
SOME STUDIES ON STATE ESTIMATION OF

LINEAR AND NONLINEAR SYSTEMS

A Thesis

Submitted in partial fulfilment of the requirement for the Degree of

Master in Control System Engineering

(Electrical Engineering Department)

By

Prithwish Biswas

Registration No.: 163525 of 2022-2023

Examination Roll No.: M4CTL24006B

Under the Guidance of

Dr. Smita Sadhu (Ghosh)

Department of Electrical Engineering

Jadavpur University

Kolkata-700032

India

November, 2024

2

FACULTY	OF	ENGINEERING	AND	TECHNOLOGY	
JADAVPUR	UNIVERSITY	

	
CERTIFICATE	

	
This	is	to	certify	that	the	dissertation	entitled	“Some	studies	on	state	estimation	of	
linear	 and	 nonlinear	 systems”	 has	 been	 carried	 out	 by	 PRITHWISH	 BISWAS	
(University	 Registration	 No.:	 163525	 of	 2022-2023)	 under	 my	 guidance	 and	
supervision	and	be	accepted	as	partial	fulLilment	of	the	requirement	for	the	Degree	of	
Master	in	Control	System	Engineering.	
	
																																																																									
	
	
																																																						
	
																																																																	Dr.	Smita	Sadhu	(Ghosh)	
																																																																																											Professor	
																																																																								Dept.	of	Electrical	Engineering	
																																																																																				Jadavpur	University	
	
	
																																																																																			Dr.	Biswanath	Roy	
																																																																																Head	of	the	Department	
																																															 	 				Dept.	of	Electrical	Engineering	
																																																																																				Jadavpur	University	
	

	
						Prof.	Rajib	Bandyopadhyay	
																										Dean	
Faculty	of	Engineering	and	Technology	
														Jadavpur	University	

	
	
	

3

FACULTY	OF	ENGINEERING	AND	TECHNOLOGY	
JADAVPUR	UNIVERSITY	

	
CERTIFICATE	OF	APPROVAL*	

	
The	forgoing	thesis	is	hereby	approved	as	a	creditable	study	of	an	engineering	subject	
and	presented	in	a	manner	satisfactory	to	warrant	acceptance	as	prerequisite	to	the	
degree	 for	which	 it	has	been	 submitted.	 It	 is	understood	 that	by	 this	 approval	 the	
undersigned	 do	 not	 necessarily	 endorse	 or	 approve	 any	 statement	made,	 opinion	
expressed	or	conclusion	drawn	there	 in	but	approve	the	thesis	only	 for	which	 it	 is	
submitted.	
	
Committee	on	4inal	examination	for	the	evaluation	of	the	thesis.	
	
	
	
	
	
																																																																																							
	
					
	
	

	
									Signature	of	the	Examiner	
			
	
	
	
	
	
	
		
								Signature	of	the	Supervisor	

	
*Only	in	the	case	the	thesis	is	approved.	

	
	
	

4

FACULTY	OF	ENGINEERING	AND	TECHNOLOGY	
JADAVPUR	UNIVERSITY	

	
DECLARATION	OF	ORIGINALITY	AND	COMPLIANCE	OF	

ACADEMIC	THESIS	
	

	

I	hereby	declare	that	this	thesis,	titled	“Some	Studies	on	State	Estimation	of	Linear	
and	Nonlinear	 Systems”,	 includes	 both	 a	 literature	 review	 and	 original	 research	
conducted	 by	 the	 undersigned	 as	 part	 of	 his	 Master’s	 Degree	 in	 Control	 System	
Engineering.	All	 information	has	been	gathered	and	presented	 in	 compliance	with	
academic	standards	and	ethical	guidelines.	It	is	further	affirmed	that,	in	accordance	
with	these	standards,	all	sources	and	results	not	originating	from	this	work	have	been	
duly	cited	and	referenced.	

	

	

Candidate	Name:	PRITHWISH	BISWAS	

Examination	Roll.	No.:	M4CTL24006B	

Thesis	Title:	Some	studies	on	state	estimation	of	linear	and	nonlinear	systems.	

	

	

	

	

	

	

	 	 	 	 	 	 	 								Signature	of	the	candidate	

	

	

	

5

Acknowledgement	

I	 would	 like	 to	 express	 my	 heartfelt	 gratitude	 to	 my	 thesis	 supervisor,																																			
Dr.	Smita	Sadhu	(Ghosh),	from	the	Department	of	Electrical	Engineering	at	Jadavpur	
University,	 for	 granting	 me	 the	 opportunity	 to	 work	 under	 her	 guidance	 and	
encouraging	me	 to	delve	 into	 the	 field	of	Control	 System	Engineering.	Her	patient	
mentoring,	insightful	feedback,	and	unwavering	support	have	been	instrumental	in	
shaping	my	research.	

I	 specially	 thank	 Prof.	 Tapan	 Kumar	 Ghoshal,	 Emeritus	 Professor,	 Electrical	
Engineering	Department,	Jadavpur	University,	Kolkata	for	his	innovative	discussions	
and	for	sharing	his	valuable	suggestions,	ideas	and	thoughts,	which	inspired	me	to	do	
a	project	in	this	domain	as	well	as	helped	me	throughout	my	thesis	work.	

I	 would	 also	 like	 to	 thank	 my	 senior	 Mrs.	 Ankita	 Muhury,	 PhD	 scholar	 from	 the	
Electrical	 Engineering	 Department,	 Jadavpur	 University	 for	 her	 guidance	 in	 this	
project.	It	was	a	wonderful	experience	working	alongside	her.	Also,	I	would	like	to	
thank	my	classmates	for	their	help	and	support.	

Finally,	 I	 extend	 my	 sincere	 thanks	 to	 my	 parents,	 Mr.	 Palas	 Biswas	 and																													
Mrs.	Sachi	Biswas,	for	their	constant	support,	encouragement,	and	steadfast	belief	in	
my	abilities.	

	
Date:	
	
Place:	
	
	
	
	
	
																																																																																										PRITHWISH	BISWAS																																																																	
																																																																									Department	of	Electrical	Engineering	
																																																																									Examination	Roll	No.	:	M4CTL24006B	
																																																																																											Jadavpur	University	

	

	

6

Abstract	

This	thesis	investigates	the	performance	of	linear	and	nonlinear	estimation	methods,	
focusing	on	Kalman	Filter	(KF),	Extended	Kalman	Filter	(EKF),	and	Adaptive	Kalman	
Filter	 (AKF)	 in	 estimating	 dynamic	 system	 states.	 A	 comprehensive	 MATLAB	
implementation	 is	 developed	 for	 1D,	 2D,	 3D,	 and	 N-Dimensional	 Kalman	 Filters,	
based	on	established	algorithms,	to	analyze	and	validate	these	filters'	performance	
across	a	range	of	 linear	and	nonlinear	systems.	This	work	provides	a	comparative	
study	between	the	EKF	and	the	recently	proposed	AKF	in	nonlinear	environments,	
with	an	emphasis	on	their	responses	to	measurement	noise	covariance.	

The	study	primarily	evaluates	the	filter’s	ability	to	minimize	estimation	error	under	
varying	conditions	of	measurement	noise	covariance,	𝑅.	It	is	observed	that	the	EKF	
demonstrates	robust	performance	in	systems	with	mild	nonlinearities,	given	that	the	
measurement	 noise	 covariance	 is	 accurately	 known	 or	 estimated.	 However,	 in	
scenarios	where	measurement	noise	covariance	 is	uncertain	or	unknown,	 the	AKF	
exhibits	 superior	 adaptability	 and	 precision,	 thus	 outperforming	 the	 EKF.	 This	
adaptability	 of	 the	 AKF	 makes	 it	 a	 preferable	 choice	 for	 applications	 where	
measurement	noise	characteristics	cannot	be	precisely	determined.	

Results	 indicate	 that	when	 the	 actual	measurement	 noise	 covariance	 is	 known	 or	
reasonably	 approximated,	 both	 AKF	 and	 EKF	 offer	 comparable	 accuracy.	
Nevertheless,	when	covariance	knowledge	is	limited,	AKF’s	performance	advantage	
becomes	significant.	While	the	MATLAB	code	developed	for	this	study	successfully	
supports	these	analyses,	further	optimization	could	reduce	computational	demands,	
particularly	 for	 extensive	Monte	 Carlo	 simulations.	 Additionally,	 refining	 the	 AKF	
algorithm	 could	 enhance	 its	 applicability	 to	 systems	 with	 stronger	 nonlinear	
behaviors,	potentially	expanding	its	practical	usage	across	more	complex,	real-world	
systems.	

In	 conclusion,	 this	 thesis	 underscores	 the	 importance	 of	 adaptive	 filtering	 in	
scenarios	of	measurement	uncertainty	and	highlights	potential	areas	for	advancing	
Kalman	Filter	implementations	in	both	theoretical	and	applied	contexts.	

	

	 	

7

Table	Of	Contents	
	

Chap	No.	 	 	 Title	 Page	No.	

1	 	 	 Introduction	 8-12	

2	 	 	 Literature	survey	 13-18	

3	 	 	 Brief	overview	of	Kalman	Filter	(KF)	 19-48	

	 3.0	 	 Introduction	 19-20	
	 3.1	 	 Working	principle	 20-22	
	 3.2	 	 One-dimensional	Kalman	Filter	 22-27	
	 3.3	 	 Two-dimensional	Kalman	Filter	 28-32	
	 3.4	 	 Three-dimensional	Kalman	Filter	 33-37	
	 3.5	 	 N-dimensional	Kalman	Filter	 38-42	
	 3.6	 	 Case	study	:	Application	of	KF	for	a	3D	linear	

system	
43-48	

4	 	 	 Brief	overview	of	Extended	Kalman	Filter	(EKF)	 49-59	
	 4.0	 	 Introduction	 49-50	
	 4.1	 	 Application	of	EKF	for	SOC	estimation	 51-51	
	 	 4.1.1	 Problem	statement:	Nonlinear	double	capacitor	

model	
52-55	

	 	 4.1.2	 EKF	formulation	 56-59	
5	 	 	 Recently	proposed	Adaptive	Kalman	Filter	(AKF)	 60-68	
	 5.0	 	 Introduction	 60-61	
	 5.1	 	 Working	principle	 62-63	
	 5.2	 	 AKF	with	nonlinear	systems	 						63-68	
6	 	 	 Comparison	between	EKF	&	AKF	 						69-80	
	 6.0	 	 Introduction	 						69-70	
	 6.1	 	 Known	noise	covariance	 						71-73	
	 6.2	 	 Effect	of	unknown	measurement	noise	

covariance	
						74-80	

7	 	 	 Discussions	&	conclusions	 						81-82	
8	 	 	 Future	scope	 						83-83	
9	 	 	 References	 						84-85	
	 	 	 Appendices	 												86-102	

	

8

Chapter	1	-	Introduction	

	

The	Kalman	filter	was	created	by	Rudolf	E.	Kalman	in	the	1960s,	an	American-

Hungarian	electrical	engineer	and	mathematician.	The	method	was	originally	

introduced	 as	 a	way	 to	 predict	 a	 system's	 future	 state	 based	 on	 a	 series	 of	

measurements	 that	 contain	 noise.	 Kalman’s	work	 revolutionized	 the	 field	 of	

control	 systems	 engineering,	 particularly	 with	 its	 application	 in	 the	 Apollo	

space	program,	where	it	was	employed	to	navigate	the	lunar	module.	The	main	

concept	of	the	filter	is	to	offer	a	recursive	method	for	estimating	the	internal	

state	of	a	process	that	cannot	be	directly	observed,	using	noisy	sensor	data	for	

the	calculations	[Brown2012].	

The	Kalman	filter	is	a	robust	mathematical	technique	commonly	used	in	control	

systems,	 signal	 processing,	 and	 estimation	 theory.	 Since	 its	 inception,	 it	 has	

gained	 widespread	 application	 in	 diverse	 areas	 such	 as	 robotics,	 aerospace	

engineering,	 navigation,	 and	 finance.	 This	 thesis	 aims	 to	 provide	 a	

comprehensive	 overview	 of	 the	 Kalman	 filter,	 tracing	 its	 historical	

development,	exploring	its	types,	and	highlighting	its	strengths	and	limitations.	

Additionally,	 this	 thesis	 discusses	 the	 application	 of	 the	 Kalman	 filter	 in	

estimating	 the	 states	 of	 both	 linear	 and	nonlinear	 systems,	 a	 critical	 task	 in	

many	control	systems	[Brown2012].	

There	are	various	usage	of	 the	Kalman	 filter	 in	several	engineering	domains	

apart	 from	 the	 domain	 of	 electrical	 engineering.	 In	 control	 systems,	 precise	

state	 estimation	 is	 essential	 for	 achieving	 effective	 feedback	 control.	 The	

Kalman	filter	excels	in	estimating	the	true	state	of	a	system	in	real	time	by	using	

a	combination	of	noisy	sensor	data	and	a	model	of	the	system’s	dynamics.	In	

9

various	 engineering	 domains	 the	 Kalman	 filter	 is	 used	 extensively	 for	 both	

linear	and	non-linear	models	such	as	-	

• Navigation	 Systems:	 In	 applications	 like	 GPS	 or	 inertial	 navigation,	

where	the	motion	of	a	vehicle	or	object	can	be	represented	using	linear	

equations,	 the	 Kalman	 filter	 is	 ideal	 for	 estimating	 the	 position	 and	

velocity	of	the	vehicle	in	real	time.

• Control	Systems:	 In	automatic	 control	 systems,	 such	as	 those	used	 in	

aircraft	 or	 industrial	 processes,	 the	 Kalman	 filter	 helps	 estimate	 the	

internal	 states	of	 the	 system	based	on	 sensor	measurements,	 enabling	

effective	feedback	control.

• Signal	Processing:	The	Kalman	filter	is	used	to	estimate	signals	that	are	

corrupted	by	noise,	improving	the	clarity	of	the	signal	in	communication	

systems	or	audio	processing.

• SOC	 Battery	 Estimation:	 Electric	 vehicle	 batteries	 are	 inherently	

nonlinear	systems,	with	their	performance	influenced	by	factors	such	as	

temperature,	current,	and	voltage.	Estimating	the	State	of	Charge	(SOC)	

[Proctor2020]	,	[Ilies2020]	involves	monitoring	the	remaining	energy	in	

the	battery	as	it	depletes	or	charges	over	time.

• Robotics:	In	autonomous	robots,	the	motion	and	sensor	models	are	often	

nonlinear,	 especially	 when	 dealing	 with	 rotation	 or	 complex	

environments.	The	EKF	and	UKF	are	used	for	simultaneous	localization	

and	mapping	(SLAM),	where	 the	robot	must	estimate	both	 its	position	

and	the	environment	it	is	navigating	through.

• Aerospace:	The	trajectory	of	a	spacecraft,	particularly	during	re-entry	or	

in	 complex	 manoeuvres,	 is	 highly	 nonlinear.	 The	 EKF	 and	 UKF	 are	

10

employed	 to	 estimate	 the	 spacecraft’s	 position	 and	 velocity	 for	

navigation	and	control	[Das2014].

Over	the	years,	several	variations	of	the	Kalman	filter	have	been	developed	to	

address	specific	challenges.	The	standard	Kalman	filter	is	designed	for	systems	

that	can	be	modelled	using	linear	dynamics	and	Gaussian	noise.	However,	many	

real-world	systems	are	nonlinear,	prompting	the	development	of	other	variants	

1. Kalman	Filter	(KF):	Used	for	systems	with	linear	dynamics.	It	offers	an	

optimal	estimation	approach	when	both	the	system	and	the	noise	adhere	

to	 Gaussian	 distributions.	 KF	 is	 computationally	 simple	 but	 cannot	

handle	nonlinear	systems	effectively.

2. Extended	 Kalman	 Filter	 (EKF):	 This	 filter	 is	 used	 for	 managing	

nonlinear	 systems	 by	 simplifying	 their	 complexity.	 It	 does	 this	 by	

linearizing	the	system	around	the	current	state	estimate,	using	Jacobian	

to	approximate	the	nonlinear	behaviour.	EKF	is	widely	used	for	battery	

state	 estimation	 but	 can	 be	 less	 accurate	 for	 systems	 with	 strong	

nonlinearities	[Shrivastava2019].

3. Adaptive	Extended	Kalman	Filter	(AEKF):	An	enhancement	of	the	EKF,	

the	AEKF	adjusts	the	process	and	measurement	noise	covariances	during	

the	 estimation	 process.	 This	 allows	 the	 filter	 to	 better	 handle	 varying	

noise	 levels	 and	 system	 conditions,	 improving	 accuracy	 and	 reducing	

divergence	[Shrivastava2019].

4. Unscented	 Kalman	 Filter	 (UKF):	 This	 filter	 is	 more	 accurate	 for	

nonlinear	 systems	 as	 it	 avoids	 linearization.	 Instead,	 it	 uses	 a	 set	 of	

sample	points	 (sigma	points)	 to	more	precisely	estimate	 the	state	of	a	

system.	 The	 UKF	 is	 typically	 more	 accurate	 than	 the	 EKF	 in	 highly	

nonlinear	situations	[Shrivastava2019].

11

5. Adaptive	Unscented	Kalman	Filter	(AUKF):	Like	the	UKF,	but	with	the	

added	capability	to	adaptively	adjust	the	noise	covariance	matrices.	It	is	

very	 useful	 for	 nonlinear	 systems	 having	 non-additive	 measurement	

noise	 with	 the	 unknown	 noise	 statistics.	 This	 makes	 the	 AUKF	

particularly	 useful	 in	 real-time	 applications	 with	 changing	 system	

dynamics	and	noise	levels	[Das2015].	

6. Square-root	Unscented	Kalman	Filter	(SR-UKF):	This	variant	reduces	

the	 computational	 burden	 of	 the	 UKF	 by	 using	 square-root	

decompositions,	 making	 it	 more	 efficient	 for	 systems	 where	

computational	resources	are	limited	[Shrivastava2019].

7. Central	Difference	Kalman	Filter	 (CDKF):	Uses	 a	 simpler	method	 to	

approximate	derivatives,	reducing	computational	complexity	compared	

to	 the	UKF.	 It	 is	useful	 for	applications	requiring	efficient	computation	

without	significant	loss	in	accuracy	[Shrivastava2019].

8. Cubature	Kalman	Filter	(CKF):	This	filter	uses	a	cubature	integration	

method	to	handle	high-dimensional	nonlinear	systems	more	effectively	

than	the	UKF.	It	offers	better	performance	for	certain	complex	systems	

but	requires	more	computational	resources	[Shrivastava2019].

In	the	case	of	linear	systems,	the	standard	Kalman	filter	is	an	optimal	solution.	

Linear	 systems	 can	be	described	by	 state-space	 equations,	where	 the	 future	

state	of	the	system	depends	linearly	on	the	current	state	and	control	inputs.	The	

Kalman	 filter	 works	 by	 using	 a	 predictive	 step,	 where	 the	 future	 state	 is	

estimated	based	on	a	mathematical	model	of	the	system,	and	a	corrective	step,	

where	 the	 prediction	 is	 updated	 using	 noisy	 measurements.	 This	 two-step	

process	 allows	 the	 Kalman	 filter	 to	 continuously	 refine	 the	 estimate	 of	 the	

system’s	state	in	real	time.

12

Most	 real-world	 systems	 are	 nonlinear,	 which	 complicates	 state	 estimation.	

The	Extended	Kalman	Filter	(EKF)	and	Unscented	Kalman	Filter	(UKF)	are	the	

two	most	commonly	used	variations	for	dealing	with	nonlinearities.	The	EKF	

approximates	the	nonlinear	dynamics	by	linearizing	them	around	the	current	

state	 estimate,	 but	 this	 approximation	 can	 introduce	 errors	 in	 systems	with	

strong	 nonlinear	 behaviour.	 On	 the	 other	 hand,	 the	 UKF	 uses	 a	 more	

sophisticated	 approach,	 approximating	 the	 state	 distribution	 with	 a	 set	 of	

weighted	points	that	are	propagated	through	the	nonlinear	system.	While	more	

computationally	 expensive,	 the	 UKF	 generally	 provides	 better	 estimates	 for	

highly	nonlinear	systems.

However	in	this	thesis	we	are	not	going	to	study	about	all	the	types	of	Kalman	

filters	present.	We	will	be	discussing	mainly	the	Kalman	filter	(KF),	Extended	

Kalman	filter	(EKF)	and	Adaptive	Kalman	filter	(AKF)	and	will	do	a	comparative	

study	on	how	these	filters	are	performing	in	estimating	the	states	of	linear	and	

non-linear	systems.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

13

Chapter	2	-	Literature	survey		
	

Introduction	
Kalman	 dilters	 are	 a	 cornerstone	 in	 the	 dield	 of	 estimation	 theory,	 with	

applications	spanning	various	domains,	including	aerospace,	robotics,	control	

systems,	 and	 battery	 management.	 The	 Kalman	 dilter	 is	 fundamentally	 a	

recursive	algorithm	that	provides	estimates	of	the	internal	states	of	a	system	

given	noisy	observations.	Over	the	decades,	several	variants	of	the	Kalman	dilter	

have	been	developed	to	address	the	limitations	of	the	standard	Kalman	dilter	in	

nonlinear,	 non-Gaussian,	 and	 adaptive	 environments.	 This	 literature	 survey	

reviews	the	key	Kalman	dilter	variants,	focusing	on	the	Standard	Kalman	Filter	

(KF),	 Extended	 Kalman	 Filter	 (EKF),	 Unscented	 Kalman	 Filter	 (UKF),	 and	

Adaptive	Kalman	Filter	(AKF).	

Kalman	Filter	(KF)	
The	Kalman	Filter	algorithm	operates	in	two	main	steps:	prediction	and	update.	

During	the	prediction	step,	the	dilter	projects	the	current	state	estimate	forward	

in	time	to	obtain	the	predicted	state	and	its	uncertainty.	In	the	update	step,	the	

dilter	corrects	this	prediction	using	the	latest	measurement.	The	KF	is	known	

for	 being	 computationally	 efdicient,	 making	 it	 suitable	 for	 real-time	

applications.	However,	 its	effectiveness	is	restricted	to	linear	systems,	and	its	

performance	 degrades	 signidicantly	 in	 nonlinear	 or	 non-Gaussian	 settings.	

Despite	 these	 limitations,	 the	KF	 remains	 a	 fundamental	 tool,	 particularly	 in	

systems	where	the	assumptions	of	linearity	and	Gaussian	noise	hold	true.	

	

14

Extended	Kalman	Filter	(EKF)	
The	Extended	Kalman	Filter	(EKF)	was	developed	to	extend	the	application	of	

the	Kalman	 dilter	 to	nonlinear	systems.	The	EKF	approximates	 the	nonlinear	

system	by	linearizing	the	system	dynamics	around	the	current	state	estimate.	

This	is	achieved	using	a	dirst-order	Taylor	series	expansion,	which	allows	the	

EKF	 to	apply	 the	standard	Kalman	 diltering	process	 to	 the	 linearized	system.	

While	this	method	enables	the	EKF	to	handle	a	broader	range	of	applications,	it	

introduces	new	challenges.	The	linearization	process	can	lead	to	inaccuracies,	

especially	in	highly	nonlinear	systems	where	higher-order	terms	of	the	Taylor	

series	 become	 signidicant.	 Moreover,	 the	 EKF	 assumes	 that	 the	 noise	 in	 the	

system	remains	Gaussian,	which	is	often	not	the	case	in	real-world	applications.	

Despite	 these	 limitations,	 the	EKF	 is	widely	 used	 in	 various	 dields,	 including	

navigation	 systems,	 robotics,	 and	 battery	 management	 systems,	 due	 to	 its	

ability	to	manage	nonlinear	dynamics	to	some	extent	[Takayama2024].	

Unscented	Kalman	Filter	(UKF)	
The	Unscented	Kalman	Filter	(UKF)	was	developed	as	a	more	robust	alternative	

to	 the	EKF,	 specidically	designed	 to	handle	 the	 shortcomings	of	 linearization.	

Instead	 of	 linearizing	 the	 system	dynamics,	 the	UKF	 employs	 the	Unscented	

Transform,	 a	 deterministic	 sampling	 technique	 that	 selects	 a	 set	 of	 points	

(called	sigma	points)	around	the	mean	of	the	state	estimate.	These	points	are	

then	propagated	through	the	nonlinear	system	equations,	allowing	the	UKF	to	

capture	the	mean	and	covariance	of	the	state	distribution	more	accurately	than	

the	 EKF.	 This	method	 results	 in	 better	 performance,	 particularly	 in	 systems	

with	 signidicant	 nonlinearities.	 The	 UKF	 has	 been	 shown	 to	 provide	 more	

accurate	 estimates	 than	 the	 EKF	 in	 many	 practical	 applications,	 including	

15

vehicle	 tracking,	 spacecraft	 navigation,	 and	 sensor	 fusion	 in	 autonomous	

systems.	 However,	 the	 UKF	 is	 computationally	more	 intensive	 than	 the	 EKF,	

which	can	be	a	limiting	factor	in	real-time	applications	[Shrivastava2019].	

Adaptive	Kalman	Filter	(AKF)	
The	Adaptive	Kalman	Filter	(AKF)	represents	a	class	of	dilters	that	address	one	

of	the	key	limitations	of	the	standard	and	extended	Kalman	dilters	the	need	for	

accurate	knowledge	of	process	and	measurement	noise	covariances.	 In	many	

practical	situations,	these	noise	characteristics	are	either	unknown	or	vary	over	

time.	The	AKF	dynamically	adjusts	 its	parameters,	 such	as	 the	process	noise	

covariance	(Q)	and	measurement	noise	covariance	(R),	based	on	observed	data.	

This	adaptation	is	crucial	for	maintaining	dilter	performance	in	non-stationary	

environments,	where	the	noise	characteristics	change	over	time	due	to	varying	

operating	 conditions.	 For	 instance,	 in	battery	management	 systems,	 the	AKF	

can	adapt	to	changes	in	battery	behaviour	caused	by	temperature	dluctuations,	

aging,	 or	 varying	 load	prodiles.	By	 continuously	updating	 its	parameters,	 the	

AKF	enhances	 the	accuracy	and	 robustness	of	 state	estimation,	 reducing	 the	

likelihood	of	dilter	divergence,	a	situation	where	the	dilter’s	estimates	become	

increasingly	inaccurate	over	time	[Takayama2024].	

Comparative	Analysis	of	Kalman	Filter	Variants	
The	choice	of	Kalman	dilter	variant	depends	heavily	on	the	specidic	application	

and	 the	nature	of	 the	 system	being	modelled.	The	Standard	Kalman	Filter	 is	

optimal	 for	 linear	 systems	 with	 well-characterized	 Gaussian	 noise,	 offering	

simplicity	 and	efdiciency.	However,	 its	performance	degrades	 in	nonlinear	or	

non-Gaussian	settings,	necessitating	the	use	of	more	advanced	dilters	like	the	

EKF	or	UKF[Shrivastava2019].	

16

The	EKF	is	suitable	for	systems	with	mild	nonlinearities,	where	the	dirst-order	

approximation	provided	by	linearization	is	sufdicient.	However,	in	systems	with	

signidicant	 nonlinearities	 or	 where	 a	 more	 accurate	 estimation	 of	 the	 state	

distribution	is	required,	the	UKF	is	often	the	better	choice	due	to	its	ability	to	

propagate	the	mean	and	covariance	through	nonlinear	transformations	more	

accurately	[Shrivastava2019].	

The	AKF	 is	particularly	benedicial	 in	applications	where	noise	characteristics	

are	time-varying	or	not	well	known.	Its	ability	to	adapt	to	changing	conditions	

makes	 it	 ideal	 for	 non-stationary	 environments,	 although	 this	 comes	 with	

increased	 computational	 complexity.	 For	 example,	 in	 dynamic	 environments	

such	 as	 autonomous	 vehicles,	 the	 AKF	 can	 signidicantly	 improve	 estimation	

accuracy	 by	 adjusting	 its	 parameters	 in	 real-time	 as	 the	 vehicle	 encounters	

different	terrains	or	sensor	conditions.	

In	summary,	while	 the	Standard	Kalman	Filter	 is	optimal	 for	 linear,	Gaussian	

systems,	 the	 EKF,	 UKF,	 and	 AKF	 each	 offer	 specidic	 advantages	 for	 handling	

nonlinearities	 and	 time-varying	 noise,	 albeit	 at	 the	 cost	 of	 increased	

computational	requirements.	

Applications	in	Engineering	and	Technology	
Kalman	Filters	are	extensively	used	across	various	engineering	disciplines	due	

to	their	versatility	in	state	estimation.	In	battery	management	systems	(BMS)	

[Ilies2020],	Kalman	Filters	are	crucial	for	State	of	Charge	(SOC)	estimation,	a	

critical	 parameter	 for	 ensuring	 the	 safe	 and	 efdicient	 operation	 of	 batteries	

[Shrivastava2019].	The	EKF	and	UKF	are	commonly	employed	in	this	context	

due	 to	 their	 ability	 to	handle	 the	nonlinear	dynamics	of	 battery	models.	 For	

instance,	the	nonlinear	double-capacitor	model	of	a	battery,	which	is	often	used	

to	represent	the	complex	electrochemical	processes,	is	better	suited	to	the	EKF	

17

and	 UKF	 than	 the	 standard	 KF[Proctor2020].	 The	 AKF,	 with	 its	 adaptive	

capabilities,	 is	 particularly	 useful	 in	 BMS	 applications	 where	 the	 battery's	

operating	 conditions	 change	over	 time,	 such	as	 variations	 in	 temperature	or	

load	prodiles.	

In	the	dield	of	autonomous	vehicles	and	robotics,	Kalman	Filters	are	integral	to	

sensor	 fusion,	where	data	 from	multiple	sensors,	such	as	GPS,	 IMUs	(Inertial	

Measurement	 Units),	 and	 cameras,	 are	 combined	 to	 estimate	 the	 vehicle's	

position	and	velocity.	The	UKF	is	often	preferred	in	these	applications	due	to	its	

superior	 handling	 of	 nonlinear	 sensor	 models.	 Additionally,	 the	 AKF	 is	

employed	 to	 adjust	 the	 dilter	 parameters	 in	 real-time,	 ensuring	 robust	 state	

estimation	 even	 when	 the	 vehicle	 operates	 in	 dynamic	 environments	 with	

varying	sensor	noise	levels.	

Kalman	Filters	are	also	widely	used	in	aerospace	applications,	particularly	in	

navigation	and	control	systems	for	aircraft	and	spacecraft.	The	EKF	and	UKF	are	

used	for	trajectory	estimation,	attitude	determination,	and	orbit	determination,	

where	 the	 nonlinearities	 of	 the	 system	 dynamics	 are	 signidicant.	 The	

adaptability	of	the	AKF	is	benedicial	in	these	high-precision	applications,	where	

the	noise	characteristics	can	change	due	to	varying	atmospheric	conditions	or	

different	phases	of	dlight	[Das2014].	

Challenges	and	Future	Directions	
Despite	 the	 widespread	 adoption	 of	 Kalman	 Filters	 in	 various	 applications,	

several	 challenges	 remain.	 One	 of	 the	 most	 signidicant	 challenges	 is	 the	

assumption	 of	 Gaussian	 noise,	 which	 may	 not	 hold	 in	 many	 real-world	

scenarios.	Non-Gaussian	noise	can	 lead	to	suboptimal	performance	and	even	

dilter	divergence.	To	address	 this,	ongoing	 research	 is	exploring	more	 robust	

18

diltering	techniques,	such	as	particle	dilters,	which	do	not	assume	Gaussian	noise	

and	can	provide	better	performance	in	such	scenarios.	

Another	challenge	is	the	computational	complexity	associated	with	the	UKF	and	

AKF.	While	these	dilters	offer	improved	accuracy	over	the	standard	KF	and	EKF,	

they	require	more	computational	resources,	which	can	be	a	limiting	factor	in	

real-time	 applications	 or	 systems	 with	 limited	 processing	 power.	 Future	

research	is	likely	to	focus	on	developing	more	efdicient	algorithms	that	can	offer	

the	benedits	of	the	UKF	and	AKF	while	reducing	computational	overhead.	

The	integration	of	Kalman	Filters	with	machine	learning	techniques	is	also	an	

emerging	area	of	research.	For	instance,	combining	Kalman	Filters	with	neural	

networks	 could	 enhance	 their	 ability	 to	 model	 complex,	 nonlinear	 systems	

without	relying	on	explicit	system	models.	This	approach	could	 lead	to	more	

accurate	and	robust	state	estimation	in	a	broader	range	of	applications.	

Conclusion	
Kalman	 Filters,	 particularly	 the	 Extended	 Kalman	 Filter	 (EKF),	 Unscented	

Kalman	Filter	(UKF),	and	Adaptive	Kalman	Filter	(AKF),	have	become	essential	

tools	in	modern	engineering,	enabling	precise	state	estimation	in	the	presence	

of	noise	and	uncertainty.	Each	variant	offers	unique	advantages	depending	on	

the	nature	of	the	system	and	the	noise	environment.	While	the	standard	Kalman	

Filter	 is	 optimal	 for	 linear,	 Gaussian	 systems,	 the	 EKF	 and	 UKF	 extend	 its	

applicability	 to	 nonlinear	 systems,	 and	 the	 AKF	 provides	 the	 adaptability	

needed	 in	 time-varying	 environments.	 As	 research	 continues,	we	 can	 expect	

further	advancements	in	the	accuracy,	robustness,	and	computational	efdiciency	

of	 these	 dilters,	 expanding	 their	 applicability	 to	 even	 more	 challenging	 and	

dynamic	systems.	

	

19

Chapter	3	–	Brief	overview	of	the	Kalman	
Filter	(KF)	
	

3.0	Introduction	
The	Kalman	Filter	is	a	recursive	algorithm	used	to	estimate	the	state	of	a	system	

from	noisy	measurements.	 It	minimizes	 the	mean	 square	 error	between	 the	

estimated	and	true	states	of	the	system	by	combining	past	information	and	new	

measurements	 in	an	optimal	way.	Let	us	understand	with	a	simple	example,	

imagine	you're	trying	to	track	the	position	of	a	car	using	a	GPS	device.	The	GPS	

provides	noisy	data	due	to	interference,	weather,	etc.,	so	the	position	estimates	

aren't	perfect.	The	Kalman	filter	helps	by	using	both	the	previous	position	of	

the	car	and	a	model	of	how	fast	the	car	is	moving	to	predict	where	it	should	be.	

Then,	 it	updates	this	prediction	using	the	GPS	reading,	while	also	accounting	

for	 the	 noise.	 Over	 time,	 this	 process	 produces	 a	 very	 accurate	 estimate	 of	

where	the	car	actually	is,	despite	the	noisy	GPS	measurements.	Also,	we	have	

to	keep	 it	 in	mind	that	 the	Kalman	filter	works	only	 in	discrete	domain	as	 it	

checks	 for	 the	 updates	 on	 the	 particular	 time	 instance	 and	 accordingly	

proceeds.	In	this	scenario	firstly	we	will	be	requiring	the	plant’s	the	state	space	

input	and	output	equations	are	represented	in	the	discrete	domain	and	then	we	

can	move	on	with	its	working.	In	summary,	the	Kalman	filter	is	a	method	that	

combines	 predictions	 from	 a	 system	 model	 with	 noisy	 measurements	 to	

provide	an	accurate	estimate	of	the	system’s	state.	It’s	powerful	because	it	can	

continuously	 update	 its	 estimate	 as	 new	 data	 comes	 in,	 making	 it	 ideal	 for	

tracking	and	estimation	 in	dynamic	systems.	 It’s	widely	applied	 in	 fields	 like	

20

navigation,	control	systems,	robotics,	and	economics,	where	you	need	to	make	

sense	of	noisy	data	to	predict	or	track	the	state	of	a	system	[Brown2012].			

3.1	Working	principle	
To	explain	how	it	works,	let’s	break	it	down	step	by	step	-		

a) Basic	idea:	

The	 Kalman	 filter	 continuously	 estimates	 the	 current	 state	 of	 a	 system	 by	

combining	two	pieces	of	information	[Brown2012]:	

• Predicted	state:	What	the	system	should	be,	based	on	a	model	of	how	

the	system	behaves.	

• Measured	state:	What	the	system	seems	to	be,	based	on	sensor	readings	

or	observations,	which	often	contain	noise	or	inaccuracies.	

By	 blending	 these	 two	 inputs,	 the	 Kalman	 filter	 finds	 a	 best	 estimate	 that	

minimizes	error.	

b) How	it	works:	

The	process	of	the	Kalman	filter	can	be	understood	as	happening	in	two	main	

steps,	which	repeat	at	every	time	step.	

Step	1:	Prediction	(What	should	happen):	

The	Kalman	filter	uses	the	previous	state	(the	last	known	information)	and	a	

model	of	the	system	(how	things	are	expected	to	evolve)	to	predict	what	the	

current	state	should	be.	This	is	based	on	knowledge	of	how	the	system	behaves	

21

over	 time.	However,	 this	 prediction	 is	 only	 an	 estimate,	 and	 it	might	 not	 be	

entirely	accurate	[Brown2012].	

Step	2:	Update	(What	actually	happens):	

Once	a	measurement	or	observation	of	the	current	state	is	made	(for	example,	

from	a	sensor),	the	Kalman	filter	compares	this	measured	state	to	its	predicted	

state.	Since	measurements	can	have	noise	(random	errors),	 the	filter	doesn’t	

trust	 the	measurement	 completely.	 Instead,	 it	 blends	 the	prediction	 and	 the	

measurement	to	get	a	new,	updated	estimate	that	is	more	reliable	than	either	

one	on	its	own	[Brown2012].	

c) Balancing	prediction	and	measurement:	

The	key	strength	of	the	Kalman	filter	is	its	ability	to	weigh	the	predicted	state	

and	 the	 measured	 state	 intelligently.	 If	 the	 measurement	 seems	 very	 noisy	

(unreliable),	the	filter	will	trust	the	prediction	more.	If	the	prediction	model	is	

not	 very	 precise,	 the	 filter	 will	 lean	more	 on	 the	 actual	measurement.	 This	

balance	is	achieved	by	assigning	"weights"	based	on	how	confident	the	filter	is	

about	the	prediction	versus	the	measurement	[Brown2012].	

d) Continuous	loop:	

This	process	of	prediction	and	update	happens	at	each	time	step:	

• First,	 the	 dilter	makes	a	prediction	based	on	 the	past	 state	and	 system	

model.	

• Then,	it	takes	in	the	new	measurement,	combines	it	with	the	prediction,	

and	updates	its	estimate.	

22

This	allows	the	filter	to	track	the	state	of	the	system	over	time,	even	if	the	data	

is	noisy	or	incomplete	[Brown2012].	

e) Why	it’s	useful:	

• Noise	Handling:	The	Kalman	dilter	is	very	good	at	diltering	out	random	

noise	 in	 measurements	 and	 providing	 a	 smoother,	 more	 accurate	

estimate	of	the	system’s	state.	

• Real-Time	Updates:	It	works	recursively,	meaning	it	updates	estimates	

as	 soon	 as	 new	 data	 is	 available,	 making	 it	 suitable	 for	 real-time	

applications	like	GPS	tracking	or	robotic	navigation.	

• Uncertainty	Management:	It	can	handle	uncertainty	in	both	the	system	

model	 and	 the	 measurements,	 which	 makes	 it	 versatile	 for	 many	

applications.	

3.2	One-dimensional	Kalman	Milter	
The	one-dimensional	Kalman	filter	is	the	simplest	form	of	the	filter,	used	when	

the	system	can	be	described	with	a	single	state	variable	and	the	measurements	

are	scalar	values.	In	this	case,	the	state	of	the	system	at	time	𝑘	is	represented	

by	a	scalar	𝑥!,	and	the	filter	estimates	this	state	using	noisy	measurements	𝑧!.	

Since	 in	 this	 case	 all	 the	 state	 variables	 are	 scalar	 in	 nature	 thus	 these	 are	

nothing	but	matrices	with	a	single	value.	So	only	for	this	case	we	are	not	going	

to	use	matrices	rather	just	simple	variables	storing	single	values	in	them.	The	

filter	follows	two	key	steps	prediction	and	update.	Before	that	we	need	to	come	

up	with	the	discrete	time	domain	input	and	output	equations	of	the	given	plant.	

Here	it	is	represented	as	follows	[Brown2012]	

𝑥!"# = 𝐹!𝑥! + 𝑤! ………(1)	

23

𝑦! = 𝐻!𝑥! + 𝑣! ………(2)	

Where:	

• 𝑥!"#	is	the	predicted	state.	

• 𝐹!	 is	the	state	transition	matrix,	describing	how	the	state	evolves	from	

time	step	𝑘	to	𝑘 + 1.	

• 𝑥!	is	the	state	vector	at	time	𝑡!.	

• 𝑤!	is	the	process	noise	(Gaussian	white	noise).	

• 𝑦!	is	the	output	state.	

• 𝐻!	is	the	observation	matrix.	

• 𝑣!	is	the	measurement	noise	(Gaussian	white	noise).	

1.	Prediction	step	

The	filter	predicts	the	next	state	of	the	system	using	a	model	of	the	system's	

dynamics.	 It	 also	 projects	 the	 error	 covariance	matrix,	 which	 quantifies	 the	

uncertainty	 in	 the	 prediction.	 The	 state	 prediction	 can	 be	 described	 by	

[Brown2012]:	

𝑥1!"#$ = 𝐹!𝑥1! ………(3)	

Where:	

• 𝑥1!"#$ 	is	the	predicted	state.	

• 𝐹!	 is	the	state	transition	matrix,	describing	how	the	state	evolves	from	

time	step	𝑘	to	𝑘 + 1.	

• 𝑥!	is	the	state	vector	at	time	𝑡!.	

The	error	covariance	matrix,	𝑃!,	is	updated	as	[Brown2012]:	

24

𝑃!"#$ = 𝐹!𝑃!𝐹!% + 𝑄! ………(4)	

Where:	

• 𝑃!"#$ 	is	the	priori	predicted	error	covariance.	

• 𝐹!	 is	the	state	transition	matrix,	describing	how	the	state	evolves	from	

time	step	𝑘	to	𝑘 + 1.	

• 𝑃!	is	the	error	covariance	matrix	associated	with	the	estimate	𝑥1!	

• 𝑄!	is	the	covariance	matrix	of	the	process	noise	𝑤!.	

• 𝑤!	is	the	process	noise	(Gaussian	white	noise).	

2.	Determination	of	Kalman	gain	

In	 this	 step,	 the	Kalman	gain	 is	 found	 	𝐾!,	which	determines	how	much	 the	

prediction	should	be	corrected	based	on	the	new	measurement	[Brown2012]:	

𝐾! = 𝑃!"#$ 𝐻!%(𝐻!𝑃!"#$ 𝐻!% + 𝑅!)$#………(5)	

Where:	

• 𝐻!	is	the	observation	matrix.	

• 𝐾!	is	the	Kalman	gain,	a	blending	factor	for	updating	the	estimate	using	

measurements.	

• 𝑃!"#$ 	is	the	priori	predicted	error	covariance.	

• 𝑅!is	the	covariance	matrix	of	the	measurement	noise	𝑣!.	

3.	Update	step	

In	this	step	many	variables	are	updated	subsequently	such	as		𝑥1!"#		, 𝑃!"#	, 𝑒!	

also	the	filter	incorporates	the	new	measurement	𝑧!	to	correct	the	prediction.	

The	state	estimate	is	then	updated	[Brown2012]:	

25

𝑥1!"# = 𝑥1!"#$ + 𝐾!(𝑧! − 𝐻!𝑥1!"#$)……… (6)	

Where:	

• 𝑥1!"#	is	the	posterior	predicted	state.	

• 𝑥1!"#$ 	is	the	priori	predicted	state.	

• 𝐾!	is	the	Kalman	gain,	a	blending	factor	for	updating	the	estimate	using	

measurements.	

• 𝑧!	is	the	observation	(measurement)	vector	at	time	𝑡!.	

• 𝐻!	 is	 the	 observation	matrix,	 mapping	 the	 true	 state	 to	 the	 observed	

state.	

The	 error	 covariance	 matrix	 is	 updated	 to	 reflect	 the	 improved	 estimate	

[Brown2012]:	

𝑃!"# = (𝐼 − 𝐾!𝐻!)𝑃!"#$ ………(7)	

Where:	

• 𝑃!"#	is	the	predicted	error	covariance.	

• 𝐾!	is	the	Kalman	gain,	a	blending	factor	for	updating	the	estimate	using	

measurements.	

• 𝐻!	 is	 the	 observation	matrix,	 mapping	 the	 true	 state	 to	 the	 observed	

state.	

• 𝑃!"#$ 	is	the	priori	predicted	error	covariance.	

Also	we	have	 to	 find	 the	 error	matrix	 to	 actually	 find	how	good	 the	 filter	 is	

working,	so	it	can	be	found	out	as	follows	[Brown2012]	

𝑒! = 𝑥! − 𝑥1! ………(8)	

	

26

Where:	

• 𝑒!	is	the	error	matrix.	

• 𝑥!	is	the	actual	value	of	the	state.	

• 𝑥1!	is	the	estimated	value	of	the	state.	

4.	Kalman	filter	algorithm	

v Initialization:	Start	with	an	initial	estimate	𝑥1&	and	covariance	𝑃&.	

v Prediction:	

• Predict	the	next	state	𝑥1!"#$.	

• Update	the	error	covariance	𝑃!"#$.	

v Measurement:	Obtain	the	new	measurement	𝑧!.	

v Update:	

• Compute	the	Kalman	gain	𝐾!.	

• Update	the	state	estimate	𝑥1!"#.	

• Update	the	error	covariance	𝑃!"#.	

v Repeat	for	each	new	measurement.	

	

27

5.	Flowchart	

We	have	already	discussed	about	the	working	algorithm	and	the	steps	of	the	

Kalman	filter.	Now	with	the	help	of	a	flowchart	we	will	understand	how	actually	

the	steps	has	been	followed	and	implemented	in	the	MATLAB.	This	portion	of	

the	 flowchart	will	be	 in	a	 loop	 since	 it	 is	 a	 recursive	process	and	 requires	a	

number	of	iterations	to	get	better	results	[Brown2012].				

	

	

	

	

	

	

	

	

Fig.1	Flowchart	of	the	Kalman	Filter	

This	filter	optimally	balances	the	information	from	the	predicted	model	and	the	

noisy	measurements,	providing	an	accurate	state	estimate	even	 in	uncertain	

conditions.	This	overview	summarizes	the	basic	principles	and	operation	of	the	

discrete	 Kalman	 filter,	 with	 its	 key	 mathematical	 equations,	 steps,	 and	 a	

flowchart	for	understanding	it’s	working.	

	

Initialize	𝑥1&,	𝑃&, 𝑥&

𝑃!"#$ = 𝐹!𝑃!𝐹!% + 𝑄!	

𝑥1!"# = 𝑥1!"#$ + 𝐾!(𝑧! − 𝐻!𝑥1!"#$)

𝑃!"# = (𝐼 − 𝐾!𝐻!)𝑃!"#$

𝑒! = 𝑥! − 𝑥1!

𝐾! = 𝑃!"#$ 𝐻!%(𝐻!𝑃!"#$ 𝐻!% + 𝑅!)$#

𝑥1!"#$ = 𝐹!𝑥1!	

28

3.3	Two-dimensional	Kalman	Milter	
The	two-dimensional	Kalman	filter	extends	the	basic	concept	to	systems	with	

two	 state	 variables.	 A	 two-dimensional	 Kalman	 filter	 is	 an	 extension	 of	 the	

Kalman	filter	designed	to	estimate	the	state	of	a	system	where	there	are	two	

variables	or	dimensions	 involved,	 such	as	position	 in	2D	space	 (e.g.,	 x	and	y	

coordinates).	 Like	 the	 one-dimensional	 version,	 it	 works	 by	 combining	

predictions	 based	 on	 a	 system	model	with	 noisy	measurements	 to	 produce	

more	accurate	estimates	over	time.	These	could	represent	quantities	such	as	

position	and	velocity	in	two-dimensional	space.	Let’s	understand	with	a	simple	

example	 imagine	 you're	 tracking	 the	 position	 of	 a	moving	 object,	 such	 as	 a	

robot,	on	a	2D	grid	(like	a	plane).	The	robot	moves	around,	and	you	want	to	

estimate	its	position	(x	and	y	coordinates)	over	time	based	on	sensor	readings.	

The	sensor	readings	are	noisy,	so	the	measurements	might	not	be	fully	reliable.	

The	two-dimensional	Kalman	filter	helps	by	predicting	the	next	(x,	y)	position	

of	 the	 robot	 based	 on	 its	 previous	 position	 and	 speed.	 Also	 updating	 this	

prediction	 with	 new	 sensor	 data	 about	 the	 robot’s	 current	 position,	 while	

taking	into	account	the	noise	in	the	measurements.	

The	entire	algorithm	and	the	steps	that	we	had	 followed	 in	one	dimensional	

Kalman	Filter	are	exactly	same	as	 in	two	dimensional	Kalman	filter,	 the	only	

difference	 here	 is	 that	 the	 variable	 in	 one	 dimensional	 Kalman	 filter	 were	

singleton	matrices	but	in	two	dimensional	it	will	be	not.	We	will	see	here	how	

the	dimensions	of	each	of	the	variables	changes	here.	

The	state	vector	is	now	a	column	matrix:	

𝒙! = B
𝑥#,!
𝑥(,!C……… (9)	

29

Where	𝑥#,!	is	the	first	state,	and	𝑥(,!	is	the	second	state.	

The	filter	here	also	follows	two	key	steps	prediction	and	update.	Before	that	

we	need	to	come	up	with	the	discrete	time	domain	input	and	output	equations	

of	the	given	plant.	Here	it	is	represented	as	follows	-		

𝒙!"# = 𝑭!𝒙! +𝒘! ………(1.1)	

𝒚! = 𝑯!𝒙! + 𝒗! ………(2.1)	

Where:	

• 𝒙!"#	is	the	predicted	state	matrix	of	(2 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (2 × 2),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(2 × 1)	at	time	𝑡!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(2 × 1).	

• 𝒚!	is	the	output	state	of	(1 × 1).	

• 𝑯!	is	the	observation	matrix	of	(1 × 2).	

• 𝒗!	is	the	measurement	noise	(Gaussian	white	noise)	matrix	of	(1 × 1).	

1.	Prediction	step	

The	filter	predicts	the	next	state	of	the	system	using	a	model	of	the	system's	

dynamics.	 It	 also	 projects	 the	 error	 covariance	matrix,	 which	 quantifies	 the	

uncertainty	in	the	prediction.	The	state	prediction	can	be	described	by:	

𝒙L!"#$ = 𝑭!𝒙L! ………(3.1)	

	

	

30

Where:	

• 𝒙L!"#$ 	is	the	predicted	state	vector	of	(2 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (2 × 2),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(2 × 1)	at	time	𝑡!.	

The	error	covariance	matrix,	𝑷!,	is	updated	as:	

𝑷!"#$ = 𝑭!𝑷!𝑭!% + 𝑸! ………(4.1)	

Where:	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(2 × 2).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (2 × 2),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝑷!	is	the	error	covariance	matrix	of	(2 × 2)	associated	with	the	estimate	

𝒙L!.	

• 𝑸!	is	the	covariance	matrix	of	(2 × 2)	the	process	noise	𝒘!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(2 × 1).	

2.	Determination	of	Kalman	gain	

In	 this	 step,	 the	Kalman	gain	 is	 found	 	𝐾!,	which	determines	how	much	 the	

prediction	should	be	corrected	based	on	the	new	measurement:	

𝑲! = 𝑷!"#$ 𝑯!
%(𝑯!𝑷!"#$ 𝑯!

% + 𝑹!)$#………(5.1)	

	

	

	

31

Where:	

• 𝑯!	is	the	observation	matrix	of	(2 × 1).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(2 × 2),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(2 × 2).	

• 𝑹!is	the	covariance	matrix	of	(1 × 1)	of	the	measurement	noise	𝒗!.	

3.	Update	step	

In	this	step	many	variables	are	updated	subsequently	such	as		𝒙L!"#		, 𝑷!"#	, 𝒆!	

also	the	filter	incorporates	the	new	measurement	𝑧!	to	correct	the	prediction.	

The	state	estimate	is	then	updated:	

𝒙L!"# = 𝒙L!"#$ + 𝑲!(𝒛! −𝑯!𝒙L!"#$)……… (6.1)	

Where:	

• 𝒙L!"#	is	the	posterior	predicted	state	matrix	of	(2 × 1).	

• 𝒙L!"#$ 	is	the	priori	predicted	state	matrix	of	(2 × 1).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(2 × 2),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝒛!	is	the	observation	(measurement)	vector	of	(1 × 1)at	time	𝑡!.	

• 𝑯!	 is	 the	observation	matrix	 of	 (1 × 2),	mapping	 the	 true	 state	 to	 the	

observed	state.	

The	error	covariance	matrix	is	updated	to	reflect	the	improved	estimate:	

𝑷!"# = (𝑰 − 𝑲!𝑯!)𝑷!"#$ ………(7.1)	

	

32

Where:	

• 𝑷!"#	is	the	predicted	error	covariance	matrix	of	(2 × 2).	

• 𝑲!is	the	Kalman	gain	matrix	of	(2 × 2),	a	blending	factor	for	updating	the	

estimate	using	measurements.	

• 𝑯!	 is	 the	observation	matrix	 of	 (1 × 2),	mapping	 the	 true	 state	 to	 the	

observed	state.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(2 × 2).	

Also	we	have	 to	 find	 the	 error	matrix	 to	 actually	 find	how	good	 the	 filter	 is	

working,	so	it	can	be	found	out	by	

𝒆! = 𝒙! − 𝒙L! ………(8.1)	

Where:	

• 𝒆!	is	the	error	matrix	of	(2 × 1).	

• 𝒙!	is	the	actual	value	of	the	state	vector	of	(2 × 1).	

• 𝒙L!	is	the	estimated	value	of	the	state	vector	of	(2 × 1).	

4.	Kalman	filter	algorithm		

The	algorithm	works	exactly	in	the	same	way	as	already	been	shown	in	sub-

part	(4)	of	section	(3.2).	

5.	Flowchart	

The	flowchart	is	also	the	same	as	shown	in	Fig.	(1).		

	

	

	

	

	

33

3.4	Three-dimensional	Kalman	Milter	
A	 three-dimensional	 Kalman	 filter	 is	 an	 extension	 of	 the	 Kalman	 filter	 that	

estimates	the	state	of	a	system	involving	three	variables	or	dimensions.	These	

dimensions	are	typically	related	to	physical	quantities	such	as	position	(x,	y,	z),	

velocity,	or	other	attributes	that	change	in	3D	space.	The	Kalman	filter	operates	

by	combining	model-based	predictions	with	noisy	measurements	to	refine	the	

estimate	 of	 the	 system’s	 state	 over	 time.	 Let	 us	 understand	 with	 a	 simple	

example	imagine	you	are	tracking	the	3D	position	of	a	drone	in	flight,	where	its	

position	 is	 defined	 by	 the	 x,	 y,	 and	 z	 coordinates	 (representing	 latitude,	

longitude,	and	altitude).	As	the	drone	moves,	GPS	sensors	provide	noisy	data	

about	its	position	in	3D	space.	The	three-dimensional	Kalman	filter	helps	by:	

• Predicting	the	drone’s	next	position	(x,	y,	z)	based	on	its	previous	position	

and	speed.	

• Updating	this	prediction	with	new,	possibly	noisy	GPS	measurements	of	

the	drone’s	current	position,	resulting	in	a	more	accurate	estimate.	

With	each	new	set	of	measurements,	 the	Kalman	 filter	 adjusts	 its	 estimates,	

providing	smooth	and	accurate	tracking	of	the	drone’s	3D	position	over	time.	

In	this	case	the	state	vector	becomes:	

𝒙! =	 T
𝑥#,!
𝑥(,!
𝑥),!

U……… (10)	

Where	𝑥#,!	is	the	first	state,	𝑥(,!	is	the	second	state	and		𝑥),!	is	the	third	state.	

34

Here	also	the	filter	follows	two	key	steps	prediction	and	update.	Before	that	we	

again	 need	 to	 come	 up	 with	 the	 discrete	 time	 domain	 input	 and	 output	

equations	of	the	given	plant.	Here	it	is	represented	as	follows	-		

𝒙!"# = 𝑭!𝒙! +𝒘! ………(1.2)	

𝒚! = 𝑯!𝒙! + 𝒗! ………(2.2)	

Where:	

• 𝒙!"#	is	the	predicted	state	matrix	of	(3 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (3 × 3),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(3 × 1)	at	time	𝑡!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(3 × 1).	

• 𝒚!	is	the	output	state	of	(1 × 1).	

• 𝑯!	is	the	observation	matrix	of	(1 × 3).	

• 𝒗!	is	the	measurement	noise	(Gaussian	white	noise)	matrix	of	(1 × 1).	

1.	Prediction	step	

The	filter	predicts	the	next	state	of	the	system	using	a	model	of	the	system's	

dynamics.	 It	 also	 projects	 the	 error	 covariance	matrix,	 which	 quantifies	 the	

uncertainty	in	the	prediction.	The	state	prediction	can	be	described	by:	

𝒙L!"#$ = 𝑭!𝒙L! ………(3.2)	

	

	

	

35

Where:	

• 𝒙L!"#$ 	is	the	predicted	state	vector	of	(3 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (3 × 3),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(3 × 1)	at	time	𝑡!.	

The	error	covariance	matrix,	𝑷!,	is	updated	as:	

𝑷!"#$ = 𝑭!𝑷!𝑭!% + 𝑸! ………(4.2)	

Where:	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(3 × 3).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (3 × 3),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝑷!	is	the	error	covariance	matrix	of	(3 × 3)	associated	with	the	estimate	

𝒙L!.	

• 𝑸!	is	the	covariance	matrix	of	(3 × 3)	the	process	noise	𝒘!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(3 × 1).	

2.	Determination	of	Kalman	gain	

In	 this	 step,	 the	Kalman	gain	 is	 found	 	𝐾!,	which	determines	how	much	 the	

prediction	should	be	corrected	based	on	the	new	measurement:	

𝑲! = 𝑷!"#$ 𝑯!
%(𝑯!𝑷!"#$ 𝑯!

% + 𝑹!)$#………(5.2)	

	

	

	

36

Where:	

• 𝑯!	is	the	observation	matrix	of	(3 × 1).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(3 × 3),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(3 × 3).	

• 𝑹!is	the	covariance	matrix	of	(1 × 1)	of	the	measurement	noise	𝒗!.	

3.	Update	step	

In	this	step	many	variables	are	updated	subsequently	such	as		𝒙L!"#		, 𝑷!"#	, 𝒆!	

also	the	filter	incorporates	the	new	measurement	𝑧!	to	correct	the	prediction.	

The	state	estimate	is	then	updated:	

𝒙L!"# = 𝒙L!"#$ + 𝑲!(𝒛! −𝑯!𝒙L!"#$)……… (6.2)	

Where:	

• 𝒙L!"#	is	the	posterior	predicted	state	matrix	of	(3 × 1).	

• 𝒙L!"#$ 	is	the	priori	predicted	state	matrix	of	(3 × 1).	

• 𝑲!		is	the	Kalman	gain	matrix	of	(3 × 3),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝒛!	is	the	observation	(measurement)	vector	of	(1 × 1)at	time	𝑡!.	

• 𝑯!	 is	 the	observation	matrix	 of	 (1 × 3),	mapping	 the	 true	 state	 to	 the	

observed	state.	

The	error	covariance	matrix	is	updated	to	reflect	the	improved	estimate:	

𝑷!"# = (𝑰 − 𝑲!𝑯!)𝑷!"#$ ………(7.2)	

	

37

Where:	

• 𝑷!"#	is	the	predicted	error	covariance	matrix	of	(3 × 3).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(3 × 3),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝑯!	 is	 the	observation	matrix	 of	 (1 × 3),	mapping	 the	 true	 state	 to	 the	

observed	state.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(3 × 3).	

Also	we	have	 to	 find	 the	 error	matrix	 to	 actually	 find	how	good	 the	 filter	 is	

working,	so	it	can	be	found	out	by	

𝒆! = 𝒙! − 𝒙L! ………(8.2)	

Where:	

• 𝒆!	is	the	error	matrix	of	(3 × 1).	

• 𝒙!	is	the	actual	value	of	the	state	vector	of	(3 × 1).	

• 𝒙L!	is	the	estimated	value	of	the	state	vector	of	(3 × 1).	

4.	Kalman	filter	algorithm		

The	algorithm	works	exactly	in	the	same	way	as	already	been	shown	in	sub-

part	(4)	of	section	(3.2).	

5.	Flowchart	

The	flowchart	is	also	the	same	as	shown	in	Fig.	(1).		

	

	

	

	

	

38

3.5	N-dimensional	Kalman	Milter	
An	N-dimensional	Kalman	 filter	 is	a	generalized	version	of	 the	Kalman	 filter	

used	to	estimate	the	state	of	a	system	with	N	variables	or	dimensions,	where	N	

can	be	any	number	based	on	the	complexity	of	the	system.	Like	other	Kalman	

filters,	it	works	by	blending	predictions	from	a	model	with	noisy	measurements	

to	produce	more	accurate	estimates	over	time.	Let	us	understand	with	a	simple	

example,	 consider	 a	 complex	weather	monitoring	 system	where	N	 variables	

such	 as	 temperature,	 humidity,	 wind	 speed,	 and	 atmospheric	 pressure	 are	

being	tracked	at	various	locations.	Each	of	these	variables	can	be	noisy	due	to	

sensor	inaccuracies.	The	N-dimensional	Kalman	filter	helps	by:	

• Predicting	 the	 future	 values	 of	 these	 N	 weather	 variables	 based	 on	 a	

weather	model.	

• Updating	the	predicted	values	with	real-time	sensor	data,	balancing	the	

prediction	with	the	noisy	measurements	to	redine	the	estimates.	

With	each	new	set	of	data,	the	dilter	continuously	improves	its	estimate	of	the	N	

variables,	 offering	 more	 accurate	 and	 reliable	 monitoring	 of	 the	 weather	

conditions.	It	can	be	used	in	complex	systems,	such	as	in	robotic	systems,	sensor	

networks	etc.	The	working	principle	is	exactly	the	same	as	the	previous	two-

dimensional	or	three-dimensional	Kalman	dilters.	The	major	changes	are	in	the	

dimension	of	all	the	matrices.	

	

	

	

39

In	an	N-dimensional	system,	the	state	vector	is:	

𝒙! = W

𝑥#,!
𝑥(,!
.

𝑥*,!

X……… (11)	

Where	𝑥#,!	is	the	first	state,	𝑥(,!	is	the	second	state	and		𝑥*,!	is	the	Nth	state.	

Again,	 the	filter	 follows	two	key	steps	prediction	and	update.	Before	that	we	

again	 need	 to	 come	 up	 with	 the	 discrete	 time	 domain	 input	 and	 output	

equations	of	the	given	plant.	Here	it	is	represented	as	follows	-		

𝒙!"# = 𝑭!𝒙! +𝒘! ………(1.3)	

𝒚! = 𝑯!𝒙! + 𝒗! ………(2.3)	

Where:	

• 𝒙!"#	is	the	predicted	state	matrix	of	(𝑛 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (𝑛 × 𝑛),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(𝑛 × 1)	at	time	𝑡!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(𝑛 × 1).	

• 𝒚!	is	the	output	state	of	(1 × 1).	

• 𝑯!	is	the	observation	matrix	of	(1 × 𝑛).	

• 𝒗!	is	the	measurement	noise	(Gaussian	white	noise)	matrix	of	(1 × 1).	

40

1.	Prediction	step	

The	filter	predicts	the	next	state	of	the	system	using	a	model	of	the	system's	

dynamics.	 It	 also	 projects	 the	 error	 covariance	matrix,	 which	 quantifies	 the	

uncertainty	in	the	prediction.	The	state	prediction	can	be	described	by:	

𝒙L!"#$ = 𝑭!𝒙L! ………(3.3)	

Where:	

• 𝒙L!"#$ 	is	the	predicted	state	vector	of	(𝑛 × 1).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (𝑛 × 𝑛),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝒙!	is	the	state	vector	of	(𝑛 × 1)	at	time	𝑡!.	

The	error	covariance	matrix,	𝑷!,	is	updated	as:	

𝑷!"#$ = 𝑭!𝑷!𝑭!% + 𝑸! ………(4.3)	

Where:	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(𝑛 × 𝑛).	

• 𝑭!	 is	 the	 state	 transition	 matrix	 of	 (𝑛 × 𝑛),	 describing	 how	 the	 state	

evolves	from	time	step	𝑘	to	𝑘 + 1.	

• 𝑷!	is	the	error	covariance	matrix	of	(𝑛 × 𝑛)	associated	with	the	estimate	

𝒙L!.	

• 𝑸!	is	the	covariance	matrix	of	(𝑛 × 𝑛)	the	process	noise	𝒘!.	

• 𝒘!	is	the	process	noise	(Gaussian	white	noise)	vector	of	(𝑛 × 1).	

41

2.	Determination	of	Kalman	gain	

In	 this	 step,	 the	Kalman	gain	 is	 found	 	𝐾!,	which	determines	how	much	 the	

prediction	should	be	corrected	based	on	the	new	measurement:	

𝑲! = 𝑷!"#$ 𝑯!
%(𝑯!𝑷!"#$ 𝑯!

% + 𝑹!)$#………(5.3)	

Where:	

• 𝑯!	is	the	observation	matrix	of	(𝑛 × 1).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(𝑛 × 𝑛),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(𝑛 × 𝑛).	

• 𝑹!is	the	covariance	matrix	of	(1 × 1)	of	the	measurement	noise	𝒗!.	

3.	Update	step	

In	this	step	many	variables	are	updated	subsequently	such	as		𝒙L!"#		, 𝑷!"#	, 𝒆!	

also	the	filter	incorporates	the	new	measurement	𝑧!	to	correct	the	prediction.	

The	state	estimate	is	then	updated:	

𝒙L!"# = 𝒙L!"#$ + 𝑲!(𝒛! −𝑯!𝒙L!"#$)……… (6.3)	

Where:	

• 𝒙L!"#	is	the	posterior	predicted	state	matrix	of	(𝑛 × 1).	

• 𝒙L!"#$ 	is	the	priori	predicted	state	matrix	of	(𝑛 × 1).	

• 𝑲!	 is	the	Kalman	gain	matrix	of	(𝑛 × 𝑛),	a	blending	factor	for	updating	

the	estimate	using	measurements.	

• 𝒛!	is	the	observation	(measurement)	vector	of	(1 × 1)at	time	𝑡!.	

42

• 𝑯!	 is	 the	observation	matrix	of	(1 × 𝑛),	mapping	 the	 true	 state	 to	 the	

observed	state.	

The	error	covariance	matrix	is	updated	to	reflect	the	improved	estimate:	

𝑷!"# = (𝑰 − 𝑲!𝑯!)𝑷!"#$ ………(7.3)	

Where:	

• 𝑷!"#	is	the	predicted	error	covariance	matrix	of	(𝑛 × 𝑛).	

• 𝑲!is	the	Kalman	gain	matrix	of	(𝑛 × 𝑛),	a	blending	factor	for	updating	the	

estimate	using	measurements.	

• 𝑯!	 is	 the	observation	matrix	of	(1 × 𝑛),	mapping	 the	 true	 state	 to	 the	

observed	state.	

• 𝑷!"#$ 	is	the	priori	predicted	error	covariance	matrix	of	(𝑛 × 𝑛).	

Also	we	have	 to	 find	 the	 error	matrix	 to	 actually	 find	how	good	 the	 filter	 is	

working,	so	it	can	be	found	out	by	

𝒆! = 𝒙! − 𝒙L! ………(8.3)	

Where:	

• 𝒆!	is	the	error	matrix	of	(𝑛 × 1).	

• 𝒙!	is	the	actual	value	of	the	state	vector	of	(𝑛 × 1).	

• 𝒙L!	is	the	estimated	value	of	the	state	vector	of	(𝑛 × 1).	

4.	Kalman	filter	algorithm		

The	algorithm	works	exactly	in	the	same	way	as	already	been	shown	in	sub-

part	(4)	of	section	(3.2).	

5.	Flowchart	

The	dlowchart	is	also	the	same	as	shown	in	Fig.	(1).		

43

3.6	Case	study	:	Application	of	KF	for	a	3D	linear	
system	
	

The	 Kalman	 dilter	 is	 specidically	 designed	 for	 linear	 systems	 and	 works	

effectively	when	the	system's	dynamics	and	the	measurement	process	can	be	

described	using	 linear	models.	A	 linear	system	is	one	where	the	relationship	

between	variables	is	proportional,	meaning	that	the	system's	behaviour	can	be	

described	using	linear	equations.	Here	the	variables	are	not	interdependent	on	

other	variables	nor	are	function	of	any	other	variable.	For	linear	systems,	the	

Kalman	dilter	operates	efdiciently	by	utilizing	 the	 linear	relationship	between	

the	system's	current	state,	its	previous	state,	and	the	measurements.	Here’s	how	

it	functions	in	a	linear	system:	

• System	model:	

We	have	taken	a	linear	system	with	all	its	parameters	as	follows:	

𝐹 = T
0.9 0 0
0 0.8 0
0 0 0.7

U	

𝐻 = [1 0.1 0.2]	

𝑄 = T
0.1 0 0
0 0.1 0
0 0 0.1

U	

𝑅 = [1]	

𝑃& = T
1 0 0
0 1 0
0 0 1

U	

44

𝑥& = T
1
1
1
U	

• Filter	parameters:	

𝐹+ = T
0.9 0 0
0 0.8 0
0 0 0.7

U	

𝐻+ = [1 0.1 0.2]	

𝑄+ = T
0.1 0 0
0 0.1 0
0 0 0.1

U	

𝑅+ = [1]	

The	Kalman	dilter	assumes	that	the	current	state	of	the	system	depends	linearly	

on	 the	 previous	 state	 and	 possibly	 some	 control	 inputs.	We	 have	 taken	 the	

above	and	has	developed	a	MATLAB	code.	This	code	has	been	so	developed	that	

it	can	be	used	for	one-dimensional,	two-dimensional,	three-dimensional	and	N-

dimensional	systems.	Just	by	changing	the	order	number	and	according	to	the	

order	number	the	required	input	matrices	has	to	be	changed	accordingly	then	

we	are	good	 to	go.	 	 	Here	are	 some	responses	when	we	had	got,	 the	 system	

parameters	and	dilter	parameters	are	known,	moreover	we	are	making	the	dilter	

parameters	same	as	that	of	the	dilter	parameters	so	that	we	can	see	whether	the	

Kalman	dilter	is	actually	working	by	tracing	the	original	response	of	the	system.		

	

	

45

Here	are	some	of	the	results	for	the	above	system:	

1. Here	is	a	result	of	a	known	3rd	order	system	with	a	time	up	to	60	
seconds	and	5000	Monte	Carlo	runs.	
	

	
Fig.2	
	

	
Fig.3	
	

46

	
Fig.4	
	

2. Here	is	the	result	of	the	same	known	3rd	order	system	with	a	time	up	to	
60	seconds	and	15000	Monte	Carlo	runs.	

	
Fig.5	

47

	
Fig.6	
	

	
Fig.7	

	
	

48

From	 the	 above	 results,	 it	 is	 clear	 that	 the	 Kalman	 filter	 performs	

effectively	with	a	known	linear	system.	Moreover,	we	can	adjust	or	fine-

tune	the	filter	parameters	based	on	our	requirements	and	observe	how	

these	 changes	 influence	 its	 behaviour.	 It	 is	 also	 noteworthy	 that	

increasing	 the	 number	 of	 Monte	 Carlo	 runs	 from	 5,000	 to	 15,000	

smoothens	 the	 ripples,	 and	 the	 predicted	 state	 closely	 aligns	with	 the	

actual	state.	

In	 a	 relatively	 short	 time,	 the	 Kalman	 filter	 successfully	 traces	 the	

system's	actual	state,	even	with	the	presence	of	both	measurement	and	

process	 noise.	 In	 the	 next	 chapter,	 we	 will	 extend	 this	 analysis	 to	

nonlinear	 systems	 using	 the	 Extended	 Kalman	 Filter	 (EKF)	 and	 the	

recently	 proposed	 Adaptive	 Kalman	 Filter	 (AKF)	 to	 evaluate	 their	

performance	and	potential	improvements.	

	

	

	

	

	

	

	

	

	

	

	

	

	

49

Chapter	4	-	Brief	overview	of	Extended	
Kalman	filter	(EKF)	
	

4.0	Introduction	
	

The	Extended	Kalman	Filter	(EKF)	is	an	advanced	version	of	the	Kalman	Filter,	

designed	 to	 handle	 nonlinear	 systems.	 While	 the	 standard	 Kalman	 Filter	 is	

optimal	for	systems	with	linear	dynamics,	the	EKF	extends	its	functionality	to	

nonlinear	 processes,	 making	 it	 particularly	 useful	 in	 many	 real-world	

applications,	 such	 as	 robotics,	 navigation,	 and	 battery	 state-of-charge	 (SOC)	

estimation.	 In	nonlinear	 systems,	both	 the	 state	dynamics	and	measurement	

processes	 may	 involve	 nonlinear	 relationships.	 The	 Extended	 Kalman	 Filter	

(EKF)	tackles	this	by	approximating	nonlinear	functions	through	linearization.	

At	each	step,	it	employs	a	dirst-order	Taylor	series	expansion	around	the	current	

estimate	to	provide	an	approximation	of	the	nonlinear	functions.	This	allows	

the	EKF	to	perform	the	standard	Kalman	Filter's	prediction	and	update	steps	

but	applied	to	a	locally	linearized	version	of	the	system.	The	Extended	Kalman	

Filter	 (EKF)	 is	 a	 widely	 used	 technique	 for	 state	 estimation	 in	 nonlinear	

systems,	and	in	the	paper	[Proctor2020],	it	is	applied	to	estimate	the	State-of-

Charge	(SOC)	of	rechargeable	batteries	using	the	Nonlinear	Double-Capacitor	

(NDC)	model.	The	NDC	model	 is	a	novel	equivalent	circuit	model	(ECM)	that	

simulates	 charge	 diffusion	 and	 nonlinear	 voltage	 behaviour	 in	 batteries,	

offering	better	accuracy	in	predicting	SOC.	The	Extended	Kalman	Filter	(EKF)	is	

mostly	used	because	of	its	computational	efdiciency	and	ability	to	track	the	state	

of	 nonlinear	 systems	 in	 real	 time.	 However,	 it	 relies	 on	 the	 accuracy	 of	 the	

50

linearization	process,	which	may	not	be	sufdicient	for	highly	nonlinear	systems,	

but	it	works	effectively	when	the	nonlinearity	is	mild,	as	in	many	engineering	

applications.	

The	EKF	can	be	represented	as	follows	–		

𝑥!"# = 𝑓(𝑥!, 𝑢!) + 𝑤! ………(12)	

𝑦! = ℎ(𝑥!, 𝑢!) + 𝑣! ………(13)	

Where:	

• 𝑥!	is	the	state	vector	at	time	𝑘.	

• 𝑥!"#	is	the	predicted	state.	

• 𝑓(𝑥!, 𝑢!)	is	the	nonlinear	function	of	state	&	input	at	time	𝑘.	

• 𝑢!	is	the	input.	

• 𝑦!	is	the	measured	output.	

• 𝑤!	 is	 the	 process	 noise	 which	 is	 assumed	 to	 be	 Gaussian	 with	

covariance	𝑄.	

• 𝑣!	 is	 the	 measurement	 noise,	 assumed	 to	 be	 Gaussian	 with	

covariance	𝑅.	

• ℎ(𝑥!, 𝑢!)	is	the	nonlinear	function	of	state	&	input	at	time	𝑘.	

• For	the	state	transition	function	𝑓(𝑥),	the	Jacobian	is:	

𝐹! =
∂𝑓
∂𝑥

∣ ,-!"#∣!"# 	

• For	the	measurement	function	ℎ(𝑥),	the	Jacobian	is:	

𝐻! =
∂ℎ
∂𝑥

∣ ,-!∣!"# 	

51

4.1	Application	of	EKF	for	SOC	estimation	
	

Here	 we	 have	 taken	 the	 Nonlinear	 Double-Capacitor	 (NDC)	 model	 that	

simulates	 charge	 diffusion	 and	 nonlinear	 voltage	 behaviour	 in	 batteries,	

offering	better	 accuracy	 in	 predicting	 SOC.	Using	discrete	 time	domain	 state	

space	form	the	system	dynamics	are	represented.	However,	the	model	we	are	

working	with	has	linear	process	equation	and	nonlinearity	only	in	the	output	

equation	[Proctor2020].	

𝑥!"# = 𝐹𝑥! + 𝐺𝑢! + 𝑤! ………(14)	

𝑦! = ℎ(𝑥!, 𝑢!) + 𝑣! ………(15)	

	 given	that	–		

	 𝐹 = 𝑒.% ………(16)	

	 𝐺 = (∫ 𝑒.%	𝑑𝜏) ∗ 𝐵 ……… (17)%
& 	

	 Where:	

• 𝑥!	is	the	state	vector	at	time	𝑘.	

• 𝑢!	is	the	input	current.	

• 𝑦!	is	the	measured	voltage.	

• 𝑤!	 is	 the	 process	 noise	 which	 is	 assumed	 to	 be	 Gaussian	 with	

covariance	𝑄.	

• 𝑣!	 is	 the	 measurement	 noise,	 assumed	 to	 be	 Gaussian	 with	

covariance	𝑅.	

• ℎ(𝑥!, 𝑢!)	is	the	nonlinear	function	of	state	&	input	at	time	𝑘.	

52

4.1.1	Problem	statement:	Nonlinear	double	
capacitor	model	
The	non-linear	double	capacitor	model	we	have	considered	is	basically	used	to	

track	three	state	variables	𝑉/(𝑡)	,	𝑉0(𝑡)	and	𝑉#(𝑡)	at	every	instant	of	time	from	

where	we	can	directly	infer	the	SOC	[Proctor2020].	

The	NDC	model	and	its	state	space	representation	is	given	by–		

	

Fig.	8	Non-linear	double	capacitor	model	[Proctor2020]	

v Input	equation:	

⎣
⎢
⎢
⎢
⎡𝑉
˙
/(𝑡)

𝑉
˙
0(𝑡)

𝑉
˙
#(𝑡)⎦

⎥
⎥
⎥
⎤
= 𝐴 o

𝑉/(𝑡)
𝑉0(𝑡)
𝑉#(𝑡)

p + 𝐵𝐼(𝑡)……… (18)	

v Output	equation:	

𝑉(𝑡) = ℎq𝑉0(𝑡)r − 𝑉#(𝑡) + 𝑅&𝐼(𝑡)……… (19)	

v State	variables:	

• 𝑉/(𝑡):	 Voltage	 across	 the	 bulk	 region	 of	 the	 electrode	 in	 the	

nonlinear	double-capacitor	(NDC)	model.	

53

 (): Voltage across the surface region of the electrode in the NDC

model.

 (): Voltage across the resistor-capacitor (RC) circuit in the NDC

model.

 Input variable:

 (): Input current at time , representing the current flowing

through the battery.

 System matrices:

 : The system matrix, which defines the relationships between

the state variables (), (), and () in terms of their rates of

change.

 : The input matrix which defines how the input current ()

influences the state variables.

 Nonlinear function:

 (()): A nonlinear function representing the open-circuit

voltage (OCV) as a function of the surface voltage (). It accounts

for the nonlinear relationship between the SOC and the terminal

voltage of the battery.

 Output variable:

 (): The measured terminal voltage of the battery, which is a

combination of the nonlinear OCV function (()), the internal

voltage (), and the product of the internal resistance and

the input current ().

54

 Resistance:

 : The internal resistance of the battery, which affects the

voltage drop due to the input current ().

These equations together form the core of the battery's dynamic model in the

context of state-of-charge (SOC) estimation using the Extended Kalman filter

(EKF). The matrices and used in equation (18) in the state-space model of

the Nonlinear Double-Capacitor (NDC) model are as follows [Proctor2020]:

Matrix :

[

 ()

 ()

 ()

 ()

]

 ()

 : Capacitance representing the bulk portion of the battery electrode.

 : Capacitance representing the surface region of the electrode.

 : Resistance in the bulk region of the battery electrode.

 : Resistance in the surface region of the battery electrode.

 : Internal resistance in the RC branch.

 : Capacitance in the RC branch.

55

Matrix	𝐵:	

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑅0
𝐶/(𝑅/ + 𝑅0)

𝑅/
𝐶0(𝑅/ + 𝑅0)

−
1
𝐶# ⎦

⎥
⎥
⎥
⎥
⎥
⎤

……… (21)	

• The	elements	in	matrix	𝐵	show	how	the	input	current	𝐼(𝑡)	influences	the	

voltages	𝑉/(𝑡),	𝑉0(𝑡),	and	𝑉#(𝑡).	

v Matrix	𝐴	governs	the	internal	dynamics	of	the	system,	representing	how	

the	voltages	across	the	different	capacitors	change	over	time.	

v Matrix	𝐵	represents	how	the	input	current	𝐼(𝑡)	affects	the	state	variables	

(voltages)	in	the	system.	

These	matrices	are	crucial	components	in	the	state-space	representation	of	the	

NDC	model,	used	to	estimate	the	(SOC)	via	the	extended	Kalman	filter	(EKF).	

The	above	system	we	are	working	with	 is	non-linear	 in	nature	which	can	be	

determined	from	the	measurement	output	equation	(19).	Here	we	are	going	to	

discuss	about	how	to	calculate	the	SOC	and	the	non-linearity	and	how	we	can	

linearize	it.	In	the	non-linear	measurement	equation,	the	ℎ(𝑉0)	is	the	non-linear	

output	 function	determining	 the	nonlinear	behaviour	of	 the	voltage	which	 is	

parameterized	through	a	second-order	polynomial	[Proctor2020].	

𝑆𝑂𝐶 =
𝐶/𝑉/ + 𝐶0𝑉0
𝐶/ + 𝐶0

× 100%………(22)	

ℎ(𝑉0) = 𝛼& + 𝛼#𝑉0 + 𝛼(𝑉0(………(23)	

Here,	the	value	of		𝑉0	has	been	set	in	between	0 < 𝑉0 ≤ 1	.	

56

4.1.2	EKF	formulation	
The	model's	low	dimensionality	and	nonlinearity	makes	the	Extended	Kalman	

Filter	 (EKF)	 a	 suitable	 choice.	 Since	 the	 system	 only	 has	 three	 dimensions,	

applying	 the	 EKF	 is	 relatively	 simple.	 The	 main	 challenge	 comes	 from	 the	

nonlinear	 measurement	 equation,	 and	 the	 EKF's	 linearization	 effectively	

addresses	 this	 issue,	 making	 it	 an	 efdicient	 solution Since,	 the	 NDC	 model	

consists	of	only	three	states,	enabling	efdicient	computation	when	applying	the	

EKF.	Moreover,	the	model’s	nonlinearity	is	limited	to	the	measurement	process,	

which	simplidies	the	linearization	and	makes	implementing	the	EKF	easier.	This	

approach	 is	 then	 thoroughly	 tested	 through	 simulations	 and	 experiments.		

Alongside	this	we	need	to	keep	in	mind	that	if	the	non-linearity	is	much	more	

than	 desired	 then	 EKF	 might	 fail	 to	 incorporate	 accurately	 results,	 in	 that	

scenario	 we	 have	 to	 further	 reach	 out	 for	 other	 versions	 of	 Kalman	 dilters	

available	which	will	be	able	to	give	us	better	results	in	this	respect.	

The	 EKF	 algorithm	 is	 exactly	 same	 as	 the	 KF	 algorithm	 with	 only	 the	

introduction	of	 the	non-linear	 function	which	we	will	 be	 looking	 into.	Apart	

from	that	the	rest	of	the	algorithm	is	same	as	that	of	the	KF.	It	majorly	includes	

three	steps	that	is	to	be	followed	–	

• Prediction:	

𝑥1!"#$ = 𝐹!𝑥1! + 𝐺𝑢! ………(24)	

								𝑃!"#$ = 𝐹!𝑃!𝐹!% + 𝑄! ………(25)	

• Measurement	update	&	Kalman	gain:	

𝑥1!"# = 𝑥1!"#$ + 𝐾!(𝑧! − 𝐻!𝑥1!"#$)……… (26)	

57

											Where	the	Kalman	Gain	𝐾!	is	computed	as:	

𝐾! = 𝑃!"#$ 𝐻!%(𝐻!𝑃!"#$ 𝐻!% + 𝑅!)$#………(27)	

											Here,	𝐻!	is	the	Jacobian	matrix	of	the	measurement	function	ℎ(𝑥!),		

											which	is	calculated	as:	

𝐻! =
∂ℎ
∂𝑥

∣ ,2,-!∣!"# ………(28)	

• Update	of	error	covariance:	

𝑃!"# = (𝐼 − 𝐾!𝐻!)𝑃!"#$ ………(29)	

Now	the	main	thing	to	do	is	linearize	the	above	nonlinear	polynomial.	This	can	

be	done	with	the	help	of	Jacobian.	

v The	Jacobian	matrix:	

In	control	systems,	 the	 Jacobian	refers	 to	a	matrix	of	partial	derivatives	 that	

represents	how	small	changes	in	input	variables	affect	the	output	of	a	system.	

It	 is	 particularly	 useful	 when	 dealing	 with	 nonlinear	 systems,	 where	 the	

relationship	between	inputs	and	outputs	isn’t	linear.	

For	a	nonlinear	system	described	by	a	vector	of	state	equations	𝐱	and	outputs	

𝐲,	 the	 Jacobian	 matrix	 provides	 a	 linear	 approximation	 of	 the	 system's	

dynamics	around	a	specific	operating	point.	It	helps	in	understanding	how	the	

system	behaves	locally	near	that	point.	

In	the	context	of	a	system	defined	by:	

• State	equations:	𝐱
˙
= 𝑓(𝐱, 𝐮)	

• Output	equations:	𝐲 = 𝑔(𝐱, 𝐮)	

58

Where:	

• 𝐱	is	the	state	vector	

• 𝐮	is	the	input	vector	

• 𝑓	and	𝑔	are	nonlinear	functions	

v Jacobian	of	the	state	equation:	

• 𝐴 = 3+
3𝐱
,	 which	 describes	 how	 the	 states	 change	 with	 small	

variations	in	the	state	vector.	

• 𝐵 = 3+
3𝐮
,	 which	 describes	 how	 the	 states	 change	 with	 small	

variations	in	the	input	vector.	

v Jacobian	of	the	output	equation:	

• 𝐶 = 36
3𝐱
,	 which	 describes	 how	 the	 outputs	 change	 with	 small	

variations	in	the	state	vector.	

• 𝐷 = 36
3𝐮
,	 which	 describes	 how	 the	 outputs	 change	 with	 small	

variations	in	the	input	vector.	

In	 control	 theory,	 the	 Jacobian	matrix	 is	 especially	 important	 in	 linearizing	

nonlinear	systems	around	a	certain	operating	point,	which	allows	 the	use	of	

linear	control	techniques	like	the	Kalman	filter.	The	Jacobian	matrix	𝐻!	is	the	

partial	derivative	of	the	measurement	function	ℎ(𝑥)	with	respect	to	the	state	

vector	𝑥.	It	linearizes	the	nonlinear	measurement	function	around	the	current	

state	 estimate.	 In	 this	 case,	 the	measurement	 function	ℎ(𝑥)	 is	 related	 to	 the	

battery	voltage,	which	depends	on	the	surface	voltage	𝑉0,	and	the	internal	state	

variables	𝑉/, 𝑉0, 𝑉#	[Proctor2020].	

59

The	Jacobian	matrix	𝐻!	is	given	by	[Proctor2020]:	

𝐻! =
∂ℎ
∂𝑥

∣ ,2,-!∣!"# = �
∂ℎ(𝑉0)
∂𝑉/

∂ℎ(𝑉0)
∂𝑉0

∂ℎ(𝑉0)
∂𝑉#

�
%

………(30)	

For	the	NDC	model,	the	specific	form	of	𝐻!	is	[Proctor2020]:	

⎣
⎢
⎢
⎢
⎢
⎡ $−𝛾2𝛾3𝑒

−𝛾3𝑆𝑂𝐶+ 𝛾4𝛾5𝑒
−𝛾5(1−𝑆𝑂𝐶)%

𝐼(𝑘)𝐶𝑏
𝑄𝑡

∂ℎ(𝑉𝑠)
∂𝑉𝑠

+ $−𝛾2𝛾3𝑒
−𝛾3𝑆𝑂𝐶+ 𝛾4𝛾5𝑒

−𝛾5(1−𝑆𝑂𝐶)%
𝐼(𝑘)𝐶𝑠
𝑄𝑡

−1 ⎦
⎥
⎥
⎥
⎥
⎤

………(31)

	

Where:	

• 𝑆𝑂𝐶	is	the	state	of	charge,	which	is	dependent	on	𝑉/	and	𝑉0.	

• ℎ(𝑉0)	is	a	nonlinear	function	of	𝑉0,	the	surface	voltage.	

• 3D(F')
3F'

= 𝛼# + 2𝛼(𝑉0	 is	 the	 derivative	 of	 the	 nonlinear	 function	

representing	the	open-circuit	voltage	(OCV).	

• 𝛾(, 𝛾), 𝛾H, 𝛾I	 are	 the	 parameters	 of	 the	 internal	 resistance	 model	 that	

depends	on	the	SOC.	

• 𝐼(𝑘)	is	the	input	current	at	time	𝑘.	

• 𝐶/, 𝐶0	are	the	capacitances	of	the	capacitors.	

• 𝑄J	is	the	total	battery	capacity.	

The	 Jacobian	 matrix	 𝐻!	 linearizes	 the	 nonlinear	 measurement	 function,	

allowing	 the	 EKF	 to	 handle	 the	 nonlinearity	 in	 the	 system	 efdiciently.	 This	

approach	ensures	accurate	estimation	of	the	battery’s	SOC	using	the	NDC	model	

and	the	extended	Kalman	dilter.	

60

Chapter	5	-	Recently	proposed	Adaptive	
Kalman	Filter	(AKF)	
	

5.0	Introduction	
	

To	deal	with	mild	nonlinearity	we	have	seen	that	EKF	performs	quiet	well	but	

in	the	nonlinear	model	we	are	working	with	EKF	is	failing	to	converge	or	reduce	

the	root	mean	square	error.	This	is	very	natural	as	if	the	nonlinearity	is	of	strict	

nature	EKF	do	fail	at	times	for	such	scenarios	some	other	variations	of	Kalman	

dilters	 had	 been	 developed	 such	 as	 Sigma	 Point	 Kalman	 Filter,	 Unscented	

Kalman	 Filter,	 Square-root	 unscented	 Kalman	 Filter,	 Adaptive	 Square	 root	

unscented	Kalman	Filter	and	etc.	Here	we	are	going	 to	 implement	a	recently	

proposed	Adaptive	Kalman	Filter	[Takayama2024].	

The	 paper	 [Takayama2024]	 introduces	 a	 new	 method	 to	 improve	 the	

performance	of	the	Kalman	dilter,	which	is	commonly	used	for	estimating	the	

state	of	a	system,	such	as	the	position	or	speed	of	a	moving	object.	The	Kalman	

dilter	works	 by	 combining	measurements	 from	 sensors	with	 a	mathematical	

model	 of	 the	 system.	 However,	 when	 the	 model	 or	 measurements	 are	 not	

accurate,	the	dilter	can	make	poor	estimates	or	even	fail,	a	problem	known	as	

"dilter	divergence."	

The	proposed	solution	focuses	on	adjusting	the	"process	noise,"	which	accounts	

for	uncertainties	in	the	system	model.	Traditional	approaches	to	this	problem	

add	extra	noise	to	the	system	manually,	which	can	sometimes	make	the	dilter	

overly	 cautious,	 leading	 to	 large	 errors	 in	 the	 estimates.	 This	 is	 especially	

problematic	when	the	number	of	measurements	is	smaller	than	the	number	of	

61

variables	 being	 estimated,	 which	 is	 common	 in	 complex	 systems	 like	

autonomous	vehicles	or	robots	navigating	through	environments	with	changing	

conditions.	

What	 makes	 this	 new	 method	 different	 is	 that	 it	 adapts	 the	 process	 noise	

dynamically,	 based	on	 the	 structure	of	 the	measurement	matrix—the	matrix	

that	 links	 the	 system's	 state	 to	 the	measurements.	The	measurement	matrix	

changes	depending	on	the	quality	and	quantity	of	the	available	measurements,	

such	as	when	a	robot	moves	into	an	area	with	fewer	sensors	or	a	vehicle	loses	

satellite	signals.	

The	 paper's	 approach	 involves	 using	 this	measurement	matrix	 to	 adjust	 the	

process	noise	at	each	 time	step,	ensuring	 that	 the	 dilter	 remains	 dlexible	and	

avoids	becoming	overly	cautious	or	aggressive	in	its	estimates.	Unlike	previous	

methods,	this	technique	does	not	rely	on	the	measurements	themselves	to	make	

adjustments	 but	 uses	 the	 structure	 of	 the	 matrix	 to	 ensure	 that	 errors	 are	

minimized.	 This	 leads	 to	 more	 accurate	 state	 estimates	 without	 the	

unnecessary	 indlation	 of	 estimation	 errors	 that	 can	 occur	 in	 traditional	

methods.	

We	are	mainly	 interested	 in	 the	algorithm	of	 the	recently	proposed	Adaptive	

Kalman	Filter	which	we	are	going	to	implement	in	the	nonlinear	system	that	we	

are	 working	 on	 and	 our	 main	 objective	 is	 to	 check	 whether	 the	 recently	

proposed	Adaptive	Kalman	Filter	gives	better	results	as	compared	to	that	of	the	

Extended	Kalman	Filter	which	had	been	suggested	in	the	paper	[Proctor2020].	

	This	 is	 a	 smarter	 way	 to	 handle	 uncertainties	 in	 system	 modeling	 and	

measurement	variations,	leading	to	more	reliable	and	accurate	state	estimation	

in	complex,	real-world	systems.	

	

62

5.1	Working	principle	
	

We	had	already	discussed	earlier	in	Chapter	3	the	working	of	the	Kalman	dilter,	

the	recently	proposed	adaptive	Kalman	dilter	is	nothing	different	from	it.	Just	

the	 only	major	 difference	 is	 in	 the	 algorithm	 that	we	 had	 taken	 from	 paper	

[Takayama2024],	which	we	are	going	to	discuss	here.	

The	 main	 objective	 here	 is	 to	 get	 the	 results	 improved	 with	 respect	 to	 the	

Extended	 Kalman	 dilter	 that	 we	 had	 discussed	 in	 Chapter	 4.	 The	 adaptive	

Kalman	 dilter	 proposed	 in	 the	 paper	 [Takayama2024]	 improves	 the	

performance	of	 the	 traditional	Extended	Kalman	Filter	(EKF)	by	dynamically	

adjusting	the	process	noise	covariance	based	on	the	measurement	matrix.	The	

adaptive	Kalman	dilter	introduced	in	the	paper	[Takayama2024]	tackles	these	

issues	by	adjusting	the	process	noise	covariance	dynamically	at	each	time	step.	

The	novelty	here	is	that	this	adjustment	depends	on	the	measurement	matrix	

𝐻!,	which	describes	how	the	system's	state	relates	to	the	measurements,	rather	

than	the	measurements	themselves.	The	main	idea	is	to	adapt	the	process	noise	

in	such	a	way	that	it	redlects	the	current	measurement	condiguration,	improving	

dilter	performance	in	changing	environments.	

Now	let	us	understand	how	the	recently	proposed	Adaptive	Kalman	dilter	works	

[Takayama2024].	

• Measurement	 matrix	 𝐻!:	 The	 filter	 continuously	 monitors	 the	

measurement	 matrix,	 which	 changes	 depending	 on	 the	 quality	 and	

quantity	of	the	measurements	at	each	time	step.		

• Fictitious	Noise	𝛿𝑄!:	At	each	time	step,	the	filter	adds	an	optimal	amount	

of	 fictitious	 noise	 to	 the	 process	 noise	 covariance.	 This	 fictitious	 noise	

63

helps	account	for	uncertainties	in	the	model	that	are	not	captured	by	the	

fixed	process	noise.	

• Dynamic	Adjustment:	The	fictitious	noise	𝛿𝑄!	is	computed	based	on	the	

measurement	 matrix	𝐻!.	 Specifically,	 the	 fictitious	 noise	 is	 chosen	 to	

minimize	 the	 expected	 value	 of	 the	 measurement	 residuals	 (the	

difference	between	actual	and	predicted	measurements).	By	doing	this,	

the	 filter	 ensures	 that	 it	 does	 not	 unnecessarily	 inflate	 the	 estimation	

error	covariance,	which	would	make	the	estimates	less	accurate.	

• Kalman	Gain	Update:	The	Kalman	gain,	which	controls	how	much	the	

state	 estimate	 should	be	 adjusted	based	on	 the	new	measurements,	 is	

also	 updated	 to	 incorporate	 the	 fictitious	 noise.	 This	 ensures	 that	 the	

filter	 remains	 responsive	 to	 changes	 while	 avoiding	 over-correction	

when	measurements	are	sparse	or	unreliable.	

• State	 Update:	 With	 the	 updated	 Kalman	 gain	 and	 the	 innovation	

(difference	between	the	actual	and	predicted	measurements),	the	filter	

adjusts	the	state	estimate.	This	step	is	similar	to	the	traditional	Kalman	

filter,	but	now	the	process	noise	has	been	dynamically	adapted	to	reflect	

the	current	measurement	conditions.	

5.2	AKF	with	nonlinear	systems	
	

Here,	we	are	 taking	 the	 same	Nonlinear	Double-Capacitor	 (NDC)	model	 that	

simulates	nonlinear	voltage	behaviour	in	batteries,	offering	better	accuracy	in	

predicting	SOC	which	we	had	already	discussed	in	Chapter	4.	Now	we	are	going	

to	discuss	how	the	recently	proposed	adaptive	Kalman	dilter	algorithm	has	been	

implemented	using	MATLAB.		

64

Note:	Since	it	is	a	third	order	model	so	the	matrices	will	be	dedined	accordingly.	

Update	of	Covariance	[Takayama2024]:	

𝑃!$(𝛿𝑄!∗) = 𝐹!$#𝑃!$#" 𝐹!$#% + 𝑄! + 𝛿𝑄!∗ ………(32)	

• 𝑃!$(𝛿𝑄!∗)	 is	 the	 prior	 estimation	 error	 covariance	 matrix	 after	 adding	

optimal	fictitious	noise.	

• 𝐹!$#is	the	Jacobian	of	the	system	model.	

• 𝑃!$#" 	is	the	posterior	estimation	error	covariance	matrix.	

• 𝑄!	is	the	process	noise	covariance	matrix.	

• 𝛿𝑄!∗ 	is	the	optimal	fictitious	noise	covariance	matrix.	

Kalman	Gain	[Takayama2024]:	

𝐾! = 𝑃!"#$ 𝐻!%(𝐻!𝑃!"#$ 𝐻!% + 𝑅!)$#……… (33)	

Where:	

• 𝐻!	is	the	observation	matrix.	

• 𝐾!	is	the	Kalman	gain	matrix.	

• 𝑃!"#$ 	is	the	priori	predicted	error	covariance	matrix.	

• 𝑅!	is	the	covariance	matrix	of	the	measurement	noise	𝒗!.	

Prediction	Step	[Takayama2024]:	

𝒙L!"#$ = 𝑭!𝒙L! ………(34)	

Where:	

• 𝒙L!"#$ 	is	the	predicted	state	vector.	

• 𝑭!	is	the	state	transition	matrix,	describing	how	the	state	evolves.	

65

• 𝒙!	is	the	state	vector.	

Also,	

𝑂! = 𝐻!%𝑅!$#𝐻! ………(35)	

Where:	

• 𝐻!	is	the	measurement	matrix.	

• 𝑅!	is	the	measurement	noise	covariance	matrix.	

Optimal	Scaling	Factor	[Takayama2024]:	

𝛼!∗ =
tr(𝑂!()

tr(𝑂!I𝑃!$ + 𝑂!H)
……… (36)	

Where:	

• tr(𝐴)	is	the	trace	of	matrix	𝐴,	which	is	the	sum	of	its	diagonal	elements.	

• 𝑂!(, 𝑂!H, 𝑂!I	are	the	powers	of	the	measurement	matrix	𝑂!.	

• 𝑃!$	is	the	prior	estimation	error	covariance	matrix.	

Optimal	adjustment	of	the	error	covariance	matrix	[Takayama2024]:	

∆𝑃!∗ = 𝛼!∗𝑂! ………(37)	

Where:	

• 𝛼!∗ 	is	the	optimal	scaling	factor	for	the	measurement	matrix	𝑂!.	

• 𝑂! = 𝐻!%𝑅!$#𝐻!	 is	 the	 product	 of	 the	 transpose	 of	 the	 measurement	

matrix,	 the	 inverse	 of	 the	 measurement	 noise	 covariance,	 and	 the	

measurement	matrix.	

Optimal	adjustment	of	the	Kalman	Gain	[Takayama2024]:	

∆𝐾!∗ = ∆𝑃!∗𝐻!%𝑅!$#………(38)	

66

Where:	

• 𝐻!	is	the	measurement	matrix.	

• 𝑅!	is	the	measurement	noise	covariance.	

• ∆𝑃!∗	is	the	updated	error	covariance	matrix.	

Computation	of	Fictious	Noise	[Takayama2024]:	

𝛿𝑄!∗ = [𝐼 − (𝐾!(𝑂) + ∆𝐾!∗)𝐻!]$# × [∆𝑃!∗ − ∆𝐾!∗(𝐻!𝑃!$(𝑂)𝐻!% + 𝑅!)∆𝐾!%]

× [𝐼 − (𝐾!(𝑂) + ∆𝐾!∗)𝐻!]$% ………(39)	

Where:	

• 𝐼	is	the	identity	matrix.	

• 𝑅!	is	the	measurement	noise	covariance	matrix.	

• ∆𝑃!∗	is	the	updated	error	covariance	matrix.	

• ∆𝐾!∗	is	the	adjusted	Kalman	gain.	

• 𝐻!	is	the	measurement	matrix.	

• 𝐾!(𝑂)	is	the	initial	Kalman	gain.	

• 𝑃!$(𝑂)	is	the	initial	covariance	matrix.	

Updated	Kalman	gain	[Takayama2024]:	

𝐾!(𝛿𝑄!∗) = 𝑃!$(𝛿𝑄!∗)𝐻!%(𝐻!𝑃!$(𝛿𝑄!∗)𝐻!% + 𝑅!)$# = 𝐾! + ∆𝐾!∗………(40)	

• 𝐾!(𝛿𝑄!∗)	is	the	Kalman	gain	matrix	with	the	optimal	fictitious	noise.	

• 𝑃!$(𝛿𝑄!∗)	is	the	prior	estimation	error	covariance	matrix.	

• 𝐻!	is	the	measurement	matrix.	

• 𝑅!	is	the	measurement	noise	covariance	matrix.	

• ∆𝐾!∗	is	the	adjusted	Kalman	gain	matrix.	

67

• 𝐾!	is	the	Kalman	gain	matrix.	

Updated	posterior	state	estimate	[Takayama2024]:	

𝑥1!"(𝛿𝑄!∗) = 𝑥1!$ + 𝐾!(𝛿𝑄!∗)[𝑦! − ℎ(𝑥1!$)]……… (41)	

• 𝑥1!$	is	the	prior	state	estimate	vector.	

• 𝐾!(𝛿𝑄!∗)	is	the	Kalman	gain	matrix	with	optimal	fictitious	noise.	

• 𝑦!	is	the	measurement	matrix.	

• ℎ(𝑥1!$)	is	the	predicted	(observation)	measurement	matrix.	

Updated	error	covariance	matrix	[Takayama2024]:	

𝑃!"(𝛿𝑄!∗) = [𝐼 − 𝐾!(𝛿𝑄!∗)𝐻!]𝑃!$(𝛿𝑄!∗)……… (42)	

• 𝑃!"(𝛿𝑄!∗)	is	the	posterior	estimation	error	covariance	matrix.	

• 𝐼	is	the	identity	matrix.	

• 𝐾!(𝛿𝑄!∗)	is	the	Kalman	gain	matrix.	

• 𝐻!	is	the	measurement	matrix.	

• 𝑃!$(𝛿𝑄!∗)	is	the	prior	estimation	error	covariance	matrix.	

Updated	error	matrix:	

𝑒! = 𝑥! − 𝑥1! ………(43)	

Where:	

• 𝑒!	is	the	error	matrix.	

• 𝑥!	is	the	state	vector.	

• 𝑥1!	is	the	predicted	state	vector.	

	

	

68

The	flowchart	is	as	follows:	

	

	

	

	

	

	

	

	

Fig.()	The	flowchart	of	AKF.	

	

	
	

Fig.	9	The	flowchart	of	AKF.	

Initialize	𝑥-!,	𝑃!, 𝑥!, 𝛿𝑄!∗

𝑃#$(𝛿𝑄#∗) = [𝐼 − 𝐾#(𝛿𝑄#∗)𝐻#]𝑃#%(𝛿𝑄#∗)

𝑥-#$(𝛿𝑄#∗) = 𝑥-#% +𝐾#(𝛿𝑄#∗)[𝑦# − ℎ(𝑥-#%)]

𝐾#(𝛿𝑄#∗) = 𝐾# + ∆𝐾#∗

𝛿𝑄#∗ = [𝐼 − (𝐾#(𝑂) + ∆𝐾#∗)𝐻#]%&
× [∆𝑃#∗ − ∆𝐾#∗(𝐻#𝑃#%(𝑂)𝐻#' + 𝑅#)∆𝐾#']
× [𝐼 − (𝐾#(𝑂) + ∆𝐾#∗)𝐻#]%'

∆𝐾#∗ = ∆𝑃#∗𝐻#'𝑅#%&

𝑃#%(𝛿𝑄#∗) = 𝐹#%&𝑃#%&$ 𝐹#%&' + 𝑄# + 𝛿𝑄#∗

∆𝑃#∗ = 𝛼#∗𝑂#

𝐾# = 𝑃#$&% 𝐻#'(𝐻#𝑃#$&% 𝐻#' + 𝑅#)%&

𝑥-#$&% = 𝐹#𝑥-#

𝑂# = 𝐻#'𝑅#%&𝐻#

𝛼#∗ =
tr(𝑂#()

tr(𝑂#)𝑃#% + 𝑂#*)

𝑒# = 𝑥# − 𝑥-#

69

Chapter	6	-	Comparison	between	EKF	&	
AKF	
	

6.0	Introduction	
	

The	 Extended	 Kalman	 Filter	 (EKF)	 and	 Adaptive	 Kalman	 Filter	 (AKF)	 are	

critical	tools	for	estimating	states	in	dynamic	systems,	especially	in	scenarios	

where	 traditional	 linear	 models	 fall	 short.	 The	 EKF	 extends	 the	 standard	

Kalman	 Filter	 to	 handle	 mild	 nonlinearity	 by	 approximating	 nonlinear	

functions	 around	 a	 specific	 point,	 making	 it	 useful	 in	 applications	 such	 as	

robotics,	 navigation,	 and	 battery	 management.	 For	 example,	 it	 has	 been	

successfully	 applied	 in	 estimating	 the	 State-of-Charge	 (SOC)	 of	 batteries.	

However,	the	EKF’s	reliance	on	linearization	makes	it	less	accurate	for	systems	

with	strong	nonlinearity,	where	 it	can	struggle	 to	provide	stable	and	precise	

estimates.	 The	 AKF	 builds	 upon	 the	 EKF	 by	 introducing	 adaptability,	 which	

allows	 it	 to	 dynamically	 adjust	 its	 noise	 model	 based	 on	 the	 quality	 and	

availability	 of	 measurements.	 Unlike	 the	 EKF,	 which	 operates	 with	 a	 fixed	

process	noise,	the	AKF	incorporates	a	mechanism	to	tune	this	noise	according	

to	 current	 measurement	 configurations,	 allowing	 it	 to	 respond	 flexibly	 to	

measurement	uncertainties.	This	 adaptive	nature	enables	 the	AKF	 to	handle	

more	 complex,	 nonlinear	 systems	 with	 greater	 reliability,	 minimizing	 the	

errors	that	typically	challenge	other	filters.	In	this	chapter	we	are	going	to	study	

a	 comparison	between	 the	EKF	&	AKF	which	we	had	 already	 studied	 in	 the	

previous	chapter	4	&	5	respectively.	

70

Both	EKF	&	AKF	has	been	implemented	on	a	specidic	system	which	has	been	

taken	from	[Proctor2020].		

The	system	parameters	are	as	follows:	
𝐶/ = 10037	𝐹	
𝐶0 = 973	𝐹	
𝑅/ = 0.019	Ω	
𝑅0 = 0	Ω	
𝑅# = 0.02	Ω	
𝐶# = 3250	𝐹	
Now	from	the	above	values	we	have	calculated	the	following	system	matrices:	

𝐴 = T
−0.0052 0.0052 0
0.0541 −0.0541 0
0 0 −0.0154

U

𝐵 = T
0

0.0010
−0.0003

U

𝐺 = T
0.0000
0.0010
−0.0003

U

𝐹 = T
0.9949 0.0051 0
0.0525 0.9475 0
0 0 0.9847

U

𝑄 = T
0.1000 0 0
0 0.1000 0
0 0 0.1000

U

𝑅 = [0.1000]

Now	the	filter	parameters	are	as	follows:	

𝐹+ = T
0.9949 0.0051 0
0.0525 0.9475 0
0 0 0.9847

U

𝑄+ = T
0.1000 0 0
0 0.1000 0
0 0 0.1000

U

𝑅+ = [0.1000]	

71

6.1	Known	Noise	Covariance	
	

When	Noise	Covariance	is	known,	well	understood	and	correctly	specified,	the	

filter	 can	 accurately	 weigh	 the	 reliability	 of	 the	 data,	 resulting	 in	 better	

estimates.	The	Kalman	gain	the	factor	determining	how	much	the	filter	adjusts	

based	on	new	measurements	can	be	optimally	computed.	This	leads	to	smooth	

and	accurate	tracking	of	the	system’s	state.	

With	accurate	noise	covariance	values,	the	dilter	can	reliably	produce	estimates	

without	 overreacting	 to	 random	 dluctuations	 or	 noise.	 This	 stability	 is	

particularly	 benedicial	 for	 applications	where	 consistency	 is	more	 important	

than	rapid	adjustments.	

When	noise	characteristics	are	known,	the	dilter’s	performance	is	predictable,	

making	 it	 easier	 to	 evaluate	 its	 behaviour	 across	 different	 conditions.	 This	

predictability	simplidies	tuning	the	dilter	to	achieve	desired	results,	especially	in	

controlled	environments.	

	

	

	

	

	

	

	

72

Now	 we	 will	 study	 some	 cases	 where	 we	 will	 see	 how	 the	 known	 noise	

covariance	is	affecting	with	the	help	of	some	plots-	

For	300	Monte	Carlo	runs:	

v 𝑅 = [0.1]	&	𝑅+ = [0.1]		

STATE	1:	

	
Fig.10	

	
STATE	2:	

	
Fig.11	

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S1 EKF RMSE S1

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S2 EKF RMSE S2

73

	
	
STATE	3:	

	
Fig.12	

	

	

	

	

	

	

	

	

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S3 EKF RMSE S3

74

6.2	Effect	of	unknown	measurement	noise	
covariance	
	

When	 noise	 covariance	 is	 unknown	 or	 not	 well	 defined	 its	 uncertainty	

increases,	the	filter	may	either	overestimate	or	underestimate	the	noise	level.	

Overestimating	noise	can	make	the	filter	overly	conservative,	reacting	slowly	

to	changes	in	the	system.	Conversely,	underestimating	noise	can	make	the	filter	

overly	sensitive,	causing	it	to	react	to	random	noise	as	if	it	were	real	data.	Both	

scenarios	degrade	the	filter’s	accuracy	and	reliability.	

Benefits	of	adaptive	filtering	is	that	in	the	absence	of	known	noise	covariance,	

an	AKF’s	ability	to	adjust	noise	levels	dynamically	offers	a	clear	advantage	by	

observing	the	structure	of	incoming	data,	the	AKF	can	approximate	noise	levels	

in	 real	 time.	 This	 adaptability	makes	 the	 AKF	 better	 suited	 for	 applications	

where	noise	characteristics	are	unpredictable.	

	

	

	

	

	

	

	

75

Now	 we	 will	 study	 some	 cases	 where	 we	 will	 see	 how	 the	 unknown	

measurement	noise	covariance	is	affecting	with	the	help	of	some	plots-	

For	300	Monte	Carlo	runs:	

v 𝑅 = [0.1]	&	𝑅+ = [0.3]		

STATE	1:	

	
Fig.13	

STATE	2:	

	
Fig.14	

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S1 EKF RMSE S1

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S2 EKF RMSE S2

76

	

STATE	3:	

	
Fig.15	

	

v 𝑅 = [0.1]	&	𝑅+ = [0.4]		

STATE	1:	

	
Fig.16	

	

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S3 EKF RMSE S3

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S1 EKF RMSE S1

77

STATE	2:	

	
Fig.17	

	

STATE	3:	

	
Fig.18	

	

	

	

	

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S2 EKF RMSE S2

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S3 EKF RMSE S3

78

v 𝑅 = [0.1]	&	𝑅+ = [0.5]		

STATE	1:	

	
Fig.19	

	

	

STATE	2:	

	
Fig.20	

	

	

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S1 EKF RMSE S1

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S2 EKF RMSE S2

79

STATE	3:	

	
Fig.21	

	

	

v 𝑅 = [0.1]	&	𝑅+ = [1.0]		

STATE	1:	

	
Fig.22	

	

	

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S3 EKF RMSE S3

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S1 EKF RMSE S1

80

STATE	2:	

	
Fig.23	

	

	

STATE	3:	

	
Fig.24	

	

	

-50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S2 EKF RMSE S2

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

RM
SE

TIME (SECONDS)

EKF & AKF

AKF RMSE-S3 EKF RMSE S3

81

Chapter	7	–	Discussions	&	conclusions	
	

This	 thesis	 has	 presented	 a	 study	 of	 estimating	 the	 states	 for	 linear	 and	

nonlinear	systems	through	the	application	of	the	Kalman	Filter	(KF),	Extended	

Kalman	Filter	(EKF),	and	recently	proposed	Adaptive	Kalman	Filter	(AKF).	In	

particular,	we	focused	on	a	comparative	evaluation	between	the	EKF	and	the	

recently	 proposed	 AKF	 for	 a	 specidied	 nonlinear	 system.	 Through	 this	

examination,	 we	 aimed	 to	 understand	 how	 each	 dilter	 adapts	 to	 changing	

system	 dynamics,	 especially	 under	 varying	 levels	 of	 measurement	 noise	

covariance.	

The	 EKF,	 with	 its	 ability	 to	 linearize	 nonlinear	 systems	 around	 a	 current	

estimate,	has	proven	effective	in	handling	systems	with	mild	nonlinearity.	Our	

findings	confirm	that	when	the	measurement	noise	covariance	𝑅	is	known,	the	

EKF	 provides	 reliable	 estimates	 with	 minimal	 error.	 However,	 as	 system	

nonlinearity	intensifies	or	measurement	noise	becomes	inconsistent,	the	EKF	

struggles	to	maintain	accuracy,	as	its	performance	relies	on	fixed	assumptions	

about	𝑅	and	noise	structure.	

The	AKF,	on	the	other	hand,	incorporates	an	adaptive	approach	to	dynamically	

adjust	 its	 process	 noise	 covariance	 based	 on	 the	 observed	 structure	 of	

measurements.	This	adaptability	proved	advantageous,	especially	in	scenarios	

where	 the	 measurement	 noise	 covariance	 𝑅	 was	 unknown.	 Our	 results	

highlight	that,	in	the	absence	of	a	known	𝑅,	the	AKF	significantly	outperforms	

the	EKF,	showcasing	its	robustness	in	uncertain	and	changing	environments.		

	

82

This	thesis	concludes	that	the	choice	between	the	EKF	and	AKF	is	significantly	

influenced	by	the	knowledge	of	the	measurement	noise	covariance.	When	𝑅	is	

known	and	consistent,	both	filters	deliver	similar	levels	of	accuracy,	with	the	

EKF	 being	 a	 suitable,	 less	 complex	 option	 for	 mildly	 nonlinear	 systems.	

However,	when		𝑅	 is	unknown	or	fluctuates,	the	AKF’s	adaptive	noise	tuning	

provides	 a	distinct	 advantage,	 as	 it	 can	 self-adjust	 to	maintain	 accuracy	 and	

prevent	divergence.	

These	findings	underscore	the	importance	of	adaptive	filtering	in	environments	

where	noise	parameters	cannot	be	reliably	predefined,	as	is	often	the	case	in	

applications	 like	 autonomous	 navigation,	 robotic	 systems,	 or	 real-time	

monitoring	 of	 nonlinear	 processes.	 The	 AKF’s	 flexibility	 to	 unknown	 noise	

characteristics	and	fluctuating	measurement	quality	positions	it	as	a	valuable	

tool	 for	 state	 estimation	 in	 complex,	 real-world	 scenarios	where	 traditional	

filters	may	fall	short.	

In	 summary,	 while	 the	 EKF	 is	 advantageous	 for	 stable	 and	 predictable	

environments	 with	 mild	 nonlinearity,	 the	 AKF	 demonstrates	 superior	

performance	 under	 uncertain	 conditions,	 particularly	 when	 the	 noise	

covariance	 cannot	 be	 easily	 ascertained.	 This	 research	 adds	 to	 the	 body	 of	

knowledge	 on	 Kalman	 filtering	 for	 nonlinear	 systems	 and	 provides	 a	

foundation	for	further	developments	in	adaptive	filtering	techniques.	

	

	
	

83

Chapter	8	–	Future	scope	
	

Several	avenues	for	future	work	emerge	from	this	thesis.	First,	there	is	potential	

to	 optimize	 the	 computational	 efficiency	 of	 the	 AKF	 algorithm.	 The	 current	

implementation,	while	effective,	 could	be	 improved	 to	reduce	computational	

burden	 and	 decrease	 run	 time,	 especially	 for	 high-volume	 Monte	 Carlo	

simulations.	 Enhancing	 algorithmic	 efficiency	 will	 be	 crucial	 for	 real-time	

applications	 that	 require	 rapid	 processing	 and	 low-latency	 responses.	

Additionally,	exploring	further	optimizations	of	the	AKF	algorithm	itself	may	

allow	 it	 to	better	handle	 severe	nonlinearities,	 expanding	 its	 applicability	 to	

more	complex	nonlinear	systems	where	the	EKF	is	insufficient.		

There	is	also	scope	to	test	the	AKF	in	real-world	applications	beyond	simulated	

systems,	such	as	autonomous	vehicle	navigation,	UAV	control,	or	battery	state-

of-charge	estimation	in	fluctuating	operational	conditions.	These	applications	

would	not	only	validate	the	AKF’s	adaptability	under	real	conditions	but	also	

provide	 insights	 into	 further	 improvements	 for	 practical,	 industry-scale	

implementations.	

In	 conclusion,	 the	 AKF	 holds	 considerable	 promise	 for	 adaptive	 state	

estimation,	 and	 by	 addressing	 the	 optimization	 and	 real-world	 application	

challenges	 highlighted	 here,	 future	 research	 can	make	 significant	 strides	 in	

advancing	adaptive	filtering	technologies	for	nonlinear	systems.	

	
	

84

Chapter	9	–	References		
	

1.	[Brown2012]	R.	G.	Brown	and	P.	Y.	C.	Hwang,	Introduction	to	Random	Signals	

and	Applied	Kalman	Filtering:	with	MATLAB	Exercises,	4th	ed.	Hoboken,	NJ:	John	

Wiley	&	Sons,	2012.	

2.	 [Das2014]	M.	 Das,	 S.	 Sadhu	 and	 T.	 K.	 Ghoshal,	 "Spacecraft	 attitude	&	 rate	

estimation	by	an	adaptive	unscented	Kalman	 4ilter,"	 Proceedings	of	The	2014	

International	 Conference	 on	 Control,	 Instrumentation,	 Energy	 and	

Communication	 (CIEC),	 Calcutta,	 India,	 2014,	 pp.	 46-50,	 doi:	

10.1109/CIEC.2014.6959047.	

3.	 [Das2015]	M.	Das,	A.	Dey,	S.	 Sadhu	and	T.	K.	Ghoshal,	 "Adaptive	Unscented	

Kalman	Filter	 at	 the	presence	of	 non-additive	measurement	noise,"	 2015	12th	

International	Conference	on	Informatics	in	Control,	Automation	and	Robotics	

(ICINCO),	Colmar,	France,	2015,	pp.	614-620.		

4.	[Shrivastava2019]	P.	Shrivastava,	T.	K.	Soon,	M.	Y.	I.	B.	Idris,	and	S.	Mekhilef,	

"Overview	of	model-based	online	state-of-charge	estimation	using	Kalman	4ilter	

family	for	lithium-ion	batteries,"	*Renewable	and	Sustainable	Energy	Reviews*,	

vol.	113,	no.	109233,	pp.	1-14,	Jun.	2019,	doi:	10.1016/j.rser.2019.06.040.	

5.	[Proctor2020]	M.	Proctor,	N.	Tian	and	H.	Fang,	"State-of-Charge	Estimation	for	

Batteries	Based	on	the	Nonlinear	Double-Capacitor	Model	and	Extended	Kalman	

Filter,"	2020	IEEE	Green	Technologies	Conference	(Green	Tech),	Oklahoma	City,	

OK,	USA,	2020,	pp.	10-15,	doi:	10.1109/GreenTech46478.2020.9289704.		

	

	

	

	

85

6.	[Ilies2020]	A.	I.	Ilieş,	G.	Chindriş	and	D.	Pitică,	"A	Comparison	between	State	

of	Charge	Estimation	Methods:	Extended	Kalman	Filter	and	Unscented	Kalman	

Filter,"	2020	IEEE	26th	International	Symposium	for	Design	and	Technology	in	

Electronic	 Packaging	 (SIITME),	 Pitesti,	 Romania,	 2020,	 pp.	 376-381,	 doi:	

10.1109/SIITME50350.2020.9292232.		

7.	[Takayama2024]	Y.	Takayama,	T.	Urakubo	and	H.	Tamaki,	"Adaptive	Choice	of	

Process	Noise	Covariance	in	Kalman	Filter	Using	Measurement	Matrices,"	in	IEEE	

Transactions	on	Control	Systems	Technology,	vol.	32,	no.	3,	pp.	934-944,	May	

2024,	doi:	10.1109/TCST.2023.3339732.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

86

Appendices	
	

1.	MATLAB	CODE	FOR	EKF	

	

clc;	
clear	all;	
close	all;	
syms	s	t;	
		
%--%	
%Step	1	=	Matrix	calculations	
Cb=10037;	
Cs=973;	
Rb=0.019;	
Rs=0;	
R1=0.02;	
C1=3250;	
		
a11=-1/(Cb*(Rb+Rs));	
a12=1/(Cb*(Rb+Rs));	
a13=0;	
a21=1/(Cs*(Rb+Rs));	
a22=-1/(Cs*(Rb+Rs));	
a23=0;	
a31=0;	
a32=0;	
a33=-1/(R1*C1);	
		
A=[a11	a12	a13;	
			a21	a22	a23;	
			a31	a32	a33];	
		
b11=Rs/(Cs*(Rb+Rs));	
b21=Rb/(Cs*(Rb+Rs));	
b31=-1/C1;	
		
B=[b11;	
			b21;	
			b31];	
		
%-----------------------------%	

87

%	Taking	the	Inverse	Laplace	transform	and	making	the	F	matrix.	
		
si=s*eye(3);	
A_inverse=inv(si	-	A);	
A_det=det(A);	
F_tilda	=	ilaplace(A_inverse);	
		
%-----------------------------%	
%	Performing	integration	of	the	F	matrix	we	have	to	Zind	the	G	matrix.	
		
f11=(@(t)(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	576460752303423488000/632343616903526209657);	
f12=(@(t)55882864600102721657/632343616903526209657	-	
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
		
f21=(@(t)576460752303423488000/632343616903526209657	-	
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f22=(@(t)(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	55882864600102721657/632343616903526209657);	
f33=(@(t)exp(-t/65));	
		
i1=integral(f11,0,1);	
i2=integral(f12,0,1);	
i3=0;	
i4=integral(f21,0,1);	
i5=integral(f22,0,1);	
i6=0;	
i7=0;	
i8=0;	
i9=integral(f33,0,1);	
		
G_bar=[i1	i2	i3;i4	i5	i6;i7	i8	i9];	
G=	G_bar*B;	
	
	
t=1;	
f11=55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656)/632343616903526209657	
+	576460752303423488000/632343616903526209657;	

88

f12=(55882864600102721657/632343616903526209657	-	
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f13=(0);	
f21=(576460752303423488000/632343616903526209657	-	
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f22=((576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	55882864600102721657/632343616903526209657);	
f23=(0);	
f31=(0);	
f32=(0);	
f33=exp(-t/65);	
		
F_f=[f11	f12	f13;f21	f22	f23;f31	f32	f33];	
		
%-----------------------------%	
%	Finding	the	"H_f"	via	making	the	Jacobian		
Vs	=	0.1;	
G;	
F_f;	
		
%--%		
%Step	2	=	Truth	parameters	initializations	
q11	=	0.1;	q12	=	0;	q13	=	0;		
q21	=	0;	q22	=	0.1;	q23	=	0;	
q31	=	0;	q32	=	0;	q33	=	0.1;	
		
q(1,1)	=	0.1;	q(1,2)		=	0;	q(1,3)		=	0;		
q(2,1)		=	0;	q(2,2)		=	0.1;	q(2,3)		=	0;	
q(3,1)		=	0;	q(3,2)		=	0;	q(3,3)		=	0.1;	
		
F=F_f;	
Q=[q(1,1)	q(1,2)	q(1,3);		
							q(2,1)	q(2,2)	q(2,3);	
							q(3,1)	q(3,2)	q(3,3)];	
R=[0.1];	
		
%--%	
%Step	3=Filter	parameters	
G;	
F_f;	
Q_f=[q(1,1)	q(1,2)	q(1,3);		

89

							q(2,1)	q(2,2)	q(2,3);	
							q(3,1)	q(3,2)	q(3,3)];	
R_f=[0.5];		
%--%	
order	=	3;	
N	=	60;	
MCruns	=	300;	
limit	=	MCruns*N;	
		
xt=zeros(order,1);	%state	
x_minus=zeros(order,1);	%previous	estimate	
x=zeros(order,1);	%estimates	
xhat=zeros(order,1);	
p=zeros(order,order);	%covariance	
p_minus=zeros(order,order);	%previous	covariance	
xstore=zeros(limit,1);	
		
Xstore=zeros(order,1);	
Xhatstore=zeros(order,1);	
ystore=zeros(1,1);	
		
y=zeros(1,1);		
e=zeros(order,1);		
z=zeros(1,1);%y(j,1)-H_f*x_minus(j,1)	
temp=zeros(1,1);	
K=zeros(order,1);	
		
pnoise	=	zeros(1,N);	
mnoise	=	zeros(1,N);	
		
I	=	eye(order,order);	
		
%--%	
		
for	j	=	1:MCruns	%Mcruns(:,:,j,i)	
x(:,:,j,1)=[1;1;1];	
				for	i	=	1:N	%time	(:,:,j,i)	
								for	h=1:order					
										pnoise	=	zeros(1,N);	
										pnoise	=	pnoise	+	sqrt(q(h,h))	*	randn(1,N);	
										w(h,:)	=	pnoise;		
								end	
		
							for	i	=	2:N	
											u=2;		
											x(:,:,j,i)	=	F	*	x(:,:,j,i-1)	+	G*u	+	w(:,i-1);	

90

							end	
				end	
end	
			for	j	=	1:MCruns	
				for	temp=1:limit	
				for	i	=	1:N	
									
								for	h=1:order	
											v	=	mnoise	+	sqrt(R)*	randn(1,N);	
								end	
									
								for	i=2:N	
															y(:,:,j,i)	=	3.2	+	(2.59	*	x(2,:,j,i))	-	((9.003*x(2,:,j,i)).^2)	+	v(:,i-1);	
								end	
				end	
				end	
			end	
				
for	j	=	1:MCruns						
					
					xhat(:,:,j,1)=[0;0;0];	
					p(:,:,j,1)=[1	0	0;0	1	0;0	0	1];		
					
					for	i	=	1	
						partial_deriv_H	=	2.59	-	18.006	*	xhat(2,i)	;	
							
						H_f	=	[0	partial_deriv_H	0];	
							
						p_minus(:,:,j,i)	=	F_f	*	p(:,:,j,i)	*	F_f'	+	Q_f;	%	for	projecting	ahead	
					
						K(:,:,j,i)	=	p_minus(:,:,j,i)	*	H_f'	/	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f);	%	kalman	gain	
					
						xhat_minus(:,:,j,i)	=	F_f	*	xhat(:,:,j,i);	%	for	projecting	ahead	
							
						z(j,i)	=		y(:,:,j,i)	-	H_f	*	xhat_minus(:,:,j,i);		
							
						xhat(:,:,j,i)	=	xhat_minus(:,:,j,i)	+	K(:,:,j,i)	*	z(j,i);	%updating	the	estimate	
					
					p(:,:,j,i+1)	=	p_minus(:,:,j,i)	-	K(:,:,j,i)	*(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f)*K(:,:,j,i)';	
							
					e(:,:,j,i)	=	x(:,:,j,i)	-	xhat(:,:,j,i);	%updating	the	error	
		
						for	i	=	2:N	
											
						partial_deriv_H	=	2.59	-	18.006	*	xhat(2,i-1)	;	
							

91

						H_f	=	[0	partial_deriv_H	0];						
							
						p_minus(:,:,j,i)	=	F_f	*	p(:,:,j,i)	*	F_f'	+	Q_f;	%	for	projecting	ahead	
					
						K(:,:,j,i)	=	p_minus(:,:,j,i)	*	H_f'	/	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f);	%	kalman	gain	
							
						xhat_minus(:,:,j,i)	=	F_f	*	xhat(:,:,j,i-1);	%	for	projecting	ahead	
				
						z(j,i)	=	y(:,:,j,i)	-	H_f	*	xhat_minus(:,:,j,i);		
							
						xhat(:,:,j,i)	=	xhat_minus(:,:,j,i)	+	K(:,:,j,i)	*	z(j,i);	%updating	the	estimate	
							
					p(:,:,j,i+1)	=	p_minus(:,:,j,i)	-	K(:,:,j,i)	*(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f)*K(:,:,j,i)';	
							
					e(:,:,j,i)	=	x(:,:,j,i)	-	xhat(:,:,j,i);	%updating	the	error	
						
							end	
				end	
	end	
		
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
		
								P(j,i,k)=p(k,k,j,i);	
								E(j,i,k)=e(k,1,j,i);	%storing	the	errors.	
								X(j,i,k)=x(k,1,j,i);	
								Xhat(j,i,k)=xhat(k,1,j,i);	
				end	
				end	
	end	
%--%	
	%	To	store	the	error	of	each	state	separately	
		
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1(j,i)=E(j,i,1);	
								E2(j,i)=E(j,i,2);	
								E3(j,i)=E(j,i,3);	
								x1(j,i)=X(j,i,1);	
								x2(j,i)=X(j,i,2);	
								x3(j,i)=X(j,i,3);			
								xhat1(j,i)=Xhat(j,i,1);	
								xhat2(j,i)=Xhat(j,i,2);	
								xhat3(j,i)=Xhat(j,i,3);	

92

				end	
		end	
end	
%--%	
	%	To	store	the	error-square	of	each	state	separately	
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1square(j,i)=E1(j,i).^2;	
								E2square(j,i)=E2(j,i).^2;	
								E3square(j,i)=E3(j,i).^2;	
				end	
		end	
end	
	%--%	
	%	To	store	the	mean-square-error	of	each	state	separately	
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1squaremean=mean(E1square);	
								E2squaremean=mean(E2square);	
								E3squaremean=mean(E3square);	
				end	
		end	
end	
	%--%		
%	To	store	the	mean-square-error	of	each	state	separately	
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1rms=sqrt(E1squaremean);	
								E2rms=sqrt(E2squaremean);	
								E3rms=sqrt(E3squaremean);	
				end	
		end	
end	
%--%		
for	k=1:order	
					for	i=1:N	
							Pstore(k,i)=P(1,i,k);	
					end	
	end	
	for	k=1:order	
		for	i=1:N	
					for	j=1:MCruns	
									Xstore(:,:,i,j)=x(:,:,j,i);	

93

									Xhatstore(:,:,i,j)=xhat(:,:,j,i);	
					end	
	end	
	end	
%---%	
%	NOW	WE	SHALL	PLOT	BELOW	%	
	for	i=1:order	
				esquare(:,:,i)=E(:,:,i).^2;	
				mse(i,:)=mean(esquare(:,:,i));	
				g	=	1:N;	
				Zigure(i)	
				subplot(3,1,1);	
				hold	on;	
				grid	on;	
				plot(g,mse(i,:),'r','linewidth',1.5)	
				plot(g,Pstore(i,g),'b','linewidth',1.5)	
				legend('mean	square	error')	
				title(['EKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	
%	%		
for	i=1:order	
				rmse(i,:)=sqrt(mse(i,:));	
				g	=	1:N;	
				Zigure(i)	
				subplot(3,1,2);	
				hold	on;	
				grid	on;	
				plot(g,rmse(i,:),'r','linewidth',1.5)	
				legend('root	mean	square	error')	
				title(['EKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	
%%-----------------------%%	
for	i=1:order	
				g	=	1:N;	
				Zigure(i)	
				subplot(3,1,3);	
				hold	on;	
				grid	on;	
				plot(g,Xstore(i,g),'r','linewidth',1.5)		
				plot(g,Xhatstore(i,g),'b','linewidth',1.5)	
				legend('x	','x-hat')	
				title(['EKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	

94

2.	MATLAB	CODE	FOR	AKF	

clc;	
clear	all;	
close	all;	
syms	s	t;	
		
%--%	
%Step	1	=	Matrix	calculations	
Cb=10037;	
Cs=973;	
Rb=0.019;	
Rs=0;	
R1=0.02;	
C1=3250;	
		
a11=-1/(Cb*(Rb+Rs));	
a12=1/(Cb*(Rb+Rs));	
a13=0;	
a21=1/(Cs*(Rb+Rs));	
a22=-1/(Cs*(Rb+Rs));	
a23=0;	
a31=0;	
a32=0;	
a33=-1/(R1*C1);	
		
A=[a11	a12	a13;	
			a21	a22	a23;	
			a31	a32	a33];	
		
b11=Rs/(Cs*(Rb+Rs));	
b21=Rb/(Cs*(Rb+Rs));	
b31=-1/C1;	
		
B=[b11;	
			b21;	
			b31];	
		
%-----------------------------%	
%	Taking	the	Inverse	Laplace	transform	and	making	the	F	matrix.	
		
si=s*eye(3);	
A_inverse=inv(si	-	A);	
A_det=det(A);	
F_tilda	=	ilaplace(A_inverse);	
		

95

%-----------------------------%	
%	Performing	integration	of	the	F	matrix	we	have	to	Zind	the	G	matrix.	
		
f11=(@(t)(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	576460752303423488000/632343616903526209657);	
f12=(@(t)55882864600102721657/632343616903526209657	-	
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f21=(@(t)576460752303423488000/632343616903526209657	-	
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f22=(@(t)(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	55882864600102721657/632343616903526209657);	
f33=(@(t)exp(-t/65));	
		
i1=integral(f11,0,1);	
i2=integral(f12,0,1);	
i3=0;	
i4=integral(f21,0,1);	
i5=integral(f22,0,1);	
i6=0;	
i7=0;	
i8=0;	
i9=integral(f33,0,1);	
		
G_bar=[i1	i2	i3;i4	i5	i6;i7	i8	i9];	
G=	G_bar	*	B;	
		
t=1;	
f11=55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656)/632343616903526209657	
+	576460752303423488000/632343616903526209657;	
f12=(55882864600102721657/632343616903526209657	-	
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	
f13=(0);	
f21=(576460752303423488000/632343616903526209657	-	
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);	

96

f22=((576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7	+	55882864600102721657/632343616903526209657);	
f23=(0);	
f31=(0);	
f32=(0);	
f33=exp(-t/65);	
		
F_f=[f11	f12	f13;f21	f22	f23;f31	f32	f33]	
G;	
F_f;	
%--%	
		
%Step	2	=	Truth	parameters	initializations	
q11	=	0.1;	q12	=	0;	q13	=	0;		
q21	=	0;	q22	=	0.1;	q23	=	0;	
q31	=	0;	q32	=	0;	q33	=	0.1;	
		
q(1,1)	=	0.1;	q(1,2)		=	0;	q(1,3)		=	0;		
q(2,1)		=	0;	q(2,2)		=	0.1;	q(2,3)		=	0;	
q(3,1)		=	0;	q(3,2)		=	0;	q(3,3)		=	0.1;	
		
F=F_f;	
Q=[q(1,1)	q(1,2)	q(1,3);		
							q(2,1)	q(2,2)	q(2,3);	
							q(3,1)	q(3,2)	q(3,3)];	
R=[0.1];	
		
%--%	
%Step	3=Filter	parameters		
F_f;	
Q_f=		[q(1,1)	q(1,2)	q(1,3);		
							q(2,1)	q(2,2)	q(2,3);	
							q(3,1)	q(3,2)	q(3,3)];	
R_f=[0.4];	
		
	
%--%	
order	=	3;	
N	=	10;	
MCruns	=	10;	
limit	=	MCruns	*	N;	
		
xt=zeros(order,1);	%state	
x_minus=zeros(order,1);	%previous	estimate	
xhat_minus=zeros(order,1);	

97

x=zeros(order,1);	%estimates	
xhat=zeros(order,1);	
p=zeros(order,order);	%covariance	
p_minus=zeros(order,order);	%previous	covariance	
xstore=zeros(limit,1);	
		
Xstore=zeros(order,1);	
Xhatstore=zeros(order,1);	
ystore=zeros(1,1);	
		
O_k=zeros(order,order);	
alpha_k_star=zeros(1,1);	
delta_pk_start=zeros(order,order);	
delta_kk_star=zeros(order,1);	
delta_qk_star=zeros(order,order);	
kk_delta_qk_star=zeros(order,1);	
		
y=zeros(1,1);		
e=zeros(order,1);		
z=zeros(1,1);%y(j,1)-H_f*x_minus(j,1)	
temp=zeros(1,1);	
K=zeros(order,1);	
		
pnoise	=	zeros(1,N);	
mnoise	=	zeros(1,N);	
		
I	=	eye(order,order);	
		
%--%	
		
for	j	=	1:MCruns	%Mcruns(:,:,j,i)	
x(:,:,j,1)=[1;1;1];	
				for	i	=	1:N	%time	(:,:,j,i)	
								for	h=1:order					
										pnoise	=	zeros(1,N);	
										pnoise	=	pnoise	+	sqrt(q(h,h))	*	randn(1,N);	
										w(h,:)	=	pnoise;		
								end	
									
							for	i	=	2:N	
											u	=	2;		
											x(:,:,j,i)	=	F	*	x(:,:,j,i-1)	+	G*u	+	w(:,i-1);	
							end	
				end	
end	
		

98

			for	j	=	1:MCruns	
				for	temp=1:limit	
				for	i	=	1:N	
									
								for	h=1:order	
											v	=	mnoise	+	sqrt(R)*	randn(1,N);	
								end	
									
								for	i=2:N	
													
													y(:,:,j,i)	=	3.2	+	(2.59	*	x(2,:,j,i))	-	((9.003*x(2,:,j,i)).^2)	+	v(:,i-1);	
						end	
			end	
		end	
			end	
		
	for	j	=	1:MCruns						
					
					xhat(:,:,j,1)=[0;0;0];	
					p(:,:,j,1)=[1	0	0;0	1	0;0	0	1];		
					delta_qk_star(:,:,j,i)=[0	0	0;0	0	0;0	0	0];	
						
					for	i	=	1	
										
						partial_deriv_H	=	2.59	-	18.006	*	xhat(2,i)	;	
							
						H_f	=	[0	partial_deriv_H	0];	
							
						p_minus(:,:,j,i)	=	F_f	*	p(:,:,j,i)	*	F_f'	+	Q_f	+	delta_qk_star(:,:,j,i);	%	for	projecting	ahead	
					
						K(:,:,j,i)	=	p_minus(:,:,j,i)	*	H_f'	/	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f);	%	kalman	gain	
					
						xhat_minus(:,:,j,i)	=	F_f	*	xhat(:,:,j,i);	%	for	projecting	ahead	
							
						O_k(:,:,j,i)	=	H_f'	*	inv(R_f)	*	H_f;	%	Note	:	here	O_k	is	3by3		
							
						alpha_k_star(j,i)	=	trace	((O_k(:,:,j,i).^2)	/	(trace((((O_k(:,:,j,i)).^5)	*	p_minus(:,:,j,i))	+		
(O_k(:,:,j,i)).^4)));	%note	:	here	alpha_k_star(j,i)	is	1	by1	
							
						delta_pk_start(:,:,j,i)	=		alpha_k_star(j,i)	*	O_k(:,:,j,i);%note	-	delta_pk_start	is	3by3	
							
						delta_kk_star(:,:,j,i)	=	delta_pk_start(:,:,j,i)	*	H_f'	*	inv(R_f);%note	-	delta_kk_star	is	3by1	
							
						delta_qk_star(:,:,j,i)	=	inv(I	-		(K(:,:,j,i)	+	delta_kk_star(:,:,j,i))	*	H_f)	*	(delta_pk_start(:,:,j,i)	
-	delta_kk_star(:,:,j,i)	*	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f)	*	delta_kk_star(:,:,j,i)')	*	inv((I	-		
(K(:,:,j,i)	+	delta_kk_star(:,:,j,i))	*	H_f))';			

99

							
						kk_delta_qk_star(:,:,j,i)	=	K(:,:,j,i)	+	delta_kk_star(:,:,j,i);	
							
						z(j,i)	=		y(:,:,j,i)	-	H_f	*	xhat_minus(:,:,j,i);		
							
						xhat(:,:,j,i)	=	xhat_minus(:,:,j,i)	+	kk_delta_qk_star(:,:,j,i)	*	z(j,i);	
							
						p(:,:,j,i+1)	=	(I	-	(kk_delta_qk_star(:,:,j,i)	*	H_f))	*	p_minus(:,:,j,i);	
						
						e(:,:,j,i)	=	x(:,:,j,i)	-	xhat(:,:,j,i);	%updating	the	error	
		
						for	i	=	2:N	
											
						partial_deriv_H	=	2.59	-	18.006	*	xhat(2,i-1)	;	
							
						H_f	=	[0	partial_deriv_H	0];	
							
						p_minus(:,:,j,i)	=	F_f	*	p(:,:,j,i)	*	F_f'	+	Q_f	+	delta_qk_star(:,:,j,i);	%	for	projecting	ahead	
					
						K(:,:,j,i)	=	p_minus(:,:,j,i)	*	H_f'	/	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f);	%	kalman	gain	
					
						xhat_minus(:,:,j,i)	=	F_f	*	xhat(:,:,j,i-1);	%	for	projecting	ahead	
							
						O_k(:,:,j,i)	=	H_f'	*	inv(R_f)	*	H_f;	%	Note	:	here	O_k	is	3by3		
							
						alpha_k_star(j,i)	=	trace	((O_k(:,:,j,i).^2)	/	(trace((((O_k(:,:,j,i)).^5)	*	p_minus(:,:,j,i))	+		
(O_k(:,:,j,i)).^4)));	%note	:	here	alpha_k_star(j,i)	is	1	by1	
							
						delta_pk_start(:,:,j,i)	=		alpha_k_star(j,i)	*	O_k(:,:,j,i);%note	-	delta_pk_start	is	3by3	
							
						delta_kk_star(:,:,j,i)	=	delta_pk_start(:,:,j,i)	*	H_f'	*	inv(R_f);%note	-	delta_kk_star	is	3by1	
							
						delta_qk_star(:,:,j,i)	=	inv(I	-		(K(:,:,j,i)	+	delta_kk_star(:,:,j,i))	*	H_f)	*	(delta_pk_start(:,:,j,i)	
-	delta_kk_star(:,:,j,i)	*	(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f)*delta_kk_star(:,:,j,i)')	*	inv((I	-		
(K(:,:,j,i)	+	delta_kk_star(:,:,j,i))	*	H_f))';			
							
						kk_delta_qk_star(:,:,j,i)	=	p_minus(:,:,j,i)	*	H_f'	*	(inv(H_f	*	p_minus(:,:,j,i)	*	H_f'	+	R_f));	
							
						z(j,i)	=		y(:,:,j,i)	-	H_f	*	xhat_minus(:,:,j,i);		
							
						xhat(:,:,j,i)	=	xhat_minus(:,:,j,i)	+	K(:,:,j,i)	*	z(j,i);	%updating	the	estimate	
							
						p(:,:,j,i+1)	=	(I	-	(kk_delta_qk_star(:,:,j,i)	*	H_f))	*	p_minus(:,:,j,i);	
						
						e(:,:,j,i)	=	x(:,:,j,i)	-	xhat(:,:,j,i);	%updating	the	error	
						

100

							end	
				end	
	end	
%--%	
%	Storing	the	error	and	P	matrix	in	the	correct	order%	
		
	for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
		
								P(j,i,k)=p(k,k,j,i);	
								E(j,i,k)=e(k,1,j,i);	%storing	the	errors.	
								X(j,i,k)=x(k,1,j,i);	
								Xhat(j,i,k)=xhat(k,1,j,i);	
				end	
				end	
	end	
		
	%--%	
	%	To	store	the	error	of	each	state	separately	
		
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1(j,i)=E(j,i,1);	
								E2(j,i)=E(j,i,2);	
								E3(j,i)=E(j,i,3);	
									
								x1(j,i)=X(j,i,1);	
								x2(j,i)=X(j,i,2);	
								x3(j,i)=X(j,i,3);	
									
								xhat1(j,i)=Xhat(j,i,1);	
								xhat2(j,i)=Xhat(j,i,2);	
								xhat3(j,i)=Xhat(j,i,3);	
				end	
		end	
end	
%--%	
	%	To	store	the	error-square	of	each	state	separately		
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1square(j,i)=E1(j,i).^2;	
								E2square(j,i)=E2(j,i).^2;	
								E3square(j,i)=E3(j,i).^2;	

101

				end	
		end	
end	
%--%	
	%	To	store	the	mean-square-error	of	each	state	separately	
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1squaremean=mean(E1square);	
								E2squaremean=mean(E2square);	
								E3squaremean=mean(E3square);	
				end	
		end	
end	
%--%	
	%	To	store	the	mean-square-error	of	each	state	separately	
for	j=1:MCruns	
				for	i=1:N	
								for	k=1:order	
								E1rms=sqrt(E1squaremean);	
								E2rms=sqrt(E2squaremean);	
								E3rms=sqrt(E3squaremean);	
				end	
		end	
end	
%--%	
	for	k=1:order	
					for	i=1:N	
							Pstore(k,i)=P(1,i,k);	
					end	
	end	
	for	k=1:order	
		for	i=1:N	
					for	j=1:MCruns	
									Xstore(:,:,i,j)=x(:,:,j,i);	
									Xhatstore(:,:,i,j)=xhat(:,:,j,i);	
					end	
	end	
	end	
%---%	
%	NOW	WE	SHALL	PLOT	BELOW	%	
	for	i=1:order	
				esquare(:,:,i)=E(:,:,i).^2;	
				mse(i,:)=mean(esquare(:,:,i));	
				g	=	1:N;	
				Zigure(i)	

102

				subplot(3,1,1);	
				hold	on;	
				grid	on;	
				plot(g,mse(i,:),'r','linewidth',1.5)	
				plot(g,Pstore(i,g),'b','linewidth',1.5)	
				legend('mean	square	error')	
				title(['AKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	
%	%		
%		
for	i=1:order	
				rmse(i,:)=sqrt(mse(i,:));				
				g	=	1:N;	
				Zigure(i)	
				subplot(3,1,2);	
				hold	on;	
				grid	on;	
				plot(g,rmse(i,:),'r','linewidth',1.5)	
				legend('root	mean	square	error')	
				title(['AKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	
%%------------------------%%	
for	i=1:order	
				g	=	1:N;	
				Zigure(i)	
				subplot(3,1,3);	
				hold	on;	
				grid	on;	
				plot(g,Xstore(i,g),'r','linewidth',1.5)		
				plot(g,Xhatstore(i,g),'b','linewidth',1.5)	
				legend('x	','x-hat')	
				title(['AKF	Plot	for	state	'	,num2str(i),	'	having	'	,num2str(MCruns),	'	MCruns']);	
				xlabel(['Time	Step	=	'	,num2str(N),		'	seconds']);	
end	

