

Dissertation on

Classification of Bangla Handwritten Characters using
VGG19-based Deep Learning Model

Thesis submitted towards partial fulfilment
of the requirements for the degree of

Master in Multimedia Development

Submitted by

ARGHYA MONDAL

EXAMINATION ROLL NO. : M4MMD24005
UNIVERSITY REGISTRATION NO. : 163786 of 2022-23

Under the guidance of

Dr. SASWATI MUKHERJEE

School of Education Technology
Jadavpur University

Course affiliated to
Faculty of Engineering and Technology

Jadavpur University
Kolkata-700032

India

2024

Master in Multimedia Development
Course affiliated to

 Faculty of Engineering and Technology
 Jadavpur University

Kolkata, India

CERTIFICATE OF RECOMMENDATION

This is to certify that the thesis entitled “Classification of Bangla Handwritten
Characters using VGG19-based Deep Learning Model” is a bonafide work
carried out by ARGHYA MONDAL under our supervision and guidance for partial
fulfilment of the requirements for the degree of Master in Multimedia
Development in School of Education Technology, during the academic session
2023-2024.

Dr Saswati Mukherjee
SUPERVISOR
School of Education Technology
Jadavpur University,
Kolkata-700 032

DIRECTOR
School of Education Technology
Jadavpur University,
Kolkata-700 032

DEAN - FISLM
Jadavpur University,
Kolkata-700 032

Master in Multimedia Development
 Course affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata, India

CERTIFICATE OF APPROVAL **

This foregoing thesis is hereby approved as a credible study of an engineering
subject carried out and presented in a manner satisfactory to warranty its
acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval, the undersigned do not endorse or approve
any statement made or opinion expressed or conclusion drawn therein but
approve the thesis only for the purpose for which it has been submitted.

Committee of final examination ---
for evaluation of Thesis

** Only in case the thesis is approved.

DECLARATION OF ORIGINALITY AND COMPLIANCE OF ACADEMIC ETHICS

I hereby declare that this thesis contains a literature survey and original research

work by the undersigned candidate as part of his Master in Multimedia

Development studies.

All information in this document has been obtained and presented in accordance

with academic rules and ethical conduct.

I also declare that, as required by this rule and conduct, I have fully cited and

referenced all materials and results that are not original to this work.

NAME : ARGHYA MONDAL

EXAMINATION ROLL NUMBER : M4MMD24005

REGISTRATION NUMBER : 163786 of 2022-23

THESIS TITLE : Classification of Bangla Handwritten

 Characters using VGG19-based Deep Learning
 Model

SIGNATURE: DATE:

ACKNOWLEDGEMENT

I feel fortunate to have the opportunity to present this dissertation at the School
of Education Technology, Jadavpur University, Kolkata, as part of the
requirements for the degree of Master in Multimedia Development.

I would like to express my sincere gratitude to my mentor, Dr. Saswati
Mukherjee, for her invaluable guidance, support, advice, constructive criticism,
and insightful perspectives throughout this dissertation. Her assistance has been
instrumental in shaping my work.

I extend my heartfelt thanks to Prof. Matangini Chattopadhyay, Director of the
School of Education Technology, for her continuous encouragement, support,
and guidance. I am also grateful to Mr. Joydeep Mukherjee for his unwavering
support during the course of my work. I would also like to acknowledge my
classmates from the Master in Multimedia Development and M.Tech IT
(Courseware Engineering).

I wish to express my appreciation to all the departmental support staff and
everyone else who contributed to this dissertation.

Lastly, I would like to convey my special gratitude to my parents, whose
unwavering support and sacrifices have played a significant role in helping me
reach this milestone.

Dated :

Place :

Regards,

Arghya Mondal

Examination Roll No. M4MMD24005

Registration No. 163786 of 2022-23

Master in Multimedia Development

School of Education Technology

Jadavpur University

Kolkata-700032

Contents

Topic Page No.

Lists of Figures i

Executive Summary ii

1. Introduction 1-2
1.1. Overview
1.2. Problem Statement
1.3. Objective

2. Background Concept 3-8
2.1. Convolution Neural Network
2.2. VGG19
2.3. Performance Measure

3. Literature Survey 9-11

4. Proposed Methodology 12-15
4.1. Dataset Description
4.2. Data Preprocessing
4.3. Model Architecture

5. Experiments and Results 16-18

6. Comparative Analysis 19-20

7. Conclusion and Future Scope 21

Reference 22-24

Appendix 25-28

i

List of Figures

Figure 1: CNN Architecture

Figure 2: Max pooling operation

Figure 3: Average pooling operation

Figure 4: Confusion matrix

Figure 5: A handwritten Bangla character written by different individuals

Figure 6: Modified VGG19 architecture

Figure 7: Accuracy Curve

Figure 8: Loss Curve

ii

Executive Summary

In the past decade, many deep learning models have been developed to address

handwritten character classification in various languages, including English,

Chinese, Arabic, Japanese, and Russian. Despite these advancements, classifying

Bangla handwritten characters from document image datasets remains a

challenging and open problem. The complexity of the Bangla script, along with

the inherent variability in individual handwriting styles, presents unique

difficulties that demand sophisticated solutions. Nonetheless, advancements in

neural network technology have led to the development of numerous promising

models that improve classification performance.

The Bangla language is characterised by a rich set of characters, including

numerals, basic characters, and complex compound and modifier characters.

This diversity in character forms, coupled with the intricate and often cursive

nature of the script, complicates the classification process. Individual

handwriting styles vary significantly, further adding to the challenge. As a result,

effective classification systems must be capable of handling a wide range of

variations in both character forms and writing styles.

Convolutional Neural Networks (CNNs) have emerged as powerful tools for

image classification tasks, including handwritten character classification. In this

dissertation, a popular CNN model, VGG19, has been used to classify Bangla

handwritten characters. The dataset used for this work is 'BanglaLekha-Isolated,'

a standard dataset that includes a variety of Bangla characters, comprising 50

basic characters, 10 numerals, and 24 frequently used compound characters.

The modified VGG19 model's performance is compared with traditional

classifier-based approaches. The experimental results demonstrated that the

VGG19 significantly outperforms the traditional methods. Specifically, the

VGG19 model achieved impressive validation accuracy on the Bangla-Lekha-

Isolated dataset. Additionally, the model obtained a high F1 Score, indicating its

reliability in classifying Bangla handwritten characters.

1

1. Introduction

1.1. Overview

In the modern era of science and technology, the preference for digitalisation

has become omnipresent. Handwritten character classification plays a crucial

role in converting handwritten characters into digital text files, as well as in

applications like vehicle license plate number classification, ID number

classification, parking lot management, banking, etc [1]. By eliminating the

labour-intensive and time-consuming process of manual data entry, this

technique significantly enhances human-computer interaction. This technique

significantly enhances human-computer interaction and is now employed in

various important industries.

Bengali, or Bangla, is the second most widely spoken language in the Indian

subcontinent. Globally, it ranks as the fifth most-spoken native language and the

seventh most-spoken language overall, with approximately 300 million native

speakers and an additional 37 million second-language speakers. Bangla is the

official and national language of Bangladesh, with 98% of Bangladeshis speaking

it as their first language. Additionally, Bangla is also spoken by significant

populations in the Indian states of West Bengal, Tripura, and Assam. It is the

official language of the states of West Bengal and Tripura and is also used in the

Andaman and Nicobar Islands. A slightly modified version is used for the

Assamese writing format [2].

Bangla is also essential for its rich cultural and literary heritage. Many people

prefer to write documents in the Bangla language, emphasising the need to

preserve these important handwritten documents using digital technology.

However, without proper digital maintenance, these valuable documents cannot

be effectively preserved. In recent years, significant work has been done in

handwritten character classification for the Bangla language. Nonetheless,

substantial challenges remain in developing an effective system that yields

accurate results in Bangla character classification.

2

1.2. Problem Statement

Classification of Bangla handwritten characters using VGG19-based deep

learning model

1.3. Objective

The objectives are as follows.

a) Develop a deep learning-based CNN model to classify Bangla handwritten

characters.

b) Utilize the VGG19 model to train and evaluate a large dataset of diverse

Bangla characters.

c) Enhance classification accuracy by adjusting key network parameters of the

VGG19 model.

3

2. Background Concept

2.1. Convolution Neural Network

There are various machine-learning techniques available for classifying Bangla

handwritten characters. Some popular techniques include clustering, feature

extraction, pattern matching, and artificial neural networks. However, the most

effective method is using convolutional neural network (CNN) algorithms. CNNs

are a type of deep learning network that directly learns from data. They are

particularly useful for identifying image patterns to classify objects, classes, and

categories [3]. Additionally, CNNs can be quite effective for classifying audio,

time series, and signal data. This specialised deep learning algorithm takes input

images and performs a mathematical operation called convolution to

differentiate between them. The CNN architecture is presented in Figure 1.

CNN Architecture

A Convolutional Neural Network consists of multiple layers, such as the input

layer, Convolutional layer, Pooling layer, and fully connected layers.

Figure 1: CNN Architecture

Key Components

a) Input Layer

The input to the model is given in this layer. In CNN, generally, an image or a

sequence of images will be the input. The raw input of the image, with a width

of 32, height of 32, and depth of 3, is held in this layer.

4

b) Convolutional Layer

• Filters/Kernels: This layer extracts the feature from the input dataset. It

applies a set of learnable filters known as the kernels to the input images.

The filters/kernels are smaller matrices, usually 2×2, 3×3, or 5×5 shape.

• Stride: The step size with which the filter moves across the input image.

• Padding: Adding borders to the input image to control the spatial size of

the output feature map during the convolution operation. It helps prevent

information loss at the edges and plays a vital role in the architecture and

performance of convolutional neural networks.

c) Activation Layer

Commonly used activation functions include ReLU (Rectified Linear Unit), which

introduces non-linearity by setting all negative values to zero while retaining

positive values.

d) Pooling Layer

• Max Pooling: It reduces the size of the volume, which speeds up the

computation, reduces memory usage, and prevents overfitting. As the

filter moves over the image, it selects the maximum pixel value. These

selected values make the output array, as shown in Figure 2.

Figure 2: Max pooling operation

5

• Average Pooling: Reduces the dimensions by taking the average of values

in a specified window. As the filter moves over the image, the average

value is calculated and sent to the output array, as shown in Figure 3.

Figure 3: Average pooling operation

e) Flatten

The flatten layer appears after the convolutional and pooling layers. The flatten

layer makes the multidimensional input one-dimensional, commonly used in

transitioning from the convolution layer to the fully connected layer.

f) Fully Connected Layer

Neurons in these layers are connected to all activations from the previous layer,

like traditional neural networks, enabling the combination of extracted features

for final classification.

g) Batch Normalization Layer

• Normalizes the activations of the previous layer to improve the stability

and speed up training.

• Helps in mitigating the vanishing or exploding gradients problem.

h) SoftMax

The SoftMax function is a mathematical function that converts a vector of real

numbers into a probability distribution and gives the output between 0 and 1. It

is applied just before the output layer.

6

i) Output Layer

The output layer uses a SoftMax activation function for classification tasks,

providing the probabilities of each class.

2.2. VGG19

The VGG19 model is a deep Convolutional Neural Network (CNN) architecture

developed by the Visual Geometry Group at the University of Oxford. It is part of

the VGG family of models, which are known for their simplicity and effectiveness

in image classification tasks. VGG19 is an extension of the VGG16 model [4],

which consists of 19 layers, including 16 convolutional layers, 3 fully connected

(dense) layers, and 5 max-pooling layers. VGG19 has been successfully applied

to various image classification tasks, including handwritten character

classification. The model's depth and capability to capture intricate features

make it suitable for classifying complex and diverse handwriting styles. Here’s

how VGG19 [5, 6] can be specifically applied to handwritten character

classification, focusing on Bangla characters.

Layers

a. Input Layer

Takes an image of size 32x32x3 (height, width, and colour channels).

b. Convolutional Layers

• Two convolutional layers with 64 filters each, followed by max pooling.

• Two convolutional layers with 128 filters each, followed by max pooling.

• Four convolutional layers with 256 filters each, followed by max pooling.

• Four convolutional layers with 512 filters each, followed by max pooling.

• Four convolutional layers with 512 filters each, followed by max pooling.

c. Activation Function

Each convolutional layer is followed by a Rectified Linear Unit (ReLU) activation

function, introducing non-linearity to the model.

d. Pooling Layers

Max-pooling layers with a 2x2 filter and a stride of 2 are used after each set of

convolutional layers to reduce the spatial dimensions and retain the most

significant features.

7

e. Fully Connected Layers

• After the convolutional and pooling layers, the network includes three fully

connected (dense) layers:

• Two layers with 4096 neurons each.

• One layer with 1000 neurons, corresponding to the number of classes.

f. Output Layer

The final layer uses the SoftMax activation function to distribute probability over

the classes.

2.3. Performance Metrics

A Convolutional Neural Network (CNN) is evaluated using performance metrics

similar to those in other machine learning models. However, these measures

are specifically adapted for tasks such as image classification, object detection,

and segmentation. Here’s a detailed explanation of these key performance

metrics, including the relevant formulas and variables:

• Accuracy: Accuracy is used to measure the performance of the model. It is

the ratio of Total correct instances to the total instances. Accuracy can be

calculated as Accuracy = (TP + TN)/(TP + TN + FP + FN)

• Confusion Matrix: Confusion Matrix is a performance measurement for the

machine learning or CNN classification problems where the output can be

two or more classes. A typical confusion matrix looks like the Figure 4.

Figure 4. Confusion Matrix

In general, the table is divided into four terminologies, which are as follows:

8

1. True Positive (TP): In this case, the prediction outcome is true, and it is

true in reality, also.

2. True Negative (TN): in this case, the prediction outcome is false, and it is

false in reality, also.

3. False Positive (FP): In this case, prediction outcomes are true, but they are

false in actuality.

4. False Negative (FN): In this case, predictions are false, and they are true in

actuality.

• Precision: It measures how accurate the model is in identifying positive

instances. It measures the accuracy of positive predictions. It can be

calculated as Precision= TP/(TP+FP)

• Recall: Recall measures the effectiveness of a classification model in

identifying all relevant instances from a dataset. It can be calculated as

Recall = TP/(TP + FN)

• F1-Score: It provides a balance between precision and recall. It can be

calculated as F1-Score = (2 x Precision x Recall)/(Precision+Recall)

9

3. Literature Survey

Rabby et al. [7] developed a multiclass CNN model called Borno. They evaluated

this model using an assembled dataset of 1,069,132 images and reported an

accuracy of 91.88%. The Borno model consists of four convolutional layers with

32, 64, 128, and 256 filters, respectively. Each convolutional layer is followed by

a batch normalisation layer, which is then connected to a max-pooling layer and

a dropout layer.

Rahman et al. [8] found that a CNN model could classify only simple Bangla

characters (50 classes) with a testing accuracy of 85.36%. The model's

performance improves with more iterations, reaching close to 300. However,

despite the convolutional and other layers used, the model still shows a

significant limitation: its testing accuracy (85.36%) is noticeably lower than its

training accuracy (93.93%) which indicates that the model is overfitting to the

training data.

Purkaystha et al. [9] developed a deep convolutional neural network (DCNN) for

recognising Bangla characters. Their model achieved an accuracy of 91.23% for

recognising 50 alphabet categories and 89.93% for recognising nearly all Bangla

characters across 80 categories. Their approach is relatively complex, utilising

more layers in the network.

Rumman et al. [10] utilised the Bangla-Lekha-Isolated dataset and applied a

Convolutional Neural Network (CNN) to it, achieving an accuracy of 91.81%.

Additionally, by using data augmentation techniques, which involve artificially

increasing the size and variability of the training data, they improved the model's

performance further, reaching an accuracy of 95.25%. This demonstrates the

effectiveness of data augmentation in enhancing the accuracy of CNN models for

recognising Bangla characters.

Shaik et al. [11] introduced a novel method for Bangla character classification

that utilises a layer-based and view-based approach with a KNN classifier.

Another technique for classifying Bangla handwritten characters employs the

Euclidean distance measurement technique and the Fourier Transform (FT)

10

measurement technique. Subsequently, researchers began implementing CNN

models for this task.

Alif et al. [12] introduced a modified version of the ResNet-18 architecture

tailored for recognising Bangla handwritten characters in their study. Their

modification involved integrating dropout layers into the ResNet-18

architecture, enhancing its classification performance. The researchers applied

this customised architecture to both the BanglaLekha-Isolated dataset and the

CMATERdb dataset. They achieved impressive accuracies of 95.10% and 95.99%,

respectively, demonstrating the effectiveness of their approach in accurately

recognising Bangla handwritten characters across different datasets.

A reliable model [13] presented a fuzzy technique for segmenting handwritten

Bangla word images. Initially, they identify the Matra, the longest straight line

connecting multiple characters to form a Bangla word, using fuzzy features

extracted from the target word image. Subsequently, they identify segment

points within the Matra using three fuzzy features. Their experiment utilised only

210 samples of handwritten Bangla words, yielding an average accuracy of

95.32%. This method showcases a novel approach to segmenting Bangla

handwritten words with promising results despite the limited sample size used

in the study.

An ensemble strategy [14] is proposed by detecting and correcting any skew in

the words. Subsequently, they estimate the headline and segment the words

into meaningful pseudo characters. They extract three distinct statistical

features, combine them, and apply a CNN-based transfer learning architecture.

Following this, they merge the identified pseudo characters to reconstruct the

full word. The proposed segmentation methodology achieved an accuracy of

94.01% in recognising Bangla words from images, showcasing promising results

in word recognition from handwritten text.

El-Sawy et al. [15] developed a convolutional neural network for detecting

handwritten Arabic characters. They used 16,800 images of Arabic characters in

their experiment. Their system consists of two convolutional layers, two pooling

layers, and two fully connected layers. This system achieved an average accuracy

of 94.9%, showing its effectiveness in recognising handwritten Arabic characters.

11

Yang et al. [16] offer a comprehensive overview of using deep learning

techniques in handwritten character recognition. Their study encompasses

many deep learning models, notably convolutional neural networks, recurrent

neural networks, and deep belief networks.

In a study by Pal et al. [17], the modified quadratic discriminant function (MQDF)

was used to recognise Bangla compound characters, resulting in an accuracy of

85.90%. Although MQDF is an advanced classifier for handwriting recognition

and fits the training data well, its generalisation performance is poor. To address

this limitation, a CNN-based model has been proposed to improve performance,

accuracy, and robustness.

12

4. Proposed Methodology

This work aims to create a CNN-based classification model for identifying Bangla

handwritten characters using the VGG19 architecture and the BanglaLekha-

Isolated dataset. Specifically, the VGG19 model is fine-tuned better to discern

the unique features of handwritten Bangla characters. After the initial training

phase, certain layers of the VGG19 model are unfrozen for additional fine-tuning,

which extends over 10 epochs using a secondary learning rate scheduler. The

dataset, consisting of 84 classes, is pre-processed using augmentation

techniques such as rotations, shifts, shearing, and zooming to enhance the

model's robustness and prevent overfitting.

To adapt the VGG19 model for this classification task, fully connected layers are

appended to the base model. These included two dense followed by

BatchNormalization and Dropout layers for overfitting. The final output layer

consisted of 84 units, corresponding to the number of classes, with a SoftMax

activation function.

During training process, a custom learning rate schedule is implemented for both

phases. In the initial phase, the convolutional layers of the VGG19 model are

frozen, and only the newly added fully connected layers are trained using the

RMSprop optimiser. In the second phase, some of the deeper layers of the

VGG19 model are unfrozen for fine-tuning, with a more aggressive learning rate

schedule tailored for fine-tuning, starting with a very low learning rate of the

initial 10 epochs. The model's performance is evaluated on the validation set

using accuracy, precision, recall, and F1-score metrics. This comprehensive

evaluation ensures that the developed model effectively captures the intricate

features of Bangla handwritten characters and achieves high classification

accuracy.

4.1. Dataset Description

The dataset "BanglaLekha-Isolated" comprises a collection of Bangla

handwritten isolated character samples, encompassing 50 Bangla basic

characters, 10 Bangla numerals, and 24 selected compound characters. Table 1

lists the classes of 84 Bangla basic letters, numerals, and compound characters.

13

Table 1. Classes of Bangla Characters for classification

Bangla basic characters

অ [1] আ [2] ই [3] ঈ [4] উ [5] ঊ [6] ঋ [7] এ [8] ঐ [9] ও [10]

ঔ [11] ক [12] খ [13] গ [14] ঘ [15] ঙ [16] চ [17] ছ [18] জ [19] ঝ [20]

ঞ [21] ট [22] ঠ [23] ড [24] ঢ [25] ণ [26] ত [27] থ [28] দ [29] ধ [30]

ন [31] প [32] ফ [33] ব [34] ভ [35] ম [36] য [37] র [38] ল [39] শ [40]

ষ [41] স [42] হ [43] ড় [44] ঢ় [45] য় [46] ৎ [47] ং [48] ◌ঃ [49] ◌ঃ [50]
Bangla numerals

০ [51] ১ [52] ২ [53] ৩ [54] ৪ [55] ৫ [56] ৬ [57] ৭ [58] ৮ [59] ৯ [60]

Bangla compound characters

ক্ষ [61] ব্দ [62] ঙ্গ [63] স্ক [64] স্ফ [65] স্থ [66] চ্ছ [67] ক্ত [68] স্ন [69] ষ্ণ [70]

ম্প [71] হ্ম [72] প্ত [73] ম্ব [74] ন্ত [75] দ্ভ [76] ত্থ [77] ষ্ঠ [78] ল্প [79] ষ্প [80]

ন্ধ [81] ন্দ [82] ম্ম [83] ণ্ঠ [84]

Each of the 84 characters has 2000 handwriting samples, totalling 166,105

handwritten character images after digitisation and preprocessing. Mistakes and

scribbles are discarded during the preprocessing stage. The dataset includes

information regarding the age and gender of the subjects from whom the

handwriting samples are collected. Each individual image is mapped to this

information in Figure 5. A separate spreadsheet assesses the aesthetic quality of

the handwriting samples collected from three independent assessors. This

assessment is done on groups of 84 characters, not individual characters.

Figure 5: A handwritten Bangla character written by different individuals

4.2. Data Preprocessing

Data Augmentation

Data augmentation is a method used to increase the size of a dataset without

collecting additional data. For image data, various techniques, such as cropping,

rotating, zooming, and shifting, are used to create new data from the existing

dataset. In this work, a comprehensive set of transformations is employed to

augment the dataset of Bangla handwritten characters, thereby bolstering the

robustness and performance of the CNN-based classification model. The

augmentation techniques implemented include width and height shifting,

14

rotation by 10 degrees, a shear range of 0.1, and a zooming range of 0.5. Each of

these transformations serves a specific purpose in diversifying the dataset and

simulating real-world scenarios. For instance, rotating the images allows the

model to classify characters from different angles, while width and height

shifting introduces variations in the characters' positions within the image.

Shearing distorts the characters, simulating various writing styles, and zooming

enhances the model's ability to identify characters at different scales. These

augmentations help prevent overfitting and improve the model's generalisation

of unseen data. Additionally, rescaling ensures that pixel values are

standardised, making the training process more efficient. Overall, data

augmentation plays a crucial role in training CNN-based models for character

classification tasks, contributing to their accuracy and reliability.

After augmentation, the dataset size remains unchanged, as augmentation is

primarily aimed at enhancing diversity and robustness rather than increasing the

number of images. For instance, the dataset initially contains 166,105 images.

The image dimensions remain consistent, typically resized to a fixed size, such as

32x32 pixels, to maintain uniformity. Pixel intensity after pixel value

standardisation is adjusted to ensure consistency across all images, typically

ranging from 0 to 1.

4.3. Model Architecture

Figure 6: Modified VGG19 architecture

The model architecture depicted in Figure 6, represents a modified version of

the VGG19 convolutional neural network (CNN) tailored for Bangla handwritten

character classification. The model consists of multiple convolutional layers

followed by max-pooling layers to extract hierarchical features from input

Feature Extraction Classification

15

images. These layers are responsible for capturing intricate patterns and

structures present in the handwritten characters.

Following the convolutional layers, two dense layers are appended to the model

to perform classification based on the extracted features. Each dense layer

allows the model to learn complex representations of the input data.

BatchNormalization layers are inserted after the dense layers to improve the

training stability and accelerate convergence. Dropout layers are included in the

model as a form of regularization to mitigate overfitting.

The dense layer contains 84 units, corresponding to the number of classes in the

BanglaLekha-Isolated dataset, with a SoftMax activation function. This layer

computes the probability distribution over the classes, enabling the model to

make predictions. Throughout the training process, these parameters are

optimized to minimize classification errors and enhance model performance.

Overall, the modified VGG19 model is implemented to effectively capture the

distinctive features of Bangla handwritten characters and facilitate accurate

classification. Through fine-tuning and training on the BanglaLekha-Isolated

dataset, the model aims to achieve high accuracy and robustness in character

recognition tasks.

16

5. Experiments and Results

In this work, Python (version 3.12.3) served as the primary programming

language, supported by a selection of indispensable libraries, including Numpy,

Pandas, Seaborn, Matplotlib, and Math. Given the dataset's substantial size of

166,105 images, Google Colaboratory is utilised for its rapid processing

capabilities. The open-source libraries TensorFlow and Keras are used to

implement the VGG19 model.

The dataset comprises Bangla handwritten characters, partitioned into training

and validation sets with an 80:20 split. In the training set, there are 132,914

images spread across 84 classes, while the validation set contains 33,191 images

from the same classes. The classification model adopts the VGG19 architecture,

initially pre-trained on ImageNet, featuring 16 convolutional layers followed by

5 max-pooling layers. Additionally, the model is augmented with two dense

layers, each containing 512 units.

To combat overfitting, the model incorporates batch normalization and dropout

layers, with a dropout rate set to 0.35. The batch size is configured to 128 to

optimize training efficiency. In third dense layer encompasses 84 classes from

the BanglaLekha-Isolated dataset, employing a SoftMax activation function to

compute the probability distribution over the classes. In the first phase, the

model training continues for 10 epochs, maintaining a constant learning rate of

0.0001 for the first 5 epochs. Subsequently, the learning rate is reduced to

0.00005 for the remaining epochs.

Following the initial phase, fine-tuning extends over 10 epochs, accompanied by

a learning rate scheduler. The scheduler initiates with a minimal learning rate of

0.0000001, gradually escalating to 0.000005 until the 45th epoch, and then

declining to 0.000001 thereafter. The RMSprop optimizer oversees the

optimization of model parameters throughout the training process. These

meticulously orchestrated configurations, coupled with dataset augmentation

and fine-tuning strategies, synergistically fortify the model's resilience and

efficacy in accurately discerning Bangla handwritten characters. Table 2

enumerates all the parameters required to establish proposed model for

classifying Handwritten Bangla alphabets, numerals, and compound characters.

17

Table 2. Internal parameter of proposed VGG19

Type of layer Output Shape Parameters
input_1 (InputLayer) (None, height=32, width=32, filter size=3) 0

block1_conv1 (Conv2D) (None, height=32, width=32, filter size =64) 1792

block1_conv2 (Conv2D) (None, height=32, width=32, filter size =64) 36928

block1_pool (MaxPooling2D) (None, height=16, width=16, filter size =64) 0

block2_conv1 (Conv2D) (None, height=16, width=16, filter size =128) 73856

block2_conv2 (Conv2D) (None, height=16, width=16, filter size =128) 147584

block2_pool (MaxPooling2D) (None, height=8, width=8, filter size =128) 0

block3_conv1 (Conv2D) (None, height=8, width=8, filter size =256) 295168

block3_conv2 (Conv2D) (None, height=8, width=8, filter size =256) 590080

block3_conv3 (Conv2D) (None, height=8, width=8, filter size =256) 590080

block3_conv4 (Conv2D) (None, height=8, width=8, filter size =256) 590080

block3_pool (MaxPooling2D) (None, height=4, width=4, filter size =256) 1180160

block4_conv2 (Conv2D) (None, height=4, width=4, filter size =512) 2359808

block4_conv3 (Conv2D) (None, height=4, width=4, filter size =512) 2359808

block4_conv4 (Conv2D) (None, height=4, width=4, filter size =512) 2359808

block4_pool (MaxPooling2D) (None, height=2, width=2, filter size =512) 0

block5_conv1 (Conv2D) (None, height=2, width=2, filter size =512) 2359808

block5_conv2 (Conv2D) (None, height=2, width=2, filter size =512) 2359808

block5_conv3 (Conv2D) (None, height=2, width=2, filter size =512) 2359808

block5_conv4 (Conv2D) (None, height=2, width=2, filter size =512) 2359808

block5_pool (MaxPooling2D (None, height=1, width=1, filter size =512) 0

flatten (Flatten) (None, filter size =512) 0

dense (Dense) (None, filter size =512) 262656

batch_normalization (Batch
Normalization)

(None, filter size =512) 2048

dropout (Dropout) (None, filter size =512) 0

dense_1 (Dense) (None, filter size =512) 262656

batch_normalization_1
(Batch Normalization)

(None, filter size =512) 2048

dropout_1 (Dropout) (None, filter size =512) 0

dense_2 (Dense) (None, filter size =84) 43092

5.1. Accuracy and Loss Curves

Figure 7 depicts the training and validation accuracy for different epochs. It

shows whether the model is overfitting or underfitting. The modified VGG19

model had a training and validation accuracy of 96.63% and 96.79% respectively.

Figure 8 shows the training vs. validation loss. The loss curve indicates that both

losses are consistently minimal and decreasing, indicating that the models fit

well with the data.

18

Figure 7: Accuracy Curve

Figure 8: Loss Curve

In evaluating the performance of the model, several key metrics are utilised. The

model achieves an validation accuracy of 96.79%, indicative of its overall

effectiveness. The modified VGG19 model achieved a high precision of 96.84%

which signifies a low rate of false positives, bolstering the model's reliability.

Recall, on the other hand, evaluates the model's ability to identify all relevant

instances within the dataset, resulting in a recall rate of 96.79%. The F1-Score,

which balances precision and recall, yields a score of 96.79%, underscoring the

model's robust performance across both dimensions.

19

6. Comparative Analysis

Table 3 presents a comprehensive evaluation of several deep learning models

employed for Bangla handwritten character classification. This evaluation

encompasses models such as Convolutional Neural Networks (CNN), modified

quadratic discriminant function (MQDF), and ResNet-18, previously proposed by

other researchers. Alongside these established models, the study also assesses

the modified VGG19 model, providing a detailed comparison regarding accuracy

and various limitations. The works aims to identify which model performs best

under specific conditions by presenting its accuracy rates.

The comparative analysis of various models for Bangla handwritten character

classification reveals a range of validation accuracies and inferential insights

across different architectures. It is observed that modified VGG19 model

achieved a validation accuracy of 96.79% with 84 classes, outperforming a CNN

model [8] which had a validation accuracy of 85.36% with high iterations.

Additionally, other existing methods [17, 18, 19, 12, 20, 21] achieved validation

accuracies of 85.90%, 89.30%, 93.2%, 95.99%, 96.40%, and 96.40%, respectively.

These methods, however, face limitations such as character constraints,

overfitting issues, high complexity, and a large number of weights, which

contribute to their lower accuracies. In contrast, the modified VGG19 model

demonstrates superior accuracy, addressing these challenges more effectively.

Table 3. Comparison of the modified VGG19 model with other models

Literature Models Classes Validation
Accuracy

Inference

Rahman et al. [8] CNN 50 85.36% Low accuracy, requires
high iterations

Pal et al. [17] MQDF 110 85.90% Limited to compound
characters, generalisation
performance is not
encouraging

R. Jadhav et al.
[18]

CNN 84 89.30% Overfitting when iterations
increase

Hossain et al. [19] CNN 60 93.2% Overfitting and underfitting

Alif et al. [12] ResNet-18 84 95.99% High complexity, a large
number of weights, not

20

suitable for this specific
research domain

Saha et al. [20] BBCNet-15 50 96.40% 6 layers of convolution, 6
layers of pooling, and 2
dense layers; more
experimental results
needed

Roy [21] ResNet50 84 96.40% 12 convolutional layers, 4
pooling layers, and 5 fully
connected layers require
high-capacity devices and
longer processing time

Modified VGG19
Model

VGG19 84 96.79% 20 convolutional layers, 5
pooling layers, and 4 fully
connected layers
outperforms existing
methods with respect to
fewer epochs

21

7. Conclusion and Future Scope

The evaluation presented in this work highlights the efficacy of various deep

learning models for Bangla handwritten character classification, focusing on

VGG19, which achieved an impressive validation accuracy of 96.79%. The

performance of VGG19 can be attributed to its deep architecture, effective

convolutional layers, and robust training methodologies, including data

augmentation and transfer learning. This work not only underscores the

potential of advanced deep learning models like VGG19 in achieving high

accuracy but also provides a detailed comparison with other models such as

CNN, MQDF, and ResNet-18. The experimental findings demonstrate that while

traditional models have their strengths, the deep learning approach, particularly

with architectures like VGG19, significantly improves accuracy and reliability for

Bangla handwritten character classification.

In the future, this work aims to build a larger dataset for Bangla handwritten

digits and characters, as having more examples enhances the model's learning

capability.

22

Reference

[1] A. Taufique, F. Rahman, I.K. Pranta, N.A. Zahid and S.S. Hasan, "Handwritten

Bangla Character Recognition using Inception Convolutional Neural Network,"

International Journal of Computer Applications, vol. 181 – no. 17, 2018.

[2] C.J. Kumar, G. Singh, R. Rani and R. Dhir, “Handwritten Segmentation in

Bangla Script: A Review of Offline Techniques,” International Journal of

Advanced Research in Computer Science and Software Engineering, vol. 3, Issue

1, 2013, pp. 135-140.

[3] S.M.A. Hakim and Asaduzzaman, “Handwritten Bangla numeral and basic

character recognition using deep convolutional neural network,” International

Conference on Electrical, Computer and Communication Engineering (ECCE),

2019, pp. 1–6. Available: https://doi.org/10.1109/ECACE.2019.8679243

[4] S. Islam, S.I.A. Khan, M.M. Abedin, K.M. Habibullah and A.K. Das, "Bird Species

Classification from an Image Using VGG-16 Network," Proceedings of the 2019

7th International Conference on Computer and Communications Management

(ICCCM 2019), 2019, pp. 38-42. Available:

https://doi.org/10.1145/3348445.3348480

[5] M. Bansal, M. Kumar, M. Sachdeva and A. Mittal, “Transfer learning for image

classification using VGG19: Caltech‑101 image data set”, Journal of Ambient

Intelligence and Humanized Computing and Springer Nature 2021, vol. 14, 2021,

pp. 3609-3620. Available: https://doi.org/10.1007/s12652-021-03488-z

[6] A. Narayan and R. Muthalagu, “Image Character Recognition using

Convolutional Neural Networks,” Seventh International conference on Bio

Signals, Images, and Instrumentation (ICBSII), IEEE, 2021. Available:

https://ieeexplore.ieee.org/abstract/document/9445136

[7] A.K.M.S.A. Rabby, M. Islam, N. Hasan, J. Nahar and F. Rahman, “Borno: Bangla

handwritten character recognition using a multiclass convolutional neural

network,” Proceedings of the Future Technologies Conference (FTC), vol. 1,

2020, pp. 457-472.

[8] M. Rahman, M.A.H. Akhand, S. Islam, P.C. Shill and M.M.H. Rahman, “Bangla

Handwritten Character Recognition using Convolutional Neural Network,”

https://doi.org/10.1109/ECACE.2019.8679243
https://doi.org/10.1145/3348445.3348480
https://doi.org/10.1007/s12652-021-03488-z
https://ieeexplore.ieee.org/abstract/document/9445136

23

International Journal of Image, Graphics and Signal Processing, vol. 7, issue 8,

2015, pp. 42 – 49. Available: https://www.scinapse.io/papers/755956977

[9] B. Purkaystha, T. Datta and S. Islam, “Bangla handwritten character

recognition using deep convolutional neural network,” 20th IEEE International

Conference of Computer and Information Technology 2017 (ICCIT '17), 2017, pp.

01-05. Available: https://ieeexplore.ieee.org/abstract/document/8281853

[10] R.R. Chowdhury, M.S. Hossain, R. Islam, K. Andersson and S. Hossain,

"Handwritten Character Recognition using Convolutional Neural Network with

Data Augmentation," 2019 Joint 8th International Conference on Informatics,

Electronics & Vision (ICIEV), 2019, pp. 318-323.

[11] S.H Shaikh, M. Tabedzki, N. Chaki and K. Saeed, “Bangla Printed Character

Recognition – A New Approach,” Computer Information Systems and Industrial

Management, 2013, pp. 129-140. Available: http://dx.doi.org/10.1007/978-3-

642-40925-7_13

[12] M.A.R Alif, S. Ahmed and M.A. Hasan, “Isolated Bangla handwritten

character recognition with convolutional neural network,” 20th IEEE

International Conference of Computer and Information Technology 2017 (ICCIT

'17), 2017, pp. 01-06. Available:

https://ieeexplore.ieee.org/abstract/document/8281823

[13] S. Basu, R. Sarkar, N. Das, M. Kundu, M. Nasipuri and D.K. Basu “A fuzzy

technique for segmentation of handwritten bangla word images,” International

Conference on Computing: Theory and Applications (ICCTA’07), IEEE, 2007, pp.

427–433.

[14] R. Pramanik and S. Bag, “Segmentation-based recognition system for

handwritten bangla and devanagari words using conventional classification and

transfer learning,” IET Image Processing, 2020. Available:

 https://doi.org/10.1049/iet-ipr.2019.0208

[15] A. El-Sawy, M. Loey and H. El-Bakry, “Arabic handwritten characters

recognition using convolutional neural network,” WSEAS Transactions on

Computer Research, vol. 5, 2017, pp. 11-19.

https://www.scinapse.io/papers/755956977
https://ieeexplore.ieee.org/abstract/document/8281853
http://dx.doi.org/10.1007/978-3-642-40925-7_13
http://dx.doi.org/10.1007/978-3-642-40925-7_13
https://ieeexplore.ieee.org/abstract/document/8281823
https://doi.org/10.1049/iet-ipr.2019.0208

24

[16] X. Yang, X. Ren, Y. Zhou, Z. Huang, J. Sun, and K. Chen, “A Novel Text

Structure Feature Extractor for Chinese Scene Text Detection and Recognition,”

IEEE, vol. 5, 2017, pp. 3193–3204.

[17] U. Pal, T. Wakabayashi and F. Kimura, “Handwritten Bangla Compound

Character Recognition Using Gradient Feature,” 10th IEEE International

Conference on Information Technology 2007, 2007, pp. 208-213. Available:

https://ieeexplore.ieee.org/abstract/document/4418297

[18] R. Jadhav, S. Gadge, K. Kharde, S. Bhere and I. Dokare, “Recognition of

handwritten Bangla characters using low cost convolutional neural network,”

2022 Interdisciplinary Research in Technology and Management (IRTM), 2022.

Available: https://ieeexplore.ieee.org/abstract/document/9791802

[19] A. Hossain, M.A.F.M.R. Hasan, A.F.M.Z. Abadin and N. Fatta, “Bangla

Handwritten Characters Recognition Using Convolutional Neural Network,”

Australian Journal of Engineering and Innovative Technology, vol. 4, issue 2,

2022, pp. 27–31. Available: https://universepg.com/journal-details/317

[20] C. Saha, R.H. Faisal and M. Rahman, “Bangla Handwritten Basic Character

Recognition Using Deep Convolutional Neural Network,” 8th IEEE International

Conference on Informatics, Electronics & Vision (ICIEV '19), 2019, pp. 190-195.

Available: https://ieeexplore.ieee.org/abstract/document/8858575

[21] A. Roy, “AKHCRNet: Bangla handwritten character recognition using deep

learning,” Computing Research Repository, 2021. Available:

https://dblp.org/rec/journals/corr/abs-2008-12995

https://ieeexplore.ieee.org/abstract/document/4418297
https://ieeexplore.ieee.org/abstract/document/9791802
https://universepg.com/journal-details/317
https://ieeexplore.ieee.org/abstract/document/8858575
https://dblp.org/rec/journals/corr/abs-2008-12995

25

Appendix

Code

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

!unzip /content/drive/MyDrive/Images.zip

Streaming output truncated to the last 5000 lines.

inflating: Images/83/02_0002_0_19_1016_1099_83.png

inflating: Images/83/02_0002_0_19_1016_1100_83.png

inflating: Images/83/02_0002_0_19_1016_1132_83.png

inflating: Images/83/02_0002_0_19_1016_1133_83.png

inflating: Images/83/02_0002_0_19_1016_1143_83.png

inflating: Images/83/02_0002_0_19_1016_1144_83.png

import numpy as np

import random

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

from tensorflow.keras.layers import Input, Dropout, Flatten,

Dense, BatchNormalization, concatenate

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.optimizers import RMSprop

from tensorflow.keras.callbacks import LearningRateScheduler

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix,

ConfusionMatrixDisplay

from sklearn.metrics import f1_score, precision_score,

recall_score, accuracy_score

%matplotlib inline

img =

tf.keras.preprocessing.image.load_img('Images/9/02_0002_1_27_1

016_1171_9.png')

img

26

Dataset details

train_data_dir = "Images"

img_width, img_height = 32, 32

input_shape = (img_width, img_height, 3)

batch_size = 128

ImageDataGenerator for loading and scaling data

train_datagen = ImageDataGenerator(

 rescale=1.0/255,

 rotation_range=10,

 width_shift_range=0.05,

 height_shift_range=0.05,

 shear_range=0.1,

 zoom_range=0.05,

 fill_mode='constant',

 cval=0,

 validation_split=0.20

)

valid_datagen = ImageDataGenerator(rescale=1.0/255,

validation_split=0.2)

train_generator = train_datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_width, img_height),

 batch_size=batch_size,

 color_mode="rgb",

 class_mode='categorical',

 subset='training',

 shuffle=True,

 seed=13

)

validation_generator = valid_datagen.flow_from_directory(

 train_data_dir,

 target_size=(img_width, img_height),

 batch_size=batch_size,

 color_mode="rgb",

 subset='validation',

 shuffle=False,

 class_mode='categorical',

 seed=13

)

 Found 132914 images belonging to 84 classes.

Found 33191 images belonging to 84 classes.

classes = len(train_generator.class_indices)

print("Number of classes:", classes)

 Number of classes: 84

27

Fine-tuning the model by unfreezing some layers

for layer in base_model.layers[:28]:

 layer.trainable = True

Recompile the model

model.compile(loss='categorical_crossentropy',

optimizer=RMSprop(), metrics=['accuracy'])

Training the model with the second learning rate scheduler

callback2 =

LearningRateScheduler(decayed_learning_rate_tuned50)

history2 = model.fit(

 train_generator,

 steps_per_epoch=train_generator.samples // batch_size,

 epochs=10,

 callbacks=[callback2],

 validation_data=validation_generator,

 validation_steps=validation_generator.samples //

batch_size

)

Epoch 1/10
1038/1038 [==============================] - 173s 162ms/step - loss: 0.1691

- accuracy: 0.9536 - val_loss:0.1445 - val_accuracy: 0.9639 - lr:1.0000e-07

Epoch 2/10
1038/1038 [==============================] - 170s 163ms/step - loss: 0.1616

- accuracy: 0.9558 - val_loss:0.1415 - val_accuracy: 0.9649 - lr:1.0000e-07

Epoch 3/10
1038/1038 [==============================] - 176s 169ms/step - loss: 0.1565

- accuracy: 0.9569 - val_loss:0.1396 - val_accuracy: 0.9654 - lr:1.0000e-07

Epoch 4/10
1038/1038 [==============================] - 172s 165ms/step - loss: 0.1536

- accuracy: 0.9579 - val_loss:0.1384 - val_accuracy: 0.9658 - lr:1.0000e-07

Epoch 5/10

1038/1038 [==============================] - 181s 175ms/step - loss: 0.1536

- accuracy: 0.9584 - val_loss:0.1373 - val_accuracy: 0.9662 - lr:1.0000e-07

Epoch 6/10
1038/1038 [==============================] - 176s 169ms/step - loss: 0.1437

- accuracy: 0.9609 - val_loss:0.1312 - val_accuracy: 0.9679 - lr:5.0000e-06

Epoch 7/10
1038/1038 [==============================] - 175s 168ms/step - loss: 0.1356

- accuracy: 0.9629 - val_loss:0.1326 - val_accuracy: 0.9677 - lr:5.0000e-06

Epoch 8/10
1038/1038 [==============================] - 174s 168ms/step - loss: 0.1326

- accuracy: 0.9646 - val_loss:0.1330 - val_accuracy: 0.9677 - lr:5.0000e-06

28

Epoch 9/10
1038/1038 [==============================] - 178s 172ms/step - loss: 0.1275

- accuracy: 0.9652 - val_loss:0.1335 - val_accuracy: 0.9679 - lr:5.0000e-06

Epoch 10/10
1038/1038 [==============================] - 174s 167ms/step - loss: 0.1230

- accuracy: 0.9663 - val_loss:0.1351 - val_accuracy: 0.9679 - lr:5.0000e-06

calculate different metrics for HCR-Net on the test dataset

print('precision_score: ',

precision_score(validation_generator.classes,y_pred,

average="macro"))

print('recall_score : ',

recall_score(validation_generator.classes,y_pred,

average="macro"))

print('f1_score : ',

f1_score(validation_generator.classes,y_pred,

average="macro"))

print('accuracy_score : ',

accuracy_score(validation_generator.classes,y_pred,

normalize=True))

print("\nBest accuracy : ",

max(max(history1.history['val_accuracy']),

max(history2.history['val_accuracy'])))

 precision_score: 0.9684424796559218

recall_score : 0.9679070369183158

f1_score : 0.967870358494676

accuracy_score : 0.96794311711006

Best accuracy : 0.9679355621337891

