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CHAPTER-1

INTRODUCTION



1.1. Introduction of Solar-Panel Outputs and Neural-Network Modeling

Solar energy is a critical renewable resource, but maximizing its potential requires optimizing
panel efficiency. One key factor is orientation — the direction the panel faces relative to the sun.
This work qualitatively analyzes how orientation impacts energy production. Traditional
methods for optimizing orientation can be complex. In the course of the work, we hope to
identify which of the above parameters (time or direction) is more fundamental in influencing
Current-Voltage (I-V) output of the solar panels. As Building-Integrated Photovoltaic (BIPV)
systems represent a unique synergy between sustainability and design, this work thus assesses
its possible impact on energy efficiency and the overall environmental sustainability of
buildings. To address this, we introduce neural networks, powerful computational models
inspired by the brain. Modeling the relationship between orientation and energy output using

neural networks will be explored.

1.2.  Overview of Building-Integrated Photovoltaics (BIPV) System

Solar power producing devices or systems known as Building-Integrated Photovoltaics (BIPV)
are smoothly incorporated into building architecture. These systems have two purposes: they
produce electricity from solar energy and serve as construction materials (roofs, walls and

windows). Here are some essential BIPV points.



1.2.1.

1.2.2.

Important Elements and Kinds

Solar Panels: Conventional photovoltaic systems may be included into the design of
buildings.

Solar Roofing Tiles/Shingles: These materials generate electricity while serving as
roofing components.

Solar Roofing Tiles/Shingles: These materials generate electricity while serving as
roofing components.

Solar Roofing Tiles/Shingles: These materials generate electricity while serving as

roofing components.

Challenges in Application

Greater Initial Costs: Installing BIPV systems might be more costly than installing
conventional solar panels.

Technical Complexity: To guarantee effectiveness and attractiveness, integration calls
for meticulous engineering and design.

Regulatory Obstacles: Adoption and installation of BIPV systems may be impacted by
building rules and regulations.

Effectiveness Trade-offs: Compared to traditional PV panels, some BIPV materials may

be less efficient.



1.2.3. Decreased Environmental Impact

One of the biggest obstacles in the battle against climate change is the built environment. A key
technique to overcome this issue is building-integrated photovoltaics (BIPV), which smoothly
integrates solar energy generation into the structure itself. BIPV systems use solar energy, which
is a clean, renewable energy source. This naturally lessens the need for fossil fuels to generate

energy, which significantly lowers greenhouse gas emissions from the construction industry.

1.2.4. Aesthetics that Enhances Performance
BIPV integrates with the building envelope in a way that conventional rooftop solar panels do
not. High-performing solar energy generation is made possible by this creative method without

compromising the goals of architectural design.

1.2.5. Enhanced Efficiency and Life-Cycle Cost Savings

BIPV systems can be used as solar energy sources and construction materials (cladding, roofing).
This gets rid of the requirement for extra materials and might save building expenses.

Additionally, the clean energy produced results in long-term operating savings on power costs.

1.2.6. Active Participation in a Sustainable Built Environment

Buildings that use BIPV technology become active participants in the renewable energy grid,
replacing their previous role as passive energy consumers. This lessens the built environment's

total environmental impact and promotes a more sustainable building sector.



1.2.7. Investigating BIPV Performance Optimization: Impact of Time,

Direction, and Tilt Angle

The increasing global concern over climate change and the pressing need for sustainable energy
solutions have driven the integration of renewable energy technologies into various aspects of
modern life. As one of the key contributors to greenhouse gas emissions, the building sector has
become a focal point for exploring innovative solutions to reduce its environmental impact and
sustainable energy generation. Building-Integrated Photovoltaic (BIPV) systems have emerged
as a ground-breaking approach, combining solar energy generation with architectural design, to
transform buildings into active contributors to the renewable energy landscape. The principle of
BIPV revolves around embedding solar photovoltaic elements directly into the building's
structure and facade, rather than relying solely on traditional rooftop solar panels. This
integration allows buildings to harness solar energy while preserving their essential functions as
habitable spaces, setting Building-Integrated Photovoltaic (BIPV) systems apart from
conventional solar installations. By seamlessly blending renewable energy technology with
architectural elements, Building-Integrated Photovoltaic (BIPV) systems offer a unique
opportunity to merge aesthetics and functionality, paving the way for more sustainable and
visually appealing buildings. The current work delves into the underlying principles of Building-
Integrated Photovoltaic (BIPV) systems, unravelling their distinctions from conventional solar
installations. The project hopes to investigate the fundamental effect of time of the day and the
solar panel direction North (N) South (S) East (E) West (W) for various panel inclinations (theta)
w.r.t. surface level on panel output qualitatively. This comprehensive analysis aims to shed light

on how Building-Integrated Photovoltaic (BIPV) systems can be improved for more efficient



energy generation. Moreover, the work hopes implement to neural network-based modelling to
speculate the possible Current-Voltage (I-V) output for any time-stamp (i.e., collection-time of

data) and theta, based on the observed experimental data set values.

1.2.8. Significance of BIPV Research: Optimizing Efficiency and Shaping

Sustainable Architecture

In the course of the work, we hope to identify which of the above parameters (time or direction)
is more fundamental in influencing IV output of the solar panels. As Building-Integrated
Photovoltaic (BIPV) systems represent a unique synergy between sustainability and design, this
work thus assesses its possible impact on energy efficiency and the overall environmental
sustainability of buildings. Understanding the influence of the above installation parameters is
crucial for the widespread adoption and success of BIPV as a sustainable energy solution. As the
field of renewable energy evolves rapidly, the work hopes to contribute to the emerging trends
and breakthroughs that promise to revolutionize Building-Integrated Photovoltaic (BIPV)
Systems technology, shaping the trajectory of sustainable architecture. Through an in-depth
ideation of Building-Integrated Photovoltaic (BIPV) principles, architectural integration,
benefits, challenges, real-world applications, and future possibilities, a growing body of
knowledge on sustainable building practices can be achieved. By embracing Building-Integrated
Photovoltaic (BIPV) technology, the architectural industry can play a pivotal role in fostering a
more sustainable future, where buildings actively participate in combating climate change and

ensuring a cleaner and greener planet for generations to come. The current work hope to



qualitatively and in some degree quantitatively help in ideation of new aspects of BIPV
technology.

Innovation in renewable energy is required due to climate change. Though they present a
promising option, Building-Integrated Photovoltaics (BIPV) performance optimisation need a
better comprehension of important variables. In order to address this issue, this study looks at
how time and panel orientation affect solar panel 1-V production over a 30-day period at
different inclinations. The study tries to determine the primary parameter (time or direction)
determining output symmetry through the analysis of I-V graphs. BIPV panel placement
techniques can be informed by this knowledge. In order to forecast I-V output, the study also
investigates a fundamental neural network model in MATLAB. The goal of this model is to lay
the foundation for more intricate models by mapping variables such as time and tilt angle to
voltage and current. The study's ultimate goal is to analyse the data and maybe identify input-

output links.

1.3.  Hypothesis, Aims and Objectives

The primary aims and objectives of this work is to develop a qualitative understanding of the
influence of parameters like time and direction on the current-voltage output generation of solar
panels w.r.t. various panel inclinations. In this regard an exhaustive literature review is initially
carried out based on available works done in the BIPV sector both regarding installation as well
as regarding simulation and software-based modeling. Following the literature review, the idea
is to study the nature of the output voltage and current graphs over a period of 30 days, for seven

different panel inclinations, and recognize which of the two parameters time or panel-direction is



more fundamental in effecting the nature of the graphs (w.r.t. symmetry). This qualitative
ideation may help us in making decisions that how placements of solar-panels w.r.t. various
inclinations should be prioritized based on the criteria of more significance of time of output
collection as a parameter or direction of output collection. The next phase of the work is carrying
out simple input/output modeling of the collected data based on a neural network in MATLAB
software. The idea is to map input set of data values like time-stamp and panel-inclination angle
(theta) to output values of open-circuit voltage and short-circuit current and then train the
network model based on those data, so that a fresh set custom input values can be mapped into a
predictive set of corresponding targets (output) values. The purpose is to solely use all inbuilt
training and activation functions, weights and biases to generate the model and see how such
mapping fits without implementing any custom-built functions. This simple modelling, can help
in building foundational understanding for developing more complex and more accurate
input/output neural network models for such data-mapping and even later deriving an analytical
equation relating such input (say time and theta) to output (current, voltage) values of solar
panels. The ultimate objective would be to analyze and conclude the observations made and

computations done and eventually publish the same in peer-reviewed journals.

1.4. Conclusion

Building industry activity is required in response to climate change. By integrating renewable
energy directly into buildings, Building-Integrated Photovoltaic’s (BIPV) provide a ground-
breaking option. This work paves the way for optimized designs by examining the effects of

time, direction, and tilt angle on BIPV output. Optimizing BIPV efficiency and promoting



sustainable construction practices require an understanding of these elements. The significance
of this initiative is that it has the ability to completely transform sustainable architecture.
Buildings might become active participants in a cleaner future if BIPV is widely adopted.

This work is an important step towards a more sustainable built environment, since it explores
neural network applications and BIPV optimization. BIPV technology has the potential to make
our buildings positive change agents with more research and development.

In this study we observed:

e The output voltage and current graphs over a period of 30 days.

e Mapped the input set of data values like time-stamp and panel-inclination angle (theta)
against output values of open-circuit voltage and short-circuit current and study which of
the parameters like time or panel direction is more fundamental in influencing the
symmetry of the plotted graphs.

e Plotted the same data in a simple input/output modeling based on a neural network in
MATLAB software and study the predictive output of such network based custom input

data.



CHAPTER- 2

REVIEW OF EARLIER WORK

10



2.1. Introduction

This literature review aims to create a thorough grasp of the present state of knowledge by
synthesizing the available research on BIPV and highlighting important trends and knowledge
gaps. This study seeks to offer a cogent narrative that illustrates the development of thinking in
this field by critically examining the significant contributions and methodological methods.

This system combines battery storage, backup natural gas for residences, solar panels, and an
incredibly efficient heater/generator. By utilizing less energy during peak hours, storing extra,
and optimizing solar power, it seeks to reduce lifetime costs. They put it to the test in a
computer model and discovered that peak hour demand reduction and solar panel maximization

result in the most savings.

2.2. Literature Survey

C. Wang et al. developed a regulatory approach using artificial neural networks (ANNS) to
manage the operation of a hybrid Building-Integrated Photovoltaic/Thermal (BIPV/T) facade.
This approach effectively addressed overcooling and overheating issues, reducing air
conditioning demand by 165.0 kWh in Xining and 255.9 kWh in Lhasa. The ANN model
predicted indoor temperature with an error rate of less than 1%, leading to over 40% energy
savings in the plateau regions studied. [1] F. Ghani et al. investigated the impact of coolant flow
distribution on the thermal efficiency of solar thermal collectors in BIPV/T systems. They used a
numerical method to measure the potential negative impact of flow dispersion on solar output
and found that decreasing fin width does not always improve PV production despite potential
gains in fin efficiency. The study suggested that using a single riser could enhance PV output and

reduce system complexity and costs. An artificial neural network was proposed to approximate
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the photovoltaic yield of an array under different flow conditions. [2] Alnagi, Abdulwahab A. et
al. assessed the efficiency of combining particle swarm optimization (PSO) with an optimized
artificial neural network (ANN) to estimate the energetic performance of BIPV/T systems. The
performance evaluation criterion indicated that the PSO-ANN model performed slightly better
than the traditional ANN during both training and testing stages. [3] M. Barthwal et al. modeled
a BIPV/T system for the Indian Himalayan Region, particularly in Srinagar, to provide electricity
and thermal energy for space heating. Using an application-centric approach, they trained an
ANN to predict annual thermal and exergy outputs. The neural network model demonstrated
good performance against the test dataset, optimizing annual thermal and exergy gains. [4] L.
Serrano-Lujan et al. explored the complex physical and material properties of photovoltaic
modules and their influence on thermal behavior, which traditional modeling techniques often
fail to comprehensively define. They developed an Al-based method to forecast the temperature
of poly-crystalline silicon photovoltaic modules based on local weather and indoor comfort
parameters. [5] M. Perera et al. explored the challenge of forecasting solar power in a given
region, crucial for ensuring a consistent electricity supply. Due to the vast amount of solar
generation and weather data from various locations, accurate forecasting can be difficult. This
study introduced two innovative deep-learning-based regional forecasting techniques that
effectively combine solar generation and weather data with local meteorological information.
These techniques employ hierarchical temporal convolutional neural networks (HTCNNSs),
specifically architectures HTCNN Al and A2. Evaluated using a large dataset from 101 locations
across Western Australia, the proposed methods achieved a forecast skill score of 40.2% while
requiring fewer trained networks. [6] F. Almonacid et al. addressed the increasing prevalence of

grid-connected photovoltaic systems in developed nations, emphasizing the role of global
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cooperation in advancing these technologies. They developed a technique using artificial neural
networks (ANNS) to electrically characterize PV modules and produce V-I curves for silicon-
crystalline modules. This method is intended to determine the power output of specific
installations, such as the "Univer generator,” using identical modules. [7] M. J. Deka et al. aimed
to develop a photovoltaic thermal system capable of mitigating temperature drops and generating
both thermal and electrical energy. The system integrates absorber tubes and phase change
materials (PCM) based on biochar. An ANN model utilizing Multilayer Perceptrons accurately
predicted the system's performance, showing an impressive R-value of 0.9982 and a mean square
error (MSE) of 1.1328 during training. [8] T. Yang et al. also focused on creating a photovoltaic
thermal system that addresses temperature drops and produces thermal and electrical energy.
This system incorporates absorber tubes and PCM based on biochar. Similar to Deka et al., their
study used a neural network model with Multilayer Perceptrons to predict system performance,
achieving an outstanding R-value of 0.9982 and a commendable MSE of 1.1328 during training.
[9] D. C. Nguyen et al. presented a deep learning approach to optimize the tandem structure
design of 2-terminal perovskite/silicon tandem solar cells. They trained and validated an ANN
using Atlas-simulated results for tandem cells with varying perovskite layer bandgaps and
thicknesses under real-world conditions. The ANN model demonstrated a high correlation
coefficient of 0.99979 and a mean square error of 1.26, indicating its accuracy in predicting the
annual energy output of these tandem solar cells. [10] R. Javadijam et al. conducted a study
aimed at enhancing the performance of a BIPV/T thermoelectric system. The research focused
on optimizing the system's efficiency using both artificial intelligence and traditional techniques.
Attention was given to improving electrical energy production, heat recovery, and the system's

payback period. The optimized system achieved a payback period of 5.16 years and
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demonstrated a 6.93% improvement over the standard BIPV/T system. Additionally, the study
investigated the influence of factors such as air inlet temperature, wind speed, and irradiance on
the efficiency of both electrical and thermal energy production. [11] In another study, R. Kabilan
et al. presented a machine learning-based prediction methodology for estimating the power
output of integrated photovoltaic systems in buildings. Their methodology included an accuracy
assessment, weather clustering, algorithm development, and data quality evaluation. By utilizing
linear regression coefficients, the model improved the accuracy of PV power generation
forecasts, achieving precise predictions with a root mean square error of 4.42%. [12] S.
Kaliappan et al. employed artificial neural networks (ANN) to predict the performance of
Building Integrated Semitransparent Photovoltaic (BISTPV) systems. They used three types of
neural network models: Elman, feed-forward, and generalized regression neural networks. Their
findings indicated consistent performance across these models, suggesting that forecast accuracy
could be enhanced by applying strategies such as EN, FFN, and GRN. [13] A.J. Aristizébal et al.
developed an artificial neural network model to calculate the power produced by integrated
photovoltaic systems in buildings. Their model incorporated variables such as zenith and
azimuth solar angles, solar radiation, and ambient temperature. Validation using real data from a
6 KW BIPV system at Universidad de Bogota Jorge Tadeo Lozano demonstrated the model's
reliability under various conditions. The model was implemented in MatlbabTM software for
practical application. [14] D. Paul et al. addressed the challenge of efficiently extracting solar
radiation data for solar photovoltaic energy systems. They proposed constructing hourly
insolation annual frequency distributions using MATLAB to overcome this challenge.
Additionally, they explored the potential of using a composite frequency distribution for

Building Integrated Photovoltaic (BIPV) systems, aiming to provide an effective tool for BIPV
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system designers. [15] D. Lee et al. conducted a study aimed at improving short-term hourly
predictions of photovoltaic power output using machine learning and feature engineering
techniques. They found that a recurrent neural network outperformed five other models when
forecasting photovoltaic power output over 64 test days. By applying dropout observation to the
normative sky index through feature engineering, they enhanced the hourly prediction
performance. They observed a 20% improvement in prediction accuracy for overcast days
compared to the original weather dataset without dropout observation. This method effectively
enhances short-term predictions of photovoltaic power output in buildings, even when using
basic weather forecasting services. [16] In another study, J. Polo et al. utilized laser imaging
detection and ranging (LIDAR) data to create high-resolution elevation digital models for
building-integrated and building-attached photovoltaic systems (BIPV and BAPV). They
employed an artificial neural network (ANN) to model power generation of different BIPV
arrays using meteorological and solar irradiance conditions and shading patterns. The ANN
model exhibited high accuracy, demonstrating its potential for creating a digital twin for BIPV
systems. This complements conventional monitoring strategies and aids in diagnosing
performance anomalies. [17] W. Gao et al. conducted a study comparing three computational
intelligence approaches—artificial neural network (ANN), genetic programming (GP), and
adaptive neuro-fuzzy inference system (ANFIS)—to predict the energetic performance of a
building-integrated photovoltaic thermal (BIPVT) system. The study evaluated the performance
of these models using the performance evaluation criterion (PEC). While all models performed
well, the ANN marginally outperformed GP and ANFIS. However, due to its simplicity and
robustness, the GP model was deemed more appropriate. [18] C. Ghenai et al. developed

forecasting models to predict power output and assess the performance of bifacial solar PV
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systems on flat roof buildings with controlled surface albedo. They combined cutting-edge cool
roof and bifacial solar PV technologies to balance supply and demand and boost power output.
Using machine learning and energy forecasting, they employed an artificial neural network. The
results showed an increase in annual bifacial solar PV power production by 7.75% and 14.96%,
respectively. These forecast models have implications for demand-side management, power
production, building operations, and advanced energy purchases. [19] In a related study, C. Qiu
et al. investigated a cutting-edge building-integrated photovoltaic (BIPV) window with
exceptional thermal performance and renewable energy use known as vacuum PV glazing.
Despite limited research on energy usage and daylighting performance, they created a
RADIANCE model to simulate behavior during the day. They used an artificial neural network
(ANN) model to predict interior illumination and lighting consumption. Compared to Energy
Plus's daylighting calculation methods, the ANN model provided more accurate predictions,
resulting in lower computational costs and more dependable results. [20] Woo-Gyun Shin et al.
conducted a study focusing on the growing use of building-integrated photovoltaic (BIPV)
systems for producing renewable energy. They addressed the challenge of shading loss, which
makes it difficult to predict power generation for colored BIPV modules. To improve power
prediction accuracy by accounting for shading loss, they proposed a new model utilizing neural
network machine learning. Their model demonstrated a significant improvement in R2 values
over the simulation model, indicating high-accuracy power estimations, particularly for colored
modules. This advancement may aid in diagnosing BIPV system performance. [21] A. Fedorova
et al. developed a testing method for measuring water intrusion in BIPV systems. Their research
aimed to classify and compare BIPV systems based on their water resistance, assisting

professionals in selecting and designing systems for areas prone to wind-driven rain. They
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designed a specialized water collection system for BIPV, allowing accurate measurement of
water penetration under varying wind-driven rain levels. Testing BIPV systems in different
weather conditions revealed their performance, crucial for widespread adoption and long-term
effectiveness. [22] A thorough state-of-the-art review of recent advancements in BIPV
implementation studies was conducted by A. Taser et al. In addition to summarizing the existing
body of knowledge in this area, they analyzed variables and drew specific conclusions and
generalizations. This approach provides a better understanding of the factors influencing BIPV
system performance by identifying gaps and deficiencies in the existing literature. Through a
comprehensive interpretation and graphical representation of the results, the research offers a
more lucid understanding of the influence of different factors on BIPV systems, inspiring further
research in this field. [23] Md. R. Elkadeem et al. developed a system that combines solar panels,
a combined heat and power generator, battery storage, and a natural gas boiler. The goal is to
minimize the overall cost of running this system over its lifetime while considering charging
stations for electric vehicles and programs that encourage reduced electricity use during peak
hours. Their research, tested in a computer model using a real apartment building as an example,
found that maximizing solar panels on the roof and reducing electricity use during peak times
resulted in the best performance. [24] V. Stoichkov et al. reported on the outdoor performance of
Organic Photovoltaics (OPVs) configured for Building Integrated Photovoltaic (BIPV) arrays in
a Northern European climate. They focused on how diurnal weather patterns and module
orientation affect OPV-based BIPV systems' energy yield. By gathering electrical characteristics
under standard and part-load conditions from laboratory-scale OPV module experimental data,
they evaluated the performance of BIPV arrays based on OPVs. Their research evaluated

different energy-saving technologies for buildings in various climates, presenting different
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scenarios for a 4.22kWp OPV system in a small commercial building. [25] Y. Elaouzy et al.
conducted a study simulating the performance of various systems including solar panels (PV),
solar panels with heat collection (PVT), ground source heat pumps (GSHP), and rainwater
harvesting (GR). Their findings revealed that solar panels, both PV and PVT, are the most cost-
effective and environmentally friendly options across all climates, particularly in hot and dry
climates. While GSHP and rainwater harvesting systems can reduce energy use and
environmental impact significantly, their high costs make them uneconomical in any climate.
The study also assessed the potential impact of a carbon tax on these results, ultimately
suggesting that solar panels are a viable choice for reducing energy costs and emissions in
buildings. [26] F. Wang et al. conducted a study demonstrating a system designed to enhance the
efficiency of PVT panels by over 22% and reduce building heating needs by 1.65%. They
recommended installing the PVT panels at a 45-degree angle, using dark roofs with high
absorptivity, and integrating as many energy piles as possible into the foundation. This
innovative system harnesses both solar and geothermal energy, offering a sustainable and
energy-saving solution for buildings. [27] T. Yang et al. conducted a study introducing a new
solar panel design for buildings (BIPV/T) featuring two air inlets, resulting in a 5% improvement
in heat capture, which can be increased to 7.6% by using special translucent panels. This cost-
effective and straightforward design holds promise for further advancements in efficient solar
energy utilization. [28] A. Azami et al. investigated the impact of form configuration and
orientation on energy generation, highlighting a preference for roof-based scenarios with lower
BIPV utilization, indicated by an optimal BIPV-based FF value of 0.71. Their study also
revealed a strong correlation (correlation value > 0.92) between the BIPV coverage index and the

total envelope for ideal forms and orientations. [29] F. Nicoletti et al. proposed an assessment
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model as a valuable tool for evaluating the BIPV potential of different building designs, which
can be adapted to various forms in different locations. They presented equations for calculating
the electrical power generated by solar photovoltaic blinds (SPB), applicable to different slat
inclinations, orientations, and geometries, enabling the evaluation of slat mutual shading and
view factors. Their research provides valuable insights into the functionality and optimization of
solar photovoltaic blinds. [30] Z. Liu et al. proposed an approach aimed at streamlining the
assessment procedure and enhancing understanding of the variables influencing Solar
Photovoltaic Blinds' (SPBs) capacity to generate electricity. The study's results have implications
for improving building energy efficiency through the effective design and application of SPBs.
Addressing engineering and sociological challenges associated with changes in both supply and
demand, temporally and spatially, the paper outlines obstacles and conventional data usage
practices in Smart Building-Integrated Photovoltaic (SBIPV) systems. The proposed concept of
data-driven SBIPV comprises four main components: Data Sensing, Data Analysis, Data-driven
Prediction, and Data-driven Optimization. Data sensing transcends simple measurements by
establishing a link between the supply and demand sides. Data analysis elucidates how electricity
supply fluctuates under varying environmental conditions and how demand-side response
evolves. Energy management relies on data-driven prediction of load and electricity supply,
while data-driven optimization addresses engineering and sociological aspects through system
optimization and demand-side trading. [31] A.K. Shukla et al. provided a comprehensive review
of the development of solar photovoltaic (PV) technology for building integration and design,
emphasizing the classification of solar PV cells and Building-Integrated Photovoltaic (BIPV)
products. The review underscores the significant opportunity presented by the era of distributed

power generation, particularly for building-integrated photovoltaic systems. BIPV emerges as a
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robust and adaptable tool to meet the future demand for zero-energy buildings, offering
advantages such as on-site power generation and the visual appeal of thin-film module form
factors. Despite lingering policy issues, the benefits of BIPV are increasingly recognized. [32] Z.
Wang et al. introduced a novel heat pipe building-integrated photovoltaic/thermal system (HP-
BIPV/T) for Chinese residential buildings, demonstrating its effectiveness in producing
electricity and hot water. Experimental results indicated daily average thermal, electrical, and
total efficiencies of 61.1%, 7.8%, and 68.9%, respectively, under simulated solar radiation and
water flow rate conditions. Although the suggested system is comparatively more expensive and
less efficient than traditional BIPV/T systems, its potential for cost savings through mass
production and waste material recycling makes it a promising solution. [33] F.E. Boafo et al.
developed a novel building material by combining solar panels with ultra-thin insulation material
to improve insulation, potentially reducing heating costs and meeting energy codes for buildings.
Tests demonstrated its effectiveness in winter conditions, with acceptable electricity generation
efficiency (12.3%) under those circumstances. [34] S.S.S. Baljit et al. covered two building
integration technologies, namely Building-integrated photovoltaic (BIPV) and building-
integrated photovoltaic-thermal (BIPV/T), aimed at increasing electrical output and cooling PV
panels. The paper examines various heat transfer working fluids and installation methods for
BIPV and BIPV/T systems on walls and roofs, incorporating economic factors and case studies
to provide relevant information for engineers and researchers in the building and construction
sectors. [35] A. Ghosh et al. conducted research exploring the integration of solar panels directly
into buildings (BI) or attaching them to existing structures, known as Building Applied
Photovoltaics (BAPV). They discussed various materials and locations for these panels, along

with challenges such as overheating and potential solutions. Additionally, the paper explored
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promising future applications for solar panels in buildings, including integration with electric
vehicles, highlighting the potential of solar energy in building design and functionality. [36] Z.
Liu et al. investigated the feasibility and applicability of building-integrated photovoltaic (BIPV)
systems in areas with high solar irradiance. The study emphasized the potential for BIPV
systems to decrease building energy consumption and promote sustainable development. Various
performance-influencing variables such as PV module temperature, solar radiation intensity,
orientation, tilt angle, module types, and inverters were examined, and the energy efficiency,
environmental benefits, and economic performance of BIPV systems were systematically
evaluated. The study also discussed optimal coordination models to encourage the development
of BIPV systems and suggested future research directions in areas with high solar radiation. [37]
S. Saadon et al. investigated a novel building facade design that incorporates partially transparent
solar panels (PV) to generate electricity. The facade featured a ventilated air cavity to aid in
cooling the panels during summer and recovering heat in winter. Through computer modeling,
the researchers assessed the facade's performance in various French climates, finding that while
the facade might slightly increase cooling needs, its impact on heating requirements is minimal.
[38] G. Barone et al. introduced a new window technology called Concentrating
Photovoltaic/Thermal Glazing (CoPVTG), which utilizes lenses to focus sunlight in the summer
for electricity generation and allows sunlight to pass through in the winter for heating. The
system includes a built-in air-cooling mechanism to capture excess heat for other purposes. Tests
demonstrated that CoPVTG can significantly increase electricity generation compared to
standard windows while also reducing heating and cooling costs. The technology offers potential
for creating energy-efficient and cost-effective buildings. [39] M.M. Uddin et al. focused on

Bangladesh's climate and investigated three configurations of semi-transparent CdTe combined
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BIPV window systems in an office building. Using data from outdoor experiments, they
developed and verified a numerical simulation model based on Energy Plus. The annual energy
simulation results showed that CdTe combined BIPV windows can save between 30% and 61%
of electricity consumption compared to conventional window systems under all climate
conditions. Additionally, the study demonstrated that east-facing BIPV windows are more
effective at reducing net electricity consumption, while south-facing windows are more efficient
at power generation. [40] C. Sirin et al. investigated the utilization of building facades for
generating renewable energy using Building-Integrated Photovoltaic/Thermal (BIPV/T) systems.
They discussed how BIPV/T systems can contribute to reducing building-related greenhouse gas
emissions and energy consumption. [41] A.M. Ekoe et al. emphasized the benefits, working
principles, and methods for enhancing the performance of BIPV/T systems. Their study provided
a general overview of BIPV/T technology and highlighted its potential to improve building
energy efficiency. They examined the use of solar panels (BIPV) on rooftops to fulfill a
building's energy needs, demonstrating that BIPV systems can significantly reduce energy
consumption and costs while promoting reliance on renewable energy sources. This technology
holds promise for creating a more sustainable and environmentally friendly energy future in
Cameroon. [42] R.P.N.P. Weerasinghe et al. examined building-integrated photovoltaic
technology (BIPV) as a renewable energy source with building material functionality, addressing
questions regarding BIPV's economic viability and its impact on investment choices. [43] J. Ko
et al. reviewed 45 BIPV projects in non-domestic buildings across 12 western countries between
2009 and 2018. They assessed the true economic worth of BIPV projects by estimating levelized
cost energy, net present value, and payback periods. Their analysis demonstrated that BIPV

projects can be financially feasible when both direct and indirect benefits are considered. Various
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building application types, features, and module technologies showed profitable results,
suggesting that policymakers and decision-makers could encourage the adoption of BIPV by
better understanding these findings. [44] L. Gullbrekken et al. optimized phase change material
properties through MATLAB simulations, resulting in an annual increase in energy generation of
1.09% compared to traditional photovoltaic systems. By enhancing thermoelectric generator
performance and thermal resistance, the proposed system could produce 4.47% more energy.
Their research focused on the use of photovoltaics (PV) in buildings in Nordic climates,
addressing challenges posed by low solar radiation and temperatures below zero. [45] S. Khanam
et al. provided a summary of the challenges and recent experiences with roof-integrated PV
systems, particularly focusing on the Nordic region. Addressing critical challenges such as
practical guidelines for roofing installation and ventilation will be essential for the adoption of
PV systems in these areas. Additionally, they assessed and compared the performance of various
photovoltaic module types (monocrystalline, polycrystalline, and thin-film) in four climatic
zones of India, estimating parameters like radiation intensity, ambient temperature, and design
factors using analytical expressions based on energy balance equations. [46] C.S. Rajoria et al.
concluded that peak temperatures of photovoltaic modules have a greater impact on electrical
efficiency than solar radiation intensity. Despite a hotter climate, Bangalore produces more
electrical energy annually than Jodhpur due to its more temperate climate. The study identified
amorphous silicon modules as the best performers in terms of electrical energy output.
Additionally, they provided a review of flat-plate building-integrated photovoltaic/thermal
(BIPVIT) systems, covering recent advancements, experimental findings, and the parametric
effects on building performance. Different BIPV/T technologies such as air-based, water-based,

or hybrid systems were discussed, along with their performance metrics. Notably, nano-PCM-
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PVT systems demonstrated the highest thermal efficiency of 72%, suggesting promising
applications for phase change materials and nanoparticles in BIPV/T systems. [47] S. Yang et al.
conducted a simulation study on the sensitivity analysis of design parameters for Building-
Integrated Photovoltaic/Thermal Double-Skin Facade (BIPV/T-DSF) systems, aiming to assess
their influence on energy consumption and indoor thermal comfort across various configurations
and climates. Key findings highlighted the significant impact of external window solar heat gain
coefficient and cavity depth of the BIPV/T-DSF on building performance. The study emphasized
the importance of considering these design factors to maximize BIPV/T-DSF system
performance for energy-efficient and comfortable buildings. Additionally, they proposed the use
of colored BIPV modules to address aesthetic concerns while still promoting clean energy
generation and reducing carbon emissions. [48] A.H. Hamzah et al. tested the concept of colored
BIPV modules using 3D model simulations on buildings in Malaysia, finding promising results.
[49] F.M. Amoruso et al. conducted life cycle assessments (LCA) and life cycle costing (LCC)
for apartments, mixed-use commercial/industrial buildings, and low-rise multi-unit residential
buildings equipped with BIPV systems. They measured electricity production using simulation
tools and computed minimum and average carbon life cycle assessments over a 50-year period.
[50] S. Kim et al. calculated greenhouse gas (GHG) emission savings associated with replacing
conventional energy supplies in buildings with BIPV systems. Their results indicated significant
reductions in GHG emissions, with positive cumulative net present values (NPV) for both 25 and

50-year life cycle costing scenarios. [51]
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2.3. Gap of Knowledge

The study focuses on the effects of data collection time and panel face direction on panel
outputs, aiming to identify the most fundamental parameters in dictating panel outputs like
voltage and current. It also explores the use of neural networks for predictive output of solar
panels, despite the need for a large dataset and complex machine learning models. To the best of
our knowledge comparatively lesser amount of work has been done on these particular aspects.
The next chapter provides a comprehensive explanation of the methods and computation. The

details of the discussion are provided in the sections 2.3.1. and 2.3.2.

2.3.1. A Qualitative Study

To the best of our knowledge, relatively lesser amount of work has been done regarding
qualitative examination of the effects of time of data-collection and direction of panel-face on
panel outputs and vis-a-vis the detection of which of the parameters i.e., time-stamp or direction
is more fundamental in dictating the nature of the panel outputs like voltage and current. Such
analysis based on real-world data might offer more profound insights on BIPV system

optimization.

2.3.2. Predictive Output of Solar-Panels based on Neural Networks

To provide reliable predictions of panel outputs based on such generic input parameters like
time-stamp of data-collection and panel-inclination angle, a neural network modeling of the
input/output data can be carried out and trained and then studied for custom inputs. This may

need a sizable dataset. However, in order to create a baseline, it is best to investigate simpler
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machine learning models initially and such work on generic mapping has been less done to the

best of our knowledge.
2.4. Probable Solution

A Qualitative analysis of such solar panel outputs based on plotted voltage/current graph
symmetry w.r.t. time or panel direction and determination of the more fundamental nature of
these parameters on graph output. Secondly, using MATLAB-based neural network modeling
one can generate a predictive output modeling of output voltage/current against input time-stamp
and panel inclination. This consequently allows further custom mapping of user-defined input
values to predictive output values. The details of the discussion are provided in the sections

2.4.1.and 2.4.2.

2.4.1. Improvement on Qualitative Analysis

Real-world data like voltage and current outputs of solar panels over range of days can be used
to plot the graphs with variables of time and panel-direction, with various panel-inclinations, and
then by observing the symmetry of the graphs an inference can be drawn that which of the
parameters i.e., time-stamp or panel direction is more fundamental. This would lead to a
qualitative analysis of the panel-outputs w.r.t. to generic input values of time-stamp, panel-

directions, while taking into account various panel-inclinations.

2.4.2. MATLAB based Neural Network Modelling

A simple MATLAB based feedforward neural network mapping of input data like time-stamp
and panel inclination w.r.t. target data like output voltage and current can help us to train such

models for custom mapping of user-defined fresh input values of time and panel-inclination to
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predictive output values. Such models can be easily build using inbuilt deep-learning toolbox of
MATLAB and gives us the scope to initiate foundational works of such complex model-

generation of BIPV systems.

2.5. Scope of the Present Work

The purpose of this thesis is to investigate the complex interplay between two important
variables—time and panel direction—and how they affect the current-voltage output production
of solar panels at different angles of inclination. Through a thorough examination of voltage and
current graphs collected over a 30-day period with seven different panel orientations, the
research aims to identify the main factor influencing the symmetry of these graphs. This
qualitative study has the potential to offer insightful information about how decisions about the
orientation of solar panels should be prioritized, either by highlighting the importance of output
collection time or by concentrating on output collection direction.

The next stage of the study aims to take input/output modeling to a basic yet profound level by
utilizing neural networks and the MATLAB software environment. The main goal is to provide a
strong mapping mechanism that maps a set of input data values (time-stamp and panel
inclination angle, or theta) to matching output values that indicate short- and open-circuit current
and voltage, respectively. The research seeks to enable the smooth prediction of output values for
a new set of custom input values by carefully training the network model on the gathered dataset.
This will help to clarify the intrinsic link between the input parameters and the output values that

are produced.
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We used MATLAB's Neural Network Toolbox, which is a feature of the Deep Learning
Toolbox. This tool is an effective means of developing, optimising, and deploying neural
networks, allowing for the modelling and prediction of intricate systems. In Chapter 4, This
research looks at, how direction and time affect solar panel output over a 30-day period. It uses
4200 observations over 30 days, or 140 observations per day, to analyse voltage and current
graphs on a sliding solar panel. In Chapter 5, Across all time-stamps and inclination, the analysis
revealed symmetry in the voltage and current values for the opposing directions (East-West and
North-South). When changing time-stamps for fixed directions, however, no such symmetry was
observed, suggesting that direction is not as important as time of day in determining panel
output. A generic ideation of neural network modelling was carried out in Chapter 4 as well,
which dent with the basic tenets of feed forward neural network in detail. The acquired
knowledge was implemented in Chapter 5, to train the input time spends and panel inclination
against output open circuit voltage and short circuit current and later a custom set of fresh input
values were used to generate predictive voltage and current values. The predictive values were
further analysed to evaluate the accuracy of this simple deep learning model. All result were

eventually summarised in Chapter 6 and concluded.
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2.6. Conclusion

In view of the above works done, the current project hopes to carry out a qualitative
understanding of the nature and effect of natural parameters like time and direction on the
voltage, current output of the solar-panels w.r.t. various panel-inclinations. The objective is to
study that which of the parameters is more fundamental in influencing the nature of the voltage,
current graphs over duration of days. Also, a MATLAB based simple neural network modeling
of the collected input/output data is hoped to be implemented, to generate predictive input/output
mapping of the solar panels, based on custom input values. A much-detailed description of the

Methods and Computation are given in the next chapter.
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CHAPTER-3

General Description of MATLAB Software Applied in
This Work
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3.1. Introduction

The main software tool used in the current work for doing computational analysis, data
processing, and algorithm creation is MATLAB. Because of its robust numerical computation,
visualisation features, and large function library, MATLAB is a flexible programming
environment that is extensively utilised in both academia and industry. Its use in this work
enables significant discoveries and propels research forward by facilitating the discovery,

analysis, and interpretation of complicated data sets.

3.2. Overview of Matlab Software

A strong tool for creating, honing, and implementing neural networks is MATLAB. Its Neural
Network Toolbox, which is now a part of Deep Learning Toolbox, offers an extensive set of
features and applications for neural network modelling of complicated systems. Neural networks
may be used to model and forecast connections, detect patterns, and improve comprehension of

the underlying physical events in the context of Current-Voltage (I-V) data.

31



=1 p—
8 () e B WO Y

Srutnk Layout () SetPalh  AgkOna  Heip u
- ~ - ¥ L) Leem aTLAR

‘ET

wwwwww

B Qs ARl FELL R Al eam A%Ne 0

Figure 3.1. MATLAB R2019a Software

3.3. Benefits and Drawbacks of Matlab Software

Benefits:
e Friendly to Users.
e Wide-ranging Toolbox Collection.
e Information Visualisation Ability.

e Good Community Reaction.

Drawbacks:
e Expensive Software.
e Interpreted Language.

e Not Suitable for Real-Time Uses.
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3.4. Deep Learning Toolbox

Blocks from the Deep Learning Toolbox of MATLAB is used for creating, putting into practice,
and modeling deep neural networks. A framework for creating and utilizing a variety of
networks, including transformers and convolutional neural networks or CNNSs, is provided by the
toolkit. Network attributes may be verified, projections can be visualized and interpreted, and
networks can be compressed via quantification, presentation, or trimming. One can import
pretrained models, export networks to Simulink, and construct, edit, and evaluate networks
dynamically with the Deep Network Designer application. One can collaborate with various deep
learning frameworks using the toolbox. A MATLAB based simple neural network can help
ingenerating predictive output values for custom input values, based on erstwhile training of such
network with training of input vectors to its’ respective target output vectors. In our work, we
have implemented in particular simple feedforward neural network for such input/output
mapping of collected solar panel output values w.r.t. input time-stamp and panel inclination. As
such feedforward neural networks are made up of several levels. The network input is connected
to the first layer. Every layer that comes after has a link to the layer before it. The output of the
network is produced by the last layer. One can use feedforward networks for any type of
mapping from input to output. Any limited input-output mapping issue can be fitted by a
feedforward network comprising of one hidden layer and sufficient neurons in the hidden layers.
In our current work we have taken help of such inbuilt, simple feedforward neural network
present in MATLAB and have carried out input/output mapping transformation using all the
inbuilt functions set by default. The detail discussion of the computation is given in the following

chapters.
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3.5. Conclusion

The present work makes extensive use of MATLAB, which offers a versatile software
environment for data visualisation, method building, and computational analysis. It is an
essential tool for scholars looking to push the boundaries of knowledge and creativity in their
domains because of its vast feature set, user-friendly design, and comprehensive documentation.
In particular the Deep Learning Toolbox in MATLAB has rigorous role in data clustering data
mapping and predictive output generation modeling. In that regard Deep Learning toolbox of
MATLAB in particular have been very useful for computation analysis in our following
chapters. Thus researchers may solve difficult issues more quickly, improve science and

technology, and quicken the rate of discovery by utilising MATLAB's capabilities.
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CHAPTER-4

METHODS AND COMPUTATION
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4.1. Introduction

In this work, we set out to investigate the complex relationships between direction and time as
they relate to solar panel output characteristics. We seek to clarify whether the spatial orientation
or the temporal aspect is more important in determining the voltage and current profiles of solar
panels by conducting a thorough analysis.

We achieve this by carefully monitoring voltage and current outputs under various conditions for
thirty days, all while conducting a rigorous series of experiments. We carefully monitor and
document the panel's response to various environmental stimuli using a sliding solar panel setup
that is able to be adjusted to different inclination angles and directional facings.

Moreover, we further investigate predictive modelling by utilising neural networks built in
MATLAB to extrapolate future outputs of voltage and current from observed data. Even though
we have started modelling using simple training approaches, we recognise that there is a great
deal of room for improvement and augmentation using unique training algorithms and more
input parameters.

Our work sits at the nexus of advanced modelling approaches and conventional experimentation
in a world where neural networks are redefining computational paradigms. We advance the
conversation on the use of renewable energy sources and open the door to more sustainable and

efficient solar technology by elucidating the basic dynamics of solar panel performance.
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4.2. Measuring the Effect of Time and Orientation on the Output of Solar

Panels

In this current work, a simple qualitative ideation of the effect of time and direction on solar-
panel output has been studied with respect to various panel-inclination angles. The idea was to
carry out a generic study of voltage, current output graphs of a solar-panel over a period of 30
days and identify which of the above parameters i.e., the time of observation (say 1, 2 or 3 pm
etc.) or direction of panel-face during observation (North, South, East or West) had a more
fundamental effect on the nature of the voltage and current graphs. For this reason, a sliding solar
panel on a fixed wooden base was used for experimentation, which could be inclined and fixed at
various custom angels (0) using a protractor (Figure: 4.1.1 — 4.1.4). Every day 140 observations
were taken w.r.t. 5 different time-stamps (12 O’clock, 1 pm, 2pm, 3pm, 4pm), for 4 different
directions of panel-face (North, South, East, West) and 7 different panel-inclination angels
(0°,15°,30°,45°,60°,75°,90°) respectively. A total 4200 observations were taken over a period of
30 days and each observation was w.r.t. open-circuit voltage (VOC) and short-circuit current
(ISC) of the panel. In absence of source-measuring unit at our disposal, this was the best possible
quantitative output measurement of the panel (VOC and ISC) we could implement. The idea was
to plot every voltage and current graphs w.r.t. days (1-30), by keeping time fixed, for seven
numbers of Os, for the 4 directions. A different plot of every voltage and current graphs w.r.t.
days (1-30) was also conducted, but by keeping directions fixed, for seven number of 8s and for
the 5 different time-stamps. A visual study of both sets of graphs were carried out to determine
that in which set of graphs, would the observed voltage-current graphs have showed general

symmetry over the data collection duration, i.e., for fixed time and varying direction for various
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theta values or for fixed direction and varying time for various theta values. The idea was to
qualitatively determine that which of the fundamental parameters like Time of Observation or
Direction of Observation had a more fundamental influence on the nature of the output
voltage/current of the system. The results so found were promising as would be discussed in
detail in the latter sections. Data values as such were collected between 19th February - 2nd

April, 2024.

38



kR

e
|
B —

|
|
|
l

|
|
L

)

<y

Figure 4.1.4

Figure 4.1. Representative Images of Movable Solar Panels at four different inclination 0°, 45°,

60° and 90°.
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4.3. Neural Network Architecture and General Modelling

A further MATLAB based simple neural network modeling of the observed data values were
carried out to create a general predictive voltage, current output suggestion of such solar panels
for individual time and theta values. The training of the data and consequent modeling was not
exhaustive and used the basic inbuilt training functions and feed-forward neural-network
commands of the software to suggest such predictive outputs. Lot of scopes lie in developing
custom training algorithms or functions to train such observed data values as well as include
other training data-set parameters like solar-insolation values and direction-specific theta-values
of the panels concerned into such models. Contemporary computing is being reshaped by neural
networks, which combine artificial intelligence with brain-inspired architecture. These networks
imitate the complex functions of the human brain by using complicated networks of interwoven
artificial neurons, which has allowed for amazing advancements in machine learning. Neural
networks come in various flavors, each designed for a particular task: feedforward, recurrent,
convolutional, and so on. Neural networks are motivated by the way the human brain perceives
information and function fundamentally like it does. Its quick response times and capacity for
rapid computations enable it to handle a variety of real-time jobs. A vast number of interlinked
processing units or "Nodes", make up an artificial neural network. A connection link is used for
attaching these nodes to other nodes. Weights are present in the connection link, and these
weights include input signal information. In turn, every input and iteration update these weights.
The final neural network weights and architecture, after all the data occurrences from the training

data set have been input, are referred to as the Trained Neural Network. It is referred to this
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procedure as Neural Network Training. The specified tasks of the issued statements are resolved

by these trained neural networks.
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Figure 4.2. A Single Neuron is displayed with Xi number of Inputs, each having a Weight oi, a

Bias term, and an applied Activation Function.

An artificial neural network with circular connections between its nodes is called a feed forward
neural network. A feed-forward neural network is the exact opposite of a recurrent neural
network because it has some cycled paths. The fundamental kind of neural network is the feed-
forward model since it only processes information in a single direction. Learning a function that
converts a given X to a predetermined Y and using it to ascertain the correct Y for a new X is

what is known as supervised learning and helps in adjustment of weights in neural networks.
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Hidden

Figure 4.3. Architecture of an Artificial Neural Network.

4.4. Using Custom Neural Network Training to Generate Predictive Output

of Solar Panel

In our current work, certain sets of the obtained data values of Voltage and Current was
transformed as the output with corresponding sets of input values of data-observation times and
solar panel inclination of theta values. Then using a simple feedforward neural network of 25
hidden layers, that we transformed a fresh set of input time and theta values into predictive
output voltage and current values. The transformation used a standard inbuilt training function
inside the deep-learning tool box of MATLAB and all other weights, biases and activation
functions were selected as by-default value. The transformation showed good predictive values
for all the output voltage values, while for the current values outputs were often far from offset
values and even negative at times. It suggested that though the model is promising in generating

such predictive outputs, it is ultimate formulation of custom training functions, and selection of
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weights, biases and activation function that will help in rectifying such models and lead to

determination of correct predictive transformed outputs.

45. Conclusion

We have learned a great deal about the intricate interactions between time, direction, and panel
inclination angles from our research into the dynamics of solar panel performance. Over the
course of a 30-day period, we have identified distinct patterns in the voltage and current outputs
of solar panels through methodical experimentation and qualitative analysis. The importance of
direction and time as essential factors influencing solar panel performance is underscored by our
findings. Furthermore, our investigation into neural network-based predictive modelling has
produced encouraging outcomes for panel output forecasting based on input parameters like time
and panel inclination values. All these are analyzed in detail in the next chapter. In conclusion,
Study emphasises how crucial thorough analysis and modelling methods are to comprehending
and maximising the performance of solar panels. It will be essential to conduct more research in
this area as we move closer to a future where renewable energy sources will be used more and

more to advance solar technology's efficiency and sustainability.
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CHAPTER-5

RESULT AND DISSCUSSIONS

44



5.1. Introduction

Solar energy has emerged as a vital source of renewable power. Optimizing the efficiency of
solar panels is crucial for maximizing energy generation. This study investigates the relationship

between voltage, current output, and several key factors influencing a solar panel's performance.

5.2. Exploring the Effect of Data Gathering Timing on Solar Panel Output

Properties

Voltage and Current values so obtained over 30 days were plotted against days w.r.t. to 5
different time-stamps (12 O’clock, 1 pm, 2 pm, 3 pm and 4 pm) for the 4 different directions
(North, South, East and West) in each of the graphs. All these graphs were obtained individually
for 7 different panel inclination angles, theta, (0°,15°30°45°60°75°90°) respectively.
Consequently, for each theta there are 5 Voltage and 5 Current graphs, for 5 different time
stamps. Each graph containing values obtained for the 4 different directions. The observed
graphs (Voltage and Current) all showed qualitatively a general symmetry w.r.t. each other
values over the 4 directions, for every graph-plots and also the values obtained for the exactly
opposite directions (North and South) and (East and West), for all time-stamps and all theta
values reflected greater symmetry in shapes. A rough plot of every voltage and current graphs
w.r.t. days (not shown here) was also conducted by keeping directions fixed, for seven numbers
of Os and by varying the 5 different time-stamps. No such symmetry in the voltage and current
graphs were obtained like before, for the 5 varying time-stamps in each graph, suggesting that

the nature of voltage-current graphs is more of a function time-stamp at which the values are
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collected and less influenced by direction. This suggested that Time at which data is collected is
much more a fundamental parameter in dictating the nature of the panel voltage-current output
instead of the direction at which the panel is faced. The shapes of the graphs are more symmetric
for the exactly opposite directions for every time stamp. This suggests that while time-stamp is
more a fundamental parameter, for every time-stamp exactly opposite directions also play a role
in influencing the symmetric-nature of the graphs. Figures (5.1.1. - 5.7.10.), shows the Voltage-

Current graphs for each time-stamp over different 7 theta values, taken over 30 days.
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Figure: 5.1.1. Voltage vs Days, Inclination - 00°, 12 PM
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Figure: 5.1.3. Voltage vs Days, Inclination - 00°, 01 PM
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Figure: 5.1.5. Voltage vs Days, Inclination - 00°, 02 PM
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Figure: 5.1.2. Current vs Days, Inclination - 00°, 12 PM
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Figure: 5.1.4. Current vs Days, Inclination - 00°, 01 PM

Current vs Days , Inclination - 00°, 02 Pm

05

0.4

0.3

0.2

0.1

0.0
0 5 10 15 20 25 30 35
——North ——South East ———\West

Figure: 5.1.6. Current vs Days, Inclination - 00°, 02 PM



Voltage vs Days , Inclination - 00°, 03 Pm
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Figure: 5.1.7. Voltage vs Days, Inclination - 00°, 03 PM
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Figure: 5.1.9. Voltage vs Days, Inclination - 00°, 04 PM
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Figure: 5.1.8. Current vs Days, Inclination - 00°, 03 PM
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Figure: 5.1.10. Current vs Days, Inclination - 00°, 04 PM
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Voltage vs Days , Inclination - 15°, 12 Pm
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Figure: 5.2.1. Voltage vs Days, Inclination - 15°, 12 PM
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Figure: 5.2.3. Voltage vs Days, Inclination - 15°, 01 PM
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Figure: 5.2.5. Voltage vs Days, Inclination - 15°, 02 PM
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Current vs Days . Inclination - 15°, 12 Pm
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Figure: 5.2.2. Current vs Days, Inclination - 15°, 12 PM
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Figure: 5.2.4. Current vs Days, Inclination - 15°, 01 PM
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Figure: 5.2.6. Current vs Days, Inclination - 15°, 02 PM



Voltage vs Days . Inclination - 15°. 03 Pm
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Figure: 5.2.7. Voltage vs Days, Inclination - 15°, 03 PM
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Figure: 5.2.9. Voltage vs Days, Inclination - 15°, 04 PM
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Figure: 5.2.8. Current vs Days, Inclination - 15°, 03 PM
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Voltage vs Days , Inclination - 30°, 12 Pm
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Figure: 5.3.1. Voltage vs Days, Inclination - 30°, 12 PM
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Figure: 5.3.3. Voltage vs Days, Inclination - 30°, 01 PM
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Figure: 5.3.5. Voltage vs Days, Inclination - 30°, 02 PM
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Current vs Days , Inclination - 30°, 12 Pm
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Figure: 5.3.2. Current vs Days, Inclination - 30°, 12 PM
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Figure: 5.3.4. Current vs Days, Inclination - 30°, 01 PM
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Figure: 5.3.6. Current vs Days, Inclination - 30°, 02 PM



Voltage vs Days . Inclination - 30°, 03 Pm

30

20

0 5 10 15 20 25 30
——North ——South East ——West
Figure: 5.3.7. Voltage vs Days, Inclination - 30°, 03 PM
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Figure: 5.3.9. Voltage vs Days, Inclination - 30°, 04 PM
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Figure: 5.3.8. Current vs Days, Inclination - 30°, 03 PM
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Figure: 5.3.10. Current vs Days, Inclination - 30°, 04 PM



Voltage vs Days, Inclination - 45°, 12 Pm
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Figure: 5.4.1. Voltage vs Days, Inclination - 45°, 12 PM
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Figure: 5.4.3. Voltage vs Days, Inclination - 45°, 01 PM
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Figure: 5.4.5. Voltage vs Days, Inclination - 45°, 02 PM
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Figure: 5.4.2. Current vs Days, Inclination - 45°, 12 PM
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Figure: 5.4.4. Current vs Days, Inclination - 45°, 01 PM
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Figure: 5.4.6. Current vs Days, Inclination - 45°, 02 PM
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Figure: 5.4.7. Voltage vs Days, Inclination - 45°, 03 PM
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Figure: 5.4.9. Voltage vs Days, Inclination - 45°, 04 PM
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Figure: 5.4.8. Current vs Days, Inclination - 45°, 03 PM
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Figure: 5.4.10. Current vs Days, Inclination - 45°, 04 PM



Voltage vs Days , Inclination - 60°, 12 PM

30

20

0 5 10 15 20 25 30
——North ——South East ——West
Figure: 5.5.1. Voltage vs Days, Inclination - 60°, 12 PM
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Figure: 5.5.3. Voltage vs Days, Inclination - 60°, 01 PM
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Figure: 5.5.5. Voltage vs Days, Inclination - 60°, 02 PM
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Figure: 5.5.2. Current vs Days, Inclination - 60°, 12 PM
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Figure: 5.5.4. Current vs Days, Inclination - 60°, 01 PM

Current vs Days . Inclination - 60°, 02 PM

06
05
0.4
03
02
0.1 ~1 ‘ o~

0.0
0 5 10 15 20 25 30 35

——North ——South East ——West

Figure: 5.5.6. Current vs Days, Inclination - 60°, 02 PM



Voltage vs Days. Inclination - 60°, 03 PM
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Figure: 5.5.7. Voltage vs Days, Inclination - 60°, 03 PM
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Figure: 5.5.9. Voltage vs Days, Inclination - 60°, 04 PM
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Figure: 5.5.8. Current vs Days, Inclination - 60°, 03 PM
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Figure: 5.5.10. Current vs Days, Inclination - 60°, 04 PM



Voltage vs Days . Inclination - 75°. 12 PM
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Figure: 5.6.1. Voltage vs Days, Inclination - 75°, 12 PM
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Figure: 5.6.3. Voltage vs Days, Inclination - 75°, 01 PM
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Figure: 5.6.5. Voltage vs Days, Inclination - 75°, 02 PM
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Figure: 5.6.2. Current vs Days, Inclination - 75°, 12 PM
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Figure: 5.6.4. Current vs Days, Inclination - 75°, 01 PM
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Figure: 5.6.6. Current vs Days, Inclination - 75°, 02 PM



Voltage vs Days, Inclination - 75°, 03 PM
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Figure: 5.6.7. Voltage vs Days, Inclination - 75°, 03 PM
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Figure: 5.6.9. Voltage vs Days, Inclination - 75°, 04 PM
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Figure: 5.6.8. Current vs Days, Inclination - 75°, 03 PM

Current vs Days . Inclination - 75°, 04 PM
0.4

0.3
0.2

0.1

0.0
35 0 5 10 15 20 25 30 35

——North ——South East ——West

Figure: 5.6.10. Current vs Days, Inclination - 75°, 04 PM
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Voltage vs Days . Inclination - 90°. 12 PM
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Figure: 5.7.1. Voltage vs Days, Inclination - 90°, 12 Pm
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Figure: 5.7.3. Voltage vs Days, Inclination - 90°, 01 PM
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Figure: 5.7.5. Voltage vs Days, Inclination - 90°, 02 PM

Current vs Days . Inclination - 90°, 12 PM

0.4

0.3

0.2

0.1

35 0 5 10 15 20 25 30 35

——North ——South East ——West

Figure: 5.7.2. Current vs Days, Inclination - 90°, 12 PM
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Figure: 5.7.4. Current vs Days, Inclination - 90°, 01 PM
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Figure: 5.7.6. Current vs Days, Inclination - 90°, 02 PM
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5.3. Feed Forward Neural Network and Predictive Output Modelling

A subset of input values was selected from the collected data values to feed as input to
feedforward neural-network in MATLAB, to train the network, w.r.t. to a target set of output
values for the corresponding input values. The input values so selected were time and theta,
while the target output values were the corresponding voltage and current. A total 120
observations or vectors of input values were thus selected with each containing 2 features or
elements (time and theta) for a total number of 120 output observations with 2 features or
elements each (voltage and current). The Model was created and trained using standard

command prompts and used the inbuilt, by-default weight and bias values and the training-
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function algorithm. First the input training vectors were declared as a 120 x 2 matrix (theta and

time) and was put inside the variable array ‘X’ as: -

X =
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
12 90 12 90 13 75 13 75
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Output target vectors were also declared as a 120 x 2 matrix (theta and time) and was put inside

the variable array ‘T’ as: -

T=
14.6000 0.0400 15.0200 0.0900 14.9900 0.0500
15.0100 0.0600 14.4400 0.0700 15.1900 0.0700
14.5000 0.0400 14.6500 0.0700 15.5600 0.0800
14.0700 0.0400 18.1800 0.0800 18.7900 0.0600
14.5000 0.0400 14.6500 0.0800 17.4700 0.0500
14.4000 0.0400 17.0700 0.0900 16.6700 0.0500
17.1700 0.0400 16.4600 0.0900 15.6600 0.0600
20.0000 0.0500 13.4300 0.0900 15.0200 0.1000
14.8100 0.0600 13.8400 0.0800 15.5000 0.1100
14.7100 0.0600 12.9300 0.0900 16.6700 0.1000
14.5600 0.0500 15.5900 0.0700 15.7200 0.1500
14.7600 0.0600 14.9000 0.0600 15.4500 0.0900
16.2600 0.0600 15.0200 0.0500 16.5700 0.1100
15.5600 0.0600 15.4800 0.0800 19.0900 0.1200
14.6500 0.0500 14.9000 0.0600 17.9800 0.1200
12.5300 0.0600 15.0200 0.0500 19.6000 0.1000
17.5800 0.0600 17.9800 0.0500 17.1700 0.1000
14.3900 0.0600 16.4600 0.0600 17.2700 0.1100
14.7900 0.0700 15.3100 0.0700 16.0600 0.1100

15.5600  0.0700 15.3500 0.0800 13.3300  0.1300
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Now the feedforward neural network ‘net’ was created using the following command with 30

hidden layers: -

net = feedforwardnet(30);

The network was then trained with the following command: -
net = train(net,X,T);

where the input training vectors of ‘X’ are trained w.r.t. output training targets of ‘T’, for the
network ‘net’ with 30 hidden layers. All other values of weights, biases, iterations and training
functions were kept at inbuilt, by-default values. Figure 5.8. shows the simulation model of the

training network so obtained.

Newural Network

Hidden Output
Input _ i Output
120 120
30 120

Algorithms

Data Division: Random (dividerand)]
Training: Levenberg-Marquardt (trainlm]
Performance: Mean Squared Error  (mse)
Calculations:  MEX

Progress
Epoch: o [ Siterations | 1000
Tirme: 0:01:41
Pefformance: 431 [ G0e2a ]| o0.00
Gradient: 677 5.77e-13 1 1.00e-07
Pz 0.00100 | 1.00e-11 | 1.00e+10
Plots

Performance (pletperform)

Error Histogram (ploterrhist)

Ié |
| Training State | (plottrainstate)
| |
| |

Regression (plotregression)

Plot Interval: D 1 epochs

v Minimum gradient reached.

@ Stop Training @ Cancel

Figure 5.8. Simulation Model of the Training Network
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The output Y’ was now mapped for a fresh set of input vectors ‘I’ defined as a similar 120 x 2

matrix of user-defined custom data values (time and theta) namely: -
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84.6774

84.1935

83.7097

83.2258

82.7419

82.2581

81.7742

81.2903

80.8065

80.3226

12.0000

12.0000

12.0000

12.0000

12.0000

12.0000

12.0000

12.0000

12.0000

12.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

79.8387

79.3548

78.8710

78.3871

77.9032

77.4194

76.9355

76.4516

75.9677

75.4839

75.0000

74,5161

74.0323

73.5484

73.0645

72.5806

72.0968

71.6129

71.1290

70.6452
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13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

13.0000

70.1613

69.6774

69.1935

68.7097

68.2258

67.7419

67.2581

66.7742

66.2903

65.8065

65.3226

64.8387

64.3548

63.8710

63.3871

62.9032

62.4194

61.9355

61.4516

60.9677

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

60.4839

60.0000

59.5161

59.0323

58.5484

58.0645

57.5806

57.0968

56.6129

56.1290

55.6452

55.1613

54.6774

54.1935

53.7097

53.2258

52.7419

52.2581

51.7742

51.2903



14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

14.0000

Output ‘Y’ (voltage and current) for input vectors ‘I’ is given by the command prompt:

50.8065

50.3226

49.8387

49.3548

48.8710

48.3871

47.9032

47.4194

46.9355

46.4516

Y = net(l);

Y =

14.6000

15.0100

14.5000

14.0700

14.5000

14.4000

17.1700

20.0000

-2.4751

-5.2935

9.5708

-1.5309

4.6310

-6.5638

-0.9891

2.9234

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

14.8100

14.7100

14.5600

14.7600

16.2600

15.5600

14.6500

12.5300

45.9677

45.4839

45.0000

445161

44.0323

43.5484

43.0645

42.5806

42.0968

41.6129

-1.4799

12.0036

11.2985

1.5653

4.5540

3.2878

1.3540

9.3488
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15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

17.5800

14.3900

14.7900

15.5600

15.0200

14.4400

14.6500

18.1800

41.1290

40.6452

40.1613

39.6774

39.1935

38.7097

38.2258

37.7419

37.2581

36.7742

8.5370

-5.1487

9.2129

5.7887

-3.8538

14.0136

0.9387

8.5555

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

15.0000

14.6500

17.0700

16.4600

13.4300

13.8400

12.9300

15.5900

4.9000

36.2903

35.8065

35.3226

34.8387

34.3548

33.8710

33.3871

32.9032

32.4194

31.9355

4.9881

-11.3216

4.6323

45412

1.7903

-0.2071

1.6727

-3.5675



15.0200

15.4800

14.9000

15.0200

17.9800

16.4600

15.3100

15.3500

14.9900

15.1900

15.5600

18.7900

17.4700

16.6700

15.6600

15.0200

15.5000

16.6700

15.7200

15.4500

16.5700

19.0900

17.9800

8.4140

13.7118

-4.4377

3.9851

-5.3566

8.1235

-2.7860

-0.5700

49181

0.8220

-1.7301

2.8813

7.9515

5.3072

-1.9049

9.8148

-10.7042

2.6299

1.9755

2.8916

8.6560

-11.9791

-7.3083

19.6000

17.1700

17.2700

16.0600

13.3300

15.3900

15.2900

15.6400

15.6000

15.6500

16.3500

16.3600

13.9400

15.1600

16.0400

16.3400

15.4600

15.5600

15.4500

16.0600

15.7600

14.8500

16.2400

15.7296

-7.2318

1.6543

9.2692

-2.7432

2.1820

2.7382

8.7127

-8.5976

-2.3129

-2.1688

8.9564

6.7770

0.5044

-1.1078

-2.3947

-6.2994

3.0269

-0.8145

15.5432

8.9905

0.7910

-10.3046
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16.0000

16.7700

16.5000

16.6700

16.8700

17.9800

18.6900

13.4300

21.3100

17.1700

17.0700

15.6600

15.9700

16.5000

16.3400

16.2900

16.3000

16.7100

16.8700

14.2400

15.3800

16.2400

16.3900

11.1718

1.0730

10.7761

-0.0417

8.9485

8.8922

-3.0364

7.0651

-9.1809

-4.8404

-16.0426

11.1493

-1.1886

-0.6956

6.8980

-11.9675

0.1967

-1.2622

-4.5254

-2.0473

-10.4317

2.6026

4.3698

16.0200

15.6600

17.7800

15.5600

19.6000

12.3200

16.2000

16.0000

16.7700

16.4400

16.9700

16.1600

18.5900

15.4500

17.6800

15.8600

18.8900

18.3800

21.0100

9.5931

2.8544

-10.1466

2.2147

2.4231

8.2561

5.9233

-8.8784

-5.9413

-2.3525

-5.0052

0.0348

11.5618

-0.7923

-1.5461

-13.8399

-0.6906

-12.5809

-10.1786



It was found that the transformed output values for the new set of input values showed good
relevance w.r.t. voltage output. The current values, however, so obtained, showed no possible
parity at all with actual collected values and could clearly be rejected. The voltage values,
however, was very well speculated within possible ranges of actual voltage output and could thus
be remarked, that the simple model gives quiet relevant predictive voltage outputs for custom
choice of theta and time. The predictive voltage output of the system for 30 days (but for various
thetas) was plotted (Figure 5.9.) and revealed a qualitative symmetry in the graph structure

compared to those obtained by actual data values.
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Figure 5.9. Predictive Voltage vs Days
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5.4. Conclusion

The model used an inbuilt training function and other by-default weight, biases and activation
functions, a lot of scopes lie in the prospect of developing custom training functions and
selection of proper weights, biases and activation function, to also give a good predictive output
current values for custom input theta and time. The purpose of the current work was to see if
such neural-network modeling can be implemented to generate predictive output of solar-panels,

and in this regard the present project is successful.
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CONCLUSION AND FUTURE SCOPE OF WORK
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6.1. Conclusion

The current project work revealed in a qualitative sense that the voltage-current output of a solar
panel is fundamentally more of a function of the time of the day when the data is collected and
that nature of the graphs are dictated by this time-stamp of data-collection. Next, the nature of
the graphs for exactly opposite directions bear more symmetry with each other for all the panel-
inclinations and can thus be concluded that the next more fundamental parameter for influencing
output graph nature is the exactly opposite-directions in tally of which the data are collected. The
simple neural network modeling of the voltage current output data w.r.t. input time and panel
inclination suggested that a predictive neural-network output model can at least be easily
generated for custom input of time and theta and can be used to transform into predictive voltage
and current outputs albeit with certain degree of modification of the inbuilt training-functions,
weights, biases and activation functions. The work has at least shown that the predictive voltage
values so-obtained are very much in tally with actual data collected and the current output can
also be tuned necessarily with modifications in the algorithm of the neural network. Such

possibilities are explained further in detail in the future scope of work section.
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6.2.

Future Scope of Work

In future a possible application of source-measuring unit can be implemented to collect
voltage-current outputs of the solar panel against various loads and various inclination,
keeping other parameters same as before. This will help us to obtain the various IV
curves for every theta value at different time-stamps and directions and would lead to a
much more comprehensive study.

Data-collection duration can also be extended over a whole season or an entire year as
well as those in different locations.

Fixing a solarimeter against the surface of the solar-panel at perpendicular would help us
to obtain the combined direct and diffused solar irradiance at various observations and
could be used as another parameter in the next stage of predictive modeling of the panel
outputs w.r.t. different inputs.

Parameters like fine latitude-longitude values as well as altitude can also be used as
inputs in those predictive models.

The predictive model itself will be overhauled in the next stage with exhaustive
formulation of suitable training functions for the proper input/output mappings for all the
parameters and could also lead to ideation of a new analytical equation which relates the
input time, theta and probably solar isolation to output voltage, current and power values.
This neural network modeling itself can actually help in creating a dynamic working
formula or at least a static one which controls the positioning and movement of solar-

panels at different time of the day and at different seasons to generate the best output
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power at any point of collection and could actually help in improving efficiency of

building-integrated solar photo-voltaic systems and also those for the large solar parks.

74



CHAPTER-7

REFFERENCES

75



7. REFFERENCES

[1] Chuyao Wang, Jie Ji, Bendong Yu, Lijie Xu, Qiliang Wang, Xinyi Tian. Investigation on the
operation strategy of a hybrid BIPV/T facade in plateau areas: An adaptive regulation method based on
artificial neural network. Energy 239 (2022) 122055.

[2] F. Ghani, M. Duke, J.K. CarsonEstimation of photovoltaic conversion efficiency of a building
integrated photovoltaic/thermal (BIPV/T) collector array using an artificial neural network. Solar Energy 86
(2012) 3378-3387.

[3] Abdulwahab A. Alnagi, Hossein Moayedi, Amin Shahsavar, Truong Khang Nguyen. Prediction of
energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural
network and hybrid particleswarm optimization models. Energy Conversion and Management 183 (2019)
137-148.

[4] Mohit Barthwal, Dibakar Rakshit. Artificial neural network coupled building-integrated
photovoltaic thermalsystem for indian montane climate. Energy Conversion and Management 244 (2021)
114488.

[5] L. Serrano-Lujéan, C. Toledo, J.M. Colmenar, J. Abad, A. Urbina. Accurate thermal prediction
model for building-integrated photovoltaicssystems using guided artificial intelligence algorithms. Applied
Energy 315 (2022) 119015.

[6] Maneesha Perera, Julian De Hoog, Kasun Bandara, Damith Senanayake,Saman Halgamuge. Day-
ahead regional solar power forecasting with hierarchical temporalconvolutional neural networks using
historical power generation andweather data. Applied Energy 361 (2024) 122971.

[7] F. Almonacid, C. Rus, P.J. Pe” rez, L. Hontoria. Estimation of the energy of a PV generator using
artificial neural network. Renewable Energy 34 (2009) 2743-2750.

[8] Manash Jyoti Deka, Akash Dilip Kamble, Dudul Das, Prabhakar Sharma, Shahadath Ali,

Paragmoni Kalita, Bhaskor Jyoti Bora, Pankaj Kalita. Enhancing the performance of a photovoltaic thermal
system with phasechange materials: Predictive modelling and evaluation usingneural networks. Renewable
Energy 224 (2024) 120091.

[9] Tingting Yang, Andreas K. Athienitis. A review of research and developments of building-integrated
photovoltaic/thermal (BIPV/T) systems. Renewable and Sustainable Energy Reviews 66 (2016) 886—912.

[10] Dong C. Nguyen, Yasuaki Ishikawa. Artificial neural network for predicting annual output energy of
building-integrated photovoltaics based on the 2-terminalperovskite/silicon tandem cells under realistic
conditions. Energy Reports 8 (2022) 10819-10832.

[11] Ramtin Javadijam, Mohsen Dehbashi, Mohammad Hassan Shahverdian,Ali Sohani, Miisliim Arici,
Hoseyn Sayyaadi. Artificial intelligent based techno-economic-exergeticoptimization of a thermoelectric
enhanced building integratedphotovoltaic thermal system. Journal of Building Engineering 84 (2024) 108526.

[12] R. Kabilan, V. Chandran, J. Yogapriya, Alagar Karthick, Priyesh P. Gandhi,V. Mohanavel, Robbi
Rahim, and S. Manoharan. Short-Term Power Prediction of Building Integrated Photovoltaic
(BIPV) System Based on Machine Learning Algorithms. International Journal of Photoenergy, Volume 2021.

[13] S. Kaliappan, R. Saravanakumar, Alagar Karthick, P. Marish Kumar,V. Venkatesh, V. Mohanavel,

and S. Rajkumar. Hourly and Day Ahead Power Prediction of Building IntegratedSemitransparent
Photovoltaic System. International Journal of Photoenergy, Volume 2021.

76



[14] A.J. Aristizabal. Artificial Neural Network Applied to Estimate the PowerOutput of BIPV Systems.
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 19,
Issue 1, Ver. I (Jan.-Feb. 2017), PP 73-78.

[15] D. Paul, S. N. Mandal, D. Mukherjee, and S. R. Bhadra Chaudhuri. Artificial Neural Network
Modeling for Efficient Photovoltaic System Design. 2008 International Conference on Advanced Computer
Theory and Engineering.

[16] Dongkyu Lee, Jinhwa Jeong, Sung Hoon Yoon and Young Tae Chae. Improvement of Short-Term
BIPV Power Predictions Using Feature Engineering and a RecurrentNeural Network. Energies 2019, 12,
3247.

[17] Jesus Polo, Nuria Martin-Chivelet and Carlos Sanz-Saiz. BIPV Modeling with Artificial Neural
Networks: Towards aBIPV Digital Twin. Energies 2022, 15,4173.

[18] Wei Gaoa, Hossein Moayedi, Amin Shahsavar. The feasibility of genetic programming and ANFIS in
prediction energeticperformance of a building integrated photovoltaic thermal (BIPVT) system. Solar Energy
183 (2019) 293-305.

[19] Chaouki Ghenai, Fahad Faraz Ahmad, Oussama Rejeb, Maamar Bettayeb. Artificial neural
networks for power output forecasting frombifacial solar PV system with enhanced building roofsurface
Albedo. Journal of Building Engineering 56 (2022) 104799.

[20] Changyu Qiu, Yun Kyu Yi, Meng Wang, Hongxing Yanga. Coupling an artificial neuron network
daylighting model and buildingenergy simulation for vacuum photovoltaic glazing. Applied Energy 263
(2020) 114624.

[21] Woo-Gyun Shin, Ju-Young Shin, Hye-Mi Hwang, Chi-Hong Park and Suk-Whan Ko. Power
Generation Prediction of Building-IntegratedPhotovoltaic System with Colored Modules UsingMachine
Learning. Energies 2022, 15,2589.

[22] Anna Fedorova, Bjarn Petter Jelle, Bozena Dorota Hrynyszyn, Stig Geving. Quantification of wind-
driven rain intrusion in building-integratedphotovoltaic systems. Solar Energy 230 (2021) 376-389.

[23] Aybiike Taser, Basak Kundakc1 Koyunbaba, Tugce Kazanasmaz. Thermal, daylight, and energy
potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and
developments. Solar Energy 251 (2023) 171-196.

[24] Mohamed R. Elkadeem, Mohammad A. Abido. Optimal planning and operation of grid-connected
PVI/CHP/battery energysystem considering demand response and electric vehicles for amulti-residential
complex building.Journal of Energy Storage 72 (2023) 108198.

[25] V. Stoichkov, T.K.N. Sweet, N. Jenkins, J. Kettle. Studying the outdoor performance of organic
building-integratedphotovoltaics laminated to the cladding of a building prototype. Solar Energy Materials
and Solar Cells 191 (2019) 356-364.

[26] Y. Elaouzy, A. El Fadar. Investigation of building-integrated photovoltaic, photovoltaic thermal,
ground source heat pump and green roof systems. Energy Conversion and Management 283 (2023) 116926.

[27] Fang Wang, Tian You. Synergetic performance improvement of a novel building
integratedphotovoltaic/thermal-energy pile system for co-utilization of solar andshallow-geothermal energy.
Energy Conversion and Management 288 (2023) 117116.

[28] Tingting Yang, Andreas K. Athienitis. Experimental investigation of a two-inlet air-based building
integratedphotovoltaic/thermal (BIPV/T) system. Applied Energy 159 (2015) 70-79.

77



[29] Ahadollah Azami, Harun Sevin¢. The energy performance of building integrated photovoltaics
(BIPV) bydetermination of optimal building envelope. Building and Environment 199 (2021) 107856.

[30] Francesco Nicoletti, Mario Antonio Cucumo, Natale Arcuri. Building-integrated photovoltaics
(BIPV): A mathematical approach toevaluate the electrical production of solar PV blinds. Energy 263 (2023)
126030.

[31] Zhengguang Liu, Zhiling Guo, Qi Chen, Chenchen Song, Wenlong Shang,Meng Yuan, Haoran
Zhang. A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives.
Energy 263 (2023) 126082.

[32] Akash Kumar Shukla, K. Sudhakar, Prashant Baredar. A comprehensive review on design of
building integratedphotovoltaic system. Energy and Buildings 128 (2016) 99-110.

[33] Zhangyuan Wanga, Jun Zhang, Zhixian Wang, Wansheng Yang, Xudong Zhao. Experimental
investigation of the performance of the novel HP-BIPV/Tsystem for use in residential buildings. Energy and
Buildings 130 (2016) 295-308.

[34] Fred Edmond Boafo, Jin-Hee Kim, Jong-Gwon Ahn, Sang-Myung Kim, Jun-Tae Kim,Liangliang
Zhang. Study on thermal characteristics and electrical performance of a hybridbuilding integrated
photovoltaic (BIPV) system combined with vacuuminsulation panel (VIP). Energy & Buildings 277 (2022)
112574,

[35] S.S.S. Baljit, Hoy-Yen Chan Kamaruzzaman Sopian. Review of building integrated applications of
photovoltaic and solarthermal systems. Journal of Cleaner Production 137 (2016) 677-689.

[36] Aritra Ghosh. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for
adaptive less energy-hungry building’s skin: Acomprehensive review. Journal of Cleaner Production 276
(2020) 123343.

[37] Zhijian Liu, Yulong Zhang, Xitao Yuan, Yuanwei Liu, Jinliang Xu, Shicong Zhang,Bao-jie He. A
comprehensive study of feasibility and applicability of buildingintegrated photovoltaic (BIPV) systems in
regions with highsolar irradiance. Journal of Cleaner Production 307 (2021) 127240.

[38] Syamimi Saadon, Leon Gaillard, Stephanie Giroux-Julien, Christophe Menezo. Simulation study of a
naturally-ventilated building integratedphotovoltaic/thermal (BIPV/T) envelope. Renewable Energy 87
(2016) 517-531.

[39] Giovanni Barone, Annamaria Buonomano, Roma Chang, Cesare Forzano, Giovanni Francesco
Giuzio, Jayanta Mondol, Adolfo Palombo, Adrian Pugsley,Mervyn Smyth, Aggelos Zacharopoulos. Modelling
and simulation of building integrated ConcentratingPhotovoltaic/Thermal Glazing (CoPVTG) systems:
Comprehensiveenergy and economic analysis. Renewable Energy 193 (2022) 1121-1131.

[40] Md Muin Uddin, Jie Ji, Chuyao Wang, Chengyan Zhang. Building energy conservation potentials of
semi-transparent CdTeintegrated photovoltaic window systems in Bangladesh context. Renewable Energy
207 (2023) 512-530.

[41] Ceylin Sirin, Jamie Goggins, Magdalena Hajdukiewicz. A review on building-integrated
photovoltaic/thermal systems forgreen buildings. Applied Thermal Engineering 229 (2023) 120607.

[42] Aloys Martial Ekoe A. Akata, Donatien Njomo, Basant Agrawal. Assessment of Building Integrated

Photovoltaic (BIPV) for sustainableenergy performance in tropical regions of Cameroon. Renewable and
Sustainable Energy Reviews 80 (2017) 1138-1152.

78



[43] R.P.N.P. Weerasinghe, R.J. Yang, R. Wakefield, E. Too, T. Le, R. Corkish, S. Chen,C. Wang.
Economic viability of building integrated photovoltaics: A review offorty-five (45) non-domestic buildings in
twelve (12) western countries. Renewable and Sustainable Energy Reviews 137 (2021) 110622.

[44] Jinyoung Ko, Jae-Weon Jeong. Annual performance evaluation of thermoelectric generator-assisted
building-integrated photovoltaic system with phase change material. Renewable and Sustainable Energy
Reviews 145 (2021) 111085.

[45] Lars Gullbrekken, Tore Kvande, Berit Time. Roof-integrated PV in Nordic climate - Building
physical challenges. Energy Procedia 78 (2015) 1962 — 1967.

[46] Sazia Khanam, Md. Meraj, Md. Azhar, M.N. Karimi, Tausif Ahmad,Md. Reyaz Arif, Wael Al-Kouz.
Comparative performance analysis of photovoltaic modules ofdifferent materials for four different climatic
zone of India. Urban Climate 39 (2021) 100957.

[47] C.S. Rajoria, Ravi Kumar, Amit Sharma, Dharmendra Singh, Sathans Suhag. Development of flat-
plate building integrated photovoltaic/thermal (BIPV/T) system: A review. Materials Today: Proceedings 46
(2021) 5342-5352.

[48] Siliang Yang, Francesco Fiorito, Deo Prasad, Alistair Sproul, Alessandro Cannavale. A sensitivity
analysis of design parameters of BIPV/T-DSF in relation tobuilding energy and thermal
comfortperformances. Journal of Building Engineering 41 (2021) 102426.

[49] Abdul Hazeem Hamzah, Yun li Go. Design and assessment of building integrated PV (BIPV) system
towards netzero energy building for tropical climate. e-Prime - Advances in Electrical Engineering,
Electronics and Energy 3 (2023) 100105.

[50] Fabrizio M. Amoruso and Thorsten Schuetze. Carbon Life Cycle Assessment and Costing of Building
IntegratedPhotovoltaic Systems for Deep Low-Carbon Renovation. Sustainability 2023, 15, 9460.

[51] Sojung Kim and Sumin Kim. Economic Feasibility Comparison between Building-
IntegratedPhotovoltaics and Green Systems in Northeast Texas. Energies 2023, 16, 4672.

79



