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Abstract

Machine learning is the outcome of the algorithmic form of
statistics and a few other mathematics classes with some set of instructions,
i.e., programs. This thesis explores the machine learning techniques used in
the heat transfer research domain. Among the many available machine
learning methods, the present work emphasizes a technique known as a
Physics-informed neural network (PINN), which combines the physics
associated with the problem (heat transfer) and the computational ability of
a neural network. In this neural network, the loss function takes the form of
a summation of different loss functions, which includes the loss in data due
to PDE known as Lossppg, loss due to boundary condition known as
Lossgc, and loss due to initial condition known as Loss;. In this work, the
PINN technique is used to study heat transfer behavior through a slab and
a fin under specified boundary and initial conditions, two of the most
common problems in the thermal domain. Solutions obtained from this
method are validated using analytical solutions.



Chapter-1

1. INTRODUCTION

From the knowledge of thermodynamics, we understand energy
conversion from one form to a subsequent form. At the same time, science
associated with heat transfer is concerned with the study of the rate of heat
transfer within a system. Such heat transport always occurs in a temperature
gradient, i.e., from higher to lower temperatures. Heat transfer science
focuses on finding the heat flow characteristics and temperature gradient in
many practical scenarios like heat exchanger design, nuclear reactor core,
aerospace industries, and many more research domains. Most real-world
problems include all modes of heat transfer, such as conduction,
convection, and radiation, simultaneously. However, to simplify our
analysis, we only consider the dominating mode of heat transfer [1]. Some
of the crucial problems in this domain are thermal resistance and insulation
[2], study of heat loss [3], thermal stresses [4], heat exchanger design [5],
temperature control [6], cooling efficiency [7], phase change management
[8] and environmental impact [9]. There are several methods available for
the study of heat transfer problems. Some of the most popular methods in
research works are:

Analytical methods: These methods solve the governing
differential equation of heat transfer using mathematical techniques. They
include methods of variable separation, integral transforms, and similarity
solutions. They provide an exact solution to the problem. However, they
have limited applicability due to the presence of assumptions and the
complex nature of the governing equation [1,10].

Numerical methods: for complex geometries and boundary
conditions where traditional mathematics is not feasible. It discretizes the
governing equation and uses iterations to solve them. Some standard
numerical methods are finite difference method (FDM), finite element
method (FEM), finite volume method (FVM). This method comes with the
intensive computational cost and truncation error associated with equation
[11,12,13].



Experimental methods: This method involves experiments to
measure parameters associated with heat transfer [14,15]. Cost, scalability,
measurement error, and time consumption are some of the most challenging
aspects of this method.

Dimensional analysis and similarity: This method uses
dimensionless numbers to define the heat transfer problem and its
influencing parameters [16,17]. It provides an approximate solution and
cannot determine the complexities of an actual system. It is also limited to
a specific number of problems where dimensionless numbers can be used.

Empirical correlations: This relationship derived from
experimental data and approximated solutions is used for heat transfer
problems. This method is mainly used in convective heat transfer for
various configurations [18].

Network methods: Heat transfer problems are tackled using an
electoral analogy where electrical components represent thermal
capacitance, resistance, and heat source/ sinks [19,20]. This method is
unsuitable where thermal resistance and capacitance aren’t clearly defined.

Considering the limitations associated with the methods mentioned
above, machine learning can fix many of the issues related to these
methods. It can help in the following ways:

Analytical method: Implementing ML to the problem can tackle
complex geometry and boundary conditions by learning from large
datasets. That overcomes the limitations of traditional mathematical
techniques [21].

Estimated computational costs with the numerical method can be
potentially reduced using ML models, which can help overcome errors with
a numerical technique [22].

Cost labelled with the experimental data collection can be reduced
by predicting the outcome based on a smaller set of experimental data [23].
ML can model complex non-linear relationships between variables that are
difficult to capture with traditional dimensional analysis [24].

Machine learning is a theoretical concept and a practical tool for
creating hybrid and surrogate models. These models can be seamlessly
integrated with CFD simulations, effectively reducing the computational
resources required for repeated simulations [25].

It can develop more accurate correlations by learning from large
datasets and capturing complex relationships between variables [26]. ML
enhances network methods by capturing complex and more detailed
interactions within thermal systems [27].
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1.1 Introduction to machine learning

It is a tool combined with statistics and computer codes (i.e., a set
of instructions) used for data-driven problems [28]. Statistics, a part of
mathematics, explains the hidden relation within the data. Meanwhile, the
computer code translates some form of thing (data) into some other form
(bit), which utilizes the hash power of the computer to compute it. The
machine learning field grew from old statistics and artificial intelligence.
Machine learning algorithms are used to gather an understanding of
collected data, clarify the interpretation of phenomena in the form of
models, predict/forecast the future values of phenomena, and find strange
behavior [29] exhibited by a phenomenon. But the question is, when should
we deploy machine learning rather than traditional programming?

Machine learning tools are susceptible to input data. These tools
perform well even if there is a lot of variation in input data. They can train
themselves to perform, which is outside the limit of direct programs.
Applying machine learning to such problems includes programs that
decode handwritten text, where a fixed program can adapt to variations
between the handwriting of different users; spam detection programs,
which adapt automatically to changes in the nature of spam e-mails; and
speech recognition programs.

1.2 Different types of machine learning

Machine learning has branched into several subfields (as shown in
Fig. 1.1) dealing with different learning tasks. Some of them are:

a. Supervised machine leaning: Labelled training data in supervised
learning algorithms learns the relationship between inputs and
outputs [30]. The data used in supervised learning is labelled, which
contains examples of inputs (called features) and correct outputs (labels).
The algorithms analyse a large dataset of training pairs to find a desired
output value when asked to make a prediction on new data. When the model
has been trained and tested, it can be used to make predictions on unknown
datasets based on the previous training. Supervised machine learning
algorithms make it easier for researchers/organizations to create complex
models that make better predictions. So, they can be widely used across
various industries/fields, including research [31], marketing [32], financial
services [33], healthcare [34], and many others.



b. Unsupervised machine learning: Unsupervised learning (or knowledge
discovery) algorithms learn from data without human supervision. Unlike
supervised learning, unsupervised machine learning models deal with
unlabelled data and are allowed to find patterns and information without
any guidance/instruction [35]. Algorithms learn without any kind of labels
or any prior training. The model is given raw and unlabelled data and has
to interpret its own rules and relation for the information based on
differences, similarities, and patterns without any instructions on how to
work with every single piece of data.

These algorithms are well suited for more complex processing tasks, such
as arranging large datasets into clusters. They are helpful in identifying
previously undetected patterns in data and can also identify valuable
features for categorizing data [36].

c¢. Reinforcement learning: Reinforcement learning (RL) learns to
optimize sequential decisions, which are taken recurrently across time
steps. Sequential decision means a situation where the decision maker, in
RL terminology known as an agent, makes successive observations of the
process before making a final decision [37]. It tries to mimic how humans
learn. Humans can understand complex and different tasks like swimming,
gymnastics, or connecting an instance with another instance [38]. More
specifically, in practical use cases of RL, it tries to acquire the best strategy
for making repeated sequential decisions across time (i.e., dynamic state)
under uncertainty [39]. It does so by interacting with a simulator of the
stochastic dynamic system of interest, also called an environment, to learn
such winning strategies [40]. A strategy to take repeated sequential
decisions across time in a dynamic system is also known as a policy. RL
tries to learn the winning policy of choosing actions in different states for a
dynamic system [41].

1.3 Types of supervised machine learning:

a. Classification: In Classification, datasets are used to group particular
data by predicting a label (categorical) or output variable based on
provided input data. Classification is used when output variables are
categorical (i.e., in the form of yes-no, true-false, etc.), meaning there
are two (Binary Classification) or more than two classes [42].

b. Regression: Regression is a statistical approach that relates the
relationship between a dependent variable (target variable) and one or
more independent variables (predictor variables) [43]. The objective is
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to establish the most suitable mapping (function) that defines the
connection between these variables. It approaches finding a best-fitting
model that is utilized to make predictions or draw conclusions. The
regression analysis problem works if the output variable is a
real/continuous value [44], such as “temperature” or ‘“geometric
dimension.”

1.4 Types of unsupervised machine learning:

a.

Clustering: Clustering techniques explore raw and unlabeled data by
breaking it down into small chunks (or clusters) based on similarities
(or differences) [45]. They are used in a variety of applications,
including customer segmentation [46], fraud detection [47], and image
analysis [48]. Clustering algorithms split data into natural groups by
finding similar structures or patterns in uncategorized data.
Dimensionality reduction: The dimensionality reduction technique
reduces the number of features/dimensions in a dataset. Extensive data
is generally suitable for ML, but it is more challenging to visualize and
draw conclusions from it [49]. This technique extracts essential features
from the dataset that reduce the presence of irrelevant features. It uses
principal component analysis (or PCA)[50] and singular value
decomposition (or SVD) [51] algorithms to reduce the number of data
inputs without compromising the integrity of the properties in the
original data.

1.5 Algorithms used in regression

a.

Linear regression: Linear regression is one of the simplest and most
widely used statistical tools. It assumes that there is a linear relationship
between the independent variable and dependent variables [52]. This
means that the change in the dependent variable is proportional to the
change in the independent variables.

Polynomial regression: Polynomial regression models a non-linear
relationship between the dependent and the independent variable. It
adds polynomial terms to the linear regression model to capture more
complex relationships [53].

Support vector regression: The support vector regression (SVR)
algorithm is based on the support vector machine (SVM) algorithm.
SVM is a type of algorithm used for classification problems, but it can
also be used for regression problems. SVR works by finding a
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hyperplane [54] (a plane that differentiates between two classes) that
minimizes the sum of the squared residuals between the predicted and
actual values [55].

Decision tree: A decision tree regression algorithm builds a decision
tree that predicts the target value, whereas a decision tree is a tree-like
model that contains nodes and branches. Every single node represents
a decision, and every single branch represents the outcome of that
decision [56]. Decision tree regression aims to build a tree model that
can accurately predict the target value for new data points [57].
Random forest: Random Forest regression is an ensemble method.
Multiple decision trees are combined to predict the target value [58].
Random forest regression works by building a large number of decision
trees, each trained on a different subset of the training data. The final
prediction is made by averaging all the trees' predictions [59].
Regularized linear regression

a. Lasso regression: Lasso regression is one of the types of linear
regression, also known as L1 (in statistics, it is known as the
sum of absolute values). Regularization is used to prevent
overfitting. For this, it adds a penalty term to the loss
function/error function (quantifying how well the model makes
predictions) that forces the model to use some weights and sets
others to zero [60]. This method can also be used to find the
minimum number/threshold features by customizing the
regularization parameter [61].

b. Ridge regression: Ridge regression/L2 regularization is a
regression prediction algorithm that prevents overfitting by
decreasing the weight of abnormal data. Overfitting occurs
when the model learns the training data too well but cannot
generalize to new data [62].

L, regularization term = ||lw||3
=wi+wi+wi+....... w2

Where w represents the assigned weight, weights close to zero
have little effect on the model, while outlier weights have a huge
effect.



Figure 1.1: An overview of machine learning.

1.6 Evaluation metrics used in regression

a. Mean absolute error: It expresses the mistakes made by the model,
known as errors. It is defined as the average/mean sum of all such errors
[63].

MAE (1.1)
B i |Predicted outputy — Actual outputy|
B N

Y=1

b. Mean square error: It expresses the squared distance within actual and
predicted values. Squaring error is performed to avoid negative terms, and
it is the benefit of MSE [64]. One of the major advantages of using MSE is
that its graph is differentiable, so it can easily be used as a loss
function/objective function [65].

MSE = (1.2)
N  (Predicted outputy—Actual outputy)?
Y=1
N



c. R2 Score: R square (or R2 score) expresses the model's performance. It
determines the relative improvement of a regression line over a mean line.
R2 squared is sometimes called the goodness of fit or the coefficient of
determination [66].

R2 Squared =1 —

Squared_sum error of regression line (1 3)

Squared_sum error of mean line

d. Root mean square logarithmic error: This evaluation adds matric one
to both (i.e., predicted and actual output) terms before operating with the
natural log function. This method is preferred when the data set contains
outliers and many zeros. A lower value of RMSLE indicates a small error,
i.e., better prediction performance [67].

RMSE = 1.4

\/Zgzl(log(Predicted outputy+1)—(log(Actual outputy+1))2

N

e. Root mean squared error: It is square root of mean squared error. It
makes the interpretation easy because it gives output value in the same unit
as the required output variables have. It is mostly used with deep learning
techniques [68].

RMSE = \/Z’l}’:l(Predicted outpll\tlty—Actual outputy)? (1 -5)
Few other evaluation metrices are also shown in Figure. 1.2.

1.7 Neural Networks

Neural networks are the fusion of artificial intelligence and brain-
inspired design that reshapes modern computing. With intricate layers of
interconnected artificial neurons, these networks emulate the intricate
workings of the human/animal brain. Neural networks can adapt to
changing input to generate the best possible result without redesigning the
output criteria. A neural network contains layers of interconnected nodes.
Each neuron has two adjustable parameters, weight W and bias. Different
types of neural networks, from feedforward to recurrent and convolutional,
are customized for specific tasks [69]. Figure 1.3 illustrate the general
procedure of a neural network.



1.8 Components of neural network

a.

Input layer: It’s the layer in which input is provided to the model. The
number of neurons in this layer equals the total number of features in
the data.

Hidden layer: The output from the Input layer is then fed into the
hidden layer. Depending on the model and data size, there can be many
hidden layers. Each hidden layer can have different numbers of
neurons, which are generally greater than the number of features.

Output layer: The output from the hidden layer is then fed into a
logistic function like sigmoid or softmax, which converts the output of
each class into the probability score of each class.

Activation function: A neural network without an activation function
acts as a linear regression model. Assigning an activation function (Fig.
1.4) to neurons introduces non-linearity to the neural network. Some
popular activation functions are, sigmoid [70], tanh, ReLU, and
softmax [71], plotted below in Figs. 1.5-1.8.

tanh(x) =

eX —e™¥ RelLU = max (0, x)
1+e™* _ {x, x>0

0, otherwise

—— | sigmoid =
et +e™

Initialization: Initialization in a neural network simply means
assigning the initial value of weight and bias for neurons. Different
weight initialization methods are used, such as normal initialization,
constant initialization, Lecum initialization, random initialization,
Xavier initialization (also known as Glorot normal), and He
initialization [72].
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Evaluation matrices used in machine learning

l l l

Regression Classiﬁlcazion Clustering

Mean Absolute Error (MAE) Accuracy Davies-Bouldin Index
Mean Squared Error (MSE) AUC-ROC Mutual Information
R2 - Score Confusion matrix Silhouette Score
Root Mean Square Logarithmic  F1 - score The Adjusted Rand
Error Index

Log-loss
Root Mean Squared Error o The score Index
(RMSE) Precision

Recall

Figure 1.2: Evaluation matrices used in machine learning

Input layer Hidden layer | Hidden layer 2 Output layer
Figure 1.3: A neural network
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Figure 1.4: A single neuron with weight and bias and activation
function

Optimization: It is a process of selecting the best solution from a set
of available solutions. It deals with either maximizing or minimizing
the objective function or loss function. Some of the most commonly
used optimization techniques are stochastic gradient descent, Adam,
RMSprop, random search, etc.[73]. One of the most important
terminologies used in optimization is learning rate. The learning rate is
nothing but the step size at each iteration while trying to minimize a
loss function.

Metrics: Evaluation matrices are used to evaluate the performance of
the machine learning model. Each model targets generalizing well on
new or unseen data, and evaluation metrics help determine how well
the model generalizes on an unseen data set.

12
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1.9 Literature review

1.9.1 Prediction of heat transfer coefficient

A temperature and a velocity gradient are observed whenever a
flow occurs on any surface due to boundary development. Based on the
nature of flow, convective heat-transfer problems are either natural
convective heat-transfer or forced convective heat-transfer. Both of these
types divide the boundary layer zone into either a laminar region or a
turbulent region. Newton’s law of cooling (i.e.Q = hAAT) is only a
defining formula for the heat transfer coefficient (h) and does not relate the
heat transfer coefficient and the factor that impacts it. Some of the most
common methods of predicting the heat transfer coefficient are:

(a) Analogy method: The analogy method measures one of two
distinct physical occurrences to determine the fundamental
relationship between them based on the similarity of their
governing equations [74].

(b) Experimental method: This method is also known as the
correlation technique. It is based on experiments and a trial-and-
error approach. Dimensional analysis is also used with this
technique [75].

(¢) Numerical Method: In these techniques, numerical methods are
used to solve the energy and Navier-Stokes equations under
prescribed boundary conditions [76].

Apart from the three methods mentioned above, a direct data-
driven approach is also used to predict the heat transfer coefficient. An ML-
based approach by Acikgoz et al. [77] for the prediction of the heat-transfer
coefficient of the radiant wall with a cooling system and mixed forced
convection for these two neural networks with different input parameters
(temperature, velocity, and heat transfer rate) are assigned. In another
problem, Acikgoz et al. [78] did experiments for the data generation, and
these data were used in the development of ANN using MATLAB and
studied the heat transfer coefficient. Verma et al. [79] have suggested an
ANN model to estimate the HTC of the radiant heating and cooling system.
An experimental cum computational study of the radiant wall with a cooling
effect is explained by Colak et al. [80], and they have used ANN for the
estimation of convective and radiative heat flux. Estimating the heat
transfer coefficient of multiple impinging jets on a hot steel surface
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(quenching) with the consideration of jet velocity, surface moving speed,
and temperature makes the problem difficult. To find the value of HTC, Xie
et al. [81] used experimental data and an ML model and used its value to
calculate the transient heat flux in two dimensions.

1.9.2 Prediction of pressure drop

A change in the overall pressure of fluid-carrying equipment (e.g.,
heat exchanger, tubes, etc.) between two points is known as a pressure drop.
Pressure drop in the heat exchanger is directly related to the velocity of the
fluid. The higher the velocity, the higher the heat transfer coefficient, and
the higher the pressure drops. The optimum heat exchanger design demands
a higher value of heat transfer coefficients but a lower pressure drop value.
This is the main reason a researcher must find a way to predict the pressure
drop. Alejandro et al. [82] used ANN and data handling methods to develop
empirical models calculating the pressure drop. Bhattacharyya et al. [83]
presented a statistical tool and created an ANN for a hybrid tape
(combination of wavy tape and grooved spring tape) type circular channel
and estimated the pressure drop and heat transfer coefficient. Using two
ensemble boosting algorithms and one bagging algorithm, a double pipe
type heat exchanger analysis was done by Sammil et al. [84], and the
thermohydraulic parameters were predicted. A similar type of pipe with a
coiled-wire turbulator is studied by Celik et al. [85] with four regression
models: Support vector regression, Gaussian process regression, Multilayer
perceptron network, and Random Forest. Multi-linear regression is applied
to compare results, and the drop in pressure is estimated. For the study of
condensation pressure drop and coefficient of heat transfer in a horizontal
macro and microchannel, Hughes et al. [86] used a combination of flow-
regime-based relation and model-based ML regression that used random
forest, ANN, and support vector regression.

1.9.3 Optimizing heat transfer

Analysis of heat transfer in solid-fluid interaction known as
Conjugate heat transfer. This kind of analysis is required to optimize heat
exchangers, design turbine airfoils, improve the heat transfer characteristic
in electronic components, etc. For this, the most common approaches are
model-based analysis and model-free analysis. The model-based approach
is problem-dependent and requires domain knowledge, and the model-free
analysis and model-free approach do not require domain knowledge. It uses
the input-output database to optimize the desired output and estimates the
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input to get the desired output. Dutta et al. [87] proposed a non-linear
optimization replacement strategy for the optimization of the airfoil shape
of the turbine vane; for this linear regression, the ML model is used, which
optimizes the problem in terms of design, cost, and life of the component,
and flow rate of coolant. Micro fins are optimized to enhance heat transfer
capabilities. Larra™naga et al. [88] used the performance evaluation criterion
as the ratio of geometry's thermal and hydraulic performance parameters as
an objective function for the data-driven model. Kang et al. [89] introduce
three ML algorithms, ANN, support vector regression, and random forest,
and predict the average: heat transfer and net energy loss. Balachandar et
al. [90] suggested using the ANN-GA-based technique to optimize fin
performance. ANN is used to estimate base temperature, and ANN is also
trained using a limited data set. Then, a genetic algorithm is introduced to
the trained ANN to find the optimized geometry. Integration of ML, GA,
and CFD by Wang et al. [91] estimated the influence of the geometry of the
finned heat-pipe radiator. It gave the optimal geometry that improved the
heat transfer. Shi et al. [92] suggested using a surrogate model in
combination with ML technology. This approach achieved an optimal
dimple arrangement that optimized the heat transfer. Dadhich et al. [93]
generated a dataset using experiments on annulus tubes filled with water-
based nanofluids. They used these data to develop the ANN model, and
these ANNSs are in better agreement with experimental results.

Design parameters or processes can also be optimized using ML
and its algorithms. Processes involved in the design of thermal devices are
complex. Wen et al. [94] used ML in combination with ANN and genetic
algorithms to solve this issue. Yu et al. [95] suggested a significant way to
save energy and reduce emissions by improving the design of heat transfer
equipment by implementing the ML technique to update the surrogate
model. Nusselt number predictor model uses volumetric concentration of
nanofluids, winding number, and Prandtl number for helically coiled heat
exchanger as input parameters suggested by Baghban et al. [96] consist of
a multi-layer perceptron ANN, ANFIS (adaptive neuro-fuzzy inference
system) and LSSVM (least-square support vector machine). Estimation of
the heat transfer coefficient during condensation of steam in the presence
of air outside a heated tube studied by Cao et al. [97] used experimental
data to build a back-propagation neural network model. Factors that
influence condensation heat transfer (e.g., pressure, subcooling, tube
diameter, air mass fraction) are used as input parameters, and the coefficient
of heat transfer is used as the output of the model. A method suggested by
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Elboughdiri et al. [98] was used to increase the Nusselt number and reduce
the pressure drop i.e., optimized the disk-shape micro-channel heat sink
with the feature of a variable number of spiral micro-channel, based on
ANN, which is developed as forecasting model that takes several channels
and volume flow rate as input and produce Nusselt number and pressure-
drop as output. Using the ML learning regression model, the Performance
of fins for axially finned tube heat exchangers is investigated by
Krishnayatra et al. [99], who studied the variational effect of fin spacing,
fin material, fin thickness, and coefficient of convective heat transfer on
total effectiveness and overall efficiency and estimated the thermal
Performance of fin—for the study of heat exchangers with corrugated (i.e.,
variation in pitch and depth) and non-corrugated pipes by, Verma et al. [100]
developed an ANN that predicted the Reynolds number, coefficient of heat
transfer and Nusselt number. For BPHE (i.e., brazed plate heat exchanger),
Longo et al. [101] used ANN to predict the coefficient of boiling heat
transfer by considering the refrigerant characteristics, plate shape, size, and
operating conditions. Friction factor and dimensionless factors associated
with heat transfer are the crucial parameters for the optimization of Plate-
finned heat exchanger (PFHE) Performance. The approach followed by
Kedam et al. [102] uses ANN (more specifically, an MLP). It predicts the
parameter mentioned above for various fin types (including wavy fins and
off-set strip fins), which utilizes the Bayesian regularization learning
technique. Two ANNs were developed by Colak et al. [103], taking coil and
tube diameter, Reynolds number, curvature ratio, and mass flow rate as
input parameters and forecasted the value of Nusselt number, pressure drop
and heat transfer coefficient for shell-and helically-coiled tube heat-
exchanger. Moradkhani et al. [104] developed three ML algorithms
(Gaussian process regression, multi-layer perceptron, and Radial Basis
Functions) for smooth helical-coiled tubes and modeled the boiling heat
transfer coefficient.

1.9.4 Analysis of flow boiling/flow condensation heat transfer

International space agencies are investigating using two-phase heat
management systems to sustain astronauts living aboard future spacecraft
and planetary colonies. The primary driving forces behind these endeavors
are the augmentation of power consumption efficiency and the reduction of
total weight and volume; these characteristics are direct outcomes of the
heat transfer enhancement attained by flow boiling and condensation [105].
Buoyancy, which is proportional to the product of gravity and the density
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difference between liquid and vapor, reflects the effect of gravity on flow
boils. Due to the significant density difference, buoyancy can significantly
impact how vapor moves in relation to liquid and, in turn, how well heat
transfer occurs. The focus of microgravity research has recently been urged
to be shifted from pool boiling to flow boiling to attain the high CHF values
and heat transfer coefficients needed for space applications, such as space
suits, space vehicles, Earth-orbiting stations, satellites, fighter aircraft, and
so forth [106] [107]. Instead of traditional empirical correlations, ML shows
impressive potential for predicting two-phase flow parameters. Tarabkhahet
al. [108] described four different ML models: multi-layer perceptron ANN,
Support vector regression, extreme gradient boosting, and k nearest
neighbors, and predicted the heat transfer coefficients and pressure drop.
Guangya Zhu et al. [109] compared previous conventional and current ML-
based flow boiling investigations to get highly efficient aircraft thermal
management. Computational simulation and traditional correlation are slow
and less accurate in predicting heat transfer. Qiu et al. [110] forecasted the
heat transfer coefficient in mini-micro channel/heatsinks for flow boiling
using ANN and physics-based data-driven techniques. A dataset can be
prepared with the extraction of information from images, and an ML model
known as a Convolution Neural Network (CNN) can be applied to a specific
problem. Junior et al. [111] prepared a dataset and applied a CNN model to
study condensing refrigerant in a vertical straight tube. Data generated from
experimental setup Zhu et al. [112] used an ANN and predicted heat transfer
performance for flow boiling and condensation.

A data-driven ML model (non-linear regression) was proposed by
He et al. [113]and predicted the flow coefficient. Four ML models, ANN,
Random Forest, Ada boost, and Extreme gradient boosting, were developed
by Liwei Zhou et al. [114] to predict the heat transfer coefficient during
flow condensation.ML technique developed by Tang et al. [115] consists of
nine algorithmic models predicting the Nusselt number for the bubble
condensation. A high-fidelity ML framework suggested by Khodakarami et
al. [116] predicted the heat transfer coefficient for condensation. ANN,
explained by Bard et al. [117], predicts fluid characteristics for nucleation
or bubble growth in flow boiling. The approach followed by Yang et al.
[118] uses feature extraction and classification algorithms to determine the
characteristics of different flow patterns. To improve HVAC systems with
two-phase flow, Al-Jarrah et al. [119] estimated the phenomena of heat
transfer during the condensation of CO2in porous medium by combining
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two mneural-network models and two adaptive neural-fuzzy inference
systems with the prediction of internal heat transfer coefficient.

1.9.5 Hybrid computational mode

The hybrid computational method combines Al and mathematical
models (analytical or numerical) and applies them to solve a wide range of
problems in the field of engineering or research. Such a model using CFD
(finite volume approach) and Al-based models is developed by Zhao et
al. [120] to study temperature distribution in nanofluid. Deb et al. [121]
gathered the data using CFD analysis and used these data to generate an ML
model that predicted the mean final temperature of the water and the drop
in the pressure. Manshadi et al. [122] used a deep neural network with Long
short-term memory in this technique to compare the different methods and
predict the effect of radiative and conductive heat transfer in
polymethylmethacrylate (a type of polymer used in various kinds of
actuators and sensors). Data from 5,000 CFD simulations for turbulent flow
in pipes used with ANN Koroleva et al. [123] analyzed the heat transfer,
thermal-hydraulic performance, and pressure drop. Babu et al. [124] used a
peri-dynamics-based multivariate linear regression model to analyze
thermal behavior. Naphon et al. [125] used a combination of CFD and ANN
to study the behavior of pressure drop and heat transfer due to the influence
of jet impingement in micro-channel heat sink. ANN model utilizes the
LMB (i.e., Levenberg-Marquardt Backward-propagation) algorithm for
training. For the analyzing one of the complex problems, including entropy
generation, mixed convection, and non-linear thermal radiation with local
thermal non-equilibrium within the porous medium (filled with nanofluid),
Alizadeha et al. [126], a hybrid technique, collected data from CFD analysis
and used these data to train an ML model. Support vector regression
approximates the Nusselt number, Shear stress, velocity, temperature,
entropy generation, and the Bejan number function.

1.9.6 Comparison

Under comparable working conditions, radiators fitted with brazed,
double-U grooved, and standard pipes are compared. The analytical
Number of the Transfer Unit Method is used to validate the experimental
evaluation of the radiators' heat transfer characteristics. Using the acquired
experimental data, an Artificial Neural Network model has been created to
ascertain the heat transfer rate for every radiator. The numerical model's
data have been thoroughly compared to the practical model. The data
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extracted from the ANN structure and the goal data have been compared to
analyze the model's performance analysis thoroughly. Kuzmenkov et al.
[127] simulate the improved heat transfer properties of turbulent airflow in
a circular tube with transverse ribs that are artificially rough. Kuzmenkov
examined three alternative modeling techniques. The first dataset is formed
via several CFD simulations, and the second dataset is taken from several
classical works. A deep feed-forward neural network is created to forecast
Nu and friction factors for rib roughness and flow parameters. The first and
second datasets are used separately to train the ANN and a combination of
datasets that consistently produce high-quality predictions. A comparison
of all results with experimental data and CFD modelled values displays the
best outcomes of the experiment and ANN technique.

Significant uncertainties exist in the heat transport correlations, and
traditional tests and CFD simulations need a lot of time and processing
power. Zheng et al. [128] set out to develop a dependable technique for
more rapid and precise estimating the Heat Transfer Coefficient of heat
exchange channels. The General Regression Neural Network and Random
Forests models forecast the heat-exchange performances of channels with
varying height bulges. These models are trained using hundreds of CFD
simulation data. The total height of the bulge is likewise correlated with
HTC. Following a specific reduction in the overall bulge height, HTC's
progress becomes restricted. The findings demonstrated that the HTC of
channels with various bulge configurations can be accurately predicted.

1.9.7 ML for heat transfer correlation

A standard method for estimating the heat flux between a fluid and
its surface is to use heat transfer correlations. The main determinants of
these formulae are geometry, working fluid, and operating circumstances.
Analytical solutions can be used to calculate the features of laminar flow
under certain assumptions. However, to estimate heat transfer for turbulent
flows, one needs to use numerical models or experimental data [129]. Nie
et al. [130] used machine learning techniques to forecast the HTCs for
horizontal tube flow condensation. To assess five ML models, a
comprehensive database encompassing a wide variety of fluids and
experimental settings is put together. To ascertain the heat transfer
properties, a new universal correlation is created based on the parametric
importance analysis carried out by the XGBoost models. Five machine
learning models were based on the algorithms of Extreme gradient boosting
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(XGBoost), random forest (RF), convolutional neural network (CNN),
artificial neural network (ANN), and K-nearest neighbors (KNN).

To derive a fundamental correlation for predicting convective heat
transfer of the nanofluids loaded with graphene, Savari et al. [131]
examined the heat transfer performance of the Water/ethylene glycol-based
graphene nanofluid and the Water/ethylene glycol-based graphene
nanofluid nitrogen-doped graphene. The impacts of significant parameters
on heat transfer and fluid flow characteristics of an automobile radiator are
modeled using an ANN and adaptive neuro-fuzzy inference system
(ANFIS), and the modeled data is then compared with experimental results
for testing. Following modeling, the effective model was chosen by
comparing the outcomes of the ANFIS and BPNN models. In this manner,
two new nanofluids were created initially. Then an effective model was
used to simulate the Nusselt number in relation to changes in the inlet
temperature, Reynolds number (Re), and Prandtl number (Pr).

Absorbers and desorbers based on microchannel membranes are
essential parts of small and effective absorption refrigeration systems. More
sophisticated correlation models are desperately needed to increase the
accuracy of existing empirical correlations for predicting the properties of
solution pressure drop and heat/mass transfer. According to Zhai et al.
[132], new models for the Nusselt number (Nu), Sherwood number, and
friction factor of microchannel membrane-based desorber and absorber,
respectively, are developed using three machine learning algorithms:
Random Forest (RF), Least-Squares Support Vector Machine (LS-SVM),
and Genetic Algorithm-optimized Back Propagation Artificial Neural
Network (GABPNN), based on experimental results. With machine
learning support, these models effectively increase the prediction accuracy
for both the absorber and the desorber.

Steam condensation is a significant phenomenon in nuclear
reactors during severe accidents. A biologically inspired machine learning
technique called multigene genetic programming (MGGP) was examined
by Tang et al. [133] and used to create novel correlations for condensation
HTC of a steam-non-condensable gas mixture over a vertical tube in the
turbulent free convection regime. It illustrates how MGGP has promise in
making precise, concise, and clear models for multiphase flow processes
like steam condensation in the presence of non-condensable gas and
complex heat transfer. Metals, metal oxides, and polymers are among the
components that are typically used to create nanoparticles. It is essential to
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assess the heat transfer the nanofluids achieve to develop energy systems
that help.

Most models created to explain fluid heat transfer necessitate
calculating the Nusselt number, which measures the proportion of
conductive to convective heat transfer in a particular system. Guzman-
Urbina et al. [134] estimated the local Nusselt number of nanofluids by
deriving a correlation using Genetic Programming (GP). Using an
evolutionary algorithm, the technique creates correlation equations for
examining the relationship between the flow regime, flow characteristics,
system setup, and nanoparticle properties. Developing multi-variable heat
transfer correlations requires much less work, thanks to machine learning,
which may also quickly expand the parameter domain.

For a high-order nonlinear heat transfer problem, Kwona et al.
[135] employed the random forests algorithm to forecast the convection
heat transfer coefficient. Next, the RF regression's interpolation capacity is
evaluated.

1.9.8 Contact heat transfer

Analysis of heat transfer at the interface between two contacting
bodies is one of the complex problems of heat transfer. Vu et al. [136]
introduced an ML model based on supervised learning that predicted the
interaction of heat across the interface between two bodies.

1.9.10 Modeling Heat transfer

For laminar and turbulent flow with magnetic nanofluids flowing
inside a pipe, Zhang et al. [137] calculated the convective coefficient of
heat transfer using ML technique by selecting different machine learning
approaches viz multiple linear regression, least square-support vector
mechanism, and radial basis function-backpropagation were used. A
method for adjusting supercritical pressure fluid turbulence models using
high-fidelity simulation (DNS) data is presented by Cao et al. [138]. An
iterative DNS-DNN-RANS framework is suggested to create explicit
closures for turbulent momentum diffusion and turbulent thermal diffusion
of turbulent heat transfer at supercritical pressure. For a passive-
containment cooling system in a light water reactor, a model that predicts
condensation heat transfer suggested by Lee et al. [139] developed a
correlation for the coefficient of heat transfer that uses the ML method. Data
was used to train and test the ML model; a pseudo dataset was created using
the existing condensation model, and a Neural network model with a
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convolution neural network was used. Developing frictional pressure
gradient correlations and heat transfer for the condensation of binary
mixtures can be computationally demanding and intricate. Because of mass
transfer and temperature glide, binary mixes add another layer of
complication. Hughes et al. [140] created a variety of dimensionless
parameter inputs known to impact pressure drop and heat transfer, which
were used to develop predictive machine learning models that are accurate
but computationally inexpensive. The Nusselt number was discovered to be
predictable by the SVR model. The GB algorithm predicted frictional
pressure drop. Mudhsh et al. [141] used cutting-edge machine-learning
algorithms to model the thermo-hydraulic behavior of a spiral plate heat
exchanger. Different flow channel pitches and cross-sectional sizes are
considered when predicting the output temperatures of hot and cold fluids.
The suggested model aids in the estimation of the thermal performance and
attributes by heat exchanger manufacturers. To forecast the outlet
temperatures of the working fluids of helical plate heat exchangers, an
improved random vector functional link (RVFL) optimized fire hawk
optimizer is intended to be provided by the developed model.

1.9.11 Study of other/miscellaneous medium/materials

An experimental study of the melting of n-octadecane (a phase
change material) in combination with ANN developed by Motahar [142]
estimates the melting parameter of PCM. An MLP feed-forward NN is
trained using the Levenberg-Marquardt algorithm (uses experimental data)
and predicts the melted volume fraction and Nusselt number as output by
taking Rayleigh, Stefan, and Fourier numbers as input parameters.

The thermal diffusivity of volcanic rock studied by Khan et al.
[143] uses a genetic algorithm. Ensembled learning tree, Gaussian process
regression, Support vector machine, and decision tree ML model are
integrated  with  genetic  algorithm and forecasted thermal
diffusivity. Transfer of heat and storage of energy of ground (i.e., soil) is
directly related to thermal diffusivity. Direct measurement is challenging
due to the limitations of sensors and variable physical characteristics of soil,
viz. mineralogy, texture, moisture content, bulk density, etc. Hence, Li et al.
[144] suggested a method that comprises ML models like KNN, Random
Forest, MPL, SVR, decision tree, and GBDT (gradient boosting decision
tree). Accurate prediction of deterioration of transfer of heat in supercritical
fluids (state of fluid beyond the critical temperature and pressure) is
influenced by many parameters, which makes traditional correlations
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challenging to predict. Zhang et al. [145] developed ANN and predicted the
Nusselt number. Dongliang et al. [146] studied water in a supercritical state
and predicted the coefficient of heat transfer by altering an ML model's
regularization penalty parameter, slack variable epsilon kernel function
parameter. Agustiarini et al. [147] estimate the coefficient of boiling heat
transfer by fusing the ANN and experimental techniques. Experimental data
is used to train and test the ANN. ANN estimates the boiling heat transfer
coefficient to have a hidden layer and 16 input features. Evaluation of flow
properties and heat transfer for a wavy channel with a turbulent flow is
presented by Tahmasebian et al. [148], who compared the result generated
with the modified SST (k-®) turbulence model and RANS (Reynolds-
averaged Navier-stokes) model and calculated the average Nusselt number
with better accuracy. Hydrogen in the liquid state is stored at a temperature
of 20 Kelvin; a slight heat leak to the storing tank may trigger the flow-
boiling [ 149]. Huan Yang et al. [150] used a data-driven technique to predict
the coefficient of heat transfer for flow boiling accurately. Batteries (Li-ion)
are actively playing a significant role in powering the modern era of
transportation and acting as an import and source of energy for other
purposes. Charging and discharging generate heat due to the involved
chemical processes. If these are not handled effectively, they can lead to a
crucial harmful event (i.e., Thermal runaway), reduced lifespan, etc. Since
data-driven analysis can handle large datasets, Miaari et al. [151] have
suggested an ML method, predicted the battery's temperature, and
effectively applied it in the thermal management system.

The development of flaws like cracks in continuous casting
negatively impacts the efficiency of the steelmaking process and the quality
of cast products. Phenomenological quality criteria calculated using a
solidification and microstructure model called Inter-Dendritic
Solidification (IDS) have previously been used to assess the risks and
pinpoint the underlying reasons for defect formation. The method offered
by Norrena et al. [152] used a basic understanding of fault generation in
continuous casting and is computationally efficient. Combining IDS with a
heat-transfer model simulates the process of continuous casting. The
simulations use measured compositions, and the labels used for
categorization are flaws reported at a steelmaking plant. To forecast
transverse cracking in peritectic C—Mn, low-carbon B—Ti micro-alloyed,
and peritectic Nb—micro-alloyed steels, logistic regression, decision trees,
and Gaussian Naive Bayes classifiers are created.
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1.9.12 Predicting critical heat flux location

The site of critical heat flux (CHF) forecast is a complex problem
in the power generation sector. Critical heat flux is affected by several
variables, including the conditions of operation and geometric parameters.
The dependency on these variables demonstrates a nonlinear relationship.
To forecast the location of CHF, Kumar et al. [153] created various
machine-learning models. He determined which model was most accurate
based on comparisons with experimental data. Because experimental data
spanned various operating settings, it was chosen for testing and training
machine learning models. The models' performance is maximized through
the application of hyperparameter adjustment. The artificial neural network
(ANN) model outperforms all other developed models with both training
and test datasets. A different model by Mudawar et al. [154] for the
prediction of critical heat flux and heat transfer in micro-gravity and under
the influence of earth's gravity for flow boiling using statistical analysis
ANN is developed for the study of a number of input parameters that
predicted Nusselt number.

1.9.13 Estimation of properties of nano fluids

Nanofluids (dispersion of nano-sized particles with base fluid) and
colloidal nanoparticle solutions are receiving significant attention.
Researchers are impressed with their enhanced characteristics (thermal,
magnetic, or other properties) [155], being used in electronics cooling
systems [156,157] and in biomedical fields [158,159]. Water-based Fe;O4—
SiO, hybrid nanofluids were created by Alklaibi et al. [160], and the
thermophysical parameters were calculated through experimentation.
Using the experimental data, the Bayesian regularization-ANN analysis
accurately predicts the friction factor and thermal performance factor. By
applying the technique, the multi-linear is employed to create the friction
factor based on the experimental data. Iron oxide and gold nanoparticles are
essential in cancer therapy. Thus, the study of entropy production to
quantify energy dissipation in biological systems is gaining attention from
biomedical engineers and physicians. Using an MLP feed-forward
backpropagation ANN and the Levenberg-Marquard algorithm, Jakeer et
al. [161] created an intelligent numerical computing solver to interpret the
Cattaneo-Christov heat flux model and show how entropy production and
melting heat transfer affect the ferrohydrodynamic flow of the Fe304-
Au/blood Powell-Eyring hybrid nanofluid. The heat transfer performance
of a water-based nanofluid and carbon nanotube combination in a horizontal
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tube with a fixed wall temperature and turbulent flow, investigated by Ullah
et al. [162], is examined through experimentation. To propose a new
correlation for the calculation of influential parameters on the heat transfer
rate, such as the Nusselt number, friction factor, and overall thermal
performance of heat exchangers, while using nanofluid and twisted tape
simultaneously, experimental results will be utilized in an artificial neural
network model.
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Chapter-2

2. METHOD AND PROBLEM FORMULATION

There is transformative change in results across various domains,
including cognitive science, genomics, and image recognition, due to the
growth in computing power and some marvelous developments in machine
learning and data-handling techniques. However, data collection costs need
to be inflated while studying the biological, physical, and engineering
systems. We often face the challenge of making decisions and drawing
conclusions under partial or semi-partial information. Even the well-
equipped state-of-the-art machine learning algorithms fail to guarantee
convergence in this limited data domain.

Training neural network algorithms to identify the nonlinear
relation or pattern between considerable dimensional input and output data
is a little naive. This generating relations between the pair mentioned above
of data doesn't consider the pre-existing knowledge or principles of physical
law that drive the system's dynamics. The principle of defined problem in
the domain of science and engineering acts as a modifier that modifies the
relation to an extent. Concatenating such information in existing neural
networks amplifies desirable solutions even when a few training examples
are available. Including the information to model the data-driven and
physics-informed machine learning algorithms is presented in various
recent works [163—165]. In these works, researchers have used the Gaussian
regression process to get the outcome representation tailored to produce a
linear operator, which infers the solution accurately [166].

2.1 Physics Informed Neural Network

The physics-informed neural network is one of the popular
methods/techniques in the scientific community for solving the
ODEs/PDEs. 1t is a class of neural networks that combines the physics
behind the problem and the power of algorithms. Its flexibility and fantastic
ability to approximate the function make it robust. Automatic
differentiation, the algorithm used for the computation of derivatives, is
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used to represent all the differential operators; hence, there is no need for a
mesh generation, as in the case of computational fluid dynamics, i.e., CFD
solver [167]. Physics-informed neural networks are not the replacement for
computational fluid dynamics, but this technique performs more efficiently
and more accurately than any computational fluid dynamics solver [168].
This shows that a physics-informed neural network can be used to analyze
nonlinear heat transfer problems by combining knowledge of physics and
neural networks and indicates that PINNs are effective tools for analyzing
more complex problems. This method has been proposed in much recent
research work, and it either belongs to the direct or forward method of heat
transfer [169,170] or the inverse process of heat transfer [171]. Based on
available data, problems can be classified as discrete-time and continuous-
time models. In the forward type (as shown in Fig. 2.1) of heat transfer
problem, the material's thermal conductivity (which may be different in
different directions) is generally given, and the temperature distribution
within the body is asked to be found. In general, forward kind of problems
consume the knowledge of computational fluid dynamics or computational
heat transfer, i.e., CHT, which converts the differential equation into a
simple difference equation, or, in simple words, calculus problems are
converted into algebraic problems. That makes the computation or result
generation expansive. Problems associated with the kind of inverse method
(Fig. 2.2) of heat transfer generally the distribution of temperature is given
and asked to find the body's thermal conductivity (or any other properties).
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Figure 2.1:Generalized forward model
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Figure 2.2: Generalized inverse model
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An advanced approach to solving computational models, including
differential equations, is termed a physics-informed neural network
(PINN). A generalized form is shown in Fig. 2.3. It relies on methods that
include the artificial neural network and the physics or the governing
equation of a specified problem. This work uses PINN training by
optimization techniques on simple one-dimensional heat-transfer problems,
namely slabs and fins with Dirichlet boundary conditions. This work
provides a valuable approach for using PINN for different heat transfer
problems. This work presents the main steps to developing such a neural
network. For this, Python (version 3.9) and Keras library (version 3) based
on TensorFlow (a scientific package) are used in the Jupyter Notebook
environment.

2.2 Key concept of PINN

Integration of physics: PINNs incorporate the physical system's governing
equations (e.g., PDEs) directly into the neural network training process.
This is done by including the residuals of these equations in the loss
function, ensuring that the network's predictions are consistent with the
underlying physical laws. By embedding these laws into the training
process, the neural network is constrained to learn physically consistent
solutions, even in regions with sparse or no data. Conventional neural
networks might need help to generalize well outside the range of training
data. Still, PINNs ensure that predictions adhere to known scientific
principles, leading to better generalization in unseen scenarios.

Loss function: The loss function in PINNs is augmented to include terms
that enforce the satisfaction of the PDEs, boundary conditions, and initial
conditions. This typically involves computing derivatives of the network's
output with respect to its inputs using automatic differentiation. The
standard loss function in neural networks is typically based on the
difference between predictions and observed data. In PINNSs, the loss
function is augmented to include terms that enforce the satisfaction of the
physical laws (e.g., PDEs). This often involves calculating the residuals of
the PDEs using the network's predictions.

Forward and inverse problem
Forward problem: Given initial and boundary conditions, PINN

can predict the solution to the PDE.
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Inverse problem: PINNs can infer unknown parameters in the
PDEs from observed data.

2.3 Problem formulation with PINN

1. Neural network architecture: A neural network is used to approximate
the solution of the PDE. The network takes spatial and/or temporal
coordinates as input and outputs the predicted value of the field variable
(e.g., temperature, pressure).

2.Automatic differentiation: Automatic differentiation, or
backpropagation, is used to compute the required derivatives of the
network's output concerning its input. These derivatives are desirable for
evaluating PDE residuals. Tools like TensorFlow or PyTorch offer
automatic differentiation, which allows for the efficient calculation of
derivatives of the neural network's output with respect to its input. These
derivatives compute the PDE residuals, which are then incorporated into
the loss function.

3. Loss function composition: The loss function typically includes:

a. Data loss: The discrepancy between the network predictions
and any available data points.

b. PDE residual loss: Residual of PDE evaluated using the
network’s predictions

c. Boundary condition loss: The discrepancy between the
network predictions and the specified boundary condition.

Consider a PDE of the form X (u) = f, where, X is a differential
operator, u is the unknown solution, and f'is the source term. The augmented
loss function in a PINN is

Loss = LosSpgiq + Lossppr + Lossgc + Lossc 2.1

Where

LoSSpqtq 18 standard data loss i.e. mean squared error between
prediction and truth value or observed data.

Lossppg is measure of how well the network’s prediction satisfies
the PDE, i.e. mean square error of the PDE residual.

30



Lossg enforces the boundary conditions, i.e. mean square error at
the boundary points.

Loss;c enforces the initial condition, i.e. mean square error
associated with initial condition.

4. Training: The network is trained using gradient-based optimization to
minimize the combined loss function. During training, the network adjusts
its parameters to satisfy the PDE and boundary conditions as closely as
possible.

Inpats Hidden Lavers »\fﬂl'ﬂ\.ﬂl\
Dufferentiation

Paiysics of problem
f=FfyaP UV WL

\ /
% 4

Figure 2.3: Generalized form of physics informed neural network.
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2.4 Implementation and training of a physics-informed

neural network

Training of problem, based on PINN to solve the PDE associated
with heat transfer with specified boundary and initial condition was forced
in Python (V3.9), using Tensor Flow, Keras, and other popular libraries
such as numpy, matplotlib, scipy, etc. Training of such a neural network is
based on selecting random batches for input variables (x, t) in each epoch
and tries to minimize the loss function. This is obtained by the optimizer
(built-in keras), which obtains weights and biases in the neural network,
which satisfy heat transfer PDE.

Neural networks are known as universal approximators [172], i.e.,
they can tackle nonlinear problems without considering any prior
assumption, linearization, or local time-stepping. We extract the power of
automatic differentiation [173], one of the most valuable techniques in
scientific computing, to differentiate a neural network concerning its input
coordinates and model parameters to obtain physics-informed neural
networks. Though simple, it is a robust development in physics, biology,
and many other research domains.

Let’s consider a parametrized partial differential equation of the
general form as

u, + X,u =0,x € 2,t € [0, t] 2.2)
Here
u (t, x) denotes the latent or hidden solution
R[] is a non-linear differential operator, and £ is subset of R”.
In continuous time models we define f (¢, x) to be given by:
fi=u + X, [u] (2.3)

and processed by approximating u (t,x) by a deep neural network. This
assumption results in a Physics Informed Neural Network f (t, x).

The work aims to set the foundation for the new computation and
modeling paradigm that explores deep learning. Let’s consider our first
study:
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2.5 Study I: Heat transfer through a slab

Transient heat conduction is essential in many engineering
scenarios, like heating and cooling metal billets, quenching metal for heat
treatment, cooling internal combustion engines, and operating heat
exchange units in power plants. Consider a one-dimensional heat
conduction through a slab as shown in Fig. 2.4. This slab is maintained at a
constant temperature at both ends as a boundary condition, and a sinusoidal
initial condition is also imposed with the problem, as shown in the figure
below. The subsequent part consists of two solutions: (i) analytical method,
which is followed by most of the researchers [174,175], and (ii) machine
learning-based physics-informed neural network method. After applying
the physics in the neural network, i.e., PINN, only 16 training and 100 test
points are used. The architecture used for this neural network consists of [2,
50%*3, 1], where the first element in the list, i.e., 2, indicates the number of
neurons in the input layer, the second element in the list, i.e., 50*3 indicates
the hidden layer which means there are three hidden layers with each
containing 50 neurons and the last element indicates the number of neurons
that is producing the output. This neural network takes space dimension and
time, i.e., X and t, as input parameters and produces temperature, i.c., T as
an output.
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T(x0)=0

Tx=L)=0

rx0) = un(f':—')

Figure 2.4: Slab with specified boundary and initial condition.

qy+dy

Figure 2.5: A differential control volume.
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Consider a differential control volume element (Fig. 2.5) whose
dimensions are dx, dy, and dz in X, Y, and Z direction, respectively, for a
stationary, homogeneous isotropic solid with heat generation within the
body, as shown in the figure.

Differential control volume dv = dx dy dz
Differential control mass dm = p dv
From 1’st law of thermodynamics i.e. conservation of energy:

{ Net rate of heat } {Rate of heat} 2.4)

transfer to the body generation
_ { Rate of increase of }

internal energy of body

. d(U dm 2.5
50 + 54 = 404 (2.5)
Net rate of heat transfer in terms of heat rate in and out of control volume
80 = (Gx — Gx+ax) * (CIy - Cly+dy) + (q; — (2.6)
qz+dz)

Entering heat rates are defined as follow:

oT 2.7
ax = K Axa

Where A, =dydz
Exiting heat rates are defined as follows:

94,

(2.8)
Qx+dx = Gx T ox dx

Following the same analogy for the y and z direction, we get

0 (K6T>+ 0 <K6T>+ 0 (KaT)+ . CaT (2.9)
ax\"ox) T ax\ax) T ax\lax) T 4T PR

In vectorial form

oT 2.1
V- (KVD)+ §=pC — (2.10)
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Assumption: Thermal conductivity is constant

02T 82T 9°T ¢ 19T (2.11)
t st ot - = ——
0x2  0x2 o0x?2 K a ot

K
Where a = —
pC

Assumption: No heat generation

0T 0°T 9°T 10T (2.12)

t t =—-—
0x?  0x? 0x? a ot
Assumption: Heat transfer takes place in x-direction only

0°T 10T

ax2  a ot
Associated boundary and initial conditions are:

Boundary conditions are:

T(x=0,0)=0 (2.14)
Tx=Lt)=0 (2.15)
Initial condition:
nmwx
T (x,0) = sin (T) (2.16)

Changing the governing equation, boundary conditions and initial condition
into non-dimensional form, leads to:

2 *
7T = oT (2.17)
dx*? aot*
Where x* = ; T*= 1272 and "= a—zt
L Ty — Teo L
Non-dimensional form of boundary condition becomes:
T"(x*=0,t")=0 (2.18)
T"(x*=1,t")=0 (2.19)
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Non-dimensional form of initial condition becomes:

T*(x*,t* = 0) = sin(nmx™) (2.20)
Applying method of separation of variables, we get

T*(x*,y*) = e *sin (nmx*) (2.21)
Changing the temperature back into dimensional form we get,
Since,

T="Te + (Tg — T)T"
T=T, + (Ty— Tw)[e_’lzt*sin (nmx®)]

2.6 Applying physics-informed neural network to our

problem

For the development of a neural network, in association with our
problem of the slab, space dimension x and time t are considered the input
for the neurons in the input layer depicted in Fig. 2.6. The governing
equation, boundary conditions and initial condition for the above-
mentioned problem

2% *
7T = oT (2.24)
dx*? ot*
T"(x*=0,t")=0 (2.25)
T"(x*=1,t")=0 (2.26)
T*(x*,t* =0) = sin(nmx™) (2.27)
Transformation for the PINN:
u; + X,u =0, x € [0,1], t € [0,t] (2.28)
u(t=0,x) = sin(nmx) (2.29)
u(x=0,t) =0 (2.30)
ux=1t)=0 (2.31)
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Let us define f (t, x) to be given by
f = u + Ru (2.32)

and proceed by approximating u(t,x) by a deep neural network. The
shared parameter between the neural network u(t,x) and f (t,x) can be
learned by minimizing the mean squared error loss

MSE = MSE, + MSE; (2.33)
Where,
Ny
1 . 2
MSE, = — ) [u(th,xl) = w] (2.34)
Ny
i=1
And
Ny
1 Ly 2
MSEr = == ) [F(thxf) | (2.35)
Nf i=1

Here {tfu xk, ui}iv: L denotes the initial and boundary training data
on u( t,x) and {t}, x}}ivf L specify the collection points for f (t,x). The
loss MSE,, corresponds to the initial and boundary data while MSEf

enforce the structure imposed by the above-mentioned Heat equation at a
finite set of collection points.

38



Automatic
Differentiation
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physics of Problem
T=T(x. t)

Total Loss = Loss due to boundary conditions + Physics residue

Figure 2.6: Intuition of PINN used in study I.
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2.7 Study II: Thermal analysis of fin

Extended surfaces, also known as fins, are widely used in heat
transfer, increasing the heat transfer rate from base to surroundings. These
extended surfaces are mostly used when the convective heat transfer rate
between base and environment fluids is low. Most simple geometry
(constant cross-section area) with an axial coordinate system is considered
for our analysis. Mathematical simplicity of one-dimensional, with steady-
state heat transfer, exists in several engineering or research domains. Figure
2.7 represents a fin with a constant cross-section, which is maintained at a
constant temperature at both ends. All the other parameters associated with
design, environment, and material are also expressed in the
figure. Applying the physics in the neural network, i.e., PINN, only 18
training and initially 100 test points were used. The architecture used for
this neural network consists of [1, 50*3, 1], where the first element in the
list, i.e., 1, indicates the number of neurons in the input layer, the second
element in the list, i.e., 50*3, indicates the hidden layer which means there
are three hidden layers with each containing 50 neurons and the last element
indicates the number of neurons that is producing the output. This neural
network takes space dimension, i.e., x as the input, and it produces
temperature as output.

Figure 2.7: Extended surface with specified boundary condition
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QCOTLU

Qcond,x o
> Qcond,x+ Ax

Figure 2.8: A differential control volume.

Deriving the governing equation for fin:

Consider a differential element of fin, at a distance x, of length
Ax, cross-sectional area of A and perimeter of P, shown in above Fig. 2.8.

Rate of heat

Rate of heat .
conduction = conduction
. rom the element
into the element at x f (2.36)
at x + Ax

{Rate of heat Convection}
from the element

Qcond,x = Qcond,x+ Ax + Qconv

where, Qeony = h(PAX)(T — To) (2.37)
Substituting and dividing by Ax, we get
Qcond,x+ Ax—Qcond,x + hP(T — T ) — 0 (2 38)
Ax ol '
AsAx - 0
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y
deond 4 wp(r 1) = 0 (2.39)

From Fourier’s law of heat conduction Q.pnq = —KA %, we get
d dT
—(KA—) — hP(T — T,) =0 (2.40)
dx dx

The governing equation of fin:

g - z—i (T —Ty)=0 (2.41)

Specified boundary conditions are:
T (x=0) =350°C and (2.42)
T(x=L) =25°C (2.43)

In dimensionless form, the governing equation becomes:

d?T*  hP

7 " XA L2(T* = T,) =0 (2.44)

Boundary condition in dimensionless form
T*(x*=0)=1and (2.45)
T"(x*=1)=0 (2.46)

Solving the governing equation for the specified boundary condition gives

T* = Ce™* 4 (Cpe™™¥ (2.47)
e—mL emL
Where, C; = =Ty and G = oML _ g—mL
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2.8 Applying physics informed neural network to our study

For the development of a neural network, in association with our
problem of fin, space dimension x is considered the input for the neurons
present in the input layer depicted in Fig. 2.9. The governing equation and
boundary conditions for the above-mentioned problem

I g — 1 =0 2.48)
T"(x*=0)=1 (2.49)
T*(x*=1)=0 (2.50)

Transformation for the PINN:
/{:+ X,u =0, x € [0,1] 2.51)
u(x=0,t)=0 (2.52)
u(x=1t)=0 (2.53)

Let us define f (t, x) to be given by

f = /4' + Reu (2.54)

and proceed by approximating u(x) by a deep neural network. The shared
parameter between the neural network u(x) and f (x) can be learned by
minimizing the mean squared error loss

MSE = MSE, + MSEf (2.55)
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Where,

MSE, = — S Ju(x}) — w[* and (2.56)
Ny

MSE, = — z|f(x;) B 2.57)
Nf i=1

. .IN ..
Here { X3 u‘]i ¢ , denotes the boundary training data on u( x) and

{x}}ivzlspeciﬁes the collection points for f (x). The loss MSE,

corresponds to the boundary data while MSE; enforces the structure

imposed by the above-mentioned fin equation at a finite set of collection
points.
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Figure 2.9: Intuition of PINN used in study II.
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Chapter-3

3. RESULTS AND DISCUSSION

Let’s interpret the plot obtained from the model suggested in
chapter 2 of this work. Figures 3.1, 3.2, and 3.3 display the training loss and
test loss over a number of steps during a machine learning training process.
Below are explanations of what each component indicates.

The line representing the training loss indicates an error on the
training dataset. It shows how well the model is learning to fit the training
data. It shows a decreasing trend as the model gets trained, i.e., the model
is being trained well. Test loss on the figures mentioned above indicates an
error on the test dataset. Its decreasing trend shows how well the model
generalizes the unseen data. Its closeness with the training line shows the
consistency and relatively small gap between train and test loss. To
conclude, plots indicate a well-performing model with the following
characteristics:

a. Consistently decreasing training and testing losses.

b. A small gap between training and testing loss suggests good
generalization.

c. An improving test metric.

Figure 3.2 shows that train and test losses are decreasing over time,
which suggests that the model is learning the training data very well.
However, if the test metric is also reduced, the model’s performance
worsens on unseen data, possibly due to overfitting. This decreasing trend
in the test metric is a cause for concern because it suggests that the model’s
performance might not generalize well to new data.

Figure 3.3 represents the decreasing trend of test and train loss with
time. It means our model is being trained and acting well. For a model with
nearly constant or stable value, demonstrate a model that maintains
consistent performance on unseen data despite some training and test loss
fluctuations. This stability suggests that the model is well-regularized and
capable of effectively generalizing new data, a vital indicator of a robust
machine-learning model.
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Figure 3.1: Train and test loss vs steps (for slab).
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Figure 3.2: A bad model: Train and test loss vs steps (for fin).
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Figure 3.3: A good performing model, Train and test loss vs steps (for
fin).

3.1 Results associated with study of a slab

A physics-informed neural network-based solution presented for
one-dimensional heat conduction through a slab with constant boundary
(i.e., Dirichlet boundary) condition with the sinusoidal initial condition is
presented in this work. The analytical solution [176], based on the method
of separation of variables, of the problem mentioned above is also compiled
and used for validation purposes. Glorot uniform is used as initializers
(assigns initial weights before the training begins). For spatial dimension
sine function and for time dimension exponential function is used as
activation functions in our neural network. In a based model, Keras built-in
Adam optimizer with a learning rate of 0.001 and L2 relative error is
assigned as metric to minimize the loss function. This model is trained for
more than 20,000 iterations. Initially, the model is compiled and trained
using Adam optimizer, a stochastic gradient descent method that works well
with large-scale datasets. After initial training with Adam, again, the model
is compiled using L-BFGS, i.e., Limited-memory Broyden-Fletcher-
Goldfarb-Shanno, a kind of deterministic optimization algorithm that
provides an accurate and precise solution in the case of PDEs. Using Adam
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and L-BFGS helps quickly find a region near the optimal solution, while
L BFGS converges to the minimum loss function more accurately. A
decrement in training data loss (5.45e-06 for the best model) indicates the
learning ability of the model, i.e., the model is learning to the approximate
solution. The test loss is evaluated on the test data; it is a measure of how
well the model generalizes to unseen data. L2 relative error gives the
normalized measure of error among predicted and relative solutions. Our
model's mean residual and L2 relative error are 0.00058 and 0.00153,
respectively. Data presented in Table 3.1 compares the predicted
temperature with the exact temperature that our model generates. Data
presented in this table states the temperature in the slab at different positions
along its length (i.e., in the x-direction) with varying instances of time.
Using this model, a Table 3.1 is created that shows the distribution of
temperatures (exact and predicted) concerning position and time. Using this
table, a 3D plot, as shown in Fig. 3.4, is plotted, showing the temperature
distribution concerning space and time. Table 3.2 shows the exact
temperature and predicted temperature at different instances of time at
position x = 0.4 from the slab's left end. Table 3.3 represents the exact
temperature and predicted temperature to varying positions at step t = 0.5.
Data in Table 3.2 is used to plot Fig. 3.5, which shows the
decreasing trend of temperature with an increase in time. This trend is
exponential. During the initial period, the plot shows a higher gradient, i.e.,
approximately 70 % of temperature reduces in the first 30 % of the time. As
time progresses, the gradient starts decreasing. Figure 3.6 is plotted using
data available in Table 3.3. This plot shows the temperature distribution
with respect to space, i.e., along x direction. The distribution is sinusoidal.
It indicates the positive slope for approx. The first half of the slab and the
slope change to negative for the latter half of the slab are obtained. The
sinusoidal behavior of temperature distribution is maintained even as time
moves forward, which is shown in Fig. 3.4. As time progresses, the
maximum temperature approaches a particular point and starts reducing.

Table 3.1: Variation in exact and predicted temperature with space and

time in slab.

X Time Exact Temperature Predicted Temperature
0.0000000000 0.0000000000 0.0000000000 -0.0001271814
0.2000000000 0.0000000000 0.5877852523 0.5878090262
0.4000000000 0.0000000000 0.9510565163 0.9511439204
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0.6000000000
0.8000000000
1.0000000000
0.0000000000
0.2000000000
0.4000000000
0.6000000000
0.8000000000
1.0000000000
0.0000000000
0.2000000000
0.4000000000
0.6000000000
0.8000000000
1.0000000000
0.0000000000
0.2000000000
0.4000000000
0.6000000000
0.8000000000
1.0000000000
0.0000000000
0.2000000000
0.4000000000
0.6000000000
0.8000000000
1.0000000000
0.0000000000
0.2000000000
0.4000000000
0.6000000000
0.8000000000
1.0000000000

0.0000000000
0.0000000000
0.0000000000
0.2000000000
0.2000000000
0.2000000000
0.2000000000
0.2000000000
0.2000000000
0.4000000000
0.4000000000
0.4000000000
0.4000000000
0.4000000000
0.4000000000
0.6000000000
0.6000000000
0.6000000000
0.6000000000
0.6000000000
0.6000000000
0.8000000000
0.8000000000
0.8000000000
0.8000000000
0.8000000000
0.8000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000

0.9510565163
0.5877852523
0.0000000000
0.0000000000
0.2668784502
0.4318184032
0.4318184032
0.2668784502
0.0000000000
0.0000000000
0.1211736887
0.1960631468
0.1960631468
0.1211736887
0.0000000000
0.0000000000
0.0550177911
0.0890206560
0.0890206560
0.0550177911
0.0000000000
0.0000000000
0.0249803185
0.0404190044
0.0404190044
0.0249803185
0.0000000000
0.0000000000
0.0113420823
0.0183518746
0.0183518746
0.0113420823
0.0000000000
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0.9510025382
0.5877820849
0.0000726730
0.0000565499
0.2669838071
0.4318987727
0.4319103956
0.2669804096
-0.0000050962
-0.0000082254
0.1211841553
0.1960862726
0.1960507482
0.1211010069
-0.0001224577
-0.0001854002
0.0549526960
0.0889871418
0.0890056789
0.0550205261
0.0000563413
-0.0001919717
0.0248077810
0.0403219461
0.0403976142
0.0250364840
0.0000682324
0.0006562322
0.0115367025
0.0183852166
0.0182902515
0.0112543404
-0.0001673251
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Figure 3.4: Distribution of temperature with space and time.

Table 3.2: Temperature versus Time (at x = 0.4) in slab.

Time Exact Value Predicted Value
0 0.951056516 0.95114392
0.03 0.844832376 0.844834983
0.06 0.750472481 0.750431836
0.09 0.666651707 0.666628182
0.12 0.59219293 0.592211843
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0.15
0.18
0.21
0.24
0.27
0.3
0.33
0.36
0.39
0.42
0.45
0.48
0.51
0.54
0.57
0.6
0.63
0.66
0.69
0.72
0.75
0.78
0.81
0.84
0.87
0.9
0.93
0.96
0.99

0.526050505
0.467295571
0.415103015
0.368739881
0.327555077
0.29097023
0.25847157
0.229602707
0.203958227
0.181177996
0.160942104
0.142966372
0.126998362
0.11281383
0.100213578
0.089020656
0.079077879
0.070245618
0.062399838
0.055430358
0.049239304
0.043739733
0.038854413
0.034514738
0.030659763
0.027235354
0.024193419
0.02149124
0.019090869
0.018351875
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0.467371404
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0.160957173
0.142975107
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0.112804756
0.10019277
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0.070184007
0.062325969
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0.049146578
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Figure 3.5: Temperature vs Time (at x=0.4).
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Table 3.3: Temperature vs Position (at t = 0.5).

X Exact Temperature Predicted Temperature
0.0000000000 0.0000000000 -0.0000490397
0.0235294118 0.0102589383 0.0102211386
0.0470588235 0.0204618458 0.0204350948
0.0705882353 0.0305529978 0.0305361748
0.0941176471 0.0404772799 0.0404683053
0.1176470588 0.0501804892 0.0501791090
0.1411764706 0.0596096300 0.0596141219
0.1647058824 0.0687132037 0.0687216222
0.1882352941 0.0774414897 0.0774532408
0.2117647059 0.0857468172 0.0857598782
0.2352941176 0.0935838253 0.0935977995
0.2588235294 0.1009097109 0.1009242386
0.2823529412 0.1076844627 0.1076980680
0.3058823529 0.1138710794 0.1138834208
0.3294117647 0.1194357716 0.1194467098
0.3529411765 0.1243481471 0.1243570298
0.3764705882 0.1285813762 0.1285881549
0.4000000000 0.1321123384 0.1321160048
0.4235294118 0.1349217487 0.1349221021
0.4470588235 0.1369942633 0.1369912475
0.4705882353 0.1383185627 0.1383117884
0.4941176471 0.1388874141 0.1388766617
0.5176470588 0.1386977106 0.1386829466
0.5411764706 0.1377504883 0.1377319545
0.5647058824 0.1360509206 0.1360284537
0.5882352941 0.1336082900 0.1335821599
0.6117647059 0.1304359372 0.1304060072
0.6352941176 0.1265511885 0.1265183240
0.6588235294 0.1219752612 0.1219393462
0.6823529412 0.1167331472 0.1166944355
0.7058823529 0.1108534773 0.1108111590
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0.7294117647 0.1043683641 0.1043227166
0.7529411765 0.0973132272 0.0972651541
0.7764705882 0.0897265991 0.0896750391
0.8000000000 0.0816499154 0.0815946907
0.8235294118 0.0731272883 0.0730694979
0.8470588235 0.0642052652 0.0641461164
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Figure 3.6: Temperature vs Space (at t=0.5).
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3.2 Results associated with study of fin

The temperature distribution in the fin is plotted in Figs. 3.7, 3.8,
and 3.9 for the mL value of 4, 1, and 0.5, respectively. These plots show the
exactness of the predicted temperature. From the plot (figure 3.7), the
temperature gradient decreases and increases in x. This is due to the
reduction in conduction heat transfer and the increase in x-direction due to
continuous convection loss through the fin surface. The main focus of fin
design is to minimize the fin material, which impacts the manufacturing
cost without compromising cooling effectiveness. Table 3.4 represents
temperature distribution along the x-direction for the different values of mL
=4, mL =1, and mL = 0.5. The maximum temperature value exists at the
base, which is obvious and keeps decreasing exponentially as x increases.
Figure 3.10 shows the comparison between the different values of mL.
Interpretation of this figure leads to the following conclusions:

1. For any value of x, in the case of a small value of mL, the slope of
the temperature gradient is always negative and nearly constant.

That means loss in heat flux due to conduction heat transfer is

always positive from left to right, i.e., increasing direction of x.

2. For the higher value of mL, the slope decreases from a higher
negative value to a lower negative value.

Glorot uniform and tanh are used as initializers (assigns initial
weights before the training begins) and activation functions for the neural
network. In a based model, Keras built-in Adam optimizer with a learning
rate of 0.001 and L2 relative error is assigned as metric to minimize the loss
function. This model is trained for more than 10,000 iterations. A decrement
in training data loss indicates the learning ability of the model, i.e., the
model is learning to the approximate solution. The test loss is evaluated on
the test data; it measures how well the model generalizes to unseen data. L.2
relative error gives the normalized error measure among predicted and
relative solutions. Our model's mean residual and L2 relative error are
0.00058 and 0.00153, respectively.
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Table 3.4: Predicted and exact temperature distribution at different position
of x for different value of mL.

mL=4 mL=1 mL =0.5
Exact Predicted Exact Predicted Exact Predicted
X Temperature | Temperature Temperatur | Temperatu | Temperatu | Temperatur
e re re €

0 099999994 | 0999928176 1 100012362 | 0.99999994 | 1.000052452
00250 | 0949313402 | 0949247897 | 0967450857 | 907778 | 0-9730100 | g73056018
00290 | 0901005328 | 0.900048465 | 0935507894 | O93°PHATT | O-ACIHAL g 461755
00750 | 0854954808 | 0.854907811 | 0904150546 | 9029347 | O-91945000 1 4 919516087
01001 | 0811046362 | 0811008692 | 0873359561 | *®7°%1%2 | 089290148 | 0.892064661
0251 | 0760170105 | 0760130171 | 08a3iisezs | OB4Z8051 | 0.80048684 14 gegsnasas
0129 | 0729220867 | 0729194105 | 0813309673 | OB1TTT | 084020763 1 gargun
01751 | 0691098928 | 0691073835 | 0784103039 | 078438335 | O.BL400ZL 1 514134007
02002 | 0654708385 | 0.654683888 | 0755477548 | 079507948 | 078804022 1 740117468
02252 | 0610058341 | 0610934678 | 0727235317 | OT27T3AT0% | 07020 765994078
0'25502 0.586761534 | 0.586739957 | 0.699448526 | 0.69966799 0'73636621 0.736449778
02752 | 0555034876 | 0555017054 | 0.67200971 | O°7232499 | O-TA0T0%20 1 6 700790336
0.3003 | 0.524698973 | 0.524686933 | 0.645171762 0'645;10010 o.essi %348 | 0685241878
09253 | oagser7so | 0495672041 | 0618648052 | “*1%8778 | 065071005 | 0659800649
03203 | 046780825 | 0.467902004 | 0502511773 | OS9FALZ | 003430967 | 63469016
03753 | 0441201213 | 044130373 | 0566746533 | O2067°89 | 0-00912883 | ogpmzsgs
04004 | 0415789843 | 0415810525 | 0541336238 | 04120482 1 0.58398330 | ga0g00
04254 | 0301330242 | 0301358107 | 0516264856 | O°'019290 | 0-55892932 1 6 550028020
04504 | 0367851168 | 0367884755 | 0do1sirooy | 49174962 | 0-53396200 1 6 534063035
04754 | 03520373 | 0345331222 | 0467076808 | F4%T30T4L | O-S09TIBL 1 g 500183764
0°0% | 0323601305 | 032364133 | 0442020268 | 4431037 | OABAIEI 16 4383613
05295 | 0302719921 | 0302761078 | 0419059008 | ***%9%1 | 045054901 | 0.450659666
05%05 | 0282506827 | 0282638609 | 0395451218 | 03969819 | %942 | 0435008138
05755 | 0263181865 | 0.263223857 | 0372001204 | 037234765 | 041030803 14 41049478
00000 | 0.244426205 | 0.244468883 | 0348064185 | 034903180 | 038918271 6 55006210
0.5250 | 0226283163 | 0226327553 | 0326055676 | 32033993 | 036132013 1 g 561408318
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00506 | 0.208706945 | 0.208754614 | 0303351313 | 030%04522 | O.33691388 | 6 537046502
0076 | 0191653699 | 0191706493 | 0280837020 | *Z81%T | 031256026 | 0312698006
07907 | 0175080597 | 0.175140649 | 0258498609 | 025882107 | 0.28825503 | 0.288398147
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08758 | 0.069152325 | 0.069291025 | 0.10589084 | 010027435 | OLIWSOT 1 g 119330616
05099 | 0.055005804 | 0.055151928 | 0084463208 | 03434688 | 0.09W62L 16 hosaga016
05259 | 0.040097081 | 0.041148525 | 0.06308g6zs | 05078 | 0TI g 071249700
0399 | 0027091056 | 0027245577 | 0041753841 | “238 | 0047068 | 0047225624
09759 | 0013252020 | 0013400648 | 0020444303 | ©02082220 | 0.02305203 1 05300166

1 149E-08 | 0.000159834 '5'9%%465 o_ooog e 0 0.000157449
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Figure 3.7: Dimensionless temperature vs Dimensionless space for mL
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Figure 3.8: Dimensionless temperature vs dimensionless space for
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Figure 3.9: Dimensionless temperature vs dimensionless space for
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Chapter-4

4. FUTURE SCOPE AND CONCLUSION

As a tool, machine learning can relate the dependent and
independent variables using different algorithms. One of the most
commonly used ML techniques, known as neural networks, is known as a
universal approximator for any relation between the “affecting parameter”
and “affected parameter.” It takes raw data, trains itself, and performs. The
common source of data can be previously published data by researchers,
data generated from experiments, data generated from computational
analysis, new observations, or a combination of two or more sources.

As the computing power of computers is advancing day by day,
more complex problems with several influencing parameters can be solved
in less time. The influence of ML in the domain of heat transfer discovers
data-driven research and patterns. More complex problems associated with
the field of bio-heat transfer, convection problems with a large number of
affecting parameters, and the study of the porous medium, multi-phase
flow, nanofluids, and others can be analyzed easily and effectively. In the
heat transfer domain, interaction occurs within the system, as in the case of
conduction, due to metallurgical conditions, some gradient, or some
unforeseen reasons. Another kind of interaction, i.e., the system's
interaction with the surrounding or universe (everything excluding the
system and surrounding) through the boundary, as in the case of convection
and radiation, can be handled easily. Any problems in the domain of
conduction, convection, radiation, or a combination of these, in their most
generalized form, i.e., with very few or zero assumptions, repel very far
from the analytical solution. This issue is not only limited to heat transfer
but to almost all real situations dealing with the areas of engineering,
finance, cybercrimes, medicine, and many others. Supervised learning
comes with algorithms for generating a relation between input parameters
and output parameters (regression); results are the interaction between the
fluids properties (thermos-physical), operating conditions, system
geometry, and many others (fouling, metallurgy, surface conditions,
anisotropicity) can be considered (due to increasing computational speed).
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Significant deviation from the predefined performance, i.e., failure
prediction, can also be analyzed. Another supervised type of ML, known as
classification, can be helpful for the accurate classification of flow patterns
and boiling flow regimes. It can also be analyzed for microchannels.
Optimization of thermal systems can be thought of as a nonlinear type of
problem. It's more like an iterative process coupled with unsupervised ML.
Certainly, the image or scenario generation ability of ML is something we
couldn't think of in the past; based on the collected data, it would help
researchers go beyond today's discovery's current limit. Any real-world
problems have several influencing parameters, which can be reduced to a
great extent so that the analytical solution of the above-mentioned can be
made possible. Algorithms used in any learning, either supervised or
unsupervised, require data to predict or produce some kind of outcome.
Still, reinforcement learning generates data for predicting or generating
outcomes. In the future, researchers can use it in result generation for
problems with many rules and their dependencies in complex
environments—system optimization and control associated with thermal
systems, which can be utilized to explore conclusive results.

4.1 Future scope associated with PINN

The physics-informed neural network represents an exciting
scientific computing and machine learning frontier. It offers many future
applications and directions, such as:

Multi-physics and multiphase system: This technique can be
extended to handle complex physics involving multi-domain phenomena.
This can be achieved by coupling different PDEs to model realistic
scenarios [177].

Uncertainty quantification: Adding scenarios like uncertainty or
noise into PINN improves the reliability in real-world applications [178].

Optimization and control: PINN provides a framework for
optimizing the design or process for a real-world or real-time problem or
situation [179].

Scope in healthcare and industry: PINNs can potentially
revolutionize energy systems, biomedical, aerospace, and material science
fields. It can enable predictive maintenance, personalize medicine and
optimization of industrial process by integrating data-driven approach with
physics principles [180].

Data-driven discovery and scientific insight: It uncovers hidden
patterns in experimental data, suggests hypotheses, and aids in model
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discovery by capturing complex non-linear relationships that traditional
physics-based models might overlook [181].

Integration with experimental data and simulation: Integrating
PINNs with experimental or simulation data allows for hybrid modeling
approaches, improving model accuracy [182].

4.2 Conclusions

This work discussed a physics-informed neural network approach
to solve the heat transfer PDE under specified boundaries and initial
conditions. It was based on training a neural network using a total loss
function defined to satisfy the PDE, IC, and BCs. Apart from this, physics-
based information was expressed using the theory associated with heat
transfer. For training, a non-dimensional form of the governing equation is
used to address the difference in magnitudes of difference loss terms. The
predictions made by trained neural networks were validated using the
analytical solution.

Building a neural network based on knowledge of physics offers
many advantages over analytical, numerical, experimental, or any other
existing solution methods for solving PDEs or ODEs. Once a neural
network is trained well, it can be used for real-time simulation. This method
is in its early phase. This work considers that the time and space complexity
associated with this method and optimization of the algorithm efficiency
can also be improved in the coming time.

During the development of the neural network for the study of the
slab, we used the exponential function and the sine function as activation
functions for the neurons representing the time and spatial dimensions,
respectively. We then employed the powerful Adam with a learning rate of
0.001, followed by the efficient L-BFGS, to optimize the model. The L2
relative error was accepted as the metric. This model predicts the
temperature accurately up to the fourth decimal place when compared with
the exact or true results, demonstrating the efficiency of our optimization
methods.

In the development of a neural network for the study of fin, tanh is
used as an activation function for the neurons present in the network. Adam,
with a learning rate of 0.001 and L2 relative error, is assigned to the model
as an optimizer and as a metric. This model predicts temperature up to the
third decimal place compared to the exact temperature.
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