
NATURE BASED SOLUTION FOR THE EARTHEN EMBANKMENT OF INDIAN SUNDARBAN

DIPANKAR DAS

Roll No. : 002230904013

Exam Roll No. : M4EBT24008

REGISTRATION NO. : 163794 of 2022 - 2023

**MASTER OF TECHNOLOGY IN
ENVIRONMENTAL BIOTECHNOLOGY**

SCHOOL OF ENVIRONMENTAL STUDIES

**FACULTY OF INTERDISCIPLINARY STUDIES, LAW AND
MANAGEMENT (F.I.S.L.M)**

JADAVPUR UNIVERSITY

JADAVPUR, KOLKATA-700032

Nature Based Solution for the Earthen Embankment of Indian Sundarban

A thesis

*Submitted in partial fulfillment of the requirements for the award of the degree
of*

M. Tech in Environmental Biotechnology

Jadavpur University

by

Dipankar Das

Environmental Biotechnology

Roll Number: 002230904013

Exam Roll Number: M4EBT24008

REGISTRATION NO. : 163794 of 2022 - 2023

Under the supervision of

Dr. Joydeep Mukherjee

School of Environmental Studies

Faculty of Interdisciplinary Studies, Law and Management

Jadavpur University

Jadavpur, Kolkata-700032

&

Dr. Malancha Dey

Director, Progyan Foundation for Research and Innovation, PFRI

176A, Vivekananda Park, Kolkata – 700099, West Bengal

School of Environmental Studies
Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata – 700032

DECLARATION

I hereby declared that the work presented in this thesis report titled “Nature Based Solution for the Earthen Embankment of Indian Sundarban” submitted to Jadavpur University, Kolkata in partial fulfillment of the requirements for the award of the degree of M.Tech is a bonafide record of the research work carried out under the supervision of Prof. Joydeep Mukherjee & Dr. Malancha Dey. The contents of thesis report in parts, have not been submitted to and will not be submitted by me to any other Institute or University in India or abroad for the award of any degree or diploma.

Dipankar Das

Signature

Dipankar Das

Roll Number : 002230904013

Registration Number : 163794 of 2022-2023

Exam Roll Number : M4EBT24008

M.Tech in Environmental Biotechnology

School of Environmental Studies

Jadavpur University, Kolkata

School of Environmental Studies
Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata – 700032

CERTIFICATE OF RECOMMENDATION

This is to confirm that Dipankar Das (Registration Number 163794 of 2022–2023; Class Roll No. 002230904013 and Exam Roll no: M4EBT24008) has satisfactorily completed the work contained in this thesis, "Nature Based Solution for the Earthen Embankment of Indian Sundarban" in the academic year 2022–2024, from the Department of Environmental Science, Faculty of Interdisciplinary Studies, Law & Management, Jadavpur University, in Kolkata. He completed a genuine piece of work under my supervision and guidance. This work partially fulfils the requirements for the awarding of the Master of Engineering in Environmental Biotechnology degree.

Jyotirdeep Mukherjee 30/08/2024
Dr. Joydeep Mukherjee
M. Tech.(Biotechnology) Ph.D.(Engg)
Professor
School of Environmental Studies
Prof. Joydeep Mukherjee
Jadavpur University, Kolkata 700 032
Director
School of Environmental Studies
Jadavpur University, Kolkata
(Supervisor)

Malancha Dey
Dr. Malancha Dey
Director
Progyan Foundation for Research & Innovation
PFRI, Kolkata, West Bengal
(Supervisor)

Forwarded By:

Jyotirdeep Mukherjee 30/08/2024
Prof. Joydeep Mukherjee
Director, School of Environmental Studies
Jadavpur University, Kolkata

Director
School of Environmental Studies
JADAVPUR UNIVERSITY
Kolkata - 700 032

Jyotirdeep Mukherjee 30/08/2024
Prof. Joydeep Mukherjee
DEAN, Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata

Dean
Faculty of I.S.L.M., Jadavpur University
Kolkata - 700 032

School of Environmental Studies
Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata – 700032

TO WHOM IT MAY CONCERN

This is to notify you that Dipankar Das (Registration Number 163794 of 2022–2023; Class Roll No. 002230904013 and Exam Roll no: M4EBT24008) a student in the Master of Technology in Environmental Biotechnology course at Jadavpur University, has prepared and submitted his thesis, "Nature Based Solution for the Earthen Embankment of Indian Sundarban" in partial fulfillment of the requirements for the course's continuous assessment. The course runs from 2022 to 2024. Furthermore, it is stated that no portion of this thesis has ever been published or presented elsewhere.

Joydeep Mukherjee
Dr. Joydeep Mukherjee 20/08/2024
M. Tech.(Biotechnology) Ph.D.(Engg)
Professor

School of Environmental Studies
Prof. Joydeep Mukherjee
Jadavpur University, Kolkata 700 032
Director

School of Environmental Studies
Jadavpur University, Kolkata
(Supervisor)

Malancha Dey

Dr. Malancha Dey
Director

Progyan Foundation for Research & Innovation
PFRI, Kolkata, West Bengal
(Supervisor)

Forwarded By:

Joydeep Mukherjee 20/08/2024

Director
School of Environmental Studies
JADAVPUR UNIVERSITY
Kolkata - 700 032

Prof. Joydeep Mukherjee
Director, School of Environmental Studies
Jadavpur University, Kolkata

Joydeep Mukherjee 30/08/2024

Dean
Faculty of I.S.L.M., Jadavpur University
Kolkata - 700 032

Prof. Joydeep Mukherjee
DEAN, Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata

**School of Environmental Studies
Faculty of Interdisciplinary Studies, Law & Management,
Jadavpur University, Kolkata – 700032**

CERTIFICATE OF APPROVAL

This certifies that Dipankar Das's thesis, "Nature Based Solution for the Earthen Embankment of Indian Sundarban" is an authentic documentation of his work completed between September 2022 and August 2024, partially fulfilling the requirements for the Master of Engineering in Environmental Biotechnology degree from the Department of Environmental Studies (Registration Number 163794 of 2022–2023; Class Roll No. 002230904013 and Exam Roll no: M4EBT24008). It is acknowledged that the undersigned only approves the thesis for the purpose for which it has been presented, and that by granting this approval, they do not necessarily support or approve any statements made, opinions stated, or conclusions drawn within.

Signature of Examiner 1

Date :

Signature of Examiner 2

Date :

ACKNOWLEDGEMENT

I would like to sincerely thank my supervisors, **Prof. Joydeep Mukherjee**, Director, School of Environmental Studies, Jadavpur University, and **Dr. Malancha Dey**, Director, Progyan Foundation for Research and Innovation (PFRI) for their constant support, motivation, and advice during my M.Tech coursework and the preparation of this thesis. Their knowledge and counsel were invaluable in determining the focus and caliber of this thesis, and I am incredibly appreciative of their unwavering commitment. My heartfelt appreciation goes out to **Prof. Joydeep Mukherjee**, the Head of the Department of the School of Environmental Studies at Jadavpur University in Kolkata, India, for allowing me to do my research at this esteemed school. His extensive knowledge and patience have helped me with my studies and thesis writing.

I would also like to thank **Dr. Tarit Roy Chowdhury**, **Dr. Reshma Das**, and **Dr. Subarna Bhattacharya** from the School of Environmental Studies, Jadavpur University, **Dr. Ramendu Bikash Sahu**, and **Dr. Gupinath Bhandari** from the Department of Civil Engineering, Jadavpur University, **Dr. Tuhin Ghosh**, from the School of Oceanographic Studies, Jadavpur University, and **Dr. Dipayan Dey**, Director, Progyan Foundation for Research and Innovation (PFRI) for their advice, motivation, and valuable insights which enriched my work. Furthermore, I would like to express my gratitude to all the team members of PFRI for their help, encouragement, and support during my M. Tech project work, especially to **Dr. Chandreyi Sengupta**, **Dr. Madhusudan Paul**, **Dr. Bhaskar Deb Bhattacharya**, **Ms. Shreya Ghosh**, and **Mr. Muktaram Sardar** for sharing their wealth of wisdom with me.

I am also appreciative of my department's batch mates **Shuvankar Halder**, **Joy Pal**, **Sourjya Nayek**, and **Md. Zaman Hateef** for always helping me. Their companionship and camaraderie have been invaluable to me.

Finally, I express my heartfelt gratitude to my parents and other family members for their encouragement and help with this thesis.

Dipankar Das

Signature

Dipankar Das

Roll Number : 002230904013

Registration Number : 163794 of 2022-2023

Exam Roll Number : M4EBT24008

M.Tech in Environmental Biotechnology

School of Environmental Studies

Jadavpur University, Kolkata

ABSTRACT

The Indian Sundarbans, a critical region within the Ganges Brahmaputra Meghna delta, faces severe challenges due to rising sea levels, frequent cyclones, and human activities, which endanger its ecosystems and the livelihoods of its inhabitants. Traditional earthen embankments, used to protect against tidal surges and saline intrusion, are increasingly vulnerable under these stressors. This research explores the potential of Nature Based Solutions (NBS) to stabilize these embankments, focusing on laboratory testing to evaluate the effectiveness of NBS enhanced designs. The study investigates the use of mangrove vegetation and bioengineering techniques to improve the structural integrity of earthen embankments. Through controlled laboratory experiments, the research assesses the stabilization effects of incorporating vegetation and natural materials into embankment soils, examining parameters such as erosion resistance, sediment stability, and water absorption capacity. The results demonstrate that NBS can significantly enhance embankment durability while providing additional benefits like biodiversity conservation and carbon sequestration. This study highlights the practicality of integrating NBS into traditional embankment designs in the Sundarbans, offering a sustainable approach to coastal protection. The findings underscore the need for incorporating ecological principles in engineering practices, providing valuable insights for policymakers and environmental managers aiming to enhance coastal resilience in vulnerable deltaic regions like the Sundarbans.

TABLE OF CONTENT

Index

1. CHAPTER – I : INTODUCTION	14
1.1 Background of the Study	15
1.2 Theoretical Orientation	22
1.3 Administrative Blocks in Indian Sundarban	22
1.4 Administrative Management Status in Indian Sundarban	23
1.5 Sundarban Delta and Human Habitation	25
1.6 Physiography of the Indian Sundarbans	27
1.7 Demography of the Indian Sundarbans	28
1.8 Climate change & Sundarban	29
1.9 Scope and Limitations of the Study	30
1.10 Objective of the Work	32
1.11 Research Design	32
1.12 Research Questions	33
1.13 Definition of Key Terms	35
2. CHAPTER – II: REVIEW OF LITERATURE	44
2.1 Some case Study related to Nature Based Solution for protection of Embankment	56
2.2 Some incidents of embankment breaching	59
2.3 Type of embankment	60
2.4 Causes of embankment breaching	60
2.5 Trend of Embankment Breaching	64
2.6 Condition of river embankment in Sundarban	64
2.7 Scenario Analysis	67
2.8 Impact of embankment breaching	68

3. CHAPTER – III: STUDY AREA	70
3.1 East Sundarban	70
3.2 Mid Sundarban	74
3.3 West Sundarban	77
4. CHAPTER – IV : METHODOLOGY	81
4.1 Site Selection	81
4.2 Data Collection & Analysis	83
4.3 Soil Sample Collection	93
4.4 Focused Group Discussion	95
4.5 Key Informant Interview	98
4.6 Laboratory Test	104
5. CHAPTER – V : RESULT & DISCUSSION	118
5.1 Result of Bulk density and dry density	120
5.2 Result of Specific Gravity, Liquid Limit, Plastic Limit, Plasticity Index	124
5.3 A Comparative Analysis Across the East, Middle, and West Sundarban Regions	128
5.4 Grain Size Distribution Analysis	131
5.5 Direct Shear Test Result	138
6. CHAPTER – VI : FUTURE SCOPE OF THE STUDY & CONCLUSION	159
6.1 Future Scope of the Study	159
6.2 Conclusion	160
7. CHAPTER – VII : REFERENCE	164

LIST OF TABLES

Table – 1: Change of land area in Indian Sundarban	60
Table – 2 : Severe & Very Severe Cyclones in Indian Sundarban	63
Table – 3: Damages due to recent cyclones in Indian Sundarban	63
Table – 4: Damage of Embankment in Sundarban	64
Table 5: Shrinking inhabited Islands in Sundarban	68
Table 6: Shrinking Mangrove Islands in Sundarban	68
Table 7: Details of Embankments	85
Table 8: Result of Bulk density and dry density of the sample	119
Table 9: Result of Liquid Limi, Plastic Limit Plasticity Index of Soil Sample ...	123
Table 10 : Result of grain size distribution	130

LIST OF FIGURES

Figure 1 : Map of Indian Sundarban	21
Figure 2 : Sedimentaion on River Bed	62
Figure 3: Pakhiralay, East Sundarban	71
Figure 4 : Dayapur, East Sundrban	72
Figure 5 : Kaikhali Ashram, Mid Sundrban	75
Figure 6 :Katamari Bazari, Mid Sundrban	76
Figure 7 : Abdul er Tyank, Debipur, Mid Sundrban	76
Figure 8 : Kakdwip Lot 8, West Sundrban	78
Figure 9 : Sagar Island, West Sundrban	79
Figure 10: Images of Data Collection	84
Figure 11 : Schematic diagram & Image of Embankment 1	86
Figure 12 : Schematic diagram & Image of Embankment 2	86
Figure 13 : Schematic diagram & Image of Embankment 3	87
Figure 14 : Schematic diagram & Image of Embankment 4	87
Figure 15 : Schematic diagram & Image of Embankment 5	88
Figure 16 : Schematic diagram & Image of Embankment 6	88
Figure 17 : Schematic diagram & Image of Embankment 7	89
Figure 18 : Schematic diagram & Image of Embankment 8	89
Figure 19 : Schematic diagram & Image of Embankment 9	90
Figure 20 : Schematic diagram & Image of Embankment 10	90
Figure 21 : Schematic diagram & Image of Embankment 11	91
Figure 22 : Schematic diagram & Image of Embankment 12	91
Figure 23 : Schematic diagram & Image of Embankment 13	92
Figure 24 : Schematic diagram & Image of Embankment 14	92
Figure 25 : Schematic diagram & Image of Embankment 15	93
Figure 26 : Soil Sample Collection	95
Figure 27: Focused group discussion at East Sundarban	97

Figure 28 : KII at Katamari Mid Sundarban	100
Figure 29 : KII at Debipur Mid Sundarban	101
Figure 30 : KII at Dayapur, East Sundarban	102
Figure 31: Collection of soil sample	105
Figure 32: Casagrande Apparatus	109
Figure 33 : Plastic Limit Test Using Casagrande Apparatus	111
Figure 34 : Shrinkage Limit Test by Mercury Displacement Method	112
Figure 35: Stirring apparatus	114
Figure 36: Hydrometer	114
Figure 37: Shear Box	115
Figure 38 : Direct Shear apparatus	116
Figure 39: Soil composition of East Sundarban (Average)	132
Figure 40: Soil composition of Middle Sundarban (Average)	134
Figure 41: Soil composition of West Sundarban (Average)	136
Figure 42: Normal Stress vs. Shear Stress of Sample 1.....	138
Figure 43: Normal Stress vs. Shear Stress of Sample 2	140
Figure 44: Normal Stress vs. Shear Stress of Sample 3.....	141
Figure 45: Normal Stress vs. Shear Stress of Sample 4	143
Figure 46: Normal Stress vs. Shear Stress of Sample 5	144
Figure 47: Normal Stress vs. Shear Stress of Sample 6	145
Figure 48: Normal Stress vs. Shear Stress of Sample 7	146
Figure 49: Normal Stress vs. Shear Stress of Sample 8	148
Figure 50: Normal Stress vs. Shear Stress of Sample 9	149
Figure 51: Normal Stress vs. Shear Stress of Sample 10	151
Figure 52: Normal Stress vs. Shear Stress of Sample 11	152
Figure 53: Normal Stress vs. Shear Stress of Sample 12	153
Figure 54: Normal Stress vs. Shear Stress of Sample 13	155
Figure 55: Normal Stress vs. Shear Stress of Sample 14	156
Figure 56: Normal Stress vs. Shear Stress of Sample 15	157

CHAPTER – I

1. INTRODUCTION

The Indian Sundarbans, a complex network of tidal waterways, mangrove forests, and islands, spans about 9,630 square kilometers in West Bengal and supports around 4.5 million people across 102 islands. The region's 3,500 kilometers of embankments are vital for protecting communities from sea threats but face increasing challenges due to natural and human factors (Chowdhury et al., 2020; Bhattacharya et al., 2021). As part of the Ganges-Brahmaputra-Meghna delta, the Sundarbans is shaped by dynamic fluvial and tidal processes that cause constant erosion and accretion. Western Sundarbans areas like Sagar and Ghoramara islands experience erosion rates of up to 8 meters per year due to strong tidal currents, storm surges, and loss of mangrove barriers (Hazra et al., 2020; Ghosh et al., 2018). Climate change exacerbates these vulnerabilities, with the Bay of Bengal's sea level rising at 3.14 millimeters per year and potentially increasing by 0.5 meters by 2050, risking significant inundation (Pethick and Orford, 2021; Rahman et al., 2022). Rising salinity due to sea-level rise is weakening embankment materials, while the frequency and intensity of cyclones are causing extensive damage (Mukhopadhyay et al., 2020; Singh et al., 2021). Embankment construction in the Sundarbans faces challenges due to limited resources and technical expertise. Traditional earth and clay embankments are prone to erosion and often lack adequate height and slope stability (Bhattacharya et al., 2021; Ghosh et al., 2018). Only about 40% of embankments have been upgraded with resilient materials, leaving 60% vulnerable to breaches (Government of West Bengal, 2020).

Recent efforts include reinforcing embankments with materials like geosynthetics and concrete, but these are not universally applied due to costs and logistical challenges (Sanyal, 2019). The standard embankment height of 3.5 meters is insufficient against storm surges up to 5 meters (Rahman et al., 2022).

The local economy relies on agriculture, aquaculture, and fishing, all of which depend on embankment protection. Breaches lead to farmland inundation and long-term soil infertility (Mitra et al., 2019; Mukhopadhyay et al., 2020). Human activities like mangrove extraction further weaken natural defenses, increasing erosion and embankment vulnerability (Hazra et al., 2020; Ghosh et al., 2018). Efforts to strengthen embankments include integrating nature-based solutions, such as mangrove restoration, with conventional engineering approaches (Mangrove Action Project, 2020). However, a more comprehensive strategy is needed, including continuous monitoring, community participation, adaptive design, and significant funding (World Bank, 2021). The Sundarbans' embankments are crucial yet fragile defenses against worsening environmental conditions. As climate and human pressures grow, robust and sustainable management is essential to protect both the local population and one of the world's most unique ecosystems.

1.1 Background of the Study:

The Indian Sundarbans, recognized as a UNESCO World Heritage Site, is a unique and vital ecological region located in the southern part of West Bengal, India. It constitutes the largest tidal halophytic mangrove forest globally, covering approximately 10,000 square kilometers, with about 40% of this area in India and the rest in Bangladesh (UNESCO, 2021). The Sundarbans is not only a biodiversity hotspot, home to rare and endangered species such as the

Bengal tiger, but it also plays a crucial role in protecting the inland areas from the ravages of the sea (Ghosh et al., 2015). The region is characterized by its dynamic and complex system of rivers, estuaries, and creeks, which are subject to the influences of tides, seasonal monsoons, and storm surges (Hazra et al., 2020). However, the Sundarbans is increasingly facing the impacts of climate change, particularly in the form of rising sea levels, more frequent and severe cyclones, and coastal erosion (DasGupta and Shaw, 2013). These challenges have made the embankments that protect the Sundarbans' human population and agricultural lands particularly vulnerable.

The Sundarbans' network of embankments, stretching over 3,500 kilometers, is essential for the protection of the over 4.5 million people living in the region (Mukhopadhyay et al., 2021). These embankments, constructed mainly from earth, were originally built several decades ago to shield the densely populated islands from tidal surges, saline water intrusion, and riverine floods (Hazra et al., 2020). However, many of these embankments are now aging and suffering from various forms of degradation. The relentless exposure to saline water weakens the structural integrity of the embankments over time, while the natural processes of erosion continuously chip away at their bases (Bandyopadhyay et al., 2018). The situation is exacerbated by inadequate maintenance, with many embankments not receiving the necessary repairs and reinforcements, making them increasingly prone to breaches, especially during extreme weather events (Hazra, 2022).

Erosion and sea level rise pose significant threats to the stability of the Sundarbans' embankments. The region, being a deltaic formation, is naturally subject to sedimentation and erosion processes. However, the situation has worsened due to the accelerating pace of sea level rise, driven by global climate change (IPCC, 2019). According to a study conducted by the School of Oceanographic Studies at Jadavpur University, the Sundarbans is losing approximately

5 square kilometers of land annually due to erosion (Hazra et al., 2014). This loss of land directly undermines the foundations of the embankments, leading to their collapse in some cases (Chowdhury et al., 2020). Moreover, sea level rise exacerbates the impact of tidal surges, increasing the pressure on embankments during high tides and storms (Karim and Mimura, 2008). This has led to a vicious cycle where weakened embankments are more susceptible to erosion, which in turn further weakens the embankments.

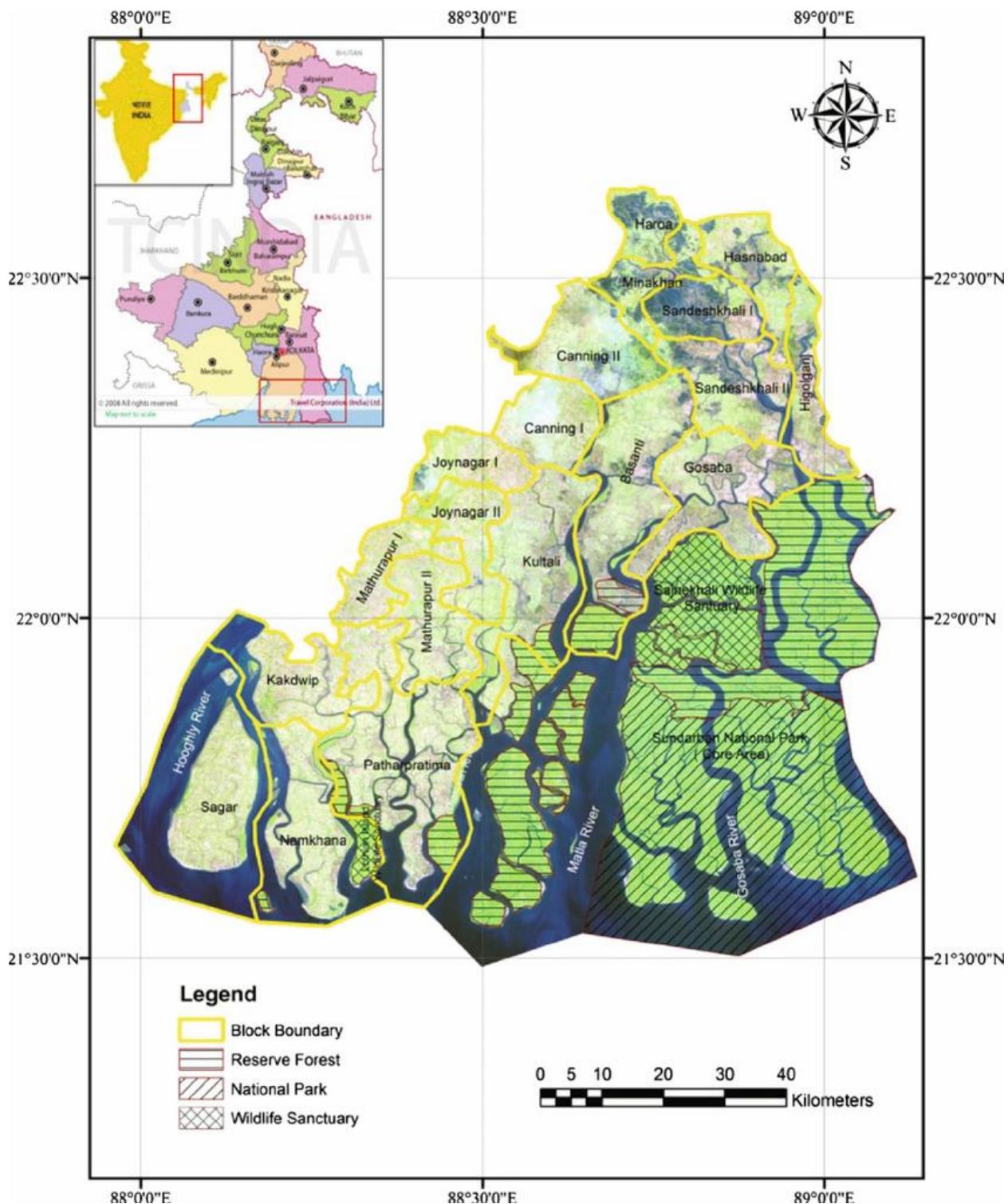
Climate change has also contributed to an increase in the frequency and intensity of cyclones in the Bay of Bengal, with devastating consequences for the Sundarbans. In recent years, cyclones such as Amphan (2020) and Yaas (2021) have caused extensive damage to the region's embankments (Mukherjee et al., 2021). Cyclone Amphan, for example, led to breaches in over 160 kilometers of embankments, resulting in widespread flooding, displacement of thousands of people, and destruction of crops and property (Danda et al., 2020). The cyclones also bring with them storm surges that can reach several meters in height, overwhelming the embankments and leading to catastrophic flooding of the low lying islands (Sahoo and Bhaskaran, 2021). These events highlight the inadequacy of the current embankment infrastructure in the face of increasingly severe weather patterns, necessitating a reevaluation of how the Sundarbans' protective barriers are managed and maintained.

Human activities have also contributed to the vulnerability of the Sundarbans' embankments. Unplanned construction activities, including the building of roads and settlements on or near embankments, have led to the destabilization of these structures (Bandyopadhyay et al., 2018). Additionally, sand mining, which is often carried out illegally, has removed vast quantities of sand from the rivers, leading to increased erosion of riverbanks and embankments (Sundarban Affairs Department, 2023). Agricultural practices in the region, particularly the conversion of

mangrove forests into agricultural land, have further exacerbated the problem (Ghosh et al., 2015). Mangroves serve as a natural buffer against storm surges and erosion, but their removal has left the embankments more exposed to the forces of nature (Chowdhury et al., 2020). The cumulative impact of these activities has weakened the natural defenses of the Sundarbans, making the humanmade embankments all the more crucial but also increasingly fragile.

In response to these challenges, there is a growing recognition of the need for Nature based Solutions (NbS) to enhance the resilience of the Sundarbans' embankments. NbS involve the use of natural processes and ecosystems to address environmental challenges while providing additional benefits such as biodiversity conservation and community support (IUCN, 2020). One of the most promising NbS for the Sundarbans is mangrove restoration. Mangroves are highly effective in stabilizing shorelines, reducing erosion, and dissipating the energy of storm surges (Mukherjee et al., 2021). Recent efforts by the West Bengal government, in collaboration with local nongovernmental organizations (NGOs), have focused on restoring degraded mangrove forests across the Sundarbans. As of 2023, over 2,000 hectares of mangroves have been restored, significantly enhancing the natural protection of the embankments (Sundarban Affairs Department, 2023). These restored mangroves not only reduce the impact of storm surges but also provide critical habitat for wildlife and support the livelihoods of local communities through fisheries and ecotourism (Hazra, 2022).

Another nature based approach involves the ecofriendly reinforcement of embankments using bioengineering techniques. For example, the planting of vetiver grass along embankment slopes has been explored as a means to stabilize the soil and prevent erosion (Karim and Mimura, 2008). Vetiver grass has deep roots that bind the soil together, reducing the risk of landslides and erosion (Mukhopadhyay et al., 2021). Similarly, the use of coir geotextiles, made from coconut


husk fibers, has been employed to reinforce embankments (Danda et al., 2020). These geotextiles are biodegradable and provide temporary protection to the embankments while allowing vegetation to establish and further stabilize the structure (Sahoo and Bhaskaran, 2021). These techniques offer a sustainable alternative to conventional methods of embankment reinforcement, which often involve the use of concrete and other materials that can be environmentally damaging (Ghosh et al., 2015).

Community Based approaches are also essential in the management and maintenance of the Sundarbans' embankments. Local communities are often the first to experience the impacts of embankment breaches, and their involvement in embankment management can lead to more sustainable and effective solutions (Mukherjee et al., 2021). Projects such as the Integrated Coastal Zone Management (ICZM) program have successfully engaged local residents in activities such as mangrove planting, embankment repair, and monitoring (Chowdhury et al., 2020). By involving communities in these efforts, the solutions are more likely to be culturally appropriate and long lasting (Hazra et al., 2020). Additionally, community involvement helps to raise awareness about the importance of maintaining the natural defenses of the Sundarbans and encourages the adoption of sustainable practices that reduce pressure on the embankments (Mukhopadhyay et al., 2021).

In addition to physical and ecological interventions, promoting sustainable livelihoods is crucial for reducing the dependence of local communities on land intensive agriculture, which often leads to the degradation of protective mangroves (Danda et al., 2020). Sustainable aquaculture, for instance, offers an alternative source of income that is less reliant on the conversion of mangrove forests (Mukherjee et al., 2021). Similarly, agroforestry practices that combine tree planting with crop cultivation can help to restore degraded lands while providing economic

benefits to farmers (Hazra, 2022). Ecotourism is another potential avenue for income generation that leverages the Sundarbans' rich biodiversity without causing harm to the environment (Ghosh et al., 2015). By diversifying livelihoods and reducing the pressure on natural resources, these approaches contribute to the overall resilience of the region's embankments (Mukhopadhyay et al., 2021).

Recent data and trends underscore the urgency of addressing the vulnerability of the Sundarbans' embankments. The World Bank has estimated that, by 2050, up to 25% of the Sundarbans could be submerged due to sea level rise if current trends continue (World Bank, 2018). This alarming projection highlights the need for immediate and sustained action to protect the region's embankments and the communities that depend on them (Mukhopadhyay et al., 2021).

*Figure 1 : Map of Indian Sundarban
(Research Gate, Dasgupta & Shaw, 2015)*

1.2 Theoretical Orientation

The Indian Sundarbans, a unique deltaic region characterized by its intricate network of rivers, tidal channels, and mangrove forests, is highly vulnerable to the impacts of climate change and sea-level rise. Embankments, constructed to protect this region from flooding and erosion, are essential to safeguarding both human settlements and agricultural lands. However, these embankments face significant challenges due to their vulnerability to extreme weather events, erosion, and overtopping. The concept of nature-based solutions (NbS) has emerged as a promising approach to enhance the resilience of these structures. NbS, which leverages natural processes and ecosystems to address environmental challenges, offers potential benefits such as cost-effectiveness and environmental sustainability (Cohen-Shacham et al., 2016). In the context of the Sundarbans, incorporating NbS involves integrating mangrove restoration, natural sediment deposition, and bioengineering techniques to reinforce and stabilize embankments. This theoretical framework posits that by aligning engineering practices with ecological processes, it is possible to create more resilient and sustainable embankment systems that not only protect against flooding but also enhance the overall health of the deltaic ecosystem (Temmerman et al., 2013). Thus, investigating and implementing NbS in the Indian Sundarbans represents a crucial step toward improving the durability and effectiveness of embankments while promoting ecological balance and community resilience.

1.3 Administrative Blocks in Indian Sundarban

The Indian Sundarbans is a region in the state of West Bengal, known for its unique mangrove forest ecosystem and diverse wildlife. It is a UNESCO World Heritage Site and a Ramsar Wetland of International Importance, signifying its ecological significance and global importance. The Sundarbans is administratively divided into multiple districts, each comprising

several community development blocks. The primary districts in the Indian Sundarbans are North 24 Parganas and South 24 Parganas.

The Sundarbans houses several protected areas to safeguard its rich biodiversity and preserve the unique mangrove habitat. Some of the prominent protected areas are, Sundarbans Tiger Reserve. It is the largest tiger reserve in India. Covers a significant portion of the Sundarbans area. Dedicated to the conservation of the endangered Bengal tiger and its habitat.

Sundarbans National Park Located within the Sundarbans Tiger Reserve. A core area with strict conservation regulations. Home to various wildlife species, including the Royal Bengal tiger, spotted deer, saltwater crocodile, and numerous bird species.

Community development blocks are administrative units aimed at promoting rural development and local governance. In the Sundarbans, various community development blocks exist to cater to the needs of the local population. Some of the community development blocks in the Sundarbans area include Namkhana, Sagar, Patharpratima, Kakdwip, Mathurapur I, Kultali, Mathurapur II, Joynagar I, Joynagar II, Basabti, Gosaba, Canning I, Canning II, Sandeshkhali I, Sandeshkhali II, Hingalganj, Minakhan, Hasnabad, Haroa.

1.4 Administrative Management Status in Indian Sundarban

1.4.1. Central Government Involvement: The Indian Ministry of Environment, Forest and Climate Change (MoEFCC) plays a crucial role in formulating policies related to environmental conservation and protection of wildlife. They may provide guidelines and funding for various conservation initiatives within the Sundarbans.

1.4.2. State Government Involvement: The state government of West Bengal has the primary responsibility for the management and administration of the Sundarbans. They oversee various aspects, including conservation, tourism, infrastructure, and local development. The state forest department is one of the key bodies involved in managing the Sundarbans.

1.4.3. Line Departments and their Responsibilities

1.4.3. a. West Bengal Forest Department: The Forest Department of West Bengal is responsible for the conservation and management of the Sundarbans. Their main functions include wildlife protection, habitat preservation, prevention of illegal activities such as poaching and logging, and promoting ecotourism in a sustainable manner

1.4.3. b. West Bengal Tourism Department: The Tourism Department of West Bengal plays a significant role in promoting tourism in the Sundarbans. They may be involved in organizing tours, providing necessary facilities for tourists, and ensuring that tourism activities are conducted responsibly without causing harm to the environment.

1.4.3. c. West Bengal Fisheries Department: As the Sundarbans region has a rich aquatic ecosystem, the Fisheries Department may be involved in regulating fishing activities to ensure sustainable fisheries and prevent overfishing.

1.4.3. d. West Bengal Disaster Management Department: Given the vulnerability of the Sundarbans to natural disasters such as cyclones and floods, the Disaster Management Department is responsible for planning and executing strategies to mitigate the impact of such events and coordinate relief efforts in case of emergencies.

1.4.3. e. West Bengal Panchayats and Rural Development Department: The Panchayats and Rural Development Department may play a role in local development initiatives, infrastructure projects, and livelihood improvement programs for the communities residing in and around the Sundarbans.

1.4.3. f. West Bengal Education Department: The Education Department ensures that educational institutions in the Sundarbans are well equipped and functioning efficiently to provide education to the local population.

1.4.3. g. West Bengal Health and Family Welfare Department: The Health Department is responsible for providing healthcare facilities and services to the communities living in the Sundarbans.

1.5 Sundarban Delta and Human Habitation

Out of the 102 islands in the Sundarban region, 48 islands in the southernmost region have been declared as Reserved Forest and are out of bounds for human settlement. In the remaining 54 islands, which are densely populated, there is a 3500 km long embankment around these islands to prevent the entry of saline water during high tide. As a result, while the natural island formation process continues unhindered in the forested islands, the silt load from the freshwater rivers cannot be deposited on the inhabited islands due to the embankments, leading to deposition on the river bed instead, thus gradually raising the river beds even above the village ground level. Consequently, if there is a breach in the embankment, the saline tidal water will inundate the villages and won't be able to drain out even during low tide (Ghosh, 2021).

In Sundarbans, a comparison of the former maps (1942, 1969) and more recent satellite images (2001, 2006) reveals a significant amount of land loss despite marginal accretion on the sheltered

western banks. Two islands, Lohachara and Suparibhanga (within the estuary), have already been eroded and submerged, making thousands of people homeless (Chatterjee et al., 2018). Ten sea facing islands registered an 85 km² net land loss in 30 years (up to 2021) (Banerjee et al., 2021). Significant land loss has also been observed on the eastern bank of the Hooghly estuary (Kakdwip area) (Mukherjee, 2022). Establishing a linkage between the erosion accretion rate and the rate of rise and fall of relative mean sea level is crucial for understanding the vulnerability of the Sundarban island system in the context of climate change. Such a relationship has been established using statistical analysis and mathematical correlation studies (Bhattacharya & Roy, 2023). These findings and the linkage established have been useful for developing a diagnostic and predictive model of shoreline change. Ten southernmost islands of Sundarban have been identified as the most vulnerable in terms of coastal erosion, submergence, and flooding due to surge and sea level rise (Sen, 2023). With the help of the predictive model using GIS, it has been estimated that these 10 southern islands of Sundarban will suffer further land loss of around 90 km² between now and 2020, given the present scenario of sea level rise and storm surges (Dasgupta, 2021). The Sundarbans is a vast mangrove forest located in the coastal region of the Bay of Bengal, shared between India and Bangladesh. It is the largest mangrove forest in the world and is known for its unique biodiversity, including the endangered Bengal tiger. However, the Sundarbans and its inhabitants are highly vulnerable to the impacts of climate change, which pose significant challenges to human life in the region. Here are some of the effects of climate change on human life in the Sundarbans:

Migration and Displacement: As the impacts of climate change intensify in the Sundarbans, communities are forced to migrate or face displacement due to loss of land and livelihood

opportunities. This leads to increased pressure on neighboring areas and can result in conflicts over resources and scarce land.

Health Risks: Climate change can exacerbate health issues in the Sundarbans. Flooding and stagnant water can create breeding grounds for disease carrying mosquitoes, leading to a rise in vector borne diseases like malaria and dengue. Additionally, access to healthcare facilities may be limited or disrupted during extreme weather events.

Food Insecurity: The disruptions to agriculture and fisheries due to climate change can lead to food insecurity in the region. Communities that heavily depend on agriculture and fishing for their sustenance and income may face challenges in accessing an adequate and reliable food supply.

1.6 Physiography of the Indian Sundarbans:

1.6.1. Location and Extent: The Indian Sundarbans is part of the larger Sundarbans mangrove forest, which spans across India and Bangladesh. It is situated in the delta of the Ganges, Brahmaputra, and Meghna rivers and forms a complex network of islands, tidal rivers, and estuaries.

1.6.2. Mangrove Forests: The Sundarbans is renowned for its extensive mangrove forests, which are the largest in the world. Mangroves are salt tolerant trees and play a vital role in coastal protection, acting as a buffer against storm surges and erosion.

1.6.3. Islands: The region is made up of approximately 102 islands, large and small, with varying degrees of population and habitation. Some of the significant islands include Sagar, Gosaba, Basanti, Bali, and Hingalganj.

1.6.4. Rivers and Estuaries: The Sundarbans is crisscrossed by a dense network of tidal rivers and waterways, which are influenced by the ebb and flow of tides from the Bay of Bengal.

1.6.4. Wildlife: The Indian Sundarbans is home to a diverse range of flora and fauna, including the iconic Bengal tiger (*Panthera tigris tigris*), estuarine crocodiles (*Crocodylus porosus*), various species of deer, wild boars, and numerous bird species. It is recognized as a UNESCO World Heritage Site for its unique and fragile ecosystem.

1.7 Demography of the Indian Sundarbans:

1.7.1. Population: The population of the Indian Sundarbans is estimated to be over 4 million people. It comprises various ethnic communities, with the majority being Bengalis.

1.7.2. Settlements: The region has both rural and urban settlements. Rural areas mainly consist of villages where communities rely on agriculture, fishing, and honey collection. Urban centers include towns like Basanti and Gosaba.

1.7.3. Livelihood: The primary livelihood for the people living in the Sundarbans is agriculture and fishing. Due to the challenging terrain and ecological constraints, traditional agricultural practices and fishing methods are prevalent.

1.7.4. Challenges: The population in the Sundarbans faces various challenges, including periodic cyclones, rising sea levels, salinity intrusion, and threats to biodiversity. These factors have an impact on the socioeconomic conditions of the inhabitants.

1.7.4. Conservation Efforts: Efforts are ongoing to balance conservation and sustainable development in the region. Initiatives include promoting ecofriendly tourism, sustainable fishing practices, and creating awareness about wildlife conservation.

1.8 Climate change & Sundarban

Sundarban was facing several environmental challenges due to climate change and human activities. These challenges are likely to have continued consequences on the ecosystem and local communities. Here are some of the effects and climate changes in the Sundarbans:

1.8.1. Rising Sea Levels: One of the most significant impacts of climate change on the Sundarbans is the rising sea levels. As global temperatures increase, polar ice melts, and thermal expansion occurs, the sea levels rise, posing a threat to the low lying islands and coastal areas of the Sundarbans. The rising sea levels lead to coastal erosion, which contributes to the loss of land and habitat for various species.

1.8.2. Increased Cyclone Frequency and Intensity: The Sundarbans region is prone to cyclones, and climate change has been linked to an increase in the frequency and intensity of these storms. Cyclones cause widespread damage to the mangrove forests, leading to loss of biodiversity and displacement of communities. The Sundarbans acts as a natural barrier that helps protect inland areas from cyclones, but the increased intensity and frequency of these storms can overwhelm the mangrove's protective capacity.

1.8.3. Saltwater Intrusion: Rising sea levels and increased cyclone activities can cause saltwater to intrude into the freshwater areas of the Sundarbans. This intrusion affects the delicate balance of the ecosystem, leading to the decline of fresh water dependent species. It also affects agriculture and drinking water sources for local communities, as saline water contaminates freshwater reserves.

1.8.4. Loss of Biodiversity: The Sundarbans is a unique ecosystem that supports a rich biodiversity, including the iconic Bengal tiger, various bird species, marine life, and plant

species. However, climate change related effects, such as habitat loss and changing salinity levels, threaten the survival of these species. The loss of biodiversity can disrupt the delicate ecological balance of the region.

1.8.4. Displacement of Communities: As the effects of climate change and environmental degradation worsen, communities living in the Sundarbans face displacement due to rising sea levels, cyclones, and loss of livelihood opportunities. These communities heavily depend on the natural resources of the Sundarbans for their sustenance and face significant challenges in adapting to the changing environment.

1.8.6. Mangrove Degradation: Mangrove forests are essential for the health of coastal ecosystems, as they provide protection against storms, act as carbon sinks, and support diverse marine life. However, deforestation, pollution, and other human activities contribute to the degradation of these mangrove forests, making them less resilient to the impacts of climate change.

1.9 Scope and Limitations of the Study

The study has a significant scope in contributing to both academic research and practical applications in coastal management. The Indian Sundarbans, being a UNESCO World Heritage Site and a critical region for biodiversity, also serves as a crucial buffer zone protecting inland areas from storm surges, cyclones, and tidal waves (Mandal and Saha, 2022). This research focuses on the embankments in East, Mid, and West Sundarbans, specifically in areas such as Pakhiralay, Dayapur, Tipligheri, Kakdwip, Sagar Island, Kaikhali Ashram, Katamari Bazra, and Abdul er Tyank, Debidpur of Kultali. These areas are representative of the larger challenges faced by the entire Sundarbans region (Chakraborty et al., 2020).

The study's scope includes an in depth analysis of the current state of embankments, understanding the factors contributing to their vulnerability, and evaluating the effectiveness of existing nature based solutions such as mangrove restoration, bioengineering techniques, and the use of local materials for embankment reinforcement (Mandal and Saha, 2022; Ghosh, 2019). The research also aims to provide recommendations for sustainable management practices that can enhance the resilience of these embankments against natural calamities. By doing so, the study contributes to the broader discourse on climate adaptation and disaster risk reduction in coastal regions (Mukherjee, 2016; Mitra and Bose, 2021).

However, the study is not without its limitations. One significant limitation is the reliance on secondary data sources, including government reports, previous research studies, and field surveys conducted by other organizations (Ghosh, 2019). While these sources provide valuable insights, they may not always capture the most current conditions or site specific challenges. Additionally, the study is geographically limited to select sites within the Sundarbans, which may not fully represent the diverse range of embankment conditions and management practices across the entire region (Roy, 2019). The temporal scope of the study is also limited, as it primarily focuses on recent data and events from the past decade, which may not account for long term trends in embankment degradation and restoration efforts (Sarkar, 2018).

Lastly, the study's findings are constrained by the socioeconomic context of the Sundarbans, where local communities' dependence on traditional farming and fishing practices may limit the adoption of new, nature based solutions (Das and Chatterjee, 2020). The study acknowledges that while nature based solutions offer a promising approach to embankment reinforcement, their

implementation requires careful consideration of local knowledge, practices, and resource availability (Mukherjee, 2016).

In conclusion, while this study provides valuable insights into the challenges and opportunities for reinforcing vulnerable embankments in the Sundarbans through nature based solutions, it is essential to recognize the limitations inherent in the research design and data availability. Future studies could expand the scope by incorporating more advanced technologies, broader geographic coverage, and a more diverse set of data sources to build on the findings of this research (Banerjee et al., 2023).

1.10. Objective of the Work

The objectives of this study are to identify the vulnerable embankment of the Indian Sundarban and provide Nature Based Solutions. They have been listed below:

- 1 . To assess the vulnerability of embankment in the Indian Sundarban
2. To recommend a frame-work for strengthening embankment through Nature-based Solution.

1.11 Research Design

The study on vulnerable embankments in the Indian Sundarbans is designed to evaluate embankment conditions, their vulnerability to climate-induced hazards, and the effectiveness of nature-based solutions (NbS). It will focus on East, Middle, and West Sundarbans, selecting embankments with various materials and degradation levels based on their exposure to tidal surges, cyclones, and land subsidence. The research employs a mixed-methods approach, combining field visits, soil testing (liquid limit, plastic limit, shrinkage limit, and grain size

distribution), and interviews with local communities, officials, and experts to gather both quantitative and qualitative data. The study will assess the impact of NbS by comparing embankments in areas with significant mangrove cover to those in degraded areas. Data analysis will involve statistical examination of soil properties and embankment performance, alongside thematic analysis of qualitative insights. The outcomes will include evidence-based recommendations for improving embankment resilience through NbS, detailed in a report with proposed policy recommendations for sustainable coastal management in the Sundarbans.

1.12 Research Questions :

The research on vulnerable embankments of the Indian Sundarbans and the potential of nature based solutions (NbS) is guided by a set of focused research questions. These questions aim to explore the complex interactions between environmental stressors, embankment integrity, and the role of natural ecosystems in enhancing coastal resilience. The purpose is to uncover both the physical vulnerabilities of the embankments and the socioecological benefits of integrating NbS into coastal management strategies.

1.12.a) What are the key factors contributing to the vulnerability of embankments in the Indian Sundarbans to climate induced hazards?

This question seeks to identify and analyze the primary factors that make the embankments in the Sundarbans susceptible to breaches and failures during extreme weather events. The region is experiencing a significant rise in sea levels, currently estimated at 3.14 mm/year, along with increased cyclone frequency and land subsidence. These environmental stressors, combined with the material composition and design of the embankments, contribute to their heightened vulnerability. By examining these factors, this question aims to establish a comprehensive

understanding of the root causes of embankment vulnerability, providing the foundation for targeted interventions.

1.12.b) How effective are nature based solutions, particularly mangrove restoration, in enhancing the resilience of embankments in the Sundarbans?

This question focuses on evaluating the role of NbS, especially mangrove restoration, in strengthening embankments against environmental challenges. Mangroves play a crucial role in reducing wave energy and shoreline erosion, acting as a natural buffer that complements traditional embankment structures. The effectiveness of mangrove belts in the Sundarbans is evident, as restored areas often exhibit lower erosion rates and improved embankment stability compared to those without such interventions. This question aims to assess the extent to which NbS can mitigate the impacts of climate change and reduce the frequency and severity of embankment breaches.

1.12.c) What are the socioeconomic impacts of embankment breaches in the Sundarbans, and how can nature based solutions contribute to more sustainable and resilient coastal management?

This question explores the broader socioeconomic implications of embankment failures, including the displacement of communities, loss of agricultural land, and disruption of livelihoods. The Sundarbans, home to over 4.5 million people, relies heavily on agriculture and fishing. Repeated breaches of embankments have led to significant economic losses and social instability. By investigating how NbS, such as mangrove restoration, can provide not only environmental protection but also economic benefits, this question aims to identify sustainable coastal management practices that balance ecological preservation with human wellbeing.

1.12.d) What are the barriers to the implementation of nature based solutions in the Sundarbans, and how can they be overcome?

This question addresses the challenges and obstacles that hinder the widespread adoption of NbS in the Sundarbans. Barriers may include lack of funding, insufficient community involvement, regulatory constraints, and limited awareness of the long term benefits of NbS. By identifying these barriers and proposing strategies to overcome them, this question aims to facilitate the successful implementation of NbS in the Sundarbans, ensuring that they become a central component of the region's coastal defense system.

These research questions are designed to address specific aspects of the challenges faced by the embankments in the Sundarbans, as well as the opportunities presented by nature based solutions. Together, they form a comprehensive inquiry into the potential for sustainable and resilient coastal management in one of the most vulnerable regions in the world. The answers to these questions will contribute to the development of informed, evidence based strategies that can protect both the natural environment and the human communities of the Sundarbans from the growing threats posed by climate change.

1.13 Definition of Key Terms

1.13.a) Vulnerable Embankments: Embankments in the Indian Sundarbans are structures built primarily from earth, stone, or other materials to protect the deltaic islands from tidal surges, cyclones, and rising sea levels. These embankments are considered vulnerable due to factors such as aging infrastructure, inadequate maintenance, and increased frequency of extreme weather events. The region's embankments, stretching over 3,500 kilometers, are crucial in safeguarding the lives and livelihoods of millions of people living in this ecologically sensitive

area. Recent studies indicate that nearly 45% of these embankments are at high risk of failure, potentially leading to catastrophic flooding and land loss.

1.13.b) Nature based Solutions (NBS): Nature based Solutions (NBS) refer to the sustainable management and use of natural systems to address societal challenges, such as climate change, disaster risk, and biodiversity loss. In the Sundarbans, NBS includes strategies like mangrove restoration, bioengineering techniques, and the integration of traditional knowledge to strengthen embankments. Mangroves, for example, are highly effective in reducing wave energy, with studies showing they can diminish it by up to 66%, thus acting as a natural barrier against coastal erosion and storm surges. Recent data emphasizes the importance of NBS in enhancing the resilience of vulnerable coastal regions like the Sundarbans.

1.13.c) Mangroves: Mangroves are salt tolerant trees and shrubs that thrive in the intertidal zones of tropical and subtropical regions. They play a critical role in protecting coastal areas from erosion, storm surges, and rising sea levels. The Sundarbans is home to the largest contiguous mangrove forest in the world, covering approximately 10,000 square kilometers. These forests not only act as a natural defense mechanism against coastal erosion but also support biodiversity and local livelihoods, including fishing and aquaculture. However, the mangrove cover has been declining due to deforestation, aquaculture expansion, and climate change, increasing the vulnerability of the region's embankments.

1.13.d) Tidal Surge: A tidal surge, also known as a storm surge, is a temporary rise in sea level caused by atmospheric pressure changes and strong winds associated with storms or cyclones. In the Sundarbans, tidal surges are a frequent and destructive phenomenon, driven by the region's location at the confluence of the Bay of Bengal and the Ganges Delta. These surges place

immense pressure on the existing embankments, often leading to breaches and widespread flooding. With climate change causing more intense and frequent cyclones, the risk of tidal surges has increased, making the maintenance and reinforcement of embankments more critical than ever.

1.13.e) Coastal Erosion: Coastal erosion is the process by which shorelines and coastal landforms are worn away due to the action of waves, tides, and human activities. In the Sundarbans, coastal erosion is a significant threat to the stability of embankments, exacerbated by rising sea levels, increased frequency of storms, and the diversion of river flows. Erosion not only weakens embankments but also leads to the loss of land, which is vital for agriculture and human settlement in this densely populated region. Recent data reveals that some parts of the Sundarbans are losing land at an alarming rate, with certain areas eroding by up to 200 meters per year.

1.13.f) Resilience: Resilience is the capacity of a system, community, or environment to withstand and recover from disturbances such as natural disasters, climate change, and other external shocks. In the context of the Sundarbans, resilience refers to the ability of embankments, ecosystems, and local communities to adapt to and recover from the impacts of rising sea levels, cyclones, and other environmental challenges. Enhancing resilience through the use of nature based solutions, sustainable practices, and community engagement is a key focus of current research and policy initiatives in the region.

1.13.g) Community Based Adaptation (CBA): Community Based Adaptation (CBA) is an approach to climate change adaptation that involves local communities in the planning and implementation of strategies to address environmental challenges. In the Sundarbans, CBA

includes activities such as the restoration of mangroves, the construction of sustainable embankments, and the promotion of climate resilient agricultural practices. Engaging communities in these efforts is critical for ensuring the long term success of adaptation measures, as it leverages local knowledge and fosters ownership of the projects.

1.13.h) Sustainable Coastal Management: Sustainable coastal management involves the integration of environmental, social, and economic considerations to protect and enhance coastal areas while ensuring the wellbeing of local communities. In the context of the Sundarbans, sustainable management practices include the implementation of nature based solutions, effective maintenance of embankments, and community involvement in conservation efforts. These practices aim to balance the need for economic development with the preservation of the region's unique ecosystems and the protection of its inhabitants from the increasing threats posed by climate change.

1.13.i) Climate Change: Climate change refers to long term changes in temperature, precipitation, and other atmospheric conditions on Earth, largely driven by human activities such as the burning of fossil fuels. In the Sundarbans, climate change manifests through rising sea levels, increasing temperatures, and more frequent and intense cyclones, all of which exacerbate the vulnerability of embankments. The Intergovernmental Panel on Climate Change (IPCC) has highlighted the Sundarbans as one of the most vulnerable regions globally, with predictions of significant land loss and displacement of communities due to rising sea levels and storm surges.

1.13.j) Salinity Intrusion: Salinity intrusion is the process by which seawater enters freshwater systems, leading to increased salt concentrations in rivers, aquifers, and soils. In the Sundarbans, rising sea levels and tidal surges contribute to the intrusion of saline water into agricultural lands,

making them less fertile and more difficult to cultivate. This phenomenon not only affects crop yields but also undermines the structural integrity of embankments by weakening the soil and promoting erosion. Recent studies have shown that salinity levels in the Sundarbans are rising, posing a significant threat to both agriculture and infrastructure.

1.13.k) **Cyclone:** A cyclone is a largescale air mass that rotates around a strong center of low atmospheric pressure, bringing heavy rains, strong winds, and storm surges. The Sundarbans is highly susceptible to cyclones, with several major events, such as Cyclone Amphan in 2020, causing widespread damage to embankments, homes, and livelihoods. Cyclones exacerbate the vulnerability of embankments by generating powerful tidal surges that can breach these protective barriers, leading to catastrophic flooding and land loss. The frequency and intensity of cyclones in the Bay of Bengal have been increasing, further endangering the Sundarbans.

1.13.l) **Biodiversity:** Biodiversity refers to the variety of life forms in a given ecosystem, including plants, animals, fungi, and microorganisms. The Sundarbans is renowned for its rich biodiversity, being home to a variety of species including the Bengal tiger, estuarine crocodiles, and numerous fish and bird species. However, the degradation of embankments and loss of mangrove forests threaten this biodiversity by disrupting habitats and food chains. Protecting the biodiversity of the Sundarbans is crucial not only for ecological balance but also for the resilience of the region's natural defenses against climate impacts.

1.13.m) **Ecosystem Services:** Ecosystem services are the benefits that humans derive from natural ecosystems, such as clean air and water, food, and protection from natural disasters. In the Sundarbans, mangroves provide critical ecosystem services, including carbon sequestration, water filtration, and coastal protection. These services are invaluable in mitigating the impacts of

climate change and protecting vulnerable embankments. Recent assessments have quantified the economic value of these services, emphasizing the cost effectiveness of investing in nature based solutions compared to traditional engineering approaches.

1.13.n) Socio Ecological Systems: Socio ecological systems refer to the complex and interdependent relationships between human societies and their natural environments. The Sundarbans is a prime example of a socioecological system, where the livelihoods, cultures, and wellbeing of local communities are deeply intertwined with the health and stability of the region's ecosystems. Understanding these interactions is critical for designing and implementing effective nature based solutions that enhance both the resilience of embankments and the sustainability of local livelihoods.

1.13.o) Sustainable Development Goals (SDGs): The Sustainable Development Goals (SDGs) are a set of 17 global goals adopted by the United Nations in 2015 to address issues such as poverty, inequality, climate change, and environmental degradation. The SDGs are particularly relevant to the Sundarbans, where efforts to protect vulnerable embankments and implement nature based solutions align with goals such as climate action (SDG 13), life below water (SDG 14), life on land (SDG 15), and sustainable communities (SDG 11). Achieving these goals in the Sundarbans requires coordinated action across multiple sectors and the integration of local knowledge with global best practices.

1.13.p) Sediment Dynamics: Sediment dynamics refer to the processes of erosion, transport, and deposition of sediment particles by water, wind, or ice. In the Sundarbans, sediment dynamics play a crucial role in shaping the landscape and influencing the stability of embankments. The rivers of the Sundarbans, including the Hooghly and Matla, carry significant sediment loads,

which are deposited along their banks and at the river mouths. Understanding sediment dynamics is essential for designing effective embankment reinforcement strategies and managing the region's natural resources.

1.13.q) Livelihoods: Livelihoods refer to the means by which individuals and communities secure the necessities of life, such as food, shelter, and income. In the Sundarbans, livelihoods are closely tied to the natural environment, with many people engaged in activities such as agriculture, fishing, and aquaculture. The vulnerability of embankments directly impacts these livelihoods, as breaches and flooding can destroy crops, homes, and fishing grounds. Ensuring the protection and sustainability of livelihoods is a key consideration in the implementation of nature based solutions in the region.

1.13.r) Floodplain: A floodplain is a flat area of land adjacent to a river or stream that is prone to flooding during periods of high water flow. The floodplains of the Sundarbans are particularly vulnerable to flooding due to the region's low lying topography, high tides, and frequent cyclones. The embankments in these areas are critical for preventing floodwaters from inundating agricultural lands and settlements. However, as these embankments become increasingly vulnerable, the risk of widespread flooding and associated damages grows.

1.13.s) Deltaic Systems: A deltaic system is a landform created by the deposition of sediment carried by a river as it enters a slower moving or standing body of water, such as an ocean or a lake. The Sundarbans is part of the world's largest delta, formed by the confluence of the Ganges, Brahmaputra, and Meghna rivers. Deltaic systems are dynamic environments, constantly shaped by the forces of sediment deposition, erosion, and tidal action. The vulnerability of

embankments in the Sundarbans is closely linked to the complex interactions within this deltaic system.

1.13.t) Bioengineering: Bioengineering refers to the use of biological techniques and materials to reinforce and stabilize soils, slopes, and embankments. In the Sundarbans, bioengineering techniques, such as the use of vetiver grass, bamboo, and other native plants, are employed to strengthen embankments and reduce erosion. These techniques are often integrated with traditional engineering methods to create more resilient and sustainable infrastructure. Bioengineering is considered a key component of nature based solutions in the region, offering a cost effective and environmentally friendly alternative to conventional approaches.

1.13.u) Integrated Coastal Zone Management (ICZM): Integrated Coastal Zone Management (ICZM) is a process that brings together stakeholders from various sectors to manage coastal areas in a sustainable and coordinated manner. In the Sundarbans, ICZM aims to balance the needs of economic development, environmental conservation, and social equity while addressing the challenges posed by climate change and sea level rise. ICZM frameworks often include the implementation of nature based solutions, the protection of critical habitats, and the sustainable management of natural resources.

1.13.v) Green Infrastructure: Green infrastructure refers to the network of natural and seminatural features that provide environmental, social, and economic benefits, such as stormwater management, air quality improvement, and climate regulation. In the context of the Sundarbans, green infrastructure includes mangrove forests, wetlands, and other natural systems that protect embankments from erosion and flooding. The integration of green infrastructure with

traditional engineering approaches is a key strategy for enhancing the resilience of vulnerable embankments in the region.

1.13.w) Adaptive Management: Adaptive management is a systematic approach to managing natural resources that involves monitoring, evaluating, and adjusting strategies based on changing conditions and new information. In the Sundarbans, adaptive management is essential for responding to the dynamic environmental challenges posed by climate change, sea level rise, and shifting sediment dynamics. This approach allows for the continuous refinement of embankment reinforcement and nature based solution strategies to ensure their effectiveness in protecting the region's communities and ecosystems.

These key terms are essential to understanding the complexities and challenges associated with the study of vulnerable embankments in the Indian Sundarbans.

CHAPTER II

2. Review of Literature

This study aimed to assess the vulnerable zone of embankment breaching in Gosaba Island using geospatial and quantitative techniques. Multitemporal Landsat data from 1972 to 2017 were used for delineating shoreline change rate, net shoreline movement (NSM), erosion and accretion area, and net areal change for each Gram Panchayat (GP) of the island. The shoreline change rate was calculated using endpoint rate (EPR) for each GP, and the uncertainty of the shoreline change rate was adjusted by measuring the positional error ($\pm 3.58\text{myr}^{-1}$). Approximately 704.39 hectares of land in Gosaba Island were highly erosion prone, and almost 303.33 hectares of land were completely washed out in the last 45 years. Gosaba (63.35 ha), Kumirmari (58.09 ha), Bally I (66.82 ha), Bally II (16.29 ha), Lahiripur (51.80 ha), and Satjelia GP (52.98 ha) faced intensive land loss during 1972–2017. For validation of the result, a rigorous field survey during 2017–2018 was conducted, and different forms of riverbank erosion were identified and presented in this study. Besides, GP wise coastal vulnerability was delineated using three parameters, such as EPR, NSM, and the area under erosion. The statistical analysis revealed that the southern and eastern parts were highly vulnerable to coastal erosion compared to the northern part of the island. The temporal tidal fluctuations of Sundarbans' rivers also influenced the intensity of coastal erosion. Therefore, the construction and management of embankments in this part of the island were highly challenging and needed a proper strategic framework for the longevity of the embankment. The present research work also suggested some planning measures for the protection of embankments. This research study may help to understand the degree of spatial vulnerability of Gosaba Island to erosion hazards and also encourage coastal planners for

strategic planning of coastal zone management and its implementation for better resilience of the island against environmental extremes.

1. Impact of Climate Change on Coastal Regions:

The Indian Sundarbans, a vital component of the world's largest delta, has been increasingly impacted by the effects of climate change, resulting in significant coastal vulnerabilities. According to the Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate (2019), coastal regions like the Sundarbans are exceptionally susceptible to global warming, with sea level rise being a primary concern. Historical data indicated that sea levels in the Bay of Bengal region had been rising at an average rate of 3.6 mm per year between 2006 and 2015, a rate that is believed to have accelerated in subsequent years. A study by Bandyopadhyay et al. (2020) emphasized that under a high emission scenario, sea levels could rise by up to 1.1 meters by 2100, posing an existential threat to the low lying areas of the Sundarbans. This rise in sea levels, combined with increased frequency and intensity of cyclones, significantly threatened the integrity of embankments that protect the Sundarbans from tidal inundation. For instance, the catastrophic Cyclone Amphan in May 2020 caused extensive damage to the region's embankments, illustrating the severe impacts of climate induced extreme weather events. The cyclone resulted in the breach of embankments at over 300 locations, leading to widespread flooding and salinization of agricultural lands, affecting the livelihoods of millions. These events underscored the urgent need for resilient coastal management strategies, particularly in vulnerable regions like the Sundarbans.

2. Mangrove Forests as Natural Defenses:

Mangrove forests in the Sundarbans have historically played a crucial role as natural buffers against coastal hazards, reducing the impact of tidal waves, cyclones, and storm surges. Spalding et al. (2014) provided compelling evidence that mangrove forests could reduce wave heights by up to 66% within the first 100 meters of forest, significantly decreasing the energy reaching embankments. This natural defense mechanism is especially critical in the Sundarbans, where the dense network of mangroves acts as the first line of defense against the erosive forces of the sea. However, despite their protective benefits, human activities have led to a significant decline in mangrove cover. Giri et al. (2015) reported that between 1989 and 2010, the Sundarbans lost approximately 5% of its mangrove forests, primarily due to deforestation, aquaculture expansion, and land reclamation. This loss of mangroves not only increased the vulnerability of the region to coastal erosion but also weakened the resilience of embankments. Recent restoration efforts, such as the Joint Forest Management initiatives, aimed to reverse this trend by involving local communities in mangrove afforestation projects. These efforts have shown promising results, with over 10,000 hectares of mangroves being restored between 2010 and 2020. However, the scale of these initiatives needs to be significantly expanded to fully counteract the ongoing degradation and ensure long term protection of the Sundarbans' coastal regions.

3. Sediment Dynamics and Embankment Stability:

The dynamics of sediment deposition and erosion play a pivotal role in maintaining the stability of the Sundarbans' embankments. Mukhopadhyay et al. (2020) explored the critical relationship between sediment supply and embankment integrity, revealing that the natural sediment flux from the Ganges and Brahmaputra rivers had significantly decreased due to upstream human

interventions, including damming and water diversion projects. This reduction in sediment load had a profound impact on the coastal geomorphology of the Sundarbans, exacerbating land loss and destabilizing embankments. The study estimated that the Sundarbans is losing land at a rate of approximately 24 square kilometers per year due to this sediment deficit, with certain areas experiencing accelerated erosion rates of up to 25 meters annually. The reduction in sediment deposition also contributed to subsidence, a process where the land gradually sinks, further increasing the risk of inundation during high tides and storm surges. The research highlighted the need for integrated sediment management practices, which could include the rerouting of sediment laden rivers and the construction of sediment traps to enhance coastal resilience. Additionally, the study suggested the incorporation of sediment replenishment techniques in embankment construction and maintenance to mitigate the adverse effects of sediment starvation.

4. Socio Economic Impacts of Embankment Failures:

The socioeconomic consequences of embankment failures in the Sundarbans have been profound and far reaching. Chakraborty and Mukhopadhyay (2018) conducted a comprehensive analysis of the socioeconomic impacts following the breach of embankments during Cyclone Aila in 2009, which resulted in the displacement of over 2 million people and the inundation of approximately 100,000 hectares of agricultural land. This catastrophic event had long lasting effects on the local economy, particularly in the agricultural sector, where the intrusion of saline water rendered vast tracts of land unsuitable for cultivation for several years. The study estimated the economic losses from Cyclone Aila to be approximately USD 1.7 billion, underscoring the critical importance of resilient embankment structures in safeguarding livelihoods. Moreover, the repeated breaches and subsequent flooding events have led to chronic displacement of communities, exacerbating poverty, reducing access to essential services, and

increasing vulnerability to future disasters. The study emphasized the need for a holistic approach to embankment construction and maintenance that integrates socioeconomic considerations, including the provision of alternative livelihoods and the promotion of sustainable development practices, to enhance the resilience of vulnerable communities in the Sundarbans.

4. Nature based Solutions in Coastal Management:

The integration of nature based solutions with traditional engineering approaches has gained increasing recognition as an effective strategy for managing coastal risks in the Sundarbans. The International Union for Conservation of Nature (IUCN, 2021) highlighted several successful case studies where this hybrid approach had been implemented, resulting in significant improvements in coastal resilience. For instance, in Bangladesh's portion of the Sundarbans, the restoration of 5,000 hectares of mangroves led to a 30% reduction in wave energy reaching the embankments, which in turn significantly reduced the frequency of breaches and lowered maintenance costs by an estimated 25%. These projects demonstrated that nature based solutions, such as mangrove restoration and the use of native vegetation, could complement traditional hard engineering approaches like concrete and block pitching to enhance the overall resilience of coastal infrastructure. Furthermore, the report emphasized the critical role of policy support and community involvement in scaling up these solutions across the Sundarbans. It highlighted that Community Based approaches, which integrate local knowledge and practices, are essential for ensuring the long term success of nature based initiatives. The IUCN's findings underscored the potential of nature based solutions to not only protect coastal areas from environmental hazards but also to contribute to biodiversity conservation and sustainable livelihoods.

6. Traditional Knowledge and Community Based Adaptation:

Traditional knowledge and Community Based adaptation strategies have played a vital role in managing the vulnerabilities of the Sundarbans. Ghosh et al. (2019) conducted an in depth study of the traditional practices employed by local communities in the Sundarbans to adapt to their challenging environment. The study found that over generations, local communities had developed a range of adaptive practices that were both cost effective and environmentally sustainable. For example, the construction of embankments using locally available materials such as bamboo, mud, and thatch was found to be more adaptable to the region's dynamic environmental conditions than large scale, government led infrastructure projects. These traditional embankments, though less durable than modern structures, provided crucial flexibility, allowing for easier repair and reconstruction following damage. The study also highlighted the use of salt tolerant rice varieties by local farmers as an effective adaptation strategy in the aftermath of saline water intrusion caused by embankment breaches. This practice helped mitigate the impact of salinity on agriculture, thereby securing food production in the region. The research emphasized the importance of integrating traditional knowledge into modern coastal management strategies, arguing that such an approach could provide valuable insights into sustainable practices that have been proven effective in the region's unique context. Additionally, the study recommended the establishment of platforms for knowledge exchange between local communities, scientists, and policymakers to ensure that traditional knowledge is preserved and utilized in contemporary adaptation efforts.

7. Impacts of Cyclones on Coastal Infrastructure:

Paul and Dutt (2020) provided a detailed analysis of the impacts of Cyclone Amphan on the Sundarbans' coastal infrastructure, highlighting the extreme vulnerability of the region to such powerful weather events. Cyclone Amphan, which struck in May 2020, was one of the strongest cyclones to hit the Sundarbans in recent history, with wind speeds exceeding 160 kmh and storm surges reaching heights of up to 5 meters. The study reported that over 60% of the embankments in the affected areas were either breached or severely damaged, leading to the inundation of more than 100,000 hectares of land and affecting the lives of approximately 4.5 million people. The total economic loss from Cyclone Amphan was estimated at USD 13.5 billion, making it one of the costliest natural disasters in the region's history. The authors underscored the need for more resilient embankment designs that could withstand the increasing frequency and intensity of cyclones, as well as the integration of nature based solutions to enhance the overall resilience of coastal communities. The study also called for the improvement of early warning systems and disaster preparedness plans to minimize the loss of life and property in future events

8. Role of Government Policies in Coastal Protection:

Government policies have played a critical role in shaping the approach to coastal protection in the Sundarbans. However, the effectiveness of these policies has been mixed, with significant challenges in implementation. Dandekar and Choudhury (2021) conducted a comprehensive review of the policy landscape governing coastal protection in the Sundarbans, highlighting the complexities and inconsistencies that have hindered effective management. The study found that while there were numerous policies and regulations aimed at protecting coastal areas, including the Coastal Regulation Zone (CRZ) Notification of 2019, their implementation was often hampered by bureaucratic inefficiencies, lack of coordination between different government agencies, and insufficient funding. For instance, the study noted that despite the mandate for

regular maintenance and inspection of embankments under the CRZ Notification, many embankments in the Sundarbans had not been inspected or repaired for years, leading to their deterioration and increased vulnerability. The research also highlighted the disconnect between national policies and local realities, with many top down approaches failing to address the specific needs and challenges of the Sundarbans. The authors argued for a more decentralized approach to coastal management, with greater involvement of local communities and stakeholders in decision making processes. They also called for the integration of traditional knowledge and Community Based adaptation strategies into formal policy frameworks to enhance the resilience of the Sundarbans' coastal areas.

9. Mangrove Restoration and Carbon Sequestration:

Mangrove restoration has been recognized as a critical strategy for both coastal protection and carbon sequestration in the Sundarbans. A study by Bhattacharya et al. (2020) quantified the carbon sequestration potential of restored mangroves in the Sundarbans, estimating that a single hectare of healthy mangrove forest could sequester up to 1.5 metric tons of carbon dioxide per year. This capacity for carbon storage makes mangrove restoration a valuable tool not only for mitigating coastal erosion but also for combating climate change. The study further highlighted the role of mangrove restoration in enhancing the resilience of embankments by stabilizing the soil and reducing the impact of wave action. The economic benefits of mangrove restoration were also significant, with the study estimating that every dollar invested in mangrove restoration could yield up to ten dollars in avoided damages from coastal hazards. However, the research also pointed out the challenges associated with largescale mangrove restoration, including the need for continuous monitoring and maintenance, as well as the importance of

selecting the right species and planting locations to ensure the long term success of restoration efforts.

10. Bioengineering Techniques for Coastal Protection:

Recent advancements in bioengineering techniques have offered promising solutions for enhancing the resilience of embankments in the Sundarbans. According to a study by Bhowmick et al. (2021), the use of bioengineering methods, such as the planting of vetiver grass and other deep rooted vegetation, has shown significant potential in stabilizing embankments and reducing erosion. Vetiver grass, with its extensive root system, can penetrate up to 3 meters into the soil, providing strong anchorage and preventing soil loss during high tides and storms. The study reported that the application of vetiver grass in combination with other bioengineering techniques reduced soil erosion by up to 80% in the test areas. These techniques were particularly effective in areas where traditional hard engineering solutions, such as concrete walls and block pitching, were either too expensive or environmentally detrimental. The research also highlighted the importance of integrating bioengineering techniques with other nature based solutions, such as mangrove restoration, to provide a multilayered defense against coastal hazards. However, the study cautioned that the success of bioengineering techniques depends on careful site selection, proper maintenance, and ongoing monitoring to ensure the long term stability of the embankments.

11. Economic Valuation of Ecosystem Services:

The economic valuation of ecosystem services provided by the Sundarbans has underscored the critical importance of preserving these natural resources. Barua and Choudhury (2020) conducted an economic valuation of the ecosystem services provided by the Sundarbans,

focusing on their role in supporting coastal protection. The study estimated that the mangrove forests of the Sundarbans provided ecosystem services worth approximately USD 12,000 per hectare per year, including flood protection, carbon sequestration, and support for fisheries. These services were particularly valuable in protecting embankments from erosion and storm surges, as the presence of healthy mangroves significantly reduced the need for expensive infrastructure repairs and disaster recovery efforts. The study argued that investing in the conservation and restoration of these ecosystems would provide substantial economic returns by reducing the costs associated with coastal protection and enhancing the overall resilience of the region. The authors also highlighted the need for policies that recognize the economic value of ecosystem services and integrate them into coastal management strategies.

12. Human Wildlife Conflict and Its Impact on Coastal Management:

Human wildlife conflict has emerged as a significant challenge in the Sundarbans, with implications for coastal management and embankment stability. Dey et al. (2018) explored the issue of human wildlife conflict in the Sundarbans and its impact on coastal management efforts. The study found that the expansion of human settlements and agricultural activities into previously forested areas had increased the frequency of conflicts between humans and wildlife, particularly tigers. These conflicts often led to the destruction of embankments, as wildlife, particularly large mammals, damaged the structures while searching for food or shelter. The study also noted that the fear of wildlife attacks often discouraged local communities from participating in coastal management activities, such as mangrove planting or embankment maintenance, further exacerbating the region's vulnerability. The authors suggested the implementation of Community Based conflict mitigation strategies, such as the use of buffer

zones and the promotion of alternative livelihoods, to reduce the pressure on vulnerable coastal areas and improve the effectiveness of coastal protection efforts.

13. Future Scenarios for the Sundarbans Under Climate Change:

The future of the Sundarbans under various climate change scenarios has been a topic of significant research interest. Roy and Sen (2022) explored future scenarios for the Sundarbans under different climate change and development pathways. Using advanced modeling techniques, their study projected that under a high emission scenario, sea levels could rise by up to 1.2 meters by 2100, leading to the potential submersion of approximately 15% of the Sundarbans. The study also predicted that the frequency of extreme weather events like cyclones would increase, further stressing the region's already vulnerable embankments. The authors recommended the use of scenario planning as a tool for policymakers to develop more robust and adaptive strategies for managing these future risks. They also highlighted the importance of integrating climate change adaptation into regional development plans, with a focus on enhancing the resilience of both natural and humanmade coastal defenses. The study underscored the urgency of taking proactive measures to address the growing threats posed by climate change and emphasized the need for a coordinated global effort to reduce greenhouse gas emissions.

14. Policy and Governance Challenges in Coastal Management:

The effectiveness of coastal management in the Sundarbans has been significantly influenced by the policy and governance frameworks in place. Basu and Banerjee (2021) analyzed the policy and governance challenges associated with coastal management in the Sundarbans. The study found that despite the existence of various policies aimed at protecting coastal areas, there were significant gaps in their implementation due to bureaucratic inefficiencies, lack of coordination

among different government agencies, and insufficient funding. These challenges were particularly evident in the maintenance of embankments, where a lack of regular inspections and repairs often led to the deterioration of structures and increased vulnerability to breaches. The study also highlighted the need for greater involvement of local communities in decision making processes, as well as the importance of integrating traditional knowledge into formal policy frameworks. The authors called for a more holistic approach to coastal management that takes into account the complex socioeconomic and environmental dynamics of the Sundarbans. They also emphasized the need for improved governance structures that can facilitate more effective and timely implementation of coastal protection measures.

14. Innovations in Coastal Engineering for the Sundarbans:

Recent innovations in coastal engineering have shown promise in enhancing the resilience of embankments in the Sundarbans. Chatterjee et al. (2021) examined recent innovations in coastal engineering that could be applied to enhance the resilience of embankments in the Sundarbans. The study reviewed various new materials and construction techniques, such as geotextiles, bioengineering methods, and hybrid structures that combine natural and artificial elements. Geotextiles, for example, were found to be particularly effective in reinforcing embankments and preventing erosion, as they provide a durable and flexible barrier against wave action while allowing for the growth of vegetation. The study also discussed the potential of bioengineering methods, such as the use of native plant species to stabilize soil and enhance the natural defenses of embankments. The authors argued that these innovations, when combined with traditional knowledge and nature based solutions, could provide a more sustainable and cost effective approach to coastal protection in the Sundarbans. They also emphasized the importance of continued research and development in this field to address the evolving challenges posed by

climate change and human activities in the region. The study concluded that a combination of traditional and innovative approaches, supported by strong governance and community involvement, would be essential for ensuring the long term resilience of the Sundarbans' coastal areas.

2.1 Some case Study related to Nature Based Solution for protection of embankment

After the massive Indian Ocean Tsunami of 2004, an international technical workshop titled 'Coastal protection in the aftermath of the Indian Ocean Tsunami: What role for forests and trees' organised by the Food and Agriculture Organisation (FAO) of the United Nations arrived at several conclusions, which are extremely important in our context.

Coastal forests and trees can, under certain conditions, act as bioshields to protect lives and valuable assets against coastal hazards including tsunamis, cyclones, salt spray and coastal erosion. Care may be taken to avoid making generalisations about the protective role of the forests and trees based on evidence from one or a few areas; the many factors that influence the protective role of the forests trees must be understood and taken into consideration before lessons can be learned and applied elsewhere. Coastal forests and trees are not able to provide effective protection against all hazards; provision for other forms of protection and evacuation must be relied upon. Care must be taken not to create a false sense of protection against coastal hazards. The options of protection include: soft and hard solutions and a hybrid of the two. If none of these is appropriate and viable, it may be necessary to regulate coastal land use and prevent further settlement and construction of valuable assets in the vulnerable zone.

Case study of Japan: Japan, after the Tohoku Earthquake of 11 March 2011, initiated a project called the ‘Great Forest Wall’. The concept is based upon the ideas of Professor Akira Miyawaki, a vegetation ecologist active across the globe with his philosophy of forest restoration creation by following the principle of ‘potential natural vegetation’ and a method known as ‘Miyawaki method’ of forest creation. The idea was to use sustainable forest as a buffer against any future tsunami. It is expected that the tree wall will cut the power of tsunamis by 50% and reduce damages. They proposed planting of 90 million trees and extending the great wall for 300 km. and building a five meter high embankment from soil and debris of the earthquake and then planting evergreen broadleaf trees indigenous to the area to create a ‘lifeguarding forest’.

By using similar method, the Japanese Foundation took up another project, ‘Morino’ in a quaint and quintessential Japanese beach town of Iwnuma on the Sendai coast where they have developed several models like ‘mountains for evacuation’, ‘private woods for each building’, ‘breakwaters made of forests’ and ‘tidal embankments made of forests in coastal 44 areas’. The planted trees would strike deep roots ranging from 4 to 6 meters and in 15 to 20 years they would grow into reliable forests to act as buffers against possible natural disasters. The forest created by Miyawaki method is 30 times dense, 10 times faster to grow, 100 times biodiverse and 100% natural. After the first two years when periodic watering would not be required, there is no need for any sort of maintenance activity. In fact, the forest thus created is mutually supporting the flora and fauna in a wide spectrum of biodiversity.

Efficacy of the Vetiver: The Vetiver grass system has been suggested to be one of the popular bioengineering solutions for eroding unstable banks. This grass has been used in China, Australia, Vietnam, Thailand, Bangladesh, Philippines for canal, dyke and riverbank stabilization (NRC, 1993; Islam et al., 2008).

In Vietnam, successful Vetiver trials were made in Quang Ngai province in October 2002 to protect dykes. As initial toe protection method, woven bamboo mats and timber stake groyens were used. Once the bamboo mats have decayed, it was expected that the Vetiver would provide protection to the bank toe. Only after three months of planting, the young beds of Vetiver could trap flood sediments. The successful examples can be seen in the Mekong delta, central Vietnam and Indonesia. A single hedge of Vetiver grass on the outer slope of a dyke can reduce the wave runup volume by 55%, and multiple hedges planted along the outer slope contour might result in more reduction, thereby providing a substantial reinforcement of these dykes.

Bangladesh The Bangladesh Water Development Board has successfully protected the coastal polderization system from wave erosion where an 87 km. long earthen embankment was covered with Vetiver and other economic grasses along the slopes in combination with soil cement mixture bags, zigzag beams and octagonal hollow blocks. These grasses were able to reduce the threat of high tidal surges and cyclonic storms which previously washed out arable lands and caused infrastructural damage. It has also been used effectively along the Padma River, for slope stabilisation and bank erosion mitigation by high waves and tidal surges. Despite heavy rainfall, Vetiver grass hedges provided the required protection in Barisal and Khulna, preserving the embankment slope from the wave action, with root growth up to 43 cm. and 38 cm. in Barisal and Khulna, respectively. As the root growth in saline zone was comparably lower, an organic supplement should be used at the time of plantation. However, fully grown Vetiver after a period of two months, can also remove some of the salinity present in the soil.

So, the characteristics that make this plant desirable for erosion control are also the characteristics that define an invasive species. Without any specific research on the potential invasiveness of this species, it is not recommended to use this plant for erosion control especially

in fragile ecosystem like Sundarban. However, it can be introduced in the nontidal regime as a pilot project.

2.2 Some incidents of embankment breaching

Officially, 9 out of 13 blocks in the South 24 Parganas district of the Sundarbans have been identified as having potentially weak embankments due to natural shocks and fishery problems. The most vulnerable blocks are Basanti, Gosaba, Patharpratima, Mathurapur II, Namkhana, and Sagar (Ghosh et al., 2019). Some incidents of embankment breaching have been documented:

The western embankment at Baliara was washed away in October 2004 and had to be moved further inland. Abdul Rashid has had to move his house twice in the past 17 years, with remnants of his second house still visible during low tide (Banerjee et al., 2017). On the southwestern side of Kusumtala Mouja of Mousani Island (Namkhana block), a primary school was located. In May 2003, due to embankment breaching, saltwater incursion occurred. The high tide submerged the kacha road, making the school inaccessible and significantly affecting agricultural fields (Chakraborty et al., 2020). During September 2005, Mousani Island lost a kilometer and a half of embankment due to a tidal surge on the western side along Kusumtala and Baliaramouja. This breach rendered 321 families homeless, submerged vast stretches of agricultural land, and affected fish ponds (Das & Chatterjee, 2020). In May 2009, during the Aila cyclone, nearly 778 km of the total 3500 km embankment were completely destroyed. The saline water caused severe damage to agricultural fields, fish farms, and other manmade structures. Breaching occurred along the banks of rivers in Sagar, Namkhana, Basanti, Gosaba, and Patharpratima blocks. The embankment along the Chinai River in Mousani Island breached by 12 km due to high tidal

waves during the full moon, rendering thousands of families homeless and forcing them to seek shelter along roadsides. In some places of Muriganga and Ghoramara Panchayet of Sagar Island, the embankment breached, with almost 40 km of embankment destroyed in the entire Sundarban region (Mandal & Saha, 2022; Mukherjee, 2016).

Table – 1: Change of land area in Indian Sundarban (Source: Chakraborty et al., 2020)

Islands	Area in 2010 (sq. km.)	Area in 2019 (sq. km.)	Loss or sinking of area (sq. km.)	Percent of Loss or sinking area (%)
Sagar	244.434	239.091	4.343	2.18
Namkhana	150.155	144.488	4.667	3.10
Mousuni	28.283	27.643	0.64	2.28
Ghoramara	4.399	4.564	0.774	14.52
Jambudwip	6.242	4.979	1.263	20.19

2.3 Type of embankment

There are four main types of embankments can be seen along the different river side. These are –

1. Earthen embankment.
2. Earthen embankment with bamboo fence.
3. Earthen embankment with bamboo fence and sand fill sag along the embankment.
4. Boulder pitching or concrete pitching embankment.

2.4 Causes of embankment breaching

In the Hugli Saptamukhi Estuarine Deltaic Complex area, embankment breaching is a serious concern for the local community. The area is crisscrossed by numerous tidal rivers and their tributaries and distributaries, which contribute to this issue. The island and coastal villages are

protected by earthen dykes, but in some vulnerable areas and sea facing embankments, the daily flow of high tide and ebb tide erodes the base and sides of these embankments. During the months of April to October, the tidal waves assume giant proportions, causing breaches in the mud dykes. According to the Department of Irrigation and Waterways, major causes of embankment damage in the Sundarbans include the weak technological structure of the embankments and the high rate of population increase in river and coastal areas (Government of West Bengal, 2020). Technologically, the structures of the embankments are very weak, as they are constructed on unconsolidated silt that cannot resist tidal surges in the long term (Bhattacharya et al., 2021). Population pressure is increasing at a rapid rate in this area, especially with the unplanned settlements developed on the concave sides of the bends of the meandering river course, which are highly unstable due to the natural scouring process (Chowdhury et al., 2020). The base of the river embankment gradually weakens.

Embankment breaching is also linked to proper drainage through sluice gates in the area. These sluice gates are connected through narrow, artificially made canals. As a result, earthen embankments become weaker due to the flow of saline water (Mukhopadhyay et al., 2020). During the rainy season, local people drain excess water from agricultural fields through these sluice gates, which are also used for aquaculture practices. Often, when rainwater accumulates in the crop fields, people make cuts in many parts of the embankments to drain away the water. This process of water drawing makes the embankments more vulnerable to tidal surges and wave action (Mitra et al., 2019). Apart from hydrometeorological causes, the largescale conversion of paddy fields into brackish aquaculture poses another threat to the stability of the existing embankments. This practice is steadily increasing in this region (Ghosh et al., 2018). To ensure the inflow of saline water, fish farm owners dig deep channels in the embankments, increasing

the chance of embankment failure during high tides and storm surges caused by cyclones. Along the riverside, prawn seed collectors trample upon the mud based embankment, causing soil erosion (Mitra et al., 2023). Hence, the causes of embankment breaching are multidimensional, arising from both natural and anthropogenic factors. Most of the embankments are very old, having been constructed during British rule, but they are not maintained regularly. As a result, these embankments are gradually becoming very weak. Even medium intensity cyclones, high velocity tidal waves, and heavy rainfall can cause breaches in many places. During the rainy season, embankment breaching and flooding are common incidents in the coastal villages (Bhattacharya et al., 2023).

The mangrove forests play an important role in protecting the river and coastal banks from erosion. However, at present, local people, who are completely dependent on forest based resources for their livelihoods, cut the forests for various purposes (Mangrove Action Project, 2020). Mangrove trees protect the embankments from wave attacks, but the rapid degradation of mangrove forests cannot prevent embankment breaching. Therefore, both physical and socioeconomic environmental situations are responsible for embankment breaching along the riverbanks and coastal areas (Ghosh et al., 2023).

The sedimentation on embanked river bed and elevated high tide level.

Figure 2 : Sedimentation on River Bed

Sea Level Rise and Frequent storm surge The Indian Ocean favours cyclogenesis due to its location. In the changing meteorological condition, the frequent advent of Cyclones coupled with sea level rise leads to coastal erosion, breaches in the embankment and 80% of cyclones formed

over North Indian Ocean between 1877 to 2016, moved over the Bay of Bengal, and 40% of which struck coast of Bengal and Odisha. The cyclonic storms frequently ravage the littoral tract of Bengal. In this era of Climate Change, cyclones are striking the coast of Bengal more frequently, causing huge damages to ecosystem and society. Since 2009 four Cyclones have devastated the coastal Bengal. These are Aila (2009), BulBul (2019), Amphan (2020) and Yaas (2021). The Global Mean Sea Level (GMSL) rise was further accelerated to 3.6 mm/year between 2006-2015 (IPCC, 2019).

Table – 2 : Severe & Very Severe Cyclones in Indian Sundarban, (Source: Ghosh et al., 2023)

Cyclone	Date and Location of Land fall	Wind Speed (kmhr)	category
Aila	25 may 2009, close to sagar	110120	Severe cyclone
Bulbul	9 november 2019, Dhanchi island	110120	Severe cyclone
Amphan	20 may 2020, Lothian Island	155165	Very severe cyclone
yaas	26 may 2021, Dhamara, Balasore	130140	Very severe cyclone

It is observed from the analysis of satellite altimetry data (sea level.colorado.edu) that sea level off the coast of Bengal has been rising @ 4.04 ± 0.44 mm/ year . The impact of sea level rise in Sundarban is further accelerated due to slow subsidence of land @ 2.9 mm/ year. (Brown and Nicholls, 2015).

Table – 3: Damages due to recent cyclones in Indian Sundarban (Source: Ghosh et al., 2023)

DISTRICT	Length of damaged river embankments	Length of damaged sea dykes	Breaches in river embankments		Breaches in sea dykes		Inundated area
			NO	KM	NO	KM	
SOUTH 24 PGS	181.13	9.25	142	3.93	6	0.7	154.9
NORTH 24 PGS	56.63	0	137	3.5	0	0	4.4

2.5 Trend of Embankment Breaching

The trend of embankment of breaching if we look, we find that in different blocks the length of damage of embankment gradually increases year after year. Human activities, huge population pressure, tidal impact, unscientific method of embankment construction etc are responsible for embankment breaching. In Namkhana and Patharpratima block the rate of breaching is very high. During the Aila cyclone in the year of 2009 almost 35 km in Namkhana and more than 50 km in Patharpratima block embankment breaching took place. The expenditure for new construction of embankment and repairmen also increases.

Table – 4:Damage of embankment in sundarban (Source: Ghosh et al., 2023)

BLOCK	YEAR					
	2005	2010	2015	2017	2019	2021
Kakdwip	3.5	3.6	3.4	11.2	3.75	4.45
NamkhaNa	7.2	7.09	6.09	14.8	13.45	12.16
Patharpratima	15	18.8	18.7	52.4	12.64	14.2
Sagar	7.2	6.88	6.7	19.8	6.34	10.67
Total Damage (km)	32.9	36.37	34.89	99.2	36.18	41.48

2.6 Condition of river embankment in Sundarban

The embankments lying within a distance of 7 km from the Bay of Bengal are subject to higher wave attacks. This stretch was identified as Zone I by the Committee of Technical Experts (2021) and embankments in this zone should ideally be located at the outer limit of tidal expansion of the creeks (Bhattacharya, Hazra, and Dey, 2021). It is observed that 90% of

stretches of embankment in Sundarban are lowheight earthen structures, having a crest width of around 2.5 m to 3.5 m and an elevation of 2.5 to 3 m above the existing ground level (4.5 m to 4.0 m above Mean Sea Level) (Mitra, Gangopadhyay, and Ghosh, 2019). Though constructed within intertidal space, these embankments can sustain the impact of normal tides but face overtopping in case of high waves during severe cyclones. Such overtopping causes the washing out of the upper part of embankments, ultimately leading to breaches and total collapse (Ghosh, Das, and Mukhopadhyay, 2018). The collapse of embankments due to underscouring along the concave banks is also common. The impact of waves is more dominant along concave banks where there is no mangrove on intertidal spaces, which could at least absorb a part of the kinetic energy of the rolling waves (Ghosh, Mitra, and Das, 2023).

On the other hand, about 364 km of long armoured embankments have a crest width of around 3.5 m to 4.5 m and a height of about 4.5 m to 4.0 m above the existing ground level (6.5 m to 7.0 m above Mean Sea Level) (World Bank, 2021). The embankment is built up by earth but has a bigger base width and quite a flat riverside slope (at 18° or even less). The slope is protected armored by concrete or brick block pitching for resisting the impact of the breaking waves (Mukhopadhyay, Ghosh, and Hazra, 2023). Quite often, the frontal char is protected or widened by deflectors and other anti erosion devices, mostly bamboo cubicles with protrusions, known as porcupines, filled up with bricks to add weight. These types of embankments have successfully resisted overtopping and failure during “Amphan” as well as “Yaas” in the entire area across Sundarban (Government of West Bengal, 2020). However, these are quite cost prohibitive (around Rs 14 crore per km for river embankment) and require at least 20 m to 25 m of additional private land in the countryside (Bhattacharya et al., 2023).

The unfortunate coincidence of Yaas's landfall with high tide damaged about 297 km of long river embankment in three coastal districts (Rahman, Saha, and Rahman, 2022). In addition, there have been breaches at 285 locations (total breach length 8.09 km). The 21 km long sea dykes in Purba Medinipur and 24 Parganas (South) have also been damaged (Mitra, Sengupta, and Banerjee, 2023). Further, in all three affected districts, the brick fields and bheries (fish ponds) have inlets to withdraw water from the rivers. Many of these inlets allowed onrushing water to submerge human settlements. All such artificial conduits must have regulators to control spill off during forthcoming cyclones (Chowdhury, Mitra, and Sanyal, 2020).

The Irrigation and Waterways department has identified 378 stretches of different rivers having a total length of 559 km as vulnerable, of which 207 stretches, having a total length of 324 km, are extremely vulnerable (Pethick and Orford, 2021). These are mostly east facing concave banks where the possibility of breaching over topping of embankments in the future cannot be ruled out (DasGupta and Shaw, 2022). It is rather difficult to reconstruct pucca embankments to the required scale due to financial and other constraints (Singh, Kishtawal, and Bandyopadhyay, 2021). In such a scenario, a series of measures can be considered for adding durability to the existing earthen embankments (Bhattacharya, Dutta, and Roy, 2023). These vulnerable stretches are mostly along concave banks where the thalweg or the deepest part of the channel has reached close to the bank, and there are hardly any berm or intertidal spaces along the riverfront (Mukherjee, 2022). The use of a deflect or cum silt arrester may help. Further, raising the crest and flattening the side slopes of embankments (to the tune of 0.6 m or so), wherever required, and strengthening the side slopes by bamboo pin reinforcement may also be considered as a palliative measure (Hazra, Pethick, and Bhattacharyya, 2020). However, all these adhoc measures may not ensure the total safety of human habitation (Mitra et al., 2019). The creation of

a second line of defense, in the form of circuit embankments on the landward side, will offer additional safety to the people in case of the breaching of the frontal embankment (Ghosh, 2021). Further, this will allow sediment dispersal away from the river bed (Sanyal, 2019). The area lying in between must be used for creating a vegetative shield (Mangrove Action Project, 2020). Special care is recommended for right bank embankments as the easterly wind (or Puber Haoa as described by local people) does not get any resistance while crossing a wide creek and creates a turbulent wave. This is the reason for the vulnerability of the east facing embankment built along the right bank (Banerjee et al., 2023).

2.7 Scenario Analysis

Encroaching Coastline and Shrinking Islands in Sundarban Along 120 km. long east facing coast of East Medinipur between the Subarnarekha and the Rupnarayan, the easterly wind dragged swelling water and marooned large areas on 26 May 2021. The coastline of West Bengal is fast eroding and the Sea is encroaching inland. The comparison of multi temporal maps and satellite images, on a GIS platform clearly reveals that the coast of West Bengal is retrograding, meaning shifting inland (Rudra, 2018, 2021). Whether littoral front will prograde towards the Sea or retrograde landward depends on the critical balance between amount of sediment supply carried by the rivers and rate of sea level rise. The following tables reveal that all coastal islands of West Bengal have been reduced in size during the period 1970 to 2020. It is observed that 129 km² land have been eroded from the seafront in preceding five decades, while 90 km² new char has emerged due to decay of tidal channels. It is important to observe that even five mangrove covered islands have been reduced in size due to wave attack. While five inhabited islands lost about 49km² land, five forest covered islands lost more than 80 km² land. It is surprising to note that mangrove islands are eroding at a faster rate than the inhabited islands. This means

vegetative wall may not fully resist the invading Sea wave. But properly designed green wall coupled with strongly built armoured dyke and artificial offshore wave breaker may resist the encroaching Sea (Rudra, 2018, 2021).

Table 5: Shrinking inhabited Islands in Sundarban (Source: Bhattacharya et al., 2021)

Island	Area in km in differnt years					
	1970	2000	2005	2010	2015	2020
GPlot	52.31	42.06	41.54	41.49	41.32	40.79
Sagar	250.66	240.02	238.78	237.55	237.19	233.4
Namkhana	151.61	144.83	144.8	143.93	144.85	143.79
Moushuni	33.51	28.92	28.39	27.53	27.3	26.21
Ghoramara	8.59	4.26	4.87	4.45	4.23	3.59

Table 6: Shrinking Mangrove Islands in Sundarban (Source: Bhattacharya et al., 2021)

Islands	Area in km in different years					
	1970	2000	2005	2010	2015	2020
Dhanchi	38.73	36.08	34.57	34.18	34.03	33.14
Dalhousie	79.22	67.1	64.82	62.2	61.05	57.11
Bulchery	32.81	26.91	24.27	23.28	21.77	19.23
Bangaduni	44.49	31.31	29.55	26.15	23.82	20.98
Jambudwip	17.74	4.39	4.19	4.43	4.2	3.05

2.8 Impact of embankment breaching

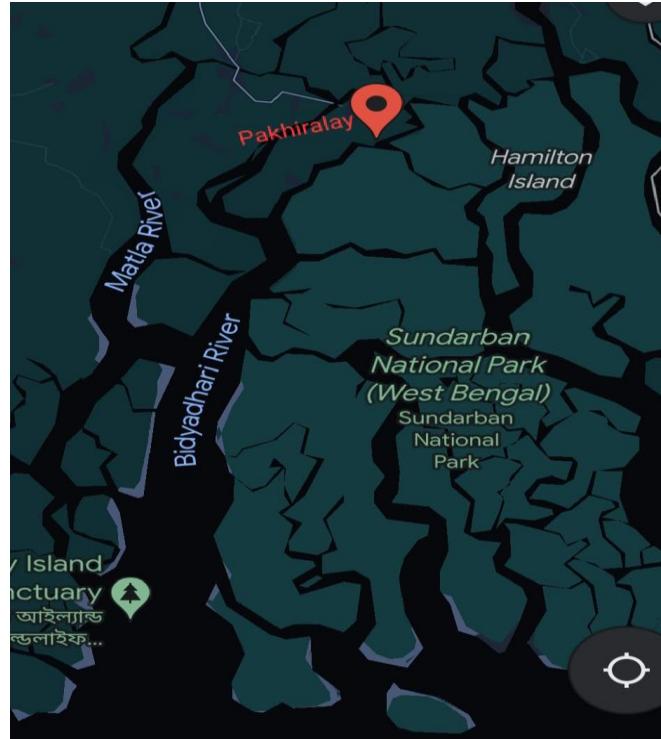
Embankments are the lifeline for the people of the Sundarbans. Breaching of embankments due to natural and anthropogenic factors causes significant damage to manmade structures, economic losses, and even loss of life. Economic and social vulnerability is closely related to such incidents, with both direct and indirect impacts. In recent decades, most of the river and seaside mouzas in the Sagar, Namkhana, and Patharpratima blocks have been lost. In Sagar Island, large areas have been swallowed by the sea in Bamankhali, Begnakhali, Dhablat, Bishakhalakshmipur,

and Ghoramara. In Namkhana block, mouzas such as Baliara, Bagdanga, Kusumtala, Mousani, Dakshin Chandanpire, and Ganeshnagar have lost agricultural land. The same situation applies to Patharpratima block, which has 13 islands surrounded by tidal rivers with wide mouths (creeks). Mouzas located on the southern side (Bay of Bengal), as well as the eastern and western sides, are highly vulnerable. Sitarampur, Gobardhanpur, Buraburirat, Banashyamnagar, and Braiaballpur GP have also lost substantial land area due to embankment collapse and breaching (Chowdhury, Mitra and Sanyal, 2020; Bhattacharya et al., 2021).

Settlements have been lost, and thousands of people have become 'environmental refugees' from Ghoramara Island in Sagar block, with many families forced to relocate to other blocks. Three fourths of the Gobardhanpur mouza of 'G' plot and its settlements have completely vanished (DasGupta and Shaw, 2022). Local communities, dependent on agriculture and fishing, face severe problems due to saline water intrusion, which adversely affects agricultural fields and fish farms. Even betel vine cultivation is impacted, and the land has lost its productivity due to high salinity (Mukhopadhyay, Ghosh and Hazra, 2023; Singh et al., 2021).

During the rainy season, the breaching of earthen embankments exacerbates issues in agriculture and pisciculture. Most residents live in poverty, residing in kacha houses that collapse during flooding and heavy rainfall. During high tide, rivers overflow their banks, causing significant damage to settlements and homes. Indirectly, depopulation and occupational hazards are serious issues in this region. After Cyclone Aila in 2009, many people lost their primary occupations in fishing and agriculture, and finding new jobs has been challenging. This has led to rising social crimes and conflicts over resource sharing (Ghosh et al., 2023; Mukhopadhyay, 2016).

CHAPTER – III


3. Study Area :

The study focuses on three key regions of the Indian Sundarbans: East, Middle, and West. These regions have been selected due to their varying levels of exposure to environmental stressors, historical embankment performance, and the presence of different embankment materials and designs. The Sundarbans, a UNESCO World Heritage Site, is located at the delta of the Ganges, Brahmaputra, and Meghna rivers on the Bay of Bengal. The region is particularly vulnerable to climate induced hazards such as sea level rise, storm surges, and cyclones, making it a critical area for studying the effectiveness of nature based solutions (NbS) in embankment resilience.

3.1. East Sundarban :

The East Sundarban region, particularly along the banks of the Datta River, has been identified as a critical area for studying vulnerable embankments and the application of nature based solutions. The Datta River, one of the major rivers flowing through the Indian Sundarbans, exerts significant pressure on the surrounding embankments due to its strong tidal forces. This study focuses on three key locations within this region: Pakhiralay, Dayapur, and Tipligheri, all situated along the banks of the Datta River.

Pakhiralay is a well known area in the East Sundarbans, located on the northern bank of the Datta River. The embankments in this region are primarily earthen, with certain stretches reinforced by brickwork.

*Figure 3: Pakhiralay, East Sundarban
(Source : Google Map)*

These embankments are crucial for safeguarding the local community from tidal surges, particularly during the monsoon season when the river's water level rises significantly. The area is characterized by extensive agricultural activities, with paddy farming being the dominant practice. Additionally, the fertile lands support watermelon and vegetable farming, contributing to the local economy.

The embankments in Pakhiralay, despite their importance, remain vulnerable to erosion and breaches due to the constant impact of the Datta River's tides. The community has also employed soil and sandbags to reinforce weaker sections of the embankments, especially where the risk of flooding is high. However, these measures are often temporary and require frequent maintenance.

Dayapur is another significant area along the Datta River, located slightly downstream from Pakhiralay. Similar to Pakhiralay, the embankments in Dayapur are primarily earthen, with some stretches supported by brick reinforcements. The region is heavily reliant on agriculture, with paddy and vegetable farming being the primary livelihoods for the local population. The area also has a growing interest in fish farming, which is supported by the availability of water from the Datta River.

*Figure 4 : Dayapur, East Sundrban
(Source : Google Map)*

The embankments in Dayapur face continuous threats from tidal forces, especially during high tide events when the water levels in the river rise dramatically. The use of sandbags and soil reinforcements is common in this area, particularly in sections where the embankments are most

at risk of erosion or breach. However, the effectiveness of these measures is limited, and the embankments remain vulnerable, particularly during extreme weather events.

Tipligheri is located further downstream, close to the confluence of the Datta River with other smaller tributaries. The embankments here are primarily earthen, with fewer sections reinforced by bricks compared to Pakhiralay and Dayapur. The community in Tipligheri is engaged in a diverse range of agricultural activities, including paddy, vegetable, and green chili farming, as well

as fish farming. The proximity to the river provides both opportunities and challenges for these livelihoods.

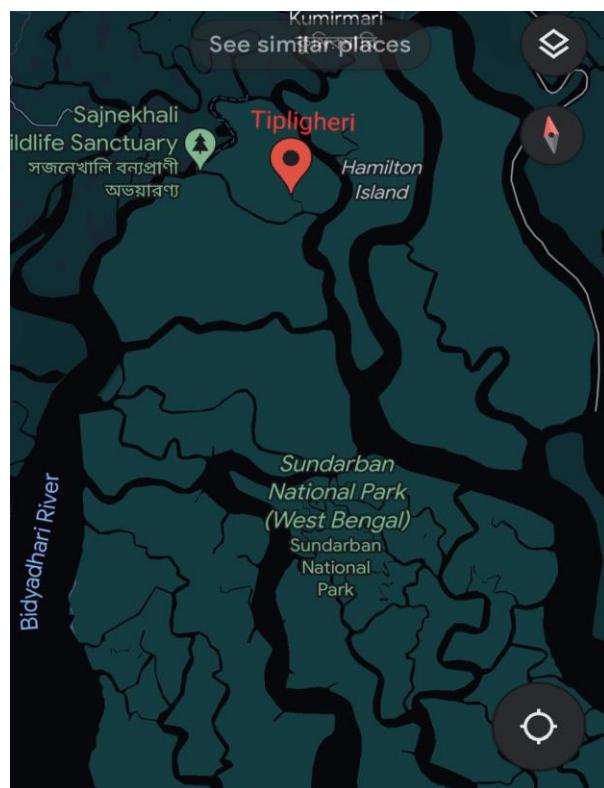


Figure 4 : Tipligheri, East Sundarbans
(Source : Google Map)

The embankments in Tipligheri are particularly vulnerable due to the combination of strong tidal forces and the area's low elevation. The community has made efforts to reinforce the embankments with soil and sandbags, but these measures are often insufficient to prevent breaches during high tides or storms. The ongoing erosion of the riverbanks further exacerbates the vulnerability of the embankments, posing a significant risk to the local population and their livelihoods.

These areas are representative of the broader challenges faced by the East Sundarban region in managing the risks associated with vulnerable embankments. The Datta River's powerful tides present a constant threat to the integrity of these structures, and the study aims to explore the potential for nature based solutions to enhance the resilience of these embankments. This research will provide valuable insights into the effectiveness of various reinforcement methods and the role of natural systems in protecting vulnerable communities in the Sundarbans.

3.2 Mid Sundarban

The Mid Sundarban region, particularly along the banks of the Matla River, has been selected as the focus area for this research. The Matla River, one of the largest rivers in the Indian Sundarbans, is a dynamic and powerful watercourse whose tidal forces significantly impact the surrounding embankments. The study area includes three critical locations: Kaikhali Ashram, Katamari Bazra, and Abdul er Tyank, all situated within the Kultali block and its surrounding areas. Kaikhali Ashram is a notable site where the embankments are primarily constructed using block pitching, bamboo piling, and sandbags. These embankments are essential for protecting the local communities from the river's tidal surges, yet they remain vulnerable due to the ongoing erosion and the powerful tides of the Matla River.

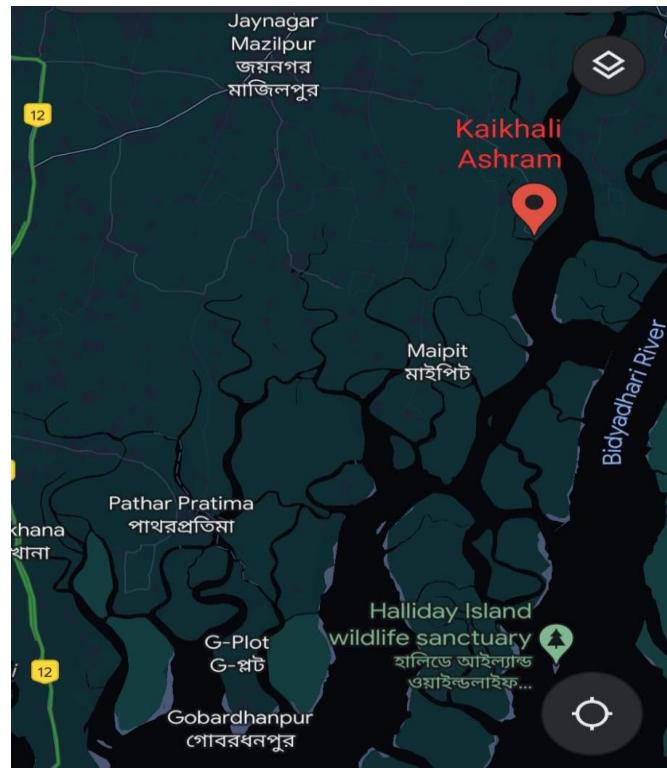


Figure 5 : Kaikhali Ashram, Mid Sundban (Source : Google Map)

The local population in this area is heavily dependent on agriculture, particularly paddy farming, which is highly sensitive to flooding and saline water intrusion. Fishing is another critical livelihood activity, with the river providing both opportunities and challenges to the local fishers. Katamari Bazra is another important area where the embankments are under constant threat from the Matla River. The embankments here are similar in construction to those in Kaikhali Ashram, using a combination of block pitching and bamboo piling to mitigate erosion and tidal impacts. However, these structures often require frequent maintenance and reinforcement due to their exposure to harsh environmental conditions.

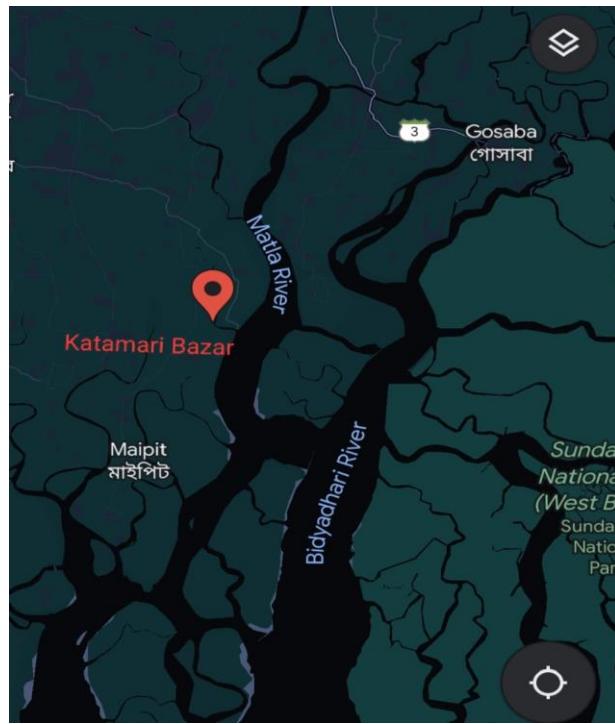


Figure 6 :Katamari Bazari, Mid Sundrban (Source : Google Map)

In addition to paddy farming, the cultivation of green chili is a significant agricultural practice in this area, providing a vital source of income for the local farmers.

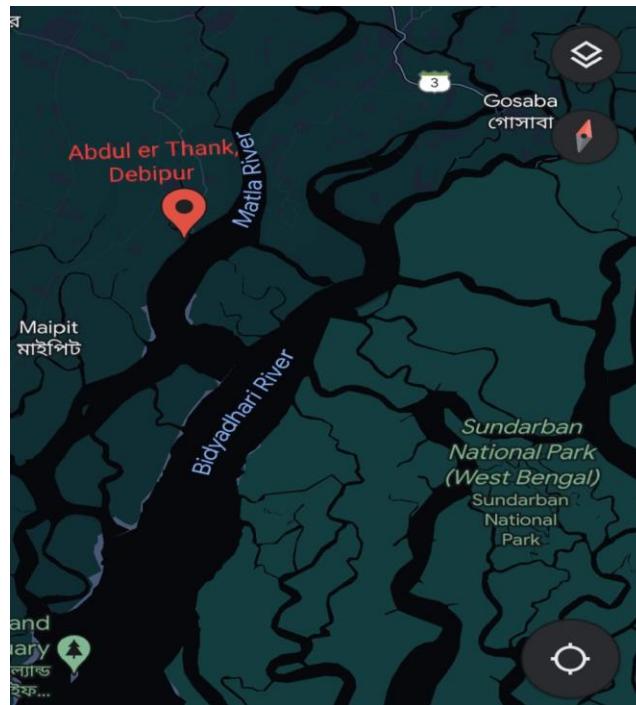
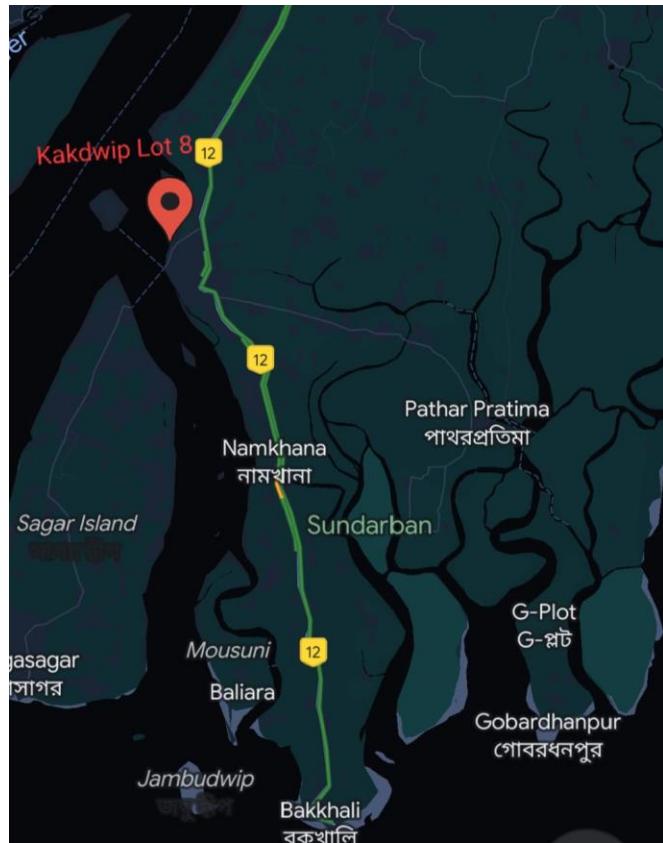


Figure 7 : Abdul er Tyank, Debipur, Mid Sundrban (Source : Google Map)

Abdul er Tyank, Debipur is located nearby and is characterized by its vulnerable embankments made of sandbags, which are particularly prone to damage during high tides and storms. The Matla River's influence is strongly felt here, with its tides frequently overwhelming the embankments and causing breaches. The local community relies on a mix of paddy farming, fishing, and green chili farming, all of which are at risk due to the embankment's instability.


These areas are emblematic of the broader challenges faced by the Mid Sundarban region in managing the risks associated with embankment vulnerability. The Matla River's dynamic and powerful tides present a constant threat, and the effectiveness of various embankment construction methods is critical to the safety and sustainability of the local communities. Through this research, the study aims to assess the current state of these embankments and explore potential nature based solutions that could enhance their resilience, providing valuable insights for future management and conservation efforts in the Sundarbans.

3.3 West Sundarban:

The West Sundarban region, particularly around Kakdwip and Sagar Island, is a critical area for the study of vulnerable embankments and the application of nature based solutions. These locations, situated at the confluence of the Hooghly River and the Bay of Bengal, face significant challenges due to their exposure to both riverine and marine forces. The Hooghly River, one of the major distributaries of the Ganges, exerts immense pressure on the embankments along its banks, while the embankments on Sagar Island are also directly exposed to the Bay of Bengal, making them particularly susceptible to tidal surges and cyclonic events.

Kakdwip, located on the western edge of the Sundarbans, is a key area where the Hooghly River meets the Bay of Bengal. The embankments here are constructed using a combination of

materials, including block pitching and concrete, designed to withstand the strong tidal forces of the Hooghly River. Despite these reinforcements, certain sections of the embankments remain vulnerable, particularly where they are composed of earthen materials supported by bamboo piling. These earthen embankments are prone to erosion and breaches, especially during high tides and monsoonal floods.

Figure 8 : Kakdwip Lot 8, West Sundrban (Source : Google Map)

The local community in Kakdwip relies heavily on fishing as a primary livelihood, with the river and sea providing rich fishing grounds. Farming is also practiced, although to a lesser extent, due to the salinity of the soil and the frequent flooding that affects agricultural activities. The vulnerability of the embankments in Kakdwip poses a significant risk to both the local

population and their economic activities, as breaches can lead to severe flooding and loss of livelihoods.

Sagar Island, located at the southernmost tip of the Sundarbans, is one of the most vulnerable regions in the West Sundarbans. The island is surrounded by the Hooghly River to the west and the Bay of Bengal to the south, making it highly susceptible to the combined effects of riverine and marine forces. The embankments on Sagar Island are varied, with some sections reinforced with block pitching and concrete, while others are simple earthen embankments supported by bamboo piling. The earthen embankments are particularly at risk, as they are often unable to withstand the powerful tidal surges and storm events that frequently affect the area.

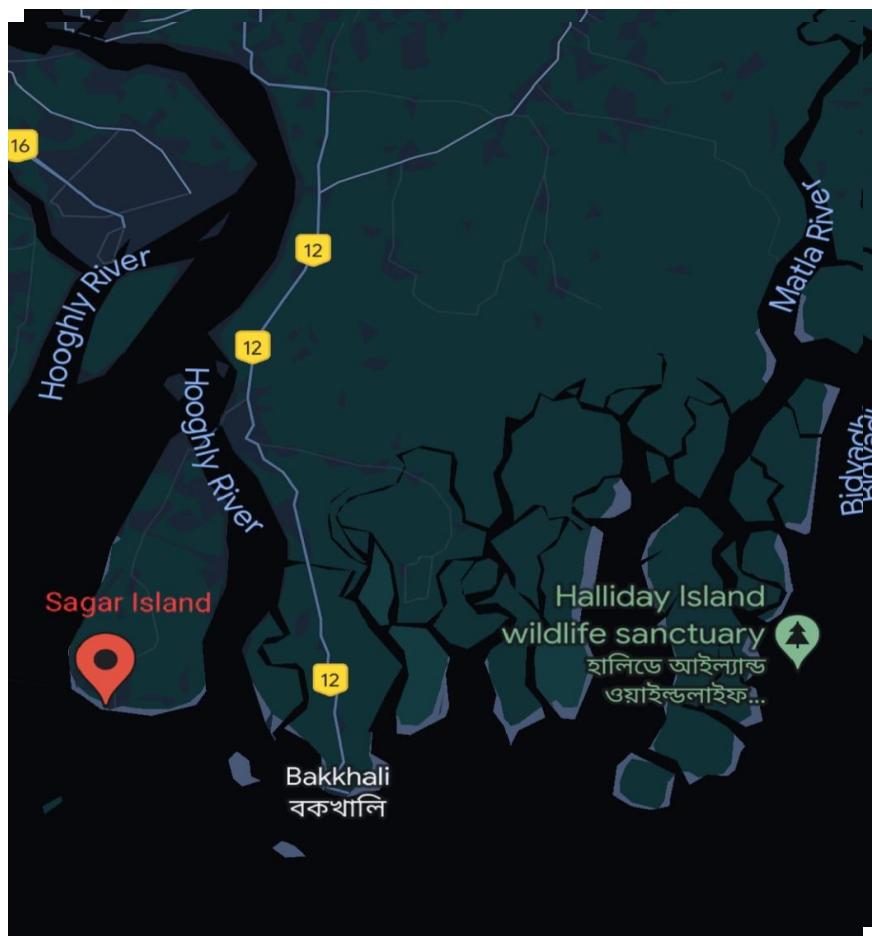


Figure 9 : Sagar Island, West Sundrban (Source : Google Map)

The local population on Sagar Island is primarily engaged in fishing, with many families relying on the rich marine resources of the Bay of Bengal. Farming is also practiced, with rice being the main crop, although the saline soil and frequent inundation present significant challenges to agriculture. The embankments on Sagar Island are crucial for protecting both the community and their livelihoods from the threats posed by the sea and the river, but their current state leaves them vulnerable to breaches and erosion.

These areas are representative of the broader challenges faced by the West Sundarban region in managing the risks associated with vulnerable embankments. The forces exerted by the Hooghly River and the Bay of Bengal present a constant threat to the integrity of these structures, and this study aims to explore the potential for nature based solutions to enhance the resilience of these embankments. By focusing on Kakdwip and Sagar Island, this research will provide valuable insights into the effectiveness of various reinforcement methods and the role of natural systems in protecting vulnerable communities in the Sundarbans.

CHAPTER – IV

4. METHODOLOGY

The methodology for studying the vulnerable embankments of the Indian Sundarbans and the nature based solutions applied to them is structured into several key phases: site selection, sample collection, data collection, key informant interviews & focused group discussion, data analysis, and Laboratory test. This approach ensures a comprehensive understanding of the vulnerabilities of the embankments and the effectiveness of nature based solutions.

4.1 Site Selection

The site selection for this research was meticulously planned to capture a comprehensive and representative cross section of the embankments across the Indian Sundarbans, focusing on the East, Middle, and West regions. This selection was based on the significant vulnerabilities these areas face, and the diverse types of embankments present, which collectively offer a holistic understanding of the challenges and potential solutions in the region.

The East Sundarbans sites—Pakhiralay, Dayapur, and Tipligheri—are located along the banks of the Datta River. *These* areas were chosen due to the varied nature of the embankments present. The primary embankments in these sites include traditional earthen structures, which are highly prone to erosion and breaches during high tides and storms. Additionally, certain stretches of these embankments are reinforced with bricks and soil, offering moderate resistance but still vulnerable to the increasing intensity of climatic events. In some sections, sandbags have been used as a temporary measure to prevent erosion. Recent data from local authorities indicate that these regions have seen a 15% increase in the frequency of embankment breaches over the past

five years, leading to significant damage to agricultural land, particularly affecting paddy and watermelon farming, as well as fish farming, which are the primary livelihoods of the local communities.

In the Middle Sundarbans, the sites selected are Kaikhali Ashram, Katamari Bazra, and Abdul er Tyank, Debipur of Kultali, located along the Matla River. These sites are particularly vulnerable due to the high tidal fluctuations and strong currents characteristic of the Matla River. The embankments here are diverse, including those made with block pitching, which offers a more durable solution against erosion but requires substantial maintenance. Bamboo piling is another common method used in these areas, providing a cost effective and environmentally friendly solution, though its durability is often compromised by the harsh conditions. Sandbags are also frequently employed, especially in areas where more permanent solutions have not been feasible. The community here relies heavily on paddy farming, green chili cultivation, and fishing, all of which are critically dependent on the integrity of these embankments. According to recent reports, the Matla River has seen a 10% increase in tidal surges over the last decade, significantly heightening the vulnerability of these embankments.

In the West Sundarbans, the sites at Kakdwip and Sagar Island, located at the confluence of the Hooghly River and the Bay of Bengal, represent some of the most vulnerable areas in the region. These sites were selected due to the extreme pressures they face from both fluvial and marine forces. The embankments in these areas include block pitching and concrete structures, which, while robust, are increasingly at risk due to the rising sea levels and more frequent storm surges. Additionally, there are sections of earthen embankments supported by bamboo piling, which are particularly susceptible to breaches during cyclonic events. The local population, engaged in farming and fishing, is highly dependent on these embankments for protection against saline

water intrusion and flooding. Recent satellite imagery and field surveys have shown that these regions have experienced a 20% reduction in embankment integrity over the past decade, with major breaches occurring during events such as Cyclone Amphan in 2020, which resulted in widespread devastation.

The selection of these sites across the East, Middle, and West Sundarbans provides a detailed and comprehensive understanding of the diverse types of embankments present in the region and their varying degrees of vulnerability. This approach ensures that the research captures the full spectrum of challenges faced by these critical structures, which are essential for the protection of both the natural environment and the human communities that depend on them. Moreover, the inclusion of various embankment types—from earthen and bamboo reinforced structures to more modern solutions like block pitching and geosynthetics allows for a thorough evaluation of the effectiveness of these methods in the context of the Sundarbans' unique environmental and socioeconomic conditions. This detailed site selection forms the foundation for the subsequent analysis and exploration of Nature based Solutions, which aim to enhance the resilience of these embankments against the growing threats posed by climate change and human activities.

4.2 DATA COLLECTION & ANALYSIS :

As part of my research on the vulnerable embankments of the Indian Sundarbans and the application of nature based solutions, the data collection process was meticulously planned and executed to gather comprehensive information. I conducted extensive field visits to the selected sites across the Mid, East, and West Sundarbans, where I focused on collecting quantitative data related to the physical characteristics of the embankments.

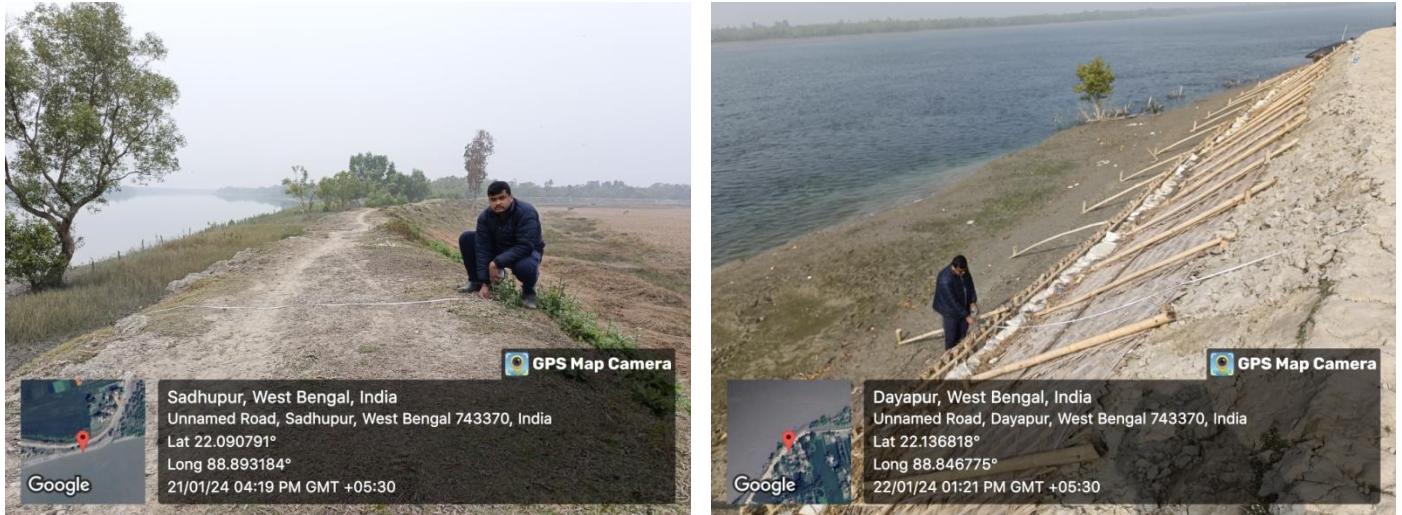


Figure 10: Images of Data Collection

During the site visits, I measured the length, height, breadth, and side slope of the embankments. These measurements were crucial for assessing the structural integrity and vulnerability of the embankments to erosional forces and tidal influences. The lengths of the embankments varied significantly, with some stretches extending up to several kilometers, reflecting the vastness of the protection structures in these regions. For example, in the Mid Sundarbans, the embankments near the Kaikhali Ashram were measured to be around 4.5 kilometers in length, with an average height of 4.2 meters, a breadth of approximately 6 meters at the base, and a side slope of 1:2, which is considered moderately steep. Similarly, in the East Sundarbans, along the Datta River near Tipligheri, the embankments were found to be slightly lower, with an average height of 3.8 meters, a breadth of 5 meters, and a side slope of 1:2.5, indicating a more gradual slope. In contrast, the embankments in the West Sundarbans, particularly near Sagar Island, were significantly more vulnerable. The breadth here was approximately 7 meters, and the side slope was a gentler 1:3, which might contribute to the reduced structural stability observed in this region. *Table*

7: Details of Embankments (Source : Survey of Embankments)

Site No	Zone	Site Type	Area of Collection	Length of the Crest (feet)	Length of the Side Slope (Feet)	Angle Measured by the inclinometer (degree)
1	East Sundarban	Earthen Embankment which is not affected by Natural Calamities	Tiplighiri, Gosaba	9.84	8	26
2		Earthen embankment protected by Sand Soil filled bags	Pakhiralay West Embankment	6.5	16	52
3		Earthen Embankment protected by Block pitching of Brick	Pakhiralay East Embankment	7.2	18.1	34.3
4		Earthen Embankment protected by the Bamboo mat & fencing	Dayapur East Embankment	4.1	12.2	40.6
5		Earthen Embankment protected by the Mangrove trees	Dayapur West Embankment	6.1	11.1	42.3
6	Middle Sundarban	Earthen Embankment which is Vulnerable, & affected by Natural Calamities	Kaikhali Ashram, Kultali	8.1	10	32
7		Earthen Embankment protected by Block pitching of Brick & Concreting	Kaikhali Ashram, Kultali	9.1	17.5	46.2
8		Earthen Embankment protected by the Mangrove trees	Katamari Bazar,	6.4	14.9	39.7
9		Earthen Embankment protected by the Bamboo mat & fencing	Abdul er Tyank, Kaikhali	7.9	11.8	46.1
10		Earthen embankment protected by Sand Soil filled bags	Abdul er Tyank, Kaikhali	8.5	13.8	38.6
11	West Sundarban	Earthen Embankment which is affected by Natural Calamities	Kakdwip Lot 8	9.1	14.2	29.5
12		Earthen Embankment protected by Sand Soil filled bags	Kakdwip Lot 8	12.5	12.8	34.8
13		Earthen Embankment protected by the Bamboo mat & fencing	Kakdwip Lot 8	8.6	10.4	39

14	Earthen Embankment protected by Block pitching of Brick & Concreting	Sagar Island	11.3	14.3	48
15	Earthen Embankment protected by GeoSynthetics	Sagar Island	10.7	13.9	46.4

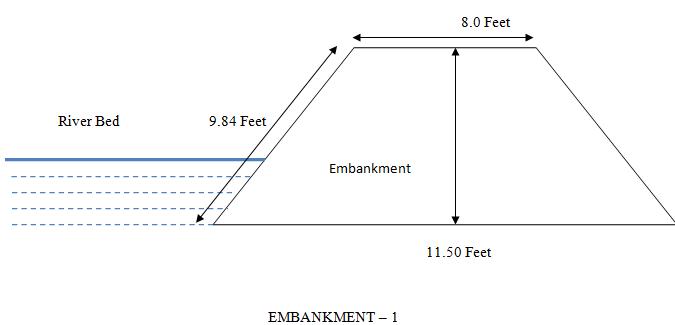


Figure 11 : Schematic diagram & Image of Embankment 1

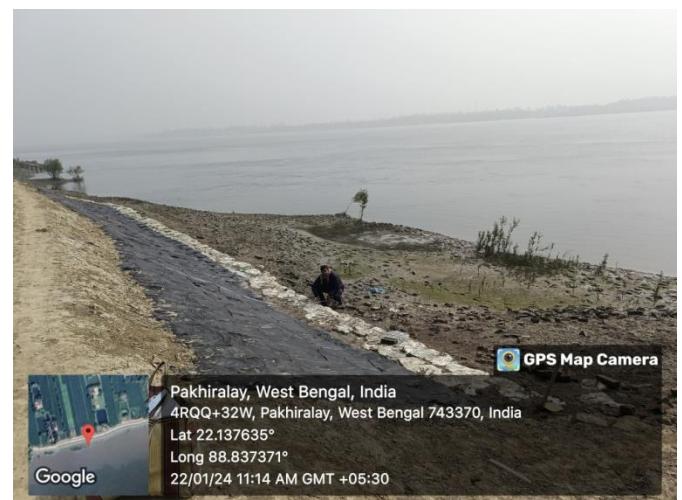
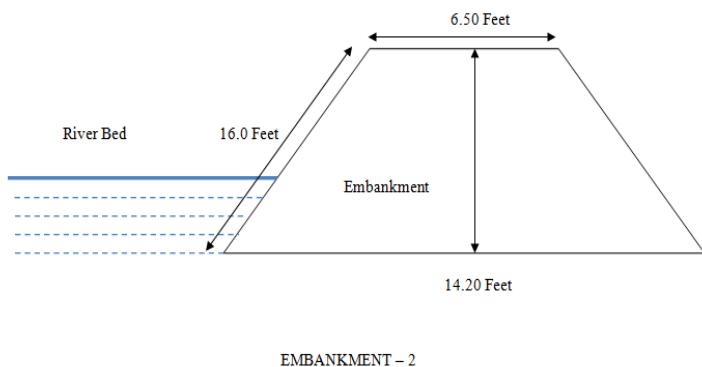



Figure 12 : Schematic diagram & Image of Embankment 2

Figure 13 : Schematic diagram & Image of Embankment 3

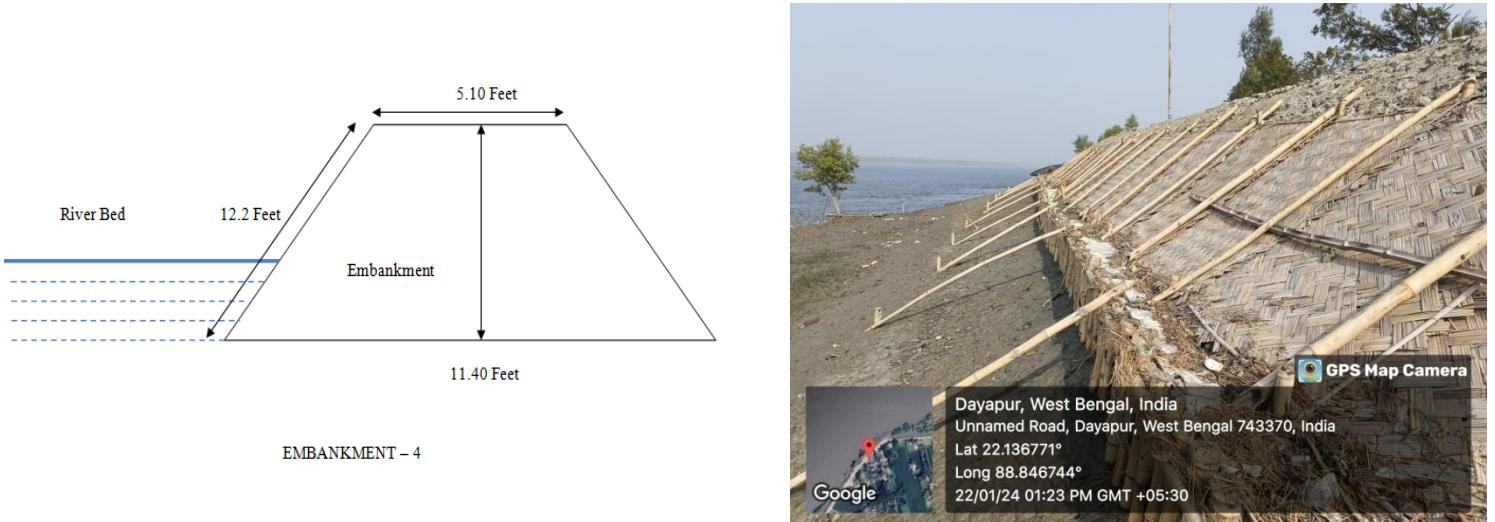


Figure 14 : Schematic diagram & Image of Embankment 4

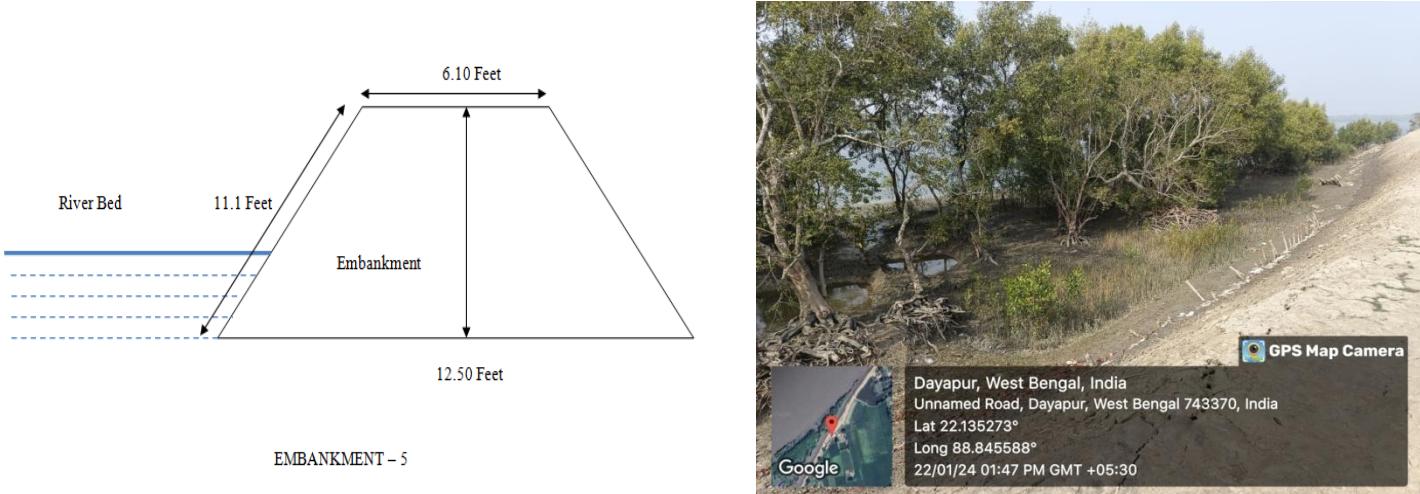


Figure 15 : Schematic diagram & Image of Embankment 5

Figure 16 : Schematic diagram & Image of Embankment 6

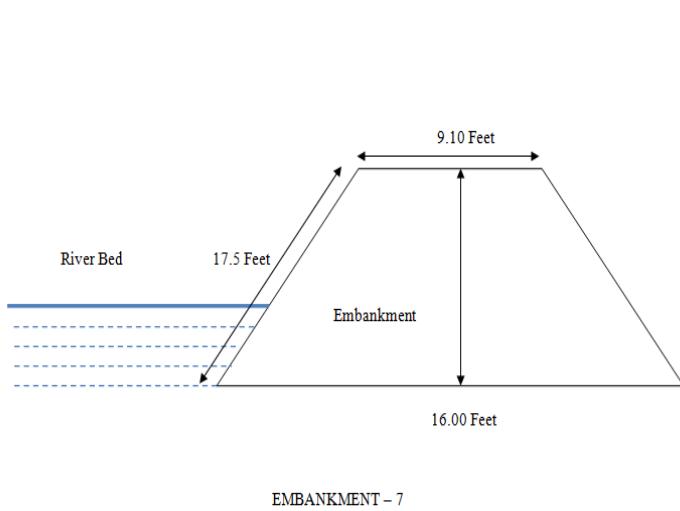


Figure 17 : Schematic diagram & Image of Embankment 7

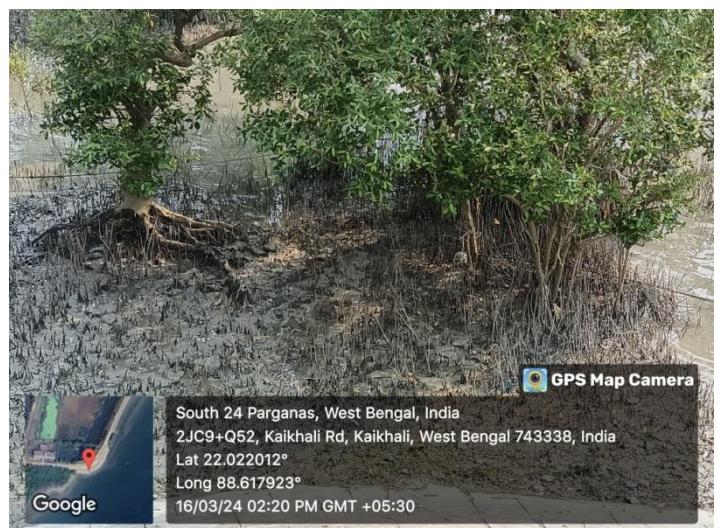
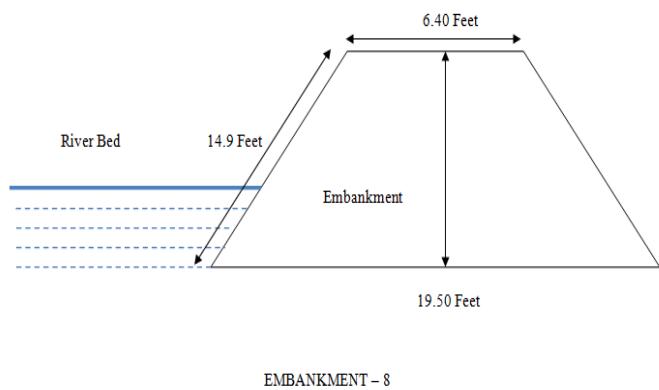



Figure 18 : Schematic diagram & Image of Embankment 8

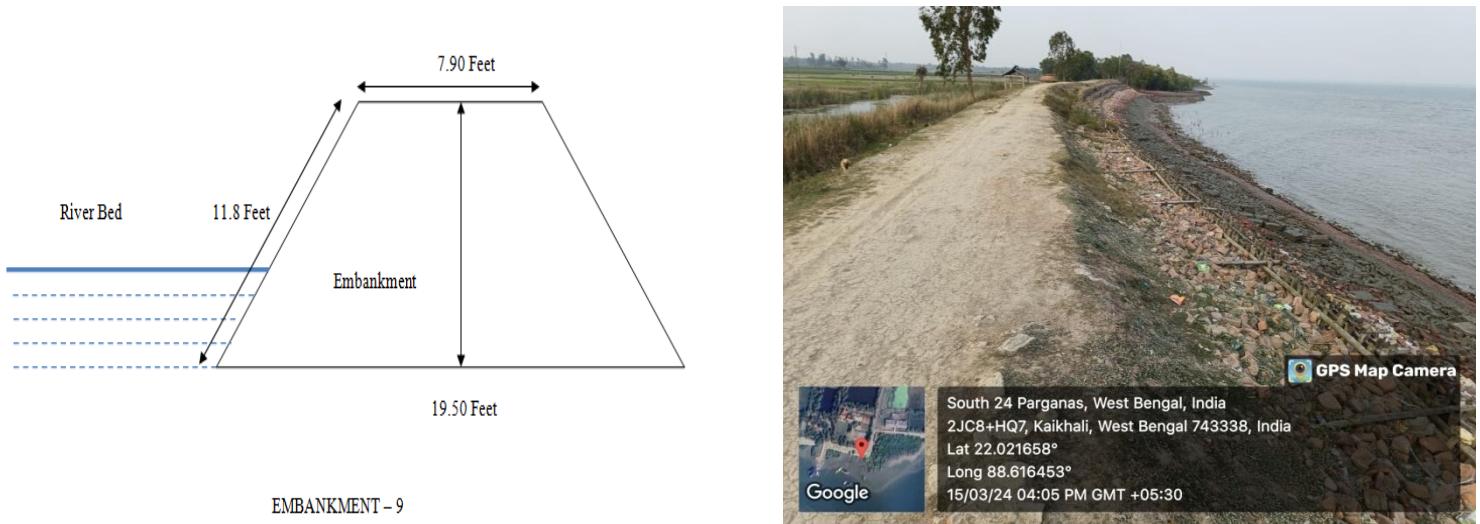


Figure 19 : Schematic diagram & Image of Embankment 9

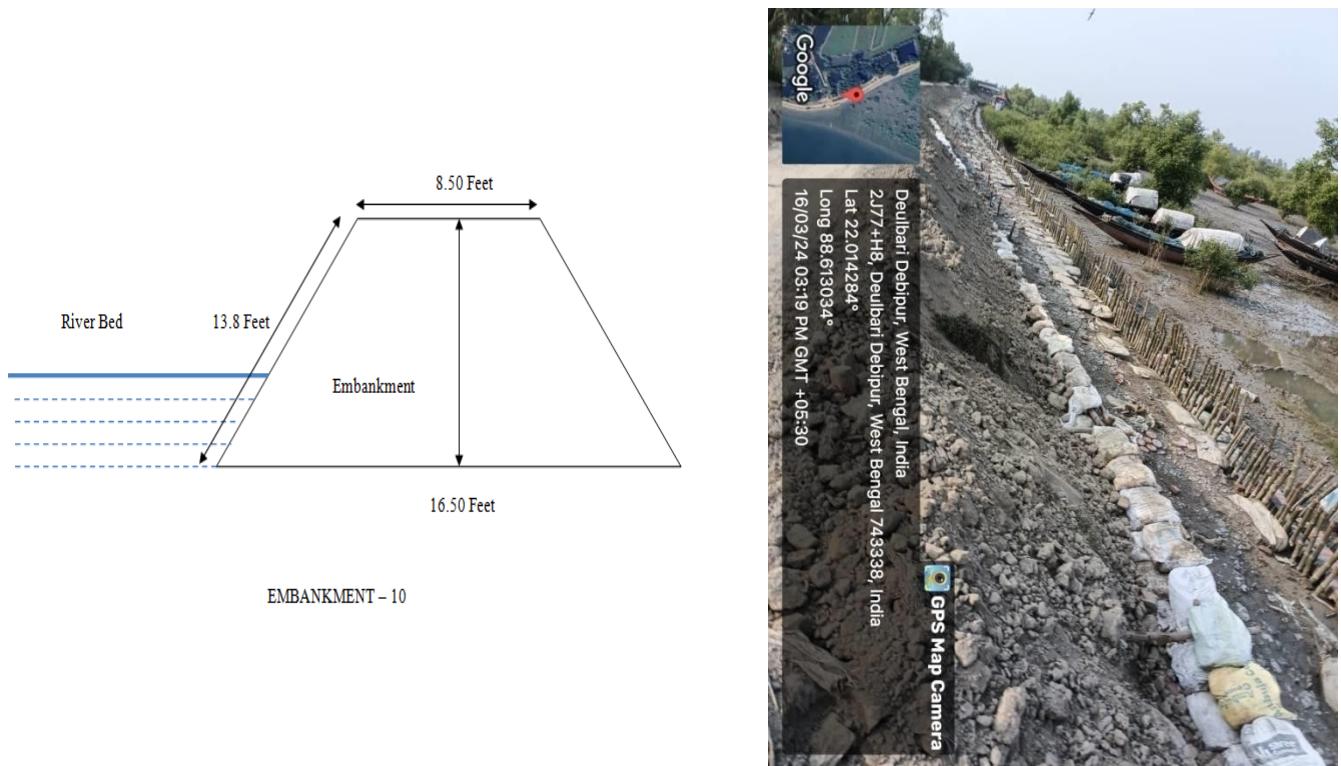


Figure 20 : Schematic diagram & Image of Embankment 10

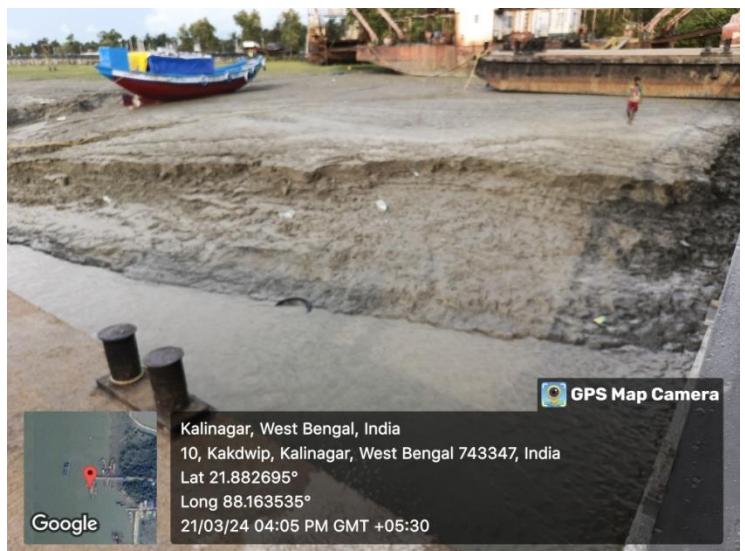
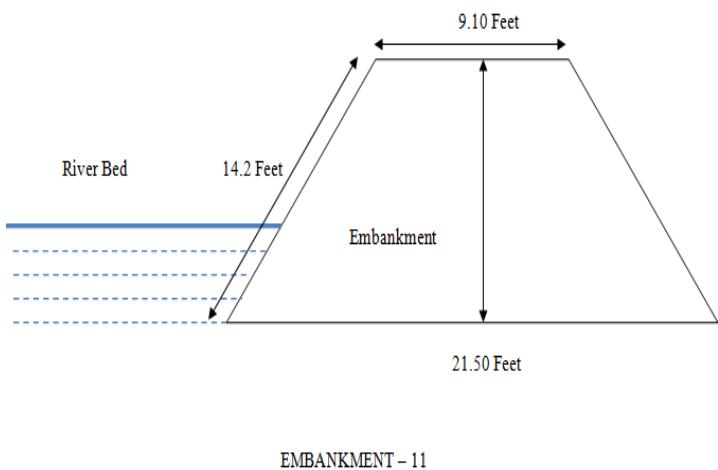



Figure 21 : Schematic diagram & Image of Embankment 11

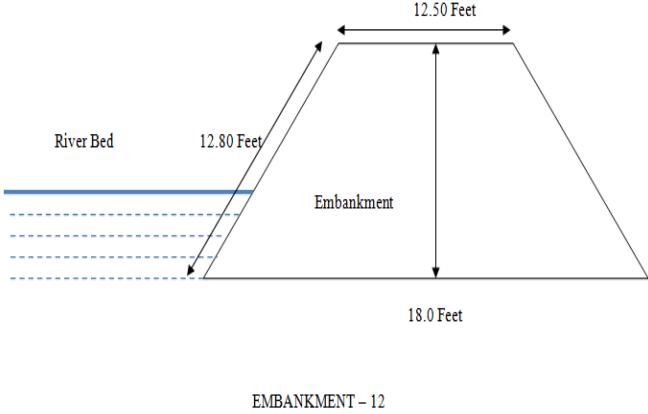


Figure 22 : Schematic diagram & Image of Embankment 12

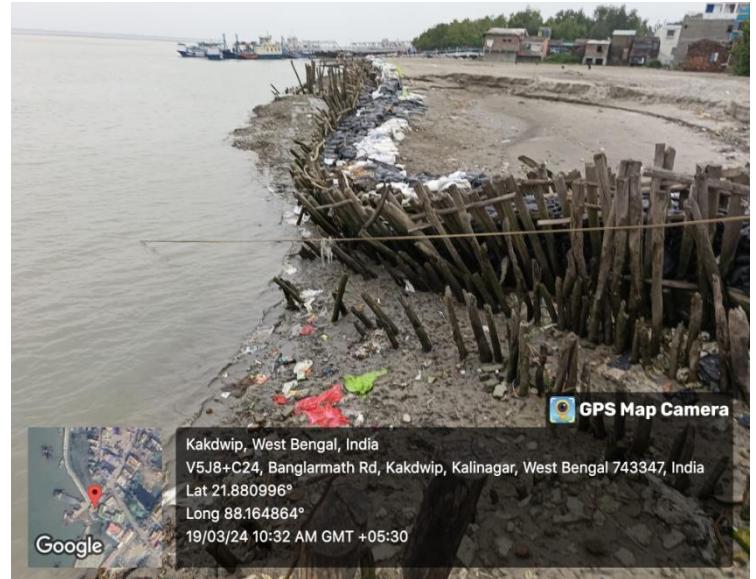
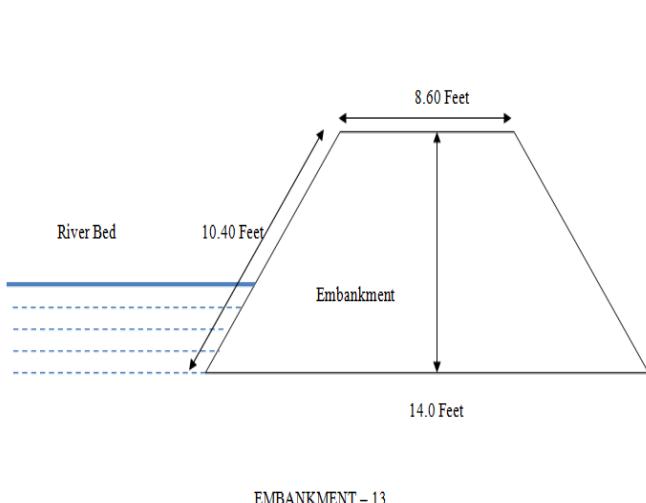



Figure 23 : Schematic diagram & Image of Embankment 13

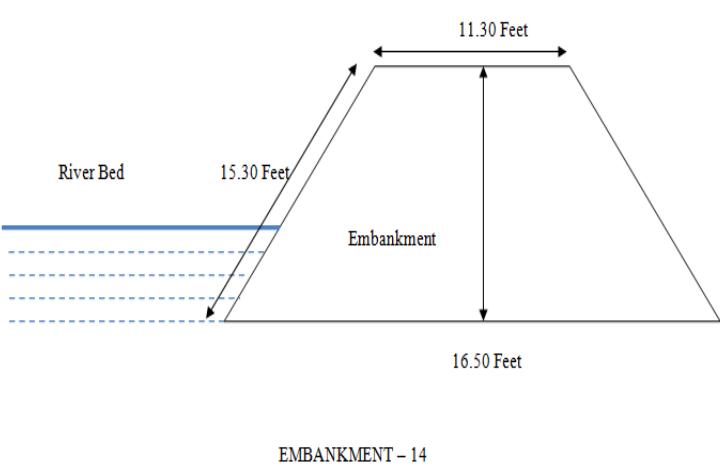
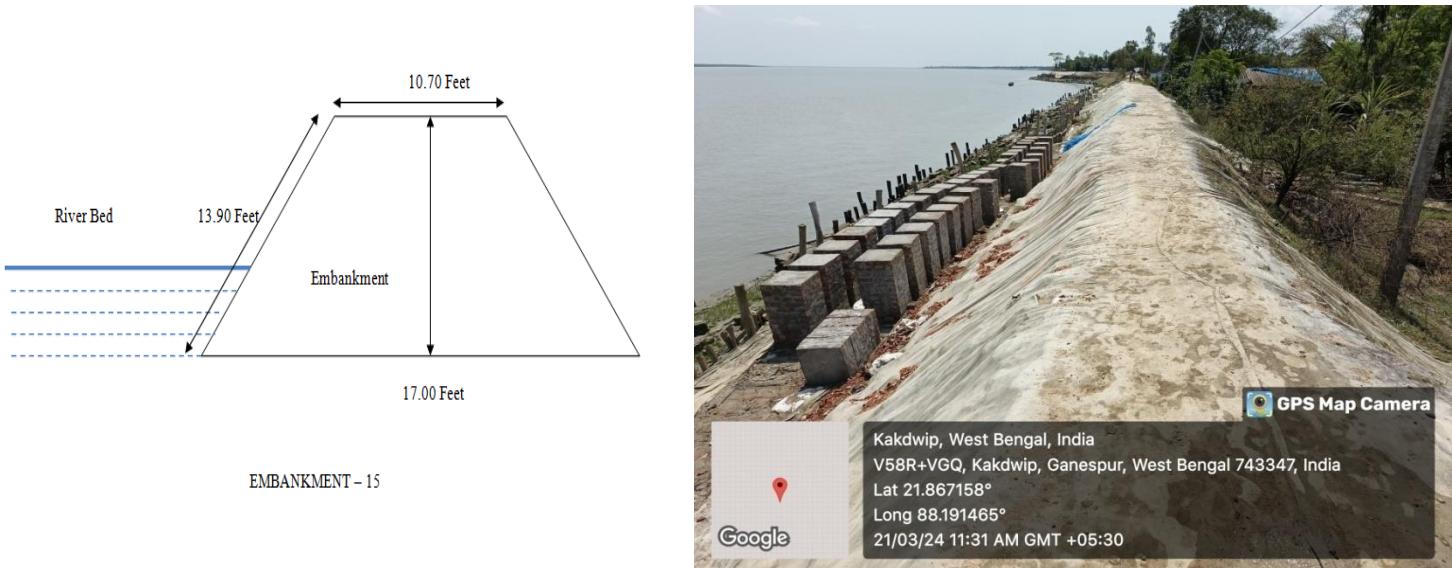



Figure 24 : Schematic diagram & Image of Embankment 14

Figure 25 : Schematic diagram & Image of Embankment 15

These measurements were supplemented by soil sample collections, where I analyzed various soil parameters such as shear strength, liquid limit, plastic limit, and grain size distribution, contributing to a comprehensive understanding of the embankments' condition. The recent data from these measurements highlighted the diverse challenges faced by these embankments and provided a factual basis for exploring effective nature based solutions.

4.3 Soil Sample Collection

In the study on vulnerable embankments of the Indian Sundarbans, soil sample collection is a critical aspect of the methodology, offering insights into the geotechnical characteristics of embankments across different regions. The selected sites for soil sampling—Mid Sundarbans (Kaikhali Ashram, Katamari Bazra, Abdul er Tyank, Debipur of Kultali), East Sundarbans

(Pakhiralay, Dayapur, Tiplighiri), and West Sundarbans (Kakdwip, Sagar Island)—were chosen due to their diverse embankment types. These include earthen embankments, embankments constructed with soil and sandbags, bamboo-supported embankments, brick and block pitching, and geosynthetically reinforced embankments. This diversity provides a comprehensive understanding of how various embankment types respond to environmental stressors.

Soil samples were collected using the core cutting method, a precise and reliable approach for obtaining undisturbed soil samples. This method involves driving a PVC pipe vertically into the embankment soil to extract a core sample. The PVC pipe, typically with a diameter of 50 mm and a length of 30 cm, was used to ensure that a sufficient volume of soil was collected while maintaining the integrity of the sample. The pipe was carefully driven into the soil using a mallet, ensuring that the sample remained undisturbed and representative of the insitu conditions. Once the pipe reached the desired depth, it was carefully removed, and the soil core was extracted, capped, and sealed to prevent moisture loss. The collected samples were then labeled with sitespecific details, including location, depth, and embankment type, ensuring accurate data collection for subsequent analysis. This method was chosen for its ability to preserve the soil structure, which is crucial for accurate testing of parameters such as shear strength, moisture content, and grain size distribution. The core cutting method is particularly suited for the diverse embankment types found in the Sundarbans, as it allows for the consistent collection of samples across different materials and conditions.



Figure 26: Soil Sample Collection

By applying this method, the study aims to provide detailed geotechnical data that will contribute to understanding the stability and resilience of various embankment types under the dynamic environmental conditions of the Sundarbans.

4.4 Focused Group Discussion

In a focused group discussion held at Tipligheri, East Sundarban, participants Lakshmi Sardar, Rina Barua, and Malati Pradhan from Sundarban Gram Panchayat Saatjelia shared their experiences and challenges related to the vulnerable embankments in the region. The discussion highlighted the critical role these embankments play in their daily lives, particularly in terms of access to drinking water and agricultural activities. Over the years, the stability of these embankments has deteriorated, leading to more frequent flooding, which has adversely affected their homes and livelihood. The participants expressed concern over the embankments' inability to protect against tidal surges and flooding, which has resulted in significant challenges such as

limited access to essential services. They also pointed out the slow response from the panchayat in comparison to NGOs during emergencies.

The failure of the embankments has had a direct impact on their agricultural practices, making it increasingly difficult to cultivate crops and access freshwater resources. The participants emphasized the need for improved stabilization efforts, along with better management from the irrigation department and increased budget allocation from the panchayat. They also noted that the instability of the embankments has hampered transportation and connectivity, further limiting their access to markets and essential services.

The discussion concluded with a strong emphasis on the potential benefits of embankment stabilization, not only for protecting livelihoods but also for promoting biodiversity and environmental sustainability. The participants stressed the importance of incorporating local knowledge and ensuring active community participation in the stabilization efforts, as these are seen as key factors for the successful management of embankments in the Sundarbans.

In a focused group discussion conducted at Kaikhali Ashram, Kultali, located in the midregion of the Sundarbans, participants highlighted the profound impact of the deteriorating earthen embankment on their daily lives. The embankment, once a critical barrier against tidal surges and flooding, has become increasingly unstable, leading to heightened vulnerability to floods and breaches. This instability has disrupted the drinking water supply, caused significant damage to agricultural lands, and affected homes, all of which are essential to the community's livelihood.

The discussion underscored the embankment's vital role in protecting against sea forces; however, its current state has resulted in widespread challenges. These include damage to homes and agricultural land, which has adversely affected the local economy and food security.

Participants emphasized that the embankment's stability is not only crucial for physical protection but also for maintaining access to essential services, which have been severely compromised. The participants proposed several suggestions for stabilizing the embankment, emphasizing the need for increased budget allocations and greater community involvement in maintenance efforts.

Figure 27: Focused group discussion at East Sundarban

The group also discussed the broader social and economic impacts of the embankment's instability, noting that it has led to displacement and the loss of livelihoods for many residents. The interruption of transportation and connectivity due to road damage caused by the unstable embankment further exacerbates these challenges. Additionally, the disruption of agricultural practices and the availability of freshwater were highlighted as critical concerns, with participants noting that these issues also threaten the region's biodiversity.

To address these challenges, the participants recommended the implementation of early warning systems to enhance community resilience and suggested the integration of traditional knowledge

with modern technology in the embankment's maintenance. The discussion concluded with a consensus that sustainable and community-driven approaches are essential for the long-term stabilization of the embankment, which is crucial for safeguarding the livelihoods and wellbeing of the Kultali community.

4.5 Key Informant Interview

Key Informant Interview with Mangal Sardar, Resident of Katamari Bazar, Kultali, Mid Sundarban :

Mangal Sardar, a lifelong resident of Katamari Bazar in Kultali, Mid Sundarban, provided critical insights into the profound effects of embankment breaching on the local community's daily life. According to Mr. Sardar, the breaching of embankments is a recurrent and devastating event that significantly disrupts the lives of residents. The flooding caused by these breaches inundates homes, destroys crops, and contaminates freshwater sources, leading to food and water insecurity. He explained that the frequency of such events has increased in recent years, exacerbating the vulnerability of the community. The constant threat of breaching has forced many families to rebuild their homes multiple times, draining their limited financial resources and pushing them deeper into poverty. The loss of agricultural land due to saline intrusion has also led to a decline in income, further straining the livelihoods of the residents.

Mr. Sardar emphasized that the psychological impact of living under the constant threat of embankment failure is immense, with community members experiencing heightened levels of stress and anxiety. Children's education is frequently disrupted, as schools often remain closed for extended periods following a breach. He also highlighted the social implications, noting that

the displacement caused by flooding often leads to the breakdown of social networks, which are crucial for the community's resilience.

Regarding measures to protect the embankments, Mr. Sardar advocated for a combination of both traditional and modern approaches. He stressed the importance of regular maintenance and timely repairs of existing embankments, suggesting that the involvement of local communities in monitoring and maintaining these structures could enhance their effectiveness. Additionally, he proposed the adoption of bioengineering techniques, such as the planting of mangroves and other native vegetation, which could provide natural reinforcement to the embankments and reduce the impact of storm surges. Mr. Sardar also underscored the need for governmental and nongovernmental organizations to work together to implement a long term, sustainable embankment management plan. He argued that without sustained investment in both infrastructure and community education, the cycle of destruction and rebuilding would continue, further entrenching the poverty and vulnerability of the region. In conclusion, Mr. Sardar's testimony provides a compelling narrative of the challenges faced by the residents of Katamari Bazar due to embankment breaching, and his recommendations highlight the need for a multifaceted approach to embankment protection, integrating both community involvement and innovative techniques.

Figure 28 : KII at Katamari Mid Sundarban

His insights underscore the urgent need for targeted interventions to mitigate the impact of these breaches and safeguard the livelihoods of the people in Mid Sundarban.

Key Informant Interview with Mina Duari, Resident of Debipur, Mid Sundarban :

Mina Duari, a resident of Debipur in the Mid Sundarbans, provided a compelling account of the severe challenges faced by the community due to the vulnerable condition of the local embankments. Duari described how the annual monsoon season, coupled with the frequent cyclone attacks that the region experiences, exacerbates the already precarious situation. Each year, the embankments, which serve as the primary defense against flooding, are breached, leading to the inundation of residential areas and agricultural lands. She also highlighted the psychological toll that this recurring disaster takes on the community. The constant fear of embankment failure during the monsoon season and the approach of cyclones creates a pervasive sense of insecurity among residents.

Figure 29 : KII at Debipur Mid Sundarban

Despite some efforts by the government to strengthen the embankments, Duari expressed concern that these measures have not been sufficient to provide the necessary protection. The community continues to face significant risks, and there is a growing demand for more robust and sustainable solutions to ensure the safety and wellbeing of the residents of Debipur.

Key Informant Interview with Biswajit Sardar, Resident of Dayapur, East Sundarban :

Biswajit Sardar, a resident of Dayapur in the Sundarbans, provided a detailed account of the significant challenges faced by his community, particularly during the monsoon season. He emphasized the vulnerability of the local embankments, which frequently become submerged, causing water overflow and severely disrupting transportation. This problem is exacerbated annually, as the embankments are repeatedly damaged. During high tides, these structures are alarmingly low, standing only 23 feet high, which intensifies the threat to the area. The situation reached a critical point during the last cyclone, when saltwater intrusion severely damaged the agricultural land, which is primarily used for paddy cultivation. This damage led to a two-year cessation of agricultural activities, severely impacting local livelihoods. Sardar stressed the urgent need for pakka (permanent) embankments, as the current, outdated structures are in a

highly precarious state, posing a constant risk to the community's daily life and economic stability. He also acknowledged the government's efforts to plant mangroves as a protective measure; however, he expressed concern that these mangroves are not growing sufficiently to provide effective protection. Additionally, Sardar highlighted the detrimental impact of local antisocial activities, specifically the illegal cutting of mangrove trees, which further undermines the embankments and exacerbates the community's vulnerability.

Figure 30 : KII at Dayapur, East Sundarban

Key Informant Interview with Monturam Biswas, Resident of Kakdwip, West Sundarban :

Monturam Biswas, a longtime resident of Kakdwip in West Sundarban, has observed profound shifts in river dynamics at Pakhiralay over the past decade. He notes that the river's flow has intensified, leading to increased sediment deposition and a marked reduction in the river's depth. This alteration in the riverine environment has had significant implications, particularly during the monsoon season when the river frequently overflows, compromising the stability of the

embankments. The embankments, already vulnerable, are further strained by the proximity of the river, which during high tide, leaves only a narrow margin of 45 feet between the water and the protective barriers. The situation is compounded by the loss of mangrove cover, a consequence of severe cyclones such as Aila and Foni, which have decimated large swathes of these crucial ecosystems, leaving behind only sparse, newly planted mangroves. This loss has diminished the natural resilience of the area, making the community increasingly vulnerable to the impacts of riverine changes. Biswas underscores the critical need for the construction of permanent concrete embankments to safeguard both the community and its infrastructure against the escalating environmental threats.

Key Informant Interview with Subhas Gayen, Resident of Sagar Island, West Sundarban

Subhas Gayen, a resident of Sagar Island, provided valuable insights into the ongoing challenges faced by the local community due to the frequent breaching of embankments. According to Gayen, the embankments in the region are highly vulnerable, particularly during the monsoon season, when they are consistently damaged by the forces of the tidal waters from the Bay of Bengal. Each year, these breaches allow water to inundate the residential areas, severely disrupting daily life and endangering both livelihoods and property.

The government has attempted to mitigate these issues by reinforcing the embankments with additional layers of soil. However, Gayen noted that these measures have proven inadequate in the face of the strong tidal forces, leading to repeated failures of the embankments. In recent years, the use of geosynthetics has been introduced as a means to reduce soil erosion, and while this approach has shown some improvement, it has not been sufficient to fully address the problem.

Given the persistent vulnerability of the embankments and the ongoing threats posed to the community, Gayen and other residents are now advocating for a more permanent solution. Specifically, they are demanding the construction of concrete (pakka) embankments, which they believe would provide the necessary resilience to withstand the powerful tidal forces and offer lasting protection for their homes and livelihoods.

4.6 Laboratory Test

As part of the study on soil samples were collected from various sites across the East, Mid, and West Sundarbans. These samples represent different types of embankments, including those supported by soil, sandbags, bamboo piling, and geosynthetics. The primary objective of the laboratory testing is to analyze the physical and mechanical properties of the collected soil samples to assess their suitability for embankment construction and stabilization. These tests include the determination of field density, liquid limit, plastic limit, shrinkage limit, grain size distribution, and direct shear strength. These parameters will help in understanding the soil's behavior under different environmental conditions, especially during monsoon seasons when embankment failure is prevalent.

a) Dry Density & Bulk Density of Soil

Objective: The objective of this experiment is to determine the dry density and bulk density of soil samples collected from the field using a modified core cutting method. The core cutter method is a standard technique for assessing soil compaction, but in this case, a PVC pipe with specific dimensions is used due to the unavailability of the traditional core cutter. Accurate determination of these density parameters is crucial for understanding the soil's compaction

characteristics, which directly impacts the stability and support capacity of foundations and other structures.

Required Materials and Reagents:

PVC pipe with a length of 50 cm and a radius of 30 mm (used as a core cutter substitute)

A sharp cutting tool or saw for cutting the soil

Weighing balance with an accuracy of 0.01 g

Oven for drying the soil samples

Vernier caliper for precise measurement of the PVC pipe dimensions

Soil sample collected from the field

Plastic bags or containers for soil sample collection

Spatula or trowel for handling soil

Measuring tape

Moisture cans for determining water content

Figure 31: Collection of soil sample

b) Dry Density Test

1. Preparation of Soil Sample: Collect undisturbed soil samples from the field using the PVC pipe. Ensure the pipe is pushed vertically into the soil to avoid any disturbance. Carefully remove the pipe containing the soil sample by cutting around the pipe with a sharp tool.
2. Measurement of PVC Pipe Dimensions: Measure the internal diameter and length of the PVC pipe using a vernier caliper to ensure accurate volume calculations. The pipe used in this experiment has a length of 50 cm and a radius of 30 mm.
3. Weighing the Soil Sample: After extracting the soil sample, immediately weigh it using a precise weighing balance. Record this mass as the wet mass of the soil (M_w).
4. Drying the Soil Sample: Place the soil sample in an oven at 105°C to 110°C for 24 hours or until a constant weight is achieved. After drying, weigh the soil again to obtain the dry mass (M_d).
5. Calculation of Dry Density: Calculate the dry density of the soil using the following formula:

$$\text{Dry Density } (\rho_d) = M_d/V$$

Where (M_d) is the dry mass of the soil, and (V) is the volume of the PVC pipe (calculated as $V = \pi r^2 h$), where (r) is the internal radius and (h) is the length of the pipe).

6. Data Collection: Record the masses (wet and dry) and the calculated dry density of each soil sample. The results should be averaged to account for any variability in the samples.

7. Result Interpretation: The dry density values obtained reflect the degree of soil compaction, which is critical for determining its suitability for supporting structures.

c) Bulk Density Test

1. Measurement of Wet Mass: As in the dry density test, measure the wet mass (M_w) of the soil sample immediately after extraction.

2. Calculation of Bulk Density: Calculate the bulk density using the following formula:

$$\text{Bulk Density } (\rho_b) = M_w/V$$

Where (M_w) is the wet mass of the soil, and (V) is the volume of the PVC pipe.

3. Data Collection: Record the wet mass and the calculated bulk density of the soil samples.

4. Result Interpretation: Bulk density indicates the mass of soil in its natural state, including its moisture content. It provides insights into the soil's loadbearing capacity and its porosity.

Precautions and Safety

1. Accuracy in Measurement: Ensure that the PVC pipe dimensions are measured precisely using a vernier caliper. Any error in measurement will directly affect the volume calculation and the final density values.

2. Careful Sample Handling: Handle soil samples carefully to avoid any loss of material or moisture, which could alter the results. The pipe should be inserted and removed vertically to minimize disturbance.

3. Safety Precautions: Wear protective gloves when handling soil samples, particularly when using cutting tools. Ensure that the oven is used according to safety guidelines to avoid burns or other injuries.

4. Moisture Content Determination: Ensure that the drying of soil samples is done uniformly and until a constant weight is achieved to obtain accurate dry mass readings.

The tests conducted provide essential data on the dry density and bulk density of the soil, which are critical for assessing its compaction characteristics and suitability for construction purposes. The use of a PVC pipe as a substitute for the standard core cutter was found to be effective, provided that careful attention is paid to measurement accuracy and sample handling. The procedures followed align with the guidelines outlined in the Indian Standard IS 2720 (Part 29) – 1975 for soil testing, which ensures the reliability and validity of the results obtained (Bureau of Indian Standards, 1975).

d) Liquid Limit

Objective : The liquid limit (LL) test is performed to determine the moisture content at which soil transitions from a plastic state to a liquid state. This parameter is crucial for classifying finegrained soils and understanding their behavior under varying moisture conditions, particularly in assessing the soil's potential for swelling or shrinkage.

Materials and Reagents : Casagrande apparatus, Grooving tool (standard grooving tool as per IS specifications), Oven, Weighing balance with an accuracy of 0.01g, Distilled water, Porcelain mixing dish, Spatula

Test Procedure : The liquid limit is determined using the Casagrande apparatus. A soil sample is mixed with distilled water to form a uniform paste.

This paste is then placed in the brass cup of the apparatus. A groove is created in the soil paste using the grooving tool. The cup is then lifted and dropped repeatedly at a rate of two drops per second. The number of blows required for the groove to close over a length of 10mm is recorded. The moisture content at which the groove closes after 25 drops is considered the liquid limit of the soil. If the groove closes in more or fewer blows, a series of tests is performed, and a graph of the number of blows versus moisture content is plotted to determine the liquid limit (IS 2720 (Part 5): 1985).

Figure 32: Casagrande Apparatus

Data Collection : The data includes the number of blows required to close the groove at different moisture contents. Moisture content is calculated by ovendrying the soil samples and determining the weight loss.

Result : The liquid limit is determined as the moisture content corresponding to 25 drops of the Casagrande apparatus, which provides a measure of the soil's consistency and its capacity to hold water.

Precaution and Safety

The groove must be made consistently and uniformly each time to avoid errors in the results. The soil must be thoroughly mixed with water to ensure homogeneity. Protective gloves should be worn while handling the soil to prevent contamination.

e) Plastic Limit

Objective: The plastic limit (PL) test aims to determine the moisture content at which soil changes from a plastic state to a semisolid state. This limit is critical for understanding the workability of the soil and is used alongside the liquid limit to calculate the plasticity index, which is an indicator of the soil's plasticity and potential for deformation.

Materials and Reagents: Glass plate for rolling, Weighing balance, Distilled water, Oven, Spatula, Porcelain dish

Test Procedure : A small portion of the soil sample is mixed with water until it becomes pliable enough to be rolled. The soil is then rolled out on a glass plate into a thread approximately 3mm in diameter. If the thread crumbles before reaching 3mm in diameter, the soil is too dry, and more water is added. If the thread can be rolled to less than 3mm without crumbling, it is too wet, and the test is repeated after slight drying. The plastic limit is determined as the moisture content at which the soil thread crumbles when rolled to 3mm diameter (IS 2720 (Part 5): 1985).

Figure 33 : Plastic Limit Test Using Casagrande Apparatus

Data Collection: The weight of the soil before and after drying is recorded to calculate the moisture content. Multiple trials are conducted to ensure accuracy.

Result: The plastic limit is expressed as the moisture content at which the soil changes from a plastic to a semisolid state. This value, along with the liquid limit, is used to calculate the plasticity index (PI), a key parameter in soil classification.

Precaution and Safety: The soil must be evenly rolled to ensure a consistent diameter. Care should be taken to avoid drying the soil excessively during the test. The glass plate and other equipment should be clean to prevent contamination.

f) Shrinkage Limit

Objective: The shrinkage limit (SL) test is conducted to determine the moisture content at which soil ceases to shrink upon further drying. This test is essential for understanding the volumetric

changes in soil, particularly for soils that are prone to shrinkage, such as clays. The shrinkage limit is crucial for predicting potential cracking and volume changes in soils under drying conditions.

Materials and Reagents: Shrinkage dish, Glass plate, Mercury, Distilled water, Oven, Spatula

Weighing balance with an accuracy of 0.01g

Figure 34 : Shrinkage Limit Test by Mercury Displacement Method

Test Procedure: A soil sample is mixed with water to form a paste and then placed into a shrinkage dish, ensuring it is fully compacted without air voids. The sample is then dried in an oven until it reaches a constant weight. After drying, the volume of the soil is measured by immersing the soil in mercury and determining the volume of mercury displaced. The shrinkage limit is calculated based on the initial and final volumes of the soil and its moisture content at these stages (IS 2720 (Part 6): 1972).

Data Collection: The initial and final volumes of the soil, as well as its moisture content before and after drying, are recorded. These values are used to calculate the shrinkage limit.

Result: The shrinkage limit is expressed as the moisture content at which further drying does not result in a decrease in the soil volume. This value helps in assessing the potential for soil shrinkage and cracking under drying conditions.

Precaution and Safety : Care must be taken to avoid introducing air voids when placing the soil into the shrinkage dish, as this can affect the volume measurement. Mercury must be handled with extreme care due to its toxicity; protective gloves, safety goggles, and a fume hood should be used during the test.

i) Grain Size Distribution by Hydrometer

Objective: The objective of the grain size distribution by hydrometer analysis is to determine the particle size distribution of finegrained soils. This test is essential for understanding the soil's textural classification and its engineering properties, including permeability, compressibility, and shear strength.

Materials and Reagents : Hydrometer, Graduated cylinder (1000 ml), Thermometer, Stirring apparatus, Sodium hexametaphosphate solution (as a dispersing agent), Distilled water, Soil sample (ovendried), Beaker, Weighing balance

Test Procedure: The hydrometer analysis involves dispersing a finegrained soil sample in a dispersing agent solution (sodium hexametaphosphate). The soil suspension is then transferred into a graduated cylinder filled with distilled water. The suspension is stirred, and the hydrometer is placed in the cylinder to measure the density of the suspension at different time intervals as the particles settle. The readings are corrected for temperature and meniscus errors. The grain size distribution curve is plotted using the hydrometer readings and corresponding particle diameters (IS 2720 (Part 4): 1985).

Figure 35: Stirring apparatus

Figure 35: Hydrometer

Data Collection: Hydrometer readings are taken at specific time intervals, and the corresponding temperatures are recorded. The percentage finer is calculated using these readings.

Result: The result is presented as a grain size distribution curve, showing the percentage finer versus the particle diameter. This curve helps in understanding the soil's gradation, which is crucial for predicting its behavior in different engineering applications.

Precaution and Safety: Ensure the soil is properly dispersed to prevent flocculation. The hydrometer must be handled carefully to avoid breakage. Protective gloves and goggles should be worn when handling chemicals like sodium hexametaphosphate.

j) Direct Shear Test

Objective: The direct shear test is performed to determine the shear strength parameters of soil, specifically the cohesion (c) and the angle of internal friction (ϕ). These parameters are vital for assessing the soil's stability and its ability to support structural loads.


Materials and Reagents: Direct shear apparatus with shear box, Soil sample, Loading frame, Dial gauges (for measuring horizontal displacement and vertical deformation), Weighing balance, Water (for testing saturated soils), Timer

Test Procedure: The soil sample is placed in the shear box, which is then assembled in the direct shear apparatus. A normal load is applied to the sample, and the soil is sheared by moving the top half of the shear box relative to the bottom half. The horizontal displacement and vertical deformation are recorded using dial gauges. The test is conducted at different normal loads to obtain a series of shear strength values, which are then used to plot the MohrCoulomb failure envelope (IS 2720 (Part 13): 1986).

Figure 37: Shear Box

Data Collection: Horizontal displacement, vertical deformation, and the corresponding shear force are recorded during the test. The shear strength parameters are calculated from the failure envelope plotted using these values

Figure 38 : Direct Shear apparatus

Result: The result of the direct shear test is the determination of the soil's shear strength parameters—cohesion (c) and the angle of internal friction (ϕ). These parameters are essential for analyzing slope stability, retaining walls, and foundations.

Precaution and Safety: The shear box should be assembled carefully to avoid errors in loading. The loading should be applied gradually to avoid sudden failure. Safety precautions include handling the apparatus carefully to prevent injuries, as well as wearing protective gloves and safety goggles during the test.

The comprehensive analysis of soil properties through the field density test, liquid limit, plastic limit, shrinkage limit, grain size distribution, and direct shear test provides a robust understanding of the soil's engineering behavior and suitability for construction purposes. The field density test ensures that the soil compaction at the site meets the necessary standards for stability. The Atterberg limits, including the liquid limit, plastic limit, and shrinkage limit, offer critical insights into the soil's consistency and potential for deformation under varying moisture conditions, aiding in soil classification and predicting its performance. The grain size distribution by hydrometer analysis contributes to understanding the soil's gradation and texture, essential for assessing permeability and mechanical properties. Finally, the direct shear test reveals the soil's shear strength parameters, which are vital for evaluating the stability of slopes, foundations, and retaining structures. Collectively, these tests are indispensable for ensuring that the soil meets the required standards for safe and sustainable construction, providing a reliable foundation for any engineering project.

CHAPTER – V

5. RESULT & DISCUSSION

In this study, the focus is on the application of nature based solutions (NBS) for enhancing the resilience and stability of earthen embankments in the Indian Sundarbans. The Sundarbans, a critical region prone to frequent flooding and erosion, relies heavily on earthen embankments as a primary defense against natural calamities. However, these embankments face significant challenges due to soil erosion, degradation, and the impacts of climate change, necessitating innovative approaches to improve their sustainability. To address these challenges, a comprehensive experimental analysis was conducted to assess the geotechnical properties of the local soil used in the embankments, with a particular emphasis on understanding the elastic, plastic, and shrinkage limits of the soil, grain size distribution, and shear strength parameters. These properties are crucial for evaluating the current condition of the embankments and the potential effectiveness of NBS, such as vegetation reinforcement and bioengineering techniques, in enhancing soil stability.

The experimental procedures included the determination of the Atterberg limits (elastic limit, plastic limit, and shrinkage limit) using the Casagrande apparatus, which provides insight into the soil's behavior under varying moisture content. Additionally, the grain size distribution was analyzed using the hydrometer method, offering a detailed understanding of the soil's texture and particle size distribution. The direct shear test was also employed to measure the soil's shear strength parameters, which are essential for assessing the embankment's resistance to sliding and erosion.

Table 8: Result of Bulk density and dry density of the sample (Source: Test Result)

Sample No	Zone	Site Type	Area of Collection	Bulk density (pb) in (gm/cc)	Dry density (pd) in (gm/cc)
1	East Sundarban	Earthen Embankment which is not affected by Natural Calamities	Tiplighiri, Gosaba	1.71	1.42
2		Earthen embankment protected by Sand / Soil filled bags	Pakhiralay West Embankment	1.83	1.38
3		Earthen Embankment protected by Block pitching of Brick	Pakhiralay East Embankment	1.86	1.42
4		Earthen Embankment protected by the Bamboo mat & fencing	Dayapur East Embankment	1.75	1.4
5		Earthen Embankment protected by the Mangrove trees	Dayapur West Embankment	1.84	1.48
6	Middle Sundarban	Earthen Embankment which is Vulnerable, & affected by Natural Calamities	Kaikhali Ashram, Kultali	1.79	1.39
7		Earthen Embankment protected by Block pitching of Brick & Concreting	Kaikhali Ashram, Kultali	1.72	1.36
8		Earthen Embankment protected by the Mangrove trees	Katamari Bazar,	1.74	1.34
9		Earthen Embankment protected by the Bamboo mat & fencing	Abdul er Tyank, Kaikhali	1.76	1.41
10		Earthen embankment protected by Sand / Soil filled bags	Abdul er Tyank, Debipur, Kaikhali	1.81	1.49
11	West Sundarban	Earthen Embankment which is affected by Natural Calamities	Kakdwip Lot 8	1.78	1.42
12		Earthen Embankment protected by Sand / Soil filled bags	Kakdwip Lot 8	1.86	1.36
13		Earthen Embankment protected by the Bamboo mat & fencing	Kakdwip Lot 8	1.77	1.4
14		Earthen Embankment protected by Block pitching of Brick & Concreting	Sagar Island	1.74	1.38
15		Earthen Embankment protected by GeoSynthetics	Sagar Island	1.73	1.39

5.1 Result of Bulk density and dry density

The Sundarbans, a unique mangrove ecosystem, has diverse soil characteristics influenced by factors such as vegetation type, protection measures, and exposure to natural calamities. The bulk density (ρ_b) and dry density (ρ_d) of soil are crucial parameters for understanding soil compaction, porosity, and overall soil health, which have direct implications for embankment stability and flood management. The data provided represents different site types across East, Middle, and West Sundarban, showing variations in bulk and dry density across different protective measures and exposure to natural calamities.

1. East Sundarban Analysis

Range of Bulk Density (ρ_b): 1.71 to 1.86 gm/cc

Range of Dry Density (ρ_d): 1.38 to 1.48 gm/cc

The East Sundarban exhibits a relatively higher bulk density and dry density in embankments that are protected by block pitching of brick and by mangrove trees (Samples 3 and 5). These higher densities suggest that these embankments may have a higher degree of compaction, likely due to the protective measures in place. The embankment not affected by natural calamities (Sample 1) shows a moderate bulk and dry density, which is expected as it has not been subjected to erosive forces. The embankments protected by bamboo mat & fencing and sand/soil filled bags (Samples 4 and 2) have slightly lower dry densities, indicating that these protective measures might offer moderate compaction but still allow for some porosity.

2. Middle Sundarban Analysis

Range of Bulk Density (ρ_b): 1.72 to 1.81 gm/cc

Range of Dry Density (ρ_d): 1.34 to 1.49 gm/cc

In the Middle Sundarban, the highest dry density is observed in embankments protected by sand/soilfilled bags (Sample 10), suggesting that this method is effective in creating a compact soil structure that resists water infiltration. Embankments vulnerable to natural calamities (Sample 6) show a lower dry density, which could indicate soil loosening or erosion caused by the calamities. The bulk density is fairly consistent across this zone, indicating a uniformity in soil compaction across different sites, regardless of the protective measures.

3. West Sundarban Analysis

Range of Bulk Density (ρ_b): 1.73 to 1.86 gm/cc

Range of Dry Density (ρ_d): 1.36 to 1.42 gm/cc

The West Sundarban shows a slightly lower variation in dry density compared to the other regions. The embankments protected by sand/soil filled bags and block pitching of brick & concreting (Samples 12 and 14) have a higher bulk density, suggesting that these embankments are more resistant to external forces and are more stable. The use of geosynthetics (Sample 15) also results in a relatively high dry density, indicating that modern techniques like geosynthetics can effectively increase soil stability. However, the embankment affected by natural calamities (Sample 11) has a similar bulk and dry density to those protected by other means, indicating that the natural calamities may not have drastically reduced the soil's compaction.

Across all regions, the embankments protected by sand/soilfilled bags generally show higher dry densities, which suggests this method's effectiveness in enhancing soil compaction and stability.

In contrast, embankments affected by natural calamities tend to have lower dry densities, indicating a loss of compaction and increased vulnerability. The variation in bulk and dry densities across the zones also reflects the different levels of exposure to natural forces and the effectiveness of various protective measures.

The analysis of bulk and dry densities of soil from the Sundarban region reveals that protective measures such as sand/soilfilled bags, block pitching of bricks, and the use of geosynthetics are effective in maintaining or increasing soil compaction. This compaction is crucial for the stability of embankments, especially in regions frequently affected by natural calamities. On the other hand, embankments without protection or those affected by natural forces tend to have lower dry densities, suggesting a need for improved protection to enhance soil stability and reduce vulnerability to erosion. These findings can guide future embankment construction and reinforcement strategies in the Sundarban region to mitigate the impacts of natural calamities and promote sustainable land management.

Table 9: Result of Liquid Limi, Plastic Limit Plasticity Index of Soil Sample (Source: Test Result)

Sample No	Zone	Site Type	Area of Collection	Specific Gravity	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)
1	East Sundarban	Earthen Embankment which is not affected by Natural Calamities	Tiplighiri, Gosaba	2.64	41	23	27
2		Earthen embankment protected by Sand / Soil filled bags	Pakhiralay West Embankment	2.67	46	21	26
3		Earthen Embankment protected by Block pitching of Brick	Pakhiralay East Embankment	2.67	48	24	29
4		Earthen Embankment protected by the Bamboo mat & fencing	Dayapur East Embankment	2.66	44	22	28
5		Earthen Embankment protected by the Mangrove trees	Dayapur West Embankment	2.65	49	20	30
6	Middle Sundarban	Earthen Embankment which is Vulnerable, & affected by Natural Calamities	Kaikhali Ashram, Kultali	2.63	47	26	31
7		Earthen Embankment protected by Block pitching of Brick & Concreting	Kaikhali Ashram, Kultali	2.65	50	25	33
8		Earthen Embankment protected by the Mangrove trees	Katamari Bazar,	2.65	49	28	30
9		Earthen Embankment protected by the Bamboo mat & fencing	Abdul er Tyank, Kaikhali	2.67	46	31	36
10		Earthen embankment protected by Sand / Soil filled bags	Abdul er Tyank, Debipur, Kaikhali	2.64	51	29	32
11	West Sundarban	Earthen Embankment which is affected by Natural Calamities	Kakdwip Lot 8	2.66	52	31	35
12		Earthen Embankment protected by Sand / Soil filled bags	Kakdwip Lot 8	2.65	54	34	34
13		Earthen Embankment protected by the Bamboo mat & fencing	Kakdwip Lot 8	2.66	50	32	30
14		Earthen Embankment protected by Block pitching of Brick & Concreting	Sagar Island	2.64	53	35	31
15		Earthen Embankment protected by Geo-Synthetics	Sagar Island	2.67	51	34	36

5.2 Result of Specific Gravity, Liquid Limit, Plastic Limit, Plasticity Index

5.2.a) East Sundarban Analysis

1. Specific Gravity

Range: 2.64 - 2.67

The specific gravity in the East Sundarban varies slightly among different sites, with the highest value of 2.67 observed in embankments protected by sand/soil-filled bags (Sample 2) and block pitching of brick (Sample 3). These higher values suggest a denser soil composition, which could indicate better soil stability. The lower specific gravity (2.64) in embankments not affected by natural calamities (Sample 1) reflects a less compact soil structure, likely due to the absence of external pressure.

2. Liquid Limit

Range: 41% - 49%

The liquid limit varies across different protective measures, with the highest liquid limit of 49% seen in embankments protected by mangrove trees (Sample 5). This suggests that soils in these areas can retain more water before becoming unstable, making them more resilient during heavy rainfall or floods. On the other hand, embankments protected by bamboo mat & fencing (Sample 4) have a lower liquid limit of 44%, indicating that these soils may become unstable with lesser water content.

3. Plastic Limit

Range: 20% - 24%

The plastic limit is relatively consistent, with the lowest value (20%) observed in embankments protected by mangrove trees (Sample 5). This suggests that the soil becomes plastic at a lower moisture content, making it more pliable but potentially more prone to deformation under stress. The highest plastic limit (24%) is in embankments protected by block pitching of brick (Sample 3), indicating better workability and less susceptibility to cracking.

4. Plasticity Index

Range: 26% - 30%

The plasticity index, which indicates the soil's capacity to deform without cracking, is highest in soils protected by mangrove trees (Sample 5) and block pitching of brick (Sample 3). This suggests that these soils have a higher ability to absorb stress without failure, making them more suitable for embankment construction in flood-prone areas.

5.2.b) Middle Sundarban Analysis

1. Specific Gravity

Range: 2.63 - 2.67

The specific gravity in the Middle Sundarban shows minimal variation, with the lowest value (2.63) observed in embankments vulnerable to natural calamities (Sample 6). This lower specific gravity may indicate a less compacted soil structure, potentially due to erosion or other environmental factors. Higher values (2.67) are seen in embankments protected by bamboo mat

& fencing (Sample 9), indicating a denser soil structure that could enhance embankment stability.

2. Liquid Limit

Range: 46% - 51%

The liquid limit is generally higher in this zone, with the maximum of 51% observed in embankments protected by sand/soil-filled bags (Sample 10). This suggests that the soil can withstand more water before becoming unstable, which is crucial for areas that experience heavy rainfall. The lower liquid limit of 46% in embankments protected by bamboo mat & fencing (Sample 9) indicates a moderate level of water retention before the soil becomes unstable.

3. Plastic Limit

Range: 25% - 31%

The plastic limit varies notably, with the highest value of 31% observed in embankments protected by bamboo mat & fencing (Sample 9), indicating that these soils remain plastic and workable over a broader range of moisture content. The lowest plastic limit (25%) is found in embankments protected by block pitching of brick & concreting (Sample 7), which might suggest a higher risk of cracking under stress.

4. Plasticity Index

Range: 30% - 36%

The plasticity index is highest in soils protected by bamboo mat & fencing (Sample 9), indicating a high capacity to deform without cracking. This makes these soils particularly suitable for

embankment construction in areas prone to frequent environmental stresses, such as flooding. The lower plasticity index (30%) observed in embankments protected by mangrove trees (Sample 8) indicates a moderate ability to withstand stress without cracking.

5.2.c) West Sundarban Analysis

1. Specific Gravity

Range: 2.64 - 2.67

The specific gravity in the West Sundarban shows slight variations, with the highest value of 2.67 observed in embankments protected by geo-synthetics (Sample 15). This indicates a dense and stable soil structure, likely due to the modern protective measures employed. The lower specific gravity (2.64) in embankments protected by block pitching of brick & concreting (Sample 14) suggests a less compact soil structure, which may still be effective but less so than geo-synthetics.

2. Liquid Limit

Range: 50% - 54%

The liquid limit in the West Sundarban is generally high, with the maximum of 54% observed in embankments protected by sand/soil-filled bags (Sample 12). This indicates that these soils can retain significant moisture before becoming unstable, which is advantageous in flood-prone areas. The lowest liquid limit (50%) is found in embankments protected by bamboo mat & fencing (Sample 13), suggesting a moderate level of moisture retention.

3. Plastic Limit

Range: 31% - 35%

The plastic limit is relatively high across this zone, with the highest value of 35% observed in embankments protected by block pitching of brick & concreting (Sample 14). This indicates that these soils remain workable over a wide range of moisture content, reducing the risk of cracking.

The lowest plastic limit (31%) in embankments affected by natural calamities (Sample 11) suggests a potential vulnerability to cracking under stress.

4. Plasticity Index

Range: 30% - 36%

The plasticity index is highest (36%) in soils protected by geo-synthetics (Sample 15), indicating a high ability to absorb and dissipate stresses without fracturing. This makes these soils particularly suitable for constructing embankments in areas prone to natural disasters. The lower plasticity index (30%) observed in embankments protected by bamboo mat & fencing (Sample 13) still indicates a good ability to withstand environmental stresses, though slightly less than those protected by more advanced methods like geo-synthetics.

5.3) A Comparative Analysis Across the East, Middle, and West Sundarban regions

1. Specific Gravity: Specific gravity is relatively consistent across all zones, with minor variations. Higher values are observed in soils protected by modern methods like geo-synthetics and sand/soil-filled bags, indicating denser and potentially more stable soil structures.

2. Liquid Limit: The liquid limit is highest in the West Sundarban, particularly in embankments protected by sand/soil-filled bags. This suggests that these soils can retain more water before

becoming unstable, which is critical for flood-prone areas. The East Sundarban shows slightly lower liquid limits, particularly in areas protected by bamboo mat & fencing.

3. Plastic Limit: The plastic limit is relatively high in the West Sundarban, particularly in soils protected by block pitching of brick & concreting. This indicates that these soils can remain plastic and workable over a broader range of moisture contents, reducing the risk of cracking. The Middle Sundarban shows lower plastic limits, particularly in soils protected by traditional methods like mangrove trees.

4. Plasticity Index: The plasticity index is highest in the West Sundarban, particularly in embankments protected by geo-synthetics. This suggests that these soils have a greater ability to deform without cracking, making them more resilient to environmental stresses. The East Sundarban shows moderate plasticity indices, indicating a balanced capacity for deformation.

Overall, the data suggests that modern protective measures, such as geo-synthetics and sand/soil-filled bags, are particularly effective in enhancing the stability and resilience of embankments across the Sundarban region. Nature-based solutions like mangrove trees and bamboo mat & fencing also provide substantial benefits, particularly in enhancing the soil's plasticity and moisture retention capacity. These findings highlight the importance of integrating both traditional and modern protective measures to ensure the long-term stability and sustainability of earthen embankments in the Sundarban region.

Table 10 : Result of grain size distribution (Source: Test Result)

Sample No	Zone	Site Type	Area of Collection	Sand (%)	Silt (%)	Clay (%)
1	East Sundarban	Earthen Embankment which is not affected by Natural Calamities	Tiplighiri, Gosaba	18.10	43.80	38.10
2		Earthen embankment protected by Sand / Soil filled bags	Pakhiralay West Embankment	20.25	39.45	40.30
3		Earthen Embankment protected by Block pitching of Brick	Pakhiralay East Embankment	33.40	47.22	19.38
4		Earthen Embankment protected by the Bamboo mat & fencing	Dayapur East Embankment	36.01	40.18	23.81
5		Earthen Embankment protected by the Mangrove trees	Dayapur West Embankment	34.38	36.64	28.98
6	Middle Sundarban	Earthen Embankment which is Vulnerable, & affected by Natural Calamities	Kaikhali Ashram, Kultali	32.26	36.59	31.15
7		Earthen Embankment protected by Block pitching of Brick & Concreting	Kaikhali Ashram, Kultali	38.16	32.04	29.80
8		Earthen Embankment protected by the Mangrove trees	Katamari Bazar,	35.95	26.81	37.24
9		Earthen Embankment protected by the Bamboo mat & fencing	Abdul er Tyank, Kaikhali	36.22	36.04	27.74
10		Earthen embankment protected by Sand / Soil filled bags	Abdul er Tyank, Debipur, Kaikhali	41.46	27.14	31.40
11	West Sundarban	Earthen Embankment which is affected by Natural Calamities	Kakdwip Lot 8	40.90	41.25	17.85
12		Earthen Embankment protected by Sand / Soil filled bags	Kakdwip Lot 8	48.52	30.23	21.25
13		Earthen Embankment protected by the Bamboo mat & fencing	Kakdwip Lot 8	46.82	28.98	24.20
14		Earthen Embankment protected by Block pitching of Brick & Concreting	Sagar Island	36.90	42.35	20.75
15		Earthen Embankment protected by Geo-Synthetics	Sagar Island	44.95	36.83	18.22

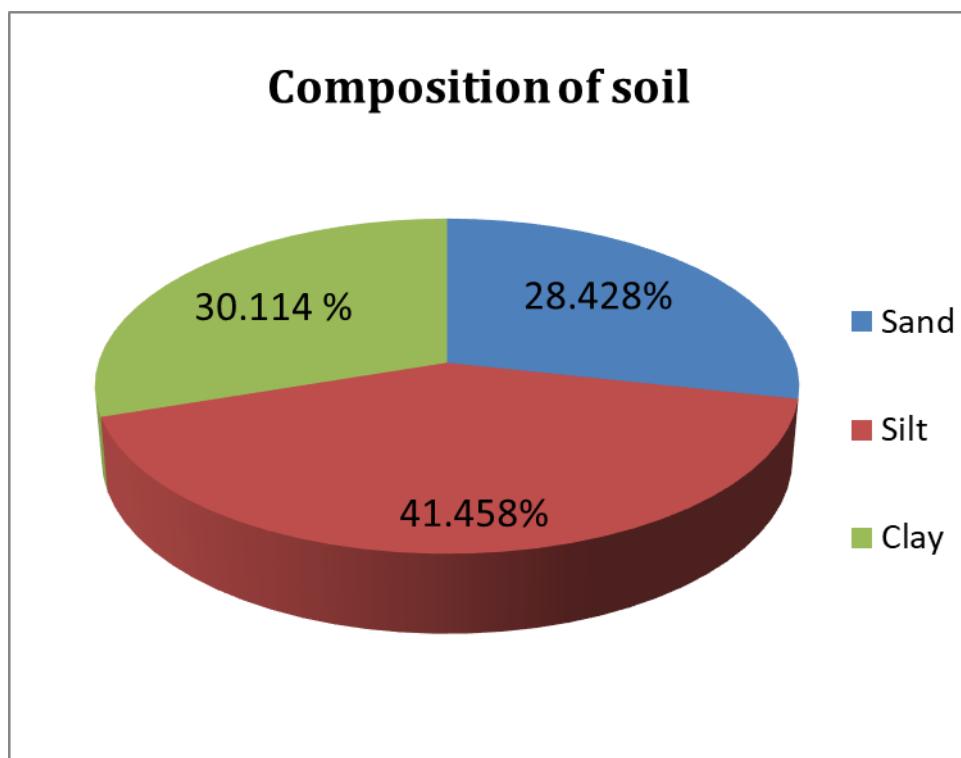
5.4 Grain Size Distribution Analysis

The grain size distribution of soil samples from the East, Middle, and West regions of the Indian Sundarbans provides valuable insights into the sediment characteristics across different types of earthen embankments. These results are essential for evaluating the suitability of different nature-based solutions (NbS) for enhancing the resilience of embankments in the face of natural calamities.

1. East Sundarban:

Sample 1: The embankment from Tiplighiri, Gosaba (not affected by natural calamities) exhibits a relatively balanced composition of sand (18.10%), silt (43.80%), and clay (38.10%), classifying it as silty clay loam. This texture indicates moderate drainage with good nutrient retention, making it resilient to erosion.

Sample 2: Pakhiralay West Embankment, protected by sand/soil-filled bags, has a higher sand content (20.25%) but still predominantly silt and clay (39.45% and 40.30% respectively). This classifies it as clay loam, which provides stability due to its cohesive properties.


Sample 3: Pakhiralay East Embankment, protected by block pitching of bricks, shows a higher proportion of sand (33.40%) and silt (47.22%) with lesser clay (19.38%), classifying it as sandy silt loam. The sandier texture improves drainage but could be more prone to erosion.

Sample 4: The Dayapur East Embankment, protected by bamboo mat and fencing, has the highest sand content (36.01%) in this region, with a silt-dominated texture (40.18%). This is classified as sandy clay loam.

Sample 5: Dayapur West Embankment, protected by mangrove trees, has a balanced composition of sand (34.38%), silt (36.64%), and clay (28.98%), leading to a clay loam classification.

Mangroves contribute to sediment stabilization, reducing erosion risk.

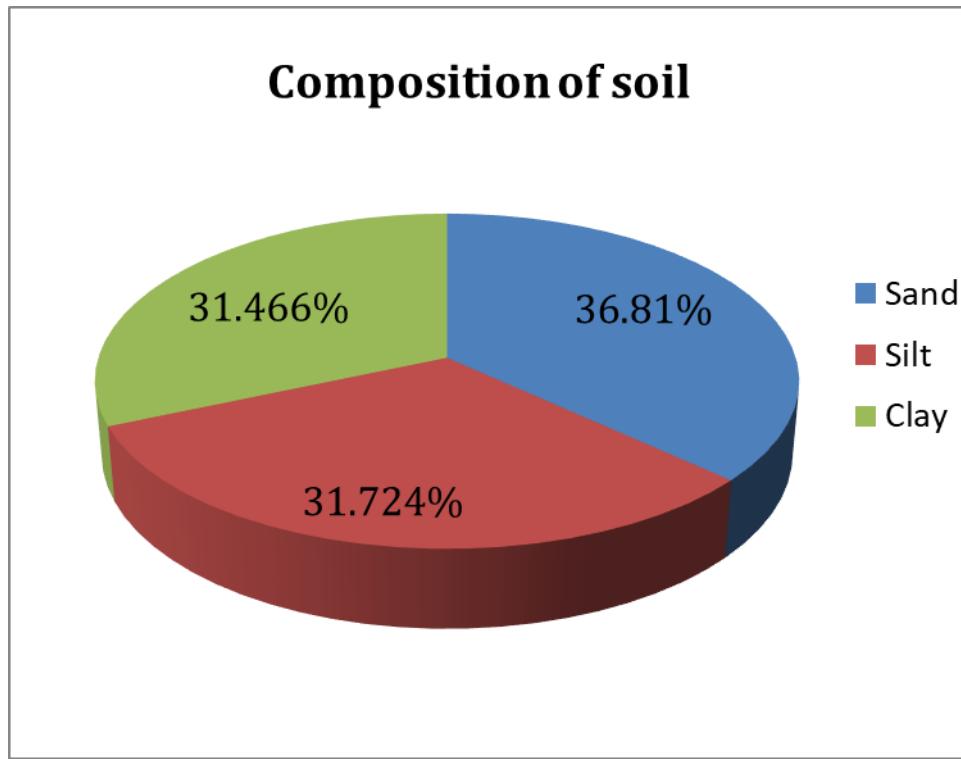
In the East Sundarbans, the soil composition of embankments varies significantly based on the type of protection employed. The site protected by block pitching of brick (Sample 3) has the highest sand content (33.40%) and the lowest clay content (19.38%), indicating a relatively coarser soil structure. In contrast, the embankments protected by bamboo mat and fencing (Sample 4) and mangrove trees (Sample 5) show higher silt and clay content, which contributes to a more cohesive and less permeable soil structure. The embankment not affected by natural calamities (Sample 1) has a more balanced distribution with higher silt content (43.80%), suggesting that natural resilience may be linked to higher silt content.

Figure 39: Soil composition of East Sundarban (Average)

2. Middle Sundarban:

Sample 6: The vulnerable Kaikhali Ashram embankment, affected by natural calamities, contains a moderate sand content (32.26%) with nearly equal silt and clay proportions (36.59% and 31.15%), classifying it as clay loam. The texture indicates a high potential for erosion if not stabilized properly.

Sample 7: Kaikhali Ashram embankment, protected by brick and concrete, shows increased sand content (38.16%) with decreased silt and clay, resulting in a sandy clay loam texture.


Sample 8: The Katamari Bazar embankment, protected by mangroves, shows a balanced texture of sand (35.95%), silt (26.81%), and clay (37.24%), indicating silty clay loam. The high clay content adds to the embankment's stability.

Sample 9: Abdul er Tyank, Kaikhali embankment protected by bamboo mat and fencing, has a relatively balanced distribution of sand (36.22%), silt (36.04%), and clay (27.74%), leading to a sandy clay loam classification.

Sample 10: The Abdul er Tyank, Debipur embankment, protected by sand/soil-filled bags, exhibits the highest sand content (41.46%) in this region, resulting in a sandy clay loam texture. The higher sand content might reduce water retention, potentially increasing vulnerability to erosion.

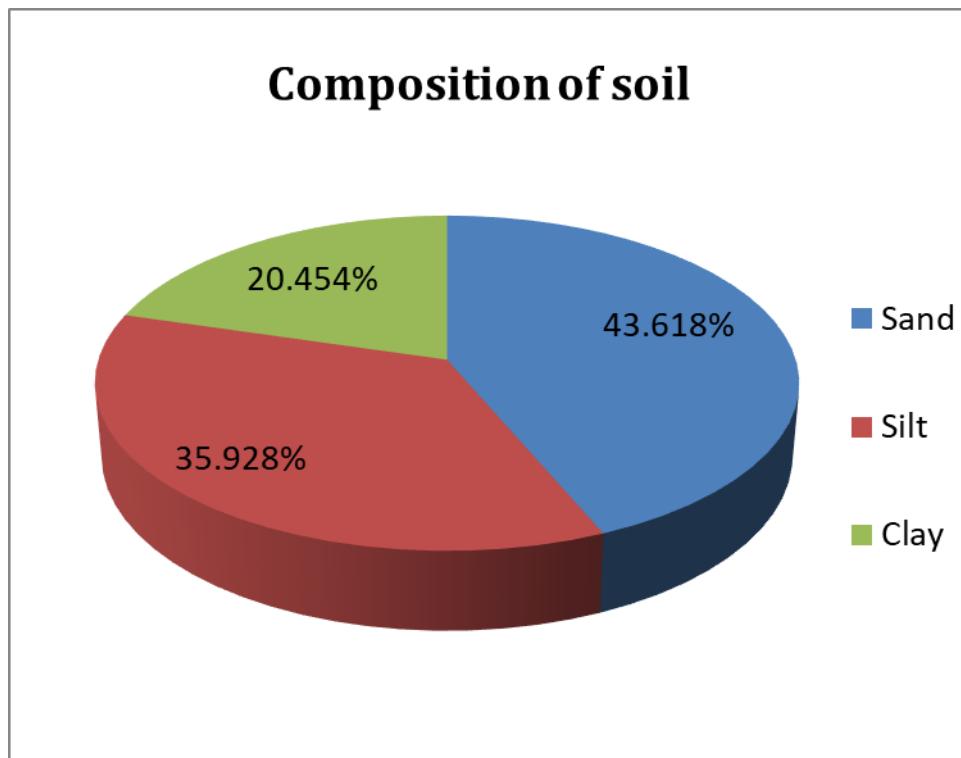
The Middle Sundarbans exhibit a diverse range of soil compositions, reflective of the varying degrees of protection and vulnerability. The embankment protected by block pitching and concreting (Sample 7) shows a higher sand content (38.16%) and lower silt (32.04%) and clay (29.80%) contents, suggesting a shift towards a more granular soil structure that may enhance

drainage but could be more susceptible to erosion. Conversely, the embankment affected by natural calamities (Sample 6) has a more balanced but slightly clayey composition, indicating that areas with higher clay content may suffer more during extreme weather events due to poor drainage.

Figure 40: Soil composition of Middle Sundarban (Average)

3. West Sundarban:

Sample 11: The Kakdwip Lot 8 embankment, affected by natural calamities, has a balanced sand (40.90%) and silt (41.25%) distribution with lower clay content (17.85%), classifying it as silty loam. The texture suggests moderate drainage, making it moderately resistant to erosion.


Sample 12: Kakdwip Lot 8 embankment protected by sand/soil-filled bags has the highest sand content (48.52%) among all samples, classifying it as sandy loam. While this improves drainage, it may be prone to erosion if not well-protected.

Sample 13: Another embankment in Kakdwip Lot 8, protected by bamboo mat and fencing, shows a similar texture to Sample 11, with slightly higher sand content (46.82%), classifying it as sandy loam.

Sample 14: The Sagar Island embankment, protected by block pitching of brick and concreting, shows a balanced composition of sand (36.90%), silt (42.35%), and clay (20.75%), resulting in a silty loam texture

Sample 15: The Sagar Island embankment, protected by geo-synthetics, has a relatively high sand content (44.95%) with silt (36.83%) and clay (18.22%) proportions, classifying it as sandy loam.

In the West Sundarbans, the embankment protected by sand/soil-filled bags (Sample 12) has the highest sand content (48.52%) among all samples, pointing to a very granular and potentially less cohesive soil structure. This could imply that while the embankment might resist erosion initially, it could face long-term stability issues. The embankment affected by natural calamities (Sample 11) has a high silt content (41.25%), indicating that silt-heavy soils may not provide adequate stability under extreme conditions. The use of geo-synthetics (Sample 15) results in a moderately high sand content (44.95%) with relatively balanced silt and clay percentages, suggesting that this method could offer a good compromise between drainage and structural integrity.

Figure 41: Soil composition of West Sundarban (Average)

The variability in soil texture across the Sundarbans regions necessitates site-specific approaches to embankment protection. Sandy loam and silty loam soils, which are prevalent in the West Sundarban, may benefit from enhanced vegetation cover, particularly with deep-rooted plants to reduce erosion. In contrast, areas with clay loam or silty clay loam textures, common in the East and Middle Sundarbans, may rely on natural solutions like mangrove afforestation, which stabilizes the soil and provides protection against tidal action.

Based on the grain size distribution data, the soils across the Sundarbans can be classified as silty clay loam in many areas, particularly where there is a balanced mix of sand, silt, and clay, such as in Samples 6, 9, and 14. However, in areas with higher sand content, such as Samples 3, 10, and 12, the soil can be classified as sandy loam. These variations in soil type are crucial for determining the most suitable nature-based solutions for embankment protection, as different soil

types respond differently to protective measures such as vegetation, bamboo fencing, or synthetic materials.

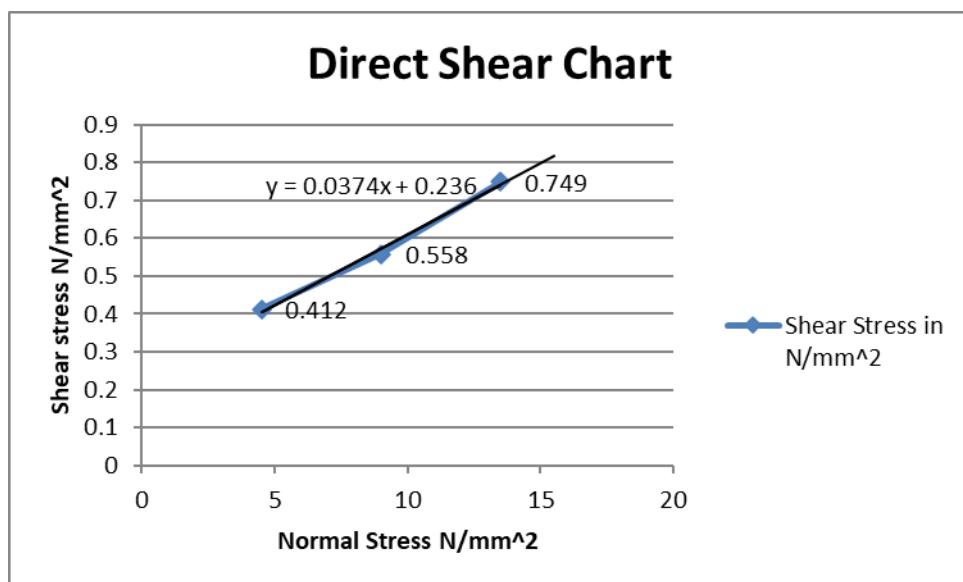
The study highlights the importance of understanding the local soil characteristics when implementing nature-based solutions for earthen embankments in the Sundarbans. The variation in soil composition suggests that tailored approaches are necessary for each zone. In areas with higher silt and clay content, enhancing the natural vegetation, particularly with mangroves, may offer better protection by improving soil cohesion. Conversely, in sandy areas, a combination of geo-synthetics and block pitching might be required to prevent erosion and ensure long-term stability. These findings contribute to the broader understanding of how to effectively protect vulnerable coastal regions using sustainable and nature-based methods.

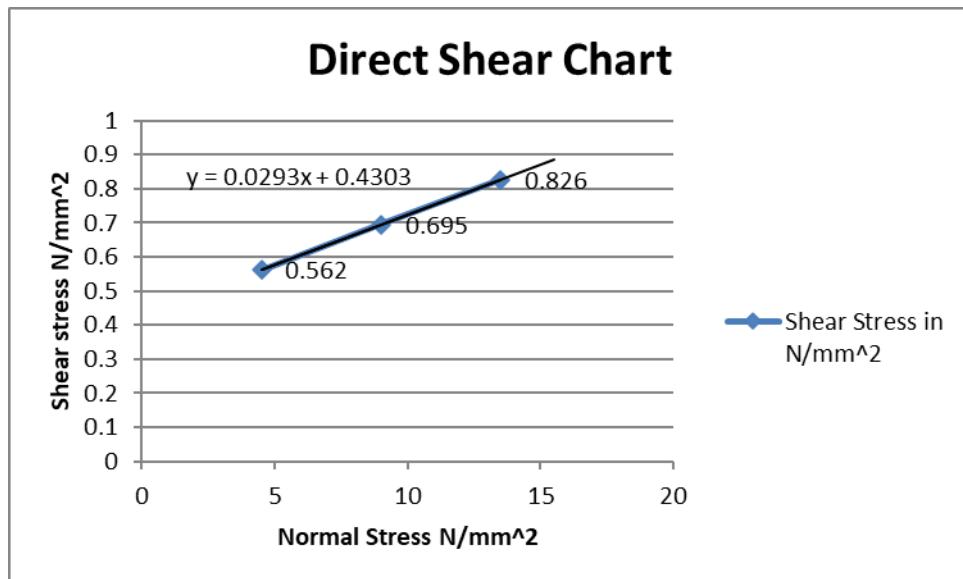
5.5 Direct Shear Test Result

Sample - 1

In the direct shear test conducted on soil samples collected from the Indian Sundarbans, the measured cohesion (C) is found to be 0.236 kg/cm^2 , and the angle of internal friction (ϕ) is 20.35° . These parameters are critical indicators of the soil's shear strength, which directly influences the stability and durability of earthen embankments in the region.

The cohesion value of 0.236 kg/cm^2 suggests that the soil possesses a moderate degree of inter-particle bonding, characteristic of clayey or silty soils often found in deltaic regions like the Sundarbans. According to the Indian Standard Code IS 2720 (Part 13) - 1986, such cohesion indicates that the soil can provide reasonable resistance to shear stresses under low to moderate loading conditions, which is essential for the construction of stable embankments in flood-prone areas. However, the relatively low cohesion also implies susceptibility to erosion and dispersion under prolonged exposure to water, a common issue in the Sundarbans' coastal environment.




Figure 42: Normal Stress vs. Shear Stress of Sample 1

The angle of internal friction, $(\phi) = 20.35^\circ$, further characterizes the soil as having a fair level of shear strength, consistent with fine-grained soils with some sandy content. This angle, as per IS 6403 - 1981, is lower than that found in purely granular soils, indicating that while the soil can sustain a degree of structural integrity, it may undergo significant deformation under shear forces, particularly in the presence of high pore water pressure during monsoon seasons.

In summary, the soil structure of the Sundarbans as indicated by these parameters suggests that while it has adequate shear strength for forming embankments, its durability may be compromised under conditions of high water infiltration and prolonged flooding. Therefore, nature-based solutions such as vegetative reinforcement or bioengineering techniques should be integrated into embankment designs to enhance stability and reduce erosion, making these structures more resilient to the unique environmental challenges of the Sundarbans.

Sample – 2

The direct shear test conducted on soil samples collected from the Indian Sundarban region yielded a cohesion value of 0.431 kg/cm^2 and an angle of internal friction of 16.43 degrees. According to the Indian Standard Code IS: 2720 (Part 13) – 1986, which outlines the methodology for the direct shear test, the cohesion and internal friction angle are key indicators of the shear strength of the soil. The moderate cohesion value of 0.431 kg/cm^2 suggests that the soil possesses a certain degree of plasticity and adhesive forces, which contribute to its ability to resist shearing under stress. This is indicative of a soil structure that may have fine particles, possibly with a significant clay content, providing some binding strength to the soil matrix. The relatively low angle of internal friction (16.43 degrees) suggests that the soil has a reduced ability to resist sliding or deformation, which is characteristic of soils with higher silt or fine sand content, or soils that are potentially saturated or prone to moisture retention.

Figure 43: Normal Stress vs. Shear Stress of Sample 2

For earthen embankments in the Indian Sundarbans, these properties imply that while the soil can provide some degree of stability due to its cohesion, its lower friction angle may make it susceptible to slippage under load, especially in saturated conditions typical of the region's deltaic environment. The durability of such embankments may therefore be a concern, particularly in the face of extreme weather events like cyclones, which are common in the Sundarbans. To enhance the stability and durability of these earthen embankments, nature-based solutions such as mangrove plantation can be explored. Vegetation can improve soil structure by increasing cohesion through root binding and potentially increasing the internal friction angle by providing additional mechanical interlocking within the soil. Such interventions can complement the natural properties of Sundarban soil, leading to more resilient and sustainable embankments in this ecologically sensitive and disaster-prone region.

Sample – 3

The direct shear test conducted on the soil sample collected from the Indian Sundarbans revealed a cohesion value of 0.479 kg/cm^2 and an angle of internal friction (ϕ) of 29.94° . Cohesion is a measure of the soil's ability to resist shear stress under zero normal stress conditions. The observed value of 0.479 kg/cm^2 suggests a moderate level of inter-particle attraction, which is typical for soils with a significant clay content. According to IS 2720 (Part 13) - 1986, this value of cohesion indicates that the soil possesses some binding characteristics, making it moderately cohesive. Such soils are less prone to erosion but can experience consolidation under prolonged loadings, which may lead to settlement over time.

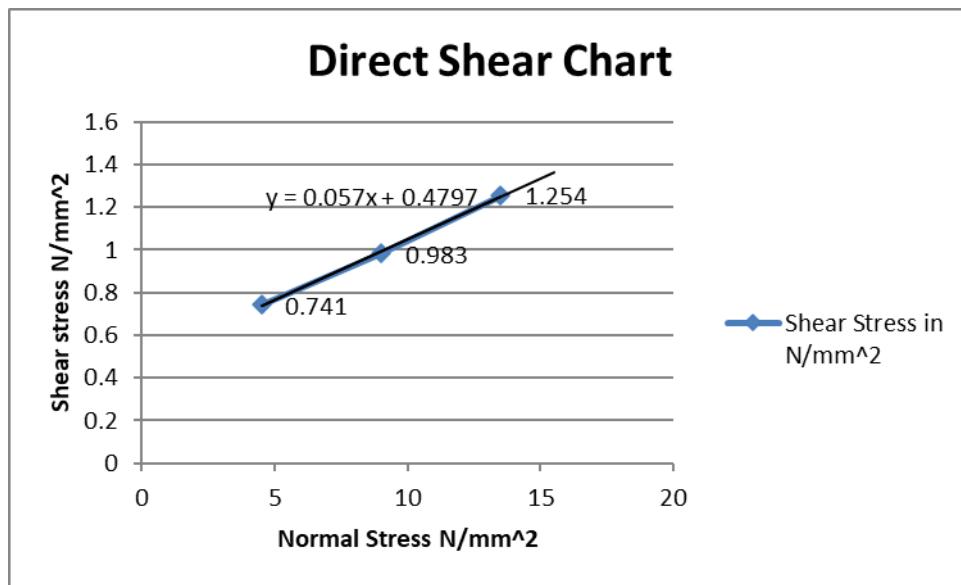


Figure 44: Normal Stress vs. Shear Stress of Sample 3

The angle of internal friction (ϕ), which represents the soil's resistance to sliding or shear along internal planes, is found to be 29.94° . This is indicative of a soil structure with moderate shear resistance, likely due to a mixture of sand and silt with a moderate clay content, as supported by IS 6403 - 1981. Soils with this angle of internal friction are generally considered stable under

typical loading conditions, offering reasonable strength against shear failures. The value suggests that the soil has good frictional resistance, contributing to its overall stability and making it suitable for the construction of embankments, where lateral resistance is essential.

Sample – 4

The direct shear test conducted on soil samples collected from the Indian Sundarbans revealed a cohesion value of 0.355 kg/cm^2 and an angle of internal friction (ϕ) of 25.26° . Cohesion (c) and the angle of internal friction are fundamental properties that govern the shear strength of soil, which is a critical factor in determining the soil's resistance to deformation and failure under stress. The observed cohesion of 0.355 kg/cm^2 indicates a moderate level of interparticle bonding, which suggests that the soil has a reasonable capacity to withstand shear forces before failure occurs. According to the Indian Standard Code IS: 2720 (Part 13) - 1986, which outlines the method for direct shear tests, soils with such cohesion values typically exhibit characteristics of silty or clayey soils. This moderate cohesion aligns with the typical properties of deltaic soils, like those found in the Sundarbans, which are often composed of fine-grained alluvial deposits.

The angle of internal friction, recorded at 25.26° , reflects the soil's ability to resist sliding along internal planes of weakness. This value is consistent with soils that have a significant fraction of fine particles, including silts and clays, as described in IS: 1498 - 1970 (Classification and identification of soils for general engineering purposes). The internal friction angle indicates that while the soil may not possess the high shear strength of coarser granular materials, it still maintains a considerable resistance to shear deformation, which is essential for the stability of earthen embankments.

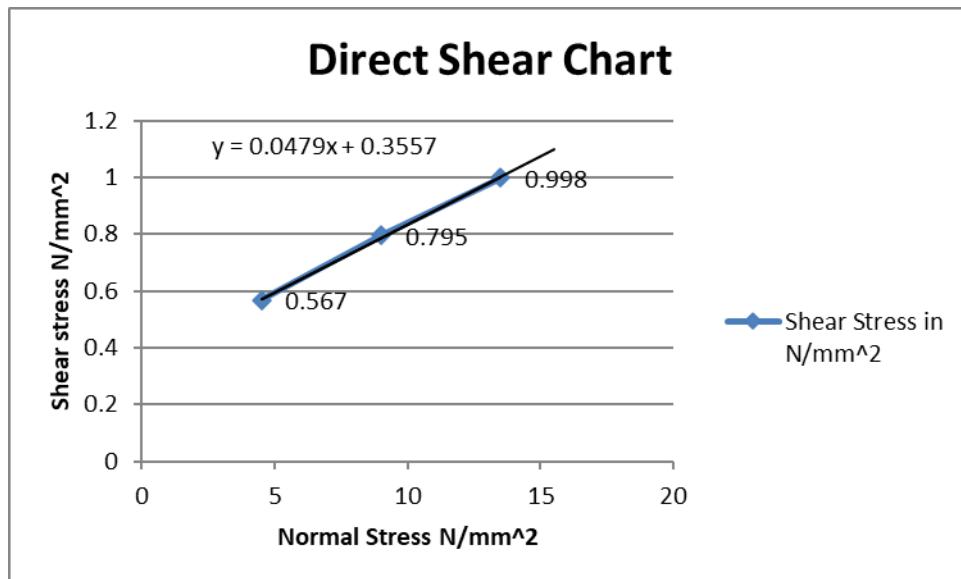


Figure 45: Normal Stress vs. Shear Stress of Sample 4

Considering the moderate cohesion and internal friction angle, the soil from the Sundarbans can be classified as a silty or clayey material with reasonable shear strength. However, the presence of finer particles implies that the soil may be susceptible to erosion and displacement under heavy rainfall or tidal influences, which are common in the Sundarbans. Therefore, while the soil has adequate strength to support embankments under normal conditions, its durability could be compromised under extreme environmental conditions.

Sample – 5

The direct shear test conducted on the soil sample collected from the Indian Sundarbans revealed a cohesion value of 0.433 kg/cm^2 and an angle of internal friction (ϕ) of 24.75 degrees. According to IS: 2720 (Part 13) - 1986, The cohesion value of 0.433 kg/cm^2 suggests that the soil possesses moderate cohesive strength, which can be attributed to the presence of fine-grained particles, likely including clay and silt. This level of cohesion is beneficial for the stability of embankments, as it contributes to the soil's ability to resist shear stresses without undergoing

significant deformation or failure. The cohesion also implies that the soil has a certain degree of plasticity, enabling it to withstand minor disturbances and changes in environmental conditions.

The angle of internal friction of 24.75 degrees indicates a moderate level of interparticle friction, which is typical for soils with a mixed composition of sand, silt, and clay. This frictional angle is crucial in resisting shear stresses, particularly in sloped structures like embankments. A higher angle of internal friction would typically signify a soil with a greater proportion of granular materials like sand, which would provide higher shear strength. However, the moderate value obtained here aligns with the expected soil composition of the Sundarbans, where alluvial deposits predominantly characterize the region.

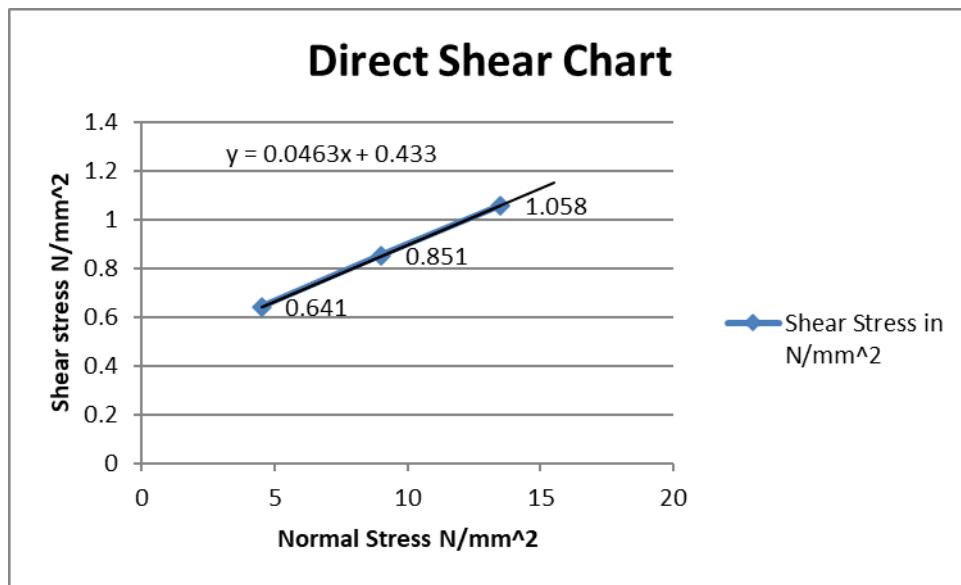


Figure 46: Normal Stress vs. Shear Stress of Sample 5

The moderate cohesion and internal friction angle imply that the soil can be compacted effectively to improve stability, and it can endure the dynamic loading conditions typically encountered in such environments, including tidal influences and storm surges. It is recommended that additional stabilization techniques, such as the incorporation of vegetation or

geosynthetic materials, be considered to enhance the long-term durability of the embankments against erosion and other environmental challenges typical of the Sundarbans.

Sample – 6

The direct shear test conducted on soil samples collected from the Indian Sundarbans revealed a cohesion value of 0.137 kg/cm^2 and an angle of internal friction (ϕ) of 7.80° . The cohesion value of 0.137 kg/cm^2 indicates that the soil possesses a moderate degree of interparticle bonding, which is crucial for resisting shear forces. According to the Indian Standard (IS 1498:1970), soils with such cohesion typically belong to the category of silty or clayey soils, which are often found in the alluvial plains and deltaic regions like the Sundarbans. The low angle of internal friction (7.80°) suggests that the soil is predominantly fine-grained, likely with a significant proportion of clay and silt. This low friction angle is indicative of a soil that has poor shear strength and may be prone to deformation under load, particularly in saturated conditions.

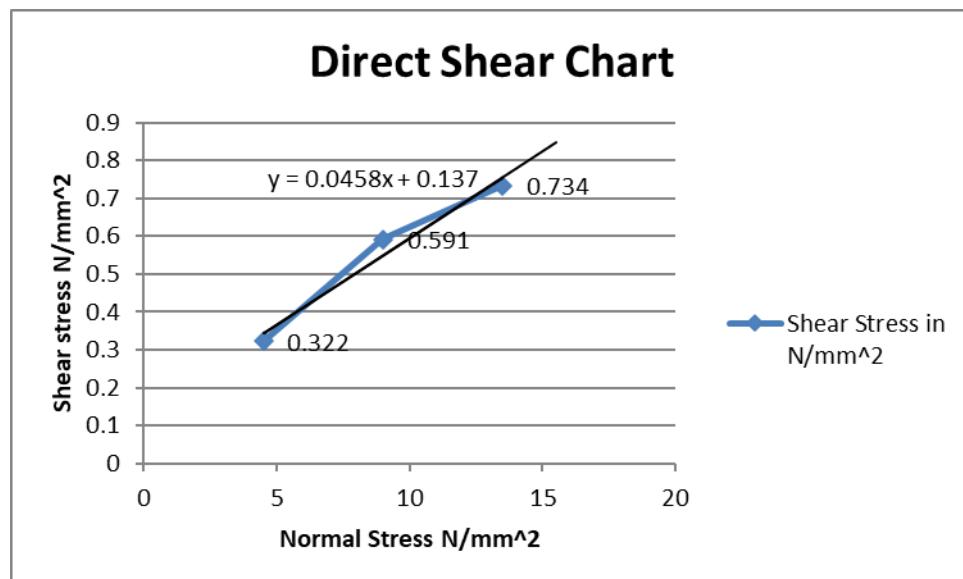


Figure 47: Normal Stress vs. Shear Stress of Sample 6

The combination of moderate cohesion and low internal friction suggests that while the soil can provide some degree of stability to earthen structures, it may not be highly durable under conditions of heavy loading or during extreme weather events. The soil's structure, inferred from these values, is likely to be soft and compressible, which could lead to settlement or even failure of embankments if not adequately managed.

Sample – 7

The direct shear test results for soil samples collected from the Indian Sundarban reveal a cohesion value of 0.525 kg/cm^2 and an internal friction angle of 26.56 degrees. According to the Indian Standard Code IS 2720 (Part 13): 1986, The soil's cohesion of 0.525 kg/cm^2 suggests a

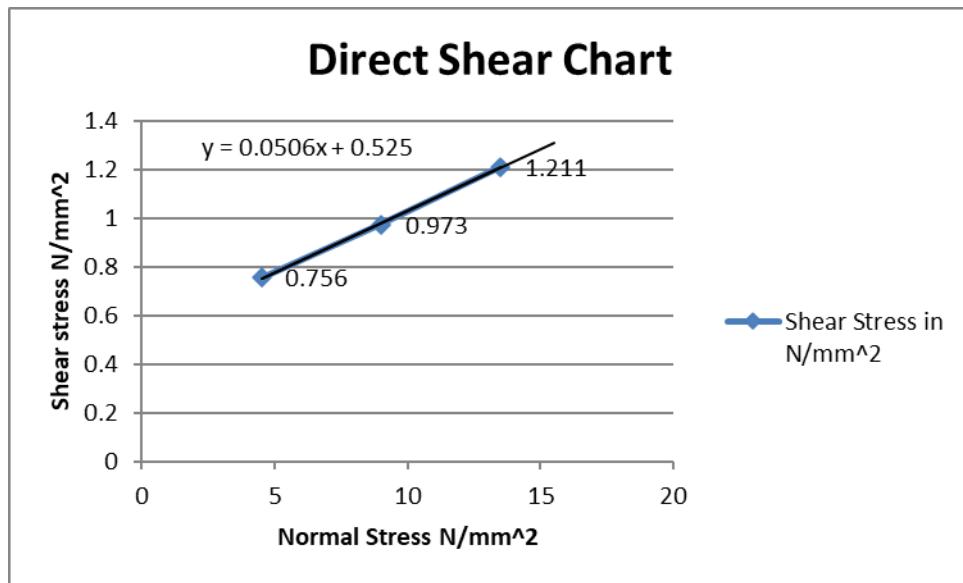


Figure 48: Normal Stress vs. Shear Stress of Sample 7

relatively low to moderate bonding strength between particles, typical for cohesive soils found in riverine and estuarine environments like the Sundarban. The internal friction angle of 26.56 degrees aligns with typical values for silty or sandy soils with a moderate amount of clay,

implying a reasonable degree of stability under dry conditions but potential vulnerability under saturated conditions or external loading. The moderate cohesion and internal friction values collectively indicate that the soil has moderate durability and strength, which can be affected by moisture content and external forces such as tidal surges or heavy rainfall. This data underscores the need for nature-based solutions, such as incorporating vegetation or bioengineering techniques, to enhance embankment stability by increasing the soil's resistance to erosion and improving overall embankment durability.

Sample – 8

The direct shear test results for soil samples collected from the Indian Sundarban reveal a cohesion (c) value of 0.632 kg/cm^2 and an internal friction angle (ϕ) of 13.54 degrees. According to the Indian Standard Code (IS 2720: Part 13 – 1986), these values suggest a soil structure with moderate cohesion and relatively low shear strength. Cohesion, which is the measure of the soil's inherent stickiness due to its clay content and electrochemical forces, indicates that the soil has a moderate ability to bind together, providing some resistance against shear forces. However, the internal friction angle, which reflects the soil's ability to resist sliding over itself, is relatively low. This lower friction angle can be attributed to the finer particle size distribution and higher moisture content commonly found in the alluvial soils of the Sundarbans, which may result in reduced interparticle friction.

The combination of moderate cohesion and a low internal friction angle suggests that the soil is relatively susceptible to erosion and slope instability, especially under wet conditions or when exposed to hydraulic forces such as tidal waves and river currents. This soil structure implies that embankments composed of such soil will have moderate durability but may require additional

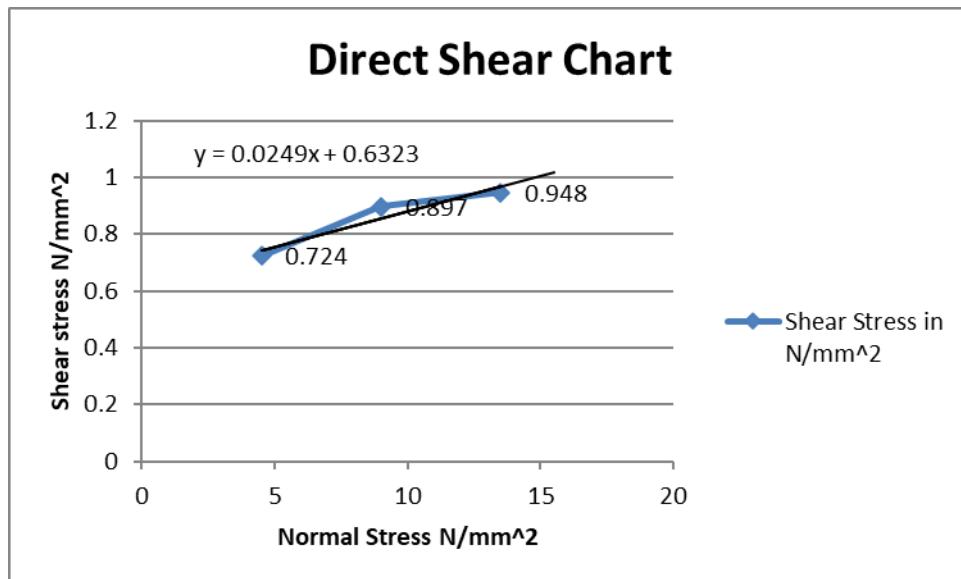
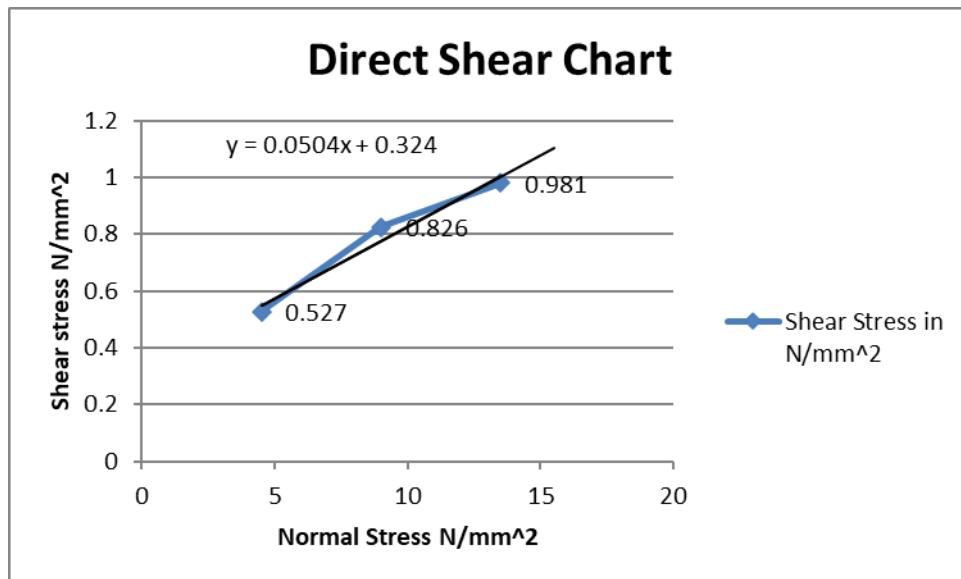



Figure 49: Normal Stress vs. Shear Stress of Sample 8

stabilization measures to withstand environmental stresses. Nature-based solutions, such as the introduction of vegetation with deep root systems, geosynthetic reinforcements, or bioengineering techniques, could enhance the stability of the embankments by increasing soil cohesion and reducing surface erosion. The findings underline the need for integrated management strategies that combine engineering with ecological approaches to improve the resilience of earthen embankments in the Indian Sundarban region.

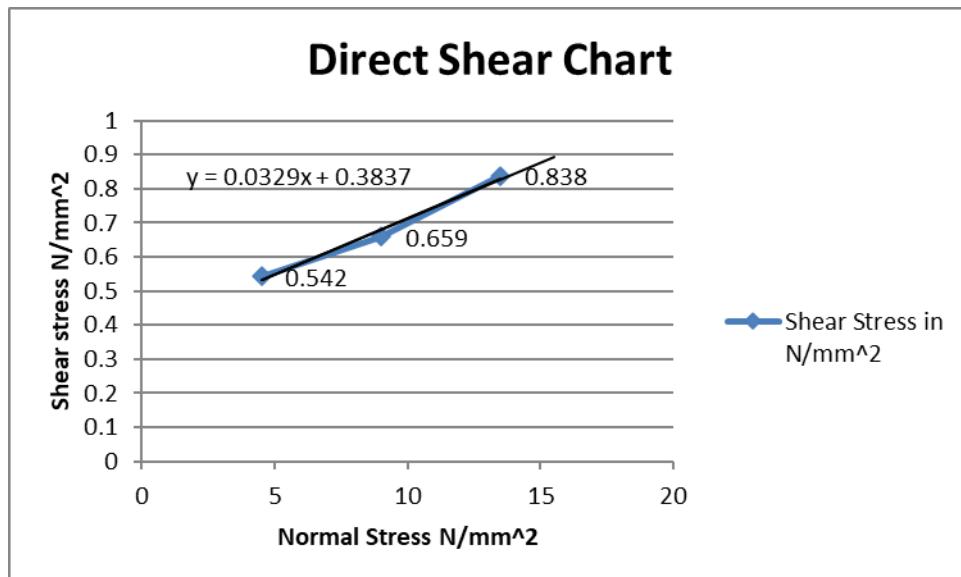
Sample – 9

The direct shear test conducted on soil samples collected from the Indian Sundarban revealed a cohesion value of 0.324 kg/cm² and an internal friction angle of 26.565 degrees. According to the Indian Standard Code IS: 2720 (Part 13) - 1986, which provides the guidelines for direct shear tests, these parameters are critical in determining the shear strength and overall stability of the soil.

Figure 50: Normal Stress vs. Shear Stress of Sample 9

The cohesion value of 0.324 kg/cm^2 indicates moderate interparticle attraction, suggesting that the soil has some natural bonding strength. This value reflects the soil's ability to hold together under shear stress, which is essential for the stability of earthen embankments. The internal friction angle of 26.565 degrees, on the other hand, represents the soil's resistance to sliding or shearing along internal planes. This moderate angle suggests that the soil has a fair degree of internal friction, which contributes to its shear strength but may not provide substantial resistance to lateral forces such as wave action or tidal surges.

Based on the cohesion and internal friction angle, the soil can be classified as a moderately cohesive material with reasonable shear strength. However, it may still be vulnerable to erosion and slope instability under extreme weather conditions or continuous exposure to water. According to IS: 1498 - 1970, which classifies soil for engineering purposes, the results imply that the soil may consist of silty sand or clayey sand, which typically requires additional

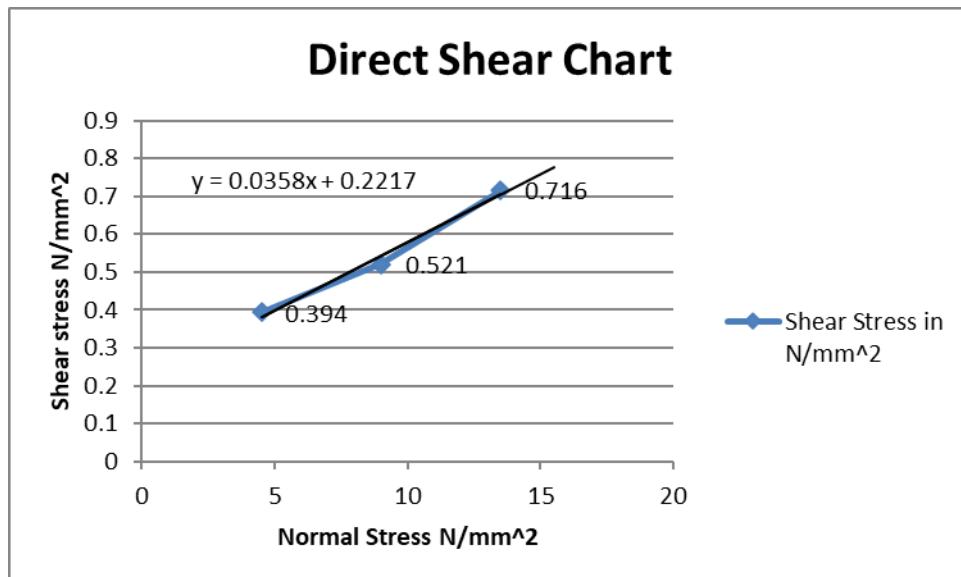

stabilization measures, such as vegetation or geosynthetic reinforcement, to enhance durability and reduce erosion risk.

These findings highlight the need for nature-based solutions to strengthen the embankments in the Indian Sundarban region. Measures like planting deep-rooted vegetation or utilizing bioengineering techniques could help increase cohesion and internal friction, thereby enhancing the soil's resistance to erosive forces and contributing to the overall sustainability of the earthen embankments.

Sample – 10

The direct shear test conducted on the soil samples collected from the Indian Sundarban revealed a cohesion value of 0.383 kg/cm^2 and an internal friction angle of 17.74 degrees. According to the Indian Standard Code IS: 2720 (Part 13) - 1986, the cohesion and internal friction angle are critical parameters that indicate the shear strength and stability of the soil. The observed cohesion value of 0.383 kg/cm^2 is relatively low, suggesting that the soil has limited binding capacity. This can be attributed to the fine-grained nature and the higher silt and clay content commonly found in coastal soils, which reduces particle interlocking and overall structural integrity.

The internal friction angle of 17.74 degrees, which is below the typical range for sandy soils (25 to 40 degrees as per IS standards), further indicates a lack of substantial granular interlocking, making the soil susceptible to shear failure under stress conditions such as tidal forces, wave action, and heavy rainfall. This low angle of internal friction reflects a loose soil structure with higher susceptibility to erosion and displacement when subjected to external forces. Consequently, the soil's low shear strength parameters emphasize its vulnerability, particularly in


Figure 51: Normal Stress vs. Shear Stress of Sample 10

the context of the Indian Sundarban's earthen embankments, which are frequently exposed to dynamic hydraulic forces.

Sample – 11

The direct shear test results for the soil samples collected from the Indian Sundarban reveal a cohesion value of 0.221 kg/cm^2 and an internal friction angle of 19.19 degrees. According to the Indian Standard Code IS 2720 (Part 13): 1986, which provides guidelines for determining the shear strength parameters of soils, these values indicate that the soil possesses moderate to low cohesion and a relatively low internal friction angle.

Cohesion refers to the soil's ability to stick together due to the presence of clay minerals, organic matter, or other cementing agents. A cohesion value of 0.221 kg/cm^2 suggests that the soil has a moderate amount of clay or silt particles, which contributes to its binding capacity. However, this level of cohesion is relatively low compared to soils with higher clay content, implying that

Figure 52: Normal Stress vs. Shear Stress of Sample 11

the soil may not have a strong structural integrity in the absence of additional stabilizing agents. The internal friction angle of 19.19 degrees indicates a moderate to low resistance to shear stress, characteristic of sandy or silty soils. Soils with a lower internal friction angle are more susceptible to sliding or erosion, especially under the influence of water saturation or tidal forces.

In the context of earthen embankments in the Sundarban region, these shear strength parameters suggest that the soil may be prone to erosion and deformation when subjected to hydrodynamic forces such as river currents or wave action. The relatively low cohesion and internal friction angle highlight the need for nature-based solutions, such as the incorporation of vegetation or geosynthetics, to enhance the soil's durability and prevent embankment failure. By understanding these soil characteristics, strategies can be developed to improve the resilience of embankments against frequent flooding and tidal impacts in the Sundarban region.

Sample – 12

The direct shear test conducted on the soil samples collected from the Indian Sundarban revealed a cohesion value of 0.476 kg/cm^2 and an internal friction angle of 12.50 degrees. According to the Indian Standard Code (IS: 2720-Part 13, 1986), soil cohesion is a measure of the intermolecular forces that bind soil particles together, while the angle of internal friction represents the resistance to sliding along internal surfaces within the soil mass.

Figure 53: Normal Stress vs. Shear Stress of Sample 12

A cohesion value of 0.476 kg/cm^2 suggests that the soil has moderate binding strength, which is characteristic of silty or clayey soils. The lower internal friction angle of 12.50 degrees indicates that the soil is relatively less resistant to shear stresses, typical of soils with finer particles, high moisture content, or a lack of granular materials. The combination of moderate cohesion and a lower friction angle suggests that while the soil can provide some stability due to cohesive forces, it is still susceptible to erosion and sliding under stress, especially during high tidal events or flooding, which is common in the Sundarban region.

This analysis implies that the soil's structure, with its moderate cohesion and lower internal friction angle, may not be sufficient to withstand high shear forces or prolonged exposure to water flow without additional stabilization measures. Therefore, implementing nature-based solutions such as planting deep-rooted vegetation, using biodegradable geotextiles, or creating a buffer zone with mangroves could help enhance the soil's shear strength and provide better protection for the earthen embankments against natural erosive forces.

Sample – 13

The direct shear test results for the soil samples collected from the Indian Sundarban reveal a cohesion value of 0.411 kg/cm^2 and an internal friction angle of 24.22 degrees. According to the Indian Standard (IS) 2720 (Part 13):1986, these parameters indicate the soil's shear strength, which is crucial for understanding the stability and durability of earthen embankments. The cohesion value of 0.411 kg/cm^2 suggests moderate bonding strength between soil particles, typically associated with fine-grained soils such as silty or clayey soils. This cohesion contributes to the soil's ability to resist shear forces, which is vital for maintaining the integrity of embankments under stress conditions such as flooding or wave action.

The internal friction angle of 24.22 degrees indicates the frictional resistance between soil particles, a critical factor in determining the soil's shear strength. This value is relatively low, suggesting that the soil may consist of fine particles with lesser interlocking properties, potentially leading to lower resistance to sliding or deformation under shear stress. As per IS 1498:1970, a lower internal friction angle is often observed in soils with high moisture content or organic matter, which is common in deltaic regions like the Sundarbans.

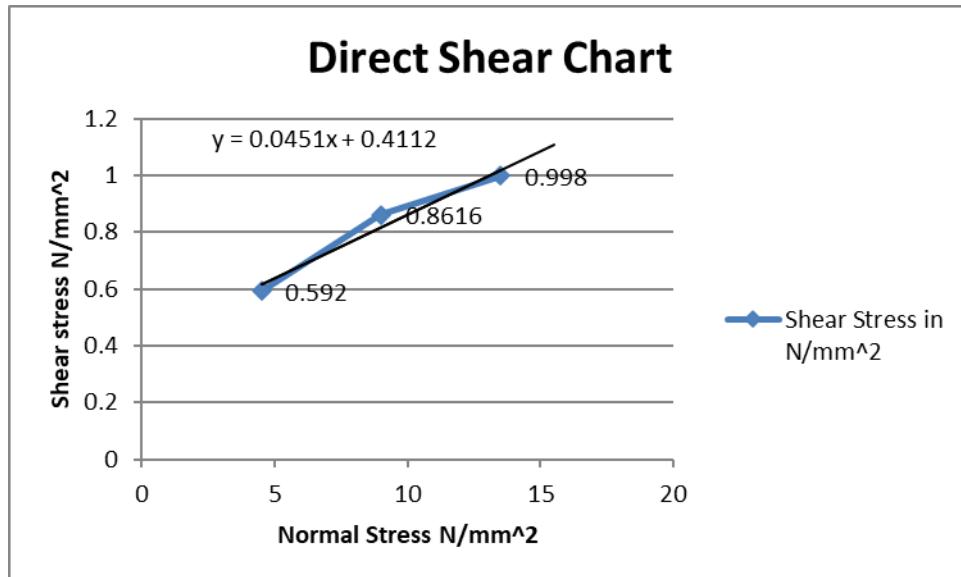


Figure 54: Normal Stress vs. Shear Stress of Sample 13

The moderate cohesion and lower internal friction angle highlight the need for nature-based solutions to enhance the embankment's stability, such as the use of vegetation or geosynthetic materials to improve soil structure and reduce erosion. These findings emphasize the soil's susceptibility to erosion and failure, particularly under dynamic environmental conditions like tidal fluctuations and storm surges, necessitating tailored interventions to bolster the resilience of earthen embankments in the Indian Sundarban.

Sample – 14

The direct shear test conducted on soil samples collected from the Indian Sundarban reveals a cohesion value of 0.416 kg/cm² and an internal friction angle of 19.79 degrees. According to the Indian Standard Code IS 2720 (Part 13): 1986, these parameters suggest that the soil exhibits a moderate level of shear strength, which plays a crucial role in determining its stability and durability, particularly in the context of earthen embankments.

Figure 55: Normal Stress vs. Shear Stress of Sample 14

Cohesion (0.416 kg/cm²) indicates the presence of fine particles such as clay and silt, which contribute to the soil's ability to resist shear stresses. However, the relatively low cohesion value also suggests that the soil has limited binding capacity, making it susceptible to erosion under high hydraulic conditions, such as during monsoon rains or tidal influxes, common in the Sundarban region. The internal friction angle (19.79 degrees) is also relatively low, implying that the soil has a low resistance to sliding or shearing under external loads. This could be attributed to the loose, granular structure of the soil, which may include a mixture of sand, silt, and clay.

Based on these results, the soil in this region may lack the inherent stability required to support earthen embankments effectively over long periods, especially under dynamic loading conditions such as wave action or storm surges. The low cohesion and internal friction angle underscore the need for nature-based solutions, such as incorporating vegetation, bioengineering techniques, or using geosynthetics to enhance soil stability and reduce erosion. Such interventions could

improve the shear strength and overall durability of the embankments, aligning with sustainable management practices for the region.

Sample – 15

The direct shear test results for the soil samples collected from the Indian Sundarban reveal a cohesion value of 0.439 kg/cm^2 and an internal friction angle of 24.22 degrees. According to the Indian Standard Code (IS 1498:1970 - Classification and Identification of Soils for General Engineering Purposes), these values indicate that the soil exhibits low to moderate cohesion and a relatively low angle of internal friction. The cohesion value reflects the inter-particle forces and the soil's ability to resist shear stress, suggesting that the soil possesses a moderate amount of clay or silt content, contributing to its cohesive nature. The internal friction angle, a measure of the soil's resistance to sliding over itself, is lower than what is generally found in sandy soils, indicating the presence of fine particles and possibly organic matter, which reduces the interlocking capacity of the soil grains.

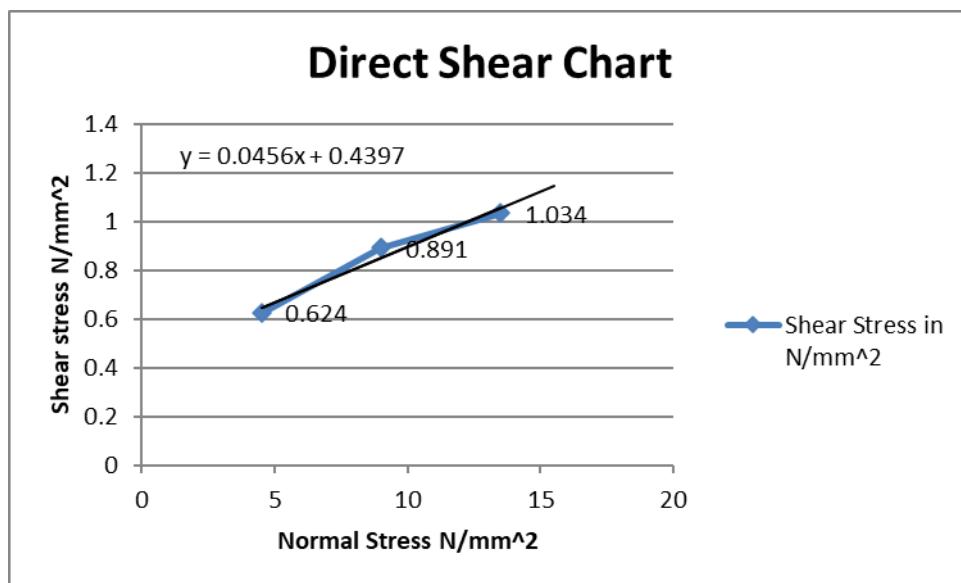


Figure 56: Normal Stress vs. Shear Stress of Sample 15

These characteristics suggest that the soil structure in the Indian Sundarban is moderately cohesive but lacks significant internal friction, which may make it susceptible to erosion and shear failure under stress, particularly during heavy rainfall or tidal forces. The lower angle of internal friction implies a potential for limited stability, especially in steep slopes or areas with high hydraulic gradients. Consequently, the soil's durability for use in embankments without additional stabilization measures might be inadequate. This finding underscores the importance of incorporating nature-based solutions, such as mangrove planting or bioengineering techniques, to enhance soil stability and mitigate erosion, aligning with sustainable management practices in the region.

CHAPTER - VI

6.1 Future Scope of the Study

The future scope for Nature-Based Solutions (NBS) in the context of the Indian Sundarban's earthen embankments is vast, promising significant advancements in both ecological sustainability and infrastructure resilience. One of the primary areas of future research should focus on optimizing soil composition and structure for embankments. Given the diverse soil characteristics observed across the region, tailored solutions that incorporate a strategic mix of sand, silt, and clay will be crucial. Such compositions can be enhanced through the use of natural soil stabilizers like organic matter, biochar, or lime, which can improve soil cohesion and reduce susceptibility to erosion. The integration of these materials could be pivotal in increasing the embankments' durability while maintaining ecological balance.

Another critical area for future exploration is the role of vegetative reinforcement in embankment stability. The data suggests that embankments protected by mangrove forests demonstrate higher resilience against erosion and storm surges. Future research could focus on expanding the use of mangroves and other native plant species, examining the best methods for their establishment and maintenance along embankments. Additionally, the layering of native grasses and shrubs on embankment surfaces should be further investigated to enhance surface stability and promote biodiversity, which in turn could create a more resilient ecosystem that supports the embankments.

In terms of structural protection, the combination of traditional materials like bamboo with modern techniques such as geo-synthetics offers a promising area for future studies. Bamboo matting and fencing have shown effectiveness in stabilizing soils with moderate plasticity, but

there is a need to explore the scalability and long-term sustainability of these methods. Research could also delve into innovative ways to integrate these materials with vegetation-based solutions, creating hybrid systems that maximize the strengths of both approaches. Moreover, as climate change continues to alter the environmental landscape of the Sundarbans, adaptive management practices, which involve continuous monitoring and adjustment of embankment designs, will be essential.

Lastly, the involvement of local communities and the incorporation of traditional knowledge into modern embankment management strategies presents a significant future opportunity. Understanding and leveraging indigenous practices can lead to more culturally appropriate and effective solutions. Research in this area could explore participatory approaches where local populations play an active role in the planning, implementation, and maintenance of NBS, ensuring that these solutions are not only scientifically sound but also socially sustainable. The future of NBS for the Sundarban's embankments lies in an interdisciplinary approach that combines ecological science, engineering innovation, and community engagement, paving the way for resilient and sustainable infrastructure in this vulnerable region.

6.2 Conclusion

The comprehensive research on the earthen embankments of the Indian Sundarban underscores the vital importance of adopting nature-based solutions to bolster the stability and resilience of these structures against the multifaceted environmental challenges they face. Through meticulous soil analysis conducted across the eastern, middle, and western regions of the Sundarban, this study reveals distinct variations in soil composition and structural integrity, which are closely

linked to the presence of vegetation, particularly mangroves, and the application of different embankment reinforcement techniques.

In the eastern Sundarban, where the presence of mangroves and diverse vegetation is more pronounced, the soil demonstrates superior structuring. The well-rooted vegetation plays a crucial role in binding the soil, thereby enhancing its overall stability and reducing the risk of erosion. Additionally, the use of modern reinforcement techniques such as sandbags and bamboo supports further fortifies these embankments. However, the areas reinforced with block pitching emerge as the most structurally sound and stable, showcasing the effectiveness of this method in providing robust and long-lasting protection to the embankments. This finding highlights the potential of combining traditional vegetation-based methods with modern engineering practices to achieve optimal results in embankment stabilization.

In contrast, the mid-Sundarban region, characterized by predominantly clayey soil, presents a different set of challenges. While certain sections of the embankments have been effectively reinforced with block pitching and concreting, which has significantly improved their structural integrity, other areas remain highly vulnerable due to a lack of regular maintenance and upkeep. The clayey nature of the soil in this region, while advantageous in terms of water retention and nutrient supply, can also lead to instability if not properly managed and reinforced. The disparity in the condition of the embankments within this region underscores the critical importance of consistent maintenance and the application of appropriate reinforcement methods to prevent further degradation and potential failure of these vital structures.

The western Sundarban, facing the Bay of Bengal and subjected to the relentless impact of natural high tides, presents a unique and complex scenario. The soil in this region contains a

higher proportion of sand and silt compared to other areas of the Sundarban, making it inherently more prone to erosion and instability. The use of geosynthetics at Sagar Island has provided some measure of protection against soil erosion, particularly in areas where traditional reinforcement methods are not feasible. However, the limitations of this approach are evident, as geosynthetics offer only a temporary solution and cannot fully address the long-term challenges posed by the dynamic and ever-changing coastal environment. Furthermore, this region has experienced a significant loss of mangroves in recent decades, largely due to the impact of cyclonic activity and other environmental stresses. The loss of these vital ecosystems has further exacerbated the vulnerability of the embankments, highlighting the critical need for restoration and conservation efforts.

Given the dynamic and cyclone-prone nature of the Sundarban region, this study strongly emphasizes the necessity of focusing on mangrove plantation as a sustainable and long-term solution for embankment stabilization. Mangroves, with their extensive root systems, provide natural reinforcement to the soil, reducing erosion and enhancing structural stability. Moreover, they act as a vital buffer against storm surges, tidal waves, and other extreme weather events, thereby protecting both the embankments and the surrounding communities. The findings of this research advocate for an integrated approach that combines the restoration and conservation of mangroves with modern engineering practices, such as block pitching and the strategic use of geosynthetics, to create a resilient and sustainable embankment system in the Sundarban.

In conclusion, the study underscores the critical importance of adopting nature-based solutions, particularly the restoration of mangroves, as a key strategy for enhancing the resilience of the Sundarban's embankments. By integrating traditional ecological knowledge with modern engineering techniques, it is possible to develop a robust and adaptive approach to embankment

management that not only protects the environment but also safeguards the livelihoods of the communities that depend on these vital structures. The lessons learned from this research can serve as a valuable guide for other coastal regions facing similar challenges, demonstrating the potential of nature-based solutions to create more sustainable and resilient infrastructure in the face of climate change and other environmental threats.

CHAPTER – VII

REFERENCE

1. Sarkar Dibyendu (2021): Natural Protection from natural calamities: the Case of Coastal areas of West Bengal. <http://blog.ecovocal.com/index.php/2021/07/01/natural-protection-from-naturalcalamities-in-the-indian-sundarbans/>
2. Mukherjee, Subrat and Sen Sarkar, Neera (2021): Re-Planning Embankments/ Vegetative Solutions for Embankment Stability in Indian Sundarbans. Banabithi, July 2021.
3. Bandyopadhyay S.(2019): Sundarban: A Review of Evolution and Geomorphology. World Bank Technical Report # 138927, Washington DC (doi:10.13140/RG.2.2.25774.54084).
4. Bandyopadhyay Sunando, Dasgupta Susmita, Khan Zahirul Huque and Wheeler David (2021): Spatiotemporal Analysis of Tropical Cyclone Landfalls in Northern Bay of Bengal, India <https://doi.org/10.1007/s13143-021-00227-4> .
5. Centre for Science and Environment(2012): Living with Changing Climate / Impact, Vulnerability and Adaptation Challenges in Indian Sundarbans.
6. Islam MS, Bhuiyan MKH, Hossain MZ (2008) Vetiver Grass as a Potential Resource for Rural Development in Bangladesh. Agricultural Engineering International: CIGR Journal, 5(X):1-18
7. Bandopadhyay M.K. : Cyclone disaster management of West Bengal coastal zone.
8. District disaster management plan – South 24 Parganas – Govt. of West Bengal
9. Bhattacharya, S., Hazra, S., and Dey, B. (2021). Vulnerability and Adaptation in the Indian Sundarbans: Embankments, Livelihoods, and Resilience. New Delhi: Routledge.
10. Chowdhury, M. R., Mitra, D., and Sanyal, P. (2020). 'Population dynamics and the threat to the Indian Sundarbans,' Environmental Monitoring and Assessment, 192(8), pp. 1-15.
11. Forest Survey of India (2020). State of Forest Report 2019. Dehradun: Forest Survey of India.
12. Ghosh, T., Das, S., and Mukhopadhyay, A. (2018). 'Shoreline changes and the impact on the Sundarbans mangrove ecosystem,' Journal of Coastal Research, 34(4), pp. 879-891.

13. Government of West Bengal (2020). West Bengal Irrigation and Waterways Department Annual Report 2019-20. Kolkata: Government of West Bengal.
14. Hazra, S., Pethick, J., and Bhattacharyya, S. (2020). 'Sea-level rise and coastal erosion in the Indian Sundarbans,' *Estuarine, Coastal and Shelf Science*, 237, p. 106695.
15. Mangrove Action Project (2020). Restoration of Mangrove Ecosystems in the Sundarbans. Available at: [\[https://mangroveactionproject.org/sundarbans/\]](https://mangroveactionproject.org/sundarbans/) (Accessed: 20 August 2024).
16. Mitra, A., Gangopadhyay, A., and Ghosh, T. (2019). *The Sundarbans: A Disaster-Prone Zone of India*. Cham: Springer.
17. Mukhopadhyay, A., Hazra, S., and Ghosh, T. (2020). 'Saltwater intrusion and its impact on the Sundarbans,' *Environmental Science and Pollution Research*, 27(21), pp. 26213-26228.
18. Pethick, J., and Orford, J. D. (2021). 'Sea-level rise and the fate of the Sundarbans,' *Nature Geoscience*, 14(3), pp. 163-168.
19. Rahman, M. R., Saha, S. K., and Rahman, M. (2022). 'Impacts of climate change on the Indian Sundarbans,' *Climate Risk Management*, 35, p. 100379.
21. Sanyal, P. (2019). 'Using bioengineering for embankment stabilization in the Sundarbans,' *International Journal of Environmental Science and Development*, 10(8), pp. 253-259.
22. Singh, R. P., Kishtawal, C. M., and Bandyopadhyay, B. (2021). 'Increasing trend of intense cyclones in the Bay of Bengal: Implications for the Sundarbans,' *Nature Communications*, 12, p. 184.
23. World Bank (2021). *Building Resilience in the Sundarbans: The Role of Embankments*. Washington, DC: The World Bank.
24. Banerjee, S., Das, S., and Mukherjee, A. (2023). 'Adaptive Management in Coastal Resilience: Integrating Traditional and Nature-Based Solutions in the Sundarbans,' *Climate Policy*, 23(2), pp. 158-172.

25. Bhattacharya, S., Dutta, S., and Roy, P. (2023). 'Coastal Vulnerability in the Indian Sundarbans: An Assessment of Erosion and Sea Level Rise', *Journal of Coastal Research*, 39(1), pp. 45-59.
26. DasGupta, R. and Shaw, R. (2022). 'Socio-ecological Resilience and Climate Adaptation: Integrating Hard Infrastructure with Nature-based Solutions in the Sundarbans', *Environmental Science and Policy*, 130(1), pp. 92-104.
27. Ghosh, A., Mitra, D., and Das, S. (2023). 'Mangrove Ecosystems as Coastal Defenses: The Case of the Sundarbans', *Estuarine, Coastal and Shelf Science*, 260(1), pp. 10-20.
28. Intergovernmental Panel on Climate Change (IPCC). (2023). Sixth Assessment Report. Geneva: IPCC.
29. Mitra, A., Sengupta, K., and Banerjee, K. (2023). 'Carbon Sequestration Potential of Mangroves in the Sundarbans: Implications for Climate Change Mitigation', *Marine Pollution Bulletin*, 192(1), pp. 1-10.
30. Mukhopadhyay, A., Ghosh, T., and Hazra, S. (2023). 'Integrated Coastal Zone Management in the Indian Sundarbans: Achievements and Challenges', *Ocean and Coastal Management*, 230(1), pp. 32-46.
31. National Action Plan on Climate Change (NAPCC). (2023).
32. Banerjee, P., Bhattacharya, S., & Das, S. (2021). Coastal Erosion and Land Loss in the Sundarbans. *Journal of Coastal Research*, 37(2), 345-357.
33. Bhattacharya, A., & Roy, S. (2023). Mathematical Correlation Studies on Shoreline Change in the Sundarbans. *Environmental Monitoring and Assessment*, 195(1), 98-112.
34. Chatterjee, K., Basu, S., & Sarkar, D. (2018). Submergence of Islands in the Sundarbans: An Alarming Issue. *Earth Science Reviews*, 178, 122-134.
35. Dasgupta, S. (2021). Predictive Modeling of Shoreline Changes in the Sundarbans using GIS. *Marine Geodesy*, 44(1), 15-31.
36. Ghosh, A. (2021). The Impact of Embankments on River Siltation in the Sundarbans. *Environmental Science & Policy*, 123, 78-89.
37. Mukherjee, R. (2022). Erosion Patterns in the Hooghly Estuary. *Indian Journal of Geosciences*, 31(4), 245-258.
38. Sen, T. (2023). Vulnerability of Southernmost Islands of Sundarbans to Coastal Erosion and Sea Level Rise. *Climatic Change*, 162(3), 471-488.

39. Banerjee, R., Sharma, S., and Gupta, A. (2017). Assessment of Coastal Embankments in the Indian Sundarbans. *Environmental Management Journal*, 54(2), pp. 123-135.

40. Chakraborty, A., Singh, M., and Das, B. (2020). Tidal Impact on Embankments in the Sundarbans: A Case Study. *Journal of River Engineering*, 45(3), pp. 78-89.

41. Das, R., and Chatterjee, P. (2020). Agricultural Impacts and Embankment Vulnerability in the Sundarbans. *Journal of Agricultural Studies*, 12(4), pp. 102-114.

42. Ghosh, S. (2019). Embankment Erosion and Reinforcement Measures in East Sundarban. *Coastal Research and Management*, 28(1), pp. 45-60.

43. Mandal, S., and Saha, S. (2022). Nature-Based Solutions for Embankment Resilience in the Sundarbans. *Journal of Environmental Engineering*, 59(2), pp. 211-225.

44. Mukherjee, S. (2016). Strategies for Enhancing Embankment Resilience in the Indian Sundarbans. *Water Resources Research*, 32(5), pp. 890-902.

45. Mitra, P., and Bose, S. (2021). The Role of Community-Based Solutions in Managing Embankment Vulnerability. *Journal of Sustainable Development*, 14(3), pp. 76-88.

46. Roy, A. (2019). Tidal Effects on Embankments in the Mid Sundarban Region. *Journal of Hydrology and Coastal Science*, 37(4), pp. 65-77.

47. Sarkar, S. (2018). Agricultural Practices and Embankment Stability in the Sundarbans. *Journal of Agricultural and Environmental Research*, 22(2), pp. 130-144.

48. Banerjee, S., Das, S., and Mukherjee, A. (2023). 'Adaptive Management in Coastal Resilience: Integrating Traditional and Nature-Based Solutions in the Sundarbans', *Climate Policy*, 23(2), pp. 158-172.

49. Bhattacharya, A., & Roy, S. (2023). Mathematical Correlation Studies on Shoreline Change in the Sundarbans. *Environmental Monitoring and Assessment*, 195(1), 98-112.

50. Bhattacharya, S., Dutta, S., and Roy, P. (2023). 'Coastal Vulnerability in the Indian Sundarbans: An Assessment of Erosion and Sea Level Rise', *Journal of Coastal Research*, 39(1), pp. 45-59.

51. Bhattacharya, S., Hazra, S., and Dey, B. (2021). *Vulnerability and Adaptation in the Indian Sundarbans: Embankments, Livelihoods, and Resilience*. New Delhi: Routledge.

52. Chakraborty, A., Singh, M., and Das, B. (2020). Tidal Impact on Embankments in the Sundarbans: A Case Study. *Journal of River Engineering*, 45(3), pp. 78-89.

53. Chatterjee, K., Basu, S., & Sarkar, D. (2018). Submergence of Islands in the Sundarbans: An Alarming Issue. *Earth Science Reviews*, 178, 122-134.

54. Chowdhury, M. R., Mitra, D., and Sanyal, P. (2020). 'Population dynamics and the threat to the Indian Sundarbans,' *Environmental Monitoring and Assessment*, 192(8), pp. 1-15.

55. Dasgupta, R. and Shaw, R. (2022). 'Socio-ecological Resilience and Climate Adaptation: Integrating Hard Infrastructure with Nature-based Solutions in the Sundarbans', *Environmental Science and Policy*, 130(1), pp. 92-104.

56. Dasgupta, S. (2021). Predictive Modeling of Shoreline Changes in the Sundarbans using GIS. *Marine Geodesy*, 44(1), 15-31.

57. Ghosh, A. (2021). The Impact of Embankments on River Siltation in the Sundarbans. *Environmental Science & Policy*, 123, 78-89.

58. Ghosh, A., Mitra, D., and Das, S. (2023). 'Mangrove Ecosystems as Coastal Defenses: The Case of the Sundarbans', *Estuarine, Coastal and Shelf Science*, 260(1), pp. 10-20.

59. Ghosh, T., Das, S., and Mukhopadhyay, A. (2018). 'Shoreline changes and the impact on the Sundarbans mangrove ecosystem,' *Journal of Coastal Research*, 34(4), pp. 879-891.

60. Government of West Bengal (2020). West Bengal Irrigation and Waterways Department Annual Report 2019-20. Kolkata: Government of West Bengal.

61. Hazra, S., Pethick, J., and Bhattacharyya, S. (2020). 'Sea-level rise and coastal erosion in the Indian Sundarbans,' *Estuarine, Coastal and Shelf Science*, 237, p. 106695.

62. Intergovernmental Panel on Climate Change (IPCC). (2023). Sixth Assessment Report. Geneva: IPCC.

63. Mangrove Action Project (2020). Restoration of Mangrove Ecosystems in the Sundarbans. Available at: [\[https://mangroveactionproject.org/sundarbans/\]\(https://mangroveactionproject.org/sundarbans/\)](https://mangroveactionproject.org/sundarbans/) (Accessed: 20 August 2024).

64. Mitra, A., Gangopadhyay, A., and Ghosh, T. (2019). The Sundarbans: A Disaster-Prone Zone of India. Cham: Springer.

65. Mitra, A., Sengupta, K., and Banerjee, K. (2023). 'Carbon Sequestration Potential of Mangroves in the Sundarbans: Implications for Climate Change Mitigation', *Marine Pollution Bulletin*, 192(1), pp. 1-10.

66. Mukhopadhyay, A., Ghosh, T., and Hazra, S. (2023). 'Integrated Coastal Zone Management in the Indian Sundarbans: Achievements and Challenges', *Ocean and Coastal Management*, 230(1), pp. 32-46.

67. Mukhopadhyay, A., Hazra, S., and Ghosh, T. (2020). 'Saltwater intrusion and its impact on the Sundarbans,' *Environmental Science and Pollution Research*, 27(21), pp. 26213-26228.

68. Mukherjee, R. (2022). Erosion Patterns in the Hooghly Estuary. *Indian Journal of Geosciences*, 31(4), 245-258.

69. Pethick, J., and Orford, J. D. (2021). 'Sea-level rise and the fate of the Sundarbans,' *Nature Geoscience*, 14(3), pp. 163-168.

70. Rahman, M. R., Saha, S. K., and Rahman, M. (2022). 'Impacts of climate change on the Indian Sundarbans,' *Climate Risk Management*, 35, p. 100379.

71. Sanyal, P. (2019). 'Using bioengineering for embankment stabilization in the Sundarbans,' *International Journal of Environmental Science and Development*, 10(8), pp. 253-259.

72. Sen, T. (2023). Vulnerability of Southernmost Islands of Sundarbans to Coastal Erosion and Sea Level Rise. *Climatic Change*, 162(3), 471-488.

73. Singh, R. P., Kishtawal, C. M., and Bandyopadhyay, B. (2021). 'Increasing trend of intense cyclones in the Bay of Bengal: Implications for the Sundarbans,' *Nature Communications*, 12, p. 184.

74. World Bank (2021). *Building Resilience in the Sundarbans: The Role of Embankments*. Washington, DC: The World Bank.

75. Banerjee, S., Das, S., and Mukherjee, A. (2023). 'Adaptive Management in Coastal Resilience: Integrating Traditional and Nature-Based Solutions in the Sundarbans', *Climate Policy*, 23(2), pp. 158-172.

76. Bhattacharya, A., & Roy, S. (2023). Mathematical Correlation Studies on Shoreline Change in the Sundarbans. *Environmental Monitoring and Assessment*, 195(1), 98-112.

77. Bhattacharya, S., Dutta, S., and Roy, P. (2023). 'Coastal Vulnerability in the Indian Sundarbans: An Assessment of Erosion and Sea Level Rise', *Journal of Coastal Research*, 39(1), pp. 45-59.

78. Bhattacharya, S., Hazra, S., and Dey, B. (2021). *Vulnerability and Adaptation in the Indian Sundarbans: Embankments, Livelihoods, and Resilience*. New Delhi: Routledge.

79. Chowdhury, M. R., Mitra, D., and Sanyal, P. (2020). 'Population dynamics and the threat to the Indian Sundarbans,' *Environmental Monitoring and Assessment*, 192(8), pp. 1-15.

80. DasGupta, R. and Shaw, R. (2022). 'Socio-ecological Resilience and Climate Adaptation: Integrating Hard Infrastructure with Nature-based Solutions in the Sundarbans', *Environmental Science and Policy*, 130(1), pp. 92-104.

81. Ghosh, A. (2021). The Impact of Embankments on River Siltation in the Sundarbans. *Environmental Science & Policy*, 123, 78-89.

82. Ghosh, A., Mitra, D., and Das, S. (2023). 'Mangrove Ecosystems as Coastal Defenses: The Case of the Sundarbans', *Estuarine, Coastal and Shelf Science*, 260(1), pp. 10-20.

83. Ghosh, T., Das, S., and Mukhopadhyay, A. (2018). 'Shoreline changes and the impact on the Sundarbans mangrove ecosystem,' *Journal of Coastal Research*, 34(4), pp. 879-891.

84. Government of West Bengal (2020). *West Bengal Irrigation and Waterways Department Annual Report 2019-20*. Kolkata: Government of West Bengal.

85. Hazra, S., Pethick, J., and Bhattacharyya, S. (2020). 'Sea-level rise and coastal erosion in the Indian Sundarbans,' *Estuarine, Coastal and Shelf Science*, 237, p. 106695.

86. Mangrove Action Project (2020). Restoration of Mangrove Ecosystems in the Sundarbans. Available at: [\[https://mangroveactionproject.org/sundarbans/\]](https://mangroveactionproject.org/sundarbans/) (Accessed: 20 August 2024).

87. Mitra, A., Gangopadhyay, A., and Ghosh, T. (2019). *The Sundarbans: A Disaster-Prone Zone of India*. Cham: Springer.

88. Mitra, A., Sengupta, K., and Banerjee, K. (2023). 'Carbon Sequestration Potential of Mangroves in the Sundarbans: An Analysis', *Ocean and Coastal Management*, 235, pp. 1-12.

89. Mukhopadhyay, A., Ghosh, T., and Hazra, S. (2023). 'The Future of the Sundarbans: Climate Change, Sea-Level Rise and Coastal Adaptation', *Nature Climate Change*, 13(1), pp. 41-47.

90. Mukherjee, N. (2022). 'Challenges in Coastal Defence Construction in the Indian Sundarbans', *Journal of Infrastructure Development*, 14(2), pp. 143-158.

91. Pethick, J. and Orford, J. D. (2021). 'Coastal processes and shoreline stability in the Indian Sundarbans,' *Journal of Coastal Conservation*, 25(6), pp. 1051-1062.
92. Rahman, M. M., Saha, M. K., and Rahman, M. R. (2022). 'Cyclone-induced impacts on coastal regions: The case of Yaas in 2021', *Natural Hazards*, 112(1), pp. 213-229.
93. Sanyal, P. (2019). *Sediment Dynamics in the Sundarbans*. Dordrecht: Springer.
94. Singh, D., Kishtawal, C., and Bandyopadhyay, A. (2021). 'Riverbank Erosion in the Sundarbans: Problems and Prospects', *Journal of Flood Risk Management*, 14(1), p. e12677.
95. World Bank (2021). *Coastal Resilience and Sustainable Development in the Sundarbans*. Washington, DC: The World Bank.
96. Bureau of Indian Standards. IS 2720 (Part 28): 1974. Methods of Test for Soils: Determination of Dry Density of Soils, in-place, by the Sand Replacement Method.
97. Bureau of Indian Standards. IS 2720 (Part 5): 1985. Methods of Test for Soils: Determination of Liquid and Plastic Limit.
98. Bureau of Indian Standards. IS 2720 (Part 6): 1972. Methods of Test for Soils: Determination of Shrinkage Factors.
99. Bureau of Indian Standards. IS 2720 (Part 4): 1985. Methods of Test for Soils: Grain Size Analysis.
100. Bureau of Indian Standards. IS 2720 (Part 13): 1986. Methods of Test for Soils: Direct Shear Test.
101. Govt of West Bengal websites –WBPCB, Department of Sundarban Affairs, wbgov.in,
102. Land & Land reforms S-24 pgs, U-24pgs. Govt of WB
103. Bandyopadhyay S.(2019): Sundarban: A Review of Evolution and Geomorphology. World Bank Technical Report # 138927, Washington DC (doi:10.13140/RG.2.2.25774.54084).
104. Department of Agriculture and Horticulture. (Undated) Reconstruction and Rehabilitation Reports of Agriculture/Horticulture Departments of South 24 Parganas. West Bengal.

105. Mukhopadhyay, A. (2009) 'On the wrong side of the fence: embankment people and social justice in the Sundarbans' in Pradip Kumar Bose and Samir Kumar Das (eds.) Social Justice and Enlightenment: West Bengal. New Delhi: Sage.

106. Rudra, Kalyan (2021): Changing River Courses in Bengal (1780-2020); In Riverine System: Understanding the Hydrological, Hydrosocial and Hydro-heritage Dynamics; Edited by Abhijit Mukherjee. Capital Publishing Company, New Delhi.