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ABSTRACT

Functionally graded materials (FGMs) are new materials whose properties change
gradually in respect to their dimensions. This group of materials shows a tremendous
improvement of previously used composite materials. FGM consists of two or more materials
whose combination enables the achievement of specified properties in accordance with the
desired application. The Ceramic-Metal FGMs can be designed to reduce thermal stresses and
take advantage of the corrosion and heat resistances of ceramic and the mechanical strength,
good machinability, high toughness and bonding capability of metals without severe internal
thermal stresses. Use of folded plates are common nowadays for many types of structures.
Judicial use of folds increases the stiffness of the structure and hence its load carrying capacity.

As the FGMs are most likely to be used in the high thermal environments, the free
vibration analysis, a fundamental dynamic characteristic, of FGM flat and folded plates under
thermal environment holds significant importance in understanding their mechanical behaviour
and potential applications. Modal analysis of all side clamped (CCCC) FGM rectangular flat
and folded plates in the thermal environment is done based on the First-order transverse shear
deformation theory (FSDT). Material properties are assumed to be dependent on temperature
and vary continuously in thickness direction according to power law distribution. A finite
element program in MATLAB environment is developed for the present study applying folded
plate transformation considering 8-noded isoparametric elements with 6 degrees of freedom
per node. The effect of various parameters like crank angle 3, different side to thickness ratios
(b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and gradient indices
on the natural frequencies of FG rectangular flat and folded plates is studied. It is observed that
increasing thermal load reduces the stiffness of the structure considerably. Stiffer sections can
withstand more temperature than thinner sections. Presence of ridge line in folded plates make
the structure stiffer compared to flat plate and hence is capable of resisting higher thermal load.
The calculated results have been validated with the existing literature.

The thesis also gives an overview of the existing literature on the area of different
classifications, various fabrication methods and applications of the FGMs. In recent decades,
the exploration of FGMs' free vibration behavior has attracted the attention of researchers
across mechanical, aerospace, civil, and biomedical engineering disciplines. The inherent
complexity stemming from varying material properties within FGM plates, coupled with
diverse boundary conditions and geometric configurations, necessitates advanced
computational techniques for accurate analysis.
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CHAPTER 1.
INTRODUCTION

Functionally graded materials (FGM) are composite materials which are designed to present a
particular spatial variation of their properties (such as mechanical and thermal properties). This
is usually achieved by forming a compound of two components whose volume fraction is
changed continuously across a certain direction.

So FGMs are defined as an anisotropic material whose physical properties vary
throughout the volume, either randomly or strategically, to achieve desired characteristics or
functionality. FGMs differ from traditional composites in that their material properties vary
continuously from one surface to another, whereas the composite changes at each laminate
interface. Thereby FGMs eliminate the problem of stress concentration in laminated
composites. FGMs accomplish this by gradually changing the volume fraction of the materials
which make up the FGM. Thus, material properties depend on the spatial position in the
structure. The properties that may be designed/controlled for desired functionality include
chemical, mechanical, thermal, and electrical properties.

y f.‘ Articular Cartilage

h__-.-'\_\ '.
';ft;m__ 7- Epiphysis
&)
1

1.1 History of FGMs

Shen and Bever [1] first proposed the concept of gradual
material composition for composite and polymer
materials in 1972. However, the “first” FGM was

v
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such as shock resistance, thermal insulation, catalytic =
efficiency, and the relaxation of the thermal stress. The
distribution of the porosity affects the tensile strength
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inside by altering the porosity. From an engineering =
perspective, the human bone is a remarkable material Figure 1.1.1: Human Bone
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Chapter 1: Introduction

having unique material properties that has the ability to repair itself and to adapt to its
mechanical environment.

1.2 Applications of FGMs

Due to its excellent thermal and mechanical properties, functionally graded materials (FGMs)
are widely used in various fields and are likely to be used for other purposes. The most
important applications include aerospace, energy, automobile, biomedical, defence,
electrical/electronics, marine, Opto-Electronics, sport, thermoselectrics, and bioengineering.
Some of the applications of functionally graded materials are highlighted below:

1. Aerospace: Functionally graded materials can withstand very high thermal gradient,
this makes it suitable for use in structures and rocket engine component, space plane body etc.
If only the processing technique is improved, FGMs are promising and can be used in wider
areas of aerospace.

2. Medicine: Living tissues like teeth and bones are examples of functionally graded
material from nature, to replace these tissues, a compatible material is needed that will serve
the purpose of the original tissue. The ideal material for this application is functionally graded
material. FGM has find wide range of application in dental and orthopaedic applications for
teeth and bone replacement.

3. Defence: One of the most important characteristics of functionally graded material is
the ability to inhibit crack propagation. This property makes it ideal material to be used in
defence application, as a penetration resistant materials used for armour plates and bullet proof
vests.

4. Energy: FGM are used in energy conversion devices. They can be used in making
thermal barriers and are used as protective coating on turbine blades in gas turbine engine.

5. Optoelectronics: FGM also finds its application in optoelectronics as graded
refractive index materials and in discs’ magnetic storage media.

Other areas of application are: cutting tool insert coating, nuclear reactor components,
automobile engine components, turbine blade, heat exchanger, Tribology, fire retardant doors,
sensors etc. Current applications of FGMs also include:

e Structural walls that combine two or more functions including thermal and sound
insulation.

e Enhanced sports equipment such as golf clubs, tennis rackets, and skis with added
graded combinations of flexibility, elasticity, or rigidity.

e Enhanced body coatings for cars including graded coatings with particles such as
dioxide/mica.

The list is endless and more application is springing up as the cost of production, processing
technology and properties of FGMs improve.
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Chapter 1: Introduction

1.3 Advantages of FGMs

FGMs are considered to be potential substitute to traditional laminated composite materials as
they can mitigate some disadvantages associated with the laminates. Various advantages of
FGMs are pointed out below:

e Minimization of interfacial stresses between different materials (e.g. due to temperature
variation).

e Provide ability to remove stress concentrations.
e Provide multi-functionality.

e Provide ability to control deformation, dynamic response, wear, corrosion, etc. and
ability to design for different complex environments.

e Provide opportunities to take the benefits (pros) of different material systems [e.g.
ceramics and metals such as resistance to oxidation (rust), toughness, machinability,
and bonding capability].

1.4 Challenges of FGMs

Functionally graded materials (FGMSs) offer unique properties due to their tailored composition
and microstructure, but they also pose some challenges:

e Mass production

e Quality control

e Design complexity

e Property prediction

e Cost

1.5 Classification of FGMs

1.5.1 Classification based on FGM structure

In general, FGM structures are classified into two general categories (Figure 1.5.1). The first
category is structures that are known as discontinuous or step gradients, where the gradient
factor is changing step-by-step and the second category is called continuous gradients, in which
the gradient factor is continuously flowing through the volume of the material.

a) Stepwise Graded Structures

An example is a spark plug in which gradient is formed by changing its composition from a
refractory ceramic to a metal.

b) Continuous Graded Structures

No clear zones or separation cut lines could be observed inside the material to distinguish the
properties of each zone. In other words, not only there is no interface between one side and
other side but also, there is no vestige between them. An example is the human bone in which
gradient is formed by its change in porosity and composition. Change in porosity happens
across the bone because of miniature blood vessels inside the bone.

3|Page



Chapter 1: Introduction

Note: Desired properties gradients may be designed by controlling crystal structure and crystal
orientation, particulate diameter, bonding state, etc.

(@) (b)

Figure 1.5.1: Classification of FGM structures (a) Stepwise graded (b) Continuous graded

1.5.2 Classification based on FGM gradient type

According to gradient type FGMs can be classified into three different groups: gradient
composition, gradient porosity and gradient microstructure (Figure 1.5.2) [60].

Figure 1.5.2: Classification of functionally graded materials based on type of FGM gradients:
a) composition, b) porosity and ¢) microstructure

a) Gradient composition

In the group of gradient materials based on chemical composition, the chemical composition
is gradually varied according to the spatial position. The combination of the FGM gradient
depends on the composition of the material, which varies from substance to substance and leads
to separate phases with diverse chemical structure.
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Chapter 1: Introduction

b) Gradient porosity

In this case, the porosity varies according to the location throughout the material. In the design
of FGMs with graded porosity, not only the size of the porosity is very important, but also their
shape is extremely significant. From an industrial point of view, it can be seen that materials
with graded porosity in the medical industry have far more applications and several studies
have been published in this field.

c¢) Gradient microstructure

This type of FGM refers to a group whose material surface has a different microstructure than
its core. Heat treatment in these materials plays a significant role as these elements are mainly
produced during the cooling process. These are utilized in applications and devices where the
surface must have certain capabilities such as wear-resistance and corrosion, etc. while the
nucleus of the body has another property.

1.5.3 Classification based on FGM constituent materials

FGMs were initially classified by researchers under conventional composite materials
depending upon the used combinations of constituents. There exist many possible material
combinations that can be used to produce FGMs. Metal-metal, metal-ceramic, ceramic—
ceramic or ceramic—polymer are the most common as shown in Figure 1.5.3.

Material Combinations for
the Production of FGMs

[
[ | I |

Metal - Metal | Metal - Ceramic Ceramic - Ceramic Ceramic - Polymer
1) Al-Cu 1) Al - SiC IJ 1} SiC - Carbon e
2) Al - Ni 2) Al - ALOs 2) SiC - SiC 3 s O
3)Ni-Ti,etc. 3)Ni - ZrO; etc. 3) Carbon - Carbon, etc. poxy, etc.

Figure 1.5.3: Examples of possible material combinations used in FGMs

1.6 Fabrication Methods of FGM

Fabrication methods being the most diverse and sophisticated field in FGM research and
development, has undergone periodic evolution and progression in production technology as
well as fabrication methodology. The diverse development processes that periodically came to
use, range from deposition techniques to casting techniques. The suitability and feasibility of
production methods were determined based on material composition, transition functionality,
component geometry. Figure 1.6.1 classifies the different fabrication techniques employed for
processing FGMs [61].
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Solid * Powder Metallurgy SIS .
* Brushes for electric motors
Phase * Plasma Sintering and generators

Process » Additive Manufacturing » Blo-medical implants

L|qUid « Castings * Bearings
Phase « Infiltration o T“'be: '
. e Cylinder liners, Piston Rings
Process * Langmuir-Blodgett

* Chemical Vapour Deposition o Clitting tooks
Gas Phase « Thermal Spraying - Toding Blidss

Process * Electro-Chemical Gradation e Electronic Circuit Boards
 Laser Cladding

Figure 1.6.1: Various fabrication techniques for FGM.

1.7 Material properties gradation: Mathematical idealization

Functionally graded materials (FGMs) are a special kind of composite in which the material
properties vary smoothly and continuously from one surface to the other. Generally, the
material properties and volume content vary along the thickness direction. So, FGM is a very
non-uniform material. However, it is beneficial to idealize it as a continuum so that its
mechanical properties change smoothly in spatial coordinates. In order to analyse FGMs
effectively, a homogenization scheme must be adopted to simplify its complex heterogeneous
microstructure. The most common homogenization techniques for modelling the effective
material properties are the rule of mixtures (Markworth and Saunders, 1995), the Mori—Tanaka
method (Mori and Tanaka, 1973; Tanaka, 1997) and Hill’s self-consistent approach (Hill,
1965). These models are available to estimate the overall properties of composites from the
knowledge of the material composition and constituent properties [62]. Through this
idealization, the effective properties of macroscopic homogeneous composite materials can be
derived from the microscopic heterogeneous material structures. This will help us to get a
mathematical model which in turn useful to include and improve numerical techniques of the
FGM structures. It is vital that the conveyance of materials in the FG structure can be intended
for different spatial particulars. A typical FGM represents a modern composite material with a
recommended conveyance of the volume portion of the constituent stages. It is commonly
expected that the material properties follow the progressive change in thickness in a nonstop
way.

The material properties gradation in FGM is assumed to follow power law function,
exponential function etc. which are discussed here.
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Figure 1.7.1: FGM plate geometry and it’s material property variation along the depth

1.7.1 Exponential law

This law is generally adopted when we deal with the fracture mechanics problems. According
to this law, the material property P(z) in a specific direction is given by,

P(z) = Pte—o.s(mg—;)@—%)

Pt and Py are the corresponding material characteristic values of the topmost and bottom most
layer of the FG plate and ‘h’ is the total thickness of the plate as shown in Figure 1.7.1. It has
been found many research articles that used the exponential function to express the material
properties variation with the thickness of the FG plate as follows [30],

E(z) = E.e —o.s(zng—;l)@—zf)

k
n—=<

2Z

k(z) = kce—o.s(z ) (1-%)

ac\(,_ 2z

a(z) = ace—o.s(znﬁ)@ =
Where, E(z) is the modulus of elasticity, k(z) denotes the property of thermal conductivity

and a(z) indicates the value of the coefficient of thermal expansion of the FGM plate with a
thickness of h. ‘c’ and ‘m’ represents ceramic and metal respectively.
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Figure 1.7.2: Variation of Young modulus (Al/Al,O;) with the thickness of the FG plate
using exponential function [30]

Figure 1.7.2 shows the variation of modulus of elasticity in the direction of the FGM plate's
thickness.

1.7.2 Power law

It is observed from the open literature that this particular power law behavior is most commonly
used by many researchers. If FGM plate of uniform thickness ‘h’ is used for the analysis then
according to this law, the material properties P(z) in a specific direction (along ‘z’) can be
determined by,

P(z) = (P, — P)Vs + Py

Pt and Py, are the corresponding material characteristic values of the topmost and bottom most
layer of the FG plate. FGM is usually designed to assume that one of the outermost layers is
metal and the other layer is ceramic.

It is noted that material properties are dependent on the volume fraction ‘V¢ of FGM. The
constituent volume fraction of the FGM plate is supposed to change continually along the
thickness direction, which follows power-law as,

= (5+3)

F=\n'2
where 'N' is the volume fraction exponent. The power law exponent ‘N’ can vary from ‘0’ to
‘o0’ that show the transition of material from fully ceramic to metallic phase, respectively. The
variations may be seen in Figure 1.7.3, which reveals that material properties with exponential

gradation usually lie between those obtained with power-law exponents, N = 0.2, 0.5, 1, 2, and
5.

N
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Figure 1.7.3: Variation of Young modulus (Al/Al,O;) with the thickness of the FG plate
using the power-law [30]

1.7.3 Sigmoid law

Power-law function and exponential function are commonly used to describe the gradation of
material properties of FGMs, but, in both functions, the stress concentrations appear in one of
the interfaces in which the material is continuous but changing rapidly. To overcome this,
Chung and Chi [65], in their work suggested the use of another law called sigmoid law which
is the combination of two power-law functions. This law is not independent law; it consists of
two symmetric FGM layers having power-law distribution. They also suggested that by the use
of a sigmoid law the stress intensity factors of a cracked body can be reduced to a certain
extend. According to this law, the two power-law functions are defined by,

N

2z h
gt(z)=1—0.5(1—7) for (OSZSE)

N

2z h
gp(2) = 0.5(1+7) for (_ESZS 0)

By using the rule of mixture [i.e. P(z) = (Pt— Pp)Vs + Py ], Young's modulus of the Sigmoid
FGM can be calculated by,

E(2) = gu(DE: +[1 — gu (D), for 0z D)

h
E(2) = gy(DE +[1 -9y (D]E, for (-5<2<0)

Figure 1.7.4 shows the variation of FGM volume for different values of N by employing the
sigmoid function.
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Figure 1.7.4: Variation of Young’s modulus (Al/Al,Os) with the thickness of the FG plate
using the sigmoid function [66].

1.8 Folded Plate Structures

Folded plate structures are shell structures made by assembling flat plates, bending them in
different directions, and joining them along their longitudinal edges. Shells and folded plates
belong to the class of stressed-skin structures which by virtue of their geometry and small
flexural rigidity tend to carry applied loads primarily by direct stresses lying in their plane
accompanied by little or no bending unlike slab which carries loads by flexure. Judicial use of
folds increases the stiffness of the structure and hence its load carrying capacity. This makes
them economical for longer spans. Folded plate structures represent an ingenious synthesis of
architectural aesthetics and structural engineering principles. Characterized by their distinctive
folded or corrugated configurations, these structures offer a versatile and efficient solution for
a variety of architectural and engineering challenges.

INANANAANSL

Figure 1.8.1: Folded Plate

The origins of folded plate structures can be traced back to ancient architectural traditions,
where early civilizations utilized simple folded elements, such as mud bricks or stone slabs, to
construct durable and stable structures. However, it wasn't until the advent of modern
engineering techniques and materials that folded plate construction truly flourished as a distinct
architectural typology.
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Figure 1.8.2: Various types of folded plate roofs.

18.1

Advantages of Folded Plate Structures

Folded plate structures differ from flat plate structures in their geometric configuration and
structural behavior, leading to several advantages:

a)

b)

d)

f)

Increased Structural Strength: Folded plate structures exhibit greater stiffness and
load-carrying capacity compared to flat plates. The folded configuration enhances the
structural rigidity by increasing the moment of inertia, resulting in improved resistance
to bending and torsional forces.

Longer Spans: Folded plate structures can span longer distances without the need for
additional supports compared to flat plate structures. This makes them ideal for
applications requiring large, column-free interior spaces, such as industrial buildings,
stadiums, and exhibition halls.

Reduced Material Usage: Despite their increased strength and spanning capability,
folded plate structures often require less material compared to flat plate structures of
similar size and load-bearing capacity. This efficiency is achieved through the
geometric arrangement of the folded plates, which optimizes the distribution of forces
and minimizes material usage.

Architectural Flexibility: The folded configuration of plate structures allows for
greater architectural freedom and creativity. Architects can explore various folding
patterns, angles, and configurations to create visually striking and innovative designs
that may not be achievable with flat plate structures.

Aesthetic Appeal: Folded plate structures offer unique aesthetic possibilities, with their
distinctive folded or corrugated appearance adding visual interest and architectural
character to buildings and structures. The interplay of light and shadow on the folded
surfaces can create dynamic and engaging spatial experiences for occupants and
observers.

Enhanced Stability: The folded configuration of plate structures enhances their overall
stability and resistance to lateral loads, such as wind and seismic forces. This make
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them well-suited for applications in regions prone to environmental hazards or where structural
stability is a critical design consideration.

Overall, folded plate structures offer a compelling combination of structural efficiency,
architectural flexibility, and aesthetic appeal, making them a preferred choice for a wide range
of building types and applications where long spans, structural integrity, and design innovation
are paramount. At its essence, a folded plate structure consists of a series of interconnected flat
plates that are folded or bent along specific lines to create a continuous, three-dimensional
form. This folding process not only imbues the structure with inherent strength and rigidity but
also allows for the creation of large, column-free interior spaces—a hallmark feature highly
sought after in modern architectural design.

1.8.2 Applications of Folded Plate Structures

The application of folded plate structures has always been relevant in different fields of
engineering. Here are some common applications:

a) Roof Structures: Folded plate structures are frequently used in roof design, particularly
for large-span buildings such as warehouses, factories, and sports arenas. The inherent
rigidity of folded plates allows for the creation of expansive roof systems without the
need for extensive support columns, resulting in large, open interior spaces.

b) Bridges: Folded plate structures can be utilized in bridge construction, especially for
pedestrian bridges and small to medium-span vehicular bridges. Their structural
efficiency, aesthetic appeal, and ability to span long distances make them suitable for
various bridge designs.

c) Architectural Features: Folded plate elements can be incorporated into architectural
features such as canopies, awnings, and facades to provide both structural support and
visual interest. The geometric flexibility of folded plates allows architects to create
innovative and unique designs that enhance the overall aesthetic of buildings.

d) Industrial Buildings: In industrial settings, folded plate structures are often employed
in the construction of factories, warehouses, and distribution centers. Their ability to
support heavy loads and provide large, uninterrupted interior spaces makes them well-
suited for industrial applications where efficient use of space is critical.

e) Stadiums and Arenas: Folded plate structures are ideal for the construction of stadium
roofs and grandstands due to their ability to span large distances and accommodate
seating arrangements. Additionally, their geometric versatility allows for the creation
of visually striking architectural forms that can become iconic landmarks.

f) Exhibition Halls and Convention Centers: Folded plate structures are commonly
used in the construction of exhibition halls and convention centers where large, column-
free spaces are required to accommodate trade shows, conventions, and other events.
The structural efficiency of folded plates allows for the creation of vast, flexible interior
spaces that can easily be adapted to suit various purposes.
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g) Residential Buildings: While less common, folded plate structures can also be
employed in residential construction, particularly for custom-designed homes and high
end residential projects. Their ability to create dramatic interior spaces and support
unique architectural features can add a distinctive character to residential buildings.

Overall, folded plate structures offer a versatile and efficient solution for a wide range of
architectural and engineering applications, enabling the creation of innovative and visually
striking designs while also providing practical benefits such as large-span capabilities and
structural integrity.

1.9 Objective of Present Study

The present research aims to undertake finite element free vibration analysis of all side clamped
(CCCC) functionally graded rectangular flat and folded plate structures subjected to thermal
environment. Eight noded isoparametric serendipity plate bending elements considering first-
order shear deformation theory (FSDT) with rotary inertia will be used. A continuous variation
of material properties like Young’s modulus and density per unit volume will be assumed
through the plate thickness according to power law distribution. Material properties are
assumed to be dependent on temperature. The effect of different crank angles (B), side to
thickness ratios (b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and
gradient indices on the natural frequencies of FG rectangular flat and folded plates is studied.

1.10 Scope of Present Study

A computer program in MATLAB environment has been developed to study the influence of
temperature on the dynamic properties of all side clamped SisN4+/SUS304 (Refer Table 3.1.1)
FGM rectangular flat and folded plates. Eight-noded isoparametric plate bending element with
six degrees of freedom at each node have been employed in the present computations using
FEM. First order shear deformation plate theory (FSDT) in conjunction with rotary inertia has
been used in the research due to its high efficiency, simplicity and lesser computational cost.
The analysis considers material properties of the FGM at elevated temperature. Residual
stresses due to thermal environment are taken into account. A three-point gauss quadrature rule
is applied for evaluating the bending stiffness matrix whereas, a two-point gauss rule is applied
for evaluating shear stiffness matrix to avoid shear locking. Folded plate transformation has
been employed in the analysis using a 6 x 6 transformation matrix to transform the element
matrices before assembly. A set of new results with various crank angles (B), side to thickness
ratios (b/h ratio), temperature field (uniform/linear/non-linear temperature rise) and gradient
indices are presented.

These set of results can be used to understand the behaviour of FGM plates under similar
aggressive environment. Plates used in many structural systems may undergo undesirable large
deflections due to attenuation of resonant frequencies caused by thermal loading during
vibration. These results can be advantageously used by designers to tailor different parameters
of FGM plates required to avoid resonance. A set of these parametric results can be used for
assessing and monitoring the health of structures.
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CHAPTER 2.
LITERATURE REVIEW

Due to the broad applicability of FGM materials across diverse fields, extensive research has
been conducted in this area. An in-depth analysis of previously published literature has been
undertaken to enhance the understanding and knowledge of the subject. The vast historical
background of published literature can be broadly classified into the following categories:

2.1 FGM Flat Plate

Shen and Bever [1] first proposed the concept of gradual material composition for composite
and polymer materials in 1972. However, the “first” FGM was developed in Japan in 1984-85
as the result of a spaceplane project [2]. Although the concept of FGM is recent, many materials
that fit the description have existed for decades. Some FGMs also occur naturally like seashells,
bones and teeth. Praveen and Reddy [3] carried out a nonlinear thermo-elastic analysis of
functionally graded ceramic—metal plates using a finite element model based on the first-order
shear deformation plate theory (FSDT). Reddy [4] presented a theoretical formulation based
on Navier’s solutions of rectangular plates, and on third-order shear deformation theory
(TSDT) to analyse the functionally graded plates. The plates are assumed to have isotropic,
two-constituent material distribution through the thickness, and the modulus of elasticity of the
plate is assumed to vary according to power-law distribution in terms of the volume fractions
of the constituents. Vel and Batra [5] established an exact three-dimensional solution to
perform free and forced vibration analysis of simply supported functionally graded plates. They
assumed that the material properties are varying in the thickness direction only according to
power law. The exact solutions are compared with those obtained by the classical plate theory
(CPT), first order shear deformation theory (FSDT) and third order shear deformation theory
(TSDT). It is seen that there are significant differences between the exact solution and results
obtained from the classical plate theory whereas the results obtained from the first order and
the third order shear deformation theories compare well with the exact solution specially for
thin plates. Hashemi et al. [6] developed a dimensionless equation of motion to investigate the
transverse vibration of thick functionally graded plates using Mindlin plate theory. Abrate [7]
analysed free vibration, buckling and static deflections of FG plates based on the CPT, FSDT
and TSDT. They concluded that for various type of loading the natural frequencies, in-plane
buckling loads, critical temperatures or deflections of FG plates are proportional to those of the
corresponding homogeneous plate. In his another study [8], he showed using CPT that, if the
reference surface is chosen properly, then the FGM plate can behave like a homogeneous plate.
Nguyen et al. [9] calculated the value of shear coefficient (SCF) to be used for FSDT and they
found out that the value of SCF depends on the material gradation, ratio of Young’s modulus
of the constituent materials. Prakash et al. [10] investigated the non-linear stability behavior of
skew FGM plates using FSDT based on the exact neutral surface position as the neutral surface
of functionally graded plate may not coincide with its geometric mid-surface, because of the
material property variation through the thickness. They found out that the neutral surface shift
towards ceramic rich side and the shift increases with increase in gradient index. However, the
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results obtained from the formulation based on the neutral surface position, is qualitatively
similar to those of mid-surface based formulation. However, they obtained a much higher out
of-plane deflection and its difference from mid-surface calculations increased with increase in
gradient index and non-linearity. Hashemi et al. [11] carried out analytical solutions for free
vibration analysis of moderately thick rectangular plates, which are composed of functionally
graded materials (FGMSs). They used first-order shear deformation theory (FSDT) to derive and
solve exactly the equations of motion. The rectangular plates are considered to have two
opposite edges simply supported, while all possible combinations of free, simply supported
and clamped boundary conditions are applied to the other two edges. The mechanical properties
of the FG plates are assumed to vary according to a power law distribution, whereas Poisson’s
ratio is set to be constant. Talha and Singh [12] studied the static response and free vibration
analysis of FGM plates using higher order shear deformation theory (HSDT). Hashemi et al.
[13] compared the analytical and numerical methods of free vibration analysis of moderately
thick FG rectangular plates using Levy type solution along with Mindlin’s theory of plates.
Efraim [14] derived an empirical formula that gives a correlation for natural frequencies of
FGM plate and isotropic ones made of containing materials, even with different Poisson ratio.
The formula gives immediately accurate results for different vibrational modes and for various
volume fractions of containing materials without expending much computational effort. The
natural frequencies obtained are compared with results obtained with other numerical methods
for thick FGM annular plates. Rasheedat et al. [15] has given an overview on FGM, describing
its peculiarities, applications and processing techniques. Jha et al. [16] presented a detailed
review on the research works done in various fields of FGMs. In their paper, they showed in
details the amount of works done in each field and stressed the need for the development of
improved 2D models that would produce much more accuracy with much less computational
cost and efforts. Kennedy et al. [17] has given an equivalent isotropic plate model for the FGM
plate based on CPT. This holds good only for thin FGM plates where transverse shear is
negligible. Gupta and Talha [18] published a detailed review on the different processing
techniques, applications, methods for material properties gradations, methods to determine
effective material properties, different theories for analysis and on various research works done
on FGM. Kennedy et al. [19] in his work presented an equivalent layered model for FGM plate.
The idea was to replace the original FGM plate with an equivalent isotropic one, thus making
the analysis much more simple. He presented a single layer isotropic model and two-layer
model based on CPT by assuming Poison’s ratio to be constant and varying respectively and
shown that this can be extended to three-layered and four-layered composite plates if we use
HSDT that would be necessary for thick FGM plate. Bernardo [20] studied the structural
behavior (static and free vibration analyses) of FGM plates using FSDT and various numerical
techniques and gradation laws like power law and exponential law and is compared with each
other as well as with published FEM results. The layered and continuous configurations were
considered and they highlight the development of a package of different methods and models
that enable the selection of those that fit better the needs of the study in terms of accuracy,
robustness or computational cost. Chakraborty et al. [21] carried out an overall research work
on vibration problems for FG beam and plates. Hari Krishnan et al. [22] gives a very compact
review on the recent developments in the modelling and analysis of FGM plates. Burlayenko
et al. [23] provided 3D modelling of free vibration and static response of functionally graded
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materials (FGM) sandwich plates. Marzavan et al. [24] recently presented some results
regarding the free vibrations analysis of a plane, clamped circular plate. Two new, original
concepts are introduced by the authors: the equivalent plate concept and the multilayer plate
concept. They proposed the multilayer plate concept based on the replacement of the
continuous variation (according to a given law) of the elastic properties with a step variation
of them.

2.2 FGM Flat Plate under Thermal Load

A lot of work is also done in the field of free vibration analysis under thermal environment for
various FGM structures. Yang and Shen [25] analysed FGM plates for thermal free and forced
vibration based on HSDT. Similar analysis is done by Kim [26] to predict vibrational behavior
of FG plates under thermal loadings. Sundararanjan et al. [27] developed a nonlinear
formulation based on von Karman’s assumptions and FSDT for free vibration analysis of
functionally graded plates subjected to thermal environment. Li et al. [28] studied the thermal
free vibration of FG plates using 3D elasticity theory. Subsequently, Malekzadeh et al. [29]
investigated the thermal free vibration analysis of FG arbitrary straight-sided quadrilateral
plates using the FSDT and the differential quadrature method (DQM). Chakraverty and
Pradhan [30] analysed exponential functionally graded rectangular plates in thermal
environment within the framework of Classical or Kirchhoff’s plate theory (CPT). Kandasamy
et al. [31] in their paper discussed about free vibration and thermal buckling analysis of
moderately thick FGM structures based on FSDT. Lee et al. [32] assessed the thermal buckling
responses of FGM plates based on the FSDT and the neutral surface concept. A detailed review
of progressive developments in the thermal free vibration and buckling analyses of FGM plates
are presented by Swaminathan and Sangeetha [33]. Zghal et al. [34] presented thermal free
vibration analysis of FGM plates and panels using an improved first-order shear deformable
(1-FSDT) shell model which does not require any shear correction factors. Recently, Thai et al.
[35] utilized 3D elasticity theory to predict vibrational behaviour of multi-directional FGM
plates under thermal conditions.

2.3 Isotropic Folded Plate

The exploration of isotropic folded plate structures traces back to Goldberg and Leve [36] who
developed an exact static analysis of folded plate structures based on elasticity theory. Cheung
[37] first employed the finite strip method for analyzing isotropic folded plates. Pulmano et al.
[38] subsequently introduced a finite element solution for folded plates with varying thickness.
Irie et al. [39] used Ritz method for free-vibration analysis of isotropic cantilever folded plates.
Bar-Yoseph et. al. [40] proposed an approximate solution for the analysis of folded plates based
on Vlasov’s theory of thin walled beams. Golley and Grice [41], as well as Eterovic and Godoy
[42], in their papers analysed folded plates using finite strip methods. Liu and Huang [43] in
their study used finite element transfer matrix method to obtain the natural frequencies of
cantilever folded plate structures. Spectral element method was introduced by Danial et al. [44]
for dynamic analysis of isotropic folded plates, employing classical plate model. Bathe [45]
and Zienkiewicz et. al. [46] presented a method for flat shell analysis, relevant to folded plate
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structures. However, all these investigations primarily focused on isotropic folded plate
structures.

2.4 Laminated Composite (LC) Folded Plate

Niyogi et al. [47] predicted the free and forced vibration response of laminated composite
folded plate structures utilizing first order shear deformation theory (FSDT). Later Pal and
Niyogi [48] extended this analysis to incorporate the free vibration of stiffened laminated
composite and sandwich folded plate. Lee et al. [49] used third-order shear deformation theory
(TSDT) to predict the dynamic behavior of folded composite structures. Haldar and Sheikh
[50] used shear flexible sixteen noded triangular elements for the free vibration analysis of
isotropic and composite folded plate. Peng et al. [51] presented bending analysis of folded
plates by the FSDT and mesh free Galerkin method. Thinh et. al. [52] deals with the vibration
and bending analysis of multi-folding laminated composite plate using FEM. Static and free
vibration analysis of stiffened folded plates was done by Nguyen-Minh et al. [53] using a cell-
based smoothed discrete shear gap method (CS-FEM-DSG3) based on FSDT. Guo et al. [54]
conducted a theoretical and experimental investigation on the nonlinear vibration of Z-shaped
folded plates with inner resonance using classical plate theory (CPT). Free vibration behaviour
of laminated composite folded plate in hygro-thermal environment is investigated by Das and
Niyogi [55] based on FSDT.

2.5 FGM Folded Plate

Published literature on the free vibration analysis of folded plates made of FGM is limited. In
2019, Mohammadi and Setoodeh [56] used an FSDT-based isogeometric analysis (IGA)
approach for modal response of functionally graded skew folded (FGSF) plates. Very recently,
Basu et al. [57] studied the free vibration response of functionally graded folded plates using
finite element method considering first-order shear deformation theory and rotary inertia.
Power-law distribution is used to vary the Young’s modulus and density per unit volume
continuously in the thickness direction. They have shown that the thickness and boundary
conditions play a significant role in the free vibration behaviour of the FGM folded plates.
Zhang and Li [58] investigated the free vibration of a functionally graded graphene platelets
reinforced composite (FG-GPLRC) porous L-shaped folded plate based on Mindlin-Reissner
plate theory (i.e. FSDT). Very recently, Pham et. al. [59] presented free and forced vibration
analysis of unsymmetrical functionally graded porous folded sandwich plates using mixed
interpolation of tensorial components technique of triangular elements (MITC3).

2.6 Critical Observation

Thermal analysis of functionally graded folded plates is an important component of the overall
structural design and analysis. The performance of such structures depends on the surrounding
temperature, which causes thermal stresses and variation/degradation of material properties.
Folded plates are often used as industrial cladding, where thermal loads are quite common.
However, research on functionally graded folded plates in thermal environments is relatively
limited, as per the authors’ best understanding. This knowledge gap motivates the present work.
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In this study, we have analysed FGM rectangular flat and folded plate structures exposed to
thermal variations. To exaggerate the effects of thermal forces, clamped boundary conditions
have been applied to all edges (CCCC). To predict the free-vibration response of these
structures, we have employed an eight-noded isoparametric plate bending element. First order
shear deformation plate theory (FSDT) in conjunction with rotary inertia has been used in the
research due to its high efficiency, simplicity and lesser computational cost. Material properties
are assumed to be dependent on temperature and vary continuously in thickness direction
according to power law distribution. The element matrices are transformed using a 6x6
transformation matrix, as adapted by Niyogi et al. [47], before assembly. The impact of various
parameters such as crank angle, thickness, power law index and temperature field, on the
natural frequencies of functionally graded plates is presented.
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CHAPTER 3.
THEORETICAL FORMULATION

3.1 Material Properties Variation Law

In this paper we have considered that the material properties of FGM (like modulus of
elasticity, density, Poisson’s ratio, thermal conductivity etc.) vary continuously only in the
thickness direction from bottom (metal) to top (ceramic) and this variation is achieved by
varying the volume fraction of constituents according to power law distribution [57]:

|74 —<Z+1>N E 3.1.1
Similarly,
1 N
v.o=1- (% + E) Eqn. (3.1.2)

where ‘N’ is the power law index or gradient index, while V¢ and Vi, are the volume fractions
of ceramic and metal respectively, at a distance ‘z’ from the mid-plane (Figure 3.1.1). ‘h’ is the
overall plate thickness.

.

Thickness:h  / / == —— — - [ E— X

h

Metal rich surface

Figure 3.1.1: Geometry of FGM rectangular Flat Plate

Above FGM plate is constructed using two materials having only ceramic at the top plane (z =
h/2) and only metal at the bottom plane (z = —h/2). N=0 indicates pure ceramic, and N=o
indicates pure metal.

The material properties are considered to be dependent on temperature. A new method is
proposed by Touloukian [68] to evaluate the material properties (P) of ceramics and metals
depending upon the exposure temperatures (T) and is expressed as:

P_
P(T) = P, (Tl +1+PT+P,T? + P3T3) Eqn. (3.1.3)
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where T indicates the environmental temperature and Py, P_;, P, , P, , and P; are the constants
of the specific temperature-dependent material property. Now, based on the simple rule of
mixture [28], the effective material properties which are dependent on both temperature (T)
and position (z) are expressed as:

N

Pors (2,T) = Py (T) + [P (T) — Py (T)](%-}-%) Eqn. (3.1.4)

where Pesf represents the effective material properties of FGM at the temperature T and a spatial
distance z from the mid-plane. P, and P. are the material properties of the metal and ceramic,
respectively. In our study, the effective material properties are evaluated for three types of
temperature distribution namely, uniform, linear and nonlinear temperature rise, details of
which are given in subsequent paragraphs.

For parametric studies, Stainless Steel (SUS304) and Silicon Nitride (SizN4) are chosen to be
the constituent materials of the FGM flat and folded plates. The values of temperature-
dependent coefficients of these two materials are shown in Table 3.1.1. However, for validation
and mesh convergence study of folded plate formulation Al/ZrO, FGM folded plates have been
used. Temperature independent properties of Aluminium (Al) and Zirconia (ZrO>) are listed in
Table 3.1.2.

Table 3.1.1: Temperature-dependent coefficients of Young’s modulus E (Pa), Poisson’s ratio
v, thermal expansion coefficient o (1/K), mass density p (kg/m®) and thermal conductivity k
(W/mK) of SisN4 and SUS304 [28].

Material SisN4 (Silicon Nitride)

(Ceramic) E v o o

P4 0 0 0 0

Po 348.430 x 10° 0.24 5.8723 x 10 2370 9.19
P1 -3.070 x 10* 0 9.095 x 10* 0 0

P, 2.160 x 10 0 0 0 0

Ps -8.946 x 101 0 0 0 0

P (at 300 K) 322.2715 x 10° 0.24 7.4746 x 10 2370 9.19
Material SUS304 (Stainless Steel)

(Metal) E v o o K

P 0 0 0 0 0

Po 201.04 x 10° 0.3262 12.330 x 10°® 8166 12.04
P1 3.079 x 10* -2.002 x 10* 8.086 x 10* 0 0

P, -6.534x 107 3.797 x 107 0 0 0

Ps 0 0 0 0 0

P (at 300 K) 207.7877 x 10° 0.3178 1.5321 x 10° 8166 12.04
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Table 3.1.2: Temperature-independent Young’s modulus E (Pa), Poisson’s ratio v and mass
density p (kg/m®) of Aluminium (Al) and Zirconia (ZrO) [12].

Material Aluminium (Al) Zirconia (ZrOy)
E 70 x 10° 151 x 10°

v 0.3 0.3

P 2707 3000

3.2 Temperature Distribution

Temperature is assumed to vary only in the thickness direction and the variation is evaluated
in three different ways as shown below:

3.2.1 Uniform temperature rise

The temperature field across the thickness in the case of uniform temperature rise can be
expressed as [28, 33]:

T = Ty + AT Egn. (3.2.1)

where Ty is the temperature of free stress state (To =300 K) and AT is the uniform temperature
rise throughout the thickness of plate.

3.2.2 Linear temperature rise

In this case the temperature variation is assumed to be a linear function of thickness coordinate
(2) and it is given by [28, 33]:

1
T(z) = T, + AT ( % + E) Eqgn. (3.2.2)

where Tm and T¢ are the temperatures at the metallic and ceramic face of the FGM plate (Tm =
300 K) and AT = T¢— T is the temperature gradient.

3.2.3 Non-linear temperature rise

The nonlinear variation of temperature is usually obtained from the solution of heat conduction
equation. Due to the assumption of material homogeneity in the plane of the plate and its
variation only in the thickness direction, the current study can be carried out using one
dimensional heat conduction equation [26]:

d (o ATy _
_E( @) E) =0 Eqn. (3.2.3)

In our study the thermal conductivity k(z) is assumed to be independent to the temperature as
indicated in Table 3.1.1.

Using the boundary conditions T = Tm at z=—h/2 and T = T¢ at z = h/2 in the above equation,
the non-linear temperature distribution can be written as [26, 67]:
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f—zh/z [ﬁ] dz

h/z[ﬁ]dZ

~h/2
where Trm and T¢ are the temperatures at the metallic and ceramic face of the FGM plate (Tm =

T(z) = T, + AT Eqgn. (3.2.4)

300 K) and AT = Tc— Tm is the temperature gradient.

(a) (b)
L f- = Uniform ' e ‘Uniform
— Linear i —_ — Linear
= - - Monlinear, k = 0.5 ! ﬁ - - -Nonlinear, &k =05
N 05 - '}‘ff“ﬂi”'-'?“'- k=2 i N 0.5 | - -Nonlinear, k=2
N — Monhinear, x = 10 i P — MNonlinear, k = 11
2 : '*FE !
S 9 g2 ot i
i @

A <5}
@ il g
2 bl
= 05 | = 0.3
l_

-1 1 -1 |
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Ti{K)

300 350 400 450 500 550 600 300

TiK)

Figure 3.2.1: Variations of temperature along the thickness direction with the initial
temperature To= 300 K: (a) AT=300 K; (b) AT=500 K. [28]

The temperature field variations under three temperature rises along the thickness direction are
depicted in Figure 3.2.1. The nonlinear temperature rise is influenced by the power law index,
N. However, the impact of N is found to be insignificant. Additionally, it is evident that the
curve representing linear temperature rise very closely aligns with those of nonlinear

temperature rises.
3.3 Displacement Field and Strains

First-order shear deformation theory (FSDT) is considered in the present finite element analysis
of the FGM folded plate structure. That means constant transverse shear strain through the plate
thickness has been used.

The displacement and rotation at any point are given by [55]:

u(x,y,z) = ug(x,y) + z0,
V(x’y; Z) = Vo(x,}/) - Zex
w =W Egn. (3.3.1)
D= 0, +w,
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Here, uy(x, y), vo(x,y) and wy are corresponding mid plane displacements. 6, and 6, are the
total rotations of the plate element about x and y-directions. @, and @,, are the constant shear

strains in x and y directions, respectively.

Z
Zey

Uo

T

7‘ —-W,x \Mid surface

T w X
4 X

N

|
|
|
I
|
!

~

Assumed orientation of AB Oy
Mid surface normal

Figure 3.3.1: Detail of deformation in the Mindlin plate along x-direction.

Z
-70x
VO
C
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7 <
f !
N -W,y
D W,y \Mid surface
/ -0x
Assumed orientation of CD @y

Mid surface normal
Figure 3.3.2: Detail of deformation in the Mindlin plate along y-direction.

Linear strains at any point in terms of mid-plane strains are written as:

Ex = Uy = U, + 20y, = 9+ zK,
gy =Vy =g, — 20xy = & + 2K,
Vay = Uy +Vx =Ug, + Vo, +2(6y, — Oxx) = Vi + 2Ky
Egn. (3.3.2)
Yaz = Dy = Hy T Wy
Vyz =0y = —Octw,

e =0

where K, K,, and K, are the curvatures of the plate.
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The constitutive relationship matrix assuming plane-stress state is given by Kim (2005):

Ox c11 €12 O 0 0 ] Sx

Oy €1z €2 0 0

Oxz p =] 0 0 ¢ O 0 | Vxz Egn. (3.3.3)
Oyz 0 0 0 Css 0 Vyz

ny} 0 0 0 0 Cee kyxyj

Here, the stiffness coefficients ¢;; are obtained analytically and are functions of z and
temperature T as follows:
_ _ ED)
C11 = C22 = [1—v(zT)?]

€12 = €31 = v(z,T)cyq
E(z,T)
Caa = Cs5 = Co6 = G(2,T) = M +vz D]

Now the constitutive matrix is decomposed into two parts and the stress strain relations is
rewritten in presence of thermal stress [26], as follows:

Oy t=|c1z €22 0 [{g, — a(z,T) AT(z)

{O-x } [Cll C12 0 ] EX - (X(Z, T) AT(Z)
O O C66 YXy

Oxy

and Eqgn. (3.3.4)

ot =[5 el )

where, a (z,T) represents coefficient of thermal expansion at any distance z from the mid plane
and at a temperature T whereas AT(z) is the temperature difference at a distance z.

The internal force and moment resultants are obtained by integrating the stresses over the entire
plate thickness.

h/2
h/z[ ‘ dz
h/2
h/2

h/2 sz
fh/z O'yZ
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The constitutive equation of a plate subjected to thermal strain is given by [55]
{F} = [D}{e} - {F"} Eqgn. (3.3.5)

where, {F} = {N, N, Ny, M, My, My, Q, Q,}"
{e} = {ea(c) 839 Va?y e Ky ny Px Py }T

(FN}y = {(NY NY NY, MY MY MY, 00)

The constitutive matrix [D] is given by [57]:

oS
[ury
(<)}
B
N
(<)}
e
o))
(o)}
vy
=
(o)}
S
N
(<)}
jeu]
[N
(o)}
oS O O OO
o O O O O

b= Eqn. (3.3.6
[D] Bi, By, Bys Dy, Dy, Dy an. (3.3.6)
Big Bys Bes Dis Dze Des O 0

0 0 0 0 0 0 Ay Ag
L0 0 0 0 0 0 Ag Agl
where,
h
2
Aij, Bij, Dij = Cij[LZ;ZZ] dz (i,j =1,2and6)
h
2
and,

h

2
Aij:.QfCl'de (L,]=4and5)

_h

2

0 = shear correction factor taken as 5/6 for FSDT [26].

The thermal force and moment resultants are,

h/2

{NY N NX} = f—h/z cijle] dz (i,j=1,2and 6)
h/2 ..
vy my MYy o= ,cijle] zdz (i,j=1,2and 6)
a(z, T) AT(z)
where [e] = Thermal strain vector = {a(z, T) AT(z) }
0
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3.4 Non-linear Strains

Given that the deflection w does not vary with the z-direction, the non-linear portion of the
overall strains in a plate can be expressed as:

1

Exnl = E (UZ;X + V2|X + W21X)
1

Eynl =2 Uy + V2y +W2y)

Yxynl = (Uyx Uy + Vyx V,y + W,x W,y) Eqn. (3.4.1)

yXan = (uaX u1Z + VaX sz)

yyan = (U,y u1Z + Vay sz)
From the Eqgn. (3.3.1)

1

Exnl = E [u021X + V02,y + W21X + ZZ(UOaXean - VO,X6X1X) + 22 (ezyax + 92X$X)]
1

Eynl = 2 [Uo?.y + Vo?.y + W2,y + 2Z(Uo,yBy,y — Vo,yBx,y) + 22 (0%,y + 0%y.y)]

Yxyni=[Uo,xUo,y+Vo,xVo,y+W,xW,y+Z(Uo,yOy,x+Uo,x0Oy,y) Eqn. (3.4.2)
_Z(VO,yex,x+VO,xex,y)"'zz(ey,xey,y"‘ex,x Ox,y)]
Yxznl = [U0|X By — vo,x Ox + z(0yBy,x + exex,x)]

Yyznl = [UO,y ey — Vo,y Ox + Z(eyey,y + exex,y)]

3.5 Principle of Minimum Total Potential Energy

The potential energy of deformation is given by,
1 T
U= EH {e}' [D]{e} dA. Eqn. (3.5.1)
A
The potential energy of residual stresses is expressed as,

U, = ]ﬂv {er}T {a"}av Eqn. (3.5.2)

where,
{grll}T = { Exnl €ynl Yxynl Yxanl sznl}

{07} = {c'x o'y o'xy 0% O'yz }T
in which o'y, 6y, 6'xy, 6'xz, G'yz, are the residual stresses due to temperature.

The potential energy of inertia force and moment is expressed as,

Vi= — [, (w}" {X}dA Eqgn. (3.5.3)
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Where, {X} = {PUO(DZn, PVO(Dzn, PW(Dzn, Iex(Dzn, Iey(l)zn,}T
P and | are the elements of inertia matrix [see Eqn. (3.6.6)]

Now, the total potential energy in respect of free vibration analysis of FGM plates in thermal
environment is given by [55],

[[=U+U+V Eqn. (3.5.4)

According to the principle of minimum total potential energy by equating 3] ] to zero in Eqn.
(3.5.4), the required equilibrium condition can be obtained.

3.6 Finite Element Formulation

An eight noded serendipity isoparametric element have been used as shown in Figure 3.6.1.
The term ‘isoparametric’ suggests that both the geometry and displacement field are expressed
in terms of same shape functions. The parent element in local natural co-ordinate system can
be mapped to an arbitrary shape in the Cartesian co-ordinate system. The shape function N; for
8 — noded rectangular element (also called Serendipity element) in natural coordinate system
IS given by:

7 6 5
8 4 ¢
1 2 3

Figure 3.6.1: 8-noded rectangular element (Serendipity element).

_ A+&EDA +mm)EE +nm; — 1)
4
N, = (1 + 5521')(1 - TIZ)+771'2(1 + 717721')(1 - &%)

N; for (i =1,3,5,7)

for (i =2,4,6,8)

Where, & and 1 are the local natural co-ordinates of the element and & and 1 are the value of
them at node i.

The derivatives of the shape functions N; with respect to x and y are expressed in terms of their
derivatives with respect to & and n by the following relationship,

Nip]_ g [Nig
[N- =l [Ni,,,]

X
where, []] = [va z;] = Jacobian matrix
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The Principle of Minimum Total Potential Energy described in Sec. 3.5 is applied to derive the
element wise stiffness, geometric stiffness and mass matrices.

3.6.1 Element Stiffness Matrix

The potential energy of deformation for the element, given by Eqn. (3.5.1), is

== I1,.[e}" [D]{e}dA

Now,
{e} =[B]{8¢} = [[B1] [B] -......... [Bg]] {de}
Where {ae} = {UOL Vo1, W1, exl, ey]_ ..................... uos, Vos, Ws, ex8, eys}T
Ny 0 0 0 0 -
0 Ny O 0 0
Ni,y N; 5 0 0 0
=] 2 9 O 0 Nixl (i Z 108 Eqn. (3.6.1
[i]_ 0 0 0 _Ni,y 0 (l_ to ) qn()
0 0 0 —Ni x Ni,y
o 0 N, 0 N,
0 0 N, -N 0
Therefore,
/2 +b/2
S L 12, (8e} T [BITD][B] {8} dx dy
1
= E {86} T [Ke] {86}
in which [Ke] = [ ‘;//22 ) bl:jz [B] dx dy = element stiffness matrix.

Since dx dy =|J| d& dn, (J| is the determinant of the Jacobian matrix) the linear stiffness matrix
for an element can be expressed in local natural coordinates (¢, n) as:

1 1
J= | [Bronsiasds Eqn. (36.2)
-1 -1

3.6.2 Element Load Vector due to Thermal effect

The potential energy of thermal force and moment resultants for the element is
Vin=—[[, {e}" {FN}dA

— [O2 [P 18} T [B]T{FN} dx dy

a/2Y-b/2
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Vin = _{Se}T{PeN}

where, {PN} = _‘;//22 f_blsz[B]T{FN } dx dy

is the element load vector due to thermal effects which can be expressed in natural coordinate
system as:

1 1

(PN} = f f [BI"(FM} |J|d€dn Eqn. (3.6.3)

-1 -1

3.6.3 Element Geometric Stiffness Matrix

The non-linear strain [given by Eqn. (3.4.2)] can be expressed as:

{en} =5 [R1{d}

where,
{d} = {uox Uoy Vox Voy Wx, Wy Oxx Oxy Oyx Oyy Ox Oy }T

Now, {d} for the element is expressed as,

{d}=[G]{de} = [[G1] [G2]......... [Gs]] {Se}

where,

Ny 0 0 0 01

N, O 0 0 0
0 N, O 0 0
0 N, 0 0 0
0O 0 N, O 0

[Gi] = g 8 N(l)’y N(i),x 8 (i=1t08)

o 0 0 N, 0
0 0 0 0 Ny
o 0 0 0 N,
0 0 0 N, 0

) 0 0 0 N; |

Then the potential energy of residual stresses, [using Eqn. (3.5.2)] for the element can be
written as,

U=~ I (8.3 [GI"[R]"{o"} dV

Since,

[RI"{c"} = {o"} [G] {5}
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where,

{o"} =

Q

S O O O O O

zoy

ZOyy
0

| 0%z

So, Ur can be modified as,

in which [K(,]

ay
0 oy
0 Oxy ay Symm
0 0 0 ol
0 0 0 Oyy Oy
0 —zof —zogy, 0 0 Zz0y
0 zoy, —zoy 0 0 Zz?oy, Zz%0;
z0y, 0 0 0 o0 0 0 z%0l
20}, 0 0 0 0 0 0 z%0yqy Z%0j
0 —0y; —0y, 0 0 zoy, zoy, 0 0 0
Oyz 0 0 0 O 0 0 Z0y, Z0y, 0 0]
= fffve{5 361" {0} [G]{S.} dV
=1 (8,37 [KE(50)
= [ 1 1 1G] {07} [6] dx dy dz

= element geometric stiffness matrix due to residual stresses.

[K(.] can be expressed in terms of residual stress resultants [S™] and the local natural co-
ordinates of the element as,

where,

[S7]=

CNI

T
Ny,

o O © O

My,
0

| Qxz

[Kz,] = f f G1IJ|dé di Eqn. (3.6.4)
Ny
0 NI
0 N N
0 0 0 Ny Symm
0 0 0 NI N
NLt?
o -M; -mp o0 o XZ
g g Nfyt?  Njt?
0 -M; -M; o o X2 M
NLt?
ML, 0 o o o o o X
M, 0 0 0 Mot M
y 12 12
0 —Q, -Q,, 0 0 0 0 0 0 0
Q, 0 ©o o 0 0o o0 0 0 0 0
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3.6.4 Element Mass Matrix

The element mass matrix with rotary inertia is given by [55]

Ml = [[ N LpIN W Eqn. (3.6.5)
where, inertia matrix
[I 0O 0 P 0]
[0 I 0 0 P
[pl=10 0 I 0 oOf
lP 0 0 ¢ ol
lo P 0 0 ol
Eqgn. (3.6.6)
h
where, IL,P,Q = fp(z)[l,z,zz]dz
h

2

p(z) being the density varying along thickness direction. Density is assumed to be independent
of temperature in our analysis as indicated by the properties tabulated in Table 3.1.1.

3.6.5 Transformation Matrix

The positive directions of the linear displacements and the rotations of the plate element are
shown in Figure 3.6.2.

Figure 3.6.2: Transformation of translations and rotation from local x;- to global xi -axes

Accordingly, to correlate the local displacements u,v,w, 60x, 0y, 0, to global displacements
u,v',w', 0', 0'y, 0'z, a transformation matrix [T] is applied which is given by [55]:

rcos(x’,x) cos(y',x) cos(z',x) 0 0 0
cos(x',y) cos(y',y) cos(Z,y) 0 0 0
(7] = cos(x',z) cos(y',z) cos(z', z) 0 0 0
0 0 0 cos(x',x) cos(y',x) cos(z', x)
0 0 0 cos(x',y) cos(y',y) cos(Z,y)
0 0 0 cos(x',z) cos(y',z) cos(z', z)]
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»

Figure 3.6.3: Local (un-primed) and global (primed) axis for FGM one-fold plate

The same transformation matrix [T] is used to convert the local element linear stiffness,
geometric stiffness and mass matrices into global stiffness and mass matrices as shown below:

(K] = [TI"[KIT),
[K¢e] = [T] [KgeIT),
and [My] = [T]"[M.][T],
Here [T]" = [T]™"

since [T] is orthogonal.

Before applying the transformation, the 40x40 stiffness and mass matrices are expanded to
48x48 by inserting eight 0, drilling degree of freedom at each node of a finite element as
suggested in Bathe [45].

3.6.6 Assembly and Solution

The above transformed element matrices [K',], [K'¢.]and [M’,] are assembled to obtained
their respective global matrices [K'], [K';] and [M']. These matrices are updated for boundary
conditions before solving.

Finally, the governing equation for free vibration analysis of the FGM folded plates in thermal
environment is derived from the principle of minimum total potential energy [55]:

([K'] + [K'¢] - w2[M') {6} = 0O Eqn. (3.6.7)

from which the natural frequencies are obtained.
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3.6.7 MATLAB Program Flowchart

(o )

\ 4

Input Parameters are assigned

\ 4

Function “CONS”
Determination of Stiffness
Matrix [D].....Eqn. (3.3.6)

\ 4

Function “HYGRO”
Determination of Hygrothermal
Load.....Egn. (3.3.5)

\ 4

Function “INERTIA”
Determination of Inertia
Matrix [p].....Eqgn. (3.6.6)

Loop for i=1
to NEL

Function “STIFFNESS”
Determination of Transformed Elemental Stiffness
Matrix [K',] and Thermal Load Vector {P)N'}

Function “ASSEMBLY1”
Assembly of Stiffness Matrix
[K'] and Load Vector {P"}

A 4
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l

Calculation of initial displacement (8') due to thermal
loading in static condition using [K']{8!} = {PV}

!

Loop for j=1

\ 4

to NEL

Function “GEOMASS”

\ 4

Calculation of initial strain {e'} = [B1{6"}

A\ 4

Calculation of elemental residual force and moment resultant
{F'} ={Nf Nj N}, My Mj My, Qx, Q;.}"
= D} - (FV} ... Eqn. (3.3.5)

\ 4

Determination of Transformed Elemental Geometric
Stiffness Matrix [K¢.] and Mass Matrix [M,']

\ 4

Function “ASSEMBLY?2”

Assembly of Geometric Stiffness
Matrix [K';] and Mass Matrix [M']

\4

Calculation of natural frequencies using ‘eigs’ function

\4

o
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CHAPTER 4.
NUMERICAL STUDY AND RESULTS

The finite element formulation outlined in the preceding chapter has been applied to produce
numerical results, examining the impact of thermal environment on FGM plates. Mesh
convergence study is conducted to determine the minimum number of meshes necessary for
accurate analysis. Along with this two validation studies are also undertaken to validate the
results of the program against those published in established literature.

Subsequently, a series of parametric studies are executed by varying parameters such as
power law index, thickness, crank angle and temperature. These systematic investigations
allow for a comprehensive understanding of how these factors influence the behavior of various
FGM plates under thermal environment.

4.1 Mesh Convergence and Validation Study

A mesh convergence study is conducted on a symmetric one-fold Al/ZrO, FGM folded plate
structure, properties of which are defined in Table 3.1.2. The structure is symmetric about its
ridge line and has a crank angle of 90°, as depicted in Figure 4.2.3. The folded edge comprises
two equal inclined sides denoted as S, with a length denoted as L. The value of S and L are
taken as 0.75 m and 1.5 m, respectively. One of the folded edges is clamped, while the
remaining three edges are kept free (CFFF). We have considered two different plate
thicknesses: 15 mm and 30 mm. The power law index is set to 1. The number of elements along
S and L, are denoted as N1 and Np, respectively. The same model has been analysed using
“ANSYS Student 2023 R2” software. First five natural frequencies in Hz for different values
of N1 and N2 are shown in Table 4.1.1 and Table 4.1.2. From the results it is concluded that the
arrangement with N1=4 and N>=8 provides acceptable mesh convergence and is thus adopted
for subsequent analyses.

The validation study is divided into two segments due to the absence of a complete
reference.

i) Validation of FGM folded plate formulation.
i) Validation of thermal formulation.

4.1.1 Validation of FGM folded plate formulation

Results of one-fold Al/ZrO, (Table 3.1.2) FGM folded plate without any temperature increment
is compared with Basu et al. [57] and ANSYS software as shown in Table 4.1.1 and Table
4.1.2. The results are found to be within the acceptable limit.

4.1.2 Validation of thermal formulation

2
First three non-dimensional natural frequency parameters (/1 = Wb /;—“) of all side clamped
0

7-[2
SizN4/SUS304 (Table 3.1.1) FGM square plates subjected to uniform temperature rise is

compared with various published literatures in Table 4.1.3. Results are found in good
agreement with those in Refs. [25, 29, 35].
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Table 4.1.1: First five natural frequencies in (Hz) for different mesh numbers (N1xNz) of
Al/ZrO; FGM Folded Plate (CFFF) with S/h = 50, L= 1.5 m, S =0.75 m, p=90°, Power law
index(N)=1.

Source NixN2 Model Mode2 Mode3 Moded4 Modeb5
Present 2x4 16.579 33.832 60.584 75.447 128.499
3x6 16.553 33.328 60.272 71.299 125.040
4x8 16.532 33.273 60.166 70.835 124.316

Basu et al. [57] 16.532 33.255 60.158 70.724 124.279
% Difference = 0.00% 0.06% 0.01% 0.16% 0.03%

ANSYS 16.510 33.139 60.063 70.887 124.880
% Difference = 0.14% 0.41% 0.17% -0.07%  -0.45%

Table 4.1.2: First five natural frequencies in (Hz) for different mesh numbers (N1xNz) of
Al/ZrO; FGM Folded Plate (CFFF) with S/h =25, L= 1.5 m, S =0.75 m, p=90°, Power law
index(N)=1.

Source NixN2 Model Mode2 Mode3 Mode4 Modeb
Present 2x4 32.958 65.987 120.290  143.702  240.126
3x6 32.847 65.647 119.534  140.637 237.924
4x8 32.766 65.592 119.244  140.249  237.352

Basu et al. [57] 32.768 65.580 119.236  140.177  237.225
% Difference = -0.01%  0.02% 0.01% 0.05% 0.05%

ANSYS 32.858 65.261 119.370  139.820 239.150
% Difference = -0.28%  0.51% -0.11% 0.31% -0.75%

Table 4.1.3: Comparison of first three non-dimensional natural frequency parameters A for
SisN4/SUS304 FGM square plates (CCCC) subjected to uniform temperature rise (a=0.2 m,
b/h=10, N=2, To=300 K).

Mode sequences Mode sequences
M A2 A3 M A2 A3

('\éas'g‘frz)adeh and Beni [29] 56008 72022 7.2022 3.2163 6.5603 6.5603
% Difference = 0.37% 041% 0.41% 0.44% 0.40% 0.40%
Yang and Shen [25]

(HSDT) 3.6636 7.2544 7.2544 3.2357 6.6281 6.6281
% Difference = 0.61% 1.12% 1.12% 1.04% 1.42% 1.42%
Thai et. al. [35]

(3D Elastic Theory) 3.6936 7.2661 7.2661 3.2683 6.6457 6.6457
% Difference = 1.42% 1.28% 1.28% 2.03% 1.68% 1.68%
Present 3.6412 7.1728 7.1728 3.2021 6.5338 6.5338
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In calculation of non-dimensional natural frequency parameter A, the terms lo and Do are
defined as [28]:

IO = ph
D — Eh3
07 12(1 —v?)

p, E, and v are chosen to be the values of SUS304 at the reference temperature To= 300 K.

4.2 Case Studies

Impact of various parameters such as power law index, thickness, crank angle and temperature
field, on the natural frequencies of three types of functionally graded plates is presented in this
section:

)} FGM Rectangular Flat Plate (see Figure 4.2.1).
i) FGM One-Fold Plate (see Figure 4.2.3).
i) FGM Two-Fold Plate having 90° crank angle (see Figure 4.2.7).

4.2.1 FGM Rectangular Flat Plate

The FGM plates are often used in situations where it is exposed to high temperature
environment. Based on the procedures and analyses of foregoing sections, the influence of
temperature stress in the free vibration of rectangular FGM flat plate is studied in this section.
The FGM plate made up of Silicon Nitride and Stainless steel (SisN4/SUS304) is taken for the
study. We consider that the FGM plate has the ceramic at the heated surface (z = h/2) and the
metal at the cooled surface (z = - h/2) and their compositions vary continuously in the thickness
direction of the plate. The material properties are considered to be temperature dependent. For
ease of understanding Figure 3.1.1 is reproduced here.

eramic rich surface
z b -

- — — — 1 ] X

: N Y
Thickness: 4 Metal rich surface

Figure 4.2.1: Geometry of FGM rectangular Flat Plate

Table 4.2.1 to Table 4.2.4 give the results of the first five natural frequency parameters (1) of
all side clamped SizN4/SUS304 FGM rectangular flat plates. From the study it is observed that
the thermal initial stress decreases the natural frequency of vibration. Three temperature fields:
uniform temperature rise, linear temperature rise, and nonlinear temperature rise, as defined
previously in Eqgn. (3.2.1), Eqgn. (3.2.2) and Eqn. (3.2.4), are considered. These results include
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the cases of three side to thickness ratios (b/h= 20, 10, 5), two aspect ratios (a/b= 0.5, 1) and
four volume fraction indices (N=1, 2, 5, 10). It is shown that, the natural frequency parameters
decrease with the increase of the volume fraction index N, as high N value denotes high metal
and low ceramic content [Eqn. (3.1.1)]. This ultimately reduces the rigidity of the plate, and
hence the natural frequency.

The uniform temperature change affects the vibrational frequencies more significantly
than the linear and nonlinear temperature changes. It can be explained by referring to Figure
3.2.1 which shows that the temperature variation of the uniform temperature field is more
intensive than those of linear and nonlinear temperature fields. For a clear demonstration, Table
4.2.5 lists the percentage reduction of frequency parameters due to the temperature rise. The
temperatures of plates are raised from the initial value 300 K to the final value 600 K. It is
shown that the temperature rise affects the first mode more significantly than other higher
modes and the plates of volume fraction index N=10 are more sensitive to the temperature
change than those of N=1. This is because, at N=10, the metal content is high and hence the
effective Young Modulus value of the plate reduces.

Table 4.2.1: Natural frequency parameters (L) for CCCC rectangular SisN4/SUS304 FGM flat
plates without temperature rise AT= 0 K.

b/h a/b N M A2 A3 YW As
1 12.7734 | 16.3450 | 22.6462 | 30.9252 | 31.5317
05 2 11.4748 | 14.6808 | 20.3344 | 27.7338 | 28.2991
' 5 10.4280 | 13.3380 | 18.4658 | 25.1467 | 25.6805
20 10 9.9451 | 12.7189 | 17.6059 | 23.9682 | 24.4795
1 4.8933 9.7964 9.7964 | 14.2012 | 17.1762
1 2 4.4025 8.8091 8.8091 | 12.7643 | 15.4349
5 4.0086 8.0150 8.0150 | 11.6065 | 14.0304
10 3.8246 7.6456 7.6456 | 11.0697 | 13.3803
1 10.8366 | 13.6422 | 18.3670 | 22.9869 | 24.0164
0.5 2 9.6917 | 12.2022 | 16.4232 | 20.4787 | 21.2648
5 8.7593 | 11.0280 | 14.8350 | 18.4597 | 18.9732
10 10 8.3433 | 10.5032 | 14.1264 | 17.6321 | 17.9925
1 45602 8.7244 8.7244 | 12.2435 | 14.4887
1 2 4.0942 7.8220 7.8220 | 10.9687 | 12.9719
5 3.7178 7.0897 7.0897 9.9314 11.7356
10 3.5449 6.7567 6.7567 9.4619 | 11.1790
1 7.5434 9.3738 | 11.5887 | 12.2159 | 14.5234
0.5 2 6.7036 8.3379 | 10.2887 | 10.8713 | 12.8699
5 6.0134 7.4865 9.2468 9.7656 | 11.5084
5 10 5.7191 7.1208 8.8252 9.2894 | 10.9313
1 3.7388 6.5382 6.5382 8.6662 8.7909
1 2 3.3408 5.8326 5.8326 7.6886 7.8368
5 3.0158 5.2548 5.2548 6.8930 6.8930
10 2.8718 5.0017 5.0017 6.5730 6.7112
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Table 4.2.2: Natural frequency parameters (L) for CCCC rectangular SisN4/SUS304 FGM flat
plates subjected to uniform temperature rise AT= 300 K.

b/h alb N M A2 A3 Aa As
1 11.1993 | 14.4284 | 20.3587 | 28.4337 | 28.8389
05 2 9.9364 12.8087 | 18.1055 | 25.3155 | 25.6824
5 8.9170 11.4998 | 16.2820 | 22.7844 | 23.1224
20 10 8.4331 10.8805 | 15.4255 | 21.6146 | 21.9298
1 3.3625 7.9832 7.9832 12.1693 | 15.0307
2 2.8714 7.0224 7.0224 10.7721 | 13.3365
1 5 2.4687 6.2463 6.2463 9.6438 11.9679
10 2.2586 5.8672 5.8672 9.1026 11.3165
1 10.1611 | 12.8023 | 17.3055 | 21.8971 | 22.9313
2 9.0391 11.3900 | 15.3969 | 19.4508 | 20.1989
05 5 8.1237 10.2365 | 13.8344 | 17.4952 | 17.8994
10 10 7.7116 9.7164 13.1323 | 16.6838 | 16.9187
1 4.0952 8.0550 8.0550 11.4161 | 13.5701
L 2 3.6412 7.1728 7.1728 10.1676 | 12.0827
5 3.2743 6.4560 6.4560 9.1500 10.8683
10 3.1020 6.1256 6.1256 8.6848 10.3167
1 7.1792 8.9204 11.1283 | 11.6376 | 13.8579
2 6.3519 7.8994 9.8457 10.3112 | 12.2252
05 5 5.6699 7.0579 8.8152 9.2170 10.8748
5 10 5.3778 6.6950 8.3975 8.7442 10.3010
1 3.5242 6.1986 6.1986 8.3451 8.3451
1 2 3.1336 5.5041 5.5041 7.3831 7.4133
5 2.8142 4.9338 4.9338 6.5986 6.6393
10 2.6715 4.6827 4.6827 6.2825 6.2825

Table 4.2.3: Natural frequency parameters (1) for CCCC rectangular SisN4/SUS304 FGM flat
plates subjected to linear temperature rise AT= 300 K.

b/h a/lb N M A2 A3 A4 As
1 12.0985 15.5216 21.6599 29.8473 30.3679
05 2 10.8173 13.8796 19.3790 26.6988 27.1786
5 9.7715 12.5384 17.5155 241241 24.5706
20 10 9.2797 11.9089 16.6445 22.9367 23.3588
1 4.2788 9.0320 9.0320 13.3336 16.2558
L 2 3.7910 8.0563 8.0563 11.9150 14.5372
5 3.3880 7.2573 7.2573 10.7554 13.1331
10 3.1908 6.8751 6.8751 10.2059 12.4707
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b/h a/b N A A2 A3 ha As

1 10.5434 13.2780 17.9069 22.5147 23.5330

05 2 9.4139 11.8571 15.9885 20.0520 20.8067

5 8.4880 10.6908 14.4113 18.0763 18.5170

10 10 8.0712 10.1649 13.7019 17.2655 17.5293
1 4.3598 8.4347 8.4347 11.8853 14.0908

1 2 3.9001 7.5445 7.5445 10.6275 12.5939

5 3.5249 6.8160 6.8160 9.5962 11.3653

10 3.3497 6.4807 6.4807 9.1248 10.8070

1 7.3840 9.1767 11.3881 11.9648 14.2496
05 2 6.5550 8.1539 10.1064 10.6368 12.6134

5 5.8710 7.3097 9.0768 9.5401 11.2565

5 10 5.5779 6.9450 8.6582 9.0653 10.6778
1 3.6456 6.3908 6.3908 8.5218 8.5218

1 2 3.2529 5.6942 5.6942 7.5590 7.6590

5 2.9304 5.1207 5.1207 6.7749 6.8815

10 2.7863 4.8678 4.8678 6.4585 6.5401

Table 4.2.4: Natural frequency parameters (1) for CCCC rectangular SisN4/SUS304 FGM flat
plates subjected to non-linear temperature rise AT= 300 K.

b/h a/b N A A2 A3 Aa As
1 12.1292 | 15.5589 | 21.7036 | 29.8936 | 30.4182
0.5 2 10.8475 | 13.9163 | 19.4220 | 26.7443 | 27.2280
5 9.7938 12.5656 17.5474 24.1582 24.6076
20 10 9.2947 11.9272 | 16.6662 | 22.9600 | 23.3841
1 4.3100 9.0686 9.0686 13.3739 | 16.2977
1 2 3.8222 8.0925 8.0925 11.9548 | 14.5786
5 3.4110 7.2839 7.2839 10.7847 | 13.1637
10 3.2061 6.8928 6.8928 10.2256 | 12.4913
1 10.5556 | 13.2932 | 17.9260 | 22.5354 | 23.5542
05 2 9.4259 11.8720 | 16.0073 | 20.0720 | 20.8277
' 5 8.4971 10.7022 | 14.4257 | 18.0912 | 18.5332
10 10 8.0775 10.1728 13.7118 17.2755 17.5405
1 4.3687 8.4471 8.4471 11.9003 | 14.1074
1 2 3.9089 7.5566 7.5566 10.6422 | 12.6102
5 3.5314 6.8251 6.8251 9.6074 11.3777
10 3.3541 6.4870 6.4870 9.1325 10.8156
1 7.3909 9.1852 11.3975 11.9756 14.2624
05 2 6.5617 8.1622 10.1155 | 10.6475 | 12.6259
5 5.8762 7.3161 9.0837 9.5484 11.2661
5 10 5.5814 6.9494 8.6628 9.0709 10.6844
1 3.6495 6.3970 6.3970 8.5284 8.6091
1 2 3.2567 5.7003 5.7003 7.5654 7.6669
5 2.9333 5.1254 5.1254 6.7796 6.8876
10 2.7883 4.8711 4.8711 6.4616 6.5443
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Table 4.2.5: Effect of temperature on frequency parameters (1) of CCCC square SisN4/SUS304
FGM flat plates (b/h=10).

N Temp_ M A2=243
Field 300K 600K % Reduction 300K 600K 9% Reduction
1 Uniform 45602 4.0952 10.20 8.7244  8.0550 7.67
Linear 45602 4.3598 4.39 8.7244  8.4347 3.32
Nonlinear ~ 4.5602 4.3687 4.20 8.7244  8.4471 3.18
10  Uniform 3.5449  3.1020 12.49 6.7567  6.1256 9.34
Linear 3.5449  3.3497 5.50 6.7567  6.4807 4.08
Nonlinear 3.5449 3.3541 5.38 6.7567 6.4870 3.99

First three mode shapes for FG flat plate with aspect ratio a/b = 0.5 and 1 are shown in Figure
4.2.2 (b/h=10, N=1, Uniform temperature rise AT= 300 K). For a/b=1 i.e. for a square flat plate,
mode 2 and 3 are similar (2,1) bending mode as the structure is symmetric. For aspect ratio 0.5,
(1,2), (2,1) and (3,1) mode shapes have been observed due to rectangular shape.

Mode 1 Mode 2 Mode 3

S

H L b o v & 0 ®
B4 W I T

oL
23S &

N3 IS S =) ~ IS o S

o

(a/b = 1)

Figure 4.2.2: First three mode shapes for FG flat plate with b/h=10, N=1, Uniform temperature
rise AT= 300 K.
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4.2.2 FGM One-Fold Plate

Impact of various parameters such as power law index, thickness, crank angle, and temperature
field, on the natural frequencies of functionally graded (SizN4/SUS304) one-fold plates (Figure
4.2.3), clamped at all four edges, is presented in this section. The crank angles taken are 90°,
120°, 150° and 180° (=flat plate of dimension 1.5 m x 1.5 m). These results include the cases
of two different thicknesses (h= 75 mm, 50 mm), and six volume fraction indices (N= 0, 0.5,
1, 2, 5, 10). Uniform, linear and non-linear temperature distributions are shown and the natural
frequencies are tabulated from Table 4.2.6 to Table 4.2.15. From these tables, following
observations can be made:

L=15m

Figure 4.2.3: Geometry of FGM one-fold Plate

Variation in power law index (N): As the value of N increases, the natural frequency of the
folded plates decreases exponentially as indicated from Figure 4.2.4. This is obvious as, with
the increase in N value, the volume fraction of metal increases, and in turn the ceramic fraction
drops, as indicated by Eqgn. (3.1.1). This ultimately reduces the rigidity of the plate, and hence
the natural frequency.

Variation in plate thickness: Plate having higher thickness is more rigid, for obvious reasons.
Hence, the natural frequency increases as thickness of plate increases, which can be clearly
observed from Table 4.2.6 to Table 4.2.15.

Variation in crank angle : The variation in fundamental frequencies has been graphically
represented for different thicknesses and crank angles in Figure 4.2.5. From Figure 4.2.5, it can
be noted that stiffness of the 75mm thick FGM one-fold structure exhibit minimal sensitivity
to changes in the crank angle § = 90° and 120°. Rather, for § = 120°, the stiffness is slightly
higher, mass being the same for all cases. For B = 150° the stiffness reduces more as it
approaches flat plate configuration and at B=180° i.e., flat plate, significant decrease in the
stiffness of the plate has been observed. The reduction of natural frequencies is nearly 50%
compared to single-fold plates in the absence of thermal load. For one-fold plate with lesser
thickness, maximum stiffness is observed at f = 150°. The reduction in stiffness increases for
uniform or linear temperature rise for lower thicknesses. For 50 mm thick flat plate (B=180°)
with N more than 0.5, uniform temperature rise AT= 300 K makes the structure too soft to get
the fundamental frequency numerically.
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Variation in temperature field: Three types of temperature distribution namely, uniform,
linear and non-linear, as given by Eqn. (3.2.1), Eqgn. (3.2.2) and Eqn. (3.2.4) is considered for
the present study. Natural frequency of the plate decreases with temperature increment as the
material properties constantly deteriorate with the temperature rise. Table 4.2.6 to Table 4.2.15
clearly shows that effect of uniform temperature rise is more significant than the linear and
non-linear temperature rise as for these cases the thermal distribution is gradual across the
thickness. This is the reason for numerical instability for flat plate under uniform temperature
increase AT= 300 K.
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Figure 4.2.4: Variation of first natural frequency (Hz) with gradient index for uniform
temperature rise (AT= 300 K) and 75 mm plate thickness.
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Figure 4.2.5: Variation of first natural frequency (Hz) with crank angle for uniform and linear
temperature rise (AT= 300 K) and N=1.

46|Page



Chapter 4: Numerical Study and Results

First three mode shapes for FG one-fold plate with p = 120° and 180° with N=1 are shown in
Figure 4.2.6. Local panel modes have been observed for FG one-fold plates. No modifications
in mode shapes have been observed in folded plates for introducing thermal load.
Antisymmetric bending mode has been noticed in the first and third modes whereas symmetric

bending mode is seen for second mode for FG one-fold plate structures.

Mode 1

Mode 2
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Figure 4.2.6: First three mode shapes for FG one-fold plate with N=1 (a) B = 120° without
thermal load (b) B = 120° uniform temp. rise (c) B = 120° linear temp. rise (d) B = 180° linear

temp. rise.
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4.2.3 FGM Two-Fold Plate

In this section, a set of functionally graded (SisN4/SUS304) two-fold plates, depicted in Figure
4.2.7 along with in-plane dimensions, has been analysed with crank angle, p = 90°, clamped all
round. The effect of various parameters such as power law index, thickness, and temperature
increment, on the natural frequencies is presented. These results include the cases of four
different thicknesses (h= 10 mm, 15 mm, 20 mm and 50 mm), and six volume fraction indices
(N=0, 0.5, 1, 2, 5, 10). Uniform, linear and non-linear temperature distributions with three
different temperature increment (AT= 100 K, 200 K & 300 K) are shown and the natural
frequencies for different cases are tabulated from Table 4.2.16 to Table 4.2.25.

0.75m

0.75m

Figure 4.2.7: Geometry of FGM two-fold Plate

Comparing results with one-fold plate, it is observed that for 50 mm, two-fold folded plate
produces higher fundamental frequencies than one-fold folded plates of equal thickness and
material. Comparison of natural frequencies for one-fold and two-fold folded plates of 90°
crank angle, 50 mm thickness and N=1 subjected to uniform temperature rise AT= 300 K is
shown in Figure 4.2.8.
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Figure 4.2.8: Comparison of natural frequencies (Hz) for one-fold and two-fold folded plates
(B=90°, N=1, h=50 mm, Uniform temperature rise AT= 300 K).
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Table 4.2.6: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates without any temperature rise AT= 0 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1270.79 | 1635.91 | 1840.57 | 2112.71 | 2763.05 1280.03 | 1528.69 | 1850.86 | 2016.38 | 2774.06
0.5 | 878,58 | 1135.29 | 1273.99 | 1464.85 | 1913.31 886.20 | 1061.79 | 1282.20 | 1397.80 | 1921.79
75 1 771.10 996.85 | 1118.49 | 1286.01 | 1679.92 778.25 931.64 | 1126.12 | 1226.21 | 1687.72
2 692.91 894.61 | 1004.85 | 1154.04 | 1508.70 699.59 834.60 | 1011.96 | 1098.89 | 1515.93
5 630.99 812.00 914.18 | 1047.43 | 1371.19 636.91 756.04 920.54 996.08 | 1377.70
10 | 602.80 774.34 872.76 998.77 | 1308.29 608.11 721.05 878.54 949.94 | 1314.25
0 875.60 | 1155.04 | 1280.44 | 1495.13 | 1944.70 878.54 | 1120.02 | 1283.93 | 1461.65 | 1948.71
0.5 | 606.13 801.63 887.08 | 1037.24 | 1347.76 608.81 777.69 890.13 | 1014.04 | 1351.12
50 1 532.39 704.46 779.29 911.36 | 1184.07 534.97 683.18 782.19 890.64 | 1187.22
2 478.88 633.32 700.83 819.15 | 1064.59 481.30 613.64 703.55 799.95 | 1067.52
5 436.44 576.11 638.31 744.98 968.95 438.53 557.61 640.68 726.93 971.54
10 416.87 549.61 609.44 710.64 924.76 418.70 531.95 611.54 693.42 927.07
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 1167.53 | 1283.67 | 1700.35 | 1854.94 | 2463.58 645.10 | 1292.29 | 1292.29 | 1874.39 | 2267.68
0.5 | 811.29 889.74 | 1176.34 | 1285.99 | 1706.93 447.63 896.38 896.38 | 1299.71 | 1572.15
75 1 710.65 781.70 1030.34 | 1129.77 | 1497.09 393.49 187.77 187.77 1141.98 | 1381.21
2 634.56 702.82 921.67 | 1015.38 | 1341.60 354.02 708.38 708.38 | 1026.43 | 1241.18
5 573.16 639.67 834.75 923.48 | 1216.84 322.34 644.52 644.52 933.33 | 1128.24
10 | 547.05 610.47 796.85 881.10 | 1161.30 307.55 614.81 614.81 890.16 | 1075.96
0 879.70 953.43 | 1285.31 | 1308.12 | 1907.45 436.38 883.64 883.64 | 1294.62 | 1573.17
0.5 | 610.12 662.85 891.59 906.68 | 1324.34 302.86 613.17 613.17 898.18 | 1091.37
50 1 536.28 581.33 783.64 795.02 | 1161.08 266.30 539.08 539.08 789.53 959.34
2 482.53 520.17 704.91 712.10 | 1038.97 239.70 485.10 485.10 710.26 862.98
5 439.56 470.74 641.82 645.50 940.77 218.39 441.80 441.80 646.60 785.57
10 | 419.54 449.17 612.49 615.99 897.89 208.40 421.55 421.55 616.89 749.45
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Table 4.2.7: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to uniform temperature rise AT= 100 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1227.11 | 1593.80 | 1785.63 | 2058.50 | 2694.63 1236.24 | 1491.38 | 1795.57 | 1965.44 | 2705.23
0.5 | 840.96 | 1100.21 | 1227.48 | 1419.78 | 1857.02 848.43 | 1030.89 | 1235.33 | 1355.47 | 1865.08
75 1 735.10 963.72 | 1074.22 | 1243.43 | 1626.89 742.07 902.57 | 1081.47 | 1186.28 | 1634.25
2 658.11 862.99 962.23 | 1113.34 | 1458.02 664.58 807.02 968.94 | 1060.81 | 1464.80
5 597.01 781.56 872.72 | 1008.18 | 1322.23 602.71 729.66 878.67 959.45 | 1328.28
10 | 568.95 744.29 831.61 959.99 | 1259.92 574.07 695.03 836.99 913.77 | 1265.43
0 820.09 | 1103.36 | 1213.66 | 1430.50 | 1866.20 823.62 | 1071.55 | 1217.26 | 1399.11 | 1870.03
0.5 | 555.25 755.44 826.75 979.70 | 1278.56 558.44 734.37 829.85 958.33 | 1281.68
50 1 482.65 659.71 720.59 855.66 | 1117.26 485.69 641.25 723.50 836.74 | 1120.16
2 430.02 589.72 643.37 764.90 999.57 432.87 572.88 646.06 747.49 | 1002.22
5 388.08 533.34 581.62 691.74 905.15 390.61 517.74 583.96 675.51 907.43
10 | 368.32 506.91 552.68 657.51 861.12 370.60 492.14 554.75 642.10 863.11
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 1137.31 | 1239.40 | 1654.64 | 1799.09 | 2401.22 608.22 | 1243.60 | 1243.60 | 1817.15 | 2205.65
0.5 | 786.00 851.46 | 1137.82 | 1238.54 | 1655.31 41411 853.90 853.90 | 1251.08 | 1520.32
75 1 686.74 744.98 993.79 | 1084.54 | 1448.39 360.84 746.95 746.95 | 1095.67 | 1332.14
2 611.72 667.26 886.63 971.77 | 1295.06 322.07 668.82 668.82 981.85 | 1194.14
5 551.19 604.91 800.91 881.05 | 1171.93 290.87 605.89 605.89 890.04 | 1082.72
10 | 525.38 575.90 763.43 839.00 | 1116.98 276.06 576.39 576.39 847.26 | 1030.96
0 824.97 915.73 | 1218.38 | 1252.75 | 1838.98 385.39 821.46 821.46 | 1225.15 | 1500.07
0.5 | 559.86 629.34 831.01 857.29 | 1264.42 254.16 555.79 555.79 835.41 | 1026.19
50 1 487.09 549.00 724.63 747.24 | 1103.46 217.98 482.87 482.87 728.48 896.22
2 434.17 488.89 647.08 665.63 983.16 191.73 429.86 429.86 650.58 801.49
5 391.69 440.29 584.76 600.01 886.28 170.51 387.19 387.19 587.88 725.23
10 | 371.52 418.81 555.38 570.59 843.71 160.07 366.78 366.78 558.19 689.24
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Table 4.2.8: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to uniform temperature rise AT= 200 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1180.14 | 1549.82 | 1727.54 | 2002.06 | 2623.85 1189.20 | 145252 | 1737.13 | 1912.43 | 2634.01
0.5 | 797.47 | 1060.24 | 1174.32 | 1368.61 | 1793.37 804.87 995.60 | 1181.80 | 1307.36 | 1800.97
75 1 692.37 924.72 | 1022.17 | 1193.51 | 1564.88 699.24 868.18 | 1029.04 | 1139.34 | 1571.77
2 616.04 824.86 911.11 | 1064.48 | 1397.34 622.37 773.47 917.39 | 1014.90 | 1403.62
5 555.32 744.10 822.20 960.10 | 1262.49 560.88 696.76 827.71 914.29 | 1268.03
10 | 527.00 706.76 780.91 911.86 | 1200.12 531.99 662.08 785.85 868.54 | 1205.12
0 756.21 | 104595 | 1138.73 | 1359.26 | 1780.63 760.52 | 1017.49 | 114250 | 1330.04 | 1784.27
0.5 | 492.88 700.69 754.84 912.13 | 1198.14 496.79 682.61 758.02 892.65 | 1201.00
50 1 420.05 605.33 648.94 788.67 | 1037.79 423.81 589.80 651.90 771.58 | 1040.38
2 367.24 535.73 571.96 698.45 920.91 370.79 521.80 574.66 682.85 923.21
5 324.70 479.50 510.06 625.52 826.87 327.94 466.81 512.36 611.09 828.76
10 | 303.79 452.51 480.21 590.69 782.23 306.83 440.65 482.24 577.04 783.82
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 1105.75 | 1191.86 | 1606.82 | 1740.04 | 2336.53 566.47 | 1190.95 | 1190.95 | 1756.59 | 2140.80
0.5 | 757.29 807.36 | 1093.98 | 1184.41 | 1596.94 373.90 804.90 804.90 | 1195.70 | 1461.60
75 1 658.68 701.59 950.84 | 1031.49 | 1391.48 320.76 698.74 698.74 | 1041.49 | 1274.87
2 584.17 624.47 844.43 919.62 | 1239.30 282.15 621.33 621.33 928.71 | 1138.10
5 524.01 562.49 759.29 829.50 | 1117.02 250.91 558.87 558.87 837.65 | 1027.60
10 | 498.19 533.26 721.80 787.29 | 1062.08 235.62 529.14 529.14 794.76 975.80
0 762.14 873.77 | 1143.33 | 1191.46 | 1764.88 320.88 749.40 749.40 | 1147.22 | 1419.34
0.5 | 498.44 589.14 758.85 798.81 | 1194.42 185.83 485.10 485.10 760.83 949.84
50 1 425.40 509.05 652.66 689.15 | 1034.31 146.34 411.84 411.84 654.33 820.67
2 372.25 449.27 575.29 607.96 915.07 116.54 358.59 358.59 576.88 726.70
5 329.20 400.82 512.77 542.46 818.86 90.27 315.31 315.31 514.26 650.84
10 | 307.97 378.86 482.50 512.44 775.89 74.52 293.64 293.64 483.79 614.27
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Table 4.2.9: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to uniform temperature rise AT= 300 K.

Thickness N B-90° p-120°
(mm) o1 2 ®3 ™4 5 o1 2 ®3 4 5
0 | 1129.01 | 1503.20 | 1665.37 | 1942.49 | 2549.66 1138.08 | 1411.36 | 1674.61 | 1856.45 | 2559.35
05| 747.15 | 1014.66 | 1113.61 | 1310.55 | 1721.47 754.54 955.21 | 1120.72 | 1252.64 | 1728.59
75 1 641.89 879.14 961.44 | 1135.47 | 1493.11 648.74 827.74 967.90 | 1084.61 | 1499.49
2 565.65 779.55 850.62 | 1006.77 | 1326.00 571.94 733.25 856.47 960.43 | 1331.74
5 504.88 699.02 761.85 902.64 | 1191.47 510.38 656.73 766.89 860.00 | 1196.44
10 | 475.82 661.17 719.84 853.78 | 1128.41 480.77 621.55 724.30 813.64 | 1132.82
0 681.05 981.16 | 1053.36 | 1279.68 | 1686.24 686.43 956.13 | 1057.35 | 1252.63 | 1689.66
0.5 | 413.85 634.99 667.77 832.09 | 1104.32 418.90 619.89 671.09 814.46 | 1106.86
50 1 337.95 538.53 560.04 707.58 943.21 342.90 525.83 563.07 692.22 945.41
2 282.24 468.22 481.60 616.73 826.00 287.06 457.02 484.30 602.76 827.85
5 235.86 411.04 417.74 542.91 731.37 240.53 400.99 419.99 530.00 732.73
10 | 210.71 382.42 385.25 506.33 685.05 215.37 373.09 387.21 494.13 686.07
Thickness N B-150° p-180°
(mm) o1 2 3 W4 5 o1 2 3 W4 5
0 | 1072.34 | 1140.18 | 1556.12 | 1676.84 | 2268.54 518.41 | 1133.35 | 1133.35 | 1691.77 | 2072.18
0.5 | 724.68 756.49 | 1044.11 | 1122.68 | 1531.01 324.66 748.25 748.25 | 1132.66 | 1395.17
75 1 625.98 650.52 900.80 969.70 | 1325.62 270.39 641.96 641.96 978.58 | 1208.68
2 551.43 573.44 794.41 858.05 | 1173.69 230.90 564.70 564.70 866.23 | 1072.45
5 491.17 511.39 709.29 768.05 | 1051.59 198.52 502.29 502.29 775.50 962.39
10 | 465.02 481.45 671.36 725.14 996.11 181.62 471.80 471.80 731.98 910.00
0 688.45 826.04 | 1057.85 | 1122.52 | 1683.19 230.99 663.81 663.81 | 1058.47 | 1329.06
0.5 | 420.95 539.89 671.52 728.70 | 1107.61 37.61 394.36 394.36 670.87 859.73
50 1 344.90 458.59 563.39 617.77 946.08 - - - - -
2 288.94 397.99 484.45 535.68 828.40 - - - - -
5 242.26 348.53 419.89 469.01 733.08 - - - - -
10 | 217.10 324.99 386.96 437.19 686.28 - - - - -
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Table 4.2.10: Natural frequencies (Hz) of CCCC one-fold SisN4+/SUS304 FGM Folded plates subjected to linear temperature rise AT= 100 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1249.66 | 1615.05 | 1813.80 | 2085.85 | 2729.46 1258.69 | 1510.20 | 1823.78 | 1991.14 | 2740.14
0.5 | 861.07 | 1118.47 | 1252.10 | 1443.23 | 1886.43 868.53 | 1046.94 | 1260.05 | 1377.50 | 1894.63
75 1 754.38 981.03 | 1097.70 | 1265.66 | 1654.65 761.37 917.72 | 1105.08 | 1207.14 | 1662.19
2 676.67 879.48 984.76 | 1134.56 | 1484.50 683.18 821.39 991.61 | 1080.69 | 1491.46
5 614.94 797.34 894.43 | 1028.51 | 1347.64 620.69 743.36 900.54 978.48 | 1353.88
10 | 586.72 759.84 853.06 980.04 | 1284.96 591.87 708.54 858.59 932.54 | 1290.66
0 848.82 | 1129.76 | 1248.03 | 1463.47 | 1906.34 851.97 | 1096.33 | 1251.50 | 1431.03 | 1910.19
0.5 | 58297 780.18 859.32 | 1010.44 | 1315.49 585.82 757.58 862.34 988.10 | 1318.69
50 1 509.85 683.77 752.38 885.52 | 1153.02 512.59 663.82 755.25 865.66 | 1156.02
2 456.61 613.07 674.34 793.86 1034.21 459.18 594.74 677.00 775.52 1036.98
5 414.07 555.99 611.80 719.85 938.76 416.32 538.91 614.12 702.70 941.17
10 | 394.22 529.38 582.69 685.39 894.43 396.22 513.16 584.74 669.09 896.57
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 115259 | 1261.98 | 1677.77 | 1827.47 | 2432.96 627.13 | 1268.35 | 1268.35 | 1846.13 | 2236.99
0.5 | 799.19 871.75 | 1158.00 | 1263.50 | 1682.32 432.20 876.43 876.43 | 1276.61 | 1547.37
75 1 699.26 764.50 | 1013.02 | 1108.41 | 1473.94 378.53 768.66 768.66 | 1120.05 | 1357.82
2 623.68 686.09 905.07 994.71 | 1319.44 339.29 689.77 689.77 | 1005.25 | 1218.70
5 562.68 623.13 818.64 903.16 | 1195.33 307.62 626.12 626.12 91255 | 1106.29
10 | 536.71 593.92 780.91 860.85 | 1140.03 292.70 596.40 596.40 869.47 | 1054.19
0 853.16 935.00 | 1252.69 | 1281.03 | 1873.92 412.06 853.49 853.49 | 1260.71 | 1537.38
0.5 | 587.14 647.27 863.62 883.73 | 1296.29 281.31 587.00 587.00 869.18 | 1061.05
50 1 513.90 566.38 756.51 772.92 | 1134.20 245.10 513.57 513.57 761.44 930.09
2 460.41 505.67 678.18 690.54 | 1012.83 218.58 459.88 459.88 682.64 834.33
5 417.33 456.50 615.07 624.16 915.00 197.02 416.49 416.49 619.03 757.06
10 | 397.07 434,91 585.52 594.58 872.14 186.68 395.96 395.96 589.11 720.79
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Table 4.2.11: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to linear temperature rise AT= 200 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1227.67 | 1593.80 | 1786.25 | 2058.53 | 2695.39 1236.52 | 1491.41 | 1795.93 | 1965.48 | 2705.74
0.5 | 84253 | 1100.96 | 1229.14 | 1420.77 | 1858.58 849.84 | 1031.48 | 1236.83 | 1356.40 | 1866.51
75 1 736.50 964.33 | 1075.66 | 1244.23 | 1628.14 743.33 903.03 | 1082.78 | 1187.03 | 1635.40
2 659.08 863.25 963.15 | 1113.70 | 1458.68 665.42 807.17 969.75 | 1061.15 | 1465.36
5 597.22 781.18 872.73 | 1007.71 | 1321.83 602.80 729.29 878.56 959.05 | 1327.78
10 | 568.66 743.46 831.00 958.96 | 1258.78 573.65 694.31 836.26 912.87 | 1264.19
0 819.92 | 1103.05 | 1213.51 | 1430.13 | 1866.16 823.33 | 1071.26 | 1216.98 | 1398.76 | 1869.86
0.5 | 557.55 757.10 829.27 981.73 | 1281.11 560.62 735.90 832.28 960.28 | 1284.16
50 1 484.86 661.28 722.99 857.57 | 1119.63 487.81 642.69 725.82 838.58 | 1122.46
2 431.64 590.78 645.08 766.18 1001.17 434.41 573.85 647.71 748.72 1003.77
5 388.60 533.46 582.07 691.85 905.34 391.06 517.82 584.33 675.62 907.56
10 | 368.13 506.40 552.30 656.85 860.37 370.35 491.66 554.30 641.47 862.31
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 1137.35 | 1239.46 | 1654.72 | 1799.22 | 2401.82 607.92 | 1243.41 | 1243.41 | 1817.08 | 2205.67
0.5 | 786.57 852.75 | 1138.87 | 1239.94 | 1656.76 415.44 855.28 855.28 | 1252.42 | 1521.59
75 1 687.21 746.15 994.71 | 1085.77 | 1449.57 362.13 748.22 748.22 | 1096.84 | 1333.20
2 611.96 668.01 887.21 97250 | 1295.72 322.98 669.64 669.64 982.52 | 1194.68
5 551.06 604.90 800.87 880.85 | 1171.69 291.07 605.85 605.85 889.76 | 1082.27
10 | 525.00 575.38 762.98 838.18 | 1116.13 275.80 575.78 575.78 846.34 | 1029.83
0 824.58 915.53 | 1217.99 | 1252.45 | 1838.97 384.75 820.87 820.87 | 1224.63 | 1499.62
0.5 | 561.97 630.45 833.39 859.05 | 1266.44 256.50 558.21 558.21 837.84 | 1028.56
50 1 489.14 550.04 726.91 748.90 | 1105.28 220.35 485.24 485.24 730.81 898.47
2 435.66 489.58 648.69 666.78 984.36 193.52 431.58 431.58 652.21 803.02
5 392.09 440.34 585.09 600.21 886.38 171.17 387.67 387.67 588.19 725.41
10 | 371.23 418.46 554.89 570.18 843.12 160.00 366.47 366.47 557.65 688.55
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Table 4.2.12: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to linear temperature rise AT= 300 K.

Thickness | B-90° p-120°
(mm) o1 2 3 4 5 o1 2 3 W4 )3
0 | 1204.67 | 1572.00 | 1757.72 | 2030.54 | 2660.57 1213.37 | 1472.16 | 1767.11 | 1939.20 | 2670.60
0.5 | 822.82 | 1082.64 | 1204.95 | 1397.30 | 1829.58 830.00 | 1015.30 | 1212.40 | 1334.34 | 1837.23
75 1 717.31 946.66 | 1052.21 | 1221.59 | 1600.20 724.01 887.43 | 1059.08 | 1165.75 | 1607.18
2 640.02 845.82 939.91 | 1091.35 | 1431.09 646.21 791.84 946.23 | 1040.17 | 1437.49
5 577.72 763.43 848.97 984.92 | 1293.65 583.13 713.74 854.52 937.70 | 1299.30
10 | 548.53 725.14 806.49 935.44 | 1229.67 553.35 678.27 811.44 890.86 | 1234.76
0 788.57 | 1074.64 | 1176.58 | 1394.84 | 1823.86 792.30 | 104455 | 1180.07 | 1364.56 | 1827.39
0.5 | 529.48 732.15 796.62 950.85 | 1244.36 532.83 712.37 799.62 930.31 | 1247.24
50 1 456.99 636.74 690.75 827.24 | 1083.62 460.20 619.54 693.57 809.12 | 1086.28
2 403.49 566.22 612.69 735.84 965.21 406.52 550.69 615.28 719.25 967.61
5 359.48 508.25 548.72 660.72 868.47 362.21 494.08 550.93 645.40 870.47
10 | 337.96 480.38 517.85 624.74 822.34 340.47 467.12 519.79 610.29 824.05
Thickness | p-150° p-180°
(mm) o1 2 3 ™4 5 o1 2 03 ™4 5
1121.71 | 1215.96 | 1631.02 | 1770.00 | 2369.95 587.28 | 1217.28 | 1217.28 | 1787.02 | 2173.50
05 | 773.35 832,59 | 1118.82 | 1215.15 | 1630.08 397.16 832.80 832.80 | 1226.99 | 1494.63
75 1 674.40 726.50 975.30 | 1061.71 | 1423.84 344.07 726.30 726.30 | 1072.21 | 1307.20
2 599.30 648.46 868.01 948.64 | 1270.30 304.85 647.84 647.84 958.14 | 1169.00
5 538.23 584.89 781.38 856.46 | 1145.82 272.44 583.59 583.59 864.89 | 1056.09
10 | 511.88 554.74 742.99 813.02 | 1089.52 256.59 552.85 552.85 820.70 | 1002.82
0 793.63 894.82 | 1180.89 | 1222.13 | 1802.32 353.67 785.38 785.38 | 1186.05 | 1459.59
0.5 | 534.24 612.19 800.54 832.40 | 1234.48 227.33 526.34 526.34 803.83 993.61
50 1 461.58 532.08 694.45 722.69 | 1074.01 190.63 453.57 453.57 697.30 864.19
2 407.81 471.64 616.05 640.56 953.27 162.74 399.59 399.59 618.62 768.78
5 363.28 422.01 551.48 573.35 854.70 138.44 354.63 354.63 553.72 690.37
10 | 341.42 399.54 520.17 542.49 810.59 125.45 332.30 332.30 522.11 652.45
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Table 4.2.13: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to non-linear temperature rise AT= 100 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1249.66 | 1615.05 | 1813.80 | 2085.85 | 2729.46 1258.69 | 1510.20 | 1823.78 | 1991.14 | 2740.14
0.5 | 861.71 | 1119.05 | 1252.87 | 1443.97 | 1887.35 869.16 | 1047.45 | 1260.83 | 1378.20 | 1895.56
75 1 755.13 981.70 | 1098.61 | 1266.53 | 1655.73 762.12 918.32 | 1106.00 | 1207.95 | 1663.27
2 677.40 880.13 985.64 | 1135.39 | 1485.53 683.91 821.96 992.50 | 1081.47 | 1492.50
5 615.46 797.80 895.06 | 1029.11 | 1348.38 621.21 743.76 901.17 979.03 | 1354.63
10 | 587.05 760.14 853.47 980.43 | 1285.44 592.21 708.80 859.01 93290 | 1291.14
0 848.82 | 1129.76 | 1248.03 | 1463.47 | 1906.34 851.97 | 1096.33 | 1251.50 | 1431.03 | 1910.19
0.5 | 583.86 780.97 860.36 | 1011.42 | 1316.67 586.70 758.33 863.38 989.06 | 1319.88
50 1 510.92 684.72 753.64 886.70 | 1154.43 513.65 664.71 756.50 866.80 | 1157.43
2 457.66 613.99 675.57 795.01 | 1035.58 460.22 595.61 678.23 776.64 | 1038.36
5 414.82 556.65 612.68 720.67 939.74 417.07 539.53 615.00 703.50 942.16
10 | 394.71 529.81 583.26 685.93 895.07 396.71 513.56 585.31 669.60 897.21
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 115259 | 1261.98 | 1677.77 | 1827.47 | 2432.96 627.13 | 1268.35 | 1268.35 | 1846.13 | 2236.99
0.5 | 799.63 872.40 | 1158.66 | 1264.29 | 1683.18 432.78 877.15 877.15 | 1277.42 | 1548.22
75 1 699.77 765.27 | 1013.78 | 1109.34 | 1474.94 379.23 769.52 769.52 | 1121.00 | 1358.82
2 624.17 686.83 905.80 995.61 | 1320.40 339.97 690.60 690.60 | 1006.17 | 1219.66
5 563.03 623.66 819.16 903.81 | 1196.01 308.11 626.71 626.71 913.20 | 1106.98
10 | 536.93 594.27 781.25 861.27 | 1140.47 293.02 596.79 596.79 869.90 | 1054.64
0 853.16 935.00 | 1252.69 | 1281.03 | 1873.92 412.06 853.49 853.49 | 1260.71 | 1537.38
0.5 | 588.02 647.85 864.67 884.59 | 1297.33 282.17 588.00 588.00 870.27 | 1062.17
50 1 514.95 567.07 757.77 773.94 | 113543 246.15 514.78 514.78 762.74 931.43
2 461.44 506.34 679.42 691.53 | 1014.02 219.61 461.07 461.07 683.91 835.63
5 418.08 456.98 615.96 624.87 915.84 197.77 417.35 417.35 619.94 757.99
10 | 397.56 435.22 586.10 595.03 872.69 187.17 396.52 396.52 589.70 721.40

56 |Page



Chapter 4: Numerical Study and Results

Table 4.2.14: Natural frequencies (Hz) of CCCC one-fold SisN4/SUS304 FGM Folded plates subjected to non-linear temperature rise AT= 200 K.

Thickness N B-90° B-120°
(mm) o1 2 3 4 5 o1 2 3 W4 0}
1227.67 | 1593.80 | 1786.25 | 2058.53 | 2695.39 1236.52 | 1491.41 | 1795.93 | 1965.48 | 2705.74
0.5 | 843.88 | 1102.18 | 1230.78 | 1422.33 | 1860.52 851.19 | 1032.57 | 1238.48 | 1357.88 | 1868.46
75 1 738.11 965.77 1077.60 | 1246.08 | 1630.41 744.94 904.30 1084.74 | 1188.77 | 1637.69
2 660.66 864.65 965.05 | 1115.50 | 1460.89 667.01 808.41 971.66 | 1062.85 | 1467.60
5 598.36 782.20 874.11 | 1009.02 | 1323.45 603.95 730.18 879.96 960.28 | 1329.41
10 | 569.41 744.14 831.91 959.82 | 1259.85 574.41 694.90 837.18 913.68 | 1265.27
0 819.92 | 1103.05 | 1213.51 | 1430.13 | 1866.16 823.33 | 1071.26 | 1216.98 | 1398.76 | 1869.86
0.5 | 559.49 758.81 831.53 983.84 | 1283.63 562.54 737.51 834.53 962.34 | 1286.69
50 1 487.22 663.34 725.72 860.12 | 1122.65 490.14 644.63 728.55 841.06 | 1125.50
2 433.99 592.82 647.79 768.70 1004.16 436.74 575.76 650.41 751.17 1006.76
5 390.32 534.94 584.04 693.68 907.52 392.75 519.21 586.31 677.40 909.75
10 | 369.26 507.37 553.60 658.05 861.80 371.47 492.57 555.60 642.64 863.75
Thickness N B-150° B-180°
(mm) o1 2 3 ™4 5 o1 2 3 04 5
0 | 1137.35 | 1239.46 | 1654.72 | 1799.22 | 2401.82 607.92 | 1243.41 | 1243.41 | 1817.08 | 2205.67
0.5 | 787.49 854.12 | 1140.25 | 1241.61 | 1658.57 416.70 856.81 856.81 | 1254.13 | 1523.38
75 1 688.29 747.78 996.34 | 1087.75 | 1451.70 363.65 750.05 750.05 | 1098.87 | 1335.32
2 613.01 669.62 888.80 974.45 | 1297.79 324.49 671.43 671.43 984.51 | 1196.75
5 551.81 606.07 802.02 882.27 | 1173.19 292.17 607.15 607.15 891.21 | 1083.78
10 525.50 576.15 763.73 839.12 1117.11 276.53 576.64 576.64 847.29 1030.83
0 824.58 915.53 | 1217.99 | 1252.45 | 1838.97 384.75 820.87 820.87 | 1224.63 | 1499.62
0.5 | 563.89 631.72 835.65 860.90 | 1268.66 258.48 560.41 560.41 840.19 | 1030.96
50 1 491.47 551.56 729.65 751.12 | 1107.94 222.79 487.93 487.93 733.65 901.36
2 437.97 491.07 651.41 668.97 986.96 195.99 434.25 434.25 655.02 805.87
5 393.78 441.42 587.08 601.79 888.26 172.99 389.61 389.61 590.23 727.48
10 | 372.34 419.17 556.19 571.22 844.35 161.21 367.74 367.74 558.99 689.91
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Table 4.2.15: Natural frequencies (Hz) of CCCC one-fold SizN4/SUS304 FGM Folded plates subjected to non-linear temperature rise AT= 300 K.

Thickness | pB-90° p-120°
(mm) o1 2 ®3 ™4 5 o1 ®2 ®3 4 5

1204.67 | 1572.00 | 1757.72 | 2030.54 | 2660.57 1213.37 | 1472.16 | 1767.11 | 1939.20 | 2670.60

05| 824.97 1084.57 | 1207.55 | 1399.76 | 1832.62 832.15 1017.01 | 1215.01 | 1336.67 | 1840.29

75 1 719.90 948.95 1055.31 | 1224.53 | 1603.81 726.60 889.47 1062.21 | 1168.53 | 1610.82
2 642.57 848.08 942.98 1094.25 | 1434.65 648.77 793.84 949.33 1042.91 | 1441.08

5 579.60 765.11 851.23 987.06 | 1296.29 585.02 715.21 856.80 939.73 | 1301.96

10 549.78 726.27 808.00 936.88 1231.45 554.61 679.26 812.97 892.22 1236.55

0 788.57 1074.64 | 1176.58 | 1394.84 | 1823.86 792.30 104455 | 1180.07 | 1364.56 | 1827.39

0.5 | 532.68 734.91 800.28 954.26 | 1248.39 535.99 714.98 803.28 933.62 | 1251.29

50 1 460.92 640.10 695.23 831.38 1088.51 464.09 622.73 698.04 813.15 1091.19

2 407.45 569.57 617.16 739.96 970.07 410.43 553.86 619.75 723.27 972.49

5 362.41 510.72 552.02 663.77 872.05 365.11 496.42 554.23 648.36 874.07

10 339.91 482.02 520.05 626.76 824.73 342.40 468.68 521.99 612.26 826.44

Thickness | p-150° p-180°
(mm) o1 2 3 04 5 o1 2 ®3 04 5

0 1121.71 | 121596 | 1631.02 | 1770.00 | 2369.95 587.28 1217.28 | 1217.28 | 1787.02 | 2173.50
05| 774.79 834.77 1120.99 | 1217.80 | 1632.93 399.21 835.24 835.24 1229.70 | 1497.46
75 1 676.13 729.13 977.89 1064.88 | 1427.23 346.59 729.24 729.24 1075.45 | 1310.57
2 601.01 651.06 870.57 951.77 1273.64 307.36 650.75 650.75 961.33 1172.32
5 539.48 586.81 783.26 858.77 1148.28 274.29 585.73 585.73 867.24 1058.55
10 512.70 556.02 744.24 814.57 1091.16 257.81 554.28 554.28 822.28 1004.47
0 793.63 894.82 1180.89 | 1222.13 | 1802.32 353.67 785.38 785.38 1186.05 | 1459.59

0.5 | 537.39 614.24 804.22 835.38 | 1238.04 230.82 529.98 529.98 807.63 997.48

50 1 465.46 534.58 698.95 726.32 1078.32 195.06 458.05 458.05 701.94 868.88
2 411.71 474.13 620.55 644.17 957.52 167.34 404.10 404.10 623.24 773.44

5 366.18 423.84 554.80 576.01 857.81 141.99 357.97 357.97 557.12 693.79

10 343.34 400.76 522.38 544.26 812.65 127.89 334.51 334.51 524.37 654.72
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Table 4.2.16: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN./SUS304 FGM Folded plate without temperature rise AT= 0 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 2949.28 | 2046.59 | 1786.14 | 1584.13 | 1417.46 | 1347.70 3196.87 | 2220.31 | 1937.59 | 1717.52 | 1535.52 | 1459.27
®2 3132.21 | 2164.92 | 1900.74 | 1709.84 | 1559.62 | 1490.69 4572.77 | 3154.40 | 2766.83 | 2486.64 | 2267.42 | 2168.41
O3 3406.42 | 2355.19 | 2067.92 | 1860.13 | 1696.46 | 1621.39 4958.29 | 3422.03 | 3001.86 | 2697.66 | 2459.17 | 2351.50
W4 3874.38 | 2679.89 | 2353.28 | 2116.78 | 1930.14 | 1844.51 5549.68 | 3848.41 | 3365.66 | 2996.84 | 2693.33 | 2563.25
®s5 4375.19 | 3033.44 | 2660.53 | 2383.80 | 2160.11 | 2059.77 5621.15 | 3884.98 | 3408.08 | 3061.62 | 2789.51 | 2666.65
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 3399.40 | 2362.41 | 2062.93 | 1830.43 | 1638.01 | 1556.59 4665.91 | 3246.91 | 2842.00 | 2530.90 | 2272.27 | 2158.67
®2 5879.42 | 4048.19 | 3547.24 | 3184.39 | 2901.46 | 2775.83 7437.81 | 5173.22 | 4520.46 | 4012.95 | 3589.16 | 3406.97
®3 6079.18 | 4222.88 | 3687.84 | 3273.09 | 2930.32 | 2785.87 10453.56 | 7195.97 | 6281.51 | 5598.32 | 5061.94 | 4842.87
W4 6355.59 | 4379.91 | 3838.59 | 3445.63 | 3138.39 | 3001.97 10754.60 | 7421.81 | 6481.56 | 5765.21 | 5174.20 | 4920.14
®s5 7182.82 | 4955.34 | 4344.16 | 3899.17 | 3549.53 | 3393.90 11114.02 | 7727.14 | 6751.10 | 5991.47 | 5355.05 | 5096.51

Table 4.2.17: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN#/SUS304 FGM Folded plate subjected to uniform temperature rise AT= 100 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 2832.88 | 1941.98 | 1685.13 | 1486.70 | 1323.05 | 1253.60 3100.83 | 2137.82 | 1858.66 | 1641.13 | 1460.84 | 1385.04
2 2917.43 | 1962.42 | 1700.24 | 1510.72 | 1360.19 | 1288.67 4414.69 | 3017.17 | 2635.06 | 2358.97 | 2142.32 | 2043.33
3 3179.57 | 2142.46 | 1857.74 | 1651.83 | 1488.32 | 1410.90 4789.24 | 3275.81 | 2861.68 | 2562.04 | 2326.60 | 2219.19
W4 3628.45 | 2451.09 | 2127.98 | 1894.12 | 1708.39 | 1620.77 5392.37 | 3709.79 | 3236.30 | 2876.39 | 2579.92 | 2451.55
s 4084.33 | 2762.18 | 2395.11 | 2125.00 | 1907.00 | 1805.78 5434.44 | 3728.01 | 3256.29 | 2913.64 | 2645.04 | 2522.78
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 3305.76 | 2283.09 | 1987.41 | 1757.59 | 1567.01 | 1486.13 4576.09 | 3175.82 | 2776.19 | 2469.02 | 2213.42 | 2101.00
(Y] 5741.51 | 3936.30 | 3442.51 | 3085.00 | 2805.99 | 2681.57 7322.65 | 5086.09 | 4441.48 | 3940.29 | 3521.73 | 3341.77
3 5956.71 | 4123.94 | 3596.00 | 3187.18 | 2849.28 | 2706.40 10328.38 | 7112.04 | 6209.63 | 5535.59 | 5006.46 | 4790.35
W4 6206.87 | 4259.32 | 3725.78 | 3338.64 | 3035.64 | 2900.43 10601.54 | 7312.31 | 6383.84 | 5675.46 | 5090.56 | 4839.42
s 7016.45 | 4820.89 | 4218.59 | 3780.26 | 3435.64 | 3281.63 10978.69 | 7631.40 | 6668.77 | 5923.44 | 5297.30 | 5042.21
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Table 4.2.18: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SizsN./SUS304 FGM Folded plate subjected to uniform temperature rise AT= 200 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 2629.84 | 1653.88 | 1376.56 | 1172.36 | 1002.89 | 913.15 2998.89 | 2043.60 | 1765.68 | 1548.55 | 1367.77 | 1291.20
®2 2695.53 | 1801.97 | 1526.64 | 1307.36 | 1126.47 | 1032.10 4233.89 | 2843.35 | 2461.40 | 2185.43 | 1967.59 | 1865.39
®3 2881.07 | 1825.68 | 1542.51 | 1342.73 | 1177.46 | 1103.04 4597.55 | 3092.59 | 2679.07 | 2379.96 | 2143.77 | 2033.39
W4 3313.09 | 2121.61 | 1786.40 | 1540.98 | 1340.18 | 1237.47 5219.86 | 3521.72 | 3054.16 | 2713.64 | 2426.87 | 2297.78
®5 3727.43 | 2398.64 | 2024.73 | 1749.81 | 1524.68 | 1412.12 5225.34 | 3554.55 | 3080.88 | 2724.05 | 2449.52 | 2324.49
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 3207.54 | 2193.31 | 1899.14 | 1669.90 | 1479.02 | 1397.49 4486.02 | 3096.85 | 2699.76 | 2394.27 | 2139.53 | 2026.97
®2 5594.59 | 3802.30 | 3311.31 | 2956.24 | 2678.76 | 2553.36 7210.89 | 4990.23 | 4349.32 | 3850.53 | 3433.39 | 3253.60
®3 5831.94 | 4011.90 | 3487.20 | 3081.14 | 2745.28 | 2602.55 10212.17 | 7017.08 | 6120.16 | 5450.52 | 4925.16 | 4710.35
W4 6049.21 | 4115.97 | 3585.63 | 3201.28 | 2900.18 | 2764.27 10455.07 | 7191.25 | 6267.97 | 5562.03 | 4978.00 | 4726.98
®5 6841.32 | 4662.63 | 4064.22 | 3629.29 | 3287.18 | 3132.74 10852.57 | 7524.88 | 6568.68 | 5832.68 | 5211.20 | 4956.63

Table 4.2.19: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN#/SUS304 FGM Folded plate subjected to uniform temperature rise AT= 300 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 2218.92 | 1122.71 | 745.86 | 376.82 - - 2889.17 | 1935.69 | 1656.58 | 1437.61 | 1253.89 | 1175.04
2 2463.56 | 1300.00 | 917.93 | 583.30 - - 4020.76 | 2618.87 | 2229.28 | 1947.17 | 1721.60 | 1610.21
3 2516.08 | 1564.68 | 1204.30 | 882.11 - - 4373.81 | 2858.75 | 2437.98 | 2133.17 | 1889.86 | 1770.68
W4 2886.04 | 1604.14 | 1257.79 | 1003.61 - - 4984.80 | 3274.52 | 2800.47 | 2456.88 | 2182.93 | 2050.01
s 3272.03 | 1878.41 | 1460.15 | 1137.45 - - 5024.74 | 3350.46 | 2872.83 | 2513.54 | 2219.61 | 2085.00
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 3103.18 | 2091.72 | 1796.79 | 1566.05 | 1372.59 | 1289.06 4394.26 | 3009.07 | 2611.98 | 2306.10 | 2050.20 | 1936.20
[Y) 5434.02 | 3640.71 | 3147.69 | 2791.83 | 2513.17 | 2384.28 7100.45 | 4884.39 | 4242.97 | 3742.95 | 3323.63 | 3141.99
™3 5702.21 | 3884.21 | 3358.93 | 2952.70 | 2616.22 | 2471.84 10101.98 | 6908.99 | 6011.19 | 5341.42 | 4816.56 | 4582.06
W4 5877.94 | 3944.45 | 3412.28 | 3027.40 | 2725.52 | 2586.38 10312.25 | 7056.79 | 6132.49 | 5423.77 | 4835.67 | 4601.47
s 6652.71 | 4475.27 | 3875.39 | 3440.35 | 3097.94 | 2940.48 10732.52 | 7405.05 | 6448.36 | 5716.72 | 5095.50 | 4838.56
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Table 4.2.20: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN#/SUS304 FGM Folded plate subjected to linear temperature rise AT= 100 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
w1 2892.53 | 1998.50 | 1740.10 | 1539.68 | 1374.12 | 1304.42 3148.76 | 2180.70 | 1899.89 | 1681.06 | 1499.81 | 1423.76
w2 3032.40 | 2077.82 | 1815.58 | 1625.32 | 1474.22 | 1403.81 4498.13 | 3092.45 | 2707.67 | 2429.19 | 2210.58 | 2111.30
w3 3300.55 | 2263.09 | 1978.00 | 1771.05 | 1606.64 | 1530.16 4878.25 | 3355.76 | 2938.65 | 2636.36 | 2398.67 | 2290.83
W4 3758.89 | 2579.88 | 2255.86 | 2020.48 | 1833.34 | 1746.39 5472.17 | 3784.03 | 3305.48 | 2940.41 | 2640.04 | 2510.81
s 4236.23 | 2912.30 | 2543.02 | 2269.04 | 2046.82 | 1945.49 5532.35 | 3812.39 | 3338.69 | 2994.20 | 2723.12 | 2600.25

Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
w1 3352.14 | 2323.94 | 2026.52 | 1795.35 | 1603.80 | 1522.66 4619.13 | 3210.87 | 2808.84 | 2499.87 | 2242.94 | 2130.10
2 5814.96 | 3996.99 | 3499.41 | 3138.93 | 2857.53 | 2732.44 7376.34 | 5127.48 | 4479.26 | 3975.40 | 3554.89 | 3374.27

03 6017.08 | 4174.00 | 3642.70 | 3231.04 | 2890.94 | 2747.43 10398.61 | 7157.59 | 6248.43 | 5569.75 | 5037.48 | 4820.34
04 6285.82 | 4324.51 | 3786.86 | 3396.49 | 3090.91 | 2954.94 10673.33 | 7364.94 | 6431.04 | 5719.15 | 5131.96 | 4880.00
05 7104.26 | 4893.12 | 4286.15 | 3844.15 | 3496.53 | 3341.56 11050.54 | 7680.30 | 6710.42 | 5957.16 | 5326.75 | 5070.91

Table 4.2.21: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN+/SUS304 FGM Folded plate subjected to linear temperature rise AT= 200 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 2831.52 | 1945.07 | 1687.98 | 1488.37 | 1322.74 | 1252.10 3099.25 | 2138.93 | 1859.51 | 1641.20 | 1459.62 | 1383.03
2 2917.01 | 1973.03 | 1710.77 | 1518.76 | 1363.26 | 1288.44 4418.16 | 3024.17 | 2641.38 | 2363.61 | 2144.00 | 2043.00

OF 3179.21 | 2153.44 | 1868.60 | 1660.09 | 1491.43 | 1410.62 4792.89 | 3283.11 | 2868.25 | 2566.84 | 2328.27 | 2218.77
W4 3628.16 | 2462.61 | 2139.29 | 1902.66 | 1711.52 | 1620.34 5391.47 | 3714.08 | 3239.30 | 2877.32 | 2578.44 | 2448.66

s 4081.99 | 2774.25 | 2406.93 | 2133.56 | 1909.52 | 1804.48 5438.28 | 3734.35 | 3262.50 | 2918.49 | 2646.60 | 2522.10
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 3303.84 | 2283.64 | 1987.74 | 1757.21 | 1565.43 | 1483.79 4572.76 | 3174.07 | 2774.27 | 2466.61 | 2210.04 | 2096.91
2 5748.48 | 3942.67 | 3447.79 | 3088.84 | 2807.55 | 2681.57 7316.70 | 5081.45 | 4436.66 | 3935.03 | 3515.60 | 3334.97

OF 5954.96 | 4123.51 | 3595.05 | 3185.35 | 2846.23 | 2702.58 10346.41 | 7119.62 | 6214.60 | 5539.03 | 5008.85 | 4792.21
04 6214.05 | 4265.95 | 3731.25 | 3342.58 | 3037.18 | 2900.33 10595.16 | 7307.95 | 6378.85 | 5669.46 | 5083.10 | 4831.03
08 7023.81 | 4827.71 | 4224.13 | 3784.14 | 3436.90 | 3281.10 10990.25 | 7634.09 | 6668.96 | 5919.88 | 5292.16 | 5037.07
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Table 4.2.22: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SizsN4+/SUS304 FGM Folded plate subjected to linear temperature rise AT= 300 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 2764.77 | 1844.44 | 1578.94 | 1381.22 | 1215.49 | 1131.40 3047.96 | 2094.69 | 1816.15 | 1597.66 | 1414.72 | 1336.89
2 2781.42 | 1884.23 | 1627.33 | 1427.35 | 1260.02 | 1186.82 4331.55 | 2948.16 | 2566.45 | 2288.23 | 2065.78 | 1961.42
®3 3037.93 | 2020.37 | 1732.65 | 1518.72 | 1340.15 | 1250.28 4700.89 | 3202.72 | 2789.16 | 2487.45 | 2246.14 | 2133.27

W4 3478.01 | 2322.63 | 1997.04 | 1755.51 | 1554.99 | 1455.11 5306.51 | 3635.13 | 3164.59 | 2806.32 | 2507.41 | 2375.63
s 3909.12 | 2615.12 | 2247.38 | 1971.62 | 1741.24 | 1628.73 5337.62 | 3651.85 | 3179.51 | 2833.03 | 2558.20 | 2430.28
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 3254.17 | 2241.25 | 1946.35 | 1715.75 | 1522.69 | 1439.83 4526.39 | 3136.23 | 2738.05 | 2430.89 | 2173.39 | 2058.98
2 5679.16 | 3884.53 | 3391.66 | 3033.39 | 2750.77 | 2622.52 7258.26 | 5034.70 | 4392.28 | 3891.51 | 3471.07 | 3288.88

OF 5892.24 | 4070.97 | 3544.50 | 3135.68 | 2795.93 | 2651.01 10296.32 | 7081.61 | 6179.64 | 5505.84 | 4975.80 | 4758.25
04 6139.47 | 4203.50 | 3671.04 | 3283.17 | 2976.47 | 2837.34 10519.21 | 7250.23 | 6324.46 | 5615.70 | 5027.26 | 4772.96
s 6940.59 | 4758.33 | 4157.39 | 3718.42 | 3369.92 | 3211.77 10932.47 | 7587.98 | 6626.27 | 5879.26 | 5250.98 | 4994.77

Table 4.2.23: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN./SUS304 FGM Folded plate subjected to non-linear temperature rise AT= 100 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 2892.53 | 2000.36 | 1742.30 | 1541.80 | 1375.61 | 1305.38 3148.76 | 2182.17 | 1901.62 | 1682.74 | 1501.00 | 1424.52
2 3032.40 | 2081.33 | 1819.84 | 1629.54 | 1477.29 | 1405.82 4498.13 | 3094.77 | 2710.39 | 2431.84 | 2212.47 | 2112.54
3 3300.55 | 2266.78 | 1982.47 | 1775.47 | 1609.85 | 1532.25 4878.25 | 3358.22 | 2941.55 | 2639.17 | 2400.68 | 2292.14
W4 3758.89 | 2583.84 | 2260.66 | 2025.20 | 1836.76 | 1748.62 5472.17 | 3786.41 | 3308.22 | 2942.98 | 2641.81 | 2511.94
s 4236.23 | 2917.07 | 2548.74 | 2274.61 | 2050.77 | 1948.05 5532.35 | 3815.06 | 3341.85 | 2997.27 | 2725.31 | 2601.67

Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10

™1 3352.14 | 2325.34 | 2028.16 | 1796.94 | 1604.93 | 1523.38 4619.13 | 3212.06 | 2810.20 | 2501.17 | 2243.86 | 2130.69

2 5814.96 | 3998.81 | 3501.50 | 3140.92 | 2858.93 | 2733.35 7376.34 | 5128.96 | 4480.92 | 3976.94 | 3555.96 | 3374.96

3 6017.08 | 4175.72 | 3644.66 | 3232.88 | 2892.22 | 2748.25 10398.61 | 7158.96 | 6249.82 | 5570.93 | 5038.24 | 4820.81

W4 6285.82 | 4326.48 | 3789.11 | 3398.63 | 3092.42 | 2955.92 10673.33 | 7366.80 | 6433.07 | 5721.02 | 5133.27 | 4880.84

s 7104.26 | 4895.32 | 4288.66 | 3846.53 | 3498.21 | 3342.65 11050.54 | 7681.90 | 6712.10 | 5958.59 | 5327.68 | 5071.49
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Table 4.2.24: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN.+/SUS304 FGM Folded plate subjected to non-linear temperature rise AT= 200 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 2831.52 | 1949.22 | 1693.00 | 1493.30 | 1326.30 | 1254.43 3099.25 | 2142.04 | 1863.23 | 1644.87 | 1462.30 | 1384.78
®2 2917.01 | 1981.48 | 1721.27 | 1529.44 | 1371.27 | 1293.82 4418.16 | 3029.30 | 2647.53 | 2369.68 | 2148.44 | 2045.96
w3 3179.21 | 2162.23 | 1879.50 | 1671.13 | 1499.69 | 1416.14 4792.89 | 3288.55 | 2874.75 | 2573.24 | 2332.95 | 2221.87
W4 3628.16 | 2471.92 | 2150.78 | 1914.26 | 1720.16 | 1626.10 5391.47 | 3719.31 | 3245.39 | 2883.10 | 2582.54 | 2451.34
s 4081.99 | 2785.06 | 2420.14 | 2146.68 | 1919.08 | 1810.80 5438.28 | 3740.08 | 3269.46 | 2925.41 | 2651.65 | 2525.44
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
®1 3303.84 | 2286.60 | 1991.26 | 1760.68 | 1567.96 | 1485.45 4572.76 | 3176.56 | 2777.17 | 2469.43 | 2212.11 | 2098.29
®2 5748.48 | 3946.59 | 3452.37 | 3093.26 | 2810.75 | 2683.70 7316.70 | 5084.51 | 4440.18 | 3938.42 | 3518.08 | 3336.62
W3 5954.96 | 4127.12 | 3599.26 | 3189.40 | 2849.14 | 2704.49 10346.41 | 7122.41 | 6217.55 | 5541.68 | 5010.68 | 4793.40
W4 6214.05 | 4270.16 | 3736.16 | 3347.32 | 3040.61 | 2902.60 10595.16 | 7311.77 | 6383.17 | 5673.63 | 5086.19 | 4833.09
s 7023.81 | 4832.38 | 4229.57 | 3789.39 | 3440.69 | 3283.61 10990.25 | 7637.36 | 6672.51 | 5923.13 | 5294.47 | 5038.58

Table 4.2.25: Natural frequencies (Hz) of CCCC two-fold (90° crank angle) SisN./SUS304 FGM Folded plate subjected to non-linear temperature rise AT= 300 K.

Thickness 10 mm 15 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 2764.77 | 1859.98 | 1598.76 | 1401.93 | 1231.60 | 1142.49 3047.96 | 2099.64 | 1822.15 | 1603.67 | 1419.19 | 1339.84
(Y] 2781.42 | 1891.37 | 1636.18 | 1436.26 | 1266.65 | 1191.29 4331.55 | 2956.73 | 2576.89 | 2298.70 | 2073.60 | 1966.70
™3 3037.93 | 2036.35 | 1752.96 | 1539.86 | 1356.52 | 1261.50 4700.89 | 3211.75 | 2800.14 | 2498.43 | 2254.32 | 2138.78
W4 3478.01 | 2339.29 | 2018.07 | 1777.28 | 1571.72 | 1466.53 5306.51 | 3644.18 | 3175.11 | 2816.11 | 2514.49 | 2380.34
s 3909.12 | 2633.74 | 2270.54 | 1995.09 | 1758.82 | 1640.57 5337.62 | 3660.80 | 3190.72 | 2844.75 | 2566.95 | 2436.16
Thickness 20 mm 50 mm
N 0 0.5 1 2 5 10 0 0.5 1 2 5 10
™1 3254.17 | 2245.93 | 1952.00 | 1721.41 | 1526.91 | 1442.63 4526.39 | 3140.11 | 2742.67 | 2435.48 | 2176.86 | 2061.34
(o)) 5679.16 | 3890.86 | 3399.18 | 3040.77 | 2756.23 | 2626.22 7258.26 | 5039.45 | 4397.89 | 3897.09 | 3475.32 | 3291.77
™3 5892.24 | 4076.65 | 3551.26 | 3142.34 | 2800.85 | 2654.29 10296.32 | 7085.91 | 6184.36 | 5510.25 | 4979.00 | 4760.41
W4 6139.47 | 4210.29 | 3679.08 | 3291.06 | 2982.29 | 2841.27 10519.21 | 7256.16 | 6331.37 | 5622.62 | 5032.61 | 4776.63
s 6940.59 | 4765.82 | 4166.24 | 3727.09 | 3376.32 | 3216.08 10932.47 | 7593.01 | 6631.91 | 5884.73 | 5255.15 | 4997.58
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Similar to one-fold folded plates, the two-fold folded plates manifest higher natural frequencies
for lower values of power law index N. For better visualization of the effect of temperature
increment, Figure 4.2.9 displays the first four frequencies wi (i= 1 to 4) versus temperature for
FGM plates of 50 mm thickness. The plates of volume fraction indices N=1 subjected to
uniform, linear, and nonlinear temperature rise fields are considered. For the purpose of
comparison of temperature effects, the data of first natural frequency o; from Figure 4.2.9 is
plotted in Figure 4.2.10. Similar to flat plates and one-fold folded plates, it is observed that the
uniform temperature change affects the vibrational frequencies more significantly than the
linear and nonlinear temperature changes.
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Figure 4.2.9: First four natural frequencies versus temperature for CCCC FGM two-fold plate
with N=1, h=50 mm (a) Uniform temp. rise (b) Linear temp. rise (c) Non-linear temp. rise.
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Figure 4.2.10: Variation of fundamental frequency with various temperature field for CCCC
FGM two-fold plate with N=1 and h=50 mm.

First three mode shapes of SisN4/SUS304 FGM two-fold folded plate, with crank angle § = 90°
and N=1 have been plotted in Figure 4.2.11 for 10 mm and 50 mm thickness. It has been
observed that the first mode shape remains unchanged for thinner plates, but when thermal load
is added, the second mode bending (2,1) occurs, which is (1,1) without thermal load. Similarly,
the third mode exhibits temperature-dependent bending mode (3,1) vs (2,1) when temperature
increases. For thicker plate too, the first mode is similar where the structure rotates about
vertical axis. When the thermal load is applied, a twisting shape is seen in the second mode.
Regarding the third mode, no changes have been noted. Considerable variation in mode shapes
have been observed when the plate thickness increases.
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CHAPTER 5.
CONCLUSION

Functionally graded material is a high quality material that will revolutionize the
manufacturing world in the 21st century. There are many roadblocks to understanding this
target. Cost is a transcendent issue, with a tremendous section of the cost expended on the
powder preparing and manufacturing strategy. However, the advancement of fabrication
techniques, including additive manufacturing, has revolutionized the production of FGM
plates. These techniques allow for precise control over material gradients and open up new
possibilities for complex geometries.

In this work, dynamic response of all side clamped FGM rectangular flat and folded
plates subjected to thermal environment is discussed to get the natural frequency and mode
shapes using first order shear deformation theory. Material properties are assumed to be
dependent on temperature and vary continuously in thickness direction according to power law
distribution. In order to validate the current methodology, the results are cross-checked with
the existing literature. From various parametric studies in crank angle, thicknesses, temperature
field, and power law indices following conclusions can be made:

i) As temperature increases, material properties degrade, along with the development of
thermal stresses, which ultimately cause a reduction in natural frequency.

i) The impact of uniform temperature rise on vibrational frequencies is notably greater
compared to that of linear and non-linear temperature rise.

iii) Folded plates provide better resistance to thermal loads in comparison to flat plates, as
presence of fold increases stiffness of the plate.

iv) For flat rectangular plates the fundamental frequency of vibration decreases as the aspect
ratio (a/b) increases.

v) The temperature change affects the first mode more significantly than other higher modes
and the plates of power law index N=10 are more sensitive to the temperature change than
those of N=1.

vi) Thicker sections, which produce higher fundamental frequencies, exhibit greater resilience
against thermal loads. Thinner plates ceased to produce results in higher temperature.

vii) As ceramic constituent decreases with the increment of gradient index N, the stiffness and
natural frequency of the folded plates reduces in exponential manner.

In essence, the numerical free vibration analysis of FGM folded plates not only enriches our
understanding of their behavior but also provides a foundation for designing innovative
structures that leverage their unique properties. As technology continues to advance, we
anticipate that FGM folded plates will play an increasingly vital role in engineering solutions
across diverse fields.

68|Page



FUTURE SCOPE OF STUDY

The work presented in this thesis represents a limited segment of the extensive research area
of functionally graded structures. There are numerous problems within this field that need to
be addressed in future research. To mention a few, the current study can be extended in the
following fields:

i)

vi)

Consideration of the effect of environmental moisture along with temperature i.e.
hygrothermal effect on FGM plates.

These parametric studies can also be conducted with other materials like Ti—-6AI-4V/
Zirconia etc.

The present formulation is based on first order shear deformation theory. It can be modified
to take higher order shear deformation theory into account.

Formulation can be derived for modelling the behaviour of FGM beams and plates with
integrated piezoelectric sensor and actuator.

Current analysis can be extended on Sandwich FGM plates, FGM Box structure, FGM
cylindrical and spherical shells as well as FGM plates with change in porosity.

Analysis of functionally graded material plates resting on Winkler and Pasternak elastic
foundations.

vii) Buckling studies, forced vibration analysis and the effect of lateral load is a scope for

further study.
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