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CHAPTER 1: INTRODUCTION

“Earth is the cradle of humanity, but mankind cannot stay in the cradle
forever”

- Carl Sagan, Cosmos (American astronomer and planetary
scientist)

Humankind's profound curiosity fo know the unknown, to see the unseen
has driven us in unimaginable quests and space exploration might be
the most exciting of them all. The inherent urge to explore beyond this
‘cradle’ of earth had taken humanity to outer space in 1957 for the first
time. Since then, we have achieved the unthinkable in the last 67 years,
be it our probe traveling beyond the solar system into the interstellar
space (Voyager 1&2), or developing reusable rockets (by SpaceX), or
launching James Webb space telescope to second Lagrange point for
infrared astronomy. Needless to say, today’s space technology is giving
us unprecedented insights info the universe's origin, formation of
celestial bodies and possibility of existence of life in exoplanets. But, not
only quenching the thirst of knowledge, space technology has
increasingly permeated daily life, driving advancements across multiple
sectors and significantly impacting how we live, work, and interact with
the world.

One of the most notable impacts of space technology is in the realm of
global communication. Satellite networks facilitate instant connectivity
across vast distances, supporting everything from international
telecommunication to internet services in remote areas. For instance,
advancements in satellite internet technology have led to the
deployment of mega-constellations of low Earth orbit (LEO) satellites,
such as SpaceX's Starlink and OneWeb, aiming to provide high-speed
infernet access to underserved regions around the globe.

Another significant contribution of space technology is in the field of
Earth observation. Modern satellites equipped with advanced sensors
and imaging systems are pivotal in monitoring climate change, natural
disasters, and environmental changes. Recent developments, such as
NASA's Landsat 9 and the European Space Agency's Copernicus
Sentinel missions, provide unprecedented data that helps in tracking
deforestation, assessing the impacts of natural disasters, and managing
natural resources more effectively.

Furthermore, space technology has enabled breakthroughs in
navigation systems. The Global Positioning System (GPS), which relies on
a network of satellites orbiting Earth, has revolutionized how we navigate
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both in urban environments and remote regions. Recent enhancements
in satellite navigation, including the development of the Galileo system
by the European Union and the modernization of GPS, offer improved
accuracy and reliability, benefiting applications ranging from
autonomous vehicles to precision agriculture. Nearly Every Mobile
application that makes our life easy today, directly or indirectly uses this
(or similar) service, which is enough to understand its massive impact in
modern human life.

In this context, the control of satellite attitude—the precise orientation of
satellites in space—has become increasingly critical. Maintaining the
correct orientation is essential for ensuring that satellite systems function
optimally and achieve their intended missions. Attitude control is
essential for ensuring that a satellite's instruments are correctly oriented
to achieve mission objectives. Whether it's aligning a communication
antenna with a ground station, positioning a scientific sensor for optimal
data collection, or maintaining a specific orientation for imaging,
precise control of aftitude is crucial. In the absence of gravity and
atmospheric forces, achieving and maintaining the desired orientation
involves complex dynamics and requires sophisticated control systems.

Historically, attitude control has evolved from basic systems relying on
gyroscopes and magnetic torquers to advanced techniques utilizing
reaction wheels, control moment gyroscopes, and modern thrusters. The
development of these systems has been driven by the need for higher
accuracy, greater reliability, and enhanced mission capabilities.
Contemporary challenges in attitude control include managing the
effects of external disturbances, such as solar radiation pressure and
gravitational forces from secondary celestial bodies, as well as
addressing the limitations of onboard resources like power and
computational capacity.

This thesis aims to contribute to the field of satellite attitude control by
exploring various control approaches and solutions. Through a
combination of theoretical analysis, utilization of different mathematical
models and simulation based on different controllers, this research seeks
to address emerging real-case challenges inherent in managing satellite
orientation in the ever-evolving space environment.

1.1 What is Attitude control?

The attitude control system (ACS) conftrols the spacecraft body axes
such that the errors in roll, pitch and yaw angles are within defined limits
to control the orientation of the spacecraft as the main objective. The
schematic of the attitfude control system is as shown in figure 1.
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Figure 1: Block Diagram of Attitude Control System

1.2 Roll, Pitch and Yaw Angle

To expedite on the orientation of a body roll, pitch and yaw angle are
to be explained. Roll, pitch, and yaw are fundamental concepts in
three-dimensional space that describe the orientation of an object,
typically an aircraft or a vehicle. Here's a brief overview of each:

1. Roll: This refers to the rotation around the longitudinal axis (the axis that
runs from the front to the back of the object). When an spacecraftrolls,
one wing goes up while the other goes down. This movement is crucial
for banking turns.

2. Pitch: Pitch involves rotation around the lateral axis (the axis that runs
from wingtip to wingtip or along the y axis in conventional right hand
Cartesian frame system). When an spacecraft pitches, its nose moves up
or down. This motion affects altitude and is essential for climbing or
descending.

3. Yaw: Yaw s the rotation around the vertical axis (the axis that runs from
the top to the bottom of the object or the z axis in the conventional right
hand cartesian system). When an aircraft yaws, its nose moves left or
right. This movement helps in changing direction horizontally.
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Orbital velocity vector

Fig 2: Roll, Pitch and Yaw axis representation of a spacecraft [l
Together, these angles describe the complete orientation of an object
in 3D space and are essential for navigation, stability, and control in
various vehicles, especially in aviation.

1.3 Sensors and Actuators:

Two of the most important parts of the attitude control system are sensors
and actuators as they measure the instantaneous orientation of the
spacecraft and perform required maneuvers for desired change in the
orientation of the object respectively. Different kinds of sensors and
actuators used in spacecrafts are discussed below.

1.3.1 Sensors
1. Inertial Measurement Units (IMUs):

- Description: IMUs consist of accelerometers and gyroscopes that
measure linear acceleration and angular velocity, respectively.

- Function: They provide real-time data on the spacecraft’'s motion and
orientation.

2. Sun Sensors:

- Description: These sensors detect the position of the Sun relative to
the spacecraft.

- Function: They help determine the spacecraft’s attitude by providing
reference points for solar positioning.
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3. Star Trackers:

- Description: Optical sensors that capture images of stars and
compare them to a star catalog.

- Function: They provide precise attitude information by identifying the
spacecraft’s orientation in relation to known stars.

4. Magnetic Field Sensors:

- Description: These sensors measure the local magnetic field.
- Function: They help determine the spacecraft’s orientation with
respect to Earth’s magnetic field, useful for attitude stabilization.

5. GPS Receivers:

- Description: These systems receive signals from GPS satellites.
- Function: They can provide position and velocity information, aiding
in attitude determination.

1.3.2 Actuators
1. Reaction Wheels:

- Description: These are flywheels mounted on the spacecraft that can
be spun up or down to produce torque.

- Function: They allow precise control of orientation without using
propellant, ideal for fine-tuning attitude.

2. Control Moment Gyroscopes (CMGs):

- Description: Similar to reaction wheels, but they use the precession of
spinning masses to generate torque.

- Function: They provide rapid and large changes in attitude, often
used in larger spacecraft.

3. Thrusters:

13



- Description: Small rocket engines that expel gas to produce thrust.
Cold gas jet, monopropellant and bi-propellant jet, ion engine, gas-
liquid equilibrium thruster are different variants widely used in the
industry.

- Function: They can be used for larger attitude adjustments or
maneuvers, especially for spacecraft in low-gravity environments.

4. Magnetic Torquers:

- Description: Electromagnetic coils that interact with Earth’s magnetic
field.

- Function: They create torque to change the spacecraft’s orientation,
useful for small adjustments.

5. Gimbaled Engines:

- Description: Engines that can pivot to direct thrust in various
directions.

- Function: Used in larger spacecraft for maneuvering and attitude
control during propulsion phases.

The combination of these sensors and actuators enables spacecraft to
maintain stability, navigate accurately, and respond to various mission
requirements, ensuring successful operations in the challenging
environment of space.

A spacecraft can have several feedback control systems. In many
spacecrafts similar three-axis feedback control is also required to point
the communications antenna, science platforms and instruments, solar
arrays and other sensors. An open-loop control systemis one where the
desired position is commanded with no feedback to perform the
commanded action. This method is used where low precision is required.
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CHAPTER 2: Literature Survey

This thesis work includes a survey of some available scientific
literature on attitude control of spacecrafts consisting of some similar
techniques used in the course of this thesis work or the control techniques
more popular in the industry. The literature survey is separated in two
different sections, one on the progress of space technology with nano
and micro-satellites and the other section discusses different control
approaches of attitude control in satellites.

2.1. Literature survey of Micro/Nano-Satellites:

In the literature survey, this thesis provides a comprehensive review in two
main areas: advancementsin micro and nano satellite technology and
an exploration of control strategies for satellite attitude control. The first
part examines the evolution of micro and nano satellites, divided info
two sections: one focusing on technological advancements in
instrumentation and utility, and the other on attitude control techniques
specifically tailored for these small-scale platforms. The second part of
the survey covers a range of control approaches used in satellite
attitude control, evaluating methodologies in terms of stability,
robustness, and adaptability to disturbances. This dual focus aims to
build a strong foundation for understanding both the specific challenges
of micro and nano satellite control and the broader context of attitude
control strategies for satellites.

2.1.1. Introduction to Micro and Nano Satellites

Micro and nano satellites have revolutionized space exploration and
satellite technology due to their reduced size, cost, and increased
flexibility. These small satellites, typically weighing between 1 kg to 100
kg, have enabled a range of applications from Earth observation to
deep space exploration. Their development began in the late 20th
century with significant advancements in miniaturization of technology
and a growing interest in cost-effective space missions.

2.1.2. Historical Overview:

The concept of small satellites dates back to the 1960s with the launch
of experimental satellites like OSCAR 1, the first amateur radio satellite,
the result of American space endeavour Project OSCAR. Although all
the satellitesin earlier period of space technology were small in size and
mass due to payload constraints of available propulsion system. With
bigger rockets and boosters, larger satellites came in picture which can
execute multiple projects with numerous modules installed in the same
body. In recent days the smaller satellites are getting prioritized mainly
because of the reason that larger satellites are prone to put down
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multiple project investments for a single breakdown in the satellite. Also,
the smaller satellites are more economically viable options besides
involving lower risk to investments.

Launch Mass Perigee Apogee

Name date (kg) (km) (km) Country
Vanguard- | 17-Mar- United
: 58 1.47 652 3961 States
. 06-Dec- United
Pioneer-3 58 5.88 0 1,02,300 States
. 03-Mar- Lunar Lunar United
Pioneer-4 59 5.88 Flyby Flyby States
United
Explorer-9 | 16-Feb-61 |7 636 2582 States
12-Dec- United
OSCAR-1 61 4.5 235 415 States
United
OSCAR-2 06-Feb-62 | 4.5 208 386 States
Flashing 15-May- United
Light 63 > 161 267 states
ERS-9 19-JUl-63 | 1.5 3,662 373 United
States
ERS-12 17-Oct-63 | 2.1 208 1,03,830 | Ynited
States
19-Dec- United
Explorer-19 63 7 589 2393 States
United
ERS-13 17-Jul-64 | 2.1 193 1,04,400 States
21-Nov- United
Explorer-24 64 9 334 1551 States
United
ERS-17 20-Jul-65 | 5.4 208 1,12,184 States
United
ERS-16 09-Jun-66 | 5 180 3622 States
19-Aug- United
ERS-15 66 5 3,669 3701 States
ERS-18 28-Apr-67 | 9 8,619 1,11,530 | Jnited
States
ERS-9 19-JUl-63 | 1.5 3,662 373 United
States
United
ERS-20 28-Apr-67 | 8.6 8,619 1,11,530 States
United
ERS-27 28-Apr-67 | 6 8,619 1,11,530 States
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08-Aug- United

Explorer-39 48 9.4 673 2533 States
ERS-28 26-5ep-68 | 10 175 35,704 | United
States

23-May- United

ERS-26 49 10 59,543 69,011 States

Table 1: Nanosatellites during early space age [2]

After OSCAR-1 different small satellites were used for various missions,
However, the term "micro satellite" gained prominence in the 1990s, with
missions such as CUBE-SAT (launched in 2000), which set a precedent for
small satellite design and deployment. Although before the inception of
the conceptualisation of Cubesat, several small satellite missions were
experimented. NASA developed DOVE satellites in 1990s and ESA
(European Space Agency) began experimenting with small satellite
technologies, leading to developments in lightweight materials and
compact instruments. Later different nano and micro satellite missions
were carried out as a consequence of success of its predecessors. A few
mentionable of such satellites belong from AMSAT, UoSat satellite family,
SAMPEX, TRACE eftc.

Continued advancementsin technology led to further miniaturization of
components, such as sensors, processors, and communication systems,
making it feasible to pack more functionality info smaller satellites.The
rise of private companies interested in small satellite technology began
to reshape the landscape, with companies like Planet Labs launching
fleets of small satellites for Earth observation. By late 2000s and 2010s
micro and nano satellites were used for a variety of applications,
including Earth observation, scientific research, and technology
demonstration. The concept of satellite constellations gained traction,
with companies and organizations proposing networks of small satellites
for global communications and monitoring.

The infroduction of dedicated small satellite launch vehicles, like Rocket
Lab’s Electron, has significantly reduced launch costs and increased
accessto space for smallsatellites. Modern nano and micro satellites are
equipped with advanced technologies, enabling sophisticated missions
such as remote sensing, communications, and space exploration.

2.1.3. Technological advancements of micro/nano-satellites:
The major challenge of designing a micro/nano-satellite was

accommodating all the hardware of such multi-functionary
sophisticated device in such small size. Initially the functionalities of small
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satellites were very simplified for that reason. The first Swedish nano-
satellite *"MUNIN’ was designed and fabricated by Swedish Institute of
Space Physics to collect data on auroral activity in both northern and
southern hemisphere, such that the data related to current
magnetospheric activity can be made available on-line [3]. This data is
then used in prediction of space weather. This is cubesat with side length
of 21 cm and has weight of ékg with combined electron and ion
spectrometer, solid state detector, miniature CCD cameraq, silicon solar
array on all sides and a Li-ion battery. It uses a magnetic attitude control
system which consists of a permanent magnet and a hysteresis rod as a
damper. A very precise attitude control system was not needed for the
mission as it was not going to use any complex rotation endeavour. The
motive was to make the ACS as cheap as possible from both economic
and energy perspective. The permanent magnet provides the
necessary restoring torque to align the orientation of MUNIN with earth’s
magnetic field vector. The damping rod ensures the transient dies
out. Damping rod is manufactured from a soft-magnetic material and
re-magnetized in geomagnetic field under satellite rotation relative to a
force line of this field, so it can generate a damping torque.

With advancements in the field of electronics engineering and
miniaturisation of hardware micro and nanosatellites were being
launched with various purposes like earth observation, geological
applications, solar and space weather monitoring etc. The invention of
CMOS cameras, ARM7 microcontrollers etc influenced nanosatellites like
O/OREQS, CXBN, BRITE during the 2000's decade.

Later constellation of nanosatellites came into picture with
missions like OneWeb to provide to provide broadband connectivity all
over the globe with a constellation of 2000 nanosatellites [4]. The Dutch
nanosatellite constellation HIBER is aiming to provide |oT based services
in domains like agriculture, soil and rain sensors, tank and silo monitoring,
snow and ice cap monitoring, transportation and logistics over 90% of
earth’s surface.

Notable mentions of various nanosatellites categorised according
to their functions is given below [5].

:lr;’. Functionality Nanosatellites.

1 Earth Imager M-Cubed-2/ COVE,  SwissCube,
AArest

2 X-Ray Detectors MinXSS, HALOSAT, HERMES MiSolFA

3 Spectrometers SOLSTICE, OPAL, BIRCHES, GRIFEX

4 Photometers XPS, ExoPlanet, ASTERIA

5 GNSS Recievers CYGNSS, CADRE, CAT-2

6 Micro Bolometers CSIM

18



7 Radiometers TEMPEST
8 RADAR system RAX, Radar Altimeters & SAR, 3SRI-
CIRES
9 Particle Detectors REPTILE, EPISEM, FIRE
10 Plasma Wave | CADRE / WINCS, DICE, INSPIRE /
Analyser CVHM

Table 2: Notable Nanosatellites Categorised on Functionality

2.1.4. Attitude Control Techniques for Micro and Nano Satellites

Attitude control in small satellites presents unique challenges and
opportunities due to their size constraints and operational environment.
Here, we survey the prominent methods and approaches:

The most used attitude control methods with magnetic control
were discussed in [6] by M. Yu Ovchinnikov and D. S. Roldugin on 3 premises
of simple angular velocity damping, combined operation with other
actuators and some passive stabilization methods. Approaches like
angular velocity damping has been in use since the preliminary days of
space exploration and still in use for its simplicity, energy efficiency and
size advantage. Although the study shows for three-axis magnetic
control secondary actuation method is necessary in some case, that is
where newer control approaches like sliding mode, model predictive
control and global optimization performs better.

A study [7] by C. Hajiyev and D. C. Guler discusses the attitude
control approach of gyroscopic sensor-less microsatellites using
estimation methods. Two types of gyroless satellite attitude
determination methods were reviewed in this study: single-frame
attitude determination methods based on vector measurements and
attitude estimation methods based on Kalman filter. Two types of
Kalman filter algorithms were taken into consideration as a traditional
approach based on nonlinear measurements and nontraditional
approach based on linear measurements. Comparison of different
approachesshows that SVD based method shows maximumrobustness,
while Quaternion Estimation (QUEST) requires least computational
burden, and in Kalman Filter based estimation Unscented Kalman Filter
showed most superior result in accuracy and convergence speed.

[8] by Liang He et. al. has presented a survey of recent
development in the field of attitude control of microsatellites including
the significant improvement of high precision attitude control with the
inception of miniaturised star sensor, Commercial-Off-The-Shelf (COTS)
reaction wheels and Control moment Gyroscopes (CMG). The study
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showed conventional control methods face challenges in reducing
complex non-linear alignment error due to low redundancy in small
spacecrafts. Although Deep Neural Network (DNN) strategies showed
great results in similar cases, hence, possessing better possibility of this
approach in similar cases.

2.1.5. Conclusion

The field of attitude control for micro and nano satellites continues to
evolve, driven by advancementsin control algorithms, miniaturization of
hardware, and innovative mission profiles. Classical methods like PID
control still play a significant role, while adaptive, predictive, and
emerging techniques offer enhanced capabilities for handling the
complexities of small satellite missions.

2.2. literature Survey of Various Afttitude Control
Techniques of Satellite:

Attitude control is critical in the operation of satellites for
maintaining the desired orientation (attitude) with respect to an inertial
or reference frame. The attitude of a satellite can significantly affect its
communication, imaging, scientific experiments, and overall mission
success. The 2nd part of this survey highlights key algorithms developed
over the years for satellite attitude control, focusing on recent
advancements and typical classification schemes for such algorithms.

Magnetic coils have been used for attitude control action from
the earliest years of satellite missions, hence, those have become a
subject of extended study (see Stickler & Alfriend (1976) [9] and the
references therein). The major drawback of this problem was the control
torque to the satellite cannot be provided along the direction of earth’s
magnetic field lines. Later it was proved that three-axis stabilization is
possible, only if the particular orbit of the satellite observes a time
variation in magnetic field sufficient to guarantee stabilizability of the
satellite in [10] by Bhat & Dham, 2003). Before this finding it was assumed
initially that three independent control torques can be applied to the
satellite and that, on the basis of this assumption, a conventional PD
control law (which guarantees attitude regulation in the case of three
controls, as per [11] by Wen & Kreutz-Delgado, 1991) had been
designed. Therefore, as long as the closed-loop dynamics is sufficiently
slow, the stability of the time-varying closed-loop system can be
approximately studied on the basis of its fime-invariant approximations.
Hence, other classical control approaches were used as well. Assuming
that the periodic approximation for the geomagnetic field is satisfactory,
the resulting periodic dynamics for the spacecraft can be stabilized
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either by state or output periodic feedback. A number of contributions
have been given in the literature to the analysis of the LQ magnetic
attitude control problem. In [12] by Pittelkau, both output feedback
stabilization and disturbance attenuation for a momentum biased
spacecraft have been analyzed; in partficular, the disturbance issue has
been addressed by means of an internal model principle approach. In
order to avoid the difficulties in the solution of the LQ problems due to
the presence of uncontrollable modes with poles on the imaginary axis,
the secular and cyclic components of the external disturbances have
been modeled with stable models (first order with a large time constant
for the secular part and second order with small damping for the cyclic
part). This gives rise to a tfime periodic filter and a time periodic state
feedback. In [13] by Lovera et al. and [14] by De Marchi et al. the
problem is analyzed in a similar fashion, by using an extension of the
periodic LQ control problem (initially proposed in [15] by Arcara et al.),
by which it is possible to include marginally stable disturbance models in
the plant description. The resulting control design method is applied in a
simulation study for the Italian spacecraft MITA. A similar approach has
been also proposed in [16] by Wisniewski (1996), [17] by Wisniewski and
Blanke (1999) and [18] by Wisniewski and Markley (1999), where the sole
state feedback problem is considered. An LMI approach to the design
of H, -optimal periodic conftrollers was proposed in [19] by Wisniewski &
Stoustrup (2002). The H,, approach to the problem has been first
proposed in [20] for the design of state feedback attitude controllers
and in [21] for the implementation of momentum management control
laws based on magnetic actuators.

A novel approach in the domain of predictive control is used in
[22] for attitude stabilization of a spacecraft. Furthermore, classical LQ
and H,, periodic control and nonlinear control have been discussed with
an aim of robustness of the control law in presence of different
disturbances and a satisfactory solution is proposed.

Sliding mode controller offers low complexity, low computational
burden control method which can make the output converge in finite
time. Hence, it is very suitable for attitfude stabilization of orbital
spacecrafts. This [23] paper from 1997 discusses a new Terminal Sliding
Mode (TSM) control scheme which operates on a multiple input multiple
output linear system. It is shown, by using this controller the system goes
to origin in finite fime and attains infinity stability on the terminal sliding
mode. In 2002, this paper [24] proposed the way to overcome the
singularity problem associated with the conventional TSM control
scheme, ensuring finite reaching time for every initial condition. [25]
shows a non-linear system can asymptotically track a desired output
trajectory when controlled by an SMC in closed loop. As it accomplishes
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precise attitude control despite present uncertainties, the robustness
offered by SMC is also observed. This paper [26] uses sliding mode
control for a spacecraft that performs large angle manoeuvres. But SMC
causes chattering effect generated from its switching function, this
causes harm to the actuatorin long term. To solve this issue, using fuzzy
sliding mode conftrolled seemed like an improvement. But fixed fuzzy
rules are observed to cause instability in the system. So, this paper [27]
presents the detailed procedure to design an Adaptive Fuzzy Sliding
Mode Controller (AFSMC) and shows that it eliminates the chattering
effect while keeping the system stability undisturbed. The major
drawback of AFSMC is its high computational burden, which is not at all
desired in smaller spacecrafts. An energy efficient way is suggested here
[28], naming Minimum Sliding Mode Error Feedback Control (MSMEFC).
Although it is energy efficient, eliminates chattering and robust enough,
the performance degrades steeply under large perturbations or in an
effort to track sharp turns in trajectory. Another widely used variation of
SMC is Integral Sliding Mode Controller (ISMC).
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CHAPTER 3: Derivation of Mathematic
Models

Mathematical modelling of a satellite or a spacecraft in general
can be done in various methods. In this thesis work derivation of 3 type
of mathematical model is presented and an effort has been made to
explain every modelling in the simplest way possible with detailed
derivation process.

3.1. Derivation of Euler Angle-based Mathematical
Model:

For developing the mathematical model of the spacecraft
attitude dynamics, rigid body rotational dynamics and kinematics are to
be understood fast.

3.1.1. Rigid Body Rotational Kinematics and Dynamics:

Rigid body B

A1) Ay + dr)

t t + dt

Inertial frame

Figure 3: Rigid Body Rotation [29]

Suppose the shown rigid body is rotating with an angular velocity w with
respected to the fixed/inertial frame. Assume a vector 4(t) inscribed in
the rigid body which will go under the similar rotation with angular
velocity w. Say after a small time dt the vector inscribed in the rigid body

becomes 4(t + dt). If the change in the vector is said to be d4, then from
the triangle law of vector we can say,

At +dt) — 4 = dA
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A(t + dt)

Which can be written as
dA =[|4|sin ¢ dO] 7 Q)

7 is the unit vector in the normal direction of the plane of rotation of

Z(t) vector. ¢ is the angle between the vector Z(t) and angular
velocity vector w. We know that if a vector/line of length R is rotated

with elemental angle d6 then the elemental length difference is Rd6. But
here the vector and its angular velocity vector is not perpendicular, so

only the perpendicularcomponent on(t) will be rotated with angle d6.
The component that is coincident with @ will not go through any
rotation, as we can clearly understand. The length of the perpendicular

component being |4|sin ¢, the length of d4 is should be |4|sin ¢ do,
which is stated in equation (1).

Now, we know,
deo

o =
do = |w|dt

| |

Using this in equation (1) we get,
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dA =[(|e|dt)|A|sin @] 7 (2)

 —wxA (3)

Equation (3) will be useful in the next part when we try to differentiate a
vector described in the body reference frame with respect to inertial

frame.

3.1.2. Dynamics of Spacecraft:

Suppose the angular momentum of a rigid body is,
H=Hdi+H,j+Hk

Where the unit vectors with lower case is the unit cartesian vectors w.r.t.
moving body frame and the set with upper case unit cartesian vectors
are w.r.t. inertial frame.

Q,

7% Y J
Inertial frame

i< X

Figure 3: Inertial frame and moving frame [29]
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Differentiating H with respect to inertial frame we get,

(4)

dH dHy ;. dH,
dt—( +dt] k)+(H +H

ydt+HZ dt)

The unit vectors of the moving frame are to be differentiated as well, as
they are moving with the frame and hence not a constant.
Using equation (3) we can write,

i — . )

P w X1 and so on. So, we can write,

dH _ ,dH, , dHy,  dH, >,  — . . 7

— = i k) +ow X (H, i+ H H, k
L=tk + (Hyi+ H,j + H,k)

dH _ dH —

4t = ap lret T X (5)
dH

x differentiation of ﬁ w.r.t. fixed inertial frame

—

‘Z—I: |e1 — differentiation of Hw.ri. moving body frame

Now consider a spacecraft which has moment of inertia I, the angular
velocity and angular momentum with respect to moving body frame

N —
are w and H.

— —_—
SooH=1w .

From Newton's second law we can write,
dH

T T, where 7 is the total moment of all the forces applied about the

CoM of spacecraft.

dH N : o . ,
1t — |ret = lw . By using the relation in equation (5), we can write,
dH

Elrel+w X H

sl
I

—_—

[ +w XIw

sl
Il

—

—7T-w Xlw (6)

3

This result is supported by reference [1].

B=1"(-(0 xIw)+7) (7)
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Now this vector equation can be written in matrix form. Suppose the
moment of inertia matrix I = diag(ly,I,,1,), and angular velocity

vector w = [p, q, r]T. p, q and r represents the roll, pitch and yaw rates

respectively. They are certainly w.r.t. body frame axes as w wasdefined
in the same reference frame.

lw = [Ip,,1,q,1,7]"

—

i j k
Soow XIw = | p q r =—[(Iy—lz)qri+(lz—1x)rpj+
L.p Iyq I,r

(I — 1,)pq k]

So, in matrix form we can write equation (7) as,

gl=10 L' o 0 L' 0||-U,—ILorp

p1 [I* 0 0wy [I* 0 0 ][-(4—IL)er
olo o oo AWl fo o -0 —1)pq

pl [ 0 0wy BT 0 0qf(y-Lar)
gl=10 L' offw+[0 L' O0/[|U,—IL)rp
olo o pwsl lo o o (1 -1)pg

The Euler’'s angles are denoted as ¢, 6,3 as roll, pitch and yaw angle
w.r.t earth inertial frame. T = wyi + w,j + wsk.

3.1.3. Kinematics of Spacecraft:

First the basic rotation matrices for Euler axes are defined.

Say, the rotation matrix for a rotation of angle ¢, 8 and 1 along roll,
pitch and yaw axis respectively and separately are Cy, Cg and Cy-

Their values are as shown below,

1 0 0
C,=10 <cosp sing
0 —sing cos¢

[cos@ 0 —sinf
Co = 0 1 0
[sin@ 0 cosé
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|

The basic rotation matrices are found by rotating a frame with respect
to one fixed axis by a certain angle. So, the directions of other 2 axes
change. The rotational transformation matrix for this transformation is

—siny cosy O

cosy siny 0]

0 0 1

called the basic rotation matrix.

We set the convention as, the body fixed frame follows a frd (front-right-
down) coordinate system and a ned (north-east-down) system is taken
in reference frame. A yaw-pitch-roll Euler angle sequence is taken for
the rotational conversion of frame. So, the transformation of angular

rates from ned to frd can be shown as,

q

D

L7

PR

PR

P

P

P

(,b—l/)sinQ
6 cos ¢ + 1 cos 0 sin @

|—6 sin ¢ + 1 cos 6 cos @ |
1 0 sin 0

0 cose cosBsing

[0 —sing cosfcos @

2 0 0

: +c¢( |+ co OD

0. 0 Y

@1 [1 0 0 0] [cos@ 0
0[+10 cose sing||lal+]| O

0] 10 —sing cosel\lol Lsin® 0
@1 10 0 01 [-wsing
0l+[0 <cosep singl|| |6+ 0

L0l [0 —sing cospl\lol |4cosé
@1 10 0 [—1) sin 6
0|+]0 <cosep sing 0

L0) L0 —sing cos@l\| ycoso

0|+| 6cos¢p+1pcoshsing
0 | —6 sin ¢ + 1) cos 6 cos ¢

—51n 0

cos 6

)



For expressing the angular rates about the ned frame with respect to frd
frame, we have to take the inverse of the rotation matrix (fransforming

frd —ned)

Determinant = cos 6

cos O 0 0

Co-factor matrix = [sin Osing cosfcosep sing
sinfcosgp —cosfsing cos@

cosf@ sinfsing sinf cosg
Adjoint matrix = [ 0 cos B8 cosp —cosBsin @
0 sin @ Cos @

So, we can write the final fransformation as,

@ 1 singtanf cosgtanf 1 p
ol=|0 cos @ — sin @ [q]
P 0 sing/cos@ cos¢e/cosbllr

From equation (8) and (?), we can state the spacecraft attitude
dynamics if we take the states as X = [xq, x5, X3, X4, x5,x6]T, where,

The state-space dynamics of the system is,

x1=p x4:ga
x2=q x5:9
X3 =T Xe = Y

X = IV [(Iy — I)xa%3 + wy]
Xy = I [(I, — I)x3x1 + wy]
X3 = ;1 [(I, — 1,)x1 %, + ws]
X4 = x4 + (sin x4)(tan x5)x,

+ (cos x4)(tan x5)x3

X5 = (€0S x4)X, — (Sinx4)x3

sinxy, COS X,

X¢g = X
6 COS X5 2 COS Xg

X3

29
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NOTE:

This model is applied only when the moment of inertia matrix of the spacecraftis
diagonal, which happens only when the spacecraft is symmetric about the xy, yz
and zx plane, where the body axes system is OXYZ.

It is very common case for a lot of spacecrafts, although there are few whose
moment of inertia matrix is not diagonal and just carries the symmetric property.
In such cases the model cannot be simplified as above. We have to use the state

equations as,

Dynamic Equation:

0 —-r g¢q p
& = 1" (—w*lw + 1) where w* = [ r 0 —'p], w = [q]

Kinematic Equation:

¢ 1 sinptanf cosgtané
o]=|0 Cos @ —sin ¢
W 0 sing/cosf@ cose/cosB

f

3.2. Derivation of Quaternion-based Mathematical
Model:

3.2.1. What is Quaternion?

W.R. Hamilton infroduced the term quaternion in an attempt to
generalize complex numbers from a plane to three dimensions in 1943.
The quaternion described by him has the form,

q = qota:1l +qzj + qzk
Where the imaginary operators are given by,

i2=j2=k2=_1
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ki=j=—ik

Quaternions follow the basic laws of algebra, except the multiplication
is not commutative for the last 3 operations shown above. That is why it
is a good idea to express a quaternion where we assume it is @

combination of a scalar and a vector part. The vector part being ¢ =
qil + g, + qzk. It can be expressed in the below stated form

do
_ |9 _
9= 1q, _[
qs
3.2.2. Why quaternion-based model

e Quaternions are introduced here because of their “all-attitude”
capability.

e |tis free from the singularity that Euler angle-based model has at
pitch angle 90°.

e Quaternion model has some computational advantages in
simulation over other available models of attitude dynamics.

3.2.3. Quaternion Multiplication

Say p = py + p and g = q, + ¢, then their multiplication operation (x)
will be,

p*q=(po+p)*(qgo+q)
=>P*q=podo+Pod+qop+BXG—-P-q

So, the scalar part of the expression is (pgqe — P - ¢) and the vector
partis (pog + qop + (P X §))

In quaternion form we can write,

p*q:[p_(,)]*[q_?]z[ _)pOQO:p'_(] A
p q Poqd + qop + (P X q)

Consider the following product

m " [327] - [qoci Z‘Z’q;ﬁ(i'((ﬁ_f )()—c?))
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-[5]-[%- b9

—q 0
SHEGRED

From this result we can have inverse of a quaternion as,

3] =l

3.2.4. Co-ordinate Transformation by Quaternions:

A quaternion can be used to rotate a Euclidean vector in the
same manner as the rotation formula by rotation matrices, and the
quaternion rotation is much simpler in form. The vector part of the
quaternion is used to define the rotation axis and the scalar part to
define the angle of rotation. The rotation axis is specified by its direction
cosines in the reference coordinate system, and it is convenient to
impose a unity norm constraint on the quaternion. Therefore, if the

direction angles of the axis are a, f, ¥ and a measure of the rotation
angle is 8, the rotation quaternion is written as

cos &
sin 6 cos _[ cos
sindcosB|  lsinédn"
sin § cosy

The rin superscript refers that the vector is in the reference frame.

To operate the transformation on a vector the vector needs to be
expressed in quaternion form first. The standard way to do this is to

express the vector as,
K
u=|\,
u

The result of the rotation must also be a quaternion with a scalar part of
zero, the transformation must be reversible by means of the quaternion
inverse, and Euclidean length must be preserved. The transformation
v = g * u obviously does not satisfy the first of these requirements.
Therefore, we consider the transformation,

v:q_l*u*q
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o I A

_ q-u . do
=V horm(q) [thT +((—q) x ﬁ)] [67]
> v
_ 1 [ qo(G - ) — (qou+ ((—9) x W) - q ]
norm(q) L(q - W)G + qo(qou + (=) X W)) + (o + ((—q) X W)) X g
> v =

qo(q - ) —qo(¥ - q) ] [+
norm(@) L(§ - W) + qftl + qo (@ x §) + qo(@ x @) + (@ x §) X G
d and (—q) X &) are perpendicular to each other]

_ 0 ]
7V T norm@ (G- )G + q2u+ 290 @ x §) — G x (A% §)
=>v——[ 0

~ norm(@) [(§ - WG + qdU + 2qo(@ x ) —u(G - §) + 4 (U q)

—

[~ dx (bx¢&)=b(¢d)—cld-b)]
0

-

1
norm(q) [2(67 WG+ (g — 4 U+ 290U % 67)]

Now if g is chosen to be,

> v =

sindcosfB|  Lsinén n
sindcosy

cos 0
_ |sinécosa [cosS
2(G )G =2sin?5(@-wW)n=(1 — cosp)(@@-w)n
(q5 — G- @)U = (cos?5—sin? U =cosp u (I we assume p = 26)
2qo(x q) = 2sindcos§ (U X 1) = sinu (U X 1)

The quaternion can be expressed as,

U
COS =
2

a=|
sin—1n
2

For this quaternion (where norm(q) is unity), the transformed vector
becomes,

0

— o1 —
VEAQ U q =11 — cosp)(@- DR + cos p i@+ sinp (@ X i)




We will define the quaternion that performs the coordinate rotation to
system b from system a to be gy /,; therefore,

U
cosz
QD/a = U_,
sin—n
2
And the co-ordinate tfransformation is,

Up = qb/a_1 *Ug * qp/a

A few properties of this coordinate tfransformation using quaternions
are,

® dpja = qa/b_1
® dcja = 9p/a * dc/b

3.2.5. Quaternion Kinematic Equation:

With the goal of finding an expression for the derivative of a time-
varying quaternion, and hence obtaining a state equation for
spacecraft attifude, we will derive an expression for an incremental
increase q(t + dt) from an existing state q(t) in response to a nonzero
angular velocity vector. Following the order of Equation for multiplication
of two “forward” quaternions as stated in the 2nd property of the
quaternion coordinate transform, we have,

q(t + 6t) = q(t) * 5q(8t), where the quaternions q(t) =
] 5

cosg 56) c057 1 ]
- 47| and 6q(6t) = = |Su_|. Hence,
smgn sin%ﬁ n
nwl poou  u
cosz 61 cos§—731n5
q(t +6t) = N —'uﬁ - 5;1 u ,u .
smzn L 2 —Cos—+sm n
cos———sm— cosE —5—'us1nE
q(t + 6t) — q(t) = W 2 2
ou o ou p,
(7cos—+sm sm n —coszn



u u
cos — _ 2 sink
sm ﬁ 2 cos —ﬁ

0
so, q(t +6t) —q(t) = q(t) * la_uﬁ]
2

Now, the differentiation of g(t) is

0
q(t) * [u ]
dg _ . ae+on—q T Rt T
dt ~ 8t-0 St S5t — 21 Eﬁ

1 0

- [¢]- 3l 4

v 219y w
. q’o]zl[ —q, @ ] (1)

il " 2lgB+qux®
This relation is in vector form. For deriving the state space model of
attitude dynamics, we need to convert this in matrix from completely. In
matrix form dot product of 2 vectors can be substituted by transposed
product of the vectors. In case of cross product of 2 vectors, the pre-
multiplier can be expressed as an equivalent square matrix to make the

matrix product feasible. For an example, if a vector m = [m; m, ms]7,
then the corresponding cross multiplication equivalent will be,

0 _m3 mz
m* = [ ms 0 —mll
_m2 m1 O

Equation (1) can be expressed as 2 equations in matrix form,

) 1
qo = —ECI:T:(U
1 X (a)
v = E(CI013><3 + qy)w

This is the quaternion kinematic equation.
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3.2.6. Quaternion Dynamic Equation:

The dynamic equation of arigid body does not involve any quaternion.
It is same as the one derived in Euler angle-based attitude dynamics
model, sent previously. So, without derivation the matrixequation is used
here.

@ =I"1(—w*lo + t(t) + d(t)) (b)

There 7 differential equations, considering (a) and (b). Although for a 3-
DoF attitude dynamics there should be 6 states, hence 6 differential
equations. Thathappens because we have used unit quaternion and all
4 entries of a unit quaternion are not independent of each other. This
mutual dependence increases the number of differential equations.
Their mutual dependance is expressed by the equation,

a5 +quq, =1

3.3. Derivation of Error Quaternion Based
Mathematical Model:

Previously we have found out (conversion from vector form to
matrix from),

” |
V= e ] > o\ = — -
2(4-Wq+(q5 — G- DU+ 290 x §)
(Where g is unit quaternion and v is the vector, we get after rotating u
with q)

q1
(1) 2(g-wWq = 2(q uy + qv, + q3v3) [qzl
qs

qiug + q1q2uy + q1q3us
= 2(G-Wq = 2|q1q2u1 + q5uy + q2q3u3
q1q3U; + q2q3uy + q5u3
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=2(q-u)q =2 q19> q% q293 | | U2
d193 49293 CI% Us

= 2(G-wq4 =2(qq")u

CI12 9192 9193 I%]

(2) (@6—d-Du=(95—-q"u
Uz(3 — U3(]3]
(3) 2q0(u % q) = 2q, [u3q1 — U143
U1qy — Up(q |
Up{0(q3 — U3(p(2]
= 2q,(U X §) = 2|U39091 — U19093
[ U1q0q92 — U2q041 |

0 90493  —q042] [%]

= 2qo(U X §) = 2|—qo4q3 0 doq1

L qoq2 —qo0q1

0
0 3 —q2][%
=2q0(UuXq)=2q0|—q3 0 q1 ||%
g, —q1 0 Ilus

= 2qo(U %X q) = 2qo(—q™)u = —2qoq”u

So, the rotation of a vector u with the quaternion g gives us (in matrix
form),

v=2(3 )G+ (q5— G- U+ 2q0xq)
=2(qq"u+ (95 — 9" Ou — 2qq*u

=>v=1[2(qq") + (q6 — 9" I — 2909 Ju = Cu

Where C = [2(qq") + (g5 — q" @)1 — 2q0q*] which Is the rotation
cosine matrix. This formula can be used to interconvert rotation cosine
maftrix from quaternion.

Coming to error quaternion dynamics calculation, say the desired
quaternion is qg and the actual quaternion is q. We define the error

quaternion to be q,. Now, quaternion gives us the unit vector along the
direction of rotation and the cosine of the angle of rotation. If our
quaternion is not our desired quaternion, then we can perform another
rotation along the error rotation axis g, with an angle of cos 1(q,).
which can be described by the error quaternion at once. This composite
rotation gives us,
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q =dqq *(qe

de =qa " *q
MR AR

Which gives us,

deo = 9090 + Gav’ Qv
Qev = 909y — 909av — 9av” v

As angular velocity vector is always expressed with reference to the
rotating frame, before finding out error angular velocity vector, we
have to use the rotational matrix C. The relation is as shown below,

we =w—Cwy
Where C = Z(qevqTev) + (qgo — qTeqe)I — quoqxev (because the

rotational matrix relating the desired frame and actual frame is the

error rotation matrix, hence error quaternion is used.) and € = —w.C
from basic property of rotational matrices.

Differentiating the above equation w.r.t. time,
W =w—Cwyg— Cdig
= W, = I~ lw + t(t) + d(t) — (—wXC)wy — Cuy

= W, = 1_1(—(a)e + Cwy)l(w, + Cwy) + T(t) + d(t)) + w)Cwy
— Cuig

= W, = 1_1[(—(we + Cwy)*I(w, + Cwy) + T(t) + d(t))

Using these equations, we can state the error dynamics to be,

. 1 T
Qeo = — quvwe

) 1
Qev = E (9eol3x3 + q?v)we

w, = I"(—(w, + Cwg)*I(w, + Cwg) +T(t) + d(t))
+ I((D;;C(A)d — C(Dd)]
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CHAPTER 4: Simulation Summary

4.1. Assumptions of model:

To investigate the proposed mathematical models and their
performance with and without controllers, a microsatellite is assumed
with following data from [34].

194 0.1 3.0
Inerfic matrix = 0.1 25.7 0.5 | kg-m?2
30 05 184

sin (0.1¢)
Disturbance signal = 0.01 |sin (0.2t) | N-m
sin (0.3t)
3 Simulink models are prepared based on the three mathematical

models derived in this thesis work. First their Open Loop behaviour is
tested against different kind of input signals.

4.2. Open Loop Response of the System (Euler-angle based model):

As it should be clear from the different models derived the system
takes a torque vector T = T, + T, + T, w.r.t.its Body Frame as its input
which comes from its ACS actuator. Different disturbance signal, which
are basically unwanted torque of small magnitude coming from sources
like earth’s stray magnetism, gravity gradient, Solar Radiation Pressure
(SRP), aerodynamic drag (especially in LEO) or misalignment in the
reaction wheels, are also present, although results with and without
disturbance will be shown in Open Loop Response. And the Output of
the systemis its Euler angles/ quaternion/ error quaternion depending on
the model, as it is an attitude control problem. However, the angular
velocity dynamics will also be studied.

Case 1:
Input £ =018 +u(t—1)j+ 0k

Or a torque is applied on the system whose only non-zero component is
along y axis, which is by magnitude a unit step function (with unit delay).

The system behaviour is shown below.
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Fig 4: Angular velocity of satellite for unidirectional step input
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Fig 5: Euler Angles of satellite for unidirectional step input

4.2.1. Concept of Inertial Coupling:

Although the torque is provided in only one direction, it can be
seen that the satellite gains angular velocity in all direction, which seems
very counter-intuitive. This happens because of the inertial coupling
between the axes of the satellite. If we observe the inertia matrix of the

satellite, it has non zero Iy, 1, and I,, terms. This suggests that the
satellite body is not symmetric along either of the xy, yz and zx plane.

That is why even if torque is applied in only direction, the kinetic energy
gets transferred along other axes as well.
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To prove this, let us assume another satellite of similar kind, which
is symmetric across the xy,yz and zx plane, hence have zero

Ly, I, and 1, terms, making their inertia matrix diagonal.
In this case the inertia matrix is taken as,
19.4 0 0
Inerfio matrix=| 0 257 0 |kg-m?2
0 0 18.4
Same input is provided and the result is shown.
—
" //
1 //
0.8 /
0.6 //
0.4 //
0.2 //

Fig 6: Angular Velocity of symmetric satellite for unidirectional step
input
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Fig 7: Euler Angles of symmetric satellite for unidirectional step input
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In this case, the angular velocity of only y axis increases as a ramp
signal for step input along y axis, which is exactly what we expect.
Hence, only one Euler angle (pitch angle) gets increase parabolically.
Case 2:

Input T =u(t— Di+u(t—1)j+u(t— 1Dk

If step signal is applied along all direction, the response of the systems
comes out as below.

|

1= N\ //
\// '\,

4 X

- N\
\
\

o 5 10 15 20 25 30 35 40

Fig 8: Angular Velocity of Satellite with Diagonal Inertia Matrix for Step
Input
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Fig 9: Euler Angle of Satellite with Diagonal Inertia Matrix for Step Input
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Fig 10: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
Step Input
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Fig 11: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for Step
Input

Observation:

It can be observed that the system is inherently unstable, which
could have been predicted as there is no damping element.

Case 3:
Pulse input 7 = P(t) (i + j+ k), where P(t) = 20[u(t) — u(t — 1)]
The response of the system is shown below,
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Fig 12: Angular Velocity of Satellite with Diagonal Inertia Matrix for Pulse

Input
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Fig 13: Euler Angle of Satellite with Diagonal Inertia Matrix for Pulse Input
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Fig 14: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for

Pulse Input
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Fig 15: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for Pulse
Input

Observation:

From the response shown by both the satellites (diagonal and non-
diagonal), it can be understood from the angular velocity graph that
the satellites gain kinetic energy till 1 sec as the energy was being
supplied to the system by external torque and after that the kinetic
energy remains same for absence of any damping/non-conservative
force.
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Case 4:

Doublet pulse input T = D(t)(i+ j+ k),

where D(t) = [u(t) —u(t — 1] — [u(t — 1) —u(t — 2)]

Doublet is a well-known signal in control engineering, consisting of 2

successive pulses of opposite magnitude, which can emulate the
characteristics of Bang Bang Conftrol. System response is shown below.
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Fig 16: Angular Velocity of Satellite with Diagonal Inertia Matrix for
Doublet Input
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Fig 17: Euler Angle of Satellite with Diagonal Inertia Matrix for Doublet
Input
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Fig 18: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
Doublet Input
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Fig 19: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for
Doublet Input

Observation:

A doublet signalis two successive pulses with opposite magnitude,
so the system is given kinetic energy for first 1 sec and the next second
the applied torque performs negative work done. Hence, the total
energy of the system comes nearly to zero for both satellites. It can be
confirmed from the angular velocity graph, as all components of
angular velocity becomes nearly zero.
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But the total kinetic energy cannot be diminished completely in
this way as work done = [ 7+ @ dt, and the @ profile is different for 1st
and 2nd seconds, making the magnitude of positive and negative work
done unequal.

4.2.2 Effect of Disturbance:

Now the effect of introducing disturbance to the system will be
shown and discussed for the above cases.

Case 1:

System response without any input.

%107

‘ omega3:1
omega3d:2
omega3:3 [

[ U T S
/ X} N

o

0 10 20 30 40 50 60

Fig 20: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Without Input
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Fig 21: Euler Angle of Satellite with Diagonal Inertia Matrix for With
Disturbance and Without Input
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Fig 22: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Without Input
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Fig 23: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Without Input

Case 2:

System response for step input.

T=u(t—Di+ut-1j+ult—-1Dk
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Fig 24: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Step Input
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Fig 25: Euler Angle of Satellite with Diagonal Inertia Matrix for With
Disturbance and Step Input
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Fig 26: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Step Input
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Fig 27: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Step Input

Case 3:
Pulse input T = P(t)(i+ j+ k), where P(t) = 20[u(t) —u(t — 1)]

The response of the system is shown below,
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Fig 28: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Pulse Input
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Fig 29: Euler Angle of Satellite with Diagonal Inertia Matrix for With
Disturbance and Pulse Input
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Fig 30: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Pulse Input
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Fig 31: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Pulse Input

Case 4.
Doublet pulse input = D(t)(i + j+ k),

where D(t) = [u(t) —u(t —1)] — [u(t — 1) —u(t — 2)]
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Fig 32: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Doublet Input
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Fig 33: Euler Angle of Satellite with Diagonal Inertia Matrix for With
Disturbance and Doublet Input
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Fig 34: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Doublet Input

54



0.08 1 1 1 1 1 1 1 =

0.05 1 1 1 1 + 1 + —

004 ! ! ! ! ///

EAA
EAZ
EA3
0.03F I I I I I I I -

0.02— —

D01 1 1 1 1 1 1 1 —

0= I I I I I I I -

0 1 2 3 4 5 6 7 8 9 10

Fig 35: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Doublet Input

Observation:

The major observation from the open loop response and the
response after infroducing disturbance is that the output in both angular
velocity and Euler angle got infroduced with some sinusoidal harmonics
along with its disturbance-less counter-part.

4.3. Open Loop Response of the System (Quaternion based model):

Quaternion is a concept designed specifically for representing
orientation. It can be assumed as a vector-like quantity with four
parameters who's last three parameters express a direction and the first
quantity expresses an angle the subject makes with that direction. In this
model as well, the input remains the same, i.e. the torque vector. But
output will be the quaternion, although angular velocity changes willbe
shown as well.

Case 1:
Input 7 =u(t —1)1i+0j+ 0k

Or a torque is applied on the system whose only non-zero component is
along x axis, which is by magnitude a unit step function (with unit delay).

The system behaviour is shown below.
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Fig 36: Angular velocity of satellite with Diagonal Inertia Matrix for
unidirectional step input
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Fig 37: Quaternion of satellite with Diagonal Inertia Matrix for
unidirectional step input
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Fig 38: Angular velocity of satellite with Non-Diagonal Inertia Matrix for
unidirectional step input
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Fig 39: Quaternion of satellite with Non-Diagonal Inertia Matrix for
unidirectional step input

Case 2:
Input T =u(t— Di+u(t—1)j+u(t— 1Dk

If step signal is applied along all direction, the response of the systems
comes out as below.
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Fig 40: Angular velocity of satellite with Diagonal Inertia Matrix for step
input
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Fig 41: Quaternion of satellite with Diagonal Inertia Matrix for step input
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Fig 43: Quaternion of satellite with Non-Diagonal Inertia Matrix for step
input
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Case 3:
Pulse input T = P(t)(i + j + k), where P(t) = [u(t) — u(t — 1)]

The response of the system is shown below,
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Fig 44: Angular velocity of satellite with Diagonal Inertia Matrix for Pulse

input
1 quaternion1:1
quaternion1:2
quaternion1:3
08 quaternion1:4
0.6
0.4
0.2
—
0 —
.—-—"—-
——-—-——-
_._—-_—.-'
._—-—-—.-
0.2 ___._-—-—"'-————-_-—-
0.4
0 1 2 3 4 5 [ 7 8 9 10

Fig 45: Quaternion of satellite with Diagonal Inertia Matrix for Pulse input
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Fig 47: Quaternion of satellite with Non-Diagonal Inertia Matrix for Pulse
input

4.3.1 Effect of Disturbance:

Now the effect of infroducing disturbance to the system will be shown
and discussed for the above cases.

sin (0.1¢t)
Disturbance signal = 0.01 | sin (0.2t)
sin (0.3t)

N-m

Case 1:

System response without any input.
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Fig 48: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Without Input
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Fig 49: Quaternion of Satellite with Diagonal Inertia Matrix for With
Disturbance and Without Input
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Fig 50: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Without Input
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Fig 51: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Without Input

Case 2:

System response for step input in presence of disturbance.

T=u(t—Di+ut-1j+ult—-1Dk
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Fig 53: Quaternion of Satellite with Diagonal Inertia Matrix for With
Disturbance and Step Input
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Fig 54: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Step Input
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Fig 55: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Step Input

Case 3:
Pulse input 7= P(t)(i + j+ k), where P(t) = [u(t) — u(t — 1)]

The response of the system in presence of disturbance is shown below,
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Fig 56: Angular Velocity of Satellite with Diagonal Inertia Matrix for With
Disturbance and Pulse Input
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Fig 57: Quaternion of Satellite with Diagonal Inertia Matrix for With
Disturbance and Pulse Input
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Fig 58: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for
With Disturbance and Pulse Input
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Fig 59: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With
Disturbance and Pulse Input

4.4. Open Loop Response of the System (Error Quaternion based model):

Error quaternion-based modelis derived based on the minimizing
the error quaternion between the actual and reference quaternion of
the system. A simulation model has been prepared in Simulink
environment to investigate its open loop response for different inputs.

Case 1:

input T = u(t)(i + j + k)
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Fig 61: Error Quaternion of Satellite for Step Input
Case 2:
input 7 = P(t)(i + j + k), where P(t) = [u(t) — u(t — 10)]
Pulse width is taken as 10 sec unlike the previous cases, because of the

slow dynamics of the error quaternion model, hence observing the
dynamic characteristics required wider pulse.

67



06 e —

s P
A AN ==
| \ / \
D_ \ / .
N4 N

o4 Ne— S——

0.6
0 10 20 30 40 50 60
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Fig 63: Error Quaternion of Satellite for Pulse Input

4.4.1. Effect of Disturbance:

In this section the effect of disturbance in the error quaternion
model will be investigated. The disturbance function assumedis same as
the above cases.

Case 1:

Effect of disturbance on error angular velocity and error quaternion is
shown without the presence of any input control torque.
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Fig 65: Error Quaternion of Satellite in Presence of Disturbance without
Any Input

Case 2:

Effect of disturbance in presence of step input.
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Fig 67: Error Quaternion of Satellite in Presence of Disturbance with Step
Input

4.5. Stabilization problem with PID controller:

4.5.1. Quaternion Model:

It is well established from the above results and observations, that
the system is inherently unstable. That is why a problem has been
constructed where the microsatellite is having a payload (like camera
or antenna) which needs to pointed at a particular direction to fulfil
mission objectives. That is why the objective of the conftroller is to stabilize
the system at a particular orientation expressed by the quaternion g =
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[1000]7 in presence of disturbance function provided above. Initial
orientation of the satellite was assumed to be q =[0.8832 0.3 —
0.2 0.3]7. The result is shown below.

Firstly the output results with the model with diagonal inertia matrix
is shown.
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Fig 68: Quaternion of the PID stabilized satellite with Diagonal Inertia
Matrix
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Fig 69: Angular Velocity of the PID stabilized satellite with Diagonal
Inertia Matrix
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Observation:

The system gets sufficiently stable after 6 seconds and the angular
velocities approach sufficiently close to zero at 4 seconds.

As PID controller can only take a scalar quantity as its input, 3
separate PID controllers were used to stabilize the system. The tuned
parameters of the controllers are shown below.

Controller Formula = P +§ +D %ﬂ
S

Controller PID Controller 1 | PID Controller 2 | PID Controller 3
Parameter
Proportional (P) 9.588 10.210 6.659
Integral (1) 0.480 0.570 0.289
Derivative (D) 37.346 51.712 37.642
Filter
Coefficient (N) 10.490 114.282 10.490

Now, results of PID controller stabilisation for the satellite with non-
diagonal inertia matrix is shown below.
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Fig 70: Angular Velocity of the PID stabilized satellite with Non-Diagonal
Inertia Matrix
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Fig 71: Quaternion of the PID stabilized satellite with Non-Diagonal
Inertia Matrix

Three details of PID controllers used in this model are tabulated below.

Controller PID Controller 1 | PID Controller 2 | PID Controller 3
Parameter
Proportional (P) 9.037 11.391 7.257
Integral (1) 0.434 0.331 0.332
Derivative (D) 35.740 52.183 39.170
Filter
Coefficient (N) 10.490 114.282 10.490

4.5.2. Euler Angle Model:

A similar simulation effort was done to stabilise the Euler angle
model as well. The non-zero initial Euler angles were [21 — 1] and they
were stabilized to [0 0 0]. The simulation results are shown below for the
diagonal inertia matrix model and non-diagonal inertia matrix model.

Details of the PID controller for the diagonal inertia matrix:

Controller PID Controller 1 | PID Controller 2 | PID Controller 3
Parameter
Proportional (P) 3.602 6.188 4.408
Integral (1) 0.169 0.287 0.205
Derivative (D) 18.894 24.755 17.635
Filter
Coefficient (N) 5.454 10.490 10.490
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Fig 73: Euler Angle of the PID stabilized satellite with Diagonal Inertia
Matrix

Details of the PID controller for the diagonal inertia matrix:

Controller PID Controller 1 | PID Controller 2 | PID Controller 3
Parameter
Proportional (P) 3.577 4.851 4.457
Integral (1) 0.168 0.228 0.224
Derivative (D) 18.721 25.390 17.320
Filter
Coefficient (N) 5.454 5.454 10.490
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Fig 74: Angular Velocity of the PID stabilized satellite with Non-Diagonal
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Fig 75: Euler Angle of the PID stabilized satellite with Non-Diagonal
Inertia Matrix
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