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Abstract

Infectious diseases have posed the greatest threat to survival and wellbeing during human
evolution. Natural selection is thus expected to exert a major influence on host defence genes,
specifically on the genes involve in innate immunity, whose products intervene direct
interactions between the host and the pathogen. Toll-like receptors (TLRs) are well-known for
their roles in innate immunity, where they recognise pathogens and initiate a signalling
response. These receptors can recognize a different types of pathogen-associated molecular
patterns (PAMPs) as their ligands and are implicated in immunological response, signalling
process development, and cell adhesion. Mammalian TLRs recognise molecular signatures
linked with infections and trigger an innate immune response. This study emphasised the

significance of evolutionary selection on the diverse mutation of TLR genes from mammals.

In my study I have noted difference in amino acid usage between primate and non-primate
mammalian TLR genes. The GC content of TLR genes and the hydrophobicity of encoded
proteins are the important factors in determining the distinct pattern of amino acid usage. The
GC-content was found to be consistent evolutionary force throughout the course of evolution
of TLR genes between primate and non-primate mammalian species. I have observed TLR
genes are generally under purifying selection, however several positively selected sites have
been found in the ligand binding domain. My study also presented that the amino acid usage
pattern of TLRs are influenced by their subcellular location. Different branching patterns of
primate and non-primate mammalian TLRs have also been demonstrated through phylogenetic
tree. These findings clearly indicate that natural selection influenced the evolution of primate

and non-primate mammalian TLR genes.



Following these findings, an amino acid usage analysis of all mammalian TLRs was done to
investigate the evolutionary diversity of mammalian TLRs and differences in immunological
response. A detailed examination of mammalian TLRs found that TLR9 evolved in a
completely different way compared to other mammalian TLRs. Different sequence-based
features, including amino acid usage, hydrophobicity, GC content, and evolutionary
parameters, have been identified to impact the divergence of TLR9 from other TLRs.
Reconstructing ancestral sequences is an important component of molecular evolution of TLR
because it allows to follow changes across genes. Ancestral sequence reconstruction study also
demonstrated that TLR genes evolved gradually across numerous ancestral lineages, resulting
in the distinct TLR9 pattern. It exhibits evolutionary divergence, with the gradual accumulation

of mutations resulting in the specific pattern of TLRO.

The evolutionary genetics approach to determine the magnitude of natural selection operating
on TLR genes and the progressive changes that lead to divergence will help us better

understand the mechanism of host defence mediated by TLRs.
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Introduction

The immune system comprises of two components such as innate immunity and acquired
immunity. Both of these components are responsible for host defence against invading
microbial pathogens by triggering immune responses to remove the invading pathogen that is
identified as non-self. So far both components have been characterised individually, and the
majority of research in the immunology area has focused on acquired immunity. In acquired
immunity, B and T lymphocytes recognise non-self by using antigen receptors such as
immunoglobulin and T cell receptors. The processes by which these antigen receptors
recognise foreign antigens have been extensively studied. The major mechanisms are diversity,
clonality, and memory being well understood. Though, these receptors are predominantly
found in vertebrates, and in less evolved organisms the recognition process of non-self is not

well identified.

Since their emergence, multicellular hosts have developed defence mechanisms to survive in
optimal symbiosis with parasitizing microbes. On the other hand, microbes have evolved
constantly to escape the protective host barriers. The host has evolved a highly developed
immune system, known as the innate immune system, that is encoded with germlines as a result
of this continuous evolutionary arms race. The innate immune system uses a vast array of
pattern recognition receptors (PRR) to identify and respond to threats in the environment as
well as to distinguish between beneficial and harmful bacteria. Toll-like receptors (TLRs),
RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors are some of the

germline-encoded receptors that regulate pathogen detection and host-microbiome balance.

These PRRs have developed the ability to identify highly conserved microbe associated
molecular patterns (MAMPs) as a result of host-microbe coevolution. Nucleic acid or cell-wall
structures are necessary for microbial survival and their alteration by microbes are challenging.
It is possible to identify a variety of microorganisms with a minimal number of receptors by
detecting the MAMPs. The innate immune system depends on host cell receptors to detect both

advantageous and pathogenic microbes by recognising definite MAMPs and pathogen-
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associated molecular patterns (PAMPs) including nucleic acids, proteins, lipids, and
lipoproteins. Among these, TLRs are intensively investigated as main mediators of innate

immunity in species ranging from insects to humans (Brennan & Gilmore, 2018).

One of the well explored family of PRRs, TLRs are the type I membrane-spanning
glycoproteins usually contain three domains: extracellular domain (ECD), transmembrane
domain and intracellular signalling domain. Though TLR genes are conserved across the
animal kingdom (Leulier & Lemaitre, 2008), their structural and functional evolution have
occured in response to varying environmental conditions and habitats. Presence of Toll protein
in fruit fly Drosophila melanogaster led to the discovery of TLRs. Toll was found to be a
regulator in the developing embryo (4Anderson et al. 1985). Spétzle, the natural ligand of the
Toll protein, was later discovered to be responsible for activating the protein after a fungal
infection. In D. melanogaster (Lemaitre et al. 1996) such activation triggered the synthesis of
antimicrobial peptides, deliberating immunity to fungi. Exploration of proteins similar to Toll
in other species lead to in the detection of murine Toll-like receptors (TLR4). It has been
established that TLR4 is essential for the natural identification of bacterial lipopolysaccharide
(LPS). Numerous TLRs and their corresponding microbial ligands have been recognized and
characterised in a widespread range of species since TLR4 was known as the LPS receptor
(Poltorak et al. 1998). Studies on TLR evolution across many phyla are now possible because
of the remarkable developments in whole genome sequencing. Bioinformatics analysis of
whole genome data showed fungi and prokaryotes lack TLR orthologs. Receptors with low
sequence resemblance to TLRs are found in the plant kingdom; these receptors are known as
Receptor-like kinases or Nucleotide-binding site LRRs. They contain LRR motifs attached to
different signalling domains. Comparing these plant receptors to animal TLRs, functional
studies reveal that they respond to distinct microbial patterns and use fundamentally different
signalling networks. This suggests that the plant receptors that contain LRRs are not ancient
orthologs of TLRs, but rather belong to distinct classes of plant-specific receptors that have

undergone convergent evolution and developed a function similar to that of TLRs (Ausubel,



2005, Boller & Felix 2009). TLRs are consequently originated from the animal kingdom

(Metazoa).

There have been 16 TLRs found in the jawless vertebrate (lamprey), 13 TLRs in mammals, 10
TLRs in birds, 21 TLRs in amphibians and 20 TLRs in teleost fish. It is predicted that reptiles
have a minimum of 9 TLR genes (Rauta et al. 2014, Alcaide & Edwards, 2011, Babik et al.
2015, Kasamatsu et al. 2010). Vertebrate TLRs have been categorised into six major families
based on their sequence homology (Roach et al. 2005). In general, these TLRs have managed
to retain their capability to identify unique ligands. The large family of TLR1 contain TLR1,
TLR2, TLR6, TLR10, TLR14, TLR15, TLR16, TLR18 and TLR25 responsible for the
recognition of lipoproteins (such as di- and triacylated lipopeptides). TLR15 is the members of
this family is activated by proteolytic cleavage of pathogen and TLR10 negatively regulate of
TLR2 (Zoete et al. 2011, Oosting et al. 2014). Double-stranded RNA, LPS and bacterial agents
are recognised by the TLR3, TLR15 activated by microbial proteolytic cleavage TLR4 and
TLRS families. TLR7 family includes TLR7, TLR8, TLRY are able to identify nucleic acid
motifs (Quiniou et al. 2013, Kucera et al. 2010). The members of TLR11, TLR12, TLR13,
TLR19, TLR20, TLR21, TLR22, TLR23, and TLR26 comprise the sixth major family. The
functionally characterised receptors in this family detect either nucleic acid patterns or protein.
Certain TLR genes, particularly those belonging to the extensive TLR1 and TLR11 families,
seem to have disappeared in different lineages, possibly as a result of functional redundancy.
Nevertheless, practically every species of vertebrate possesses minimum one gene each from
the main families of TLR, highlighting significance of innate immune recognition of a wide

variety of microbial ligands (Raetz M et al. 2013, Keestra et al. 2010).

Lack of TLR4 in certain teleost fish like Takifugu rubripes cause a prominent deviation from
the conservation of TLRs in vertebrate TLR groups. The ability of TLR4 to recognise LPS,
together with its coreceptors MD-2 and CD14, is crucial for the response of the mammalian
immune system to bacterial infections. Certain fish, such as common carp (Cyprinus carpio)
and zebrafish (Danio rerio), do have several copies of TLR4, but they do not have TLR4

coreceptor genes (Kanwal et al. 2014). For this reason, TLR4 does not facilitate LPS detection
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in fish. Rather, it seems that fish TLR4 negatively regulate of the transcription factor NF-kB,
which promotes inflammation (Sepulcre et al. 2009). The reasons behind this divergent
evolution is not clear and might be anticipated by the analysis of TLR4 in intermediary

amphibian and reptile species.

TLR15 in birds and reptiles provides another illustration of dynamic TLR evolution in
vertebrates. The TIR domain of TLR15 is related to members of the TLR1 family and it is
exclusively found in the genomes of birds and reptiles (Boyd et al. 2012). However, substantial
sequence variation of LRR motifs of TLR15 has resulted in the unusual capability of this
receptor to be triggered by bacterial proteases unlike TLR1 family members that recognise
lipopeptides. The reason for the development of this characteristic among diapsid animals and
whether it offers any major immunological benefit to these animals is not clear (Zoete et al.

2011).

During evolution microbes and their hosts compete together in order to prevent their extinction.
Microbes develop ways to overcome host defences to survive and proliferate, while hosts must
retaliate these strategies in order to avoid being overexploited. For all TLRs this fact is correct.
One of the key functions of TLRs is the detection of microorganisms and limiting their numbers
by stimulating the immune system. In contrast, microbes also have advanced different

strategies to get around the TLR system.

The diversity of microorganisms and the evasion strategies of TLR exert selection pressure on
the evolution of the TLR system. Using phylogeny-based analysis of site-specific codon
substitutions, one can ascertain the "direction" of this selective pressure. Comparison of TLR
sequence among species identified sites subjected to positive selection when the ratio of
nonsynonymous over synonymous codon substitutions is more than 1. This suggests that a site
has maintained its polymorphism and could offer a fitness benefit as a result of adaptive
evolution. A codon is considered to have experienced purifying selection if the ratio of
nonsynonymous to synonymous codon substitutions is less than 1. This suggests that

polymorphisms would typically be harmful in such a site, and therefore the site evolves under



functional constraints (Yang et al. 2002). Because of their nonredundant roles in signal
transduction, TLR adaptor proteins, particularly MyD88 and TRIF evolve under functional

constraints (Nakajima et al. 2008, Fornarino et al. 2011).

Since the TLR adaptors interact with a variety of proteins, polymorphisms would most likely
affect their interaction with some of these proteins. Because the TIR domain exhibits a high
degree of similarity across a wide range of species and can become inactive by substituting
even a single critical site, maintaining function also controls the evolution of the TIR domain
(Nakajima et al. 2008, Mikami et al. 2012). Moreover, polymorphisms are present in the ligand-
binding region of the ECD of nucleic acid detecting TLRs (such as TLR3, TLR7, TLRS&, and
TLR9) although they are almost ever detected there, suggesting influence of functional
restrictions on the ligand binding by these TLRs (Keestra et al. 2008). This restriction is most
likely caused by the extremely similar structures of host and microbial nucleic acids, which
poses the risk of triggering autoimmune reactions. Detrimental mutations that would have
enhanced binding to self-nucleic acids probably been eliminated from the population by
purifying selection, reducing the likelihood of identifying self-nucleic acids while preserving
sufficient detection of microbial nucleic acids (Wlasiuk & Nachman, 2010; Vinkler et al. 2014,

Forniiskova et al. 2013; Webb et al. 2015).

The ECD of surface expressed TLRs (such as TLR2, TLR4 and TLRS) shows a robust
diversified evolution propelled by positive selection of beneficial mutations, in contrast to
nucleic acid-sensing intracellular TLRs. Positively selected sites in TLR genes from a variety
of species including fish, cattle, pigs, birds, rodents and primates have been identified from the
genomic data (Werling et al. 2009). The majority of these sites are situated inside the ligand-
binding domain or quite close to it. The need to distinguish between host-specific commensals
and pathogens, as well as antagonistic coevolution with host-specific pathogens, may have
contributed to the highly variable nature of TLR ligand-binding domains among hosts. The
polymorphic nature of ligand-binding domains of TLR among hosts might have been driven
by antagonistic coevolution through host-specific pathogens and/or the need to distinguish

among host-specific commensals and pathogens.



TLRs are among the widely investigated innate immune receptors. More studies are yet to be
done about the evolutionary aspect of this receptor family. Substantially broader functional
studies incorporating ligands from a wide range of microorganisms would greatly benefit in
our understanding of the evolution of TLRs. Residues with possible importance for TLR
function can be predicted using phylogeny-based assessments of the evolution of molecular
TLRs. Functional analyses could reveal the selective factors underlying the purifying or
diversifying selection of TLRs and offer experimental support for their findings. As a whole,
these analyses may be crucial in understanding the molecular foundation of antagonistic host-

specific coevolution with microorganisms and the ensuing natural resistance to disease.
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Review of literature

Innate immune cells in mammal including dendritic cells and macrophages are activated by the
microbial components recognised as nonself such as lipopolysaccharide (LPS) from Gram
negative bacteria. Toll was discovered during the end of the 20th century as a crucial receptor
for host defence against fungal infection in Drosophila species having only innate immunity
(Lemaitre et al. 1996). One year later, a homolog of Toll receptor (now known as TLR4) in
mammal of the was found to trigger the gene expression implicated in inflammatory responses
(Medzhitov et al. 1997). Furthermore, a point mutation in the TLR4 gene has been discovered
in a mouse strain that is unresponsive to LPS (Poltorak et al. 1998). These results have made
innate immunity an interesting research topic, and during recent time, significant progress has
been made to understand that the innate immune system has a complex strategy that detects
microbial pathogen invasion via Toll-like receptors (TLRs). Furthermore, innate immunity

activation is essential for the establishment of acquired immunity for specific antigen.

Identification of the Toll like Receptor (TLR) family

Following its identification of TLR4, the first mammalian TLR, numerous proteins with
structural similarity to TLR4 were discovered and termed Toll-like receptors (Rock et al. 1998).
Mammalian TLRs form a broad family with 11 members. In humans and mice TLR1-TLR9
are conserved. Though it has been thought that in humans TLR10 is functional, substitution
with a dissimilar and non-productive region at the C terminal of the mouse TLR10 gene
indicated non-functionality of mouse TLR10. Likewise, TLR11 in mouse is functional, but in
human TLR11 is absent due to presence of a stop codon in gene (Zhang et al. 2004). The
cytoplasmic part of TLRs is highly similar to the IL-1 receptor family, and is known as a
Toll/IL-1 receptor (TIR) domain. In spite of their similarities, structural differences have been
found in extracellular part of both receptors. An immunoglobulin-like domain is found in IL-1
receptors, while the TLRs have leucine-rich repeats (LRRs) in the extracellular domain.
Functional role of TLR4 in recognising the microbial component LPS was first characterised

(Poltorak et al. 1998). Individual TLRs are now known to play key roles in recognising distinct
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microbial components generated from pathogens such as bacteria, fungus, protozoa, and

Viruses.

Toll-like Receptors (TLRs) in Invertebrates

TLR types and numbers across invertebrates differ by species, ranging from one to hundreds.
Two types of TLRs have been categorized depending on the CF motif numbers (LRRCT,
containing C terminal end of LRRs with cysteine clusters), protostome type (P-type or
mccTLR) and vertebrate type (V-type or sccTLR) (Maaser et al. 2004). P-type TLRs include
just one cluster of cysteine at LRRCT, whereas V-type TLRs contain numerous clusters of
cysteine at LRRCT and, in certain cases LRRNT at the N terminal end. P-type TLRs have only
been found in invertebrates, suggesting that they are an old variety of TLR. In contrast, most
vertebrate and some invertebrate TLRs are V-type (Hawn et al. 2003). It has been proposed
that, unlike vertebrate V-type TLRs, P-type TLRs do not directly bind PAMPs, as evidenced
by Drosophila Toll-1, the most well-studied P-type TLR (Anderson et al. 1985). Most TLRs
have been detected in the invertebrate phyla such as Porifera, Coelenterata, Platyhelminthes,

Nematoda, Annelida, Echinodermata, Mollusca, and Arthropoda.

Porifera

TLRs from porifera have primarily been recorded on Amphimedon queenslandica and
Suberites domuncula. A. queenslandica has been found to harbour two TIR domain containing
proteins with N terminal IL-1R-like Ig domains and an LRR domain-containing protein with
Ig and epidermal growth factor (EGF) like domains (Gauthier et al. 2010, Hentschel et al.
2012; Srivastava et al. 2010). Similarly, the sponge S. domuncula has been found to harbour a
TIR only protein (Sd-TLR) with a transmembrane domain; however, no proteins containing an
LRR domain have been found in this species (Wiens et al. 2007). The presence of NF-xB
homologs and Myeloid differentiation primary response protein 88 in the TLR to NF-«xB route
in A. queenslandica and S. domuncula suggests that the MyD88-mediated TLR signalling
pathway already has been observed in poriferans (Gauthier et al. 2010; Gilmore & Wolenski,
2012; Song et al. 2012). Furthermore, during the early stages of A. queenslandica development,
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expressions of additional adaptor proteins implicated in the TLR-to-NF-«B pathway are seen,
indicating that this route is related to development (Gauthier et al. 2010). Sd-TLR has been
shown to engage in ongoing interactions with microorganisms and may have a role in S.

domuncula immune modulation (Wiens et al. 2005; Wiens et al. 2007).

Cnidaria

Around 10,000 aquatic organisms that comprise the phylum Cnidaria that are morphologically
primeval outgroup to bilaterians include corals, Hydra, sea anemones, and jellyfish (Putnam et
al. 2007). No classical TLRs, but a large number of proteins have been found in Hydra species
connected to the TLR to NF-kB pathway. Furthermore, Hydra has been found to have two
transmembrane TIR domain-containing proteins and two LRR domain-containing proteins
(Bosch et al. 2009, Augustin et al. 2010). In HEK293 cells, a chimeric protein called HyLRR-
2, can activate the NF-xB reporter in response to flagellin by combining the human TIR domain
with LRR protein of Hydra, but not LPS (Putnam et al. 2007). Thus, flagellin could be the
HyLRR-2 ligand that starts innate immune signalling. The genome of the sea anemone
Exaiptasia pallida contains two TIR domain-only genes that may encode the same protein
(Poole & Weis, 2014, Baumgarten et al. 2015). Recent transcriptome study has shown that a
number of additional cnidarians, such as the corals Acropora digitifera, Acropora millepora,
and Orbicella faveolata express classical TLR members and elements linked to NF-«B

activation (Miller et al. 2007; Rauta et al. 2014).

Platyhelminthes

The functions of TLRs in platyhelminth has been explored on planarians, turbellarians, and
rotifers. Since they are non-parasitic flatworms, Planarians are evolutionary important to the
study of immune responses triggered by injury and the process of metazoan regeneration
(Riutort et al. 2012, Sanchez, 2003). Many proteins implicated in the TLR to NF-xB pathway
have been found in the freshwater planarian Schmidtea mediterranea; though, the TLRs of this
flatworm are TIR and LRR-only proteins rather than canonical TLRs (Peiris & Hoyer, 2014,
Forsthoefel et al. 2012). Throughout S. mediterranea head regeneration, TLRs, MyD8&8,
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TRAF, and IRAK are all upregulated, suggesting that the TLR-initiated signalling pathway is
probably involved in avoiding infection throughout the regeneration process (Peiris & Hoyer,
2014). Therefore, further research is required to fully understand the immunological responses
that TLRs trigger against infections or PAMP activation, as well as the mechanisms underlying

the phylum Platyhelminthes.

Nematoda

The traditional model organism for studying nematodes is Caenorhabditis elegans. It has been
shown that C. elegans expresses a protein that contains a TIR domain, a canonical P-type TLR
(TOL-1), and other elements that are similar to those seen in TLR signalling pathways in
mammals (Forsthoefel et al. 2012, Brandt & Ringstad, 2015, Gissendanner & Kelley, 2013;
Irazoqui et al. 2010; Liu & Shen, 2012; Mancuso et al. 2012; Pradel et al. 2007, Pujol et al.
2001). However, it appears that TOL-1 does not start the NF-kB-dependent signalling
pathways since C. elegans lacks several components of the TLR-to-NF-kB signalling
pathways, including MyD88, IKK, and NF-kB. The downstream pathways that TOL-1
activates during early development are still unknown, despite the fact that prior research has
demonstrated the importance of TOL-1 for C. elegans pathogen identification and early

development (Gissendanner & Kelley, 2013, Mancuso et al. 2012).

Annelida

Davidson et al. provided initial evidence of the presence of TLRs in the genomes of annelids,
such as the leech Helobdella robusta and the polychete worm Capitella capitata. The high
number of TLR-like genes found in the genome of C. capitata is probably due to the fact that
its TLR sequences are quite similar and may have resulted from recent gene duplications
(Davidson et al. 2008, Simakov et al. 2013). A TLR known as Hm-TLR1 has been found in
Hirudo medicinalis seems to be a chimeric mix of the cytoplasmic portion of TLR13 and the
intra endosomal region of human TLR3. Microglial cells and neurons have been shown to

express Hm-TLRI1, and it has been proposed that Hm-TLR1 is involved in immunity
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(Schikorski et al. 2009, Cuvillier-Hot et al. 2011). Overall, a number of studies showed that

annelid TLRs are essential for neurogenesis and neuroimmunity.

Mollusca

So far, molluscan species such as Cyclina sinensis, Biomphalaria glabrata, Chlamys farreri
and Crassostrea gigas have been found to contain TLR. The genome of B. glabrata contains
56 TLR-encoding genes, 27 encoding full TLRs, together with 2 P-type and 25 V-type TLRs
(Adema et al. 2017). B. glabrata has been shown to harbour a novel snail TLR called Bg-TLR.
B. glabrata becomes more susceptible to parasites when Bg-TLR is knocked down, suggesting
that Bg-TLR may be important for immunological response of B. glabrata after infection (36).
It has been shown that C. sinensis hemocytes include a pathogen-responsive TLR13-MyD88-
NF-kB pathway, and absence of TLR13 results in the reduced expression of other adaptors in
this signalling network (Ren et al. 2016; Ren et al. 2017). Research suggests that MyD88-
dependent signalling pathway mediate the activation of downstream immunological processes
in C. sinensis, particularly the antibacterial response (Ren et al. 2016). Further study is required

for better understanding of the developmental roles of molluscan TLRs.

Arthropoda

Comparatively few studies have been conducted so far on toll-like receptors of Merostomata
species. The horseshoe crab Tachypleus tridentatus has been shown to possess a TLR gene
(tToll) that is similar in length and structure to Drosophila Toll-1 (Inamori et al. 2010).
Interestingly, the LRRs of tToll-1 protein do not involve PAMP binding; instead, they bind to

molecules that resemble Drosophila Spitzle (Kurata et al. 2006, Coscia et al. 2011).

Within Arthropoda, Insecta is so far the major group of hexapod invertebrates with over a
million species. Insects possess the ability to develop a quick antimicrobial response upon
infection (Belinda et al. 2008, Brennan et al. 2004, Dan, 2003; Tanji & Ip, 2005, Royet et al.
2005). There is evidence that the mammalian innate immune response and the insect

antimicrobial response are similar (Hargreaves & Medzhitov, 2005). Research on the model
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organism D. melanogaster has laid the groundwork for our comprehension of the basic
mechanisms underlying the immune response in insects. Study has shown that D. melanogaster
induction of expression of antimicrobial peptide is mediated by the Toll pathways (Gottar et
al. 2002; Tzou et al. 2002). Toll-1, the first TLR to be identified, was found in D. melanogaster
embryos in 1985. Its function was to specify the dorsal ventral polarity of the embryo.
Subsequently, the genome of D. melanogaster was found to contain genes corresponding to
other members of the Toll family (Toll-2-9), whose dual roles in immune response and
embryogenesis have been gradually validated (Hoffmann, 2003; Valanne et al. 2011).
Furthermore, a number of Drosophila TLRs perform significant roles in the preservation of
tissue integrity by triggering the NF-kB-dependent apoptosis of unsuitable or mutant cells

(Ferrandon et al. 2007, Meyer et al. 2014).

In crustacean species such as copepods, shrimps and crabs various TLRs have been found.
Amid these TLRs found in shrimp species, such as Litopenaeus vannamei, Procambarus
clarkii, Penaeus monodon, Fenneropenaeus chinensis, Macrobrachium rosenbergii, and
Marsupenaeus japonicus are widely studied (Yang et al. 2007, Arts et al. 2007, Yang et al.
2008; Wang et al. 2015; Mekata et al. 2008, Srisuk et al. 2014, Sun et al. 2017). NF-xB is a
typical downstream transcriptional component in the shrimp Toll signalling pathway, which is

consistent with findings in other species (Wang et al. 2011; Li et al. 2014, Matsuo et al. 2008).

Echinodermata

The utmost evolved invertebrate group, echinoderms have a common evolutionary ancestor
with chordates. According to reports, TLRs are essential for metazoan immunity which
includes echinoderm, sea urchins and sea cucumbers (Buckley et al. 2012). It is notable that the
purple sea urchin S. purpuratus has such a greatly increased innate receptor repertoire.
Molecular phylogenetic tree analysis has identified 222 TLR-like genes in total (8 P-type TLRs
and 214 V-type TLRs) that are present in the S. purpuratus genome and can be classified into

seven broad categories (Buckley et al. 2012; Hibino et al. 20006).
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TLRs in amphioxus

Amphioxus, a typical cephalochordate that is evolutionarily located in the invertebrate—
vertebrate transition point, is a significant organism for studying the evolution of the TLR-
associated immune system (Li et al. 2011). An incredibly intricate TLR system, comprising
over 40 TIR adaptors and at least 48 TLRs, is encoded by the amphioxus genome (Huang et
al. 2008). Together, the observations offer a point of reference for exploring the intricacy of
the amphioxus innate immunity and suggest fresh avenues for investigating comparable

vertebrate topics.

Toll-like Receptors (TLRs) in non-mammalian vertebrates

The classifications Cyclostomata, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, and
Aves comprise non-mammalian vertebrates. So far 28 functioning TLRs have been found in
these classes in a variety of species. There have been six major subfamilies of TLRs such as
TLR1, TLR3, TLR4, TLRS, TLR7, and TLR11. The large TLR1 subfamily includes TLR1,
TLR2, TLR6, TLR10, TLR14, TLR15, TLR16, TLR25, TLR27, and TLR28 primarily
recognises lipoproteins. While the TLR3, TLR4, and TLRS subfamilies recognise dSRNA, LPS
(but not in fish or amphibians) and bacterial flagellin respectively. TLR7, TLR8 and TLRY are
members of the TLR7 subfamily, which is involved in nucleic acid motif recognition. TLR11,
TLR12, TLR13, TLR19— TLR23, and TLR26 are members of the TLR11 subfamily, which is
the sixth main subfamily. Members of this family perform a variety of tasks ranging from

sensing nucleic acid motifs to proteins.

Fishes

In the lowest class of vertebrates, Cyclostomata comprise two families of jawless fish that have
survived: the lamprey and hagfish (Kuraku et al. 2009). Through polymerase chain reaction-
based cloning, two TLRs (laTLR14a and laTLR14b) have been discovered in the Japanese
lamprey (Lampreta japonica). The encoding gene for TLR14, which is interestingly a member

of the TLR1 subfamily, is found in the genomes of teleosts and amphibians (Ishii et al. 2007).
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This suggests that the existing subsets of TLRs in vertebrates evolved prior to the divergence

of the jawless fish ancestor from the mammalian ancestor.

Chondrichthyes or jawed cartilaginous fish are a notable group of animals in immunological
research field. They are regarded as the initial species that have developed immune responses
that are adaptive. It is also interesting that the innate immune system exists at this critical stage
of evolution. Based on a study of transcriptome data TLR2, TLR3, TLR6 and TLR9 have been
found in the grey bamboo shark Chiloscyllium griseum (Anandhakumar et al. 2012;
Krishnaswamy et al. 2014). While TLR3 of C. griseum is closely connected to homologs in
Rattus norvegicus and Canis lupus familiaris, TLR2 of C. griseum is closely related to
homologs in Sus scrofa and Gallus gallus. The most resemblance between TLR6 and its
homologs in Felis catus and Bos tarus and between TLR9 and its homologs in Andrias

davidianus is found.

Osteichthyes or teleost fish contain over 23,500 species and are extraordinarily diverse (Volff,
2005). About 21 TLRs (TLR1-TLRS, TLRSS, TLR7-TLR9, TLR13, TLR14, TLR18-TLR23,
and TLR25-TLR28) have been found in a variety of teleost fish species. These TLRs include
"teleost-specific" TLRs as well as orthologs of mammalian TLRs (Quiniou et al. 2013,
Boudinot et al. 2014, Zhang et al. 2013). While teleost TLR4 appears to be structurally
preserved and does not recognise LPS, unlike its mammalian counterparts, TLR1-TLR3, TLRS
and TLR7-TLR9 have structural and functional similarities with their mammalian
counterparts. "Teleost-specific" TLRs include TLRSS, TLR18-TLR20, TLR23 and TLR25—
TLR28. Despite their designation as "specific," these TLRs have a significant degree of
structural similarity with the TLR system found in mammals (Palti, 2011; Iliev et al. 2005).

Teleost TLR1 subfamily contain TLR1, TLR2, TLR14, TLR18, TLR25, TLR27, and TLR2S.

Amphibian

There are currently at least 20 TLRs known to exist in amphibians, including TLR1, TLR2.1-
TLR2.2, TLR3-TLRS, TLR6.1-TLR6.2, TLR7, TLR8.1-TLRS8.2, TLR9, TLR12, TLR13,

TLR14.1-TLR14.4, TLR21 and TLR22. Also, a number of soluble LRR-only TLR varieties
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have been identified. In amphibians, TLR2, TLR6 and TLR8 may be duplicated and the TLR 14
subfamily appears to be expanded. A putative soluble short form of TLRS5 (TLRSS) is present
in amphibians. It has been confirmed that TLR4 is present in the Xenopus genome but not
CD14 or MD2 which are necessary for TLR4-mediated recognition of LPS (Ishii et al. 2007
Boudinot et al. 2014).

Reptilia

Reptiles hold a pivotal role in the evolution of vertebrates, owing to their distinct physiology
and status as the sole poikilothermic amniotes. Nevertheless, little is known about the
composition, role, and ligand specificity of TLRs in reptiles (Zimmerman et al. 2010). Only
one species, the green anole lizard Anolis carolinensis, has been found in searches for reptile
TLRs; they are annotated as molecules similar to mammalian TLR2, 3, 4, 5, 6, 7, and 13. The
cloning, characterization, and functional analysis of 4. carolinensis TLRS were recently
reported (Fink et al. 2016). The receptor or acTLRS, has a typical TLR protein structure with
22 extracellular LRRs flanked by N- and C-terminal LRR domains, an intracellular TIR
domain, and a transmembrane region. From a phylogenetic perspective, acTLRS is most
separated from fish TLRS and most similar to avian TLRS. Experiments using PAMPs to

stimulate acTLRS showed that it responded differently to bacterial flagellin (Nie et al. 2018).

Aves

The immunological responses of avian (birds) and mammals are essentially similar, despite
their divergence approximately 300 million years ago (Brownlie & Allan, 2011, Kaiser, 2007).
Studies on the junglefowl G. gallus, which is the antecedent of domestic chicken, have
generated most of the knowledge about avian immunology (Hillier et al. 2004). Knowledge
regarding the identified ligands of avian TLRs has been expanded. Ten avian Toll-like
receptors (TLR1La, TLR1Lb, TLR2a, TLR2b, TLR3, TLR4, TLRS, TLR7, TLRI15 and
TLR21) have been identified by different studies. Six of them (TLR2a, TLR2b, TLR3, TLR4,
TLRS and TLR?7) are structurally distinct orthologs of TLRs from mammal (Brownlie & Allan,
2011; Smith et al. 2004, Yilmaz et al. 2005; Boyd et al. 2007). Avian TLR15 a member of the
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TLR1 subfamily appears to be exclusive to birds. Avian TLR21 is an ortholog of teleosts and
amphibians TLR21. TLR4 and MD2 expressed in chickens. These proteins are involved in the
activation of NF-kB in response to LPS stimulation, but not in the synthesis of IFNI1
(Temperley et al. 2008). Nevertheless, the poly (I:C) activation of chicken leukocytes and
ensuing upregulation of IFN1 point to the presence of the TRIF signalling pathway. As a result,
the immune system of chickens may react to LPS in a TRIF-independent, MyD88-dependent
manner. The reason that other than in mammals TRIF does not contribute in LPS-TLR4
signalling in chickens may be partially attributed to the lack of TICAM2 ortholog in the chicken
genome. Furthermore, a large number of positively selected sites have been recorded to known
ligand binding regions, representing that species-specific changes in PAMP recognition are

responsible for the variations (Keestra & van Putten, 2008; Grueber et al. 2014).

Toll-like Receptors (TLRs) in mammals

TLRs belong to the class of pattern recognition receptors (PRRs) that sense conserved
molecular patterns to trigger the innate immune response in the event of an early pathogen
detection. Leucine-rich repeats (LRRs) motif, transmembrane domain, and cytoplasmic
Toll/IL-1 receptor (TIR) domain are the three structural domains found in typical TLRs. While
the TIR domain interacts with signal transduction adaptors to commence signalling, the LRRs

motif is in charge of pathogen recognition (Takeda et al. 2003).

Following the initial discovery of a Toll protein in the fruit fly Drosophila melanogaster
(Anderson et al. 1985), 10 human TLRs (TLR1-TLR10) and 13 mouse TLRs (TLR1-TLR13)
have been identified. With a few notable exceptions, the majority of mammalian species seem
to have a similar repertoire of TLR homologs (Du et al. 2000; Tabeta et al. 2004). For example,
a mouse gene encoding the human TLR10 homolog is also found, but it seems that the gene
altered by a retrovirus latter (Basith et al. 2011). Additionally, TLR11-TLR13 are expressed
in mice but not in humans (Mahla et al. 2013). TLRs are able to identify molecules that are
often shared by infections, referred to as pathogen associated molecular patterns (PAMPs), as

well as host endogenous damage associated molecular patterns (DAMPs). Depending on the
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TLR type, there are many different types of recognition. For instance, lipopolysaccharide (LPS)
a constituent of Gram-negative bacteria is detected by mammalian TLR4, although bacterial

23S rRNA is recognised by murine TLR13 (Vidya et al. 2018).

diacyl triacyl
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Figure 1: TLRs and their ligands. TLR2 is crucial for the identification of microbial
lipopeptides. TLR1 and TLR6 work in tandem with TLR2 in order to distinguish between
triacyl and diacyl lipopeptides respectively. TLR4 is receptor of LPS. TLR9 is necessary for
the identification of CpG DNA. While TLR7 and TLRS are linked to the recognition of viral-
derived ssRNA, TLR3 is involved in the identification of viral dSRNA. Flagellin is recognised
by TLRS. As a result, members of the TLR family are able to identify particular microbial
component patterns (Takeda and Akira 2005).

TLRI, TLR2 and TLR6

TLR2 recognizes wide range of microbial components. These comprise peptidoglycan and
lipoteichoic acid from Gram-positive bacteria, as well as lipoproteins and lipopeptides from
different pathogens (7Takeda et al. 2003). Furthermore, it is claimed that LPS preparations from
non-enterobacteria are recognised by TLR2. The quantity of acyl chains in the lipid A
component of these LPS is different compared to the typical LPS of Gram-negative bacteria

that TLR4 recognises and this difference leads to the differential recognition (Netea et al.
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2002). TLR1 and TLR6 distinguish between diacyl and triacyl lipopeptides by functionally
interacting with TLR2. Furthermore, TLR1 play role in identifying the outer surface lipoprotein
(Alexopoulou et al. 2002). Additionally, TLR2 has been demonstrated to have functional
interaction with other kinds of receptors including a lectin family receptor dectin-1 for the b-
glucan constituent of fungal cell walls. As a result, TLR2 functions in concert with many
proteins that are either physically related or unrelated to each other to recognise a broad variety

of microbial products.

TLR3

Human TLR3 expression in the double-stranded RNA (dsRNA) non-responsive cell line 293
exhibits elevated activation of NF-kB responding to dsRNA. Furthermore, TLR3 deficient
mice have shown reduced ability in response to dSRNA (A4/exopoulou et al. 2001). Most viruses
generate double-stranded RNA (dsRNA) while replication which triggers the synthesis of type
I interferons (IFN-a/b) that have both immunostimulatory and antiviral properties. TLR3 is

therefore involved in the detection of viruses and dsRNA.

TLR4

TLR4 is a crucial receptor for the recognition of LPS (Hoshino et al. 1999). Additionally, it
has been demonstrated that TLR4 has a role in the endogenous ligand recognition, including
HSP60 and HSP70 (heat shock proteins) additional domain A of fibronectins, hyaluronic acid
oligosaccharides, heparan sulphate and fibrinogen. To activate TLR4, concentration of all of
the endogenous ligands should to be very high. Furthermore, it has been demonstrated that the
LPS contamination in the HSP70 preparation gives it the capacity to activate TLR4 (Gao &
Tsan, 2003). Since LPS is a highly powerful immuno-activator, even minute amounts of LPS
can activate TLR4, contaminating these endogenous ligand formulations. Hence,

understanding of endogenous ligand recognition by TLR4 require more detailed investigation.
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TLRS5

The sensitivity the monomeric component of bacterial flagella is conferred by enforced
expression of human TLRS in CHO cells (Hayashi & Smith, 2001). Through a close physical
interaction between TLRS and flagellin it has also been demonstrated that TLRS recognises an
evolutionarily conserved region of flagellin (Smith et al. 2004). Intestinal epithelial cells
express TLRS on their basolateral side but not on their apical side (Gewirtz et al. 2001).
Additionally, intestinal endothelial cells in the subepithelial compartment express TLRS
(Maaser et al. 2004). Furthermore, flagellin stimulates the production of inflammatory
cytokines by lung epithelial cells (Hawn et al. 2003). These results highlight the significant

role of TLRS in mucosal surface microbial identification.

TLR7 and TLRS8

Both TLR7 and TLRS are structurally conserved and in some cases recognise the same ligand.
Compounds imidazoquinoline are recognised by human TLR7 and TLRS, but not by mouse
TLRS8 (Jurk et al. 2002). It has also been demonstrated that loxoribine, a synthetic substance
with antiviral and antitumor properties, is recognised by mouse TLR7 (Lee et al. 2003, Heil et
al. 2003) Guanosine nucleoside and imidazoquinoline share a structural similarity.
Consequently, it was predicted that TLR7 and human TLR8 would be able to identify the
nucleic acid like structure of virus. The findings that TLR7 and human TLRS8 recognise
guanosine or uridine rich single stranded RNA (ssRNA) from viruses such the influenza virus,
vesicular stomatitis virus and human immunodeficiency virus (Heil et al. 2004; Diebold et al.
2004) has demonstrated the validity of this prediction. Although the host contains a large
amount of ssSRNA, TLR7 and TLRS typically do not recognise host-derived ssSRNA (Lund et
al. 2004). This could be because host-derived ssRNA is not transported to the endosome,

despite the expression of TLR7 and TLRS in the endosome (Nie et al. 2018).
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TLRY

Analysis of TLR9-deficient mice exhibited that TLRY is a CpG DNA receptor (Hemmi et al.
2001). Unmethylated CpG patterns give bacterial DNA its immunostimulatory properties. The
immunostimulatory action of CpG motifs is abrogated in vertebrates due to a significant
reduction in their frequency and a high degree of methylation of their cysteine residues. CpG
DNA comes in minimum two types termed as A or D type and B or K type. Conventional B or
K-type CpG DNA was the first to be discovered and strongly induce inflammatory cytokines
like TNF-a and IL-12. A or D type CpG DNA differs structurally from ordinary CpG DNA and
is more effective in stimulating plasmacytoid dendritic cells (PDC) to produce IFN-a, but less

effective in stimulating IL-12 production (Krug et al. 2001; Verthelyi et al. 2001).

It has been demonstrated that TLRY is necessary for the identification of both forms of CpG
DNA (Hemmi et al. 2003). Apart from CpG DNA originating from bacteria and viruses, TLR9
is probably involved in pathogenesis of autoimmune disorders. Hence, TLR9 seems to have a
role in the numerous autoimmune diseases by detecting the structure of chromatin. The
mechanisms of chloroquine, that is used clinically to treat SLE and rheumatoid arthritis are not
known. Chloroquine blocks TLRY dependent signalling by inhibiting the pH-dependent
maturation of endosomes act as a basic element to neutralize acidification in the vesicle
(Hdcker et al. 1998). For this, chloroquine may be an anti-inflammatory agent that inhibit

TLR9 dependent immune responses.

TLRI11

Recently identified TLR11 has shown its expression in epithelial cells of bladder and mediates
resistance to mouse infection to uropathogenic bacteria. TLR11 deficient mice had high
susceptibility to uropathogenic bacterial infections. These results suggest that mouse TLR11
mediates anti-uropathogenic bacterial response, even though the ligand is yet unknown. Studies
have been suggested that humans lack a functioning TLR11 protein. These findings could
suggest that the human TLR11 protein was lost to evolution because it was futile in the human
context (Zhang et al. 2004).
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Subcellular localization of Toll-like Receptors (TLRs)

Individual TLRs have different distribution within the cell. The expression of TLR1, TLR2,
and TLR4 on the cell surface is shown by the positively staining cell surface with specific
antibodies. Contrary, it has been shown that intracellular compartments including endosomes
express TLR3, TLR7, TLRS, and TLRO (Heil et al. 2003; Matsumoto et al. 2003). It has been
demonstrated that endosomal maturation is necessary for TLR3, TLR7, or TLR9 mediated
recognition of their ligands (Heil et al. 2003; Diebold et al. 2004, Lund et al. 2004, Ahmad-
Nejad et al. 2002). TLRY is drawn from the endoplasmic reticulum following non-specific
absorption of CpG DNA, which is initially non-specifically trapped into endosomes by the
TLRY ligand CpG DNA (Latz et al. 2004). Therefore, it is can be hypothesized that during

bacterial infection dendritic cells and macrophages engulf bacteria through phagocytosis.

Following bacterial degradation in phagosomes/lysosomes or endosomes/lysosomes CpG
DNA is exposed, where TLRY is expressed or recruited. When a virus infects a cell, it enters
through receptor-mediated endocytosis and the viral membrane fuses with the endosomal
membrane to expose the viral contents to the cytoplasm. Sometimes in endosomal compartment
viral particles degradation results in the exposure of TLR ligands such dsRNA, ssRNA, and
CpG DNA. After being exposed to zymosan cell surface expressed TLR2 is attracted to the
phagosomal compartment of macrophages (Underhill et al. 1999). TLR recognition of
microbial components may therefore primarily occur in the phagosomal/lysosomal or

endosomal/lysosomal compartments.

Toll-like Receptors (TLRs) Signaling

The immune system "senses" risk through TLRs, which are crucial molecular sensors in order
to defend the host against pathogenic microbes or endogenous threats (Hug et al. 2018). TLRs
have been shown to play a wide range of functions including identification of self and non-self
antigens, invasive pathogen detection, connecting the gap between innate and adaptive
immunity and controlling the generation, proliferation, and survival of cytokines (Vidya et al.
2018, Bhattacharyya et al. 2018, Ruysschaert & Lonez, 2015; Reuven et al. 2014). Different
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cytokines and chemokines are produced as a result of signalling pathways that are subsequently
started and mediate TLR activities. TIR domain-containing adaptor-inducing IFNB (TRIF)
dependent pathways and myeloid differentiation primary response protein 88 (MyD88)-
dependent pathways are the two main categories into which TLR signalling pathways are

currently classified (4kira & Takeda, 2004).

Except TLR3, all TLRs mostly use the MyD88-dependent response. MyD88 interacts to the
TIR domain of the conforming TLR by homotypic or heterotypic interactions following ligand
recognition and TLR dimerization. The death domain of MyD88 then recruits IL-1 receptor-
associated kinase 4 (IRAK4), which results in the creation of a Myddosome complex (Lin et
al. 2010) and the autophosphorylation of IL-1 receptor associated kinase 1 (IRAK1). Then, by
K-63-linked polyubiquitination of TAK1 and TRAF®6, the protein tumour necrosis factor (TNF)
receptor associated factor 6 (TRAF6) gets activated, which then activates the TAK1 or TGF-
B-activated kinase (TAB) complex (Gorjestani et al. 2012). The subsequent process involves
the phosphorylation and destruction of I kappa B alpha (IxBa) by IkB kinase (IKK). Finally,
the transcription factor NF-kB translocate to the nucleus upon degradation of this inhibitor,

triggering the transcription of genes that code for inflammatory cytokines (Wang et al. 2001).

The TRIF dependent pathway is generally thought to be exclusive to a few numbers of TLRs,
including TLR3 and TLR4 in mammals. The TRIF-dependent pathway can activate
transcription factors such as NF-«xB, activating protein 1 (AP-1) and members of the interferon
(IFN) regulatory factor (IRF) family, which together can induce the production of pro-
inflammatory cytokines and/or type I IFN (IFN1) (Hoebe et al. 2003). The recognition of
double-stranded RNA (dsRNA) activates TLR3, following the recruitment of TRIF. A branch
in the signalling pathway is created when TRIF activates receptor interacting serine or
threonine kinase 1 (RIPK1) and TANK-binding kinase 1 (TBK1). IRF3 is phosphorylated by
the TRIF/TBKI signalling complex, which permits the translocation to nucleus and the

synthesis of IFN1.
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Similar to the MyD88-dependent pathway, RIPK1 activation results in a series of signal
transduction events (Kawai & Akira, 2010). Mammals use TLR4 as an LPS receptor. After
MyD88 and MyD88-adapter-like (MAL) adaptors are recruited, the TLR4-myeloid
differentiation protein 2 (MD2)-LPS complex activates early phase NF-kB and mitogen-
activated protein kinase (MAPK). The TLR4-MD2-LPS complex interacts with TRAM (TRIF
and TIR domain containing adapter molecule 2) adaptors once it has entered the cell by
endocytosis. This TRIF-dependent pathway activates late-phase NF-kB and IRF7 in addition
to inducing IFN1 production (Shuang et al. 2015). Ultimately, TLR signalling leads to the

activation or suppression of genes that control the inflammatory response.

TLR4 TLR3

Figure 2: Adaptors involved in TLR signalling. With the exception of the TLR3 ligand,
MyD88 is required for the generation of inflammatory cytokines in response to all TLR ligands.
TIRAP/Mal does not participate in the MyD88-independent TLR4 signalling pathway, but it is
necessary for the production of inflammatory cytokines that are dependent on TLR2 and TLR4.
Both the MyD88-independent TLR4 signalling pathway and TLR3 signalling depend on TRIF.
Other adaptor(s) may be involved in the induction of interferons through TLRs other than
TLR7 and TLRO (Takeda and Akira 2005).
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Structural Biology of Toll-like Receptors (TLRs)

Type Iintegral membrane receptors, TLRs have three distinct domains: a single transmembrane
helix, a C-terminal cytoplasmic signalling domain and an N-terminal ligand recognition region
(Bell et al., 2003). Because they resemble the signalling domains of members of the IL-1R
family, the signalling domains of TLRs are referred to as Toll IL-1 receptor (TIR) domains.
TIR domains are also present in a large number of adaptor proteins, which initiate the signalling
cascade by homotypic interaction with TLR and IL-1 receptor TIR domains. Each TLR
transmembrane domain has a normal stretch of 20 uncharged, primarily hydrophobic residues
in it. Through their transmembrane domains, TLRs that identify PAMPs in nucleic acids
interact with UNC93B, a multispan transmembrane protein that guides these TLRs to endocytic
compartments. The remaining TLR paralogs pass straight to the cell surface and do not engage
in interaction with UNC93B. With 550-800 amino acid residues, glycoproteins make up the
N-terminal ectodomains (ECDs) of TLRs (O'Neill & Bowie, 2007). These ectodomains are
found in endosomes or extracellular environments, where they come into contact with and

identify chemicals secreted by invasive infections.

Leucine-Rich Repeats (LRRs) - the building blocks of TLRs

The LRRs usually 22-29 residues long and they contain hydrophobic residues set apart at
specific intervals. TLR ECDs are made of tandem copies of such repeats (Figure 3A). Various
proteins in plants, animals and microbes contain this motif, including many proteins involved
in immunological recognition (O'Neill & Bowie, 2007). Recent review reported that all LRRs
adopt a loop structure in three dimensions, starting with an extended stretch with three residues
in the B strand configuration (Bella et al. 2008) (Figure 3B). While getting assembled into a
protein numerous succeeding LRRs produce a solenoid structure where the B strands are
aligned to form a hydrogen bonded parallel B sheet and the consensus hydrophobic residues
point to the inside to form a stable core. The B sheet forms the concave surface of the solenoid,
forcing it into a curved structure because the P strands of the LRR loops are more densely

packed than the non-f parts (Kajava, 1998) (Figure 3C). Each LRR protein comprises four
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surfaces: a concave surface, a convex surface, an ascending lateral surface made up of loops
connecting the P strand to the convex surface and a descending lateral surface on the other side

(O'Neill and Bowie, 2007).

Ribonuclease inhibitor (RI) was the first LRR protein structure to be described (Kobe &
Deisenhofer, 1995). This protein has comparatively long LRRs with an average length of 27—
29 amino acids. Each LRR contain three to four a-helix turns on its convex surface, opposite
the b sheet. The 16 LRRs in RI form a "horseshoe"-shaped structure (Figure 3C). Like RI, the
19-25 LRRs that make up the TLR-ECDs also form horseshoe structures. Unlike RI, the
consensus LRR of the TLRs is 24 residues long (Figure 3A), preventing the development of
multi-turn helices on their convex sides. On their convex sides, the 24-residue consensus LRRs
take on a variety of configuration, often containing bits of secondary structure like B strands,

310 helices, and polyproline II helices (Botos et al. 2011).

A TLR XLX LXXNXLXXLXXXXFXXLX

RI XLX LXXNXLXXXXXXXLXXXLXXXX

C

Figure 3: The Structure of Leucine-Rich Repeats. (A) LRR consensus sequences for TLR3
and ribonuclease inhibitor. (B) A LRR loop from hTLR3 and a LRR loop from RI, with the
conserved residues forming a hydrophobic core. The boxed regions form the surfaces involved
in ligand binding. (C) Ribbon diagram of TLR3 (2A0Z) and ribonuclease inhibitor (Botos et
al. 2011).
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TLR-ECDs are distinguished by the prevalence of LRRs that are significantly larger than the
consensus 24 residues, particularly in TLRs 7, 8, and 9. These additional residues frequently
form loops that protrude from the TLR-ECD horseshoe, typically on the ascending or convex
side of the LRR (Figure 3B). The TLR-ECDs also have structures that cap the N and C-terminal
ends, known as the LRR-NT and LRR-CT motifs (Figure 4). The LRR-NTs are disulphide-
linked b-hairpins, whereas the LRR-CTs are globular structures with two helices held together
by two disulphide bonds. Similar capping motifs have been found in numerous additional
proteins with 24-residue LRRs (He et al. 2003; Huizinga et al. 2002). Most ligands bind on the
concave surfaces of LRR proteins. In contrast, ligand binding is most frequently observed on
the ascending lateral surface of the TLR-ECD (Jin et al. 2007; Kang et al. 2009) (Figure 4).

This surface particularly lacks N-linked glycan and is therefore are free to interact with a ligand.

N-glycan

LRR-CT

Figure 4: The Structure of a TLR-ECD (hTLR3). Top and side views of the TLR3-ECD, with
the N-linked glycosyl moieties (2A0Z). The LRRs are capped by the LRR-NT and LRR-CT
motifs (Botos et al. 2011).
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N-Linked
TLR Residues LRRs® Glycosylation Sites® Accession Code

1 786 19 4 (7) Q15399
2 784 19 3 (4) 060603
3 904 23 11 (15) 015455
4 839 21 5 (10) 000206
5 858 20 (7) 060602
6 796 19 8 (9) Q9Y2C9
7 1049 25 (14) QONYKA
8 1041 25 (18) Q9NR97
9 1032 25 (18) QO9NR96
10 811 19 (8) Q9BXR5

LRR, leucine-rich repeat; TLR, Toll-like receptors.

2The number of LRRs in the extracellular domain do not include the
LRR-NT or LRR-CT motifs.

P Number of N-glycosylation sites observed in the crystal structure or
predicted by the NetNGlyc server 1.0 in parentheses (http://www.cbs.
dtu.dk/services/NetNGlyc/).

Figure 5: The main features of ten Human TLR molecules (Botos et al. 2011).

Structure of TLRs

Based on sequence homologies, vertebrate TLRs can be divided into six subfamilies: TLR1/
TLR2/TLR6/TLR10, TLR3, TLR4, TLRS5, TLR7/TLR8/ TLRY, and TLR11/ TLR12/TLR13/
TLR21/TLR22/TLR23 (Matsushima et al., 2007; Roach et al., 2005). TLR paralogs are not
expressed by all vertebrate species. For example, humans lack all TLR11 family members.
ECDs of the ten human TLRs differ in terms of LRR counts and N-linked glycosylation. To
date, the ECD structures of TLRs TLR1, TLR2, TLR3, TLR4 and TLR6 (human or mouse)
have been published. All ECDs have the usual horseshoe form, the structures cannot be
superimposed due to variances in curvature. Glycans are spread throughout the molecule in the
known structures, with the exception of the lateral face produced by the ascending loops of
LRRs. This glycan free face participates in dimerization upon ligand binding in known TLR-

ligand complexes.

TLR2 is located on the plasma membrane and responds to lipid containing PAMPs such as
lipoteichoic acid and di and triacylated cysteine containing lipopeptides (7Takeda et al., 2003).
It accomplishes this by creating dimeric complexes with either TLR1 or TLR6 at the plasma

membrane. The TLR1/2 complex recognises tri-acylated lipopeptides like Pam3CSK4, while
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the TLR2/6 complex recognises the di-acylated ligand, Pam>CSK4. According to phylogenetic
studies, TLR10 belongs to the TLR-1 family (Roach et al., 2005).

Lipopolysaccharide (LPS), an essential component of outer membrane Gram-negative bacteria,
causes a strong inflammatory response that can result in septic shock and mortality (Beutler
and Rietschel, 2003). LPS communicates with TLR4 via the complexing coreceptor MD-2,
which is bound to the lateral and concave surfaces TLR4 ECD by numerous hydrogen bonds.
TLRS is one of the few TLRs that recognises the protein PAMP bacterial flagellin (Hayashi et
al., 2001). It is highly expressed in the gut, particularly in lamina propria dendritic cells
(Uematsu and Akira, 2009), where it regulates microbiota composition (Vijay Kumar et al.,

2010).

TLR3 recognises dsRNA, which is produced by most viruses at some stages during their life
cycles and is a strong indicator of viral infection. TLR3, unlike numerous other cytoplasmic
dsRNA receptors, is localised to endosomes and recognises dsRNA there. Like TLR3,
members of the TLR7, TLRS8, and TLR9 subfamilies are found in endosomes and recognise
nucleic acid PAMPs. However, the amino acid sequences indicate that the architectures of ECD

of TLR7- TLRY differ significantly from TLR3 (Bell et al., 2003).

Evolution of toll-like receptor (TLR) genes

TLR diversity has been seen among species as well as within individuals, in recognition and
downstream signalling pathways. This information can be valuable in determining how
infectious diseases spread between species. Understanding the development of TLR genes
across animals can provide us with a comprehensive understanding of changes in ligand
detecting properties and host-pathogen interactions (Miller et al. 2005). Immunologists and
evolutionary biologists are particularly interested in genetic diversity in functional immunity-
associated genes like TLRs because they provide a good model for studying the selection
pressure exerted by microbes on the host genome (Quintana-Murci et al. 2013). In response to
ever-changing pathogens, these genes appear to evolve more quickly than other locations in

the genome.
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Evolutionary rate of a gene is expressed as the ratio of its nonsynonymous substitutions to its
synonymous substitutions, and it reveals the selection constraints that act on genes. The ratio
will indicate either positive or purifying selection. In comparison to mutation, selection is the
dominating mechanism governing the rate of evolution of TLRs and TLRs are under strong
selection for maintaining their activities (Roach et al. 2005). The innate immune response
varies amongst mammals and TLRs change between species (Jungi et al. 2011). This
variability is due to selective pressure on immunity-related genes, which reflect the specific

conditions encountered by each species (Zhang et al. 2010).

Phylograms show that TLRs cluster in close species such as primates, rodents, ruminants, and
cetaceans, as expected given the conserved nature of TLR sequences. Despite evolutionary
restrictions, TLR evolution has resulted in variations and mutations within or between different
species. A molecular tree representing all full vertebrate TLRs in GenBank has been created.
The molecular tree shows six key families that encompass nearly all vertebrate TLRs (Figure
6). TLRs within a family recognise a broad class of pathogen-associated molecular patterns

(PAMPs) common to that family (Roach et al., 2005).
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Figure 6: Molecular tree of the vertebrate TLR. Branches of each major family are shown with
colors (Roach et al., 2005).
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The TLR2 subfamily (lipopeptide), the TLR3 family (dsRNA), the TLR4 family (LPS), the
TLRS family (flagellin), and the TLR7 to TLR 9 subfamilies (nucleic acid and heme motifs)
have all been dominated by selective pressure, most likely to maintain unique PAMP
recognition. TLR1, TLR2, TLR6, TLR10 and TLR14 are all members of the lipopeptide
PAMP-specific TLR family. This family, like the other TLR families, has evolved through
strong selection, although it has additional species-specific adaptations. The TLRs of the TLR1
family work as heterodimeric receptors, with TLR2 paired with other member of TLRI
subfamily. Because it evolved in tandem with species phylogeny, the TLR2 subfamily appears

to be subject to increased selection pressure.

The TLR14 subfamily in fish might have been lost in amniotes but extended in amphibians.
Since TLR14 is connected to the TLR1 subfamily, it has been hypothesised that it also interacts
with TLR2. TLR15 in chicken are distant molecularly from all other TLRs. It could be resulting
from the TLR1 family. Major family remained includes the TLR11-TLR13 and TLR21-TLR23
subfamilies is characterized in humans only through a pseudogene. The major divides of the
TLR11 family are evidently very ancient, as most TLR11 subclades include representatives
from fish and frogs, although TLR11 appears to recognise uropathogenic bacteria. The TLR16

subfamily, which is molecularly distinct from all other TLRs, may belong to the TLR11 family.

TLR11 family contain more subfamilies with respect to other family, and it has comparable
diversity to the TLR1 family. Also, it includes mouse TLR11 and TLR12, the most diverse
vertebrate TLRs. Therefore, the TLR11 family may face fewer purifying selection than other
TLR families. The considerable diversity of TLR11, TLR12 and TLR16 could possibly
ambiguous orthology for TLR21, TLR22 or TLR23. The TLR11 family has a similar number
and diversity of subfamilies to the TLR1 family, which may indicate that TLR11 family
members function as heterodimeric partners with each other (Roach et al., 2005, Areal et al.

2011).

TLRs are a class of conserved pattern recognition receptor that initiate innate and acquired

immune responses. Because the TLRs play an important role in host defence, such genes

34



developed increasing interest in the evolutionary and population genetics literature, with
variation representing a possible target of adaptive evolution. Though importance of selection
that are pathogen mediated (i.e. episodic positive selection) need to be studied as these genes
are not understood and not well explored in species mammals. Currently increasing bird species
for which TLR sequences are available allowed investigation of the selective processes that
shaped the development of the known avian TLR genes. It has been evaluated for episodic
positive selection in order to find codons that have undergone purifying selection for the
majority of their evolution, scattered with bursts of positive selection that may only occur in
specific lineages. Genes with sequence coverage that encompassed both the extracellular
leucine-rich repeat region (LRR) and intracellular domains of protein showed greater positive
selection in the extracellular domain. It was reliable with theoretical estimates. These findings
suggest that episodic positive selection had a significant role in the evolution of most avian
TLRs, which is consistent with the loci's involvement in pathogen identification and a host-

pathogen coevolution mechanism (Grueber et al. 2014).

The innate immune system is the first line of host defence against infections. TLRs play crucial
roles in the innate immune system by recognizing molecules derived from pathogens. Studies
have showed evidence that TLR-related genes have been subjected to natural selection during
primate evolution. Analysis of the nucleotide sequences of 16 TLR-related genes, including
TLRs (TLR1-TLR10), MYDS88, TILAP, TICAMI1, TICAM2, MD2 and CD14 from seven
primate species. 16 TLR-related genes, included ten TLRs (TLR1-10), four genes linked to
signal transduction (MYDS88, TILAP, TICAMI1, and TICAM2) and two genes linked to TLR4
(MD2 and CD14) in primates. MD2 and CD14 are key molecules of the LPS signaling through
TLR4 (Poltorak et al. 1998; Shimazu et al. 1999; Nagai et al. 2002). The analysis of the non-
synonymous/synonymous substitution ratio revealed that TLR-related genes contain both
strictly conserved and rapidly evolving regions. Genomic regions of Toll/interleukin 1 receptor
domains having lower frequencies of nonsynonymous substitution have undergone purifying
selection. In contrast, TLR4 has a large fraction of non-synonymous changes in the

extracellular domain spanning 200 amino acids, was discovered to be a likely target of positive
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Darwinian selection in primate evolution. However, sequence analyses of 25 primate species,
including eight hominoids, six Old World monkeys, eight New World monkeys and three
prosimians found no evidence that positive Darwinian selection influenced the pattern of TLR4
sequence variations among New World monkeys and prosimians. This study revealed the
molecular evolution of TLR-related genes in primates and determined that while natural
selection did impact the sequence patterns of TLR-related genes during primate evolution,

positive selection pressure was limited across the TLR family (Nakajima et al. 2008).

Studies have been conducted on how natural selection has worked on human TLRs in order to
estimate the redundancy in their biological level. Sequencing of ten human TLRs in a group of
158 entities from different populations around the world, and it was discovered that
intracellular TLRs activated by nucleic acids and predominantly specialised in viral recognition
evolved under strong purifying selection, indicating their essential non-redundant role in host
survival. Conversely, the selection restrictions on TLRs expressed on the cell surface and
activated by substances other than nucleic acids have been significantly more relaxed, with
larger frequencies of harmful nonsynonymous and stop mutations permitted, indicating greater
redundancy. Finally, it was investigated if TLRs have undergone spatially varied selection in
human populations, and it was discovered that the region comprising TLR10-TLR1-TLR6 has
recently been the target of positive selection among non-Africans. Study data show that the
immunological redundancy of the individual TLRs varies, indicating their unique contributions
to host defence. These findings encourage the development of novel concepts for clinical and

epidemiological genetics of infectious diseases (Barreiro et al. 2009).

Immunologists and evolutionary biologists are particularly interested in genetic variation in
functional immunity-associated genes like TLRs because they provide an excellent model for
studying the selection pressure exerted by microbes on the host genome (Quintana-Murci &
Clark, 2013). In response to continuously evolving pathogens (Lively & Dybdahl, 2000, Kuijl
& Neefjes, 2009), these genes appear to develop quicker than other locations in the genome
(Khakoo et al. 2000; Zelus et al. 2000; Sachidanandam et al. 2001; Downing et al. 2009). The

evolutionary rate of a gene is denoted as the ratio of its nonsynonymous substitutions to its
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synonymous substitutions and it reveals the selection constraints that act on genes. The ratio
will indicate either positive or purifying (stabilising) selection. In comparison to mutation,
selection is the dominating force in regulating the rate of evolution of TLRs, and TLRs are
subjected to intense selection to maintain their activities (Roach et al. 2005). The innate
immune response is not the same in all animals and there is species wise variation in TLRs
(Jungi et al. 2011). This variability is due to selective pressure on immunity-related genes,

which reflect the unique conditions encountered by each species (Zhang et al. 2010).

For many years, TLR genes were assumed to be ideal functional candidates for increasing
susceptibility or resistance to infections and inflammatory disorders. In recent years increased
focus has been dedicated to understanding the precise function of these receptors. To determine
the function of TLR polymorphisms in infectious disease susceptibility, relationships between
various studies and populations needs to be accumulated. Various molecular phylogenetic
investigations have revealed that the evolution of both cell-surface and intracellular TLRs in
various species follows an almost unique paradigm. The majority of research have confirmed
purifying selection as the principal force acting on TLRs. However, positive selection
signatures have been identified in all TLRs from various species. The majority of the positively
selected sites were located in cell-surface TLRs rather than intracellular TLRs, demonstrating
the conserved characteristics of viral PAMPs recognised on intracellular TLRs versus fast
escaping bacterial PAMPs detected on cell surface TLRs. Thus, viral infections are expected
to have a stronger selection force on TLRs than bacterial infections. Pathogen mediated
positive selection has shaped variety in mammalian TLRs. Furthermore, the selective
divergence of TLRs in particular species was most likely caused by the diverse pathogenic
environments that they experience. Positively selected settings are intended to improve species
adaption in new environments. In other words, differences in selection limitations influence
the ability of TLRs to recognise and respond to specific pathogenic profiles in their respective
niches (Priyam et al. 2018). Various studies have suggested mostly similar trend for TLR

evolution among different species, few studies on a wider range of mammalian species finds a
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contradiction. It was revealed that both viral and non-viral TLRs are subject to positive

selection owing to the inclusion of a broader range of species impacted by various diseases.

Although many articles have recommended a typically similar pattern for TLR evolution
between diverse species, inconsistency found from the study on a large group of mammalian
species. Similarity in positive selection among viral and non-viral TLRs was not aligned with
preceding studies. Inclusion of greater number of species group might have affected such
observations. Most of the previous studies mentioned homogeneous group of species probably
get affected by a restricted number of similar viruses. Possibility of removal of non-
synonymous fatal mutations by purifying selection and fixation of beneficial mutations might
have caused the differences among these mammalian species (Roach et al. 2005). Perhaps, the
extensive difference among the mammals under study, their surroundings and interaction with
viruses accounted higher positively selected sites observed in viral and non-viral TLRs.
Orthologs TLR share sequence and structural similarities and recognise nearly identical forms
of PAMP in different species (Keestra et al. 2007), there are certain structural differences
between TLRs and their signal transduction pathways that result in functional variability

(Bagheri & Zahmatkesh, 2018).

Genes carry biological functions through pathways in complicated networks involving many
interacting components. Studies on the effect of network design on the evolution of individual
proteins aid to the understanding of the creation and evolution of signalling pathways, as well
as their functional conservation. However, the relationship between network architecture and
individual protein sequence evolution is still poorly understood. A network-level molecular
evolution analysis was performed on the TLR signalling pathways, which is critical for innate
immunity in insects and humans. It has been found that the selection constraint of genes was
negatively correlated with its position along TLR signaling pathway. All genes in the TLR
signalling system were highly conserved and experienced substantial purifying selection.
Different nonsynonymous substitution levels determined the distribution of selective pressure
throughout the pathway. The TLR signalling pathway may have existed in a common ancestor

of sponges and eumetazoa, and it evolved through the TLR, IKK, IkB, and NF-kB genes, which
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underwent duplication events as well as adaptor molecular enlargement, and the gene structure
and conservation motif of NF-kB genes shifted throughout their evolutionary history. These
findings will help us better understand the evolutionary history of the animal TLR signalling
system, as well as the relationship between network design and protein sequence evolution

(Song et al., 2012).

TLRs that initiate innate immune response have two domains: an external leucine rich repeat
(LRR) and an intracellular Toll IL-receptor (TIR). LRR domains with a solenoid configuration
typically evolve faster than TIR globular domains. It is critical to understand the molecular
evolution and functional activities of TLRs in this context. Study of pairwise genetic distances
and Ka/Ks ratios (the ratios of non-synonymous to synonymous substitution rates) between the
LRR and TIR domains of vertebrate TLRs from various species (ranging from fish to primates)
was performed. Among them (TLR1, TLR2, TLR3, TLR4, TLRS5, TLR6, TLR7, TLR8, TLRO,
TLR11/ TLR12, TLR13, TLR14, TLR21 and TLR22/ TLR23) the LRR domains evolved
substantially faster than the corresponding TIR domains. The evolutionary rates of the LRR
domains vary greatly across these members; LRR domains from TLR3 and TLR7 from
primates to fishes have the slowest rate of evolution. In contrast, the fifteenth member, TLR10,

exhibits no major alterations; its TIR domain is not well conserved (Mikami et al. 2012).

Despite the important of birds in vertebrate evolution, less attention has been given to their
immune systems. The evolution of TLR genes has been studied in many species, but our
understanding of the evolutionary properties of TLR genes in birds in the wild is restricted.
Most studies focused on the structure, variation, and composition of a single gene or the
analysis of selection pressure on individual genes, but neither examined the influence of the
external environment or feeding habits on the evolution of avian TLR genes. The growth of
avian genome data and the advancement of molecular biology in recent years have created a
new opportunity for us to investigate the relationship between the adaptive evolution of birds'

TLR genes and their external environment (Velova et al. 2018).
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The phylogenetic data suggested that TLR1A and TLR1B may have differed functionally. A
systematic analysis of bird TLR genes, as well as phylogenetic analyses, revealed that the
TLR1 and TLR2 subfamilies diverged due to duplication. TLRI1A is more closely related to
TLR10 in mammals, implying that functional differentiation occurred, but not TLR2.
Evolutionary study revealed that TLR genes in birds are subjected to significant purifying
selection. Common positively selected codons were identified in ten avian TLR genes, with
the most of sites found in the extracellular leucine-rich repeat (LRR) functional domains. The
evolution of avian TLR genes was influenced by both the environment and feeding habits.
Environmental stresses showed a stronger impact on TLRI1B, TLR2B, TLR3 and TLR4,
whereas feeding habits influenced TLR2A, TLR2B, TLR15 and TLR21. Combined with
branch-site model analysis, it was discovered that habitat and feeding patterns were external
variables driving the evolution of avian TLR genes, with the environment having the greatest
influence. These findings revealed that TLR genes were subjected to diversified selective
pressures during avian evolution, allowing them to respond differently to infections from

various sources (Yang et al. 2021, Huang et al. 2011).

TLRs found in fish have been demonstrated to be ligand specific for TLR2, TLR3, TLR5M,
TLRSS, TLRY, TLR21, and TLR22. Some research suggests that TLR2, TLR5M, TLRS5S,
TLRY and TLR21 can particularly recognise PAMPs from bacteria. TLR1, TLR4, TLR14,
TLR18 and TLR25 may also be bacterial sensors. TLR signalling mechanisms in fish differ
from those in mammals. TLRs found in fish have direct evidence of ligand specificity. In-depth
investigations need to be conducted on a constant basis to determine the ligand specificity of
all TLRs in fish, particularly non-mammalian TLRs, as well as their signalling pathways. The
identification of TLRs and their functions will add to the knowledge of disease resistance
mechanisms in fish, as well as new insights for therapeutic intervention to modify immune

response (Fink et al. 2016, Zhang et al. 2014).
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Significance of TLRs

TLRs have an important role in innate and adaptive immunity. Their capability to detect
endogenous DAMPs and exogenous PAMPs allows them to produce ligand mediated signal
transduction, which is ultimately involved in the inflammatory response. In recent years, there
has been a growing evidence directing to the importance of TLRs and their ligands in a variety
of pathological conditions including inflammation, cancer and autoimmune disorders.

Remarkably, they have a crucial role in immunotherapy and vaccination (Vidya et al. 2018).

Studies have shown that TLR4 promotes injury in the liver, kidney, heart, and brain.
Downregulation of TLR2, TLR4 or MyDS88 in ischemia damage lowers myocardial
inflammation. TLR4 has also been linked to an enhanced T cell response in burn injuries, graft
inflammation, sterile damage and alloimmune responses in tissue transplantation. The
overexpression of TLR2 and TLR4 on immune and other cells during sepsis has been linked to
organ tissue harm. Many scientific investigations have suggested a function for TLRs in
hypercholesterolemia-induced vascular damage. While it was recently established that TLR2
is substantially pro-atherogenic, TLR3 was found to be involved in the integrity protection of

the of the blood vessel wall.

Response of TLR is important in tissue damage and subsequent tissue repair and regeneration,
especially in the liver and intestinal epithelium. TLR2 signalling has a crucial role in wound
healing. TLRs on epithelial cells detect microbial patterns and induce innate immune
responses, aiding in homeostasis management. The basal layer of corneal epithelial cells
expresses TLR4 and TLRS. When a break occurs in the squamous epithelium, ocular
inflammation and keratitis are induced via the MyD88 dependent pathway by functioning

TLR2, TLR4, and TLRY, all of which are expressed in the corneal epithelium.

Recent research has shown that endogenous TLR ligand-mediated signalling plays a key role
in auto-immune diseases. The presence of bacterial DNA and peptidoglycans in the joints of
people with rheumatoid arthritis (RA) and other diseases, which may increase synovial

inflammation via TLR ligand-mediated signalling. TLR9 and TLR7 have also been shown to
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have a role in the persistence of systemic lupus erythematosus. TLR9 detects danger signals
generated by demyelinated nerves, which trigger a pathologic immune response to autoantigens
in multiple sclerosis. Endogenous monosodium-urate monohydrate (MSU) crystals generated
from uric acid secreted by injured cells act as DAMP, activating TLR2 and ultimately causing

cartilage degradation.

TLRs have been shown to play both positive and negative functions in tumorigenesis. Though,
to date, TLRs have had the opposite effect on tumour growth. TLR ligands can supress tumour
growth, whilst TLR agonists can improve malignant cell survival and resistance to
chemotherapy. TLRs play an important role in cancer immunotherapy. Total body irradiation
(TBI) increases the activation of adaptively transplanted T lymphocytes by recognising

microbial LPS by TLR4 activating innate immune system in the radiation injured gut.

TLRs play an important role in vaccinations because they act as natural adjuvants for vaccines
containing attenuated live or heat-killed viruses or bacteria. TLRs play an significant role in
controlling the adaptive immune response by maturing DCs, inducing the production of
cytokines and co-stimulatory proteins, and reversing tolerance. As a result, as natural adjuvants
in vaccines, they help DCs in better antigen presentation, resulting to a positive immune

response (Bagheri et al. 2018, Vidya et al. 2018).

TLRs are evolutionary conserved proteins, characterization of TLRs and their ligands has
contribution in understanding their function and the host defence systems against infections.
To study the impact of natural selection on innate immune receptors TLRs are useful candidate
molecules. Several studies were conducted and purifying selection has driven TLR evolution
at least in humans. Additional research on primate species have found varying degrees of
positive selection acting on their evolutionary history. These interactions may have influenced
the evolution of proteins involved in direct pathogen recognition. Further research on mammal

TLR genes is needed to explore for signs of positive selection.
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Methodology

Sequence Retrieval

Sequences of TLR genes and encoding protein from mammals were retrieved from GenBank
maintained by NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and Ensembl maintained by
EMBL-EBI (www.ensembl.org). To avoid any stochastic disparities and sample errors
sequences that are error prone and redundant (partial sequences, predicted sequences,
sequences having internal stop codons, non-translatable codons) were discarded (Wright,
1990). TLR nucleotide and protein sequences from different mammalian species were stored
according to the TLRs. BLAST and its variants, each differentiated by the type DNA or protein
of input sequence and searched database for annotation of gene or protein sequences. More
inclusive database search was undertaken by using PSI-BLAST which uses an iterative pattern
to search and find out distantly associated sequences. A comprehensive set of coding sequences

of TLR1-TLR13 from Mammalian group constituted primary dataset for the analyses.

Multiple sequence alignment aligns many related sequences to get the best possible sequence
matching. Multiple sequence alignment has the unique advantage of revealing more biological
information than several pairwise alignments. As example, it enables the detection of
conserved patterns of sequence and motifs across the entire family of sequence, that would
otherwise be difficult to notice while comparing two sequences. A protein multiple alignment
reveals several conserved and functionally important amino acid residues. Multiple sequence
alignment is also required for sequence family phylogenetic analysis as well as protein
secondary and tertiary structure prediction. Clustal Omega package have been developed for
performing multiple sequence alignments (MSAs) to deal with large number of sequences

available and the to execute big alignments rapidly and precisely.
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Multivariate Analyses

Species and genes within the same genome use codons and amino acids at different frequencies.
Numerous studies have been conducted on these biases in codon and amino acid usage in a
range of species. Despite the fact that the genetic code is degenerate, meaning that multiple
combinations of codons can produce the same protein. The mechanisms that determine non-
random codon usage may also have an impact on amino acids usage in proteins. Since all
codons encoding a particular amino acid may have base compositions that are either GC rich
or GC poor, this can be explained by neutral processes. Furthermore, because amino acids
identical functions might have varying tRNA abundances or necessitate diverse metabolic
expenditures to produce, selection may be a significant factor in determining amino acid
frequencies. The pattern of amino acid usage is primarily determined by the composition of the
genomic bases. However, additional parameters like hydrophobicity, aromaticity, gene

function, etc., have also been found to have an impact on amino acid usage (Peden, 2000).

Multivariate analysis (MVA) simplifies rectangular matrices in which the columns denote
measurement of codon usage or amino acid usage and the rows denote specific genes.
Meanwhile amino acid usage is multivariate in nature, such statistical techniques like
correspondence analysis (COA). COA ordination identifies key trends data variation and
distribute genes along continuous axes in according with trends. It is advantageous as it do not
make any assumption of clustering the data rather distribute continuous variation correctly

(Peden, 2000).

CodonW package analyse codon usage. It facilitates COA, a popular MVA technique for
analysing codon usage. CodonW can produce a COA for codon usage, relative synonymous
codon usage and amino acid usage. Additionally, codon usage analyses include investigation
of optimum codons, codon and bias in dinucleotide, and base composition. CodonW examines
sequences encoded using genetic codes other than the universal code (Peden, 2000). COA was
used to explore the major trend in amino acid usage difference among the TLR genes from

Mammals. For each gene, relative amino acid usage (RAAU), average hydrophobicity,
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aromaticity and GC content of the TLR gene sequences were calculated employing the

CodonW program.

Phylogenetic Tree

Phylogenetic tree analysis determines the ancestral relationship of a collection of sequences.
Phylogeny refers to the patterns of tree branching that show evolutionary divergence. Graphical
depiction of the evolutionary relationships amid biological entities such as sequences or species
is presented through a phylogenetic tree. Relations among entities are apprehended by the
topology or branching order and expanse of evolutionary change (branch lengths) between

nodes. Root adds direction to such relationships and precisely define ancestry.

Molecular phylogenetic trees are generated through either nucleotide or protein sequences. The
most important phase in the technique is to generate sequence alignment, which ascertains
positional correspondence in evolution. Only the accurate alignment produces proper
phylogenetic inference as aligned positions are probably related genealogically. Improper
alignment causes methodical errors in the resulting tree, or sometimes entirely an erroneous
tree. For this, accurate sequence alignment is essential. Multiple cutting-edge alignment
programmes, such as Clustal Omega, Muscle can be used. Results of alignment from various
sources should be carefully examined and linked to determine the most rational choice (Xiong,

2006).

Currently two major types of tree construction methods exist, with some advantages and
limitations. One class of method is based on discrete characters from biological sequences of
individual taxa such as maximum parsimony (MP), maximum likelihood (ML). Assumed that
corresponding positional characters at in a multiple sequence alignment are homologous across
all the involved sequences. Consequently, the dataset can be used to reconstruct character states
of the common ancestor. Also, it is assumed that each character evolves independently hence
is viewed as a separate evolutionary unit. The second category of phylogenetic methods such
as Unweighted Pair Group Method Using Arithmetic Average (UPGMA), Neighbor Joining

are distance based which report amount of dissimilarity among pairs of sequences estimated
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using sequence alignment. Distance based approaches presume all sequences as homologous
and tree branches are additive, which means that the distance amid two taxa is equal to the total

of all branch lengths that connect them (Xiong, 2006).

Bootstrapping, a statistical procedure used to test any sampling errors in the phylogenetic tree.
Repeated sampling of trees by the perturbation of dataset is done while bootstrapping. It
achieves this by periodically sampling trees from marginally perturbed datasets. This allows
us to analyse the robustness of the original tree. Bootstrapping is used to avoid bias in newly
constructed trees caused by poor alignment or random variations in measurement of distances.
The robustness of the tree constructed by generating a little modified alignment frequently with
random fluctuations. Rally strong phylogenetic relationship should include sufficient features
to support the relationship even if the dataset is disrupted in such a way. Or else, the noise
generated during the resampling procedure is sufficient to produce alternative trees, implying
that the initial topology was formed from weak phylogenetic evidence. This form of study

provides a sense of the statistical confidence of the tree topology (Xiong, 2006).

In this study, all the TLR proteins from mammals were subjected to alignment using the Clustal
Omega program (https://www.ebi.ac.uk/Tools/msa/clustalo/). The ensuing multiple sequence
alignments were then used to construct the phylogenetic tree with 1000 bootstrap replicates.
The latest version of MEGA software was used for Phylogenetic analysis. The Molecular
Evolutionary Genetics Analysis (MEGA) software is a desktop application that allows user to
compare homologous gene sequences from different species or multigene families, with a focus
on inferring evolutionary relationships and patterns of DNA and protein evolution. In addition
to the tools for statistical analysis of data, MEGA provides many convenient facilities for the
assembly of sequence data sets from files or web-based repositories, and it includes tools for
visual presentation of the results obtained in the form of interactive phylogenetic trees and

evolutionary distance matrices (Kumar et al., 2016, Kumar et al., 2018).

Determination of the evolutionary history of genes can be done by ancestral sequence

reconstruction. Aside from its use in determining the most likely evolutionary forebears of
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present proteins, ancestral sequence reconstruction has proven to be an effective method for
designing extremely stable proteins. Recently, various computational tools were developed that
make ancestral reconstruction algorithms available to the community while leaving the most
important parts of input data preparation to users. FireProtASR attempts to tackle this challenge
by developing a fully automated procedure that allows even inexperienced users to acquire
ancestral sequences using only a sequence query as input (Musil et al, 2021). FireProtASR
comes with an interactive, user-friendly web interface and is freely available at

https://loschmidt.chemi.muni.cz/fireprotasr/.

Evolutionary rate analysis

The neutral theory of molecular evolution states that random fixation of low fitness
consequence mutations, not natural selection, is the primary cause of the diversity found within
and across species. The morphology, behaviour, and physiology of species are ultimately
shaped by these favourable mutations, which are infrequent at molecular level yet occur in
genes and genomes. Finding molecular adaptation aids in improving comprehension of the
evolutionary process. Enormous genomic data and computational resources has made it
possible to the systemic analysis of genomes for positive selection study, making molecular
adaptation research more fascinating than ever. Genes that encode protein, can be distinguished
between synonymous or silent substitutions (nucleotide changes that do not modify the
translated amino acid) and nonsynonymous or replacement substitutions. Because natural
selection functions primarily at the protein level, synonymous and nonsynonymous mutations
face extremely different selective forces and settle at very different rates. Thus, using the
synonymous rate as a reference point, one can determine whether fixation of nonsynonymous
mutations in the population is speeded or slowed by natural selection acting on the protein. A
comparison of synonymous and nonsynonymous substitution rates can reflect the direction and

strength of natural selection acting on the protein (Kimura 1968, King and Jukes 1969).

A nucleotide substitution that changes the corresponding amino acid in the protein is called a

nonsynonymous substitution (denoted as Ka), whereas a nucleotide substitution that does not
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change the amino acid in the protein is called a synonymous substitution (denoted as Ks).
According to the neutral theory, purifying selection will eliminate nonsynonymous
substitutions while tolerating synonymous ones. As a result, there will be fewer
nonsynonymous than synonymous substitutions. This prediction is supported by the facts that
synonymous substitutions in protein-coding genes usually exceed nonsynonymous
substitutions, and the rate of evolution of functionally constrained regions of genes is slower
compared to non-functionally constrained gene regions. Although, selective benefits conferred
by the nonsynonymous substitution will be fixed in the population by the positive selection

(Roy et al., 2015, Roy et al., 2017).

Calculation The ratio () of rate of non-synonymous substitutions per nonsynonymous site
(dN) to rate of synonymous substitutions per synonymous site (dS) indicates the impact of
evolution on a gene segment. ®>1 indicates diversifying (positive) selection whereas, ®<I
signifies purifying (negative) selection (Roy et al., 2015). The evolutionary rates of mammalian
TLRs (with reference to consensus sequence generated through Perl program) were calculated
using the Codeml program included in the PAML software package (ver. 4.5) (Nei and
Gojobori, 1986, Yang, 2007) (http://abacus.gene.ucl.ac.uk/software/paml.html) with runmode
=—2 and CodonFreq = 1.

Codon-based analyses of positive selection

A gene that has an accelerated nonsynonymous substitution rate, as indicated by the
nonsynonymous/synonymous rate ratio dN/dS > 1, is considered to be positively selected. This
type of test is very successful at finding diversified or balancing selection because it employs
excessive nonsynonymous substitutions as evidence that natural selection aided in the fixation
of nonsynonymous mutations. Tests based on dN/dS may be less effective when applied to data
from the same species due to lack of sequence divergences and challenges in the interpretation

of the AN/dS ratio (Kryazhimskiy and Plotkin 2008).

Under neutrality, coding sequences are expected to have a ratio of non-synonymous

substitutions (dN) over synonymous substitutions (dS) that does not significantly deviate from
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1 (o =dN/dS = 1), while significant deviations can be attributed to either positive or negative
selection (o >> 1), respectively. To investigate positive selection in individual codons of
mammalian TLR sequences, the dN to dS ratios were compared using maximum likelihood
(ML) frameworks, specifically the Hyphy programme implemented in the Data Monkey Web
Server (http://www.datamonkey.org). Modern comparative sequencing analysis relies heavily
on inferring how evolutionary forces shaped genetic diversity. Recent advances in sequence
synthesis and statistical approaches enable researchers to extract more evolutionary signals
from data, although at a higher processing expense. Datamonkey 2.0, a completely re-
engineered web-server for analysing evolutionary signals in sequence data. We used open-
source libraries to construct dynamic, robust, and scalable web applications. Datamonkey 2.0
offers curated approaches for analysing coding-sequence alignments for natural selection. It is

a responsive, fully interactive, and API-enabled web application (Weaver et al, 2018).

The best fitted nucleotide substitution model was identified using the automatic model
selection tool Data Monkey Web Server. All TLR sequences were analysed using three distinct
models: single likelihood ancestor counting (SLAC) and fixed-effect likelihood (FEL). The
SLAC model is based on the reconstruction of ancestral sequences and the counts of dS and
dN at each codon position along the phylogenetic tree. The FEL model predicts the dN/dS ratio
on a site-by-site basis, rather than assuming a priori distribution across sites. Positive selection
is more strongly supported for sites found by two independent approaches. Positive selection
test of individual codons of mammals TLR was performed using the Hyphy package executed
in the Data Monkey Web Server that compare Ka to Ks ratio using maximum likelihood (ML)

framework (Weaver et al, 20138).

Structural modeling

Despite the rising proficiency of different approaches to obtain protein sequences, majority of
known sequences lack structural information. Protein modeling aims to predict the structure of
a protein from its sequence with accuracy comparable to experimental results. This can close

the structural knowledge gap in disciplines like structure-based medication design, which

50



would otherwise rely solely on experimentally determined structures. Furthermore, when
experimental methods fail, protein modeling is the only option to gain an understanding of
protein structure. Many proteins, for example, are too large for NMR study or are difficult to
crystallise using X-ray diffraction methods. Homology modeling, fold recognition, and de novo

structure are the available methods for protein 3D structure prediction (Scott et al, 2014).

Homology modeling that is also referred as template-based modelling, or comparative
modeling assumes that protein three dimensional or 3D structures. Structures with similar
amino acids comprise same kind of 3D structure due to structural conservation. This homology
modeling process relies on two methods: sequence alignment and molecular modeling. The
fundamental workflow for homology modelling starts with a given target amino acid sequence.
Initially by searching the homologous sequences in known protein structure databases,
alignment process begins. Coordinates of amino acids in homologous proteins with known
structure are therefore used to determine corresponding amino acids coordinates of the target
protein (Muhammed and Aki-Yalcin, 2019). Then, to reduce the unfavorable interactions
among amino acid pairs molecular modeling is performed. Finally, the resulting 3D structure
is examined. This homology modeling method was one of the prevalent approaches for a
decade. Because of the elevated prediction speed, excellent precision for proteins having
known structural homologs the homology modeling technique is very advantageous. The flaw
is that it heavily relies on template structures, that means it cannot anticipate the structures of

proteins for which homologs have not been discovered (Franga, 2015).

SWISS-MODEL is an automated modeling tool and it has been regularly improved since its
inception and is now the most popular modeling server available on the web. The SWISS-
MODEL server is intended to function with minimum user input, for example it requires only
the amino acid sequence of a target protein. Because comparative modeling projects vary in
complexity, some may require further user input, such as selecting a new template or adjusting

the target-template alignment (Waterhouse et al., 2018).
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The de novo modeling method searches for conformations directed by a specified energy
function, which uses amino acid atomic coordinates as variables. This process generates several
potential conformations, and the one with the minimum energy is chosen. The benefits of de
novo modeling include the fact that it is independent of identified protein structures. It allows
the prediction of protein structures without having any prior knowledge of the structure and the

possibility of discovering novel structural types of protein (Bradley et al, 2005).

ML-based modeling is an approach for predicting the structures of target proteins using
machine learning algorithms and known protein structures. Among the several ML algorithms,
the most notable is deep learning (DL). In contrast to homology modeling and de novo
modeling, the DL-based method is a data-driven approach that is only recently evolving.
Because of the tremendous success of DL in other fields, the DL-based protein prediction
strategy is projected to perform better. AlphaFold (AF) is one of several deep learning-based
modeling algorithms based on the biological notion of protein structural conservation during

evolution (Yang et al, 2023).

Molecular docking study

Protein-protein interactions are critical for cellular and immunological function, and in many
situations, because the complex structure has not been empirically identified, these interactions
must be modeled to gain a better understanding of their molecular foundation. The Molecular
Docking approach predicts the interaction of a tiny molecule with a protein or between proteins.
This allows researchers to analyse the behaviour of tiny molecules or proteins within the
binding region of a target protein and gain a better understanding of the basic biochemical
process driving the interaction. The methodology is structure based, requiring a 3D model with
high-resolution of the target protein generated using methods such as X-ray crystallography,
Nuclear Magnetic Resonance Spectroscopy, or Cryo-Electron Microscopy (Chen et al, 2003,

Agu et al, 2023).

ZDOCK is a user-friendly protein docking server that uses rigid body docking programmes to

predict the structures of protein-protein complexes and symmetric multimers. With the purpose
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of offering an accessible and straightforward interface, it offers users the ability to direct the
scoring and selection of output models, as well as dynamic visualisation of input structures and
output docking models (Pierce et al, 2014). After protein-ligand docking is done, the findings
are analysed to determine the most desirable candidates for future research. Binding affinity of
each ligand is computed using the expected interaction energy, and the ligands are ordered
accordingly. The docked structures are also examined to determine important interactions
between the ligands and the protein, such as hydrogen bonds, hydrophobic interactions, and
electrostatic interactions. These interactions can provide insights into the mechanisms of action
of ligands and enable further optimisation of their structure (Chen et al, 2003, Pierce et al,

2014, Agu et al, 2023).

Biomolecular interactions between proteins regulate and control nearly every biological
function in the cell. Understanding these interactions is thus an essential step in the study of
biological systems. Many efforts have been made to understand the principles of protein-

protein interactions. The PRODIGY web-server (https://rascar.science.uu.nl/prodigy/), an

online tool for predicting the binding affinities of a protein-protein complex based on its three-
dimensional structure (Xue et al., 2016). It is a basic yet robust binding affinity descriptor based
solely on structural characteristics of protein-protein complex, particularly intermolecular
interactions. PRODIGY provides binding affinity values as Gibbs free energy (AG, kcal/mol)
or dissociation constant (Kd, M). PRODIGY measures the number of Interatomic Contacts
(ICs) at a protein-protein complex interface within a 5.5 A distance threshold and classifies
them based on the polar/apolar/charged character of the interacting amino acids (Vangone and

Bonvin, 2017).

Protein stability is one of the most critical elements determining protein function, activity, and
regulation. Missense mutations can cause protein dysfunction by altering their stability and
interactions with other biological components. Several investigations have found that the
mutations are harmful because they reduce or enhance the stability of the corresponding
protein. To measure the effects on protein stability, calculation of the changes in

folding/unfolding Gibbs free energy caused by mutations is required. The computer prediction
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could aid in the prioritisation of possibly functionally significant variations. PremPS, a freely

available web-server (https://lilab.jysw.suda.edu.cn/research/PremPS/), forecasts the

consequences of stabilising mutations with a very low bias towards anti-symmetric properties

(Chen et al, 2020).

Protein domain identification

For protein domain identification and analysis InterPro -EMBL-EBI, PROSITE-Expasy,
SMART databases were used. SMART (Simple Modular Architecture Research Tool) is a
biological database that identifies and analyses protein domains within protein sequences.
SMART finds protein domains in protein sequences using profile-hidden Markov models
derived from multiple sequence alignments. LRR repeats of individual TLRs were identified

using the web interface of SMART (http://smart.embl-heidelberg.de/) (Schultz et al, 2000).

The InterPro database (https://www.ebi.ac.uk/interpro/) classifies protein sequences into

families, identifying functionally relevant domains and conserved regions. InterProScan is the
core software that searches protein and nucleic acid sequences against InterPro signatures.
Signatures are prediction models that define protein families, domains, or locations and are
available from multiple databases. InterPro combines signatures indicating equivalent families,
domains, or sites and includes descriptions, literature references, and Gene Ontology (GO)

terms (Paysan-Lafosse et al, 2023).

The PROSITE database contains an array of biologically significant signatures, which are
classified as patterns for short motif recognition or generalised profiles for sensitive detection
of wider domains. Such databases are valuable for predicting protein function, determining
family identity, and detecting remote homologues. ScanProsite offers a web interface for

identifying protein matches against signatures in the PROSITE database (Hulo et al, 2006).
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Statistical analysis t-test

Correlation coefficient between variables was calculated using the available formula in
Microsoft Excel. Significance test was performed using the freely available online tools such
as t-test (https://www.graphpad.com/quickcalcs/ttestl/) and one-way analysis of variance -

ANOVA (https://www.socscistatistics.com/tests/anova/default2.aspx).
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Chapter - IV



Natural selection on genetic diversity of TLRs

Results presented in this chapter are published in the following article:
Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in
mammalian toll like receptor genes. Comput Biol Chem. 2022;97:107637.
doi:10.1016/j.compbiolchem.2022.107637

Background

The defense system of animal involves two type of immunity adaptive and innate immunity.
Initially innate immune system produces an inflammatory response to block the growth and
transmission of the pathogen during an infection. In vertebrates, in order to develop acquired
immune response particularly receptors of Band T cell sense the infectious agents to produce
responses that lead to its exclusion (Janeway and Medzhitov, 2002). Receptors associated with
innate immune system are germline-encoded. They have been evolved to sense components of
external pathogen also referred as pathogen-associated molecular patterns (PAMPs) which are
crucial for pathogen existence or host released endogenous components in response to
inflammation (Matzinger, 1994; Yang et al. 2010; Erridge, 2010). These receptors of innate
immune system are located in serum, on cell surface, in endosomes, and in the cytoplasm

(Medzhitov, 2007).

Being an important category of pattern recognition receptors (PRRs) the toll-like receptors
(TLRs) are seen in Drosophila and mammals. Mammal TLRs play fundamental role in
detection of pathogen associated patterns with the initiation of signal transduction pathways
that cause genetic expression which lead to the innate and adaptive immune responses (O'Neill,
2009, Rakoff-Nahoum & Medzhitov, 2009). TLRs are type-I integral membrane receptors
comprising an extracellular domain also known as ectodomain (ECD) containing leucine-rich
repeats which facilitate the PAMPs recognition, a signal transmembrane segment, and an
intracellular Toll-interleukin 1 (IL-1) receptor (TIR) domain for downstream signal
transduction (Bell et al, 2003). In mammals there are thirteen TLRs discovered in mice (TLR1-
13) and ten TLRs in humans (TLR1-10). TLR1-TLR9 is found in both mice and human, TLR10

is non-functional in mouse due to a retrovirus insertion and TLR11, TLR12 and TLR13 are not
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found in human (7akeuchi & Akira, 2010). Depending on the subcellular distribution TLRs in
humans can be classified into two categories: TLR1, TLR2, TLR4, TLRS, TLR6 and TLR10
are expressed normally on the cell surface and TLR3, TLR7, TLR8 and TLR9 are commonly
found in intracellular compartments like endosomes. These human TLRs detect various
PAMPs such as lipopolysaccharide (TLR4), lipopeptides (TLR2 associated TLR1 or TLR6),
bacterial flagellin (TLRS), viral dsSRNA (TLR3), viral or bacterial ssRNA (TLRs 7 and 8), and
CpG-rich unmethylated DNA (TLR9) (4kira et al. 2006).

Genetic diversity in active genes associated with immune defense such as TLRs is interesting
from an evolutionary perspective as these genes are an excellent model for studying the
selective stress applied to the host genome by pathogen. These genes appear to evolve faster
than other loci in the genome in response to pathogen that are evolving rapidly. Selection is a
major factor in controlling the evolutionary rate of TLRs, mutation is also another factor and
TLRs are strongly selected to maintain their functions. In different mammals innate immune
response is not similar as some variation is there between different species in their TLRs. This
variation is due to selective pressure on the immune system-related genes that reflect specific
conditions experienced by each species (Bagheri and Zahmatkesh, 2018). Evolutionary
genetics approaches have amplified to understand the evolutionary forces acting on the human
genome that provides indispensable complement in treatment of infectious diseases. Within the
perspective of infection, detecting the magnitude and pattern of environmental selection that
works on the genes implicated in immune-associated procedures can deliver insight into the

host defence mechanisms (Barreiroet al. 2009).

Amino acids and codons are used in diverse frequencies both between genes and between genes
within the same genome. Degeneracy of genetic code direct the use of diverse set of codons
for producing the similar protein, procedures that create non-random usage of codons are likely
to influence the usage of amino acids. The possible reason behind this is the neutral processes
where composition of bases of all codons that encode an amino acid might be either GC rich
or GC poor (Rao et al. 2014). Selection also has a significant role in determining frequencies

of amino acid. Often genomic base compositions play a major role on the type of amino acid
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usage; other factors like hydrophobicity, gene function, level of expression etc. also influence
the amino acid usage. In this study mammalian TLRs are progressively investigated to examine
the effects of environmental selection on diverse set of TLRs and factors that influence
selection will be explored. Natural selection on different members of TLRs family will be

studied to explore their evolutionary contribution to host defense.

Methodology

Sequence retrieval and multivariate analysis on amino acid usage

Genes and their encoding protein sequences of toll-like receptors (TLR) were taken from
GenBank, NCBI (http://www.ncbi.nlm.nih.gov/genbank/) and Ensembl maintained by EMBL-

EBI (www.ensembl.org). By nature, amino acid usage is multivariate and need to be explored

using statistical analysis like correspondence analysis (COA) (Peden, 2000). COA reveals
major trends of variation in the dataset by arranging them along continuous axes where
consecutive axis have been arranged to have diminishing effect gradually (Roy et al. 2017).
The analyses of amino acid usage patterns of TLR genes of mammal under study were carried

out using COA available in CodonW program.

Parameters like relative amino acid usage (RAAU), average hydrophobicity, GC content of
genes were calculated for each TLR sequence using available option in CodonW program.
Correlation coefficient between variables was calculated using the available formula in MS
Excel. Significance test was performed using the freely available online tool such as t-test

(https://www.graphpad.com/quickcalcs/ttest1/).

Phylogenetic analysis was performed among primate and non-primate genes of TLR. The
sequences were aligned using the ClustalW program. The phylogenetic tree was constructed

using Mega 7, utilizing the maximum likelihood method (Kumar et al. 2016).

Three dimensional structural models were generated for TLRS protein sequences through
homology modeling using SWISS-MODEL (Waterhouse et al., 2018). TLRS protein structure

available in Protein Data Bank (PDB) (PDB ID: 3J0A) was used as template for homology
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modelling with more than 99% sequence identity and 97% query coverage in case of human
(primate mammal) and 78% sequence identity and 97% query coverage in case of cattle (non-
primate mammal). The structure of flagellin was truncated from crystal structure of the N-
terminal fragment of zebrafish TLRS in complex with Salmonella flagellin available in PDB
(PDB ID: 3V47). As the ectodomain of the TLRs are involved in ligand recognition, the
interaction study was performed on TLRS ectodomains based on the NCBI annotation (Savar
and Bouzari, 2014, Forstneric et al. 2016). Molecular interaction of TLRS protein with
flagellin was performed using Z-dock software (Pierce et al. 2014). Then, the resulting docking
data were processed and analysed considering binding energies and main interacting residues
in each complex by using the PRODIGY software (Xue et al. 2016). Free energy of the

structural complexes was calculated using PremPS server (Chen et al. 2020).

Estimation of evolutionary rate and mutational analysis

The impact of evolution on set of genes is indicated by the ratio (w) i.e., ratio of non-
synonymous substitution rate per non-synonymous site (Ka) to synonymous substitution rate
per synonymous site (Ks). Where w>1 point towards positive (diversifying) selection and o<
1 signify negative (purifying) selection (Roy & Basak, 2021). The rate of evolution of each
TLRI-TLR10 group of mammals (taking consensus sequence as reference) was estimated
using the available PAL2NAL program (Suyama & Torrents, 2006). Residue wise evolutionary
rate of TLR gene sequences were calculated using SWAKK server (Liang et al. 2006). This
server performs a sliding 3D window analysis to calculate the ratio of non-synonymous to

synonymous substitution rate (Ka/Ks) of DNA sequences that encode protein.

Positive selection test of individual codons of mammals TLR was performed using the Hyphy
package executed in the Data Monkey Web Server that compare Ka to Ks ratio using maximum
likelithood (ML) framework, (Weaver et al. 2018). The sequences of every TLR were analysed
under the fixed-effect likelihood (FEL) model. This Fixed Effects Likelihood (FEL) approach
uses maximum-likelihood (ML) method to deduce non-synonymous (dN) and synonymous

(dS) substitution rates on the basis of per site considering a coding alignment and related
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phylogeny. It is presumed in this method that selection pressure for each site remains constant

throughout the phylogeny.

Mutational analysis was performed by using a customized script to study the mutation among
the TLR sequences. Predicted consensus sequence for each TLR was used as reference
sequence to identify the mutation. Consensus sequences offer promising approach in screening
proteins of high stability and retain the biological activity as it predicted based on evolutionary
history in which residues important for both stability and function are likely to be conserved
(Sternke et al. 2019). Occurrences of mutation in each TLR for each species were studied across

the two functional domains.

Results

Correspondence analysis on amino acid usage of TLR genes

Correspondence analysis was performed to study the amino acid usage variation of ten different
TLR genes of mammalian origin separately. The first and second major axes accounted for
54.5% and 20.1% of the total variation of amino acid usage respectively for TLR1 gene. Figure
1 shows position of genes generated during correspondence analysis on the basis of amino acid
usage across the first and second major axes. Similar pattern of distribution of the amino acid
usage was observed for other TLRs under study. For the ten different TLR genes these first
axis always accounted the major variation which is more than 30% of the total variation of
amino acid usage. It is clear from the correspondence analyses that there are two clusters. One
cluster belongs to mammal which are primates and another cluster belongs to mammal other
than primates. For simplicity, hereafter, TLRs from primates (Human, Gorilla, Monkey,
Chimpanzee, Orangutan, Baboon etc.) will be referred to as primate mammal (Pm) TLRs and
TLRs from mammal other than primates will be referred to as non-primate mammal (NPm)
TLRs. Phylogenetic tree using the TLR1 genes of Pm and NPm clearly shows that Pm and
NPm TLR genes are present in different branches (Figure 2). Similar pattern is observed for
other TLRs. Branching pattern of phylogenetic tree follows similar trend to that of

correspondence analysis.
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Figure 1: Distribution of TLR1-TLR10 genes along the two major axes of Correspondence
analysis (COA) based on amino acid usage (AAU) data. x-axis- Axis 1 of AAU; y-axis- Axis
2 of AAU. Red coloured dots represent TLR gene sequences from Pm and green coloured dots
represent TLR gene sequences from NPm. Similar pattern is observed for other TLR genes also

as shown in figures 1A-1J.
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Figure 2: Phylogenetic tree of Pm and NPm genes of TLR. Similar pattern is observed for

other TLRs as shown in figures 2A-2J.
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Now to investigate the preference of amino acids in two different clusters we have compared
the relative amino acid usage values between Pm and NPm TLR genes. Comparisons of relative
amino acid usage values suggested that the twenty amino acids are differently preferred among
Pm and NPm for each TLR. From the analysis it was observed that amino acids such as Phe,
Met, Thr, Lys, Glu, Cys were mostly preferred in Pm TLRs whereas amino acids such as Leu,

Pro, Ala, Asp, Arg, Gly were mostly preferred in NPm TLRs.

We have performed molecular docking study between TLRS (Homo sapiens for primate and
Bos indicus for non-primate) and flagellin (pathogen receptor). We have identified the
preferred residues those are interacting with the flagellin and when substituted these residues
with GC-rich/GC-poor, as the case may be, the stability of the TLRS5-flagelin complex

decreased (Figure 3).

Since axisl (horizontal axis) accounts major variation for each TLR in COA, further analysis
is performed on the basis of distribution of mammal TLR genes along the horizontal axis of
correspondence analysis. Significant correlation was observed between the gene position along
the horizontal axis and hydrophobicity (r=0.533, p<0.05) and GC-content of the encoded
proteins (1=0.745, p<0.01). Significant correlation of axisl with GC1 (r=0.714, p<0.05), GC2

(r=0.689, p<0.05), GC3 (r=0.668, p<0.05) content of the encoded proteins were also observed.

We have compared the average GC content of TLR genes for Pm and NPm. The average GC
content of TLR genes are 42.6% and 44.6% for Pm and NPm respectively. The difference of
GC content of TLR genes between Pm and NPm is statistically significant (P<0.01). As the
NPm TLR genes have higher GC content we may expect GC-rich amino acids would be
preferred in NPm. Indeed, we observed that average composition of four GC-rich amino acids
(Du et al., 2018) (Ala, Arg, Gly, and Pro) are higher in NPm TLR genes and the compositions
of four GC-rich amino acids are positively correlated with GC contents (r=0.836, p<0.001) of
the NPm TLR genes. On the other hand, we observed that average composition of AT-rich
amino acids (Phe, Ile, Tyr, Asn and Lys) are higher in Pm TLR genes and their compositions

are also positively correlated with AT-contents (r=0.673, p<0.001) of Pm TLR genes. All these
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results support that amino acid usage have been shaped under the influence of GC-content of

TLR genes.
3(A)
(i) (i)
E301
LY299

3(B)
(1) (ii)

R234
S262

Figure 3(A): Interaction profile of a representative mutation F299G in Pm TLRS protein
indicating GC-poor to GC-rich amino acid substitution. GC-poor amino acids are preferred in
Pm. The structural stability decreases when F (Phenyl alanine) is substituted by G (Glycine).
(1) Wild type residue F299 having one polar interaction (sky), and one hydrophobic (blue)
interaction. (i1) Mutant type residue 299G having one polar interaction (sky). 3(B): Interaction
profile of a representative mutation R2262K in NPm TLRS protein indicating GC-rich to GC-
poor amino acid substitution. GC-rich amino acids are preferred in NPm. The structural
stability decreases when R (Arginine) is substituted by K (Lysine).(i) Wild type residue R262
having one polar interaction (sky) and one van der Waals (green) interactions. (i1)) Mutant type
residue 262K having one polar interaction (sky). Results are generated using PremPS server.
AAG value in both the cases is positive which indicates destabilizing mutation.
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Impact of evolutionary selection pressure on TLR Genes.

We observed presence of purifying selection across all the TLR genes (both Pm and NPm) by
comprehensive analysis of evolutionary rates. However, residue specific measurement of
evolutionary rate shows differences of positively selected sites between Pm and NPm TLRs.
Site-specific selection across the ligand binding domain also showed the same trend. These
observations indicate stronger selection pressure on NPm TLR genes compared to Pm TLR

genes. Positively selected sites among Pm and NPm TLRs are shown in Table 1.

The evolutionary parameters such as Non-synonymous substitution (Ka), synonymous
substitution (Ks), ratio of non-synonymous and synonymous substitution (Ka/Ks) were found
to differ significantly among Pm and NPm TLRs. Significant difference of these parameters
was also observed across the two functional domains of Pm and NPm TLRs. These results are
shown in Table 2. We have also found significant correlation of evolutionary parameters with
axisl of correspondence analysis on amino acid usage. Significant correlation of axisl is

observed with Ka in seven TLR genes, Ks in six TLR genes; Ka/Ks in five TLR genes.
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Table 1: Distribution of positively selected sites among Pm and NPm TLRs.

Genes No. of species Total sites Total Positively | % positively | % positively
positively selected selected site | selected site
selected sites in in ligand
sites ligand binding
binding domain
domain
Tot | Pm | NPm | Pm NPm Pm | NPm | Pm | NPm | Pm NPm | Pm NPm
al (length | (Iength (%) | (%) | (%) | (%)
aa) aa)
TLR1 |21 |10 |11 786 796 1 9 1 5 0.127 | 1.13 | 0.127 | 0.62
TLR2 |26 |10 |16 784 785 0 13 0 12 0 1.65 |0 1.52
TLR3 |22 |7 15 904 905 0 13 0 12 0 143 |0 1.32
TLR4 |22 |8 14 839 844 1 32 1 28 0.119 | 3.79 | 0.119 | 3.31
TLR5 |17 |8 9 858 874 0 6 0 3 0 0.68 |0 0.34
TLR6 |22 |10 |12 796 810 0 14 0 9 0 1.72 | 0 1.11
TLR7 |24 |9 15 1049 1058 0 17 0 15 0 1.6 0 1.41
TLR8 |20 |7 13 1041 1091 0 20 0 18 0 1.83 |0 1.4
TLR9 |22 |7 15 1032 1034 1 2 0 2 0.09 10.19 |0 0.19
TLR10 | 23 12 11 811 822 0 15 0 10 0 1.82 |0 1.21

72




Table 2: Significance test of evolutionary parameters among Pm and NPm TLR genes and
across the domains. Extracellular domain of TLR (ECD), Intracellular domain of TLR (TIR)
and tick mark indicates significant difference.

Pm & NPm genes ECD of Pm & NPm genes TIR of Pm & NPm genes
Ka Ks Ka/Ks Ka Ks Ka/Ks Ka Ks Ka/Ks
TLR1 v v v v v v v v v
TLR2 v v v v v v v
TLR3 v v v v v v v v
TLR4 v v v v
TLR5 v v v v v v v v v
TLR6 v v v v v v v v v
TLR7 v v v v v v v
TLRS v v v
TLR9 v v v v v v
TLR10 v v v v v v v v v

Correlation of evolutionary parameters with GC-content and mutational analysis.

We already observed the correlation between GC content and amino acid usage variation of
TLRs through correspondence analysis. It was also found that evolutionary parameters differ
significantly among Pm and NPm TLR genes. Furthermore, these evolutionary parameters
such as Ka, Ks and Ka/Ks was correlated significantly with the GC content of TLR genes
among mammalian species (p<0.05) (Table 3). Thus, GC content is playing an important role

in the evolution process of amino acid sequences for most of the TLRs among Pm and NPm.

Mutations were identified for both Pm and NPm TLRs over the entire TLR sequences. But
more mutations are observed in the ligand recognition domain. It endorsed that ligand
recognition domain is more prone to mutation than the signaling domain. Rate of evolution
(Ka/Ks) in the extracellular ligand recognition domain is more compared to intracellular

signaling domain for most of the TLRs in both Pm and NPm.
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Table 3: Correlation study of GC content with evolutionary parameters of TLRs.

GC Correlation Correlation Correlation

content Ka significant at Ks significant at | Ka/Ks | significant at
TLR1 0.403 0.0743 p<.01 0.1756 p<.01 0.4505 p<.05
TLR2 0.441 0.0850 p<.01 0.2391 p<.01 0.4008 p<.01
TLR3 0.403 0.0615 p<.01 0.2243 p<.01 0.2879 p<.05
TLR4 0.438 0.0994 p<.01 0.2164 p<.01 0.4829 p<.10
TLRS 0.452 0.0768 p<.01 0.2415 p<.01 0.3781 p<.01
TLR6 0.395 0.0677 p<.01 0.1883 p<.01 0.3838 p<.01
TLR7 0.410 0.0470 | not significant | 0.1671 | not significant | 0.2945 | not significant
TLRS 0.418 0.1015 p<.01 0.3902 p<.01 0.4007 p<.01
TLRY9 0.628 0.0685 not significant | 0.4410 | not significant | 0.1596 | not significant
TLR10 0.389 0.0607 p<.01 0.1516 p<.01 0.4020 | not significant

Amino acid usage pattern of TLRs based on subcellular distribution.

Since TLRs are classified into extracellular and intracellular based on the subcellular
distribution we have analyzed the amino acid usage pattern of Pm and NPm TLR genes
individually. Differential amino acid usage patterns were noticed where extracellular and
intracellular TLRs formed different clusters in case of Pm and NPm. In case of Pm,
extracellular TLR1, TLR2, TLR6, TLR10 formed one cluster; TLR4, TLRS were found in
different clusters and intracellular TLR3, TLR7, TLR8 were present in different cluster from
TLRO. In the same way, in case of NPm intracellular TLR3, TLR7, TLRS8 were in different
cluster and TLR9 formed another cluster. But NPm extracellular TLR1, TLR2, TLR4, TLR®6,
TLR10 were grouped into one cluster and TLRS5 found in separate cluster. These extracellular
and intracellular TLRs were distributed along the major axis shown in Figure 4. Evolutionary
parameters were also checked between these two clusters of extracellular and intracellular
TLRs in case of Pm and NPm respectively. The parameters Ka, Ks and Ka/Ks were found to
differ significantly among these clusters. Hence, subcellular distribution is also governing the
amino acid variation of TLRs for Pm and NPm independently where evolutionary selection is

the most important aspect.
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Discussion

The systematic study of the amino acid usage across various mammalian TLRs revealed that
amino acids are used in diverse pattern among TLR genes of Pm and NPm species. In spite of
similar anatomy and physiology between Pm and NPm there is disparity in amino acid usage
pattern of TLRs observed in them. One key difference between these species is that primates

possess a voluminous and complicated forebrain whereas non-primates possess a small brain.

Correspondence analyses established hydrophobicity and genomic GC content as the most
important features causing the TLR wise variation of amino acid usage in mammal. It depicts
that these factors are causing the variation in the immune response among species of a
particular TLR. Significant correlation of hydrophobicity is observed among TLRs. The
extracellular TLR domains are composed of leucine-rich repeats (LRR) that usually contain
22-29 length residues and have periodic hydrophobic residues positioned at discrete intervals.
In three dimensions during assembling into protein multiple repeats shape as solenoid like
structure, where consensus hydrophobic residues pointed inside to make a stable core of the
structure (Botos et al. 2011). Hydrophobic residues becoming an influencing factor for amino
acid usage variation of TLR genes among Pm and NPm. GC content is another influencing
factor as amino acid usage of TLRs is significantly correlated with GC content. Guanine and
cytosine bases proportion in the DNA molecule (GC content) being an essential qualitative
aspect of genomic architecture is discussed frequently in humans and other vertebrates such as

birds, mammals in relation to the evolution of the isochore structure (Smardaet al. 2014).

Amino acid usage pattern study also revealed that individual Pm and NPm TLRs distribution
based on subcellular location extracellular and intracellular is different. Depending on
subcellular location functionality of TLRs become different due to dissimilar PAMP
recognition. Cell surface expressed TLRs such as TLR1, TLR2, TLR4, TLRS5, TLR6 and
TLR10 mostly recognise microbial membrane components like lipoproteins, lipids; TLR3,
TLR7, TLR8 and TLRY expressed in intracellular vesicles like endoplasmic reticulum (ER),

endosomes, lysosomes and endolysosomes and sense microbial nucleic acids (Kawai and
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Akira, 2010). These factors affecting Pm and NPm TLRs which are showing distinct amino

acid usage pattern between extracellular and intracellular TLRs.

Evolutionary analysis has suggested that purifying selection is the major force working on
TLRs. Presence of codons that are selected positively indicates selective pressures on these
immune genes lead to the most noticeable changes in the ectodomain, particularly in the
variable section accountable for direct interaction with PAMPS. More mutation is observed in
the extracellular domain due to the direct interaction with pathogen. Overall selective pressure
within the innate immune system is stronger in non-primate mammal species compared to
primate mammal species. The relation between GC contents and Ka, Ks, Ka/Ks values of TLR
genes from different mammal species were observed. Correspondingly, Ka, Ks, Ka/Ks values
changes with change in GC contents. The GC content is therefore consistent with the
evolutionary process of amino acid sequences and contributes to the evolutionary level as a
key component of amino acids between Pm and NPm TLRs. The GC content influences the
emergence of proteins due to energy costs, and both the combination of bases and amino acids

is involved in this process (Du et al. 2018).
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Figure 4: Distribution of TLR genes along the two major axes of Correspondence analysis
(COA) based on amino acid usage (AAU) data. X-axis- Axis 1 of AAU; y-axis- Axis 2 of
AAU. (A) TLR gene sequence of Pm, (B) TLR gene sequence of NPm. Violet coloured dots
represent extracellular TLR gene sequences and green coloured dots represent intracellular
TLR gene sequences.
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Conclusion

This study reveals differential patterns of amino acid usage, evolutionary constraints of TLR
genes among Pm and NPm. Amino acid composition has a significant impact on the level of
TLR emergence and this is also affected by GC content. Identification of genes associated with
immunity that evolves in a different way across Pm and NPm TLRs might facilitate the
understanding of genetic basis for the differences in disease susceptibility (Quach et al. 2013).
The greater extent of deviation in selection that constrain the evolution of Pm and NPm TLRs
will enhance our understanding of the biological contribution of TLRs to host defence in
natural setting. This study presented the divergence in the biological significance of different

TLRs and offer evidences for their diverse contributions in response to host defense.
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Chapter -V



Evolutionary dynamics in TLR evolution

Results presented in this chapter are published in following article:

Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLRY through ancestral sequence
reconstruction. Immunogenetics. 2024,76(3):203-211. doi:10.1007/s00251-024-01338-8

Background

Toll-Like Receptors (TLRs) are considered as the primary sensors of invading microbial
pathogen in the innate immune system because they detect pathogen-associated molecular
patterns (PAMPs). Since the early discovery of a Toll protein in the fruit fly Drosophila
melanogaster thirteen members of the TLR family have been identified in human (TLR1-
TLR10) and mouse (TLR1-TLR13) (Zhou et al. 2013). It seems that most mammalian species
share a similar repertoire of TLR homologs though with few exceptions (Nie et al. 2018). TLRs
are type I integral membrane glycoproteins with a pathogen binding ectodomain (ECD) and a
cytoplasmic signalling domain connected by a single transmembrane helix (Zhou et al. 2013).
Mammalian TLR pathogen-binding ectodomains contain 19-25 extracellular leucine-rich
repeats (LRRs) and a cytoplasmic toll/interleukin (IL)-1R (TIR) domain. LRRs comprising 24-
29 amino acids responsible for ligand recognition and binding, while the TIR domain is
responsible for downstream signalling (Botos et al. 2011). Surface-expressed TLRs (TLR 1, 2,
4,5, 6 and 10) typically identify pathogen structural components, whereas endosomal TLRs
(TLR 3, 7, 8, and 9) recognise nucleic acid. TLRs respond to a variety of pathogen-associated
molecular patterns (PAMPs) in humans, including lipopolysaccharide (TLR4), lipopeptides
(TLR2 associated with TLR1 or TLR6), bacterial flagellin (TLRS), viral dSRNA (TLR3), viral
or bacterial ssRNA (TLRs 7 and 8), and CpG-rich unmethylated DNA (TLR9) (Takeda and
Akira 2005, Vidya et al. 2018).

TLR9 is an endosomal receptor that detects bacterial DNA/CpG-containing
oligodeoxynucleotides (CpG ODN). TLR9-mediated signalling is initiated within the
endosome by the sequential recruitment of adaptor proteins, which in turn activates critical
downstream transcription factors. Various preclinical studies showed the efficacy TLRO9
agonists individually and in combination with other agents (Karapetyan et al. 2020).
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Interaction of unmethylated CpG DNA with TLR9 activates immune responses through
MyD88-dependent signaling pathway. Human trials have shown that CpG DNA can act as an
adjuvant and boost the immunogenicity of the hepatitis vaccine. These findings highlight the
importance of TLR ligands in triggering adaptive responses and providing new adjuvants in

vaccine formulation (Cook et al. 2004).

Biological sequences have long been recognised as a record of evolutionary history, with
accumulating mutations recording species relationships and the mechanisms driving their
evolution. To avoid the recognition by the host immune system pathogens involved in
recognition evolve faster. With the evolving pathogen the host receptor that recognize the
pathogen also evolve to keep pace with the changes in the pathogen. These modifications in
receptor can be detected as the positive selection signatures or mutation (Areal et al. 2011).
From an evolutionary perspective, genetic variation in TLR genes linked with immunological
defence is important because these genes provide a good model for investigating pathogen-
induced selective stress on the host genome (Roach et al. 2005). In response to rapidly evolving
pathogens, these genes appear to evolve quicker than other locations in the genome (Ghosh et
al. 2022). Given enough genetic information from different species, the temporal accumulation
of mutations can be used to reconstruct sequences from their common ancestors. These
ancestral reconstructions serve as the foundation for many of molecular evolution approaches
now a days, such as phylogenetic trees and sequence selection tests (Muffato et al. 2023). The
Ancestral sequence reconstruction (ASR) approach begins with a multiple-sequence alignment
(MSA) of the collection of relevant homolog sequences and considers evolutionary information
depicted by the phylogenetic tree. It is a probabilistic strategy that investigates the deep
evolutionary history of homolog sequences in order to reassemble the evolutionary trajectory
of a protein. ASR can reveal sequences of long-extinct genes and organisms from which the
current ones evolved, making it an important tool in evolutionary biology (Gumulya and
Gillam 2017). Since the advent of sequencing, the reconstruction of ancestral sequences,

particularly genes, has been studied extensively. Advanced methods exist to retrace the history
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of sequence substitutions and leverage changes in substitution dynamics to answer specific

evolutionary problems (Merkl and Sterner 2016).

Study of the sequence-based feature like differential amino acid usage and impact of various
factors on TLRs will facilitate us to comprehend the evolutionary factors that affect innate
immune genes. The evolutionary genetics approach to identify the extent of natural selection
acting on these genes and the gradual changes that leads to the divergence will enhance our

understanding about the mechanism of host defence mediated by TLRs.

Methodology

Data retrieval and multivariate statistical analysis

Sequences of mammalian toll-like receptor (TLR) genes and their encoding proteins
representing different group of TLR such as TLR1, TLR2, TLR3, TLR4, TLRS, TLR6, TLR7,
TLRS8, TLRY, TLR10 were obtained from GenBank, NCBI. Toll-like receptor gene sequences
were searched by using the search option available at NCBI website and mammalian species
have been selected under species selection for the search operation. The output of the search
operation provides coding sequence of a particular TLR. These coding sequences and their
corresponding protein sequences were downloaded. TLR gene sequences from primates,
rodents, artiodactyls, proboscides, perissodactyls, lagomorphs, chiropters were taken for the
analysis. Sequences containing ambiguous character (other than A, T, G, C) and internal stop
codons were removed from the retrieved dataset. The list of mammalian taxa chosen to
investigate in this study along with their accession numbers are provided in the Supplementary

Tablel.

Amino acid usage is a multivariate feature by nature and studied using statistical analysis such
as correspondence analysis (CoA) (Peden, 2000). CoA is an efficient method to explore the
variation in the dataset and it reveals major tendencies of data disparities by placing them along
continuous axes according to the differential trends observed, with each consecutive axis
having a diminishing effect (Roy et al. 2017). CoA on the basis of amino acid usage (AAU) of

TLR gene sequences was generated using CodonW. Estimation of physicochemical properties
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like hydrophobicity, GC-content, GC3 values, effective number of codons (ENC), aromaticity
of the study sequences was also performed using the CodonW program. Correlation study of
the parameters were executed in Microsoft Excel. Significance test was done using the freely

available web program QuickCalcs-Graphpad.

Evolutionary analysis and phylogenetic tree construction

Evolutionary selection acting on the genes under study are addressed by evolutionary rate (o).
o 1s estimated as the ratio of the rate non-synonymous substitutions per non-synonymous site
(Ka) and the rate of synonymous substitutions per synonymous site (Ks). ® > 1 indicates
positive (diversifying) selection, whereas, ® < 1 indicates negative (purifying) selection. For
each TLR group (Example: TLR1) their consensus nucleotide sequences (Example:
TLR1 consensus) were generated. We have prepared a Perl script for generating these
consensus sequences. Downloaded nucleotide sequences and the consensus sequence of each
TLR groups were subjected to Clustal Omega program (Madeira et al. 2022) for the nucleotide
sequence alignment. This program Clustal produces biologically meaningful multiple sequence
alignments of divergent sequences. Then the evolutionary rate of the TLR genes (TLR1-
TLR10) of each TLR group (Example: TLR1) were estimated relative to their consensus
(Example: TLR1 consensus) sequences using Codeml program of the PAML software (ver.

4.5) with runmode = —2 and CodonFreq= 1 (Nei and Gojobori 1986, Yang 2007).

The protein sequences of all the mammalian TLRs were subjected to the multiple sequence
alignment using Clustal Omega program (Madeira et al. 2022). Alignment result was saved in
fasta format for further analysis. Then using that alignment construction of phylogenetic tree
was done applying the maximum likelihood method with thousand bootstrap replicates in the

MEGAX software (Kumar et al. 2018).

Reconstruction of Ancestral Protein Sequences

Common ancestral protein sequence of mammalian TLRs were predicted using FireProtASR
(ancestral sequence reconstruction) v1.1 webserver with default parameter settings (Musil et
al. 2021). Analyzing ancestral sequences in an evolutionary context to infer the ancestral
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sequences at certain nodes of a tree termed as ASR. Reconstructing ancestral sequences is a
well-established method for inferring the evolutionary history of genes. Along with the
application in the discovery of most probable evolutionary ancestors of study protein, it has
been a useful approach for the design of extremely stable proteins. This protocol enables the
implementation of the automated workflow FireProt“® allowing various form of inputs and
advance settings (Khan et al. 2021). All reconstruction methods involve a phylogenetic tree
inferred from a given alignment. The quality of the tree is crucial for the reliable reconstruction.
We have provided the multiple sequence alignment and the phylogenetic tree of all mammalian
TLR sequences as input for our study. Upon submitting input data, the server will execute the

dataset and reconstruct ancestral nodes along with their sequences.

Analysis of the ancestral sequences

We have performed sequence based and structural analysis of the identified ancestral sequences
to accomplish our study. Clustal Omega program, a widely used package for carrying out
multiple sequence alignment (Madeira et al. 2022) was used for the alignment of the ancestral
protein sequences. Prediction of three-dimensional structural models of ancestral proteins were
performed using AlphaFold2 (Mirdita et al 2022). It is an artificial intelligence system
developed by DeepMind that can predict three-dimensional structures of proteins from amino

acid sequences with higher accuracy (Yang et al 2023).

Pairwise structure alignment was performed using the structural alignment tool available in
Protein Data Bank (https://www.rcsb.org/alignment). This web-based tool enables alignment
of one or more structures to a particular reference structure that can be accessible from the
‘Analyze’ section of the menu bar. In superposed structures, RMSD is calculated between
aligned pairs of the backbone C-alpha atoms. Smaller RMSD indicate better structure
alignment between the two structures. TM-score (template modeling score) is a measure of
topological similarity between the template and model structures. It ranges between 0 and 1,
where 1 indicates a perfect match and 0 is no match between the two structures. Scores < 0.2
usually indicate that the proteins are unrelated while those >0.5 generally have the same protein

fold in SCOP/CATH (Zhang and Skolnick 2005).
83



Protein domains of the ancestral sequences were annotated using ScanProsite tool (de Castro
et al. 20006). Evolutionary parameters such as rate of non-synonymous substitutions per non-
synonymous site (Ka) and rate of synonymous substitutions per synonymous site (Ks) of the
ancestral sequences were analysed with respect to the root node sequence of the phylogenetic
tree (Nei and Gojobori 1986; Yang 2007). Interaction of the ancestral protein sequences and
Human TLR9 sequence that have been used as a reference for the remaining species (Zhou et
al. 2013) with the CpG ODN (A4real et al. 2011) was studied in the HDOCK. This web server
enables hybrid docking algorithm of template-based modeling and free docking. The server
supports protein—protein and protein—-DNA/RNA docking and accepts both sequence and
structure inputs for proteins. The docking scores are calculated through a knowledge-based
iterative scoring function in this tool. A more negative docking score means a more possible

binding model (Yan et al. 2017).

Results

Amino acid usage pattern of toll-like receptor genes

We used mammalian toll-like receptor (TLR1-TLR10) gene sequences to investigate the amino
acid usage (AAU) pattern through correspondence analysis (CoA). Mutations are accumulated
in TLR genes through various evolutionary processes. These mutations lead to the change in
amino acid composition of TLRs. The CoA on the amino acid usage of mammalian TLR genes
was performed to study the impact of such changes on the functionality of the encoded TLR
proteins. The distribution of genes along the two major axes of the correspondence analysis is
shown in Figurel. The first and second major axes accounted for 57.57% and 10.76% of the
total variation of amino acid usage. A clear separation of the amino acid usage pattern of TLR9
genes with respect to other TLR (TLR1-TLR8 and TLR10) genes has been observed. Because
the horizontal axis of correspondence analysis accounts for the majority of variation of the
TLRs in CoA further analysis was carried out based on the distribution of mammalian TLR

genes along this axis.
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Figure 1: Distribution of mammalian toll-like receptor (TLR) genes along the two major axes
of correspondence analysis (CoA) on amino acid usage. Distinct pattern of amino acid usage
of TLRY genes (violet) are marked with the red circle.

Change in amino acid usage of a gene may affect the various physicochemical properties of
TLR gene. We have calculated various physicochemical parameters of TLR gene sequences to
understand the factor driving this distinct amino acid usage pattern among them. The
parameters such as hydrophobicity, GC-content, GC3 values, effective number of codons
(ENC), aromaticity was found to differ significantly (p < .05) between TLR9 and other TLR
(TLR1-8, TLR10) genes. Significant correlation was observed between the gene position along
the horizontal axis and hydrophobicity (r = -0.346, p <.01), GC-content (r =-0.977, p <.01),
GC3 values (r = -0.96, p < .01), effective number of codons (ENC) (r = 0.825, p < .01) and
aromaticity (r = 0.437, p <.01) of the encoded protein. These correlation values indicate that
the physicochemical parameters are contributing in the distinct amino acid usage pattern off

TLRO.

Highly significant negative correlation with GC content, GC3 value indicated the influence of

the codon bias. To better understand the relation between gene composition and codon bias an
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ENC-GC3 scatter diagram was prepared as shown in Figure2. Such ENC—GC3 plots has been
widely used to determine whether codon usage of a gene is shaped by natural selection.
Significant correlation was observed between ENC and GC3 values (r = -0.837, p < .01). The
solid line represents the expected curve in Figure2. TLR genes (TLR1-TLR8&, TLR10) those
lie on the expected curve indicate codon usage bias is only affected by mutation pressure. TLR9
genes are placed away from the expected curve, indicates that its evolution is shaped by the

influence of natural selection.
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Figure 2: The plot of ENC-GC3 for mammalian toll-like receptor genes. The solid line
represents the expected curve (blue). TLR genes (TLR1-TLR8&, TLR10) those lie on the
expected curve indicate codon usage bias is only affected by mutation pressure. TLR9 genes
those are away from the expected curve indicates the influence of natural selection.
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Evolutionary selection analysis

Analysis of evolutionary selection can identify specific cases of adaptation as well as general
principles that guide evolution. Analysis of evolutionary processes to distinguish between
neutral and adaptive changes is thus very important. To understand effect of evolutionary
selection on the distinct amino acid usage pattern of TLR9, we have analyzed the evolutionary
parameters such as Non-synonymous substitution (Ka), synonymous substitution (Ks), ratio of
non-synonymous and synonymous substitution (Ka/Ks) of the mammalian TLR genes.
Analysis of these parameters are important for the study of the dynamics of molecular evolution
of TLRs. Results were compared between TLR9 and other TLR genes as we obtained the
difference in amino acid usage pattern between them. We found significant difference of Ks
and Ka/Ks between TLR9 and other TLRs but Ka was not statistically significant in all the
cases. Average value of Ks is more and Ka/Ks is less in case of TLRY cluster. In spite of overall
purifying selection on TLR genes significant difference of non-synonymous substitution (Ka),
synonymous substitution (Ks), ratio of non-synonymous and synonymous substitution (Ka/Ks)
is observed. These results suggest that the evolution of TLRY genes is highly influenced by

synonymous substitution (Ks).

Ancestral sequence reconstruction

Ancestral sequence reconstruction is the calculation of ancient protein sequences on the basis
of extant ones. Previous analysis suggests that TLR9 shows distinct pattern of amino acid usage
and highest synonymous substitution rate with respect to other TLR genes. Thus, the ancestral
sequence reconstruction through phylogenetic tree has been performed to reconstruct the
evolutionary paths of the TLR protein family to study the key mechanism of the molecular
evolution of TLR9. Ancestral sequence reconstruction phylogenetic tree of mammalian toll-
like receptor generated from the software is shown in Supplementary Figure3. In this figure
various TLR genes (For Example: TLR1, TLR2, TLR3.etc.) are marked with different colors
and Nodes are assigned with Node number. All the TLR9 genes are marked in red and their
ancestral Node is denoted by Node 235. Similarly, all the TLR7 and TLR8 genes are marked
in orange and their ancestral Node is denoted by Node 256. TLR3 and TLRS genes are marked

87



in blue and their ancestral Node is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and
TLR10 genes are marked in green and their ancestral Node is denoted by Node 337. Node226
denoted the root node that leads to the evolutionary path of TLRs through Node 232, Node
233, Node 234. This entire evolutionary route of divergence of various TLRs from their
common ancestor is schematically represented in Figure4. Here also the common root node is
Node226. All other TLRs have been evolved from this via intermediate nodes. For example,
Figure4 also depicts evolution of TLRY from Node226 via Node235. Similarly, the
evolutionary path of other TLRs from the root can be easily understood from Figure4 which is

a simplified diagrammatic representation of evolutionary paths of various TLRs from root.
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Figure 3: Phylogenetic tree of mammalian TLRs are marked with different colors and Nodes
are assigned with Node number. All the TLR9 genes are marked in red and their ancestral Node
is denoted by Node 235. Similarly, all the TLR7 and TLRS8 genes are marked in orange and
their ancestral Node is denoted by Node 256. TLR3 and TLRS genes are marked in blue and
their ancestral Node is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and TLR10 genes
are marked in green and their ancestral Node is denoted by Node 337. Node226 denoted the
root node that leads to the evolutionary path of TLRs through Node 232, Node 233, Node 234.
This entire evolutionary route of divergence of various TLRs from their common ancestor is
schematically represented in Figure4. Here also the common root node is Node226. All other

TLRs have been evolved from this via intermediate nodes.
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Figure 4: Simplified schematic representation of the selection of ancestral nodes from the
phylogenetic tree. Node226 denotes the root node and the evolutionary pathway that leads to
TLR9 follows via Node232, Node233, Node234, Node235. Node227 denotes the ancestral
node of TLR11,12,13, Node337 denotes ancestral node of TLR1,2,4,6,10, Node299 denotes
ancestral node of TLR3,5 and Node256 denotes ancestral node of TLR7,8.

Analysis of the ancestral sequence

We accomplished our study through sequence based and structural analysis on the selected
ancestral nodes that encompasses the evolutionary path of TLR9. Sequence based analyses
such as multiple sequence alignment of the ancestral sequences, analysis of the functional
domains, estimation of synonymous and nonsynonymous substitution was performed in order
to understand the gradual changes occurred during TLR9 evolution. Structural studies were

also performed to assess the functional changes.

Multiple sequence alignment (MSA) generated a percent identity matrix of the protein
sequences to provide an overview of the similarities between the sequences. The heatmap of
the percent identity matrix reported from the alignment is displayed in Figure5. Higher
sequence identity of TLR9 with its immediate ancestor (Node235) but lower sequence identity
with the root (Node226) was observed. It suggests that the continuous changes in sequence
level along the ancestral lineages lead to the distinct sequence pattern of TLR9. Prediction of
domain of the selected protein sequences was done and the number of LRR in the ectodomain

was calculated. The orientation of LRRs in the ancestral lineages was different compared to
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Human_ TLR9 and its immediate ancestral node. LRRs are the important components of the
functional domains of TLRs that recognize the pathogen associated molecular pattern (PAMP).
Variation in the number of LRR in the ancestors of TLR9 was observed (Figure6). It suggests
that during the evolution the variations among the LRRs of the ancestral nodes contributed to

the specific pattern recognition of TLR9.

To observe these differences in structural level structural models of the ancestral nodes and
Human TLR9 from the existing TLR9 group were prepared and compared through pairwise
structural alignment (Supplementary Filel). Root mean square deviation (RMSD) and TM-
score (template modeling score) were important metric in this analysis. The RMSD values of
TLR9 with the root node was higher compared to the other ancestral nodes and it gradually
decreased in other nodes. These observations also showed more deviation of TLR9 from root
with respect to other TLRs along the ancestral nodes in the evolution of TLR9. For all the
pairwise structural alignment TM-score variation was observed but the values indicated that

they are in the same protein fold.

TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG
ODN) as PAMP within the endosomal compartment. Interaction study of ancestral proteins
with this known ligand of Human TLR9 was performed. It will help to understand how the
present ligand is selected through evolution facilitating stronger interaction with TLRO.
Interaction of Human TLR9 and CpG ODN was also studied. Docking score of all the
interactions are shown in Figure7. Highest docking score observed in case of Human TLR9
indicated the most compatible interaction of the ligand with present TLR9. It reveals that TLR9
achieved its present conformation through the structural changes in the ancestral nodes during
the course of evolution. Present TLR9 is very specific in recognizing its ligand as the ancestral

nodes showed comparatively less stable interaction with this ligand.

Assessment of the evolutionary impact on the ancestral node sequences was also done by
measuring the changes in non-synonymous substitution (Ka), synonymous substitution (Ks),

ratio of non-synonymous and synonymous substitution (Ka/Ks) (Figure8). Gradual increase of
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Ks from root to the other ancestral nodes was seen and it became extremely high in
Human TLR9. Ka value is also high in Human TLR9 compared to the ancestral sequences.
Due to high value of Ks the Ka/Ks value became very low in Human TLRO. Influence of
synonymous substitution have been shaping the TLRY evolution compared to its ancestral

nodes.

Nodes NODE227|NODE337) NODE232 |NODE233INODEZ34INODE299NODE236|NODE23S| Human TLRY
NODE226 8915 | 7386 383 M9 | 09 | 6B
NODELT 68.02 7469 663 | 4669 | 369
NODE37 | 7586 138 | 4938 | 6046
NODEZ}2 | 8383 | 7469 8319 | 816 | 6168
NODE233 | ™19 | 663 | 7384 6649 | 495 | 6056 | 4549 2n
NODE2}M | 5092 | 4069 | 5616 5816 5028 | M4 | %15 518

NODE299 | 6253 | 36%5 | 6046 6768 7493 576
4576

NODEZSG | 46713 | 4298 | 473 534 6036 | 8814
902

NODE233 $49 815

273 | A7
Figure 5: Heatmap showing percent identity matrix of proteins obtained from multiple
sequence alignment, colours correspond to the percent identity with high values (red), medium
values (white) and low values (blue). Values in the box represent sequence homology in
percentage. Higher sequence identity of TLR9 with its immediate ancestor (Node235) but
lower sequence identity with the ancestral nodes was observed.

4561
§4.09

92



25 - —

20 + —

No. of LRRs
73

[
=
I
1

Figure 6: Number of LRR present in the TLR genes and the ancestral nodes are shown in the
bar plot. Number of LRR in human TLR9 is decreased from its immediate ancestor Node235.
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Figure 7: Docking score of the interaction analysis between selected sequences and known
ligand of CpG DNA of TLR9. Highest docking score is observed in case of TLRO.
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Table 1: Pairwise structural alignment results of the ancestral proteins and TLR9. All the
selected ancestral sequences were compared with each other through pairwise structural
sequence alignment. Two important metrics of this study are RMSD (Root mean square
deviation) and TM-score (template modeling score). RMSD values of TLR9 were less when
compared with the immediate ancestors but higher when compared with other ancestral nodes.
TM-score values indicated that they are in the same protein fold.

Reference | Target RMSD :(?:;e Isgg:tei?;e Reference | Target RMSD :‘Cl\:l);e IS;g:tei:l;e
Node227 | 4.23 0.5 34% Node226 | 5.06 0.54 34%
Node232 | 5.84 0.53 21% Node227 | 1.44 0.89 50%
Node233 | 5.76 0.49 16% Node232 | 3.51 0.55 31%
Node337 | 1.46 0.85 66% Node233 | 4.65 0.61 37%
Node226 Node299 | 5.06 0.54 34% Node299 Node337 | 4.55 0.55 30%
Node234 | 5.67 0.52 14% Node234 | 4.09 0.61 23%
Node256 | 5.67 0.52 14% Node256 | 4.06 0.6 22%
Node235 | 5.74 0.53 15% Node235 | 3.37 0.62 24%
TLR9 4.44 0.44 19% TLR9 3.35 0.62 23%
Node226 | 4.23 0.5 34% Node226 | 5.67 0.57 14%
Node232 | 3.54 0.56 31% Node227 | 4.02 0.63 24%
Node233 | 4.3 0.62 40% Node232 | 1.53 0.97 54%
Node337 | 4.55 0.48 30% Node233 | 1.66 0.87 58%
Node227 Node299 | 1.44 0.89 50% Node234 Node337 | 4.58 0.5 19%
Node234 | 4.02 0.63 24% Node299 | 4.09 0.61 23%
Node256 | 3.87 0.61 24% Node256 | 1.72 0.97 86%
Node235 | 3.46 0.6 26% Node235 | 2.07 0.88 59%
TLR9 3.48 0.6 25% TLR9 2.65 0.89 53%
Node226 | 5.84 0.53 21% Node226 | 5.67 0.56 14%
Node227 | 3.54 0.56 31% Node227 | 3.87 0.61 24%
Node233 | 1.76 0.77 69% Node232 | 1.91 0.95 48%
Node337 | 5.51 0.42 27% Node233 | 1.48 0.85 53%
Node232 Node299 | 3.51 0.55 31% Node256 Node337 | 5.83 0.52 18%
Node234 | 1.53 0.88 54% Node299 | 4.06 0.6 22%
Node256 | 1.91 0.87 48% Node234 | 1.72 0.95 86%
Node235 | 2.31 0.79 41% Node235 | 2.22 0.87 49%
TLR9 3.07 0.79 37% TLR9 2.09 0.87 45%
Node226 | 5.76 0.6 16% Node226 | 5.74 0.6 15%
Node227 | 4.3 0.62 40% Node227 | 3.46 0.6 26%
Node232 | 1.76 0.96 69% Node232 | 2.31 091 41%
Node337 | 5.49 0.45 15% Node233 | 2.18 0.83 43%
Node233 Node299 | 4.65 0.61 37% Node235 Node337 | 4.48 0.44 18%
Node234 | 1.66 0.97 58% Node299 | 3.37 0.62 24%
Node256 | 1.48 0.98 53% Node234 | 2.07 0.92 59%
Node235 | 2.18 0.9 43% Node256 | 2.22 0.92 49%
TLR9 2.24 0.83 40% TLR9 0.92 0.98 83%
Node226 | 1.46 0.85 66% Node226 | 4.44 0.44 19%
Node227 | 4.55 0.48 30% Node227 | 3.48 0.6 25%
Node232 | 5.51 0.42 27% Node232 | 3.07 0.79 37%
Node233 | 5.49 0.45 15% Node233 | 2.24 0.83 40%
Node337 Node299 | 4.55 0.55 30% TLR9 Node337 | 4.66 0.49 14%
Node234 | 4.58 0.5 19% Node299 | 3.35 0.62 23%
Node256 | 5.83 0.52 18% Node234 | 2.65 0.89 53%
Node235 | 448 0.44 18% Node256 | 2.09 0.87 45%
TLR9 4.66 0.49 14% Node235 | 0.92 0.98 83%
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Figure 8: Synonymous (Ks) and non-synonymous (Ka) substitution rates in TLR9 and its
ancestral node.

Discussion

The transmembrane pattern recognition receptor TLRs are best known for their roles in innate
immunity via recognition of pathogen and initiation of signaling response. In this study,
comprehensive analysis of mammalian toll-like receptor gene sequences (TLR1-TLR10)
revealed that TLR9 follows a distinct pattern of evolution. Sequence based features and
evolutionary constraints are found to influence the divergence of TLRY from other TLRs.
Ancestral sequence reconstruction analysis also revealed that gradual evolution of TLR genes

in several ancestral lineages lead to the distinct pattern of TLRO.

Mammalian TLRs are responsible for recognition of conserved molecular pattern derived from
various classes of pathogens resulting in the induction of innate immune response. Pathogen-
induced selection is considered as a crucial selective mechanism driving the evolution of
immune system components. We have identified various factors influencing TLR-dependent
heterogeneity in amino acid usage that contribute to the differences in their immunological

responses in mammals. We also found that high synonymous substitutions have shaped the
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observed changes between TLR9 and other mammalian TLR genes in spite of nonsynonymous

substitutions inducing the amino acid changes.

The divergence of TLR9 is demonstrated in this study through the ancestral sequence
reconstruction. Analysis of the ancestral sequences also reinforced that changes occurred in the
TLRs during their evolution from the ancestral lineages that mostly observed in the TLR9 and
its descendants. Decrease in percent sequence identity of TLR9 from root to the ancestral nodes
to the mammalian TLR9 branch of the tree depicts gradual changes happened in the sequences
through accumulation of mutation. Domain-wise analysis also suggested accumulation of a
greater number of mutations in the ectodomain causing variation in the number of LRR. Each
TLR comprise an ectodomain with leucine-rich repeats (LRRs) that facilitate the recognition
of pathogen associated molecular pattern (PAMP) and a cytoplasmic Toll/IL-1 receptor (TIR)
domain that initiates downstream signaling. The mutational changes also have been influenced
by gradual selection pressure on the ancestral sequences in the course of evolution. Influence
of synonymous and non-synonymous substitution among the ancestral sequences is observed
and the gradual selection pressure in the course of evolution leading to the distinct pattern of
TLRY. Interaction study also revealed more stable interaction of the ligand with TLR9
compared to the ancestral nodes. Although decreasing docking score in other ancestral nodes

indicated less stable interaction.

Conclusion

This study enables a new approach to explore the emergence of toll-like receptor through the
ancestral sequence reconstruction that elucidates a distinct pattern of evolution of TLRO. It
demonstrates that the evolutionary divergence of TLR9Y started from the beginning and gradual
accumulation of changes in the ancestral lineages leads to the distinct pattern of TLR9
compared to the other mammalian TLRs. It will elucidate the biological significance of TLR9

and provide evidence for their distinct contributions in response to host defence.
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Structural and functional objectivity of TLR evolution

Results presented in this chapter are published in the articles mentioned below:
1) Ghosh M, Basak S, Dutta S. Natural selection shaped the evolution of amino acid usage in
mammalian toll like receptor genes. Comput Biol Chem. 2022;97:107637.
doi:10.1016/j.compbiolchem.2022.107637
2) Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLR9 through ancestral sequence
reconstruction. Immunogenetics. 2024,76(3):203-211. doi:10.1007/s00251-024-01338-8

Background

Plants and animals have extensive inbuilt mechanisms for recognising and responding to
harmful pathogens. The innate immune system is a ubiquitous and evolutionary ancient
mechanism that serves as the first line of defence of host against infections (Janeway and
Medzhitov, 2002, Lemaitre and Hoffmann, 2007). In vertebrates, invertebrates, and plants,
innate immunity is based on a diverse set of germline-encoded receptors known as pattern-
recognition receptors (PRRs), or microbial sensors, that recognise molecular motifs shared by
specific groups of microorganisms (often referred to as pathogen-associated molecular patterns
or PAMPSs) (Kimbrell and Beutler, 2001). The last decade has witnessed a lot of significant
improvements in the understanding of PRR-mediated immunity, with Toll-like receptors

(TLRs) being one of the largest and most studied PRR families (4kira et al, 2001).

The toll gene in Drosophila is the prototype of the TLR family, first discovered for its role in
dorso-ventral embryo patterning (Anderson et al, 1985) and later demonstrated to be necessary
for efficient immune responses in adult flies against fungus and Gram-positive bacteria
(Lemaitre and Hoffmann, 2007). Since then, homologs of the Drosophila toll have been
discovered in numerous other species (Leulier and Lemaitre, 2008). The role of mammalian
TLRs in host defence has been examined mostly in vitro through stimulation with various
agonists, and knocked-out mice for one or more TLRs exhibit varying vulnerability to several
experimental infections (Qureshi and Medzhitov, 2003). TLRs are now known to respond to a
variety of pathogen-associated stimuli and transmit signalling responses necessary for the
activation of innate immunity effector mechanisms and the subsequent development of

adaptive immunity (Beutler et al, 2006).
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In humans, the TLR family has ten functional members (TLRI1-TLR10) (West et al, 2006).
Human TLRs are classified according to their subcellular distribution: TLR3, TLR7, TLRS,
and TLRY are commonly found in intracellular compartments such as endosomes, whereas
TLR1, TLR2, TLR4, TLRS, and TLR6 are generally expressed on the cell surface (4kira et al,
2006). TLRs can be further subdivided according to known agonists. Intracellular TLRs detect
nucleic acid-based agonists and are particularly specialised in viral recognition, whereas cell-
surface expressed TLRs detect glycolipids, lipopeptides, and flagellin, which are found in a
wide range of organisms including bacteria, parasites, and fungi (Kawai and Akira, 2006).
TLR10, which is expressed on the cell surface, is the sole orphan TLR member whose agonists
and activities are currently unknown. The role of human TLRs in host defence during natural

infections, as opposed to experimental infections, is only now beginning to be understood.

The evolutionary genetics method has improved our understanding of the evolutionary factors
that influence the human genome, making it an essential complement to clinical and
epidemiological genetics techniques (Nielsen, 2005; Nielsen et al, 2007). In the context of
infection, determining the extent and type of natural selection acting on genes involved in
immunity-related processes can provide insights into the mechanisms of host defence mediated
by them, as well as distinguish between genes that are essential in host defence versus those

that exhibit higher immunological redundancy (Quintana-Murci et al, 2007).

Methodology

Sequence retrieval and correspondence analysis

Sequences of mammalian toll-like receptor (TLR) genes and their encoding proteins
representing different group of TLR such as TLR1, TLR2, TLR3, TLR4, TLRS, TLR6, TLR7,
TLRS8, TLRY, TLR10, TLR11, TLR12, TLR13 were obtained from GenBank, NCBI. Those
sequences containing unrecognized start codon, stop codon, internal stop codons,
untranslatable codons, and unrecognized character (other than a, t, g, ¢) have been discarded

from the final dataset.
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Correspondence analysis (COA) (Peden 2000) was used to investigate the major trend in amino
acid usage variation among the mammalian TLRs. Since amino acid usage by its very nature
is multivariate, it is necessary to analyse this data with multivariate statistical techniques i.e.,
COA. Correspondence analysis (COA) is an ordination technique that identifies the major
trends in the variation of the data and distributes genes along continuous axes in accordance
with these trends. It has the advantage of not to make any assumption that the data falls into
discrete clusters and therefore represent continuous variation accurately (Roy et al. 2017).
Parameters such ad GC content, GC3, effective number of codons (ENc), hydrophobicity,
aromaticity etc. were also calculated for all the TLRs under study. These analyses were
performed using the CodonW program. Correlation coefficient, statistical significance of the

parameters was calculated using the tools freely available in GraphPad software.

Phylogenetic tree construction

Phylogenetic analysis provides the evolutionary relationship of a set of sequences. It involves
the construction of a tree, where the nodes indicate separate evolutionary paths, and the lengths
of the branches give an estimate of how distantly related the sequences represented by those
branches are. Three phylogenetic trees were generated for the Mammalian TLRs using the
maximum likelihood method with thousand bootstrap replicates in the MEGAX. MEGA, a
comprehensive tool for performing sequence alignment and inferring phylogenetic trees was

used for generating the trees (Kumar et al. 2018).

Evolutionary rate analysis

Evolutionary selection acting on the mammalian TLR genes are addressed by evolutionary rate
(w). o 1s estimated as the ratio of the rate non-synonymous substitutions per non-synonymous
site (Ka) and the rate of synonymous substitutions per synonymous site (Ks). ® > 1 indicates
positive (diversifying) selection, whereas, @ < 1 indicates negative (purifying) selection. For
each TLR group (Example: TLRI) their consensus nucleotide sequences (Example:
TLR1 consensus) were generated. We have prepared a Perl script for generating these
consensus sequences. Downloaded nucleotide sequences and the consensus sequence of each
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TLR groups were subjected to Clustal Omega program (Madeira et al. 2022) for the nucleotide
sequence alignment. Then the evolutionary rate of the TLR genes (TLR1-TLR10) of each TLR
group (Example: TLRI1) were estimated relative to their consensus (Example:
TLR1 consensus) sequences using Codeml program of the PAML software (ver. 4.5) with

runmode = —2 and CodonFreq= 1 (Nei and Gojobori 1986, Yang 2007).

Results

Analysis of amino acid usage pattern

Mammalian TLR genes demonstrated differential amino acid usage pattern from the
correspondence analysis (COA) study. Figurel display four different clusters based on amino
acid usage pattern (marked in red circle A, B, C and D). Cluster A comprises TLR1, TLR2,
TLR4, TLR6, TLR10; Cluster B comprises TLR3, TLR7, TLRS8. Cluster C and Cluster D
comprises TLRS and TLRO respectively. TLR11, TLR12, TLR13 displayed scatter distribution
of genes based on amino acid usage. We found that axisl of the COA correspond to major
variation (57.57%) of amino acid usage. It is clear from Figurel that among the four clusters
TLR9 exhibit widely different amino acid usage with respect to the other three clusters along
axisl. Different physico-chemical parameters such as hydrophobicity, aromaticity, GC-
content, ENc were also analyzed in order to assess the factors influencing this distinct amino
acid usage pattern. Significant (p < .01) correlation of these parameters was observed with

axisl of COA.

Impact of subcellular localization and function of TLRs were observed in clustering pattern.
TLRs found on Cluster A, Cluster C are expressed extracellularly and responsible for the
recognition of lipoproteins, lipopeptides, LPS etc. TLRs found on Cluster B, Cluster D are

expressed intracellularly and responsible for the recognition of nucleic acid motifs.
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Figure 1: Distribution of mammalian toll-like receptor (TLR) genes along the two major axes
of correspondence analysis (CoA) on amino acid usage. Four different clusters observed are
marked with the red circle. Cluster A comprises TLR1, TLR2, TLR4, TLR6, TLR10; Cluster
B comprises TLR3, TLR7, TLRS. Cluster C comprises TLRS and Cluster D comprises TLRO.
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Phylogenetic tree

Phylogenetic tree of mammalian TLR genes showing TLR wise branching pattern as displayed
in Figure2. One clade contains the branches of TLR1, TLR2, TLR4, TLR6, TLR10; another
clade contains the branches of TLR3, TLR7, TLR8, TLR9, TLRS5 and TLR11, TLR12, TLR13
formed a separate clade. Evolutionary relationship from phylogenetic tree followed the similar

trend to that of COA on amino acid usage pattern.
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Figure 2: Phylogenetic tree of mammalian TLR genes showing TLR wise branching pattern.
Individual colors represent different TLRs.
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Estimation of substitution rate

Evolutionary selection acting on the mammalian TLR genes have been addressed by
evolutionary rate which is estimated as the ratio of the rate of non-synonymous substitutions
per non-synonymous site (Ka) and the rate of synonymous substitutions per synonymous site
(Ks). Figure3 displayed overall purifying selection is observed for all the mammalian TLRs
under study. Ks values indicated high number of synonymous substitutions with highest
number of synonymous substitutions in TLR9. However, mammalian TLR genes exhibited
several non-synonymous changes as indicated by the Ka values. Significant (p < .01)
correlation of Ka, Ks and Ka/Ks have been observed with axisl of correspondence analysis

that accounted major variation of amino acid usage.

0.6

EKa mKs EKa/Ks

0.5

04

03

Substituion rate

0.2

0.1

TLRI1 TLR2 TLR3 TLR4 TLRS TLR6 TLR7 TLR3 TLRO TLR10

Mammalian TLRs

Figure 3: Bar plot showing Synonymous (Ks), non-synonymous (Ka) substitution rates and
evolutionary rate (Ka/Ks) distribution of mammalian TLRs. It is clear from the plot that Ks
value is higher in case of TLR9, TLRS.
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Discussion

The family of vertebrate toll-like receptors (TLRs) serves as the first line of immunological
defence against a variety of pathogens and is an intriguing illustration of the host-pathogen
evolutionary contest. This study presents a complete comparative evolutionary genomics
characterization of the vertebrate TLR family through DNA and protein level analysis. Our
findings revealed the dynamic evolution of the TLRs across vertebrates with positive selection

shaping adaptive evolution of host pathogen.

Amino acid usage pattern revealed distinct pattern of distribution of TLR genes among
mammal and bird and dispersed pattern in fish TLRs. Clusters observed in the mammalian TLR
distribution was typically influenced by their function and the subcellular localization along
with the physicochemical parameters analyzed. TLR1,2,4,6,10 are surface expressed and they
mostly recognize lipoproteins, lipopeptides, LPS etc., TLRS are surface expressed and confers
response to flagellin, TLR3,7,8 reside intracellularly and respond to double-stranded RNA
(dsRNA), single-stranded RNA (ssRNA) and TLRO reside intracellularly and respond to DNA.
Among them TLR9 formed a distinct cluster. Scatter distribution of TLR11,12,13 have been
found. Among the ten TLRs of bird the key influence of amino acid usage distribution was
their function. Mammalian orthologs TLR3, TLR4, TLRS and TLR7 recognize dsRNA,
bacterial lipopolysaccharides, flagellin, ssRNA respectively. TLRIA/TLRIB and
TLR2A/TLR2B arose by duplication during their evolution recognize di/triacylated
lipopeptides. TLR15 is unique to birds that has evolved to perform a new function in the
identification of extracellular proteases and TLR21 in birds recognises CpG DNA similarly to
TLRY in mammals showed distinct pattern. Fish TLRs having diverse function showed
scattered amino acid usage pattern. Phylogenetic tree indicated the grouping of TLRs from the

three taxonomic groups was analogous with their amino acid usage pattern.

Thus, the evolution of TLRs have been significantly influenced by their amino acid usage and
the physico-chemical parameters of the protein. This change in amino acid usage is a result of

substitution as observed from the evolutionary rate analysis. Both synonymous and non-

105



synonymous substitution impacted on the evolution of TLRs in mammal, bird and fish. In spite
of high value of synonymous substitution there are non-synonymous substitution that has
contributed to the diversity of TLRs. Positive selection is one of the distinguishing features of
immune defense related genes, particularly those encoding recognition proteins, which evolve
under positive selection. Positively selected sites among TLRs depicted the gradual
accumulation of changes has shaped the TLR evolution. It indicated the diversity in the
evolution of TLRs from various taxonomic group through accumulation of changes that lead
to their distinct pattern of pathogen recognition. The location of the positively selected sites
suggests that pathogens impose the utmost selective pressures that result in the alterations
observed, particularly in the variable section involved for direct contact with PAMPS. This

implies that they are the outcome of co-evolution.

Conclusion

This study revealed differential pattern of amino acid in the distribution of the TLRs among
vertebrates particularly mammal, bird and fish. In spite of the presence of evolutionary
constraints, variable rates of substitutions leading to various TLR repertoires that would have

facilitated recognition and protection from a variety of diseases.
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Chapter - VI



Conclusion

TLR family members recognise numerous types of pathogens and coordinate appropriate
innate and adaptive immune responses. The coding sequences and functions of vertebrate TLRs
are largely conserved. Similarly, TLR-mediated signalling pathways are substantially
conserved. Ligand characterizations of TLRs have facilitated the understanding of the function
of the TLRs and the host defense system against infections. In my thesis work an innovative
approach is provided by incorporating the examination of the variation in the frequency of
amino acids utilized by different TLRs of mammalian species. [ have also addressed the distinct
evolution of some TLRs by the molecular evolutionary approach based on ancestral
reconstructions that has helped in retracing the history of sequence substitutions and leveraging

changes in substitution dynamics.

My thesis work indicating that TLR genes evolved in different ways across primate and non-
primate mammalian species might help to understand the genetic basis for variances in disease
susceptibility with respect to host immunity. Determination of magnitude of natural selection
operating on TLR genes and the progressive changes that lead to divergence have enabled
better understanding of the mechanism of host defence mediated by TLRs. This work is
important in integrating evolutionary genetic data into a clinical and epidemiological
framework, for better understanding of the relevance of host defense genes for their survival in

nature.
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Abstract: Toll-like receptors (TLRs) are important as they are able to sense diverse set of pathogens associated

Keywords: molecular patterns (PAMPs) as ligands. These receptors are involved in functions such as immune response,
TLR development of signaling process and cell adhesion. In the present study we are interested to analyze the in-
PAMP fluence of evolutionary selection pressure on the mutational diversity of mammalian TLR genes. We observed
GC-content differential patterns of amino acid usage between primate and non-primate mammalian TLR genes. GC-content of
Hydrophobicity TLR genes and hydrophobicity of the encoded proteins are the most influential factors correlated with the dif-

Purifying selection
Subcellular location

ferential pattern of amino acid usage.The influence of the subcellular location on the amino acid usage pattern of
TLRs is evident in present study. Purifying selection is uniformly present on TLR genes, positively selected sites

are mostly located over the ligand binding domain. Our study clearly demonstrates that natural selection has
shaped the evolution of primate and non-primate mammalian TLR genes.

1. Introduction

The defense system of animal involves two type of immunity adap-
tive and innate immunity. Initially innate immune system produces an
inflammatory response to block the growth and transmission of the
pathogen during an infection. In vertebrates, in order to develop ac-
quired immune response particularly receptors of Band T cell sense the
infectious agents to produce responses that lead to its exclusion (Jane-
way and Medzhitov, 2002). Receptors associated with innate immune
system are germline-encoded. They have been evolved to sense com-
ponents of external pathogen also referred as pathogen-associated mo-
lecular patterns (PAMPs) which are crucial for pathogen existence or
host released endogenous components in response to inflammation
(Matzinger, 1994; Yang et al., 2010; Erridge, 2010). These receptors of
innate immune system are located in serum, on cell surface, in endo-
somes, and in the cytoplasm (Medzhitov, 2007).

Being an important category of pattern recognition receptors (PRRs)
the toll-like receptors (TLRs) are seen in Drosophila and mammals.
Mammal TLRs play fundamental role in detection of pathogen associ-
ated patterns with the initiation of signal transduction pathways that
cause genetic expression which lead to the innate and adaptive immune
responses (O’Neill et al., 2009; Rakoff-Nahoum and Medzhitov, 2009).
TLRs are type-I integral membrane receptors comprising an extracellular

domain also known as ectodomain (ECD) containing leucine-rich re-
peats which facilitate the PAMPs recognition, a signal transmembrane
segment, and an intracellular Toll-interleukin 1 (IL-1) receptor (TIR)
domain for downstream signal transduction (Bell et al., 2003). In
mammals there are thirteen TLRs discovered in mice (TLR1-13) and ten
TLRs in humans (TLR1-10). TLR1-TLR9 is found in both mice and
human, TLR10 is non-functional in mouse due to a retrovirus insertion
and TLR11, TLR12 and TLR13 are not found in human (Takeuchiand
Akira, 2010). Depending on the subcellular distribution TLRs in humans
can be classified into two categories: TLR1, TLR2, TLR4, TLR5, TLR6 and
TLR10 are expressed normally on the cell surface and TLR3, TLR7, TLR8
and TLR9 are commonly found in intracellular compartments like
endosomes. These human TLRs detect various PAMPs such as lipo-
polysaccharide (TLR4), lipopeptides (TLR2 associated TLR1 or TLR6),
bacterial flagellin (TLR5), viral dsRNA (TLR3), viral or bacterial ssRNA
(TLRs 7 and 8), and CpG-rich unmethylated DNA (TLR9) (Akira et al.,
2006).

Genetic diversity in active genes associated with immune defense
such as TLRs is interesting from an evolutionary perspective as these
genes are an excellent model for studying the selective stress applied to
the host genome by pathogen. These genes appear to evolve faster than
other loci in the genome in response to pathogen that are evolving
rapidly. Selection is a major factor in controlling the evolutionary rate of
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TLRs, mutation is also another factor and TLRs are strongly selected to
maintain their functions. In different mammals innate immune response
is not similar as some variation is there between different species in their
TLRs. This variation is due to selective pressure on the immune system-
related genes that reflect specific conditions experienced by each species
(Bagheri and Zahmatkesh, 2018). Evolutionary genetics approaches
have amplified to understand the evolutionary forces acting on the
human genome that provides indispensable complement in treatment of
infectious diseases. Within the perspective of infection, detecting the
magnitude and pattern of environmental selection that works on the
genes implicated in immune-associated procedures can deliver insight
into the host defense mechanisms (Barreiro et al., 2009).

Amino acids and codons are used in diverse frequencies both be-
tween genes and between genes within the same genome. Degeneracy of
genetic code direct the use of diverse set of codons for producing the
similar protein, procedures that create non-random usage of codons are
likely to influence the usage of amino acids. The possible reason behind
this is the neutral processes where composition of bases of all codons
that encode an amino acid might be either GC rich or GC poor (Rao et al.,
2014). Selection also has a significant role in determining frequencies of
amino acid. Often genomic base compositions play a major role on the
type of amino acid usage; other factors like hydrophobicity, gene func-
tion, level of expression etc. also influence the amino acid usage. In this
study mammalian TLRs are progressively investigated to examine the
effects of environmental selection on diverse set of TLRs and factors that
influence selection will be explored. Natural selection on different
members of TLRs family will be studied to explore their evolutionary
contribution to host defense.

2. Materials and methods
2.1. Sequence retrieval and multivariate analysis on amino acid usage

Genes and their encoding protein sequences of toll-like receptors
(TLR) were taken from GenBank, NCBI (http://www.ncbi.nlm.nih.gov/
genbank/) and Ensembl maintained by EMBL-EBI (www.ensembl.org).
By nature, amino acid usage is multivariate and need to be explored
using statistical analysis like correspondence analysis (COA) (Peden,
2000). COA reveals major trends of variation in the dataset by arranging
them along continuous axes where consecutive axis have been arranged
to have diminishing effect gradually (Roy et al., 2017). The analyses of
amino acid usage patterns of TLR genes of mammal under study were
carried out using COA available in CodonW program.

Parameters like relative amino acid usage (RAAU), average hydro-
phobicity, GC content of genes were calculated for each TLR sequence
using available option in CodonW program. Correlation coefficient be-
tween variables was calculated using the available formula in MS Excel.
Significance test was performed using the freely available online tool
such as t-test (https://www.graphpad.com/quickcalcs/ttest1/).

Phylogenetic analysis was performed among primate and non-
primate genes of TLR. The sequences were aligned using the ClustalW
program. The phylogenetic tree was constructed using Mega 7, utilizing
the maximum likelihood method (Kumar et al., 2016).

Three dimensional structural models were generated for TLR5 pro-
tein sequences through homology modeling using SWISS-MODEL
(Waterhouse et al., 2018). TLR5 protein structure available in Protein
Data Bank (PDB) (PDB ID: 3JOA) was used as template for homology
modeling with more than 99% sequence identity and 97% query
coverage in case of human (primate mammal) and 78% sequence
identity and 97% query coverage in case of cattle (non-primate
mammal). The structure of flagellin was truncated from crystal structure
of the N-terminal fragment of zebrafish TLR5 in complex with Salmo-
nella flagellin available in PDB (PDB ID: 3V47). As the ectodomain of the
TLRs are involved in ligand recognition, the interaction study was per-
formed on TLR5 ectodomains based on the NCBI annotation (Savar and
Bouzari, 2014; Forstneric et al., 2016). Molecular interaction of TLR5
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protein with flagellin was performed using Z-dock software (Pierce
et al., 2014). Then, the resulting docking data were processed and
analyzed considering binding energies and main interacting residues in
each complex by using the PRODIGY software (Xue et al., 2016). Free
energy of the structural complexes was calculated using PremPS server
(Chen et al., 2020).

2.2. Estimation of evolutionary rate and mutational analysis

The impact of evolution on set of genes is indicated by the ratio () i.
e., ratio of non-synonymous substitution rate per non-synonymous site
(Ka) to synonymous substitution rate per synonymous site (Ks). Where o
> 1 point towards positive (diversifying) selection and w < 1 signify
negative (purifying) selection (Roy and Basak, 2021). The rate of evo-
lution of each TLR1-TLR10 group of mammals (taking consensus
sequence as reference) was estimated using the available PAL2NAL
program (Suyama et al., 2006). Residue wise evolutionary rate of TLR
gene sequences were calculated using SWAKK server (Liang et al.,
2006). This server performs a sliding 3D window analysis to calculate
the ratio of non-synonymous to synonymous substitution rate (Ka/Ks) of
DNA sequences that encode protein.

Positive selection test of individual codons of mammals TLR was
performed using the Hyphy package executed in the Data Monkey Web
Server that compare Ka to Ks ratio using maximum likelihood (ML)
framework, (Weaver et al., 2018). The sequences of every TLR were
analyzed under the fixed-effect likelihood (FEL) model. This Fixed Ef-
fects Likelihood (FEL) approach uses maximum-likelihood (ML) method
to deduce non-synonymous (dN) and synonymous (dS) substitution rates
on the basis of per site considering a coding alignment and related
phylogeny. It is presumed in this method that selection pressure for each
site remains constant throughout the phylogeny.

Mutational analysis was performed by using a customized script to
study the mutation among the TLR sequences. Predicted consensus
sequence for each TLR was used as reference sequence to identify the
mutation. Consensus sequences offer promising approach in screening
proteins of high stability and retain the biological activity as it predicted
based on evolutionary history in which residues important for both
stability and function are likely to be conserved (Sternke et al., 2019).
Occurrences of mutation in each TLR for each species were studied
across the two functional domains.

3. Results
3.1. Correspondence analysis on amino acid usage of TLR genes

Correspondence analysis was performed to study the amino acid
usage variation of ten different TLR genes of mammalian origin sepa-
rately. The first and second major axes accounted for 54.5% and 20.1%
of the total variation of amino acid usage respectively for TLR1 gene.
Fig. 1 shows position of genes generated during correspondence analysis
on the basis of amino acid usage across the first and second major axes.
Similar pattern of distribution of the amino acid usage was observed for
other TLRs under study. For the ten different TLR genes these first axis
always accounted the major variation which is more than 30% of the
total variation of amino acid usage. It is clear from the correspondence
analyses that there are two clusters. One cluster belongs to mammal
which are primates and another cluster belongs to mammal other than
primates. For simplicity, hereafter, TLRs from primates (Human, Gorilla,
Monkey, Chimpanzee, Orangutan, Baboon etc.) will be referred to as
primate mammal (Pm) TLRs and TLRs from mammal other than pri-
mates will be referred to as non-primate mammal (NPm) TLRs. Phylo-
genetic tree using the TLR1 genes of Pm and NPm clearly shows that Pm
and NPm TLR genes are present in different branches (Fig. 2). Similar
pattern is observed for other TLRs. Branching pattern of phylogenetic
tree follows similar trend to that of correspondence analysis.

Now to investigate the preference of amino acids in two different
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Fig. 1. Distribution of TLR1 genes along the two major axes of Correspondence
analysis (COA) based on amino acid usage (AAU) data. x-axis- Axis 1 of AAU; y-
axis- Axis 2 of AAU. Blue colored dots represent TLR gene sequences from Pm
and orange colored dots represent TLR gene sequences from NPm. Similar
pattern is observed for other TLR genes also.

Pm TLR1 Pan troglodytes ellioti
Pm TLR1 Pan troglodytes verus
Pm TLR1 Pan troglodytes troglodytes
Pm TLR1 Pan paniscus

Pm TLR1 Pan troglodytes

Pm TLR1 Homo sapiens

Pm TLR1 Gorilla gorilla

Pm TLR1 Pongo pygmaeus
— PmTLR1 Macaca mulatta
L Pm TLR1 Macaca fascicularis
— NPm TLR1 Canis lupus familiaris
L NPmTLR1 Pteropus alecto
NPm TLR1 Sus scrofa

NPm TLR1 Capra hircus

NPm TLR1 Ovis aries

NPm TLR1 Bubalus bubalis
NPm TLR1 Bos grunniens
NPm TLR1 Bos indicus

NPm TLR1 Bos taurus

— NPm TLR1 Rattus norvegicus
L NPm TLR1 Mus musculus

Fig. 2. Phylogenetic tree of Pm and NPm genes of TLR1. Similar pattern is
observed for other TLRs.

clusters we have compared the relative amino acid usage values between
Pm and NPm TLR genes. Comparisons of relative amino acid usage
values suggested that the twenty amino acids are differently preferred
among Pm and NPm for each TLR. From the analysis it was observed that
amino acids such as Phe,Met, Thr, Lys, Glu, Cys were mostly preferred in
Pm TLRs whereas amino acids such as Leu, Pro, Ala, Asp, Arg, Gly were
mostly preferred in NPm TLRs.

We have performed molecular docking study between TLR5 (Homo
sapiens for primate and Bos indicus for non-primate) and flagellin
(pathogen receptor). We have identified the preferred residues those are
interacting with the flagellin and when substituted these residues with
GC-rich/GC-poor, as the case may be, the stability of the TLR5-flagellin
complex decreased (Fig. 3).

Since axisl (horizontal axis) accounts major variation for each TLR
in COA, further analysis is performed on the basis of distribution of
mammal TLR genes along the horizontal axis of correspondence anal-
ysis. Significant correlation was observed between the gene position
along the horizontal axis and hydrophobicity (r = 0.533, p < .05) and
GC-content of the encoded proteins (r = 0.745, p < .01). Significant
correlation of axisl with GC1 (r = 0.714, p < .05), GC2 (r = 0.689,
p < .05), GC3 (r = 0.668, p < .05) content of the encoded proteins were
also observed.

We have compared the average GC content of TLR genes for Pm and
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Fig. 3. (A): Interaction profile of a representative mutation F299G in Pm TLR5
protein indicating GC-poor to GC-rich amino acid substitution. GC-poor amino
acids are preferred in Pm. The structural stability decreases when F (Phenyl
alanine) is substituted by G (Glycine). (i) Wild type residue F299 having one
polar interaction (sky), and one hydrophobic (blue) interaction. (ii) Mutant
type residue 299G having one polar interaction (sky). (B): Interaction profile of
a representative mutation R2262K in NPm TLR5 protein indicating GC-rich to
GC-poor amino acid substitution. GC-rich amino acids are preferred in NPm.
The structural stability decreases when R (Arginine) is substituted by K
(Lysine).(i) Wild type residue R262 having one polar interaction (sky) and one
van der Waals (green) interactions. (ii) Mutant type residue 262 K having one
polar interaction (sky). Results are generated using PremPS server. AAG value
in both the cases is positive which indicates destabilizing mutation.
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NPm. The average GC content of TLR genes are 42.6% and 44.6% for Pm
and NPm respectively. The difference of GC content of TLR genes be-
tween Pm and NPm is statistically significant (P < .01). As the NPm TLR
genes have higher GC content we may expect GC-rich amino acids would
be preferred in NPm. Indeed, we observed that average composition of
four GC-rich amino acids (Du et al., 2018) (Ala, Arg, Gly, and Pro) are
higher in NPm TLR genes and the compositions of four GC-rich amino
acids are positively correlated with GC contents (r = 0.836, p < .001) of
the NPm TLR genes. On the other hand, we observed that average
composition of AT-rich amino acids (Phe, Ile, Tyr, Asn and Lys) are
higher in Pm TLR genes and their compositions are also positively
correlated with AT-contents (r = 0.673, p < .001) of Pm TLR genes. All
these results support that amino acid usage have been shaped under the
influence of GC-content of TLR genes.

3.2. Impact of evolutionary selection pressure on TLR Genes

We observed presence of purifying selection across all the TLR genes
(both Pm and NPm) by comprehensive analysis of evolutionary rates.
However, residue specific measurement of evolutionary rate shows
differences of positively selected sites between Pm and NPm TLRs. Site-
specific selection across the ligand binding domain also showed the
same trend. These observations indicate stronger selection pressure on
NPm TLR genes compared to Pm TLR genes. Positively selected sites
among Pm and NPm TLRs are shown in Table 1.

The evolutionary parameters such as Non-synonymous substitution
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Table 1
Distribution of positively selected sites among Pm and NPm TLRs.
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Genes No. of species Total sites Total positively Positively selected sites % positively selected % positively selected site in
selected sites in ligand binding site ligand binding domain
domain
Total Pm NPm  Pm (lengthaa) NPm (lengthaa) Pm  NPm Pm  NPm Pm (%) NPm (%) Pm (%) NPm (%)
TLR1 21 10 11 786 796 1 9 1 5 0.127 1.13 0.127 0.62
TLR2 26 10 16 784 785 0 13 0 12 0 1.65 0 1.52
TLR3 22 7 15 904 905 0 13 0 12 0 1.43 0 1.32
TLR4 22 8 14 839 844 1 32 1 28 0.119 3.79 0.119 3.31
TLRS5 17 8 9 858 874 0 6 0 3 0 0.68 0 0.34
TLR6 22 10 12 796 810 0 14 0 9 0 1.72 0 1.11
TLR7 24 9 15 1049 1058 0 17 0 15 0 1.6 0 1.41
TLR8 20 7 13 1041 1091 0 20 0 18 0 1.83 0 1.64
TLR9 22 7 15 1032 1034 1 2 0 2 0.09 0.19 0 0.19
TLR10 23 12 11 811 822 0 15 0 10 0 1.82 0 1.21

(Ka), synonymous substitution (Ks), ratio of non-synonymous and syn-
onymous substitution (Ka/Ks) were found to differ significantly among
Pm and NPm TLRs. Significant difference of these parameters was also
observed across the two functional domains of Pm and NPm TLRs. These
results are shown in Table 2. We have also found significant correlation
of evolutionary parameters with axisl of correspondence analysis on
amino acid usage. Significant correlation of axis1 is observed with Ka in
seven TLR genes, Ks in six TLR genes; Ka/Ks in five TLR genes.

3.3. Correlation of evolutionary parameters with GC-content and
mutational analysis

We already observed the correlation between GC content and amino
acid usage variation of TLRs through correspondence analysis. It was
also found that evolutionary parameters differ significantly among Pm
and NPm TLR genes. Furthermore, these evolutionary parameters such
as Ka, Ks and Ka/Ks was correlated significantly with the GC content of
TLR genes among mammalian species (p < .05) (Table 3). Thus, GC
content is playing an important role in the evolution process of amino
acid sequences for most of the TLRs among Pm and NPm.

Mutations were identified for both Pm and NPm TLRs over the entire
TLR sequences. But more mutations are observed in the ligand recog-
nition domain. It endorsed that ligand recognition domain is more prone
to mutation than the signaling domain. Rate of evolution (Ka/Ks) in the
extracellular ligand recognition domain is more compared to intracel-
lular signaling domain for most of the TLRs in both Pm and NPm.

3.4. Amino acid usage pattern of TLRs based on subcellular distribution

Since TLRs are classified into extracellular and intracellular based on
the subcellular distribution we have analyzed the amino acid usage
pattern of Pm and NPm TLR genes individually. Differential amino acid

Table 2

Significance test of evolutionary parameters among Pm and NPm TLR genes and
across the domains.Extracellular domain of TLR (ECD), Intracellular domain of
TLR (TIR) and tick mark indicates significant difference.

Pm & NPm genes ECD of Pm & NPm TIR of Pm & NPm

genes genes
Ka Ks Ka/Ks Ka Ks Ka/Ks Ka Ks  Ka/Ks
TLR1 v v v v v v v v v
TLR2 v v v v v v v
TLR3 v v v v v v v v
TLR4 v v v v
TLR5 v v v v v v v v v
TLR6 v v v v v v v v v
TLR7 v v v v v v v
TLR8 v v v
TLR9 v v v v v 4
TLR10 vV v v v v v v v v

usage patterns were noticed where extracellular and intracellular TLRs
formed different clusters in case of Pm and NPm. In case of Pm, extra-
cellular TLR1, TLR2, TLR6, TLR10 formed one cluster; TLR4, TLR5 were
found in different clusters and intracellular TLR3, TLR7, TLR8 were
present in different cluster from TLR9. In the same way, in case of NPm
intracellular TLR3, TLR7, TLR8 were in different cluster and TLR9
formed another cluster. But NPm extracellular TLR1, TLR2, TLR4, TLR6,
TLR10 were grouped into one cluster and TLR5 found in separate clus-
ter. These extracellular and intracellular TLRs were distributed along the
major axis shown in Fig. 4. Evolutionary parameters were also checked
between these two clusters of extracellular and intracellular TLRs in case
of Pm and NPm respectively. The parameters Ka, Ks and Ka/Ks were
found to differ significantly among these clusters. Hence, subcellular
distribution is also governing the amino acid variation of TLRs for Pm
and NPm independently where evolutionary selection is the most
important aspect.

4. Discussion

The systematic study of the amino acid usage across various
mammalian TLRs revealed that amino acids are used in diverse pattern
among TLR genes of Pm and NPm species. In spite of similar anatomy
and physiology between Pm and NPm there is disparity in amino acid
usage pattern of TLRs observed in them. One key difference between
these species is that primates possess a voluminous and complicated
forebrain whereas non-primates possess a small brain.

Correspondence analyses established hydrophobicity and genomic
GC content as the most important features causing the TLR wise varia-
tion of amino acid usage in mammal. It depicts that these factors are
causing the variation in the immune response among species of a
particular TLR. Significant correlation of hydrophobicity is observed
among TLRs. The extracellular TLR domains are composed of leucine-
rich repeats (LRR) that usually contain 22-29 length residues and
have periodic hydrophobic residues positioned at discrete intervals. In
three dimensions during assembling into protein multiple repeats shape
as solenoid like structure, where consensus hydrophobic residues
pointed inside to make a stable core of the structure (Botos et al., 2011).
Hydrophobic residues becoming an influencing factor for amino acid
usage variation of TLR genes among Pm and NPm. GC content is another
influencing factor as amino acid usage of TLRs is significantly correlated
with GC content. Guanine and cytosine bases proportion in the DNA
molecule (GC content) being an essential qualitative aspect of genomic
architecture is discussed frequently in humans and other vertebrates
such as birds, mammals in relation to the evolution of the isochore
structure (Smarda et al., 2014).

Amino acid usage pattern study also revealed that individual Pm and
NPm TLRs distribution based on subcellular location extracellular and
intracellular is different. Depending on subcellular location function-
ality of TLRs become different due to dissimilar PAMP recognition. Cell
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Table 3

Correlation study of GC content with evolutionary parameters of TLRs.
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GC content Ka Correlationsignificant at Ks Correlationsignificant at Ka/Ks Correlationsignificant at
TLR1 0.403 0.0743 p<.01 0.1756 p<.01 0.4505 p<.05
TLR2 0.441 0.0850 p<.01 0.2391 p<.01 0.4008 p<.01
TLR3 0.403 0.0615 p<.01 0.2243 p<.01 0.2879 p<.05
TLR4 0.438 0.0994 p<.01 0.2164 p<.01 0.4829 p<.10
TLRS 0.452 0.0768 p<.01 0.2415 p<.01 0.3781 p<.01
TLR6 0.395 0.0677 p<.01 0.1883 p<.01 0.3838 p<.01
TLR7 0.410 0.0470 not significant 0.1671 not significant 0.2945 not significant
TLR8 0.418 0.1015 p<.01 0.3902 p<.01 0.4007 p<.01
TLR9 0.628 0.0685 not significant 0.4410 not significant 0.1596 not significant
TLR10 0.389 0.0607 p<.01 0.1516 p<.01 0.4020 not significant
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Fig. 4. Distribution of TLR genes along the two major axes of Correspondence analysis (COA) based on amino acid usage (AAU) data. X-axis- Axis 1 of AAU; y-axis-
Axis 2 of AAU. (A) TLR gene sequence of Pm, (B) TLR gene sequence of NPm. Violet colored dots represent extracellular TLR gene sequences and green colored dots

represent intracellular TLR gene sequences.

surface expressed TLRs such as TLR1, TLR2, TLR4, TLR5, TLR6 and
TLR10 mostly recognize microbial membrane components like lipo-
proteins, lipids; TLR3, TLR7, TLR8 and TLR9 expressed in intracellular
vesicles like endoplasmic reticulum (ER), endosomes, lysosomes and
endolysosomes and sense microbial nucleic acids (Kawai and Akira,
2010). These factors affecting Pm and NPm TLRs which are showing
distinct amino acid usage pattern between extracellular and intracel-
lular TLRs.

Evolutionary analysis has suggested that purifying selection is the
major force working on TLRs. Presence of codons that are selected
positively indicates selective pressures on these immune genes lead to
the most noticeable changes in the ectodomain, particularly in the
variable section accountable for direct interaction with PAMPS. More
mutation is observed in the extracellular domain due to the direct
interaction with pathogen. Overall selective pressure within the innate
immune system is stronger in non-primate mammal species compared to
primate mammal species. The relation between GC contents and Ka, Ks,
Ka/Ks values of TLR genes from different mammal species were
observed. Correspondingly, Ka, Ks, Ka/Ks values changes with change in
GC contents. The GC content is therefore consistent with the evolu-
tionary process of amino acid sequences and contributes to the evolu-
tionary level as a key component of amino acids between Pm and NPm
TLRs. The GC content influences the emergence of proteins due to en-
ergy costs, and both the combination of bases and amino acids is
involved in this process (Du et al., 2018).

This study reveals differential patterns of amino acid usage, evolu-
tionary constraints of TLR genes among Pm and NPm. Amino acid
composition has a significant impact on the level of TLR emergence and
this is also affected by GC content. Identification of genes associated
with immunity that evolves in a different way across Pm and NPm TLRs
might facilitate the understanding of genetic basis for the differences in

disease susceptibility (Quach et al., 2013). The greater extent of devia-
tion in selection that constrain the evolution of Pm and NPm TLRs will
enhance our understanding of the biological contribution of TLRs to host
defense in natural setting. This study presented the divergence in the
biological significance of different TLRs and offer evidences for their
diverse contributions in response to host defense.

Authors statement

All authors have seen and approved the final version of the manu-
script being submitted. Present manuscript is the authors’ original work,
hasn’t received prior publication and isn’t under consideration for
publication elsewhere.
Data availability

Data will be available upon request to the Corresponding Author.

Acknowledgment

Manisha Ghosh is supported by Senior Research Fellowship by In-
dian Council of Medical Research (ICMR).

Conflict of interest statement
The authors declare that no conflicts of interest exist.

References

Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity.
Cell 124 (4), 783-801.


http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref1
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref1

M. Ghosh et al.

Bagheri, M., Zahmatkesh, A., 2018. Evolution and species-specific conservation of toll-
like receptors in terrestrial vertebrates. Int. Rev. Immunol. 37 (5), 217-228.

Barreiro, L.B., Ben-Ali, M., Quach, H., et al., 2009. Evolutionary dynamics of human Toll-
like receptors and their different contributions to host defense. PLoS Genet. 5 (7),
€1000562.

Bell, J.K., Mullen, G.E., Leifer, C.A., Mazzoni, A., Davies, D.R., Segal, D.M., 2003.
Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends
Immunol. 24 (10), 528-533.

Botos, L., Segal, D.M., Davies, D.R., 2011. The structural biology of Toll-like receptors.
Structure 19 (4), 447-459.

Chen, Y., Lu, H., Zhang, N., Chen, Y., Zhu, Z., Wang, S., Li, M., 2020. PremPS: predicting
the impact of missense mutations on protein stability. PLoS Comput. Biol. 16 (12),
e1008543.

Du, M.Z., Zhang, C., Wang, H., Liu, S., Wei, W., Guo, F.B., 2018. The GC content as a
main factor shaping the amino acid usage during bacterial evolution process. Front.
Microbiol. 9, 2948.

Erridge, C., 2010. Endogenous ligands of TLR2 and TLR4: agonists or assistants?

J. Leukoc. Biol. 87 (6), 989-999.

Forstneri¢, V., Ivicak-Kocjan, K., Ljubeti¢, A., Jerala, R., Bencina, M., 2016. Distinctive
recognition of flagellin by human and mouse toll-like receptor 5. PLoS One 11 (7),
e0158894.

Janeway Jr., C.A., Medzhitov, R., 2002. Innate immune recognition. Annu. Rev.
Immunol. 20, 197-216.

Kawali, T., Akira, S., 2010. The role of pattern-recognition receptors in innate immunity:
update on Toll-like receptors. Nat. Immunol. 11 (5), 373-384.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics
Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.

Liang, H., Zhou, W., Landweber, L.F., 2006. SWAKK: a web server for detecting positive
selection in proteins using a sliding window substitution rate analysis. Nucleic Acids
Res. 34 (Web Server issue), W382-W384.

Matzinger, P., 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol.
12, 991-1045.

Medzhitov, R., 2007. Recognition of microorganisms and activation of the immune
response. Nature 449, 819-826.

O’Neill, L.A., Bryant, C.E., Doyle, S.L., 2009. Therapeutic targeting of Toll-like receptors
for infectious and inflammatory diseases and cancer. Pharmacol. Rev. 61 (2),
177-197.

Peden, J.F., 2000. Analysis of Codon Usage. University of Nottingham, Nottingham.

Pierce, B.G., Wiehe, K., Hwang, H., Kim, B.H., Vreven, T., Weng, Z., 2014. ZDOCK server:
interactive docking prediction of protein-protein complexes and symmetric
multimers. Bioinformatics 30 (12), 1771-1773.

Computational Biology and Chemistry 97 (2022) 107637

Quach, H., Wilson, D., Laval, G., Patin, E., Manry, J., Guibert, J., Barreiro, et al., 2013.
Different selective pressures shape the evolution of Toll-like receptors in human and
African great ape populations. Hum. Mol. Genet. 22 (23), 4829-4840.

Rakoff-Nahoum, S., Medzhitov, R., 2009. Toll-like receptors and cancer. Nat. Rev. Cancer
9 (1), 57-63.

Rao, Y., Wang, Z., Chai, X., Nie, Q., Zhang, X., 2014. Hydrophobicity and aromaticity are
primary factors shaping variation in amino acid usage of chicken proteome. PLoS
One 9 (10), e110381.

Roy, A., Banerjee, R., Basak, S., 2017. HIV progression depends on codon and amino acid
usage profile of envelope protein and associated host-genetic influence. Front.
Microbiol. 8, 1083.

Roy, A., Basak, S., 2021. HIV long-term non-progressors share similar features with
simian immunodeficiency virus infection of chimpanzees. J. Biomol. Struct. Dyn. 39
(7), 2447-2454.

Savar, N.S., Bouzari, S., 2014. In silico study of ligand binding site of toll-like receptor 5.
Adv. Biomed. Res. 3, 41.

Smarda, P., Bures, P., Horova, L., Leitch, LJ., et al., 2014. Ecological and evolutionary
significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. USA
111 (39), E4096-E4102.

Sternke, M., Tripp, K.W., Barrick, D., 2019. Consensus sequence design as a general
strategy to create hyperstable, biologically active proteins. Proc. Natl. Acad. Sci. USA
116 (23), 11275-11284.

Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein
sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34
(Web Server issue), W609-W612.

Takeuchi, O., Akira, S., 2010. Pattern recognition receptors and inflammation. Cell 140
(6), 805-820.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.
T., de Beer, T., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-
MODEL: homology modelling of protein structures and complexes. Nucleic Acids
Res. 46 (W1), W296-W303.

Weaver, S., Shank, S.D., Spielman, S.J., Li, M., Muse, S.V., Kosakovsky Pond, S.L., 2018.
Datamonkey 2.0: a modern web application for characterizing selective and other
evolutionary processes. Mol. Biol. Evol. 35 (3), 773-777.

Xue, L.C., Rodrigues, J.P., Kastritis, P.L., Bonvin, A.M., Vangone, A., 2016. PRODIGY: a
web server for predicting the binding affinity of protein-protein complexes.
Bioinformatics 32 (23), 3676-3678.

Yang, D., Tewary, P., de la Rosa, G., Wei, F., Oppenheim, J.J., 2010. The alarmin
functions of high-mobility group proteins. Biochim. Et. Biophys. Acta 1799 (1-2),
157-163.


http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref2
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref2
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref3
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref3
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref3
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref4
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref4
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref4
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref5
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref5
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref6
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref6
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref6
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref7
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref7
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref7
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref8
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref8
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref9
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref9
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref9
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref10
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref10
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref11
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref11
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref12
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref12
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref13
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref13
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref13
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref14
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref14
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref15
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref15
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref16
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref16
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref16
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref17
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref18
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref18
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref18
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref19
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref19
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref19
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref20
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref20
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref21
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref21
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref21
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref22
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref22
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref22
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref23
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref23
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref23
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref24
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref24
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref25
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref25
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref25
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref26
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref26
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref26
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref27
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref27
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref27
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref28
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref28
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref29
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref29
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref29
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref29
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref30
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref30
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref30
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref31
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref31
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref31
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref32
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref32
http://refhub.elsevier.com/S1476-9271(22)00017-2/sbref32

Immunogenetics
https://doi.org/10.1007/500251-024-01338-8

ORIGINAL ARTICLE q

Check for
updates

Evolutionary divergence of TLR9 through ancestral sequence reconstruction

Manisha Ghosh' - Surajit Basak'® - Shanta Dutta?

Received: 1 September 2023 / Accepted: 24 February 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The transmembrane pattern recognition receptor, Toll-like receptor (TLR), are best known for their roles in innate immunity
via recognition of pathogen and initiation of signaling response. Mammalian TLRs recognize molecular patterns associated
with pathogens and initiate innate immune response. We have studied the evolutionary diversity of mammalian TLR genes
for differences in immunological response. Reconstruction of ancestral sequences is a key aspect of the molecular evolution
of TLR to track changes across the TLR genes. The comprehensive analysis of mammalian TLRs revealed a distinct pattern
of evolution of TLRY. Various sequence-based features such as amino acid usage, hydrophobicity, GC content, and evolution-
ary constraints are found to influence the divergence of TLR9 from other TLRs. Ancestral sequence reconstruction analysis
also revealed that the gradual evolution of TLR genes in several ancestral lineages leads to the distinct pattern of TLR9. It
demonstrates evolutionary divergence with the progressive accumulation of mutations results in the distinct pattern of TLR9.

Keywords TLR - Evolution - Phylogenetic tree - Ancestral sequence - Mutation - Diversity

Introduction

Toll-like receptors (TLRs) are considered the primary sensors
of invading microbial pathogen in the innate immune system
because they detect pathogen-associated molecular patterns
(PAMPs). Since the early discovery of a Toll protein in the
fruit fly Drosophila melanogaster thirteen members of the
TLR family have been identified in human (TLR1-TLR10) and
mouse (TLR1-TLR13) (Zhou et al. 2013). It seems that most
mammalian species share a similar repertoire of TLR homologs
though with few exceptions (Nie et al. 2018). TLRs are type [
integral membrane glycoproteins with a pathogen-binding ecto-
domain (ECD) and a cytoplasmic signaling domain connected
by a single transmembrane helix (Zhou et al. 2013). Mamma-
lian TLR pathogen-binding ectodomains contain 19-25 extra-
cellular leucine-rich repeats (LRRs) and a cytoplasmic toll/
interleukin (IL)-1R (TIR) domain. LRRs comprising 24-29
amino acids are responsible for ligand recognition and binding,
while the TIR domain is responsible for downstream signaling
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(Botos et al. 2011). Surface-expressed TLRs (TLR 1, 2, 4, 5,
6, and 10) typically identify pathogen structural components,
whereas endosomal TLRs (TLR 3, 7, 8, and 9) recognize
nucleic acid. TLRs respond to a variety of pathogen-associated
molecular patterns (PAMPs) in humans, including lipopolysac-
charide (TLR4), lipopeptides (TLR2 associated with TLR1 or
TLR6), bacterial flagellin (TLRS5), viral dsSRNA (TLR3), viral
or bacterial ssSRNA (TLRs 7 and 8), and CpG-rich unmethyl-
ated DNA (TLR9) (Takeda and Akira 2005; Vidya et al. 2018).

TLRY is an endosomal receptor that detects bacterial
DNA/CpG-containing oligodeoxynucleotides (CpG ODN).
TLR9-mediated signaling is initiated within the endosome
by the sequential recruitment of adaptor proteins, which
in turn activates critical downstream transcription factors.
Various preclinical studies showed the efficacy of TLR9
agonists individually and in combination with other agents
(Karapetyan et al. 2020). Interaction of unmethylated CpG
DNA with TLR9Y activates immune responses through the
MyD88-dependent signaling pathway. Human trials have
shown that CpG DNA can act as an adjuvant and boost
the immunogenicity of the hepatitis vaccine. These find-
ings highlight the importance of TLR ligands in triggering
adaptive responses and providing new adjuvants in vaccine
formulation (Cook et al. 2004).

Biological sequences have long been recognized as a record
of evolutionary history, with accumulating mutations record-
ing species relationships and the mechanisms driving their
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evolution. To avoid the recognition by the host immune sys-
tem pathogens involved in recognition evolve faster. With the
evolving pathogen, the host receptor that recognizes the patho-
gen also evolves to keep pace with the changes in the patho-
gen. These modifications in receptor can be detected as the
positive selection signatures or mutations (Areal et al. 2011).
From an evolutionary perspective, genetic variation in TLR
genes linked with immunological defence is important because
these genes provide a good model for investigating pathogen-
induced selective stress on the host genome (Roach et al.
2005). In response to rapidly evolving pathogens, these genes
appear to evolve quicker than other locations in the genome
(Ghosh et al. 2022). Given enough genetic information from
different species, the temporal accumulation of mutations can
be used to reconstruct sequences from their common ances-
tors. These ancestral reconstructions serve as the foundation
for many of molecular evolution approaches nowadays, such
as phylogenetic trees and sequence selection tests (Muffato
et al. 2023). The ancestral sequence reconstruction (ASR)
approach begins with a multiple-sequence alignment (MSA)
of the collection of relevant homolog sequences and considers
evolutionary information depicted by the phylogenetic tree. It
is a probabilistic strategy that investigates the deep evolution-
ary history of homolog sequences in order to reassemble the
evolutionary trajectory of a protein. ASR can reveal sequences
of long-extinct genes and organisms from which the current
ones evolved, making it an important tool in evolutionary biol-
ogy (Gumulya and Gillam 2017). Since the advent of sequenc-
ing, the reconstruction of ancestral sequences, particularly
genes, has been studied extensively. Advanced methods exist
to retrace the history of sequence substitutions and leverage
changes in substitution dynamics to answer specific evolution-
ary problems (Merkl and Sterner 2016).

The study of the sequence-based feature like differential
amino acid usage and the impact of various factors on TLRs
will facilitate us to comprehend the evolutionary factors
that affect innate immune genes. The evolutionary genetics
approach to identify the extent of natural selection acting on
these genes and the gradual changes that lead to the diver-
gence will enhance our understanding about the mechanism
of host defence mediated by TLRs.

Materials and methods
Data retrieval and multivariate statistical analysis

Sequences of mammalian Toll-like receptor (TLR) genes
and their encoding proteins representing different groups
of TLR such as TLR1, TLR2, TLR3, TLR4, TLRS, TLR6,
TLR7, TLR8, TLRY, and TLR10 were obtained from
GenBank, NCBI. Toll-like receptor gene sequences were
searched by using the search option available at the NCBI
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website and mammalian species have been selected under
species selection for the search operation. The output of the
search operation provides coding sequence of a particular
TLR. These coding sequences and their corresponding
protein sequences were downloaded. TLR gene sequences
from primates, rodents, artiodactyls, proboscides, perisso-
dactyls, lagomorphs, and chiropters were taken for the analy-
sis. Sequences containing ambiguous character (other than
A, T, G, C) and internal stop codons were removed from
the retrieved dataset. The list of mammalian taxa chosen to
investigate in this study along with their accession numbers
is provided in the Supplementary Table 1.

Amino acid usage is a multivariate feature by nature and
studied using statistical analysis such as correspondence
analysis (CoA) (Peden 2000). CoA is an efficient method
to explore the variation in the dataset and it reveals major
tendencies of data disparities by placing them along con-
tinuous axes according to the differential trends observed,
with each consecutive axis having a diminishing effect (Roy
et al. 2017). CoA on the basis of amino acid usage (AAU)
of TLR gene sequences was generated using CodonW. Esti-
mation of physicochemical properties like hydrophobicity,
GC-content, GC3 values, effective number of codons (ENC),
and aromaticity of the study sequences was also performed
using the CodonW program. The correlation study of the
parameters was executed in Microsoft Excel. The signifi-
cance test was done using the freely available web program
QuickCalcs-Graphpad.

Evolutionary analysis and phylogenetic
tree construction

Evolutionary selection acting on the genes under study is
addressed by evolutionary rate (w). @ is estimated as the
ratio of the rate non-synonymous substitutions per non-
synonymous site (Ka) and the rate of synonymous substi-
tutions per synonymous site (Ks). @ > 1 indicates positive
(diversifying) selection, whereas, @ < 1 indicates negative
(purifying) selection. For each TLR group (example: TLR1)
their consensus nucleotide sequences (example: TLR1_con-
sensus) were generated. We have prepared a Perl script for
generating these consensus sequences. Downloaded nucleo-
tide sequences and the consensus sequence of each TLR
group were subjected to Clustal Omega program (Madeira
et al. 2022) for the nucleotide sequence alignment. This
program Clustal produces biologically meaningful mul-
tiple-sequence alignments of divergent sequences. Then
the evolutionary rate of the TLR genes (TLR1-TLR10) of
each TLR group (example: TLR1) was estimated relative
to their consensus (example: TLR1_consensus) sequences
using Codeml program of the PAML software (ver. 4.5)
with runmode = — 2 and CodonFreq=1 (Nei and Gojobori
1986; Yang 2007).
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The protein sequences of all the mammalian TLRs were
subjected to the multiple sequence alignment using the
Clustal Omega program (Madeira et al. 2022). The align-
ment result was saved in FASTA format for further analysis.
Then using that alignment, the construction of phylogenetic
tree was done applying the maximum likelihood method
with thousand bootstrap replicates in the MEGAX software
(Kumar et al. 2018).

Reconstruction of ancestral protein sequences

The common ancestral protein sequence of mammalian
TLRs was predicted using FireProtASR (ancestral sequence
reconstruction) v1.1 webserver with default parameter set-
tings (Musil et al. 2021). Analyzing ancestral sequences in
an evolutionary context to infer the ancestral sequences at
certain nodes of a tree is termed as ASR. Reconstructing
ancestral sequences is a well-established method for infer-
ring the evolutionary history of genes. Along with the appli-
cation in the discovery of the most probable evolutionary
ancestors of study protein, it has been a useful approach
for the design of extremely stable proteins. This protocol
enables the implementation of the automated workflow
FireProt*SR allowing various forms of inputs and advance
settings (Khan et al. 2021). All reconstruction methods
involve a phylogenetic tree inferred from a given alignment.
The quality of the tree is crucial for the reliable reconstruc-
tion. We have provided the multiple sequence alignment and
the phylogenetic tree of all mammalian TLR sequences as
input for our study. Upon submitting input data, the server
will execute the dataset and reconstruct ancestral nodes
along with their sequences.

Analysis of the ancestral sequences

We have performed sequence based and structural analy-
sis of the identified ancestral sequences to accomplish our
study. The Clustal Omega program, a widely used package
for carrying out multiple sequence alignment (Madeira et al.
2022), was used for the alignment of the ancestral protein
sequences. The prediction of three-dimensional structural
models of ancestral proteins was performed using Alpha-
Fold2 (Mirdita et al 2022). It is an artificial intelligence sys-
tem developed by DeepMind that can predict three-dimen-
sional structures of proteins from amino acid sequences with
higher accuracy (Yang et al 2023).

Pairwise structure alignment was performed using the
structural alignment tool available in Protein Data Bank
(https://www.rcsb.org/alignment). This web-based tool ena-
bles the alignment of one or more structures to a particular
reference structure that can be accessible from the “Analyze”
section of the menu bar. In superposed structures, RMSD is
calculated between aligned pairs of the backbone C-alpha

atoms. Smaller RMSD indicates better structure alignment
between the two structures. TM-score (template modeling
score) is a measure of topological similarity between the
template and model structures. It ranges between 0 and 1,
where 1 indicates a perfect match and 0 is no match between
the two structures. Scores < 0.2 usually indicate that the pro-
teins are unrelated while those > 0.5 generally have the same
protein fold in SCOP/CATH (Zhang and Skolnick 2005).

Protein domains of the ancestral sequences were anno-
tated using the ScanProsite tool (de Castro et al. 2006).
Evolutionary parameters such as rate of non-synonymous
substitutions per non-synonymous site (Ka) and rate of
synonymous substitutions per synonymous site (Ks) of the
ancestral sequences were analyzed with respect to the root
node sequence of the phylogenetic tree (Nei and Gojobori
1986; Yang 2007). The interaction of the ancestral protein
sequences and Human_TLR9 sequence that have been used
as a reference for the remaining species (Zhou et al. 2013)
with the CpG ODN (Areal et al. 2011) was studied in the
HDOCK. This web server enables hybrid docking algorithm
of template-based modeling and free docking. The server
supports protein—protein and protein-DNA/RNA docking
and accepts both sequence and structure inputs for proteins.
The docking scores are calculated through a knowledge-
based iterative scoring function in this tool. A more nega-
tive docking score means a more possible binding model
(Yan et al. 2017).

Results
Amino acid usage pattern of Toll-like receptor genes

We used mammalian Toll-like receptor (TLR1-TLR10)
gene sequences to investigate the amino acid usage
(AAU) pattern through correspondence analysis (CoA).
Mutations are accumulated in TLR genes through vari-
ous evolutionary processes. These mutations lead to the
change in amino acid composition of TLRs. The CoA on
the amino acid usage of mammalian TLR genes was per-
formed to study the impact of such changes on the func-
tionality of the encoded TLR proteins. The distribution
of genes along the two major axes of the correspondence
analysis is shown in Fig. 1. The first and second major
axes accounted for 57.57% and 10.76% of the total varia-
tion of amino acid usage. A clear separation of the amino
acid usage pattern of TLR9 genes with respect to other
TLR (TLR1-TLR8 and TLR10) genes has been observed.
Because the horizontal axis of correspondence analysis
accounts for the majority of variation of the TLRs in CoA
further analysis was carried out based on the distribution
of mammalian TLR genes along this axis.

@ Springer
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Fig. 1 Distribution of mam-
malian Toll-like receptor (TLR)
genes along the two major axes
of correspondence analysis
(CoA) on amino acid usage.
Distinct pattern of amino acid
usage of TLRY genes (violet)
are marked with the red circle
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Change in amino acid usage of a gene may affect the
various physicochemical properties of TLR gene. We have
calculated various physicochemical parameters of TLR
gene sequences to understand the factor driving this dis-
tinct amino acid usage pattern among them. The parameters
such as hydrophobicity, GC-content, GC3 values, effec-
tive number of codons (ENC), and aromaticity were found
to differ significantly (p <.05) between TLR9 and other
TLR (TLR1-8, TLR10) genes. Significant correlation was
observed between the gene position along the horizontal
axis and hydrophobicity (r= —0.346, p <.01), GC-content
(r=-0.977, p<.01), GC3 values (r=-0.96, p<.01),
effective number of codons (ENC) (r=0.825, p<.01) and
aromaticity (r=0.437, p<.01) of the encoded protein. These
correlation values indicate that the physicochemical param-
eters are contributing in the distinct amino acid usage pattern
of TLRO.

Highly significant negative correlation with GC content,
GC3 value indicated the influence of the codon bias. To
better understand the relation between gene composition
and codon bias, an ENC-GC3 scatter diagram was pre-
pared as shown in Fig. 2. Such ENC-GC3 plots have been
widely used to determine whether codon usage of a gene
is shaped by natural selection. A significant correlation
was observed between ENC and GC3 values (r= —0.837,
p <.01). The solid line represents the expected curve in
Fig. 2. TLR genes (TLR1-TLRS, TLR10) that lie on the
expected curve indicate codon usage bias is only affected
by mutation pressure. TLR9 genes are placed away from
the expected curve, indicating that its evolution is shaped
by the influence of natural selection.

@ Springer

Evolutionary selection analysis

The analysis of evolutionary selection can identify spe-
cific cases of adaptation as well as general principles that
guide evolution. The analysis of evolutionary processes
to distinguish between neutral and adaptive changes is
thus very important. To understand the effect of evolu-
tionary selection on the distinct amino acid usage pattern
of TLRY, we have analyzed the evolutionary parameters
such as non-synonymous substitution (Ka), synonymous
substitution (Ks), ratio of non-synonymous and synony-
mous substitution (Ka/Ks) of the mammalian TLR genes.
The analysis of these parameters is important for the study
of the dynamics of molecular evolution of TLRs. Results
were compared between TLR9 and other TLR genes as
we obtained the difference in amino acid usage pattern
between them. We found a significant difference of Ks
and Ka/Ks between TLR9 and other TLRs, but Ka was not
statistically significant in all the cases. The average value
of Ks is more and Ka/Ks is less in thecase of TLR9 cluster.
In spite of overall purifying selection on TLR genes, sig-
nificant difference of non-synonymous substitution (Ka),
synonymous substitution (Ks), ratio of non-synonymous
and synonymous substitution (Ka/Ks) are observed. These
results suggest that the evolution of TLRY genes is highly
influenced by synonymous substitution (Ks).

Ancestral sequence reconstruction

Ancestral sequence reconstruction is the calculation of
ancient protein sequences on the basis of extant ones. The
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Fig.2 The plot of ENC-GC3 %o

for mammalian Toll-like
receptor genes. The solid line

represents the expected curve o

(blue). TLR genes (TLR1-
TLR8, TLR10) those lie on the

expected curve indicate codon 50

usage bias is only affected

by mutation pressure. TLR9
genes those are away from the
expected curve indicate the
influence of natural selection
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previous analysis suggests that TLR9 shows distinct pattern
of amino acid usage and the highest synonymous substitu-
tion rate with respect to other TLR genes. Thus, the ancestral
sequence reconstruction through phylogenetic tree has been
performed to reconstruct the evolutionary paths of the TLR
protein family to study the key mechanism of the molecular
evolution of TLRY. The ancestral sequence reconstruction
phylogenetic tree of mammalian Toll-like receptor gener-
ated from the software is shown in Supplementary Fig. 1. In
this figure, various TLR genes (for example: TLR1, TLR2,
TLR3) are marked with different colors and Nodes are
assigned with Node number. All the TLRY genes are marked
in red and their ancestral Node is denoted by Node 235. Sim-
ilarly, all the TLR7 and TLR8 genes are marked in orange
and their ancestral Node is denoted by Node 256. TLR3 and

Fig.3 Simplified schematic
representation of the selection

Branches of
TILRII, 12,13

TLRS genes are marked in blue and their ancestral Node
is denoted by Node 299. TLR1, TLR2, TLR4, TLR6, and
TLRI10 genes are marked in green and their ancestral Node
is denoted by Node 337. Node 226 denoted the root node
that leads to the evolutionary path of TLRs through Node
232, Node 233, and Node 234. This entire evolutionary route
of divergence of various TLRs from their common ancestor
is schematically represented in Fig. 3. Here, the common
root node is Node 226. All other TLRs have been evolved
from this via intermediate nodes. For example, Fig. 3 also
depicts the evolution of TLR9 from Node 226 via Node 235.
Similarly, the evolutionary path of other TLRs from the root
can be easily understood from Fig. 3 which is a simplified
diagrammatic representation of evolutionary paths of vari-
ous TLRs from root.

A
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NODE226 |[NODE227|NODE337| NODE232 |[NODE233|NODE234|NODE299 [NODE256/NODE235| Human_TLR9

NODE226 75.86 83.83 74.79 50.92 62.53 46.73

NODE227 68.02 74.69 66.3 46.69 56.95 4298

NODE337 75.86 68.02 85.16 73.84 4958 60.46 45.73

NODE232 83.83 74.69 85.16 83.79 58.16 67.68 534 S

NODE233 74.79 66.3 73.84 83.79 66.49 74.95 60.56 4549 4273
NODE234 50.92 46.69 58.16 58.16 66.49 50.28 88.14 58.15 52.78
NODE299 62.53 56.95 60.46 67.68 74.95 50.28 45.76

NODE256 46.73 4298 4573 534 60.56 88.14 45.76 49.02 45.61
NODE235 40.97 45.49 58.15 49.02 84.09

Human TLR9 42.73 52.78 4561 84.09

Fig.4 Heatmap showing percent identity matrix of proteins obtained
from multiple sequence alignment, colours correspond to the percent
identity with high values (red), medium values (white) and low values
(blue). Values in the box represent sequence homology in percent-

Analysis of the ancestral sequence

We accomplished our study through sequence based and
structural analysis on the selected ancestral nodes that
encompasses the evolutionary path of TLR9. Sequence-
based analyses such as multiple sequence alignment of the
ancestral sequences, analysis of the functional domains,
estimation of synonymous, and nonsynonymous substitution
were performed in order to understand the gradual changes
that occurred during TLR9 evolution. Structural studies
were also performed to assess the functional changes.
Multiple sequence alignment (MSA) generated a per-
cent identity matrix of the protein sequences to provide
an overview of the similarities between the sequences.
The heatmap of the percent identity matrix reported from
the alignment is displayed in Fig. 4. A higher sequence

age. Higher sequence identity of TLR9 with its immediate ancestor
(Node 235) but lower sequence identity with the ancestral nodes was
observed

identity of TLR9 with its immediate ancestor (Node 235)
but a lower sequence identity with the root (Node 226)
was observed. It suggests that the continuous changes in
sequence level along the ancestral lineages lead to the dis-
tinct sequence pattern of TLR9. The prediction of domain
of the selected protein sequences was done and the number
of LRR in the ectodomain was calculated. The orientation
of LRRs in the ancestral lineages was different compared
to Human_TLR9 and its immediate ancestral node. LRRs
are the important components of the functional domains
of TLRs that recognize the pathogen-associated molecu-
lar pattern (PAMP). Variation in the number of LRR in
the ancestors of TLR9 was observed (Fig. 5). It suggests
that during the evolution the variations among the LRRs
of the ancestral nodes contributed to the specific pattern
recognition of TLRY.

Fig.5 Number of LRR present
in the TLR genes and the 57 ] i
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the bar plot. Number of LRR in S i
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Fig.6 Docking score of the interaction analysis between selected sequences and known ligand of CpG DNA of TLR9Y. The highest docking

score is observed in case of TLR9

To observe these differences in structural level, structural
models of the ancestral nodes and Human_TLR9 from the
existing TLR9 group were prepared and compared through
pairwise structural alignment (Supplementary File 1). Root
mean square deviation (RMSD) and TM-score (template
modeling score) were important metrics in this analysis.
The RMSD values of TLR9 with the root node were higher
compared to the other ancestral nodes and it gradually
decreased in other nodes. These observations also showed
more deviation of TLR9 from the root with respect to other
TLRs along the ancestral nodes in the evolution of TLRO.
For all the pairwise structural alignment, TM-score varia-
tion was observed but the values indicated that they are in
the same protein fold.

TLRY is a receptor for sensing bacterial DNA/CpG-con-
taining oligodeoxynucleotides (CpG ODN) as PAMP within
the endosomal compartment. An interaction study of ances-
tral proteins with this known ligand of Human_TLR9 was
performed. It will help to understand how the present ligand
is selected through evolution facilitating stronger interaction
with TLRO. The interaction of Human_TLR9 and CpG ODN

was also studied. The docking score of all the interactions
is shown in Fig. 6. The highest docking score observed in
the case of Human_TLR9O indicated the most compatible
interaction of the ligand with the present TLR9Y. It reveals
that TLRY achieved its present conformation through the
structural changes in the ancestral nodes during the course
of evolution. Present TLR9 is very specific in recognizing
its ligand as the ancestral nodes showed comparatively less
stable interaction with this ligand.

The assessment of the evolutionary impact on the
ancestral node sequences was also done by measuring
the changes in non-synonymous substitution (Ka), syn-
onymous substitution (Ks), ratio of non-synonymous,
and synonymous substitution (Ka/Ks) (Fig. 7). Gradual
increase of Ks from root to the other ancestral nodes was
seen and it became extremely high in Human_TLRO. The
Ka value is also high in Human_TLR9 compared to the
ancestral sequences. Due to the high value of Ks, the Ka/
Ks value became very low in Human_TLRO. The influence
of synonymous substitution has been shaping the TLR9
evolution compared to its ancestral nodes.
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Fig.7 Synonymous (Ks)
and non-synonymous (Ka)

substitution rates in TLR9 and “
its ancestral nodes. It is clear
from the figure that both Ka as 35 4
well as Ks are highest in case
of TLR9 3

2.5
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Discussion

The transmembrane pattern recognition receptor TLRs are
best known for their roles in innate immunity via recogni-
tion of pathogen and initiation of signaling response. In this
study, a comprehensive analysis of mammalian Toll-like
receptor gene sequences (TLR1-TLR10) revealed that TLR9
follows a distinct pattern of evolution. Sequence-based fea-
tures and evolutionary constraints are found to influence the
divergence of TLRY from other TLRs. Ancestral sequence
reconstruction analysis also revealed that the gradual evolu-
tion of TLR genes in several ancestral lineages leads to the
distinct pattern of TLR9Y.

Mammalian TLRs are responsible for the recognition of
conserved molecular pattern derived from various classes
of pathogens resulting in the induction of innate immune
response. Pathogen-induced selection is considered a crucial
selective mechanism driving the evolution of immune sys-
tem components. We have identified various factors influ-
encing TLR-dependent heterogeneity in amino acid usage
that contribute to the differences in their immunological
responses in mammals. We also found that high synonymous
substitutions have shaped the observed changes between
TLRY and other mammalian TLR genes in spite of non-
synonymous substitutions inducing the amino acid changes.

The divergence of TLRY is demonstrated in this study
through the ancestral sequence reconstruction. The
analysis of the ancestral sequences also reinforced that
changes occurred in the TLRs during their evolution from
the ancestral lineages that were mostly observed in the
TLR9 and its descendants. The decrease in the percent
sequence identity of TLR9 from the root to the ancestral

@ Springer

nodes to the mammalian TLRY branch of the tree depicts
gradual changes that happened in the sequences through
the accumulation of mutation. The domain-wise analy-
sis also suggested the accumulation of a greater number
of mutations in the ectodomain causing variation in the
number of LRR. Each TLR comprises an ectodomain with
leucine-rich repeats (LRRs) that facilitate the recognition
of pathogen-associated molecular pattern (PAMP) and a
cytoplasmic Toll/IL-1 receptor (TIR) domain that initi-
ates downstream signaling. The mutational changes also
have been influenced by gradual selection pressure on the
ancestral sequences in the course of evolution. Influence
of synonymous and non-synonymous substitution among
the ancestral sequences is observed and the gradual selec-
tion pressure in the course of evolution leading to the dis-
tinct pattern of TLR9. The interaction study also revealed a
more stable interaction of the ligand with TLR9 compared
to the ancestral nodes. Although decreasing docking score
in other ancestral nodes indicated less stable interaction.

This study enables a new approach to explore the emer-
gence of Toll-like receptor through the ancestral sequence
reconstruction that elucidates a distinct pattern of evolution
of TLRO. It demonstrates that the evolutionary divergence of
TLRO started from the beginning and the gradual accumula-
tion of changes in the ancestral lineages leads to the distinct
pattern of TLR9 compared to the other mammalian TLRs.
It will elucidate the biological significance of TLR9 and
provide evidence for their distinct contributions in response
to host defence.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00251-024-01338-8.
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Data Availability All sequence information is available in public data-
bases and the accession numbers of the sequences used in the present
study are provided in Supplementary Table 1.
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