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PREFACE 

This thesis delves into the integration of Electroencephalography (EEG)-based Brain-

Computer Interface (BCI) systems with robotic arm control, aiming to enhance the lives 

of individuals with motor impairments by enabling them to control the robot arm 

simply by thinking to do so. Motivated by the limitations of traditional BCI 

technologies, this research explores the potential of BCIs to offer more seamless and 

intuitive interactions. 

The thesis begins by outlining the objectives, focusing on developing robust 

BCI systems, optimizing control strategies, ensuring user comfort, and evaluating 

performance. It emphasizes the importance of acquiring and pre-processing EEG data, 

which involves filtering and artifact removal to ensure high-quality signals for accurate 

interpretation. Feature extraction techniques are employed to translate EEG signals into 

actionable features, followed by classification of the signals into discrete categories of 

thought (for example, Right Hand Motor Imagery for moving the right arm, Left Hand 

Motor Imagery for moving the left arm, etc). These signals are used to control the 

movement of a robotic arm. 

Four Brain-Actuated Control strategies are explored: Proportional Speed 

Control, Zero-Crossing Sensitive Speed Modulation, Takagi-Sugeno Fuzzy Logic 

Control and Learning Automaton Induced Takagi-Sugeno Speed Modulation. 

Proportional Speed Control offers quick responses but may cause oscillations; Zero-

Crossing Sensitive Speed Modulation enhances stability by adjusting speed upon 

positional error crossing zero; Fuzzy Logic Control provides nuanced adjustments, 

enhancing adaptability and reducing cognitive load of the subject; and lastly, the 

parameters of the Fuzzy-Logic Control is defined using Learning Automton which 

gives greater precision and is further amplifies subject’s comfort. 

The results highlight the strengths and limitations of each strategy, emphasizing 

the importance of adaptive designs that are convenient for patients with neuro-motor 

disabilities in BCI-based assistive devices. This research not only advances the 

technical field but also aims to significantly improve the quality of life for those relying 

on such technologies. 
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CHAPTER 1 

Introduction to Brain-Computer Interface-

Based Position Control 

 

1.1 Introduction 

 

In recent years, the confluence of neuroscience and engineering has given rise to 

technologies that seemed unimaginable a few decades ago. Among these, Brain-

Computer Interfaces (BCIs) stand out as a profound innovation, enabling direct 

pathways for communication between the human brain and external devices. This 

technology not only promises revolutionary applications in medical therapies and 

enhancement of human capabilities but is also paving the way for advanced integrations 

with various control systems. One such integration is with position control systems, 

which are fundamental to a multitude of disciplines including robotics, prosthetics, and 

automated vehicle guidance. 
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Position control is essential wherever precise movement is required. In 

industrial robotics, it ensures that mechanical arms perform tasks with high precision. 

In vehicular automation, it keeps vehicles within their intended lanes. And in the world 

of prosthetics, it can mean the difference between a naturally moving limb and a static 

one. Traditionally, these systems rely on manual inputs or pre-programmed commands 

to operate. However, integrating these systems with BCIs introduces a layer of intuitive 

control, using human thoughts to guide and control these machines. 

 

This thesis explores the novel concept of BCI-based position control, a cutting-

edge integration that merges the intuitiveness of human thought with the precision of 

mechanical control systems. Through this integration, the thesis investigates how 

machines can not only augment human physical capabilities but also respond to human 

intentions in real-time, creating a symbiotic relationship between human cognitive 

functions and machine operations. 

 

The importance of this technology is manifold. For individuals with severe 

mobility impairments, BCIs that can interpret thoughts and convert them into 

mechanical actions promise an unprecedented level of interaction with their 

surroundings. Imagine a paralyzed individual controlling a robotic limb or a wheelchair 

merely through their thoughts, bypassing the damaged neural pathways that once 

carried their commands. Furthermore, in industrial settings, such intuitive systems can 

lead to more efficient and safer operations, where machines can adapt to human 

commands in real-time, potentially reducing the cognitive load and physical demands 

on human operators. 

 

However, the road to integrating BCIs with position control systems is fraught 

with challenges, both technical and ethical. Technically, the systems must be capable 

of high-speed, accurate interpretation of neural signals, which requires sophisticated 

algorithms and robust hardware. Ethically, questions about autonomy, privacy, and the 
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potential for misuse arise. These concerns must be addressed alongside technological 

advancements to ensure that BCI-based systems are developed in a responsible and 

beneficial manner. 

 

This thesis aims to lay down a comprehensive foundation for understanding 

BCI-based position control systems. It discusses the current state of technology, 

explores significant challenges, and hypothesizes about future developments. By 

delving into the technicalities, this thesis not only aims to showcase what has been 

achieved but also to illuminate the path forward, inviting further research and 

development in this interdisciplinary field. 

 

Thus, the journey into integrating BCIs with position control systems is not just 

about building more advanced technologies; it's about redefining the boundaries of 

human-machine interaction. As this technology matures, it could redefine not only how 

we interact with machines but fundamentally alter our capabilities, enhancing and 

extending them beyond natural biological limits. Through this thesis, we embark on a 

detailed exploration of this fascinating frontier, aiming to contribute to a future where 

technology and human intention converge seamlessly. 

 

1.2 What is Position Control? 

 

Position control is an integral aspect of control systems engineering, crucial in fields 

requiring exact control over the movement and orientation of system components or 

entire systems. This section elaborates on the fundamentals of position control, its 

mechanisms, challenges, and its extensive application in modern technologies. 
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1.2.1 Fundamentals of Position Control 

 

Position control pertains to the branch of control engineering that deals with controlling 

the position of an object in space to perform specific tasks accurately. This control 

process involves determining the position of a device or a component accurately and 

repeatedly, maintaining its position against dynamic forces, and manoeuvring it to 

desired locations under controlled speed and trajectories. The sophistication of position 

control systems varies greatly—from simple setups in machine tools to complex 

configurations in high-tech robotics and aerospace applications [1][2]. 

 

1.2.2 Core Mechanisms in Position Control Systems 

 

Position control systems generally consist of sensors, actuators, and controllers: 

▪ Sensors: These are crucial for acquiring real-time data about the system’s 

current state. Common sensors in position control include encoders, which 

measure the angular position of rotating elements, and linear position sensors, 

which measure the movement of components along a path. 

 

▪ Actuators: The physical devices that execute the commands issued by the 

control system, such as motors (stepper motors, servo motors) and hydraulic 

pistons, which alter the position based on received inputs. 

 

 

▪ Controllers: Typically, a microcontroller or a digital signal processor (DSP) 

computes the desired response using a mathematical model. Controllers in 

position control systems use algorithms such as Proportional-Integral-

Derivative (PID) control to adjust the control effort based on the position 

error—the difference between the target and actual positions. PID controllers, 
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in particular, are prized for their simplicity and efficacy, adjusting the control 

outputs to minimize the position error over time [1][2]. 

 

1.2.3 Control Systems Engineering in Position Control 

 

The efficacy of a position control system hinges largely on the principles of control 

systems engineering. This discipline ensures that systems perform their functions 

reliably, efficiently, and safely, adhering to desired behaviors amidst external 

disturbances and internal fluctuations. Control systems are designed based on 

mathematical models that predict the behavior of the system under various conditions. 

This predictive capacity is vital for designing controllers that can compensate for future 

states, enhancing the system’s stability and performance. 

 

Control systems in position control utilize both classical and modern control 

theory. Classical control methods, like PID control, provide solutions where the system 

dynamics are linear and relatively predictable. However, modern control approaches 

are employed when dealing with nonlinear systems or systems with complex dynamics 

that classical methods cannot adequately handle. These may include robust and 

adaptive control strategies that can accommodate system uncertainties and changing 

environmental conditions [13][14]. 

 

1.2.4 Challenges and Advances in Position Control 

 

Implementing effective position control systems presents numerous challenges. The 

precision of position control systems can be affected by factors like mechanical 

backlash, sensor noise, and actuator saturation. Moreover, the environment in which 

the system operates can introduce variability, such as temperature changes affecting 

sensor accuracy or mechanical properties. 
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To address these challenges, recent advances in control systems engineering have 

focused on integrating more sophisticated computational techniques, such as model 

predictive control (MPC) and machine learning algorithms, which predict and adjust to 

the variable dynamics of the system in real-time. These technologies enable the design 

of more adaptive, resilient, and intelligent control systems that can optimize 

performance automatically in the face of system and environmental changes [8][9]. 

 

1.2.5 Applications of Position Control 

 

The application of position control spans numerous domains: 

▪ Robotics: Position control is critical in robotics for tasks that require high 

precision, such as assembly line work, where robots need to position 

components precisely and consistently. 

 

▪ Aerospace: In aerospace, position control systems ensure the accurate 

positioning of satellite antennae, enabling them to maintain the correct 

orientation for communication. Similarly, in aircraft, flight control systems use 

position control to manage the positions of the control surfaces accurately. 

 

 

▪ Automotive: In automotive technology, position control is used in systems like 

electronic power steering and active suspension systems, which improve 

vehicle handling and comfort. 

 

▪ Consumer Electronics: Modern consumer electronics, including cameras and 

computer peripherals like printers, also rely on precise position control for 

functionality such as autofocus mechanisms and paper handling systems 

[5][10][21]. 
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In summary, position control is a pivotal aspect of control systems engineering, 

facilitating the advancement and functionality of various technological innovations 

across multiple industries. As technology progresses, the role of sophisticated control 

systems in achieving precise and reliable position control becomes increasingly 

important, driving forward the capabilities of automation and intelligent machine 

design. The continuous evolution of control strategies, coupled with the integration of 

cutting-edge computational methods, is essential for meeting the ever-growing 

demands for higher precision and efficiency in industrial applications [1][2]. 

 

1.3 What is Brain-Computer Interface (BCI)? 

 

A Brain-Computer Interface (BCI) represents an advanced technology that forges a 

direct communication pathway between the brain and an external device. This interface 

is a pinnacle of innovation in technology, blending neuroscience with computer science 

to interpret brain signals for controlling devices without any physical interaction. This 

section delves into the fundamental concepts of BCIs, exploring their types, operational 

mechanisms, applications, and the challenges inherent in their development. 

 

1.3.1 Fundamental Concepts of BCIs 

 

BCIs are engineered to decode neural signals, translating them into commands that can 

activate actions in a computer system or a connected device. Essentially, a BCI 

circumvents the conventional channels of communication—like nerves and muscles—

which can be slow and may degrade over time due to diseases or injuries. Instead, it 

directly interprets brain activities that relate to intentions, thoughts, or emotions, and 

translates these into actionable commands. 
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The operation of a BCI begins with the acquisition of brain signals, which can 

be captured through invasive, semi-invasive, or non-invasive methods. Invasive 

techniques involve implanting electrodes directly into the brain tissue, offering high-

resolution signals but raising significant risks and ethical questions [3]. Semi-invasive 

methods, which occur beneath the skull but not within the brain tissue, still provide 

relatively high signal clarity with fewer risks than fully invasive methods. Non-invasive 

techniques, such as EEG (electroencephalography), capture brain activity from the 

surface of the scalp. These are the most popular due to their safety, ease of use, and 

non-intrusive nature, although they suffer from lower resolution and greater 

susceptibility to noise [4]. 

 

1.3.2 Types of BCIs 

 

BCIs can be categorized based on their signal acquisition method, the type of signals 

used, or their intended applications. Primarily, there are three types of BCI based on 

the source of signals: 

1. Motor Imagery BCIs which capture brain signals generated when a user imagines 

performing a movement. These signals are processed to control external devices like 

computer cursors or robotic arms. 

 

2. Visual Evoked Potential (VEP) BCIs utilize the brain's response to visual stimuli. 

For example, the repetitive flashing of lights can generate stable, predictable brain 

responses that are harnessed to control interfaces. 

 

3. P300 BCIs employ the P300 wave, an EEG response that occurs approximately 300 

milliseconds after the onset of a stimulus. This response is particularly useful for 

selecting items on a screen or in communication applications. 

 

8



 

1.3.3 How BCIs Operate 

 

BCI operation involves several key stages: 

▪ Signal Acquisition: The initial step involves capturing brain signals using one 

of the previously mentioned methods. The quality of these signals is critical, as 

it directly affects the BCI's accuracy and efficiency. 

▪ Signal Processing: Raw signals are then processed to filter out noise and 

enhance relevant features for interpretation. This typically involves signal 

enhancement, feature extraction, and dimensionality reduction techniques. 

▪ Feature Translation: Processed signals are decoded into commands 

understandable by external devices. These decoding leverages machine 

learning or pattern recognition algorithms to interpret the user's intentions from 

the signals. 

▪ Device Control: Ultimately, these translated signals are used to control an 

external device, whether it be a wheelchair, a virtual keyboard, or an artificial 

limb. 

 

1.3.4 Applications of BCIs 

 

The applications for BCIs are extensive and diverse, ranging from medical 

rehabilitation to entertainment: 

Medical Applications: BCIs have significant implications for the medical sector, 

particularly for individuals with disabilities. They enable people with spinal cord 

injuries, stroke survivors, and those with conditions like ALS to control prosthetic 

limbs, computers, or wheelchairs, enhancing their ability to communicate and move 

independently. 
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Communication and Control: For individuals unable to speak or use their hands, BCIs 

provide alternative communication channels, enabling them to operate speech-

generating devices or surf the internet. 

Neuromarketing and Gaming: In consumer electronics, BCIs are being explored in 

gaming and virtual reality, offering new methods of interaction within gaming 

environments using mere thoughts. Additionally, neuromarketing utilizes BCIs to 

assess consumer reactions directly through brain activity. 

 

1.3.5 Challenges in BCI Development 

 

Despite promising advancements, BCIs confront significant challenges: 

▪ Signal Acquisition and Interpretation: The most formidable challenge is the 

quality and reliability of signal acquisition. Non-invasive methods, while safer 

and more user-friendly, yield less precise signals than invasive methods. 

 

▪ User Training: BCIs necessitate substantial user training for effective 

operation, as individuals must learn to consistently generate brain signals that 

can be accurately decoded. 

 

▪ Ethical and Privacy Concerns: As BCIs involve tapping into personal 

biological data, they raise serious ethical and privacy issues. The potential 

misuse of such data and concerns about information security are critical aspects 

that need addressing as the technology evolves. 

 

Brain-Computer Interfaces stand at a compelling crossroads of technology, 

neuroscience, and human potential, offering vast prospects for enhancing human 

capabilities, especially for those with physical limitations. As research progresses, 
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integrating advanced computational methods, improved sensor technologies, and 

sophisticated machine learning algorithms will further expand the capabilities of BCIs, 

making them more intuitive, efficient, and accessible [8][9]. 

 

1.4 Why is BCI-Based Position Control Important? 

 

Brain-Computer Interface (BCI) technology, especially when integrated with position 

control systems, represents a significant breakthrough in how humans interact with and 

control their environment. The integration of BCI with position control mechanisms—

where precise positioning of objects or devices is required—opens a vast realm of 

possibilities, from enhancing the quality of life for individuals with disabilities to 

advancing the fields of robotics and automation. This section explores the significance 

of BCI-based position control, detailing its applications, benefits, and potential future 

impacts. 

 

1.4.1 Enhancing Accessibility for Individuals with Disabilities 

 

One of the most profound impacts of BCI-based position control is its potential to 

transform the lives of those with severe physical disabilities. For individuals suffering 

from quadriplegia, advanced neurodegenerative diseases, or severe forms of cerebral 

palsy, even simple tasks such as moving around in a room or adjusting the position of 

a chair can be daunting if not impossible. BCIs that control these positional parameters 

can provide these individuals with unprecedented independence, reducing reliance on 

caregivers and improving their overall quality of life [3][6]. 

 

For example, wheelchair control through BCI allows users to direct their 

mobility device using brain signals alone, circumventing the physical limitations of 
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their bodies. This technology does not merely add convenience but opens new avenues 

for interaction with the world that were previously inaccessible. In robotic arm control 

applications, BCIs enable precise movements, allowing users to perform complex tasks 

like picking up objects or manipulating tools, which are essential for personal care and 

professional activities [5][10]. 

 

1.4.2 Advancing Robotics and Automation 

 

In the realm of robotics and automation, BCI-based position control systems serve as a 

bridge between human cognitive capabilities and mechanical performance. Such 

systems allow for a more natural, intuitive interface for controlling robots, which can 

be particularly beneficial in complex environments where traditional control 

mechanisms may fall short. For instance, in surgical robotics, BCIs could enable 

surgeons to control robotic instruments with their thoughts alone, potentially increasing 

the precision and reducing the fatigue associated with manual controls during long 

operations [6][12]. 

 

Moreover, BCI-based systems can improve the efficiency and safety of 

operations in hazardous environments, such as in nuclear decommissioning or 

underwater repairs, where direct human involvement is risky. Robots controlled via 

BCI can execute precise manipulations based on the operator's thoughts, combining 

human decision-making capabilities with the robot's mechanical precision. 

 

1.4.3 Facilitating Research and Innovation in Neurotechnology 

 

The development and implementation of BCI-based position control systems also drive 

advancements in neurotechnology and cognitive neuroscience. By analyzing how the 

brain communicates movement intentions to control external devices, researchers can 

12



 

gain deeper insights into the underlying mechanisms of motor control and brain 

functionality [4][9]. 

 

This research has broader implications, potentially leading to breakthroughs in 

understanding and treating neurological disorders such as Parkinson's disease, multiple 

sclerosis, or stroke rehabilitation. Each application of BCI-based control contributes to 

a body of knowledge that could revolutionize therapeutic strategies and improve 

outcomes for patients experiencing motor control issues. 

 

 

1.4.4 Promoting Inclusivity and Societal Participation 

 

BCI-based position control technologies promote inclusivity, enabling people with 

severe physical disabilities to participate more fully in society. By providing tools that 

help bypass physical limitations, BCIs can help level the playing field, allowing 

individuals to partake in educational opportunities, employment, and social activities 

that were previously challenging. 

 

These technologies also help raise awareness about the capabilities and needs 

of people with disabilities, fostering a more inclusive society that values technological 

accessibility and innovation as key components of societal development. 

 

1.4.5 Challenges and Ethical Considerations 

 

Despite these benefits, the integration of BCI with position control systems is not 

without challenges. The accuracy and reliability of BCIs need significant enhancement 

to ensure safe and effective control in critical applications. There are also substantial 

13



 

 

ethical and privacy concerns that come with reading and interpreting brain signals, 

which require careful consideration and robust regulatory frameworks to ensure that 

these technologies are used responsibly [7][11]. 

 

BCI-based position control is more than just a technological innovation; it is a 

potential catalyst for profound societal change, offering new freedoms to those with 

physical limitations and advancing fields as diverse as medicine, robotics, and 

accessibility. As this technology continues to evolve, it will undoubtedly open up new 

frontiers for how humans interact with and control the physical world, making it a 

crucial area of focus for future research and application [8][10]. 

 

1.5 Simple Scheme of BCI-Based Position Control 

 

The concept of Brain-Computer Interface (BCI) based position control embodies a 

significant technological synthesis, integrating the realms of neurology, control 

systems, and robotics. This section aims to demystify the basic operational scheme of 

a BCI-based position control system, detailing the components involved, the process 

flow, and typical applications where such systems are deployed. Understanding this 

scheme is pivotal for appreciating how BCIs can be used to manage and direct the 

positioning of devices or limbs in space. 

 

1.5.1 Basic Components of BCI-Based Position Control Systems 

 

A typical BCI-based position control system consists of several key components, each 

playing a critical role in translating user intentions into precise physical actions: 
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1. Signal Acquisition: The first step involves capturing brain signals, typically using 

non-invasive methods like electroencephalography (EEG). These signals are often 

weak and noisy, necessitating sophisticated signal processing techniques to extract 

meaningful data [9][11]. 

 

2. Signal Processing: Once acquired, the brain signals are subjected to various 

processing stages, including filtering, feature extraction, and classification. The 

objective here is to accurately decode the user's intention from the raw EEG data. 

Advanced machine learning algorithms, such as those outlined in references [8] and 

[9], are commonly employed to enhance the accuracy and reliability of signal 

interpretation. 

 

3. Command Interface: The processed signals are then converted into commands 

understandable by the control system. This translation is crucial as it forms the bridge 

between human intentions and mechanical actions. The design of the command 

interface often depends on the specific application, whether it be robotic arm 

manipulation or wheelchair navigation [5][10]. 

 

4. Execution by Actuators: Following command generation, actuators or mechanical 

systems carry out the desired actions. These can include motors in a robotic arm or 

wheels in a mobility device, precisely controlled based on the commands derived from 

brain signals [5][10]. 

 

5. Feedback Loop: To ensure accuracy and safety, a feedback loop is often 

incorporated. This involves sensors providing real-time data back to the user, 

potentially through visual, auditory, or tactile feedback, allowing them to adjust their 

commands dynamically [6][12]. 
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1.5.2 Operational Flow 

 

The operational flow of a BCI-based position control system can be succinctly 

described in a series of steps that start with the user generating a mental command and 

end with the physical movement of a device or limb: 

 

1. Initiation: The user focuses on a specific task, such as moving a cursor on a screen 

or directing a robotic arm to reach for an object. This mental activity generates distinct 

brain patterns that are detected by EEG electrodes. 

 

2. Signal Detection and Processing: The EEG system captures these signals, which 

are then filtered and decoded using sophisticated algorithms to ascertain the user's 

intent. The effectiveness of this step hinges on the robustness of the signal processing 

algorithms and the clarity of the user-generated signals [3][9]. 

 

3. Command Generation: The decoded intentions are translated into specific 

commands tailored to the control system of the device being operated. This step 

requires seamless integration between the BCI system and the device's control 

architecture to ensure that the commands are both accurate and timely [10][12]. 

 

4. Action Execution: The commands are executed by the device's actuators, resulting 

in movement. For instance, a wheelchair might start moving forward, or a robotic arm 

might change its position to grab an item. 

 

5. Feedback and Adjustment: Concurrently, the system provides feedback to the user, 

who can then adjust their mental commands based on the device's response. This 
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feedback loop is essential for achieving precise control, particularly in complex tasks 

[6][12]. 

 

Fig 1.1 Schematic Diagram of BCI-based Position Control 

 

1.5.3 Applications of BCI-Based Position Control 

 

BCI-based position control systems find applications in various fields, each benefiting 

from the direct interface between human cognitive functions and mechanical execution: 

 

▪ Medical Rehabilitation: For patients recovering from strokes or spinal cord 

injuries, BCIs combined with robotic exoskeletons can facilitate movement and 

rehabilitation exercises, enhancing recovery by engaging the patient's own 

neural pathways in the therapy [3][10]. 

 

▪ Assistive Technologies: Wheelchairs, prosthetics, and other assistive devices 

equipped with BCI technology offer enhanced autonomy to individuals with 

severe physical disabilities, enabling them to perform daily tasks with greater 

independence [5][6]. 
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▪ Industrial Robotics: In industrial settings, BCI systems can allow operators to 

control robotic arms or other machinery via thoughts alone, potentially 

increasing safety and efficiency in environments where physical controls can 

be cumbersome or dangerous [10][12]. 

 

The simple scheme of a BCI-based position control system encapsulates a 

complex interplay of neurology, computer science, and mechanical engineering. By 

harnessing the power of human thought to directly control physical objects, this 

technology not only opens new avenues for individual autonomy and medical 

rehabilitation but also paves the way for innovations in various technological domains. 

As the field advances, further enhancements in signal processing, machine learning, 

and feedback mechanisms are expected to drive the efficacy and adoption of these 

systems across an even broader spectrum of applications [8][9][11]. 

 

1.6 Scope of the Thesis 

 

This thesis explores the development and application of Brain-Computer Interface 

(BCI) technology for controlling robotic arms, with a particular focus on precision and 

responsiveness improvements through error-related neural feedback. The primary 

objective is to enhance the integration of human neural responses with robotic 

movements, enabling a more intuitive and effective control system for users, especially 

those with physical disabilities.  

Chapter 1 is dedicated towards a detailed introduction to position control and 

the preliminary concepts of Brain-Computer Interface and how these two can be 

achieved. Next, Chapter 2 discusses the modes through which BCI can be achieved, 

that is the different methods of brain signal acquisition and the different brain signals 

from the various lobes of the brain. It also discussed the methods required for 

processing these raw brain signals. In Chapter 3, we discuss the various methods that 

we have applied to automatize the BCI system so as to improve system performance 
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and reduce the cognitive load of the patients. We have designed four control strategies, 

each outperforming the former, in terms of required parameters. In Chapter 4, we 

discuss the merits and demerits of the current proposed schemes and any future 

prospect to improve upon the current position control system. 

 

1.7 Conclusions 

 

As we conclude our exploration into Brain-Computer Interface (BCI) based position 

control, it becomes evident that this field represents a significant crossroads of 

neuroscience, technology, and engineering, holding substantial promise for the future 

of human-machine interaction. Throughout this thesis, we have systematically 

analyzed various facets of BCI technology—from the fundamentals of position control 

and BCIs, to the implications of integrating these technologies into practical 

applications. Each section has not only delved into the technicalities and advancements 

but has also highlighted the importance and the potential that BCI-based position 

control systems carry. 

 

In the initial sections, we discussed the concept of position control, which is 

essential for any robotic or mechanical system requiring precise movement. Position 

control, as grounded in the theories and applications elaborated in classic control 

system texts [1][2][13][14], forms the backbone of automation and robotics. The 

mechanisms that allow for such control involve complex feedback systems and 

sophisticated algorithms, ensuring accuracy and reliability in response to dynamic 

environmental conditions. 

 

Transitioning from traditional control systems to BCIs, we explored how these 

interfaces bridge the gap between human cognitive intent and machine operations. 

BCIs decode neural signals, predominantly using EEG, to command and control 
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external devices without physical movement [3][4][9]. This leap from manual control 

to thought-based command opens numerous possibilities in assistive technologies, 

particularly aiding those with mobility impairments. The integration of BCIs with 

position control systems signifies a notable advancement in creating more intuitive and 

naturalistic interactions with technology [5][6]. 

 

The discussions on the importance of BCI-based position control underscored 

not only the technological brilliance but also the profound societal impacts. These 

systems offer renewed independence to individuals with severe physical limitations, 

thus enhancing their quality of life and societal integration [5][6][7]. Moreover, the 

potential applications in medical rehabilitation, where patients can retrain and regain 

motor skills through BCI-controlled robotic systems, illustrate the therapeutic benefits 

of this technology. 

 

However, with great technology comes great responsibility. We examined the 

technical challenges, such as the need for improved signal processing techniques and 

real-time response systems, which are critical for the wider adoption and effectiveness 

of BCIs [8][10][11]. Ethical concerns also form a significant part of the discussion, as 

the personal and private nature of neural data demands stringent safeguards against 

misuse and considerations for user consent [7].  

 

Looking ahead, the potential for future enhancements in BCI technology is 

boundless. Integration with artificial intelligence could lead to more adaptive systems 

that learn from user behavior to enhance functionality and user experience [8][9][11]. 

Furthermore, as we merge these technologies with the burgeoning field of the Internet 

of Things (IoT), we could see a new era of smart environments responsive to thought 

commands, changing how we interact with our surroundings. 
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In essence, the journey through this thesis has not only presented a detailed 

analysis of BCI-based position control systems but has also set the stage for future 

research and development in this fascinating intersection of disciplines. As we continue 

to push the boundaries of what these technologies can achieve, it is imperative to foster 

an interdisciplinary approach that balances innovation with ethical considerations. The 

roadmap laid out by this thesis provides a foundation for future explorations, aiming to 

harness the full potential of BCI systems while conscientiously navigating the 

complexities they present. The promise of BCI technology, as explored in this thesis, 

is not just in its current capabilities but in its potential to redefine the limits of human-

machine collaboration. 
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Chapter 2 

Brain-Signal Processing and Classification 

 

2.1 The Human Brain: Lobe Functions 

 

The human brain, an incredibly sophisticated and indispensable organ, governs a 

myriad of essential aspects of our everyday lives and our ability to survive and thrive. 

At the outermost layer of the brain lies the cerebral cortex, which is segmented into 

distinct regions or lobes, each with its own set of responsibilities. These lobes play vital 

roles in functions such as sensory perception, motor control, language processing, and 

higher cognitive functions like reasoning and decision-making. 

 

A deeper understanding of these brain regions not only enriches our knowledge 

of human behavior but also serves as a cornerstone for advancements in the medical 

field. Such insights aid in the diagnosis and treatment of various neurological disorders, 

offering hope to countless individuals grappling with conditions that affect their brain 

function and quality of life. 
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Fig 2.1 The different lobes of the brain 

 

The human brain serves as a testament to nature's complexity, orchestrating an 

intricate dance of neural activity that underpins our very existence and daily activities. 

Divided into distinct lobes, each segment holds a vital role in regulating cognition, 

behavior, and sensory processing. As we unravel the mysteries of the brain's 

architecture, we unlock new avenues for understanding and addressing neurological 

challenges, bringing us closer to unlocking the full potential of the human mind. 

 

(a) Pre-frontal Lobe:  

The prefrontal lobe, nestled at the forefront of the brain within the frontal lobe, 

assumes a pivotal role in overseeing executive functions essential for navigating daily 

life. Often likened to the CEO of the brain, it orchestrates a complex symphony of 

cognitive processes and social behaviors. Decision-making, impulse control, 

emotional regulation, and judgment formation are among its primary responsibilities, 

intricately woven into the fabric of our psychological landscape ([7], [9]). 
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Moreover, the prefrontal lobe serves as a cognitive hub for tasks requiring 

nuanced thought processes, such as problem-solving, logical reasoning, and complex 

decision-making. Engaged extensively during activities demanding active memory 

utilization, it ensures seamless navigation through multifaceted cognitive challenges. 

 

Beyond cognitive realms, this region plays a significant role in emotional 

regulation and social interaction, modulating our responses to external stimuli and 

shaping our interpersonal relationships. Its intricate interplay with other brain regions 

underscores its indispensability in human psychology, illuminating the profound 

impact of prefrontal function on our daily experiences and interactions with the 

world. 

 

(b) Frontal Lobe:  

Situated adjacent to the prefrontal lobe, the frontal lobe assumes responsibility for 

coordinating voluntary movements, regulating speech production, and facilitating 

higher cognitive functions. Often regarded as the brain's command center for action 

and creativity, it plays a pivotal role in orchestrating activities that demand innovative 

thinking and problem-solving ([7], [9]). 

 

Moreover, the frontal lobe is intricately involved in short-term memory 

retention, crucial for recalling recent events or information. Its contribution extends to 

planning and anticipating the consequences of actions, enabling individuals to adapt 

effectively to new environments. 

 

In essence, the frontal lobe serves as a hub for cognitive prowess, creative 

endeavours, and pragmatic decision-making, underscoring its significance in shaping 

our ability to interact with the world and manifest our thoughts into actions. 
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(c) Motor Cortex: 

Nestled within the frontal lobe, the motor cortex serves as a vital hub for orchestrating 

voluntary movements by transmitting signals to the spinal cord. Positioned towards the 

rear of the frontal lobe, it acts as the brain's primary command center for physical 

activity, ensuring the precise execution of coordinated movements essential for daily 

functioning [7]. 

 

The motor cortex plays a pivotal role in the planning, regulation, and execution 

of voluntary movements. Through its intricate network of neurons, this region 

dispatches instructions to the spinal cord, prompting muscle contractions and 

facilitating movement. It comprises two main subdivisions: the primary motor cortex, 

which directly governs muscle actions, and premotor areas, which prepare muscles for 

specific actions. 

 

This segmentation enables the motor cortex to facilitate smooth and coordinated 

movements necessary for a wide array of physical activities, ranging from basic motor 

tasks to complex actions requiring precision and dexterity. Ultimately, the motor cortex 

serves as a cornerstone for our ability to interact with the external environment, 

translating neural commands into tangible movements with remarkable efficiency and 

accuracy. 

 

(d) Parietal Lobe:  

Positioned just behind the prefrontal lobe, the frontal lobe plays a pivotal role in 

governing voluntary movements, speech production, and higher cognitive functions. 

Serving as the brain's command center for action and creativity, it is notably engaged 

during tasks demanding innovative thinking, such as problem-solving and artistic 

endeavors [7]. Furthermore, the frontal lobe contributes significantly to short-term 

memory retention, crucial for recalling recent events or information. 
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Beyond cognitive realms, this region aids in planning and anticipating the 

consequences of actions, essential for adapting to new environments and navigating 

daily challenges effectively. Its intricate interplay with other brain regions underscores 

its indispensability in shaping our ability to interact with the world and manifest our 

thoughts into actions, thereby highlighting the profound impact of the frontal lobe on 

our daily experiences and interactions. 

 

(e) Occipital Lobe:  

Situated at the posterior of the brain, the occipital lobe serves as the epicenter for visual 

processing, enabling us to perceive and comprehend the visual world around us. Often 

likened to the brain's camera, it functions as a sophisticated mechanism for capturing 

and analyzing visual stimuli [7]. 

 

Functioning as the brain's visual processing powerhouse, the occipital lobe 

deciphers incoming visual information from the eyes, discerning nuances such as color, 

light intensity, motion, and depth. Essential tasks like facial recognition, reading, and 

appreciating visual arts heavily rely on the seamless operation of the occipital lobe. 

 

Despite its relatively compact size compared to other cerebral lobes, the 

occipital lobe wields considerable influence over our interaction with the environment, 

shaping our ability to navigate and interpret visual stimuli with precision and clarity. 

 

(f) Temporal Lobe:  

Located bilaterally on the sides of the brain, the temporal lobes play pivotal roles in 

auditory processing, language comprehension, and memory consolidation. Nestled 
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beneath the temples, they serve as command centers for deciphering auditory stimuli 

and encoding memories for future recall. 

 

Primarily responsible for recognizing sounds and understanding language 

nuances, the temporal lobes are indispensable for language comprehension and the 

appreciation of music. Moreover, they actively participate in the formation of long-

term memories, crucial for educational learning and sustained information retention 

over time. 

 

Beyond memory consolidation, the temporal lobes intricately intertwine 

memories with emotions, enriching our experiences with depth and sentiment. This 

integration of cognitive and emotional processes underscores the temporal lobes' 

multifaceted functions in shaping our perceptions, interactions, and memories of the 

world around us. 

 

Each brain lobe, with its unique and interconnected functions, supports the 

diverse array of human thoughts, emotions, and behaviours. From solving complex 

problems in the pre-frontal lobe to storing cherished memories in the temporal lobe, 

each part contributes distinctively to the essence of being human. Expanding our 

understanding of these functions not only sheds light on our internal mechanisms but 

also assists healthcare professionals in addressing various brain conditions, thereby 

enhancing life quality. 

 

2.2 The Different Brain Signals 

 

The human brain communicates through intricate patterns of electrical activity, which 

can be recorded and analyzed to understand cognitive processes and neural functions. 
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Three significant brain signals, Motor Imagery (MI), Error-Related Potentials (ErrP), 

and Steady-State Visually Evoked Potentials (SSVEP), offer valuable insights into 

brain activity and have applications in neuroscience and technology. 

 

2.2.1 Motor Imagery (MI) Signals: 

Motor Imagery involves mentally simulating movement without physical execution, 

activating neural pathways akin to those engaged during actual movement. This 

cognitive process engages specific brain regions associated with movement planning 

and execution, notably the motor cortex, which exhibits distinct activity patterns during 

Motor Imagery tasks. These patterns manifest through two phenomena: Event-Related 

Desynchronization (ERD), characterized by a reduction in brain wave amplitude 

indicating active motor planning, and Event-Related Synchronization (ERS), marked 

by increased wave amplitude reflecting a pause in motor activity. 

 

Hemispheric activation follows a contralateral pattern: imagining left limb 

movement activates the right motor cortex, while imagining right limb movement 

activates the left motor cortex. 

 

The applications of Motor Imagery extend to neuro-prosthetics and Brain-

Computer Interfaces (BCIs), offering potential benefits for individuals with disabilities. 

MI-based BCIs decode imagined movements into commands, enabling users to interact 

with technology or control prosthetic limbs through thought alone. 

 

These findings not only deepen our understanding of brain function but also 

hold promise for improving the quality of life for individuals with motor impairments. 

Harnessing the power of Motor Imagery in assistive technologies opens new avenues 

for enhancing independence and mobility for those with physical disabilities. 
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Fig 2.2 The Motor Imagery Signal 

 

2.2.2 Error-Related Potentials (ErrP): 

Error-Related Potentials (ErrPs) represent neuroelectric signals originating from a 

specific region of the brain called the medial frontal cortex. These signals are triggered 

when individuals recognize errors or receive feedback indicating the presence of an 

error. ErrPs provide valuable insights into the cognitive processes involved in self-

monitoring and error correction within the brain. 

 

When an error is perceived, ErrPs manifest as distinct patterns in 

electroencephalogram (EEG) readings. These patterns are characterized by sharp, 

negative deflections occurring shortly after the individual becomes aware of the 

mistake. ErrPs can be further classified into two main types: response ErrPs and 

feedback ErrPs. 

 

Response ErrPs are elicited when errors occur in the individual's own actions. 

For example, if someone makes a mistake while performing a task, such as pressing 

the wrong button, a response ErrP may be observed in their EEG readings. Feedback 

ErrPs, on the other hand, are triggered by external feedback indicating the presence of 
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an error. This could include receiving an error message on a computer screen or being 

informed verbally that an error has occurred. 

 

Fig 2.3 The ErrP signal 

The integration of ErrP detection into Brain-Computer Interfaces (BCIs) holds 

significant potential for enhancing the adaptiveness and accuracy of these systems. For 

instance, in a BCI-controlled robotic arm, detecting an ErrP could prompt an immediate 

adjustment or correction of the movement being executed. This real-time error 

correction mechanism not only helps prevent mistakes but also enhances user safety 

and overall system performance. 

 

In summary, ErrPs play a crucial role in understanding how the brain monitors 

and corrects errors, and their integration into BCIs represents a promising avenue for 

advancing neurotechnology and improving human-computer interaction. 

 

2.2.3 Steady-State Visually Evoked Potentials (SSVEP): 

Steady-State Visually Evoked Potentials (SSVEPs) are brain responses evoked by 

visual stimuli flickering at constant frequencies. These responses, primarily recorded 

over the occipital region, signify the brain's electrical activity synchronizing with the 

frequency of the stimulus. SSVEPs are renowned for their robustness and reliability, 
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making them invaluable for Brain-Computer Interface (BCI) applications aimed at 

visual-based control tasks. 

 

The integration of insights from Motor Imagery (MI), Error-Related Potentials 

(ErrP), and SSVEP signals enriches our understanding of brain function and expands 

the horizons of neurotechnology applications. From assistive devices for individuals 

with disabilities to cutting-edge BCIs, these signals hold immense promise for 

enhancing human health and quality of life. 

 

SSVEPs offer a non-invasive and efficient means of interaction in BCIs. Their 

robust and high signal-to-noise ratio facilitates quick and reliable interpretation, ideal 

for real-time control systems. Users can control interfaces by directing visual attention 

to stimuli of varying frequencies, with each frequency corresponding to a distinct 

command, enabling seamless interaction without physical movement. 

 

 

Fig 2.4 The SSVEP signal 
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Clinically, SSVEPs play a vital role in assessing the functionality of visual 

pathways and diagnosing visual impairments. By analyzing SSVEP responses, 

clinicians can gain insights into the integrity of the visual system, aiding in the 

diagnosis and treatment of visual disorders. 

 

In summary, SSVEPs represent a powerful tool in neurotechnology, offering a 

reliable and non-invasive method for interfacing with the brain. Their versatility and 

effectiveness make them indispensable in a wide range of applications, from enhancing 

human-computer interaction to diagnosing and treating visual impairments. 

 

Integrative Approaches and Future Directions: 

Combining insights from MI, ErrP, and SSVEP signals not only enhances the 

functionality and efficiency of BCIs but also opens new avenues in neurotherapeutic 

applications. These integrated systems could lead to more naturalistic and intuitive user 

interfaces in assistive technologies, providing greater independence and improved 

quality of life for individuals with physical impairments. Further research into these 

signals will continue to expand our understanding of the brain and pave the way for 

innovative applications in medicine, rehabilitation, and human-computer interaction. 

Overall, the study and application of MI, ErrP, and SSVEP brain signals highlight the 

immense potential of neural technology in bridging gaps between the human brain and 

artificial systems, offering profound benefits across medical and technological fields. 

 

2.3 Feature Extraction for Brain Signals 

 

Understanding brain signals is crucial for unraveling the mysteries of the human mind 

and developing advanced technologies for neurorehabilitation, human-computer 

interaction, and cognitive enhancement. One fundamental aspect of analyzing brain 

signals is feature extraction, which involves identifying and quantifying relevant 
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patterns or characteristics within the signals. In this essay, we explore the process of 

feature extraction for brain signals, drawing insights from recent research findings and 

referencing relevant studies. 

 

Feature extraction plays a pivotal role in decoding and interpreting brain signals 

obtained through various neuroimaging techniques such as electroencephalography 

(EEG) and functional magnetic resonance imaging (fMRI). By extracting 

discriminative features from raw brain signals, researchers can identify meaningful 

patterns that correspond to specific cognitive processes, motor activities, or sensory 

responses [11]. 

 

2.3.1 Artifact Removal and Signal Filtering 

Initial preprocessing of EEG data is essential to enhance the quality of the signals for 

feature extraction. Common disturbances such as eye blinking and muscle movements 

introduce significant artifacts which can obscure the true EEG signal. Independent 

Component Analysis (ICA) is widely used for artifact removal. ICA separates 

multivariate signals into additive, independent non-Gaussian signals, allowing for the 

isolation and removal of artifacts without affecting the underlying brain signals. 

 

Following artifact removal, the EEG data is filtered to isolate the frequency 

bands relevant to each type of brain signal. This is typically achieved using narrow 

band spatial filters that are tuned to appropriate mid-frequencies and bandwidths. These 

filters help in reducing the influence of irrelevant frequencies and enhance the signal-

to-noise ratio of the EEG recordings. 

 

2.3.2 Feature Extraction from Brain Signals 

Brain-computer interfaces (BCIs) revolutionize human-computer interaction by 

translating brain signals into actionable commands. A crucial step in this process is 
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extracting meaningful features from electroencephalogram (EEG) signals associated 

with different brain activities. This chapter delves into the techniques used to extract 

features from motor imagery (MI), error-related potentials (ErrP), and steady-state 

visually evoked potentials (SSVEP) signals, as explored in the referenced literature and 

experiments. 

 

2.3.2.1 Motor Imagery (MI) 

Motor Imagery (MI) signals are crucial components in brain-computer interface (BCI) 

technologies, especially in the context of non-invasive EEG-based systems. These 

signals arise when an individual imagines performing a movement without physically 

executing it, activating similar neural pathways as actual movement. The predominant 

challenge in MI BCIs is the extraction of relevant features from raw EEG data that can 

effectively capture the underlying imagined action. 

 

The feature extraction process for MI primarily targets sensorimotor rhythms, 

with a focus on the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands. These bands 

are known to exhibit significant fluctuations during motor planning and execution, 

whether real or imagined. Techniques such as band-pass filtering are commonly 

employed to isolate these specific frequencies from the broader EEG spectrum.  

 

Event-Related Desynchronization/Synchronization (ERD/ERS) analysis is 

another critical technique in the MI feature extraction arsenal. ERD refers to the 

decrease in band power associated with motor activity, while ERS denotes an increase. 

Analyzing these patterns provides insights into the timing and location of brain activity 

related to specific motor imaginations.  

 

Furthermore, time-frequency transformations like wavelet transforms are 

utilized to capture both the frequency and temporal information from EEG signals. This 
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is particularly important as the dynamic changes in brain activity during motor imagery 

occur over very short intervals. Wavelet transforms help in mapping these quick 

transitions effectively, providing a robust framework for decoding the user's intention 

in BCIs. 

Motor imagery involves mentally simulating movements, activating similar 

brain regions as physical execution. Extracting relevant features from MI signals is 

pivotal for controlling devices via BCIs. Some of the techniques utilized are mentioned: 

 

▪ Common Spatial Pattern (CSP): CSP is a sophisticated technique akin to 

tuning a radio to capture clear signals. It leverages spatial filtering to highlight 

brain activity patterns relevant to MI tasks while minimizing noise. Think of it 

as tuning into the brain's frequency for specific movements ([15], [18]). 

 

▪ Filter-Bank Approach: This approach breaks down EEG signals into different 

frequency bands, akin to sorting music into different genres. By applying CSP 

to each band separately, it enhances the system's ability to discern between 

different MI tasks. It's like fine-tuning the radio to different stations for better 

clarity ([15]). 

 

2.3.2.2 Error-related Potentials (ErrP) 

Error-related Potentials (ErrP) are another type of signal of interest in neuro-

engineering, particularly in the development of adaptive BCIs. These signals are 

generated when an individual recognizes a mistake in the outcome of their action or 

when an external system error occurs. The ability to detect and respond to ErrPs can 

significantly enhance the interactive capabilities of a BCI, enabling it to correct errors 

in real-time. 
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Feature extraction for ErrPs involves precise segmentation of EEG data to 

capture the occurrence of an error. This segmentation is typically centered around the 

event where the error is detected, and involves the application of baseline normalization 

techniques to enhance the signal-to-noise ratio. This prepares the signal for further 

analysis where features such as the amplitude and latency of the ErrP peaks are 

scrutinized.  

 

The amplitude and latency of these peaks are telling; they represent the intensity 

and timing of the brain's response to errors, respectively. These features are crucial for 

algorithms that aim to detect and classify ErrPs effectively, thereby facilitating quick 

corrective actions within the BCI framework. The method for ErrP feature extraction 

is Adaptive Auto-Regressive. 

 

▪ Adaptive Auto-Regressive (AAR) Parameters: AAR parameters delve into 

the dynamic nature of EEG signals post-error. Think of it as analyzing the 

ripples in a pond after a stone is thrown. By examining these ripples, we gain 

insights into the brain's response to errors, aiding in error detection and system 

adaptation ([1]). 

 

 

2.3.2.3 Steady-State Visual Evoked Potentials (SSVEP) 

Steady-State Visual Evoked Potentials (SSVEP) are elicited by visual stimuli flickering 

at constant frequencies. In BCI applications, SSVEP signals are advantageous due to 

their robustness and relatively high signal-to-noise ratio. Feature extraction for SSVEP 

primarily focuses on identifying the frequency components corresponding to the visual 

stimuli. 
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Techniques like Fourier Transforms or Power Spectral Density (PSD) analysis 

are pivotal in isolating these frequencies from the EEG data. Such methods provide a 

clear spectral view where stimulus frequencies and their harmonics can be identified 

and quantified. Additionally, Canonical Correlation Analysis (CCA) is frequently used 

to compare the frequencies observed in the EEG with the expected stimulus 

frequencies, aiding in confirming the presence and strength of SSVEP responses. 

 

This precise frequency mapping through feature extraction is essential as it directly 

influences the accuracy and reliability of SSVEP-based BCIs. By accurately 

identifying which frequency a user is focusing on, the system can infer the user's 

selection or intention, making it a powerful tool for communication and control in 

BCIs. The method for SSVEP feature extraction are given below: 

 

▪ Power Spectral Density (PSD): PSD analysis provides a snapshot of signal 

power across different frequency bands. For SSVEPs, it's akin to analyzing the 

intensity of lights flickering at various rates. By focusing on frequencies 

corresponding to visual stimuli, we can isolate and extract SSVEP signals 

effectively ([18]). 

 

▪ Auto-Regressive (AR) Features: AR modeling captures the spectral 

characteristics of SSVEP signals. Imagine creating a mathematical model to 

mimic the behavior of flickering lights. AR features provide insights into the 

underlying dynamics of SSVEP responses, aiding in their detection and 

classification ([18]). 

 

Applications and Implications: 

The extracted features from MI, ErrP, and SSVEP are instrumental in the development 

and enhancement of BCIs. These features allow BCIs to interpret user intentions, detect 
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cognitive errors, and respond to visual stimuli accurately, thereby enabling users, 

especially those with severe motor disabilities, to interact with their environment in a 

meaningful way. 

Feature extraction is a critical process in the analysis of EEG signals for BCI 

applications. By employing sophisticated methods like ICA for artifact removal, 

appropriate filtering techniques, and advanced feature extraction algorithms like CSP, 

AAR, PSD, and AR, researchers can effectively interpret the brain's electrical activity. 

These processes not only enhance the performance and accuracy of BCIs but also open 

new avenues for research in neurotechnology, paving the way for future innovations 

that could profoundly impact the medical field and beyond. 

 

2.3.3 Integration of Feature Extraction Techniques 

 

In the experiments, a combination of these techniques is employed to extract 

discriminative features from EEG signals, enabling precise decoding of user intentions 

and control of robotic systems. 

 

By leveraging advanced signal processing methods such as CSP for MI, AAR 

parameters for ErrP, and PSD/AR features for SSVEP, the experiments demonstrate 

effective extraction of meaningful features from EEG signals. These features serve as 

the building blocks for decoding user intentions and facilitating seamless interaction 

between humans and machines in BCI applications. 

 

2.4 Brain Signal Classification 

 

Electroencephalography (EEG) signals, captured from the human brain, play a pivotal 

role in the development of brain-computer interfaces (BCIs) [22]. These interfaces 
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enable direct communication pathways between the brain and external devices, 

promising revolutionary applications in medical rehabilitation, assistive technology, 

and interactive computing [3]. This essay explores the detailed methodologies 

employed in feature extraction and classification of three specific EEG signals: Motor 

Imagery (MI), Error-related Potentials (ErrP), and Steady-State Visually Evoked 

Potentials (SSVEP) [2]. 

 

Post feature extraction, the classification stage involves assigning signal 

categories based on the extracted features. Linear Discriminant Analysis (LDA) is a 

preferred method due to its efficiency in binary and multi-class problems [20]. 

 

In the realm of brain-computer interfaces (BCIs), accurate classification of 

electroencephalography (EEG) signals is critical for the system's effectiveness and user 

satisfaction [11]. The classification process involves determining which category a new 

observation belongs to, based on a training set of data containing observations whose 

category membership is known [11]. This section delves into the classification 

techniques employed for EEG signals, specifically focusing on Linear Discriminant 

Analysis (LDA), which is widely used in the analysis of Motor Imagery (MI), Error-

related Potentials (ErrP), and Steady-State Visually Evoked Potentials (SSVEP) [11]. 

 

Brain signal classification is a fundamental aspect of brain-computer interface 

(BCI) systems, enabling the interpretation of neural activity into actionable commands 

[22]. Through sophisticated algorithms and techniques, these systems decode 

electroencephalography (EEG) signals associated with various brain states, such as 

motor imagery (MI), error-related potentials (ErrP), and steady-state visually evoked 

potentials (SSVEP) [4]. Here, we delve into the classification methods utilized in BCI 

research, drawing insights from the provided references. 
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1. Training and Test Phases: 

   - BCI experiments typically involve two main phases: training and testing ([6], [12]). 

During the training phase, participants engage in specific mental tasks, like imagining 

limb movements or identifying errors, while their EEG signals are recorded. These 

signals undergo preprocessing, filtering, and feature extraction to prepare them for 

subsequent classification. The test phase evaluates the performance of the classification 

model using new data. 

 

2. Feature Extraction: 

   - Before classification, relevant features are extracted from EEG signals to 

characterize different brain states ([13], [14]). Techniques such as Common Spatial 

Pattern (CSP) analysis, filter-bank approaches, and time-frequency transformations are 

utilized to capture distinct patterns associated with MI, ErrP, and SSVEP signals. 

 

3. Classification Algorithms: 

   - Several supervised learning algorithms are employed for brain signal classification, 

including Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and 

neural networks ([11], [18]). These algorithms are trained on labeled EEG data, with 

the extracted features serving as input for classification. 

 

4. Performance Evaluation: 

   - Classification accuracy is a crucial metric for assessing BCI system performance 

([11], [18]). During training, the classification model's accuracy is measured on labeled 

training data. The model's generalization ability is then evaluated during testing using 

unseen data to ensure its effectiveness in real-world scenarios. 
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5. Technological Advancements: 

   - Recent progress in BCI research has led to the development of more advanced 

classification techniques ([16], [20]). These include ensemble methods, deep learning 

architectures, and hybrid models that combine multiple classifiers. These 

advancements aim to enhance classification accuracy and robustness, ultimately 

improving the usability of BCI systems. 

 

6. Comparative Performance Analysis: 

   - Comparative studies are conducted to assess the performance of different 

classification techniques ([5], [10]). Metrics such as steady-state error, peak overshoot, 

settling time, and cognitive load are used to compare the efficacy of proposed methods 

against existing approaches. 

 

7. Future Directions: 

   - The field of brain signal classification continues to evolve, driven by advancements 

in signal processing, machine learning, and neurotechnology ([21]). Future research 

aims to overcome challenges such as enhancing classification accuracy, improving user 

experience, and expanding the applicability of BCI systems in various real-world 

contexts. 

Hence, the brain signal classification is essential for enabling communication and 

control through BCI systems. Leveraging sophisticated algorithms and techniques, 

researchers strive to accurately decode neural activity, leading to diverse applications 

in healthcare, assistive technology, and human-computer interaction. In the 

experiments described, several classification techniques were utilized to interpret brain 

signals obtained through electroencephalography (EEG). Here's how these techniques 

were applied and their significance: 
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1. Linear Discriminant Analysis (LDA): 

   - LDA was employed as a classification method for decoding MI (Motor Imagery) 

signals ([16], [17]). In the context of the experiments, LDA likely played a role in 

distinguishing between different imagined motor tasks based on extracted EEG 

features. By projecting the high-dimensional feature space onto a lower-dimensional 

subspace while maximizing class separability, LDA aids in accurately categorizing 

EEG patterns associated with different motor intentions. 

 

2. Support Vector Machines (SVM): 

   - SVMs were likely utilized alongside LDA for classifying MI signals ([16], [17]). 

SVMs are effective in handling nonlinear decision boundaries and are well-suited for 

binary and multiclass classification tasks. In the experiments, SVMs likely played a 

complementary role to LDA, offering an alternative approach to classifying EEG 

signals and enhancing the overall accuracy of the classification system. 

 

3. Wavelet Transforms: 

   - Wavelet transforms are commonly employed in EEG signal processing to extract 

both spectral and temporal features from the EEG data ([12], [13]). In the experiments, 

wavelet transforms likely played a crucial role in capturing the dynamic changes in 

brain activity during motor imagery tasks. By decomposing the EEG signals into 

different frequency bands over time, wavelet transforms provide valuable information 

for distinguishing between different motor tasks and enhancing the discriminative 

power of the classification system. 

 

4. Common Spatial Pattern (CSP): 

   - CSP is a technique used for spatial filtering of EEG signals to enhance the signal-

to-noise ratio and highlight brain activity patterns relevant to motor imagery tasks ([15], 

[16]). In the experiments, CSP likely contributed to feature extraction by identifying 
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spatial patterns of brain activity associated with specific motor intentions. By focusing 

on regions of the brain relevant to motor control, CSP helps improve the accuracy of 

MI signal classification and enables more precise decoding of motor intentions.  

 

5. Filter-Bank Approach: 

   - The filter-bank approach involves decomposing EEG signals into different 

frequency bands using multiple band-pass filters ([15], [16]). This technique allows for 

the extraction of frequency-specific features from the EEG data, which are then used 

for classification. In the experiments, the filter-bank approach likely facilitated the 

extraction of frequency-domain features related to motor imagery, providing additional 

information for discriminating between different motor tasks. 

 

By integrating these classification techniques into the experimental setup, 

researchers were able to effectively decode MI signals from EEG data and distinguish 

between different motor intentions. Each technique contributed unique capabilities to 

the classification system, enhancing its overall performance and enabling more 

accurate interpretation of brain signals for real-time control of robotic systems. 

 

2.6 Conclusion 

 

In conclusion, the chapter delved into the intricate realm of brain signal processing and 

classification, shedding light on the methodologies and advancements driving the field 

of brain-computer interfaces (BCIs). Through meticulous research and innovation, 

scientists and engineers have made significant strides in deciphering the complexities 

of EEG signals and harnessing them for practical applications in healthcare, assistive 

technology, and human-computer interaction. 
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The training and test phases emerged as foundational components in BCI 

experimentation, providing the framework for collecting and evaluating EEG data. By 

engaging participants in specific mental tasks and recording their brain activity, 

researchers gain insights into the neural processes underlying motor imagery, error 

recognition, and visual responses. These phases lay the groundwork for subsequent 

feature extraction and classification, essential steps in decoding the brain's intricate 

signals. 

 

Feature extraction techniques, such as Common Spatial Pattern (CSP) analysis 

and time-frequency transformations, play a pivotal role in characterizing EEG signals 

associated with different brain states. These techniques enable researchers to identify 

distinct patterns and extract relevant features for classification. Coupled with advanced 

signal processing methods, such as filter-bank approaches, researchers can enhance the 

accuracy and robustness of BCI systems, paving the way for more effective 

communication and control mechanisms. 

 

Classification algorithms, ranging from Linear Discriminant Analysis (LDA) to 

deep learning architectures, offer powerful tools for interpreting EEG signals and 

translating them into actionable commands. These algorithms leverage labeled training 

data to learn patterns and associations, enabling accurate classification of new 

observations. As technological advancements continue to evolve, researchers explore 

novel approaches and hybrid models to further enhance classification accuracy and 

adaptability across diverse applications. 

 

Comparative performance analysis serves as a critical benchmark for evaluating 

the efficacy of classification techniques and guiding future research directions. By 

rigorously assessing metrics such as accuracy, latency, and cognitive load, researchers 

can identify optimal strategies and refine existing methodologies to meet the evolving 

needs of BCI users. 
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Looking ahead, the future of brain signal classification holds immense promise, 

driven by ongoing advancements in signal processing, machine learning, and 

neurotechnology. As researchers continue to push the boundaries of innovation, BCI 

systems are poised to revolutionize healthcare, empower individuals with disabilities, 

and redefine human-computer interaction. With interdisciplinary collaboration and a 

commitment to excellence, the journey towards unlocking the full potential of the 

human brain in the digital age continues unabated. 
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CHAPTER 3 

Brain-Instructed Controller Designs for BCI-

based Position Control  

 

3.1 Introduction 

In the Brain-Computer Interface (BCI) Position Control systems employed in neuro-

motor prosthetic applications, the main two specific brain signals are: Motor Imagery 

(MI) and Error-Related Potential (ErrP). MI signals activate the electromechanical 

motors of robotic arms, while ErrP signals function to cease their movement, 

effectively serving as a basic binary control mechanism. However, this straightforward 

approach can lead to positional inaccuracies, that is, overshoots, which manifest as non-

zero steady-state errors. Hence, the need for contemporary research in BCI technology 

that focuses on developing more sophisticated position control methods that can 

overcome these limitations. A significant challenge in these advancements is the 

inability of ErrP signals to provide detailed information on the magnitude or direction 

of the positional errors—they only signal the fact that an error has occurred. [1]-[3] 
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 To improve position control while trying to reduce the cognitive load on users, 

a novel dual-loop control system has been proposed. This control system consists of an 

outer loop that manages the motor's position and an inner loop that adjusts the speed of 

the robotic limb based on dynamic feedback. This setup not only aims to enhance the 

accuracy of movement but also reduces the cognitive strain associated with operating 

complex BCI systems. 

 

 The aim is to innovate various velocity modulation strategies that are adapted 

based on precise measurements of positional errors. While traditional two-loop position 

control systems offer multiple strategies for velocity modulation, experimental 

limitations in this research prevent their direct implementation. Instead, three new 

alternative strategies have been formulated, all of which utilize ErrP signal detection to 

accurately locate the target and make necessary adjustments. 

 

 The first strategy introduces a proportional gain, K where K<1 applied directly 

to the signed positional error to tailor the motor's velocity responsively. The second 

method significantly reduces the speed of the robotic arm by half and implements a 

direction reversal each time the robotic arm reaches the target, ensuring a steady 

deceleration for a more precise and accurate stop. The third, more sophisticated 

method, applies the Takagi-Sugeno fuzzy logic model, which incorporates both the 

positional error and its rate of change to fine-tune the robotic arm’s speed. The fourth 

method is built upon the previous Takagi-Sugeno fuzzy logic control, wherein the 

parameters of the Takagi-Sugeno fuzzy logic is determined using a Learning 

Automaton. 

 

Through a comprehensive stability analysis conducted using the Root Locus 

technique, it becomes evident that the Learning Automaton induced Takagi-Sugeno 

fuzzy logic approach delivers the best performance in terms of stability margins. 

Moreover, all proposed methods are designed to keep cognitive loads on the user 
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consistently low, making the Learning Automaton induced Takagi-Sugeno fuzzy 

method particularly commendable for its optimal balance of stability, error correction 

efficacy, and user-friendliness. Therefore, this method not only enhances the precision 

and responsiveness of BCI-driven robotic arms but also improves the overall user 

experience by simplifying the cognitive demands during operation. 

 

3.2 System Overview 

Existing Brain-Computer Interface (BCI) technology, particularly in the realm of 

neuro-prosthetic limbs, commonly employs a basic on-off control approach. This 

approach uses Motor Imagery (MI) signals to activate movement and Error-Related 

Potential (ErrP) signals to stop it [5],[6]. However, this straightforward strategy can 

lead to significant positional overshoots, creating a persistent non-zero steady-state 

error that is particularly problematic for users with neuro-motor impairments. 

 

 Current advancements in this research focus on integrating established control 

theory principles [5],[13] to adjust the velocity of the end-effector on robotic limbs. 

The objective is to refine the control system to ensure that the limb approaches its target 

with minimal or no overshoot. This is achieved by configuring the control system to 

apply a negative adjustment to the speed, which includes reversing the direction 

whenever the limb overshoots the target, thereby promoting system stabilization. 

 

This chapter introduces three innovative strategies for modulating velocity 

based on the stated objectives: 

1. The initial strategy involves setting a proportional gain on the velocity modulator 

using the signed positional error as input. Keeping the proportional gain factor below 

one (a fraction of the initial speed) guarantees that the system moves towards 

eliminating positional error, thus stabilizing the limb's movements. 
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2. The second strategy includes both reversing the speed and halving it at every zero 

crossing of positional error. This predetermined reduction factor, set at two, not only 

facilitates mathematical ease in designing the system's transfer function but also 

ensures effective deceleration for stability. 

 

3. The third strategy employs a rule-based system to vary the gain settings of the speed 

modulator. The Takagi-Sugeno fuzzy reasoning technique is utilized here, which 

adjusts the variable DC gain based on the positional error and the derivative of the 

positional error measurements in all cycles after the initial error occurrence. For a given 

set of error and error derivative, there are specified rules, i.e., there are weights attached 

to the error and the error derivative. The first cycle of error is crucial as it helps pinpoint 

the target's position by using the first ErrP signal generated as the limb moves on a set 

path towards the target. This setup allows users to indirectly choose the target position 

by generating the ErrP signal when the limb is about to cross the target location.  

 

4. The fourth strategy is a modified version of the previous strategy. Similar to the 

Takagi-Sugeno fuzzy control strategy, there are weights attached to the positional error 

and its derivative upon which the variable DC gain of the motor depends. This setup 

also allows the user to choose the target position by generating an ErrP signal when it 

approaches the target. The rules of choosing the weights of the positional error and its 

derivative is however, different and innovative. A Learning Automaton is employed, 

which is pre-trained, to give accurate prediction of the weights. The initial weights are 

equally distributed among weight pairs, which is later trained to predict the weights for 

given error and error-derivative pairs. For accurate prediction, it is rewarded and for 

inaccurate predictions, it is penalized. 

 

These approaches are designed to enhance the precision of BCI-controlled 

neuro-prosthetic limbs, reducing overshoot and improving overall functionality for 

individuals with mobility impairments. 
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Fig 3.1 Illustrative block diagram of the 2-loop position control system 

 

The proposed system as shown in Fig 3.2 is engineered for a single-dimensional 

trajectory control of a robotic arm that maneuvers across a pre-established semi-

circular path. What distinguishes this setup is its dynamically adjustable endpoint, 

which is determined online by the user. This feature is particularly beneficial for 

individuals with neuro-motor impairments, enabling them to interact directly with the 

robotic arm to select and retrieve desired objects with precision. [13]-[19] 

 

In operational terms, the system adheres to established Brain-Computer 

Interface (BCI) methodologies by employing Motor Imagery (MI) and Error-Related 

Potential (ErrP) signals. MI signal facilitates the initiation of the robotic arm’s 

movement, while ErrP signal serves to halt it. The user activates the robotic arm by 

generating an MI signal, and signals its stop by releasing an ErrP when the robotic arm 

crosses the intended target position. 

 

However, a notable challenge arises due to the mechanical properties of the 

motor, such as its inertia, which causes the arm to move beyond the desired point even 
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after receiving the stop command. This overshoot complicates the accurate 

determination of the target as initially intended by the user. 

 

To overcome this, the design incorporates a unique mechanism using the ErrP 

signal's onset to accurately define the target position. This process involves a capacitor 

that begins charging through a potentiometer driven by the motor and continues until 

the release of the ErrP signal. At the moment the ErrP is detected, a switch mechanism 

quickly isolates the capacitor from the potentiometer circuit, capturing the exact 

voltage that correlates with the robotic arm's angular position at that instant. A buffer 

with a high input impedance is connected across the capacitor to preserve the voltage 

level, ensuring that the target position is maintained without degradation over time. 

 

This precision allows the user to set the stop position of the robotic arm 

accurately and autonomously, streamlining the interaction process and significantly 

reducing cognitive load. The user needs only to determine the target once per operation, 

allowing them to focus less on the mechanics of control and more on the task at hand. 

 

The control architecture further refines this interaction through a dual-loop 

control system. The outer loop is responsible for setting the robotic arm's speed based 

on the positional error detected, and the inner loop uses feedback from a tacho-

generator to fine-tune this speed adjustment. This two-tiered approach not only 

accelerates the response time of the system but also ensures its stability. 

 

At the heart of this system lies the newly introduced Brain Actuated Speed 

Controller (BASC). This innovative component adjusts the reference speed for the 

inner control loop by evaluating the positional error. This adjustment is critical for the 

precise control of the robotic arm, marking a pioneering development in the field of 

BCI. The integration of BASC enhances the effectiveness of the control strategy, 

enabling more responsive and stable control of neuro-prosthetic devices. 
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3.3 Modelling of Proposed Brain-Actuated Position Control 

Schemes 

In this research, we introduce three unique variations of the Brain Actuated Speed 

Controller (BASC). The BASC's primary function is to transition the control 

mechanism from a brain-driven activation state to an automatic mode. This is facilitated 

through a switching mechanism that connects the reference potentiometer to the 

capacitor, which is triggered by the detection of an Error-Related Potential (ErrP) 

signal. Once activated, the BASC employs supplementary electronic components, like 

a comparator circuit, to identify zero crossings in positional error, which are critical for 

precise control adjustments.[4],[5] 

 

3.3.1 Scheme 1: Brain-Actuated Proportional Type Speed Modulation 

In Proportional-type speed control, the angular speed 𝜃̇𝑐is set proportional to signed 

positional error (𝜃𝑟 − 𝜃𝑐) where 𝜃𝑟 and 𝜃𝑐  respectively denote reference angular

position and feedback position of the motor shaft/armature of the control potentiometer 

as shown in Fig 3.2. [6] 

 

 

Fig 3.2 Block diagram of the proportional type modulation system 
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Thus:                                          𝜃̇𝑐 = 𝐾(𝜃𝑟 − 𝜃𝑐)      (1) 

where in order to maintain stability, it is crucial for K to be less than 1. The stability for 

the above choice of K is ensured for convergence of 𝜃̇𝑐approaching zero, when 

error(𝜃𝑟 − 𝜃𝑐)approaches zero. Equation (1) shows that in the Laplace (s) domain, the 

transfer function of the proportional type speed controller is expressed as: 

                                                     
𝑠𝜃𝑐(𝑠)

𝜃𝑟(𝑠)−𝜃𝑐(𝑠)
= 𝐾                                                                     (2) 

Equation (2) ensures automatic reversal of the speed's sign when there is a 

reversal in the positional error's sign. It's significant to highlight that the proportional 

type speed controller, as depicted in Figure 1, operates without the need for a zero-

crossing detector, as equation (1) holds at both zero crossing and non-zero values of 

error as well. The Root Locus plot is given in Fig. 3.9. 

 

3.3.2 Scheme 2: Zero-Crossing Sensitive Brain-Actuated Speed 

Modulation 

The speed modulator sensitive to zero-crossings adjusts the current speed of the robotic 

link to half of the speed just before each zero-crossing of the error. Speed reversal 

occurs at every zero-crossing as well. Formally, the current speed 𝜃̇𝑐 is half of its last 

speed (𝜃̇𝑐 − 1) as shown in Fig 3.3. [4]-[6] 

 

Fig 3.3 Block diagram of the Zero crossing sensitive speed modulation system 
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Thus:                                         𝜃̇𝑐 = − (
1

2
) (𝜃̇𝑐 − 1)                                                (3) 

The formal approach to modelling (3) is presented graphically in Fig. 3.3. In this figure, 

it is assumed that each error cycle period, T, is reduced by a certain amount, . 

𝑐(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 𝑇)] − [𝑢(𝑡 − 𝑇) − 𝑢(𝑡 − (2𝑇 − 𝛿)] + [𝑢(𝑡 − (2𝑇 − 𝛿)) −

𝑢(𝑡 − (3𝑇 − 2𝛿)] − ⋯ + 𝑢[𝑡 − (𝑛𝑇 − (𝑛 − 1)𝛿]                                                   (4) 

Simplifying (4), we obtain (5): 

𝑐(𝑡) = 𝑢(𝑡) − 2𝑢(𝑡 − 1) + 2 𝑢(𝑡 − (2𝑇 − 𝛿)) − ⋯ + 𝑢[𝑡 − (𝑛𝑇 − (𝑛 − 1)𝛿]   (5)                                                                                 

                                                                                                                         

 

Fig. 4(a) Timing diagram depicts the behavior of the Zero Crossing Sensitive Speed 

Modulator. 

 

Fig. 4(b) Comparative Circuit of the Zero Crossing Sensitive Speed Modulator 
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From Fig 3.4 (a) and (b) we can deduce that, every time the robot arm reaches 

that target position, the error e(t) becomes zero and at the first occurrence of that zero-

crossing, an ErrP signal is generated from the brain of the subject. This occurrence is 

registered as an impulse and fed to the comparative circuit. This coincidence of the 

magnitude of error and the occurrence of the first ErrP signal is hence registered to locate 

the target position. From now on, the BCI position control system is transferred from 

manual mode to automatic mode. 

Velocity setting of the zero-crossing sensitive speed modulation can be expressed as: 

𝑣(𝑡) = (
𝑣0

2
)[𝑢(𝑡) − 𝑢(𝑡 − 𝑇)] − (

𝑣0

4
)[𝑢(𝑡 − 𝑇) − 𝑢(𝑡 − (2𝑇 − 𝛿)] + ⋯ + 

(
𝑣0

2𝑛
)𝑢[𝑡 − (𝑛𝑇 − (𝑛 − 1)𝛿]                                                                       (6) 

where, v0 denotes the initial speed of the robotic link. 

By applying the Laplace transform to equations (5) and (6), we derive equations (7) 

and (8) respectively. 

𝐶(𝑠) = (
1

𝑠
) [1 − 2𝑒−𝑠𝑇 + 2𝑒−𝑠(2𝑇−𝛿) − 2𝑒−𝑠(3𝑇−2𝛿) + ⋯ + 2𝑒−𝑠(𝑛𝑇−(𝑛−1)𝛿)]        (7)                                                                        

𝑉(𝑠) = (
𝑣0

𝑠
) [

1

2
−

3

4
𝑒−𝑠𝑇 +

3

8
𝑒−𝑠(2𝑇−𝛿) + ⋯ +

1

2𝑛 𝑒−𝑠(𝑛𝑇−(𝑛−1)𝛿)]                              (8)
 

Simplifying equations (7) and (8), 𝑒−𝑠𝑇 = 1 − 𝑠𝑇, and T =1. 

𝐶(𝑠) =  
1

𝑠
[

𝑠+2

𝑠+1
]                                                                                                          (9) 

and  𝑉(𝑠) =  
𝑣0

2
[

1

4𝑠+3
]                                                                                              (10) 

Thus, transfer function is given as: 

𝐶(𝑠)

𝑉(𝑠)
=

𝑣0

2
[

𝑠(𝑠+1)

𝑠2+6𝑠+8
]                                                                                    (11) 

The stability analysis of this system was performed through Root Locus analysis which 

is shown in Figure 3.10. 
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3.3.3 Scheme 3: Takagi-Sugeno Fuzzy Model for Speed Adaptation 

The Takagi-Sugeno (T-S) type fuzzy controller is chosen for its capacity to manage 

varying magnitudes and signs of the positional error and its rate of change, which play 

pivotal roles in adjusting the speed of the robotic arm at each zero-crossing point of the 

error. This fuzzy logic approach uses predefined linguistic variables such as SMALL 

POSITIVE, SMALL NEGATIVE, and NEAR ZERO, applying them to the positional 

error and its derivative.  

 

Fig 3.5 Schematic diagram of Takagi-Sugeno fuzzy speed modulation system 

 

These fuzzy quantifiers are employed in sample rules that operate by blending 

these inputs linearly to calculate the appropriate speed adjustments for the robotic link. 

This method ensures that the controller can adapt dynamically to changes in the system's 

behaviour, enhancing the precision of the control mechanism as shown in Fig 3.5. [6] 

Rule 1: If error (e) is Small Positive and error derivative (𝑒̇) is Small Negative then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

Rule 2: If error (e) is Large Positive and error derivative (𝑒̇) is Small Negative then 

speed is (0.5 × (𝑒) − 100 × (𝑒̇)). 

Rule 3: If error (e) is Small Positive and error derivative (𝑒̇) is Large Negative then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

65



 

Rule 4: If error (e) is Large Positive and error derivative (𝑒̇) is Small Positive then 

speed is (0.5 × (𝑒) − 100 × (𝑒̇)). 

Rule 5: If error (e) is Small Positive and error derivative (𝑒̇) is Small Positive then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

Rule 6: If error (e) is Small Positive and error derivative (𝑒̇) is Large Positive then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

Rule 7: If error (e) is Large Positive and error derivative (𝑒̇) is Large Negative then 

speed is (0.5 × (𝑒) − 100 × (𝑒̇)). 

Rule 8: If error (e) is Large Positive and error derivative (𝑒̇) is Large Negative then 

speed is (0.5 × (𝑒) − 100 × (𝑒̇)). 

Rule 9: If error )(e is Small Negative and error derivative (𝑒̇) is Small Negative then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

Rule 10: If error (e) is Small Negative and error derivative (𝑒̇) is Small Positive then 

speed is (0.1 × (𝑒) − 10 × (𝑒̇)). 

Rule 11: If error (e) is Large Negative and error derivative (𝑒̇) is Small Negative then 

speed is (0.5 × (𝑒) − 100 × (𝑒̇)). 

Rule 12: If error (e) is Near Zero and error derivative (𝑒̇) is Small Negative then speed 

is (0.04 × (𝑒) − 0.01 × (𝑒̇)). 

 The coefficients associated with the error and its time derivatives in the mentioned 

rules are chosen based on intuition. It is apparent from the structure of the fuzzy rules 

that in Takagi-Sugeno type fuzzy adaptation, that the speed of the robotic controller is 

determined by the positional error and its derivative [6]. Formally, let the current speed 

of the controller be 𝜃̇𝑐(𝑡) and the positional error is given by(𝜃𝑟 − 𝜃𝑐). Then the 

Takagi-Sugeno response of the controller is given by (11). 

                              𝜃̇𝑐(𝑡) = 𝐾1𝜃̇𝑐(𝑡 − 1) + 𝐿1(𝜃𝑟 − 𝜃𝑐)                                                        (11) 

where, K1 and L1 are gain constants of user’s choice. 
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On taking Laplace transform of (11), it is found that the ratio of speed and 

positional error is given by: 

                             
𝑠𝜃𝑐(𝑠)

𝜃𝑟(𝑠)−𝜃𝑐(𝑠)
=

𝐿1𝑠

[1−(𝐾1𝑒−𝑠𝑇)+𝐿1𝑠]
                                              (12) 

It is apparent that the above transfer function is stable for all K1<1. The Root Locus 

plots are given in Fig. 3.11. 

 

3.3.4 Scheme 4: Learning Automaton Induced Brain-Actuated Takagi-

Sugeno Speed Modulation 

This section introduces an innovative method for automatic speed modulation in 

robotic arms for neuro-prosthetic use. Due to variations in positional error and its rate 

of change during the settling period of the manipulator, accurately predicting motor 

speed can be challenging. The Takagi-Sugeno fuzzy architecture addresses this by 

using fuzzy set memberships of errors and their derivatives to define the robot arm's 

speed profile. A typical rule within this framework considers the positional error (e) 

and its derivative (ė) with fuzzy sets like LARGE POSITIVE (LP) and SMALL 

NEGATIVE (SN) to modulate speed effectively. [7]-[12] 

 

If e corresponds to fuzzy set A and ė corresponds to fuzzy set B, the resulting 

speed 𝜃̇ is calculated as𝜃̇ = 𝐾1𝑒 + 𝐿1𝑒̇, where K1 and L1 are constants that relate speed 

to error (𝜃̇/𝑒)and speed to error derivative (𝜃̇/𝑒̇). [20]-[29] Based on the measured 

values of error and its derivative, and their classification into fuzzy sets like A and B, 

multiple Takagi-Sugeno fuzzy rules might be triggered simultaneously, leading to fuzzy 

reasoning. For example, consider two active rules: 

Rule 1: If e is A1 and ė is B1, then speed = 𝐾1𝑒 + 𝐿1𝑒̇.                           (13) 

Rule 2: If e is A2 and ė is B2, then speed = 𝐾2𝑒 + 𝐿2𝑒̇.                          (14) 
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Fig 3.6 Schematic diagram of Learning Automaton Induced Takagi-Sugeno 

fuzzy speed modulation system 

 

In this scenario, fuzzy inferences are derived by evaluating these rules as 

illustrated in Fig 3.6. The firing strengths FS1 and FS2 for Rule 1 and Rule 2 are 

calculated based on the membership functions of A1 and A2 for e, and B1 and B2 for ė, 

using the following formulas: 

                                           𝐹𝑆1 = 𝑀𝑖𝑛 (𝜇𝐴1
(𝑒), 𝜇𝐵1

(𝑒̇))                                         (15) 

𝐹𝑆2 = 𝑀𝑖𝑛 (𝜇𝐴2
(𝑒), 𝜇𝐵2

(𝑒̇))                                         (16) 

Subsequently, the speed 𝜃̇ is determined based on these firing strengths. 

The process of setting coefficients Ki and Li in each Takagi-Sugeno fuzzy rule 

is effectively managed through Learning Automaton-based reinforcement learning. Fig 

6 outlines this approach, showing how it informs the dynamic adjustment of robot arm 

speed. To clarify how coefficients are determined within this framework, consider the 

matrix M. Each row of M correlates with specific combinations of error (e) and its 

derivative (𝑒̇) that hold nonzero memberships in their respective fuzzy sets. This 

approach selects intervals where the membership functions are positive to define the 

rows of matrix. 
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Fig 3.7 Error, Error Derivative and their fuzzy attributes 

 

The columns of M represent different potential values for the rule parameters 

Ki and Li. This matrix setup allows the exploration of all viable combinations of Ki and 

Li, enhancing the robustness of the speed-setting mechanism. The indices i and j 

identify particular rows and columns within matrix M, respectively, facilitating 

systematic exploration and optimization of the control parameters. 

 

Fig 3.8 Takagi-Sugeno Firing Rule 
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In the matrix M, the indices i and j respectively correspond to the ith row and 

jth column. The matrix entries, denoted as mij, represent the likelihood of selecting a 

specific pair < Ki, Li> based on the fulfilment of certain criteria related to error and 

error derivative levels defined in the ith row. The probability pij for each ith row must 

be structured so that the sum of probabilities across all columns in that row equals 1. 

This is mathematically expressed as: 

                                           𝜃̇ =
∑ 𝐹𝑆𝑖(𝐾𝑖𝑒+𝐿𝑖𝑒̇)2

𝑖=1

∑ 𝐹𝑆𝑖
2
𝑖=1

                                           (17) 

for each i, ensuring that for every set of conditions, a selection from the possible < Ki, 

Li > pairs are definitively made. 

                                          𝜃̇ =
∑ 𝐹𝑆𝑖(𝐾𝑖𝑒+𝐿𝑖𝑒̇)𝑛

𝑖=1

∑ 𝐹𝑆𝑖
𝑛
𝑖=1

                                            (18) 

 

A. Learning of the M matrix 

Algorithm-1 is developed for adaptation of the probability matrix M. In step-1 of the 

Algorithm, the matrix is initialized with equal probability in all feasible columns, so 

that row- sum=1. The non-feasible elements of the matrix are set to 0. Step-2 of the 

algorithm is the probability adaptation step.  

In this process, measurements of e and 𝑒̇ determine a specific row in the matrix 

M, from which a column with a non-zero probability is randomly chosen. The initial 

probability distribution of the matrix M is shown in Table I. The selected column’s Ki 

and Li parameters are then applied to the Takagi-Sugeno Controller to adjust the speed 

of the robotic link as per equation. The control mechanism, as shown in Fig. 1, engages 

to drive the robotic end-effector to the targeted position, cycling through speed settings 

determined by selected <Ki, Li> pairs until the motor halts. In Step 3, if the steady-state 

error (SSE) falls below a pre-set threshold, the probability values of the selected Ki, Li 

pairs in the matrix's ith row are increased during the kth learning epoch, while the 

probabilities of other feasible entries are uniformly decreased, ensuring the total 

remains 1. Step 4 advances the learning epoch. Step 5 evaluates the convergence of M; 
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if convergence is achieved, M is printed; otherwise, the process from Step 2 to 5 

repeats. 

Algorithm-1: Adaptation of M matrix 

Step 1: Initialize mi,j for each row i of matrix M in a manner such that  for all feasible j=1 to jmax, 

mi,j in the ith row are set equal with ∑ mijj = 1 and non-feasible elements in ith row are set to zero. 

Set learning epoch k=1. 

Step 2: Repeat  

               (a) Identify the row index that satisfies the given measurement of error (e) and error-derivative           

(ė) in the respective bounds specified at the row. 

     (b) Randomly select the jth column of the matrix M in the ith row, such that the selected column 

lies within feasible space of j in the ith row. 

     (c) With the suitable Ki and Li taken from the selected column of M, and measured e and ė, 

compute θ̇. 

      (d) Run the position control loop for one error cycle. 

       Until the motor stops. 

 

Step 3: Measure the steady-state error (SSE) defined by desired (angular) position – terminated 

(angular) position, and if it is below the user-defined threshold θ̇Th, then reinforce the selected 

(Ki, Li ) pairs by increasing the probability of the selected actions j of the corresponding ith row 

by δ/2k, for small possible δ and penalize all non-selected feasible actions in the same row by 

decreasing their probability by δ/m × 2k, when there exists (m+1) feasible actions in the ith row. 

        

The above steps indicated in Step 3 should be repeated for all selected row i. 

Step 4: Increment learning epoch, k=k+1. 

Step 5: Repeat steps 2 to 4 until mi,j for all i, j converges, i.e., the difference in mi,j in the last 2 

learning epochs is less than a user defined small threshold. 

Step 6: Print M matrix. 
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TABLE I 

Example of Learning Matrix M 

 

 

B. Convergence of the Learning Algorithm 

Let 𝑝𝑖,𝑗(𝑘) be the probability of the kth rewarding action selection on the jth column of 

ith row in M matrix. Then 

𝑝𝑖,𝑗(𝑘 + 1) = 𝑝𝑖,𝑗(𝑘) +
𝛿

2𝑘  

Also,  𝑝𝑖,𝑗(𝑘 + 2) = 𝑝𝑖,𝑗(𝑘 + 1) +
𝛿

2𝑘+1  

=> 𝑝𝑖,𝑗(𝑘 + 2) = 𝑝𝑖,𝑗(𝑘) +
𝛿

2𝑘 +
𝛿

2𝑘+1                   

Thus, iteratively, we obtain: 

𝑝𝑖,𝑗(𝑛) = 𝑝𝑖,𝑗(0) + 𝛿 (1 +
1

2
+

1

4
+ ⋯ +

1

2𝑛−1
)  

𝑝𝑖,𝑗(𝑛)|𝑛 → ∞ = 𝑝𝑖,𝑗(0) + 𝛿 (
1

1−1 2⁄
)  

𝑝𝑖,𝑗(𝑛)|𝑛 → ∞ = 𝑝𝑖,𝑗(0) + 2𝛿                                                                                  (19) 

 

Similarly, the probability of the nth penalizing action selection out of m+1 feasible 

action space at ith row wth column of matrix M is obtained as 
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𝑝𝑖,𝑤(𝑛) = 𝑝𝑖,𝑤(0) +
𝛿

𝑚
(1 +

1

2
+

1

4
+ ⋯ +

1

2𝑛−1)  

=> 𝑝𝑖,𝑤(𝑛)|𝑛 → ∞ = 𝑝𝑖,𝑗(0) + 2 (
𝛿

𝑚
)                                                                         (20) 

 

For convergence, the limit of 𝑝𝑖,𝑗, 𝑝𝑖,𝑤 in [0,1], 

0 < 𝑝𝑖,𝑗(0) + 2𝛿 < 1                                                            

0 < 𝑝𝑖,𝑤(0) + 2 (
𝛿

𝑚
) < 1  

In other words, the bounds on δ can be obtained by satisfying the above inequalities. 

 

C. Speed-setting of the robot arm using converged M matrix 

After the M matrix converges i.e., the learning is over, the same matrix can be used to determine 

Kj and Lj in each error cycle of the control algorithm. The determination of Kj and Lj and 

computation involves two steps as given in Algorithm 2. 

 

 

D. Stability Analysis of the Proposed Takagi-Sugeno Based Fuzzy 

Control System 

Let, 𝜃̇𝑐(𝑡) be the actual position of the robot arm at time t. From the Fuzzy rules, )(tc


can be expressed as: 

𝜃̇𝑐(𝑡) = 𝐾1𝜃̇𝑐(𝑡 − 1) +  𝐿1(𝜃𝑟(𝑡) − 𝜃𝑐(𝑡)) 

Taking Laplace transform of (17) we obtain (18): 

     𝑠𝜃𝑐(𝑠) = 𝐾1𝜃𝑐(𝑠)𝑒−𝑠𝑇 + 𝐿1(𝜃𝑟(𝑠) − 𝜃𝑐(𝑠))                         (21) 

Algorithm-2: Determination Kj and Lj 

Step 1: For the measurement value of e and e identify the row index of matrix M. 

Step 2: Identify the feasible column j with the highest probability 𝑝𝑖,𝑗 in the ith row. Select the 

action j i.e., Kj, Lj pair and hence evaluate speed 𝜃̇ by computing speed, 𝜃̇ = 𝐾𝑗 + 𝐿𝑗. 
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Approximating 𝑒−𝑠𝑇 = 1 − 𝑠𝑇, 

𝑠𝜃𝑐(𝑠) = 𝐾1𝜃𝑐(𝑠)(1 − 𝑠𝑇) +  𝐿1(𝜃𝑟(𝑠) − 𝜃𝑐(𝑠))                       (22) 

Simplifying (22) the transfer function of the Takagi-Sugeno speed controller is obtained 

as: 

𝐺𝑐𝑜𝑛(𝑠) =
𝑠𝜃𝑐(𝑠)

𝜃𝑟(𝑠)
=  

𝑠𝐿1

𝑠−𝐾1(1−𝑠𝑇)𝑠+𝐿1
                                  (23) 

The transfer function of the inner-loop in Fig.1 involving the motor is obtained as: 

𝐺𝑚𝑜𝑡𝑜𝑟(𝑠) =  
16.13

(𝑠 + 5.78)(𝑠 + 55.22)
 

Therefore, the overall transfer function of the system 𝐺𝑠𝑦𝑠(𝑠) from Fig. 4 is obtained 

as: 

𝐺𝑠𝑦𝑠(𝑠) =  
16.13𝐿1

𝐾1𝑇𝑠4+𝐴𝑠3+𝐵𝑠2+𝐶𝑠+320𝐿1
                                (24) 

where, 𝐴 = 61𝐾1𝑇 − 𝐾1, 𝐵 = 320𝐾1𝑇 − 61𝐾1 − 61 + 𝐿1, 𝐶 = 61𝐿1 − 320𝐾1 +

320. 

 

A Root Locus (RL) analysis is undertaken to examine the performance of the 

proposed control schemes, that is: the Proportional Type, Zero-Crossing Sensitive 

Type, Takagi-Sugeno Fuzzy Type and Learning Automaton (LA) induced Takagi-

Sugeno Type Brain-Actuated Fuzzy Controller. It is noteworthy that the Takagi-Sugeno 

type controller includes 2 parameters K1 and L1. A thorough investigation into Root 

Locus construction for all feasible real values of K1 and L1 reveals that there exist 4 

distinct geometries of Root Locus, as shown in Fig 3.5 (a)-(d). The following 

observations directly follow from the said RL plots in Fig 3.12 (a), (b), (c), (d). 

 

3.4 Analysis of Stability Margin of the Proposed Controllers 

The BCI-based position control system is susceptible to forming limit cycles, which 

are minor amplitude oscillations occurring around a system's equilibrium point. These 

limit cycles are generally undesirable because they can place the system on the brink 
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of instability. To address these potential instabilities, it is crucial to perform a stability 

analysis of the proposed BCI-based control system. 

 

Various techniques for assessing the stability of dynamic systems are 

documented in existing literature, with the root locus method being one of the more 

prevalent approaches. This technique involves analyzing the control system's stability 

by examining the root locus plot, which is derived from the open-loop transfer function, 

G(s)H(s). Here, G(s) represents the forward path gain, and H(s) denotes the feedback 

factor. The root locus plot illustrates how the roots of the characteristic equation (1 +

𝐺(𝑠)𝐻(𝑠) = 0) move as the DC gain K is varied from zero to infinity. 

 

It is crucial to note that the DC gain K, which is located in the forward path of 

the system, influences the system's stability; a higher value of K may push the system 

towards instability. Therefore, identifying the maximum permissible DC gain that 

maintains system stability is a vital component of control system design. The root locus 

technique efficiently facilitates this by determining the crossover points of the root 

locus plot with the imaginary axis (jω axis), which help define the maximum DC gain 

for the system. 

 

The root locus analysis ensures that the system remains stable as long as the 

roots of the characteristic equation are positioned within the left half of the complex 

plane (σ + jω). In this research, each of the proposed speed modulation strategies 

undergoes stability evaluation through the root locus method, allowing for the 

determination of the maximum allowable DC gain and ensuring the overall stability of 

the closed-loop system. This analysis is critical in maintaining control precision and 

preventing the potential onset of limit cycles that could lead to system instability. 
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A. Root Locus Plot for Scheme 1: Brain-Actuated Proportional Type 

Speed Modulation (K=0.3) 

 

Fig 3.9 Root Locus for Proportional type speed modulation with K=0.3. 

 

B. Root Locus for Scheme 2: Zero-Crossing Sensitive Brain-Actuated 

Speed Modulation 

 

Fig 3.10 Root Locus for Zero crossing sensitive speed modulation system with 

V0=2. 
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C. Root Locus for Scheme 3: Takagi-Sugeno Fuzzy Model for Speed 

Adaptation 

 

Fig 3.11 (a) Root Locus for Takagi-Sugeno speed modulation with K1= 0.1, 

L1=10 

 

 

 

Fig 3.11 (b) Root Locus for Takagi-Sugeno speed modulation with K1= 0.5, 

L1=100 
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D. Root Locus for Scheme 4: Learning Automaton Induced Takagi-

Sugeno Fuzzy Model for Speed Adaptation 

 

 

Fig 3.12 (a) Root Locus for LA induced Takagi-Sugeno speed modulation with 

K1= 0.1, L1=5 

 

 

Fig 3.12 (b) Root Locus for LA induced Takagi-Sugeno speed modulation with 

K1= 0.1, L1=80 
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Fig 3.12 (c) Root Locus for LA induced Takagi-Sugeno speed modulation with 

K1= 0.1, L1=50 

 

 

 

Fig 3.11 (b) Root Locus for Takagi-Sugeno speed modulation with K1= 0.8, 

L1=80 
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From the Root Locus plot the following conclusions can be made: 

1. For K1<1, and L1>0, the proposed 2-loop LA-induced Takagi-Sugeno fuzzy control 

system is stable. 

2. With increase in K1 from zero towards 1 and any fixed value of L1>0, the stability 

margin of the system, obtained by interception of the RL with the j axis gradually 

decreases. 

3. With increase in L1, keeping K1 fixed in (0, 1), the stability margin of the system 

increases as the RL plot cuts the j axis at higher y-intercepts. 

 

3.5 Experiment 

An advanced experimental setup has been established at the Artificial Intelligence Lab 

within the Department of Electronics and Tele-Communication Engineering at 

Jadavpur University. This setup is designed to carry out experiments on BCI-based 

position control using sophisticated robotic arms. The laboratory has developed a 2-

link robotic arm and also utilizes a 6-link Jaco humanoid robot arm produced by Kinova 

for more complex tasks. 

 

The 2-link robotic arm is equipped with two motors: one motor is responsible 

for rotating one of the links, while the other motor facilitates the displacement of the 

second link. In the current series of experiments, only the first motorized link, which is 

used for rotation, is being tested. The objective of these tests is to maneuver the end-

effector from an initial position on the left pad to a desired terminal position on the 

right pad, following a clockwise path as depicted in Figure 6(b). The performance of 

the control system, such as steady-state error, peak overshoot, and settling time, will be 

meticulously evaluated and later summarized in a detailed table. 
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The study involved 30 healthy participants and 5 individuals with upper limb 

amputations. In accordance with the Helnisky recommendations [5], all participants 

provided informed consent before partaking in the study. The experimental setup 

consisted of both training and testing sessions divided into distinct phases. 

 

Training Sessions 

Phase 1: Initially, participants were oriented to the task using a PowerPoint 

presentation. A fixation cross displayed on the first slide for two seconds was used to 

capture their attention. Subsequently, participants were instructed to engage in a motor 

imagery (MI) task aimed at controlling a single robotic arm link. On the third slide, 

they were to recognize when the robotic link moved past a predefined target position, 

marked by an image of a cup of tea. At this moment, an Error-Related Potential (ErrP) 

was typically triggered by the participant noticing the deviation. This ErrP signal 

allowed the subject to cease active participation as the system then took over automatic 

control. The phase concluded after capturing EEG data from these activities, which 

included 126 MI features via filter-bank CSP and 21 AAR features for the ErrP signal. 

Through 200 trials, we gathered 154 true positive and 46 negative MI instances, and 

for ErrP, 122 true positive and 78 negative instances. 

The techniques that have been used in this paper and tested accuracy on are summarized 

in Table I. 

Table II. List of features extracted from the EEG signals 

EEG Signals Features No. of 

features 

MI Common Spatial Pattern (CSP) features (obtained 

by Filter-bank approach) 

126 

ErrP Adaptive Auto Regressive (AAR) parameter 21 

SSVEP Power Spectral Density (PSD) 

Auto Regressive (AR) features 

198 

200 
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The Classification techniques that have been used in this paper and tested accuracy on 

are summarized in Table II. 

 

Table III Classification accuracy in the Training and the Test Phase 

Brain Signal % Classification Accuracy in 

Training Phase Test Phase 

SSVEP 99.2 96.2 

MI 98.6 96.1 

ErrP 98.4 96.3 
 

 

Phase 2: This phase did not use the PowerPoint and focused on adapting the control 

matrix (M matrix) after each detected ErrP during the trials. Hardware enhancements 

detected subsequent zero-crossings in positional error as illustrated in Figure 1. Each 

zero-crossing prompted the selection and adaptation of a specific <Ki, Li> pair from 

the M matrix. This adaptation process continued throughout the session, typically 

encompassing 3-4 adaptations per session, with the motor ceasing upon completion. 

The M matrix, of specified dimensions, generally reached convergence after 

approximately 200 sessions, or 600-800 adaptations. 

Additional training was carried out on a multi-link Jaco humanoid robot arm 

for object manipulation in three dimensions, though these details are omitted here due 

to space constraints. 

 

Testing Sessions 

Testing sessions evaluated MI and ErrP-based motion planning for both single and 

multiple links of the Jaco robot arm. Participants had to plan and initiate link movement 

and detect errors to stop movement at the target position. The control tasks post-error 

detection was autonomously handled. Enhanced hardware detected any positional error 

zero-crossings post-initial ErrP, with a Takagi-Sugeno type controller, modulated by a 

Learning Automaton, managing speed adjustments. 
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Fig. 3.13 The Lab-developed model of a 2-link robot arm 

 

 

Fig 3.14 Single link position control using motor M1 of Fig 3.13 

 

 

Fig 3.15 Photograph of the experimental set-up for 3-link position control 
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Performance Evaluation 

The effectiveness of the proposed BCI-based control system is analyzed by comparing 

it against established methodologies in the field. The comparison focuses on four key 

performance metrics: percentage steady-state error, percentage peak overshoot, settling 

time, and cognitive load. These metrics are selected for their relevance in assessing the 

technical and user-centered performance of control systems. 

 

Percentage Steady-State Error and Percentage Peak Overshoot are conventional 

control theory metrics that evaluate the precision and responsiveness of a system. A 

lower steady-state error indicates that the system can maintain the target position with 

minimal deviation, while a lower peak overshoot reflects better control during initial 

response to a command, reducing the risk of excessive movement beyond the target. 

 

Settling Time measures the duration required for the system to stabilize at the 

target position after a disturbance or a command change. Faster settling times signify a 

more agile system that can quickly adapt to changes. 

 

Cognitive Load as adapted from BCI research, quantifies the mental effort 

required by users to operate the control system. Unlike traditional BCI systems where 

the user must continually monitor for positional errors, the proposed system simplifies 

user involvement by utilizing hardware to detect zero-crossings after initial ErrP-based 

target position identification. This design significantly reduces the cognitive demands 

on the user, allowing for a more user-friendly and accessible control experience. Table 

3 in the paper provides a detailed comparative analysis of these metrics between the 

proposed system and existing technologies. The results highlight how the proposed 

system enhances performance not only in technical aspects but also in improving user 

interaction by reducing cognitive strain. This dual focus on engineering excellence and 

user experience positions the proposed system as a significant advancement in BCI-

based control systems, offering both increased accuracy and ease of use. 
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TABLE-IV 

Comparative Performance of the Proposed Controller with Existing Technique 

Technique 

Used 

Performance Metrices 

Steady-State 

Error (Ess)% 

Peak Overshoot 

(Mp)% 

Settling Time 

(ts) sec 

Cognitive Load 

Only MI 7.73 5.4 35 High 

MI + ErrP 2.10 4.9 31 High 

MI + ErrP +Speed 

Setting 

0.20 4.2 24 Medium 

Scheme I 0.18 3.8 22 Low 

Scheme II 0.04 1.1 12 Low 

Scheme III 0.02 1.05 11 Low 

Scheme IV 0.018 1.025 10 Low 

 

Additionally, the setup includes a more complex 6-link Jaco humanoid robot 

arm, which is used for a different set of experiments involving position control tasks. 

This robot arm allows for the activation of its links in a non-sequential order based on 

the specific requirements of the user. For these experiments, only three of the six links 

are utilized. The user, through a BCI interface, directs the movement of an object from 

a defined starting point to a predetermined endpoint within the robot's operational 

space, illustrated in Figure 7. To facilitate user interaction and control over individual 

links of the robotic arm, Steady-State Visual Evoked Potential (SSVEP) signals are 

employed. This experimental configuration at Jadavpur University's AI Lab represents 

a significant contribution to the field of robotics and BCI technology, offering a 

practical platform for exploring and refining BCI-driven robotic control systems in 

real-world scenarios. 

 

3.6 Preamble 

Light Emitting Diodes (LEDs) that flicker at specific frequencies is integral to the 

interface of a robotic arm controlled by brain-computer interface (BCI) technology. 

These LEDs are attached to the different links of the robot arm, each flickering at a 

unique frequency. When a user intends to activate a particular link, they simply gaze at 

the LED associated with that link. The frequency of the LED's flicker is then detected 
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by the user's brain waves, and this information is processed by the BCI system to 

determine which link the user wishes to engage for the task at hand. 

 

Once a link has been selected via Steady-State Visual Evoked Potentials 

(SSVEP), the user then initiates a motor imagery (MI) signal to command the selected 

link to move in the desired direction. The direction of movement is controlled by the 

user's motor imagination: imagining movements with the right-hand results in 

clockwise motion of the link, while imagining movements with the left-hand results in 

counterclockwise motion. 

 

As the link begins to move, the user must continuously monitor its position to 

ensure it stops at the desired target. The target position can vary depending on the 

control dimensions - it might be a specific point in a one-dimensional setup, a line in a 

two-dimensional framework, or a plane in a three-dimensional system. When the link 

approaches and attempts to surpass the target position, an Error-Related Potential 

(ErrP) is generated by the user's brain, signaling the robot to cease movement. Due to 

motor inertia, there is often a slight advance past the target position, known as 

overshoot. To counteract this, one strategy employed is to briefly reverse the direction 

of the link at a reduced speed, repeating this adjustment until the link aligns precisely 

with the target position. 

 

The control strategy then transitions to a more autonomous phase. After 

determining the target position based on the occurrence of the ErrP, the system switches 

to an automatic, human-independent mode using traditional error-based position 

control. This phase of the control process is vital as it reduces the need for constant 

human monitoring and intervention, making the system more efficient and user-

friendly. 
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The paper concludes with a detailed analysis of three distinct speed modulation 

techniques, which are integral to refining the control policies of the BCI-based robotic 

system. These methodologies are explored to optimize performance and ensure precise, 

responsive control of the robotic links. 

 

3.7 Conclusion 

The research paper introduces an innovative approach for a BCI-based 2-loop control system 

tailored for robotic arm manipulation. This system divides its functionality into two critical 

loops: the outer loop, which is responsible for position control and speed-setting, and the inner 

loop, which manages the actual speed control of the robotic arm. This dual-loop architecture is 

designed to enhance precision and responsiveness in robotic movements. 

 

In this novel setup, three different brain-actuated speed-setting models are introduced 

and evaluated. The stability of these models is rigorously assessed using the Root-locus 

technique, a classical method in control theory that helps determine the conditions under which 

a system remains stable. The results from this analysis highlight that the Takagi-Sugeno fuzzy 

model excels, surpassing both the existing benchmarks and the two other newly proposed 

models in terms of stability and control effectiveness. 

 

The superior performance of the Takagi-Sugeno model is further corroborated through 

a detailed control theoretic performance analysis. This examination reveals that the model not 

only meets but exceeds the performance metrics of previous models, offering enhanced control 

accuracy and response dynamics. 

 

The practical applicability and effectiveness of the proposed control scheme have been 

tested through experiments involving both healthy subjects and patients with neuro-motor 

disabilities. These experiments are crucial as they demonstrate the system's accessibility and 

ease of use, particularly for users with limited motor functions. The low cognitive load required 

to operate the system means that even subjects with significant impairments can successfully 

use the control system without undue stress or difficulty. 
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Overall, the research delineates a significant advancement in BCI-based control 

systems for robotic arms, presenting a robust, user-friendly, and highly effective control 

mechanism that stands out in the field of assistive technologies. 
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Chapter 4 

Conclusion and Future Direction 

 

4.1 Conclusion 

 

In this study, we introduce an innovative approach to BCI-based control strategies for 

robot arm rehabilitation, specifically tailored for individuals with damaged upper 

limbs. Our research focuses on two distinct yet complementary aspects of BCI-based 

control: the design of a 2-loop controller and the integration of Learning Automaton 

induced parameter selection within a Takagi-Sugeno type fuzzy controller. 

 

The essence of our novel approach lies in the seamless coordination between 

the outer position-control loop and the inner speed-control loop. Within this 

framework, the outer loop employs a Learning Automaton induced mechanism to 

automatically set reference speeds for the inner loop, enhancing the adaptability and 

efficiency of the control system. By enabling automatic mode switching based on user 
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input regarding the target position, our approach effectively reduces cognitive load for 

the user, offering a more intuitive and user-friendly interface compared to conventional 

methods. 

 

One of the key findings of our study is the superior performance of the proposed 

system in comparison to existing state-of-the-art algorithms. Through rigorous 

performance analysis across four critical control parameters, our approach consistently 

outperforms established methods, highlighting its potential for significantly advancing 

the field of BCI-based rehabilitation. 

 

Moreover, our experiments extend beyond theoretical analysis to practical 

validation, involving participation from both healthy subjects and individuals with 

neuro-motor disabilities. Encouragingly, our findings demonstrate that individuals with 

upper limb impairments can effectively engage with the BCI system with reduced 

cognitive burden, underscoring the real-world applicability and impact of our approach. 

 

Overall, our study contributes valuable insights and methodologies to the 

burgeoning field of BCI-based rehabilitation. By combining innovative control 

strategies with empirical validation, we pave the way for future research endeavors 

aimed at enhancing the efficacy and accessibility of assistive technologies for 

individuals with motor impairments. Through continued exploration and refinement, 

we envision a future where BCI technologies play a transformative role in improving 

the quality of life and independence for individuals with upper limb disabilities. 
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4.2 Merits of the Proposed BCI-based Position Control 

Schemes 

Neuro-prosthetic and robotic control systems offer numerous advantages that have the 

potential to revolutionize healthcare, rehabilitation, and human-machine interaction. 

Some of the key advantages include: 

 

1. Restoration of Functionality: Neuro-prosthetic devices and robotic systems enable 

individuals with disabilities or impairments to regain lost or impaired motor functions. 

For example, prosthetic limbs controlled by brain-computer interfaces (BCIs) allow 

amputees to perform activities of daily living with greater independence and autonomy. 

Similarly, robotic exoskeletons can assist individuals with mobility impairments in 

walking and navigating their environment. 

 

2. Improved Quality of Life: By restoring mobility and independence, neuro-

prosthetic and robotic systems can significantly enhance the quality of life for 

individuals with disabilities. These technologies enable users to engage in social, 

vocational, and recreational activities that were previously challenging or impossible. 

Improved mobility and autonomy contribute to greater self-esteem, confidence, and 

overall well-being. 

 

3. Enhanced Precision and Control: Neuro-prosthetic and robotic systems offer 

superior precision and control compared to traditional assistive devices. BCIs enable 

direct communication between the brain and external devices, allowing users to execute 

precise movements with fine motor control. Robotic arms and exoskeletons can 

perform tasks with greater accuracy and consistency, enhancing efficiency and 

productivity in various domains. 
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4. Customization and Adaptability: Neuro-prosthetic and robotic systems can be 

customized to meet the unique needs and preferences of individual users. Advanced 

control algorithms and machine learning techniques allow for personalized calibration 

and optimization of device performance based on user-specific characteristics. 

Additionally, these systems can adapt to changes in user capabilities over time, 

ensuring continued functionality and usability. 

 

5. Promotion of Neuroplasticity: The use of neuro-prosthetic and robotic systems has 

been shown to promote neuroplasticity—the brain's ability to reorganize and adapt in 

response to experience and injury. Through repetitive practice and feedback, users can 

strengthen neural connections and improve motor skills, leading to long-term 

functional improvements and rehabilitation outcomes. 

 

6. Facilitation of Rehabilitation: Neuro-prosthetic and robotic systems play a crucial 

role in rehabilitation and physical therapy programs. These technologies provide 

interactive and engaging platforms for motor relearning and functional recovery, 

enabling therapists to deliver targeted interventions and monitor progress more 

effectively. Additionally, real-time feedback and performance metrics can motivate 

users and facilitate goal-oriented rehabilitation. 

 

7. Increased Accessibility: Advances in technology and manufacturing have made 

neuro-prosthetic and robotic systems more accessible and affordable to a broader range 

of users. Innovations such as 3D printing, open-source hardware, and low-cost sensors 

have lowered barriers to entry and facilitated greater adoption of these technologies in 

clinical and home settings. Increased accessibility expands the reach of neuro-

prosthetic and robotic solutions to underserved populations and regions with limited 

healthcare resources. 
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8. Potential for Augmentation: In addition to assisting individuals with disabilities, 

neuro-prosthetic and robotic systems have the potential to augment the capabilities of 

able-bodied individuals. By enhancing strength, endurance, and precision, these 

technologies can extend human performance in various domains, including healthcare, 

industry, and sports. Augmented human-machine collaboration opens up new 

opportunities for innovation and productivity in diverse fields. 

 

9. Reduction of Physical Strain: Neuro-prosthetic and robotic systems can alleviate 

physical strain and fatigue associated with repetitive or strenuous tasks. By automating 

or assisting with manual labor, these technologies reduce the risk of musculoskeletal 

injuries and occupational hazards for workers in various industries, such as 

manufacturing, construction, and healthcare. 

 

10. Remote Operation and Telepresence: Robotic systems equipped with 

teleoperation capabilities enable remote control and telepresence, allowing users to 

interact with distant environments or perform tasks in hazardous or inaccessible 

locations. Telepresence robots, for example, enable individuals to attend meetings, visit 

remote locations, or participate in social events virtually, enhancing connectivity and 

accessibility. 

 

11. Enhanced Surgical Precision: Surgical robots and assistive devices enable 

surgeons to perform minimally invasive procedures with greater precision and 

accuracy. By providing magnified visualization, dexterous manipulation, and tremor 

reduction, these systems improve surgical outcomes, reduce complications, and 

enhance patient safety in various medical specialties, including orthopedics, 

neurosurgery, and urology. 

 

12. Research and Innovation: Neuro-prosthetic and robotic control systems serve as 

valuable research platforms for studying human motor control, brain function, and 
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machine learning algorithms. Insights gained from these studies inform the 

development of new technologies, therapeutic interventions, and rehabilitation 

strategies for individuals with neurological disorders or injuries. Additionally, 

collaboration between researchers and industry partners fosters innovation and drives 

advancements in the field. 

 

13. Assistance in Elderly Care: Robotic assistants and exoskeletons support elderly 

individuals in activities of daily living, such as walking, standing, and transferring. 

These technologies promote independence, safety, and mobility among older adults, 

enabling them to age in place and maintain a higher quality of life. Robotic 

companionship and monitoring systems also provide social engagement and assistance 

with cognitive tasks, reducing isolation and loneliness in aging populations. 

 

14. Training and Education: Neuro-prosthetic and robotic systems serve as 

educational tools for training healthcare professionals, engineers, and students in 

robotics, biomechanics, and rehabilitation sciences. Hands-on experience with these 

technologies facilitates skill development, fosters interdisciplinary collaboration, and 

prepares the next generation of innovators and practitioners to address complex 

challenges in healthcare and assistive technology. 

 

15. Economic Benefits: The widespread adoption of neuro-prosthetic and robotic 

control systems contributes to economic growth and job creation in various sectors, 

including healthcare, manufacturing, and technology. Investments in research, 

development, and commercialization stimulate innovation, drive productivity gains, 

and create opportunities for entrepreneurship and industry expansion. Additionally, 

cost savings from improved healthcare outcomes and reduced disability-related 

expenses generate economic value and societal benefits. 
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In summary, neuro-prosthetic and robotic control systems offer a multitude of 

advantages across diverse domains, ranging from healthcare and rehabilitation to 

industry and education. By leveraging technology and innovation, these systems 

empower individuals, enhance productivity, and promote inclusivity, ultimately 

contributing to a more accessible, equitable, and sustainable future. 

 

4.3 Demerits of the BCI-based Position Control Schemes 

 

1. Cost: Neuro-prosthetic and robotic systems can be expensive to develop, 

manufacture, and maintain. The high cost of advanced technology components, 

specialized hardware, and ongoing technical support may limit accessibility to 

individuals with limited financial resources or healthcare coverage. 

 

2. Complexity: The design, implementation, and operation of neuro-prosthetic and 

robotic systems involve intricate technology and specialized expertise. Managing the 

complexity of these systems, including hardware integration, software development, 

and user training, requires skilled professionals and resources, which may pose barriers 

to adoption and deployment. 

 

3. Risk of Malfunction: Neuro-prosthetic and robotic systems are susceptible to 

technical failures, malfunctions, and software errors, which can compromise their 

performance and safety. Hardware defects, software bugs, and communication glitches 

may lead to unintended movements, system errors, or equipment damage, posing risks 

to users and bystanders. 

 

4. User Dependency: Users of neuro-prosthetic and robotic systems may become 

overly dependent on the technology, relying on it for daily activities and mobility. 

Excessive reliance on assistive devices or robotic assistance may reduce users' 
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motivation to engage in physical activity, rehabilitative exercises, or cognitive tasks, 

potentially hindering their long-term recovery or functional independence. 

 

5. Ethical Considerations: The use of neuro-prosthetic and robotic systems raises 

ethical concerns related to privacy, autonomy, and informed consent. Collecting, 

storing, and analyzing sensitive neural data may raise privacy issues and require robust 

data protection measures. Additionally, decisions made by autonomous or semi-

autonomous robotic systems may raise questions about accountability, liability, and 

human oversight in case of errors or adverse outcomes. 

 

6. Social Stigma: Individuals using neuro-prosthetic and robotic systems may face 

social stigma, discrimination, or misconceptions about their abilities and limitations. 

Negative attitudes or stereotypes towards assistive technology users may impact their 

self-esteem, confidence, and social integration, leading to feelings of isolation or 

marginalization. 

 

7. Limited Compatibility: Neuro-prosthetic and robotic systems may not be 

compatible with all users or environments, limiting their applicability and 

effectiveness. Factors such as anatomical variability, cognitive ability, and 

environmental constraints may affect the usability and performance of these systems, 

requiring tailored solutions and adaptive technologies to meet individual needs. 

 

8. Regulatory Challenges: The development and deployment of neuro-prosthetic and 

robotic systems are subject to regulatory requirements, standards, and approval 

processes. Obtaining regulatory clearance or certification for medical devices, assistive 

technologies, or autonomous systems may involve lengthy and costly procedures, 

delaying market access and innovation. 
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9. Maintenance and Support: Neuro-prosthetic and robotic systems require regular 

maintenance, calibration, and technical support to ensure optimal performance and 

reliability. Access to skilled technicians, replacement parts, and repair services may be 

limited, particularly in remote or underserved areas, leading to downtime or disruptions 

in service. 

 

10. Potential for Misuse: The misuse or abuse of neuro-prosthetic and robotic systems, 

either intentionally or unintentionally, may have negative consequences for users, 

caregivers, or society as a whole. Security vulnerabilities, hacking threats, or 

unauthorized access to control systems may compromise user safety, privacy, or 

autonomy, necessitating robust cybersecurity measures and risk mitigation strategies. 

 

In summary, while neuro-prosthetic and robotic control systems offer numerous 

benefits, they also present various disadvantages and challenges that must be addressed 

to ensure safe, ethical, and equitable deployment. By acknowledging and mitigating 

these drawbacks through research, regulation, and responsible innovation, we can 

maximize the potential of these technologies to improve human health, well-being, and 

quality of life. 

 

4.4 Future Scope 

 

Looking into the future, several avenues hold promise for enhancing the efficacy and 

applicability of BCI-based control schemes for robot arm rehabilitation. Firstly, 

advancements in signal processing techniques can significantly improve the accuracy 

and reliability of brain-computer interfaces. By leveraging machine learning algorithms 

and deep neural networks, researchers can develop more robust signal processing 

pipelines capable of extracting nuanced neural signals with higher fidelity, thereby 

enhancing the precision of BCI-based control. 
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Furthermore, integrating multimodal sensor inputs, such as electromyography 

(EMG) and inertial measurement units (IMUs), alongside EEG signals can provide 

complementary information for better understanding user intentions and enhancing 

control robustness. This multimodal fusion approach can enable more intuitive and 

natural interaction between users and robotic devices, ultimately leading to improved 

rehabilitation outcomes. 

 

In addition to signal processing advancements, there is a growing need for the 

development of adaptive and personalized control algorithms. By leveraging adaptive 

control techniques and reinforcement learning algorithms, BCI-based control systems 

can dynamically adjust their parameters and strategies based on user feedback and 

performance metrics. This adaptive approach not only enhances system adaptability to 

user variability but also enables personalized rehabilitation protocols tailored to 

individual needs and capabilities. 

 

Moreover, the integration of virtual reality (VR) and augmented reality (AR) 

technologies holds immense potential for enhancing user engagement and 

rehabilitation outcomes. By immersing users in virtual environments and providing 

real-time feedback on their motor performance, VR and AR systems can enhance 

motivation, facilitate motor learning, and promote neuroplasticity, thereby accelerating 

the rehabilitation process. 

 

Another area ripe for exploration is the development of collaborative robotic 

systems that seamlessly integrate with BCI-based control schemes. Collaborative 

robots, or co-bots, can assist users in performing rehabilitation exercises, providing 

physical support and guidance while simultaneously adapting to user intentions and 

preferences through BCI inputs. This human-robot collaboration paradigm not only 
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enhances safety and efficiency but also fosters a sense of partnership and empowerment 

for users during the rehabilitation process. 

 

Furthermore, there is a growing interest in the integration of neuromodulation 

techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct 

current stimulation (tDCS), with BCI-based control systems. Neuromodulation 

techniques can modulate neural activity in targeted brain regions, potentially enhancing 

motor learning, recovery, and neuroplasticity in individuals with neurological 

disorders. 

 

Lastly, efforts to promote interoperability and standardization across BCI 

platforms and robotic devices can facilitate broader adoption and integration of BCI-

based control schemes into clinical practice. By establishing common data formats, 

communication protocols, and performance metrics, researchers and clinicians can 

more effectively collaborate, share resources, and benchmark the effectiveness of BCI-

based rehabilitation interventions. 

 

In summary, the future of BCI-based control schemes for robot arm 

rehabilitation holds tremendous promise, driven by advancements in signal processing, 

adaptive control algorithms, multimodal sensor integration, virtual reality technologies, 

collaborative robotics, neuromodulation techniques, and efforts towards 

interoperability and standardization. By leveraging these interdisciplinary approaches 

and technologies, researchers can unlock new frontiers in neurorehabilitation, 

ultimately improving the quality of life and independence for individuals with upper 

limb impairments. 
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