Dissertation on
Automatic Vehicle Number Plate Detection
System

Thesis submitted towards partial fulfilment
of the requirements for the degree of

Master in Multimedia Development

Submitted by
Subhrajyoti Chakraborty

EXAMINATION ROLL NO.: MAMMD24003B
UNIVERSITY REGISTRATION NO.: 163784 of 2022-2023

Under the guidance of
Prof. Dr. Matangini Chattopadhyay

School of Education Technology
Jadavpur University

Course affiliated to
Faculty of Engineering and Technology
Jadavpur University
Kolkata-700032
India

2024

Master in Multimedia Development
Course affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata, India

CERTIFICATE OF RECOMMENDATION

This 1s to certify that the thesis entitled “Automatic Vehicle Number Plate
Detection System” is a bonafide work carried out by Subhrajyoti Chakraborty
under our supervision and guidance for partial fulfillment of the requirements
for the degree of Master in Multimedia Development in School of Education
Technology , during the academic session 2023-2024.

SUPERVISOR

School of Education Technology
Jadavpur University,
Kolkata-700 032

DIRECTOR

School of Education Technology
Jadavpur University,
Kolkata-700 032

DEAN - FISLM
Jadavpur University,
Kolkata-700 032

Master in Multimedia Development
Course affiliated to

Faculty of Engineering and Technology
Jadavpur University

Kolkata, India

CERTIFICATE OF APPROVAL **

This foregoing thesis is hereby approved as a credible study of an engineering
subject carried out and presented in a manner satisfactory to warranty its
acceptance as a prerequisite to the degree for which it has been submitted. It is
understood that by this approval the undersigned do not endorse or approve any
statement made or opinion expressed or conclusion drawn therein but approve
the thesis only for purpose for which it has been submitted.

Committee of final examination
for evaluation of thesis

** Only in case the thesis is approved.

il

DECLARATION OF ORIGINALITY AND COMPLIANCE OF
ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research
work by the undersigned candidate, as part of his Master in Multimedia
Development studies.

All information in this document has been obtained and presented in accordance
with academic rules and ethical conduct.

I also declare that, as required by this rule and conduct, I have fully cited and
referenced all materials and results that are not original to this work.

NAME: Subhrajyoti Chakraborty
EXAMINATION ROLL NUMBER: M4AMMD24003B

THESIS TITLE: Automatic Vehicle Number Plate Detection System

SIGNATURE: DATE:

il

Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Dr.
Matangini Chattopadhyay for her continuous support in my thesis work and
related research. Her guidance and valuable suggestions always helped me at
time of research and writing this thesis. I could not have imagined having a
better advisor and mentor for my Master Degree study. I am very much thankful
to her for the motivation and support given during the entire duration of research
work.

Besides this, I would like to thank Dr. Saswati Mukherjee, Mr. Joydeep
Mukherjee and Ms. Angsumitra Ghosh for their continuous encouragement and
support during my entire period of study in the School of Education Technology.
I would like to express my gratitude to the entire staff, Lab Assistant. I am very
grateful to all my classmates of Master in Multimedia Development and M.
Tech IT (Courseware Engineering).

I would like to thank my parents for always supporting me in every ups and
downs during my entire period of work. I am also thankful to my friends and
well wishers who always have faith in me.

Subhrajyoti Chakraborty
Examination Roll No: MAMMD24003B
Univ. Registration No. 163784 of 2022 2023
Master in Multimedia Development
School of Education Technology

Jadavpur University,
Kolkata — 700032

v

Dedicated to,
My Parents

Contents
List of Figures
List of Tables
List of Abbreviations
Executive Summary

1.0 Introduction
1.1 Overview
1.2 Problem Statement
1.3 Objectives
1.4 Assumptions and Scopes

1.4.1 Assumptions

1.4.2 Scopes
1.5 Concept and Problem Analysis
1.6 Organization of the Thesis

2.0 Literature Survey

3.0 Proposed Approach
3.1 Methodology
3.1.1 Image Preprocessing
3.1.2 Grayscale Conversion

3.1.3 Noise Reduction with Bilateral Filtering
3.1.4 Edge Detection with Canny Edge Detector
3.1.5 Contour Detection and Analysis

3.1.6 License Plate Extraction and Cropping
3.2 Flowchart of the proposed system

4.0 Experimentations and Results
5.0 Conclusions and Future Scopes
5.1 Conclusions
5.2 Future Scopes

References

Appendix

vii

viii

ix

»

1
(93]

A?MMMNNNN
=

11
11
11
11-12
12
12
13

13
14- 15

17- 26
28
28
28-29
30- 31

32-34

Vi

List of Figures

Figure 1: Flowchart of the proposed system

Figure 2: Original image or the image user want to upload

Figure 3: Converting the given image (RGB) into gray scale image
Figure 4: Applying Bilateral Filter to the gray scale image

Figure 5: Applying canny edge detection to the given image
Figure 6: Detecting all contours of the given image

Figure 7: Detecting Top 30 contours of the given image

Figure 8: Detecting number plate of the given image

Figure 9: Cropped Image of the given image

vii

List of Tables

Table 1: License plate Character Detection Accuracy Table

viii

List of Abbreviations

OCR- Optical Character Recognition

ANPR- Automatic Number Plate Recognition
CCTV- Closed Circuit Television

IDE- Integrated Development Environment
JPEG- Joint Photographic Experts Group
PNG- Portable Network Graphic

RGB- Red, Green, and Blue

GUI- Graphical User Interface

LPD- License Plate Detection

AHE- Adaptive Histogram Equalization
CLAHE- Contrast Limited Adaptive Histogram Equalization
NLP- Natural Language Processing

HSV- Hue, Saturation, and Value

ROI- region of interest

CV- Computer Vision

YOLO- You Only Look Once

R-CNN- Region-based Convolutional Neural Network

X

Executive Summary

Optical Character Recognition (OCR) for vehicle number plate recognition is a
technology that translates images of license plates into machine-readable text.
With India’s growing population, the number of unlicensed vehicles on the road
has sharply increased, adding to the already existing traffic issues and even
boosting crime rates. This situation has created an urgent need for a system that
can efficiently handle traffic violations and ensure only authorized vehicles can
entry in the secured areas. Varies on Manual processes of parking management
are costly and time consuming. A better solution is need of the hour that can
automatically capture and process license plate information.

This project provides an automatic system for detecting and recognizing text on
vehicle number plates using OpenCV for image processing and Tesseract OCR
for text extraction. The system begins by setting up the working directory and
loading images in standard formats. Each image undergoes preprocessing,
including grayscale conversion, noise reduction using a Bilateral Filter and edge
detection through the Canny method. To identify potential number plates,
contours with rectangular shapes and appropriate aspect ratios are selected.
Detected regions are processed with Tesseract OCR to extract text, which is
displayed alongside confidence scores. Visualization steps allow for comparison
of the original, grayscale, and processed images, with highlighted contours and
cropped plate regions. Each image in the directory is processed through this
workflow, and results are presented with both intermediate visuals and final
extracted texts, along with accuracy scores for each image’s OCR output. This
method provides an efficient approach to automate license plate detection and
recognition with transparency in intermediate results and confidence metrics.

There is the possibility that this system could be utilised in application related to
track vehicles for compliance and criminal activity. Also, automation reduces
the manual workload and processing time, offering real-time insights.

CHAPTER 1

1.0 Introduction

1.1 Overview

Automatic Number Plate Recognition (ANPR) steps in as a smart solution. This
system works by capturing an image of the license plate and extracting the
characters using advanced image processing techniques. The process involves
several key steps, including resizing the image, converting it to grayscale,
enhancing and restoring it, and finally detecting and recognizing objects. This
research work also uses methods like Canny edge detection and bilateral
filtering to refine the image before utilizing the Tesseract engine to read a
license plate.

As urbanization continues to rise, especially in countries like India and China,
vehicle ownership has skyrocketed, placing enormous pressure on parking
spaces and traffic systems. For instance, between 2001 and 2019, the number of
private vehicles in India quadrupled. Current parking systems, which often
depend on manual entry, are slow, inefficient, and can compromise security.
Managing vehicle entry manually, especially in busy areas, takes too much time
and leaves room for error.

An automatic parking system powered by ANPR could solve these problems. It
removes the need for manual work by automatically detecting and recording
license plates via CCTV footage. This ensures faster, smoother vehicle check-
ins and check-outs while maintaining top-level security. Moreover, it can

instantly verify whether a vehicle is authorized to enter, offering a much quicker
and safer alternative to traditional methods.

1.2 Problem Statement

Automatic Vehicle Number Plate Detection System
1.3 Objectives

The objectives of my research work are as follows —

e To study Optical Character Recognition system such as EasyOCR,
pytesseract

e To study research papers on text extraction from vehicle number plate

e Learn python programming for implementation.

e To get familiarity with Jupyter Notebook (IDE of python programming)
1.4 Assumptions and Scopes
1.4.1 Assumptions

e Developers must have good network connection with laptops or PC

e Developers must have good knowledge of Python

e Image forma such as JPEG, JPG and PNG have been considered
1.4.2 Scopes

e To design and develop automatic number plate detection system

e To learn about OCR, Python programming

1.5 Concept and Problem Analysis

This research work presents how numbers is extracted from vehicle license
number plate, Using Python (Jupyter IDE) we have extracted numbers from
various car images. Also we have used Pytesseract to fetch numbers into text.

The main benefit of OCR for vehicle number plate recognition is automation in
vehicle identification. By automatically capturing and recognizing license plates
from images or video feeds, OCR eliminates the need for manual data entry,
which saves time, reduces human error, and improves efficiency in multiple
fields. This automated recognition provides several key advantages:

e Enhanced Security and Law Enforcement

e Improved Traffic Flow and Management
o Efficient Toll Collection

e Streamlined Parking Systems

1.6 Organization of the Thesis

e Chapter 1 — This chapter contains the introduction of the thesis which
includes overview, problem statement, objectives, assumptions, scopes,
concept and problem analysis

e Chapter 2 — It includes all the literature surveys done to carry out the
research work.

e Chapter 3 — It includes proposed approach of the methods that we have
use to extract text.

e Chapter 4 — This chapter contains the implementation and result.

e Chapter 5 — This chapter describes the conclusion and scope of future
works.

e References contain list of all the research papers considered in this work.

e Appendix — It contains listing of codes for the number plate detection
system.

CHAPTER 2

2. Literature Survey

The Vehicle Number Plate Reader System is a highly effective tool for
automobile identification. A variety of research papers are reviewed to gather
valuable insights into relevant applications. This section discusses the
methodologies, approaches, and solutions proposed by different studies over the
past decades, specifically related to OCR and license plate detection.

Milan, Samantaray, et al. [1] have proposed an automatic vehicle license plate
recognition, This system uses a structured approach that involves training,
validating, and repeating the learning process on data collected from license
plates. The primary objective is to accurately detect and recognize the
alphanumeric characters on a license plate, facilitated by various stages of image
processing and OCR. In this system, the image should be taken from an optimal
distance (around 2 to 3 feet) to ensure image clarity. Here, extraction is done by
processing of images and detection of license plate by findcontours() then by
character recognition.

U, Salimah, et al. [2] have suggested a systematic approach for license plate
recognition that relies on preprocessing, segmentation, and normalization for
optimized OCR performance. In the preprocessing stage, the image is first
enhanced to isolate the license plate area from the background, involving
operations like cropping, grey scaling, and binary thresholding. Gray scaling
reduces the colour complexity, and binarization further simplifies the image by
converting it to black and white, making it easier to distinguish characters from
the background. Also testing on a sample of 100 license plates showed that the
system achieved a 75% success rate in plate recognition, accurately identifying
75 out of 100 plates. In terms of character recognition, the system demonstrated
a high level of accuracy out of 722 total characters across these plates, 703 were
correctly recognized, resulting in a character recognition accuracy rate of
97.36%. This indicates the system’s effectiveness in accurately identifying
individual characters, even if complete plate recognition was slightly lower.

M.L.S.N.S, Lakshmi, et al. [3] proposed a vehicle license plate recognition
system, emphasizing image preprocessing, localization, and OCR techniques. In
this system an infrared camera captures the image from a few meters away,
ensuring clarity and high detail. To reduce processing complexity, the captured
image is scaled to an optimal aspect ratio before being converted from RGB to
grayscale, which simplifies the data by removing colour information, making it
easier to process the structural components of the license plate. Then,

6

localization to isolate the relevant areas of the image, retaining only the portions
likely to contain the license plate while discarding irrelevant background
elements. Following localization, the image is converted into a binary format,
enabling better separation between plate characters and the background. Edge
detection techniques are applied to identify the boundaries within the binary
image, helping to highlight the structural elements of the plate. A key
component of this process is component analysis, which assesses connected
areas (contours) within the image to identify potential locations for the license
plate. This technique helps to maximize the accuracy of plate detection by
analyzing the spatial distribution of possible plate candidates.

Shivani, Bansal, et al. [4] reviewed OCR the most widely used technique for
extracting text from images particularly for recognizing vehicle license plates.
OCR plays a vital role in vehicle identification systems, enabling seamless
integration with document management systems to verify and match license
plates against recorded data. OCR can be used to identify stolen vehicles and
can be used to reduce crime over the roads/ highways. Various algorithms and
methods for OCR have been proposed, each improving the accuracy and
efficiency of character recognition under different conditions, such as varying
lighting, angles, and plate distortions.

Prakhar, Sisodia, Syed Wajahat Abbas, Rizvi [5] have suggested that text
extraction can be done not only on images but also from Real-Time OCR
applications like (video surveillance, video-license plate recognition, and live
document scanning), also extraction of Handwriting Recognition. They also
stated that researchers are working on multimodal OCR systems which combine
image recognition with other modalities such as speech recognition and natural
language processing (NLP).

Mohammed, AS, Shariff, et al. [6] have proposed Number plate extraction for
vehicles gathering all contours and detecting top 30 contours followed by
inputing image in the form of RGB then conversion of RGB to grey scale image.
Conversion of bilateral filter to remove background noise while preserving the
edges. They found the text obtained as similar as licensed plate, Over 100
images they got 88 corrected number plates resulting 88% overall accuracy.
They apply Tesseract to read the output cropped image for better result and
accuracy.

Manpreet, Kaur, et al. [7] have used MATLAB instead of Python. They have
proposed a Region-props algorithm to measure the properties of image regions.
Region-props (BW, properties) return measurements for the set of properties
specified by properties for each connected component in the binary image. They
achieve vehicle number plate detection including even/odd identification and

state detection where a series of steps are implemented. First, a video file
containing the number plate is created and opened within a graphical user
interface (GUI). The process begins by converting the input image from RGB to
grayscale, where the pixel values are transformed based on their Red, Green,
and Blue (RGB) components. This grayscale conversion simplifies the image for
further processing. Next, noise such as salt and pepper artifacts is removed while
preserving the sharpness of the image using filtering techniques. Once the image
is cleaned, the number plate is localized and OCR 1is performed. This involves
segmenting the image, extracting features, and recognizing the characters, which
range from 0-9 and A-Z. After OCR, the recognized number plate information is
saved into a text file (.txt), which includes details such as the number, state, and
whether the number is even or odd. Finally, the text file can be opened to
display the results showing the number plate's digital image along with the state
and even/odd information.

Shambharkar, Yash, et al. [8] suggested that deep learning techniques offer
significant advantages for Automatic Number Plate Recognition (ANPR) in
India especially, when dealing with anomalies. The research presents a
comprehensive end-to-end ANPR pipeline, highlighting challenges such as
multiple license plate lines, non-uniform padding, varying plate shapes, fonts,
and font sizes. The authors propose a License Plate Detection (LPD) model
tailored for Indian conditions including an alternative method for CR networks
that suits the local environment. The LPD model achieved an accuracy of
96.23%, with a detection threshold of 0.5, and performed exceptionally well on
smaller license plates found on cars and buses, maintaining a 98% accuracy rate
and a loss of less than 10% at a 92% learning rate. The proposed network
exhibited an average accuracy of 94.9%, successfully handling multi-line plates
and predicting 93.7% of the characters with over 90% confidence.

Nithin K., Shine, Gariman, Bhutani, Tamatapu, Sai Keerthana, and G., Rohith [9]
used a pixel-intensity histogram which is a key tool for understanding the
distribution of an image’s intensity across its pixel, highlighting how many
pixels correspond to each intensity value. They used Histogram Equalization as
a pre-processing technique in OCR that enhances the contrast of images to
improve OCR accuracy. This technique spreads the most frequent intensity
levels across the tonal range, effectively expanding the image's tonal spectrum.
They achieved binarization using the Otsu method. Also, they apply Adaptive
Histogram Equalization (AHE) which creates multiple histograms for different
regions of an image, improving local contrast and edge sharpness and a further
enhancement. Contrast Limited Adaptive Histogram Equalization (CLAHE),
limits contrast more than AHE. CLAHE addresses the issue of noise
amplification by limiting contrast on smaller regions (tiles) of the image before
computing the transformation function. This technique is particularly effective

in localizing grayscale features and improving image readability for OCR.
CLAHE can also be applied to colour images, particularly in the HSV colour
space, where only the luminance channel is equalized, preserving colour
accuracy while enhancing contrast.

Nita M., Thakare, et al. [10] used Median Filter instead of Bilateral Filter. They
also used Threshold algorithm (to separate the object from a background image
and is converted in binary form). Gray level threshold is a simple process. The
value of threshold (T) is selected and compared with the pixel of the image. It
also transforms the input image (K) into an output binary image (F) which is
being segmented. In global threshold, the histogram of the image is partitioned
using a single threshold value. Followed by Morphological Image Processing
which use dilation and adding pixels to the boundary of the object to increase
the thickness of the edges. Using Shrinking operation thinning the image to
eliminate irrelevant parts.

CHAPTER 3

10

3.0 Proposed Approach

3.1

Methodology

The proposed Automatic Vehicle Number Plate Detection System using
Python and OpenCV consists of the following key steps:

e [Image Preprocessing

e Grayscale Conversion

e Noise Reduction with Bilateral Filtering

e Edge Detection with Canny Edge Detector

e Contour Detection and Analysis

License Plate Extraction and Cropping

3.1.1 Image Preprocessing

The input image is first loaded using the OpenCV library's cv2.imread()
function, which reads the image data into a format suitable for processing.
Image loading forms the basis for subsequent stages, providing a visual
representation for pixel-level operations. Given the varying resolutions and
qualities of captured images, resizing is applied to standardize the image
dimensions to a width of 500 pixels. This standardization, implemented
using the imutils.resize() function, improves processing speed and reduces
the impact of scale on subsequent detection processes. Also required to
install pytesseract to convert image into string. This step reduces
computation time and optimizes the system for processing images with
varying resolutions.

3.1.2 Grayscale Conversion

For computational efficiency and to simplify the data structure, the image is
converted from an RGB (Red-Green-Blue) color format to grayscale using

cv2.cvtColor(image, cv2.COLOR BGR2GRAY). Grayscale conversion
reduces the image to a single intensity channel, thereby lowering the

11

computational requirements. This step is essential, as most license plate
detection techniques rely on intensity-based features rather than color
information. By using grayscale, we maintain the structural details necessary
for edge and contour analysis while eliminating redundant color data.

3.1.7 Noise Reduction with Bilateral Filtering

Noise in an image can lead to incorrect contour detection and poor edge
representation, especially in images with complex backgrounds or varying
lighting conditions. To address this, a bilateral filter is applied using
cv2.bilateralFilter(gray, 11, 17, 17). Unlike standard blurring, the bilateral
filter preserves edges by considering both spatial proximity and intensity
similarity. This quality is crucial in license plate detection, as it enhances the
clarity of the plate edges while removing irrelevant noise from the
background, yielding a cleaner image for edge detection.

(11, 17, 17) describe as 11: Diameter of each pixel neighbourhood used
during filtering. A larger diameter means more pixels are involved in
computing the new pixel value.

17 and 17: Sigma values for colour and space respectively. The higher these
values, the more significant the smoothing effect.

17 (for colour) controls how colours within the neighbourhood influence
each other. Larger values mean that more colours will blend together.

17 (for space) controls how much nearby pixels (within the specified
diameter) influence each other.

3.1.8 Edge Detection with Canny Edge Detector

Edge detection is a pivotal step in the process, as it identifies the boundaries
of objects within the image, including the license plate. The Canny edge
detection method is used (cv2.Canny(gray, 170, 200)) due to its
effectiveness in detecting strong gradients, which often indicate object edges.

The method applies two thresholds the first threshold 170 is the lower
threshold which helps detect edges by marking pixels with gradient
intensities above this value as potential edges. . The second threshold 200 is
the upper threshold any pixel with a gradient intensity above this value is
considered a strong edge and retained in the final output.

Proper tuning of the threshold values (in this case, 170 and 200) is necessary
to accurately capture plate edges while ignoring irrelevant details.

3.1.9 Contour Detection and Analysis

12

Contours are continuous lines or curves that bound the shape of objects,
making them ideal for identifying regions like license plates. Using
cv2.findContours() in OpenCV, contours are detected in the edge map
generated from the previous step. The detected contours are then sorted by
area, allowing the system to focus on larger objects likely to contain the
license plate. To further refine the selection, the system filters for contours
with four sides, a common characteristic of license plate shapes. This
selection method enhances accuracy by discarding irrelevant shapes and
narrowing down the contours to potential plate regions.

3.1.10 License Plate Extraction and Cropping

Upon identifying the most likely contour, the region of interest (ROI)
corresponding to the license plate is extracted. Using cv2.boundingRect(),
the coordinates of the contour are calculated to define a bounding rectangle
around the detected plate area. The region within this rectangle is then
cropped and saved as a separate image for further processing. This
extraction isolates the license plate from the background, focusing the OCR
engine on the relevant text content.

13

3.2 Flowchart of the proposed system

i il
nu

|. Resize image to width 500 | Display error - image not found |
b A - -

{5 Y

|_ Convert image to grayscale _|

"
Apply bilateral filter for noise removal |

¥

| Detect edges using Canny |
b s

£ N 4

[Find contours |
J

es Contoul no
found

/ Ty
| Display error - no contours found ————————————3
s)

e \
| Draw all contours
b A

| Sort and select top 30 contours

v

\' Draw (op 30 centours '|

Loop over contours to find number pﬂate
Cnnlourw\th 4 corners? 12
Set contour as NumberPlateCnt | | Continue looping over cor\tours

¥ :

Get bounding box and crop image |

o

I b
| Save cropped image _j

; ¥

|. Draw detected number plate contour
\

|

L—LE _ Cropped image exists?_\,m—l‘
i ¥

- 3
| Read cropped image | | Display error - cropped image not found [——————————————————|
S 3 N — 4

,,
| use PyTesseract for OCR
b -

| Display extracted text |
L i/

no All image
rocesse

Figure 1: Flowchart of the proposed system

From this Figure 1 the flowchart describes the process of detecting and reading a
vehicle's number plate from an image. The process starts by reading the image
file. If the image exists it is resized to a width of 500 pixels for standardization,

14

then converted to grayscale. A bilateral filter is applied to reduce noise while
preserving edges. Canny edge detection is used to highlight edges and contours
are identified in the resulting image. If contours are found, they are drawn and
sorted to select the top 30 contours, which are then drawn as well.

The program then loops over the top contours to identify a contour with four
corners, which is assumed to be the number plate. When a suitable contour is
found, it is set as Number Plate Count and the bounding box is extracted to crop
the number plate region. This cropped image is saved and the detected number
plate contour is drawn on the original image.

Next, the program checks if the cropped image of the number plate exists. If it
does the image is read and OCR is applied using PyTesseract to extract text
from the number plate. The extracted text is displayed completing the OCR
process. If all image are being processed successful the program exits otherwise
it backs to read image again.

15

CHAPTER 4

16

4.0 Experimentations and Results

|B ' Original Image — O X

Figure 2: Original Image

In this Figure 2 Original Image the raw, unprocessed version of the image
showing the scene as captured by the camera which includes the vehicle and
surroundings.

17

[® * 1 - Grayscale Conversion = O x

‘WBOZAV5802

Figure 3: Original Image to Gray Image

In this Figure 3 the Original image is converted to Grayscale, removing colour
information which simplifies further processing and focuses on intensity
differences.

18

Figure 4: After applying bilateral filter

In this Figure 4 the grayscale image with a bilateral filter applied, which
smoothens the image while preserving edges, reducing noise without losing
important details around object boundaries.

19

B ' 3 - Canny Edges — O XK

IVERR

Figure 5: Applying Canny to find edges of a given image

In this Figure 5 shows the edges detected in the filtered image using the Canny
edge detection algorithm highlighting potential boundaries in the image.

20

Figure 6: Detecting all contours of a given image

In this Figure 6 the image with all detected contours outlined showing various
shapes and edges, including those around the vehicle and potential number plate.

21

Figure 7: Detecting Top 30 contours of a given image

In this Figure 7 the image filtered down to the top 30 contours which likely
focuses on the more prominent edges possibly including the outline of the
number plate.

22

Figure 8: Detecting number plate of a given image

In this Figure 8 image highlights the detected number plate by further refining
contour detection isolating the plate region on the vehicle.

Figure 9: Cropped Image of a given image

In this Figure 9 the final cropped image of the detected number plate showing
only the plate area for further analysis such as OCR.

23

Table 1: License plate Character Detection Accuracy Table

Vehicle Number Plate | Extraction Character

Data Accuracy (%)
Car 1 WB02AV5802 WBO2AV5802 |90.0
Car2 LR33 TEE JLR33 TEE
Car 3 DL7C N 5617 L7C N 5617 88.8
Car4 MHO1AV8866 MHO1AVg8866 |90.0
Car 5 KA 53 N 6494 KA 53 N 6494 100.0
Car 6 KL 65 H 4383 KL 65 H 4383 100.0
Car 7 CHO1AN 0001 CHOI1ANOO001 |8&7.5
Car 8 MH 12 NE 8922 | MH 12 NE 61.5
Car 9 15-LK-10898 15-LK-10898 100.0
Car 10 MK-35-32 MK-35-32 100.0
Car 11 HR 26 BR 9044 | IHR 26 BR 9044 | 87.5
Car 12 MH 20 EE 7598 | MH 20 EE 7598 | 100.0
Car 13 JE- 9200 JE-9200 100.0
Car 14 KA 64 N 0099 KN 64 N G99 66.6
Car 15 MHO01BG2654 MHO1BG2654 |90.0
Car 16 KAO02MP 9657 | KA G2MP 9657 |90.0
Car 17 GJO3ER0563 JO3ER0563 90.0
Car 18 MH 14F 0911 WHI4FO911 77.7
Car 19 MHO1AV8866 MHO1AVg8866 |90.0
Car 20 HR26 BP 3543 HR26 BP3543 100.0
Car 21 MH 20 DV 2363 | wH20 0V.2363 77.7
Car 22 MH 12 DE 1433 | WH120E1433 77.7
Car 23 MH 14 BN 7077 | NUMBER 0.0

PLATE NOT

DETECT
Car 24 MH 14BR 6899 | MH 14BR 6889 |90.0
Car 25 KL 59 T 997 NUMBER 0.0

PLATE NOT

DETECT
Car 26 APO5 BL 6339 P05 pLo0339
Car 27 WB 22 U 3481 NUMBER 0.0

PLATE NOT

DETECT
Car 28 MH 15BD8877 | MH15B08677 80.0
Car 29 TN 09 BY 9726 | TNO9 BY 9726 | 100.0
Car 30 WBO6M 1162 | WBOGM 1162 | 88.8

24

“Table 1” displays information on the results of a license plate recognition
process. Each row represents a different car's number plate and includes details
on the extracted plate data and the accuracy of the OCR in detecting the
characters accurately.

From above table we stated that out of 30 images we get 8 images accurate
result

1. Vehicle: Label indicating each car sequentially (e.g., "Car 1," "Car 2,"
etc.).

2. Number Plate: The actual license plate number for each vehicle, formatted
with spaces or hyphens as typically found on number plates in different
regions.

3. Extraction Data: The license plate characters as detected by the OCR tool.
In some cases, characters are misinterpreted or partially missing, which
affects accuracy.

4. Character Accuracy (%): A measure of how accurately the OCR
recognized each license plate. It is calculated based on the similarity
between the original plate and the extracted plate data.

e Some entries are highly accurate, with 100% accuracy, meaning the
extracted data matches the number plate perfectly.

e Other entries have less than perfect accuracy, indicating that some
characters were misidentified. For example, "CHOIAN 0001" was
extracted as "CHO1ANOOO1" with 87.5% accuracy.

e In cases where the OCR failed entirely to detect a plate, the result is
noted as "NUMBER PLATE NOT DETECT" with a 0.0%
accuracy score.

Observations
o The system performed very well for several entries (e.g., "KA 53 N
6494," "KL 65 H 4383"), where the extracted text matched the number
plate with 100% accuracy.
« Common misrecognitions involve substituting letters with numbers (e.g.,

"O" with "0") or missing certain characters.

25

« Some plates were completely undetected by the OCR, indicating a need
for further tuning of the OCR system to handle a wider variety of plate
formats and styles.

26

CHAPTER S

27

5.0 Conclusions and Future Scopes

5.1 Conclusions

In the 21st century, nearly everything is digitally interconnected. Handwritten
letters and printed texts are now rarely used or sent. In our daily lives, we rely
heavily on computers, which make tasks easier and more convenient. Today,
physical documents are increasingly digitized, allowing for electronic editing,
manipulation, searching, management, storage, and, importantly, interpretation
by machines.

Optical Character Recognition made it possible to convert text captured in
images, handwritten or printed text into digitized and usable machine coded text.

In this research works we have developed an automated license plate recognition
system utilizing OpenCV and Tesseract OCR. The methodology proved
effective in detecting and extracting license plates from images, followed by
accurate text recognition. Future enhancements could explore deep learning
models for improved robustness under various conditions and integrating real-
time video processing capabilities.

5.2 Future Scopes

Some potential future scopes for enhancing and expanding the given OCR-based
license plate detection

Improving Detection Accuracy in Low-Quality Images: Many real-world
images suffer from low resolution, poor lighting, or motion blur, making OCR
challenging. Future improvements could involve using advanced denoising and
deblurring techniques or applying machine learning models, such as
convolutional neural networks, to enhancee image quality before processing.

Incorporating Deep Learning for Object Detection: Integrating deep learning
frameworks (e.g., YOLO, Faster R-CNN) could provide more robust and
flexible license plate detection, particularly in complex scenes or from various
camera angles. These models can improve plate localization accuracy compared
to traditional contour and edge detection methods

Implementing Real-Time Detection and Recognition: Future improvements
could focus on optimizing the code for real-time applications, such as video-
based license plate recognition for traffic monitoring. This would involve
enhancing the computational efficiency of each step to enable continuous, fast
processing of video frames.

28

Enhancing OCR Accuracy with Character-Level Verification: Integrating
character verification techniques, such as comparison with detected text with
license plate databases or using post-processing methods to correct OCR errors,
could significantly improve recognition accuracy.

Optimizing for Different Environmental Conditions: Additional
preprocessing methods could be introduced to handle environmental variations,
such as reflections, shadows, and rain, which affect image clarity. Adaptive
thresholding, contrast adjustment, or brightness normalization techniques could
further improve performance under challenging conditions.

29

References

[1] Milan, Samantaray, et al. “Optical Character Recognition (OCR) based
Vehicle's License Plate Recognition System Using Python and OpenCV”, 5th
International Conference on Electronics, Communication and Aerospace
Technology (ICECA), IEEE, 2021.

[2] U, Salimah, et al. “Automatic License Plate Recognition Using Optical
Character Recognition”, IOP Publishing, IOP Conf. Series: Materials Science
and Engineering, 2023.

[3] M.L.S.N.S, Lakshmi, et al. “License Plate Detection using Optical
Character Recognition”, International Journal of Applied Engineering
Research, Vol. 5, No.2, 2020.

[4] Shivani, Bansal, et al. “A Necessary Review on Optical Character
Recognition (OCR) System for Vehicular Applications”, Second International
Conference on Inventive Research in Computing Applications (ICIRCA),
IEEE, 2020

[5] Prakhar, Sisodia, Syed Wajahat Abbas, Rizvi, “Optical Character
Recognition Development Using Python”, Journal of Informatics Electrical and
Electronics Engineering (JIEEE), 4(3) pp. 1-13, 2023.

[6] Mohammed, AS, Shariff, et al. “Vehicle Number Plate Detection Using
Python and Open CV”, International Conference on Advance Computing and
Innovative Technologies in Engineering (ICACITE), IEEE, 2021.

[7] Manpreet, Kaur, et al. “Optical Character Recognition for Vehicle Number
Plates Detection with Even, Odd Identification and State Detection”,
International Journal of Allied Practice Research and Review (IJAPRR),. Vol.
IV, Issue IV, pp. 01-08, April, 2017.

[8] Yash, Shambharkar, et al. “An Automatic Framework for Number Plate
Detection using OCR and Deep Learning Approach”, International Journal of

Advanced Computer Science and Applications (IJACSA), Vol. 14, No. 4, 2023.

[9] Nithin K., Shine, Gariman, Bhutani, Tamatapu, Sai Keerthana, and G.,
Rohith, “An approach for improving Optical Character Recognition using

30

Contrast enhancement technique”, Journal of Physics: Conference Series, Vol.
2466, No. 012009, 2023.

[10] Nita M., Thakare, et al. “Automatic Vehicle Number Plate Detection
System”, International Journal of Scientific Research in Engineering and
Management (IJSREM), Vol. 07, No. 03, March 2023.

31

Appendix

import numpy as np
import cv2

import imutils
import pytesseract
import 0s

Set up pytesseract path

pytesseract.pytesseract.tesseract cmd = r"C:\Program Files\Tesseract-
OCR\tesseract.exe"

crpimg='Cropped Images-Text/'

def image ocr(im):
Read the image file
im=im
image = cv2.imread(im)
if image is None:
print("Error: Image not found or unable to load.")
exit()

Resize the image - change width to 500
image = imutils.resize(image, width=500)

Display the original image
cv2.imshow("Original Image", image)
cv2.waitKey(0)

RGB to Gray scale conversion

gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
cv2.imshow("1 - Grayscale Conversion", gray)
cv2.waitKey(0)

Noise removal with iterative bilateral filter (removes noise while preserving
edges)

gray = cv2.bilateralFilter(gray, 11, 17, 17)

cv2.imshow("2 - Bilateral Filter", gray)

cv2.waitKey(0)

Find Edges of the grayscale image
edged = cv2.Canny(gray, 170, 200)
cv2.imshow("3 - Canny Edges", edged)
cv2.waitKey(0)

32

Find contours based on edges
cnts, _ = cv2.findContours(edged.copy(), cv2.RETR LIST,
cv2.CHAIN_ APPROX SIMPLE)

Create copy of original image to draw all contours
img1 = image.copy()

cv2.drawContours(imgl, cnts, -1, (0,255,0), 3)
cv2.imshow("4- All Contours", img1)
cv2.waitKey(0)

Sort contours based on their area, keeping the top 30 contours
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:30]
NumberPlateCnt = None # We currently have no Number plate contour

Top 30 contours

img2 = image.copy()

cv2.drawContours(img2, cnts, -1, (0,255,0), 3)
cv2.imshow("5- Top 30 Contours", img2)
cv2.waitKey(0)

Create folder for cropped images if it doesn't exist
os.makedirs('Cropped Images-Text', exist ok=True)

Loop over contours to find the best approximate contour of the number
plate
count =0
idx =1
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)

if len(approx) == 4: # Select the contour with 4 corners
NumberPlateCnt = approx # This is our approx Number Plate Contour

Crop the contour and store it in Cropped Images folder
X, ¥, W, h = cv2.boundingRect(c) # Get coordinates for plate
new_img = gray[y:y + h, x:x + w] # Create new image

cv2.imwrite(f'Cropped Images-Text/{idx}.png', new img) # Store
new image
cv2.imwrite(crpimg+im, new_img)
idx +=1
break

33

Drawing the selected contour on the original image

if NumberPlateCnt is not None:
cv2.drawContours(image, [NumberPlateCnt], -1, (0, 255, 0), 3)
cv2.imshow("Final Image With Number Plate Detected", image)
cv2.waitKey(0)

else:
print("Error: No contour detected that meets the criteria.")
exit()

Load the cropped image for display and OCR processing
it
Cropped _img_loc ='Cropped Images-Text/1.png'
Cropped _1mg_loc
cropped image = cv2.imread(crpimg+im)
55
if cropped image is None:
print("Error: Cropped image not found.")
exit()
else:
cv2.imshow("Cropped Image", cropped image)
cv2.waitKey(0)
Use tesseract to convert image into string
text = pytesseract.image to_string(crpimg+im, lang='eng')
print("Number is:", text)

cv2.waitKey(0) # Wait for user input before closing displayed images
cv2.destroyAllWindows()
return
directory path = os.getcwd() # Get current directory
image files = [f for f in os.listdir(directory path) if f.endswith(('.png', 'jpg’,
'jpeg))]
for im in image files:
print(im)
image ocr(im)

34

