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Executive Summary

This dissertation presents a novel approach to identifying phishing attacks by leveraging
unsupervised machine-learning techniques through URL analysis. Unlike most existing study,
which relies on supervised learning methods that require extensive training on labelled data, this
study introduces a method that enables the detection of phishing attempts without prior
knowledge of malicious URLSs.

The present work applied k-means and Gaussian Mixture Models (GMM) to detect phishing
attacks. It analysed URL components to uncover parameters indicative of phishing, employed
nature-inspired and genetic algorithms for feature selection, and assessed the performance of the
clustering models using the silhouette score. The model's effectiveness was tested with an external
data set to ensure robustness.

The methodology begins with URL preprocessing and applies four feature selection algorithms:
Ant Colony, Dragonfly, Particle Swarm Optimization (PSO), and Binary PSO. The best feature
subset identified is then used to perform clustering with k-means and GMM. The k-means
algorithm, paired with the PSO-selected features, achieved the highest silhouette score, signifying
the most accurate clustering. The findings underscore the potential of unsupervised learning in
detecting phishing attacks.

This work can be expanded by incorporating features like behavioural data to enhance phishing
detection accuracy. Integrating unsupervised methods with semi-supervised learning could
improve performance in scenarios with limited labelled data. Developing real-time detection
systems based on these techniques would allow immediate threat response. Exploring the model's
adaptability to other domains, like spam detection, could further demonstrate its versatility.
Finally, creating user-friendly tools that implement these methods could make advanced phishing
detection more accessible to cybersecurity professionals.



Introduction

1. Overview

Phishing is a cyber-attack that targets naive online users, tricking them into revealing sensitive
information such as username, password, social security number, credit card number etc.
Attackers fool Internet users by masking web pages as trustworthy or legitimate pages to retrieve
personal information. There are many anti-phishing solutions, such as blacklisting or whitelisting,
and heuristic and visual similarity-based methods proposed to date. However, online users are
still trapped in revealing sensitive information on phishing websites [1]. Researchers have
integrated machine learning techniques into network security, yielding promising results in
enhancing cybersecurity measures. Phishing attacks pose significant threats to individuals and
organisations worldwide, with attackers using deceptive methods to obtain sensitive information.
Detecting phishing attacks and URLs has become challenging due to the dynamic nature of web
content. Traditional supervised machine-learning approaches for phishing URL detection rely on
labelled datasets, which can be resource-intensive and impractical due to the rapid proliferation
of new phishing URLSs [2]. In response to these challenges, the present work focuses on exploring
and applying unsupervised machine-learning techniques for detecting phishing URLSs.
Unsupervised learning offers a promising alternative by enabling the detection of patterns and
anomalies in data without the need for labelled examples. By leveraging URL data's inherent
structure and characteristics, unsupervised models aim to identify suspicious URLs based on their

deviation from normal web behaviour.

1.2 Problem Statement

A Study on Unsupervised Machine Learning Algorithms for detection of Phishing Attacks.

1.3 Objectives
e To detect phishing attacks using unsupervised algorithms, namely, k-means and GMM.

e To analyses the URL parameters responsible for the phishing attack.

e To select the relevant features using nature-inspired and genetic algorithms for clustering
the normal and the malicious URLS.

e To evaluate the clustering performance of k-means and GMM algorithms based on the

silhouette score.

e To validate the robustness of the model fit using an external dataset.



2.Background Concept

Phishing attack detection by analyzing URL components involves scrutinizing various URL
elements to identify suspicious patterns indicative of phishing attempts. Key components
examined include the domain name, path, query parameters, and unusual characters or
structures deviating from legitimate URLS. To enhance detection accuracy, feature selection
methods such as Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),
Dragonfly Algorithm, and Binary Particle Swarm Optimization (BPSO) are employed to
identify the most relevant features from the URL data. These selected feature sets are then used
to train clustering models, specifically K-means and Gaussian Mixture Model (GMM), to
group similar URLs. The performance of these clustering models is evaluated using the
silhouette score, which measures how well the URLSs are grouped. By comparing the silhouette
scores, the effectiveness of each feature selection technique in providing the best clustering
results is determined, aiding in the identification of the most robust method for phishing

detection.

2.1. Feature Selection Methods
Feature selection is a vital aspect of machine learning. Feature selection is applied to reduce

the number of features in many applications where data has hundreds or thousands of features.
Existing feature selection methods mainly focus on finding relevant features. By carefully
choosing the appropriate set of features, the performance of clustering models can be
significantly improved [3]. This work explores four different methods of feature selection: the

Ant Colony Optimization algorithm, Dragonfly algorithm, PSO and Binary PSO.

2.1.1 Ant Colony Optimization (ACO) Technique
Ant Colony Optimization (ACO) is a computational technique inspired by the foraging

behaviour of ants in nature. It solves complex optimization problems, such as finding the
shortest path between an ant colony and a food source. In this process, ants leave pheromone
trails on their travel paths, which guide other ants to the food source. Over time, shorter paths
are reinforced by accumulating more pheromones, while longer paths experience pheromone
evaporation. In ACO, this behaviour is simulated using artificial ‘ants' to find optimal solutions
in a search space. These ants construct solutions as they move through possible states,
depositing virtual pheromones that influence the paths of subsequent ants. The algorithm is
refined iteratively, balancing exploring new paths with exploiting known good paths, making
it particularly effective for problems like the travelling salesman, network routing, and
scheduling. In Figure 1, the Ant Colony Optimization process is summarized, showing how
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exploration identifies potential paths, optimization refines these paths, and the final step

extracts the optimal solution.

exploration
y direction

way
back

Exploration Optimisation Research extraction
step step step

Figure 1: Ant colony optimizer

The adaptive and self-organizing nature of ACO allows for handling dynamic changes and
efficiently finding near-optimal solutions. In the context of feature selection, ants iteratively
choose features based on pheromone levels, which are updated to reflect the quality of selected
features. This approach is particularly useful for selecting a subset of features with numerous
attributes in datasets [4]. The Algorithm of Antcolony can be found in Algorithm 1

The ACO class is initialized with the list of features, the number of ants, the maximum number
of iterations, and the initial pheromone value. This creates a pheromone matrix with the same
length as the number of features, which is initialized to the initial pheromone level. Table 1

Presents the Hyperparameter of Antcolony algorithm and their description.

Table 1: Hyperparameters of Ant colony optimizer

Hyperparameter Description

Number of Ants(n) Number of ants used in each run of the algorithm. More ants
can explore more solutions but take more time.

Number of Iterations More iterations allow for a more thorough search for the best
solution.

Pheromone Evaporation = How quickly the pheromone trail fades away. A

Rate: rho slower rate means the path is remembered longer,




while a faster rate encourages exploring new paths.

Alpha (o) How much the ants follow the pheromone trail. Higher values
mean ants are more likely to follow the trail.
Beta (B) How much do the ants consider other factors like distance or

cost when choosing a path? Higher values mean ants pay more
attention to these factors.

Initial Pheromone Level How much pheromone does each ant leave on its path? More
pheromones can lead to quicker solutions but might miss the best
one.

Algorithm 1: ANTCOLONY

01. Initialize pheromone levels on all paths
02. Set parameters:

03. alpha (pheromone importance)

04.  beta (visibility importance)

05.  rho (evaporation rate)

06.  Q (pheromone deposit)

07.  number of ants

08. While stopping criteria not met do

09.  Foreachantdo

10. Initialize tour for this ant

11. While tour is not complete do

12. Choose next city based on pheromone levels and visibility (using probabilities)
13. Move to the next city and update tour

14. End While

15. Evaluate the tour (calculate tour length or cost)

16. Update best tour if necessary

17. End For

18.  Update pheromone levels

19. For each path do

20. Evaporate pheromone

21. Deposit new pheromone based on the best tour(s)
22. End For

23. End While

24. Return the best tour fo



2.1.2 DRAGONFLY ALGORITHM

The Dragonfly Algorithm (DA) is an innovative nature-inspired optimization technique that
emulates dragonflies' static and dynamic swarming behaviour in their natural environment.
The algorithm effectively navigates and optimize complex search spaces by simulating these
behaviour. DA strikes a balance between exploration (searching new areas) and exploitation
(refining known areas) through the coordinated movements of artificial dragonflies, which
are guided by principles such as alignment (synchronization with others), cohesion (tendency
to stay together), separation (avoiding crowding), attraction to food sources, and avoidance
of threats. This approach has demonstrated superior performance to many traditional meta-
heuristic optimization methods [5]. The Dragonfly algorithm is represented in Figure 2,
showcasing its core behavioral mechanisms: separation, alignment, cohesion, attraction to
food sources, and distraction from enemies. These components play a crucial role in steering

the optimization process effectively.
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Figure 2: Dragonfly Algorithm

Initialization: The Dragonfly Algorithm randomly selects an initial set of features from the
dataset.

Evaluation: It evaluates the performance of the selected features using a predefined
evaluation criterion, such as accuracy or error rate, on a validation dataset.

Update: Based on the evaluation results, the algorithm updates the selected features using
its optimisation strategy, which involves adjusting the feature subset to improve
performance.

Iteration: The algorithm repeats the evaluation and update steps for several iterations or
8



until a stopping criterion is met.

Optimization: The algorithm continuously optimizes the feature subset, gradually
improving its performance based on the evaluation criterion.

Final Selection: Once the optimization process is complete, the algorithm selects the final
subset of features that maximizes performance according to the evaluation criterion.

The Algorithm of Dragonfly can be found in Algorithm 2,

Table 2 Presents the Hyperparameter of Dragonfly algorithm and their description.

Table 2: Hyperparameters of Dragonfly Algorithm

Hyperparameter Description

Number of Dragonflies Determines the size of the population, impacting exploration

capability.

Number of Iterations Controls how often the algorithm runs, affecting the
thoroughness of solution search.

Inertia Weight (w) Controls the influence of the previous velocity on the current
velocity of each dragonfly. It helps balance exploration and
exploitation.

Step size;x Controls the step size or how far dragonflies move in each
iteration. It affects the convergence speed and accuracy.

Absorption_coffeicient The absorption coefficient influences how dragonflies respond to

external factors such as threats or constraints




Algorithm 2: Dragonfly

01.

Initialize the population of dragonflies (positions and velocities)

02. Initialize the step size (AX), separation weight (w_s), alignment weight (w_a),

03.

04.
05.
06.
07.

08.

09.
10.
11.
12.
13.
14.
15.
16.
17.

18.

19

cohesion weight (w_c),

Initialize food factor weight (w_f), enemy factor weight (w_e), and other
algorithm-specific parameters

Evaluate the fitness of each dragonfly in the population
While stopping criteria not met do
For each dragonfly do

Calculate the separation (S), alignment (A), and cohesion (C) components
based on neighboring dragonflies

Calculate the attraction towards food source (F) and distraction from
enemies (E)

Update velocity of the dragonfly using the following formula:
velocity=w s*S+w a*A+w c*C+w f*F+w e*E
Update the position of the dragonfly using:
position = position + velocity
Apply boundary conditions if the dragonfly goes out of bounds
Evaluate the fitness of the updated dragonfly position
Update the best position found by the dragonfly if the new position is better
End For
Adjust the step size (AX) and other dynamic parameters as necessary
End While

. Return the best position found by any dragonfly as the solution

10



2.1.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired optimization technique based on the
social behaviour of birds flocking or fish schooling. It operates with a population of candidate
solutions, particles, that move through the search space by adjusting their velocities based on
individual and collective experiences. Each particle updates its position, which is influenced
by its own best-known position and the best-known positions of its neighbours, effectively
balancing exploration and exploitation of the search space. This dynamic adjustment helps
the swarm efficiently converge towards optimal or near-optimal solutions [6].

PSO is particularly valued for its simplicity, ease of implementation, and robustness in
handling non-linear, multi-dimensional, and complex optimization problems. It has been
successfully applied across various domains, including machine learning, engineering design,
and economic modelling. The algorithm's ability to find high-quality solutions with relatively

low computational cost makes it popular for diverse optimization tasks.

The description of the algorithm is as follows.

Starting Point: PSO begins by randomly picking a group of potential feature subsets.
Moving Around: Each particle adjusts its position (feature selection) based on two things:
It's the previous best choice (personal best). The best choice is made by any particle in the
group (global best). It does this by considering how much it should move towards these better
choices.

Checking Fitness: After moving, each particle checks how good its new feature subset is
using a fitness measure. This tells us how well the features predict or classify.

Updating Best Choices: If a particle finds a better solution (higher fitness) than before, it
remembers it as its personal best. If any particle in the group finds an even better solution,
then it is the new global best.

Repeating: The above steps are repeated for a set number of rounds or until there's no more
improvement.

Final Decision: The feature subset with the highest fitness (either from a single particle or
from the group) is chosen as the final selection. So, PSO helps find the best combination of
features by having particles move around in the feature space, learning from their own
experience and the group's best choices. Table 3 Presents the Hyperparameter of PSO

algorithm and their description. The Algorithm of PSO can be found in Algorithm 3.
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Table 3: Hyperparameters of PSO

Hyperparameter Description

Cognitive Coefficient (c1) | The number of trees in the forest

Social Coefficient (c2) The maximum depth of the individual trees

Inertia Weight (w) The minimum number of samples required to split an

internal node

Best known position of

minimum number of samples required to be at a leaf
particle(P)

node

Current velocity of
particle(V)

velocity of the particles

Number of Iterations The maximum number of iterations the algorithm will

run

Swarm Size The number of particles in the swarm.

Algorithm 3: PSO

01. Initialize:
02. Initialize the swarm of particles with random positions and velocities.
03.  For each particle, set the initial position as its personal best (pBest).

04. ldentify the global best (gBest) position among all particles based on the
objective function.

05. Repeat until convergence (or max iterations):

06.  For each particle:

07. Update the particle's velocity:

08. velocity = nertia_weight * current_velocity
+ cognitive_constant * rand()
* (pBest_position -

current_position)

12



+ social_constant * rand() *

(gBest_position- current_position)

09. Update the particle's position:
10. current_position = current_position + velocity
11. Evaluate the particle's fitness based on

the objective function.
12. Update personal best (pBest) if

the current fitness is better:

13. If current_fitness < pBest_fitness:
14. pBest_position = current_position
15. pBest_fitness = current_fitness

16.  Update the global best (gBest) if any particle's

personal best is better:

17. If any pBest_fitness < gBest_fitness:
18. gBest_position = that_particle's_pBest_position
19. gBest_fitness = that_particle's_pBest_fitness

20. Return the best position (gBest) and the corresponding

fitness value.

2.1.4 Binary Particle Swarm Optimization

Binary Particle Swarm Optimization (BPSO) is an adaptation of the standard Particle
Swarm Optimization (PSO) for solving binary (discrete) optimization problems. In BPSO,
each particle represents a solution in a binary format, where each dimension can take a value
of either O or 1. The algorithm updates the velocity of each particle based on its own best-
known position and the best-known positions of its neighbours, similar to standard PSO.
To convert the continuous velocity values to binary values, BPSO uses a sigmoid function,

which outputs probability. This probability determines whether each dimension of a
13



particle's position should be set to 0 or 1. The particle's position is then updated by
comparing this probability to a random number, effectively flipping the bits accordingly.
BPSO is particularly useful for discrete optimization problems, where solutions must be
represented in a binary format, such as feature selection in machine learning and network
design problems [7].

Initialization: BPSO starts by initializing a population of binary strings, each representing
a possible solution. In feature selection, each bit in the binary string corresponds to a feature
being selected (1) or not selected (0).

Evaluation: The fitness of each solution (particle) in the population is evaluated based on
a fitness function. In feature selection, this function typically measures the quality of the
subset of features selected.

Updating Velocity and Position: BPSO then updates each particle's velocity and position
based on its current position, the best position it has achieved so far (personal best), and the
best position achieved by any particle in the population (global best). The velocity
determines the direction and magnitude of movement for each particle.

Movement: Each particle adjusts its position according to its velocity, possibly flipping
bits in its binary string representation to explore the search space.

Update Personal and Global Best: After moving, each particle updates its personal best
position if the new position has a better fitness value. The global best position is updated if
any particle achieves a better fitness value than the current best.

Termination: The algorithm terminates when a stopping criterion is met, such as reaching
a maximum number of iterations or when the improvement in fitness becomes negligible.
Extraction: Finally, the best solution found (global best) represents the selected subset of
features. BPSO is particularly effective for feature selection because it explores the search
space efficiently, quickly converging towards promising solutions. By iteratively updating
the positions of particles based on their own experience and the experiences of the entire
swarm, BPSO can effectively navigate the high-dimensional feature space to find a subset
that optimizes the specified fitness function. The Algorithm of BPSO can be found in
Algorithm 4.

14



Algorithm 4: BPSO

01. Initialize:

02. Initialize the swarm of particles with random binary positions (0s and 1s) and
velocities.

03.  For each particle, set the initial position as its personal
best (pBest).
04. Identify the global best (gBest) position among all particles based
on the objective function.
05. Repeat until convergence (or max iterations):

06.  For each particle:

07. For each dimension in the particle's position:
08. Update the particle's velocity:
09. velocity[d] = inertia_weight * current_velocity[d] +

cognitive_constant *
rand() * (pBest_position[d] - current_position[d])
+ social_constant * rand() *

(gBest_position[d] - current_position[d])

10. Apply the sigmoid function to the velocity:

11. probability[d] = 1/ (1 + exp(-velocity[d]))

12. Update the particle's position using the probability:

13. If rand() < probability[d]:

14. current_position[d] = 1

15. Else:

16. current_position[d] =0

17. Evaluate the particle's fitness based on the objective function.

20. Update personal best (pBest) if the current fitness is better:



21. If current_fitness < pBest_fitness:

22. pBest_position = current_position

23. pBest_fitness = current_fitness

24.  Update the global best (gBest) if any particle's personal

best is better:

25. If any pBest_fitness < gBest_fitness:
26. gBest_position = that_particle's_pBest_position
217. gBest_fitness = that_particle's_pBest_fitness

28. Return the best position (gBest) and the corresponding fitness value

2.2 Clustering Method

Nowadays, many industries deal with very large data sets of different types. Manually
processing all that information can be time-consuming and might not even add value in the
long term. Many strategies, from simple automation to machine learning techniques, are
being applied for a better return on investment. Clustering is an unsupervised machine
learning method in which the model tries to group similar data points into clusters based on
their inherent characteristics without predefined labels. In clustering, the model is trained
to identify patterns and similarities within the data, enabling the discovery of natural
groupings and structures. For instance, an algorithm can learn to group customers into
different segments based on their purchasing behaviour, as illustrated below. Various
clustering algorithms, such as K-means, hierarchical clustering, and DBSCAN, can be used,
each with its approach to defining and discovering clusters. K-means is popular for dividing

data into a predetermined number of clusters.

2.2.1 K-means

K-Means is a popular clustering algorithm used to partition a dataset into distinct groups or
clusters based on feature similarity. It starts by randomly selecting K centroids, which act
as the initial centers of the clusters. Each data point in the dataset is then assigned to the
nearest centroid, forming K clusters. After the initial assignment, the centroids are

recalculated as the mean of all data points within their respective clusters. Data points are
16



reassigned to the nearest centroid based on the updated centroid positions. This process of
recalculating centroids and reassigning data points is repeated iteratively until the centroids
no longer change significantly, indicating that the clusters have stabilized. The final
outcome is K distinct clusters, where each cluster contains data points that are more similar
to each other than to those in other clusters. [8]. The Algorithm of K-Means can be found
in Algorithm 5.

You keep repeating these steps—adjusting the jars' positions and reassigning marbles—
until the jars stop moving significantly or a predefined number of iterations is reached.

Algorithm 5: K-Means

01: Initialize k centroids randomly from the data points.
02: Repeat until convergence:

03: a. Assignment step:

04: For each data point, calculate the distance to

each centroid.

05: ii. Assign each data point to the nearest centroid.
06: b. Update step:
07: For each cluster, calculate the new centroid by

averaging the coordinates of all

data points assigned to it.

08: c. Check for convergence:
09: If centroids do not change or the change is minimal,
stop the algorithm.

10: Return the final centroids and cluster assignments.

The final positions of the jars and the marbles they contain represent the clusters found by
the algorithm. However, just like in real life, sometimes you might end up with suboptimal
groups if the initial placement of the jars was unlucky or if the data doesn't naturally fall
into distinct clusters. Despite its simplicity, K-Means is widely used for its efficiency and

effectiveness in many applications, such as market segmentation, image compression, and
17



data preprocessing. As shown in Figure 3, k-means clustering effectively transforms
similar data points into distinct cluster groups, demonstrating the separation achieved after

the clustering process.

Before k-means After k-means
\ . \

v
v

Figure 3: K-Means clustering

2.2.2 Gaussian Mixture Model (GMM)
A Gaussian Mixture Model (GMM) is a probabilistic model used for clustering by

representing data as a mixture of multiple Gaussian distributions. Each Gaussian
distribution corresponds to a cluster and is defined by its mean, covariance, and weight.
GMM uses the Expectation-Maximization (EM) algorithm to iteratively update these
parameters, maximizing the likelihood of the data. Unlike k-means, GMM performs soft
clustering, assigning probabilities to data points for belonging to each cluster. This allows
GMM to handle clusters of different shapes, sizes, and overlapping regions. The number
of Gaussian components is chosen using criteria like BIC or AIC. GMM is useful in
applications like clustering, anomaly detection, and density estimation.

GMM works by modelling data as a mixture of Gaussian distributions, each representing
a cluster. It uses the Expectation-Maximization (EM) algorithm to iteratively update the
parameters (mean, covariance, weight) of these distributions by calculating the
probabilities of data points belonging to each cluster. The process repeats until the
parameters converge, resulting in a model that captures complex and overlapping cluster

structures [9].

18



As in the candy example, GMM iteratively adjusts its parameters to best explain the data.

It assumes that the data is generated from a mixture of several Gaussian distributions, each

representing a different cluster or group.

GMM is useful for tasks like image segmentation, where pixels with similar characteristics

must be grouped together or for identifying underlying patterns in complex datasets.

However, like any model, GMM has limitations, such as assuming that the data is normally

distributed and specifying the number of components (candy types) beforehand. Figure 4
shows GMM clustering with clusters differentiated by their standard deviations. The plot

highlights how varying standard deviations lead to distinct cluster shapes and spreads. The
Algorithm of GMM can be found in Algorithm 6.

Cluster 2

Cluster 1
Cluster 3
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Figure 4: Gaussian Mixture Model

Algorithm 6: GMM

01:
02:
03:
04:

# Initialize the parameters
K = number_of _components # Number of Gaussian components
mu = initialize_means(K) # Means (p) for each component
sigma = initialize covariances(K) # Covariance matrices (X) for

each component

19



05:

06:

07:
08:
09:
10:
11:

12:
13:

14.
15:
16:
17:

20:
21.
22:
23:
24
25:
26:
27:
28:

29:
30:
31:
32:
33:
34:
35:
36:
37:

38:

pi = initialize mixing coeffs(K) # Mixing coefficients () for
each component
converged = False # Convergence flag

# Repeat until convergence
while not converged:

# E-Step: Calculate the responsibilities (y_ik)
for i in range(N): # Loop over each data
point X_i
for k in range(K): # Loop over each component k
# Compute the probability that x_i belongs to
component k
prob_k = pi[k] * gaussian_pdf(x[i], mu[k], sigma[K])

# Calculate the responsibility y_ik
responsibilities[i, k] = prob_k / sum(pi[j] *
gaussian_pdf(x[i], mu[j], sigmalj])
for j in range(K))

# M-Step: Update the parameters (u, Z, )

for k in range(K): # Loop over each component k
# Update the mixing coefficient m_k
N_k = sum(responsibilities[i, k] for i in range(N))
pi[k] = N_k /N

# Update the mean p_k
mu[k] = sum(responsibilities[i, K] * x[i] for
i inrange(N)) / N_k

# Update the covariance matrix £ k
sigma[k] = sum(
responsibilities[i, k] * np.outer(x[i] - mu[k],
X[i] - mu[k])
for i in range(N)

) IN_k

# Check for convergence (based on log-likelihood or
parameter change)
if log_likelihood_change < threshold or parameter_change
< threshold:
converged = True
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3. Literature Survey

Bahnsen et al. [10] used the application of machine learning models for predicting phishing
sites using URLs as input. They compared two methods: a feature-engineering approach
combined with a random forest classifier and a novel approach utilizing recurrent neural
networks (RNNs). Their study found that the RNN-based method achieved an impressive
accuracy rate of 98.7%, surpassing the random forest approach by 5%. This result highlights
the RNN method as a highly effective, scalable, and fast-acting detection system that does
not rely on manual feature creation or complete content analysis. This work demonstrates
the potential of RNNs for proactive phishing site detection, offering significant
improvements in accuracy and efficiency.

Li et al. [11] explored the critical role of feature selection as a data preprocessing strategy,
especially for high-dimensional data in data mining and machine learning. The main goals
of feature selection include simplifying models, enhancing data-mining performance, and
ensuring clean, interpretable data. The survey highlights the challenges and opportunities
presented by the proliferation of big data. It provides a comprehensive overview of recent
advances in feature selection, categorizing algorithms into four main groups: similarity-
based, information-theoretical-based, sparse-learning-based, and statistical-based methods.
The survey also introduces an open-source repository for feature selection algorithms,
facilitating research and evaluation in this field.

Al-Ani et al. [12] proposed a novel approach to this problem using Ant Colony Optimization
(ACO), a metaheuristic inspired by ants' behaviour in finding the shortest paths to food.
The ACO algorithm optimizes feature selection by balancing local heuristics with
knowledge from previous iterations. Applied to two classification problems, the method
was tested using five baseline feature vectors input to an Artificial Neural Network (ANN).
The study involved 71,354 training patterns and 23,785 testing patterns. The classification
accuracies achieved were 76.17%, 76.04%, 74.06%, 75.23%, and 89.39%. The results
demonstrated the ACO-based method's potential, with one feature vector significantly
outperforming the others. This approach shows promise in enhancing the efficiency and
effectiveness of feature selection in pattern classification.

Sekhar et al. [13] proposed using the Dragonfly Algorithm (DFA) for feature selection in
skin disease classification. DFA was applied to identify key features for illness
categorization and paired with CNN models, including VGG19 and EfficientNet-B2, for
classification tasks. The algorithm evaluated feature sets by measuring the accuracy of

classifiers on a training dataset, ensuring precise selection. Experimental results showed
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DFA's high precision and minimal loss. Two CNN models, based on EfficientNet-B2 and
VGG19, were trained on DermNet NZ and ISIC 2019 datasets. These models achieved an
average accuracy of 88.5% and a loss of 0.0003 across eight skin diseases. The study
demonstrated deep learning's potential to classify skin conditions with near-human
accuracy. It also highlighted the potential for large-scale, real-time skin disease diagnosis,
enhancing healthcare practices and patient outcomes [11].

Firpi et al. [14] used a feature extraction method based on Particle Swarm Optimization
(PSO) to monitor brain activity and identify cognitive states and task intensity. This
approach aims to develop a pattern recognition system that classifies cognitive states,
enabling workload redistribution among subjects. The system utilises multiple features
from different domains, with PSO employed for feature selection. Classification is
performed using the k-nearest neighbour (k-NN) algorithm. The method was tested on data
from eight subjects, achieving an average classification accuracy of 90.25% on held-out,
cross-validated data. This demonstrates the efficacy of PSO in optimizing feature selection
for cognitive state recognition. The study shows the potential for adaptive workload
management based on real-time cognitive monitoring. This approach could significantly
enhance performance and reduce cognitive overload.

Cervante et al. [15] proposed two innovative filter feature selection methods that combine
Binary Particle Swarm Optimization (BPSO) with information theory for classification
tasks. The first method uses BPSO and mutual information to evaluate the relevance and
redundancy of feature subsets, while the second method combines BPSO with entropy for
a similar purpose. Different weights for relevance and redundancy are applied in the fitness
functions to optimize feature selection and classification accuracy. These methods were
tested using a decision tree (DT) on four datasets. The results demonstrated that both
algorithms, with appropriate weights, could significantly reduce the number of features and
achieve similar or better classification accuracy. The first algorithm generally selects a
smaller feature subset, whereas the second often results in higher accuracy. This study
highlights the effectiveness of integrating BPSO with information theory in enhancing
feature selection.

Peng et al. [16] proposed a feature selection method based on the maximal statistical
dependency criterion using mutual information, which is challenging to implement directly.
They introduced the minimal-redundancy-maximal-relevance (MRMR) criterion as an
equivalent form for incremental feature selection. Their two-stage algorithm combines

MRMR with advanced feature selectors, such as wrappers, to efficiently select a compact
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set of superior features. The method was tested with naive Bayes, support vector machine,
and linear discriminant analysis classifiers across four datasets: handwritten digits,
arrhythmia, NCI cancer cell lines, and lymphoma tissues. Results showed that mMRMR
significantly enhanced feature selection and classification accuracy. This approach offers a
cost-effective solution for high-quality feature selection in various classification tasks.
Ranjitha et al. [17] addressed the limitations of traditional phishing detection methods, such
as URL blacklisting and heuristic-based approaches, which struggle to keep pace with
evolving phishing tactics. The study explored the application of machine learning classifiers
to identify illegitimate websites, specifically using Multilayer Perceptron and Bernoulli
Naive Bayes (NB) classifiers. Feature selection was carried out using a decision tree
classifier to identify the most relevant features for adequate classification. The researchers
trained and tested their classifiers on a dataset comprising blacklisted and whitelisted
websites. Evaluation metrics, including accuracy, precision, recall, and the ROC curve,
were used to assess classifier performance. The Multilayer Perceptron achieved an accuracy
of over 82%, demonstrating its effectiveness in detecting phishing sites. These findings
highlight the potential of machine learning techniques in enhancing phishing detection and
mitigating associated risks.

Pan et al. [18] proposed a novel approach to phishing detection that addresses the limitations
of existing schemes, which often fail due to the adaptability of phishing attackers. The
proposed method identifies anomalies in web pages, specifically discrepancies between a
website’s identity, structural features, and HTTP transactions. This approach does not
require user expertise or prior knowledge of the website, making it more broadly applicable.
The research demonstrated that this method poses a high cost to attackers attempting to
evade detection. Experimental results showed that the proposed phishing detector achieved
a low miss rate and false-positive rate, highlighting its effectiveness in identifying phishing
attempts while minimizing errors. This approach provides a promising solution to the
ongoing challenge of detecting evolving phishing threats.

Rao et al. [19] addressed the challenge of phishing websites, which often mimic legitimate
sites closely, making it difficult for users to distinguish between them. The study focuses
on detecting phishing websites by analysing their content and layout. They proposed a novel
method that utilizes TF-IDF (Term Frequency-Inverse Document Frequency) analysis to
extract key terms from suspected phishing sites. These extracted phrases are then queried
in various search engines, and the results are integrated and ranked to identify potential

phishing sources.
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4. Proposed Approach

The proposed method for detecting phishing attacks involves a structured approach beginning
with data collection, where relevant data about URLS and their components are gathered from
various sources such as databases, websites, and security repositories. This data is then
subjected to data preprocessing, which includes cleaning, normalisation, and transformation
to ensure consistency and accuracy. Following this, feature selection is conducted using two
nature-inspired algorithms, such as Ant Colony Optimization and Dragonfly Algorithm, and
two genetic algorithms, namely Particle Swarm Optimization (PSO) and Binary Particle
Swarm Optimization (BPSO). Each algorithm attempts to select the most relevant feature
subset from the dataset. The selected subset of data is then fitted into clustering models like
k-means and Gaussian Mixture Models (GMM). The performance of these clustering
methods is evaluated and compared using the silhouette score to determine their effectiveness
in accurately identifying phishing attacks.

The development of the machine learning-based predictive model involves the following
steps:

Data collection

Data preprocessing

Feature selection
Methodology

e wN

4.1 Dataset Description
The Phishing Legitimate data set is available both in text and CSV files, which provides the

following resources that can be used as inputs for model building: A collection of website
URLSs for 10000 websites. Each sample has 49 website parameters. These features include
URL length, domain age, presence of specific keywords, and structural characteristics. With
a binary classification objective, the dataset aims to differentiate between legitimate URLS
and those associated with phishing activities. This dataset presents a rich and diverse array of
URL attributes, making it suitable for in-depth exploratory analysis and predictive modelling
tasks. By examining these features, patterns and insights can be gleaned to enhance
cybersecurity measures and mitigate online threats.

Notably, each sample in the dataset includes 49 meticulously documented features, as
outlined in Table 4 and Table 5 Description of target class.
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Table 4: Description of the dataset.

Attributes Description

1-15 Features of URL structure
16-22 Features of External Content
22-27 Features of From and Action
28-34 Features of Redirection
34-37 Scripting features

37-42 Features of security

42-47 Domain mismatch features
48-49 URL length metrics

Table 5: Description of the Target class

Dataset Type

Phishing_legitimate_url Normal
Attack

4.2 Data Pre-processing

Data preprocessing converts raw data into a format suitable for machine learning models. This
phase involves using various methods to prepare the dataset for analysis. After the initial
preprocessing, the total number of samples decreased to 7,089, and the total number of
features reduced to 28. The following sections provide detailed explanations of each

preprocessing step for better understanding.

4.2.1 Handling Missing Values

To ensure data quality, an examination was conducted to identify missing values, including
NA or blank blocks. To maintain dataset integrity, missing values were to be imputed with
the mean of their respective columns. The examination revealed that the values in the dataset
are present. As a result, no imputation was necessary. The dataset is complete and ready for

the next stage of analysis.
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4.2.2 Normalization of URL Length

During the initial exploration of the dataset, it was observed that the feature "URL Length"
contained integer values that diverged from the standardised range of -1 to 1, characteristic of
other features in the dataset. To maintain uniformity in data scale and facilitate comparative
analysis, the "URL Length" was scaled within the desired range of -1 to 1, ensuring consistency

across all features.

4.2.3 ldentification and Removal of VVariance-based Feature

To enhance computational efficiency and simplify the dataset, an evaluation was conducted to
identify columns with minimal variance. Columns showing less than 0.01 variance, which
indicated a lack of variability, were identified as redundant and removed. This feature
reduction helped eliminate unnecessary data, decreasing the dataset's dimensionality. As a
result, the dataset was streamlined to include only 32 relevant features, making it more efficient

and focused for analysis.

4.2.4 Detection and Removal of Highly Correlated Features

To address multicollinearity and enhance the robustness of the analyses, an examination was
conducted to identify pairs of features with high correlation. Features exceeding the
correlation threshold of 0.9 were considered highly correlated and thus removed to prevent
redundancy. Specifically, the feature "AbnormalExtFormActionR" was identified as
correlating higher than 0.9 and dropped from the dataset. This step was crucial in mitigating
the risk of overfitting and improving the interpretability of the models trained on the dataset.
Removing such redundant information ensures that the model relies on a more independent
and diverse set of features.

4.2.5 Outlier Detection and Removal

Outlier detection was conducted on a dataset containing 10,000 samples to enhance the
quality and reliability of the data. Statistical methods, including z-score, were employed to
identify data points significantly deviating from the expected distribution. These outliers,
which could potentially skew the analysis, were systematically removed from the dataset. In
total, 2,911 samples were classified as outliers and subsequently eliminated. This process
reduced the dataset to 7,089 samples, ensuring a more accurate and representative data set
for analysis. The removal of outliers helped prevent these anomalies from unduly

influencing the results.
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4.2.6 Univariate Feature Analysis and Selection

A thorough univariate analysis was conducted to assess the individual contribution of each
feature to the dataset. This analysis aimed to identify features with limited relevance or
low informational value. Based on the findings, features deemed less informative were
selectively removed. This careful selection process helped streamline the dataset by
focusing on the most valuable variables. As a result, 28 relevant features remained after
the analysis. Reducing features enhances the dataset's efficiency and focus for subsequent
analyses. The remaining features are expected to improve the quality and interpretability
of the models. These 28 features were utilized in the next stage of analysis.

4.3 Feature selection
Feature selection is a critical aspect of machine learning as it enhances the accuracy of

clustering models. This study compares four feature selection methods the Ant Colony
Optimization Algorithm , Dragonfly Algorithm ,PSO and BPSO. After cleaning the data,
the dataset is refined to contain 47 features. Subsequently, four different feature selection
algorithms are usedto identify and extract the most relevant features from the dataset. Those
32features are implemented in the given algorithm, as shown in Table 6. After the process

is completed, the output of the best features by Ant colony is shown in Table 7.

Table 6: Features for Ant Colony Optimization Algorithm

Dataset Original Feature
'‘NumDots', 'SubdomainLevel’, 'PathLevel', 'UrlLength’,

'‘NumDash', 'NumDashInHostname', '‘AtSymbol’,
‘TildeSymbol’, '‘NumUnderscore', ‘NumPercent,
'NumQueryComponents', 'NumAmpersand',

'‘NumHash’, 'NumNumericChars', 'NoHttps', ‘RandomString’,
'IpAddress’, ‘DomaininSubdomains’, ‘DomaininPaths’,
'HostnameLength’, 'PathLength’,

'‘QueryLength’, '‘DoubleSlashinPath’,  'NumSensitiveWords',

Phishing url 'EmbeddedBrandName’, 'PctExtHyperlinks',
'PctExtResourceUrls’,
'ExtFavicon’, ‘InsecureForms’, 'RelativeFormAction’,
'ExtFormAction’, 'AbnormalFormAction’,
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'PctNullSelfRedirectHyperlinks',
'FrequentDomainNameMismatch’, 'FakeLinklInStatusBar’,
‘RightClickDisabled', 'PopUpWindow', 'SubmitinfoToEmail’,
'IframeOrFrame’, ‘MissingTitle', 'ImagesOnlyInForm’,
‘SubdomainLevelRT', 'UrlLengthRT', 'PctExtResourceUrlIsRT",
'‘AbnormalExtFormActionR’,

'ExtMetaScriptLinkRT",
'PctExtNullSelfRedirectHyperlinksRT'

Table 7: Features Selection Using Ant Colony Optimization Algorithm

Method Selected Features

'PctNullSelfRedirectHyperlinks', 'TildeSymbol’,
'NumNumericChars', 'NumHash', 'NumAmpersand',
'NumQueryComponents', 'NumPercent', 'NumUnderscore',
'‘AtSymbol’, 'RandomsString’, 'NumDashInHostname',

Ant Colony '‘NumbDash', 'UrlLength’, 'PathLevel’, 'SubdomainLevel’,
Optimization

) '‘NumDots', 'NoHttps', 'IpAddress', ‘AbnormalFormAction’,
algorithm

'EmbeddedBrandName’, 'ExtFormAction’,
'RelativeFormAction’, 'InsecureForms', 'ExtFavicon’,
'PctExtResourceUrls', 'PctExtHyperlinks',
'NumSensitiveWords', 'DomaininSubdomains',
'DoubleSlashinPath’, 'QueryLength’, ‘PathLength’,
'HostnameLength’, 'HttpsIinHostname', '‘DomaininPaths'

The output of the best features by Dragonfly Algorithm is shown in Table 8.
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Table 8: Features Selection Using Dragonfly Algorithm

Method Selected Features

'PctNullSelfRedirectHyperlinks', 'TildeSymbol’,
'NumNumericChars', 'NumHash'’, 'NumAmpersand',
'‘NumQueryComponents’, 'NumPercent’, 'NumUnderscore',
'‘AtSymbol’, 'RandomString’, 'NumDashInHostname',
Dragonfly algorithm  '‘NumbDash’, 'UrlLength’, 'PathLevel’, 'SubdomainLevel’,
‘NumbDots', ‘'NoHttps', 'IpAddress', 'AbnormalFormAction’,
'EmbeddedBrandName’, 'ExtFormAction’,
'RelativeFormAction’, 'InsecureForms', 'ExtFavicon’,
'PctExtResourceUrls', 'PctExtHyperlinks',
'‘NumSensitiveWords', 'DomainIinSubdomains',
'‘DoubleSlashinPath’, 'QueryLength’, ‘PathLength’,
'HostnameLength’, 'HttpsInHostname', ‘DomaininPaths'

The output of the best features by PSO is shown in Table 9.
Table 9: Feature Selection Using PSO Algorithm

Method Selected Features

'PctNullSelfRedirectHyperlinks', 'TildeSymbol’,
'NumNumericChars', 'NumHash', 'NumAmpersand',
'NumQueryComponents', 'NumPercent', '"NumUnderscore',
'‘AtSymbol’, 'RandomString’, 'NumDashInHostname',

PSO '‘NumbDash', 'UrlLength’, 'PathLevel’, 'SubdomainLevel’,
‘NumbDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction’,
'EmbeddedBrandName’, 'ExtFormAction’,
'RelativeFormAction’, 'InsecureForms', 'ExtFavicon’,
'PctExtResourceUrls', 'PctExtHyperlinks',
'‘NumSensitiveWords', 'DomaininSubdomains',
'‘DoubleSlashinPath’, 'QueryLength’, ‘PathLength’,
'HostnameLength’, 'HttpsIinHostname', ‘DomaininPaths'

The output of the best features by BPSO is shown in Table 10.

Table 10: Features Selection Using BPSO Algorithm



Method

Selected Features

BPSO

'RandomString’, 'NumDashInHostname', 'NumDash',
‘UrlLength’, 'PathLevel’, 'SubdomainLevel’, 'NumDots',
'NoHttps', 'IpAddress’, 'AbnormalFormAction’,
'EmbeddedBrandName’, 'ExtFormAction’,
'RelativeFormAction’, 'InsecureForms', 'ExtFavicon’,
'PctExtResourceUrls', 'PctExtHyperlinks',
'‘NumSensitiveWords', 'DomaininSubdomains',
'‘DoubleSlashinPath’, 'QueryLength’, ‘PathLength’,
'HostnameLength', 'HttpsInHostname',
'‘DomaininPaths"PctNullSelfRedirectHyperlinks',
‘TildeSymbol', 'NumNumericChars', '"NumHash',
'‘NumAmpersand’, 'NumQueryComponents', ‘"NumPercent,

'‘NumUnderscore', 'AtSymbol’

The output of the best features by Univariate Analysis is shown in Table 10.

Table 11: Features Selection Using Univariate Analysis

Method

Selected Features

Univariate
Analysis

'RandomString’, 'NumDashInHostname', 'NumDash',
'UrlLength’, 'PathLevel’, 'SubdomainLevel’, 'NumDots',
'NoHttps', 'IpAddress', 'AbnormalFormAction’,
'EmbeddedBrandName’, 'ExtFormAction’,
'RelativeFormAction’, 'InsecureForms', 'ExtFavicon’,
'PctExtResourceUrls’, 'PctExtHyperlinks',
'‘NumSensitiveWords', 'DomaininSubdomains’,
'‘DoubleSlashinPath’, 'QueryLength’, '‘PathLength’,
'HostnameLength', 'HttpsinHostname',
'‘DomaininPaths"PctNullSelfRedirectHyperlinks',
‘TildeSymbol’, 'NumNumericChars', 'NumHash',
'‘NumAmpersand’, 'NumQueryComponents', 'NumPercent',

'NumUnderscore', 'AtSymbol’
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4.4. Methodology

The framework of the clustering model is presented in Figure 5.

Phishing URL Dataset

1

Data pre-processing

DATA CLEANING

OUTLIER DETECTION NORMALIZATION
A 4
Feature Selection
Antcolony Dragonfly
PSO BPSO
Univariate Analysis
Model

K-Means
GMM

Output

Figure 5: Framework of the Clustering Model.
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Optimizers and Model

Four optimizers are employed in the feature selection: two nature-inspired algorithms, ant
colony optimization and dragonfly algorithm, and two genetic algorithms, PSO and BPSO. Each
optimizer has a range of hyperparameters that significantly influence its performance.

Using nature-inspired and genetic algorithms for feature selection is effective because they
explore large and complex search spaces, avoiding local optima. These algorithms focus on
global optimization, increasing the likelihood of finding the best feature subset. Their flexibility
allows them to adapt to different data types and optimization challenges. Additionally, they are
robust to noise and irrelevant features, improving model accuracy and generalization. The ant
colony optimization, inspired by ants' foraging behaviour, involves parameters like the number
of ants, pheromone evaporation rate, and pheromone influence. The dragonfly algorithm,
modelled after dragonflies' static and dynamic swarming behaviours, includes hyperparameters
such as alignment, cohesion, separation weights, and attraction to food sources. On the genetic
algorithm side, PSO mimics the social behaviour of birds flocking or fish schooling, using
parameters like cognitive and social coefficients, inertia weight, and the number of particles.
BPSO, a variant tailored for binary search spaces, uses similar parameters but adapts them to
binary decisions, impacting the velocity and position updates in a discrete space. To tune these
hyperparameters effectively, an exploratory approach is employed. This involves systematically
experimenting with different parameter values to uncover the optimal configurations that yield
the best performance. The goal is to identify the most relevant subset of hyperparameters that
enhance the efficiency and accuracy of each optimizer. Once the optimal hyperparameters are
determined, the dataset is preprocessed and split into training and testing sets. The preprocessed
and feature-selected dataset is then fitted into unsupervised learning models like k-means and
GMM. K-means clustering relies on the distance between points to form clusters, while GMM
assumes that the data is generated from a mixture of several Gaussian distributions. Using GMM
for clustering is advantageous because it models data as a mixture of Gaussian distributions,
allowing for more flexible, elliptical cluster shapes. GMM captures complex underlying
structures in the data significantly when clusters overlap. The Expectation-Maximization (EM)

algorithm used by GMM iteratively improves the fit to the data, enhancing clustering accuracy.
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6. Results and Analysis

Python 3.10 is considered for implementation in this study due to its wide range of libraries.
Various machine learning algorithms are employed to categories the binary-class network
attacks. The Phishing URL attack dataset is obtained from the KAGGLE repository for model
implementation. The dataset is pre-processed, and relevant features are selected from the
dataset. The dataset is then split into training-validation and testing sets in a 75%—25% ratio
for model training and testing. Unsupervised machine learning models, namely, K-means and
GMM, are built using PyTorch. The following listed hyperparameter values of PSO are used
to select the most relevant features from the dataset.

C1=1: A value of 1 indicates a moderate influence, meaning the particle will consider its own
past experiences but not be overly reliant on them.

C2 =1.5: A value of 1.5 suggests a more substantial influence from the global best compared
to the personal best, encouraging particles to follow the collective wisdom of the swarm more
than their own experience.

w =.9: An inertia weight of 0.9 implies that the particles will maintain most of their momentum
from the previous iteration, resulting in smoother and more gradual updates in their velocity.
This can help in exploring the search space more effectively.

v= 1 Setting the initial velocity v to 1 means that each particle in the swarm starts with a
velocity of 1.

K=20: A value of 20 provides a good balance between exploration and exploitation.

Table 12 presents listed hyperparameter values of PSO are used to select the most relevant
features from the dataset.

Table 12: Hyperparameters value based on exploration optimization of PSO.

Hyperparameters Values
cl 1
c2 1.5
w 9
v 1
20
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The following listed hyperparameter values of Binary PSO are used to select the most relevant

features from the dataset.
C1 =1.5 A value of 1.5 indicates a moderate influence, meaning the particle will consider its

own past experiences but not be overly reliant on them.

C2 = 1.5: A value of 1.5 suggests a more substantial influence from the global best compared
to the personal best, encouraging particles to follow the collective wisdom of the swarm more
than their own experience.

w =0.7: An inertia weight of 0.7 implies that the particles will maintain most of their
momentum from the previous iteration, resulting in smoother and more gradual updates in their
velocity. This can help in exploring the search space more effectively.

Effect on Convergence: Lower values for rl and r2 make the algorithm more exploitative,
relying more on the best-known positions. Higher values increase exploration, allowing
particles to search more widely. These specific hyperparameter values are chosen based on
exploring a dataset such as PSO or binary PSO optimization. During this process, different
combinations ofparameter values are tested, and the combination that results in the best model
performance on a validation set is selected.

The hyperparameter values listed below of ant colony are used to optimize the selection of
features from the dataset.

Table 13 presents listed hyperparameter values of BPSO are used to select the most relevant

features from the dataset.

Table 13: Hyperparameters value based on exploration optimization of Binary PSO.

Hyperparameters value
C1 15
C2 15
W A

ri 0.854
r2 0.75
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The following hyperparameter values of Antcolony Algorithm are used to select

the most relevant features from the dataset.
Number of Ants (n_ants = 10): In each iteration, 10 ants explore the solution space.

Number of Iterations (n_iterations = 50): The algorithm runs for 50 iterations.
Pheromone Importance (alpha = 1): Pheromone trails moderately influence path selection.
Heuristic Importance (beta = 2): Heuristic information (e.g., path length) is highly
influential in decision-making.

Evaporation Rate (roh): 50% of the pheromone evaporates each iteration, balancing
exploration and exploitation.

These specific hyperparameter values are chosen based on exploring a Dataset in this ant
colony optimisation. During this process, different combinations ofparameter values are
tested, and the combination that results in the best model performance on a validation set is
selected. The hyperparameter values of the dragonfly algorithm, listed below optimize the
selection of features from the dataset.

Table 14 presents listed hyperparameter values of Antcolony are used to select the most
relevant features from the dataset.

Table 14: Hyperparameters value based on exploration optimization of Ant Colony Algorithm.

Hyperparameters Values
n 10

N 50
alpha 1

beta 2

roh 50
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The following hyperparameter values of Dragonfly Algorithm are used to select the most

relevant features from the dataset.

Num_featurs (N): 28 features define the dimensions of the problem space.
Max_generations(m): 1000: The algorithm is executed for 1000 generations. Setting the
maximum number of generations to 1000 allows the algorithm sufficient time to explore and
refine potential solutions. This value balances exploration and convergence, providing ample
opportunity to find an optimal solution without excessively prolonging the computation.
Population_size (p): 250: A population size of 250 provides a good balance between
exploration and computational efficiency. It is large enough to explore the solution space
effectively.

Step_size (s): 0.2: A step size of 0.2 allows for moderate adjustments to the dragonflies'
positions. It helps them explore the search space without making overly large jumps.
absorption_coffeicient (c):.6: An absorption coefficient of 0.6 indicates a moderate level of
absorption. This value strikes a balance between adapting to the environment and relying on
the best global information. It helps maintain a balance between exploration and exploitation.
These specific hyperparameter values are chosen based on exploring a dataset in this dragonfly
algorithm optimization. During this process, different combinations of parameter values are
tested, and the combination results in the best model performance on a validation set.

Table 15 presents listed hyperparameter values of Dragonfly Algorithm are used to select the

most relevant features from the dataset.

Table 15: Hyperparameters value based on exploration optimization of Dragonfly Algorithm

Hyperparameters Values
N 28

m 1000

D 250

S 2

c .6
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The comparative analysis of the silhouette scores achieved by the k-means and GMM models
for feature sets selected using Ant Colony, Dragonfly, PSO, BPSO optimizers, and univariate
analysis is provided in Table 1. The BPSO-selected feature subset yielded the highest
silhouette score when used with the k-means model.

Table 16: Silhouette scores of Clustering Algorithms based on Four Optimizers and Univariate
Analysis.

Algorithms = Ant Colony PSO | BPSO | Dragonfly Univariate
Analysis
Models
K-means 76% 76% | 87% 65% 80%
GMM S51% 59% | 58% 55% 65%
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6. Conclusion and Future Scope

This study has demonstrated the potential of unsupervised machine-learning techniques in
detecting phishing URLSs. Focusing on patterns and anomalies within URL data shows that K-
means clustering and Gaussian Mixture Models can effectively identify suspicious URLS
without needing labelled data. The findings suggest that these unsupervised algorithms can
overcome some limitations of traditional supervised methods and offer a viable alternative for
enhancing cybersecurity measures. This study highlights the importance of leveraging the
inherent structure of URLSs to detect phishing attempts, contributing to the broader effort to
protect digital assets. Future work could explore combining unsupervised and supervised
learning to improve detection accuracy. Enhancing feature extraction techniques, possibly
using deep learning, could make models more robust. Investigating real-time data integration
and adaptive learning could help systems respond quickly to new threats. Additionally,
expanding this work to include multiple data sources and cross-domain analysis could increase
the applicability and effectiveness of these techniques in various cybersecurity contexts.
Lastly, developing user-friendly tools based on these findings could make advanced phishing

detection accessible to a broader range of users and organizations.
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Appendix

Code

# ANTCOLONY

import numpy as np
import pandas as pd
from sklearn.cluster import KMeans

from sklearn.me s import silhouette score
import networkx as nx

class AntColonyFeatureSelectionUnsupervised:
def init (self graph, n_ants, n iterations, alpha=l, beta=2, evaporation rate=0.1):

self.c = graph
self.n s = n_ants
self.n ations = n_iterations
self = alpha
self.! beta
self.e tion te = evaporatlon rate
self.r les (), graph.number of nodes()))
self.:
self.r -
def fit(self, X traln)
self.n r t
self.ph features) * 0.5
for in range(self.n iterations):
selected features = []
for  in range(self.n
features = self. solution()
selected features end(features)
self. pheromones (selected features, X train)

def construct solution(self):

features = []

remaining features = list(range(self.n features))

while remaining_features:
probabilities = self.
selected feature = np. c
features. rnu(selected feature)
remaining_features e(selected feature)

return features

bilities(remaining features)
(remaining features, p=probabilities)

def calculateiprobabilities(self remalnlng features):
probabilities = [self.; romone matrix[feature] for feature in remaining features]
total pheromone = sum(probabllltles)
return [pheromone / total pheromone for pheromone in probabilities]

def update pheromones(self selected features list, X train):
pheromone delta = np. s(self.n features)
for selected features in selected features list:
X selected = X train.iloc[:, selectedﬁfeatures]
kmeans = KMeans (n_clusters=2, random state=0,n init=10)
silhouette avg = silhouette score(X selected, kmeans.!
for feature in selected features:
pheromone delta[feature] += srlhouette avg

1t (X_selected)

self.ph c = (1 - self. bration e) * self.pheromone 1 rix + pheromone delta
def create graph(X train):
corr matrlx = np abs (np.corrcoef(selected df, rowvar=False))

graph = nx.Graph()
for i in range(selected_df.f -[11) :
for j in range(i+l, selected df.shape[l]):
graph.add edge(i, j, weight=corr matrix[i, J])
return graph
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# Initialize and fit the ACO feature selection algorithm

graph = create graph(selected df)

aco_unsupervised = AntColonyFeatureSelectionUnsupervised(graph=graph, n _ants=10, n_iterations=50)
aco_unsupervised. (selected df)

# Select the best features based on pheromone trails

pheromone matrix array = np. (aco_unsupervised. )

best features indices = np. (pheromone matrix array) [::-1] # Select top 10 features
best features indices

print("Selected features indices:", best features indices)

Selected features indices: [34 814 131211109716654 3 2 11517 33263231302928272518242322212019 ]

['PctNullSelfRedirectHyperlinks', "TildeSymbol', 'NumNumericChars', 'NumHash', 'NumAmpersand', 'NumQueryComponents', ‘'NumPercent',
'NumUnderscore', ‘AtSymbol', 'RandomString’, 'NumDashInHostname', ‘NumDash', 'UrlLength’, ‘PathLevel’, 'SubdomainLevel’, 'NumDots', 'NoHttps',
'IpAddress’, 'AbnormalFormAction’, 'EmbeddedBrandName’, 'ExtFormAction’, ‘RelativeFormAction’, 'InsecureForms', 'ExtFavicon', 'PctExtResourceUrls',
'PctExtHyperlinks', 'NumSensitiveWords', 'DomaininSubdomains', 'DoubleSlashInPath’, ‘QueryLength', ‘PathLength’, 'HostnameLength’,
'HttpsinHostname', 'DomaininPaths']

from sklearn. import KMeans

from sklearn. import silhouette score

from sklearn. import accuracy_ score

from sklearn. import KNeighborsClassifier

from sklearn. import silhouette score

best features=selected df. [:, best features indices]
kmeans=KMeans (n_clusters=2,init="k-means++'")
y_labels=kmeans. (best features)

silhouette avg = silhouette score(best features, y labels)
print(f'sSilhouette Score: {silhouette avg}')

#accuracy = accuracy score(y train, y labels) # Adjust for the clustering labels
#print (f"Accuracy Score: {accuracy}"

Silhouette Score: 0.7604676567184461

#Dragonfly

from sklearn. import KMeans

from sklearn. import silhouette score
from sklearn. import MiniBatchKMeans

class UnsupervisedDragonflyAlgorithm:

def init (self, num features, max generations=1100, population size=250,
step size=0.2, absorption coefficient=0.6):
self. = num features
self. = max_generations
self. = population size
self. = step size
self. = absorption coefficient
self. = None
self. = None

def initialize population(self):
self. = np. . (self. , self. ) > 0.6

def evaluate fitness(self, X):

fitness values = []
for individual in self. :
selected features = [i for i in range(self. ) if individual[i] == 1]
X selected = selected df. [:, selected features]
kmeans = KMeans(n_clusters=2, random state=0). (X _selected)
silhouette avg = silhouette score(X selected, kmeans. )
fitness values. (silhouette avg)

return fitness values
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def evolve(self X)'

self.in 2t 1
for generatlon in range(self
fitness values = self. ate ness
(fltness _values)

best 1ndex = np.

self. be I ) self.; on[best index]
new populatlon = [1
for individual in self.po; 1
new_individual = 1nd1v1dual e (bool) + self lze *
 individual '= individual) + \
self.a C fole *
randn(self.: features)
new populatlon append(new_individual)
self.r lation = np. »(new_population, 0, 1)
# Feature selection using Unsupervised Dragonfly Algorithm
uda = UnsupervisedDragonflyAlgorithm(num features=selected df.shape[l], population size=10,
max generatlons =50)
uda. lve(selected df)
# Get the selected features from the best individual
selected features = [i for i1 in range(selected df.shape[l]) if uda.best individuall[i] == 1]

print("Selected features:", selected features)

Selected features: [ 1, 2,3, 5,6, 7,8,11, 12, 14, 16, 18, 20, 22, 27, 29, 30, 31, 32, 33]

from sklearn.c
from sklearn

- import KMeans

import accuracy score

from sklearn s import KNeighborsClassifier
from sklearn.: s import silhouette score

#best features= Xl columns [best features indices ]
best features indices = np.array( selected _features) .res
#best features indices = selected features.reshape (- 1 1)
kmeans—KMeans(n clusters 2, init="k- means++")

y labels=kmeans. I ct(best features indices)
silhouette avg = 31lhouette _score(best features_ indices, y labels)
print(f'Silhouette Score: {silhouette avg}')

2pe (-1, 1)

Silhouette Score: 0.6509154018350569
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#Pso

import numpy as np
import pandas as pd
import pyswarms as ps
from sklearn. r
from sklearn
from sklearn.c«

import KMeans
~ction import train test split
import RandomForestClassifier
from sklearn import accuracy score
from sklearn.met s import silhouette score
def objective function(selected features):
selected indices = np.where(selected features == 1) [0]
if len(selected indices) ==
return -np.inft

# Train a classifier

# Use K-means clustering

kmeans = KMeans(n_clusters=2, random state=0)

cluster labels = kmeans.fit predict(selected df.iloc[selected indices])

# Calculate Silhouette Score
silhouette = silhouette score(selected df.iloc[selected indices], cluster labels)

return silhouette

# Define PSO parameters

num features = selected df.sh
num particles = 20
num_iterations = 150

options = {'cl':1 , 'c2': 1.5, 'w':.9, 'k': 20, 'p': 1, 'bounds': (np.zeros(num features),
np.ones (num_features))}

bounds = (np.zeros(num features), np.ones(num_ features))

# Initialize PSO optlmlzer
optimizer = ps.discrete.b
options=options,)

yPSO(n_particles=num particles, dimensions=num features,

best position, = optimizer.optimize(objective function, iters=num iterations)
selected indices = np.where(np.atleast 1d == 1)) [0]

#selected indices = np. where(np atleast 1d( )y > 0.20) [0]

selected indices = np.clip(selected indices, 0, selected df.s] - 1)

print("best position'",best position )
print("best",selected indices)

top 30 indices = selected indices#[:47]
top 30 features = selected df.columns[top 30 indices]

# Print the selected features
from sklearn. import KMeans
from Sklearn.Mﬂ°L;Ub import silhouette score

best features=selected df.iloc[:,top 30 indices ]
kmeans=KMeans (n_ clusters—Z init="k-means++")
y_labels=kmeans.fit predict(best features)

silhouette avg = 51lhouette _score(best features, y labels)
print(f'Silhouette Score: {SLlhouetteiavg}')

Selected features: [4 5 6 7 912 13 14 24 25 29 32 33 34]
Silhouette Score: 0.767803452459353
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#Binary PSO

import numpy as np
import pandas as pd
from sklearn.clu

from sklearn.h

class Particle:
def init (self, num features):

self 1£(2, size=num features)

self.q -0.1, 0.1, size=num features)

self 1 = self.position.copy()

self.! . float(‘an[') # Initialize with negative infinity for
maximization

def fitness function(features, X):
selected features = [bool(f) for f in features]
X selected = selected df.iloc[:, selected features]

kmeans = KMeans(n_clusters=2, random state=0,n init=10)
kmeans. it (X selected)
silhouette = silhouette score(X selected, kmeans.

return silhouette

def bell pso(X, num particles=10, max iter=50, w=0.7, cl=1.5, c2=1.5):

num features = X. s/ e[l]

particles = [Particle(num features) for  in range(num particles)]

global best position = np.zeros(num features)

global best score = float('-inf') # Initialize with negative infinity for maximization

for in range(max iter):
for particle in particles:

fitness = fitness functlon(partlcle vosition, X)

if fitness > partlcle best score
particle. ) partlcle position.copy()
particle. fitness

if fitness > global best score:
global best position = particle.;
global best score = fitness

for particle in partlcles

rl = np. d(num_features)

r2 = np. d(num_ features)

partlcle Ve 1 w * particle.velocity + cl * rl * (partlcle best position -
particle.pos n) + cz2 * r2 * (global best p051tlon - partlcle

partlcle St n = np.round(l / (1 + np.exp(- partlcle

return global best position

# Example usage
# Assuming X1 is your dataset
#X1 = np.random.rand (100, 10) # Example random dataset

selected features = bell pso(selected df, num particles=10, max iter=50)
print("Selected features:", selected features)

selected features indices = np.where(selected features == 1) [0]
print("Selected features indices:", selected features indices)

Selected features indices: [ 6 11 14 17 18 19 22 25 27 28 29 30 34]

Silhouette Score(k-means): 0.87
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