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Executive Summary

Sepsis is a life-threatening medical emergency caused by the body's extreme
response to an infection, leading to widespread inflammation and severe organ
damage. Infections, triggering sepsis, typically originate from the gastrointestinal
tract, lungs, skin, or urinary tract. The risk of death from sepsis is as high as 30%,
increasing to 50% for severe sepsis and up to 80% for septic shock. An extensive
review of the computerised techniques for the prediction of mortality of sepsis
patients has been performed to associate the work done so far in this field. While
performing the studies, it became evident that since computerised analysis of
sepsis mortality prediction is a relatively emerging field, related literature and
research work have been limited. There is also a lack of a standardised public
database of sepsis patients.

This dissertation report aims to develop a classification model for predicting the
mortality of sepsis patients using a machine learning algorithm. LightGBM is
considered as the prediction model whose parameters are tuned by the whale
optimization algorithm. The proposed prediction method helps to take prompt
decisions on whether a sepsis patient admitted to the Intensive Care Unit will
survive or not.

In this approach, the samples of sepsis patients are collected from the AMRI
hospital of Kolkata. The dataset is annotated by a domain expert which helps in
the pre-processing of the data. A machine learning model is utilised to predict
the mortality of sepsis patients. The experimental results demonstrate that the
proposed predictive model has accurately classified the patients based on
mortality.



1. Introduction

1.1 Overview

Sepsis, as per the Sepsis-3 criteria, denotes a dysregulated systemic
inflammatory response syndrome triggered by infection, leading to severe
organ dysfunction and an increased risk of mortality. Organ dysfunction can be
identified as an acute change in total Sequential Organ Failure Assessment
(SOFA) score 22 points consequent to the infection. Patients afflicted with
sepsis face a markedly elevated probability of death [1]. In the United States,
approximately 10% of patients admitted to the Intensive Care Unit (ICU) are
diagnosed with sepsis, and a significant proportion, roughly 25% of ICU beds
are occupied by sepsis patients. Considering the elevated mortality rate among
sepsis patients in the ICU, it becomes imperative to ascertain the risk of in-
hospital mortality as early as possible [2]. Due to the heightened mortality
rates among sepsis patients in the ICU, it is crucial to promptly identify those at
risk of in-hospital death. Early and precise detection of sepsis patients with a
high likelihood of in-hospital mortality enables ICU physicians to make
informed clinical decisions, potentially enhancing patient outcomes [3].

In 2017, there were an estimated 48.9 million cases of sepsis globally, resulting
in approximately 11 million sepsis-related deaths. Developed countries
reported an incidence of severe sepsis at 4.00 cases per 1,000 population,
while in China, the incidence of sepsis in intensive care units stood at 20.6%.
The cost of treating sepsis in the United States surpassed $20 billion in 2009,
constituting 5.2% of total clinical expenses in U.S. hospitals, which poses a
significant financial burden on patients and healthcare systems [4]. In the
United States, the mortality rate for severe sepsis in intensive care units ranges
from 21.0% to 36.7%, while the hospital mortality rate varies from 22.0% to
44.5%, depending on factors such as patient population and the definition of
severe sepsis [5].

In recent studies, novel machine learning techniques have showcased
enhanced predictive capabilities compared to traditional prediction methods
[6], thereby garnering significant research attention due to the vast
accumulation of big data and advancements in data storage techniques [7].
Notably, various innovative and pragmatic machine-learning approaches have
been proposed, exhibiting promising prediction performance in medicine,



including developing machine learning-based models for ICU mortality
prediction [8].

1.2 Problem Statement

Whale optimization-based machine learning algorithm for mortality prediction
in sepsis patients.

1.3 Objective
The objectives are:

a) To develop a whale optimization-based machine learning model for
mortality prediction of sepsis patients in the ICU.

b) To identify and select the most relevant features contributing to the
patient’s mortality.

c) To optimize the hyperparameters of the machine learning model using
whale optimization.

d) To identify the features contributing to the patient’s mortality using
statistical analysis.



2. Background Concepts

New models have been developed to better predict the likelihood of in-
hospital death among ICU patients with sepsis, as existing severity scores are
inadequate. Machine learning can process complex, non-linear data to extract
information and provide insights that assist clinical decision-making. This
unique technique has been applied in various medical fields to create robust
risk models and to improve prediction accuracy [8-10].

2.1 Whale Optimization Algorithm (WOA)

The hunting behaviours of humpback whales are based on the idea of creating
a bubble net to encircle and trap their prey. There are three main ways that
humpback whales hunt: by encircling their prey, searching for prey, and using
the bubble-net attacking mechanism.
Encircling the prey: Humpback whales often work together in groups to
encircle their prey, creating a barrier or circle around it to prevent escape.
Similarly, in WOA, candidate solutions are iteratively adjusted and refined to
encircle the optimal solution.

D=|C.X*t)-X(t) (1)

X(t+1)=X*{t)-4AD (2)
)?*(t) denotes the best search agent of the swarm at iteration t, )?(t) represents
a candidate search agent of the swarm, D denotes the distance between two
agents as shown in Equations (1) and (2).

A=2.d.#-a  (3)
¢ =2.7 (4)

where @ is a vector of 2 that is linearly decreased to 0 over iterations, and 7 is
a vector of randomly generated numbers in [0,1] based on Gaussian
distribution as given in Equations (3) and (4).
Searching for prey: Before encircling the prey, humpback whales search for it in
the surrounding environment. They use various sensory cues to detect the
presence of prey. In WOA, this searching behaviour is reflected in the
exploration phase of the algorithm, where candidate solutions explore the
solution space to find regions with potentially better solutions as shown in
Equations (5) and (6).

P

D=|C . Xrand(t) - X(1)| (5)



)?(t+1)= )?rand(t)-/f.ﬁ (6)

Bubble-net attacking mechanism: The bubble-net technique involves
humpback whales blowing bubbles in a circular pattern underwater to create a
barrier, driving the prey towards the surface where they can easily catch it. This
mechanism is analogous to the exploitation phase of WOA, where candidate
solutions converge towards the optimal solution identified during the
exploration phase.

—

D’ = |X*(t)- X(t)] (7)
X(t+1)=D"e. cos(2ml) + X*(t)  (8)

where b is a constant for deciding the scale of spiral, and | is a random number
uniformly distributed in the interval [-1,1] as shown in Equations (7) and (8).

Algorithm

01: Initialise the swarm )_()i( i=1,2,..,n)

02: Evaluate the fitness value of all incumbents
03: X * = X * (t)(the best incumbent)

04: While the termination criterion is not met do
05: For each incumbent do

06: Update a,/T,C?, land p

07: If (p <0.5)

08: If (| 4] < 1)

09: D=|C.X*@t)-X(t); X(t+1)=X*(t)- A.D

10: Else

11: 5=|C_).)_()rand(t)-)?(t)|;)_()(t+1)= )?rand(t)-/f.l_))
12: Else

13: D’ = |X*(t)- X(t)|; X(t+1)=D" e cos(2mtl) + X*(t)
14: End For

15: Revise the incumbent if it exceeds the boundary
16: Calculate the fitness value for all incumbents

17: Update the best incumbent X * (t)if there is any promotion
18: End While

19: return X * (t)
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Figure 1: Flowchart of WOA for hyperparameter optimization in LightGBM [11]



2.2 WOA for Hyperparameter Optimization

Initialisation

A collection of hyperparameters is used to construct each search agent
randomly based on a uniform distribution. These configurations can be applied
to the decision-making process of machine learning algorithms. Every search
agent can be considered a WOA solution, with each sub-solution representing
a hyperparameter. After encoding is complete, WOA will select the best search
agent (X*) from the newly generated search agents by assessing each swarm
member in the context of the intended training model. Figure 1 shows the
flowchart of the WOA for LightGBM hyperparameter optimization.

Transition

WOA creates this process. At the start of each cycle, WOA randomly creates
distinct coefficients for each search agent. This process helps prevent the early
convergence issue by diversifying the moving path. The new position is then

adjusted in accordance with vector /T, and probability p. Search agents have
more opportunities to refer to the prey as each iteration progresses. More
precisely, there is an eventual increase in the probability of choosing the
optimal search agent. However, as a result of parameter d being reduced from

2 to 0, there is no longer any possibility that A will increase to more than 1
during the second half of the total number of iterations. As a result, at the later
stage, the prey-searching mechanism (i.e. Egs. (5) and (6)) will be completely
removed. Out-of-order solutions cannot exist throughout the search process;
once the new position is established, the boundary requirements must be met
if the search agent exceeds the allotted amount.

Evaluation

Evaluation involves assessing the outcomes using a machine learning model.
Every search agent has a hyperparameter configuration associated with it.
These hyperparameter values, verified by testing current WOA candidates,
comprise the solutions.



Determination

It uses feedback from the training model to determine performance. The best
search agent is replaced by improved configurations, updating positions until
termination requirements are achieved [11].

2.3 Gradient Boosting Machine Model

Gradient Boost Algorithm (GBM) is a machine learning technique influenced by
learning theory. It employs a series of decision trees and constructs trees in
order, reducing the residual errors of earlier trees and fixing previous issues.
To get the most homogeneous responses to the predictors, the GBM
framework algorithm partitions the input variables to minimise the loss
function. GBM constantly shows better prediction accuracy than other
machine learning models, such as Random Forests and support vector
networks. Their effectiveness is due to their repetitive feature, in which each
repetition expands based on the knowledge of the preceding learner. GBM
models handle a variety of data formats with minimal effort for data
preprocessing.

Weak Learners

Gradient boosting builds an ensemble of weak learners, typically decision trees
with limited depth. These weak learners are simple models that perform
slightly better than random guessing.

Residuals

Initially, the model makes a prediction on the training data. The difference
between the actual outcomes and the predicted outcomes is known as the
residuals.

Iterative Fitting

In each iteration, a new weak learner is trained to predict the residuals (errors)
from the previous model. By focusing on these residuals, the new learner aims
to correct the errors made by the previous models.

Model Update

The predictions from the new weak learner are added to the overall model's
prediction. This process of updating the model by adding new learners is
repeated for a predefined number of iterations or until the performance
improvement occurs.

Weighted Sum of Learners

The final model is a weighted sum of all the weak learners, where each learner
corrects the errors of the preceding ones. This aggregation of models results in
a robust prediction system [12].



3. Literature Survey

Su et al. [13] presented a study on three machine learning models for
predicting sepsis patient mortality in the ICU. The performance of three
machine learning models, namely logistic regression, random forest, and
XGBoost, were compared. The Least Absolute Shrinkage and Selection Operator
(LASSO) was applied for feature selection. The training and test sets were
divided randomly by 70% and 30%. The best performance was observed for
random forest, which resulted in an AUC of 0.77.

Guo et al. [14] performed a retrospective study on the prediction of 30-day
mortality on sepsis using Artificial Neural Network (ANN). Three layers
comprised the fundamental architecture of the Artificial Neural Network: the
input layer, the hidden layer, and the output layer. The input layer comprised 12
nodes, the hidden layer comprised 6 nodes, and the output layer had 2 nodes.
An oversampling algorithm was applied to deal with the imbalance between
training and validation sets. The model achieved an AUC of 0.873 on the
training and 0.811 on the validation set.

Hou et al. [15] established a 30-day mortality prediction model based on real-
world data for patients with sepsis 3.0. Three predictive models namely
eXtreme Gradient Boosting (XGBoost), conventional logistic regression, and
SAPS-II score prediction models, were used. The performance was compared
using AUCs receiver operating curve and decision curve. The XGBoost model
achieved the best result with an AUC of 0.857.

Peng et al. [16] developed and validated 9 different machine-learning models
to predict 30-day mortality in patients with encephalopathy associated with
sepsis. In this approach, the top 15 features were selected using the Recursive
Feature Elimination (RFE) method. Then 9 models were employed, namely
artificial neural network (NNET), Naive Bayes (NB), Logistic Regression (LR),
Gradient Boosting Machine (GBM), Adaptation boosting (AdaBoost), Random
Forest (RF), bagged trees (BT), XGBoost and CatBoost. For internal validation, a
bootstrap resampling technique was utilised with 100 iterations. The NNET, LR,
and AdaBoost models performed well in calibration, as seen by their high
prediction accuracy with p-values of 0.831, 0.119, and 0.129, respectively.
Adapting boosting got an AUC of 0.834 in the test set.



Taylor et al. [17] compared three machine learning models, namely the
Random Forest model, the Classification and Regression Tree (CART) model,
and the logistic regression model, to predict in-hospital mortality of sepsis
patients in the emergency department (ED). All models predicted in-hospital
mortality with an AUC greater than 0.69. The random forest model achieved an
AUC of 0.86.

In the field of sepsis research, Zhang et al. [18] utilised the LASSO method to
develop a tool for predicting the mortality risk of sepsis patients using the
Medical Information Mart for Intensive Care (MIMIC) Ill dataset. Their findings
demonstrated that the LASSO-based prediction model outperformed the SOFA
score regarding discrimination by achieving an AUC of 0.772.

Zamani et al. [19] employed four swarm intelligence algorithms, namely
Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA),
Firefly Algorithm (FA), and Invasive Weed Optimization (IWO), for breast
cancer diagnosis. The datasets were divided into two sets, a training set and a
test set, of 70% and 30%, respectively, at random. The performance of each
algorithm was assessed using the multi-layer perceptron (MLP) network. The
Kolmogorov theorem was used in the MLP network to calculate the number of
hidden nodes, and the number of inputs is set with the number of features. For
all the algorithms, the maximum iteration was fixed at 15, and the initial
population size was set to 30. It was observed that the Firefly Algorithm
showed the best performance with an accuracy of 98.54%.

In diagnosing type Il diabetes [20], the feature selection was done using
Particle Swarm Optimization. Meta-heuristic algorithms, Grid Search, and a
Genetic algorithm optimized the hyperparameters. The machine learning
models Decision Tree, KNN, Multi-layer Perceptron (MLP), and Support Vector
Machine (SVM) were employed to calculate the results. GA-SVM achieved the
best result with an AUC of 0.93.

In [21], the Whale Optimization Algorithm (WOA) and SVM were used in 20
images to develop an intelligent lung tumour diagnosis system. The WOA in
this study helped to select the best feature subsets. Then, the accuracies of
SVM with kernels, namely linear, Polynomial, and Radial Based Function (RBF),
were compared. RBF SVM provided the best accuracy of 95%.



4. Proposed Approach

The work aims to create a predictive model for assessing the mortality of sepsis
patients in the ICU. LightGBM, a machine learning model is used to predict the
survival or mortality of sepsis patients and fine-tune the hyperparameters
using the whale optimization algorithm.

The dataset of sepsis patients collected from the primary care hospital in
Kolkata has been annotated by a domain expert while maintaining
confidentiality and anonymity. To improve the performance of machine
learning models, data augmentation has been performed on the dataset.
Subsequently, feature selection using Analysis of Variance (ANOVA) has been
carried out on this augmented dataset. The selected features are then used for
model training. Before training the model, hyperparameter tuning is conducted
using a whale optimization algorithm, which involves using an objective
function to evaluate the performance of the model with different sets of
hyperparameters. The search agents (whales) are initially initialised with
random values within the specified hyperparameter ranges. Each agent's
performance is evaluated using an objective function that trains a LightGBM
model with the agent's hyperparameters and provides classification scores and
performance measures. The agent with the highest accuracy is identified as the
best agent.

4.1 Dataset Description

The dataset used in this study is collected from a primary care hospital in
Kolkata. To protect patient confidentiality, all patient identities are removed.
The database consists of 503 patient records with 105 features, including 30
clinical features, one target feature, and 104 independent features. Of the 503
patients, three-quarters are non-survivors, with 178 belonging to the survivor
category.

4.2 Data Pre-processing

The following steps are performed to pre-process the data.
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Handling of Missing Values

It is very common to encounter many missing values in a medical dataset, and
this dataset is no exception. In this case, the fields with missing values are set
to 0 because the domain expert had no information about them. Setting these
values to 0 helps eliminate biases that could have occurred if we had
considered 1 or 2 instead. This could have affected the model analysis due to
increased Type | and Il errors.

Handling of Categorical Features

In machine learning, when training and validating a model, categorical features
need to be converted to numerical features. This is achieved through a process
called one-hot encoding, which transforms the categorical features into binary
numerical variables. In the dataset, out of 104 independent columns, 76 are
categorical, which are replaced with 91 one-hot encoded columns. With one-
hot encoding, each categorical feature is represented in different binary
columns based on the number of categories, making them easier for machine
learning algorithms to interpret.

Data Augmentation

Due to the small size of the dataset, the number of patient records is increased
after removing the missing values and converting the categorical data. To
address this, Gretel.ai, a synthetic data-generating tool, creates 5000 synthetic
data points based on the original 503 patients' data. The clinical features in the
augmented dataset align with the reference range of the original clinical
values. It is important to note that machine learning models may not vyield
accurate results when working with small sample datasets.

Removing the Outliers

After data augmentation, the dataset contains some outliers, which are
removed by deleting those records. After removing the outliers, the total
number of datapoints is 3650 with 195 features.

Feature Selection

40 features are selected out of 195 using statistical analysis tests, such as
ANOVA, to select the most relevant features that directly contribute to the final
output. The features, along with the p-values, are shown in Table 1.
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Table 1: Significance analysis of clinical features using ANOVA test

Feature

p-value

1. Cumulative_fluid 1 0

7.788e(-97)

2. Cumulative_fluid_2 0

5.023e”(-78)

3. Loading dose_ 1 0

3.24e"(-76)

4. Nutrition_started 1 0

4.381eM(-73)

5. Systolic_BP_lesser _than 90 2 0

1.019e7(-71)

6. Rel_Support_2 0

1.235e7(-71)

7. Was_sedation_scale 2 0

2.232e/(-70)

8. Infection__ PrimaryReason_ICU_Admission__ 1 0 5.828e”(-69)
9. Blood_transfusion_2 0 2.335e”(-68)

10. Pain_scale_monitored 2 0 4.991e”(-66)

11. DVT_prophylaxis_ 1 0 5.227e"(-65)

12. encephalopathy 2 0 1.212e/(-64)

13. Cl_sedation_ 2 0 7.427e(-64)

14. Any_Other_Culture_Sent_ 1 0 1.297e7(-63)
15. Rel_adjustment_1 0 1.462e"(-63)

16. Hemodymic_monitoring_1 0 1.729e”(-59)
17. vasopressor 1 0 2.042e"(-59)

18. Clinical_Feature_hypoperfusion_2 0 9.597e/(-58)
19. Nutrition_started 2 0 9.630e”(-58)

20. Descalation_of antibiotic_2_0 6.022e/(-57)
21. Was_sedation_scale_1 0 1.217e/(-56)

22. Thiamine_2 0 1.257e”(-56)

23. Discharge_medical_advice 2 0 6.116e”(-56)
24. Albumin_infusion__3hr 2 0 1.276e”(-55)

25. Loading dose 2 0 2.205e”(-54)

26. septic_shock 1 0 1.979e”(-52)

27. Systolic_BP_lesser than_90 1 0 5.110e”(-52)
28. encephalopathy 1 0 9.922e/(-52)

29. Blood_transfusion_1 0 1.555e7(-51)

30. Infection__ PrimaryReason_ICU_Admission__ 2 0 1.721e/(-51)
31. Pain_scale_monitored_1 0 2.577e(-51)

32. Inf_organism_cultured 1 0 9.209e”(-51)

33. Rel_Support 1 0 2.195e7(-50)

34. Any_Other_Culture_Sent 2 0 1.274e(-48)

12




Feature p-value
35. Corticosteroids_2 0 5.071e/(-48)
36. Rel_adjustment_2 0 1.805e(-47)
37. Clinical_Feature_hypoperfusion_1 0 4.488e”(-46)
38. vasopressor_2 0 3.789e/(-43)
39. Descalation_of antibiotic 1 0 4.119e”(-43)
40. DVT_prophylaxis 2 0 4.657e(-43)

4.3 Methodology

Figure 2 shows the framework of the classification method. After increasing the
number of samples in the dataset, the pre-processing steps are performed.

Data pre-processing: Handling of
missing values, categorical
features conversion, data
augmentation, outliers removal

Dataset Dataset

annotation

collection

Train set

Hyperparameter

tuning using Feature
Output: Wha_ale- ) Selection
Classes Optimization + using
classifier test
. Test set
Survivor  [g¢—
Non- ¢
survivor

Figure 2: Framework of the classification method

13




The top 40 features are extracted using ANOVA. After the features are
identified through ANOVA, the whole dataset is split into a training set and a
testing set.

A meta-heuristic optimization algorithm is applied to adjust the
hyperparameters of the LightGBM model for improved model performance.
The meta-heuristic optimization technique, namely the whale optimization
algorithm, is applied to obtain the optimized hyperparameters of LightGBM,
which are then fed into the model for training. Each set of hyperparameters
contains 8 hyperparameters: 1) number of leaves, 2) bagging frequency, 3)
maximum depth, 4) min_child_samples, 5) feature fraction, 6) bagging fraction,
7) colsample_bytree, 8) subsample.

The fitness function used in the Whale Optimization algorithm is optimized to
get the best results. The fitness function takes the LightGBM model as the
input which gives the classification accuracy, sensitivity(recall), specificity, and
hyperparameters. Specific intervals for each parameter define the range of
hyperparameter exploration, enabling a comprehensive analysis of the
parameter space while limiting the search to feasible areas. The whale
optimization algorithm uses 24 search agents, a space with 8 dimensions, and
a maximum number of iterations of 10. The search space's lower bound is 5,
and its upper bound is 10.

14



5. Results and Analysis

In this work, Python (version 3.10.9) is used as the run-time environment with
the required built-in libraries, such as numpy and pandas. Lightgbm, a Python
library, is considered for the LightGBM model implementation. Sklearn built-in
packages are considered for the evaluation metrics.

In a medical dataset of critical diseases, the ratio of the presence or absence of
such diseases in an individual varies significantly. In this case, accurately
predicting the death or survival of sepsis patients admitted to the ICU is crucial
and must not be misrepresented. True positives indicate correctly identified
sepsis patients who will die, contributing to high sensitivity (recall), crucial for
timely interventions and treatment. Conversely, a greater number of false
positives decreases precision and increases the risk of patients to remain
untreated. False negatives indicate missed positive cases, reducing sensitivity
and suggesting unnecessary treatment to survivors. High true negatives
contribute to high specificity, ensuring the correct identification of surviving
patients. Thus, false negatives and false positives should be low, while true
positives and true negatives must be as high as possible. Sensitivity (True
Positive Rate) measures the proportion of actual positive cases(survivors) that
are correctly identified by the model. In mathematical terms, sensitivity can be
represented as shown in Equation (9):

TP
TP+ FN

Sensitivity (Recall) = (9)
where TP represents the number of true positives, and FN denotes the number
of false negatives.

The dataset used in the proposed approach consists of sepsis patient data with
an imbalanced mortality ratio of 2:1. There are 2279 individuals in the
deceased category and 1371 individuals in the survivor category. In this
context, it's important to note that classification accuracy may not provide the
desired results due to the imbalanced ratio. Experimental results demonstrate
that with a mortality ratio 2:1, the accuracy obtained is 72.8%, while the
sensitivity is 84.9%. The model correctly predicted the 72.8% survivor class, but
the rest of the 27.2% were considered dead as survivors. Thus, sensitivity has
been chosen as the preferred metric due to its ability to provide effective
results. Sensitivity is higher in this case because it measures the proportion of
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actual positives that are correctly identified, which is crucial in medical
diagnoses whereas missing a positive case (false negative) can have severe
consequences. Therefore, ensuring a high sensitivity helps in accurately
identifying patients with sepsis, thereby reducing the risk of undetected
positive cases. Specificity measures the model’s ability to correctly identify all
negative instances. In mathematical terms, specificity can be represented as
shown in Equation (10):

Specificity = (10)

TN + FP
where TN denotes true negative, and FP denotes false positive. In this case,
specificity is 51.3%.

Additionally, the F1 score is an essential metric in evaluating model
performance in imbalanced datasets, particularly in the healthcare domain.
The F1 score harmonizes precision and recall, offering a balanced assessment
of the classifier's accuracy by considering both false positives and false
negatives, which are critical considerations in medical diagnosis. It is calculated
as the harmonic mean of precision and recall. Recall represents sensitivity.
Precision represents the proportion of positive predictions that are actually
correct. Precision and F1 score can be calculated using the expressions shown
in Equations (11) and (12):

Precision = (11)

TP+FP

_2 X Precision X Recall
- Precision + Recall

F1

(12)

where TP represents true positives and FP represents false positives. In this
case, the precision is 75.5%, and the F1-score is 0.799. The confusion matrix of
the test dataset is shown in Figure 3.
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Figure 3: Confusion Matrix

This confusion matrix is used to evaluate the performance of the binary
classification model. It compares the actual labels (true labels) with the
predicted labels produced by the model. 133 patients who survived are
accurately classified as such (true negatives), while 126 survivors are
incorrectly predicted as deceased (false positives). Additionally, the model fails
to identify 69 patients who ultimately succumbed to sepsis (false negatives)
but successfully identifies 389 individuals who unfortunately passed away (true
positives).

Table 2: Hyperparameters selected for whale optimization and their optimized
values

Hyperparameter Value
num_leaves 61
bagging freq 6
max_depth 5
min_child_samples 56
feature_fraction 0.902952284118516
bagging fraction 0.23112898351107802
colsample_bytree 0.6402379665917124
subsample 0.6700526236007138

The hyperparameter optimization process for LightGBM model yields the best
set of hyperparameters as shown in Table 2. The num_leaves is set to 61,
within the search space of [40, 100], allowing the model to capture complex
interactions within the data; bagging freq is optimized at 6, within the search
space of [1, 10], enhancing robustness by reducing overfitting; max_depth is
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set to 5, within the search space of [3, 8], striking a balance between capturing
intricate patterns and avoiding overfitting; min_child_samples is set to 56,
within the search space of [45, 60], serving as a regularization parameter to
prevent splitting nodes with very few samples; feature fraction and
colsample_bytree are set to 0.902952284118516 and 0.6402379665917124
respectively, within the search space of [0.1, 1], ensuring diverse subsets of
features and reducing overfitting; bagging fraction and subsample are set to
0.23112898351107802 and 0.6700526236007138 respectively, within the
search space of [0.1, 1], effectively using subsampling to enhance model
robustness and generalization performance. These hyperparameters, tuned
within specified search spaces, balance model complexity, computational
efficiency, and performance, significantly improving the model's robustness
and predictive accuracy.

The following parameters of the machine learning model are considered for
training. The loss function used is the binary cross-entropy loss, which is a
standard for binary classification tasks and is calculated internally by using the
Equation (13):

Loss = S [yilog(p) + (1 - y)log(L —p)]  (13)

where y; represents the true binary label, p; represents the predicted
probability for the positive class, and N is the number of samples. A learning
rate of 0.1 is used. GBDT is chosen as the boosting type. The model is trained
for 100 boosting iterations. LightGBM doesn't have a default batch size
parameter, as the entire dataset is generally used in each boosting iteration.
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6. Conclusion and Future Scope

The proposed approach predicts the mortality of sepsis patients by tuning the
hyperparameters of LightGBM by using a meta-heuristic algorithm to improve
the performance of the gradient boosting model. Performance of the LightGBM
model is measured in the sepsis patient dataset which is augmented and pre-
processed. Sets of 8 hyperparameters of the LightGBM model are tuned to
improve the model performance. Each agent's performance is evaluated using
an objective function that trains a LightGBM model with the agent's
hyperparameters and returns performance metrics (accuracy, sensitivity,
specificity, confusion matrix). As it is an imbalanced dataset with an imbalance
ratio of 2:1, accuracy is not the correct metric for performance evaluation as it
may consider some dead patients as survivors. For performance evaluation
sensitivity is preferred. Sensitivity (True Positive Rate) measures the proportion
of actual positive cases (survivors) that are correctly identified by the model.
This approach achieved an accuracy of 72.8% with a sensitivity of 84.9%. and
specificity of 51.3%. Additionally, the Fl-score is calculated as it harmonizes
precision and recall, offering a balanced assessment of a classifier's accuracy by
considering both false positives and false negatives. The calculated F1-score is
0.799.

In the future, this work can be extended further to improve the evaluation
metrics of the model by applying other meta-heuristic and hybrid meta-
heuristic algorithms to auto tune the hyperparameters.
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Appendix

Sepsis patient mortality prediction model using Whale Optimization
Algorithm and LightGBM.

X_encoded = pd.get_dummies(X, columns =['ICU_transferred_From','Organ_Support’,'fluid_infused_type', 'Gender','Infection _Primary
X_encoded. head()
4 »

Total_SOFA_Score Q_SOFA_Score SIRS_score Age BMI APACHEIV_Score_2 PaO2Value PaCO2Value ArterialValue Serum_HCO3Value ... Repeat_cult

0 8 20 40 98 1647 15.0 259.57 58.26 7.049 94 .
1 14 20 30 77 1448 13.0 96.71 98.70 7.278 385 ..
2 7 20 30 98 1297 26.0 188.06 2711 7.800 T .

3 3 20 20 88 1878 20 47574 126.00 7170 2 ..
4 it 20 20 44 1118 3.0 91.32 33.04 7.196 443 .

5 rows x 195 columns

| 4

X_encoded.columns = X_encoded.columns.str.replace('[*a-zA-Z0-9 1", '_")

import pandas as pd
from sklearn.feature_selection import f_classif, SelectKBest
from sklearn.model selection import train_test_split

# Assuming X_encoded and y are already defined
sel = SelectkBest(f_classif, k=40).fit(X_encoded, y)

# Get the selected feature names
selected_feature_names = X_encoded.columns[sel.get support()]
print("Selected feature names:", selected feature_names)

# Get the p-values for all features
p_values = pd.Series(sel.pvalues_, index=X_encoded.columns)

# Filter p-values for only the selected features
selected_p values = p_values[sel.get support()]

# Sort the selected p-values
sorted_selected p values = selected_p_values.sort_values(ascending=True)

# Print sorted p-values for the top 40 selected features
print("Sorted p-values for the top 40 selected features:\n", sorted_selected p values)

# Transform X_encoded to include only the top 40 selected features
X_selected = sel.transform(X_encoded)
X = X_selected

# Split the dataset into training and testing sets
xtrain, xtest, ytrain, ytest = train_test_split(X_selected, y, test_size=0.2, random_state=42)
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import random

import numpy as np

import lightgbm as 1lgb

from sklearn.metrics import accuracy_score, confusion_matrix

def

def

initialize_search_agents(n, int_hyperparameter_ranges, float_hyperparameter_ranges):
Initialize search agents with random hyperparameters.
Args:
- n (int): Number of search agents.
- int_hyperparameter_ranges (dict): Dictionary specifying the range for each integer hyperparameter.
- float_hyperparameter_ranges (dict): Dictionary specifying the range for each float hyperparameter.
Returns:
- search_agents (list of dicts): List of search agents, where each agent is represented by a dictionary of hyperparameters.
X =]
for _ in range(n):
agent_hyperparameters = {}]
# Generate random values for integer hyperparameters
for param, (min_val, max_val) in int_hyperparameter_ranges.items():
agent_hyperparameters[param] = random.randint(min_val, max_val)
# Generate random values for float hyperparameters
for param, (min_val, max_val) in float_hyperparameter_ranges.items():
agent_hyperparameters[param] = random.uniform(min_val, max_val)
X.append(agent_hyperparameters)
return X
train_evaluate_lightgbm(hyperparameters, xtrain, ytrain, xtest, ytest):

Train a LightGBM model with given hyperparameters and evaluate its performance.

Args:

- hyperparameters (dict): Dictionary containing hyperparameters for LightGBM.
- xtrain (numpy.ndarray): Training features.

- ytrain (numpy.ndarray): Training labels.

- xtest (numpy.ndarray): Testing features.

- ytest (numpy.ndarray): Testing labels.

Returns:

- accuracy (float): Accuracy of the trained model on the testing dataset.

# Ensure each hyperparameter is a scalar and of the correct type

#hyperparameters[ 'n_estimators'] = int(np.array(hyperparameters[ ‘n_estimators']).flatten()[@])
hyperparameters[ 'num_leaves'] = int(np.array(hyperparameters[ 'num_leaves']).flatten()[0])
hyperparameters[ 'bagging freq'] = int(np.array(hyperparameters['bagging freq']).flatten()[@])
hyperparameters[ 'max_depth'] = int(np.array(hyperparameters['max_depth']).flatten()[@])
#hyperparameters[ 'learning_rate'] = float(np.array(hyperparameters['learning_rate']).flatten()[@])
hyperparameters['feature_fraction'] = float(np.array(hyperparameters['feature_fraction']).flatten()[0])
hyperparameters[ 'bagging fraction'] = float(np.array(hyperparameters[ 'bagging fraction']).flatten()[@])
hyperparameters[ 'colsample_bytree'] = float(np.array(hyperparameters['colsample bytree']).flatten()[@])
hyperparameters[ 'subsample'] = float(np.array(hyperparameters['subsample’]).flatten()[@])
hyperparameters[ 'min_child_samples'] = int(np.array(hyperparameters['min_child_samples']).flatten()[@])
#hyperparameters[ 'verbose'] = int(np.array(hyperparameters[ ‘verbose']).flatten()[0])
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# Extract hyperparameters

params = {
'objective': 'binary’,
'metric': 'binary_logloss', # Use binary error (1-accuracy) as the metric
'boosting type': 'gbdt’,
#'1s_unabalance' : 'true’,
#'n_estimators ' :hyperparameters[ 'n_estimators '],
‘num_leaves': hyperparameters['num_leaves'],
'bagging_freq': hyperparameters['bagging freq'],
‘'max_depth': hyperparameters['max_depth'],
#'learning_rate': hyperparameters['learning rate'],
#'learning_rate': 0.04,
'feature_fraction': hyperparameters['feature_fraction'],
'bagging fraction': hyperparameters['bagging fraction'],
‘colsample_bytree': hyperparameters['colsample_bytree'],
‘subsample’: hyperparameters['subsample’],
'min_child_samples' : hyperparameters['min_child_samples'],
'verbose' : -1

# Train the LightGBM model
train_data_lgb = lgb.Dataset(xtrain, label=ytrain)
model = lgb.train(params, train_data_lgb, num_boost_round=100)

# Make predictions on the testing dataset
predictions = model.predict(xtest, num_iteration=model.best_iteration)

# Convert probabilities to binary predictions (o or 1)
predicted_labels = (predictions >= 0.5).astype(int)

# Calculate accuracy
accuracy = accuracy_score(ytest, predicted labels)

# Calculate confusion matrix
tn, fp, fn, tp = confusion_matrix(ytest, predicted_labels).ravel()
conf_matrix = confusion_matrix(ytest, predicted_labels)

# Calculate sensitivity and specificity
sensitivity = tp / (tp + fn)
specificity = tn / (tn + fp)

return accuracy, sensitivity, specificity,conf_matrix

# Example hyperparameter ranges (you should customize these according to your specific problem):
int_hyperparameter_ranges = {

‘num_leaves': (40, 100),

‘bagging freq': (1, 10),

‘max_depth' : (3,8),

‘'min_child_samples' : (45,60)

}

float_hyperparameter_ranges = {
#'learning_rate': (0.01,0.1),
‘feature_fraction': (0.1, 1.0),
‘bagging_fraction': (0.1, 1.0),
‘colsample_bytree' : (0.1, 1.0),
‘subsample’ : (0.1,1.0)



def

def

update_incumbent(X, X _best, A, C, p, b, 1, 1b, ub, best_sensitivity, best_specificity):

Update solution using equations specific to the Whale Optimization Algorithm (WOA).

Args:

- X (dict): Current solution represented as a dictionary of hyperparameters.
- X_best (dict): Best solution found so far represented as a dictionary of hyperparameters.
A (float): Coefficient controlling step size or movement.

C (float): Coefficient related to the exploration/exploitation balance.

- p (float): Random number for decision making.

b (float): Scaling factor for the cosine term.

- 1 (numpy.ndarray): Random vector for exploration.

1b (float): Lower bound of the search space.

ub (float): Upper bound of the search space.

best_sensitivity (float): Best sensitivity found so far.

- best_specificity (float): Best specificity found so far.

'

'

Returns:
- X_new (dict): Updated solution represented as a dictionary of hyperparameters.
D = np.abs(C * np.array(list(X_best.values())) - np.array(list(X.values())))
1fipli< 0.5
if np.abs(A) < 1:
X_new = {param: value - (A * d) for (param, value), d in zip(X.items(), D)}
else:
rand_solution = {param: random.uniform(lb, ub) for param in X}
X_new = {param: value - (A * d) for (param, value), d in zip(rand_solution.items(), D)}
else:
D_prime = np.abs(np.array(list(X_best.values())) - np.array(list(X.values())))
X_new = {param: d * np.exp(b * 1) * np.cos(2 * np.pi * 1) + value for (param, value), d in zip(X_best.items(), D_prime)}

# Clip values to boundary
X_new_clipped = {param: np.clip(value, 1lb, ub) for param, value in X_new.items()}

# Ensure sensitivity and specificity constraints are satisfied
sensitivity_constraint = best_sensitivity * 0.9 # Allow for a slight decrease in sensitivity
specificity constraint = best_specificity * 0.9 # Allow for a slight decrease in specificity
if 'sensitivity' in X_new_clipped:

X_new_clipped[ 'sensitivity'] = max(X_new_clipped['sensitivity'], sensitivity_constraint)
if 'specificity' in X_new_clipped:

X_new_clipped[ 'specificity'] = max(X_new_clipped[ 'specificity'], specificity_constraint)

return X_new_clipped

whale_optimization_algorithm(n, dimension, 1lb, ub, max_iter, int_hyperparameter_ranges, float_hyperparameter_ranges, xtrain,
X = initialize_search_agents(n, int_hyperparameter ranges, float_hyperparameter_ranges)

X_best = X[np.argmax([train_evaluate_lightgbm(agent, xtrain, ytrain, xtest, ytest)[@] for agent in X])]

best_accuracy, best_sensitivity, best_specificity,best_conf_matrix = train_evaluate_lightgbm(X_best, xtrain, ytrain, xtest, y
#best_fitness = np.inf
best_solution = None
best_accuracy = np.inf
best_sensitivity = np.inf
best_specificity = np.inf
best_conf_matrix = None

for iteration in range(max_iter):
for i in range(n):
2 - 2 * iteration / max_iter # a decreases linearly from 2 to @
2 * a * np.random.rand() - a # Eq. (2.3)
2 * np.random.rand() # Eq. (2.4)
np.random.rand() # Eq. (2.5)
1 # Scaling factor b is kept constant

oT O > o
mwounonnn
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1 = np.random.uniform(-1, 1, dimension) # Eq. (2.6)
X[1] = update_incumbent(X[i], X _best, A, C, p, b, 1, 1b, ub, best_sensitivity, best_specificity)

for i in range(len(X)):
for param in X[i]:
X[i][param] = np.clip(X[i][param], 1lb, ub)
if 'bagging fraction' in X[i]:
X[1][ 'bagging_fraction'] = np.clip(X[i]['bagging_fraction'], 0.1, 1.0)
if 'feature_fraction' in X[i]:
X[i][ 'feature_fraction'] = np.clip(X[i]['feature_fraction'], ©.1, 1.0)

fitness = [train_evaluate_lightgbm(agent, xtrain, ytrain, xtest, ytest) for agent in X]
max_fitness_index = np.argmax([f[@] for f in fitness])
max_accuracy, max_conf_matrix = X_best

if max_accuracy < best_accuracy:
best_accuracy = max_accuracy
best_solution = X_best
#best_solution = X[max_fitness_index]
best_sensitivity = fitness[max_fitness_index][1]
best_specificity = fitness[max_fitness_index][2]
best_conf_matrix = max_conf_matrix
max_fitness_index = np.argmax([f[@] for f in fitness])
max_fitness = fitness[max_fitness_index][0]

if max_fitness < best_accuracy:
best_accuracy = max_fitness
best_solution = X_best
#best_solution = X[max_fitness_index]
best_sensitivity = fitness[max_fitness_index][1]
best_sensitivity = fitness[max_fitness_index][1]
best_specificity = fitness[max_fitness_index][2]
best_conf_matrix = fitness[max_fitness_index][3]

return best_solution, best_accuracy, best_sensitivity, best_specificity,best_conf_matrix

1 = 24 # Number of search agents

iimension = 8 # Dimensionality of the search space
Ib = 100 # Lower bound of the search space

ib = 500 # Upper bound of the search space
nax_iter = 20 # Maximum number of iterations

1 = 24 # Number of search agents

dimension = 8 # Dimensionality of the search space
Ib = 5 # Lower bound of the search space

b = 10 # Upper bound of the search space

nax_iter = 10 # Maximum number of iterations

sest_solution, best_accuracy, best_sensitivity, best_specificity, best_conf_matrix = whale_optimization_algorithm(n, dimension, 1

orint("Best solution:", best_solution)
orint("Best accuracy:", best_accuracy)
orint("Best sensitivity:", best_sensitivity)
orint("Best specificity:", best_specificity)
orint("Best confusion matrix:",best_conf_matrix)
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