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                                         Executive Summary

 
Emotion detection from text has emerged as a critical area of research, given the vast 

amount of textual data generated daily on social media platforms, customer reviews, 

and other digital sources. Understanding emotions expressed in text has implications 

for various domains, including marketing, customer service, mental health, and 

sentiment analysis. This thesis aims to investigate the effectiveness of machine 

learning techniques in detecting and analyzing emotions from textual data. 

Specifically, the research seeks to develop a robust model capable of accurately 

identifying and categorizing emotions expressed in text. The methodology comprises 

data collection, data preprocessing, Feature Engineering, Model Development and 

Evaluation Process. In this Proposed Method Get () Sentiment Model is more accurate 

and effective to detect Sentiment from textual data as compare to previously used N-

grams, BERT, Word Cloud etc. and solves word ambiguity problems as well. To 

check performance of system various machine learning algorithms like Logistic 

Regression, Naïve Bayes Classifier, Support Vector Machine, Random Forest, KNN 

and also unsupervised Machine Learning model like K-Means Clustering. Bernoulli 

and Gaussian Naïve Bayes algorithms never used for text classification but two 

Methods have been used to get better results. The performance of the proposed model 

with previously used model is compared. Experimental results demonstrate the 

effectiveness of machine learning models in detecting emotions from text. 

 

 

                                 

                                               



XII 

ISEAR dataset has been used for this study and were tested all models using ISEAR 

standards criteria. The dataset contained different form of Text message, comments 

and reviews. For pre-cleaning process of dataset, all unrelated attributes have been 

ignored. Unrelated attributes things can make confused during analysis phase. But all 

necessary actions have been taken related to datasets during the time of data cleaning 

process. Every cycle of this research different actions, modifications have been taken 

as per need time to time. In the existing models have various kind of problems which 

have been found and solve some vital problems. Also Used new models that have 

been succeed to provide better results related to accuracy and other things.  used to 

this study various machine learning techniques like Naïve bayes Classifier, Logistic 

Regression, Linear Regression, Random Forest Classifier, Gradient boost Classifier 

etc. Actually, various factor can affect our sentiment analysis accuracy, word 

ambiguity is one of them and a very serious problem. Previously various machine 

learning algorithms failed to provide very good results. This study one of its kind 

proposed systems are more accurate compare to previous and will help in the field of 

natural language processing in the context of emotion detection and sentiment 

analysis. 
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         1.  INTRODUCTION 

1.1 Overview 

Emotion detection will play a promising role in the field of Human Computer 

Interaction and interface development. In today’s world, a majority of users have 

access to internet for exchange communication via text, Image, audio and video. 

Emotion can be expressed by a person’s speech, face expression and also written text 

known as Text based emotion. With the growing population in countries like India, it 

has led to tremendous growth in the number of users using Facebook, WhatsApp, 

Twitter, Instagram and also online shopping app like Amazon, Flipkart, Paytm Mall, 

Messo etc. The large scale of these users or people are providing feedback, asking any 

query related to online networks and related things via Text message now a days in 

the current Technological world. Researchers collected all text message from various 

online platforms and analysis accordingly to make them more efficient and more 

compact. But it has become a challenge in recent years to extract valuable information 

from these growing data in the form of posts, emails, blogs, tweets, revies, comments, 

surveys on the Web in the process of any decision making. It is very much difficult to 

detect emotion from Text because human mind is so complex and even dataset might 

not be ready for the proposed research. But to simply Two affect class has been 

categorized in three categories like positive, negative and neutral. Recently, 

researchers have proposed various methods for text emotion detection including 

keyword-based method, learning-based and hybrid models, lexical similarity models. 

At first, they introduced a rule-based approach such as lexical affinity based and 

keyword based. Then came a new approach, the learning-based approach. This 
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method was more accurate and gave better results as expected. Many researchers 

begun to combine these approaches named hybrid model to get better accuracy they 

got more better accuracy but they failed to get very good accuracy as expected that 

can make this research more efficient. 

Then came the name of new techniques such as machine learning based models to 

detect emotion and classify the all affect class one by one followed by getting very 

good accuracy as expected. Researches have used some machine learning models to 

classify the emotions and sentiments and also improve existing model’s accuracy. But 

also used machine learning models have some very crucial problems and some models 

also have been failed to detect emotion more accurately and to provide good accuracy 

results as per need. 

In this study, the new methods have been proposed followed by solving the   problems 

to the existing models, datasets and has been improved accuracy and got very good 

result. 
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1.2. Problem Statement 

 
  Detection of Emotion from Textual Data using Machine Learning 

 

 

1.3. Objectives 

 
The objectives of my research work are as follows: 

 

✓ To find more efficient Machine Learning algorithms to detect Emotion from 

textual data for this study to get better results. 

 

✓ To find out problems in dataset, data preprocessing phase and model 

Development phase. 

 

✓ To find the problems in used models and how to solve the problems and improve 

accuracy of existing models. 

 

✓ To solve the problem of word ambiguity in text messages.  

 

✓ To Find best feature Extraction method for this study. 

 

 

✓ To develop more accurate Sentiment detection algorithm. 
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       1.4 Assumptions and Scopes 

1.4.1 Assumptions 
 

• Developers must have good network connection with laptops or PC. 

• Developers must have a proper system setup like Google Colab, Jupyter Notebook already 

installed in PC. 

 

• Developers must have good knowledge of Python, Data analysis and machine 

Learning for programmatic access. 

 

 

 1.4.2 Scopes 
 

• To do emotion detection from text message such CSV. files 

• To learn about Python and Machine Learning 

    1.5 Concept and Problem Analysis 

Emotion detection involves identifying and categorizing emotions expressed by users 

through different modalities such as text, speech, and facial expressions. In the context 

of Human-Computer Interaction (HCI), this capability can enhance user experience by 

allowing systems to respond appropriately to users' emotional states. Detecting emotion 

from text is difficult due to the complexity of the human mind and the potential 

inadequacy of existing datasets for proposed research.  

To simplify the task, emotions have been categorized into three classes: positive, 

negative, and neutral. Recently, researchers have proposed various methods for text 

emotion detection, including keyword-based methods, learning-based methods, hybrid 

models, and lexical similarity models. Initially, rule-based approaches such as lexical 

affinity-based and keyword-based methods were introduced. Subsequently, a learning-
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based approach was developed, which proved to be more accurate and yielded better 

results. 

Researchers began combining these approaches into hybrid models to achieve higher 

accuracy. Although these models showed improved accuracy, they still fell short of the 

high expectations necessary for making the research more efficient. Machine learning-

based models emerged as a new technique for detecting and classifying emotions, 

providing significantly improved accuracy. Researchers employed various machine 

learning models to classify emotions and sentiments, thereby enhancing the accuracy of 

existing models. However, these models also faced critical challenges and some failed to 

detect emotions accurately, resulting in suboptimal performance. 

In this research, new methods are proposed to address the problems of existing models 

and datasets, ultimately improving accuracy and achieving impressive results. One 

notable issue at the document level is the expression of multiple emotions within the same 

document. Based on analysis and studies from previous research, several limitations have 

been identified: 

▪ Handling the complexity of the human mind and the subtleties of text-based emotion. 

▪ Ensuring datasets are comprehensive and representative of diverse emotional 

expressions. 

▪ Achieving high accuracy in emotion detection despite the presence of multiple 

emotions in a single document. 

▪ Developing models that can reliably and accurately classify emotions in various 

contexts and platforms. 

By addressing these challenges, the research aims to advance the field of text-based 

emotion detection and enhance the capabilities of Human-Computer Interaction systems. 

Some problem of document-level occurs when multiple emotions are expressed in the 
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same document. By analysis and study from previous research below are some 

limitations: 

a) Word ambiguity. 

b) Lack of linguistic Information. 

c) In capability to recognize emotion in absence of emotion keyword. 

d) Existing models not providing better accuracy. 

e) Existing emotion detection- based Algorithm is not more efficient. 

f) Some machine learning Technique’s overfitting Problem. 

g) Different types of same algorithm (Naïve bayes) giving different results. 

h) Multinomial Naïve Bayes Algorithm failed to perform well. 
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1.6 Organization of the Thesis 

I. Chapter 1 – This chapter contains the introduction of the thesis which includes 

overview, problem statement, objectives, assumptions, scopes, concept and 

problem analysis. 

II. Chapter 2 – It includes all the literature surveys done to carry out the research 

work. 

III. Chapter 3 – It includes proposed approach that has been used to detect Emotion 

from text. 

IV. Chapter 4 – This chapter contains the implementation and result. 

V. Chapter 5 – This chapter contains the comparative analysis. 

VI. Chapter 6 – This chapter describes the conclusion and scope of future scopes. 

VII. References – All the references are given here. 

VIII. Appendix Part A – This part contains system requirements, software 

requirements, programming requirements and download speed. 

IX. Appendix Part B – Here are all the code snippets provided. 
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2.  LITERATURE SURVEY 
 

Vishaka Singh et al. [1], proposed an Emotion Detection Model taking two different 

Feature extraction Model Term Frequency- Inverse Frequency (TFDF) and Count 

Vectorizer using Logistic Regression, Random Forest Classifier models etc. here 

researchers consider 20000 dataset for the study and applying models on preprocessed 

data the highest accuracy obtained in Count Vectorizer using Logistic Regression 

88% in the case of Data set Split Ratio is 70:30 but more need to improve on 

preprocessing Phase on Textual Dataset and Consider more data as well. 

 

Ms. Pinal Solanki [2], considered a small Data set for this research, the proposed study 

found that SVC and TFDF is more accurate and SVC gave highest accuracy, focuses 

on feature extraction method and word recognition for getting better results but word 

ambiguity problems were not considered here. During this study researchers faced 

some problems such text is commonly displayed unclear, some sentences may be 

sarcastic and sentiment is unclear due to the presence of multiple points of the view 

on the subjects  

 

Firdaus et al. [3] focus on the application of text emotion detection for retweet 

prediction, a task crucial in social media analytics. The paper proposes a topic-specific 

approach to emotion detection, leveraging machine learning techniques. By 

associating emotions with specific topics, the authors aim to enhance the accuracy of 

retweet prediction models. This study highlights the practical applications of text 

emotion detection beyond sentiment analysis, demonstrating its utility in social media 

data analysis and prediction tasks. 
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Oliveira et al. [4], proposed Generalized Linear Model with taking 1000 features total 

of 2302 features sets were explored, where each features sets has 100-1000 features 

extracted from the Text. The results demonstrate Generalized Linear Model provides 

the best Accuracy score (0.92), Recall (0.902), Precision (0.902), F1 score (0.901) 

with standard deviation of accuracy of ±1,2%.  

 

Shaikh Abdul et al. [5] proposed machine learning based sentiment detection model 

using Naïve Bayes Algorithm, Support Vector Machines, K-means Clustering. For 

this study the twitter data was required and converted from word to vector of Eight 

emotions and applied feature extraction techniques to get better classification 

accuracy. According to this research 13000 data used and experiment resulted that 

support vector machines accuracy was 80%, Naïve Bayes models Accuracy was 50%. 

It evident that SVC and Naïve bayes far better that K-means but the accuracy of every 

model needs to be improved as well. Hence Pre-processing data still remains one of 

the most crucial streps which needs to be improved to get more accurate results. 

 

P Ancy et al. [6] approached a rule-based emotion detection model involves various 

NLP Process for classification. Automatic Classification Approach Supervised 

Machine Learning Models like Naïve Bayes Algorithm, SVC, Linear Regression and 

Unsupervised Machine Learning approach is used to explore data but got bad results 

due to various problems in Data set. In case of supervised Machine Learning Models 

highest accuracy obtained.  
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Amal Shameem et al. [8] proposed machine learning based sentiment detection model 

using Decision Tree Classifier Support Vector Machines. For this study the twitter 

data was required and converted from word to vector of Eight emotions and applied 

feature extraction techniques to get better classification accuracy. Decision Tree 

Classifier has the best average performance in terms of efficiency, sensitivity and 

f1score at 84.7%, 74.2%, and 94.1% respectively. Throughout this study Researchers 

work on the to identify emotions based on text., SVC, Nested Linear SVC methods 

can be used to identify emotions in multiclass based on the results of the discussion 

and evaluation conducted in the previous section. Random Forest Classifier has the 

best accuracy. The experimental findings demonstrated that machine learning-driven 

text emotion classification outperforms established learning methodologies, 

exhibiting notably superior accuracy rates. 

 

Poonam Arya et al. [10] proposed a hybrid model that incorporates natural language 

processing technique, including keyword-based and machine learning-based emotion 

classification from textual data at sentence level. Supervised and unsupervised 

technique has been used.  Limitations of this study are Word ambiguity, Incapability 

to recognize emotion in absence of emotion keyword, Emotion categories. Machine 

Learning Model provided 63% accuracy compared to Keyword Based Model. 
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Goru Swathi et al. [11] developed an emotion recognition system for text-based 

content. The proposed model is a combination of machine learning approaches. 

According to the observation Logistic regression gives highest accuracy of 84% as 

compared to KNN, SVM, Naïve Bayes, Decision Tree. But this research can be 

extended by making a real-time test-based emotion recognition system.  

 

S. Arun Kumar S. et al. [12] The study delved into algorithms for identifying emotions 

from textual data and detecting emotional cues within the text. These approaches are 

combination of machine learning and CNN, here considered only Machine learning 

Algorithms. Besides NRC Lex, NLP method also considered for this study their 

accuracy 64.44, 83.36 respectively.  

 

Garg and Saxena [16] proposed a machine learning-based approach for emotion 

detection and human behavior analysis. Garg and Saxena employed machine learning 

techniques for emotion detection from text data. They utilized computational 

intelligence methods for sentiment analysis, emphasizing the importance of accurate 

emotion classification for understanding human behavior. 

 

 Bhavya A.V. et al. [18] proposed an AI based machine Learning Model. Emotion 

detection from text has garnered significant attention due to its wide-ranging 

applications in various fields, including healthcare, customer service, and social 

media analysis. However, existing emotion detection models often overlook the 

personalized nature of emotions, leading to suboptimal performance in capturing 

individual nuances. In this paper, we propose a novel approach for personalized 

emotion detection from text using machine learning techniques. Present research 

worker’s approach leverages user-specific data to tailor emotion detection models to 
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individual users, thereby enhancing the accuracy and effectiveness of emotion 

classification. Present research worker conducts experiment on a diverse dataset 

collected from social media platforms, demonstrating the superiority of our 

personalized approach over traditional methods. The results highlight the importance 

of considering individual differences in emotion expression for achieving more 

accurate emotion detection from text. 

Nath, S., Shahi, et al [19] recognized an emotion Detection Model emotion 

recognition is a crucial task with applications in various domains such as human-

computer interaction, affective computing, and mental health assessment. In this 

paper, they present a comparative study on SER utilizing machine learning 

techniques. Present research worker’s study investigates the performance of different 

machine learning algorithms and feature extraction methods for recognizing emotions 

from speech signals. They conduct experiments on benchmark datasets, evaluating 

the accuracy, robustness, and computational efficiency of the proposed approaches. 

Through comprehensive analysis and comparison, they identify the strengths and 

weaknesses of each method, providing insights into the most effective strategies for 

SER tasks. Their findings contribute to advancing the state-of-the-art in speech 

emotion recognition and offer valuable guidance for researchers and practitioners in 

this field. 
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     3. PROPOSED APPROACH 

 
In the proposed system, various supervised machine learning models have been used 

such as Naïve Bayes, Support Vector Machine, Random Forest Classifier, KNN and 

Logistic Regression. Multinomial Naïve Bayes, Bernoulli Naïve Bayes, Gaussian 

Naïve Bayes, Compliment Naïve Bayes algorithms, this different type of Naïve Bayes 

Model will be used for this Study. For this study 34791 records of Text messages are 

collected. After the Classifiers are trained, Text Data can be fed into them to determine 

the emotion type. Other side for detecting Sentiment, get () sentiment Algorithm has 

been used and When model was ready, deployed on the Preprocessed clean dataset to 

detect sentiment. ‘Neutral’, ‘Positive’, ‘Negative’ three type of sentiments were 

detected by applying our proposed sentiment detection model. The documents were 

calculated on the basis of the confusion Matrix. Confusion Matrix has calculated four 

different table with true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN). Two different more accurate feature extraction techniques namely TF-

IDF, Count Vectorizer are used to get best classification accuracy as compared to 

previous research. 
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3.1 Dataset Description: 

In this work, Textual data set collected from various resources as Natural language 

Toolkit (NLTK) corpus, Kaggle and ISEAR (International survey of Emotional 

Antecedents and Responses). The data set contain 34791 rows and 4 columns with 

about 34791 records of different tweet or text messages. These ISEAR dataset is 

sentiment label dataset where data is lightly cleaned and normalized. But as per 

research need dataset has been cleaned and more improved in preprocessing phase so 

that accuracy can be increased as well as model become more accurate for the research 

purpose. Dataset contained four different features such as Emotion, input, Text, Clean 

Text and after preprocessing preprocessed text included with dataset. After detection 

of sentiment this part also includes with Dataset and save the dataset again for final 

evaluation process. Eight emotion Classes has been Considered such as ‘Joy’, 

‘Sadness’, ‘Fear’, ‘Anger’, ‘Neutral’, ‘Surprise’, ‘Shame’, ‘disgust’ and no of records 

and percentages are described in the following table. 

 

 

                                     Fig-1: Percentage of Emotions        
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                        Table-1: No of Records and Percentage of Emotion 

      Emotion       No of Records         Percentage 

Joy 11045 31.745804 

Sadness 6722 19.320533 

 Fear 5410 15.549552 

Anger 4297 12.350540 

Neutral 2254 6.478501 

Surprise 4062 11.675098 

Shame 146 0.419637 

disgust 856 2.460336 

         Total 34791  

 

 

                                            Fig-2: Dataset Description  
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                                                                No of Records 

                                      Fig-3:  Distribution of Emotions 
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Fig-4: Sample of Text in Dataset



                                              21 

          3.2 Data Pre-processing 

Preprocessing refers to the transformations applied to the data before providing 

the data to algorithms. This process is used to convert the raw data in to an 

understandable dataset. How ever dataset collected from Previous researcher is 

cleaned almost useable to apply using method but present research worker’s 

research objectives are to gain more better results as compared to previous. In 

other Words, to get best accurate classification accuracy it is necessary to have 

dataset fully cleaned and normalized. Text processing is a technique to clean to 

the text data and make it ready to feed data to the model. Previous researcher 

taken 20000 data from 34791 data in dataset and in their preprocessing stage they 

cleaned data as their research need. However, there are many problems in the 

dataset that are found and solved in this phase and the data was adapted to run 

the algorithm to obtain more accurate results. The problems are as follows: 

• Null Values: In the dataset There were 466 null values that could cause problems 

for the models, so these key values were dropped.  

• Missing Values: There were some missing values in the dataset which were found 

and replaced with mean values to provide better accuracy. 

• Duplicate Counts: There were no duplicate words, duplicate columns and rows. 

• Removal of Stop Words. 

• Removal of User_handels. 

• Removal of non-English Words. 

•  Removal of special characters and digits. 

• Removal of Punctuations. 

• Tokenization:  It is a process of splitting a string, text into lists of tokens. 

• Find most common Keywords from every type of emotion so that machine can 

understand properly each keyword and their places. 
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• Also checked for data inconsistency, float value conversion timing, normalized  

• Data Vectorization: Data vectorization refers to the process of converting raw 

data, such as text or images, into numerical vectors that can be understood and 

processed by machine learning algorithms. In the context of natural language 

processing (NLP), data vectorization specifically refers to converting text data 

into numerical representations.  

Here Count Vectorizer is used for data Vectorization as per need of this study in 

respective to the dataset. 

Various Python libraries that are based on natural language processing and these 

are Text Blob, NLTk, Neat Text, Nfx, WordNet Lemmatize,  

Tokenization, etc. 
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                             Fig-5:  Preprocessed Dataset Description  
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3.3 Sentiment extraction Model  

Sentiment Detection is a very vital part of emotion recognition from textual data. 

Previously various algorithms used for detecting sentiment in past researches but 

they failed to give accurate sentiment in many cases. 

Get () sentiment is a proposed algorithm by Python Environment to detect and 

analysis sentiment. Three different categories of sentiment have been detected by 

this algorithm. “Neutral”, “Positive”, “Negative” are three categories of detected 

sentiment. This algorithm is able to detect the sentiment by locating each 

sentence successfully and word to solve the problem of word ambiguity. The 

word ambiguity problem is hindering good security, which this algorithm largely 

solves. And the machine provides good accuracy. In other words, Machine and 

algorithms work properly and more accurately. 
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                               Table2: Number of Sentiment 

Emotion   sentiment 
anger Neutral 1386 

 Positive 1124 

 negative 1787 

 

disgust Neutral 251 

 Positive 281 

 negative 324 

 

fear Neutral 1844 

 Positive 2032 

 negative 1534 

joy Neutral 3649 

 Positive 5714 

 negative 1682 

 

Neutral Neutral 1523 

 Positive 553 

 negative 178 

 

sadness Neutral 2128 

 Positive 1965 

 negative 2629 

 

shame Neutral 50 

 Positive 50 

 negative 46 

 

surprise Neutral 1545 

               Positive 1894 

                

negative 

623 

 



Page | 26   

 

                     Fig6: Proposed Sentiment Detection Algorithm  

3.3.1 Sentiment Detection: Python is one of the most powerful tools 

when it comes to performing data science tasks — it offers a multitude of 

ways to perform sentiment analysis in Python. The most popular ones are 

enlisted here 

1. Using Text Blob 

2. Using Bag of Words Vectorization-based Models 

3. Using Transformer-based Models 
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                         Fig7: Sentiment Detection 

 

3.3.2 Keyword Definition: In the proposed model, Keyword Definition is 

a crucial component. While the model performs effectively when applied to the 

dataset, a notable challenge is that each keyword must be identified individually 

by the algorithm. Hence, Keyword Definition becomes essential for executing 

the proposed sentiment analysis model efficiently. Below, keywords are defined 

for various types of emotions. 
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a) Joy: Keywords: joy, X axis denotes no of words and Y axis denotes all 

keywords of every sentence used for ‘Joy’ emotion detection. 

This List contain word count in Text Messages: 

'the': 5299, 
 'to': 4744, 
 'I': 4471, 
 'a': 3594, 
 'and': 3221, 
 'of ': 2803, 
 'my': 2793, 
 'in': 2328, 
 'for': 1997, 
 'is': 1590, 
 'with': 1375, 
 'you': 1282, 
 'that': 1234, 
 'was': 1155, 
 'me': 1144, 
 'at': 1124, 
 'on': 1120, 
 'it': 1012, 
 'have': 962, 
 'be': 890, 
 'this': 784, 
 'day': 729, 
 'amp': 678, 
 'up': 658, 
 'had': 639, 
 'all': 636, 
 'so': 603, 
 'time': 601, 
 'Im': 555, 
 'when': 544, 
 'your': 528, 
 'When': 520, 
 'The': 516, 
 'work': 509, 
 'from': 481, 
 'not': 480, 
 'get': 479, 
 'like': 476, 
 'an': 473, 
 'today': 471, 
 'tomorrow': 467, 
 'Christmas': 453, 
 'out': 453, 
 'just': 452, 
 'about': 450, 
 'now': 442, 
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 'are': 438, 
 'but': 402, 
 'love': 393, 
 'do': 386} 

 

Fig-8: Keyword of Joy 
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b) Sadness: Keywords: sorrow, grief, melancholy, despair, anguish, 

heartbroken, despondent, miserable, gloomy, dejected. X axis denotes no of 

words and Y axis denotes all keywords of every sentence used for ‘Joy’ 

emotion detection. 

 

 

Fig-9: Keyword of Sadness 
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c) Anger: Keywords: rage, fury, wrath, indignation, annoyance, irritability, 

resentment, hostility, infuriated, enraged. X axis denotes no of words and Y 

axis denotes all keywords of every sentence used for ‘Joy’ emotion detection. 

 

This List Contain Word Count in Text Messages: 

 'I': 2548, 

 'the': 2471, 

 'to': 2162, 

 'a': 1703, 

 'and': 1588, 

 'my': 1299, 

 'of': 1256, 

 'was': 1149, 

 'me': 973, 

 'in': 915, 

 'that': 855, 

 'it': 679, 

 'you': 677, 

 'for': 669, 

 'with': 632, 

 'had': 594, 

 'is': 588, 

 'at': 563, 

 'not': 558, 

 'he': 475, 

 'on': 474, 

 'when': 420, 

 'When': 390, 

 'her': 379, 

 'be': 338, 

 'his': 334, 

 'she': 316, 

 'have': 314, 

 'about': 308, 

 'angry': 305, 

 'so': 300, 

 'an': 298, 

 'up': 296, 

 'this': 294, 

 'out': 276, 

 'but': 275, 

 '’': 247, 

 'do': 238, 

 'were': 235, 

 'him': 234, 

 'as': 234, 

 's': 232, 
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 'are': 219, 

 'The': 218, 

 'by': 218, 

 'they': 216, 

 'your': 210, 

 'who': 205, 

 'just': 202, 

 'all': 199} 

 

   

 

Fig-10: Keyword for anger 
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d) Fear: Keywords: terror, dread, anxiety, panic, apprehension, phobia, fright, 

nervousness, alarm, trepidation. X axis denotes no of words and Y axis 

denotes all keywords of every sentence used for ‘Joy’ emotion detection. 

This List contain word count in Text Messages: 

 'I': 3623, 

 'the': 3503, 

 'of': 2252, 

 'and': 2252, 

 'to': 2229, 

 'a': 2120, 

 'in': 1454, 

 'was': 1427, 

 'my': 1028, 

 'for': 956, 

 'that': 955, 

 'not': 880, 

 'is': 865, 

 'me': 796, 

 'it': 686, 

 'have': 660, 

 'you': 624, 

 'at': 594, 

 'on': 590, 

 'afraid': 565, 

 'with': 485, 

 'had': 453, 

 'be': 449, 

 'love': 432, 

 'when': 405, 

 'today': 404, 

 'tomorrow': 399, 

 'fear': 396, 

 'seen': 364, 

 'When': 355, 

 'yesterday': 352, 

 'about': 330, 

 'The': 329, 

 'from': 326, 

 'we': 325, 

 'by': 322, 

 'but': 317, 

 'out': 315, 

 'he': 290, 

 'your': 284, 

 'as': 275, 

 'so': 272, 
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 'are': 268, 

 'this': 267, 

 'all': 265, 

 'time': 256, 

 'an': 248, 

 'Im': 244, 

 'they': 244, 

 'night': 238} 

 

 

Fig-11: Keyword of fear 
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e) Surprise: Keywords: astonishment, amazement, wonder, shock, disbelief, awe, 

startle, astound, unexpected, startled. X axis denotes number of words and Y axis 

denotes all keywords of every sentence used for ‘Joy’ emotion detection. 

This List contains word count in Text Messages: 

{'the': 1383, 
 'to': 1219, 
 'a': 1207, 
 'I': 1063, 
 'my': 826, 
 'and': 801, 
 'in': 751, 
 'for': 601, 
 'of ': 592, 
 'you': 562, 
 'is': 548, 
 'it': 400, 
 'on': 399, 
 'me': 391, 
 'that': 383, 
 'was': 367, 
 'en': 299, 
 'een': 294, 
 'at': 265, 
 'be': 257, 
 'with': 251, 
 'de': 251, 
 'when': 247, 
 'i': 244, 
 'up': 241, 
 'Im': 227, 
 'out': 223, 
 'have': 223, 
 'just': 211, 
 'this': 209, 
 'your': 204, 
 ':)': 201, 
 'her': 176, 
 'so': 175, 
 'are': 170, 
 'know': 165, 
 'not': 162, 
 'from': 161, 
 'home': 160, 
 'he': 157, 
 'but': 154, 
 'one': 154, 
 'van': 153, 
 'today': 150, 
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 'we': 149, 
 'day': 143, 
 'get': 142, 
 'she': 142, 
 'what': 139, 
 'ik': 137} 
 

 

Fig-12: Keyword for Surprise 

 

By defining these keywords for each emotion category, the sentiment analysis 

model can efficiently identify and analyze sentiments within the dataset. 
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Fig-13:  Distribution of Detecting Sentiment by Proposed system 

 

 

                           Fig-14: Heatmap of Sentiment 
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     Fig- 15: Number of Sentiments in terms of Emotions 

                                

3.3.3 Mapping Sentiment to Numerical Values        

The code begins by creating a new column named "label Num" in the Data Frame 

`df `. It uses the `. map () ` function to transform the values in the "sentiment" 

column into numerical representations. 

 The mapping is defined as follows: 

• 'negative' sentiment is mapped to 0 

• 'positive' sentiment is mapped to 1 

• 'neutral' sentiment is mapped to 2 

  Essentially, it assigns numerical labels to the different sentiment categories 

 

 

 

 

 



Page | 39   

a) Data Frame Manipulation and Keyword Extraction Method 

After creating the "label Num" column, the code proceeds to modify the Data 

Frame `df`. It uses the `. drop () ` method to remove the original "sentiment" 

column from the Data Frame. This step is performed because the sentiment 

information has now been encoded into numerical values in the "label Num" 

column. The original textual representation of sentiment is no longer necessary. 

 

 

Fig-16: Keyword Extraction Method 

Source: Semantic Scholar [25] 
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     Displaying the Data Frame: 

Lastly, the code displays the first five rows of the modified Data Frame `df` 

using the `. head (5) ` function. This provides a glimpse of the Data Frame 

after the changes have been applied, showcasing the newly created "label 

Num" column and the absence of the original "sentiment" column. 

 

 # Mapping sentiment num / encode 

df["label_num"] = df.sentiment.map({ 

    'negative': 0, 

    'positive': 1, 

    'neutral': 2 

}) 

df = df.drop(columns=['sentiment']) 

df.head(5)                                            

 

In summary, this code snippet facilitates the transformation of textual sentiment 

labels into numerical representations, enhancing the data's suitability for machine 

learning tasks that require numerical input. It follows a systematic process of 

mapping, Data Frame manipulation, and display to achieve this transformation. 
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3.4 Feature Extraction Techniques 

In the emotion recognition process through Machine Learning Models, feature 

extraction is the crucial part of emotion classification. The efficacy of feature 

extraction is intricately intertwined with the precision of emotion classification. 

In previous Researchers, various kinds of feature extraction methods are used 

such as N-grams, BERT, and Dict Vectorizer. Nowadays researchers are using 

TFDF to get good accuracy in the classification phase. In this research presently 

Count Vectorizer has been applied to get very good results. TFDF is also used 

for getting comparative analysis in terms of accuracy. So, these methods were 

carried out by considering two features namely Term Frequency- Inverse 

Document Frequency and Count Vectors. The data is error-free and clean. 

Applying both methods got very good results depending on the specific 

requirements of the task and the characteristics of the dataset.  

❖ TF-IDF: This can be particularly useful in emotion detection because it helps 

to identify words that are unique or distinctive to certain emotions. TFDF stands 

for "Term Frequency - Document Frequency." It's a concept commonly used in 

information retrieval and text mining to evaluate the importance of a term within 

a document or a corpus of documents.  

        Here's how TFDF works: 

❖ Term Frequency (TF): This component measures how often a term occurs 

in a document. It's calculated as the ratio of the number of times a term appears 

in a document to the total number of terms in that document. Essentially, it shows 

the relevance of a term within a specific document. A higher term frequency 

suggests that the term is important or central to the document. 
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❖ Document Frequency (DF): This component measures how often a term 

occurs in the entire corpus of documents. It's calculated as the ratio of the number 

of documents that contain the term to the total number of documents in the 

corpus. Document frequency gives an idea of how common or rare a term is 

across all documents. 

    

 

❖ TF-IDF Score: The TFDF score combines both TF and DF to evaluate the 

importance of a term. It is calculated by multiplying the TF and IDF values. 

    

   - \(t\) is the term. 

   - \(d\) is the document. 

   - \(D\) is the corpus of documents. 

❖ Inverse Document Frequency (IDF): This term accounts for the fact that certain 

terms might appear frequently across documents but are not necessarily 

important because they are common words (e.g., "the", "and"). IDF penalizes 

such terms. It's calculated as the logarithm of the inverse of DF. 

 

By combining TF and IDF, TFDF highlights terms that are both frequent within 

a document and rare across the entire corpus, thereby identifying terms that are 

significant to that specific document. TF-IDF is often used in information 

retrieval systems to rank documents based on their relevance to a query. 
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By using TF-IDF, the model can potentially give more weight to these important 

words and improve the accuracy of emotion detection. 

Count Vectorizer: It can also be similarly used for emotion detection to TF-IDF. 

Count Vectorizer can be used to convert text data into a numerical format by 

counting the occurrences of words in each document. In the context of emotion 

detection. 

 

 

 

 

  

       

        

 

 

 

 

   

                    Fig -17:  Working Principle of Count Vectorizer 
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                                 Fig -18:  Working Principle of TF-IDF 
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3.5 Text Classification Techniques 

Text classification is a common task in natural language processing (NLP) where 

the goal is to categorize text documents into predefined classes or categories. 

There are various machine learning models that can be used for text 

classification, each with its own advantages and disadvantages. Here are some 

proposed models as follows: 

• Naïve bayes Algorithm 

a) Multinomial Naïve Bayes 

b) Bernoulli Naïve Bayes 

c) Gassian Naïve Bayes 

• Support Vector Machines (linear). 

• Random Forest Classifier. 

• Logistic regression. 

• KNN algorithm.       

           The study explores the effectiveness of Naive Bayes Classifier in detecting 

emotions from textual data. It considers three types of Naive Bayes classifiers: 

Multinomial Naive Bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes. 

While Multinomial Naive Bayes has been traditionally used, the study introduces 

Bernoulli and Gaussian Naive Bayes classifiers as new approaches. The results 

indicate that both Bernoulli and Gaussian Naive Bayes classifiers outperform the 

Multinomial Naive Bayes algorithm, yielding high accuracy, F1 score, precision, 

and recall. 

            Additionally, the study explores other machine learning methods such as Random 

Forest, Logistic Regression, KNN, and linear Support Vector Machines (SVC) 

to achieve optimal results. By employing data preprocessing techniques and two 

proposed feature extraction methods, the study observes variations in 
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performance. Specifically, the Count Vectorizer feature extraction method 

demonstrates superior accuracy compared to the TF-IDF feature extraction 

method. 

In summary, the study underscores the effectiveness of Naive Bayes classifiers 

in emotion detection from textual data, showcasing improvements over 

traditional methods and highlighting the impact of feature extraction techniques 

on model performance. 

 

          3.5.1 Working Principle of Algorithms 

➢ Naïve Bayes Algorithm:  

           Naive Bayes is a type of algorithm used for classification tasks. It's called "naive" 

because it makes a very simple assumption: that the presence of one feature 

doesn't affect the presence of another feature. This assumption simplifies the 

math behind the algorithm. 

            Here's how it works: 

o Bayes' Theorem: It's a way to calculate probabilities. In the case of Naive 

Bayes, it helps to figure out the probability of a certain class (like "spam" or "not 

spam") given some data. 

o Naive Assumption: This is the idea that features (like words in a text) are 

independent of each other when it comes to predicting the class. This assumption 

is often not true in real life, but it makes the math easier. 
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o Training: Naive Bayes looks at a bunch of examples where the class has 

been understood and it learns the probability of each feature belonging to each 

class. 

o Prediction: When to classify something new, Naive Bayes calculates the 

probability of each class given the features and picks the class with the highest 

probability. 

 

          There are different types of Naive Bayes algorithms, each suited for different kinds 

of data. For example: 

✓ Gaussian Naive Bayes: works well when features have a normal distribution. 

✓ Multinomial Naive Bayes is good for things like word counts in text. 

✓ Bernoulli Naive Bayes is useful when features are binary (like whether a word 

appears or not). 

           Naive Bayes classifiers, including Gaussian Naive Bayes and Bernoulli Naive 

Bayes, are simple probabilistic classifiers based on applying Bayes' theorem with 

strong (naive) independence assumptions between the features. While they share 

some common principles, their architectures differ based on the distribution of 

the input features. 

 

➢ Gaussian Naive Bayes: 

• Architecture: 

            Assumes that continuous features follow a Gaussian (normal) distribution. 

            Each class is associated with a mean and a variance for each feature. The 

probability density function (PDF) of the Gaussian distribution is used to 

calculate the likelihood of observing a particular value given the class. During 
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training, the mean and variance of each feature are estimated for each class. 

During prediction, the probability of a sample belonging to each class is 

calculated using Bayes' theorem, and the class with the highest probability is 

assigned to the sample. 

• Strengths: 

               Effective for continuous or real-valued features. 

               Simple and efficient, especially for high-dimensional data. 

               Less affected by the curse of dimensionality compared to other classifiers. 

➢ Bernoulli Naive Bayes: 

• Architecture: 

             Assumes that features are binary-valued (e.g., presence or absence of a feature). 

Each feature is modeled as a binary random variable following a Bernoulli 

distribution.  The probability of each feature being 1 or 0 is estimated for each 

class.  During training, the probabilities of features being 1 or 0 are calculated 

for each class.  During prediction, the likelihood of observing the feature values 

given the class is calculated using the Bernoulli distribution, and Bayes' theorem 

is applied to assign the class with the highest probability. 

• Strengths: 

          Well-suited for binary or categorical features, such as text classification (presence 

or absence of words).  

           Handles sparse data efficiently.  Robust to irrelevant features.  

           Often used in text mining and document classification tasks. 

In summary, Gaussian Naive Bayes assumes that features follow a Gaussian 

distribution, making it suitable for continuous features, while Bernoulli Naive 

Bayes assumes binary features following a Bernoulli distribution, making it 
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suitable for binary or categorical features. Both algorithms are simple, efficient, 

and effective for various classification tasks, depending on the nature of the input 

features. 

Naive Bayes is popular because it's easy to understand, quick to train, and can 

work surprisingly well in many situations, especially with text data. However, it 

might not perform as well when the features are not actually independent or when 

there's not enough training data. Despite its simplicity, it's widely used and can 

be a powerful tool in the right situations. 

➢ Support vector machine:   

            Here linear Support Vector Machines has been implemented. Support Vector 

Machines (SVM) are a type of algorithm designed to draw the best possible line 

or boundary in a multi-dimensional space, effectively separating different classes 

of data. The ultimate aim is to create a decision boundary, often referred to as a 

hyperplane, that can accurately categorize new data points in the future. 

           The SVM algorithm accomplishes this by identifying key data points known as 

support vectors. Support vectors are essential elements that determine the precise 

orientation and location of the hyperplane within the Support Vector Machine 

algorithm, crucial for effectively separating different classes of data. Essentially, 

SVM seeks to locate the most extreme points that help define the boundary 

between different classes. Hence, the term "Support Vector Machine" originates 

from this emphasis on identifying and utilizing these critical support vectors.  

Imagine a scenario where data points belonging to two distinct categories are 

plotted on a graph. SVM works by strategically positioning a line or boundary, 

referred to as a hyperplane, to effectively separate these categories. This 

hyperplane is determined by identifying the most pivotal data points, known as 

support vectors, which play a significant role in defining the boundary. Through 
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this process, SVM aims to create the most optimal decision boundary for accurate 

classification of new data points. 

            SVM aims to locate the most extreme points in the data set that are instrumental 

in determining the optimal hyperplane. By doing so, it creates a clear separation 

between different classes, making it easier to classify new data points accurately 

in the future. Therefore, SVM is not just about drawing any boundary; it's about 

finding the best possible boundary that maximizes the margin and minimizes the 

classification error, thereby enhancing the algorithm's ability to generalize well 

to unseen data. Below diagram consider for better understanding: 

                 

 

 

Fig-19: Support Vector Machine 

Source:  LinkedIn [21] 
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➢ Logistic Regression: 

           Logistic regression is a statistical method used for binary classification tasks, 

where the output variable is categorical and has only two possible outcomes, 

typically represented as 0 and 1. The working principle of logistic regression can 

be explained in a structured way, as follows: 

• Input Data: 

Logistic regression takes input data features (X) and their corresponding labels 

(Y). X represents the independent variables or features, while Y represents the 

dependent variable or target variable with two classes (0 or 1). 

• Linear Combination: 

Logistic regression begins by computing a linear combination of the input 

features and associated weights. 

It calculates the weighted sum of input features: 

             

• Logistic Function: 

The linear combination is then transformed using the logistic function (also 

known as the sigmoid function) to produce the predicted probability. The logistic 

function maps any real-valued number to the range (0, 1), which is suitable for 

representing probabilities. 

The logistic function is defined as:  
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• Prediction: 

After applying the logistic function, the output represents the predicted 

probability of the positive class (class 1). If the predicted probability is greater 

than a threshold (typically 0.5), the instance is classified as belonging to the 

positive class (1); otherwise, it is classified as belonging to the negative class (0). 

• Training: 

During the training phase, the model learns the optimal values of the coefficients 

(weights) that minimize the difference between the predicted probabilities and 

the actual labels. This optimization process is typically performed using 

techniques like gradient descent or more advanced optimization algorithms. 

• Cost Function: 

In logistic regression, the cost function (or loss function) is used to quantify the 

difference between the predicted probabilities and the actual labels. The most 

commonly used cost function for logistic regression is the cross-entropy loss 

function. 

• Gradient Descent:  

Gradient descent is an iterative optimization algorithm used to minimize the cost 

function by adjusting the weights. It calculates the gradient of the cost function 

with respect to each weight and updates the weights in the opposite direction of 

the gradient to minimize the cost. 

• Model Evaluation: 

Once trained, the logistic regression model can be evaluated using various 

performance metrics such as accuracy, precision, recall, F1-score, ROC curve, 

and AUC-ROC. 

In summary, logistic regression works by fitting a logistic function to the input 

data to model the probability of a binary outcome and then making predictions 
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based on this probability. It's a fundamental algorithm in the field of machine 

learning and is widely used for binary classification tasks. 

 

Fig-20: Logistic Regression 

Source: E Jable [24] 

 

➢ K -Nearest Neighbors (KNN):      

 Sure, here's a more advanced explanation of the K-Nearest Neighbors (KNN) 

algorithm: KNN is a non-parametric and lazy learning algorithm used for both 

classification and regression tasks. Non-parametric means it doesn't make 

assumptions about the underlying data distribution, and lazy learning means it 

doesn't learn a model during training; instead, it stores the entire training dataset 

and makes predictions based on the similarity between new data points and 

existing data points during inference. 

In the context of classification: 
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• Training: KNN stores all the training data points and their corresponding class 

labels. 

• Prediction: When a new data point is presented for prediction, KNN calculates 

the distances between the new point and all the points in the training set using a 

chosen distance metric, such as Euclidean distance. 

• Selection of K: KNN selects the K-nearest neighbors to the new data point 

based on the calculated distances. The value of K is a hyperparameter that needs 

to be tuned and affects the algorithm's performance. A small K may lead to 

overfitting, while a large K may lead to underfitting. 

• Majority Voting: For classification, KNN assigns the class label to the new 

data point based on the majority class among its K-nearest neighbors. It can 

handle ties in various ways, such as assigning equal weights to each neighbor or 

choosing the class with the smallest distance. 

• Prediction: Finally, KNN assigns the class label of the majority class to   new 

data point. In regression, instead of class labels, KNN predicts a continuous value 

by   averaging (or weighted averaging) the target values of the K-nearest 

neighbors. 

Key considerations for KNN include: 

• Choice of Distance Metric: The distance metric used can significantly 

impact the algorithm's performance. Different distance metrics may be more 

suitable for different types of data. 

• Feature Scaling: Since KNN relies on distance calculations, it's essential to 

scale the features to ensure that no single feature dominates the distance 

calculation. 

• Computational Complexity: KNN's prediction time complexity grows 
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linearly with the size of the training dataset, making it computationally expensive 

for large datasets. Techniques like KD-trees or ball trees can be used to speed up 

the search process. 

Despite its simplicity and ease of implementation, KNN may not perform well 

with high-dimensional data or imbalanced datasets. Additionally, it can be 

sensitive to noisy data and outliers. Nonetheless, KNN remains a versatile and 

widely used algorithm in machine learning, especially for smaller datasets or as 

a baseline model for comparison. 

Euclidean Distance= √(x2-x1)2 + (y2-y1)2 

 
 

Fig-21: KNN algorithm 

 

               Source: Geeks for Geeks [23] 
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➢ Random Forest Classifier: 

The Random Forest, or Random Decision Forest, stands as a supervised machine 

learning technique adept at tasks like classification and regression, leveraging 

decision trees. In essence, it constructs a collection of decision trees derived from 

randomly chosen subsets of the training data. Through this process, it gathers 

predictions from these diverse decision trees to formulate the ultimate prediction. 

What sets the Random Forest classifier apart is its versatility in handling both 

classification and regression tasks. Moreover, its capability to furnish feature 

importance scores adds considerable value by illuminating the relevance of 

various variables within the dataset. 

 

 

                                       Fig-22: Random Forest Classifier 

                                         Source: Java point [26] 
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3.6 Training and Testing the Model: 

           The dataset has been split into 70:30 in majority cases for training and testing 

respectively. Training and testing a model typically refer to the process of 

building a machine learning model using a training dataset and evaluating its 

performance on a separate dataset called the testing or validation dataset. 

Training and Testing ratio has been considered different for different models as 

follows in a table:    

                              Table 3: Training and Testing Data Distribution Percentage 

Algorithms TFIDF Count Vectorizer 

Logistic Regression 70:30 70:30 

KNN  80:20 70:30 

MNB 70:30 70:30 

BNB 70:30 70:30 

GNB 70:30 70:30 

Random Forest 80:20 70:30 

 

 

                                 Fig-23: Training and Testing data distribution (70:30) 

70%

30%

Training Data Test Data
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                                        Fig-24: Training and Testing data distribution (80:20)  

 

 Here the Present research worker is conducting a comparative observational 

study where the researcher employed different splitting ratios for model 

evaluation, specifically utilizing different ratios for TF-IDF and count vectorizer 

techniques.  

In this comparative observational study, Present research worker has 

implemented varying splitting ratios for model evaluation, distinguishing 

between TF-IDF and count vectorizer methodologies. This entails employing 

distinct ratios to partition the dataset for training and testing purposes, aiming to 

analyze and compare their respective performance outcomes. 

 

 

 

 

 

 

80

20

Training Data Test Data
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    3.7 Classification Accuracy: 

This is the last stage of proposed approach. Introduce classification accuracy as 

a pivotal metric in assessing the performance of machine learning models, 

particularly in classification tasks. Highlight its significance in evaluating the 

model's ability to correctly predict class labels for given data instances. 

Classification accuracy represents the proportion of accurate predictions made 

by a model relative to the total number of input samples. It is calculated by 

dividing the count of correct predictions by the total number of input samples. 

Obtaining good assurance of this study was also a goal which was achieved. This 

has been discussed in detail in the experimentations and results section. 
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3.8 Architecture  
 

Above mentioned machine learning algorithms have been applied on dataset 

through following steps: 

      I. Create Dataset/Collect Dataset 

      II. Perform Pre-Processing using NLP technique  

      III. Feature Extraction  

      IV. Data/Text classification using Supervised learning algorithms  

      V. Model Evaluation 

     VI. Classification (Accuracy)  

Present research worker has taken 34791 data, a large dataset for this study. It is 

considered as large dataset for detecting emotion and sentiment in respective to 

the research. It refers to the transformations applied to the dataset before 

providing the data to algorithm. Present research worker has used Text Blob for 

data cleaning. Data cleaning process comprises various kind of activities as per 

demand for research. Present research worker has removed noise, stop words, 

special characters, punctuations-emojis from dataset to make the dataset clean. 

Duplicate counts, outliers checking, data balance or not have been checked by 

applying appropriate model on dataset time to time. 

 count vectorizer python library is being considered for feature extraction. For 

choosing a model we split the dataset in to train and test. Here data is split in to 

3:1 ratio that means training data having 70% and testing data having 30%. This 

process performing TRAIN-TEST-SPLIT model. Observe the data and choose 

the type of algorithm. Prepare and clean the dataset and deploy the particular 

model.  This step mainly of machine learning, here we will focus more on 

classification. Here the Present research worker predicts Text emotion and 

algorithm performance. A classification model tries to provide some output or 

conclusion from input values given from Training. Present research worker will 

get expected output or final conclusion from this step.
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                                                 Fig-25:  Architecture 
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      4. EXPERIMENTATIONS AND RESULTS 
 
This Research utilizes Python version 3 along with essential built-in libraries. For 

implementing the machine learning model, Python 3 is chosen due to its 

flexibility and computational power. It leverages various Python libraries such as 

Scikit-learn, Matplotlib, Pandas, Seaborn, NumPy, among others. 

  

                                      Table 4: Confusion Matrix 

 ACTUAL 

YES NO 

PREDICTED YES TP FP 

NO FN TN 

 

• Accuracy, which represents the proportion of correctly classified cases out of all 

cases, is calculated using the following formula: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

• Precision is expressed as the proportion of positive cases that are correctly 

recognized as positive over all cases classified as positive and it is calculated 

according to the formula: 

Precision = TP / (TP + FP) 

• Recall is expressed as the proportion of positive cases that are correctly recognized 

as positive over all actual positive cases and is calculated according to the 

formula:    

• Recall = TP / (TP + FN) 
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• The F1 score is a metric used to evaluate the performance of a classification model. 

It considers both the precision and recall of the model to compute a single score. 

The formula for the F1 score is: 

F1 = 2 × (Precision × Recall) / (Precision + Recall) 

 

 
                             

Fig-26:  Heat Map of Confusion Matrix 

 

The sentiment detection model, named get (), is utilized for analyzing emotions 

in text data. It operates accurately on keywords and sentences, extracting 

emotions effectively. With a dataset comprising 34,791 entries and over 300,000 

words, this model demonstrates superior performance compared to previous 

algorithms. 

Notably, the algorithm addresses the issue of word ambiguity. Ambiguous 

sentences are examined to assess the algorithm's ability to detect emotions from 

ambiguous words. This robust approach ensures precise emotion detection even 

in complex linguistic contexts. Followings are some ambiguity sentences and 

getting result after detecting sentiment: 
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 Fig-27: Results after detecting Sentiment from ambiguity word 

 

 
 

     Fig-28: Results after detecting sentiment from any text. 
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Three types of sentiments are detected by applying proposed algorithm. These 

are: 

a. Neutral. 

b. Positive. 

c. Negative. 

The below figure shown as Sentiment and emotion distribution in Dataset: 

 

The Classification Report for various algorithms as follows 

 Classification Performance Report 

This report provides a comprehensive evaluation of the classification quality 

achieved by a machine learning model. It encompasses five main columns and 

(N+3) rows. The initial column lists the class labels, followed by Precision, 

Recall, F1-score, and Support metrics.  

o Class Label: Identifies the specific class being evaluated. 

o Precision: Indicates the accuracy of the model's predictions for a given 

class. Precision is calculated as the ratio of true positives to the total 

predicted positives, representing how many of the predicted instances of 

a class are actually relevant. 

o Recall: Reflects the model's ability to correctly identify instances of a 

class within the dataset. Recall is calculated as the ratio of true positives 

to the total actual positives, illustrating the proportion of actual instances 

of a class that were correctly identified by the model. 

o F1-score: Represents the harmonic mean of Precision and Recall. It 

provides a single metric that balances both Precision and Recall, offering 

a holistic measure of a model's performance for a specific class. 
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o Support: Denotes the total number of instances belonging to each class 

within the actual dataset. It is the sum of the rows corresponding to each 

class. 

o The report comprises N rows, each corresponding to a unique class label, 

and three additional rows providing metrics for overall performance: 

Accuracy, Macro Average, and Weighted Average. 

o Accuracy: Measures the overall correctness of the model across all 

classes, calculated as the ratio of correct predictions to the total number 

of predictions. 

o Macro Average: Represents the unweighted mean of Precision, 

Recall, and F1-score across all classes. It gives equal importance to each 

class, irrespective of class frequency. 

o Weighted Average: Computes the weighted average of Precision, 

Recall, and F1-score, considering the support (number of instances) for 

each class. It provides a performance measure that accounts for class 

imbalances in the dataset. 

o This structured report offers a clear understanding of the classification 

performance of the constructed ML model, facilitating informed 

decision-making and model optimization efforts. 
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Classification Report 

For TF-IDF 

 

Fig-29: Classification Report for RFC 

 
Fig- 30: Classification Report for KNN 
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                        Fig-31: Classification Report for MNB   

 

 

 

              For Count Vectorizer 
 

 

 
              Fig-32: Classification Report for NB 
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Fig-33: Classification Report for RFC (Case of CV) 

 

 

Logistic Regression 

 
Accuracy- 96% 

 Features Level eli5 interpretation 

 
             Table 5: Feature Level Eli5 Interpretation 
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Fig-34: Sentiment distribution 

 

 

 
Fig-35: Frequency of Emotions over time 
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By discussing previous related- work, it is clear that existing systems are not 

100% accurate. In previous, the existing system is based on multinomial naïve 

bayes algorithm, KNN algorithm and also logistic regression, Ad boost classifier 

etc. Among this four-algorithm provided accuracy as high as 68%, 64.8%,65% 

& 67.08% respectively. Multinomial Naïve bayes Algorithm resulted the best 

performance which an average accuracy of 68% but failed to perform well 

because a compact research project needs minimum above 80-85%. But proposed 

system like Bernoulli naïve bayes algorithm and gaussian algorithm has been 

solved the problem of multinomial naïve bayes algorithm and resulted very good 

result such as 89% accuracy for Bernoulli and 88% for gaussian naïve bayes 

algorithm.  

This research also investigates the effectiveness support Vector classifier, linear 

regression, gradient boost classifier, Random Forest classifier, Naïve bayes 

algorithm and also  

unsupervised learning algorithm like K-Means algorithm etc. The study was 

carried out on “Emotion dataset” with eight emotional groups. In machine 

learning the detection of textual emotions is the problem of content-based 

classification, it is the task of natural language processing. Detecting a person’s 

emotion is a difficult task but we propose for emotion in English sentences where 

emotions are treated as generalized concepts extracted from sentences. Here 

present research worker considered ISEAR dataset with 34791 records where 

emotions are usually expressed as joy, sadness, neutral, anger, fear, surprise, 

shame, disgust etc. Existing sentiment detection model defined by previous 

researcher is not well capable to detect sentiment from emotional dataset, for 

reason of that some vital problems like ambiguity in keyword, Incapability to 

recognize emotion in absence of emotion keyword were there. Present research 

worker proposed a new sentiment detection model get () sentiment model which 
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has solved all mentioned problems and worked more well and accurate. 

              Table-6: Accuracy of Previously Used Methods 

Previous Method Accuracy 

Multinomial Naïve bayes 68% 

KNN 64.80% 

Logistic Regression 65% 

Ada boost Classifier 67.08% 

    

 

Fig-36: Accuracy of previously used methods 
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              Fig-37: Accuracy Performance on various categories of Naïve Bayes        

                           Algorithm
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In the feature extraction step of the machine learning algorithm, both TF-IDF and 

Count Vectorizer methods are employed to detect emotion and sentiment. Typically, 

TF-IDF is expected to yield higher accuracy during the classification step compared 

to Count Vectorizer. However, in this study, Count Vectorizer surprisingly 

outperformed TF-IDF. 

Previous researchers found that TF-IDF struggled to achieve accuracy above 30% 

during the classification step. Interestingly, in this research, TF-IDF did not 

demonstrate superiority over Count Vectorizer either, but it did manage to achieve 

higher accuracy, surpassing 60%. On the other hand, Count Vectorizer exhibited 

significant improvement compared to previous studies, providing very good results.  

                             Table 7: The results are summarized in the following  

FEAT
URS 

Datas
et 
Split 
Ratio 

                                      Accuracy Obtained 

SVM Random 
forest 

Logistic 
Regression 

BNB GNB MNB KNN 

   
 
 
TF-
IDF 

   
 
  
70:30 

63.7 70 65 63 65 58 55 

   
    
  
80:20 

64 72 65.45 64 65 60 58 

Count 
Vecto
rizer 

 
 
 
70:30 

95 98 96 93 93 70 74 
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Table-8: Classification Report of all proposed machine learning algorithm: 

 

Proposed method Precision Recall F-1 score Accuracy 

Gaussian Naïve 

Bayes (GNB) 

0.87 0.94 0.90 0.89 

Bernoulli Naïve 

Bayes (BNB) 

0.86 0.92 0.89 0.90 

KNN 0.72 0.76 0.68 0.70 

Random Forest 0.93 1.0 0.91 0.98 

Logistic Regression 0.93 0.92 0.92 0.94 

Support Vector  

Machine (SVM) 

0.75 0.86 0.83 0.84 
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5. COMPARATIVE ANALYSIS 
 

In the Comparative Accuracy Analysis employing the TF-IDF feature extraction 

method across various machine learning models such as Logistic Regression, Random 

Forest, BNB, GNB, SVC, and KNN, Random Forest emerged with the highest 

classification accuracy. However, it fell short in comparison to the results obtained 

using Count Vectorizer. Here's a juxtaposition between the findings of the previous 

and present studies regarding classification accuracy. 

Accuracy Obtained by Existing Researchers: 

 

                   For the Case of TF-IDF: 

               Table 9: Comparison between previous and presently obtained accuracy for TF-IDF 

Algorithms Previous Accuracy Presently obtained 

Accuracy 

Logistic 

Regression 

33.03% 65% 

BNB 21% 64% 

GNB 23% 65% 

SVC 31.2% 63.71% 

MNB 21% 58% 
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            Fig-38: Comparative Analysis of Previous Model with Proposed method 

 

              For the Case of Count Vectorizer: 

                        Table 10: Comparison between previous and presently obtained accuracy for Count Vectorizer 

Algorithms Previous Accuracy Presently obtained Accuracy 

Logistic 

Regression 

89.01% 95% 

BNB 67% 93% 

GNB 68% 93% 

SVC 88.35% 98% 

MNB 56% 70% 
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Forest

Previous Accuracy 33.03 21 23 31.2 21 30.11

Proposed Approched Accuracy 65 64 65 63.71 58 63.71
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Fig-39: Comparative Analysis of Previous model with Proposed method for Count 

Vectorizer 

 So, for comparative analysis on both feature engineering, Random Forest   gives best 

accuracy. 
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6. CONCLUSION & FUTURE SCOPES 

6.1 Conclusion 

In this work, a text-based emotion detection algorithm has been proposed, that is 

capable of identifying each word in textual data one by one. Several supervised 

algorithms were used: K-Nearest Neighbors (KNN), Multinomial Naive Bayes 

(MNB), Bernoulli Naive Bayes (BNB), Gaussian Naive Bayes (GNB), Support 

Vector Machine (SVM), and Random Forest Classifier. 

Two different feature extraction techniques have been employed: Count Vectorizer 

(CV) and Term Frequency-Inverse Document Frequency (TF-IDF). Initially, using 

the base model on a previous dataset, it was observed that the highest accuracy 

obtained with Count Vectorizer at 88%, and with TF-IDF at 33.03%. 

After data augmentation is applied and the proposed algorithms have been used with 

Count Vectorizer, as a result a significant improvement in accuracy was achieved. 

The highest accuracy of 98% is achieved by the Random Forest Classifier, which 

represents the best result. 

6.2 Future Scopes 

 Future work consists of experimenting like: 

1. In Future, this work can be further extended for designing an emotion detection 

model with more improvement on feature extraction methods using other machine 

learning models like LSTM model, Linear Regression, Non-Linear SVC to get 

more classification accuracy.  

2. Besides this research work, further enhancement can also be done using CNN, 

RNN and get a comparative study between Neural Networks and Machine 
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Learning Models.      

3. Unsupervised Machine Learning Algorithms can be implemented for this work. 

4. The accuracy of the model can also be increased by creating a customized database 

to the model and training the textual data on a larger database. 
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Appendix part A 
 

 

➢ System Requirements 

 

              Personal Computer or laptop having the following features –  

 

• Windows 10 

• 132 GB RAM 

• Internet Connection 

• 15.6” HD display 

 

➢ Software Requirements 

 

• Browser: Windows internet explorer and Google Chrome 

• Microsoft word 2019 

• Google Colab 

• MS Excel  

 

➢ Programming Requirements 

 

• Python 

 

➢ Download Speeds 

 

• Internet speed is measured in Mbps 

• 3 -5 Mbps is recommended. 

 

➢ Loading Testing Tool 

 

• Google Browser 
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                           Appendix part B 
###load pkages 

import pandas as pd 

import numpy as np 

#from matplotlib import pyplot as plt 

import seaborn as sns 

import matplotlib.pyplot as plt 

import numpy as np 

#text cleaning 

#python get-pip.py 

!pip install neattext 

#mpip.install.neattext 

import neattext.functions as nfx 

#import neattext as nt 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sn 

 

Load Dataset 
# load dataset 

df = pd.read_csv("Emotion Dataset.csv") 

from google.colab import drive 

drive.mount('/content/drive') 

Dataset Description 
df 

# @title Emotion 

 

df.head() 

 

print(df.head()) 

df.head(10) 

df.head(100) 

print(df.head(50)) 

df.tail(50) 

print(df.tail(50)) 

print(df.tail()) 

print('The train dataset contans {} rows and {} 

columns'.format(df.shape[0], df.shape[1])) 

print(df['Emotion'].unique()) 

 

 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 
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from matplotlib import pyplot as plt 

import seaborn as sns 

df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 

df.info() 

Show Sample Tweets 
# show sample tweets 

for tweet in df["Text"][:5]: 

  print(f"- {tweet}") 

 

# show sample tweets 

for tweet in df["Text"][:50]: 

  print(f"- {tweet}") 

# show sample of tweets with a specific emotion 

for i,row in df[df["Emotion"] == "joy"].iterrows(): 

  print(f'- {row["Text"]}') 

for i,row in df[df["Emotion"] == "sadness"].iterrows(): 

  print(f'- {row["Text"]}') 

 

# show sample tweets 

for tweet in df["Text"][:5000]: 

  print(f"- {tweet}") 

 

Plot Emotion Found in Tweets 
# plot emotions found in tweets 

plot_title = f"Emotions found in tweets about" 

fig = px.histogram(df, x="Emotion", template="plotly_dark", 

                   title=plot_title, color="Emotion") 

fig.update_layout(showlegend=False) 

fig.show() 

 

Distribution of Emotions 
# @title Distribution of Emotions 

 

df['Emotion'].value_counts().plot(kind='bar') 

 

Null Value Checking 
print("null values",df.isnull().sum().sum()) 

 

Data Cleaning 
duplicates_count = df.duplicated().sum() 

print(f'Total duplicated rows: {duplicates_count}') 

df[df['Emotion'].duplicated() == True] 

# Unique values from 'sentiment' 

unique_sentiments = df['Emotion'].unique() 

print(unique_sentiments) 

### Frequency distribution of all diffrent types of Emotion 
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frequency_counts = df['Emotion'].value_counts() 

 

frequency_percentage = (frequency_counts / len(df['Emotion'])) * 100 

frequency_df = pd.DataFrame({'Counts': frequency_counts, 'Percentage': 

frequency_percentage}) 

 

print(frequency_df) 

 

# Print total value 

cardinality = df['Emotion'].nunique() 

print(f"\ntotal values: {cardinality}") 

### Covertion of float 

import pandas as pd 

 

# Create a DataFrame with strings containing commas 

#df = pd.DataFrame({'values': ['1,234', '56,78', '9,100', '3.14']}) 

 

# Use the `replace()` function to remove commas 

#df['Clean_Text'] = df['Clean_Text'].replace(any=True) 

 

# Convert the column to floats 

#df['Clean_Text'] = df['Clean_Text'].astype(float) 

 

# Print the DataFrame 

#print(df) 

print(df.info()) 

print(df.columns) 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

Drop Null Value and Plot Emotion 
df=df.dropna(axis=0,how="any") 

df 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 

from matplotlib import pyplot as plt 

import seaborn as sns 
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df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 

df.isnull().sum() 

df.shape 

df.dtypes 

 

# value count 

df['Emotion'].value_counts() 

 

 

#df['Emotion'].value_counts('joy') 

# Print the DataFrame 

print(df) 

 

# Print the DataFrame columns 

print(df.columns) 

# Check if the column name is misspelled 

if 'Emotion' not in df.columns: 

    # Find the closest match to the intended column name 

    closest_match = df.columns[df.columns.str.contains('Emotion', 

case=False, regex=True)].tolist() 

 

    if closest_match: 

        print(f"Did you mean '{closest_match[0]}'?") 

    else: 

        print("Column 'Emotion' not found in the DataFrame.") 

        # value count 

#df['Closest_match_to_Emotion'].value_counts() 

#!pip install --upgrade matplotlib 

import matplotlib.pyplot as plt 

import numpy as np 

 

df['Emotion'].value_counts('joy').plot(kind='pie') 

plt.title("Emotion distribution Report") 

plt.show() 

 

 

Data Pre-Processing 
#Install pywsd 

!pip install pyws 

!pip install textblob 

from textblob import TextBlob 

!pip install nltk 

import nltk 

nltk.download('punkt') 

import nltk 

nltk.download('stopwords') 

import nltk 
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nltk.download('wordnet') 

import pandas as pd 

 

# Read the dataset 

df = pd.read_csv('Emotion Dataset.csv')  # Replace 'your_dataset.csv' 

with your actual dataset file path 

 

# Apply preprocessing function to the 'text' column 

df['Clean2_text'] = df['Text'].apply(preprocess_text) 

 

# Save the preprocessed data 

df.to_csv('preprocessed_dataset.csv', index=False)  # Replace 

'preprocessed_dataset.csv' with your desired output file path 

# Define the preprocess_text function here 

def preprocess_text(text): 

    # Implement the preprocessing logic here 

    # ... 

    return processed_text 

!pip install my_module 

import sys 

sys.path.append("/path/to/module/directory") 

 

# Import the module with the correct name 

import my_correct_module 

 

# Use the function from the imported module 

df['Clean2_text'] = df['Text'].apply(my_correct_module.preprocess_text) 

import sys 

sys.path.append("/path/to/module/directory") 

import sys 

sys.path.append("/path/to/module/directory") 

 

import my_module 

 

# Use the function from the imported module 

df['Clean2_text'] = df['Text'].apply(my_module.preprocess_text) 

import sys 

sys.path.append("/path/to/module/directory") 

 

# Import the module with the correct name 

import my_correct_module 

 

# Use the function from the imported module 

df['Clean2_text'] = df['Text'].apply(my_correct_module.preprocess_text) 

 

dir(nfx) 

df['clean_Text'] = df['Text'].apply(nfx.remove_stopwords) 

df['clean_Text'] = df['Text'].apply(nfx.remove_userhandles) 

df['clean_Text'] = df['Text'].apply(nfx.remove_punctuations) 
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df[['Text','clean_Text']] 

df.shape 

 

 

Keyword Extraction  
from collections import Counter 

ef extract_keywords(text,num=50): 

    tokens = [ tok for tok in text.split()] 

    most_common_tokens = Counter(tokens).most_common(num) 

    return dict(most_common_tokens) 

emotion_list = df['Emotion'].unique().tolist() 

emotion_list 

joy_list = df[df['Emotion'] == 'joy']['clean_Text'].tolist() 

# create a document for keyword extraction 

joy_docx= ' '.join(joy_list) 

joy_docx 

Keyword_joy= extract_keywords(joy_docx) 

Keyword_joy 

 

sadness_list = df[df['Emotion'] == 'sadness']['clean_Text'].tolist() 

sadness_docx= ' '.join(sadness_list) 

sadness_docx 

Keyword_sadness= extract_keywords(sadness_docx) 

Keyword_sadness 

 

shame_list = df[df['Emotion'] == 'shame']['clean_Text'].tolist() 

shame_docx= ' '.join(shame_list) 

shame_docx 

Keyword_shame= extract_keywords(shame_docx) 

Keyword_shame 

 

fear_list = df[df['Emotion'] == 'fear']['clean_Text'].tolist() 

fear_docx= ' '.join(fear_list) 

fear_docx 

Keyword_fear= extract_keywords(fear_docx) 

Keyword_fear 

 

disgust_list = df[df['Emotion'] == 'disgust']['clean_Text'].tolist() 

disgust_docx= ' '.join(disgust_list) 

disgust_docx 

Keyword_disgust= extract_keywords(disgust_docx) 

Keyword_disgust 

 

neutral_list = df[df['Emotion'] == 'neutral']['clean_Text'].tolist() 

neutral_docx= ' '.join(neutral_list) 

neutral_docx 

Keyword_neutral= extract_keywords(neutral_docx) 

Keyword_neutral 

 



Page | 95   

anger_list = df[df['Emotion'] == 'anger']['clean_Text'].tolist() 

anger_docx= ' '.join(anger_list) 

anger_docx 

Keyword_anger= extract_keywords(anger_docx) 

Keyword_anger 

 

surprise_list = df[df['Emotion'] == 'surprise']['clean_Text'].tolist() 

surprise_docx= ' '.join(surprise_list) 

surprise_docx 

Keyword_surprise= extract_keywords(surprise_docx) 

Keyword_surprise 

 

 

# plotting 

def plot_most_common_words(mydict): 

    df_02= pd.DataFrame(mydict.items(),columns=['token','count']) 

    plt.title('plotting of joy keyword') 

    plt.figure(figsize=(20,10)) 

    sns.barplot(x='token',y='count',data=df_02) 

    #plt.xtricks(rotation=45) 

    plt.show() 

 

plot_most_common_words(Keyword_joy) 

plot_most_common_words(Keyword_fear) 

plot_most_common_words(Keyword_sadness) 

plot_most_common_words(Keyword_neutral) 

plot_most_common_words(Keyword_surprise) 

plot_most_common_words(Keyword_anger) 

plot_most_common_words(Keyword_shame) 

 

Keyword Extraction for Anger 

anger_list = df[df['Emotion'] == 'anger']['clean_Text'].tolist() 

# create a document for keyword extraction 

anger_docx= ' '.join(anger_list) 

anger_docx 

Keyword_anger= extract_keywords(anger_docx) 

Keyword_anger 

 

def plot_most_common_words(mydict): 

    df_02= pd.DataFrame(mydict.items(),columns=['token','count']) 

    plt.title('plotting of anger keyword') 

    plt.figure(figsize=(20,10)) 

    sns.barplot(x='token',y='count',data=df_02) 

    #plt.xtricks(rotation=45) 

    plt.show() 

 

plot_most_common_words(Keyword_anger) 

 

joy_list = df[df['Emotion'] == 'joy']['clean_Text'].tolist() 
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# create a document for keyword extraction 

anger_docx= ' '.join(joy_list) 

anger_docx 

Keyword_anger= extract_keywords(anger_docx) 

Keyword_anger 

 

sadness_list = df[df['Emotion'] == 'sadness']['clean_Text'].tolist() 

# create a document for keyword extraction 

sadness_docx= ' '.join(sadness_list) 

sadness_docx 

Keyword_sadness= extract_keywords(sadness_docx) 

Keyword_sadness 

 

 

Sentiment Detection Model 
# Sentiment detection from Text 

# model applied 

 

def get_sentiment(text): 

    blob = TextBlob(text) 

    sentiment = blob.sentiment.polarity 

    if sentiment > 0: 

        result = "Positive" 

    elif sentiment < 0: 

        result = "negative" 

    else: 

        result = "Neutral" 

    return result 

get_sentiment(" I love coding") 

get_sentiment(" I love coding") 

get_sentiment(" love is a very confused word") 

get_sentiment(" ") 

get_sentiment(" I do coding" 

get_sentiment("I donot like this") 

get_sentiment("I must not like this") 

get_sentiment("I saw a man on a hill with a telescope") 

get_sentiment("There’s a man on a hill,and I’m watching him with my 

telescope") 

get_sentiment("There’s a man on a hill, who I’m seeing, and he has a 

telescope") 

get_sentiment("Look at the dog with one eye") 

get_sentiment("Look at the dog that only has one eye.") 

dir(nfx) 

df['sentiment'] = df['Text'].apply(get_sentiment) 

df = pd.read_csv('Emotion Dataset.csv') 

df 

df['sentiment'] = df['Text'].apply(get_sentiment) 
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Plot after Sentiment Detection 

# @title Emotion vs sentiment 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

import pandas as pd 

plt.subplots(figsize=(8, 8)) 

df_2dhist = pd.DataFrame({ 

    x_label: grp['sentiment'].value_counts() 

    for x_label, grp in df.groupby('Emotion') 

}) 

sns.heatmap(df_2dhist, cmap='viridis') 

plt.xlabel('Emotion') 

_ = plt.ylabel('sentiment') 

# @title Emotion 

 

from matplotlib import pyplot as plt 

import seaborn as sns 

df.groupby('Emotion').size().plot(kind='barh', 

color=sns.palettes.mpl_palette('Dark2')) 

plt.gca().spines[['top', 'right',]].set_visible(False) 

df.groupby(['Emotion']).size().plot(kind='bar') 

df.groupby(['Emotion']).size().plot(kind='pie') 

sns.catplot(x='Emotion',data=df,kind='count',aspect= 1.5) 

 

 
# Calculate the frequency distribution of 'sentiment' 

frequency_counts = df['sentiment'].value_counts() 

 

frequency_percentage = (frequency_counts / len(df['sentiment'])) * 100 

frequency_df = pd.DataFrame({'Counts': frequency_counts, 'Percentage': 

frequency_percentage}) 

 

print(frequency_df) 

 

# Total value count 

cardinality = df['sentiment'].nunique() 

print(f"\ntotal values: {cardinality}") 

 

 

# Mapping sentiment num / encode 

df["label_num"] = df.sentiment.map({ 

    'negative': 0, 

    'positive': 1, 

    'neutral': 2 

}) 

 

df = df.drop(columns=['sentiment']) 

df.head(5) 



Page | 98   

 

 

 

Emotion Frequency  
# @title Emotion Frequency over Time 

 

df.groupby('Emotion')['Emotion'].count().plot(kind='line', x='Unnamed: 

0') 

df['Emotion'].value_counts().plot(kind='bar') 

# @title Emotion Frequency Over Time 

 

df.groupby('Unnamed: 0')['Emotion'].value_counts().unstack().plot() 

cols = df.columns 

 

Machine Learning Model 
# Load ML Pkgs 

# Estimators 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import MultinomialNB 

 

# Transformers 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import 

accuracy_score,classification_report,confusion_matrix 

#from sklearn.metrics import plot_confusion_matrix 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.model_selection import GridSearchCV 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

import pandas as p 

 

Xfeatures = df['Text'] 

ylabels = df['Emotion'] 

Xfeatures 

ylabels 

cv = CountVectorizer() 

X = cv.fit_transform(Xfeatures 

X_train,X_test,y_train,y_test = 

train_test_split(X,ylabels,test_size=0.3,random_state=42) 

#Logistic regressiobn 

X = df['Clean_Text'] 

y = df['Emotion'] #labels 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state = 1) 
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# m1 = LogisticRegression() m1.fit(X_train, y_train) pred1 = 

m1.predict(X_test) print(classification_report(y_test, pred1)) 

 

Xfeatures = df['Text'] 

 

# Extract features and labels 

X = df['Clean_Text'] 

y = df['Emotion'] 

 

# Split the data into training and testing sets 

 

print(f"X_train data type: {type(X_train)}") 

print(f"y_train data type: {type(y_train)}") 

 

# Import necessary libraries 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score 

 

# Sample dataset (replace with your own data) 

texts = ["I am happy", "I am sad", "I feel great", "I am angry", "I am 

neutral"] 

labels = ["happy", "sad", "happy", "angry", "neutral"] 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(texts, labels, 

test_size=0.2, random_state=42) 

 

# Convert text data into numerical features using CountVectorizer 

vectorizer = CountVectorizer() 

X_train_counts = vectorizer.fit_transform(X_train) 

X_test_counts = vectorizer.transform(X_test) 

 

# Initialize and train the logistic regression model 

model = LogisticRegression() 

model.fit(X_train_counts, y_train) 

 

# Predict on the test set 

predictions = model.predict(X_test_counts) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, predictions) 

print("Accuracy:", accuracy) 

 

# Example of predicting emotions for new text 

new_text = ["I am feeling happy today"] 

new_text_counts = vectorizer.transform(new_text) 
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predicted_emotion = model.predict(new_text_counts) 

print("Predicted emotion:", predicted_emotion) 

 

 

nan_indices = [i for i, text in enumerate(X_train) if pd.isna(text)] 

print(f"Number of NaN values in X_train: {len(nan_indices)}") 

X_train = pd.DataFrame(X_train) 

y_train = pd.DataFrame(y_train) 

!pip install pandas 

import pandas as pd 

print(type(nan_indices)) 

if type(nan_indices) == list: 

    print("nan_indices is a list.") 

else: 

    print("nan_indices is not a list.") 

print(nan_indices[:5]) 

# Get the actual column names of X_train 

actual_columns = X_train.columns 

 

# Update nan_columns with the actual column names 

nan_columns = [column for column in nan_columns if column in 

actual_columns] 

 

# Drop rows with NaN values in the specified columns 

X_train_dropped = X_train.dropna(subset=nan_columns) 

y_train_dropped = y_train.dropna(subset=nan_columns) 

print(X_train_dropped.shape) 

print(y_train_dropped.shape) 

print(X_train_dropped.head()) 

print(y_train_dropped.head()) 

model.fit(X_train_counts, y_train) 

predictions = model.predict(X_test_counts) 

accuracy = accuracy_score(y_test, predictions) 

print("Accuracy after handling missing values:", accuracy) 

 

 

Multinomial NB for TF-IDF 
from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import confusion_matrix, classification_report 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

# Example dataset 

data = pd.read_csv("Emotion Dataset.csv")  # Load your dataset 

X = data['Text']  # Text data 

y = data['Emotion']  # Emotion labels 
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# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=42) 

 

# Convert text data to numerical features using TF-IDF 

tfidf_vectorizer = TfidfVectorizer(max_features=1000) 

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) 

X_test_tfidf = tfidf_vectorizer.transform(X_test) 

 

# Train a classifier (example: Naive Bayes) 

classifier = MultinomialNB() 

classifier.fit(X_train_tfidf, y_train) 

 

# Predict the labels for the test set 

y_pred = classifier.predict(X_test_tfidf) 

 

# Generate confusion matrix 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

# Plot confusion matrix 

plt.figure(figsize=(10, 8)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues", 

xticklabels=classifier.classes_, yticklabels=classifier.classes_) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

plt.title('Confusion Matrix') 

plt.show() 

 

# Print classification report 

print(classification_report(y_test, y_pred)) 

 

 

KNN for TF-IDF 
from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import confusion_matrix, classification_report 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

# Example dataset 

data = pd.read_csv("Emotion Dataset.csv")  # Load your dataset 

X = data['Text']  # Text data 

y = data['Emotion']  # Emotion labels 

 

# Split the data into training and testing sets 
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Convert text data to numerical features using TF-IDF 

tfidf_vectorizer = TfidfVectorizer(max_features=1000) 

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) 

X_test_tfidf = tfidf_vectorizer.transform(X_test) 

 

# Train a KNN classifier 

k = 5  # Number of neighbors 

knn_classifier = KNeighborsClassifier(n_neighbors=k) 

knn_classifier.fit(X_train_tfidf, y_train) 

 

# Predict the labels for the test set 

y_pred = knn_classifier.predict(X_test_tfidf) 

 

# Generate confusion matrix 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

# Plot confusion matrix 

plt.figure(figsize=(10, 8)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues", 

xticklabels=knn_classifier.classes_, 

yticklabels=knn_classifier.classes_) 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

plt.title('Confusion Matrix') 

plt.show() 

 

# Print classification report 

print(classification_report(y_test, y_pred)) 

 

y_train = y_train.values.reshape(-1, 1) 

 
from sklearn.model_selection import train_test_split 

from keras.models import Sequential 

from keras.layers import LSTM, Dense, Embedding, SpatialDropout1D 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from sklearn.metrics import confusion_matrix, classification_report 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

 

# Example dataset 

data = pd.read_csv("Emotion Dataset.csv")  # Load your dataset 

X = data['Text']  # Text data 

y = data['Emotion']  # Emotion labels 
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# Tokenization 

tokenizer = Tokenizer() 

tokenizer.fit_on_texts(X) 

X_seq = tokenizer.texts_to_sequences(X) 

 

# Padding sequences 

max_length = max([len(seq) for seq in X_seq]) 

X_pad = pad_sequences(X_seq, maxlen=max_length, padding='post') 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X_pad, y, 

test_size=0.2, random_state=42) 

 

# LSTM Model 

embedding_dim = 100 

model = Sequential() 

model.add(Embedding(input_dim=len(tokenizer.word_index)+1, 

output_dim=embedding_dim, input_length=max_length)) 

model.add(SpatialDropout1D(0.2)) 

model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) 

model.add(Dense(1, activation='sigmoid')) 

 

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

 

# Train the model 

batch_size = 64 

epochs = 10 

history = model.fit(X_train, y_train, epochs=epochs, 

batch_size=batch_size, validation_data=(X_test, y_test), verbose=2) 

 

# Predictions 

y_pred = model.predict_classes(X_test) 

 

# Generate confusion matrix 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

# Plot confusion matrix 

plt.figure(figsize=(10, 8)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues") 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

plt.title('Confusion Matrix') 

plt.show() 

 

# Print classification report 

print(classification_report(y_test, y_pred)) 
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Random Forest for TF-IDF 
om sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = pd.read_csv('Emotion Dataset.csv') 

 

# Prepare data 

texts = df['Text'].tolist() 

labels = df['Emotion'].tolist() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(texts, labels, 

test_size=0.2, random_state=42) 

 

# Convert text data into numerical features using TF-IDF Vectorizer 

vectorizer = TfidfVectorizer(max_features=5000)  # Increase max_features 

for better coverage 

X_train_tfidf = vectorizer.fit_transform(X_train) 

X_test_tfidf = vectorizer.transform(X_test) 

 

# Initialize and train a Random Forest classifier 

param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20], 

    'min_samples_split': [2, 5, 10] 

} 

rf_model = RandomForestClassifier(random_state=42) 

grid_search = GridSearchCV(rf_model, param_grid, cv=5, n_jobs=-1) 

grid_search.fit(X_train_tfidf, y_train) 

 

# Get the best model from the grid search 

best_rf_model = grid_search.best_estimator_ 

 

# Predict on the test set 

predictions = best_rf_model.predict(X_test_tfidf) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, predictions) 

print("Accuracy:", accuracy) 

mport pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = pd.read_csv('Emotion Dataset.csv') 
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# Prepare data 

texts = df['Text'].tolist() 

labels = df['Emotion'].tolist() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(texts, labels, 

test_size=0.2, random_state=42) 

 

# Convert text data into numerical features using TF-IDF Vectorizer 

vectorizer = TfidfVectorizer(max_features=5000) 

X_train_tfidf = vectorizer.fit_transform(X_train) 

X_test_tfidf = vectorizer.transform(X_test) 

 

# Initialize and train a Random Forest classifier 

param_grid = { 

    'n_estimators': [100, 200, 300], 

    'max_depth': [None, 10, 20], 

    'min_samples_split': [2, 5, 10] 

} 

 

best_accuracy = 0 

best_rf_model = None 

 

for n_estimators in param_grid['n_estimators']: 

    for max_depth in param_grid['max_depth']: 

        for min_samples_split in param_grid['min_samples_split']: 

            rf_model = RandomForestClassifier(n_estimators=n_estimators, 

max_depth=max_depth, min_samples_split=min_samples_split, 

random_state=42) 

            rf_model.fit(X_train_tfidf, y_train) 

            predictions = rf_model.predict(X_test_tfidf) 

            accuracy = accuracy_score(y_test, predictions) 

            print(f"Parameters: n_estimators={n_estimators}, 

max_depth={max_depth}, min_samples_split={min_samples_split}, Accuracy: 

{accuracy}") 

            if accuracy > best_accuracy: 

                best_accuracy = accuracy 

                best_rf_model = rf_model 

 

BNB for TF-IDF 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = pd.read_csv('Emotion Dataset.csv') 
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# Prepare data 

texts = df['Text'].tolist() 

labels = df['Emotion'].tolist() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(texts, labels, 

test_size=0.25, random_state=42) 

 

# Convert text data into numerical features using TF-IDF Vectorizer 

vectorizer = TfidfVectorizer(max_features=5000, binary=True)  # Using 

binary=True for Bernoulli Naive Bayes 

X_train_tfidf = vectorizer.fit_transform(X_train) 

X_test_tfidf = vectorizer.transform(X_test) 

 

# Initialize and train the Bernoulli Naive Bayes classifier 

bnb_model = BernoulliNB() 

bnb_model.fit(X_train_tfidf, y_train) 

 

# Predict on the test set 

predictions = bnb_model.predict(X_test_tfidf) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, predictions) 

print("Accuracy:", accuracy) 

 

# Example of predicting emotions for new text 

new_text = ["I am feeling happy today"] 

new_text_tfidf = vectorizer.transform(new_text) 

predicted_emotion = bnb_model.predict(new_text_tfidf) 

print("Predicted emotion:", predicted_emotion) 

 

 

 

SVC for TF-IDF 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = pd.read_csv('Emotion Dataset.csv') 

 

# Prepare data 

texts = df['Text'].tolist() 

labels = df['Emotion'].tolist() 

 

# Split the data into training and testing sets 
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X_train, X_test, y_train, y_test = train_test_split(texts, labels, 

test_size=0.2, random_state=42) 

 

# Convert text data into numerical features using TF-IDF Vectorizer 

vectorizer = TfidfVectorizer(max_features=5000) 

X_train_tfidf = vectorizer.fit_transform(X_train) 

X_test_tfidf = vectorizer.transform(X_test) 

 

# Initialize and train the SVM classifier 

svm_model = SVC(kernel='linear', C=1.0, random_state=42) 

svm_model.fit(X_train_tfidf, y_train) 

 

# Predict on the test set 

predictions = svm_model.predict(X_test_tfidf) 

 

# Evaluate the model 

accuracy = accuracy_score(y_test, predictions) 

print("Accuracy:", accuracy) 

 

# Example of predicting emotions for new text 

new_text = ["I am feeling happy today"] 

new_text_tfidf = vectorizer.transform(new_text) 

predicted_emotion = svm_model.predict(new_text_tfidf) 

print("Predicted emotion:", predicted_emotio 

 

 

Feature Extraction Techniques 
rom sklearn.feature_extraction.text import TfidfTransformer 

from sklearn.feature_extraction.text import CountVectorizer, 

TfidfVectorizer 

 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import classification_report, accuracy_score, 

confusion_matrix 

from sklearn.model_selection import cross_val_predict, StratifiedKFold 

from sklearn.neural_network import MLPClassifier 

#import matplotlib.pyplot as plt 

from sklearn.metrics import accuracy_score, precision_score, 

recall_score, f1_score, confusion_matrix, classification_report 

import numpy as np 

# Define X_train as a numpy array 

X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

print(type(X_train)) 

#<class 'numpy.ndarray'> 

#<class 'numpy.ndarray'> 

#X_train = X_train.toarray() 

import numpy as np 

 

# Define X_train as a numpy array 
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X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

print(type(X_train)) 

#<class 'numpy.ndarray'> 

 

# Convert the numpy array to a list of lists 

X_train = X_train.tolist() 

print(type(X_train)) 

#<class 'list'> 

 

 

 
model = MultinomialNB() 

 

# Train 

model.fit(X_train, y_train) 

 

# Test 

y_pred = model.predict(X_test) 

 

# Evaluate 

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) 

 

y_pred_cv = cross_val_predict(model, X_train, y_train, cv=cv) 

classification_rep = classification_report(y_train, y_pred_cv) 

print("Classification Report (Cross-Validation):\n", classification_rep) 

 

accuracy = accuracy_score(y_train, y_pred_cv) 

print("Accuracy (Cross-Validation):", accuracy) 

 

model.fit(X_train, y_train) 

y_pred_test = model.predict(X_test) 

 

classification_rep_test = classification_report(y_test, y_pred_test) 

print("Classification Report (Test Data):\n", classification_rep_test) 

accuracy_test = accuracy_score(y_test, y_pred_test) 

print("Accuracy (Test Data):", accuracy_test) 

 

#import seaborn as sns 

#import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix 

 

 

 

BNB for Count Vectorizer 
from sklearn.naive_bayes import BernoulliNB 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.30) 

bnb = BernoulliNB(binarize=0.0) 

bnb.fit(X_train, y_train) 
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bnb.score(X_test, y_test) 

#print(classification_report(Y_test, X_train)) 

print(classification_report(y_test, bnb.predict(X_test))) 

 

import pandas as pd 

 

# Convert X_train and X_test to Pandas DataFrames 

X_train_df = pd.DataFrame(X_train) 

X_test_df = pd.DataFrame(X_test) 

 

# Print the number of missing values in each column of X_train and 

X_test 

print(X_train_df.isnull().sum().sum()) 

print(X_test_df.isnull().sum().sum()) 

 

# Print the number of missing values in y_train and y_test 

print(y_train.isnull().sum()) 

print(y_test.isnull().sum()) 

print(X_train.duplicated().sum()) 

print(X_test.duplicated().sum()) 

print(y_train.duplicated().sum()) 

print(y_test.duplicated().sum()) 

 
print(X_train.shape) 

print(y_train.shape) 

print(X_test.shape) 

print(y_test.shape) 

print(X.shape) 

print(y.shape) 

# Ensure X and Y have the same number of samples 

if X.shape[0] != Y.shape[0]: 

    # Adjust the size of X or Y to match the other array 

    if X.shape[0] > Y.shape[0]: 

        X = X[:Y.shape[0]] 

    else: 

        Y = Y[:X.shape[0]] 

 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, 

test_size=0.30) 

gnb = GaussianNB() 

gnb.fit(X_train, Y_train) 

gnb.score(X_test, Y_test) 

 

 

Logistic Regression for Count Vectorizer 
lr_model = LogisticRegression() 

lr_model.fit(X_train,y_train) 

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30) 

lr_model.score(X_test,y_test) 
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from sklearn.metrics import classification_report 

# Check if y_test and lr_model are valid inputs 

print(f"y_test type: {type(y_test)}") 

print(f"lr_model type: {type(lr_model)}") 

 

from sklearn.metrics import classification_report 

y_pred = lr_model.predict(X_test 

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30) 

#lr_model.score(X_test,y_test) 

 

print(classification_report(y_test, y_pred)) 

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30) 

lr_model.score(X_test,y_test) 

 

import joblib 

!pip install eli5 

import eli5 

eli5.show_weights(lr_model,top=240000) 

 

Gradient Boost 
grid = { 

    'learning_rate': [0.3, 0.1, 0.5], 

    'n_estimators': [100, 300], 

    'max_depth': [1, 3, 9] 

} 

 

m3 = GridSearchCV(GradientBoostingClassifier(), grid, verbose = 2) 

m3.fit(X_train, y_train) 

print(m3.best_params_) 

pred3 = m3.predict(X_test) 

print(classification_report(y_test, pred3)) 

gbc = GradientBoostingClassifier(n_estimators=300, 

                                 learning_rate=0.05, 

                                 random_state=100, 

                                 max_features=5 ) 

# Fit to training set 

gbc.fit(X_train, y_train) 

 

# Predict on test set 

pred_y = gbc.predict(X_test) 

 

# accuracy 

acc = accuracy_score(y_test, y_pred) 

print("Gradient Boosting Classifier accuracy is : {:.2f}".format(acc)) 
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KNN 
knn = KNeighborsClassifier(n_neighbors=6) 

knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 

 

# compute accuracy of the model 

knn.score(X_test, y_test 

 

Random Forest Classifier  
from sklearn.ensemble import RandomForestClassifier 

 

rfc=RandomForestClassifier(n_estimators= 24000, random_state= 10) 

rfc.fit(X_train, y_train) 

predictions = rfc.predict(X_test) 

# Model evaluation 

 

print (classification_report(y_test, predictions)) 

print (confusion_matrix(y_test, predictions)) 

 

 

Gaussian Naïve Bayes Algorithm 
from sklearn.naive_bayes import GaussianNB 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import roc_curve, auc 

from sklearn.model_selection import train_test_split 

 

#X_train, X_test, Y_train, Y_test = train_test_split(X, Y, 

test_size=0.30) 

gnb = GaussianNB() 

gnb.fit(X_train, y_train) 

gnb.score(X_test, y_test) 

 

 

Plot of Comparative Analysis 
algorithms=("LR","KNN","NB","Random Forest") 

scores = (lr_model.score,knn.score,nv_model.score,m2.score) 

y_pos = np.arange(1,7) 

colors = ("red","gray","purple","green","orange","blue") 

plt.figure(figsize=(18,10)) 

plt.bar(y_pos,scores,color=colors) 

plt.xticks(y_pos,algorithms,fontsize=18) 

plt.yticks(np.arange(0.00, 1.01, step=0.05)) 

plt.grid() 

plt.suptitle("Bar Chart Comparison of Models",fontsize=15) 

plt.show() 


