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Executive Summary

Emotion detection from text has emerged as a critical area of research, given the vast
amount of textual data generated daily on social media platforms, customer reviews,
and other digital sources. Understanding emotions expressed in text has implications
for various domains, including marketing, customer service, mental health, and
sentiment analysis. This thesis aims to investigate the effectiveness of machine
learning techniques in detecting and analyzing emotions from textual data.
Specifically, the research seeks to develop a robust model capable of accurately
identifying and categorizing emotions expressed in text. The methodology comprises
data collection, data preprocessing, Feature Engineering, Model Development and
Evaluation Process. In this Proposed Method Get () Sentiment Model is more accurate
and effective to detect Sentiment from textual data as compare to previously used N-
grams, BERT, Word Cloud etc. and solves word ambiguity problems as well. To
check performance of system various machine learning algorithms like Logistic
Regression, Naive Bayes Classifier, Support Vector Machine, Random Forest, KNN
and also unsupervised Machine Learning model like K-Means Clustering. Bernoulli
and Gaussian Naive Bayes algorithms never used for text classification but two
Methods have been used to get better results. The performance of the proposed model
with previously used model is compared. Experimental results demonstrate the

effectiveness of machine learning models in detecting emotions from text.
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ISEAR dataset has been used for this study and were tested all models using ISEAR
standards criteria. The dataset contained different form of Text message, comments
and reviews. For pre-cleaning process of dataset, all unrelated attributes have been
ignored. Unrelated attributes things can make confused during analysis phase. But all
necessary actions have been taken related to datasets during the time of data cleaning
process. Every cycle of this research different actions, modifications have been taken
as per need time to time. In the existing models have various kind of problems which
have been found and solve some vital problems. Also Used new models that have
been succeed to provide better results related to accuracy and other things. used to
this study various machine learning techniques like Naive bayes Classifier, Logistic
Regression, Linear Regression, Random Forest Classifier, Gradient boost Classifier
etc. Actually, various factor can affect our sentiment analysis accuracy, word
ambiguity is one of them and a very serious problem. Previously various machine
learning algorithms failed to provide very good results. This study one of its kind
proposed systems are more accurate compare to previous and will help in the field of
natural language processing in the context of emotion detection and sentiment

analysis.
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1. INTRODUCTION

1.1 Overview

Emotion detection will play a promising role in the field of Human Computer
Interaction and interface development. In today’s world, a majority of users have
access to internet for exchange communication via text, Image, audio and video.
Emotion can be expressed by a person’s speech, face expression and also written text
known as Text based emotion. With the growing population in countries like India, it
has led to tremendous growth in the number of users using Facebook, WhatsApp,
Twitter, Instagram and also online shopping app like Amazon, Flipkart, Paytm Mall,
Messo etc. The large scale of these users or people are providing feedback, asking any
query related to online networks and related things via Text message now a days in
the current Technological world. Researchers collected all text message from various
online platforms and analysis accordingly to make them more efficient and more
compact. But it has become a challenge in recent years to extract valuable information
from these growing data in the form of posts, emails, blogs, tweets, revies, comments,
surveys on the Web in the process of any decision making. It is very much difficult to
detect emotion from Text because human mind is so complex and even dataset might
not be ready for the proposed research. But to simply Two affect class has been
categorized in three categories like positive, negative and neutral. Recently,
researchers have proposed various methods for text emotion detection including
keyword-based method, learning-based and hybrid models, lexical similarity models.
At first, they introduced a rule-based approach such as lexical affinity based and

keyword based. Then came a new approach, the learning-based approach. This
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method was more accurate and gave better results as expected. Many researchers
begun to combine these approaches named hybrid model to get better accuracy they
got more better accuracy but they failed to get very good accuracy as expected that

can make this research more efficient.

Then came the name of new techniques such as machine learning based models to
detect emotion and classify the all affect class one by one followed by getting very
good accuracy as expected. Researches have used some machine learning models to
classify the emotions and sentiments and also improve existing model’s accuracy. But
also used machine learning models have some very crucial problems and some models
also have been failed to detect emotion more accurately and to provide good accuracy

results as per need.

In this study, the new methods have been proposed followed by solving the problems
to the existing models, datasets and has been improved accuracy and got very good

result.
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1.2. Problem Statement

Detection of Emotion from Textual Data using Machine Learning

1.3. Objectives

The objectives of my research work are as follows:

v To find more efficient Machine Learning algorithms to detect Emotion from
textual data for this study to get better results.

v To find out problems in dataset, data preprocessing phase and model
Development phase.

v To find the problems in used models and how to solve the problems and improve
accuracy of existing models.

v" To solve the problem of word ambiguity in text messages.

v To Find best feature Extraction method for this study.

v" To develop more accurate Sentiment detection algorithm.
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1.4 Assumptions and Scopes

1.4.1 Assumptions

e Developers must have good network connection with laptops or PC.

e Developers must have a proper system setup like Google Colab, Jupyter Notebook already
installed in PC.

e Developers must have good knowledge of Python, Data analysis and machine

Learning for programmatic access.

1.4.2 Scopes

e To do emotion detection from text message such CSV. files

e To learn about Python and Machine Learning

1.5 Concept and Problem Analysis

Emotion detection involves identifying and categorizing emotions expressed by users
through different modalities such as text, speech, and facial expressions. In the context
of Human-Computer Interaction (HCI), this capability can enhance user experience by
allowing systems to respond appropriately to users' emotional states. Detecting emotion
from text is difficult due to the complexity of the human mind and the potential
inadequacy of existing datasets for proposed research.

To simplify the task, emotions have been categorized into three classes: positive,
negative, and neutral. Recently, researchers have proposed various methods for text
emotion detection, including keyword-based methods, learning-based methods, hybrid
models, and lexical similarity models. Initially, rule-based approaches such as lexical

affinity-based and keyword-based methods were introduced. Subsequently, a learning-
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based approach was developed, which proved to be more accurate and yielded better

results.

Researchers began combining these approaches into hybrid models to achieve higher

accuracy. Although these models showed improved accuracy, they still fell short of the

high expectations necessary for making the research more efficient. Machine learning-

based models emerged as a new technique for detecting and classifying emotions,

providing significantly improved accuracy. Researchers employed various machine

learning models to classify emotions and sentiments, thereby enhancing the accuracy of

existing models. However, these models also faced critical challenges and some failed to

detect emotions accurately, resulting in suboptimal performance.

In this research, new methods are proposed to address the problems of existing models

and datasets, ultimately improving accuracy and achieving impressive results. One

notable issue at the document level is the expression of multiple emotions within the same

document. Based on analysis and studies from previous research, several limitations have

been identified:

= Handling the complexity of the human mind and the subtleties of text-based emotion.

» Ensuring datasets are comprehensive and representative of diverse emotional
expressions.

= Achieving high accuracy in emotion detection despite the presence of multiple
emotions in a single document.

= Developing models that can reliably and accurately classify emotions in various
contexts and platforms.

By addressing these challenges, the research aims to advance the field of text-based

emotion detection and enhance the capabilities of Human-Computer Interaction systems.

Some problem of document-level occurs when multiple emotions are expressed in the
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same document. By analysis and study from previous research below are some

limitations:

a)
b)
c)
d)
e)
f)
9)
h)

Word ambiguity.

Lack of linguistic Information.

In capability to recognize emotion in absence of emotion keyword.
Existing models not providing better accuracy.

Existing emotion detection- based Algorithm is not more efficient.
Some machine learning Technique’s overfitting Problem.

Different types of same algorithm (Naive bayes) giving different results.

Multinomial Naive Bayes Algorithm failed to perform well.
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1.6 Organization of the Thesis

VI.

VIL.

VIII.

Chapter 1 — This chapter contains the introduction of the thesis which includes
overview, problem statement, objectives, assumptions, scopes, concept and
problem analysis.

Chapter 2 — It includes all the literature surveys done to carry out the research
work.

Chapter 3 — It includes proposed approach that has been used to detect Emotion
from text.

Chapter 4 — This chapter contains the implementation and result.

Chapter 5 — This chapter contains the comparative analysis.

Chapter 6 — This chapter describes the conclusion and scope of future scopes.
References — All the references are given here.

Appendix Part A — This part contains system requirements, software
requirements, programming requirements and download speed.

Appendix Part B — Here are all the code snippets provided.
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2. LITERATURE SURVEY

Vishaka Singh et al. [1], proposed an Emotion Detection Model taking two different
Feature extraction Model Term Frequency- Inverse Frequency (TFDF) and Count
Vectorizer using Logistic Regression, Random Forest Classifier models etc. here
researchers consider 20000 dataset for the study and applying models on preprocessed
data the highest accuracy obtained in Count Vectorizer using Logistic Regression
88% in the case of Data set Split Ratio is 70:30 but more need to improve on

preprocessing Phase on Textual Dataset and Consider more data as well.

Ms. Pinal Solanki [2], considered a small Data set for this research, the proposed study
found that SVC and TFDF is more accurate and SVC gave highest accuracy, focuses
on feature extraction method and word recognition for getting better results but word
ambiguity problems were not considered here. During this study researchers faced
some problems such text is commonly displayed unclear, some sentences may be
sarcastic and sentiment is unclear due to the presence of multiple points of the view

on the subjects

Firdaus et al. [3] focus on the application of text emotion detection for retweet
prediction, a task crucial in social media analytics. The paper proposes a topic-specific
approach to emotion detection, leveraging machine learning techniques. By
associating emotions with specific topics, the authors aim to enhance the accuracy of
retweet prediction models. This study highlights the practical applications of text
emotion detection beyond sentiment analysis, demonstrating its utility in social media

data analysis and prediction tasks.
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Oliveira et al. [4], proposed Generalized Linear Model with taking 1000 features total
of 2302 features sets were explored, where each features sets has 100-1000 features
extracted from the Text. The results demonstrate Generalized Linear Model provides
the best Accuracy score (0.92), Recall (0.902), Precision (0.902), F1 score (0.901)

with standard deviation of accuracy of +1,2%.

Shaikh Abdul et al. [5] proposed machine learning based sentiment detection model
using Naive Bayes Algorithm, Support Vector Machines, K-means Clustering. For
this study the twitter data was required and converted from word to vector of Eight
emotions and applied feature extraction techniques to get better classification
accuracy. According to this research 13000 data used and experiment resulted that
support vector machines accuracy was 80%, Naive Bayes models Accuracy was 50%.
It evident that SVC and Naive bayes far better that K-means but the accuracy of every
model needs to be improved as well. Hence Pre-processing data still remains one of

the most crucial streps which needs to be improved to get more accurate results.

P Ancy et al. [6] approached a rule-based emotion detection model involves various
NLP Process for classification. Automatic Classification Approach Supervised
Machine Learning Models like Naive Bayes Algorithm, SVC, Linear Regression and
Unsupervised Machine Learning approach is used to explore data but got bad results
due to various problems in Data set. In case of supervised Machine Learning Models

highest accuracy obtained.
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Amal Shameem et al. [8] proposed machine learning based sentiment detection model
using Decision Tree Classifier Support Vector Machines. For this study the twitter
data was required and converted from word to vector of Eight emotions and applied
feature extraction techniques to get better classification accuracy. Decision Tree
Classifier has the best average performance in terms of efficiency, sensitivity and
flscore at 84.7%, 74.2%, and 94.1% respectively. Throughout this study Researchers
work on the to identify emotions based on text., SVC, Nested Linear SVC methods
can be used to identify emotions in multiclass based on the results of the discussion
and evaluation conducted in the previous section. Random Forest Classifier has the
best accuracy. The experimental findings demonstrated that machine learning-driven
text emotion classification outperforms established learning methodologies,

exhibiting notably superior accuracy rates.

Poonam Arya et al. [10] proposed a hybrid model that incorporates natural language
processing technique, including keyword-based and machine learning-based emotion
classification from textual data at sentence level. Supervised and unsupervised
technique has been used. Limitations of this study are Word ambiguity, Incapability
to recognize emotion in absence of emotion keyword, Emotion categories. Machine

Learning Model provided 63% accuracy compared to Keyword Based Model.
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Goru Swathi et al. [11] developed an emotion recognition system for text-based
content. The proposed model is a combination of machine learning approaches.
According to the observation Logistic regression gives highest accuracy of 84% as
compared to KNN, SVM, Naive Bayes, Decision Tree. But this research can be

extended by making a real-time test-based emotion recognition system.

S. Arun Kumar S. et al. [12] The study delved into algorithms for identifying emotions
from textual data and detecting emotional cues within the text. These approaches are
combination of machine learning and CNN, here considered only Machine learning
Algorithms. Besides NRC Lex, NLP method also considered for this study their

accuracy 64.44, 83.36 respectively.

Garg and Saxena [16] proposed a machine learning-based approach for emotion
detection and human behavior analysis. Garg and Saxena employed machine learning
techniques for emotion detection from text data. They utilized computational
intelligence methods for sentiment analysis, emphasizing the importance of accurate

emotion classification for understanding human behavior.

Bhavya A.V. et al. [18] proposed an Al based machine Learning Model. Emotion
detection from text has garnered significant attention due to its wide-ranging
applications in various fields, including healthcare, customer service, and social
media analysis. However, existing emotion detection models often overlook the
personalized nature of emotions, leading to suboptimal performance in capturing
individual nuances. In this paper, we propose a novel approach for personalized
emotion detection from text using machine learning techniques. Present research

worker’s approach leverages user-specific data to tailor emotion detection models to
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individual users, thereby enhancing the accuracy and effectiveness of emotion
classification. Present research worker conducts experiment on a diverse dataset
collected from social media platforms, demonstrating the superiority of our
personalized approach over traditional methods. The results highlight the importance
of considering individual differences in emotion expression for achieving more
accurate emotion detection from text.

Nath, S., Shahi, et al [19] recognized an emotion Detection Model emotion
recognition is a crucial task with applications in various domains such as human-
computer interaction, affective computing, and mental health assessment. In this
paper, they present a comparative study on SER utilizing machine learning
techniques. Present research worker’s study investigates the performance of different
machine learning algorithms and feature extraction methods for recognizing emotions
from speech signals. They conduct experiments on benchmark datasets, evaluating
the accuracy, robustness, and computational efficiency of the proposed approaches.
Through comprehensive analysis and comparison, they identify the strengths and
weaknesses of each method, providing insights into the most effective strategies for
SER tasks. Their findings contribute to advancing the state-of-the-art in speech
emotion recognition and offer valuable guidance for researchers and practitioners in

this field.
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3. PROPOSED APPROACH

In the proposed system, various supervised machine learning models have been used
such as Naive Bayes, Support Vector Machine, Random Forest Classifier, KNN and
Logistic Regression. Multinomial Naive Bayes, Bernoulli Naive Bayes, Gaussian
Naive Bayes, Compliment Naive Bayes algorithms, this different type of Naive Bayes
Model will be used for this Study. For this study 34791 records of Text messages are
collected. After the Classifiers are trained, Text Data can be fed into them to determine
the emotion type. Other side for detecting Sentiment, get () sentiment Algorithm has
been used and When model was ready, deployed on the Preprocessed clean dataset to
detect sentiment. ‘Neutral’, ‘Positive’, ‘Negative’ three type of sentiments were
detected by applying our proposed sentiment detection model. The documents were
calculated on the basis of the confusion Matrix. Confusion Matrix has calculated four
different table with true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). Two different more accurate feature extraction techniques namely TF-
IDF, Count Vectorizer are used to get best classification accuracy as compared to

previous research.
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3.1 Dataset Description:

In this work, Textual data set collected from various resources as Natural language
Toolkit (NLTK) corpus, Kaggle and ISEAR (International survey of Emotional
Antecedents and Responses). The data set contain 34791 rows and 4 columns with
about 34791 records of different tweet or text messages. These ISEAR dataset is
sentiment label dataset where data is lightly cleaned and normalized. But as per
research need dataset has been cleaned and more improved in preprocessing phase so
that accuracy can be increased as well as model become more accurate for the research
purpose. Dataset contained four different features such as Emotion, input, Text, Clean
Text and after preprocessing preprocessed text included with dataset. After detection
of sentiment this part also includes with Dataset and save the dataset again for final
evaluation process. Eight emotion Classes has been Considered such as ‘Joy’,
‘Sadness’, ‘Fear’, ‘Anger’, ‘Neutral’, ‘Surprise’, ‘Shame’, ‘disgust’ and no of records

and percentages are described in the following table.

2.46 0.41

Hjoy Hsadness Mfear HManger Msurprise B neutral HEdisgust Hshame

Fig-1: Percentage of Emotions
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Table-1: No of Records and Percentage of Emotion

Emotion No of Records Percentage
Joy 11045 31.745804
Sadness 6722 19.320533
Fear 5410 15.549552
Anger 4297 12.350540
Neutral 2254 6.478501
Surprise 4062 11.675098
Shame 146 0.419637
disgust 856 2.460336
Total 34791
Unnamed: @ Emotion Text (lean_Text
0 0 neutral Why ? Na
1 1 joy Sage Act upgrade on my to do list for tommorow. Sage Act upgrade st tommorow
2 2 sadness ONTHE WAY TO MY HOMEGIRL BABY FUNERAL! MAN ... WAY HOMEGIRL BABY FUNERAL MAN HATE FUNERALS SH...
3 3 joy Such an eye ! The trug hazel eye-and so brill.. eye true hazel eyeand brilliant Regular feat...
4 4 joy @lluvmiasantos ugh babe.. hugggzzz foru ! b.. Ugh babe hugggzzz u babe naamazed nga ako &...

4781 34787 surprise
34788 Mg oy
34789 34789 anger
34790 U0 fear

34191 34791 sadness

@MichelGW have you gift! Hope you like it If... gift Hope like it hand wear It warm Lol

The world didnt give it to me..s0 the world MO... world didnt meso world DEFINITELY cnt away

Aman robbed me today . man robbed today
Youu call it JEALOUSY, | call it of #Losing YO... Youu JEALOUSY #Losing YOU
I think about you baby, and | dream about you ... think baby dream time

Fig-2: Dataset Description

Page | 18



Emotion

surprise

shame

sadness

neutral

joy

fear

disgust

anger

0

2000 4000 6000 8000

No of Records

Fig-3: Distribution of Emotions

10000

Page | 19



= iy !

« Sage et upgpate on my to do Lst for omeora,

« O THE WAY T0 HY HONESIRL B4BY FUNERALI | AN T HATE FORERALS THIS REALLY SHONS NE HN BLESSED I

 Sih an eje | The true hazel eye-and 50 orilliant | Regular features | open countenance , with a complexion , 0 | ihat a bloon of full ealth
« §llumizsantos ugh babe.. hugggua for .| Babe naanazed nga ako e babe e, cespite nega's mas pinarandan &t L Ko ng

- T'n eecting an ertrenely Inportant phonecaLL. any ninute now #tenmor opportuity

« (oulnt vait 1o see them Liv, IF nissing them In T vasnt painful encf, Sure] s penforming his Last el in el

« e Tip : Stop op een moent at e net hele proct vel. et zitten, N s, Hrestiontlatene]

« £ G krijg Je £ e catkalte an esn e dnelife

- {l116an Drumer S b1 op vergoek van gBiendosternet . Bfvankcornet © velke Uitvoering, van wie!

« The bulL. ossed the effiey out o thei hands and becane very nfuriated ,

- Paple hide thelr behind & #ale snile

« For once 1n s 13fe, Leopold st Rave Deen truly happy © his hopes and prajers for i beloved som seeed at Last o fave cone to fruition
« hgainst the assault of Laugter nothing can stand, » Mark Thain demotionalcourage

- Jath everything , vith everybody , with all ths |

« Shalubachd. dress $588, 16-20 m Leng $768 én <

« e of course T cove home o a diffenent house, Leave 38 to my parerts to redo the entire dounstalrs withut varning

- Thale  feeling 1l il frnch 4fuckfrench

- Good Let "5 go o

- Ealeatsr 1 reseeeel vy

< O, tnat's oo bad , Should I call. 2 doctr !

«fhen T fell in Jove th \X\', Ovemignt I felt confidence, self-esteen,  responsible and vorthille,

« 15 3 primitive $lnstinct thet's your Fdend. Tt vans you o pay attention uhen ur In dangn, it telLs you to do or ct to save yourself
- T have to talk to you |

« T riding with a Sriend In s can, At a speed of 120 ajh on the snov-cover motomvay T vould hve Liked to get o

MMWWWWMMCWWHMMWWWWMWMMM%MMMMMIyMM

yyyyy e o el you snething bt guess shat, My go phone I Fucked up, SgotohelLnericamphone
i1

Fig-4: Sample of Text in Dataset
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3.2 Data Pre-processing

Preprocessing refers to the transformations applied to the data before providing
the data to algorithms. This process is used to convert the raw data in to an
understandable dataset. How ever dataset collected from Previous researcher is
cleaned almost useable to apply using method but present research worker’s
research objectives are to gain more better results as compared to previous. In
other Words, to get best accurate classification accuracy it is necessary to have
dataset fully cleaned and normalized. Text processing is a technique to clean to
the text data and make it ready to feed data to the model. Previous researcher
taken 20000 data from 34791 data in dataset and in their preprocessing stage they
cleaned data as their research need. However, there are many problems in the
dataset that are found and solved in this phase and the data was adapted to run
the algorithm to obtain more accurate results. The problems are as follows:

Null Values: In the dataset There were 466 null values that could cause problems
for the models, so these key values were dropped.

Missing Values: There were some missing values in the dataset which were found
and replaced with mean values to provide better accuracy.

Duplicate Counts: There were no duplicate words, duplicate columns and rows.
Removal of Stop Words.

Removal of User_handels.

Removal of non-English Words.

Removal of special characters and digits.

Removal of Punctuations.

Tokenization: It is a process of splitting a string, text into lists of tokens.

Find most common Keywords from every type of emotion so that machine can

understand properly each keyword and their places.



e Also checked for data inconsistency, float value conversion timing, normalized

e Data Vectorization: Data vectorization refers to the process of converting raw
data, such as text or images, into numerical vectors that can be understood and
processed by machine learning algorithms. In the context of natural language
processing (NLP), data vectorization specifically refers to converting text data

into numerical representations.

Here Count Vectorizer is used for data Vectorization as per need of this study in
respective to the dataset.

Various Python libraries that are based on natural language processing and these
are Text Blob, NLTk, Neat Text, Nfx, WordNet Lemmatize,

Tokenization, etc.
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Fig-5: Preprocessed Dataset Description
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3.3 Sentiment extraction Model

Sentiment Detection is a very vital part of emotion recognition from textual data.
Previously various algorithms used for detecting sentiment in past researches but
they failed to give accurate sentiment in many cases.

Get () sentiment is a proposed algorithm by Python Environment to detect and
analysis sentiment. Three different categories of sentiment have been detected by
this algorithm. “Neutral”, “Positive”, “Negative” are three categories of detected
sentiment. This algorithm is able to detect the sentiment by locating each
sentence successfully and word to solve the problem of word ambiguity. The
word ambiguity problem is hindering good security, which this algorithm largely
solves. And the machine provides good accuracy. In other words, Machine and

algorithms work properly and more accurately.
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Table2: Number of Sentiment

Emotion sentiment
anger | Neutral | 1386
Positive | 1124
negative | 1787
disgust | Neutral | 251
Positive | 281
negative | 324
fear | Neutral | 1844
Positive | 2032
negative | 1534
joy | Neutral |3649
Positive | 5714
negative | 1682
Neutral \ Neutral | 1523
Positive | 553
negative | 178
sadness \ Neutral | 2128
Positive | 1965
negative | 2629
shame | Neutral | 50
Positive | 50
negative | 46
surprise Neutral | 1545
Positive | 1894
623
negative
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# Sentiment detection from Text
# model applied

def get_sentiment(text):
blob = TextBlob(text)
sentiment = blob.sentiment.polarity
if sentiment > ©:
result = "Positive"
elif sentiment < ©:
result = "negative"
else:
result = "Neutral”
return result
get_sentiment(™ I love coding”)

Fig6: Proposed Sentiment Detection Algorithm

3.3.1 Sentiment Detection: Python is one of the most powerful tools

when it comes to performing data science tasks —it offers a multitude of
ways to perform sentiment analysis in Python. The most popular ones are

enlisted here

1. Using Text Blob
2. Using Bag of Words Vectorization-based Models

3. Using Transformer-based Models

Page | 26



Unaed, § Extion Teit (le Tet orepocesed tet sentinent

[ | iy el Wl Netd

| I Sa0e Al pyade ooy oo oo Salg At pgad o Sa ar g o+t

D saes ONTHEVAYTONY HOMEGRLBAEY FUNERALI AV WAYHOVEGRLGABY FRAL AN ATE FUNERALYSA. vy ey el e e

ool St e Thefe bz pe-nd sl o tehaslcend i e et e e el e . P
oo (Qhmiasats ugh e, hggez o 0. Uh e gz s naamaze .. st o ugggzz U e vz Nt
Sement v Emotion

Fig7: Sentiment Detection

3.3.2 Keyword Definition: In the proposed model, Keyword Definition is

a crucial component. While the model performs effectively when applied to the
dataset, a notable challenge is that each keyword must be identified individually
by the algorithm. Hence, Keyword Definition becomes essential for executing
the proposed sentiment analysis model efficiently. Below, keywords are defined

for various types of emotions.
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a) Joy: Keywords: joy, X axis denotes no of words and Y axis denotes all
keywords of every sentence used for ‘Joy’ emotion detection.
This List contain word count in Text Messages:

'the': 5299,
'to': 4744,
'T:4471,

'a": 3594,
'and': 3221,
'of': 2803,
'my': 2793,
'in": 2328,
'for': 1997,
'is": 1590,
'with'": 1375,
'you': 1282,
'that': 1234,
'was': 1155,
'me': 1144,
'at': 1124,
'on': 1120,
'it': 1012,
'have': 962,
'be': 890,
'this": 784,
'day': 729,
'‘amp': 678,
'up': 658,
'had': 639,
‘all': 636,
'so": 603,
'time": 601,
'Im'": 555,
'when': 544,
'your': 528,
'"When'": 520,
'The': 516,
'work'": 509,
'from'": 481,
'not': 480,
'get': 479,
'like': 476,
'an': 473,
'today': 471,
'tomorrow": 467,
'Christmas': 453,
'out': 453,
just': 452,
'about': 450,
'now": 442,
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'are': 438,
'‘but": 402,
'love': 393,
'do": 386}
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Fig-8: Keyword of Joy
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b) Sadness: Keywords: sorrow, grief, melancholy, despair, anguish,

count

4000

300

000

500

2000

1500

1000

a0

heartbroken, despondent, miserable, gloomy, dejected. X axis denotes no of
words and Y axis denotes all keywords of every sentence used for ‘Joy’

emotion detection.

| the b a andmy of n owasthatfor & youme & mathad on ot wihhavebut be mwhehenthis ber o o sad he s | just all time Myshoudke & Thefromshe out verydontare no up
oken

Fig-9: Keyword of Sadness
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c) Anger: Keywords: rage, fury, wrath, indignation, annoyance, irritability,

resentment, hostility, infuriated, enraged. X axis denotes no of words and Y

axis denotes all keywords of every sentence used for ‘Joy’ emotion detection.

This List Contain Word Count in Text Messages:

T': 2548,
'the': 2471,
'to': 2162,
'a': 1703,
'and': 1588,
'my': 1299,
'of': 1256,
'was': 1149,
'me': 973,
'n': 915,
'that": 855,
'it": 679,
'you': 677,
'for': 669,
'with': 632,
'had': 594,
'is': 588,
'at': 563,
'not': 558,
'he': 475,
'on': 474,
'when': 420,
"When': 390,
'her': 379,
'be': 338,
'his': 334,
'she': 316,
'have': 314,
'about': 308,
‘angry': 305,
'so": 300,
'an": 298,
up': 296,
'this": 294,
'out': 276,
'but': 275,
v 247,
'do': 238,
'were': 235,
'him'": 234,
'as': 234,
's': 232,
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'are": 219,
'"The': 218,
'by': 218,
'they': 216,
'your': 210,

'who': 205,
"Just': 202,
‘all': 199}
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Fig-10: Keyword for anger
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d) Fear: Keywords: terror, dread, anxiety, panic, apprehension, phobia, fright,

nervousness, alarm, trepidation. X axis denotes no of words and Y axis
denotes all keywords of every sentence used for ‘Joy’ emotion detection.
This List contain word count in Text Messages:

T 3623,
'the": 3503,
'of': 2252,
'and': 2252,
'to': 2229,
'a': 2120,
'in': 1454,
'was': 1427,
'my": 1028,
'for': 956,
'that": 955,
'not": 880,
'is': 865,
'me': 796,
'it": 686,
'have': 660,
'you': 624,
'at': 594,
'on': 590,
'afraid": 565,
'with': 485,
'had': 453,
'be': 449,
'love': 432,
'when': 405,
'today': 404,
'tomorrow": 399,
'fear': 396,
'seen': 364,
'When': 355,
'yesterday': 352,
'about": 330,
'"The'": 329,
'from': 326,
'we': 325,
'by': 322,
‘but”: 317,
'out": 315,
'he': 290,
'your': 284,
'as': 275,
'so': 272,
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Fig-11: Keyword of fear
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e) Surprise: Keywords: astonishment, amazement, wonder, shock, disbelief, awe,
startle, astound, unexpected, startled. X axis denotes number of words and Y axis
denotes all keywords of every sentence used for ‘Joy’ emotion detection.

This List contains word count in Text Messages:

{'the': 1383,
'to": 1219,
'a": 1207,
'T: 1063,
'my': 826,
'and": 801,
'in": 751,
'for": 601,
'of': 592,
'you': 562,
'is': 548,
'it": 400,
'on": 399,
'me": 391,
'that': 383,
'was': 367,
'en': 299,
'een": 294,
'at’: 265,
'be': 257,
'with'": 251,
'de": 251,
'when": 247,
'i": 244,
'up': 241,
'Im": 227,
‘out": 223,
'have': 223,
just': 211,
'this': 209,
'your': 204,
)" 201,
'her': 176,
'so': 175,
'are': 170,
'know": 165,
'not": 162,
'from": 161,
'home'": 160,
'he'": 157,
'but': 154,
'‘one': 154,
'van': 153,
'today': 150,
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'we': 149,
'day': 143,
'get': 142,
'she': 142,
'what'": 139,
'ik': 137}
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foken

Fig-12: Keyword for Surprise

By defining these keywords for each emotion category, the sentiment analysis

model can efficiently identify and analyze sentiments within the dataset.
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### Frequency distribution of all diffrent types of Emotion

frequency_counts = df["Emotion’].value_coumts{)

frequency_percentage = (frequency_counts / len{df[ Emotion’])) * lee
frequency_df = pd.DataFrame({'Counts’: frequency_counts, 'Percentage': frequency_percemtage})

print({frequency_df}

# Print total value
cardinality = df['Emotion’].nunique(}

primt{f"\ntotal values: {cardinality}")
S+ Counts Percentage
Emotion
joy 11845 31.745884
sadness 6722  19.328533
fear 5418  15.549552
anger 4297  12.358548
surprise 4262 11.575898
neutral 2254 6.478581
disgust 255 2.460325
shame 145 8.413637

total values: 8

Fig- 15: Number of Sentiments in terms of Emotions

3.3.3 Mapping Sentiment to Numerical Values

The code begins by creating a new column named "label Num" in the Data Frame
“df ", It uses the *. map () ~ function to transform the values in the "sentiment"
column into numerical representations.
The mapping is defined as follows:

e 'negative’ sentiment is mapped to 0

e 'positive’ sentiment is mapped to 1

e 'neutral’ sentiment is mapped to 2

Essentially, it assigns numerical labels to the different sentiment categories
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a) Data Frame Manipulation and Keyword Extraction Method

After creating the "label Num™ column, the code proceeds to modify the Data
Frame “df". It uses the . drop () = method to remove the original "sentiment"
column from the Data Frame. This step is performed because the sentiment
information has now been encoded into numerical values in the "label Num”

column. The original textual representation of sentiment is no longer necessary.

Tokenization

Identify Emotion Worc

Analysis of Intensity q
Negation Check ‘
Emotion ‘

Fig-16: Keyword Extraction Method

Source: Semantic Scholar [25]
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Displaying the Data Frame:

Lastly, the code displays the first five rows of the modified Data Frame "df’
using the ". head (5) " function. This provides a glimpse of the Data Frame
after the changes have been applied, showcasing the newly created "label

Num™ column and the absence of the original "sentiment™ column.

# Mapping sentiment num / encode
df[""label_num"] = df.sentiment.map({
‘negative’: 0,
‘positive’: 1,
‘neutral’: 2
)
df = df.drop(columns=['sentiment'])

df.head(5)

In summary, this code snippet facilitates the transformation of textual sentiment
labels into numerical representations, enhancing the data's suitability for machine
learning tasks that require numerical input. It follows a systematic process of

mapping, Data Frame manipulation, and display to achieve this transformation.
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3.4 Feature Extraction Techniques

In the emotion recognition process through Machine Learning Models, feature

extraction is the crucial part of emotion classification. The efficacy of feature
extraction is intricately intertwined with the precision of emotion classification.

In previous Researchers, various kinds of feature extraction methods are used
such as N-grams, BERT, and Dict Vectorizer. Nowadays researchers are using
TFDF to get good accuracy in the classification phase. In this research presently
Count Vectorizer has been applied to get very good results. TFDF is also used
for getting comparative analysis in terms of accuracy. So, these methods were
carried out by considering two features namely Term Frequency- Inverse
Document Frequency and Count Vectors. The data is error-free and clean.
Applying both methods got very good results depending on the specific
requirements of the task and the characteristics of the dataset.

TF-1DF: This can be particularly useful in emotion detection because it helps

to identify words that are unique or distinctive to certain emotions. TFDF stands
for "Term Frequency - Document Frequency." It's a concept commonly used in
information retrieval and text mining to evaluate the importance of a term within
a document or a corpus of documents.

Here's how TFDF works:

Term Frequency (TF): This component measures how often a term occurs

in a document. It's calculated as the ratio of the number of times a term appears
in a document to the total number of terms in that document. Essentially, it shows
the relevance of a term within a specific document. A higher term frequency

suggests that the term is important or central to the document.
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TF(t d) __ Number of times term ¢ appears in document d
L Total number of terms in document d

>

% Document Frequency (DF): This component measures how often a term

occurs in the entire corpus of documents. It's calculated as the ratio of the number
of documents that contain the term to the total number of documents in the
corpus. Document frequency gives an idea of how common or rare a term is

across all documents.

DF ( f) _ Number of documents containing term ¢
~ Total number of documents in the corpus

«» TE-IDF Score: The TFDF score combines both TF and DF to evaluate the

importance of a term. It is calculated by multiplying the TF and IDF values.

TFDF(¢,d, D) = TF(¢,d) = log (ﬁ)

-\(t\) is the term.
-\(d\) is the document.
-\(D\) is the corpus of documents.

«+ Inverse Document Frequency (IDF): This term accounts for the fact that certain

terms might appear frequently across documents but are not necessarily
important because they are common words (e.g., "the"”, "and"). IDF penalizes

such terms. It's calculated as the logarithm of the inverse of DF.

IDF (¢, D) = log (ﬁ)

By combining TF and IDF, TFDF highlights terms that are both frequent within
a document and rare across the entire corpus, thereby identifying terms that are
significant to that specific document. TF-IDF is often used in information

retrieval systems to rank documents based on their relevance to a query.
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By using TF-IDF, the model can potentially give more weight to these important
words and improve the accuracy of emotion detection.

Count Vectorizer: It can also be similarly used for emotion detection to TF-IDF.
Count Vectorizer can be used to convert text data into a numerical format by
counting the occurrences of words in each document. In the context of emotion

detection.

Tokenization

|

Building Vocabulary

l

Counting
Occurrences

I

Vectorization

l

Output

Fig -17: Working Principle of Count Vectorizer
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Fig -18: Working Principle of TF-IDF
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3.5 Text Classification Techniques

Text classification is a common task in natural language processing (NLP) where
the goal is to categorize text documents into predefined classes or categories.
There are various machine learning models that can be used for text
classification, each with its own advantages and disadvantages. Here are some
proposed models as follows:

e Naive bayes Algorithm

a) Multinomial Naive Bayes

b) Bernoulli Naive Bayes

c) Gassian Naive Bayes

e Support Vector Machines (linear).

e Random Forest Classifier.

e Logistic regression.

e KNN algorithm.

The study explores the effectiveness of Naive Bayes Classifier in detecting
emotions from textual data. It considers three types of Naive Bayes classifiers:
Multinomial Naive Bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes.
While Multinomial Naive Bayes has been traditionally used, the study introduces
Bernoulli and Gaussian Naive Bayes classifiers as new approaches. The results
indicate that both Bernoulli and Gaussian Naive Bayes classifiers outperform the
Multinomial Naive Bayes algorithm, yielding high accuracy, F1 score, precision,
and recall.

Additionally, the study explores other machine learning methods such as Random
Forest, Logistic Regression, KNN, and linear Support Vector Machines (SVC)
to achieve optimal results. By employing data preprocessing techniques and two

proposed feature extraction methods, the study observes variations in
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performance. Specifically, the Count Vectorizer feature extraction method
demonstrates superior accuracy compared to the TF-IDF feature extraction
method.

In summary, the study underscores the effectiveness of Naive Bayes classifiers
in emotion detection from textual data, showcasing improvements over
traditional methods and highlighting the impact of feature extraction techniques

on model performance.

3.5.1 Working Principle of Algorithms

> Naive Bayes Algorithm:

Naive Bayes is a type of algorithm used for classification tasks. It's called "naive"

because it makes a very simple assumption: that the presence of one feature
doesn't affect the presence of another feature. This assumption simplifies the
math behind the algorithm.

Here's how it works:
o Bayes' Theorem: it's away to calculate probabilities. In the case of Naive

Bayes, it helps to figure out the probability of a certain class (like "spam" or "not

spam™) given some data.

o Naive Assumption: This is the idea that features (like words in a text) are

independent of each other when it comes to predicting the class. This assumption

is often not true in real life, but it makes the math easier.
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@) Training: Naive Bayes looks at a bunch of examples where the class has

been understood and it learns the probability of each feature belonging to each

class.

o Prediction: when to classify something new, Naive Bayes calculates the

probability of each class given the features and picks the class with the highest

probability.

There are different types of Naive Bayes algorithms, each suited for different kinds
of data. For example:
v Gaussian Naive Bayes: works well when features have a normal distribution.
v/ Multinomial Naive Bayes is good for things like word counts in text.
v Bernoulli Naive Bayes is useful when features are binary (like whether a word
appears or not).

Naive Bayes classifiers, including Gaussian Naive Bayes and Bernoulli Naive
Bayes, are simple probabilistic classifiers based on applying Bayes' theorem with
strong (naive) independence assumptions between the features. While they share
some common principles, their architectures differ based on the distribution of

the input features.

> Gaussian Naive Bayes:

e Architecture:

Assumes that continuous features follow a Gaussian (normal) distribution.
Each class is associated with a mean and a variance for each feature. The
probability density function (PDF) of the Gaussian distribution is used to

calculate the likelihood of observing a particular value given the class. During
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training, the mean and variance of each feature are estimated for each class.
During prediction, the probability of a sample belonging to each class is

calculated using Bayes' theorem, and the class with the highest probability is

assigned to the sample.

Strengths:

Effective for continuous or real-valued features.
Simple and efficient, especially for high-dimensional data.

Less affected by the curse of dimensionality compared to other classifiers.

> Bernoulli Naive Bayes:

Architecture:

Assumes that features are binary-valued (e.g., presence or absence of a feature).
Each feature is modeled as a binary random variable following a Bernoulli
distribution. The probability of each feature being 1 or O is estimated for each
class. During training, the probabilities of features being 1 or 0 are calculated
for each class. During prediction, the likelihood of observing the feature values
given the class is calculated using the Bernoulli distribution, and Bayes' theorem

is applied to assign the class with the highest probability.
Strengths:

Well-suited for binary or categorical features, such as text classification (presence
or absence of words).

Handles sparse data efficiently. Robust to irrelevant features.

Often used in text mining and document classification tasks.
In summary, Gaussian Naive Bayes assumes that features follow a Gaussian
distribution, making it suitable for continuous features, while Bernoulli Naive

Bayes assumes binary features following a Bernoulli distribution, making it
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suitable for binary or categorical features. Both algorithms are simple, efficient,
and effective for various classification tasks, depending on the nature of the input
features.

Naive Bayes is popular because it's easy to understand, quick to train, and can
work surprisingly well in many situations, especially with text data. However, it
might not perform as well when the features are not actually independent or when

there's not enough training data. Despite its simplicity, it's widely used and can

be a powerful tool in the right situations.

> Support vector machine:

Here linear Support Vector Machines has been implemented. Support Vector
Machines (SVM) are a type of algorithm designed to draw the best possible line
or boundary in a multi-dimensional space, effectively separating different classes
of data. The ultimate aim is to create a decision boundary, often referred to as a
hyperplane, that can accurately categorize new data points in the future.

The SVM algorithm accomplishes this by identifying key data points known as
support vectors. Support vectors are essential elements that determine the precise
orientation and location of the hyperplane within the Support Vector Machine
algorithm, crucial for effectively separating different classes of data. Essentially,
SVM seeks to locate the most extreme points that help define the boundary
between different classes. Hence, the term "Support Vector Machine" originates
from this emphasis on identifying and utilizing these critical support vectors.
Imagine a scenario where data points belonging to two distinct categories are
plotted on a graph. SVM works by strategically positioning a line or boundary,
referred to as a hyperplane, to effectively separate these categories. This
hyperplane is determined by identifying the most pivotal data points, known as

support vectors, which play a significant role in defining the boundary. Through
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this process, SVM aims to create the most optimal decision boundary for accurate
classification of new data points.

SVM aims to locate the most extreme points in the data set that are instrumental
in determining the optimal hyperplane. By doing so, it creates a clear separation
between different classes, making it easier to classify new data points accurately
in the future. Therefore, SVM is not just about drawing any boundary; it's about
finding the best possible boundary that maximizes the margin and minimizes the
classification error, thereby enhancing the algorithm's ability to generalize well

to unseen data. Below diagram consider for better understanding:

Linear SVM Demo
10 r .

@@ Class 1, Train
@@ Class 2, Train

+ -+ Class 1, Test | ~
-+ -+ Class 2, Test
gfF

¥ values

Fig-19: Support Vector Machine
Source: LinkedIn [21]
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> Logistic Regression:

Logistic regression is a statistical method used for binary classification tasks,
where the output variable is categorical and has only two possible outcomes,
typically represented as 0 and 1. The working principle of logistic regression can

be explained in a structured way, as follows:

e Input Data:
Logistic regression takes input data features (X) and their corresponding labels
(Y). X represents the independent variables or features, while Y represents the
dependent variable or target variable with two classes (0 or 1).

e Linear Combination:
Logistic regression begins by computing a linear combination of the input

features and associated weights.

It calculates the weighted sum of input features:
z2="by+ bz + by + ... + by,

e Logistic Function:

The linear combination is then transformed using the logistic function (also
known as the sigmoid function) to produce the predicted probability. The logistic
function maps any real-valued number to the range (0, 1), which is suitable for
representing probabilities.

The logistic function is defined as:

Py = 1|z) = L

1 1‘3_[ win -+ T twors . tunIn )
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Prediction:

After applying the logistic function, the output represents the predicted
probability of the positive class (class 1). If the predicted probability is greater
than a threshold (typically 0.5), the instance is classified as belonging to the
positive class (1); otherwise, it is classified as belonging to the negative class (0).
Training:

During the training phase, the model learns the optimal values of the coefficients
(weights) that minimize the difference between the predicted probabilities and
the actual labels. This optimization process is typically performed using

techniques like gradient descent or more advanced optimization algorithms.
Cost Function:

In logistic regression, the cost function (or loss function) is used to quantify the
difference between the predicted probabilities and the actual labels. The most
commonly used cost function for logistic regression is the cross-entropy loss

function.
Gradient Descent:

Gradient descent is an iterative optimization algorithm used to minimize the cost
function by adjusting the weights. It calculates the gradient of the cost function
with respect to each weight and updates the weights in the opposite direction of
the gradient to minimize the cost.

Model Evaluation:

Once trained, the logistic regression model can be evaluated using various
performance metrics such as accuracy, precision, recall, F1-score, ROC curve,
and AUC-ROC.

In summary, logistic regression works by fitting a logistic function to the input

data to model the probability of a binary outcome and then making predictions
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based on this probability. It's a fundamental algorithm in the field of machine

learning and is widely used for binary classification tasks.

Logistic Regression

k2

e e Y T T e
@
'g S-Curve = T
4wz Predicted
g v dependent
- <>[< variable
s - remains
s - inside the
5 range of 0
g} and 1
o /

X-AXis
Independent Variable

Fig-20: Logistic Regression
Source: E Jable [24]

» K -Nearest Neighbors (KNN):

Sure, here's a more advanced explanation of the K-Nearest Neighbors (KNN)
algorithm: KNN is a non-parametric and lazy learning algorithm used for both
classification and regression tasks. Non-parametric means it doesn't make
assumptions about the underlying data distribution, and lazy learning means it
doesn't learn a model during training; instead, it stores the entire training dataset
and makes predictions based on the similarity between new data points and
existing data points during inference.

In the context of classification:
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Training: KNN stores all the training data points and their corresponding class
labels.

Prediction: When a new data point is presented for prediction, KNN calculates
the distances between the new point and all the points in the training set using a
chosen distance metric, such as Euclidean distance.

Selection of K: KNN selects the K-nearest neighbors to the new data point
based on the calculated distances. The value of K is a hyperparameter that needs
to be tuned and affects the algorithm's performance. A small K may lead to
overfitting, while a large K may lead to underfitting.

Majority Voting: For classification, KNN assigns the class label to the new
data point based on the majority class among its K-nearest neighbors. It can
handle ties in various ways, such as assigning equal weights to each neighbor or
choosing the class with the smallest distance.

Prediction: Finally, KNN assigns the class label of the majority class to new
data point. In regression, instead of class labels, KNN predicts a continuous value
by averaging (or weighted averaging) the target values of the K-nearest
neighbors.

Key considerations for KNN include:

Choice of Distance Metric: The distance metric used can significantly
impact the algorithm's performance. Different distance metrics may be more
suitable for different types of data.

Feature Scaling: Since KNN relies on distance calculations, it's essential to
scale the features to ensure that no single feature dominates the distance
calculation.

Computational Complexity: KNN's prediction time complexity grows
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linearly with the size of the training dataset, making it computationally expensive
for large datasets. Techniques like KD-trees or ball trees can be used to speed up
the search process.

Despite its simplicity and ease of implementation, KNN may not perform well
with high-dimensional data or imbalanced datasets. Additionally, it can be
sensitive to noisy data and outliers. Nonetheless, KNN remains a versatile and
widely used algorithm in machine learning, especially for smaller datasets or as

a baseline model for comparison.

Euclidean Distance= v/(x2-x1)? + (y2-y1)?

100 -

— Testing dataset Accuracy
Training dataset Accuracy

T T T

1 2 3 4 5 6 7 8
n_neighbors

Fig-21: KNN algorithm

Source: Geeks for Geeks [23]
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» Random Forest Classifier:

The Random Forest, or Random Decision Forest, stands as a supervised machine
learning technique adept at tasks like classification and regression, leveraging
decision trees. In essence, it constructs a collection of decision trees derived from
randomly chosen subsets of the training data. Through this process, it gathers
predictions from these diverse decision trees to formulate the ultimate prediction.
What sets the Random Forest classifier apart is its versatility in handling both
classification and regression tasks. Moreover, its capability to furnish feature
importance scores adds considerable value by illuminating the relevance of

various variables within the dataset.

Instance

(. N
Random Forest S ; Sl
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| Majority-Voting? I

iFinaI-CIass

Fig-22: Random Forest Classifier

Source: Java point [26]

Page | 56



3.6 Training and Testing the Model:

The dataset has been split into 70:30 in majority cases for training and testing
respectively. Training and testing a model typically refer to the process of
building a machine learning model using a training dataset and evaluating its
performance on a separate dataset called the testing or validation dataset.
Training and Testing ratio has been considered different for different models as
follows in a table:

Table 3: Training and Testing Data Distribution Percentage

Algorithms TFIDF Count Vectorizer
Logistic Regression 70:30 70:30
KNN 80:20 70:30
MNB 70:30 70:30
BNB 70:30 70:30
GNB 70:30 70:30
Random Forest 80:20 70:30

H Training Data M Test Data

Fig-23: Training and Testing data distribution (70:30)
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H Training Data H Test Data

Fig-24: Training and Testing data distribution (80:20)

Here the Present research worker is conducting a comparative observational
study where the researcher employed different splitting ratios for model
evaluation, specifically utilizing different ratios for TF-IDF and count vectorizer
techniques.

In this comparative observational study, Present research worker has
implemented varying splitting ratios for model evaluation, distinguishing
between TF-IDF and count vectorizer methodologies. This entails employing
distinct ratios to partition the dataset for training and testing purposes, aiming to

analyze and compare their respective performance outcomes.
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3.7 Classification Accuracy:

This is the last stage of proposed approach. Introduce classification accuracy as
a pivotal metric in assessing the performance of machine learning models,
particularly in classification tasks. Highlight its significance in evaluating the
model's ability to correctly predict class labels for given data instances.
Classification accuracy represents the proportion of accurate predictions made
by a model relative to the total number of input samples. It is calculated by
dividing the count of correct predictions by the total number of input samples.
Obtaining good assurance of this study was also a goal which was achieved. This

has been discussed in detail in the experimentations and results section.

Page | 59



3.8 Architecture

Above mentioned machine learning algorithms have been applied on dataset
through following steps:

I. Create Dataset/Collect Dataset
I1. Perform Pre-Processing using NLP technique
I11. Feature Extraction
IV. Data/Text classification using Supervised learning algorithms
V. Model Evaluation
VI. Classification (Accuracy)
Present research worker has taken 34791 data, a large dataset for this study. It is

considered as large dataset for detecting emotion and sentiment in respective to
the research. It refers to the transformations applied to the dataset before
providing the data to algorithm. Present research worker has used Text Blob for
data cleaning. Data cleaning process comprises various kind of activities as per
demand for research. Present research worker has removed noise, stop words,
special characters, punctuations-emojis from dataset to make the dataset clean.
Duplicate counts, outliers checking, data balance or not have been checked by
applying appropriate model on dataset time to time.

count vectorizer python library is being considered for feature extraction. For
choosing a model we split the dataset in to train and test. Here data is split in to
3:1 ratio that means training data having 70% and testing data having 30%. This
process performing TRAIN-TEST-SPLIT model. Observe the data and choose
the type of algorithm. Prepare and clean the dataset and deploy the particular
model. This step mainly of machine learning, here we will focus more on
classification. Here the Present research worker predicts Text emotion and
algorithm performance. A classification model tries to provide some output or
conclusion from input values given from Training. Present research worker will

get expected output or final conclusion from this step.
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Perform Pre-Processing
using NLP technique

Feature Extraction

Data/Text
classification using
Supervised learning

algorithms.

Model Evaluation

Classification (Accuracy)

Fig-25: Architecture
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4, EXPERIMENTATIONS AND RESULTS

This Research utilizes Python version 3 along with essential built-in libraries. For
implementing the machine learning model, Python 3 is chosen due to its
flexibility and computational power. It leverages various Python libraries such as

Scikit-learn, Matplotlib, Pandas, Seaborn, NumPy, among others.

Table 4: Confusion Matrix

ACTUAL
YES NO
PREDICTED YES TP FP
NO FN TN

Accuracy, which represents the proportion of correctly classified cases out of all

cases, is calculated using the following formula:

Accuracy = (TP +TN) /(TP + TN + FP + FN)

Precision is expressed as the proportion of positive cases that are correctly
recognized as positive over all cases classified as positive and it is calculated
according to the formula:

Precision=TP /(TP + FP)

Recall is expressed as the proportion of positive cases that are correctly recognized
as positive over all actual positive cases and is calculated according to the
formula:

Recall = TP /(TP + FN)



o The F1 score is a metric used to evaluate the performance of a classification model.
It considers both the precision and recall of the model to compute a single score.
The formula for the F1 score is:

F1 =2 x (Precision x Recall) / (Precision + Recall)

Confusion Matrix
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Fig-26: Heat Map of Confusion Matrix

The sentiment detection model, named get (), is utilized for analyzing emotions
in text data. It operates accurately on keywords and sentences, extracting
emotions effectively. With a dataset comprising 34,791 entries and over 300,000
words, this model demonstrates superior performance compared to previous
algorithms.

Notably, the algorithm addresses the issue of word ambiguity. Ambiguous
sentences are examined to assess the algorithm's ability to detect emotions from
ambiguous words. This robust approach ensures precise emotion detection even
in complex linguistic contexts. Followings are some ambiguity sentences and

getting result after detecting sentiment:
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get_sentiment("I saw a man on a hill with a telescope")

'Neutral’

get_sentiment("There’s a man on a hill,and I’m watching him with my telescope")

‘Neutral’

get_sentiment("There’s a man on a hill, who I’m seeing, and he has a telescope")

'Neutral’

get_sentiment("Look at the dog with one eye")

‘Neutral’

get_sentiment("Look at the dog that only has one eye.")

'Neutral’

Fig-27: Results after detecting Sentiment from ambiguity word

get_sentiment(™ I love coding"™)

'"Positive'

get_sentiment(”™ love is a wvery confused word™)

'negative’

get_sentiment (™ ")

‘Neutral’

get_sentiment(™ I do coding")

‘Neutral’

Fig-28: Results after detecting sentiment from any text.
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Three types of sentiments are detected by applying proposed algorithm. These
are:

a. Neutral.

b. Positive.

c. Negative.

The below figure shown as Sentiment and emotion distribution in Dataset:

The Classification Report for various algorithms as follows

Classification Performance Report

This report provides a comprehensive evaluation of the classification quality
achieved by a machine learning model. It encompasses five main columns and
(N+3) rows. The initial column lists the class labels, followed by Precision,

Recall, F1-score, and Support metrics.

o Class Label: Identifies the specific class being evaluated.

o Precision: Indicates the accuracy of the model's predictions for a given

class. Precision is calculated as the ratio of true positives to the total
predicted positives, representing how many of the predicted instances of
a class are actually relevant.

o Recall: Reflects the model's ability to correctly identify instances of a
class within the dataset. Recall is calculated as the ratio of true positives
to the total actual positives, illustrating the proportion of actual instances
of a class that were correctly identified by the model.

O F1-score: Represents the harmonic mean of Precision and Recall. It
provides a single metric that balances both Precision and Recall, offering

a holistic measure of a model's performance for a specific class.
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Support: Denotes the total number of instances belonging to each class

within the actual dataset. It is the sum of the rows corresponding to each
class.

The report comprises N rows, each corresponding to a unique class label,
and three additional rows providing metrics for overall performance:

Accuracy, Macro Average, and Weighted Average.

Accuracy: Measures the overall correctness of the model across all
classes, calculated as the ratio of correct predictions to the total number
of predictions.

Macro Average: Represents the unweighted mean of Precision,

Recall, and F1-score across all classes. It gives equal importance to each

class, irrespective of class frequency.
Weighted Average: Computes the weighted average of Precision,

Recall, and F1-score, considering the support (number of instances) for
each class. It provides a performance measure that accounts for class
imbalances in the dataset.

This structured report offers a clear understanding of the classification
performance of the constructed ML model, facilitating informed

decision-making and model optimization efforts.
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Farameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Farameters:
Farameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:
Parameters:

Classification Report

n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=18@,
n_estimators=28@,
n_estimators=28@,
n_estimators=288,
n_estimators=288,
n_estimators=288,
n_sstimators=288,
n_sstimators=288,
n_sstimators=288,
n_sstimators=288,
n_estimators=228,
n_estimators=228,
n_estimators=228,
n_estimators=2g28,
n_estimators=308,
n_estimators=308,
n_estimators=308,
n_estimators=308,
n_estimators=388,

For TF-IDF

max_depth=None, min_samples split=2, Accuracy: 8.8147434976289696
max_depth=None, min_samples split=5, Accuracy: @.51338£5855555787
max_depth=None, min_samples split=18, Accuracy: 8.612156919@%75715
max_depth=18, min_samples_split=2, Accuracy: ©.3582253432954505
max_depth=18, min_samples_split=5, Accuracy: 8.35458495758885157
max_depth=18, min_samples_split=18, Accuracy: @.35522345184535135
max_depth=28, min_samples_split=2, Accuracy: 8.4435982181347895
max_depth=28, min_samples_split=5, Accuracy: 8.4395746515383%23
max_depth=28, min_samples_split=18, Accuracy: 8.4488579487968514
max_depth=None, min_samples split=2, Accuracy: @.5163241345892686
max_depth=None, min_samples split=5, Accuracy: @.5153182928581693
max_depth=None, min_samples split=18, Accuracy: 9.6123886179848713
max_depth=18, min_samples_split=2, Accuracy: 8.35479235522345165
max_depth=18, min_samples_split=5, Accuracy: ©.35386736953585284
max_depth=18, min_samples_split=18, Accuracy: 8.35385795953585284
max_depth=28, min_samples_split=2, Accuracy: 8.445@3528628775847
max_depth=28, min_samples_split=5, Accuracy: 8.4418738324471%67
max_depth=28, min_samples_split=18, Accuracy: 8.44287972489828396
max_cdepth=None, min_samples_split=2, Accuracy: @.6148871964362695
max_cdepth=None, min_samples_split=5, Accuracy: @.515685698472769
max_depth=None, min_samples_split=18, Accuracy: 8.6123886179848713
max_depth=18, min_samples_split=2, Accuracy: @.35637384218375854
max_depth=18, min_samples_split=5, Accuracy: ©.35594134553185084
max_depth=18, min_samples_split=18, Accuracy: @.3557982468745589
max_depth=28, min_samples_split=2, Accuracy: ©.445@3520620778847
max_depth=28, min_samples_split=5, Accuracy: ©.445@3528620778847
max_depth=28, min_samples_split=18, Accuracy: €.444316712171289

Best Accuracy: 8.6153241845892686
Predicted emotion: ['joy']

Fig-29: Classification Report for RFC

Classification Report (Cross-Validation):

precision recall +l-score  support
anger 8.68 a.44 8.53 iel4
disgust B8.24 8.e1 8.a2 564
fear 8.73 @8.55 8.63 3765
joy 8.49 a.89 8.63 7734
neutral 8.73 @8.e6 8.18 1579
sadness @8.54 @8.51 8.52 47a7
shame 8.e8 a.ee 8.e8 11@
surprise B8.61 @8.22 B8.33 2881

Fig- 30: Classification Report for KNN
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Classification Report (Test Data):

precision
anger 8.65
disgust @.35
fear 8.75
joy 8.51
neutral a.72
sadness 8.53
shame B.e8
surprise @.59
accuracy
macro avg 8.51
weighted avg .59

Fig-31: Classification Report for MNB

For Count Vectorizer

precision
@ 1.60
1 8.82

accuracy
macro avg 8.91
weighted avg .92

recall fl-score support
8.49 8.56 1283
8.2 8.84 292
8.57 8.65 1645
8.87 8.65 3311
8.07 8.13 675
8.53 8.53 2815
8.80 8.08 36
8.24 8.34 1181
8.56 10438
8.35 8.36 10438
8.56 8.53 18438
recall fl-score support
8.81 .98 16
1.88 8.98 14
B.98 30
8.91 8.98 38
8.%@ 0.98 30

Fig-32: Classification Report for NB
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accuracy
macro avg
weighted avg

Fig-33: Classification Report for RFC (Case of CV)

recall fl-score

precision
1.88 a.95
8.95 1.88
1.88 1.88
B.98 B.98
8.98 8.98

L_oqgistic Regression

Accuracy- 96%
Features Level eli5 interpretation

8.97
B.97
1.88

Table 5: Feature Level Eli5 Interpretation

y=0 top features y=1 top features y=2 top features
Weight” Feature | Weight’ Feature | Weight” Feature
+0.721 x6 +0.688 x0 +1.047 x9
+0.403 x11 +0.426 x11 +0.393 x1
+0.332 x5 +0.404 x8 +0.105 x3
+0.313  x1 +0.304 xB6 +0.031 x4
+0.254 x2 +0.280 x10 +0.024 x2
+0.095 x9 +0.170 x5 0000 x12
+0.080 x8 +0.132 <BIAS= 0036 x7
+0.008 x12 +0.128 x3 -0.058 <=BIAS=
-0.009 x7 +0.045 X7 -0.257 x10
0.023 x10 -0.006 x4 0422 x0
0.026 x4 -0.008 x12 0484 x8
0.074 <=BIAS= -0.278 x2 0503 x5
0232 x3 0706 x1 -0.829 x11
-0.265 x0 -1.142  x9 -1.025 x6

&
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Fig-35: Frequency of Emotions over time

Page | 71



By discussing previous related- work, it is clear that existing systems are not
100% accurate. In previous, the existing system is based on multinomial naive
bayes algorithm, KNN algorithm and also logistic regression, Ad boost classifier
etc. Among this four-algorithm provided accuracy as high as 68%, 64.8%,65%
& 67.08% respectively. Multinomial Naive bayes Algorithm resulted the best
performance which an average accuracy of 68% but failed to perform well
because a compact research project needs minimum above 80-85%. But proposed
system like Bernoulli naive bayes algorithm and gaussian algorithm has been
solved the problem of multinomial naive bayes algorithm and resulted very good
result such as 89% accuracy for Bernoulli and 88% for gaussian naive bayes
algorithm.

This research also investigates the effectiveness support Vector classifier, linear
regression, gradient boost classifier, Random Forest classifier, Naive bayes
algorithm and also

unsupervised learning algorithm like K-Means algorithm etc. The study was
carried out on “Emotion dataset” with eight emotional groups. In machine
learning the detection of textual emotions is the problem of content-based
classification, it is the task of natural language processing. Detecting a person’s
emotion is a difficult task but we propose for emotion in English sentences where
emotions are treated as generalized concepts extracted from sentences. Here
present research worker considered ISEAR dataset with 34791 records where
emotions are usually expressed as joy, sadness, neutral, anger, fear, surprise,
shame, disgust etc. Existing sentiment detection model defined by previous
researcher is not well capable to detect sentiment from emotional dataset, for
reason of that some vital problems like ambiguity in keyword, Incapability to
recognize emotion in absence of emotion keyword were there. Present research

worker proposed a new sentiment detection model get () sentiment model which
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has solved all mentioned problems and worked more well and accurate.

Table-6: Accuracy of Previously Used Methods

Previous Method Accuracy
Multinomial Naive bayes 68%

KNN 64.80%
Logistic Regression 65%

Ada boost Classifier 67.08%

Accuracy of previuos used methods

Ada boost Classifier

Logistic Regression

Methods

Multinomial Naive Bayes

Accuracy

E===d Accuracy of previuos used methods Linear (Accuracy of previuos used methods)

Fig-36: Accuracy of previously used methods
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PERFORMANCE ON VARIOUS CATEGORIES
OF NAIVE BAYES ALGORITHM

mmmm Performance on various categories of Naive Bayes Algorithm

----- Linear (Performance on various categories of Naive Bayes Algorithm)
3 8
3 e
>
Q
o
S
[§)
Q
<
MNB BNB GNB
B Performance on various
categories of Naive Bayes 68 88 89
Algorithm
Methods

Fig-37: Accuracy Performance on various categories of Naive Bayes
Algorithm
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In the feature extraction step of the machine learning algorithm, both TF-IDF and

Count Vectorizer methods are employed to detect emotion and sentiment. Typically,

TF-IDF is expected to yield higher accuracy during the classification step compared

to Count Vectorizer. However, in this study, Count Vectorizer surprisingly

outperformed TF-1DF.

Previous researchers found that TF-IDF struggled to achieve accuracy above 30%

during the classification step. Interestingly, in this research, TF-IDF did not

demonstrate superiority over Count Vectorizer either, but it did manage to achieve

higher accuracy, surpassing 60%. On the other hand, Count Vectorizer exhibited

significant improvement compared to previous studies, providing very good results.

Table 7: The results are summarized in the following

FEAT | Datas Accuracy Obtained
URS et
Split
Ratio
SVM | Random | Logistic BNB GNB MNB KNN
forest Regression
63.7 |70 65 63 65 58 55
TF- 70:30
IDF 64 |72 65.45 64 65 60 58
80:20
Count 95 98 96 93 93 70 74
Vecto
rizer
70:30
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Table-8: Classification Report of all proposed machine learning algorithm:

Proposed method Precision Recall F-1 score Accuracy
Gaussian Naive 0.87 0.94 0.90 0.89
Bayes (GNB)
Bernoulli Naive 0.86 0.92 0.89 0.90
Bayes (BNB)
KNN 0.72 0.76 0.68 0.70
Random Forest 0.93 1.0 0.91 0.98
Logistic Regression 0.93 0.92 0.92 0.94
Support Vector 0.75 0.86 0.83 0.84

Machine (SVM)
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5. COMPARATIVE ANALYSIS

In the Comparative Accuracy Analysis employing the TF-IDF feature extraction
method across various machine learning models such as Logistic Regression, Random
Forest, BNB, GNB, SVC, and KNN, Random Forest emerged with the highest
classification accuracy. However, it fell short in comparison to the results obtained
using Count Vectorizer. Here's a juxtaposition between the findings of the previous
and present studies regarding classification accuracy.

Accuracy Obtained by Existing Researchers:

For the Case of TF-IDF:

Table 9: Comparison between previous and presently obtained accuracy for TF-IDF

Algorithms Previous Accuracy Presently obtained
Accuracy
Logistic 33.03% 65%
Regression
BNB 21% 64%
GNB 23% 65%
SVvC 31.2% 63.71%
MNB 21% 58%
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Fig-38: Comparative Analysis of Previous Model with Proposed method

For the Case of Count Vectorizer:

Table 10: Comparison between previous and presently obtained accuracy for Count Vectorizer

Algorithms  Previous Accuracy Presently obtained Accuracy

Logistic 89.01% 95%
Regression
BNB 67% 93%
GNB 68% 93%
SVC 88.35% 98%
MNB 56% 70%
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So, for comparative analysis on both feature engineering, Random Forest gives best
accuracy.
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6. CONCLUSION & FUTURE SCOPES

6.1 Conclusion

In this work, a text-based emotion detection algorithm has been proposed, that is
capable of identifying each word in textual data one by one. Several supervised
algorithms were used: K-Nearest Neighbors (KNN), Multinomial Naive Bayes
(MNB), Bernoulli Naive Bayes (BNB), Gaussian Naive Bayes (GNB), Support
Vector Machine (SVM), and Random Forest Classifier.

Two different feature extraction techniques have been employed: Count Vectorizer
(CV) and Term Frequency-Inverse Document Frequency (TF-IDF). Initially, using
the base model on a previous dataset, it was observed that the highest accuracy
obtained with Count Vectorizer at 88%, and with TF-IDF at 33.03%.

After data augmentation is applied and the proposed algorithms have been used with
Count Vectorizer, as a result a significant improvement in accuracy was achieved.
The highest accuracy of 98% is achieved by the Random Forest Classifier, which

represents the best result.

6.2 Future Scopes

Future work consists of experimenting like:

1. In Future, this work can be further extended for designing an emotion detection
model with more improvement on feature extraction methods using other machine
learning models like LSTM model, Linear Regression, Non-Linear SVC to get
more classification accuracy.

2. Besides this research work, further enhancement can also be done using CNN,

RNN and get a comparative study between Neural Networks and Machine
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Learning Models.

Unsupervised Machine Learning Algorithms can be implemented for this work.
The accuracy of the model can also be increased by creating a customized database

to the model and training the textual data on a larger database.
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Appendix part A

> System Requirements
Personal Computer or laptop having the following features —

e Windows 10

e 132 GBRAM

e Internet Connection
e 15.6” HD display

> Software Requirements

e Browser: Windows internet explorer and Google Chrome
e Microsoft word 2019

e Google Colab

e MS Excel

> Programming Requirements
e Python

» Download Speeds

e Internet speed is measured in Mbps
e 3 -5 Mbps is recommended.

> Loading Testing Tool

e Google Browser
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Appendix part B

###1load pkages

import pandas as pd

import numpy as np

#from matplotlib import pyplot as plt
import seaborn as sns

import matplotlib.pyplot as plt
import numpy as np

#text cleaning

#python get-pip.py

'pip install neattext
#mpip.install.neattext

import neattext.functions as nfx
#import neattext as nt

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sn

Load Dataset

# load dataset

df = pd.read csv("Emotion Dataset.csv")
from google.colab import drive
drive.mount ('/content/drive'")

Dataset Description
df
# @title Emotion

df.head ()

print (df.head())

df .head (10)

df .head (100)

print (df.head (50))

df.tail (50)

print (df.tail (50))

print (df.tail())

print ('The train dataset contans {} rows and {}
columns'.format (df.shape[0], df.shapel[l]))
print (df [ 'Emotion'] .unique())

from matplotlib import pyplot as plt

import seaborn as sns

df .groupby ('Emotion') .size () .plot (kind="'barh',
color=sns.palettes.mpl palette('Dark2'))

plt.gca() .spines[['top', 'right',]].set visible(False)
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from matplotlib import pyplot as plt
import seaborn as sns
df .groupby ('Emotion') .size () .plot (kind="'barh',
color=sns.palettes.mpl palette('Dark2'))
plt.gca() .spines[['top', 'right',]].set visible (False)
df.info ()
Show Sample Tweets
# show sample tweets
for tweet in df["Text"][:5]:
print (f"- {tweet}")

# show sample tweets
for tweet in df["Text"][:507:
print (f"- {tweet}")
# show sample of tweets with a specific emotion

for i,row in df[df["Emotion"] == "joy"].iterrows() :
print(f'- {row["Text"]}")
for i,row in df[df["Emotion"] == "sadness"].iterrows() :

print (£'- {row["Text"]}")

# show sample tweets
for tweet in df["Text"][:5000]:
print (f"- {tweet}")

Plot Emotion Found in Tweets

# plot emotions found in tweets

plot title = f"Emotions found in tweets about"

fig = px.histogram(df, x="Emotion", template="plotly dark",
title=plot title, color="Emotion")

fig.update layout (showlegend=False)

fig.show ()

Distribution of Emotions
# Q@title Distribution of Emotions

df['Emotion'].value counts() .plot (kind="'bar")

Null VValue Checking

print ("null values",df.isnull () .sum().sum())

Data Cleaning
duplicates count = df.duplicated() .sum()
print (f'Total duplicated rows: {duplicates count}')

df [df ['"Emotion'] .duplicated() == True]
# Unique values from 'sentiment'
unique sentiments = df['Emotion'].unique ()

print (unique sentiments)
### Frequency distribution of all diffrent types of Emotion
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frequency counts = df['Emotion'].value counts/()

frequency percentage = (frequency counts / len(df['Emotion'])) * 100
frequency df = pd.DataFrame ({'Counts': frequency counts, 'Percentage':
frequency percentage})

print (frequency df)

# Print total wvalue

cardinality = df['Emotion'].nunique ()
print (f"\ntotal values: {cardinality}")
### Covertion of float

import pandas as pd

# Create a DataFrame with strings containing commas

#df = pd.DataFrame ({'values': ['1,234', '56,78', '9,100', '3.14'1})
# Use the "replace()  function to remove commas
#df['Clean Text'] = df['Clean Text'].replace(any=True)

# Convert the column to floats
#df['Clean Text'] = df['Clean Text'].astype (float)

# Print the DataFrame

#print (df)

print (df.info())

print (df.columns)

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Drop Null Value and Plot Emotion
df=df.dropna (axis=0, how="any")
df

from matplotlib import pyplot as plt

import seaborn as sns

df .groupby ('Emotion') .size () .plot (kind="'barh',
color=sns.palettes.mpl palette('Dark2'))

plt.gca() .spines[['top', 'right',]].set visible(False)

from matplotlib import pyplot as plt

import seaborn as sns

df .groupby ('Emotion') .size () .plot (kind="'barh',
color=sns.palettes.mpl palette('Dark2'))

plt.gca() .spines[['top', 'right',]].set visible (False)
from matplotlib import pyplot as plt

import seaborn as sns
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df .groupby ('Emotion') .size () .plot (kind="'barh',
color=sns.palettes.mpl palette('Dark2'))

plt.gca() .spines[['top', 'right',]].set visible(False)
df.isnull () .sum{()

df.shape

df .dtypes

# value count
df ['Emotion'].value counts|()

#df [ 'Emotion'].value counts('joy"')
# Print the DataFrame
print (df)

# Print the DataFrame columns
print (df.columns)
# Check if the column name is misspelled
if '"Emotion' not in df.columns:
# Find the closest match to the intended column name
closest match = df.columns[df.columns.str.contains ('Emotion',
case=False, regex=True)].tolist ()

1f closest match:
print (f"Did you mean '{closest match[0]}"'?")
else:
print ("Column 'Emotion' not found in the DataFrame.")
# value count
#df['Closest match to Emotion'].value counts ()
#!pip install --upgrade matplotlib
import matplotlib.pyplot as plt
import numpy as np

df['Emotion'].value counts('joy') .plot (kind="'pie')
plt.title("Emotion distribution Report")
plt.show ()

Data Pre-Processing

#Install pywsd

'pip install pyws

'pip install textblob
from textblob import TextBlob
'pip install nltk

import nltk

nltk.download ('punkt')
import nltk

nltk.download ('stopwords"')
import nltk
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nltk.download ('wordnet')
import pandas as pd

# Read the dataset
df = pd.read csv('Emotion Dataset.csv') # Replace 'your dataset.csv'
with your actual dataset file path

# Apply preprocessing function to the 'text' column
df['Clean2 text'] = df['Text'].apply (preprocess text)

# Save the preprocessed data
df.to csv('preprocessed dataset.csv', index=False) # Replace
'preprocessed dataset.csv' with your desired output file path
# Define the preprocess text function here
def preprocess text (text):
# Implement the preprocessing logic here
#
return processed text
!pip install my module
import sys
sys.path.append ("/path/to/module/directory")

# Import the module with the correct name
import my correct module

# Use the function from the imported module

df['Clean2 text'] = df['Text'].apply(my correct module.preprocess text)
import sys

sys.path.append ("/path/to/module/directory")

import sys

sys.path.append ("/path/to/module/directory")

import my module

# Use the function from the imported module

df['Clean2 text'] = df['Text'].apply(my module.preprocess_ text)
import sys

sys.path.append ("/path/to/module/directory")

# Import the module with the correct name
import my correct module

# Use the function from the imported module

df['Clean2 text'] = df['Text'].apply(my correct module.preprocess text)
dir (nfx)

df['clean Text'] = df['Text'].apply(nfx.remove stopwords)

df['clean Text'] = df['Text'].apply(nfx.remove userhandles)

df['clean Text'] = df['Text'].apply(nfx.remove punctuations)
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df[['Text', 'clean Text']]
df.shape

Keyword Extraction
from collections import Counter
ef extract keywords (text,num=50) :

tokens = [ tok for tok in text.split ()]
most common tokens = Counter (tokens) .most common (num)
return dict (most common tokens)

emotion list = df['Emotion'].unique () .tolist()

emotion list

joy list = df[df['Emotion'] == 'Joy']['clean Text'].tolist ()

# create a document for keyword extraction
joy docx= ' '.join(joy list)

joy docx

Keyword joy= extract keywords (joy docx)
Keyword joy

sadness list = df[df['Emotion'] == 'sadness']['clean Text'].tolist()
sadness docx= ' '.join(sadness list)

sadness docx

Keyword sadness= extract keywords (sadness docx)

Keyword sadness

shame list = df[df['Emotion'] == 'shame']['clean Text'].tolist()
shame docx= ' '.join(shame list)

shame docx

Keyword shame= extract keywords (shame docx)

Keyword shame

fear list = df[df['Emotion'] == 'fear']['clean Text'].tolist ()
fear docx= ' '.join(fear list)

fear docx

Keyword fear= extract keywords (fear docx)

Keyword fear

disgust list = df[df['Emotion'] == 'disgust']['clean Text'].tolist ()
disgust docx= ' '.join(disgust list)

disgust docx

Keyword disgust= extract keywords (disgust docx)

Keyword disgust

neutral list = df[df['Emotion'] == 'neutral']['clean Text'].tolist()
neutral docx= ' '.join(neutral list)

neutral docx

Keyword neutral= extract keywords (neutral docx)

Keyword neutral
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anger list = df[df['Emotion'] == 'anger']['clean Text'].tolist()
anger docx= ' '.join(anger list)

anger_ docx

Keyword anger= extract keywords (anger docx)

Keyword anger

surprise list = df[df['Emotion'] == 'surprise']['clean Text'].tolist ()
surprise docx= ' '.join(surprise list)

surprise docx

Keyword surprise= extract keywords (surprise docx)

Keyword surprise

# plotting

def plot most common words (mydict) :
df 02= pd.DataFrame (mydict.items (), columns=["'token', 'count'])
plt.title('plotting of joy keyword')
plt.figure(figsize=(20,10))
sns.barplot (x="token',y="'count',data=df 02)
#plt.xtricks (rotation=45)
plt.show ()

plot most common words (Keyword joy)

plot most common words (Keyword fear)

plot most common words (Keyword sadness)
plot most common words (Keyword neutral)
plot most common words (Keyword surprise)
plot most common words (Keyword anger)
plot most common words (Keyword shame)

Keyword Extraction for Anger

anger list = df[df['Emotion'] == 'anger']['clean Text'].tolist()
# create a document for keyword extraction
anger docx= ' '.join(anger list)

anger docx
Keyword anger= extract keywords (anger docx)
Keyword anger

def plot most common words (mydict) :
df 02= pd.DataFrame (mydict.items (), columns=["'token', 'count'])
plt.title('plotting of anger keyword')
plt.figure(figsize=(20,10))
sns.barplot (x="token',y="'count',data=df 02)
#plt.xtricks (rotation=45)
plt.show ()

plot most common words (Keyword anger)
joy list = df[df['Emotion'] == 'Joy']l['clean Text'].tolist()
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# create a document for keyword extraction
anger docx= ' '.join(joy list)

anger_ docx

Keyword anger= extract keywords (anger docx)
Keyword anger

sadness list = df[df['Emotion'] == 'sadness']['clean Text'].tolist()
# create a document for keyword extraction
sadness docx= ' '.join(sadness list)

sadness docx
Keyword sadness= extract keywords (sadness docx)
Keyword sadness

Sentiment Detection Model
# Sentiment detection from Text
# model applied

def get sentiment (text):
blob = TextBlob (text)
sentiment = blob.sentiment.polarity
if sentiment > O:

result = "Positive"
elif sentiment < O:
result = "negative"
else:
result = "Neutral"
return result
get sentiment (" I love coding")

get sentiment
get sentiment
get sentiment
get sentiment
get sentiment
get sentiment
get sentiment
get sentiment
telescope")
get sentiment ("There’s a man on a hill, who I'm seeing, and he has a
telescope")

get sentiment ("Look at the dog with one eye")

get sentiment ("Look at the dog that only has one eye.")

" I love coding")

" love is a very confused word")

"

" I do coding"

"I donot like this")

"I must not like this")

"I saw a man on a hill with a telescope")

"There’s a man on a hill,and I'm watching him with my

~ o~ o~ o~ o~ o~ o~ —~

dir(nfx)

df ['sentiment'] = df['Text'].apply(get sentiment)
df = pd.read csv('Emotion Dataset.csv')

df

df['sentiment'] = df['Text'].apply(get sentiment)
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Plot after Sentiment Detection
# Q@title Emotion vs sentiment

from matplotlib import pyplot as plt
import seaborn as sns

import pandas as pd

plt.subplots (figsize=(8, 8))

df 2dhist = pd.DataFrame ({

x label: grp['sentiment'].value counts/()
for x label, grp in df.groupby('Emotion')

})

sns.heatmap (df 2dhist, cmap='viridis')
plt.xlabel ('Emotion')

= plt.ylabel ('sentiment')

# Qtitle Emotion

from matplotlib import pyplot as plt
import seaborn as sns

df .groupby ('Emotion') .size () .plot (kind="barh',
color=sns.palettes.mpl palette('Dark2'))

plt.gca() .spines[['top', 'right',]].set visible (False)

df .groupby ([ 'Emotion']) .size () .plot (kind="bar")

df .groupby ([ "'Emotion']) .size () .plot (kind="pie")
sns.catplot (x="Emotion',data=df, kind="count',aspect= 1.5)

# Calculate the frequency distribution of
frequency counts = df['sentiment'].value counts ()
frequency percentage = (frequency counts / len(df['sentiment']))

frequency df = pd.DataFrame ({'Counts':
frequency percentage})

print (frequency df)
# Total value count

cardinality = df['sentiment'].nunique ()
print (f"\ntotal values: {cardinality}")

# Mapping sentiment num / encode
df ["label num"] df.sentiment.map ({

'negative': 0,

'positive': 1,

'neutral': 2
})
df = df.drop(columns=["'sentiment'])
df.head (5)

'sentiment'

frequency counts,

* 100
'Percentage’':
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Emotion Frequency
# Qtitle Emotion Frequency over Time

df .groupby ('Emotion') ["Emotion'].count () .plot (kind="line', x='Unnamed:
0")
df ['Emotion'].value counts () .plot (kind="'bar')

# Qtitle Emotion Frequency Over Time

df .groupby ('Unnamed: 0') ['Emotion'].value counts () .unstack() .plot ()

cols = df.columns

Machine Learning Model

# Load ML Pkgs

# Estimators

from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import MultinomialNB

# Transformers

from sklearn.feature extraction.text import CountVectorizer
from sklearn.model selection import train test split
from sklearn.metrics import

accuracy score,classification report,confusion matrix
#from sklearn.metrics import plot confusion matrix

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model selection import GridSearchCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import classification report
import pandas as p

Xfeatures = df['Text']

ylabels = df['Emotion']
Xfeatures

ylabels

cv = CountVectorizer ()

X = cv.fit transform(Xfeatures
X train,X test,y train,y test =
train test split(X,ylabels,test size=0.3,random state=42)
#Logistic regressiobn

X = df['Clean Text']

y = df['Emotion'] #labels

X train, X test, y train, y test = train test split (X, y, test size=0.3,

random state = 1)
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# ml = LogisticRegression() ml.fit(X train, y train) predl =
ml.predict (X test) print(classification report(y test, predl))

Xfeatures = df['Text']
# Extract features and labels

X df ['Clean Text']
y df [ '"Emotion']

# Split the data into training and testing sets

")
")

print (f"X train data type: {type (X train)}
print (f"y train data type: {type(y train)}
# Import necessary libraries

import numpy as np

from sklearn.model selection import train test split

from sklearn.feature extraction.text import CountVectorizer
from sklearn.linear model import LogisticRegression

from sklearn.metrics import accuracy score

# Sample dataset (replace with your own data)

texts = ["I am happy", "I am sad", "I feel great", "I am angry", "I am
neutral™]
labels = ["happy", "sad", "happy", "angry", "neutral']

# Split the data into training and testing sets
X train, X test, y train, y test = train test split(texts, labels,
test size=0.2, random state=42)

# Convert text data into numerical features using CountVectorizer
vectorizer = CountVectorizer ()

X train counts = vectorizer.fit transform(X train)

X test counts = vectorizer.transform(X test)

# Initialize and train the logistic regression model
model = LogisticRegression ()
model.fit (X train counts, y train)

# Predict on the test set
predictions = model.predict (X test counts)

# Evaluate the model
accuracy = accuracy score(y test, predictions)
print ("Accuracy:", accuracy)

# Example of predicting emotions for new text
new text = ["I am feeling happy today"]
new text counts = vectorizer.transform(new text)
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predicted emotion = model.predict (new text counts)
print ("Predicted emotion:", predicted emotion)

nan indices = [i1i for 1, text in enumerate (X train) if pd.isna(text)]
print (f"Number of NaN values in X train: {len(nan_indices)}")

X train = pd.DataFrame (X train)

y train = pd.DataFrame(y train)

!pip install pandas
import pandas as pd
print (type (nan_indices))
if type(nan indices) == list:

print ("nan indices is a list.")
else:

print ("nan indices is not a list.")
print (nan indices[:5])
# Get the actual column names of X train
actual columns = X train.columns

# Update nan columns with the actual column names
nan_columns = [column for column in nan columns if column in
actual columns]

# Drop rows with NaN values in the specified columns
X train dropped = X train.dropna (subset=nan columns)
y train dropped = y train.dropna(subset=nan columns)
print (X train dropped.shape)

print (y train dropped.shape)

print (X train dropped.head())

print (y train dropped.head())
model.fit (X train counts, y train)

predictions = model.predict (X test counts)

accuracy = accuracy score(y test, predictions)

print ("Accuracy after handling missing values:", accuracy)

Multinomial NB for TF-IDF

from sklearn.model selection import train test split

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.naive bayes import MultinomialNB

from sklearn.metrics import confusion matrix, classification report
import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

# Example dataset

data = pd.read csv("Emotion Dataset.csv") # Load your dataset
X = data['Text'] # Text data
y = data['Emotion'] # Emotion labels
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# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.3,
random state=42)

# Convert text data to numerical features using TF-IDF
tfidf vectorizer = TfidfVectorizer (max features=1000)

X train tfidf = tfidf vectorizer.fit transform(X train)
X test tfidf = tfidf vectorizer.transform(X test)

# Train a classifier (example: Naive Bayes)
classifier = MultinomialNB ()
classifier.fit (X train tfidf, y train)

# Predict the labels for the test set
y pred = classifier.predict (X test tfidf)

# Generate confusion matrix
conf matrix = confusion matrix(y test, y pred)

# Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap (conf matrix, annot=True, fmt='d', cmap="Blues",
xticklabels=classifier.classes , yticklabels=classifier.classes )
plt.xlabel ('Predicted')

plt.ylabel ('Actual')

plt.title('Confusion Matrix')

plt.show ()

# Print classification report
print (classification report(y test, y pred))

KNN for TF-IDF

from sklearn.model selection import train test split

from sklearn.feature extraction.text import TfidfVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion matrix, classification report
import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

# Example dataset

data = pd.read csv("Emotion Dataset.csv") # Load your dataset
X = data['Text'] # Text data
y = data['Emotion'] # Emotion labels

# Split the data into training and testing sets
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X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)

# Convert text data to numerical features using TF-IDF
tfidf vectorizer = TfidfVectorizer (max features=1000)

X train tfidf = tfidf vectorizer.fit transform(X train)
X test tfidf = tfidf vectorizer.transform(X test)

# Train a KNN classifier

k = 5 # Number of neighbors

knn classifier = KNeighborsClassifier (n neighbors=k)
knn classifier.fit (X train tfidf, y train)

# Predict the labels for the test set
y pred = knn classifier.predict (X test tfidf)

# Generate confusion matrix
conf matrix = confusion matrix(y test, y pred)

# Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap (conf matrix, annot=True, fmt='d', cmap="Blues",
xticklabels=knn classifier.classes ,

yticklabels=knn classifier.classes )

plt.xlabel ('Predicted')

plt.ylabel ('Actual')

plt.title('Confusion Matrix')

plt.show ()

# Print classification report
print (classification report(y test, y pred))

y train = y train.values.reshape (-1, 1)

from sklearn.model selection import train test split

from keras.models import Sequential

from keras.layers import LSTM, Dense, Embedding, SpatialDropoutlD
from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad sequences

from sklearn.metrics import confusion matrix, classification report
import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

# Example dataset

data = pd.read csv("Emotion Dataset.csv") # Load your dataset
X = data['Text'] # Text data
y = data['Emotion'] # Emotion labels
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# Tokenization

tokenizer = Tokenizer ()
tokenizer.fit on texts (X)

X seq = tokenizer.texts to sequences (X)

# Padding sequences
max length = max([len(seq) for seq in X seq])
X pad = pad sequences (X seq, maxlen=max length, padding='post')

# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X pad, vy,
test size=0.2, random state=42)

# LSTM Model

embedding dim = 100

model = Sequential ()

model.add (Embedding (input dim=len (tokenizer.word index)+1,
output dim=embedding dim, input length=max length))

model .add (SpatialDropoutlD(0.2))

model.add (LSTM (100, dropout=0.2, recurrent dropout=0.2))
model.add (Dense (1, activation='sigmoid'))

model.compile (loss='binary crossentropy', optimizer='adam',
metrics=['accuracy'])

# Train the model

batch size = 64

epochs = 10

history = model.fit (X train, y train, epochs=epochs,

batch size=batch size, validation data=(X test, y test), verbose=2)

# Predictions
y _pred = model.predict classes (X test)

# Generate confusion matrix
conf matrix = confusion matrix(y test, y pred)

# Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap (conf matrix, annot=True, fmt='d', cmap="Blues")
plt.xlabel ('Predicted')

plt.ylabel ('Actual')

plt.title('Confusion Matrix')

plt.show ()

# Print classification report
print (classification report(y test, y pred))
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Random Forest for TF-IDF

om sklearn.feature extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy score

# Load dataset
df = pd.read csv('Emotion Dataset.csv')

# Prepare data
texts = df['Text'].tolist ()
labels = df['Emotion'].tolist ()

# Split the data into training and testing sets
X train, X test, y train, y test = train test split(texts, labels,
test size=0.2, random state=42)

# Convert text data into numerical features using TF-IDF Vectorizer
vectorizer = TfidfVectorizer (max features=5000) # Increase max features
for better coverage

X train tfidf = vectorizer.fit transform(X train)

X test tfidf = vectorizer.transform(X test)

# Initialize and train a Random Forest classifier
param grid = {
'n estimators': [100, 200, 300],
'max depth': [None, 10, 20],
'min samples split': [2, 5, 10]
}
rf model = RandomForestClassifier (random state=42)
grid search = GridSearchCV (rf model, param grid, cv=5, n jobs=-1)
grid search.fit (X train tfidf, y train)

# Get the best model from the grid search
best rf model = grid search.best estimator

# Predict on the test set
predictions = best rf model.predict (X test tfidf)

# Evaluate the model

accuracy = accuracy score(y test, predictions)

print ("Accuracy:", accuracy)

mport pandas as pd

from sklearn.model selection import train test split

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy score

# Load dataset
df = pd.read csv('Emotion Dataset.csv')
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# Prepare data
texts = df['Text'].tolist ()
labels = df['Emotion'].tolist ()

# Split the data into training and testing sets
X train, X test, y train, y test = train test split(texts, labels,
test size=0.2, random state=42)

# Convert text data into numerical features using TF-IDF Vectorizer
vectorizer = TfidfVectorizer (max features=5000)

X train tfidf = vectorizer.fit transform(X train)

X test tfidf = vectorizer.transform(X test)

# Initialize and train a Random Forest classifier

param grid = {
'n estimators': [100, 200, 3007,
'max depth': [None, 10, 2017,
'min samples split': [2, 5, 10]

}

best accuracy = 0

best rf model = None

for n estimators in param grid['n estimators']:
for max depth in param grid['max depth']:
for min samples split in param grid['min samples split']:
rf model = RandomForestClassifier (n estimators=n_ estimators,
max depth=max depth, min samples split=min samples split,
random state=42)
rf model.fit (X train tfidf, y train)
predictions = rf model.predict (X test tfidf)
accuracy = accuracy score(y test, predictions)
print (f"Parameters: n estimators={n_estimators},
max depth={max depth}, min samples split={min samples split}, Accuracy:
{accuracyl}")
if accuracy > best accuracy:
best accuracy = accuracy
best rf model = rf model

BNB for TF-IDF

import pandas as pd

from sklearn.model selection import train test split

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.naive bayes import BernoulliNB

from sklearn.metrics import accuracy score

# Load dataset
df = pd.read csv('Emotion Dataset.csv')
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# Prepare data
texts = df['Text'].tolist ()
labels = df['Emotion'].tolist ()

# Split the data into training and testing sets
X train, X test, y train, y test = train test split(texts, labels,
test size=0.25, random state=42)

# Convert text data into numerical features using TF-IDF Vectorizer
vectorizer = TfidfVectorizer (max features=5000, binary=True) # Using
binary=True for Bernoulli Naive Bayes

X train tfidf = vectorizer.fit transform(X train)

X test tfidf = vectorizer.transform(X test)

# Initialize and train the Bernoulli Naive Bayes classifier
bnb model = BernoulliNB ()
bnb model.fit (X train tfidf, y train)

# Predict on the test set
predictions = bnb model.predict (X test tfidf)

# Evaluate the model
accuracy = accuracy score(y test, predictions)
print ("Accuracy:", accuracy)

# Example of predicting emotions for new text

new text = ["I am feeling happy today"]

new text tfidf = vectorizer.transform(new text)
predicted emotion = bnb model.predict (new text tfidf)
print ("Predicted emotion:", predicted emotion)

SVC for TF-IDF

import pandas as pd

from sklearn.model selection import train test split

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.svm import SVC

from sklearn.metrics import accuracy score

# Load dataset
df = pd.read csv('Emotion Dataset.csv')

# Prepare data
texts = df['Text'].tolist ()
labels = df['Emotion'].tolist ()

# Split the data into training and testing sets
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X train, X test, y train, y test = train test split(texts, labels,
test size=0.2, random state=42)

# Convert text data into numerical features using TF-IDF Vectorizer

vectorizer = TfidfVectorizer (max features=5000)
X train tfidf = vectorizer.fit transform(X train)
X test tfidf = vectorizer.transform(X test)

# Initialize and train the SVM classifier
svm model = SVC(kernel='linear',K C=1.0, random state=42)
svm model.fit (X train tfidf, y train)

# Predict on the test set
predictions = svm model.predict (X test tfidf)

# Evaluate the model
accuracy = accuracy score(y test, predictions)

print ("Accuracy:", accuracy)

# Example of predicting emotions for new text

new text = ["I am feeling happy today"]
new text tfidf = vectorizer.transform(new text)
predicted emotion = svm model.predict (new_ text tfidf)

print ("Predicted emotion:", predicted emotio

Feature Extraction Techniques

rom sklearn.feature extraction.text import TfidfTransformer
from sklearn.feature extraction.text import CountVectorizer,
TfidfVectorizer

from sklearn.naive bayes import MultinomialNB

from sklearn.metrics import classification report, accuracy score,
confusion matrix

from sklearn.model selection import cross val predict, StratifiedKFold
from sklearn.neural network import MLPClassifier

#import matplotlib.pyplot as plt

from sklearn.metrics import accuracy score, precision score,
recall score, fl score, confusion matrix, classification report
import numpy as np

# Define X train as a numpy array

X train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 911])

print (type(X train))

#<class 'numpy.ndarray'>

#<class 'numpy.ndarray'>

#X train = X train.toarray/()

import numpy as np

# Define X train as a numpy array
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X train = np.array(I[[1, 2, 31, [4, 5, 6], [7, 8, 911)
print (type(X train))
#<class 'numpy.ndarray'>

# Convert the numpy array to a list of lists
X train = X train.tolist()

print (type(X train))

#<class 'list'>

model = MultinomialNB ()

# Train
model.fit (X train, y train)

# Test
y _pred = model.predict (X test)

# Evaluate
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)

y pred cv = cross val predict (model, X train, y train, cv=cv)
classification rep = classification report(y train, y pred cv)

print ("Classification Report (Cross-Validation) :\n", classification rep)

accuracy = accuracy score(y train, y pred cv)
print ("Accuracy (Cross-Validation) :", accuracy)

model.fit (X train, y train)
y_pred test = model.predict (X test)

classification rep test = classification report(y test, y pred test)
print ("Classification Report (Test Data) :\n", classification rep test)

accuracy test = accuracy score(y test, y pred test)
print ("Accuracy (Test Data):", accuracy test)

#import seaborn as sns
#import matplotlib.pyplot as plt
from sklearn.metrics import confusion matrix

BNB for Count Vectorizer

from sklearn.naive bayes import BernoulliNB
from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(X,y,test size=0.30)

bnb = BernoulliNB (binarize=0.0)
bnb.fit (X train, y train)
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bnb.score (X test, y test)
#print (classification report (Y test, X train))
print (classification report(y test, bnb.predict (X test)))

import pandas as pd

# Convert X train and X test to Pandas DataFrames
X train df = pd.DataFrame (X train)
X test df = pd.DataFrame (X test)

# Print the number of missing values in each column of X train and
X test

print (X train df.isnull () .sum() .sum())

print (X test df.isnull() .sum() .sum())

# Print the number of missing values in y train and y test
print (y train.isnull () .sum())
print (y test.isnull () .sum())
print (X train.duplicated() .sum())
print (X test.duplicated() .sum())
( ))
( )

print (y train.duplicated() .sum/(
print (y test.duplicated() .sum/()

print (X train.shape)
print (y train.shape)
print (X test.shape)
print (y test.shape)
print (X.shape)
print (y.shape)
# Ensure X and Y have the same number of samples
if X.shape[0] != Y.shape[O]:
# Adjust the size of X or Y to match the other array
if X.shape[0] > Y.shape[0]:
X = X[:Y.shape[O0]]
else:
Y = Y[:X.shape[0]]

X train, X test, Y train, Y test = train test split (X, Y,
test size=0.30)

gnb = GaussianNB ()

gnb.fit (X train, Y train)

gnb.score (X _test, Y test)

Logistic Regression for Count Vectorizer

lr model = LogisticRegression()

lr model.fit (X train,y train)

X train, X test, y train, y test = train test split(X, y,test size=0.30)
lr model.score (X test,y test)
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from sklearn.metrics import classification report
# Check if y test and lr model are valid inputs
print (f"y test type: {type(y test)}")

print (f"1r model type: {type(lr model)}")

from sklearn.metrics import classification report

y pred = lr model.predict (X test

X train, X test, y train, y test = train test split(X, y,test size=0.30)
#1lr model.score (X test,y test)

print (classification report(y test, y pred))
X train, X test, y train, y test = train test split (X, y,test size=0.30)
lr model.score (X test,y test)

import joblib

'pip install elib

import elib

eli5.show weights (lr model, top=240000)

Gradient Boost

grid = {
'learning rate': [0.3, 0.1, 0.5],
'n estimators': [100, 3007,
'max depth': [1, 3, 9]
}
m3 = GridSearchCV (GradientBoostingClassifier (), grid, verbose = 2)

m3.fit (X train, y train)

print (m3.best params )

pred3 = m3.predict (X test)

print (classification report(y test, pred3))

gbc = GradientBoostingClassifier(n_estimators=300,
learning rate=0.05,
random state=100,
max features=5 )

# Fit to training set

gbc.fit (X train, y train)

# Predict on test set
pred y = gbc.predict (X test)

# accuracy

acc = accuracy score(y test, y pred)
print ("Gradient Boosting Classifier accuracy is : {:.2f}".format (acc))
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KNN

knn = KNeighborsClassifier (n neighbors=6)
knn.fit (X train, y train)

y pred = knn.predict (X test)

# compute accuracy of the model
knn.score (X test, y test

Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier(n estimators= 24000, random state= 10)
rfc.fit (X train, y train)

predictions = rfc.predict (X test)

# Model evaluation

print (classification report(y test, predictions))
print (confusion matrix(y test, predictions))

Gaussian Naive Bayes Algorithm

from sklearn.naive bayes import GaussianNB

from sklearn.linear model import LogisticRegression
from sklearn.metrics import roc curve, auc

from sklearn.model selection import train test split

#X train, X test, Y train, Y test = train test split(X, Y,
test size=0.30)

gnb = GaussianNB ()

gnb.fit (X train, y train)

gnb.score (X _test, y test)

Plot of Comparative Analysis
algorithms=("LR", "KNN", "NB", "Random Forest")

scores = (lr model.score,knn.score,nv_model.score,m2.score)
y_pPos = np.arange(1l,7)
colors = ("red","gray","purple","green", "orange", "blue")

plt.figure(figsize=(18,10))

plt.bar (y pos,scores,color=colors)

plt.xticks(y pos,algorithms, fontsize=18)

plt.yticks (np.arange (0.00, 1.01, step=0.05))

plt.grid()

plt.suptitle ("Bar Chart Comparison of Models", fontsize=15)
plt.show ()
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