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ABSTRACT 

 

 

Urban Vulnerabilities in the deltaic metropolitan areas have become a challenging concern, 

affected by seasonal variations and varied environmental socio-economical, and 

demographical factors. This study represents a comparative analysis of the Urban Vulnerability 

of two deltaic megacities namely Bangkok Metropolitan Region (BMR), Thailand, and Kolkata 

Metropolitan Area (KMA), India. This study employed Geographical Information System 

(GIS) based fuzzy Multi-Criteria Dimensional Analysis (MCDA) to map spatial data and assess 

vulnerabilities regarding parameters such as Rainfall, AQI, LST, NDBI, NDVI, Population 

Density, Old/Child Population, Literacy Rate, and Per Capita Income, focusing on how these 

parameters fluctuate with the summer, monsoon and winter season, and also its impacts in the 

metropolis due to seasonal variations. The results indicate that about 4.70 sq. km.(0.3%) and 

585.23 sq. km.(37.3%) of the area in the central region and its surroundings of BMR and 

21.50sq. km.(1.14%) and 68.29 sq. km.(3.62%) of the area in the central region and its 

surroundings of KMA are highly vulnerable in summer and monsoon and also highly exposed 

to multiple climatic and physiological threats, especially heat waves, cardiovascular disease, 

and neurological diseases. The study also highlights how elderly, children and low-income 

groups are more susceptible to vulnerabilities. The study explains the relationship between 

seasonal environmental shifts and physiological threats, stressing for the need of season- 

specific public health strategies and proper urban planning measures. To mitigate the effects of 

Urban Vulnerability in deltaic megacities, policymakers, and urban planners shall consider the 

findings of this study into account while planning sustainable solutions to the hazards. 

 

 

 

Keywords – Urban Vulnerability; Urban Heat Island (UHI); Metropolis; Rainfall; AQI; LST; 

NDBI; NDVI; Urban sprawl 
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1 Introduction 

 

The growing demand for resources worsening the world’s population expansion and ongoing 

development, puts additional stress on the planet’s ecosystem (Tiwari, 2000). Due to greater 

access to employment, education, financial opportunities, and standard of living in 

metropolitan areas, people are relocating from rural areas. Urban areas are expanding 

physically faster than their rate of population, and by 2030 cities are projected to encompass 

thrice as much land as did in 2000, posing a threat to biodiversity hotspots area (Angel et al., 

2011; Seto et al., 2010; Seto et al., 2012). Urban areas face the consequences of climate change, 

which has detrimental effects on environmental, social, demographical, and institutional issues, 

and health impacts. To overcome these factors, it is essential to develop sustainable ways to 

effectively govern urban growth (UN-Habitat, 2022). Repercussions of urbanization are 

changes in the pattern of Land Use Land Cover (LULC), decrease in vegetation index, air 

pollution, rise of sea level, increase in rainfall, increase in global temperature, severe droughts, 

floods, increase in frequency of cyclones, increase in building density, compromise of public 

health, inadequate excess to employment opportunities and education (IPCC, 2021). 

United Nations estimated the world population in 2022 to be 8 billion and projected that the 

world population will rise to around 8.5 billion in 2030, 9.7 billion in 2050, and 10.4 billion in 

2100, whereas South and Southeast Asia being the most populous region, nearly 1.4 billion 

people live in India and China in 2022 (World Population Prospects (WPP), 2022). IPCC, 2022 

shows that about 332 million migrants settle in South and Southeast Asia, and the region’s 

current population makes up 54% and is projected to rise 64% by 2050. With women and girls 

making up 49.7% of the world's population and men 50.3%, gender disparity puts them at risk 

for health problems as the population increases; with time, this statistic is estimated to gradually 

reverse, and by 2050, it is anticipated that the male and female populations will be almost equal 
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(WPP, 2022). Between 2015 and 2020, the urban population grew to 397 million mostly in less 

developed areas, which makes the situation more vulnerable and causes stress on infrastructure, 

heightened competition for resources, and contributes to global climate alterations which 

impact burden on the world’s infrastructure and human population (UNDESA, 2018; IPCC 

Cities, 2022). According to WPP 2022, South and Southeast Asia is the most populous region. 

So, we selected two deltaic megacities of South and Southeast Asia namely the Bangkok 

Metropolitan Region (BMR) and the Kolkata Metropolitan Region (KMR). KMR is one of 

India’s biggest urban agglomerations, positioned at the Ganga River delta, at an average 

altitude is about 8 m above mean sea level, with a population of 14.72 million people roughly 

7950 people per square kilometer as per the 2011 Census report with an annual population 

growth rate of 1.8% in between 2001-2011, expecting an increase of 20 million by 2021 and 

21.1 million by 2025 (Malik et al., 2020, Maity et al., 2022). The normal annual rainfall that 

had been recorded was 1647 mm. The mean temperature is recorded at 22.50 °C in the months 

of winter which goes down 10 °C in December to January. The mean temperature is recorded 

at 29.25 °C in the months of summer which goes up to 40 °C in April (Hasnine et al., 2023). 

On the other hand, BMR covers an area of approximately 6113.30 km2, with a population of 

nearly 10 million (as of 2019) roughly 1400 people per square kilometer, located on the Chao 

Phraya River basin's flat terrain, ranging at 4m above sea level (SFD Bangkok, 2020). The 

BMR experiences three seasons: summer (March), monsoon (June–October), and winter 

(November–February). (T.Taichi 2020) with an average precipitation of about 1700 mm/year. 

The mean temperature is recorded at 35°C - 40°C in the months of summer in April and a 

minimum of 16°C - 25° in January (Pakarnseree et al., 2018). 

The accelerated urbanization and industrialization arising in metro cities are converting 

wetlands, agricultural lands, and vegetation into built-up areas, resulting in detrimental effects 

on water security, and biodiversity, the emergence of urban heat islands, and alterations to the 
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microclimate (Filho et al. 2021). Asia and Africa are expected to experience the greatest loss 

of green areas by 2030 (d’Armour et al., 2017). From 1990 to 2020, around 420 million hectares 

of forest land were destroyed to meet demand, with 90% of this destruction occurring in tropical 

areas, which poses a threat to the environment, considering that approximately 45% of the total 

forest land is in the tropics (IPCC Tropical Forest, 2022). A decrease in the green land or open 

space correlates with an increase in concrete area and an increase in vehicular services 

(d’Armour et al., 2017). 

In metropolitan areas construction and developments involve activities that generate dust, 

harmful emissions from construction sites, and particulate matter which are responsible for 

worsening the air quality, thus leading to air pollution. Besides construction and development 

sites affecting air quality, industrial expansion, higher vehicle density, and traffic congestion 

in urban areas are also responsible for producing volatile organic compounds, sulfur dioxide, 

and harmful gases that threaten human life. Studies suggest that 23%-50% of these emissions 

come from transportation in developing countries (Crippa et al., 2018). So, air pollution is a 

major concern in recent decades. It not only alters the local climate but also affects human 

health. According to the reports of UN-Habitant 2022, air pollution is responsible for about 7 

million premature deaths annually. The concentration of air pollutants such as tropospheric 

ozone, oxides of nitrogen, and volatile organic compounds are likely to peak in the mid- 

centuries due to urban sprawl in Southeast Asia, South Asia, and Africa (Naik et al., 2021). In 

2023, Thailand's PM2.5 concentration surged by 28% from 18.1 µg/m3 to 23.3 µg/m3, with 

Bangkok recording an annual average of 21.7 µg/m3 and only one district, Samut Prakhan, 

staying below the WHO recommended level, while cities like Chiang Mai surpassed it by 

150%; India, ranking third for poor air quality, saw concentrations rise from 53.3 µg/m3 to 

54.4 µg/m3 between 2022 and 2023, with Delhi witnessing a 10% increase to a monthly 

average of 255 µg/m3 in November, and countries in South and Central Asia recorded the 



4  

highest annual average PM2.5 concentrations in 2023(World Air Quality Report, 2023). The 

consequences of urbanization are not limited to air pollution and scarcity of land but also affect 

the global climate. As well as concrete structures and high-rise structures have higher heat 

absorption and emission capabilities, making urban areas warmer than rural areas (Chakraborty 

et al., 2021a). 

Increase in global average temperature and heat waves are the outbreaks of climate change and 

will impact the urban system (Doblas-Reyes et al., 2021). July 2023 is marked as the warmest 

month as well as the warmest year with a rise of 1.45oC (+/- 0.12 oC) in global mean surface 

temperature after the 1850-1900 mark, historically placing it among the nine warmest years on 

record from 2015-2023, previously 2016 with an anomaly of 1.29oC (+/- 0.12oC) and 2020 

with an anomaly 1.27oC (+/- 0.13oC) recorded as the warmest year in the decade (WMO, 2023). 

The ultimate cause of the increase in global temperature is the increase in the atmospheric 

concentrations of greenhouse gases where countries like India, Thailand, Myanmar, Malaysia, 

and Vietnam are located in the South and Southeastern parts of Asia and are thereby highly 

influenced by large-scale seasonal reversal wind regimes called monsoon (Serreze and Barry, 

2010). Though monsoonal rainfall and temperature are inversely correlated, the consequences 

of temperature changes over the past few years resulted in alterations in global monsoonal 

precipitation reduced by approximately 70%, its implications not only for the Indian summer 

monsoon but also for Southeast Asia, where it delays the arrival of the monsoon by 15 days 

(Ashfaq et al., 2009). Due to heavy rainfall, urban areas are vulnerable to floods or 

waterlogging. The capital of West Bengal, Kolkata encountered an unprecedented 236mm of 

rainfall in a single day on May 20, 2020, after the downfall of the heavy cyclone, which boosted 

the city’s total rainfall of 359.1mm only in May in contrast to the average May rainfall of 

117.5mm in between 2010-2019 which caused waterlogged in the major parts of the city 

(Mukherjee et al., 2021). In July 2017, Kolkata witnessed severe flooding from heavy rainfall 

https://www.sciencedirect.com/science/article/pii/S0273117721008899?casa_token=q1S8g8jJ8n4AAAAA%3A-uFrKVLsm_aOTEYbXltnv3Aj47TTvXG8xWaVjuKbHyp_irK-PJ1uq0_ap02Er4Pgt2anhV4Q53U&b0035
https://www.sciencedirect.com/science/article/pii/S0273117721008899?casa_token=q1S8g8jJ8n4AAAAA%3A-uFrKVLsm_aOTEYbXltnv3Aj47TTvXG8xWaVjuKbHyp_irK-PJ1uq0_ap02Er4Pgt2anhV4Q53U&b0035
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of 621.5mm, leading to the awful demise of approximately 50 lives, and the evictions of 2 

million people across 160 villages that remained underwater for days (The Hindu, 2017). 

Kolkata conditions akin to flooding due to its soil composition which shows tremendous 

capacity for runoff and offers a low infiltration rate due to its silty and loamy nature the 

remaining part of Kolkata shows a clayey soil with very low porosity leads to excessive surface 

runoff, and the landform of Kolkata is characterized by its extremely gradual slope and saucer- 

like structure similar to the active delta region, automatically worsening with excessive runoff 

after one or two hours of heavy rainfall (Bose et al., 2023). Besides Kolkata, Bangkok’s rapid 

population, improper drainage system, upstream changes in northern Thailand, tidal effects, 

and land subsidence from ground extraction have led to flash floods in Bangkok city (Marks et 

al., 2020). Bangkok’s improper drainage system is due to the ground surface level being lower 

than the controlled water level in the surrounding canal and the Chao Phraya River which 

reduces the efficacy of gravitational drainage and enhances flash floods in the city 

(Urbanisation of Bangkok., 2022). Bangkok goes through a tropical savanna-type climate, with 

distinctive rainy and dry seasons, it experiences about 1651mm of rainfall annually, and almost 

all precipitation occurs between May and October, or the rainy seasons (T.Taichi 2020). 

Considering the above, this study addresses the urban vulnerability of the deltaic megacities 

regarding social and physical evaluation from the unscientific growth of urbanization and 

increasing demand for natural resources. 

1.1 Aim 

 

The aim of this study is the assessment of the vulnerability zones in the Metropolitan Region 

of the Hooghly River Delta, Kolkata, India, and the Chao Phraya River Delta, Bangkok, 

Thailand. 
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1.2 Objectives 

 

The objectives of this research are: 

 

i. To evaluate the distribution of nine parameters (i. Rainfall, ii. LST, iii. AQI, iv. NDBI, v. 

 

NDVI, vi. Population Density, vii. Old/Child Population, viii. Per Capita Income, ix. Literacy 

Rate) 

ii. To access the spatial zones of vulnerability and prepare map 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2: Literature Review 



 

2 Literature Review 

Urban Vulnerability has become a headache in growing metropolises which increases the risk 

of both natural and anthropogenic activities. The urban areas face immense environmental, 

socio-economic, institutional, and infrastructural struggles. This literature review revolves 

around the recent study on urban vulnerability and its risk index by prioritizing the parameters 

directly involved in shaping the vulnerability. 

2.1 Rainfall: 

Rainfall has a pivotal impact on the context of urban vulnerability. Insufficient rainfall may 

lead to drought, water scarcity, and an increase in temperature, and on the other hand, heavy 

rainfall can contribute to urban flooding, landslides, damage to the infrastructures, and 

increased water-borne diseases. Thus, Bose et al., 2023, analyze the consequences of two 

consecutive hours of heavy rainfall at various rainfall depts on flooding in Kolkata, 

India employing the Integrated Valuation of Ecosystem Services and Trade-Offs-Urban Flood 

Risk Mitigation (InVEST-UFRM) model. The investigation shows that approx. 75% of the 

surface area is impermeable, which boosts the flood risk and causes runoff, especially in the 

northern part of the city. As many metropolitans do have not proper drainage infrastructure, 

studied by Chitwatkulsiri et al., 2021 in the Sukhumvit area, Bangkok, they developed a system 

that includes rainfall run-off modeling, flood inundation mapping and collection of rainfall 

forecast data and the outcomes accurately estimated flood zones and water levels within an 

hour of rainfall data and allowing for early warnings enables effective flood management 

methods such as pumping, watergate controls, and evacuations are made possible by this 

process. Heavy rainfall not only causes flash floods but also destructs the hydrological 

structures, Guhathakurta et al., 2011 analyzed the frequency of rainy days, rain days, heavy 

rainfall in a single day, monthly average rainfall of the monsoon period and return period at 

various locations of India to observe the rainfall pattern as well as the consequences of climate 



 

change on heavy rainfall and risk of flood intensity of the area. The result concluded that the 

peninsula, eastern part, and northeast of India have the highest frequency of extreme rainfall 

rather than the central part. In addition, Patil et al., 2023, also advised that the hydrological 

planning of India needs to take into account the current extreme rainfall patterns to ensure the 

bearing capability of the infrastructure during heavy rainfall and also suggested finding natural 

restoration processes such as conservation of wetlands, strengthening watershed management 

to ensure safety. Alike, Roxy et al., 2017, added as the frequency of extreme rainfall increases 

in the parts of India due to climate alterations which exhibit flash flood risk of the area as its 

infrastructure may not have designed to handle such events. 

2.2 Air Quality Index (AQI): 

AQI is a key indicator to assess the concentration of air pollution as well as its impacts on 

human health in association with urban vulnerability. Thus, Zhang et al.,2016, offer an 

approach to vulnerability assessment of the environment due to anthropogenic interference by 

implementing GIS, MCDA, and Ordered Weighted Averaging (OWA) techniques in the 

Exposure-Sensitivity-Adaptive Capacity (ESA) framework at the Beijing-Tianjin-Hebei region 

of China, his results affirm the reliability and shed light on the urgent action for air pollution 

needs to be addressed and also offers ideas for methodical decision-making and future acts for 

the policymakers. In 2018, again Zhang et al. established a Comprehensive Air Quality Model 

with the Extensions (CAMx) method for the atmospheric vulnerability assessment in the same 

study area focusing on the parameters including socio-economic factors, atmospheric factors, 

and anthropogenic activities. This method was proven to reduce atmospheric vulnerability and 

can be a useful tool for guiding policymakers and results indicate the central region and the 

southern region are at higher risk zones due presence of higher AQI. Equivalently, Maji et al., 

2017, explored the impacts of air pollution on human health in various locations of Indian 

cities, and shed light on the concentration of particulate matter PM2.5 and PM10 and its 



 

association with higher mortality rates and increasing cardiovascular diseases in human health. 

This study also stresses the increased urban vulnerability among the old/child population and 

heightened the risk of asthma. Furthermore, Nishad et al., 2015 added the amount of NOX and 

SOX generated by vehicular actions can also severely impact human health and the 

environment. Similarly, Gurjar et al., show an in-depth assessment of issues related to air 

pollution in Indian megacities such as Kolkata, Mumbai, Delhi, and Chennai providing stresses 

on the trends in emission and air quality enhancement initiatives from the government to 

minimize air pollution in urban areas, it emphasizes the importance of addressing vehicular 

emissions and also determines the trends in concentration and pollutant emission over the 

megacities. Moreover, Sun et al., 2024, compared air pollution with urban green space and 

suggested how open green space reduces the concentration of air pollution also the study 

highlighted the importance of urban planning in the reduction of AQI in well-developed 

metropolitans. 

2.3 Land Surface Temperature (LST) 

LST is an integral indicator of understanding and assessing urban vulnerability. Hung et al., 

2022, revealed in his study in China that an increase in LST leads to atmospheric dryness 

resulting in vegetation loss and drying of the urban areas this phenomenon is termed Urban 

Heat Island (UHI). So, Zhou et al., 2011 studied the comprehensive trends of LST. It correlated 

them with urban sprawl using satellite images from Landsat and Modis and concluded that the 

primary causes of increasing LST and generating Urban Heat Island (UHI) in the metropolis 

are the lack of green space which gets sacrificed due to industrial development, unorganized 

or dense settlements, and rapid population growth. Similarly, Vargas et al., 2020, in their study 

in Mexico, showed how 3OC - 4 OC of temperature has increased in the study area in the last 

decades and Zhou et al., 2016 explain that an increase in LST not only sacrifices vegetation 

but also triggers the frequency of intense storms, natural hazards related to the warm spell, and 



 

increases risk to urban flooding. In addition, Mirzeai et al., 2020, showed other impacts of LST 

on the environment, it exhibits the frequency of health disputes in humans. 

2.4 Population Density: 

Urbanization in cities is a challenging issue fuelled by a range of environmental, socio- 

economical, and infrastructural concerns. Population density is said to be the backbone of 

social urban vulnerability. So, Liu et al., 2016, proposed that population density triggers the 

chances of environmental vulnerability such as heatwaves, air pollution, and urban flooding. 

Urban areas lack green spaces due to unorganized and dense settlements and have high levels 

of impermeable surfaces which boost the heat island effect and reduce natural water infiltration 

which leads to scarcity of fresh drinking water and triggers natural hazards. Cutter et al., 2015, 

mentioned that social vulnerability and population density are interrelated, the higher the 

population density the more is the huge stress on natural resources, these factors trigger the 

vulnerability of human health and they lack the adaptive capacity to respond. Most of the urban 

areas are unplanned and are much more susceptible to natural hazards. So, Rezaei et al., 2023, 

analysed three fundamental criteria such as physical vulnerability, adaptive capacity, and 

emergency response accessed in a seismic vulnerability by evaluating 19 districts of Iran 

employing the Analytic Hierarchy Process (AHP) and concluded that lack of open space, 

limited emergency services, high population density are contributors of urban vulnerability. 

Similarly, Solecki et al., 2015, showed in their studies how New York’s higher population 

density leads to storm surges and rise in sea level has increased vulnerability. According to the 

UN’s city prospects 2022 report, Mumbai is one of the urbanized areas of India that faces 

challenges due to urbanization and dense population from heavy rainfall and infrastructural 

issues 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3: Study Area 



 

3 Study Area 

 

3.1 Physiography of Study Areas 

 

Kolkata Metropolitan Area (KMA) is located in the lower deltaic region of the Ganga- 

Brahmaputra-Meghan delta with an altitude of approximately 6m above sea level. It is 

recognized as the third largest metropolitan in India and the largest urban area in the eastern 

part with a population of about 14.72 million and a population density of 7950 people per sq. 

km, as per the 2011 Census report. It comprises an area of 1886.67 sq. km and stretches 

between 22° 21' 36" N to 23° 4' 48" N latitude to 88° 23' 24" E to 88° 25' 12" E longitude. The 

Hooghly River passes through the of the study area and connects with the Bay of Bengal. Its 

major districts are Howrah, Hooghly, Nadia, North 24 Parganas, and South 24 Parganas. This 

city experiences tropical wet and dry climate throughout the year. The maximum temperature 

rises during the summer months of May and June up to 32º C - 42º C and the minimum 

temperature falls during the winter months of December - January up to 10º C - 26ºC on 

average. From June to September, the average rainfall in KMA is approximately 1158-1650 

mm. The gradual conversion of extensive agricultural plains into densely populated urban areas 

and a noticeable rise in population over the years have dramatically hastened the economic 

expansion of the Kolkata Metropolitan Area (KMA). Hence, KMA is said to be a suitable study 

area for the assessment of urban vulnerability (Census of India, 2011). 

Bangkok Metropolitan Region (BMR) is situated on the lower deltaic plain of the Chao Phraya 

River, which flows through the centre of the city and surrenders to the Gulf of Thailand in the 

south with an altitude of about 4m above sea level. BMR is considered the largest urban area 

in Thailand with a population of 10.8 million and a population density of about 5293.3 people 

per sq. km. It extends over 7761.6 sq. km. and stretches between 13°42′30″–13°47′42″N 

latitudes and 100°25′27″–100°32′58″E longitude. BMR comprises 6 provinces: Bangkok, 



 

Nakhon Pathom, Pathum Thani, Nonthaburi, Samut Prakan, and Samut Sakhon. The city offers 

a tropical wet and dry climate throughout the year so, it experiences three seasons: summer 

(March-May), monsoon (June – Oct), and winter (Nov – Feb). The summer months of March- 

May are considered the warmest months experiencing about 35ºC - 40ºC. During winter it 

experiences about 18º C - 20º C on average and annually receives 1,188 – 1,510 mm of 

precipitation. Therefore, BMR is facing heightened stress due to the population's unscientific 

growth, affecting the country's economic expansion. Hence, BMR is said to be a suitable study 

area for the assessment of urban vulnerability (Thailand Metrological Department). 

Table 1. Details of study areas 
 

 

 

 

Location 

Average 

Temperature 

(ºC) 

Average 

Rainfall 

(mm) 

 

Type of 

Climate 

 

Average 

AQI 

 

Average 

Altitude 

 

Population 

Density 

 

 

 

KMA 

 

 

 

26.8 

 

 

 

1650 

Tropical 

wet and 

dry 

climate 

 

 

 

101.14 

 

 

 

6 

 

 

 

7950 

 

 

 

BMR 

 

 

 

30 

 

 

 

1510 

Tropical 

wet and 

dry 

climate 

 

 

 

88.03 

 

 

 

4 

 

 

 

5294 

Source: Indian Metrological Department and Thailand Metrological Department 



 

 

 

Figure 1. Geographical representation of Study Area 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Materials and Method 



 

4 Materials and Method 

 

4.1 Data acquisition and preparation techniques 

To access the Urban Vulnerability Index (UVI) of KMR and BMR, this study used extensive 

non-spatial attribute data and spatial data from various sources. Based on previous literature, 

this study selects nine indicators based on hazards, exposure, and vulnerability including 

population density, literacy rate, per capita income, rainfall, Land Surface Temperature (LST), 

Air Quality Index (AQI), NDVI, and NDBI was used to evaluate the Urban Vulnerability of 

the study area. 

Table 2. Selected indicators of the UVI model and their sources 

 

Sl. 

 

No. 

Parameters 

Data 

 

Types 

Source Resolution 

Kolkata Metropolitan Area 

1 Rainfall .csv 
Meteorological 

 

Department of India 

- 

2 AQI .csv CMAQ - 

3 LST Landsat 8 USGS 30 m 

4 NDBI Landsat 8 USGS 30 m 

5 NDVI Landsat 8 USGS 30 m 

6 Population Density .csv Census of India - 

7 Old/Child Population .csv Census of India - 

8 Per Capita Income .csv Census of India - 

9 Literacy rate .csv Census of India - 



 

Table 2. Continue… 

Sl. 

No. 
Parameters 

Data 

Types 
Source Resolution 

Bangkok Metropolitan Region 

1 Rainfall .csv 
Thailand Meteorological 

Department 
- 

2 AQI .csv CMAQ - 

3 LST Landsat 8 USGS 30 m 

4 NDBI Landsat 8 USGS 30 m 

5 NDVI Landsat 8 USGS 30 m 

6 Population Density .csv 
National Statistical Office, 

Thailand 
- 

7 Old/Child Population .csv 
National Statistical Office, 

Thailand 
- 

8 Per Capita Income .csv 
National Statistical Office, 

Thailand 
- 

9 Literacy rate .csv 
National Statistical Office, 

Thailand 
- 



 

 

Figure 2. Step by step procedure to evaluate Urban Vulnerability 

 

4.2 Parameter Introduction 

 Rainfall: 
 

The primary driver of urban vulnerability is rainfall, and continuous heavy rain can cause a 

threat of waterlogging in urban areas (Peng et al., 2014). The intensity of rainfall plays a crucial 

role not only in climate change but also in crop production and agriculture.The various rainfall 

data were collected for the years 1991, 2001, 2011, and 2021 from the India Meteorological 

Department (IMD). The study areas receive monsoon from June to September. 

 Air Quality Index (AQI): 

 

This study applied the Fused Air Quality Surfaces Using the Downscaling (FAQSUD) 

mechanism suggested by the US Environmental Protection Agency (EPA) and the Community 

Multiscale Air Quality (CMAQ) to collect relevant air quality data, for accurate projections of 



 

air toxics, ozone, particulate matter, and acid deposition are obtained by the CMAQ model, 

known as EPA’s primary source for tracking air quality at region and global level. It 

incorporates air quality modeling with the current developments in meteorological research 

and high-performance computing. For the area of concern, we utilized downscaled daily 

forecast data that included monthly mean concentrations of PM2.5 and PM10. 

 Land Surface Temperature (LST): 

 

LST indicates the skin temperature of the ground surface, determined by satellite thermal data, 

which impacts the energy transfer between the ground surface and vegetation and influences 

air temperature. This study employs a split window algorithm method based on TIRS band, 

found in between 10 – 12 µm on the atmospheric window suggested by McMillian in 1975. 

The method is as follow: 

Ts = Ti + c1 (Ti – Tj) + c1 (Ti – Tj )
2 + c0 +( c3 + c4ԝ) (1- Ɛ) + (c5 + c6ԝ) Δ Ɛ 

Equation 1 

where, Ti and Tj denote the brightness temperatures of bands i and j, whereas Ɛ illustrates land 

surface emissivity, derived as Ɛ = 0.5 (Ɛi + Ɛj); on the other hand, Δ Ɛ represents the deviation 

in emissivity stated as Δ Ɛ = (Ɛi + Ɛj ); ԝ assessed as total atmospheric water vapors content in 

1 gm/cm; and c0 - c6 represents the split window coefficient values utilized in this method. 

Table 3. Temperature of the study area throughout the year 

 

Study Area Summer Monsoon Winter 

BMR 
mid-February to mid- 

 

May 

mid-May to mid- 
 

October 

mid-October to mid- 
 

February 

Temperature 30oC – 40oC 26oC – 34oC 18oC – 22oC 

KMA March – June July – October November - February 

Temperature 30oC – 42oC 26oC – 36oC 18oC – 21oC 

Source: Indian Metrological Department and Thailand Metrological Department 



 

 Normalized Difference Built-up Index (NDBI): 
 

NDBI is a critical measure of heat wave sensitivity as it accounts for the spatial expansion of 

buildings, the growth of built-up areas, and the density of urban areas all of these increase 

sensitivity (Gabriel et al., 2011). Gather multispectral Landsat 8 imagery of the specified area, 

including the bands needed for calculating the NDBI. To calculate NDBI the formula would 

be: 

𝑁𝐷𝐵𝐼 = 
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅 

 
 

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅 

 

 
Equation 2 

 

where, SWIR stands for the reflectance in the short infrared band (Band 7 or Band 6) and NIR 

represents the reflectance in the near-infrared band (Band 5). 

 Normalized Difference Vegetation Index (NDVI): 

NDVI is widely used remote sensing tool to assess the vegetation cover on Earth’s surface 

(Chen & Brutsaert, 1998; Gillies et al., 1997; Weng & Lo, 2001). The NDVI scale runs from - 

1 to +1, a value close to or near 0 represents areas with less vegetation, especially urban areas 

and wasteland, -1 represents waterbodies whereas +1 denotes very healthy vegetation and 

dense forest. This study employed NDVI to explore the relationship between Earth’s surface 

temperature and live green vegetation. The calculation include: 

𝑁𝐷𝑉𝐼 = 
𝑁𝐼𝑅 − 𝑅𝑒𝑑 

 
 

𝑁𝐼𝑅 + 𝑅𝑒𝑑 

 

 
Equation 3 

 

 

 

Where, Red represents TM band 3 and NIR represents the reflectance in the near-infrared band 

4, vegetation reflects. 



 

 Population Density: 
 

Unscientific growth in population density results in urbanization, water shortage, and greater 

susceptibility to natural disasters and also poses threats to poor human health, poverty, and a 

low standard of living (Groce et al., 2009). The data of KMR are collected from the Census of 

India and Data of BMR are collected from the National Statistical Office, Thailand. 

 Old/Child Population: 

 

Unscientific population growth largely affects the most vulnerable groups such as infants, old 

age, and female population. In a metropolis overstressed population, pollution, scarcity of fresh 

water, malnutrition, and diseases due to improper livelihood are common. So, Gracy M, 2000, 

suggested the urgent requirement for proper management and organized policymakers to 

mitigate such challenges. Additionally, a study by Lelieveld et al., 2015, showed how an 

improper environment leads to public health threats and causes 381,000 premature deaths 

annually only in Europe and also contributes to biological risks to adolescents which has a 

long-term effect. United Nations, 2015, finds that older populations are less susceptible in 

urban areas due to improper healthcare, social isolation, and mobility issues. The percentage 

of Old/Child Population in the years 1991, 2001, 2011, and 2021 has been collected from the 

Census of India data and the National Statistics of Thailand. 

 Per Capita Income: 

 

Economic ability increases the adaptive capacity of the person in the context of facing any 

vulnerable disaster. Generally, studies suggested that high-income groups are much more 

susceptible to urban vulnerability as compared to low-income group (Duan et al., 2022). The 

Per Capita Income of household in the years 1991, 2001, 2011, and 2021 has been collected 

from the Census of India data and the National Statistics of Thailand. 



 

 Literacy Rate (LR): 
 

Knowledgeable people are much more aware of the consequences of the ongoing hazards such 

as heatwaves, and urbanization as compared to illiterate people (Hess et al., 2012). The rate of 

literacy in the years 1991, 2001, 2011, and 2021 has been collected from the Census of India 

data and the National Statistics of Thailand. 

4.3 Urban Vulnerability Index Modeling 

 Analytic Hierarchy Process (AHP) 
 

The Analytic Hierarchy Process (AHP) is considered a highly adaptable decision-making 

technique that mirrors natural human thought processes and behaviors. This technique 

evaluates complex problems by analyzing their interrelated effects, simplifies them into a more 

manageable form, and provides solutions. AHP is applicable when dealing with decisions 

involving multiple choices or criteria, particularly when they are competing. The criteria can 

be considered quantitatively and qualitatively. This decision-making method relies on 

underlying paired comparisons with table 4. The decision-maker starts by creating a 

hierarchical structure. The hierarchical decision tree displays the comparable factors and 

assesses the competing alternatives. Subsequently, a series of paired comparisons are 

conducted. The comparisons reveal the weight of each factor relative to the competing 

alternatives in the decision-making process. Finally, the Analytic Hierarchy Process (AHP) 

integrates the pairwise comparison matrices to facilitate a more informed decision. 

The principles of AHP, as defined by Saaty (2008), follow these steps: 

 

i. Identify the problem and specify the type of information needed 

 

ii. Organize the decision hierarchy starting with the overall goal at the top, followed by 

broad objectives, intermediate levels (criteria that influence subsequent elements), and 

ending with the lowest level, which typically consists of the alternatives, as shown in 

Table 4. 



 

iii. Create a series of pairwise comparison matrices for consistency check, as shown in 

Table 5. Each element at a higher level is used to compare the elements in the level 

directly below it concerning that higher-level element 

iv. Apply the priorities derived from the comparisons to assign weights to the priorities in 

the level directly below. Repeat this for each element. Then, for each element at the 

lower level, sum its weighted values to determine its overall or global priority. 

Continue this process of weighting and summing until the final priorities of the 

alternatives at the bottom level are determined 

Table 4. Relative importance scale (1-9) 

 

The intensity of importance of the indicators Numeric Value 

Equal importance 1 

Moderate importance 3 

Strong importance 5 

Very strong importance 7 

Extreme importance 9 

The median value of two adjacent judgments 2, 4, 6, 8 

Table 5. Random Consistency Index (RI) check table 

 

No. of criteria (n) 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 

The whole AHP process is categorized into five steps: (i) creating a hierarchical structure 

model; (ii) developing a judgment matrix; (iii) hierarchical single ranking; (iv) verifying the 

consistency of the judgment matrix; and (v) hierarchical total sorting. The weight calculation 

results for each index are presented in Table. 6. 



 

Table 6. Weight of indicators 

 

Target 

Layer 

Criteria 

layer 

Criteria 

layer 

weight 

Indicator 

layer 

Normalized 

weight 

(Winter) 

Normalized 

weight 

(Summer) 

Normalized 

weight 

(Monsoon) 

 

 

 

 

 

 

 

 

 

 

Urban 

Vulnerability 

Index (UVI) 

 

 

Hazard 

 

 

0.42 

Rainfall 0.11 0.13 0.63 

AQI 0.66 0.31 0.12 

LST 0.23 0.56 0.25 

 

 

 

Exposure 

 

 

 

0.11 

NDBI 0.36 0.49 0.47 

NDVI 0.31 0.23 0.19 

Population 
 

Density 

0.33 0.28 0.34 

 

Vulnerability 

 

0.16 

Old/Child 

Population 

 

1 

 

1 

 

1 

 

Emergency 

Response 

 

 

0.23 

Literacy 
 

Rate 

0.52 0.52 0.52 

Per Capita 
 

Income 

0.48 0.48 0.48 

4.4 Urban Vulnerability Index Modeling Criterion Layer 

A population’s susceptibility to environmental threats is evaluated by its extent of exposure, 

sensitivity, and adaptability. The four criteria layers were constructed based on four parts of 

natural disaster risk formations including hazard, exposure, vulnerability, and emergency 

responses with recovery capabilities. The number of natural variations impacts the risk 

assessments of UVI such as the greater the risk, the higher the possibility of disaster. The 

criteria layers are: 



 

The Hazard (H) represents the possibilities of occurrence of urban vulnerability disasters, the 

lower value of H reflects the lesser chances of occurrences of urban vulnerability. This study 

considers Rainfall, AQI, and LST as hazard. 

The Exposure (E) indicates the threats of risk to all the properties and people from the urban 

vulnerability, essentially the higher the density of the people and properties enhances the 

probability of losses through urban vulnerability. Similarly, this study considers NDBI, NDVI, 

and Population Density as exposure. 

The Vulnerability (V) quantifies the extent of losses faced by individuals and properties in 

dangerous areas due to urban vulnerability and measures its capacity to sustain such 

emergencies. The greater vulnerability corresponds to greater disaster losses and higher risk. 

This study considers the most vulnerable group to be the Old/Child population. 

The Emergency response and its recovery capacity (C) is referred to as the capacity to react 

and rebound from calamities that occur due to urban vulnerability effectively while 

incorporating disaster-resistant material reserves, emergency management skills, and 

investment in disaster prevention and accessibility to its associated resources. This study 

considers Literacy Rate and Per Capita Income as the emergency response categories for 

vulnerability. 

4.5 Urban Vulnerability Risk Index Modeling: 

In this study, the Urban Vulnerability Risk Index (UVRI) revealed a positive interrelation 

between hazard, exposure, and vulnerability, and a negative interrelation with emergency 

response and its recovery capacity. The formula will be: 

𝑈𝑉𝑅𝐼 = 
𝐻 x 𝑉 x 𝐸 

1 + 𝐶 

 

 
Equation 4 



 

Table 7. Scale on the basis on Urban Vulnerability (0-10) 

 

The intensity of Urban Vulnerability Numeric Value 

Low 0 – 5 

Low - Moderate 5 – 6 

Moderate 6 – 7 

Moderate- High 7 – 8 

Very - High 8 - 10 

 

 

Based on the numerical value presented in the table, we can conclude the intensity and the 

probability of the occurrence of Urban Vulnerability in the study area. The range (0 – 5) is 

categorized as a less vulnerable zone. Similarly, the range (5 – 6) interprets low to moderate 

vulnerable zone. Additionally, the range (6 – 7) indicates a moderate vulnerable zone, and the 

range (7 – 8) indicates a moderate to high vulnerable zone. Lastly, the range (8 – 10) shows the 

highest vulnerable zone. 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5: Results and Discussion 



 

5.1 Results 

All demographical, socio-economic, metrological parameters noted here are appear to have an 

association with the Urban Vulnerability Risk Index (UVRI). 

 Hazard (H) 

 

5.1.1.1 Rainfall: 

 

Figure 4a displays the rainfall of BMR during winter which shows that the upper region 

especially the northern, northeastern, and northwestern regions of Nonthaburi-Nakhon 

Pathom-Pathum Thani about 60% of the area experienced very little rainfall of about <50mm, 

and the remaining areas of the central region Bangkok Metropolis, Samut Prakan in the 

southeastern area and Samut Sakhon in the southwestern part about 40% approximately of the 

area gets rainfall of about 50-100mm. Figure 4b, displays the BMR during monsoon which 

varies between moderate to high. The central part of Bangkok Metropolis, Samut Prakan in the 

southeastern area, and areas of Samut Sakhon in the southwestern part of about 58.18% 

approximately of the area received high rainfall of about 150-200mm and the areas about 

41.8% of the area of Nakhon Pathom in the northwestern region, Samut Sakhon in the 

southwestern region, Nonthaburi on the northeastern region, and Pathum Thani in the northern 

region experienced a moderate rainfall of about 100-150mm. During summer, figure 4c 

illustrates that about 47.71% approximately of the area of the southern part of Samut Prakan, 

the central region of Bangkok Metropolis and the northern region Pathum Thani receives 

moderate rainfall of about 100-150mm. Lastly, about 52.29% approximately the remaining 

areas of the western part receive less rainfall of about 50-100mm. 

Figure 4d, portrays the rainfall of KMA during winter which shows that about 33.64% of the 

region in the western part of Hooghly-CMC and Kalyani in the northern region experience very 

low rainfall of about <50mm. The remaining region of about 66.36% of the area observed 



 

moderate rainfall of 100-150mm. Figure 4e presents, the average rainfall of the KMA during 

monsoon, the major areas of about 78.18% of the area including the central part of KMC, the 

southern region South 24 Parganas-Maheshtala-Budge Budge, and the northeastern part North 

24 Parganas-BMC-Kamarhati, and the southeastern part experienced heavy rainfall of 

 

>200mm, which was stated as a very highly vulnerable condition during monsoons and 

increased the probability of urban flood and the western areas Hooghly-CMC and its 

surroundings and the northern areas of about 21.82% of the area received a highly average 

rainfall of about 150-200 mm. Figure 4f, portrays the average rainfall of the KMA during 

summer, about 58.66% of the regions of the eastern part and northeastern part North 24 

Parganas-Kamarhati-BMC and the southern part of the KMA received moderate rainfall of 

about 100-150 mm, and the western, southwestern, and northwestern Hooghly-CMC-Howrah 

and the northern region Kalyani about 41.34% of the area experienced low rainfall of about 50- 

100mm. 



 

 

Figure 3. Monthly Average Rainfall (mm) of BMR and KMA in each season 

 

5.1.1.2 AQI: 

 

For BMR, Figure 5a shows that in winter, the AQI falls into the range of 150-200 of about 

22.57% area in the central region of Bangkok Metropolis and western Nakhon Pathom areas, 

which are said to be high. The rest of the area of about 69.42% has a moderate AQI range of 

100-150 and a few areas of about 8.01% have a low AQI of 50-100. As shown in Figure 5b, 

about 69.43% of BMR has a healthy AQI below 50 in the monsoon. This is a big improvement 

compared to other seasons. The northern region Pathum Thani and western Nakhon Pathom of 

about 30.57% of the area have a low AQI of 50-100. In summer, figure 5c portrays AQI levels 

over BMR range from less to moderate vulnerability. The central Bangkok Metropolis, together 

with Pathum Thani in the north and Nakhon Pathom in the west of about 22.45% area, shows 



 

an AQI range of 100-150, a moderate range and few areas of about 2.45% shows an AQI below 

50 and the remaining areas of about 75% show an AQI of 50-100. 

In winter, both KMA and BMR suffer from their poorest AQI. Figure 5d depicts that in winter 

season, most areas in KMA fall under the "inferior" to "poor" AQI range. More than 200 AQI, 

characterizing them as extremely high, it is in areas covering about 12% of the central and 

southern parts. Specifically, the northern, western, and eastern zones—including districts of 

Kalyani – Howrah - North 24 Parganas of about 71% have AQI ranges of 150 to 200, showing 

highly poor AQI. Others are found to be moderately vulnerable of about 17%, where the AQI 

varies from 100 to 150. In contrast, in Figure 5e, the monsoon season reveals a generally 

improved situation regarding AQI over KMA. Of the total area, around 69% of the area 

comprised an AQI below 50, mainly towards the centre (KMC), southern, and parts of the 

northern regions of about 25%, which observe an AQI of 50-100 and rest areas of about 1% 

have an AQI of 100-15, moderately vulnerable range. Figure 5f, shows in summer, the AQI 

range returns to a moderate range where about 75% of the area witnesses an AQI of 100-150. 

The western and eastern parts, covering Hooghly and North 24 Parganas, of about 23% area 

fall in the range of an AQI level of 50-100, while in the central KMC area of about 2% area, 

the AQI is recorded in the range of 150-200. 



 

 

Figure 4.  AQI of BMR and KMA in each season 

 

5.1.1.3 LST: 

 

In the BMR, during winter, the figure 6a displays about 42.11% of the area experienced 

temperatures between 20°C and 25°C, which covered the central region Bangkok Metropolis 

along with Samut Prakan in the southeast and Nakhon Pathom in the west, and the remaining 

region about 57.88% experience temperature below 20°C. Figure 6b, portrays, in the central 

region Bangkok Metropolis and parts of Samut Prakan in the southeast, about 9.97% had high 

temperatures during monsoon; remaining areas of about 90.03% had temperatures between 

25°C and 30°C, which fall under the moderate temperature range. Figure 6c, shows very high 

temperature range during summer, about 29.11% of the area in the central and western areas in 

BMR and Nakhon Pathom shows the very high temperature range above 35°C, while about 



 

59.11% of the area remained highly vulnerable temperature range 30°C -35°C and the rest 

about 11.2% gets moderately temperature of 20°C -25°C. 

Figure 6d, during the winter seasons, approximately 81.32% of the areas in KMA monitored 

temperatures below 20°C, which are considered to be in the very low range. However, the rest 

18.68% of the area in the central KMC area witnessed temperatures between 20°C and 25°C, 

characterizing it to be within the low range. Figure 6e shows the temperature during monsoon, 

about 9.12% of the area falls under the high-temperature range of 30°C to 35°C and includes 

the central KMC area. The remaining areas about 90.88% are in the temperature category 

between 25°C and 30°C, falling under the moderate range. Figure 6f shows that during 

summer, about 21.11% of the area was exposed to very high temperatures that went beyond 

35°C in the central part of KMC along with the Kamarhati-BMC in the northeastern region, 

along with Kalyani in the north, and HMC in the western region, placing them in the very high- 

temperature range. Temperatures were between 30°C and 35°C for the remaining regions of 

about 78.89%, considered under the high-temperature range. 



 

 

Figure 5. Monthly Average Temperature (OC) of BMR and KMA in each season 

 

 Exposure 

 

5.1.2.1 NDBI: 

 

In BMR, the NDBI range lies within the low to highly vulnerable range as displayed in the 

figure 7b. In the central region of Bangkok Metropolis, Samut Prakan in the southeast region 

along with Nakhon Pathon in the western region about 37% of the area shows the high range 

of building density. About 22-26% of the area along the river Chao Phraya shows moderate 

range of building density. The remaining regions vary in between low to moderate range of 

building density. 

Figure 7e represents the NDBI of KMA which varies between the moderately to the highly 

vulnerable range. About 23% of the area including the central region KMC, northern region 

North 24 Parganas, and Howrah on the western part along with the banks of the river Hooghly 



 

shows high building density. The remaining area of about 30% -34% areas including South 24 

Parganas, Maheshtala, and Budge Budge in the south shows a moderately vulnerable range in 

building density. 

5.1.2.2 NDVI: 

 

In BMR, the figure 7a shows about 3% of the area in the southeastern region of Samut Sakhon, 

the southeastern region of Samut Prakan and parts of Nakhon Pathom in the western region 

along the central region BMR shows low vegetation index range. The areas about 31% in the 

eastern region Nakhon Pathom shows a high vegetation index. The remaining region about 

22%-27% of the area varies vegetation in between high to moderate vegetation index range. 

Figure 7d, illustrates that the NDVI in KMA lies within the moderate to low vegetation index 

range. About 24% of the area in the western region of Hooghly shows a high vegetation index 

range. In the central region KMC, the western region Howrah, and along the banks of the river 

Hooghly about 26% of the area shows low vegetation index. The remaining region about 30%- 

35% of the area presents moderate vegetation. 

5.1.2.3 Population Density: 

 

Figure 7c also illustrates the population density of BMR, particularly the central region of 

Bangkok Metropolis, shows the population density of about 10,000-15000. In addition, the 

central area has an extremely high population density of >15000. Moving to the area of 

Nonthaburi in the western area and Samut Prakan in the southern area, shows moderate range 

of population density of about by 5000-10000 and its surroundings show less range of 

population density of about 2000-5000 approximately. Lastly, the outer region of the BMR 

reflects a very low range of population density of <2,000. 

Figure 7f shows KMA's population density. In the KMC central region and the western region 

HMC, where areas along the banks of the Ganga River show a very high population density of 



 

>15000. Besides in the northern region North 24 Parganas and Baruipur in the southern region, 

along with Bally in the western region and CMC and its surroundings in the northwestern 

region, have a high population density ranging between 10,000 and 15000. Further, areas of 

BMC in the northeastern region and Howrah in the west region and Kalyani in the northern 

region, oscillates between medium population densities of 5000-10000. In the eastern part, 

Hooghly and its surroundings, along with parts of North 24 Parganas in the northern part have 

a low population density varying within 2,000-5,000. The southern part, consisting of South 

24 Parganas along with Maheshtala, has a very low population density of <2,000. 

Figure 6. (a) NDVI of BMR, (b) NDBI of BMR, (c) Population Density of BMR, (d) NDVI 

of KMA, (e) NDBI of KMA, and (f) Population Density of KMA 



 

 Vulnerability 

 

5.1.3.1 Old/Child Population: 

 

Figure 8c, presents the percentage of the Old/Child Population in BMR, it displays that the 

percentage of the Old/Child Population varies in between 30% - 35% which is much less as 

compared to KMR. 

Figure 8f, presents the percentage of the Old/Child Population in KMA. The map illustrates in 

the western region Hooghly - CMC, and Nadia and Kalyani in the north have a less Old/Child 

Population percentage below 35%. Furthermore, Howrah in the western region shows a 

moderate Old/Child Population percentage of 35% - 40%. Lastly, the central region KMC and 

North 24 Parganas in the north has the highest Old/Child Population percentage of >45%. 

 Emergency Response 

 

5.1.4.1 Literacy Rate: 

 

The figure 8a, illustrates the percentage of literacy rate of BMR as per the Statistical Report of 

Thailand published in 2021. The picture portrays a high literacy rate above 90% throughout 

the city and its periphery. Figure 8d, presents the literacy rate of KMA. In the northern region 

Nadia and in the southern region South 24 Parganas shows less literacy rate of below 80% 

which is said to be less as compared to other districts of KMA. Furthermore, in the western 

region Howrah, and North 24 Parganas - Kalyani in the north including the central region KMC 

shows the moderate literacy rate of 80%-90%. Lastly, in Hooghly and in the North 

Barrackpore-Gayespur-Dum Dum and its surroundings in the north has the highest literacy rate 

>90%. 



 

5.1.4.2 Per Capita Income: 

 

In contrast figure 8b, presents the per capita income of BMR, the central region Bangkok 

Metropolis has a high per capita income above 1500 USD. The northern region Nonthaburi has 

a moderate per capita income of 1000-1500 USD. Lastly, the remaining area has a low per 

capita income below 1000 USD. Figure 8e, presents the per capita income of KMA, the central 

region KMC has a high per capita income above 1500 USD. The eastern region BMC and 

western region HMC has a moderate per capita income of 1000-1500 USD. Lastly, the 

remaining area has a low per capita income below 1000 USD. 

Figure 7. (a) Literacy Rate of BMR, (b) Per Capita Income of BMR, (c) Old/Child Population 

of BMR, (d) Literacy Rate of KMA, (e) Per Capita Income of KMA, and (f) Old/Child 

Population of KMA 



 

 Relationship among the variables 

 

Before constructing the Urban Vulnerability Risk Index (UVRI) model, we evaluated the 

significance between the parameters in order to deeper understanding of their relationship. The 

correlation coefficients present the quantitative measures that indicate the significant 

relationship between two variables and their nature and magnitude (+/-). We perform the 

Spearman correlation coefficient test to establish the relationship between two parameters. The 

Spearman correlation evaluates the relationship between the variables when the function 

consistently increases or decreases but may not be linear. 



 

 

Figure 8. Spearman correlation coefficient plot of the study area in different seasons 

 

During summer months in BMR, LST shows a significant positive correlation with the 

Old/Child Population of (0.6), which signifies that areas with higher temperatures may have a 



 

probability of higher elderly and children population groups, making them more susceptible to 

vulnerability and also a weakly positive correlation with NDBI (0.31) indicates that areas with 

higher impervious surface and high building density inclined to have a higher temperature, and 

a weakly negative correlation with AQI (-0.31) implies that higher temperature may 

responsible for dispersion of air pollutants which leads to better air quality. In contrast, during 

the summer months in KMA, the negative correlation between LST and rainfall (-0.56) 

signifies that areas with higher temperatures get less rainfall, due to the generation of Urban 

Heat Island (UHI) effect. 

During monsoon months in BMR, rainfall has a significant positive correlation with Population 

density (0.54) implies that areas with higher population receives more rainfall during monsoon 

due to urban infrastructures and microclimate and improper drainage system is responsible for 

urban flooding due to heavy rainfall, a weak correlation with NDBI (0.31) interprets that high 

built up areas experience more rainfall due to urban induced rainfall effects such as tiny 

particles (aerosols) formed from pollution acts as a source of cloud formation, and change in 

wind pattern due to high risers alters the distribution and movement of rainclouds, hence 

receives high rainfall and also weakly correlate with Literacy Rate (0.38) implies that areas 

with higher literacy rates have proper urban management plan to cope up with heavy rainfall 

and thus are less susceptible to urban flooding, and a weakly negative correlation with NDVI 

(-0.37) indicates that areas with less green space due to urban sprawl receives more rainfall due 

to urban induced effects and also a weakly negative correlation with Old/Child population (- 

0.37) indicates that waterlogging due to heavy rainfall increases the chances of waterborne 

diseases such Dengue-Malaria-Typhoid and many more. Similarly, in KMA, rainfall has a 

positive correlation with LST (0.84) interpretes that the complex relationship between 

temperature and rainfall, higher temperature increases the humidity in the environment, and 



 

urban nature, topography, Land Use Land Cover (LULC) pattern also plays an important role 

in this condition. 

In winter AQI of BMR shows a significant positive correlation with the Old/Child Population 

(0.43) indicates higher AQI increases the chances of cardiovascular diseases, neurological 

diseases, and asthma, particularly to these demographic groups, heightened the risk of 

vulnerability, and also shows weakly positive correlation with NDVI (0.37) indicates more the 

green space or open areas has better air quality and Per capita Income (0.37) implies that higher 

income groups tend to have less vulnerability to air quality as they might have proper 

precautions and management planning to cope up and negatively correlates with NDBI (-0.37) 

shows that construction areas and high building density are prone to highly vulnerable to air 

quality as concrete and other building materials produce tiny particles which are responsible 

for the worsening of the air quality. 

 Urban Vulnerability Index (UVI) Modelling 

 

5.1.6.1 Bangkok Metropolitan Region (BMR) 

 

Figure 10, portrays the Urban Vulnerability Index of BMR in different seasons. In monsoon 

about 42.1% of the area in the northern region of Pathum Thani and Nakhon Pathom in the 

northwestern region lies in the low vulnerable (0-5) range and about 19.22% of the area has 

low to moderate vulnerable (5-6) range. About 27.30% of the area surrounding the central 

region and western region of Nakhon Pathom along with the eastern region in the Pathum 

Thani, and Samut Prakan in the southeast lies in the moderately vulnerable (6-7) range. Areas 

of about 12.08% in the outer region of the metropolis show a moderate to high vulnerable (7- 

8) range and 37.3% (585.237 sq. km.) of the area in the central region has the highest vulnerable 

range (8-10). In contrast, during summer about 49.3% of the area in southwest Samut Sakhon, 

in west Nakhon Pathom, and the outer region of Pathum Thani in the east has low to moderate 



 

vulnerable (5-6) range. About 18.71% of the area in west Nakhon Pathom and the outer region 

of the metropolis has a moderately vulnerable (6-7) range and about 7.07% of the area along 

the Chao Phraya River in the central region is considered as moderate to high vulnerable (7-8) 

range. About 0.3% (4.702 sq. km.) area of the central region has the highest vulnerable range 

(8-10). Lastly, during winter about 64.3% area in west Nakhon Pathom, Pathum Thani in the 

east, and southwest Samut Sakhon lies in the low vulnerable (0-5) range, and about 14.69% of 

the area has low to moderate vulnerable (5-6) range. About 16.54% area is in the outer region 

of the central area, and in west Nakhon Pathom has a moderately vulnerable (6-7) range. The 

central region of about 4.44% area has a moderate to high vulnerable (7-8) range. So, the 

overall Urban Vulnerability Index (UVI) of BMR is monsoon > summer > winter. 

Figure 9. Urban Vulnerability Index of BMR during each season 



 

5.1.6.2 Kolkata Metropolitan Area (KMA) 

 

Figure 11, portrays the Urban Vulnerability Index of KMA in different seasons. In monsoon is 

much more vulnerable followed by the summer and winter seasons. After the analysis, figure 

11 illustrates that during monsoon about 3.34% of the area towards Hooghly in the western 

region is in the less vulnerable (0-5) range, and 50.09% of the area is in the low to moderate 

vulnerable (5-6) range. Correspondingly, 25.18% of the area in the eastern and western region 

lies in the moderately vulnerable (6-7) range, and about 17.77% area along the banks of the 

river Hooghly and in the southern region has a moderate to high vulnerable (7-8) range and 

about 3.62% (68.297 sq. km.) of the area in the central region lies in highly vulnerable (8-10) 

zone. In summer about 5.7% of the area in the western and southern regions has a low 

vulnerable (0-5) range and about 60.39% of the area lies in a low to moderate vulnerable (5-6) 

range. The eastern region along the surroundings of the city centre shows about 11.4% of the 

area is in the moderately vulnerable (6-7) range. In the central region, about 1.14% (21.50 sq. 

km.) of the area is in a highly vulnerable (8-10) zone. During winter, about 20.74% of the area 

is majorly distributed in the western region, and parts in the eastern region, and southern region 

have the less vulnerable (0-5) range and in the outer region of KMA, about 20.74% of the area 

lies in the low to moderate vulnerable (5-6) range. About 19.77% of the areas along the banks 

of the river Hooghly show the moderately vulnerable (6-7) range. Lastly, about 3.06% of the 

area in the central region of KMC shows a moderate to high vulnerable (7-8) range. So, the 

overall Urban Vulnerability Index (UVI) of KMA is monsoon > summer > winter. 



 

 

Figure 10. Urban Vulnerability Index of KMA during each season 



 

5.2 Discussion 

The vulnerability assessment has dominated climate change adaptation programs at various 

levels of community, city, region, country, and the world entirely. The Vulnerability Index of 

this study represents that the centre of the city and its surroundings of both the study area is 

highly exposed to urban vulnerability as the urban areas have high impervious surface, 

congested and densely populated. In monsoon, the central region of Kolkata Municipality of 

KMA and Bangkok Metropolis of BMR is much more vulnerable than the surrounding outer 

region because of the heavy rainfall along with high building density and impoper drainage 

management. As a result, urban flooding occurs which leads to disruption in transportation, 

damage of properties, and health and hygiene issues. In contrast, during summer the metropolis 

is highly vulnerable to high temperature as compare to surrounding areas of KMA and BMR 

because of impervious surfaces and lack of green spaces. To meet the requirement of the urban 

sprawl, in the metropolis the impervious surface increases in space of green areas, which 

generate Urban Heat Island (UHI) effect, primarily responsible for the heatwaves in the city. 

Due to excessive heatwaves in the city, concentrations of air conditioners are increasing day 

by day, which has a negative impact in the environment. As air conditioners remove the heat 

from the inside of the building and release it to the outdoor environment, this expels heat and 

thus, contributing to an increase in temperature, especially in densely populated areas. Traffic 

congestion releases an immense amount of heat into the surrounding environment, especially 

during peak hours. On the other hand, during winter, the central region observe worsened air 

quality because the dry climate and industrial belts are situated in nearby areas as well as heavy 

traffic that emit notable amounts of pollutants like Sox and Nox, PM2.5, and PM10. These 

environmental hazards heightened the risk of vulnerability to the elderly and children 

population, they may get affected by severe disease and increase the chance of mortality. 

However, highly literate areas and high-income groups tend to be less susceptible to 

environmental hazards, as they have proper management systems and precautions in place to 

deal with such situations. 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Conclusion 



 

6 Conclusion 

 

In this study, we evaluated climate justice in the Kolkata Metropolitan Area and Bangkok 

Metropolitan Region by analyzing significant spatial variability in the context of Urban 

Vulnerability. The study also highlights that socio-economic and demographic parameters like 

population density, old/child population, literacy rate, and income levels, as well as 

environmental parameters like LST, AQI, and rainfall, interact effectively to influence urban 

vulnerability. 

In summer due to high temperatures and UHI effect heat waves are generated, which trigger 

the probability of heatstroke, cardiovascular diseases, neurological diseases and increase 

mortality rates, reduce productivity, and deplete the groundwater level. In monsoons, heavy 

rainfall increases the chances of urban flooding, which disrupts the water and sanitation system, 

leading to severe traffic congestion and closure of the key routes disrupting daily life, damaging 

public properties including roads, bridges, and railway lines, increasing waterborne diseases 

such as Malaria, Dengue and many more. In winter, poor AQI leads to severe diseases such as 

Chronic Obstructive Pulmonary Disease (COPD), increases the chances of cancer, asthma, and 

bronchitis, and also affects children's immune systems, similarly elderly population is at high 

risk of severe health issues due to poor AQI and increase the number of premature mortality. 

The central region and eastern region of KMA and BMR are exposed to significant heat, rainfall 

and air pollution making home to the most vulnerable population due to the proximity to 

industrial belts, higher urbanization rates and the influence of local climate. The increased in 

the concrete area by sacrificing green spaces generated the Urban Heat Island (UHI) effect, 

which is responsible for worsening of AQI and increasing in temperature as the concrete area 

has a tendency to absorb and retain heat. Areas with low-income levels and literacy rates are 

tend to much more vulnerable as compared to others. This study also reflects that particularly 



 

the old/child population are vulnerable because this demographic groups are highly exposed to 

adverse effects of environments such as extreme temperatures, poor air quality, heavy rainfall 

and inadequate infrastructure. 

The findings of this study highlight the need of proper implications for urban planning and 

disaster management in both the regions. The policymakers should focus on building adaptive 

strategies which addresses the specific vulnerabilities identified in the center of the city and in 

the eastern region of both the metropolis. The old and child population should get attention by 

improving infrastructure resilience, betterment of the healthcare facilities and by implementing 

proper environmental regulations to control industrial and vehicular emission. 

In addition, future research could extent upon this study by employing machine learning 

algorithms to further refine Urban Vulnerability of the metropolis. Similarly, comparative 

studies with other delta region could provide a broader perspective in understanding of the 

Urban Vulnerability in the context of climate change and urban sprawl. In conclusion, the 

application of the GIS based Fuzzy MCDA technique has been proven to be a useful tool for 

determining and understanding urban vulnerability in complex urban areas. The study not only 

sheds light to the ongoing challenges faced by the Hooghly River deltas and Chao Pharaya 

River Delta but also offers a foundation for future research and policy development, focused 

at promoting resilient and sustainable environment. 
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