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ABSTRACT 

 

Functionally graded materials (FGMs) are new materials whose properties change 

gradually in respect to their dimensions. This group of materials shows a tremendous 

improvement of previously used composite materials. FGM consists of two or more materials 

whose combination enables the achievement of specified properties in accordance with the 

desired application. The Ceramic-Metal FGMs can be designed to reduce thermal stresses and 

take advantage of the corrosion and heat resistances of ceramic and the mechanical strength, 

good machinability, high toughness and bonding capability of metals without severe internal 

thermal stresses. Use of folded plates are common nowadays for many types of structures. 

Judicial use of folds increases the stiffness of the structure and hence its load carrying capacity. 

As the FGMs are most likely to be used in the high thermal environments, the free 

vibration analysis, a fundamental dynamic characteristic, of FGM flat and folded plates under 

thermal environment holds significant importance in understanding their mechanical behaviour 

and potential applications. Modal analysis of all side clamped (CCCC) FGM rectangular flat 

and folded plates in the thermal environment is done based on the First-order transverse shear 

deformation theory (FSDT). Material properties are assumed to be dependent on temperature 

and vary continuously in thickness direction according to power law distribution. A finite 

element program in MATLAB environment is developed for the present study applying folded 

plate transformation considering 8-noded isoparametric elements with 6 degrees of freedom 

per node. The effect of various parameters like crank angle β, different side to thickness ratios 

(b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and gradient indices 

on the natural frequencies of FG rectangular flat and folded plates is studied. It is observed that 

increasing thermal load reduces the stiffness of the structure considerably. Stiffer sections can 

withstand more temperature than thinner sections. Presence of ridge line in folded plates make 

the structure stiffer compared to flat plate and hence is capable of resisting higher thermal load. 

The calculated results have been validated with the existing literature.  

 The thesis also gives an overview of the existing literature on the area of different 

classifications, various fabrication methods and applications of the FGMs. In recent decades, 

the exploration of FGMs' free vibration behavior has attracted the attention of researchers 

across mechanical, aerospace, civil, and biomedical engineering disciplines. The inherent 

complexity stemming from varying material properties within FGM plates, coupled with 

diverse boundary conditions and geometric configurations, necessitates advanced 

computational techniques for accurate analysis.  
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CHAPTER 1.  

INTRODUCTION  

Functionally graded materials (FGM) are composite materials which are designed to present a 

particular spatial variation of their properties (such as mechanical and thermal properties). This 

is usually achieved by forming a compound of two components whose volume fraction is 

changed continuously across a certain direction. 

So FGMs are defined as an anisotropic material whose physical properties vary 

throughout the volume, either randomly or strategically, to achieve desired characteristics or 

functionality. FGMs differ from traditional composites in that their material properties vary 

continuously from one surface to another, whereas the composite changes at each laminate 

interface. Thereby FGMs eliminate the problem of stress concentration in laminated 

composites. FGMs accomplish this by gradually changing the volume fraction of the materials 

which make up the FGM. Thus, material properties depend on the spatial position in the 

structure. The properties that may be designed/controlled for desired functionality include 

chemical, mechanical, thermal, and electrical properties. 

1.1 History of FGMs 

Shen and Bever [1] first proposed the concept of gradual 

material composition for composite and polymer 

materials in 1972. However, the “first” FGM was 

developed in Japan in 1984-85 as the result of a 

spaceplane project [2]. Although the concept of FGM is 

recent, many materials that fit the description have 

existed for decades. Some FGMs also occur naturally:  

 Seashells 

 Bones and teeth 

The human bone is an example of a FGM.  It is a mix of 

collagen (ductile protein polymer) and hydroxyapatite 

(brittle calcium phosphate ceramic). The yellow 

marrow consists of fat which contributes to the weight 

and the red marrow is where the formation of red blood 

cells occurs.  A gradual increase in the pore distribution 

from the interior to the surface can pass on properties 

such as shock resistance, thermal insulation, catalytic 

efficiency, and the relaxation of the thermal stress.  The 

distribution of the porosity affects the tensile strength 

and the Young’s modulus. The human bone has high 

strength at the surface as it gradually lowers toward the 

inside by altering the porosity. From an engineering 

perspective, the human bone is a remarkable material Figure 1.1.1: Human Bone 
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having unique material properties that has the ability to repair itself and to adapt to its 

mechanical environment. 

1.2 Applications of FGMs 

Due to its excellent thermal and mechanical properties, functionally graded materials (FGMs) 

are widely used in various fields and are likely to be used for other purposes. The most 

important applications include aerospace, energy, automobile, biomedical, defence, 

electrical/electronics, marine, Opto-Electronics, sport, thermoselectrics, and bioengineering. 

Some of the applications of functionally graded materials are highlighted below:  

1. Aerospace: Functionally graded materials can withstand very high thermal gradient, 

this makes it suitable for use in structures and rocket engine component, space plane body etc. 

If only the processing technique is improved, FGMs are promising and can be used in wider 

areas of aerospace.  

2. Medicine: Living tissues like teeth and bones are examples of functionally graded 

material from nature, to replace these tissues, a compatible material is needed that will serve 

the purpose of the original tissue. The ideal material for this application is functionally graded 

material. FGM has find wide range of application in dental and orthopaedic applications for 

teeth and bone replacement.  

3. Defence: One of the most important characteristics of functionally graded material is 

the ability to inhibit crack propagation. This property makes it ideal material to be used in 

defence application, as a penetration resistant materials used for armour plates and bullet proof 

vests.  

4. Energy: FGM are used in energy conversion devices. They can be used in making 

thermal barriers and are used as protective coating on turbine blades in gas turbine engine.  

5. Optoelectronics: FGM also finds its application in optoelectronics as graded 

refractive index materials and in discs’ magnetic storage media. 

Other areas of application are: cutting tool insert coating, nuclear reactor components, 

automobile engine components, turbine blade, heat exchanger, Tribology, fire retardant doors, 

sensors etc. Current applications of FGMs also include: 

 Structural walls that combine two or more functions including thermal and sound 

insulation. 

 Enhanced sports equipment such as golf clubs, tennis rackets, and skis with added 

graded combinations of flexibility, elasticity, or rigidity. 

 Enhanced body coatings for cars including graded coatings with particles such as 

dioxide/mica. 

The list is endless and more application is springing up as the cost of production, processing 

technology and properties of FGMs improve. 
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1.3 Advantages of FGMs 

FGMs are considered to be potential substitute to traditional laminated composite materials as 

they can mitigate some disadvantages associated with the laminates. Various advantages of 

FGMs are pointed out below: 

 Minimization of interfacial stresses between different materials (e.g. due to temperature 

variation). 

 Provide ability to remove stress concentrations. 

 Provide multi-functionality. 

 Provide ability to control deformation, dynamic response, wear, corrosion, etc. and 

ability to design for different complex environments. 

 Provide opportunities to take the benefits (pros) of different material systems [e.g. 

ceramics and metals such as resistance to oxidation (rust), toughness, machinability, 

and bonding capability]. 

1.4 Challenges of FGMs 

Functionally graded materials (FGMs) offer unique properties due to their tailored composition 

and microstructure, but they also pose some challenges: 

 Mass production 

 Quality control 

 Design complexity 

 Property prediction 

 Cost 

1.5 Classification of FGMs 

1.5.1 Classification based on FGM structure 

In general, FGM structures are classified into two general categories (Figure 1.5.1). The first 

category is structures that are known as discontinuous or step gradients, where the gradient 

factor is changing step-by-step and the second category is called continuous gradients, in which 

the gradient factor is continuously flowing through the volume of the material.  

a) Stepwise Graded Structures 

An example is a spark plug in which gradient is formed by changing its composition from a 

refractory ceramic to a metal. 

b) Continuous Graded Structures 

No clear zones or separation cut lines could be observed inside the material to distinguish the 

properties of each zone. In other words, not only there is no interface between one side and 

other side but also, there is no vestige between them. An example is the human bone in which 

gradient is formed by its change in porosity and composition. Change in porosity happens 

across the bone because of miniature blood vessels inside the bone. 
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Note:  Desired properties gradients may be designed by controlling crystal structure and crystal 

orientation, particulate diameter, bonding state, etc. 

   
 (a) (b) 

Figure 1.5.1: Classification of FGM structures (a) Stepwise graded (b) Continuous graded 

1.5.2 Classification based on FGM gradient type 

According to gradient type FGMs can be classified into three different groups: gradient 

composition, gradient porosity and gradient microstructure (Figure 1.5.2) [60]. 

 

Figure 1.5.2: Classification of functionally graded materials based on type of FGM gradients: 

a) composition, b) porosity and c) microstructure 

a) Gradient composition 

In the group of gradient materials based on chemical composition, the chemical composition 

is gradually varied according to the spatial position. The combination of the FGM gradient 

depends on the composition of the material, which varies from substance to substance and leads 

to separate phases with diverse chemical structure. 
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b) Gradient porosity 

In this case, the porosity varies according to the location throughout the material. In the design 

of FGMs with graded porosity, not only the size of the porosity is very important, but also their 

shape is extremely significant. From an industrial point of view, it can be seen that materials 

with graded porosity in the medical industry have far more applications and several studies 

have been published in this field.  

c) Gradient microstructure 

This type of FGM refers to a group whose material surface has a different microstructure than 

its core. Heat treatment in these materials plays a significant role as these elements are mainly 

produced during the cooling process. These are utilized in applications and devices where the 

surface must have certain capabilities such as wear-resistance and corrosion, etc. while the 

nucleus of the body has another property. 

1.5.3 Classification based on FGM constituent materials 

FGMs were initially classified by researchers under conventional composite materials 

depending upon the used combinations of constituents. There exist many possible material 

combinations that can be used to produce FGMs. Metal–metal, metal–ceramic, ceramic–

ceramic or ceramic–polymer are the most common as shown in Figure 1.5.3. 

Figure 1.5.3: Examples of possible material combinations used in FGMs 

1.6 Fabrication Methods of FGM 

Fabrication methods being the most diverse and sophisticated field in FGM research and 

development, has undergone periodic evolution and progression in production technology as 

well as fabrication methodology. The diverse development processes that periodically came to 

use, range from deposition techniques to casting techniques. The suitability and feasibility of 

production methods were determined based on material composition, transition functionality, 

component geometry. Figure 1.6.1 classifies the different fabrication techniques employed for 

processing FGMs [61]. 
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Figure 1.6.1: Various fabrication techniques for FGM. 

1.7 Material properties gradation: Mathematical idealization 

Functionally graded materials (FGMs) are a special kind of composite in which the material 

properties vary smoothly and continuously from one surface to the other. Generally, the 

material properties and volume content vary along the thickness direction. So, FGM is a very 

non-uniform material. However, it is beneficial to idealize it as a continuum so that its 

mechanical properties change smoothly in spatial coordinates. In order to analyse FGMs 

effectively, a homogenization scheme must be adopted to simplify its complex heterogeneous 

microstructure. The most common homogenization techniques for modelling the effective 

material properties are the rule of mixtures (Markworth and Saunders, 1995), the Mori–Tanaka 

method (Mori and Tanaka, 1973; Tanaka, 1997) and Hill’s self-consistent approach (Hill, 

1965). These models are available to estimate the overall properties of composites from the 

knowledge of the material composition and constituent properties [62]. Through this 

idealization, the effective properties of macroscopic homogeneous composite materials can be 

derived from the microscopic heterogeneous material structures. This will help us to get a 

mathematical model which in turn useful to include and improve numerical techniques of the 

FGM structures. It is vital that the conveyance of materials in the FG structure can be intended 

for different spatial particulars. A typical FGM represents a modern composite material with a 

recommended conveyance of the volume portion of the constituent stages. It is commonly 

expected that the material properties follow the progressive change in thickness in a nonstop 

way. 

The material properties gradation in FGM is assumed to follow power law function, 

exponential function etc. which are discussed here. 
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Figure 1.7.1: FGM plate geometry and it’s material property variation along the depth 

1.7.1 Exponential law 

This law is generally adopted when we deal with the fracture mechanics problems. According 

to this law, the material property P(z) in a specific direction is given by, 

𝑃(𝑧) = 𝑃𝑡𝑒
−0.5(𝑙𝑛

𝑃𝑡
𝑃𝑏
)(1−

2𝑧

ℎ
)
 

Pt and Pb are the corresponding material characteristic values of the topmost and bottom most 

layer of the FG plate and ‘h’ is the total thickness of the plate as shown in Figure 1.7.1. It has 

been found many research articles that used the exponential function to express the material 

properties variation with the thickness of the FG plate as follows [30], 

𝐸(𝑧) = 𝐸𝑐𝑒
−0.5(𝑙𝑛

𝐸𝑐
𝐸𝑚

)(1−
2𝑧

ℎ
)
 

𝑘(𝑧) = 𝑘𝑐𝑒
−0.5(𝑙𝑛

𝑘𝑐
𝑘𝑚

)(1−
2𝑧

ℎ
)
 

𝛼(𝑧) = 𝛼𝑐𝑒
−0.5(𝑙𝑛

𝛼𝑐
𝛼𝑚

)(1−
2𝑧

ℎ
)
 

Where, 𝐸(𝑧) is the modulus of elasticity, 𝑘(𝑧) denotes the property of thermal conductivity 

and 𝛼(𝑧) indicates the value of the coefficient of thermal expansion of the FGM plate with a 

thickness of h. ‘c’ and ‘m’ represents ceramic and metal respectively. 
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Figure 1.7.2: Variation of Young modulus (Al/Al2O3) with the thickness of the FG plate 

using exponential function [30] 

Figure 1.7.2 shows the variation of modulus of elasticity in the direction of the FGM plate's 

thickness. 

1.7.2 Power law 

It is observed from the open literature that this particular power law behavior is most commonly 

used by many researchers. If FGM plate of uniform thickness ‘h’ is used for the analysis then 

according to this law, the material properties P(z) in a specific direction (along ‘z’) can be 

determined by, 

𝑃(𝑧) = (𝑃𝑡 − 𝑃𝑏)𝑉𝑓 + 𝑃𝑏 

Pt and Pb are the corresponding material characteristic values of the topmost and bottom most 

layer of the FG plate. FGM is usually designed to assume that one of the outermost layers is 

metal and the other layer is ceramic. 

It is noted that material properties are dependent on the volume fraction ‘Vf’ of FGM. The 

constituent volume fraction of the FGM plate is supposed to change continually along the 

thickness direction, which follows power-law as,  

𝑉𝑓 = ( 
𝑧

ℎ
+
1

2
 )
𝑁

 

where 'N' is the volume fraction exponent. The power law exponent ‘N’ can vary from ‘0’ to 

‘∞’ that show the transition of material from fully ceramic to metallic phase, respectively. The 

variations may be seen in Figure 1.7.3, which reveals that material properties with exponential 

gradation usually lie between those obtained with power-law exponents, N = 0.2, 0.5, 1, 2, and 

5. 
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Figure 1.7.3: Variation of Young modulus (Al/Al2O3) with the thickness of the FG plate 

using the power-law [30]  

1.7.3 Sigmoid law 

Power-law function and exponential function are commonly used to describe the gradation of 

material properties of FGMs, but, in both functions, the stress concentrations appear in one of 

the interfaces in which the material is continuous but changing rapidly. To overcome this, 

Chung and Chi [65], in their work suggested the use of another law called sigmoid law which 

is the combination of two power-law functions. This law is not independent law; it consists of 

two symmetric FGM layers having power-law distribution. They also suggested that by the use 

of a sigmoid law the stress intensity factors of a cracked body can be reduced to a certain 

extend. According to this law, the two power-law functions are defined by, 

𝑔𝑡(𝑧) = 1 − 0.5 (1 −
2𝑧

ℎ
 )
𝑁

   for  (0 ≤ 𝑧 ≤
ℎ

2
) 

𝑔𝑏(𝑧) = 0.5 (1 +
2𝑧

ℎ
 )
𝑁

   for  (−
ℎ

2
≤ 𝑧 ≤ 0) 

By using the rule of mixture [i.e. P(z) = (Pt – Pb)Vf + Pb ], Young's modulus of the Sigmoid 

FGM can be calculated by, 

𝐸(𝑧) = 𝑔𝑡(𝑧)𝐸𝑡 + [1 − 𝑔𝑡(𝑧)]𝐸𝑏     for  (0 ≤ 𝑧 ≤
ℎ

2
) 

𝐸(𝑧) = 𝑔𝑏(𝑧)𝐸𝑡 + [1 − 𝑔𝑏(𝑧)]𝐸𝑏     for  (−
ℎ

2
≤ 𝑧 ≤ 0) 

  

Figure 1.7.4 shows the variation of FGM volume for different values of N by employing the 

sigmoid function. 
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Figure 1.7.4: Variation of Young’s modulus (Al/Al2O3) with the thickness of the FG plate 

using the sigmoid function [66]. 

1.8 Folded Plate Structures 

Folded plate structures are shell structures made by assembling flat plates, bending them in 

different directions, and joining them along their longitudinal edges. Shells and folded plates 

belong to the class of stressed-skin structures which by virtue of their geometry and small 

flexural rigidity tend to carry applied loads primarily by direct stresses lying in their plane 

accompanied by little or no bending unlike slab which carries loads by flexure. Judicial use of 

folds increases the stiffness of the structure and hence its load carrying capacity. This makes 

them economical for longer spans. Folded plate structures represent an ingenious synthesis of 

architectural aesthetics and structural engineering principles. Characterized by their distinctive 

folded or corrugated configurations, these structures offer a versatile and efficient solution for 

a variety of architectural and engineering challenges. 

 

Figure 1.8.1: Folded Plate 

The origins of folded plate structures can be traced back to ancient architectural traditions, 

where early civilizations utilized simple folded elements, such as mud bricks or stone slabs, to 

construct durable and stable structures. However, it wasn't until the advent of modern 

engineering techniques and materials that folded plate construction truly flourished as a distinct 

architectural typology. 
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 Figure 1.8.2: Various types of folded plate roofs. 

1.8.1 Advantages of Folded Plate Structures 

Folded plate structures differ from flat plate structures in their geometric configuration and 

structural behavior, leading to several advantages: 

a) Increased Structural Strength: Folded plate structures exhibit greater stiffness and 

load-carrying capacity compared to flat plates. The folded configuration enhances the 

structural rigidity by increasing the moment of inertia, resulting in improved resistance 

to bending and torsional forces. 

b) Longer Spans: Folded plate structures can span longer distances without the need for 

additional supports compared to flat plate structures. This makes them ideal for 

applications requiring large, column-free interior spaces, such as industrial buildings, 

stadiums, and exhibition halls. 

c) Reduced Material Usage: Despite their increased strength and spanning capability, 

folded plate structures often require less material compared to flat plate structures of 

similar size and load-bearing capacity. This efficiency is achieved through the 

geometric arrangement of the folded plates, which optimizes the distribution of forces 

and minimizes material usage. 

d) Architectural Flexibility: The folded configuration of plate structures allows for 

greater architectural freedom and creativity. Architects can explore various folding 

patterns, angles, and configurations to create visually striking and innovative designs 

that may not be achievable with flat plate structures. 

e) Aesthetic Appeal: Folded plate structures offer unique aesthetic possibilities, with their 

distinctive folded or corrugated appearance adding visual interest and architectural 

character to buildings and structures. The interplay of light and shadow on the folded 

surfaces can create dynamic and engaging spatial experiences for occupants and 

observers. 

f) Enhanced Stability: The folded configuration of plate structures enhances their overall 

stability and resistance to lateral loads, such as wind and seismic forces. This make 
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them well-suited for applications in regions prone to environmental hazards or where structural 

stability is a critical design consideration. 

Overall, folded plate structures offer a compelling combination of structural efficiency, 

architectural flexibility, and aesthetic appeal, making them a preferred choice for a wide range 

of building types and applications where long spans, structural integrity, and design innovation 

are paramount. At its essence, a folded plate structure consists of a series of interconnected flat 

plates that are folded or bent along specific lines to create a continuous, three-dimensional 

form. This folding process not only imbues the structure with inherent strength and rigidity but 

also allows for the creation of large, column-free interior spaces—a hallmark feature highly 

sought after in modern architectural design. 

1.8.2 Applications of Folded Plate Structures 

The application of folded plate structures has always been relevant in different fields of 

engineering. Here are some common applications: 

a) Roof Structures: Folded plate structures are frequently used in roof design, particularly 

for large-span buildings such as warehouses, factories, and sports arenas. The inherent 

rigidity of folded plates allows for the creation of expansive roof systems without the 

need for extensive support columns, resulting in large, open interior spaces. 

b) Bridges: Folded plate structures can be utilized in bridge construction, especially for 

pedestrian bridges and small to medium-span vehicular bridges. Their structural 

efficiency, aesthetic appeal, and ability to span long distances make them suitable for 

various bridge designs. 

c) Architectural Features: Folded plate elements can be incorporated into architectural 

features such as canopies, awnings, and facades to provide both structural support and 

visual interest. The geometric flexibility of folded plates allows architects to create 

innovative and unique designs that enhance the overall aesthetic of buildings. 

d) Industrial Buildings: In industrial settings, folded plate structures are often employed 

in the construction of factories, warehouses, and distribution centers. Their ability to 

support heavy loads and provide large, uninterrupted interior spaces makes them well-

suited for industrial applications where efficient use of space is critical. 

e) Stadiums and Arenas: Folded plate structures are ideal for the construction of stadium 

roofs and grandstands due to their ability to span large distances and accommodate 

seating arrangements. Additionally, their geometric versatility allows for the creation 

of visually striking architectural forms that can become iconic landmarks. 

f) Exhibition Halls and Convention Centers: Folded plate structures are commonly 

used in the construction of exhibition halls and convention centers where large, column-

free spaces are required to accommodate trade shows, conventions, and other events. 

The structural efficiency of folded plates allows for the creation of vast, flexible interior 

spaces that can easily be adapted to suit various purposes. 
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g) Residential Buildings: While less common, folded plate structures can also be 

employed in residential construction, particularly for custom-designed homes and high 

end residential projects. Their ability to create dramatic interior spaces and support 

unique architectural features can add a distinctive character to residential buildings. 

Overall, folded plate structures offer a versatile and efficient solution for a wide range of 

architectural and engineering applications, enabling the creation of innovative and visually 

striking designs while also providing practical benefits such as large-span capabilities and 

structural integrity. 

1.9 Objective of Present Study 

The present research aims to undertake finite element free vibration analysis of all side clamped 

(CCCC) functionally graded rectangular flat and folded plate structures subjected to thermal 

environment. Eight noded isoparametric serendipity plate bending elements considering first-

order shear deformation theory (FSDT) with rotary inertia will be used. A continuous variation 

of material properties like Young’s modulus and density per unit volume will be assumed 

through the plate thickness according to power law distribution. Material properties are 

assumed to be dependent on temperature. The effect of different crank angles (β), side to 

thickness ratios (b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and 

gradient indices on the natural frequencies of FG rectangular flat and folded plates is studied.  

1.10 Scope of Present Study 

A computer program in MATLAB environment has been developed to study the influence of 

temperature on the dynamic properties of all side clamped Si3N4/SUS304 (Refer Table 3.1.1) 

FGM rectangular flat and folded plates. Eight-noded isoparametric plate bending element with 

six degrees of freedom at each node have been employed in the present computations using 

FEM. First order shear deformation plate theory (FSDT) in conjunction with rotary inertia has 

been used in the research due to its high efficiency, simplicity and lesser computational cost. 

The analysis considers material properties of the FGM at elevated temperature. Residual 

stresses due to thermal environment are taken into account. A three-point gauss quadrature rule 

is applied for evaluating the bending stiffness matrix whereas, a two-point gauss rule is applied 

for evaluating shear stiffness matrix to avoid shear locking. Folded plate transformation has 

been employed in the analysis using a 6 x 6 transformation matrix to transform the element 

matrices before assembly. A set of new results with various crank angles (β), side to thickness 

ratios (b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and gradient 

indices are presented.  

These set of results can be used to understand the behaviour of FGM plates under similar 

aggressive environment. Plates used in many structural systems may undergo undesirable large 

deflections due to attenuation of resonant frequencies caused by thermal loading during 

vibration. These results can be advantageously used by designers to tailor different parameters 

of FGM plates required to avoid resonance. A set of these parametric results can be used for 

assessing and monitoring the health of structures. 
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CHAPTER 2.  

LITERATURE REVIEW 

Due to the broad applicability of FGM materials across diverse fields, extensive research has 

been conducted in this area. An in-depth analysis of previously published literature has been 

undertaken to enhance the understanding and knowledge of the subject. The vast historical 

background of published literature can be broadly classified into the following categories: 

2.1 FGM Flat Plate 

Shen and Bever [1] first proposed the concept of gradual material composition for composite 

and polymer materials in 1972. However, the “first” FGM was developed in Japan in 1984-85 

as the result of a spaceplane project [2]. Although the concept of FGM is recent, many materials 

that fit the description have existed for decades. Some FGMs also occur naturally like seashells, 

bones and teeth. Praveen and Reddy [3] carried out a nonlinear thermo-elastic analysis of 

functionally graded ceramic–metal plates using a finite element model based on the first-order 

shear deformation plate theory (FSDT). Reddy [4] presented a theoretical formulation based 

on Navier’s solutions of rectangular plates, and on third-order shear deformation theory 

(TSDT) to analyse the functionally graded plates. The plates are assumed to have isotropic, 

two-constituent material distribution through the thickness, and the modulus of elasticity of the 

plate is assumed to vary according to power-law distribution in terms of the volume fractions 

of the constituents. Vel and Batra [5] established an exact three-dimensional solution to 

perform free and forced vibration analysis of simply supported functionally graded plates. They 

assumed that the material properties are varying in the thickness direction only according to 

power law. The exact solutions are compared with those obtained by the classical plate theory 

(CPT), first order shear deformation theory (FSDT) and third order shear deformation theory 

(TSDT). It is seen that there are significant differences between the exact solution and results 

obtained from the classical plate theory whereas the results obtained from the first order and 

the third order shear deformation theories compare well with the exact solution specially for 

thin plates. Hashemi et al. [6] developed a dimensionless equation of motion to investigate the 

transverse vibration of thick functionally graded plates using Mindlin plate theory. Abrate [7] 

analysed free vibration, buckling and static deflections of FG plates based on the CPT, FSDT 

and TSDT. They concluded that for various type of loading the natural frequencies, in-plane 

buckling loads, critical temperatures or deflections of FG plates are proportional to those of the 

corresponding homogeneous plate. In his another study [8], he showed using CPT that, if the 

reference surface is chosen properly, then the FGM plate can behave like a homogeneous plate. 

Nguyen et al. [9] calculated the value of shear coefficient (SCF) to be used for FSDT and they 

found out that the value of SCF depends on the material gradation, ratio of Young’s modulus 

of the constituent materials. Prakash et al. [10] investigated the non-linear stability behavior of 

skew FGM plates using FSDT based on the exact neutral surface position as the neutral surface 

of functionally graded plate may not coincide with its geometric mid-surface, because of the 

material property variation through the thickness. They found out that the neutral surface shift 

towards ceramic rich side and the shift increases with increase in gradient index. However, the 
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results obtained from the formulation based on the neutral surface position, is qualitatively 

similar to those of mid-surface based formulation. However, they obtained a much higher out 

of-plane deflection and its difference from mid-surface calculations increased with increase in 

gradient index and non-linearity. Hashemi et al. [11] carried out analytical solutions for free 

vibration analysis of moderately thick rectangular plates, which are composed of functionally 

graded materials (FGMs). They used first-order shear deformation theory (FSDT) to derive and 

solve exactly the equations of motion. The rectangular plates are considered to have two 

opposite edges simply supported, while all possible combinations of free, simply supported 

and clamped boundary conditions are applied to the other two edges. The mechanical properties 

of the FG plates are assumed to vary according to a power law distribution, whereas Poisson’s 

ratio is set to be constant. Talha and Singh [12] studied the static response and free vibration 

analysis of FGM plates using higher order shear deformation theory (HSDT). Hashemi et al. 

[13] compared the analytical and numerical methods of free vibration analysis of moderately 

thick FG rectangular plates using Levy type solution along with Mindlin’s theory of plates. 

Efraim [14] derived an empirical formula that gives a correlation for natural frequencies of 

FGM plate and isotropic ones made of containing materials, even with different Poisson ratio. 

The formula gives immediately accurate results for different vibrational modes and for various 

volume fractions of containing materials without expending much computational effort. The 

natural frequencies obtained are compared with results obtained with other numerical methods 

for thick FGM annular plates. Rasheedat et al. [15] has given an overview on FGM, describing 

its peculiarities, applications and processing techniques.  Jha et al. [16] presented a detailed 

review on the research works done in various fields of FGMs. In their paper, they showed in 

details the amount of works done in each field and stressed the need for the development of 

improved 2D models that would produce much more accuracy with much less computational 

cost and efforts. Kennedy et al. [17] has given an equivalent isotropic plate model for the FGM 

plate based on CPT. This holds good only for thin FGM plates where transverse shear is 

negligible. Gupta and Talha [18] published a detailed review on the different processing 

techniques, applications, methods for material properties gradations, methods to determine 

effective material properties, different theories for analysis and on various research works done 

on FGM. Kennedy et al. [19] in his work presented an equivalent layered model for FGM plate. 

The idea was to replace the original FGM plate with an equivalent isotropic one, thus making 

the analysis much more simple. He presented a single layer isotropic model and two-layer 

model based on CPT by assuming Poison’s ratio to be constant and varying respectively and 

shown that this can be extended to three-layered and four-layered composite plates if we use 

HSDT that would be necessary for thick FGM plate. Bernardo [20] studied the structural 

behavior (static and free vibration analyses) of FGM plates using FSDT and various numerical 

techniques and gradation laws like power law and exponential law and is compared with each 

other as well as with published FEM results. The layered and continuous configurations were 

considered and they highlight the development of a package of different methods and models 

that enable the selection of those that fit better the needs of the study in terms of accuracy, 

robustness or computational cost. Chakraborty et al. [21] carried out an overall research work 

on vibration problems for FG beam and plates. Hari Krishnan et al. [22] gives a very compact 

review on the recent developments in the modelling and analysis of FGM plates. Burlayenko 

et al. [23] provided 3D modelling of free vibration and static response of functionally graded 
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materials (FGM) sandwich plates. Marzavan et al. [24] recently presented some results 

regarding the free vibrations analysis of a plane, clamped circular plate. Two new, original 

concepts are introduced by the authors: the equivalent plate concept and the multilayer plate 

concept. They proposed the multilayer plate concept based on the replacement of the 

continuous variation (according to a given law) of the elastic properties with a step variation 

of them. 

2.2 FGM Flat Plate under Thermal Load 

A lot of work is also done in the field of free vibration analysis under thermal environment for 

various FGM structures. Yang and Shen [25] analysed FGM plates for thermal free and forced 

vibration based on HSDT. Similar analysis is done by Kim [26] to predict vibrational behavior 

of FG plates under thermal loadings. Sundararanjan et al. [27] developed a nonlinear 

formulation based on von Karman’s assumptions and FSDT for free vibration analysis of 

functionally graded plates subjected to thermal environment. Li et al. [28] studied the thermal 

free vibration of FG plates using 3D elasticity theory. Subsequently, Malekzadeh et al. [29] 

investigated the thermal free vibration analysis of FG arbitrary straight-sided quadrilateral 

plates using the FSDT and the differential quadrature method (DQM). Chakraverty and 

Pradhan [30] analysed exponential functionally graded rectangular plates in thermal 

environment within the framework of Classical or Kirchhoff’s plate theory (CPT). Kandasamy 

et al. [31] in their paper discussed about free vibration and thermal buckling analysis of 

moderately thick FGM structures based on FSDT. Lee et al. [32] assessed the thermal buckling 

responses of FGM plates based on the FSDT and the neutral surface concept. A detailed review 

of progressive developments in the thermal free vibration and buckling analyses of FGM plates 

are presented by Swaminathan and Sangeetha [33]. Zghal et al. [34] presented thermal free 

vibration analysis of FGM plates and panels using an improved first-order shear deformable 

(I-FSDT) shell model which does not require any shear correction factors. Recently, Thai et al. 

[35] utilized 3D elasticity theory to predict vibrational behaviour of multi-directional FGM 

plates under thermal conditions. 

2.3 Isotropic Folded Plate 

The exploration of isotropic folded plate structures traces back to Goldberg and Leve [36] who 

developed an exact static analysis of folded plate structures based on elasticity theory. Cheung 

[37] first employed the finite strip method for analyzing isotropic folded plates. Pulmano et al. 

[38] subsequently introduced a finite element solution for folded plates with varying thickness. 

Irie et al. [39] used Ritz method for free-vibration analysis of isotropic cantilever folded plates. 

Bar-Yoseph et. al. [40] proposed an approximate solution for the analysis of folded plates based 

on Vlasov’s theory of thin walled beams. Golley and Grice [41], as well as Eterovic and Godoy 

[42], in their papers analysed folded plates using finite strip methods. Liu and Huang [43] in 

their study used finite element transfer matrix method to obtain the natural frequencies of 

cantilever folded plate structures. Spectral element method was introduced by Danial et al. [44] 

for dynamic analysis of isotropic folded plates, employing classical plate model. Bathe [45] 

and Zienkiewicz et. al. [46] presented a method for flat shell analysis, relevant to folded plate 
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structures. However, all these investigations primarily focused on isotropic folded plate 

structures.  

2.4 Laminated Composite (LC) Folded Plate 

Niyogi et al. [47] predicted the free and forced vibration response of laminated composite 

folded plate structures utilizing first order shear deformation theory (FSDT). Later Pal and 

Niyogi [48] extended this analysis to incorporate the free vibration of stiffened laminated 

composite and sandwich folded plate. Lee et al. [49] used third-order shear deformation theory 

(TSDT) to predict the dynamic behavior of folded composite structures. Haldar and Sheikh 

[50] used shear flexible sixteen noded triangular elements for the free vibration analysis of 

isotropic and composite folded plate. Peng et al. [51] presented bending analysis of folded 

plates by the FSDT and mesh free Galerkin method. Thinh et. al. [52] deals with the vibration 

and bending analysis of multi-folding laminated composite plate using FEM. Static and free 

vibration analysis of stiffened folded plates was done by Nguyen-Minh et al. [53] using a cell-

based smoothed discrete shear gap method (CS-FEM-DSG3) based on FSDT. Guo et al. [54] 

conducted a theoretical and experimental investigation on the nonlinear vibration of Z-shaped 

folded plates with inner resonance using classical plate theory (CPT). Free vibration behaviour 

of laminated composite folded plate in hygro-thermal environment is investigated by Das and 

Niyogi [55] based on FSDT.  

2.5 FGM Folded Plate 

Published literature on the free vibration analysis of folded plates made of FGM is limited. In 

2019, Mohammadi and Setoodeh [56] used an FSDT-based isogeometric analysis (IGA) 

approach for modal response of functionally graded skew folded (FGSF) plates. Very recently, 

Basu et al. [57] studied the free vibration response of functionally graded folded plates using 

finite element method considering first-order shear deformation theory and rotary inertia. 

Power-law distribution is used to vary the Young’s modulus and density per unit volume 

continuously in the thickness direction. They have shown that the thickness and boundary 

conditions play a significant role in the free vibration behaviour of the FGM folded plates. 

Zhang and Li [58] investigated the free vibration of a functionally graded graphene platelets 

reinforced composite (FG-GPLRC) porous L-shaped folded plate based on Mindlin-Reissner 

plate theory (i.e. FSDT). Very recently, Pham et. al. [59] presented free and forced vibration 

analysis of unsymmetrical functionally graded porous folded sandwich plates using mixed 

interpolation of tensorial components technique of triangular elements (MITC3). 

2.6 Critical Observation 

Thermal analysis of functionally graded folded plates is an important component of the overall 

structural design and analysis. The performance of such structures depends on the surrounding 

temperature, which causes thermal stresses and variation/degradation of material properties. 

Folded plates are often used as industrial cladding, where thermal loads are quite common. 

However, research on functionally graded folded plates in thermal environments is relatively 

limited, as per the authors’ best understanding. This knowledge gap motivates the present work.  
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In this study, we have analysed FGM rectangular flat and folded plate structures exposed to 

thermal variations. To exaggerate the effects of thermal forces, clamped boundary conditions 

have been applied to all edges (CCCC). To predict the free-vibration response of these 

structures, we have employed an eight-noded isoparametric plate bending element. First order 

shear deformation plate theory (FSDT) in conjunction with rotary inertia has been used in the 

research due to its high efficiency, simplicity and lesser computational cost. Material properties 

are assumed to be dependent on temperature and vary continuously in thickness direction 

according to power law distribution. The element matrices are transformed using a 6x6 

transformation matrix, as adapted by Niyogi et al. [47], before assembly. The impact of various 

parameters such as crank angle, thickness, power law index and temperature field, on the 

natural frequencies of functionally graded plates is presented. 
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CHAPTER 3.  

THEORETICAL FORMULATION 

3.1 Material Properties Variation Law 

In this paper we have considered that the material properties of FGM (like modulus of 

elasticity, density, Poisson’s ratio, thermal conductivity etc.) vary continuously only in the 

thickness direction from bottom (metal) to top (ceramic) and this variation is achieved by 

varying the volume fraction of constituents according to power law distribution [57]: 

 𝑉𝑐 = ( 
𝑧

ℎ
+
1

2
 )
𝑁

 Eqn. (3.1.1) 

Similarly, 

 𝑉𝑚 = 1 − ( 
𝑧

ℎ
+
1

2
 )
𝑁

 Eqn. (3.1.2) 

where ‘N’ is the power law index or gradient index, while Vc and Vm are the volume fractions 

of ceramic and metal respectively, at a distance ‘z’ from the mid-plane (Figure 3.1.1). ‘h’ is the 

overall plate thickness. 

 

Figure 3.1.1: Geometry of FGM rectangular Flat Plate 

Above FGM plate is constructed using two materials having only ceramic at the top plane (z = 

h/2) and only metal at the bottom plane (z = −h/2). N=0 indicates pure ceramic, and N=∞ 

indicates pure metal. 

The material properties are considered to be dependent on temperature. A new method is 

proposed by Touloukian [68] to evaluate the material properties (P) of ceramics and metals 

depending upon the exposure temperatures (T) and is expressed as: 

 𝑃(𝑇) =  𝑃0 (
𝑃−1
𝑇
+ 1 + 𝑃1𝑇 + 𝑃2𝑇

2 + 𝑃3𝑇
3) Eqn. (3.1.3) 
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where T indicates the environmental temperature and P0, P−1, P1 , P2 , and P3 are the constants 

of the specific temperature-dependent material property. Now, based on the simple rule of 

mixture [28], the effective material properties which are dependent on both temperature (T) 

and position (z) are expressed as: 

 𝑃𝑒𝑓𝑓 (𝑧, 𝑇) =  𝑃𝑚 (𝑇)  + [ 𝑃𝐶  (𝑇)  − 𝑃𝑚  (𝑇)] ( 
𝑧

ℎ
+
1

2
 )
𝑁

 Eqn. (3.1.4) 

where Peff represents the effective material properties of FGM at the temperature T and a spatial 

distance z from the mid-plane. Pm and Pc are the material properties of the metal and ceramic, 

respectively. In our study, the effective material properties are evaluated for three types of 

temperature distribution namely, uniform, linear and nonlinear temperature rise, details of 

which are given in subsequent paragraphs.  

For parametric studies, Stainless Steel (SUS304) and Silicon Nitride (Si3N4) are chosen to be 

the constituent materials of the FGM flat and folded plates. The values of temperature-

dependent coefficients of these two materials are shown in Table 3.1.1. However, for validation 

and mesh convergence study of folded plate formulation Al/ZrO2 FGM folded plates have been 

used. Temperature independent properties of Aluminium (Al) and Zirconia (ZrO2) are listed in 

Table 3.1.2. 

Table 3.1.1: Temperature-dependent coefficients of Young’s modulus E (Pa), Poisson’s ratio 

ν, thermal expansion coefficient α (1/K), mass density ρ (kg/m3) and thermal conductivity k 

(W/mK) of Si3N4 and SUS304 [28]. 

Material 

(Ceramic) 

Si3N4 (Silicon Nitride) 

E ν α ρ k 

P-1 0 0 0 0 0 

P0 348.430 x 109 0.24 5.8723 x 10-6 2370 9.19 

P1 -3.070 x 10-4 0 9.095 x 10-4 0 0 

P2 2.160 x 10-7 0 0 0 0 

P3 –8.946 x 10–11 0 0 0 0 

P (at 300 K) 322.2715 x 109   0.24 7.4746 x 10-6 2370 9.19 

  

Material 

(Metal) 

SUS304 (Stainless Steel) 

E ν α ρ k 

P-1 0 0 0 0 0 

P0 201.04 x 109 0.3262 12.330 x 10-6 8166 12.04 

P1 3.079 x 10-4 -2.002 x 10-4 8.086 x 10-4 0 0 

P2 -6.534x 10-7 3.797 x 10-7 0 0 0 

P3 0 0 0 0 0 

P (at 300 K) 207.7877 x 109 0.3178 1.5321 x 10-5 8166 12.04 
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Table 3.1.2: Temperature-independent Young’s modulus E (Pa), Poisson’s ratio ν and mass 

density ρ (kg/m3) of Aluminium (Al) and Zirconia (ZrO2) [12]. 

Material Aluminium (Al) Zirconia (ZrO2) 

E 70 x 109 151 x 109 

ν 0.3 0.3 

ρ 2707 3000 

3.2 Temperature Distribution 

Temperature is assumed to vary only in the thickness direction and the variation is evaluated 

in three different ways as shown below: 

3.2.1 Uniform temperature rise  

The temperature field across the thickness in the case of uniform temperature rise can be 

expressed as [28, 33]: 

 𝑇 =  𝑇0 + ∆𝑇 Eqn. (3.2.1) 

where T0 is the temperature of free stress state (T0 = 300 K) and ∆T is the uniform temperature 

rise throughout the thickness of plate.  

3.2.2 Linear temperature rise 

In this case the temperature variation is assumed to be a linear function of thickness coordinate 

(z) and it is given by [28, 33]: 

 𝑇(𝑧) =  𝑇𝑚 + ∆𝑇 ( 
𝑧

ℎ
+
1

2
 ) Eqn. (3.2.2) 

where Tm and Tc are the temperatures at the metallic and ceramic face of the FGM plate (Tm = 

300 K) and ∆T = Tc – Tm is the temperature gradient. 

3.2.3 Non-linear temperature rise 

The nonlinear variation of temperature is usually obtained from the solution of heat conduction 

equation. Due to the assumption of material homogeneity in the plane of the plate and its 

variation only in the thickness direction, the current study can be carried out using one 

dimensional heat conduction equation [26]: 

 
−
𝑑

𝑑𝑧
(𝑘(𝑧)

𝑑𝑇

𝑑𝑧
) = 0 

 

Eqn. (3.2.3) 

In our study the thermal conductivity 𝑘(𝑧) is assumed to be independent to the temperature as 

indicated in Table 3.1.1. 

Using the boundary conditions T = Tm at z = −h/2 and T = Tc at z = h/2 in the above equation, 

the non-linear temperature distribution can be written as [26, 67]: 
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 𝑇(𝑧) =  𝑇𝑚 + ∆𝑇
∫ [

1

𝑘(𝑧)
] 𝑑𝑧

𝑧

−ℎ 2⁄

∫ [
1

𝑘(𝑧)
] 𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 Eqn. (3.2.4) 

where Tm and Tc are the temperatures at the metallic and ceramic face of the FGM plate (Tm = 

300 K) and ∆T = Tc – Tm is the temperature gradient. 

(a)                                                                       (b) 

 

Figure 3.2.1: Variations of temperature along the thickness direction with the initial 

temperature T0= 300 K: (a) ∆T= 300 K; (b) ∆T=500 K. [28] 

The temperature field variations under three temperature rises along the thickness direction are 

depicted in Figure 3.2.1. The nonlinear temperature rise is influenced by the power law index, 

N. However, the impact of N is found to be insignificant. Additionally, it is evident that the 

curve representing linear temperature rise very closely aligns with those of nonlinear 

temperature rises. 

3.3 Displacement Field and Strains 

First-order shear deformation theory (FSDT) is considered in the present finite element analysis 

of the FGM folded plate structure. That means constant transverse shear strain through the plate 

thickness has been used.  

The displacement and rotation at any point are given by [55]:  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑦 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝜃𝑥 

𝑤 = 𝑤0 

∅𝑥 = 𝜃𝑦 + 𝑤 ,𝑥 

∅𝑦 = −𝜃𝑥 + 𝑤 ,𝑦 

Eqn. (3.3.1) 
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z 

Here, 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦) and 𝑤0 are corresponding mid plane displacements. 𝜃𝑥 and 𝜃𝑦  are the 

total rotations of the plate element about x and y-directions. ∅𝑥 and ∅𝑦 are the constant shear 

strains in x and y directions, respectively. 

 

Figure 3.3.1: Detail of deformation in the Mindlin plate along x-direction. 

 

Figure 3.3.2: Detail of deformation in the Mindlin plate along y-direction. 

Linear strains at any point in terms of mid-plane strains are written as: 

𝜀𝑥 = 𝑢,𝑥 = 𝑢0,𝑥 + 𝑧𝜃𝑦,𝑥 = 𝜀𝑥
0 + 𝑧𝐾𝑥 

𝜀𝑦 = 𝑣,𝑦 = 𝑣0,𝑦 − 𝑧𝜃𝑥,𝑦 = 𝜀𝑦
0 + 𝑧𝐾𝑦 

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 = 𝑢0,𝑦 + 𝑣0,𝑥 + 𝑧(𝜃𝑦,𝑦 − 𝜃𝑥,𝑥) =  𝛾𝑥𝑦
0 + 𝑧𝐾𝑥𝑦 

𝛾𝑥𝑧 = ∅𝑥 = 𝜃𝑦 + 𝑤 ,𝑥 

𝛾𝑦𝑧 = ∅𝑦 = −𝜃𝑥 + 𝑤 ,𝑦 

𝜀𝑧 = 0 

Eqn. (3.3.2) 

where 𝐾𝑥, 𝐾𝑦 and 𝐾𝑥𝑦 are the curvatures of the plate. 

zθy 

 u 0 

Φx 

 

θy 
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The constitutive relationship matrix assuming plane-stress state is given by Kim (2005): 

 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧
𝜎𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑐11 𝑐12 0 0 0
𝑐12 𝑐22 0 0 0
0 0 𝑐44 0 0
0 0 0 𝑐55 0
0 0 0 0 𝑐66]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧
𝛾𝑥𝑦}
 
 

 
 

 Eqn. (3.3.3) 

 

Here, the stiffness coefficients 𝑐𝑖𝑗  are obtained analytically and are functions of z and 

temperature T as follows:  

𝑐11 = 𝑐22 =
𝐸(𝑧, 𝑇)

[1 − 𝜈(𝑧, 𝑇)2]
 

𝑐12 = 𝑐21 =  𝜈(𝑧, 𝑇)𝑐11 

𝑐44 = 𝑐55 = 𝑐66 =  𝐺(𝑧, 𝑇) =
𝐸(𝑧, 𝑇)

2[1 + 𝜈(𝑧, 𝑇)]
 

Now the constitutive matrix is decomposed into two parts and the stress strain relations is 

rewritten in presence of thermal stress [26], as follows: 

and 

{

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

} = [
𝑐11 𝑐12 
𝑐12 
0

𝑐22 
0
   
0
0
𝑐66
] {

εx −  α(z, T) ∆T(z) 

εy −  α(z, T) ∆T(z) 
γxy

} 

{
𝜎𝑥𝑧
𝜎𝑦𝑧

} = [
𝑐44 0
0 𝑐55

] {
𝛾𝑥𝑧
𝛾𝑦𝑧
} 

Eqn. (3.3.4) 

where, α (z,T) represents coefficient of thermal expansion at any distance z from the mid plane 

and at a temperature T whereas ∆T(z) is the temperature difference at a distance z. 

The internal force and moment resultants are obtained by integrating the stresses over the entire 

plate thickness. 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
ℎ/2

−ℎ/2
𝑑𝑧 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
ℎ/2

−ℎ/2
𝑧 𝑑𝑧 

[
𝑄𝑥
𝑄𝑦
] = ∫ [

𝜎𝑥𝑧
𝜎𝑦𝑧

]
ℎ/2

−ℎ/2
𝑑𝑧 
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The constitutive equation of a plate subjected to thermal strain is given by [55]  

{𝐹} = [𝐷]{𝜀} − {𝐹𝑁} Eqn. (3.3.5) 

where, {𝐹} = {𝑁𝑥  𝑁𝑦  𝑁𝑥𝑦  𝑀𝑥  𝑀𝑦  𝑀𝑥𝑦  𝑄𝑥  𝑄𝑦 }
𝑇 

{𝜀} = {𝜀𝑥
0   𝜀𝑦

0   𝛾𝑥𝑦
0    𝐾𝑥  𝐾𝑦  𝐾𝑥𝑦  𝜑𝑥  𝜑𝑦 }

𝑇  

{𝐹𝑁} = {𝑁𝑥
𝑁  𝑁𝑦

𝑁  𝑁𝑥𝑦
𝑁   𝑀𝑥

𝑁  𝑀𝑦
𝑁  𝑀𝑥𝑦

𝑁   0  0 }𝑇  

The constitutive matrix [D] is given by [57]:  

 [𝐷] =

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26 0 0
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66 0 0
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26 0 0
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66 0 0
0 0 0 0 0 0 𝐴44 𝐴45
0 0 0 0 0 0 𝐴45 𝐴55]

 
 
 
 
 
 
 

 Eqn. (3.3.6) 

where, 

𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗 = ∫𝑐𝑖𝑗[1, 𝑧, 𝑧
2]

ℎ

2

−
ℎ

2

𝑑𝑧    (𝑖, 𝑗 = 1, 2 and 6) 

and, 

𝐴𝑖𝑗 = 𝛺 ∫𝑐𝑖𝑗

ℎ

2

−
ℎ

2

𝑑𝑧    (𝑖, 𝑗 = 4 and 5) 

𝛺 = shear correction factor taken as 5/6 for FSDT [26]. 

The thermal force and moment resultants are, 

 

 {𝑁𝑥
𝑁 𝑁𝑦

𝑁 𝑁𝑥𝑦
𝑁 }T = ∫ 𝑐𝑖𝑗

ℎ/2

−ℎ/2
[𝑒] dz  (i, j = 1, 2 and 6) 

 {𝑀𝑥
𝑁 𝑀𝑦

𝑁 𝑀𝑥𝑦
𝑁 }T   = ∫ 𝑐𝑖𝑗

ℎ/2

−ℎ/2
[𝑒] 𝑧 dz  (i, j = 1, 2 and 6) 

where [𝑒] = Thermal strain vector = {
α(z, T) ∆T(z) 

α(z, T) ∆T(z) 
0

}  
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3.4 Non-linear Strains 

Given that the deflection w does not vary with the z-direction, the non-linear portion of the 

overall strains in a plate can be expressed as: 

εxnl = 
1

2
 (u2,x + v2,x + w2,x) 

εynl = 
1

2
 (u2,y + v2,y + w2,y) 

γxynl = (u,x u,y + v,x v,y + w,x w,y) 

γxznl = (u,x u,z + v,x v,z) 

γyznl = (u,y u,z + v,y v,z) 

Eqn. (3.4.1) 

From the Eqn. (3.3.1) 

εxnl = 
1

2
 [u0

2,x + v0
2,y + w2,x + 2z(u0,xθy,x – v0,xθx,x) + z2 (θ2

y,x + θ2
x,x)] 

εynl = 
1

2
 [u0

2,y + v0
2,y + w2,y + 2z(u0,yθy,y – v0,yθx,y) + z2 (θ2

x,y + θ2
y,y)] 

γxynl=[u0,xu0,y+v0,xv0,y+w,xw,y+z(u0,yθy,x+u0,xθy,y) 

          −z(v0,yθx,x+v0,xθx,y)+z2(θy,xθy,y+θx,x θx,y)] 

γxznl = [u0,x θy − v0,x θx + z(θyθy,x + θxθx,x)] 

γyznl = [u0,y θy − v0,y θx + z(θyθy,y + θxθx,y)] 

Eqn. (3.4.2) 

3.5 Principle of Minimum Total Potential Energy 

The potential energy of deformation is given by, 

U =
1

2
∬ {𝜀}𝑇 [𝐷]
𝐴

{𝜀} 𝑑𝐴. Eqn. (3.5.1) 

The potential energy of residual stresses is expressed as, 

Ur =∭ {𝜀𝑛𝑙
𝑟 }𝑇

𝑣

 {𝜎𝑟} 𝑑𝑉 Eqn. (3.5.2) 

where, 

 {𝜀𝑛𝑙
𝑟 }𝑇 = { εxnl  εynl  γxynl  γxznl  γyznl } 

 {𝜎𝑟} = {σr
x  σ

r
y  σ

r
xy  σ

r
xz  σ

r
yz }

T 

in which σr
x, σ

r
y, σ

r
xy, σ

r
xz, σ

r
yz, are the residual stresses due to temperature. 

 

The potential energy of inertia force and moment is expressed as, 

Vi =  −∬ {𝑢}𝑇
𝐴

{𝑋} 𝑑𝐴 Eqn. (3.5.3) 
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where,  {X} = {Pu0ω
2
n, Pv0ω

2
n, Pwω2

n, Iθxω
2

n, Iθyω
2

n,}
T  

P and I are the elements of inertia matrix [see Eqn. (3.6.6)] 

Now, the total potential energy in respect of free vibration analysis of FGM plates in thermal 

environment is given by [55], 

∏ = U + Ur + Vi Eqn. (3.5.4) 

According to the principle of minimum total potential energy by equating δ∏ to zero in Eqn. 

(3.5.4), the required equilibrium condition can be obtained. 

3.6 Finite Element Formulation 

An eight noded serendipity isoparametric element have been used as shown in Figure 3.6.1. 

The term ‘isoparametric’ suggests that both the geometry and displacement field are expressed 

in terms of same shape functions. The parent element in local natural co-ordinate system can 

be mapped to an arbitrary shape in the Cartesian co-ordinate system. The shape function Ni for 

8 – noded rectangular element (also called Serendipity element) in natural coordinate system 

is given by: 

 

Figure 3.6.1: 8-noded rectangular element (Serendipity element). 

 

𝑁𝑖 =
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(𝜉𝜉𝑖 + 𝜂𝜂𝑖 − 1)

4
     for  (𝑖 = 1,3,5,7) 

𝑁𝑖 =
𝜉𝑖
2(1 + 𝜉𝜉𝑖)(1 − 𝜂

2)

2
+
𝜂𝑖
2(1 + 𝜂𝜂𝑖)(1 − 𝜉

2)

2
     for  (𝑖 = 2,4,6,8) 

Where, ξ and η are the local natural co-ordinates of the element and ξi and ηi are the value of 

them at node i. 

The derivatives of the shape functions Ni with respect to x and y are expressed in terms of their 

derivatives with respect to ξ and η by the following relationship, 

 

[
𝑁𝑖,𝑥
𝑁𝑖,𝑦

]= [J]-1 [
𝑁𝑖,𝜉
𝑁𝑖,𝜂

] 

 

where,  [J]  =  [
𝑥,𝜉 𝑦,𝜉
𝑥,𝜂 𝑦,𝜂

] = Jacobian matrix  

4 

 

η 

 5 

 

3 

 
2 

 

8 

 

1 

 

7 

 

6 

 

ξ 
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The Principle of Minimum Total Potential Energy described in Sec. 3.5 is applied to derive the 

element wise stiffness, geometric stiffness and mass matrices. 

3.6.1 Element Stiffness Matrix 

The potential energy of deformation for the element, given by Eqn. (3.5.1), is 

 U = 
1

2
∬ {𝜀}𝑇 [𝐷]
𝐴𝑒

{𝜀}𝑑𝐴    

Now,  

 {ε} = [B]{δe} = [[B1] [B2]  ………[B8]] {δe} 

 

where  {δe} = {u01, v01, w1, θx1, θy1  ………………… u08, v08, w8, θx8, θy8}
T 

 [𝐵𝑖] =

[
 
 
 
 
 
 
 
 
𝑁𝑖,𝑥 0 0 0 0

0 𝑁𝑖,𝑦 0 0 0

𝑁𝑖,𝑦 𝑁𝑖,𝑥 0 0 0

0 0 0 0 𝑁𝑖,𝑥
0 0 0 −𝑁𝑖,𝑦 0

0 0 0 −𝑁𝑖,𝑥 𝑁𝑖,𝑦
0 0 𝑁𝑖,𝑥 0 𝑁𝑖
0 0 𝑁𝑖,𝑦 −𝑁𝑖 0 ]

 
 
 
 
 
 
 
 

     (𝑖 = 1 to 8) Eqn. (3.6.1) 

Therefore,   

        U = 
1

2
 ∫ ∫ {δe} 

𝑇 [𝐵]𝑇[𝐷][𝐵]
𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
{δe} dx dy 

             = 
1

2
 {δe} 

𝑇 [𝐾𝑒] {δe} 

in which [Ke] = ∫ ∫ [𝐵]𝑇[𝐷][𝐵] 𝑑𝑥 𝑑𝑦
𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
 = element stiffness matrix. 

Since dx dy = |J| dξ dη , (|J| is the determinant of the Jacobian matrix) the linear stiffness matrix 

for an element can be expressed in local natural coordinates (𝜉, 𝜂) as: 

 [𝐾𝑒] = ∫ ∫[𝐵]𝑇[𝐷][𝐵]|𝐽|𝑑𝜉𝑑𝜂

1

−1

1

−1

 Eqn. (3.6.2) 

3.6.2 Element Load Vector due to Thermal effect 

The potential energy of thermal force and moment resultants for the element is 

 Vth = −∬ {𝜀}𝑇 
𝐴𝑒

{𝐹𝑁} 𝑑𝐴   

       = − ∫ ∫ {δe} 
𝑇 [𝐵]𝑇

𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
{𝐹𝑁} dx dy 
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Vth   = −{δe}
𝑇{𝑃𝑒

𝑁} 

where,  {𝑃𝑒
𝑁} = ∫ ∫ [𝐵]𝑇

𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
{𝐹𝑁} dx dy 

is the element load vector due to thermal effects which can be expressed in natural coordinate 

system as: 

 {𝑃𝑒
𝑁} = ∫ ∫[𝐵]𝑇{𝐹𝑁} |𝐽|𝑑𝜉𝑑𝜂

1

−1

1

−1

 Eqn. (3.6.3) 

3.6.3 Element Geometric Stiffness Matrix 

The non-linear strain [given by Eqn. (3.4.2)] can be expressed as: 

 {𝜀𝑛𝑙
𝑟 } =

1

2
 [𝑅]{𝑑}  

where,  

 {d} = { u0,x  u0,y  v0,x  v0,y  wx,  wy  θx,x  θx,y  θy,x  θy,y  θx   θy }
T 

Now, {d} for the element is expressed as, 

 {d}= [G]{δe} = [[G1] [G2]……… [G8]] {δe}  

 

where,  

 [Gi] = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑖,𝑥 0 0 0 0

𝑁𝑖,𝑦 0 0 0 0

0 𝑁𝑖,𝑥 0 0 0

0 𝑁𝑖,𝑦 0 0 0

0 0 𝑁𝑖,𝑥 0 0

0 0 𝑁𝑖,𝑦 0 0

0 0 0 𝑁𝑖,𝑥 0

0 0 0 𝑁𝑖,𝑦 0

0 0 0 0 𝑁𝑖,𝑥
0 0 0 0 𝑁𝑖,𝑦
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 (i = 1 to 8) 

Then the potential energy of residual stresses, [using Eqn. (3.5.2)] for the element can be 

written as, 

 Ur = 
1

2
 ∭ {𝛿𝑒}

𝑇
𝑣𝑒

[𝐺]𝑇[𝑅]𝑇{𝜎𝑟} 𝑑𝑉                   

 

Since, 

 [𝑅]𝑇{𝜎𝑟} = {𝜎𝑟} [𝐺] {𝛿𝑒}  
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where, 

{𝜎𝑟} =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜎𝑥
𝑟

𝜎𝑥𝑦
𝑟 𝜎𝑦

𝑟

0 0 𝜎𝑥
𝑟

0 0 𝜎𝑥𝑦
𝑟 𝜎𝑦

𝑟 𝑆𝑦𝑚𝑚

0 0 0 0 𝜎𝑥
𝑟

0 0 0 0 𝜎𝑥𝑦
𝑟 𝜎𝑦

𝑟

0 0 −𝑧𝜎𝑥
𝑟 −𝑧𝜎𝑥𝑦

𝑟 0 0 𝑧2𝜎𝑥
𝑟

0 0 −𝑧𝜎𝑥𝑦
𝑟 −𝑧𝜎𝑦

𝑟 0 0 𝑧2𝜎𝑥𝑦
𝑟 𝑧2𝜎𝑦

𝑟

𝑧𝜎𝑥
𝑟 𝑧𝜎𝑥𝑦

𝑟 0 0 0 0 0 0 𝑧2𝜎𝑥
𝑟

𝑧𝜎𝑥𝑦
𝑟 𝑧𝜎𝑦

𝑟 0 0 0 0 0 0 𝑧2𝜎𝑥𝑦
𝑟 𝑧2𝜎𝑦

𝑟

0 0 −𝜎𝑥𝑧
𝑟 −𝜎𝑦𝑧

𝑟 0 0 𝑧𝜎𝑥𝑧
𝑟 𝑧𝜎𝑦𝑧

𝑟 0 0 0

𝜎𝑥𝑧
𝑟 𝜎𝑦𝑧

𝑟 0 0 0 0 0 0 𝑧𝜎𝑥𝑧
𝑟 𝑧𝜎𝑦𝑧

𝑟 0 0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

So, Ur can be modified as, 

 Ur  = 
1

2
 ∭ {𝛿𝑒}

𝑇
𝑣𝑒

[𝐺]𝑇{𝜎𝑟} [𝐺]{𝛿𝑒} 𝑑𝑉               

        = 
1

2
 {𝛿𝑒}

𝑇 [𝐾𝐺𝑒
𝑟 ]{𝛿𝑒}   

in which  [𝐾𝐺𝑒
𝑟 ] = ∫ ∫ ∫ [𝐺]𝑇

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2
 {𝜎𝑟} [𝐺] 𝑑𝑥 𝑑𝑦 𝑑𝑧 

                          = element geometric stiffness matrix due to residual stresses. 

[𝐾𝐺𝑒
𝑟 ] can be expressed in terms of residual stress resultants [𝑆𝑟] and the local natural co-

ordinates of the element as,   

 [𝐾𝐺𝑒
𝑟 ] = ∫ ∫ [𝐺]𝑇

1

−1

1

−1

[𝑆𝑟][𝐺]|𝐽|𝑑𝜉 𝑑𝜂 Eqn. (3.6.4) 

where,     

[𝑆𝑟]= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑥
𝑟

𝑁𝑥𝑦
𝑟 𝑁𝑦

𝑟

0 0 𝑁𝑥
𝑟

0 0 𝑁𝑥𝑦
𝑟 𝑁𝑦

𝑟

0 0 0 0 𝑁𝑥
𝑟 𝑆𝑦𝑚𝑚

0 0 0 0 𝑁𝑥𝑦
𝑟 𝑁𝑦

𝑟

0 0 −𝑀𝑥
𝑟 −𝑀𝑥𝑦

𝑟 0 0
𝑁𝑥
𝑟𝑡2

12

0 0 −𝑀𝑥𝑦
𝑟 −𝑀𝑦

𝑟 0 0
𝑁𝑥𝑦
𝑟 𝑡2

12

𝑁𝑦
𝑟𝑡2

12

𝑀𝑥
𝑟 𝑀𝑥𝑦

𝑟 0 0 0 0 0 0
𝑁𝑥
𝑟𝑡2

12

𝑀𝑥𝑦
𝑟 𝑀𝑦

𝑟 0 0 0 0 0 0
𝑁𝑥𝑦
𝑟 𝑡2

12

𝑁𝑦
𝑟𝑡2

12

0 0 −𝑄𝑥𝑧
𝑟 −𝑄𝑦𝑧

𝑟 0 0 0 0 0 0 0

𝑄𝑥𝑧
𝑟 𝑄𝑦𝑧

𝑟 0 0 0 0 0 0 0 0 0 0 ]
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3.6.4 Element Mass Matrix 

The element mass matrix with rotary inertia is given by [55] 

 [𝑀𝑒] = ∬[𝑁]𝑇[𝜌][𝑁]|𝐽|𝑑𝜉 𝑑𝜂 Eqn. (3.6.5) 

where, inertia matrix 

 

 

 

 

 

where, 

[𝜌] =

[
 
 
 
 
𝐼 0 0 𝑃 0
0 𝐼 0 0 𝑃
0 0 𝐼 0 0
𝑃 0 0 𝑄 0
0 𝑃 0 0 𝑄]

 
 
 
 

 

𝐼, 𝑃, 𝑄 = ∫𝜌(𝑧)[1, 𝑧, 𝑧2]

ℎ

2

−
ℎ

2

𝑑𝑧 

Eqn. (3.6.6) 

𝜌(𝑧) being the density varying along thickness direction. Density is assumed to be independent 

of temperature in our analysis as indicated by the properties tabulated in Table 3.1.1. 

3.6.5 Transformation Matrix 

The positive directions of the linear displacements and the rotations of the plate element are 

shown in Figure 3.6.2. 

Figure 3.6.2: Transformation of translations and rotation from local xi- to global xi’-axes 

Accordingly, to correlate the local displacements u,v,w, θx, θy, θz to global displacements 

u',v',w', θ'x, θ'y, θ'z , a transformation matrix [T] is applied which is given by [55]: 

[𝑇] = 

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝑥′, 𝑥) 𝑐𝑜𝑠(𝑦′, 𝑥) 𝑐𝑜𝑠(𝑧′, 𝑥) 0 0 0

𝑐𝑜𝑠(𝑥′, 𝑦) 𝑐𝑜𝑠(𝑦′, 𝑦) 𝑐𝑜𝑠(𝑧′, 𝑦) 0 0 0

𝑐𝑜𝑠(𝑥′, 𝑧) 𝑐𝑜𝑠(𝑦′, 𝑧) 𝑐𝑜𝑠(𝑧′, 𝑧) 0 0 0

0 0 0 𝑐𝑜𝑠(𝑥′, 𝑥) 𝑐𝑜𝑠(𝑦′, 𝑥) 𝑐𝑜𝑠(𝑧′, 𝑥)

0 0 0 𝑐𝑜𝑠(𝑥′, 𝑦) 𝑐𝑜𝑠(𝑦′, 𝑦) 𝑐𝑜𝑠(𝑧′, 𝑦)

0 0 0 𝑐𝑜𝑠(𝑥′, 𝑧) 𝑐𝑜𝑠(𝑦′, 𝑧) 𝑐𝑜𝑠(𝑧′, 𝑧)]
 
 
 
 
 
 

   

𝑧’, 𝑤 𝑦’, 𝑣’ 𝑧, 𝑤 

𝑥’, 𝑢’ 

𝑧’, 𝜃’𝑧 

𝑦’, 𝜃𝑦’ 

𝑧, 𝜃𝑧 

 

𝑦, 𝑣 

𝑥, 𝑢 
𝑦, 𝜃𝑦 

𝑥’, 𝜃𝑥’ 𝑥, 𝜃𝑥 
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Figure 3.6.3: Local (un-primed) and global (primed) axis for FGM one-fold plate 

The same transformation matrix [T] is used to convert the local element linear stiffness, 

geometric stiffness and mass matrices into global stiffness and mass matrices as shown below: 

[𝐾𝑒
′] = [𝑇]𝑇[𝐾𝑒][𝑇], 

[𝐾𝐺𝑒
′ ] = [𝑇]𝑇[𝐾𝐺𝑒][𝑇],  

and [𝑀𝑒
′ ] = [𝑇]𝑇[𝑀𝑒][𝑇],                       

Here [𝑇]𝑇 = [𝑇]−1  

since [𝑇] is orthogonal. 

Before applying the transformation, the 40×40 stiffness and mass matrices are expanded to 

48×48 by inserting eight θz drilling degree of freedom at each node of a finite element as 

suggested in Bathe [45]. 

3.6.6 Assembly and Solution 

The above transformed element matrices [𝐾′𝑒], [𝐾
′
𝐺𝑒]and [𝑀′

𝑒] are assembled to obtained 

their respective global matrices [𝐾′], [𝐾′𝐺]  and [𝑀′]. These matrices are updated for boundary 

conditions before solving. 

Finally, the governing equation for free vibration analysis of the FGM folded plates in thermal 

environment is derived from the principle of minimum total potential energy [55]: 

 ( [𝐾′]  +  [𝐾′𝐺] – 𝜔𝑛
2[𝑀′] ) {𝛿}  =  0 Eqn. (3.6.7) 

from which the natural frequencies are obtained.  

Crank Angle    β 

L 
S 

S 

y’ 

z’ 

y 

x 

z 

x’ 
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3.6.7 MATLAB Program Flowchart  

Function “INERTIA” 

Determination of Inertia 

Matrix [ρ]…..Eqn. (3.6.6) 

START 

Input Parameters are assigned 

Function “CONS” 

Determination of Stiffness 

Matrix [D]…..Eqn. (3.3.6) 

Function “HYGRO” 

Determination of Hygrothermal 

Load…..Eqn. (3.3.5) 

Function “STIFFNESS” 

Determination of Transformed Elemental Stiffness 

Matrix [𝐾′𝑒] and Thermal Load Vector {𝑃𝑒
𝑁′} 

Loop for i=1 

to NEL 

Function “ASSEMBLY1” 

Assembly of Stiffness Matrix 

[𝐾′] and Load Vector {𝑃𝑁} 
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Calculation of initial displacement (δi) due to thermal 

loading in static condition using [𝐾′]{𝛿𝑖} = {𝑃𝑁} 

Function “GEOMASS” 

Loop for j=1 

to NEL 

Calculation of natural frequencies using ‘eigs’ function 

 

Calculation of initial strain {𝜀𝑖} = [𝐵]{𝛿𝑖} 

Calculation of elemental residual force and moment resultant 

{𝐹𝑟} = {𝑁𝑥
𝑟   𝑁𝑦

𝑟  𝑁𝑥𝑦
𝑟   𝑀𝑥

𝑟  𝑀𝑦
𝑟   𝑀𝑥𝑦

𝑟    𝑄𝑥𝑧
𝑟    𝑄𝑦𝑧

𝑟  }𝑇 

= [𝐷]{𝜀𝑖} − {𝐹𝑁}    ……Eqn. (3.3.5)   

 

initial displacement (δi) due to thermal loading in static 

condition using [𝐾′]{𝛿𝑖} = {𝑃𝑁} Determination of Transformed Elemental Geometric 

Stiffness Matrix [𝐾𝐺𝑒
′ ] and Mass Matrix [𝑀𝑒

′] 

Function “ASSEMBLY2” 

Assembly of Geometric Stiffness 

Matrix [𝐾′𝐺] and Mass Matrix [𝑀′] 

END 
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CHAPTER 4.  

NUMERICAL STUDY AND RESULTS  

The finite element formulation outlined in the preceding chapter has been applied to produce 

numerical results, examining the impact of thermal environment on FGM plates. Mesh 

convergence study is conducted to determine the minimum number of meshes necessary for 

accurate analysis. Along with this two validation studies are also undertaken to validate the 

results of the program against those published in established literature. 

Subsequently, a series of parametric studies are executed by varying parameters such as 

power law index, thickness, crank angle and temperature. These systematic investigations 

allow for a comprehensive understanding of how these factors influence the behavior of various 

FGM plates under thermal environment. 

4.1 Mesh Convergence and Validation Study 

A mesh convergence study is conducted on a symmetric one-fold Al/ZrO2 FGM folded plate 

structure, properties of which are defined in Table 3.1.2. The structure is symmetric about its 

ridge line and has a crank angle of 90°, as depicted in Figure 4.2.3. The folded edge comprises 

two equal inclined sides denoted as S, with a length denoted as L. The value of S and L are 

taken as 0.75 m and 1.5 m, respectively. One of the folded edges is clamped, while the 

remaining three edges are kept free (CFFF). We have considered two different plate 

thicknesses: 15 mm and 30 mm. The power law index is set to 1. The number of elements along 

S and L, are denoted as N1 and N2, respectively. The same model has been analysed using 

“ANSYS Student 2023 R2” software. First five natural frequencies in Hz for different values 

of N1 and N2 are shown in Table 4.1.1 and Table 4.1.2. From the results it is concluded that the 

arrangement with N1=4 and N2=8 provides acceptable mesh convergence and is thus adopted 

for subsequent analyses. 

The validation study is divided into two segments due to the absence of a complete 

reference. 

i) Validation of FGM folded plate formulation. 

ii) Validation of thermal formulation. 

4.1.1 Validation of FGM folded plate formulation 

Results of one-fold Al/ZrO2 (Table 3.1.2) FGM folded plate without any temperature increment 

is compared with Basu et al. [57] and ANSYS software as shown in Table 4.1.1 and Table 

4.1.2. The results are found to be within the acceptable limit. 

4.1.2 Validation of thermal formulation 

First three non-dimensional natural frequency parameters (𝜆 =
𝑤𝑏2

𝜋2
√
𝐼0

𝐷0
) of all side clamped 

Si3N4/SUS304 (Table 3.1.1) FGM square plates subjected to uniform temperature rise is 

compared with various published literatures in Table 4.1.3. Results are found in good 

agreement with those in Refs. [25, 29, 35].  
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Table 4.1.1: First five natural frequencies in (Hz) for different mesh numbers (N1×N2) of 

Al/ZrO2 FGM Folded Plate (CFFF) with S/h = 50, L= 1.5 m, S =0.75 m, β=90°, Power law 

index(N)=1. 

Source N1 × N2 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Present 2x4 16.579 33.832 60.584 75.447 128.499 

  3x6 16.553 33.328 60.272 71.299 125.040 

  4x8 16.532 33.273 60.166 70.835 124.316 

Basu et al. [57]   16.532 33.255 60.158 70.724 124.279 

% Difference =  0.00% 0.06% 0.01% 0.16% 0.03% 

ANSYS  16.510 33.139 60.063 70.887 124.880 

% Difference =  0.14% 0.41% 0.17% -0.07% -0.45% 

 

Table 4.1.2: First five natural frequencies in (Hz) for different mesh numbers (N1×N2) of 

Al/ZrO2 FGM Folded Plate (CFFF) with S/h = 25, L= 1.5 m, S =0.75 m, β=90°, Power law 

index(N)=1. 

Source N1 × N2 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Present 2x4 32.958 65.987 120.290 143.702 240.126 

  3x6 32.847 65.647 119.534 140.637 237.924 

  4x8 32.766 65.592 119.244 140.249 237.352 

Basu et al. [57]   32.768 65.580 119.236 140.177 237.225 

% Difference =  -0.01% 0.02% 0.01% 0.05% 0.05% 

ANSYS  32.858 65.261 119.370 139.820 239.150 

% Difference =  -0.28% 0.51% -0.11% 0.31% -0.75% 

 

Table 4.1.3: Comparison of first three non-dimensional natural frequency parameters λ for 

Si3N4/SUS304 FGM square plates (CCCC) subjected to uniform temperature rise (a=0.2 m, 

b/h=10, N=2, T0=300 K). 

Source 

Mode sequences 

(∆T = 300 K) 

Mode sequences 

(∆T = 500 K) 

   λ1    λ2    λ3    λ1    λ2    λ3 

Malekzadeh and Beni [29] 

(FSDT) 
3.6548 7.2022 7.2022 3.2163 6.5603 6.5603 

% Difference = 0.37% 0.41% 0.41% 0.44% 0.40% 0.40% 

Yang and Shen [25]  

(HSDT) 
3.6636 7.2544 7.2544 3.2357 6.6281 6.6281 

% Difference = 0.61% 1.12% 1.12% 1.04% 1.42% 1.42% 

Thai et. al. [35]  

(3D Elastic Theory) 
3.6936 7.2661 7.2661 3.2683 6.6457 6.6457 

% Difference = 1.42% 1.28% 1.28% 2.03% 1.68% 1.68% 

Present 3.6412 7.1728 7.1728 3.2021 6.5338 6.5338 
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In calculation of non-dimensional natural frequency parameter λ, the terms I0 and D0 are 

defined as [28]: 

𝐼0 = 𝜌ℎ 

𝐷0 =
𝐸ℎ3

12(1 − ν2)
 

ρ, E, and ν are chosen to be the values of SUS304 at the reference temperature T0 = 300 K. 

4.2 Case Studies 

Impact of various parameters such as power law index, thickness, crank angle and temperature 

field, on the natural frequencies of three types of functionally graded plates is presented in this 

section: 

i) FGM Rectangular Flat Plate (see Figure 4.2.1). 

ii) FGM One-Fold Plate (see Figure 4.2.3). 

iii) FGM Two-Fold Plate having 900 crank angle (see Figure 4.2.7). 

4.2.1 FGM Rectangular Flat Plate 

The FGM plates are often used in situations where it is exposed to high temperature 

environment. Based on the procedures and analyses of foregoing sections, the influence of 

temperature stress in the free vibration of rectangular FGM flat plate is studied in this section. 

The FGM plate made up of Silicon Nitride and Stainless steel (Si3N4/SUS304) is taken for the 

study. We consider that the FGM plate has the ceramic at the heated surface (z = h/2) and the 

metal at the cooled surface (z = - h/2) and their compositions vary continuously in the thickness 

direction of the plate. The material properties are considered to be temperature dependent. For 

ease of understanding Figure 3.1.1 is reproduced here. 

 

Figure 4.2.1: Geometry of FGM rectangular Flat Plate 

Table 4.2.1 to Table 4.2.4 give the results of the first five natural frequency parameters (λ) of 

all side clamped Si3N4/SUS304 FGM rectangular flat plates. From the study it is observed that 

the thermal initial stress decreases the natural frequency of vibration. Three temperature fields: 

uniform temperature rise, linear temperature rise, and nonlinear temperature rise, as defined 

previously in Eqn. (3.2.1), Eqn. (3.2.2) and Eqn. (3.2.4), are considered. These results include 
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the cases of three side to thickness ratios (b/h= 20, 10, 5), two aspect ratios (a/b= 0.5, 1) and 

four volume fraction indices (N= 1, 2, 5, 10). It is shown that, the natural frequency parameters 

decrease with the increase of the volume fraction index N, as high N value denotes high metal 

and low ceramic content [Eqn. (3.1.1)]. This ultimately reduces the rigidity of the plate, and 

hence the natural frequency. 

The uniform temperature change affects the vibrational frequencies more significantly 

than the linear and nonlinear temperature changes. It can be explained by referring to Figure 

3.2.1 which shows that the temperature variation of the uniform temperature field is more 

intensive than those of linear and nonlinear temperature fields. For a clear demonstration, Table 

4.2.5 lists the percentage reduction of frequency parameters due to the temperature rise. The 

temperatures of plates are raised from the initial value 300 K to the final value 600 K. It is 

shown that the temperature rise affects the first mode more significantly than other higher 

modes and the plates of volume fraction index N=10 are more sensitive to the temperature 

change than those of N=1. This is because, at N=10, the metal content is high and hence the 

effective Young Modulus value of the plate reduces. 

Table 4.2.1: Natural frequency parameters (λ) for CCCC rectangular Si3N4/SUS304 FGM flat 

plates without temperature rise ∆T= 0 K. 

b/h a/b N λ1 λ 2 λ 3 λ 4 λ 5 

20 

0.5 

1 12.7734 16.3450 22.6462 30.9252 31.5317 

2 11.4748 14.6808 20.3344 27.7338 28.2991 

5 10.4280 13.3380 18.4658 25.1467 25.6805 

10 9.9451 12.7189 17.6059 23.9682 24.4795 

1 

1 4.8933 9.7964 9.7964 14.2012 17.1762 

2 4.4025 8.8091 8.8091 12.7643 15.4349 

5 4.0086 8.0150 8.0150 11.6065 14.0304 

10 3.8246 7.6456 7.6456 11.0697 13.3803 

10 

0.5 

1 10.8366 13.6422 18.3670 22.9869 24.0164 

2 9.6917 12.2022 16.4232 20.4787 21.2648 

5 8.7593 11.0280 14.8350 18.4597 18.9732 

10 8.3433 10.5032 14.1264 17.6321 17.9925 

1 

1 4.5602 8.7244 8.7244 12.2435 14.4887 

2 4.0942 7.8220 7.8220 10.9687 12.9719 

5 3.7178 7.0897 7.0897 9.9314 11.7356 

10 3.5449 6.7567 6.7567 9.4619 11.1790 

5 

0.5 

1 7.5434 9.3738 11.5887 12.2159 14.5234 

2 6.7036 8.3379 10.2887 10.8713 12.8699 

5 6.0134 7.4865 9.2468 9.7656 11.5084 

10 5.7191 7.1208 8.8252 9.2894 10.9313 

1 

1 3.7388 6.5382 6.5382 8.6662 8.7909 

2 3.3408 5.8326 5.8326 7.6886 7.8368 

5 3.0158 5.2548 5.2548 6.8930 6.8930 

10 2.8718 5.0017 5.0017 6.5730 6.7112 
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Table 4.2.2: Natural frequency parameters (λ) for CCCC rectangular Si3N4/SUS304 FGM flat 

plates subjected to uniform temperature rise ∆T= 300 K. 

b/h a/b N λ1 λ 2 λ 3 λ 4 λ 5 

20 

0.5 

1 11.1993 14.4284 20.3587 28.4337 28.8389 

2 9.9364 12.8087 18.1055 25.3155 25.6824 

5 8.9170 11.4998 16.2820 22.7844 23.1224 

10 8.4331 10.8805 15.4255 21.6146 21.9298 

1 

1 3.3625 7.9832 7.9832 12.1693 15.0307 

2 2.8714 7.0224 7.0224 10.7721 13.3365 

5 2.4687 6.2463 6.2463 9.6438 11.9679 

10 2.2586 5.8672 5.8672 9.1026 11.3165 

10 

0.5 

1 10.1611 12.8023 17.3055 21.8971 22.9313 

2 9.0391 11.3900 15.3969 19.4508 20.1989 

5 8.1237 10.2365 13.8344 17.4952 17.8994 

10 7.7116 9.7164 13.1323 16.6838 16.9187 

1 

1 4.0952 8.0550 8.0550 11.4161 13.5701 

2 3.6412 7.1728 7.1728 10.1676 12.0827 

5 3.2743 6.4560 6.4560 9.1500 10.8683 

10 3.1020 6.1256 6.1256 8.6848 10.3167 

5 

0.5 

1 7.1792 8.9204 11.1283 11.6376 13.8579 

2 6.3519 7.8994 9.8457 10.3112 12.2252 

5 5.6699 7.0579 8.8152 9.2170 10.8748 

10 5.3778 6.6950 8.3975 8.7442 10.3010 

1 

1 3.5242 6.1986 6.1986 8.3451 8.3451 

2 3.1336 5.5041 5.5041 7.3831 7.4133 

5 2.8142 4.9338 4.9338 6.5986 6.6393 

10 2.6715 4.6827 4.6827 6.2825 6.2825 

Table 4.2.3: Natural frequency parameters (λ) for CCCC rectangular Si3N4/SUS304 FGM flat 

plates subjected to linear temperature rise ∆T= 300 K. 

b/h a/b N λ1 λ 2 λ 3 λ 4 λ 5 

20 

0.5 

1 12.0985 15.5216 21.6599 29.8473 30.3679 

2 10.8173 13.8796 19.3790 26.6988 27.1786 

5 9.7715 12.5384 17.5155 24.1241 24.5706 

10 9.2797 11.9089 16.6445 22.9367 23.3588 

1 

1 4.2788 9.0320 9.0320 13.3336 16.2558 

2 3.7910 8.0563 8.0563 11.9150 14.5372 

5 3.3880 7.2573 7.2573 10.7554 13.1331 

10 3.1908 6.8751 6.8751 10.2059 12.4707 
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b/h a/b N λ1 λ 2 λ 3 λ 4 λ 5 

10 

0.5 

1 10.5434 13.2780 17.9069 22.5147 23.5330 

2 9.4139 11.8571 15.9885 20.0520 20.8067 

5 8.4880 10.6908 14.4113 18.0763 18.5170 

10 8.0712 10.1649 13.7019 17.2655 17.5293 

1 

1 4.3598 8.4347 8.4347 11.8853 14.0908 

2 3.9001 7.5445 7.5445 10.6275 12.5939 

5 3.5249 6.8160 6.8160 9.5962 11.3653 

10 3.3497 6.4807 6.4807 9.1248 10.8070 

5 

0.5 

1 7.3840 9.1767 11.3881 11.9648 14.2496 

2 6.5550 8.1539 10.1064 10.6368 12.6134 

5 5.8710 7.3097 9.0768 9.5401 11.2565 

10 5.5779 6.9450 8.6582 9.0653 10.6778 

1 

1 3.6456 6.3908 6.3908 8.5218 8.5218 

2 3.2529 5.6942 5.6942 7.5590 7.6590 

5 2.9304 5.1207 5.1207 6.7749 6.8815 

10 2.7863 4.8678 4.8678 6.4585 6.5401 

Table 4.2.4: Natural frequency parameters (λ) for CCCC rectangular Si3N4/SUS304 FGM flat 

plates subjected to non-linear temperature rise ∆T= 300 K. 

b/h a/b N λ1 λ 2 λ 3 λ 4 λ 5 

20 

0.5 

1 12.1292 15.5589 21.7036 29.8936 30.4182 

2 10.8475 13.9163 19.4220 26.7443 27.2280 

5 9.7938 12.5656 17.5474 24.1582 24.6076 

10 9.2947 11.9272 16.6662 22.9600 23.3841 

1 

1 4.3100 9.0686 9.0686 13.3739 16.2977 

2 3.8222 8.0925 8.0925 11.9548 14.5786 

5 3.4110 7.2839 7.2839 10.7847 13.1637 

10 3.2061 6.8928 6.8928 10.2256 12.4913 

10 

0.5 

1 10.5556 13.2932 17.9260 22.5354 23.5542 

2 9.4259 11.8720 16.0073 20.0720 20.8277 

5 8.4971 10.7022 14.4257 18.0912 18.5332 

10 8.0775 10.1728 13.7118 17.2755 17.5405 

1 

1 4.3687 8.4471 8.4471 11.9003 14.1074 

2 3.9089 7.5566 7.5566 10.6422 12.6102 

5 3.5314 6.8251 6.8251 9.6074 11.3777 

10 3.3541 6.4870 6.4870 9.1325 10.8156 

5 

0.5 

1 7.3909 9.1852 11.3975 11.9756 14.2624 

2 6.5617 8.1622 10.1155 10.6475 12.6259 

5 5.8762 7.3161 9.0837 9.5484 11.2661 

10 5.5814 6.9494 8.6628 9.0709 10.6844 

1 

1 3.6495 6.3970 6.3970 8.5284 8.6091 

2 3.2567 5.7003 5.7003 7.5654 7.6669 

5 2.9333 5.1254 5.1254 6.7796 6.8876 

10 2.7883 4.8711 4.8711 6.4616 6.5443 
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Table 4.2.5: Effect of temperature on frequency parameters (λ) of CCCC square Si3N4/SUS304 

FGM flat plates (b/h=10). 

N 
Temp. 

Field 

λ1  λ 2 = λ 3 

300 K 600 K % Reduction  300 K 600 K % Reduction   

1 Uniform 4.5602 4.0952 10.20  8.7244 8.0550 7.67 
 Linear 4.5602 4.3598 4.39  8.7244 8.4347 3.32 
 Nonlinear 4.5602 4.3687 4.20  8.7244 8.4471 3.18 
 

 
       

10 Uniform 3.5449 3.1020 12.49  6.7567 6.1256 9.34  
Linear 3.5449 3.3497 5.50  6.7567 6.4807 4.08  
Nonlinear 3.5449 3.3541 5.38  6.7567 6.4870 3.99 

First three mode shapes for FG flat plate with aspect ratio a/b = 0.5 and 1 are shown in Figure 

4.2.2 (b/h=10, N=1, Uniform temperature rise ∆T= 300 K). For a/b=1 i.e. for a square flat plate, 

mode 2 and 3 are similar (2,1) bending mode as the structure is symmetric. For aspect ratio 0.5, 

(1,1), (2,1) and (3,1) mode shapes have been observed due to rectangular shape.  

Mode 1 Mode 2 Mode 3 

 

 

 

 

 

(a/b = 0.5) 

 

 

 

 

 

 

 
 

(a/b = 1) 

 

 

Figure 4.2.2: First three mode shapes for FG flat plate with b/h=10, N=1, Uniform temperature 

rise ∆T= 300 K. 
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4.2.2 FGM One-Fold Plate 

Impact of various parameters such as power law index, thickness, crank angle, and temperature 

field, on the natural frequencies of functionally graded (Si3N4/SUS304) one-fold plates (Figure 

4.2.3), clamped at all four edges, is presented in this section. The crank angles taken are 900, 

1200, 1500 and 1800 (=flat plate of dimension 1.5 m × 1.5 m). These results include the cases 

of two different thicknesses (h= 75 mm, 50 mm), and six volume fraction indices (N= 0, 0.5, 

1, 2, 5, 10). Uniform, linear and non-linear temperature distributions are shown and the natural 

frequencies are tabulated from Table 4.2.6 to Table 4.2.15. From these tables, following 

observations can be made: 

 

Figure 4.2.3: Geometry of FGM one-fold Plate 

Variation in power law index (N): As the value of N increases, the natural frequency of the 

folded plates decreases exponentially as indicated from Figure 4.2.4. This is obvious as, with 

the increase in N value, the volume fraction of metal increases, and in turn the ceramic fraction 

drops, as indicated by Eqn. (3.1.1). This ultimately reduces the rigidity of the plate, and hence 

the natural frequency. 

Variation in plate thickness: Plate having higher thickness is more rigid, for obvious reasons. 

Hence, the natural frequency increases as thickness of plate increases, which can be clearly 

observed from Table 4.2.6 to Table 4.2.15. 

Variation in crank angle β: The variation in fundamental frequencies has been graphically 

represented for different thicknesses and crank angles in Figure 4.2.5. From Figure 4.2.5, it can 

be noted that stiffness of the 75mm thick FGM one-fold structure exhibit minimal sensitivity 

to changes in the crank angle β = 90o and 120o. Rather, for β = 120o, the stiffness is slightly 

higher, mass being the same for all cases. For β = 150o, the stiffness reduces more as it 

approaches flat plate configuration and at β=180° i.e., flat plate, significant decrease in the 

stiffness of the plate has been observed. The reduction of natural frequencies is nearly 50% 

compared to single-fold plates in the absence of thermal load. For one-fold plate with lesser 

thickness, maximum stiffness is observed at β = 150o. The reduction in stiffness increases for 

uniform or linear temperature rise for lower thicknesses. For 50 mm thick flat plate (β=180°) 

with N more than 0.5, uniform temperature rise ∆T= 300 K makes the structure too soft to get 

the fundamental frequency numerically.   

β 

L= 1.5 m 

S= 0.75 m 
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Variation in temperature field: Three types of temperature distribution namely, uniform, 

linear and non-linear, as given by Eqn. (3.2.1), Eqn. (3.2.2) and Eqn. (3.2.4) is considered for 

the present study. Natural frequency of the plate decreases with temperature increment as the 

material properties constantly deteriorate with the temperature rise. Table 4.2.6 to Table 4.2.15 

clearly shows that effect of uniform temperature rise is more significant than the linear and 

non-linear temperature rise as for these cases the thermal distribution is gradual across the 

thickness. This is the reason for numerical instability for flat plate under uniform temperature 

increase ∆T= 300 K.  

 

Figure 4.2.4: Variation of first natural frequency (Hz) with gradient index for uniform 

temperature rise (∆T= 300 K) and 75 mm plate thickness. 

 

Figure 4.2.5: Variation of first natural frequency (Hz) with crank angle for uniform and linear 

temperature rise (∆T= 300 K) and N=1. 
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First three mode shapes for FG one-fold plate with β = 1200 and 1800 with N=1 are shown in 

Figure 4.2.6. Local panel modes have been observed for FG one-fold plates. No modifications 

in mode shapes have been observed in folded plates for introducing thermal load. 

Antisymmetric bending mode has been noticed in the first and third modes whereas symmetric 

bending mode is seen for second mode for FG one-fold plate structures.  

Mode 1 Mode 2 Mode 3 
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Figure 4.2.6: First three mode shapes for FG one-fold plate with N=1 (a) β = 1200 without 

thermal load (b) β = 1200 uniform temp. rise (c) β = 1200 linear temp. rise (d) β = 1800 linear 

temp. rise. 
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4.2.3 FGM Two-Fold Plate 

In this section, a set of functionally graded (Si3N4/SUS304) two-fold plates, depicted in Figure 

4.2.7 along with in-plane dimensions, has been analysed with crank angle, β = 900, clamped all 

round.  The effect of various parameters such as power law index, thickness, and temperature 

increment, on the natural frequencies is presented. These results include the cases of four 

different thicknesses (h= 10 mm, 15 mm, 20 mm and 50 mm), and six volume fraction indices 

(N= 0, 0.5, 1, 2, 5, 10). Uniform, linear and non-linear temperature distributions with three 

different temperature increment (∆T= 100 K, 200 K & 300 K)  are shown and the natural 

frequencies for different cases are tabulated from Table 4.2.16 to Table 4.2.25.  

 

Figure 4.2.7: Geometry of FGM two-fold Plate 

Comparing results with one-fold plate, it is observed that for 50 mm, two-fold folded plate 

produces higher fundamental frequencies than one-fold folded plates of equal thickness and 

material.  Comparison of natural frequencies for one-fold and two-fold folded plates of 900 

crank angle, 50 mm thickness and N=1 subjected to uniform temperature rise ∆T= 300 K is 

shown in Figure 4.2.8. 

 

Figure 4.2.8: Comparison of natural frequencies (Hz) for one-fold and two-fold folded plates 

(β=90°, N=1, h=50 mm, Uniform temperature rise ∆T= 300 K). 
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Table 4.2.6: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates without any temperature rise ∆T= 0 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1270.79 1635.91 1840.57 2112.71 2763.05 

 

1280.03 1528.69 1850.86 2016.38 2774.06 

0.5 878.58 1135.29 1273.99 1464.85 1913.31 886.20 1061.79 1282.20 1397.80 1921.79 

1 771.10 996.85 1118.49 1286.01 1679.92 778.25 931.64 1126.12 1226.21 1687.72 

2 692.91 894.61 1004.85 1154.04 1508.70 699.59 834.60 1011.96 1098.89 1515.93 

5 630.99 812.00 914.18 1047.43 1371.19 636.91 756.04 920.54 996.08 1377.70 

10 602.80 774.34 872.76 998.77 1308.29 608.11 721.05 878.54 949.94 1314.25 

50 

0 875.60 1155.04 1280.44 1495.13 1944.70 878.54 1120.02 1283.93 1461.65 1948.71 

0.5 606.13 801.63 887.08 1037.24 1347.76 608.81 777.69 890.13 1014.04 1351.12 

1 532.39 704.46 779.29 911.36 1184.07 534.97 683.18 782.19 890.64 1187.22 

2 478.88 633.32 700.83 819.15 1064.59 481.30 613.64 703.55 799.95 1067.52 

5 436.44 576.11 638.31 744.98 968.95 438.53 557.61 640.68 726.93 971.54 

10 416.87 549.61 609.44 710.64 924.76 418.70 531.95 611.54 693.42 927.07 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1167.53 1283.67 1700.35 1854.94 2463.58 

 

645.10 1292.29 1292.29 1874.39 2267.68 

0.5 811.29 889.74 1176.34 1285.99 1706.93 447.63 896.38 896.38 1299.71 1572.15 

1 710.65 781.70 1030.34 1129.77 1497.09 393.49 787.77 787.77 1141.98 1381.21 

2 634.56 702.82 921.67 1015.38 1341.60 354.02 708.38 708.38 1026.43 1241.18 

5 573.16 639.67 834.75 923.48 1216.84 322.34 644.52 644.52 933.33 1128.24 

10 547.05 610.47 796.85 881.10 1161.30 307.55 614.81 614.81 890.16 1075.96 

50 

0 879.70 953.43 1285.31 1308.12 1907.45 436.38 883.64 883.64 1294.62 1573.17 

0.5 610.12 662.85 891.59 906.68 1324.34 302.86 613.17 613.17 898.18 1091.37 

1 536.28 581.33 783.64 795.02 1161.08 266.30 539.08 539.08 789.53 959.34 

2 482.53 520.17 704.91 712.10 1038.97 239.70 485.10 485.10 710.26 862.98 

5 439.56 470.74 641.82 645.50 940.77 218.39 441.80 441.80 646.60 785.57 

10 419.54 449.17 612.49 615.99 897.89 208.40 421.55 421.55 616.89 749.45 
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Table 4.2.7: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to uniform temperature rise ∆T= 100 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1227.11 1593.80 1785.63 2058.50 2694.63 

 

1236.24 1491.38 1795.57 1965.44 2705.23 

0.5 840.96 1100.21 1227.48 1419.78 1857.02 848.43 1030.89 1235.33 1355.47 1865.08 

1 735.10 963.72 1074.22 1243.43 1626.89 742.07 902.57 1081.47 1186.28 1634.25 

2 658.11 862.99 962.23 1113.34 1458.02 664.58 807.02 968.94 1060.81 1464.80 

5 597.01 781.56 872.72 1008.18 1322.23 602.71 729.66 878.67 959.45 1328.28 

10 568.95 744.29 831.61 959.99 1259.92 574.07 695.03 836.99 913.77 1265.43 

50 

0 820.09 1103.36 1213.66 1430.50 1866.20 823.62 1071.55 1217.26 1399.11 1870.03 

0.5 555.25 755.44 826.75 979.70 1278.56 558.44 734.37 829.85 958.33 1281.68 

1 482.65 659.71 720.59 855.66 1117.26 485.69 641.25 723.50 836.74 1120.16 

2 430.02 589.72 643.37 764.90 999.57 432.87 572.88 646.06 747.49 1002.22 

5 388.08 533.34 581.62 691.74 905.15 390.61 517.74 583.96 675.51 907.43 

10 368.32 506.91 552.68 657.51 861.12 370.60 492.14 554.75 642.10 863.11 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1137.31 1239.40 1654.64 1799.09 2401.22 

 

608.22 1243.60 1243.60 1817.15 2205.65 

0.5 786.00 851.46 1137.82 1238.54 1655.31 414.11 853.90 853.90 1251.08 1520.32 

1 686.74 744.98 993.79 1084.54 1448.39 360.84 746.95 746.95 1095.67 1332.14 

2 611.72 667.26 886.63 971.77 1295.06 322.07 668.82 668.82 981.85 1194.14 

5 551.19 604.91 800.91 881.05 1171.93 290.87 605.89 605.89 890.04 1082.72 

10 525.38 575.90 763.43 839.00 1116.98 276.06 576.39 576.39 847.26 1030.96 

50 

0 824.97 915.73 1218.38 1252.75 1838.98 385.39 821.46 821.46 1225.15 1500.07 

0.5 559.86 629.34 831.01 857.29 1264.42 254.16 555.79 555.79 835.41 1026.19 

1 487.09 549.00 724.63 747.24 1103.46 217.98 482.87 482.87 728.48 896.22 

2 434.17 488.89 647.08 665.63 983.16 191.73 429.86 429.86 650.58 801.49 

5 391.69 440.29 584.76 600.01 886.28 170.51 387.19 387.19 587.88 725.23 

10 371.52 418.81 555.38 570.59 843.71 160.07 366.78 366.78 558.19 689.24 
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Table 4.2.8: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to uniform temperature rise ∆T= 200 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1180.14 1549.82 1727.54 2002.06 2623.85 

 

1189.20 1452.52 1737.13 1912.43 2634.01 

0.5 797.47 1060.24 1174.32 1368.61 1793.37 804.87 995.60 1181.80 1307.36 1800.97 

1 692.37 924.72 1022.17 1193.51 1564.88 699.24 868.18 1029.04 1139.34 1571.77 

2 616.04 824.86 911.11 1064.48 1397.34 622.37 773.47 917.39 1014.90 1403.62 

5 555.32 744.10 822.20 960.10 1262.49 560.88 696.76 827.71 914.29 1268.03 

10 527.00 706.76 780.91 911.86 1200.12 531.99 662.08 785.85 868.54 1205.12 

50 

0 756.21 1045.95 1138.73 1359.26 1780.63 760.52 1017.49 1142.50 1330.04 1784.27 

0.5 492.88 700.69 754.84 912.13 1198.14 496.79 682.61 758.02 892.65 1201.00 

1 420.05 605.33 648.94 788.67 1037.79 423.81 589.80 651.90 771.58 1040.38 

2 367.24 535.73 571.96 698.45 920.91 370.79 521.80 574.66 682.85 923.21 

5 324.70 479.50 510.06 625.52 826.87 327.94 466.81 512.36 611.09 828.76 

10 303.79 452.51 480.21 590.69 782.23 306.83 440.65 482.24 577.04 783.82 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1105.75 1191.86 1606.82 1740.04 2336.53 

 

566.47 1190.95 1190.95 1756.59 2140.80 

0.5 757.29 807.36 1093.98 1184.41 1596.94 373.90 804.90 804.90 1195.70 1461.60 

1 658.68 701.59 950.84 1031.49 1391.48 320.76 698.74 698.74 1041.49 1274.87 

2 584.17 624.47 844.43 919.62 1239.30 282.15 621.33 621.33 928.71 1138.10 

5 524.01 562.49 759.29 829.50 1117.02 250.91 558.87 558.87 837.65 1027.60 

10 498.19 533.26 721.80 787.29 1062.08 235.62 529.14 529.14 794.76 975.80 

50 

0 762.14 873.77 1143.33 1191.46 1764.88 320.88 749.40 749.40 1147.22 1419.34 

0.5 498.44 589.14 758.85 798.81 1194.42 185.83 485.10 485.10 760.83 949.84 

1 425.40 509.05 652.66 689.15 1034.31 146.34 411.84 411.84 654.33 820.67 

2 372.25 449.27 575.29 607.96 915.07 116.54 358.59 358.59 576.88 726.70 

5 329.20 400.82 512.77 542.46 818.86 90.27 315.31 315.31 514.26 650.84 

10 307.97 378.86 482.50 512.44 775.89 74.52 293.64 293.64 483.79 614.27 
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Table 4.2.9: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to uniform temperature rise ∆T= 300 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1129.01 1503.20 1665.37 1942.49 2549.66 

 

1138.08 1411.36 1674.61 1856.45 2559.35 

0.5 747.15 1014.66 1113.61 1310.55 1721.47 754.54 955.21 1120.72 1252.64 1728.59 

1 641.89 879.14 961.44 1135.47 1493.11 648.74 827.74 967.90 1084.61 1499.49 

2 565.65 779.55 850.62 1006.77 1326.00 571.94 733.25 856.47 960.43 1331.74 

5 504.88 699.02 761.85 902.64 1191.47 510.38 656.73 766.89 860.00 1196.44 

10 475.82 661.17 719.84 853.78 1128.41 480.77 621.55 724.30 813.64 1132.82 

50 

0 681.05 981.16 1053.36 1279.68 1686.24 686.43 956.13 1057.35 1252.63 1689.66 

0.5 413.85 634.99 667.77 832.09 1104.32 418.90 619.89 671.09 814.46 1106.86 

1 337.95 538.53 560.04 707.58 943.21 342.90 525.83 563.07 692.22 945.41 

2 282.24 468.22 481.60 616.73 826.00 287.06 457.02 484.30 602.76 827.85 

5 235.86 411.04 417.74 542.91 731.37 240.53 400.99 419.99 530.00 732.73 

10 210.71 382.42 385.25 506.33 685.05 215.37 373.09 387.21 494.13 686.07 

  
           

Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1072.34 1140.18 1556.12 1676.84 2268.54 

 

518.41 1133.35 1133.35 1691.77 2072.18 

0.5 724.68 756.49 1044.11 1122.68 1531.01 324.66 748.25 748.25 1132.66 1395.17 

1 625.98 650.52 900.80 969.70 1325.62 270.39 641.96 641.96 978.58 1208.68 

2 551.43 573.44 794.41 858.05 1173.69 230.90 564.70 564.70 866.23 1072.45 

5 491.17 511.39 709.29 768.05 1051.59 198.52 502.29 502.29 775.50 962.39 

10 465.02 481.45 671.36 725.14 996.11 181.62 471.80 471.80 731.98 910.00 

50 

0 688.45 826.04 1057.85 1122.52 1683.19 230.99 663.81 663.81 1058.47 1329.06 

0.5 420.95 539.89 671.52 728.70 1107.61 37.61 394.36 394.36 670.87 859.73 

1 344.90 458.59 563.39 617.77 946.08 - - - - - 

2 288.94 397.99 484.45 535.68 828.40 - - - - - 

5 242.26 348.53 419.89 469.01 733.08 - - - - - 

10 217.10 324.99 386.96 437.19 686.28 - - - - - 
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Table 4.2.10: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to linear temperature rise ∆T= 100 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1249.66 1615.05 1813.80 2085.85 2729.46 

 

1258.69 1510.20 1823.78 1991.14 2740.14 

0.5 861.07 1118.47 1252.10 1443.23 1886.43 868.53 1046.94 1260.05 1377.50 1894.63 

1 754.38 981.03 1097.70 1265.66 1654.65 761.37 917.72 1105.08 1207.14 1662.19 

2 676.67 879.48 984.76 1134.56 1484.50 683.18 821.39 991.61 1080.69 1491.46 

5 614.94 797.34 894.43 1028.51 1347.64 620.69 743.36 900.54 978.48 1353.88 

10 586.72 759.84 853.06 980.04 1284.96 591.87 708.54 858.59 932.54 1290.66 

50 

0 848.82 1129.76 1248.03 1463.47 1906.34 851.97 1096.33 1251.50 1431.03 1910.19 

0.5 582.97 780.18 859.32 1010.44 1315.49 585.82 757.58 862.34 988.10 1318.69 

1 509.85 683.77 752.38 885.52 1153.02 512.59 663.82 755.25 865.66 1156.02 

2 456.61 613.07 674.34 793.86 1034.21 459.18 594.74 677.00 775.52 1036.98 

5 414.07 555.99 611.80 719.85 938.76 416.32 538.91 614.12 702.70 941.17 

10 394.22 529.38 582.69 685.39 894.43 396.22 513.16 584.74 669.09 896.57 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1152.59 1261.98 1677.77 1827.47 2432.96 

 

627.13 1268.35 1268.35 1846.13 2236.99 

0.5 799.19 871.75 1158.00 1263.50 1682.32 432.20 876.43 876.43 1276.61 1547.37 

1 699.26 764.50 1013.02 1108.41 1473.94 378.53 768.66 768.66 1120.05 1357.82 

2 623.68 686.09 905.07 994.71 1319.44 339.29 689.77 689.77 1005.25 1218.70 

5 562.68 623.13 818.64 903.16 1195.33 307.62 626.12 626.12 912.55 1106.29 

10 536.71 593.92 780.91 860.85 1140.03 292.70 596.40 596.40 869.47 1054.19 

50 

0 853.16 935.00 1252.69 1281.03 1873.92 412.06 853.49 853.49 1260.71 1537.38 

0.5 587.14 647.27 863.62 883.73 1296.29 281.31 587.00 587.00 869.18 1061.05 

1 513.90 566.38 756.51 772.92 1134.20 245.10 513.57 513.57 761.44 930.09 

2 460.41 505.67 678.18 690.54 1012.83 218.58 459.88 459.88 682.64 834.33 

5 417.33 456.50 615.07 624.16 915.00 197.02 416.49 416.49 619.03 757.06 

10 397.07 434.91 585.52 594.58 872.14 186.68 395.96 395.96 589.11 720.79 
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Table 4.2.11: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to linear temperature rise ∆T= 200 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1227.67 1593.80 1786.25 2058.53 2695.39 

 

1236.52 1491.41 1795.93 1965.48 2705.74 

0.5 842.53 1100.96 1229.14 1420.77 1858.58 849.84 1031.48 1236.83 1356.40 1866.51 

1 736.50 964.33 1075.66 1244.23 1628.14 743.33 903.03 1082.78 1187.03 1635.40 

2 659.08 863.25 963.15 1113.70 1458.68 665.42 807.17 969.75 1061.15 1465.36 

5 597.22 781.18 872.73 1007.71 1321.83 602.80 729.29 878.56 959.05 1327.78 

10 568.66 743.46 831.00 958.96 1258.78 573.65 694.31 836.26 912.87 1264.19 

50 

0 819.92 1103.05 1213.51 1430.13 1866.16 823.33 1071.26 1216.98 1398.76 1869.86 

0.5 557.55 757.10 829.27 981.73 1281.11 560.62 735.90 832.28 960.28 1284.16 

1 484.86 661.28 722.99 857.57 1119.63 487.81 642.69 725.82 838.58 1122.46 

2 431.64 590.78 645.08 766.18 1001.17 434.41 573.85 647.71 748.72 1003.77 

5 388.60 533.46 582.07 691.85 905.34 391.06 517.82 584.33 675.62 907.56 

10 368.13 506.40 552.30 656.85 860.37 370.35 491.66 554.30 641.47 862.31 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1137.35 1239.46 1654.72 1799.22 2401.82 

 

607.92 1243.41 1243.41 1817.08 2205.67 

0.5 786.57 852.75 1138.87 1239.94 1656.76 415.44 855.28 855.28 1252.42 1521.59 

1 687.21 746.15 994.71 1085.77 1449.57 362.13 748.22 748.22 1096.84 1333.20 

2 611.96 668.01 887.21 972.50 1295.72 322.98 669.64 669.64 982.52 1194.68 

5 551.06 604.90 800.87 880.85 1171.69 291.07 605.85 605.85 889.76 1082.27 

10 525.00 575.38 762.98 838.18 1116.13 275.80 575.78 575.78 846.34 1029.83 

50 

0 824.58 915.53 1217.99 1252.45 1838.97 384.75 820.87 820.87 1224.63 1499.62 

0.5 561.97 630.45 833.39 859.05 1266.44 256.50 558.21 558.21 837.84 1028.56 

1 489.14 550.04 726.91 748.90 1105.28 220.35 485.24 485.24 730.81 898.47 

2 435.66 489.58 648.69 666.78 984.36 193.52 431.58 431.58 652.21 803.02 

5 392.09 440.34 585.09 600.21 886.38 171.17 387.67 387.67 588.19 725.41 

10 371.23 418.46 554.89 570.18 843.12 160.00 366.47 366.47 557.65 688.55 
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Table 4.2.12: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to linear temperature rise ∆T= 300 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1204.67 1572.00 1757.72 2030.54 2660.57 

 

1213.37 1472.16 1767.11 1939.20 2670.60 

0.5 822.82 1082.64 1204.95 1397.30 1829.58 830.00 1015.30 1212.40 1334.34 1837.23 

1 717.31 946.66 1052.21 1221.59 1600.20 724.01 887.43 1059.08 1165.75 1607.18 

2 640.02 845.82 939.91 1091.35 1431.09 646.21 791.84 946.23 1040.17 1437.49 

5 577.72 763.43 848.97 984.92 1293.65 583.13 713.74 854.52 937.70 1299.30 

10 548.53 725.14 806.49 935.44 1229.67 553.35 678.27 811.44 890.86 1234.76 

50 

0 788.57 1074.64 1176.58 1394.84 1823.86 792.30 1044.55 1180.07 1364.56 1827.39 

0.5 529.48 732.15 796.62 950.85 1244.36 532.83 712.37 799.62 930.31 1247.24 

1 456.99 636.74 690.75 827.24 1083.62 460.20 619.54 693.57 809.12 1086.28 

2 403.49 566.22 612.69 735.84 965.21 406.52 550.69 615.28 719.25 967.61 

5 359.48 508.25 548.72 660.72 868.47 362.21 494.08 550.93 645.40 870.47 

10 337.96 480.38 517.85 624.74 822.34 340.47 467.12 519.79 610.29 824.05 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1121.71 1215.96 1631.02 1770.00 2369.95 

 

587.28 1217.28 1217.28 1787.02 2173.50 

0.5 773.35 832.59 1118.82 1215.15 1630.08 397.16 832.80 832.80 1226.99 1494.63 

1 674.40 726.50 975.30 1061.71 1423.84 344.07 726.30 726.30 1072.21 1307.20 

2 599.30 648.46 868.01 948.64 1270.30 304.85 647.84 647.84 958.14 1169.00 

5 538.23 584.89 781.38 856.46 1145.82 272.44 583.59 583.59 864.89 1056.09 

10 511.88 554.74 742.99 813.02 1089.52 256.59 552.85 552.85 820.70 1002.82 

50 

0 793.63 894.82 1180.89 1222.13 1802.32 353.67 785.38 785.38 1186.05 1459.59 

0.5 534.24 612.19 800.54 832.40 1234.48 227.33 526.34 526.34 803.83 993.61 

1 461.58 532.08 694.45 722.69 1074.01 190.63 453.57 453.57 697.30 864.19 

2 407.81 471.64 616.05 640.56 953.27 162.74 399.59 399.59 618.62 768.78 

5 363.28 422.01 551.48 573.35 854.70 138.44 354.63 354.63 553.72 690.37 

10 341.42 399.54 520.17 542.49 810.59 125.45 332.30 332.30 522.11 652.45 



Chapter 4: Numerical Study and Results 

56 | P a g e  

Table 4.2.13: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to non-linear temperature rise ∆T= 100 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1249.66 1615.05 1813.80 2085.85 2729.46 

 

1258.69 1510.20 1823.78 1991.14 2740.14 

0.5 861.71 1119.05 1252.87 1443.97 1887.35 869.16 1047.45 1260.83 1378.20 1895.56 

1 755.13 981.70 1098.61 1266.53 1655.73 762.12 918.32 1106.00 1207.95 1663.27 

2 677.40 880.13 985.64 1135.39 1485.53 683.91 821.96 992.50 1081.47 1492.50 

5 615.46 797.80 895.06 1029.11 1348.38 621.21 743.76 901.17 979.03 1354.63 

10 587.05 760.14 853.47 980.43 1285.44 592.21 708.80 859.01 932.90 1291.14 

50 

0 848.82 1129.76 1248.03 1463.47 1906.34 851.97 1096.33 1251.50 1431.03 1910.19 

0.5 583.86 780.97 860.36 1011.42 1316.67 586.70 758.33 863.38 989.06 1319.88 

1 510.92 684.72 753.64 886.70 1154.43 513.65 664.71 756.50 866.80 1157.43 

2 457.66 613.99 675.57 795.01 1035.58 460.22 595.61 678.23 776.64 1038.36 

5 414.82 556.65 612.68 720.67 939.74 417.07 539.53 615.00 703.50 942.16 

10 394.71 529.81 583.26 685.93 895.07 396.71 513.56 585.31 669.60 897.21 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1152.59 1261.98 1677.77 1827.47 2432.96 

 

627.13 1268.35 1268.35 1846.13 2236.99 

0.5 799.63 872.40 1158.66 1264.29 1683.18 432.78 877.15 877.15 1277.42 1548.22 

1 699.77 765.27 1013.78 1109.34 1474.94 379.23 769.52 769.52 1121.00 1358.82 

2 624.17 686.83 905.80 995.61 1320.40 339.97 690.60 690.60 1006.17 1219.66 

5 563.03 623.66 819.16 903.81 1196.01 308.11 626.71 626.71 913.20 1106.98 

10 536.93 594.27 781.25 861.27 1140.47 293.02 596.79 596.79 869.90 1054.64 

50 

0 853.16 935.00 1252.69 1281.03 1873.92 412.06 853.49 853.49 1260.71 1537.38 

0.5 588.02 647.85 864.67 884.59 1297.33 282.17 588.00 588.00 870.27 1062.17 

1 514.95 567.07 757.77 773.94 1135.43 246.15 514.78 514.78 762.74 931.43 

2 461.44 506.34 679.42 691.53 1014.02 219.61 461.07 461.07 683.91 835.63 

5 418.08 456.98 615.96 624.87 915.84 197.77 417.35 417.35 619.94 757.99 

10 397.56 435.22 586.10 595.03 872.69 187.17 396.52 396.52 589.70 721.40 
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Table 4.2.14: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to non-linear temperature rise ∆T= 200 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1227.67 1593.80 1786.25 2058.53 2695.39 

 

1236.52 1491.41 1795.93 1965.48 2705.74 

0.5 843.88 1102.18 1230.78 1422.33 1860.52 851.19 1032.57 1238.48 1357.88 1868.46 

1 738.11 965.77 1077.60 1246.08 1630.41 744.94 904.30 1084.74 1188.77 1637.69 

2 660.66 864.65 965.05 1115.50 1460.89 667.01 808.41 971.66 1062.85 1467.60 

5 598.36 782.20 874.11 1009.02 1323.45 603.95 730.18 879.96 960.28 1329.41 

10 569.41 744.14 831.91 959.82 1259.85 574.41 694.90 837.18 913.68 1265.27 

50 

0 819.92 1103.05 1213.51 1430.13 1866.16 823.33 1071.26 1216.98 1398.76 1869.86 

0.5 559.49 758.81 831.53 983.84 1283.63 562.54 737.51 834.53 962.34 1286.69 

1 487.22 663.34 725.72 860.12 1122.65 490.14 644.63 728.55 841.06 1125.50 

2 433.99 592.82 647.79 768.70 1004.16 436.74 575.76 650.41 751.17 1006.76 

5 390.32 534.94 584.04 693.68 907.52 392.75 519.21 586.31 677.40 909.75 

10 369.26 507.37 553.60 658.05 861.80 371.47 492.57 555.60 642.64 863.75 

             
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1137.35 1239.46 1654.72 1799.22 2401.82 

 

607.92 1243.41 1243.41 1817.08 2205.67 

0.5 787.49 854.12 1140.25 1241.61 1658.57 416.70 856.81 856.81 1254.13 1523.38 

1 688.29 747.78 996.34 1087.75 1451.70 363.65 750.05 750.05 1098.87 1335.32 

2 613.01 669.62 888.80 974.45 1297.79 324.49 671.43 671.43 984.51 1196.75 

5 551.81 606.07 802.02 882.27 1173.19 292.17 607.15 607.15 891.21 1083.78 

10 525.50 576.15 763.73 839.12 1117.11 276.53 576.64 576.64 847.29 1030.83 

50 

0 824.58 915.53 1217.99 1252.45 1838.97 384.75 820.87 820.87 1224.63 1499.62 

0.5 563.89 631.72 835.65 860.90 1268.66 258.48 560.41 560.41 840.19 1030.96 

1 491.47 551.56 729.65 751.12 1107.94 222.79 487.93 487.93 733.65 901.36 

2 437.97 491.07 651.41 668.97 986.96 195.99 434.25 434.25 655.02 805.87 

5 393.78 441.42 587.08 601.79 888.26 172.99 389.61 389.61 590.23 727.48 

10 372.34 419.17 556.19 571.22 844.35 161.21 367.74 367.74 558.99 689.91 
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Table 4.2.15: Natural frequencies (Hz) of CCCC one-fold Si3N4/SUS304 FGM Folded plates subjected to non-linear temperature rise ∆T= 300 K. 

Thickness 

(mm) 
N 

β-90° 

  

β-120° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1204.67 1572.00 1757.72 2030.54 2660.57 

 

1213.37 1472.16 1767.11 1939.20 2670.60 

0.5 824.97 1084.57 1207.55 1399.76 1832.62 832.15 1017.01 1215.01 1336.67 1840.29 

1 719.90 948.95 1055.31 1224.53 1603.81 726.60 889.47 1062.21 1168.53 1610.82 

2 642.57 848.08 942.98 1094.25 1434.65 648.77 793.84 949.33 1042.91 1441.08 

5 579.60 765.11 851.23 987.06 1296.29 585.02 715.21 856.80 939.73 1301.96 

10 549.78 726.27 808.00 936.88 1231.45 554.61 679.26 812.97 892.22 1236.55 

50 

0 788.57 1074.64 1176.58 1394.84 1823.86 792.30 1044.55 1180.07 1364.56 1827.39 

0.5 532.68 734.91 800.28 954.26 1248.39 535.99 714.98 803.28 933.62 1251.29 

1 460.92 640.10 695.23 831.38 1088.51 464.09 622.73 698.04 813.15 1091.19 

2 407.45 569.57 617.16 739.96 970.07 410.43 553.86 619.75 723.27 972.49 

5 362.41 510.72 552.02 663.77 872.05 365.11 496.42 554.23 648.36 874.07 

10 339.91 482.02 520.05 626.76 824.73 342.40 468.68 521.99 612.26 826.44 

  
     

      
Thickness 

(mm) 
N 

β-150° 

  

β-180° 

ω1 ω2 ω3 ω4 ω5 ω1 ω2 ω3 ω4 ω5 

75 

0 1121.71 1215.96 1631.02 1770.00 2369.95 

 

587.28 1217.28 1217.28 1787.02 2173.50 

0.5 774.79 834.77 1120.99 1217.80 1632.93 399.21 835.24 835.24 1229.70 1497.46 

1 676.13 729.13 977.89 1064.88 1427.23 346.59 729.24 729.24 1075.45 1310.57 

2 601.01 651.06 870.57 951.77 1273.64 307.36 650.75 650.75 961.33 1172.32 

5 539.48 586.81 783.26 858.77 1148.28 274.29 585.73 585.73 867.24 1058.55 

10 512.70 556.02 744.24 814.57 1091.16 257.81 554.28 554.28 822.28 1004.47 

50 

0 793.63 894.82 1180.89 1222.13 1802.32 353.67 785.38 785.38 1186.05 1459.59 

0.5 537.39 614.24 804.22 835.38 1238.04 230.82 529.98 529.98 807.63 997.48 

1 465.46 534.58 698.95 726.32 1078.32 195.06 458.05 458.05 701.94 868.88 

2 411.71 474.13 620.55 644.17 957.52 167.34 404.10 404.10 623.24 773.44 

5 366.18 423.84 554.80 576.01 857.81 141.99 357.97 357.97 557.12 693.79 

10 343.34 400.76 522.38 544.26 812.65 127.89 334.51 334.51 524.37 654.72 
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Table 4.2.16: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate without temperature rise ∆T= 0 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2949.28 2046.59 1786.14 1584.13 1417.46 1347.70 

 

3196.87 2220.31 1937.59 1717.52 1535.52 1459.27 

ω2 3132.21 2164.92 1900.74 1709.84 1559.62 1490.69 4572.77 3154.40 2766.83 2486.64 2267.42 2168.41 

ω3 3406.42 2355.19 2067.92 1860.13 1696.46 1621.39 4958.29 3422.03 3001.86 2697.66 2459.17 2351.50 

ω4 3874.38 2679.89 2353.28 2116.78 1930.14 1844.51 5549.68 3848.41 3365.66 2996.84 2693.33 2563.25 

ω5 4375.19 3033.44 2660.53 2383.80 2160.11 2059.77 5621.15 3884.98 3408.08 3061.62 2789.51 2666.65 

              
Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3399.40 2362.41 2062.93 1830.43 1638.01 1556.59 

 

4665.91 3246.91 2842.00 2530.90 2272.27 2158.67 

ω2 5879.42 4048.19 3547.24 3184.39 2901.46 2775.83 7437.81 5173.22 4520.46 4012.95 3589.16 3406.97 

ω3 6079.18 4222.88 3687.84 3273.09 2930.32 2785.87 10453.56 7195.97 6281.51 5598.32 5061.94 4842.87 

ω4 6355.59 4379.91 3838.59 3445.63 3138.39 3001.97 10754.60 7421.81 6481.56 5765.21 5174.20 4920.14 

ω5 7182.82 4955.34 4344.16 3899.17 3549.53 3393.90 11114.02 7727.14 6751.10 5991.47 5355.05 5096.51 

Table 4.2.17: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to uniform temperature rise ∆T= 100 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2832.88 1941.98 1685.13 1486.70 1323.05 1253.60 

  

3100.83 2137.82 1858.66 1641.13 1460.84 1385.04 

ω2 2917.43 1962.42 1700.24 1510.72 1360.19 1288.67 4414.69 3017.17 2635.06 2358.97 2142.32 2043.33 

ω3 3179.57 2142.46 1857.74 1651.83 1488.32 1410.90 4789.24 3275.81 2861.68 2562.04 2326.60 2219.19 

ω4 3628.45 2451.09 2127.98 1894.12 1708.39 1620.77 5392.37 3709.79 3236.30 2876.39 2579.92 2451.55 

ω5 4084.33 2762.18 2395.11 2125.00 1907.00 1805.78 5434.44 3728.01 3256.29 2913.64 2645.04 2522.78 
              

Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3305.76 2283.09 1987.41 1757.59 1567.01 1486.13  4576.09 3175.82 2776.19 2469.02 2213.42 2101.00 

ω2 5741.51 3936.30 3442.51 3085.00 2805.99 2681.57 

 

7322.65 5086.09 4441.48 3940.29 3521.73 3341.77 

ω3 5956.71 4123.94 3596.00 3187.18 2849.28 2706.40 10328.38 7112.04 6209.63 5535.59 5006.46 4790.35 

ω4 6206.87 4259.32 3725.78 3338.64 3035.64 2900.43 10601.54 7312.31 6383.84 5675.46 5090.56 4839.42 

ω5 7016.45 4820.89 4218.59 3780.26 3435.64 3281.63 10978.69 7631.40 6668.77 5923.44 5297.30 5042.21 
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Table 4.2.18: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to uniform temperature rise ∆T= 200 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2629.84 1653.88 1376.56 1172.36 1002.89 913.15 

  

2998.89 2043.60 1765.68 1548.55 1367.77 1291.20 

ω2 2695.53 1801.97 1526.64 1307.36 1126.47 1032.10 4233.89 2843.35 2461.40 2185.43 1967.59 1865.39 

ω3 2881.07 1825.68 1542.51 1342.73 1177.46 1103.04 4597.55 3092.59 2679.07 2379.96 2143.77 2033.39 

ω4 3313.09 2121.61 1786.40 1540.98 1340.18 1237.47 5219.86 3521.72 3054.16 2713.64 2426.87 2297.78 

ω5 3727.43 2398.64 2024.73 1749.81 1524.68 1412.12 5225.34 3554.55 3080.88 2724.05 2449.52 2324.49 

              
Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3207.54 2193.31 1899.14 1669.90 1479.02 1397.49  4486.02 3096.85 2699.76 2394.27 2139.53 2026.97 

ω2 5594.59 3802.30 3311.31 2956.24 2678.76 2553.36 

 

7210.89 4990.23 4349.32 3850.53 3433.39 3253.60 

ω3 5831.94 4011.90 3487.20 3081.14 2745.28 2602.55 10212.17 7017.08 6120.16 5450.52 4925.16 4710.35 

ω4 6049.21 4115.97 3585.63 3201.28 2900.18 2764.27 10455.07 7191.25 6267.97 5562.03 4978.00 4726.98 

ω5 6841.32 4662.63 4064.22 3629.29 3287.18 3132.74 10852.57 7524.88 6568.68 5832.68 5211.20 4956.63 

Table 4.2.19: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to uniform temperature rise ∆T= 300 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2218.92 1122.71 745.86 376.82 - - 

  

2889.17 1935.69 1656.58 1437.61 1253.89 1175.04 

ω2 2463.56 1300.00 917.93 583.30 - - 4020.76 2618.87 2229.28 1947.17 1721.60 1610.21 

ω3 2516.08 1564.68 1204.30 882.11 - - 4373.81 2858.75 2437.98 2133.17 1889.86 1770.68 

ω4 2886.04 1604.14 1257.79 1003.61 - - 4984.80 3274.52 2800.47 2456.88 2182.93 2050.01 

ω5 3272.03 1878.41 1460.15 1137.45 - - 5024.74 3350.46 2872.83 2513.54 2219.61 2085.00 
              

Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3103.18 2091.72 1796.79 1566.05 1372.59 1289.06  4394.26 3009.07 2611.98 2306.10 2050.20 1936.20 

ω2 5434.02 3640.71 3147.69 2791.83 2513.17 2384.28 

 

7100.45 4884.39 4242.97 3742.95 3323.63 3141.99 

ω3 5702.21 3884.21 3358.93 2952.70 2616.22 2471.84 10101.98 6908.99 6011.19 5341.42 4816.56 4582.06 

ω4 5877.94 3944.45 3412.28 3027.40 2725.52 2586.38 10312.25 7056.79 6132.49 5423.77 4835.67 4601.47 

ω5 6652.71 4475.27 3875.39 3440.35 3097.94 2940.48 10732.52 7405.05 6448.36 5716.72 5095.50 4838.56 
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Table 4.2.20: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to linear temperature rise ∆T= 100 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2892.53 1998.50 1740.10 1539.68 1374.12 1304.42 

  

3148.76 2180.70 1899.89 1681.06 1499.81 1423.76 

ω2 3032.40 2077.82 1815.58 1625.32 1474.22 1403.81 4498.13 3092.45 2707.67 2429.19 2210.58 2111.30 

ω3 3300.55 2263.09 1978.00 1771.05 1606.64 1530.16 4878.25 3355.76 2938.65 2636.36 2398.67 2290.83 

ω4 3758.89 2579.88 2255.86 2020.48 1833.34 1746.39 5472.17 3784.03 3305.48 2940.41 2640.04 2510.81 

ω5 4236.23 2912.30 2543.02 2269.04 2046.82 1945.49 5532.35 3812.39 3338.69 2994.20 2723.12 2600.25 

              
Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3352.14 2323.94 2026.52 1795.35 1603.80 1522.66  4619.13 3210.87 2808.84 2499.87 2242.94 2130.10 

ω2 5814.96 3996.99 3499.41 3138.93 2857.53 2732.44 

 

7376.34 5127.48 4479.26 3975.40 3554.89 3374.27 

ω3 6017.08 4174.00 3642.70 3231.04 2890.94 2747.43 10398.61 7157.59 6248.43 5569.75 5037.48 4820.34 

ω4 6285.82 4324.51 3786.86 3396.49 3090.91 2954.94 10673.33 7364.94 6431.04 5719.15 5131.96 4880.00 

ω5 7104.26 4893.12 4286.15 3844.15 3496.53 3341.56 11050.54 7680.30 6710.42 5957.16 5326.75 5070.91 

Table 4.2.21: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to linear temperature rise ∆T= 200 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2831.52 1945.07 1687.98 1488.37 1322.74 1252.10 

  

3099.25 2138.93 1859.51 1641.20 1459.62 1383.03 

ω2 2917.01 1973.03 1710.77 1518.76 1363.26 1288.44 4418.16 3024.17 2641.38 2363.61 2144.00 2043.00 

ω3 3179.21 2153.44 1868.60 1660.09 1491.43 1410.62 4792.89 3283.11 2868.25 2566.84 2328.27 2218.77 

ω4 3628.16 2462.61 2139.29 1902.66 1711.52 1620.34 5391.47 3714.08 3239.30 2877.32 2578.44 2448.66 

ω5 4081.99 2774.25 2406.93 2133.56 1909.52 1804.48 5438.28 3734.35 3262.50 2918.49 2646.60 2522.10 
              

Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3303.84 2283.64 1987.74 1757.21 1565.43 1483.79 

 

4572.76 3174.07 2774.27 2466.61 2210.04 2096.91 

ω2 5748.48 3942.67 3447.79 3088.84 2807.55 2681.57 7316.70 5081.45 4436.66 3935.03 3515.60 3334.97 

ω3 5954.96 4123.51 3595.05 3185.35 2846.23 2702.58 10346.41 7119.62 6214.60 5539.03 5008.85 4792.21 

ω4 6214.05 4265.95 3731.25 3342.58 3037.18 2900.33 10595.16 7307.95 6378.85 5669.46 5083.10 4831.03 

ω5 7023.81 4827.71 4224.13 3784.14 3436.90 3281.10 10990.25 7634.09 6668.96 5919.88 5292.16 5037.07 
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Table 4.2.22: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to linear temperature rise ∆T= 300 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2764.77 1844.44 1578.94 1381.22 1215.49 1131.40 

  

3047.96 2094.69 1816.15 1597.66 1414.72 1336.89 

ω2 2781.42 1884.23 1627.33 1427.35 1260.02 1186.82 4331.55 2948.16 2566.45 2288.23 2065.78 1961.42 

ω3 3037.93 2020.37 1732.65 1518.72 1340.15 1250.28 4700.89 3202.72 2789.16 2487.45 2246.14 2133.27 

ω4 3478.01 2322.63 1997.04 1755.51 1554.99 1455.11 5306.51 3635.13 3164.59 2806.32 2507.41 2375.63 

ω5 3909.12 2615.12 2247.38 1971.62 1741.24 1628.73 5337.62 3651.85 3179.51 2833.03 2558.20 2430.28 

              
Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3254.17 2241.25 1946.35 1715.75 1522.69 1439.83  4526.39 3136.23 2738.05 2430.89 2173.39 2058.98 

ω2 5679.16 3884.53 3391.66 3033.39 2750.77 2622.52 7258.26 5034.70 4392.28 3891.51 3471.07 3288.88 

ω3 5892.24 4070.97 3544.50 3135.68 2795.93 2651.01 
 

10296.32 7081.61 6179.64 5505.84 4975.80 4758.25 

ω4 6139.47 4203.50 3671.04 3283.17 2976.47 2837.34 10519.21 7250.23 6324.46 5615.70 5027.26 4772.96 

ω5 6940.59 4758.33 4157.39 3718.42 3369.92 3211.77 10932.47 7587.98 6626.27 5879.26 5250.98 4994.77 

Table 4.2.23: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to non-linear temperature rise ∆T= 100 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2892.53 2000.36 1742.30 1541.80 1375.61 1305.38 

  

3148.76 2182.17 1901.62 1682.74 1501.00 1424.52 

ω2 3032.40 2081.33 1819.84 1629.54 1477.29 1405.82 4498.13 3094.77 2710.39 2431.84 2212.47 2112.54 

ω3 3300.55 2266.78 1982.47 1775.47 1609.85 1532.25 4878.25 3358.22 2941.55 2639.17 2400.68 2292.14 

ω4 3758.89 2583.84 2260.66 2025.20 1836.76 1748.62 5472.17 3786.41 3308.22 2942.98 2641.81 2511.94 

ω5 4236.23 2917.07 2548.74 2274.61 2050.77 1948.05 5532.35 3815.06 3341.85 2997.27 2725.31 2601.67 
              

Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3352.14 2325.34 2028.16 1796.94 1604.93 1523.38 

 

4619.13 3212.06 2810.20 2501.17 2243.86 2130.69 

ω2 5814.96 3998.81 3501.50 3140.92 2858.93 2733.35 7376.34 5128.96 4480.92 3976.94 3555.96 3374.96 

ω3 6017.08 4175.72 3644.66 3232.88 2892.22 2748.25 10398.61 7158.96 6249.82 5570.93 5038.24 4820.81 

ω4 6285.82 4326.48 3789.11 3398.63 3092.42 2955.92 10673.33 7366.80 6433.07 5721.02 5133.27 4880.84 

ω5 7104.26 4895.32 4288.66 3846.53 3498.21 3342.65 11050.54 7681.90 6712.10 5958.59 5327.68 5071.49 
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Table 4.2.24: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to non-linear temperature rise ∆T= 200 K. 

Thickness 10 mm 

  

15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2831.52 1949.22 1693.00 1493.30 1326.30 1254.43 

  

3099.25 2142.04 1863.23 1644.87 1462.30 1384.78 

ω2 2917.01 1981.48 1721.27 1529.44 1371.27 1293.82 4418.16 3029.30 2647.53 2369.68 2148.44 2045.96 

ω3 3179.21 2162.23 1879.50 1671.13 1499.69 1416.14 4792.89 3288.55 2874.75 2573.24 2332.95 2221.87 

ω4 3628.16 2471.92 2150.78 1914.26 1720.16 1626.10 5391.47 3719.31 3245.39 2883.10 2582.54 2451.34 

ω5 4081.99 2785.06 2420.14 2146.68 1919.08 1810.80 5438.28 3740.08 3269.46 2925.41 2651.65 2525.44 

              
Thickness 20 mm 

  

50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3303.84 2286.60 1991.26 1760.68 1567.96 1485.45  4572.76 3176.56 2777.17 2469.43 2212.11 2098.29 

ω2 5748.48 3946.59 3452.37 3093.26 2810.75 2683.70 

 

7316.70 5084.51 4440.18 3938.42 3518.08 3336.62 

ω3 5954.96 4127.12 3599.26 3189.40 2849.14 2704.49 10346.41 7122.41 6217.55 5541.68 5010.68 4793.40 

ω4 6214.05 4270.16 3736.16 3347.32 3040.61 2902.60 10595.16 7311.77 6383.17 5673.63 5086.19 4833.09 

ω5 7023.81 4832.38 4229.57 3789.39 3440.69 3283.61 10990.25 7637.36 6672.51 5923.13 5294.47 5038.58 

Table 4.2.25: Natural frequencies (Hz) of CCCC two-fold (900 crank angle) Si3N4/SUS304 FGM Folded plate subjected to non-linear temperature rise ∆T= 300 K. 

Thickness 10 mm  15 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 2764.77 1859.98 1598.76 1401.93 1231.60 1142.49 

  

3047.96 2099.64 1822.15 1603.67 1419.19 1339.84 

ω2 2781.42 1891.37 1636.18 1436.26 1266.65 1191.29 4331.55 2956.73 2576.89 2298.70 2073.60 1966.70 

ω3 3037.93 2036.35 1752.96 1539.86 1356.52 1261.50 4700.89 3211.75 2800.14 2498.43 2254.32 2138.78 

ω4 3478.01 2339.29 2018.07 1777.28 1571.72 1466.53 5306.51 3644.18 3175.11 2816.11 2514.49 2380.34 

ω5 3909.12 2633.74 2270.54 1995.09 1758.82 1640.57 5337.62 3660.80 3190.72 2844.75 2566.95 2436.16 
              

Thickness 20 mm  50 mm 

N 0 0.5 1 2 5 10 0 0.5 1 2 5 10 

ω1 3254.17 2245.93 1952.00 1721.41 1526.91 1442.63 

 

4526.39 3140.11 2742.67 2435.48 2176.86 2061.34 

ω2 5679.16 3890.86 3399.18 3040.77 2756.23 2626.22 7258.26 5039.45 4397.89 3897.09 3475.32 3291.77 

ω3 5892.24 4076.65 3551.26 3142.34 2800.85 2654.29 10296.32 7085.91 6184.36 5510.25 4979.00 4760.41 

ω4 6139.47 4210.29 3679.08 3291.06 2982.29 2841.27 10519.21 7256.16 6331.37 5622.62 5032.61 4776.63 

ω5 6940.59 4765.82 4166.24 3727.09 3376.32 3216.08 10932.47 7593.01 6631.91 5884.73 5255.15 4997.58 
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Similar to one-fold folded plates, the two-fold folded plates manifest higher natural frequencies 

for lower values of power law index N. For better visualization of the effect of temperature 

increment, Figure 4.2.9 displays the first four frequencies ωi (i= 1 to 4) versus temperature for 

FGM plates of 50 mm thickness. The plates of volume fraction indices N=1 subjected to 

uniform, linear, and nonlinear temperature rise fields are considered. For the purpose of 

comparison of temperature effects, the data of first natural frequency ω1 from Figure 4.2.9 is 

plotted in Figure 4.2.10. Similar to flat plates and one-fold folded plates, it is observed that the 

uniform temperature change affects the vibrational frequencies more significantly than the 

linear and nonlinear temperature changes. 
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(c) 

Figure 4.2.9: First four natural frequencies versus temperature for CCCC FGM two-fold plate 

with N=1, h=50 mm (a) Uniform temp. rise (b) Linear temp. rise (c) Non-linear temp. rise. 

 

Figure 4.2.10: Variation of fundamental frequency with various temperature field for CCCC 

FGM two-fold plate with N=1 and h=50 mm. 

First three mode shapes of Si3N4/SUS304 FGM two-fold folded plate, with crank angle β = 90o 

and N=1 have been plotted in Figure 4.2.11 for 10 mm and 50 mm thickness. It has been 

observed that the first mode shape remains unchanged for thinner plates, but when thermal load 

is added, the second mode bending (2,1) occurs, which is (1,1) without thermal load.  Similarly, 

the third mode exhibits temperature-dependent bending mode (3,1) vs (2,1) when temperature 

increases. For thicker plate too, the first mode is similar where the structure rotates about 

vertical axis. When the thermal load is applied, a twisting shape is seen in the second mode. 

Regarding the third mode, no changes have been noted. Considerable variation in mode shapes 

have been observed when the plate thickness increases. 
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Figure 4.2.11: First three mode shapes for FG two-fold plate with N=1 (a) h = 10 mm without 

thermal load, (b) h = 10 mm uniform temp. rise (∆T= 300 K), (c) h = 50 mm without thermal 

load (d) h = 50 mm uniform temp. rise (∆T= 300 K).  
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CHAPTER 5.  

CONCLUSION 

Functionally graded material is a high quality material that will revolutionize the 

manufacturing world in the 21st century. There are many roadblocks to understanding this 

target. Cost is a transcendent issue, with a tremendous section of the cost expended on the 

powder preparing and manufacturing strategy. However, the advancement of fabrication 

techniques, including additive manufacturing, has revolutionized the production of FGM 

plates. These techniques allow for precise control over material gradients and open up new 

possibilities for complex geometries.  

In this work, dynamic response of all side clamped FGM rectangular flat and folded 

plates subjected to thermal environment is discussed to get the natural frequency and mode 

shapes using first order shear deformation theory. Material properties are assumed to be 

dependent on temperature and vary continuously in thickness direction according to power law 

distribution. In order to validate the current methodology, the results are cross-checked with 

the existing literature. From various parametric studies in crank angle, thicknesses, temperature 

field, and power law indices following conclusions can be made:  

i) As temperature increases, material properties degrade, along with the development of 

thermal stresses, which ultimately cause a reduction in natural frequency. 

ii) The impact of uniform temperature rise on vibrational frequencies is notably greater 

compared to that of linear and non-linear temperature rise. 

iii) Folded plates provide better resistance to thermal loads in comparison to flat plates, as 

presence of fold increases stiffness of the plate. 

iv) For flat rectangular plates the fundamental frequency of vibration decreases as the aspect 

ratio (a/b) increases. 

v) The temperature change affects the first mode more significantly than other higher modes 

and the plates of power law index N=10 are more sensitive to the temperature change than 

those of N=1. 

vi) Thicker sections, which produce higher fundamental frequencies, exhibit greater resilience 

against thermal loads. Thinner plates ceased to produce results in higher temperature. 

vii) As ceramic constituent decreases with the increment of gradient index N, the stiffness and 

natural frequency of the folded plates reduces in exponential manner.  

In essence, the numerical free vibration analysis of FGM folded plates not only enriches our 

understanding of their behavior but also provides a foundation for designing innovative 

structures that leverage their unique properties. As technology continues to advance, we 

anticipate that FGM folded plates will play an increasingly vital role in engineering solutions 

across diverse fields. 
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FUTURE SCOPE OF STUDY 

 

The work presented in this thesis represents a limited segment of the extensive research area 

of functionally graded structures. There are numerous problems within this field that need to 

be addressed in future research. To mention a few, the current study can be extended in the 

following fields: 

i) Consideration of the effect of environmental moisture along with temperature i.e. 

hygrothermal effect on FGM plates. 

ii) These parametric studies can also be conducted with other materials like Ti–6Al–4V/ 

Zirconia etc. 

iii) The present formulation is based on first order shear deformation theory. It can be modified 

to take higher order shear deformation theory into account. 

iv) Formulation can be derived for modelling the behaviour of FGM beams and plates with 

integrated piezoelectric sensor and actuator. 

v) Current analysis can be extended on Sandwich FGM plates, FGM Box structure, FGM 

cylindrical and spherical shells as well as FGM plates with change in porosity. 

vi) Analysis of functionally graded material plates resting on Winkler and Pasternak elastic 

foundations. 

vii) Buckling studies, forced vibration analysis and the effect of lateral load is a scope for 

further study. 
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