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Abstract

This thesis investigates the performance of linear and nonlinear estimation methods,
focusing on Kalman Filter (KF), Extended Kalman Filter (EKF), and Adaptive Kalman
Filter (AKF) in estimating dynamic system states. A comprehensive MATLAB
implementation is developed for 1D, 2D, 3D, and N-Dimensional Kalman Filters,
based on established algorithms, to analyze and validate these filters' performance
across a range of linear and nonlinear systems. This work provides a comparative
study between the EKF and the recently proposed AKF in nonlinear environments,
with an emphasis on their responses to measurement noise covariance.

The study primarily evaluates the filter’s ability to minimize estimation error under
varying conditions of measurement noise covariance, R. It is observed that the EKF
demonstrates robust performance in systems with mild nonlinearities, given that the
measurement noise covariance is accurately known or estimated. However, in
scenarios where measurement noise covariance is uncertain or unknown, the AKF
exhibits superior adaptability and precision, thus outperforming the EKF. This
adaptability of the AKF makes it a preferable choice for applications where
measurement noise characteristics cannot be precisely determined.

Results indicate that when the actual measurement noise covariance is known or
reasonably approximated, both AKF and EKF offer comparable accuracy.
Nevertheless, when covariance knowledge is limited, AKF’s performance advantage
becomes significant. While the MATLAB code developed for this study successfully
supports these analyses, further optimization could reduce computational demands,
particularly for extensive Monte Carlo simulations. Additionally, refining the AKF
algorithm could enhance its applicability to systems with stronger nonlinear
behaviors, potentially expanding its practical usage across more complex, real-world
systems.

In conclusion, this thesis underscores the importance of adaptive filtering in
scenarios of measurement uncertainty and highlights potential areas for advancing
Kalman Filter implementations in both theoretical and applied contexts.
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Chapter 1 - Introduction

The Kalman filter was created by Rudolf E. Kalman in the 1960s, an American-
Hungarian electrical engineer and mathematician. The method was originally
introduced as a way to predict a system's future state based on a series of
measurements that contain noise. Kalman’s work revolutionized the field of
control systems engineering, particularly with its application in the Apollo
space program, where it was employed to navigate the lunar module. The main
concept of the filter is to offer a recursive method for estimating the internal
state of a process that cannot be directly observed, using noisy sensor data for
the calculations [Brown2012].

The Kalman filter is a robust mathematical technique commonly used in control
systems, signal processing, and estimation theory. Since its inception, it has
gained widespread application in diverse areas such as robotics, aerospace
engineering, navigation, and finance. This thesis aims to provide a
comprehensive overview of the Kalman filter, tracing its historical
development, exploring its types, and highlighting its strengths and limitations.
Additionally, this thesis discusses the application of the Kalman filter in
estimating the states of both linear and nonlinear systems, a critical task in
many control systems [Brown2012].

There are various usage of the Kalman filter in several engineering domains
apart from the domain of electrical engineering. In control systems, precise
state estimation is essential for achieving effective feedback control. The
Kalman filter excels in estimating the true state of a system in real time by using

a combination of noisy sensor data and a model of the system’s dynamics. In




various engineering domains the Kalman filter is used extensively for both

linear and non-linear models such as -

« Navigation Systems: In applications like GPS or inertial navigation,
where the motion of a vehicle or object can be represented using linear
equations, the Kalman filter is ideal for estimating the position and
velocity of the vehicle in real time.

« Control Systems: In automatic control systems, such as those used in
aircraft or industrial processes, the Kalman filter helps estimate the
internal states of the system based on sensor measurements, enabling
effective feedback control.

« Signal Processing: The Kalman filter is used to estimate signals that are
corrupted by noise, improving the clarity of the signal in communication
systems or audio processing.

« SOC Battery Estimation: Electric vehicle batteries are inherently
nonlinear systems, with their performance influenced by factors such as
temperature, current, and voltage. Estimating the State of Charge (SOC)
[Proctor2020], [Ilies2020] involves monitoring the remaining energy in
the battery as it depletes or charges over time.

« Robotics: In autonomous robots, the motion and sensor models are often
nonlinear, especially when dealing with rotation or complex
environments. The EKF and UKF are used for simultaneous localization
and mapping (SLAM), where the robot must estimate both its position
and the environment it is navigating through.

« Aerospace: The trajectory of a spacecraft, particularly during re-entry or

in complex manoeuvres, is highly nonlinear. The EKF and UKF are




employed to estimate the spacecraft’s position and velocity for
navigation and control [Das2014].
Over the years, several variations of the Kalman filter have been developed to
address specific challenges. The standard Kalman filter is designed for systems
that can be modelled using linear dynamics and Gaussian noise. However, many

real-world systems are nonlinear, prompting the development of other variants

1. Kalman Filter (KF): Used for systems with linear dynamics. It offers an
optimal estimation approach when both the system and the noise adhere
to Gaussian distributions. KF is computationally simple but cannot
handle nonlinear systems effectively.

2. Extended Kalman Filter (EKF): This filter is used for managing
nonlinear systems by simplifying their complexity. It does this by
linearizing the system around the current state estimate, using Jacobian
to approximate the nonlinear behaviour. EKF is widely used for battery
state estimation but can be less accurate for systems with strong
nonlinearities [Shrivastava2019].

3. Adaptive Extended Kalman Filter (AEKF): An enhancement of the EKF,
the AEKF adjusts the process and measurement noise covariances during
the estimation process. This allows the filter to better handle varying
noise levels and system conditions, improving accuracy and reducing
divergence [Shrivastava2019].

4. Unscented Kalman Filter (UKF): This filter is more accurate for
nonlinear systems as it avoids linearization. Instead, it uses a set of
sample points (sigma points) to more precisely estimate the state of a
system. The UKF is typically more accurate than the EKF in highly
nonlinear situations [Shrivastava2019].
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5. Adaptive Unscented Kalman Filter (AUKF): Like the UKF, but with the
added capability to adaptively adjust the noise covariance matrices. It is
very useful for nonlinear systems having non-additive measurement
noise with the unknown noise statistics. This makes the AUKF
particularly useful in real-time applications with changing system
dynamics and noise levels [Das2015].

6. Square-root Unscented Kalman Filter (SR-UKF): This variant reduces
the computational burden of the UKF by using square-root
decompositions, making it more efficient for systems where
computational resources are limited [Shrivastava2019].

7. Central Difference Kalman Filter (CDKF): Uses a simpler method to
approximate derivatives, reducing computational complexity compared
to the UKF. It is useful for applications requiring efficient computation
without significant loss in accuracy [Shrivastava2019].

8. Cubature Kalman Filter (CKF): This filter uses a cubature integration
method to handle high-dimensional nonlinear systems more effectively
than the UKF. It offers better performance for certain complex systems

but requires more computational resources [Shrivastava2019].

In the case of linear systems, the standard Kalman filter is an optimal solution.
Linear systems can be described by state-space equations, where the future
state of the system depends linearly on the current state and control inputs. The
Kalman filter works by using a predictive step, where the future state is
estimated based on a mathematical model of the system, and a corrective step,
where the prediction is updated using noisy measurements. This two-step
process allows the Kalman filter to continuously refine the estimate of the
system’s state in real time.

11




Most real-world systems are nonlinear, which complicates state estimation.
The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are the
two most commonly used variations for dealing with nonlinearities. The EKF
approximates the nonlinear dynamics by linearizing them around the current
state estimate, but this approximation can introduce errors in systems with
strong nonlinear behaviour. On the other hand, the UKF uses a more
sophisticated approach, approximating the state distribution with a set of
weighted points that are propagated through the nonlinear system. While more
computationally expensive, the UKF generally provides better estimates for
highly nonlinear systems.

However in this thesis we are not going to study about all the types of Kalman
filters present. We will be discussing mainly the Kalman filter (KF), Extended
Kalman filter (EKF) and Adaptive Kalman filter (AKF) and will do a comparative
study on how these filters are performing in estimating the states of linear and

non-linear systems.
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Chapter 2 - Literature survey

Introduction

Kalman filters are a cornerstone in the field of estimation theory, with
applications spanning various domains, including aerospace, robotics, control
systems, and battery management. The Kalman filter is fundamentally a
recursive algorithm that provides estimates of the internal states of a system
given noisy observations. Over the decades, several variants of the Kalman filter
have been developed to address the limitations of the standard Kalman filter in
nonlinear, non-Gaussian, and adaptive environments. This literature survey
reviews the key Kalman filter variants, focusing on the Standard Kalman Filter
(KF), Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and
Adaptive Kalman Filter (AKF).

Kalman Filter (KF)

The Kalman Filter algorithm operates in two main steps: prediction and update.
During the prediction step, the filter projects the current state estimate forward
in time to obtain the predicted state and its uncertainty. In the update step, the
filter corrects this prediction using the latest measurement. The KF is known
for being computationally efficient, making it suitable for real-time
applications. However, its effectiveness is restricted to linear systems, and its
performance degrades significantly in nonlinear or non-Gaussian settings.
Despite these limitations, the KF remains a fundamental tool, particularly in

systems where the assumptions of linearity and Gaussian noise hold true.
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Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) was developed to extend the application of
the Kalman filter to nonlinear systems. The EKF approximates the nonlinear
system by linearizing the system dynamics around the current state estimate.
This is achieved using a first-order Taylor series expansion, which allows the
EKF to apply the standard Kalman filtering process to the linearized system.
While this method enables the EKF to handle a broader range of applications, it
introduces new challenges. The linearization process can lead to inaccuracies,
especially in highly nonlinear systems where higher-order terms of the Taylor
series become significant. Moreover, the EKF assumes that the noise in the
system remains Gaussian, which is often not the case in real-world applications.
Despite these limitations, the EKF is widely used in various fields, including
navigation systems, robotics, and battery management systems, due to its

ability to manage nonlinear dynamics to some extent [Takayama2024].
Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) was developed as a more robust alternative
to the EKEF, specifically designed to handle the shortcomings of linearization.
Instead of linearizing the system dynamics, the UKF employs the Unscented
Transform, a deterministic sampling technique that selects a set of points
(called sigma points) around the mean of the state estimate. These points are
then propagated through the nonlinear system equations, allowing the UKF to
capture the mean and covariance of the state distribution more accurately than
the EKF. This method results in better performance, particularly in systems
with significant nonlinearities. The UKF has been shown to provide more

accurate estimates than the EKF in many practical applications, including
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vehicle tracking, spacecraft navigation, and sensor fusion in autonomous
systems. However, the UKF is computationally more intensive than the EKF

which can be a limiting factor in real-time applications [Shrivastava2019].
Adaptive Kalman Filter (AKF)

The Adaptive Kalman Filter (AKF) represents a class of filters that address one
of the key limitations of the standard and extended Kalman filters the need for
accurate knowledge of process and measurement noise covariances. In many
practical situations, these noise characteristics are either unknown or vary over
time. The AKF dynamically adjusts its parameters, such as the process noise
covariance (Q) and measurement noise covariance (R), based on observed data.
This adaptation is crucial for maintaining filter performance in non-stationary
environments, where the noise characteristics change over time due to varying
operating conditions. For instance, in battery management systems, the AKF
can adapt to changes in battery behaviour caused by temperature fluctuations,
aging, or varying load profiles. By continuously updating its parameters, the
AKF enhances the accuracy and robustness of state estimation, reducing the
likelihood of filter divergence, a situation where the filter’s estimates become

increasingly inaccurate over time [Takayama2024].
Comparative Analysis of Kalman Filter Variants

The choice of Kalman filter variant depends heavily on the specific application
and the nature of the system being modelled. The Standard Kalman Filter is
optimal for linear systems with well-characterized Gaussian noise, offering
simplicity and efficiency. However, its performance degrades in nonlinear or
non-Gaussian settings, necessitating the use of more advanced filters like the

EKF or UKF[Shrivastava2019].
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The EKF is suitable for systems with mild nonlinearities, where the first-order
approximation provided by linearization is sufficient. However, in systems with
significant nonlinearities or where a more accurate estimation of the state
distribution is required, the UKF is often the better choice due to its ability to
propagate the mean and covariance through nonlinear transformations more
accurately [Shrivastava2019].

The AKF is particularly beneficial in applications where noise characteristics
are time-varying or not well known. Its ability to adapt to changing conditions
makes it ideal for non-stationary environments, although this comes with
increased computational complexity. For example, in dynamic environments
such as autonomous vehicles, the AKF can significantly improve estimation
accuracy by adjusting its parameters in real-time as the vehicle encounters
different terrains or sensor conditions.

In summary, while the Standard Kalman Filter is optimal for linear, Gaussian
systems, the EKF, UKF, and AKF each offer specific advantages for handling
nonlinearities and time-varying noise, albeit at the cost of increased

computational requirements.
Applications in Engineering and Technology

Kalman Filters are extensively used across various engineering disciplines due
to their versatility in state estimation. In battery management systems (BMS)
[[lies2020], Kalman Filters are crucial for State of Charge (SOC) estimation, a
critical parameter for ensuring the safe and efficient operation of batteries
[Shrivastava2019]. The EKF and UKF are commonly employed in this context
due to their ability to handle the nonlinear dynamics of battery models. For
instance, the nonlinear double-capacitor model of a battery, which is often used

to represent the complex electrochemical processes, is better suited to the EKF
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and UKF than the standard KF[Proctor2020]. The AKF, with its adaptive
capabilities, is particularly useful in BMS applications where the battery's
operating conditions change over time, such as variations in temperature or
load profiles.

In the field of autonomous vehicles and robotics, Kalman Filters are integral to
sensor fusion, where data from multiple sensors, such as GPS, IMUs (Inertial
Measurement Units), and cameras, are combined to estimate the vehicle's
position and velocity. The UKF is often preferred in these applications due to its
superior handling of nonlinear sensor models. Additionally, the AKF is
employed to adjust the filter parameters in real-time, ensuring robust state
estimation even when the vehicle operates in dynamic environments with
varying sensor noise levels.

Kalman Filters are also widely used in aerospace applications, particularly in
navigation and control systems for aircraft and spacecraft. The EKF and UKF are
used for trajectory estimation, attitude determination, and orbit determination,
where the nonlinearities of the system dynamics are significant. The
adaptability of the AKF is beneficial in these high-precision applications, where
the noise characteristics can change due to varying atmospheric conditions or

different phases of flight [Das2014].
Challenges and Future Directions

Despite the widespread adoption of Kalman Filters in various applications,
several challenges remain. One of the most significant challenges is the
assumption of Gaussian noise, which may not hold in many real-world
scenarios. Non-Gaussian noise can lead to suboptimal performance and even

filter divergence. To address this, ongoing research is exploring more robust
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filtering techniques, such as particle filters, which do not assume Gaussian noise
and can provide better performance in such scenarios.

Another challenge is the computational complexity associated with the UKF and
AKF. While these filters offer improved accuracy over the standard KF and EKEF,
they require more computational resources, which can be a limiting factor in
real-time applications or systems with limited processing power. Future
research is likely to focus on developing more efficient algorithms that can offer
the benefits of the UKF and AKF while reducing computational overhead.

The integration of Kalman Filters with machine learning techniques is also an
emerging area of research. For instance, combining Kalman Filters with neural
networks could enhance their ability to model complex, nonlinear systems
without relying on explicit system models. This approach could lead to more

accurate and robust state estimation in a broader range of applications.
Conclusion

Kalman Filters, particularly the Extended Kalman Filter (EKF), Unscented
Kalman Filter (UKF), and Adaptive Kalman Filter (AKF), have become essential
tools in modern engineering, enabling precise state estimation in the presence
of noise and uncertainty. Each variant offers unique advantages depending on
the nature of the system and the noise environment. While the standard Kalman
Filter is optimal for linear, Gaussian systems, the EKF and UKF extend its
applicability to nonlinear systems, and the AKF provides the adaptability
needed in time-varying environments. As research continues, we can expect
further advancements in the accuracy, robustness, and computational efficiency
of these filters, expanding their applicability to even more challenging and

dynamic systems.
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Chapter 3 - Brief overview of the Kalman
Filter (KF)

3.0 Introduction

The Kalman Filter is a recursive algorithm used to estimate the state of a system
from noisy measurements. It minimizes the mean square error between the
estimated and true states of the system by combining past information and new
measurements in an optimal way. Let us understand with a simple example,
imagine you're trying to track the position of a car using a GPS device. The GPS
provides noisy data due to interference, weather, etc., so the position estimates
aren't perfect. The Kalman filter helps by using both the previous position of
the car and a model of how fast the car is moving to predict where it should be.
Then, it updates this prediction using the GPS reading, while also accounting
for the noise. Over time, this process produces a very accurate estimate of
where the car actually is, despite the noisy GPS measurements. Also, we have
to keep it in mind that the Kalman filter works only in discrete domain as it
checks for the updates on the particular time instance and accordingly
proceeds. In this scenario firstly we will be requiring the plant’s the state space
input and output equations are represented in the discrete domain and then we
can move on with its working. In summary, the Kalman filter is a method that
combines predictions from a system model with noisy measurements to
provide an accurate estimate of the system’s state. It’s powerful because it can
continuously update its estimate as new data comes in, making it ideal for

tracking and estimation in dynamic systems. It's widely applied in fields like
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navigation, control systems, robotics, and economics, where you need to make

sense of noisy data to predict or track the state of a system [Brown2012].
3.1 Working principle
To explain how it works, let’s break it down step by step -

a) Basic idea:

The Kalman filter continuously estimates the current state of a system by

combining two pieces of information [Brown2012]:

¢ Predicted state: What the system should be, based on a model of how
the system behaves.
e Measured state: What the system seems to be, based on sensor readings

or observations, which often contain noise or inaccuracies.

By blending these two inputs, the Kalman filter finds a best estimate that

minimizes error.
b) How it works:

The process of the Kalman filter can be understood as happening in two main

steps, which repeat at every time step.
Step 1: Prediction (What should happen):

The Kalman filter uses the previous state (the last known information) and a
model of the system (how things are expected to evolve) to predict what the

current state should be. This is based on knowledge of how the system behaves
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over time. However, this prediction is only an estimate, and it might not be

entirely accurate [Brown2012].
Step 2: Update (What actually happens):

Once a measurement or observation of the current state is made (for example,
from a sensor), the Kalman filter compares this measured state to its predicted
state. Since measurements can have noise (random errors), the filter doesn’t
trust the measurement completely. Instead, it blends the prediction and the
measurement to get a new, updated estimate that is more reliable than either

one on its own [Brown2012].
c) Balancing prediction and measurement:

The key strength of the Kalman filter is its ability to weigh the predicted state
and the measured state intelligently. If the measurement seems very noisy
(unreliable), the filter will trust the prediction more. If the prediction model is
not very precise, the filter will lean more on the actual measurement. This
balance is achieved by assigning "weights" based on how confident the filter is

about the prediction versus the measurement [Brown2012].
d) Continuous loop:
This process of prediction and update happens at each time step:

e First, the filter makes a prediction based on the past state and system
model.
e Then, it takes in the new measurement, combines it with the prediction,

and updates its estimate.
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This allows the filter to track the state of the system over time, even if the data

is noisy or incomplete [Brown2012].
e) Why it’s useful:

¢ Noise Handling: The Kalman filter is very good at filtering out random
noise in measurements and providing a smoother, more accurate
estimate of the system’s state.

¢ Real-Time Updates: It works recursively, meaning it updates estimates
as soon as new data is available, making it suitable for real-time
applications like GPS tracking or robotic navigation.

¢ Uncertainty Management: [t can handle uncertainty in both the system
model and the measurements, which makes it versatile for many

applications.

3.2 One-dimensional Kalman filter

The one-dimensional Kalman filter is the simplest form of the filter, used when
the system can be described with a single state variable and the measurements
are scalar values. In this case, the state of the system at time k is represented
by a scalar x;, and the filter estimates this state using noisy measurements z.
Since in this case all the state variables are scalar in nature thus these are
nothing but matrices with a single value. So only for this case we are not going
to use matrices rather just simple variables storing single values in them. The
filter follows two key steps prediction and update. Before that we need to come
up with the discrete time domain input and output equations of the given plant.

Here it is represented as follows [Brown2012]

Xk+1 = Fkxk + Wik cen oen . (1)
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Where:

® X, isthe predicted state.

e F, is the state transition matrix, describing how the state evolves from

time step k to k + 1.
e X, is the state vector at time ty.
e Wy is the process noise (Gaussian white noise).
e v, is the output state.
e H, is the observation matrix.
e v, is the measurement noise (Gaussian white noise).

1. Prediction step

The filter predicts the next state of the system using a model of the system's
dynamics. It also projects the error covariance matrix, which quantifies the
uncertainty in the prediction. The state prediction can be described by
[Brown2012]:

fl:+1 = kak ......... (3)

Where:

® X,.qisthe predicted state.

e F, is the state transition matrix, describing how the state evolves from

time step k to k + 1.

e X, is the state vector at time t;.

The error covariance matrix, Py, is updated as [Brown2012]:
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Piiq = FxPeFT + Qg .. ... ... (4)
Where:

e P, ., isthe priori predicted error covariance.

e F, is the state transition matrix, describing how the state evolves from

time step k to k + 1.
e P, is the error covariance matrix associated with the estimate Xy,
e () is the covariance matrix of the process noise wy.
e Wy is the process noise (Gaussian white noise).
2. Determination of Kalman gain

In this step, the Kalman gain is found Kj, which determines how much the

prediction should be corrected based on the new measurement [Brown2012]:
Ky, = P HY (H P HE + Rp) ™Yo (5)
Where:

e H, is the observation matrix.

e K is the Kalman gain, a blending factor for updating the estimate using

measurements.
e P, ., isthe priori predicted error covariance.

e R, is the covariance matrix of the measurement noise vy,.
3. Update step

In this step many variables are updated subsequently such as X;.,; , Pr+1,€x

also the filter incorporates the new measurement z;, to correct the prediction.

The state estimate is then updated [Brown2012]:
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Xpr1 = Rieyr + Kz — HiRjg1) woe e oo (6)

Where:

e X, ., isthe posterior predicted state.
® X,.q is the priori predicted state.

e K is the Kalman gain, a blending factor for updating the estimate using

measurements.
e 7, is the observation (measurement) vector at time t;.

e H, is the observation matrix, mapping the true state to the observed

state.

The error covariance matrix is updated to reflect the improved estimate

[Brown2012]:

Pryr = (I = KeHi) Py vee e e (7)
Where:

e Py, isthe predicted error covariance.

e K is the Kalman gain, a blending factor for updating the estimate using

measurements.

e H, is the observation matrix, mapping the true state to the observed

state.
e P, ., isthe priori predicted error covariance.

Also we have to find the error matrix to actually find how good the filter is

working, so it can be found out as follows [Brown2012]
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Where:
e ¢, is the error matrix.
e X, is the actual value of the state.
e X, is the estimated value of the state.

4. Kalman filter algorithm

)
0’0

Initialization: Start with an initial estimate X, and covariance P,.
% Prediction:
e Predict the next state X, 1.

e Update the error covariance Py ;.

*

% Measurement: Obtain the new measurement zj.

)
0’0

Update:
e Compute the Kalman gain K.
e Update the state estimate Xy, ;.
e Update the error covariance Py 4.

+ Repeat for each new measurement.
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5. Flowchart

We have already discussed about the working algorithm and the steps of the
Kalman filter. Now with the help of a flowchart we will understand how actually
the steps has been followed and implemented in the MATLAB. This portion of
the flowchart will be in a loop since it is a recursive process and requires a

number of iterations to get better results [Brown2012].

Initialize Xy, Py, x,

l

Piyq = FiPFL + Qy

| |

ey = Xy — Xy, >

Pyy1 = (I — K Hy)Pryq Ky = P HE (H Py Hi + R) ™!
Ri+1 = X1 + K (2 — HiXjey 1) < X1 = FieXy

Fig.1 Flowchart of the Kalman Filter

This filter optimally balances the information from the predicted model and the
noisy measurements, providing an accurate state estimate even in uncertain
conditions. This overview summarizes the basic principles and operation of the
discrete Kalman filter, with its key mathematical equations, steps, and a

flowchart for understanding it’s working.
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3.3 Two-dimensional Kalman filter

The two-dimensional Kalman filter extends the basic concept to systems with
two state variables. A two-dimensional Kalman filter is an extension of the
Kalman filter designed to estimate the state of a system where there are two
variables or dimensions involved, such as position in 2D space (e.g., x and y
coordinates). Like the one-dimensional version, it works by combining
predictions based on a system model with noisy measurements to produce
more accurate estimates over time. These could represent quantities such as
position and velocity in two-dimensional space. Let’s understand with a simple
example imagine you're tracking the position of a moving object, such as a
robot, on a 2D grid (like a plane). The robot moves around, and you want to
estimate its position (x and y coordinates) over time based on sensor readings.
The sensor readings are noisy, so the measurements might not be fully reliable.
The two-dimensional Kalman filter helps by predicting the next (x, y) position
of the robot based on its previous position and speed. Also updating this
prediction with new sensor data about the robot’s current position, while

taking into account the noise in the measurements.

The entire algorithm and the steps that we had followed in one dimensional
Kalman Filter are exactly same as in two dimensional Kalman filter, the only
difference here is that the variable in one dimensional Kalman filter were
singleton matrices but in two dimensional it will be not. We will see here how

the dimensions of each of the variables changes here.

The state vector is now a column matrix:

X, = [x“‘] ......... 9)

X2k

28




Where x, \ is the first state, and x; j is the second state.

The filter here also follows two key steps prediction and update. Before that
we need to come up with the discrete time domain input and output equations

of the given plant. Here it is represented as follows -

Xk+1 — Fkxk + Wpe oo ol (11)

Where:

® X4 is the predicted state matrix of (2 X 1).

e F, is the state transition matrix of (2 X 2), describing how the state

evolves from time step k to k + 1.
e X, is the state vector of (2 X 1) at time t.
e wy is the process noise (Gaussian white noise) vector of (2 X 1).
e vy, is the output state of (1 X 1).
e H, is the observation matrix of (1 X 2).
e v, is the measurement noise (Gaussian white noise) matrix of (1 X 1).

1. Prediction step

The filter predicts the next state of the system using a model of the system's
dynamics. It also projects the error covariance matrix, which quantifies the

uncertainty in the prediction. The state prediction can be described by:
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Where:

® X .1 isthe predicted state vector of (2 X 1).

e F, is the state transition matrix of (2 X 2), describing how the state

evolves from time step k to k + 1.

e X, is the state vector of (2 X 1) at time t.
The error covariance matrix, Py, is updated as:
Py, = FyP FL + Qp ... ... ... (4.1)
Where:

e P, ., isthe priori predicted error covariance matrix of (2 X 2).

e F, is the state transition matrix of (2 X 2), describing how the state

evolves from time step k to k + 1.

e P, is the error covariance matrix of (2 X 2) associated with the estimate
Xy

e (@ is the covariance matrix of (2 X 2) the process noise wy,.

e wy is the process noise (Gaussian white noise) vector of (2 X 1).

2. Determination of Kalman gain

In this step, the Kalman gain is found Kj, which determines how much the

prediction should be corrected based on the new measurement:

K, = Py, H.(H P, . H. + R ......... (5.1)
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Where:

e H, is the observation matrix of (2 X 1).

e K, is the Kalman gain matrix of (2 X 2), a blending factor for updating

the estimate using measurements.
e P, ., isthe priori predicted error covariance matrix of (2 X 2).

e R;is the covariance matrix of (1 X 1) of the measurement noise vy.
3. Update step

In this step many variables are updated subsequently such as X1 , Px+1,€x

also the filter incorporates the new measurement z;, to correct the prediction.
The state estimate is then updated:

X1 = Xiyr + Ki(Zg — HiXigyq) oo (6.1)
Where:

® Xj.1 isthe posterior predicted state matrix of (2 X 1).
® X .1 isthe priori predicted state matrix of (2 X 1).

e K, is the Kalman gain matrix of (2 X 2), a blending factor for updating

the estimate using measurements.
e 7z, is the observation (measurement) vector of (1 X 1)at time ¢.

e H, is the observation matrix of (1 X 2), mapping the true state to the

observed state.
The error covariance matrix is updated to reflect the improved estimate:

Pk+1 == (I - Kka)PI:+1 ......... (71)
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Where:

e P, ., isthe predicted error covariance matrix of (2 X 2).

e K, isthe Kalman gain matrix of (2 X 2), a blending factor for updating the

estimate using measurements.

e H, is the observation matrix of (1 X 2), mapping the true state to the

observed state.
e P, ., isthe priori predicted error covariance matrix of (2 X 2).

Also we have to find the error matrix to actually find how good the filter is

working, so it can be found out by

Where:

® ¢, isthe error matrix of (2 X 1).

e X, is the actual value of the state vector of (2 X 1).

e X is the estimated value of the state vector of (2 X 1).
4. Kalman filter algorithm

The algorithm works exactly in the same way as already been shown in sub-

part (4) of section (3.2).
5. Flowchart

The flowchart is also the same as shown in Fig. (1).
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3.4 Three-dimensional Kalman filter

A three-dimensional Kalman filter is an extension of the Kalman filter that
estimates the state of a system involving three variables or dimensions. These
dimensions are typically related to physical quantities such as position (x, y, z),
velocity, or other attributes that change in 3D space. The Kalman filter operates
by combining model-based predictions with noisy measurements to refine the
estimate of the system’s state over time. Let us understand with a simple
example imagine you are tracking the 3D position of a drone in flight, where its
position is defined by the x, y, and z coordinates (representing latitude,
longitude, and altitude). As the drone moves, GPS sensors provide noisy data

about its position in 3D space. The three-dimensional Kalman filter helps by:

e Predicting the drone’s next position (x, y, z) based on its previous position
and speed.
e Updating this prediction with new, possibly noisy GPS measurements of

the drone’s current position, resulting in a more accurate estimate.

With each new set of measurements, the Kalman filter adjusts its estimates,

providing smooth and accurate tracking of the drone’s 3D position over time.

In this case the state vector becomes:

X1,k
X = |:x2,k‘ ......... (10)
X3k

Where x, j is the first state, x; j is the second state and x3 is the third state.
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Here also the filter follows two key steps prediction and update. Before that we
again need to come up with the discrete time domain input and output

equations of the given plant. Here it is represented as follows -

Xk+1 — Fkxk + We ool (12)

Where:

® X4 is the predicted state matrix of (3 X 1).

e F, is the state transition matrix of (3 X 3), describing how the state

evolves from time step k to k + 1.
e X, is the state vector of (3 X 1) at time t.
e wy is the process noise (Gaussian white noise) vector of (3 X 1).
e vy, is the output state of (1 X 1).
e H, is the observation matrix of (1 X 3).

e v, is the measurement noise (Gaussian white noise) matrix of (1 X 1).

1. Prediction step

The filter predicts the next state of the system using a model of the system's
dynamics. It also projects the error covariance matrix, which quantifies the

uncertainty in the prediction. The state prediction can be described by:
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Where:

® X .1 isthe predicted state vector of (3 X 1).

e F, is the state transition matrix of (3 X 3), describing how the state

evolves from time step k to k + 1.

e X, is the state vector of (3 X 1) at time ¢.
The error covariance matrix, Py, is updated as:
Py, = FyP FL + Qp ... ... ... (4.2)
Where:

e P, ., isthe priori predicted error covariance matrix of (3 X 3).

e F, is the state transition matrix of (3 X 3), describing how the state

evolves from time step k to k + 1.

e P, is the error covariance matrix of (3 X 3) associated with the estimate
Xy

e (@ is the covariance matrix of (3 X 3) the process noise wy,.

e wy is the process noise (Gaussian white noise) vector of (3 X 1).

2. Determination of Kalman gain

In this step, the Kalman gain is found Kj, which determines how much the

prediction should be corrected based on the new measurement:

K, = Py, H.(H P, . H. + R ......... (5.2)
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Where:

e H, is the observation matrix of (3 X 1).

e K, is the Kalman gain matrix of (3 X 3), a blending factor for updating

the estimate using measurements.
e P, ., isthe priori predicted error covariance matrix of (3 X 3).

e R;is the covariance matrix of (1 X 1) of the measurement noise vy.
3. Update step

In this step many variables are updated subsequently such as X1 , Px+1,€x

also the filter incorporates the new measurement z;, to correct the prediction.
The state estimate is then updated:

X1 = Xiyr + Ki(Zg — HiXigyq) oo (6.2)
Where:

® Xj.1 isthe posterior predicted state matrix of (3 X 1).
® X .1 isthe priori predicted state matrix of (3 X 1).

e K, isthe Kalman gain matrix of (3 X 3), a blending factor for updating

the estimate using measurements.
e 7z, is the observation (measurement) vector of (1 X 1)at time ¢.

e H, is the observation matrix of (1 X 3), mapping the true state to the

observed state.
The error covariance matrix is updated to reflect the improved estimate:

Pk+1 == (I - Kka)PI:+1 ......... (72)
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Where:

e P, ., isthe predicted error covariance matrix of (3 X 3).

¢ K, is the Kalman gain matrix of (3 X 3), a blending factor for updating

the estimate using measurements.

e H, is the observation matrix of (1 X 3), mapping the true state to the

observed state.
e P, ., isthe priori predicted error covariance matrix of (3 X 3).

Also we have to find the error matrix to actually find how good the filter is

working, so it can be found out by

Where:

e ¢, isthe error matrix of (3 X 1).

e X, is the actual value of the state vector of (3 X 1).

e X is the estimated value of the state vector of (3 X 1).
4. Kalman filter algorithm

The algorithm works exactly in the same way as already been shown in sub-

part (4) of section (3.2).
5. Flowchart

The flowchart is also the same as shown in Fig. (1).
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3.5 N-dimensional Kalman filter

An N-dimensional Kalman filter is a generalized version of the Kalman filter
used to estimate the state of a system with N variables or dimensions, where N
can be any number based on the complexity of the system. Like other Kalman
filters, it works by blending predictions from a model with noisy measurements
to produce more accurate estimates over time. Let us understand with a simple
example, consider a complex weather monitoring system where N variables
such as temperature, humidity, wind speed, and atmospheric pressure are
being tracked at various locations. Each of these variables can be noisy due to

sensor inaccuracies. The N-dimensional Kalman filter helps by:

e Predicting the future values of these N weather variables based on a
weather model.
e Updating the predicted values with real-time sensor data, balancing the

prediction with the noisy measurements to refine the estimates.

With each new set of data, the filter continuously improves its estimate of the N
variables, offering more accurate and reliable monitoring of the weather
conditions. It can be used in complex systems, such as in robotic systems, sensor
networks etc. The working principle is exactly the same as the previous two-
dimensional or three-dimensional Kalman filters. The major changes are in the

dimension of all the matrices.
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In an N-dimensional system, the state vector is:

Where x4  is the first state, x, j is the second state and xy j is the Nt state.

Again, the filter follows two key steps prediction and update. Before that we
again need to come up with the discrete time domain input and output

equations of the given plant. Here it is represented as follows -

Xk+1 — Fkxk + Wp oo ol (13)

Where:

® X4 is the predicted state matrix of (n X 1).

e F, is the state transition matrix of (n X n), describing how the state

evolves from time step k to k + 1.
e X, is the state vector of (n X 1) at time ¢t,.
e wy is the process noise (Gaussian white noise) vector of (n X 1).
e vy, is the output state of (1 X 1).
e H, is the observation matrix of (1 X n).

e v, is the measurement noise (Gaussian white noise) matrix of (1 X 1).
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1. Prediction step

The filter predicts the next state of the system using a model of the system's
dynamics. It also projects the error covariance matrix, which quantifies the

uncertainty in the prediction. The state prediction can be described by:

Where:

® X ., isthe predicted state vector of (n X 1).

e F, is the state transition matrix of (n X n), describing how the state

evolves from time step k to k + 1.

e X, is the state vector of (n X 1) at time ¢ty.
The error covariance matrix, Py, is updated as:
Py, = FxP FL + Qp ... ... ... (4.3)
Where:

e P, ., isthe priori predicted error covariance matrix of (n X n).

e F, is the state transition matrix of (n X n), describing how the state

evolves from time step k to k + 1.

e P, is the error covariance matrix of (n X n) associated with the estimate
Xy

® (@ is the covariance matrix of (n X n) the process noise wy,.

e wy is the process noise (Gaussian white noise) vector of (n X 1).
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2. Determination of Kalman gain

In this step, the Kalman gain is found Kj, which determines how much the

prediction should be corrected based on the new measurement:
K, = Py, H.(H P, . H. + R ......... (5.3)
Where:

e H, is the observation matrix of (n X 1).

e K, is the Kalman gain matrix of (n X n), a blending factor for updating

the estimate using measurements.
e P, ., isthe priori predicted error covariance matrix of (n X n).

e R;is the covariance matrix of (1 X 1) of the measurement noise vy.
3. Update step

In this step many variables are updated subsequently such as X1 , Px+1,€x

also the filter incorporates the new measurement z;, to correct the prediction.
The state estimate is then updated:

X1 = Xiyr + Ki(Zg — HiXigyq) o (6.3)
Where:

® Xy, isthe posterior predicted state matrix of (n X 1).
® X .1 isthe priori predicted state matrix of (n X 1).

e K, is the Kalman gain matrix of (n X n), a blending factor for updating

the estimate using measurements.

e 7z, is the observation (measurement) vector of (1 X 1)at time ¢.
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e H, is the observation matrix of (1 X n), mapping the true state to the

observed state.
The error covariance matrix is updated to reflect the improved estimate:
Py, =U—-K.H)Pyiq...... (7.3)
Where:

e P, ., isthe predicted error covariance matrix of (n X n).

e K, isthe Kalman gain matrix of (n X n), a blending factor for updating the

estimate using measurements.

e H, is the observation matrix of (1 X n), mapping the true state to the

observed state.
e P, ., isthe priori predicted error covariance matrix of (n X n).

Also we have to find the error matrix to actually find how good the filter is

working, so it can be found out by

Where:

® e, is the error matrix of (n X 1).

e X, is the actual value of the state vector of (n X 1).

e X is the estimated value of the state vector of (n X 1).
4. Kalman filter algorithm

The algorithm works exactly in the same way as already been shown in sub-
part (4) of section (3.2).
5. Flowchart

The flowchart is also the same as shown in Fig. (1).
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3.6 Case study : Application of KF for a 3D linear
system

The Kalman filter is specifically designed for linear systems and works
effectively when the system's dynamics and the measurement process can be
described using linear models. A linear system is one where the relationship
between variables is proportional, meaning that the system's behaviour can be
described using linear equations. Here the variables are not interdependent on
other variables nor are function of any other variable. For linear systems, the
Kalman filter operates efficiently by utilizing the linear relationship between
the system's current state, its previous state, and the measurements. Here’s how

it functions in a linear system:
¢ System model:

We have taken a linear system with all its parameters as follows:

09 0 0
F=10 08 0
0 0 0.7

H=[1 01 0.2]

R =[1]
1 0 0
P,=10 1 0
0 0 1




1
1
1

-l

¢ Filter parameters:

09 0 0
FF=[0 08 0
0 0 07

Hr=[1 01 02]

0.1 O 0
Qf =10 01 O
0 0 0.1

Rf = [1]

|

|

The Kalman filter assumes that the current state of the system depends linearly

on the previous state and possibly some control inputs. We have taken the

above and has developed a MATLAB code. This code has been so developed that

it can be used for one-dimensional, two-dimensional

, three-dimensional and N-

dimensional systems. Just by changing the order number and according to the

order number the required input matrices has to be changed accordingly then

we are good to go.

Here are some responses when we had got, the system

parameters and filter parameters are known, moreover we are making the filter

parameters same as that of the filter parameters so that we can see whether the

Kalman filter is actually working by tracing the original response of the system.
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Here are some of the results for the above system:

1. Here is a result of a known 3rd order system with a time up to 60
seconds and 5000 Monte Carlo runs.

Plot for state 1 having 5000 MCruns
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1. Plot for state 2 having 5000 MCruns
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Plot for state 3 having 5000 MCruns

mean square emor

— P

09 -

08+

0.7+

06~

05+

04-

03

02 p—

01 | 1 1 1 1
0 10 20 30 40 50 60

Time Step = 60 seconds

Fig.4

2. Here is the result of the same known 34 order system with a time up to
60 seconds and 15000 Monte Carlo runs.

Plot for state 1 having 15000 MCruns
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From the above results, it is clear that the Kalman filter performs
effectively with a known linear system. Moreover, we can adjust or fine-
tune the filter parameters based on our requirements and observe how
these changes influence its behaviour. It is also noteworthy that
increasing the number of Monte Carlo runs from 5,000 to 15,000
smoothens the ripples, and the predicted state closely aligns with the
actual state.

In a relatively short time, the Kalman filter successfully traces the
system's actual state, even with the presence of both measurement and
process noise. In the next chapter, we will extend this analysis to
nonlinear systems using the Extended Kalman Filter (EKF) and the
recently proposed Adaptive Kalman Filter (AKF) to evaluate their

performance and potential improvements.
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Chapter 4 - Brief overview of Extended
Kalman filter (EKF)

4.0 Introduction

The Extended Kalman Filter (EKF) is an advanced version of the Kalman Filter,
designed to handle nonlinear systems. While the standard Kalman Filter is
optimal for systems with linear dynamics, the EKF extends its functionality to
nonlinear processes, making it particularly useful in many real-world
applications, such as robotics, navigation, and battery state-of-charge (SOC)
estimation. In nonlinear systems, both the state dynamics and measurement
processes may involve nonlinear relationships. The Extended Kalman Filter
(EKF) tackles this by approximating nonlinear functions through linearization.
At each step, it employs a first-order Taylor series expansion around the current
estimate to provide an approximation of the nonlinear functions. This allows
the EKF to perform the standard Kalman Filter's prediction and update steps
but applied to a locally linearized version of the system. The Extended Kalman
Filter (EKF) is a widely used technique for state estimation in nonlinear
systems, and in the paper [Proctor2020], it is applied to estimate the State-of-
Charge (SOC) of rechargeable batteries using the Nonlinear Double-Capacitor
(NDC) model. The NDC model is a novel equivalent circuit model (ECM) that
simulates charge diffusion and nonlinear voltage behaviour in batteries,
offering better accuracy in predicting SOC. The Extended Kalman Filter (EKF) is
mostly used because of its computational efficiency and ability to track the state

of nonlinear systems in real time. However, it relies on the accuracy of the
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linearization process, which may not be sufficient for highly nonlinear systems,
but it works effectively when the nonlinearity is mild, as in many engineering
applications.

The EKF can be represented as follows -
Xier1 = [, W) + W e e (12)

Vi = h(xp, ) + Vg vev e e (13)

Where:
e X, is the state vector at time k.
® X, isthe predicted state.
e f(xy, ug) is the nonlinear function of state & input at time k.
e 1, isthe input.
e v, is the measured output.

e Wy is the process noise which is assumed to be Gaussian with

covariance Q.

e v, is the measurement noise, assumed to be Gaussian with
covariance R.

e h(x,uy) is the nonlinear function of state & input at time k.

e For the state transition function f(x), the Jacobian is:

0
Fk=_f

Ox | Tr—-11k-1

e For the measurement function h(x), the Jacobian is:

oh

H =—]»
k Qx| Fkik-1
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4.1 Application of EKF for SOC estimation

Here we have taken the Nonlinear Double-Capacitor (NDC) model that

simulates charge diffusion and nonlinear voltage behaviour in batteries,

offering better accuracy in predicting SOC. Using discrete time domain state

space form the system dynamics are represented. However, the model we are

working with has linear process equation and nonlinearity only in the output

equation [Proctor2020].

Xps1 = Fxp + Gup + wye oo .. (14)
Vi = h(Xp, Ug) + Vg v oen o (15)
given that -
F=elT .. ... (16)
G=([, e*Tdt) *B ... (17)
Where:

e X, is the state vector at time k.
e 1w, is the input current.

e 7y, is the measured voltage.

e Wy is the process noise which is assumed to be Gaussian with

covariance Q.

e v, is the measurement noise, assumed to be Gaussian with

covariance R.

e h(x,uy) is the nonlinear function of state & input at time k.
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4.1.1 Problem statement: Nonlinear double
capacitor model

The non-linear double capacitor model we have considered is basically used to
track three state variables V,(t) , V.(t) and V,(t) at every instant of time from
where we can directly infer the SOC [Proctor2020].

The NDC model and its state space representation is given by-

r T

]
;
~ ) { % U= h(¥)

;Cb

Fig. 8 Non-linear double capacitor model [Proctor2020]

% Input equation:

ho| o

V(0 =A|V,(t) |+ BI(D) ...... .. (18)
A0

A0

% Output equation:
V() = h(Vs(©) = Vi(6) + RoI(t) .. . . (19)
% State variables:

e V,(t): Voltage across the bulk region of the electrode in the

nonlinear double-capacitor (NDC) model.
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e V.(t): Voltage across the surface region of the electrode in the NDC

model.
e 1, (t): Voltage across the resistor-capacitor (RC) circuit in the NDC
model.

¢ Input variable:

e [(t): Input current at time t, representing the current flowing

through the battery.

+ System matrices:

e A: The system matrix, which defines the relationships between
the state variables V, (t), V.(t), and V;(t) in terms of their rates of
change.

e B: The input matrix which defines how the input current I(t)
influences the state variables.

+* Nonlinear function:

o h(VS(t)): A nonlinear function representing the open-circuit

voltage (OCV) as a function of the surface voltage V;(t). It accounts
for the nonlinear relationship between the SOC and the terminal

voltage of the battery.

¢ Output variable:

e V(t): The measured terminal voltage of the battery, which is a
combination of the nonlinear OCV function h(VS(t)), the internal
voltage V;(t), and the product of the internal resistance R, and

the input current I(t).
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+ Resistance:

e R,: The internal resistance of the battery, which affects the

voltage drop due to the input current I(t).

These equations together form the core of the battery's dynamic model in the
context of state-of-charge (SOC) estimation using the Extended Kalman filter
(EKF). The matrices A and B used in equation (18) in the state-space model of
the Nonlinear Double-Capacitor (NDC) model are as follows [Proctor2020]:

Matrix A:
- 1 1 ) ]
Ch (Rlb +Rs)  Cp(Ryp ‘1" R;)
A= C.(R,*R) C.R,+R) 0 .. (20)
1
i 0 0 " R,C,]

e (,: Capacitance representing the bulk portion of the battery electrode.
e (,: Capacitance representing the surface region of the electrode.

* R;,: Resistance in the bulk region of the battery electrode.

e R,:Resistance in the surface region of the battery electrode.

e R;:Internal resistance in the RC branch.

e (;: Capacitance in the RC branch.
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Matrix B:

e The elements in matrix B show how the input current I(t) influences the
voltages V, (t), V. (t), and V; (¢t).
% Matrix A governs the internal dynamics of the system, representing how

the voltages across the different capacitors change over time.

% Matrix B represents how the input current I(t) affects the state variables

(voltages) in the system.

These matrices are crucial components in the state-space representation of the
NDC model, used to estimate the (SOC) via the extended Kalman filter (EKF).
The above system we are working with is non-linear in nature which can be
determined from the measurement output equation (19). Here we are going to
discuss about how to calculate the SOC and the non-linearity and how we can
linearize it. In the non-linear measurement equation, the hA(V;) is the non-linear
output function determining the nonlinear behaviour of the voltage which is

parameterized through a second-order polynomial [Proctor2020].

soc =2 EYs 00 (22)
— Cb + CS (0 T
h(VS') B 0(0 + 0(1VS + azllsz ......... (23)

IA
—_

Here, the value of V; has been set in between 0 < I
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4.1.2 EKF formulation

The model's low dimensionality and nonlinearity makes the Extended Kalman
Filter (EKF) a suitable choice. Since the system only has three dimensions,
applying the EKF is relatively simple. The main challenge comes from the
nonlinear measurement equation, and the EKF's linearization effectively
addresses this issue, making it an efficient solution Since, the NDC model
consists of only three states, enabling efficient computation when applying the
EKF. Moreover, the model’s nonlinearity is limited to the measurement process,
which simplifies the linearization and makes implementing the EKF easier. This
approach is then thoroughly tested through simulations and experiments.
Alongside this we need to keep in mind that if the non-linearity is much more
than desired then EKF might fail to incorporate accurately results, in that
scenario we have to further reach out for other versions of Kalman filters

available which will be able to give us better results in this respect.

The EKF algorithm is exactly same as the KF algorithm with only the
introduction of the non-linear function which we will be looking into. Apart
from that the rest of the algorithm is same as that of the KF. It majorly includes

three steps that is to be followed -

e Prediction:
Xes1 = FiXp + Guy ... ... ... (24)
Piiq = Fx P FT + Qg oo o. ... (25)
e Measurement update & Kalman gain:

Xpr1 = Riegr + Kz — HiRjg1) voe e oo (26)
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Where the Kalman Gain K}, is computed as:
Ky, = P HY (H P HE + Rp) ™1 (27)
Here, Hy, is the Jacobian matrix of the measurement function h(xy),

which is calculated as:

dh
H, = E | =gy e e o (28)
e Update of error covariance:
Pk+1 == (I - Kka)Pk_+1 ......... (29)

Now the main thing to do is linearize the above nonlinear polynomial. This can
be done with the help of Jacobian.

¢ The Jacobian matrix:

In control systems, the Jacobian refers to a matrix of partial derivatives that
represents how small changes in input variables affect the output of a system.
It is particularly useful when dealing with nonlinear systems, where the

relationship between inputs and outputs isn’t linear.

For a nonlinear system described by a vector of state equations x and outputs
y, the Jacobian matrix provides a linear approximation of the system's
dynamics around a specific operating point. It helps in understanding how the

system behaves locally near that point.

In the context of a system defined by:

e State equations: x = f(x,u)

e Output equations: y = g(x,u)
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Where:

e X is the state vector
e uis the input vector

e f and g are nonlinear functions

¢ Jacobian of the state equation:

of

A =—, which describes how the states change with small

ox

variations in the state vector.

of

B = —, which describes how the states change with small

ou’

variations in the input vector.

¢ Jacobian of the output equation:

o C =3_i' which describes how the outputs change with small

variations in the state vector.

0

e D =£, which describes how the outputs change with small

variations in the input vector.

In control theory, the Jacobian matrix is especially important in linearizing

nonlinear systems around a certain operating point, which allows the use of

linear control techniques like the Kalman filter. The Jacobian matrix Hj, is the

partial derivative of the measurement function h(x) with respect to the state

vector x. It linearizes the nonlinear measurement function around the current

state estimate. In this case, the measurement function h(x) is related to the

battery voltage, which depends on the surface voltage V;, and the internal state

variables 1, V;, V; [Proctor2020].
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The Jacobian matrix Hy, is given by [Proctor2020]:

Ok _[0h(V) 8R(Vy) Oh(V)]
ax X=Xk|k-1 - aVb aI/S aVl .........

Hk=

For the NDC model, the specific form of Hj, is [Proctor2020]:

1(k)C,
Q,

+ (=Y, Y, 77350C 4y, y e Ys(1-S00) Z22Ts

(=¥, y5e71350C 4y, y e ¥s(1-500) 2 2b

oh(Vy)
aVs

[(R)C | wee o (31)
Q

-1

Where:

The

SOC is the state of charge, which is dependent on V}, and V.

h(V;) is a nonlinear function of V;, the surface voltage.

Oh(Vs) _

oV, a, + 2a,V; is the derivative of the nonlinear function

representing the open-circuit voltage (OCV).

¥2,V3,Va, Vs are the parameters of the internal resistance model that

depends on the SOC.

I(k) is the input current at time k.

C,, C, are the capacitances of the capacitors.
Q; is the total battery capacity.

Jacobian matrix H, linearizes the nonlinear measurement function,

allowing the EKF to handle the nonlinearity in the system efficiently. This

approach ensures accurate estimation of the battery’s SOC using the NDC model

and the extended Kalman filter.

59




Chapter 5 - Recently proposed Adaptive
Kalman Filter (AKF)

5.0 Introduction

To deal with mild nonlinearity we have seen that EKF performs quiet well but
in the nonlinear model we are working with EKF is failing to converge or reduce
the root mean square error. This is very natural as if the nonlinearity is of strict
nature EKF do fail at times for such scenarios some other variations of Kalman
filters had been developed such as Sigma Point Kalman Filter, Unscented
Kalman Filter, Square-root unscented Kalman Filter, Adaptive Square root
unscented Kalman Filter and etc. Here we are going to implement a recently
proposed Adaptive Kalman Filter [Takayama2024].

The paper [Takayama2024] introduces a new method to improve the
performance of the Kalman filter, which is commonly used for estimating the
state of a system, such as the position or speed of a moving object. The Kalman
filter works by combining measurements from sensors with a mathematical
model of the system. However, when the model or measurements are not
accurate, the filter can make poor estimates or even fail, a problem known as
"filter divergence."

The proposed solution focuses on adjusting the "process noise," which accounts
for uncertainties in the system model. Traditional approaches to this problem
add extra noise to the system manually, which can sometimes make the filter
overly cautious, leading to large errors in the estimates. This is especially

problematic when the number of measurements is smaller than the number of
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variables being estimated, which is common in complex systems like
autonomous vehicles or robots navigating through environments with changing
conditions.

What makes this new method different is that it adapts the process noise
dynamically, based on the structure of the measurement matrix—the matrix
that links the system's state to the measurements. The measurement matrix
changes depending on the quality and quantity of the available measurements,
such as when a robot moves into an area with fewer sensors or a vehicle loses
satellite signals.

The paper's approach involves using this measurement matrix to adjust the
process noise at each time step, ensuring that the filter remains flexible and
avoids becoming overly cautious or aggressive in its estimates. Unlike previous
methods, this technique does not rely on the measurements themselves to make
adjustments but uses the structure of the matrix to ensure that errors are
minimized. This leads to more accurate state estimates without the
unnecessary inflation of estimation errors that can occur in traditional
methods.

We are mainly interested in the algorithm of the recently proposed Adaptive
Kalman Filter which we are going to implement in the nonlinear system that we
are working on and our main objective is to check whether the recently
proposed Adaptive Kalman Filter gives better results as compared to that of the
Extended Kalman Filter which had been suggested in the paper [Proctor2020].
This is a smarter way to handle uncertainties in system modeling and
measurement variations, leading to more reliable and accurate state estimation

in complex, real-world systems.
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5.1 Working principle

We had already discussed earlier in Chapter 3 the working of the Kalman filter,
the recently proposed adaptive Kalman filter is nothing different from it. Just
the only major difference is in the algorithm that we had taken from paper
[Takayama2024], which we are going to discuss here.

The main objective here is to get the results improved with respect to the
Extended Kalman filter that we had discussed in Chapter 4. The adaptive
Kalman filter proposed in the paper [Takayama2024] improves the
performance of the traditional Extended Kalman Filter (EKF) by dynamically
adjusting the process noise covariance based on the measurement matrix. The
adaptive Kalman filter introduced in the paper [Takayama2024] tackles these
issues by adjusting the process noise covariance dynamically at each time step.
The novelty here is that this adjustment depends on the measurement matrix
H,,, which describes how the system's state relates to the measurements, rather
than the measurements themselves. The main idea is to adapt the process noise
in such a way that it reflects the current measurement configuration, improving
filter performance in changing environments.

Now let us understand how the recently proposed Adaptive Kalman filter works
[Takayama2024].

e Measurement matrix H;: The filter continuously monitors the
measurement matrix, which changes depending on the quality and
quantity of the measurements at each time step.

¢ Fictitious Noise §Q;: At each time step, the filter adds an optimal amount

of fictitious noise to the process noise covariance. This fictitious noise
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helps account for uncertainties in the model that are not captured by the
fixed process noise.

Dynamic Adjustment: The fictitious noise § Q, is computed based on the
measurement matrix Hj. Specifically, the fictitious noise is chosen to
minimize the expected value of the measurement residuals (the
difference between actual and predicted measurements). By doing this,
the filter ensures that it does not unnecessarily inflate the estimation
error covariance, which would make the estimates less accurate.
Kalman Gain Update: The Kalman gain, which controls how much the
state estimate should be adjusted based on the new measurements, is
also updated to incorporate the fictitious noise. This ensures that the
filter remains responsive to changes while avoiding over-correction
when measurements are sparse or unreliable.

State Update: With the updated Kalman gain and the innovation
(difference between the actual and predicted measurements), the filter
adjusts the state estimate. This step is similar to the traditional Kalman
filter, but now the process noise has been dynamically adapted to reflect

the current measurement conditions.

5.2 AKF with nonlinear systems

Here, we are taking the same Nonlinear Double-Capacitor (NDC) model that

simulates nonlinear voltage behaviour in batteries, offering better accuracy in

predicting SOC which we had already discussed in Chapter 4. Now we are going

to discuss how the recently proposed adaptive Kalman filter algorithm has been

implemented using MATLAB.
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Note: Since it is a third order model so the matrices will be defined accordingly.

Update of Covariance [Takayama2024]:

P;(8Q}) = Fy P FF_ 4+ Qx + 605 ... ... ... (32)

P, (6Qy) is the prior estimation error covariance matrix after adding

optimal fictitious noise.

Fj._,is the Jacobian of the system model.

P/_, is the posterior estimation error covariance matrix.
Qy is the process noise covariance matrix.

& Qy is the optimal fictitious noise covariance matrix.

Kalman Gain [Takayama2024]:

Ky, = P HY (H P HE + Ri) ™Yo (33)

Where:

H,, is the observation matrix.
K, is the Kalman gain matrix.
Py, is the priori predicted error covariance matrix.

R} is the covariance matrix of the measurement noise vy,.

Prediction Step [Takayama2024]:

Where:

® X ., isthe predicted state vector.

e F, is the state transition matrix, describing how the state evolves.
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e Xx is the state vector.
Also,
Op = HIR'Hy, ... ... .. (35)
Where:

e H; is the measurement matrix.

e R; is the measurement noise covariance matrix.

Optimal Scaling Factor [Takayama2024]:

tr(0)
tr(0; P, + 01)

ay =

Where:
e tr(A) is the trace of matrix A, which is the sum of its diagonal elements.
e 0%, 0f, 07 are the powers of the measurement matrix Oy.
e P, isthe prior estimation error covariance matrix.

Optimal adjustment of the error covariance matrix [Takayama2024]:
APy = a;, O ... ... ... (37)
Where:

e (, is the optimal scaling factor for the measurement matrix Oy.

e 0, = HIR;'H, is the product of the transpose of the measurement
matrix, the inverse of the measurement noise covariance, and the

measurement matrix.
Optimal adjustment of the Kalman Gain [Takayama2024]:
AK; = APFHIREY ... ... ... (38)
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Where:

e H; is the measurement matrix.
e R, is the measurement noise covariance.
e APy is the updated error covariance matrix.

Computation of Fictious Noise [Takayama2024]:

8Qr = [I — (K, (0) + AKOH 1™ X [AP; — AKy (H Py (O)H{ + Rp)AK] ]
X [I — (K (0) + AKDH,]T ...... ... (39)

Where:

e | is the identity matrix.

e R; is the measurement noise covariance matrix.
e APy is the updated error covariance matrix.

e AKj is the adjusted Kalman gain.

e H; is the measurement matrix.

e K;(0) is the initial Kalman gain.

e P, (0) is the initial covariance matrix.
Updated Kalman gain [Takayama2024]:
K (8Q7) = P (SQHE (HycPy (SQHE + R)™ = Ky + AKj ... .. .. (40)

e K;(6Qp) is the Kalman gain matrix with the optimal fictitious noise.
e P, (6Qp) is the prior estimation error covariance matrix.

e H; is the measurement matrix.

e R; is the measurement noise covariance matrix.

e AKj is the adjusted Kalman gain matrix.
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e K is the Kalman gain matrix.
Updated posterior state estimate [Takayama2024]:
g (6Qk) = X + K (6Q) [y — h(E] .. ... .. (41)

e X isthe prior state estimate vector.
e K;(6Qp) is the Kalman gain matrix with optimal fictitious noise.

e v, is the measurement matrix.

h(Xy ) is the predicted (observation) measurement matrix.

Updated error covariance matrix [Takayama2024]:
Py (6Qp) = [I = K (6Qi)HilPr (8Q) oo v (42)

° P,:’ (6Qy) is the posterior estimation error covariance matrix.
e | is the identity matrix.

e K;(6Qp) is the Kalman gain matrix.

e H; is the measurement matrix.

e P, (6Qp) is the prior estimation error covariance matrix.

Updated error matrix:

Where:
e ¢, is the error matrix.
e X, is the state vector.

e X, is the predicted state vector.
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The flowchart is as follows:

s

aps . A~ *
Initialize %,, Py, X0, 5Q;

Pk_(ngi) = Fk—lplj—1FkT—1 + Qx + 60y

Ky = Py H (Hi Py H + Ri)™

Rier1 = FiXy

O = leRllek

tr(02)

ay =—————
(03P + 09)

AP,: = a’,’éOk

AK; = AP;HTR;*

8Qk = [I — (Kx(0) + AK)H, ™"
X [AP; — AKy (H P (O)Hy, + Ri)AK,]
X [I - (K (0) + AK)H, ™"

K (6Qi) = K + AK

2¢ (6Qi) = % + Ky (6Qi) [y — h(2i0)]

PE(6Qi) = [I — Ki(5Qi) Hi 1P (6Q5)

AVAVAVARNAVAVAWAYAVAYAYA

ex = X — X

Fig. 9 The flowchart of AKF.
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Chapter 6 - Comparison between EKF &
AKF

6.0 Introduction

The Extended Kalman Filter (EKF) and Adaptive Kalman Filter (AKF) are
critical tools for estimating states in dynamic systems, especially in scenarios
where traditional linear models fall short. The EKF extends the standard
Kalman Filter to handle mild nonlinearity by approximating nonlinear
functions around a specific point, making it useful in applications such as
robotics, navigation, and battery management. For example, it has been
successfully applied in estimating the State-of-Charge (SOC) of batteries.
However, the EKF’s reliance on linearization makes it less accurate for systems
with strong nonlinearity, where it can struggle to provide stable and precise
estimates. The AKF builds upon the EKF by introducing adaptability, which
allows it to dynamically adjust its noise model based on the quality and
availability of measurements. Unlike the EKF, which operates with a fixed
process noise, the AKF incorporates a mechanism to tune this noise according
to current measurement configurations, allowing it to respond flexibly to
measurement uncertainties. This adaptive nature enables the AKF to handle
more complex, nonlinear systems with greater reliability, minimizing the
errors that typically challenge other filters. In this chapter we are going to study
a comparison between the EKF & AKF which we had already studied in the

previous chapter 4 & 5 respectively.
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Both EKF & AKF has been implemented on a specific system which has been
taken from [Proctor2020].

The system parameters are as follows:

C, = 10037 F
Cs =973 F
R, = 0.019 Q
R, =0Q
R, =0.02 Q
C; =3250F
Now from the above values we have calculated the following system matrices:
—0.0052  0.0052 0
A=1]0.0541 -0.0541 0
0 0 —0.0154
0
B =1 0.0010
[—0.0003
[ 0.0000 T
G =1 0.0010
|—0.0003.
[0.9949 0.0051 0
F =1{0.0525 0.9475 0
0 0 0.9847
10.1000 0 0
Q= 0 0.1000 0
0 0 0.1000
R =1[0.1000]

Now the filter parameters are as follows:

0.9949 0.0051 0
Fr; =10.0525 0.9475 0

0 0  0.9847
0.1000 0 0
Q;=| 0o 01000 0
0 0  0.1000
Rr = [0.1000]
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6.1 Known Noise Covariance

When Noise Covariance is known, well understood and correctly specified, the
filter can accurately weigh the reliability of the data, resulting in better
estimates. The Kalman gain the factor determining how much the filter adjusts
based on new measurements can be optimally computed. This leads to smooth

and accurate tracking of the system’s state.

With accurate noise covariance values, the filter can reliably produce estimates
without overreacting to random fluctuations or noise. This stability is
particularly beneficial for applications where consistency is more important

than rapid adjustments.

When noise characteristics are known, the filter’s performance is predictable,
making it easier to evaluate its behaviour across different conditions. This
predictability simplifies tuning the filter to achieve desired results, especially in

controlled environments.
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Now we will study some cases where we will see how the known noise

covariance is affecting with the help of some plots-
For 300 Monte Carlo runs:

% R =[0.1] &R, = [0.1]

STATE 1:
EKF & AKF

250
200
150

L
< 100

o
50
0

0 10 20 30 40 50 60 70
-50
TIME (SECONDS)
—— AKF RMSE-S1  ——EKF RMSE S1
Fig.10
STATE 2:
EKF & AKF
300
250
200
w150
Z 100
50
0
0 10 20 30 40 50 60 70

-50
TIME (SECONDS)

e AKF RMISE-S2 == EKF RMSE S2
Fig.11
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STATE 3:

EKF & AKF

2

15
w

g 1
(o'

0.5

0

0 10 20 30 40 50

TIME (SECONDS)

= AKF RMSE-S3 == EKF RMSE S3

Fig.12
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6.2 Effect of unknown measurement noise
covariance

When noise covariance is unknown or not well defined its uncertainty
increases, the filter may either overestimate or underestimate the noise level.
Overestimating noise can make the filter overly conservative, reacting slowly
to changes in the system. Conversely, underestimating noise can make the filter
overly sensitive, causing it to react to random noise as if it were real data. Both

scenarios degrade the filter’s accuracy and reliability.

Benefits of adaptive filtering is that in the absence of known noise covariance,
an AKF’s ability to adjust noise levels dynamically offers a clear advantage by
observing the structure of incoming data, the AKF can approximate noise levels
in real time. This adaptability makes the AKF better suited for applications

where noise characteristics are unpredictable.
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Now we will study some cases where we will see how the unknown

measurement noise covariance is affecting with the help of some plots-

For 300 Monte Carlo runs:

% R =[0.1] &R, = [0.3]

STATE 1:

STATE 2:

RMSE

RMSE

300
250
200
150
100

50

-50

300
250
200
150
100

50

EKF & AKF

TIME (SECONDS)

e AKF RMSE-S1 e EKF RMSE S1
Fig.13
EKF & AKF
10 20 30 40 50 60 70

TIME (SECONDS)

e AKF RMISE-S2 == EKF RMSE S2
Fig.14
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STATE 3:

EKF & AKF

2

15
w

g 1
(o'

0.5

0

0 10 20 30 40 50

TIME (SECONDS)

= AKF RMSE-S3 == EKF RMSE S3

Fig.15

% R =[0.1] &R, = [0.4]

STATE 1:

EKF & AKF

300
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RMSE
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50
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TIME (SECONDS)

= AKF RMSE-S1 == EKF RMSE S1

Fig.16
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STATE 2:

EKF & AKF
300
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200
w 150
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50
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——— AKF RMSE-S2 = EKF RMSE S2
Fig.17
STATE 3:
EKF & AKF
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——— AKF RMSE-S3 ~ ———EKF RMSE S3

Fig.18
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% R =[0.1] &R, = [0.5]
STATE 1:

EKF & AKF
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-50
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Fig.19
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Fig.20
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STATE 3:

EKF & AKF

2
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w

g 1
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Fig.21

% R =[0.1] &R, = [1.0]

STATE 1:

EKF & AKF
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Fig.22
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STATE 2:

STATE 3:

RMSE

RMSE
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Chapter 7 - Discussions & conclusions

This thesis has presented a study of estimating the states for linear and
nonlinear systems through the application of the Kalman Filter (KF), Extended
Kalman Filter (EKF), and recently proposed Adaptive Kalman Filter (AKF). In
particular, we focused on a comparative evaluation between the EKF and the
recently proposed AKF for a specified nonlinear system. Through this
examination, we aimed to understand how each filter adapts to changing
system dynamics, especially under varying levels of measurement noise

covariance.

The EKF, with its ability to linearize nonlinear systems around a current
estimate, has proven effective in handling systems with mild nonlinearity. Our
findings confirm that when the measurement noise covariance R is known, the
EKF provides reliable estimates with minimal error. However, as system
nonlinearity intensifies or measurement noise becomes inconsistent, the EKF
struggles to maintain accuracy, as its performance relies on fixed assumptions

about R and noise structure.

The AKF, on the other hand, incorporates an adaptive approach to dynamically
adjust its process noise covariance based on the observed structure of
measurements. This adaptability proved advantageous, especially in scenarios
where the measurement noise covariance R was unknown. Our results
highlight that, in the absence of a known R, the AKF significantly outperforms

the EKF, showcasing its robustness in uncertain and changing environments.
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This thesis concludes that the choice between the EKF and AKF is significantly
influenced by the knowledge of the measurement noise covariance. When R is
known and consistent, both filters deliver similar levels of accuracy, with the
EKF being a suitable, less complex option for mildly nonlinear systems.
However, when R is unknown or fluctuates, the AKF’s adaptive noise tuning
provides a distinct advantage, as it can self-adjust to maintain accuracy and

prevent divergence.

These findings underscore the importance of adaptive filtering in environments
where noise parameters cannot be reliably predefined, as is often the case in
applications like autonomous navigation, robotic systems, or real-time
monitoring of nonlinear processes. The AKF’s flexibility to unknown noise
characteristics and fluctuating measurement quality positions it as a valuable
tool for state estimation in complex, real-world scenarios where traditional

filters may fall short.

In summary, while the EKF is advantageous for stable and predictable
environments with mild nonlinearity, the AKF demonstrates superior
performance under uncertain conditions, particularly when the noise
covariance cannot be easily ascertained. This research adds to the body of
knowledge on Kalman filtering for nonlinear systems and provides a

foundation for further developments in adaptive filtering techniques.
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Chapter 8 - Future scope

Several avenues for future work emerge from this thesis. First, there is potential
to optimize the computational efficiency of the AKF algorithm. The current
implementation, while effective, could be improved to reduce computational
burden and decrease run time, especially for high-volume Monte Carlo
simulations. Enhancing algorithmic efficiency will be crucial for real-time
applications that require rapid processing and low-latency responses.
Additionally, exploring further optimizations of the AKF algorithm itself may
allow it to better handle severe nonlinearities, expanding its applicability to

more complex nonlinear systems where the EKF is insufficient.

There is also scope to test the AKF in real-world applications beyond simulated
systems, such as autonomous vehicle navigation, UAV control, or battery state-
of-charge estimation in fluctuating operational conditions. These applications
would not only validate the AKF’s adaptability under real conditions but also
provide insights into further improvements for practical, industry-scale

implementations.

In conclusion, the AKF holds considerable promise for adaptive state
estimation, and by addressing the optimization and real-world application
challenges highlighted here, future research can make significant strides in

advancing adaptive filtering technologies for nonlinear systems.
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Appendices

1. MATLAB CODE FOR EKF

clc;

clear all;
close all;
syms s t;

%Step 1 = Matrix calculations
Cb=10037;

Cs=973;

Rb=0.019;

Rs=0;

R1=0.02;

C1=3250;

all=-1/(Cb*(Rb+Rs));
al2=1/(Cb*(Rb+Rs));
al13=0;
a21=1/(Cs*(Rb+Rs));
a22=-1/(Cs*(Rb+Rs));
a23=0;

a31=0;

a32=0;
a33=-1/(R1*C1);

A=[allal2al3;
a2l a22 a23;
a31a32a33];

b11=Rs/(Cs*(Rb+Rs));
b21=Rb/(Cs*(Rb+Rs));
b31=-1/C1;

B=[b11;

b21;
b31];
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% Taking the Inverse Laplace transform and making the F matrix.

si=s*eye(3);
A_inverse=inv(si - A);
A_det=det(A);

F_tilda = ilaplace(A_inverse);

% Performing integration of the F matrix we have to find the G matrix.

f11=(@(t)(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 +576460752303423488000/632343616903526209657);
f12=(@(t)55882864600102721657/632343616903526209657 -
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f21=(@(t)576460752303423488000/632343616903526209657 -
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f22=(@(t)(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 + 55882864600102721657/632343616903526209657);

f33=(@(t)exp(-t/65));

il=integral(f11,0,1);
i2=integral(f12,0,1);
i3=0;
i4=integral(f21,0,1);
i5=integral(f22,0,1);
i6=0;
i7=0;
i8=0;
i9=integral(f33,0,1);

G_bar=[i11i2i3;i4 i5i6;i7 i8 19];
G= G_bar*B;

t=1;

f11=55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656)/632343616903526209657
+576460752303423488000/632343616903526209657;
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f12=(55882864600102721657/632343616903526209657 -
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f13=(0);

f21=(576460752303423488000/632343616903526209657 -
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f22=((576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 +55882864600102721657/632343616903526209657);

f23=(0);

£31=(0);

£32=(0);

f33=exp(-t/65);

F_f=[f11f12 f13;f21 22 £23;f31 £32 £33];

% Finding the "H_f" via making the Jacobian
Vs =0.1;

G;

F f;

%Step 2 = Truth parameters initializations
ql1=0.1;q12=0;q13 =0;
q21=0;922=0.1; 23 =0;
q31=0;932=0;933=0.1;

q(1,1) = 0.1; q(1,2) =0; q(1,3) =0;
q(2,1) =0;q(2,2) =0.1;q(2,3) =0;
q(3,1) =0;q(3,2) =0;q(3,3) =0.1;

F=F f;
Q=[q(1,1) q(1,2) q(1,3);
a(2,1) q(2,2) q(2,3);

a(3,1) q(3,2) q(3,3)];
R=[0.1];

%Step 3=Filter parameters
G;

F_f;

Q f=[q(1,1) q(1,2) q(1,3);
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a(2,1) q(2,2) q(2,3);
a(3,1) a(3,2) q(3,3)];
R_f=[0.5];

limit = MCruns*N;

xt=zeros(order,1); %state

x_minus=zeros(order,1); %previous estimate
x=zeros(order,1); %estimates

xhat=zeros(order,1);

p=zeros(order,order); %covariance
p_minus=zeros(order,order); %previous covariance
xstore=zeros(limit,1);

Xstore=zeros(order,1);
Xhatstore=zeros(order,1);
ystore=zeros(1,1);

y=zeros(1,1);

e=zeros(order,1);
z=zeros(1,1);%y(j,1)-H_f*x_minus(j,1)
temp=zeros(1,1);

K=zeros(order,1);

pnoise = zeros(1,N);
mnoise = zeros(1,N);

I = eye(order,order);

for j = 1:MCruns %Mcruns(:,:,j,i)
x(5,5),D)=[1;1;1];
fori=1:N %time (:,:,j,i)
for h=1:order
pnoise = zeros(1,N);
pnoise = pnoise + sqrt(q(h,h)) * randn(1,N);
w(h,:) = pnoise;
end

fori=2:N
u=2;
x(55)1) = F *x(5,5,),i-1) + G*u + w(:,i-1);
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end
end
end
for j = 1:MCruns
for temp=1:limit
fori=1:N
for h=1:order
v = mnoise + sqrt(R)* randn(1,N);
end

fori=2:N
y(5u),1) = 3.2 + (2.59 * x(2,:,),1)) - ((9.003*x(2,:,j,1))."2) + v(:,i-1);
end
end
end
end
for j = 1:MCruns

xhat(:,,j,1)=[0;0;0];
p(::j,1)=[100;010;0 0 1];

fori=1
partial_deriv_H = 2.59 - 18.006 * xhat(2,i) ;

H_f = [0 partial_deriv_H 0];

p_minus(::,j,i) = F_f* p(:,:,j,i) * F_f' + Q_f; % for projecting ahead

K(::j,i) = p_minus(:,:j,i) * H_f' / (H_f* p_minus(:,;,j,i) * H_f' + R_f); % kalman gain
xhat_minus(:,:,j,i) = F_f * xhat(:,:,j,i); % for projecting ahead

z(j,i) = y(:,5j,i) - H_f * xhat_minus(:,:,j,i);

xhat(:,:,j,i) = xhat_minus(:,:,j,i) + K(:,:,j,i) * z(j,i); %oupdating the estimate
p(:,:,),i+1) = p_minus(:,:,j,i) - K(:,5,j,1) *(H_f * p_minus(:,:,j,i) * H_f' + R_{)*K(:,:,j,1)’;
e(:,5)1) = x(:,5,),1) - xhat(:,:,j,i); %updating the error

fori=2:N

partial_deriv_H = 2.59 - 18.006 * xhat(2,i-1) ;
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H_f = [0 partial_deriv_H 0];

p_minus(:,:,j,i) = F_f* p(:,:j,i) * F_f' + Q_f; % for projecting ahead

K(::j,i) = p_minus(:,:j,i) * H_f' / (H_f* p_minus(:,:,j,i) * H_f' + R_f); % kalman gain
xhat_minus(:,:j,i) = F_f * xhat(:,:,j,i-1); % for projecting ahead

z(j,1) = y(:,5),1) - H_f * xhat_minus(:,:j,i);

xhat(:,:,j,i) = xhat_minus(:,:,j,i) + K(:,:,j,i) * z(j,i); %oupdating the estimate
p(:,:,),i+1) = p_minus(:,:,j,i) - K(:,5j,1) *(H_f * p_minus(:,:,j,i) * H_f' + R_{)*K(:,:,j,1)’;
e(:,5)1) = x(3,5,),1) - xhat(:,:,j,i); %updating the error

end
end
end

for j=1:MCruns
fori=1:N
for k=1:order

P(j,1.k)=p(kkj,i);
E(j,ik)=e(k,1,,i); %storing the errors.
X(j,pk)=x(k,1,,1);
Xhat(j,i,k)=xhat(k,1,j,i);
end
end
end

% To store the error of each state separately

for j=1:MCruns
fori=1:N

for k=1:order
E1(,0)=E(ji,1);
E2(j,1)=E(ji,2);
E3(,D=E(,13);
x1(j,1)=X(.i,1);
x2(j1)=X(,1,2);
x3(j,1)=X(.1,3);
xhat1(j,i)=Xhat(j,i,1);
xhat2(j,i)=Xhat(j,i,2);
xhat3(j,i)=Xhat(j,i,3);
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end
end
end

% To store the error-square of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elsquare(j,i)=E1(j,i)."2;
E2square(j,i)=E2(j,i)."2;
E3square(j,i)=E3(j,i)."2;
end
end
end

% To store the mean-square-error of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elsquaremean=mean(E1lsquare);
E2squaremean=mean(E2square);
E3squaremean=mean(E3square);
end
end
end

% To store the mean-square-error of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elrms=sqrt(Elsquaremean);
E2rms=sqrt(E2squaremean);
E3rms=sqrt(E3squaremean);

end
end
end
Q=== e eeeee %
for k=1:order
fori=1:N
Pstore(k,i)=P(1,i,k);
end
end
for k=1:order
fori=1:N

for j=1:MCruns
Xstore(:,;,1,))=x(:,5,j,1);
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Xhatstore(:,:,i,j)=xhat(:,:,j,i);
end
end
end

% NOW WE SHALL PLOT BELOW %
for i=1:order
esquare(:,:;,i)=E(:,:,i)."2;
mse(i,:)=mean(esquare(:,:i));
g=1:N;
figure(i)
subplot(3,1,1);
hold on;
grid on;
plot(gmse(i,:),'r",'linewidth’,1.5)
plot(g,Pstore(i,g),'b’,'linewidth’,1.5)
legend('mean square error')
title(['EKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);
end
% %
for i=1:order
rmse(i,:)=sqrt(mse(i,:));
g=1:N;
figure(i)
subplot(3,1,2);
hold on;
grid on;
plot(g,rmse(i,:),'r','linewidth’,1.5)
legend('root mean square error')
title(['EKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);
end

for i=1:order
g=1:N;
figure(i)
subplot(3,1,3);
hold on;
grid on;
plot(g Xstore(i,g),'r','linewidth’,1.5)
plot(g,Xhatstore(i,g),'b’,'linewidth',1.5)
legend('x ','x-hat")
title(['EKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);
end
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2. MATLAB CODE FOR AKF

clc;

clear all;
close all;
syms s t;

%Step 1 = Matrix calculations
Cb=10037;

Cs=973;

Rb=0.019;

Rs=0;

R1=0.02;

C1=3250;

all=-1/(Cb*(Rb+Rs));
al2=1/(Cb*(Rb+Rs));
al3=0;
a21=1/(Cs*(Rb+Rs));
a22=-1/(Cs*(Rb+Rs));
a23=0;

a31=0;

a32=0;
a33=-1/(R1*C1);

A=[allal2al3;
a2l a22 a23;
a31a32a33];

b11=Rs/(Cs*(Rb+Rs));
b21=Rb/(Cs*(Rb+Rs));
b31=-1/C1;

B=[b11;
b21;
b31];

% Taking the Inverse Laplace transform and making the F matrix.
si=s*eye(3);
A_inverse=inv(si - A);

A_det=det(A);
F_tilda = ilaplace(A_inverse);
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% Performing integration of the F matrix we have to find the G matrix.

f11=(@(t)(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 +576460752303423488000/632343616903526209657);
f12=(@(t)55882864600102721657/632343616903526209657 -
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f21=(@(t)576460752303423488000/632343616903526209657 -
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f22=(@(t)(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 +55882864600102721657/632343616903526209657);

f33=(@(t)exp(-t/65));

il=integral(f11,0,1);
i2=integral(f12,0,1);
i3=0;
i4=integral(f21,0,1);
i5=integral(f22,0,1);
i6=0;
i7=0;
i8=0;
i9=integral(f33,0,1);

G_bar=[i11i2i3;i4 i5i6;i7 i8 19];
G= G_bar *B;

t=1;

f11=55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656)/632343616903526209657
+576460752303423488000/632343616903526209657;
f12=(55882864600102721657/632343616903526209657 -
(55882864600102721657*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

f13=(0);

f21=(576460752303423488000/632343616903526209657 -
(576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7);

95




f22=((576460752303423488000*exp(-
(632343616903526209657*t)/10657029927833390022656))/63234361690352620965
7 +55882864600102721657/632343616903526209657);

f23=(0);

£31=(0);

£32=(0);

f33=exp(-t/65);

F_f=[f11f12 f13;f21 22 £23;f31 £32 £33]

%Step 2 = Truth parameters initializations
ql1=0.1;q12=0;q13 =0;
q21=0;922=0.1; 23 =0;
q31=0;932=0;933=0.1;

q(1,1) = 0.1; q(1,2) =0; q(1,3) =0;
q(2,1) =0;q(2,2) =0.1;q(2,3) =0;
q(3,1) =0;q(3,2) =0;q(3,3) =0.1;

F=F f;

Q=[q(1,1) q(1,2) q(1,3);
a(2,1) q(2,2) q(2,3);
a(3,1) q(3,2) q(3,3)];

R=[0.1];

%Step 3=Filter parameters

F f;

Qf= [q(1,1) q(1,2) q(1,3);
q(2,1) q(2,2) q(2,3);
q(3,1) q(3,2) q(3,3)];

R_f=[0.4];

order = 3;

N=10;

MCruns = 10;

limit = MCruns * N;

xt=zeros(order,1); %state
x_minus=zeros(order,1); %previous estimate
xhat_minus=zeros(order,1);
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x=zeros(order,1); %estimates

xhat=zeros(order,1);

p=zeros(order,order); %covariance
p_minus=zeros(order,order); %previous covariance
xstore=zeros(limit,1);

Xstore=zeros(order,1);
Xhatstore=zeros(order,1);
ystore=zeros(1,1);

0_k=zeros(order,order);
alpha_k_star=zeros(1,1);
delta_pk_start=zeros(order,order);
delta_kk_star=zeros(order,1);
delta_qgk_star=zeros(order,order);
kk_delta_qk_star=zeros(order,1);

y=zeros(1,1);

e=zeros(order,1);
z=zeros(1,1);%y(j,1)-H_f*x_minus(j,1)
temp=zeros(1,1);

K=zeros(order,1);

pnoise = zeros(1,N);
mnoise = zeros(1,N);

I = eye(order,order);

for j = 1:MCruns %Mcruns(:,:,j,i)
x(5,5),D)=[1;1;1];
fori=1:N %time (::,j,i)
for h=1:order
pnoise = zeros(1,N);
pnoise = pnoise + sqrt(q(h,h)) * randn(1,N);
w(h,:) = pnoise;
end

fori=2:N
u=2;
x(55)1) = F *x(5,5,),i-1) + G*u + w(:,i-1);
end
end
end
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for j = 1:MCruns
for temp=1:limit
fori=1:N

for h=1:order

v = mnoise + sqrt(R)* randn(1,N);
end

fori=2:N
y(5u),1) = 3.2 + (2.59 * x(2,:,),1)) - ((9.003*x(2,:,j,1))."2) + v(:,i-1);
end
end
end
end
for j = 1:MCruns
xhat(:,:,j,1)=[0;0;0];
p(::),1)=[100;010;0 0 1];
delta_gk_star(:,:j,i)=[0 0 0;0 0 0;0 0 O];
fori=1
partial_deriv_H = 2.59 - 18.006 * xhat(2,i) ;
H_f = [0 partial_deriv_H 0];
p_minus(:,;,j,i) = F_f* p(:,:j,i) * F_f' + Q_f + delta_qgk_star(:,:,j,i); % for projecting ahead
K(::j,i) = p_minus(:,:j,i) * H_f' / (H_f* p_minus(:,:,j,i) * H_f' + R_f); % kalman gain
xhat_minus(:,:,j,i) = F_f * xhat(:,:,j,i); % for projecting ahead

0_k(:,:,j,i) = H_f * inv(R_f) * H_f; % Note : here O_k is 3by3

alpha_k_star(j,i) = trace ((0_k(:,:,j,i).-*2) / (trace((((O_k(:,,j,i)).-*5) * p_minus(:,:,j,i)) +
(0_k(3j,1))."4))); %note : here alpha_k_star(j,i) is 1 byl

delta_pk_start(:,,j,i) = alpha_k_star(j,i) * O_k(:,:,j,i);%note - delta_pk_start is 3by3
delta_kk_star(:,:,j,i) = delta_pk_start(:,:,j,i) * H_f' * inv(R_f);%note - delta_kk_star is 3by1
delta_gk_star(:,:j,i) = inv(I - (K(::,j,i) + delta_kk_star(:,:,j,i)) * H_f) * (delta_pk_start(:,:,j,i)

- delta_kk_star(:,:j,i) * (H_f * p_minus(:,:,j,i) * H_f' + R_f) * delta_kk_star(:,:,j,i)") * inv((I -
(K(:,j,1) + delta_kk_star(:,:,j,i)) * H_f));
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kk_delta_qk_star(:,:j,i) = K(:,:,j,i) + delta_kk_star(:,:,j,i);

z(j,i) = y(:,5j,i) - H_f * xhat_minus(:,:,j,i);

xhat(:,:,j,i) = xhat_minus(:,:,j,i) + kk_delta_qgk_star(:,:,j,i) * z(j,i);

p(:5j,i+1) = (I - (kk_delta_gk_star(:,:,j,i) * H_f)) * p_minus(:,:,j,i);

e(:,5),1) = x(:,5,),1) - xhat(:,:,j,i); %updating the error

fori=2:N

partial_deriv_H = 2.59 - 18.006 * xhat(2,i-1) ;

H_f = [0 partial_deriv_H 0];

p_minus(:,:,j,i) = F_f* p(:,:j,i) * F_f' + Q_f + delta_qgk_star(:,:,j,i); % for projecting ahead
K(::j,i) = p_minus(:,:j,i) * H_f' / (H_f* p_minus(:,:,j,i) * H_f' + R_f); % kalman gain
xhat_minus(:,:j,i) = F_f * xhat(:,:,j,i-1); % for projecting ahead

0_k(:,:,j,i) = H_f * inv(R_f) * H_f; % Note : here O_k is 3by3

alpha_k_star(j,i) = trace ((0_k(:,:,j,i).-*2) / (trace((((O_k(:,:,j,i)).-*5) * p_minus(:,:,j,i)) +
(0_k(:j,1))."4))); %note : here alpha_k_star(j,i) is 1 by1

delta_pk_start(:,,j,i) = alpha_k_star(j,i) * O_k(:,:,j,i);%note - delta_pk_start is 3by3

delta_kk_star(:,:,j,i) = delta_pk_start(:,:,j,i) * H_f' * inv(R_f);%note - delta_kk_star is 3by1

delta_gk_star(:,:j,i) = inv(I - (K(::,j,i) + delta_kk_star(:,:,j,i)) * H_f) * (delta_pk_start(:,:,j,i)
- delta_kk_star(:,:j,i) * (H_f * p_minus(:,:,j,i) * H_f' + R_f)*delta_kk_star(:,:j,i)") * inv((I -
(K(:,:,j,1) + delta_kk_star(:,:,j,i)) * H_))";

kk_delta_gk_star(:,:j,i) = p_minus(:,:j,i) * H_f' * (inv(H_f * p_minus(:,:,j,i) * H_f' + R {));

z(j,i) = y(:,5j,i) - H_f * xhat_minus(:,:,j,i);

xhat(:,:,j,i) = xhat_minus(:,:,j,i) + K(:,:,j,i) * z(j,i); %oupdating the estimate

p(::j,i+1) = (I - (kk_delta_gk_star(:,:,j,i) * H_f)) * p_minus(:,:,j,i);

e(:,5),1) = x(:,5,),1) - xhat(:,:,j,i); %updating the error
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end
end
end

% Storing the error and P matrix in the correct order%

for j=1:MCruns
fori=1:N
for k=1:order

P(j,1,k)=p(kk,j,i);
E(j,ik)=e(k,1,j,i); %storing the errors.
X(j,pk)=x(k,1,,1);
Xhat(j,i,k)=xhat(k,1,j,i);
end
end
end

% To store the error of each state separately

for j=1:MCruns
fori=1:N
for k=1:order
E1(,D)=E(,11);
E2(j,D)=E(,1,2);
E3(,D=E(,13);

x1(3,1)=X(.1,1);
x2(3,1)=X(j1,2);
x3(3,1)=X(,i,3);

xhat1(j,i)=Xhat(j,i,1);
xhat2(j,i)=Xhat(j,i,2);
xhat3(j,i)=Xhat(j,i,3);
end
end
end

% To store the error-square of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elsquare(j,i)=E1(j,i)."2;
E2square(j,i)=E2(j,i)."2;
E3square(j,i)=E3(j,i)."2;
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end
end
end

% To store the mean-square-error of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elsquaremean=mean(E1lsquare);
E2squaremean=mean(E2square);
E3squaremean=mean(E3square);
end
end
end

% To store the mean-square-error of each state separately
for j=1:MCruns
fori=1:N
for k=1:order
Elrms=sqrt(Elsquaremean);
E2rms=sqrt(E2squaremean);
E3rms=sqrt(E3squaremean);

end
end
end
Q=== e eeeee %
for k=1:order
fori=1:N
Pstore(k,i)=P(1,i,k);
end
end
for k=1:order
fori=1:N

for j=1:MCruns
Xstore(:,:,1,j)=x(:,5j,1);
Xhatstore(:,:,i,j)=xhat(:,:,j,i);
end
end
end

% NOW WE SHALL PLOT BELOW %
for i=1:order
esquare(:,:;,i)=E(:,:,i)."2;
mse(i,:)=mean(esquare(:,:i));
g=1:N;
figure(i)
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subplot(3,1,1);

hold on;

grid on;

plot(g,mse(i,:),'r",'linewidth’,1.5)

plot(g,Pstore(i,g),'b’,'linewidth’,1.5)

legend('mean square error')

title(['AKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);

end
% %

for i=1:order

rmse(i,:)=sqrt(mse(i,:));

g=1:N;

figure(i)

subplot(3,1,2);

hold on;

grid on;

plot(g,rmse(i,:),'r','linewidth’,1.5)

legend('root mean square error')

title(['AKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);

end

for i=1:order

g=1:N;

figure(i)

subplot(3,1,3);

hold on;

grid on;

plot(g Xstore(i,g),'r','linewidth’,1.5)

plot(g,Xhatstore(i,g),'b’,'linewidth',1.5)

legend('x ','x-hat")

title(['AKF Plot for state ' ,num2str(i), ' having ' ,num2str(MCruns), ' MCruns']);
xlabel(['Time Step ="' ,num2str(N), 'seconds']);

end
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