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Abstract  

 

Machine learning is the outcome of the algorithmic form of 

statistics and a few other mathematics classes with some set of instructions, 

i.e., programs. This thesis explores the machine learning techniques used in 

the heat transfer research domain. Among the many available machine 

learning methods, the present work emphasizes a technique known as a 

Physics-informed neural network (PINN), which combines the physics 

associated with the problem (heat transfer) and the computational ability of 

a neural network. In this neural network, the loss function takes the form of 

a summation of different loss functions, which includes the loss in data due 

to PDE known as 𝐿𝑜𝑠𝑠𝑃𝐷𝐸, loss due to boundary condition known as 

𝐿𝑜𝑠𝑠𝐵𝐶, and loss due to initial condition known as 𝐿𝑜𝑠𝑠𝐼𝐶. In this work, the 

PINN technique is used to study heat transfer behavior through a slab and 

a fin under specified boundary and initial conditions, two of the most 

common problems in the thermal domain. Solutions obtained from this 

method are validated using analytical solutions.  
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Chapter-1 

 

1. INTRODUCTION 

 

           From the knowledge of thermodynamics, we understand energy 

conversion from one form to a subsequent form. At the same time, science 

associated with heat transfer is concerned with the study of the rate of heat 

transfer within a system. Such heat transport always occurs in a temperature 

gradient, i.e., from higher to lower temperatures. Heat transfer science 

focuses on finding the heat flow characteristics and temperature gradient in 

many practical scenarios like heat exchanger design, nuclear reactor core, 

aerospace industries, and many more research domains. Most real-world 

problems include all modes of heat transfer, such as conduction, 

convection, and radiation, simultaneously. However, to simplify our 

analysis, we only consider the dominating mode of heat transfer [1]. Some 

of the crucial problems in this domain are thermal resistance and insulation 

[2], study of heat loss [3], thermal stresses [4], heat exchanger design [5], 

temperature control [6], cooling efficiency [7], phase change management 

[8] and environmental impact [9]. There are several methods available for 

the study of heat transfer problems. Some of the most popular methods in 

research works are: 

Analytical methods: These methods solve the governing 

differential equation of heat transfer using mathematical techniques. They 

include methods of variable separation, integral transforms, and similarity 

solutions. They provide an exact solution to the problem. However, they 

have limited applicability due to the presence of assumptions and the 

complex nature of the governing equation [1,10].  

Numerical methods: for complex geometries and boundary 

conditions where traditional mathematics is not feasible. It discretizes the 

governing equation and uses iterations to solve them. Some standard 

numerical methods are finite difference method (FDM), finite element 

method (FEM), finite volume method (FVM). This method comes with the 

intensive computational cost and truncation error associated with equation 

[11,12,13]. 
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Experimental methods: This method involves experiments to 

measure parameters associated with heat transfer [14,15]. Cost, scalability, 

measurement error, and time consumption are some of the most challenging 

aspects of this method. 

Dimensional analysis and similarity: This method uses 

dimensionless numbers to define the heat transfer problem and its 

influencing parameters [16,17]. It provides an approximate solution and 

cannot determine the complexities of an actual system. It is also limited to 

a specific number of problems where dimensionless numbers can be used. 

Empirical correlations: This relationship derived from 

experimental data and approximated solutions is used for heat transfer 

problems. This method is mainly used in convective heat transfer for 

various configurations [18]. 

Network methods: Heat transfer problems are tackled using an 

electoral analogy where electrical components represent thermal 

capacitance, resistance, and heat source/ sinks [19,20]. This method is 

unsuitable where thermal resistance and capacitance aren’t clearly defined. 

Considering the limitations associated with the methods mentioned 

above, machine learning can fix many of the issues related to these 

methods. It can help in the following ways: 

            Analytical method:  Implementing ML to the problem can tackle 

complex geometry and boundary conditions by learning from large 

datasets. That overcomes the limitations of traditional mathematical 

techniques [21]. 

            Estimated computational costs with the numerical method can be 

potentially reduced using ML models, which can help overcome errors with 

a numerical technique [22].  

            Cost labelled with the experimental data collection can be reduced 

by predicting the outcome based on a smaller set of experimental data [23]. 

ML can model complex non-linear relationships between variables that are 

difficult to capture with traditional dimensional analysis [24].  

           Machine learning is a theoretical concept and a practical tool for 

creating hybrid and surrogate models. These models can be seamlessly 

integrated with CFD simulations, effectively reducing the computational 

resources required for repeated simulations [25]. 
           It can develop more accurate correlations by learning from large 

datasets and capturing complex relationships between variables [26]. ML 

enhances network methods by capturing complex and more detailed 

interactions within thermal systems [27]. 
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1.1 Introduction to machine learning 

It is a tool combined with statistics and computer codes (i.e., a set 

of instructions) used for data-driven problems [28]. Statistics, a part of 

mathematics, explains the hidden relation within the data. Meanwhile, the 

computer code translates some form of thing (data) into some other form 

(bit), which utilizes the hash power of the computer to compute it. The 

machine learning field grew from old statistics and artificial intelligence. 

Machine learning algorithms are used to gather an understanding of 

collected data, clarify the interpretation of phenomena in the form of 

models, predict/forecast the future values of phenomena, and find strange 

behavior [29] exhibited by a phenomenon. But the question is, when should 

we deploy machine learning rather than traditional programming? 

Machine learning tools are susceptible to input data. These tools 

perform well even if there is a lot of variation in input data. They can train 

themselves to perform, which is outside the limit of direct programs. 

Applying machine learning to such problems includes programs that 

decode handwritten text, where a fixed program can adapt to variations 

between the handwriting of different users; spam detection programs, 

which adapt automatically to changes in the nature of spam e-mails; and 

speech recognition programs.  

1.2 Different types of machine learning 

Machine learning has branched into several subfields (as shown in 

Fig. 1.1) dealing with different learning tasks. Some of them are: 

 

a. Supervised machine leaning: Labelled training data in supervised 

learning algorithms learns the relationship between inputs and 

outputs [30]. The data used in supervised learning is labelled, which 

contains examples of inputs (called features) and correct outputs (labels). 

The algorithms analyse a large dataset of training pairs to find a desired 

output value when asked to make a prediction on new data. When the model 

has been trained and tested, it can be used to make predictions on unknown 

datasets based on the previous training. Supervised machine learning 

algorithms make it easier for researchers/organizations to create complex 

models that make better predictions. So, they can be widely used across 

various industries/fields, including research [31], marketing [32], financial 

services [33], healthcare [34], and many others. 
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b. Unsupervised machine learning: Unsupervised learning (or knowledge 

discovery) algorithms learn from data without human supervision. Unlike 

supervised learning, unsupervised machine learning models deal with 

unlabelled data and are allowed to find patterns and information without 

any guidance/instruction [35]. Algorithms learn without any kind of labels 

or any prior training. The model is given raw and unlabelled data and has 

to interpret its own rules and relation for the information based on 

differences, similarities, and patterns without any instructions on how to 

work with every single piece of data. 

These algorithms are well suited for more complex processing tasks, such 

as arranging large datasets into clusters. They are helpful in identifying 

previously undetected patterns in data and can also identify valuable 

features for categorizing data [36]. 

 

c. Reinforcement learning: Reinforcement learning (RL) learns to 

optimize sequential decisions, which are taken recurrently across time 

steps. Sequential decision means a situation where the decision maker, in 

RL terminology known as an agent, makes successive observations of the 

process before making a final decision [37]. It tries to mimic how humans 

learn. Humans can understand complex and different tasks like swimming, 

gymnastics, or connecting an instance with another instance [38]. More 

specifically, in practical use cases of RL, it tries to acquire the best strategy 

for making repeated sequential decisions across time (i.e., dynamic state) 

under uncertainty [39]. It does so by interacting with a simulator of the 

stochastic dynamic system of interest, also called an environment, to learn 

such winning strategies [40]. A strategy to take repeated sequential 

decisions across time in a dynamic system is also known as a policy. RL 

tries to learn the winning policy of choosing actions in different states for a 

dynamic system [41]. 

1.3 Types of supervised machine learning: 

a. Classification: In Classification, datasets are used to group particular 

data by predicting a label (categorical) or output variable based on 

provided input data. Classification is used when output variables are 

categorical (i.e., in the form of yes-no, true-false, etc.), meaning there 

are two (Binary Classification) or more than two classes [42]. 

b. Regression: Regression is a statistical approach that relates the 

relationship between a dependent variable (target variable) and one or 

more independent variables (predictor variables) [43]. The objective is 
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to establish the most suitable mapping (function) that defines the 

connection between these variables. It approaches finding a best-fitting 

model that is utilized to make predictions or draw conclusions. The 

regression analysis problem works if the output variable is a 

real/continuous value [44], such as “temperature” or “geometric 

dimension.” 

1.4 Types of unsupervised machine learning: 

a. Clustering: Clustering techniques explore raw and unlabeled data by 

breaking it down into small chunks (or clusters) based on similarities 

(or differences) [45]. They are used in a variety of applications, 

including customer segmentation [46], fraud detection [47], and image 

analysis [48]. Clustering algorithms split data into natural groups by 

finding similar structures or patterns in uncategorized data. 

b. Dimensionality reduction: The dimensionality reduction technique 

reduces the number of features/dimensions in a dataset. Extensive data 

is generally suitable for ML, but it is more challenging to visualize and 

draw conclusions from it [49]. This technique extracts essential features 

from the dataset that reduce the presence of irrelevant features. It uses 

principal component analysis (or PCA) [50] and singular value 

decomposition (or SVD) [51] algorithms to reduce the number of data 

inputs without compromising the integrity of the properties in the 

original data. 

1.5 Algorithms used in regression 

a. Linear regression: Linear regression is one of the simplest and most 

widely used statistical tools. It assumes that there is a linear relationship 

between the independent variable and dependent variables [52]. This 

means that the change in the dependent variable is proportional to the 

change in the independent variables. 

b. Polynomial regression: Polynomial regression models a non-linear 

relationship between the dependent and the independent variable. It 

adds polynomial terms to the linear regression model to capture more 

complex relationships [53]. 

c. Support vector regression: The support vector regression (SVR) 

algorithm is based on the support vector machine (SVM) algorithm. 

SVM is a type of algorithm used for classification problems, but it can 

also be used for regression problems. SVR works by finding a 
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hyperplane [54] (a plane that differentiates between two classes) that 

minimizes the sum of the squared residuals between the predicted and 

actual values [55]. 

d. Decision tree: A decision tree regression algorithm builds a decision 

tree that predicts the target value, whereas a decision tree is a tree-like 

model that contains nodes and branches. Every single node represents 

a decision, and every single branch represents the outcome of that 

decision [56]. Decision tree regression aims to build a tree model that 

can accurately predict the target value for new data points [57]. 

e. Random forest: Random Forest regression is an ensemble method. 

Multiple decision trees are combined to predict the target value [58]. 

Random forest regression works by building a large number of decision 

trees, each trained on a different subset of the training data. The final 

prediction is made by averaging all the trees' predictions [59]. 

f. Regularized linear regression 

a. Lasso regression: Lasso regression is one of the types of linear 

regression, also known as L1 (in statistics, it is known as the 

sum of absolute values). Regularization is used to prevent 

overfitting. For this, it adds a penalty term to the loss 

function/error function (quantifying how well the model makes 

predictions) that forces the model to use some weights and sets 

others to zero [60]. This method can also be used to find the 

minimum number/threshold features by customizing the 

regularization parameter [61]. 

b. Ridge regression: Ridge regression/L2 regularization is a 

regression prediction algorithm that prevents overfitting by 

decreasing the weight of abnormal data. Overfitting occurs 

when the model learns the training data too well but cannot 

generalize to new data [62]. 

𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 =  ‖𝑤‖2
2  

=  𝑤1
2  +  𝑤2

2  + 𝑤3
3 + . . . . . . . 𝑤𝑛

2 

 

Where w represents the assigned weight, weights close to zero 

have little effect on the model, while outlier weights have a huge 

effect.  
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Figure 1.1: An overview of machine learning. 

 

1.6 Evaluation metrics used in regression 

a. Mean absolute error: It expresses the mistakes made by the model, 

known as errors. It is defined as the average/mean sum of all such errors 

[63]. 

 𝑀𝐴𝐸 

=  ∑
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑌 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑌|

𝑁

𝑁

𝑌=1

 

(1.1) 

 

b. Mean square error: It expresses the squared distance within actual and 

predicted values. Squaring error is performed to avoid negative terms, and 

it is the benefit of MSE [64]. One of the major advantages of using MSE is 

that its graph is differentiable, so it can easily be used as a loss 

function/objective function [65]. 

𝑀𝑆𝐸 =

 ∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑌−𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑌)2

𝑁
𝑁
𝑌=1   

(1.2) 
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c. R2 Score: R square (or R2 score) expresses the model's performance. It 

determines the relative improvement of a regression line over a mean line. 

R2 squared is sometimes called the goodness of fit or the coefficient of 

determination [66]. 

𝑅2 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = 1 − 
𝑆𝑞𝑢𝑎𝑟𝑒𝑑_𝑠𝑢𝑚 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒

𝑆𝑞𝑢𝑎𝑟𝑒𝑑_𝑠𝑢𝑚 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑚𝑒𝑎𝑛 𝑙𝑖𝑛𝑒
  (1.3) 

 

d. Root mean square logarithmic error: This evaluation adds matric one 

to both (i.e., predicted and actual output) terms before operating with the 

natural log function. This method is preferred when the data set contains 

outliers and many zeros. A lower value of RMSLE indicates a small error, 

i.e., better prediction performance [67]. 

𝑅𝑀𝑆𝐸 =

 √
∑ (𝑙𝑜𝑔(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑌+1)−(𝑙𝑜𝑔(𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑌+1))2𝑁

𝑌=1

𝑁
  

(1.4) 

 

e. Root mean squared error: It is square root of mean squared error. It 

makes the interpretation easy because it gives output value in the same unit 

as the required output variables have. It is mostly used with deep learning 

techniques [68]. 

𝑅𝑀𝑆𝐸 =  √∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑌−𝐴𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡𝑌)2𝑁
𝑌=1

𝑁
  

(1.5) 

Few other evaluation metrices are also shown in Figure. 1.2. 

1.7 Neural Networks 

Neural networks are the fusion of artificial intelligence and brain-

inspired design that reshapes modern computing. With intricate layers of 

interconnected artificial neurons, these networks emulate the intricate 

workings of the human/animal brain. Neural networks can adapt to 

changing input to generate the best possible result without redesigning the 

output criteria. A neural network contains layers of interconnected nodes. 

Each neuron has two adjustable parameters, weight W and bias.  Different 

types of neural networks, from feedforward to recurrent and convolutional, 

are customized for specific tasks [69]. Figure 1.3 illustrate the general 

procedure of a neural network. 
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1.8 Components of neural network 

a. Input layer: It’s the layer in which input is provided to the model. The 

number of neurons in this layer equals the total number of features in 

the data. 

 

b. Hidden layer: The output from the Input layer is then fed into the 

hidden layer. Depending on the model and data size, there can be many 

hidden layers. Each hidden layer can have different numbers of 

neurons, which are generally greater than the number of features. 

 

c. Output layer: The output from the hidden layer is then fed into a 

logistic function like sigmoid or softmax, which converts the output of 

each class into the probability score of each class. 

 

d. Activation function: A neural network without an activation function 

acts as a linear regression model. Assigning an activation function (Fig. 

1.4) to neurons introduces non-linearity to the neural network. Some 

popular activation functions are, sigmoid [70], tanh, ReLU, and 

softmax [71], plotted below in Figs. 1.5-1.8. 

 

𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =  
1

1 + 𝑒−𝑥  𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥 (0, 𝑥)

= {
𝑥, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

e. Initialization: Initialization in a neural network simply means 

assigning the initial value of weight and bias for neurons. Different 

weight initialization methods are used, such as normal initialization, 

constant initialization, Lecum initialization, random initialization, 

Xavier initialization (also known as Glorot normal), and He 

initialization [72]. 
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Figure 1.2: Evaluation matrices used in machine learning 

 

 
Figure 1.3: A neural network 
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Figure 1.4: A single neuron with weight and bias and activation 

function 

 
f. Optimization: It is a process of selecting the best solution from a set 

of available solutions. It deals with either maximizing or minimizing 

the objective function or loss function. Some of the most commonly 

used optimization techniques are stochastic gradient descent, Adam, 

RMSprop, random search, etc. [73]. One of the most important 

terminologies used in optimization is learning rate. The learning rate is 

nothing but the step size at each iteration while trying to minimize a 

loss function. 

 

g. Metrics:  Evaluation matrices are used to evaluate the performance of 

the machine learning model. Each model targets generalizing well on 

new or unseen data, and evaluation metrics help determine how well 

the model generalizes on an unseen data set. 
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Figure 1.5: Activation function 

(tanh) 
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Figure 1.6: Activation function 

(sigmoid) 
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Figure 1.7: Activation function 

(ReLU) 
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Figure 1.8: Activation function 

(Softmax) 
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1.9 Literature review 

1.9.1 Prediction of heat transfer coefficient  

A temperature and a velocity gradient are observed whenever a 

flow occurs on any surface due to boundary development. Based on the 

nature of flow, convective heat-transfer problems are either natural 

convective heat-transfer or forced convective heat-transfer. Both of these 

types divide the boundary layer zone into either a laminar region or a 

turbulent region. Newton’s law of cooling  (𝑖. 𝑒. 𝑄 = ℎ𝐴Δ𝑇) is only a 

defining formula for the heat transfer coefficient (h) and does not relate the 

heat transfer coefficient and the factor that impacts it. Some of the most 

common methods of predicting the heat transfer coefficient are: 

(a) Analogy method: The analogy method measures one of two 

distinct physical occurrences to determine the fundamental 

relationship between them based on the similarity of their 

governing equations [74].  

(b) Experimental method: This method is also known as the 

correlation technique. It is based on experiments and a trial-and-

error approach. Dimensional analysis is also used with this 

technique [75]. 

(c) Numerical Method: In these techniques, numerical methods are 

used to solve the energy and Navier-Stokes equations under 

prescribed boundary conditions [76]. 

Apart from the three methods mentioned above, a direct data-

driven approach is also used to predict the heat transfer coefficient. An ML-

based approach by Acikgoz et al. [77] for the prediction of the heat-transfer 

coefficient of the radiant wall with a cooling system and mixed forced 

convection for these two neural networks with different input parameters 

(temperature, velocity, and heat transfer rate) are assigned. In another 

problem, Acikgoz et al. [78] did experiments for the data generation, and 

these data were used in the development of ANN using MATLAB and 

studied the heat transfer coefficient. Verma et al. [79] have suggested an 

ANN model to estimate the HTC of the radiant heating and cooling system. 

An experimental cum computational study of the radiant wall with a cooling 

effect is explained by Çolak et al. [80], and they have used ANN for the 

estimation of convective and radiative heat flux. Estimating the heat 

transfer coefficient of multiple impinging jets on a hot steel surface 
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(quenching) with the consideration of jet velocity, surface moving speed, 

and temperature makes the problem difficult. To find the value of HTC, Xie 

et al. [81] used experimental data and an ML model and used its value to 

calculate the transient heat flux in two dimensions.   

1.9.2 Prediction of pressure drop  

A change in the overall pressure of fluid-carrying equipment (e.g., 

heat exchanger, tubes, etc.) between two points is known as a pressure drop. 

Pressure drop in the heat exchanger is directly related to the velocity of the 

fluid. The higher the velocity, the higher the heat transfer coefficient, and 

the higher the pressure drops. The optimum heat exchanger design demands 

a higher value of heat transfer coefficients but a lower pressure drop value. 

This is the main reason a researcher must find a way to predict the pressure 

drop. Alejandro et al. [82] used ANN and data handling methods to develop 

empirical models calculating the pressure drop. Bhattacharyya et al. [83] 

presented a statistical tool and created an ANN for a hybrid tape 

(combination of wavy tape and grooved spring tape) type circular channel 

and estimated the pressure drop and heat transfer coefficient. Using two 

ensemble boosting algorithms and one bagging algorithm, a double pipe 

type heat exchanger analysis was done by Sammil et al. [84], and the 

thermohydraulic parameters were predicted. A similar type of pipe with a 

coiled-wire turbulator is studied by Celik et al. [85] with four regression 

models: Support vector regression, Gaussian process regression, Multilayer 

perceptron network, and Random Forest. Multi-linear regression is applied 

to compare results, and the drop in pressure is estimated. For the study of 

condensation pressure drop and coefficient of heat transfer in a horizontal 

macro and microchannel, Hughes et al. [86] used a combination of flow-

regime-based relation and model-based ML regression that used random 

forest, ANN, and support vector regression.  

1.9.3 Optimizing heat transfer  

Analysis of heat transfer in solid-fluid interaction known as 

Conjugate heat transfer. This kind of analysis is required to optimize heat 

exchangers, design turbine airfoils, improve the heat transfer characteristic 

in electronic components, etc. For this, the most common approaches are 

model-based analysis and model-free analysis. The model-based approach 

is problem-dependent and requires domain knowledge, and the model-free 

analysis and model-free approach do not require domain knowledge. It uses 

the input-output database to optimize the desired output and estimates the 
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input to get the desired output. Dutta et al. [87] proposed a non-linear 

optimization replacement strategy for the optimization of the airfoil shape 

of the turbine vane; for this linear regression, the ML model is used, which 

optimizes the problem in terms of design, cost, and life of the component, 

and flow rate of coolant. Micro fins are optimized to enhance heat transfer 

capabilities. Larra˜naga et al. [88] used the performance evaluation criterion 

as the ratio of geometry's thermal and hydraulic performance parameters as 

an objective function for the data-driven model. Kang et al. [89] introduce 

three ML algorithms, ANN, support vector regression, and random forest, 

and predict the average: heat transfer and net energy loss. Balachandar et 

al. [90] suggested using the ANN-GA-based technique to optimize fin 

performance. ANN is used to estimate base temperature, and ANN is also 

trained using a limited data set. Then, a genetic algorithm is introduced to 

the trained ANN to find the optimized geometry. Integration of ML, GA, 

and CFD by Wang et al. [91] estimated the influence of the geometry of the 

finned heat-pipe radiator. It gave the optimal geometry that improved the 

heat transfer. Shi et al. [92] suggested using a surrogate model in 

combination with ML technology. This approach achieved an optimal 

dimple arrangement that optimized the heat transfer. Dadhich et al. [93] 

generated a dataset using experiments on annulus tubes filled with water-

based nanofluids. They used these data to develop the ANN model, and 

these ANNs are in better agreement with experimental results.  

Design parameters or processes can also be optimized using ML 

and its algorithms. Processes involved in the design of thermal devices are 

complex. Wen et al. [94] used ML in combination with ANN and genetic 

algorithms to solve this issue. Yu et al. [95] suggested a significant way to 

save energy and reduce emissions by improving the design of heat transfer 

equipment by implementing the ML technique to update the surrogate 

model. Nusselt number predictor model uses volumetric concentration of 

nanofluids, winding number, and Prandtl number for helically coiled heat 

exchanger as input parameters suggested by Baghban et al. [96] consist of 

a multi-layer perceptron ANN, ANFIS (adaptive neuro-fuzzy inference 

system) and LSSVM (least-square support vector machine). Estimation of 

the heat transfer coefficient during condensation of steam in the presence 

of air outside a heated tube studied by Cao et al. [97] used experimental 

data to build a back-propagation neural network model. Factors that 

influence condensation heat transfer (e.g., pressure, subcooling, tube 

diameter, air mass fraction) are used as input parameters, and the coefficient 

of heat transfer is used as the output of the model. A method suggested by 
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Elboughdiri et al. [98] was used to increase the Nusselt number and reduce 

the pressure drop i.e., optimized the disk-shape micro-channel heat sink 

with the feature of a variable number of spiral micro-channel, based on 

ANN, which is developed as forecasting model that takes several channels 

and volume flow rate as input and produce Nusselt number and pressure-

drop as output. Using the ML learning regression model, the Performance 

of fins for axially finned tube heat exchangers is investigated by 

Krishnayatra et al. [99],  who studied the variational effect of fin spacing, 

fin material, fin thickness, and coefficient of convective heat transfer on 

total effectiveness and overall efficiency and estimated the thermal 

Performance of fin—for the study of heat exchangers with corrugated (i.e., 

variation in pitch and depth) and non-corrugated pipes by, Verma et al. [100] 

developed an ANN that predicted the Reynolds number, coefficient of heat 

transfer and Nusselt number. For BPHE (i.e., brazed plate heat exchanger), 

Longo et al. [101] used ANN to predict the coefficient of boiling heat 

transfer by considering the refrigerant characteristics, plate shape, size, and 

operating conditions. Friction factor and dimensionless factors associated 

with heat transfer are the crucial parameters for the optimization of Plate-

finned heat exchanger (PFHE) Performance. The approach followed by 

Kedam et al. [102] uses ANN (more specifically, an MLP). It predicts the 

parameter mentioned above for various fin types (including wavy fins and 

off-set strip fins), which utilizes the Bayesian regularization learning 

technique. Two ANNs were developed by Çolak et al. [103], taking coil and 

tube diameter, Reynolds number, curvature ratio, and mass flow rate as 

input parameters and forecasted the value of Nusselt number, pressure drop 

and heat transfer coefficient for shell-and helically-coiled tube heat-

exchanger.  Moradkhani et al. [104] developed three ML algorithms 

(Gaussian process regression, multi-layer perceptron, and Radial Basis 

Functions) for smooth helical-coiled tubes and modeled the boiling heat 

transfer coefficient. 

1.9.4 Analysis of flow boiling/flow condensation heat transfer 

International space agencies are investigating using two-phase heat 

management systems to sustain astronauts living aboard future spacecraft 

and planetary colonies. The primary driving forces behind these endeavors 

are the augmentation of power consumption efficiency and the reduction of 

total weight and volume; these characteristics are direct outcomes of the 

heat transfer enhancement attained by flow boiling and condensation [105]. 

Buoyancy, which is proportional to the product of gravity and the density 
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difference between liquid and vapor, reflects the effect of gravity on flow 

boils. Due to the significant density difference, buoyancy can significantly 

impact how vapor moves in relation to liquid and, in turn, how well heat 

transfer occurs. The focus of microgravity research has recently been urged 

to be shifted from pool boiling to flow boiling to attain the high CHF values 

and heat transfer coefficients needed for space applications, such as space 

suits, space vehicles, Earth-orbiting stations, satellites, fighter aircraft, and 

so forth [106] [107]. Instead of traditional empirical correlations, ML shows 

impressive potential for predicting two-phase flow parameters. Tarabkhahet 

al. [108] described four different ML models: multi-layer perceptron ANN, 

Support vector regression, extreme gradient boosting, and k nearest 

neighbors, and predicted the heat transfer coefficients and pressure drop. 

Guangya Zhu et al. [109] compared previous conventional and current ML-

based flow boiling investigations to get highly efficient aircraft thermal 

management. Computational simulation and traditional correlation are slow 

and less accurate in predicting heat transfer. Qiu et al. [110] forecasted the 

heat transfer coefficient in mini-micro channel/heatsinks for flow boiling 

using ANN and physics-based data-driven techniques. A dataset can be 

prepared with the extraction of information from images, and an ML model 

known as a Convolution Neural Network (CNN) can be applied to a specific 

problem. Junior et al. [111] prepared a dataset and applied a CNN model to 

study condensing refrigerant in a vertical straight tube. Data generated from 

experimental setup Zhu et al. [112] used an ANN and predicted heat transfer 

performance for flow boiling and condensation.  

A data-driven ML model (non-linear regression) was proposed by 

He et al. [113]and predicted the flow coefficient. Four ML models, ANN, 

Random Forest, Ada boost, and Extreme gradient boosting, were developed 

by Liwei Zhou et al. [114] to predict the heat transfer coefficient during 

flow condensation.ML technique developed by Tang et al. [115] consists of 

nine algorithmic models predicting the Nusselt number for the bubble 

condensation. A high-fidelity ML framework suggested by Khodakarami et 

al. [116] predicted the heat transfer coefficient for condensation. ANN, 

explained by Bard et al. [117], predicts fluid characteristics for nucleation 

or bubble growth in flow boiling.  The approach followed by Yang et al. 

[118] uses feature extraction and classification algorithms to determine the 

characteristics of different flow patterns. To improve HVAC systems with 

two-phase flow, Al‑Jarrah et al. [119] estimated the phenomena of heat 

transfer during the condensation of CO2in porous medium by combining 
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two neural-network models and two adaptive neural-fuzzy inference 

systems with the prediction of internal heat transfer coefficient.  

1.9.5 Hybrid computational mode 

The hybrid computational method combines AI and mathematical 

models (analytical or numerical) and applies them to solve a wide range of 

problems in the field of engineering or research. Such a model using CFD 

(finite volume approach) and AI-based models is developed by Zhao et 

al. [120] to study temperature distribution in nanofluid. Deb et al. [121] 

gathered the data using CFD analysis and used these data to generate an ML 

model that predicted the mean final temperature of the water and the drop 

in the pressure. Manshadi et al. [122] used a deep neural network with Long 

short-term memory in this technique to compare the different methods and 

predict the effect of radiative and conductive heat transfer in 

polymethylmethacrylate (a type of polymer used in various kinds of 

actuators and sensors). Data from 5,000 CFD simulations for turbulent flow 

in pipes used with ANN Koroleva et al. [123] analyzed the heat transfer, 

thermal-hydraulic performance, and pressure drop. Babu et al. [124] used a 

peri-dynamics-based multivariate linear regression model to analyze 

thermal behavior. Naphon et al. [125] used a combination of CFD and ANN 

to study the behavior of pressure drop and heat transfer due to the influence 

of jet impingement in micro-channel heat sink. ANN model utilizes the 

LMB (i.e., Levenberg-Marquardt Backward-propagation) algorithm for 

training. For the analyzing one of the complex problems, including entropy 

generation, mixed convection, and non-linear thermal radiation with local 

thermal non-equilibrium within the porous medium (filled with nanofluid), 

Alizadeha et al. [126], a hybrid technique, collected data from CFD analysis 

and used these data to train an ML model. Support vector regression 

approximates the Nusselt number, Shear stress, velocity, temperature, 

entropy generation, and the Bejan number function. 

1.9.6 Comparison  

Under comparable working conditions, radiators fitted with brazed, 

double-U grooved, and standard pipes are compared. The analytical 

Number of the Transfer Unit Method is used to validate the experimental 

evaluation of the radiators' heat transfer characteristics. Using the acquired 

experimental data, an Artificial Neural Network model has been created to 

ascertain the heat transfer rate for every radiator. The numerical model's 

data have been thoroughly compared to the practical model. The data 
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extracted from the ANN structure and the goal data have been compared to 

analyze the model's performance analysis thoroughly. Kuzmenkov et al. 

[127] simulate the improved heat transfer properties of turbulent airflow in 

a circular tube with transverse ribs that are artificially rough. Kuzmenkov 

examined three alternative modeling techniques. The first dataset is formed 

via several CFD simulations, and the second dataset is taken from several 

classical works. A deep feed-forward neural network is created to forecast 

Nu and friction factors for rib roughness and flow parameters. The first and 

second datasets are used separately to train the ANN and a combination of 

datasets that consistently produce high-quality predictions. A comparison 

of all results with experimental data and CFD modelled values displays the 

best outcomes of the experiment and ANN technique. 

Significant uncertainties exist in the heat transport correlations, and 

traditional tests and CFD simulations need a lot of time and processing 

power.  Zheng et al. [128] set out to develop a dependable technique for 

more rapid and precise estimating the Heat Transfer Coefficient of heat 

exchange channels. The General Regression Neural Network and Random 

Forests models forecast the heat-exchange performances of channels with 

varying height bulges. These models are trained using hundreds of CFD 

simulation data. The total height of the bulge is likewise correlated with 

HTC. Following a specific reduction in the overall bulge height, HTC's 

progress becomes restricted. The findings demonstrated that the HTC of 

channels with various bulge configurations can be accurately predicted. 

1.9.7 ML for heat transfer correlation   

A standard method for estimating the heat flux between a fluid and 

its surface is to use heat transfer correlations. The main determinants of 

these formulae are geometry, working fluid, and operating circumstances. 

Analytical solutions can be used to calculate the features of laminar flow 

under certain assumptions. However, to estimate heat transfer for turbulent 

flows, one needs to use numerical models or experimental data [129]. Nie 

et al. [130] used machine learning techniques to forecast the HTCs for 

horizontal tube flow condensation. To assess five ML models, a 

comprehensive database encompassing a wide variety of fluids and 

experimental settings is put together. To ascertain the heat transfer 

properties, a new universal correlation is created based on the parametric 

importance analysis carried out by the XGBoost models. Five machine 

learning models were based on the algorithms of Extreme gradient boosting 
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(XGBoost), random forest (RF), convolutional neural network (CNN), 

artificial neural network (ANN), and K-nearest neighbors (KNN).  

To derive a fundamental correlation for predicting convective heat 

transfer of the nanofluids loaded with graphene, Savari et al. [131] 

examined the heat transfer performance of the Water/ethylene glycol-based 

graphene nanofluid and the Water/ethylene glycol-based graphene 

nanofluid nitrogen-doped graphene. The impacts of significant parameters 

on heat transfer and fluid flow characteristics of an automobile radiator are 

modeled using an ANN and adaptive neuro-fuzzy inference system 

(ANFIS), and the modeled data is then compared with experimental results 

for testing. Following modeling, the effective model was chosen by 

comparing the outcomes of the ANFIS and BPNN models. In this manner, 

two new nanofluids were created initially. Then an effective model was 

used to simulate the Nusselt number in relation to changes in the inlet 

temperature, Reynolds number (Re), and Prandtl number (Pr).  

Absorbers and desorbers based on microchannel membranes are 

essential parts of small and effective absorption refrigeration systems. More 

sophisticated correlation models are desperately needed to increase the 

accuracy of existing empirical correlations for predicting the properties of 

solution pressure drop and heat/mass transfer. According to Zhai et al. 

[132], new models for the Nusselt number (Nu), Sherwood number, and 

friction factor of microchannel membrane-based desorber and absorber, 

respectively, are developed using three machine learning algorithms: 

Random Forest (RF), Least-Squares Support Vector Machine (LS-SVM), 

and Genetic Algorithm-optimized Back Propagation Artificial Neural 

Network (GABPNN), based on experimental results. With machine 

learning support, these models effectively increase the prediction accuracy 

for both the absorber and the desorber. 

Steam condensation is a significant phenomenon in nuclear 

reactors during severe accidents. A biologically inspired machine learning 

technique called multigene genetic programming (MGGP) was examined 

by Tang et al. [133]   and used to create novel correlations for condensation 

HTC of a steam-non-condensable gas mixture over a vertical tube in the 

turbulent free convection regime. It illustrates how MGGP has promise in 

making precise, concise, and clear models for multiphase flow processes 

like steam condensation in the presence of non-condensable gas and 

complex heat transfer. Metals, metal oxides, and polymers are among the 

components that are typically used to create nanoparticles. It is essential to 
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assess the heat transfer the nanofluids achieve to develop energy systems 

that help.  

Most models created to explain fluid heat transfer necessitate 

calculating the Nusselt number, which measures the proportion of 

conductive to convective heat transfer in a particular system. Guzman-

Urbina et al. [134] estimated the local Nusselt number of nanofluids by 

deriving a correlation using Genetic Programming (GP). Using an 

evolutionary algorithm, the technique creates correlation equations for 

examining the relationship between the flow regime, flow characteristics, 

system setup, and nanoparticle properties. Developing multi-variable heat 

transfer correlations requires much less work, thanks to machine learning, 

which may also quickly expand the parameter domain. 

For a high-order nonlinear heat transfer problem, Kwona et al. 

[135] employed the random forests algorithm to forecast the convection 

heat transfer coefficient. Next, the RF regression's interpolation capacity is 

evaluated. 

1.9.8 Contact heat transfer  

Analysis of heat transfer at the interface between two contacting 

bodies is one of the complex problems of heat transfer. Vu et al. [136] 

introduced an ML model based on supervised learning that predicted the 

interaction of heat across the interface between two bodies. 

1.9.10 Modeling Heat transfer  

For laminar and turbulent flow with magnetic nanofluids flowing 

inside a pipe, Zhang et al. [137] calculated the convective coefficient of 

heat transfer using ML technique by selecting different machine learning 

approaches viz multiple linear regression, least square-support vector 

mechanism, and radial basis function-backpropagation were used. A 

method for adjusting supercritical pressure fluid turbulence models using 

high-fidelity simulation (DNS) data is presented by Cao et al. [138]. An 

iterative DNS-DNN-RANS framework is suggested to create explicit 

closures for turbulent momentum diffusion and turbulent thermal diffusion 

of turbulent heat transfer at supercritical pressure. For a passive-

containment cooling system in a light water reactor, a model that predicts 

condensation heat transfer suggested by Lee et al. [139] developed a 

correlation for the coefficient of heat transfer that uses the ML method. Data 

was used to train and test the ML model; a pseudo dataset was created using 

the existing condensation model, and a Neural network model with a 
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convolution neural network was used. Developing frictional pressure 

gradient correlations and heat transfer for the condensation of binary 

mixtures can be computationally demanding and intricate. Because of mass 

transfer and temperature glide, binary mixes add another layer of 

complication. Hughes et al. [140] created a variety of dimensionless 

parameter inputs known to impact pressure drop and heat transfer, which 

were used to develop predictive machine learning models that are accurate 

but computationally inexpensive. The Nusselt number was discovered to be 

predictable by the SVR model. The GB algorithm predicted frictional 

pressure drop. Mudhsh et al. [141] used cutting-edge machine-learning 

algorithms to model the thermo-hydraulic behavior of a spiral plate heat 

exchanger. Different flow channel pitches and cross-sectional sizes are 

considered when predicting the output temperatures of hot and cold fluids. 

The suggested model aids in the estimation of the thermal performance and 

attributes by heat exchanger manufacturers. To forecast the outlet 

temperatures of the working fluids of helical plate heat exchangers, an 

improved random vector functional link (RVFL) optimized fire hawk 

optimizer is intended to be provided by the developed model. 

1.9.11 Study of other/miscellaneous medium/materials  

An experimental study of the melting of n-octadecane (a phase 

change material) in combination with ANN developed by Motahar [142] 

estimates the melting parameter of PCM. An MLP feed-forward NN is 

trained using the Levenberg-Marquardt algorithm (uses experimental data) 

and predicts the melted volume fraction and Nusselt number as output by 

taking Rayleigh, Stefan, and Fourier numbers as input parameters.  

  The thermal diffusivity of volcanic rock studied by Khan et al. 

[143] uses a genetic algorithm. Ensembled learning tree, Gaussian process 

regression, Support vector machine, and decision tree ML model are 

integrated with genetic algorithm and forecasted thermal 

diffusivity.  Transfer of heat and storage of energy of ground (i.e., soil) is 

directly related to thermal diffusivity. Direct measurement is challenging 

due to the limitations of sensors and variable physical characteristics of soil, 

viz. mineralogy, texture, moisture content, bulk density, etc. Hence, Li et al. 

[144] suggested a method that comprises ML models like KNN, Random 

Forest, MPL, SVR, decision tree, and GBDT (gradient boosting decision 

tree). Accurate prediction of deterioration of transfer of heat in supercritical 

fluids (state of fluid beyond the critical temperature and pressure) is 

influenced by many parameters, which makes traditional correlations 
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challenging to predict. Zhang et al. [145] developed ANN and predicted the 

Nusselt number. Dongliang et al. [146] studied water in a supercritical state 

and predicted the coefficient of heat transfer by altering an ML model's 

regularization penalty parameter, slack variable epsilon kernel function 

parameter. Agustiarini et al. [147] estimate the coefficient of boiling heat 

transfer by fusing the ANN and experimental techniques. Experimental data 

is used to train and test the ANN. ANN estimates the boiling heat transfer 

coefficient to have a hidden layer and 16 input features. Evaluation of flow 

properties and heat transfer for a wavy channel with a turbulent flow is 

presented by Tahmasebian et al. [148], who compared the result generated 

with the modified SST (k-ω) turbulence model and RANS (Reynolds-

averaged Navier-stokes) model and calculated the average Nusselt number 

with better accuracy. Hydrogen in the liquid state is stored at a temperature 

of 20 Kelvin; a slight heat leak to the storing tank may trigger the flow-

boiling [149]. Huan Yang et al. [150] used a data-driven technique to predict 

the coefficient of heat transfer for flow boiling accurately. Batteries (Li-ion) 

are actively playing a significant role in powering the modern era of 

transportation and acting as an import and source of energy for other 

purposes.  Charging and discharging generate heat due to the involved 

chemical processes. If these are not handled effectively, they can lead to a 

crucial harmful event (i.e., Thermal runaway), reduced lifespan, etc. Since 

data-driven analysis can handle large datasets, Miaari et al. [151] have 

suggested an ML method, predicted the battery's temperature, and 

effectively applied it in the thermal management system. 

The development of flaws like cracks in continuous casting 

negatively impacts the efficiency of the steelmaking process and the quality 

of cast products. Phenomenological quality criteria calculated using a 

solidification and microstructure model called Inter-Dendritic 

Solidification (IDS) have previously been used to assess the risks and 

pinpoint the underlying reasons for defect formation. The method offered 

by Norrena et al. [152] used a basic understanding of fault generation in 

continuous casting and is computationally efficient. Combining IDS with a 

heat-transfer model simulates the process of continuous casting. The 

simulations use measured compositions, and the labels used for 

categorization are flaws reported at a steelmaking plant. To forecast 

transverse cracking in peritectic C–Mn, low-carbon B–Ti micro-alloyed, 

and peritectic Nb–micro-alloyed steels, logistic regression, decision trees, 

and Gaussian Naïve Bayes classifiers are created. 
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1.9.12 Predicting critical heat flux location  

The site of critical heat flux (CHF) forecast is a complex problem 

in the power generation sector. Critical heat flux is affected by several 

variables, including the conditions of operation and geometric parameters. 

The dependency on these variables demonstrates a nonlinear relationship. 

To forecast the location of CHF, Kumar et al. [153] created various 

machine-learning models. He determined which model was most accurate 

based on comparisons with experimental data. Because experimental data 

spanned various operating settings, it was chosen for testing and training 

machine learning models. The models' performance is maximized through 

the application of hyperparameter adjustment. The artificial neural network 

(ANN) model outperforms all other developed models with both training 

and test datasets. A different model by Mudawar et al. [154] for the 

prediction of critical heat flux and heat transfer in micro-gravity and under 

the influence of earth's gravity for flow boiling using statistical analysis 

ANN is developed for the study of a number of input parameters that 

predicted Nusselt number. 

1.9.13 Estimation of properties of nano fluids  

Nanofluids (dispersion of nano-sized particles with base fluid) and 

colloidal nanoparticle solutions are receiving significant attention. 

Researchers are impressed with their enhanced characteristics (thermal, 

magnetic, or other properties) [155], being used in electronics cooling 

systems [156,157] and in biomedical fields [158,159]. Water-based Fe3O4–

SiO2 hybrid nanofluids were created by Alklaibi et al. [160], and the 

thermophysical parameters were calculated through experimentation. 

Using the experimental data, the Bayesian regularization-ANN analysis 

accurately predicts the friction factor and thermal performance factor. By 

applying the technique, the multi-linear is employed to create the friction 

factor based on the experimental data. Iron oxide and gold nanoparticles are 

essential in cancer therapy. Thus, the study of entropy production to 

quantify energy dissipation in biological systems is gaining attention from 

biomedical engineers and physicians. Using an MLP feed-forward 

backpropagation ANN and the Levenberg-Marquard algorithm, Jakeer et 

al. [161] created an intelligent numerical computing solver to interpret the 

Cattaneo-Christov heat flux model and show how entropy production and 

melting heat transfer affect the ferrohydrodynamic flow of the Fe3O4-

Au/blood Powell-Eyring hybrid nanofluid. The heat transfer performance 

of a water-based nanofluid and carbon nanotube combination in a horizontal 
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tube with a fixed wall temperature and turbulent flow, investigated by Ullah 

et al. [162], is examined through experimentation. To propose a new 

correlation for the calculation of influential parameters on the heat transfer 

rate, such as the Nusselt number, friction factor, and overall thermal 

performance of heat exchangers, while using nanofluid and twisted tape 

simultaneously, experimental results will be utilized in an artificial neural 

network model. 
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Chapter-2 

 

2. METHOD AND PROBLEM FORMULATION 

 

There is transformative change in results across various domains, 

including cognitive science, genomics, and image recognition, due to the 

growth in computing power and some marvelous developments in machine 

learning and data-handling techniques. However, data collection costs need 

to be inflated while studying the biological, physical, and engineering 

systems. We often face the challenge of making decisions and drawing 

conclusions under partial or semi-partial information. Even the well-

equipped state-of-the-art machine learning algorithms fail to guarantee 

convergence in this limited data domain.  

Training neural network algorithms to identify the nonlinear 

relation or pattern between considerable dimensional input and output data 

is a little naïve. This generating relations between the pair mentioned above 

of data doesn't consider the pre-existing knowledge or principles of physical 

law that drive the system's dynamics. The principle of defined problem in 

the domain of science and engineering acts as a modifier that modifies the 

relation to an extent.  Concatenating such information in existing neural 

networks amplifies desirable solutions even when a few training examples 

are available. Including the information to model the data-driven and 

physics-informed machine learning algorithms is presented in various 

recent works [163–165]. In these works, researchers have used the Gaussian 

regression process to get the outcome representation tailored to produce a 

linear operator, which infers the solution accurately [166].  

2.1 Physics Informed Neural Network 

The physics-informed neural network is one of the popular 

methods/techniques in the scientific community for solving the 

ODEs/PDEs. It is a class of neural networks that combines the physics 

behind the problem and the power of algorithms. Its flexibility and fantastic 

ability to approximate the function make it robust. Automatic 

differentiation, the algorithm used for the computation of derivatives, is 
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used to represent all the differential operators; hence, there is no need for a 

mesh generation, as in the case of computational fluid dynamics, i.e., CFD 

solver [167]. Physics-informed neural networks are not the replacement for 

computational fluid dynamics, but this technique performs more efficiently 

and more accurately than any computational fluid dynamics solver [168]. 

This shows that a physics-informed neural network can be used to analyze 

nonlinear heat transfer problems by combining knowledge of physics and 

neural networks and indicates that PINNs are effective tools for analyzing 

more complex problems. This method has been proposed in much recent 

research work, and it either belongs to the direct or forward method of heat 

transfer [169,170] or the inverse process of heat transfer [171]. Based on 

available data, problems can be classified as discrete-time and continuous-

time models. In the forward type (as shown in Fig. 2.1) of heat transfer 

problem, the material's thermal conductivity (which may be different in 

different directions) is generally given, and the temperature distribution 

within the body is asked to be found. In general, forward kind of problems 

consume the knowledge of computational fluid dynamics or computational 

heat transfer, i.e., CHT, which converts the differential equation into a 

simple difference equation, or, in simple words, calculus problems are 

converted into algebraic problems. That makes the computation or result 

generation expansive. Problems associated with the kind of inverse method 

(Fig. 2.2) of heat transfer generally the distribution of temperature is given 

and asked to find the body's thermal conductivity (or any other properties). 

 

 
Figure 2.1:Generalized forward model 

 

 
Figure 2.2: Generalized inverse model 
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 An advanced approach to solving computational models, including 

differential equations, is termed a physics-informed neural network 

(PINN). A generalized form is shown in Fig. 2.3. It relies on methods that 

include the artificial neural network and the physics or the governing 

equation of a specified problem. This work uses PINN training by 

optimization techniques on simple one-dimensional heat-transfer problems, 

namely slabs and fins with Dirichlet boundary conditions. This work 

provides a valuable approach for using PINN for different heat transfer 

problems. This work presents the main steps to developing such a neural 

network. For this, Python (version 3.9) and Keras library (version 3) based 

on TensorFlow (a scientific package) are used in the Jupyter Notebook 

environment. 

2.2 Key concept of PINN  

Integration of physics: PINNs incorporate the physical system's governing 

equations (e.g., PDEs) directly into the neural network training process. 

This is done by including the residuals of these equations in the loss 

function, ensuring that the network's predictions are consistent with the 

underlying physical laws. By embedding these laws into the training 

process, the neural network is constrained to learn physically consistent 

solutions, even in regions with sparse or no data. Conventional neural 

networks might need help to generalize well outside the range of training 

data. Still, PINNs ensure that predictions adhere to known scientific 

principles, leading to better generalization in unseen scenarios. 

Loss function: The loss function in PINNs is augmented to include terms 

that enforce the satisfaction of the PDEs, boundary conditions, and initial 

conditions. This typically involves computing derivatives of the network's 

output with respect to its inputs using automatic differentiation. The 

standard loss function in neural networks is typically based on the 

difference between predictions and observed data. In PINNs, the loss 

function is augmented to include terms that enforce the satisfaction of the 

physical laws (e.g., PDEs). This often involves calculating the residuals of 

the PDEs using the network's predictions. 

Forward and inverse problem 

Forward problem: Given initial and boundary conditions, PINN 

can predict the solution to the PDE. 
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Inverse problem: PINNs can infer unknown parameters in the 

PDEs from observed data. 

2.3 Problem formulation with PINN 

1. Neural network architecture: A neural network is used to approximate 

the solution of the PDE. The network takes spatial and/or temporal 

coordinates as input and outputs the predicted value of the field variable 

(e.g., temperature, pressure). 

2.Automatic differentiation: Automatic differentiation, or 

backpropagation, is used to compute the required derivatives of the 

network's output concerning its input. These derivatives are desirable for 

evaluating PDE residuals. Tools like TensorFlow or PyTorch offer 

automatic differentiation, which allows for the efficient calculation of 

derivatives of the neural network's output with respect to its input. These 

derivatives compute the PDE residuals, which are then incorporated into 

the loss function. 

3. Loss function composition: The loss function typically includes: 

a. Data loss: The discrepancy between the network predictions 

and any available data points. 

b. PDE residual loss: Residual of PDE evaluated using the 

network’s predictions 

c. Boundary condition loss: The discrepancy between the 

network predictions and the specified boundary condition. 

Consider a PDE of the form ℵ (𝑢)  =  𝑓, where, ℵ  is a differential 

operator, u is the unknown solution, and f is the source term. The augmented 

loss function in a PINN is 

 𝑳𝒐𝒔𝒔 =  𝑳𝒐𝒔𝒔𝑫𝒂𝒕𝒂  +  𝑳𝒐𝒔𝒔𝑷𝑫𝑬  + 𝑳𝒐𝒔𝒔𝑩𝑪  + 𝑳𝒐𝒔𝒔𝑰𝑪 (2.1) 

 

Where 

 𝐿𝑜𝑠𝑠𝐷𝑎𝑡𝑎 is standard data loss i.e. mean squared error between 

prediction and truth value or observed data. 

 𝐿𝑜𝑠𝑠𝑃𝐷𝐸 is measure of how well the network’s prediction satisfies 

the PDE, i.e. mean square error of the PDE residual. 
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𝐿𝑜𝑠𝑠𝐵𝐶 enforces the boundary conditions, i.e. mean square error at 

the boundary points. 

𝐿𝑜𝑠𝑠𝐼𝐶 enforces the initial condition, i.e. mean square error 

associated with initial condition.  

4. Training: The network is trained using gradient-based optimization to 

minimize the combined loss function. During training, the network adjusts 

its parameters to satisfy the PDE and boundary conditions as closely as 

possible. 

 
Figure 2.3: Generalized form of physics informed neural network. 
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2.4 Implementation and training of a physics-informed 

neural network 

Training of problem, based on PINN to solve the PDE associated 

with heat transfer with specified boundary and initial condition was forced 

in Python (V3.9), using Tensor Flow, Keras, and other popular libraries 

such as numpy, matplotlib, scipy, etc. Training of such a neural network is 

based on selecting random batches for input variables (x, t) in each epoch 

and tries to minimize the loss function. This is obtained by the optimizer 

(built-in keras), which obtains weights and biases in the neural network, 

which satisfy heat transfer PDE.  

Neural networks are known as universal approximators [172], i.e., 

they can tackle nonlinear problems without considering any prior 

assumption, linearization, or local time-stepping. We extract the power of 

automatic differentiation [173], one of the most valuable techniques in 

scientific computing, to differentiate a neural network concerning its input 

coordinates and model parameters to obtain physics-informed neural 

networks. Though simple, it is a robust development in physics, biology, 

and many other research domains.  

Let’s consider a parametrized partial differential equation of the 

general form as 

 𝒖𝒕  +  ℵ𝒙𝒖 = 𝟎, 𝒙 ∈  𝜴, 𝒕 ∈  [𝟎, 𝒕] (2.2) 

Here  

 𝑢 (𝑡, 𝑥) denotes the latent or hidden solution 

ℵ[∙] is a non-linear differential operator, and Ω is subset of ℝ𝐷. 

In continuous time models we define 𝑓 (𝑡, 𝑥) to be given by: 

 𝒇 ∶ =  𝒖𝒕  +  ℵ𝒙[𝒖] (2.3) 

and processed by approximating 𝑢 (𝑡, 𝑥) by a deep neural network. This 

assumption results in a Physics Informed Neural Network 𝑓 (𝑡, 𝑥).  

The work aims to set the foundation for the new computation and 

modeling paradigm that explores deep learning. Let’s consider our first 

study:  
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2.5 Study I: Heat transfer through a slab 

Transient heat conduction is essential in many engineering 

scenarios, like heating and cooling metal billets, quenching metal for heat 

treatment, cooling internal combustion engines, and operating heat 

exchange units in power plants. Consider a one-dimensional heat 

conduction through a slab as shown in Fig. 2.4. This slab is maintained at a 

constant temperature at both ends as a boundary condition, and a sinusoidal 

initial condition is also imposed with the problem, as shown in the figure 

below. The subsequent part consists of two solutions: (i) analytical method, 

which is followed by most of the researchers [174,175], and (ii) machine 

learning-based physics-informed neural network method. After applying 

the physics in the neural network, i.e., PINN, only 16 training and 100 test 

points are used. The architecture used for this neural network consists of [2, 

50*3, 1], where the first element in the list, i.e., 2, indicates the number of 

neurons in the input layer, the second element in the list, i.e., 50*3 indicates 

the hidden layer which means there are three hidden layers with each 

containing 50 neurons and the last element indicates the number of neurons 

that is producing the output. This neural network takes space dimension and 

time, i.e., x and t, as input parameters and produces temperature, i.e., T as 

an output. 
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Figure 2.4: Slab with specified boundary and initial condition. 

 

 

 

 

 

 

Figure 2.5: A differential control volume. 
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 Consider a differential control volume element (Fig. 2.5) whose 

dimensions are dx, dy, and dz in X, Y, and Z direction, respectively, for a 

stationary, homogeneous isotropic solid with heat generation within the 

body, as shown in the figure. 

Differential control volume 𝑑𝑣 = 𝑑𝑥 𝑑𝑦 𝑑𝑧  

Differential control mass  𝑑𝑚 =  𝜌 𝑑𝑣 

From 1’st law of thermodynamics i.e. conservation of energy: 

{
𝑁𝑒𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 
} +  {

𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

}  

=  {
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓

 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑏𝑜𝑑𝑦
} 

(2.4) 

 

 
𝛿𝑄̇  +  𝛿𝑞̇  =  

𝑑(𝑈 𝑑𝑚)

𝑑𝑥
 

(2.5) 

Net rate of heat transfer in terms of heat rate in and out of control volume  

𝛿𝑄̇  = (𝑞𝑥  −  𝑞𝑥+𝑑𝑥)  + (𝑞𝑦  − 𝑞𝑦+𝑑𝑦) + (𝑞𝑧  −

 𝑞𝑧+𝑑𝑧)                       

(2.6) 

Entering heat rates are defined as follow: 

 
𝑞𝑥  =  −𝐾 𝐴𝑥

𝜕𝑇

𝜕𝑥
 

(2.7) 

Where   𝐴𝑥 = 𝑑𝑦 𝑑𝑧 

Exiting heat rates are defined as follows: 

 
𝑞𝑥+𝑑𝑥  =   𝑞𝑥 + 

𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 

(2.8) 

Following the same analogy for the y and z direction, we get 

 𝜕

𝜕𝑥
(𝐾

𝜕𝑇

𝜕𝑥
) +  

𝜕

𝜕𝑥
(𝐾

𝜕𝑇

𝜕𝑥
) +  

𝜕

𝜕𝑥
(𝐾

𝜕𝑇

𝜕𝑥
) +  𝑞̇ =  𝜌∁

𝜕𝑇

𝜕𝑡
 

(2.9) 

 

In vectorial form 

 
∇ ∙  (𝐾∇𝑇) + 𝑞̇ =  𝜌 𝐶 

𝜕𝑇

𝜕𝑡
 

(2.10) 
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Assumption: Thermal conductivity is constant 

 𝜕2𝑇

𝜕𝑥2
+  

𝜕2𝑇

𝜕𝑥2
+ 

𝜕2𝑇

𝜕𝑥2
+  

𝑞̇

𝐾
 =  

1

𝛼
 
𝜕𝑇

𝜕𝑡
 

(2.11) 

Where 𝛼 =  
𝐾

𝜌∁ 
 

Assumption: No heat generation 

 𝜕2𝑇

𝜕𝑥2
+  

𝜕2𝑇

𝜕𝑥2
+  

𝜕2𝑇

𝜕𝑥2
 =  

1

𝛼
 
𝜕𝑇

𝜕𝑡
 

(2.12) 

Assumption: Heat transfer takes place in x-direction only 

 𝜕2𝑇

𝜕𝑥2
 =  

1

𝛼
 
𝜕𝑇

𝜕𝑡
 

Associated boundary and initial conditions are: 

Boundary conditions are: 

𝑇 (𝑥 = 0, 𝑡) = 0 (2.14) 

𝑇 (𝑥 = 𝐿, 𝑡) = 0 (2.15) 

 

Initial condition: 

𝑇 (𝑥, 0) = sin (
𝑛𝜋𝑥

𝐿
) 

(2.16) 

 

Changing the governing equation, boundary conditions and initial condition 

into non-dimensional form, leads to: 

𝜕2𝑇∗

𝜕𝑥∗2
 =  

𝜕𝑇∗

𝜕𝑡∗
 (2.17) 

 

Where  𝑥∗ =  
𝑥

𝐿
;  𝑇∗ =  

𝑇 − 𝑇∞

𝑇𝑜 − 𝑇∞
;  and 𝑡∗ =  

𝛼 𝑡

𝐿2  

Non-dimensional form of boundary condition becomes: 

𝑇∗(𝑥∗ = 0, 𝑡∗) = 0 (2.18) 

𝑇∗(𝑥∗ = 1, 𝑡∗) = 0 (2.19) 
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Non-dimensional form of initial condition becomes: 

𝑇∗(𝑥∗, 𝑡∗ = 0) = 𝑠𝑖𝑛(𝑛𝜋𝑥∗) (2.20) 

Applying method of separation of variables, we get  

𝑇∗(𝑥∗, 𝑦∗) =  𝑒−𝜆2𝑡∗
sin (𝑛𝜋𝑥∗) (2.21) 

Changing the temperature back into dimensional form we get, 

Since, 

𝑇 =  𝑇∞  + (𝑇0 − 𝑇∞)𝑇∗   (2.22) 

𝑇 =  𝑇∞  +  (𝑇0 − 𝑇∞)[𝑒−𝜆2𝑡∗
𝑠𝑖𝑛 (𝑛𝜋𝑥∗)] (2.23) 

   

2.6 Applying physics-informed neural network to our 

problem 

For the development of a neural network, in association with our 

problem of the slab, space dimension x and time t are considered the input 

for the neurons in the input layer depicted in Fig. 2.6. The governing 

equation, boundary conditions and initial condition for the above-

mentioned problem 

𝜕2𝑇∗

𝜕𝑥∗2
 =  

𝜕𝑇∗

𝜕𝑡∗
 (2.24) 

𝑇∗(𝑥∗ = 0, 𝑡∗) = 0 (2.25) 

𝑇∗(𝑥∗ = 1, 𝑡∗) = 0 (2.26) 

𝑇∗(𝑥∗, 𝑡∗ = 0) = 𝑠𝑖𝑛(𝑛𝜋𝑥∗) (2.27) 

Transformation for the PINN: 

𝑢𝑡  +  ℵ𝑥𝑢 = 0,   𝑥 ∈  [0, 1],   𝑡 ∈  [0, 𝑡] (2.28) 
 

𝑢( 𝑡 = 0, 𝑥) = 𝑠𝑖𝑛(𝑛𝜋𝑥) (2.29) 
 

𝑢(𝑥 = 0, 𝑡) = 0 (2.30) 

 

𝑢(𝑥 = 1, 𝑡) = 0 (2.31) 
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Let us define 𝑓 (𝑡, 𝑥) to be given by 

𝑓 ∶=  𝑢𝑡  +  ℵ𝑥𝑢  (2.32) 

and proceed by approximating 𝑢( 𝑡, 𝑥) by a deep neural network. The 

shared parameter between the neural network 𝑢( 𝑡, 𝑥) and 𝑓 (𝑡, 𝑥) can be 

learned by minimizing the mean squared error loss 

𝑀𝑆𝐸 =  𝑀𝑆𝐸𝑢  +  𝑀𝑆𝐸𝑓 (2.33) 

Where, 

𝑀𝑆𝐸𝑢  =  
1

𝑁𝑢
 ∑|𝑢(𝑡𝑢

𝑖 , 𝑥𝑢
𝑖 )  −  𝑢𝑖|

2

𝑁𝑢

𝑖 = 1

 (2.34) 

And  

𝑀𝑆𝐸𝑓  =  
1

𝑁𝑓
 ∑|𝑓(𝑡𝑓

𝑖 , 𝑥𝑓
𝑖 ) |

2

𝑁𝑓

𝑖 = 1

 (2.35) 

 

Here {𝑡𝑢
𝑖 , 𝑥𝑢

𝑖 , 𝑢𝑖}
𝑖 = 1

𝑁𝑢
 denotes the initial and boundary training data 

on 𝑢( 𝑡, 𝑥) and {𝑡𝑓
𝑖 , 𝑥𝑓

𝑖 }
𝑖 = 1

𝑁𝑢
 specify the collection points for 𝑓 (𝑡, 𝑥). The 

loss 𝑀𝑆𝐸𝑢  corresponds to the initial and boundary data while 𝑀𝑆𝐸𝑓 

enforce the structure imposed by the above-mentioned Heat equation at a 

finite set of collection points. 
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Figure 2.6: Intuition of PINN used in study I. 
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2.7 Study II: Thermal analysis of fin 

Extended surfaces, also known as fins, are widely used in heat 

transfer, increasing the heat transfer rate from base to surroundings. These 

extended surfaces are mostly used when the convective heat transfer rate 

between base and environment fluids is low. Most simple geometry 

(constant cross-section area) with an axial coordinate system is considered 

for our analysis. Mathematical simplicity of one-dimensional, with steady-

state heat transfer, exists in several engineering or research domains. Figure 

2.7 represents a fin with a constant cross-section, which is maintained at a 

constant temperature at both ends. All the other parameters associated with 

design, environment, and material are also expressed in the 

figure.  Applying the physics in the neural network, i.e., PINN, only 18 

training and initially 100 test points were used. The architecture used for 

this neural network consists of [1, 50*3, 1], where the first element in the 

list, i.e., 1, indicates the number of neurons in the input layer, the second 

element in the list, i.e., 50*3, indicates the hidden layer which means there 

are three hidden layers with each containing 50 neurons and the last element 

indicates the number of neurons that is producing the output. This neural 

network takes space dimension, i.e., x as the input, and it produces 

temperature as output. 

 
Figure 2.7: Extended surface with specified boundary condition 
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Figure 2.8: A differential control volume. 

 

Deriving the governing equation for fin:  

Consider a differential element of fin, at a distance x, of length 

∆𝑥, cross-sectional area of A and perimeter of P, shown in above Fig. 2.8. 

{
𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡
 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑥

} =  {

𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
𝑎𝑡 𝑥 +  ∆𝑥

} +

  {
𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
}  

(2.36) 

 

𝑄̇𝑐𝑜𝑛𝑑,𝑥 = 𝑄̇𝑐𝑜𝑛𝑑,𝑥+ ∆𝑥  + 𝑄̇𝑐𝑜𝑛𝑣 

where,  𝑄̇𝑐𝑜𝑛𝑣  =  ℎ(𝑃∆𝑥)(𝑇 −  𝑇∞) 

 

(2.37) 

Substituting and dividing by  ∆𝑥, we get 

 

𝑄̇𝑐𝑜𝑛𝑑,𝑥+ ∆𝑥 − 𝑄̇𝑐𝑜𝑛𝑑,𝑥   

∆𝑥
 +  ℎ𝑃(𝑇 −  𝑇∞) =  0  (2.38) 

As ∆𝑥 →  0 
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𝑑𝑄̇𝑐𝑜𝑛𝑑

𝑑𝑥
 +  ℎ𝑃(𝑇 − 𝑇∞)  =  0 (2.39) 

From Fourier’s law of heat conduction  𝑄̇𝑐𝑜𝑛𝑑  =  −𝐾𝐴
𝑑𝑇

𝑑𝑥
, we get  

𝑑

𝑑𝑥
(𝐾𝐴

𝑑𝑇

𝑑𝑥
) −  ℎ𝑃(𝑇 −  𝑇∞)  =  0 (2.40) 

 

The governing equation of fin: 

𝑑2𝑇

𝑑𝑥2
 −  

ℎ𝑃

𝐾𝐴
 (𝑇 − 𝑇∞) = 0 (2.41) 

Specified boundary conditions are: 

𝑇 (𝑥 = 0)  = 350 °𝐶 and  (2.42) 

𝑇 (𝑥 = 𝐿)  = 25 °𝐶 (2.43) 

 

In dimensionless form, the governing equation becomes: 

𝑑2𝑇∗

𝑑𝑥∗2
 − 

ℎ𝑃

𝐾𝐴
 𝐿2(𝑇∗  −  𝑇∞) = 0 (2.44) 

Boundary condition in dimensionless form 

𝑇∗ ( 𝑥∗ = 0) = 1 and (2.45) 

𝑇∗ ( 𝑥∗ = 1) = 0 (2.46) 

 

Solving the governing equation for the specified boundary condition gives 

𝑇∗ =  𝐶1𝑒𝑚𝐿 𝑥∗
+   𝐶2𝑒−𝑚𝐿 𝑥∗

 (2.47) 

 

Where,  𝐶1 =  
𝑒−𝑚𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿  and  𝐶2 =  
𝑒𝑚𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿 
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2.8 Applying physics informed neural network to our study 

For the development of a neural network, in association with our 

problem of fin, space dimension x is considered the input for the neurons 

present in the input layer depicted in Fig. 2.9. The governing equation and 

boundary conditions for the above-mentioned problem 

𝑑2𝑇∗

𝑑𝑥∗2
 −  

ℎ𝑃

𝐾𝐴
 𝐿2(𝑇∗  − 𝑇∞) = 0 (2.48) 

 

𝑇∗ ( 𝑥∗ = 0) = 1 (2.49) 

𝑇∗ ( 𝑥∗ = 1) = 0 (2.50) 

Transformation for the PINN: 

𝑢𝑡  +  ℵ𝑥𝑢 = 0,   𝑥 ∈  [0, 1] (2.51) 

𝑢(𝑥 = 0, 𝑡) = 0 (2.52) 

𝑢(𝑥 = 1, 𝑡) = 0 (2.53) 

                                                                                                           

Let us define 𝑓 (𝑡, 𝑥) to be given by 

𝑓 ∶=  𝑢𝑡  + ℵ𝑥𝑢 (2.54) 

and proceed by approximating 𝑢(𝑥) by a deep neural network. The shared 

parameter between the neural network 𝑢(𝑥) and 𝑓 (𝑥) can be learned by 

minimizing the mean squared error loss 

𝑀𝑆𝐸 =  𝑀𝑆𝐸𝑢  +  𝑀𝑆𝐸𝑓 (2.55) 
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Where, 

𝑀𝑆𝐸𝑢  =  
1

𝑁𝑢
 ∑ |𝑢(𝑥𝑢

𝑖 )  −  𝑢𝑖|
2𝑁𝑢

𝑖 = 1  and (2.56) 

𝑀𝑆𝐸𝑓  =  
1

𝑁𝑓
 ∑|𝑓( 𝑥𝑓

𝑖 ) |
2

𝑁𝑓

𝑖 = 1

 (2.57) 

 

 

Here { 𝑥𝑢
𝑖 , 𝑢𝑖}

𝑖 = 1

𝑁𝑢
 denotes the boundary training data on 𝑢( 𝑥) and 

{ 𝑥𝑓
𝑖 }

𝑖 = 1

𝑁𝑢
 specifies the collection points for 𝑓 (𝑥). The loss 𝑀𝑆𝐸𝑢  

corresponds to the boundary data while 𝑀𝑆𝐸𝑓 enforces the structure 

imposed by the above-mentioned fin equation at a finite set of collection 

points. 
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Figure 2.9: Intuition of PINN used in study II. 
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Chapter-3 

 

3. RESULTS AND DISCUSSION 
 

Let’s interpret the plot obtained from the model suggested in 

chapter 2 of this work. Figures 3.1, 3.2, and 3.3 display the training loss and 

test loss over a number of steps during a machine learning training process. 

Below are explanations of what each component indicates.  

The line representing the training loss indicates an error on the 

training dataset. It shows how well the model is learning to fit the training 

data. It shows a decreasing trend as the model gets trained, i.e., the model 

is being trained well. Test loss on the figures mentioned above indicates an 

error on the test dataset. Its decreasing trend shows how well the model 

generalizes the unseen data. Its closeness with the training line shows the 

consistency and relatively small gap between train and test loss. To 

conclude, plots indicate a well-performing model with the following 

characteristics: 

a. Consistently decreasing training and testing losses. 

b.  A small gap between training and testing loss suggests good 

generalization. 

c. An improving test metric. 

Figure 3.2 shows that train and test losses are decreasing over time, 

which suggests that the model is learning the training data very well. 

However, if the test metric is also reduced, the model’s performance 

worsens on unseen data, possibly due to overfitting. This decreasing trend 

in the test metric is a cause for concern because it suggests that the model’s 

performance might not generalize well to new data. 

Figure 3.3 represents the decreasing trend of test and train loss with 

time. It means our model is being trained and acting well. For a model with 

nearly constant or stable value, demonstrate a model that maintains 

consistent performance on unseen data despite some training and test loss 

fluctuations. This stability suggests that the model is well-regularized and 

capable of effectively generalizing new data, a vital indicator of a robust 

machine-learning model. 
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Figure 3.1: Train and test loss vs steps (for slab). 
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Figure 3.2: A bad model: Train and test loss vs steps (for fin). 
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Figure 3.3:  A good performing model, Train and test loss vs steps (for 

fin). 

 

3.1 Results associated with study of a slab 

A physics-informed neural network-based solution presented for 

one-dimensional heat conduction through a slab with constant boundary 

(i.e., Dirichlet boundary) condition with the sinusoidal initial condition is 

presented in this work. The analytical solution [176], based on the method 

of separation of variables, of the problem mentioned above is also compiled 

and used for validation purposes. Glorot uniform is used as initializers 

(assigns initial weights before the training begins). For spatial dimension 

sine function and for time dimension exponential function is used as 

activation functions in our neural network. In a based model, Keras built-in 

Adam optimizer with a learning rate of 0.001 and L2 relative error is 

assigned as metric to minimize the loss function. This model is trained for 

more than 20,000 iterations. Initially, the model is compiled and trained 

using Adam optimizer, a stochastic gradient descent method that works well 

with large-scale datasets. After initial training with Adam, again, the model 

is compiled using L-BFGS, i.e., Limited-memory Broyden-Fletcher-

Goldfarb-Shanno, a kind of deterministic optimization algorithm that 

provides an accurate and precise solution in the case of PDEs. Using Adam 
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and L-BFGS helps quickly find a region near the optimal solution, while 

L_BFGS converges to the minimum loss function more accurately. A 

decrement in training data loss (5.45e-06 for the best model) indicates the 

learning ability of the model, i.e., the model is learning to the approximate 

solution. The test loss is evaluated on the test data; it is a measure of how 

well the model generalizes to unseen data. L2 relative error gives the 

normalized measure of error among predicted and relative solutions. Our 

model's mean residual and L2 relative error are 0.00058 and 0.00153, 

respectively. Data presented in Table 3.1 compares the predicted 

temperature with the exact temperature that our model generates. Data 

presented in this table states the temperature in the slab at different positions 

along its length (i.e., in the x-direction) with varying instances of time. 

Using this model, a Table 3.1 is created that shows the distribution of 

temperatures (exact and predicted) concerning position and time. Using this 

table, a 3D plot, as shown in Fig. 3.4, is plotted, showing the temperature 

distribution concerning space and time. Table 3.2 shows the exact 

temperature and predicted temperature at different instances of time at 

position x = 0.4 from the slab's left end. Table 3.3 represents the exact 

temperature and predicted temperature to varying positions at step t = 0.5.   

Data in Table 3.2 is used to plot Fig. 3.5, which shows the 

decreasing trend of temperature with an increase in time. This trend is 

exponential. During the initial period, the plot shows a higher gradient, i.e., 

approximately 70 % of temperature reduces in the first 30 % of the time. As 

time progresses, the gradient starts decreasing. Figure 3.6 is plotted using 

data available in Table 3.3. This plot shows the temperature distribution 

with respect to space, i.e., along x direction. The distribution is sinusoidal. 

It indicates the positive slope for approx. The first half of the slab and the 

slope change to negative for the latter half of the slab are obtained.  The 

sinusoidal behavior of temperature distribution is maintained even as time 

moves forward, which is shown in Fig. 3.4. As time progresses, the 

maximum temperature approaches a particular point and starts reducing.  

Table 3.1: Variation in exact and predicted temperature with space and 

time in slab. 

X Time Exact Temperature Predicted Temperature 

0.0000000000 0.0000000000 0.0000000000 -0.0001271814 

0.2000000000 0.0000000000 0.5877852523 0.5878090262 

0.4000000000 0.0000000000 0.9510565163 0.9511439204 
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0.6000000000 0.0000000000 0.9510565163 0.9510025382 

0.8000000000 0.0000000000 0.5877852523 0.5877820849 

1.0000000000 0.0000000000 0.0000000000 0.0000726730 

0.0000000000 0.2000000000 0.0000000000 0.0000565499 

0.2000000000 0.2000000000 0.2668784502 0.2669838071 

0.4000000000 0.2000000000 0.4318184032 0.4318987727 

0.6000000000 0.2000000000 0.4318184032 0.4319103956 

0.8000000000 0.2000000000 0.2668784502 0.2669804096 

1.0000000000 0.2000000000 0.0000000000 -0.0000050962 

0.0000000000 0.4000000000 0.0000000000 -0.0000082254 

0.2000000000 0.4000000000 0.1211736887 0.1211841553 

0.4000000000 0.4000000000 0.1960631468 0.1960862726 

0.6000000000 0.4000000000 0.1960631468 0.1960507482 

0.8000000000 0.4000000000 0.1211736887 0.1211010069 

1.0000000000 0.4000000000 0.0000000000 -0.0001224577 

0.0000000000 0.6000000000 0.0000000000 -0.0001854002 

0.2000000000 0.6000000000 0.0550177911 0.0549526960 

0.4000000000 0.6000000000 0.0890206560 0.0889871418 

0.6000000000 0.6000000000 0.0890206560 0.0890056789 

0.8000000000 0.6000000000 0.0550177911 0.0550205261 

1.0000000000 0.6000000000 0.0000000000 0.0000563413 

0.0000000000 0.8000000000 0.0000000000 -0.0001919717 

0.2000000000 0.8000000000 0.0249803185 0.0248077810 

0.4000000000 0.8000000000 0.0404190044 0.0403219461 

0.6000000000 0.8000000000 0.0404190044 0.0403976142 

0.8000000000 0.8000000000 0.0249803185 0.0250364840 

1.0000000000 0.8000000000 0.0000000000 0.0000682324 

0.0000000000 1.0000000000 0.0000000000 0.0006562322 

0.2000000000 1.0000000000 0.0113420823 0.0115367025 

0.4000000000 1.0000000000 0.0183518746 0.0183852166 

0.6000000000 1.0000000000 0.0183518746 0.0182902515 

0.8000000000 1.0000000000 0.0113420823 0.0112543404 

1.0000000000 1.0000000000 0.0000000000 -0.0001673251 
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Figure 3.4: Distribution of temperature with space and time. 

 

 

Table 3.2: Temperature versus Time (at x = 0.4) in slab.  

Time Exact Value Predicted Value 

0 0.951056516 0.95114392 

0.03 0.844832376 0.844834983 

0.06 0.750472481 0.750431836 

0.09 0.666651707 0.666628182 

0.12 0.59219293 0.592211843 
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0.15 0.526050505 0.526106298 

0.18 0.467295571 0.467371404 

0.21 0.415103015 0.415183067 

0.24 0.368739881 0.368811905 

0.27 0.327555077 0.327615321 

0.3 0.29097023 0.291018069 

0.33 0.25847157 0.258509219 

0.36 0.229602707 0.229633018 

0.39 0.203958227 0.203983262 

0.42 0.181177996 0.181198224 

0.45 0.160942104 0.160957173 

0.48 0.142966372 0.142975107 

0.51 0.126998362 0.126999661 

0.54 0.11281383 0.112804756 

0.57 0.100213578 0.10019277 

0.6 0.089020656 0.088987142 

0.63 0.079077879 0.079030216 

0.66 0.070245618 0.070184007 

0.69 0.062399838 0.062325969 

0.72 0.055430358 0.05534552 

0.75 0.049239304 0.049146578 

0.78 0.043739733 0.043642685 

0.81 0.038854413 0.038758367 

0.84 0.034514738 0.034423247 

0.87 0.030659763 0.03057979 

0.9 0.027235354 0.027171746 

0.93 0.024193419 0.024152651 

0.96 0.02149124 0.021478429 

0.99 0.019090869 0.019111887 

1 0.018351875 0.018385217 
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Figure 3.5: Temperature vs Time (at x=0.4). 
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Table 3.3: Temperature vs Position (at t = 0.5). 

x Exact Temperature Predicted Temperature 

0.0000000000 0.0000000000 -0.0000490397 

0.0235294118 0.0102589383 0.0102211386 

0.0470588235 0.0204618458 0.0204350948 

0.0705882353 0.0305529978 0.0305361748 

0.0941176471 0.0404772799 0.0404683053 

0.1176470588 0.0501804892 0.0501791090 

0.1411764706 0.0596096300 0.0596141219 

0.1647058824 0.0687132037 0.0687216222 

0.1882352941 0.0774414897 0.0774532408 

0.2117647059 0.0857468172 0.0857598782 

0.2352941176 0.0935838253 0.0935977995 

0.2588235294 0.1009097109 0.1009242386 

0.2823529412 0.1076844627 0.1076980680 

0.3058823529 0.1138710794 0.1138834208 

0.3294117647 0.1194357716 0.1194467098 

0.3529411765 0.1243481471 0.1243570298 

0.3764705882 0.1285813762 0.1285881549 

0.4000000000 0.1321123384 0.1321160048 

0.4235294118 0.1349217487 0.1349221021 

0.4470588235 0.1369942633 0.1369912475 

0.4705882353 0.1383185627 0.1383117884 

0.4941176471 0.1388874141 0.1388766617 

0.5176470588 0.1386977106 0.1386829466 

0.5411764706 0.1377504883 0.1377319545 

0.5647058824 0.1360509206 0.1360284537 

0.5882352941 0.1336082900 0.1335821599 

0.6117647059 0.1304359372 0.1304060072 

0.6352941176 0.1265511885 0.1265183240 

0.6588235294 0.1219752612 0.1219393462 

0.6823529412 0.1167331472 0.1166944355 

0.7058823529 0.1108534773 0.1108111590 
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0.7294117647 0.1043683641 0.1043227166 

0.7529411765 0.0973132272 0.0972651541 

0.7764705882 0.0897265991 0.0896750391 

0.8000000000 0.0816499154 0.0815946907 

0.8235294118 0.0731272883 0.0730694979 

0.8470588235 0.0642052652 0.0641461164 

0.8705882353 0.0549325752 0.0548726171 

0.8941176471 0.0453598626 0.0453017205 

0.9176470588 0.0355394101 0.0354847908 

0.9411764706 0.0255248537 0.0254758894 

0.9647058824 0.0153708894 0.0153306127 

0.9882352941 0.0051329747 0.0051035881 

1.0000000000 0.0000000000 -0.0000234395 
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Figure 3.6: Temperature vs Space (at t=0.5).  
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3.2 Results associated with study of fin 

The temperature distribution in the fin is plotted in Figs. 3.7, 3.8, 

and 3.9 for the mL value of 4, 1, and 0.5, respectively. These plots show the 

exactness of the predicted temperature. From the plot (figure 3.7), the 

temperature gradient decreases and increases in x. This is due to the 

reduction in conduction heat transfer and the increase in x-direction due to 

continuous convection loss through the fin surface. The main focus of fin 

design is to minimize the fin material, which impacts the manufacturing 

cost without compromising cooling effectiveness. Table 3.4 represents 

temperature distribution along the x-direction for the different values of mL 

= 4, mL = 1, and mL = 0.5. The maximum temperature value exists at the 

base, which is obvious and keeps decreasing exponentially as x increases. 

Figure 3.10 shows the comparison between the different values of mL. 

Interpretation of this figure leads to the following conclusions: 

1. For any value of x, in the case of a small value of mL, the slope of 

the temperature gradient is always negative and nearly constant. 

That means loss in heat flux due to conduction heat transfer is 

always positive from left to right, i.e., increasing direction of x. 

2. For the higher value of mL, the slope decreases from a higher 

negative value to a lower negative value. 

Glorot uniform and tanh are used as initializers (assigns initial 

weights before the training begins) and activation functions for the neural 

network. In a based model, Keras built-in Adam optimizer with a learning 

rate of 0.001 and L2 relative error is assigned as metric to minimize the loss 

function. This model is trained for more than 10,000 iterations. A decrement 

in training data loss indicates the learning ability of the model, i.e., the 

model is learning to the approximate solution. The test loss is evaluated on 

the test data; it measures how well the model generalizes to unseen data. L2 

relative error gives the normalized error measure among predicted and 

relative solutions. Our model's mean residual and L2 relative error are 

0.00058 and 0.00153, respectively. 
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Table 3.4: Predicted and exact temperature distribution at different position 

of x for different value of mL. 

 mL = 4 mL = 1 mL = 0.5 

X 
Exact 

Temperature 

Predicted 

Temperature 

Exact 

Temperatur

e 

Predicted 

Temperatu

re 

Exact 

Temperatu

re 

Predicted 

Temperatur

e 

0 0.99999994 0.999928176 1 1.00012362 0.99999994 1.000052452 

0.0250

25 
0.949313402 0.949247897 0.967450857 

0.96757978

2 

0.97300100

3 
0.973056018 

0.0500

5 
0.901005328 0.900948465 0.935507894 

0.93564277

9 

0.94615441

6 
0.946211755 

0.0750

75 
0.854954898 0.854907811 0.904150546 

0.90429347

8 

0.91945600

5 
0.919516087 

0.1001 0.811046362 0.811008692 0.873359561 
0.87351262

6 
0.89290148 0.892964661 

0.1251

25 
0.769170105 0.769139171 0.843115628 

0.84328061

3 

0.86648684

7 
0.866553545 

0.1501

5 
0.729220867 0.729194105 0.813399673 

0.81357747

3 

0.84020763

6 
0.840278029 

0.1751

75 
0.691098928 0.691073835 0.784193039 

0.78438335

7 

0.81406021

1 
0.814134002 

0.2002 0.654708385 0.654683888 0.755477548 
0.75567948

8 

0.78804022

1 
0.788117468 

0.2252

25 
0.619958341 0.619934678 0.727235317 

0.72744703

3 

0.76214361

2 
0.762224078 

0.2502

5 
0.586761534 0.586739957 0.699448526 0.69966799 

0.73636621

2 
0.736449778 

0.2752

75 
0.555034876 0.555017054 0.67209971 

0.67232459

8 

0.71070420

7 
0.710790336 

0.3003 0.524698973 0.524686933 0.645171762 
0.64540010

7 

0.68515348

4 
0.685241878 

0.3253

25 
0.49567759 0.495672941 0.618648052 

0.61887782

8 
0.65971005 0.659800649 

0.3503

5 
0.46789825 0.467902094 0.592511773 

0.59274172

8 

0.63436967

1 
0.634462416 

0.3753

75 
0.441291213 0.44130373 0.566746533 

0.56697589

2 

0.60912883

3 
0.609223485 

0.4004 0.415789843 0.415810525 0.541336238 
0.54156482

2 

0.58398330

2 
0.58408004 

0.4254

25 
0.391330242 0.391358107 0.516264856 

0.51649296

3 

0.55892932

4 
0.559028029 

0.4504

5 
0.367851168 0.367884755 0.491517007 

0.49174562

1 

0.53396260

7 
0.534063935 

0.4754

75 
0.34529373 0.345331222 0.467076808 

0.46730741

9 

0.50907981

4 
0.509183764 

0.5005

01 
0.323601395 0.32364133 0.442929268 

0.44316327

6 

0.48427635

4 
0.484383613 

0.5255

26 
0.302719921 0.302761078 0.419059098 

0.41929861

9 
0.45954901 0.459659666 

0.5505

51 
0.282596827 0.282638609 0.395451218 0.39569819 

0.43489342

9 
0.435008138 

0.5755

76 
0.263181865 0.263223857 0.372091204 

0.37234765

3 

0.41030603

6 
0.410424978 

0.6006

01 
0.244426295 0.244468883 0.348964185 
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Figure 3.7: Dimensionless temperature vs Dimensionless space for mL 
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Figure 3.8: Dimensionless temperature vs dimensionless space for 

mL=1. 
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Figure 3.9: Dimensionless temperature vs dimensionless space for 

mL=0.5. 
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Figure 3.10: Non-dimensional temperature profile for different values 

of mL 



61 

 

Chapter-4 

 

4. FUTURE SCOPE AND CONCLUSION 

 

As a tool, machine learning can relate the dependent and 

independent variables using different algorithms. One of the most 

commonly used ML techniques, known as neural networks, is known as a 

universal approximator for any relation between the “affecting parameter” 

and “affected parameter.” It takes raw data, trains itself, and performs. The 

common source of data can be previously published data by researchers, 

data generated from experiments, data generated from computational 

analysis, new observations, or a combination of two or more sources.  

As the computing power of computers is advancing day by day, 

more complex problems with several influencing parameters can be solved 

in less time. The influence of ML in the domain of heat transfer discovers 

data-driven research and patterns. More complex problems associated with 

the field of bio-heat transfer, convection problems with a large number of 

affecting parameters, and the study of the porous medium, multi-phase 

flow, nanofluids, and others can be analyzed easily and effectively. In the 

heat transfer domain, interaction occurs within the system, as in the case of 

conduction, due to metallurgical conditions, some gradient, or some 

unforeseen reasons. Another kind of interaction, i.e., the system's 

interaction with the surrounding or universe (everything excluding the 

system and surrounding) through the boundary, as in the case of convection 

and radiation, can be handled easily. Any problems in the domain of 

conduction, convection, radiation, or a combination of these, in their most 

generalized form, i.e., with very few or zero assumptions, repel very far 

from the analytical solution. This issue is not only limited to heat transfer 

but to almost all real situations dealing with the areas of engineering, 

finance, cybercrimes, medicine, and many others.  Supervised learning 

comes with algorithms for generating a relation between input parameters 

and output parameters (regression); results are the interaction between the 

fluids properties (thermos-physical), operating conditions, system 

geometry, and many others (fouling, metallurgy, surface conditions, 

anisotropicity) can be considered (due to increasing computational speed). 
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Significant deviation from the predefined performance, i.e., failure 

prediction, can also be analyzed. Another supervised type of ML, known as 

classification, can be helpful for the accurate classification of flow patterns 

and boiling flow regimes. It can also be analyzed for microchannels.        

Optimization of thermal systems can be thought of as a nonlinear type of 

problem. It's more like an iterative process coupled with unsupervised ML. 

Certainly, the image or scenario generation ability of ML is something we 

couldn't think of in the past; based on the collected data, it would help 

researchers go beyond today's discovery's current limit. Any real-world 

problems have several influencing parameters, which can be reduced to a 

great extent so that the analytical solution of the above-mentioned can be 

made possible. Algorithms used in any learning, either supervised or 

unsupervised, require data to predict or produce some kind of outcome. 

Still, reinforcement learning generates data for predicting or generating 

outcomes. In the future, researchers can use it in result generation for 

problems with many rules and their dependencies in complex 

environments—system optimization and control associated with thermal 

systems, which can be utilized to explore conclusive results. 

4.1 Future scope associated with PINN 

The physics-informed neural network represents an exciting 

scientific computing and machine learning frontier. It offers many future 

applications and directions, such as: 

Multi-physics and multiphase system: This technique can be 

extended to handle complex physics involving multi-domain phenomena. 

This can be achieved by coupling different PDEs to model realistic 

scenarios [177]. 

Uncertainty quantification: Adding scenarios like uncertainty or 

noise into PINN improves the reliability in real-world applications [178]. 

Optimization and control: PINN provides a framework for 

optimizing the design or process for a real-world or real-time problem or 

situation [179]. 

Scope in healthcare and industry: PINNs can potentially 

revolutionize energy systems, biomedical, aerospace, and material science 

fields. It can enable predictive maintenance, personalize medicine and 

optimization of industrial process by integrating data-driven approach with 

physics principles [180]. 

Data-driven discovery and scientific insight: It uncovers hidden 

patterns in experimental data, suggests hypotheses, and aids in model 



63 

 

discovery by capturing complex non-linear relationships that traditional 

physics-based models might overlook [181]. 

Integration with experimental data and simulation: Integrating 

PINNs with experimental or simulation data allows for hybrid modeling 

approaches, improving model accuracy [182]. 

4.2 Conclusions 

         This work discussed a physics-informed neural network approach 

to solve the heat transfer PDE under specified boundaries and initial 

conditions. It was based on training a neural network using a total loss 

function defined to satisfy the PDE, IC, and BCs. Apart from this, physics-

based information was expressed using the theory associated with heat 

transfer. For training, a non-dimensional form of the governing equation is 

used to address the difference in magnitudes of difference loss terms. The 

predictions made by trained neural networks were validated using the 

analytical solution. 

         Building a neural network based on knowledge of physics offers 

many advantages over analytical, numerical, experimental, or any other 

existing solution methods for solving PDEs or ODEs. Once a neural 

network is trained well, it can be used for real-time simulation. This method 

is in its early phase. This work considers that the time and space complexity 

associated with this method and optimization of the algorithm efficiency 

can also be improved in the coming time. 

          During the development of the neural network for the study of the 

slab, we used the exponential function and the sine function as activation 

functions for the neurons representing the time and spatial dimensions, 

respectively. We then employed the powerful Adam with a learning rate of 

0.001, followed by the efficient L-BFGS, to optimize the model. The L2 

relative error was accepted as the metric.  This model predicts the 

temperature accurately up to the fourth decimal place when compared with 

the exact or true results, demonstrating the efficiency of our optimization 

methods. 

         In the development of a neural network for the study of fin, tanh is 

used as an activation function for the neurons present in the network. Adam, 

with a learning rate of 0.001 and L2 relative error, is assigned to the model 

as an optimizer and as a metric. This model predicts temperature up to the 

third decimal place compared to the exact temperature. 
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