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EXECUTIVE SUMMARY 

Agriculture is extremely important to any country's economy. Every country's 

population is fully dependent on food, which is primarily produced through 

agriculture. However, plant diseases mostly affect agriculture, reducing yield and 

causing financial hardship for farmers. The time they spent producing those crops 

has also been wasted as a result of the sickness that has infected them. Because 

of the lack of sufficient infrastructure and procedures for detecting the sickness 

in a timely manner, curing the condition becomes difficult. However, expert 

farmers manually identify the diseases, which is a time-consuming operation. 

This study describes a deep learning approach for accurately identifying illnesses 

in apple tree and potato plants. To accomplish robust categorization, the system 

takes a multistage technique.  

 

This work provides a new pipeline for detecting apple and potato diseases that 

combines GAC segmentation, EfficientNetB0 for feature extraction, PCA for 

dimensionality reduction, SMOTE for class imbalance, and a stacked ensemble 

classifier. The system uses pre-trained deep learning models, such as 

EfficientNetB0, to extract features, resulting in efficient and effective disease 

pattern learning. PCA improves computational efficiency while potentially 

reducing overfitting, resulting in a more robust model. SMOTE addresses class 

imbalance, guaranteeing that all disease classes have an equal chance of being 

accurately categorised. The stacked ensemble classifier combines the strengths of 

numerous models, perhaps leading to higher illness diagnosis accuracy. And last 

but not the least K-fold cross-validation to ensure model reliability and 

generalization. The aim is to enhance the accuracy, efficiency, and reliability of 

plant disease identification. 

 

There is the possibility that this system could be utilised in applications related to 

precision agriculture. The ability to detect diseases at an early stage not only gives 

farmers the ability to take prompt action, but it also helps reduce crop losses, 

which ultimately leads to an increase in overall production. 
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1.0 INTRODUCTION 

1.1  Overview 

Plant diseases significantly threaten global agriculture, impacting crop yield and 

quality. Traditional methods for disease detection are reliant on expert knowledge 

and manual inspection. Thus, the process is time-consuming and prone to error. 

This research work presents a system for identifying diseases in apple tree and 

potato plants using deep learning (DL) technique. 

Agriculture has faced significant challenges in recent years due to increasing 

prevalence of plant diseases, which threaten food security, economic stability, and 

environmental sustainability. As the global demand for agricultural products 

continues to rise, there is an urgent need for efficient, accurate, and scalable 

solutions to identify and manage plant diseases. 

Advancements in Machine Learning (ML) and Deep Learning (DL) have 

revolutionised numerous fields such as pattern recognition, image analysis, and 

predictive modelling. These technologies promise to transform agricultural 

practices by providing automated, precise and rapid disease detection systems. 

ML and DL models can analyse vast amount of data such as images of plant 

leaves, stems, and fruits, to identify symptoms of various diseases at an early 

stage. Thus enables timely intervention and reduction of crop losses. 

1.2  Problem Statement 

To design an efficient system for identifying diseases in plants using deep 

learning technique. 

1.3  Objectives 

The objectives of this research work are as follows: 

• To study already published research work on identifying plant diseases 

using various AI techniques. 

• Implementing already published research works to gain insight of the 

domain. 

• To gain proficiency in Python and become acquainted with many libraries 

(e.g NumPy, SciPy, matplotlib, scikit-learn) that will be utilised to create 

the suggested system. 
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• To design & develop an efficient system for identification of plant diseases 

using deep learning technique. 

1.4  Assumptions and Scope 

1.4.1 Assumptions 

• Quality of Input Images: The input leaf images are of sufficient quality and 

resolution to allow accurate segmentation and feature extraction. 

• Consistency in Data: The training and test datasets are representative of 

real-world conditions and cover a variety of disease manifestations. 

• Availability of Labels: Ground truth labels for the diseases are accurate and 

available for supervised learning. 

• Computational Resources: Adequate training resources should be available 

to train deep learning models and for processing large datasets. 

 

1.4.2 Scope 

• To perform accurate delineation of diseased regions in leaf images 

• To extract high-quality feature vectors from segmented images 

• To perform dimensionality reduction for enhancing computational 

efficiency 

• To handle class imbalance by generating synthetic minority class samples 

• To achieve robust classification, perform Ensemble classification by 

combining Random Forest (RF), K-Nearest Neighbour (KNN) and Support 

Vector Classifier (SVC) with XGBoost 

• To perform cross-validation which validates the model's performance 

across multiple folds of the dataset, ensuring generalizability of the model 

 

1.5 Concept and Problem Analysis 
Plant diseases have a significant impact on agricultural production and food 

security by destroying crops and reducing yields. Accurate and early detection of 

plant diseases is critical for effective management and mitigation, relying on 

advanced strategies such as deep learning for precise diagnosis. 

 

The proposed system integrates several state-of-the-art techniques to enhance the 

accuracy and efficiency of identification. Different steps involved in the system 

are image segmentation, feature extraction, dimensionality reduction, class 

balancing, classification, and model validation. The proposed system aims to 

create a reliable tool for precision agriculture. The steps are elaborated in the 

following: 
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• Image Segmentation: The morphological Geodesic Active Contour (GAC) 

method is employed to improve the quality of feature extraction by 

accurately segmenting leaf images to isolate diseased regions. 

• Feature Extraction: EfficientNetB0, a convolutional neural network 

(CNN), extracts relevant and detailed features from segmented images, 

balancing both accuracy and efficiency. 

• Dimensionality Reduction: Principal Component Analysis (PCA) is 

employed to reduce the dimensionality of the extracted features, thereby 

improving computational efficiency and reducing the risk of overfitting. 

• Class Balancing: Synthetic Minority Over-sampling Technique (SMOTE) 

has been implemented to generate synthetic samples in order to balance the 

dataset, thereby guaranteeing that the classifier performs optimally across 

all classes. 

• Classification and Model Validation:  A stacked Ensemble Classifier that 

integrates the capabilities of multiple classifiers (Random Forest, KNN, 

and SVC) with a meta-classifier (XGBoost) is used with K-fold cross-

validation for robust disease classification and validation of the model. 

 

1.6 Organization of the Thesis 

• Chapter 1: This chapter contains an introduction of the thesis which 

includes an overview, problem statement, objectives, assumptions, scope, 

concept and problem analysis. 

• Chapter 2: It covers all the literature surveys done to carry out the research 

work. 

• Chapter 3: Proposed Methodology, detailed description of the 

implementation and overview of the proposed method have been 

discussed. 

• Chapter 4: Throughout this chapter, the implementation, results, and 

comparison of the outcomes are detailed. 

• Chapter 5: This chapter describes conclusion and future scope of the 

research work. 

• References: All the references have been listed here. 

• Appendix: Code snippets have been included here. 
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2.0 LITERATURE SURVEY 

The application of ML and DL techniques in agricultural disease identification 

has seen significant advancements, driven by the increasing availability of large 

datasets and powerful computational resources. This chapter provides an 

overview of notable research contributions in plant diseases identification. 

Plant diseases are an existing problem which have long been affecting the yield 

of agricultural production by quality and quantity[1]. Sladojevic et al. [2] 

demonstrated the use of CNNs for plant disease recognition. Their model 

accurately identified 13 different plant diseases from images of healthy and 

diseased leaves. The study highlighted the potential of deep learning to automate 

and enhance disease diagnosis in plants.  

Mohanty et al. [3] applied DL techniques to identify 26 diseases in 14 different 

crop species using a dataset of over 50,000 images. Their approach utilized a pre-

trained AlexNet model, fine-tuned on the plant disease dataset, achieving an 

accuracy of over 99% on a held-out test set.  

Ferentinos et al.[4] explored the use of transfer learning with deep CNNs for the 

detection of plant diseases. By leveraging pre-trained models like VGG(Visual 

Geometry Group) and Inception, they have demonstrated improved accuracy and 

reduced training time, making it feasible for practical agricultural applications.  

Kamilaris and Prenafeta-Boldú [5] provided a comprehensive review of deep 

learning techniques for agricultural applications, emphasizing the effectiveness of 

ensemble methods. By combining multiple models, ensemble approaches can 

enhance robustness and accuracy in disease classification tasks.  

Patil and Kumar [6] utilized SVM and decision tree classifiers for the 

identification of fungal diseases in soybean crops. Their study highlighted the 

effectiveness of traditional ML methods, especially when combined with image 

preprocessing techniques, to enhance feature extraction. 

Liu et al. [7] applied Recurrent Neural Networks (RNNs) for the prediction of 

disease outbreaks in crops based on temporal data from environmental sensors. 

This approach enabled early warning systems, providing farmers with timely 

interventions to mitigate disease spread.  

Anagnostis et al. [8] explored unsupervised learning techniques, such as 

autoencoders, for detecting anomalies in plant health. By learning the normal 
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patterns of plant features, the model could identify deviations indicative of disease 

even without labelled data. 

Zhang et al.[9] reviewed the integration of ML and DL in precision agriculture 

focusing on disease detection and management. The study emphasized the role of 

sensor networks, UAV imagery, and IoT devices in collecting high-resolution data 

which, when combined with ML/DL models, significantly enhances disease 

monitoring and decision-making processes. 

Benos et al.[10] discussed the challenges of deploying ML and DL models in real-

world agricultural settings such as the need for large annotated datasets, model 

interpretability and computational resource constraints. The paper also suggested 

future research directions including the development of lightweight models 

suitable for edge computing devices used in the field.  

Siddique et al.[11]  proposes a deep-learning approach using CNNs to classify 

diseases such as early blight, late blight and bacterial spots. It explores the impact 

of different CNN architectures and data augmentation techniques on the 

performance on disease recognition.  

Barbedo [12] provides insights into the challenges and opportunities of using 

deep-learning approaches for crop disease detection and diagnosis. It discusses 

the importance of feature selection, dataset quality, and model interpretability in 

developing effective disease detection systems.  

Huang et al. [13] investigates the use of deep learning algorithms including CNNs 

and generative adversarial networks (GANs), for detecting apple leaf diseases. It 

evaluates the performance of different deep learning models in accurately 

identifying diseases such as apple scab and apple rust.  

AI technologies have shown promising results in identifying plant abnormalities 

and infestations. ML, DL, and CV(Computer Vision)-based systems are utilized 

for the classification and lesion segmentation of plant diseases from digital images 

and could change the method of discovering plant illnesses significantly [14]. 

However, these technologies need a considerable amount of annotated training 

data and may not be suitable for diseases that have not been seen before. Further 

research is needed to develop generalizable models that can be applied to different 

plant species and diseases and to make more datasets publicly available for 

training and evaluating the models.   
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Tian et al. [15] combined a GA (Genetic Algorithm) with the SVM classifier and 

performed feature selection based on kernel principal component analysis 

(KPCA) to identify the best features in the images. The proposed KPCA/GA-

SVM recognition model achieved the following results: 98.14%, 94.05% and 

97.96% accuracy for apple mosaic virus, apple rust and apple leaf spot, 

respectively.  

Gulavnai et al. [16] proposed a ResNet-CNN (ResNet18, ResNet34 and 

ResNet50) combined with TL for automatic detection and identification of four 

mango leaf diseases named anthracnose, powdery mildew, red rust and golmich. 

Results show that ResNet50 gives better performance with an accuracy of 

91.50%.  

In recent years, many studies have employed detection networks to classify 

pathogens and pests [17]. It is expected that in the future, more advanced detection 

models will be utilized for the identification of plant maladies and infestations as 

object segmentation networks in computer vision continue to evolve.  

Further, Shrivastava and Pradhan [18] gave a rice plant detection and 

classification system using a colour feature based on ML models. Out of 172 

features, they considered 14 different colour spaces from which they used 4 

characteristics for each. The result shows that it will help farmers enhance the 

quality & amount of their yield.  

In addition to this paper, Kumar et al. [19] suggested a machine learning method 

to develop a system that predicts various fungal infections for plant disease 

detection. This study shows how sensors can provide insights into numerous 

abiotic variables that could support the detection of plant illnesses. Although 

several ML with IoT papers have been proposed to detect plant disease, the main 

disadvantages of ML with IoT techniques are overfitting problems, fine-tuning 

issues and Conventional approaches falling short in assessing the disease’s 

severity.   

Mishra et al. [20] presented the rider neural network with the sine-cosine 

algorithm as a unique illness classifier. In this case, the SCA (Sine Cosine 

Algorithm) model modifies the ROA (Remora Optimization Algorithm) algorithm 

to regulate the location update. For the experiment, the three Internet of Things 

systems are taken with the total number of nodes, such as 50,100,150. The overall 

work of the classifier is validated using criteria such as specificity, accuracy and 

efficiency of nodes on various Internet of Things systems. As a result, the 
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suggested algorithm aids farmers in quickly identifying the infected plants on their 

property.  

Pham et al. [21] proposed a Feed-Forward Neural Network (FFNN) with Hybrid 

Metaheuristic Feature Selection (HMFS) to classify 3 mango diseases named 

Anthracnose, Gall Midge, and Powdery Mildew.   

While Singh et al. [22] used a multilayer convolutional neural network (MCNN) 

model to classify mango leaves infected with the fungal disease named as 

anthracnose. They pre-trained their images using histogram of equalization (for 

contrast enhancement) and central square crop method (for image resizing).  Over 

the years, researchers have continued to develop deeper and more powerful CNN 

models.  

Geetharamani et al. [23] developed a deep CNN model with nine layers to solve 

plant leaf disease identification problems using PlantVillage dataset. To achieve 

better performance and accuracy (96.46%), they had to improve the model 

training images using the following methods: image flipping, gamma correction, 

noise injection, color enhancement by principal component analysis (PCA), 

rotation and scaling. The authors believe that extending their database with new 

images of different plant species and from different sources would increase the 

performance and accuracy of their model.  

Dai et al. [24] have presented a DL model (PPLCNet) that includes dilated 

convolution, a multi-level attention mechanism, and GAP (Global Average 

Pooling) layers. The model used novel weather data augmentation to expand the 

sample size to enhance the generalization and robustness of feature extraction. 

The feature extraction network uses saw-tooth dilated convolution with a 

configurable expansion rate to extend the perceptual field of the convolutional 

domain, effectively addressing the problems of insufficient data information 

extraction. The lightweight CBAM (Convolutional Block Attention Module) 

attention mechanism was located in the feature extraction network’s middle layer. 

It was used to improve the model’s information representation. By reducing the 

number and complexity of parameters computed by the network, the GAP layer 

prevents overfitting of the model. Furthermore, the proposed integrated CAM 

(Class Activation Map) visualization approach fully validates the efficiency of the 

proposed model.  

According to the study, P.B.R and A.VV. et al. [25] proposed an effective CNN 

model to categorize tomato leaf diseases and detect the name of the disease 
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affecting tomato leaves. An approach to a 2-dimensional Convolutional Neural 

Network (2DCNN) model with 2-Max Assembling covers and completely related 

layers has been proposed. 

To extract different features, Anari [26] have used model engineering (ME). To 

improve feature discrimination and processing speed, several SVM models were 

used. In the training process, the kernel parameters of the radial basis function 

(RBF) were computed depending on the selected model. Six leaf image sets 

encompassing healthy and sick leaves of apple, corn, cotton, grape, pepper, and 

rice were analyzed using PlantVillage and UCI databases. Accordingly, the 

categorization procedure yielded almost 90,000 images. The findings of the 

experimental implementation phase reveal the potential of a powerful model in 

classification activities, which would be useful for a variety of future leaf disease 

diagnostic applications in the agricultural business. In terms of stability, the 

dilated learning model outperforms the typical ResNet-18 design. 

Singh and Mishra [27] have presented an image segmentation algorithm for the 

automatic detection and classification of plant leaf diseases. It also includes an 

overview of various disease classification techniques that can be used to detect 

plant leaf disease. The genetic algorithm was used for image segmentation, which 

was vital for disease detection in plant leaf disease.  

Saraswathi and FarithaBanu used ensemble classifiers (EC) in [28], which are 

developed by using various approaches to preparation, feature extraction, and 

classification. The performance of these multiple ensemble techniques was then 

compared to select the best ensemble classifiers. The suggested technique’s 

precision and reliability were tested in both controlled laboratory settings and real-

world conditions using two databases, namely PlantVillage and Taiwan tomato 

leaves.  

Garg and Singh [29] have employed an aggregated loss function by combining 

triplet and cross-entropy loss with MobileNetV2 as a basis model for the effective 

classification of plant disease using small samples. For the evaluation of the 

proposed study, two publicly available datasets (PlantVillage with 54,303 leaf 

samples and Plantdoc with 2598 leaf samples) were used. To partition the dataset 

into the source and target domains, different domain splits were examined, and a 

large quantity of testing was conducted on the target dataset using various sample 

sizes. For the analysis of the PlantVillage dataset, four domain splits were 

considered, and it was found that using the proposed aggregated loss and the 
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lightweight transfer learning (TL) model for the target domain data (K-ways, N-

shot), an average improvement in accuracy was 1.49% for split-1, 16.25% for 

split-2, 2.9% for split-3, and 2.1% for split-4 when compared to previous work. 

For the plantdoc dataset, two domain splits were evaluated, yielding an accuracy 

of around 81% with 30 samples and more than 40% with only one sample. Using 

several evaluation measures such as loss functions, execution time, model size, 

and model parameters, the suggested work was compared to other state-of-the-art 

research works. 

Kukadiya and Meva [30] have presented a DL-based CNN solution for 

automatically classifying and distinguishing cotton leaf diseases. There has been 

a lot of study done on leaf diseases that were common in many crops, but this 

work offered an effective and reliable method for identifying cotton leaf disease. 

The proposed method successfully classified and detected three significant cotton 

leaf diseases, which were difficult to control if not detected early. The proposed 

model for the identification and classification of cotton leaf diseases has used 

CNN.  

Attallah [31] has proposed a pipeline for autonomous identification of tomato leaf 

diseases using three compact CNNs. The author has used TL to extract deep 

features from the CNNs’ final fully connected layer for more condensed and high-

level representation. Next, it merges elements from the three CNNs to take 

advantage of each CNN structure. Following that, a hybrid feature selection 

approach was used to select and build a comprehensive feature set of lower 

dimensions. The tomato leaf disease identification approach has been utilized for 

six classifiers. The proposed pipeline’s experimental findings were also compared 

with existing research studies for tomato leaf disease classification, confirming its 

competitive potential.  

Al-gaashani et al. [32] have proposed a tomato leaf disease classification method 

using TL and feature concatenation. The authors extract features from 

MobileNetV2 and NASNetMobile using pre-trained kernels (weights), then 

concatenate and reduce the dimensionality of these features using kernel principal 

component analysis. They then feed these features into a conventional learning 

algorithm. The experimental results confirmed the efficiency of concatenated 

features in improving classifier performance. The authors have tested the three 

most common traditional ML classifiers, RF, SVM, and multinomial LR (Logistic 

Regression) and found that multinomial LR performed the best. 
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After a comprehensive literature review, a multi-stage methodology is proposed 

for robust image classification. First, a meticulous pre-processing pipeline ensures 

all data is presented consistently. This involves converting images to grayscale, 

applying an inverse Gaussian gradient, performing Geodesic Active Contour 

(GAC) for potential noise reduction, and finally removing the background. Then, 

EfficientNetB0, a pre-trained CNN, extracts informative features from the pre-

processed images. To optimize training efficiency, PCA reduces the 

dimensionality of the extracted features. And after this stage, to address the class 

imbalance, SMOTE has been used which artistically generates synthetic data 

points for under-represented classes. A stacked ensemble classifier with K-fold 

Cross-Validation integrates the power of Random Forest, K-Nearest Neighbour, 

and SVM by feeding their predictions into a final XGBoost model. K-fold cross-

validation ensures the model's robustness and reliability, contributing to precision 

agriculture and better crop management.  
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3.0 PROPOSED APPROACH 

The proposed work starts by dividing the dataset images into distinct segmented 

images to better understand and process the data. Then utilizing the state-of-the-

art EfficientNetB0 model(pre-trained), known for its robustness and efficiency, 

to extract highly detailed and exceptional features from the dataset. Following 

this, PCA (Principal Component Analysis), a powerful statistical method is 

applied to effectively reduce the dimensionality of the feature set while retaining 

critical information. Furthermore, the work aims to delve into the intricate details 

of the feature set and identify key patterns and relationships within the data. Also, 

one-hot encoding is performed. Then, leveraging the power of a stacked 

Ensemble Classifier, images are classified and finally cross-validation is 

performed to ensure the model's robustness and reliability, contributing to 

precision agriculture and better crop management. 

3.1  Data Collection 

The data utilised in this study are obtained from various publicly accessible 

datasets to guarantee a broad and inclusive compilation of photos including apple 

and potato plant diseases. This study exclusively focuses on the apple and potato 

leaf images from the PlantVillage dataset [33], which consists of a diverse range 

of leaf images exhibiting various plant diseases. Figure 1 shows some sample 

images from PlantVillage dataset. The Apple Disease dataset [34] contains 

images of apple leaves exhibiting various sorts of diseases, whereas the Potato 

Leaf Disease dataset [35] primarily concentrates on varied manifestations of 

diseases affecting potato leaves. In addition, this study examines the Potato Leaf 

(Healthy and Late Blight) dataset [36], which contains diverse images of potato 

plants, and the Apple Leaf diseases dataset [37], which is a comprehensive 

collection specifically focused on illnesses affecting apple leaves.  

 

 
 

      Figure 1: Sample images from PlantVillage dataset 
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3.2 Data Pre-processing 

To prepare the collected data for analysis, the following pre-processing steps are 

performed – 

✓ Convert all colour images to grayscale to reduce complexity and focus on 

intensity patterns. 

✓ This step helps in highlighting disease symptoms which are often 

characterized by intensity changes. 

3.3 Data Segmentation 

The pre-processed images undergo segmentation to isolate diseased regions for 

more accurate feature extraction – 

✓ Convert grayscale images to inverse gaussian gradient images to enhance 

edges and boundaries of the diseased areas. 

✓ Apply Morphological GAC to the gradient images, which accurately 

segments the image by delineating the boundaries of diseased regions, 

ensuring precise feature extraction. 

✓ Finally, the background of the images were removed. 

3.4 Methodology 

This work utilizes a multi-stage approach to achieve accurate classification of 

apples and potatoes. Figure 2 shows the proposed classification model. 

First, raw images undergo pre-processing and segmentation using GAC to isolate 

potential disease areas. This focuses the analysis on the most relevant parts of 

the image. 



 
Page | 16  

 

    

 

     Figure 2: Proposed Classification Model 

Next, these segmented regions are fed into a pre-trained deep learning model 

called EfficientNetB0. This powerful model acts as a feature extractor, 

automatically learning discriminative features from the image data that represent 

the presence or absence of disease. Importantly, features are extracted from the 

topmost convolutional layer of EfficientNetB0 (‘top_conv’), where high-level 

disease-relevant information is captured. Figure 3 shows the baseline model of 

EfficientNetB0. 

 

    Figure 3: EfficientNetB0 baseline model 

However, the extracted features might be high-dimensional. To improve 

computational efficiency and potentially prevent overfitting, this work employs 

Principal Component Analysis (PCA). PCA reduces the complexity of the data 

by identifying the most informative features. 
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Another challenge the system addresses is class imbalance, where some diseases 

might be less frequent. To ensure all disease categories have a fair chance of 

being classified correctly, this work utilizes Synthetic Minority Over-sampling 

Technique (SMOTE). SMOTE creates synthetic data points for under-

represented disease classes, resulting in a more balanced training dataset. 

Lastly, this work leverages the power of ensemble learning with a stacked 

approach. Here, three base models – Random Forest, Support Vector Machine 

(SVM), and K-Nearest Neighbor (KNN) – are trained on the data first. The 

predictions from these models are then used to train a final estimator, an 

XGBoost model. This final model leverages the combined knowledge of the base 

models, potentially leading to superior disease identification accuracy and 

robustness. The Ensemble classifier used in this work is depicted below in the 

Figure 

 

    Figure 4: Deployed Ensemble Classifier 

To assess the generalizability of the model and prevent overfitting, this work 

employs K-fold cross-validation with 10 folds which signifies that the entire 

dataset is divided into 10 folds. The model is trained and validated 10 times, each 

time using a different fold as the validation set and the remaining folds as the 

training set. This process ensures that the model's performance is thoroughly 

evaluated across different subsets of the data and also ensures the model 

performs well on unseen data. 
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4.0 EXPERIMENTATIONS AND RESULTS 

In this work, Python (version 3.11.7) is used with the required built-in libraries.  

The proposed work begins with preprocessing the datasets by converting images to 

grayscale. Figure 5 shows a sample of pre-processed image.  

     

Figure 5: Pre-processed image 

This is followed by segmenting the pre-processed images using inverse Gaussian 

gradient conversion and Morphological Geodesic-based Active Contour (GAC) to 

accurately delineate diseased regions. Figure 6 shows a sample of segmented images. 

         

                Figure 6: Segmented image 

EfficientB0 has been used in this work to extract the features from the dataset of 

segmented images. Table 1 shows the parameters of EfficientNetB0 architecture.  
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Table 1: Parameters of EfficientNetB0 architecture 

Stage i Operator fi Resolution Ĥ ×  Ŵ #Channels Ĉ i #Layers l̂i 

1 Conv3 × 3 224 × 224 32 1 

2 MBConv1, k3 × 3 112 × 112 16 1 

3 MBConv6, k3 × 3 112 × 112 24 2 

4 MBConv6, k5 × 5 56 × 56 40 2 

5 MBConv6, k3 × 3 28 × 28 80 3 

6 MBConv6, k5 × 5 28 × 28 112 3 

7 MBConv6, k5 × 5 14 × 14 192 4 

8 MBConv6, k3 × 3 7 × 7 320 1 

9 Conv1 × 

1&Pooling&FC 

7 × 7 1280 1 

 

All the dataset utilized in this work has been divided into two directories, namely 

train and test. The train directory contains 80% of the images from the dataset, 

while the test directory has the remaining 20%. For object detection and 

classification tasks, many performance metrices have been used. Some of them 

are precision, recall, classification accuracy, F1-score, and Cohen-Kappa score. 

And all of this can be calculated using the following formulas: 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑖)  =  
#𝑇𝑃(𝑖)

#𝑇𝑃(𝑖) + #𝐹𝑃(𝑖)
     

    𝑅𝑒𝑐𝑎𝑙𝑙(𝑖)  =  
#𝑇𝑃(𝑖)

#𝑇𝑃(𝑖) + #𝐹𝑁(𝑖)
     

    𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2  ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
#𝑇𝑃(𝑖) + 𝑇𝑁(𝑖)

#𝑇𝑃(𝑖) + #𝐹𝑃(𝑖) + 𝑇𝑁(𝑖) + 𝐹𝑁(𝑖)
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                    𝐶𝑜ℎ𝑒𝑛 − 𝐾𝑎𝑝𝑝𝑎 𝑠𝑐𝑜𝑟𝑒(𝑘) =
𝑝0−𝑝𝑒

1−𝑝𝑒
 

Where, 𝑖 is the number of classes, TP represents the number of true positives, FP 

denotes the number of false positives, TN represents the number of true negatives, 

FN represents the number of false negatives, 𝑝0 is the overall accuracy of the model 

and 𝑝𝑒 is the measure of the agreement between the model predictions and the 

actual class values.  

The performance of the proposed model on each dataset has been illustrated 

using the Cross-validation curve, ROC curve, and Precision-Recall curve. 

For each dataset, the result produced by the proposed model are given below:  

4.1 PlantVillage dataset 
Table 2 provides a description of the dataset. 

Table 2: Description of PlantVillage Dataset 

     Disease Types Assigned 

Class label 
Number of 

Images 
Total Training 

Images 
Total Testing 

Images 

Potato_healthy  0 152 121 31 

Apple_healthy 1 1645 1316 329 

Apple_Black_rot  2 621 497 124 

Apple_Apple_scab 3 630 504 126 

Potato_Early_blight 4 1000 800 200 

Apple_Cedar_apple_rust 5 275 220 55 

Potato_Late_blight 6 1000 800 200 
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The Original class distribution before applying SMOTE: Counter({1: 1316, 6: 8

00, 4: 800, 3: 504, 2: 497, 5: 220, 0: 121}). Figure 7 displays the class distributio

n before SMOTE. 

                         

     Figure 7: Class Distribution Before SMOTE (PlantVillage dataset) 

Balanced class distribution after applying SMOTE: Counter({6: 1316, 4: 1316, 2

: 1316, 5: 1316, 1: 1316, 3: 1316, 0: 1316}). Figure 8 displays the class distribut

ion after SMOTE. 

            
 Figure 8:  Class Distribution After SMOTE (PlantVillage dataset) 
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Table 3 describes the cross-validation report for each fold, where the average metric

s (precision, recall, and F1-score) are calculated using the macro average. This ensur

es that each class contributes equally to the average. Figure 9 shows the cross-valida

tion curve. 

 Table 3: Cross-validation report for each fold (PlantVillage dataset) 

 

 

Fold No. Accuracy Score F1-Score Cohen Kappa Score 

1 98.8 98.81 98.60 

2 98.04 98.01 97.72 

3 97.82 97.91 97.46 

4 98.15 98.08 97.84 

5 98.47 98.35 98.22 

6 98.04 98.08 97.71 

7 99.23 99.24 99.11 

8 97.17 97.25 96.70 

9 98.26 98.29 97.97 

10 98.37 98.30 98.09 
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       Figure 9: Cross-validation curve (PlantVillage dataset) 

Table 4 describes the classification report generated for PlantVillage dataset. 

 

    Table 4: Classification Report (PlantVillage dataset) 

 

Figure 10 illustrates the receiver-operating characteristic curve for each class in the 

PlantVillage dataset. 

 Precision Recall F1-Score Support 

Potato_healthy  

1.00 1.00 1.00 1316 

Apple_healthy 

0.96 0.96 0.96 1316 

Apple_Black_rot  

0.99 0.99 0.99 1316 

Apple_Apple_scab 

0.97 0.97 0.97 1316 

Potato_Early_blight 

0.99 0.99 0.99 1316 

Apple_Cedar_apple_rust 

1.00 1.00 1.00 1316 

Potato_Late_blight 

0.97 0.97 0.97 1316 

accuracy 

  0.98 9212 

Macro-average 

0.98 0.98 0.98 9212 

Weighted-Average 

0.98 0.98 0.98 9212 
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  Figure 10: ROC curve (PlantVillage dataset) 

 

Figure 11 exhibits the Precision-Recall curve for each class in the PlantVillage 

dataset. 

                                   
    Figure 11: Precision-Recall curve (PlantVillage dataset) 

 

Figure 12 depicts the model prediction report with true and predicted classes. 
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Figure 12: Model prediction Report (PlantVillage dataset) 

 

4.2 Apple Diseases Dataset 
Table 5 provides a description of the dataset. 

Table 5: Description of Apple Diseases Dataset 

 

 

The Original class distribution before applying SMOTE: Counter({1: 2016, 3: 2

008, 0: 1987, 2: 1760}) Figure 13 displays the class distribution before SMOTE. 

     Disease Types Assigned Class 

label 
Number of 

Images 
Total Training 

Images 
Total Testing 

Images 

Apple_Black_rot  0 2484 1987 497 

Apple_Apple_scab 1 2520 2016 504 

Apple_Cedar_apple_

rust 
2 2200 1760 440 

Apple_healthy 3 2510 2008 502 
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     Figure 13: Class Distribution Before SMOTE (Apple Diseases dataset) 

Balanced class distribution after applying SMOTE: Counter({0: 2016, 3: 2016, 

1: 2016, 2: 2016}) . Figure 14 displays the class distribution after SMOTE. 

            
 Figure 14:  Class Distribution After SMOTE (Apple Diseases dataset) 

Table 6 describes the cross-validation report for each fold, where the average metric

s (precision, recall, and F1-score) are calculated using the macro average. This ensur

es that each class contributes equally to the average. Figure 15 shows the cross-valid

ation curve. 
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            Table 6: Cross-validation report for each fold (Apple Diseases dataset) 

 

                    

 Figure 15: Cross-validation curve (Apple Diseases dataset) 

Fold No. Accuracy Score F1-Score Cohen Kappa Score 

1 95.91 95.96 94.54 

2 96.28 96.34 95.03 

3 94.75 94.83 93.05 

4 96.03 95.94 97.84 

5 96.65 96.58 94.70 

6 95.75 95.79 95.52 

7 96.27 96.07 94.97 

8 97.02 97.03 96.02 

9 96.40 96.41 95.20 

10 97.02 97.03 96.02 
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Table 7 describes the classification report generated for Apple Diseases dataset. 

 

    Table 7: Classification Report (Apple Diseases dataset) 

 

 Precision Recall F1-Score Support 

Apple_Black_rot  

0.97 0.97 0.97 2016 

Apple_Apple_scab  

0.95 0.94 0.94 2016 

Apple_Cedar_apple_rust 

0.98 0.99 0.98 2016 

Apple_healthy 

0.96 0.95 0.95 2016 

accuracy 

  0.96 8064 

Macro-average 

0.96 0.96 0.96 8064 

Weighted-Average 

0.96 0.96 0.96 8064 

Figure 16 illustrates the receiver-operating characteristic curve for each class in the 

Apple Diseases dataset. 

                               
  Figure 16: ROC curve (Apple Diseases dataset) 

 

Figure 17 exhibits the Precision-Recall curve for each class in the Apple Diseases 

dataset. 
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    Figure 17: Precision-Recall curve (Apple Diseases dataset) 

 

Figure 18 depicts the model prediction report with true and predicted classes. 

                                         

          Figure 18: Model prediction Report (Apple Diseases Dataset) 

4.3 Potato Leaf Disease Dataset 
Table 8 provides a description of the dataset. 
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Table 8: Description of Potato Leaf Disease Dataset 

Disease Types Assigned Class 

Label 

Number of Images Total Training 

Images 

Total Testing 

Images 

Potato_healthy 0 500 400 100 

Potato_Early_Bl

ight 

1 500 400 100 

Potato_Late_Bli

ght 

2 500 400 100 

 

 

The Original class distribution before applying SMOTE: Counter({0: 400, 2: 40

0, 1: 400}). Figure 19 displays the class distribution before SMOTE. 

                                             

     Figure 19: Class Distribution Before SMOTE (Potato Leaf Disease dataset) 

Balanced class distribution after applying SMOTE: Counter({0: 400, 2: 400, 1: 4

00}). Figure 20 displays the class distribution after SMOTE. 
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         Figure 20:  Class Distribution After SMOTE (Potato Leaf Disease dataset) 

Table 9 describes the cross validation report for each fold, where the average metric

s (precision, recall, and F1-score) are calculated using the macro average. This ensu

res that each class contributes equally to the average. Figure 21 shows the cross-vali

dation curve. 

         Table 9: Cross-validation report for each fold (Potato Leaf Disease dataset) 

Fold No. Accuracy Score F1-Score Cohen Kappa Score 

1 97.50 97.51 96.25 

2 94.16 93.83 91.23 

3 95 94.91 92.49 

4 95 94.70 91.42 

5 90 94.11 84.94 

6 95 94.88 92.45 

7 94.16 93.89 91.11 

8 96.66 96.75 94.29 

9 94.83 95.79 93.74 

10 91.66 91.81 87.47 
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Figure 21: Cross-validation curve (Potato Leaf Disease dataset) 

Table 10 describes the classification report generated for Potato Leaf Disease dataset. 

    

 Table 10: Classification Report (Potato Leaf Disease dataset) 

 

 Precision Recall F1-Score Support 

Potato_healthy  

0.96 0.95 0.96 400 

Potato_Early_blight 

0.96 0.94 0.95 400 

Potato_Late_blight 

0.92 0.94 0.93 400 

accuracy 

  0.94 1200 

Macro-average 

0.95 0.94 0.95 1200 

Weighted-Average 

0.95 0.94 0.95 1200 

Figure 22 illustrates the receiver-operating characteristic curve for each class in the 

Potato Leaf Disease dataset. 
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  Figure 22: ROC curve (Potato Leaf Disease dataset) 

 

Figure 23 exhibits the Precision-Recall curve for each class in the Potato Leaf Disease 

dataset. 

                                            
    Figure 23: Precision-Recall curve (Potato Leaf Disease dataset) 

 

Figure 24 depicts the model prediction report with true and predicted classes. 
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Figure 24: Model prediction Report (Potato Leaf Disease dataset) 

 

4.4 Potato (Healthy & Late Blight) Dataset 
Table 11 provides a description of the dataset. 

Table 11: Description of Potato (Healthy & Late Blight) Dataset 

Disease Types Assigned Class 

Label 

Number of Images Total Training 

Images 

Total Testing 

Images 

Potato_healthy 0 363 290 73 

Potato_Late_Bli

ght 

1 67 54 13 

 

 

The Original class distribution before applying SMOTE: Counter({0: 290, 1: 54

}). Figure 25 displays the class distribution before SMOTE. 
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Figure 25: Class Distribution Before SMOTE(Potato (Healthy & Late Blight)  

dataset) 

 

Balanced class distribution after applying SMOTE: Counter({1: 290, 0: 290}).  

Figure 26 displays the class distribution after SMOTE. 

                  
Figure 26:  Class Distribution After SMOTE(Potato (Healthy & Late Blight) dat

aset) 

 

Table 12 describes the cross-validation report for each fold, where the average metri

cs (precision, recall, and F1-score) are calculated using the macro average. This ensu

res that each class contributes equally to the average. Figure 27 shows the cross-vali

dation curve. 
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Table 12: Cross-validation report for each fold (Potato (Healthy & Late Blight) data

set) 

 

                         

Figure 27: Cross-validation curve (Potato (Healthy & Late Blight) dataset) 

Table 13 describes the classification report generated for Potato (Healthy & Late 

Blight) dataset. 

Fold No. Accuracy Score F1-Score Cohen Kappa Score 

1 1.00 1.00 1.00 

2 1.00 1.00 1.00 

3 1.00 1.00 1.00 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 96.55 96.55 93.10 

7 1.00 1.00 1.00 

8 1.00 1.00 1.00 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 



 
Page | 38  

 

Table 13: Classification Report (Potato (Healthy & Late Blight) dataset) 

 

Figure 28 illustrates the receiver-operating characteristic curve for each class in the 

Potato (Healthy & Late Blight) dataset. 

 

                                 

Figure 28: ROC curve (Potato (Healthy & Late Blight) dataset) 

Figure 29 exhibits the Precision-Recall curve for each class in the Potato (Healthy & 

Late Blight) dataset. 

 Precision Recall F1-Score Support 

Potato_healthy  

1.00 1.00 1.00 290 

Potato_Late_blight 

1.00 1.00 1.00 290 

accuracy 

  1.00 580 

Macro-average 

1.00 1.00 1.00 580 

Weighted-Average 

1.00 1.00 1.00 580 
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Figure 29: Precision-Recall curve (Potato (Healthy & Late Blight) dataset) 

Figure 30 depicts the model prediction report with true and predicted classes. 

                                         
Figure 30: Model prediction Report (Potato (Healthy & Late Blight) dataset) 

 

4.5 Apple Leaf Diseases Dataset 
Table 14 provides a description of the dataset. 

 

 

 

 

                           

 



 
Page | 40  

 

                             Table 14: Description of Apple Leaf Diseases Dataset 

 

The Original class distribution before applying SMOTE: Counter({0: 136, 1: 12

8, 2: 120}). Figure 31 displays the class distribution before SMOTE. 

                                   
     Figure 31: Class Distribution Before SMOTE (Apple Leaf Diseases dataset) 

Balanced class distribution after applying SMOTE: Counter({1: 136, 2: 136, 0: 1

36}). Figure 32 displays the class distribution after SMOTE. 

     Disease Types Assigned 

Class label 

Number of 

Images 

Total 

Training 

Images 

Total Testing 

Images 

Apple_Black_rot  0 170 136 34 

Apple_Cedar_apple_rust 1 160 128 32 

Apple_Apple_scab 2 150 120 30 
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        Figure 32:  Class Distribution After SMOTE (Apple Leaf Diseases dataset) 

Table 15 describes the cross-validation report for each fold, where the average metri

cs are calculated using the macro average. This ensures that each class contributes e

qually to the average. Figure 33 shows the cross-validation curve.   

  Table 15: Cross-validation report for each fold (Apple Leaf Diseases dataset) 

Fold No. Accuracy Score F1-Score Cohen Kappa Score 

1 87.80 88.24 81.19 

2 97.56 97.84 96.27 

3 92.68 92.13 88.56 

4 95.12 94.87 92.66 

5 97.56 96.96 92.70 

6 95.12 95.24 96.19 

7 92.68 92.79 92.49 

8 95.12 94.81 88.80 

9 95 93.73 92.46 

10 90 89.98 92.21 
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 Figure 33: Cross-validation curve (Apple Leaf Diseases dataset) 

Table 16 describes the classification report generated for Apple Leaf Diseases dataset. 

 

Table 16: Classification Report (Apple Leaf Diseases dataset) 

 

 Precision Recall F1-Score Support 

Apple_Black_rot  

0.90 0.95 0.92 136 

Apple_Cedar_apple_rust 

0.98 0.96 0.97 136 

Apple_Apple_scab 

0.93 0.90 0.92 136 

accuracy 

  0.94 408 

Macro-average 

0.94 0.94 0.94 408 

Weighted-Average 

0.94 0.94 0.94 408 

Figure 34 illustrates the receiver-operating characteristic curve for each class in the 

Apple Leaf Diseases dataset. 
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  Figure 34: ROC curve (Apple Diseases dataset) 

 

Figure 35 exhibits the Precision-Recall curve for each class in the Apple Leaf 

Diseases dataset. 

                                      

    Figure 35: Precision-Recall curve (Apple Leaf Diseases dataset) 

Figure 36 depicts the model prediction report with true and predicted classes. 
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         Figure 36: Model prediction Report (Apple Leaf Diseases Dataset) 

4.6 COMPARATIVE ANALYSIS 

This section analyses the performance of the proposed model on five distinct datasets 

given in Table 17: the PlantVillage dataset, the Potato Leaf Disease dataset, the Apple 

Disease dataset, the Apple Leaf Diseases dataset, and another Potato (Healthy & Late 

Blight) dataset.  

Table 17: Model performance over all datasets 

Dataset Name Mean Accuracy over all folds 

PlantVillage 98.24 

Apple Disease 96.21 

Potato Leaf Disease 94.5 

Potato (Healthy & Late Blight) 99.65 

Apple Leaf Diseases 93.86 

The comparative analysis reveals that the proposed methodology is effective and 

reliable across different datasets, achieving good accuracy consistently. The slight 

variations in accuracy can be attributed to differences in dataset characteristics, such 

as image quality, disease variability, and class distribution. 
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5.0 CONCLUSION & FUTURE SCOPE 

5.1 Conclusion 

This work incorporates a multi-stage methodology for robust image classification, 

particularly suited for imbalanced datasets. A meticulous preprocessing pipeline 

ensures data consistency through grayscale conversion, inverse Gaussian gradient, 

Geodesic Active Contour (GAC), and background removal. EfficientNetB0, a pre-

trained CNN, extracts informative features from the pre-processed images. 

Dimensionality reduction is achieved using PCA to optimize training efficiency. 

SMOTE tackles class imbalance by generating synthetic data for under-represented 

classes. A stacked ensemble classifier leverages the strengths of Random Forest, K-

Nearest Neighbour, and SVM, with a final XGBoost layer for enhanced classification 

accuracy.  

The findings presented in Chapter 4 showcases the efficacy and resilience of the 

proposed methodology, emphasising its capacity to precisely detect plant diseases 

across various segments of the dataset. Macro averaging is employed to ensure that 

the performance measurements accurately represent the classifier's capacity to handle 

all classes, even ones that may be underrepresented. Therefore, it tackles important 

obstacles such as accurate division, complex data representation, uneven distribution 

of classes, and the requirement for reliable categorization. 

5.2 Future Scope 

Building on the success of this research, future work will explore the following 

things: 

o Extend the methodology to cover additional plant species and diseases. 

o Implement real-time disease detection capabilities using mobile and IoT 

devices. 

o Explore the integration of environmental and sensor data to further enhance 

disease prediction accuracy. 
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APPENDIX 

(7890, 224, 224, 3) 

print(Y.shape) 

 

(7890,) 

 

X_train shape after adding channel dimension: (6312, 224, 224, 1) 

X_test shape after adding channel dimension: (1578, 224, 224, 1) 

 

# Create a new model using only the feature extraction part 

feature_extractor = Model(inputs=efficientnet_b0.inputs, 

outputs=efficientnet_b0.get_layer('top_conv').output) 

# Extract features directly from the preprocessed array 

features_train = feature_extractor.predict(X_train) 

print("Feature_train vector shape:", features_train.shape) 

print("Feature_test vector shape:", features_test.shape) 

 

Feature_train vector shape: (6312, 7, 7, 1280) 

Feature_test vector shape: (1578, 7, 7, 1280) 

 

print("Reshaped training features:", features_train_reshaped.shape) 

print("Reshaped test features:", features_test_reshaped.shape) 

 

Reshaped training features: (6312, 62720) 

Reshaped test features: (1578, 62720) 

 

 

print(X.shape) 

# Encode labels to one-hot vectors 

label_encoder = LabelEncoder() 

labels_encoded = label_encoder.fit_transform(Y) 

labels_one_hot = to_categorical(labels_encoded) 

 

print("X_train shape after adding channel dimension:", X_train.shape) 

print("X_test shape after adding channel dimension:", X_test.shape) 
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# Explained Variance: 

print("Explained variance ratio:", pca.explained_variance_ratio_) 

print("Total variance explained:", np.sum(pca.explained_variance_ratio_)) 

 

Explained variance ratio: [8.63142908e-01 2.89842561e-02 2.33939085e-02 

1.46710556e-02 

1.29938591e-02 8.54799431e-03 4.98395134e-03 3.60348891e-03 

3.23499111e-03 2.42885528e-03 2.30272068e-03 1.83549360e-03 

1.68774545e-03 1.57788233e-03 1.45881460e-03 1.31289009e-03 

1.17722619e-03 1.15121331e-03 9.71494999e-04 9.48079920e-04 

8.51398217e-04 8.17020948e-04 8.04377429e-04 7.07916683e-04 

6.65630156e-04 6.49353431e-04 5.98697923e-04 5.92905970e-04 

5.40933630e-04 5.26225718e-04 4.87493438e-04 4.60755604e-04 

4.32121829e-04 4.07343119e-04 3.91527690e-04 3.88322427e-04 

3.76310752e-04 3.42323765e-04 3.23737506e-04 3.03140900e-04 

2.94729194e-04 2.86067370e-04 2.67501106e-04 2.51608522e-04 

2.48926139e-04 2.34409294e-04 2.27756580e-04 2.19805384e-04 

2.13151667e-04 2.04440061e-04 2.00880007e-04 1.91724670e-04 

1.81768410e-04 1.75961773e-04 1.65579622e-04 1.55175279e-04 

1.51285189e-04 1.47030994e-04 1.38691335e-04 1.35447335e-04 

1.26221144e-04 1.26068786e-04 1.18436961e-04 1.15118572e-04 

1.11446090e-04 1.08794477e-04 1.02900216e-04 9.75499279e-05 

9.49977257e-05 9.36616852e-05 9.06513524e-05 8.83751854e-05 

8.56866827e-05 8.34864331e-05 7.97027315e-05 7.72369240e-05 

7.62303971e-05 7.32467088e-05 7.09321175e-05 6.91067762e-05 

6.71951930e-05 6.43380263e-05 6.20231876e-05 6.16146281e-05 

5.81223649e-05 5.55184706e-05 5.48545868e-05 5.35243162e-05 

5.07982732e-05 5.03687588e-05 4.81365569e-05 4.77141439e-05 

4.70259911e-05 4.59364092e-05 4.39888026e-05 4.30519540e-05 

4.11141409e-05 3.95436800e-05 3.94207636e-05 3.87456603e-05] 

Total variance explained: 0.9980712 

Reduced shape of training features: (6312, 100) 

Reduced shape of test features: (1578, 100) 

print("Reduced shape of training features:", features_train_reduced.shape) 

print("Reduced shape of test features:", features_test_reduced.shape) 
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Original class distribution: Counter({31: 182, 30: 178, 18: 178, 35: 176, 27: 

175, 26: 174, 12: 173, 10: 173, 14: 172, 33: 172, 37: 171, 34: 169, 4: 169, 11: 

168, 20: 168, 29: 168, 6: 168, 23: 167, 17: 167, 1: 167, 9: 167, 15: 166, 5: 

165, 22: 164, 19: 164, 8: 164, 16: 164, 21: 163, 13: 163, 36: 162, 25: 161, 0: 

160, 3: 160, 38: 159, 28: 158, 7: 158, 32: 156, 24: 121, 2: 2}) 

# Check the distribution of the classes after SMOTE 

print(f"Balanced class distribution: {counter_balanced}") 

 

Balanced class distribution: Counter({38: 182, 23: 182, 0: 182, 22: 182, 17: 

182, 1: 182, 11: 182, 35: 182, 27: 182, 3: 182, 14: 182, 20: 182, 36: 182, 29: 

182, 6: 182, 30: 182, 19: 182, 8: 182, 12: 182, 31: 182, 5: 182, 28: 182, 25: 

182, 15: 182, 26: 182, 9: 182, 37: 182, 21: 182, 13: 182, 7: 182, 32: 182, 34: 

182, 16: 182, 33: 182, 10: 182, 18: 182, 4: 182, 24: 182, 2: 182}) 

# Define base classifiers 

classifier1 = RandomForestClassifier(n_estimators=100, random_state=42) 

classifier2 = KNeighborsClassifier() 

classifier3 = SVC(probability=True, random_state=42) 

 

# Define the stacking classifier 

stacking_classifier = StackingClassifier( 

    estimators=[ 

        ('rf', classifier1), 

        ('knn', classifier2), 

        ('svc', classifier3) 

    ], 

    final_estimator= XGBClassifier(objective='binary:logistic',   
                                   n_estimators=100 

                                   learning_rate=0.1) 

 

) 

 

# Check the distribution of the classes 

print(f"Original class distribution: {counter}") 


