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ABSTRACT

Concrete compressive strength is the most important property which signifies the quality of
concrete. Several nondestructive and semi destructive test can be conducted to evaluate the concrete
compressive strength, but there is an issue regarding the direct corelations between compressive
strength and different non destructive test results. However, in the present study a image based
concrete compressive strength prediction model using machine learning techniques with the help of
ultrasonic pulse velocity (UPV) test has been proposed. In the present investigation 3 different
concrete mix has been prepared of grade M20, M25 and M30 respectively. Several images at
different zoom have been captured using digital microscope after cutting the concrete sample. In
addition to that, all the sample have been tested for UPV values followed by destructive
compressive strength. The images and corresponding UPV data and compressive strength have been
used to predict the compressive strength from the image using the above mentioned methodology.
The study clearly reveals that models exhibits better prediction model for estimating compressive
strength using the digital microscopic images. The findings from the present investigation
corroborate that UPV DATA can be used efficiently to predict cement mortar and concrete
compressive strength. Thus, present study demonstrate the applicability of different machine
learning technique using UPV values and digital microscopic images as an alternative

nondestructive/semi destructive test method for predicting compressive strength of concrete.
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Chapter 1

Introduction

1.1 General

Concrete is one of the most widely used materials globally, surpassed only by water in its
prevalence. Although concrete was developed long ago, its application in civil engineering projects
is still broadening. The key reasons for this are its cost-efficiency and simple production process,
along with the absence of any material that can substitute its unique properties [1,2]. Strength refers
to the measurement of the stress required for a material to deform or fail. The primary factor tested
to estimate the strength of concrete is compressive strength. This parameter is crucial for designing
reinforced concrete structures and serves as a key indicator for monitoring the health of existing
structures.

The available tests for assessing concrete strength include: (a) Destructive tests (b) Non-destructive
tests and (c) combination of both tests. The widely used destructive testing methodology for
obtaining the compressive strength is the cube test. Cube testing is carried out on fresh concrete
samples that are prepared using the same proportions of raw materials as those used in new concrete
members [3,4]. This method is useful for estimating the strength of newly created concrete
members but is challenging to predict the strength of existing structures. The measurement of the
strength of existing structure are typically conducted using non-destructive testings, as they do not
necessitate any destructive procedure for sample collection and are both simple and quick to use.
Examples of tests that can be applied non-destructively on site include ultrasonic pulse velocity,
rebound hammer, and sonic rebound (SonReb) tests [S—10]. NDT can be utilized for testing both old
and new structures. It’s primary applications for new structures are quality control and addressing
material or construction quality issues. Evaluating existing buildings centers on determining their
structural soundness or suitability. The ultrasonic pulse velocity test and the rebound hammer test
are frequently employed non-destructive testing methods for assessing the mechanical properties of
concrete, whether in a laboratory setting or on-site.

An artificial neural network (ANN) is a form of computational algorithm modelled after the neurons
in the human brain, and it is commonly utilized for forecasting of data [11-13]. Neural networks
can learn and analyse extensive datasets derived from experiments or trials. However, when
addressing an image classification task with an ANN, converting a 2D image into 1D vectors before

training can significantly raise the number of parameters that need to be learned as the image size



grows. To overcome these challenges, convolutional neural network (CNN) models are employed

across various fields and are especially prevalent in image and video analysis tasks [14].

1.2 Need for present study

Evaluating the load-bearing capacity of existing concrete constructions is a significant matter,
increasingly capturing the attention of scholars, particularly in recent times. A precise approach for
forecasting concrete characteristics is necessary, as it would be advantageous for the construction
sector. The primary factor tested to estimate the strength of concrete is compressive strength. This
parameter is crucial for designing reinforced concrete structures and serves as a key indicator for
monitoring the health of existing structures. The primary evaluation of concrete compressive
strength mainly involves the destructive testing procedure. Determination of the concrete strength
using NDT methods has been intensively investigated. In global literature, various correlations have
been suggested that link the compressive strength of concrete with the velocity of ultrasound. The
primary limitation of these methods is the wide variation in the predicted values and the
considerable discrepancy from the actual (experimental) compressive strength of the concrete.
Nowadays, various machine learning algorithm like Support Vector Machine (SVM), Artificial
Neural Network (ANN), Fuzzy Inference System (FIS), Adaptive Fuzzy Inference system (ANFIS),
Convolutional Neural Network (CNN) etc have been used for prediction purpose and it can be used

for estimating concrete properties.

1.3 Objective and scope of the work

The objective of the present study is Assessing Compressive Strength of Concrete using Digital
Images by Different Machine Learning Technique. This paper explores the use of ANNs to forecast
the compressive strength of concrete structures. To develop the ML models, information from
experiments regarding ultrasonic pulse velocity and images taken from cube samples were
employed, along with compressive strength tests performed on the same samples.
The scopes of the work are as follows

* Determine the UPV values of concrete.

* Determine the compressive strength of concrete.

* Capturing image data and preprocessing the image data.

* Train The ANN model.

* Prediction of the compressive strength by machine learning technique.

» Statistical analysis of the results.



1.4 Organization of thesis

The thesis has been divided into five chapters. The table and figures have been presented in a
sequence as they appear in the text.

Chapter 1 an attempt has been made to introduce the problem along with need for present
research, scope and objectives of the work and organization of thesis.

Chapter 2 furnishes a detailed literature review on the relevant topic.

Chapter 3 presents the methodologies adapted for experimental program and data collection.
Chapter 4 discussed about the results obtained form the experimental program.

Chapter 6 depicts the concluding remarks along with major findings, draw backs and future study.

References is furnished at the end.



Chapter 2

Literature review

2.1 General

The non-invasive testings (NDT) of concrete holds significant scholarly and pragmatic value. The
ultrasonic pulse velocity (UPV) technique is a widely utilized non-invasive method for evaluating
concrete characteristics [15]. In 1976, Malhotra provided an extensive literature review of the non-
invasive techniques typically employed for testing and evaluating concrete [10]. Leshchinsky
outlined the benefits of non-destructive tests in comparison to core testing [16]. The application of
UPV for the non-destructive evaluation of concrete properties were thoroughly researched for
decades and is among the most widely used non-destructive technique [17]. This testing method is
suitable for evaluating the uniformity and comparative quality of concrete and detecting the
presence of voids and cracks. However it seems overly confident and difficult to try to develop an
ultrasonic testing method for determining concrete strength. It is important to note that a vast
amount of experimental data and theoretical correlation relationships between compressive strength
and UPV value have been introduced and suggested [15,18-23]. which help us in finding the
strength of concentrate members using pulse velocity.

Recently, techniques based on computer vision and machine learning are being suggested to guess
the physical properties and classification. Employing machine learning techniques for image
classification shows great potential for addressing this type of issue [24]. Different machine
learning technique can be applied including support vector machine (SVM), Artificial Neural
Network (ANN), Deep Convolution Neural Network (DCNN) for image classification. These
methods were successfully applied in different field like recognition of hand written digits [25],
face recognition [26], pest detection [27], plant disease [28,29], autonomous vehicles [30], medical
diagnosis [31,32] etc. Further, a number of successful applications of the different machine learning
method were applied in the field of civil engineering [33—35]. Asteris et al. [15] assessed the
concrete compressive strength using ANN, drawing on experimental data from NDT tests: UPV and
Rebound Hammer. Behnam et al. [36] predicted the compressive strength of concrete using ANFIS
(adaptive neuro-fuzzy inference system), with slump flow and mixture proportions as inputs.
Several successful applications of various image-based machine learning methods have been
implemented in civil engineering, such as: identification of pavement crack [37,38], detection of
structural damages [39].Recently quite a few breakthrough researches promoted the use of image

processing technique (IP) to forecast the compressive strength of concrete. Basyigit et al. [40]



conducted various regression analyses using IP to predict concrete's compressive strength, in which
he attains an accuracy of 94.8%. Lopez et al. [41] used image analysis to examine characteristics of
lightweight high-performance concrete, including unit shrinkage, deformation, elasticity and yield.
Dogan et al. [42] utilized an ANN model to assess the compressive strength utilizing image
processing technique. Shiuly et al. [43] concluded in their study that compressive strength can be
predicted using images of concrete using various DCNN models and achieved a satisfactorily result.
In the study conducted by Dantas et al. [44], ANN models were created to forecast the compressive
strength of concrete with Construction and Demolition Waste (CDW) at ages of 3, 7, 28, and 91
days. Jang et al. [45] effectively employed contemporary DCNN models to forecast the
compressive strength using a limited number of cement concrete samples captured with a digital

microscope at specific resolution and reported that ResNet produced satisfactory results.

H.G. Ni, J.-Z. Wang explores the use of neural networks to predict the 28-compressive strength of
concrete. A multi-layer feed-forward neural networks (MFNNs) was developed, considering a 11-7-
1 architecture, meaning the model consists of 11 input nodes, each representing a distinct factor (or
component of an input vector) such as grade of cement, water-to-cement cement ratio, cement
content, dosage of water, max size of coarse aggregate, fine modulus of sand, the sand-aggregate
ratio,the aggregate-cement ratio, slump, dosage of admixture, effect of admixture. The hidden layer
contains seven nodes, which process the information from the input layer. The network's output
layer has a single node that corresponds to the 28-day compressive strength of the concrete. The
study involved two datasets: one from the authors' laboratory experiments and another from a
concrete plant in Beijing. Each dataset was split into two subsets: a learning set for training the
neural network and a testing set for evaluating its performance. The first batch of data consist of 65
mixes and the second batch having 100. he neural network model achieved high accuracy in
predicting compressive strength, with a max relative error of 5.86% for the 1* batch and 12.81% for
the second batch. The trained neural network (NN) models can be employed to simulate how
various factors influence concrete strength. The authors used these models to establish functional
relationships between the compressive strength and the relevant influencing factors. The study
found that the compressive strength of concrete is almost directly proportional to the amount of
cement used, assuming a constant water dosage of 190 kg/m?®. The strength is roughly directly
proportional to the cement dosage, and the higher the grade, the greater the concrete strength. The
sand-to-aggregate ratio in concrete mixtures can influence the strength, though the effect might be
subtle but the effects of the fine module of sand on concrete strength are greater than the

sand/aggregate ratio.



Breccolotti et al. explores the presence of spatial correlation in rebound hammer and ultrasonic
pulse velocity test readings through experimental assessments on two reinforced concrete walls.
The impact of this correlation is then incorporated into concrete strength assessment using the
established SonReb method. Monte Carlo simulations, performed to evaluate the accuracy of the
SonReb standard procedure, revealed a significant risk of both under- and over-estimation, as well
as considerable absolute errors in predicting the mean compressive strength of the structural
elements tested. To address these issues, the paper proposes a modification to the standard
procedure. This adjustment, which involves increasing the distance between individual test
locations, improves the accuracy of the SonReb evaluation. By applying this modification, the
maximum overestimation error is reduced from approximately 15% to 5%, enhancing the reliability

of the strength assessment.

Y. Zhang, F. Aslani introduces two models for predicting the compressive strength of lightweight
aggregate concrete: a regression model and a back-propagation neural network (BPNN). The BPNN
model integrates ultrasonic pulse velocity (UPV) data to meet various accuracy requirements. To
achieve this, a comprehensive database was created, including 603 data sets from 26 different
studies. This database covers a broad range of coarse aggregate sizes (4 mm — 40 mm) and
lightweight aggregates (0.65 mm — 30 mm), as well as various volume ratios of coarse aggregate to
binder (0.53 — 9.66) and sand to aggregate (0 to 5.99), lightweight aggregate volume fractions (0 —
100%), water-to-binder ratios (0.3 — 0.89), and curing times (1 day to 120 days). Statistical analysis
shows that both the regression model and the BPNN model can provide reasonable estimates of
compressive strength for lightweight aggregate concrete, although their accuracy levels differ.

Consequently, the two models offer adaptable options for different accuracy requirements.

Asteris et al. proposed the application of artificial neural networks (ANNs) for predicting the
compressive strength of concrete for existing structures. In this study artificial neural networks have
been systematically employed to predict the compressive strength of concrete by incorporating data
from both ultrasonic pulse velocity and Schmidt rebound hammer tests from vast amount of data
found in numerous literature. An experimental database has been compiled from data sets available
in the literature. Specifically, the database includes 209 datasets derived from experimental results
reported in the PhD thesis by Logothetis. Each of the 36 batches (with the exception of one)
consisted of 6 specimens. Initially, each specimen underwent non-destructive testing, starting with

ultrasonic pulse velocity measurements followed by Schmidt hammer rebound tests. After



completing these non-destructive assessments, each specimen was subjected to a uniaxial
compressive test to determine its compressive strength. In the present study, a back propagation
neural network (BPNN) is implemented and trained using the UPV and rebound number as input
and the compressive strength as an output. The ANN models were trained using over 140 data
points, which represents 66.99% of the total 209 data points. The remaining 69 data points were
used for validation and testing. Specifically, 35 data points (16.75%) were allocated for validation,
while 34 data points (16.27%) were used for testing the trained ANN. The comparison of the results
obtained from the ANN models with experimental findings and existing analytical formulas in the
literature highlights the promising potential of using back-propagation neural networks for
accurately and reliably estimating concrete compressive strength based on non-destructive testing
measurements. Additionally, the proposed neural network models can continuously be retrained
with new data, allowing them to adapt and expand their applicability as more data becomes

available.

Trinik et al. discussed in their paper the corelation between the ultrasonic pulse velocity test result
and comprehensive strength of concrete. Accurately evaluating concrete compressive strength using
ultrasonic pulse velocity (UPV) can be challenging because UPV values are influenced by various
factors that do not necessarily affect compressive strength in the same way or to the same extent.
This paper examines these factors and their impact on the velocity-strength relationship.
Additionally, the study analyses the relationship between ultrasonic pulse velocity, static and
dynamic Young’s modulus, and shear modulus. Factors such as aggregate type, initial concrete
temperature, cement type, environmental temperature, and water-to-cement (w/c) ratio were also
investigated. Based on the experimental results, a numerical model was developed, employing a
multi-layer feed-forward neural network. The paper shows that artificial neural networks are
effective for modelling the velocity-strength relationship. This model facilitates the easy and
reliable estimation of concrete compressive strength using only the ultrasonic pulse velocity and
certain mix parameters. In this study the influence of the amount of aggregate, type of aggregate,
nominal maximum aggregate size, and aggregate shape on the velocity-strength (Vp—S) relationship
is examined. The impact of the aggregate amount in concrete is illustrated for mixtures with a
water-to-cement (w/c) ratio of 0.54. It is evident that the quantity of aggregate plays a significant
role in affecting the Vp—S relationship. It also concluded that within a specific range of values, the
influences of initial temperature (Tini), environmental temperature (Tenv), cement type, and water-

to-cement (w/c) ratio on the Vp-S relationship were not significant.

10



P. Turgut established a relationship between concrete strength and ultrasonic pulse velocity (UPV)
using data from numerous cores extracted from various reinforced concrete structures with different
ages and unknown concrete mixture ratios. This new formula allows for the practical estimation of
concrete strength in existing structures where records of concrete mixture ratios are unavailable or

not present.

Nash et al. aims to establish a unified relationship that connects the results of various non
destructive tests and correlates them with the crushing strength of concrete cubes. Statistical
methods are used to analyse laboratory tests conducted on concrete cubes with different mixing
ratios and curing conditions. The goal is to develop correlation curves that improve the prediction of
concrete strength. The study involves 161 test results from 161 concrete specimens, each with
dimensions of 150x150 mm. Some of these specimens were created using mixtures formulated
specifically for this research with ordinary Portland cement adhering to the Iraqi standard (No. 5),
featuring target strengths of 15 and 25 N/mm? and subjected to various curing conditions. Other
specimens were sourced from an M.Sc. thesis, primarily using ordinary Portland cement, except for
6 specimens made with sulphate-resistant Portland cement. These latter specimens were cured by
immersing them in water for 30 days before testing. The age of the specimens in both categories
ranged from 7 to 138 days. All specimens were made with fine aggregate falling within Zone 1 and
coarse aggregate sizes ranging from 5 to 19 mm. An Ultrasonic Pulse Velocity (UPV) test was
performed on each cube by averaging two readings (one from each of the opposite faces) using the
commercially available PUNDIT equipment with a pulse frequency of 54 kHz. Following this, a
Schmidt Hammer test was conducted on the same cube. The cube was fixed in a compression
testing machine applying a force of approximately 2.5 N/mm?, and the average of 10 rebound
number readings from the Schmidt Hammer was recorded. Finally, the cube was subjected to a
crushing test, and the crushing force was documented. He concluded that relying on a single test
method (whether the Schmidt Hammer or UPV) is insufficient for accurately predicting in-situ

concrete strength. The highest percentage of results explained by using only one method was 77%.

11



G.F.Kheder utilized two non-destructive test methods, ultrasonic pulse velocity and Schmidt
hammer, along with concrete mix proportions and density, to develop mathematical models using
multiple linear regressions for estimating concrete compressive strength. These models were
applied to both wet and air-dry concrete conditions. A total of 103 different mixes were tested at
ages ranging from 7 to 90 days. For more accurate estimates, a second stage involved correlating
the initial strength estimates with actual strengths obtained from a limited number of cores taken
from the structure. This approach was tested on two separate building projects, yielding reliable
predictions. The standard error of estimate was 2.95 MPa for concrete with strengths ranging from
15.7 to 33.8 MPa in the first case study, and only 0.91 MPa for concrete with strengths ranging from
12.5 to 23 MPa in the second case study.

H.Y.Qasrawi The paper summarizes the author's experience with estimating concrete strength
using combined non-destructive testing methods. The study utilized both the traditional rebound
hammer and ultrasonic pulse velocity tests. The research aimed to develop a straightforward chart
that relates rebound number and ultrasonic pulse velocity to concrete crushing strength. The goal
was to create a chart that is easy for engineers to use on-site. This chart was subsequently utilized
for evaluating the strength of various concrete samples. Standard cubes with a side length of 150
mm were prepared using various concrete mixes and immersed under water for a minimum period
of 24 h before testing. The rebound number was obtained by taking three measurements on each of
the four faces of the cube, with the rebound hammer positioned horizontally for all measurements.
The results were evaluated following the guidelines of ASTM C 805. After completing the rebound
hammer test, each of the two surfaces of the cube was prepared for the ultrasonic pulse velocity test.
After completing the non-destructive testing on each cube, the cube was subjected to a loading test
until failure, and the maximum load was recorded. With the help of this data a corelation between

the comprehensive strength and the two non destructive test value the rebound number (RN) and the

UPV vale ar proposed. The 72 value was found to be 0.88 for RN and 0.9562 for UPV.

Shariati et al. focuses on the advanced prediction of the compressive strength of concrete mixtures
that incorporate furnace slag and fly ash as partial cement replacements. For this investigation, a
dataset consisting of 1030 samples with nine input parameters (related to the concrete mix
composition and the age of the concrete) and one output parameter (the compressive strength) was
gathered. Instead of utilizing the absolute values of the inputs, their relative proportions were

employed. A novel method combining an artificial neural network with a genetic algorithm (ANN-

12



GA) was applied to carry out the study. The performance of the ANN-GA model was assessed by
comparing it to another artificial neural network (ANN), which was developed and optimized using
a traditional backpropagation (BP) algorithm. The findings revealed that the ANN-GA model not
only could be effectively developed and applied for predicting the compressive strength of concrete

but also achieved better results when compared to the ANN-BP model.

Behnam Vakhshouri & Shami Nejadi, developed a ANFIS models to establish a relationship
between compressive strength as the output and slump flow along with mixture proportions as
inputs across eighteen different combinations of input parameters. The data used in this study are
derived from 55 previously conducted experimental studies. The impact of each parameter on
compressive strength and its significance within the developed model has been thoroughly
examined. By analysing the error in each combination, the weighting factor and importance level of
each parameter are evaluated to apply correction factors, aiming to achieve the most optimized
relationship. The results indicate that the model incorporating all input data (slump flow and
mixture proportions) provides the most accurate prediction of compressive strength. Excluding
slump flow from the combinations significantly impacts the compressive strength prediction,
though not as much as the influence of maximum aggregate size and aggregate volume in the
mixture design. Additionally, varying values of powder volume, aggregate volume, and paste

content in the mixture exhibit different ascending and descending effects on compressive strength.

Bagyigit et al. delves into evaluation the compressive strength values of various concrete classes
using image processing techniques. To achieve this, seven different water/cement ratios were
produced across different concrete series. Physical and mechanical tests were performed on the
resulting specimens, and image processing techniques were applied for further analysis. The study
sought to establish correlations between the compressive strength values of the concrete specimens
and the results obtained through image processing. A strong correlation (R? = 0.9847) was observed
between the aggregate volume determined via image processing and the aggregate volume
theoretically calculated during the mixture design. Regression analyses were conducted using the
results from image processing and non-destructive testing. To compare the performance of the
regression techniques, R?, RMSE, SSE, and MAPE metrics were evaluated for each analysis. The
findings suggest that the image processing technique used in this study could serve as a

supplementary tool to both destructive and non-destructive testing methods.
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Dogan et al. tried to predict the mechanical properties of concrete non-destructively, using a novel
alternative method. To achieve this, 96 cylindrical concrete samples were produced, utilizing five
distinct parameters: water/cement ratio, curing, cement content, compression, and additives. Images
of the samples were captured before they underwent compression testing, and the pressure readings
obtained in the laboratory were used to train and test both Artificial Neural Network (ANN) and
Image Processing (IP) models. Additionally, 48 of the concrete samples were randomly selected to
verify the ANN and IP predictions. A remarkably high correlation, ranging between 97.18% and
99.87%, was observed between the ANN and IP outcomes and the actual results for both the
training/testing samples and the verification samples. The findings suggest that when ANN and [P
are used together, this method offers a strong alternative to the traditional destructive and non-

destructive techniques currently employed for determining the mechanical properties of concrete.

Shiuly et al introduces a new image-based machine learning method for predicting the compressive
strength of concrete, evaluating six different models in the process. These models include a support-
vector machine model and several deep convolutional neural network models: AlexNet, GoogleNet,
VGG19, ResNet, and Inception-ResNet-V2. The investigation involved preparing cement mortar
samples with cement ratios of 1:3, 1:4, and 1:5, using water ratios of 0.35 and 0.55. Additionally,
cement concrete samples were prepared with cement:sand aggregate ratios of 1:5:10, 1:3:6, 1:2:4,
1:1.5:3, and 1:1:2, all using a water ratio of 0.5. The samples were cut, and multiple images of the
cut surfaces were captured at various magnifications using a digital microscope. The samples were
then subjected to destructive compressive strength testing. The captured images, along with the
corresponding compressive strength data, were used to train the machine learning models to predict
compressive strength based on the image data. Among the models tested, the Inception-ResNet-V2
model provided the most accurate compressive strength predictions. The findings support the
effectiveness of using machine learning models to estimate the compressive strength of cement
mortar and concrete from digital microscopic images, offering a viable alternative to traditional

nondestructive or semi-destructive testing methods, with potential cost advantages.

M. Bilgehan & P. Turgut This article proposes an artificial neural network (ANN) approach to
evaluate the relationship between concrete compressive strength and ultrasonic pulse velocity
(UPV) values, using data obtained from numerous cores extracted from various reinforced concrete
structures of different ages and with unknown concrete mixture ratios. The proposed method offers
a practical way to estimate the compressive strength of concrete in existing reinforced concrete

structures where the records of concrete mixture ratios are unavailable or missing. As a result,
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researchers can conveniently assess the compressive strength of concrete specimens based on their

UPYV values.

2.2 Critical appraisal of literature

On the basis of above literature survey following observations may be made.

* Compressive Strength prediction are not done using DCNN model and UPV testing data.
* Conducted on very few data points.
e It is done with particular zoom levels, so variations with different zoom are needed.

* A separate ANN model needs to be develop to incorporate both image data and UPV data.
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Chapter 3

Methodologies

3.1 General

In this section the details of all the methodology were discussed briefly. This investigation
concentrate on finding a suitable and reliable CNN model for forecasting of data. It is important to
note that the entire procedure is divided into four fundamental steps: acquisition of experiment data,

preprocessing of data, training of the network and classification and evaluation of data.

3.2 Ultrasonic Pulse Velocity test

The ultrasonic pulse velocity (UPV) technique is one of the most frequently utilized non-destructive
method for evaluating concrete characteristics [15]. However, accurately evaluating the concrete
compressive strength using this method is challenging because UPV values are influenced by
various factors that do not necessarily impact concrete compressive strength in the same manner or
to the same degree [46]. The details of the UPV test can be found in IS 516 (Part 5/Sec 1) [46]
ASTM C597 [47] (1991) and BS 1881-203 [48]. In this study only INDIAN STANDARD CODE
has been followed.

An electro-acoustical transducer generates the ultrasonic pulse. When this pulse is introduced into
the concrete by the transducer, the pulse undergoes numerous reflections at the boundaries of the
various material phases within the concrete. A sophisticated network of stress waves forms,
encompassing longitudinal (compressional), shear (transverse), and surface (Rayleigh) waves. The
receiving transducer detects the arrival of the longitudinal waves, which travel the fastest. The
velocity of these pulses is nearly unaffected by the geometry of the material they traverse and
depends solely on its elastic properties. Consequently, longitudinal waves are termed primary or P
waves, whereas transverse waves are referred to as secondary or S waves [46,49]. The time it takes
for the pulses to travel through the concrete is recorded during the test. The velocity is subsequently

calculated using the following formula:

p

- L
V, =7 (1)

where V, represents the pulse velocity (Km/s), L is the length (m), and T is the effective time (s)

[46]. The dynamic modulus of elasticity for a uniform and isotropic material can be assessed by
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measuring the velocities of P and S waves. The velocity of the waves can be related to the dynamic

modulus of elasticity £, and Poisson’s ratio v through the following formulas [49]:

14 :\/ Ey )
P p(1=2v)(1+v)
Ed
— a4 3
Vs 2p(1+4v) ®

Where p represents the density of the substance, and VP and VS denote the primary and secondary
wave speeds in the material, respectively.

The condition of concrete regarding consistency, presence or absence of internal defects, cracks,
and segregation (reflecting the standard of the mixing) can be evaluated according to the guideline

proposed in Table 1 by IS 516 (Part 5/Sec 1) [46].

Table 1: Concrete Quality as Determined by UPYV as per IS 516 (Part 5/Sec 1)

Average Value of Pulse Velocity by Cross
Probing in km/s
Concrete Quality Grading Excellent  Good Doubtful Poor

Above 4.4 3.75 to 4.4 3.00 to 3.75 Below 3.00

This table is solely for grading concrete quality and should not be used to predict the grading of
concrete or its strength based on ultrasonic pulse velocity values. It is important to recognize that an
abundance of empirical data and theoretical models relating compressive strength to pulse velocity
have been introduced and suggested. Table 2 sums of the most accepted and widely recognised

models [15].
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Fig 1: Diagrammatic representation of the ultrasonic pulse velocity testing setup.
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Fig 2: A typical UPV apparatus with calibration rod

Table 2 Empirical Formulas for Estimating Concrete Compressive Strength (f.)

S1. No. Equations Reference
1 f. = 11467 [19]
2 £ = 0.0854¢"" [18]
3 foa = 1119777 [20]
4 fa = L2X107°(10007 )™ [21]
5 fo = 36.73V,—129.007 [22]
6 fo = 176.9-96.46V +13.906(V ) [23]

3.3 Artificial Neural Networks

An artificial neural network (ANN) is a form of computational algorithm, modelled after the
neurons in the human brain, and it is commonly utilized for forecasting of data. The architecture of
Artificial Neural Networks (ANNs) are extensively parallel, consisting of numerous processing
units interconnected by links. They are engineered in such way so that they can learn from provided
experimental or theoretical data. These models can classify information, predict outcomes, and aid
in selection-making tasks.

ANNSs operate in a way that is analogous to the biological networks of human brain [50,51]. The
artificial neuron serves as the fundamental unit of an ANN; essentially, it is a mathematical model

engineered to emulate the function of a biological neuron. The architecture of an ANN consist of
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three layers namely- a) a input layer which receives the input data, b) one or several hidden layers
which process the inputs, ¢) output layer which generates the result. When neurons are arranged in
multiple layers, the network is referred to as a multilayer ANN. Input information is fed into the
artificial neuron and, after undergoing processing through a mathematical function, it gives an
output as a result. weights are assigned to the input parameters before input data are passed to the
neurons, to replicate the stochastic characteristics of a biological neuron.

ANNSs can learn and analyse extensive datasets derived from experiments or trials. However, when
addressing an image classification task with an ANN, converting a 2D image into 1D vectors before
training can significantly raise the number of parameters that need to be learned as the image size
grows. To overcome these challenges, convolutional neural network (CNN) models are employed
across various fields and are especially prevalent in image and video analysis tasks. In this present

study a Deep Convolution Neural Network (DCNN) is implemented and described.

3.3.1 Overview of DCNN

In recent years, the performance of Deep Convolutional Neural Networks (DCNNs) have
demonstrated significant advantages in image classification. DCNNs are a type of deep learning
algorithm designed to process image data in the form of multiple arrays. They focus on extracting
specific features, while handling variations such as shifting, rescaling, noise, and other types of data
distortions [52]. The architecture of a hidden layer of a typical DCNN model primarily consists of
convolutional layers, pooling layers, and fully connected layers [53]. Notably, the convolutional
layer, succeeded by a pooling layer, includes several convolutional kernels known as Filters that are
used to generate various feature maps (Fig. 3). The general formulation for the g" feature map of

the h™ layer in a convolutional neural network,

K[hfl]

> wils B 4)
k=1

h
fe=0

Where f Z is the value of the h™ feature map in the 1" layer, o is the activation function, such as
ReLU, sigmoid, etc [54]. K" is the number of feature maps in the (h-1)" layer. W(kh) is the
convolutional kernel associated with the k™ feature map from the (h—1)™ layer to the h" feature map
in the " layer. f (kh_l) is the k™ feature map of the (h—1)" layer. (*) denotes the convolution operation

and B" is the bias term for the h® layer. This equation captures the essence of how convolutional
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neural networks build higher-level features from lower-level ones through repeated convolution and
activation operations. Following a convolutional layer, a pooling layer is introduced to integrate
features, decrease parameters, and achieve shift-invariance by reducing the resolution of the feature
maps. Following a convolutional layer, a pooling layer is introduced to integrate features, and
achieve a smaller shift-invariance by reducing the resolution of the feature maps. The pooling layer
in a convolutional neural network typically applies a downsampling operation to the input feature
maps, if we represent { as the pooling operator then the output of the the pooling layer can be

written as :

Pi=¢ (1) (5)

Next to the above mentioned layers, some architectures include several fully connected layers to
learn higher-level features. These layers connect every neuron in one layer to every neuron in the
next, which necessitates a large number of weight parameters. This full connectivity allows the
network to model intricate relationships and patterns in the data. At the final layer of a neural
network, a layer called softmax is typically introduced to transform the last out put of the end layes

to a probability distribution.

Input Image Max pooling1 CONV2 Maxpooling2 Output

(Strength)
Flatten FC1 FC2

Fig. 3 Diagrammatic representation of a basic architecture of DCNN model
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3.4 EXPERIMENTAL PROGRAM

3.4.1 Sample preparation

In this present study compliance to IS 456: 2000 and IS 10262: 2019 concrete cube of 100 mm” of
grade M20 M25 and M30 for 75 mm slump were cast and all the specimen were cured for 7 days,
28 days and 90 days respectively compliance to IS 1199(Part 5): 2018. In addition to that three
concrete cylinder of diameter 100 mm and hight of 300 mm were also cast for each concrete group
and cured for the same period as the cubes.

Three cubes of each group were first tested at an interval of 7 days, 28 days, 90 days of curing non-
destructively for UPV measurement with the help of PUNDIT followed by compression testing
according to IS 516(Part 5/Sec 1): 2018 and IS 516(Part 1/Sec 1): 2021. One cylinders from each
group were cut radially at an interval of 7, 28 and 90 days respectively for capturing of images for
the training of the neural network. Fig. 4 represents the experimental procedure which has been

conducted for UPV and compressive strength test.

3.4.2 Acquiring of image database & preprocessing of image data
In this current investigation images have been captured of the concrete using digital microscope.
Arbitrarily 60 number of images have been captured for each grade of concrete at 1x, 20x and 40x

zoom level for end of each above mentioned curing periods, with the help of Caliper Pro Live

software for capturing, processing and storing of the images digitally. In this research, all images
underwent random cropping and horizontal flipping. Specifically, an image originally sized 1600 X
1200 was resized to 112 x 112. Subsequently, a random seed was generated within an 18 % 18
section. Then, an 84 x 84 segment of the image was selected using this random seed. Ultimately, the
9 sets of concrete images, each comprising 120 or 100 images, were divided into a training set
(90%) and a testing set (10%). Furthermore the training images were further divided into 80% and
20% for training and validation set. Fig. 5 depicts the image capturing procedure and Fig. 6 shows a

sample of images obtained.
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(©) (d)

Fig. 4 Sample preparation and testing of concrete. (a) prepared samples for UPV and compressive testing, (b) testing of UPV value of a
cube sample after 28 days, (c) compressive testing apparatus, (d) cutting of samples for image acquisition
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(2)

(b)

Fig. 5 process of capturing images of samples (a) prepared samples of M25 concrete, (b) capturing of images using microscope

M30 concrete
sample after 28
days

Zoom Level

1x

20x

40x

Fig. 6 Images of concentrate
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3.4.4 Normalisation of Data

Normalising or standardisation of dataset is regarded as the most vital phase in the field of soft

computing including artificial neural network approaches. In this present study Min-Max

Normalisation methods have been applied. The input variables (Table 3) and the sole output

variable have been scaled using the Min-Max scaling technique. The input and output variables in

this study have been scaled to fall within the range of [0.10, 0.90].

Table 3 Input and Output parameters for training the neural network

) Data
Parameter Unit Type -
Min Average Max
Ultrasonic pulse velocity V, km/s Input 3.96 4.35 4.98
Compressive Strength MPa Output 11.20 27.47 38.67
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Chapter 4

Results and discussion

4.1 Test-database

An experimental test database consist of the results of UPV test data and compressive test data has
been prepared. The results of both of the tests are presented in Table 4 and Table 5 respectively.
Each sample was first evaluated using non-destructive methods; i.e. ultrasonic pulse velocity
assessments were performed. Once the non-destructive tests were completed, each sample
underwent a uniaxial compression test to determine it’s compressive strength. A third database
consist of experimental databases from previously mentioned experimental results has been
prepared. This database consist of 3 batches of datasets each having 9 data-points based on

experimental results conducted. The extended database is presented in Table 6.

Table 4 Compressive Strength (/) Result of Concrete-specimens

Grade SI. No. 7 days 28 days 90 days
1 11.2 25.8 27.4
2 12.5 26.7 28.1
M20 3 11.7 28.2 27.9
Average 11.8 26.9 27.8
1 14.8 33.2 34.9
2 13.7 35.9 36.2
M 25 3 15.35 33.5 35
Average 14.6 34.2 35.37
1 21.6 36.2 37.55
2 21.4 37.3 38.67
M30 3 21.6 37 38.45
Average 21.5 36.8 38.22
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Table S Ultrasonic Pulse Velocity Test Results (/7)) of Concrete-specimens

Grade SIL. No. 7 days 28 days 90 days
1 3.96 4.17 4.15
2 4.02 4.25 4.22
M 20
3 3.98 4.18 4.13
Average 3.98 4.20 4.16
1 4.08 4.55 4.42
2 4.08 4.72 4.52
M 25
3 4.46 4.55 4.46
Average 4.21 4.60 4.47
1 4.41 4.88 4.98
2 4.08 4.52 4.59
M30
3 4.12 4.50 4.57
Average 4.20 4.46 4.71

Table 6 Extended test results

Input Output

No. Sample : Parameter parameter
Batch Sp?\cll:len v, I

1 1 3.96 11.2

2 2 4.02 12.5

3 3 3.98 11.7

4 4 4.17 25.8

S M 20 5 425 26.7

6 6 4.18 282

7 7 4.15 27.4

8 8 4.22 28.1

9 9 4.13 27.9
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4.2 DCNN model development

In this study we have used DCNN as backbone with added ANN structure for enabling UPV values
as input beside the input image. In order to achieve a fair comparison of the predictions of the
various ANNSs used, the datasets are split into training, validation and testing sets. Few number of
different DCNN models have been developed and implemented and trained with over 648 images
(72% of total sample points) and 27 data points and the validation and testing were done using

remaining data pints. Table 7 shows the hyper parameters used for training the ANN,

Table 7 Hyper parameter used in different DCNN model

Model | Used loss funtion | epoch | Optimiser | Learning | Pooling | Bias learn | Activation
Rate rate factor
DCNN| Categorical cross 200 adam, 0.0003 |avg, max 10 softmax
entropy sgdm

The proposed model (Fig. 8) uses the feature of Inception-v3 and Densenet-121, factorisation and
dense connection and since it is multi-modal, it also contain ANN to have UPV input value which
influences the model to perform better than the existing models. The graphical presentation of
model accuracy and loss function of training and validation dataset for concrete at 28 d curing of a
pictures captured at 20x zoom, is shown in Fig. 7. A brief discussion abut the above mentioned

models are presented in the next segment.

Model Loss Mode! accuracy

08+

06 ’ \ = Train acc
Val_acc

L | = TN _j0SS
6 | Val_loss

Loss
Accuracy

04

02

e

"IPP PP ROSRIPI L S

Epoch

0+
AR L A KRSV

Epoch

Fig.7 Model accuracy and loss of training and validation datasets
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Fig 8: Architecture of the proposed DCNN model



4.2.1 Inception-v3

Inception-v3 is a convolutional neural network (CNN) architecture that has revolutionized the field
of computer vision. Introduced in 2015 by Christian Szegedy et al. [55], Inception-v3 is the third
iteration of the Inception family of models, which have consistently pushed the boundaries of image
classification accuracy. The network is divided into three main components: the stem, the inception
modules, and the classification head. The stem is the initial component of the network, responsible
for processing the input image. It consists of a series of convolutional and pooling layers that reduce
the spatial dimensions of the image while increasing the number of channels. The inception
modules are the core building blocks of Inception-v3. These modules are designed to capture
features at multiple scales simultaneously, using a combination of convolutional and pooling
operations. Each module consists of four branches, each with a different filter size, allowing the
network to capture both local and global features. The classification head is the final component of
the network, responsible for producing the output probabilities. It consists of a global average
pooling layer, followed by a fully connected layer and a softmax activation function. The details of

the network is presented in Fig. 9.

ional
Blocks

Auxiliary Auxiliary
Classifier Classifier

nHCcOZ~

(a)
3x3
MaxPool
1x1 1x1 3x3
[ Conv ] [ Conv J tMaxPooL‘
Inception Module Inception Module with Dimension Reduction
(b)

Fig. 9: Architecture of Inception-v3, (a) Inception-v3 mode (b) A Fundamental Component of the Inception-v3 Framework. On the Right-
Hand Side is a Traditional Sub-Component, and on the Left-Hand Side is a Compactness-Enhanced Sub-Component [Image by
dvgodoy/CC BY]
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4.2.2 DenseNet-121

DenseNet-121 is a specific configuration of the DenseNet architecture [56], characterized by its 121
layers, growth rate of 32, and four dense blocks. This unique design enables feature reuse and
reduces the vanishing gradient problem, resulting in improved accuracy and reduced parameters.
The architecture comprises four dense blocks, interspersed with transition layers that perform
downsampling and feature map reduction. This design not only enhances the network's capacity to
learn complex features but also helps in managing computational resources effectively. A defining
feature of DenseNet-121 is its use of dense connections within each dense block. Unlike traditional
CNNs where each layer only receives input from the previous layer, DenseNet-121 connects each
layer to every other layer in a feed-forward fashion, allowing for feature reuse and improved
information flow. The growth rate of 32 enables the network to increase its capacity without
exponentially increasing the number of parameters. The use of transition layers reduces the spatial
dimensions and number of channels, preventing the network from becoming too computationally

expensive.

Fig. 10: Schematic diagram of DenseNet [56]
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Fig. 11: Architecture of DenseNet-121 [Image by Pablo Ruiz]

4.2.3 Prediction of compressive strength

Based on the above a number of CNN models have been developed and investigated in order to find
the optimum model. The developed ANN models were sorted in a decreasing order based on the
validation accuracy and the model showed in Fig. 8 has been chosen as the best fitting model
according to the validation results. Fig. 12 depicts the comparison between of the experimental
values and the predicted values of the ANN for images taken at 20x zoom level. It is worth noting

that all samples used for the testing process have a deviation less than + 20%.
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Fig. 12 Experimental compressive strength vs. Predicted compressive strength (for images taken at 20x zoom level)
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4.3 Validation of results

Two distinct statistical metrics were utilized to assess the performance of the developed neural
network model, as well as the existing formulas in the literature for estimating concrete
compressive strength based on nondestructive testing. Root mean square error (RMSE) and Pearson
Correlation Coefficient R* are used in this study. It is to be mentioned that higher R? signifies how
well the independent variable are related to the dependent variable and R close to 1 signifies, the
better the prediction power. RMSE represents the absolute difference of actual and predicted
compressive strength i.e. error in prediction of the compressive strength, and the lower RMSE

values represent more accurate prediction results. The coefficient of and RMSE can be defined as

R =1_|=! 6)

RMSE = 1%i(xi—yi)2 (7)

where n denotes the total number of datasets, and x; and y, represent the predicted and target
values, respectively. Additionally, the a20-index is introduced for evaluating the reliability of the
developed artificial neural network (ANN) model [15].

a20—index = m20

®)

Where N stands for the amount of data samples, m20 represents the count of samples showing the
ratio between Experimental-value and Predicted-value. Note that for an ideal predictive model, the

a20-index values are anticipated to be 1.
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4.4 Comparisons of test results

In Table 8 the predicted results for images taken at 20x zoom level of the proposed neural network's

as well as the 6 bibliographical suggestion presented in Table 2 are presented. Additionally, the

ratio of experimental vs prediction values of compressive strength of all the above mentioned

models are presented in Fig. 13. It is clearly depicted in Fig. 12 and Fig. 13, that most of the data

points predicted by the proposed ANN model are well predicted and they are situated near the

centre line of the graph.

The R* and RMSE metrics of the relations between predicted and actual compressive strength of

concrete for the ML model along with the proposed empirical suggestions are charted in Fig 14. It is

observed that the proposed neural network performed the best in terms of the R* value among all the

mathematical models. It also produced the least RMSE value. Previously Shiuly et al. [43] reported

that InceptionResNet-v2 yielded the best results (R* values close to 0.85).

Table 8 Value of proposed index of different mathematical models

S1. No. Mathematical R’ RMSE a20-index
model

1 DCNN Model 0.99 0.67 1

2 EQ.1 0.57 8.51 0.63
3 EQ.2 0.52 7.41 0.37
4 EQ.3 0.58 6.53 0.33
5 EQ.4 0.62 7.16 0.52
6 EQ.5 0.63 7.05 0.63
7 EQ.6 0.55 8.59 0.33
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Chapter 5

Conclusion

5.1 General

Due to it’s heterogeneity, accurately predicting the compressive strength of concrete is extremely
challenging. Numerous studies utilizing non-destructive methods for estimating concrete
compressive strength have been conducted. However, the challenge of accurately estimating
concrete compressive strength remains unresolved because the formulas available in the literature
often exhibit significant variability in their estimates and substantial deviations from the actual
(experimental) compressive strength values of the concrete.

The present study attempts to establish a relation between concrete compressive strength and
ultrasonic pulse velocity by using machine learning technique. In the present study, an attempt has
been made to predict the compressive strength concrete using the UPV values and concrete surface
images with the help of machine learning technique. For carrying out the whole experiment,
concrete sample of different grade were prepared and cured for 7 days, 28 days and 90 days
respectively. Ultrasonic pulse velocity tests were performed followed by uniaxial compressive test
at the end of each curing stage. Pictures were taken at different zoom level at during this time. A
deep convolutional neural network model was developed and trained using the gathered data with

UPYV and images being the input and the compressive strength as the output value.

5.2 Findings

The comparison between the obtained results and the experimental data and existing analytical
formulas in the literature highlights the promising potential of using machine learning for reliably
and accurately approximating the compressive strength of concrete based on non-destructive
measurements. The results clearly signify that among all the methods, the model developed using
Inception-v3 and DenseNet yields best results for predicting compressive strength concrete with
highest value of R* (about 0.98) and lowest values of RMSE. Additionally, the proposed neural
network models can continuously retrain with new data, allowing them to adjust effectively to new

information and expand their range of applicability.
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Limitations

The proposed neural network model can only be implemented if both the experimental value of
UPYV test results as well as the images of the concrete surface are present. It is important to
emphasize that the machine learning systems are best utilized for variable ranges spanning from the
minimum to the maximum levels of each variable (as outlined in Table 3). The diversity of the
image and experimental test dataset generated in this study is restricted. Thus, it will produce
inaccurate compressive strength predictions for any new image with a UPV value outside the input

range. It is also important to emphasize that no test has been conducted to check the durability

properties of concrete.

Scope for further research

Durability properties should be measured like RCPT, sorptivity etc
Durability properties should be also checked by image processing.
More samples should be tested for accurate results.

Image processing should be conducted more preciously.

A o

Image processing can be done for high strength concrete
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