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CHAPTER 1: INTRODUCTION 

“Earth is the cradle of humanity, but mankind cannot stay in the cradle 

forever” 

- Carl Sagan, Cosmos (American astronomer and planetary 

scientist) 

Humankind’s profound curiosity to know the unknown, to see the unseen 

has driven us in unimaginable quests and space exploration might be 

the most exciting of them all. The inherent urge to explore beyond this 

‘cradle’ of earth had taken humanity to outer space in 1957 for the first 

time. Since then, we have achieved the unthinkable in the last 67 years, 

be it our probe traveling beyond the solar system into the interstellar 

space (Voyager 1&2), or developing reusable rockets (by SpaceX), or 

launching James Webb space telescope to second Lagrange point for 

infrared astronomy. Needless to say, today’s space technology is giving 

us unprecedented insights into the universe’s origin, formation of 

celestial bodies and possibility of existence of life in exoplanets. But, not 

only quenching the thirst of knowledge, space technology has 

increasingly permeated daily life, driving advancements across multiple 

sectors and significantly impacting how we live, work, and interact with 

the world. 

One of the most notable impacts of space technology is in the realm of 

global communication. Satellite networks facilitate instant connectivity 

across vast distances, supporting everything from international 

telecommunication to internet services in remote areas. For instance, 

advancements in satellite internet technology have led to the 

deployment of mega-constellations of low Earth orbit (LEO) satellites, 

such as SpaceX's Starlink and OneWeb, aiming to provide high-speed 

internet access to underserved regions around the globe. 

Another significant contribution of space technology is in the field of 

Earth observation. Modern satellites equipped with advanced sensors 

and imaging systems are pivotal in monitoring climate change, natural 

disasters, and environmental changes. Recent developments, such as 

NASA’s Landsat 9 and the European Space Agency's Copernicus 

Sentinel missions, provide unprecedented data that helps in tracking 

deforestation, assessing the impacts of natural disasters, and managing 

natural resources more effectively. 

Furthermore, space technology has enabled breakthroughs in 

navigation systems. The Global Positioning System (GPS), which relies on 

a network of satellites orbiting Earth, has revolutionized how we navigate 
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both in urban environments and remote regions. Recent enhancements 

in satellite navigation, including the development of the Galileo system 

by the European Union and the modernization of GPS, offer improved 

accuracy and reliability, benefiting applications ranging from 

autonomous vehicles to precision agriculture. Nearly Every Mobile 

application that makes our life easy today, directly or indirectly uses this 

(or similar) service, which is enough to understand its massive impact in 

modern human life. 

In this context, the control of satellite attitude—the precise orientation of 

satellites in space—has become increasingly critical. Maintaining the 

correct orientation is essential for ensuring that satellite systems function 

optimally and achieve their intended missions. Attitude control is 

essential for ensuring that a satellite's instruments are correctly oriented 

to achieve mission objectives. Whether it’s aligning a communication 

antenna with a ground station, positioning a scientific sensor for optimal 

data collection, or maintaining a specific orientation for imaging, 

precise control of attitude is crucial. In the absence of gravity and 

atmospheric forces, achieving and maintaining the desired orientation 

involves complex dynamics and requires sophisticated control systems. 

Historically, attitude control has evolved from basic systems relying on 

gyroscopes and magnetic torquers to advanced techniques utilizing 

reaction wheels, control moment gyroscopes, and modern thrusters. The 

development of these systems has been driven by the need for higher 

accuracy, greater reliability, and enhanced mission capabilities. 

Contemporary challenges in attitude control include managing the 

effects of external disturbances, such as solar radiation pressure and 

gravitational forces from secondary celestial bodies, as well as 

addressing the limitations of onboard resources like power and 

computational capacity. 

This thesis aims to contribute to the field of satellite attitude control by 

exploring various control approaches and solutions. Through a 

combination of theoretical analysis, utilization of different mathematical 

models and simulation based on different controllers, this research seeks 

to address emerging real-case challenges inherent in managing satellite 

orientation in the ever-evolving space environment. 

1.1 What is Attitude control? 

The attitude control system (ACS) controls the spacecraft body axes 

such that the errors in roll, pitch and yaw angles are within defined limits 

to control the orientation of the spacecraft as the main objective. The 

schematic of the attitude control system is as shown in figure 1. 
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Figure 1: Block Diagram of Attitude Control System 

1.2 Roll, Pitch and Yaw Angle 

To expedite on the orientation of a body roll, pitch and yaw angle are 

to be explained. Roll, pitch, and yaw are fundamental concepts in 

three-dimensional space that describe the orientation of an object, 

typically an aircraft or a vehicle. Here’s a brief overview of each: 

1. Roll: This refers to the rotation around the longitudinal axis (the axis that 

runs from the front to the back of the object). When an spacecraft rolls, 

one wing goes up while the other goes down. This movement is crucial 

for banking turns. 

2. Pitch: Pitch involves rotation around the lateral axis (the axis that runs 

from wingtip to wingtip or along the y axis in conventional right hand 

Cartesian frame system). When an spacecraft pitches, its nose moves up 

or down. This motion affects altitude and is essential for climbing or 

descending. 

3. Yaw: Yaw is the rotation around the vertical axis (the axis that runs from 

the top to the bottom of the object or the z axis in the conventional right 

hand cartesian system). When an aircraft yaws, its nose moves left or 

right. This movement helps in changing direction horizontally. 
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Fig 2: Roll, Pitch and Yaw axis representation of a spacecraft [1] 

Together, these angles describe the complete orientation of an object 

in 3D space and are essential for navigation, stability, and control in 

various vehicles, especially in aviation. 

1.3 Sensors and Actuators: 

Two of the most important parts of the attitude control system are sensors 

and actuators as they measure the instantaneous orientation of the 

spacecraft and perform required maneuvers for desired change in the 

orientation of the object respectively. Different kinds of sensors and 

actuators used in spacecrafts are discussed below.  

1.3.1 Sensors 

1. Inertial Measurement Units (IMUs): 

   - Description: IMUs consist of accelerometers and gyroscopes that 

measure linear acceleration and angular velocity, respectively. 

- Function: They provide real-time data on the spacecraft’s motion and 

orientation. 

 

2. Sun Sensors: 

   - Description: These sensors detect the position of the Sun relative to 

the spacecraft. 

   - Function: They help determine the spacecraft’s attitude by providing 

reference points for solar positioning. 



13 

 

 

3. Star Trackers: 

   - Description: Optical sensors that capture images of stars and 

compare them to a star catalog. 

   - Function: They provide precise attitude information by identifying the 

spacecraft’s orientation in relation to known stars. 

 

4. Magnetic Field Sensors: 

   - Description: These sensors measure the local magnetic field. 

   - Function: They help determine the spacecraft’s orientation with 

respect to Earth’s magnetic field, useful for attitude stabilization. 

 

5. GPS Receivers: 

    - Description: These systems receive signals from GPS satellites. 

  - Function: They can provide position and velocity information, aiding 

in attitude determination. 

 

1.3.2 Actuators 

1. Reaction Wheels: 

   - Description: These are flywheels mounted on the spacecraft that can 

be spun up or down to produce torque. 

   - Function: They allow precise control of orientation without using 

propellant, ideal for fine-tuning attitude. 

 

2. Control Moment Gyroscopes (CMGs): 

   - Description: Similar to reaction wheels, but they use the precession of 

spinning masses to generate torque. 

   - Function: They provide rapid and large changes in attitude, often 

used in larger spacecraft. 

 

3. Thrusters: 
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   - Description: Small rocket engines that expel gas to produce thrust. 

Cold gas jet, monopropellant and bi-propellant jet, ion engine, gas-

liquid equilibrium thruster are different variants widely used in the 

industry. 

   - Function: They can be used for larger attitude adjustments or 

maneuvers, especially for spacecraft in low-gravity environments. 

 

4. Magnetic Torquers: 

   - Description: Electromagnetic coils that interact with Earth’s magnetic 

field. 

   - Function: They create torque to change the spacecraft’s orientation, 

useful for small adjustments. 

 

5. Gimbaled Engines: 

   - Description: Engines that can pivot to direct thrust in various 

directions. 

   - Function: Used in larger spacecraft for maneuvering and attitude 

control during propulsion phases. 

 

The combination of these sensors and actuators enables spacecraft to 

maintain stability, navigate accurately, and respond to various mission 

requirements, ensuring successful operations in the challenging 

environment of space. 

 

A spacecraft can have several feedback control systems. In many 

spacecrafts similar three-axis feedback control is also required to point 

the communications antenna, science platforms and instruments, solar 

arrays and other sensors. An open-loop control system is one where the 

desired position is commanded with no feedback to perform the 

commanded action. This method is used where low precision is required.  
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CHAPTER 2: Literature Survey 

 This thesis work includes a survey of some available scientific 

literature on attitude control of spacecrafts consisting of some similar 

techniques used in the course of this thesis work or the control techniques 

more popular in the industry. The literature survey is separated in two 

different sections, one on the progress of space technology with nano 

and micro-satellites and the other section discusses different control 

approaches of attitude control in satellites.  

2.1. Literature survey of Micro/Nano-Satellites: 

In the literature survey, this thesis provides a comprehensive review in two 

main areas: advancements in micro and nano satellite technology and 

an exploration of control strategies for satellite attitude control. The first 

part examines the evolution of micro and nano satellites, divided into 

two sections: one focusing on technological advancements in 

instrumentation and utility, and the other on attitude control techniques 

specifically tailored for these small-scale platforms. The second part of 

the survey covers a range of control approaches used in satellite 

attitude control, evaluating methodologies in terms of stability, 

robustness, and adaptability to disturbances. This dual focus aims to 

build a strong foundation for understanding both the specific challenges 

of micro and nano satellite control and the broader context of attitude 

control strategies for satellites. 

2.1.1. Introduction to Micro and Nano Satellites 

Micro and nano satellites have revolutionized space exploration and 

satellite technology due to their reduced size, cost, and increased 

flexibility. These small satellites, typically weighing between 1 kg to 100 

kg, have enabled a range of applications from Earth observation to 

deep space exploration. Their development began in the late 20th 

century with significant advancements in miniaturization of technology 

and a growing interest in cost-effective space missions. 

2.1.2. Historical Overview: 

The concept of small satellites dates back to the 1960s with the launch 

of experimental satellites like OSCAR 1, the first amateur radio satellite, 

the result of American space endeavour Project OSCAR. Although all 

the satellites in earlier period of space technology were small in size and 

mass due to payload constraints of available propulsion system. With 

bigger rockets and boosters, larger satellites came in picture which can 

execute multiple projects with numerous modules installed in the same 

body. In recent days the smaller satellites are getting prioritized mainly 

because of the reason that larger satellites are prone to put down 
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multiple project investments for a single breakdown in the satellite. Also, 

the smaller satellites are more economically viable options besides 

involving lower risk to investments.  

 

Name 
Launch 

date 

Mass 

(kg) 

Perigee 

(km) 

Apogee 

(km) 
Country 

Vanguard-

1 

17-Mar-

58 
1.47 652 3961 

United 

States 

Pioneer-3 
06-Dec-

58 
5.88 0 1,02,300 

United 

States 

Pioneer-4 
03-Mar-

59 
5.88 

Lunar 

Flyby 

Lunar 

Flyby 

United 

States 

Explorer-9 16-Feb-61 7 636 2582 
United 

States 

OSCAR-1 
12-Dec-

61 
4.5 235 415 

United 

States 

OSCAR-2 06-Feb-62 4.5 208 386 
United 

States 

Flashing 

Light 

15-May-

63 
5 161 267 

United 

States 

ERS-9 19-Jul-63 1.5 3,662 3731 
United 

States 

ERS-12 17-Oct-63 2.1 208 1,03,830 
United 

States 

Explorer-19 
19-Dec-

63 
7 589 2393 

United 

States 

ERS-13 17-Jul-64 2.1 193 1,04,400 
United 

States 

Explorer-24 
21-Nov-

64 
9 334 1551 

United 

States 

ERS-17 20-Jul-65 5.4 208 1,12,184 
United 

States 

ERS-16 09-Jun-66 5 180 3622 
United 

States 

ERS-15 
19-Aug-

66 
5 3,669 3701 

United 

States 

ERS-18 28-Apr-67 9 8,619 1,11,530 
United 

States 

ERS-9 19-Jul-63 1.5 3,662 3731 
United 

States 

ERS-20 28-Apr-67 8.6 8,619 1,11,530 
United 

States 

ERS-27 28-Apr-67 6 8,619 1,11,530 
United 

States 
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Explorer-39 
08-Aug-

68 
9.4 673 2533 

United 

States 

ERS-28 26-Sep-68 10 175 35,724 
United 

States 

ERS-26 
23-May-

69 
10 59,543 69,011 

United 

States 

Table 1: Nanosatellites during early space age [2] 

After OSCAR-1 different small satellites were used for various missions, 

However, the term "micro satellite" gained prominence in the 1990s, with 

missions such as CUBE-SAT (launched in 2000), which set a precedent for 

small satellite design and deployment. Although before the inception of 

the conceptualisation of Cubesat, several small satellite missions were 

experimented. NASA developed DOVE satellites in 1990s and ESA 

(European Space Agency) began experimenting with small satellite 

technologies, leading to developments in lightweight materials and 

compact instruments. Later different nano and micro satellite missions 

were carried out as a consequence of success of its predecessors. A few 

mentionable of such satellites belong from AMSAT, UoSat satellite family, 

SAMPEX, TRACE etc. 

Continued advancements in technology led to further miniaturization of 

components, such as sensors, processors, and communication systems, 

making it feasible to pack more functionality into smaller satellites.The 

rise of private companies interested in small satellite technology began 

to reshape the landscape, with companies like Planet Labs launching 

fleets of small satellites for Earth observation. By late 2000s and 2010s 

micro and nano satellites were used for a variety of applications, 

including Earth observation, scientific research, and technology 

demonstration. The concept of satellite constellations gained traction, 

with companies and organizations proposing networks of small satellites 

for global communications and monitoring. 

The introduction of dedicated small satellite launch vehicles, like Rocket 

Lab’s Electron, has significantly reduced launch costs and increased 

access to space for small satellites. Modern nano and micro satellites are 

equipped with advanced technologies, enabling sophisticated missions 

such as remote sensing, communications, and space exploration. 

 

2.1.3. Technological advancements of micro/nano-satellites: 

The major challenge of designing a micro/nano-satellite was 

accommodating all the hardware of such multi-functionary 

sophisticated device in such small size. Initially the functionalities of small 
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satellites were very simplified for that reason. The first Swedish nano-

satellite ‘MUNIN’ was designed and fabricated by Swedish Institute of 

Space Physics to collect data on auroral activity in both northern and 

southern hemisphere, such that the data related to current 

magnetospheric activity can be made available on-line [3]. This data is 

then used in prediction of space weather. This is cubesat with side length 

of 21 cm and has weight of 6kg with combined electron and ion 

spectrometer, solid state detector, miniature CCD camera, silicon solar 

array on all sides and a Li-ion battery. It uses a magnetic attitude control 

system which consists of a permanent magnet and a hysteresis rod as a 

damper. A very precise attitude control system was not needed for the 

mission as it was not going to use any complex rotation endeavour. The 

motive was to make the ACS as cheap as possible from both economic 

and energy perspective. The permanent magnet provides the 

necessary restoring torque to align the orientation of MUNIN with earth’s 

magnetic field vector. The damping rod ensures the transient dies 

out.  Damping rod is manufactured from a soft-magnetic material and 

re-magnetized in geomagnetic field under satellite rotation relative to a 

force line of this field, so it can generate a damping torque. 

 With advancements in the field of electronics engineering and 

miniaturisation of hardware micro and nanosatellites were being 

launched with various purposes like earth observation, geological 

applications, solar and space weather monitoring etc. The invention of 

CMOS cameras, ARM7 microcontrollers etc influenced nanosatellites like 

O/OREOS, CXBN, BRITE during the 2000’s decade. 

 Later constellation of nanosatellites came into picture with 

missions like OneWeb to provide to provide broadband connectivity all 

over the globe with a constellation of 2000 nanosatellites [4]. The Dutch 

nanosatellite constellation HIBER is aiming to provide IoT based services 

in domains like agriculture, soil and rain sensors, tank and silo monitoring, 

snow and ice cap monitoring, transportation and logistics over 90% of 

earth’s surface. 

 Notable mentions of various nanosatellites categorised according 

to their functions is given below [5]. 

Sr. 

No. 
Functionality Nanosatellites. 

1 Earth Imager M-Cubed-2/ COVE, SwissCube, 

AArest 

2 X-Ray Detectors MinXSS, HALOSAT, HERMES,MiSolFA 

3 Spectrometers SOLSTICE, OPAL, BIRCHES, GRIFEX 

4 Photometers XPS, ExoPlanet, ASTERIA 

5 GNSS Recievers CYGNSS, CADRE, CAT-2 

6 Micro Bolometers CSIM 
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7 Radiometers TEMPEST 

8 RADAR system RAX, Radar Altimeters & SAR, 3SRI-

CIRES 

9 Particle Detectors REPTILE, EPISEM, FIRE 

10 Plasma Wave 

Analyser 

CADRE / WINCS, DICE, INSPIRE / 

CVHM 

Table 2: Notable Nanosatellites Categorised on Functionality 

 

2.1.4. Attitude Control Techniques for Micro and Nano Satellites 

Attitude control in small satellites presents unique challenges and 

opportunities due to their size constraints and operational environment. 

Here, we survey the prominent methods and approaches: 

 The most used attitude control methods with magnetic control 

were discussed in [6] by M. Yu Ovchinnikov and D. S. Roldugin on 3 premises 

of simple angular velocity damping, combined operation with other 

actuators and some passive stabilization methods. Approaches like 

angular velocity damping has been in use since the preliminary days of 

space exploration and still in use for its simplicity, energy efficiency and 

size advantage. Although the study shows for three-axis magnetic 

control secondary actuation method is necessary in some case, that is 

where newer control approaches like sliding mode, model predictive 

control and global optimization performs better. 

 A study [7] by C. Hajiyev and D. C. Guler discusses the attitude 

control approach of gyroscopic sensor-less microsatellites using 

estimation methods. Two types of gyroless satellite attitude 

determination methods were reviewed in this study: single-frame 

attitude determination methods based on vector measurements and 

attitude estimation methods based on Kalman filter. Two types of 

Kalman filter algorithms were taken into consideration as a traditional 

approach based on nonlinear measurements and nontraditional 

approach based on linear measurements. Comparison of different 

approaches shows that SVD based method shows maximum robustness, 

while Quaternion Estimation (QUEST) requires least computational 

burden, and in Kalman Filter based estimation Unscented Kalman Filter 

showed most superior result in accuracy and convergence speed. 

 [8] by Liang He et. al. has presented a survey of recent 

development in the field of attitude control of microsatellites including 

the significant improvement of high precision attitude control with the 

inception of miniaturised star sensor, Commercial-Off-The-Shelf (COTS) 

reaction wheels and Control moment Gyroscopes (CMG). The study 
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showed conventional control methods face challenges in reducing 

complex non-linear alignment error due to low redundancy in small 

spacecrafts. Although Deep Neural Network (DNN) strategies showed 

great results in similar cases, hence, possessing better possibility of this 

approach in similar cases. 

2.1.5. Conclusion 

The field of attitude control for micro and nano satellites continues to 

evolve, driven by advancements in control algorithms, miniaturization of 

hardware, and innovative mission profiles. Classical methods like PID 

control still play a significant role, while adaptive, predictive, and 

emerging techniques offer enhanced capabilities for handling the 

complexities of small satellite missions. 

2.2. Literature Survey of Various Attitude Control 

Techniques of Satellite: 

 Attitude control is critical in the operation of satellites for 

maintaining the desired orientation (attitude) with respect to an inertial 

or reference frame. The attitude of a satellite can significantly affect its 

communication, imaging, scientific experiments, and overall mission 

success. The 2nd part of this survey highlights key algorithms developed 

over the years for satellite attitude control, focusing on recent 

advancements and typical classification schemes for such algorithms.  

 Magnetic coils have been used for attitude control action from 

the earliest years of satellite missions, hence, those have become a 

subject of extended study (see Stickler & Alfriend (1976) [9] and the 

references therein). The major drawback of this problem was the control 

torque to the satellite cannot be provided along the direction of earth’s 

magnetic field lines. Later it was proved that three-axis stabilization is 

possible, only if the particular orbit of the satellite observes a time 

variation in magnetic field sufficient to guarantee stabilizability of the 

satellite in [10] by Bhat & Dham, 2003). Before this finding it was assumed 

initially that three independent control torques can be applied to the 

satellite and that, on the basis of this assumption, a conventional PD 

control law (which guarantees attitude regulation in the case of three 

controls, as per [11] by Wen & Kreutz-Delgado, 1991) had been 

designed. Therefore, as long as the closed-loop dynamics is sufficiently 

slow, the stability of the time-varying closed-loop system can be 

approximately studied on the basis of its time-invariant approximations. 

Hence, other classical control approaches were used as well. Assuming 

that the periodic approximation for the geomagnetic field is satisfactory, 

the resulting periodic dynamics for the spacecraft can be stabilized 
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either by state or output periodic feedback. A number of contributions 

have been given in the literature to the analysis of the LQ magnetic 

attitude control problem. In [12] by Pittelkau, both output feedback 

stabilization and disturbance attenuation for a momentum biased 

spacecraft have been analyzed; in particular, the disturbance issue has 

been addressed by means of an internal model principle approach. In 

order to avoid the difficulties in the solution of the LQ problems due to 

the presence of uncontrollable modes with poles on the imaginary axis, 

the secular and cyclic components of the external disturbances have 

been modeled with stable models (first order with a large time constant 

for the secular part and second order with small damping for the cyclic 

part). This gives rise to a time periodic filter and a time periodic state 

feedback. In [13] by Lovera et al. and [14] by De Marchi et al. the 

problem is analyzed in a similar fashion, by using an extension of the 

periodic LQ control problem (initially proposed in [15] by Arcara et al.), 

by which it is possible to include marginally stable disturbance models in 

the plant description. The resulting control design method is applied in a 

simulation study for the Italian spacecraft MITA. A similar approach has 

been also proposed in [16] by Wisniewski (1996), [17] by Wisniewski and 

Blanke (1999) and [18] by Wisniewski and Markley (1999), where the sole 

state feedback problem is considered. An LMI approach to the design 

of 𝐻2 -optimal periodic controllers was proposed in [19] by Wisniewski & 

Stoustrup (2002). The 𝐻∞ approach to the problem has been first 

proposed in [20] for the design of state feedback attitude controllers 

and in [21] for the implementation of momentum management control 

laws based on magnetic actuators. 

A novel approach in the domain of predictive control is used in 

[22] for attitude stabilization of a spacecraft. Furthermore, classical LQ 

and 𝐻∞ periodic control and nonlinear control have been discussed with 

an aim of robustness of the control law in presence of different 

disturbances and a satisfactory solution is proposed. 

Sliding mode controller offers low complexity, low computational 

burden control method which can make the output converge in finite 

time. Hence, it is very suitable for attitude stabilization of orbital 

spacecrafts. This [23] paper from 1997 discusses a new Terminal Sliding 

Mode (TSM) control scheme which operates on a multiple input multiple 

output linear system. It is shown, by using this controller the system goes 

to origin in finite time and attains infinity stability on the terminal sliding 

mode. In 2002, this paper [24] proposed the way to overcome the 

singularity problem associated with the conventional TSM control 

scheme, ensuring finite reaching time for every initial condition. [25] 

shows a non-linear system can asymptotically track a desired output 

trajectory when controlled by an SMC in closed loop. As it accomplishes 
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precise attitude control despite present uncertainties, the robustness 

offered by SMC is also observed. This paper [26] uses sliding mode 

control for a spacecraft that performs large angle manoeuvres. But SMC 

causes chattering effect generated from its switching function, this 

causes harm to the actuator in long term. To solve this issue, using fuzzy 

sliding mode controlled seemed like an improvement. But fixed fuzzy 

rules are observed to cause instability in the system. So, this paper [27] 

presents the detailed procedure to design an Adaptive Fuzzy Sliding 

Mode Controller (AFSMC) and shows that it eliminates the chattering 

effect while keeping the system stability undisturbed. The major 

drawback of AFSMC is its high computational burden, which is not at all 

desired in smaller spacecrafts. An energy efficient way is suggested here 

[28], naming Minimum Sliding Mode Error Feedback Control (MSMEFC). 

Although it is energy efficient, eliminates chattering and robust enough, 

the performance degrades steeply under large perturbations or in an 

effort to track sharp turns in trajectory. Another widely used variation of 

SMC is Integral Sliding Mode Controller (ISMC). 
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CHAPTER 3: Derivation of Mathematic 

Models 

 Mathematical modelling of a satellite or a spacecraft in general 

can be done in various methods. In this thesis work derivation of 3 type 

of mathematical model is presented and an effort has been made to 

explain every modelling in the simplest way possible with detailed 

derivation process. 

3.1. Derivation of Euler Angle-based Mathematical 

Model: 

For developing the mathematical model of the spacecraft 

attitude dynamics, rigid body rotational dynamics and kinematics are to 

be understood fast.  

3.1.1. Rigid Body Rotational Kinematics and Dynamics: 

 

Figure 3: Rigid Body Rotation [29] 

 

Suppose the shown rigid body is rotating with an angular velocity 𝝎⃗⃗⃗  with 

respected to the fixed/inertial frame. Assume a vector 𝑨⃗⃗ (𝒕) inscribed in 

the rigid body which will go under the similar rotation with angular 

velocity 𝝎⃗⃗⃗ . Say after a small time dt the vector inscribed in the rigid body 

becomes 𝑨⃗⃗ (𝒕 + 𝒅𝒕). If the change in the vector is said to be 𝒅𝑨⃗⃗⃗⃗  ⃗, then from 

the triangle law of vector we can say, 

𝑨⃗⃗ (𝒕 + 𝒅𝒕) − 𝑨⃗⃗ (𝒕) = 𝒅𝑨⃗⃗⃗⃗  ⃗  
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Which can be written as 

𝒅𝑨⃗⃗  =[|𝑨⃗⃗ |sin 𝜑  𝑑𝜃] 𝒏̂ 

𝒏̂ is the unit vector in the normal direction of the plane of rotation of  

𝑨⃗⃗ (𝒕) vector. 𝜑 is the angle between the vector 𝑨⃗⃗ (𝒕)  and angular 

velocity vector 𝝎⃗⃗⃗ . We know that if a vector/line of length R is rotated 

with elemental angle d𝜃 then the elemental length difference is Rd𝜃. But 

here the vector and its angular velocity vector is not perpendicular, so 

only the perpendicular component of 𝑨⃗⃗ (𝒕) will be rotated with angle 𝑑𝜃. 

The component that is coincident with 𝝎⃗⃗⃗  will not go through any 

rotation, as we can clearly understand. The length of the perpendicular 

component being |𝑨⃗⃗ |sin𝜑, the length of 𝒅𝑨⃗⃗  is should be |𝑨⃗⃗ |sin 𝜑  𝑑𝜃, 

which is stated in equation (1). 

 

Now, we know, 

𝑑𝜃

𝑑𝑡
= |𝝎⃗⃗⃗ | 

𝑑𝜃 = |𝝎⃗⃗⃗ |𝑑𝑡 

Using this in equation (1) we get, 

(1) 

𝑨⃗⃗ (𝒕 + 𝒅𝒕) 

𝑨⃗⃗ (𝒕 + 𝒅𝒕) 
𝑨⃗⃗ (𝒕) 

𝒅𝑨⃗⃗⃗⃗  ⃗ 
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𝑑𝑨⃗⃗  =[(|𝝎⃗⃗⃗ |𝑑𝑡)|𝑨⃗⃗ |sin ∅] 𝒏̂ 

 

 

 

 

 

Equation (3) will be useful in the next part when we try to differentiate a 

vector described in the body reference frame with respect to inertial 

frame. 

 

3.1.2. Dynamics of Spacecraft: 

Suppose the angular momentum of a rigid body is, 

𝑯⃗⃗⃗ = 𝐻𝑥𝒊̂ + 𝐻𝑦𝒋̂ + 𝐻𝑧𝒌̂  

Where the unit vectors with lower case is the unit cartesian vectors w.r.t. 

moving body frame and the set with upper case unit cartesian vectors 

are w.r.t. inertial frame. 

 

 

 
 

Figure 3: Inertial frame and moving frame [29] 

 

 

(3) 
𝑑𝑨⃗⃗  

𝑑𝑡
=  𝝎⃗⃗⃗  × 𝑨⃗⃗  

 

(2) 
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Differentiating 𝑯⃗⃗⃗  with respect to inertial frame we get, 

 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
 = (

𝒅𝑯𝒙

𝒅𝒕
 𝒊̂ + 

𝒅𝑯𝒚

𝒅𝒕
𝒋̂ +

𝒅𝑯𝒛

𝒅𝒕
𝒌̂) +(𝑯𝒙

𝒅𝒊̂

𝒅𝒕
+ 𝑯𝒚

𝒅𝒋̂

𝒅𝒕
+ 𝑯𝒛

𝒅𝒌

𝒅𝒕
) 

 

 

The unit vectors of the moving frame are to be differentiated as well, as 

they are moving with the frame and hence not a constant. 

Using equation (3) we can write, 
𝑑𝒊̂

𝑑𝑡
=  𝝎 ⃗⃗⃗⃗ × 𝒊̂  and so on. So, we can write, 

𝑑𝑯⃗⃗⃗ 

𝑑𝑡
 = (

𝑑𝐻𝑥

𝑑𝑡
 𝒊̂ + 

𝑑𝐻𝑦

𝑑𝑡
𝒋̂ +

𝑑𝐻𝑧

𝑑𝑡
𝒌̂) +𝝎 ⃗⃗⃗⃗ × (𝐻𝑥𝒊̂ + 𝐻𝑦𝒋̂ + 𝐻𝑧𝒌̂) 

 

 

 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
   → differentiation of 𝑯⃗⃗⃗  w.r.t. fixed inertial frame 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
|𝑟𝑒𝑙 → differentiation of 𝑯⃗⃗⃗  w.r.t. moving body frame 

Now consider a spacecraft which has moment of inertia 𝐼, the angular 

velocity and angular momentum with respect to moving body frame 

are 𝝎 ⃗⃗⃗⃗  and 𝑯⃗⃗⃗ . 

So, 𝑯⃗⃗⃗ = 𝐼𝝎 ⃗⃗⃗⃗  .  
From Newton’s second law we can write, 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
= 𝝉⃗  , where 𝜏 is the total moment of all the forces applied about the 

CoM of spacecraft. 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
|𝑟𝑒𝑙  =  I𝝎⃗⃗⃗ ̇ . By using the relation in equation (5), we can write, 

𝝉⃗ =
𝒅𝑯⃗⃗⃗ 

𝒅𝒕
|𝑟𝑒𝑙 + 𝝎 ⃗⃗⃗⃗ × 𝑯⃗⃗⃗  

𝝉⃗ =  𝐼𝝎⃗⃗⃗ ̇ + 𝝎 ⃗⃗⃗⃗ × 𝐼𝝎 ⃗⃗⃗⃗  

 

 

This result is supported by reference [1]. 

𝝎⃗⃗⃗ ̇ = 𝐼−1 (− (𝝎 ⃗⃗⃗⃗ × 𝐼𝝎 ⃗⃗⃗⃗ ) + 𝝉⃗ ) 

(5) 

𝐼𝝎⃗⃗⃗ ̇ = 𝝉⃗ − 𝝎 ⃗⃗⃗⃗ × 𝐼𝝎 ⃗⃗⃗⃗  

 

(6) 

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
 =

𝒅𝑯⃗⃗⃗ 

𝒅𝒕
|𝑟𝑒𝑙 + 𝝎 ⃗⃗⃗⃗ ×

𝑯⃗⃗⃗  
 

(7) 

(4) 
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Now this vector equation can be written in matrix form. Suppose the 

moment of inertia matrix 𝑰 = 𝑑𝑖𝑎𝑔(𝐼𝑥, 𝐼𝑦, 𝐼𝑧), and angular velocity 

vector 𝝎 = [𝑝, 𝑞, 𝑟]𝑇. 𝑝, 𝑞 𝑎𝑛𝑑 𝑟 represents the roll, pitch and yaw rates 

respectively. They are certainly w.r.t. body frame axes as 𝝎 ⃗⃗⃗⃗  was defined 

in the same reference frame. 

𝐼𝝎 ⃗⃗⃗⃗ = [𝐼𝑥𝑝, , 𝐼𝑦𝑞, 𝐼𝑧𝑟]
𝑻 

So, 𝝎 ⃗⃗⃗⃗ × 𝐼𝝎 ⃗⃗⃗⃗ =  [
𝒊̂ 𝒋̂ 𝒌̂
𝑝 𝑞 𝑟

𝐼𝑥𝑝 𝐼𝑦𝑞 𝐼𝑧𝑟
] = −[(𝐼𝑦 − 𝐼𝑧)𝑞𝑟 𝒊̂ + (𝐼𝑧 − 𝐼𝑥)𝑟𝑝 𝒋̂ +

(𝐼𝑥 − 𝐼𝑦)𝑝𝑞 𝒌̂] 

So, in matrix form we can write equation (7) as, 

[
𝑝̇
𝑞̇
𝑟̇

] = [

𝐼𝑥
−1 0 0

0 𝐼𝑦
−1 0

0 0 𝐼𝑧
−1

] [

𝑤1

𝑤2

𝑤3

] − [

𝐼𝑥
−1 0 0

0 𝐼𝑦
−1 0

0 0 𝐼𝑧
−1

] [

−(𝐼𝑦 − 𝐼𝑧)𝑞𝑟

−(𝐼𝑧 − 𝐼𝑥)𝑟𝑝

−(𝐼𝑥 − 𝐼𝑦)𝑝𝑞

] 

[
𝑝̇
𝑞̇
𝑟̇

] = [

𝐼𝑥
−1 0 0

0 𝐼𝑦
−1 0

0 0 𝐼𝑧
−1

] [

𝑤1

𝑤2

𝑤3

] + [

𝐼𝑥
−1 0 0

0 𝐼𝑦
−1 0

0 0 𝐼𝑧
−1

] [

(𝐼𝑦 − 𝐼𝑧)𝑞𝑟

(𝐼𝑧 − 𝐼𝑥)𝑟𝑝

(𝐼𝑥 − 𝐼𝑦)𝑝𝑞

] 

The Euler’s angles are denoted as 𝜑, 𝜃,𝜓 as roll, pitch and yaw angle 

w.r.t earth inertial frame. 𝝉⃗ =  𝑤1𝒊̂ + 𝑤2𝒋̂ + 𝑤3𝒌̂. 

 

3.1.3. Kinematics of Spacecraft: 

First the basic rotation matrices for Euler axes are defined. 

Say, the rotation matrix for a rotation of angle 𝜑,𝜃 𝑎𝑛𝑑 𝜓 along roll, 

pitch and yaw axis respectively and separately are 𝐶𝜑, 𝐶𝜃 𝑎𝑛𝑑 𝐶𝜓. 

Their values are as shown below, 

𝐶𝜑 =  [

1 0 0
0 cos 𝜑 sin 𝜑
0 −sin 𝜑 cos 𝜑

]  

 

 

 

(8) 

𝐶𝜃 =  [
cos 𝜃 0 −sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

]  
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The basic rotation matrices are found by rotating a frame with respect 

to one fixed axis by a certain angle. So, the directions of other 2 axes 

change. The rotational transformation matrix for this transformation is 

called the basic rotation matrix. 

We set the convention as, the body fixed frame follows a frd (front-right-

down) coordinate system and a ned (north-east-down) system is taken 

in reference frame. A yaw-pitch-roll Euler angle sequence is taken for 

the rotational conversion of frame. So, the transformation of angular 

rates from ned to frd can be shown as, 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇

0
0

] + 𝐶𝜑 ([
0

𝜃̇
0

] + 𝐶𝜃 [

0
0

𝜓̇
]) 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇

0
0

] + [

1 0 0
0 cos 𝜑 sin 𝜑
0 −sin 𝜑 cos 𝜑

] ([
0

𝜃̇
0

] + [
cos 𝜃 0 −sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] [

0
0

𝜓̇
]) 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇

0
0

] + [

1 0 0
0 cos 𝜑 sin 𝜑
0 −sin 𝜑 cos 𝜑

]([
0

𝜃̇
0

] + [
−𝜓̇ sin 𝜃

0
𝜓̇ cos 𝜃

]) 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇

0
0

] + [

1 0 0
0 cos 𝜑 sin 𝜑
0 −sin 𝜑 cos 𝜑

]([

−𝜓̇ sin 𝜃

𝜃̇
𝜓̇ cos 𝜃

]) 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇

0
0

] + [

−𝜓̇ sin 𝜃

𝜃̇ cos 𝜑 + 𝜓̇ cos 𝜃 sin 𝜑

−𝜃̇ sin 𝜑 + 𝜓̇ cos 𝜃 cos 𝜑

] 

[
𝑝
𝑞
𝑟
] =  [

𝜑̇ − 𝜓̇ sin 𝜃

𝜃̇ cos 𝜑 + 𝜓̇ cos 𝜃 sin 𝜑

−𝜃̇ sin 𝜑 + 𝜓̇ cos 𝜃 cos 𝜑

] 

[
𝑝
𝑞
𝑟
] =  [

1
0
0

0 sin 𝜃
   cos 𝜑 cos 𝜃 sin 𝜑

   − sin 𝜑 cos 𝜃 cos 𝜑
][

𝜑̇

𝜃̇

𝜓̇

] 

𝐶𝜓 =  [
cos 𝜓 sin 𝜓 0
−sin 𝜓 cos 𝜓 0

0 0 1

]  
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For expressing the angular rates about the ned frame with respect to frd 

frame, we have to take the inverse of the rotation matrix (transforming 

frd →ned) 

Determinant = cos 𝜃 

Co-factor matrix = [

cos 𝜃 0 0
sin 𝜃 sin 𝜑 cos 𝜃 cos 𝜑 sin 𝜑

sin 𝜃 cos 𝜑 −cos 𝜃 sin 𝜑 cos 𝜑
] 

Adjoint matrix = [

cos 𝜃 sin 𝜃 sin 𝜑 sin 𝜃 cos 𝜑
0 cos 𝜃 cos 𝜑 −cos 𝜃 sin 𝜑
0 sin 𝜑 cos 𝜑

] 

So, we can write the final transformation as, 

[

𝜑̇

𝜃̇

𝜓̇

] = [

1 sin 𝜑 tan 𝜃 cos 𝜑 tan 𝜃

0 cos 𝜑 − sin 𝜑
0 sin 𝜑 / cos 𝜃 cos 𝜑 / cos 𝜃

] [
𝑝
𝑞
𝑟
] 

From equation (8) and (9), we can state the spacecraft attitude 

dynamics if we take the states as 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]
𝑇, where, 

The state-space dynamics of the system is, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒙𝟏̇ = 𝑰𝒙
−𝟏 [(𝑰𝒚 − 𝑰𝒛)𝒙𝟐𝒙𝟑  +  𝒘𝟏] 

𝒙𝟐̇ = 𝑰𝒚
−𝟏 [(𝑰𝒛 − 𝑰𝒙)𝒙𝟑𝒙𝟏  +  𝒘𝟐] 

𝒙𝟑̇ = 𝑰𝒛
−𝟏 [(𝑰𝒙 − 𝑰𝒚)𝒙𝟏𝒙𝟐 +  𝒘𝟑] 

𝒙𝟒̇ = 𝒙𝟏 + (sin 𝒙𝟒)(tan 𝒙𝟓)𝒙𝟐

+ (cos 𝒙𝟒)(tan 𝒙𝟓)𝒙𝟑 

𝒙𝟓̇ =  (cos 𝒙𝟒)𝒙𝟐 − (sin 𝒙𝟒)𝒙𝟑  

𝒙𝟔̇ =
sin𝒙𝟒

cos𝒙𝟓
𝒙𝟐 +

cos𝒙𝟒

cos𝒙𝟓
 𝒙𝟑 

 

𝑥4 =  𝜑 

𝑥5 = 𝜃 

𝑥6 =  𝜓 

(9) 

𝑥1 = 𝑝 

𝑥2 = 𝑞 

𝑥3 = 𝑟 
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3.2. Derivation of Quaternion-based Mathematical 

Model: 

 

3.2.1. What is Quaternion? 

W.R. Hamilton introduced the term quaternion in an attempt to 

generalize complex numbers from a plane to three dimensions in 1943. 

The quaternion described by him has the form, 

𝑞 = 𝑞0+𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 

Where the imaginary operators are given by, 

𝑖2 = 𝑗2 = 𝑘2 = −1 

𝑖𝑗 = 𝑘 = −𝑗𝑖 

𝑗𝑘 = 𝑖 = −𝑘𝑗 

NOTE: 

This model is applied only when the moment of inertia matrix of the spacecraft is 

diagonal, which happens only when the spacecraft is symmetric about the xy, yz 

and zx plane, where the body axes system is OXYZ.  

It is very common case for a lot of spacecrafts, although there are few whose 

moment of inertia matrix is not diagonal and just carries the symmetric property. 

In such cases the model cannot be simplified as above. We have to use the state 

equations as, 

Dynamic Equation:   

𝜔̇ = 𝐼−1(−𝜔×𝐼𝜔 + 𝜏) where 𝜔× = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
], 𝜔 = [

𝑝
𝑞
𝑟
] 

Kinematic Equation: 

[

𝜑̇

𝜃̇

𝜓̇

] = [

1 sin 𝜑 tan 𝜃 cos 𝜑 tan 𝜃

0 cos 𝜑 − sin 𝜑
0 sin 𝜑 / cos 𝜃 cos 𝜑 / cos 𝜃

] [
𝑝
𝑞
𝑟
] 
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𝑘𝑖 = 𝑗 = −𝑖𝑘 

Quaternions follow the basic laws of algebra, except the multiplication 

is not commutative for the last 3 operations shown above. That is why it 

is a good idea to express a quaternion where we assume it is a 

combination of a scalar and a vector part. The vector part being 𝑞 =

𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘. It can be expressed in the below stated form 

𝑞 = [

𝑞0

𝑞1
𝑞2

𝑞3

] = [
𝑞0

𝑞 
] 

3.2.2. Why quaternion-based model 

• Quaternions are introduced here because of their “all-attitude” 

capability. 

• It is free from the singularity that Euler angle-based model has at 

pitch angle 90⁰. 

• Quaternion model has some computational advantages in 

simulation over other available models of attitude dynamics. 

 

3.2.3. Quaternion Multiplication 

Say 𝑝 = 𝑝0 + 𝑝  and 𝑞 = 𝑞0 + 𝑞 , then their multiplication operation (∗) 

will be, 

𝑝 ∗ 𝑞 = (𝑝0 + 𝑝 ) ∗ (𝑞0 + 𝑞 ) 

⇒ 𝑝 ∗ 𝑞 =  𝑝0𝑞0 + 𝑝0𝑞 + 𝑞0𝑝 + (𝑝 × 𝑞 ) − 𝑝 ∙ 𝑞  

So, the scalar part of the expression is (𝑝0𝑞0 − 𝑝 ∙ 𝑞 ) and the vector 

part is (𝑝0𝑞 + 𝑞0𝑝 + (𝑝 × 𝑞 )) 

In quaternion form we can write, 

𝑝 ∗ 𝑞 = [
𝑝0

𝑝 ] ∗ [
𝑞0

𝑞 ] = [
𝑝0𝑞0 − 𝑝 ∙ 𝑞 

𝑝0𝑞 + 𝑞0𝑝 + (𝑝 × 𝑞 )
] 

 

 

Consider the following product 

[
𝑞0

𝑞 
] ∗ [

𝑞0

−𝑞 
] = [

𝑞0
2 − (𝑞 ∙ (−𝑞 ))

𝑞0𝑞 − 𝑞0𝑞 + (𝑞 × (−𝑞 ))
] 

𝑝 ∗ 𝑞 =  [
𝑝0

𝑝 
] ∗ [

𝑞0

𝑞 
] = [

𝑝0𝑞0 − 𝑝 ∙ 𝑞 

𝑝0𝑞 + 𝑞0𝑝 + (𝑝 × 𝑞 )
] 
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⇒ [
𝑞0

𝑞 
] ∗ [

𝑞0

−𝑞 
] = [𝑞0

2 + (𝑞 ∙ 𝑞 )
0

] 

⇒ [
𝑞0

𝑞 
] ∗ [

𝑞0

−𝑞 
] = [

𝑛𝑜𝑟𝑚(𝑞)

0
] 

From this result we can have inverse of a quaternion as, 

 

 

 

 

3.2.4. Co-ordinate Transformation by Quaternions: 

 A quaternion can be used to rotate a Euclidean vector in the 

same manner as the rotation formula by rotation matrices, and the 

quaternion rotation is much simpler in form. The vector part of the 

quaternion is used to define the rotation axis and the scalar part to 

define the angle of rotation. The rotation axis is specified by its direction 

cosines in the reference coordinate system, and it is convenient to 

impose a unity norm constraint on the quaternion. Therefore, if the 

direction angles of the axis are 𝛼, 𝛽, 𝛾 and a measure of the rotation 

angle is 𝛿, the rotation quaternion is written as 

𝑞 = [

cos δ
sin δ cos 𝛼
sin δ cos 𝛽
sin δ cos 𝛾

] = [ cos δ
sin 𝛿 𝒏𝒓̂

] 

The r in superscript refers that the vector is in the reference frame.  

To operate the transformation on a vector the vector needs to be 

expressed in quaternion form first. The standard way to do this is to 

express the vector as, 

𝑢 = [
0
𝑢⃗ 
] 

The result of the rotation must also be a quaternion with a scalar part of 

zero, the transformation must be reversible by means of the quaternion 

inverse, and Euclidean length must be preserved. The transformation 

𝑣 = 𝑞 ∗ 𝑢 obviously does not satisfy the first of these requirements. 

Therefore, we consider the transformation, 

𝑣 = 𝑞−1 ∗ 𝑢 ∗ 𝑞 

[
𝑞0

𝑞 
]
−1

=
1

𝑛𝑜𝑟𝑚(𝑞)
[
𝑞0

−𝑞 
] 
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⇒ 𝑣 =
1

𝑛𝑜𝑟𝑚(𝑞)
[
𝑞0

−𝑞 
] ∗ [

0
𝑢⃗ 
] ∗ [

𝑞0

𝑞 
] 

⇒ 𝑣 =
1

𝑛𝑜𝑟𝑚(𝑞)
[

𝑞 ∙ 𝑢⃗ 

𝑞0𝑢⃗ + ((−𝑞 ) × 𝑢⃗ )
] ∗ [

𝑞0

𝑞 
] 

⇒ 𝑣

=
1

𝑛𝑜𝑟𝑚(𝑞)
[

𝑞0(𝑞 ∙ 𝑢⃗ ) − (𝑞0𝑢⃗ + ((−𝑞 ) × 𝑢⃗ )) ∙ 𝑞 

(𝑞 ∙ 𝑢⃗ )𝑞 + 𝑞0(𝑞0𝑢⃗ + ((−𝑞 ) × 𝑢⃗ )) + (𝑞0𝑢⃗ + ((−𝑞 ) × 𝑢⃗ )) × 𝑞 
] 

⇒ 𝑣 =

1

𝑛𝑜𝑟𝑚(𝑞)
[

𝑞0(𝑞 ∙ 𝑢⃗ ) − 𝑞0(𝑢⃗ ∙ 𝑞 )

(𝑞 ∙ 𝑢⃗ )𝑞 + 𝑞0
2𝑢⃗ + 𝑞0(𝑢⃗ × 𝑞 ) + 𝑞0(𝑢⃗ × 𝑞 ) + (𝑢⃗ × 𝑞 ) × 𝑞 

]   [∵ 

𝑞  𝑎𝑛𝑑 (−𝑞 ) × 𝑢⃗ ) are perpendicular to each other] 

⇒ 𝑣 =
1

𝑛𝑜𝑟𝑚(𝑞)
[

0
(𝑞 ∙ 𝑢⃗ )𝑞 + 𝑞0

2𝑢⃗ + 2𝑞0(𝑢⃗ × 𝑞 ) − 𝑞 × (𝑢⃗ × 𝑞 )
]    

⇒ 𝑣 =
1

𝑛𝑜𝑟𝑚(𝑞)
[

0
(𝑞 ∙ 𝑢⃗ )𝑞 + 𝑞0

2𝑢⃗ + 2𝑞0(𝑢⃗ × 𝑞 ) − 𝑢⃗ (𝑞 ∙ 𝑞 ) + 𝑞 (𝑢⃗ ∙ 𝑞 )
]       

[∵ 𝑎 × (𝑏⃗ × 𝑐 ) = 𝑏⃗ (𝑐 . 𝑎 ) − 𝑐(⃗⃗  ⃗𝑎 ∙ 𝑏⃗ )] 

⇒ 𝑣 =
1

𝑛𝑜𝑟𝑚(𝑞)
[

0
2(𝑞 ∙ 𝑢⃗ )𝑞 + (𝑞0

2 − 𝑞 ∙ 𝑞 )𝑢⃗ + 2𝑞0(𝑢⃗ × 𝑞 )
]        

Now if q is chosen to be, 

𝑞 = [

cos δ
sin δ cos 𝛼
sin δ cos 𝛽
sin δ cos 𝛾

] = [ cos δ
sin 𝛿 𝒏⃗⃗ 

] 

2(𝑞 ∙ 𝑢⃗ )𝑞 = 2 sin2 𝛿 (𝑛⃗ ∙ 𝑢⃗ )𝑛⃗ = (1 −  cos 𝜇)(𝑛⃗ ∙ 𝑢⃗ )𝑛⃗   

(𝑞0
2 − 𝑞 ∙ 𝑞 )𝑢⃗ = (cos2 𝛿 −sin2 𝛿)𝑢⃗ = cos 𝜇 𝑢⃗  

2𝑞0(𝑢⃗ × 𝑞 ) = 2 sin 𝛿 cos 𝛿 (𝑢⃗ × 𝑛⃗ ) = sin 𝜇 (𝑢⃗ × 𝑛⃗ )  

The quaternion can be expressed as, 

𝑞 = [
cos

𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
] 

For this quaternion (where norm(q) is unity), the transformed vector 

becomes, 

 

(If we assume 𝜇 = 2𝛿) 

𝑣 = 𝑞−1 ∗ 𝑢 ∗ 𝑞 = [
0

(1 −  cos 𝜇)(𝑛⃗ ∙ 𝑢⃗ )𝑛⃗  + cos 𝜇 𝑢⃗ + sin 𝜇 (𝑢⃗ × 𝑛⃗ )
]   
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We will define the quaternion that performs the coordinate rotation to 

system b from system a to be 𝑞𝑏/𝑎; therefore, 

𝑞𝑏/𝑎 = [
cos

𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
] 

And the co-ordinate transformation is, 

𝑢𝑏 = 𝑞𝑏/𝑎
−1 ∗ 𝑢𝑎 ∗ 𝑞𝑏/𝑎 

A few properties of this coordinate transformation using quaternions 

are, 

• 𝑞𝑏/𝑎 = 𝑞𝑎/𝑏
−1 

• 𝑞𝑐/𝑎 = 𝑞𝑏/𝑎 ∗ 𝑞𝑐/𝑏 

 

3.2.5. Quaternion Kinematic Equation: 

With the goal of finding an expression for the derivative of a time-

varying quaternion, and hence obtaining a state equation for 

spacecraft attitude, we will derive an expression for an incremental 

increase q(t + 𝛿t) from an existing state q(t) in response to a nonzero 

angular velocity vector. Following the order of Equation for multiplication 

of two “forward” quaternions as stated in the 2nd property of the 

quaternion coordinate transform, we have, 

𝑞(𝑡 + 𝛿𝑡) = 𝑞(𝑡) ∗ 𝛿𝑞(𝛿𝑡), where the quaternions 𝑞(𝑡) =

[
cos

𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
]  𝑎𝑛𝑑 𝛿𝑞(𝛿𝑡) = [

cos
𝛿𝜇

2

sin
𝛿𝜇

2
𝒏⃗⃗ 
] ≌ [

1
𝛿𝜇

2
𝒏⃗⃗ 
]. Hence, 

𝑞(𝑡 + 𝛿𝑡) = [
cos

𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
]  ∗ [

1
𝛿𝜇

2
𝒏⃗⃗ 
] = [

cos
𝜇

2
−

𝛿𝜇

2
sin

𝜇

2

(
𝛿𝜇

2
cos

𝜇

2
+ sin

𝜇

2
) 𝒏⃗⃗ 

]  

𝑞(𝑡 + 𝛿𝑡) − 𝑞(𝑡) = [
cos

𝜇

2
−

𝛿𝜇

2
sin

𝜇

2

(
𝛿𝜇

2
cos

𝜇

2
+ sin

𝜇

2
) 𝒏⃗⃗ 

] − [
cos

𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
] = [

−
𝛿𝜇

2
sin

𝜇

2
𝛿𝜇

2
cos

𝜇

2
𝒏⃗⃗ 

]  
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𝑞(𝑡) ∗ [
0

𝛿𝜇

2
𝒏⃗⃗ 
] = [

cos
𝜇

2

sin
𝜇

2
𝒏⃗⃗ 
]  ∗ [

0
𝛿𝜇

2
𝒏⃗⃗ 
] = [

−
𝛿𝜇

2
sin

𝜇

2
𝛿𝜇

2
cos

𝜇

2
𝒏⃗⃗ 

]  

so, 𝑞(𝑡 + 𝛿𝑡) − 𝑞(𝑡) = 𝑞(𝑡) ∗ [
0

𝛿𝜇

2
𝒏⃗⃗ 
] 

Now, the differentiation of q(t) is 

𝑑𝑞

𝑑𝑡
= lim

𝛿𝑡→0

𝑞(𝑡 + 𝛿𝑡) − 𝑞(𝑡)

𝛿𝑡
=

𝑞(𝑡) ∗ [
0

𝛿𝜇
2

𝒏⃗⃗ 
]

𝛿𝑡
=

1

2
𝑞(𝑡) ∗ [

0
𝛿𝜇

𝛿𝑡
𝒏⃗⃗ 
] 

⇒ 𝑞̇ =
1

2
𝑞(𝑡) ∗ [

0
𝝎⃗⃗⃗ 

] 

⇒ [
𝑞0̇

𝑞𝑣̇
] =

1

2
[
𝑞0

𝒒𝒗⃗⃗ ⃗⃗ 
] ∗ [

0
𝝎⃗⃗⃗ 

] 

⇒ [
𝑞0̇

𝑞𝑣̇
] =

1

2
[

−𝒒𝒗⃗⃗ ⃗⃗ ∙ 𝝎⃗⃗⃗ 

𝑞0𝝎⃗⃗⃗ + 𝒒𝒗⃗⃗ ⃗⃗ × 𝝎⃗⃗⃗ 
] 

This relation is in vector form. For deriving the state space model of 

attitude dynamics, we need to convert this in matrix from completely. In 

matrix form dot product of 2 vectors can be substituted by transposed 

product of the vectors. In case of cross product of 2 vectors, the pre-

multiplier can be expressed as an equivalent square matrix to make the 

matrix product feasible. For an example, if a vector 𝑚 = [𝑚1  𝑚2 𝑚3]
𝑇, 

then the corresponding cross multiplication equivalent will be, 

𝑚× = [

0 −𝑚3 𝑚2

𝑚3 0 −𝑚1

−𝑚2 𝑚1 0
] 

Equation (1) can be expressed as 2 equations in matrix form, 

 

 

 

 

 

This is the quaternion kinematic equation. 

(∵𝒏⃗⃗ ∙ 𝒏⃗⃗ = 𝟏 and 𝒏⃗⃗ × 𝒏⃗⃗ = 𝟎) 

… (1) 

𝒒𝟎̇ = −
𝟏

𝟐
𝒒𝒗

𝑻𝝎 

𝒒𝒗̇ =
𝟏

𝟐
(𝒒𝟎𝑰𝟑×𝟑 + 𝒒𝒗

×)𝝎 (a) 
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3.2.6. Quaternion Dynamic Equation: 

 

The dynamic equation of a rigid body does not involve any quaternion. 

It is same as the one derived in Euler angle-based attitude dynamics 

model, sent previously. So, without derivation the matrix equation is used 

here. 

 

 

There 7 differential equations, considering (a) and (b). Although for a 3-

DoF attitude dynamics there should be 6 states, hence 6 differential 

equations. That happens because we have used unit quaternion and all 

4 entries of a unit quaternion are not independent of each other. This 

mutual dependence increases the number of differential equations. 

Their mutual dependance is expressed by the equation, 

𝑞0
2 + 𝑞𝑣

𝑇𝑞𝑣 = 1 

 

 

 

3.3. Derivation of Error Quaternion Based 

Mathematical Model: 

 Previously we have found out (conversion from vector form to 

matrix from),        

𝑣 = [
0

2(𝑞 ∙ 𝑢⃗ )𝑞 + (𝑞0
2 − 𝑞 ∙ 𝑞 )𝑢⃗ + 2𝑞0(𝑢⃗ × 𝑞 )

]                                 

(Where q is unit quaternion and v is the vector, we get after rotating u 

with q) 

(1)   2(𝑞 ∙ 𝑢⃗ )𝑞 = 2(𝑞1𝑢1 + 𝑞2𝑣2 + 𝑞3𝑣3)[

𝑞1

𝑞2

𝑞3

] 

⇒ 2(𝑞 ∙ 𝑢⃗ )𝑞 = 2 [

𝑞1
2𝑢1 + 𝑞1𝑞2𝑢2 + 𝑞1𝑞3𝑢3

𝑞1𝑞2𝑢1 + 𝑞2
2𝑢2 + 𝑞2𝑞3𝑢3

𝑞1𝑞3𝑢1 + 𝑞2𝑞3𝑢2 + 𝑞3
2𝑢3

] 

𝝎̇ = 𝑰−𝟏(−𝝎×𝑰𝝎 + 𝝉(𝒕) + 𝒅(𝒕)) 

 

(b) 



37 

 

⇒ 2(𝑞 ∙ 𝑢⃗ )𝑞 = 2 [

𝑞1
2 𝑞1𝑞2 𝑞1𝑞3

𝑞1𝑞2 𝑞2
2 𝑞2𝑞3

𝑞1𝑞3 𝑞2𝑞3 𝑞3
2

] [

𝑢1

𝑢2

𝑢3

] 

⇒ 2(𝑞 ∙ 𝑢⃗ )𝑞 = 2(𝑞𝑞𝑇)𝑢 

(2)  (𝑞0
2 − 𝑞 ∙ 𝑞 )𝑢⃗ = (𝑞0

2 − 𝑞𝑇𝑞)𝑢 

(3)   2𝑞0(𝑢⃗ × 𝑞 ) = 2𝑞0 [

𝑢2𝑞3 − 𝑢3𝑞2

𝑢3𝑞1 − 𝑢1𝑞3

𝑢1𝑞2 − 𝑢2𝑞1

] 

⇒ 2𝑞0(𝑢⃗ × 𝑞 ) = 2 [

𝑢2𝑞0𝑞3 − 𝑢3𝑞0𝑞2

𝑢3𝑞0𝑞1 − 𝑢1𝑞0𝑞3

𝑢1𝑞0𝑞2 − 𝑢2𝑞0𝑞1

] 

⇒ 2𝑞0(𝑢⃗ × 𝑞 ) = 2 [

0 𝑞0𝑞3 −𝑞0𝑞2

−𝑞0𝑞3 0 𝑞0𝑞1

𝑞0𝑞2 −𝑞0𝑞1 0
][

𝑢1

𝑢2

𝑢3

] 

⇒ 2𝑞0(𝑢⃗ × 𝑞 ) = 2𝑞0 [

0 𝑞3 −𝑞2

−𝑞3 0 𝑞1

𝑞2 −𝑞1 0
] [

𝑢1

𝑢2

𝑢3

] 

⇒ 2𝑞0(𝑢⃗ × 𝑞 ) = 2𝑞0(−𝑞×)𝑢 = −2𝑞0𝑞
×𝑢 

So, the rotation of a vector 𝑢⃗  with the quaternion q gives us (in matrix 

form), 

 

𝑣 = 2(𝑞 ∙ 𝑢⃗ )𝑞 + (𝑞0
2 − 𝑞 ∙ 𝑞 )𝑢⃗ + 2𝑞0(𝑢⃗ × 𝑞 )

= 2(𝑞𝑞𝑇)𝑢 + (𝑞0
2 − 𝑞𝑇𝑞)𝑢 − 2𝑞0𝑞

×𝑢 

⇒ 𝑣 = [2(𝑞𝑞𝑇) + (𝑞0
2 − 𝑞𝑇𝑞)𝐼 − 2𝑞0𝑞

×]𝑢 = 𝐶𝑢 

Where 𝐶 = [2(𝑞𝑞𝑇) + (𝑞0
2 − 𝑞𝑇𝑞)𝐼 − 2𝑞0𝑞

×] which Is the rotation 

cosine matrix. This formula can be used to interconvert rotation cosine 

matrix from quaternion. 

Coming to error quaternion dynamics calculation, say the desired 

quaternion is 𝑞𝑑 and the actual quaternion is 𝑞. We define the error 

quaternion to be 𝑞𝑒 . Now, quaternion gives us the unit vector along the 

direction of rotation and the cosine of the angle of rotation. If our 

quaternion is not our desired quaternion, then we can perform another 

rotation along the error rotation axis 𝑞𝑒𝑣⃗⃗ ⃗⃗⃗⃗  with an angle of cos−1(𝑞𝑒0), 
which can be described by the error quaternion at once. This composite 

rotation gives us, 
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𝑞 = 𝑞𝑑 ∗ 𝑞𝑒 

𝑞𝑒 = 𝑞𝑑
−1 ∗ 𝑞 

[
𝑞𝑒0

𝑞𝑒𝑣
] = [

𝑞𝑑0

−𝑞𝑑𝑣
] ∗ [

𝑞0

𝑞𝑣
] 

Which gives us, 

𝑞𝑒0 = 𝑞𝑑0𝑞0 + 𝑞𝑑𝑣
𝑇𝑞𝑣 

𝑞𝑒𝑣 = 𝑞𝑑0𝑞𝑣 − 𝑞0𝑞𝑑𝑣 − 𝑞𝑑𝑣
×𝑞𝑣 

As angular velocity vector is always expressed with reference to the 

rotating frame, before finding out error angular velocity vector, we 

have to use the rotational matrix C. The relation is as shown below,  

𝜔𝑒 = 𝜔 − 𝐶𝜔𝑑 

Where 𝐶 =  2(𝑞𝑒𝑣𝑞
𝑇
𝑒𝑣

) + (𝑞𝑒0
2 − 𝑞𝑇

𝑒
𝑞𝑒)𝐼 − 2𝑞𝑒0𝑞

×
𝑒𝑣

 (because the 

rotational matrix relating the desired frame and actual frame is the 

error rotation matrix, hence error quaternion is used.) and 𝐶̇ = −𝜔𝑒
×𝐶 

from basic property of rotational matrices. 

Differentiating the above equation w.r.t. time, 

𝜔𝑒̇ = 𝜔̇ − 𝐶̇𝜔𝑑 − 𝐶𝜔𝑑̇ 

⇒ 𝜔𝑒̇ = 𝐼−1(−𝜔×𝐼𝜔 + 𝜏(𝑡) + 𝑑(𝑡)) − (−𝜔𝑒
×𝐶)𝜔𝑑 − 𝐶𝜔𝑑̇ 

⇒ 𝜔𝑒̇ = 𝐼−1(−(𝜔𝑒 + 𝐶𝜔𝑑)×𝐼(𝜔𝑒 + 𝐶𝜔𝑑) + 𝜏(𝑡) + 𝑑(𝑡)) + 𝜔𝑒
×𝐶𝜔𝑑

− 𝐶𝜔𝑑̇ 

⇒ 𝜔𝑒̇ = 𝐼−1[(−(𝜔𝑒 + 𝐶𝜔𝑑)×𝐼(𝜔𝑒 + 𝐶𝜔𝑑) + 𝜏(𝑡) + 𝑑(𝑡))

+ 𝐼(𝜔𝑒
×𝐶𝜔𝑑 − 𝐶𝜔𝑑̇)] 

 

Using these equations, we can state the error dynamics to be,  

 

 

 

 

 

 

𝒒𝒆𝟎̇ =  −
𝟏

𝟐
𝒒𝒆𝒗

𝑻 𝝎𝒆  

𝒒𝒆𝒗̇ =
𝟏

𝟐
(𝒒𝒆𝟎𝑰𝟑×𝟑 + 𝒒𝒆𝒗

× )𝝎𝒆  

𝝎𝒆̇ = 𝑰−𝟏[(−(𝝎𝒆 + 𝑪𝝎𝒅)
×𝑰(𝝎𝒆 + 𝑪𝝎𝒅) + 𝝉(𝒕) + 𝒅(𝒕))

+ 𝑰(𝝎𝒆
×𝑪𝝎𝒅 − 𝑪𝝎𝒅̇ )] 
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CHAPTER 4: Simulation Summary 

4.1. Assumptions of model: 

To investigate the proposed mathematical models and their 

performance with and without controllers, a microsatellite is assumed 

with following data from [34]. 

Inertia matrix = [
19.4 0.1 3.0
0.1 25.7 0.5
3.0 0.5 18.4

] kg-m2 

Disturbance signal = 0.01 [

sin (0.1𝑡)
sin (0.2𝑡)
sin (0.3𝑡)

] N-m 

3 Simulink models are prepared based on the three mathematical 

models derived in this thesis work. First their Open Loop behaviour is 

tested against different kind of input signals. 

4.2. Open Loop Response of the System (Euler-angle based model): 

 As it should be clear from the different models derived the system 

takes a torque vector 𝜏 = 𝜏𝑥⃗⃗  ⃗ + 𝜏𝑦⃗⃗⃗⃗ + 𝜏𝑧⃗⃗  ⃗  w.r.t. its Body Frame as its input 

which comes from its ACS actuator. Different disturbance signal, which 

are basically unwanted torque of small magnitude coming from sources 

like earth’s stray magnetism, gravity gradient, Solar Radiation Pressure 

(SRP), aerodynamic drag (especially in LEO) or misalignment in the 

reaction wheels, are also present, although results with and without 

disturbance will be shown in Open Loop Response. And the Output of 

the system is its Euler angles/ quaternion/ error quaternion depending on 

the model, as it is an attitude control problem. However, the angular 

velocity dynamics will also be studied. 

Case 1: 

Input  𝜏 = 0𝒊̂ + 𝑢(𝑡 − 1) 𝒋̂ + 0𝒌̂ 

Or a torque is applied on the system whose only non-zero component is 

along y axis, which is by magnitude a unit step function (with unit delay). 

The system behaviour is shown below. 
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Fig 4: Angular velocity of satellite for unidirectional step input 

 

Fig 5: Euler Angles of satellite for unidirectional step input 

4.2.1. Concept of Inertial Coupling: 

 Although the torque is provided in only one direction, it can be 

seen that the satellite gains angular velocity in all direction, which seems 

very counter-intuitive. This happens because of the inertial coupling 

between the axes of the satellite. If we observe the inertia matrix of the 

satellite, it has non zero 𝐼𝑥𝑦, 𝐼𝑦𝑧 𝑎𝑛𝑑 𝐼𝑧𝑥 terms. This suggests that the 

satellite body is not symmetric along either of the 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 plane. 

That is why even if torque is applied in only direction, the kinetic energy 

gets transferred along other axes as well. 
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 To prove this, let us assume another satellite of similar kind, which 

is symmetric across the 𝑥𝑦, 𝑦𝑧 and 𝑧𝑥 plane, hence have zero 

𝐼𝑥𝑦, 𝐼𝑦𝑧 𝑎𝑛𝑑 𝐼𝑧𝑥 terms, making their inertia matrix diagonal.  

 In this case the inertia matrix is taken as, 

Inertia matrix = [
19.4 0 0
0 25.7 0
0 0 18.4

] kg-m2 

 Same input is provided and the result is shown. 

 

Fig 6: Angular Velocity of symmetric satellite for unidirectional step 

input 

 

Fig 7: Euler Angles of symmetric satellite for unidirectional step input 
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 In this case, the angular velocity of only y axis increases as a ramp 

signal for step input along y axis, which is exactly what we expect. 

Hence, only one Euler angle (pitch angle) gets increase parabolically. 

Case 2: 

Input 𝜏 = 𝑢(𝑡 − 1)𝒊̂ + 𝑢(𝑡 − 1) 𝒋̂ + 𝑢(𝑡 − 1)𝒌̂ 

If step signal is applied along all direction, the response of the systems 

comes out as below. 

 

Fig 8: Angular Velocity of Satellite with Diagonal Inertia Matrix for Step 

Input 

 

Fig 9: Euler Angle of Satellite with Diagonal Inertia Matrix for Step Input 
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Fig 10: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

Step Input 

 

Fig 11: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for Step 

Input 

Observation: 

 It can be observed that the system is inherently unstable, which 

could have been predicted as there is no damping element. 

Case 3: 

Pulse input 𝜏 = 𝑃(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂), where 𝑃(𝑡) = 20[𝑢(𝑡) − 𝑢(𝑡 − 1)] 

 The response of the system is shown below, 
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Fig 12: Angular Velocity of Satellite with Diagonal Inertia Matrix for Pulse 

Input 

 

Fig 13: Euler Angle of Satellite with Diagonal Inertia Matrix for Pulse Input 
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Fig 14: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

Pulse Input 

 

Fig 15: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for Pulse 

Input 

Observation: 

 From the response shown by both the satellites (diagonal and non-

diagonal), it can be understood from the angular velocity graph that 

the satellites gain kinetic energy till 1 sec as the energy was being 

supplied to the system by external torque and after that the kinetic 

energy remains same for absence of any damping/non-conservative 

force. 
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Case 4: 

Doublet pulse input  𝜏 = 𝐷(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂),  

where 𝐷(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 1)] − [𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)] 

Doublet is a well-known signal in control engineering, consisting of 2 

successive pulses of opposite magnitude, which can emulate the 

characteristics of Bang Bang Control. System response is shown below. 

 

Fig 16: Angular Velocity of Satellite with Diagonal Inertia Matrix for 

Doublet Input 

 

Fig 17: Euler Angle of Satellite with Diagonal Inertia Matrix for Doublet 

Input 
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Fig 18: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

Doublet Input 

 

Fig 19: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for 

Doublet Input 

Observation: 

 A doublet signal is two successive pulses with opposite magnitude, 

so the system is given kinetic energy for first 1 sec and the next second 

the applied torque performs negative work done. Hence, the total 

energy of the system comes nearly to zero for both satellites. It can be 

confirmed from the angular velocity graph, as all components of 

angular velocity becomes nearly zero. 
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 But the total kinetic energy cannot be diminished completely in 

this way as work done = ∫𝜏 ∙ 𝜔⃗⃗ 𝑑𝑡, and the 𝜔⃗⃗  profile is different for 1st 

and 2nd seconds, making the magnitude of positive and negative work 

done unequal. 

4.2.2 Effect of Disturbance: 

 Now the effect of introducing disturbance to the system will be 

shown and discussed for the above cases. 

Case 1: 

System response without any input. 

 

Fig 20: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Without Input 

 

Fig 21: Euler Angle of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Without Input 
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Fig 22: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Without Input 

 

Fig 23: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Without Input 

Case 2: 

System response for step input. 

𝜏 = 𝑢(𝑡 − 1)𝒊̂ + 𝑢(𝑡 − 1) 𝒋̂ + 𝑢(𝑡 − 1)𝒌̂ 



50 

 

 

Fig 24: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Step Input 

 

Fig 25: Euler Angle of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Step Input 

 

Fig 26: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Step Input 
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Fig 27: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Step Input 

Case 3: 

Pulse input 𝜏 = 𝑃(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂), where 𝑃(𝑡) = 20[𝑢(𝑡) − 𝑢(𝑡 − 1)] 

 The response of the system is shown below, 

 

Fig 28: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 
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Fig 29: Euler Angle of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 

 

Fig 30: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Pulse Input 
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Fig 31: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 

Case 4: 

Doublet pulse input  𝜏 = 𝐷(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂),  

where 𝐷(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 1)] − [𝑢(𝑡 − 1) − 𝑢(𝑡 − 2)] 

 

Fig 32: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Doublet Input 
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Fig 33: Euler Angle of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Doublet Input 

 

Fig 34: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Doublet Input 
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Fig 35: Euler Angle of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Doublet Input 

Observation: 

 The major observation from the open loop response and the 

response after introducing disturbance is that the output in both angular 

velocity and Euler angle got introduced with some sinusoidal harmonics 

along with its disturbance-less counter-part. 

4.3. Open Loop Response of the System (Quaternion based model): 

 Quaternion is a concept designed specifically for representing 

orientation. It can be assumed as a vector-like quantity with four 

parameters who’s last three parameters express a direction and the first 

quantity expresses an angle the subject makes with that direction. In this 

model as well, the input remains the same, i.e. the torque vector. But 

output will be the quaternion, although angular velocity changes will be 

shown as well. 

Case 1: 

Input  𝜏 = 𝑢(𝑡 − 1) 𝒊̂ + 0𝒋̂ + 0𝒌̂ 

Or a torque is applied on the system whose only non-zero component is 

along x axis, which is by magnitude a unit step function (with unit delay). 

The system behaviour is shown below. 
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Fig 36: Angular velocity of satellite with Diagonal Inertia Matrix for 

unidirectional step input 

 

Fig 37: Quaternion of satellite with Diagonal Inertia Matrix for 

unidirectional step input 

 

Fig 38: Angular velocity of satellite with Non-Diagonal Inertia Matrix for 

unidirectional step input 
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Fig 39: Quaternion of satellite with Non-Diagonal Inertia Matrix for 

unidirectional step input 

Case 2: 

Input 𝜏 = 𝑢(𝑡 − 1)𝒊̂ + 𝑢(𝑡 − 1) 𝒋̂ + 𝑢(𝑡 − 1)𝒌̂ 

If step signal is applied along all direction, the response of the systems 

comes out as below. 

 

Fig 40: Angular velocity of satellite with Diagonal Inertia Matrix for step 

input 
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Fig 41: Quaternion of satellite with Diagonal Inertia Matrix for step input 

 

Fig 42: Angular velocity of satellite with Non-Diagonal Inertia Matrix for 

step input 

 

Fig 43: Quaternion of satellite with Non-Diagonal Inertia Matrix for step 

input 
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Case 3: 

Pulse input 𝜏 = 𝑃(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂), where 𝑃(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 1)] 

 The response of the system is shown below, 

 

Fig 44: Angular velocity of satellite with Diagonal Inertia Matrix for Pulse 

input 

 

Fig 45: Quaternion of satellite with Diagonal Inertia Matrix for Pulse input 
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Fig 46: Angular velocity of satellite with Non-Diagonal Inertia Matrix for 

Pulse input 

 

Fig 47: Quaternion of satellite with Non-Diagonal Inertia Matrix for Pulse 

input 

4.3.1 Effect of Disturbance: 

Now the effect of introducing disturbance to the system will be shown 

and discussed for the above cases. 

Disturbance signal = 0.01 [

sin (0.1𝑡)
sin (0.2𝑡)
sin (0.3𝑡)

] N-m 

Case 1: 

System response without any input. 
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Fig 48: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Without Input 

 

Fig 49: Quaternion of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Without Input 
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Fig 50: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Without Input 

 

Fig 51: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Without Input 

Case 2: 

System response for step input in presence of disturbance. 

𝜏 = 𝑢(𝑡 − 1)𝒊̂ + 𝑢(𝑡 − 1) 𝒋̂ + 𝑢(𝑡 − 1)𝒌̂ 
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Fig 52: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Step Input 

 

Fig 53: Quaternion of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Step Input 
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Fig 54: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Step Input 

 

Fig 55: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Step Input 

Case 3: 

Pulse input 𝜏 = 𝑃(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂), where 𝑃(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 1)] 

 The response of the system in presence of disturbance is shown below, 
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Fig 56: Angular Velocity of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 

 

 

Fig 57: Quaternion of Satellite with Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 

 



66 

 

  

Fig 58: Angular Velocity of Satellite with Non-Diagonal Inertia Matrix for 

With Disturbance and Pulse Input 

 

Fig 59: Quaternion of Satellite with Non-Diagonal Inertia Matrix for With 

Disturbance and Pulse Input 

4.4. Open Loop Response of the System (Error Quaternion based model): 

 Error quaternion-based model is derived based on the minimizing 

the error quaternion between the actual and reference quaternion of 

the system. A simulation model has been prepared in Simulink 

environment to investigate its open loop response for different inputs. 

Case 1: 

input 𝜏 = 𝑢(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂) 
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Fig 60: Error Angular Velocity of Satellite for Step Input 

  

Fig 61: Error Quaternion of Satellite for Step Input 

Case 2: 

input 𝜏 = 𝑃(𝑡)(𝒊̂ +  𝒋̂ + 𝒌̂) , where 𝑃(𝑡) = [𝑢(𝑡) − 𝑢(𝑡 − 10)] 

Pulse width is taken as 10 sec unlike the previous cases, because of the 

slow dynamics of the error quaternion model, hence observing the 

dynamic characteristics required wider pulse. 
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Fig 62: Error Angular Velocity of Satellite for Pulse Input 

 

 

Fig 63: Error Quaternion of Satellite for Pulse Input 

4.4.1. Effect of Disturbance: 

 In this section the effect of disturbance in the error quaternion 

model will be investigated. The disturbance function assumed is same as 

the above cases. 

Case 1: 

Effect of disturbance on error angular velocity and error quaternion is 

shown without the presence of any input control torque. 
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Fig 64: Error Angular Velocity of Satellite in Presence of Disturbance 

without Any Input 

 

Fig 65: Error Quaternion of Satellite in Presence of Disturbance without 

Any Input 

Case 2: 

Effect of disturbance in presence of step input. 
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Fig 66: Error Angular Velocity of Satellite in Presence of Disturbance with 

Step Input 

 

Fig 67: Error Quaternion of Satellite in Presence of Disturbance with Step 

Input 

 

4.5. Stabilization problem with PID controller: 

4.5.1. Quaternion Model: 

It is well established from the above results and observations, that 

the system is inherently unstable. That is why a problem has been 

constructed where the microsatellite is having a payload (like camera 

or antenna) which needs to pointed at a particular direction to fulfil 

mission objectives. That is why the objective of the controller is to stabilize 

the system at a particular orientation expressed by the quaternion 𝑞 =
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[1 0 0 0]𝑇 in presence of disturbance function provided above. Initial 

orientation of the satellite was assumed to be 𝑞 = [0.8832  0.3 −

0.2  0.3]𝑇. The result is shown below. 

 Firstly the output results with the model with diagonal inertia matrix 

is shown. 

 

Fig 68: Quaternion of the PID stabilized satellite with Diagonal Inertia 

Matrix 

 

Fig 69: Angular Velocity of the PID stabilized satellite with Diagonal 

Inertia Matrix 
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Observation: 

 The system gets sufficiently stable after 6 seconds and the angular 

velocities approach sufficiently close to zero at 4 seconds. 

 As PID controller can only take a scalar quantity as its input, 3 

separate PID controllers were used to stabilize the system. The tuned 

parameters of the controllers are shown below. 

Controller Formula = 𝑃 +
𝐼

𝑠
+ 𝐷

𝑁

1+
𝑁

𝑠

 

Controller 

Parameter 
PID Controller 1 PID Controller 2 PID Controller 3 

Proportional (P) 9.588 10.910 6.659 

Integral (I) 0.480 0.570 0.289 

Derivative (D) 37.346 51.712 37.642 

Filter 

Coefficient (N) 
10.490 114.282 10.490 

 

Now, results of PID controller stabilisation for the satellite with non-

diagonal inertia matrix is shown below. 

 

Fig 70: Angular Velocity of the PID stabilized satellite with Non-Diagonal 

Inertia Matrix 
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Fig 71: Quaternion of the PID stabilized satellite with Non-Diagonal 

Inertia Matrix 

Three details of PID controllers used in this model are tabulated below. 

Controller 

Parameter 
PID Controller 1 PID Controller 2 PID Controller 3 

Proportional (P) 9.037 11.391 7.257 

Integral (I) 0.434 0.331 0.332 

Derivative (D) 35.740 52.183 39.170 

Filter 

Coefficient (N) 
10.490 114.282 10.490 

 

4.5.2. Euler Angle Model: 

 A similar simulation effort was done to stabilise the Euler angle 

model as well. The non-zero initial Euler angles were [2 1 − 1] and they 

were stabilized to [0 0 0]. The simulation results are shown below for the 

diagonal inertia matrix model and non-diagonal inertia matrix model. 

 Details of the PID controller for the diagonal inertia matrix: 

Controller 

Parameter 
PID Controller 1 PID Controller 2 PID Controller 3 

Proportional (P) 3.602 6.188 4.408 

Integral (I) 0.169 0.287 0.205 

Derivative (D) 18.894 24.755 17.635 

Filter 

Coefficient (N) 
5.454 10.490 10.490 
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Fig 72: Angular Velocity of the PID stabilized satellite with Diagonal 

Inertia Matrix 

 

Fig 73: Euler Angle of the PID stabilized satellite with Diagonal Inertia 

Matrix 

Details of the PID controller for the diagonal inertia matrix: 

Controller 

Parameter 
PID Controller 1 PID Controller 2 PID Controller 3 

Proportional (P) 3.577 4.851 4.457 

Integral (I) 0.168 0.228 0.224 

Derivative (D) 18.721 25.390 17.320 

Filter 

Coefficient (N) 
5.454 5.454 10.490 
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Fig 74: Angular Velocity of the PID stabilized satellite with Non-Diagonal 

Inertia Matrix 

 

Fig 75: Euler Angle of the PID stabilized satellite with Non-Diagonal 

Inertia Matrix 
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