: an external leucine rich repeat 

(LRR) and an intracellular Toll IL-receptor (TIR). LRR domains with a solenoid configuration 

typically evolve faster than TIR globular domains. It is critical to understand the molecular 

evolution and functional activities of TLRs in this context. Study of pairwise genetic distances 

and Ka/Ks ratios (the ratios of non-synonymous to synonymous substitution rates) between the 

LRR and TIR domains of vertebrate TLRs from various species (ranging from fish to primates) 

was performed. Among them (TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, 

TLR11/ TLR12, TLR13, TLR14, TLR21 and TLR22/ TLR23) the LRR domains evolved 

substantially faster than the corresponding TIR domains. The evolutionary rates of the LRR 

domains vary greatly across these members; LRR domains from TLR3 and TLR7 from 

primates to fishes have the slowest rate of evolution. In contrast, the fifteenth member, TLR10, 

exhibits no major alterations; its TIR domain is not well conserved (Mikami et al. 2012). 

Despite the important of birds in vertebrate evolution, less attention has been given to their 

immune systems. The evolution of TLR genes has been studied in many species, but our 

understanding of the evolutionary properties of TLR genes in birds in the wild is restricted. 

Most studies focused on the structure, variation, and composition of a single gene or the 

analysis of selection pressure on individual genes, but neither examined the influence of the 

external environment or feeding habits on the evolution of avian TLR genes. The growth of 

avian genome data and the advancement of molecular biology in recent years have created a 

new opportunity for us to investigate the relationship between the adaptive evolution of birds' 

TLR genes and their external environment (Velová et al. 2018). 
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The phylogenetic data suggested that TLR1A and TLR1B may have differed functionally. A 

systematic analysis of bird TLR genes, as well as phylogenetic analyses, revealed that the 

TLR1 and TLR2 subfamilies diverged due to duplication. TLR1A is more closely related to 

TLR10 in mammals, implying that functional differentiation occurred, but not TLR2. 

Evolutionary study revealed that TLR genes in birds are subjected to significant purifying 

selection. Common positively selected codons were identified in ten avian TLR genes, with 

the most of sites found in the extracellular leucine-rich repeat (LRR) functional domains. The 

evolution of avian TLR genes was influenced by both the environment and feeding habits. 

Environmental stresses showed a stronger impact on TLR1B, TLR2B, TLR3 and TLR4, 

whereas feeding habits influenced TLR2A, TLR2B, TLR15 and TLR21. Combined with 

branch-site model analysis, it was discovered that habitat and feeding patterns were external 

variables driving the evolution of avian TLR genes, with the environment having the greatest 

influence. These findings revealed that TLR genes were subjected to diversified selective 

pressures during avian evolution, allowing them to respond differently to infections from 

various sources (Yang et al. 2021, Huang et al. 2011). 

TLRs found in fish have been demonstrated to be ligand specific for TLR2, TLR3, TLR5M, 

TLR5S, TLR9, TLR21, and TLR22. Some research suggests that TLR2, TLR5M, TLR5S, 

TLR9 and TLR21 can particularly recognise PAMPs from bacteria. TLR1, TLR4, TLR14, 

TLR18 and TLR25 may also be bacterial sensors. TLR signalling mechanisms in fish differ 

from those in mammals. TLRs found in fish have direct evidence of ligand specificity. In-depth 

investigations need to be conducted on a constant basis to determine the ligand specificity of 

all TLRs in fish, particularly non-mammalian TLRs, as well as their signalling pathways. The 

identification of TLRs and their functions will add to the knowledge of disease resistance 

mechanisms in fish, as well as new insights for therapeutic intervention to modify immune 

response (Fink et al. 2016; Zhang et al. 2014). 
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Significance of TLRs  

TLRs have an important role in innate and adaptive immunity. Their capability to detect 

endogenous DAMPs and exogenous PAMPs allows them to produce ligand mediated signal 

transduction, which is ultimately involved in the inflammatory response. In recent years, there 

has been a growing evidence directing to the importance of TLRs and their ligands in a variety 

of pathological conditions including inflammation, cancer and autoimmune disorders. 

Remarkably, they have a crucial role in immunotherapy and vaccination (Vidya et al. 2018). 

Studies have shown that TLR4 promotes injury in the liver, kidney, heart, and brain. 

Downregulation of TLR2, TLR4 or MyD88 in ischemia damage lowers myocardial 

inflammation. TLR4 has also been linked to an enhanced T cell response in burn injuries, graft 

inflammation, sterile damage and alloimmune responses in tissue transplantation. The 

overexpression of TLR2 and TLR4 on immune and other cells during sepsis has been linked to 

organ tissue harm. Many scientific investigations have suggested a function for TLRs in 

hypercholesterolemia-induced vascular damage. While it was recently established that TLR2 

is substantially pro-atherogenic, TLR3 was found to be involved in the integrity protection of 

the of the blood vessel wall. 

Response of TLR is important in tissue damage and subsequent tissue repair and regeneration, 

especially in the liver and intestinal epithelium. TLR2 signalling has a crucial role in wound 

healing. TLRs on epithelial cells detect microbial patterns and induce innate immune 

responses, aiding in homeostasis management. The basal layer of corneal epithelial cells 

expresses TLR4 and TLR5. When a break occurs in the squamous epithelium, ocular 

inflammation and keratitis are induced via the MyD88 dependent pathway by functioning 

TLR2, TLR4, and TLR9, all of which are expressed in the corneal epithelium. 

Recent research has shown that endogenous TLR ligand-mediated signalling plays a key role 

in auto-immune diseases. The presence of bacterial DNA and peptidoglycans in the joints of 

people with rheumatoid arthritis (RA) and other diseases, which may increase synovial 

inflammation via TLR ligand-mediated signalling. TLR9 and TLR7 have also been shown to 
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have a role in the persistence of systemic lupus erythematosus. TLR9 detects danger signals 

generated by demyelinated nerves, which trigger a pathologic immune response to autoantigens 

in multiple sclerosis. Endogenous monosodium-urate monohydrate (MSU) crystals generated 

from uric acid secreted by injured cells act as DAMP, activating TLR2 and ultimately causing 

cartilage degradation. 

TLRs have been shown to play both positive and negative functions in tumorigenesis. Though, 

to date, TLRs have had the opposite effect on tumour growth. TLR ligands can supress tumour 

growth, whilst TLR agonists can improve malignant cell survival and resistance to 

chemotherapy. TLRs play an important role in cancer immunotherapy. Total body irradiation 

(TBI) increases the activation of adaptively transplanted T lymphocytes by recognising 

microbial LPS by TLR4 activating innate immune system in the radiation injured gut. 

TLRs play an important role in vaccinations because they act as natural adjuvants for vaccines 

containing attenuated live or heat-killed viruses or bacteria. TLRs play an significant role in 

controlling the adaptive immune response by maturing DCs, inducing the production of 

cytokines and co-stimulatory proteins, and reversing tolerance. As a result, as natural adjuvants 

in vaccines, they help DCs in better antigen presentation, resulting to a positive immune 

response (Bagheri et al. 2018, Vidya et al. 2018). 

TLRs are evolutionary conserved proteins, characterization of TLRs and their ligands has 

contribution in understanding their function and the host defence systems against infections. 

To study the impact of natural selection on innate immune receptors TLRs are useful candidate 

molecules. Several studies were conducted and purifying selection has driven TLR evolution 

at least in humans. Additional research on primate species have found varying degrees of 

positive selection acting on their evolutionary history. These interactions may have influenced 

the evolution of proteins involved in direct pathogen recognition. Further research on mammal 

TLR genes is needed to explore for signs of positive selection. 
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                                                                                                Methodology 

Sequence Retrieval  

Sequences of TLR genes and encoding protein from mammals were retrieved from GenBank 

maintained by NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and Ensembl maintained by 

EMBL-EBI (www.ensembl.org). To avoid any stochastic disparities and sample errors 

sequences that are error prone and redundant (partial sequences, predicted sequences, 

sequences having internal stop codons, non-translatable codons) were discarded (Wright, 

1990). TLR nucleotide and protein sequences from different mammalian species were stored 

according to the TLRs. BLAST and its variants, each differentiated by the type DNA or protein 

of input sequence and searched database for annotation of gene or protein sequences. More 

inclusive database search was undertaken by using PSI-BLAST which uses an iterative pattern 

to search and find out distantly associated sequences. A comprehensive set of coding sequences 

of TLR1-TLR13 from Mammalian group constituted primary dataset for the analyses.  

Multiple sequence alignment aligns many related sequences to get the best possible sequence 

matching. Multiple sequence alignment has the unique advantage of revealing more biological 

information than several pairwise alignments. As example, it enables the detection of 

conserved patterns of sequence and motifs across the entire family of sequence, that would 

otherwise be difficult to notice while comparing two sequences. A protein multiple alignment 

reveals several conserved and functionally important amino acid residues. Multiple sequence 

alignment is also required for sequence family phylogenetic analysis as well as protein 

secondary and tertiary structure prediction. Clustal Omega package have been developed for 

performing multiple sequence alignments (MSAs) to deal with large number of sequences 

available and the to execute big alignments rapidly and precisely. 
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Multivariate Analyses  

Species and genes within the same genome use codons and amino acids at different frequencies. 

Numerous studies have been conducted on these biases in codon and amino acid usage in a 

range of species. Despite the fact that the genetic code is degenerate, meaning that multiple 

combinations of codons can produce the same protein. The mechanisms that determine non-

random codon usage may also have an impact on amino acids usage in proteins. Since all 

codons encoding a particular amino acid may have base compositions that are either GC rich 

or GC poor, this can be explained by neutral processes. Furthermore, because amino acids 

identical functions might have varying tRNA abundances or necessitate diverse metabolic 

expenditures to produce, selection may be a significant factor in determining amino acid 

frequencies. The pattern of amino acid usage is primarily determined by the composition of the 

genomic bases. However, additional parameters like hydrophobicity, aromaticity, gene 

function, etc., have also been found to have an impact on amino acid usage (Peden, 2000).  

Multivariate analysis (MVA) simplifies rectangular matrices in which the columns denote 

measurement of codon usage or amino acid usage and the rows denote specific genes. 

Meanwhile amino acid usage is multivariate in nature, such statistical techniques like 

correspondence analysis (COA). COA ordination identifies key trends data variation and 

distribute genes along continuous axes in according with trends. It is advantageous as it do not 

make any assumption of clustering the data rather distribute continuous variation correctly 

(Peden, 2000).  

CodonW package analyse codon usage. It facilitates COA, a popular MVA technique for 

analysing codon usage. CodonW can produce a COA for codon usage, relative synonymous 

codon usage and amino acid usage. Additionally, codon usage analyses include investigation 

of optimum codons, codon and bias in dinucleotide, and base composition. CodonW examines 

sequences encoded using genetic codes other than the universal code (Peden, 2000). COA was 

used to explore the major trend in amino acid usage difference among the TLR genes from 

Mammals. For each gene, relative amino acid usage (RAAU), average hydrophobicity, 
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aromaticity and GC content of the TLR gene sequences were calculated employing the 

CodonW program. 

Phylogenetic Tree 

Phylogenetic tree analysis determines the ancestral relationship of a collection of sequences. 

Phylogeny refers to the patterns of tree branching that show evolutionary divergence. Graphical 

depiction of the evolutionary relationships amid biological entities such as sequences or species 

is presented through a phylogenetic tree. Relations among entities are apprehended by the 

topology or branching order and expanse of evolutionary change (branch lengths) between 

nodes. Root adds direction to such relationships and precisely define ancestry. 

Molecular phylogenetic trees are generated through either nucleotide or protein sequences. The 

most important phase in the technique is to generate sequence alignment, which ascertains 

positional correspondence in evolution. Only the accurate alignment produces proper 

phylogenetic inference as aligned positions are probably related genealogically. Improper 

alignment causes methodical errors in the resulting tree, or sometimes entirely an erroneous 

tree. For this, accurate sequence alignment is essential. Multiple cutting-edge alignment 

programmes, such as Clustal Omega, Muscle can be used. Results of alignment from various 

sources should be carefully examined and linked to determine the most rational choice (Xiong, 

2006). 

Currently two major types of tree construction methods exist, with some advantages and 

limitations. One class of method is based on discrete characters from biological sequences of 

individual taxa such as maximum parsimony (MP), maximum likelihood (ML). Assumed that 

corresponding positional characters at in a multiple sequence alignment are homologous across 

all the involved sequences. Consequently, the dataset can be used to reconstruct character states 

of the common ancestor. Also, it is assumed that each character evolves independently hence 

is viewed as a separate evolutionary unit. The second category of phylogenetic methods such 

as Unweighted Pair Group Method Using Arithmetic Average (UPGMA), Neighbor Joining 

are distance based which report amount of dissimilarity among pairs of sequences estimated 
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using sequence alignment. Distance based approaches presume all sequences as homologous 

and tree branches are additive, which means that the distance amid two taxa is equal to the total 

of all branch lengths that connect them (Xiong, 2006).  

Bootstrapping, a statistical procedure used to test any sampling errors in the phylogenetic tree. 

Repeated sampling of trees by the perturbation of dataset is done while bootstrapping. It 

achieves this by periodically sampling trees from marginally perturbed datasets. This allows 

us to analyse the robustness of the original tree. Bootstrapping is used to avoid bias in newly 

constructed trees caused by poor alignment or random variations in measurement of distances. 

The robustness of the tree constructed by generating a little modified alignment frequently with 

random fluctuations. Rally strong phylogenetic relationship should include sufficient features 

to support the relationship even if the dataset is disrupted in such a way. Or else, the noise 

generated during the resampling procedure is sufficient to produce alternative trees, implying 

that the initial topology was formed from weak phylogenetic evidence. This form of study 

provides a sense of the statistical confidence of the tree topology (Xiong, 2006). 

In this study, all the TLR proteins from mammals were subjected to alignment using the Clustal 

Omega program (https://www.ebi.ac.uk/Tools/msa/clustalo/). The ensuing multiple sequence 

alignments were then used to construct the phylogenetic tree with 1000 bootstrap replicates. 

The latest version of MEGA software was used for Phylogenetic analysis. The Molecular 

Evolutionary Genetics Analysis (MEGA) software is a desktop application that allows user to 

compare homologous gene sequences from different species or multigene families, with a focus 

on inferring evolutionary relationships and patterns of DNA and protein evolution. In addition 

to the tools for statistical analysis of data, MEGA provides many convenient facilities for the 

assembly of sequence data sets from files or web-based repositories, and it includes tools for 

visual presentation of the results obtained in the form of interactive phylogenetic trees and 

evolutionary distance matrices (Kumar et al., 2016, Kumar et al., 2018). 

Determination of the evolutionary history of genes can be done by ancestral sequence 

reconstruction. Aside from its use in determining the most likely evolutionary forebears of 
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present proteins, ancestral sequence reconstruction has proven to be an effective method for 

designing extremely stable proteins. Recently, various computational tools were developed that 

make ancestral reconstruction algorithms available to the community while leaving the most 

important parts of input data preparation to users. FireProtASR attempts to tackle this challenge 

by developing a fully automated procedure that allows even inexperienced users to acquire 

ancestral sequences using only a sequence query as input (Musil et al, 2021). FireProtASR 

comes with an interactive, user-friendly web interface and is freely available at 

https://loschmidt.chemi.muni.cz/fireprotasr/. 

Evolutionary rate analysis  

The neutral theory of molecular evolution states that random fixation of low fitness 

consequence mutations, not natural selection, is the primary cause of the diversity found within 

and across species. The morphology, behaviour, and physiology of species are ultimately 

shaped by these favourable mutations, which are infrequent at molecular level yet occur in 

genes and genomes. Finding molecular adaptation aids in improving comprehension of the 

evolutionary process. Enormous genomic data and computational resources has made it 

possible to the systemic analysis of genomes for positive selection study, making molecular 

adaptation research more fascinating than ever. Genes that encode protein, can be distinguished 

between synonymous or silent substitutions (nucleotide changes that do not modify the 

translated amino acid) and nonsynonymous or replacement substitutions. Because natural 

selection functions primarily at the protein level, synonymous and nonsynonymous mutations 

face extremely different selective forces and settle at very different rates. Thus, using the 

synonymous rate as a reference point, one can determine whether fixation of nonsynonymous 

mutations in the population is speeded or slowed by natural selection acting on the protein. A 

comparison of synonymous and nonsynonymous substitution rates can reflect the direction and 

strength of natural selection acting on the protein (Kimura 1968; King and Jukes 1969). 

A nucleotide substitution that changes the corresponding amino acid in the protein is called a 

nonsynonymous substitution (denoted as Ka), whereas a nucleotide substitution that does not 

https://loschmidt.chemi.muni.cz/fireprotasr/
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change the amino acid in the protein is called a synonymous substitution (denoted as Ks). 

According to the neutral theory, purifying selection will eliminate nonsynonymous 

substitutions while tolerating synonymous ones. As a result, there will be fewer 

nonsynonymous than synonymous substitutions. This prediction is supported by the facts that 

synonymous substitutions in protein-coding genes usually exceed nonsynonymous 

substitutions, and the rate of evolution of functionally constrained regions of genes is slower 

compared to non-functionally constrained gene regions. Although, selective benefits conferred 

by the nonsynonymous substitution will be fixed in the population by the positive selection 

(Roy et al., 2015, Roy et al., 2017). 

Calculation The ratio (ω) of rate of non-synonymous substitutions per nonsynonymous site 

(dN) to rate of synonymous substitutions per synonymous site (dS) indicates the impact of 

evolution on a gene segment. ω>1 indicates diversifying (positive) selection whereas, ω<1 

signifies purifying (negative) selection (Roy et al., 2015). The evolutionary rates of mammalian 

TLRs (with reference to consensus sequence generated through Perl program) were calculated 

using the Codeml program included in the PAML software package (ver. 4.5) (Nei and 

Gojobori, 1986; Yang, 2007) (http://abacus.gene.ucl.ac.uk/software/paml.html) with runmode 

= −2 and CodonFreq = 1.  

Codon-based analyses of positive selection  

A gene that has an accelerated nonsynonymous substitution rate, as indicated by the 

nonsynonymous/synonymous rate ratio dN/dS > 1, is considered to be positively selected. This 

type of test is very successful at finding diversified or balancing selection because it employs 

excessive nonsynonymous substitutions as evidence that natural selection aided in the fixation 

of nonsynonymous mutations. Tests based on dN/dS may be less effective when applied to data 

from the same species due to lack of sequence divergences and challenges in the interpretation 

of the dN/dS ratio (Kryazhimskiy and Plotkin 2008). 

Under neutrality, coding sequences are expected to have a ratio of non-synonymous 

substitutions (dN) over synonymous substitutions (dS) that does not significantly deviate from 
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1 (ω = dN/dS = 1), while significant deviations can be attributed to either positive or negative 

selection (ω >> 1), respectively. To investigate positive selection in individual codons of 

mammalian TLR sequences, the dN to dS ratios were compared using maximum likelihood 

(ML) frameworks, specifically the Hyphy programme implemented in the Data Monkey Web 

Server (http://www.datamonkey.org). Modern comparative sequencing analysis relies heavily 

on inferring how evolutionary forces shaped genetic diversity. Recent advances in sequence 

synthesis and statistical approaches enable researchers to extract more evolutionary signals 

from data, although at a higher processing expense. Datamonkey 2.0, a completely re-

engineered web-server for analysing evolutionary signals in sequence data. We used open-

source libraries to construct dynamic, robust, and scalable web applications. Datamonkey 2.0 

offers curated approaches for analysing coding-sequence alignments for natural selection. It is 

a responsive, fully interactive, and API-enabled web application (Weaver et al, 2018).  

The best fitted nucleotide substitution model was identified using the automatic model 

selection tool Data Monkey Web Server. All TLR sequences were analysed using three distinct 

models: single likelihood ancestor counting (SLAC) and fixed-effect likelihood (FEL). The 

SLAC model is based on the reconstruction of ancestral sequences and the counts of dS and 

dN at each codon position along the phylogenetic tree. The FEL model predicts the dN/dS ratio 

on a site-by-site basis, rather than assuming a priori distribution across sites. Positive selection 

is more strongly supported for sites found by two independent approaches. Positive selection 

test of individual codons of mammals TLR was performed using the Hyphy package executed 

in the Data Monkey Web Server that compare Ka to Ks ratio using maximum likelihood (ML) 

framework (Weaver et al, 2018). 

Structural modeling 

Despite the rising proficiency of different approaches to obtain protein sequences, majority of 

known sequences lack structural information. Protein modeling aims to predict the structure of 

a protein from its sequence with accuracy comparable to experimental results. This can close 

the structural knowledge gap in disciplines like structure-based medication design, which 
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would otherwise rely solely on experimentally determined structures. Furthermore, when 

experimental methods fail, protein modeling is the only option to gain an understanding of 

protein structure. Many proteins, for example, are too large for NMR study or are difficult to 

crystallise using X-ray diffraction methods. Homology modeling, fold recognition, and de novo 

structure are the available methods for protein 3D structure prediction (Scott et al, 2014). 

Homology modeling that is also referred as template-based modelling, or comparative 

modeling assumes that protein three dimensional or 3D structures. Structures with similar 

amino acids comprise same kind of 3D structure due to structural conservation. This homology 

modeling process relies on two methods: sequence alignment and molecular modeling. The 

fundamental workflow for homology modelling starts with a given target amino acid sequence. 

Initially by searching the homologous sequences in known protein structure databases, 

alignment process begins. Coordinates of amino acids in homologous proteins with known 

structure are therefore used to determine corresponding amino acids coordinates of the target 

protein (Muhammed and Aki-Yalcin, 2019). Then, to reduce the unfavorable interactions 

among amino acid pairs molecular modeling is performed. Finally, the resulting 3D structure 

is examined. This homology modeling method was one of the prevalent approaches for a 

decade. Because of the elevated prediction speed, excellent precision for proteins having 

known structural homologs the homology modeling technique is very advantageous. The flaw 

is that it heavily relies on template structures, that means it cannot anticipate the structures of 

proteins for which homologs have not been discovered (França, 2015).  

SWISS-MODEL is an automated modeling tool and it has been regularly improved since its 

inception and is now the most popular modeling server available on the web. The SWISS-

MODEL server is intended to function with minimum user input, for example it requires only 

the amino acid sequence of a target protein. Because comparative modeling projects vary in 

complexity, some may require further user input, such as selecting a new template or adjusting 

the target-template alignment (Waterhouse et al., 2018).  
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The de novo modeling method searches for conformations directed by a specified energy 

function, which uses amino acid atomic coordinates as variables. This process generates several 

potential conformations, and the one with the minimum energy is chosen. The benefits of de 

novo modeling include the fact that it is independent of identified protein structures. It  allows 

the prediction of protein structures without having any prior knowledge of the structure and the 

possibility of discovering novel structural types of protein (Bradley et al, 2005). 

ML-based modeling is an approach for predicting the structures of target proteins using 

machine learning algorithms and known protein structures. Among the several ML algorithms, 

the most notable is deep learning (DL). In contrast to homology modeling and de novo 

modeling, the DL-based method is a data-driven approach that is only recently evolving. 

Because of the tremendous success of DL in other fields, the DL-based protein prediction 

strategy is projected to perform better. AlphaFold (AF) is one of several deep learning-based 

modeling algorithms based on the biological notion of protein structural conservation during 

evolution (Yang et al, 2023).  

Molecular docking study 

Protein-protein interactions are critical for cellular and immunological function, and in many 

situations, because the complex structure has not been empirically identified, these interactions 

must be modeled to gain a better understanding of their molecular foundation. The Molecular 

Docking approach predicts the interaction of a tiny molecule with a protein or between proteins. 

This allows researchers to analyse the behaviour of tiny molecules or proteins within the 

binding region of a target protein and gain a better understanding of the basic biochemical 

process driving the interaction. The methodology is structure based, requiring a 3D model with 

high-resolution of the target protein generated using methods such as X-ray crystallography, 

Nuclear Magnetic Resonance Spectroscopy, or Cryo-Electron Microscopy (Chen et al, 2003, 

Agu et al, 2023). 

ZDOCK is a user-friendly protein docking server that uses rigid body docking programmes to 

predict the structures of protein-protein complexes and symmetric multimers. With the purpose 
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of offering an accessible and straightforward interface, it offers users the ability to direct the 

scoring and selection of output models, as well as dynamic visualisation of input structures and 

output docking models (Pierce et al, 2014). After protein-ligand docking is done, the findings 

are analysed to determine the most desirable candidates for future research. Binding affinity of 

each ligand is computed using the expected interaction energy, and the ligands are ordered 

accordingly. The docked structures are also examined to determine important interactions 

between the ligands and the protein, such as hydrogen bonds, hydrophobic interactions, and 

electrostatic interactions. These interactions can provide insights into the mechanisms of action 

of ligands and enable further optimisation of their structure (Chen et al, 2003, Pierce et al, 

2014, Agu et al, 2023). 

Biomolecular interactions between proteins regulate and control nearly every biological 

function in the cell. Understanding these interactions is thus an essential step in the study of 

biological systems. Many efforts have been made to understand the principles of protein-

protein interactions. The PRODIGY web-server (https://rascar.science.uu.nl/prodigy/), an 

online tool for predicting the binding affinities of a protein-protein complex based on its three-

dimensional structure (Xue et al., 2016). It is a basic yet robust binding affinity descriptor based 

solely on structural characteristics of protein-protein complex, particularly intermolecular 

interactions. PRODIGY provides binding affinity values as Gibbs free energy (ΔG, kcal/mol) 

or dissociation constant (Kd, M). PRODIGY measures the number of Interatomic Contacts 

(ICs) at a protein-protein complex interface within a 5.5 Å distance threshold and classifies 

them based on the polar/apolar/charged character of the interacting amino acids (Vangone and 

Bonvin, 2017). 

Protein stability is one of the most critical elements determining protein function, activity, and 

regulation. Missense mutations can cause protein dysfunction by altering their stability and 

interactions with other biological components. Several investigations have found that the 

mutations are harmful because they reduce or enhance the stability of the corresponding 

protein. To measure the effects on protein stability, calculation of the changes in 

folding/unfolding Gibbs free energy caused by mutations is required. The computer prediction 

https://rascar.science.uu.nl/prodigy/
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could aid in the prioritisation of possibly functionally significant variations. PremPS, a freely 

available web-server (https://lilab.jysw.suda.edu.cn/research/PremPS/), forecasts the 

consequences of stabilising mutations with a very low bias towards anti-symmetric properties 

(Chen et al, 2020). 

Protein domain identification 

For protein domain identification and analysis InterPro -EMBL-EBI, PROSITE-Expasy, 

SMART databases were used. SMART (Simple Modular Architecture Research Tool) is a 

biological database that identifies and analyses protein domains within protein sequences. 

SMART finds protein domains in protein sequences using profile-hidden Markov models 

derived from multiple sequence alignments. LRR repeats of individual TLRs were identified 

using the web interface of SMART (http://smart.embl-heidelberg.de/) (Schultz et al, 2000).  

The InterPro database (https://www.ebi.ac.uk/interpro/) classifies protein sequences into 

families, identifying functionally relevant domains and conserved regions. InterProScan is the 

core software that searches protein and nucleic acid sequences against InterPro signatures. 

Signatures are prediction models that define protein families, domains, or locations and are 

available from multiple databases. InterPro combines signatures indicating equivalent families, 

domains, or sites and includes descriptions, literature references, and Gene Ontology (GO) 

terms (Paysan-Lafosse et al, 2023). 

The PROSITE database contains an array of biologically significant signatures, which are 

classified as patterns for short motif recognition or generalised profiles for sensitive detection 

of wider domains. Such databases are valuable for predicting protein function, determining 

family identity, and detecting remote homologues. ScanProsite offers a web interface for 

identifying protein matches against signatures in the PROSITE database (Hulo et al, 2006). 

 

 

 

https://lilab.jysw.suda.edu.cn/research/PremPS/
http://smart.embl-heidelberg.de/
https://www.ebi.ac.uk/interpro/
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Statistical analysis t-test 

Correlation coefficient between variables was calculated using the available formula in 

Microsoft Excel. Significance test was performed using the freely available online tools such 

as t-test (https://www.graphpad.com/quickcalcs/ttest1/) and one-way analysis of variance - 

ANOVA (https://www.socscistatistics.com/tests/anova/default2.aspx). 
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Natural selection on genetic diversity of TLRs 

Results presented in this chapter are published in the following article: 

Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in 

mammalian toll like receptor genes. Comput Biol Chem. 2022;97:107637. 

doi:10.1016/j.compbiolchem.2022.107637 

Background 

The defense system of animal involves two type of immunity adaptive and innate immunity. 

Initially innate immune system produces an inflammatory response to block the growth and 

transmission of the pathogen during an infection. In vertebrates, in order to develop acquired 

immune response particularly receptors of Band T cell sense the infectious agents to produce 

responses that lead to its exclusion (Janeway and Medzhitov, 2002). Receptors associated with 

innate immune system are germline-encoded. They have been evolved to sense components of 

external pathogen also referred as pathogen-associated molecular patterns (PAMPs) which are 

crucial for pathogen existence or host released endogenous components in response to 

inflammation (Matzinger, 1994; Yang et al. 2010; Erridge, 2010). These receptors of innate 

immune system are located in serum, on cell surface, in endosomes, and in the cytoplasm 

(Medzhitov, 2007).  

Being an important category of pattern recognition receptors (PRRs) the toll-like receptors 

(TLRs) are seen in Drosophila and mammals. Mammal TLRs play fundamental role in 

detection of pathogen associated patterns with the initiation of signal transduction pathways 

that cause genetic expression which lead to the innate and adaptive immune responses (O'Neill, 

2009, Rakoff-Nahoum & Medzhitov, 2009). TLRs are type-I integral membrane receptors 

comprising an extracellular domain also known as ectodomain (ECD) containing leucine-rich 

repeats which facilitate the PAMPs recognition, a signal transmembrane segment, and an 

intracellular Toll–interleukin 1 (IL-1) receptor (TIR) domain for downstream signal 

transduction (Bell et al, 2003). In mammals there are thirteen TLRs discovered in mice (TLR1-

13) and ten TLRs in humans (TLR1-10). TLR1-TLR9 is found in both mice and human, TLR10 

is non-functional in mouse due to a retrovirus insertion and TLR11, TLR12 and TLR13 are not 
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found in human (Takeuchi & Akira, 2010). Depending on the subcellular distribution TLRs in 

humans can be classified into two categories: TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 

are expressed normally on the cell surface and TLR3, TLR7, TLR8 and TLR9 are commonly 

found in intracellular compartments like endosomes. These human TLRs detect various 

PAMPs such as lipopolysaccharide (TLR4), lipopeptides (TLR2 associated TLR1 or TLR6), 

bacterial flagellin (TLR5), viral dsRNA (TLR3), viral or bacterial ssRNA (TLRs 7 and 8), and 

CpG-rich unmethylated DNA (TLR9) (Akira et al. 2006). 

Genetic diversity in active genes associated with immune defense such as TLRs is interesting 

from an evolutionary perspective as these genes are an excellent model for studying the 

selective stress applied to the host genome by pathogen. These genes appear to evolve faster 

than other loci in the genome in response to pathogen that are evolving rapidly. Selection is a 

major factor in controlling the evolutionary rate of TLRs, mutation is also another factor and 

TLRs are strongly selected to maintain their functions. In different mammals innate immune 

response is not similar as some variation is there between different species in their TLRs. This 

variation is due to selective pressure on the immune system-related genes that reflect specific 

conditions experienced by each species (Bagheri and Zahmatkesh, 2018). Evolutionary 

genetics approaches have amplified to understand the evolutionary forces acting on the human 

genome that provides indispensable complement in treatment of infectious diseases. Within the 

perspective of infection, detecting the magnitude and pattern of environmental selection that 

works on the genes implicated in immune-associated procedures can deliver insight into the 

host defence mechanisms (Barreiroet al. 2009). 

Amino acids and codons are used in diverse frequencies both between genes and between genes 

within the same genome. Degeneracy of genetic code direct the use of diverse set of codons 

for producing the similar protein, procedures that create non-random usage of codons are likely 

to influence the usage of amino acids. The possible reason behind this is the neutral processes 

where composition of bases of all codons that encode an amino acid might be either GC rich 

or GC poor (Rao et al. 2014). Selection also has a significant role in determining frequencies 

of amino acid. Often genomic base compositions play a major role on the type of amino acid 
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usage; other factors like hydrophobicity, gene function, level of expression etc. also influence 

the amino acid usage. In this study mammalian TLRs are progressively investigated to examine 

the effects of environmental selection on diverse set of TLRs and factors that influence 

selection will be explored. Natural selection on different members of TLRs family will be 

studied to explore their evolutionary contribution to host defense.  

Methodology 

Sequence retrieval and multivariate analysis on amino acid usage  

Genes and their encoding protein sequences of toll-like receptors (TLR) were taken from 

GenBank, NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and Ensembl maintained by EMBL-

EBI (www.ensembl.org). By nature, amino acid usage is multivariate and need to be explored 

using statistical analysis like correspondence analysis (COA) (Peden, 2000). COA reveals 

major trends of variation in the dataset by arranging them along continuous axes where 

consecutive axis have been arranged to have diminishing effect gradually (Roy et al. 2017). 

The analyses of amino acid usage patterns of TLR genes of mammal under study were carried 

out using COA available in CodonW program. 

Parameters like relative amino acid usage (RAAU), average hydrophobicity, GC content of 

genes were calculated for each TLR sequence using available option in CodonW program. 

Correlation coefficient between variables was calculated using the available formula in MS 

Excel. Significance test was performed using the freely available online tool such as t-test 

(https://www.graphpad.com/quickcalcs/ttest1/). 

Phylogenetic analysis was performed among primate and non-primate genes of TLR. The 

sequences were aligned using the ClustalW program. The phylogenetic tree was constructed 

using Mega 7, utilizing the maximum likelihood method (Kumar et al. 2016). 

Three dimensional structural models were generated for TLR5 protein sequences through 

homology modeling using SWISS-MODEL (Waterhouse et al., 2018). TLR5 protein structure 

available in Protein Data Bank (PDB) (PDB ID: 3J0A) was used as template for homology 

http://www.ensembl.org/
https://www.graphpad.com/quickcalcs/ttest1/
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modelling with more than 99% sequence identity and 97% query coverage in case of human 

(primate mammal) and 78% sequence identity and 97% query coverage in case of cattle (non-

primate mammal). The structure of flagellin was truncated from crystal structure of the N-

terminal fragment of zebrafish TLR5 in complex with Salmonella flagellin available in PDB 

(PDB ID: 3V47). As the ectodomain of the TLRs are involved in ligand recognition, the 

interaction study was performed on TLR5 ectodomains based on the NCBI annotation (Savar 

and Bouzari, 2014; Forstnerič et al. 2016). Molecular interaction of TLR5 protein with 

flagellin was performed using Z-dock software (Pierce et al. 2014). Then, the resulting docking 

data were processed and analysed considering binding energies and main interacting residues 

in each complex by using the PRODIGY software (Xue et al. 2016). Free energy of the 

structural complexes was calculated using PremPS server (Chen et al. 2020). 

Estimation of evolutionary rate and mutational analysis 

The impact of evolution on set of genes is indicated by the ratio (ω) i.e., ratio of non-

synonymous substitution rate per non-synonymous site (Ka) to synonymous substitution rate 

per synonymous site (Ks). Where ω>1 point towards positive (diversifying) selection and ω< 

1 signify negative (purifying) selection (Roy & Basak, 2021). The rate of evolution of each 

TLR1-TLR10 group of mammals (taking consensus sequence as reference) was estimated 

using the available PAL2NAL program (Suyama & Torrents, 2006). Residue wise evolutionary 

rate of TLR gene sequences were calculated using SWAKK server (Liang et al. 2006). This 

server performs a sliding 3D window analysis to calculate the ratio of non-synonymous to 

synonymous substitution rate (Ka/Ks) of DNA sequences that encode protein. 

Positive selection test of individual codons of mammals TLR was performed using the Hyphy 

package executed in the Data Monkey Web Server that compare Ka to Ks ratio using maximum 

likelihood (ML) framework, (Weaver et al. 2018). The sequences of every TLR were analysed 

under the fixed-effect likelihood (FEL) model. This Fixed Effects Likelihood (FEL) approach 

uses maximum-likelihood (ML) method to deduce non-synonymous (dN) and synonymous 

(dS) substitution rates on the basis of per site considering a coding alignment and related 
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phylogeny. It is presumed in this method that selection pressure for each site remains constant 

throughout the phylogeny. 

Mutational analysis was performed by using a customized script to study the mutation among 

the TLR sequences. Predicted consensus sequence for each TLR was used as reference 

sequence to identify the mutation. Consensus sequences offer promising approach in screening 

proteins of high stability and retain the biological activity as it predicted based on evolutionary 

history in which residues important for both stability and function are likely to be conserved 

(Sternke et al. 2019). Occurrences of mutation in each TLR for each species were studied across 

the two functional domains. 

Results 

Correspondence analysis on amino acid usage of TLR genes 

Correspondence analysis was performed to study the amino acid usage variation of ten different 

TLR genes of mammalian origin separately. The first and second major axes accounted for 

54.5% and 20.1% of the total variation of amino acid usage respectively for TLR1 gene. Figure 

1 shows position of genes generated during correspondence analysis on the basis of amino acid 

usage across the first and second major axes. Similar pattern of distribution of the amino acid 

usage was observed for other TLRs under study. For the ten different TLR genes these first 

axis always accounted the major variation which is more than 30% of the total variation of 

amino acid usage. It is clear from the correspondence analyses that there are two clusters. One 

cluster belongs to mammal which are primates and another cluster belongs to mammal other 

than primates. For simplicity, hereafter, TLRs from primates (Human, Gorilla, Monkey, 

Chimpanzee, Orangutan, Baboon etc.) will be referred to as primate mammal (Pm) TLRs and 

TLRs from mammal other than primates will be referred to as non-primate mammal (NPm) 

TLRs. Phylogenetic tree using the TLR1 genes of Pm and NPm clearly shows that Pm and 

NPm TLR genes are present in different branches (Figure 2). Similar pattern is observed for 

other TLRs. Branching pattern of phylogenetic tree follows similar trend to that of 

correspondence analysis. 



62 
 

(1A)                                                                          (1B) 

  

(1C)                                                                         (1D) 

  

(1E)                                                                          (1F) 

  

                                



63 
 

(1G)                                                                          (1H) 

  

(1I)                                                                            (1J) 

  

Figure 1: Distribution of TLR1-TLR10 genes along the two major axes of Correspondence 

analysis (COA) based on amino acid usage (AAU) data. x-axis- Axis 1 of AAU; y-axis- Axis 

2 of AAU. Red coloured dots represent TLR gene sequences from Pm and green coloured dots 

represent TLR gene sequences from NPm. Similar pattern is observed for other TLR genes also 

as shown in figures 1A-1J. 
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(2I) 

 

(2J) 

 

Figure 2: Phylogenetic tree of Pm and NPm genes of TLR. Similar pattern is observed for 

other TLRs as shown in figures 2A-2J. 
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Now to investigate the preference of amino acids in two different clusters we have compared 

the relative amino acid usage values between Pm and NPm TLR genes. Comparisons of relative 

amino acid usage values suggested that the twenty amino acids are differently preferred among 

Pm and NPm for each TLR. From the analysis it was observed that amino acids such as Phe, 

Met, Thr, Lys, Glu, Cys were mostly preferred in Pm TLRs whereas amino acids such as Leu, 

Pro, Ala, Asp, Arg, Gly were mostly preferred in NPm TLRs. 

We have performed molecular docking study between TLR5 (Homo sapiens for primate and 

Bos indicus for non-primate) and flagellin (pathogen receptor). We have identified the 

preferred residues those are interacting with the flagellin and when substituted these residues 

with GC-rich/GC-poor, as the case may be, the stability of the TLR5-flagelin complex 

decreased (Figure 3).   

Since axis1 (horizontal axis) accounts major variation for each TLR in COA, further analysis 

is performed on the basis of distribution of mammal TLR genes along the horizontal axis of 

correspondence analysis. Significant correlation was observed between the gene position along 

the horizontal axis and hydrophobicity (r=0.533, p<0.05) and GC-content of the encoded 

proteins (r=0.745, p<0.01). Significant correlation of axis1 with GC1 (r=0.714, p<0.05), GC2 

(r=0.689, p<0.05), GC3 (r=0.668, p<0.05) content of the encoded proteins were also observed.  

We have compared the average GC content of TLR genes for Pm and NPm. The average GC 

content of TLR genes are 42.6% and 44.6% for Pm and NPm respectively. The difference of 

GC content of TLR genes between Pm and NPm is statistically significant (P<0.01). As the 

NPm TLR genes have higher GC content we may expect GC-rich amino acids would be 

preferred in NPm. Indeed, we observed that average composition of four GC-rich amino acids 

(Du et al., 2018) (Ala, Arg, Gly, and Pro) are higher in NPm TLR genes and the compositions 

of four GC-rich amino acids are positively correlated with GC contents (r=0.836, p<0.001) of 

the NPm TLR genes. On the other hand, we observed that average composition of AT-rich 

amino acids (Phe, Ile, Tyr, Asn and Lys) are higher in Pm TLR genes and their compositions 

are also positively correlated with AT-contents (r=0.673, p<0.001) of Pm TLR genes. All these 
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results support that amino acid usage have been shaped under the influence of GC-content of 

TLR genes. 

3(A) 

     (i)                                                                      (ii) 

 

3(B) 

     (i)                                                                       (ii) 

 

Figure 3(A): Interaction profile of a representative mutation F299G in Pm TLR5 protein 

indicating GC-poor to GC-rich amino acid substitution. GC-poor amino acids are preferred in 

Pm. The structural stability decreases when F (Phenyl alanine) is substituted by G (Glycine). 

(i) Wild type residue F299 having one polar interaction (sky), and one hydrophobic (blue) 

interaction. (ii) Mutant type residue 299G having one polar interaction (sky). 3(B): Interaction 

profile of a representative mutation R2262K in NPm TLR5 protein indicating GC-rich to GC-

poor amino acid substitution. GC-rich amino acids are preferred in NPm. The structural 

stability decreases when R (Arginine) is substituted by K (Lysine).(i) Wild type residue R262 

having one polar interaction (sky) and one van der Waals (green) interactions. (ii) Mutant type 

residue 262K having one polar interaction (sky). Results are generated using PremPS server. 

ΔΔG value in both the cases is positive which indicates destabilizing mutation. 
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Impact of evolutionary selection pressure on TLR Genes. 

We observed presence of purifying selection across all the TLR genes (both Pm and NPm) by 

comprehensive analysis of evolutionary rates. However, residue specific measurement of 

evolutionary rate shows differences of positively selected sites between Pm and NPm TLRs. 

Site-specific selection across the ligand binding domain also showed the same trend. These 

observations indicate stronger selection pressure on NPm TLR genes compared to Pm TLR 

genes. Positively selected sites among Pm and NPm TLRs are shown in Table 1. 

The evolutionary parameters such as Non-synonymous substitution (Ka), synonymous 

substitution (Ks), ratio of non-synonymous and synonymous substitution (Ka/Ks) were found 

to differ significantly among Pm and NPm TLRs. Significant difference of these parameters 

was also observed across the two functional domains of Pm and NPm TLRs. These results are 

shown in Table 2. We have also found significant correlation of evolutionary parameters with 

axis1 of correspondence analysis on amino acid usage. Significant correlation of axis1 is 

observed with Ka in seven TLR genes, Ks in six TLR genes; Ka/Ks in five TLR genes. 
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Table 1: Distribution of positively selected sites among Pm and NPm TLRs. 

 

 

 

 

 

 

 

 

Genes No. of species 

 

Total sites Total 

positively 

selected 

sites 

 

Positively 

selected 

sites in 

ligand 

binding 

domain 

% positively 

selected site 

% positively 

selected site 

in ligand 

binding 

domain 

 Tot

al 

Pm NPm Pm 

(length 

aa) 

NPm 

(length 

aa) 

Pm NPm 

 

Pm NPm 

 

Pm 

(%) 

NPm 

(%) 

Pm 

(%) 

NPm 

(%) 

TLR1 21 

 

10 11 786 796 1 9 1 5 0.127 1.13 0.127 0.62 

TLR2 26 10 16 784 785 0 13 0 12 0 1.65 0 1.52 

 

TLR3 22 7 15 904 905 0 13 0 12 0 1.43 0 1.32 

 

TLR4 22 8 14 839 844 1 32 1 28 0.119 3.79 0.119 3.31 

 

TLR5 17 8 9 858 874 0 6 0 3 0 0.68 0 0.34 

 

TLR6 22 10 12 796 810 0 14 0 9 0 1.72 0 1.11 

 

TLR7 24 9 15 1049 1058 0 17 0 15 0 1.6 0 1.41 

 

TLR8 20 7 13 1041 1091 0 20 0 18 0 1.83 0 1.64 

 

TLR9 22 7 15 1032 1034 1 2 0 2 0.09 0.19 0 0.19 

 

TLR10 23 12 11 811 822 0 15 0 10 0 1.82 0 1.21 

 



73 
 

Table 2: Significance test of evolutionary parameters among Pm and NPm TLR genes and 

across the domains. Extracellular domain of TLR (ECD), Intracellular domain of TLR (TIR) 

and tick mark indicates significant difference. 

 

Correlation of evolutionary parameters with GC-content and mutational analysis. 

We already observed the correlation between GC content and amino acid usage variation of 

TLRs through correspondence analysis. It was also found that evolutionary parameters differ 

significantly among Pm and NPm TLR genes. Furthermore, these evolutionary parameters 

such as Ka, Ks and Ka/Ks was correlated significantly with the GC content of TLR genes 

among mammalian species (p<0.05) (Table 3). Thus, GC content is playing an important role 

in the evolution process of amino acid sequences for most of the TLRs among Pm and NPm.  

Mutations were identified for both Pm and NPm TLRs over the entire TLR sequences. But 

more mutations are observed in the ligand recognition domain. It endorsed that ligand 

recognition domain is more prone to mutation than the signaling domain. Rate of evolution 

(Ka/Ks) in the extracellular ligand recognition domain is more compared to intracellular 

signaling domain for most of the TLRs in both Pm and NPm.  

 

 

 
Pm & NPm genes ECD of Pm & NPm genes TIR of Pm & NPm genes 

 
Ka Ks Ka/Ks Ka Ks Ka/Ks Ka Ks Ka/Ks 

TLR1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

TLR2 ✓ ✓ 
 

✓ ✓ ✓ ✓ ✓ 
 

TLR3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
 

✓ 

TLR4 
  

✓ ✓ 
  

✓ ✓ 
 

TLR5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

TLR6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

TLR7 
 

✓ ✓ ✓ ✓ ✓ 
 

✓ ✓ 

TLR8 
    

✓ ✓ 
 

✓ 
 

TLR9 ✓ 
 

✓ ✓ 
 

✓ ✓ ✓ 
 

TLR10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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Table 3: Correlation study of GC content with evolutionary parameters of TLRs. 

 

Amino acid usage pattern of TLRs based on subcellular distribution. 

Since TLRs are classified into extracellular and intracellular based on the subcellular 

distribution we have analyzed the amino acid usage pattern of Pm and NPm TLR genes 

individually. Differential amino acid usage patterns were noticed where extracellular and 

intracellular TLRs formed different clusters in case of Pm and NPm. In case of Pm, 

extracellular TLR1, TLR2, TLR6, TLR10 formed one cluster; TLR4, TLR5 were found in 

different clusters and intracellular TLR3, TLR7, TLR8 were present in different cluster from 

TLR9. In the same way, in case of NPm intracellular TLR3, TLR7, TLR8 were in different 

cluster and TLR9 formed another cluster. But NPm extracellular TLR1, TLR2, TLR4, TLR6, 

TLR10 were grouped into one cluster and TLR5 found in separate cluster. These extracellular 

and intracellular TLRs were distributed along the major axis shown in Figure 4. Evolutionary 

parameters were also checked between these two clusters of extracellular and intracellular 

TLRs in case of Pm and NPm respectively. The parameters Ka, Ks and Ka/Ks were found to 

differ significantly among these clusters. Hence, subcellular distribution is also governing the 

amino acid variation of TLRs for Pm and NPm independently where evolutionary selection is 

the most important aspect. 

  

GC 

content Ka 

Correlation 

significant at Ks 

Correlation 

significant at Ka/Ks 

Correlation 

significant at 

TLR1 0.403 0.0743 p < .01 0.1756 p < .01 0.4505 p < .05 

TLR2 0.441 0.0850 p < .01 0.2391 p < .01 0.4008 p < .01 

TLR3 0.403 0.0615 p < .01 0.2243 p < .01 0.2879 p < .05 

TLR4 0.438 0.0994 p < .01 0.2164 p < .01 0.4829 p < .10 

TLR5 0.452 0.0768 p < .01 0.2415 p < .01 0.3781 p < .01 

TLR6 0.395 0.0677 p < .01 0.1883 p < .01 0.3838 p < .01 

TLR7 0.410 0.0470 not significant 0.1671 not significant 0.2945 not significant 

TLR8 0.418 0.1015 p < .01 0.3902 p < .01 0.4007 p < .01 

TLR9 0.628 0.0685 not significant 0.4410 not significant 0.1596 not significant 

TLR10 0.389 0.0607 p < .01 0.1516 p < .01 0.4020 not significant 
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Discussion 

The systematic study of the amino acid usage across various mammalian TLRs revealed that 

amino acids are used in diverse pattern among TLR genes of Pm and NPm species. In spite of 

similar anatomy and physiology between Pm and NPm there is disparity in amino acid usage 

pattern of TLRs observed in them. One key difference between these species is that primates 

possess a voluminous and complicated forebrain whereas non-primates possess a small brain.  

Correspondence analyses established hydrophobicity and genomic GC content as the most 

important features causing the TLR wise variation of amino acid usage in mammal. It depicts 

that these factors are causing the variation in the immune response among species of a 

particular TLR. Significant correlation of hydrophobicity is observed among TLRs. The 

extracellular TLR domains are composed of leucine-rich repeats (LRR) that usually contain 

22–29 length residues and have periodic hydrophobic residues positioned at discrete intervals. 

In three dimensions during assembling into protein multiple repeats shape as solenoid like 

structure, where consensus hydrophobic residues pointed inside to make a stable core of the 

structure (Botos et al. 2011). Hydrophobic residues becoming an influencing factor for amino 

acid usage variation of TLR genes among Pm and NPm. GC content is another influencing 

factor as amino acid usage of TLRs is significantly correlated with GC content. Guanine and 

cytosine bases proportion in the DNA molecule (GC content) being an essential qualitative 

aspect of genomic architecture is discussed frequently in humans and other vertebrates such as 

birds, mammals in relation to the evolution of the isochore structure (Šmardaet al. 2014).  

Amino acid usage pattern study also revealed that individual Pm and NPm TLRs distribution 

based on subcellular location extracellular and intracellular is different. Depending on 

subcellular location functionality of TLRs become different due to dissimilar PAMP 

recognition. Cell surface expressed TLRs such as TLR1, TLR2, TLR4, TLR5, TLR6 and 

TLR10 mostly recognise microbial membrane components like lipoproteins, lipids; TLR3, 

TLR7, TLR8 and TLR9 expressed in intracellular vesicles like endoplasmic reticulum (ER), 

endosomes, lysosomes and endolysosomes and sense microbial nucleic acids (Kawai and 
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Akira, 2010). These factors affecting Pm and NPm TLRs which are showing distinct amino 

acid usage pattern between extracellular and intracellular TLRs. 

Evolutionary analysis has suggested that purifying selection is the major force working on 

TLRs. Presence of codons that are selected positively indicates selective pressures on these 

immune genes lead to the most noticeable changes in the ectodomain, particularly in the 

variable section accountable for direct interaction with PAMPS. More mutation is observed in 

the extracellular domain due to the direct interaction with pathogen. Overall selective pressure 

within the innate immune system is stronger in non-primate mammal species compared to 

primate mammal species. The relation between GC contents and Ka, Ks, Ka/Ks values of TLR 

genes from different mammal species were observed. Correspondingly, Ka, Ks, Ka/Ks values 

changes with change in GC contents. The GC content is therefore consistent with the 

evolutionary process of amino acid sequences and contributes to the evolutionary level as a 

key component of amino acids between Pm and NPm TLRs. The GC content influences the 

emergence of proteins due to energy costs, and both the combination of bases and amino acids 

is involved in this process (Du et al. 2018). 

   

Figure 4: Distribution of TLR genes along the two major axes of Correspondence analysis 

(COA) based on amino acid usage (AAU) data. X-axis- Axis 1 of AAU; y-axis- Axis 2 of 

AAU. (A) TLR gene sequence of Pm, (B) TLR gene sequence of NPm. Violet coloured dots 

represent extracellular TLR gene sequences and green coloured dots represent intracellular 

TLR gene sequences. 
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Conclusion 

This study reveals differential patterns of amino acid usage, evolutionary constraints of TLR 

genes among Pm and NPm. Amino acid composition has a significant impact on the level of 

TLR emergence and this is also affected by GC content. Identification of genes associated with 

immunity that evolves in a different way across Pm and NPm TLRs might facilitate the 

understanding of genetic basis for the differences in disease susceptibility (Quach et al. 2013). 

The greater extent of deviation in selection that constrain the evolution of Pm and NPm TLRs 

will enhance our understanding of the biological contribution of TLRs to host defence in 

natural setting. This study presented the divergence in the biological significance of different 

TLRs and offer evidences for their diverse contributions in response to host defense. 
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 Evolutionary dynamics in TLR evolution 

Results presented in this chapter are published in following article: 

Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLR9 through ancestral sequence 

reconstruction. Immunogenetics. 2024;76(3):203-211. doi:10.1007/s00251-024-01338-8 

Background 

Toll-Like Receptors (TLRs) are considered as the primary sensors of invading microbial 

pathogen in the innate immune system because they detect pathogen-associated molecular 

patterns (PAMPs). Since the early discovery of a Toll protein in the fruit fly Drosophila 

melanogaster thirteen members of the TLR family have been identified in human (TLR1-

TLR10) and mouse (TLR1-TLR13) (Zhou et al. 2013). It seems that most mammalian species 

share a similar repertoire of TLR homologs though with few exceptions (Nie et al. 2018). TLRs 

are type I integral membrane glycoproteins with a pathogen binding ectodomain (ECD) and a 

cytoplasmic signalling domain connected by a single transmembrane helix (Zhou et al. 2013). 

Mammalian TLR pathogen-binding ectodomains contain 19-25 extracellular leucine-rich 

repeats (LRRs) and a cytoplasmic toll/interleukin (IL)-1R (TIR) domain. LRRs comprising 24-

29 amino acids responsible for ligand recognition and binding, while the TIR domain is 

responsible for downstream signalling (Botos et al. 2011). Surface-expressed TLRs (TLR 1, 2, 

4, 5, 6 and 10) typically identify pathogen structural components, whereas endosomal TLRs 

(TLR 3, 7, 8, and 9) recognise nucleic acid. TLRs respond to a variety of pathogen-associated 

molecular patterns (PAMPs) in humans, including lipopolysaccharide (TLR4), lipopeptides 

(TLR2 associated with TLR1 or TLR6), bacterial flagellin (TLR5), viral dsRNA (TLR3), viral 

or bacterial ssRNA (TLRs 7 and 8), and CpG-rich unmethylated DNA (TLR9) (Takeda and 

Akira 2005; Vidya et al. 2018).  

TLR9 is an endosomal receptor that detects bacterial DNA/CpG-containing 

oligodeoxynucleotides (CpG ODN). TLR9-mediated signalling is initiated within the 

endosome by the sequential recruitment of adaptor proteins, which in turn activates critical 

downstream transcription factors. Various preclinical studies showed the efficacy TLR9 

agonists individually and in combination with other agents (Karapetyan et al. 2020). 
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Interaction of unmethylated CpG DNA with TLR9 activates immune responses through 

MyD88-dependent signaling pathway. Human trials have shown that CpG DNA can act as an 

adjuvant and boost the immunogenicity of the hepatitis vaccine. These findings highlight the 

importance of TLR ligands in triggering adaptive responses and providing new adjuvants in 

vaccine formulation (Cook et al. 2004). 

Biological sequences have long been recognised as a record of evolutionary history, with 

accumulating mutations recording species relationships and the mechanisms driving their 

evolution. To avoid the recognition by the host immune system pathogens involved in 

recognition evolve faster. With the evolving pathogen the host receptor that recognize the 

pathogen also evolve to keep pace with the changes in the pathogen. These modifications in 

receptor can be detected as the positive selection signatures or mutation (Areal et al. 2011). 

From an evolutionary perspective, genetic variation in TLR genes linked with immunological 

defence is important because these genes provide a good model for investigating pathogen-

induced selective stress on the host genome (Roach et al. 2005). In response to rapidly evolving 

pathogens, these genes appear to evolve quicker than other locations in the genome (Ghosh et 

al. 2022). Given enough genetic information from different species, the temporal accumulation 

of mutations can be used to reconstruct sequences from their common ancestors. These 

ancestral reconstructions serve as the foundation for many of molecular evolution approaches 

now a days, such as phylogenetic trees and sequence selection tests (Muffato et al. 2023). The 

Ancestral sequence reconstruction (ASR) approach begins with a multiple-sequence alignment 

(MSA) of the collection of relevant homolog sequences and considers evolutionary information 

depicted by the phylogenetic tree. It is a probabilistic strategy that investigates the deep 

evolutionary history of homolog sequences in order to reassemble the evolutionary trajectory 

of a protein. ASR can reveal sequences of long-extinct genes and organisms from which the 

current ones evolved, making it an important tool in evolutionary biology (Gumulya and 

Gillam 2017). Since the advent of sequencing, the reconstruction of ancestral sequences, 

particularly genes, has been studied extensively. Advanced methods exist to retrace the history 
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of sequence substitutions and leverage changes in substitution dynamics to answer specific 

evolutionary problems (Merkl and Sterner 2016). 

Study of the sequence-based feature like differential amino acid usage and impact of various 

factors on TLRs will facilitate us to comprehend the evolutionary factors that affect innate 

immune genes. The evolutionary genetics approach to identify the extent of natural selection 

acting on these genes and the gradual changes that leads to the divergence will enhance our 

understanding about the mechanism of host defence mediated by TLRs.  

Methodology 

Data retrieval and multivariate statistical analysis 

Sequences of mammalian toll-like receptor (TLR) genes and their encoding proteins 

representing different group of TLR such as TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, 

TLR8, TLR9, TLR10 were obtained from GenBank, NCBI. Toll-like receptor gene sequences 

were searched by using the search option available at NCBI website and mammalian species 

have been selected under species selection for the search operation. The output of the search 

operation provides coding sequence of a particular TLR. These coding sequences and their 

corresponding protein sequences were downloaded. TLR gene sequences from primates, 

rodents, artiodactyls, proboscides, perissodactyls, lagomorphs, chiropters were taken for the 

analysis. Sequences containing ambiguous character (other than A, T, G, C) and internal stop 

codons were removed from the retrieved dataset. The list of mammalian taxa chosen to 

investigate in this study along with their accession numbers are provided in the Supplementary 

Table1.  

Amino acid usage is a multivariate feature by nature and studied using statistical analysis such 

as correspondence analysis (CoA) (Peden, 2000). CoA is an efficient method to explore the 

variation in the dataset and it reveals major tendencies of data disparities by placing them along 

continuous axes according to the differential trends observed, with each consecutive axis 

having a diminishing effect (Roy et al. 2017). CoA on the basis of amino acid usage (AAU) of 

TLR gene sequences was generated using CodonW. Estimation of physicochemical properties 
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like hydrophobicity, GC-content, GC3 values, effective number of codons (ENC), aromaticity 

of the study sequences was also performed using the CodonW program. Correlation study of 

the parameters were executed in Microsoft Excel. Significance test was done using the freely 

available web program QuickCalcs-Graphpad. 

Evolutionary analysis and phylogenetic tree construction  

Evolutionary selection acting on the genes under study are addressed by evolutionary rate (ω). 

ω is estimated as the ratio of the rate non-synonymous substitutions per non-synonymous site 

(Ka) and the rate of synonymous substitutions per synonymous site (Ks). ω > 1 indicates 

positive (diversifying) selection, whereas, ω < 1 indicates negative (purifying) selection. For 

each TLR group (Example: TLR1) their consensus nucleotide sequences (Example: 

TLR1_consensus) were generated. We have prepared a Perl script for generating these 

consensus sequences. Downloaded nucleotide sequences and the consensus sequence of each 

TLR groups were subjected to Clustal Omega program (Madeira et al. 2022) for the nucleotide 

sequence alignment. This program Clustal produces biologically meaningful multiple sequence 

alignments of divergent sequences. Then the evolutionary rate of the TLR genes (TLR1-

TLR10) of each TLR group (Example: TLR1) were estimated relative to their consensus 

(Example: TLR1_consensus) sequences using Codeml program of the PAML software (ver. 

4.5) with runmode = −2 and CodonFreq= 1 (Nei and Gojobori 1986; Yang 2007).  

The protein sequences of all the mammalian TLRs were subjected to the multiple sequence 

alignment using Clustal Omega program (Madeira et al. 2022). Alignment result was saved in 

fasta format for further analysis. Then using that alignment construction of phylogenetic tree 

was done applying the maximum likelihood method with thousand bootstrap replicates in the 

MEGAX software (Kumar et al. 2018). 

Reconstruction of Ancestral Protein Sequences 

Common ancestral protein sequence of mammalian TLRs were predicted using FireProtASR 

(ancestral sequence reconstruction) v1.1 webserver with default parameter settings (Musil et 

al. 2021). Analyzing ancestral sequences in an evolutionary context to infer the ancestral 
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sequences at certain nodes of a tree termed as ASR. Reconstructing ancestral sequences is a 

well-established method for inferring the evolutionary history of genes. Along with the 

application in the discovery of most probable evolutionary ancestors of study protein, it has 

been a useful approach for the design of extremely stable proteins. This protocol enables the 

implementation of the automated workflow FireProtASR allowing various form of inputs and 

advance settings (Khan et al. 2021). All reconstruction methods involve a phylogenetic tree 

inferred from a given alignment. The quality of the tree is crucial for the reliable reconstruction. 

We have provided the multiple sequence alignment and the phylogenetic tree of all mammalian 

TLR sequences as input for our study. Upon submitting input data, the server will execute the 

dataset and reconstruct ancestral nodes along with their sequences. 

Analysis of the ancestral sequences  

We have performed sequence based and structural analysis of the identified ancestral sequences 

to accomplish our study. Clustal Omega program, a widely used package for carrying out 

multiple sequence alignment (Madeira et al. 2022) was used for the alignment of the ancestral 

protein sequences. Prediction of three-dimensional structural models of ancestral proteins were 

performed using AlphaFold2 (Mirdita et al 2022). It is an artificial intelligence system 

developed by DeepMind that can predict three-dimensional structures of proteins from amino 

acid sequences with higher accuracy (Yang et al 2023).  

Pairwise structure alignment was performed using the structural alignment tool available in 

Protein Data Bank (https://www.rcsb.org/alignment). This web-based tool enables alignment 

of one or more structures to a particular reference structure that can be accessible from the 

‘Analyze’ section of the menu bar. In superposed structures, RMSD is calculated between 

aligned pairs of the backbone C-alpha atoms. Smaller RMSD indicate better structure 

alignment between the two structures. TM-score (template modeling score) is a measure of 

topological similarity between the template and model structures. It ranges between 0 and 1, 

where 1 indicates a perfect match and 0 is no match between the two structures. Scores < 0.2 

usually indicate that the proteins are unrelated while those >0.5 generally have the same protein 

fold in SCOP/CATH (Zhang and Skolnick 2005).  
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Protein domains of the ancestral sequences were annotated using ScanProsite tool (de Castro 

et al. 2006). Evolutionary parameters such as rate of non-synonymous substitutions per non-

synonymous site (Ka) and rate of synonymous substitutions per synonymous site (Ks) of the 

ancestral sequences were analysed with respect to the root node sequence of the phylogenetic 

tree (Nei and Gojobori 1986; Yang 2007). Interaction of the ancestral protein sequences and 

Human_TLR9 sequence that have been used as a reference for the remaining species (Zhou et 

al. 2013) with the CpG ODN (Areal et al. 2011) was studied in the HDOCK. This web server 

enables hybrid docking algorithm of template-based modeling and free docking. The server 

supports protein–protein and protein–DNA/RNA docking and accepts both sequence and 

structure inputs for proteins. The docking scores are calculated through a knowledge-based 

iterative scoring function in this tool. A more negative docking score means a more possible 

binding model (Yan et al. 2017). 

Results 

Amino acid usage pattern of toll-like receptor genes 

We used mammalian toll-like receptor (TLR1-TLR10) gene sequences to investigate the amino 

acid usage (AAU) pattern through correspondence analysis (CoA). Mutations are accumulated 

in TLR genes through various evolutionary processes. These mutations lead to the change in 

amino acid composition of TLRs. The CoA on the amino acid usage of mammalian TLR genes 

was performed to study the impact of such changes on the functionality of the encoded TLR 

proteins. The distribution of genes along the two major axes of the correspondence analysis is 

shown in Figure1. The first and second major axes accounted for 57.57% and 10.76% of the 

total variation of amino acid usage. A clear separation of the amino acid usage pattern of TLR9 

genes with respect to other TLR (TLR1-TLR8 and TLR10) genes has been observed. Because 

the horizontal axis of correspondence analysis accounts for the majority of variation of the 

TLRs in CoA further analysis was carried out based on the distribution of mammalian TLR 

genes along this axis. 
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Figure 1: Distribution of mammalian toll-like receptor (TLR) genes along the two major axes 

of correspondence analysis (CoA) on amino acid usage. Distinct pattern of amino acid usage 

of TLR9 genes (violet) are marked with the red circle. 

Change in amino acid usage of a gene may affect the various physicochemical properties of 

TLR gene. We have calculated various physicochemical parameters of TLR gene sequences to 

understand the factor driving this distinct amino acid usage pattern among them. The 

parameters such as hydrophobicity, GC-content, GC3 values, effective number of codons 

(ENC), aromaticity was found to differ significantly (p < .05) between TLR9 and other TLR 

(TLR1-8, TLR10) genes. Significant correlation was observed between the gene position along 

the horizontal axis and hydrophobicity (r = -0.346, p < .01), GC-content (r = -0.977, p < .01), 

GC3 values (r = -0.96, p < .01), effective number of codons (ENC) (r = 0.825, p < .01) and 

aromaticity (r = 0.437, p < .01) of the encoded protein. These correlation values indicate that 

the physicochemical parameters are contributing in the distinct amino acid usage pattern off 

TLR9.  

Highly significant negative correlation with GC content, GC3 value indicated the influence of 

the codon bias. To better understand the relation between gene composition and codon bias an 
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ENC–GC3 scatter diagram was prepared as shown in Figure2. Such ENC–GC3 plots has been 

widely used to determine whether codon usage of a gene is shaped by natural selection. 

Significant correlation was observed between ENC and GC3 values (r = -0.837, p < .01). The 

solid line represents the expected curve in Figure2. TLR genes (TLR1-TLR8, TLR10) those 

lie on the expected curve indicate codon usage bias is only affected by mutation pressure. TLR9 

genes are placed away from the expected curve, indicates that its evolution is shaped by the 

influence of natural selection.  

 

Figure 2: The plot of ENC–GC3 for mammalian toll-like receptor genes. The solid line 

represents the expected curve (blue). TLR genes (TLR1-TLR8, TLR10) those lie on the 

expected curve indicate codon usage bias is only affected by mutation pressure. TLR9 genes 

those are away from the expected curve indicates the influence of natural selection. 
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Evolutionary selection analysis 

Analysis of evolutionary selection can identify specific cases of adaptation as well as general 

principles that guide evolution. Analysis of evolutionary processes to distinguish between 

neutral and adaptive changes is thus very important.  To understand effect of evolutionary 

selection on the distinct amino acid usage pattern of TLR9, we have analyzed the evolutionary 

parameters such as Non-synonymous substitution (Ka), synonymous substitution (Ks), ratio of 

non-synonymous and synonymous substitution (Ka/Ks) of the mammalian TLR genes. 

Analysis of these parameters are important for the study of the dynamics of molecular evolution 

of TLRs. Results were compared between TLR9 and other TLR genes as we obtained the 

difference in amino acid usage pattern between them. We found significant difference of Ks 

and Ka/Ks between TLR9 and other TLRs but Ka was not statistically significant in all the 

cases. Average value of Ks is more and Ka/Ks is less in case of TLR9 cluster. In spite of overall 

purifying selection on TLR genes significant difference of non-synonymous substitution (Ka), 

synonymous substitution (Ks), ratio of non-synonymous and synonymous substitution (Ka/Ks) 

is observed. These results suggest that the evolution of TLR9 genes is highly influenced by 

synonymous substitution (Ks). 

Ancestral sequence reconstruction  

Ancestral sequence reconstruction is the calculation of ancient protein sequences on the basis 

of extant ones. Previous analysis suggests that TLR9 shows distinct pattern of amino acid usage 

and highest synonymous substitution rate with respect to other TLR genes. Thus, the ancestral 

sequence reconstruction through phylogenetic tree has been performed to reconstruct the 

evolutionary paths of the TLR protein family to study the key mechanism of the molecular 

evolution of TLR9. Ancestral sequence reconstruction phylogenetic tree of mammalian toll-

like receptor generated from the software is shown in Supplementary Figure3. In this figure 

various TLR genes (For Example: TLR1, TLR2, TLR3.etc.) are marked with different colors 

and Nodes are assigned with Node number. All the TLR9 genes are marked in red and their 

ancestral Node is denoted by Node 235. Similarly, all the TLR7 and TLR8 genes are marked 

in orange and their ancestral Node is denoted by Node 256. TLR3 and TLR5 genes are marked 
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in blue and their ancestral Node is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and 

TLR10 genes are marked in green and their ancestral Node is denoted by Node 337. Node226 

denoted the root node that leads to the evolutionary path of TLRs through Node 232, Node 

233, Node 234. This entire evolutionary route of divergence of various TLRs from their 

common ancestor is schematically represented in Figure4. Here also the common root node is 

Node226. All other TLRs have been evolved from this via intermediate nodes. For example, 

Figure4 also depicts evolution of TLR9 from Node226 via Node235. Similarly, the 

evolutionary path of other TLRs from the root can be easily understood from Figure4 which is 

a simplified diagrammatic representation of evolutionary paths of various TLRs from root. 
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Figure 3: Phylogenetic tree of mammalian TLRs are marked with different colors and Nodes 

are assigned with Node number. All the TLR9 genes are marked in red and their ancestral Node 

is denoted by Node 235. Similarly, all the TLR7 and TLR8 genes are marked in orange and 

their ancestral Node is denoted by Node 256. TLR3 and TLR5 genes are marked in blue and 

their ancestral Node is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and TLR10 genes 

are marked in green and their ancestral Node is denoted by Node 337. Node226 denoted the 

root node that leads to the evolutionary path of TLRs through Node 232, Node 233, Node 234. 

This entire evolutionary route of divergence of various TLRs from their common ancestor is 

schematically represented in Figure4. Here also the common root node is Node226. All other 

TLRs have been evolved from this via intermediate nodes.  
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Figure 4: Simplified schematic representation of the selection of ancestral nodes from the 

phylogenetic tree. Node226 denotes the root node and the evolutionary pathway that leads to 

TLR9 follows via Node232, Node233, Node234, Node235. Node227 denotes the ancestral 

node of TLR11,12,13, Node337 denotes ancestral node of TLR1,2,4,6,10, Node299 denotes 

ancestral node of TLR3,5 and Node256 denotes ancestral node of TLR7,8. 

Analysis of the ancestral sequence  

We accomplished our study through sequence based and structural analysis on the selected 

ancestral nodes that encompasses the evolutionary path of TLR9. Sequence based analyses 

such as multiple sequence alignment of the ancestral sequences, analysis of the functional 

domains, estimation of synonymous and nonsynonymous substitution was performed in order 

to understand the gradual changes occurred during TLR9 evolution. Structural studies were 

also performed to assess the functional changes.   

Multiple sequence alignment (MSA) generated a percent identity matrix of the protein 

sequences to provide an overview of the similarities between the sequences. The heatmap of 

the percent identity matrix reported from the alignment is displayed in Figure5. Higher 

sequence identity of TLR9 with its immediate ancestor (Node235) but lower sequence identity 

with the root (Node226) was observed. It suggests that the continuous changes in sequence 

level along the ancestral lineages lead to the distinct sequence pattern of TLR9. Prediction of 

domain of the selected protein sequences was done and the number of LRR in the ectodomain 

was calculated. The orientation of LRRs in the ancestral lineages was different compared to 
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Human_TLR9 and its immediate ancestral node. LRRs are the important components of the 

functional domains of TLRs that recognize the pathogen associated molecular pattern (PAMP). 

Variation in the number of LRR in the ancestors of TLR9 was observed (Figure6). It suggests 

that during the evolution the variations among the LRRs of the ancestral nodes contributed to 

the specific pattern recognition of TLR9. 

To observe these differences in structural level structural models of the ancestral nodes and 

Human_TLR9 from the existing TLR9 group were prepared and compared through pairwise 

structural alignment (Supplementary File1). Root mean square deviation (RMSD) and TM-

score (template modeling score) were important metric in this analysis. The RMSD values of 

TLR9 with the root node was higher compared to the other ancestral nodes and it gradually 

decreased in other nodes. These observations also showed more deviation of TLR9 from root 

with respect to other TLRs along the ancestral nodes in the evolution of TLR9. For all the 

pairwise structural alignment TM-score variation was observed but the values indicated that 

they are in the same protein fold.  

TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG 

ODN) as PAMP within the endosomal compartment. Interaction study of ancestral proteins 

with this known ligand of Human_TLR9 was performed. It will help to understand how the 

present ligand is selected through evolution facilitating stronger interaction with TLR9. 

Interaction of Human_TLR9 and CpG ODN was also studied. Docking score of all the 

interactions are shown in Figure7. Highest docking score observed in case of Human_TLR9 

indicated the most compatible interaction of the ligand with present TLR9. It reveals that TLR9 

achieved its present conformation through the structural changes in the ancestral nodes during 

the course of evolution. Present TLR9 is very specific in recognizing its ligand as the ancestral 

nodes showed comparatively less stable interaction with this ligand. 

Assessment of the evolutionary impact on the ancestral node sequences was also done by 

measuring the changes in non-synonymous substitution (Ka), synonymous substitution (Ks), 

ratio of non-synonymous and synonymous substitution (Ka/Ks) (Figure8). Gradual increase of 
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Ks from root to the other ancestral nodes was seen and it became extremely high in 

Human_TLR9. Ka value is also high in Human_TLR9 compared to the ancestral sequences. 

Due to high value of Ks the Ka/Ks value became very low in Human_TLR9. Influence of 

synonymous substitution have been shaping the TLR9 evolution compared to its ancestral 

nodes. 

 

Figure 5: Heatmap showing percent identity matrix of proteins obtained from multiple 

sequence alignment, colours correspond to the percent identity with high values (red), medium 

values (white) and low values (blue). Values in the box represent sequence homology in 

percentage. Higher sequence identity of TLR9 with its immediate ancestor (Node235) but 

lower sequence identity with the ancestral nodes was observed. 
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Figure 6: Number of LRR present in the TLR genes and the ancestral nodes are shown in the 

bar plot. Number of LRR in human_TLR9 is decreased from its immediate ancestor Node235. 

Figure 7: Docking score of the interaction analysis between selected sequences and known 

ligand of CpG DNA of TLR9. Highest docking score is observed in case of TLR9. 
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Table 1: Pairwise structural alignment results of the ancestral proteins and TLR9. All the 

selected ancestral sequences were compared with each other through pairwise structural 

sequence alignment. Two important metrics of this study are RMSD (Root mean square 

deviation) and TM-score (template modeling score). RMSD values of TLR9 were less when 

compared with the immediate ancestors but higher when compared with other ancestral nodes. 

TM-score values indicated that they are in the same protein fold. 

 

Reference Target RMSD 
TM-
score 

Sequence 
Identity 

Reference Target RMSD 
TM-
score 

Sequence 
Identity 

Node226 

Node227 4.23 0.5 34% 

Node299 

Node226 5.06 0.54 34% 
Node232 5.84 0.53 21% Node227 1.44 0.89 50% 
Node233 5.76 0.49 16% Node232 3.51 0.55 31% 
Node337 1.46 0.85 66% Node233 4.65 0.61 37% 
Node299 5.06 0.54 34% Node337 4.55 0.55 30% 
Node234 5.67 0.52 14% Node234 4.09 0.61 23% 
Node256 5.67 0.52 14% Node256 4.06 0.6 22% 
Node235 5.74 0.53 15% Node235 3.37 0.62 24% 
TLR9 4.44 0.44 19% TLR9 3.35 0.62 23% 

Node227 

Node226 4.23 0.5 34% 

Node234 

Node226 5.67 0.57 14% 
Node232 3.54 0.56 31% Node227 4.02 0.63 24% 
Node233 4.3 0.62 40% Node232 1.53 0.97 54% 
Node337 4.55 0.48 30% Node233 1.66 0.87 58% 
Node299 1.44 0.89 50% Node337 4.58 0.5 19% 
Node234 4.02 0.63 24% Node299 4.09 0.61 23% 
Node256 3.87 0.61 24% Node256 1.72 0.97 86% 
Node235 3.46 0.6 26% Node235 2.07 0.88 59% 
TLR9 3.48 0.6 25% TLR9 2.65 0.89 53% 

Node232 

Node226 5.84 0.53 21% 

Node256 

Node226 5.67 0.56 14% 
Node227 3.54 0.56 31% Node227 3.87 0.61 24% 
Node233 1.76 0.77 69% Node232 1.91 0.95 48% 
Node337 5.51 0.42 27% Node233 1.48 0.85 53% 
Node299 3.51 0.55 31% Node337 5.83 0.52 18% 
Node234 1.53 0.88 54% Node299 4.06 0.6 22% 
Node256 1.91 0.87 48% Node234 1.72 0.95 86% 
Node235 2.31 0.79 41% Node235 2.22 0.87 49% 
TLR9 3.07 0.79 37% TLR9 2.09 0.87 45% 

Node233 

Node226 5.76 0.6 16% 

Node235 

Node226 5.74 0.6 15% 
Node227 4.3 0.62 40% Node227 3.46 0.6 26% 
Node232 1.76 0.96 69% Node232 2.31 0.91 41% 
Node337 5.49 0.45 15% Node233 2.18 0.83 43% 
Node299 4.65 0.61 37% Node337 4.48 0.44 18% 
Node234 1.66 0.97 58% Node299 3.37 0.62 24% 
Node256 1.48 0.98 53% Node234 2.07 0.92 59% 
Node235 2.18 0.9 43% Node256 2.22 0.92 49% 
TLR9 2.24 0.83 40% TLR9 0.92 0.98 83% 

Node337 

Node226 1.46 0.85 66% 

TLR9 

Node226 4.44 0.44 19% 
Node227 4.55 0.48 30% Node227 3.48 0.6 25% 
Node232 5.51 0.42 27% Node232 3.07 0.79 37% 
Node233 5.49 0.45 15% Node233 2.24 0.83 40% 
Node299 4.55 0.55 30% Node337 4.66 0.49 14% 
Node234 4.58 0.5 19% Node299 3.35 0.62 23% 
Node256 5.83 0.52 18% Node234 2.65 0.89 53% 
Node235 4.48 0.44 18% Node256 2.09 0.87 45% 
TLR9 4.66 0.49 14% Node235 0.92 0.98 83% 
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Figure 8: Synonymous (Ks) and non-synonymous (Ka) substitution rates in TLR9 and its 

ancestral node. 

Discussion 

The transmembrane pattern recognition receptor TLRs are best known for their roles in innate 

immunity via recognition of pathogen and initiation of signaling response. In this study, 

comprehensive analysis of mammalian toll-like receptor gene sequences (TLR1-TLR10) 

revealed that TLR9 follows a distinct pattern of evolution. Sequence based features and 

evolutionary constraints are found to influence the divergence of TLR9 from other TLRs. 

Ancestral sequence reconstruction analysis also revealed that gradual evolution of TLR genes 

in several ancestral lineages lead to the distinct pattern of TLR9. 

Mammalian TLRs are responsible for recognition of conserved molecular pattern derived from 

various classes of pathogens resulting in the induction of innate immune response. Pathogen-

induced selection is considered as a crucial selective mechanism driving the evolution of 

immune system components. We have identified various factors influencing TLR-dependent 

heterogeneity in amino acid usage that contribute to the differences in their immunological 

responses in mammals. We also found that high synonymous substitutions have shaped the 
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observed changes between TLR9 and other mammalian TLR genes in spite of nonsynonymous 

substitutions inducing the amino acid changes. 

The divergence of TLR9 is demonstrated in this study through the ancestral sequence 

reconstruction. Analysis of the ancestral sequences also reinforced that changes occurred in the 

TLRs during their evolution from the ancestral lineages that mostly observed in the TLR9 and 

its descendants. Decrease in percent sequence identity of TLR9 from root to the ancestral nodes 

to the mammalian TLR9 branch of the tree depicts gradual changes happened in the sequences 

through accumulation of mutation. Domain-wise analysis also suggested accumulation of a 

greater number of mutations in the ectodomain causing variation in the number of LRR. Each 

TLR comprise an ectodomain with leucine-rich repeats (LRRs) that facilitate the recognition 

of pathogen associated molecular pattern (PAMP) and a cytoplasmic Toll/IL-1 receptor (TIR) 

domain that initiates downstream signaling. The mutational changes also have been influenced 

by gradual selection pressure on the ancestral sequences in the course of evolution. Influence 

of synonymous and non-synonymous substitution among the ancestral sequences is observed 

and the gradual selection pressure in the course of evolution leading to the distinct pattern of 

TLR9.  Interaction study also revealed more stable interaction of the ligand with TLR9 

compared to the ancestral nodes. Although decreasing docking score in other ancestral nodes 

indicated less stable interaction. 

Conclusion 

This study enables a new approach to explore the emergence of toll-like receptor through the 

ancestral sequence reconstruction that elucidates a distinct pattern of evolution of TLR9. It 

demonstrates that the evolutionary divergence of TLR9 started from the beginning and gradual 

accumulation of changes in the ancestral lineages leads to the distinct pattern of TLR9 

compared to the other mammalian TLRs. It will elucidate the biological significance of TLR9 

and provide evidence for their distinct contributions in response to host defence. 
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 Structural and functional objectivity of TLR evolution 

Results presented in this chapter are published in the articles mentioned below: 

1) Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in 

mammalian toll like receptor genes. Comput Biol Chem. 2022;97:107637. 

doi:10.1016/j.compbiolchem.2022.107637 

2) Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLR9 through ancestral sequence 

reconstruction. Immunogenetics. 2024;76(3):203-211. doi:10.1007/s00251-024-01338-8 

Background 

Plants and animals have extensive inbuilt mechanisms for recognising and responding to 

harmful pathogens. The innate immune system is a ubiquitous and evolutionary ancient 

mechanism that serves as the first line of defence of host against infections (Janeway and 

Medzhitov, 2002, Lemaitre and Hoffmann, 2007). In vertebrates, invertebrates, and plants, 

innate immunity is based on a diverse set of germline-encoded receptors known as pattern-

recognition receptors (PRRs), or microbial sensors, that recognise molecular motifs shared by 

specific groups of microorganisms (often referred to as pathogen-associated molecular patterns 

or PAMPs) (Kimbrell and Beutler, 2001). The last decade has witnessed a lot of significant 

improvements in the understanding of PRR-mediated immunity, with Toll-like receptors 

(TLRs) being one of the largest and most studied PRR families (Akira et al, 2001). 

The toll gene in Drosophila is the prototype of the TLR family, first discovered for its role in 

dorso-ventral embryo patterning (Anderson et al, 1985) and later demonstrated to be necessary 

for efficient immune responses in adult flies against fungus and Gram-positive bacteria 

(Lemaitre and Hoffmann, 2007). Since then, homologs of the Drosophila toll have been 

discovered in numerous other species (Leulier and Lemaitre, 2008). The role of mammalian 

TLRs in host defence has been examined mostly in vitro through stimulation with various 

agonists, and knocked-out mice for one or more TLRs exhibit varying vulnerability to several 

experimental infections (Qureshi and Medzhitov, 2003). TLRs are now known to respond to a 

variety of pathogen-associated stimuli and transmit signalling responses necessary for the 

activation of innate immunity effector mechanisms and the subsequent development of 

adaptive immunity (Beutler et al, 2006). 
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In humans, the TLR family has ten functional members (TLR1-TLR10) (West et al, 2006). 

Human TLRs are classified according to their subcellular distribution: TLR3, TLR7, TLR8, 

and TLR9 are commonly found in intracellular compartments such as endosomes, whereas 

TLR1, TLR2, TLR4, TLR5, and TLR6 are generally expressed on the cell surface (Akira et al, 

2006). TLRs can be further subdivided according to known agonists. Intracellular TLRs detect 

nucleic acid-based agonists and are particularly specialised in viral recognition, whereas cell-

surface expressed TLRs detect glycolipids, lipopeptides, and flagellin, which are found in a 

wide range of organisms including bacteria, parasites, and fungi (Kawai and Akira, 2006). 

TLR10, which is expressed on the cell surface, is the sole orphan TLR member whose agonists 

and activities are currently unknown. The role of human TLRs in host defence during natural 

infections, as opposed to experimental infections, is only now beginning to be understood. 

The evolutionary genetics method has improved our understanding of the evolutionary factors 

that influence the human genome, making it an essential complement to clinical and 

epidemiological genetics techniques (Nielsen, 2005; Nielsen et al, 2007). In the context of 

infection, determining the extent and type of natural selection acting on genes involved in 

immunity-related processes can provide insights into the mechanisms of host defence mediated 

by them, as well as distinguish between genes that are essential in host defence versus those 

that exhibit higher immunological redundancy (Quintana-Murci et al, 2007). 

Methodology 

Sequence retrieval and correspondence analysis 

Sequences of mammalian toll-like receptor (TLR) genes and their encoding proteins 

representing different group of TLR such as TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, 

TLR8, TLR9, TLR10, TLR11, TLR12, TLR13 were obtained from GenBank, NCBI. Those 

sequences containing unrecognized start codon, stop codon, internal stop codons, 

untranslatable codons, and unrecognized character (other than a, t, g, c) have been discarded 

from the final dataset. 
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Correspondence analysis (COA) (Peden 2000) was used to investigate the major trend in amino 

acid usage variation among the mammalian TLRs. Since amino acid usage by its very nature 

is multivariate, it is necessary to analyse this data with multivariate statistical techniques i.e., 

COA. Correspondence analysis (COA) is an ordination technique that identifies the major 

trends in the variation of the data and distributes genes along continuous axes in accordance 

with these trends. It has the advantage of not to make any assumption that the data falls into 

discrete clusters and therefore represent continuous variation accurately (Roy et al. 2017). 

Parameters such ad GC content, GC3, effective number of codons (ENc), hydrophobicity, 

aromaticity etc. were also calculated for all the TLRs under study. These analyses were 

performed using the CodonW program. Correlation coefficient, statistical significance of the 

parameters was calculated using the tools freely available in GraphPad software. 

Phylogenetic tree construction  

Phylogenetic analysis provides the evolutionary relationship of a set of sequences. It involves 

the construction of a tree, where the nodes indicate separate evolutionary paths, and the lengths 

of the branches give an estimate of how distantly related the sequences represented by those 

branches are. Three phylogenetic trees were generated for the Mammalian TLRs using the 

maximum likelihood method with thousand bootstrap replicates in the MEGAX. MEGA, a 

comprehensive tool for performing sequence alignment and inferring phylogenetic trees was 

used for generating the trees (Kumar et al. 2018). 

Evolutionary rate analysis 

Evolutionary selection acting on the mammalian TLR genes are addressed by evolutionary rate 

(ω). ω is estimated as the ratio of the rate non-synonymous substitutions per non-synonymous 

site (Ka) and the rate of synonymous substitutions per synonymous site (Ks). ω > 1 indicates 

positive (diversifying) selection, whereas, ω < 1 indicates negative (purifying) selection. For 

each TLR group (Example: TLR1) their consensus nucleotide sequences (Example: 

TLR1_consensus) were generated. We have prepared a Perl script for generating these 

consensus sequences. Downloaded nucleotide sequences and the consensus sequence of each 
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TLR groups were subjected to Clustal Omega program (Madeira et al. 2022) for the nucleotide 

sequence alignment. Then the evolutionary rate of the TLR genes (TLR1-TLR10) of each TLR 

group (Example: TLR1) were estimated relative to their consensus (Example: 

TLR1_consensus) sequences using Codeml program of the PAML software (ver. 4.5) with 

runmode = −2 and CodonFreq= 1 (Nei and Gojobori 1986; Yang 2007).  

Results 

Analysis of amino acid usage pattern 

Mammalian TLR genes demonstrated differential amino acid usage pattern from the 

correspondence analysis (COA) study. Figure1 display four different clusters based on amino 

acid usage pattern (marked in red circle A, B, C and D). Cluster A comprises TLR1, TLR2, 

TLR4, TLR6, TLR10; Cluster B comprises TLR3, TLR7, TLR8. Cluster C and Cluster D 

comprises TLR5 and TLR9 respectively. TLR11, TLR12, TLR13 displayed scatter distribution 

of genes based on amino acid usage. We found that axis1 of the COA correspond to major 

variation (57.57%) of amino acid usage. It is clear from Figure1 that among the four clusters 

TLR9 exhibit widely different amino acid usage with respect to the other three clusters along 

axis1. Different physico-chemical parameters such as hydrophobicity, aromaticity, GC-

content, ENc were also analyzed in order to assess the factors influencing this distinct amino 

acid usage pattern. Significant (p < .01) correlation of these parameters was observed with 

axis1 of COA.  

Impact of subcellular localization and function of TLRs were observed in clustering pattern. 

TLRs found on Cluster A, Cluster C are expressed extracellularly and responsible for the 

recognition of lipoproteins, lipopeptides, LPS etc. TLRs found on Cluster B, Cluster D are 

expressed intracellularly and responsible for the recognition of nucleic acid motifs. 
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Figure 1: Distribution of mammalian toll-like receptor (TLR) genes along the two major axes 

of correspondence analysis (CoA) on amino acid usage. Four different clusters observed are 

marked with the red circle. Cluster A comprises TLR1, TLR2, TLR4, TLR6, TLR10; Cluster 

B comprises TLR3, TLR7, TLR8. Cluster C comprises TLR5 and Cluster D comprises TLR9. 
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Phylogenetic tree 

Phylogenetic tree of mammalian TLR genes showing TLR wise branching pattern as displayed 

in Figure2. One clade contains the branches of TLR1, TLR2, TLR4, TLR6, TLR10; another 

clade contains the branches of TLR3, TLR7, TLR8, TLR9, TLR5 and TLR11, TLR12, TLR13 

formed a separate clade. Evolutionary relationship from phylogenetic tree followed the similar 

trend to that of COA on amino acid usage pattern. 

 

Figure 2: Phylogenetic tree of mammalian TLR genes showing TLR wise branching pattern. 

Individual colors represent different TLRs. 
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Estimation of substitution rate 

Evolutionary selection acting on the mammalian TLR genes have been addressed by 

evolutionary rate which is estimated as the ratio of the rate of non-synonymous substitutions 

per non-synonymous site (Ka) and the rate of synonymous substitutions per synonymous site 

(Ks). Figure3 displayed overall purifying selection is observed for all the mammalian TLRs 

under study. Ks values indicated high number of synonymous substitutions with highest 

number of synonymous substitutions in TLR9. However, mammalian TLR genes exhibited 

several non-synonymous changes as indicated by the Ka values. Significant (p < .01) 

correlation of Ka, Ks and Ka/Ks have been observed with axis1 of correspondence analysis 

that accounted major variation of amino acid usage. 

 

Figure 3: Bar plot showing Synonymous (Ks), non-synonymous (Ka) substitution rates and 

evolutionary rate (Ka/Ks) distribution of mammalian TLRs. It is clear from the plot that Ks 

value is higher in case of TLR9, TLR8. 
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Discussion 

The family of vertebrate toll-like receptors (TLRs) serves as the first line of immunological 

defence against a variety of pathogens and is an intriguing illustration of the host-pathogen 

evolutionary contest. This study presents a complete comparative evolutionary genomics 

characterization of the vertebrate TLR family through DNA and protein level analysis. Our 

findings revealed the dynamic evolution of the TLRs across vertebrates with positive selection 

shaping adaptive evolution of host pathogen. 

Amino acid usage pattern revealed distinct pattern of distribution of TLR genes among 

mammal and bird and dispersed pattern in fish TLRs. Clusters observed in the mammalian TLR 

distribution was typically influenced by their function and the subcellular localization along 

with the physicochemical parameters analyzed. TLR1,2,4,6,10 are surface expressed and they 

mostly recognize lipoproteins, lipopeptides, LPS etc., TLR5 are surface expressed and confers 

response to flagellin, TLR3,7,8 reside intracellularly and respond to double-stranded RNA 

(dsRNA), single-stranded RNA (ssRNA) and TLR9 reside intracellularly and respond to DNA. 

Among them TLR9 formed a distinct cluster. Scatter distribution of TLR11,12,13 have been 

found. Among the ten TLRs of bird the key influence of amino acid usage distribution was 

their function. Mammalian orthologs TLR3, TLR4, TLR5 and TLR7 recognize dsRNA, 

bacterial lipopolysaccharides, flagellin, ssRNA respectively. TLR1A/TLR1B and 

TLR2A/TLR2B arose by duplication during their evolution recognize di/triacylated 

lipopeptides. TLR15 is unique to birds that has evolved to perform a new function in the 

identification of extracellular proteases and TLR21 in birds recognises CpG DNA similarly to 

TLR9 in mammals showed distinct pattern. Fish TLRs having diverse function showed 

scattered amino acid usage pattern. Phylogenetic tree indicated the grouping of TLRs from the 

three taxonomic groups was analogous with their amino acid usage pattern.  

Thus, the evolution of TLRs have been significantly influenced by their amino acid usage and 

the physico-chemical parameters of the protein. This change in amino acid usage is a result of 

substitution as observed from the evolutionary rate analysis. Both synonymous and non-
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synonymous substitution impacted on the evolution of TLRs in mammal, bird and fish. In spite 

of high value of synonymous substitution there are non-synonymous substitution that has 

contributed to the diversity of TLRs. Positive selection is one of the distinguishing features of 

immune defense related genes, particularly those encoding recognition proteins, which evolve 

under positive selection. Positively selected sites among TLRs depicted the gradual 

accumulation of changes has shaped the TLR evolution. It indicated the diversity in the 

evolution of TLRs from various taxonomic group through accumulation of changes that lead 

to their distinct pattern of pathogen recognition. The location of the positively selected sites 

suggests that pathogens impose the utmost selective pressures that result in the alterations 

observed, particularly in the variable section involved for direct contact with PAMPS. This 

implies that they are the outcome of co-evolution. 

Conclusion 

This study revealed differential pattern of amino acid in the distribution of the TLRs among 

vertebrates particularly mammal, bird and fish. In spite of the presence of evolutionary 

constraints, variable rates of substitutions leading to various TLR repertoires that would have 

facilitated recognition and protection from a variety of diseases. 
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                                                                                                        Conclusion 

TLR family members recognise numerous types of pathogens and coordinate appropriate 

innate and adaptive immune responses. The coding sequences and functions of vertebrate TLRs 

are largely conserved. Similarly, TLR-mediated signalling pathways are substantially 

conserved. Ligand characterizations of TLRs have facilitated the understanding of the function 

of the TLRs and the host defense system against infections. In my thesis work an innovative 

approach is provided by incorporating the examination of the variation in the frequency of 

amino acids utilized by different TLRs of mammalian species. I have also addressed the distinct 

evolution of some TLRs by the molecular evolutionary approach based on ancestral 

reconstructions that has helped in retracing the history of sequence substitutions and leveraging 

changes in substitution dynamics. 

My thesis work indicating that TLR genes evolved in different ways across primate and non-

primate mammalian species might help to understand the genetic basis for variances in disease 

susceptibility with respect to host immunity. Determination of magnitude of natural selection 

operating on TLR genes and the progressive changes that lead to divergence have enabled 

better understanding of the mechanism of host defence mediated by TLRs. This work is 

important in integrating evolutionary genetic data into a clinical and epidemiological 

framework, for better understanding of the relevance of host defense genes for their survival in 

nature. 
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Abstract: Toll-like receptors (TLRs) are important as they are able to sense diverse set of pathogens associated 
molecular patterns (PAMPs) as ligands. These receptors are involved in functions such as immune response, 
development of signaling process and cell adhesion. In the present study we are interested to analyze the in
fluence of evolutionary selection pressure on the mutational diversity of mammalian TLR genes. We observed 
differential patterns of amino acid usage between primate and non-primate mammalian TLR genes. GC-content of 
TLR genes and hydrophobicity of the encoded proteins are the most influential factors correlated with the dif
ferential pattern of amino acid usage.The influence of the subcellular location on the amino acid usage pattern of 
TLRs is evident in present study. Purifying selection is uniformly present on TLR genes, positively selected sites 
are mostly located over the ligand binding domain. Our study clearly demonstrates that natural selection has 
shaped the evolution of primate and non-primate mammalian TLR genes.   

1. Introduction 

The defense system of animal involves two type of immunity adap
tive and innate immunity. Initially innate immune system produces an 
inflammatory response to block the growth and transmission of the 
pathogen during an infection. In vertebrates, in order to develop ac
quired immune response particularly receptors of Band T cell sense the 
infectious agents to produce responses that lead to its exclusion (Jane
way and Medzhitov, 2002). Receptors associated with innate immune 
system are germline-encoded. They have been evolved to sense com
ponents of external pathogen also referred as pathogen-associated mo
lecular patterns (PAMPs) which are crucial for pathogen existence or 
host released endogenous components in response to inflammation 
(Matzinger, 1994; Yang et al., 2010; Erridge, 2010). These receptors of 
innate immune system are located in serum, on cell surface, in endo
somes, and in the cytoplasm (Medzhitov, 2007). 

Being an important category of pattern recognition receptors (PRRs) 
the toll-like receptors (TLRs) are seen in Drosophila and mammals. 
Mammal TLRs play fundamental role in detection of pathogen associ
ated patterns with the initiation of signal transduction pathways that 
cause genetic expression which lead to the innate and adaptive immune 
responses (O’Neill et al., 2009; Rakoff-Nahoum and Medzhitov, 2009). 
TLRs are type-I integral membrane receptors comprising an extracellular 

domain also known as ectodomain (ECD) containing leucine-rich re
peats which facilitate the PAMPs recognition, a signal transmembrane 
segment, and an intracellular Toll–interleukin 1 (IL-1) receptor (TIR) 
domain for downstream signal transduction (Bell et al., 2003). In 
mammals there are thirteen TLRs discovered in mice (TLR1–13) and ten 
TLRs in humans (TLR1–10). TLR1-TLR9 is found in both mice and 
human, TLR10 is non-functional in mouse due to a retrovirus insertion 
and TLR11, TLR12 and TLR13 are not found in human (Takeuchiand 
Akira, 2010). Depending on the subcellular distribution TLRs in humans 
can be classified into two categories: TLR1, TLR2, TLR4, TLR5, TLR6 and 
TLR10 are expressed normally on the cell surface and TLR3, TLR7, TLR8 
and TLR9 are commonly found in intracellular compartments like 
endosomes. These human TLRs detect various PAMPs such as lipo
polysaccharide (TLR4), lipopeptides (TLR2 associated TLR1 or TLR6), 
bacterial flagellin (TLR5), viral dsRNA (TLR3), viral or bacterial ssRNA 
(TLRs 7 and 8), and CpG-rich unmethylated DNA (TLR9) (Akira et al., 
2006). 

Genetic diversity in active genes associated with immune defense 
such as TLRs is interesting from an evolutionary perspective as these 
genes are an excellent model for studying the selective stress applied to 
the host genome by pathogen. These genes appear to evolve faster than 
other loci in the genome in response to pathogen that are evolving 
rapidly. Selection is a major factor in controlling the evolutionary rate of 
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TLRs, mutation is also another factor and TLRs are strongly selected to 
maintain their functions. In different mammals innate immune response 
is not similar as some variation is there between different species in their 
TLRs. This variation is due to selective pressure on the immune system- 
related genes that reflect specific conditions experienced by each species 
(Bagheri and Zahmatkesh, 2018). Evolutionary genetics approaches 
have amplified to understand the evolutionary forces acting on the 
human genome that provides indispensable complement in treatment of 
infectious diseases. Within the perspective of infection, detecting the 
magnitude and pattern of environmental selection that works on the 
genes implicated in immune-associated procedures can deliver insight 
into the host defense mechanisms (Barreiro et al., 2009). 

Amino acids and codons are used in diverse frequencies both be
tween genes and between genes within the same genome. Degeneracy of 
genetic code direct the use of diverse set of codons for producing the 
similar protein, procedures that create non-random usage of codons are 
likely to influence the usage of amino acids. The possible reason behind 
this is the neutral processes where composition of bases of all codons 
that encode an amino acid might be either GC rich or GC poor (Rao et al., 
2014). Selection also has a significant role in determining frequencies of 
amino acid. Often genomic base compositions play a major role on the 
type of amino acid usage; other factors like hydrophobicity, gene func
tion, level of expression etc. also influence the amino acid usage. In this 
study mammalian TLRs are progressively investigated to examine the 
effects of environmental selection on diverse set of TLRs and factors that 
influence selection will be explored. Natural selection on different 
members of TLRs family will be studied to explore their evolutionary 
contribution to host defense. 

2. Materials and methods 

2.1. Sequence retrieval and multivariate analysis on amino acid usage 

Genes and their encoding protein sequences of toll-like receptors 
(TLR) were taken from GenBank, NCBI (http://www.ncbi.nlm.nih.gov/ 
genbank/) and Ensembl maintained by EMBL-EBI (www.ensembl.org). 
By nature, amino acid usage is multivariate and need to be explored 
using statistical analysis like correspondence analysis (COA) (Peden, 
2000). COA reveals major trends of variation in the dataset by arranging 
them along continuous axes where consecutive axis have been arranged 
to have diminishing effect gradually (Roy et al., 2017). The analyses of 
amino acid usage patterns of TLR genes of mammal under study were 
carried out using COA available in CodonW program. 

Parameters like relative amino acid usage (RAAU), average hydro
phobicity, GC content of genes were calculated for each TLR sequence 
using available option in CodonW program. Correlation coefficient be
tween variables was calculated using the available formula in MS Excel. 
Significance test was performed using the freely available online tool 
such as t-test (https://www.graphpad.com/quickcalcs/ttest1/). 

Phylogenetic analysis was performed among primate and non- 
primate genes of TLR. The sequences were aligned using the ClustalW 
program. The phylogenetic tree was constructed using Mega 7, utilizing 
the maximum likelihood method (Kumar et al., 2016). 

Three dimensional structural models were generated for TLR5 pro
tein sequences through homology modeling using SWISS-MODEL 
(Waterhouse et al., 2018). TLR5 protein structure available in Protein 
Data Bank (PDB) (PDB ID: 3J0A) was used as template for homology 
modeling with more than 99% sequence identity and 97% query 
coverage in case of human (primate mammal) and 78% sequence 
identity and 97% query coverage in case of cattle (non-primate 
mammal). The structure of flagellin was truncated from crystal structure 
of the N-terminal fragment of zebrafish TLR5 in complex with Salmo
nella flagellin available in PDB (PDB ID: 3V47). As the ectodomain of the 
TLRs are involved in ligand recognition, the interaction study was per
formed on TLR5 ectodomains based on the NCBI annotation (Savar and 
Bouzari, 2014; Forstnerič et al., 2016). Molecular interaction of TLR5 

protein with flagellin was performed using Z-dock software (Pierce 
et al., 2014). Then, the resulting docking data were processed and 
analyzed considering binding energies and main interacting residues in 
each complex by using the PRODIGY software (Xue et al., 2016). Free 
energy of the structural complexes was calculated using PremPS server 
(Chen et al., 2020). 

2.2. Estimation of evolutionary rate and mutational analysis 

The impact of evolution on set of genes is indicated by the ratio (ω) i. 
e., ratio of non-synonymous substitution rate per non-synonymous site 
(Ka) to synonymous substitution rate per synonymous site (Ks). Where ω 
> 1 point towards positive (diversifying) selection and ω < 1 signify 
negative (purifying) selection (Roy and Basak, 2021). The rate of evo
lution of each TLR1-TLR10 group of mammals (taking consensus 
sequence as reference) was estimated using the available PAL2NAL 
program (Suyama et al., 2006). Residue wise evolutionary rate of TLR 
gene sequences were calculated using SWAKK server (Liang et al., 
2006). This server performs a sliding 3D window analysis to calculate 
the ratio of non-synonymous to synonymous substitution rate (Ka/Ks) of 
DNA sequences that encode protein. 

Positive selection test of individual codons of mammals TLR was 
performed using the Hyphy package executed in the Data Monkey Web 
Server that compare Ka to Ks ratio using maximum likelihood (ML) 
framework, (Weaver et al., 2018). The sequences of every TLR were 
analyzed under the fixed-effect likelihood (FEL) model. This Fixed Ef
fects Likelihood (FEL) approach uses maximum-likelihood (ML) method 
to deduce non-synonymous (dN) and synonymous (dS) substitution rates 
on the basis of per site considering a coding alignment and related 
phylogeny. It is presumed in this method that selection pressure for each 
site remains constant throughout the phylogeny. 

Mutational analysis was performed by using a customized script to 
study the mutation among the TLR sequences. Predicted consensus 
sequence for each TLR was used as reference sequence to identify the 
mutation. Consensus sequences offer promising approach in screening 
proteins of high stability and retain the biological activity as it predicted 
based on evolutionary history in which residues important for both 
stability and function are likely to be conserved (Sternke et al., 2019). 
Occurrences of mutation in each TLR for each species were studied 
across the two functional domains. 

3. Results 

3.1. Correspondence analysis on amino acid usage of TLR genes 

Correspondence analysis was performed to study the amino acid 
usage variation of ten different TLR genes of mammalian origin sepa
rately. The first and second major axes accounted for 54.5% and 20.1% 
of the total variation of amino acid usage respectively for TLR1 gene.  
Fig. 1 shows position of genes generated during correspondence analysis 
on the basis of amino acid usage across the first and second major axes. 
Similar pattern of distribution of the amino acid usage was observed for 
other TLRs under study. For the ten different TLR genes these first axis 
always accounted the major variation which is more than 30% of the 
total variation of amino acid usage. It is clear from the correspondence 
analyses that there are two clusters. One cluster belongs to mammal 
which are primates and another cluster belongs to mammal other than 
primates. For simplicity, hereafter, TLRs from primates (Human, Gorilla, 
Monkey, Chimpanzee, Orangutan, Baboon etc.) will be referred to as 
primate mammal (Pm) TLRs and TLRs from mammal other than pri
mates will be referred to as non-primate mammal (NPm) TLRs. Phylo
genetic tree using the TLR1 genes of Pm and NPm clearly shows that Pm 
and NPm TLR genes are present in different branches (Fig. 2). Similar 
pattern is observed for other TLRs. Branching pattern of phylogenetic 
tree follows similar trend to that of correspondence analysis. 

Now to investigate the preference of amino acids in two different 
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clusters we have compared the relative amino acid usage values between 
Pm and NPm TLR genes. Comparisons of relative amino acid usage 
values suggested that the twenty amino acids are differently preferred 
among Pm and NPm for each TLR. From the analysis it was observed that 
amino acids such as Phe,Met, Thr, Lys, Glu, Cys were mostly preferred in 
Pm TLRs whereas amino acids such as Leu, Pro, Ala, Asp, Arg, Gly were 
mostly preferred in NPm TLRs. 

We have performed molecular docking study between TLR5 (Homo 
sapiens for primate and Bos indicus for non-primate) and flagellin 
(pathogen receptor). We have identified the preferred residues those are 
interacting with the flagellin and when substituted these residues with 
GC-rich/GC-poor, as the case may be, the stability of the TLR5-flagellin 
complex decreased (Fig. 3). 

Since axis1 (horizontal axis) accounts major variation for each TLR 
in COA, further analysis is performed on the basis of distribution of 
mammal TLR genes along the horizontal axis of correspondence anal
ysis. Significant correlation was observed between the gene position 
along the horizontal axis and hydrophobicity (r = 0.533, p < .05) and 
GC-content of the encoded proteins (r = 0.745, p < .01). Significant 
correlation of axis1 with GC1 (r = 0.714, p < .05), GC2 (r = 0.689, 
p < .05), GC3 (r = 0.668, p < .05) content of the encoded proteins were 
also observed. 

We have compared the average GC content of TLR genes for Pm and 

NPm. The average GC content of TLR genes are 42.6% and 44.6% for Pm 
and NPm respectively. The difference of GC content of TLR genes be
tween Pm and NPm is statistically significant (P < .01). As the NPm TLR 
genes have higher GC content we may expect GC-rich amino acids would 
be preferred in NPm. Indeed, we observed that average composition of 
four GC-rich amino acids (Du et al., 2018) (Ala, Arg, Gly, and Pro) are 
higher in NPm TLR genes and the compositions of four GC-rich amino 
acids are positively correlated with GC contents (r = 0.836, p < .001) of 
the NPm TLR genes. On the other hand, we observed that average 
composition of AT-rich amino acids (Phe, Ile, Tyr, Asn and Lys) are 
higher in Pm TLR genes and their compositions are also positively 
correlated with AT-contents (r = 0.673, p < .001) of Pm TLR genes. All 
these results support that amino acid usage have been shaped under the 
influence of GC-content of TLR genes. 

3.2. Impact of evolutionary selection pressure on TLR Genes 

We observed presence of purifying selection across all the TLR genes 
(both Pm and NPm) by comprehensive analysis of evolutionary rates. 
However, residue specific measurement of evolutionary rate shows 
differences of positively selected sites between Pm and NPm TLRs. Site- 
specific selection across the ligand binding domain also showed the 
same trend. These observations indicate stronger selection pressure on 
NPm TLR genes compared to Pm TLR genes. Positively selected sites 
among Pm and NPm TLRs are shown in Table 1. 

The evolutionary parameters such as Non-synonymous substitution 

Fig. 1. Distribution of TLR1 genes along the two major axes of Correspondence 
analysis (COA) based on amino acid usage (AAU) data. x-axis- Axis 1 of AAU; y- 
axis- Axis 2 of AAU. Blue colored dots represent TLR gene sequences from Pm 
and orange colored dots represent TLR gene sequences from NPm. Similar 
pattern is observed for other TLR genes also. 

Fig. 2. Phylogenetic tree of Pm and NPm genes of TLR1. Similar pattern is 
observed for other TLRs. 

Fig. 3. (A): Interaction profile of a representative mutation F299G in Pm TLR5 
protein indicating GC-poor to GC-rich amino acid substitution. GC-poor amino 
acids are preferred in Pm. The structural stability decreases when F (Phenyl 
alanine) is substituted by G (Glycine). (i) Wild type residue F299 having one 
polar interaction (sky), and one hydrophobic (blue) interaction. (ii) Mutant 
type residue 299G having one polar interaction (sky). (B): Interaction profile of 
a representative mutation R2262K in NPm TLR5 protein indicating GC-rich to 
GC-poor amino acid substitution. GC-rich amino acids are preferred in NPm. 
The structural stability decreases when R (Arginine) is substituted by K 
(Lysine).(i) Wild type residue R262 having one polar interaction (sky) and one 
van der Waals (green) interactions. (ii) Mutant type residue 262 K having one 
polar interaction (sky). Results are generated using PremPS server. ΔΔG value 
in both the cases is positive which indicates destabilizing mutation. 
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(Ka), synonymous substitution (Ks), ratio of non-synonymous and syn
onymous substitution (Ka/Ks) were found to differ significantly among 
Pm and NPm TLRs. Significant difference of these parameters was also 
observed across the two functional domains of Pm and NPm TLRs. These 
results are shown in Table 2. We have also found significant correlation 
of evolutionary parameters with axis1 of correspondence analysis on 
amino acid usage. Significant correlation of axis1 is observed with Ka in 
seven TLR genes, Ks in six TLR genes; Ka/Ks in five TLR genes. 

3.3. Correlation of evolutionary parameters with GC-content and 
mutational analysis 

We already observed the correlation between GC content and amino 
acid usage variation of TLRs through correspondence analysis. It was 
also found that evolutionary parameters differ significantly among Pm 
and NPm TLR genes. Furthermore, these evolutionary parameters such 
as Ka, Ks and Ka/Ks was correlated significantly with the GC content of 
TLR genes among mammalian species (p < .05) (Table 3). Thus, GC 
content is playing an important role in the evolution process of amino 
acid sequences for most of the TLRs among Pm and NPm. 

Mutations were identified for both Pm and NPm TLRs over the entire 
TLR sequences. But more mutations are observed in the ligand recog
nition domain. It endorsed that ligand recognition domain is more prone 
to mutation than the signaling domain. Rate of evolution (Ka/Ks) in the 
extracellular ligand recognition domain is more compared to intracel
lular signaling domain for most of the TLRs in both Pm and NPm. 

3.4. Amino acid usage pattern of TLRs based on subcellular distribution 

Since TLRs are classified into extracellular and intracellular based on 
the subcellular distribution we have analyzed the amino acid usage 
pattern of Pm and NPm TLR genes individually. Differential amino acid 

usage patterns were noticed where extracellular and intracellular TLRs 
formed different clusters in case of Pm and NPm. In case of Pm, extra
cellular TLR1, TLR2, TLR6, TLR10 formed one cluster; TLR4, TLR5 were 
found in different clusters and intracellular TLR3, TLR7, TLR8 were 
present in different cluster from TLR9. In the same way, in case of NPm 
intracellular TLR3, TLR7, TLR8 were in different cluster and TLR9 
formed another cluster. But NPm extracellular TLR1, TLR2, TLR4, TLR6, 
TLR10 were grouped into one cluster and TLR5 found in separate clus
ter. These extracellular and intracellular TLRs were distributed along the 
major axis shown in Fig. 4. Evolutionary parameters were also checked 
between these two clusters of extracellular and intracellular TLRs in case 
of Pm and NPm respectively. The parameters Ka, Ks and Ka/Ks were 
found to differ significantly among these clusters. Hence, subcellular 
distribution is also governing the amino acid variation of TLRs for Pm 
and NPm independently where evolutionary selection is the most 
important aspect. 

4. Discussion 

The systematic study of the amino acid usage across various 
mammalian TLRs revealed that amino acids are used in diverse pattern 
among TLR genes of Pm and NPm species. In spite of similar anatomy 
and physiology between Pm and NPm there is disparity in amino acid 
usage pattern of TLRs observed in them. One key difference between 
these species is that primates possess a voluminous and complicated 
forebrain whereas non-primates possess a small brain. 

Correspondence analyses established hydrophobicity and genomic 
GC content as the most important features causing the TLR wise varia
tion of amino acid usage in mammal. It depicts that these factors are 
causing the variation in the immune response among species of a 
particular TLR. Significant correlation of hydrophobicity is observed 
among TLRs. The extracellular TLR domains are composed of leucine- 
rich repeats (LRR) that usually contain 22–29 length residues and 
have periodic hydrophobic residues positioned at discrete intervals. In 
three dimensions during assembling into protein multiple repeats shape 
as solenoid like structure, where consensus hydrophobic residues 
pointed inside to make a stable core of the structure (Botos et al., 2011). 
Hydrophobic residues becoming an influencing factor for amino acid 
usage variation of TLR genes among Pm and NPm. GC content is another 
influencing factor as amino acid usage of TLRs is significantly correlated 
with GC content. Guanine and cytosine bases proportion in the DNA 
molecule (GC content) being an essential qualitative aspect of genomic 
architecture is discussed frequently in humans and other vertebrates 
such as birds, mammals in relation to the evolution of the isochore 
structure (Šmarda et al., 2014). 

Amino acid usage pattern study also revealed that individual Pm and 
NPm TLRs distribution based on subcellular location extracellular and 
intracellular is different. Depending on subcellular location function
ality of TLRs become different due to dissimilar PAMP recognition. Cell 

Table 1 
Distribution of positively selected sites among Pm and NPm TLRs.  

Genes No. of species Total sites Total positively 
selected sites 

Positively selected sites 
in ligand binding 
domain 

% positively selected 
site 

% positively selected site in 
ligand binding domain  

Total Pm NPm Pm (length aa) NPm (length aa) Pm NPm Pm NPm Pm (%) NPm (%) Pm (%) NPm (%) 

TLR1  21  10  11  786  796  1  9  1  5  0.127  1.13  0.127  0.62 
TLR2  26  10  16  784  785  0  13  0  12  0  1.65  0  1.52 
TLR3  22  7  15  904  905  0  13  0  12  0  1.43  0  1.32 
TLR4  22  8  14  839  844  1  32  1  28  0.119  3.79  0.119  3.31 
TLR5  17  8  9  858  874  0  6  0  3  0  0.68  0  0.34 
TLR6  22  10  12  796  810  0  14  0  9  0  1.72  0  1.11 
TLR7  24  9  15  1049  1058  0  17  0  15  0  1.6  0  1.41 
TLR8  20  7  13  1041  1091  0  20  0  18  0  1.83  0  1.64 
TLR9  22  7  15  1032  1034  1  2  0  2  0.09  0.19  0  0.19 
TLR10  23  12  11  811  822  0  15  0  10  0  1.82  0  1.21  

Table 2 
Significance test of evolutionary parameters among Pm and NPm TLR genes and 
across the domains.Extracellular domain of TLR (ECD), Intracellular domain of 
TLR (TIR) and tick mark indicates significant difference.   

Pm & NPm genes ECD of Pm & NPm 
genes 

TIR of Pm & NPm 
genes  

Ka Ks Ka/Ks Ka Ks Ka/Ks Ka Ks Ka/Ks 

TLR1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
TLR2 ✓ ✓  ✓ ✓ ✓ ✓ ✓  
TLR3 ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 
TLR4   ✓ ✓   ✓ ✓  
TLR5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
TLR6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
TLR7  ✓ ✓ ✓ ✓ ✓  ✓ ✓ 
TLR8     ✓ ✓  ✓  
TLR9 ✓  ✓ ✓  ✓ ✓ ✓  
TLR10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
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surface expressed TLRs such as TLR1, TLR2, TLR4, TLR5, TLR6 and 
TLR10 mostly recognize microbial membrane components like lipo
proteins, lipids; TLR3, TLR7, TLR8 and TLR9 expressed in intracellular 
vesicles like endoplasmic reticulum (ER), endosomes, lysosomes and 
endolysosomes and sense microbial nucleic acids (Kawai and Akira, 
2010). These factors affecting Pm and NPm TLRs which are showing 
distinct amino acid usage pattern between extracellular and intracel
lular TLRs. 

Evolutionary analysis has suggested that purifying selection is the 
major force working on TLRs. Presence of codons that are selected 
positively indicates selective pressures on these immune genes lead to 
the most noticeable changes in the ectodomain, particularly in the 
variable section accountable for direct interaction with PAMPS. More 
mutation is observed in the extracellular domain due to the direct 
interaction with pathogen. Overall selective pressure within the innate 
immune system is stronger in non-primate mammal species compared to 
primate mammal species. The relation between GC contents and Ka, Ks, 
Ka/Ks values of TLR genes from different mammal species were 
observed. Correspondingly, Ka, Ks, Ka/Ks values changes with change in 
GC contents. The GC content is therefore consistent with the evolu
tionary process of amino acid sequences and contributes to the evolu
tionary level as a key component of amino acids between Pm and NPm 
TLRs. The GC content influences the emergence of proteins due to en
ergy costs, and both the combination of bases and amino acids is 
involved in this process (Du et al., 2018). 

This study reveals differential patterns of amino acid usage, evolu
tionary constraints of TLR genes among Pm and NPm. Amino acid 
composition has a significant impact on the level of TLR emergence and 
this is also affected by GC content. Identification of genes associated 
with immunity that evolves in a different way across Pm and NPm TLRs 
might facilitate the understanding of genetic basis for the differences in 

disease susceptibility (Quach et al., 2013). The greater extent of devia
tion in selection that constrain the evolution of Pm and NPm TLRs will 
enhance our understanding of the biological contribution of TLRs to host 
defense in natural setting. This study presented the divergence in the 
biological significance of different TLRs and offer evidences for their 
diverse contributions in response to host defense. 
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Abstract
The transmembrane pattern recognition receptor, Toll-like receptor (TLR), are best known for their roles in innate immunity 
via recognition of pathogen and initiation of signaling response. Mammalian TLRs recognize molecular patterns associated 
with pathogens and initiate innate immune response. We have studied the evolutionary diversity of mammalian TLR genes 
for differences in immunological response. Reconstruction of ancestral sequences is a key aspect of the molecular evolution 
of TLR to track changes across the TLR genes. The comprehensive analysis of mammalian TLRs revealed a distinct pattern 
of evolution of TLR9. Various sequence-based features such as amino acid usage, hydrophobicity, GC content, and evolution-
ary constraints are found to influence the divergence of TLR9 from other TLRs. Ancestral sequence reconstruction analysis 
also revealed that the gradual evolution of TLR genes in several ancestral lineages leads to the distinct pattern of TLR9. It 
demonstrates evolutionary divergence with the progressive accumulation of mutations results in the distinct pattern of TLR9.

Keywords  TLR · Evolution · Phylogenetic tree · Ancestral sequence · Mutation · Diversity

Introduction

Toll-like receptors (TLRs) are considered the primary sensors 
of invading microbial pathogen in the innate immune system 
because they detect pathogen-associated molecular patterns 
(PAMPs). Since the early discovery of a Toll protein in the 
fruit fly Drosophila melanogaster thirteen members of the 
TLR family have been identified in human (TLR1-TLR10) and 
mouse (TLR1-TLR13) (Zhou et al. 2013). It seems that most 
mammalian species share a similar repertoire of TLR homologs 
though with few exceptions (Nie et al. 2018). TLRs are type I 
integral membrane glycoproteins with a pathogen-binding ecto-
domain (ECD) and a cytoplasmic signaling domain connected 
by a single transmembrane helix (Zhou et al. 2013). Mamma-
lian TLR pathogen-binding ectodomains contain 19–25 extra-
cellular leucine-rich repeats (LRRs) and a cytoplasmic toll/
interleukin (IL)-1R (TIR) domain. LRRs comprising 24–29  
amino acids are responsible for ligand recognition and binding, 
while the TIR domain is responsible for downstream signaling 

(Botos et al. 2011). Surface-expressed TLRs (TLR 1, 2, 4, 5, 
6, and 10) typically identify pathogen structural components, 
whereas endosomal TLRs (TLR 3, 7, 8, and 9) recognize 
nucleic acid. TLRs respond to a variety of pathogen-associated 
molecular patterns (PAMPs) in humans, including lipopolysac-
charide (TLR4), lipopeptides (TLR2 associated with TLR1 or 
TLR6), bacterial flagellin (TLR5), viral dsRNA (TLR3), viral 
or bacterial ssRNA (TLRs 7 and 8), and CpG-rich unmethyl-
ated DNA (TLR9) (Takeda and Akira 2005; Vidya et al. 2018).

TLR9 is an endosomal receptor that detects bacterial 
DNA/CpG-containing oligodeoxynucleotides (CpG ODN). 
TLR9-mediated signaling is initiated within the endosome 
by the sequential recruitment of adaptor proteins, which 
in turn activates critical downstream transcription factors. 
Various preclinical studies showed the efficacy of TLR9 
agonists individually and in combination with other agents 
(Karapetyan et al. 2020). Interaction of unmethylated CpG 
DNA with TLR9 activates immune responses through the 
MyD88-dependent signaling pathway. Human trials have 
shown that CpG DNA can act as an adjuvant and boost 
the immunogenicity of the hepatitis vaccine. These find-
ings highlight the importance of TLR ligands in triggering 
adaptive responses and providing new adjuvants in vaccine 
formulation (Cook et al. 2004).

Biological sequences have long been recognized as a record 
of evolutionary history, with accumulating mutations record-
ing species relationships and the mechanisms driving their 
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evolution. To avoid the recognition by the host immune sys-
tem pathogens involved in recognition evolve faster. With the 
evolving pathogen, the host receptor that recognizes the patho-
gen also evolves to keep pace with the changes in the patho-
gen. These modifications in receptor can be detected as the 
positive selection signatures or mutations (Areal et al. 2011). 
From an evolutionary perspective, genetic variation in TLR 
genes linked with immunological defence is important because 
these genes provide a good model for investigating pathogen-
induced selective stress on the host genome (Roach et al. 
2005). In response to rapidly evolving pathogens, these genes 
appear to evolve quicker than other locations in the genome 
(Ghosh et al. 2022). Given enough genetic information from 
different species, the temporal accumulation of mutations can 
be used to reconstruct sequences from their common ances-
tors. These ancestral reconstructions serve as the foundation 
for many of molecular evolution approaches nowadays, such 
as phylogenetic trees and sequence selection tests (Muffato 
et al. 2023). The ancestral sequence reconstruction (ASR) 
approach begins with a multiple-sequence alignment (MSA) 
of the collection of relevant homolog sequences and considers 
evolutionary information depicted by the phylogenetic tree. It 
is a probabilistic strategy that investigates the deep evolution-
ary history of homolog sequences in order to reassemble the 
evolutionary trajectory of a protein. ASR can reveal sequences 
of long-extinct genes and organisms from which the current 
ones evolved, making it an important tool in evolutionary biol-
ogy (Gumulya and Gillam 2017). Since the advent of sequenc-
ing, the reconstruction of ancestral sequences, particularly 
genes, has been studied extensively. Advanced methods exist 
to retrace the history of sequence substitutions and leverage 
changes in substitution dynamics to answer specific evolution-
ary problems (Merkl and Sterner 2016).

The study of the sequence-based feature like differential 
amino acid usage and the impact of various factors on TLRs 
will facilitate us to comprehend the evolutionary factors 
that affect innate immune genes. The evolutionary genetics 
approach to identify the extent of natural selection acting on 
these genes and the gradual changes that lead to the diver-
gence will enhance our understanding about the mechanism 
of host defence mediated by TLRs.

Materials and methods

Data retrieval and multivariate statistical analysis

Sequences of mammalian Toll-like receptor (TLR) genes 
and their encoding proteins representing different groups 
of TLR such as TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, 
TLR7, TLR8, TLR9, and TLR10 were obtained from 
GenBank, NCBI. Toll-like receptor gene sequences were 
searched by using the search option available at the NCBI 

website and mammalian species have been selected under 
species selection for the search operation. The output of the 
search operation provides coding sequence of a particular 
TLR. These coding sequences and their corresponding 
protein sequences were downloaded. TLR gene sequences 
from primates, rodents, artiodactyls, proboscides, perisso-
dactyls, lagomorphs, and chiropters were taken for the analy-
sis. Sequences containing ambiguous character (other than 
A, T, G, C) and internal stop codons were removed from 
the retrieved dataset. The list of mammalian taxa chosen to 
investigate in this study along with their accession numbers 
is provided in the Supplementary Table 1.

Amino acid usage is a multivariate feature by nature and 
studied using statistical analysis such as correspondence 
analysis (CoA) (Peden 2000). CoA is an efficient method 
to explore the variation in the dataset and it reveals major 
tendencies of data disparities by placing them along con-
tinuous axes according to the differential trends observed, 
with each consecutive axis having a diminishing effect (Roy 
et al. 2017). CoA on the basis of amino acid usage (AAU) 
of TLR gene sequences was generated using CodonW. Esti-
mation of physicochemical properties like hydrophobicity, 
GC-content, GC3 values, effective number of codons (ENC), 
and aromaticity of the study sequences was also performed 
using the CodonW program. The correlation study of the 
parameters was executed in Microsoft Excel. The signifi-
cance test was done using the freely available web program 
QuickCalcs-Graphpad.

Evolutionary analysis and phylogenetic  
tree construction

Evolutionary selection acting on the genes under study is 
addressed by evolutionary rate (ω). ω is estimated as the 
ratio of the rate non-synonymous substitutions per non-
synonymous site (Ka) and the rate of synonymous substi-
tutions per synonymous site (Ks). ω > 1 indicates positive 
(diversifying) selection, whereas, ω < 1 indicates negative 
(purifying) selection. For each TLR group (example: TLR1) 
their consensus nucleotide sequences (example: TLR1_con-
sensus) were generated. We have prepared a Perl script for 
generating these consensus sequences. Downloaded nucleo-
tide sequences and the consensus sequence of each TLR 
group were subjected to Clustal Omega program (Madeira 
et al. 2022) for the nucleotide sequence alignment. This 
program Clustal produces biologically meaningful mul-
tiple-sequence alignments of divergent sequences. Then 
the evolutionary rate of the TLR genes (TLR1-TLR10) of 
each TLR group (example: TLR1) was estimated relative 
to their consensus (example: TLR1_consensus) sequences 
using Codeml program of the PAML software (ver. 4.5) 
with runmode =  − 2 and CodonFreq = 1 (Nei and Gojobori 
1986; Yang 2007).
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The protein sequences of all the mammalian TLRs were 
subjected to the multiple sequence alignment using the 
Clustal Omega program (Madeira et al. 2022). The align-
ment result was saved in FASTA format for further analysis. 
Then using that alignment, the construction of phylogenetic 
tree was done applying the maximum likelihood method 
with thousand bootstrap replicates in the MEGAX software 
(Kumar et al. 2018).

Reconstruction of ancestral protein sequences

The common ancestral protein sequence of mammalian 
TLRs was predicted using FireProtASR (ancestral sequence 
reconstruction) v1.1 webserver with default parameter set-
tings (Musil et al. 2021). Analyzing ancestral sequences in 
an evolutionary context to infer the ancestral sequences at 
certain nodes of a tree is termed as ASR. Reconstructing 
ancestral sequences is a well-established method for infer-
ring the evolutionary history of genes. Along with the appli-
cation in the discovery of the most probable evolutionary 
ancestors of study protein, it has been a useful approach 
for the design of extremely stable proteins. This protocol 
enables the implementation of the automated workflow 
FireProtASR allowing various forms of inputs and advance 
settings (Khan et al. 2021). All reconstruction methods 
involve a phylogenetic tree inferred from a given alignment. 
The quality of the tree is crucial for the reliable reconstruc-
tion. We have provided the multiple sequence alignment and 
the phylogenetic tree of all mammalian TLR sequences as 
input for our study. Upon submitting input data, the server 
will execute the dataset and reconstruct ancestral nodes 
along with their sequences.

Analysis of the ancestral sequences

We have performed sequence based and structural analy-
sis of the identified ancestral sequences to accomplish our 
study. The Clustal Omega program, a widely used package 
for carrying out multiple sequence alignment (Madeira et al. 
2022), was used for the alignment of the ancestral protein 
sequences. The prediction of three-dimensional structural 
models of ancestral proteins was performed using Alpha-
Fold2 (Mirdita et al 2022). It is an artificial intelligence sys-
tem developed by DeepMind that can predict three-dimen-
sional structures of proteins from amino acid sequences with 
higher accuracy (Yang et al 2023).

Pairwise structure alignment was performed using the 
structural alignment tool available in Protein Data Bank 
(https://​www.​rcsb.​org/​align​ment). This web-based tool ena-
bles the alignment of one or more structures to a particular 
reference structure that can be accessible from the “Analyze” 
section of the menu bar. In superposed structures, RMSD is 
calculated between aligned pairs of the backbone C-alpha 

atoms. Smaller RMSD indicates better structure alignment 
between the two structures. TM-score (template modeling 
score) is a measure of topological similarity between the 
template and model structures. It ranges between 0 and 1, 
where 1 indicates a perfect match and 0 is no match between 
the two structures. Scores < 0.2 usually indicate that the pro-
teins are unrelated while those > 0.5 generally have the same 
protein fold in SCOP/CATH (Zhang and Skolnick 2005).

Protein domains of the ancestral sequences were anno-
tated using the ScanProsite tool (de Castro et al. 2006). 
Evolutionary parameters such as rate of non-synonymous 
substitutions per non-synonymous site (Ka) and rate of 
synonymous substitutions per synonymous site (Ks) of the 
ancestral sequences were analyzed with respect to the root 
node sequence of the phylogenetic tree (Nei and Gojobori 
1986; Yang 2007). The interaction of the ancestral protein 
sequences and Human_TLR9 sequence that have been used 
as a reference for the remaining species (Zhou et al. 2013) 
with the CpG ODN (Areal et al. 2011) was studied in the 
HDOCK. This web server enables hybrid docking algorithm 
of template-based modeling and free docking. The server 
supports protein–protein and protein–DNA/RNA docking 
and accepts both sequence and structure inputs for proteins. 
The docking scores are calculated through a knowledge-
based iterative scoring function in this tool. A more nega-
tive docking score means a more possible binding model 
(Yan et al. 2017).

Results

Amino acid usage pattern of Toll‑like receptor genes

We used mammalian Toll-like receptor (TLR1-TLR10) 
gene sequences to investigate the amino acid usage 
(AAU) pattern through correspondence analysis (CoA). 
Mutations are accumulated in TLR genes through vari-
ous evolutionary processes. These mutations lead to the 
change in amino acid composition of TLRs. The CoA on 
the amino acid usage of mammalian TLR genes was per-
formed to study the impact of such changes on the func-
tionality of the encoded TLR proteins. The distribution 
of genes along the two major axes of the correspondence 
analysis is shown in Fig. 1. The first and second major 
axes accounted for 57.57% and 10.76% of the total varia-
tion of amino acid usage. A clear separation of the amino 
acid usage pattern of TLR9 genes with respect to other 
TLR (TLR1-TLR8 and TLR10) genes has been observed. 
Because the horizontal axis of correspondence analysis 
accounts for the majority of variation of the TLRs in CoA 
further analysis was carried out based on the distribution 
of mammalian TLR genes along this axis.
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Change in amino acid usage of a gene may affect the 
various physicochemical properties of TLR gene. We have 
calculated various physicochemical parameters of TLR 
gene sequences to understand the factor driving this dis-
tinct amino acid usage pattern among them. The parameters 
such as hydrophobicity, GC-content, GC3 values, effec-
tive number of codons (ENC), and aromaticity were found 
to differ significantly (p < .05) between TLR9 and other 
TLR (TLR1-8, TLR10) genes. Significant correlation was 
observed between the gene position along the horizontal 
axis and hydrophobicity (r =  − 0.346, p < .01), GC-content 
(r =  − 0.977, p < .01), GC3 values (r =  − 0.96, p < .01), 
effective number of codons (ENC) (r = 0.825, p < .01) and 
aromaticity (r = 0.437, p < .01) of the encoded protein. These 
correlation values indicate that the physicochemical param-
eters are contributing in the distinct amino acid usage pattern 
of TLR9.

Highly significant negative correlation with GC content, 
GC3 value indicated the influence of the codon bias. To 
better understand the relation between gene composition 
and codon bias, an ENC–GC3 scatter diagram was pre-
pared as shown in Fig. 2. Such ENC–GC3 plots have been 
widely used to determine whether codon usage of a gene 
is shaped by natural selection. A significant correlation 
was observed between ENC and GC3 values (r =  − 0.837, 
p < .01). The solid line represents the expected curve in 
Fig. 2. TLR genes (TLR1-TLR8, TLR10) that lie on the 
expected curve indicate codon usage bias is only affected 
by mutation pressure. TLR9 genes are placed away from 
the expected curve, indicating that its evolution is shaped 
by the influence of natural selection.

Evolutionary selection analysis

The analysis of evolutionary selection can identify spe-
cific cases of adaptation as well as general principles that 
guide evolution. The analysis of evolutionary processes 
to distinguish between neutral and adaptive changes is 
thus very important. To understand the effect of evolu-
tionary selection on the distinct amino acid usage pattern 
of TLR9, we have analyzed the evolutionary parameters 
such as non-synonymous substitution (Ka), synonymous 
substitution (Ks), ratio of non-synonymous and synony-
mous substitution (Ka/Ks) of the mammalian TLR genes. 
The analysis of these parameters is important for the study 
of the dynamics of molecular evolution of TLRs. Results 
were compared between TLR9 and other TLR genes as 
we obtained the difference in amino acid usage pattern 
between them. We found a significant difference of Ks 
and Ka/Ks between TLR9 and other TLRs, but Ka was not 
statistically significant in all the cases. The average value 
of Ks is more and Ka/Ks is less in thecase of TLR9 cluster. 
In spite of overall purifying selection on TLR genes, sig-
nificant difference of non-synonymous substitution (Ka), 
synonymous substitution (Ks), ratio of non-synonymous 
and synonymous substitution (Ka/Ks) are observed. These 
results suggest that the evolution of TLR9 genes is highly 
influenced by synonymous substitution (Ks).

Ancestral sequence reconstruction

Ancestral sequence reconstruction is the calculation of 
ancient protein sequences on the basis of extant ones. The 

Fig. 1   Distribution of mam-
malian Toll-like receptor (TLR) 
genes along the two major axes 
of correspondence analysis 
(CoA) on amino acid usage. 
Distinct pattern of amino acid 
usage of TLR9 genes (violet) 
are marked with the red circle
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previous analysis suggests that TLR9 shows distinct pattern 
of amino acid usage and the highest synonymous substitu-
tion rate with respect to other TLR genes. Thus, the ancestral 
sequence reconstruction through phylogenetic tree has been 
performed to reconstruct the evolutionary paths of the TLR 
protein family to study the key mechanism of the molecular 
evolution of TLR9. The ancestral sequence reconstruction 
phylogenetic tree of mammalian Toll-like receptor gener-
ated from the software is shown in Supplementary Fig. 1. In 
this figure, various TLR genes (for example: TLR1, TLR2, 
TLR3) are marked with different colors and Nodes are 
assigned with Node number. All the TLR9 genes are marked 
in red and their ancestral Node is denoted by Node 235. Sim-
ilarly, all the TLR7 and TLR8 genes are marked in orange 
and their ancestral Node is denoted by Node 256. TLR3 and 

TLR5 genes are marked in blue and their ancestral Node 
is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and 
TLR10 genes are marked in green and their ancestral Node 
is denoted by Node 337. Node 226 denoted the root node 
that leads to the evolutionary path of TLRs through Node 
232, Node 233, and Node 234. This entire evolutionary route 
of divergence of various TLRs from their common ancestor 
is schematically represented in Fig. 3. Here, the common 
root node is Node 226. All other TLRs have been evolved 
from this via intermediate nodes. For example, Fig. 3 also 
depicts the evolution of TLR9 from Node 226 via Node 235. 
Similarly, the evolutionary path of other TLRs from the root 
can be easily understood from Fig. 3 which is a simplified 
diagrammatic representation of evolutionary paths of vari-
ous TLRs from root.

Fig. 2   The plot of ENC–GC3 
for mammalian Toll-like 
receptor genes. The solid line 
represents the expected curve 
(blue). TLR genes (TLR1-
TLR8, TLR10) those lie on the 
expected curve indicate codon 
usage bias is only affected 
by mutation pressure. TLR9 
genes those are away from the 
expected curve indicate the 
influence of natural selection

Fig. 3   Simplified schematic 
representation of the selection 
of ancestral nodes from the 
phylogenetic tree. Node 226 
denotes the root node and the 
evolutionary pathway that leads 
to TLR9 follows via Node 232, 
Node 233, Node 234, and Node 
235. Node 227 denotes the 
ancestral node of TLR11, 12, 
13, Node 337 denotes ancestral 
node of TLR1, 2, 4, 6, 10, Node 
299 denotes ancestral node of 
TLR3, 5, and Node 256 denotes 
ancestral node of TLR7, 8
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Analysis of the ancestral sequence

We accomplished our study through sequence based and 
structural analysis on the selected ancestral nodes that 
encompasses the evolutionary path of TLR9. Sequence-
based analyses such as multiple sequence alignment of the 
ancestral sequences, analysis of the functional domains, 
estimation of synonymous, and nonsynonymous substitution 
were performed in order to understand the gradual changes 
that occurred during TLR9 evolution. Structural studies 
were also performed to assess the functional changes.

Multiple sequence alignment (MSA) generated a per-
cent identity matrix of the protein sequences to provide 
an overview of the similarities between the sequences. 
The heatmap of the percent identity matrix reported from 
the alignment is displayed in Fig. 4. A higher sequence 

identity of TLR9 with its immediate ancestor (Node 235) 
but a lower sequence identity with the root (Node 226) 
was observed. It suggests that the continuous changes in 
sequence level along the ancestral lineages lead to the dis-
tinct sequence pattern of TLR9. The prediction of domain 
of the selected protein sequences was done and the number 
of LRR in the ectodomain was calculated. The orientation 
of LRRs in the ancestral lineages was different compared 
to Human_TLR9 and its immediate ancestral node. LRRs 
are the important components of the functional domains 
of TLRs that recognize the pathogen-associated molecu-
lar pattern (PAMP). Variation in the number of LRR in 
the ancestors of TLR9 was observed (Fig. 5). It suggests 
that during the evolution the variations among the LRRs 
of the ancestral nodes contributed to the specific pattern 
recognition of TLR9.

Fig. 4   Heatmap showing percent identity matrix of proteins obtained 
from multiple sequence alignment, colours correspond to the percent 
identity with high values (red), medium values (white) and low values 
(blue). Values in the box represent sequence homology in percent-

age. Higher sequence identity of TLR9 with its immediate ancestor 
(Node 235) but lower sequence identity with the ancestral nodes was 
observed

Fig. 5   Number of LRR present 
in the TLR genes and the 
ancestral nodes are shown in 
the bar plot. Number of LRR in 
human_TLR9 is decreased from 
its immediate ancestor Node235
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To observe these differences in structural level, structural 
models of the ancestral nodes and Human_TLR9 from the 
existing TLR9 group were prepared and compared through 
pairwise structural alignment (Supplementary File 1). Root 
mean square deviation (RMSD) and TM-score (template 
modeling score) were important metrics in this analysis. 
The RMSD values of TLR9 with the root node were higher 
compared to the other ancestral nodes and it gradually 
decreased in other nodes. These observations also showed 
more deviation of TLR9 from the root with respect to other 
TLRs along the ancestral nodes in the evolution of TLR9. 
For all the pairwise structural alignment, TM-score varia-
tion was observed but the values indicated that they are in 
the same protein fold.

TLR9 is a receptor for sensing bacterial DNA/CpG-con-
taining oligodeoxynucleotides (CpG ODN) as PAMP within 
the endosomal compartment. An interaction study of ances-
tral proteins with this known ligand of Human_TLR9 was 
performed. It will help to understand how the present ligand 
is selected through evolution facilitating stronger interaction 
with TLR9. The interaction of Human_TLR9 and CpG ODN 

was also studied. The docking score of all the interactions 
is shown in Fig. 6. The highest docking score observed in 
the case of Human_TLR9 indicated the most compatible 
interaction of the ligand with the present TLR9. It reveals 
that TLR9 achieved its present conformation through the 
structural changes in the ancestral nodes during the course 
of evolution. Present TLR9 is very specific in recognizing 
its ligand as the ancestral nodes showed comparatively less 
stable interaction with this ligand.

The assessment of the evolutionary impact on the 
ancestral node sequences was also done by measuring 
the changes in non-synonymous substitution (Ka), syn-
onymous substitution (Ks), ratio of non-synonymous, 
and synonymous substitution (Ka/Ks) (Fig. 7). Gradual 
increase of Ks from root to the other ancestral nodes was 
seen and it became extremely high in Human_TLR9. The 
Ka value is also high in Human_TLR9 compared to the 
ancestral sequences. Due to the high value of Ks, the Ka/
Ks value became very low in Human_TLR9. The influence 
of synonymous substitution has been shaping the TLR9 
evolution compared to its ancestral nodes.

Fig. 6   Docking score of the interaction analysis between selected sequences and known ligand of CpG DNA of TLR9. The highest docking 
score is observed in case of TLR9
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Discussion

The transmembrane pattern recognition receptor TLRs are 
best known for their roles in innate immunity via recogni-
tion of pathogen and initiation of signaling response. In this 
study, a comprehensive analysis of mammalian Toll-like 
receptor gene sequences (TLR1-TLR10) revealed that TLR9 
follows a distinct pattern of evolution. Sequence-based fea-
tures and evolutionary constraints are found to influence the 
divergence of TLR9 from other TLRs. Ancestral sequence 
reconstruction analysis also revealed that the gradual evolu-
tion of TLR genes in several ancestral lineages leads to the 
distinct pattern of TLR9.

Mammalian TLRs are responsible for the recognition of 
conserved molecular pattern derived from various classes 
of pathogens resulting in the induction of innate immune 
response. Pathogen-induced selection is considered a crucial 
selective mechanism driving the evolution of immune sys-
tem components. We have identified various factors influ-
encing TLR-dependent heterogeneity in amino acid usage 
that contribute to the differences in their immunological 
responses in mammals. We also found that high synonymous 
substitutions have shaped the observed changes between 
TLR9 and other mammalian TLR genes in spite of non-
synonymous substitutions inducing the amino acid changes.

The divergence of TLR9 is demonstrated in this study 
through the ancestral sequence reconstruction. The 
analysis of the ancestral sequences also reinforced that 
changes occurred in the TLRs during their evolution from 
the ancestral lineages that were mostly observed in the 
TLR9 and its descendants. The decrease in the percent 
sequence identity of TLR9 from the root to the ancestral 

nodes to the mammalian TLR9 branch of the tree depicts 
gradual changes that happened in the sequences through 
the accumulation of mutation. The domain-wise analy-
sis also suggested the accumulation of a greater number 
of mutations in the ectodomain causing variation in the 
number of LRR. Each TLR comprises an ectodomain with 
leucine-rich repeats (LRRs) that facilitate the recognition 
of pathogen-associated molecular pattern (PAMP) and a 
cytoplasmic Toll/IL-1 receptor (TIR) domain that initi-
ates downstream signaling. The mutational changes also 
have been influenced by gradual selection pressure on the 
ancestral sequences in the course of evolution. Influence 
of synonymous and non-synonymous substitution among 
the ancestral sequences is observed and the gradual selec-
tion pressure in the course of evolution leading to the dis-
tinct pattern of TLR9. The interaction study also revealed a 
more stable interaction of the ligand with TLR9 compared 
to the ancestral nodes. Although decreasing docking score 
in other ancestral nodes indicated less stable interaction.

This study enables a new approach to explore the emer-
gence of Toll-like receptor through the ancestral sequence 
reconstruction that elucidates a distinct pattern of evolution 
of TLR9. It demonstrates that the evolutionary divergence of 
TLR9 started from the beginning and the gradual accumula-
tion of changes in the ancestral lineages leads to the distinct 
pattern of TLR9 compared to the other mammalian TLRs. 
It will elucidate the biological significance of TLR9 and 
provide evidence for their distinct contributions in response 
to host defence.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00251-​024-​01338-8.

Fig. 7   Synonymous (Ks) 
and non-synonymous (Ka) 
substitution rates in TLR9 and 
its ancestral nodes. It is clear 
from the figure that both Ka as 
well as Ks are highest in case 
of TLR9

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Data Availability  All sequence information is available in public data-
bases and the accession numbers of the sequences used in the present 
study are provided in Supplementary Table 1.
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