

 A Study on Unsupervised Machine Learning
Algorithms for detection of Phishing Attacks

Thesis submitted towards partial fulfilment

of the requirements for the degree of

 Master of Technology in IT (Courseware Engineering)

Submitted by
Roni Das

EXAMINATION ROLL NO. M4CWE24001

UNIVERSITY REGISTRATION NO. 163769 of 2022-23

Under the guidance of

Dr SASWATI MUKHERJEE

School of Education Technology
Jadavpur University

Course affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata-700032
India
2024

M.Tech in IT (Courseware Engineering)
Course affiliated to

Faculty of Engineering and Technology

Jadavpur University
Kolkata, India

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “A Study on Unsupervised Machine
Learning Algorithms for detection of Phishing Attacks using URL Parameters” is
a bona fide work carried out by Roni Das under our supervision and guidance for
partial fulfilment of the requirements for the degree of Master of Technology in
IT (Courseware Engineering) in School of Education Technology, during the
academic session 2023-2024.

Dr. SASWATI MUKHERJEE
SUPERVISOR
School of Education Technology
Jadavpur University,
Kolkata-700 032

DIRECTOR
School of Education Technology
Jadavpur University,
Kolkata-700 032

DEAN - FISLM
Jadavpur University,
Kolkata-700 032

M.Tech in IT (Courseware Engineering)
Course affiliated to

Faculty of Engineering and Technology

Jadavpur University
Kolkata, India

CERTIFICATE OF APPROVAL **

This foregoing thesis is hereby approved as a credible study of an engineering
subject carried out and presented in a manner satisfactory to warrant its
acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval the undersigned does not endorse or approve
any statement made or opinion expressed or conclusion drawn therein but
approves the thesis only for the purpose for which it has been submitted.

Committee of final examination ---
 for evaluation of the Thesis

** Only in case the thesis is approved.

DECLARATION OF ORIGINALITY AND COMPLIANCE OF ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research
work by the undersigned candidate, as part of his Master of Technology in IT
(Courseware Engineering) studies.

All information in this document has been obtained and presented in accordance
with academic rules and ethical conduct.

I also declare that, as required by this rule and conduct, I have fully cited and
referenced all materials and results that are not original to this work.

NAME : Roni Das

EXAMINATION ROLL NUMBER : M4CWE24001

REGISTRATION NUMBER : 163769 of 2022-23

THESIS TITLE : A Study on Unsupervised
Machine Learning
Algorithms for detection of
Phishing Attacks using URL
Parameters.

SIGNATURE: DATE:

Acknowledgment

I feel fortunate while presenting this dissertation at the School of Education

Technology, Jadavpur University, Kolkata, in the partial fulfilment of the

requirement for the degree of M. Tech in IT (Courseware Engineering).

I hereby take this opportunity to show my gratitude to my mentor, Dr

Saswati Mukherjee, who has guided and helped me with all possible

suggestions, support, advice, and constructive criticism, along with

illuminating views on different issues of this dissertation, which helped me

throughout my work.

I want to thank Prof. Dr. Matangini Chattopadhyay, Director of the School

of Education Technology, for her timely encouragement, support, and

advice. I would also like to thank Mr. Joydeep Mukherjee for his constant

support during my entire course of work.

My thanks and appreciation go to my classmates from M.Tech in IT

(Courseware Engineering) and Master in Multimedia Development.

I wish to thank all the departmental support staff and everyone else who has

contributed to this dissertation.

Finally, I would like to express my special gratitude to my parents, who have

invariably sacrificed, supported me, and helped me achieve this height.

Date:

Place: Kolkata

Roni Das

Examination Roll Number: M4CWE24001

M.Tech in IT (Courseware Engineering)

School of Education Technology

Jadavpur University

Kolkata:70003

 Contents

Topic Page No.

1. Introduction
1.1. Overview
1.2. Problem Statement
1.3. Objectives

 4-4

 2. Background Concept
 2.1 Feature Selection Methods
 2.2 Clustering methods of Machine learning

 5-20

3. Literature Survey 21-23

4. Proposed Approach
4.1 Dataset Description
4.2 Data Pre-processing
4.3 Feature selection
4.4 Methodology

 24-32

5. Results and Analysis 33-37

6. Conclusion and Future Scope 38

Reference 39-40

Appendix 41-45

2

 List of Figures

Figure 1: Ant colony Algorithm

Figure 2: Dragonfly Algorithm

Figure 3: K-Means clustering

Figure 4: Gaussian Mixture Model clustering

Figure 5: The framework of the clustering model

3

Executive Summary

This dissertation presents a novel approach to identifying phishing attacks by leveraging

unsupervised machine-learning techniques through URL analysis. Unlike most existing study,

which relies on supervised learning methods that require extensive training on labelled data, this

study introduces a method that enables the detection of phishing attempts without prior

knowledge of malicious URLs.

The present work applied k-means and Gaussian Mixture Models (GMM) to detect phishing

attacks. It analysed URL components to uncover parameters indicative of phishing, employed

nature-inspired and genetic algorithms for feature selection, and assessed the performance of the

clustering models using the silhouette score. The model's effectiveness was tested with an external

data set to ensure robustness.

The methodology begins with URL preprocessing and applies four feature selection algorithms:

Ant Colony, Dragonfly, Particle Swarm Optimization (PSO), and Binary PSO. The best feature

subset identified is then used to perform clustering with k-means and GMM. The k-means

algorithm, paired with the PSO-selected features, achieved the highest silhouette score, signifying

the most accurate clustering. The findings underscore the potential of unsupervised learning in

detecting phishing attacks.

This work can be expanded by incorporating features like behavioural data to enhance phishing

detection accuracy. Integrating unsupervised methods with semi-supervised learning could

improve performance in scenarios with limited labelled data. Developing real-time detection

systems based on these techniques would allow immediate threat response. Exploring the model's

adaptability to other domains, like spam detection, could further demonstrate its versatility.

Finally, creating user-friendly tools that implement these methods could make advanced phishing

detection more accessible to cybersecurity professionals.

4

Introduction

1. Overview

Phishing is a cyber-attack that targets naive online users, tricking them into revealing sensitive

information such as username, password, social security number, credit card number etc.

Attackers fool Internet users by masking web pages as trustworthy or legitimate pages to retrieve

personal information. There are many anti-phishing solutions, such as blacklisting or whitelisting,

and heuristic and visual similarity-based methods proposed to date. However, online users are

still trapped in revealing sensitive information on phishing websites [1]. Researchers have

integrated machine learning techniques into network security, yielding promising results in

enhancing cybersecurity measures. Phishing attacks pose significant threats to individuals and

organisations worldwide, with attackers using deceptive methods to obtain sensitive information.

Detecting phishing attacks and URLs has become challenging due to the dynamic nature of web

content. Traditional supervised machine-learning approaches for phishing URL detection rely on

labelled datasets, which can be resource-intensive and impractical due to the rapid proliferation

of new phishing URLs [2]. In response to these challenges, the present work focuses on exploring

and applying unsupervised machine-learning techniques for detecting phishing URLs.

Unsupervised learning offers a promising alternative by enabling the detection of patterns and

anomalies in data without the need for labelled examples. By leveraging URL data's inherent

structure and characteristics, unsupervised models aim to identify suspicious URLs based on their

deviation from normal web behaviour.

1.2 Problem Statement

A Study on Unsupervised Machine Learning Algorithms for detection of Phishing Attacks.

1.3 Objectives

• To detect phishing attacks using unsupervised algorithms, namely, k-means and GMM.

• To analyses the URL parameters responsible for the phishing attack.

• To select the relevant features using nature-inspired and genetic algorithms for clustering

the normal and the malicious URLs.

• To evaluate the clustering performance of k-means and GMM algorithms based on the

silhouette score.

• To validate the robustness of the model fit using an external dataset.

5

 2.Background Concept

Phishing attack detection by analyzing URL components involves scrutinizing various URL

elements to identify suspicious patterns indicative of phishing attempts. Key components

examined include the domain name, path, query parameters, and unusual characters or

structures deviating from legitimate URLs. To enhance detection accuracy, feature selection

methods such as Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),

Dragonfly Algorithm, and Binary Particle Swarm Optimization (BPSO) are employed to

identify the most relevant features from the URL data. These selected feature sets are then used

to train clustering models, specifically K-means and Gaussian Mixture Model (GMM), to

group similar URLs. The performance of these clustering models is evaluated using the

silhouette score, which measures how well the URLs are grouped. By comparing the silhouette

scores, the effectiveness of each feature selection technique in providing the best clustering

results is determined, aiding in the identification of the most robust method for phishing

detection.

2.1. Feature Selection Methods

Feature selection is a vital aspect of machine learning. Feature selection is applied to reduce

the number of features in many applications where data has hundreds or thousands of features.

Existing feature selection methods mainly focus on finding relevant features. By carefully

choosing the appropriate set of features, the performance of clustering models can be

significantly improved [3]. This work explores four different methods of feature selection: the

Ant Colony Optimization algorithm, Dragonfly algorithm, PSO and Binary PSO.

 2.1.1 Ant Colony Optimization (ACO) Technique

Ant Colony Optimization (ACO) is a computational technique inspired by the foraging

behaviour of ants in nature. It solves complex optimization problems, such as finding the

shortest path between an ant colony and a food source. In this process, ants leave pheromone

trails on their travel paths, which guide other ants to the food source. Over time, shorter paths

are reinforced by accumulating more pheromones, while longer paths experience pheromone

evaporation. In ACO, this behaviour is simulated using artificial 'ants' to find optimal solutions

in a search space. These ants construct solutions as they move through possible states,

depositing virtual pheromones that influence the paths of subsequent ants. The algorithm is

refined iteratively, balancing exploring new paths with exploiting known good paths, making

it particularly effective for problems like the travelling salesman, network routing, and

scheduling. In Figure 1, the Ant Colony Optimization process is summarized, showing how

6

exploration identifies potential paths, optimization refines these paths, and the final step

extracts the optimal solution.

 Figure 1: Ant colony optimizer

The adaptive and self-organizing nature of ACO allows for handling dynamic changes and

efficiently finding near-optimal solutions. In the context of feature selection, ants iteratively

choose features based on pheromone levels, which are updated to reflect the quality of selected

features. This approach is particularly useful for selecting a subset of features with numerous

attributes in datasets [4]. The Algorithm of Antcolony can be found in Algorithm 1

The ACO class is initialized with the list of features, the number of ants, the maximum number

of iterations, and the initial pheromone value. This creates a pheromone matrix with the same

length as the number of features, which is initialized to the initial pheromone level. Table 1

Presents the Hyperparameter of Antcolony algorithm and their description.

 Table 1: Hyperparameters of Ant colony optimizer

Hyperparameter Description

Number of Ants(n) Number of ants used in each run of the algorithm. More ants

can explore more solutions but take more time.

Number of Iterations More iterations allow for a more thorough search for the best

solution.

Pheromone Evaporation

Rate: rho

How quickly the pheromone trail fades away. A

slower rate means the path is remembered longer,

7

while a faster rate encourages exploring new paths.

Alpha (α) How much the ants follow the pheromone trail. Higher values

mean ants are more likely to follow the trail.

Beta (β) How much do the ants consider other factors like distance or

cost when choosing a path? Higher values mean ants pay more

attention to these factors.

Initial Pheromone Level How much pheromone does each ant leave on its path? More

pheromones can lead to quicker solutions but might miss the best

one.

 Algorithm 1: ANTCOLONY

01. Initialize pheromone levels on all paths

02. Set parameters:

03. alpha (pheromone importance)

04. beta (visibility importance)

05. rho (evaporation rate)

06. Q (pheromone deposit)

07. number of ants

08. While stopping criteria not met do

09. For each ant do

10. Initialize tour for this ant

11. While tour is not complete do

12. Choose next city based on pheromone levels and visibility (using probabilities)

13. Move to the next city and update tour

14. End While

15. Evaluate the tour (calculate tour length or cost)

16. Update best tour if necessary

17. End For

18. Update pheromone levels

19. For each path do

20. Evaporate pheromone

21. Deposit new pheromone based on the best tour(s)

22. End For

23. End While

24. Return the best tour fo

8

 2.1.2 DRAGONFLY ALGORITHM

The Dragonfly Algorithm (DA) is an innovative nature-inspired optimization technique that

emulates dragonflies' static and dynamic swarming behaviour in their natural environment.

The algorithm effectively navigates and optimize complex search spaces by simulating these

behaviour. DA strikes a balance between exploration (searching new areas) and exploitation

(refining known areas) through the coordinated movements of artificial dragonflies, which

are guided by principles such as alignment (synchronization with others), cohesion (tendency

to stay together), separation (avoiding crowding), attraction to food sources, and avoidance

of threats. This approach has demonstrated superior performance to many traditional meta-

heuristic optimization methods [5]. The Dragonfly algorithm is represented in Figure 2,

showcasing its core behavioral mechanisms: separation, alignment, cohesion, attraction to

food sources, and distraction from enemies. These components play a crucial role in steering

the optimization process effectively.

 Figure 2: Dragonfly Algorithm

Initialization: The Dragonfly Algorithm randomly selects an initial set of features from the

dataset.

Evaluation: It evaluates the performance of the selected features using a predefined

evaluation criterion, such as accuracy or error rate, on a validation dataset.

Update: Based on the evaluation results, the algorithm updates the selected features using

its optimisation strategy, which involves adjusting the feature subset to improve

performance.

Iteration: The algorithm repeats the evaluation and update steps for several iterations or

9

until a stopping criterion is met.

Optimization: The algorithm continuously optimizes the feature subset, gradually

improving its performance based on the evaluation criterion.

Final Selection: Once the optimization process is complete, the algorithm selects the final

subset of features that maximizes performance according to the evaluation criterion.

The Algorithm of Dragonfly can be found in Algorithm 2,

Table 2 Presents the Hyperparameter of Dragonfly algorithm and their description.

 Table 2: Hyperparameters of Dragonfly Algorithm

Hyperparameter Description

Number of Dragonflies Determines the size of the population, impacting exploration

capability.

Number of Iterations Controls how often the algorithm runs, affecting the

thoroughness of solution search.

Inertia Weight (w) Controls the influence of the previous velocity on the current

velocity of each dragonfly. It helps balance exploration and

exploitation.

Step size;x Controls the step size or how far dragonflies move in each

iteration. It affects the convergence speed and accuracy.

Absorption_coffeicient The absorption coefficient influences how dragonflies respond to

external factors such as threats or constraints

10

 Algorithm 2: Dragonfly

01. Initialize the population of dragonflies (positions and velocities)

02. Initialize the step size (ΔX), separation weight (w_s), alignment weight (w_a),

cohesion weight (w_c),

03. Initialize food factor weight (w_f), enemy factor weight (w_e), and other

algorithm-specific parameters

04. Evaluate the fitness of each dragonfly in the population

05. While stopping criteria not met do

06. For each dragonfly do

07. Calculate the separation (S), alignment (A), and cohesion (C) components

based on neighboring dragonflies

08. Calculate the attraction towards food source (F) and distraction from

enemies (E)

09. Update velocity of the dragonfly using the following formula:

10. velocity = w_s * S + w_a * A + w_c * C + w_f * F + w_e * E

11. Update the position of the dragonfly using:

12. position = position + velocity

13. Apply boundary conditions if the dragonfly goes out of bounds

14. Evaluate the fitness of the updated dragonfly position

15. Update the best position found by the dragonfly if the new position is better

16. End For

17. Adjust the step size (ΔX) and other dynamic parameters as necessary

18. End While

 19. Return the best position found by any dragonfly as the solution

11

 2.1.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired optimization technique based on the

social behaviour of birds flocking or fish schooling. It operates with a population of candidate

solutions, particles, that move through the search space by adjusting their velocities based on

individual and collective experiences. Each particle updates its position, which is influenced

by its own best-known position and the best-known positions of its neighbours, effectively

balancing exploration and exploitation of the search space. This dynamic adjustment helps

the swarm efficiently converge towards optimal or near-optimal solutions [6].

PSO is particularly valued for its simplicity, ease of implementation, and robustness in

handling non-linear, multi-dimensional, and complex optimization problems. It has been

successfully applied across various domains, including machine learning, engineering design,

and economic modelling. The algorithm's ability to find high-quality solutions with relatively

low computational cost makes it popular for diverse optimization tasks.

The description of the algorithm is as follows.

Starting Point: PSO begins by randomly picking a group of potential feature subsets.

Moving Around: Each particle adjusts its position (feature selection) based on two things:

It's the previous best choice (personal best). The best choice is made by any particle in the

group (global best). It does this by considering how much it should move towards these better

choices.

Checking Fitness: After moving, each particle checks how good its new feature subset is

using a fitness measure. This tells us how well the features predict or classify.

Updating Best Choices: If a particle finds a better solution (higher fitness) than before, it

remembers it as its personal best. If any particle in the group finds an even better solution,

then it is the new global best.

Repeating: The above steps are repeated for a set number of rounds or until there's no more

improvement.

Final Decision: The feature subset with the highest fitness (either from a single particle or

from the group) is chosen as the final selection. So, PSO helps find the best combination of

features by having particles move around in the feature space, learning from their own

experience and the group's best choices. Table 3 Presents the Hyperparameter of PSO

algorithm and their description. The Algorithm of PSO can be found in Algorithm 3.

12

 Table 3: Hyperparameters of PSO

 Algorithm 3: PSO

01. Initialize:

02. Initialize the swarm of particles with random positions and velocities.

03. For each particle, set the initial position as its personal best (pBest).

04. Identify the global best (gBest) position among all particles based on the

objective function.

05. Repeat until convergence (or max iterations):

06. For each particle:

07. Update the particle's velocity:

08. velocity = nertia_weight * current_velocity

 + cognitive_constant * rand()

 * (pBest_position -

 current_position)

Hyperparameter Description

Cognitive Coefficient (c1) The number of trees in the forest

Social Coefficient (c2) The maximum depth of the individual trees

Inertia Weight (ω) The minimum number of samples required to split an

internal node

Best known position of
particle(P)

minimum number of samples required to be at a leaf

node

Current velocity of
particle(V)

velocity of the particles

Number of Iterations The maximum number of iterations the algorithm will

run

 Swarm Size The number of particles in the swarm.

13

 + social_constant * rand() *

 (gBest_position- current_position)

09. Update the particle's position:

10. current_position = current_position + velocity

11. Evaluate the particle's fitness based on

 the objective function.

12. Update personal best (pBest) if

 the current fitness is better:

13. If current_fitness < pBest_fitness:

14. pBest_position = current_position

15. pBest_fitness = current_fitness

16. Update the global best (gBest) if any particle's

 personal best is better:

17. If any pBest_fitness < gBest_fitness:

18. gBest_position = that_particle's_pBest_position

19. gBest_fitness = that_particle's_pBest_fitness

20. Return the best position (gBest) and the corresponding

 fitness value.

 2.1.4 Binary Particle Swarm Optimization

Binary Particle Swarm Optimization (BPSO) is an adaptation of the standard Particle

Swarm Optimization (PSO) for solving binary (discrete) optimization problems. In BPSO,

each particle represents a solution in a binary format, where each dimension can take a value

of either 0 or 1. The algorithm updates the velocity of each particle based on its own best-

known position and the best-known positions of its neighbours, similar to standard PSO.

To convert the continuous velocity values to binary values, BPSO uses a sigmoid function,

which outputs probability. This probability determines whether each dimension of a

14

particle's position should be set to 0 or 1. The particle's position is then updated by

comparing this probability to a random number, effectively flipping the bits accordingly.

BPSO is particularly useful for discrete optimization problems, where solutions must be

represented in a binary format, such as feature selection in machine learning and network

design problems [7].

Initialization: BPSO starts by initializing a population of binary strings, each representing

a possible solution. In feature selection, each bit in the binary string corresponds to a feature

being selected (1) or not selected (0).

Evaluation: The fitness of each solution (particle) in the population is evaluated based on

a fitness function. In feature selection, this function typically measures the quality of the

subset of features selected.

Updating Velocity and Position: BPSO then updates each particle's velocity and position

based on its current position, the best position it has achieved so far (personal best), and the

best position achieved by any particle in the population (global best). The velocity

determines the direction and magnitude of movement for each particle.

Movement: Each particle adjusts its position according to its velocity, possibly flipping

bits in its binary string representation to explore the search space.

Update Personal and Global Best: After moving, each particle updates its personal best

position if the new position has a better fitness value. The global best position is updated if

any particle achieves a better fitness value than the current best.

Termination: The algorithm terminates when a stopping criterion is met, such as reaching

a maximum number of iterations or when the improvement in fitness becomes negligible.

Extraction: Finally, the best solution found (global best) represents the selected subset of

features. BPSO is particularly effective for feature selection because it explores the search

space efficiently, quickly converging towards promising solutions. By iteratively updating

the positions of particles based on their own experience and the experiences of the entire

swarm, BPSO can effectively navigate the high-dimensional feature space to find a subset

that optimizes the specified fitness function. The Algorithm of BPSO can be found in

Algorithm 4.

15

 Algorithm 4: BPSO

01. Initialize:

02. Initialize the swarm of particles with random binary positions (0s and 1s) and

velocities.

03. For each particle, set the initial position as its personal

 best (pBest).

04. Identify the global best (gBest) position among all particles based

 on the objective function.

05. Repeat until convergence (or max iterations):

06. For each particle:

07. For each dimension in the particle's position:

08. Update the particle's velocity:

09. velocity[d] = inertia_weight * current_velocity[d] +

 cognitive_constant *

 rand() * (pBest_position[d] - current_position[d])

 + social_constant * rand() *

 (gBest_position[d] - current_position[d])

10. Apply the sigmoid function to the velocity:

11. probability[d] = 1 / (1 + exp(-velocity[d]))

12. Update the particle's position using the probability:

13. If rand() < probability[d]:

14. current_position[d] = 1

15. Else:

16. current_position[d] = 0

17. Evaluate the particle's fitness based on the objective function.

20. Update personal best (pBest) if the current fitness is better:

16

21. If current_fitness < pBest_fitness:

22. pBest_position = current_position

23. pBest_fitness = current_fitness

24. Update the global best (gBest) if any particle's personal

 best is better:

25. If any pBest_fitness < gBest_fitness:

26. gBest_position = that_particle's_pBest_position

27. gBest_fitness = that_particle's_pBest_fitness

28. Return the best position (gBest) and the corresponding fitness value

 2.2 Clustering Method

Nowadays, many industries deal with very large data sets of different types. Manually

processing all that information can be time-consuming and might not even add value in the

long term. Many strategies, from simple automation to machine learning techniques, are

being applied for a better return on investment. Clustering is an unsupervised machine

learning method in which the model tries to group similar data points into clusters based on

their inherent characteristics without predefined labels. In clustering, the model is trained

to identify patterns and similarities within the data, enabling the discovery of natural

groupings and structures. For instance, an algorithm can learn to group customers into

different segments based on their purchasing behaviour, as illustrated below. Various

clustering algorithms, such as K-means, hierarchical clustering, and DBSCAN, can be used,

each with its approach to defining and discovering clusters. K-means is popular for dividing

data into a predetermined number of clusters.

 2.2.1 K-means

K-Means is a popular clustering algorithm used to partition a dataset into distinct groups or

clusters based on feature similarity. It starts by randomly selecting K centroids, which act

as the initial centers of the clusters. Each data point in the dataset is then assigned to the

nearest centroid, forming K clusters. After the initial assignment, the centroids are

recalculated as the mean of all data points within their respective clusters. Data points are

17

reassigned to the nearest centroid based on the updated centroid positions. This process of

recalculating centroids and reassigning data points is repeated iteratively until the centroids

no longer change significantly, indicating that the clusters have stabilized. The final

outcome is K distinct clusters, where each cluster contains data points that are more similar

to each other than to those in other clusters. [8]. The Algorithm of K-Means can be found

in Algorithm 5.

You keep repeating these steps—adjusting the jars' positions and reassigning marbles—

until the jars stop moving significantly or a predefined number of iterations is reached.

 Algorithm 5: K-Means

01: Initialize k centroids randomly from the data points.

02: Repeat until convergence:

03: a. Assignment step:

04: For each data point, calculate the distance to

 each centroid.

05: ii. Assign each data point to the nearest centroid.

06: b. Update step:

07: For each cluster, calculate the new centroid by

 averaging the coordinates of all

 data points assigned to it.

08: c. Check for convergence:

09: If centroids do not change or the change is minimal,

 stop the algorithm.

10: Return the final centroids and cluster assignments.

The final positions of the jars and the marbles they contain represent the clusters found by

the algorithm. However, just like in real life, sometimes you might end up with suboptimal

groups if the initial placement of the jars was unlucky or if the data doesn't naturally fall

into distinct clusters. Despite its simplicity, K-Means is widely used for its efficiency and

effectiveness in many applications, such as market segmentation, image compression, and

18

data preprocessing. As shown in Figure 3, k-means clustering effectively transforms

similar data points into distinct cluster groups, demonstrating the separation achieved after

the clustering process.

 Figure 3: K-Means clustering

2.2.2 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a probabilistic model used for clustering by

representing data as a mixture of multiple Gaussian distributions. Each Gaussian

distribution corresponds to a cluster and is defined by its mean, covariance, and weight.

GMM uses the Expectation-Maximization (EM) algorithm to iteratively update these

parameters, maximizing the likelihood of the data. Unlike k-means, GMM performs soft

clustering, assigning probabilities to data points for belonging to each cluster. This allows

GMM to handle clusters of different shapes, sizes, and overlapping regions. The number

of Gaussian components is chosen using criteria like BIC or AIC. GMM is useful in

applications like clustering, anomaly detection, and density estimation.

GMM works by modelling data as a mixture of Gaussian distributions, each representing

a cluster. It uses the Expectation-Maximization (EM) algorithm to iteratively update the

parameters (mean, covariance, weight) of these distributions by calculating the

probabilities of data points belonging to each cluster. The process repeats until the

parameters converge, resulting in a model that captures complex and overlapping cluster

structures [9].

19

As in the candy example, GMM iteratively adjusts its parameters to best explain the data.

It assumes that the data is generated from a mixture of several Gaussian distributions, each

representing a different cluster or group.

GMM is useful for tasks like image segmentation, where pixels with similar characteristics

must be grouped together or for identifying underlying patterns in complex datasets.

However, like any model, GMM has limitations, such as assuming that the data is normally

distributed and specifying the number of components (candy types) beforehand. Figure 4

shows GMM clustering with clusters differentiated by their standard deviations. The plot

highlights how varying standard deviations lead to distinct cluster shapes and spreads. The

Algorithm of GMM can be found in Algorithm 6.

 90

 Figure 4: Gaussian Mixture Model

 Algorithm 6: GMM

01: # Initialize the parameters

02: K = number_of_components # Number of Gaussian components

03: mu = initialize_means(K) # Means (μ) for each component

04: sigma = initialize_covariances(K) # Covariance matrices (Σ) for

 each component

20

05: pi = initialize_mixing_coeffs(K) # Mixing coefficients (π) for

 each component

06: converged = False # Convergence flag

07: # Repeat until convergence

08: while not converged:

09:

10: # E-Step: Calculate the responsibilities (γ_ik)

11: for i in range(N): # Loop over each data

 point x_i

12: for k in range(K): # Loop over each component k

13: # Compute the probability that x_i belongs to

 component k

14: prob_k = pi[k] * gaussian_pdf(x[i], mu[k], sigma[k])

15:

16: # Calculate the responsibility γ_ik

17: responsibilities[i, k] = prob_k / sum(pi[j] *

 gaussian_pdf(x[i], mu[j], sigma[j])

 for j in range(K))

20:

21: # M-Step: Update the parameters (μ, Σ, π)

22: for k in range(K): # Loop over each component k

23: # Update the mixing coefficient π_k

24: N_k = sum(responsibilities[i, k] for i in range(N))

25: pi[k] = N_k / N

26:

27: # Update the mean μ_k

28: mu[k] = sum(responsibilities[i, k] * x[i] for

 i in range(N)) / N_k

29:

30: # Update the covariance matrix Σ_k

31: sigma[k] = sum(

32: responsibilities[i, k] * np.outer(x[i] - mu[k],

 x[i] - mu[k])

33: for i in range(N)

34:) / N_k

35:

36: # Check for convergence (based on log-likelihood or

 parameter change)

37: if log_likelihood_change < threshold or parameter_change

 < threshold:

38: converged = True

21

 3. Literature Survey

Bahnsen et al. [10] used the application of machine learning models for predicting phishing

sites using URLs as input. They compared two methods: a feature-engineering approach

combined with a random forest classifier and a novel approach utilizing recurrent neural

networks (RNNs). Their study found that the RNN-based method achieved an impressive

accuracy rate of 98.7%, surpassing the random forest approach by 5%. This result highlights

the RNN method as a highly effective, scalable, and fast-acting detection system that does

not rely on manual feature creation or complete content analysis. This work demonstrates

the potential of RNNs for proactive phishing site detection, offering significant

improvements in accuracy and efficiency.

Li et al. [11] explored the critical role of feature selection as a data preprocessing strategy,

especially for high-dimensional data in data mining and machine learning. The main goals

of feature selection include simplifying models, enhancing data-mining performance, and

ensuring clean, interpretable data. The survey highlights the challenges and opportunities

presented by the proliferation of big data. It provides a comprehensive overview of recent

advances in feature selection, categorizing algorithms into four main groups: similarity-

based, information-theoretical-based, sparse-learning-based, and statistical-based methods.

The survey also introduces an open-source repository for feature selection algorithms,

facilitating research and evaluation in this field.

 Al-Ani et al. [12] proposed a novel approach to this problem using Ant Colony Optimization

(ACO), a metaheuristic inspired by ants' behaviour in finding the shortest paths to food.

The ACO algorithm optimizes feature selection by balancing local heuristics with

knowledge from previous iterations. Applied to two classification problems, the method

was tested using five baseline feature vectors input to an Artificial Neural Network (ANN).

The study involved 71,354 training patterns and 23,785 testing patterns. The classification

accuracies achieved were 76.17%, 76.04%, 74.06%, 75.23%, and 89.39%. The results

demonstrated the ACO-based method's potential, with one feature vector significantly

outperforming the others. This approach shows promise in enhancing the efficiency and

effectiveness of feature selection in pattern classification.

 Sekhar et al. [13] proposed using the Dragonfly Algorithm (DFA) for feature selection in

skin disease classification. DFA was applied to identify key features for illness

categorization and paired with CNN models, including VGG19 and EfficientNet-B2, for

classification tasks. The algorithm evaluated feature sets by measuring the accuracy of

classifiers on a training dataset, ensuring precise selection. Experimental results showed

22

DFA's high precision and minimal loss. Two CNN models, based on EfficientNet-B2 and

VGG19, were trained on DermNet NZ and ISIC 2019 datasets. These models achieved an

average accuracy of 88.5% and a loss of 0.0003 across eight skin diseases. The study

demonstrated deep learning's potential to classify skin conditions with near-human

accuracy. It also highlighted the potential for large-scale, real-time skin disease diagnosis,

enhancing healthcare practices and patient outcomes [11].

 Firpi et al. [14] used a feature extraction method based on Particle Swarm Optimization

 (PSO) to monitor brain activity and identify cognitive states and task intensity. This

approach aims to develop a pattern recognition system that classifies cognitive states,

enabling workload redistribution among subjects. The system utilises multiple features

from different domains, with PSO employed for feature selection. Classification is

performed using the k-nearest neighbour (k-NN) algorithm. The method was tested on data

from eight subjects, achieving an average classification accuracy of 90.25% on held-out,

cross-validated data. This demonstrates the efficacy of PSO in optimizing feature selection

for cognitive state recognition. The study shows the potential for adaptive workload

management based on real-time cognitive monitoring. This approach could significantly

enhance performance and reduce cognitive overload.

 Cervante et al. [15] proposed two innovative filter feature selection methods that combine

Binary Particle Swarm Optimization (BPSO) with information theory for classification

tasks. The first method uses BPSO and mutual information to evaluate the relevance and

redundancy of feature subsets, while the second method combines BPSO with entropy for

a similar purpose. Different weights for relevance and redundancy are applied in the fitness

functions to optimize feature selection and classification accuracy. These methods were

tested using a decision tree (DT) on four datasets. The results demonstrated that both

algorithms, with appropriate weights, could significantly reduce the number of features and

achieve similar or better classification accuracy. The first algorithm generally selects a

smaller feature subset, whereas the second often results in higher accuracy. This study

highlights the effectiveness of integrating BPSO with information theory in enhancing

feature selection.

 Peng et al. [16] proposed a feature selection method based on the maximal statistical

dependency criterion using mutual information, which is challenging to implement directly.

They introduced the minimal-redundancy-maximal-relevance (mRMR) criterion as an

equivalent form for incremental feature selection. Their two-stage algorithm combines

mRMR with advanced feature selectors, such as wrappers, to efficiently select a compact

23

set of superior features. The method was tested with naive Bayes, support vector machine,

and linear discriminant analysis classifiers across four datasets: handwritten digits,

arrhythmia, NCI cancer cell lines, and lymphoma tissues. Results showed that mRMR

significantly enhanced feature selection and classification accuracy. This approach offers a

cost-effective solution for high-quality feature selection in various classification tasks.

 Ranjitha et al. [17] addressed the limitations of traditional phishing detection methods, such

as URL blacklisting and heuristic-based approaches, which struggle to keep pace with

evolving phishing tactics. The study explored the application of machine learning classifiers

to identify illegitimate websites, specifically using Multilayer Perceptron and Bernoulli

Naive Bayes (NB) classifiers. Feature selection was carried out using a decision tree

classifier to identify the most relevant features for adequate classification. The researchers

trained and tested their classifiers on a dataset comprising blacklisted and whitelisted

websites. Evaluation metrics, including accuracy, precision, recall, and the ROC curve,

were used to assess classifier performance. The Multilayer Perceptron achieved an accuracy

of over 82%, demonstrating its effectiveness in detecting phishing sites. These findings

highlight the potential of machine learning techniques in enhancing phishing detection and

mitigating associated risks.

 Pan et al. [18] proposed a novel approach to phishing detection that addresses the limitations

of existing schemes, which often fail due to the adaptability of phishing attackers. The

proposed method identifies anomalies in web pages, specifically discrepancies between a

website’s identity, structural features, and HTTP transactions. This approach does not

require user expertise or prior knowledge of the website, making it more broadly applicable.

The research demonstrated that this method poses a high cost to attackers attempting to

evade detection. Experimental results showed that the proposed phishing detector achieved

a low miss rate and false-positive rate, highlighting its effectiveness in identifying phishing

attempts while minimizing errors. This approach provides a promising solution to the

ongoing challenge of detecting evolving phishing threats.

 Rao et al. [19] addressed the challenge of phishing websites, which often mimic legitimate

sites closely, making it difficult for users to distinguish between them. The study focuses

on detecting phishing websites by analysing their content and layout. They proposed a novel

method that utilizes TF-IDF (Term Frequency-Inverse Document Frequency) analysis to

extract key terms from suspected phishing sites. These extracted phrases are then queried

in various search engines, and the results are integrated and ranked to identify potential

phishing sources.

24

 4. Proposed Approach

The proposed method for detecting phishing attacks involves a structured approach beginning

with data collection, where relevant data about URLs and their components are gathered from

various sources such as databases, websites, and security repositories. This data is then

subjected to data preprocessing, which includes cleaning, normalisation, and transformation

to ensure consistency and accuracy. Following this, feature selection is conducted using two

nature-inspired algorithms, such as Ant Colony Optimization and Dragonfly Algorithm, and

two genetic algorithms, namely Particle Swarm Optimization (PSO) and Binary Particle

Swarm Optimization (BPSO). Each algorithm attempts to select the most relevant feature

subset from the dataset. The selected subset of data is then fitted into clustering models like

k-means and Gaussian Mixture Models (GMM). The performance of these clustering

methods is evaluated and compared using the silhouette score to determine their effectiveness

in accurately identifying phishing attacks.

The development of the machine learning-based predictive model involves the following

steps:

2. Data collection

3. Data preprocessing

4. Feature selection

5. Methodology

 4.1 Dataset Description

The Phishing Legitimate data set is available both in text and CSV files, which provides the

following resources that can be used as inputs for model building: A collection of website

URLs for 10000 websites. Each sample has 49 website parameters. These features include

URL length, domain age, presence of specific keywords, and structural characteristics. With

a binary classification objective, the dataset aims to differentiate between legitimate URLs

and those associated with phishing activities. This dataset presents a rich and diverse array of

URL attributes, making it suitable for in-depth exploratory analysis and predictive modelling

tasks. By examining these features, patterns and insights can be gleaned to enhance

cybersecurity measures and mitigate online threats.

Notably, each sample in the dataset includes 49 meticulously documented features, as

outlined in Table 4 and Table 5 Description of target class.

25

Table 4: Description of the dataset.

Attributes Description

1-15 Features of URL structure

16-22 Features of External Content

22-27 Features of From and Action

28-34 Features of Redirection

34-37 Scripting features

37-42 Features of security

42-47 Domain mismatch features

48-49 URL length metrics

Table 5: Description of the Target class

Dataset Type

 Phishing_legitimate_url Normal

 Attack

 4.2 Data Pre-processing

Data preprocessing converts raw data into a format suitable for machine learning models. This

phase involves using various methods to prepare the dataset for analysis. After the initial

preprocessing, the total number of samples decreased to 7,089, and the total number of

features reduced to 28. The following sections provide detailed explanations of each

preprocessing step for better understanding.

4.2.1 Handling Missing Values

To ensure data quality, an examination was conducted to identify missing values, including

NA or blank blocks. To maintain dataset integrity, missing values were to be imputed with

the mean of their respective columns. The examination revealed that the values in the dataset

are present. As a result, no imputation was necessary. The dataset is complete and ready for

the next stage of analysis.

26

 4.2.2 Normalization of URL Length

During the initial exploration of the dataset, it was observed that the feature "URL Length"

contained integer values that diverged from the standardised range of -1 to 1, characteristic of

other features in the dataset. To maintain uniformity in data scale and facilitate comparative

analysis, the "URL Length" was scaled within the desired range of -1 to 1, ensuring consistency

across all features.

 4.2.3 Identification and Removal of Variance-based Feature

To enhance computational efficiency and simplify the dataset, an evaluation was conducted to

identify columns with minimal variance. Columns showing less than 0.01 variance, which

indicated a lack of variability, were identified as redundant and removed. This feature

reduction helped eliminate unnecessary data, decreasing the dataset's dimensionality. As a

result, the dataset was streamlined to include only 32 relevant features, making it more efficient

and focused for analysis.

4.2.4 Detection and Removal of Highly Correlated Features

To address multicollinearity and enhance the robustness of the analyses, an examination was

conducted to identify pairs of features with high correlation. Features exceeding the

correlation threshold of 0.9 were considered highly correlated and thus removed to prevent

redundancy. Specifically, the feature "AbnormalExtFormActionR" was identified as

correlating higher than 0.9 and dropped from the dataset. This step was crucial in mitigating

the risk of overfitting and improving the interpretability of the models trained on the dataset.

Removing such redundant information ensures that the model relies on a more independent

and diverse set of features.

 4.2.5 Outlier Detection and Removal
Outlier detection was conducted on a dataset containing 10,000 samples to enhance the

quality and reliability of the data. Statistical methods, including z-score, were employed to

identify data points significantly deviating from the expected distribution. These outliers,

which could potentially skew the analysis, were systematically removed from the dataset. In

total, 2,911 samples were classified as outliers and subsequently eliminated. This process

reduced the dataset to 7,089 samples, ensuring a more accurate and representative data set

for analysis. The removal of outliers helped prevent these anomalies from unduly

influencing the results.

27

 4.2.6 Univariate Feature Analysis and Selection

A thorough univariate analysis was conducted to assess the individual contribution of each

feature to the dataset. This analysis aimed to identify features with limited relevance or

low informational value. Based on the findings, features deemed less informative were

selectively removed. This careful selection process helped streamline the dataset by

focusing on the most valuable variables. As a result, 28 relevant features remained after

the analysis. Reducing features enhances the dataset's efficiency and focus for subsequent

analyses. The remaining features are expected to improve the quality and interpretability

of the models. These 28 features were utilized in the next stage of analysis.

 4.3 Feature selection
Feature selection is a critical aspect of machine learning as it enhances the accuracy of

clustering models. This study compares four feature selection methods the Ant Colony

Optimization Algorithm , Dragonfly Algorithm ,PSO and BPSO. After cleaning the data,

the dataset is refined to contain 47 features. Subsequently, four different feature selection

algorithms are used to identify and extract the most relevant features from the dataset. Those

32 features are implemented in the given algorithm, as shown in Table 6. After the process

is completed, the output of the best features by Ant colony is shown in Table 7.

 Table 6: Features for Ant Colony Optimization Algorithm

Dataset Original Feature

 Phishing url

'NumDots', 'SubdomainLevel', 'PathLevel', 'UrlLength',

'NumDash', 'NumDashInHostname', 'AtSymbol',

'TildeSymbol', 'NumUnderscore', 'NumPercent',

'NumQueryComponents', 'NumAmpersand',

'NumHash', 'NumNumericChars', 'NoHttps', 'RandomString',

'IpAddress', 'DomainInSubdomains', 'DomainInPaths',

'HostnameLength', 'PathLength',

'QueryLength', 'DoubleSlashInPath', 'NumSensitiveWords',

'EmbeddedBrandName', 'PctExtHyperlinks',

'PctExtResourceUrls',

'ExtFavicon', 'InsecureForms', 'RelativeFormAction',

'ExtFormAction', 'AbnormalFormAction',

28

'PctNullSelfRedirectHyperlinks',

'FrequentDomainNameMismatch', 'FakeLinkInStatusBar',

'RightClickDisabled', 'PopUpWindow', 'SubmitInfoToEmail',

'IframeOrFrame', 'MissingTitle', 'ImagesOnlyInForm',

'SubdomainLevelRT', 'UrlLengthRT', 'PctExtResourceUrlsRT',

'AbnormalExtFormActionR',

'ExtMetaScriptLinkRT',

'PctExtNullSelfRedirectHyperlinksRT'

 Table 7: Features Selection Using Ant Colony Optimization Algorithm

Method Selected Features

Ant Colony

Optimization

algorithm

'PctNullSelfRedirectHyperlinks', 'TildeSymbol',

'NumNumericChars', 'NumHash', 'NumAmpersand',

'NumQueryComponents', 'NumPercent', 'NumUnderscore',

'AtSymbol', 'RandomString', 'NumDashInHostname',

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel',

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction',

'EmbeddedBrandName', 'ExtFormAction',

'RelativeFormAction', 'InsecureForms', 'ExtFavicon',

'PctExtResourceUrls', 'PctExtHyperlinks',

'NumSensitiveWords', 'DomainInSubdomains',

'DoubleSlashInPath', 'QueryLength', 'PathLength',

'HostnameLength', 'HttpsInHostname', 'DomainInPaths'

The output of the best features by Dragonfly Algorithm is shown in Table 8.

29

Table 8: Features Selection Using Dragonfly Algorithm

Method Selected Features

Dragonfly algorithm

'PctNullSelfRedirectHyperlinks', 'TildeSymbol',

'NumNumericChars', 'NumHash', 'NumAmpersand',

'NumQueryComponents', 'NumPercent', 'NumUnderscore',

'AtSymbol', 'RandomString', 'NumDashInHostname',

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel',

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction',

'EmbeddedBrandName', 'ExtFormAction',

'RelativeFormAction', 'InsecureForms', 'ExtFavicon',

'PctExtResourceUrls', 'PctExtHyperlinks',

'NumSensitiveWords', 'DomainInSubdomains',

'DoubleSlashInPath', 'QueryLength', 'PathLength',

'HostnameLength', 'HttpsInHostname', 'DomainInPaths'

 The output of the best features by PSO is shown in Table 9.

 Table 9: Feature Selection Using PSO Algorithm

Method Selected Features

 PSO

'PctNullSelfRedirectHyperlinks', 'TildeSymbol',

'NumNumericChars', 'NumHash', 'NumAmpersand',

'NumQueryComponents', 'NumPercent', 'NumUnderscore',

'AtSymbol', 'RandomString', 'NumDashInHostname',

'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel',

'NumDots', 'NoHttps', 'IpAddress', 'AbnormalFormAction',

'EmbeddedBrandName', 'ExtFormAction',

'RelativeFormAction', 'InsecureForms', 'ExtFavicon',

'PctExtResourceUrls', 'PctExtHyperlinks',

'NumSensitiveWords', 'DomainInSubdomains',

'DoubleSlashInPath', 'QueryLength', 'PathLength',

'HostnameLength', 'HttpsInHostname', 'DomainInPaths'

 The output of the best features by BPSO is shown in Table 10.

 Table 10: Features Selection Using BPSO Algorithm

30

Method Selected Features

BPSO

 'RandomString', 'NumDashInHostname', 'NumDash',

'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots',

'NoHttps', 'IpAddress', 'AbnormalFormAction',

'EmbeddedBrandName', 'ExtFormAction',

'RelativeFormAction', 'InsecureForms', 'ExtFavicon',

'PctExtResourceUrls', 'PctExtHyperlinks',

'NumSensitiveWords', 'DomainInSubdomains',

'DoubleSlashInPath', 'QueryLength', 'PathLength',

'HostnameLength', 'HttpsInHostname',

'DomainInPaths''PctNullSelfRedirectHyperlinks',

'TildeSymbol', 'NumNumericChars', 'NumHash',

'NumAmpersand', 'NumQueryComponents', 'NumPercent',

'NumUnderscore', 'AtSymbol'

 The output of the best features by Univariate Analysis is shown in Table 10.

Table 11: Features Selection Using Univariate Analysis

Method Selected Features

 Univariate

Analysis

 'RandomString', 'NumDashInHostname', 'NumDash',

'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots',

'NoHttps', 'IpAddress', 'AbnormalFormAction',

'EmbeddedBrandName', 'ExtFormAction',

'RelativeFormAction', 'InsecureForms', 'ExtFavicon',

'PctExtResourceUrls', 'PctExtHyperlinks',

'NumSensitiveWords', 'DomainInSubdomains',

'DoubleSlashInPath', 'QueryLength', 'PathLength',

'HostnameLength', 'HttpsInHostname',

'DomainInPaths''PctNullSelfRedirectHyperlinks',

'TildeSymbol', 'NumNumericChars', 'NumHash',

'NumAmpersand', 'NumQueryComponents', 'NumPercent',

'NumUnderscore', 'AtSymbol'

31

4.4. Methodology

The framework of the clustering model is presented in Figure 5.

 Data pre-processing

 Feature Selection

 Antcolony Dragonfly

 PSO BPSO

 Univariate Analysis

 Model

 GMM

 Output

 Figure 5: Framework of the Clustering Model.

Phishing URL Dataset

OUTLIER DETECTION

DATA CLEANING

NORMALIZATION

K-Means
GMM

32

Optimizers and Model

Four optimizers are employed in the feature selection: two nature-inspired algorithms, ant

colony optimization and dragonfly algorithm, and two genetic algorithms, PSO and BPSO. Each

optimizer has a range of hyperparameters that significantly influence its performance.

Using nature-inspired and genetic algorithms for feature selection is effective because they

explore large and complex search spaces, avoiding local optima. These algorithms focus on

global optimization, increasing the likelihood of finding the best feature subset. Their flexibility

allows them to adapt to different data types and optimization challenges. Additionally, they are

robust to noise and irrelevant features, improving model accuracy and generalization. The ant

colony optimization, inspired by ants' foraging behaviour, involves parameters like the number

of ants, pheromone evaporation rate, and pheromone influence. The dragonfly algorithm,

modelled after dragonflies' static and dynamic swarming behaviours, includes hyperparameters

such as alignment, cohesion, separation weights, and attraction to food sources. On the genetic

algorithm side, PSO mimics the social behaviour of birds flocking or fish schooling, using

parameters like cognitive and social coefficients, inertia weight, and the number of particles.

BPSO, a variant tailored for binary search spaces, uses similar parameters but adapts them to

binary decisions, impacting the velocity and position updates in a discrete space. To tune these

hyperparameters effectively, an exploratory approach is employed. This involves systematically

experimenting with different parameter values to uncover the optimal configurations that yield

the best performance. The goal is to identify the most relevant subset of hyperparameters that

enhance the efficiency and accuracy of each optimizer. Once the optimal hyperparameters are

determined, the dataset is preprocessed and split into training and testing sets. The preprocessed

and feature-selected dataset is then fitted into unsupervised learning models like k-means and

GMM. K-means clustering relies on the distance between points to form clusters, while GMM

assumes that the data is generated from a mixture of several Gaussian distributions. Using GMM

for clustering is advantageous because it models data as a mixture of Gaussian distributions,

allowing for more flexible, elliptical cluster shapes. GMM captures complex underlying

structures in the data significantly when clusters overlap. The Expectation-Maximization (EM)

algorithm used by GMM iteratively improves the fit to the data, enhancing clustering accuracy.

33

 6. Results and Analysis

Python 3.10 is considered for implementation in this study due to its wide range of libraries.

Various machine learning algorithms are employed to categories the binary-class network

attacks. The Phishing URL attack dataset is obtained from the KAGGLE repository for model

implementation. The dataset is pre-processed, and relevant features are selected from the

dataset. The dataset is then split into training-validation and testing sets in a 75%—25% ratio

for model training and testing. Unsupervised machine learning models, namely, K-means and

GMM, are built using PyTorch. The following listed hyperparameter values of PSO are used

to select the most relevant features from the dataset.

C1 =1: A value of 1 indicates a moderate influence, meaning the particle will consider its own

past experiences but not be overly reliant on them.

C2 = 1.5: A value of 1.5 suggests a more substantial influence from the global best compared

to the personal best, encouraging particles to follow the collective wisdom of the swarm more

than their own experience.

w = .9: An inertia weight of 0.9 implies that the particles will maintain most of their momentum

from the previous iteration, resulting in smoother and more gradual updates in their velocity.

This can help in exploring the search space more effectively.

v= 1 Setting the initial velocity v to 1 means that each particle in the swarm starts with a

velocity of 1.

K=20: A value of 20 provides a good balance between exploration and exploitation.

Table 12 presents listed hyperparameter values of PSO are used to select the most relevant

features from the dataset.

Table 12: Hyperparameters value based on exploration optimization of PSO.

Hyperparameters Values

c1 1

c2 1.5

w .9

v 1

k 20

34

 The following listed hyperparameter values of Binary PSO are used to select the most relevant

 features from the dataset.

C1 =1.5 A value of 1.5 indicates a moderate influence, meaning the particle will consider its

own past experiences but not be overly reliant on them.

C2 = 1.5: A value of 1.5 suggests a more substantial influence from the global best compared

to the personal best, encouraging particles to follow the collective wisdom of the swarm more

than their own experience.

w =0.7: An inertia weight of 0.7 implies that the particles will maintain most of their

momentum from the previous iteration, resulting in smoother and more gradual updates in their

velocity. This can help in exploring the search space more effectively.

Effect on Convergence: Lower values for r1 and r2 make the algorithm more exploitative,

relying more on the best-known positions. Higher values increase exploration, allowing

particles to search more widely. These specific hyperparameter values are chosen based on

exploring a dataset such as PSO or binary PSO optimization. During this process, different

combinations of parameter values are tested, and the combination that results in the best model

performance on a validation set is selected.

The hyperparameter values listed below of ant colony are used to optimize the selection of

features from the dataset.

Table 13 presents listed hyperparameter values of BPSO are used to select the most relevant

features from the dataset.

 Table 13: Hyperparameters value based on exploration optimization of Binary PSO.

Hyperparameters value

C1 1.5

C2 1.5

W .7

r 1 0.854

r 2 0.75

35

 The following hyperparameter values of Antcolony Algorithm are used to select

 the most relevant features from the dataset.

Number of Ants (n_ants = 10): In each iteration, 10 ants explore the solution space.

Number of Iterations (n_iterations = 50): The algorithm runs for 50 iterations.

Pheromone Importance (alpha = 1): Pheromone trails moderately influence path selection.

Heuristic Importance (beta = 2): Heuristic information (e.g., path length) is highly

influential in decision-making.

Evaporation Rate (roh): 50% of the pheromone evaporates each iteration, balancing

exploration and exploitation.

These specific hyperparameter values are chosen based on exploring a Dataset in this ant

colony optimisation. During this process, different combinations of parameter values are

tested, and the combination that results in the best model performance on a validation set is

selected. The hyperparameter values of the dragonfly algorithm, listed below optimize the

selection of features from the dataset.

Table 14 presents listed hyperparameter values of Antcolony are used to select the most

relevant features from the dataset.

 Table 14: Hyperparameters value based on exploration optimization of Ant Colony Algorithm.

Hyperparameters Values

n 10

N 50

alpha 1

beta 2

roh 50

36

 The following hyperparameter values of Dragonfly Algorithm are used to select the most

 relevant features from the dataset.

Num_featurs (N): 28 features define the dimensions of the problem space.

Max_generations(m): 1000: The algorithm is executed for 1000 generations. Setting the

maximum number of generations to 1000 allows the algorithm sufficient time to explore and

refine potential solutions. This value balances exploration and convergence, providing ample

opportunity to find an optimal solution without excessively prolonging the computation.

Population_size (p): 250: A population size of 250 provides a good balance between

exploration and computational efficiency. It is large enough to explore the solution space

effectively.

Step_size (s): 0.2: A step size of 0.2 allows for moderate adjustments to the dragonflies'

positions. It helps them explore the search space without making overly large jumps.

absorption_coffeicient (c):.6: An absorption coefficient of 0.6 indicates a moderate level of

absorption. This value strikes a balance between adapting to the environment and relying on

the best global information. It helps maintain a balance between exploration and exploitation.

These specific hyperparameter values are chosen based on exploring a dataset in this dragonfly

algorithm optimization. During this process, different combinations of parameter values are

tested, and the combination results in the best model performance on a validation set.

Table 15 presents listed hyperparameter values of Dragonfly Algorithm are used to select the

most relevant features from the dataset.

 Table 15: Hyperparameters value based on exploration optimization of Dragonfly Algorithm

Hyperparameters Values

N 28

m 1000

p 250

s .2

c .6

37

The comparative analysis of the silhouette scores achieved by the k-means and GMM models

for feature sets selected using Ant Colony, Dragonfly, PSO, BPSO optimizers, and univariate

analysis is provided in Table 1. The BPSO-selected feature subset yielded the highest

silhouette score when used with the k-means model.

 Table 16: Silhouette scores of Clustering Algorithms based on Four Optimizers and Univariate

 Analysis.

 Algorithms

 Models

Ant Colony PSO BPSO Dragonfly Univariate

Analysis

K-means 76% 76% 87% 65% 80%

GMM 57% 59% 58% 55% 65%

38

 6. Conclusion and Future Scope

This study has demonstrated the potential of unsupervised machine-learning techniques in

detecting phishing URLs. Focusing on patterns and anomalies within URL data shows that K-

means clustering and Gaussian Mixture Models can effectively identify suspicious URLs

without needing labelled data. The findings suggest that these unsupervised algorithms can

overcome some limitations of traditional supervised methods and offer a viable alternative for

enhancing cybersecurity measures. This study highlights the importance of leveraging the

inherent structure of URLs to detect phishing attempts, contributing to the broader effort to

protect digital assets. Future work could explore combining unsupervised and supervised

learning to improve detection accuracy. Enhancing feature extraction techniques, possibly

using deep learning, could make models more robust. Investigating real-time data integration

and adaptive learning could help systems respond quickly to new threats. Additionally,

expanding this work to include multiple data sources and cross-domain analysis could increase

the applicability and effectiveness of these techniques in various cybersecurity contexts.

Lastly, developing user-friendly tools based on these findings could make advanced phishing

detection accessible to a broader range of users and organizations.

39

 References
[1]. M. Khonji, Y. Iraqi and A. Jones, “Phishing detection: a literature survey”, IEEE

Communication, pp.2091–2121, 2013.

[2]. R. S. Rao, A. Pais, “Detection of phishing websites using an efficient feature-based

machine learning framework”, Neural Computing and Applications, pp. 3851–3873,

2019.

[3]. L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redundancy,”

Journal of Machine Learning Research, vol. 5, pp. 1205–1224, Jan. 2004.

[4]. R. S. Parpinelli, H. S. Lopes and A. A. Freitas, “Data mining with an ant colony

optimization algorithm”, IEEE Transactions on Evolutionary Computation, pp.321-

332,2002.

[5]. Y. Meraihi, A. Ramdane-Cherif and D. Acheli, “Dragonfly algorithm: a comprehensive

review and applications”, Neural Computing and Applications, vol.32, pp.16625–16646

,2020.

[6]. J. Kennedy, and R. C. Eberhart, “Particle swarm optimization”, IEEE International

Conference on Neural Networks, Vol. 4, pp. 1942-1948,1995.

[7]. M. A. Khanesar, M Teshnehlab and M. A. Shoorehdeli, "A novel binary particle swarm

optimization”, Mediterranean Conference on Control & Automation, pp. 1-6, 2007.

[8]. K. P. Sinaga and M. -S. Yang, "Unsupervised K-Means Clustering Algorithm”, IEEE

Access, vol. 8, pp. 80716-80727, 2020.

[9]. H. Wan, H. Wang, B. Scotney and J. Liu, "A Novel Gaussian Mixture Model for

Classification," 2019 IEEE International Conference on Systems, Man and Cybernetics

(SMC), Bari, Italy, 2019, pp. 3298-3303.

[10]. A. C. Bahnsen, E. C. Bohorquez “Classifying phishing URLs using recurrent neural

networks”, APWG Symposium on Electronic Crime Research (eCrime), IEEE, pp. 1–8,

2017.

[11]. J. Li et al., “Feature selection: A data perspective,” ACM Computing Surveys (CSUR),

vol. 50, no. 6, pp. 1–45, 2017.

[12]. A. Al-Ani, “Feature Subset Selection Using Ant Colony Optimization”, International

Journal of Computational Intelligence, pp 53-58, 2005.

[13]. D. V. Sekhar, M. P. Reddy, “Feature Selection Based on Dragonfly Optimization for

Psoriasis Classification”, International Journal of Intelligent Systems and Applications in

Engineering, pp. 935–943, 2024.

[14]. H. A. Firpi and R. J. Vogelstein, "Particle swarm optimization-based feature selection

for cognitive state detection”, Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, Boston, MA, USA, 2011, pp. 6556-6559,2011.

[15]. L. Cervante, Bing Xue, M. Zhang and Lin Shang, "Binary particle swarm optimization

for feature selection: A filter-based approach," IEEE Congress on Evolutionary

Computation, Brisbane, pp. 1-8,2012.

[16]. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria

40

of max-dependency, max-relevance, and min redundancy,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, Aug. 2005.

[17]. R. G. Ranjitha and M. Sundaram, “Phishing Websites Classification Placed on URL

Features and Extreme Machine Learning”, Federated Engineering and Systems, PP.37–

43, 2023.

[18]. Y. Pan, X. Ding, “Anomaly-based web phishing page detection”, 22nd Annual

Computer Security Applications Conference (ACSAC’06), IEEE, pp. 381–392, 2006.

[19]. R. S. Rao, A. Pais “An enhanced blacklist method to detect phishing websites”,

International Conference on Information Systems Security. Springer, pp. 323–333,2017.

[20]. D. Terence, “ An optimality principle for unsupervised learning”, NIPS, pp. 11–

19,1988.

[21]. M. Dorigo, T. Sttzle, and M. Birattari, “Ant colony optimization”, Computational

Intelligence Magazine, 1(4), pp.28-39,2006.

[22]. B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization for feature

selection in classification: A multi-objective approach,” IEEE Transactions on

Cybernetics, vol. 43, no. 6, pp. 1656–1671, Dec. 2013.

41

Appendix

Code

ANTCOLONY

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

import networkx as nx

class AntColonyFeatureSelectionUnsupervised:

 def __init__(self, graph, n_ants, n_iterations, alpha=1, beta=2, evaporation_rate=0.1):

 self.graph = graph

 self.n_ants = n_ants

 self.n_iterations = n_iterations

 self.alpha = alpha

 self.beta = beta

 self.evaporation_rate = evaporation_rate

 self.pheromone_trails = np.ones((graph.number_of_nodes(), graph.number_of_nodes()))

 self.n_features = graph.number_of_nodes()

 self.pheromone_delta = np.zeros(self.n_features)

 def fit(self, X_train):

 self.n_features = X_train.shape[1]

 self.pheromone_matrix = np.ones(self.n_features) * 0.5

 for _ in range(self.n_iterations):

 selected_features = []

 for _ in range(self.n_ants):

 features = self.construct_solution()

 selected_features.append(features)

 self.update_pheromones(selected_features, X_train)

 def construct_solution(self):

 features = []

 remaining_features = list(range(self.n_features))

 while remaining_features:

 probabilities = self.calculate_probabilities(remaining_features)

 selected_feature = np.random.choice(remaining_features, p=probabilities)

 features.append(selected_feature)

 remaining_features.remove(selected_feature)

 return features

 def calculate_probabilities(self, remaining_features):

 probabilities = [self.pheromone_matrix[feature] for feature in remaining_features]

 total_pheromone = sum(probabilities)

 return [pheromone / total_pheromone for pheromone in probabilities]

 def update_pheromones(self, selected_features_list, X_train):

 pheromone_delta = np.zeros(self.n_features)

 for selected_features in selected_features_list:

 X_selected = X_train.iloc[:, selected_features]

 kmeans = KMeans(n_clusters=2, random_state=0,n_init=10).fit(X_selected)

 silhouette_avg = silhouette_score(X_selected, kmeans.labels_)

 for feature in selected_features:

 pheromone_delta[feature] += silhouette_avg

 self.pheromone_matrix = (1 - self.evaporation_rate) * self.pheromone_matrix + pheromone_delta

def create_graph(X_train):

 corr_matrix = np.abs(np.corrcoef(selected_df, rowvar=False))

 graph = nx.Graph()

 for i in range(selected_df.shape[1]):

 for j in range(i+1, selected_df.shape[1]):

 graph.add_edge(i, j, weight=corr_matrix[i, j])

 return graph

42

Initialize and fit the ACO feature selection algorithm

graph = create_graph(selected_df)

aco_unsupervised = AntColonyFeatureSelectionUnsupervised(graph=graph, n_ants=10, n_iterations=50)

aco_unsupervised.fit(selected_df)

Select the best features based on pheromone trails

pheromone_matrix_array = np.asarray(aco_unsupervised.pheromone_matrix)

best_features_indices = np.argsort(pheromone_matrix_array)[::-1] # Select top 10 features

best_features_indices

print("Selected features indices:", best_features_indices)

Selected features indices: [34 8 14 13 12 11 10 9 7 16 6 5 4 3 2 1 15 17 33 26 32 31 30 29 28 27 25 18 24 23 22 21 20 19]

['PctNullSelfRedirectHyperlinks', 'TildeSymbol', 'NumNumericChars', 'NumHash', 'NumAmpersand', 'NumQueryComponents', 'NumPercent',
'NumUnderscore', 'AtSymbol', 'RandomString', 'NumDashInHostname', 'NumDash', 'UrlLength', 'PathLevel', 'SubdomainLevel', 'NumDots', 'NoHttps',

'IpAddress', 'AbnormalFormAction', 'EmbeddedBrandName', 'ExtFormAction', 'RelativeFormAction', 'InsecureForms', 'ExtFavicon', 'PctExtResourceUrls',

'PctExtHyperlinks', 'NumSensitiveWords', 'DomainInSubdomains', 'DoubleSlashInPath', 'QueryLength', 'PathLength', 'HostnameLength',
'HttpsInHostname', 'DomainInPaths']

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import silhouette_score

best_features=selected_df.iloc[:, best_features_indices]

kmeans=KMeans(n_clusters=2,init="k-means++")

y_labels=kmeans.fit_predict(best_features)

silhouette_avg = silhouette_score(best_features, y_labels)

print(f'Silhouette Score: {silhouette_avg}')

#accuracy = accuracy_score(y_train, y_labels) # Adjust for the clustering labels

#print(f"Accuracy Score: {accuracy}")

Silhouette Score: 0.7604676567184461

#Dragonfly

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

from sklearn.cluster import MiniBatchKMeans

class UnsupervisedDragonflyAlgorithm:

 def __init__(self, num_features, max_generations=1100, population_size=250,

step_size=0.2, absorption_coefficient=0.6):

 self.num_features = num_features

 self.max_generations = max_generations

 self.population_size = population_size

 self.step_size = step_size

 self.absorption_coefficient = absorption_coefficient

 self.population = None

 self.best_individual = None

 def initialize_population(self):

 self.population = np.random.rand(self.population_size, self.num_features) > 0.6

 def evaluate_fitness(self, X):

 fitness_values = []

 for individual in self.population:

 selected_features = [i for i in range(self.num_features) if individual[i] == 1]

 X_selected = selected_df.iloc[:, selected_features]

 kmeans = KMeans(n_clusters=2, random_state=0).fit(X_selected)

 silhouette_avg = silhouette_score(X_selected, kmeans.labels_)

 fitness_values.append(silhouette_avg)

 return fitness_values

43

 def evolve(self, X):

 self.initialize_population()

 for generation in range(self.max_generations):

 fitness_values = self.evaluate_fitness(X)

 best_index = np.argmax(fitness_values)

 self.best_individual = self.population[best_index]

 new_population = []

 for individual in self.population:

 new_individual = individual.astype(bool) + self.step_size *

(self.best_individual != individual) + \

 self.absorption_coefficient *

np.random.randn(self.num_features)

 new_population.append(new_individual)

 self.population = np.clip(new_population, 0, 1)

Feature selection using Unsupervised Dragonfly Algorithm

uda = UnsupervisedDragonflyAlgorithm(num_features=selected_df.shape[1], population_size=10,

max_generations=50)

uda.evolve(selected_df)

Get the selected features from the best individual

selected_features = [i for i in range(selected_df.shape[1]) if uda.best_individual[i] == 1]

print("Selected features:", selected_features)

Selected features: [1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 16, 18, 20, 22, 27, 29, 30, 31, 32, 33]

from sklearn.cluster import KMeans

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import silhouette_score

#best_features=X1.columns[best_features_indices]

best_features_indices = np.array(selected_features).reshape(-1, 1)

#best_features_indices = selected_features.reshape(-1, 1)

kmeans=KMeans(n_clusters=2,init="k-means++")

y_labels=kmeans.fit_predict(best_features_indices)

silhouette_avg = silhouette_score(best_features_indices, y_labels)

print(f'Silhouette Score: {silhouette_avg}')

Silhouette Score: 0.6509154018350569

44

#PSO

import numpy as np

import pandas as pd

import pyswarms as ps

from sklearn.cluster import KMeans

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import silhouette_score

def objective_function(selected_features):

 selected_indices = np.where(selected_features == 1)[0]

 if len(selected_indices) == 0:

 return -np.inf

 # Train a classifier

 # Use K-means clustering

 kmeans = KMeans(n_clusters=2, random_state=0)

 cluster_labels = kmeans.fit_predict(selected_df.iloc[selected_indices])

 # Calculate Silhouette Score

 silhouette = silhouette_score(selected_df.iloc[selected_indices], cluster_labels)

 return silhouette

Define PSO parameters

num_features = selected_df.shape[1]

num_particles = 20

num_iterations = 150

options = {'c1':1 , 'c2': 1.5, 'w':.9, 'k': 20, 'p': 1, 'bounds': (np.zeros(num_features),

np.ones(num_features))}

bounds = (np.zeros(num_features), np.ones(num_features))

Initialize PSO optimizer

optimizer = ps.discrete.binary.BinaryPSO(n_particles=num_particles, dimensions=num_features,

options=options,)

best_position, _ = optimizer.optimize(objective_function, iters=num_iterations)

selected_indices = np.where(np.atleast_1d(_ == 1))[0]

#selected_indices = np.where(np.atleast_1d(_) > 0.20)[0]

selected_indices = np.clip(selected_indices, 0, selected_df.shape[1] - 1)

print("best_position",best_position)

print("best",selected_indices)

top_30_indices = selected_indices#[:47]

top_30_features = selected_df.columns[top_30_indices]

Print the selected features

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

best_features=selected_df.iloc[:,top_30_indices]

kmeans=KMeans(n_clusters=2,init="k-means++")

y_labels=kmeans.fit_predict(best_features)

silhouette_avg = silhouette_score(best_features, y_labels)

print(f'Silhouette Score: {silhouette_avg}')

Selected features: [4 5 6 7 9 12 13 14 24 25 29 32 33 34]
Silhouette Score: 0.767803452459353

45

#Binary PSO

import numpy as np

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.metrics import silhouette_score

class Particle:

 def __init__(self, num_features):

 self.position = np.random.randint(2, size=num_features)

 self.velocity = np.random.uniform(-0.1, 0.1, size=num_features)

 self.best_position = self.position.copy()

 self.best_score = float('-inf') # Initialize with negative infinity for

maximization

def fitness_function(features, X):

 selected_features = [bool(f) for f in features]

 X_selected = selected_df.iloc[:, selected_features]

 kmeans = KMeans(n_clusters=2, random_state=0,n_init=10)

 kmeans.fit(X_selected)

 silhouette = silhouette_score(X_selected, kmeans.labels_)

 return silhouette

def bell_pso(X, num_particles=10, max_iter=50, w=0.7, c1=1.5, c2=1.5):

 num_features = X.shape[1]

 particles = [Particle(num_features) for _ in range(num_particles)]

 global_best_position = np.zeros(num_features)

 global_best_score = float('-inf') # Initialize with negative infinity for maximization

 for _ in range(max_iter):

 for particle in particles:

 fitness = fitness_function(particle.position, X)

 if fitness > particle.best_score:

 particle.best_position = particle.position.copy()

 particle.best_score = fitness

 if fitness > global_best_score:

 global_best_position = particle.position.copy()

 global_best_score = fitness

 for particle in particles:

 r1 = np.random.rand(num_features)

 r2 = np.random.rand(num_features)

 particle.velocity = w * particle.velocity + c1 * r1 * (particle.best_position -

particle.position) + c2 * r2 * (global_best_position - particle.position)

 particle.position = np.round(1 / (1 + np.exp(-particle.velocity)))

 return global_best_position

Example usage

Assuming X1 is your dataset

#X1 = np.random.rand(100, 10) # Example random dataset

selected_features = bell_pso(selected_df, num_particles=10, max_iter=50)

print("Selected features:", selected_features)

selected_features_indices = np.where(selected_features == 1)[0]

print("Selected features indices:", selected_features_indices)

Selected features indices: [6 11 14 17 18 19 22 25 27 28 29 30 34]

Silhouette Score(k-means): 0.87

46

