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Executive Summary

In the past decade, many deep learning models have been developed to address
handwritten character classification in various languages, including English,
Chinese, Arabic, Japanese, and Russian. Despite these advancements, classifying
Bangla handwritten characters from document image datasets remains a
challenging and open problem. The complexity of the Bangla script, along with
the inherent variability in individual handwriting styles, presents unique
difficulties that demand sophisticated solutions. Nonetheless, advancements in
neural network technology have led to the development of numerous promising
models that improve classification performance.

The Bangla language is characterised by a rich set of characters, including
numerals, basic characters, and complex compound and modifier characters.
This diversity in character forms, coupled with the intricate and often cursive
nature of the script, complicates the classification process. Individual
handwriting styles vary significantly, further adding to the challenge. As a result,
effective classification systems must be capable of handling a wide range of
variations in both character forms and writing styles.

Convolutional Neural Networks (CNNs) have emerged as powerful tools for
image classification tasks, including handwritten character classification. In this
dissertation, a popular CNN model, VGG19, has been used to classify Bangla
handwritten characters. The dataset used for this work is 'BanglaLekha-Isolated,’
a standard dataset that includes a variety of Bangla characters, comprising 50
basic characters, 10 numerals, and 24 frequently used compound characters.

The modified VGG19 model's performance is compared with traditional
classifier-based approaches. The experimental results demonstrated that the
VGG19 significantly outperforms the traditional methods. Specifically, the
VGG19 model achieved impressive validation accuracy on the Bangla-Lekha-
Isolated dataset. Additionally, the model obtained a high F1 Score, indicating its
reliability in classifying Bangla handwritten characters.



1. Introduction

1.1. Overview

In the modern era of science and technology, the preference for digitalisation
has become omnipresent. Handwritten character classification plays a crucial
role in converting handwritten characters into digital text files, as well as in
applications like vehicle license plate number classification, ID number
classification, parking lot management, banking, etc [1]. By eliminating the
labour-intensive and time-consuming process of manual data entry, this
technique significantly enhances human-computer interaction. This technique
significantly enhances human-computer interaction and is now employed in
various important industries.

Bengali, or Bangla, is the second most widely spoken language in the Indian
subcontinent. Globally, it ranks as the fifth most-spoken native language and the
seventh most-spoken language overall, with approximately 300 million native
speakers and an additional 37 million second-language speakers. Bangla is the
official and national language of Bangladesh, with 98% of Bangladeshis speaking
it as their first language. Additionally, Bangla is also spoken by significant
populations in the Indian states of West Bengal, Tripura, and Assam. It is the
official language of the states of West Bengal and Tripura and is also used in the
Andaman and Nicobar Islands. A slightly modified version is used for the
Assamese writing format [2].

Bangla is also essential for its rich cultural and literary heritage. Many people
prefer to write documents in the Bangla language, emphasising the need to
preserve these important handwritten documents using digital technology.
However, without proper digital maintenance, these valuable documents cannot
be effectively preserved. In recent years, significant work has been done in
handwritten character classification for the Bangla language. Nonetheless,
substantial challenges remain in developing an effective system that yields
accurate results in Bangla character classification.



1.2. Problem Statement
Classification of Bangla handwritten characters using VGG19-based deep
learning model

1.3. Objective

The objectives are as follows.

a) Develop a deep learning-based CNN model to classify Bangla handwritten
characters.

b) Utilize the VGG19 model to train and evaluate a large dataset of diverse
Bangla characters.

c) Enhance classification accuracy by adjusting key network parameters of the
VGG19 model.



2. Background Concept

2.1. Convolution Neural Network

There are various machine-learning techniques available for classifying Bangla
handwritten characters. Some popular techniques include clustering, feature
extraction, pattern matching, and artificial neural networks. However, the most
effective method is using convolutional neural network (CNN) algorithms. CNNs
are a type of deep learning network that directly learns from data. They are
particularly useful for identifying image patterns to classify objects, classes, and
categories [3]. Additionally, CNNs can be quite effective for classifying audio,
time series, and signal data. This specialised deep learning algorithm takes input
images and performs a mathematical operation called convolution to
differentiate between them. The CNN architecture is presented in Figure 1.

CNN Architecture
A Convolutional Neural Network consists of multiple layers, such as the input
layer, Convolutional layer, Pooling layer, and fully connected layers.

A T

— CAR
— TRUCK
— VAN
—
[
’ =iy = [] —Bicycte
FULLY
INPUT CONVOLUTION + RELU | POOLING | | CONVOLUTION + RELU POOLING paten  FULY soFtmax
FEATURE LEARNING CLASSIFICATION

Figure 1: CNN Architecture

Key Components

a) Input Layer

The input to the model is given in this layer. In CNN, generally, an image or a
sequence of images will be the input. The raw input of the image, with a width
of 32, height of 32, and depth of 3, is held in this layer.



b) Convolutional Layer
e Filters/Kernels: This layer extracts the feature from the input dataset. It
applies a set of learnable filters known as the kernels to the input images.
The filters/kernels are smaller matrices, usually 2x2, 3x3, or 5x5 shape.

e Stride: The step size with which the filter moves across the input image.

e Padding: Adding borders to the input image to control the spatial size of
the output feature map during the convolution operation. It helps prevent
information loss at the edges and plays a vital role in the architecture and
performance of convolutional neural networks.

c) Activation Layer

Commonly used activation functions include ReLU (Rectified Linear Unit), which
introduces non-linearity by setting all negative values to zero while retaining
positive values.

d) Pooling Layer
e Max Pooling: It reduces the size of the volume, which speeds up the
computation, reduces memory usage, and prevents overfitting. As the
filter moves over the image, it selects the maximum pixel value. These
selected values make the output array, as shown in Figure 2.

Single depth slice
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Figure 2: Max pooling operation



e Average Pooling: Reduces the dimensions by taking the average of values
in a specified window. As the filter moves over the image, the average
value is calculated and sent to the output array, as shown in Figure 3.

Average Pool

>

Filter - (2 x 2)
Stride - (2, 2)

Figure 3: Average pooling operation

e) Flatten

The flatten layer appears after the convolutional and pooling layers. The flatten
layer makes the multidimensional input one-dimensional, commonly used in
transitioning from the convolution layer to the fully connected layer.

f) Fully Connected Layer

Neurons in these layers are connected to all activations from the previous layer,
like traditional neural networks, enabling the combination of extracted features
for final classification.

g) Batch Normalization Layer
e Normalizes the activations of the previous layer to improve the stability
and speed up training.
e Helps in mitigating the vanishing or exploding gradients problem.

h) SoftMax

The SoftMax function is a mathematical function that converts a vector of real
numbers into a probability distribution and gives the output between 0 and 1. It
is applied just before the output layer.



i) Output Layer
The output layer uses a SoftMax activation function for classification tasks,
providing the probabilities of each class.

2.2. VGG19

The VGG19 model is a deep Convolutional Neural Network (CNN) architecture
developed by the Visual Geometry Group at the University of Oxford. It is part of
the VGG family of models, which are known for their simplicity and effectiveness
in image classification tasks. VGG19 is an extension of the VGG16 model [4],
which consists of 19 layers, including 16 convolutional layers, 3 fully connected
(dense) layers, and 5 max-pooling layers. VGG19 has been successfully applied
to various image classification tasks, including handwritten character
classification. The model's depth and capability to capture intricate features
make it suitable for classifying complex and diverse handwriting styles. Here’s
how VGG19 [5, 6] can be specifically applied to handwritten character
classification, focusing on Bangla characters.

Layers
a. Input Layer
Takes an image of size 32x32x3 (height, width, and colour channels).

b. Convolutional Layers
e Two convolutional layers with 64 filters each, followed by max pooling.
e Two convolutional layers with 128 filters each, followed by max pooling.
e Four convolutional layers with 256 filters each, followed by max pooling.
e Four convolutional layers with 512 filters each, followed by max pooling.
e Four convolutional layers with 512 filters each, followed by max pooling.

c. Activation Function
Each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation
function, introducing non-linearity to the model.

d. Pooling Layers

Max-pooling layers with a 2x2 filter and a stride of 2 are used after each set of
convolutional layers to reduce the spatial dimensions and retain the most
significant features.



e. Fully Connected Layers

f. Output Layer
The final layer uses the SoftMax activation function to distribute probability over
the classes.

connected (dense) layers:

2.3. Performance Metrics

A Convolutional Neural Network (CNN) is evaluated using performance metrics
similar to those in other machine learning models. However, these measures
are specifically adapted for tasks such as image classification, object detection,
and segmentation. Here’s a detailed explanation of these key performance
metrics, including the relevant formulas and variables:

In general, the table is divided into four terminologies, which are as follows:

Actual

Positive

Negative

Two layers with 4096 neurons each.

After the convolutional and pooling layers, the network includes three fully

One layer with 1000 neurons, corresponding to the number of classes.

Accuracy: Accuracy is used to measure the performance of the model. It is
the ratio of Total correct instances to the total instances. Accuracy can be
calculated as Accuracy = (TP + TN)/(TP + TN + FP + FN)

Confusion Matrix: Confusion Matrix is a performance measurement for the
machine learning or CNN classification problems where the output can be
two or more classes. A typical confusion matrix looks like the Figure 4.
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Figure 4. Confusion Matrix



1. True Positive (TP): In this case, the prediction outcome is true, and it is
true in reality, also.

2. True Negative (TN): in this case, the prediction outcome is false, and it is
false in reality, also.

3. False Positive (FP): In this case, prediction outcomes are true, but they are
false in actuality.

4. False Negative (FN): In this case, predictions are false, and they are true in
actuality.

e Precision: It measures how accurate the model is in identifying positive
instances. It measures the accuracy of positive predictions. It can be
calculated as Precision= TP/(TP+FP)

e Recall: Recall measures the effectiveness of a classification model in
identifying all relevant instances from a dataset. It can be calculated as
Recall = TP/(TP + FN)

e F1-Score: It provides a balance between precision and recall. It can be
calculated as F1-Score = (2 x Precision x Recall)/(Precision+Recall)



3. Literature Survey

Rabby et al. [7] developed a multiclass CNN model called Borno. They evaluated
this model using an assembled dataset of 1,069,132 images and reported an
accuracy of 91.88%. The Borno model consists of four convolutional layers with
32, 64, 128, and 256 filters, respectively. Each convolutional layer is followed by
a batch normalisation layer, which is then connected to a max-pooling layer and
a dropout layer.

Rahman et al. [8] found that a CNN model could classify only simple Bangla
characters (50 classes) with a testing accuracy of 85.36%. The model's
performance improves with more iterations, reaching close to 300. However,
despite the convolutional and other layers used, the model still shows a
significant limitation: its testing accuracy (85.36%) is noticeably lower than its
training accuracy (93.93%) which indicates that the model is overfitting to the
training data.

Purkaystha et al. [9] developed a deep convolutional neural network (DCNN) for
recognising Bangla characters. Their model achieved an accuracy of 91.23% for
recognising 50 alphabet categories and 89.93% for recognising nearly all Bangla
characters across 80 categories. Their approach is relatively complex, utilising
more layers in the network.

Rumman et al. [10] utilised the Bangla-Lekha-Isolated dataset and applied a
Convolutional Neural Network (CNN) to it, achieving an accuracy of 91.81%.
Additionally, by using data augmentation techniques, which involve artificially
increasing the size and variability of the training data, they improved the model's
performance further, reaching an accuracy of 95.25%. This demonstrates the
effectiveness of data augmentation in enhancing the accuracy of CNN models for
recognising Bangla characters.

Shaik et al. [11] introduced a novel method for Bangla character classification
that utilises a layer-based and view-based approach with a KNN classifier.
Another technique for classifying Bangla handwritten characters employs the
Euclidean distance measurement technique and the Fourier Transform (FT)



measurement technique. Subsequently, researchers began implementing CNN
models for this task.

Alif et al. [12] introduced a modified version of the ResNet-18 architecture
tailored for recognising Bangla handwritten characters in their study. Their
modification involved integrating dropout layers into the ResNet-18
architecture, enhancing its classification performance. The researchers applied
this customised architecture to both the BanglaLekha-Isolated dataset and the
CMATERdb dataset. They achieved impressive accuracies of 95.10% and 95.99%,
respectively, demonstrating the effectiveness of their approach in accurately
recognising Bangla handwritten characters across different datasets.

A reliable model [13] presented a fuzzy technique for segmenting handwritten
Bangla word images. Initially, they identify the Matra, the longest straight line
connecting multiple characters to form a Bangla word, using fuzzy features
extracted from the target word image. Subsequently, they identify segment
points within the Matra using three fuzzy features. Their experiment utilised only
210 samples of handwritten Bangla words, yielding an average accuracy of
95.32%. This method showcases a novel approach to segmenting Bangla
handwritten words with promising results despite the limited sample size used
in the study.

An ensemble strategy [14] is proposed by detecting and correcting any skew in
the words. Subsequently, they estimate the headline and segment the words
into meaningful pseudo characters. They extract three distinct statistical
features, combine them, and apply a CNN-based transfer learning architecture.
Following this, they merge the identified pseudo characters to reconstruct the
full word. The proposed segmentation methodology achieved an accuracy of
94.01% in recognising Bangla words from images, showcasing promising results
in word recognition from handwritten text.

El-Sawy et al. [15] developed a convolutional neural network for detecting
handwritten Arabic characters. They used 16,800 images of Arabic characters in
their experiment. Their system consists of two convolutional layers, two pooling
layers, and two fully connected layers. This system achieved an average accuracy
of 94.9%, showing its effectiveness in recognising handwritten Arabic characters.
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Yang et al. [16] offer a comprehensive overview of using deep learning
techniques in handwritten character recognition. Their study encompasses
many deep learning models, notably convolutional neural networks, recurrent
neural networks, and deep belief networks.

In a study by Pal et al. [17], the modified quadratic discriminant function (MQDF)
was used to recognise Bangla compound characters, resulting in an accuracy of
85.90%. Although MQDF is an advanced classifier for handwriting recognition
and fits the training data well, its generalisation performance is poor. To address
this limitation, a CNN-based model has been proposed to improve performance,
accuracy, and robustness.

11



4. Proposed Methodology

This work aims to create a CNN-based classification model for identifying Bangla
handwritten characters using the VGG19 architecture and the BanglalLekha-
Isolated dataset. Specifically, the VGG19 model is fine-tuned better to discern
the unique features of handwritten Bangla characters. After the initial training
phase, certain layers of the VGG19 model are unfrozen for additional fine-tuning,
which extends over 10 epochs using a secondary learning rate scheduler. The
dataset, consisting of 84 classes, is pre-processed using augmentation
techniques such as rotations, shifts, shearing, and zooming to enhance the
model's robustness and prevent overfitting.

To adapt the VGG19 model for this classification task, fully connected layers are
appended to the base model. These included two dense followed by
BatchNormalization and Dropout layers for overfitting. The final output layer
consisted of 84 units, corresponding to the number of classes, with a SoftMax
activation function.

During training process, a custom learning rate schedule is implemented for both
phases. In the initial phase, the convolutional layers of the VGG19 model are
frozen, and only the newly added fully connected layers are trained using the
RMSprop optimiser. In the second phase, some of the deeper layers of the
VGG19 model are unfrozen for fine-tuning, with a more aggressive learning rate
schedule tailored for fine-tuning, starting with a very low learning rate of the
initial 10 epochs. The model's performance is evaluated on the validation set
using accuracy, precision, recall, and Fl-score metrics. This comprehensive
evaluation ensures that the developed model effectively captures the intricate
features of Bangla handwritten characters and achieves high classification
accuracy.

4.1. Dataset Description

The dataset "BanglaLekha-Isolated" comprises a collection of Bangla
handwritten isolated character samples, encompassing 50 Bangla basic
characters, 10 Bangla numerals, and 24 selected compound characters. Table 1
lists the classes of 84 Bangla basic letters, numerals, and compound characters.

12



Table 1. Classes of Bangla Characters for classification

Bangla basic characters

(1] W] (3] %4 T[5]  ©le] A7) 4[8] L9  8[10]
S[11] F[12] W[13] S[14] N[15] ®[16] T[17] R[18] T[19] A [20]
B[21] T[22] J[23] ©[24] TG[25] Y[26] ©[27] [28] W[29] H&[30]
N ([31] #[32] F®[33] J[34] w[35] N[36] [[37] d[38] “[39] *[40]
F[41] ST[42] Z[43] T[44] T[45] T[46] S [47] o%[48] om:[49] of [50]
Bangla numerals

o[51] | S[52] R[53] ©[54] 8[55] @ &[56] \Y[57] 4[58] vw[59] @&[60]
Bangla compound characters

F[61] H[62] F[63] F[64] “FH[65] FE[66] TR[67] &H[68] FN[69] B[70]
A [71] F[72] &E[73] F[74] Q[75] ®[76] A[77] B[78] H[79] =A[80]
F [81] " [82] = [83] ¥ [84]

Each of the 84 characters has 2000 handwriting samples, totalling 166,105
handwritten character images after digitisation and preprocessing. Mistakes and
scribbles are discarded during the preprocessing stage. The dataset includes
information regarding the age and gender of the subjects from whom the
handwriting samples are collected. Each individual image is mapped to this
information in Figure 5. A separate spreadsheet assesses the aesthetic quality of
the handwriting samples collected from three independent assessors. This

assessment is done on groups of 84 characters, not individual characters.

sor) Bop

1

Figure 5: A handwritten Bangla character written by different individuals

4.2. Data Preprocessing

Data Augmentation

Data augmentation is a method used to increase the size of a dataset without
collecting additional data. For image data, various techniques, such as cropping,
rotating, zooming, and shifting, are used to create new data from the existing
dataset. In this work, a comprehensive set of transformations is employed to
augment the dataset of Bangla handwritten characters, thereby bolstering the
robustness and performance of the CNN-based classification model. The
augmentation techniques implemented include width and height shifting,

13



rotation by 10 degrees, a shear range of 0.1, and a zooming range of 0.5. Each of
these transformations serves a specific purpose in diversifying the dataset and
simulating real-world scenarios. For instance, rotating the images allows the
model to classify characters from different angles, while width and height
shifting introduces variations in the characters' positions within the image.
Shearing distorts the characters, simulating various writing styles, and zooming
enhances the model's ability to identify characters at different scales. These
augmentations help prevent overfitting and improve the model's generalisation
of unseen data. Additionally, rescaling ensures that pixel values are
standardised, making the training process more efficient. Overall, data
augmentation plays a crucial role in training CNN-based models for character
classification tasks, contributing to their accuracy and reliability.

After augmentation, the dataset size remains unchanged, as augmentation is
primarily aimed at enhancing diversity and robustness rather than increasing the
number of images. For instance, the dataset initially contains 166,105 images.
The image dimensions remain consistent, typically resized to a fixed size, such as
32x32 pixels, to maintain uniformity. Pixel intensity after pixel value
standardisation is adjusted to ensure consistency across all images, typically
ranging from O to 1.

4.3. Model Architecture

B
] cfBoBolo 1 B Bl K 1 Bl B K a7 2
N - - - - o) - - = R
3 R B HE nffofo v ikl Bl R s
] N B A:RA:0; AR B BB d  BES
N : t 2 2 ; 22 LB LN : H e E'&‘!E;E
8 8 8 8 0 8 8 8 8 3 8 0 8 v 8 g :‘5 %'
0 " " A 1 K1 B clolofe 2 0
X X X X x i x 8 5%
B g g g " ."’.‘: ) - X B K Y Y Kl K [ éf
(32,32 )

I

+
R

Feature Extraction Classification

Figure 6: Modified VGG19 architecture

The model architecture depicted in Figure 6, represents a modified version of
the VGG19 convolutional neural network (CNN) tailored for Bangla handwritten
character classification. The model consists of multiple convolutional layers
followed by max-pooling layers to extract hierarchical features from input

14



images. These layers are responsible for capturing intricate patterns and
structures present in the handwritten characters.

Following the convolutional layers, two dense layers are appended to the model
to perform classification based on the extracted features. Each dense layer
allows the model to learn complex representations of the input data.
BatchNormalization layers are inserted after the dense layers to improve the
training stability and accelerate convergence. Dropout layers are included in the
model as a form of regularization to mitigate overfitting.

The dense layer contains 84 units, corresponding to the number of classes in the
BanglaLekha-lsolated dataset, with a SoftMax activation function. This layer
computes the probability distribution over the classes, enabling the model to
make predictions. Throughout the training process, these parameters are
optimized to minimize classification errors and enhance model performance.

Overall, the modified VGG19 model is implemented to effectively capture the
distinctive features of Bangla handwritten characters and facilitate accurate
classification. Through fine-tuning and training on the BanglaLekha-lsolated
dataset, the model aims to achieve high accuracy and robustness in character
recognition tasks.

15



5. Experiments and Results

In this work, Python (version 3.12.3) served as the primary programming
language, supported by a selection of indispensable libraries, including Numpy,
Pandas, Seaborn, Matplotlib, and Math. Given the dataset's substantial size of
166,105 images, Google Colaboratory is utilised for its rapid processing
capabilities. The open-source libraries TensorFlow and Keras are used to
implement the VGG19 model.

The dataset comprises Bangla handwritten characters, partitioned into training
and validation sets with an 80:20 split. In the training set, there are 132,914
images spread across 84 classes, while the validation set contains 33,191 images
from the same classes. The classification model adopts the VGG19 architecture,
initially pre-trained on ImageNet, featuring 16 convolutional layers followed by
5 max-pooling layers. Additionally, the model is augmented with two dense
layers, each containing 512 units.

To combat overfitting, the model incorporates batch normalization and dropout
layers, with a dropout rate set to 0.35. The batch size is configured to 128 to
optimize training efficiency. In third dense layer encompasses 84 classes from
the BanglaLekha-Isolated dataset, employing a SoftMax activation function to
compute the probability distribution over the classes. In the first phase, the
model training continues for 10 epochs, maintaining a constant learning rate of
0.0001 for the first 5 epochs. Subsequently, the learning rate is reduced to
0.00005 for the remaining epochs.

Following the initial phase, fine-tuning extends over 10 epochs, accompanied by
a learning rate scheduler. The scheduler initiates with a minimal learning rate of
0.0000001, gradually escalating to 0.000005 until the 45th epoch, and then
declining to 0.000001 thereafter. The RMSprop optimizer oversees the
optimization of model parameters throughout the training process. These
meticulously orchestrated configurations, coupled with dataset augmentation
and fine-tuning strategies, synergistically fortify the model's resilience and
efficacy in accurately discerning Bangla handwritten characters. Table 2
enumerates all the parameters required to establish proposed model for
classifying Handwritten Bangla alphabets, numerals, and compound characters.

16



Table 2. Internal parameter of proposed VGG19

Type of layer Output Shape Parameters
input_1 (InputLayer) (None, height=32, width=32, filter size=3) 0
blockl_convl (Conv2D) (None, height=32, width=32, filter size =64) 1792
blockl_conv2 (Conv2D) (None, height=32, width=32, filter size =64) 36928
blockl_pool (MaxPooling2D) | (None, height=16, width=16, filter size =64) 0
block2_convl (Conv2D) (None, height=16, width=16, filter size =128) | 73856
block2_conv2 (Conv2D) (None, height=16, width=16, filter size =128) | 147584
block2_pool (MaxPooling2D) | (None, height=8, width=8, filter size =128) 0
block3_convl (Conv2D) (None, height=8, width=8, filter size =256) 295168
block3_conv2 (Conv2D) (None, height=8, width=8, filter size =256) 590080
block3_conv3 (Conv2D) (None, height=8, width=8, filter size =256) 590080
block3_conv4 (Conv2D) (None, height=8, width=8, filter size =256) 590080
block3_pool (MaxPooling2D) | (None, height=4, width=4, filter size =256) 1180160
block4_conv2 (Conv2D) (None, height=4, width=4, filter size =512) 2359808
block4_conv3 (Conv2D) (None, height=4, width=4, filter size =512) 2359808
block4 conv4 (Conv2D) (None, height=4, width=4, filter size =512) 2359808
block4 _pool (MaxPooling2D) | (None, height=2, width=2, filter size =512) 0
block5_convl (Conv2D) (None, height=2, width=2, filter size =512) 2359808
block5_conv2 (Conv2D) (None, height=2, width=2, filter size =512) 2359808
block5_conv3 (Conv2D) (None, height=2, width=2, filter size =512) 2359808
block5_conv4 (Conv2D) (None, height=2, width=2, filter size =512) 2359808
block5_pool (MaxPooling2D | (None, height=1, width=1, filter size =512) 0

flatten (Flatten) (None, filter size =512) 0

dense (Dense) (None, filter size =512) 262656
batch_normalization (Batch (None, filter size =512) 2048
Normalization)

dropout (Dropout) (None, filter size =512) 0
dense_1 (Dense) (None, filter size =512) 262656
batch_normalization_1 (None, filter size =512) 2048
(Batch Normalization)

dropout_1 (Dropout) (None, filter size =512) 0
dense_2 (Dense) (None, filter size =84) 43092

5.1. Accuracy and Loss Curves

Figure 7 depicts the training and validation accuracy for different epochs. It

shows whether the model is overfitting or underfitting. The modified VGG19

model had a training and validation accuracy of 96.63% and 96.79% respectively.

Figure 8 shows the training vs. validation loss. The loss curve indicates that both

losses are consistently minimal and decreasing, indicating that the models fit

well with the data.
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Figure 8: Loss Curve

In evaluating the performance of the model, several key metrics are utilised. The
model achieves an validation accuracy of 96.79%, indicative of its overall
effectiveness. The modified VGG19 model achieved a high precision of 96.84%
which signifies a low rate of false positives, bolstering the model's reliability.
Recall, on the other hand, evaluates the model's ability to identify all relevant
instances within the dataset, resulting in a recall rate of 96.79%. The F1-Score,
which balances precision and recall, yields a score of 96.79%, underscoring the
model's robust performance across both dimensions.
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6. Comparative Analysis

Table 3 presents a comprehensive evaluation of several deep learning models
employed for Bangla handwritten character classification. This evaluation
encompasses models such as Convolutional Neural Networks (CNN), modified
guadratic discriminant function (MQDF), and ResNet-18, previously proposed by
other researchers. Alongside these established models, the study also assesses
the modified VGG19 model, providing a detailed comparison regarding accuracy
and various limitations. The works aims to identify which model performs best
under specific conditions by presenting its accuracy rates.

The comparative analysis of various models for Bangla handwritten character
classification reveals a range of validation accuracies and inferential insights
across different architectures. It is observed that modified VGG19 model
achieved a validation accuracy of 96.79% with 84 classes, outperforming a CNN
model [8] which had a validation accuracy of 85.36% with high iterations.
Additionally, other existing methods [17, 18, 19, 12, 20, 21] achieved validation
accuracies of 85.90%, 89.30%, 93.2%, 95.99%, 96.40%, and 96.40%, respectively.
These methods, however, face limitations such as character constraints,
overfitting issues, high complexity, and a large number of weights, which
contribute to their lower accuracies. In contrast, the modified VGG19 model
demonstrates superior accuracy, addressing these challenges more effectively.

Table 3. Comparison of the modified VGG19 model with other models

Literature Models Classes | Validation | Inference
Accuracy
Rahman et al. [8] | CNN 50 85.36% Low accuracy, requires
high iterations
Pal et al. [17] MQDF 110 85.90% Limited to compound

characters, generalisation
performance is not
encouraging

R. Jadhav et al. CNN 84 89.30% Overfitting when iterations
[18] increase

Hossain et al. [19] | CNN 60 93.2% Overfitting and underfitting
Alif et al. [12] ResNet-18 84 95.99% High complexity, a large

number of weights, not
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suitable for this specific
research domain

Saha et al. [20]

BBCNet-15

50

96.40%

6 layers of convolution, 6
layers of pooling, and 2
dense layers; more
experimental results
needed

Roy [21]

ResNet50

84

96.40%

12 convolutional layers, 4
pooling layers, and 5 fully
connected layers require
high-capacity devices and
longer processing time

Modified VGG19
Model

VGG19

84

96.79%

20 convolutional layers, 5
pooling layers, and 4 fully
connected layers
outperforms existing
methods with respect to
fewer epochs
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7. Conclusion and Future Scope

The evaluation presented in this work highlights the efficacy of various deep
learning models for Bangla handwritten character classification, focusing on
VGG19, which achieved an impressive validation accuracy of 96.79%. The
performance of VGG19 can be attributed to its deep architecture, effective
convolutional layers, and robust training methodologies, including data
augmentation and transfer learning. This work not only underscores the
potential of advanced deep learning models like VGG19 in achieving high
accuracy but also provides a detailed comparison with other models such as
CNN, MQDF, and ResNet-18. The experimental findings demonstrate that while
traditional models have their strengths, the deep learning approach, particularly
with architectures like VGG19, significantly improves accuracy and reliability for
Bangla handwritten character classification.

In the future, this work aims to build a larger dataset for Bangla handwritten

digits and characters, as having more examples enhances the model's learning
capability.
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Appendix

Code

from google.colab import drive
drive.mount ('/content/drive"')
Mounted at /content/drive

'unzip /content/drive/MyDrive/Images.zip
Streaming output truncated to the last 5000 lines.
inflating: Images/83/02 0002 0 19 1016 1099 83.png
inflating: Images/83/02 0002 0 19 1016 1100 83.png
inflating: Images/83/02 0002 0 19 1016 1132 83.png
inflating: Images/83/02 0002 0 19 1016 1133 83.png
inflating: Images/83/02 0002 0 19 1016 1143 83.png
inflating: Images/83/02 0002 0 19 1016 1144 83.png

import numpy as np

import random

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.preprocessing.image import
ImageDataGenerator

from tensorflow.keras.layers import Input, Dropout, Flatten,
Dense, BatchNormalization, concatenate

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.optimizers import RMSprop

from tensorflow.keras.callbacks import LearningRateScheduler
import matplotlib.pyplot as plt

from sklearn.metrics import confusion matrix,
ConfusionMatrixDisplay

from sklearn.metrics import fl score, precision_ score,
recall score, accuracy score

gmatplotlib inline

img =

tf.keras.preprocessing.image.load img('Images/9/02 0002 1 27 1

0l6 1171 9.png'")
img
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# Dataset details

train data dir = "Images"
img width, img height = 32, 32
input shape = (img width, img height, 3)

batch size = 128

# ImageDataGenerator for loading and scaling data
train datagen = ImageDataGenerator (
rescale=1.0/255,
rotation range=10,
width shift range=0.05,
height shift range=0.05,
shear range=0.1,
zoom range=0.05,
fill mode='constant',
cval=0,
validation split=0.20

valid datagen = ImageDataGenerator (rescale=1.0/255,
validation split=0.2)

train generator = train datagen.flow from directory(
train data dir,
target size=(img width, img height),
batch size=batch size,
color mode="rgb",
class mode='categorical',
subset='training',
shuffle=True,
seed=13

validation generator = valid datagen.flow from directory (
train data dir,
target size=(img width, img height),
batch size=batch size,
color mode="rgb",
subset='validation',
shuffle=False,
class mode='categorical',
seed=13

Found 132914 images belonging to 84 classes.
Found 33191 images belonging to 84 classes.

classes = len(train generator.class indices)

print ("Number of classes:", classes)
Number of classes: 84



# Fine-tuning the model by unfreezing some layers
for layer in base model.layers[:28]:
layer.trainable = True

# Recompile the model
model.compile (loss='categorical crossentropy',
optimizer=RMSprop (), metrics=['accuracy'])
# Training the model with the second learning rate scheduler
callback2 =
LearningRateScheduler (decayed learning rate tuned50)
history2 = model.fit(

train generator,

steps _per epoch=train generator.samples // batch size,

epochs=10,

callbacks=[callback?2],

validation data=validation generator,

validation steps=validation generator.samples //
batch size

)

Epoch 1/10

1038/1038 [==============================] - ]73s 162ms/step - loss: 0.1691
- accuracy: 0.9536 - val loss:0.1445 - val accuracy: 0.9639 - 1r:1.0000e-07

Epoch 2/10

1038/1038 [==============================] - 170s 163ms/step - loss: 0.1616
- accuracy: 0.9558 - val loss:0.1415 - val accuracy: 0.9649 - 1r:1.0000e-07

Epoch 3/10

1038/1038 [==============================] - 176s 169ms/step - loss: 0.1565
- accuracy: 0.9569 - val loss:0.1396 - val accuracy: 0.9654 - 1r:1.0000e-07

Epoch 4/10

1038/1038 [==============================] - 172s 165ms/step - loss: 0.1536
- accuracy: 0.9579 - val loss:0.1384 - val accuracy: 0.9658 - 1r:1.0000e-07

Epoch 5/10

1038/1038 [==============================] - 181ls 175ms/step - loss: 0.1536
- accuracy: 0.9584 - val loss:0.1373 - val accuracy: 0.9662 - 1r:1.0000e-07

Epoch 6/10

1038/1038 [==============================] - 176s 169ms/step - loss: 0.1437
- accuracy: 0.9609 - val loss:0.1312 - val accuracy: 0.9679 - 1r:5.0000e-06

Epoch 7/10

1038/1038 [==============================] - 175s 168ms/step - loss: 0.1356
- accuracy: 0.9629 - val loss:0.1326 - val accuracy: 0.9677 - 1r:5.0000e-06

Epoch 8/10

1038/1038 [==============================] - 174s 168ms/step - loss: 0.1326
- accuracy: 0.9646 - val 1loss:0.1330 - val accuracy: 0.9677 - 1r:5.0000e-06
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Epoch 9/10
1038/1038 [==============================] - 178s 172ms/step - loss: 0.1275
- accuracy: 0.9652 - val loss:0.1335 - val accuracy: 0.9679 - 1r:5.0000e-06

Epoch 10/10
1038/1038 [==============================] - 174s 167ms/step - loss: 0.1230
- accuracy: 0.9663 - val loss:0.1351 - val accuracy: 0.9679 - 1r:5.0000e-06

# calculate different metrics for HCR-Net on the test dataset
print ('precision score: ',

precision score(validation generator.classes,y pred,
average="macro"))

print ('recall score s YU,

recall score(validation generator.classes,y pred,
average="macro"))

print ('fl score S

fl score(validation generator.classes,y pred,
average="macro"))

print ('accuracy score : ',

accuracy score(validation generator.classes,y pred,
normalize=True))

print ("\nBest accuracy : ",
max (max (historyl.history['val accuracy'l),
max (history2.history['val accuracy'])))

precision score: 0.9684424796559218
recall score 0.9679070369183158
fl score 0.967870358494676
accuracy score 0.96794311711006

Best accuracy 0.9679355621337891
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