

 Dissertation on

 Detection of Emotion from Textual Data

using Machine Learning - An Approach

 Thesis submitted towards partial fulfilment of the

requirements for the degree of

Master of Technology in IT (Courseware Engineering)

Submitted by

Bikram Sarkar

EXAMINATION ROLL NO.: M4CWE24002

UNIVERSITY REGISTRATION NO.: 163770 0f 2022-2023

Under the guidance of

 Mr. Joydeep Mukherjee

School of Education Technology

Jadavpur University

 Course affiliated to

Faculty of Engineering and Technology

Jadavpur University

Kolkata-700032

India

2024

I

M.Tech.IT (Courseware Engineering)

Course affiliated to

Faculty of Engineering and Technology

Jadavpur University

Kolkata, India

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “Detection of Emotion from Textual

Data using Machine Learning - An Approach” is a Bonafide work carried out

by Bikram Sarkar under our supervision and guidance for partial fulfilment of

the requirements for the degree of Master of Technology in IT (Courseware

Engineering) in School of Education Technology, during the academic session

2023-2024.

SUPERVISOR
School of Education Technology
Jadavpur University,
Kolkata-700 032

DIRECTOR

School of Education Technology

Jadavpur University,

Kolkata-700 032

 DEAN - FISLM
 Jadavpur University,
 Kolkata-700 032

II

 M.Tech.IT (Courseware Engineering)

Course affiliated to

Faculty of Engineering and Technology

Jadavpur University

Kolkata, India

CERTIFICATE OF APPROVAL **

This foregoing thesis is hereby approved as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warranty its

acceptance as a prerequisite to the degree for which it has been submitted. It is

understood that by this approval the undersigned do not endorse or approve any

statement made or opinion expressed or conclusion drawn therein but approve

the thesis only for the purpose for which it has been submitted.

Committee of final examination --

--- for evaluation of the Thesis

 ** Only in case thesis is approved

III

DECLARATION OF ORIGINALITY AND COMPLIANCE OF ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research

work by the undersigned candidate, as part of his Master of Technology in IT

(Courseware Engineering) studies.

All Information in this document has been obtained and presented in accordance

With academic rules and ethical conduct.

I also declare that, as required by this rule and conduct, I have fully cited and

referenced all materials and results that are not original to this work.

NAME : BIKRAM SARKAR

EXAMINATION ROLL NUMBER : M4CWE24002

THESIS TITLE : Detection of Emotion

from Textual Data using

 Machine Learning- An

Approach

 SIGNATURE DATE

IV

Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisor Mr. Joydeep

Mukherjee for his continuous support in my thesis work and related research. His

guidance and valuable suggestions always helped me at time of research and

writing this thesis. I could not have imagined having a better advisor and mentor

for my Master Degree study. I am very much thankful to him for the motivation

and support given during the entire duration of research work.

Besides this, I would like to thank Prof. Dr. Matangini Chattopadhyay and Dr.

Saswati Mukherjee for their continuous encouragement and support during my

entire period of study in the School of Education Technology. I would like to

express my gratitude to the entire staff, Lab Assistant and all those who were

associated with my work for their co-operation and opinion. I am very grateful to

all my classmates of M.Tech.IT (Courseware Engineering) and also Master in

Multimedia Development courses for their suggestions and continuous support.

I would like to thank my parents for always supporting me in all ups and downs

during my entire period of work.

I am also thankful to my friends and well- wishers who always have faith in me.

 Bikram Sarkar

 Examination Roll No.-M4CWE24002

 Registration No-163770 of 2022-23

 M.Tech.IT (Courseware Engineering)

 School of Education Technology

 Jadavpur University, Kolkata-700032

DEDICATED TO,

My Parents

CONTENT

 Topic Name

 Page No.

List of Figures

List of Abbreviations

List of Tables

List of Publications

 Executive Summary

 VII

 VIII

 IX

 X

 XI-XII

1. Introduction

1.1 Overview

1.2 Problem Statement

1.3 Objectives

1.4 Assumptions and Scopes

 1.4.1 Assumptions

 1.4.2 Scopes

1.5 Concepts and Problem Analysis

1.6 Organization of Thesis

 2

 2-3

 4

 4

 5

 5

 5

 5-7

 8

2. Literature Survey

3. Proposed Approach

 3.1 Dataset Description

 3.2 Data Pre-processing

 3.3 Sentiment extraction Model

 3.3.1 Sentiment Detection

 3.3.2 Keyword Definition

 3.3.3 Mapping Sentiment to Numeric Values

10-14

16

17-20

21-23

24-26

26-27

27-38

38-40

V

 V

3.4 Feature Extraction Techniques

3.5 Text Classification Techniques

 3.5.1 Working Principle of Algorithms

3.6 Training and Testing Model

3.7 Classification Accuracy

3.8 Architecture

4. Experimentations and Results

5. Comparative Analysis

6. Conclusion and Future Scopes

 6.1 Conclusion

 6.2 Future Scopes

 References

 Appendix part A

 Appendix part B

 41-44

45-46

46-56

57-58

59

60-61

63-76

78-80

82

82

82-83

84-88

88

89-111

 VI

 VII

 List of Figures

Figure Name Page No
Fig-1: Percentage of Emotions 17

Fig-2: Dataset Description 18

Fig-3: Distribution of Emotions 19

Fig-4: Sample of Text in Dataset 20

Fig-5 Preprocessed Dataset Description 23

Fig6: Proposed Sentiment Detection Algorithm 26

Fig7: Sentiment Detection 27

Fig8: Keyword of Joy 29

Fig9: Keyword of Sadness 30

Fig10: Keyword for anger 32

Fig11: Keyword of fear 34

Fig12: Keyword for Surprise 36

Fig-13: Distribution of Detecting Sentiment by

Proposed

37

Fig 14: Heatmap of Sentiment 37

Fig 15: No of Sentiments in terms of Emotions 38

Fig16: Keyword Extraction Method 39

Fig 17: Working Principle of Count Vectorizer 43

Fig18: Working Principle of TF-IDF Vectorizer 44

Fig19: Support Vector Machine 50

Fig20: Logistic Regression 53

Fig21: KNN algorithm 55

Fig22: Random Forest Classifier 56

Fig23: Training and Testing data distribution (70:30) 57

Fig24: Training and Testing data distribution (80:20) 58

Fig25: Architecture 61

Fig26: Heat Map of Confusion Matrix 64

Fig27: Results after detecting Sentiment from

ambiguity word

65

Fig28: Results after detecting sentiment from any text. 65

Fig 29: Classification Report for RFC 68

Fig 30: Classification Report for KNN 68

Fig 31: Classification Report for MNB 69

Fig 32: Classification Report for NB 69

Fig 33: Classification Report for RFC (Case of CV) 70

Fig34: Sentiment distribution 71

Fig35: Frequency of Emotions over time 71

Fig36: Accuracy of previously used methods 73

Fig37: Accuracy Performance on various categories of

Naïve Bayes Algorithm

74

Fig38: Comparative Analysis of previous and Proposed

method

79

Fig39: Comparative Analysis of previous and Proposed

method

80

VIII

 List of Abbreviations

Abbreviations Full Form
BNB Bernoulli Naïve Bayes

GNB Gaussian Naïve Bayes

MNB Multinomial Naïve Bayes

SVC/SVM Support Vector Machine

NB Naïve Bayes

CV Count Vectorizer

TF-IDF

NLTK

NLP

Term Frequency- Inverse Document

Frequency

Natural Language Tool Kit

Natural Language Processing

IX

 List of Tables

Table Name Page No

Table-1: Number of Records and Percentage of Emotion 18

Table2: Number of Sentiment 25

Table 3: Training and Testing Data Distribution Percentage 57

Table 4: Confusion Matrix 63

Table 5: Feature Level Eli5 Interpretation 70

Table-6: Accuracy of Previously Used Methods

73

 Table 7: The results are summarized in the following 75

 Table-8: Classification Report of all proposed machine learning

algorithm
76

 Table 9: Comparison between previous and presently obtained

accuracy for TF-IDF

78

Table 10: Comparison between previous and presently obtained

accuracy for Count Vectorizer

79

X

 List of Publications

1. Bikram Sarkar and Joydeep Mukherjee, “EMOTION DETECTION FROM TEXT

USING MACHINE LEARNING ALGORITHM”, International Journal of

Multidisciplinary Educational Research, Volume: 13, Issue:4(3), April 2024.

DOI: http://ijmer.in.doi./2024/13.4.54

Link:http://s3-ap-southeast-1.amazonaws.com/ijmer/pdf/volume13/volume13-

issue4(3)/14.pdf

2. Bikram Sarkar and Joydeep Mukherjee, “IMPROVEMENT OF FEATURE

ENGINEERING ON EMOTION DETECTION FROM TEXTUAL DATA"

World Journal of Advanced Engineering Technology and Sciences, Volume 12 -

Issue 1 (May - June 2024)

 DOI: https://doi.org/10.30574/wjaets.2024.12.1.0171

 Link: https://wjaets.com/sites/default/files/WJAETS-2024-0171.pdf

http://ijmer.in.doi./2024/13.4.54
http://s3-ap-southeast-1.amazonaws.com/ijmer/pdf/volume13/volume13-issue4(3)/14.pdf
http://s3-ap-southeast-1.amazonaws.com/ijmer/pdf/volume13/volume13-issue4(3)/14.pdf
https://doi.org/10.30574/wjaets.2024.12.1.0171
https://wjaets.com/sites/default/files/WJAETS-2024-0171.pdf

XI

 Executive Summary

Emotion detection from text has emerged as a critical area of research, given the vast

amount of textual data generated daily on social media platforms, customer reviews,

and other digital sources. Understanding emotions expressed in text has implications

for various domains, including marketing, customer service, mental health, and

sentiment analysis. This thesis aims to investigate the effectiveness of machine

learning techniques in detecting and analyzing emotions from textual data.

Specifically, the research seeks to develop a robust model capable of accurately

identifying and categorizing emotions expressed in text. The methodology comprises

data collection, data preprocessing, Feature Engineering, Model Development and

Evaluation Process. In this Proposed Method Get () Sentiment Model is more accurate

and effective to detect Sentiment from textual data as compare to previously used N-

grams, BERT, Word Cloud etc. and solves word ambiguity problems as well. To

check performance of system various machine learning algorithms like Logistic

Regression, Naïve Bayes Classifier, Support Vector Machine, Random Forest, KNN

and also unsupervised Machine Learning model like K-Means Clustering. Bernoulli

and Gaussian Naïve Bayes algorithms never used for text classification but two

Methods have been used to get better results. The performance of the proposed model

with previously used model is compared. Experimental results demonstrate the

effectiveness of machine learning models in detecting emotions from text.

XII

ISEAR dataset has been used for this study and were tested all models using ISEAR

standards criteria. The dataset contained different form of Text message, comments

and reviews. For pre-cleaning process of dataset, all unrelated attributes have been

ignored. Unrelated attributes things can make confused during analysis phase. But all

necessary actions have been taken related to datasets during the time of data cleaning

process. Every cycle of this research different actions, modifications have been taken

as per need time to time. In the existing models have various kind of problems which

have been found and solve some vital problems. Also Used new models that have

been succeed to provide better results related to accuracy and other things. used to

this study various machine learning techniques like Naïve bayes Classifier, Logistic

Regression, Linear Regression, Random Forest Classifier, Gradient boost Classifier

etc. Actually, various factor can affect our sentiment analysis accuracy, word

ambiguity is one of them and a very serious problem. Previously various machine

learning algorithms failed to provide very good results. This study one of its kind

proposed systems are more accurate compare to previous and will help in the field of

natural language processing in the context of emotion detection and sentiment

analysis.

Page | 1

 CHAPTER 1

Page | 2

 1. INTRODUCTION

1.1 Overview

Emotion detection will play a promising role in the field of Human Computer

Interaction and interface development. In today’s world, a majority of users have

access to internet for exchange communication via text, Image, audio and video.

Emotion can be expressed by a person’s speech, face expression and also written text

known as Text based emotion. With the growing population in countries like India, it

has led to tremendous growth in the number of users using Facebook, WhatsApp,

Twitter, Instagram and also online shopping app like Amazon, Flipkart, Paytm Mall,

Messo etc. The large scale of these users or people are providing feedback, asking any

query related to online networks and related things via Text message now a days in

the current Technological world. Researchers collected all text message from various

online platforms and analysis accordingly to make them more efficient and more

compact. But it has become a challenge in recent years to extract valuable information

from these growing data in the form of posts, emails, blogs, tweets, revies, comments,

surveys on the Web in the process of any decision making. It is very much difficult to

detect emotion from Text because human mind is so complex and even dataset might

not be ready for the proposed research. But to simply Two affect class has been

categorized in three categories like positive, negative and neutral. Recently,

researchers have proposed various methods for text emotion detection including

keyword-based method, learning-based and hybrid models, lexical similarity models.

At first, they introduced a rule-based approach such as lexical affinity based and

keyword based. Then came a new approach, the learning-based approach. This

Page | 3

method was more accurate and gave better results as expected. Many researchers

begun to combine these approaches named hybrid model to get better accuracy they

got more better accuracy but they failed to get very good accuracy as expected that

can make this research more efficient.

Then came the name of new techniques such as machine learning based models to

detect emotion and classify the all affect class one by one followed by getting very

good accuracy as expected. Researches have used some machine learning models to

classify the emotions and sentiments and also improve existing model’s accuracy. But

also used machine learning models have some very crucial problems and some models

also have been failed to detect emotion more accurately and to provide good accuracy

results as per need.

In this study, the new methods have been proposed followed by solving the problems

to the existing models, datasets and has been improved accuracy and got very good

result.

Page | 4

1.2. Problem Statement

 Detection of Emotion from Textual Data using Machine Learning

1.3. Objectives

The objectives of my research work are as follows:

✓ To find more efficient Machine Learning algorithms to detect Emotion from

textual data for this study to get better results.

✓ To find out problems in dataset, data preprocessing phase and model

Development phase.

✓ To find the problems in used models and how to solve the problems and improve

accuracy of existing models.

✓ To solve the problem of word ambiguity in text messages.

✓ To Find best feature Extraction method for this study.

✓ To develop more accurate Sentiment detection algorithm.

Page | 5

 1.4 Assumptions and Scopes

1.4.1 Assumptions

• Developers must have good network connection with laptops or PC.

• Developers must have a proper system setup like Google Colab, Jupyter Notebook already

installed in PC.

• Developers must have good knowledge of Python, Data analysis and machine

Learning for programmatic access.

 1.4.2 Scopes

• To do emotion detection from text message such CSV. files

• To learn about Python and Machine Learning

 1.5 Concept and Problem Analysis

Emotion detection involves identifying and categorizing emotions expressed by users

through different modalities such as text, speech, and facial expressions. In the context

of Human-Computer Interaction (HCI), this capability can enhance user experience by

allowing systems to respond appropriately to users' emotional states. Detecting emotion

from text is difficult due to the complexity of the human mind and the potential

inadequacy of existing datasets for proposed research.

To simplify the task, emotions have been categorized into three classes: positive,

negative, and neutral. Recently, researchers have proposed various methods for text

emotion detection, including keyword-based methods, learning-based methods, hybrid

models, and lexical similarity models. Initially, rule-based approaches such as lexical

affinity-based and keyword-based methods were introduced. Subsequently, a learning-

Page | 6

based approach was developed, which proved to be more accurate and yielded better

results.

Researchers began combining these approaches into hybrid models to achieve higher

accuracy. Although these models showed improved accuracy, they still fell short of the

high expectations necessary for making the research more efficient. Machine learning-

based models emerged as a new technique for detecting and classifying emotions,

providing significantly improved accuracy. Researchers employed various machine

learning models to classify emotions and sentiments, thereby enhancing the accuracy of

existing models. However, these models also faced critical challenges and some failed to

detect emotions accurately, resulting in suboptimal performance.

In this research, new methods are proposed to address the problems of existing models

and datasets, ultimately improving accuracy and achieving impressive results. One

notable issue at the document level is the expression of multiple emotions within the same

document. Based on analysis and studies from previous research, several limitations have

been identified:

▪ Handling the complexity of the human mind and the subtleties of text-based emotion.

▪ Ensuring datasets are comprehensive and representative of diverse emotional

expressions.

▪ Achieving high accuracy in emotion detection despite the presence of multiple

emotions in a single document.

▪ Developing models that can reliably and accurately classify emotions in various

contexts and platforms.

By addressing these challenges, the research aims to advance the field of text-based

emotion detection and enhance the capabilities of Human-Computer Interaction systems.

Some problem of document-level occurs when multiple emotions are expressed in the

Page | 7

same document. By analysis and study from previous research below are some

limitations:

a) Word ambiguity.

b) Lack of linguistic Information.

c) In capability to recognize emotion in absence of emotion keyword.

d) Existing models not providing better accuracy.

e) Existing emotion detection- based Algorithm is not more efficient.

f) Some machine learning Technique’s overfitting Problem.

g) Different types of same algorithm (Naïve bayes) giving different results.

h) Multinomial Naïve Bayes Algorithm failed to perform well.

Page | 8

1.6 Organization of the Thesis

I. Chapter 1 – This chapter contains the introduction of the thesis which includes

overview, problem statement, objectives, assumptions, scopes, concept and

problem analysis.

II. Chapter 2 – It includes all the literature surveys done to carry out the research

work.

III. Chapter 3 – It includes proposed approach that has been used to detect Emotion

from text.

IV. Chapter 4 – This chapter contains the implementation and result.

V. Chapter 5 – This chapter contains the comparative analysis.

VI. Chapter 6 – This chapter describes the conclusion and scope of future scopes.

VII. References – All the references are given here.

VIII. Appendix Part A – This part contains system requirements, software

requirements, programming requirements and download speed.

IX. Appendix Part B – Here are all the code snippets provided.

Page | 9

 CHAPTER 2

Page | 10

2. LITERATURE SURVEY

Vishaka Singh et al. [1], proposed an Emotion Detection Model taking two different

Feature extraction Model Term Frequency- Inverse Frequency (TFDF) and Count

Vectorizer using Logistic Regression, Random Forest Classifier models etc. here

researchers consider 20000 dataset for the study and applying models on preprocessed

data the highest accuracy obtained in Count Vectorizer using Logistic Regression

88% in the case of Data set Split Ratio is 70:30 but more need to improve on

preprocessing Phase on Textual Dataset and Consider more data as well.

Ms. Pinal Solanki [2], considered a small Data set for this research, the proposed study

found that SVC and TFDF is more accurate and SVC gave highest accuracy, focuses

on feature extraction method and word recognition for getting better results but word

ambiguity problems were not considered here. During this study researchers faced

some problems such text is commonly displayed unclear, some sentences may be

sarcastic and sentiment is unclear due to the presence of multiple points of the view

on the subjects

Firdaus et al. [3] focus on the application of text emotion detection for retweet

prediction, a task crucial in social media analytics. The paper proposes a topic-specific

approach to emotion detection, leveraging machine learning techniques. By

associating emotions with specific topics, the authors aim to enhance the accuracy of

retweet prediction models. This study highlights the practical applications of text

emotion detection beyond sentiment analysis, demonstrating its utility in social media

data analysis and prediction tasks.

Page | 11

Oliveira et al. [4], proposed Generalized Linear Model with taking 1000 features total

of 2302 features sets were explored, where each features sets has 100-1000 features

extracted from the Text. The results demonstrate Generalized Linear Model provides

the best Accuracy score (0.92), Recall (0.902), Precision (0.902), F1 score (0.901)

with standard deviation of accuracy of ±1,2%.

Shaikh Abdul et al. [5] proposed machine learning based sentiment detection model

using Naïve Bayes Algorithm, Support Vector Machines, K-means Clustering. For

this study the twitter data was required and converted from word to vector of Eight

emotions and applied feature extraction techniques to get better classification

accuracy. According to this research 13000 data used and experiment resulted that

support vector machines accuracy was 80%, Naïve Bayes models Accuracy was 50%.

It evident that SVC and Naïve bayes far better that K-means but the accuracy of every

model needs to be improved as well. Hence Pre-processing data still remains one of

the most crucial streps which needs to be improved to get more accurate results.

P Ancy et al. [6] approached a rule-based emotion detection model involves various

NLP Process for classification. Automatic Classification Approach Supervised

Machine Learning Models like Naïve Bayes Algorithm, SVC, Linear Regression and

Unsupervised Machine Learning approach is used to explore data but got bad results

due to various problems in Data set. In case of supervised Machine Learning Models

highest accuracy obtained.

Page | 12

Amal Shameem et al. [8] proposed machine learning based sentiment detection model

using Decision Tree Classifier Support Vector Machines. For this study the twitter

data was required and converted from word to vector of Eight emotions and applied

feature extraction techniques to get better classification accuracy. Decision Tree

Classifier has the best average performance in terms of efficiency, sensitivity and

f1score at 84.7%, 74.2%, and 94.1% respectively. Throughout this study Researchers

work on the to identify emotions based on text., SVC, Nested Linear SVC methods

can be used to identify emotions in multiclass based on the results of the discussion

and evaluation conducted in the previous section. Random Forest Classifier has the

best accuracy. The experimental findings demonstrated that machine learning-driven

text emotion classification outperforms established learning methodologies,

exhibiting notably superior accuracy rates.

Poonam Arya et al. [10] proposed a hybrid model that incorporates natural language

processing technique, including keyword-based and machine learning-based emotion

classification from textual data at sentence level. Supervised and unsupervised

technique has been used. Limitations of this study are Word ambiguity, Incapability

to recognize emotion in absence of emotion keyword, Emotion categories. Machine

Learning Model provided 63% accuracy compared to Keyword Based Model.

Page | 13

Goru Swathi et al. [11] developed an emotion recognition system for text-based

content. The proposed model is a combination of machine learning approaches.

According to the observation Logistic regression gives highest accuracy of 84% as

compared to KNN, SVM, Naïve Bayes, Decision Tree. But this research can be

extended by making a real-time test-based emotion recognition system.

S. Arun Kumar S. et al. [12] The study delved into algorithms for identifying emotions

from textual data and detecting emotional cues within the text. These approaches are

combination of machine learning and CNN, here considered only Machine learning

Algorithms. Besides NRC Lex, NLP method also considered for this study their

accuracy 64.44, 83.36 respectively.

Garg and Saxena [16] proposed a machine learning-based approach for emotion

detection and human behavior analysis. Garg and Saxena employed machine learning

techniques for emotion detection from text data. They utilized computational

intelligence methods for sentiment analysis, emphasizing the importance of accurate

emotion classification for understanding human behavior.

 Bhavya A.V. et al. [18] proposed an AI based machine Learning Model. Emotion

detection from text has garnered significant attention due to its wide-ranging

applications in various fields, including healthcare, customer service, and social

media analysis. However, existing emotion detection models often overlook the

personalized nature of emotions, leading to suboptimal performance in capturing

individual nuances. In this paper, we propose a novel approach for personalized

emotion detection from text using machine learning techniques. Present research

worker’s approach leverages user-specific data to tailor emotion detection models to

Page | 14

individual users, thereby enhancing the accuracy and effectiveness of emotion

classification. Present research worker conducts experiment on a diverse dataset

collected from social media platforms, demonstrating the superiority of our

personalized approach over traditional methods. The results highlight the importance

of considering individual differences in emotion expression for achieving more

accurate emotion detection from text.

Nath, S., Shahi, et al [19] recognized an emotion Detection Model emotion

recognition is a crucial task with applications in various domains such as human-

computer interaction, affective computing, and mental health assessment. In this

paper, they present a comparative study on SER utilizing machine learning

techniques. Present research worker’s study investigates the performance of different

machine learning algorithms and feature extraction methods for recognizing emotions

from speech signals. They conduct experiments on benchmark datasets, evaluating

the accuracy, robustness, and computational efficiency of the proposed approaches.

Through comprehensive analysis and comparison, they identify the strengths and

weaknesses of each method, providing insights into the most effective strategies for

SER tasks. Their findings contribute to advancing the state-of-the-art in speech

emotion recognition and offer valuable guidance for researchers and practitioners in

this field.

Page | 15

 CHAPTER 3

Page | 16

 3. PROPOSED APPROACH

In the proposed system, various supervised machine learning models have been used

such as Naïve Bayes, Support Vector Machine, Random Forest Classifier, KNN and

Logistic Regression. Multinomial Naïve Bayes, Bernoulli Naïve Bayes, Gaussian

Naïve Bayes, Compliment Naïve Bayes algorithms, this different type of Naïve Bayes

Model will be used for this Study. For this study 34791 records of Text messages are

collected. After the Classifiers are trained, Text Data can be fed into them to determine

the emotion type. Other side for detecting Sentiment, get () sentiment Algorithm has

been used and When model was ready, deployed on the Preprocessed clean dataset to

detect sentiment. ‘Neutral’, ‘Positive’, ‘Negative’ three type of sentiments were

detected by applying our proposed sentiment detection model. The documents were

calculated on the basis of the confusion Matrix. Confusion Matrix has calculated four

different table with true positive (TP), true negative (TN), false positive (FP) and false

negative (FN). Two different more accurate feature extraction techniques namely TF-

IDF, Count Vectorizer are used to get best classification accuracy as compared to

previous research.

Page | 17

3.1 Dataset Description:

In this work, Textual data set collected from various resources as Natural language

Toolkit (NLTK) corpus, Kaggle and ISEAR (International survey of Emotional

Antecedents and Responses). The data set contain 34791 rows and 4 columns with

about 34791 records of different tweet or text messages. These ISEAR dataset is

sentiment label dataset where data is lightly cleaned and normalized. But as per

research need dataset has been cleaned and more improved in preprocessing phase so

that accuracy can be increased as well as model become more accurate for the research

purpose. Dataset contained four different features such as Emotion, input, Text, Clean

Text and after preprocessing preprocessed text included with dataset. After detection

of sentiment this part also includes with Dataset and save the dataset again for final

evaluation process. Eight emotion Classes has been Considered such as ‘Joy’,

‘Sadness’, ‘Fear’, ‘Anger’, ‘Neutral’, ‘Surprise’, ‘Shame’, ‘disgust’ and no of records

and percentages are described in the following table.

 Fig-1: Percentage of Emotions

31.74

19.3215.54

12.35

11.67

6.47

2.46 0.41

joy sadness fear anger surprise neutral disgust shame

Page | 18

 Table-1: No of Records and Percentage of Emotion

 Emotion No of Records Percentage

Joy 11045 31.745804

Sadness 6722 19.320533

 Fear 5410 15.549552

Anger 4297 12.350540

Neutral 2254 6.478501

Surprise 4062 11.675098

Shame 146 0.419637

disgust 856 2.460336

 Total 34791

 Fig-2: Dataset Description

Page | 19

 No of Records

 Fig-3: Distribution of Emotions

Page | 20

Fig-4: Sample of Text in Dataset

 21

 3.2 Data Pre-processing

Preprocessing refers to the transformations applied to the data before providing

the data to algorithms. This process is used to convert the raw data in to an

understandable dataset. How ever dataset collected from Previous researcher is

cleaned almost useable to apply using method but present research worker’s

research objectives are to gain more better results as compared to previous. In

other Words, to get best accurate classification accuracy it is necessary to have

dataset fully cleaned and normalized. Text processing is a technique to clean to

the text data and make it ready to feed data to the model. Previous researcher

taken 20000 data from 34791 data in dataset and in their preprocessing stage they

cleaned data as their research need. However, there are many problems in the

dataset that are found and solved in this phase and the data was adapted to run

the algorithm to obtain more accurate results. The problems are as follows:

• Null Values: In the dataset There were 466 null values that could cause problems

for the models, so these key values were dropped.

• Missing Values: There were some missing values in the dataset which were found

and replaced with mean values to provide better accuracy.

• Duplicate Counts: There were no duplicate words, duplicate columns and rows.

• Removal of Stop Words.

• Removal of User_handels.

• Removal of non-English Words.

• Removal of special characters and digits.

• Removal of Punctuations.

• Tokenization: It is a process of splitting a string, text into lists of tokens.

• Find most common Keywords from every type of emotion so that machine can

understand properly each keyword and their places.

Page | 22

• Also checked for data inconsistency, float value conversion timing, normalized

• Data Vectorization: Data vectorization refers to the process of converting raw

data, such as text or images, into numerical vectors that can be understood and

processed by machine learning algorithms. In the context of natural language

processing (NLP), data vectorization specifically refers to converting text data

into numerical representations.

Here Count Vectorizer is used for data Vectorization as per need of this study in

respective to the dataset.

Various Python libraries that are based on natural language processing and these

are Text Blob, NLTk, Neat Text, Nfx, WordNet Lemmatize,

Tokenization, etc.

Page | 23

 Fig-5: Preprocessed Dataset Description

Page | 24

3.3 Sentiment extraction Model

Sentiment Detection is a very vital part of emotion recognition from textual data.

Previously various algorithms used for detecting sentiment in past researches but

they failed to give accurate sentiment in many cases.

Get () sentiment is a proposed algorithm by Python Environment to detect and

analysis sentiment. Three different categories of sentiment have been detected by

this algorithm. “Neutral”, “Positive”, “Negative” are three categories of detected

sentiment. This algorithm is able to detect the sentiment by locating each

sentence successfully and word to solve the problem of word ambiguity. The

word ambiguity problem is hindering good security, which this algorithm largely

solves. And the machine provides good accuracy. In other words, Machine and

algorithms work properly and more accurately.

Page | 25

 Table2: Number of Sentiment

Emotion sentiment
anger Neutral 1386

 Positive 1124

 negative 1787

disgust Neutral 251

 Positive 281

 negative 324

fear Neutral 1844

 Positive 2032

 negative 1534

joy Neutral 3649

 Positive 5714

 negative 1682

Neutral Neutral 1523

 Positive 553

 negative 178

sadness Neutral 2128

 Positive 1965

 negative 2629

shame Neutral 50

 Positive 50

 negative 46

surprise Neutral 1545

 Positive 1894

negative

623

Page | 26

 Fig6: Proposed Sentiment Detection Algorithm

3.3.1 Sentiment Detection: Python is one of the most powerful tools

when it comes to performing data science tasks — it offers a multitude of

ways to perform sentiment analysis in Python. The most popular ones are

enlisted here

1. Using Text Blob

2. Using Bag of Words Vectorization-based Models

3. Using Transformer-based Models

Page | 27

 Fig7: Sentiment Detection

3.3.2 Keyword Definition: In the proposed model, Keyword Definition is

a crucial component. While the model performs effectively when applied to the

dataset, a notable challenge is that each keyword must be identified individually

by the algorithm. Hence, Keyword Definition becomes essential for executing

the proposed sentiment analysis model efficiently. Below, keywords are defined

for various types of emotions.

Page | 28

a) Joy: Keywords: joy, X axis denotes no of words and Y axis denotes all

keywords of every sentence used for ‘Joy’ emotion detection.

This List contain word count in Text Messages:

'the': 5299,
 'to': 4744,
 'I': 4471,
 'a': 3594,
 'and': 3221,
 'of ': 2803,
 'my': 2793,
 'in': 2328,
 'for': 1997,
 'is': 1590,
 'with': 1375,
 'you': 1282,
 'that': 1234,
 'was': 1155,
 'me': 1144,
 'at': 1124,
 'on': 1120,
 'it': 1012,
 'have': 962,
 'be': 890,
 'this': 784,
 'day': 729,
 'amp': 678,
 'up': 658,
 'had': 639,
 'all': 636,
 'so': 603,
 'time': 601,
 'Im': 555,
 'when': 544,
 'your': 528,
 'When': 520,
 'The': 516,
 'work': 509,
 'from': 481,
 'not': 480,
 'get': 479,
 'like': 476,
 'an': 473,
 'today': 471,
 'tomorrow': 467,
 'Christmas': 453,
 'out': 453,
 'just': 452,
 'about': 450,
 'now': 442,

Page | 29

 'are': 438,
 'but': 402,
 'love': 393,
 'do': 386}

Fig-8: Keyword of Joy

Page | 30

b) Sadness: Keywords: sorrow, grief, melancholy, despair, anguish,

heartbroken, despondent, miserable, gloomy, dejected. X axis denotes no of

words and Y axis denotes all keywords of every sentence used for ‘Joy’

emotion detection.

Fig-9: Keyword of Sadness

Page | 31

c) Anger: Keywords: rage, fury, wrath, indignation, annoyance, irritability,

resentment, hostility, infuriated, enraged. X axis denotes no of words and Y

axis denotes all keywords of every sentence used for ‘Joy’ emotion detection.

This List Contain Word Count in Text Messages:

 'I': 2548,

 'the': 2471,

 'to': 2162,

 'a': 1703,

 'and': 1588,

 'my': 1299,

 'of': 1256,

 'was': 1149,

 'me': 973,

 'in': 915,

 'that': 855,

 'it': 679,

 'you': 677,

 'for': 669,

 'with': 632,

 'had': 594,

 'is': 588,

 'at': 563,

 'not': 558,

 'he': 475,

 'on': 474,

 'when': 420,

 'When': 390,

 'her': 379,

 'be': 338,

 'his': 334,

 'she': 316,

 'have': 314,

 'about': 308,

 'angry': 305,

 'so': 300,

 'an': 298,

 'up': 296,

 'this': 294,

 'out': 276,

 'but': 275,

 '’': 247,

 'do': 238,

 'were': 235,

 'him': 234,

 'as': 234,

 's': 232,

Page | 32

 'are': 219,

 'The': 218,

 'by': 218,

 'they': 216,

 'your': 210,

 'who': 205,

 'just': 202,

 'all': 199}

Fig-10: Keyword for anger

Page | 33

d) Fear: Keywords: terror, dread, anxiety, panic, apprehension, phobia, fright,

nervousness, alarm, trepidation. X axis denotes no of words and Y axis

denotes all keywords of every sentence used for ‘Joy’ emotion detection.

This List contain word count in Text Messages:

 'I': 3623,

 'the': 3503,

 'of': 2252,

 'and': 2252,

 'to': 2229,

 'a': 2120,

 'in': 1454,

 'was': 1427,

 'my': 1028,

 'for': 956,

 'that': 955,

 'not': 880,

 'is': 865,

 'me': 796,

 'it': 686,

 'have': 660,

 'you': 624,

 'at': 594,

 'on': 590,

 'afraid': 565,

 'with': 485,

 'had': 453,

 'be': 449,

 'love': 432,

 'when': 405,

 'today': 404,

 'tomorrow': 399,

 'fear': 396,

 'seen': 364,

 'When': 355,

 'yesterday': 352,

 'about': 330,

 'The': 329,

 'from': 326,

 'we': 325,

 'by': 322,

 'but': 317,

 'out': 315,

 'he': 290,

 'your': 284,

 'as': 275,

 'so': 272,

Page | 34

 'are': 268,

 'this': 267,

 'all': 265,

 'time': 256,

 'an': 248,

 'Im': 244,

 'they': 244,

 'night': 238}

Fig-11: Keyword of fear

Page | 35

e) Surprise: Keywords: astonishment, amazement, wonder, shock, disbelief, awe,

startle, astound, unexpected, startled. X axis denotes number of words and Y axis

denotes all keywords of every sentence used for ‘Joy’ emotion detection.

This List contains word count in Text Messages:

{'the': 1383,
 'to': 1219,
 'a': 1207,
 'I': 1063,
 'my': 826,
 'and': 801,
 'in': 751,
 'for': 601,
 'of ': 592,
 'you': 562,
 'is': 548,
 'it': 400,
 'on': 399,
 'me': 391,
 'that': 383,
 'was': 367,
 'en': 299,
 'een': 294,
 'at': 265,
 'be': 257,
 'with': 251,
 'de': 251,
 'when': 247,
 'i': 244,
 'up': 241,
 'Im': 227,
 'out': 223,
 'have': 223,
 'just': 211,
 'this': 209,
 'your': 204,
 ':)': 201,
 'her': 176,
 'so': 175,
 'are': 170,
 'know': 165,
 'not': 162,
 'from': 161,
 'home': 160,
 'he': 157,
 'but': 154,
 'one': 154,
 'van': 153,
 'today': 150,

Page | 36

 'we': 149,
 'day': 143,
 'get': 142,
 'she': 142,
 'what': 139,
 'ik': 137}

Fig-12: Keyword for Surprise

By defining these keywords for each emotion category, the sentiment analysis

model can efficiently identify and analyze sentiments within the dataset.

Page | 37

Fig-13: Distribution of Detecting Sentiment by Proposed system

 Fig-14: Heatmap of Sentiment

Page | 38

 Fig- 15: Number of Sentiments in terms of Emotions

3.3.3 Mapping Sentiment to Numerical Values

The code begins by creating a new column named "label Num" in the Data Frame

`df `. It uses the `. map () ` function to transform the values in the "sentiment"

column into numerical representations.

 The mapping is defined as follows:

• 'negative' sentiment is mapped to 0

• 'positive' sentiment is mapped to 1

• 'neutral' sentiment is mapped to 2

 Essentially, it assigns numerical labels to the different sentiment categories

Page | 39

a) Data Frame Manipulation and Keyword Extraction Method

After creating the "label Num" column, the code proceeds to modify the Data

Frame `df`. It uses the `. drop () ` method to remove the original "sentiment"

column from the Data Frame. This step is performed because the sentiment

information has now been encoded into numerical values in the "label Num"

column. The original textual representation of sentiment is no longer necessary.

Fig-16: Keyword Extraction Method

Source: Semantic Scholar [25]

Page | 40

 Displaying the Data Frame:

Lastly, the code displays the first five rows of the modified Data Frame `df`

using the `. head (5) ` function. This provides a glimpse of the Data Frame

after the changes have been applied, showcasing the newly created "label

Num" column and the absence of the original "sentiment" column.

 # Mapping sentiment num / encode

df["label_num"] = df.sentiment.map({

 'negative': 0,

 'positive': 1,

 'neutral': 2

})

df = df.drop(columns=['sentiment'])

df.head(5)

In summary, this code snippet facilitates the transformation of textual sentiment

labels into numerical representations, enhancing the data's suitability for machine

learning tasks that require numerical input. It follows a systematic process of

mapping, Data Frame manipulation, and display to achieve this transformation.

Page | 41

3.4 Feature Extraction Techniques

In the emotion recognition process through Machine Learning Models, feature

extraction is the crucial part of emotion classification. The efficacy of feature

extraction is intricately intertwined with the precision of emotion classification.

In previous Researchers, various kinds of feature extraction methods are used

such as N-grams, BERT, and Dict Vectorizer. Nowadays researchers are using

TFDF to get good accuracy in the classification phase. In this research presently

Count Vectorizer has been applied to get very good results. TFDF is also used

for getting comparative analysis in terms of accuracy. So, these methods were

carried out by considering two features namely Term Frequency- Inverse

Document Frequency and Count Vectors. The data is error-free and clean.

Applying both methods got very good results depending on the specific

requirements of the task and the characteristics of the dataset.

❖ TF-IDF: This can be particularly useful in emotion detection because it helps

to identify words that are unique or distinctive to certain emotions. TFDF stands

for "Term Frequency - Document Frequency." It's a concept commonly used in

information retrieval and text mining to evaluate the importance of a term within

a document or a corpus of documents.

 Here's how TFDF works:

❖ Term Frequency (TF): This component measures how often a term occurs

in a document. It's calculated as the ratio of the number of times a term appears

in a document to the total number of terms in that document. Essentially, it shows

the relevance of a term within a specific document. A higher term frequency

suggests that the term is important or central to the document.

Page | 42

❖ Document Frequency (DF): This component measures how often a term

occurs in the entire corpus of documents. It's calculated as the ratio of the number

of documents that contain the term to the total number of documents in the

corpus. Document frequency gives an idea of how common or rare a term is

across all documents.

❖ TF-IDF Score: The TFDF score combines both TF and DF to evaluate the

importance of a term. It is calculated by multiplying the TF and IDF values.

 - \(t\) is the term.

 - \(d\) is the document.

 - \(D\) is the corpus of documents.

❖ Inverse Document Frequency (IDF): This term accounts for the fact that certain

terms might appear frequently across documents but are not necessarily

important because they are common words (e.g., "the", "and"). IDF penalizes

such terms. It's calculated as the logarithm of the inverse of DF.

By combining TF and IDF, TFDF highlights terms that are both frequent within

a document and rare across the entire corpus, thereby identifying terms that are

significant to that specific document. TF-IDF is often used in information

retrieval systems to rank documents based on their relevance to a query.

Page | 43

By using TF-IDF, the model can potentially give more weight to these important

words and improve the accuracy of emotion detection.

Count Vectorizer: It can also be similarly used for emotion detection to TF-IDF.

Count Vectorizer can be used to convert text data into a numerical format by

counting the occurrences of words in each document. In the context of emotion

detection.

 Fig -17: Working Principle of Count Vectorizer

Tokenization

Building Vocabulary

Vectorization

Counting

Occurrences

Output

Page | 44

 Fig -18: Working Principle of TF-IDF

Page | 45

3.5 Text Classification Techniques

Text classification is a common task in natural language processing (NLP) where

the goal is to categorize text documents into predefined classes or categories.

There are various machine learning models that can be used for text

classification, each with its own advantages and disadvantages. Here are some

proposed models as follows:

• Naïve bayes Algorithm

a) Multinomial Naïve Bayes

b) Bernoulli Naïve Bayes

c) Gassian Naïve Bayes

• Support Vector Machines (linear).

• Random Forest Classifier.

• Logistic regression.

• KNN algorithm.

 The study explores the effectiveness of Naive Bayes Classifier in detecting

emotions from textual data. It considers three types of Naive Bayes classifiers:

Multinomial Naive Bayes, Bernoulli Naive Bayes, and Gaussian Naive Bayes.

While Multinomial Naive Bayes has been traditionally used, the study introduces

Bernoulli and Gaussian Naive Bayes classifiers as new approaches. The results

indicate that both Bernoulli and Gaussian Naive Bayes classifiers outperform the

Multinomial Naive Bayes algorithm, yielding high accuracy, F1 score, precision,

and recall.

 Additionally, the study explores other machine learning methods such as Random

Forest, Logistic Regression, KNN, and linear Support Vector Machines (SVC)

to achieve optimal results. By employing data preprocessing techniques and two

proposed feature extraction methods, the study observes variations in

Page | 46

performance. Specifically, the Count Vectorizer feature extraction method

demonstrates superior accuracy compared to the TF-IDF feature extraction

method.

In summary, the study underscores the effectiveness of Naive Bayes classifiers

in emotion detection from textual data, showcasing improvements over

traditional methods and highlighting the impact of feature extraction techniques

on model performance.

 3.5.1 Working Principle of Algorithms

➢ Naïve Bayes Algorithm:

 Naive Bayes is a type of algorithm used for classification tasks. It's called "naive"

because it makes a very simple assumption: that the presence of one feature

doesn't affect the presence of another feature. This assumption simplifies the

math behind the algorithm.

 Here's how it works:

o Bayes' Theorem: It's a way to calculate probabilities. In the case of Naive

Bayes, it helps to figure out the probability of a certain class (like "spam" or "not

spam") given some data.

o Naive Assumption: This is the idea that features (like words in a text) are

independent of each other when it comes to predicting the class. This assumption

is often not true in real life, but it makes the math easier.

Page | 47

o Training: Naive Bayes looks at a bunch of examples where the class has

been understood and it learns the probability of each feature belonging to each

class.

o Prediction: When to classify something new, Naive Bayes calculates the

probability of each class given the features and picks the class with the highest

probability.

 There are different types of Naive Bayes algorithms, each suited for different kinds

of data. For example:

✓ Gaussian Naive Bayes: works well when features have a normal distribution.

✓ Multinomial Naive Bayes is good for things like word counts in text.

✓ Bernoulli Naive Bayes is useful when features are binary (like whether a word

appears or not).

 Naive Bayes classifiers, including Gaussian Naive Bayes and Bernoulli Naive

Bayes, are simple probabilistic classifiers based on applying Bayes' theorem with

strong (naive) independence assumptions between the features. While they share

some common principles, their architectures differ based on the distribution of

the input features.

➢ Gaussian Naive Bayes:

• Architecture:

 Assumes that continuous features follow a Gaussian (normal) distribution.

 Each class is associated with a mean and a variance for each feature. The

probability density function (PDF) of the Gaussian distribution is used to

calculate the likelihood of observing a particular value given the class. During

Page | 48

training, the mean and variance of each feature are estimated for each class.

During prediction, the probability of a sample belonging to each class is

calculated using Bayes' theorem, and the class with the highest probability is

assigned to the sample.

• Strengths:

 Effective for continuous or real-valued features.

 Simple and efficient, especially for high-dimensional data.

 Less affected by the curse of dimensionality compared to other classifiers.

➢ Bernoulli Naive Bayes:

• Architecture:

 Assumes that features are binary-valued (e.g., presence or absence of a feature).

Each feature is modeled as a binary random variable following a Bernoulli

distribution. The probability of each feature being 1 or 0 is estimated for each

class. During training, the probabilities of features being 1 or 0 are calculated

for each class. During prediction, the likelihood of observing the feature values

given the class is calculated using the Bernoulli distribution, and Bayes' theorem

is applied to assign the class with the highest probability.

• Strengths:

 Well-suited for binary or categorical features, such as text classification (presence

or absence of words).

 Handles sparse data efficiently. Robust to irrelevant features.

 Often used in text mining and document classification tasks.

In summary, Gaussian Naive Bayes assumes that features follow a Gaussian

distribution, making it suitable for continuous features, while Bernoulli Naive

Bayes assumes binary features following a Bernoulli distribution, making it

Page | 49

suitable for binary or categorical features. Both algorithms are simple, efficient,

and effective for various classification tasks, depending on the nature of the input

features.

Naive Bayes is popular because it's easy to understand, quick to train, and can

work surprisingly well in many situations, especially with text data. However, it

might not perform as well when the features are not actually independent or when

there's not enough training data. Despite its simplicity, it's widely used and can

be a powerful tool in the right situations.

➢ Support vector machine:

 Here linear Support Vector Machines has been implemented. Support Vector

Machines (SVM) are a type of algorithm designed to draw the best possible line

or boundary in a multi-dimensional space, effectively separating different classes

of data. The ultimate aim is to create a decision boundary, often referred to as a

hyperplane, that can accurately categorize new data points in the future.

 The SVM algorithm accomplishes this by identifying key data points known as

support vectors. Support vectors are essential elements that determine the precise

orientation and location of the hyperplane within the Support Vector Machine

algorithm, crucial for effectively separating different classes of data. Essentially,

SVM seeks to locate the most extreme points that help define the boundary

between different classes. Hence, the term "Support Vector Machine" originates

from this emphasis on identifying and utilizing these critical support vectors.

Imagine a scenario where data points belonging to two distinct categories are

plotted on a graph. SVM works by strategically positioning a line or boundary,

referred to as a hyperplane, to effectively separate these categories. This

hyperplane is determined by identifying the most pivotal data points, known as

support vectors, which play a significant role in defining the boundary. Through

Page | 50

this process, SVM aims to create the most optimal decision boundary for accurate

classification of new data points.

 SVM aims to locate the most extreme points in the data set that are instrumental

in determining the optimal hyperplane. By doing so, it creates a clear separation

between different classes, making it easier to classify new data points accurately

in the future. Therefore, SVM is not just about drawing any boundary; it's about

finding the best possible boundary that maximizes the margin and minimizes the

classification error, thereby enhancing the algorithm's ability to generalize well

to unseen data. Below diagram consider for better understanding:

Fig-19: Support Vector Machine

Source: LinkedIn [21]

Page | 51

➢ Logistic Regression:

 Logistic regression is a statistical method used for binary classification tasks,

where the output variable is categorical and has only two possible outcomes,

typically represented as 0 and 1. The working principle of logistic regression can

be explained in a structured way, as follows:

• Input Data:

Logistic regression takes input data features (X) and their corresponding labels

(Y). X represents the independent variables or features, while Y represents the

dependent variable or target variable with two classes (0 or 1).

• Linear Combination:

Logistic regression begins by computing a linear combination of the input

features and associated weights.

It calculates the weighted sum of input features:

• Logistic Function:

The linear combination is then transformed using the logistic function (also

known as the sigmoid function) to produce the predicted probability. The logistic

function maps any real-valued number to the range (0, 1), which is suitable for

representing probabilities.

The logistic function is defined as:

Page | 52

• Prediction:

After applying the logistic function, the output represents the predicted

probability of the positive class (class 1). If the predicted probability is greater

than a threshold (typically 0.5), the instance is classified as belonging to the

positive class (1); otherwise, it is classified as belonging to the negative class (0).

• Training:

During the training phase, the model learns the optimal values of the coefficients

(weights) that minimize the difference between the predicted probabilities and

the actual labels. This optimization process is typically performed using

techniques like gradient descent or more advanced optimization algorithms.

• Cost Function:

In logistic regression, the cost function (or loss function) is used to quantify the

difference between the predicted probabilities and the actual labels. The most

commonly used cost function for logistic regression is the cross-entropy loss

function.

• Gradient Descent:

Gradient descent is an iterative optimization algorithm used to minimize the cost

function by adjusting the weights. It calculates the gradient of the cost function

with respect to each weight and updates the weights in the opposite direction of

the gradient to minimize the cost.

• Model Evaluation:

Once trained, the logistic regression model can be evaluated using various

performance metrics such as accuracy, precision, recall, F1-score, ROC curve,

and AUC-ROC.

In summary, logistic regression works by fitting a logistic function to the input

data to model the probability of a binary outcome and then making predictions

Page | 53

based on this probability. It's a fundamental algorithm in the field of machine

learning and is widely used for binary classification tasks.

Fig-20: Logistic Regression

Source: E Jable [24]

➢ K -Nearest Neighbors (KNN):

 Sure, here's a more advanced explanation of the K-Nearest Neighbors (KNN)

algorithm: KNN is a non-parametric and lazy learning algorithm used for both

classification and regression tasks. Non-parametric means it doesn't make

assumptions about the underlying data distribution, and lazy learning means it

doesn't learn a model during training; instead, it stores the entire training dataset

and makes predictions based on the similarity between new data points and

existing data points during inference.

In the context of classification:

Page | 54

• Training: KNN stores all the training data points and their corresponding class

labels.

• Prediction: When a new data point is presented for prediction, KNN calculates

the distances between the new point and all the points in the training set using a

chosen distance metric, such as Euclidean distance.

• Selection of K: KNN selects the K-nearest neighbors to the new data point

based on the calculated distances. The value of K is a hyperparameter that needs

to be tuned and affects the algorithm's performance. A small K may lead to

overfitting, while a large K may lead to underfitting.

• Majority Voting: For classification, KNN assigns the class label to the new

data point based on the majority class among its K-nearest neighbors. It can

handle ties in various ways, such as assigning equal weights to each neighbor or

choosing the class with the smallest distance.

• Prediction: Finally, KNN assigns the class label of the majority class to new

data point. In regression, instead of class labels, KNN predicts a continuous value

by averaging (or weighted averaging) the target values of the K-nearest

neighbors.

Key considerations for KNN include:

• Choice of Distance Metric: The distance metric used can significantly

impact the algorithm's performance. Different distance metrics may be more

suitable for different types of data.

• Feature Scaling: Since KNN relies on distance calculations, it's essential to

scale the features to ensure that no single feature dominates the distance

calculation.

• Computational Complexity: KNN's prediction time complexity grows

Page | 55

linearly with the size of the training dataset, making it computationally expensive

for large datasets. Techniques like KD-trees or ball trees can be used to speed up

the search process.

Despite its simplicity and ease of implementation, KNN may not perform well

with high-dimensional data or imbalanced datasets. Additionally, it can be

sensitive to noisy data and outliers. Nonetheless, KNN remains a versatile and

widely used algorithm in machine learning, especially for smaller datasets or as

a baseline model for comparison.

Euclidean Distance= √(x2-x1)2 + (y2-y1)2

Fig-21: KNN algorithm

 Source: Geeks for Geeks [23]

Page | 56

➢ Random Forest Classifier:

The Random Forest, or Random Decision Forest, stands as a supervised machine

learning technique adept at tasks like classification and regression, leveraging

decision trees. In essence, it constructs a collection of decision trees derived from

randomly chosen subsets of the training data. Through this process, it gathers

predictions from these diverse decision trees to formulate the ultimate prediction.

What sets the Random Forest classifier apart is its versatility in handling both

classification and regression tasks. Moreover, its capability to furnish feature

importance scores adds considerable value by illuminating the relevance of

various variables within the dataset.

 Fig-22: Random Forest Classifier

 Source: Java point [26]

Page | 57

3.6 Training and Testing the Model:

 The dataset has been split into 70:30 in majority cases for training and testing

respectively. Training and testing a model typically refer to the process of

building a machine learning model using a training dataset and evaluating its

performance on a separate dataset called the testing or validation dataset.

Training and Testing ratio has been considered different for different models as

follows in a table:

 Table 3: Training and Testing Data Distribution Percentage

Algorithms TFIDF Count Vectorizer

Logistic Regression 70:30 70:30

KNN 80:20 70:30

MNB 70:30 70:30

BNB 70:30 70:30

GNB 70:30 70:30

Random Forest 80:20 70:30

 Fig-23: Training and Testing data distribution (70:30)

70%

30%

Training Data Test Data

Page | 58

 Fig-24: Training and Testing data distribution (80:20)

 Here the Present research worker is conducting a comparative observational

study where the researcher employed different splitting ratios for model

evaluation, specifically utilizing different ratios for TF-IDF and count vectorizer

techniques.

In this comparative observational study, Present research worker has

implemented varying splitting ratios for model evaluation, distinguishing

between TF-IDF and count vectorizer methodologies. This entails employing

distinct ratios to partition the dataset for training and testing purposes, aiming to

analyze and compare their respective performance outcomes.

80

20

Training Data Test Data

Page | 59

 3.7 Classification Accuracy:

This is the last stage of proposed approach. Introduce classification accuracy as

a pivotal metric in assessing the performance of machine learning models,

particularly in classification tasks. Highlight its significance in evaluating the

model's ability to correctly predict class labels for given data instances.

Classification accuracy represents the proportion of accurate predictions made

by a model relative to the total number of input samples. It is calculated by

dividing the count of correct predictions by the total number of input samples.

Obtaining good assurance of this study was also a goal which was achieved. This

has been discussed in detail in the experimentations and results section.

Page | 60

3.8 Architecture

Above mentioned machine learning algorithms have been applied on dataset

through following steps:

 I. Create Dataset/Collect Dataset

 II. Perform Pre-Processing using NLP technique

 III. Feature Extraction

 IV. Data/Text classification using Supervised learning algorithms

 V. Model Evaluation

 VI. Classification (Accuracy)

Present research worker has taken 34791 data, a large dataset for this study. It is

considered as large dataset for detecting emotion and sentiment in respective to

the research. It refers to the transformations applied to the dataset before

providing the data to algorithm. Present research worker has used Text Blob for

data cleaning. Data cleaning process comprises various kind of activities as per

demand for research. Present research worker has removed noise, stop words,

special characters, punctuations-emojis from dataset to make the dataset clean.

Duplicate counts, outliers checking, data balance or not have been checked by

applying appropriate model on dataset time to time.

 count vectorizer python library is being considered for feature extraction. For

choosing a model we split the dataset in to train and test. Here data is split in to

3:1 ratio that means training data having 70% and testing data having 30%. This

process performing TRAIN-TEST-SPLIT model. Observe the data and choose

the type of algorithm. Prepare and clean the dataset and deploy the particular

model. This step mainly of machine learning, here we will focus more on

classification. Here the Present research worker predicts Text emotion and

algorithm performance. A classification model tries to provide some output or

conclusion from input values given from Training. Present research worker will

get expected output or final conclusion from this step.

Page | 61

 Fig-25: Architecture

Page | 62

 CHAPTER 4

 63

 4. EXPERIMENTATIONS AND RESULTS

This Research utilizes Python version 3 along with essential built-in libraries. For

implementing the machine learning model, Python 3 is chosen due to its

flexibility and computational power. It leverages various Python libraries such as

Scikit-learn, Matplotlib, Pandas, Seaborn, NumPy, among others.

 Table 4: Confusion Matrix

 ACTUAL

YES NO

PREDICTED YES TP FP

NO FN TN

• Accuracy, which represents the proportion of correctly classified cases out of all

cases, is calculated using the following formula:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

• Precision is expressed as the proportion of positive cases that are correctly

recognized as positive over all cases classified as positive and it is calculated

according to the formula:

Precision = TP / (TP + FP)

• Recall is expressed as the proportion of positive cases that are correctly recognized

as positive over all actual positive cases and is calculated according to the

formula:

• Recall = TP / (TP + FN)

Page | 64

• The F1 score is a metric used to evaluate the performance of a classification model.

It considers both the precision and recall of the model to compute a single score.

The formula for the F1 score is:

F1 = 2 × (Precision × Recall) / (Precision + Recall)

Fig-26: Heat Map of Confusion Matrix

The sentiment detection model, named get (), is utilized for analyzing emotions

in text data. It operates accurately on keywords and sentences, extracting

emotions effectively. With a dataset comprising 34,791 entries and over 300,000

words, this model demonstrates superior performance compared to previous

algorithms.

Notably, the algorithm addresses the issue of word ambiguity. Ambiguous

sentences are examined to assess the algorithm's ability to detect emotions from

ambiguous words. This robust approach ensures precise emotion detection even

in complex linguistic contexts. Followings are some ambiguity sentences and

getting result after detecting sentiment:

Page | 65

 Fig-27: Results after detecting Sentiment from ambiguity word

 Fig-28: Results after detecting sentiment from any text.

Page | 66

Three types of sentiments are detected by applying proposed algorithm. These

are:

a. Neutral.

b. Positive.

c. Negative.

The below figure shown as Sentiment and emotion distribution in Dataset:

The Classification Report for various algorithms as follows

 Classification Performance Report

This report provides a comprehensive evaluation of the classification quality

achieved by a machine learning model. It encompasses five main columns and

(N+3) rows. The initial column lists the class labels, followed by Precision,

Recall, F1-score, and Support metrics.

o Class Label: Identifies the specific class being evaluated.

o Precision: Indicates the accuracy of the model's predictions for a given

class. Precision is calculated as the ratio of true positives to the total

predicted positives, representing how many of the predicted instances of

a class are actually relevant.

o Recall: Reflects the model's ability to correctly identify instances of a

class within the dataset. Recall is calculated as the ratio of true positives

to the total actual positives, illustrating the proportion of actual instances

of a class that were correctly identified by the model.

o F1-score: Represents the harmonic mean of Precision and Recall. It

provides a single metric that balances both Precision and Recall, offering

a holistic measure of a model's performance for a specific class.

Page | 67

o Support: Denotes the total number of instances belonging to each class

within the actual dataset. It is the sum of the rows corresponding to each

class.

o The report comprises N rows, each corresponding to a unique class label,

and three additional rows providing metrics for overall performance:

Accuracy, Macro Average, and Weighted Average.

o Accuracy: Measures the overall correctness of the model across all

classes, calculated as the ratio of correct predictions to the total number

of predictions.

o Macro Average: Represents the unweighted mean of Precision,

Recall, and F1-score across all classes. It gives equal importance to each

class, irrespective of class frequency.

o Weighted Average: Computes the weighted average of Precision,

Recall, and F1-score, considering the support (number of instances) for

each class. It provides a performance measure that accounts for class

imbalances in the dataset.

o This structured report offers a clear understanding of the classification

performance of the constructed ML model, facilitating informed

decision-making and model optimization efforts.

Page | 68

Classification Report

For TF-IDF

Fig-29: Classification Report for RFC

Fig- 30: Classification Report for KNN

Page | 69

 Fig-31: Classification Report for MNB

 For Count Vectorizer

 Fig-32: Classification Report for NB

Page | 70

Fig-33: Classification Report for RFC (Case of CV)

Logistic Regression

Accuracy- 96%

 Features Level eli5 interpretation

 Table 5: Feature Level Eli5 Interpretation

Page | 71

Fig-34: Sentiment distribution

Fig-35: Frequency of Emotions over time

Page | 72

By discussing previous related- work, it is clear that existing systems are not

100% accurate. In previous, the existing system is based on multinomial naïve

bayes algorithm, KNN algorithm and also logistic regression, Ad boost classifier

etc. Among this four-algorithm provided accuracy as high as 68%, 64.8%,65%

& 67.08% respectively. Multinomial Naïve bayes Algorithm resulted the best

performance which an average accuracy of 68% but failed to perform well

because a compact research project needs minimum above 80-85%. But proposed

system like Bernoulli naïve bayes algorithm and gaussian algorithm has been

solved the problem of multinomial naïve bayes algorithm and resulted very good

result such as 89% accuracy for Bernoulli and 88% for gaussian naïve bayes

algorithm.

This research also investigates the effectiveness support Vector classifier, linear

regression, gradient boost classifier, Random Forest classifier, Naïve bayes

algorithm and also

unsupervised learning algorithm like K-Means algorithm etc. The study was

carried out on “Emotion dataset” with eight emotional groups. In machine

learning the detection of textual emotions is the problem of content-based

classification, it is the task of natural language processing. Detecting a person’s

emotion is a difficult task but we propose for emotion in English sentences where

emotions are treated as generalized concepts extracted from sentences. Here

present research worker considered ISEAR dataset with 34791 records where

emotions are usually expressed as joy, sadness, neutral, anger, fear, surprise,

shame, disgust etc. Existing sentiment detection model defined by previous

researcher is not well capable to detect sentiment from emotional dataset, for

reason of that some vital problems like ambiguity in keyword, Incapability to

recognize emotion in absence of emotion keyword were there. Present research

worker proposed a new sentiment detection model get () sentiment model which

Page | 73

has solved all mentioned problems and worked more well and accurate.

 Table-6: Accuracy of Previously Used Methods

Previous Method Accuracy

Multinomial Naïve bayes 68%

KNN 64.80%

Logistic Regression 65%

Ada boost Classifier 67.08%

Fig-36: Accuracy of previously used methods

68

64.8

65

67.08

61 62 63 64 65 66 67 68 69 70

Multinomial Naïve Bayes

KNN

Logistic Regression

Ada boost Classifier

Accuracy

M
e

th
o

d
s

Accuracy of previuos used methods

Accuracy of previuos used methods Linear (Accuracy of previuos used methods)

Page | 74

 Fig-37: Accuracy Performance on various categories of Naïve Bayes

 Algorithm

MNB BNB GNB

Performance on various
categories of Naïve Bayes

Algorithm
68 88 89

6
8

8
8 8
9

A
cc

u
ra

cy

Methods

PERFORMANCE ON VARIOUS CATEGORIES
OF NAÏVE BAYES ALGORITHM

Performance on various categories of Naïve Bayes Algorithm

Linear (Performance on various categories of Naïve Bayes Algorithm)

Page | 75

In the feature extraction step of the machine learning algorithm, both TF-IDF and

Count Vectorizer methods are employed to detect emotion and sentiment. Typically,

TF-IDF is expected to yield higher accuracy during the classification step compared

to Count Vectorizer. However, in this study, Count Vectorizer surprisingly

outperformed TF-IDF.

Previous researchers found that TF-IDF struggled to achieve accuracy above 30%

during the classification step. Interestingly, in this research, TF-IDF did not

demonstrate superiority over Count Vectorizer either, but it did manage to achieve

higher accuracy, surpassing 60%. On the other hand, Count Vectorizer exhibited

significant improvement compared to previous studies, providing very good results.

 Table 7: The results are summarized in the following

FEAT
URS

Datas
et
Split
Ratio

 Accuracy Obtained

SVM Random
forest

Logistic
Regression

BNB GNB MNB KNN

TF-
IDF

70:30

63.7 70 65 63 65 58 55

80:20

64 72 65.45 64 65 60 58

Count
Vecto
rizer

70:30

95 98 96 93 93 70 74

Page | 76

Table-8: Classification Report of all proposed machine learning algorithm:

Proposed method Precision Recall F-1 score Accuracy

Gaussian Naïve

Bayes (GNB)

0.87 0.94 0.90 0.89

Bernoulli Naïve

Bayes (BNB)

0.86 0.92 0.89 0.90

KNN 0.72 0.76 0.68 0.70

Random Forest 0.93 1.0 0.91 0.98

Logistic Regression 0.93 0.92 0.92 0.94

Support Vector

Machine (SVM)

0.75 0.86 0.83 0.84

Page | 77

 CHAPTER 5

Page | 78

5. COMPARATIVE ANALYSIS

In the Comparative Accuracy Analysis employing the TF-IDF feature extraction

method across various machine learning models such as Logistic Regression, Random

Forest, BNB, GNB, SVC, and KNN, Random Forest emerged with the highest

classification accuracy. However, it fell short in comparison to the results obtained

using Count Vectorizer. Here's a juxtaposition between the findings of the previous

and present studies regarding classification accuracy.

Accuracy Obtained by Existing Researchers:

 For the Case of TF-IDF:

 Table 9: Comparison between previous and presently obtained accuracy for TF-IDF

Algorithms Previous Accuracy Presently obtained

Accuracy

Logistic

Regression

33.03% 65%

BNB 21% 64%

GNB 23% 65%

SVC 31.2% 63.71%

MNB 21% 58%

Page | 79

 Fig-38: Comparative Analysis of Previous Model with Proposed method

 For the Case of Count Vectorizer:

 Table 10: Comparison between previous and presently obtained accuracy for Count Vectorizer

Algorithms Previous Accuracy Presently obtained Accuracy

Logistic

Regression

89.01% 95%

BNB 67% 93%

GNB 68% 93%

SVC 88.35% 98%

MNB 56% 70%

Logistic
Regressi

on
BNB GNB SVC MNB

Random
Forest

Previous Accuracy 33.03 21 23 31.2 21 30.11

Proposed Approched Accuracy 65 64 65 63.71 58 63.71

33.03

21 23

31.2

21

30.11

65 64 65 63.71

58

63.71

0

10

20

30

40

50

60

70

A
cc

u
ra

cy

Methods

Previous Accuracy Proposed Approched Accuracy

Linear (Proposed Approched Accuracy)

Page | 80

Fig-39: Comparative Analysis of Previous model with Proposed method for Count

Vectorizer

 So, for comparative analysis on both feature engineering, Random Forest gives best

accuracy.

Logistic
Regressio

n
BNB GNB MNB

Random
Forest

SVC

Previous Approch 89.01 67 68 56 77 88.35

Proposed Approach 95 93 93 70 98.67 98

89.01

67 68

56

77

88.35

95 93 93

70

98.67 98

0

20

40

60

80

100

120

A
cc

u
ra

cy

Methods

Previous Approch Proposed Approach Linear (Previous Approch)

Page | 81

 CHAPTER 6

Page | 82

6. CONCLUSION & FUTURE SCOPES

6.1 Conclusion

In this work, a text-based emotion detection algorithm has been proposed, that is

capable of identifying each word in textual data one by one. Several supervised

algorithms were used: K-Nearest Neighbors (KNN), Multinomial Naive Bayes

(MNB), Bernoulli Naive Bayes (BNB), Gaussian Naive Bayes (GNB), Support

Vector Machine (SVM), and Random Forest Classifier.

Two different feature extraction techniques have been employed: Count Vectorizer

(CV) and Term Frequency-Inverse Document Frequency (TF-IDF). Initially, using

the base model on a previous dataset, it was observed that the highest accuracy

obtained with Count Vectorizer at 88%, and with TF-IDF at 33.03%.

After data augmentation is applied and the proposed algorithms have been used with

Count Vectorizer, as a result a significant improvement in accuracy was achieved.

The highest accuracy of 98% is achieved by the Random Forest Classifier, which

represents the best result.

6.2 Future Scopes

 Future work consists of experimenting like:

1. In Future, this work can be further extended for designing an emotion detection

model with more improvement on feature extraction methods using other machine

learning models like LSTM model, Linear Regression, Non-Linear SVC to get

more classification accuracy.

2. Besides this research work, further enhancement can also be done using CNN,

RNN and get a comparative study between Neural Networks and Machine

Page | 83

Learning Models.

3. Unsupervised Machine Learning Algorithms can be implemented for this work.

4. The accuracy of the model can also be increased by creating a customized database

to the model and training the textual data on a larger database.

Page | 84

 REFERENCES

[1] Vishaka Singh, Anushka Shirode, Manasi Sharma, Sanjay Mirchandani, “Text

Emotion Detection using Machine Learning Algorithms”, Proceedings of the 8th

International Conference on Communication and Electronics Systems, IEEE Xplore

part number: CFP23AWO-ART; 2023.

[2] Ms. Pinal Solanki, “A study on Emotion Detection & Classification from Text using

Machine Learning”, Journal of Artificial Intelligence, Machine Learning and Neural

Network, Vol. 02, No. 02,2022.

[3] Syeda Nadia Firdaus, Chen Ding, Alireza Sadeghian, “Topic specific emotion

detection for retweet prediction”, International Journal of Machine Learning and

Cybernetics, vol. 10, pp.2071-2083, 2019

[4] Andry Chowanda, Rhio Sutoyo, Meilliana, Sansari Tanachutiwat, “Exploring Text-

based Emotions Recognition Machine Learning Techniques on Social Media

Conversion”, 5th International Conference on Computer Science and Computational

Intelligence, ScienceDirect, Procedia Computer Science 179, 821-828, 2021.

[5] Shaikh Abdul Salam, Rajkumar Gupta, “Emotion Detection and Recognition from

Text using Machine Learning”, International Journal of Computer Science and

Engineering, vol. 6, issue-6,2018.

Page | 85

[6] P Ancy Grana et al., “Sentiment Analysis of Text using Machine Learning Models”,

International Research Journal of Modernization in Engineering Technology and

Science, vol. 04,2022.

[7] Kristina Machova, Martina Szaboova, Jan Paralic, Jan Micko, “Detection of emotion

by text analysis using machine learning”, Frontliers,2023.

[8] Amal Shameem, Rameshbabu G, Vigneshwaran L, Sundar K, Mrs. k. Veena, “Text

Emotion Detection Using Machine Learning And NLP”, International Journal of

Scientific Research in science, Engineering and Technology, vol. 9, Issue.,2022.

[9] V V Ramalingam, A Pandian, Abhijit Jaiswal, Nikhar Bhatia, “Emotion Detection

from Text”, National Conference on Mathematical Techniques and its Application,

Conf Series 1000, 2018.

[10] Poonam Arya, Shilpa Jain, “Text Based Emotion Detection”, International Journal of

Computer Engineering and Technology, vol. 9, Issue. 3, pp. 95-104, 2018.

[11] Goru Swathi, Behara Meghna Pathak, Arjala Janani, Kanithi Karthik, Janni Divya, M.

Jayanthi Rao, “Emotion Recognition from Text using Machine Learning”,

International Journal of Food Science and Nutritional Sciences, vol.11, Issue. 12,

2022.

Page | 86

[12] Nabeela Altrabshesh, Mihaela Cocea, Sanaz Fallahkhair, “Predicting Learning-

related Emotions from students’ textual classroom feedback via Twitter”,

Processing’s of the 8th International Conference on Educational Data Mining, 2018.

[13] S. Arun Kumar s., A. Geetha, “Emotion Detection from Text using Natural Language

Processing and Neural Networks”, International Journal of Intelligent Systems and

Applications in Engineering, 2024.

[14] Chetan R. Chopade, “Text Based Emotion Recognition: A Survey”, International

Journal of Science and Research, vol. 4, issue. 6, 2015.

[15] https://en.wikipedia.org/wiki/Sentiment_analysis

[16] Muskan Garg, Chandni Saxena, Emotion detection from text data using machine

learning for human behavior analysis, Editor(s): D. Jude Hemanth, Computational

Intelligence Methods for Sentiment Analysis in Natural Language Processing

Applications, Morgan Kaufmann,2024.

[17] Younis, E.M.G., Mohsen, S., Houssein, E.H., “Machine learning for human emotion

recognition: a comprehensive review”, Neural Compute & Applica ,2024.

[18] Bhavya, A.V., Dhanush, R.H., Sangeetha, J., Jose, A.C. Personalized Emotion

Detection from Text Using Machine Learning. In: Marmolejo-Saucedo, J.A.,

Rodríguez-Aguilar, R., Vasant, P., Litvinchuk, I., Retana-Blanco, B.M. (eds)

Computer Science and Engineering in Health Services. COMPSE 2022. EAI/Springer

Innovations in Communication and Computing. Springer, Cham,2022.

https://en.wikipedia.org/wiki/Sentiment_analysis

Page | 87

[19] Nath, S., Shahi, A.K., Martin, T., Choudhury, N., Mandal, R. A Comparative Study

on Speech Emotion Recognition Using Machine Learning. In: Tavares, J.M.R.S.,

Rodrigues, J.J.P.C., Misra, D., Bhattacharjee, D. (eds) Data Science and

Communication. ICTDsC 2023. Studies in Autonomic, Data-driven and Industrial

Computing. Springer, Singapore,2023.

[20] Amal Shameem, Rameshbabu G, Vigneshwaran L, Sundar K, Mrs. k. Veena, “Text

Emotion Detection Using Machine Learning And NLP”, International Journal of

Scientific Research in science, Engineering and Technology, vol. 9, Issue. 3,2022.

[21] https://www.linkedin.com/pulse/machine-learning-basics-support-vector-machines-

amsal-gilani/

[22] Jianhua Tao, “Context Based Emotion Detection from Text Input”, National

Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of

Sciences, Beijing, China,2018.

[23] http:/www.geeksforgeeks.adochub.com.

[24] https://www.ejable.com/tech-corner/ai-machine-learning-and-deep-learning/logistic-

and-linear-regression/.

[25] https://www.semanticscholar.org/paper/Study-of-Various-Methods-forTokenization-

Rai-Borah/8a8110ba524c6a58baeba442478a877fd6d2c261.

[26] https://www.javatpoint.com/machine-learning.

https://www.linkedin.com/pulse/machine-learning-basics-support-vector-machines-amsal-gilani/
https://www.linkedin.com/pulse/machine-learning-basics-support-vector-machines-amsal-gilani/
https://www.ejable.com/tech-corner/ai-machine-learning-and-deep-learning/logistic-and-linear-regression/
https://www.ejable.com/tech-corner/ai-machine-learning-and-deep-learning/logistic-and-linear-regression/
https://www.semanticscholar.org/paper/Study-of-Various-Methods-forTokenization-Rai-Borah/8a8110ba524c6a58baeba442478a877fd6d2c261
https://www.semanticscholar.org/paper/Study-of-Various-Methods-forTokenization-Rai-Borah/8a8110ba524c6a58baeba442478a877fd6d2c261
https://www.javatpoint.com/machine-learning

Page | 88

Appendix part A

➢ System Requirements

 Personal Computer or laptop having the following features –

• Windows 10

• 132 GB RAM

• Internet Connection

• 15.6” HD display

➢ Software Requirements

• Browser: Windows internet explorer and Google Chrome

• Microsoft word 2019

• Google Colab

• MS Excel

➢ Programming Requirements

• Python

➢ Download Speeds

• Internet speed is measured in Mbps

• 3 -5 Mbps is recommended.

➢ Loading Testing Tool

• Google Browser

Page | 89

 Appendix part B
###load pkages

import pandas as pd

import numpy as np

#from matplotlib import pyplot as plt

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

#text cleaning

#python get-pip.py

!pip install neattext

#mpip.install.neattext

import neattext.functions as nfx

#import neattext as nt

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sn

Load Dataset
load dataset

df = pd.read_csv("Emotion Dataset.csv")

from google.colab import drive

drive.mount('/content/drive')

Dataset Description
df

@title Emotion

df.head()

print(df.head())

df.head(10)

df.head(100)

print(df.head(50))

df.tail(50)

print(df.tail(50))

print(df.tail())

print('The train dataset contans {} rows and {}

columns'.format(df.shape[0], df.shape[1]))

print(df['Emotion'].unique())

from matplotlib import pyplot as plt

import seaborn as sns

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

Page | 90

from matplotlib import pyplot as plt

import seaborn as sns

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

df.info()

Show Sample Tweets
show sample tweets

for tweet in df["Text"][:5]:

 print(f"- {tweet}")

show sample tweets

for tweet in df["Text"][:50]:

 print(f"- {tweet}")

show sample of tweets with a specific emotion

for i,row in df[df["Emotion"] == "joy"].iterrows():

 print(f'- {row["Text"]}')

for i,row in df[df["Emotion"] == "sadness"].iterrows():

 print(f'- {row["Text"]}')

show sample tweets

for tweet in df["Text"][:5000]:

 print(f"- {tweet}")

Plot Emotion Found in Tweets
plot emotions found in tweets

plot_title = f"Emotions found in tweets about"

fig = px.histogram(df, x="Emotion", template="plotly_dark",

 title=plot_title, color="Emotion")

fig.update_layout(showlegend=False)

fig.show()

Distribution of Emotions
@title Distribution of Emotions

df['Emotion'].value_counts().plot(kind='bar')

Null Value Checking
print("null values",df.isnull().sum().sum())

Data Cleaning
duplicates_count = df.duplicated().sum()

print(f'Total duplicated rows: {duplicates_count}')

df[df['Emotion'].duplicated() == True]

Unique values from 'sentiment'

unique_sentiments = df['Emotion'].unique()

print(unique_sentiments)

Frequency distribution of all diffrent types of Emotion

Page | 91

frequency_counts = df['Emotion'].value_counts()

frequency_percentage = (frequency_counts / len(df['Emotion'])) * 100

frequency_df = pd.DataFrame({'Counts': frequency_counts, 'Percentage':

frequency_percentage})

print(frequency_df)

Print total value

cardinality = df['Emotion'].nunique()

print(f"\ntotal values: {cardinality}")

Covertion of float

import pandas as pd

Create a DataFrame with strings containing commas

#df = pd.DataFrame({'values': ['1,234', '56,78', '9,100', '3.14']})

Use the `replace()` function to remove commas

#df['Clean_Text'] = df['Clean_Text'].replace(any=True)

Convert the column to floats

#df['Clean_Text'] = df['Clean_Text'].astype(float)

Print the DataFrame

#print(df)

print(df.info())

print(df.columns)

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Drop Null Value and Plot Emotion
df=df.dropna(axis=0,how="any")

df

from matplotlib import pyplot as plt

import seaborn as sns

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

from matplotlib import pyplot as plt

import seaborn as sns

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

from matplotlib import pyplot as plt

import seaborn as sns

Page | 92

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

df.isnull().sum()

df.shape

df.dtypes

value count

df['Emotion'].value_counts()

#df['Emotion'].value_counts('joy')

Print the DataFrame

print(df)

Print the DataFrame columns

print(df.columns)

Check if the column name is misspelled

if 'Emotion' not in df.columns:

 # Find the closest match to the intended column name

 closest_match = df.columns[df.columns.str.contains('Emotion',

case=False, regex=True)].tolist()

 if closest_match:

 print(f"Did you mean '{closest_match[0]}'?")

 else:

 print("Column 'Emotion' not found in the DataFrame.")

 # value count

#df['Closest_match_to_Emotion'].value_counts()

#!pip install --upgrade matplotlib

import matplotlib.pyplot as plt

import numpy as np

df['Emotion'].value_counts('joy').plot(kind='pie')

plt.title("Emotion distribution Report")

plt.show()

Data Pre-Processing
#Install pywsd

!pip install pyws

!pip install textblob

from textblob import TextBlob

!pip install nltk

import nltk

nltk.download('punkt')

import nltk

nltk.download('stopwords')

import nltk

Page | 93

nltk.download('wordnet')

import pandas as pd

Read the dataset

df = pd.read_csv('Emotion Dataset.csv') # Replace 'your_dataset.csv'

with your actual dataset file path

Apply preprocessing function to the 'text' column

df['Clean2_text'] = df['Text'].apply(preprocess_text)

Save the preprocessed data

df.to_csv('preprocessed_dataset.csv', index=False) # Replace

'preprocessed_dataset.csv' with your desired output file path

Define the preprocess_text function here

def preprocess_text(text):

 # Implement the preprocessing logic here

 # ...

 return processed_text

!pip install my_module

import sys

sys.path.append("/path/to/module/directory")

Import the module with the correct name

import my_correct_module

Use the function from the imported module

df['Clean2_text'] = df['Text'].apply(my_correct_module.preprocess_text)

import sys

sys.path.append("/path/to/module/directory")

import sys

sys.path.append("/path/to/module/directory")

import my_module

Use the function from the imported module

df['Clean2_text'] = df['Text'].apply(my_module.preprocess_text)

import sys

sys.path.append("/path/to/module/directory")

Import the module with the correct name

import my_correct_module

Use the function from the imported module

df['Clean2_text'] = df['Text'].apply(my_correct_module.preprocess_text)

dir(nfx)

df['clean_Text'] = df['Text'].apply(nfx.remove_stopwords)

df['clean_Text'] = df['Text'].apply(nfx.remove_userhandles)

df['clean_Text'] = df['Text'].apply(nfx.remove_punctuations)

Page | 94

df[['Text','clean_Text']]

df.shape

Keyword Extraction
from collections import Counter

ef extract_keywords(text,num=50):

 tokens = [tok for tok in text.split()]

 most_common_tokens = Counter(tokens).most_common(num)

 return dict(most_common_tokens)

emotion_list = df['Emotion'].unique().tolist()

emotion_list

joy_list = df[df['Emotion'] == 'joy']['clean_Text'].tolist()

create a document for keyword extraction

joy_docx= ' '.join(joy_list)

joy_docx

Keyword_joy= extract_keywords(joy_docx)

Keyword_joy

sadness_list = df[df['Emotion'] == 'sadness']['clean_Text'].tolist()

sadness_docx= ' '.join(sadness_list)

sadness_docx

Keyword_sadness= extract_keywords(sadness_docx)

Keyword_sadness

shame_list = df[df['Emotion'] == 'shame']['clean_Text'].tolist()

shame_docx= ' '.join(shame_list)

shame_docx

Keyword_shame= extract_keywords(shame_docx)

Keyword_shame

fear_list = df[df['Emotion'] == 'fear']['clean_Text'].tolist()

fear_docx= ' '.join(fear_list)

fear_docx

Keyword_fear= extract_keywords(fear_docx)

Keyword_fear

disgust_list = df[df['Emotion'] == 'disgust']['clean_Text'].tolist()

disgust_docx= ' '.join(disgust_list)

disgust_docx

Keyword_disgust= extract_keywords(disgust_docx)

Keyword_disgust

neutral_list = df[df['Emotion'] == 'neutral']['clean_Text'].tolist()

neutral_docx= ' '.join(neutral_list)

neutral_docx

Keyword_neutral= extract_keywords(neutral_docx)

Keyword_neutral

Page | 95

anger_list = df[df['Emotion'] == 'anger']['clean_Text'].tolist()

anger_docx= ' '.join(anger_list)

anger_docx

Keyword_anger= extract_keywords(anger_docx)

Keyword_anger

surprise_list = df[df['Emotion'] == 'surprise']['clean_Text'].tolist()

surprise_docx= ' '.join(surprise_list)

surprise_docx

Keyword_surprise= extract_keywords(surprise_docx)

Keyword_surprise

plotting

def plot_most_common_words(mydict):

 df_02= pd.DataFrame(mydict.items(),columns=['token','count'])

 plt.title('plotting of joy keyword')

 plt.figure(figsize=(20,10))

 sns.barplot(x='token',y='count',data=df_02)

 #plt.xtricks(rotation=45)

 plt.show()

plot_most_common_words(Keyword_joy)

plot_most_common_words(Keyword_fear)

plot_most_common_words(Keyword_sadness)

plot_most_common_words(Keyword_neutral)

plot_most_common_words(Keyword_surprise)

plot_most_common_words(Keyword_anger)

plot_most_common_words(Keyword_shame)

Keyword Extraction for Anger

anger_list = df[df['Emotion'] == 'anger']['clean_Text'].tolist()

create a document for keyword extraction

anger_docx= ' '.join(anger_list)

anger_docx

Keyword_anger= extract_keywords(anger_docx)

Keyword_anger

def plot_most_common_words(mydict):

 df_02= pd.DataFrame(mydict.items(),columns=['token','count'])

 plt.title('plotting of anger keyword')

 plt.figure(figsize=(20,10))

 sns.barplot(x='token',y='count',data=df_02)

 #plt.xtricks(rotation=45)

 plt.show()

plot_most_common_words(Keyword_anger)

joy_list = df[df['Emotion'] == 'joy']['clean_Text'].tolist()

Page | 96

create a document for keyword extraction

anger_docx= ' '.join(joy_list)

anger_docx

Keyword_anger= extract_keywords(anger_docx)

Keyword_anger

sadness_list = df[df['Emotion'] == 'sadness']['clean_Text'].tolist()

create a document for keyword extraction

sadness_docx= ' '.join(sadness_list)

sadness_docx

Keyword_sadness= extract_keywords(sadness_docx)

Keyword_sadness

Sentiment Detection Model
Sentiment detection from Text

model applied

def get_sentiment(text):

 blob = TextBlob(text)

 sentiment = blob.sentiment.polarity

 if sentiment > 0:

 result = "Positive"

 elif sentiment < 0:

 result = "negative"

 else:

 result = "Neutral"

 return result

get_sentiment(" I love coding")

get_sentiment(" I love coding")

get_sentiment(" love is a very confused word")

get_sentiment(" ")

get_sentiment(" I do coding"

get_sentiment("I donot like this")

get_sentiment("I must not like this")

get_sentiment("I saw a man on a hill with a telescope")

get_sentiment("There’s a man on a hill,and I’m watching him with my

telescope")

get_sentiment("There’s a man on a hill, who I’m seeing, and he has a

telescope")

get_sentiment("Look at the dog with one eye")

get_sentiment("Look at the dog that only has one eye.")

dir(nfx)

df['sentiment'] = df['Text'].apply(get_sentiment)

df = pd.read_csv('Emotion Dataset.csv')

df

df['sentiment'] = df['Text'].apply(get_sentiment)

Page | 97

Plot after Sentiment Detection

@title Emotion vs sentiment

from matplotlib import pyplot as plt

import seaborn as sns

import pandas as pd

plt.subplots(figsize=(8, 8))

df_2dhist = pd.DataFrame({

 x_label: grp['sentiment'].value_counts()

 for x_label, grp in df.groupby('Emotion')

})

sns.heatmap(df_2dhist, cmap='viridis')

plt.xlabel('Emotion')

_ = plt.ylabel('sentiment')

@title Emotion

from matplotlib import pyplot as plt

import seaborn as sns

df.groupby('Emotion').size().plot(kind='barh',

color=sns.palettes.mpl_palette('Dark2'))

plt.gca().spines[['top', 'right',]].set_visible(False)

df.groupby(['Emotion']).size().plot(kind='bar')

df.groupby(['Emotion']).size().plot(kind='pie')

sns.catplot(x='Emotion',data=df,kind='count',aspect= 1.5)

Calculate the frequency distribution of 'sentiment'

frequency_counts = df['sentiment'].value_counts()

frequency_percentage = (frequency_counts / len(df['sentiment'])) * 100

frequency_df = pd.DataFrame({'Counts': frequency_counts, 'Percentage':

frequency_percentage})

print(frequency_df)

Total value count

cardinality = df['sentiment'].nunique()

print(f"\ntotal values: {cardinality}")

Mapping sentiment num / encode

df["label_num"] = df.sentiment.map({

 'negative': 0,

 'positive': 1,

 'neutral': 2

})

df = df.drop(columns=['sentiment'])

df.head(5)

Page | 98

Emotion Frequency
@title Emotion Frequency over Time

df.groupby('Emotion')['Emotion'].count().plot(kind='line', x='Unnamed:

0')

df['Emotion'].value_counts().plot(kind='bar')

@title Emotion Frequency Over Time

df.groupby('Unnamed: 0')['Emotion'].value_counts().unstack().plot()

cols = df.columns

Machine Learning Model
Load ML Pkgs

Estimators

from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import MultinomialNB

Transformers

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import

accuracy_score,classification_report,confusion_matrix

#from sklearn.metrics import plot_confusion_matrix

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

import pandas as p

Xfeatures = df['Text']

ylabels = df['Emotion']

Xfeatures

ylabels

cv = CountVectorizer()

X = cv.fit_transform(Xfeatures

X_train,X_test,y_train,y_test =

train_test_split(X,ylabels,test_size=0.3,random_state=42)

#Logistic regressiobn

X = df['Clean_Text']

y = df['Emotion'] #labels

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state = 1)

Page | 99

m1 = LogisticRegression() m1.fit(X_train, y_train) pred1 =

m1.predict(X_test) print(classification_report(y_test, pred1))

Xfeatures = df['Text']

Extract features and labels

X = df['Clean_Text']

y = df['Emotion']

Split the data into training and testing sets

print(f"X_train data type: {type(X_train)}")

print(f"y_train data type: {type(y_train)}")

Import necessary libraries

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

Sample dataset (replace with your own data)

texts = ["I am happy", "I am sad", "I feel great", "I am angry", "I am

neutral"]

labels = ["happy", "sad", "happy", "angry", "neutral"]

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(texts, labels,

test_size=0.2, random_state=42)

Convert text data into numerical features using CountVectorizer

vectorizer = CountVectorizer()

X_train_counts = vectorizer.fit_transform(X_train)

X_test_counts = vectorizer.transform(X_test)

Initialize and train the logistic regression model

model = LogisticRegression()

model.fit(X_train_counts, y_train)

Predict on the test set

predictions = model.predict(X_test_counts)

Evaluate the model

accuracy = accuracy_score(y_test, predictions)

print("Accuracy:", accuracy)

Example of predicting emotions for new text

new_text = ["I am feeling happy today"]

new_text_counts = vectorizer.transform(new_text)

Page | 100

predicted_emotion = model.predict(new_text_counts)

print("Predicted emotion:", predicted_emotion)

nan_indices = [i for i, text in enumerate(X_train) if pd.isna(text)]

print(f"Number of NaN values in X_train: {len(nan_indices)}")

X_train = pd.DataFrame(X_train)

y_train = pd.DataFrame(y_train)

!pip install pandas

import pandas as pd

print(type(nan_indices))

if type(nan_indices) == list:

 print("nan_indices is a list.")

else:

 print("nan_indices is not a list.")

print(nan_indices[:5])

Get the actual column names of X_train

actual_columns = X_train.columns

Update nan_columns with the actual column names

nan_columns = [column for column in nan_columns if column in

actual_columns]

Drop rows with NaN values in the specified columns

X_train_dropped = X_train.dropna(subset=nan_columns)

y_train_dropped = y_train.dropna(subset=nan_columns)

print(X_train_dropped.shape)

print(y_train_dropped.shape)

print(X_train_dropped.head())

print(y_train_dropped.head())

model.fit(X_train_counts, y_train)

predictions = model.predict(X_test_counts)

accuracy = accuracy_score(y_test, predictions)

print("Accuracy after handling missing values:", accuracy)

Multinomial NB for TF-IDF
from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Example dataset

data = pd.read_csv("Emotion Dataset.csv") # Load your dataset

X = data['Text'] # Text data

y = data['Emotion'] # Emotion labels

Page | 101

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

Convert text data to numerical features using TF-IDF

tfidf_vectorizer = TfidfVectorizer(max_features=1000)

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)

X_test_tfidf = tfidf_vectorizer.transform(X_test)

Train a classifier (example: Naive Bayes)

classifier = MultinomialNB()

classifier.fit(X_train_tfidf, y_train)

Predict the labels for the test set

y_pred = classifier.predict(X_test_tfidf)

Generate confusion matrix

conf_matrix = confusion_matrix(y_test, y_pred)

Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues",

xticklabels=classifier.classes_, yticklabels=classifier.classes_)

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.title('Confusion Matrix')

plt.show()

Print classification report

print(classification_report(y_test, y_pred))

KNN for TF-IDF
from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Example dataset

data = pd.read_csv("Emotion Dataset.csv") # Load your dataset

X = data['Text'] # Text data

y = data['Emotion'] # Emotion labels

Split the data into training and testing sets

Page | 102

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Convert text data to numerical features using TF-IDF

tfidf_vectorizer = TfidfVectorizer(max_features=1000)

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)

X_test_tfidf = tfidf_vectorizer.transform(X_test)

Train a KNN classifier

k = 5 # Number of neighbors

knn_classifier = KNeighborsClassifier(n_neighbors=k)

knn_classifier.fit(X_train_tfidf, y_train)

Predict the labels for the test set

y_pred = knn_classifier.predict(X_test_tfidf)

Generate confusion matrix

conf_matrix = confusion_matrix(y_test, y_pred)

Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues",

xticklabels=knn_classifier.classes_,

yticklabels=knn_classifier.classes_)

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.title('Confusion Matrix')

plt.show()

Print classification report

print(classification_report(y_test, y_pred))

y_train = y_train.values.reshape(-1, 1)

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import LSTM, Dense, Embedding, SpatialDropout1D

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from sklearn.metrics import confusion_matrix, classification_report

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Example dataset

data = pd.read_csv("Emotion Dataset.csv") # Load your dataset

X = data['Text'] # Text data

y = data['Emotion'] # Emotion labels

Page | 103

Tokenization

tokenizer = Tokenizer()

tokenizer.fit_on_texts(X)

X_seq = tokenizer.texts_to_sequences(X)

Padding sequences

max_length = max([len(seq) for seq in X_seq])

X_pad = pad_sequences(X_seq, maxlen=max_length, padding='post')

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X_pad, y,

test_size=0.2, random_state=42)

LSTM Model

embedding_dim = 100

model = Sequential()

model.add(Embedding(input_dim=len(tokenizer.word_index)+1,

output_dim=embedding_dim, input_length=max_length))

model.add(SpatialDropout1D(0.2))

model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

Train the model

batch_size = 64

epochs = 10

history = model.fit(X_train, y_train, epochs=epochs,

batch_size=batch_size, validation_data=(X_test, y_test), verbose=2)

Predictions

y_pred = model.predict_classes(X_test)

Generate confusion matrix

conf_matrix = confusion_matrix(y_test, y_pred)

Plot confusion matrix

plt.figure(figsize=(10, 8))

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap="Blues")

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.title('Confusion Matrix')

plt.show()

Print classification report

print(classification_report(y_test, y_pred))

Page | 104

Random Forest for TF-IDF
om sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

Load dataset

df = pd.read_csv('Emotion Dataset.csv')

Prepare data

texts = df['Text'].tolist()

labels = df['Emotion'].tolist()

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(texts, labels,

test_size=0.2, random_state=42)

Convert text data into numerical features using TF-IDF Vectorizer

vectorizer = TfidfVectorizer(max_features=5000) # Increase max_features

for better coverage

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

Initialize and train a Random Forest classifier

param_grid = {

 'n_estimators': [100, 200, 300],

 'max_depth': [None, 10, 20],

 'min_samples_split': [2, 5, 10]

}

rf_model = RandomForestClassifier(random_state=42)

grid_search = GridSearchCV(rf_model, param_grid, cv=5, n_jobs=-1)

grid_search.fit(X_train_tfidf, y_train)

Get the best model from the grid search

best_rf_model = grid_search.best_estimator_

Predict on the test set

predictions = best_rf_model.predict(X_test_tfidf)

Evaluate the model

accuracy = accuracy_score(y_test, predictions)

print("Accuracy:", accuracy)

mport pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

Load dataset

df = pd.read_csv('Emotion Dataset.csv')

Page | 105

Prepare data

texts = df['Text'].tolist()

labels = df['Emotion'].tolist()

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(texts, labels,

test_size=0.2, random_state=42)

Convert text data into numerical features using TF-IDF Vectorizer

vectorizer = TfidfVectorizer(max_features=5000)

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

Initialize and train a Random Forest classifier

param_grid = {

 'n_estimators': [100, 200, 300],

 'max_depth': [None, 10, 20],

 'min_samples_split': [2, 5, 10]

}

best_accuracy = 0

best_rf_model = None

for n_estimators in param_grid['n_estimators']:

 for max_depth in param_grid['max_depth']:

 for min_samples_split in param_grid['min_samples_split']:

 rf_model = RandomForestClassifier(n_estimators=n_estimators,

max_depth=max_depth, min_samples_split=min_samples_split,

random_state=42)

 rf_model.fit(X_train_tfidf, y_train)

 predictions = rf_model.predict(X_test_tfidf)

 accuracy = accuracy_score(y_test, predictions)

 print(f"Parameters: n_estimators={n_estimators},

max_depth={max_depth}, min_samples_split={min_samples_split}, Accuracy:

{accuracy}")

 if accuracy > best_accuracy:

 best_accuracy = accuracy

 best_rf_model = rf_model

BNB for TF-IDF
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import BernoulliNB

from sklearn.metrics import accuracy_score

Load dataset

df = pd.read_csv('Emotion Dataset.csv')

Page | 106

Prepare data

texts = df['Text'].tolist()

labels = df['Emotion'].tolist()

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(texts, labels,

test_size=0.25, random_state=42)

Convert text data into numerical features using TF-IDF Vectorizer

vectorizer = TfidfVectorizer(max_features=5000, binary=True) # Using

binary=True for Bernoulli Naive Bayes

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

Initialize and train the Bernoulli Naive Bayes classifier

bnb_model = BernoulliNB()

bnb_model.fit(X_train_tfidf, y_train)

Predict on the test set

predictions = bnb_model.predict(X_test_tfidf)

Evaluate the model

accuracy = accuracy_score(y_test, predictions)

print("Accuracy:", accuracy)

Example of predicting emotions for new text

new_text = ["I am feeling happy today"]

new_text_tfidf = vectorizer.transform(new_text)

predicted_emotion = bnb_model.predict(new_text_tfidf)

print("Predicted emotion:", predicted_emotion)

SVC for TF-IDF
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

Load dataset

df = pd.read_csv('Emotion Dataset.csv')

Prepare data

texts = df['Text'].tolist()

labels = df['Emotion'].tolist()

Split the data into training and testing sets

Page | 107

X_train, X_test, y_train, y_test = train_test_split(texts, labels,

test_size=0.2, random_state=42)

Convert text data into numerical features using TF-IDF Vectorizer

vectorizer = TfidfVectorizer(max_features=5000)

X_train_tfidf = vectorizer.fit_transform(X_train)

X_test_tfidf = vectorizer.transform(X_test)

Initialize and train the SVM classifier

svm_model = SVC(kernel='linear', C=1.0, random_state=42)

svm_model.fit(X_train_tfidf, y_train)

Predict on the test set

predictions = svm_model.predict(X_test_tfidf)

Evaluate the model

accuracy = accuracy_score(y_test, predictions)

print("Accuracy:", accuracy)

Example of predicting emotions for new text

new_text = ["I am feeling happy today"]

new_text_tfidf = vectorizer.transform(new_text)

predicted_emotion = svm_model.predict(new_text_tfidf)

print("Predicted emotion:", predicted_emotio

Feature Extraction Techniques
rom sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer,

TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import classification_report, accuracy_score,

confusion_matrix

from sklearn.model_selection import cross_val_predict, StratifiedKFold

from sklearn.neural_network import MLPClassifier

#import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score, confusion_matrix, classification_report

import numpy as np

Define X_train as a numpy array

X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(type(X_train))

#<class 'numpy.ndarray'>

#<class 'numpy.ndarray'>

#X_train = X_train.toarray()

import numpy as np

Define X_train as a numpy array

Page | 108

X_train = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(type(X_train))

#<class 'numpy.ndarray'>

Convert the numpy array to a list of lists

X_train = X_train.tolist()

print(type(X_train))

#<class 'list'>

model = MultinomialNB()

Train

model.fit(X_train, y_train)

Test

y_pred = model.predict(X_test)

Evaluate

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

y_pred_cv = cross_val_predict(model, X_train, y_train, cv=cv)

classification_rep = classification_report(y_train, y_pred_cv)

print("Classification Report (Cross-Validation):\n", classification_rep)

accuracy = accuracy_score(y_train, y_pred_cv)

print("Accuracy (Cross-Validation):", accuracy)

model.fit(X_train, y_train)

y_pred_test = model.predict(X_test)

classification_rep_test = classification_report(y_test, y_pred_test)

print("Classification Report (Test Data):\n", classification_rep_test)

accuracy_test = accuracy_score(y_test, y_pred_test)

print("Accuracy (Test Data):", accuracy_test)

#import seaborn as sns

#import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

BNB for Count Vectorizer
from sklearn.naive_bayes import BernoulliNB

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.30)

bnb = BernoulliNB(binarize=0.0)

bnb.fit(X_train, y_train)

Page | 109

bnb.score(X_test, y_test)

#print(classification_report(Y_test, X_train))

print(classification_report(y_test, bnb.predict(X_test)))

import pandas as pd

Convert X_train and X_test to Pandas DataFrames

X_train_df = pd.DataFrame(X_train)

X_test_df = pd.DataFrame(X_test)

Print the number of missing values in each column of X_train and

X_test

print(X_train_df.isnull().sum().sum())

print(X_test_df.isnull().sum().sum())

Print the number of missing values in y_train and y_test

print(y_train.isnull().sum())

print(y_test.isnull().sum())

print(X_train.duplicated().sum())

print(X_test.duplicated().sum())

print(y_train.duplicated().sum())

print(y_test.duplicated().sum())

print(X_train.shape)

print(y_train.shape)

print(X_test.shape)

print(y_test.shape)

print(X.shape)

print(y.shape)

Ensure X and Y have the same number of samples

if X.shape[0] != Y.shape[0]:

 # Adjust the size of X or Y to match the other array

 if X.shape[0] > Y.shape[0]:

 X = X[:Y.shape[0]]

 else:

 Y = Y[:X.shape[0]]

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

test_size=0.30)

gnb = GaussianNB()

gnb.fit(X_train, Y_train)

gnb.score(X_test, Y_test)

Logistic Regression for Count Vectorizer
lr_model = LogisticRegression()

lr_model.fit(X_train,y_train)

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30)

lr_model.score(X_test,y_test)

Page | 110

from sklearn.metrics import classification_report

Check if y_test and lr_model are valid inputs

print(f"y_test type: {type(y_test)}")

print(f"lr_model type: {type(lr_model)}")

from sklearn.metrics import classification_report

y_pred = lr_model.predict(X_test

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30)

#lr_model.score(X_test,y_test)

print(classification_report(y_test, y_pred))

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30)

lr_model.score(X_test,y_test)

import joblib

!pip install eli5

import eli5

eli5.show_weights(lr_model,top=240000)

Gradient Boost
grid = {

 'learning_rate': [0.3, 0.1, 0.5],

 'n_estimators': [100, 300],

 'max_depth': [1, 3, 9]

}

m3 = GridSearchCV(GradientBoostingClassifier(), grid, verbose = 2)

m3.fit(X_train, y_train)

print(m3.best_params_)

pred3 = m3.predict(X_test)

print(classification_report(y_test, pred3))

gbc = GradientBoostingClassifier(n_estimators=300,

 learning_rate=0.05,

 random_state=100,

 max_features=5)

Fit to training set

gbc.fit(X_train, y_train)

Predict on test set

pred_y = gbc.predict(X_test)

accuracy

acc = accuracy_score(y_test, y_pred)

print("Gradient Boosting Classifier accuracy is : {:.2f}".format(acc))

Page | 111

KNN
knn = KNeighborsClassifier(n_neighbors=6)

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

compute accuracy of the model

knn.score(X_test, y_test

Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier(n_estimators= 24000, random_state= 10)

rfc.fit(X_train, y_train)

predictions = rfc.predict(X_test)

Model evaluation

print (classification_report(y_test, predictions))

print (confusion_matrix(y_test, predictions))

Gaussian Naïve Bayes Algorithm
from sklearn.naive_bayes import GaussianNB

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import roc_curve, auc

from sklearn.model_selection import train_test_split

#X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

test_size=0.30)

gnb = GaussianNB()

gnb.fit(X_train, y_train)

gnb.score(X_test, y_test)

Plot of Comparative Analysis
algorithms=("LR","KNN","NB","Random Forest")

scores = (lr_model.score,knn.score,nv_model.score,m2.score)

y_pos = np.arange(1,7)

colors = ("red","gray","purple","green","orange","blue")

plt.figure(figsize=(18,10))

plt.bar(y_pos,scores,color=colors)

plt.xticks(y_pos,algorithms,fontsize=18)

plt.yticks(np.arange(0.00, 1.01, step=0.05))

plt.grid()

plt.suptitle("Bar Chart Comparison of Models",fontsize=15)

plt.show()

