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Executive Summary 

 
This dissertation presents a novel approach to identifying phishing attacks by leveraging 

unsupervised machine-learning techniques through URL analysis. Unlike most existing study, 

which relies on supervised learning methods that require extensive training on labelled data, this 

study introduces a method that enables the detection of phishing attempts without prior 

knowledge of malicious URLs. 

 

The present work applied k-means and Gaussian Mixture Models (GMM) to detect phishing 

attacks. It analysed URL components to uncover parameters indicative of phishing, employed 

nature-inspired and genetic algorithms for feature selection, and assessed the performance of the 

clustering models using the silhouette score. The model's effectiveness was tested with an external 

data set to ensure robustness. 

The methodology begins with URL preprocessing and applies four feature selection algorithms: 

Ant Colony, Dragonfly, Particle Swarm Optimization (PSO), and Binary PSO. The best feature 

subset identified is then used to perform clustering with k-means and GMM. The k-means 

algorithm, paired with the PSO-selected features, achieved the highest silhouette score, signifying 

the most accurate clustering. The findings underscore the potential of unsupervised learning in 

detecting phishing attacks.  

 

This work can be expanded by incorporating features like behavioural data to enhance phishing 

detection accuracy. Integrating unsupervised methods with semi-supervised learning could 

improve performance in scenarios with limited labelled data. Developing real-time detection 

systems based on these techniques would allow immediate threat response. Exploring the model's 

adaptability to other domains, like spam detection, could further demonstrate its versatility. 

Finally, creating user-friendly tools that implement these methods could make advanced phishing 

detection more accessible to cybersecurity professionals. 

 

                                                                                                 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



4  

Introduction 

 

1. Overview 

Phishing is a cyber-attack that targets naive online users, tricking them into revealing sensitive 

information such as username, password, social security number, credit card number etc. 

Attackers fool Internet users by masking web pages as trustworthy or legitimate pages to retrieve 

personal information. There are many anti-phishing solutions, such as blacklisting or whitelisting, 

and heuristic and visual similarity-based methods proposed to date. However, online users are 

still trapped in revealing sensitive information on phishing websites [1]. Researchers have 

integrated machine learning techniques into network security, yielding promising results in 

enhancing cybersecurity measures. Phishing attacks pose significant threats to individuals and 

organisations worldwide, with attackers using deceptive methods to obtain sensitive information. 

Detecting phishing attacks and URLs has become challenging due to the dynamic nature of web 

content. Traditional supervised machine-learning approaches for phishing URL detection rely on 

labelled datasets, which can be resource-intensive and impractical due to the rapid proliferation 

of new phishing URLs [2]. In response to these challenges, the present work focuses on exploring 

and applying unsupervised machine-learning techniques for detecting phishing URLs. 

Unsupervised learning offers a promising alternative by enabling the detection of patterns and 

anomalies in data without the need for labelled examples. By leveraging URL data's inherent 

structure and characteristics, unsupervised models aim to identify suspicious URLs based on their 

deviation from normal web behaviour. 

1.2 Problem Statement 

A Study on Unsupervised Machine Learning Algorithms for detection of Phishing Attacks. 

 

1.3   Objectives 

• To detect phishing attacks using unsupervised algorithms, namely, k-means and GMM. 

• To analyses the URL parameters responsible for the phishing attack. 

• To select the relevant features using nature-inspired and genetic algorithms for clustering 

the normal and the malicious URLs. 

• To evaluate the clustering performance of k-means and GMM algorithms based on the 

silhouette score. 

• To validate the robustness of the model fit using an external dataset. 
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   2.Background Concept 

 
Phishing attack detection by analyzing URL components involves scrutinizing various URL 

elements to identify suspicious patterns indicative of phishing attempts. Key components 

examined include the domain name, path, query parameters, and unusual characters or 

structures deviating from legitimate URLs. To enhance detection accuracy, feature selection 

methods such as Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 

Dragonfly Algorithm, and Binary Particle Swarm Optimization (BPSO) are employed to 

identify the most relevant features from the URL data. These selected feature sets are then used 

to train clustering models, specifically K-means and Gaussian Mixture Model (GMM), to 

group similar URLs. The performance of these clustering models is evaluated using the 

silhouette score, which measures how well the URLs are grouped. By comparing the silhouette 

scores, the effectiveness of each feature selection technique in providing the best clustering 

results is determined, aiding in the identification of the most robust method for phishing 

detection. 

2.1. Feature Selection Methods 

Feature selection is a vital aspect of machine learning. Feature selection is applied to reduce 

the number of features in many applications where data has hundreds or thousands of features. 

Existing feature selection methods mainly focus on finding relevant features. By carefully 

choosing the appropriate set of features, the performance of clustering models can be 

significantly improved [3]. This work explores four different methods of feature selection: the 

Ant Colony Optimization algorithm, Dragonfly algorithm, PSO and Binary PSO. 

   2.1.1   Ant Colony Optimization (ACO) Technique 

Ant Colony Optimization (ACO) is a computational technique inspired by the foraging 

behaviour of ants in nature. It solves complex optimization problems, such as finding the 

shortest path between an ant colony and a food source. In this process, ants leave pheromone 

trails on their travel paths, which guide other ants to the food source. Over time, shorter paths 

are reinforced by accumulating more pheromones, while longer paths experience pheromone 

evaporation. In ACO, this behaviour is simulated using artificial 'ants' to find optimal solutions 

in a search space. These ants construct solutions as they move through possible states, 

depositing virtual pheromones that influence the paths of subsequent ants. The algorithm is 

refined iteratively, balancing exploring new paths with exploiting known good paths, making 

it particularly effective for problems like the travelling salesman, network routing, and 

scheduling. In Figure 1, the Ant Colony Optimization process is summarized, showing how 
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exploration identifies potential paths, optimization refines these paths, and the final step 

extracts the optimal solution. 

 

              

 

                     
                                           Figure 1: Ant colony optimizer 

                                   

The adaptive and self-organizing nature of ACO allows for handling dynamic changes and 

efficiently finding near-optimal solutions. In the context of feature selection, ants iteratively 

choose features based on pheromone levels, which are updated to reflect the quality of selected 

features. This approach is particularly useful for selecting a subset of features with numerous 

attributes in datasets [4]. The Algorithm of Antcolony can be found in Algorithm 1 

The ACO class is initialized with the list of features, the number of ants, the maximum number 

of iterations, and the initial pheromone value. This creates a pheromone matrix with the same 

length as the number of features, which is initialized to the initial pheromone level. Table 1  

Presents the Hyperparameter of Antcolony algorithm and their description. 

   Table 1: Hyperparameters of Ant colony optimizer 

 

Hyperparameter Description 

Number of Ants(n) Number of ants used in each run of the algorithm. More ants 

can explore more solutions but take more time. 

Number of Iterations More iterations allow for a more thorough search for the best 

solution. 

Pheromone Evaporation 

Rate: rho 

How quickly the pheromone trail fades away. A 

slower rate means the path is remembered longer, 
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while a faster rate encourages exploring new paths. 

Alpha (α) How much the ants follow the pheromone trail. Higher values 

mean ants are more likely to follow the trail. 

Beta (β) How much do the ants consider other factors like distance or 

cost when choosing a path? Higher values mean ants pay more 

attention to these factors. 

Initial Pheromone Level How much pheromone does each ant leave on its path? More 

pheromones can lead to quicker solutions but might miss the best 

one. 

 

 

     Algorithm 1: ANTCOLONY 
 

01.  Initialize pheromone levels on all paths 

02.  Set parameters:  

03.      alpha (pheromone importance) 

04.      beta (visibility importance) 

05.      rho (evaporation rate) 

06.      Q (pheromone deposit) 

07.      number of ants 

08.  While stopping criteria not met do 

09.       For each ant do 

10.            Initialize tour for this ant 

11.          While tour is not complete do 

12.                Choose next city based on pheromone levels and visibility (using probabilities) 

13.                 Move to the next city and update tour 

14.           End While 

15.           Evaluate the tour (calculate tour length or cost) 

16.             Update best tour if necessary 

17.         End For 

 

18.      Update pheromone levels 

19.          For each path do 

20.              Evaporate pheromone 

21.              Deposit new pheromone based on the best tour(s) 

22.          End For 

23.  End While 

24.  Return the best tour fo 
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     2.1.2   DRAGONFLY ALGORITHM 

 

The Dragonfly Algorithm (DA) is an innovative nature-inspired optimization technique that 

emulates dragonflies' static and dynamic swarming behaviour in their natural environment. 

The algorithm effectively navigates and optimize complex search spaces by simulating these 

behaviour. DA strikes a balance between exploration (searching new areas) and exploitation 

(refining known areas) through the coordinated movements of artificial dragonflies, which 

are guided by principles such as alignment (synchronization with others), cohesion (tendency 

to stay together), separation (avoiding crowding), attraction to food sources, and avoidance 

of threats. This approach has demonstrated superior performance to many traditional meta-

heuristic optimization methods [5]. The Dragonfly algorithm is represented in Figure 2, 

showcasing its core behavioral mechanisms: separation, alignment, cohesion, attraction to 

food sources, and distraction from enemies. These components play a crucial role in steering 

the optimization process effectively. 

 

                   
 

                                           Figure 2: Dragonfly Algorithm 

Initialization: The Dragonfly Algorithm randomly selects an initial set of features from the 

dataset. 

Evaluation: It evaluates the performance of the selected features using a predefined 

evaluation criterion, such as accuracy or error rate, on a validation dataset. 

Update: Based on the evaluation results, the algorithm updates the selected features using 

its optimisation strategy, which involves adjusting the feature subset to improve 

performance. 

Iteration: The algorithm repeats the evaluation and update steps for several iterations or 
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until a stopping criterion is met. 

Optimization: The algorithm continuously optimizes the feature subset, gradually 

improving its performance based on the evaluation criterion. 

Final Selection: Once the optimization process is complete, the algorithm selects the final 

subset of features that maximizes performance according to the evaluation criterion. 

The Algorithm of Dragonfly can be found in Algorithm 2, 

Table 2 Presents the Hyperparameter of Dragonfly algorithm and their description. 

 

      Table 2: Hyperparameters of   Dragonfly Algorithm  

 

Hyperparameter Description 

Number of Dragonflies  Determines the size of the population, impacting exploration 

capability. 

Number of Iterations Controls how often the algorithm runs, affecting the 

thoroughness of solution search. 

Inertia Weight (w) Controls the influence of the previous velocity on the current 

velocity of each dragonfly. It helps balance exploration and 

exploitation. 

Step size;x Controls the step size or how far dragonflies move in each 

iteration. It affects the convergence speed and accuracy. 

Absorption_coffeicient The absorption coefficient influences how dragonflies respond to 

external factors such as threats or constraints 
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     Algorithm 2: Dragonfly  
 

 

01.  Initialize the population of dragonflies (positions and velocities) 

02.  Initialize the step size (ΔX), separation weight (w_s), alignment weight (w_a), 

cohesion weight (w_c), 

03.  Initialize food factor weight (w_f), enemy factor weight (w_e), and other 

algorithm-specific parameters 

04.  Evaluate the fitness of each dragonfly in the population 

05.  While stopping criteria not met do 

06.      For each dragonfly do 

07.          Calculate the separation (S), alignment (A), and cohesion (C) components 

based on neighboring dragonflies 

08.          Calculate the attraction towards food source (F)    and distraction from 

enemies (E) 

09.          Update velocity of the dragonfly using the following formula: 

10.              velocity = w_s * S + w_a * A + w_c * C + w_f * F + w_e * E 

11.          Update the position of the dragonfly using: 

12.              position = position + velocity 

13.          Apply boundary conditions if the dragonfly goes out of bounds 

14.          Evaluate the fitness of the updated dragonfly position 

15.          Update the best position found by the dragonfly if the new position is better 

16.      End For 

17.      Adjust the step size (ΔX) and other dynamic parameters as necessary 

18.  End While 

      19.  Return the best position found by any dragonfly as the solution 
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    2.1.3   Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a nature-inspired optimization technique based on the 

social behaviour of birds flocking or fish schooling. It operates with a population of candidate 

solutions, particles, that move through the search space by adjusting their velocities based on 

individual and collective experiences. Each particle updates its position, which is influenced 

by its own best-known position and the best-known positions of its neighbours, effectively 

balancing exploration and exploitation of the search space. This dynamic adjustment helps 

the swarm efficiently converge towards optimal or near-optimal solutions [6].     

PSO is particularly valued for its simplicity, ease of implementation, and robustness in 

handling non-linear, multi-dimensional, and complex optimization problems. It has been 

successfully applied across various domains, including machine learning, engineering design, 

and economic modelling. The algorithm's ability to find high-quality solutions with relatively 

low computational cost makes it popular for diverse optimization tasks. 

 

The description of the algorithm is as follows. 

Starting Point: PSO begins by randomly picking a group of potential feature subsets. 

Moving Around: Each particle adjusts its position (feature selection) based on two things: 

It's the previous best choice (personal best). The best choice is made by any particle in the 

group (global best). It does this by considering how much it should move towards these better 

choices.  

Checking Fitness: After moving, each particle checks how good its new feature subset is 

using a fitness measure. This tells us how well the features predict or classify. 

Updating Best Choices: If a particle finds a better solution (higher fitness) than before, it 

remembers it as its personal best. If any particle in the group finds an even better solution, 

then it is the new global best. 

Repeating: The above steps are repeated for a set number of rounds or until there's no more 

improvement. 

Final Decision: The feature subset with the highest fitness (either from a single particle or 

from the group) is chosen as the final selection. So, PSO helps find the best combination of 

features by having particles move around in the feature space, learning from their own 

experience and the group's best choices. Table 3 Presents the Hyperparameter of PSO 

algorithm and their description. The Algorithm of PSO can be found in Algorithm 3. 
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          Table 3: Hyperparameters of PSO 
 

 

 

 
 

 

 

 

 

 

 

 

  

         
     Algorithm 3: PSO 
 

01.  Initialize: 

02.      Initialize the swarm of particles with random positions and velocities. 

03.      For each particle, set the initial position as its personal best (pBest). 

04.      Identify the global best (gBest) position among all particles based on the 

objective function. 

05.  Repeat until convergence (or max iterations): 

06.      For each particle: 

07.          Update the particle's velocity: 

08.              velocity = nertia_weight * current_velocity   

                           + cognitive_constant * rand()  

                           * (pBest_position - 

                             current_position)  

Hyperparameter Description 

Cognitive Coefficient (c1) The number of trees in the forest 

Social Coefficient (c2) The maximum depth of the individual trees 

Inertia Weight (ω) The minimum number of samples required to split an 

internal node 

Best known position of 
particle(P) 

minimum number of samples required to be at a leaf 

node 

Current velocity of 
particle(V) 

velocity of the particles 

Number of Iterations The maximum number of iterations the algorithm will 

run 

 Swarm Size The number of particles in the swarm. 
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                           + social_constant * rand() *  

                            (gBest_position- current_position) 

09.          Update the particle's position: 

10.              current_position = current_position + velocity 

11.          Evaluate the particle's fitness based on  

              the objective function. 

12.          Update personal best (pBest) if  

                   the current fitness is  better: 

13.              If current_fitness < pBest_fitness: 

14.                  pBest_position = current_position 

15.                  pBest_fitness = current_fitness 

16.      Update the global best (gBest) if any particle's  

              personal best is better: 

17.         If any pBest_fitness < gBest_fitness: 

18.              gBest_position = that_particle's_pBest_position 

19.              gBest_fitness = that_particle's_pBest_fitness 

20.  Return the best position (gBest) and the corresponding  

           fitness value. 

 

  

      2.1.4   Binary Particle Swarm Optimization 

 
Binary Particle Swarm Optimization (BPSO) is an adaptation of the standard Particle 

Swarm Optimization (PSO) for solving binary (discrete) optimization problems. In BPSO, 

each particle represents a solution in a binary format, where each dimension can take a value 

of either 0 or 1. The algorithm updates the velocity of each particle based on its own best-

known position and the best-known positions of its neighbours, similar to standard PSO. 

To convert the continuous velocity values to binary values, BPSO uses a sigmoid function, 

which outputs probability. This probability determines whether each dimension of a 
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particle's position should be set to 0 or 1. The particle's position is then updated by 

comparing this probability to a random number, effectively flipping the bits accordingly. 

BPSO is particularly useful for discrete optimization problems, where solutions must be 

represented in a binary format, such as feature selection in machine learning and network 

design problems [7]. 

Initialization: BPSO starts by initializing a population of binary strings, each representing 

a possible solution. In feature selection, each bit in the binary string corresponds to a feature 

being selected (1) or not selected (0). 

Evaluation: The fitness of each solution (particle) in the population is evaluated based on 

a fitness function. In feature selection, this function typically measures the quality of the 

subset of features selected.  

Updating Velocity and Position: BPSO then updates each particle's velocity and position 

based on its current position, the best position it has achieved so far (personal best), and the 

best position achieved by any particle in the population (global best). The velocity 

determines the direction and magnitude of movement for each particle. 

Movement: Each particle adjusts its position according to its velocity, possibly flipping 

bits in its binary string representation to explore the search space.  

Update Personal and Global Best: After moving, each particle updates its personal best 

position if the new position has a better fitness value. The global best position is updated if 

any particle achieves a better fitness value than the current best. 

Termination: The algorithm terminates when a stopping criterion is met, such as reaching 

a maximum number of iterations or when the improvement in fitness becomes negligible.  

Extraction: Finally, the best solution found (global best) represents the selected subset of 

features. BPSO is particularly effective for feature selection because it explores the search 

space efficiently, quickly converging towards promising solutions. By iteratively updating 

the positions of particles based on their own experience and the experiences of the entire 

swarm, BPSO can effectively navigate the high-dimensional feature space to find a subset 

that optimizes the specified fitness function. The Algorithm of BPSO can be found in 

Algorithm 4. 
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       Algorithm 4: BPSO 
 

 

01.  Initialize: 

02.      Initialize the swarm of particles with random binary positions (0s and 1s) and 

velocities. 

03.      For each particle, set the initial position as its personal  

                           best (pBest). 

04.      Identify the global best (gBest) position among all particles based  

                                   on the objective function. 

05.  Repeat until convergence (or max iterations): 

06.      For each particle: 

07.          For each dimension in the particle's position: 

08.              Update the particle's velocity: 

09.                  velocity[d] = inertia_weight * current_velocity[d] +  

                                 cognitive_constant *  

                        rand() * (pBest_position[d] - current_position[d])  

                                        + social_constant * rand() *  

                                  (gBest_position[d] - current_position[d]) 

10.              Apply the sigmoid function to the velocity: 

11.                  probability[d] = 1 / (1 + exp(-velocity[d])) 

12.              Update the particle's position using the probability: 

13.                  If rand() < probability[d]: 

14.                      current_position[d] = 1 

15.                  Else: 

16.                      current_position[d] = 0 

17.          Evaluate the particle's fitness based on the objective function. 

20.          Update personal best (pBest) if the current fitness is better: 
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21.              If current_fitness < pBest_fitness: 

22.                  pBest_position = current_position 

23.                  pBest_fitness = current_fitness 

24.      Update the global best (gBest) if any particle's personal  

                                     best is better: 

25.          If any pBest_fitness < gBest_fitness: 

26.              gBest_position = that_particle's_pBest_position 

27.              gBest_fitness = that_particle's_pBest_fitness 

28.  Return the best position (gBest) and the corresponding fitness value 

 

        

      2.2   Clustering Method 

Nowadays, many industries deal with very large data sets of different types. Manually 

processing all that information can be time-consuming and might not even add value in the 

long term. Many strategies, from simple automation to machine learning techniques, are 

being applied for a better return on investment. Clustering is an unsupervised machine 

learning method in which the model tries to group similar data points into clusters based on 

their inherent characteristics without predefined labels. In clustering, the model is trained 

to identify patterns and similarities within the data, enabling the discovery of natural 

groupings and structures. For instance, an algorithm can learn to group customers into 

different segments based on their purchasing behaviour, as illustrated below. Various 

clustering algorithms, such as K-means, hierarchical clustering, and DBSCAN, can be used, 

each with its approach to defining and discovering clusters. K-means is popular for dividing 

data into a predetermined number of clusters. 

      2.2.1   K-means 

K-Means is a popular clustering algorithm used to partition a dataset into distinct groups or 

clusters based on feature similarity. It starts by randomly selecting K centroids, which act 

as the initial centers of the clusters. Each data point in the dataset is then assigned to the 

nearest centroid, forming K clusters. After the initial assignment, the centroids are 

recalculated as the mean of all data points within their respective clusters. Data points are 
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reassigned to the nearest centroid based on the updated centroid positions. This process of 

recalculating centroids and reassigning data points is repeated iteratively until the centroids 

no longer change significantly, indicating that the clusters have stabilized. The final 

outcome is K distinct clusters, where each cluster contains data points that are more similar 

to each other than to those in other clusters. [8]. The Algorithm of K-Means can be found 

in Algorithm 5. 

You keep repeating these steps—adjusting the jars' positions and reassigning marbles—

until the jars stop moving significantly or a predefined number of iterations is reached. 

         
       Algorithm 5: K-Means 
 

01: Initialize k centroids randomly from the data points.  

02: Repeat until convergence:  

03:        a. Assignment step:  

04:             For each data point, calculate the distance to 

                                 each centroid. 

05:             ii. Assign each data point to the nearest centroid.  

06:          b. Update step:  

07:             For each cluster, calculate the new centroid by 

                     averaging the coordinates of all 

                          data points assigned to it. 

08:            c. Check for convergence:  

09:              If centroids do not change or the change is minimal,  

                                          stop the algorithm.  

10: Return the final centroids and cluster assignments.    

 

The final positions of the jars and the marbles they contain represent the clusters found by 

the algorithm.  However, just like in real life, sometimes you might end up with suboptimal 

groups if the initial placement of the jars was unlucky or if the data doesn't naturally fall 

into distinct clusters. Despite its simplicity, K-Means is widely used for its efficiency and 

effectiveness in many applications, such as market segmentation, image compression, and 
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data preprocessing. As shown in Figure 3, k-means clustering effectively transforms 

similar data points into distinct cluster groups, demonstrating the separation achieved after 

the clustering process. 

                                                                           

                  

                                  

                                               Figure 3: K-Means clustering 

 

 

 

2.2.2 Gaussian Mixture Model (GMM) 

A Gaussian Mixture Model (GMM) is a probabilistic model used for clustering by 

representing data as a mixture of multiple Gaussian distributions. Each Gaussian 

distribution corresponds to a cluster and is defined by its mean, covariance, and weight. 

GMM uses the Expectation-Maximization (EM) algorithm to iteratively update these 

parameters, maximizing the likelihood of the data. Unlike k-means, GMM performs soft 

clustering, assigning probabilities to data points for belonging to each cluster. This allows 

GMM to handle clusters of different shapes, sizes, and overlapping regions. The number 

of Gaussian components is chosen using criteria like BIC or AIC. GMM is useful in 

applications like clustering, anomaly detection, and density estimation. 

GMM works by modelling data as a mixture of Gaussian distributions, each representing 

a cluster. It uses the Expectation-Maximization (EM) algorithm to iteratively update the 

parameters (mean, covariance, weight) of these distributions by calculating the 

probabilities of data points belonging to each cluster. The process repeats until the 

parameters converge, resulting in a model that captures complex and overlapping cluster 

structures [9].  
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As in the candy example, GMM iteratively adjusts its parameters to best explain the data. 

It assumes that the data is generated from a mixture of several Gaussian distributions, each 

representing a different cluster or group. 

GMM is useful for tasks like image segmentation, where pixels with similar characteristics 

must be grouped together or for identifying underlying patterns in complex datasets. 

However, like any model, GMM has limitations, such as assuming that the data is normally 

distributed and specifying the number of components (candy types) beforehand. Figure 4 

shows GMM clustering with clusters differentiated by their standard deviations. The plot 

highlights how varying standard deviations lead to distinct cluster shapes and spreads. The 

Algorithm of GMM can be found in Algorithm 6. 

                           90  

 

                  
 

 

                                     Figure 4: Gaussian Mixture Model 
 

   
 
        

       Algorithm 6: GMM 
 

                   

01:  # Initialize the parameters 

02:  K = number_of_components          # Number of Gaussian components 

03:  mu = initialize_means(K)          # Means (μ) for each component 

04:  sigma = initialize_covariances(K) # Covariance matrices (Σ) for  

                                                                                        each component 
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05:  pi = initialize_mixing_coeffs(K)  # Mixing coefficients (π) for  

                                              each component 

06:  converged = False                 # Convergence flag 

 

07:  # Repeat until convergence 

08:  while not converged: 

09:       

10:      # E-Step: Calculate the responsibilities (γ_ik) 

11:      for i in range(N):           # Loop over each data  

                                         point x_i 

12:          for k in range(K):         # Loop over each component k 

13:              # Compute the probability that x_i belongs to  

                                   component k 

14:              prob_k = pi[k] * gaussian_pdf(x[i], mu[k], sigma[k]) 

15:               

16:              # Calculate the responsibility γ_ik 

17:              responsibilities[i, k] = prob_k / sum(pi[j] *  

                        gaussian_pdf(x[i], mu[j], sigma[j])  

                         for j in range(K)) 

20:       

21:      # M-Step: Update the parameters (μ, Σ, π) 

22:      for k in range(K):                # Loop over each component k 

23:          # Update the mixing coefficient π_k 

24:          N_k = sum(responsibilities[i, k] for i in range(N)) 

25:          pi[k] = N_k / N 

26:           

27:          # Update the mean μ_k 

28:          mu[k] = sum(responsibilities[i, k] * x[i] for  

                        i in range(N)) / N_k 

29:           

30:          # Update the covariance matrix Σ_k 

31:          sigma[k] = sum( 

32:              responsibilities[i, k] * np.outer(x[i] - mu[k],  

                                  x[i] - mu[k]) 

33:              for i in range(N) 

 

 

34:          ) / N_k 

35:       

36:      # Check for convergence (based on log-likelihood or  

                                  parameter change) 

37:      if log_likelihood_change < threshold or parameter_change  

                                            < threshold: 

38:          converged = True 

 

     

 

 

 

 



21  

      3.  Literature Survey  

 
Bahnsen et al. [10] used the application of machine learning models for predicting phishing 

sites using URLs as input. They compared two methods: a feature-engineering approach 

combined with a random forest classifier and a novel approach utilizing recurrent neural 

networks (RNNs). Their study found that the RNN-based method achieved an impressive 

accuracy rate of 98.7%, surpassing the random forest approach by 5%. This result highlights 

the RNN method as a highly effective, scalable, and fast-acting detection system that does 

not rely on manual feature creation or complete content analysis. This work demonstrates 

the potential of RNNs for proactive phishing site detection, offering significant 

improvements in accuracy and efficiency. 

Li et al. [11] explored the critical role of feature selection as a data preprocessing strategy, 

especially for high-dimensional data in data mining and machine learning. The main goals 

of feature selection include simplifying models, enhancing data-mining performance, and 

ensuring clean, interpretable data. The survey highlights the challenges and opportunities 

presented by the proliferation of big data. It provides a comprehensive overview of recent 

advances in feature selection, categorizing algorithms into four main groups: similarity-

based, information-theoretical-based, sparse-learning-based, and statistical-based methods. 

The survey also introduces an open-source repository for feature selection algorithms, 

facilitating research and evaluation in this field. 

            Al-Ani et al. [12] proposed a novel approach to this problem using Ant Colony Optimization 

(ACO), a metaheuristic inspired by ants' behaviour in finding the shortest paths to food. 

The ACO algorithm optimizes feature selection by balancing local heuristics with 

knowledge from previous iterations. Applied to two classification problems, the method 

was tested using five baseline feature vectors input to an Artificial Neural Network (ANN). 

The study involved 71,354 training patterns and 23,785 testing patterns. The classification 

accuracies achieved were 76.17%, 76.04%, 74.06%, 75.23%, and 89.39%. The results 

demonstrated the ACO-based method's potential, with one feature vector significantly 

outperforming the others. This approach shows promise in enhancing the efficiency and 

effectiveness of feature selection in pattern classification.  

            Sekhar et al. [13] proposed using the Dragonfly Algorithm (DFA) for feature selection in 

skin disease classification. DFA was applied to identify key features for illness 

categorization and paired with CNN models, including VGG19 and EfficientNet-B2, for 

classification tasks. The algorithm evaluated feature sets by measuring the accuracy of 

classifiers on a training dataset, ensuring precise selection. Experimental results showed 
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DFA's high precision and minimal loss. Two CNN models, based on EfficientNet-B2 and 

VGG19, were trained on DermNet NZ and ISIC 2019 datasets. These models achieved an 

average accuracy of 88.5% and a loss of 0.0003 across eight skin diseases. The study 

demonstrated deep learning's potential to classify skin conditions with near-human 

accuracy. It also highlighted the potential for large-scale, real-time skin disease diagnosis, 

enhancing healthcare practices and patient outcomes [11]. 

             Firpi et al. [14] used a feature extraction method based on Particle Swarm Optimization 

            (PSO) to monitor brain activity and identify cognitive states and task intensity. This 

approach aims to develop a pattern recognition system that classifies cognitive states, 

enabling workload redistribution among subjects. The system utilises multiple features 

from different domains, with PSO employed for feature selection. Classification is 

performed using the k-nearest neighbour (k-NN) algorithm. The method was tested on data 

from eight subjects, achieving an average classification accuracy of 90.25% on held-out, 

cross-validated data. This demonstrates the efficacy of PSO in optimizing feature selection 

for cognitive state recognition. The study shows the potential for adaptive workload 

management based on real-time cognitive monitoring. This approach could significantly 

enhance performance and reduce cognitive overload. 

            Cervante et al. [15] proposed two innovative filter feature selection methods that combine 

Binary Particle Swarm Optimization (BPSO) with information theory for classification 

tasks. The first method uses BPSO and mutual information to evaluate the relevance and 

redundancy of feature subsets, while the second method combines BPSO with entropy for 

a similar purpose. Different weights for relevance and redundancy are applied in the fitness 

functions to optimize feature selection and classification accuracy. These methods were 

tested using a decision tree (DT) on four datasets. The results demonstrated that both 

algorithms, with appropriate weights, could significantly reduce the number of features and 

achieve similar or better classification accuracy. The first algorithm generally selects a 

smaller feature subset, whereas the second often results in higher accuracy. This study 

highlights the effectiveness of integrating BPSO with information theory in enhancing 

feature selection.  

 Peng et al. [16] proposed a feature selection method based on the maximal statistical 

dependency criterion using mutual information, which is challenging to implement directly. 

They introduced the minimal-redundancy-maximal-relevance (mRMR) criterion as an 

equivalent form for incremental feature selection. Their two-stage algorithm combines 

mRMR with advanced feature selectors, such as wrappers, to efficiently select a compact 
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set of superior features. The method was tested with naive Bayes, support vector machine, 

and linear discriminant analysis classifiers across four datasets: handwritten digits, 

arrhythmia, NCI cancer cell lines, and lymphoma tissues. Results showed that mRMR 

significantly enhanced feature selection and classification accuracy. This approach offers a 

cost-effective solution for high-quality feature selection in various classification tasks. 

            Ranjitha et al. [17] addressed the limitations of traditional phishing detection methods, such 

as URL blacklisting and heuristic-based approaches, which struggle to keep pace with 

evolving phishing tactics. The study explored the application of machine learning classifiers 

to identify illegitimate websites, specifically using Multilayer Perceptron and Bernoulli 

Naive Bayes (NB) classifiers. Feature selection was carried out using a decision tree 

classifier to identify the most relevant features for adequate classification. The researchers 

trained and tested their classifiers on a dataset comprising blacklisted and whitelisted 

websites. Evaluation metrics, including accuracy, precision, recall, and the ROC curve, 

were used to assess classifier performance. The Multilayer Perceptron achieved an accuracy 

of over 82%, demonstrating its effectiveness in detecting phishing sites. These findings 

highlight the potential of machine learning techniques in enhancing phishing detection and 

mitigating associated risks. 

            Pan et al. [18] proposed a novel approach to phishing detection that addresses the limitations 

of existing schemes, which often fail due to the adaptability of phishing attackers. The 

proposed method identifies anomalies in web pages, specifically discrepancies between a 

website’s identity, structural features, and HTTP transactions. This approach does not 

require user expertise or prior knowledge of the website, making it more broadly applicable. 

The research demonstrated that this method poses a high cost to attackers attempting to 

evade detection. Experimental results showed that the proposed phishing detector achieved 

a low miss rate and false-positive rate, highlighting its effectiveness in identifying phishing 

attempts while minimizing errors. This approach provides a promising solution to the 

ongoing challenge of detecting evolving phishing threats. 

            Rao et al. [19] addressed the challenge of phishing websites, which often mimic legitimate 

sites closely, making it difficult for users to distinguish between them. The study focuses 

on detecting phishing websites by analysing their content and layout. They proposed a novel 

method that utilizes TF-IDF (Term Frequency-Inverse Document Frequency) analysis to 

extract key terms from suspected phishing sites. These extracted phrases are then queried 

in various search engines, and the results are integrated and ranked to identify potential 

phishing sources.  
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     4. Proposed Approach 

The proposed method for detecting phishing attacks involves a structured approach beginning 

with data collection, where relevant data about URLs and their components are gathered from 

various sources such as databases, websites, and security repositories. This data is then 

subjected to data preprocessing, which includes cleaning, normalisation, and transformation 

to ensure consistency and accuracy. Following this, feature selection is conducted using two 

nature-inspired algorithms, such as Ant Colony Optimization and Dragonfly Algorithm, and 

two genetic algorithms, namely Particle Swarm Optimization (PSO) and Binary Particle 

Swarm Optimization (BPSO). Each algorithm attempts to select the most relevant feature 

subset from the dataset. The selected subset of data is then fitted into clustering models like 

k-means and Gaussian Mixture Models (GMM). The performance of these clustering 

methods is evaluated and compared using the silhouette score to determine their effectiveness 

in accurately identifying phishing attacks. 

The development of the machine learning-based predictive model involves the following 

steps: 

2. Data collection 

3. Data preprocessing 

4. Feature selection 

5. Methodology 

 

    4.1 Dataset Description 

The Phishing Legitimate data set is available both in text and CSV files, which provides the 

following resources that can be used as inputs for model building: A collection of website 

URLs for 10000 websites. Each sample has 49 website parameters. These features include 

URL length, domain age, presence of specific keywords, and structural characteristics. With 

a binary classification objective, the dataset aims to differentiate between legitimate URLs 

and those associated with phishing activities. This dataset presents a rich and diverse array of 

URL attributes, making it suitable for in-depth exploratory analysis and predictive modelling 

tasks. By examining these features, patterns and insights can be gleaned to enhance 

cybersecurity measures and mitigate online threats. 

Notably, each sample in the dataset includes 49 meticulously documented features, as 

outlined in Table 4 and Table 5 Description of target class. 
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Table 4: Description of the dataset. 

 

Attributes Description 

1-15 Features of URL structure 

16-22 Features of External Content 

22-27 Features of From and Action 

28-34 Features of Redirection  

34-37 Scripting features 

37-42 Features of security 

42-47 Domain mismatch features 

48-49 URL length metrics 

 

Table 5: Description of the Target class  

 

Dataset Type 

 Phishing_legitimate_url   Normal 

  Attack 

 

   4.2 Data Pre-processing 

Data preprocessing converts raw data into a format suitable for machine learning models. This 

phase involves using various methods to prepare the dataset for analysis. After the initial 

preprocessing, the total number of samples decreased to 7,089, and the total number of 

features reduced to 28. The following sections provide detailed explanations of each 

preprocessing step for better understanding. 

 

4.2.1 Handling Missing Values 

To ensure data quality, an examination was conducted to identify missing values, including 

NA or blank blocks. To maintain dataset integrity, missing values were to be imputed with 

the mean of their respective columns. The examination revealed that the values in the dataset 

are present. As a result, no imputation was necessary. The dataset is complete and ready for 

the next stage of analysis. 
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   4.2.2 Normalization of URL Length  

During the initial exploration of the dataset, it was observed that the feature "URL Length" 

contained integer values that diverged from the standardised range of -1 to 1, characteristic of 

other features in the dataset. To maintain uniformity in data scale and facilitate comparative 

analysis, the "URL Length" was scaled within the desired range of -1 to 1, ensuring consistency 

across all features. 

   

   4.2.3 Identification and Removal of Variance-based Feature   

To enhance computational efficiency and simplify the dataset, an evaluation was conducted to 

identify columns with minimal variance. Columns showing less than 0.01 variance, which 

indicated a lack of variability, were identified as redundant and removed. This feature 

reduction helped eliminate unnecessary data, decreasing the dataset's dimensionality. As a 

result, the dataset was streamlined to include only 32 relevant features, making it more efficient 

and focused for analysis. 

 

4.2.4 Detection and Removal of Highly Correlated Features 

To address multicollinearity and enhance the robustness of the analyses, an examination was 

conducted to identify pairs of features with high correlation. Features exceeding the 

correlation threshold of 0.9 were considered highly correlated and thus removed to prevent 

redundancy. Specifically, the feature "AbnormalExtFormActionR" was identified as 

correlating higher than 0.9 and dropped from the dataset. This step was crucial in mitigating 

the risk of overfitting and improving the interpretability of the models trained on the dataset. 

Removing such redundant information ensures that the model relies on a more independent 

and diverse set of features. 

    4.2.5 Outlier Detection and Removal 
Outlier detection was conducted on a dataset containing 10,000 samples to enhance the 

quality and reliability of the data. Statistical methods, including z-score, were employed to 

identify data points significantly deviating from the expected distribution. These outliers, 

which could potentially skew the analysis, were systematically removed from the dataset. In 

total, 2,911 samples were classified as outliers and subsequently eliminated. This process 

reduced the dataset to 7,089 samples, ensuring a more accurate and representative data set 

for analysis. The removal of outliers helped prevent these anomalies from unduly 

influencing the results.  
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   4.2.6 Univariate Feature Analysis and Selection 

A thorough univariate analysis was conducted to assess the individual contribution of each 

feature to the dataset. This analysis aimed to identify features with limited relevance or 

low informational value. Based on the findings, features deemed less informative were 

selectively removed. This careful selection process helped streamline the dataset by 

focusing on the most valuable variables. As a result, 28 relevant features remained after 

the analysis. Reducing features enhances the dataset's efficiency and focus for subsequent 

analyses. The remaining features are expected to improve the quality and interpretability 

of the models. These 28 features were utilized in the next stage of analysis.  

 

   4.3 Feature selection 
Feature selection is a critical aspect of machine learning as it enhances the accuracy of 

clustering models. This study compares four feature selection methods the Ant Colony 

Optimization Algorithm , Dragonfly Algorithm ,PSO and BPSO. After cleaning the data, 

the dataset is refined to contain 47 features. Subsequently, four different feature selection 

algorithms are used   to identify and extract the most relevant features from the dataset. Those 

32 features are implemented in the given algorithm, as shown in Table 6. After the process 

is completed, the output of the best features by Ant colony is shown in Table 7. 

 
    Table 6: Features for Ant Colony Optimization Algorithm 

 

Dataset Original Feature 

 

 

 

 

 

 

 

 

 

 

 Phishing url 

'NumDots', 'SubdomainLevel', 'PathLevel', 'UrlLength', 

'NumDash', 'NumDashInHostname', 'AtSymbol', 

'TildeSymbol', 'NumUnderscore', 'NumPercent', 

'NumQueryComponents', 'NumAmpersand', 

'NumHash', 'NumNumericChars',  'NoHttps', 'RandomString', 

'IpAddress', 'DomainInSubdomains', 'DomainInPaths', 

'HostnameLength', 'PathLength', 

'QueryLength', 'DoubleSlashInPath',    'NumSensitiveWords', 

'EmbeddedBrandName', 'PctExtHyperlinks', 

'PctExtResourceUrls', 

'ExtFavicon', 'InsecureForms', 'RelativeFormAction', 

'ExtFormAction', 'AbnormalFormAction', 
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'PctNullSelfRedirectHyperlinks', 

'FrequentDomainNameMismatch', 'FakeLinkInStatusBar', 

'RightClickDisabled', 'PopUpWindow', 'SubmitInfoToEmail', 

'IframeOrFrame', 'MissingTitle', 'ImagesOnlyInForm', 

'SubdomainLevelRT', 'UrlLengthRT', 'PctExtResourceUrlsRT', 

'AbnormalExtFormActionR', 

'ExtMetaScriptLinkRT', 

'PctExtNullSelfRedirectHyperlinksRT' 

  

    

 

 

   Table 7: Features Selection Using Ant Colony Optimization Algorithm 

 

Method Selected Features 

 

 

 

 

 

Ant Colony 

Optimization  

algorithm 

'PctNullSelfRedirectHyperlinks', 'TildeSymbol', 

'NumNumericChars', 'NumHash', 'NumAmpersand', 

'NumQueryComponents', 'NumPercent', 'NumUnderscore', 

'AtSymbol', 'RandomString', 'NumDashInHostname', 

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel', 

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction', 

'EmbeddedBrandName', 'ExtFormAction', 

'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 

'PctExtResourceUrls', 'PctExtHyperlinks', 

'NumSensitiveWords', 'DomainInSubdomains', 

'DoubleSlashInPath', 'QueryLength', 'PathLength', 

'HostnameLength', 'HttpsInHostname', 'DomainInPaths' 

    

 

 

 

 

 

 

 

 

The output of the best features by Dragonfly Algorithm is shown in Table 8. 
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Table 8: Features Selection Using Dragonfly Algorithm 

 

Method Selected Features 

 

 

 

 

 

Dragonfly algorithm 

'PctNullSelfRedirectHyperlinks', 'TildeSymbol', 

'NumNumericChars', 'NumHash', 'NumAmpersand', 

'NumQueryComponents', 'NumPercent', 'NumUnderscore', 

'AtSymbol', 'RandomString', 'NumDashInHostname', 

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel', 

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction', 

'EmbeddedBrandName', 'ExtFormAction', 

'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 

'PctExtResourceUrls', 'PctExtHyperlinks', 

'NumSensitiveWords', 'DomainInSubdomains', 

'DoubleSlashInPath', 'QueryLength', 'PathLength', 

'HostnameLength', 'HttpsInHostname', 'DomainInPaths' 

        

 

   The output of the best features by PSO is shown in Table 9. 

   Table 9: Feature Selection Using PSO Algorithm 

 

Method Selected Features 

 

 

 

 

 

          PSO 

'PctNullSelfRedirectHyperlinks', 'TildeSymbol', 

'NumNumericChars', 'NumHash', 'NumAmpersand', 

'NumQueryComponents', 'NumPercent', 'NumUnderscore', 

'AtSymbol', 'RandomString', 'NumDashInHostname', 

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel', 

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction', 

'EmbeddedBrandName', 'ExtFormAction', 

'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 

'PctExtResourceUrls', 'PctExtHyperlinks', 

'NumSensitiveWords', 'DomainInSubdomains', 

'DoubleSlashInPath', 'QueryLength', 'PathLength', 

'HostnameLength', 'HttpsInHostname', 'DomainInPaths' 

  The output of the best features by BPSO is shown in Table 10. 

   Table 10: Features Selection Using BPSO Algorithm 
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Method Selected Features 

 

 

 

 

 

BPSO 

 'RandomString', 'NumDashInHostname', 'NumDash', 

'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots', 

'NoHttps', 'IpAddress', 'AbnormalFormAction', 

'EmbeddedBrandName', 'ExtFormAction', 

'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 

'PctExtResourceUrls', 'PctExtHyperlinks', 

'NumSensitiveWords', 'DomainInSubdomains', 

'DoubleSlashInPath', 'QueryLength', 'PathLength', 

'HostnameLength', 'HttpsInHostname', 

'DomainInPaths''PctNullSelfRedirectHyperlinks', 

'TildeSymbol', 'NumNumericChars', 'NumHash', 

'NumAmpersand', 'NumQueryComponents', 'NumPercent', 

'NumUnderscore', 'AtSymbol' 

  

   The output of the best features by Univariate Analysis is shown in Table 10. 

Table 11: Features Selection Using Univariate Analysis 

 

Method Selected Features 

 

 

 

 

 

     Univariate 

Analysis 

 'RandomString', 'NumDashInHostname', 'NumDash', 

'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots', 

'NoHttps', 'IpAddress', 'AbnormalFormAction', 

'EmbeddedBrandName', 'ExtFormAction', 

'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 

'PctExtResourceUrls', 'PctExtHyperlinks', 

'NumSensitiveWords', 'DomainInSubdomains', 

'DoubleSlashInPath', 'QueryLength', 'PathLength', 

'HostnameLength', 'HttpsInHostname', 

'DomainInPaths''PctNullSelfRedirectHyperlinks', 

'TildeSymbol', 'NumNumericChars', 'NumHash', 

'NumAmpersand', 'NumQueryComponents', 'NumPercent', 

'NumUnderscore', 'AtSymbol' 
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4.4. Methodology 

The framework of the clustering model is presented in Figure 5. 

 

           
 
 
 
 
 Data pre-processing 
 
  
 
  
     
 
 
                                  Feature Selection 
      
                                           Antcolony                                     Dragonfly 
  
                                               PSO                                                  BPSO 
 
                                                                         Univariate Analysis               
 
 
 
    Model  
                                                                            
  
 
  
                                                                                   GMM 
 
 
     
                                                                                 Output                                                            
  

        

                    

                                 Figure 5: Framework of the Clustering Model. 
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Optimizers and Model 
 
Four optimizers are employed in the feature selection: two nature-inspired algorithms, ant 

colony optimization and dragonfly algorithm, and two genetic algorithms, PSO and BPSO. Each 

optimizer has a range of hyperparameters that significantly influence its performance. 

Using nature-inspired and genetic algorithms for feature selection is effective because they 

explore large and complex search spaces, avoiding local optima. These algorithms focus on 

global optimization, increasing the likelihood of finding the best feature subset. Their flexibility 

allows them to adapt to different data types and optimization challenges. Additionally, they are 

robust to noise and irrelevant features, improving model accuracy and generalization. The ant 

colony optimization, inspired by ants' foraging behaviour, involves parameters like the number 

of ants, pheromone evaporation rate, and pheromone influence. The dragonfly algorithm, 

modelled after dragonflies' static and dynamic swarming behaviours, includes hyperparameters 

such as alignment, cohesion, separation weights, and attraction to food sources. On the genetic 

algorithm side, PSO mimics the social behaviour of birds flocking or fish schooling, using 

parameters like cognitive and social coefficients, inertia weight, and the number of particles. 

BPSO, a variant tailored for binary search spaces, uses similar parameters but adapts them to 

binary decisions, impacting the velocity and position updates in a discrete space. To tune these 

hyperparameters effectively, an exploratory approach is employed. This involves systematically 

experimenting with different parameter values to uncover the optimal configurations that yield 

the best performance. The goal is to identify the most relevant subset of hyperparameters that 

enhance the efficiency and accuracy of each optimizer. Once the optimal hyperparameters are 

determined, the dataset is preprocessed and split into training and testing sets. The preprocessed 

and feature-selected dataset is then fitted into unsupervised learning models like k-means and 

GMM. K-means clustering relies on the distance between points to form clusters, while GMM 

assumes that the data is generated from a mixture of several Gaussian distributions. Using GMM 

for clustering is advantageous because it models data as a mixture of Gaussian distributions, 

allowing for more flexible, elliptical cluster shapes. GMM captures complex underlying 

structures in the data significantly when clusters overlap. The Expectation-Maximization (EM) 

algorithm used by GMM iteratively improves the fit to the data, enhancing clustering accuracy. 
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  6. Results and Analysis 
 
Python 3.10 is considered for implementation in this study due to its wide range of libraries. 

Various machine learning algorithms are employed to categories the binary-class network 

attacks. The Phishing URL attack dataset is obtained from the KAGGLE repository for model 

implementation. The dataset is pre-processed, and relevant features are selected from the 

dataset. The dataset is then split into training-validation and testing sets in a 75%—25% ratio 

for model training and testing. Unsupervised machine learning models, namely, K-means and 

GMM, are built using    PyTorch. The following listed hyperparameter values of PSO are used 

to select the most relevant features from the dataset. 

C1 =1: A value of 1 indicates a moderate influence, meaning the particle will consider its own 

past experiences but not be overly reliant on them. 

C2 = 1.5: A value of 1.5 suggests a more substantial influence from the global best compared 

to the personal best, encouraging particles to follow the collective wisdom of the swarm more 

than their own experience. 

w = .9: An inertia weight of 0.9 implies that the particles will maintain most of their momentum 

from the previous iteration, resulting in smoother and more gradual updates in their velocity. 

This can help in exploring the search space more effectively. 

v= 1 Setting the initial velocity v to 1 means that each particle in the swarm starts with a 

velocity of 1. 

K=20: A value of 20 provides a good balance between exploration and exploitation. 

Table 12 presents listed hyperparameter values of PSO are used to select the most relevant 

features from the dataset. 

Table 12: Hyperparameters value based on exploration optimization of PSO. 

 

Hyperparameters                                 Values 

c1 1 

c2 1.5 

w .9 

v 1 

k 20 
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  The following listed hyperparameter values of Binary PSO are used to select the most relevant  

   features from the dataset. 

C1 =1.5 A value of 1.5 indicates a moderate influence, meaning the particle will consider its 

own past experiences but not be overly reliant on them. 

C2 = 1.5: A value of 1.5 suggests a more substantial influence from the global best compared 

to the personal best, encouraging particles to follow the collective wisdom of the swarm more 

than their own experience. 

w =0.7: An inertia weight of 0.7 implies that the particles will maintain most of their 

momentum from the previous iteration, resulting in smoother and more gradual updates in their 

velocity. This can help in exploring the search space more effectively. 

Effect on Convergence: Lower values for r1 and r2 make the algorithm more exploitative, 

relying more on the best-known positions. Higher values increase exploration, allowing 

particles to search more widely. These specific hyperparameter values are chosen based on 

exploring a dataset such as PSO or binary PSO optimization. During this process, different 

combinations of parameter values are tested, and the combination that results in the best model 

performance on a validation set is selected.  

The hyperparameter values listed below of ant colony are used to optimize the selection of 

features from the dataset. 

Table 13 presents listed hyperparameter values of BPSO are used to select the most relevant 

features from the dataset. 

   Table 13: Hyperparameters value based on exploration optimization of Binary PSO. 

 

Hyperparameters value 

C1 1.5 

C2 1.5 

W .7 

r 1 0.854 

r 2 0.75 
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   The following hyperparameter values of Antcolony Algorithm are used to select  

   the most relevant features from the dataset. 

Number of Ants (n_ants = 10): In each iteration, 10 ants explore the solution space. 

Number of Iterations (n_iterations = 50): The algorithm runs for 50 iterations. 

Pheromone Importance (alpha = 1): Pheromone trails moderately influence path selection. 

Heuristic Importance (beta = 2): Heuristic information (e.g., path length) is highly 

influential in decision-making. 

Evaporation Rate (roh): 50% of the pheromone evaporates each iteration, balancing 

exploration and exploitation. 

These specific hyperparameter values are chosen based on exploring a Dataset in this ant 

colony optimisation. During this process, different combinations of parameter values are 

tested, and the combination that results in the best model performance on a validation set is 

selected. The hyperparameter values of the dragonfly algorithm, listed below optimize the 

selection of features from the dataset. 

Table 14 presents listed hyperparameter values of Antcolony are used to select the most 

relevant features from the dataset. 

  Table 14: Hyperparameters value based on exploration optimization of Ant Colony Algorithm. 

 

Hyperparameters Values 

n 10 

N 50 

alpha  1 

beta 2 

roh 50 
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  The following hyperparameter values of Dragonfly Algorithm are used to select the most  

   relevant features from the dataset. 

 

Num_featurs (N): 28 features define the dimensions of the problem space. 

Max_generations(m): 1000: The algorithm is executed for 1000 generations. Setting the 

maximum number of generations to 1000 allows the algorithm sufficient time to explore and 

refine potential solutions. This value balances exploration and convergence, providing ample 

opportunity to find an optimal solution without excessively prolonging the computation. 

Population_size (p): 250: A population size of 250 provides a good balance between 

exploration and computational efficiency. It is large enough to explore the solution space 

effectively. 

Step_size (s): 0.2: A step size of 0.2 allows for moderate adjustments to the dragonflies' 

positions. It helps them explore the search space without making overly large jumps. 

absorption_coffeicient (c):.6: An absorption coefficient of 0.6 indicates a moderate level of 

absorption. This value strikes a balance between adapting to the environment and relying on 

the best global information. It helps maintain a balance between exploration and exploitation. 

These specific hyperparameter values are chosen based on exploring a dataset in this dragonfly 

algorithm optimization. During this process, different combinations of parameter values are 

tested, and the combination results in the best model performance on a validation set. 

Table 15 presents listed hyperparameter values of Dragonfly Algorithm are used to select the 

most relevant features from the dataset. 

 

  Table 15: Hyperparameters value based on exploration optimization of Dragonfly Algorithm 

 

Hyperparameters Values 

N 28 

m 1000 

p 250 

s .2 

c .6 
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The comparative analysis of the silhouette scores achieved by the k-means and GMM models 

for feature sets selected using Ant Colony, Dragonfly, PSO, BPSO optimizers, and univariate 

analysis is provided in Table 1. The BPSO-selected feature subset yielded the highest 

silhouette score when used with the k-means model. 

 

  Table 16: Silhouette scores of Clustering Algorithms based on Four Optimizers and Univariate 

  Analysis. 

 

   Algorithms 
 

 
      

 

    Models 

Ant Colony PSO BPSO Dragonfly Univariate 

Analysis 

K-means 76% 76% 87% 65% 80% 

GMM 57% 59% 58% 55% 65% 
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 6. Conclusion and Future Scope 
 

This study has demonstrated the potential of unsupervised machine-learning techniques in 

detecting phishing URLs. Focusing on patterns and anomalies within URL data shows that K-

means clustering and Gaussian Mixture Models can effectively identify suspicious URLs 

without needing labelled data. The findings suggest that these unsupervised algorithms can 

overcome some limitations of traditional supervised methods and offer a viable alternative for 

enhancing cybersecurity measures. This study highlights the importance of leveraging the 

inherent structure of URLs to detect phishing attempts, contributing to the broader effort to 

protect digital assets. Future work could explore combining unsupervised and supervised 

learning to improve detection accuracy. Enhancing feature extraction techniques, possibly 

using deep learning, could make models more robust. Investigating real-time data integration 

and adaptive learning could help systems respond quickly to new threats. Additionally, 

expanding this work to include multiple data sources and cross-domain analysis could increase 

the applicability and effectiveness of these techniques in various cybersecurity contexts. 

Lastly, developing user-friendly tools based on these findings could make advanced phishing 

detection accessible to a broader range of users and organizations. 
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Appendix  
 
Code 
 
# ANTCOLONY  
 
import numpy as np 

import pandas as pd 

from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

import networkx as nx 

 

class AntColonyFeatureSelectionUnsupervised: 

    def __init__(self, graph, n_ants, n_iterations, alpha=1, beta=2, evaporation_rate=0.1): 

        self.graph = graph 

        self.n_ants = n_ants 

        self.n_iterations = n_iterations 

        self.alpha = alpha 

        self.beta = beta 

        self.evaporation_rate = evaporation_rate 

        self.pheromone_trails = np.ones((graph.number_of_nodes(), graph.number_of_nodes())) 

        self.n_features = graph.number_of_nodes() 

        self.pheromone_delta = np.zeros(self.n_features) 

 

    def fit(self, X_train): 

        self.n_features = X_train.shape[1] 

        self.pheromone_matrix = np.ones(self.n_features) * 0.5 

 

        for _ in range(self.n_iterations): 

            selected_features = [] 

            for _ in range(self.n_ants): 

                features = self.construct_solution() 

                selected_features.append(features) 

            self.update_pheromones(selected_features, X_train) 

 

    def construct_solution(self): 

        features = [] 

        remaining_features = list(range(self.n_features)) 

        while remaining_features: 

            probabilities = self.calculate_probabilities(remaining_features) 

            selected_feature = np.random.choice(remaining_features, p=probabilities) 

            features.append(selected_feature) 

            remaining_features.remove(selected_feature) 

        return features 

 

    def calculate_probabilities(self, remaining_features): 

        probabilities = [self.pheromone_matrix[feature] for feature in remaining_features] 

        total_pheromone = sum(probabilities) 

        return [pheromone / total_pheromone for pheromone in probabilities] 

 

    def update_pheromones(self, selected_features_list, X_train): 

        pheromone_delta = np.zeros(self.n_features) 

        for selected_features in selected_features_list: 

            X_selected = X_train.iloc[:, selected_features] 

            kmeans = KMeans(n_clusters=2, random_state=0,n_init=10).fit(X_selected) 

            silhouette_avg = silhouette_score(X_selected, kmeans.labels_) 

            for feature in selected_features: 

                pheromone_delta[feature] += silhouette_avg 

        self.pheromone_matrix = (1 - self.evaporation_rate) * self.pheromone_matrix + pheromone_delta 

 

def create_graph(X_train): 

    corr_matrix = np.abs(np.corrcoef(selected_df, rowvar=False)) 

    graph = nx.Graph() 

    for i in range(selected_df.shape[1]): 

        for j in range(i+1, selected_df.shape[1]): 

            graph.add_edge(i, j, weight=corr_matrix[i, j]) 

    return graph 
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# Initialize and fit the ACO feature selection algorithm 

graph = create_graph(selected_df) 

aco_unsupervised = AntColonyFeatureSelectionUnsupervised(graph=graph, n_ants=10, n_iterations=50) 

aco_unsupervised.fit(selected_df) 

 

# Select the best features based on pheromone trails 

pheromone_matrix_array = np.asarray(aco_unsupervised.pheromone_matrix) 

best_features_indices = np.argsort(pheromone_matrix_array)[::-1]  # Select top 10 features 

best_features_indices 

print("Selected features indices:", best_features_indices) 

 

 

Selected features indices: [34 8 14 13 12 11 10 9 7 16 6 5 4  3  2  1 15 17 33 26 32 31 30 29 28 27 25 18 24 23 22 21 20 19  ] 
 

['PctNullSelfRedirectHyperlinks', 'TildeSymbol', 'NumNumericChars', 'NumHash', 'NumAmpersand', 'NumQueryComponents', 'NumPercent', 
'NumUnderscore', 'AtSymbol', 'RandomString', 'NumDashInHostname', 'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots', 'NoHttps', 

'IpAddress', 'AbnormalFormAction', 'EmbeddedBrandName', 'ExtFormAction', 'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 'PctExtResourceUrls', 

'PctExtHyperlinks', 'NumSensitiveWords', 'DomainInSubdomains', 'DoubleSlashInPath', 'QueryLength', 'PathLength', 'HostnameLength', 
'HttpsInHostname', 'DomainInPaths'] 

 

 
 
from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

from sklearn.metrics import accuracy_score 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import silhouette_score 

best_features=selected_df.iloc[:, best_features_indices] 

kmeans=KMeans(n_clusters=2,init="k-means++") 

y_labels=kmeans.fit_predict(best_features) 

silhouette_avg = silhouette_score(best_features, y_labels) 

print(f'Silhouette Score: {silhouette_avg}') 

#accuracy = accuracy_score(y_train, y_labels)  # Adjust for the clustering labels 

#print(f"Accuracy Score: {accuracy}") 

 

Silhouette Score: 0.7604676567184461 
 

 

 
 
 

#Dragonfly 
 
from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

from sklearn.cluster import MiniBatchKMeans 

 

 

class UnsupervisedDragonflyAlgorithm: 

    def __init__(self, num_features, max_generations=1100, population_size=250, 

step_size=0.2, absorption_coefficient=0.6): 

        self.num_features = num_features 

        self.max_generations = max_generations 

        self.population_size = population_size 

        self.step_size = step_size 

        self.absorption_coefficient = absorption_coefficient 

        self.population = None 

        self.best_individual = None 

 

    def initialize_population(self): 

        self.population = np.random.rand(self.population_size, self.num_features) > 0.6 

 

    def evaluate_fitness(self, X): 

        fitness_values = [] 

        for individual in self.population: 

            selected_features = [i for i in range(self.num_features) if individual[i] == 1] 

            X_selected = selected_df.iloc[:, selected_features] 

 

            kmeans = KMeans(n_clusters=2, random_state=0).fit(X_selected) 

            silhouette_avg = silhouette_score(X_selected, kmeans.labels_) 

            fitness_values.append(silhouette_avg) 

        return fitness_values 
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    def evolve(self, X): 

        self.initialize_population() 

        for generation in range(self.max_generations): 

            fitness_values = self.evaluate_fitness(X) 

            best_index = np.argmax(fitness_values) 

            self.best_individual = self.population[best_index] 

            new_population = [] 

            for individual in self.population: 

                new_individual = individual.astype(bool) + self.step_size * 

(self.best_individual != individual) + \ 

                                 self.absorption_coefficient * 

np.random.randn(self.num_features) 

                new_population.append(new_individual) 

            self.population = np.clip(new_population, 0, 1) 

 

 

# Feature selection using Unsupervised Dragonfly Algorithm 

uda = UnsupervisedDragonflyAlgorithm(num_features=selected_df.shape[1], population_size=10, 

max_generations=50) 

uda.evolve(selected_df) 

 

# Get the selected features from the best individual 

selected_features = [i for i in range(selected_df.shape[1]) if uda.best_individual[i] == 1] 

print("Selected features:", selected_features) 

 
Selected features: [ 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 16, 18, 20, 22, 27, 29, 30, 31, 32, 33] 

 
from sklearn.cluster import KMeans 

from sklearn.metrics import accuracy_score 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import silhouette_score 

#best_features=X1.columns[best_features_indices ] 

best_features_indices = np.array( selected_features).reshape(-1, 1) 

#best_features_indices = selected_features.reshape(-1, 1) 

kmeans=KMeans(n_clusters=2,init="k-means++") 

y_labels=kmeans.fit_predict(best_features_indices) 

silhouette_avg = silhouette_score(best_features_indices, y_labels) 

print(f'Silhouette Score: {silhouette_avg}') 

 
 
Silhouette Score: 0.6509154018350569 
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#PSO 

 

 

import numpy as np 

import pandas as pd 

import pyswarms as ps 

from sklearn.cluster import KMeans 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import silhouette_score 

def objective_function(selected_features): 

    selected_indices = np.where(selected_features == 1)[0] 

    if len(selected_indices) == 0: 

        return -np.inf 

 

 

 

    # Train a classifier 

    # Use K-means clustering 

    kmeans = KMeans(n_clusters=2, random_state=0)   

    cluster_labels = kmeans.fit_predict(selected_df.iloc[selected_indices]) 

 

    # Calculate Silhouette Score 

    silhouette = silhouette_score(selected_df.iloc[selected_indices], cluster_labels) 

 

    return silhouette 

 

# Define PSO parameters 

num_features = selected_df.shape[1] 

num_particles = 20 

num_iterations = 150 

options = {'c1':1 , 'c2': 1.5, 'w':.9, 'k': 20, 'p': 1, 'bounds': (np.zeros(num_features), 

np.ones(num_features))} 

 

bounds = (np.zeros(num_features), np.ones(num_features)) 

 

# Initialize PSO optimizer 

optimizer = ps.discrete.binary.BinaryPSO(n_particles=num_particles, dimensions=num_features, 

options=options,) 

 

best_position, _ = optimizer.optimize(objective_function, iters=num_iterations) 

 

selected_indices = np.where(np.atleast_1d(_ == 1))[0] 

#selected_indices = np.where(np.atleast_1d(_) > 0.20)[0] 

 

selected_indices = np.clip(selected_indices, 0, selected_df.shape[1] - 1) 

print("best_position",best_position ) 

print("best",selected_indices) 

 

top_30_indices = selected_indices#[:47] 

top_30_features = selected_df.columns[top_30_indices] 

 

# Print the selected features 

from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

best_features=selected_df.iloc[:,top_30_indices ] 

kmeans=KMeans(n_clusters=2,init="k-means++") 

y_labels=kmeans.fit_predict(best_features) 

silhouette_avg = silhouette_score(best_features, y_labels) 

print(f'Silhouette Score: {silhouette_avg}') 

 
Selected features: [ 4  5  6  7  9 12 13 14 24 25 29 32 33 34] 
Silhouette Score: 0.767803452459353 
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#Binary   PSO 
 
import numpy as np 

import pandas as pd 

from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

 

class Particle: 

    def __init__(self, num_features): 

        self.position = np.random.randint(2, size=num_features) 

        self.velocity = np.random.uniform(-0.1, 0.1, size=num_features) 

        self.best_position = self.position.copy() 

        self.best_score = float('-inf')  # Initialize with negative infinity for 

maximization 

 

def fitness_function(features, X): 

    selected_features = [bool(f) for f in features] 

    X_selected = selected_df.iloc[:, selected_features] 

 

    kmeans = KMeans(n_clusters=2, random_state=0,n_init=10) 

    kmeans.fit(X_selected) 

    silhouette = silhouette_score(X_selected, kmeans.labels_) 

 

    return silhouette 

 

def bell_pso(X, num_particles=10, max_iter=50, w=0.7, c1=1.5, c2=1.5): 

    num_features = X.shape[1] 

    particles = [Particle(num_features) for _ in range(num_particles)] 

    global_best_position = np.zeros(num_features) 

    global_best_score = float('-inf')  # Initialize with negative infinity for maximization 

 

    for _ in range(max_iter): 

        for particle in particles: 

            fitness = fitness_function(particle.position, X) 

            if fitness > particle.best_score: 

                particle.best_position = particle.position.copy() 

                particle.best_score = fitness 

 

            if fitness > global_best_score: 

                global_best_position = particle.position.copy() 

                global_best_score = fitness 

 

        for particle in particles: 

            r1 = np.random.rand(num_features) 

            r2 = np.random.rand(num_features) 

            particle.velocity = w * particle.velocity + c1 * r1 * (particle.best_position - 

particle.position) + c2 * r2 * (global_best_position - particle.position) 

            particle.position = np.round(1 / (1 + np.exp(-particle.velocity))) 

 

    return global_best_position 

 

# Example usage 

# Assuming X1 is your dataset 

#X1 = np.random.rand(100, 10)  # Example random dataset 

 

selected_features = bell_pso(selected_df, num_particles=10, max_iter=50) 

print("Selected features:", selected_features) 

selected_features_indices = np.where(selected_features == 1)[0] 

print("Selected features indices:", selected_features_indices) 

 

Selected features indices: [ 6 11 14 17 18 19 22 25 27 28 29 30 34] 

 

Silhouette Score(k-means): 0.87 
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