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1.1. Introduction of Solar-Panel Outputs and Neural-Network Modeling 

Solar energy is a critical renewable resource, but maximizing its potential requires optimizing 

panel efficiency. One key factor is orientation – the direction the panel faces relative to the sun. 

This work qualitatively analyzes how orientation impacts energy production. Traditional 

methods for optimizing orientation can be complex. In the course of the work, we hope to 

identify which of the above parameters (time or direction) is more fundamental in influencing 

Current-Voltage (I-V) output of the solar panels. As Building-Integrated Photovoltaic (BIPV) 

systems represent a unique synergy between sustainability and design, this work thus assesses 

its possible impact on energy efficiency and the overall environmental sustainability of 

buildings. To address this, we introduce neural networks, powerful computational models 

inspired by the brain.  Modeling the relationship between orientation and energy output using 

neural networks will be explored. 

 

1.2. Overview of Building-Integrated Photovoltaics (BIPV) System 

 Solar power producing devices or systems known as Building-Integrated Photovoltaics (BIPV) 

are smoothly incorporated into building architecture. These systems have two purposes: they 

produce electricity from solar energy and serve as construction materials (roofs, walls and 

windows). Here are some essential BIPV points. 
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1.2.1. Important Elements and Kinds 

 Solar Panels: Conventional photovoltaic systems may be included into the design of 

buildings. 

 Solar Roofing Tiles/Shingles: These materials generate electricity while serving as 

roofing components. 

 Solar Roofing Tiles/Shingles: These materials generate electricity while serving as 

roofing components. 

 Solar Roofing Tiles/Shingles: These materials generate electricity while serving as 

roofing components. 

 

1.2.2. Challenges in Application 

 Greater Initial Costs:  Installing BIPV systems might be more costly than installing 

conventional solar panels.  

 Technical Complexity: To guarantee effectiveness and attractiveness, integration calls 

for meticulous engineering and design. 

 Regulatory Obstacles: Adoption and installation of BIPV systems may be impacted by 

building rules and regulations. 

 Effectiveness Trade-offs: Compared to traditional PV panels, some BIPV materials may 

be less efficient. 
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1.2.3. Decreased Environmental Impact 

One of the biggest obstacles in the battle against climate change is the built environment.  A key 

technique to overcome this issue is building-integrated photovoltaics (BIPV), which smoothly 

integrates solar energy generation into the structure itself.  BIPV systems use solar energy, which 

is a clean, renewable energy source. This naturally lessens the need for fossil fuels to generate 

energy, which significantly lowers greenhouse gas emissions from the construction industry. 

 

1.2.4. Aesthetics that Enhances Performance 

BIPV integrates with the building envelope in a way that conventional rooftop solar panels do 

not. High-performing solar energy generation is made possible by this creative method without 

compromising the goals of architectural design. 

 

1.2.5. Enhanced Efficiency and Life-Cycle Cost Savings 

BIPV systems can be used as solar energy sources and construction materials (cladding, roofing). 

This gets rid of the requirement for extra materials and might save building expenses. 

Additionally, the clean energy produced results in long-term operating savings on power costs. 

 

1.2.6. Active Participation in a Sustainable Built Environment 

Buildings that use BIPV technology become active participants in the renewable energy grid, 

replacing their previous role as passive energy consumers. This lessens the built environment's 

total environmental impact and promotes a more sustainable building sector. 
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1.2.7. Investigating BIPV Performance Optimization: Impact of Time, 

Direction, and Tilt Angle 

 

The increasing global concern over climate change and the pressing need for sustainable energy 

solutions have driven the integration of renewable energy technologies into various aspects of 

modern life. As one of the key contributors to greenhouse gas emissions, the building sector has 

become a focal point for exploring innovative solutions to reduce its environmental impact and 

sustainable energy generation. Building-Integrated Photovoltaic (BIPV) systems have emerged 

as a ground-breaking approach, combining solar energy generation with architectural design, to 

transform buildings into active contributors to the renewable energy landscape. The principle of 

BIPV revolves around embedding solar photovoltaic elements directly into the building's 

structure and facade, rather than relying solely on traditional rooftop solar panels. This 

integration allows buildings to harness solar energy while preserving their essential functions as 

habitable spaces, setting Building-Integrated Photovoltaic (BIPV) systems apart from 

conventional solar installations. By seamlessly blending renewable energy technology with 

architectural elements, Building-Integrated Photovoltaic (BIPV) systems offer a unique 

opportunity to merge aesthetics and functionality, paving the way for more sustainable and 

visually appealing buildings. The current work delves into the underlying principles of Building-

Integrated Photovoltaic (BIPV) systems, unravelling their distinctions from conventional solar 

installations. The project hopes to investigate the fundamental effect of time of the day and the 

solar panel direction North (N) South (S) East (E) West (W) for various panel inclinations (theta) 

w.r.t. surface level on panel output qualitatively. This comprehensive analysis aims to shed light 

on how Building-Integrated Photovoltaic (BIPV) systems can be improved for more efficient 
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energy generation. Moreover, the work hopes implement to neural network-based modelling to 

speculate the possible Current-Voltage (I-V) output for any time-stamp (i.e., collection-time of 

data) and theta, based on the observed experimental data set values. 

 

1.2.8. Significance of BIPV Research: Optimizing Efficiency and Shaping 

Sustainable Architecture 

 

In the course of the work, we hope to identify which of the above parameters (time or direction) 

is more fundamental in influencing IV output of the solar panels. As Building-Integrated 

Photovoltaic (BIPV) systems represent a unique synergy between sustainability and design, this 

work thus assesses its possible impact on energy efficiency and the overall environmental 

sustainability of buildings. Understanding the influence of the above installation parameters is 

crucial for the widespread adoption and success of BIPV as a sustainable energy solution. As the 

field of renewable energy evolves rapidly, the work hopes to contribute to the emerging trends 

and breakthroughs that promise to revolutionize Building-Integrated Photovoltaic (BIPV) 

Systems technology, shaping the trajectory of sustainable architecture. Through an in-depth 

ideation of Building-Integrated Photovoltaic (BIPV) principles, architectural integration, 

benefits, challenges, real-world applications, and future possibilities, a growing body of 

knowledge on sustainable building practices can be achieved. By embracing Building-Integrated 

Photovoltaic (BIPV) technology, the architectural industry can play a pivotal role in fostering a 

more sustainable future, where buildings actively participate in combating climate change and 

ensuring a cleaner and greener planet for generations to come. The current work hope to 
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qualitatively and in some degree quantitatively help in ideation of new aspects of BIPV 

technology. 

Innovation in renewable energy is required due to climate change. Though they present a 

promising option, Building-Integrated Photovoltaics (BIPV) performance optimisation need a 

better comprehension of important variables. In order to address this issue, this study looks at 

how time and panel orientation affect solar panel I-V production over a 30-day period at 

different inclinations. The study tries to determine the primary parameter (time or direction) 

determining output symmetry through the analysis of I-V graphs. BIPV panel placement 

techniques can be informed by this knowledge. In order to forecast I-V output, the study also 

investigates a fundamental neural network model in MATLAB. The goal of this model is to lay 

the foundation for more intricate models by mapping variables such as time and tilt angle to 

voltage and current. The study's ultimate goal is to analyse the data and maybe identify input-

output links. 

 

1.3. Hypothesis, Aims and Objectives 

 

The primary aims and objectives of this work is to develop a qualitative understanding of the 

influence of parameters like time and direction on the current-voltage output generation of solar 

panels w.r.t. various panel inclinations. In this regard an exhaustive literature review is initially 

carried out based on available works done in the BIPV sector both regarding installation as well 

as regarding simulation and software-based modeling.  Following the literature review, the idea 

is to study the nature of the output voltage and current graphs over a period of 30 days, for seven 

different panel inclinations, and recognize which of the two parameters time or panel-direction is 
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more fundamental in effecting the nature of the graphs (w.r.t. symmetry). This qualitative 

ideation may help us in making decisions that how placements of solar-panels w.r.t. various 

inclinations should be prioritized based on the criteria of more significance of time of output 

collection as a parameter or direction of output collection. The next phase of the work is carrying 

out simple input/output modeling of the collected data based on a neural network in MATLAB 

software. The idea is to map input set of data values like time-stamp and panel-inclination angle 

(theta) to output values of open-circuit voltage and short-circuit current and then train the 

network model based on those data, so that a fresh set custom input values can be mapped into a 

predictive set of corresponding targets (output) values. The purpose is to solely use all inbuilt 

training and activation functions, weights and biases to generate the model and see how such 

mapping fits without implementing any custom-built functions. This simple modelling, can help 

in building foundational understanding for developing more complex and more accurate 

input/output neural network models for such data-mapping and even later deriving an analytical 

equation relating such input (say time and theta) to output (current, voltage) values of solar 

panels. The ultimate objective would be to analyze and conclude the observations made and 

computations done and eventually publish the same in peer-reviewed journals. 

 

1.4. Conclusion 

 

Building industry activity is required in response to climate change. By integrating renewable 

energy directly into buildings, Building-Integrated Photovoltaic’s (BIPV) provide a ground-

breaking option. This work paves the way for optimized designs by examining the effects of 

time, direction, and tilt angle on BIPV output. Optimizing BIPV efficiency and promoting 
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sustainable construction practices require an understanding of these elements. The significance 

of this initiative is that it has the ability to completely transform sustainable architecture. 

Buildings might become active participants in a cleaner future if BIPV is widely adopted. 

This work is an important step towards a more sustainable built environment, since it explores 

neural network applications and BIPV optimization. BIPV technology has the potential to make 

our buildings positive change agents with more research and development. 

In this study we observed: 

 The output voltage and current graphs over a period of 30 days. 

 Mapped the input set of data values like time-stamp and panel-inclination angle (theta) 

against output values of open-circuit voltage and short-circuit current and study which of 

the parameters like time or panel direction is more fundamental in influencing the 

symmetry of the plotted graphs. 

 Plotted the same data in a simple input/output modeling based on a neural network in 

MATLAB software and study the predictive output of such network based custom input 

data. 
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CHAPTER- 2 

 

REVIEW OF EARLIER WORK 
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2.1. Introduction 

This literature review aims to create a thorough grasp of the present state of knowledge by 

synthesizing the available research on BIPV and highlighting important trends and knowledge 

gaps. This study seeks to offer a cogent narrative that illustrates the development of thinking in 

this field by critically examining the significant contributions and methodological methods. 

This system combines battery storage, backup natural gas for residences, solar panels, and an 

incredibly efficient heater/generator. By utilizing less energy during peak hours, storing extra, 

and optimizing solar power, it seeks to reduce lifetime costs.  They put it to the test in a 

computer model and discovered that peak hour demand reduction and solar panel maximization 

result in the most savings. 

 

2.2. Literature Survey 

C. Wang et al. developed a regulatory approach using artificial neural networks (ANNs) to 

manage the operation of a hybrid Building-Integrated Photovoltaic/Thermal (BIPV/T) facade. 

This approach effectively addressed overcooling and overheating issues, reducing air 

conditioning demand by 165.0 kWh in Xining and 255.9 kWh in Lhasa. The ANN model 

predicted indoor temperature with an error rate of less than 1%, leading to over 40% energy 

savings in the plateau regions studied. [1] F. Ghani et al. investigated the impact of coolant flow 

distribution on the thermal efficiency of solar thermal collectors in BIPV/T systems. They used a 

numerical method to measure the potential negative impact of flow dispersion on solar output 

and found that decreasing fin width does not always improve PV production despite potential 

gains in fin efficiency. The study suggested that using a single riser could enhance PV output and 

reduce system complexity and costs. An artificial neural network was proposed to approximate 
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the photovoltaic yield of an array under different flow conditions. [2] Alnaqi, Abdulwahab A. et 

al. assessed the efficiency of combining particle swarm optimization (PSO) with an optimized 

artificial neural network (ANN) to estimate the energetic performance of BIPV/T systems. The 

performance evaluation criterion indicated that the PSO-ANN model performed slightly better 

than the traditional ANN during both training and testing stages. [3] M. Barthwal et al. modeled 

a BIPV/T system for the Indian Himalayan Region, particularly in Srinagar, to provide electricity 

and thermal energy for space heating. Using an application-centric approach, they trained an 

ANN to predict annual thermal and exergy outputs. The neural network model demonstrated 

good performance against the test dataset, optimizing annual thermal and exergy gains. [4] L. 

Serrano-Luján et al. explored the complex physical and material properties of photovoltaic 

modules and their influence on thermal behavior, which traditional modeling techniques often 

fail to comprehensively define. They developed an AI-based method to forecast the temperature 

of poly-crystalline silicon photovoltaic modules based on local weather and indoor comfort 

parameters. [5] M. Perera et al. explored the challenge of forecasting solar power in a given 

region, crucial for ensuring a consistent electricity supply. Due to the vast amount of solar 

generation and weather data from various locations, accurate forecasting can be difficult. This 

study introduced two innovative deep-learning-based regional forecasting techniques that 

effectively combine solar generation and weather data with local meteorological information. 

These techniques employ hierarchical temporal convolutional neural networks (HTCNNs), 

specifically architectures HTCNN A1 and A2. Evaluated using a large dataset from 101 locations 

across Western Australia, the proposed methods achieved a forecast skill score of 40.2% while 

requiring fewer trained networks. [6] F. Almonacid et al. addressed the increasing prevalence of 

grid-connected photovoltaic systems in developed nations, emphasizing the role of global 
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cooperation in advancing these technologies. They developed a technique using artificial neural 

networks (ANNs) to electrically characterize PV modules and produce V-I curves for silicon-

crystalline modules. This method is intended to determine the power output of specific 

installations, such as the "Univer generator," using identical modules. [7] M. J. Deka et al. aimed 

to develop a photovoltaic thermal system capable of mitigating temperature drops and generating 

both thermal and electrical energy. The system integrates absorber tubes and phase change 

materials (PCM) based on biochar. An ANN model utilizing Multilayer Perceptrons accurately 

predicted the system's performance, showing an impressive R-value of 0.9982 and a mean square 

error (MSE) of 1.1328 during training. [8] T. Yang et al. also focused on creating a photovoltaic 

thermal system that addresses temperature drops and produces thermal and electrical energy. 

This system incorporates absorber tubes and PCM based on biochar. Similar to Deka et al., their 

study used a neural network model with Multilayer Perceptrons to predict system performance, 

achieving an outstanding R-value of 0.9982 and a commendable MSE of 1.1328 during training. 

[9] D. C. Nguyen et al. presented a deep learning approach to optimize the tandem structure 

design of 2-terminal perovskite/silicon tandem solar cells. They trained and validated an ANN 

using Atlas-simulated results for tandem cells with varying perovskite layer bandgaps and 

thicknesses under real-world conditions. The ANN model demonstrated a high correlation 

coefficient of 0.99979 and a mean square error of 1.26, indicating its accuracy in predicting the 

annual energy output of these tandem solar cells. [10] R. Javadijam et al. conducted a study 

aimed at enhancing the performance of a BIPV/T thermoelectric system. The research focused 

on optimizing the system's efficiency using both artificial intelligence and traditional techniques. 

Attention was given to improving electrical energy production, heat recovery, and the system's 

payback period. The optimized system achieved a payback period of 5.16 years and 
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demonstrated a 6.93% improvement over the standard BIPV/T system. Additionally, the study 

investigated the influence of factors such as air inlet temperature, wind speed, and irradiance on 

the efficiency of both electrical and thermal energy production. [11] In another study, R. Kabilan 

et al. presented a machine learning-based prediction methodology for estimating the power 

output of integrated photovoltaic systems in buildings. Their methodology included an accuracy 

assessment, weather clustering, algorithm development, and data quality evaluation. By utilizing 

linear regression coefficients, the model improved the accuracy of PV power generation 

forecasts, achieving precise predictions with a root mean square error of 4.42%. [12] S. 

Kaliappan et al. employed artificial neural networks (ANN) to predict the performance of 

Building Integrated Semitransparent Photovoltaic (BISTPV) systems. They used three types of 

neural network models: Elman, feed-forward, and generalized regression neural networks. Their 

findings indicated consistent performance across these models, suggesting that forecast accuracy 

could be enhanced by applying strategies such as EN, FFN, and GRN. [13] A.J. Aristizábal et al. 

developed an artificial neural network model to calculate the power produced by integrated 

photovoltaic systems in buildings. Their model incorporated variables such as zenith and 

azimuth solar angles, solar radiation, and ambient temperature. Validation using real data from a 

6 kW BIPV system at Universidad de Bogotá Jorge Tadeo Lozano demonstrated the model's 

reliability under various conditions. The model was implemented in MatlbabTM software for 

practical application. [14] D. Paul et al. addressed the challenge of efficiently extracting solar 

radiation data for solar photovoltaic energy systems. They proposed constructing hourly 

insolation annual frequency distributions using MATLAB to overcome this challenge. 

Additionally, they explored the potential of using a composite frequency distribution for 

Building Integrated Photovoltaic (BIPV) systems, aiming to provide an effective tool for BIPV 
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system designers. [15] D. Lee et al. conducted a study aimed at improving short-term hourly 

predictions of photovoltaic power output using machine learning and feature engineering 

techniques. They found that a recurrent neural network outperformed five other models when 

forecasting photovoltaic power output over 64 test days. By applying dropout observation to the 

normative sky index through feature engineering, they enhanced the hourly prediction 

performance. They observed a 20% improvement in prediction accuracy for overcast days 

compared to the original weather dataset without dropout observation. This method effectively 

enhances short-term predictions of photovoltaic power output in buildings, even when using 

basic weather forecasting services. [16] In another study, J. Polo et al. utilized laser imaging 

detection and ranging (LIDAR) data to create high-resolution elevation digital models for 

building-integrated and building-attached photovoltaic systems (BIPV and BAPV). They 

employed an artificial neural network (ANN) to model power generation of different BIPV 

arrays using meteorological and solar irradiance conditions and shading patterns. The ANN 

model exhibited high accuracy, demonstrating its potential for creating a digital twin for BIPV 

systems. This complements conventional monitoring strategies and aids in diagnosing 

performance anomalies. [17] W. Gao et al. conducted a study comparing three computational 

intelligence approaches—artificial neural network (ANN), genetic programming (GP), and 

adaptive neuro-fuzzy inference system (ANFIS)—to predict the energetic performance of a 

building-integrated photovoltaic thermal (BIPVT) system. The study evaluated the performance 

of these models using the performance evaluation criterion (PEC). While all models performed 

well, the ANN marginally outperformed GP and ANFIS. However, due to its simplicity and 

robustness, the GP model was deemed more appropriate. [18] C. Ghenai et al. developed 

forecasting models to predict power output and assess the performance of bifacial solar PV 
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systems on flat roof buildings with controlled surface albedo. They combined cutting-edge cool 

roof and bifacial solar PV technologies to balance supply and demand and boost power output. 

Using machine learning and energy forecasting, they employed an artificial neural network. The 

results showed an increase in annual bifacial solar PV power production by 7.75% and 14.96%, 

respectively. These forecast models have implications for demand-side management, power 

production, building operations, and advanced energy purchases. [19] In a related study, C. Qiu 

et al. investigated a cutting-edge building-integrated photovoltaic (BIPV) window with 

exceptional thermal performance and renewable energy use known as vacuum PV glazing. 

Despite limited research on energy usage and daylighting performance, they created a 

RADIANCE model to simulate behavior during the day. They used an artificial neural network 

(ANN) model to predict interior illumination and lighting consumption. Compared to Energy 

Plus's daylighting calculation methods, the ANN model provided more accurate predictions, 

resulting in lower computational costs and more dependable results. [20] Woo-Gyun Shin et al. 

conducted a study focusing on the growing use of building-integrated photovoltaic (BIPV) 

systems for producing renewable energy. They addressed the challenge of shading loss, which 

makes it difficult to predict power generation for colored BIPV modules. To improve power 

prediction accuracy by accounting for shading loss, they proposed a new model utilizing neural 

network machine learning. Their model demonstrated a significant improvement in R2 values 

over the simulation model, indicating high-accuracy power estimations, particularly for colored 

modules. This advancement may aid in diagnosing BIPV system performance. [21] A. Fedorova 

et al. developed a testing method for measuring water intrusion in BIPV systems. Their research 

aimed to classify and compare BIPV systems based on their water resistance, assisting 

professionals in selecting and designing systems for areas prone to wind-driven rain. They 
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designed a specialized water collection system for BIPV, allowing accurate measurement of 

water penetration under varying wind-driven rain levels. Testing BIPV systems in different 

weather conditions revealed their performance, crucial for widespread adoption and long-term 

effectiveness. [22] A thorough state-of-the-art review of recent advancements in BIPV 

implementation studies was conducted by A. Taser et al. In addition to summarizing the existing 

body of knowledge in this area, they analyzed variables and drew specific conclusions and 

generalizations. This approach provides a better understanding of the factors influencing BIPV 

system performance by identifying gaps and deficiencies in the existing literature. Through a 

comprehensive interpretation and graphical representation of the results, the research offers a 

more lucid understanding of the influence of different factors on BIPV systems, inspiring further 

research in this field. [23] Md. R. Elkadeem et al. developed a system that combines solar panels, 

a combined heat and power generator, battery storage, and a natural gas boiler. The goal is to 

minimize the overall cost of running this system over its lifetime while considering charging 

stations for electric vehicles and programs that encourage reduced electricity use during peak 

hours. Their research, tested in a computer model using a real apartment building as an example, 

found that maximizing solar panels on the roof and reducing electricity use during peak times 

resulted in the best performance. [24] V. Stoichkov et al. reported on the outdoor performance of 

Organic Photovoltaics (OPVs) configured for Building Integrated Photovoltaic (BIPV) arrays in 

a Northern European climate. They focused on how diurnal weather patterns and module 

orientation affect OPV-based BIPV systems' energy yield. By gathering electrical characteristics 

under standard and part-load conditions from laboratory-scale OPV module experimental data, 

they evaluated the performance of BIPV arrays based on OPVs. Their research evaluated 

different energy-saving technologies for buildings in various climates, presenting different 
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scenarios for a 4.22kWp OPV system in a small commercial building. [25] Y. Elaouzy et al. 

conducted a study simulating the performance of various systems including solar panels (PV), 

solar panels with heat collection (PVT), ground source heat pumps (GSHP), and rainwater 

harvesting (GR). Their findings revealed that solar panels, both PV and PVT, are the most cost-

effective and environmentally friendly options across all climates, particularly in hot and dry 

climates. While GSHP and rainwater harvesting systems can reduce energy use and 

environmental impact significantly, their high costs make them uneconomical in any climate. 

The study also assessed the potential impact of a carbon tax on these results, ultimately 

suggesting that solar panels are a viable choice for reducing energy costs and emissions in 

buildings. [26] F. Wang et al. conducted a study demonstrating a system designed to enhance the 

efficiency of PVT panels by over 22% and reduce building heating needs by 1.65%. They 

recommended installing the PVT panels at a 45-degree angle, using dark roofs with high 

absorptivity, and integrating as many energy piles as possible into the foundation. This 

innovative system harnesses both solar and geothermal energy, offering a sustainable and 

energy-saving solution for buildings. [27] T. Yang et al. conducted a study introducing a new 

solar panel design for buildings (BIPV/T) featuring two air inlets, resulting in a 5% improvement 

in heat capture, which can be increased to 7.6% by using special translucent panels. This cost-

effective and straightforward design holds promise for further advancements in efficient solar 

energy utilization. [28] A. Azami et al. investigated the impact of form configuration and 

orientation on energy generation, highlighting a preference for roof-based scenarios with lower 

BIPV utilization, indicated by an optimal BIPV-based FF value of 0.71. Their study also 

revealed a strong correlation (correlation value > 0.92) between the BIPV coverage index and the 

total envelope for ideal forms and orientations. [29] F. Nicoletti et al. proposed an assessment 
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model as a valuable tool for evaluating the BIPV potential of different building designs, which 

can be adapted to various forms in different locations. They presented equations for calculating 

the electrical power generated by solar photovoltaic blinds (SPB), applicable to different slat 

inclinations, orientations, and geometries, enabling the evaluation of slat mutual shading and 

view factors. Their research provides valuable insights into the functionality and optimization of 

solar photovoltaic blinds. [30] Z. Liu et al. proposed an approach aimed at streamlining the 

assessment procedure and enhancing understanding of the variables influencing Solar 

Photovoltaic Blinds' (SPBs) capacity to generate electricity. The study's results have implications 

for improving building energy efficiency through the effective design and application of SPBs. 

Addressing engineering and sociological challenges associated with changes in both supply and 

demand, temporally and spatially, the paper outlines obstacles and conventional data usage 

practices in Smart Building-Integrated Photovoltaic (SBIPV) systems. The proposed concept of 

data-driven SBIPV comprises four main components: Data Sensing, Data Analysis, Data-driven 

Prediction, and Data-driven Optimization. Data sensing transcends simple measurements by 

establishing a link between the supply and demand sides. Data analysis elucidates how electricity 

supply fluctuates under varying environmental conditions and how demand-side response 

evolves. Energy management relies on data-driven prediction of load and electricity supply, 

while data-driven optimization addresses engineering and sociological aspects through system 

optimization and demand-side trading. [31] A.K. Shukla et al. provided a comprehensive review 

of the development of solar photovoltaic (PV) technology for building integration and design, 

emphasizing the classification of solar PV cells and Building-Integrated Photovoltaic (BIPV) 

products. The review underscores the significant opportunity presented by the era of distributed 

power generation, particularly for building-integrated photovoltaic systems. BIPV emerges as a 
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robust and adaptable tool to meet the future demand for zero-energy buildings, offering 

advantages such as on-site power generation and the visual appeal of thin-film module form 

factors. Despite lingering policy issues, the benefits of BIPV are increasingly recognized. [32] Z. 

Wang et al. introduced a novel heat pipe building-integrated photovoltaic/thermal system (HP-

BIPV/T) for Chinese residential buildings, demonstrating its effectiveness in producing 

electricity and hot water. Experimental results indicated daily average thermal, electrical, and 

total efficiencies of 61.1%, 7.8%, and 68.9%, respectively, under simulated solar radiation and 

water flow rate conditions. Although the suggested system is comparatively more expensive and 

less efficient than traditional BIPV/T systems, its potential for cost savings through mass 

production and waste material recycling makes it a promising solution. [33] F.E. Boafo et al. 

developed a novel building material by combining solar panels with ultra-thin insulation material 

to improve insulation, potentially reducing heating costs and meeting energy codes for buildings. 

Tests demonstrated its effectiveness in winter conditions, with acceptable electricity generation 

efficiency (12.3%) under those circumstances. [34] S.S.S. Baljit et al. covered two building 

integration technologies, namely Building-integrated photovoltaic (BIPV) and building-

integrated photovoltaic-thermal (BIPV/T), aimed at increasing electrical output and cooling PV 

panels. The paper examines various heat transfer working fluids and installation methods for 

BIPV and BIPV/T systems on walls and roofs, incorporating economic factors and case studies 

to provide relevant information for engineers and researchers in the building and construction 

sectors. [35] A. Ghosh et al. conducted research exploring the integration of solar panels directly 

into buildings (BI) or attaching them to existing structures, known as Building Applied 

Photovoltaics (BAPV). They discussed various materials and locations for these panels, along 

with challenges such as overheating and potential solutions. Additionally, the paper explored 
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promising future applications for solar panels in buildings, including integration with electric 

vehicles, highlighting the potential of solar energy in building design and functionality. [36] Z. 

Liu et al. investigated the feasibility and applicability of building-integrated photovoltaic (BIPV) 

systems in areas with high solar irradiance. The study emphasized the potential for BIPV 

systems to decrease building energy consumption and promote sustainable development. Various 

performance-influencing variables such as PV module temperature, solar radiation intensity, 

orientation, tilt angle, module types, and inverters were examined, and the energy efficiency, 

environmental benefits, and economic performance of BIPV systems were systematically 

evaluated. The study also discussed optimal coordination models to encourage the development 

of BIPV systems and suggested future research directions in areas with high solar radiation. [37] 

S. Saadon et al. investigated a novel building facade design that incorporates partially transparent 

solar panels (PV) to generate electricity. The facade featured a ventilated air cavity to aid in 

cooling the panels during summer and recovering heat in winter. Through computer modeling, 

the researchers assessed the facade's performance in various French climates, finding that while 

the facade might slightly increase cooling needs, its impact on heating requirements is minimal. 

[38] G. Barone et al. introduced a new window technology called Concentrating 

Photovoltaic/Thermal Glazing (CoPVTG), which utilizes lenses to focus sunlight in the summer 

for electricity generation and allows sunlight to pass through in the winter for heating. The 

system includes a built-in air-cooling mechanism to capture excess heat for other purposes. Tests 

demonstrated that CoPVTG can significantly increase electricity generation compared to 

standard windows while also reducing heating and cooling costs. The technology offers potential 

for creating energy-efficient and cost-effective buildings. [39] M.M. Uddin et al. focused on 

Bangladesh's climate and investigated three configurations of semi-transparent CdTe combined 
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BIPV window systems in an office building. Using data from outdoor experiments, they 

developed and verified a numerical simulation model based on Energy Plus. The annual energy 

simulation results showed that CdTe combined BIPV windows can save between 30% and 61% 

of electricity consumption compared to conventional window systems under all climate 

conditions. Additionally, the study demonstrated that east-facing BIPV windows are more 

effective at reducing net electricity consumption, while south-facing windows are more efficient 

at power generation. [40] C. Sirin et al. investigated the utilization of building façades for 

generating renewable energy using Building-Integrated Photovoltaic/Thermal (BIPV/T) systems. 

They discussed how BIPV/T systems can contribute to reducing building-related greenhouse gas 

emissions and energy consumption. [41] A.M. Ekoe et al. emphasized the benefits, working 

principles, and methods for enhancing the performance of BIPV/T systems. Their study provided 

a general overview of BIPV/T technology and highlighted its potential to improve building 

energy efficiency. They examined the use of solar panels (BIPV) on rooftops to fulfill a 

building's energy needs, demonstrating that BIPV systems can significantly reduce energy 

consumption and costs while promoting reliance on renewable energy sources. This technology 

holds promise for creating a more sustainable and environmentally friendly energy future in 

Cameroon. [42] R.P.N.P. Weerasinghe et al. examined building-integrated photovoltaic 

technology (BIPV) as a renewable energy source with building material functionality, addressing 

questions regarding BIPV's economic viability and its impact on investment choices. [43] J. Ko 

et al. reviewed 45 BIPV projects in non-domestic buildings across 12 western countries between 

2009 and 2018. They assessed the true economic worth of BIPV projects by estimating levelized 

cost energy, net present value, and payback periods. Their analysis demonstrated that BIPV 

projects can be financially feasible when both direct and indirect benefits are considered. Various 
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building application types, features, and module technologies showed profitable results, 

suggesting that policymakers and decision-makers could encourage the adoption of BIPV by 

better understanding these findings. [44] L. Gullbrekken et al. optimized phase change material 

properties through MATLAB simulations, resulting in an annual increase in energy generation of 

1.09% compared to traditional photovoltaic systems. By enhancing thermoelectric generator 

performance and thermal resistance, the proposed system could produce 4.47% more energy. 

Their research focused on the use of photovoltaics (PV) in buildings in Nordic climates, 

addressing challenges posed by low solar radiation and temperatures below zero. [45] S. Khanam 

et al. provided a summary of the challenges and recent experiences with roof-integrated PV 

systems, particularly focusing on the Nordic region. Addressing critical challenges such as 

practical guidelines for roofing installation and ventilation will be essential for the adoption of 

PV systems in these areas. Additionally, they assessed and compared the performance of various 

photovoltaic module types (monocrystalline, polycrystalline, and thin-film) in four climatic 

zones of India, estimating parameters like radiation intensity, ambient temperature, and design 

factors using analytical expressions based on energy balance equations. [46] C.S. Rajoria et al. 

concluded that peak temperatures of photovoltaic modules have a greater impact on electrical 

efficiency than solar radiation intensity. Despite a hotter climate, Bangalore produces more 

electrical energy annually than Jodhpur due to its more temperate climate. The study identified 

amorphous silicon modules as the best performers in terms of electrical energy output. 

Additionally, they provided a review of flat-plate building-integrated photovoltaic/thermal 

(BIPV/T) systems, covering recent advancements, experimental findings, and the parametric 

effects on building performance. Different BIPV/T technologies such as air-based, water-based, 

or hybrid systems were discussed, along with their performance metrics. Notably, nano-PCM-
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PVT systems demonstrated the highest thermal efficiency of 72%, suggesting promising 

applications for phase change materials and nanoparticles in BIPV/T systems. [47] S. Yang et al. 

conducted a simulation study on the sensitivity analysis of design parameters for Building-

Integrated Photovoltaic/Thermal Double-Skin Façade (BIPV/T-DSF) systems, aiming to assess 

their influence on energy consumption and indoor thermal comfort across various configurations 

and climates. Key findings highlighted the significant impact of external window solar heat gain 

coefficient and cavity depth of the BIPV/T-DSF on building performance. The study emphasized 

the importance of considering these design factors to maximize BIPV/T-DSF system 

performance for energy-efficient and comfortable buildings. Additionally, they proposed the use 

of colored BIPV modules to address aesthetic concerns while still promoting clean energy 

generation and reducing carbon emissions. [48] A.H. Hamzah et al. tested the concept of colored 

BIPV modules using 3D model simulations on buildings in Malaysia, finding promising results. 

[49] F.M. Amoruso et al. conducted life cycle assessments (LCA) and life cycle costing (LCC) 

for apartments, mixed-use commercial/industrial buildings, and low-rise multi-unit residential 

buildings equipped with BIPV systems. They measured electricity production using simulation 

tools and computed minimum and average carbon life cycle assessments over a 50-year period. 

[50] S. Kim et al. calculated greenhouse gas (GHG) emission savings associated with replacing 

conventional energy supplies in buildings with BIPV systems. Their results indicated significant 

reductions in GHG emissions, with positive cumulative net present values (NPV) for both 25 and 

50-year life cycle costing scenarios. [51] 
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2.3. Gap of Knowledge 

The study focuses on the effects of data collection time and panel face direction on panel 

outputs, aiming to identify the most fundamental parameters in dictating panel outputs like 

voltage and current. It also explores the use of neural networks for predictive output of solar 

panels, despite the need for a large dataset and complex machine learning models. To the best of 

our knowledge comparatively lesser amount of work has been done on these particular aspects.  

The next chapter provides a comprehensive explanation of the methods and computation. The 

details of the discussion are provided in the sections 2.3.1. and 2.3.2. 

 

2.3.1. A Qualitative Study 

To the best of our knowledge, relatively lesser amount of work has been done regarding 

qualitative examination of the effects of time of data-collection and direction of panel-face on 

panel outputs and vis-a-vis the detection of which of the parameters i.e., time-stamp or direction 

is more fundamental in dictating the nature of the panel outputs like voltage and current. Such 

analysis based on real-world data might offer more profound insights on BIPV system 

optimization. 

 

2.3.2. Predictive Output of Solar-Panels based on Neural Networks 

To provide reliable predictions of panel outputs based on such generic input parameters like 

time-stamp of data-collection and panel-inclination angle, a neural network modeling of the 

input/output data can be carried out and trained and then studied for custom inputs. This may 

need a sizable dataset. However, in order to create a baseline, it is best to investigate simpler 
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machine learning models initially and such work on generic mapping has been less done to the 

best of our knowledge. 

2.4. Probable Solution 

A Qualitative analysis of such solar panel outputs based on plotted voltage/current graph 

symmetry w.r.t. time or panel direction and determination of the more fundamental nature of 

these parameters on graph output. Secondly, using MATLAB-based neural network modeling 

one can generate a predictive output modeling of output voltage/current against input time-stamp 

and panel inclination. This consequently allows further custom mapping of user-defined input 

values to predictive output values. The details of the discussion are provided in the sections 

2.4.1. and 2.4.2. 

 

2.4.1. Improvement on Qualitative Analysis 

Real-world data like voltage and current outputs of solar panels over range of days can be used 

to plot the graphs with variables of time and panel-direction, with various panel-inclinations, and 

then by observing the symmetry of the graphs an inference can be drawn that which of the 

parameters i.e., time-stamp or panel direction is more fundamental. This would lead to a 

qualitative analysis of the panel-outputs w.r.t. to generic input values of time-stamp, panel-

directions, while taking into account various panel-inclinations. 

 

2.4.2. MATLAB based Neural Network Modelling 

A simple MATLAB based feedforward neural network mapping of input data like time-stamp 

and panel inclination w.r.t. target data like output voltage and current can help us to train such 

models for custom mapping of user-defined fresh input values of time and panel-inclination to 
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predictive output values. Such models can be easily build using inbuilt deep-learning toolbox of 

MATLAB and gives us the scope to initiate foundational works of such complex model-

generation of BIPV systems. 

 

 

2.5. Scope of the Present Work 

 

The purpose of this thesis is to investigate the complex interplay between two important 

variables—time and panel direction—and how they affect the current-voltage output production 

of solar panels at different angles of inclination. Through a thorough examination of voltage and 

current graphs collected over a 30-day period with seven different panel orientations, the 

research aims to identify the main factor influencing the symmetry of these graphs. This 

qualitative study has the potential to offer insightful information about how decisions about the 

orientation of solar panels should be prioritized, either by highlighting the importance of output 

collection time or by concentrating on output collection direction. 

The next stage of the study aims to take input/output modeling to a basic yet profound level by 

utilizing neural networks and the MATLAB software environment. The main goal is to provide a 

strong mapping mechanism that maps a set of input data values (time-stamp and panel 

inclination angle, or theta) to matching output values that indicate short- and open-circuit current 

and voltage, respectively. The research seeks to enable the smooth prediction of output values for 

a new set of custom input values by carefully training the network model on the gathered dataset. 

This will help to clarify the intrinsic link between the input parameters and the output values that 

are produced.  
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We used MATLAB's Neural Network Toolbox, which is a feature of the Deep Learning 

Toolbox. This tool is an effective means of developing, optimising, and deploying neural 

networks, allowing for the modelling and prediction of intricate systems. In Chapter 4, This 

research looks at, how direction and time affect solar panel output over a 30-day period. It uses 

4200 observations over 30 days, or 140 observations per day, to analyse voltage and current 

graphs on a sliding solar panel. In Chapter 5, Across all time-stamps and inclination, the analysis 

revealed symmetry in the voltage and current values for the opposing directions (East-West and 

North-South). When changing time-stamps for fixed directions, however, no such symmetry was 

observed, suggesting that direction is not as important as time of day in determining panel 

output. A generic ideation of neural network modelling was carried out in Chapter 4 as well, 

which dent with the basic tenets of feed forward neural network in detail. The acquired 

knowledge was implemented in Chapter 5, to train the input time spends and panel inclination 

against output open circuit voltage and short circuit current and later a custom set of fresh input 

values were used to generate predictive voltage and current values. The predictive values were 

further analysed to evaluate the accuracy of this simple deep learning model. All result were 

eventually summarised in Chapter 6 and concluded. 
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2.6. Conclusion 

 

In view of the above works done, the current project hopes to carry out a qualitative 

understanding of the nature and effect of natural parameters like time and direction on the 

voltage, current output of the solar-panels w.r.t. various panel-inclinations. The objective is to 

study that which of the parameters is more fundamental in influencing the nature of the voltage, 

current graphs over duration of days. Also, a MATLAB based simple neural network modeling 

of the collected input/output data is hoped to be implemented, to generate predictive input/output 

mapping of the solar panels, based on custom input values. A much-detailed description of the 

Methods and Computation are given in the next chapter. 
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CHAPTER- 3 

 

General Description of MATLAB Software Applied in 

This Work 
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3.1. Introduction 

 

The main software tool used in the current work for doing computational analysis, data 

processing, and algorithm creation is MATLAB. Because of its robust numerical computation, 

visualisation features, and large function library, MATLAB is a flexible programming 

environment that is extensively utilised in both academia and industry. Its use in this work 

enables significant discoveries and propels research forward by facilitating the discovery, 

analysis, and interpretation of complicated data sets. 

 

3.2. Overview of Matlab Software 

 

A strong tool for creating, honing, and implementing neural networks is MATLAB. Its Neural 

Network Toolbox, which is now a part of Deep Learning Toolbox, offers an extensive set of 

features and applications for neural network modelling of complicated systems. Neural networks 

may be used to model and forecast connections, detect patterns, and improve comprehension of 

the underlying physical events in the context of Current-Voltage (I-V) data. 
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Figure 3.1. MATLAB R2019a Software 

 

3.3. Benefits and Drawbacks of Matlab Software 

 

Benefits: 

 Friendly to Users. 

 Wide-ranging Toolbox Collection. 

 Information Visualisation Ability. 

 Good Community Reaction. 

Drawbacks: 

 Expensive Software. 

 Interpreted Language. 

 Not Suitable for Real-Time Uses. 
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3.4. Deep Learning Toolbox 

Blocks from the Deep Learning Toolbox of MATLAB is used for creating, putting into practice, 

and modeling deep neural networks. A framework for creating and utilizing a variety of 

networks, including transformers and convolutional neural networks or CNNs, is provided by the 

toolkit. Network attributes may be verified, projections can be visualized and interpreted, and 

networks can be compressed via quantification, presentation, or trimming. One can import 

pretrained models, export networks to Simulink, and construct, edit, and evaluate networks 

dynamically with the Deep Network Designer application. One can collaborate with various deep 

learning frameworks using the toolbox. A MATLAB based simple neural network can help 

ingenerating predictive output values for custom input values, based on erstwhile training of such 

network with training of input vectors to its’ respective target output vectors. In our work, we 

have implemented in particular simple feedforward neural network for such input/output 

mapping of collected solar panel output values w.r.t. input time-stamp and panel inclination. As 

such feedforward  neural networks are made up of several levels. The network input is connected 

to the first layer. Every layer that comes after has a link to the layer before it. The output of the 

network is produced by the last layer. One can use feedforward networks for any type of 

mapping from input to output. Any limited input-output mapping issue can be fitted by a 

feedforward network comprising of one hidden layer and sufficient neurons in the hidden layers. 

In our current work we have taken help of such inbuilt, simple feedforward neural network 

present in MATLAB and have carried out input/output mapping transformation using all the 

inbuilt functions set by default. The detail discussion of the computation is given in the following 

chapters. 
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3.5. Conclusion 

The present work makes extensive use of MATLAB, which offers a versatile software 

environment for data visualisation, method building, and computational analysis. It is an 

essential tool for scholars looking to push the boundaries of knowledge and creativity in their 

domains because of its vast feature set, user-friendly design, and comprehensive documentation. 

In particular the Deep Learning Toolbox in MATLAB has rigorous role in data clustering data 

mapping and predictive output generation modeling. In that regard Deep Learning toolbox of 

MATLAB in particular have been very useful for computation analysis in our following 

chapters. Thus researchers may solve difficult issues more quickly, improve science and 

technology, and quicken the rate of discovery by utilising MATLAB's capabilities. 
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CHAPTER- 4 

 

METHODS AND COMPUTATION 
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4.1. Introduction 

 

In this work, we set out to investigate the complex relationships between direction and time as 

they relate to solar panel output characteristics. We seek to clarify whether the spatial orientation 

or the temporal aspect is more important in determining the voltage and current profiles of solar 

panels by conducting a thorough analysis. 

We achieve this by carefully monitoring voltage and current outputs under various conditions for 

thirty days, all while conducting a rigorous series of experiments. We carefully monitor and 

document the panel's response to various environmental stimuli using a sliding solar panel setup 

that is able to be adjusted to different inclination angles and directional facings. 

Moreover, we further investigate predictive modelling by utilising neural networks built in 

MATLAB to extrapolate future outputs of voltage and current from observed data. Even though 

we have started modelling using simple training approaches, we recognise that there is a great 

deal of room for improvement and augmentation using unique training algorithms and more 

input parameters. 

Our work sits at the nexus of advanced modelling approaches and conventional experimentation 

in a world where neural networks are redefining computational paradigms. We advance the 

conversation on the use of renewable energy sources and open the door to more sustainable and 

efficient solar technology by elucidating the basic dynamics of solar panel performance. 
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4.2. Measuring the Effect of Time and Orientation on the Output of Solar 

Panels 

 

In this current work, a simple qualitative ideation of the effect of time and direction on solar-

panel output has been studied with respect to various panel-inclination angles. The idea was to 

carry out a generic study of voltage, current output graphs of a solar-panel over a period of 30 

days and identify which of the above parameters i.e., the time of observation (say 1, 2 or 3 pm 

etc.) or direction of panel-face during observation (North, South, East or West) had a more 

fundamental effect on the nature of the voltage and current graphs. For this reason, a sliding solar 

panel on a fixed wooden base was used for experimentation, which could be inclined and fixed at 

various custom angels (θ) using a protractor (Figure: 4.1.1 – 4.1.4). Every day 140 observations 

were taken w.r.t. 5 different time-stamps (12 O’clock, 1 pm, 2pm, 3pm, 4pm), for 4 different 

directions of panel-face (North, South, East, West) and 7 different panel-inclination angels 

(0°,15°,30°,45°,60°,75°,90°) respectively. A total 4200 observations were taken over a period of 

30 days and each observation was w.r.t. open-circuit voltage (VOC) and short-circuit current 

(ISC) of the panel. In absence of source-measuring unit at our disposal, this was the best possible 

quantitative output measurement of the panel (VOC and ISC) we could implement. The idea was 

to plot every voltage and current graphs w.r.t. days (1-30), by keeping time fixed, for seven 

numbers of θs, for the 4 directions. A different plot of every voltage and current graphs w.r.t. 

days (1-30) was also conducted, but by keeping directions fixed, for seven number of θs and for 

the 5 different time-stamps. A visual study of both sets of graphs were carried out to determine 

that in which set of graphs, would the observed voltage-current graphs have showed general 

symmetry over the data collection duration, i.e., for fixed time and varying direction for various 
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theta values or for fixed direction and varying time for various theta values. The idea was to 

qualitatively determine that which of the fundamental parameters like Time of Observation or 

Direction of Observation had a more fundamental influence on the nature of the output 

voltage/current of the system. The results so found were promising as would be discussed in 

detail in the latter sections. Data values as such were collected between 19th February - 2nd 

April, 2024. 
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Figure 4.1. Representative Images of Movable Solar Panels at four different inclination 0°, 45°, 

60° and 90°. 

 

 

 

 

 

 

                    

 

 

 

 

Figure 4.1.3. 

Figure 4.1.1. Figure 4.1.2. 

Figure 4.1.4 
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4.3. Neural Network Architecture and General Modelling 

 

A further MATLAB based simple neural network modeling of the observed data values were 

carried out to create a general predictive voltage, current output suggestion of such solar panels 

for individual time and theta values. The training of the data and consequent modeling was not 

exhaustive and used the basic inbuilt training functions and feed-forward neural-network 

commands of the software to suggest such predictive outputs. Lot of scopes lie in developing 

custom training algorithms or functions to train such observed data values as well as include 

other training data-set parameters like solar-insolation values and direction-specific theta-values 

of the panels concerned into such models.  Contemporary computing is being reshaped by neural 

networks, which combine artificial intelligence with brain-inspired architecture. These networks 

imitate the complex functions of the human brain by using complicated networks of interwoven 

artificial neurons, which has allowed for amazing advancements in machine learning. Neural 

networks come in various flavors, each designed for a particular task: feedforward, recurrent, 

convolutional, and so on. Neural networks are motivated by the way the human brain perceives 

information and function fundamentally like it does. Its quick response times and capacity for 

rapid computations enable it to handle a variety of real-time jobs. A vast number of interlinked 

processing units or "Nodes", make up an artificial neural network. A connection link is used for 

attaching these nodes to other nodes. Weights are present in the connection link, and these 

weights include input signal information. In turn, every input and iteration update these weights. 

The final neural network weights and architecture, after all the data occurrences from the training 

data set have been input, are referred to as the Trained Neural Network. It is referred to this 
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procedure as Neural Network Training. The specified tasks of the issued statements are resolved 

by these trained neural networks. 

 

Figure 4.2. A Single Neuron is displayed with Xi number of Inputs, each having a Weight ωi, a 

Bias term, and an applied Activation Function. 

 

An artificial neural network with circular connections between its nodes is called a feed forward 

neural network. A feed-forward neural network is the exact opposite of a recurrent neural 

network because it has some cycled paths. The fundamental kind of neural network is the feed-

forward model since it only processes information in a single direction. Learning a function that 

converts a given X to a predetermined Y and using it to ascertain the correct Y for a new X is 

what is known as supervised learning and helps in adjustment of weights in neural networks. 
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Figure 4.3. Architecture of an Artificial Neural Network. 

 

4.4. Using Custom Neural Network Training to Generate Predictive Output 

of Solar Panel 

 

In our current work, certain sets of the obtained data values of Voltage and Current was 

transformed as the output with corresponding sets of input values of data-observation times and 

solar panel inclination of theta values. Then using a simple feedforward neural network of 25 

hidden layers, that we transformed a fresh set of input time and theta values into predictive 

output voltage and current values. The transformation used a standard inbuilt training function 

inside the deep-learning tool box of MATLAB and all other weights, biases and activation 

functions were selected as by-default value. The transformation showed good predictive values 

for all the output voltage values, while for the current values outputs were often far from offset 

values and even negative at times. It suggested that though the model is promising in generating 

such predictive outputs, it is ultimate formulation of custom training functions, and selection of 
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weights, biases and activation function that will help in rectifying such models and lead to 

determination of correct predictive transformed outputs. 

 

4.5. Conclusion 

 

We have learned a great deal about the intricate interactions between time, direction, and panel 

inclination angles from our research into the dynamics of solar panel performance. Over the 

course of a 30-day period, we have identified distinct patterns in the voltage and current outputs 

of solar panels through methodical experimentation and qualitative analysis. The importance of 

direction and time as essential factors influencing solar panel performance is underscored by our 

findings. Furthermore, our investigation into neural network-based predictive modelling has 

produced encouraging outcomes for panel output forecasting based on input parameters like time 

and panel inclination values. All these are analyzed in detail in the next chapter. In conclusion, 

Study emphasises how crucial thorough analysis and modelling methods are to comprehending 

and maximising the performance of solar panels. It will be essential to conduct more research in 

this area as we move closer to a future where renewable energy sources will be used more and 

more to advance solar technology's efficiency and sustainability. 
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5.1. Introduction 

 

Solar energy has emerged as a vital source of renewable power. Optimizing the efficiency of 

solar panels is crucial for maximizing energy generation. This study investigates the relationship 

between voltage, current output, and several key factors influencing a solar panel's performance.  

 

5.2. Exploring the Effect of Data Gathering Timing on Solar Panel Output 

Properties 

 

Voltage and Current values so obtained over 30 days were plotted against days w.r.t. to 5 

different time-stamps (12 O’clock, 1 pm, 2 pm, 3 pm and 4 pm) for the 4 different directions 

(North, South, East and West) in each of the graphs. All these graphs were obtained individually 

for 7 different panel inclination angles, theta, (0°,15°,30°,45°,60°,75°,90°) respectively. 

Consequently, for each theta there are 5 Voltage and 5 Current graphs, for 5 different time 

stamps. Each graph containing values obtained for the 4 different directions. The observed 

graphs (Voltage and Current) all showed qualitatively a general symmetry w.r.t. each other 

values over the 4 directions, for every graph-plots and also the values obtained for the exactly 

opposite directions (North and South) and (East and West), for all time-stamps and all theta 

values reflected greater symmetry in shapes. A rough plot of every voltage and current graphs 

w.r.t. days (not shown here) was also conducted by keeping directions fixed, for seven numbers 

of θs and by varying the 5 different time-stamps. No such symmetry in the voltage and current 

graphs were obtained like before, for the 5 varying time-stamps in each graph, suggesting that 

the nature of voltage-current graphs is more of a function time-stamp at which the values are 
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collected and less influenced by direction. This suggested that Time at which data is collected is 

much more a fundamental parameter in dictating the nature of the panel voltage-current output 

instead of the direction at which the panel is faced. The shapes of the graphs are more symmetric 

for the exactly opposite directions for every time stamp. This suggests that while time-stamp is 

more a fundamental parameter, for every time-stamp exactly opposite directions also play a role 

in influencing the symmetric-nature of the graphs. Figures (5.1.1. - 5.7.10.), shows the Voltage-

Current graphs for each time-stamp over different 7 theta values, taken over 30 days. 
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Figure: 5.1.1. Voltage vs Days, Inclination - 00 , 12 PM   Figure: 5.1.2. Current vs Days, Inclination - 00°, 12 PM

    

Figure: 5.1.3. Voltage vs Days, Inclination - 00°, 01 PM   Figure: 5.1.4. Current vs Days, Inclination - 00°, 01 PM

    

Figure: 5.1.5. Voltage vs Days, Inclination - 00°, 02 PM   Figure: 5.1.6. Current vs Days, Inclination - 00°, 02 PM 
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Figure: 5.1.7. Voltage vs Days, Inclination - 00°, 03 PM  Figure: 5.1.8. Current vs Days, Inclination - 00°, 03 PM

    

Figure: 5.1.9. Voltage vs Days, Inclination - 00°, 04 PM   Figure: 5.1.10. Current vs Days, Inclination - 00°, 04 PM 

 

 

 

 

 

 

 

 



49 
 

    

Figure: 5.2.1. Voltage vs Days, Inclination - 15°, 12 PM   Figure: 5.2.2. Current vs Days, Inclination - 15°, 12 PM 

    

Figure: 5.2.3. Voltage vs Days, Inclination - 15°, 01 PM  Figure: 5.2.4. Current vs Days, Inclination - 15°, 01 PM

    

Figure: 5.2.5. Voltage vs Days, Inclination - 15°, 02 PM  Figure: 5.2.6. Current vs Days, Inclination - 15°, 02 PM 
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Figure: 5.2.7. Voltage vs Days, Inclination - 15°, 03 PM  Figure: 5.2.8. Current vs Days, Inclination - 15°, 03 PM

    

Figure: 5.2.9. Voltage vs Days, Inclination - 15°, 04 PM  Figure: 5.2.10. Current vs Days, Inclination - 15°, 04 PM 
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Figure: 5.3.1. Voltage vs Days, Inclination - 30°, 12 PM   Figure: 5.3.2. Current vs Days, Inclination - 30°, 12 PM

    

Figure: 5.3.3. Voltage vs Days, Inclination - 30°, 01 PM  Figure: 5.3.4. Current vs Days, Inclination - 30°, 01 PM 

    

Figure: 5.3.5. Voltage vs Days, Inclination - 30°, 02 PM   Figure: 5.3.6. Current vs Days, Inclination - 30°, 02 PM 
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Figure: 5.3.7. Voltage vs Days, Inclination - 30°, 03 PM  Figure: 5.3.8. Current vs Days, Inclination - 30°, 03 PM

    

Figure: 5.3.9. Voltage vs Days, Inclination - 30°, 04 PM  Figure: 5.3.10. Current vs Days, Inclination - 30°, 04 PM 
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Figure: 5.4.1. Voltage vs Days, Inclination - 45°, 12 PM  Figure: 5.4.2. Current vs Days, Inclination - 45°, 12 PM 

    

Figure: 5.4.3. Voltage vs Days, Inclination - 45°, 01 PM  Figure: 5.4.4. Current vs Days, Inclination - 45°, 01 PM

    

Figure: 5.4.5. Voltage vs Days, Inclination - 45°, 02 PM  Figure: 5.4.6. Current vs Days, Inclination - 45°, 02 PM 
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Figure: 5.4.7. Voltage vs Days, Inclination - 45°, 03 PM   Figure: 5.4.8. Current vs Days, Inclination - 45°, 03 PM 

    

Figure: 5.4.9. Voltage vs Days, Inclination - 45°, 04 PM   Figure: 5.4.10. Current vs Days, Inclination - 45°, 04 PM 
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Figure: 5.5.1. Voltage vs Days, Inclination - 60°, 12 PM   Figure: 5.5.2. Current vs Days, Inclination - 60°, 12 PM 

    

Figure: 5.5.3. Voltage vs Days, Inclination - 60°, 01 PM   Figure: 5.5.4. Current vs Days, Inclination - 60°, 01 PM 

    

Figure: 5.5.5. Voltage vs Days, Inclination - 60°, 02 PM   Figure: 5.5.6. Current vs Days, Inclination - 60°, 02 PM 
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Figure: 5.5.7. Voltage vs Days, Inclination - 60°, 03 PM   Figure: 5.5.8. Current vs Days, Inclination - 60°, 03 PM 

    

Figure: 5.5.9. Voltage vs Days, Inclination - 60°, 04 PM   Figure: 5.5.10. Current vs Days, Inclination - 60°, 04 PM 
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Figure: 5.6.1. Voltage vs Days, Inclination - 75°, 12 PM   Figure: 5.6.2. Current vs Days, Inclination - 75°, 12 PM

    

Figure: 5.6.3. Voltage vs Days, Inclination - 75°, 01 PM   Figure: 5.6.4. Current vs Days, Inclination - 75°, 01 PM 

    

Figure: 5.6.5. Voltage vs Days, Inclination - 75°, 02 PM   Figure: 5.6.6. Current vs Days, Inclination - 75°, 02 PM 
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Figure: 5.6.7. Voltage vs Days, Inclination - 75°, 03 PM   Figure: 5.6.8. Current vs Days, Inclination - 75°, 03 PM

    

Figure: 5.6.9. Voltage vs Days, Inclination - 75°, 04 PM   Figure: 5.6.10. Current vs Days, Inclination - 75°, 04 PM 
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Figure: 5.7.1. Voltage vs Days, Inclination - 90°, 12 Pm  Figure: 5.7.2. Current vs Days, Inclination - 90°, 12 PM

    

Figure: 5.7.3. Voltage vs Days, Inclination - 90°, 01 PM  Figure: 5.7.4. Current vs Days, Inclination - 90°, 01 PM

    

Figure: 5.7.5. Voltage vs Days, Inclination - 90°, 02 PM  Figure: 5.7.6. Current vs Days, Inclination - 90°, 02 PM 



60 
 

    

Figure: 5.7.7. Voltage vs Days, Inclination - 90°, 03 PM  Figure: 5.7.8. Current vs Days, Inclination - 90°, 03 PM 

    

Figure: 5.7.9. Voltage vs Days, Inclination - 90°, 04 PM  Figure: 5.7.10. Current vs Days, Inclination - 90°, 04 PM 

 

5.3. Feed Forward Neural Network and Predictive Output Modelling 

A subset of input values was selected from the collected data values to feed as input to 

feedforward neural-network in MATLAB, to train the network, w.r.t. to a target set of output 

values for the corresponding input values. The input values so selected were time and theta, 

while the target output values were the corresponding voltage and current. A total 120 

observations or vectors of input values were thus selected with each containing 2 features or 

elements (time and theta) for a total number of 120 output observations with 2 features or 

elements each (voltage and current). The Model was created and trained using standard 

command prompts and used the inbuilt, by-default weight and bias values and the training-
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function algorithm. First the input training vectors were declared as a 120 x 2 matrix (theta and 

time) and was put inside the variable array ‘X’ as: - 

X =  

    12    90 

    12    90 

    12    90 
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    12    90 
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Output target vectors were also declared as a 120 x 2 matrix (theta and time) and was put inside 

the variable array ‘T’ as: - 

T =  

14.6000    0.0400   

15.0100    0.0600   

14.5000    0.0400   

14.0700    0.0400   

14.5000    0.0400   

14.4000    0.0400   

17.1700    0.0400   

20.0000    0.0500   

14.8100    0.0600   

14.7100    0.0600   

14.5600    0.0500   

14.7600    0.0600   

16.2600    0.0600   

15.5600    0.0600   

14.6500    0.0500   

12.5300    0.0600   

17.5800    0.0600   

14.3900    0.0600   

14.7900    0.0700                            

15.5600      0.0700 

15.0200    0.0900   

14.4400    0.0700   

14.6500    0.0700   

18.1800    0.0800   

14.6500    0.0800   

17.0700    0.0900   

16.4600    0.0900   

13.4300    0.0900   

13.8400    0.0800   

12.9300    0.0900   

15.5900    0.0700   

14.9000    0.0600   

15.0200    0.0500   

15.4800    0.0800   

14.9000    0.0600   

15.0200    0.0500   

17.9800    0.0500   

16.4600    0.0600   

15.3100    0.0700   

15.3500    0.0800   

14.9900    0.0500   

15.1900    0.0700   

15.5600    0.0800   

18.7900    0.0600   

17.4700    0.0500   

16.6700    0.0500   

15.6600    0.0600   

15.0200    0.1000   

15.5000    0.1100   

16.6700    0.1000   

15.7200    0.1500   

15.4500    0.0900   

16.5700    0.1100   

19.0900    0.1200   

17.9800    0.1200   

19.6000    0.1000   

17.1700    0.1000   

17.2700    0.1100   

16.0600    0.1100   

13.3300      0.1300 
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15.3900    0.0700   

15.2900    0.0800   

15.6400    0.0900   

15.6000    0.0900   

15.6500    0.0900   

16.3500    0.0900   

16.3600    0.0400   

13.9400    0.0600   

15.1600    0.0600   

16.0400    0.1100   

16.3400    0.1200   

15.4600    0.0800   

15.5600    0.0600   

15.4500    0.0500   

16.0600    0.0500   

15.7600    0.0700   

14.8500    0.0500   

16.2400    0.3000   

16.0000    0.1500   

16.7700    0.1000   

16.5000    0.2400   

16.6700    0.2200   

16.8700    0.1100   

17.9800    0.1200   

18.6900    0.1100   

13.4300    0.0900   

21.3100    0.1000   

17.1700    0.1000   

17.0700    0.1100   

15.6600    0.1300   

15.9700    0.0900   

16.5000    0.1300   

16.3400    0.1300   

16.2900    0.1300   

16.3000    0.1300   

16.7100    0.1100   

16.8700    0.0900   

14.2400    0.1100   

15.3800    0.0700   

16.2400    0.1300   

16.3900    0.1400   

16.0200    0.1100   

15.6600    0.1000   

17.7800    0.0800   

15.5600    0.0700   

19.6000    0.0900   

12.3200    0.1000   

16.2000    0.2800   

16.0000    0.2000   

16.7700    0.2000   

16.4400    0.2000   

16.9700    0.2700   

16.1600    0.2000   

18.5900    0.2200   

15.4500    0.2300   

17.6800    0.2200   

15.8600    0.2300   

18.8900    0.2100   

18.3800    0.2300   

21.0100    0.2400 
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Now the feedforward neural network ‘net’ was created using the following command with 30 

hidden layers: - 

net = feedforwardnet(30); 

The network was then trained with the following command: - 

net = train(net,X,T); 

where the input training vectors of ‘X’ are trained w.r.t. output training targets of ‘T’, for the 

network ‘net’ with 30 hidden layers. All other values of weights, biases, iterations and training 

functions were kept at inbuilt, by-default values. Figure 5.8. shows the simulation model of the 

training network so obtained. 

 

Figure 5.8. Simulation Model of the Training Network 
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The output ‘Y’ was now mapped for a fresh set of input vectors ‘I’ defined as a similar 120 x 2 

matrix of user-defined custom data values (time and theta) namely: - 

I =  

12.0000   89.5161 

12.0000   89.0323   

12.0000   88.5484   

12.0000   88.0645   

12.0000   87.5806   

12.0000   87.0968   

12.0000   86.6129   

12.0000   86.1290   

12.0000   85.6452   

12.0000   85.1613   

12.0000   84.6774   

12.0000   84.1935   

12.0000   83.7097   

12.0000   83.2258   

12.0000   82.7419   

12.0000   82.2581   

12.0000   81.7742   

12.0000   81.2903   

12.0000   80.8065   

12.0000   80.3226   

12.0000   79.8387   

12.0000   79.3548   

12.0000   78.8710   

12.0000   78.3871   

12.0000   77.9032   

12.0000   77.4194   

12.0000   76.9355   

12.0000   76.4516   

12.0000   75.9677   

12.0000   75.4839   

13.0000   75.0000   

13.0000   74.5161   

13.0000   74.0323   

13.0000   73.5484   

13.0000   73.0645   

13.0000   72.5806   

13.0000   72.0968   

13.0000   71.6129   

13.0000   71.1290   

13.0000   70.6452   

13.0000   70.1613   

13.0000   69.6774   

13.0000   69.1935   

13.0000   68.7097  

13.0000   68.2258   

13.0000   67.7419   

13.0000   67.2581   

13.0000   66.7742   

13.0000   66.2903   

13.0000   65.8065   

13.0000   65.3226   

13.0000   64.8387   

13.0000   64.3548   

13.0000   63.8710   

13.0000   63.3871   

13.0000   62.9032   

13.0000   62.4194   

13.0000   61.9355   

13.0000   61.4516   

13.0000   60.9677   

14.0000   60.4839   

14.0000   60.0000   

14.0000   59.5161   

14.0000   59.0323   

14.0000   58.5484   

14.0000   58.0645  

14.0000   57.5806   

14.0000   57.0968   

14.0000   56.6129   

14.0000   56.1290   

14.0000   55.6452   

14.0000   55.1613   

14.0000   54.6774   

14.0000   54.1935   

14.0000   53.7097   

14.0000   53.2258   

14.0000   52.7419   

14.0000   52.2581   

14.0000   51.7742   

14.0000   51.2903   
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14.0000   50.8065   

14.0000   50.3226   

14.0000   49.8387   

14.0000   49.3548   

14.0000   48.8710   

14.0000   48.3871   

14.0000   47.9032 

14.0000   47.4194  

14.0000   46.9355   

14.0000   46.4516   

15.0000   45.9677   

15.0000   45.4839   

15.0000   45.0000   

15.0000   44.5161   

15.0000   44.0323   

15.0000   43.5484   

15.0000   43.0645   

15.0000   42.5806   

15.0000   42.0968   

15.0000   41.6129   

15.0000   41.1290   

15.0000   40.6452   

15.0000   40.1613   

15.0000   39.6774   

15.0000   39.1935   

15.0000   38.7097   

15.0000   38.2258   

15.0000   37.7419   

15.0000   37.2581   

15.0000   36.7742  

15.0000   36.2903   

15.0000   35.8065   

15.0000   35.3226   

15.0000   34.8387   

15.0000   34.3548   

15.0000   33.8710   

15.0000   33.3871   

15.0000   32.9032   

15.0000   32.4194   

15.0000    31.9355 

 

Output ‘Y’ (voltage and current) for input vectors ‘I’ is given by the command prompt: - 

Y = net(I); 

Y = 

14.6000 -2.4751   

15.0100 -5.2935   

14.5000    9.5708   

14.0700 -1.5309   

14.5000    4.6310   

14.4000 -6.5638   

17.1700 -0.9891   

20.0000    2.9234   

14.8100 -1.4799   

14.7100 12.0036   

14.5600 11.2985   

14.7600    1.5653   

16.2600    4.5540   

15.5600    3.2878   

14.6500    1.3540   

12.5300    9.3488   

17.5800    8.5370   

14.3900 -5.1487   

14.7900    9.2129   

15.5600    5.7887   

15.0200 -3.8538   

14.4400 14.0136   

14.6500    0.9387   

18.1800    8.5555   

14.6500    4.9881  

17.0700 -11.3216 

16.4600  4.6323   

13.4300  4.5412 

13.8400    1.7903   

12.9300 -0.2071 

15.5900 1.6727 

4.9000 -3.5675 
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15.0200    8.4140   

15.4800 13.7118   

14.9000   -4.4377   

15.0200    3.9851   

17.9800   -5.3566   

16.4600    8.1235   

15.3100   -2.7860   

15.3500   -0.5700   

14.9900    4.9181   

15.1900    0.8220   

15.5600   -1.7301   

18.7900    2.8813   

17.4700    7.9515   

16.6700    5.3072   

15.6600   -1.9049   

15.0200    9.8148   

15.5000 -10.7042   

16.6700    2.6299   

15.7200    1.9755   

15.4500    2.8916   

16.5700    8.6560   

19.0900 -11.9791   

17.9800   -7.3083   

19.6000   15.7296   

17.1700   -7.2318   

17.2700    1.6543   

16.0600    9.2692   

13.3300   -2.7432   

15.3900    2.1820   

15.2900    2.7382   

15.6400    8.7127   

15.6000   -8.5976   

15.6500   -2.3129   

16.3500   -2.1688   

16.3600    8.9564   

13.9400    6.7770   

15.1600    0.5044   

16.0400   -1.1078   

16.3400   -2.3947   

15.4600   -6.2994   

15.5600    3.0269   

15.4500   -0.8145   

16.0600   15.5432   

15.7600    8.9905   

14.8500    0.7910   

16.2400 -10.3046   

16.0000   11.1718   

16.7700    1.0730   

16.5000   10.7761   

16.6700   -0.0417   

16.8700    8.9485   

17.9800    8.8922   

18.6900   -3.0364   

13.4300    7.0651   

21.3100   -9.1809   

17.1700   -4.8404   

17.0700 -16.0426   

15.6600   11.1493   

15.9700   -1.1886   

16.5000   -0.6956   

16.3400    6.8980   

16.2900 -11.9675   

16.3000    0.1967   

16.7100   -1.2622   

16.8700   -4.5254   

14.2400   -2.0473   

15.3800  -10.4317   

16.2400    2.6026   

16.3900    4.3698   

16.0200    9.5931   

15.6600    2.8544   

17.7800 -10.1466   

15.5600    2.2147   

19.6000    2.4231   

12.3200    8.2561   

16.2000    5.9233   

16.0000   -8.8784   

16.7700   -5.9413   

16.4400   -2.3525   

16.9700   -5.0052   

16.1600    0.0348 

18.5900   11.5618   

15.4500   -0.7923   

17.6800   -1.5461   

15.8600  -13.8399   

18.8900   -0.6906 

18.3800  -12.5809   

21.0100  -10.1786
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It was found that the transformed output values for the new set of input values showed good 

relevance w.r.t. voltage output. The current values, however, so obtained, showed no possible 

parity at all with actual collected values and could clearly be rejected. The voltage values, 

however, was very well speculated within possible ranges of actual voltage output and could thus 

be remarked, that the simple model gives quiet relevant predictive voltage outputs for custom 

choice of theta and time. The predictive voltage output of the system for 30 days (but for various 

thetas) was plotted (Figure 5.9.) and revealed a qualitative symmetry in the graph structure 

compared to those obtained by actual data values.  

 

Figure 5.9. Predictive Voltage vs Days 
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5.4. Conclusion 

The model used an inbuilt training function and other by-default weight, biases and activation 

functions, a lot of scopes lie in the prospect of developing custom training functions and 

selection of proper weights, biases and activation function, to also give a good predictive output 

current values for custom input theta and time. The purpose of the current work was to see if 

such neural-network modeling can be implemented to generate predictive output of solar-panels, 

and in this regard the present project is successful.  
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6.1. Conclusion 

 

The current project work revealed in a qualitative sense that the voltage-current output of a solar 

panel is fundamentally more of a function of the time of the day when the data is collected and 

that nature of the graphs are dictated by this time-stamp of data-collection. Next, the nature of 

the graphs for exactly opposite directions bear more symmetry with each other for all the panel-

inclinations and can thus be concluded that the next more fundamental parameter for influencing 

output graph nature is the exactly opposite-directions in tally of which the data are collected. The 

simple neural network modeling of the voltage current output data w.r.t. input time and panel 

inclination suggested that a predictive neural-network output model can at least be easily 

generated for custom input of time and theta and can be used to transform into predictive voltage 

and current outputs albeit with certain degree of modification of the inbuilt training-functions, 

weights, biases and activation functions. The work has at least shown that the predictive voltage 

values so-obtained are very much in tally with actual data collected and the current output can 

also be tuned necessarily with modifications in the algorithm of the neural network. Such 

possibilities are explained further in detail in the future scope of work section. 
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6.2. Future Scope of Work 

 

 In future a possible application of source-measuring unit can be implemented to collect 

voltage-current outputs of the solar panel against various loads and various inclination, 

keeping other parameters same as before. This will help us to obtain the various IV 

curves for every theta value at different time-stamps and directions and would lead to a 

much more comprehensive study. 

 Data-collection duration can also be extended over a whole season or an entire year as 

well as those in different locations. 

 Fixing a solarimeter against the surface of the solar-panel at perpendicular would help us 

to obtain the combined direct and diffused solar irradiance at various observations and 

could be used as another parameter in the next stage of predictive modeling of the panel 

outputs w.r.t. different inputs. 

 Parameters like fine latitude-longitude values as well as altitude can also be used as 

inputs in those predictive models. 

 The predictive model itself will be overhauled in the next stage with exhaustive 

formulation of suitable training functions for the proper input/output mappings for all the 

parameters and could also lead to ideation of a new analytical equation which relates the 

input time, theta and probably solar isolation to output voltage, current and power values. 

 This neural network modeling itself can actually help in creating a dynamic working 

formula or at least a static one which controls the positioning and movement of solar-

panels at different time of the day and at different seasons to generate the best output 
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power at any point of collection and could actually help in improving efficiency of 

building-integrated solar photo-voltaic systems and also those for the large solar parks. 
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