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EXECUTIVE SUMMARY

Agriculture is extremely important to any country's economy. Every country's
population is fully dependent on food, which is primarily produced through
agriculture. However, plant diseases mostly affect agriculture, reducing yield and
causing financial hardship for farmers. The time they spent producing those crops
has also been wasted as a result of the sickness that has infected them. Because
of the lack of sufficient infrastructure and procedures for detecting the sickness
in a timely manner, curing the condition becomes difficult. However, expert
farmers manually identify the diseases, which is a time-consuming operation.
This study describes a deep learning approach for accurately identifying illnesses
in apple tree and potato plants. To accomplish robust categorization, the system
takes a multistage technique.

This work provides a new pipeline for detecting apple and potato diseases that
combines GAC segmentation, EfficientNetBO for feature extraction, PCA for
dimensionality reduction, SMOTE for class imbalance, and a stacked ensemble
classifier. The system uses pre-trained deep learning models, such as
EfficientNetBO, to extract features, resulting in efficient and effective disease
pattern learning. PCA improves computational efficiency while potentially
reducing overfitting, resulting in a more robust model. SMOTE addresses class
imbalance, guaranteeing that all disease classes have an equal chance of being
accurately categorised. The stacked ensemble classifier combines the strengths of
numerous models, perhaps leading to higher illness diagnosis accuracy. And last
but not the least K-fold cross-validation to ensure model reliability and
generalization. The aim is to enhance the accuracy, efficiency, and reliability of
plant disease identification.

There is the possibility that this system could be utilised in applications related to
precision agriculture. The ability to detect diseases at an early stage not only gives
farmers the ability to take prompt action, but it also helps reduce crop losses,
which ultimately leads to an increase in overall production.
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1.0 INTRODUCTION

1.1 Overview

Plant diseases significantly threaten global agriculture, impacting crop yield and
quality. Traditional methods for disease detection are reliant on expert knowledge
and manual inspection. Thus, the process is time-consuming and prone to error.
This research work presents a system for identifying diseases in apple tree and
potato plants using deep learning (DL) technique.

Agriculture has faced significant challenges in recent years due to increasing
prevalence of plant diseases, which threaten food security, economic stability, and
environmental sustainability. As the global demand for agricultural products
continues to rise, there is an urgent need for efficient, accurate, and scalable
solutions to identify and manage plant diseases.

Advancements in Machine Learning (ML) and Deep Learning (DL) have
revolutionised numerous fields such as pattern recognition, image analysis, and
predictive modelling. These technologies promise to transform agricultural
practices by providing automated, precise and rapid disease detection systems.
ML and DL models can analyse vast amount of data such as images of plant
leaves, stems, and fruits, to identify symptoms of various diseases at an early
stage. Thus enables timely intervention and reduction of crop losses.

1.2 Problem Statement

To design an efficient system for identifying diseases in plants using deep
learning technique.

1.3 Objectives
The objectives of this research work are as follows:

e To study already published research work on identifying plant diseases
using various Al techniques.

e Implementing already published research works to gain insight of the
domain.

¢ To gain proficiency in Python and become acquainted with many libraries
(e.g NumPy, SciPy, matplotlib, scikit-learn) that will be utilised to create
the suggested system.
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e To design & develop an efficient system for identification of plant diseases

1.4

using deep learning technique.
Assumptions and Scope

1.4.1 Assumptions

Quality of Input Images: The input leaf images are of sufficient quality and
resolution to allow accurate segmentation and feature extraction.
Consistency in Data: The training and test datasets are representative of
real-world conditions and cover a variety of disease manifestations.
Availability of Labels: Ground truth labels for the diseases are accurate and
available for supervised learning.

Computational Resources: Adequate training resources should be available
to train deep learning models and for processing large datasets.

1.4.2 Scope

1.5

To perform accurate delineation of diseased regions in leaf images

To extract high-quality feature vectors from segmented images

To perform dimensionality reduction for enhancing computational
efficiency

To handle class imbalance by generating synthetic minority class samples
To achieve robust classification, perform Ensemble classification by
combining Random Forest (RF), K-Nearest Neighbour (KNN) and Support
Vector Classifier (SVC) with XGBoost

To perform cross-validation which validates the model's performance
across multiple folds of the dataset, ensuring generalizability of the model

Concept and Problem Analysis

Plant diseases have a significant impact on agricultural production and food
security by destroying crops and reducing yields. Accurate and early detection of
plant diseases is critical for effective management and mitigation, relying on
advanced strategies such as deep learning for precise diagnosis.

The proposed system integrates several state-of-the-art techniques to enhance the
accuracy and efficiency of identification. Different steps involved in the system
are image segmentation, feature extraction, dimensionality reduction, class
balancing, classification, and model validation. The proposed system aims to
create a reliable tool for precision agriculture. The steps are elaborated in the
following:
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1.6

Image Segmentation: The morphological Geodesic Active Contour (GAC)
method is employed to improve the quality of feature extraction by
accurately segmenting leaf images to isolate diseased regions.

Feature Extraction: EfficientNetBO, a convolutional neural network
(CNN), extracts relevant and detailed features from segmented images,
balancing both accuracy and efficiency.

Dimensionality Reduction: Principal Component Analysis (PCA) is
employed to reduce the dimensionality of the extracted features, thereby
improving computational efficiency and reducing the risk of overfitting.
Class Balancing: Synthetic Minority Over-sampling Technique (SMOTE)
has been implemented to generate synthetic samples in order to balance the
dataset, thereby guaranteeing that the classifier performs optimally across
all classes.

Classification and Model Validation: A stacked Ensemble Classifier that
integrates the capabilities of multiple classifiers (Random Forest, KNN,
and SVC) with a meta-classifier (XGBoost) is used with K-fold cross-
validation for robust disease classification and validation of the model.

Organization of the Thesis

Chapter 1: This chapter contains an introduction of the thesis which
includes an overview, problem statement, objectives, assumptions, scope,
concept and problem analysis.

Chapter 2: It covers all the literature surveys done to carry out the research
work.

Chapter 3: Proposed Methodology, detailed description of the
implementation and overview of the proposed method have been
discussed.

Chapter 4: Throughout this chapter, the implementation, results, and
comparison of the outcomes are detailed.

Chapter 5: This chapter describes conclusion and future scope of the
research work.

References: All the references have been listed here.

Appendix: Code snippets have been included here.
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2.0 LITERATURE SURVEY

The application of ML and DL techniques in agricultural disease identification
has seen significant advancements, driven by the increasing availability of large
datasets and powerful computational resources. This chapter provides an
overview of notable research contributions in plant diseases identification.

Plant diseases are an existing problem which have long been affecting the yield
of agricultural production by quality and quantity[1]. Sladojevic et al. [2]
demonstrated the use of CNNs for plant disease recognition. Their model
accurately identified 13 different plant diseases from images of healthy and
diseased leaves. The study highlighted the potential of deep learning to automate
and enhance disease diagnosis in plants.

Mohanty et al. [3] applied DL techniques to identify 26 diseases in 14 different
crop species using a dataset of over 50,000 images. Their approach utilized a pre-
trained AlexNet model, fine-tuned on the plant disease dataset, achieving an
accuracy of over 99% on a held-out test set.

Ferentinos et al.[4] explored the use of transfer learning with deep CNNs for the
detection of plant diseases. By leveraging pre-trained models like VGG(Visual
Geometry Group) and Inception, they have demonstrated improved accuracy and
reduced training time, making it feasible for practical agricultural applications.

Kamilaris and Prenafeta-Boldu [5] provided a comprehensive review of deep
learning techniques for agricultural applications, emphasizing the effectiveness of
ensemble methods. By combining multiple models, ensemble approaches can
enhance robustness and accuracy in disease classification tasks.

Patil and Kumar [6] utilized SVM and decision tree classifiers for the
identification of fungal diseases in soybean crops. Their study highlighted the
effectiveness of traditional ML methods, especially when combined with image
preprocessing techniques, to enhance feature extraction.

Liu et al. [7] applied Recurrent Neural Networks (RNNs) for the prediction of
disease outbreaks in crops based on temporal data from environmental sensors.
This approach enabled early warning systems, providing farmers with timely
interventions to mitigate disease spread.

Anagnostis et al. [8] explored unsupervised learning techniques, such as
autoencoders, for detecting anomalies in plant health. By learning the normal
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patterns of plant features, the model could identify deviations indicative of disease
even without labelled data.

Zhang et al.[9] reviewed the integration of ML and DL in precision agriculture
focusing on disease detection and management. The study emphasized the role of
sensor networks, UAV imagery, and IoT devices in collecting high-resolution data
which, when combined with ML/DL models, significantly enhances disease
monitoring and decision-making processes.

Benos et al.[10] discussed the challenges of deploying ML and DL models in real-
world agricultural settings such as the need for large annotated datasets, model
interpretability and computational resource constraints. The paper also suggested
future research directions including the development of lightweight models
suitable for edge computing devices used in the field.

Siddique et al.[11] proposes a deep-learning approach using CNNs to classify
diseases such as early blight, late blight and bacterial spots. It explores the impact
of different CNN architectures and data augmentation techniques on the
performance on disease recognition.

Barbedo [12] provides insights into the challenges and opportunities of using
deep-learning approaches for crop disease detection and diagnosis. It discusses
the importance of feature selection, dataset quality, and model interpretability in
developing effective disease detection systems.

Huang et al. [13] investigates the use of deep learning algorithms including CNNs
and generative adversarial networks (GANSs), for detecting apple leaf diseases. It
evaluates the performance of different deep learning models in accurately
identifying diseases such as apple scab and apple rust.

Al technologies have shown promising results in identifying plant abnormalities
and infestations. ML, DL, and CV(Computer Vision)-based systems are utilized
for the classification and lesion segmentation of plant diseases from digital images
and could change the method of discovering plant illnesses significantly [14].
However, these technologies need a considerable amount of annotated training
data and may not be suitable for diseases that have not been seen before. Further
research is needed to develop generalizable models that can be applied to different
plant species and diseases and to make more datasets publicly available for
training and evaluating the models.
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Tian et al. [15] combined a GA (Genetic Algorithm) with the SVM classifier and
performed feature selection based on kernel principal component analysis
(KPCA) to identify the best features in the images. The proposed KPCA/GA-
SVM recognition model achieved the following results: 98.14%, 94.05% and
97.96% accuracy for apple mosaic virus, apple rust and apple leaf spot,
respectively.

Gulavnai et al. [16] proposed a ResNet-CNN (ResNetl8, ResNet34 and
ResNet50) combined with TL for automatic detection and identification of four
mango leaf diseases named anthracnose, powdery mildew, red rust and golmich.
Results show that ResNet50 gives better performance with an accuracy of

91.50%.

In recent years, many studies have employed detection networks to classify
pathogens and pests [17]. It is expected that in the future, more advanced detection
models will be utilized for the identification of plant maladies and infestations as
object segmentation networks in computer vision continue to evolve.

Further, Shrivastava and Pradhan [18] gave a rice plant detection and
classification system using a colour feature based on ML models. Out of 172
features, they considered 14 different colour spaces from which they used 4
characteristics for each. The result shows that it will help farmers enhance the
quality & amount of their yield.

In addition to this paper, Kumar et al. [19] suggested a machine learning method
to develop a system that predicts various fungal infections for plant disease
detection. This study shows how sensors can provide insights into numerous
abiotic variables that could support the detection of plant illnesses. Although
several ML with IoT papers have been proposed to detect plant disease, the main
disadvantages of ML with IoT techniques are overfitting problems, fine-tuning
issues and Conventional approaches falling short in assessing the disease’s
severity.

Mishra et al. [20] presented the rider neural network with the sine-cosine
algorithm as a unique illness classifier. In this case, the SCA (Sine Cosine
Algorithm) model modifies the ROA (Remora Optimization Algorithm) algorithm
to regulate the location update. For the experiment, the three Internet of Things
systems are taken with the total number of nodes, such as 50,100,150. The overall
work of the classifier is validated using criteria such as specificity, accuracy and
efficiency of nodes on various Internet of Things systems. As a result, the
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suggested algorithm aids farmers in quickly identifying the infected plants on their
property.

Pham et al. [21] proposed a Feed-Forward Neural Network (FFNN) with Hybrid
Metaheuristic Feature Selection (HMFS) to classify 3 mango diseases named
Anthracnose, Gall Midge, and Powdery Mildew.

While Singh et al. [22] used a multilayer convolutional neural network (MCNN)
model to classify mango leaves infected with the fungal disease named as
anthracnose. They pre-trained their images using histogram of equalization (for
contrast enhancement) and central square crop method (for image resizing). Over
the years, researchers have continued to develop deeper and more powerful CNN
models.

Geetharamani et al. [23] developed a deep CNN model with nine layers to solve
plant leaf disease identification problems using PlantVillage dataset. To achieve
better performance and accuracy (96.46%), they had to improve the model
training images using the following methods: image flipping, gamma correction,
noise injection, color enhancement by principal component analysis (PCA),
rotation and scaling. The authors believe that extending their database with new
images of different plant species and from different sources would increase the
performance and accuracy of their model.

Dai et al. [24] have presented a DL model (PPLCNet) that includes dilated
convolution, a multi-level attention mechanism, and GAP (Global Average
Pooling) layers. The model used novel weather data augmentation to expand the
sample size to enhance the generalization and robustness of feature extraction.
The feature extraction network uses saw-tooth dilated convolution with a
configurable expansion rate to extend the perceptual field of the convolutional
domain, effectively addressing the problems of insufficient data information
extraction. The lightweight CBAM (Convolutional Block Attention Module)
attention mechanism was located in the feature extraction network’s middle layer.
It was used to improve the model’s information representation. By reducing the
number and complexity of parameters computed by the network, the GAP layer
prevents overfitting of the model. Furthermore, the proposed integrated CAM
(Class Activation Map) visualization approach fully validates the efficiency of the
proposed model.

According to the study, P.B.R and A.VV. et al. [25] proposed an effective CNN
model to categorize tomato leaf diseases and detect the name of the disease
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affecting tomato leaves. An approach to a 2-dimensional Convolutional Neural
Network (2DCNN) model with 2-Max Assembling covers and completely related
layers has been proposed.

To extract different features, Anari [26] have used model engineering (ME). To
improve feature discrimination and processing speed, several SVM models were
used. In the training process, the kernel parameters of the radial basis function
(RBF) were computed depending on the selected model. Six leaf image sets
encompassing healthy and sick leaves of apple, corn, cotton, grape, pepper, and
rice were analyzed using PlantVillage and UCI databases. Accordingly, the
categorization procedure yielded almost 90,000 images. The findings of the
experimental implementation phase reveal the potential of a powerful model in
classification activities, which would be useful for a variety of future leaf disease
diagnostic applications in the agricultural business. In terms of stability, the
dilated learning model outperforms the typical ResNet-18 design.

Singh and Mishra [27] have presented an image segmentation algorithm for the
automatic detection and classification of plant leaf diseases. It also includes an
overview of various disease classification techniques that can be used to detect
plant leaf disease. The genetic algorithm was used for image segmentation, which
was vital for disease detection in plant leaf disease.

Saraswathi and FarithaBanu used ensemble classifiers (EC) in [28], which are
developed by using various approaches to preparation, feature extraction, and
classification. The performance of these multiple ensemble techniques was then
compared to select the best ensemble classifiers. The suggested technique’s
precision and reliability were tested in both controlled laboratory settings and real-
world conditions using two databases, namely PlantVillage and Taiwan tomato
leaves.

Garg and Singh [29] have employed an aggregated loss function by combining
triplet and cross-entropy loss with MobileNetV2 as a basis model for the effective
classification of plant disease using small samples. For the evaluation of the
proposed study, two publicly available datasets (PlantVillage with 54,303 leaf
samples and Plantdoc with 2598 leaf samples) were used. To partition the dataset
into the source and target domains, different domain splits were examined, and a
large quantity of testing was conducted on the target dataset using various sample
sizes. For the analysis of the PlantVillage dataset, four domain splits were
considered, and it was found that using the proposed aggregated loss and the
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lightweight transfer learning (TL) model for the target domain data (K-ways, N-
shot), an average improvement in accuracy was 1.49% for split-1, 16.25% for
split-2, 2.9% for split-3, and 2.1% for split-4 when compared to previous work.
For the plantdoc dataset, two domain splits were evaluated, yielding an accuracy
of around 81% with 30 samples and more than 40% with only one sample. Using
several evaluation measures such as loss functions, execution time, model size,
and model parameters, the suggested work was compared to other state-of-the-art
research works.

Kukadiya and Meva [30] have presented a DL-based CNN solution for
automatically classifying and distinguishing cotton leaf diseases. There has been
a lot of study done on leaf diseases that were common in many crops, but this
work offered an effective and reliable method for identifying cotton leaf disease.
The proposed method successfully classified and detected three significant cotton
leaf diseases, which were difficult to control if not detected early. The proposed
model for the identification and classification of cotton leaf diseases has used
CNN.

Attallah [31] has proposed a pipeline for autonomous identification of tomato leaf
diseases using three compact CNNs. The author has used TL to extract deep
features from the CNNs’ final fully connected layer for more condensed and high-
level representation. Next, it merges elements from the three CNNs to take
advantage of each CNN structure. Following that, a hybrid feature selection
approach was used to select and build a comprehensive feature set of lower
dimensions. The tomato leaf disease identification approach has been utilized for
six classifiers. The proposed pipeline’s experimental findings were also compared
with existing research studies for tomato leaf disease classification, confirming its
competitive potential.

Al-gaashani et al. [32] have proposed a tomato leaf disease classification method
using TL and feature concatenation. The authors extract features from
MobileNetV2 and NASNetMobile using pre-trained kernels (weights), then
concatenate and reduce the dimensionality of these features using kernel principal
component analysis. They then feed these features into a conventional learning
algorithm. The experimental results confirmed the efficiency of concatenated
features in improving classifier performance. The authors have tested the three
most common traditional ML classifiers, RF, SVM, and multinomial LR (Logistic
Regression) and found that multinomial LR performed the best.
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After a comprehensive literature review, a multi-stage methodology is proposed
for robust image classification. First, a meticulous pre-processing pipeline ensures
all data is presented consistently. This involves converting images to grayscale,
applying an inverse Gaussian gradient, performing Geodesic Active Contour
(GAC) for potential noise reduction, and finally removing the background. Then,
EfficientNetB0, a pre-trained CNN, extracts informative features from the pre-
processed 1images. To optimize training efficiency, PCA reduces the
dimensionality of the extracted features. And after this stage, to address the class
imbalance, SMOTE has been used which artistically generates synthetic data
points for under-represented classes. A stacked ensemble classifier with K-fold
Cross-Validation integrates the power of Random Forest, K-Nearest Neighbour,
and SVM by feeding their predictions into a final XGBoost model. K-fold cross-
validation ensures the model's robustness and reliability, contributing to precision
agriculture and better crop management.
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3.0 PROPOSED APPROACH

The proposed work starts by dividing the dataset images into distinct segmented
images to better understand and process the data. Then utilizing the state-of-the-
art EfficientNetB0 model(pre-trained), known for its robustness and efficiency,
to extract highly detailed and exceptional features from the dataset. Following
this, PCA (Principal Component Analysis), a powerful statistical method 1is
applied to effectively reduce the dimensionality of the feature set while retaining
critical information. Furthermore, the work aims to delve into the intricate details
of the feature set and identify key patterns and relationships within the data. Also,
one-hot encoding is performed. Then, leveraging the power of a stacked
Ensemble Classifier, images are classified and finally cross-validation is
performed to ensure the model's robustness and reliability, contributing to
precision agriculture and better crop management.

3.1 Data Collection

The data utilised in this study are obtained from various publicly accessible
datasets to guarantee a broad and inclusive compilation of photos including apple
and potato plant diseases. This study exclusively focuses on the apple and potato
leaf images from the PlantVillage dataset [33], which consists of a diverse range
of leaf images exhibiting various plant diseases. Figure 1 shows some sample
images from PlantVillage dataset. The Apple Disease dataset [34] contains
images of apple leaves exhibiting various sorts of diseases, whereas the Potato
Leaf Disease dataset [35] primarily concentrates on varied manifestations of
diseases affecting potato leaves. In addition, this study examines the Potato Leaf
(Healthy and Late Blight) dataset [36], which contains diverse images of potato
plants, and the Apple Leaf diseases dataset [37], which is a comprehensive
collection specifically focused on illnesses affecting apple leaves.

Figure 1: Sample images from PlantVillage dataset
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3.2 Data Pre-processing

To prepare the collected data for analysis, the following pre-processing steps are
performed —

v" Convert all colour images to grayscale to reduce complexity and focus on
intensity patterns.

v This step helps in highlighting disease symptoms which are often
characterized by intensity changes.

3.3 Data Segmentation

The pre-processed images undergo segmentation to isolate diseased regions for
more accurate feature extraction —

v Convert grayscale images to inverse gaussian gradient images to enhance
edges and boundaries of the diseased areas.

v Apply Morphological GAC to the gradient images, which accurately
segments the image by delineating the boundaries of diseased regions,
ensuring precise feature extraction.

v" Finally, the background of the images were removed.

3.4 Methodology

This work utilizes a multi-stage approach to achieve accurate classification of
apples and potatoes. Figure 2 shows the proposed classification model.

First, raw images undergo pre-processing and segmentation using GAC to isolate

potential disease areas. This focuses the analysis on the most relevant parts of
the image.
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Figure 2: Proposed Classification Model

Next, these segmented regions are fed into a pre-trained deep learning model
called EfficientNetB0O. This powerful model acts as a feature extractor,
automatically learning discriminative features from the image data that represent
the presence or absence of disease. Importantly, features are extracted from the
topmost convolutional layer of EfficientNetBO (‘top _conv’), where high-level

disease-relevant information is captured. Figure 3 shows the baseline model of
EfficientNetBO.
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Figure 3: EfficientNetB0 baseline model

However, the extracted features might be high-dimensional. To improve
computational efficiency and potentially prevent overfitting, this work employs
Principal Component Analysis (PCA). PCA reduces the complexity of the data
by identifying the most informative features.
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Another challenge the system addresses is class imbalance, where some diseases
might be less frequent. To ensure all disease categories have a fair chance of
being classified correctly, this work utilizes Synthetic Minority Over-sampling
Technique (SMOTE). SMOTE creates synthetic data points for under-
represented disease classes, resulting in a more balanced training dataset.

Lastly, this work leverages the power of ensemble learning with a stacked
approach. Here, three base models — Random Forest, Support Vector Machine
(SVM), and K-Nearest Neighbor (KNN) — are trained on the data first. The
predictions from these models are then used to train a final estimator, an
XGBoost model. This final model leverages the combined knowledge of the base
models, potentially leading to superior disease identification accuracy and
robustness. The Ensemble classifier used in this work is depicted below in the
Figure

Stacking(ﬁlassiﬁer

rt SVC knn

RandomForestClassifier SVC KNeighborsClassifier

[ |

final_estimator
|

XGBClassifier

Figure 4: Deployed Ensemble Classifier

To assess the generalizability of the model and prevent overfitting, this work
employs K-fold cross-validation with 10 folds which signifies that the entire
dataset is divided into 10 folds. The model is trained and validated 10 times, each
time using a different fold as the validation set and the remaining folds as the
training set. This process ensures that the model's performance is thoroughly
evaluated across different subsets of the data and also ensures the model
performs well on unseen data.
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CHAPTER 4
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4.0 EXPERIMENTATIONS AND RESULTS

In this work, Python (version 3.11.7) is used with the required built-in libraries.

The proposed work begins with preprocessing the datasets by converting images to
grayscale. Figure 5 shows a sample of pre-processed image.

Figure 5: Pre-processed image

This is followed by segmenting the pre-processed images using inverse Gaussian
gradient conversion and Morphological Geodesic-based Active Contour (GAC) to
accurately delineate diseased regions. Figure 6 shows a sample of segmented images.

Figure 6: Segmented image

EfficientBO has been used in this work to extract the features from the dataset of
segmented images. Table 1 shows the parameters of EfficientNetB0 architecture.
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Table 1: Parameters of EfficientNetB0 architecture

Stage i Operator fi Resolution H x W #Channels Ci | #Layers I;
1 Conv3 x 3 224 x 224 32 1
2 MBConvl, k3 x 3 112 x 112 16 1
3 MBConv6, k3 x 3 112 x 112 24 2
4 MBConv6, k5 x 5 56 x 56 40 2
5 MBConv6, k3 x 3 28 x 28 80 3
6 MBConv6, k5 x 5 28 x 28 112 3
7 MBConv6, k5 x 5 14 x 14 192 4
8 MBConv6, k3 x 3 7 %7 320 1
9 Convl 7 %7 1280 1

1&Pooling&FC

All the dataset utilized in this work has been divided into two directories, namely
train and test. The train directory contains 80% of the images from the dataset,
while the test directory has the remaining 20%. For object detection and
classification tasks, many performance metrices have been used. Some of them
are precision, recall, classification accuracy, F1-score, and Cohen-Kappa score.
And all of this can be calculated using the following formulas:

o #TP (i)
Precision(i) = TP £ PP
Recall(i) = —®

#TP(i) + #FN(J)

2 X Precision X Recall

F1 — Score =

Precision + Recall

#TP(i) + TN(i)
#TP(i) + #FP(i) + TN(i) + FN(i)

Classification Accuracy =
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Cohen — Kappa score(k) = P

Where, i is the number of classes, TP represents the number of true positives, FP
denotes the number of false positives, TN represents the number of true negatives,
FN represents the number of false negatives, p, is the overall accuracy of the model
and p, is the measure of the agreement between the model predictions and the

actual class values.

0 Pe
1-pe

The performance of the proposed model on each dataset has been illustrated
using the Cross-validation curve, ROC curve, and Precision-Recall curve.

For each dataset, the result produced by the proposed model are given below:

4.1 PlantVillage dataset
Table 2 provides a description of the dataset.

Table 2: Description of PlantVillage Dataset

Disease Types Assigned Number of | Total Training | Total Testing
Class label Images Images Images
Potato healthy 0 152 121 31
Apple healthy 1 1645 1316 329
Apple Black rot 2 621 497 124
Apple Apple scab 3 630 504 126
Potato Early blight 4 1000 800 200
Apple Cedar apple rust 5 275 220 55
Potato Late blight 6 1000 800 200
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The Original class distribution before applying SMOTE: Counter({1: 1316, 6: 8
00, 4: 800, 3: 504, 2: 497, 5: 220, 0: 121}). Figure 7 displays the class distributio
n before SMOTE.

Class Distribution Before SMOTE

1200 +

1000 +

800

600

Number of samples

200 4

0 1 2 3 4 5 5]
Classes

Figure 7: Class Distribution Before SMOTE (PlantVillage dataset)

Balanced class distribution after applying SMOTE: Counter({6: 1316, 4: 1316, 2
: 1316, 5: 1316, 1: 1316, 3: 1316, 0: 1316}). Figure 8 displays the class distribut
ion after SMOTE.

Class Distribution After SMOTE

1200 +

1000 +

Number of samples

0 1 2 3 4 5 6
Classes

Figure 8: Class Distribution After SMOTE (PlantVillage dataset)
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Table 3 describes the cross-validation report for each fold, where the average metric
s (precision, recall, and F1-score) are calculated using the macro average. This ensur
es that each class contributes equally to the average. Figure 9 shows the cross-valida
tion curve.

Table 3: Cross-validation report for each fold (PlantVillage dataset)

Fold No. Accuracy Score F1-Score Cohen Kappa Score
1 98.8 98.81 98.60
2 98.04 98.01 97.72
3 97.82 97.91 97.46
4 98.15 98.08 97.84
5 98.47 98.35 98.22
6 98.04 98.08 97.71
7 99.23 99.24 99.11
8 97.17 97.25 96.70
9 98.26 98.29 97.97
10 98.37 98.30 98.09
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Figure 9: Cross-validation curve (PlantVillage dataset)

Table 4 describes the classification report generated for PlantVillage dataset.

Table 4: Classification Report (PlantVillage dataset)

Precision Recall F1-Score Support
1.00 1.00 1.00 1316
Potato healthy
0.96 0.96 0.96 1316
Apple healthy

0.99 0.99 0.99 1316

Apple Black rot
0.97 0.97 0.97 1316

Apple Apple scab
0.99 0.99 0.99 1316

Potato Early blight
1.00 1.00 1.00 1316

Apple Cedar apple rust

0.97 0.97 0.97 1316

Potato Late blight
0.98 9212

accuracy
0.98 0.98 0.98 9212
Macro-average

0.98 0.98 0.98 9212

Weighted-Average

Figure 10 illustrates the receiver-operating characteristic curve for each class in the
PlantVillage dataset.
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Figure 11 exhibits the Precision-Recall curve for each class in the PlantVillage

dataset.

True Positive Rate

Figure 11: Precision-Recall curve (PlantVillage dataset)
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Figure 10: ROC curve (PlantVillage dataset)
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Figure 12 depicts the model prediction report with true and predicted classes.
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Figure 12: Model prediction Report (PlantVillage dataset)

4.2 Apple Diseases Dataset
Table 5 provides a description of the dataset.

Table 5: Description of Apple Diseases Dataset

Disease Types Assigned Class Number of | Total Training | Total Testing
label Images Images Images
Apple_Black_rot 0 2484 1987 497
Apple_Apple_scab 1 2520 2016 504
Apple_Cedar_apple_ 2 2200 1760 440
rust
Apple_healthy 3 2510 2008 502

The Original class distribution before applying SMOTE: Counter({1: 2016, 3: 2
008, 0: 1987, 2: 1760}) Figure 13 displays the class distribution before SMOTE.
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Class Distribution Before SMOTE
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Figure 13: Class Distribution Before SMOTE (Apple Diseases dataset)

Balanced class distribution after applying SMOTE: Counter({0: 2016, 3: 2016,
1: 2016, 2: 2016}) . Figure 14 displays the class distribution after SMOTE.
Class Distribution After SMOTE
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Figure 14: Class Distribution After SMOTE (Apple Diseases dataset)

Table 6 describes the cross-validation report for each fold, where the average metric
s (precision, recall, and F1-score) are calculated using the macro average. This ensur
es that each class contributes equally to the average. Figure 15 shows the cross-valid
ation curve.
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Table 6: Cross-validation report for each fold (Apple Diseases dataset)

Fold No. Accuracy Score F1-Score Cohen Kappa Score
1 95.91 95.96 94.54
2 96.28 96.34 95.03
3 94.75 94.83 93.05
4 96.03 95.94 97.84
5 96.65 96.58 94.70
6 95.75 95.79 95.52
7 96.27 96.07 94.97
8 97.02 97.03 96.02
9 96.40 96.41 95.20
10 97.02 97.03 96.02

Accuracy (%)

97.01

96.5

w0
o
o

]
o
n

95.0 1

Cross-Validation Accuracy per Fold

T
6
Fold Number

Figure 15: Cross-validation curve (Apple Diseases dataset)
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Table 7 describes the classification report generated for Apple Diseases dataset.

Table 7: Classification Report (Apple Diseases dataset)

Precision Recall F1-Score Support
0.97 0.97 0.97 2016
Apple Black rot
0.95 0.94 0.94 2016
Apple Apple scab
0.98 0.99 0.98 2016
Apple Cedar apple rust
0.96 0.95 0.95 2016
Apple healthy
0.96 8064
accuracy
0.96 0.96 0.96 8064
Macro-average
0.96 0.96 0.96 8064
Weighted-Average

Figure 16 illustrates the receiver-operating characteristic curve for each class in the
Apple Diseases dataset.
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Figure 16: ROC curve (Apple Diseases dataset)

Figure 17 exhibits the Precision-Recall curve for each class in the Apple Diseases
dataset.
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Figure 17: Precision-Recall curve (Apple Diseases dataset)

Figure 18 depicts the model prediction report with true and predicted classes.
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Figure 18: Model prediction Report (Apple Diseases Dataset)

4.3 Potato Leaf Disease Dataset

Table 8 provides a description of the dataset.
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Table 8: Description of Potato Leaf Disease Dataset

Disease Types | Assigned Class | Number of Images | Total Training | Total Testing
Label Images Images
Potato_healthy 0 500 400 100
Potato_Early Bl 1 500 400 100
ight
Potato_Late Bli 2 500 400 100
ght

The Original class distribution before applying SMOTE: Counter({0: 400, 2: 40

0, 1: 400}). Figure 19 displays the class distribution before SMOTE.

Class Distribution Before SMOTE
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Figure 19: Class Distribution Before SMOTE (Potato Leaf Disease dataset)

Balanced class distribution after applying SMOTE: Counter({0: 400, 2: 400, 1: 4
00}). Figure 20 displays the class distribution after SMOTE.
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Figure 20: Class Distribution After SMOTE (Potato Leaf Disease dataset)

Table 9 describes the cross validation report for each fold, where the average metric
s (precision, recall, and F1-score) are calculated using the macro average. This ensu
res that each class contributes equally to the average. Figure 21 shows the cross-vali
dation curve.

Table 9: Cross-validation report for each fold (Potato Leaf Disease dataset)

Fold No. Accuracy Score F1-Score Cohen Kappa Score
1 97.50 97.51 96.25
2 94.16 93.83 91.23
3 95 94.91 92.49
4 95 94.70 91.42
5 90 94.11 84.94
6 95 94.88 92.45
7 94.16 93.89 91.11
8 96.66 96.75 94.29
9 94.83 95.79 93.74
10 91.66 91.81 87.47
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Figure 21: Cross-validation curve (Potato Leaf Disease dataset)

Table 10 describes the classification report generated for Potato Leaf Disease dataset.

Table 10: Classification Report (Potato Leaf Disease dataset)

Precision Recall F1-Score Support
0.96 0.95 0.96 400
Potato healthy
0.96 0.94 0.95 400
Potato Early blight
0.92 0.94 0.93 400
Potato Late blight
0.94 1200
accuracy
0.95 0.94 0.95 1200
Macro-average
0.95 0.94 0.95 1200
Weighted-Average

Figure 22 illustrates the receiver-operating characteristic curve for each class in the
Potato Leaf Discase dataset.

Page | 33
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Figure 22: ROC curve (Potato Leaf Disease dataset)

Figure 23 exhibits the Precision-Recall curve for each class in the Potato Leaf Disease
dataset.
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Figure 23: Precision-Recall curve (Potato Leaf Disease dataset)

Figure 24 depicts the model prediction report with true and predicted classes.
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Figure 24: Model prediction Report (Potato Leaf Disease dataset)

4.4 Potato (Healthy & Late Blight) Dataset
Table 11 provides a description of the dataset.

Table 11: Description of Potato (Healthy & Late Blight) Dataset

ght

Disease Types | Assigned Class | Number of Images | Total Training | Total Testing
Label Images Images

Potato_healthy 0 363 290 73

Potato_Late Bli 1 67 54 13

The Original class distribution before applying SMOTE: Counter({0: 290, 1: 54
}). Figure 25 displays the class distribution before SMOTE.
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Figure 25: Class Distribution Before SMOTE(Potato (Healthy & Late Blight)
dataset)

Balanced class distribution after applying SMOTE: Counter({1: 290, 0: 290}).
Figure 26 displays the class distribution after SMOTE.
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Figure 26: Class Distribution After SMOTE(Potato (Healthy & Late Blight) dat
aset)

Table 12 describes the cross-validation report for each fold, where the average metri
cs (precision, recall, and F1-score) are calculated using the macro average. This ensu
res that each class contributes equally to the average. Figure 27 shows the cross-vali
dation curve.
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Table 12: Cross-validation report for each fold (Potato (Healthy & Late Blight) data
set)

Fold No. Accuracy Score F1-Score Cohen Kappa Score
1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 96.55 96.55 93.10
7 1.00 1.00 1.00
8 1.00 1.00 1.00
9 1.00 1.00 1.00
10 1.00 1.00 1.00

Cross-Validation Accuracy per Fold
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Figure 27: Cross-validation curve (Potato (Healthy & Late Blight) dataset)

Table 13 describes the classification report generated for Potato (Healthy & Late
Blight) dataset.
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Table 13: Classification Report (Potato (Healthy & Late Blight) dataset)

Precision Recall F1-Score Support
1.00 1.00 1.00 290
Potato _healthy
1.00 1.00 1.00 290
Potato Late blight
1.00 580
accuracy
1.00 1.00 1.00 580
Macro-average
1.00 1.00 1.00 580
Weighted-Average

Figure 28 illustrates the receiver-operating characteristic curve for each class in the

Potato (Healthy & Late Blight) dataset.
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Figure 28: ROC curve (Potato (Healthy & Late Blight) dataset)

Figure 29 exhibits the Precision-Recall curve for each class in the Potato (Healthy &

Late Blight) dataset.
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Figure 29: Precision-Recall curve (Potato (Healthy & Late Blight) dataset)

Figure 30 depicts the model prediction report with true and predicted classes.
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Figure 30: Model prediction Report (Potato (Healthy & Late Blight) dataset)

4.5 Apple Leaf Diseases Dataset
Table 14 provides a description of the dataset.
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Table 14: Description of Apple Leaf Diseases Dataset

Disease Types Assigned Number of Total Total Testing
Class label Images Training Images
Images
Apple Black rot 0 170 136 34
Apple Cedar apple rust 1 160 128 32
Apple_Apple scab 2 150 120 30

The Original class distribution before applying SMOTE: Counter({0: 136, 1: 12
8, 2: 120}). Figure 31 displays the class distribution before SMOTE.

Class Distribution Before SMOTE

140 4

120 4

100 4

80

60

Number of samples

40

20 A

0 A
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
Classes

Figure 31: Class Distribution Before SMOTE (Apple Leaf Diseases dataset)

Balanced class distribution after applying SMOTE: Counter({1: 136, 2: 136, 0: 1
36}). Figure 32 displays the class distribution after SMOTE.
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Class Distribution After SMOTE
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Figure 32: Class Distribution After SMOTE (Apple Leaf Diseases dataset)
Table 15 describes the cross-validation report for each fold, where the average metri
cs are calculated using the macro average. This ensures that each class contributes e
qually to the average. Figure 33 shows the cross-validation curve.

Table 15: Cross-validation report for each fold (Apple Leaf Diseases dataset)

Fold No. Accuracy Score F1-Score Cohen Kappa Score
1 87.80 88.24 81.19
2 97.56 97.84 96.27
3 92.68 92.13 88.56
4 95.12 94.87 92.66
5 97.56 96.96 92.70
6 95.12 95.24 96.19
7 92.68 92.79 92.49
8 95.12 94.81 88.80
9 95 93.73 92.46
10 90 89.98 92.21
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Figure 33: Cross-validation curve (Apple Leaf Diseases dataset)

Table 16 describes the classification report generated for Apple Leaf Diseases dataset.

Table 16: Classification Report (Apple Leaf Diseases dataset)

Precision Recall F1-Score Support
0.90 0.95 0.92 136
Apple Black rot
0.98 0.96 0.97 136
Apple Cedar apple rust

0.93 0.90 0.92 136

Apple Apple scab
0.94 408

accuracy
0.94 0.94 0.94 408
Macro-average

0.94 0.94 0.94 408

Weighted-Average

Figure 34 illustrates the receiver-operating characteristic curve for each class in the
Apple Leaf Diseases dataset.
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Receiver Operating Characteristic (ROC) Curve
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Figure 34: ROC curve (Apple Diseases dataset)

Figure 35 exhibits the Precision-Recall curve for each class in the Apple Leaf
Diseases dataset.
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Figure 35: Precision-Recall curve (Apple Leaf Diseases dataset)

Figure 36 depicts the model prediction report with true and predicted classes.
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Figure 36: Model prediction Report (Apple Leaf Diseases Dataset)

4.6 COMPARATIVE ANALYSIS

This section analyses the performance of the proposed model on five distinct datasets
given in Table 17: the PlantVillage dataset, the Potato Leaf Disease dataset, the Apple
Disease dataset, the Apple Leaf Diseases dataset, and another Potato (Healthy & Late
Blight) dataset.

Table 17: Model performance over all datasets

Dataset Name Mean Accuracy over all folds
PlantVillage 98.24
Apple Disease 96.21
Potato Leaf Disease 94.5
Potato (Healthy & Late Blight) 99.65
Apple Leaf Diseases 93.86

The comparative analysis reveals that the proposed methodology is effective and
reliable across different datasets, achieving good accuracy consistently. The slight
variations in accuracy can be attributed to differences in dataset characteristics, such
as image quality, disease variability, and class distribution.
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5.0 CONCLUSION & FUTURE SCOPE

5.1 Conclusion

This work incorporates a multi-stage methodology for robust image classification,
particularly suited for imbalanced datasets. A meticulous preprocessing pipeline
ensures data consistency through grayscale conversion, inverse Gaussian gradient,
Geodesic Active Contour (GAC), and background removal. EfficientNetBO0, a pre-
trained CNN, extracts informative features from the pre-processed images.
Dimensionality reduction is achieved using PCA to optimize training efficiency.
SMOTE tackles class imbalance by generating synthetic data for under-represented
classes. A stacked ensemble classifier leverages the strengths of Random Forest, K-
Nearest Neighbour, and SVM, with a final XGBoost layer for enhanced classification
accuracy.

The findings presented in Chapter 4 showcases the efficacy and resilience of the
proposed methodology, emphasising its capacity to precisely detect plant diseases
across various segments of the dataset. Macro averaging is employed to ensure that
the performance measurements accurately represent the classifier's capacity to handle
all classes, even ones that may be underrepresented. Therefore, it tackles important
obstacles such as accurate division, complex data representation, uneven distribution
of classes, and the requirement for reliable categorization.

5.2 Future Scope

Building on the success of this research, future work will explore the following
things:

o Extend the methodology to cover additional plant species and diseases.

o Implement real-time disease detection capabilities using mobile and loT
devices.

o Explore the integration of environmental and sensor data to further enhance
disease prediction accuracy.
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APPENDIX

print (X. shape)

(7890, 224, 224, 3)

print (Y. shape)

(7890,)

# Encode labels to one-hot vectors

label encoder = LabelEncoder ()

labels_encoded label encoder.fit transform(Y)
labels one hot = to_categorical (labels_encoded)

print ("X train shape after adding channel dimension:", X train.shape)
print ("X test shape after adding channel dimension:", X test.shape)

X train shape after adding channel dimension: (6312, 224, 224, 1)

X test shape after adding channel dimension: (1578, 224, 224, 1)

# Create a new model using only the feature extraction part

feature_extractor = Model (inputs=efficientnet b0.inputs,
outputs=efficientnet b0.get layer('top_conv') .output)

# Extract features directly from the preprocessed array
features_train = feature_extractor.predict(X_train)
print("Feature_ train vector shape:", features_train.shape)

print("Feature_ test vector shape:", features_ test.shape)

Feature_ train vector shape: (6312, 7, 7, 1280)

Feature_test vector shape: (1578, 7, 7, 1280)

print ("Reshaped training features:", features_train reshaped.shape)

print ("Reshaped test features:", features_ test reshaped.shape)

Reshaped training features: (6312, 62720)

Reshaped test features: (1578, 62720)

Page | 51



# Explained Variance:

print ("Explained variance ratio:", pca.explained variance_ratio )

print ("Total variance explained:", np.sum(pca.explained variance ratio ))

Explained variance ratio: [8.63142908e-01 2.89842561le-02 2.33939085e-02
1.46710556e-02

1.29938591e-02 8.54799431e-03 4.98395134e-03 3.60348891e-03
3.23499111e-03 2.42885528e-03 2.30272068e-03 1.83549360e-03
1.68774545e-03 1.57788233e-03 1.45881460e-03 1.31289009e-03
1.17722619e-03 1.15121331e-03 9.71494999%9e-04 9.48079920e-04
8.51398217e-04 8.17020948e-04 8.04377429%9e-04 7.07916683e-04
6.65630156e-04 6.49353431e-04 5.98697923e-04 5.92905970e-04
5.40933630e-04 5.26225718e-04 4.87493438e-04 4.60755604e-04
4.32121829%9e-04 4.07343119e-04 3.91527690e-04 3.88322427e-04
3.76310752e-04 3.42323765e-04 3.23737506e-04 3.03140900e-04
2.94729194e-04 2.86067370e-04 2.67501106e-04 2.51608522e-04
2.4892613%e-04 2.34409294e-04 2.27756580e-04 2.19805384e-04
2.13151667e-04 2.04440061e-04 2.00880007e-04 1.91724670e-04
1.81768410e-04 1.75961773e-04 1.65579622e-04 1.55175279%e-04
1.51285189e-04 1.47030994e-04 1.38691335e-04 1.35447335e-04
1.26221144e-04 1.26068786e-04 1.18436961e-04 1.15118572e-04
1.11446090e-04 1.08794477e-04 1.02900216e-04 9.75499279e-05
9.49977257e-05 9.36616852e-05 9.06513524e-05 8.83751854e-05
8.56866827e-05 8.34864331e-05 7.97027315e-05 7.72369240e-05
7.62303971e-05 7.32467088e-05 7.09321175e-05 6.91067762e-05
6.71951930e-05 6.43380263e-05 6.20231876e-05 6.16146281e-05
5.81223649e-05 5.55184706e-05 5.48545868e-05 5.35243162e-05
5.07982732e-05 5.03687588e-05 4.81365569e-05 4.77141439e-05
4.70259911e-05 4.59364092e-05 4.39888026e-05 4.30519540e-05
4.11141409e-05 3.95436800e-05 3.94207636e-05 3.87456603e-05]

Total variance explained: 0.9980712

print ("Reduced shape of training features:", features_ train reduced.shape)

print ("Reduced shape of test features:", features test reduced.shape)

Reduced shape of training features: (6312, 100)

Reduced shape of test features: (1578, 100)
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# Check the distribution of the classes

print (£"Original class distribution: {counter}")

Original class distribution: Counter({31: 182, 30: 178, 18: 178, 35: 176, 27:
175, 26: 174, 12: 173, 10: 173, 14: 172, 33: 172, 37: 171, 34: 169, 4: 169, 11:
168, 20: 168, 29: 168, 6: 168, 23: 167, 17: 167, 1: 167, 9: 167, 15: 166, 5:
165, 22: 164, 19: 164, 8: 164, 16: 164, 21: 163, 13: 163, 36: 162, 25: 161, O:
160, 3: 160, 38: 159, 28: 158, 7: 158, 32: 156, 24: 121, 2: 2})

# Check the distribution of the classes after SMOTE

print (f"Balanced class distribution: {counter balanced}")

Balanced class distribution: Counter({38: 182, 23: 182, 0: 182, 22: 182, 17:
182, 1: 182, 11: 182, 35: 182, 27: 182, 3: 182, 14: 182, 20: 182, 36: 182, 29:
182, 6: 182, 30: 182, 19: 182, 8: 182, 12: 182, 31: 182, 5: 182, 28: 182, 25:
182, 15: 182, 26: 182, 9: 182, 37: 182, 21: 182, 13: 182, 7: 182, 32: 182, 34:

182, 16: 182, 33: 182, 10: 182, 18: 182, 4: 182, 24: 182, 2: 182})

# Define base classifiers

classifierl = RandomForestClassifier(n_estimators=100, random state=42)
classifier2 = KNeighborsClassifier()
classifier3 = SVC(probability=True, random state=42)

# Define the stacking classifier
stacking classifier = StackingClassifier(
estimators=][
('rf', classifierl),
('knn', classifier2),
('sve', classifier3)
1,

final estimator=XGBClassifier (objective='binary:logistic',
n_estimators=100
learning rate=0.1)
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