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ABSTRACT

Concrete  compressive  strength  is  the  most  important  property  which  signifies  the  quality  of 

concrete. Several nondestructive and semi destructive test can be conducted to evaluate the concrete 

compressive strength, but there is an issue regarding the direct corelations between compressive 

strength and different non destructive test results. However, in the present study a image based 

concrete compressive strength prediction model using machine learning techniques with the help of 

ultrasonic pulse velocity (UPV) test  has been proposed. In the present investigation 3 different 

concrete  mix has  been prepared of  grade M20,  M25 and M30 respectively.  Several  images  at  

different zoom have been captured using digital microscope after cutting the concrete sample. In 

addition  to  that,  all  the  sample  have  been  tested  for  UPV  values   followed  by  destructive  

compressive strength. The images and corresponding UPV data and compressive strength have been 

used to predict the compressive strength from the image using the above mentioned methodology. 

The study clearly reveals that models exhibits better prediction model for estimating compressive 

strength  using  the  digital  microscopic  images.  The  findings  from  the  present  investigation 

corroborate  that  UPV  DATA can  be  used  efficiently  to  predict  cement  mortar  and  concrete 

compressive  strength.  Thus,  present  study  demonstrate  the  applicability  of  different  machine 

learning  technique  using  UPV  values  and  digital  microscopic  images  as  an  alternative 

nondestructive/semi destructive test method for predicting compressive strength of concrete.
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Chapter 1

Introduction

1.1 General

Concrete  is  one  of  the  most  widely  used  materials  globally,  surpassed  only  by  water  in  its 

prevalence. Although concrete was developed long ago, its application in civil engineering projects 

is still broadening. The key reasons for this are its cost-efficiency and simple production process, 

along with the absence of any material that can substitute its unique properties [1,2]. Strength refers 

to the measurement of the stress required for a material to deform or fail. The primary factor tested 

to estimate the strength of concrete is compressive strength. This parameter is crucial for designing 

reinforced concrete structures and serves as a key indicator for monitoring the health of existing 

structures.

The available tests for assessing concrete strength include: (a) Destructive tests (b) Non-destructive 

tests  and  (c)  combination  of  both  tests.  The  widely  used  destructive  testing  methodology  for  

obtaining the compressive strength is the cube test. Cube testing is carried out on fresh concrete 

samples that are prepared using the same proportions of raw materials as those used in new concrete 

members [3,4].  This  method  is  useful  for  estimating  the  strength  of  newly  created  concrete 

members but is challenging to predict the strength of existing structures. The measurement of the 

strength of  existing structure are typically conducted using non-destructive testings, as they do not 

necessitate any destructive procedure for sample collection and are both simple and quick to use. 

Examples of tests that can be applied non-destructively on site include ultrasonic pulse velocity, 

rebound hammer, and sonic rebound (SonReb) tests [5–10]. NDT can be utilized for testing both old 

and new structures. It’s primary applications for new structures are quality control and addressing 

material or construction quality issues. Evaluating existing buildings centers on determining their  

structural soundness or suitability. The ultrasonic pulse velocity test and the rebound hammer test 

are frequently employed non-destructive testing methods for assessing the mechanical properties of 

concrete, whether in a laboratory setting or on-site.

An artificial neural network (ANN) is a form of computational algorithm modelled after the neurons 

in the human brain, and it is commonly utilized for forecasting of data  [11–13]. Neural networks 

can  learn  and  analyse  extensive  datasets  derived  from  experiments  or  trials.  However,  when 

addressing an image classification task with an ANN, converting a 2D image into 1D vectors before  

training can significantly raise the number of parameters that need to be learned as the image size  
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grows. To overcome these challenges, convolutional neural network (CNN) models are employed 

across various fields and are especially prevalent in image and video analysis tasks [14].

1.2 Need for present study

Evaluating  the  load-bearing  capacity  of  existing  concrete  constructions  is  a  significant  matter, 

increasingly capturing the attention of scholars, particularly in recent times. A precise approach for 

forecasting concrete characteristics is necessary, as it would be advantageous for the construction 

sector. The primary factor tested to estimate the strength of concrete is compressive strength. This 

parameter is crucial for designing reinforced concrete structures and serves as a key indicator for 

monitoring  the  health  of  existing  structures.  The  primary  evaluation  of  concrete  compressive 

strength mainly involves the destructive testing procedure. Determination of the concrete strength 

using NDT methods has been intensively investigated. In global literature, various correlations have 

been suggested that link the compressive strength of concrete with the velocity of ultrasound. The 

primary  limitation  of  these  methods  is  the  wide  variation  in  the  predicted  values  and  the  

considerable  discrepancy  from the  actual  (experimental)  compressive  strength  of  the  concrete. 

Nowadays,  various  machine  learning algorithm like  Support  Vector  Machine  (SVM),  Artificial 

Neural Network (ANN), Fuzzy Inference System (FIS), Adaptive Fuzzy Inference system (ANFIS), 

Convolutional Neural Network (CNN) etc have been used for prediction purpose and it can be used 

for estimating concrete properties.

1.3 Objective and scope of the work

The objective of the present study is Assessing Compressive Strength of  Concrete using Digital 

Images by Different Machine Learning Technique. This paper explores the use of ANNs to forecast 

the  compressive  strength  of  concrete  structures.  To develop the  ML models,  information  from 

experiments  regarding  ultrasonic  pulse  velocity  and  images  taken  from  cube  samples  were 

employed, along with compressive strength tests performed on the same samples.

The scopes of the work are as follows

• Determine the UPV values of concrete.

• Determine the compressive strength of concrete.

• Capturing image data and preprocessing  the image data.

• Train The ANN model.

• Prediction of the compressive strength by machine learning technique.

• Statistical analysis of the results.
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1.4 Organization of thesis

The thesis has been divided into five chapters. The table and figures have been presented in a

sequence as they appear in the text.

Chapter 1 an attempt has been made to introduce the problem along with need for present

research, scope and objectives of the work and organization of thesis.

Chapter 2 furnishes a detailed literature review on the relevant topic.

Chapter 3 presents the methodologies adapted for experimental program and data collection.

Chapter 4 discussed about the results obtained form the experimental program.

Chapter 6 depicts the concluding remarks along with major findings, draw backs and future study.

References is furnished at the end.
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 Chapter 2

Literature review

2.1 General

The non-invasive testings (NDT) of concrete holds significant scholarly and pragmatic value. The 

ultrasonic pulse velocity (UPV) technique is a widely utilized non-invasive method for evaluating 

concrete characteristics [15]. In 1976, Malhotra provided an extensive literature review of the non-

invasive  techniques  typically  employed  for  testing  and  evaluating  concrete  [10].  Leshchinsky 

outlined the benefits of non-destructive tests in comparison to core testing [16]. The application of 

UPV for  the  non-destructive  evaluation  of  concrete  properties  were  thoroughly  researched  for 

decades and is among the most widely used non-destructive technique [17]. This testing method is 

suitable  for  evaluating  the  uniformity  and  comparative  quality  of  concrete  and  detecting  the 

presence of voids and cracks. However it seems overly confident and difficult to try to develop an 

ultrasonic  testing method for  determining concrete  strength.  It  is  important  to  note  that  a  vast 

amount of experimental data and theoretical correlation relationships between compressive strength 

and UPV value  have been introduced and suggested  [15,18–23].  which help us in finding the 

strength of concentrate members using pulse velocity.

Recently, techniques based on computer vision and machine learning are being suggested to guess  

the  physical  properties  and  classification.  Employing  machine  learning  techniques  for  image 

classification  shows  great  potential  for  addressing  this  type  of  issue  [24].  Different  machine 

learning  technique  can  be  applied  including  support  vector  machine  (SVM),  Artificial  Neural 

Network  (ANN),  Deep  Convolution  Neural  Network  (DCNN)  for  image  classification.  These 

methods were successfully applied in different field like recognition of hand written digits  [25], 

face recognition [26], pest detection [27],  plant disease [28,29], autonomous vehicles [30], medical 

diagnosis [31,32] etc. Further, a number of successful applications of the different machine learning 

method were  applied in  the  field  of  civil  engineering  [33–35]. Asteris  et  al.  [15] assessed the 

concrete compressive strength using ANN, drawing on experimental data from NDT tests: UPV and 

Rebound Hammer. Behnam et al. [36] predicted the compressive strength of concrete using ANFIS 

(adaptive  neuro-fuzzy  inference  system),  with  slump  flow  and  mixture  proportions  as  inputs. 

Several  successful  applications  of  various  image-based  machine  learning  methods  have  been 

implemented in civil engineering, such as:  identification of pavement crack [37,38], detection of 

structural damages  [39].Recently quite a few breakthrough researches promoted the use of image 

processing technique (IP)  to  forecast  the compressive strength of  concrete.  Başyiğit  et  al.  [40] 
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conducted various regression analyses using IP to predict concrete's compressive strength, in which 

he attains an accuracy of 94.8%. Lopez et al. [41] used image analysis to examine characteristics of 

lightweight high-performance concrete, including unit shrinkage, deformation, elasticity and yield. 

Dogan  et  al.  [42] utilized  an  ANN  model  to  assess  the  compressive  strength  utilizing  image 

processing technique. Shiuly et al.  [43] concluded in their study that compressive strength can be 

predicted using images of concrete using various DCNN models and achieved a satisfactorily result. 

In the study conducted by Dantas et al. [44], ANN models were created to forecast the compressive 

strength of concrete with Construction and Demolition Waste (CDW) at ages of 3, 7, 28, and 91  

days.  Jang  et  al.  [45] effectively  employed  contemporary  DCNN  models  to  forecast  the 

compressive strength using a limited number of cement concrete samples captured with a digital 

microscope at specific resolution and reported that ResNet produced satisfactory results.

H.G. Ni, J.-Z. Wang explores the use of neural networks to predict the 28-compressive strength of 

concrete. A multi-layer feed-forward neural networks (MFNNs) was developed, considering a 11-7-

1 architecture, meaning the model consists of 11 input nodes, each representing a distinct factor (or 

component  of  an input  vector)  such as grade of cement,  water-to-cement cement ratio,  cement 

content, dosage of water, max size of coarse aggregate, fine modulus of sand, the sand-aggregate 

ratio,the aggregate-cement ratio, slump, dosage of admixture, effect of admixture. The hidden layer 

contains seven nodes, which process the information from the input layer. The network's output 

layer has a single node that corresponds to the 28-day compressive strength of the concrete. The 

study involved two datasets:  one from the  authors'  laboratory experiments  and another  from a 

concrete plant in Beijing. Each dataset was split into two subsets: a learning set for training the 

neural network and a testing set for evaluating its performance. The first batch of data consist of 65 

mixes  and  the  second  batch  having  100.  he  neural  network  model  achieved  high  accuracy  in 

predicting compressive strength, with a max relative error of 5.86% for the 1st batch and 12.81% for 

the  second batch.  The trained neural  network (NN) models  can be  employed to  simulate  how 

various factors influence concrete strength. The authors used these models to establish functional 

relationships  between the  compressive  strength  and the  relevant  influencing factors.  The  study 

found that the compressive strength of concrete is almost directly proportional to the amount of 

cement used,  assuming a constant water dosage of 190 kg/m³.  The strength is  roughly directly 

proportional to the cement dosage, and the higher the grade, the greater the concrete strength. The 

sand-to-aggregate ratio in concrete mixtures can influence the strength, though the effect might be  

subtle  but  the  effects  of  the  fine  module  of  sand  on  concrete  strength  are  greater  than  the 

sand/aggregate ratio.
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Breccolotti et al.  explores the presence of spatial correlation in rebound hammer and ultrasonic 

pulse velocity test readings through experimental assessments on two reinforced concrete walls.  

The impact  of  this  correlation is  then incorporated into concrete strength assessment using the 

established SonReb method. Monte Carlo simulations, performed to evaluate the accuracy of the 

SonReb standard procedure, revealed a significant risk of both under- and over-estimation, as well  

as  considerable  absolute  errors  in  predicting  the  mean  compressive  strength  of  the  structural 

elements  tested.  To  address  these  issues,  the  paper  proposes  a  modification  to  the  standard 

procedure.  This  adjustment,  which  involves  increasing  the  distance  between  individual  test 

locations,  improves the accuracy of  the SonReb evaluation.  By applying this  modification,  the 

maximum overestimation error is reduced from approximately 15% to 5%, enhancing the reliability 

of the strength assessment.

Y. Zhang, F. Aslani introduces two models for predicting the compressive strength of lightweight 

aggregate concrete: a regression model and a back-propagation neural network (BPNN). The BPNN 

model integrates ultrasonic pulse velocity (UPV) data to meet various accuracy requirements. To 

achieve this,  a  comprehensive  database  was created,  including 603 data  sets  from 26 different 

studies.  This  database  covers  a  broad  range  of  coarse  aggregate  sizes  (4  mm –  40  mm)  and 

lightweight aggregates (0.65 mm – 30 mm), as well as various volume ratios of coarse aggregate to  

binder (0.53 – 9.66) and sand to aggregate (0 to 5.99), lightweight aggregate volume fractions (0 –  

100%), water-to-binder ratios (0.3 – 0.89), and curing times (1 day to 120 days). Statistical analysis  

shows that both the regression model and the BPNN model can provide reasonable estimates of 

compressive  strength  for  lightweight  aggregate  concrete,  although  their  accuracy  levels  differ. 

Consequently, the two models offer adaptable options for different accuracy requirements.

Asteris  et  al.  proposed the  application of  artificial  neural  networks  (ANNs)  for  predicting the 

compressive strength of concrete for existing structures. In this study artificial neural networks have 

been systematically employed to predict the compressive strength of concrete by incorporating data 

from both ultrasonic pulse velocity and Schmidt rebound hammer tests from vast amount of data 

found in numerous literature. An experimental database has been compiled from data sets available 

in the literature. Specifically, the database includes 209 datasets derived from experimental results 

reported in  the  PhD thesis  by Logothetis.  Each of  the  36 batches  (with  the  exception of  one) 

consisted of 6 specimens. Initially, each specimen underwent non-destructive testing, starting with 

ultrasonic  pulse  velocity  measurements  followed  by  Schmidt  hammer  rebound  tests.  After 

9



completing  these  non-destructive  assessments,  each  specimen  was  subjected  to  a  uniaxial 

compressive test to determine its compressive strength. In the present study, a back propagation 

neural network (BPNN) is implemented and trained using the UPV and rebound number as input 

and the compressive strength as an output. The ANN models were trained using over 140 data 

points, which represents 66.99% of the total 209 data points. The remaining 69 data points were  

used for validation and testing. Specifically, 35 data points (16.75%) were allocated for validation, 

while 34 data points (16.27%) were used for testing the trained ANN. The comparison of the results  

obtained from the ANN models with experimental findings and existing analytical formulas in the 

literature  highlights  the  promising  potential  of  using  back-propagation  neural  networks  for 

accurately and reliably estimating concrete compressive strength based on non-destructive testing 

measurements.  Additionally,  the proposed neural  network models can continuously be retrained 

with  new  data,  allowing  them  to  adapt  and  expand  their  applicability  as  more  data  becomes 

available.

Trinik et al. discussed in their paper the corelation between the ultrasonic pulse velocity test result 

and comprehensive strength of concrete. Accurately evaluating concrete compressive strength using 

ultrasonic pulse velocity (UPV) can be challenging because UPV values are influenced by various 

factors that do not necessarily affect compressive strength in the same way or to the same extent.  

This  paper  examines  these  factors  and  their  impact  on  the  velocity-strength  relationship. 

Additionally,  the  study  analyses  the  relationship  between  ultrasonic  pulse  velocity,  static  and 

dynamic Young’s modulus,  and shear modulus.  Factors such as aggregate type,  initial  concrete 

temperature, cement type, environmental temperature, and water-to-cement (w/c) ratio were also 

investigated. Based on the experimental results, a numerical model was developed, employing a 

multi-layer  feed-forward  neural  network.  The  paper  shows  that  artificial  neural  networks  are 

effective  for  modelling  the  velocity-strength  relationship.  This  model  facilitates  the  easy  and 

reliable estimation of concrete compressive strength using only the ultrasonic pulse velocity and 

certain mix parameters. In this study the influence of the amount of aggregate, type of aggregate, 

nominal maximum aggregate size, and aggregate shape on the velocity-strength (Vp–S) relationship 

is examined. The impact of the aggregate amount in concrete is illustrated for mixtures with a 

water-to-cement (w/c) ratio of 0.54. It is evident that the quantity of aggregate plays a significant 

role in affecting the Vp–S relationship. It also concluded that within a specific range of values, the 

influences of initial temperature (Tini), environmental temperature (Tenv), cement type, and water-

to-cement (w/c) ratio on the Vp–S relationship were not significant.
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P. Turgut established a relationship between concrete strength and ultrasonic pulse velocity (UPV) 

using data from numerous cores extracted from various reinforced concrete structures with different  

ages and unknown concrete mixture ratios. This new formula allows for the practical estimation of 

concrete strength in existing structures where records of concrete mixture ratios are unavailable or 

not present.

Nash  et  al.  aims  to  establish  a  unified  relationship  that  connects  the  results  of  various  non 

destructive  tests  and  correlates  them  with  the  crushing  strength  of  concrete  cubes.  Statistical 

methods are used to analyse laboratory tests conducted on concrete cubes with different mixing 

ratios and curing conditions. The goal is to develop correlation curves that improve the prediction of 

concrete  strength.  The study involves 161 test  results  from 161 concrete  specimens,  each with 

dimensions of 150x150 mm. Some of these specimens were created using mixtures formulated 

specifically for this research with ordinary Portland cement adhering to the Iraqi standard (No. 5), 

featuring target strengths of 15 and 25 N/mm² and subjected to various curing conditions. Other 

specimens were sourced from an M.Sc. thesis, primarily using ordinary Portland cement, except for 

6 specimens made with sulphate-resistant Portland cement. These latter specimens were cured by 

immersing them in water for 30 days before testing.  The age of the specimens in both categories 

ranged from 7 to 138 days. All specimens were made with fine aggregate falling within Zone 1 and 

coarse aggregate sizes ranging from 5 to 19 mm. An Ultrasonic Pulse Velocity (UPV) test was 

performed on each cube by averaging two readings (one from each of the opposite faces) using the 

commercially available PUNDIT equipment with a pulse frequency of 54 kHz. Following this, a 

Schmidt Hammer test  was conducted on the same cube.  The cube was fixed in a compression 

testing machine applying a force of  approximately 2.5 N/mm²,  and the average of  10 rebound 

number readings from the Schmidt Hammer was recorded. Finally, the cube was subjected to a 

crushing test, and the crushing force was documented. He concluded that relying on a single test 

method (whether the Schmidt  Hammer or  UPV) is  insufficient  for  accurately predicting in-situ 

concrete strength. The highest percentage of results explained by using only one method was 77%.

11



G.F.Kheder  utilized  two  non-destructive  test  methods,  ultrasonic  pulse  velocity  and  Schmidt 

hammer, along with concrete mix proportions and density, to develop mathematical models using 

multiple  linear  regressions  for  estimating  concrete  compressive  strength.  These  models  were 

applied to both wet and air-dry concrete conditions. A total of 103 different mixes were tested at 

ages ranging from 7 to 90 days.  For more accurate estimates, a second stage involved correlating 

the initial strength estimates with actual strengths obtained from a limited number of cores taken 

from the structure. This approach was tested on two separate building projects, yielding reliable 

predictions. The standard error of estimate was 2.95 MPa for concrete with strengths ranging from 

15.7 to 33.8 MPa in the first case study, and only 0.91 MPa for concrete with strengths ranging from 

12.5 to 23 MPa in the second case study.

H.Y.Qasrawi  The  paper  summarizes  the  author's  experience  with  estimating  concrete  strength 

using combined non-destructive testing methods. The study utilized both the traditional rebound 

hammer and ultrasonic pulse velocity tests. The research aimed to develop a straightforward chart 

that relates rebound number and ultrasonic pulse velocity to concrete crushing strength. The goal 

was to create a chart that is easy for engineers to use on-site. This chart was subsequently utilized  

for evaluating the strength of various concrete samples. Standard cubes with a side length of 150 

mm were prepared using various concrete mixes and immersed under water for a minimum period 

of 24 h before testing. The rebound number was obtained by taking three measurements on each of 

the four faces of the cube, with the rebound hammer positioned horizontally for all measurements. 

The results were evaluated following the guidelines of ASTM C 805. After completing the rebound 

hammer test, each of the two surfaces of the cube was prepared for the ultrasonic pulse velocity test. 

After completing the non-destructive testing on each cube, the cube was subjected to a loading test  

until failure, and the maximum load was recorded. With the help of this data a corelation between  

the comprehensive strength and the two non destructive test value the rebound number (RN) and the 

UPV vale ar proposed. The r2 value was found to be 0.88 for RN and 0.9562 for UPV.

Shariati et al. focuses on the advanced prediction of the compressive strength of concrete mixtures 

that incorporate furnace slag and fly ash as partial cement replacements. For this investigation, a  

dataset  consisting  of  1030  samples  with  nine  input  parameters  (related  to  the  concrete  mix 

composition and the age of the concrete) and one output parameter (the compressive strength) was 

gathered.  Instead  of  utilizing  the  absolute  values  of  the  inputs,  their  relative  proportions  were 

employed. A novel method combining an artificial neural network with a genetic algorithm (ANN-
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GA) was applied to carry out the study. The performance of the ANN-GA model was assessed by 

comparing it to another artificial neural network (ANN), which was developed and optimized using 

a traditional backpropagation (BP) algorithm. The findings revealed that the ANN-GA model not 

only could be effectively developed and applied for predicting the compressive strength of concrete 

but also achieved better results when compared to the ANN-BP model.

Behnam Vakhshouri  & Shami Nejadi,  developed a ANFIS models to establish a relationship 

between compressive strength as the output and slump flow along with mixture proportions as 

inputs across eighteen different combinations of input parameters. The data used in this study are 

derived  from 55  previously  conducted  experimental  studies.  The  impact  of  each  parameter  on 

compressive  strength  and  its  significance  within  the  developed  model  has  been  thoroughly 

examined. By analysing the error in each combination, the weighting factor and importance level of 

each parameter are evaluated to apply correction factors, aiming to achieve the most optimized 

relationship.  The  results  indicate  that  the  model  incorporating  all  input  data  (slump  flow and 

mixture  proportions)  provides  the  most  accurate  prediction  of  compressive  strength.  Excluding 

slump  flow  from  the  combinations  significantly  impacts  the  compressive  strength  prediction, 

though not as much as the influence of maximum aggregate size and aggregate volume in the  

mixture  design.  Additionally,  varying  values  of  powder  volume,  aggregate  volume,  and  paste 

content in the mixture exhibit different ascending and descending effects on compressive strength.

Başyiğit et al.  delves into evaluation the compressive strength values of various concrete classes 

using  image  processing  techniques.  To  achieve  this,  seven  different  water/cement  ratios  were 

produced across different concrete series.  Physical and mechanical tests were performed on the 

resulting specimens, and image processing techniques were applied for further analysis. The study 

sought to establish correlations between the compressive strength values of the concrete specimens 

and the results obtained through image processing. A strong correlation (R² = 0.9847) was observed 

between  the  aggregate  volume  determined  via  image  processing  and  the  aggregate  volume 

theoretically calculated during the mixture design. Regression analyses were conducted using the 

results  from image processing and non-destructive  testing.  To compare  the  performance of  the 

regression techniques, R², RMSE, SSE, and MAPE metrics were evaluated for each analysis. The 

findings  suggest  that  the  image  processing  technique  used  in  this  study  could  serve  as  a 

supplementary tool to both destructive and non-destructive testing methods.
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Dogan et al. tried to predict the mechanical properties of concrete non-destructively, using a novel 

alternative method. To achieve this, 96 cylindrical concrete samples were produced, utilizing five 

distinct parameters: water/cement ratio, curing, cement content, compression, and additives. Images 

of the samples were captured before they underwent compression testing, and the pressure readings 

obtained in the laboratory were used to train and test both Artificial Neural Network (ANN) and 

Image Processing (IP) models. Additionally, 48 of the concrete samples were randomly selected to 

verify the ANN and IP predictions. A remarkably high correlation, ranging between 97.18% and 

99.87%,  was  observed between the  ANN and IP outcomes  and the  actual  results  for  both  the 

training/testing samples and the verification samples. The findings suggest that when ANN and IP 

are used together, this method offers a strong alternative to the traditional destructive and non-

destructive techniques currently employed for determining the mechanical properties of concrete.

Shiuly et al introduces a new image-based machine learning method for predicting the compressive 

strength of concrete, evaluating six different models in the process. These models include a support-

vector machine model and several deep convolutional neural network models: AlexNet, GoogleNet, 

VGG19, ResNet, and Inception-ResNet-V2. The investigation involved preparing cement mortar 

samples with cement ratios of 1:3, 1:4, and 1:5, using water ratios of 0.35 and 0.55. Additionally, 

cement concrete samples were prepared with cement:sand aggregate ratios of 1:5:10, 1:3:6, 1:2:4,  

1:1.5:3, and 1:1:2, all using a water ratio of 0.5. The samples were cut, and multiple images of the  

cut surfaces were captured at various magnifications using a digital microscope. The samples were 

then subjected to destructive compressive strength testing. The captured images, along with the 

corresponding compressive strength data, were used to train the machine learning models to predict 

compressive strength based on the image data. Among the models tested, the Inception-ResNet-V2 

model  provided  the  most  accurate  compressive  strength  predictions.  The  findings  support  the 

effectiveness of using machine learning models to estimate the compressive strength of cement 

mortar and concrete from digital microscopic images, offering a viable alternative to traditional 

nondestructive or semi-destructive testing methods, with potential cost advantages.

M. Bilgehan & P. Turgut This article proposes an artificial neural network (ANN) approach to 

evaluate  the  relationship  between  concrete  compressive  strength  and  ultrasonic  pulse  velocity 

(UPV) values, using data obtained from numerous cores extracted from various reinforced concrete 

structures of different ages and with unknown concrete mixture ratios. The proposed method offers 

a practical way to estimate the compressive strength of concrete in existing reinforced concrete  

structures where the records of concrete mixture ratios are unavailable or missing.  As a result,  

14



researchers can conveniently assess the compressive strength of concrete specimens based on their 

UPV values.

2.2 Critical appraisal of literature

On the basis of above literature survey following observations may be made.

• Compressive Strength prediction are not done using DCNN model and UPV testing data.

• Conducted on very  few data points.

• It is done with particular zoom levels, so variations with different zoom are needed.

• A separate ANN model needs to be develop to incorporate both image data and UPV data.

15



Chapter 3

Methodologies

3.1 General

In  this  section  the  details  of  all  the  methodology  were  discussed  briefly.  This  investigation 

concentrate on finding a suitable and reliable CNN model for forecasting of data. It is important to 

note that the entire procedure is divided into four fundamental steps: acquisition of experiment data,  

preprocessing of  data, training of the network and classification and evaluation of data.

3.2 Ultrasonic Pulse Velocity test

The ultrasonic pulse velocity (UPV) technique is one of the most frequently utilized non-destructive 

method for evaluating concrete characteristics [15]. However, accurately evaluating the concrete 

compressive  strength  using  this  method  is  challenging  because  UPV values  are  influenced  by 

various factors that do not necessarily impact concrete compressive strength in the same manner or  

to the same degree  [46]. The details of the UPV test can be found in IS 516 (Part 5/Sec 1)  [46] 

ASTM C597 [47] (1991) and BS 1881-203 [48]. In this study only INDIAN STANDARD CODE 

has been followed.

An electro-acoustical transducer generates the ultrasonic pulse. When this pulse is introduced into 

the concrete by the transducer, the pulse undergoes numerous reflections at the boundaries of the 

various  material  phases  within  the  concrete.  A sophisticated  network  of  stress  waves  forms, 

encompassing longitudinal (compressional), shear (transverse), and surface (Rayleigh) waves. The 

receiving transducer detects  the arrival  of  the longitudinal  waves,  which travel  the fastest.  The 

velocity of these pulses is  nearly unaffected by the geometry of the material  they traverse and 

depends solely on its elastic properties. Consequently, longitudinal waves are termed primary or P 

waves, whereas transverse waves are referred to as secondary or S waves [46,49]. The time it takes 

for the pulses to travel through the concrete is recorded during the test. The velocity is subsequently 

calculated using the following formula:

V p = L
T

(1)

where Vp represents the pulse velocity (Km/s), L is the length (m), and T is the effective time (s) 

[46]. The dynamic modulus of elasticity for a uniform and isotropic material can be assessed by 
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measuring the velocities of P and S waves. The velocity of the waves can be related to the dynamic 

modulus of elasticity Ed and Poisson’s ratio ν through the following formulas [49]:

V p = √ E d

ρ(1−2 ν)(1+ν)
(2)

V s = √ E d

2 ρ(1+ν)
(3)

Where ρ represents the density of the substance, and VP and VS denote the primary and secondary 

wave speeds in the material, respectively.

The condition of concrete regarding consistency, presence or absence of internal defects, cracks, 

and segregation (reflecting the standard of the mixing) can be evaluated according to the guideline 

proposed in Table 1 by IS 516 (Part 5/Sec 1) [46]. 

Table 1: Concrete Quality as Determined by UPV as per IS 516 (Part 5/Sec 1)

Average Value of Pulse Velocity by Cross 
Probing in km/s

Above 4.4 3.75 to 4.4 3.00 to 3.75 Below 3.00

Concrete Quality Grading Excellent Good Doubtful Poor

This table is solely for grading concrete quality and should not be used to predict the grading of 

concrete or its strength based on ultrasonic pulse velocity values. It is important to recognize that an 

abundance of empirical data and theoretical models relating compressive strength to pulse velocity 

have been introduced and suggested. Table 2 sums of the most accepted and widely recognised 

models [15].
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Fig 1: Diagrammatic representation of the ultrasonic pulse velocity testing setup.
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Fig 2: A typical UPV apparatus with calibration rod

Table 2 Empirical Formulas for Estimating Concrete Compressive Strength (fck)

Sl. No. Equations Reference
1 f ck = 1.146 e0.77V p [19]

2 f ck = 0.0854 e1.288V p [18]

3 f ck = 1.119 e0.715V p [20]

4 f ck = 1.2 Χ 10−5(1000V p)
1.7447 [21]

5 f ck = 36.73V p−129.007 [22]
6 f ck = 176.9−96.46V p+13.906(V p)

2 [23]

3.3 Artificial Neural Networks

An artificial  neural  network  (ANN)  is  a  form of  computational  algorithm,  modelled  after  the 

neurons in the human brain, and it is commonly utilized for forecasting of data. The architecture of  

Artificial  Neural  Networks (ANNs) are  extensively parallel,  consisting of  numerous processing 

units interconnected by links. They are engineered in such way so that they can learn from provided 

experimental or theoretical data. These models can classify information, predict outcomes, and aid 

in selection-making tasks.

ANNs operate in a way that is analogous to the biological networks of human brain [50,51]. The 

artificial neuron serves as the fundamental unit of an ANN; essentially, it is a mathematical model 

engineered to emulate the function of a biological neuron. The architecture of an ANN consist of 
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three layers namely- a) a input layer which receives the input data, b) one or several hidden layers 

which process the inputs, c) output layer which generates the result. When neurons are arranged in 

multiple layers, the network is referred to as a multilayer ANN. Input information is fed into the  

artificial  neuron and,  after  undergoing processing through a  mathematical  function,  it  gives  an 

output as a result. weights are assigned to the input parameters before input data are passed to the 

neurons, to replicate the stochastic characteristics of a biological neuron.

ANNs can learn and analyse extensive datasets derived from experiments or trials. However, when 

addressing an image classification task with an ANN, converting a 2D image into 1D vectors before  

training can significantly raise the number of parameters that need to be learned as the image size  

grows. To overcome these challenges, convolutional neural network (CNN) models are employed 

across various fields and are especially prevalent in image and video analysis tasks. In this present 

study a Deep Convolution Neural Network (DCNN) is implemented and described.

3.3.1 Overview of DCNN

In  recent  years,  the  performance  of  Deep  Convolutional  Neural  Networks  (DCNNs)  have 

demonstrated significant advantages in image classification. DCNNs are a type of deep learning 

algorithm designed to process image data in the form of multiple arrays. They focus on extracting 

specific features, while handling variations such as shifting, rescaling, noise, and other types of data 

distortions [52]. The architecture of a hidden layer of a typical DCNN model primarily consists of 

convolutional layers, pooling layers, and fully connected layers  [53]. Notably, the convolutional 

layer, succeeded by a pooling layer, includes several convolutional kernels known as Filters that are 

used to generate various feature maps (Fig. 3). The general formulation for the gth feature map of 

the hth layer in a convolutional neural network,

f g
h=σ (∑

k=1

K (h−1)

W k
(h)∗ f k

(h−1)+B(h)) (4)

Where  f g
h  is the value of the hth feature map in the lth layer, σ is the activation function, such as 

ReLU, sigmoid,  etc  [54].  K (h−1) is  the number of feature maps in the (h-1) th layer.  W k
(h) is  the 

convolutional kernel associated with the kth feature map from the (h−1)th layer to the hth feature map 

in the hth layer. f k
(h−1) is the kth feature map of the (h−1)th layer. (*) denotes the convolution operation 

and B(h) is the bias term for the hth layer. This equation captures the essence of how convolutional 
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neural networks build higher-level features from lower-level ones through repeated convolution and 

activation operations. Following a convolutional layer, a pooling layer is introduced to integrate 

features, decrease parameters, and achieve shift-invariance by reducing the resolution of the feature 

maps.  Following a  convolutional  layer,  a  pooling layer  is  introduced to  integrate  features,  and 

achieve a smaller shift-invariance by reducing the resolution of the feature maps. The pooling layer 

in a convolutional neural network typically applies a downsampling operation to the input feature 

maps, if we represent  ζ  as the pooling operator then the output of the the pooling layer can be 

written as :

P g
h=ζ ( f g

h ) (5)

Next to the above mentioned layers, some architectures include several fully connected layers to  

learn higher-level features. These layers connect every neuron in one layer to every neuron in the 

next, which necessitates a large number of weight parameters. This full connectivity allows the 

network to model intricate relationships and patterns in the data.  At the final layer of a neural  

network, a layer called softmax is typically introduced to transform the last out put of the end layes 

to a probability distribution.

Fig. 3 Diagrammatic representation of a basic architecture of DCNN model 
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3.4 EXPERIMENTAL PROGRAM

3.4.1 Sample preparation

In this present study compliance to IS 456: 2000 and IS 10262: 2019 concrete cube of 100 mm 3 of 

grade M20 M25 and M30 for 75 mm slump were cast and all the specimen were cured for 7 days,  

28 days and 90 days respectively compliance to IS 1199(Part 5): 2018. In addition to that three 

concrete cylinder of diameter 100 mm and hight of 300 mm were also cast for each concrete group 

and cured for the same period as the cubes.

Three cubes of each group were first tested at an interval of 7 days, 28 days, 90 days of curing non-

destructively for UPV measurement with the help of PUNDIT followed by compression testing 

according to IS 516(Part 5/Sec 1): 2018 and IS 516(Part 1/Sec 1): 2021. One cylinders from each 

group were cut radially at an interval of  7, 28 and 90 days respectively for capturing of images for  

the training of the neural network.  Fig. 4 represents the experimental procedure which has been 

conducted for UPV and compressive strength test.

3.4.2 Acquiring of image database & preprocessing of image data

In this current investigation images have been captured of the concrete using digital microscope.  

Arbitrarily 60 number of images have been captured for each grade of concrete at 1x, 20x and 40x  

zoom level for end of each above mentioned curing periods, with the help of  Caliper Pro Live 

software for capturing, processing and storing of the images digitally. In this research, all images 

underwent random cropping and horizontal flipping. Specifically, an image originally sized 1600 × 

1200 was resized to 112 × 112. Subsequently, a random seed was generated within an 18 × 18 

section. Then, an 84 × 84 segment of the image was selected using this random seed. Ultimately, the 

9 sets of concrete images, each comprising 120 or 100 images, were divided into a training set  

(90%) and a testing set (10%). Furthermore the training images were further divided into 80% and 

20% for training and validation set. Fig. 5 depicts the image capturing procedure and Fig. 6 shows a 

sample of images obtained.
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(a) (b)

(c) (d)

Fig. 4 Sample preparation and testing of concrete. (a) prepared samples for UPV and compressive testing, (b) testing of UPV value of a 
cube sample after 28 days, (c) compressive testing apparatus, (d) cutting of samples for image acquisition
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(a) (b)

Fig. 5 process of capturing images of samples (a) prepared samples of M25 concrete, (b) capturing of images using microscope

M30 concrete 
sample after 28 

days

Zoom Level 7 Days 28 Days 90 Days

1x

20x

40x

Fig. 6 Images of concentrate 
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3.4.4 Normalisation of Data

Normalising or standardisation of dataset is regarded as the most vital phase in the field of soft 

computing  including  artificial  neural  network  approaches.  In  this  present  study  Min-Max 

Normalisation  methods  have  been  applied.  The  input  variables  (Table  3)  and  the  sole  output 

variable have been scaled using the Min-Max scaling technique. The input and output variables in 

this study have been scaled to fall within the range of [0.10, 0.90].

Table 3 Input and Output parameters for training the neural network

Parameter Unit Type
Data

Min Average Max

Ultrasonic pulse velocity Vp km/s Input 3.96 4.35 4.98

Compressive Strength MPa Output 11.20 27.47 38.67
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Chapter 4

Results and discussion

4.1 Test-database

An experimental test database consist of the results of UPV test data and compressive test data has 

been prepared. The results of both of the tests are presented in Table 4 and Table 5 respectively.  

Each  sample  was  first  evaluated  using  non-destructive  methods;  i.e.  ultrasonic  pulse  velocity 

assessments  were  performed.  Once  the  non-destructive  tests  were  completed,  each  sample 

underwent  a  uniaxial  compression test  to  determine it’s  compressive strength.  A third database 

consist  of  experimental  databases  from  previously  mentioned  experimental  results  has  been 

prepared.  This  database  consist  of  3  batches  of  datasets  each  having  9  data-points  based  on 

experimental results conducted. The extended database is presented in Table 6.

Table 4 Compressive Strength ( f ck) Result of Concrete-specimens

Grade Sl. No. 7 days 28 days 90 days

M 20

1 11.2 25.8 27.4
2 12.5 26.7 28.1
3 11.7 28.2 27.9

Average 11.8 26.9 27.8

M 25

1 14.8 33.2 34.9
2 13.7 35.9 36.2
3 15.35 33.5 35

Average 14.6 34.2 35.37

M30

1 21.6 36.2 37.55
2 21.4 37.3 38.67
3 21.6 37 38.45

Average 21.5 36.8 38.22
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Table 5 Ultrasonic Pulse Velocity Test Results (V p) of Concrete-specimens

Grade Sl. No. 7 days 28 days 90 days

M 20

1 3.96 4.17 4.15
2 4.02 4.25 4.22

3 3.98 4.18 4.13

Average 3.98 4.20 4.16

M 25

1 4.08 4.55 4.42

2 4.08 4.72 4.52

3 4.46 4.55 4.46

Average 4.21 4.60 4.47

M30

1 4.41 4.88 4.98

2 4.08 4.52 4.59
3 4.12 4.50 4.57

Average 4.20 4.46 4.71

Table 6 Extended test results

No.
Sample

Input 
Parameter

Output 
parameter

Batch
Specimen 

No.
V p f ck

1

M 20

1 3.96 11.2

2 2 4.02 12.5

3 3 3.98 11.7

4 4 4.17 25.8

5 5 4.25 26.7

6 6 4.18 28.2

7 7 4.15 27.4

8 8 4.22 28.1

9 9 4.13 27.9
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10

M 25

1 4.08 14.8

11 2 4.08 13.7

12 3 4.46 15.35

13 4 4.55 33.2

14 5 4.72 35.9

15 6 4.55 33.5

16 7 4.42 34.9

17 8 4.52 36.2

18 9 4.46 35

19

M 30

1 4.41 21.6

20 2 4.08 21.4

21 3 4.12 21.6

22 4 4.88 36.2

23 5 4.52 37.3

24 6 4.50 37

25 7 4.98 37.55

26 8 4.59 38.67

27 9 4.57 38.45
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4.2 DCNN model development

In this study we have used DCNN as backbone with added ANN structure for enabling UPV values 

as input beside the input image. In order to achieve a fair comparison of the predictions of the  

various ANNs used, the datasets are split into training, validation and testing sets. Few number of 

different DCNN models have been developed and implemented and trained with over 648 images 

(72% of total sample points) and 27 data points and the validation and testing were done using  

remaining data pints.  Table 7 shows the hyper parameters used for training the ANN,

Table 7 Hyper parameter used in different DCNN model

Model Used loss funtion epoch Optimiser Learning 
Rate

Pooling Bias learn 
rate factor

Activation

DCNN Categorical cross 
entropy

200 adam, 
sgdm

0.0003 avg, max 10 softmax

The proposed model (Fig. 8) uses the feature of Inception-v3 and Densenet-121, factorisation and 

dense connection and since it is multi-modal, it also contain ANN to have UPV input value which  

influences the model  to perform better  than the existing models.  The graphical  presentation of 

model accuracy and loss function of training and validation dataset for concrete at 28 d curing of a  

pictures captured at 20× zoom, is shown in Fig. 7. A brief discussion abut the above mentioned 

models are presented in the next segment.

Fig.7 Model accuracy and  loss of training and validation datasets 
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Fig 8: Architecture of the proposed DCNN model
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4.2.1 Inception-v3

Inception-v3 is a convolutional neural network (CNN) architecture that has revolutionized the field 

of computer vision. Introduced in 2015 by Christian Szegedy et al.  [55], Inception-v3 is the third 

iteration of the Inception family of models, which have consistently pushed the boundaries of image 

classification accuracy. The network is divided into three main components: the stem, the inception 

modules, and the classification head. The stem is the initial component of the network, responsible 

for processing the input image. It consists of a series of convolutional and pooling layers that reduce 

the  spatial  dimensions  of  the  image  while  increasing  the  number  of  channels.  The  inception 

modules  are  the  core  building  blocks  of  Inception-v3.  These  modules  are  designed  to  capture 

features  at  multiple  scales  simultaneously,  using  a  combination  of  convolutional  and  pooling 

operations. Each module consists of four branches, each with a different filter size, allowing the 

network to capture both local and global features. The classification head is the final component of 

the network,  responsible  for  producing the output  probabilities.  It  consists  of  a  global  average 

pooling layer, followed by a fully connected layer and a softmax activation function.  The details of 

the network is presented in Fig. 9.

(a)

(b)

Fig. 9: Architecture of Inception-v3, (a) Inception-v3 mode  (b) A Fundamental Component of the Inception-v3 Framework. On the Right-
Hand Side is a Traditional Sub-Component, and on the Left-Hand Side is a Compactness-Enhanced Sub-Component [Image by 

dvgodoy/CC BY]
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4.2.2 DenseNet-121

DenseNet-121 is a specific configuration of the DenseNet architecture [56], characterized by its 121 

layers,  growth rate of 32, and four dense blocks. This unique design enables feature reuse and 

reduces the vanishing gradient problem, resulting in improved accuracy and reduced parameters. 

The  architecture  comprises  four  dense  blocks,  interspersed  with  transition  layers  that  perform 

downsampling and feature map reduction. This design not only enhances the network's capacity to 

learn complex features but also helps in managing computational resources effectively. A defining 

feature of DenseNet-121 is its use of dense connections within each dense block. Unlike traditional 

CNNs where each layer only receives input from the previous layer, DenseNet-121 connects each 

layer  to  every  other  layer  in  a  feed-forward  fashion,  allowing  for  feature  reuse  and  improved 

information  flow.  The  growth  rate  of  32  enables  the  network  to  increase  its  capacity  without 

exponentially increasing the number of parameters. The use of transition layers reduces the spatial  

dimensions and number of channels, preventing the network from becoming too computationally 

expensive. 

Fig. 10:  Schematic diagram of DenseNet [56]
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Fig. 11: Architecture of DenseNet-121 [Image by Pablo Ruiz]

4.2.3 Prediction of compressive strength

Based on the above a number of CNN models have been developed and investigated in order to find 

the optimum model. The developed ANN models were sorted in a decreasing order based on the 

validation accuracy  and the model showed in Fig. 8 has been chosen as the best fitting model  

according to the validation results. Fig. 12 depicts the comparison between of the experimental  

values and the predicted values of the ANN for images taken at 20x zoom level. It is worth noting  

that all samples used for the testing process have a deviation less than ± 20%.
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Fig. 12 Experimental compressive strength vs. Predicted compressive strength (for images taken at 20x zoom level)
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4.3 Validation of results

Two distinct  statistical  metrics were utilized to assess the performance of the developed neural 

network  model,  as  well  as  the  existing  formulas  in  the  literature  for  estimating  concrete 

compressive strength based on nondestructive testing. Root mean square error (RMSE) and Pearson 

Correlation Coefficient R2 are used in this study.  It is to be mentioned that higher R2 signifies how 

well the independent variable are related to the dependent variable and R2  close to 1 signifies, the 

better  the  prediction  power.  RMSE  represents  the  absolute  difference  of  actual  and  predicted 

compressive strength i.e.  error  in prediction of  the compressive strength,  and the lower RMSE 

values represent more accurate prediction results. The coefficient of and RMSE can be defined as

R2=1−(∑i=1

n

( x i− y i)
2

∑
i=1

n

( x i− y i)
2 ) (6)

RMSE = √ 1
n∑i=1

n

( x i− y i)
2 (7)

where n denotes the total  number of datasets,  and  x i and  y i represent the predicted and target 

values, respectively. Additionally, the a20-index is introduced for evaluating the reliability of the 

developed artificial neural network (ANN) model [15].

a 20−index = m20
N

(8)

Where N stands for the amount of data samples, m20 represents the count of samples showing the 

ratio between Experimental-value and Predicted-value. Note that for an ideal predictive model, the 

a20-index values are anticipated to be 1.
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4.4 Comparisons of test results

In Table 8 the predicted results for images taken at 20x zoom level of the proposed neural network's 

as well as the 6 bibliographical suggestion presented in Table 2 are presented. Additionally, the 

ratio  of  experimental  vs  prediction values  of  compressive  strength of  all  the  above mentioned 

models are presented in Fig. 13. It is clearly depicted in Fig. 12 and Fig. 13, that most of the data 

points predicted by the proposed ANN model are well  predicted and they are situated near the 

centre line of the graph.

The  R2 and RMSE metrics of the relations between predicted and actual compressive strength of 

concrete for the ML model along with the proposed empirical suggestions are charted in Fig 14. It is 

observed that the proposed neural network performed the best in terms of the R2 value among all the 

mathematical models. It also produced the least RMSE value. Previously Shiuly et al. [43] reported 

that InceptionResNet-v2 yielded the best results (R2 values close to 0.85).

Table 8 Value of proposed index of different mathematical models

Sl. No.
Mathematical 

model
R2 RMSE a20-index

1 DCNN Model 0.99 0.67 1
2 EQ.1 0.57 8.51 0.63
3 EQ.2 0.52 7.41 0.37
4 EQ.3 0.58 6.53 0.33
5 EQ.4 0.62 7.16 0.52
6 EQ.5 0.63 7.05 0.63
7 EQ.6 0.55 8.59 0.33
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Fig. 13 Experimental compressive strength vs. Predicted compressive strength of all the mathematical models (for images taken at 20x 
zoom level)
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(a) (b)

(c) (d)

Fig. 14: The R2
 and RMSE metrics of compressive strength. (for images taken at 20x zoom level). (a) R2 value of concrete at different 

curing time. (b) R2  value of overall result.(c) RMSE  value of concrete at different curing time. (b) RMSE value of overall result.
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Chapter 5

Conclusion

5.1 General

Due to it’s heterogeneity, accurately predicting the compressive strength of concrete is extremely 

challenging.  Numerous  studies  utilizing  non-destructive  methods  for  estimating  concrete 

compressive  strength  have  been  conducted.  However,  the  challenge  of  accurately  estimating 

concrete compressive strength remains unresolved because the formulas available in the literature 

often exhibit  significant variability in their  estimates and substantial  deviations from the actual 

(experimental) compressive strength values of the concrete.

The  present  study  attempts  to  establish  a  relation  between  concrete  compressive  strength  and 

ultrasonic pulse velocity by using machine learning technique. In the present study, an attempt has 

been made to predict the compressive strength concrete using the UPV values and concrete surface 

images  with  the  help  of  machine  learning  technique.  For  carrying  out  the  whole  experiment, 

concrete  sample  of  different  grade  were  prepared  and cured  for  7  days,  28  days  and 90 days 

respectively. Ultrasonic pulse velocity tests were performed  followed by uniaxial compressive test 

at the end of each curing stage. Pictures were taken at different zoom level at during this time. A  

deep convolutional neural network model was developed and trained using the gathered data with 

UPV and images being the input and the compressive strength as the output value.

5.2 Findings

The comparison between the obtained results  and the experimental  data and existing analytical  

formulas in the literature highlights the promising potential of using machine learning for reliably 

and  accurately  approximating  the  compressive  strength  of  concrete  based  on  non-destructive 

measurements.  The results clearly signify that among all the methods, the model developed using 

Inception-v3 and DenseNet yields best results for predicting compressive strength concrete with 

highest value of R2 (about 0.98) and lowest values of RMSE. Additionally, the proposed neural 

network models can continuously retrain with new data, allowing them to adjust effectively to new 

information and expand their range of applicability.
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Limitations

The proposed neural network model can only be implemented if both the experimental value of 

UPV test  results  as  well  as  the  images  of  the  concrete  surface  are  present.  It  is  important  to 

emphasize that the machine learning systems are best utilized for variable ranges spanning from the  

minimum to the maximum levels of each variable (as outlined in Table 3). The diversity of the 

image and experimental  test  dataset  generated in  this  study is  restricted.  Thus,  it  will  produce  

inaccurate compressive strength predictions for any new image with a UPV value outside the input  

range. It is also important to emphasize that no test has been conducted to check the durability 

properties of concrete.

Scope for further research

1. Durability properties should be measured like RCPT, sorptivity etc

2. Durability properties should be also checked by image processing.

3. More samples should be tested for accurate results.

4. Image processing should be conducted more preciously.

5. Image processing can be done for high strength concrete
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