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Executive Summary 
 

In the past decade, many deep learning models have been developed to address 

handwritten character classification in various languages, including English, 

Chinese, Arabic, Japanese, and Russian. Despite these advancements, classifying 

Bangla handwritten characters from document image datasets remains a 

challenging and open problem. The complexity of the Bangla script, along with 

the inherent variability in individual handwriting styles, presents unique 

difficulties that demand sophisticated solutions. Nonetheless, advancements in 

neural network technology have led to the development of numerous promising 

models that improve classification performance. 

The Bangla language is characterised by a rich set of characters, including 

numerals, basic characters, and complex compound and modifier characters. 

This diversity in character forms, coupled with the intricate and often cursive 

nature of the script, complicates the classification process. Individual 

handwriting styles vary significantly, further adding to the challenge. As a result, 

effective classification systems must be capable of handling a wide range of 

variations in both character forms and writing styles. 

Convolutional Neural Networks (CNNs) have emerged as powerful tools for 

image classification tasks, including handwritten character classification. In this 

dissertation, a popular CNN model, VGG19, has been used to classify Bangla 

handwritten characters. The dataset used for this work is 'BanglaLekha-Isolated,' 

a standard dataset that includes a variety of Bangla characters, comprising 50 

basic characters, 10 numerals, and 24 frequently used compound characters. 

The modified VGG19 model's performance is compared with traditional 

classifier-based approaches. The experimental results demonstrated that the 

VGG19 significantly outperforms the traditional methods. Specifically, the 

VGG19 model achieved impressive validation accuracy on the Bangla-Lekha-

Isolated dataset. Additionally, the model obtained a high F1 Score, indicating its 

reliability in classifying Bangla handwritten characters.
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1. Introduction 

1.1. Overview 

In the modern era of science and technology, the preference for digitalisation 

has become omnipresent. Handwritten character classification plays a crucial 

role in converting handwritten characters into digital text files, as well as in 

applications like vehicle license plate number classification, ID number 

classification, parking lot management, banking, etc [1]. By eliminating the 

labour-intensive and time-consuming process of manual data entry, this 

technique significantly enhances human-computer interaction. This technique 

significantly enhances human-computer interaction and is now employed in 

various important industries. 

Bengali, or Bangla, is the second most widely spoken language in the Indian 

subcontinent. Globally, it ranks as the fifth most-spoken native language and the 

seventh most-spoken language overall, with approximately 300 million native 

speakers and an additional 37 million second-language speakers. Bangla is the 

official and national language of Bangladesh, with 98% of Bangladeshis speaking 

it as their first language. Additionally, Bangla is also spoken by significant 

populations in the Indian states of West Bengal, Tripura, and Assam. It is the 

official language of the states of West Bengal and Tripura and is also used in the 

Andaman and Nicobar Islands. A slightly modified version is used for the 

Assamese writing format [2].  

Bangla is also essential for its rich cultural and literary heritage. Many people 

prefer to write documents in the Bangla language, emphasising the need to 

preserve these important handwritten documents using digital technology. 

However, without proper digital maintenance, these valuable documents cannot 

be effectively preserved. In recent years, significant work has been done in 

handwritten character classification for the Bangla language. Nonetheless, 

substantial challenges remain in developing an effective system that yields 

accurate results in Bangla character classification. 

  



2 

 

1.2. Problem Statement 

Classification of Bangla handwritten characters using VGG19-based deep 

learning model 

1.3. Objective 

The objectives are as follows. 

a) Develop a deep learning-based CNN model to classify Bangla handwritten 

characters. 

b) Utilize the VGG19 model to train and evaluate a large dataset of diverse 

Bangla characters. 

c) Enhance classification accuracy by adjusting key network parameters of the 

VGG19 model. 
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2. Background Concept 

2.1. Convolution Neural Network 

There are various machine-learning techniques available for classifying Bangla 

handwritten characters. Some popular techniques include clustering, feature 

extraction, pattern matching, and artificial neural networks. However, the most 

effective method is using convolutional neural network (CNN) algorithms. CNNs 

are a type of deep learning network that directly learns from data. They are 

particularly useful for identifying image patterns to classify objects, classes, and 

categories [3]. Additionally, CNNs can be quite effective for classifying audio, 

time series, and signal data. This specialised deep learning algorithm takes input 

images and performs a mathematical operation called convolution to 

differentiate between them. The CNN architecture is presented in Figure 1. 
 

CNN Architecture  

A Convolutional Neural Network consists of multiple layers, such as the input 

layer, Convolutional layer, Pooling layer, and fully connected layers. 

 

Figure 1: CNN Architecture 

Key Components 

a) Input Layer  

The input to the model is given in this layer. In CNN, generally, an image or a 

sequence of images will be the input. The raw input of the image, with a width 

of 32, height of 32, and depth of 3, is held in this layer. 
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b) Convolutional Layer  

• Filters/Kernels: This layer extracts the feature from the input dataset. It 

applies a set of learnable filters known as the kernels to the input images. 

The filters/kernels are smaller matrices, usually 2×2, 3×3, or 5×5 shape. 
 

• Stride: The step size with which the filter moves across the input image. 

• Padding: Adding borders to the input image to control the spatial size of 

the output feature map during the convolution operation. It helps prevent 

information loss at the edges and plays a vital role in the architecture and 

performance of convolutional neural networks. 

 

c) Activation Layer  

Commonly used activation functions include ReLU (Rectified Linear Unit), which 

introduces non-linearity by setting all negative values to zero while retaining 

positive values. 

 

d) Pooling Layer  

• Max Pooling: It reduces the size of the volume, which speeds up the 

computation, reduces memory usage, and prevents overfitting. As the 

filter moves over the image, it selects the maximum pixel value. These 

selected values make the output array, as shown in Figure 2. 

 
Figure 2: Max pooling operation 
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• Average Pooling: Reduces the dimensions by taking the average of values 

in a specified window. As the filter moves over the image, the average 

value is calculated and sent to the output array, as shown in Figure 3. 

 
 

Figure 3: Average pooling operation 

 

e) Flatten  

The flatten layer appears after the convolutional and pooling layers. The flatten 

layer makes the multidimensional input one-dimensional, commonly used in 

transitioning from the convolution layer to the fully connected layer. 

 

f) Fully Connected Layer 

Neurons in these layers are connected to all activations from the previous layer, 

like traditional neural networks, enabling the combination of extracted features 

for final classification. 

 

g) Batch Normalization Layer 

• Normalizes the activations of the previous layer to improve the stability 

and speed up training. 

• Helps in mitigating the vanishing or exploding gradients problem. 

 

h) SoftMax  

The SoftMax function is a mathematical function that converts a vector of real 

numbers into a probability distribution and gives the output between 0 and 1. It 

is applied just before the output layer. 
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i) Output Layer 

The output layer uses a SoftMax activation function for classification tasks, 

providing the probabilities of each class. 
 

2.2. VGG19 

The VGG19 model is a deep Convolutional Neural Network (CNN) architecture 

developed by the Visual Geometry Group at the University of Oxford. It is part of 

the VGG family of models, which are known for their simplicity and effectiveness 

in image classification tasks. VGG19 is an extension of the VGG16 model [4], 

which consists of 19 layers, including 16 convolutional layers, 3 fully connected 

(dense) layers, and 5 max-pooling layers. VGG19 has been successfully applied 

to various image classification tasks, including handwritten character 

classification. The model's depth and capability to capture intricate features 

make it suitable for classifying complex and diverse handwriting styles. Here’s 

how VGG19 [5, 6] can be specifically applied to handwritten character 

classification, focusing on Bangla characters. 

Layers 

a. Input Layer  

Takes an image of size 32x32x3 (height, width, and colour channels). 

b. Convolutional Layers  

• Two convolutional layers with 64 filters each, followed by max pooling. 

• Two convolutional layers with 128 filters each, followed by max pooling. 

• Four convolutional layers with 256 filters each, followed by max pooling. 

• Four convolutional layers with 512 filters each, followed by max pooling. 

• Four convolutional layers with 512 filters each, followed by max pooling. 

c. Activation Function  

Each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation 

function, introducing non-linearity to the model. 

d. Pooling Layers  

Max-pooling layers with a 2x2 filter and a stride of 2 are used after each set of 

convolutional layers to reduce the spatial dimensions and retain the most 

significant features. 
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e. Fully Connected Layers  

• After the convolutional and pooling layers, the network includes three fully 

connected (dense) layers: 

• Two layers with 4096 neurons each. 

• One layer with 1000 neurons, corresponding to the number of classes. 

f. Output Layer  

The final layer uses the SoftMax activation function to distribute probability over 

the classes. 

 

2.3. Performance Metrics  

A Convolutional Neural Network (CNN) is evaluated using performance metrics 

similar to those in other machine learning models. However, these measures 

are specifically adapted for tasks such as image classification, object detection, 

and segmentation. Here’s a detailed explanation of these key performance 

metrics, including the relevant formulas and variables: 

• Accuracy:  Accuracy is used to measure the performance of the model. It is 

the ratio of Total correct instances to the total instances. Accuracy can be 

calculated as Accuracy = (TP + TN)/(TP + TN + FP + FN) 
 

• Confusion Matrix: Confusion Matrix is a performance measurement for the 

machine learning or CNN classification problems where the output can be 

two or more classes. A typical confusion matrix looks like the Figure 4. 

 

Figure 4. Confusion Matrix 

In general, the table is divided into four terminologies, which are as follows: 
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1. True Positive (TP): In this case, the prediction outcome is true, and it is 

true in reality, also. 

2. True Negative (TN): in this case, the prediction outcome is false, and it is 

false in reality, also. 

3. False Positive (FP): In this case, prediction outcomes are true, but they are 

false in actuality. 

4. False Negative (FN): In this case, predictions are false, and they are true in 

actuality. 

• Precision: It measures how accurate the model is in identifying positive 

instances. It measures the accuracy of positive predictions. It can be 

calculated as Precision= TP/(TP+FP) 
 

• Recall: Recall measures the effectiveness of a classification model in 

identifying all relevant instances from a dataset. It can be calculated as 

Recall = TP/(TP + FN) 
 

• F1-Score: It provides a balance between precision and recall. It can be 

calculated as F1-Score = (2 x Precision x Recall)/(Precision+Recall) 
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3. Literature Survey 

Rabby et al. [7] developed a multiclass CNN model called Borno. They evaluated 

this model using an assembled dataset of 1,069,132 images and reported an 

accuracy of 91.88%. The Borno model consists of four convolutional layers with 

32, 64, 128, and 256 filters, respectively. Each convolutional layer is followed by 

a batch normalisation layer, which is then connected to a max-pooling layer and 

a dropout layer. 

Rahman et al. [8] found that a CNN model could classify only simple Bangla 

characters (50 classes) with a testing accuracy of 85.36%. The model's 

performance improves with more iterations, reaching close to 300. However, 

despite the convolutional and other layers used, the model still shows a 

significant limitation: its testing accuracy (85.36%) is noticeably lower than its 

training accuracy (93.93%) which indicates that the model is overfitting to the 

training data. 

Purkaystha et al. [9] developed a deep convolutional neural network (DCNN) for 

recognising Bangla characters. Their model achieved an accuracy of 91.23% for 

recognising 50 alphabet categories and 89.93% for recognising nearly all Bangla 

characters across 80 categories. Their approach is relatively complex, utilising 

more layers in the network. 

Rumman et al. [10] utilised the Bangla-Lekha-Isolated dataset and applied a 

Convolutional Neural Network (CNN) to it, achieving an accuracy of 91.81%. 

Additionally, by using data augmentation techniques, which involve artificially 

increasing the size and variability of the training data, they improved the model's 

performance further, reaching an accuracy of 95.25%. This demonstrates the 

effectiveness of data augmentation in enhancing the accuracy of CNN models for 

recognising Bangla characters. 

Shaik et al. [11] introduced a novel method for Bangla character classification 

that utilises a layer-based and view-based approach with a KNN classifier. 

Another technique for classifying Bangla handwritten characters employs the 

Euclidean distance measurement technique and the Fourier Transform (FT) 
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measurement technique. Subsequently, researchers began implementing CNN 

models for this task. 

Alif et al. [12] introduced a modified version of the ResNet-18 architecture 

tailored for recognising Bangla handwritten characters in their study. Their 

modification involved integrating dropout layers into the ResNet-18 

architecture, enhancing its classification performance. The researchers applied 

this customised architecture to both the BanglaLekha-Isolated dataset and the 

CMATERdb dataset. They achieved impressive accuracies of 95.10% and 95.99%, 

respectively, demonstrating the effectiveness of their approach in accurately 

recognising Bangla handwritten characters across different datasets. 

A reliable model [13] presented a fuzzy technique for segmenting handwritten 

Bangla word images. Initially, they identify the Matra, the longest straight line 

connecting multiple characters to form a Bangla word, using fuzzy features 

extracted from the target word image. Subsequently, they identify segment 

points within the Matra using three fuzzy features. Their experiment utilised only 

210 samples of handwritten Bangla words, yielding an average accuracy of 

95.32%. This method showcases a novel approach to segmenting Bangla 

handwritten words with promising results despite the limited sample size used 

in the study. 

An ensemble strategy [14] is proposed by detecting and correcting any skew in 

the words. Subsequently, they estimate the headline and segment the words 

into meaningful pseudo characters. They extract three distinct statistical 

features, combine them, and apply a CNN-based transfer learning architecture. 

Following this, they merge the identified pseudo characters to reconstruct the 

full word. The proposed segmentation methodology achieved an accuracy of 

94.01% in recognising Bangla words from images, showcasing promising results 

in word recognition from handwritten text. 

El-Sawy et al. [15] developed a convolutional neural network for detecting 

handwritten Arabic characters. They used 16,800 images of Arabic characters in 

their experiment. Their system consists of two convolutional layers, two pooling 

layers, and two fully connected layers. This system achieved an average accuracy 

of 94.9%, showing its effectiveness in recognising handwritten Arabic characters. 
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Yang et al. [16] offer a comprehensive overview of using deep learning 

techniques in handwritten character recognition. Their study encompasses 

many deep learning models, notably convolutional neural networks, recurrent 

neural networks, and deep belief networks. 

In a study by Pal et al. [17], the modified quadratic discriminant function (MQDF) 

was used to recognise Bangla compound characters, resulting in an accuracy of 

85.90%. Although MQDF is an advanced classifier for handwriting recognition 

and fits the training data well, its generalisation performance is poor. To address 

this limitation, a CNN-based model has been proposed to improve performance, 

accuracy, and robustness. 
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4. Proposed Methodology 

This work aims to create a CNN-based classification model for identifying Bangla 

handwritten characters using the VGG19 architecture and the BanglaLekha-

Isolated dataset. Specifically, the VGG19 model is fine-tuned better to discern 

the unique features of handwritten Bangla characters. After the initial training 

phase, certain layers of the VGG19 model are unfrozen for additional fine-tuning, 

which extends over 10 epochs using a secondary learning rate scheduler. The 

dataset, consisting of 84 classes, is pre-processed using augmentation 

techniques such as rotations, shifts, shearing, and zooming to enhance the 

model's robustness and prevent overfitting.  

To adapt the VGG19 model for this classification task, fully connected layers are 

appended to the base model. These included two dense followed by 

BatchNormalization and Dropout layers for overfitting. The final output layer 

consisted of 84 units, corresponding to the number of classes, with a SoftMax 

activation function. 

During training process, a custom learning rate schedule is implemented for both 

phases. In the initial phase, the convolutional layers of the VGG19 model are 

frozen, and only the newly added fully connected layers are trained using the 

RMSprop optimiser. In the second phase, some of the deeper layers of the 

VGG19 model are unfrozen for fine-tuning, with a more aggressive learning rate 

schedule tailored for fine-tuning, starting with a very low learning rate of the 

initial 10 epochs. The model's performance is evaluated on the validation set 

using accuracy, precision, recall, and F1-score metrics. This comprehensive 

evaluation ensures that the developed model effectively captures the intricate 

features of Bangla handwritten characters and achieves high classification 

accuracy. 

 

4.1. Dataset Description 

The dataset "BanglaLekha-Isolated" comprises a collection of Bangla 

handwritten isolated character samples, encompassing 50 Bangla basic 

characters, 10 Bangla numerals, and 24 selected compound characters. Table 1 

lists the classes of 84 Bangla basic letters, numerals, and compound characters. 
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Table 1. Classes of Bangla Characters for classification 

Bangla basic characters  

অ [1]  আ [2]  ই [3]  ঈ [4]  উ [5]  ঊ [6]  ঋ [7]  এ [8]  ঐ [9]  ও [10]  

ঔ [11]  ক [12]  খ [13]  গ [14]  ঘ [15]  ঙ [16]  চ [17]  ছ [18]  জ [19]  ঝ [20]  

ঞ [21]  ট [22]  ঠ [23]  ড [24]  ঢ [25]  ণ [26]  ত [27]  থ [28]  দ [29]  ধ [30]  

ন [31]  প [32]  ফ [33]  ব [34]  ভ [35]  ম [36]  য [37]  র [38]  ল [39]  শ [40]  

ষ [41]  স [42]  হ [43]  ড় [44]  ঢ় [45]  য় [46]  ৎ [47]  ং  [48]  ◌ঃ  [49]  ◌ঃ   [50]  
Bangla numerals  

০ [51]  ১ [52]  ২ [53]  ৩ [54]  ৪ [55]  ৫ [56]  ৬ [57]  ৭ [58]  ৮ [59]  ৯ [60]  

Bangla compound characters  

ক্ষ [61]  ব্দ [62]  ঙ্গ [63]  স্ক [64]  স্ফ [65]  স্থ [66]  চ্ছ [67]  ক্ত [68]  স্ন [69]  ষ্ণ [70]  

ম্প [71]  হ্ম [72]  প্ত [73]  ম্ব [74]  ন্ত [75]  দ্ভ [76]  ত্থ [77]  ষ্ঠ [78]  ল্প [79]  ষ্প [80]  

ন্ধ [81]  ন্দ [82]  ম্ম [83]  ণ্ঠ [84]  

 

Each of the 84 characters has 2000 handwriting samples, totalling 166,105 

handwritten character images after digitisation and preprocessing. Mistakes and 

scribbles are discarded during the preprocessing stage. The dataset includes 

information regarding the age and gender of the subjects from whom the 

handwriting samples are collected. Each individual image is mapped to this 

information in Figure 5. A separate spreadsheet assesses the aesthetic quality of 

the handwriting samples collected from three independent assessors. This 

assessment is done on groups of 84 characters, not individual characters. 

 
Figure 5: A handwritten Bangla character written by different individuals 

 
 

4.2. Data Preprocessing 

Data Augmentation  

Data augmentation is a method used to increase the size of a dataset without 

collecting additional data. For image data, various techniques, such as cropping, 

rotating, zooming, and shifting, are used to create new data from the existing 

dataset. In this work, a comprehensive set of transformations is employed to 

augment the dataset of Bangla handwritten characters, thereby bolstering the 

robustness and performance of the CNN-based classification model. The 

augmentation techniques implemented include width and height shifting, 
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rotation by 10 degrees, a shear range of 0.1, and a zooming range of 0.5. Each of 

these transformations serves a specific purpose in diversifying the dataset and 

simulating real-world scenarios. For instance, rotating the images allows the 

model to classify characters from different angles, while width and height 

shifting introduces variations in the characters' positions within the image. 

Shearing distorts the characters, simulating various writing styles, and zooming 

enhances the model's ability to identify characters at different scales. These 

augmentations help prevent overfitting and improve the model's generalisation 

of unseen data. Additionally, rescaling ensures that pixel values are 

standardised, making the training process more efficient. Overall, data 

augmentation plays a crucial role in training CNN-based models for character 

classification tasks, contributing to their accuracy and reliability. 

After augmentation, the dataset size remains unchanged, as augmentation is 

primarily aimed at enhancing diversity and robustness rather than increasing the 

number of images. For instance, the dataset initially contains 166,105 images. 

The image dimensions remain consistent, typically resized to a fixed size, such as 

32x32 pixels, to maintain uniformity. Pixel intensity after pixel value 

standardisation is adjusted to ensure consistency across all images, typically 

ranging from 0 to 1. 

4.3.  Model Architecture  

 

 

Figure 6: Modified VGG19 architecture 

The model architecture depicted in Figure 6, represents a modified version of 

the VGG19 convolutional neural network (CNN) tailored for Bangla handwritten 

character classification. The model consists of multiple convolutional layers 

followed by max-pooling layers to extract hierarchical features from input 

Feature Extraction Classification 
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images. These layers are responsible for capturing intricate patterns and 

structures present in the handwritten characters. 

Following the convolutional layers, two dense layers are appended to the model 

to perform classification based on the extracted features. Each dense layer 

allows the model to learn complex representations of the input data. 

BatchNormalization layers are inserted after the dense layers to improve the 

training stability and accelerate convergence. Dropout layers are included in the 

model as a form of regularization to mitigate overfitting. 

The dense layer contains 84 units, corresponding to the number of classes in the 

BanglaLekha-Isolated dataset, with a SoftMax activation function. This layer 

computes the probability distribution over the classes, enabling the model to 

make predictions. Throughout the training process, these parameters are 

optimized to minimize classification errors and enhance model performance. 

Overall, the modified VGG19 model is implemented to effectively capture the 

distinctive features of Bangla handwritten characters and facilitate accurate 

classification. Through fine-tuning and training on the BanglaLekha-Isolated 

dataset, the model aims to achieve high accuracy and robustness in character 

recognition tasks. 
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5. Experiments and Results 

In this work, Python (version 3.12.3) served as the primary programming 

language, supported by a selection of indispensable libraries, including Numpy, 

Pandas, Seaborn, Matplotlib, and Math. Given the dataset's substantial size of 

166,105 images, Google Colaboratory is utilised for its rapid processing 

capabilities. The open-source libraries TensorFlow and Keras are used to 

implement the VGG19 model. 

The dataset comprises Bangla handwritten characters, partitioned into training 

and validation sets with an 80:20 split. In the training set, there are 132,914 

images spread across 84 classes, while the validation set contains 33,191 images 

from the same classes. The classification model adopts the VGG19 architecture, 

initially pre-trained on ImageNet, featuring 16 convolutional layers followed by 

5 max-pooling layers. Additionally, the model is augmented with two dense 

layers, each containing 512 units. 

To combat overfitting, the model incorporates batch normalization and dropout 

layers, with a dropout rate set to 0.35. The batch size is configured to 128 to 

optimize training efficiency. In third  dense layer encompasses 84 classes from 

the BanglaLekha-Isolated dataset, employing a SoftMax activation function to 

compute the probability distribution over the classes. In the first phase, the 

model training continues for 10 epochs, maintaining a constant learning rate of 

0.0001 for the first 5 epochs. Subsequently, the learning rate is reduced to 

0.00005 for the remaining epochs. 

 

Following the initial phase, fine-tuning extends over 10 epochs, accompanied by 

a learning rate scheduler. The scheduler initiates with a minimal learning rate of 

0.0000001, gradually escalating to 0.000005 until the 45th epoch, and then 

declining to 0.000001 thereafter. The RMSprop optimizer oversees the 

optimization of model parameters throughout the training process. These 

meticulously orchestrated configurations, coupled with dataset augmentation 

and fine-tuning strategies, synergistically fortify the model's resilience and 

efficacy in accurately discerning Bangla handwritten characters. Table 2 

enumerates all the parameters required to establish proposed model for 

classifying Handwritten Bangla alphabets, numerals, and compound characters.  
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Table 2. Internal parameter of proposed VGG19 

Type of layer  Output Shape  Parameters  
input_1 (InputLayer)         (None, height=32, width=32, filter size=3)  0 

block1_conv1 (Conv2D) (None, height=32, width=32, filter size =64)  1792  

block1_conv2 (Conv2D) (None, height=32, width=32, filter size =64)  36928 

block1_pool (MaxPooling2D)   (None, height=16, width=16, filter size =64)  0  

block2_conv1 (Conv2D) (None, height=16, width=16, filter size =128)  73856      

block2_conv2 (Conv2D) (None, height=16, width=16, filter size =128)  147584 

block2_pool (MaxPooling2D)   (None, height=8, width=8, filter size =128)  0  

block3_conv1 (Conv2D) (None, height=8, width=8, filter size =256)  295168     

block3_conv2 (Conv2D)        (None, height=8, width=8, filter size =256)  590080  

block3_conv3 (Conv2D)        (None, height=8, width=8, filter size =256)  590080  

block3_conv4 (Conv2D) (None, height=8, width=8, filter size =256) 590080 

block3_pool (MaxPooling2D)   (None, height=4, width=4, filter size =256)  1180160    

block4_conv2 (Conv2D) (None, height=4, width=4, filter size =512) 2359808    

block4_conv3 (Conv2D) (None, height=4, width=4, filter size =512) 2359808    

block4_conv4 (Conv2D)        (None, height=4, width=4, filter size =512) 2359808    

block4_pool (MaxPooling2D)   (None, height=2, width=2, filter size =512) 0  

block5_conv1 (Conv2D)        (None, height=2, width=2, filter size =512) 2359808    

block5_conv2 (Conv2D)        (None, height=2, width=2, filter size =512)  2359808    

block5_conv3 (Conv2D)        (None, height=2, width=2, filter size =512) 2359808    

block5_conv4 (Conv2D)        (None, height=2, width=2, filter size =512) 2359808    

block5_pool (MaxPooling2D (None, height=1, width=1, filter size =512) 0 

flatten (Flatten)            (None, filter size =512) 0 

dense (Dense)                (None, filter size =512) 262656 

batch_normalization (Batch   
Normalization)      

(None, filter size =512) 2048 

dropout (Dropout)            (None, filter size =512) 0 

dense_1 (Dense)              (None, filter size =512) 262656 

batch_normalization_1 
(Batch Normalization)                                                 

(None, filter size =512) 2048 

dropout_1 (Dropout) (None, filter size =512) 0 

dense_2 (Dense)              (None, filter size =84) 43092 

 
 

5.1. Accuracy and Loss Curves  

Figure 7 depicts the training and validation accuracy for different epochs. It 

shows whether the model is overfitting or underfitting. The modified VGG19 

model had a training and validation accuracy of 96.63% and 96.79% respectively. 

Figure 8 shows the training vs. validation loss. The loss curve indicates that both 

losses are consistently minimal and decreasing, indicating that the models fit 

well with the data. 
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Figure 7: Accuracy Curve 

 

Figure 8: Loss Curve 

In evaluating the performance of the model, several key metrics are utilised. The 

model achieves an validation accuracy of 96.79%, indicative of its overall 

effectiveness. The modified VGG19 model achieved a high precision of 96.84% 

which signifies a low rate of false positives, bolstering the model's reliability. 

Recall, on the other hand, evaluates the model's ability to identify all relevant 

instances within the dataset, resulting in a recall rate of 96.79%. The F1-Score, 

which balances precision and recall, yields a score of 96.79%, underscoring the 

model's robust performance across both dimensions.  
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6. Comparative Analysis  

Table 3 presents a comprehensive evaluation of several deep learning models 

employed for Bangla handwritten character classification. This evaluation 

encompasses models such as Convolutional Neural Networks (CNN), modified 

quadratic discriminant function (MQDF), and ResNet-18, previously proposed by 

other researchers. Alongside these established models, the study also assesses 

the modified VGG19 model, providing a detailed comparison regarding accuracy 

and various limitations. The works aims to identify which model performs best 

under specific conditions by presenting its accuracy rates.  

The comparative analysis of various models for Bangla handwritten character 

classification reveals a range of validation accuracies and inferential insights 

across different architectures. It is observed that modified VGG19 model 

achieved a validation accuracy of 96.79% with 84 classes, outperforming a CNN 

model [8] which had a validation accuracy of 85.36% with high iterations. 

Additionally, other existing methods [17, 18, 19, 12, 20, 21] achieved validation 

accuracies of 85.90%, 89.30%, 93.2%, 95.99%, 96.40%, and 96.40%, respectively. 

These methods, however, face limitations such as character constraints, 

overfitting issues, high complexity, and a large number of weights, which 

contribute to their lower accuracies. In contrast, the modified VGG19 model 

demonstrates superior accuracy, addressing these challenges more effectively. 

Table 3. Comparison of the modified VGG19 model with other models 

Literature Models Classes Validation 
Accuracy 

Inference 

Rahman et al. [8] CNN 50 85.36% Low accuracy, requires 
high iterations 

Pal et al. [17] MQDF 110 85.90% Limited to compound 
characters, generalisation 
performance is not 
encouraging 

R. Jadhav et al. 
[18] 

CNN 84 89.30% Overfitting when iterations 
increase 

Hossain et al. [19] CNN 60 93.2% Overfitting and underfitting 

Alif et al. [12] ResNet-18 84 95.99% High complexity, a large 
number of weights, not 
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suitable for this specific 
research domain 

Saha et al. [20] BBCNet-15 50 96.40% 6 layers of convolution, 6 
layers of pooling, and 2 
dense layers; more 
experimental results 
needed 

Roy [21] ResNet50 84 96.40% 12 convolutional layers, 4 
pooling layers, and 5 fully 
connected layers require 
high-capacity devices and 
longer processing time 

Modified VGG19 
Model 

VGG19 84 96.79% 20 convolutional layers, 5 
pooling layers, and 4 fully 
connected layers 
outperforms existing 
methods with respect to 
fewer epochs  
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7. Conclusion and Future Scope 

The evaluation presented in this work highlights the efficacy of various deep 

learning models for Bangla handwritten character classification, focusing on 

VGG19, which achieved an impressive validation accuracy of 96.79%. The 

performance of VGG19 can be attributed to its deep architecture, effective 

convolutional layers, and robust training methodologies, including data 

augmentation and transfer learning. This work not only underscores the 

potential of advanced deep learning models like VGG19 in achieving high 

accuracy but also provides a detailed comparison with other models such as 

CNN, MQDF, and ResNet-18. The experimental findings demonstrate that while 

traditional models have their strengths, the deep learning approach, particularly 

with architectures like VGG19, significantly improves accuracy and reliability for 

Bangla handwritten character classification. 

 

In the future, this work aims to build a larger dataset for Bangla handwritten 

digits and characters, as having more examples enhances the model's learning 

capability. 
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Appendix 

Code 
 

from google.colab import drive 

drive.mount('/content/drive') 

Mounted at /content/drive 

!unzip /content/drive/MyDrive/Images.zip 

Streaming output truncated to the last 5000 lines. 

inflating: Images/83/02_0002_0_19_1016_1099_83.png 

inflating: Images/83/02_0002_0_19_1016_1100_83.png 

inflating: Images/83/02_0002_0_19_1016_1132_83.png 

inflating: Images/83/02_0002_0_19_1016_1133_83.png 

inflating: Images/83/02_0002_0_19_1016_1143_83.png 

inflating: Images/83/02_0002_0_19_1016_1144_83.png 

import numpy as np 

import random 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.preprocessing.image import 

ImageDataGenerator 

from tensorflow.keras.layers import Input, Dropout, Flatten, 

Dense, BatchNormalization, concatenate 

from tensorflow.keras.applications import VGG19 

from tensorflow.keras.models import Model, Sequential 

from tensorflow.keras.optimizers import RMSprop 

from tensorflow.keras.callbacks import LearningRateScheduler 

import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix, 

ConfusionMatrixDisplay 

from sklearn.metrics import f1_score, precision_score, 

recall_score, accuracy_score 

 

%matplotlib inline 

img = 

tf.keras.preprocessing.image.load_img('Images/9/02_0002_1_27_1

016_1171_9.png') 

img 
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# Dataset details 

train_data_dir = "Images" 

img_width, img_height = 32, 32 

input_shape = (img_width, img_height, 3) 

batch_size = 128 

 

# ImageDataGenerator for loading and scaling data 

train_datagen = ImageDataGenerator( 

    rescale=1.0/255, 

    rotation_range=10, 

    width_shift_range=0.05, 

    height_shift_range=0.05, 

    shear_range=0.1, 

    zoom_range=0.05, 

    fill_mode='constant', 

    cval=0, 

    validation_split=0.20 

) 

 

valid_datagen = ImageDataGenerator(rescale=1.0/255, 

validation_split=0.2) 

 

train_generator = train_datagen.flow_from_directory( 

    train_data_dir, 

    target_size=(img_width, img_height), 

    batch_size=batch_size, 

    color_mode="rgb", 

    class_mode='categorical', 

    subset='training', 

    shuffle=True, 

    seed=13 

) 

 

validation_generator = valid_datagen.flow_from_directory( 

    train_data_dir, 

    target_size=(img_width, img_height), 

    batch_size=batch_size, 

    color_mode="rgb", 

    subset='validation', 

    shuffle=False, 

    class_mode='categorical', 

    seed=13 

) 

 Found 132914 images belonging to 84 classes. 

Found 33191 images belonging to 84 classes. 

classes = len(train_generator.class_indices) 

print("Number of classes:", classes) 

 Number of classes: 84 
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# Fine-tuning the model by unfreezing some layers 

for layer in base_model.layers[:28]: 

    layer.trainable = True 

 

# Recompile the model 

model.compile(loss='categorical_crossentropy', 

optimizer=RMSprop(), metrics=['accuracy']) 

# Training the model with the second learning rate scheduler 

callback2 = 

LearningRateScheduler(decayed_learning_rate_tuned50) 

history2 = model.fit( 

    train_generator, 

    steps_per_epoch=train_generator.samples // batch_size, 

    epochs=10, 

    callbacks=[callback2], 

    validation_data=validation_generator, 

    validation_steps=validation_generator.samples // 

batch_size 

) 

Epoch 1/10 
1038/1038 [==============================] - 173s 162ms/step - loss: 0.1691 

- accuracy: 0.9536 - val_loss:0.1445 - val_accuracy: 0.9639 - lr:1.0000e-07 

Epoch 2/10 
1038/1038 [==============================] - 170s 163ms/step - loss: 0.1616 

- accuracy: 0.9558 - val_loss:0.1415 - val_accuracy: 0.9649 - lr:1.0000e-07 

Epoch 3/10 
1038/1038 [==============================] - 176s 169ms/step - loss: 0.1565 

- accuracy: 0.9569 - val_loss:0.1396 - val_accuracy: 0.9654 - lr:1.0000e-07 

Epoch 4/10 
1038/1038 [==============================] - 172s 165ms/step - loss: 0.1536 

- accuracy: 0.9579 - val_loss:0.1384 - val_accuracy: 0.9658 - lr:1.0000e-07 

Epoch 5/10 

1038/1038 [==============================] - 181s 175ms/step - loss: 0.1536 

- accuracy: 0.9584 - val_loss:0.1373 - val_accuracy: 0.9662 - lr:1.0000e-07 

Epoch 6/10 
1038/1038 [==============================] - 176s 169ms/step - loss: 0.1437 

- accuracy: 0.9609 - val_loss:0.1312 - val_accuracy: 0.9679 - lr:5.0000e-06 

Epoch 7/10 
1038/1038 [==============================] - 175s 168ms/step - loss: 0.1356 

- accuracy: 0.9629 - val_loss:0.1326 - val_accuracy: 0.9677 - lr:5.0000e-06 

Epoch 8/10 
1038/1038 [==============================] - 174s 168ms/step - loss: 0.1326 

- accuracy: 0.9646 - val_loss:0.1330 - val_accuracy: 0.9677 - lr:5.0000e-06 
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Epoch 9/10 
1038/1038 [==============================] - 178s 172ms/step - loss: 0.1275 

- accuracy: 0.9652 - val_loss:0.1335 - val_accuracy: 0.9679 - lr:5.0000e-06 

Epoch 10/10 
1038/1038 [==============================] - 174s 167ms/step - loss: 0.1230 

- accuracy: 0.9663 - val_loss:0.1351 - val_accuracy: 0.9679 - lr:5.0000e-06 

# calculate different metrics for HCR-Net on the test dataset 

print('precision_score: ', 

precision_score(validation_generator.classes,y_pred, 

average="macro")) 

print('recall_score   : ', 

recall_score(validation_generator.classes,y_pred, 

average="macro")) 

print('f1_score       : ', 

f1_score(validation_generator.classes,y_pred, 

average="macro")) 

print('accuracy_score : ', 

accuracy_score(validation_generator.classes,y_pred, 

normalize=True)) 

 

print("\nBest accuracy  : ", 

max(max(history1.history['val_accuracy']), 

max(history2.history['val_accuracy']))) 

 precision_score:  0.9684424796559218 

recall_score   :  0.9679070369183158 

f1_score       :  0.967870358494676 

accuracy_score :  0.96794311711006 

Best accuracy  :  0.9679355621337891 


