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ExecuƟve Summary 

 

Sepsis is a life-threatening medical emergency caused by the body's extreme 
response to an infecƟon, leading to widespread inflammaƟon and severe organ 
damage. InfecƟons, triggering sepsis, typically originate from the gastrointesƟnal 
tract, lungs, skin, or urinary tract. The risk of death from sepsis is as high as 30%, 
increasing to 50% for severe sepsis and up to 80% for sepƟc shock. An extensive 
review of the computerised techniques for the predicƟon of mortality of sepsis 
paƟents has been performed to associate the work done so far in this field. While 
performing the studies, it became evident that since computerised analysis of 
sepsis mortality predicƟon is a relaƟvely emerging field, related literature and 
research work have been limited. There is also a lack of a standardised public 
database of sepsis paƟents.  

This dissertaƟon report aims to develop a classificaƟon model for predicƟng the 
mortality of sepsis paƟents using a machine learning algorithm. LightGBM is 
considered as the predicƟon model whose parameters are tuned by the whale 
opƟmizaƟon algorithm. The proposed predicƟon method helps to take prompt 
decisions on whether a sepsis paƟent admiƩed to the Intensive Care Unit will 
survive or not. 
 
In this approach, the samples of sepsis paƟents are collected from the AMRI 
hospital of Kolkata. The dataset is annotated by a domain expert which helps in 
the pre-processing of the data. A machine learning model is uƟlised to predict 
the mortality of sepsis paƟents. The experimental results demonstrate that the 
proposed predicƟve model has accurately classified the paƟents based on 
mortality. 
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1. Introduction 

1.1 Overview 

Sepsis, as per the Sepsis-3 criteria, denotes a dysregulated systemic 
inflammatory response syndrome triggered by infection, leading to severe 
organ dysfunction and an increased risk of mortality. Organ dysfunction can be 
identified as an acute change in total Sequential Organ Failure Assessment 
(SOFA) score ≥2 points consequent to the infection. Patients afflicted with 
sepsis face a markedly elevated probability of death [1]. In the United States, 
approximately 10% of patients admitted to the Intensive Care Unit (ICU) are 
diagnosed with sepsis, and a significant proportion, roughly 25% of ICU beds 
are occupied by sepsis patients. Considering the elevated mortality rate among 
sepsis patients in the ICU, it becomes imperative to ascertain the risk of in-
hospital mortality as early as possible [2]. Due to the heightened mortality 
rates among sepsis patients in the ICU, it is crucial to promptly identify those at 
risk of in-hospital death. Early and precise detection of sepsis patients with a 
high likelihood of in-hospital mortality enables ICU physicians to make 
informed clinical decisions, potentially enhancing patient outcomes [3].  

In 2017, there were an estimated 48.9 million cases of sepsis globally, resulting 
in approximately 11 million sepsis-related deaths. Developed countries 
reported an incidence of severe sepsis at 4.00 cases per 1,000 population, 
while in China, the incidence of sepsis in intensive care units stood at 20.6%. 
The cost of treating sepsis in the United States surpassed $20 billion in 2009, 
constituting 5.2% of total clinical expenses in U.S. hospitals, which poses a 
significant financial burden on patients and healthcare systems [4]. In the 
United States, the mortality rate for severe sepsis in intensive care units ranges 
from 21.0% to 36.7%, while the hospital mortality rate varies from 22.0% to 
44.5%, depending on factors such as patient population and the definition of 
severe sepsis [5]. 

In recent studies, novel machine learning techniques have showcased 
enhanced predictive capabilities compared to traditional prediction methods 
[6], thereby garnering significant research attention due to the vast 
accumulation of big data and advancements in data storage techniques [7]. 
Notably, various innovative and pragmatic machine-learning approaches have 
been proposed, exhibiting promising prediction performance in medicine, 
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including developing machine learning-based models for ICU mortality 
prediction [8]. 

1.2 Problem Statement 

Whale optimization-based machine learning algorithm for mortality prediction 
in sepsis patients.  

1.3 Objective 

The objectives are: 

a) To develop a whale optimization-based machine learning model for 
mortality prediction of sepsis patients in the ICU. 

b) To identify and select the most relevant features contributing to the 
patient’s mortality. 

c) To optimize the hyperparameters of the machine learning model using 
whale optimization. 

d) To identify the features contributing to the patient’s mortality using 
statistical analysis.  
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2. Background Concepts 

New models have been developed to better predict the likelihood of in-
hospital death among ICU patients with sepsis, as existing severity scores are 
inadequate. Machine learning can process complex, non-linear data to extract 
information and provide insights that assist clinical decision-making. This 
unique technique has been applied in various medical fields to create robust 
risk models and to improve prediction accuracy [8-10]. 

2.1 Whale Optimization Algorithm (WOA) 

The hunting behaviours of humpback whales are based on the idea of creating 
a bubble net to encircle and trap their prey. There are three main ways that 
humpback whales hunt: by encircling their prey, searching for prey, and using 
the bubble-net attacking mechanism. 
Encircling the prey: Humpback whales often work together in groups to 
encircle their prey, creating a barrier or circle around it to prevent escape. 
Similarly, in WOA, candidate solutions are iteratively adjusted and refined to 
encircle the optimal solution. 

𝐷ሬሬ⃗  = |𝐶 . 𝑋⃗*(t) - 𝑋⃗(t)      (1) 
𝑋⃗(t + 1) = 𝑋⃗*(t) - 𝐴.𝐷ሬሬ⃗     (2) 

𝑋⃗*(t) denotes the best search agent of the swarm at iteration t, 𝑋⃗(t) represents 
a candidate search agent of the swarm, 𝐷ሬሬ⃗  denotes the distance between two 
agents as shown in Equations (1) and (2). 

𝐴 = 2. 𝑎⃗ . 𝑟 - 𝑎⃗          (3) 
𝐶   =  2 . 𝑟                 (4) 

where 𝑎⃗  is a vector of 2 that is linearly decreased to 0 over iterations, and 𝑟 is 
a vector of randomly generated numbers in [0,1] based on Gaussian 
distribution as given in Equations (3) and (4). 
Searching for prey: Before encircling the prey, humpback whales search for it in 
the surrounding environment. They use various sensory cues to detect the 
presence of prey. In WOA, this searching behaviour is reflected in the 
exploration phase of the algorithm, where candidate solutions explore the 
solution space to find regions with potentially better solutions as shown in 
Equations (5) and (6). 

𝐷ሬሬ⃗  = |𝐶  ሬሬሬሬ⃗ . 𝑋⃗rand(t) - 𝑋⃗(t)|               (5) 
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𝑋⃗(t + 1) =  𝑋⃗rand(t) - 𝐴 . 𝐷ሬሬ⃗              (6) 

Bubble-net attacking mechanism: The bubble-net technique involves 
humpback whales blowing bubbles in a circular pattern underwater to create a 
barrier, driving the prey towards the surface where they can easily catch it. This 
mechanism is analogous to the exploitation phase of WOA, where candidate 
solutions converge towards the optimal solution identified during the 
exploration phase. 

𝐷ሬሬ⃗ ’ = |𝑋⃗*(t) -  𝑋⃗(t)|                                 (7) 

𝑋⃗(t + 1) = 𝐷ሬሬ⃗ ’. ebl . cos(2πl) + 𝑋⃗*(t)        (8) 

where b is a constant for deciding the scale of spiral, and l is a random number 
uniformly distributed in the interval [-1,1] as shown in Equations (7) and (8). 

Algorithm 
01: Initialise the swarm 𝑋⃗i ( i = 1, 2, …, n) 
02: Evaluate the fitness value of all incumbents 
03:  𝑋 ∗ሬሬሬሬሬሬ⃗  = 𝑋 ∗ (𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (the best incumbent) 
04: While the termination criterion is not met do 
05:  For each incumbent do 
06:       Update a,𝐴,𝐶, l and p 
07:        If (p <0.5) 
08:   If (|𝐴| < 1) 
09:         𝐷ሬሬ⃗  = |𝐶 . 𝑋⃗*(t) - 𝑋⃗(t); 𝑋⃗(t + 1) = 𝑋⃗*(t) - 𝐴.𝐷ሬሬ⃗     
10:   Else 
11:               𝐷ሬሬ⃗  = |𝐶  ሬሬሬሬ⃗ . 𝑋⃗rand(t) - 𝑋⃗(t)|; 𝑋⃗(t + 1) =  𝑋⃗rand(t) - 𝐴 . 𝐷ሬሬ⃗              

12:        Else 
13:     𝐷ሬሬ⃗ ’ = |𝑋⃗*(t) -  𝑋⃗(t)|; 𝑋⃗(t + 1) = 𝐷ሬሬ⃗ ’. ebl . cos(2πl) + 𝑋⃗*(t)        

14: End For 
15: Revise the incumbent if it exceeds the boundary 
16: Calculate the fitness value for all incumbents 
17: Update the best incumbent 𝑋 ∗ (𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ if there is any promotion 
18: End While 
19: return 𝑋 ∗ (𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  
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Figure 1: Flowchart of WOA for hyperparameter optimization in LightGBM [11] 
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2.2 WOA for Hyperparameter Optimization 
 
Initialisation 
A collection of hyperparameters is used to construct each search agent 
randomly based on a uniform distribution. These configurations can be applied 
to the decision-making process of machine learning algorithms. Every search 
agent can be considered a WOA solution, with each sub-solution representing 
a hyperparameter. After encoding is complete, WOA will select the best search 
agent (X*) from the newly generated search agents by assessing each swarm 
member in the context of the intended training model. Figure 1 shows the 
flowchart of the WOA for LightGBM hyperparameter optimization.  
 
Transition 
WOA creates this process. At the start of each cycle, WOA randomly creates 
distinct coefficients for each search agent. This process helps prevent the early 
convergence issue by diversifying the moving path. The new position is then 
adjusted in accordance with vector 𝐴, and probability p. Search agents have 
more opportunities to refer to the prey as each iteration progresses. More 
precisely, there is an eventual increase in the probability of choosing the 
optimal search agent.  However, as a result of parameter 𝑎⃗ being reduced from 
2 to 0, there is no longer any possibility that 𝐴 will increase to more than 1 
during the second half of the total number of iterations. As a result, at the later 
stage, the prey-searching mechanism (i.e. Eqs. (5) and (6)) will be completely 
removed. Out-of-order solutions cannot exist throughout the search process; 
once the new position is established, the boundary requirements must be met 
if the search agent exceeds the allotted amount. 

Evaluation 

Evaluation involves assessing the outcomes using a machine learning model. 
Every search agent has a hyperparameter configuration associated with it. 
These hyperparameter values, verified by testing current WOA candidates, 
comprise the solutions.  
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Determination 
It uses feedback from the training model to determine performance. The best 
search agent is replaced by improved configurations, updating positions until 
termination requirements are achieved [11]. 
2.3 Gradient Boosting Machine Model 
Gradient Boost Algorithm (GBM) is a machine learning technique influenced by 
learning theory. It employs a series of decision trees and constructs trees in 
order, reducing the residual errors of earlier trees and fixing previous issues. 
To get the most homogeneous responses to the predictors, the GBM 
framework algorithm partitions the input variables to minimise the loss 
function. GBM constantly shows better prediction accuracy than other 
machine learning models, such as Random Forests and support vector 
networks. Their effectiveness is due to their repetitive feature, in which each 
repetition expands based on the knowledge of the preceding learner. GBM 
models handle a variety of data formats with minimal effort for data 
preprocessing. 
Weak Learners 
Gradient boosting builds an ensemble of weak learners, typically decision trees 
with limited depth. These weak learners are simple models that perform 
slightly better than random guessing. 
Residuals 
Initially, the model makes a prediction on the training data. The difference 
between the actual outcomes and the predicted outcomes is known as the 
residuals. 
Iterative Fitting  
In each iteration, a new weak learner is trained to predict the residuals (errors) 
from the previous model. By focusing on these residuals, the new learner aims 
to correct the errors made by the previous models. 
Model Update 
The predictions from the new weak learner are added to the overall model's 
prediction. This process of updating the model by adding new learners is 
repeated for a predefined number of iterations or until the performance 
improvement occurs. 
Weighted Sum of Learners 
The final model is a weighted sum of all the weak learners, where each learner 
corrects the errors of the preceding ones. This aggregation of models results in 
a robust prediction system [12]. 
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3. Literature Survey 

Su et al. [13] presented a study on three machine learning models for 
predicting sepsis patient mortality in the ICU. The performance of three 
machine learning models, namely logistic regression, random forest, and 
XGBoost, were compared. The Least Absolute Shrinkage and Selection Operator 
(LASSO) was applied for feature selection. The training and test sets were 
divided randomly by 70% and 30%. The best performance was observed for 
random forest, which resulted in an AUC of 0.77.  

Guo et al. [14] performed a retrospective study on the prediction of 30-day 
mortality on sepsis using Artificial Neural Network (ANN). Three layers 
comprised the fundamental architecture of the Artificial Neural Network: the 
input layer, the hidden layer, and the output layer. The input layer comprised 12 
nodes, the hidden layer comprised 6 nodes, and the output layer had 2 nodes. 
An oversampling algorithm was applied to deal with the imbalance between 
training and validation sets. The model achieved an AUC of 0.873 on the 
training and 0.811 on the validation set. 
Hou et al. [15] established a 30-day mortality prediction model based on real-
world data for patients with sepsis 3.0. Three predictive models namely 
eXtreme Gradient Boosting (XGBoost), conventional logistic regression, and 
SAPS-II score prediction models, were used. The performance was compared 
using AUCs receiver operating curve and decision curve. The XGBoost model 
achieved the best result with an AUC of 0.857. 

Peng et al. [16] developed and validated 9 different machine-learning models 
to predict 30-day mortality in patients with encephalopathy associated with 
sepsis. In this approach, the top 15 features were selected using the Recursive 
Feature Elimination (RFE) method. Then 9 models were employed, namely 
artificial neural network (NNET), Naïve Bayes (NB), Logistic Regression (LR), 
Gradient Boosting Machine (GBM), Adaptation boosting (AdaBoost), Random 
Forest (RF), bagged trees (BT), XGBoost and CatBoost. For internal validation, a 
bootstrap resampling technique was utilised with 100 iterations. The NNET, LR, 
and AdaBoost models performed well in calibration, as seen by their high 
prediction accuracy with p-values of 0.831, 0.119, and 0.129, respectively. 
Adapting boosting got an AUC of 0.834 in the test set.  
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Taylor et al. [17] compared three machine learning models, namely the 
Random Forest model, the Classification and Regression Tree (CART) model, 
and the logistic regression model, to predict in-hospital mortality of sepsis 
patients in the emergency department (ED). All models predicted in-hospital 
mortality with an AUC greater than 0.69. The random forest model achieved an 
AUC of 0.86. 

In the field of sepsis research, Zhang et al. [18] utilised the LASSO method to 
develop a tool for predicting the mortality risk of sepsis patients using the 
Medical Information Mart for Intensive Care (MIMIC) III dataset. Their findings 
demonstrated that the LASSO-based prediction model outperformed the SOFA 
score regarding discrimination by achieving an AUC of 0.772. 

Zamani et al. [19] employed four swarm intelligence algorithms, namely 
Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA), 
Firefly Algorithm (FA), and Invasive Weed Optimization (IWO), for breast 
cancer diagnosis. The datasets were divided into two sets, a training set and a 
test set, of 70% and 30%, respectively, at random. The performance of each 
algorithm was assessed using the multi-layer perceptron (MLP) network. The 
Kolmogorov theorem was used in the MLP network to calculate the number of 
hidden nodes, and the number of inputs is set with the number of features. For 
all the algorithms, the maximum iteration was fixed at 15, and the initial 
population size was set to 30. It was observed that the Firefly Algorithm 
showed the best performance with an accuracy of 98.54%.  

In diagnosing type II diabetes [20], the feature selection was done using 
Particle Swarm Optimization. Meta-heuristic algorithms, Grid Search, and a 
Genetic algorithm optimized the hyperparameters. The machine learning 
models Decision Tree, KNN, Multi-layer Perceptron (MLP), and Support Vector 
Machine (SVM) were employed to calculate the results. GA-SVM achieved the 
best result with an AUC of 0.93. 

In [21], the Whale Optimization Algorithm (WOA) and SVM were used in 20 
images to develop an intelligent lung tumour diagnosis system. The WOA in 
this study helped to select the best feature subsets. Then, the accuracies of 
SVM with kernels, namely linear, Polynomial, and Radial Based Function (RBF), 
were compared. RBF SVM provided the best accuracy of 95%. 
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4. Proposed Approach 

The work aims to create a predictive model for assessing the mortality of sepsis 
patients in the ICU. LightGBM, a machine learning model is used to predict the 
survival or mortality of sepsis patients and fine-tune the hyperparameters 
using the whale optimization algorithm. 

The dataset of sepsis patients collected from the primary care hospital in 
Kolkata has been annotated by a domain expert while maintaining 
confidentiality and anonymity. To improve the performance of machine 
learning models, data augmentation has been performed on the dataset. 
Subsequently, feature selection using Analysis of Variance (ANOVA) has been 
carried out on this augmented dataset. The selected features are then used for 
model training. Before training the model, hyperparameter tuning is conducted 
using a whale optimization algorithm, which involves using an objective 
function to evaluate the performance of the model with different sets of 
hyperparameters. The search agents (whales) are initially initialised with 
random values within the specified hyperparameter ranges. Each agent's 
performance is evaluated using an objective function that trains a LightGBM 
model with the agent's hyperparameters and provides classification scores and 
performance measures. The agent with the highest accuracy is identified as the 
best agent.  

4.1 Dataset Description 

The dataset used in this study is collected from a primary care hospital in 
Kolkata. To protect patient confidentiality, all patient identities are removed. 
The database consists of 503 patient records with 105 features, including 30 
clinical features, one target feature, and 104 independent features. Of the 503 
patients, three-quarters are non-survivors, with 178 belonging to the survivor 
category. 
 
4.2 Data Pre-processing 

The following steps are performed to pre-process the data. 
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Handling of Missing Values 

It is very common to encounter many missing values in a medical dataset, and 
this dataset is no exception. In this case, the fields with missing values are set 
to 0 because the domain expert had no information about them. Setting these 
values to 0 helps eliminate biases that could have occurred if we had 
considered 1 or 2 instead. This could have affected the model analysis due to 
increased Type I and II errors. 

Handling of Categorical Features 

In machine learning, when training and validating a model, categorical features 
need to be converted to numerical features. This is achieved through a process 
called one-hot encoding, which transforms the categorical features into binary 
numerical variables. In the dataset, out of 104 independent columns, 76 are 
categorical, which are replaced with 91 one-hot encoded columns. With one-
hot encoding, each categorical feature is represented in different binary 
columns based on the number of categories, making them easier for machine 
learning algorithms to interpret.  

Data Augmentation 

Due to the small size of the dataset, the number of patient records is increased 
after removing the missing values and converting the categorical data. To 
address this, Gretel.ai, a synthetic data-generating tool, creates 5000 synthetic 
data points based on the original 503 patients' data. The clinical features in the 
augmented dataset align with the reference range of the original clinical 
values. It is important to note that machine learning models may not yield 
accurate results when working with small sample datasets.  

Removing the Outliers 

After data augmentation, the dataset contains some outliers, which are 
removed by deleting those records. After removing the outliers, the total 
number of datapoints is 3650 with 195 features. 

Feature Selection 

40 features are selected out of 195 using statistical analysis tests, such as 
ANOVA, to select the most relevant features that directly contribute to the final 
output. The features, along with the p-values, are shown in Table 1. 
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Table 1: Significance analysis of clinical features using ANOVA test 

 

Feature p-value 
1. Cumulative_fluid_1_0 7.788e^(-97) 
2. Cumulative_fluid_2_0 5.023e^(-78) 

3. Loading_dose_1_0 3.24e^(-76) 
4. Nutrition_started_1_0 4.381e^(-73) 

5. Systolic_BP_lesser_than_90_2_0 1.019e^(-71) 
6. Rel_Support_2_0 1.235e^(-71) 

7. Was_sedation_scale_2_0 2.232e^(-70) 
8. Infection__PrimaryReason_ICU_Admission__1_0 5.828e^(-69) 

9. Blood_transfusion_2_0 2.335e^(-68) 
10. Pain_scale_monitored_2_0 4.991e^(-66) 

11. DVT_prophylaxis_1_0 5.227e^(-65) 
12. encephalopathy_2_0 1.212e^(-64) 

13. CI_sedation_2_0 7.427e^(-64) 
14. Any_Other_Culture_Sent_1_0 1.297e^(-63) 

15. Rel_adjustment_1_0 1.462e^(-63) 
16. Hemodymic_monitoring_1_0 1.729e^(-59) 

17. vasopressor_1_0 2.042e^(-59) 
18. Clinical_Feature_hypoperfusion_2_0 9.597e^(-58) 

19. Nutrition_started_2_0 9.630e^(-58) 
20. Descalation_of_antibiotic_2_0 6.022e^(-57) 

21. Was_sedation_scale_1_0 1.217e^(-56) 
22. Thiamine_2_0 1.257e^(-56) 

23. Discharge_medical_advice_2_0 6.116e^(-56) 
24. Albumin_infusion__3hr_2_0 1.276e^(-55) 

25. Loading_dose_2_0 2.205e^(-54) 
26. septic_shock_1_0 1.979e^(-52) 

27. Systolic_BP_lesser_than_90_1_0 5.110e^(-52) 
28. encephalopathy_1_0 9.922e^(-52) 

29. Blood_transfusion_1_0 1.555e^(-51) 
30. Infection__PrimaryReason_ICU_Admission__2_0 1.721e^(-51) 

31. Pain_scale_monitored_1_0 2.577e^(-51) 
32. Inf_organism_cultured_1_0 9.209e^(-51) 

33. Rel_Support_1_0 2.195e^(-50) 
34. Any_Other_Culture_Sent_2_0 1.274e^(-48) 
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Feature p-value 
35. Corticosteroids_2_0 5.071e^(-48) 
36. Rel_adjustment_2_0 1.805e^(-47) 

37. Clinical_Feature_hypoperfusion_1_0 4.488e^(-46) 
38. vasopressor_2_0 3.789e^(-43) 

39. Descalation_of_antibiotic_1_0 4.119e^(-43) 
40. DVT_prophylaxis_2_0 4.657e^(-43) 

 

4.3 Methodology 

Figure 2 shows the framework of the classification method. After increasing the 
number of samples in the dataset, the pre-processing steps are performed. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Framework of the classification method 
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The top 40 features are extracted using ANOVA. After the features are 
identified through ANOVA, the whole dataset is split into a training set and a 
testing set. 

A meta-heuristic optimization algorithm is applied to adjust the 
hyperparameters of the LightGBM model for improved model performance. 
The meta-heuristic optimization technique, namely the whale optimization 
algorithm, is applied to obtain the optimized hyperparameters of LightGBM, 
which are then fed into the model for training. Each set of hyperparameters 
contains 8 hyperparameters: 1) number of leaves, 2) bagging frequency, 3) 
maximum depth, 4) min_child_samples, 5) feature fraction, 6) bagging fraction, 
7) colsample_bytree, 8) subsample.  

The fitness function used in the Whale Optimization algorithm is optimized to 
get the best results. The fitness function takes the LightGBM model as the 
input which gives the classification accuracy, sensitivity(recall), specificity, and 
hyperparameters. Specific intervals for each parameter define the range of 
hyperparameter exploration, enabling a comprehensive analysis of the 
parameter space while limiting the search to feasible areas. The whale 
optimization algorithm uses 24 search agents, a space with 8 dimensions, and 
a maximum number of iterations of 10. The search space's lower bound is 5, 
and its upper bound is 10. 



15 
 

5. Results and Analysis 

In this work, Python (version 3.10.9) is used as the run-time environment with 
the required built-in libraries, such as numpy and pandas. Lightgbm, a Python 
library, is considered for the LightGBM model implementation. Sklearn built-in 
packages are considered for the evaluation metrics. 

In a medical dataset of critical diseases, the ratio of the presence or absence of 
such diseases in an individual varies significantly. In this case, accurately 
predicting the death or survival of sepsis patients admitted to the ICU is crucial 
and must not be misrepresented. True positives indicate correctly identified 
sepsis patients who will die, contributing to high sensitivity (recall), crucial for 
timely interventions and treatment. Conversely, a greater number of false 
positives decreases precision and increases the risk of patients to remain 
untreated. False negatives indicate missed positive cases, reducing sensitivity 
and suggesting unnecessary treatment to survivors. High true negatives 
contribute to high specificity, ensuring the correct identification of surviving 
patients. Thus, false negatives and false positives should be low, while true 
positives and true negatives must be as high as possible. Sensitivity (True 
Positive Rate) measures the proportion of actual positive cases(survivors) that 
are correctly identified by the model. In mathematical terms, sensitivity can be 
represented as shown in Equation (9): 

Sensitivity (Recall) = ்௉

்௉ ା ிே
                   (9) 

where TP represents the number of true positives, and FN denotes the number 
of false negatives. 

The dataset used in the proposed approach consists of sepsis patient data with 
an imbalanced mortality ratio of 2:1. There are 2279 individuals in the 
deceased category and 1371 individuals in the survivor category. In this 
context, it's important to note that classification accuracy may not provide the 
desired results due to the imbalanced ratio. Experimental results demonstrate 
that with a mortality ratio 2:1, the accuracy obtained is 72.8%, while the 
sensitivity is 84.9%. The model correctly predicted the 72.8% survivor class, but 
the rest of the 27.2% were considered dead as survivors. Thus, sensitivity has 
been chosen as the preferred metric due to its ability to provide effective 
results. Sensitivity is higher in this case because it measures the proportion of 
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actual positives that are correctly identified, which is crucial in medical 
diagnoses whereas missing a positive case (false negative) can have severe 
consequences. Therefore, ensuring a high sensitivity helps in accurately 
identifying patients with sepsis, thereby reducing the risk of undetected 
positive cases. Specificity measures the model’s ability to correctly identify all 
negative instances. In mathematical terms, specificity can be represented as 
shown in Equation (10): 

Specificity = ்ே

்ே ା ி௉
               (10) 

where TN denotes true negative, and FP denotes false positive. In this case, 
specificity is 51.3%. 

Additionally, the F1 score is an essential metric in evaluating model 
performance in imbalanced datasets, particularly in the healthcare domain. 
The F1 score harmonizes precision and recall, offering a balanced assessment 
of the classifier's accuracy by considering both false positives and false 
negatives, which are critical considerations in medical diagnosis. It is calculated 
as the harmonic mean of precision and recall. Recall represents sensitivity. 
Precision represents the proportion of positive predictions that are actually 
correct. Precision and F1 score can be calculated using the expressions shown 
in Equations (11) and (12): 

  Precision = ்௉

்௉ାி௉
                 (11) 

 

F1 = ଶ ✕ ௉௥௘௖௜௦௜௢௡ ✕ ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟
                 (12) 

where TP represents true positives and FP represents false positives. In this 
case, the precision is 75.5%, and the F1-score is 0.799. The confusion matrix of 
the test dataset is shown in Figure 3. 
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Figure 3: Confusion Matrix 

This confusion matrix is used to evaluate the performance of the binary 
classification model. It compares the actual labels (true labels) with the 
predicted labels produced by the model. 133 patients who survived are 
accurately classified as such (true negatives), while 126 survivors are 
incorrectly predicted as deceased (false positives). Additionally, the model fails 
to identify 69 patients who ultimately succumbed to sepsis (false negatives) 
but successfully identifies 389 individuals who unfortunately passed away (true 
positives). 

Table 2: Hyperparameters selected for whale optimization and their optimized 
values 

Hyperparameter Value 
num_leaves 61 

bagging_freq 6 
max_depth 5 

min_child_samples 56 
feature_fraction 0.902952284118516 
bagging_fraction 0.23112898351107802 
colsample_bytree 0.6402379665917124 

subsample 0.6700526236007138 

The hyperparameter optimization process for LightGBM model yields the best 
set of hyperparameters as shown in Table 2. The num_leaves is set to 61, 
within the search space of [40, 100], allowing the model to capture complex 
interactions within the data; bagging_freq is optimized at 6, within the search 
space of [1, 10], enhancing robustness by reducing overfitting; max_depth is 
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set to 5, within the search space of [3, 8], striking a balance between capturing 
intricate patterns and avoiding overfitting; min_child_samples is set to 56, 
within the search space of [45, 60], serving as a regularization parameter to 
prevent splitting nodes with very few samples; feature_fraction and 
colsample_bytree are set to 0.902952284118516 and 0.6402379665917124 
respectively, within the search space of [0.1, 1], ensuring diverse subsets of 
features and reducing overfitting; bagging_fraction and subsample are set to 
0.23112898351107802 and 0.6700526236007138 respectively, within the 
search space of [0.1, 1], effectively using subsampling to enhance model 
robustness and generalization performance. These hyperparameters, tuned 
within specified search spaces, balance model complexity, computational 
efficiency, and performance, significantly improving the model's robustness 
and predictive accuracy. 

The following parameters of the machine learning model are considered for 
training. The loss function used is the binary cross-entropy loss, which is a 
standard for binary classification tasks and is calculated internally by using the 
Equation (13):  

Loss = -ଵ

ே
∑ [𝑦௜𝑙𝑜𝑔(𝑝௜) + (1 − 𝑦௜)𝑙𝑜𝑔(1 − 𝑝௜)]ே

௜ୀଵ        (13) 

where 𝑦௜  represents the true binary label, 𝑝௜  represents the predicted 
probability for the positive class, and N is the number of samples. A learning 
rate of 0.1 is used. GBDT is chosen as the boosting type. The model is trained 
for 100 boosting iterations. LightGBM doesn't have a default batch size 
parameter, as the entire dataset is generally used in each boosting iteration. 
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6. Conclusion and Future Scope 

The proposed approach predicts the mortality of sepsis patients by tuning the 
hyperparameters of LightGBM by using a meta-heuristic algorithm to improve 
the performance of the gradient boosting model. Performance of the LightGBM 
model is measured in the sepsis patient dataset which is augmented and pre-
processed. Sets of 8 hyperparameters of the LightGBM model are tuned to 
improve the model performance. Each agent's performance is evaluated using 
an objective function that trains a LightGBM model with the agent's 
hyperparameters and returns performance metrics (accuracy, sensitivity, 
specificity, confusion matrix). As it is an imbalanced dataset with an imbalance 
ratio of 2:1, accuracy is not the correct metric for performance evaluation as it 
may consider some dead patients as survivors. For performance evaluation 
sensitivity is preferred. Sensitivity (True Positive Rate) measures the proportion 
of actual positive cases (survivors) that are correctly identified by the model. 
This approach achieved an accuracy of 72.8% with a sensitivity of 84.9%. and 
specificity of 51.3%. Additionally, the F1-score is calculated as it harmonizes 
precision and recall, offering a balanced assessment of a classifier's accuracy by 
considering both false positives and false negatives. The calculated F1-score is 
0.799. 

In the future, this work can be extended further to improve the evaluation 
metrics of the model by applying other meta-heuristic and hybrid meta-
heuristic algorithms to auto tune the hyperparameters.  
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Appendix 

Sepsis patient mortality prediction model using Whale Optimization 
Algorithm and LightGBM.  
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