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Some commonly used symbols

Symbol Meaning
� Hazy Image

�(�) Transmission value of pixel located at any pixel location say, �
� Atmospheric light
� Random pixel location
β Scattering coefficient
d Scene distance

��������−���������(�, �) Intensity of image corrupted with speckle noise at pixel position, (�, �)
��������−���� �, � Intensity of image not corrupted with speckle noise at pixel position, (�, �)

ƞ(�, �) Speckle noise intensity at pixel position, (�, �)
� Universal set
�, � Fuzzy sets
�� �� Membership value of the element, �� in Fuzzy set, �
�� Number of bacteria

� �� , �� ∈ ��� Cost function representing nutrient concentration in ��� (search space) of dimension ��
��(�, �, �) Position of the ��ℎ bacterium in ��� (search space) after ��ℎ chemotactic, ��ℎ reproductive and

��ℎ elimination-dispersal steps
�(�) Step size considered for bacteria movement
�� Number of swims
∆(�) Random vector used to determine the direction of movement after tumble
�� Total number of bacteria
��� Total number of healthy bacteria
� Haze-free image/ Recovered scene radiance

����� Dark channel of any daytime, haze free image say, �
Ω(�) Patch centred at pixel location �
�(x)� Refined transmission value of pixel located at any pixel location say, �
� Haziness factor
� � Intensity of light at any pixel location say, �
η� � Colour characteristics of any pixel located at any pixel location say, � in the colour channel �
R� � Reflectance of any pixel located at any pixel location say, � in the colour channel �
� � Atmospheric light value at any pixel location say, �
��(�) Glow intensity at any pixel location say, �
���� Atmospheric point spread function
��� � Shape of '��ℎ' glow source influencing the pixel located at any pixel location say, �
�� Structure layer
�� Texture layer
��� Glow part of Structure layer
��� Background layer (Glow free hazy part of Structure layer)
��� Optimized Structure layer
� Enhancement parameter introduced to control texture level of output haze-free image say, �
��� Optimized Texture layer
�ℎ Predicted haze density map of hazy image, �
��

� Mean of l channel of Source image
��

� Mean of α channel of Source image
��
� Mean of β channel of Source image

��
� Mean of l channel of Reference image

��
� Mean of α channel of Reference image

��
� Mean of β channel of Reference image
� Reference image
� Source image
���

���
Ratio between the standard deviations of l channel of Reference and Source images

���

���
Ratio between the standard deviations of α channel of Reference and Source images

��
�

��
�

Ratio between the standard deviations of β channel of Reference and Source images

� � channel of hazy image, � in ��� colour space
� � channel of hazy image, � in ��� colour space
� � channel of hazy image, � in ��� colour space



�' Output image obtained after performing image colour transfer
�' � channel of colour transferred output image, �' in ��� colour space
�' � channel of colour transferred output image, �' in ��� colour space
�' � channel of colour transferred output image, �' in ��� colour space
���

��,Ω(�)
�

Ratio between standard deviation of � channel of Reference image with patch-wise standard
deviation of � channel of Source image

���

��,Ω(�)�
Ratio between standard deviation of � channel of Reference image with patch-wise standard

deviation of � channel of Source image

��
�

��,Ω(��)
�

Ratio between standard deviation of � channel of Reference image with patch-wise standard
deviation of � channel of Source image

� Filtered image obtained by filtering hazy image, � with GIF
��', ��' Self-adaptation parameters
Ω�1(�

' ) Patch of size (2�+1)×(2�+1) centered at pixel position �'

������� Regularization parameter used for penalizing large ��'
� Total number of image pixels

��,�1(�
') Standard deviation of a patch of size (2�+1)×(2�+1) centered at pixel �'

��,1(�
') Standard deviation of a patch of size (2×1+1)×( 2×1+1) centered at pixel �'

��,∞ Mean of � �'

� Infinitesimally small positive constant
�°�' Boundary information extracted by Prewitt operator
���� Grayscale image of �
������ Detail layer of �
�������� Saliency map of �

� Patch having size twice as much as patch of size, Ω
��� � Surrogate reflectance value at any pixel position, �
�� Lexographical representation of log (�� � )
�� Lexographical representation of log (��� � )
�� Lexographical representation of log (� � )

���, ��� Smoothness parameters
�� Laplacian matrix

�����ℎ� Weight factor (whose value is equal to 0.5)
��� Illumination compensated image
η� Estimated colour map
η� Lower bound of estimated colour map
��� Colour corrected image
∆η� Residual colour term
�Ω(�)

� Maximum reflectance map
� Glow image
� Glow free nighttime hazy image
� Smoothness parameter
�1,2 First order derivative filter
�3 Second order Laplacian filter
�� Red channel of Glow free nighttime hazy image, �
�� Green channel of Glow free nighttime hazy image, �
�� Blue channel of Glow free nighttime hazy image, �
������ Local atmospheric light
������� Global atmospheric light

� Lightness values of LCh colour space
� � � Probability of lightness k of calculated scene radiance when transmission is set to �
�� � � Lightness of calculated scene radiance at pixel location � when transmission is set to �
�����
� Mean of �

� � � Weight term when transmission is set to �
� � Information fidelity term when transmission is set to �
ℎ� � Hue of scene radiance � when transmission is equal to �
ℎ�(�) Hue of glow free nighttime hazy image � when transmission is equal to �
���� ��� Enhanced background layer
�� Direction in which the colour line of a patch gets shifted from the origin of the plane

� � Magnitude of airlight at pixel position, �



��ℎ��� Amount by which the colour line of a patch gets shifted from the origin of the plane
��� Channel difference (Difference between bright channel and dark channel)

���ℎ� Brightness aware alpha map
���� Transmission estimated using BCP method
���� Transmission estimated using DCP method

��(�, �) Haze-concentration value at pixel position, (�, �)
���(�, �) Log-sigmoid value at pixel position, (�, �)
��∗ Defuzzified mapping constant value
�∗ Defuzzified correction term

�� �, �, � Current bacteria location
�� � + 1, �, � Bacteria location after tumble

�����ℎ���� ������ Contrast-to-Noise ratio of dehazed output
���ℎ��� Contrast-to-Noise ratio of hazy image

�� Mean attenuation co-efficient of target region lying within region of interest
�� Mean attenuation co-efficient of background region
�� Background noise
�� Cardinal number representing the set of visible edges in dehazed outputs
�� Cardinal number representing the set of visible edges in original hazy image
dimx Height of the image
dimy Width of the image
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ABSTRACT
Image restoration and image classification are the two most fundamental aspects of image processing.

Image restoration involves accurate preservation of colour, edge details, contrast, etc. of images which
suffer from any sort of degradation either due to presence of noises like impulse noise, speckle noise,
etc. or due to scattering and attenuation of scene light during inclement weather conditions. The
scattering and attenuation of scene light increase during hazy weather condition due to the increase in
the presence of dust, fog, mist and other aerosol particles in the atmosphere. Image restoration is
necessary for various important applications like remote sensing, driver assistance systems, intelligent
vehicles and for proper functioning of various computer vision algorithms.

Image classification deals with automated recognition of class labels of different objects present in
images. In order to design accurate as well as automated image classification methods, it is very
essential to enable the designed methods to learn the most distinctive as well as significant
characteristics of the objects present in images. These features are fed as inputs to the designed
methods during the training phase in order to enable those methods to distinguish between different
objects using training algorithms which are designed to artificially replicate the learning process of
human cognitive system, so that these methods can henceforth perform classification of similar objects
based on the knowledge acquired by them about the characteristics of the objects during the learning
(training) phase. Image classification has found its use in medical field, remote sensing applications,
etc.

Image restoration deals with the preservation of lost details (color details/edge details/ contrast, etc.
which are lost either due to noise corruption or due to atmospheric scattering and attenuation) in any
degraded image and thus has to handle lot of uncertainties and randomness associated with the
restoration process which arise due to the absence of true information about those lost details. Fuzzy
Logic is one of the most important principles of Computational Intelligence which can effectively deal
with such uncertainties and randomness.

Image classification deals with the identification of the class labels of different objects present in
images by learning their characteristics. Classification is usually done using neural networks which is
also an important principle of Computational Intelligence. These networks are designed to artificially
replicate the learning behaviour of human cognitive system. These networks differ from one another
based on the number of hidden layers (the layers which lie in between the input layer and output layer)
present in their architecture.

Conventional neural networks usually comprise of lesser number of hidden layers while deep neural
networks possess comparatively large number of hidden layers. The inherent feature extraction
capability of deep neural networks have enabled them to improve their performance over conventional
neural networks as it reduces the chances of erroneous classification which occurr due to use of
handcrafted features in conventional neural networks.

The above discussion clearly states the inter-relationship between Image processing and
Computational Intelligence fields. In the present era, the principles of Computational Intelligence like
Fuzzy Logic and Neural Networks have become the most favourable choices for the researchers to
perform any image processing tasks as they can handle the fuzziness present in any data efficiently
and can artificially replicate the learning behaviour of human cognitive system respectively. Novel
methods for performing image restoration or image classification are designed in this thesis by
exploiting the inter-connection between the Image processing and Computational Intelligence fields.

Three real life problems are studied in this thesis:

a. Daytime and Nighttime image dehazing
b. Detection of structurally variant erythrocytes.
c. Land cover classification using full-polarimetric image data
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These three problems have been chosen for study in this thesis because of their immense significance
in real world. Detailed discussion on the practical significance of each of these topics is carried out in
this thesis based on the statistical data available from various authorized sources.

A comprehensive literature survey on each of these topics is presented in this thesis and the
shortcomings of the existing works have been listed down and new methods are proposed to overcome
the shortcomings.

Some significant existing shortcomings of the chosen research areas which have served as the major
inspiration behind choosing them are highlighted as follows:

1. Daytime and Nighttime image dehazing

Although image dehazing is a well-defined research area and many researchers have proposed several
methods to perform effective dehazing of images (particularly daytime images) but in most of those
methods, the authors have performed image dehazing mostly protraying it as a simple contrast
enhancement problem. They have failed to consider edge-preservation and noise detection which are
other equally important and crucial aspects of image dehazing.

Moreover, in most of the existing methods, image dehazing is performed assuming the nature of
degradation to be similar across the entire image which in reality is not so as the nature of degradation
varies region-wise across an image depending on many factors. So to perform effective image dehazing,
there is a need of a method which performs dehazing considering the pixel-wise variation in the nature
of degradation.

In addition to these shortcomings, another significant limitation in this research area lies in the fact that
the existing research in this problem area is mostly focused on dehazing daytime images. Although
nighttime image dehazing is a very significant research area but very few works are done in that
research area. No proper systematic survey is conducted in that field. No proper benchmark databases
comprising of real world nighttime hazy images as well as their Ground Truth images exist in this field.

2. Detection of structurally variant erythrocytes

The detection of structurally variant erythrocytes (poikilocytes) is an emerging research topic in
medical image analysis field.

Inspired by the real-life significance of this field many researchers have proposed various poikilocytes
classification or detection methods but those methods mostly perform classification or detection either
by counting the number of poikilocytes present in blood smear images or using handcrafted textural,
geometric and shape based features.

Methods designed in this field implementing the deep neural mechanism is very basic. Those methods
simply use pre-trained networks to perform classification. This field currently lacks any deep neural
architecture which can perform poikilocytes classification or detection using only significant and
highly informative features from multiple networks.

3. Land cover classification using full-polarimetric image data

Deep neural network based land cover classification is an upcoming research area in remote sensing
field. The number of existing deep neural networks which are designed especially to perform land
cover classification is very few and their performances is mostly tested on Synthetic Aperture Radar
(SAR) images.

As properties of SAR and Polarimertic Synthetic Aperture Radar (POLSAR) images vastly differ from
each other, so designing a deep neural network especially for performing land cover classification
using POLSAR images is required.

Some notable contributions of the works proposed in this thesis are: -

a. Bacterial Foraging and Fuzzy Logic synergism based daytime image dehazing method.
b. Fuzzy Logic and Refined Colour Channel Prior synergism based nighttime dehazing method.
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c. An extensive survey work is conducted in this thesis focusing on nighttime image dehazing field.
Some topics which are highlighted in the survey work are listed as follows:
i. Dissimilarities between the characteristics of daytime and nighttime hazy images.
ii. Unexplored aspects and real-life significance of nighttime image dehazing.
iii. Inefficiency of the daytime image dehazing methods (methods which are designed based on

the characteristics of daytime images) in performing nighttime image dehazing.
iv. Existing nighttime imaging models and the differences between the models as well as their

variations from the atmospheric scattering model (daytime hazy image model)
v. Existing nighttime image dehazing methods and their limitations.

This survey needs special mention as it is the first review work which is published in the nighttime
image dehazing field.

d. S-HAZE, a novel database which is created to benchmark the sky scene restoration capabilities of
image dehazing methods.

e. N-HAZE, a novel database. (This is the first database which is designed exclusively for
benchmarking the performances of nighttime image dehazing methods.It comprises of hazy as
well as Ground Truth images.)

f. Daytime and Nighttime Dehazing Database (D&N-HAZE Database), a novel database. (This is
the first database among all currently existing databases in image dehazing field that comprises
of both daytime and nighttime hazy images of similar scenes, captured in the presence of real
atmospheric haze as well as synthetic haze along with their corresponding Ground Truth images).

g. An automated intensity based sky segmentation method.
h. Novel feature ensemble creation method. (This feature ensemble method is designed to select the

best features among Fully Connected (FC), Rectified Linear Unit (ReLU) and InverseReLU
features to nullify the information loss occurring due to the suppression of negative values in
features by the ReLU activation layer present in Convolutional Neural Networks. The efficiency
of the proposed feature ensemble creation method is validated by performing detection of nine
different types of erythrocytes having varied morphology using the features ensemble created by
the proposed method.)

i. Total Contribution Score Parameter (a novel feature selection parameter).
j. Ranking method (a novel feature selection method).
k. A novel Degree of purity & Scattering diversity based Advanced Lee filter.
l. Novel deep neural network namely, Crop-Net for performing POLSAR image classification is

designed.

The utility of each of these proposed approaches in real world have been demonstrated and their
efficiencies are validated by performing comparative analyses with the results obtained from existing
methods. In most cases, the designed methods have achieved better performance efficiencies compared
to existing methods.
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Chapter 1
1. Introduction
Brief overview on each of the three problem statements studied in this thesis is presented in this
Chapter which contains detailed discussion on the significance of each problem in real world based on
statistical data available from authorized sources. Basic details of the principles of Computational
Intelligence which are used for processing images in this thesis are given in this Chapter. This Chapter
is concluded with a detailed description regarding the organization of the thesis.

1.1. Daytime and Nighttime image dehazing

Image dehazing is a type of image restoration problem which deals with preservation of the visibility of
degraded images, captured during hazy weather conditions. The degradation of visibility of these
images occur mainly due to the increase in scattering and attenuation of scene light during hazy
weather conditions caused by the presence of fog, mist, dust and other aerosol particles in the
atmosphere.

A degraded hazy image is usually represented using the following mathematical equation [1]:

�(�) = �(�)�(�) + �(1 − �(�)) (1.1.1)

The above mathematical equation is also referred to as the atmospheric scattering model.

The two terms on the right hand side of (1.1.1) are termed as ‘direct attenuation’ and ‘airlight’
respectively. Among these terms, the first term i.e., the direct attenuation term is a multiplicative term.
This term is used to estimate the exponential increase in scene decay in accordance to the increase in
scene distance (as t(x) = e−βd(x) ) while the second term i.e. the airlight term is an additive term which
gives direct estimation of region-wise haze-concentration of an image and also plays crucial role in
performing image dehazing.

The terms β and A in equation (1.1.1) denote scattering co-efficient of scene light and atmospheric light
resepectively.

The term ‘ A ’ in the atmospheric scattering model (1.1.1) is globally uniform across the images
(daytime images) and it is independent of x and J(x) . The atmospheric light in daytime images is
mainly contribuited by sunlight, whose influence over all the pixels in an image is considered to be
uniform.

The airlight term, ‘A(1 − t(x))' in equation (1.1.1) represents the scattered/attenuated portion of scene
light. As the distance between the camera/observer and the scene object increases, the scene light
encounters more fog, mist, dust and aerosol particles on its’ way to the observer/camera and thus
undergoes more attenuation/scattering. This increase in scattering/attenuation increases the value of the
airlight which indicates more degradation of the visual quality of an image.

Mathematically, the above statement is explained as follows:

Let us assume, A = 230 and β = 0.1 (These parameters are considered to be uniform across an image. )

A(1 − t(x)) = A(1 − e −βd(x))

When d1(x) = 10

������ℎ�1 = 230(1 − �−(0.1×10)) = 230(1 − 0.368) = 145.36

When d2(x) = 20

������ℎ�2 = 230(1 − �−(0.1×20)) = 230(1 − 0.135) = 198.95
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For this reason, the ‘airlight’ consider the distance of between the object and the observer (camera),
instead of the scatter and the the observer (camera).

The main aim of the dehazing problem is to recover the scene radiance say, ‘�' , from degraded hazy
image say, ‘�' . In order to recover scene radiance (haze free image) from hazy image, one has to
evaluate transmission and atmospheric light in addition to scene radiance. Hence, to perform dehazing
of an image, three unknown variables (�, � ��� �) have to be evaluated using information derived from
one known variable (�) which makes the image dehazing an ill-posed problem .

Fig.1.1.1 Pictorial representation of hazy image formation technique

The term ‘transmission’ represents the portion of the scene light that reaches to the camera sensor non-
attenuated while airlight represents the scattered and attenuated portion of scene light. The visibility of
images get degraded when the scattered and attenuated portion of scene light (airlight) combines with
non-attenuated portion of scene light (transmission) at the camera sensor as shown in Fig.1.1.1.

It is quite evident from the images given in Fig.1.1.2 and Fig.1.1.3, that the presence of haze in the
atmosphere leads to the degradation of contrast, colour and edge details of images which are captured
during hazy weather conditions. Histograms of daytime and nighttime hazy images as well as their
corresponding Ground Truth images in RGB colour space are also given to show how the change in the
characteristics of images due to the presence of haze in the atmosphere.

(a) (b)

(c) (d)

Fig.1.1.2. (a) and (c): Daytime hazy image, (b) and (d): Histograms of (a) and (c)
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(a) (b)

(c) (d)

Fig.1.1.3. (a) and (c): Nighttime hazy image, (b) and (d): Histograms of (a) and (c)

Daytime hazy and haze-free images of the same scene and their corresponding histograms (given in
Fig.1.1.2) suggest that the presence of haze in the atmosphere lead to the degradation of contrast,
colour and edge details of images. Similar observation too holds for nighttime hazy and haze-free
images of the same scene (given in Fig.1.1.3).

The differences in characteristics of daytime and nighttime images are discussed in details in the
following section.

1.1.1. Daytime and Nighttime images’ properties

(a) (b) (c) (d)

Fig.1.1.1.1. Daytime and Nighttime images (((a) & (b)), ((c) & ((d)) have almost similar scene contents)

Table 1.1.1.1. Characteristics of Daytime Vs Nighttime images

Image characteristics Daytime images Nighttime images

Illumination Globally uniform Non-uniform (due to the presence of multi-

colored artificial light sources)

Intensities of pixels belonging

to sky regions of images

Usually High (due to the presence of bright

sunlight during Daytime)

Usually Low (due to the absence of bright

sunlight during Nighttime)

Source of scene light Natural light source (sunlight) Mostly artificial light sources (for e.g., street

lights, automobile lights, etc.)
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Color of atmospheric light Usually white (as sunlight is a combination

of various monochromatic lights)

Varies spatially in accordance to the

variance of colors of lights emitted by multi-

colored artificial light sources.

1.1.1.1. Sky Vs Non-sky regions of Daytime images

(a) (b) (c) (d) (e) (f)

Fig.1.1.1.1.1 (a) Daytime haze-free image, ((b) & (c): Sky and Non-sky regions of (a)), ((d) & (e):
Histograms of (b) & (c)), (f) Legend used in the histogram plot

1.1.1.2. Sky Vs Non-sky regions of Nighttime images

(a) (b) (c) (d) (e) (f)

Fig.1.1.1.2.1 (a) Nighttime haze-free image, ((b) & (c): Sky and Non-sky regions of (a)), ((d) & (e):
Histograms of (b) & (c)), (f) Legend used in the histogram plot

Daytime and nighttime images of almost similar scenes (given in Fig.1.1.1.1) and the images of sky
and non-sky regions of daytime and nighttime images and their corresponding histogram plots (given
in Fig.1.1.1.1.1 and Fig.1.1.1.2.1) depict that the properties of these images vary vastly. The differences
in between the properties of daytime and nighttime images occur mainly due to the variations in their
illumination characteristics. The illumination of daytime images is globally uniform as it is mostly
contributed by sunlight. As sun is located at huge distance away from the earth (of the order of million
kilometers) and the colour of sunlight is ideally white (as it is a combination of various monochromatic
light sources), so the possibility of occurrence of non-uniform illumination in daytime images is
considered to be negligible. On the other hand, the illumination characteristics of nighttime images
vary spatially as it is mostly contributed by artificial light sources (for e.g., street light, automobile light,
building light, etc.) which are mostly located in the non-sky regions of images and their influence is
restricted within the nearby regions. The color and intensities of these multi-colored lights vary in
accordance to the nature of the light sources.

(a) (b) (c) (d) (e)

Fig.1.1.1.2 (a)-(b)-Daytime hazy images, (c)-(e)-Nighttime hazy images
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The variations in the illumination characteristics between daytime and nighttime hazy images are
demonstrated in Fig.1.1.1.2. For better understanding, the artificial light sources in nighttime hazy
images and the areas which are mostly influenced by those light sources are enclosed within boxes
having red boundaries to show how light emitted by these sources mostly influence nearby regions. On
the other hand, illumination of daytime hazy images appear to be globally uniform.

From the above discussion, it becomes clear that the differences in between the characteristics of
daytime and nighttime images should be taken into account while designing image dehazing methods.

In the last decade, several researchers have proposed various daytime and nighttime image dehazing
methods and designed various mathematical models to represent nighttime hazy images as atmospheric
scattering model (1.1.1) cannot accurately represent the spatially varying illumination characteristics of
nighttime hazy images as it contains constant atmospheric light term, ‘A' . But this model can
effectively represent globally uniform illumination characteristics of daytime hazy images. A
comprehensive literature survey on existing dehazing methods is conducted and presented in Chapter 2.
The details of nighttime imaging models designed to represent nighttime hazy images are given in
Chapter 2.

Detailed description of the novel dehazing methods which are designed to perform haze removal from
nighttime and daytime images focusing on the limitations of the existing works are given in Chapters
3 ,4 and 5. The details of the databases which are created in this thesis to perform effective
benchmarking of dehazing methods are given in Chapter 6.

1.1.2. Significance of image dehazing problem in real world

The data released by the Ministry of Road Transport and Highways [2], stated that the numbers of road
fatalities occurring in India due to poor visibility caused by the presence of thick fog in the atmosphere
(particularly during the months of December and January (winter)) have surged by almost 100% during
2014-2018. As per this data, the states lying in the Northern part of India like Punjab, Haryana, Uttar
Pradesh witnessed maximum number of road fatalities occurring due to poor visibility as these states
are engulfed in thick fog during winter season each year. Another report published in [3], has also
stated that in Uttar Pradesh (a state in India) only, 12 persons were killed due to road accidents
occurring in different districts on January 1, 2021 due to the presence of thick fog in the atmosphere.

These type of road fatalities is not a serious concern in India only but also worldwide. Data published
in the official website of U.S. Department of Transportation, Federal Highway Administration [4]
stated that over a time duration of 2007-2016, 3% of vehicle crashes, 3% of crash injuries and 9% of
total weather-related crash fatalities were reported to have occurred due to fog-related visibility
obstruction.

A comprehensive study was carried out in [5] based on the data of crashes which occurred in Florida
during 2003-2007 due to poor visibility caused by the presence of fog and smoke in the atmosphere.
After analyzing the crash data, the authors stated some interesting findings which are listed as follows:

The morning hours of the months of December-February is the most prevalent time of a year
for fog & smoke related crashes to occur.

 In comparison to the fatal crashes occurring during clear weather condition, the crashes
occurring during fog related weather condition are more severe as such crashes involve
large number of vehicles as well as persons which increase the chances of more people
getting injured in such accidents.

The severity of accidents occurring during fog & smoke related condition is also high as those
accidents are either head on collisions or rear end collisions.

The crashes occurring at night during fog & smoke related weather conditions are much more
severe compared to the crashes occurring during daytime due to the absence of proper
illumination at night in addition to poor visibility caused by the presence of fog in the
atmosphere.
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According to a recent report published in [6] on 15 February 2021, it is claimed that in a day at least 36
persons in Pakistan were killed by two separate fog-related accidents occurring on Siranwali-Kamoki
road and Toba-Gojra road respectively.

Another report published in [7] on 24 November, 2020 claimed that a huge fire eruption took place on
a Chinese Highway as more than 40 vehicles bumped into one another due to poor visibility caused by
the presence of thick fog in the atmosphere. Three persons were killed in this accident and many
suffered from severe injuries as they were trapped in fire.

The statistics and reports published in several authorized sources based on which the discussion on the
significance of the image dehazing problem in real world is carried out,clearly demonstrates that
visibility degradation caused by the presence of fog in the atmosphere is one of the major cause of
occurrence of severe road fatalities . Similar data and statistics are provided in the following paragraph
to show how situation worsens during nighttime compared to daytime due to the addition of proper
illumination factor with the fog-related visibility degradation problem.

The authors in [8] conducted a study to predict the probability of occurrences of fatal accidents in
comparison to the property damage only accidents using a Multiple Logistics Regression Model. This
study, conducted using accident data provided by Expressway Authority of Thailand over the time span
of 2007-2010 predicted that the severity of accidents increases at night. Similar study, carried out in [9]
using the accident data available over the expressways of New Zealand also predicted that the chances
of occurrences of severe accidents are highest during midnight to dawn period due to poor illumination
as well as several other risk factors. The study carried out in [10] also stated that the chances of
occurrences of severe accidents increase up to 2.31 times at nighttime compared to daytime.

The above discussion clearly states the necessity of installation of intelligent driver assistance systems
in vehicles to restore the lost details of the captured degraded road scenes while driving during poor
weather conditions and display the restored scenes to the drivers to make them aware of both moving
and static objects present in those scenes, so that severe head on and rear end collisions can be avoided.
In order to build an ideal driver assistant system which can perform restoration of lost details of scene
images, it is very essential to design an effective dehazing method.

Apart from driver assistance systems and intelligent vehicles, image dehazing has also found its use in
applications like remote sensing [11]-[13], surveillance system [14], etc.

1.2. Detection of structurally variant erythrocytes

1.2.1. Brief introduction on blood components

1.2.1.1. Erythrocytes/ red blood cells
According to the definition given in the official website of National Cancer Institute [15], red blood
cells or erythrocytes are the types of cells which are formed in the bone marrow and are found in the
blood stream. These cells contain a protein namely, haemoglobin which enables them to carry oxygen
from lungs to other parts of the body.

1.2.1.2. Abnormality detection in blood components

The blood test which is conducted to count the total number of blood cells (red blood cells/
erythrocytes, white blood cells/leukocytes, plasma and platelets) is called Complete Blood Count (CBC)
test. This test is conducted as a preliminary measure to detect any type of underlying disease in human
body, as the CBC report of any infected person will show that at least one or more components
(erythrocytes, leukocytes, plasma and platelets) of human blood have deviated from its normal range.

CBC test report includes:

A. Leukocytes/White Blood Cells Count

B. Erythrocytes/Red Blood Cells Count

C. Platelet Count



10

D. Hematocrit red blood cell volume

E. Haemoglobin (oxygen carrying pigment) concentration in red blood cells.

F. Differential blood count.

According to the data published in the official websites of American Society of Haematology [16] and
American Red Cross [17], the blood of a healthy human person comprises of 55% plasma, 1% of
leukocytes (White Blood Cells) and about 40-45% of red blood cells and plasma.

1.2.1.3. Basic functions of blood components

Each component of human blood plays a vital role in maintaining the normal functionalities of each
organ of human body. For e.g.

The main function of plasma is to transport blood cells along with antibodies, nutrients, clotting
proteins, hormones, etc. all throughout the human body.

Red blood cells (erythrocytes) are used to carry oxygen from lungs to other parts of the body and
carbon dioxide from other parts of the body to lungs to exhale it.

White blood cells (leukocytes) mostly deal with the production of antibodies, regulation of the
performance of immune cells in order to enable the body to fight an infection.

Platelets are fragmented cells which mainly help in coagulation (clotting of blood) at the site of injury
in order to prevent excessive loss of blood.

Deviation in the total count of any of these components from the normal range indicates the presence of
some disease or infection in the human body.

Apart from count, other parameter which can be used to detect anomalies in blood cells is their
morphological structures. In this thesis, a novel deep neural network based automated method is
designed to detect nine different types of erythrocytes based on the variations in their morphology.

1.2.1.4. Poikilocytes

Normally human red blood cells have biconcave disc shaped like structures but in many cases when a
person suffers from diseases like Sickle Cell Anaemia (SCA)/Sickle Cell Disease (SCD), elliptocytosis,
thalassemia, etc. or any kind of nutrient deficiency like iron, vitamin B12, etc., the shapes of
erythrocytes change from its normal biconcave nature.

Erythrocytes whose shapes differ from the biconcave disc shaped structure of normal erythrocytes are
called poikilocytes. Details of some polikilocytes and the diseases associated with them are given in the
following Section.

When the number of poikilocytes in blood stream of a person exceeds a certain permissible threshold,
it is concluded that the person is suffering from some underlying medical conditions.

1.2.2. Significance of poikilocytes detection in real world

Poikilocytes in human blood stream indicates the presence of several life-threatening diseases. Hence,
early detection of poikilocytes in human blood is absolutely essential for timely treatment of the
underlying medical conditions in order to reduce their severity.

A detailed discussion on the severity of diseases which can be detected by the presence of poikilocytes
in the human blood stream is carried out in this Section based on several data, statistics and reports
available from various authorized sources.

Anaemia is one the most common as well as fatal disease which can be detected by the presence of
poikilocytes in the human blood stream. Anaemia is mostly caused due to nutrient deficiency, mostly
iron deficiency but in addition to that, the deficiency of Vitamin B12 and Vitamin A cause anaemia.
Apart from nutrient deficiency, the presence of parasitic infections in human body like malaria,
tuberculosis, HIV, etc. also cause anaemia. Although anaemia is prevalent mostly in low-income and
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middle-income countries as malnutrition among children and pregnant women is common in those
countries but for developed countries too it is a serious health concern. According to the data published
in the official website of World Health Organization (WHO) [18], it is stated that in 2016
approximately 42% of children aged within 5 years and 40% of pregnant women suffered from this
medical condition across the world.

The data published in the official website of National Health Portal of India [19], stated that the
prevalence of anaemia is prominent among the pregnant women residing in South Asian Countries and
India contributes about 80% of the total maternal deaths occurring due to anaemia in South Asia. The
same report also stated that anaemia during pregnancy is also an important cause behind the occurrence
of premature delivery, child and maternal death, low birth weight, etc.

Although the prevalence of anaemia among young children and women in India is a well-studied topic,
but the number of studies conducted to estimate the prevalence of anaemia among Indian men is very
less. According to an article published in the ‘The Landcet Global Heath’ journal [20] it is stated that
approximately 23.2% of Indian men aged between 15-54 years suffer from anaemia. Out of them, at
least 5.4% suffer from moderate or severe anaemia and 0.5% suffer from severe anaemia. The authors
in [20] have carried out their study considering the male population of all the States and Union
Territories of India and have stated that the geographical, socio-demographic, economic and
environmental factors have high correlation with the state-wise/district-wise number of anaemia cases.

SCA/SCD is a type of anaemia which leads to the production of an unusual type of haemoglobin
namely, haemoglobin S in the body of a person who is suffering from SCD. Haemoglobin S changes
the normal biconcave disc shape like structure of erythrocytes to sickle like structure. SCA/SCD is
usually detected by the presence of sickle shaped red blood cells in human body as shown in
Fig.1.2.2.1.

Fig.1.2.2.1. Sickle cell

In a recent report published in 2020 [21] based on the data available from American Society of
Haematology, it is stated that the median life expectancy of people suffering from SCA/SCD is
between 42-47 years.

According to an article published in the bulletin released by WHO [22], it is stated that although
SCA/SCD is a serious health concern in all the countries across the world, yet it is mostly under
recognized in sub-Saharan Africa which is home to more than 25 million persons suffering from
SCA/SCD. It is also reported that approximately 75% of the total 400000 infants born every year with
SCA/SCD reside in sub-Saharan Africa. SCA/SCD is considered as a substantial morbidity and has a
mortality rate of about 5-16% among children whose age lies within 5 years.

According to the data published in the official website of WHO [23], it is reported that about 5% of
world population is believed to be carrying some traits of haemoglobin disorders, out of which
SCA/SCD and thalassemia top the list.

After going through these data and statistics which are obtained from authorized sources, it can be
concluded that the prevalence of SCA/SCD is a global health concern. Apart from sub-Saharan Africa,
other countries which are reported to have a large number of SCD/SCA cases are India, Dubai,
Mediterranean countries like Italy, Turkey and Greece and Spanish speaking areas of Western
Hemisphere like Caribbean, Central and South America, etc. According to the data published in [24],
it is stated that approximately 100000 Americans suffer from SCA/SCD and 1 in13 African-American
infants are born with SCA traits. SCA/SCD is also prevalent among Hispanic-American population, 1
out of every 16300 babies of this origin suffer from SCD/SCA.

Apart from SCD/SCA, Iron deficiency anaemia, other erythrocytes-related disorders are hereditary
elliptocytes (HE), acanthocytosis, neuroacanthocytosis, hypothyroidism, etc.
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HE is most prevalent among the persons of Mediterranean and African descent. It is reported in [25]
that the global incidence of this disease lies somewhere between 1in 2000 to 1 in 4000 individuals.
Many persons suffering from HE is asymptomatic. Erythrocytes of persons suffering from this disease
changes from its’ normal biconcave disc shape like structure to an ellipse like structure.

Acanthocytes (spur cells) and Echinocytes (burr cells) are two popular poikilocytes which are almost
structurally similar to each other. Both of these cells are spiculated but the major difference in their
morphology lies in their pattern. Acanthocytes are irregular shaped spiculated red blood cells and
Echinocytes are regular shaped spiculated red blood cells. Pictorial representation of both Acanthocytes
and Ehinocytes are given in Fig.1.2.2.2.

(a) (b)

Fig.1.2.2.2. (a) Echinocytes and (b) Acanthocytes

Acanthocytes are associated with diseases like neuroacanthocytosis, hypothyroidism, splenectomy,
malnutrition, etc. This type of poikilocyte is also present in the urine of diabetic patients who are
suffering from glomerulonephritis (a type of kidney disease). It is also believed that the presence of
acanthocytes in human blood is a significant cause of haemolytic anaemia as because of their irregular
shapes, they are often trapped in spleen and get destroyed.

According to a report published in the website of National Organization for Rare Disorders [26], it is
stated that a type of rare progressive disorders namely neuroacanthocytosis can change the normal
biconcave disc shape like structure of erythrocytes to an irregular spiculated structure (acanthocytes).
This disease is mainly associated with neurological abnormalities particularly movement disorders,
muscle weakness, cognitive failure, etc. The severity of disabilities caused by this disease often
increases with time if left untreated and may lead to loss of lives.

Echinocytes are also associated with uremia, stomach cancers and haemorrhagic ulcers, etc.

Dacrocytes which is also known as tear drop cells is a type of poikilocyte which is associated with
granulomatous inflammation, infiltration of bone marrow, vitamin B12 deficiency, etc.

The above discussion clearly states the practical significance of this problem statement. A novel feature
ensemble method is proposed in this thesis and implemented to generate a feature ensemble comprising
of most relevant features derived from multiple deep neural networks to perform automated detection
of nine different types of erythrocytes whose morphological details are given in Fig.1.2.2.3.
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Fig.1.2.2.3 Description of erythrocytes which are detected using the proposed method

1.3. Land cover classification using full-polarimetric image data

1.3.1. Land cover

Land cover refers to the physical material present on Earth’s surface. It may be vegetation, urban area,
water, etc.

1.3.2. Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an imaging radar which generates 2D/3D/multi-dimensional images
of land cover by mapping back-scattered electromagnetic waves into a finite number of resolution
cells of fixed dimension.

The imaging technique of SAR is explained as follows:

SAR initially transmits a series of electromagnetic waves of certain polarization (horizontally
polarized/vertically polarized) towards the target regions (the regions whose satellite images are to be
generated). These waves hit the surface of the target area at certain incident angle and a part of the
incident waves are reflected back to the radar depending upon the orientation, roughness and moisture
content of the land cover present in the target area. These reflected waves are also referred to as back-
scattered waves. The polarization of the reflected waves can be similar to that of the incident wave or
can vary in accordance to the characteristics of the land cover present in the target area.

From the above discussion, it becomes quite evident that the characteristics of land covers can be
interpreted from intensities of images generated by mapping the back-scattered waves into a finite
number of resolution cells of fixed dimension in generated SAR images.

1.3.3. Advantages of SAR over conventional radars with physical antenna

In radar imaging field, there is a general rule that irrespective of the type of radar (i.e., whether the
radar possess synthetic aperture or it is a conventional radar possessing physical antenna), the
resolution of the images generated by them are directly proportional to the size of the aperture of the
radar. As SAR is mounted on moving platforms like aircrafts and spacecrafts, it covers large distance
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over target regions within specified time required for the transmitted waves to get reflected back to the
radar and thus creates a large synthetic aperture with much less resources compared to conventional
radar. This makes SAR a cost-effective way of generating high-resolution satellite images. In addition
to this, the other advantages which SAR has over conventional radars is weather independence i.e., the
images produced by SAR are independent of weather condition prevailing in the target area during the
time when they are captured. The images provided by SAR are also day and night independent.

1.3.4. Characteristics of images generated by SAR

Initially, SAR is used to generate grayscale images which are referred to as SAR images. An example
of SAR image is given in Fig.1.3.4.1 below:

Fig.1.3.4.1 An example of SAR image

Radar images are quite different from optical images mainly because of the differences in their imaging
techniques. This makes radar images much more complex for human interpretation. However, to ease
the interpretation process, some thumb rules [27] are proposed like:

 The higher the back-scattered intensity, the rougher is the surface being imaged.

This rule is created based on the observation that the transmitted waves are reflected more by the
surfaces having higher roughness compared to smoother surfaces and based on the characteristics of
back-scattered waves reflected from those surfaces, pixels corresponding to the areas (areas having
comparatively higher soil roughness) are marked as higher intensity pixels in comparison to pixels used
for marking smoother surfaces.

The intensities of SAR images also give an estimation of soil moisture as target areas possessing wet
soil results in higher back-scattering compared to target areas possessing dry soil. Flooded areas on the
other hand results in lower back-scattering and thus appears as dark areas in images.

In the era of automation, manual interpretation of any object, image, etc. has become quite obsolete
not only because that process is tedious as well as time-consuming but it is also subjected to human
error which largely effects the accuracy of the process.

For this reason,in the present era neural networks are largely used for performing image classification.
As these neural networks are designed to replicate the cognitive functioning of human brain, the
features which are most attractive to human cognitive system are also believed to be ideal features to be
given as inputs to the neural networks.

Among all the features like colour, shape, size, orientation, edge, etc., the human cognitive system is
more sensitive to color feature compared to other features. Since, SAR images do not provide colour
information, in this thesis Polarimetric Synthetic Aperture Radar (POLSAR) images and the features
generated from them are chosen as inputs to the neural networks designed for performing image
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classification over SAR images as POLSAR images provide colour information in addition to the
information provided by SAR images.These images are produced by exploiting the polarimetry
property in SAR. An example of AIRSAR L Band Flevoland POLSAR image and its corresponding
Ground Truth (GT) image are given in Fig.1.3.4.2 below.

(a) (b)

(c)

Fig.1.3.4.2. (a) POLSAR image of AIRSAR L Band Flevoland data, (b) Ground Truth image of (b) and
(c) Class labels

Images generated by SAR undoubtedly play crucial role in various remote sensing applications like
land cover monitoring, crop monitoring, oil spill detection, etc. but these images are inherently
corrupted with multiplicative speckle noise which appears as black and white dots on images. The
presence of speckle noise not only degrades the quality of images but it often leads to erroneous
interpretation. Speckle noise is caused due to coherent nature of SAR.

As discussed earlier, SAR generates images by mapping the back-scattered waves into a finite number
of resolution cells of fixed dimension, Hence, a large number of back-scattered waves having different
relative phases are mapped into one resolution cell. These back-scattered waves add among themselves
either constructively or destructively depending upon their relative phases which lead to the presence
of black and white dots on images. Mathematically, a speckle noise corrupted image is represented as
follows:

��������−��������� �, � = ��������−���� �, � ƞ �, � (1.3.4.1)

In (1.3.4.1), the terms '��������−���������(�, �)' and '��������−����(�, �)' represent intensities of noisy
(speckle noise corrupted) and noise-free (speckle-free) images at pixel position, (�, �) respectively
while the term 'ƞ(�, �)' denotes the intensity of speckle noise present at that pixel position.

The nature of speckle noise is quite different from other types of noise like impulse noise, Gaussian
noise as it is not introduced in images due to unwanted modification of input signals caused by external
disturbances like camera distortion, channel inference, etc. Instead, it is a signal itself which varies in
accordance to the fluctuation of relative phases of back-scattered waves.
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Despeckling (speckle noise removal) of images generated by SAR is absolutely necessary prior to
using them as inputs in any kind of computer vision tasks like image classification as images corrupted
with speckle noise largely enhances the chances of obtaining erroneous results.

At present there are several existing despeckling filters which are designed by several authors to
perform speckle noise removal from images. After going through the filtering strategies proposed in the
existing works, it is noted that the existing filters have several limitations. A comprehensive survey on
the filtering strategies proposed in the existing works is carried out in Chapter 10, where the strengths
and limitations of each filter are also highlighted. Taking into account the limitations of the existing
filters, a novel adaptive despeckling filter is designed in this thesis to overcome the shortcomings of
existing filters and to perform effective speckle noise filtering. The performance efficiency of the
proposed filter is validated using several images.

The detailed description of the designed despeckling filter and the comparative qualitative and
quantitative results obtained by applying the proposed filter as well as several well-known existing
filters on similar set of data are given in Chapter 11.

A novel Convolutional Neural Network (CNN) namely, Crop-Net is designed in this thesis to perform
land cover classification. The CNN is termed as Crop-Net as it is mainly designed to classify the
different types of crops present in farmlands. A detailed discussion on the architecture of CNN and its’
performance efficiency is carried out in Chapter 12.

1.3.5. Significance of land cover classification in real world

Land cover classification is very essential to detect the topology of the target area which in turn is
needed for various important applications like crop monitoring, oil spill detection, generation of
thematic maps, etc.

Thematic map is a special-purpose statistical map which is designed to visualize a specific theme
(which may be soil moisture, climate, etc.) over a certain geographic area. These type of maps are
created for analyzing the present condition of a particular theme (crop productivity, climate, etc.) over
a geographic area so that the social, environmental, health, agricultural and economic development
projects over that area can be planned accordingly. Examples of thematic maps are given in Fig.1.3.5.1.

(a)

Fig.1.3.5.1. Examples of thematic maps designed for Soil moisture

1.4. Introduction to the principles of Computational Intelligence

1.4.1. Computational Intelligence

Although there is no standard definition of Computational Intelligence, it can be termed as the ability
of any computing system to learn about certain tasks based on the knowledge derived from the data and
experimental observations.
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1.4.2. Principles of Computational Intelligence

The five basic principles of Computational Intelligence are:

 Fuzzy Logic
 Neural networks
 Evolutionary Computation
 Learning Theory
 Probabilistic method

Among all the principles of Computational Intelligence in this thesis, Fuzzy Logic and an Evolutionary
algorithm namely, Bacterial Foraging optimization algorithm are used for performing image dehazing
and image filtering. Another principle namely, Neural Networks particularly Deep Neural Networks
are used for performing land cover classification and detection of nine different types of erythrocytes
having varying morphology.

1.4.3. Basics of Conventional Logic and Fuzzy Logic

The idea of Fuzzy Logic [28] was first conceived by Zadeh in the year 1965, has proved itself to be a
useful tool in solving several engineering problems having immense practical significance. Its’
capability of representing human logic in the form of several rules namely, Fuzzy Inference (FI) rules
comprising of antecedent and consequent parts make Fuzzy Logic an ideal tool for solving various real-
life problems.

Prior to starting discussion on Fuzzy sets, brief details of Conventional sets and its’ disadvantages are
given in Section 1.4.3.

Sets are defined to be collection of objects which are termed as members or elements [29].

For e.g., if a set contain the exam marks of students, it can be referred to as EXAM MARKS set.

Let � be a set and � is a member/element of that set, then it is mathematically expressed as:

Suppose there is another set say, � which contain an element/member say � . Let all the elements/
members of the set � are also members of the set �, then in such case the set � is termed as a subset of
the set �.

If in such case where all the elements/members present in � are members of the set � , but all the
elements/ members of � are not the elements/members of �, then � is called a proper subset of �.

In other case, where all the elements/members present in � are members of the set � and all the
elements/ members of � are the elements/members of �, then � and � are termed as equal.

In other case, if � and � are two different sets but there is a common element say, � which
simultaneously exists in both of these sets.

In Conventional sets, the demarcations between set boundaries are very rigid which often lead to
improper allocation of the elements. In real world, it is very difficult to allocate objects in sets having
such rigid boundaries. This disadvantage of Conventional sets is explained with an example as follows:

Suppose there is an Universal set say, HEIGHT and SHORT, MEDIUM and TALL are the subsets of
the Universal set HEIGHT. The boundaries of subsets are defined as:

SHORT= {height∈HEIGHT: 0 ft ≤height<5 ft},

MEDIUM= {height∈HEIGHT: 5 ft ≤height<6 ft},

TALL= {height∈HEIGHT: 6 ft ≤height<10 ft},

In this example, height is variable which can take on any value within the closed interval of [0ft 10ft].
Referring to the above demarcations between the sets SHORT, MEDIUM and TALL, it can be stated
that a height of 4.99 ft will be a member of the set SHORT while a height of value 5 ft is a member of
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the set MEDIUM. According to Conventional Logic, the member of any set has a membership of 1.0
only in that set and membership of 0.0 in other sets.

������ ℎ���ℎ� = 4.99 �� = 1 (1.4.3.1.7)

������� ℎ���ℎ� = 4.99 �� = 0 (1.4.3.1.8)

Hence, these sharp demarcations between the sets are often imprecise and it leads to wrong allocation
of the elements in real world.

In 1965, Fuzzy Logic is designed by Zadeh to solve this disadvantage of Conventional Logic as well as
to represent the reasoning ability of human cognitive system in form of several FI rules and thus helps
to solve several real-life problems .

Fuzzy Logic extends the binary membership of Conventional Logic {0,1} into a spectrum of [0 1].
Unlike Conventional Logic where the members of Universal set are members of one of its’ subsets, in
Fuzzy Logic the members of Universal set are the members of all of its’ subsets.

0 ≤ ������ ℎ���ℎ� ≤ 1 (1.4.3.1.9)

In this example, all the members of Universal set, HEIGHT are members of Fuzzy set, SHORT.

Unlike Conventional set, Fuzzy Logic allows any height value lying within the interval [0ft 10ft] to be
a member of all the Fuzzy sets SMALL, MEDIUM and TALL with varying membership values lying
between [0 1]. This is explained in Fig.1.4.3.1.

Fig.1.4.3.1. Fuzzy membership curves representing Fuzzy sets SHORT, MEDIUM and TALL

From Fig.1.4.3.1, it can be noticed that any value of height is a member of all three Fuzzy sets namely
SHORT, MEDIUM and TALL but have varying membership values. For e.g., height value of 5ft has a
membership of 1.0 in Fuzzy set, MEDIUM but has membership of less than 1.0 in Fuzzy sets, SHORT
and TALL.

In the above figure, Triangular membership Function is used to represent the membership of Fuzzy sets
but other than Triangular membership Function, there are also other membership functions which can
be used to represent Fuzzy sets. Membership functions are represented in the following Section both
mathematically as well as graphically .

1.4.3.1. Membership functions used for representing Fuzzy sets

a. ϒ Function

Fig.1.4.3.2.1. Graphical representation of ϒ function [29]
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ϒ �; �, � =
0, � ≤ �

�−�
�−�

, � < � ≤ �

1, � > �
(1.4.3.1.1)

b. s Function

Fig. 1.4.3.2.2. Graphical representation of s function [29]

� �; �, �, ϒ =

0, � ≤ �
2[(� − �)/(� − �)]2, � < � ≤ �

1 − 2[(� − �)/(ϒ − �)]2, � < � ≤ ϒ
1, � > ϒ

(1.4.3.1.2)

c. L Function

Fig.1.4.3.2.3. Graphical representation of L function [29]

� �; �, � =
1, � ≤ �

�−�
�−�

, � < � ≤ �

0, � > �
(1.4.3.1.3)

d. Triangular membership Function

Fig.1.4.3.2.4. Graphical representation of Triangular membership function [29]
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Ʌ �; �, �, ϒ =

0, � ≤ �
(� − �)/(� − �), � < � ≤ �
(� − �)/(� − �), � < � ≤ ϒ

1, � > ϒ

(1.4.3.1.4)

e. Π Function

Fig.1.4.3.2.5. Graphical representation of Π function [29]

� �; �, �, ϒ, � =

0, � ≤ �
(� − �)/(� − �), � < � ≤ �

1, � < � ≤ ϒ
ϒ−�
�−ϒ

, ϒ < � ≤ �
0, � > �

(1.4.3.1.5)

f. Gamma Function

Fig1.4.3.2.6. Graphical representation of Gamma function [29]

� �;�, � = exp −
� −�
2�

2
(1.4.3.1.6)

1.4.3.2. Fuzzy sets

Fuzzy set is mathematically defined as follows [2]:

� = { �, �� � : � ∈ � (1.4.3.2.1)

In (1.4.3.3.1), � represents the Universal set while � denotes a fuzzy set. The term �� �� is used to
represent the membership value of the element, �� in fuzzy set, �.

1.4.3.2.1. Representation of Fuzzy linguistic variable

Fuzzy linguistic variable is usually represented using four tuples < ��, ��, ��, � >

Where, ��: name of fuzzy linguistic variable (For e.g., height in the above example)

��: the linguistic values which the fuzzy linguistic variable say �� , can take. (For e.g., {SHORT,
MEDIUM TALL} in the above example)

��: Dynamic range of fuzzy linguistic variables (For e.g., [0ft 10ft] in the above example)

�: membership value of fuzzy linguistic variables in Fuzzy sets included within the �� tuple.
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1.4.3.3. Intersection and Union operations on Fuzzy sets

1.4.3.3.1. Intersection (Fuzzy T-Norm) operation

The intersection of two fuzzy sets � and � under a Universal set, � is characterized by T-norm operator.
Mathematically, it is defined as follows:

��∩� � = � �� � , �� � (1.4.3.3.1.1)

Considering �, �, � and � as membership values, the following T-norm operations can be
mathematically defined as follows:

� 0,0 = 0, � �, 1 = � 1, � = � (boundary)

� �, � ≤ � �, � �� � ≤ � ��� � ≤ � (monotonicity)

� �, � = �(�, �) (commutativity)

� �, � �, � = �(� �, � , �) (associativity)

1.4.3.3.2. Union (Fuzzy S-Norm) operation

The union of two fuzzy sets � and � under a Universal set, � is characterized by S-norm operator.
Mathematically, it is defined as follows:

��∪� � = � �� � , �� � (1.4.3.3.2.1)

Considering �, �, � and � as membership values, the following S-norm operations can be
mathematically defined as follows:

� 1,1 = 1, � �, 0 = � 0, � = � (boundary)

� �, � ≤ � �, � �� � ≤ � ��� � ≤ � (monotonicity)

� �, � = �(�, �) (commutativity)

� �, � �, � = �(� �, � , �) (associativity)

1.4.3.4. Fuzzy Control Systems

In general, Fuzzy Control Systems are of two types:

a. Mamdani Fuzzy Control System

b. Takagi-Sugeno Fuzzy Control System

1.4.3.4.1. Mamdani Type Fuzzy Control System

���: �� �1�� �1
� ����2�� �2

�………. . ������� ��
� �ℎ�� � �� �� .

For j=1 to n

��: � − �ℎ ����� ���������� �������� ���ℎ � = [1 �]

���: � − �ℎ ����� ����� ��� ���ℎ � = [1 �]

�: ������ ���������� ��������

��: ������ ����� ��� ��� � = [1 �]

�: ������ �� ���������� ����� �� �ℎ� ��������� ����

In this thesis, Mamdani Type novel Fuzzy Controller Systems are designed to perform image dehazing,
image filtering, edge and noise detection, intensity based sky detection, etc.
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��� is the ��ℎ production rule included in the Knowledge Base of the Fuzzy Controller System whose
block diagram is given in Fig. 1.4.3.4.1.

In a Fuzzy Inference rule / Production rule, ' �1�� �1
� ����2�� �2

�………. . ������� ��
� ' portion is termed

as Antecedent part (AM) and '� �� ��' part is termed as Consequent part (CM).

1.4.3.4.1.1. Steps of Mamdani Type Fuzzy Controller System

PRj: IF �1 is �1
� and �2 is �2

� and ………………and �� is ��
� THEN � is ��.

��: ��ℎ input fuzzy linguistic variable with � = [1 �]
��
�: ��ℎ input fuzzy linguistic value with � = [1 �]

�: output fuzzy linguistic variable
��: output fuzzy linguistic variable for � = [1 �]
�: Number of FI rules present in the knowledge base.
MAMDANI TYPE FUZZY CONTROL SYSTEM:
Step 1: AMj = � ��1

� �1 , ��2
� �2 , ………, ���

� �� = min (��1
� �1 , ��2

� �2 , ………, ���
� �� )

� : T norm operator, AMj: Antecedent Membership of the ��ℎ rule.
Step 2: CMj= ��� � CMj: Consequent Membership of the ��ℎ rule.
Step 3. �� ��, �� = ��� ���, ��� = min ���, ���

�� denotes the membership value to belong to the fuzzy relation �.
Here, ��� ���, ��� = min ���, ��� as Mamdani implication relation function is considered.
Step 4. �1∗ , �2∗ ,……,��∗ {Crisp values of fuzzy input linguistic variables}
Following fuzzification corresponding membership values of these fuzzy input linguistic variables
��1' �1∗ , ��2' �2∗ , ………. . , ���' ��∗

Step 5. ��'= � ��1' �1
∗ , ��2' �2

∗ , ………, ���' ��∗ = min (��1' �1∗ , ��2' �2∗ , ………, ���' ��∗ )

Step 6. ���' � = (��'°��) for � = [ 1 �]

Symbol '°' is used here to represent Max-Min Composition operator

Step 7. ��' � =
�

���
� = 1

(���' � )

Step 8. �∗ = ∀�∈� (�×��' � )�

∀�∈� (��'(�))�
{Defuzzification is done using Centre of Area method}

'∀' symbol is used to denote Universal operator.
1.4.3.4.1.2. Centre of Area defuzzification method

�∗ = ∀�∈� � × ��'� (�)

∀�∈� ��'� (�) (1.4.3.4.1.2.1)

In (1.4.3.5.2.1), �∗ denotes defuzzified output value.

1.4.3.4.2. Takagi-Sugeno Type Fuzzy Control System

���: �� �1�� �1
� ����2�� �2

�………. . ������� ��
� �ℎ�� �� = ��(�1, �2, ……, ��)

For j=1 to n

In most cases, �� = �=1
� ������
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Fig.1.4.3.4.1. Block diagram of Fuzzy Controller System [29]

1.4.4. Evolutionary Computation

This principle of Computational Intelligence refers to algorithms whose designs are inspired by the
biological evolution theory to find the optimized solutions of engineering problems.

These algorithms are designed taking into account the behaviour of species like ants (Ant Colony
optimization algorithm), cuckoos (Cuckoo search algorithm), etc.

In this thesis an Evolutionary algorithm namely, Bacterial Foraging optimization (BFO) algorithm [30]
is used to perform the selection of most suitable edge-direction within each image patch in combination
with a novel set of FI rules. The detailed description of the proposed method is given in Chapter 3.

BFO algorithm is designed based on the foraging characteristics of E.Coli bacteria. Foraging behaviour
of any species is termed as an optimization process through which they reach the region having the
highest food concentration. Social foraging or group foraging is always considered to be better
compared to individual foraging as it involves collective intelligence and thus helps in movement of
bacteria towards the region having high food concentration.

E.Coli bacteria make only two kinds of movements namely, a. Tumble and b. Swim. These movements
of E.Coli bacteria is controlled by the concentration of the food in the current location. Whenever
bacterium reach a neutral region (i.e., a region having neither high food concentration nor is the region
noxious), they tumble. Bacteria mostly swim in regions having positive nutrient gradient and tumble in
regions having negative nutrient gradient.

The entire life cycle of E.Coli bacteria can be divided into four stages namely,

a. Chemotaxis

b. Swarming

c. Reproduction

d. Elimination and dispersal

Some terms which are used to denote the movement of bacteria in BFO algorithm are:

�� : Total number of bacteria

� �� , �� ∈ ��� : The cost function used for representing nutrient concentration in ��� (search space)
of dimension �� .

��(�, �, �) : The position of the ��ℎ bacterium in ��� (search space) after ��ℎ chemotactic, ��ℎ

reproductive and ��ℎ elimination-dispersal steps.

The movement of bacteria is determined by the solution of the cost function � �� as the bacteria
always move towards the region having high food concentration. A brief description of each stage of
the life cycle of E.Coli bacteria is given as follows:

a. Chemotaxis: This movement of bacteria is usually determined by the nutrient concentration in ��� ,
which is estimated using cost function, � �� . Bacteria usually move in random direction with a step
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size, �(�). Whenever bacteria reach a region having constant high nutrient concentration, they continue
to swim in that region by taking a step of size, C � , until they reach a region having comparatively less
nutrient concentration or exceeds the maximum number of swims (��). If bacteria reach a less nutrient
rich region or if �� along same direction exceed, then the bacteria tumble and reach a new location.
This movement is mathematically defined as follows:

�� � + 1, �, � = �� �. �, � + � �
∆ �

∆� � ∆ �
(1.4.4.1)

In (1.4.4.1), ∆(�) represents the random vector which is used to determine the direction of movement
after tumble.

b. Swarming: E.Coli bacteria communicate with each other using chemical signalling, instead of
performing cell-to-cell communication. This characteristics of E.Coli bacteria is replicated using
certain repellent and attractant parameters.

c. Reproduction: In this stage of life-cycle, each of a pre-determined number of healthy bacteria say,
��� split and generate two bacteria. The newly generated daughter bacteria are also placed in the same
position as that of the mother bacteria. Normally, ��� is considered to be half of the total population of
bacteria (��) . In order to make the population of bacteria constant, the number of healthy bacteria is
always considered to be equal to the number of unhealthy bacteria which die in elimination step.

d. Elimination and dispersal: Elimination step regulates bacteria population by eliminating the
bacteria which reach areas with less nutrient content or noxious areas. Dispersal step deals with the
movement of few bacteria to less explored regions in order to find the true global optimum.

The utilization of BFO algorithm in performing edge&noise detection within image patches is
described elaborately in Chapter 2.

1.4.5. Neural Networks

These types of networks are designed to artificially replicate the learning behaviour of human cognitive
system. These networks are composed of several layers ( input layer, hidden layer and output layer)
which in turn consist of several nodes which are artificial replica of biological neurons ( learning units
of human brain).

These types of networks have the ability of establishing the interconnection between input data and
outputs by leaning their pattern without the need of any explicit programming like Fuzzy Logic.

In practical applications for e.g..electronic appliances where Fuzzy Logic is used say washing machine,
the time required for washing, soaking and drying clothes is determined by a Fuzzy Controller whose
knowledge base consists of a set of If-Then rules. These rules are created by experts considering all the
possible cases which may arise while washing clothes. Relevant inputs like weight of clothes, amount
of water needed, etc. which determine the total time required for washing, soaking and drying cloths
are considered as input fuzzy linguistic variables of the If-Then rules present in the knowledge base of
the Fuzzy Controller system designed for this purpose.

In this case, there is a need of explicit programming by experts as Fuzzy Logic does not support
inherent learning but in case of neural networks there is no need of explicit programming as these
networks have inherent leaning capability.

Learning can be of two types:

A.When labels of input data are known. In this case, the neural networks are trained with labeled data
so that those networks can establish the inter-connection between input data and outputs by studying
the relation between input patterns and their corresponding outputs. This type of learning is called
supervised learning which involves transfer of human knowledge in form of labeled data to the
networks. Classification is done using labeled data by using the supervised learning strategy.

B.When labels of input data are not known. In this case, clustering of data are done based on the
similarities between the data. This type of learning is called unsupervised learning which is quite
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popular in real world as the data available in real world are mostly unlabeled data. Clustering is done
using unlabeled data by using the unsupervised learning strategy.

1.4.5.1. Basic structure of Neural Network

Fig.1.4.5.1.1. A simple feedforward Neural Network

Feedforward Neural Network is a type of network which contains no feedback path. The neural
network shown in Fig 1.4.5.1.1 has no hidden layers. It comprises of a simple input layer and output
layer. The bias and the inputs {�, �1, �2, . . . . . . , ��} are connected to the output node using separate
weighted connections. These weights represent the strengths of the connections and help in estimating
the influence of neurons on outputs.

The output is calculated using the following formula:

�(������) = �(�. �0 + �1.�1 + �2. �2 + . . . . . . . . + ��. ��) (1.4.5.1.1)

�(������) = �(��0 +
�=1

�

��. �1� ) (1.4.5.1.2)

The term ‘�' in (1.4.5.1.1)-(1.4.5.1.2) represents activation function. The firing of neurons are
dependant on thresholds of activation functions.

Activation functions can be linear as well as non-linear. Some examples of both linear as well as non-
linear activation functions are given in Fig. 1.4.5.1.2.
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Fig.1.4.5.1.2. Some examples of activation function [222]

As methods are designed in this thesis mainly to perform image classification, so the discussions here
are focused mostly on the utilization of Neural Networks in performing image classification.

Image classification using a simple machine learning algorithm for e.g. Support Vector Machine can be
broadly divided into four steps as discussed here:

a. Data collection

b. Feature extraction

c. Feature selection

d. Classification

Here all these four steps are discussed using an example which involves classification of cars and
bicycles for better understanding.

a. Data collection

In this step, images of cars and bicycles having varied characteristics are collected as data samples to
train, validate and test the network. Higher the number of balanced samples (the number of samples
collected for each class are more or less equal) collected in this step, more is the chance of getting
accurate results as it guarantees better training.

An example of each type of data present in the collected database are given in Fig.1.4.5.1.3.

(a) (b)

Fig.1.4.5.1.3. Sample data (set 1) of each class
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b. Feature extraction

Although Neural Networks are designed to artificially replicate the behaviour of human cognitive
system but in reality the human cognitive system is far more smarter compared to Neural Networks as
it enables humans to perform complex tasks with much more ease.

For e.g., in face recognition task, humans can easily differentiate the variations in between the faces of
persons irrespective of all of them having two eyes, one nose, two ears and one lip.

But how does this happen?

This complex task of recognition of human faces having wide variety of features appears to be very
simple to human cognitive system as it involves the computation of the differences of facial features of
any person from a standard reference instead of identifying the features themselves as these differences
can capture the inter-variation between the facial features of different persons effectively which makes
the recognition task much more easier.

The features which are chosen to classify bicycles and cars are given in Table 1.4.5.1.1.

Table1.4.5.1.1. Sample features (set 1)

Features Car Bicycle

Colour Blue (for e.g. [0.55 0.64] Red (for e.g. [0.21 0.43])

Number of Wheels 4 2

Accommodation 4 1

c. Feature selection

This step involves the selection of most significant as well as relevant features among the extracted
features to improve the accuracy of the classification tasks.

Like in this example, the features namely, ‘Colour’, ‘Number of wheels’ and ‘Accommodation’ given
in Table.1.4.5.1.1 can efficiently perform classification of sample data (given in Fig.1.4.5.1.3) as the
numerical values of those features sharply vary for different classes.

But if the same features to classify the sample data are used (given in Fig.1.4.5.1.4), then it often lead
to erroneous classification as in this case, the numerical value of the first feature (i.e. Colour feature)
overlaps (as shown in Table 1.4.5.1.2) for objects belonging to different classes.

(a) (b)

Fig.1.4.5.1.4. Sample data (set 2) of each class

Table 1.4.5.1.2. Sample features (set 2)

Features Car Bicycle

Colour Blue (for e.g. [0.55 0.64] Blue (for e.g. [0.55 0.64]

Number of Wheels 4 2

Accommodation 4 1
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In this case, the second and third features namely, ‘Number of Wheels’ and ‘Accommodation’ are
much more significant and relevant compared to the first feature (‘Colour’) as their numerical values
sharply differ in case of distinct objects.

Hence, if in this case instead of using three features, the second and third features are used for
performing classification, it reduces the chances of erroneous classification.

The procedure of selecting the most significant and relevant features from a set of extracted features is
called feature selection.

In this thesis, a novel feature selection method namely, Ranking method is proposed which performs
feature selection using two parameters namely, a. Fuzzy Entropy [31] and b. a newly designed Total
Contribution Score parameter.

The details of the proposed feature selection method is given in Chapter 12 and description of the
selection parameters are given in Chapter 9.

d.Classification

In this stage, the classification between distinct objects are done using machine learning algorithms.
Some popular machine learning algorithms are Support Vector Machine [32], Extreme Machine
Learning algorithm [33], etc.

In conventional machine learning algorithms, there is a need of handcrafted feature extraction. The
handcrafted features are fed as inputs to the networks along with their corresponding labels to train the
networks for performing classification. As the handcrafted features are computed by human experts
hence, it is often subjected to human error which increases chances of erroneous classification.

The discrepancies which arise while performing classification using handcrafted features are explained
in details with an example in Chapter 8.

This shortcoming of conventional machine learning algorithms is solved by deep learning algorithms
which has inherent feature extraction capability.

The inherent feature extraction capability of deep neural networks increases the accuracy of the
classification tasks as it does not require any handcrafted features to be fed as inputs. This capability of
deep neural networks have make deep neural networks the most suitable choice of the researchers for
performing classification tasks because of their overwhelming performances.

Although there are various types of deep neural networks but the most popular among these networks
are Convolutional Neural Network (CNN). This type of neural networks are widely used for
performing image classification tasks. A brief introduction to CNN architecture is given in the
following Section.

1.4.5.2. Brief introduction to the architecture of CNN

The organization of layers (which comprise of several nodes) in CNN architecture is analogous to the
organization of neurons in human visual cortex.

As discussed earlier, CNN does not need any handcrafted features to perform image classification,
instead it effectively analyses the temporal and spatial dependencies of pixels in images by applying
suitable filters at each convolutional layer which help in better image understanding.

Basic architecture of a CNN (given in Fig.1.4.5.2.1) comprises of the following layers:

a. Convolutional layer

b. Pooling layer

c. Fully Connected layer

d. Classification layer
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Fig.1.4.5.2.1. Basic architecture of CNN [223]

In Fig.1.4.5.2.1, there are some blocks which are labelled as CONVOLUTION+RELU. These blocks
comprise of convolutional layer followed by Rectified Linear Unit (ReLU) layer. The convolutional
layer comprises of various filters and extract features from images given as inputs to those layers by
applying those filters on patches generated from the input images.

1.4.5.2.1. Description of CNN layers

A. Convolutional layer

Unlike human beings, computing systems visualize any image as a matrix of 2D or 3D dimension
depending upon whether the image is a grayscale image or a color image. When images are given as
inputs to CNN, it extracts features from the images using appropriate filters. The filters are chosen
according to the tasks to be performed like for edge detection one can use the Laplacian filter, etc.

In a CNN architecture, there are several convolutional layers which extract both low-level features and
high-level features. The initial convolutoinal layers extract low-level features while the convolutional
layers located at higher depth extract high-level features.

The feature extraction procedure carried out in convolutional layers of CNN architecture is explained
here with examples.

(a) (b) (c)

Fig.1.4.5.2.1.1. (a) 6 × 6 × 1 image, (b) 3 × 3 Laplacian mask and (c) Generated feature map of 4 ×
4 × 1dimension

(A)
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(B)

The other elements in the feature map are also computed in similar fashion.

Fig.1.4.5.2.1.2. Examples of pixel-wise feature value computation

In the above example, the dimension of the input image is 6 × 6 × 1, the dimension of the filter kernel
is 3 × 3 , so the dimension of feature map is (height of the input image-height of the filter
kernel+1)×(width of the input image-width of the filter kernel+1)×1= (6 − 3 + 1) × (6 − 3 + 1) ×
1 = 4 × 4 × 1.

In this example, the stride value is considered to be 1 as the filter window slides by one pixel position.

The example considered in Fig.1.4.5.2.1.1. and Fig. 1.4.5.2.1.2. is a 2D image, but if the image is a
color image, then in such case feature map is computed as discussed below:

(a) Red Channel (b) Green Channel (c)Blue Channel (d) Filter kernel

��� ������� = (� × �) + (� × �) + (� × �) + (� × �) + (� ×− �) + (� × �) + (� × �) + (� × �) + (�
× �) = � + � − �� + � + � = ��

����� ������� = (� × �) + (� × �) + (� × �) + (� × �) + ( − � × �) + (� × �) + (� × �) + (� × �) + (�
× �) = � + � − �� + � + � = ��
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Fig..1.4.5.2.1.3. Feature map computation of a color image

B. Pooling layer

This layer is used to diminish the dimension of the computed feature map by keeping only the relevant
features to reduce the computational burden.

Pooling can be of three types namely:

a.Max Pooling:

Fig.1.4.5.2.1.4. Feature map obtained after Max Pooling

b. Average Pooling:

Fig.1.4.5.2.1.5. Feature map obtained after Average Pooling

c. Sum Pooling

Fig.1.4.5.2.1.6. Feature map obtained after Sum Pooling

Max Pooling is most popular pooling operation compared to Average Pooling and Max Pooling as
besides reducing the dimension of feature maps by choosing most informative features, it also performs
effective noise suppression.

But Average Pooling as well as Sum Pooling performs better than Max Pooling in some applications.
Hence, the choice of the type of Pooling layer to be included in the architecture of any CNN entirely
depends upon the application for which the CNN is designed.
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C. Fully Connected layer

The feature map which is obtained as the output of the Pooling layer is flatten into a column vector and
fed as an input to the Fully Connected layer which learns the non-linear combination of features.

D.Classification layer

In general, Softmax classifier is generally used as a Classification layer in CNN architecture. The
number of nodes in Classification layer is equal to the number of output classes. Softmax classifier is
also known as the Maximum Entropy Classifier. Mathematically, Softmax classifier is defined as:

P y = j θ(i) =
eθ(i)

j=0
k eθk

(i)
�

(1.4.5.2.1.1)

In (1.4.5.2.1.1), θ = w0. x0 + w1. x1 + w2. x2 + . . . . . . . . . + wk. xk = i=0
k wi. xi� = wTx

1.5. Thesis Organization

This thesis focuses on three real-life problems :

 Daytime and Nighttime image dehazing
 Detection of structurally variant erythrocytes
 Land cover classification using full-polarimetric image data

For simplicity in understanding the presentation of this thesis, it is broadly divided into three divisions
where each division is dedicated to each problem statement.

The first part of this thesis is dedicated to “Daytime and Nighttime image dehazing” problem. This part
comprises of Chapter 2 to Chapter 7.

In Chapter 2, comprehensive literature survey on existing daytime and nighttime image dehazing
methods is conducted and the limitations of each existing method is highlighted.

Detailed description of novel Bacterial Foraging (BF)-Fuzzy synergism based daytime image dehazing
method which is proposed in this thesis to overcome the drawbacks of existing daytime dehazing
methods is given in Chapter 3 and comparative qualitative and quantitative analyses of outputs
obtained from the proposed method as well as several state-of-the-art methods using several benchmark
databases are carried out in Chapter 4 of this thesis to validate the efficiency of the proposed method.

Refined Color Channel Transfer prior is proposed in this thesis to enable the daytime image dehazing
methods to perform haze removal from nighttime hazy images efficiently alongside daytime hazy
images. This prior is generally introduced as a pre-processing step of daytime image dehazing
methods.Detailed description of the proposed prior is given in Chapter 5 and its efficiency over
existing priors is proved by performing subjective and objective analyses of outputs obtained from the
methods in the same Chapter.

Several benchmark databases comprising of hazy images possessing varied characteristics as well as
their corresponding GT images are created in this thesis focusing on various aspects of image dehazing
problem. Details of the databases, their applications and significance are discussed in Chapter 6 of this
thesis. Some examples of images included in these databases are also given in that Chapter.

A novel Fuzzy Logic based sky segmentation method is designed in this thesis by exploiting the
analogy between the sky segmentation problem and the image dehazing problem. Detailed description
of the proposed sky segmentation method is given in Chapter 7 of this thesis.

Second part of the thesis is dedicated to “Detection of structurally variant erythrocytes” which
comprises of Chapter 8 and Chapter 9. Literature survey of this problem statement is given in
Chapter 8 and detailed description of the novel feature ensemble creation method proposed in this
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thesis to solve the information loss problem inherent in traditional CNN networks is given in Chapter
9 of this thesis. The efficiency of the proposed feature ensemble method is validated in the same
Chapter by performing detection of nine different types of erythrocytes using feature ensemble formed
by the proposed method.

Third part of the thesis is dedicated to “Land cover classification using full-polarimetric image data”
problem. This part of the thesis comprises of Chapter 10 to Chapter 12.

Comprehensive survey on filtering strategies and limitations of existing despeckling filters and
architectures of existing deep neural networks designed to perform POLSAR image classification is
conducted in Chapter 10 of the thesis.

A novel despeckling filter namely, Degree of purity & Scattering diversity based Advanced Lee filter is
designed in this thesis to solve the drawbacks of existing filters. The despeckling strategy of the
designed filter is discussed elaborately in Chapter 11 of this thesis. The efficiency of this filter is
validated by performing qualitative and quantitative analyses of outputs obtained from the designed
filter as well as from various well-known filters in the same Chapter.

The architecture of Crop-Net, the deep neural network designed to perform POLSAR image
classification in this thesis is described in Chapter 12. A novel feature selection technique namely,
Ranking method which is proposed in this thesis to perform selection of features having high
information content and significant contribution in classification to perform POLSAR image
classification is also described in this Chapter. The excellence of Crop-Net over existing networks is
validated in terms of Test Accuracy, Precision, Recall and F1 score in Chapter 12.

The thesis is concluded in Chapter 13 where the future scope of the work is also highlighted.
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Chapter 2
Literature survey
Image dehazing has emerged as a popular field of research over the years because of its practical
significance (as discussed in details in Section 1.1.2 of Chapter 1). These real-life significance of the
image dehazing problem have inspired numerous researchers to design various methods to perform
effective dehazing of degraded images which are captured during hazy weather condition.

In this Chapter, brief details of each of these existing image dehazing methods are given and their
respective shortcomings are highlighted.

This Chapter begins with a comprehensive survey on image dehazing methods which are designed
based on characteristics of daytime images ollowed by brief discussion on the challenges faced by
these methods in performing effective dehazing of nighttime hazy images. The discussion also focuses
on the inefficiency of atmospheric scattering model (1.1.1) (described in Section 1.1 of Chapter 1) in
accurately representing nighttime hazy images.

This discussion is followed by a detailed description of mathematical models which are designed by
various researchers for accurately representing nighttime hazy images and the methods which are
designed for effectively dehazing nighttime hazy images.

2.1. Three crucial aspects of image dehazing

Three important aspects of image-dehazing are:

 Contrast Enhancement

 Edge-preservation (edge-detection & edge-sharpening)

 Noise removal

2.2. Brief description of daytime image-dehazing methods

The daytime image dehazing methods whose methodologies are discussed in this Section are designed
based on the atmospheric scattering model (1.1.1). The discussion begins with detailed description of
methods which perform image dehazing considering information derived from multiple images of the
same image scene.

The authors in [34]-[35] have performed dehazing using information derived from multiple images of
the same scene captured under different weather conditions whereas in [36]-[37], the authors have
performed dehazing using information derived from the differences between images of the same scene
captured using different polarization angles. These methods fail to satisfactorily remove haze from
images corrupted with dense haze as polarized light is not the major degradation factor in these images.
Moreover, obtaining multiple images of the same scene is not always practically possible which often
make the real-life implementation of the methods proposed in [34]-[37] not feasible.

These limitations of multi-image based image dehazing methods lead to the need of designing new
methods which can perform dehazing using information derived from single image only, thereby
making the ill-posed nature of the image dehazing problem much more challenging.

The discussion on such image dehazing methods begins with a detailed description of dark channel
prior (DCP) method [38] as it is one of the most popular existing image dehazing methods proposed
till date and several researchers have designed numerous image dehazing methods based on this prior.
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2.2.1. Dark Channel Prior

The authors in [38] have proposed this prior based on their observation that in non-sky patches of haze-
free, daytime images there is at the minimum one color channel which contains low intensity pixels
(‘dark pixels’) while analyzing the histograms of non-sky regions of 5000 daytime, haze-free images of
landscapes and cityscape which they have collected from Flickr.com. The authors have cited the
presence of colorful objects, trees, leaves, etc. in those images as the primary reason behind the
occurrence of these dark pixels. They have termed that color channel as the ‘dark channel’ from where
the name of the prior is derived.

Here the discussion on DCP begins with detailed description of the properties of daytime haze-free
images based on which this prior is designed followed by the details of each step of DCP and the
challenges which arise while performing nighttime image dehazing using DCP. The techniques adapted
by the authors who have designed their nighttime image dehazing methods based on DCP concept to
deal with these challenges are also explained in Section 2.2.4.5 .

DCP comprises of the following steps:

• Dark channel evaluation

• Atmospheric light estimation

• Transmission estimation

• Transmission refinement

• Scene radiance recovery

Step 1: Dark channel evaluation

Ideally, the dark channel of any haze-free, daytime image comprises of very low intensity pixels (75%
of the pixels have intensities approximately equal to zero and about 90% of the pixels have intensities
below 25) but the dark channel of corresponding hazy image usually possess pixels with comparatively
higher intensities due to the influence of airlight. Higher the haze-concentration of image-patches, more
will be the influence of airlight on those patches and higher will be the intensities of pixels belonging
to those patches and vice versa. So, the dark channel of any hazy image gives a rough approximation of
its patch-wise haze-concentration.

Mathematically, the dark channel of any haze-free image, say J, is evaluated as follows:

����� � =
���

� ∈ Ω �
���

� ∈ �, �, �
�� � (2.2.1.1)

The authors in [38] have stated that ideally the values of dark channel of J should be approximately
equal to zero as stated in (2.2.1.1) because of the presence of these dark pixels.

����� � =
���

� ∈ Ω �
���

� ∈ �, �, �
�� � ≈ 0 2.2.1.2

Step 2: Atmospheric light estimation
The atmospheric light of any daytime hazy image is globally uniform as it is mainly contributed by
sunlight whose intensity is spatially invariant and color is white (as it is a combination of several
monochromatic lights). So, the authors in [38] estimated the atmospheric light of an image by
averaging the intensities of 0.1% of the brightest pixels belonging to its dark channel assuming that
these pixels will always lie in the sky regions of daytime images as the pixels belonging to the sky
regions of daytime images usually possess higher intensities compared to the pixels lying in the non-
sky regions due to the presence of sunlight. But this assumption fails in the presence of white
surfaces/objects in images leading to erroneous atmospheric light estimation.
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Step 3: Transmission estimation

Following atmospheric light estimation, the authors estimated transmission as stated in (2.2.1.4) which
is obtained by substituting the term ' ���

�∈Ω �
���

�∈ �,�,�
�� �
��

' in (2.2.1.3) by '0' (reason stated in (2.2.1.2))

and introducing the haziness factor, '�' in (2.2.1.4 ) as stated below:
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���
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�� + 1 − � �� (2.2.1.3)
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���
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���

� ∈ �, �, �
�� �
�� (2.2.1.4)

The haziness factor ‘ɷ’ is introduced in (2.2.1.4) to control the amount of haze to be removed from
images. Its value lies between [0 1] where the values closer to ‘1’ signify better haze removal. The
authors in [38] have fixed it at 0.9 to keep little amount of haze in output images as it is necessary to
preserve the depth information as well as naturalness of images which helps observers to distinguish
between far and nearby objects.

Step 4: Transmission refinement

The output haze-free images obtained using transmission maps estimated in Step 3, often contains
halos and blocking artifacts in some image-patches where intra-patch transmission variations occur. To
overcome this limitation, the authors have introduced this additional transmission refinement step in
DCP to refine the initially estimated transmission maps using the soft matting algorithm [39].

Step 5: Scene radiance recovery

The authors in [38] generated final output haze-free images in this step using estimated atmospheric
light and refined transmission values using the following equation:

� � =
� � − �

max (� ��, �0)
+ � (2.2.5)

The constant '�0' is introduced in (2.2.5) to maintain the denominator at a value greater than zero to
avoid the production of noisy outputs.

The authors have also stated that DCP can handle both sky and non-sky regions of images gracefully
as colors and intensities of sky regions of daytime images and atmospheric light are almost similar.

Table 2.2.1.1. Assumptions considered in DCP

Assumptions Daytime images Nighttime images

Atmospheric light is globally uniform  

Colors of sky regions of images are almost similar to that of atmospheric light  

Pixels possessing high intensities mostly lie in sky-regions of images  

2.2.1.1. Challenges which arise while performing nighttime image dehazing using DCP

 DCP performs atmospheric light estimation by averaging the intensities of 0.1% of the
brightest pixels in images assuming that these pixels have high intensities in all color channels.
This assumption is explicitly valid in case of daytime images as atmospheric light of images
captured during daytime are mostly contributed by sunlight whose color is usually white and it
thus possess high intensities in all color channels. But this assumption fails in case of
nighttime images as atmospheric light of those images are mostly contributed by multicolored
artificial light sources which emit blue light, yellow light etc. These lights do not possess high
intensities in all color channels. For e.g. blue light possess high intensities in blue channel,
yellow light possesses high intensities in green and red channels etc. This often leads to
erroneous atmospheric light estimation.
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 As DCP is designed following the atmospheric scattering model, it can neither handle the
spatially varying illumination characteristics nor the glow characteristics of nighttime images
which often lead to the production of color distorted output images containing halo-artifacts.

 The authors in [38] have specifically mentioned that DCP can handle both sky and non-sky
regions of images gracefully as the colors of sky regions of daytime images are almost similar
to that of their atmospheric light but this condition does not hold for nighttime images as
colors of atmospheric light of such images vary spatially in accordance to the colors of light
emitted by multicolored artificial light sources. Moreover, sky regions of nighttime images
usually possess relatively low intensity pixels compared to their atmospheric light due to the
absence of bright sunlight at night. These discrepancies often lead to the introduction of
undesired distortions in output images.

 DCP fails to produce desirable results for images containing white objects (even in daytime
images).

2.2.2. Daytime image dehazing methods

In this Section, brief details of the existing daytime image dehazing methods other than DCP are given
and their respective shortcomings are highlighted.

In [40]-[42], the authors have proposed fusion based dehazing techniques. In [40], the authors have
performed dehazing of any hazy image by fusing the image obtained after subtracting the haze layer
from each channel of the hazy image with the image obtained after performing gamma correction and
detail enhancement of the gray version of hazy image using local linear fusion.

Limitation of the method proposed in [40]: This method although accurately enhances regions of
images possessing dense haze but degrades the contrast of the rest of the images as it performs contrast
enhancement of all the pixels belonging to a hazy image identically using a constant gamma value
irrespective of their haze content. Moreover, the detail enhancement method used in [40] also boosts
the presence of noise in output images.

The authors in [41] have dealt with the drawbacks of the dehazing method proposed in [40] by fusing
the input generated after white balancing the hazy image with the input generated by subtracting the
average luminance of the hazy image from the hazy image itself using three weight maps (luminance,
chromatic and saliency). These weight maps help in enhancing the contrast of each region of hazy
image according to their nature of degradation. To eliminate the artifacts arising in output images due
to sharp transitions in weight maps, the authors have fused the generated inputs and the weight maps
level-wise after decomposing them into Laplacian and Gaussian pyramids respectively instead of
combining them directly.

Limitation: This method is designed focusing only on the contrast enhancement aspect of image
dehazing. It does not focus on the other important aspects of dehazing.

In [42], the authors have performed dehazing by fusing the high-frequency (HF) components of Red
Green Blue (RGB) and Near Infrared (NIR) images of the same scene. This method is designed based
on the observation that HF components of local patches of haze free RGB and NIR images of same
scene are similar but HF components of local patches of hazy RGB and NIR images of same scene are
different.

Limitation: The major hindrance behind the practical implementation of this method is acquiring RGB
and NIR images of the same scene. Although the authors have tried to deal with this issue using the
recovered R channel which is obtained by processing RGB hazy image as proposed in [38] as a
substitute of NIR image, the output images thus obtained is texture-less.

Tarel et al. [43] have proposed a fast modified median filter based dehazing method.

Limitation: This method can preserve edges but only along obtuse angles.

In [44], the authors have introduced a weighted L1-norm and contextual regularization based dehazing
method to decrease the halo-artifacts occurring in output images obtained from DCP [38].
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Limitation: This method cannot restore true color in sky regions of images.

Xiao et al. [45] proposed a guided joint bilateral filter based scene depth recovery method for
preserving the edge details of images.

Limitation: This method provides distorted results in the presence of sunlight.

The authors in [46] have performed dehazing by portraying it as a simple contrast enhancement
problem. They performed contrast enhancement of hazy images by minimizing an objective function
which consists of a constant term and an information loss term to prevent the production of over-
saturated output images.

Salazar-Colores et al. [47] have performed dehazing by portraying it as a simple contrast enhancement
problem. They have proposed a multi-layer perceptron based transmission estimation method to
estimate transmission directly from the dark channel of image unlike DCP [38], which requires an
additional transmission refinement step to perform final transmission estimation. This method produces
output images with lesser halo-artifacts compared to DCP.

Limitations of the methods proposed in [46]-[47]: The authors have designed these methods by
simply considering dehazing as a contrast enhancement problem. They have not taken into account the
edge-preservation and noise removal aspects of dehazing.

Fattal [48] proposed a Markov Random Field based transmission estimation method by exploiting the
property of color distribution within patches.

Limitation: This method cannot dehaze monochromatic images.

Following similar color line concept, in [49] the authors have performed transmission estimation based
on their observation that colors in haze free images can be approximated by limited set of tight clusters
in RGB color space while in hazy images each cluster becomes a line (haze line) and the position of
each pixel on the line reflects its transmission level.

Limitation: This method fails to dehaze portions of images where airlight exceeds scene radiance.

Zhu et al. [50] have performed scene depth recovery of images using their proposed Color Attenuation
Prior (CAP) in combination with the gradient descent algorithm.

Limitation: Although this method can accurately dehaze images possessing homogeneous haze but it
fails to provide desired results for images having non-homogeneous haze distribution. Moreover, this
method uses Sobel edge detector which often gives erroneous results. The shortcomings of this detector
are discussed in Chapter 3.

In [51], the authors have estimated transmission required for performing image dehazing by training a
Random Forest based regression model with haze-relevant features (Multi-scale dark channel, Multi-
scale local max contrast, Hue disparity and Multi-scale local max saturation).

Limitation: This method boosts the presence of noise and artifacts in outputs of images corrupted with
dense haze.

Cai et al. [52] proposed an end-to-end transmission estimation network, DehazeNet which estimates
transmission using haze-relevant features which are extracted using the concepts of DCP and CAP
proposed in [38] and [50]. Similarly, the authors in [53] introduced a Multi-scale Convolution Neural
Network which also estimates transmission using haze-relevant features.

Limitation: The output results obtained from these methods contain halo-artifacts.

This shortcoming is somewhat overcome by the end-to-end dehazing network, AOD-Net [54].

Limitation of the methods proposed in [52-54]: These methods have performed dehazing by
portraying it as a simple contrast enhancement problem, they have not taken into account the other
crucial aspects of the dehazing problem.

The authors of the methods proposed in [55-57] have performed dehazing using the HSV color space.
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Limitation of the methods proposed in [56-57]: The authors have performed dehazing considering it
as a simple contrast enhancement problem.

Limitation of the method proposed in [57]: The authors have focused on the edge-sharpening aspect
of dehazing but they have sharpened both the edges as well as noise present in images identically
which gives rise to undesirable patterns in output images obtained from this method.

From the above discussion, it becomes quite evident that none of these existing daytime image
dehazing methods focus on all the crucial aspects of dehazing (contrast enhancement, edge
preservation and noise removal). So, there is a need of a method which gives equal importance to all
these aspects besides solving the above-mentioned drawbacks.

2.2.3. Inefficiency of daytime image dehazing methods in performing nighttime image dehazing

The image dehazing priors like DCP and CAP which have inspired many researchers to design their
methods based on the properties of daytime images. In DCP [38], the dark channel concept is derived
from the observation that there must be one color channel which possess very low intensity pixels
(after analyzing the histograms of clear daytime images). This prior also considers the fact that the sky
regions of images possess higher intensity pixels compared to non-sky regions.

Although in nighttime images, there are color channels which contain very low intensity pixels but the
fact that the sky-regions of images possess higher intensity pixels compared to non-sky regions is not
valid in case of nighttime images mainly due to the absence of sunlight during night (as discussed in
Section 1.1.2 of Chapter 1).

The CAP [50] is also designed based on the observation that haze-concentration of pixels can be
estimated from the magnitudes of differences between their saturation and value channels in HSV color
space. The images based on whose properties CAP concept is established in [50] are all clear daytime
images.

All the fusion based methods, deep neural networks, optimization based methods, etc. discussed in
Section 2.2.2 are designed based on the properties of daytime images.

Moreover, as discussed in Section 1.1.1 of Chapter 1, the main difference between daytime and
nighttime images lies in their illumination characteristics as illumination of daytime images are usually
globally uniform mainly due to uniform distribution of sunlight whose color and intensity is invariant
over the entire image scene but in case of nighttime images, the illumination is mainly contributed by
artificial light sources whose colour and intensities vary spatially according to the nature of light
sources.

The variation in the illumination properties of daytime and nighttime images makes the atmospheric
scattering model (1.1.1) unsuitable for proper representation of nighttime images as it contains a
constant atmospheric light term, ‘A' which can represent only globally uniform characteristics of
daytime images but cannot efficiently represent the non-uniform illumination characteristics of
nighttime images.

To overcome this shortcoming of atmospheric scattering model, many mathematical models are
designed to accurately represent nighttime images. These mathematical models are discussed in details
in the next Section.

2.2.4. Nighttime image models

2.2.4.1. New imaging model [58]

Mathematically, this model is stated as follows:

�� � = � � η� � �� � � � + � � η� � 1 − � � (2.2.4.1.1)
The authors in [58] have termed this model as New imaging model as it is the first model proposed
taking into account the spatially varying illumination characteristics of nighttime images. They have
derived this model by replacing the constant atmospheric light term '�' in (1.1.1) with
'� � η� � 'which enables it to perform point-wise environmental illumination estimation and thus
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allows it to overcome the limitations of atmospheric scattering model to some extent. But like
atmospheric scattering model, this model too does not contain any glow term and hence, it cannot
represent the glow characteristics of nighttime images.

2.2.4.2. Nighttime imaging models (including the glow characteristics)

All three nighttime hazy image models discussed in this Section were designed taking into account
both the spatially varying illumination characteristics as well as the glow characteristics of nighttime
images. Here these models are discussed in details to show how the same characteristics of nighttime
images were modeled using different perspective by various authors in their respective works.

2.2.4.2.1. Multiple light colors and glow model [59]

Mathematically, this model is represented as follows:

� � = � � � � + � � 1 − � � + �� � ∗ ���� (2.2.4.2.1.1)
In contrary, to any of the previous models proposed in [1] and [58], this model contains an additional
glow term to represent the glow characteristics of nighttime images. Similar to the work proposed by
Narasimhan and Nayar [60], the authors have portrayed glow present in nighttime images as an
atmospheric point spread function in their work as the appearance of glow becomes smoother as it
decays with increasing scene distance. The reason behind the formation of glow in nighttime images is
pictorially explained in Fig. 2.2.4.2.1.1. Apart from representing glow characteristics of images
efficiently, this model also facilitates pixel-wise atmospheric light estimation which enables it to take
into account the spatially varying illumination characteristics of nighttime images.

Fig. 2.2.4.2.1.1. Pictorial representation of nighttime imaging environment [59]

2.2.4.2.2. Nighttime haze model model [28]

This model is mathematically represented as follows:

� � = � � � � + � � 1 − � � +
�=1

�
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Unlike [59], the authors in [61] have represented glow as the summation of the products obtained by
multiplying the shapes and illumination directions of glow sources with their corresponding glow
regions (regions of images highly influenced by the glow sources). This type of glow representation
enables the researchers to remove undesirable glow effects from glow regions of images only and thus
facilitates the production of output images with good visual effects as it prevents over enhancement of
non-glow regions.

2.2.4.2.3. Improved atmospheric scattering model [62]

The authors in [62] have designed this model by combining the total variation model [63] with the
glow model. The total variation model states that any input hazy image, say �, is a combination of the
structure layer and the texture layer where the structure layer comprises of the main scenes of �
including its brightness and haze while the texture layer contains its detail and noise. Mathematically,
the total variation model is represented as follows:
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� � = �� � + �� � (2.2.4.2.3.1)
The authors in [62] have derived Improved atmospheric scattering model by further decomposing the
structure layer of the total variation model into glow layer and background layer as shown in
(2.2.4.2.3.2) to incorporate the glow characteristics of nighttime images within the model.

�� � = ��� � + ��� � (2.2.4.2.3.2)
Where

��� � = ��� � � � + � 1 − � � (2.2.4.2.3.3)
��� � = �� � ∗ ���� (2.2.4.2.3.4)
�� � = ��� � � � + � 1 − � � + �� � ∗ ���� (2.2.4.2.3.5)

This model defines output haze-free image as a combination of optimized structure layer and enhanced
version of optimized texture layer as stated below:

� � = ��� � + ���� � (2.2.4.2.3.6)
2.2.4.3. Relaxed atmospheric scattering model [64]

Mathematically, this model is represented as follows:

� � = � � � � + � � 1 − � � (2.2.4.3.1)
In contrary to the atmospheric scattering model [1] which is designed assuming the atmospheric light
of an image to be always globally uniform, the authors in [64] have replaced the constant atmospheric
light term of that model with a spatially varying atmospheric light term to efficiently handle non-
uniform illumination characteristics of nighttime images. Hence, this model is termed as the relaxed
atmospheric scattering model.

2.2.4.4. Nighttime hazy image model with HDP function [65]

This model simply represents output haze-free image, '�' as the difference between hazy image '�' and
haze density map, '�ℎ' as stated in (2.2..4.4.1). Unlike any of the above models, this model does not
contain any transmission term and atmospheric light term. Hence, the methods designed following this
model do not involve estimations of these parameters to perform image dehazing thereby reducing their
computational burden and chances of producing distorted outputs which mainly occur due to erroneous
estimations of these parameters.

� � = � � − �ℎ � (2.2.4.4.1)
2.2.4.5. Survey on existing nighttime image dehazing methods

The above discussion clearly depicts the differences between nighttime hazy image models. So, the
methods designed following different models also vary vastly from each other. Here comprehensive
review of existing nighttime image dehazing methods are carried out after grouping them according to
different image models following which they were designed as shown in Fig.2.2.4.5.1.

Fig.2.2.4.5.1.Model-wise grouping of nighttime image dehazing methods
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2.2.4.5.1. Methods designed following Atmospheric scattering model

2.2.4.5.1.1. Image color transfer theory based methods

The nighttime image dehazing method proposed by Pei et.al.[66] is probably the first method designed
exclusively for dehazing nighttime hazy images. In this work, the authors have performed image
dehazing using a refined DCP method after transfering the “blue shift” airlight color of nighttime
images to “grayish” colour. They have carried out this color transfer assuming the “grayish” color to be
the usual airlight color of daytime images using the global color transfer method proposed in [67]
considering nighttime hazy image as Source image and any daytime hazy image as Reference image in
lαβ color space.

The authors have selected lαβ color space for performing color transfer because of its inherent
capability of automatically compensating the chromatic loss occurring due to attenuation and scattering
of scene light without estimating the chromatic loss directions. The l, α and β channels of lαβ color
space represent achromatic channel, chromatic yellow-blue and red-green opponent channels
respectively. After converting the input image from RGB to lαβ color space, they performed color
transfer using the following set of equations:

�' =
���

���
× � − ��

� +��
�

�' = ���

���
× � −��

� +��
� (2.2.4.5.1.1.1)

�' =
��
�

��
� × � −��

� +��
�

The standard deviation ratios in (2.2.4.5.1.1.1) serve as key conversion coefficients in the color transfer
process. The output image, �' thus obtained is converted back to RGB color space. The main aim of the
authors in [66] behind performing this color transfer is to obtain an output color transferred image, �'
possessing the scene characteristics of input nighttime image (Source image) and color characteristics
of daytime image (Reference image) so that after performing color transfer the illumination
characteristics of nighttime hazy images, � becomes globally uniform.

(a) (b) (c)

Fig.2.2.4.5.1.1.1. (a) Source image, (b) Reference image (with different scene contents), (c) Output
image

(a) (b) (c)

Fig.2.2.4.5.1.1.2. (a) Source image, (b) Reference image (with almost same scene contents), (c) Output
image

The output images (c) of both the figures (given above) prove that this global color transfer method
cannot preserve the naturalness of images accurately.

Next to color transfer, the authors performed dehazing of �'using refined DCP method which is almost
similar to traditional DCP method [38] but performs dark channel evaluation using pixel-wise
operation instead of patch-wise operation stated in (2.2.1.1) to reduce halos and blocking artifacts
occurring due to intra-patch transmission variations in [38] as follows:
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����� � =
���

� ∈ ����� �
���

� ∈ �, �, �
�� � (2.2.4.5.1.1.2)

It also performs transmission refinement using Guided Image Filter (GIF) [68] instead of soft-matting
algorithm like DCP in order to achieve better edge-preservation.

The haze-free images thus obtained often suffer from poor contrast and color over-saturation. To
overcome these drawbacks, the authors performed post-processing of output images thus obtained
using the Bilateral filter in local contrast correction method [69].

Pros:

 This method produces output images with reduced halo-artifacts compared to the DCP method
proposed in [38] as it performs pixel-wise dark channel evaluation instead of evaluating it
patch-wise as done in [38] and thus overcomes the shortcomings arising due to intra-patch
transmission variations to some extent.

 The use of GIF instead of soft matting algorithm for performing transmission refinement in
this method also enhances its edge-preservation capability compared to the DCP method.

Cons:

 The global color transfer process used in this method cannot preserve the color characteristics
of images accurately as shown in Fig.2.2.4.5.1.1.1 and Fig.2.2.4.5.1.1.1.2 which often leads
to the introduction of undesired color distortions in output images.

 The color transfer process used in this method performs color transfer between images
globally without taking into account the local variations in scene characteristics of Source
images which often leads to the loss of important edge details.

 The differences between the scene contents and imaging conditions of Source and Reference
images acts as the major reason behind obtaining distorted outputs.

Jiang et al [70]: In contrary to the method proposed in [66], the authors in [70] carried out color
transfer between Source and Reference images using their proposed modified color transfer method
which performs scene color transfer between images taking into account the local variations in scene
characteristics of Source image and thus overcomes the information loss problem occurring in [66].
They made this modified color transfer method sensitive to the local variations in scene characteristics
of images by replacing the global standard deviation ratios of Source image in (2.2.4.5.1.1.1)) with
patch-wise standard deviation ratios as shown in (2.2.4.5.1.1.3).

�' =
���

��,Ω(��)
� × � − ��

� +��
�

�' = ���

��,Ω(��)
� × � −��

� +��
� (2.2.4.5.1.1.3)

�' =
��
�

��,Ω(��)
� × � −��

� +��
�

(a) (b) (c) (d) (e) (f) (g)

Fig. 2.2.4.5.1.1.3. (a) Source image (S), (b) R1, (c) R2, (d) R3, (e) O (S, R1), (f) O (S, R2), (g) O (S, R3)

(a) (b) (c) (d) (e) (f) (g)

Fig. 2.2.4.5.1.1.4. (a) Source image (S), (b) R1, (c) R2, (d) R3, (e) O (S, R1), (f) O (S, R2), (g) O (S, R3)
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In Fig.2.2.4.5.1.1.3 and Fig.2.2.4.5.1.1.4, R1, R2 and R3 denote three different Reference images and
O (S, Rx) denotes the output obtained using the Source image, S and Reference image, Rx.

The outputs obtained by performing both global and modified color transfer methods respectively using
same Reference and Source images given in the above figures prove that the modified color transfer
method produces more or less similar outputs irrespective of the variance of scene characteristics and
imaging conditions of Reference images compared to the global color transfer method.

Following color transfer, the authors performed dehazing of �' using a modified GIF based dehazing
method which generates output haze-free image by adding amplified boundary information of �' with
the filtered version of �', �.

Mathematically, the filtering operation of GIF is represented as follows:

� � = ��'�
' � + ��' , ∀� ∈ Ω�1(�

' ) (2.2.4.5.1.1.4)
In [68], the authors evaluated the self- adaptation parameters, ��' and ��' by minimizing the following
energy function:

� ��' , ��' =
�∈Ω�1(�

' )

((��'�
' � + ��' − �' � )2� + ���������'

2 ) (2.2.4.5.1.1.5)

The values of ��' , ��' thus obtained make GIF acts as a boundary preservation filter only in the
boundary regions of images while in other regions it simply acts as a mean filter. So to make it act as
boundary preservation filter along entire image for achieving better edge-preservation, the authors in
[71] designed the energy function stated in ( 2.2.4.5.1.1. 6) for evaluating the self–adaptation
parameters which allows'�������'to vary in accordance to the local variations of image characteristics in
each image region.

� ��' , ��' = �∈Ω�1(�
' ) ((��'�

' � + ��' − �' � )2� +
�������
Ґ� �'

(��' − ��') 2 (2.2.4.5.1.1.6)

Where

Ґ� �' =
1
�

�=1

�
� �' + �
� � + �� (2.2.4.5.1.1.7)

��' = 1 −
1

1 + ��(� �' −��,∞
(2.2.4.5.1.1.8)

� �' =��,�1 �' ��,1 �' (2.2.4.5.1.1.9)

� =
4

(��,∞ −min (� �' )
(2.2.4.5.1.1.10)

Filtering images using the self-adaptation parameters evaluated by optimizing the energy functions
stated in (2.2.4.5.1.1.5 ) and (2.2.4.5.1.1.5 ) often lead to the production of erroneous results in the
presence of complex structures and textures in images. The chances of erroneous evaluations further
increase in case of nighttime images due to their spatially varying illumination characteristics.

To overcome this limitation, the authors in [70] designed a new energy function which is stated in
(2.2.4.5.1.1.11) for computing ��' and ��' using boundary information of �

' instead of �' itself.

� ��' , ��' = �∈Ω�1(�
' ) ((��'�

' � + ��' − �' � )2� + �������
Ґ� �°�'

(��' − ��°�') 2 (2.2.4.5.1.1.11)

They evaluated the self-adaptation parameters using boundary information of �' extracted using the
Prewitt operator [72] due to its significant edge detection and noise suppression capabilities.

After evaluating ��' and ��' , the authors computed filtered image, Z as stated in (2.2.4.5.1.1.4) and
generated final haze-free image by adding Z with the amplified boundary information obtained by
multiplying the difference of Z and �' with a constant amplification factor .
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Some terms are highlighted in ( 2.2.4.5.1.1.6 ) and ( 2.2.4.5.1.1.11 ) using blue and red boxes
respectively to show how the energy function designed by the authors in [70] using the boundary
information of �' differs from the energy function stated in (2.2.4.5.1.1.6).

Pros:

 The modified color transfer method proposed in [70] produces more or less similar
�' irrespective of the variance of color characteristics and imaging conditions of Reference
images compared to the global transfer method used in [66]. Hence, the visibility of final
haze-free outputs obtained from this method remain more or less same irrespective of
differences in Reference images.

 The modified GIF based image dehazing method proposed in [70] does not involve the
computation of atmospheric light map and transmission map for performing dehazing, which
reduces its overall computational burden.

 Evaluation of self-adaptation parameters using boundary information of �'instead of �'itself in
this method for performing image dehazing often reduces the chances of producing color
distorted and excessively enhanced output images.

Cons:

 The modified color transfer technique proposed in this method improves visual effect of
output images but it often introduces color distortions in output images.

 This method fails to recover visibility of distant scenes accurately due to non-availability of
true boundary information of those scenes.

Ancuti et al. [73]: The authors in [73] proposed a novel Color Channel Transfer (CCT) prior based on
their observation that in each hazy image there is at least one color channel which gets severely
attenuated due to scattering of scene light by fog, dust, mist and other aerosol particles present in the
atmosphere during hazy weather conditions. This phenomenon often leads to significant information
loss and degrades visibility of images.

CCT compensates this information loss by transferring information from significant color channels to
attenuated ones. CCT highly resembles the global color transfer procedure used in [66] and also
performs information transfer using the same set of mathematical equations stated in (2.2.4.5.1.1.1)
but unlike [66] and [70] where the authors used any daytime hazy image as Reference image
irrespective of its scene contents and imaging conditions to perform color transfer, CCT performs color
channel transfer using Reference image derived from Source image itself using the following
mathematical equation:

� � = ���� � + ������ � + �������� � � � (2.2.4.5.1.1.12)
The saliency map is acquired similarly as proposed in [74] and the detail layer is obtained by
subtracting the Gaussian blurred version of hazy image, � from � itself.

The authors in [73] have stated that the inclusion of CCT as a pre-processing step in any daytime
dehazing method enables it to dehaze nighttime hazy images effectively in addition to daytime hazy
images.

Pros:

 CCT performs color transfer using Reference image derived from Source image itself which
enables it to overcome the shortcomings arising in [66] and [70] due to the differences
between scene characteristics and imaging conditions of Source and Reference images.

 The introduction of CCT as a pre-processing step in any daytime dehazing method enables it
to dehaze nighttime hazy images effectively in addition to daytime hazy images.

Cons:

 As CCT performs dehazing only in combination with other dehazing methods, its performance
efficiency is largely dependent on the dehazing capabilities of these methods.
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(a) (b) (c) (d) (e)

Fig. 2.2.4.5.1.1.5. (a) Source image, (b) Reference image, (c) O1, (d) O2, (e) O3

O1, O2 and O3 are the outputs obtained using the global color transfer method [66], modified color
transfer method [70] and CCT [73] respectively. Both (c) and (d) are obtained using Reference image
(b).

The outputs obtained from different color transfer methods prove that CCT outperforms both the global
and modified color transfer methods.

Table . 2.2.4.5.1.1.1. Basic differences between the color transfer techniques used in [66], [70] and [73]

Method Color space used Source image Reference image Type of transfer

Pei et al. [66] lαβ Nighttime hazy image Any daytime hazy image Global

Jiang et al. [70] lαβ Nighttime hazy image Any daytime hazy image Local

Ancuti et al. [73] Lαβ/CIE L*a*b* Nighttime hazy image Reference image generated
from Source image itself

Channel
Information

2.2.4.5.1.2. Multi-scale Fusion based method

Inspired by the DCP method proposed in [38], the authors in [75] proposed a multi-scale fusion based
method to perform nighttime image dehazing, but unlike DCP where the authors have estimated
atmospheric light by averaging the intensities of 0.1% of the brightest pixels belonging to the dark
channel of an image or in other words it can be said by maximizing the minimum over the set of color
channels. The authors in [75] performed patch-wise atmospheric light estimation for each color channel
independently to handle the spatially varying illumination characteristics of nighttime images.

They initially highlighted the drawbacks which arise while estimating atmospheric light of nighttime
images using the global atmospheric light estimation method proposed in [38] which are stated as
follows:

 Atmospheric light map estimated using the global estimation
method cannot handle the spatially varying non-uniform illumination characteristics of nighttime
images accurately.

 Estimation of atmospheric light is carried out in [38] by
maximizing the minimum over the set of color channels assuming the brightest pixels have high
intensities in all color channels. This assumption is valid in case of daytime images as their
atmospheric light is mainly contributed by sunlight whose color is white which implies that it has
high intensities in all color channels but the assumption fails in case of nighttime images as the
colors of their atmospheric light vary spatially in accordance to the colors of lights emitted by
multiple artificial light sources. For e.g. blue light has highest intensity in blue channel, yellow
light has highest intensities in green and red channels, etc.

The authors in [75] have handled these challenges as stated below:

 Instead of performing global atmospheric light estimation, the
authors here performed patch-wise atmospheric light estimation to handle the spatially
varying non-uniform illumination characteristics of nighttime images.
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 They estimated atmospheric light for each color channel
independently taking into account the varicolored lights emitted by multiple artificial light
sources which enables them to overcome the second drawback.

Again, selection of optimum size patches for performing atmospheric light estimation is a challenging
problem as incorrect selection often leads to erroneous estimations. Small patches provide fine spatial
resolution but it reduces chances of capturing haze corrupted pixels and thus leads to the production of
color distorted output images with poor global contrast. On the other hand, large patches improve
global contrast and eliminate distortions introduced by airlight efficiently but fail to provide accurate
results when multiple light sources are present in a single patch. In such cases, it takes the value of the
winner.

To avoid any discrepancy, the authors have estimated atmospheric light using two patches, Ω and � of
different sizes as stated in (2.2.4.5.1.2.1) where they have fixed the size of Ψ to twice the size of Ω in
order to take into account the influence of any light sources on nearby patches which may spread
beyond the patch, Ω.

�� =
���

� ∈ �(�)
���

� ∈ Ω �
�� � =

���
� ∈ �(�)

����� � (2.2.4.5.1.2.1)

For performing image dehazing, the authors have generated three inputs where the first and second
inputs are atmospheric light maps generated using ‘Ω’ of two different sizes respectively. The first
input is generated considering the size of ‘Ω’ to be small (for e.g. if the image size is 800x600, the size
of ‘Ω’ is considered to be 20x20) while the second input is generated considering the size of ‘Ω’ to be
large (for e.g. if the image size is 800x600, the size of ‘Ω’ is considered to be 80x80). The third input
is the discrete Laplacian of hazy image, � which is derived mainly to preserve the fine edge details of
images.

After deriving all three inputs, the authors computed three different weight maps (contrast, saliency and
saturation) to assign higher weights to regions of inputs possessing high contrast (to emphasize local
variations), high saliency (to enhance visibility) and small saturation (to reduce noise). Finally, they
acquired output haze-free images by fusing the inputs and weight maps at multiple levels after
decomposing them into Laplacian pyramid and Gaussian pyramid respectively instead of combining
them directly to avoid halo-artifacts.

Pros:

 Patch-wise atmospheric light estimation method introduced in [75] effectively overcomes the
shortcomings of the global atmospheric light estimation method proposed in the DCP method
[38].

 Estimation of atmospheric light maps using both small and large size patches reduce the
chances of producing distorted outputs which may occur while performing dehazing
considering atmospheric light maps estimated using patches of incorrect sizes.

Cons:

 The output images obtained from this method contain halo-artifacts around the glow sources
as it cannot effectively handle the glow effects.

2.2.4.5.2. Methods designed following New imaging model
2.2.4.5.2.1. Illumination compensation & color correction based methods

Zhang et al. [76]: The authors performed illumination compensation and color correction of nighttime
hazy images prior to dehazing in [76] to obtain color corrected output images possessing balanced
illumination using the following assumptions. This also enables them to effectively handle the
spatially varying illumination characteristics of nighttime images.

 L, ƞ and t are piece-wise smooth.
 R is piece-wise continuous.

They derived these assumptions from the works published in [77-78] and [38], [79] respectively.
Before performing illumination compensation, the authors have replaced ‘ η� � �� � � � +
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η� � 1 − � � ’ term in (2.2.4.1) with ‘��� � ’ for simplifying the representation while performing
illumination compensation as follows :

�� � = � � ��� � (2.2.4.5.2.1.1)
Taking log of the terms on both sides of (2.2.4.5.2.1.1), it becomes:

log �� � = log � � + log ��� � 2.2.4.5.2.1.2
Lexographical representation of (2.2.4.5.1.3.2) is:

�� = �� + �� (2.2.4.5.2.1.3)

The authors have represented some terms in their work using lexographical representation to reduce the
complexity as this form of representation is independent of color channels.

They obtained initial estimates of ll and rr by optimizing the objective function stated in (2.2.4.5.2.1.4)
similarly as proposed in [78] but the only difference is instead of performing optimization using
Bilateral filter as done in [78], the authors in [77] have performed optimization using GIF because of
its improved edge-preservation and halo-artifact removal capabilities.

��, �� =
arg���

��, ��: �� ≥ �� ��� �� − �� 2
2 + �������

+ �����ℎ� ��� �� − �� + �� 2
2 + ������� (2.2.4.5.2.1.4)

Next to performing optimization, the authors refined the obtained optimized outputs, ll and rr with GIF
and then computed � and �� by applying exponential operators on those refined values. Following these
computations, they balanced the overall illumination of image by performing gamma correction as
follows:

��� � = � � � ��� � = �� � η� � �� � � � + �� � η� � 1 − � � (2.2.4.5.2.1.5)

Subsequently, they estimated the lower bound of the colour map by optimizing the objective function
stated in (2.2.4.5.2.1.6) to perform color correction of the illumination balanced image, ��� .

η� = ������
η�

η� − η�
2
+ ��(η�)���η� (2.2.4.5.2.1.6)

Where

�� � =
���
�∈Ω�

��� (�)
���
�∈Ω�

��(�)
(2.2.4.5.2.1.7)

The authors then obtained the final estimate of the colour map, η� by multiplying the optimized output
obtained from ( 2.2.4.5.2.1. 6) with the amplification factor ( ( 1

3 � η
�)�
�0
/ 1
(3 � η

�)� ) and performed

colour correction of the illumination balanced image, ��� as follows:

��� � =
��� �
η� �

= �� � �� � � � + �� � 1 − � � (2.2.4.5.2.1.8)

They stated that the final estimation of colour map, η� may not be accurate sometimes as it is acquired
simply by multiplying the initially estimated lower bound of the colour map with the amplification
factor without taking into account the local variations of image colour characteristics. To overcome this
limitation, they introduced an additional colour residual term, ∆η� in (2.2.4.5.2.1.8) to take into account
the residual colour effect as follows:

��� � = �� � �� � � � + �� � ∆η�(�) 1 − � � (2.2.4.5.2.1.9)

��� � = �� � �� � � � + �� �
�� �
�� �

1 − � � (2.2.4.5.2.1.10)
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Following illumination compensation and colour correction, the authors performed dehazing of ���
similarly as proposed in [38].

Pros:

 As this method performs point-wise environmental illumination estimation, it can handle the
spatially varying illumination characteristics of nighttime images effectively.

Cons:

 The output images produced by this method often contain halo-artifacts and colour-distortions
around the glow sources.

Similar work is presented by same authors in compact form in [58].

2.2.4.5.2.2.Maximum Reflectance Prior based method

Zhang et al [79]: The authors in [79] performed dehazing using a novel prior namely Maximum
Reflectance Prior (MRP) proposed by them based on their observation that each colour channel of
every daytime, haze-free, bright image contains some pixels with very high intensities. In case of
daytime images, the intensities of these pixels are mainly contributed by sunlight but for nighttime
images the intensities of these pixels are mainly contributed by various multicoloured artificial light
sources which enable the authors to perform estimations of atmospheric light maps of nighttime images
using MRP. Examples of some nighttime hazy images and their corresponding ambient illumination
maps obtained using MRP are given in Fig.2.2.4.5.2.2.1.

(a) (b) (c) (d)

Fig. 2.2.4.5.2.2.1. (a) Image 1, (b) Illumination map of Image 1, (c) Image 2, (d) Illumination map of
Image 2

The maximum reflectance map of any daytime image is evaluated as follows:

�Ω(�)
� =

���
� ∈ Ω � �� � =

���
� ∈ Ω � �Ω � �� � (2.2.4.5.2.2.1)

The incident light intensity, �Ω � of any daytime haze-free image is globally uniform and its value is
considered to be approximately equal to 1 as atmospheric light of daytime image is mainly contributed
by sunlight which is usually white in colour and possess high intensities. Moreover, the objects and
surfaces which possess the pixels having maximum local intensities at each colour channel also have
high reflectance values. Hence, maximum reflectance maps of daytime, haze-free images are
ideally �Ω(�)

� ≈ 1 . But the situation differs in case of nighttime images due to the presence of multi-
coloured artificial light sources. Hence, the maximum reflectance maps of images are computed as
follows:

�Ω �
� =

���
� ∈ Ω � �� �

=
���

� ∈ Ω � �� � �Ω � ��Ω � �Ω � + �Ω � ��Ω � 1 − �Ω � (2.2.4.5.2.2.2)

The authors substituted ' ���
�∈Ω �

�� � ' in (2.2.4.5.2.2.2) by ‘1’ assuming the reflectance properties of

nighttime and daytime images to be similar and estimated the colour maps as follows:

�Ω �
� = �Ω � ��Ω � �Ω � + �Ω � ��Ω � − �Ω � ��Ω � �Ω � (2.2.4.5.2.2.3)

�Ω �
� = �Ω � ��Ω � (2.2.4.5.2.2.4)
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��Ω � =
�Ω �

�

�Ω �
(2.2.4.5.2.2.5)

They assumed incident light intensity, �Ω � to be independent of colour channels and fixed it’s value
equal to the maximum of�Ω �

� obtained for all colour channels as stated in (2.2.4.5.2.2.6). The authors
of this method too performed colour correction of images similarly as proposed in [76].

�Ω � =
���

� ∈ �, �, �
���

� ∈ Ω �
��� � (2.2.4.5.2.2.6)

Finally, using the estimated values of ��Ω � and �Ω � , they performed dehazing of images similarly as
proposed in [38].

Pros:

 Unlike DCP, MRP can effectively handle the spatially varying illumination characteristics of
nighttime images as it performs patch-wise atmospheric light estimation instead of estimating
it globally.

 The pixels belonging to the glow regions of images usually possess high intensity values. As
MRP computes atmospheric light maps of images taking into account the pixels possessing
high intensity values, it can handle the undesirable glow effects present in nighttime images to
some extent.

Cons:

 MRP is designed based on the observation derived from the characteristics of daytime, haze-
free images which are very different from those of nighttime images. This often leads to the
production of distorted output images.

2.2.4.5.3. Methods designed following Multiple Light Colors & Glow model
2.2.4.5.3.1. Filtering based method

Li et al. [59]: In contrary to the methods discussed above, the authors in [59] have designed their
method taking into account both the glow characteristics as well as the spatially varying illumination
characteristics of nighttime images. Prior to performing image dehazing, they removed glow from
images to avoid the presence of any undesirable colour distortions in output images which are
introduced by these glow sources using the target layer separation method proposed in [80] portraying
nighttime hazy image as a summation of glow image and glow free hazy image as follows:

� � = � � + � � (2.2.4.5.3.1.1)

Some examples of nighttime hazy images along with their glow images and glow free hazy images are
given in Fig.2.2.4.5.3.1.1.

(a) (b) (c) (d) (e) (f)

Fig. 2.2.4.5.3.1.1. (a) Image 1, (b) G of Image 1, (c) H of Image 1(d) Image 2, (e) G of Image 2, (f) H
of Image 2

The authors performed glow removal by optimizing the objective function stated in (2.2.4.5.3.1.2 )
using the half-quadratic splitting technique. They have designed this objective function considering
� � = � � − �(�) as a smooth layer as the brightness of glow decreases gradually with increasing
scene distance.

� � =
�
(�(� � ∗ �1,2� ) + �( � � − � � ) ∗ �3)2 (2.2.4.5.3.1.2)
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�. �. 0 ≤ � � ≤ � �

�
��� � =

�
��� � =

�
��� �

The first term on the right hand side of (2.2.4.5.3.1.2), � � = min (�2, �) is a robust function which is
used to preserve all the large gradients of hazy image in � while the second term uses �2 norm
regularization to force the gradients of � to produce a smooth glow layer which often leads to loss of
color information of images. To overcome this drawback, the authors in [59] introduced two inequality
constraints stated below (2.2.4.5.3.1.2 ) where the first inequality constraint restricts the range of the
solution obtained by optimizing ( 2.2.4.5.3.1.2 ) and the second inequality constraint forces the
intensities of different color channels to be balanced.

Following glow decomposition, the authors estimated spatially varying atmospheric light map of
� using a GIF based estimation method which performs selection of intensity of brightest pixel
belonging to each of 15x15 patch of � as that patch’s atmospheric light value. Finally, they generated
output haze-free images after estimating transmission map similarly as proposed in DCP [38].

Pros:

 This method can handle both the glow characteristics as well as the spatially variant
illumination characteristics of nighttime images effectively.

Cons:

 Ideally, the smoothness parameter ‘λ’ in the objective function ( 2.2.4.5.3.1.2 ) should be
automatically evaluated in accordance to several factors like haziness of scenes, scene depth
and types of light sources for obtaining accurate results. But as it becomes very challenging to
derive the values of all these parameters using information derived from single image only, so
the authors in [59] have set it to a constant value (500) manually which often leads to the
production of distorted outputs.

2.2.4.5.3.2. Weighted Entropy based methods

Park et al [81]: The authors of this method too performed glow removal from images using the target
layer separation method like the authors in [59] but instead of estimating atmospheric light map using
GIF based method, they estimated it using their proposed atmospheric light selection rule as they
pointed out that simply selecting the intensity of the brightest pixel of each image patch as its
atmospheric light value often leads to erroneous atmospheric light estimations especially in low light
regions as well as in the regions having uniform illumination. Hence, dehazing images using the
atmospheric light map thus estimated often leads to the production of distorted outputs. To overcome
this shortcoming, they performed atmospheric light estimation using their proposed atmospheric light
selection rule which is mathematically represented in (2.2.4.5.3.2.1) as follows:

� � = ������_��� � ������ � + 1 − ��������� � ������� (2.2.4.5.3.2.1)
Where

��������� � = 1, ������(�) ≥ �������
0, ��ℎ������

The authors estimated ������� and ������ using the quad tree subdivision method [82] and the GIF based
atmospheric light estimation method proposed in [59] respectively.
Following the estimation of atmospheric light map, they estimated transmission by optimizing a
weighted entropy based objective function as stated in (2.2.4.5.3.2.2). Initially, the authors considered
“entropy” as an ideal parameter for designing the objective function for estimating transmission as
entropy of haze-free images are greater compared to hazy images. But later they found that estimating
transmission by simply maximizing image entropy often leads to the production of visually distorted
results as it gives rise to truncation errors and forces most of the pixels to get concentrated at very low
intensity values. To overcome these limitations, they designed the objective function based on the
“weighted entropy” of image which besides providing good contrast also minimizes truncation errors.
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���������� � =−
�

� � �� � � � ���� � � (2.2.4.5.3.2.2)

Where � � � = � � exp �− � ,����
� 2

�2

� � =
1
�

�
� � �� � � � = {1, 0 ≤ �� � � ≤ 100

0, ��ℎ������

The weight term, � � � is introduced in the above objective function to minimize truncation errors
and to maintain the image brightness.

The authors estimated final transmission map by optimizing the objective function for each of � sub-
block of � as follows:

������� =
arg���

� ∈ 0.01 ≤ � ≤ 1 ���������� � (2.2.4.5.3.2.3)

Finally, they obtained haze-free images using the values of estimated transmission and atmospheric
light maps as stated in (2.2.5).

Pros:

 The atmospheric selection rule proposed in this method allows it to perform accurate
estimation of atmospheric light map for all types of image regions possessing diverse
illumination characteristics and thus enables this method to effectively overcome the
shortcomings of GIF based atmospheric light estimation method proposed in [59].

 Weighted entropy based transmission estimation technique proposed in this method, enables it
to produce output images with good contrast.

Cons:

 Ideally the smoothness parameter ‘λ’ and the parameter ‘� ’ which plays a crucial role in
evaluating the weight term as shown in (2.2.4.5.3.1.2) and (2.2.4.5.3.2.2) respectively should
be automatically calculated according to several image characteristics to obtain accurate
results but here the authors manually have set their values to some constants which often leads
to the introduction of artifacts and noise in output images.

Similar work is published in compact form in [83].

Jin et al. [84]: The authors of this method too performed glow removal from images using the target
layer separation method similarly as done in methods discussed above. They estimated atmospheric
light map using the multi-scale depth fusion method proposed in [75] by fusing two inputs and two
weight maps (contrast weight map and saturation weight map). They generated first and second inputs
from � using Ω of two different sizes respectively as stated in (2.2.4.5.1.2.1). (For e.g. If size of � is
500x300, then first input is generated considering the size of Ω to be 10x10 and second input is
generated considering the size of Ω to be 30x30).

The authors in [84] also estimated transmission by optimizing weight entropy based objective function
stated in (2.2.4.5.3.2.2) but only after inserting an additional �ℎ��(�) term to it. They stated that output
images obtained using transmission map estimated by optimizing the objective function stated in
(2.2.4.5.3.2.2) often produces colour distorted outputs as it was designed without considering the hue
characteristics of images. So, to solve this limitation, the authors modified ( 2.2.4.5.3.2.2 ) by
introducing the new term, �ℎ�� � in the re-defined version of ( 2.2.4.5.3.2.2 ) which is stated in
(2.2.4.5.3.2.4) as follows:

��������� � = �������� � . ��������� � (2.2.4.5.3.2.4)

��������� � =
�������� � . ���������(�)
max (�ℎ�� � , 0.1)

(2.2.4.5.3.2.5)



54

The term �ℎ�� � measures the hue of an image before and after haze removal and is mathematically
represented as:

�ℎ�� � =
ℎ� � − ℎ�(�)

� (2.2.4.5.3.2.6)

Following the estimations of atmospheric light and transmission, the authors of this method generated
output haze-free images using the estimated values similarly as proposed in (2.2.5).

Pros:

 The introduction of the �ℎ�� � term in the objective function designed for performing
transmission estimation in this method enables it to take into account the hue characteristics of
images in addition to their contrast and fidelity and thus ensures the production of output
images with minimum color distortions.

 This method provides contrast enhanced images with good visual effect.

Cons:

 The shortcomings arising due to manual evaluation of ‘λ’ and ‘�’ parameters in [59] and [81]
also exist in this method.

2.2.4.5.3.3. Super-pixel based method

Yang et al [85]: The authors in [85] too performed glow removal from images using the same target
layer separation method but in contrary to performing patch-based atmospheric light and transmission
estimations as done in the methods discussed above, the authors of this method estimated atmospheric
light and transmission maps using their proposed super-pixel based estimation techniques which can
efficiently overcome the shortcomings of patch-based estimation techniques.

A super-pixel is a collection of adjacent pixels possessing similar color, texture, brightness, etc. So, all
the pixels belonging to same super-pixel usually have similar transmission values and hence, there is
no possibility of intra-patch transmission variation which reduces the chances of presence of halo-
artifacts in output images which mostly occur due to intra-patch transmission variation in patch based
estimation methods.

Prior to performing atmospheric light estimation, the authors of this method initially divided a glow
free nighttime hazy image, � into several super-pixels using Simple Linear Iterative Clustering (SLIC)
method [86] and then performed estimation of atmospheric light map by selecting the intensity of the
brightest pixel of each super-pixel as the value of that super-pixel’s atmospheric light. Mathematically,
this super-pixel based atmospheric light estimation technique is represented as follows:

�� � = �� � �� � (2.2.4.5.3.3.1)
�� � = �� � �� � � � + �� � 1 − � � (2.2.4.5.3.3.2)
���

� ∈ ��(�)
�� � =

���
� ∈ ��(�)

{�� � }�� � � � + �� � 1 − � � (2.2.4.5.3.3.3)

Substituting, ���
�∈��(�)

�� � = 1 in (2.2.4.5.3.3.3) using the same logic proposed in MRP [79], the

following equation is derived:

���
� ∈ ��(�)

�� � = �� � (2.2.4.5.3.3.4)

After acquiring the initially estimated atmospheric light map, the authors refined it using weighted GIF
[71] instead of refining it with GIF [68] as weighted GIF is more sensitive towards the local variations
in image characteristics.
Next to performing atmospheric light estimation, the authors estimated transmission and performed
dehazing as stated below.

���
� ∈ ��

���
� ∈ �, �, �

�� �
��(�)

= �(�)� ���
� ∈ ��

���
� ∈ �, �, �

�� �
��(�)

+ 1 − � �� (2.2.4.5.3.3.5)
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� � =
� � − �(�)
max (� � , ��)

+ �(�) (2.2.4.5.3.3.6)

Where

�� =
0.375, ��� ����� ℎ���
= 0, ��ℎ������

Pros:

 The use of weighted GIF by the authors of this method to refine the initially estimated
atmospheric light map enhances it’s edge-preservation capability as weighted GIF is more
sensitive to the local variations in image characteristics compared to GIF.

 As this method performs super-pixel based transmission estimation instead of estimating it
using patch based techniques like other methods, it produces outputs containing almost
negligible halo-artifacts and distortions as there is no chance of intra-patch transmission
variation.

 The adaptive threshold, �� introduced in (2.2.4.5.3.3.6) reduced the distortions occurring in
output images especially in the sky regions. Accurate selection of �� also enhances the
chances of producing visually improved outputs.

Cons:

 The use of super pixel concept estimation techniques in this method enhances its time
complexity.

2.2.4.5.4. Method designed following Nighttime haze model
2.2.4.5.4.1. Deep neural network based method (DeGlow-DeHaze Network)

Kuanar et al. [61]: The authors of this method performed detection and removal of glow present in
nighttime hazy images using their proposed DeGlow network as shown in Fig.2.2.4.5.4.1.1 below
through recursive learning.

Fig.2.2.4.5.4.1.1. Architecture of DeGlow network [61]

DeGlow network performs glow detection and removal using a set of glow features [��] extracted
using a contextual dilated network which consists of three dilated paths, P1, P2 and P3 possessing three
convolution layers with kernel size 3x3 but with different diltation factors (DF) (P1: DF=1, P2:DF=2,
P3:DF=3). The use of different DF in these paths facilitates the aggregation of more contextual
information and thus prevents the loss of local image details and resolutions.

Next to performing glow removal, the authors estimated transmission from output glow-free, hazy
image, � obtained from DeGlow network using DeHaze network whose architecture is similar to
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contextual dilated network but with one recurrence. DeHaze network performs transmission estimation
following the same logic as proposed in [52].

Following transmission estimation, the authors computed atmospheric light by averaging the intensities
of 0.1% of the brightest pixels belonging to estimated transmission map considering the atmospheric
light of � to be globally uniform.

The pictorial representation of the entire workflow of the method proposed in [61] is given in
Fig.2.2.4.5.4.1.2 .

Fig.2.2.4.5.4.1.2. Pictorial representation of the workflow of the method proposed in [61]

Pros:

 The use of three dilated paths with different DF for extracting glow features in this method
enables it to preserve the local image details as well as the resolution of images effectively as
these paths support the aggregation of more contextual information.

Cons:

 This method performs estimation of atmospheric light by averaging 0.1% of the brightest
pixels belonging to transmission map estimated using DeHaze network assuming that
atmospheric light of glow free nighttime hazy image, � which is obtained as output from
DeGlow network is globally uniform. This assumption mostly does not hold for nighttime
images as their atmospheric light varies spatially in accordance to the intensities and colors of
lights emitted by multi-colored artificial light sources.

2.2.4.5.5. Method designed following Improved atmospheric scattering model
2.2.4.5.5.1. Fusion based method

Lin et al [62]: The authors of this method performed dehazing of images following the logic of the
total variation model which states that an image is composed of structure layer and texture layer where
the structure layer contains haze and brightness of images and the texture layer contains their details
and noise.

They initially estimated the structure layer of an image by minimizing the objective function stated in
(2.2.4.5.5.1.1) using the half-quadratic splitting technique [87] and then computed the texture layer by
subtracting the estimated structure layer from the image as stated in (2.2.4.2.3.1).

���
��(�)

�
(�� � − � � )2 +� � ∇��(�) (2.2.4.5.5.1.1)
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After estimating the structure layer, the authors further decomposed it into glow layer and background
layer and then performed glow removal using the target layer separation method similarly as proposed
in [61],[85],etc. to remove the distortions introduced by undesirable glow effects on image structure.
Following glow removal from images, the authors estimated atmospheric light by optimizing �, the
output obtained by white balancing the mean of background layer as stated in (2.2.4.5.5.1.2 ) using
mean-pooling and bicubic interpolation algorithm [88] as shown in Fig.2.2.4.5.5.1.1.

� = 1 −
���

� ∈ �, �, �
����� ��� −

���
� ∈ �, �, �

����� ��� (2.2.4.5.5.1.2)

Fig.2.2.4.5.5.1.1. Pseudo-code of the atmospheric light estimation method [62]

Following atmospheric light estimation, the authors optimized the texture layer as stated in
(2.2.4.5.5.1.3). Subsequently, they estimated transmission map as proposed in DCP [38] and refined it
using GIF.

��� � = 255
1+�0.015∗ −�� � +100 . � � (2.2.4.5.5.1.3)

Finally, the authors obtained output haze-free image by fusing the optimized restored structure layer
and optimized texture layer as shown in Fig.2.2.4.5.5.1.2.

Fig.2.2.4.5.5.1.2. Block diagram of the method [62]

Pros:

 This method primarily focuses on minimizing the texture loss in outputs which enables it to
restore the texture information of images and preserve image details efficiently.

Cons:

 This method performs dehazing of nighttime images considering that entire image noise is
present in texture layer of images but in reality, some noise also exists in their structure layer
which gets enhanced during restoration of background layer leading to the production of noisy
outputs.
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2.2.4.5.6. Methods designed following Relaxed atmospheric scattering model
2.2.4.5.6.1. Colour line model based method

Santra et al. [64]: The authors in [64] designed this method considering the properties of the colour
line model [89] which states that the colors of each patch of an image should ideally lie on a line
passing through the origin of the plane defined by its RGB vectors. However, in reality colors spread to
form an elongated cluster due to the noise introduced by sensors and other camera related distortions.
In case of hazy images, it further gets shifted from the origin by an amount ��ℎ��� in �� direction due to
the influence of additive airlight. Hence, to enable the model stated in ( 2.2.4.3.1 ) to evaluate the
magnitude and direction of atmospheric light at each pixel position, the authors have re-defined
(2.2.4.3.1) as follows:

� � = � � � � + � � �� � 1 − � � (2.2.4.5.6.1.1)

� � = � � � � + ��ℎ��� � ��(�) (2.2.4.5.6.1.2)

Where

��ℎ��� � = � � 1 − � �

Thereafter, they performed dehazing of images by neutralizing the effect of airlight on each pixel by
moving its color line in the opposite direction of �� by an amount ��ℎ���but computing �� and ��ℎ��� for
each pixel often increases the method’s execution time. To overcome this limitation, the authors
computed �� and ��ℎ��� patch-wise instead of performing pixel-wise computation. Intersection of two
non-parallel patches having same �� but possessing distinct color lines �1 and �2 is shown in
Fig.2.2.4.5.6.1.1.

Fig.2.2.4.5.6.1.1. Intersection of two non-parallel patch planes with distinct color lines �1and �2[64]

For evaluating ��ℎ��� and �� , the authors initially divided each input hazy image into several patches
with 50% overlap and estimated color line (���� = �� + �0 ) of each patch by applying RANSAC
which provides two points (�1, �2) defining the color line of each patch as shown in Fig.2.2.4.5.6.1.1
and a set of inlier points. They estimated parameters of ���� and the normal,�� to the plane containing
the ���� and the origin as follows:

�0 = �1, � =
�2 − �1
�2 − �1

, �� =
�2 × �1
�2 × �1

(2.2.4.5.6.1.3)

Subsequently, they computed ��ℎ��� and �� of patches which satisfy the following properties by
estimating the parameters of the planes mathematically defined in ( 2.2.4.5.6.1.4 ) using Hough
Transform.

 Number of inlier points are greater than 50% of the total pixels lying within the patch.
 All components of D are positive.
 All the pixels of the patch should belong to a single object and have similar reflectance values.
 The distance between origin of the patch plane and the estimated color line is high.
 The color intensity variance within a patch should be large along the direction of the color line.

�� cos � sin ∅ + �� sin � sin ∅ + �� cos∅ = 0 (2.2.4.5.6.1.4)
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Where [��, ��, ��]� = �� and � ��� ∅ should lie between [0°, 90°] as �� indicates a color in RGB color
space which ensures that all of its components will always be positive.

�� values of pixels belonging to patches which do not satisfy these properties are computed using the
Interpolation method proposed in [90]. Finally, using the estimate values of ��ℎ��� and �� , the authors
generated final haze free image using the following equation:

� � =
� � − 1 − � � �(�)��(�)
1 − �((1 − � � � � �� � )

(2.2.4.5.6.1.5)

Where � � � = 0.2989�� � + 0.5870�� � + 0.1140�� �

Pros:

 This method can efficiently dehaze both nighttime and daytime hazy images.
 As this method performs dehazing of pixels by neutralizing the influence of airlight on them,

it can effectively handle both the spatially varying illumination characteristics as well as the
glow characteristics of nighttime images effectively.

Cons:

 The good performance of this method is not always guaranteed as it sometimes provides very
dark results for images containing objects having intensities and colors similar to airlight.

2.2.4.5.6.2. Pixel-wise alpha blending based method

Yu et al. [91]: The authors in [91] performed dehazing of images using the concepts of both DCP [38]
and Bright Channel Prior (BCP) [92] which is simply the reverse of DCP. BCP gives accurate
estimations for bright light regions in contrary to DCP which gives accurate estimations for low light
regions.

The authors in this work estimated atmospheric light using the Retinex theory [93] which states that the
spatially varying atmospheric light term, �(�) in (2.2.4.3.1) is a spatially smooth, low-frequency term
and (� � � � + 1 − � � is a high-frequency term. The theory also stated that atmospheric light of
an image can be estimated simply by filtering the low frequency atmospheric light term, �(�) in (70)
using a low pass Gaussian filter.

� � = � � � � � � + � � 1 − � � (2.2.4.5.6.2.1 )

� � = �(�)(� � � � + 1 − � � (2.2.4.5.6.2.2)

But as GIF performs edge-preservation more efficiently compared to Gaussian filter, the authors in [91]
estimated atmospheric light by filtering the low-frequency atmospheric light term using GIF
considering ��� , computed as stated in (2.2.4.5.6.2.3) as the guided image.

��� � =
���

�1 ∈ �, �, � ��1 � −
���

�2 ∈ �, �, � ��2 � (2.2.4.5.6.2.3)

The authors generated final transmission map by pixel-wise blending transmission maps, ���� and ����
obtained as proposed in [92] and [38] respectively using a brightness aware map, ���ℎ� as stated in
(2.2.4.5.6.2.5) .

���ℎ� � =
���

� ∈ �, �, � (��)� (2.2.4.5.6.2.4)

� � = ���� � ���ℎ� � + ���� � 1 − ���ℎ� � (2.2.4.5.6.2.5)

Following the estimations of transmission map and atmospheric light, the authors performed scene
radiance recovery as stated in (2.2.4.5.6.2.6).
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� � =
� � − �(�)(1 − � � )

�(�)
(2.2.4.5.6.2.6)

Pros:

 The use of both ���� and ���� for performing estimation of final transmission map in this
method, enables it to produce output images possessing desired illumination in both low-light
and bright regions.

 Estimation of atmospheric light using GIF, considering ��� as guided image also enhances the
edge-preservation capability of the method.

Cons:

 This method cannot produce accurate results for images possessing complex structures.

2.2.4.5.7. Method designed following Nighttime Hazy Image Model with HDP Function
2.2.4.5.7.1. Deep neural network based method (HDP-Net)

Liao et al [65]: The authors in [65] designed a learning based deep neural network namely, HDP-Net
to dehaze nighttime hazy images. Unlike DeGlow-DeHazeNet [61] which detects and removes glow
from images and then estimates transmission map of glow-free nighttime hazy image, � , HDP-Net
performs end-to-end dehazing and produces output haze free image simply by subtracting predicted
haze density map '�ℎ' from hazy image, � . The architecture of HDP-Net is given in Fig. 2.2.4.5.7.1.1
and the description of its layers are given in Table.2.2.4.5.7.1.1 .

Fig. 2.2.4.5.7.1.1 HDP-Net architecture [65]

Table. 2.2.4.5.7.1.1. Description of layers of HDP-Net [65]

Formulation Type Input Size Num Filter Stride Pad

Feature Extraction Conv 3x128x128 8 3x3 1 1

8x128x128 16 3x3 1 1

16x128x128 32 1x1 2 0

32x64x64 32 3x3 1 1

32x64x64 64 1x1 2 0

64x32x32 64 3x3 1 1

64x32x32 64 3x3 1 1

Fusion Deconv 64x32x32 32 2x2 2 0

32x64x64 16 2x2 2 0

Feature Extraction Conv 16x128x128 16 3x3 1 1
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Mapping Conv 16x128x128 16 1x1 1 0

16x128x128 8 1x1 1 0

8x128x128 3 1x1 1 0

The layers of HDP-Net (described in Table. 2.2.4.5.7.1.1) perform different operations like:
convolutional layers with kernel 3, stride 1, pad 1 perform feature extraction, those with kernel 1, stride
2 and pad 0 serve as pooling layers and perform down-sampling to generate half-size feature maps.
Convolutional layers with kernel 1, stride 1 and pad 0 serve as mapping layers which perform
multistage mapping to obtain a color haze density map having dimension similar to that of input image.
Deconvolutional layers recover the true size of the feature maps which are fed as inputs to pooling
layers by performing up-sampling.

The two shortcut connections are added to HDP-Net architecture (as shown in Fig.2.2.4.5.7.1.1 ) in
order to enable it to concatenate low-level feature maps with high-level feature maps to retain image
color and edge details while the three subtraction paths are added to HDP-Net architecture to minimize
training error. They have chosen ReLU as an non-linear activation function of each convolutional layer
(except the last one) due to its sparsity property to reduce the memory requirement, only for the last
convolutional layer they have chosen TanH as an activation function to restrict the range of output haze
density map within [-1 1] as the authors have mathematically proved that range of haze density maps of
images will always lie between [-1 1]. The authors trained HDP-Net using the following cost function:

���� = � − (� − �����) 2� (2.2.4.5.7.1.1)

They carried out training using Stochastic Gradient Descent as an optimization algorithm and back
propagation as gradient computing technique considering 0.001 as initial learning rate to enhance the
training speed but decreased it gradually to obtain better convergence effects. They set the values of
momentum, weight decay, power and gamma to 0.9,0.005, 0.75 and 0.001 respectively.

Pros:

 This method does not involve the estimations of atmospheric light and transmission to
perform image dehazing which reduces its computation burden.

 This method performs dehazing of hazy images taking into account the difference of hue
characteristics of images captured under different lighting conditions and thus reduces the
chances of producing color-distorted output images.

Cons:

 Accurate prediction of haze density maps for images possessing varied illumination and glow
characteristics often becomes very challenging.

A detailed discussion on the methodologies of both the daytime and nighttime image dehazing methods
are carried out in this Chapter and the limitations of each of the methods are also highlighted here.

In Chapter 3 and Chapter 5, detailed discussion is carried out regarding the methodologies of novel
daytime and nighttime image dehazing techniques which are designed in this thesis to solve the
shortcomings of existing methods which are discussed in this Chapter.



62

Chapter 3
In this Chapter, detailed description of the methodology of the Bacterial Foraging and Fuzzy synergism
based image dehazing method which is proposed in this thesis to overcome the shortcomings of the
existing daytime image dehazing methods is given.

Some notable shortcomings of the existing daytime image dehazing methods (discussed in Chapter 2)
are listed as follows:-

 The authors of the existing works have performed image dehazing, mostly portraying it as a
simple contrast enhancement problem. They have hardly focused on the other important
aspects of dehazing like edge and noise detection, noise removal and edge-sharpening while
designing the methods.

 The contrast enhancement techniques adapted in most of the existing works enhance the
contrast of all the pixels belonging to a hazy image identically irrespective of their extent of
degradation which often leads to the production of over-saturated or poorly enhanced color
distorted output images.

 In some of the works where image dehazing is carried out taking into account the edge
detection aspect in addition to the contrast enhancement aspect, also do not give desired
outputs because either traditional edge-detectors (like Sobel detector) or filters (like modified
median filter) are used in such methods for edge-detection purpose. These edge detectors
mostly detect edges along certain specified angles only. A detailed discussion on the
shortcomings of several existing well-known edge detection methods is given in Section
3.1.2.6.

 For these reasons, output images obtained from the existing dehazing methods are mostly
noisy/over-saturated/poorly enhanced/color distorted and contain halo artifacts.

So, from the above discussion, it becomes evident that none of the existing dehazing methods perform
image dehazing taking into account all of its four crucial aspects like contrast enhancement, edge&
noise detection, noise removal and edge-sharpening. Hence, to solve the shortcomings of existing
works there is a need of a method which can perform dehazing taking into account all its crucial
aspects in order to obtain desirable results.

3.1. Novel Fuzzy Logic and Bacterial Foraging (BF) synergism based daytime image
dehazing method

To overcome the limitations of existing daytime image dehazing works, a novel Fuzzy Logic and BF
synergism based daytime image dehazing method is designed in this thesis.

The main objective behind designing this method is to perform haze removal from images considering
all crucial aspects of image dehazing problem like contrast enhancement, edge& noise detection, noise
removal and edge-sharpening and also to process each pixel of an image according to its properties
(like extent of degradation, extent of noise corruption, etc.) at each step of the proposed method to
reduce chances of producing noisy/over-saturated/over-enhanced or poorly enhanced colour distorted
output images containing halo artifacts. Pixel-wise processing of images at each step of the method
also enhances it’s flexibility.

The proposed BF-Fuzzy synergism based method has effectively overcome the limitations of existing
methods as it performs image dehazing by giving equal importance to all of its crucial aspects. It also
processes each pixel according to its properties at each step of the proposed method using novel set of
FI rules which are exclusively designed for processing pixels at that step. The use of different set of FI
rules to process pixels at each step of the proposed method not only enhances the proposed method’s
flexibility but also minimizes chances of producing distorted outputs. For this purpose, Fuzzy Logic
and BF algorithm are chosen to design the proposed dehazing method due to the following reasons:

 Fuzzy Logic since its commencement in 1965 by Zadeh [28] has proved its efficiency in
solving several engineering problems. Its capability of solving the problems by utilizing the
human cognitive ability in form of several FI rules makes it a perfect choice for solving the
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dehazing problem. In hazy images, usually the concentration of haze varies region-wise within
an image [50]. Hence, it is very essential to process each pixel of an image according to its
extent of degradation, otherwise the obtained output haze free images will suffer from over-
saturation/ poor enhancement etc. Most image dehazing methods like [38], [40], [43], [47] and
[55-56] do not focus on this issue and enhance all the pixels belonging to hazy image
identically. Hence, those methods often produce distorted results. Although the authors in [50]
have tried to deal with this problem using their proposed CAP in combination with the
gradient descent learning method, but it increased the computational burden of the method. On
the other hand, the human cognitive system can easily understand the region-wise haze-
concentration of an image without any additional information. So, by exploiting this property
of human cognitive system, a set of novel FI rules (Table 3.1.1.3.1.1.) is designed to perform
pixel-wise contrast enhancement of hazy images depending upon each pixel’s nature of
degradation. Moreover, using the human cognitive ability to differentiate between noisy and
edge pixels, one set of novel FI rules is designed to perform simultaneous edge & noise
detection in combination with the BFO algorithm. These rules also evaluate edge-strengths of
all possible edge directions located within each image patch. BFO algorithm is used in this
work to determine the most suitable direction for the movement of bacteria within each image
patch. It also facilitates the selection of true edge pixels by imposing certain constraints (given
in Section 3.1.2.4) on defuzzified edge-strengths which are obtained by performing
defuzzification of the fuzzy membership values of output linguistic variable (�0) of FI rules
which are designed for performing edge & noise detection. This reduces chances of false edge
detection. In addition to these rules, two different sets of novel FI rules are also designed to
perform removal of noise present in images and sharpening of selected edges respectively.
The proposed FI rules based noise filtering and edge-sharpening methods also overcome the
shortcomings of existing noise removal filters and un-sharp masking method. The different
sets of novel FI rules are exclusively designed to process each pixel according to its’
properties at each step of the proposed dehazing method and also enhances the robustness of
the method.

 BF algorithm [30] is chosen in this work to perform edge & noise detection in combination
with FI rules because of its advantages over other bio-inspired optimization algorithms. The
search strategy of BF is beneficial as unlike Genetic Algorithm, it does not assume the edges
to be continuous in nature, rather it searches for edges in the whole search space. Moreover,
its capability to sense, decide and act also makes it superior compared to Ant Colony
optimization and Particle Swarm optimization algorithms.

HSV color space is selected in this work to carry out dehazing of images in contrary to other color
spaces due to its robustness towards color distortion and its resemblance with the human vision system.
Among � (hue), � (saturation) and � (value) channels of a hazy image, here the � channel is chosen to
conduct dehazing as it is the only channel which satisfies the atmospheric scattering model (hazy image
model) as proved in [56-57].

In this method, input hazy images are initially converted from RGB to HSV color space prior to
performing image dehazing using the following equations:

�' =

�−�
�
���6 �� � = �

�−�
�
+ 2 �� � = �

�−�
�
+ 4 �� � = �

(3.1.1)

� = 60 × �' (3.1.2)

� = � (3.1.3)

� =
� −�
�

=
�
� (3.1.4)

In (3.1.1) − (3.1.4), � = max �, �, � , � = min �, �, � , � = � −�
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The authors in [56-57] have proved that � channel of hazy image does not undergo any degradation
due to the presence of haze, hence it needs no processing.

The authors of these works have mathematically proved that � channel is the only channel that
completely satisfies the atmospheric scattering model.

Based on these findings, the proposed dehazing method is designed mainly to restore the degraded
�channel (����) of hazy images.

Mathematically, ���� is described as follows:

����(�, �) = ����(�, �)� �, � + �(1 − � �, � ) (3.1.5)

Comparing (1.1.1) and (3.1.6) , it was concluded that the � channel of degraded hazy image
completely satisfies the atmospheric scattering model. Here, the main aim is to recover ���� (the
restored � channel) from ���� (the degraded �channel) using the following steps:
3.1.1. FI rules based contrast enhancement

This is the first step of the proposed method. In this step, contrast enhancement of each pixel of a hazy
image is performed depending upon its extent of degradation using a set of novel FI rules (given in
Table. 3.1.1.3.1.1) which are designed considering haze-concentration ( ��) and Log-sigmoid
transformation function (���) as input fuzzy linguistic variables and mapping constant (��) as output
fuzzy linguistic variable. The reasons behind choosing �� and ��� as input linguistic variables of the
designed FI rules are given in Sections 3.1.1.1 and 3.1..1.2 respectively.
3.1.1.1. Reasons behind choosing HC as an input linguistic variable of the designed FI rules
The authors in [38] have stated that under the influence of additive airlight, the brightness of pixels
belonging to hazy images increase and saturation decrease and hence, �� of a pixel is estimated from
the difference between the magnitudes of its’ brightness and saturation values i.e. (�� �, � ∝ � �, � −
�(�, �)). In other words, it is said that �� of a pixel is directly proportional to the difference between the
magnitudes of its’ brightness and saturation values i.e. (�� �, � ∝ � �, � − �(�, �)).
From this observation, the following conclusions are drawn:

1. More the influence of additive airlight on a pixel → More will be the difference between the
magnitudes of it’s brightness and saturation values→ More will be its �� → More will be its
visibility degradation.

2. Less the influence of additive airlight on a pixel → Less will be the difference between the
magnitudes of its’ brightness and saturation values → Less will be its �� → Less will be its
visibility degradation.

Hence, the pixels undergoing more degradation should be more contrast enhanced compared to the
pixels undergoing less degradation. That is why, in this work larger �� values are used to map the
pixels possessing higher �� as �� value of each pixel gives a direct estimation of its extent of
degradation. For this reason, here �� is considered as one of the linguistic variables of the FI rules
which are designed for performing contrast enhancement.

3.1.1.2. Reasons behind choosing LSF as an input linguistic variable of the designed FI rules

In this work, ��� is chosen as a transformation function to map the pixels belonging to the degraded �
channel of a hazy image (����) to the corresponding contrast enhanced � channel (�') which is
generated using the proposed FI rules based contrast enhancement method. As the objective here is to
compress the high intensity range of images (as the pixels corrupted with dense haze usually possess
high intensities) and to expand the low intensity range of images (as the haze free pixels usually
possess low intensities), ��� is chosen as an ideal transformation function for this purpose as the basic
objective of log transformation function is to compress the high intensity range of images and to
expand their low intensity range [94]. Due to the significant influence of ��� on the entire contrast
enhancement process, it is considered as one of the input linguistic values of the FI rules which are
designed for performing contrast enhancement. ��� is calculated here using the following
mathematical equation:

���(�, �) = 1/(1 + ���( − ��(�, �)) (3.1.1.2.1)
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3.1.1.3. Details of designed FI rules based contrast enhancement method

Table 3.1.1.3.1. FI rules designed for performing contrast enhancement
Rule

No

If Then

HC LSF MP

1 VERY LOW LESS VERY SMALL

2 VERY LOW AVERAGE VERY SMALL

3 VERY LOW HIGH SMALL

4 LOW LESS SMALL

5 LOW AVERAGE SMALL

6 LOW HIGH AVERAGE

7 MEDIUM LESS AVEAGE

8 MEDIUM AVERAGE AVEAGE

9 MEDIUM HIGH LARGE

10 HIGH LESS LARGE

11 HIGH AVERAGE LARGE

12 HIGH HIGH LARGE

13 VERY HIGH LESS LARGE

14 VERY HIGH AVERAGE VERY LARGE

15 VERY HIGH HIGH VERY LARGE

3.1.1.3.1.1. Dynamic Range(DR) of linguistic variables used in these FI rules
DR of HC= [0 1]. Prior to performing colour space conversion of hazy images (converting hazy
images from RGB colour space to HSV colour space), pixel intensity range is restricted within [0 1]
due to normalization. So, after conversion, the values of ���� and ���� will also lie between [0 1]
according to (3.1.3) and (3.1.4). As in hazy images, it is proved that ���� ≥ ���� due to the influence
of additive airlight, so (���� − ����) will always lie between [0 1].

DR of LSF= [0.5 0.73]. Lower bound= 1
1+�−0

=0.5. Upper bound= 1
1+�−1

=0.73. (Since, DR of HC lies
between [0 1]).

DR of MP = [1 4]. (Empirically chosen).

(a)

(b)
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(c)

SET A

(a)

(b)

(c)

SET B

Fig.3.1.1.3.1. Graphical representations of fuzzy membership functions used to represent linguistic
variables (a) ��, (b) ��� and (c) ��

*Note: In this proposed method, the experimental analyses are carried out twice, once using
Triangular membership function (given in Set A) and once using Gaussian membership function (given
in Set B) to empirically choose the most suitable membership function for representing the linguistic
variables.
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After obtaining unique defuzzified output linguistic value, '��∗' value for mapping each pixel
belonging to the degraded � channel of a hazy image (����) to the corresponding contrast enhanced
� channel (�'), contrast enhancement is performed using the following equation:

�' �, � = ���� �, � × ��� �, � × ��∗ �, � (3.1.1.3.1.2.1)

3.1.2. Novel BF-Fuzzy synergism based simultaneous edge & noise detection

This is the second step of the proposed method which deals with simultaneous edge & noise detection
as well as noise removal using different sets of FI rules and BFO algorithm.

The BFO algorithm proposed by the authors in [30] is a powerful bio-inspired optimization algorithm.
It can replicate the behavior of a single bacterium or groups of E. Coli bacteria.

BFO algorithm is used in this method to perform simultaneous edge & noise detection in combination
with one set of novel FI rules. In this work, bacteria simultaneously detect both edge pixels and noisy
pixels encountered by them on their path while foraging across the �' channel. BFO algorithm in
combination with the FI rules determine the most suitable direction for the movement of bacteria
within each 3 × 3 image patch and also facilitate the selection of true edges by imposing some
constraints on the defuzzified edge-strengths obtained for all the eight possible edge directions within
each image patch and thus eliminates any chances of false edge detection. BFO algorithm, used here
comprises of three steps namely, chemotaxis, reproduction, and elimination and dispersal. The
swarming step of the traditional BFO algorithm is eliminated here to reduce the computational burden
as it is of no use in this application since the main aim in this work is to select most suitable edge
within each image patch.

The idea of using BFO algorithm in combination with Fuzzy Logic to perform edge & noise detection
in this method is partially inspired from the edge detection method proposed in [95] where the authors
have also used BFO algorithm in combination with Fuzzy logic to detect edges but that method has
several drawbacks which are highlighted as follows:

 In [95], the authors have performed edge detection using FI rules which they have designed
considering the input linguistic variables (Fuzzy Derivative (FD) values ((FD value along any
direction say, D is obtained by subtracting the pixel intensity of the centre pixel of an 3 × 3
image patch and the pixel located at direction ‘D’ within that patch)) of the FI rules to always
belong to a fuzzy set (Large). They have not considered other possible cases. This leads to
erroneous edge detection and also makes the method unsuitable for practical implementation.
Moreover, they have not provided any information regarding the DR of linguistic variables
considered while designing the FI rules.

 They have performed edge detection considering FD values as input linguistic variables which
give incorrect results because edges mean sharp transitions of pixel intensities (the transition
can be from both low intensity to high intensity level or from high intensity to low intensity
level), so directions possessing high membership values in ‘Large’ fuzzy set i.e. the edges
undergoing high intensity to low intensity transitions will only be detected as edges using the
method proposed in [95] since their FD values will only be positive and high. Edges having
low intensity to high intensity transitions will not be detected as edges as their FD values will
be negative and low.

 FI rules designed in [95] can neither detect noisy pixels nor can evaluate edge-strengths of all
possible edge directions.

All these shortcomings are solved in this proposed method by designing a completely novel set of FI
rules which can perform simultaneous edge & noise detection and can also evaluate edge-strength of
each possible edge direction located within an image-patch. The FI rules are designed in this work by
incorporating all the possible combinations which may arise during edge & noise detection to avoid
any ambiguity. BFO algorithm is used in this work in combination with the FI rules to prevent false
edge detection. It is used to determine the most suitable direction for the movement of bacteria within
each image patch and to select true edges by imposing constraints on defuzzified edge-strengths which
are evaluated for all possible eight edge directions located within an image patch. Moreover, the
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drawbacks arising due to the use of FD values as input linguistic variables of the FI rules in [95] are
also solved by using �� values (magnitudes of FD values) as input linguistic variables of the novel FI
rules designed in this work. The use �� values of desired directions as input linguistic variables of
FI rules facilitate the detection of the sharp transitions of pixel intensities (both from low intensity to
high intensity level or from high intensity to low intensity level) as edges. The proposed BF-Fuzzy
synergism based approach is completely novel as it differs from the method proposed in [95]both in
terms of FI rules and methodology.

After detecting the noisy pixels, they are filtered using a novel set of FI rules based noise removal
method which is designed to remove noise from each detected pixel in accordance to its extent of
corruption w.r.t each neighbouring pixel located within its 3 × 3 neighbourhood to completely nullify
any chances of occurrence of undesired edge-blurring in output images .A detailed comparative
analysis of the proposed FI rules based noise removal method w.r.t several popular image denoising
methods is also performed in Section 3.1.2.5 to prove the method’s efficiency. Similar comparative
analysis is also carried out to prove the efficiency of the proposed BF-Fuzzy synergism based
simultaneous edge & noise detection method over traditional edge-detectors in Section 3.1.2.6.

3.1.2.1. Search space

In this problem, bacteria forage across the entire two-dimensional search space consisting of � and �
co-ordinates of pixels. Limited by the image dimensions, the search space is finite and it takes only
discrete values. Bacteria are placed at random positions in the enhanced two-dimensional �' channel.

3.1.2.2. Chemotaxis
Edges signify sharp changes in pixel intensities, so traditional edge detectors often perform edge
detection considering the differences in intensities of neighboring pixels which often lead to the
production of erroneous results as like edge pixels, the intensities of noisy pixels too vastly differ w.r.t
the intensities of neighboring pixels. Only the pixels lying in the homogeneous regions of images
possess more or less similar intensities. It is also observed that in case of true edge pixels, the
intensities of the neighboring pixels lying perpendicular to the edge directions vary vastly w.r.t to the
intensities of the edge pixels. But this observation does not hold for noisy pixels as noise corrupts
pixels randomly.

So, keeping these facts in mind, in this work a set of novel FI rules is designed to perform
simultaneous edge & noise detection. The constraints (given in Section 3.1.2.6) imposed on the
defuzzified edge-strengths obtained after performing defuzzification of the fuzzy membership values of
the output linguistic variable (�0) of these rules facilitate the selection of true edge pixels and prevent
any chances of false edge detection.

In this step, initially the enhanced �' channel is divided into several overlapping 3 × 3 image patches.
Eight possible directions within each image patch, �0 ∈ {�, �,�, �, ��, ��, ��, ��}are shown in Fig
3.1.2.2.1. Pixels considered for performing edge & noise detection along each possible edge direction
say, �0 within a 3 × 3 patch centered at pixel location, (�, �) is pictorially represented in Fig.3.1.2.2.2
and mathematically in (3.1.2.2.1) − (3.1.2.2.40).

Fig 3.1.2.2.1. Eight possible edge-directions within a 3x3 patch

�� values of pixels considered for performing edge & noise detection along all possible edge
directions within a 3 × 3 patch are mathematically represented as follows:
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For D0=N:

�� �, � = � �, � − 1 − � �, � (3.1.2.2.1)
�� �, � = � � − 1, � − � �, � (3.1.2.2.2)
�� �, � = � � + 1, � − � �, � (3.1.2.2.3)
�� �, � − 1 = � � − 1, � − 1 − � �, � − 1 (3.1.2.2.4)
�� �, � − 1 = � � + 1, � − 1 − � �, � − 1 (3.1.2.2.5)

For D0=S:
�� �, � = � �, � + 1 − � �, � (3.1.2.2.6)
�� �, � = � � − 1, � − � �, � (3.1.2.2.7)
�� �, � = � � + 1, � − � �, � (3.1.2.2.8)
�� �, � + 1 = � � − 1, � + 1 − � �, � + 1 (3.1.2.2.9)
�� �, � + 1 = � � + 1, � + 1 − � �, � + 1 (3.1.2.2.10)

For D0=W:

�� �, � = � � − 1, � − � �, � (3.1.2.2.11)
�� �, � = � �, � − 1 − � �, � (3.1.2.2.12)
�� �, � = � �, � + 1 − � �, � (3.1.2.2.13)
�� � − 1, � = � � − 1, � − 1 − � � − 1, � (3.1.2.2.14)
�� � − 1, � = � � − 1, � + 1 − � � − 1, � (3.1.2.2.15)

For D0=E:
�� �, � = � � + 1, � − � �, � (3.1.2.2.16)
�� �, � = � �, � − 1 − � �, � (3.1.2.2.17)
�� �, � = � �, � + 1 − � �, � (3.1.2.2.18)
�� � + 1, � = � � + 1, � − 1 − � � + 1, � (3.1.2.2.19)
�� � + 1, � = � � + 1, � + 1 − � � + 1, � (3.1.2.2.20)

For D0=NW:
��� �, � = � � − 1, � − 1 − � �, � 3.1.2.2.21
��� �, � = � � + 1, � − 1 − � �, � (3.1.2.2.22)
��� �, � = � � − 1, � + 1 − � �, � (3.1.2.2.23)
��� � − 1, � − 1 = � �, � − 2 − � � − 1, � − 1 (3.1.2.2.24)
��� � − 1, � − 1 = � � − 2, � − � � − 1, � − 1 (3.1.2.2.25)

For D0=NE:

��� �, � = � � + 1, � − 1 − � �, � (3.1.2.2.26)
��� �, � = � � − 1, � − 1 − � �, � (3.1.2.2.27)
��� �, � = � � + 1, � + 1 − � �, � (3.1.2.2.28)
��� � + 1, � − 1 = � �, � − 2 − � � + 1, � − 1 (3.1.2.2.29)
��� � + 1, � − 1 = � � + 2, � − � � + 1, � − 1 (3.1.2.2.30)

For D0=SW:
��� �, � = � � − 1, � + 1 − � �, � 3.1.2.2.31
��� �, � = � � − 1, � − 1 − � �, � 3.1.2.2.32
��� �, � = � � + 1, � + 1 − � �, � 3.1.2.2.33
��� � − 1, � + 1 = � � − 2, � − � � − 1, � + 1 3.1.2.2.34
��� � − 1, � + 1 = � �, � + 2 − � � − 1, � + 1 3.1.2.2.35

For D0=SE:
��� �, � = � � + 1, � + 1 − � �, � 3.1.2.2.36
��� �, � = � � + 1, � − 1 − � �, � (3.1.2.2.37)
��� �, � = � � − 1, � + 1 − � �, � 3.1.2.2.38
��� � + 1, � + 1 = � � + 2, � − � � + 1, � + 1 3.1.2.2.39
��� � + 1, � + 1 = � �, � + 2 − � � + 1, � + 1 (3.1.2.2.40)
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(a) �0= N (b) �0=S

(c) �0=W (d) �0=E

(e) �0=NW (f) �0=NE

(g) �0=SW (h) �0=SE

Fig.3.1.2.2.2. (a) N, (b) S, (c) W, (d) E, (e) NW, (f) NE, (g) SW, (h) SE (Red arrows represent probable
edge directions, blue arrows signify locations of pixels lying perpendicular to probable edge directions)
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For each possible edge direction, �0 five equations are obtained where the first equation is designed
to calculate the FD value along the possible edge-direction, �0 and the other four equations are
designed to calculate the FD values of the four neighboring pixels which lie perpendicular to �0. Here
with the help of an example (Fig. 3.1.2.2.3. where �0 = � (North)) the logic following which these
five equations are obtained for each �0 is explained.

(a)

(b) (c)

(d) (e)
Fig. 3.1.2.2.3. (a) Possible edge-direction (marked with red arrow) and (b)-(e) Neighboring pixels

which lie perpendicular to the possible edge-direction (marked with blue arrows)

From Fig. 3.1.2.2.3 (a) , (3.1.2.2.41)is designed:
�� �, � = � �, � − 1 − � �, � (3.1.2.2.41)

Form (3.1.2.2.41), it is concluded that if an edge exists along �0 = �, then � �, � − 1 and � �, � are
possible edge pixels.

From Fig. 3.1.2.2.3 (b) , (3.1.2.2.42) is designed:
�� �, � = � � − 1, � − � �, � (3.1.2.2.42)

As the pixel, � � − 1, � lies at a pixel position which is perpendicular to �0 = � and as it is located
towards the West direction of possible edge pixel, � �, � , so the corresponding FD value is marked as
�� �, � to denote the concerned neighboring pixel lies towards the West direction of possible edge
pixel located at �, � .

From Fig. 3.1.2.2.3 (c), (3.1.2.2.43) is designed:
�� �, � = � � + 1, � − � �, � (3.1.2.2.43)
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As the pixel, � � + 1, � lies at a pixel position which is perpendicular to �0 = � and as it is located
towards the East direction of possible edge pixel, � �, � , so the corresponding FD value is marked as
�� �, � to denote the concerned neighboring pixel lies towards the East direction of possible edge
pixel located at �, � .

From Fig. 3.1.2.2.3 (d), (3.1.2.2.44) is designed:
�� �, � − 1 = � � − 1, � − 1 − � �, � − 1 (3.1.2.2.44)

As the pixel, � � − 1, � − 1 lies at a position which is perpendicular to �0 = � and as it is located
towards the West direction of possible edge pixel, � �, � − 1 , so the corresponding FD value is
marked as �� �, � − 1 to denote the concerned neighboring pixel lies towards the West of possible
edge pixel located at �, � − 1 .

From Fig. 3.1.2.2.3 (e) , (3.1.2.2.45) is designed:
�� �, � − 1 = � � + 1, � − 1 − � �, � − 1 (3.1.2.2.45)

As the pixel, � � + 1, � − 1 lies at a position which is perpendicular to �0 = � and as it is located
towards the East direction of possible edge pixel, � �, � − 1 , so the corresponding FD value is marked
as �� �, � − 1 to denote the concerned neighboring pixel lies towards the East of the possible edge
pixel located at �, � − 1 .

The equations to calculate the FD values for other possible edge directions are also designed in similar
way. The proposed BF-Fuzzy synergism based edge & noise detection method performs detection of
edge pixels and noisy pixels considering �� (magnitude of FD values) as linguistic variables of the
designed FI rules given in Table 3.1.2.2.1.

Table 3.1.2.2.1. FI rules designed for performing simultaneous edge& noise detection

Rule If Then
��� �, �

(Magnitude of
FD along

possible edge-
direction, ��)

��� �, �
(Magnitude of FD
along direction, ��

which lies
perpendicular to
possible edge-
direction, ��)

��� �, �
(Magnitude of FD
along direction, ��

which lies
perpendicular to
possible edge-
direction, ��)

���(�, �)
(Magnitude of FD
along direction, ��

which lies
perpendicular to
possible edge-
direction, ��)

���(�, �)
(Magnitude of FD along
direction, �� which lies
perpendicular to possible
edge-direction, ��)

��
(Possible edge-
strength along
possible edge-
direction, ��)

1 VERY LOW VERY LOW VERY LOW VERY LOW VERY LOW NON-EDGE
2 LOW VERY LOW VERY LOW VERY LOW VERY LOW NON-EDGE
3 MEDIUM VERY LOW VERY LOW VERY LOW VERY LOW NON-EDGE
4 HIGH VERY LOW VERY LOW VERY LOW VERY LOW NOISE
5 VERY HIGH VERY LOW VERY LOW VERY LOW VERY LOW NOISE
6 VERY HIGH VERY HIGH VERY HIGH VERY HIGH VERY HIGH VERY STRONG
7 VERY HIGH VERY HIGH VERY HIGH VERY HIGH HIGH VERY STRONG
8 VERY HIGH VERY HIGH VERY HIGH HIGH HIGH VERY STRONG
9 VERY HIGH VERY HIGH HIGH HIGH HIGH STRONG
10 VERY HIGH HIGH HIGH HIGH HIGH STRONG
11 HIGH HIGH HIGH HIGH HIGH STRONG
12 HIGH HIGH HIGH HIGH MEDIUM STRONG
13 HIGH HIGH HIGH MEDIUM MEDIUM STRONG
14 HIGH HIGH MEDIUM MEDIUM MEDIUM WEAK
15 HIGH MEDIUM MEDIUM MEDIUM MEDIUM NOISE
16 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM NON-EDGE
17 VERY LOW MEDIUM MEDIUM MEDIUM MEDIUM NON-EDGE
18 VERY LOW LOW MEDIUM MEDIUM MEDIUM NON-EDGE
19 VERY LOW LOW LOW MEDIUM MEDIUM NON-EDGE
20 VERY LOW LOW LOW LOW MEDIUM NON-EDGE
21 VERY LOW LOW LOW LOW LOW NON-EDGE
22 VERY HIGH MEDIUM MEDIUM MEDIUM MEDIUM NOISE
23 VERY HIGH VERY HIGH HIGH MEDIUM MEDIUM VERYWEAK
24 VERY HIGH VERY HIGH HIGH HIGH MEDIUM WEAK
25 VERY HIGH VERY HIGH VERY HIGH VERY HIGH MEDIUM VERY STRONG
26 HIGH HIGH HIGH HIGH MEDIUM STRONG
27 HIGH HIGH MEDIUM LOW MEDIUM VERYWEAK
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28 VERY LOW LOW VERY LOW VERY LOW VERY LOW NON-EDGE
29 HIGH HIGH LOW LOW MEDIUM VERYWEAK
30 HIGH HIGH LOW LOW LOW VERYWEAK

Example: PR1 (FI rule: 1): IF ��0(�, �) is VERY LOW and ��1(�, �) is VERY LOW and
��2(�, �) is VERY LOW and ��3(�, �) is VERY LOW and ��4(�, �) is VERY LOW THEN D0

is NON EDGE.
*Note: PR1 (below Table..3.1.2.2.1.) is given just as an example to help the readers understand the way
of representation of FI rules .

(a)

(b)

SET A

(a)
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(b)

SET B

Fig. 3.1.2.2.4. Graphical representations of fuzzy membership functions used for representing
linguistic variables of FI rules designed for edge & noise detection (a) ∇�� and (b) �0

���� and ���� represent the minimum and maximum intensities of all the pixels belonging to the
enhanced two-dimensional �' channel.
Let the dimension of the enhanced two-dimensional �' channel be� × �.

���� = ��� (�(1,1 ), � 1,2 , …………. . , � �, � − 1 , �(�, �)) (3.1.2.2.46)

���� = ��� (�(1,1 ), � 1,2 , …………. . , � �, � − 1 , �(�, �)) (3.1.2.2.47)

Where, �(�, �) : Intensity of pixel located at the ��ℎ row and ��ℎ column of the two-dimensional �'
channel.

In Fig.3.1.2.2.4. (a), DR of the input linguistic variable is chosen to be [0, ���� − ���� ] to cover the
entire �� range. In Fig.3.1.2.2.4. (a), DR of the output linguistic variable is chosen to be [0 1] , so
that the defuzzified value of edge-strength estimated for each possible edge-direction remains restricted
within this range.

The FI rules designed for edge & noise detection (given in Table.3.1.2.2.1.) are fired for each of the
eight possible edge directions within a 3 × 3 image patch. After performing defuzzification of the
output linguistic variable, �0 of these rules, eight ��0 (defuzzified edge-strength of any edge-direction
say, �0) values (one for each direction) are obtained. Among these eight possible directions, if the
��0value of any direction suggests that it possess the highest membership value in the NOISE fuzzy
set, then noise removal is done using the following procedure.

Let the ��0value of any direction say, '��
' suggests that it possess the highest membership value in the

NOISE fuzzy set. Since, in this work, the estimation of each �� involves two pixels hence, a certain
edge-direction can possess the highest membership value in the NOISE fuzzy set in two cases as
explained below.

���(�, �) = � �, � − �(�, �) (3.1.2.2.48)

Where, (�, �) and (�, �) denote the pixel locations. The pixel located at (�, �) exists towards the ��
direction of the center pixel located at (�, �) . ∇��(�, �) denotes the magnitude of the difference of
� �, � and �(�, �). So, ∇��(�, �) gets influenced when either of these pixels get corrupted with noise.

Here, initially considering the pixel located in the �� direction as noisy pixel, it is filtered using the set
of novel FI rules (given in Table.3.1.2.2.2. ) which are designed for performing noise removal.
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Table. 3.1.2.2.2. FI rules designed for filtering noisy pixels
Ru
le

If Then

∇�0
'

(FD along
direction �0)

∇�1
' (FD of

noisy pixel
w.r.t
Neighbour 1)

∇�2' (FD of
noisy pixel
w.r.t
Neighbour 2)

∇�3
' (FD of

noisy pixel
w.r.t
Neighbour 3)

∇�4' (FD of
noisy pixel
w.r.t
Neighbour 4)

∇�5
' (FD of

noisy pixel
w.r.t
Neighbour 5)

∇�6' (FD of
noisy pixel
w.r.t
Neighbour 6)

∇�7
' (FD of

noisy pixel
w.r.t
Neighbour 7)

�' (Correction
term)

1 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

HIGH
NEGATIVE

2 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
NEGATIVE

BIG
NEGATIVE

HIGH
POSITIVE

3 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

ZERO

4 BIG
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

LOW
NEGATIVE

5 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

HIGH
NEGATIVE

6 BIG
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

BIG
NEGATIVE

LOW
NEGATIVE

7 BIG
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

LOW
POSITIVE

8 BIG
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

LOW
NEGATIVE

9 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

HIGH
POSITIVE

10 BIG
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

HIGH
POSITIVE

11 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

SMALL
POSITIVE

HIGH
NEGATIVE

12 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

SMALL
NEGATIVE

HIGH
POSITIVE

13 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

HIGH
NEGATIVE

HIGH
POSITIVE

14 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
NEGATIVE

SMALL
POSITIVE

HIGH
POSITIVE

15 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
NEGATIVE

ZERO HIGH
POSITIVE

16 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

SMALL
NEGATIVE

HIGH
NEGATIVE

17 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

SMALL
POSITIVE

HIGH
NEGATIVE

18 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
POSITIVE

HIGH
NEGATIVE

19 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

HIGH
POSITIVE

20 SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

ZERO

21 SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

ZERO

22 SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

LOW
POSITIVE

23 SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
NEGATIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

LOW
NEGATIVE

24 BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

ZERO BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

LOW
POSITIVE

25 BIG
POSITIVE

BIG
POSITIVE

BIG
POSITIVE

ZERO BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

LOW
NEGATIVE

26 BIG
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

SMALL
POSITIVE

BIG
NEGATIVE

BIG
NEGATIVE

BIG
NEGATIVE

LOW
POSITIVE
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(a)

(b)

SET A

(a)

(b)

SET B

Fig. 3.1.2.2.5. Graphical representations of fuzzy membership functions used for representing linguistic
variables of FI rules designed for filtering of noisy pixels (a) ∇��' and (b) �

'
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After filtering the pixel located at ��direction, the FI rules which are designed for performing edge &
noise detection (given in Table 3.1.2.2.1) are fired for '��'direction only. If the obtained defuzzified
value still suggests that '��' has the highest membership value in the NOISE fuzzy set, then the filtered
pixel is replaced with its original intensity value (intensity value prior to filtering) and the center pixel
� �, � is filtered accordingly. Else, the FI rules designed for edge & noise direction are fired for all
eight possible edge directions.

The proposed noise removal procedure is explained here with an example. Suppose �� direction (as
marked in red in Fig.3.1.2.2.6.) has the highest membership in the NOISE fuzzy set then noise removal
is done in the following way:

Initially, the pixel located in the SW direction ((� − 1, � + 1) is considered to be noisy and it is
filtered using the FI rules which are designed for performing noise removal (given in Table. 3.1.2.2.2),
as discussed below:

Fig.3.1.2.2.6. Pixels considered for noise filtering if SW has highest membership in NOISE fuzzy
set
CASE 1:

��0' � − 1, � + 1 = �(�, �) − � � − 1, � + 1 (3.1.2.2.49)
��1' � − 1, � + 1 = � � − 1, � − � � − 1, � + 1 (3.1.2.2.50)
��2' � − 1, � + 1 = � � − 2, � − � � − 1, � + 1 (3.1.2.2.51)
��3' � − 1, � + 1 = � � − 2, � + 1 − � � − 1, � + 1 (3.1.2.2.52)
��4' � − 1, � + 1 = � � − 2, � + 2 − � � − 1, � + 1 (3.1.2.2.53)
��5' � − 1, � + 1 = � � − 1, � + 2 − � � − 1, � + 1 (3.1.2.2.54)
��6' � − 1, � + 1 = � �, � + 1 − � � − 1, � + 1 (3.1.2.2.55)
��7' � − 1, � + 1 = � �, � + 2 − � � − 1, � + 1 (3.1.2.2.56)

���� =
�=0
7 �

��
' �−1,�+1�

8
(3.1.2.2.57)

When the pixel located at � − 1, � + 1 is considered as the possible noisy pixel, then it is filtered
depending upon its extent of noise corruption w.r.t each of its neighboring pixels located with the 3 × 3
neighborhood which is defined considering � � − 1, � + 1 as the center pixel as shown in
Fig.3.1.2.2.7.

Fig.3.1.2.2.7. 3 × 3 neighbourhood of the possible noisy pixel � � − 1, � + 1
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After filtering �(� − 1, � + 1 ) using the FI rules which are designed for performing noise removal
(given in Table.3.1.2.2.2 ), the FI rules designed for performing edge & noise detection (given in
Table.3.1.2.2.1 ) are fired for �� direction only. If the defuzzified �� value suggests that �� no
longer possess highest membership value in the NOISE fuzzy set, then the FI rules which are designed
for performing edge & noise detection are fired for all the eight possible edge directions in an 3 × 3
image patch which is defined considering �(�, �) as the center pixel as shown in Fig.3.1.2.2.8.

Else filtered �(� − 1, � + 1) is replaced with its original intensity (intensity value prior to filtering) and
noise filtering operation is repeated considering �(�, �)as the noisy pixel. The ���� value needed for
performing noise removal in this case is computed as stated below:

Fig.3.1.2.2.8.. 3 × 3 neighbourhood of the possible noisy pixel � �, �

CASE 2:
��0' (�, �) = � � − 1, � + 1 − � �, � (3.1.2.2.58)
��1' (�, �) = � � − 1, � − � �, � (3.1.2.2.59)
��2' (�, �) = � � − 1, � − 1 − � �, � (3.1.2.2.60)
��3' (�, �) = � �, � − 1 − � �, � (3.1.2.2.61)
��4' (�, �) = � � + 1, � − 1 − � �, � (3.1.2.2.62)
��5' (�, �) = � � + 1, � − � �, � (3.1.2.2.63)
��6' (�, �) = � � + 1, � + 1 − � �, � (3.1.2.2.64)
��7' (�, �) = � �, � + 1 − � �, � (3.1.2.2.65)

���� =
�=0
7 �

��
'(�,�)�

8
(3.1.2.2.66)

���� values needed for performing noise removal of any possible noisy pixel depends upon its
respective extent of noise corruption w.r.t each of its neighboring pixels located within the 3 × 3
neighborhood which is defined considering the possible noisy pixel as the center pixel as discussed
above. Hence, ���� values obtained from (3.1.2.2.57) and (3.1.2.2.65) are different as they are
calculated considering different 3 × 3 neighborhoods of different possible noisy pixels.

After filtering �(�, �), the FI rules which are designed for performing edge & noise detection (given in
Table.3.1.2.2.1 ) for �� direction only. If it still suggests that �� still possess highest membership
value in NOISY fuzzy set, then both �(� − 1, � + 1)and �(�, �) are replaced with their corresponding
filtered values.Else only �(�, �) is replaced with its’ filtered intensity value and edge & noise detection
is performed along all the eight possible directions using FI rules given in 3.1.2.2.1.

The main aim here is to remove the noise present in the �' channel of hazy image. The noise removal
operation performed here is mathematically defined as follows:

���������(�, �) = ������(�, �) + �'∗(�, �) (3.1.2.2.67)
Where, ������(�, �) and ���������(�, �) denote the intensities of pixel corrupted with noise located at pixel
position, (�, �) and corresponding filtered pixel located at the same pixel position respectively. �'∗(�, �)
is the defuzzified value of correction term, �' which is computed using the proposed FI rules based
noise removal method to perform filtering of the noisy pixel located at pixel position, (�, �) . The
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defuzzification is performed here using the Centre of Area method whose mathematical expression is
given in Chapter 1.
After performing edge & noise detection and noise removal (if required) within a 3 × 3 image patch,
eight ��0values are obtained for all eight possible edge directions within that image-patch (one for
each direction). Out of all those eight possible edge directions, bacteria move along the direction
having the maximum ��0value as stated below:

�� � + 1, �, � = �� �, �, � + � � ∆ �

∆� � ∆ �
(3.1.2.2.68)

In (3.1.2.2.68), �� � + 1, �, � and �� �, �, � represent the locations of the bacteria before and after
tumble respectively. � � and ∆ � denote the step size and directional vector respectively.

3.1.2.3.Reproduction and Elimination step

Here the elimination step is performed to remove bacteria, which have deviated from their path. The
reproduction step is performed to replace the same number of eliminated bacteria with healthy bacteria
using a bacteria split ration of 2:1. The selection of edge pixels and elimination of unhealthy bacteria
are done using certain constraints.

3.1.2.4. Constraints

If after tumbling, bacteria reach to a location which possesses highest membership value either in the
STRONG or VERY STRONG fuzzy sets, then the pixel located at that position will be selected as
edge pixel.

If after tumbling, bacteria reach to a location possessing highest membership value in the NON EDGE
fuzzy set, then the bacteria are considered to be unhealthy and are eliminated.

The use of these constraints completely eliminates any chance of false edge detection. The pseudo
code of the proposed BF-Fuzzy synergism based edge & noise detection method is given in Fig.3.1.2.1.

Fig.3.1.2.1. Pseudo code of the BF and Fuzzy synergism based edge & noise detection method

3.1.2.5. Comparative analyses of noise removal methods

In this Section, comprehensive comparative analysis of the filtering strategies of several existing, well-
known noise removal filters is performed and how the proposed FI rules based noise removal method
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can satisfactorily overcome their shortcomings is discussed. The filtering strategies of some well-
known noise removal filters are described below:

1. Mean filter [94]: This filter performs noise removal of all the pixels present in an image by
substituting each pixel present in an image with the average value of the intensities of all the pixels
lying within its pre-defined neighborhood of size,�×�.

2. Median filter (MF) [96] performs removal of noise present in images by substituting each pixel
present in an image with the median value of the intensities of all the pixels lying within its pre-defined
neighborhood of size,�×�.

3. Hybrid Median filter (HMF) [97] performs noise suppression by filtering all the pixels belonging
to an image irrespective of whether it is a noisy pixel or a noise-free pixel using two steps.

Step 1. Initially, HMF divides the neighboring pixels lying within a filter window of pre-defined size,
3 × 3 into two groups where the first group comprises of pixels which are located at pixel locations
marked as ‘�’ in Fig. 3.1.2.5.1 and the second group comprises of pixels which are located at pixel
locations marked as ‘�’ in Fig. 3.1.2.5.1.

Fig.3.1.2.5.1. 3 × 3 filter window

Step 2. In this step, HMF substitutes the intensity of ‘�’ (center pixel) of the filter window with the
median value (�) which is computed as stated in (3.1.2.5.1.1).

� = ������ (��,��, �) (3.1.2.5.1.1)

Where, �� and �� are the median values of the pixels belonging to the first group and the second
group respectively.

4. Modified Hybrid Median filter (MHMF) [98] performs suppression of noise present in images
almost similarly as proposed in HMF [97] but with certain modifications. Instead of computing � as
stated in (3.1.2.5.1.1) , the authors who have proposed MHMF have substituted � with � which is
computed using the following equation:

� = ������ (��,��,�') (3.1.2.5.1.2)

Where, '�'' is the median value of all the pixels which are located at pixel locations marked as ‘�’ and
‘�’ in Fig.3.1.2.5.1.
Limitations of MF, HMF and MHMF: As these filters perform noise suppression by filtering all the
pixels present in an image irrespective of determining whether it is a noisy pixel or a noise-free pixel,
hence, they often lead to the production of undesired outputs.

5. Rank-order based Adaptive Median filter (RAMF) [99] : Unlike MF, HMF and MHMF, RAMF
performs removal of noise present in images by filtering noisy pixels only. RAMF performs detection
and filtering of noisy pixels in two steps:

Step 1: If the intensity of the center pixel of a filter window of size�×� lies between the minimum
and maximum intensities of the pixels located within that window, RAMF considers that center pixel
as a noise free pixel and retains its intensity value without any modification. Else, if the intensity of the
center pixel of any filter window becomes equal to either minimum or maximum intensity value of the
pixels located within that window, then RAMF marks it as a noisy pixel and substitutes its intensity
value with a new intensity value which is computed as stated in Step 2.
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Step 2. If the median value of the intensities of the pixels located within a pre-defined filter window of
size �×� lies between the maximum and minimum values of the intensities of the pixels located
within that window, then RAMF substitutes the intensity of the center pixel of that window which is
identified as a noisy pixel with that median value. Else, RAMF increases the size of the filter window
by one position on all the sides, i.e. the new size of the filter window becomes (� + 1) × (� + 1) and
computes the median value of the new window and check whether the newly computed median value
lies between the minimum and maximum intensities of the pixels located within the window of
size (� + 1) × (�+ 1) . If yes, then RAMF substitutes the intensity of the center pixel with the new
median value. Else, it further increases the size of the filter and repeats the same process until either
correct median value is obtained or maximum pre-defined window size�� ×�� is reached.

Limitation of RAMF: This filter performs noise detection by marking the center pixel of any filter
window of pre-defined size as noisy pixel if its’ intensity value becomes equal to either the minimum
and maximum intensities of the pixels located within that filter window. This method of noise detection
often gives erroneous results as pixels possessing minimum and maximum intensities locally (within a
filter window) may not always be noisy. They may be a part of the (low intensity/high intensity)
homogeneous regions which generally possess large clusters of pixels possessing similar intensities.

6. Progressive Switching Median filter (PSMF) [100] performs removal of noise from a noise
corrupted image in an iterative manner. Initially, PSMF considers all the pixels belonging to a noisy
image to be noise-free and performs noise detection using a filter window of size 3 × 3 . If the
difference between the intensity of the center pixel of a filter window and the median of all the pixels
located within that window exceeds a pre-defined (manually selected) threshold , then PSMF marks it
as a noisy pixel and replaces it with the median value of the intensities of all the pixels located within
that window. The same operation is repeated for all iterations (total number of iterations is chosen
manually at the beginning of the filtering process).

7. Improved Progressive Switching Median filter (IPSMF) [101] performs noise suppression
similarly as proposed in PSMF but instead of substituting the value of the center pixel of any filter
window (which is identified as a noisy pixel) with the median value of the intensities of pixels lying
within that window , IPSMF substitutes it with half of value of the sum obtained by adding the median
and mean values of all the pixels lying within the filter window.

Limitations of PSMF and IPSMF: These filters perform noise detection by comparing the difference
between the intensity of the center pixel of any filter window and the median value of all the pixels
located within that window with a pre-defined (manually selected) threshold which enhances the
chance of performing erroneous noise detection as this entire noise detection process is dependent on
the threshold value. Selecting correct threshold value to perform noise detection is very challenging.

Moreover, all these filters substitute the intensities of all the pixels present in an image (in case of MF,
HMF and MHMF) or the detected noisy pixels (in case of RAMF, PSMF and IPSMF) with the median
value of the pixels located within a filter window calculated in some way or the other as discussed
above which often lead to the production of undesirable results as calculated median value may be
noisy itself and it may not always be the ideal substitute of the intensity of the noisy pixels. The
proposed FI rules based noise removal method can efficiently overcome the drawbacks of all these
existing, well-known noise removal filters.

a. The proposed noise removal method does not perform filtering of all the noisy as well as noise
free pixels belonging to an image like MF, HMF and MHMF filters, instead it performs
filtering of the pixels only when they are detected as noisy pixels. Moreover, as the proposed
method performs simultaneous edge & noise detection using a set of novel FI rules (given in
Table.3.1.2.2.1) which are designed considering the �� values of pixels as input linguistic
variables, it completely eliminates any chances of erroneous noise detection which in turn
reduces the chances of producing undesired results.

b. The noise removal method designed here detects noisy pixels taking into the account the
�� values of the center pixel of any filter window w.r.t the neighboring pixels lying within
that window. So unlike RAMF filter, the designed filter completely eliminates any chances of
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erroneously detecting pixels belonging to either low intensity homogeneous regions or high
intensity homogeneous regions as noisy pixels. Moreover, unlike PSMF and IPSMF filters,
the proposed noise removal method does not use any threshold (manually selected) to perform
detection of noisy pixels, which also helps it to overcome any drawbacks which may arise in
the methods proposed in [100] and [101]due to improper selection of the threshold values.

c. Most of the existing, well-known noise removal filters substitute either all the pixels
belonging to an image (in case of MF, HMF and MHMF filters) or the detected noisy pixels
(in case of RAMF, PSMF and IPSMF filters) with the median value of the intensities of the
neighboring pixels calculated in some way or the other as discussed above , but those median
values may not always be the ideal substitute of the noisy pixels as the intensities of pixels
whose values get selected as the median values may be noisy pixels themselves. In the
proposed noise removal method, the detected noisy pixels are substituted with new intensity
values which are computed using the unique defuzzified values of the correction term �' as
stated in (3.1.2.2.67). As in the proposed method, an unique (�')∗ is calculated for filtering
each noisy pixel depending upon its extent of noise corruption w.r.t to each of its neighboring
pixel, located within its 3 × 3 neighborhood using the novel set of FI rules (given in
Table. .3.1.2.2. 2) , the computed intensity value of the filtered pixel obtained in the proposed
method acts as much reliable substitute of the intensity of the detected noisy pixel compared
to the filtered values used for substituting the intensities of noisy pixels in existing filters.

Comparative analysis of the proposed FI rules based noise removal method w.r.t to various well-
known noise removal methods is carried out both qualitatively as well as quantitatively in Table
3.2.1.5.1and Table 3.2.1.5.2 respectively. The original CT images which are used for performing
the comparative analyses are taken from the source mentioned in [102] which is a publicly
available database.The noisy CT images which are used for performing comparative analyses are
of size 512 × 512 and are generated by introducing noise having noise level of 20 in original
images.

Table 3.2.1.5.1. Comparative qualitative results obtained using CT images

Methods Image 1 Image 2 Image 3 Image 4

Original Image

Noisy Image

Mean filter [94]

Median filter [96]
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Hybrid Median filter
[97]

Progressive Switching
Median filter [100]

Improved Progressive
Switching Median
filter [101]

Proposed method
(using Triangular
membership function)

Proposed method
(using Gaussian
membership function)

Table 3.2.1.5.2. Comparative qualitative results obtained using CT images

Methods Image 1 Image 2 Image 3 Image 4

PSNR Entropy PSNR Entropy PSNR Entropy PSNR Entropy

Mean filter [94] 14.626 0.6229 14.277 0.6085 15.131 0.3865 15.778 0.4460

Median filter [96] 14.924 0.4920 13.911 0.3453 14.595 0.3399 16.507 0.3458

Hybrid Median filter [97] 14.518 0.0421 14.567 0.3424 16.426 0.1337 16.587 0.2678

Progressive Switching Median
filter [100]

14.367 0.2538 14.203 0.1609 15.356 0.1188 16.795 0.1143

Improved Progressive
Switching Median filter [101]

14.323 0.1074 14.435 0.1467 16.367 0.0745 16.772 0.1095

Proposed method (using
Triangular membership
function)

15.591 0.985 16.904 0.1386 16.963 0.0669 17.06 0.906

Proposed method (using
Gaussian membership function)

15.967 0.804 16.952 0.1174 17.711 0.583 18.329 0.898

The parameters used for performing quantitative analysis are Peak Signal-to-Noise Ratio (PSNR) [103]
and Entropy [104] . Brief definitions of these parameters are given below:

PSNR: This parameter is used to measure the quality of restored haze-free image. Hence, high values
of this parameter are always desirable as those values suggest better image restoration. Mathematically,
this parameter is represented as follows:
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���� = 10log10(
���2

���
) (3.1.2.5.1.3)

The terms on the right and side of the equation for e.g. Max represents the maximum intensity of the
pixel present in an image while MSE denote Mean Signal-to-Noise Ratio.

Entropy: :Entropy of an image gives a measure of the amount of uncertainty present in the information
content of an image.

3.1.2.6 .Comparative analysis of edge detection methods

In this Sub-section, a detailed discussion is carried out regarding some of the most common, well-
known edge detectors like Roberts, Prewitt, Sobel and Canny edge detectors [94]. The 3 × 3 kernels
which are used by the Roberts, Prewitt, Sobel edge detectors to perform edge detection are given in
Table. 3.1.2.6.1.

Table.3.1.2.6.1. 3 × 3 kernels used for performing edge detection by Roberts, Prewitt and Sobel edge
detectors

No Edge
detector

Masks used

1 Roberts

2 × 2 kernels used for performing edge-detection along diagonal directions

2 Prewitt

(a)Horizontal (b) Vertical (c) Diagonal (d) Diagonal

3 Sobel

(a)Horizontal (b) Vertical (c) Diagonal (d) Diagonal

From Table.3.1.2.6.1 , it becomes evident that the existing edge detectors (Roberts, Prewitt and Sobel)
use different 3 × 3 kernels to perform edge detection along horizontal, vertical and diagonal edge
directions. Moreover, these edge detectors also use manually selected threshold say, (�) to minimize
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false edge detection. The pixels whose intensities are either equal to or greater than the threshold are
included in the edge maps which are estimated by these edge detectors while the pixels having
intensities less than the threshold are excluded from estimated edge maps.

These edge detectors compute magnitude and direction of possible edges existing at pixel position,
(�, �) , located along the center pixel of the 3 × 3 image patch given in Fig.3.1.2.6.1 using the
following equations:

� �, � = �� + �� (3.1.2.6.1)
�(�, �) = ���−1 [ ��

��
] (3.1.2.6.2)

Fig.3.1.2.6.1. 3 × 3 image patch centered at pixel position, (�, �)

Roberts operator calculates the magnitude of edge at pixel position, (�, �) , the center pixel of the
3 × 3 image-patch (given in Fig. 3.1.2.6.1) using the following equation:

�(�, �) = � � + 1, � + 1 − �(�, �) + � �, � + 1 − �(� + 1, �) (3.1.2.6.3)

In (3.1.2.6.3),

�� = � � + 1, � + 1 − �(�, �) (3.1.2.6.4)

�� = � �, � + 1 − �(� + 1, �) (3.1.2.6.5)

Prewitt operator calculates the magnitude of edge at pixel position, (�, �) , the center pixel of the
3 × 3 image-patch (given in Fig.3.1.2.6.1) using the following equation:

� �, � = � � − 1, � + 1 + � �, � + 1 + � � + 1, � + 1 − (� � − 1, � − 1 + � �, � −
1 + �(� + 1, � + 1) + (� � + 1, � − 1 + � � + 1, � + � � + 1, � + 1 − (� � − 1, � − 1 +
� � − 1, � + �(� − 1, � + 1) (3.1.2.6.6)

In (3.1.2.6.6),
�� = � � − 1, � + 1 + � �, � + 1 + � � + 1, � + 1 − � � − 1, � − 1 + � �, � − 1 + �(� +

1, � + 1) (3.1.2.6.7)

�� = (� � + 1, � − 1 + � � + 1, � + � � + 1, � + 1 − (� � − 1, � − 1 + � � − 1, � + �(� −
1, � + 1) (3.1.2.6.8)

Sobel operator calculates the magnitude of edge at pixel position, (�, �) , the center pixel of the 3 × 3
image-patch (given in Fig.3.1.2.6.1 ) using the following equation:

� �, � = � � − 1, � + 1 + (� �, � + 1 + � �, � + 1 ) + � � + 1, � + 1 − (� � − 1, � −
1 + (� �, � − 1 + � �, � − 1 ) + �(� + 1, � + 1) + (� � + 1, � − 1 + (� � + 1, � + � � +
1, � ) + � � + 1, � + 1 − (� � − 1, � − 1 + (� � − 1, � + � � − 1, � ) + �(� − 1, � + 1)
(3.1.2.6.9)

In (3.1.2.6.9) ,

�� = � � − 1, � + 1 + (� �, � + 1 + � �, � + 1 ) + � � + 1, � + 1 − (� � − 1, � − 1 +
(� �, � − 1 + � �, � − 1 ) + �(� + 1, � + 1) (3.1.2.6.10)
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�� = (� � + 1, � − 1 + (� � + 1, � + � � + 1, � ) + � � + 1, � + 1 − (� � − 1, � − 1 +
(� � − 1, � + � � − 1, � ) + �(� − 1, � + 1) (3.1.2.6.11)

Limitations of Robert, Prewitt and Sobel edge detectors: Roberts edge detector is the simplest
among all the edge detectors whose details are discussed here. It performs edge detection using the 2 ×
2 kernels given in Table.3.1.2.6.1 but as these kernels cannot capture the information from either side
of the center pixel (variation of intensities of the center pixel w.r.t to the neighboring pixels located on
its either side), hence, Roberts edge detector often performs erroneous edge map estimation.

Prewitt and Sobel edge detectors are designed to mitigate these drawbacks. As these edge detectors use
3 × 3 kernels (shown in Table 3.1.2.6.1.) to perform edge detection, so unlike Roberts edge detector,
these edge detectors can perform edge detection by taking into account the information from both the
sides of the center pixel.

The performance efficiencies of these edge detectors are entirely dependent on the manually selected
threshold (�) as it decides whether a pixel will be included as an edge pixel in the estimated edge map
or not. Hence, selecting proper threshold value that too manually is very necessary to perform accurate
edge map estimation using these detectors. The selection of the accurate value of '�' is a very
challenging task.

To reduce the dependency of the entire edge detection process on a single threshold value, Canny edge
detector performs edge detection using the hysteresis thresholding method which performs edge
detection using two thresholds namely, (��) (low threshold) and (��) (high threshold). The edge
detection operation performed by the Canny edge detector is discussed below:

Canny edge detector detects edges along four directions namely, horizontal (�1) , vertical (�2) ,
− 45°(�3) and 45°(�4) using similar 3 × 3 kernels as used by Prewitt and Sobel operators (shown in
Table 3.1.2.6.1).

For e.g. For detecting the presence of edge at the center pixel of the 3 × 3 image-patch (given in
Fig.3.1.2.6.1) using Canny edge detector, one have to perform the entire edge detection operation using
the following steps:

Step 1. Initially, the magnitude and direction of edge at pixel position, (�, �) are calculated as stated
in (3.1.2.6.1) and (3.1.2.6.2), where the values of �� and ��values are chosen according to the kernels
used for performing edge detection.
Step 2. The calculated edge direction, �(�, �) is set to its closest �� value. (Where, � ∈ {1,2,3,4})

Step 3. The calculated � �, � is compared with the intensities of its two neighbors located along the
horizontal direction (here , � �, � − 1 ��� � �, � + 1 ) (if after Step 2, �(�, �) is set to �1 ). If
� �, � is lesser than any of these neighbors then set �� �, � = 0 in the corresponding edge map. Else
set �� �, � = �(�, �).

To avoid the presence of false edges in the computed edge map, Canny edge detector uses hysteresis
thresholding method where it computes two more edge maps ��� �, � ��� ��� �, � from �� �, � by
using two thresholds �� (high threshold) and �� (low threshold) as stated below.

��� �, � = �� �, � ≤ �� 3.1.2.6.12

��� �, � = �� �, � ≥ �� 3.1.2.6.13

Pixels included in ��� �, � are termed as strong edge pixels and pixels included in ��� �, � are
termed as weak edge pixels. Sometimes, due to the selection of very high �� , some gaps occur within
the strong edges. The final edge map, ��' �, � is formed by including all edge pixels belonging to
��� �, � and only those pixels from ��� �, � which are connected to the pixels included in ��� �, �
in order to bridge the gaps between strong edges.
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In Table.3.1.2.6.2 and Table.3.1.2.6.3, it is shown how the thresholds influence the qualities of the
estimated edge maps. These tables are included in this work to show how the edge estimation
capabilities of well-known edge detectors largely depend on thresholds.

Table. 3.1.2.6.2. Effect of threshold (�) on estimated edge maps
Edge

detector
T=0.04 T=0.06 T=0.08

Roberts

Prewitt

Sobel

Table.3.1.2.6.3. Effect of hysteresis thresholding on estimated edge maps
Edge

detector
�� = �. ��

�� = �. ��

�� = �. ��

�� = �. ��

�� = �. ��

�� = �. �

Canny

Edge maps given in Table. 3.1.2.6.2 and Table. 3.1.2.6.3 depict the influence of thresholds on them.
The most notable shortcomings of the existing, well-known edge detectors are:

a.These edge detectors cannot differentiate between edge and noise pixels and hence, they often
erroneously include noisy pixels into the estimated edge maps owing due to the similarities in some of
the properties of noisy pixels and edge pixels.
b. The use of manually selected thresholds to perform edge detection by these edge detectors often
leads to the inclusion of false edges in estimated edge maps.
c. The quality of estimated edge maps largely depends on the thresholds selected for performing edge
detection.
d. The edge detection operation performed by the well-known edge detectors are kernel-dependent as a
particular kernel can detect edge only along the direction for which it is designed. Different kernels are
required to detect edges along different directions.
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The proposed BF-Fuzzy synergism edge & noise detection method overcome these shortcomings as
discussed below:
The FI rules (given in Table. 3.1.2.2.1) which is designed to perform edge detection and edge strength
evaluation can also detect noisy pixels simultaneously along with edge pixels. Moreover, apart from
selecting edge pixels within any image-patch, the proposed method performs filtering of noise pixels (if
any) within that patch using another set of novel FI rules (given in Table.3.1.2.2.2). Hence, possibilities
of erroneously including noisy pixels as edge pixels in the edge maps estimated by the proposed edge
detection method are almost negligible.

b. The use of constraints (given in Subsection 3.1.2.4) to select final edge pixels within each image-
patch in the proposed edge detection method completely reduces the chances of inclusion of false edges
in estimated edge maps.

c. The proposed edge detection method does not involve the use of any threshold to perform edge
detection. Hence, there are no chances of incorrect edge map estimation due to improper selection of
threshold values.

d. The proposed method does not use pre-defined, direction-specific kernels to perform edge detection,
instead it detects edges along all eight possible edge directions within each image-patch efficiently.

Some examples of the edge maps estimated using the proposed BF- Fuzzy synergism based method is
given below:
a

b

c

d

Fig.3.1.2.6.2. Some examples of edge maps estimated using the proposed method

3.1.3. FI rules based edge-sharpening
The proposed FI rules based edge-sharpening procedure overcome the limitations of existing un-sharp
masking method [94].
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Mathematically, the un-sharp masking method is explained using the following equations:

����� �, � = � �, � − � �, �� ����� (3.1.3.1)

� �, � = � �, � + � ∗ ����� �, � (3.1.3.2)

In (3.1.3.1) and (3.1.3.2) ,� �, � ,� �, �� ����� , and � �, � represent the intensities of pixels located at pixel
position, (�, �) in original image, smoothed image (which is generated by replacing each pixel
belonging to the original image with the average of all the pixels located within its pre-defined
neighborhood) and sharpened image respectively. The term, ����� in (3.1.3.1) denotes the edge map
of the original image, � which is estimated by the un-sharp masking method as stated in (3.1.3.1) .
The limitations of the un-sharp masking method are:

The un-sharp masking method performs detection of edge pixels simply as stated in(3.1.3.1) .
Hence, it often erroneously includes noisy pixels in estimated edge maps due to some
similarities in their properties with the edge pixels. Moreover, the un-sharp masking
method also performs sharpening of the noisy pixels which are erroneously included in the
estimated edge maps as stated in (3.1.3.2) which boosts the presence of noise in output
images.

The output sharpened images produced by the un-sharp masking method often contain dark
halo-artifacts at some pixel positions, where the intensities of pixels belonging to the
sharpened images become lesser than their corresponding intensities in original images.

In this work, the first limitation of the un-sharp masking method is overcome by performing edge map
estimation using the proposed BF-Fuzzy synergism based edge & detection method as it completely
eliminates any chances of the presence of noise in the estimated edge maps as discussed earlier.

The second drawback i.e. dark halo-artifact arise in output sharpened images obtained using un-sharp
masking method due to the following reasons:

As shown in (3.1.3.1) in un-sharp masking method, gmask x, y is calculated by subtracting
f x, y and f x, y� ����� . Again, f x, y� ����� is calculated by patch-wise averaging f x, y . So, there are
chances when f x, y� ����� > �(�, �) at some pixel locations where values of gmask x, y will be
negative.

According to (3.1.3.2), the sharpened image g x, y is obtained by adding gmask x, y with
f x, y that too after multiplication with the sharpening factor ‘�’. High values of ‘�’ increase
sharpening and enhance chances of the presence of halo-artifacts and vice versa.

In the proposed method, a set of novel FI rules (given in Table 3.1.3.1) is designed to perform
sharpening of selected edges. These FI rules perform sharpening of each selected edge using unique
defuzzified sharpening factor, '�∗' which is computed in accordance to the defuzzified edge-strength of
that selected edge. As the proposed FI rules based edge-sharpening method facilitates sharpening of
only selected edges that too with unique sharpening factors, the chances of occurrence of undesirable
patterns or halo-artifacts in output haze free images due to over-sharpening become almost negligible.

Table 3.1.3.1. FI rules designed to perform edge-sharpening

Rule If Then

��� c

1. SMALL HIGH

2. AVERAGE MEDIUM

3. BIG LOW

For ��0: DR= [0.6 1]. As a pixel is selected as an edge pixel if it is located at a position which has the
highest membership value either in the STRONG or VERY STRONG fuzzy sets. So, it is evident
from Fig. 3.1.2.2.1 (b), that the DR of ��0 should lie between [0.6 1].

For c: DR= [1 ����]. (Empirically chosen)

Mathematically edge-sharpening is done in this work using the following equation:
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����(�, �) = �' �, � + �∗(�, �) ∗ ������� �, � (3.1.3.1)

Where �' �, � represents the intensity of the pixel located at the position, (�, �) of the enhanced �
channel and �∗ �, � denotes the defuzzified sharpening factor which is used to sharpen the edge pixel
located at (�, �) in the edge map of �' channel which is estimated using novel BF-Fuzzy synergism
based edge & noise detection method. Graphical representations of the fuzzy membership functions
used for representing the linguistic variables in the FI rules are given in Fig.3.1.3.1.

(a) (b)

SET A

(a) (b)

SET B

Fig. 3.1.3.1. Graphical representations of fuzzy membership functions used for representing linguistic
variables of FI rules designed for edge-sharpening (a) ��0, (b) �

3.1.4. Block diagram

Fig.3.1.4.1. Block diagram of the proposed method
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Chapter 4
This chapter presents comprehensive comparative qualitative and quantitative analyses’ of results
which are obtained by applying the proposed BF -Fuzzy synergism based daytime image dehazing
method as well as several well-known daytime image dehazing methods. These comparative analyses
are carried out using various popular benchmark databases.

4.1. Databases

This Section contains brief descriptions of the databases which are chosen to perform comparative
analyses.

4.1.1. Waterloo IVC Dehazed Image Database [105]:

This is the first database which is designed for performing subjective (qualitative) and objective
(quantitative) analyses of real world hazy images in 2015 by a group of researchers working in the
University of Waterloo. This database contains 25 hazy images, out of which 22 are hazy images of
real world outdoor scenes while the other 3 are images of real world indoor scenes in which haze is
stimulated homogeneously. For each hazy image, the authors who have designed this database have
provided eight haze free images which they have obtained by applying eight different existing dehazing
algorithms on hazy images. The subjective results which are obtained by applying the proposed method
and several other existing dehazing methods on real world images belonging to this database are given
in Table 4.3.1.

4.1.2. Middlebury Database [106]:

This database comprises of stereo images required for performing comparative analyses of various
computer vision algorithms. This database contains GT image corresponding to each hazy image.

4.1.3. D-HAZY Database [107]:

This database comprises of 1400+ pairs of hazy and Ground Truth images of the same scene. The
authors who have designed this database have initially acquired the images of various scenes and depth
maps from Middlebury database [106] and NYU Depth database [108] and then synthetically generated
the hazy images of those scenes by exploiting the properties of atmospheric scattering model and
utilizing the depth information. This database contains GT image corresponding to each hazy image.
4.1.4. I-HAZE Database [109]:

This database contains 35 pairs of hazy and haze free images of real world indoor scenes. Unlike the
hazy images present in Middlebury and D-HAZY databases, the hazy images present in this database
are not synthetically generated, instead they are captured in the presence of haze created by artificial
haze machines. This database contains GT image corresponding to each hazy image.

4.1.5. O-HAZE Database [110]:

This database contains 45 pairs of hazy and haze free images of real world outdoor scenes. Like the
hazy images present in I-HAZE Database, the hazy images present in this database are also captured in
the presence of haze created by artificial haze machines. This database contains GT image
corresponding to each hazy image.

Images from all these databases are used for performing comparative analyses here for two reasons:

a. These databases contain hazy images possessing varied characteristics (both real world hazy
images as well as synthetically generated hazy images). Hence, performing comparative
analyses using these images also helps one to prove that the proposed method can provide
satisfactory results for all types of images irrespective of their characteristics.

b. The availability of Ground Truth images corresponding to hazy images in most of the
databases also provide an opportunity to compare the original scene restoration capabilities of
the dehazing methods by comparing the scene characteristics of dehazed outputs with
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corresponding GT images both qualitatively as well as by performing quantitative analyses
using both full-reference and no-reference parameters.

The comparative qualitative and quantitative analyses results which are obtained using images from
Middlebury, D-HAZY, I-HAZE and O-HAZE databases in Table 4.3.2-Table 4.3.9.

4.2. Quantitative parameters

This section contains brief descriptions of the quantitative parameters which are chosen to perform
comparative quantitative analyses.

4.2.1. Full-reference quantitative parameters

 Structural Similarity Index (SSIM) [111]: : This parameter compares the local patterns of
pixels’ intensities that have been normalized for both luminance and contrast. Its value lies in the
range of [0 1]. Higher SSIM value indicates better similarities between two images. In this work,
SSIM values are calculated by comparing output images with corresponding GT images.

 CIEDE2000 [112]: This parameter measures the color difference between dehazed outputs and
corresponding GT images. Its value lies in the range of [0 100]. Lower CIEDE 2000 value
indicates lesser color difference between two images.

 DEHAZEfr [113]: This quantitative parameter is designed to measure the similarities between
the GT images and dehazed outputs based on three components namely, image structure
recovering, over-enhancement of low-contrast areas and color rendition. Higher outcomes of this
parameter suggest better results.

4.2.2. No-reference quantitative parameters

 Haze Improvement (HI) [114]: This quantitative parameter is designed to evaluate the
performance of dehazing methods by comparing Contrast-to-Noise ratio (CNR) values of hazy
and dehazed outputs of the same scene. This metric is mathematically defined as follows:

�� = �����ℎ���� ������ − ���ℎ��� (4.2.2.2.1)

‘���’ is mathematically represented as:

��� = ��−��
��

(4.2.2.2.2)

In (4.2.2.2.2), the terms ��, �� signify mean attenuation coefficients of any target object lying within
the region of interest and image background lying outside the region of interest respectively, whereas
�� represents the background noise which is calculated as the standard deviation of intensities of pixels
lying outside the region of interest. Higher HI value of this metric indicates better results.
 Fog Aware Density Estimator (FADE) [115]: This parameter is designed based on the natural

scene characteristics and fog aware statistical features. It measures the fog density of an image.
Hence, low outcome of this parameter is desirable as it suggests less haze content.

 BRISQUE [116]: This parameter measures the amount of information loss in images. Hence, low
outcome of this parameter is desirable as it suggests less information loss.

In this thesis, the efficiency and robustness of the proposed dehazing method is proved by performing
comparative qualitative and quantitative analyses of output haze free images obtained from the
proposed method as well as several existing state-of-the-art methods like [38],[43]-[47], [51]-[53] and
[117]-[118].



93

4.3. Experimental results

The comparative qualitative and quantitative results obtained by applying the proposed BF-Fuzzy
Logic synergism based daytime image dehazing methods as well as the well-known image dehazing
methods on images belonging to the benchmark databases are given in this Section.

Table 4.3.1. Comparative qualitative analyses results obtained using Waterloo IVC Dehazed Image
database

Methods Image 1 Image 2 Image 3 Image 4

Hazy image (#)

He et al. [38] (#)

Salazar-Colores et
al.[47](ɷ)

Tarel et al. [43] (#)

Meng et al. [44] (#)

Xiao et al. [45] (#)

Kim et al. [46] (#)

Tang et al. [51] (#)
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Cai et al. [52] (ɷ)

Ren et al. [53](ɷ)

Galdran et al. [117](ɷ)

Ngo et al. [118] (ɷ)

Proposed method (using
Triangular membership
function)

Proposed method (using
Gaussian membership
function)

Table 4.3.2. Comparative qualitative analyses results obtained using Middlebury Image database

Methods Image 5 Image 6 Image 7 Image 8

Hazy images(η)

He et al. [38](ɷ)

Salazar-Colores et
al.[47] (ɷ)
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Tarel et al.

[43] (ɷ)

Meng et al.
[44](ɷ)

Zhu et al. [50](ɷ)

Cai et al. [52] (ɷ)

Ren et al. [53](ɷ)

Galdran et al.
[117](ɷ)

Ngo et al. [118]
(�)

Ground Truth

(η)

Proposed method
(using Triangular
membership
function)

Proposed method
(using Gaussian
membership
function)
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Table 4.3.3. Comparative quantitative analyses results obtained using Middlebury Image database

Methods Image5 Image 6 Image7 Image8

SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI

He et al.[38] 0.858 10.78 20.98 0.878 7.43 20.38 0.816 13.71 45.69 0.882 15.30 181.10

Salazar-Colores et al.[47] 0.574 14.61 29.93 0.643 7.04 36.37 0.597 10.68 30.79 0.596 9.46 48.47

Tarel et al.[43] 0.851 15.20 25.70 0.792 18.37 38.55 0.760 18.59 74.23 0.876 8.843 226.58

Meng et al.[44] 0.882 11.12 11.70 0.822 12.07 29.63 0.805 14.15 70.34 0.766 23.26 212.68

Zhu et al.[50] 0.762 19.35 1.01 0.874 11.94 13.93 0.884 9.36 69.37 0.805 14.64 173.01

Cai et al.[52] 0.805 17.62 19.45 0.916 9.17 12.65 0.917 7.25 58.42 0.841 20.75 160.77

Ren et al.[53] 0.837 13.48 9.76 0.893 8.65 18.05 0.936 6.03 51.22 0.870 10.27 203.57

Galdran et al. [117] 0.841 12.30 14.09 0.887 13.96 22.89 0.921 7.53 65.41 0.893 11.78 189.07

Ngo et al. [118] 0.852 11.56 17.78 0.905 8.93 28.95 0.896 8.07 69.08 0.906 14.09 212.78

Proposed method (using

Triangular membership

function)

0.936 7.98 30.89 0.941 5.78 45.90 0.958 4.06 83.67 0.952 6.54 251.89

Proposed method (using

Gaussian membership

function)

0.940 6.89 32.74 0.967 5.09 42.67 0.965 3.89 90.41 0.963 4.89 266.90

Methods Image5 Image 6 Image7 Image8

FAD

E

BRISQ

UE

DEHA

ZEfr

FAD

E

BRISQ

UE

DEHA

ZEfr

FADE BRISQ

UE

DEHA

ZEfr

FADE BRISQ

UE

DEHA

ZEfr

He et al.[38] 0.458 25.43 0.807 0.661 7.92 0.896 0.326 26.21 0.658 1.589 29.88 0.539

Salazar-Colores et al.[47] 0.338 17.41 0.774 0.618 23.55 0.847 0.367 40.32 0.511 0.489 24.70 0.451

Tarel et al.[43] 0.789 25.27 0.594 0.978 22.20 0.700 0.418 31.95 0.599 1.185 21.48 0.398

Meng et al.[44] 0.559 10.63 0.832 0.460 12.25 0.776 0.461 35.06 0.635 0.892 25.68 0.382

Zhu et al.[50] 0.647 21.56 0.582 0.892 22.87 0.588 0.547 34.65 0.432 1.648 25.33 0.398

Cai et al.[52] 0.537 10.70 0.613 0.869 26.63 0.627 0.541 32.58 0.490 1.547 24.25 0.405

Ren et al.[53] 0.572 9.38 0.636 0.620 21.56 0.746 0.379 36.39 0.476 1.279 22.02 0.446

Galdran et al. [117] 0.584 17.85 0.752 0.905 26.84 0.778 1.566 33.67 0.573 1.626 24.76 0.438

Ngo et al. [118] 0.566 15.59 0.753 0.673 28.66 0.712 1.357 38.99 0.585 1.239 26.99 0.440

Proposed method (using

Triangular membership

function)

0.269 9.05 0.856 0.359 7.78 0.906 0.288 19.88 0.677 0.668 18.89 0.563

Proposed method (using

Gaussian membership

function)

0.221 7.69 0.881 0.313 6.56 0.912 0.237 16.25 0.702 0.581 15.67 0.587
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Table 4.3.4. Comparative qualitative analyses results obtained using D-HAZY database

Methods Image 9 Image 10 Image 11 Image 12

Hazy images(η)

He et al. [38](ɷ)

Salazar-Colores
et al.[47] (ɷ)

Tarel et al.

[43] (ɷ)

Meng et al.
[44](ɷ)

Zhu et al.
[50](ɷ)

Cai et al. [52]
(ɷ)

Ren et al.
[53](ɷ)

Galdran et al.
[117] (�)

Ngo et al. [118]
(�)
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Ground Truth
(η)

Proposed method
(using Triangular
membership
function)

Proposed method
(using Gaussian
membership
function)

Table 4.3.5. Comparative quantitative analyses results obtained using D-HAZY database

Methods Image9 Image 10 Image11 Image12

SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI

He et al.[38] 0.858 10.78 20.98 0.878 7.43 20.38 0.816 13.71 45.69 0.882 15.30 181.10

Salazar-Colores et al.[47] 0.574 14.61 29.93 0.643 7.04 36.37 0.597 10.68 30.79 0.596 9.46 48.47

Tarel et al.[43] 0.851 15.20 25.70 0.792 18.37 38.55 0.760 18.59 74.23 0.876 8.843 226.58

Meng et al.[44] 0.882 11.12 11.70 0.822 12.07 29.63 0.805 14.15 70.34 0.766 23.26 212.68

Zhu et al.[50] 0.762 19.35 1.01 0.874 11.94 13.93 0.884 9.36 69.37 0.805 14.64 173.01

Cai et al.[52] 0.805 17.62 19.45 0.916 9.17 12.65 0.917 7.25 58.42 0.841 20.75 160.77

Ren et al.[53] 0.837 13.48 9.76 0.893 8.65 18.05 0.936 6.03 51.22 0.870 10.27 203.57

Galdran et al. [117] 0.864 16.89 15.77 0.867 10.95 26.89 0.944 8.67 65.88 9.21 14.75 187.54

Ngo et al. [118] 0.827 19.53 18.53 0.901 11.62 32.55 0.925 7.88 75.91 9.17 12.99 199.62

Proposed method (using

Triangular membership

function)

0.916 8.74 32.08 0.932 7.19 42.69 0.952 5.09 87.04 0.947 7.03 243.86

Proposed method (using

Gaussian membership

function)

0.928 7.82 37.99 0.945 6.32 47.66 0.977 3.81 98.56 0.963 6.01 267.01

Methods Image9 Image 10 Image11 Image12

FADE BRISQ

UE

DEHA

ZEfr

FADE BRISQ

UE

DEHA

ZEfr

FADE BRISQ

UE

DEHA

ZEfr

FADE BRISQ

UE

DEHA

ZEfr

He et al.[38] 0.468 28.18 0.737 0.305 14.60 0.716 0.213 22.18 0.752 0.497 27.29 0.596

Salazar-Colores et al.[47] 0.329 24.22 0.732 0.298 28.88 0.680 0.264 32.44 0.685 0.414 16.34 0.921

Tarel et al.[43] 0.973 11.87 0.659 0.395 23.53 0.614 0.312 38.78 0.646 0.748 24.89 0.771

Meng et al.[44] 0.589 25.06 0.694 1.096 22.45 0.339 0.338 17.37 0.606 0.923 31.06 0.656

Zhu et al.[50] 1.043 15.02 0.720 0.706 22.34 0.689 0.406 26.37 0.706 0.921 18.07 0.923

Cai et al.[52] 0.870 16.32 0.680 0.551 26.23 0.648 0.279 25.87 0.689 0.914 17.85 0.954

Ren et al.[53] 1.211 8.87 0.686 0.705 24.46 0.602 0.500 17.93 0.673 0.969 16.39 0.926

Galdran et al. [117] 1.084 17.88 0.780 0.562 28.49 0.701 0.365 34.65 0.414 0.870 26.92 0.192

Ngo et al. [118] 0.850 21.63 0.792 0.507 22.63 0.735 0.273 29.61 0.395 0.711 23.66 0.167

Proposed method (using

Triangular membership

function)

0.284 7.72 0.805 0.276 12.78 0.756 0.185 16.38 0.778 0.398 14.62 1.09
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Proposed method (using

Gaussian membership

function)

0.259 6.98 0.843 0.255 10.11 0.778 0.177 15.99 0.815 0.375 11.89 1.26

Table 4.3.6. Comparative qualitative analyses results obtained using I-HAZE database

Methods Image13 Image 14 Image 15 Image 16

Hazy images(η)

He et al. [38](ɷ)

Salazar-Colores
et al.[47] (ɷ)

Tarel et al.

[43] (ɷ)

Meng et al.
[44](ɷ)

Zhu et al.
[50](ɷ)

Cai et al. [52]
(ɷ)

Ren et al.
[53](ɷ)
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Galdran et al.
[117] (ɷ)

Ngo et al.
[118](ɷ)

Ground Truth
(η)

Proposed method
(using Triangular
membership
function)

Proposed method
(using Gaussian
membership
function)

Table 4.3.7. Comparative quantitative analyses results obtained using I-HAZE database

Methods Image13 Image 14 Image15 Image16

SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI

He et al.[38] 0.778 18.08 -9.25 0.617 15.66 5.75 0.661 18.04 -15.67 0.332 21.63 -7.81

Salazar-Colores et al.[47] 0.552 14.68 12.63 0.696 13.17 -4.59 0.132 5.83 -37.09 0.714 15.01 -28.55

Tarel et al.[43] 0.683 23.91 7.91 0.559 17.89 8.52 0.419 9.08 4.59 0.495 16.99 17.24

Meng et al.[44] 0.819 17.25 38.60 0.790 29.57 10.65 0.704 23.91 11.74 0.402 27.94 4.90

Zhu et al.[50] 0.874 11.49 27.02 0.794 13.89 12.72 0.772 6.38 12.88 0.594 16.45 16.08

Cai et al.[52] 0.631 20.86 32.08 0.608 15.04 15.48 0.817 5.11 9.81 0.662 12.85 29.23

Ren et al.[53] 0.899 10.74 40.47 0.806 16.01 10.56 0.866 5.06 10.01 0.748 14.06 14.29

Galdran et al. [117] 0.872 14.77 37.92 0.758 14.96 11.77 0.883 6.71 14.85 0.791 12.64 33.67

Ngo et al. [118] 0.818 12.89 34.89 0.714 15.05 14.58 0.801 8.47 16.38 0.847 11.26 28.58

Proposed method (using
Triangular membership
function)

0.942 8.07 48.91 0.961 12.39 16.01 0.907 4.75 17.62 0.975 10.87 35.32

Proposed method (using
Gaussian membership
function)

0.965 6.89 52.57 0.975 9.91 18.38 0.921 3.94 22.85 0,984 7.14 42.88

Methods Image13 Image 14 Image15 Image16

FADE BRISQU
E

DEHA
ZEfr

FADE BRISQ
UE

DEHA
ZEfr

FADE BRISQ
UE

DEHA
ZEfr

FADE BRISQU
E

DEHA
ZEfr
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He et al.[38] 0.360 23.35 0.485 0.542 20.64 0.561 0.664 31.89 0.475 0.519 31.43 0.761

Salazar-Colores et al.[47] 0.418 17.48 0.640 0.448 26.45 0.768 0.578 25.98 0.513 0.505 24.75 0.788

Tarel et al.[43] 0.421 31.05 0.634 0.691 21.90 0.628 0.643 23.69 0.457 0.487 31.05 0.786

Meng et al.[44] 0.453 29.33 0.438 0.685 23.88 0.549 0.781 29.08 0.484 0.595 16.89 0.797

Zhu et al.[50] 0.557 12.50 0.619 1.113 23.47 0.738 1.454 25.82 0.496 1.225 24.42 0.696

Cai et al.[52] 0.325 25.04 0.652 0.693 23.03 0.781 0.766 19.73 0.430 0.773 6.31 0.565

Ren et al.[53] 0.917 30.40 0.575 1.847 19.03 0.744 1.779 23.59 0.467 1.117 17.62 0.593

Galdran et al. [117] 0.628 28.61 0.753 1.017 24.87 0.840 2.266 27.04 0.491 0.737 26.93 0.276

Ngo et al. [118] 0.629 22.85 0.640 0.938 29.73 0.780 2.012 24.85 0.483 0.779 29.11 0.368

Proposed method (using
Triangular membership
function)

0.327 10.01 0.775 0.406 18.06 0.942 0.518 17.92 0.761 0.472 4.82 0.805

Proposed method (using
Gaussian membership
function)

0.273 8.69 0.857 0.389 16.82 1.054 0.447 15.39 0.984 0.401 3.09 0.925

Table 4.3.8. Comparative qualitative analyses results obtained using O-HAZE database

Methods Image17 Image 18 Image 19 Image 20

Hazy images(η)

He et al. [38](ɷ)

Salazar-Colores
et al.[47] (ɷ)

Tarel et al.

[43] (ɷ)

Meng et al.
[44](ɷ)

Zhu et al.
[50](ɷ)
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Cai et al. [52]
(ɷ)

Ren et al.
[53](ɷ)

Galdran et al.
[117](�)

Ngo et al.
[118](�)

Ground Truth
(η)

Proposed method
(using Triangular
membership
function)

Proposed method
(using Gaussian
membership
function)
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Table 4.3.9. Comparative quantitative analyses results obtained using O-HAZE database

Methods Image17 Image 18 Image19 Image20

SSIM CIEDE

2000

HI SSIM CIED
E

2000

HI SSIM CIEDE

2000

HI SSIM CIEDE

2000

HI

He et al.[38] 0.395 33.71 -18.6 0.523 15.79 6.90 0.592 32.78 3.84 0.776 19.54 -27.84

Salazar-Colores et al.[47] 0.631 26.58 7.857 0.763 13.96 15.18 0.817 20.34 14.86 0.773 14.17 8.73

Tarel et al.[43] 0.519 28.67 -0.62 0.586 11.67 -4.89 0.685 29.61 10.25 0.628 35.75 -35.15

Meng et al.[44] 0.360 26.95 -8.63 0.639 14.05 17.36 0.487 42.84 -10.59 0.723 21.45 -44.73

Zhu et al.[50] 0.622 21.38 12.37 0.684 10.96 20.61 0.735 27.69 19.54 0.831 14.29 4.67

Cai et al.[52] 0.708 19.86 19.44 0.721 10.01 23.29 0.771 26.72 22.85 0.844 12.78 8.17

Ren et al.[53] 0.652 19.32 15.66 0.745 9.58 21.50 0.824 22.19 24.03 0.881 12.34 9.45

Galdran et al. [117] 0.678 22.67 17.29 0.731 10.68 22.17 0.858 24.75 26.92 0.906 13.84 8.61

Ngo et al. [118] 0.692 28.40 19.82 0.759 11.20 27.93 0.831 27.18 28.66 0.893 11.59 12.64

Proposed method (using
Triangular membership
function)

0.747 17.09 24.79 0.826 8.07 25.81 0.877 16.29 35.18 0.924 9.57 14.88

Proposed method (using
Gaussian membership
function)

0.755 16.63 27.50 0.837 7.75 29.55 0.942 14.43 38.88 0.937 8.18 15.79

Methods Image17 Image 18 Image19 Image20

FADE BRISQ
UE

DEHA
ZEfr

FADE BRIS
QUE

DEHA
ZEfr

FADE BRISQ
UE

DEHA
ZEfr

FADE BRISQ
UE

DEHA
ZEfr

He et al.[38] 0.214 13.86 0.443 0.459 23.68 0.356 0.345 6.92 0.508 0.152 21.25 0.494

Salazar-Colores et al.[47] 0.198 14.89 0.600 0.388 31.52 0.836 0.378 9.25 0.717 0.275 27.05 0.579

Tarel et al.[43] 0.221 23.25 0.640 0.409 43.83 0.807 0.227 43.12 0.616 0.323 42.90 0.622

Meng et al.[44] 0.147 17.35 0.670 0.405 40.34 0.746 0.349 14.53 0.667 0.457 14.84 0.556

Zhu et al.[50] 0.414 5.13 0.554 0.867 24.24 0.814 0.550 27.23 0.445 0.630 18.37 0.532

Cai et al.[52] 0.413 16.42 0.515 1.152 24.29 0.809 0.709 20.20 0.430 0.712 19.73 0.518

Ren et al.[53] 0.375 9.49 0.611 0.967 24.13 0.692 0.565 18.95 0.552 0.683 17.80 0.600

Galdran et al. [117] 0.365 16.82 0.629 0.240 36.74 0.863 0.478 17.84 0.505 0.594 32.88 0.505

Ngo et al. [118] 0.311 21.84 0.534 0.160 33.18 0.871 0.502 12.71 0.504 0.397 28.18 0.504

Proposed method (using
Triangular membership
function)

0.127 4.46 0.705 0.221 20.66 0.906 0.218 5.59 0.809 0.116 12.87 0.678

Proposed method (using
Gaussian membership
function)

0.108 3.81 0.778 0.187 15.81 1.112 0.176 4.38 0.885 0.102 8.93 0.701
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Table 4.3.10.Meaning of symbols used in Table 4.3.1-Table 4.3.9

Symbol Meaning

# Images are taken from Waterloo IVC Dehazed Image Database

� Images are obtained by running the codes of different image dehazing methods. The codes of these methods are available in the
websites of the respective authors who have proposed them.

ƞ Images are taken from D-HAZY Database

� Images are taken from I-HAZE Database

� Images are taken from O-HAZE Database

*The codes of He et al. [38], Zhu et al. [50], Tarel et al. [43], Meng et al.[44], Cai et al. [52], Ren et
al. [53], Salazar-Colores et al. [47], Galdran et al. [117] and Ngo et al. [118] are downloaded from
the sources mentioned in [119]-127] respectively.

The effectiveness of the proposed BF-Fuzzy synergism based dehazing method in restoring the
visibility of images captured during hazy weather conditions using information derived from single
hazy image by performing contrast enhancement, edge& noise detection, noise removal and edge-
sharpening is demonstrated in this Chapter. The use of different sets of novel FI rules to process
each pixel at each stage of the proposed method depending upon that pixel’s properties has also
enabled it to overcome the significant shortcomings of existing dehazing methods as well as the
limitations of several existing well-known edge detectors, noise removal methods and un-sharp
masking method and thus reduces chances of producing noisy, over-saturated, over enhanced, over
sharpened output images containing halo artifacts. The proposed novel BF-Fuzzy synergism based
edge& noise detection method and the set of constraints used for performing edge map estimation
facilitates the selection of true edges and almost eliminates chances of false edge detection.
Moreover, comparative qualitative and quantitative analyses’ results obtained by applying various
dehazing methods on images which are acquired from several publicly available databases also
proved the excellence of the proposed method over existing works.
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Refined Color Channel Transfer Prior (which is the modified version of the existing Color Channel
Transfer Prior) is proposed in this thesis. This prior is introduced as a pre-processing step of daytime
image dehazing methods to enable those methods to perform dehazing of nighttime hazy images
effectively alongside daytime hazy images. Detailed description of the Refined Color Channel Transfer
Prior is given in this part of the thesis. Comparative qualitative and quantitative analyses of outputs
obtained before and after the introduction of the prior as a pre-processing step of the existing methods
are also provided in this part of the thesis to prove the efficiency of the proposed prior.
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Chapter 5
Refined Color Channel Transfer Prior (RCCT) is a modified version of the existing Color Channel
Transfer Prior (CCT) whose details are given in Section. 2.2.4.5.1.1 (Image color transfer theory based
methods) of Chapter 2 of this thesis.

CCT is designed based on the observation that in every hazy image there is one color channel whose
extent of attenuation and degradation is much higher compared to the other two channels present in an
image. Pictorial representation of the three channels of a nighttime hazy image are given in Fig.5.1 to
validate this observation.

(a) (b) (c) (d)

Fig.5.1.Attenuation of color channels (a) Hazy image, (b), (c) and (d): R , G and B channels of (a)
respectively

Based on their observation, the authors in [73] have designed CCT prior in opponent color space,
aiming to restore the information loss occurring in severely degraded color channel of images by
transferring information from other comparatively less degraded color channels.

The authors have chosen opponent color space for performing the entire color conversion process
because of its advantages over RGB color space, opponent color space does not requires estimation of
the chromatic loss direction to perform chromatic loss compensation as the blue-yellow and red-green
components of this color space are mixed where as these components in RGB color space are
independent in nature.

CCT prior is mainly designed as a pre-processing step of daytime image dehazing methods in order to
enable those methods to dehaze nighttime hazy images efficiently alongside nighttime hazy images.

As discussed in Chapter 2, CCT performs color transfer between source image and reference image
using the color transfer method proposed in [67] i.e. with the set of mathematical equations
(2.2.4.5.1.1.1) (given in Chapter 2) similarly as done by the authors in [66] but instead of using any
daytime hazy image as reference image while performing color transfer as done by the authors in [66]
and [70], Ancuti et. al.have performed color transfer using a reference image which is derived from the
source image itself in CCT prior. The use of such generated reference images enables the CCT prior to
provide better quality outputs compared to the methods proposed in [66] and [70] as the outputs
provided by these methods often contain various artifacts owing to the variations in the scene
characteristics between source and reference images as discussed in Chapter 2.

The mathematical equation used for generating the reference image from the source image in CCT
prior is given as follows:

� � = ���� � + ������ � + �������� � � � (2.2.4.5.1.1.12)

This equation is also given in Chapter 2, hence the equation number is kept unchanged here to avoid
any ambiguity.

In (2.2.4.5.1.1.12), the term '����' represents a uniform gray image whose luminance value is fixed
close to 0.5 whereas the term '������' represents the detail layer of the image which is obtained by
subtracting the Gaussian blurred version of the original image from the original image itself. This term
is related to the transfer of information regarding the details of the original image to the generated
reference image.
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The term '��������' here signifies the saliency map of an image which is estimated using the method
proposed by Achanta et al. in [74]. The product of this map and the original image provides a color
bias which helps in restoration of original colors in output images.

An example of color transferred outputs for a nighttime hazy image (source image) obtained while
using two different daytime hazy images as well as the reference image generated using the CCT
method respectively are given in Fig.5.2.

(a) (b) (c) (d) (e) (f)

Fig.5.2. Hazy (source) image, (b)-(c): Daytime hazy images, (d)-(e): Color transferred outputs obtained
from [66] using (b) & (c) as reference images , (f) Color transferred output obtained from CCT

The images given in Fig.5.2 clearly depict that the colour transferred outputs obtained from [66] vary in
accordance to the variations of color characteristics of daytime hazy (reference) images. Although CCT
prior solves this limitation, but from Fig.5.2 (f), it becomes evident that CCT mostly produces distorted
colour transferred outputs (containing over-enhanced glow regions and poorly enhanced low light
regions) which have significant influence on the visual quality of dehazed outputs obtained from several
dehazing methods where CCT is introduced as pre-processing step.

In order to solve this limitation of CCT prior, in proposed RCCT prior initially a constant ‘k' which is
termed as the control parameter is introduced in (2.2.4.5.1.1.12). Here, the name of the parameter is
given as control parameter as it is used to restrict the intensity range of color transferred outputs within a
certain limit (which is computed according to the image properties) to reduce the chances of occurrence
of poorly illuminated low light regions and over-enhanced glow regions in outputs.

Following the introduction of control parameter, ‘k' in (2.2.4.5.1.1.12), the modified equation becomes,

)()()()()( xsxSakxDxGxr newnew (5.1)

The control parameter is multiplied with the product of saliency map of the source image and source
image itself as this product term being the color bias term is responsible for determining the color and
intensities of pixels in the generated reference images. Hence, restricting the value of this product for
each pixel will also lead to the restriction of the color and intensity value of that pixel in the generated
reference images.

Initially, a trial and error is adapted to select the most suitable value for ‘k' . The color transferred
outputs obtained using different constant values of ‘k' are given in Fig.5.3.

(a) Hazy image (b) CCT+DCP(k=0.25) (c) CCT+DCP (k=0.5) (d) CCT+DCP (k=0.75)

(e) CCT+DCP(k=1) (f) CCT+DCP (k=2) (g) CCT+DCP (k=3) (h) CCT+DCP (k=4)

Fig.5.3. Color transferred outputs obtained using different values of ‘k'
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The above results suggest that desired outputs cannot be obtained using constant control parameter’s
values as fixing the control parameter to any value less than one although succeeds in restricting the
intensities of the over-enhanced glow regions but do not give ideal results for regions having poor
illumination. Similarly if the control parameter is fixed to any value greater than one, then in such cases
the extent of over enhancement of glow regions in generated reference images increases.

To overcome this limitation, a Fuzzy Logic based reference image generation technique is proposed.
This reference image generation technique allows to restrict the intensity range of each pixel in
generated reference image depending upon its’ properties. The novelty of RCCT prior lies in the
proposed Fuzzy Logic based reference image generation technique.

5.1. Fuzzy Logic based reference image generation technique

In the proposed technique, reference image is generated from the source image using a slightly
modified version of (5.1), i.e. by substituting the constant control parameter term in (5.1) with a
variable term which is mathematically represented as follows:

)()()()()()( xsxSaxkxDxGxr newnew (5.1.1)

The control parameter value for each pixel is calculated depending upon its saliency and intensity
values.

As an image usually contains large number of pixels depending upon its dimension, hence calculating
an unique control parameter value corresponding to each pixel is not only tedious but is also time-
consuming.

To reduce the complexity of this problem, in this work, an image is initially divided into ‘n' number of
super pixels using the Simple Linear Iterative clustering method [86] before performing the
computation of control parameter values.

The theory based on which the super-pixel concept is developed states that the pixels belonging to a
super-pixel usually possess similar properties like intensities, brightness, texture, etc. Hence, from this
concept, it can be said that computing an unique control parameter value for all the pixels belonging
to same super-pixel will serve the purpose in this case. Here the value of ‘n' is kept fixed at 500.

Following the segmentation of an image into ‘n' number of super-pixels and before computing control
parameter’s values, some approximations are done which are mathematically defined as follows:

For example, the '��ℎ ' super-pixel contains ‘m' number of pixels, then in such case a value, ‘��� ' is
calculated as mathematically defined in (5.1.2) which is given as follows:
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The intensities of all the ‘m'pixels in the ‘ith ' super-pixel are substituted with the computed ‘ini' values.

Similarly,the saliency values of all the ‘m' pixels belonging to the ‘ith ' super-pixel are substituted with

the computed ‘���' values. The computation of ‘���' values are done according to the following

mathematical equation:
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Similar computations are also carried out for other super-pixels too.

Following these substitutions, an unique control parameter value is computed for each super-pixel
using the novel set of FI rules which is given in Table 5.1.1.

Table 5.1.1. FI rules designed for reference image generation

Rule
No

If Then
sa in k

1 VERY LOW SALIENCY VERY LOW INTENSITY VERY LOW CONTROL
2 VERY LOW SALIENCY LOW INTENSITY LOW CONTROL
3 VERY LOW SALIENCY MEDIUM INTENSITY MEDIUM CONTROL
4 VERY LOW SALIENCY HIGH INTENSITY HIGH CONTROL
5 VERY LOW SALIENCY VERY HIGH INTENSITY VERY HIGH CONTROL
6 LOW SALIENCY VERY LOW INTENSITY VERY LOW CONTROL
7 LOW SALIENCY LOW INTENSITY LOW CONTROL
8 LOW SALIENCY MEDIUM INTENSITY MEDIUM CONTROL
9 LOW SALIENCY HIGH INTENSITY HIGH CONTROL
10 LOW SALIENCY VERY HIGH INTENSITY VERY HIGH CONTROL
11 MEDIUM SALIENCY VERY LOW INTENSITY VERY LOW CONTROL
12 MEDIUM SALIENCY LOW INTENSITY LOW CONTROL
13 MEDIUM SALIENCY MEDIUM INTENSITY MEDIUM CONTROL
14 MEDIUM SALIENCY HIGH INTENSITY HIGH CONTROL
15 MEDIUM SALIENCY VERY HIGH INTENSITY VERY HIGH CONTROL
16 HIGH SALIENCY VERY LOW INTENSITY VERY LOW CONTROL
17 HIGH SALIENCY LOW INTENSITY LOW CONTROL
18 HIGH SALIENCY MEDIUM INTENSITY MEDIUM CONTROL
19 HIGH SALIENCY HIGH INTENSITY HIGH CONTROL
20 HIGH SALIENCY VERY HIGH INTENSITY VERY HIGH CONTROL
21 VERY HIGH SALIENCY VERY LOW INTENSITY VERY LOW CONTROL
22 VERY HIGH SALIENCY LOW INTENSITY LOW CONTROL
23 VERY HIGH SALIENCY MEDIUM INTENSITY MEDIUM CONTROL
24 VERY HIGH SALIENCY HIGH INTENSITY HIGH CONTROL
25 VERY HIGH SALIENCY VERY HIGH INTENSITY VERY HIGH CONTROL

(a)

(b)



110

(c)

SET A

(a)

(b)



111

(c)

SET B

Fig.5.1.1. Graphical representation of fuzzy membership values of (a) sa, (b) in and (c) k

Abbreviations used in the above figure represent the following terms:

Linguistic values considered for representing input linguistic variable, (sa) are VLS: VERY LOW
SALIENCY, LS: LOW SALIENCY, MS: MEDIUM SALIENCY, HS: HIGH SALIENCY, VHS:
VERY HIGH SALIENCY.

Linguistic values considered for representing input linguistic variable, (intensity) are VLI: VERY LOW
INTENSITY, LI: LOW INTENSITY, MI: MEDIUM INTENSITY, HI: HIGH INTENSITY, VHI:
VERY HIGH INTENSITY.

Linguistic values considered for representing output linguistic variable, are VLC: VERY LOW
CONTROL, LC: LOW CONTROL, MC: MEDIUM CONTROL, HC: HIGH CONTROL, VHC: VERY
HIGH CONTROL.

DR considered for each linguistic variable are:

Linguistic variable, in = [inmin inmax] where inmin = min(in1, in2, . . . . . , inm) and
inmax = max(in1, in2, . . . . . , inm)

Linguistic variable, sa = [samin samax] where samin = min(sa1, sa2, . . . . . , sam) and
samax = max(sa1, sa2, . . . . . , sam)

Linguistic variable, k = [ 1 3] (emperically chosen)

5.2. Experimental Results

This Section contains comprehensive comparative qualitative and quantitative analyses’ of results
obtained by applying several state-of-the art daytime image dehazing methods as well as nighttime
image dehazing methods on real world nighttime hazy images (before and after introduction of CCT and
RCCT as pre-processing steps of the daytime image dehazing methods).

Details of quantitative parameters used here for performing quantitative analysis are given in Section 4.2
of Chapter 4.
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Table 5.2.1. Comprehensive qualitative analysis results obtained using real world images

Methods Image 1 Image 2 Image 3 Image 4
Hazy image

He et al. [38]

CCT+ [38]

RCCT(using
membership functions

in Set A)+ [38]

RCCT(using
membership functions

in Set B)+ [38]

Meng et al. [44]

CCT+ [44]

RCCT(using
membership functions

in Set A)+ [44]

RCCT(using
membership functions

in Set B)+ [44]

Cai et al. [52]

CCT+ [52]
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RCCT(using
membership functions

in Set A)+ [52]

RCCT(using
membership functions

in Set B)+ [52]

Pei et al. [66]

Li et al. [59]

Table 5.2.2. Comprehensive quantitative analysis results obtained using real world images
Methods Image 1 Image 2 Image 3 Image 4

BRISQUE FADE HI BRISQUE FADE HI BRISQUE FADE HI BRISQUE FADE HI

He et al. [38] 15.7 0.607 7.50 7.25 0.314 7.55 28.70 0.420 7.41 25.87 0.494 26.95

CCT+ [38] 33.7 0.164 24.82 37.74 0.135 24.68 32.57 0.241 24.88 17.83 0.167 32.88

RCCT(using membership
functions in Set A)+ [38]

3.07 0.148 32.59 7.254 0.135 32.22 18.82 0.209 32.84 12.89 0.143 37.54

RCCT(using membership
functions in Set B)+ [38]

2.55 0.125 35.89 6.883 0.126 36.83 15.77 0.186 42.28 9.15 0.127 42.66

Meng et al. [44] 17.20 0.411 12.91 15.67 0.275 13.00 30.85 0.456 12.75 33.71 0.180 18.74

CCT+ [44] 31.83 0.278 28.90 14.93 0.253 28.69 24.22 0.314 29.01 28.49 0.114 22.65

RCCT(using membership
functions in Set A)+ [44]

2.07 0.212 34.64 12.19 0.120 34.47 21.16 0.295 34.71 24.91 0.104 34.75

RCCT(using membership
functions in Set B)+ [44]

1.88 0.278 28.95 8.96 0.098 25.78 18.89 0.201 39.06 18.58 0.085 47.89

Cai et al. [52] 29.95 0.365 7.67 35.51 0.208 7.72 35.69 0.366 7.60 28.48 0.265 11.75

CCT+ [52] 38.87 0.233 25.48 38.15 0.216 25.33 32.99 0.312 25.54 22.37 0.133 18.03

RCCT(using membership
functions in Set A)+ [52]

2.18 0.206 33.49 15.22 0.157 33.10 23.85 0.234 33.76 17.94 0.125 25.43

RCCT(using membership
functions in Set B)+ [53]

2.04 0.199 38.06 12.98 0.136 38.75 17.50 0.205 41.75 15.77 0.103 31.67

Pei et al. [66] 6.06 0.268 4.14 23.14 0.189 4.01 30.44 0.299 3.10 32.74 0.546 26.98

Li et al. [59] 3.86 0.506 3.17 26.64 0.245 3.04 36.55 1.075 2.13 28.95 0.417 14.66

The comparative analyses’ results show how introduction of the newly proposed RCCT enables
daytime dehazing methods to dehaze nighttime hazy images effectively and clearly depict the
excellence of the proposed RCCT prior over such existing priors.
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In Chapter 6, three new databases (S-HAZE, N-HAZE and D&N-HAZE) are introduced to facilitate
reliable benchmarking of image dehazing methods. The presence of Ground Truth images
corresponding to each hazy image in these databases not only supports subjective comparison of the
obtained outputs with the actual scene content of images or in other words it can be said that the
presence of Ground Truth images corresponding to each hazy image in these databases help in
evaluation of the original scene restoration capabilities of the image dehazing methods but also allows
researchers to perform quantitative analysis of the methods using both no-reference as well as full-
reference quantitative parameters.
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Chapter 6
Three new databases (S-HAZE, N-HAZE and D&N-HAZE) which are created as a part of this thesis
work are introduced in this Chapter. Detailed description of the designed databases along with few
examples of the images included in these databases are provided in this Chapter. The logic following
which these databases are created are also given in details in this Chapter and the advantages of
performing benchmarking of image dehazing methods using these databases are also highlighted here.

6.1. S-HAZE database

This database comprises of ‘synthetic’ daytime hazy images as well as GT image corresponding to
each hazy image. The term ‘synthetic’ is used while describing the type of hazy images present in this
database as the images are created synthetically by introducing haze in real world daytime images
using the “Dehaze” filter option which is available under the “Effects” section in the “Adobe
Lightroom App.” Two hazy images of varying haze density are included corresponding to each real
world daytime image in this database. These hazy images are created by fixing the value of the
“Dehaze” filter to +70 and +100 values respectively. The purpose of including two hazy images with
similar scene contents but varying haze density in this database is to facilitate evaluation of the
variations in performance efficiencies of image dehazing methods in accordance to the variations of
haze density of images.

This database is created mainly focusing on sky regions of images because of its immense significance
in the image dehazing field. Sky regions of daytime images usually possess high intensity pixels
because of the presence of sunlight during daytime. As sunlight is considered as the main source of
illumination in daytime images and as the influence of sunlight on sky regions is comparatively higher
than the other regions of images, so sky regions are often chosen as the ideal location of images for the
estimation of atmospheric light by many authors working in the image dehazing field (For.e.g. the
authors who have proposed DCP [38] have estimated atmospheric light by averaging the intensities of
0.1% of the brightest pixels of the images assuming those pixels lie in the sky regions of images). In
image dehazing methods which are designed following DCP concept as well as in other existing
methods too, the authors have considered sky regions of images as ideal location for evaluating
atmospheric light but they have mostly assumed that sky regions of images are white and contain no
details which is not always true as sky regions of images usually possess varied characteristics like it
may be white or blue or it mainly contain cloud or it may be clear and so on. In this database, images
having different types of sky regions are included to evaluate the variations in performances of image
dehazing methods in accordance to the variations of nature of sky regions of images and to evaluate the
original scene restoration capabilities of the image dehazing methods (especially sky regions). Apart
from the characteristics of sky regions, the other factor which is considered while selecting the images
which are to be included in this database is the percentage occupancy (i.e. out of the total region of
images how much region is occupied by sky-regions) . Hence, the images included in this database also
have varied portions of sky regions like large sky regions, little sky regions and no sky regions in
addition to different types of sky regions.

The inclusion of GT images in this database allows researchers to perform comparative quantitative
analyses using both full-reference and no-reference quantitative parameters. An example of such
quantitative analyses using two hazy images of varying haze density are given in Table 6.1.1.2 (using
full-reference quantitative parameters) and Table 6.1.1.3 (using no-reference parameters). Some
examples of images included in S-HAZE database are given in Table 6.1.1.1, Table 6.1.1.4 and Table
6.1.1.5.

The full-reference parameters considered for performing quantitative analysis in Table 6.1.1.2 are
given below:

 Structural Similarity Index (SSIM) [111]

 CIEDE2000 [112]

 DEHAZEfr [113]
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The details of these parameters are given in Section 4.2.1 of Chapter 4.

 Peak Signal-to-Noise Ratio (PSNR) [103]

The detail of this parameter is given in Section 3.1.2.5 of Chapter 3.

Brief details of full-reference parameters considered for performing quantitative analysis in Table
6.1.1.2 are given below:

 Haze Improvement (HI) [114]
 Fog Aware Density Estimator (FADE) [115]

The details of these parameters are given in Section 4.2.2 of Chapter 4.

 e (Rate of new visible edge in restored images) [128]: This parameter is designed to evaluate
the edge restoration capability of the designed image dehazing methods. Mathematically, it is
expressed as follows:

� = �� −��
��

(6.1.1)

In (6.1.1), the terms �� and �0 are the cardinal numbers which is used to represent the sets of edges
visible in dehazed outputs as well as original hazy images respectively.

 �� (Gradient ratio at visible edges)[128]: This parameter is designed to estimate the contrast
restoration capabilities of image dehazing methods. Mathematically, it is expressed as follows:

�� = ���[ 1
�� ��∈��

������ ] (6.1.2)

�� denote the ��ℎ pixel included in the set, �� which contains visible edges in dehazed outputs.

 ��[128] : This parameter defines the number of saturated pixels present in dehazed outputs which
are formed as a result of dehazing. Mathematically, this parameter is expressed as follows:

σ =
ns

dimx × dimy

The terms, dimx and dimy denote the height and width of dehazed outputs.

6.1.1. Images belonging to S-HAZE database

Some examples of images having varied portions and types of sky regions which are included in S-
HAZE database are given in the following Tables.

Table 6.1.1.1. Images having large sky regions

Methods Image 1(light haze) Image1(dense haze) Image 2(light haze) Image2(dense haze)

Hazy Images
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He et al.[38]

Cai et al [52]

Ren et al. [53]

Meng et al.[44]

Zhu et al.[50]

Berman et al. [49]

He et al.[129](CO)
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He et
al.[129](CODHW
T1)

He et
al.[129](CODHW
T2)

Galdran et al. [117]

Salazar-Colores et
al.[47]

Ground Truth

Table 6.1.1.2. Comparative quantitative analysis results (using full-reference quantitative parameters)

Methods Image 1(light haze) Image 1(dense haze)

SSIM PSNR DEHAZEfr CIEDE2000 SSIM PSNR DEHAZEfr CIEDE2000

He et al.[38] 0.886 24.505 0.8717 14.349 0.791 18.587 0.7088 24.385

Cai et al [52] 0.909 23.407 0.8770 22.131 0.779 16.154 0.6487 35.757

Ren et al. [53] 0.873 19.885 0.824 24.578 0.748 14.669 0.593 42.330

Meng et al.[44] 0.724 14.365 0.597 42.489 0.657 12.956 0.575 50.799

Zhu et al.[50] 0.886 24.162 0.862 12.596 0.771 17.029 0.655 30.179

Berman et al. [49] 0.819 16.211 0.587 7.782 0.836 17.921 0.632 28.977

He et al.[129](CO) 0.900 20.825 0.848 29.322 0.767 15.033 0.604 40.970

He et al.[129](CODHWT1) 0.899 20.865 0.854 29.293 0.768 15.041 0.608 40.938
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He.et.al.[129](CODHWT2) 0.899 20.890 0.858 29.215 0.767 15.046 0.608 40.917

Galdran et al. [117] 0.802 19.917 0.856 0.705 0.709 21.071 0.733 6.347

Salazar-Colores et al.[47] 0.878 16.969 0.903 39.170 0.757 13.662 0.735 50.224

Table 6.1.1.3. Comparative quantitative analysis results (using no-reference quantitative parameters)

Methods Image 1(light haze) Image 1(dense haze)

� �� �� FADE HI � �� �� FADE HI

He et al.[38] -0.849 5.184 0 1.628 -12.35 -0.774 5.082 0 2.167 0.41

Cai et al [52] -0.852 6.749 0 1.627 -10.16 -0.785 5.753 0 2.193 10.63

Ren et al. [53] -0.857 6.975 0 2.322 -6.59 -0.801 5.538 0 2.979 2.45

Meng et al.[44] -0.845 7.042 0.006 1.215 -39.36 -0.753 6.095 0 1.527 -11.39

Zhu et al.[50] -0.857 6.386 0 2.615 -23.62 -0.791 5.517 0 2.325 -4.67

Berman et al. [49] -0.839 7.230 0.032 0.462 -11.03 -0.763 6.680 0.007 1.068 10.77

He et al.[129](CO) -0.852 7.019 0.003 1.573 -3.42 -0.790 5.966 0 2.541 7.66

He et al.[129](CODHWT1) -0.851 6.952 0.003 1.539 -1.55 -0.789 5.934 0 2.558 7.73

He.et.al.[129](CODHWT2) -0.851 6.944 0.009 1.531 -3.75 -0.789 5.912 0 2.557 7.74

Galdran et al. [117] -0.853 7.784 0.006 1.442 30.55 -0.768 5.775 0 1.820 15.38

Salazar-Colores et al.[47] -0.851 7.524 0 1.305 -12.35 -0.764 6.277 0 1.742 0.41

Table 6.1.1.4. Images having little sky regions

Methods Image 1(light haze) Image1(dense haze) Image 2(light haze) Image2(dense haze)

Hazy Images

He et al.[38]

Cai et al [52]
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Ren et al. [53]

Meng et al.[44]

Zhu et al.[50]

Berman et al. [49]

He et al.[129](CO)

He et
al.[129](CODHWT1
)

He et
al.[129](CODHWT2
)
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Galdran et al. [117]

Salazar-Colores et
al.[47]

Ground Truth

Table 6.1.1.5. Images having no sky regions

Methods Image 1(light haze) Image1(dense haze) Image 2(light haze) Image2(dense haze)

Hazy Images

He et al.[38]

Cai et al [52]
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Ren et al. [53]

Meng et al.[44]

Zhu et al.[50]

Berman et al. [49]

He et al.[129](CO)

He et
al.[129](CODHWT1
)

He et
al.[129](CODHWT2
)
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Galdran et al. [117]

Salazar-Colores et
al.[47]

Ground Truth

6.2. N-HAZE database

This database comprises of real world nighttime hazy images which are captured in the presence of
haze created by artificial haze machines. Apart from hazy images, a GT image corresponding to each
hazy image is included in this database to facilitate the researchers to perform subjective evaluation of
visual quality of dehazed outputs with the actual scene content of images (i.e. GT images) as well as to
perform quantitative analyses using both no-reference and full-reference quantitative parameters.

Before the creation of the N-HAZE database, comparative qualitative and quantitative analyses of
nighttime image dehazing methods are performed using either a synthetic nighttime hazy image which
is generated using Physically Based Rendering Technique (PBRT) [130] as done by the authors in [81]
and [83] or by using real-world nighttime hazy image whose corresponding GT images are not
available. So, N-HAZE database is the first database which is created for benchmarking nighttime
image dehazing methods. N-HAZE database comprises of both real world nighttime hazy images as
well as their corresponding GT images. Apart from nighttime hazy images and GT images, dehazed
outputs which are obtained by applying popular as well recent image dehazing methods on nighttime
hazy images belonging to this database are included in the database to enable the researchers to carry
out effective bechmarking of dehazing methods. Some examples of images included in N-HAZE
database are given Table 6.2.1.
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Image 1_hazy Image1_he_2011 [38] Image1_meng_2013 [44]

Image1_ancuti_2013 [41] Image1_zhu_2015 [50] Image1_li_2015 [59]

Image1_he_CO_2016 [129] Image1_he_CODHWT1_2016 [129] Image1_he_CODHWT2_2016 [129]

Image1_ren_2016 [53] Image1_cai_2016 [52] Image1_berman_2016 [49]

Image1_santra_2016 [64] Image1_galdran_2018 [117] Image1_salazar-Colores_2018 [47]

Image1_yu_2019 [91] Image1_ngo_2020 [118] Image1_shin_2020 [131]

Image1_li_2021 [132] Image1_ju_2021[133] Image1_hazefree (GT)
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Image 2_hazy Image2_he_2011 [38] Image2_meng_2013[44]

Image2_ancuti_2013[41] Image2_zhu_2015[50] Image2_li_2015 [59]

Image2_he_CO_2016[129] Image2_he_CODHWT1_2016 [129] Image2_he_CODHWT2_2016 [129]

Image2_ren_2016 [53] Image2_cai_2016 [52] Image2_berman_2016 [49]

Image2_santra_2016 [64] Image2_galdran_2018 [117] Image2_salazar-Colores_2018 [47]

Image2_yu_2019 [91] Image2_ngo_2020 [118] Image2_shin_2020 [131]

Image2_li_2021 [132] Image2_ju_2021[133] Image2_hazefree (GT)
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Image 3_hazy Image3_he_2011[38] Image3_meng_2013 [44]

Image3_ancuti_2013[41] Image3_zhu_2015 [50] Image3_li_2015 [59]

Image3_he_CO_2016 [129] Image3_he_CODHWT1_2016 [129] Image3_he_CODHWT2_2016[129]

Image3_ren_2016 [53] Image3_cai_2016 [52] Image3_berman_2016 [49]

Image3_santra_2016 [64] Image3_galdran_2018[117] Image3_salazar-Colores_2018 [47]

Image3_yu_2019 [91] Image3_ngo_2020 [118] Image3_shin_2020 [131]
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Image3_li_2021 [132] Image3_ju_2021 [133] Image3_hazefree (GT)

Image 4_hazy Image4_he_2011[38] Image4_meng_2013[44]

Image4_ancuti_2013[41] Image4_zhu_2015[50] Image4_li_2015[59]

Image4_he_CO_2016[129] Image4_he_CODHWT1_2016[129 Image4_he_CODHWT2_2016[129]

Image4_ren_2016[53] Image4_cai_2016[52] Image4_berman_2016[49]

Image4_santra_2016[64] Image4_galdran_2018[117] Image4_salazar-Colores_2018[47]

Image4_yu_2019[91] Image4_ngo_2020[118] Image4_shin_2020[131]
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Image4_li_2021 [132] Image4_ju_2021[133] Image4_hazefree (GT)

Image 5_hazy Image5_he_2011[38] Image5_meng_2013[44]

Image5_ancuti_2013[41] Image5_zhu_2015[50] Image5_li_2015[59]

Image5_he_CO_2016[129] Image5_he_CODHWT1_2016[129] Image5_he_CODHWT2_2016[129]

Image5_ren_2016[53] Image5_cai_2016[52] Image5_berman_2016[49]

Image5_santra_2016[64] Image5_galdran_2018[117] Image5_salazar-Colores_2018[47]
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Image5_yu_2019[91] Image5_ngo_2020[118] Image5_shin_2020[131]

Image5_li_2021 [132] Image5_ju_2021[133] Image5_hazefree (GT)

Image 6_hazy Image6_he_2011[38] Image6_meng_2013[44]

Image6_ancuti_2013[41] Image6_zhu_2015[50] Image6_li_2015[59]

Image6_he_CO_2016[129] Image6_he_CODHWT1_2016[129] Image6_he_CODHWT2_2016
[129]

Image6_ren_2016 [53] Image6_cai_2016 [52] Image6_berman_2016 [49]

Image6_santra_2016[64] Image6_galdran_2018[117] Image6_salazar-Colores_2018 [47]
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Image6_yu_2019 [91] Image6_ngo_2020 [118] Image6_shin_2020 [131]

Image6_li_2021 [132] Image6_ju_2021[133] Image6_hazefree (GT)

6.3. D&N-HAZE Database

This database contains a total of 330 images out of which 24 images are hazy and haze-free (GT)
images of four scenes which are captured during both daytime as well as nighttime while others are
output images which are obtained by applying several well-known image dehazing methods on hazy
images (both synthetically generated hazy images as well as real hazy images) present in this database.
For a particular scene, in this database four hazy images and two GT images are included. For e.g. for
image 1(which is also referred to as scene 1), four images (image1_daytime_realhaze,
image1_daytime_synthetichaze, image1_nighttime_realhaze and image1_nighttime_synthetichaze)
and two haze-free images (image1_daytime_hazefree and image1_nighttime_hazefree) are included in
this database. The images whose names include “_realhaze term” are captured in the presence of real
atmospheric haze and the images whose names include _synthetichaze term are obtained by
synthetically introducing haze in images using the “Dehaze” filter option present under the “Effects”
section in the “Adobe Lightroom App”. Here the value of “Dehaze” filter is kept fixed at +100 while
generating the hazy images. The images whose names include “_hazefree term” are captured during
clear weather conditions. Apart from hazy and haze-free images of each scene, in this database the
outputs obtained by applying various well-known image dehazing methods on hazy images are also
included to facilitate effective benchmarking of image dehazing methods. Those outputs are named as
“imagename_type of haze (realhaze/synthetichaze)_first author surname_publication year”.

This is the first database created for benchmarking image dehazing methods which contain daytime and
nighttime synthetic hazy images as well as hazy images captured in the presence of real atmospheric
haze of similar scenes. Like S-HAZE database and N-HAZE database, this database too contain GT
images and thus facilitates researchers to perform quantitative analyses using both full-reference and
no-reference quantitative parameters. Examples of some images included in D&N-HAZE database are
given below:



131

Image1_daytime_realhaze Image1_daytime_realhaze_he_2011
[38]

Image1_daytime_realhaze_meng_2
013[44]

Image1_daytime_realhaze_ancuti_
2013[41]

Image1_daytime_realhaze_zhu_201
5[50]

Image1_daytime_realhaze_li_2015[
59]

Image1_daytime_realhaze_he_CO_
2016[129]

Image1_daytime_realhaze_he_COD
HWT1_2016[129]

Image1_daytime_realhaze_he_COD
HWT2_2016[129]

Image1_daytime_realhaze_ren_201
6 [53]

Image1_daytime_realhaze_cai_2016
[52]

Image1_daytime_realhaze_berman
_2016 [49]

Image1_daytime_realhaze_santra_
2016 [64]

Image1_daytime_realhaze_galdran_
2018 [117]

Image1_daytime_realhaze_salazar-
Colores_2018 [47]

Image1_daytime_realhaze_yu_201
9 [91]

Image1_daytime_realhaze_ngo_202
0[118]

Image1_daytime_realhaze_shin_20
20[131]

Image1_daytime_realhaze_li_2021[
132]

Image1_daytime_realhaze_ju_2021[
133]

Image1_daytime_hazefree



132

Image1_daytime_synthetichaze Image1_daytime_synthetichaze_he_
2011[38]

Image1_daytime_synthetichaze_me
ng_2013[44]

Image1_daytime_synthetichaze_an
cuti_2013[41]

Image1_daytime_synthetichaze_zhu
_2015[50]

Image1_daytime_synthetichaze_li_2
015[59]

Image1_daytime_synthetichaze_he
_CO_2016[129]

Image1_daytime_synthetichaze_he_
CODHWT1_2016[129]

Image1_daytime_synthetichaze_he_
CODHWT2_2016[129]

Image1_daytime_synthetichaze_re
n_2016[53]

Image1_daytime_synthetichaze_cai_
2016[52]

Image1_daytime_synthetichaze_ber
man_2016[49]

Image1_daytime_synthetichaze_sa
ntra_2016[64]

Image1_daytime_synthetichaze_gal
dran_2018[117]

Image1_daytime_synthetichaze_sal
azar-Colores_2018[47]

Image1_daytime_synthetichaze_yu
_2019[91]

Image1_daytime_synthetichaze_ngo
_2020[118]

Image1_daytime_synthetichaze_shi
n_2020[131]



133

Image1_daytime_synthetichaze_li_
2021[132]

Image1_daytime_synthetichaze_ju_
2021[133]

Image1_daytime_hazefree

Image1_nighttime_realhaze Image1_nighttime_realhaze_he_201
1[38]

Image1_nighttime_realhaze_meng_
2013[44]

Image1_nighttime_realhaze_ancuti
_2013[41]

Image1_nighttime_realhaze_zhu_20
15[50]

Image1_nighttime_realhaze_li_2015
[59]

Image1_nighttime_realhaze_he_C
O_2016[129]

Image1_nighttime_realhaze_he_CO
DHWT1_2016[129]

Image1_nighttime_realhaze_he_CO
DHWT2_2016[129]

Image1_nighttime_realhaze_ren_2
016[53]

Image1_nighttime_realhaze_cai_201
6[52]

Image1_nighttime_realhaze_berma
n_2016[49]

Image1_nighttime_realhaze_santra
_2016[64]

Image1_nighttime_realhaze_galdra
n_2018[117]

Image1_nighttime_realhaze_salazar
-Colores_2018[47]



134

Image1_nighttime_realhaze_yu_20
19[91]

Image1_nighttime_realhaze_ngo_20
20[118]

Image1_nighttime_realhaze_shin_2
020[131]

Image1_nighttime_realhaze_li_202
1[132]

Image1_nighttime_realhaze_ju_202
1[133]

Image1_nighttime_hazefree

Image1_nighttime_synthetichaze Image1_nighttime_synthetichaze_he
_2011 [38]

Image1_nighttime_synthetichaze_m
eng_2013[44]

Image1_nighttime_synthetichaze_a
ncuti_2013[41]

Image1_nighttime_synthetichaze_zh
u_2015[50]

Image1_nighttime_synthetichaze_li
_2015[59]

Image1_nighttime_synthetichaze_h
e_CO_2016[129]

Image1_nighttime_synthetichaze_he
_CODHWT1_2016[129]

Image1_nighttime_synthetichaze_h
e_CODHWT2_2016[129]

Image1_nighttime_synthetichaze_r
en_2016[53]

Image1_nighttime_synthetichaze_ca
i_2016[52]

Image1_nighttime_synthetichaze_b
erman_2016[49]



135

Image1_nighttime_synthetichaze_s
antra_2016[64]

Image1_nighttime_synthetichaze_ga
ldran_2018[117]

Image1_nighttime_synthetichaze_sa
lazar-Colores_2018[47]

Image1_nighttime_synthetichaze_y
u_2019[91]

Image1_nighttime_synthetichaze_ng
o_2020[118]

Image1_nighttime_synthetichaze_s
hin_2020[131]

Image1_nighttime_synthetichaze_li
_2021 [132]

Image1_nighttime_synthetichaze_ju
_2021[133]

Image1_nighttime_hazefree

Image2_daytime_realhaze Image2_daytime_realhaze_he_2011
[38]

Image2_daytime_realhaze_meng_2
013[44]

Image2_daytime_realhaze_ancuti_
2013[41]

Image2_daytime_realhaze_zhu_201
5[50]

Image2_daytime_realhaze_li_2015[
59]

Image2_daytime_realhaze_he_CO_
2016[129]

Image2_daytime_realhaze_he_COD
HWT1_2016[129]

Image2_daytime_realhaze_he_COD
HWT2_2016[129]



136

Image2_daytime_realhaze_ren_201
6[53]

Image2_daytime_realhaze_cai_2016
[52]

Image2_daytime_realhaze_berman
_2016[49]

Image2_daytime_realhaze_santra_
2016 [64]

Image2_daytime_realhaze_galdran_
2018 [117]

Image2_daytime_realhaze_salazar-
Colores_2018 [47]

Image2_daytime_realhaze_yu_201
9 [91]

Image2_daytime_realhaze_ngo_202
0 [118]

Image2_daytime_realhaze_shin_20
20 [131]

Image2_daytime_realhaze_li_2021
[132]

Image2_daytime_realhaze_ju_2021
[133]

Image2_daytime_hazefree

Image2_daytime_synthetichaze Image2_daytime_synthetichaze_he_
2011[38]

Image2_daytime_synthetichaze_me
ng_2013[44]

Image2_daytime_synthetichaze_an
cuti_2013[41]

Image2_daytime_synthetichaze_zhu
_2015[50]

Image2_daytime_synthetichaze_li_2
015[59]



137

Image2_daytime_synthetichaze_he
_CO_2016[129]

Image2_daytime_synthetichaze_he_
CODHWT1_2016[129]

Image2_daytime_synthetichaze_he_
CODHWT2_2016[129]

Image2_daytime_synthetichaze_re
n_2016[53]

Image2_daytime_synthetichaze_cai_
2016[52]

Image2_daytime_synthetichaze_ber
man_2016[49]

Image2_daytime_synthetichaze_sa
ntra_2016[64]

Image2_daytime_synthetichaze_gal
dran_2018[117]

Image2_daytime_synthetichaze_sal
azar-Colores_2018[47]

Image2_daytime_synthetichaze_yu
_2019[91]

Image2_daytime_synthetichaze_ngo
_2020[118]

Image2_daytime_synthetichaze_shi
n_2020[131]

Image2_daytime_synthetichaze_li_
2021[132]

Image2_daytime_synthetichaze_ju_
2021[133]

Image2_daytime_hazefree

Image2_nighttime_realhaze Image2_nighttime_realhaze_he_201
1[38]

Image2_nighttime_realhaze_meng_
2013 [44]



138

Image2_nighttime_realhaze_ancuti
_2013[41]

Image2_nighttime_realhaze_zhu_20
15[50]

Image2_nighttime_realhaze_li_2015
[59]

Image2_nighttime_realhaze_he_C
O_2016[129]

Image2_nighttime_realhaze_he_CO
DHWT1_2016[129]

Image2_nighttime_realhaze_he_CO
DHWT2_2016[129]

Image2_nighttime_realhaze_ren_2
016[53]

Image2_nighttime_realhaze_cai_201
6[52]

Image2_nighttime_realhaze_berma
n_2016[49]

Image2_nighttime_realhaze_santra
_2016[64]

Image2_nighttime_realhaze_galdra
n_2018[117]

Image2_nighttime_realhaze_salazar
-Colores_2018[47]

Image2_nighttime_realhaze_yu_20
19[91]

Image2_nighttime_realhaze_ngo_20
20[118]

Image2_nighttime_realhaze_shin_2
020[131]

Image2_nighttime_realhaze_li_202
1 [132]

Image2_nighttime_realhaze_ju_202
1[133]

Image2_nighttime_hazefree



139

Image2_nighttime_synthetichaze Image2_nighttime_synthetichaze_he
_2011[38]

Image2_nighttime_synthetichaze_me
ng_2013[44]

Image2_nighttime_synthetichaze_a
ncuti_2013[41]

Image2_nighttime_synthetichaze_zh
u_2015[50]

Image2_nighttime_synthetichaze_li_2
015[59]

Image2_nighttime_synthetichaze_h
e_CO_2016[129]

Image2_nighttime_synthetichaze_he
_CODHWT1_2016[129]

Image2_nighttime_synthetichaze_he_
CODHWT2_2016[129]

Image2_nighttime_synthetichaze_r
en_2016[53]

Image2_nighttime_synthetichaze_ca
i_2016[52]

Image2_nighttime_synthetichaze_ber
man_2016[49]

Image2_nighttime_synthetichaze_s
antra_2016[64]

Image2_nighttime_synthetichaze_ga
ldran_2018[117]

Image2_nighttime_synthetichaze_sala
zar-Colores_2018[47]

Image2_nighttime_synthetichaze_y
u_2019 [91]

Image2_nighttime_synthetichaze_ng
o_2020[118]

Image2_nighttime_synthetichaze_shi
n_2020[131]



140

Image2_nighttime_synthetichaze_li
_2021 [132]

Image2_nighttime_synthetichaze_ju
_2021[133]

Image2_nighttime_hazefree

Image3_daytime_realhaze Image3_daytime_realhaze_he_2011[
38]

Image3_daytime_realhaze_meng_201
3[44]

Image3_daytime_realhaze_ancuti_
2013[41]

Image3_daytime_realhaze_zhu_201
5[50]

Image3_daytime_realhaze_li_2015[59
]

Image3_daytime_realhaze_he_CO_
2016[129]

Image3_daytime_realhaze_he_COD
HWT1_2016[129]

Image3_daytime_realhaze_he_CODH
WT2_2016[129]

Image3_daytime_realhaze_ren_201
6[53]

Image3_daytime_realhaze_cai_2016
[52]

Image3_daytime_realhaze_berman_2
016[49]

Image3_daytime_realhaze_santra_
2016[64]

Image3_daytime_realhaze_galdran_
2018[117]

Image3_daytime_realhaze_salazar-
Colores_2018[47]



141

Image3_daytime_realhaze_yu_201
9[91]

Image3_daytime_realhaze_ngo_202
0[118]

Image3_daytime_realhaze_shin_2020
[131]

Image3_daytime_realhaze_li_2021
[132]

Image3_daytime_realhaze_ju_2021[
133]

Image3_daytime_hazefree

Image3_daytime_synthetichaze Image3_daytime_synthetichaze_he_
2011[38]

Image3_daytime_synthetichaze_me
ng_2013[44]

Image3_daytime_synthetichaze_an
cuti_2013[41]

Image3_daytime_synthetichaze_zhu
_2015[50]

Image3_daytime_synthetichaze_li_2
015[59]

Image3_daytime_synthetichaze_he
_CO_2016[129]

Image3_daytime_synthetichaze_he_
CODHWT1_2016[129]

Image3_daytime_synthetichaze_he_
CODHWT2_2016[129]

Image3_daytime_synthetichaze_re
n_2016[53]

Image3_daytime_synthetichaze_cai_
2016[52]

Image3_daytime_synthetichaze_ber
man_2016[49]



142

Image3_daytime_synthetichaze_sa
ntra_2016[64]

Image3_daytime_synthetichaze_gal
dran_2018[117]

Image3_daytime_synthetichaze_sal
azar-Colores_2018[47]

Image3_daytime_synthetichaze_yu
_2019[91]

Image3_daytime_synthetichaze_ngo
_2020[118]

Image3_daytime_synthetichaze_shi
n_2020[131]

Image3_daytime_synthetichaze_li_
2021 [132]

Image3_daytime_synthetichaze_ju_
2021[133]

Image3_daytime_hazefree

Image3_nighttime_realhaze Image3_nighttime_realhaze_he_201
1[38]

Image3_nighttime_realhaze_meng_
2013[44]

Image3_nighttime_realhaze_ancuti
_2013[41]

Image3_nighttime_realhaze_zhu_20
15[50]

Image3_nighttime_realhaze_li_2015
[59]

Image3_nighttime_realhaze_he_C
O_2016[129]

Image3_nighttime_realhaze_he_CO
DHWT1_2016[129]

Image3_nighttime_realhaze_he_CO
DHWT2_2016[129]



143

Image3_nighttime_realhaze_ren_2
016[53]

Image3_nighttime_realhaze_cai_201
6[52]

Image3_nighttime_realhaze_berma
n_2016[49]

Image3_nighttime_realhaze_santra
_2016[64]

Image3_nighttime_realhaze_galdra
n_2018[117]

Image3_nighttime_realhaze_salazar
-Colores_2018[47]

Image3_nighttime_realhaze_yu_20
19[91]

Image3_nighttime_realhaze_ngo_20
20[118]

Image3_nighttime_realhaze_shin_2
020[131]

Image3_nighttime_realhaze_li_202
0[132]

Image3_nighttime_realhaze_ju_202
1[133]

Image3_nighttime_hazefree

Image3_nighttime_synthetichaze Image3_nighttime_synthetichaze_he
_2011[38]

Image3_nighttime_synthetichaze_m
eng_2013[44]

Image3_nighttime_synthetichaze_a
ncuti_2013[41]

Image3_nighttime_synthetichaze_zh
u_2015[50]

Image3_nighttime_synthetichaze_li
_2015[59]



144

Image3_nighttime_synthetichaze_h
e_CO_2016[129]

Image3_nighttime_synthetichaze_he
_CODHWT1_2016[129]

Image3_nighttime_synthetichaze_h
e_CODHWT2_2016[129]

Image3_nighttime_synthetichaze_r
en_2016 [53]

Image3_nighttime_synthetichaze_ca
i_2016 [52]

Image3_nighttime_synthetichaze_b
erman_2016 [49]

Image3_nighttime_synthetichaze_s
antra_2016 [64]

Image3_nighttime_synthetichaze_ga
ldran_2018 [117]

Image3_nighttime_synthetichaze_sa
lazar-Colores_2018 [47]

Image3_nighttime_synthetichaze_y
u_2019[91]

Image3_nighttime_synthetichaze_ng
o_2020[118]

Image3_nighttime_synthetichaze_s
hin_2020[131]

Image3_nighttime_synthetichaze_li
_2021 [132]

Image3_nighttime_synthetichaze_ju
_2021[133]

Image3_nighttime_hazefree

Image4_daytime_realhaze Image4_daytime_realhaze_he_2011[
38]

Image4_daytime_realhaze_meng_2
013[44]



145

Image4_daytime_realhaze_ancuti_
2013[41]

Image4_daytime_realhaze_zhu_201
5[50

Image4_daytime_realhaze_li_2015[
59]

Image4_daytime_realhaze_he_CO_
2016[129]

Image4_daytime_realhaze_he_COD
HWT1_2016[129]

Image4_daytime_realhaze_he_COD
HWT2_2016[129]

Image4_daytime_realhaze_ren_201
6[53]

Image4_daytime_realhaze_cai_2016
[52]

Image4_daytime_realhaze_berman
_2016[49]

Image4_daytime_realhaze_santra_
2016[64]

Image4_daytime_realhaze_galdran_
2018[117]

Image4_daytime_realhaze_salazar-
Colores_2018[47]

Image4_daytime_realhaze_yu_201
9[91]

Image4_daytime_realhaze_ngo_202
0[118]

Image4_daytime_realhaze_shin_20
20[131]

Image4_daytime_realhaze_li_2021[
132]

Image4_daytime_realhaze_ju_2021[
133]

Image4_daytime_hazefree



146

Image4_daytime_synthetichaze Image4_daytime_synthetichaze_he_
2011[38]

Image4_daytime_synthetichaze_me
ng_2013[44]

Image4_daytime_synthetichaze_an
cuti_2013[41]

Image4_daytime_synthetichaze_zhu
_2015[50]

Image4_daytime_synthetichaze_li_2
015[59]

Image4_daytime_synthetichaze_he
_CO_2016[129]

Image4_daytime_synthetichaze_he_
CODHWT1_2016[129]

Image4_daytime_synthetichaze_he_
CODHWT2_2016[129]

Image4_daytime_synthetichaze_re
n_2016[53]

Image4_daytime_synthetichaze_cai_
2016[52]

Image4_daytime_synthetichaze_ber
man_2016[49]

Image4_daytime_synthetichaze_sa
ntra_2016[64]

Image4_daytime_synthetichaze_gal
dran_2018[117]

Image4_daytime_synthetichaze_sal
azar-Colores_2018[47]

Image4_daytime_synthetichaze_yu
_2019[91]

Image4_daytime_synthetichaze_ngo
_2020 [118]

Image4_daytime_synthetichaze_shi
n_2020[131]



147

Image4_daytime_synthetichaze_li_
2021 [132]

Image4_daytime_synthetichaze_ju_
2021[133]

Image4_daytime_hazefree

Image4_nighttime_realhaze Image4_nighttime_realhaze_he_201
1[38]

Image4_nighttime_realhaze_meng_
2013[44]

Image4_nighttime_realhaze_ancuti
_2013[41]

Image4_nighttime_realhaze_zhu_20
15[50]

Image4_nighttime_realhaze_li_2015
[59]

Image4_nighttime_realhaze_he_C
O_2016[129]

Image4_nighttime_realhaze_he_CO
DHWT1_2016[129]

Image4_nighttime_realhaze_he_CO
DHWT2_2016[129]

Image4_nighttime_realhaze_ren_2
016[53]

Image4_nighttime_realhaze_cai_201
6[52]

Image4_nighttime_realhaze_berma
n_2016[49]

Image4_nighttime_realhaze_santra
_2016[64]

Image4_nighttime_realhaze_galdra
n_2018[117]

Image4_nighttime_realhaze_salazar
-Colores_2018[47]



148

Image4_nighttime_realhaze_yu_20
19[91]

Image4_nighttime_realhaze_ngo_20
20[118]

Image4_nighttime_realhaze_shin_2
020[131]

Image4_nighttime_realhaze_li_202
1 [132]

Image4_nighttime_realhaze_ju_202
1[133]

Image4_nighttime_hazefree

Image4_nighttime_synthetichaze Image4_nighttime_synthetichaze_he
_2011[38]

Image4_nighttime_synthetichaze_m
eng_2013[44]

Image4_nighttime_synthetichaze_a
ncuti_2013[41]

Image4_nighttime_synthetichaze_zh
u_2015[50]

Image4_nighttime_synthetichaze_li
_2015[59]

Image4_nighttime_synthetichaze_h
e_CO_2016[129]

Image4_nighttime_synthetichaze_he
_CODHWT1_2016[129]

Image4_nighttime_synthetichaze_h
e_CODHWT2_2016 [129]

Image4_nighttime_synthetichaze_r
en_2016 [53]

Image4_nighttime_synthetichaze_ca
i_2016 [52]

Image4_nighttime_synthetichaze_b
erman_2016[49]



149

Image4_nighttime_synthetichaze_s
antra_2016[64]

Image4_nighttime_synthetichaze_ga
ldran_2018[117]

Image4_nighttime_synthetichaze_sa
lazar-Colores_2018[47]

Image4_nighttime_synthetichaze_y
u_2019[91]

Image4_nighttime_synthetichaze_ng
o_2020[118]

Image4_nighttime_synthetichaze_s
hin_2020[131]

Image4_nighttime_synthetichaze_li
_2021 [132]

Image4_nighttime_synthetichaze_ju
_2021[133]

Image4_nighttime_hazefree

All these three databases (S-HAZE, N-HAZE and D&N-HAZE) are designed in this thesis with
different objectives like S-HAZE is designed to evaluate the performance efficiencies of daytime image
dehazing methods and how accurately the methods can restore the original scene and color
characteristics of images (especially in sky regions of images) while N-HAZE is designed focusing
exclusively on nighttime image dehazing. On the other hand, D&N-HAZE database comprises of both
synthetic hazy and real hazy ( captured in the presence of real atmospheric haze) daytime and
nighttime images of similar scenes which help researchers to evaluate how the performance
efficiencies of image dehazing methods vary according to the variations in nature of haze
(real/synthetic) and illumination properties (daytime/nighttime) of images having similar scene
contents.

The inclusion of GT images corresponding to each hazy image in these databases helps researchers to
perform accurate subjective analyses as well as quantitative analyses using full-reference and no-
reference quantitative parameters. The inclusion of dehazed outputs obtained from popular as well as
recent image dehazing methods in these databases have also enhanced their acceptability to the
researchers as these databases facilitate performing effective benchmarking of image dehazing
methods.
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In Chapter 7, detailed discussion is carried out regarding a novel Fuzzy Logic based sky segmentation
method which is designed to automatically segment the sky regions and non-sky regions of daytime
images based on the dissimilarities in their properties. This discussion is included under the ‘Image
Dehazing’ part of the thesis because of the analogy between the two problems.
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Chapter 7
The significance of sky regions of images in performing accurate atmospheric light estimation which in
turn is required for dehazing images is discussed in details in previous Chapter. In this Chapter, the
analogy between the image dehazing problem and the sky segmentation method is studied and a novel
Fuzzy Logic based sky segmentation method is designed by exploiting the same logic used in image
dehazing problem.

In this work, initially a database is created by collecting more than 150 clear, daytime images from
multiple publicly available sources in the internet and then comprehensive experimental analyses are
carried out considering multiple parameters from various color spaces like RGB color space, HSV
color space and L*a*b color space to identify the parameters whose properties vary sharply between
sky and non-sky regions of images.

The parameters from particularly these three color spaces are chosen to perform the experimental
analyses in the sky-segmentation problem as these parameters have proved their excellence in
performing accurate image dehazing in the existing works as well as in the novel image dehazing
methods proposed in this thesis.

The logic used for the identification of severely degraded hazy pixels in hazy images can be used for
the identification of the sky pixels in daytime images as both the problems aim at the identification of
the pixels possessing comparatively higher intensities in images. The pixels possessing high haze
content in an image are considered to be high intensity pixels as these pixels are under the maximum
influence of airlight as stated in CAP proposed in [50]. Similarly, the pixels belonging to the sky
regions of daytime images also possess high intensities because of the presence of sunlight at daytime.
This similarity between the image dehazing problem and the sky segmentation problem have served as
an inspiration behind the design of the proposed Fuzzy Logic based sky segmentation method utilizing
similar logic used for performing image dehazing. RGB color space, HSV color space and L*a*b
color space are considered to be ideal color spaces to perform identification of most significant
parameters for performing sky segmentation as these color spaces have proved their efficiencies in
performing image dehazing.

The parameters considered for performing experimental analyses are the three color channels of both
the RGB and L*a*b color spaces, haze-concentration parameter and channel difference parameter.

The logic behind considering haze-concentration as a parameter for this problem is described in
Section 3.1.1.1 of Chapter 3.

The channel difference parameter is the magnitude of the difference between the dark channel and the
bright channel of images.

The dark channel of an image is computed using DCP [38] which is described in detail in Section
2.2.1 of Chapter 2. This channel as described in [38] mostly comprises of very low intensity pixels
which belong to the non-sky regions of images. The main reason behind the presence of such low
intensity pixels in estimated dark channel of an image is the presence of colourful objects like trees,
leaves, etc. and their shadows in non-sky regions of images. The dark channel of an image gives highly
accurate estimation of intensity distribution in non-sky regions (regions having comparatively low
illumination) of images but often fails to give accurate estimation of intensity distribution in sky
regions (regions having high illumination) of images.

To overcome this drawback, the authors in [92] have proposed Bright Channel Prior (BCP) which is
simply the reverse of DCP. Unlike DCP, BCP gives accurate estimation of intensity distribution of sky
regions of images.

These properties of the estimated dark and bright channels make them ideal to be considered for these
type of analyses.
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After performing experimental analyses, achromatic channel of L*a*b color space, all the three color
channels (R,G and B) of RGB color space, haze-concentration and channel difference parameters are
found to be most suitable parameters for performing sky segmentation.

The plots of these selected parameters’ values for a sky patch and a non-sky patch are given as
examples in Table 7.1-Table 7.2 to show their variations in sky and non-sky regions.The FI rules
designed to perform sky-segmentation are given in Table 7.3.

Table 7.1. Selected parameters’ values in a sky patch

Type of patch Patch image
Sky

RGB Colour Space plot

Magnitude of difference
between Saturation and Value
channels of HSV Colour Space

Magnitude of difference
between Bright and Dark
channel values

Achromatic channel values
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Table 7.2. Selected parameters’ values in a non-sky patch

Type of patch Patch image
Non-sky

RGB Colour Space plot

Magnitude of difference
between Saturation and
Value channels of HSV
Colour Space

Magnitude of difference
between Bright and Dark
channel values

Achromatic channel values
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Table 7.3. Novel sets of FI rules designed to perform sky segmentation

If Then
achromatic_channel haze_concentration channel_difference Class

Big_Negative Very_Less_Dense Very_Low_Difference Non_Sky
Big_Negative Very_Less_Dense Low_Difference Non_Sky
Big_Negative Very_Less_Dense Medium_Difference Non_Sky
Big_Negative Very_Less_Dense High_Difference Non_Sky
Big_Negative Very_Less_Dense Very_High_Difference Non_Sky
Big_Negative Less_Dense Very_Low_Difference Mostly_Non_Sky
Big_Negative Less_Dense Low_Difference Mostly_Non_Sky
Big_Negative Less_Dense Medium_Difference Non_Sky
Big_Negative Less_Dense High_Difference Non_Sky
Big_Negative Less_Dense Very_High_Difference Non_Sky
Big_Negative Medium_Dense Very_Low_Difference More_or_Less_Sky
Big_Negative Medium_Dense Low_Difference Mostly_Non_Sky
Big_Negative Medium_Dense Medium_Difference Mostly_Non_Sky
Big_Negative Medium_Dense High_Difference Non_Sky
Big_Negative Medium_Dense Very_High_Difference Non_Sky
Big_Negative Dense Very_Low_Difference Almost_Sky
Big_Negative Dense Low_Difference More_or_Less_Sky
Big_Negative Dense Medium_Difference Mostly_Non_Sky
Big_Negative Dense High_Difference Mostly_Non_Sky
Big_Negative Dense Very_High_Difference Non_Sky
Big_Negative Very_High_Dense Very_Low_Difference Sky
Big_Negative Very_High_Dense Low_Difference Sky
Big_Negative Very_High_Dense Medium_Difference Almost_Sky
Big_Negative Very_High_Dense High_Difference Almost_Sky
Big_Negative Very_High_Dense Very_High_Difference More_or_Less_Sky
Negative Very_Less_Dense Very_Low_Difference Non_Sky
Negative Very_Less_Dense Low_Difference Non_Sky
Negative Very_Less_Dense Medium_Difference Non_Sky
Negative Very_Less_Dense High_Difference Non_Sky
Negative Very_Less_Dense Very_High_Difference Non_Sky
Negative Less_Dense Very_Low_Difference Mostly_Non_Sky
Negative Less_Dense Low_Difference Mostly_Non_Sky
Negative Less_Dense Medium_Difference Mostly_Non_Sky
Negative Less_Dense High_Difference Mostly_Non_Sky
Negative Less_Dense Very_High_Difference Mostly_Non_Sky
Negative Medium_Dense Very_Low_Difference More_or_Less_Sky
Negative Medium_Dense Low_Difference More_or_Less_Sky
Negative Medium_Dense Medium_Difference Mostly_Non_Sky
Negative Medium_Dense High_Difference Mostly_Non_Sky
Negative Medium_Dense Very_High_Difference Non_Sky
Negative Dense Very_Low_Difference Almost_Sky
Negative Dense Low_Difference Almost_Sky
Negative Dense Medium_Difference More_or_Less_Sky
Negative Dense High_Difference Mostly_Non_Sky
Negative Dense Very_High_Difference Non_Sky
Negative Very_High_Dense Very_Low_Difference Sky
Negative Very_High_Dense Low_Difference Almost_Sky
Negative Very_High_Dense Medium_Difference More_or_Less_Sky
Negative Very_High_Dense High_Difference Mostly_Non_Sky
Negative Very_High_Dense Very_High_Difference Non_Sky
Zero Very_Less_Dense Very_Low_Difference Mostly_Non_Sky
Zero Very_Less_Dense Low_Difference Mostly_Non_Sky
Zero Very_Less_Dense Medium_Difference Mostly_Non_Sky
Zero Very_Less_Dense High_Difference Non_Sky
Zero Very_Less_Dense Very_High_Difference Non_Sky
Zero Less_Dense Very_Low_Difference Mostly_Non_Sky
Zero Less_Dense Low_Difference Mostly_Non_Sky
Zero Less_Dense Medium_Difference Mostly_Non_Sky
Zero Less_Dense High_Difference Non_Sky
Zero Less_Dense Very_High_Difference Non_Sky
Zero Medium_Dense Very_Low_Difference More_or_Less_Sky
Zero Medium_Dense Low_Difference Mostly_Non_Sky
Zero Medium_Dense Medium_Difference Mostly_Non_Sky
Zero Medium_Dense High_Difference Non_Sky
Zero Medium_Dense Very_High_Difference Non_Sky
Zero Dense Very_Low_Difference Almost_Sky
Zero Dense Low_Difference More_or_Less_Sky
Zero Dense Medium_Difference Mostly_Non_Sky
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Zero Dense High_Difference Mostly_Non_Sky
Zero Dense Very_High_Difference Non_Sky
Zero Very_High_Dense Very_Low_Difference Almost_Sky
Zero Very_High_Dense Low_Difference Almost_Sky
Zero Very_High_Dense Medium_Difference More_or_Less_Sky
Zero Very_High_Dense High_Difference Mostly_Non_Sky
Zero Very_High_Dense Very_High_Difference Mostly_Non_Sky

Positive Very_Less_Dense Very_Low_Difference Mostly_Non_Sky
Positive Very_Less_Dense Low_Difference Mostly_Non_Sky
Positive Very_Less_Dense Medium_Difference Non_Sky
Positive Very_Less_Dense High_Difference Non_Sky
Positive Very_Less_Dense Very_High_Difference Non_Sky
Positive Less_Dense Very_Low_Difference Mostly_Non_Sky
Positive Less_Dense Low_Difference Mostly_Non_Sky
Positive Less_Dense Medium_Difference Non_Sky
Positive Less_Dense High_Difference Non_Sky
Positive Less_Dense Very_High_Difference Non_Sky
Positive Medium_Dense Very_Low_Difference More_or_Less_Sky
Positive Medium_Dense Low_Difference Mostly_Non_Sky
Positive Medium_Dense Medium_Difference Non_Sky
Positive Medium_Dense High_Difference Non_Sky
Positive Medium_Dense Very_High_Difference Non_Sky
Positive Dense Very_Low_Difference Almost_Sky
Positive Dense Low_Difference More_or_Less_Sky
Positive Dense Medium_Difference Mostly_Non_Sky
Positive Dense High_Difference Non_Sky
Positive Dense Very_High_Difference Non_Sky
Positive Very_High_Dense Very_Low_Difference Almost_Sky
Positive Very_High_Dense Low_Difference Almost_Sky
Positive Very_High_Dense Medium_Difference More_or_Less_Sky
Positive Very_High_Dense High_Difference Mostly_Non_Sky
Positive Very_High_Dense Very_High_Difference Non_Sky

Big_Positive Very_Less_Dense Very_Low_Difference Mostly_Non_Sky
Big_Positive Very_Less_Dense Low_Difference Mostly_Non_Sky
Big_Positive Very_Less_Dense Medium_Difference Non_Sky
Big_Positive Very_Less_Dense High_Difference Non_Sky
Big_Positive Very_Less_Dense Very_High_Difference Non_Sky
Big_Positive Less_Dense Very_Low_Difference Mostly_Non_Sky
Big_Positive Less_Dense Low_Difference Mostly_Non_Sky
Big_Positive Less_Dense Medium_Difference Non_Sky
Big_Positive Less_Dense High_Difference Non_Sky
Big_Positive Less_Dense Very_High_Difference Non_Sky
Big_Positive Medium_Dense Very_Low_Difference More_or_Less_Sky
Big_Positive Medium_Dense Low_Difference Mostly_Non_Sky
Big_Positive Medium_Dense Medium_Difference Non_Sky
Big_Positive Medium_Dense High_Difference Non_Sky
Big_Positive Medium_Dense Very_High_Difference Non_Sky
Big_Positive Dense Very_Low_Difference Almost_Sky
Big_Positive Dense Low_Difference More_or_Less_Sky
Big_Positive Dense Medium_Difference Mostly_Non_Sky
Big_Positive Dense High_Difference Mostly_Non_Sky
Big_Positive Dense Very_High_Difference Non_Sky
Big_Positive Very_High_Dense Very_Low_Difference Almost_Sky
Big_Positive Very_High_Dense Low_Difference Almost_Sky
Big_Positive Very_High_Dense Medium_Difference More_or_Less_Sky
Big_Positive Very_High_Dense High_Difference Mostly_Non_Sky
Big_Positive Very_High_Dense Very_High_Difference Mostly_Non_Sky

red_channel green_channel blue_channel Class
Very_Less_Red Very_Less_Green Very_Less_Blue Non_Sky
Very_Less_Red Very_Less_Green Less_Blue Non_Sky
Very_Less_Red Very_Less_Green Medium_Blue More_or_Less_Sky
Very_Less_Red Very_Less_Green High_Blue Sky
Very_Less_Red Very_Less_Green Very_High_Blue Sky
Very_Less_Red Less_Green Very_Less_Blue Non_Sky
Very_Less_Red Less_Green Less_Blue Non_Sky
Very_Less_Red Less_Green Medium_Blue More_or_Less_Sky
Very_Less_Red Less_Green High_Blue Sky
Very_Less_Red Less_Green Very_High_Blue Sky
Very_Less_Red Medium_Green Very_Less_Blue Non_Sky
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Very_Less_Red Medium_Green Less_Blue Non_Sky
Very_Less_Red Medium_Green Medium_Blue Non_Sky
Very_Less_Red Medium_Green High_Blue Mostly Nonsky
Very_Less_Red Medium_Green Very_High_Blue More_or_Less_Sky
Very_Less_Red High_Green Very_Less_Blue Non_Sky
Very_Less_Red High_Green Less_Blue Non_Sky
Very_Less_Red High_Green Medium_Blue Non_Sky
Very_Less_Red High_Green High_Blue Mostly Nonsky
Very_Less_Red High_Green Very_High_Blue Mostly Nonsky
Very_Less_Red Very_High_Green Very_Less_Blue Non_Sky
Very_Less_Red Very_High_Green Less_Blue Non_Sky
Very_Less_Red Very_High_Green Medium_Blue Non_Sky
Very_Less_Red Very_High_Green High_Blue Mostly Nonsky
Very_Less_Red Very_High_Green Very_High_Blue Mostly Nonsky

Less_Red Very_Less_Green Very_Less_Blue Non_Sky
Less_Red Very_Less_Green Less_Blue Non_Sky
Less_Red Very_Less_Green Medium_Blue More_or_Less_Sky
Less_Red Very_Less_Green High_Blue Almost_Sky
Less_Red Very_Less_Green Very_High_Blue Sky
Less_Red Less_Green Very_Less_Blue Non_Sky
Less_Red Less_Green Less_Blue Non_Sky
Less_Red Less_Green Medium_Blue More_or_Less_Sky
Less_Red Less_Green High_Blue Almost_Sky
Less_Red Less_Green Very_High_Blue Sky
Less_Red Medium_Green Very_Less_Blue Non_Sky
Less_Red Medium_Green Less_Blue Non_Sky
Less_Red Medium_Green Medium_Blue Mostly Nonsky
Less_Red Medium_Green High_Blue More_or_Less_Sky
Less_Red Medium_Green Very_High_Blue More_or_Less_Sky
Less_Red High_Green Very_Less_Blue Non_Sky
Less_Red High_Green Less_Blue Non_Sky
Less_Red High_Green Medium_Blue Non_Sky
Less_Red High_Green High_Blue Mostly Nonsky
Less_Red High_Green Very_High_Blue Mostly Nonsky
Less_Red Very_High_Green Very_Less_Blue Non_Sky
Less_Red Very_High_Green Less_Blue Non_Sky
Less_Red Very_High_Green Medium_Blue Non_Sky
Less_Red Very_High_Green High_Blue Non_Sky
Less_Red Very_High_Green Very_High_Blue Non_Sky

Medium_Red Very_Less_Green Very_Less_Blue Non_Sky
Medium_Red Very_Less_Green Less_Blue Non_Sky
Medium_Red Very_Less_Green Medium_Blue Mostly Nonsky
Medium_Red Very_Less_Green High_Blue Mostly Nonsky
Medium_Red Very_Less_Green Very_High_Blue Almost_Sky
Medium_Red Less_Green Very_Less_Blue Non_Sky
Medium_Red Less_Green Less_Blue Non_Sky
Medium_Red Less_Green Medium_Blue Mostly Nonsky
Medium_Red Less_Green High_Blue Mostly Nonsky
Medium_Red Less_Green Very_High_Blue More_or_Less_Sky
Medium_Red Medium_Green Very_Less_Blue Non_Sky
Medium_Red Medium_Green Less_Blue Non_Sky
Medium_Red Medium_Green Medium_Blue Mostly Nonsky
Medium_Red Medium_Green High_Blue Mostly Nonsky
Medium_Red Medium_Green Very_High_Blue More_or_Less_Sky
Medium_Red High_Green Very_Less_Blue Non_Sky
Medium_Red High_Green Less_Blue Non_Sky
Medium_Red High_Green Medium_Blue Non_Sky
Medium_Red High_Green High_Blue Mostly Nonsky
Medium_Red High_Green Very_High_Blue Mostly Nonsky
Medium_Red Very_High_Green Very_Less_Blue Non_Sky
Medium_Red Very_High_Green Less_Blue Non_Sky
Medium_Red Very_High_Green Medium_Blue Non_Sky
Medium_Red Very_High_Green High_Blue Mostly Nonsky
Medium_Red Very_High_Green Very_High_Blue Mostly Nonsky
High_Red Very_Less_Green Very_Less_Blue Nonsky
High_Red Very_Less_Green Less_Blue Nonsky
High_Red Very_Less_Green Medium_Blue Nonsky
High_Red Very_Less_Green High_Blue Mostly Nonsky
High_Red Very_Less_Green Very_High_Blue Mostly Nonsky
High_Red Less_Green Very_Less_Blue Nonsky
High_Red Less_Green Less_Blue Nonsky
High_Red Less_Green Medium_Blue Nonsky
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High_Red Less_Green High_Blue Mostly Nonsky
High_Red Less_Green Very_High_Blue Mostly Nonsky
High_Red Medium_Green Very_Less_Blue Nonsky
High_Red Medium_Green Less_Blue Nonsky
High_Red Medium_Green Medium_Blue More_or_Less_Sky
High_Red Medium_Green High_Blue Almost_Sky
High_Red Medium_Green Very_High_Blue Almost_Sky
High_Red High_Green Very_Less_Blue Nonsky
High_Red High_Green Less_Blue Mostly Nonsky
High_Red High_Green Medium_Blue More_or_Less_Sky
High_Red High_Green High_Blue Almost_Sky
High_Red High_Green Very_High_Blue Sky
High_Red Very_High_Green Very_Less_Blue Nonsky
High_Red Very_High_Green Less_Blue Mostly Nonsky
High_Red Very_High_Green Medium_Blue More_or_Less_Sky
High_Red Very_High_Green High_Blue Almost_Sky
High_Red Very_High_Green Very_High_Blue Sky

Very_High_Red Very_Less_Green Very_Less_Blue Nonsky
Very_High_Red Very_Less_Green Less_Blue Nonsky
Very_High_Red Very_Less_Green Medium_Blue Nonsky
Very_High_Red Very_Less_Green High_Blue Mostly Nonsky
Very_High_Red Very_Less_Green Very_High_Blue Mostly Nonsky
Very_High_Red Less_Green Very_Less_Blue Nonsky
Very_High_Red Less_Green Less_Blue Nonsky
Very_High_Red Less_Green Medium_Blue Nonsky
Very_High_Red Less_Green High_Blue Mostly Nonsky
Very_High_Red Less_Green Very_High_Blue Mostly Nonsky
Very_High_Red Medium_Green Very_Less_Blue Nonsky
Very_High_Red Medium_Green Less_Blue Mostly Nonsky
Very_High_Red Medium_Green Medium_Blue More_or_Less_Sky
Very_High_Red Medium_Green High_Blue Almost_Sky
Very_High_Red Medium_Green Very_High_Blue Almost_Sky
Very_High_Red High_Green Very_Less_Blue Nonsky
Very_High_Red High_Green Less_Blue Nonsky
Very_High_Red High_Green Medium_Blue More_or_Less_Sky
Very_High_Red High_Green High_Blue Sky
Very_High_Red High_Green Very_High_Blue Sky
Very_High_Red Very_High_Green Very_Less_Blue Nonsky
Very_High_Red Very_High_Green Less_Blue Nonsky
Very_High_Red Very_High_Green Medium_Blue Sky
Very_High_Red Very_High_Green High_Blue Sky
Very_High_Red Very_High_Green Very_High_Blue Sky

Table 7.4. Graphical representations of membership functions used to represent linguistic variables

SET A : (Linguistic variables are represented using Triangular membership functions)
N
o

Linguistic variable Graphical representations of membership functions

1 achromatic_channel

Meaning of abbreviations used for representing the dynamic range

A1 =

A5 =

A3 =
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A2 =

A4 =
2. haze_concentration

Meaning of abbreviations used for representing the dynamic range

B1 =

B5 =

B3 =

B2 =

B4 =
3. channel_difference

Meaning of abbreviations used for representing the dynamic range

C1 =

C5 =

C3 =

C2 =

C4 =
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4. red_channel

Meaning of abbreviations used for representing the dynamic range

D1 =

D5 =

D3 =

D2 =

D4 =
5. green_channel

Meaning of abbreviations used for representing the dynamic range

E1 =

E5 =

E3 =

E2 =

E4 =
6. blue_channel

Meaning of abbreviations used for representing the dynamic range
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F1 =

F5 =

F3 =

F2 =

F4 =
7 class

Meaning of abbreviations used for representing the dynamic range

G1 = = 0

G5 = = 1

G3 =

G2 =

G4 =

SET B : (Linguistic variables are represented using Gaussian membership functions)

N
o

Linguistic variable Graphical representations of membership functions

1 achromatic_channel

Meaning of abbreviations used for representing the dynamic range

H1 =

H5 =

H3 =

H2 =
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H4 =

achromatic_channel_range =

standard_deviation_ achromatic_channel =
2. haze_concentration

Meaning of abbreviations used for representing the dynamic range

I1 =

I5 =

I3 =

I2 =

I4 =

haze_concentration _range =

standard_deviation_ haze_concentration =
3. channel_difference

Meaning of abbreviations used for representing the dynamic range

J1 =

J5 =

J3 =

J2 =

J4 =

channel_diffrence _range =

standard_deviation_ channel_difference =
4. red_channel
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Meaning of abbreviations used for representing the dynamic range

K1 =

K5 =

K3 =

K2 =

K4 =

red_channel _range =

standard_deviation_ red_channel =
5. green_channel

Meaning of abbreviations used for representing the dynamic range

L1 =

L5 =

L3 =

L2 =

L4 =

green_channel _range =

standard_deviation_ green_channel =
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6. blue_channel

Meaning of abbreviations used for representing the dynamic range

M1 =

M5 =

M3 =

M2 =

M4 =

blue_channel _range =

standard_deviation_ blue_channel =
7 class

Meaning of abbreviations used for representing the dynamic range

N1 = = 0

N5 = = 1

N3 =

N2 =

N4 =

class _range =

standard_deviation_ class =

SET C : (Linguistic variables are represented using Trapezoidal membership functions)
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N
o

Linguistic variable Graphical representations of membership functions

1 achromatic_channel

Meaning of abbreviations used for representing the dynamic range
O1 = achromatic_channel_min
O10 = achromatic_channel_max

achromatic_channel_range = achromatic_channel_max - achromatic_channel_min
O2 = achromatic_channel_min+(achromatic_channel_range*0.1)
O3 = achromatic_channel_min+(achromatic_channel_range*0.225)
O4 = achromatic_channel_min+(achromatic_channel_range*0.325)
O5 = achromatic_channel_min+(achromatic_channel_range*0.45)
O6 = achromatic_channel_min+(achromatic_channel_range*0.55)
O7 = achromatic_channel_min+(achromatic_channel_range*0.675)
O8 = achromatic_channel_min+(achromatic_channel_range*0.775)
O9 = achromatic_channel_min+(achromatic_channel_range*0.9)

2. haze_concentration

Meaning of abbreviations used for representing the dynamic range
P1 = haze_concentration_min
P10 = haze_concentration _max

haze_concentration _range = haze_concentration _max - haze_concentration _min
P2 = haze_concentration _min+( haze_concentration _range*0.1)
P3 = haze_concentration _min+( haze_concentration _range*0.225)
P4 = haze_concentration _min+( haze_concentration _range*0.325)
P5 = haze_concentration _min+( haze_concentration _range*0.45)
P6 = haze_concentration _min+( haze_concentration _range*0.55)
P7 = haze_concentration _min+( haze_concentration _range*0.675)
P8 = haze_concentration _min+( haze_concentration _range*0.775)
P9 = haze_concentration _min+( haze_concentration _range*0.9)

3. channel_difference
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Meaning of abbreviations used for representing the dynamic range
Q1 = channel_difference_min
Q10 = channel_difference _max

channel_difference _range = channel_difference _max - channel_difference _min
Q2 = channel_difference _min+( channel_difference _range*0.1)
Q3 = channel_difference _min+( channel_difference _range*0.225)
Q4 = channel_difference _min+( channel_difference _range*0.325)
Q5 = channel_difference _min+( channel_difference _range*0.45)
Q6 = channel_difference _min+( channel_difference _range*0.55)
Q7 = channel_difference _min+( channel_difference _range*0.675)
Q8 = channel_difference _min+( channel_difference _range*0.775)
Q9 = channel_difference _min+( channel_difference _range*0.9)

4. red_channel

Meaning of abbreviations used for representing the dynamic range
R1 = red_channel_min
R10 = red_channel _max

red_channel _range = red_channel _max - red_channel _min
R2 = red_channel _min+( red_channel _range*0.1)
R3 = red_channel _min+( red_channel _range*0.225)
R4 = red_channel _min+( red_channel _range*0.325)
R5 = red_channel _min+( red_channel _range*0.45)
R6 = red_channel _min+( red_channel _range*0.55)
R7 = red_channel _min+( red_channel _range*0.675)
R8 = red_channel _min+( red_channel _range*0.775)
R9 = red_channel _min+( red_channel _range*0.9)

5. green_channel

Meaning of abbreviations used for representing the dynamic range
S1 = green_channel_min

S10 = green _channel _max
green _channel _range = green _channel _max - green _channel _min

S2 = green _channel _min+( green _channel _range*0.1)
S3 = green _channel _min+( green _channel _range*0.225)
S4 = green _channel _min+( green _channel _range*0.325)
S5 = green _channel _min+( green _channel _range*0.45)
S6 = green _channel _min+( green _channel _range*0.55)
S7 = green _channel _min+( green _channel _range*0.675)
S8 = green _channel _min+( green _channel _range*0.775)
S9 = green _channel _min+( green _channel _range*0.9)
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6. blue_channel

Meaning of abbreviations used for representing the dynamic range
T1 = blue_channel_min

T10 = blue _channel _max
blue _channel _range = blue _channel _max - blue _channel _min

T2 = blue _channel _min+( blue _channel _range*0.1)
T3 = blue _channel _min+( blue _channel _range*0.225)
T4 = blue _channel _min+( blue _channel _range*0.325)
T5 = blue _channel _min+( blue _channel _range*0.45)
T6 = blue _channel _min+( blue _channel _range*0.55)
T7 = blue _channel _min+( blue _channel _range*0.675)
T8 = blue _channel _min+( blue _channel _range*0.775)
T9 = blue _channel _min+( blue _channel _range*0.9)

7. class

Meaning of abbreviations used for representing the dynamic range
U1 = class_min = 0
U10 = class _max = 1

class _range = class _max - class _min
U2 = class _min+( class _range*0.1)
U3 = class _min+( class _range*0.225)
U4 = class _min+( class _range*0.325)
U5 = class _min+( class _range*0.45)
U6 = class _min+( class _range*0.55)
U7 = class _min+( class _range*0.675)
U8 = class _min+( class _range*0.775)
U9 = class _min+( class _range*0.9)

Here the same experiment is repeated thrice using different membership functions to represent
linguistic variables. Although Trapezoidal membership function is not an appropriate choice for
previous methods as it gives almost constant outputs over a wide range but here it is also considered to
note the results. Graphical representations of membership functions are given in tabular form in this
Chapter for better understanding as these figures are represented using several variables which needs to
be explained along with the figures.
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Table 7.5. Results obtained using the proposed Fuzzy controller

No Original image Segmented
image (using
Triangular
membership
function)

Difference
image obtained
by subtracting
Original and
Segmented
images (using
Triangular
membership
function)

Segmented
image (using
Gaussian
membership
function)

Difference
image obtained
by subtracting
Original and
Segmented
images (using
Gaussian
membership
function)

Segmented
image (using
Trapezoidal
membership
function)

Difference
image obtained
by subtracting
Original and
Segmented
images (using
Trapezoidal
membership
function)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
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11.

12.

13.

14.

The results given in Table 7.5 proves the efficiency of the proposed Fuzzy controller (which is
designed for performing sky segmentation).
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DETECTION OF
STRUCTURALLY VARIANT

ERYTHROCYTES
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Chapter 8
A brief introduction on blood components and their functionalities are given in Section 1.2 of Chapter
1. Poikilocytes (erythrocytes whose shapes differ from the bi-concave disc shape like structure of
normal erythrocytes) are introduced in that Section and the practical significance of timely detection of
the presence of poikilocytes in human blood stream to prevent the severity of various life-threatening
diseases are also discussed in the same Section.

Few decades ago, poikilocytes detection were done manually by counting the number of poikilocytes
present in blood sample by medical professionals. This type of detection procedure is not only tedious
but is also not reliable as it is subjected to human error. To overcome these drawbacks, researchers
have proposed several automated poikilocytes detection methods to make the process reliable as well
as less tedious .

8.1. Literature Survey

Inspired by the real-life significance of this problem, various researchers have proposed several
automated poikilocytes detection methods. Brief discussion on the methodology of each of the existing
methods is given in this Section and their shortcomings are also highlighted.

8.1.1. Counting based automated poikilocytes detection methods

In this Section, the methodologies of existing counting based automated poikilocytes detection methods
are discussed in details and their shortcomings are highlighted.

In [134], the authors performed poikilocytes detection using Circular Hough Transform (CHT) method
[135] based on the radius range of erythrocytes present in blood smear images. The radius range is
computed by considering the difference between the maximum radii and minimum radii of erythrocytes
after cropping them manually.

Limitations:

 This method is subjected to human error as it involves manual segmentation of erythrocytes
from blood smear images.

 The use of CHT technique to perform poikilocytes detection in this method also enhances the
chances of erroneous detection as CHT technique detects all erythrocytes having circular
shapes like spherocytes and stomatocytes (whose morphology are given in Fig.1.2.2.3 of
Chapter 1) as normal erythrocytes because of the similarities in their morphology with that of
normal erythrocytes.

The authors in [136] performed poikilocytes detection using the CHT method similarly as done in [134]
but instead of manually segmenting erythrocytes from other components present in blood smear images,
the authors performed segmentation of erythrocytes using a histogram based threshold technique in
this method.

Limitation:

 Although the histogram based threshold technique reduces the error associated with the manual
erythrocytes segmentation method used in [134] but the chances of erroneous detection of
poikilocytes having circular morphology as normal erythrocytes due to the use of CHT technique
also exists in [136].

In [137], the authors performed segmentation of erythrocytes from rest of the blood components
present in blood smear images using similar intensity based threshold technique as done in [136] but
instead of using CHT method for performing poikilocytes detection, they detected poikilocytes using
an Iterative Structured Circle detection method which they have designed by exploiting the circle
detection strategies adapted in randomized circle detection techniques.



171

Limitations:

 Like the authors of the methods proposed in [134] and [136], the authors of this method too
performed poikilocytes detection using circle detection algorithms. Hence, this method also
cannot accurately detect poikilocytes having circular morphology similar to that of the normal
erythrocytes.

 This method fails to effectively separate the overlapped erythrocytes present in blood smear
images and thus enhances chances of erroneous erythrocytes detection.

The authors in [138] tried to detect the overlapped erythrocytes using the following mathematical
equation:

���� =
�������� ����� ����� ���� �� ���
������ ����� ���� �� ������ ���

(8.1.1.1)

If the ����value for any erythrocyte is much higher than one, then that erythrocyte is considered as
overlapped erythrocyte and eliminated from counting process. The authors in [139] tried to solve this
issue by segmenting overlapped cells using a clump splitting process.

All the methods discussed in this Section are counting based methods which are designed to detect and
segment erythrocytes from other components present in blood smear images and then counting them.
None of these methods can classify erythrocytes into different classes based on the variations in their
morphology.

To solve these limitations, several authors have designed handcrafted features (features extracted by
human experts) based automated erythrocytes classification methods. The methodologies and
limitations of these methods are discussed in the following Section.

8.1.2.Handcrafted features based automated erythrocytes classification methods

Brief descriptions of the methods designed for classifying various types of poikilocytes by several
authors using handcrafted features and traditional classifiers are given in this Section. The limitations
of these methods are also highlighted here.

In [140], the authors performed classification of normal and abnormal erythrocytes using compactness
and 7 invariant moment features [141] extracted from erythrocytes which are segmented from blood
smear images using the Otsu’s threshold technique [142]. In this method, classification is done using
Artificial Neural Network.

The authors in [143] classified erythrocytes using a set of twenty seven handcrafted features which
includes four geometrical features (area, compactness, perimeter and form factor), 7 invariant moment
features and sixteen first order and second statistical features like mean, skewness, kurtosis, energy, etc.
The classifier used in this method is Back Propagation Neural Network [144].

Six types of poikilocytes namely macrocytic normochromic, macrocytic hypchromic, normocytic
normochromic, normocytic hypchromic, microcytic normochromic and microcytic hypchromic are
classified in [145] using a set of thirty five features which includes geometrical features (area,
compactness, major axis length, minor axis length, area,etc.), textural features (Harlick features) as
well as entropy based features. Baysian classifier is used in this method to perform classification.

In [146], the authors classified four types of poikilocytes namely, elliptocytes, dacrocytes, macrocytes
and echinocytes using a set of geometrical features (form factor, major axis, minor axis, perimeter,
compactness, eccentricity,etc) using Artificial Neural Network and Decision Tree classifier
respectively and compared their performance efficiencies.

Maity et al. [147] classified eight types of poikilocytes (namely, microcytic, elliptocyte, macrocytic,
dacrocyte, sickle,kerocytes, acanthocytes, echinocytes) and normal erythrocytes using geometrical
features (area, perimeter, compactness, solidity,etc.). C4.5 decision tree classifier [148] is used here for
performing classification.
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The authors in [149] classified normal and abnormal erythrocytes using a set of geometrical features
(area, perimeter, compactness, etc) and textural features (correlation, entropy, energy, etc) using
Support Vector Machine and Extreme machine learning [150] classifiers respectively and compared
their accuracy.

In [151],the authors classified three different types of poikilocytes namely, dacrocytes, elliptocytes and
schistocytes using geometrical features (area, perimeter, major axis, minor axis, solidity,
eccentricity,etc.). The authors performed classification by applying majority voting theory on the
results obtained from three classifiers SVM, k-Nearest Neighbor (KNN ) algorithm [152] and Neural
Network.

The authors in [153] performed classification of normal and abnormal erythrocytes using 7 invariant
moment features, geometrical features (area, major axis, minor axis,perimeter), textural features,
kurtosis, skewness, etc using Back Propagation Neural Network and LeNet 5 network [154]
respectively and compared their accuracy.

In [155], the authors designed a hybrid neural network classifier to classify normal and abnormal
erythrocytes using geometrical features (circularity, medical axis ratio,eccentricity), textural features
and entropy based features.

The authors in [156], proposed a digital in-line holographic microscopy (DIHM) and machine learning
based erythrocytes classification method. They extracted erythrocytes by segmenting the area around
the centre portions of their reconstructed hologram images obtained using local-peak-searching
algorithm. Following segmentation, they extracted 12 features (information on intensity distributions,
morphological and optical focusing characteristics) from segmented erythrocytes and classified them
into three classes (discocytes, echinocytes, and spherocytes) using decision tree model with 97%
accuracy.

Some of the common handcrafted features used in these works are listed as follows:

 Compactness

 Eccentricity

 Solidity

 Form factor

 Medical Axis Ratio

 7 Invariant Moments

Initially, these features are extracted from randomly selected 150 cells of each type of erythrocytes
whose morphological details are given in Fig. 1.2.2.3 of Chapter 1. The publicly available sources
from which these cell images are taken are mentioned in Chapter 9. The plots showing the overlapping
characteristics of handcrafted features extracted from the cells are given in Fig. 8.1.2.1.

(a) (b) (c)
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(d) (e) (f)

Fig.8.1.2.1. Overlapping characteristics of handcrafted features (a) Compactness, (b) Eccentricity, (c)
Solidity,(d)Form Factor, (e)Medical Axis Ratio, (f) 7 Invariant Moments,

From the above plots, it is seen that for all the features, the values obtained for each type of erythrocyte
often cannot be distinguished from each other which often leads to the production of erroneous results
as neural networks classify objects into different classes based on the variations between numerical
values of features extracted from objects belonging to different classes.

This limitation of existing handcrafted features based erythrocytes detection methods have urged
authors to propose various CNN based erythrocytes classification methods as CNN has inherent feature
extraction capability and thus these type of networks solve the problems which arise while performing
classification using erroneous features.

8.1.3. CNN based automated erythrocytes classification methods

Brief descriptions of the existing CNN based automated erythrocytes detection methods are given in
this Section and their shortcomings are also highlighted.

The authors in [157] designed a novel CNN architecture comprising of three convolutional layers, three
pooling layers, two dropout layers and one fully-connected layer to classify eight types of poikilocytes
(namely, discocytes, echinocytes, enlongated, granular, oval, reticulocytes, sickle and stomatocytes).

In [158], the authors performed identification of malaria infected cells using LeNet5 [154], AlexNet
[159] and GoogLeNet [160] respectively and stated that each CNN gives better classification accuracy
compared to SVM trained with seven colour, entropy and shape features to perform classification of
similar data.

Ten different types of erythrocytes (namely normal,echinocyte, dacrocyte, schistocyte, elliptocyte,
acanthocyte, stomatocyte ,spherocyte, overlap and target cell) are classified in [161] by a 150 layer
CNN having several dense connections. The architecture of this CNN highly resembles the architecture
of DenseNet which is proposed in [162].

In [163], the authors performed segmentation and classification of erythrocytes collected from patients
suffering from SCD using deformable U-Net which is designed by replacing the convolutions layers of
the U-Net [164] with deformable convolution layers to make it more robust towards local features.

The authors in [165] classified erythrocytes into two classes namely, crossiant and slippers using a
CNN whose architecture comprises of alternate convolution, pooling and Rectified Linear Unit (ReLU)
layers but unlike previous approaches, it can take on a range of floating point values as it replaces the
classification layer with a regression layer with linear transfer functions.

The CNN features used in these methods are subjected to inherent information loss as all of them have
used ReLU as an activation function.

Mathematically, ReLU is explained as follows:

� � = max �, 0 (8.1.3.1)

The information loss occur due to suppression of negative values.
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Some authors have proposed few variants of ReLU to solve this issue. The proposed variants are
mathematically represented as follows:

i. Leaky ReLU (LReLU) [166]:

� � = 0.01 ∗ � ��� � < 0 (8.1.3.2)

� � = � ��� � ≥ 0 (8.1.3.3)

Although LReLU slightly solves the problem by partially suppressing the negative values, but the
results thus produced are not consistent.

ii. Parametric ReLU (PReLU) [167]:

� � = � ∗ � ��� � < 0 (8.1.3.4)

� � = � ��� � ≥ 0 (8.1.3.5)

Here, the authors replaced 0.01 in LReLU by ‘α’ to improve its performance. But PReLU saturates for
large negative values.

iii. Exponential ReLU(EReLU) [168]:

� � = � exp � − 1 ��� � < 0 (8.1.3.6)

� � = � ��� � ≥ 0 (8.1.3.7)

Although EReLU gives better results compared to LReLU and PReLU, but it also saturates for very
large negative values.

iv. Concatenated ReLU (CReLU) [169] concatenates both the positive and negative parts of the
activation, thus preserving both the positive and negative values.

Here the authors replaced 0.01 in LReLU by ‘α’ to improve its performance. But PReLU saturates for
large negative values.

In [170], the authors tried to solve this information loss issue and after performing extensive analyses.
They stated that the performances of CNN improve after removing the last ReLU layer from their
architectures.

Inspired by the observation of the authors in [170] and the methods proposed in [171]-[172] which
stated that performing classification using feature ensemble formed by incorporating features of
multiple CNN is beneficial compared to performing similar operation using features of single CNN, as
shallow CNN provide more general features whereas deep CNN provide specific features, so
combination of these features help in better image representation and also significantly improves the
methods’ performances, a novel two-stage feature selection algorithm is proposed in this thesis.

This is probably the first algorithm proposed which performs selective suppression of positive or
negative values or none of each feature, depending upon its significance in classification. The proposed
algorithm facilitates the selection of only significant features, that too in their most informative form
(Fully Connected (FC)/ReLU/ InverseReLU), in contrary to any of the above-mentioned variants which
suppresses negative values of all features identically ignoring their contribution in performing
classification.

Detailed description of each step of the proposed two-stage feature selection algorithm is carried out in
Chapter 9 and improvement in the results obtained using the proposed two-stage feature selection
method while performing detection of nine types of erythrocytes over existing methods are also shown
in Chapter 9.
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Chapter 9
Detailed discussion on each step of the proposed two-stage feature selection algorithm designed in this
thesis is carried out in this Chapter. Comprehensive comparative analyses of the performance
efficiencies of the proposed method as well as several existing methods are also conducted in this
Chapter to prove the excellence of the proposed method over the state-of-the-art methods.

The proposed method aims at performing automatic erythrocytes detection using ensemble of selected
features obtained from multiple CNN (namely, AlexNet [159],Vgg16 and Vgg19 [171]) to overcome
the shortcomings of existing works arising due to the highly overlapping characteristics of handcrafted
features. The main merit of this work lies in the proposed two-stage feature selection algorithm, which
reduces information loss occurring in traditional CNN due to the suppression of negative values of
features by ReLU activation function and also largely reduces the feature space’s dimension. Moreover,
it is the first algorithm proposed which is capable of selectively suppressing the positive or negative
values or none of each feature depending upon its respective significance in performing classification,
in contrary to the previously proposed variants of ReLU. The first stage of the feature selection
algorithm deals with construction of a feature space for each CNN by performing inter-selection among
its Fully Connected (FC), ReLU and InverseReLU features and selecting features possessing minimum
Fuzzy Entropy (FE) and maximum newly formulated Total Contribution Score (TCS) values
simultaneously. In the second stage of the algorithm, intra-selection among features within each
selected feature space of each CNN is performed to eliminate less significant features which
simultaneously satisfy the stated redundancy and non-relevancy criteria. Finally, feature ensemble is
created by concatenating the selected features obtained from each CNN and detection of nine types of
erythrocytes is performed using the created feature ensemble. The proposed method registers mean
average precision (mAP) of 98.6%, thus proving its excellence over existing works.

The architecture of the deep neural network designed in this method is inspired by the architecture of
the Regions with CNN (R-CNN) [172] except the fact that in R-CNN, the features extracted from one
CNN is used to perform object detection while in the designed network selected features from multiple
CNN are used to perform erythrocytes detection.

9.1. Data collection

The data (blood smear images) containing the nine types of erythrocytes (whose morphology are given
in Fig.1.2.2.3 of Chapter 1) are obtained from several publicly available sources e.g. websites
containing royalty free stock photos of RBC [173]-[175] and image banks containing blood smear
images of different types of erythrocytes [176]-[179].

9.2. Fine-tuning

All three CNN considered for performing feature extraction in this work are trained with images from
ImageNet database [180]. The characteristics of images in that database differ widely from that of
blood smear images obtained from [173]-[179] as ImageNet database mostly comprises of generic
images, whereas blood smear images are microscopic images. So fine-tuning of these CNN are
essential for performing proper feature extraction. For this reason, initially a 1000-way classification
layer of each of these networks is replaced with a 10-way classification layer (where 9 represents the
number of erythrocytes’ classes and 1 for background). Then the parameters of CNN are trained using
stochastic gradient descent algorithm [181] and learning rate (0.001). All region proposals with ≥0.6
Intersection over Union (IoU) overlap with ground-truth box are treated as positive instances for that
box class only while the rest are treated as negative instances for that class.

9.3. Construction of feature spaces

Initially, region proposals are extracted from each image similarly as done in [172] and the generated
regions proposals are wrapped according to the respective input dimension specifications of CNN (e.g.
227x227 (AlexNet) and 224x224 (Vgg16 and Vgg19)) and then the wrapped region proposals are fed
to each CNN for feature extraction.
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The features are extracted from the FC layer located before the last ReLU layer of each CNN as it is
proved in [170] that this layer provides the most informative features.

After initial feature extraction, a feature space is obtained for each CNN which comprises of features
consisting of both positive and negative values (FC features). Following which, ReLU and
InverseReLU activation functions are applied on features in FC feature space of each CNN respectively.

InverseReLU activation function is mathematically expressed as:

� � = min 0, � (9.1.3.1)

ReLU and InverseReLU features consist of positive and negative values of corresponding FC features
respectively.

So, at the completion of this stage, three (FC, ReLU and InverseReLU) features sets are obtained for
each CNN.

9.4. Proposed two-stage feature selection method

The proposed two-stage feature selection method performs feature selection based on two parameter’s
values namely, Fuzzy Entropy (FE) and Total Contribution score (TCS) parameters . Details of these
parameters are given in the following Sections.

9.4.1. Fuzzy Entropy [31]

This parameter measures the fuzziness (uncertainties) of features. So higher FE suggests lesser
information content and vice versa.

9.4.2. Total Contribution Score

TCS is a novel parameter which is formulated in this work by exploring the basic concepts of neural
networks to measure the total contribution of each feature in performing classification.

In order to perform TCS evaluation for each feature, a fully connected neural network consisting of an
input layer, a hidden layer and an output layer is designed whose architecture is given in Fig.9.4.2.1.
The number of neurons in the input and output layers are equal to total number of input features and
total number of output classes respectively. The number of neurons in hidden layer are set to according
to the three thumb rules stated in [182].

Fig.9.4.2.1. Neural network designed to perform TCS evaluation

The neural network is trained using mini-batch gradient descent optimization algorithm and back-
propagation as a gradient computing technique. The weight values are initialized as stated in [183].
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�[�] = � 0,
2

� � + � �−1 (9.4.2.1)

This method of weight initialization is called Xavier/He initialization. In (9.4.2.1), ‘W[l]’ and ‘n[l]’
represent the weights and the number of neurons in the ‘lth’ layer of the neural network respectively.
Here as the neural network uses softmax as an activation function in the output layer so its loss
function is Cross Entropy Loss function which is mathematically represented as:

� �, �� =− 1 − � log 1 − �� + ������ (9.4.2.2)

In (9.4.2.2), ‘�’ and ‘��’ represent actual output and predicted output respectively.

Since in this work, mini-batch gradient descent algorithm is used so the cost function is:

� =
1
�

�=1

�

�(�) (9.4.2.3)�

In (9.4.2.3), ‘L(i)’ and ‘B’ represent loss function for ith sample and mini-batch size respectively . The
value of ‘B’ is set to 64. As L2 regularization is used here to avoid over-fitting, so one more term is
added to the above equation and the final cost function becomes:

���� = � +
�
2

� 2 (9.4.2.4)

���� = � +
�
2�

�� (9.4.2.5)

The weights are updated using the following weight update rule:

��+� = �� − �
��
���

− �
�
2
���

���

���
(9.4.2.6)

In (9.4.2.6) ‘��+1’ and ‘�� ’ represent weight values after and before upgradation respectively, ‘α’
represents learning rate. The value of ‘α’ and ‘�’ are set 0.01 and 0.001 respectively.

In each session, only one feature space is given as input to the neural network at a time to obtain the
updated weight values.

So at the end of each session, two sets of updated weights are obtained. One set of weights connects the
input layer’s neurons with hidden layer’s neurons while another set of weights connects hidden layer’s
neurons with the output neurons. The magnitude of weight connecting two neurons signifies the
strength of connections between them or in other words the weight represents the influence of one
neuron have on another neuron.

Here the magnitudes of updated weights connecting the input layer neurons with the hidden layer
neurons are used to evaluate the TCS values, as these weight values are directly related to the input
features.

Higher the magnitude of the weight connecting an input neuron to a hidden layer neuron, more will be
its influence on classification due to the following reasons:

The magnitude of the weight connecting an input neuron with a neuron in the hidden layer gives the
measure of the influence that input feature has on the output of that hidden neuron.

The output of that hidden neuron in turn will be fed as inputs to all output neurons in the output layer,
so the predicated classes, which are obtained as final outputs also become indirectly influenced by the
input feature.

From these reasons, it can be concluded that the total contribution of a feature in performing
classification can be evaluated by performing the summation of the magnitudes of weights connecting
it to the hidden layer neurons, so this parameter is termed as Total Contribution Score (TCS).
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The entire process is explained as follows:

At the end of each session, two sets of updated weight matrices are obtained, one containing the
updated weights connecting the input neurons with the hidden layer neurons while the other containing
the updated weights connecting the hidden layer neurons with the output neurons. Here focus is on the
updated weights connecting the input neurons with the hidden layer neurons. The dimension of that
updated weight matrix is M × N, where ‘�’ and ‘�’ represent the number of hidden neurons and input
features respectively.

Let ‘���' be the weight connecting the ‘ith’ input neuron to the ‘jth’ hidden neuron. TCS value of the
‘ith’ feature is calculated using the following equation:

���� =
�=1

�

���� (9.4.2.7)

The above equation is formulated from the concept that the weights connecting the ‘ith’ feature with all
‘M’ hidden neurons, give the measure of the influence of the ‘ith’ feature on the outputs of ‘M’ hidden
neurons which in turn influence the final outputs or in other words it gives one the measure of the total
influence of the ‘ith’ feature on classification. Hence, the summation of the magnitudes of these weights
give the desired TCS value of the ‘ith’ feature.

TCS values are computed for all FC features giving the FC feature space of each CNN as inputs to the
neural network each time.

For computing TCS values of ReLU features, a particular feature in the FC feature space of each
CNN is replaced with its corresponding ReLU counterpart each time, keeping all other features
unchanged and feeding the entire feature space as inputs to the designed neural network to evaluate the
TCS value of that particular ReLU feature. Similar operation is repeated while computing the TCS
values of InverseReLU features also.

Here, only one feature in the FC feature space of each CNN is replaced either with its corresponding
ReLU feature or with its corresponding InverseReLU feature each time keeping all other features and
parameters of neural networks unaltered while evaluating their respective TCS values in order to
measure how the contribution of that particular feature varies by suppressing its positive values or
negative values respectively in an identical environment.

Finally, after computing both FE and TCS values of FC, ReLU and InverseReLU features of each CNN,
one set of FE values and one set of TCS values are obtained for each type of features of each CNN
having dimension 1 × N. So, altogether nine FE sets and nine TCS sets are obtained.

9.4.3. First stage of the proposed feature selection algorithm

The first stage of the algorithm deals with the construction of a new feature space for each CNN by
performing inter-selection among its FC, ReLU and InverseReLU features and selecting features which
possesses minimum FE and maximum TCS values simultaneously, thus eliminating chances of
information loss. The pseudo-code of this stage of the algorithm is given in Fig.9.4.3.1 below.

A. Input: FEFC[1xN], FEIR[1xN], FER1xN], TCSFC[1xN], TCSIR[1xN], TCSR [1xN]

Output: Indices[1xN]-contain indices of features possessing minimum FE and maximum TCS values
simultaneously

1. Initialization: p=0, k=0, indices=zeros[1xN];

2. for j=1 to N do

3. a1=FEFC(1,j); b1=FEIR(1,j); c1=FER (1,j); 4.d1=TCSFC(1, j); e1=TCSIR(1, j); f1=TCSR (1, j);

5. FEmin=min(a1,min(b1,c1));

6. TCSmax=max(d1,max(e1,f1));
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7. if (FEmin==a1) then 8. p=1;

9. if (FEmin==b1) then 10. p=2;

11. if (FEmin==c1) then 12. p=3;

13. if (TCSmax==d1) then 14. k=1;

15. if (TCSmax==e1) then 16. k=2;

17. if (TCSmax==f1) then 18. k=3;

19. if (p==k) then 20. Indices(1, j)=p;

21. end for

22. return Indices[1xN]

B. Input: Indices[1xN]

Output: 3 arrays (the column indices of different features) and the respective sizes of these arrays

1. [r1,c1]=find(Indices==1); [r2,c2]=find(Indices==2);

[r3, c3]=find(Indices==3);

2.[mc1,nc1]=size(c1);[mc2,nc2]=size(c2);

[mc3,nc3]=size(c3);

3. return c1,c2,c3,nc1,nc2,nc3

C. Input: FeaturesFC[PxN], FeaturesIR[PxN], FeaturesR [PxN],c1[1xnc1],
c2[1xnc2],c3[1xnc3],nc1,nc2,nc3

Output: Selected features [Px(nc1+nc2+nc3)]

1.Initialization:FC[Pxnc1]=zeros[Pxnc1], IR[Pxnc2]=zeros[Pxnc2], R[Pxnc3]=zeros[Pxnc3]

2. for i1=1 to nc1 do 3. a2=c1(1,i1);

4. FC(:,i1)=FeaturesFC(:, a2); 5. end for

6. for i2=1 to nc2 do 7. a3=c2(1,i2);

8. IR(:,i2)=FeaturesIR(:, a3); 9. end for

10. for i3=1 to nc3 do 11. a4=c3(1,i3);

12. R(:,i3)=FeaturesR(:, a4); 13. end for

14. Features selected after the 1st stage=horzcat (FC,IR,R);

15. return Selected features

Fig. 9.4.3.1. Psuedo code of the 1st stage of the feature selection of each CNN model

9.4.4. Second stage of the proposed feature selection algorithm

In the second stage of the algorithm, intra-selection of features within each selected feature spaces
obtained for each CNN is performed by eliminating features which simultaneously satisfies the
redundancy and non-relevancy criterion stated below, thus ensuring the selection of most significant
features.

a) Redundancy criteria states that if FE values of two or more features become equal, then those
features are termed as redundant features.

b) Non-relevancy criteria states that if the TCS value of a feature is below the empirically chosen
threshold, ‘th’, then it satisfies the non-relevancy condition.
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Mathematically the threshold, ‘th’ is defined as:

�ℎ = 0.20 ∗
1
�
�=1

�

����� (9.4.2.8)

In (9.4.2.8), ‘L’ represent the total number of features in the feature space of each CNN obtained after
the first selection stage. The value of ‘L’ may vary for each CNN.

At this stage, TCS values of features belonging to the selected feature space of each CNN obtained
after the first stage are computed by giving the selected features as inputs to the neural network after
modifying the number of input neurons and hidden neurons as mentioned earlier.

At the end of this stage, a feature space is obtained for each CNN which comprises of final selected
features. These selected features obtained from each CNN after two-stage feature selection are
concatenated to form the feature ensemble using which erythrocytes detection is performed here.

Fig.9.4.1. Block diagram of the proposed two-stage feature selection method

9.5. Experimental Results

Results obtained at each stage of the proposed method as well as the comparative analyses’ results are
given in this Section. FE and TCS values computed for FC,ReLU and InverseReLU features at each
stage of the proposed two-stage feature selection algorithm are given in graphical form in Fig.9.5.1 and
Fig.9.5.2 respectively. Stage-wise reduction of feature space dimension is shown in Table 9.5.1. Stage-
wise improvement achieved in the performance of the designed method with the introduction of the
two-stage feature selection algorithm is shown in Table 9.5.2. Comparative analyses of the mAP values
obtained from the proposed method as well as from several existing methods using only ALL-IDB
database [176] are given in Table 9.5.3.Comparative analyses of the mAP values obtained from the
proposed method as well as CNN based erythrocytes detection methods and handcrafted features
based erythrocytes detection methods on the entire database considered in this work are given in Table
9.5.4 and Table 9.5.5 respectively. Some examples of output results are given in Fig.9.5.3.
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AlexNet Vgg16 Vgg19

(a)

AlexNet Vgg16 Vgg19

(b)

Fig. 9.5.1. FE and TCS values of features (a) FE values, (b) TCS values (x-axis: Feature dimension, y-
axis: Parameter values)

(a)
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(b)

Fig.9.5.2. FE and TCS values of features selected at different stage (a) First stage, (b) Second stage(x-
axis: Feature dimension, y-axis: Parameter values)( Please zoom to see the axis ranges)

Table 9.5.1. Stage-wise reduction in dimension of each CNN’s feature space

Type of CNN model Initial Feature
dimensionality

Feature dimensionality after the first
stage of feature selection

Feature dimensionality at the end of
second stage of feature selection

AlexNet 4096 1594 1552

Vgg16 4096 1380 1345

Vgg19 4096 1210 1185

Table 9.5.2. Improvement in results obtained due to the introduction of the proposed two-stage feature
selection algorithm

Norm
al

Ellipto
cytes

Sickle
cells

Dacroc
ytes

Acantho
cytes

Echino
cytes

Stomatoc
ytes

Sphero
cytes

Schistoc
ytes

mAP

FCAlexNet (no fine-tuning) 60.7 62.9 66.5 38.9 69.2 48.7 56.4 70.6 76.5 61.2

FCAlexNet (fine-tuning) 72.2 65.8 68.9 44.6 72.0 55.8 64.9 76.5 71.9 65.8

FCVgg16 (no fine-tuning) 78.4 73.1 66.8 52.6 78.2 61.6 67.4 83.7 84.5 71.8

FCVgg16 (fine-tuning) 84.5 76.8 70.5 60.4 73.2 68.9 69.2 78.6 83.7 74.0

FCVgg19 (no fine-tuning) 82.6 78.4 72.9 68.1 79.9 75.1 73.7 82.3 87.5 77.8

FCVgg19 (fine-tuning) 85.9 82.8 78.6 72.5 81.7 88.5 82.6 89.7 92.7 83.9

Feature ensemble
(FCAlexNet&FCVgg16&FCVgg19) (no feature-
selection & no fine-tuning )

95.7 88.5 85.1 87.5 93.7 91.9 86.3 90.4 96.1 90.6

Feature ensemble
(FCAlexNet&FCVgg16&FCVgg19) (no feature-
selection but with fine-tuning)

96.6 92.5 87.6 89.6 95.9 92.7 88.6 91.9 97.3 92.5

Proposed Methodology 99.8 98.5 97.2 98.1 99.3 98.7 97.9 98.6 99.2 98.6



183

Table 9.5.3. Comparative analysis of proposed method with existing works using ALL –IDB database
[176]

Ref Features used Abnormalities detected Performance

Tomari.

et.al[140] (#)

Morphological features: Compactness and Moment
Invariants

Normal and Abnormal RBCs (But types of abnormalities
are not detected)

82%

Razzak et
al.[184] (ɷ)

Morphological features: Area, Circularity, Parameter,
Centroid, Medial axis ratio, Cell deform ratio,
Roughness, Regularity, Uniformity and Coarseness

Normal, Sickle cells, Elliptocytes & Ovalocytes,
Acanthocytes, Burr cells and Helmet cells

83.14%

Shirazi et
al.[149] (ɷ)

Morphological features: Area, Perimeter,
Compactness, Circularity, Rectangularity

Texture features: Entropy, Energy, Mean, Min, Max,
Contrast, Correlation and Homogeneity

Normal and Abnormal RBCs (But types of abnormalities
are not detected)

95.3% (ELM)

90% (SVM)

Proposed
method

Feature ensemble (obtained by grouping selected
features of multiple CNNs)

Normal, Elliptocytes, Sickle cells, Dacrocytes,
Echinocytes, Acanthocytes, Schistocytes, Spherocytes,
Stomatocytes

96.9%

Table 9.5.4. Comparative analysis of proposed method with existing CNN based works

Ref CNN architecture Information
loss

Abnormalities detected Performance

Xu et al. [157] (ɷ) 10 layer CNN including 3 convolution, 3
pooling, 2 Dropout layers and a Fully connected
layer with ReLU activation.

Present Discocytes, Oval, Echinocytes, Enlogated,
Sickle, Granular, Reticulocytes, Stomatocytes

88.6%

Dong et al. [158] (ɷ) LeNet , AlexNet, GoogleLeNet (These CNNs use
ReLU as activation function)

Present Malaria infected and non-infected RBCs 95.1%(LeNet)

92.7%(Alexnet)

98% (GoogLeNet)

Kihm et al.[165] (ɷ) 12 layer CNN consisting of 1 Input,
3convolution, 3 max-pooling, 3 ReLU, 1output
and 1 regression layers.

Present Slipper, Croissant and Others 86.3%

Proposed method Fine-tuned AlexNet, Vgg16 and Vgg19. Features
extracted from these CNNs are used together for
RBC detection after proper selection.

Absent Normal, Elliptocytes, Sickle cells,
Dacrocytes, Echinocytes, Acanthocytes,
Schistocytes, Spherocytes, Stomatocytes

98.6%

Table 9.5.5. Comparative analysis of the proposed method with existing handcrafted features based
methods

Ref Features used Abnormalities detected Performance

Veluchamy et al.
[143] (#)

Morphological features: Area, Perimeter, Compactness, Form Factor, First
order statistical features:Mean, Dispersion, Variance, Average Energy, Skew
ness, Kurtosis, Median, Mode

Second Order Statistical features: Energy, Entropy, Correlation, Inertia,
Homogeneity

Algebraic Moment Invariants: 7 Moment Invariants

Normal and Abnormal cells.
(Abnormal cells are collected from
patients infected with Sickle cell
anaemia).

73.3%

Bhowmick et al.
[145] (ɷ)

First order statistical features: Energy, Skew ness, Kurtosis, Means intensity,
variance, Entropy based features: Shannon entropy, Renyi entropy, Kapurs
entropy, Yager entropy

Macrocytic Normochromic,
Macrocytic Hypochromic,
Normocytic Normochromic,
Normocytic Hypochromic,

88.99%
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Morphological features: Area, Perimeter, Eccentricity, Compactness, Microcytic Normochromic,
Microcytic Hypochromic,

Dalvi et al. [146]
(ɷ)

Morphological features: Area, Major Axis, Minor Axis, Perimeter, Form
Factor, Diameter, Shape Geometry, Compactness, Eccentricity, Solidity,
Bounding Box Ratio, Equidiameter, Extent, Circularity

Normal, Elliptocytes, Echinocytes,
Tear drop cells (Tear drop
cells) ,Macrocytes

76.54%(ANN)

73.87%(DT)

Maity et al.[147]
(ɷ)

Morphological features: Perimeter, Area, Min-radius, Max-radius, Feret, Angle
of the Feret, Breadth, Convex Hull, Convex Hull area, Radius of Minimal
Bounding Circle, Count correct, Aspect Ratio , Roundness, Area Equivalent
Diameter, Perimeter Equivalent Diameter, Equivalent Ellipse Area, Compactness,
Solidity, Concavity, Convexity, Shape, RFactor, Modification Ratio, Sphericity,
Area of Bounding Box, Rectangularity, Centroid Distance Mean, Centroid
Distance Variance, Eccentricity, Orientation, Centre of Mass

Algebraic Moment Invariants: 7 Moment Invariants

Normal, Microcytic, Macrocytic,
Dacrocytes Sickle cells,
Echinocytes, Elliptocytes,
Acanthocytes, Keratocytes

98%

Lofti et al. [151]
(#)

Morphological features: Area, Perimeter, Circularity, Equivalent Diameter,
Major Axis, Minor Axis, Eccentricity, Convex Area, Extent Factor, Solidity
Factor, Deviation Factor, Elongation, Difference of Major and Minor Axis,
Difference of area and the area of an ellipse with equivalent major and minor
axis, Focus, Euler Number

Dacrocytes, Schistocytes,
Elliptocytes

97.5%

94.55% (SVM)

Lee et al. [155]
(ɷ)

Morphological features: Cell circularity, Medial axes ratio, Deformation ratio,
Eccentricity, Hausdorff distance

Texture features:Mean, Variance, Smoothness of the cell, Entropy

Burr cells, Sickle cells, Horn cells,
Elliptocytes

95.5%

Go et al. [156] (ɷ) Information on intensity distributions: Intensity distributions, Full width at
half-maximum, Peak-to-peak distance, Standard deviations of light intensities for
focal plane image

Morphological features: Area, Perimeter

Optical focusing characteristics: Real and virtual foci, Real and virtual focal
lengths, Maximum Intensity

Discocytes, Echinocytes,
Spherocytes

96.04%(DT)

Proposed method Feature ensemble containing selected features of three fine-tuned CNNs namely
AlexNet, Vgg16 and Vgg19

Normal, Elliptocytes, Sickle cells,
Dacrocytes, Echinocytes,
Acanthocytes, Schistocytes,
Spherocytes, Stomatocytes

98.6%

ANN: Artificial Neural Network, DT: Decision Tree classifier

*The methods which are re-implemented using the codes of handcrafted features available in the
internet are marked by (#) and the methods whose mAP are calculated using the information derived
from confusion matrices provided by the authors themselves(in their respective publications) are
marked by (ɷ)
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Fig.9.5.3.. Examples showing output results (bounding box with maximum score are displayed only)
(Please zoom to see class labels)

The proposed method successfully overcomes the limitations of the existing works arising due to the
highly overlapping characteristics of handcrafted features. The proposed two-stage feature selection
algorithm efficiently deals with the inherent information loss occurring in traditional CNN due to the
suppression of negative values of features. The two-stage feature selection algorithm proposed in this
work depends on two parameters namely, a) FE and b) TCS, which measures the information content
and total contribution in classification of each feature respectively. The first stage of the algorithm
constructs feature space of each CNN by conducting inter-selection among its FC, ReLU and
InverseReLU features, and selecting features possessing minimum FE and maximum TCS values
simultaneously, thereby eliminating chances of information loss. The second stage of the algorithm
deals with the elimination of redundant and less relevant features from the previously selected feature
space of each CNN by implementing the redundancy and non-relevancy criteria, thus selecting only
most significant features. This algorithm also largely reduces the dimension of feature space obtained
from each CNN at each stage of the proposed method. Comparative analyses’ results prove that the
proposed algorithm outperforms existing works. Although some variants of ReLU are previously
proposed to solve the inherent information loss problem occurring in traditional CNN but none of those
networks perform selective suppression of positive or negative values or none of each feature in a
feature space according to its significance in performing classification and preserve it (if selected) in its
most informative form. This is the first algorithm designed to perform selective suppression of features
based on their respective information content and contribution in performing classification .
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Chapter 10
Despeckling raw image data obtained from SAR and performing automated classification of
despeckled data are one of the most important applications of remote sensing field. The raw data
obtained from SAR are usually corrupted with multiplicative speckle noise which needs to be filtered
from images before further processing to avoid chances of producing erroneous results. General
introduction on SAR and its imaging technique, SAR image, POLSAR image and speckle noise are
given in Section 1.3 of Chapter 1. The methods proposed in this thesis are mainly focused on
despeckling raw POLSAR image data obtained from SAR and classification of despeckled data. Hence,
literature survey on this research area is also focused on these two topics.

10.1. Existing despeckling filters

Inspired by the practical significance of satellite image despeckling, many researchers have proposed
various despeckling filters. The methodologies of these filters and their limitations are discussed in
details in that Section.

10.1.1 Lee filter and its’ proposed variants

Lee filter [185]:This filter is capable of suppressing both multiplicative as well as additive noises. It
performs noise removal from each center pixel, �(�, �) in accordance to the mean and variance values
derived from its local statistics (characteristics of the neighboring pixels lying in the local window of
pre-defined size centered at �(�, �)). Unlike most of the filters which process pixels in sequential order,
Lee filter supports parallel processing of pixels. It performs noise suppression using the fundamentals
of minimum mean square estimation (MMSE) criterion in its simplest form. Mathematically, the
filtering operation of the Lee filter is explained as follows:

�� �, � = �� �, � +�(�, �)(�� �, � − � �, � ) (10.1.1.1)
Where,

� �. � = 1 −
��
��

��=Estimated filtered image, �� =
��
��
=Variance coefficient of noisy image with standard deviation,�� ,

�� =
��
��
= Variance coefficient of noise-free image with standard deviation, ��.

The mean value, ��(�, �) needed for filtering the center pixel, �(�, �) located at pixel position �, � of a
local window of size (2� + 1) × (2� + 1) is computed as follows:

�� �, � = 1
(2�+1)(2�+1) �=�−�

�+�
�=�−�
�+� �(�, �)�� (10.1.1.2)

Strength:
 This filter supports parallel processing of pixels which facilitates its direct implementation in

various real-time applications.

Limitation:

As this filter performs noise suppression in the homogeneous as well as in the heterogeneous
regions of images identically, it often leads to undesired blurring of edges, target points and
man-made structures.

Lee Sigma filter [186]: Like Lee filter, this filter too performs noise removal from images using
MMSE technique as stated in (10.1.1.1) but in a slightly different way. It derives the mean and variance
values needed for filtering each center pixel considering the local mean and variance values of
neighboring pixels which lie within its two-sigma neighborhood [ � �, � − 2��, � �, � + 2��] only
instead of considering the mean and variance of all the neighboring pixels as proposed in [185]. The
authors have designed this filter assuming the distribution of noise in images is Gaussian in nature .
They have stated that in the presence of Gaussian noise, 95.5% of the neighboring pixels which possess
almost similar properties with that of the center pixel fall within the two-sigma range while other pixels
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belonging to different population fall outside the range. Mathematically, �� �, � is calculated in [186]
using the following equation:

�� �, � = �=�−�
�+�

�=�−�
�+� �(�, �)�(�, �)/�� �=�−�

�+�
�=�−�
�+� � �, � (10.1.1.3)��

Where,

� �, � = 1, �� I(i, j) − 2σV ≤ I(k, l) ≤ I i, j + 2σV

= 0, otherwise

Although the use of the two-sigma neighborhood concept has improved the edge-preservation capacity
of this filter compared to the Lee filter but the use of this concept disables this filter to suppress sharp
spot noise present in images effectively as this type of noise mostly corrupts single pixel or two
adjoining pixels.

To mitigate this drawback, the authors in [186] have introduced an additional step in their proposed
filtering algorithm to determine the total number of pixels (M) lying within the two-sigma
neighborhood range.

�� �, � =two-sigma average , if M > K

�� �, � = immediate neighbor average, if M ≤ K

Although the introduction of this additional step has enabled this filter to suppress sharp spot noise to
some extent but selecting an optimum value of the threshold (K) is a very challenging task as it plays a
significant role in determining the filter’s performance efficiency.

The authors in [186] have manually set the value of � lesser than 4 for a local window of dimension
7 × 7 and lesser than 3 for a local window of dimension 5 × 5.

Strength:

 This filter is designed to preserve edges of images much more effectively compared to the
traditional Lee filter [185] as it performs filtering of pixels considering only the mean and
variance values of the selected neighboring pixels which possess almost similar properties.

Limitations:

 This filter performs noise removal assuming that the noise values are always Gaussian-
distributed but in reality it is not so as the speckle noise mostly possesses Rayleigh
distribution which lead to the introduction of a bias in the filtered data.

 This filter performs over-smoothing of target points.
 Manual selection of the threshold (�) often leads to undesired blurring of edges and

erroneous noise suppression.
 Isolated dark pixels are not filtered effectively.

Enhanced Lee filter [187]: Ideally, the pixels belonging to the homogeneous and heterogeneous

regions of images should be filtered using different strategies in order to achieve better noise

suppression and edge-preservation as the properties of the pixels belonging to homogeneous and

heterogeneous regions of images vastly differ from one another.

Neither the Lee filter [185] nor the Lee Sigma filter [186] were designed considering this logic which is
the main cause behind undesired blurring of edges occurring in outputs obtained from these filters.

Enhanced Lee filter [187] is designed incorporating this logic which has enabled it to filter pixels
belonging to the homogeneous and heterogeneous regions differently.
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Mathematically, the noise suppression technique adapted by this filter is described as follows:

�� �, � =
�� �, � �� �� ≤ �� (ℎ��������� ������)

�� �, � + �(�, �)(�� �, � − � �, � �� �� < �� < ���� (ℎ����������� ������)
� �, � �� �� ≤ ����(�������� ������ �� �����)

(10.1.1.4)

Where,

� �, � = exp 
− �����(�� − ��)

���� − ��

Kdamp and ���� represent damping coefficient and the maximum value of the variance coefficient of
noise-affected image respectively.
Strengths:

 This filter suppresses noise present in homogeneous and heterogeneous regions of images
efficiently and preserves image details present in heterogeneous regions of images much
more effectively compared to the Lee filter and Lee Sigma filter.

 It also efficiently preserves isolated points present in images.

Limitation:

 This filter often cannot satisfactorily suppress spot noise present in images as it often
erroneously classifies spot noise as target points.

Improved Lee Sigma filter [188]: The filter performs noise removal similarly as proposed in the Lee
Sigma filter [186] but using redefined sigma ranges. It addresses most of the shortcomings of the Lee
Sigma filter and provides solutions for each of them as discussed below:

 Lee Sigma filter performs noise removal considering the noise values are always Gaussian-
distributed and the mean is always equal to the value of the center pixel in a local window
which often results in the introduction of bias in the filtered data as the actual noise values
are mostly Rayleigh distributed. Moreover, the means of the noise probability density
functions are not equal to the center pixels’ values. Improved Lee Sigma filter solves this
shortcoming by computing the refined sigma ranges [�1�� �2��] where �� is the unique mean
which is computed independently for each local window using a simple integration based
approach.

 The authors in [188] have experimentally proved that filtering dark spot noise similarly as
proposed in the Lee Sigma filter but using the computed mean, �� instead of I�(i, j) have also
enabled their proposed filter to suppress the dark spot noise much more effectively
compared to the Lee Sigma filter.

 In [188], the authors have also designed a novel target preservation approach to preserve the
target points present in SAR images based on their observation that the back-scattered
signals obtained from the target points are mostly dominated by a small number of strong
scatters. Hence, the target points are usually represented by clusters of large number of
bright pixels. The authors assumed that if in any local window there are more than ��
(threshold) number of pixels whose intensities are greater than 98th percentile �98 of the
intensities of all pixels belonging to that image, then those pixels are considered to be the
target points and are preserved without any processing.

The pseudo-code of the filtering operation of the Improved Lee Sigma filter is given in Fig.10.1.1.1.

Fig.10.1.1.1. Pseudo-code of the filtering strategy adapted by the Improved Lee Sigma Filter
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In [188], the authors have empirically chosen the range of �� to be [5 7].

Strengths:

 This filter preserves target points and suppresses dark spot noise present in images much more
effectively compared to the Lee Sigma filter.

 This filter facilitates the evaluation of unique sigma range for each local window in
accordance to the probability density function of the noise distribution within that window.
This eliminates any chances of the introduction of bias in the filtered data.

Limitation:

 This filter cannot preserve target points comprising of pixels lesser than Tk efficiently.

Fast Non-Local Lee filter [189] and Non-Local Lee filter [190]: The authors in [189] and [190] have

designed hybrid filters by combining the structure similarity property of the Non-Local Means filter

[191] and the homogeneous similarity property of the Lee filter.

Non-Local Means filter efficiently suppresses additive noise present in the structurally similar regions
of images using a weighted averaging operator.

In traditional Non-Local Means filter [191], structural similarity among different image patches are
detected by measuring the Euclidean distances among them. In [190], the authors have improved the
structural similarity detection procedure by replacing the Euclidean distance metric by a new distance
metric which can be approximated as a Chi square distribution with � × � degrees of freedom. The use
of this new distance metric facilitates the formation of a collection, �� of similar patches whose size is
generally much larger compared to the size of patches.

In order to preserve target points and the homogeneous regions of images accurately, the authors in
[189] have proposed a new filtering approach by substituting the weighted average filtering operation
of the Non-Local Means filter [191] with the MMSE based filtering operation of the Lee filter.
Mathematically, the filtering operation of the Fast Non-Local Lee filter is explained as follows:

��� = ��� + (� �� −���
2��2)

(1+��2)
(�� − ���) (10.1.1.5)

Where, Si� is the average of the set , Si and D(Si) is the variance of the set , Si .
The authors in [189] have also proposed a direction projection method for performing point target
preservation.
The main difference between the filters designed in [189] and [190] is that unlike [189], the authors in

[190] have used Lee filter in distributive manner to perform filtering of pixels.

Strengths:
 The use of new distance metric and direction projection method in [189] and [190] has

decreased their computational complexities by ten folds compared to the traditional Non-
Local Means filter [191].

 The use of both the structural similarity property of the Non-Local Means filter and the
homogeneity property of the Lee filter in the proposed Non-Local Lee filters has enabled
these filters to perform both speckle noise suppression and edge preservation efficiently.

Limitation:

 These filters do not comprise of any additional measure to filter the dark spot noise present in
images.

Refined Lee filter [192]: This filter performs speckle noise removal similarly as done in traditional

Lee filter [185] but instead of considering the mean and variance values of all pixels located within a

local window, the authors in [192] have performed filtering of pixels considering the mean and

variance values of only the '�' number of pixels located within a � × � neighborhood. They have used
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K-Nearest Neighborhood (KNN) algorithm [152] for selecting these '�' pixels. KNN performs

classification based on the assumption that similar data points should be located in close proximity and

it selects '�' nearest neighbors of any sample data point using the Euclidean distance metric. In [192],

KNN is used to select '�' nearest neighbors of each center pixel using the Euclidean distance metric

assuming the properties of the pixels possess similar properties as that of �(�, �).

Strength:

 The authors have experimentally proved that this filter can perform noise suppression and
edge-preservation much more efficiently compared to the Lee filter when filtering is
performed considering the mean and variance values of 6 nearest neighbors out of 9
neighbors located within a 3 × 3 neighborhood.

Limitations:

 KNN algorithm being a supervised classification algorithm requires a proper set of labeled
data for training and validating the neural network designed for performing the selection of
'�' number of nearest neighbors. Preparing such a set of labeled data in this case is very
challenging.

Optimum selection of the local window size and the value of '�' depending upon the distribution of
noise in images in order to achieve desired performance of the filter are also very challenging.

10.1.2. Median filter and its’ proposed variants

Median Filter [193]: This filter is designed by the authors in [193] to primarily suppress the salt and

pepper noise present in images. It performs filtering of the center pixel of any local window of size

(2� + 1) × (2� + 1) with the median value of the intensities of all the pixels lying within that

window.

Strength:

 Being a non-linear filter, this filter performs edge-preservation much more efficiently
compared to the linear filters like mean (average) filter.

Limitation:

 This filter does not include any additional measures either to preserve target points or to
suppress sharp spot noise present in images effectively.

Local Adaptive Median Filter [194]: This filter [194] is designed following the noise suppression
strategies proposed in the Lee Sigma Filter [186] and the Local Sigma Filter [195].

Local Sigma Filter [195] performs noise suppression similarly as proposed in [186] but instead of using
fixed sigma range, this filter performs noise suppression using flexible sigma range by introducing a
user-defined variable, � whose value is either 1 or 2. The introduction of this user-defined variable
facilitates the variation of the sigma range of each local window depending upon its’ noise distribution.
The flexible sigma range is defined as [� �, � − ���, � �, � + ���] .

Local Adaptive Median Filter performs noise suppression similarly as proposed in [195] but unlike
[186] and [195], where the authors have filtered all the pixels, this filter performs noise suppression of
the center pixel of any local window only when it is classified as a noisy pixel. For this purpose, prior
to performing noise filtering , the authors in [194] classified the pixels into two classes namely, a. valid
pixel and b. noisy pixel, using the following logic:

a. If the center pixel of any local window lies within the computed sigma range, then it is
classified as a valid pixel and is preserved without despleckling.



192

b. If the center pixel of any local window lies outside the computed sigma range, then it is
classified as a noisy pixel and is substituted with the median value of the pixels which lie within
the sigma range, [� �, � − ���, � �, � + ���] .

Strength:

 The use of adaptive sigma range and the selective pixel filtering strategy has enabled this filter
to perform noise suppression much more efficiently compared to the traditional Median
filter [193].

Limitation:

 The performance efficiency of this filter is largely dependent on the optimum selection of �
which is very challenging.

 This filter like Lee Sigma Filter often introduces bias in the filtered data as it performs
despeckling of SAR and POLSAR images considering the noise values in these images are
Gaussian distributed but in reality it is not so as it is stated in [188], that noise present in
SAR and POLSAR images mostly follows Rayleigh distribution.

3D Median Filter with PSA [196] and 3D Median Filter with RPSA [197]:

In both [196] and [197], the authors introduced 3-D Median filters which suppresses speckle noise
present in images having � × � × � dimension using their proposed partial sort algorithm (PSA) and
reverse partial sort algorithm (RPSA) respectively. The use of PSA and RPSA to sort the pixel
intensities present in any local window in order to compute its median value has reduced the
computational complexities of these filters largely compared to the computational complexity of a
similar filter which performs sorting of pixels using the bubble sort algorithm. PSA and RPSA sort
elements in a 2D array as stated in Fig.10.1.2.1 and Fig.10.1.2.2 respectively.

Fig.10.1.2.1. Sequence following which sorting is performed by PSA algorithm [197]

Fig.10.1.2.2. Sequence following which sorting is performed by RPSA algorithm [197]

In the above figures, �� represents the median value of the pixels lying in the local window of size 3 ×
3 whereas ��� and ��� signify the minimum and maximum intensities of the pixels located within
that window.

In [196] and [197], the authors have performed despeckling of images using 3D sliding window which
moves first along the � direction then along the � direction followed by the � direction as shown in the
figure below:

Fig.10.1.2.3. 3D sliding window [197]
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When the sliding window moves by one position, �2 samples of the old plane gets substituted by �2

samples of new plane. The median value of a 3 × 3 × 3 window is computed in [196] and [197] as
depicted in the figure below:

(a) (b)

Fig.10.1.2.4. (a) and (b) Median value computation techniques proposed in [196] and [197]
respectively.

Where (�, �, �) represent three 3 × 3 planes of an image and (ℎ, �, �) represent median values of these
planes whereℎ� ≥ �� ≥ ��.

Strength:

The use of PSA and RPSA for sorting elements has largely reduced the computational complexities of
these filters as bubble sort algorithm requires 36 ‘compare and exchange’ operations to perform sorting
of 9 elements in a 3 × 3 matrix whereas PSA and RPSA requires only 24 and 17 ‘compare and
exchange’ operations to perform the same operation.

Limitation:

These filters have not adapted any additional measures to suppress sharp spot noise or preserve target
points and edges present in images.

An Improved Median Filtering Algorithm Combined with Average Filtering [198] and An
Improved Median Filtering Algorithm for Image Noise Reduction [199]:This filter [198] is
designed by combining the properties of Mean (Average) Filter and Median Filter. It filters only the
noisy pixels present in images using a sliding filter window which changes its size in accordance to the
local distribution of noise in images considering PSNR [103] as an objective function which enhances
this filter’s noise suppression capability by many folds compared to that of traditional Median filter
[193].

The authors in [198] and [199] have designed these filters based on the assumption that noisy pixels
differ largely from their neighboring pixels while all other pixels including the edge pixels possess
almost similar properties as that of neighboring pixel. If the intensity of the center pixel of any local
window is greater than the mean of all the pixels lying within that window, then it is considered as a
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noisy pixel and is despeckled. Else it is considered as a valid pixel and is preserved without
despeckling.

In [198], the authors have proposed a novel adaptive window concept which facilitates the adjustment
of the size of the local window in accordance to the local distribution of noise in images having �× �
dimension as discussed below:

Step 1. If the center pixel of any local window of size (2� + 1) × (2� + 1) is detected as a noisy pixel,
then it is filtered similarly as proposed in [193].

Step 2. Calculate ����� value as described below:

���� ����� ������ ���� =
1

� ×�
�=1

�

�=1

�

(���� �, � − � �, � )2�� (10.1.2.1)

����� = 10 log (
����2

���
) �� (10.1.2.2)

Where, ���� : Filtered image, ���� = 2� − 1 , �: the number of bits used for pixel representation in an
image.

Step 3. Then set � = � + 2 , and filter ���� using the despeckling algorithm proposed in [193]. The
output thus obtained is termed as ����' .

Step 4. Calculate �����+1 value similarly as stated in (10.1.2.1) and (10.1.2.2) but replacing � with
���� and ���� with ����' .

Step 5. If ����� > �����+1 , then consider the size of the window to be (2� + 1) × (2� + 1). Else
go to Step 3 and further enlarge the size of the window.

The authors in [197] have proposed a similar despeckling algorithm but included a different adaptive
window size selection procedure in their proposed filter which is defined as follows:

Step 1. Initialize: n= 1

Step 2. Compute: �1 = ��� − ��� and �2 = ��� − ���. (���,��� and ��� represent the median,
maximum and minimum values of the intensities of the pixels lying within any local window).

Step 3. If �1 > 0 and �2 < 0, then go to Step 4. Else ,enlarge the size of the window by setting � =
� + 1 and go to Step 2.

Step 4. Substitute � �, � = ���

Step 5. Stop.

In [197], the authors have also proposed a statistical histogram based median value computation
procedure which decreases this filter’s computational complexity from �(�2) to �(�) where �(�2)
denotes the computational complexity of the traditional Median filter [193].

Strength:

 The use of adaptive window concept has increased the noise suppression capabilities of these
filters compared to the Median filter [193].

Limitation:

 These filters perform noise suppression in both homogeneous and heterogeneous regions
identically which often lead to undesired edge-blurring.

10.1.3. Hybrid Median Filter and its proposed variants

This filter [198] performs noise suppression in each 5 × 5 local window of an image using the
following steps:
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Step 1: Pixels belonging to each 5 × 5 window are grouped into two groups where the first group
comprises of the neighboring pixels located 90° angles to the center pixel. This group is termed as " + "
sub-neighborhood while the second group comprises of the neighboring pixels located 45° angles to the
center pixel. This group is termed as "x" sub-neighborhood. The median value of the first group is
termed as�+ and the median value of the second group is termed as�x.

Step 2: The center pixel is substituted by the median of�+, �x and �(�, �).

The filtering operation proposed in [198] is pictorially represented as follows:

Fig.10.1.3.1. Pictorial representation of the filtering algorithm proposed in [198]

Modified Hybrid Median Filter [199]:This filter [199] performs noise suppression using similar
despeckling algorithm proposed in [198] but modified the second step as follows:

Instead of replacing the value of the center pixel with the median of �+ , �x and �(�, �) , the authors
have replaced it with the median of ���x , �+ and �(�, �) where ���x is the maximum value of the
pixels lying in the window centered at pixel location, (�, �).

Strength of the filters proposed in [198] and [199]:

Computational complexities of these filters are much lesser compared to that of the traditional Median
filter [193].
Limitation of the filters proposed in [198] and [199]:

The use of sliding window of identical size to despeckle both homogeneous and heterogeneous regions
of images by these filters often lead to the production of blurred images.

Adaptive window Hybrid Median Filter [200]:The authors in [200] have performed noise
suppression similarly as proposed in [198] but with the introduction of a new adaptive window concept.
They proposed that if the center pixel of any local window is detected as edge pixel, then it is filtered
using the same algorithm proposed in [198] but using an local window of size 3 × 3. Else, it is filtered
using a local window of size 5 × 5. The authors have used Sobel operator with the threshold value (100)
to perform edge detection in their work.

Strength:

The use of sliding windows of different sizes by this filter to suppress noise in both the homogeneous
and heterogeneous regions of images has somewhat improved its edge-preservation capability
compared to the filters proposed in [198] and [199].
Limitation:

The use of Sobel operator by this filter for performing edge detection that too using a fixed threshold
often leads to the production of erroneous results as Sobel operator cannot efficiently detect edges in
noisy images(as discussed in Section 3.1.2.6 of Chapter 3). This significantly influences the
performance efficiencies of this filter.
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10.1.4. Frost filter and its’ proposed variants

Frost filter [201]: This filter is an exponentially weighted adaptive filter which performs speckle noise
suppression in images using MMSE method. The noise suppression technique adapted by the Frost
filter to suppress the speckle noise present at the center pixel located at pixel position, (i, j) of a
processing window of size (2n+1) × (2n + 1) is mathematically explained as follows:
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Where, klIdamp dlkCKeKlkh ),(
1

2

),(  , 1K : normalization coefficient, dampK : damping (or tuning)

factor,
I

C I
I


 : Local variation coefficient which is defined as the ratio of the standard

deviation, I and the mean, I of the pixels which lie within the processing window centred at ),( ji .

22 )()( ljkid kl  (10.1.4.2)

kld : Euclidean distance between the centre pixel located at pixel position, ),( ji and neighbouring

pixel located at pixel position say ),( lk within the processing window centred at ),( ji . From

(10.1.4.2), it becomes quite evident that the weight factor, ),( lkh largely depends on the Euclidean

distance, kld . It decreases when kld increases and vice versa.

Strength:

 Frost filter performs noise suppression using an exponentially damped weight factor whose
value changes in accordance to the change in local statistics. This property of the Frost filter
has somewhat improved its’ performance efficiency compared to that of the linear denoising
filters like average filter.

Limitations:

 The performance efficiency of the Frost filter is largely dependent on the optimum selection
of the damping (or tuning) factor, dampK as smaller dampK facilitates better noise

suppression but poor edge-preservation while larger dampK facilitates better edge-

preservation but poor noise suppression. Hence, performing noise suppression in an image
using constant dampK often leads to the production of undesired outputs. Ideally,

dampK should vary in accordance to variations of the statistics of pixels lying within the

processing window to achieve better results but Frost filter does not support such adaptive
variation of dampK .

 The traditional Frost filter [201] is not a directional filter i.e. it an isotropic diffusion filter.
This property of Frost filter is explained by considering a 2D sub-window comprising of 90
neighbors of ),( jiI as follows:

Fig.10.1.4.1. 2D sub-window comprising of 90 neighbors
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)}1,(),1,(),,1(),,1{(90  jijijijiWsub  (10.1.4.3)

The distance between each 90 neighbor lying within 90subW and the center pixel, ),( jiI is

evaluated as:

1)()1( 22
1  jjiid (10.1.4.4)

1)()1( 22
2  jjiid (10.1.4.5)

1)1()( 22
3  jjiid (10.1.4.6)

1)1()( 22
4  jjiid (10.1.4.7)

Since, 4321 dddd  , it proves that the Frost filter is not a directional filter. Hence, it cannot
preserve edges within a processing window efficiently.

 The use of fix sized processing window to perform noise suppression often leads to the
production of undesired results as processing window of large size can efficiently suppress
noise in homogeneous regions of images but cannot preserve edges in heterogeneous regions
effectively. Similarly, processing window of small size cannot perform noise suppression in
homogeneous regions satisfactorily.

Enhanced Frost filter [202]: In order to achieve better edge-preservation and noise suppression, ideally
the pixels belonging to the homogeneous regions and heterogeneous regions of images should be filtered
using different techniques as the properties of these regions significantly differ from one another and the
size of the processing window and damping (or tuning) factor should change in accordance to variations
in distribution of speckle noise and local characteristics of the pixels lying within each processing
window.

Frost filter proposed in [201] performs noise suppression of pixels belonging to different regions of
images identically using a fixed size processing window and a constant dampK .

Moreover, it also does not include any additional measure to preserve edges and target points present in
images which often lead to the production of undesired blurred outputs. To mitigate these drawbacks,
the authors in [202] have designed the Enhanced Frost filter which performs noise removal from pixels
belonging to different regions using varied techniques and modified weight factor ),(' lkh but like
Frost filter [201], this filter too performs noise suppression using a processing window of fixed size
and a constant dampK as defined below:
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Where HmR: Homogeneous Regions, HtR: Heterogeneous Regions and E&IP: Edges & Isolated points.
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V
C V
V


 : Coefficient of variation of an image corrupted with noise having standard deviation, V

and mean V . maxC : Maximum value of the local coefficient variation of a noise-affected image.

Strength:
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 This filter performs noise suppression much more efficiently compared to the traditional Frost
filter proposed in [201] as it suppresses speckle noise present in pixels belonging to
heterogeneous regions and homogeneous regions of images using different procedures and
also preserves pixels which are identified as target points or edges without any despeckling
which prevents undesired blurring of those structures.

Limitation:

 This filter like Frost filter [201] too performs noise suppression using constant dampK and

fixed size processing window which often introduces unwanted artifacts in the filtered outputs.

Anisotropic Diffusion Frost filter(ADFF) [203]: The authors in [203] have designed ADFF by
introducing the edge-sensitivity property in the traditional Frost filter model [201] following the
concepts of Anisotropic Diffusion proposed in [204]. They have defined eight possible edge-directions
(shown in Fig.10.1.4.2) within each 55 processing window and performed edge-detection along
those directions using ratio detector [205].

Fig. 10.1.4.2. Eight possible edge directions in each 55 processing window (Shaded areas represent
possible edge directions) [203]

The ratio detector values )( dr are defined as the ratios of the arithmetic averages of the pixels lying in
the non-overlapping neighborhoods on the opposite sides of the possible edge points (which are marked
as shaded areas).

���� = max �� , ��� � = 1,2, …. . , 8 (10.1.4.10)

���� = min �� , ��� � = 1,2, …. . , 8 (10.1.4.11)

The authors have modified the filtering mechanism proposed in [201] as stated in (10.1.4.12) in such a
way that if edge exists in any of the possible edge-directions (shown in Fig.10.1.4.2), then the
coefficients of the weight factor in that direction will be more significant compared to other areas.
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Where ()div : Divergence operator.

In [203], the authors have evaluated the coefficients of the weight factor depending upon the values of
five variables namely, ld Trrr ,,, minmax and hT (where lT and hT are pre-determined thresholds

)10(  hl TT ) as follows:

1. If ���� < ��, it suggests the presence of a strong edge in the processing window and the direction of
edge is ���� ∈ �. Then the coefficients of weight factor are evaluated as follows:

��� (ℎ �, � =
0, �� (�, �) ∉ �����
1, �� (�, �) ∈ �����

So, the output of ADFF is the average value of the pixels lying along the edge direction.

2. In homogeneous areas, ���� > �ℎ,. Then ��� (ℎ �, � = 1, ��� ��� (�, �) . In this case, ADFF acts a
average filter.

3. If �� < ���� < �ℎ,
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��� ℎ �, � = 1 −
�� − ����
���� − ����

ℎ0 �, � , (�, �) ∈ �����

This suggests that edge directions having smaller dr , will possess more significant weight coefficients.

Strength:

 The edge sensitivity property of this filter has enabled it to perform edge-preservation and
enhancement efficiently.

Limitations:

 Like Frost filter [201] and Enhanced Frost filter [202], ADFF too performs noise suppression
using a constant dampK and a processing window of fixed size which often leads to the

production of undesired outputs.

 The performance efficiency of this filter is largely dependent on the optimum selection of the
two thresholds ( lT and hT ) values which is very challenging.

Modified Frost filter based on adaptive tuning factor [206]: This filter facilitates the variation of

dampK for each processing window of dimension )12()12(  nn in accordance to the extent of

noise corruption of the centre pixel, ),( jiI . The authors have determined the noise content of the
centre pixel by estimating its’ significance using the t-statistics method. The adaptive tuning (or

damping) factor )( '
dampK is computed in [206] as discussed below:

),().,(),(' hsQjiThsKdamp  (10.1.4.13)

Where,

� �, � =
� �, � − ��(�, �)

�(�, �)

� �, ℎ =
� �, ℎ − �(�, �)

1
2� + 1 2� + 1 − 1 �=�−�

�+�
�−�
�+� � �, � − �(�, �)��

),(' hsKdamp : adaptive tuning factor, �(�, �) : t statistics value, � �, ℎ : gray characteristics of

neighboring pixels,�(�, �) : standard deviation of the window centered at (�, �) . This filter performs

noise suppression similarly as Frost filter [203] but using '
dampK instead of dampK .

Strength:

 This filter allows the tuning (or damping) factor to vary in accordance to the noise corruption
of the centre pixel which reduces the chances of producing blurred outputs.

Limitations:

 This filter is also an isotropic diffusion filter like Frost filter [201] and Enhanced Frost filter
[203]. Hence, it often cannot preserve edges satisfactorily.

 The drawbacks arising in the Frost filter models discussed above due to the use of processing
window of fixed size to perform noise suppression too exists in this filter.
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Double Adaptive Frost filter(DAFF) [207]: The authors in [207] have designed DAFF to perform
speckle noise suppression using adaptive window and adaptive tuning (or damping) factor which
improve the edge-preservation and noise suppression capabilities of this filter compared to the
previously proposed variants of the Frost filter.

DAFF performs adaptive variation of '
dampK using the same method proposed in [206] and it varies

the size of the processing window in accordance to the variations in properties of the boundary pixels
of the current processing window instead of taking into account the properties of all neighbouring
pixels to reduce the computational load as discussed below:

� �, � =
min � �, � + 2, ����], �� ��' (�, �) ≤ �'(�, �)
max [� �, � − 2, ����] , �� ��' (�, �) > �'(�, �)

(10.1.4.14)
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 (modified local variation coefficient) (10.1.4.15)

Where, '
I and 'I are mean and standard deviation of the boundary pixels of the processing window

centred at ).,( ji

�'(�, �) = � 1 + 1+2��
2

8 �(�,�)−1
. �� (threshold) (10.1.4.16)

Where,

��: speckle variation coefficient and�(�, �):processing window centered at ).,( ji

minW and maxW are minimum and maximum allowable window sizes. DAFF performs noise

suppression considering the initial size of the processing window to be equal to minW and then vary
its’ size as stated in (10.1.4.16). DAFF filters pixels belonging to homogeneous regions (��' (�, �) < ��)
and heterogeneous regions (��' (�, �) ≥ ��) using Box filter and the filtering method proposed in [206]
respectively.

Strength:

 This filter performs noise suppression using adaptive tuning factor and
processing window of adaptive size which enable it to minimize the chances of producing
blurred outputs.

Limitation:

 This filter is also an isotropic diffusion filter.

Most of the filters whose noise suppression strategies are discussed in Section 10.1 perform
despeckling of images using manually selected thresholds which often lead to the production of
undesired outputs. To mitigate these drawbacks of existing filters, a novel Degree of Purity &
Scattering diversity based Advanced Lee filter is designed in this thesis taking into account the
variations in the scattering properties of the center pixel and its’ neighbouring pixels located within a
pre-defined neighborhood. Detailed discussion on the noise suppression strategy adapted in the
designed filter is carried out in Chapter 11 . The comparative qualitative and quantitative analyses’
results obtained by applying the designed filter as well as several existing filters on similar set of data
are also given in Chapter 11 to the prove the efficiency of the designed filter over existing filters.

10.2. Existing CNN based POLSAR image classification methods

In the era of deep learning, various researchers have designed several deep neural networks to classify
satellite images but those networks are mostly focused on performing SAR image classification. Very
few deep neural networks are designed to classify POLSAR images till date. As this thesis mainly
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focuses on POLSAR image classification, so the literature survey is focused on the architectures of
deep neural networks designed to perform POLSAR image classification.

Lenet 5 [208] is considered to be one of the most suitable choice to perform POLSAR image
classification by the authors in existing works. This network comprises of two convolutional layers,
two fully connected layers, two pooling layers and one softmax layer. The authors in [209] have
performed POLSAR image classification using Lenet 5 network in their work. The architectures of the
deep neural networks designed in [210] and [211] to perform POLSAR image classification also highly
resembles the architecture of Lenet 5 network.

The authors in [212] have performed POLSAR image classification using ResNet architecture [213]
based on information derived from several decomposition methods’ based features which are extracted
using PolSARpro software [214].After performing extraction of these features, the authors have
performed feature selection using a parameter namely, S which is designed to measure the separability
among features. The authors in [212] have also divided the pixels in an POLSAR image into several
super-pixels using SLIC technique [86] prior to performing feature extraction and performed
classification based on the information derived from super-pixels which improves the method’s
efficiency.

The authors in [215] have designed their network, fixed feature size CNN (namely, FFS-CNN) to
perform multi-pixel classification at a time i.e. to classify all pixels located within a patch
simultaneously by taking into account the similarities in the properties of the pixels located within an
image patch. The feature extraction part of this network comprises of four convolutional layers, two
fully connected layers and one reshape layer. The architecture of this part of the network is designed
after taking inspiration from the architecture of Lenet 5 network because of its’ popularity in this field.
Unlike Lenet 5 architecture, the architecture of FFS-CNN is devoid of any pooling layers as in FFS-
CNN, image patches of dimension (15 × 15 × 9) is given as inputs to the network , so the
introduction of pooling layers after convolutional layers in this case often lead to information loss.
FFS-CNN performs multi-pixel classification simultaneously unlike Lenet 5 network. This part of the
architecture is designed after taking inspiration from Fully Connected Network (FCN) [216]. FFS-CNN
uses softmax classifier to perform classification.

In this thesis, a novel deep-neural network namely, Crop-Net is designed to perform classification of
croplands growing multiple types of crops using a selected set of features. Crop-Net is designed to
perform simultaneous classification of multiple pixels located within a patch after taking inspiration
from FFS-CNN architecture. Detailed discussion on the architecture of Crop-Net is carried out in
Chapter 12 and the improvement in performance achieved by applying Crop-Net to perform
classification of croplands compared to Lenet 5 and FFS-CNN in terms Precision, Recall, F1score and
Test Accuracy is shown in the same Chapter. A novel feature selection method namely, Ranking
method is designed in this thesis to perform selection of the most significant features from a set of
extracted features to obtain a trade-off between computational burden and test accuracy. The proposed
feature selection method is also explained in Chapter 12.
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Chapter 11
Detailed discussion on the filtering strategy of the proposed Degree of purity & Scattering diversity
based Advanced Lee filter is carried out in this Chapter and qualitative as well as quantitative results
obtained from the comparative analyses performed to prove the excellence of the proposed filter over
existing works are also given in this Chapter.

11.1. Filtering mechanism of the proposed filter

Being a modified version of the Lee filter [185], the proposed filter performs despeckling of images
similarly as done in Lee filter but using weighted local statistics values i.e. weighted values of mean
and standard deviation of pixels lying within a patch. These weights are computed in accordance to the
similarities in scattering properties of neighbouring pixels and centre pixel of a patch which is to be
filtered. The scattering properties are estimated using degree of purity and scattering diversity
values .The use of these weights in performing despeckling of images helps in giving the neighboring
pixels possessing similar scattering properties with that of the centre pixel more importance while
performing despeckling compared to other less similar neighboring pixels.The weight assigned to each
pixel is computed based on its similarity with the centre pixel and thus helps in reducing the chances of
producing undesired outputs.

The details of each step of the proposed Degree of purity & Scattering Diversity based Advanced Lee
filter is given below:

Step 1: In this step, each channel of POLSAR image is divided into 5 × 5 overlapping patches.

Pictorial representation of an arbitrary patch for e.g., '��ℎ' patch of any channel obtained after division is
given below:

Fig.11.1.1. 5 × 5 image patch

Step 2: In this step, degree purity and scattering diversity values for a POLSAR image is generated
using PolSARpro software [214]. These parameters give estimation of the scattering properties of the
target area from which electromagnetic waves are reflected back to SAR. Hence, these parameters help
in the identification of the type of land cover present in the target area as reflection property of target
areas vary in accordance to the type of land cover present in those areas. The generated degree purity
and scattering diversity files are two-dimensional in nature whose height and width are equal to the
height and width of POLSAR image for which these files are generated. After the generation of these
files, they are also divided into 5 × 5 overlapping patches.

At the end of this step, a 5 × 5 patch containing the degree purity values and a 5 × 5 patch containing
the scattering diversity values are obtained for each 5 × 5 × 3 patch obtained from a POLSAR image
i.e. degree purity and scattering diversity values of a particular pixel position is considered to be
constant for all three channels of a POLSAR image.
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So the '��ℎ' patch generated from ‘degree purity’ file and the '��ℎ' patch generated from ‘scattering
diversity’ file will correspond to the '��ℎ' patch generated from all the three color channels of a
POLSAR image.

Step 3: In this step, the extent of similarity between the degree purity and scattering diversity values
of the centre pixel of any patch w.r.t each of its’ neighbouring pixels is estimated. Depending upon the
extent of similarity between the center pixel w.r.t each of its’ neighboring pixel, a weight value is
computed for each pixel. . These weights are computed using a set of 25 novel FI rules which are given
in Table 11.1.1. Graphical representations of fuzzy membership functions (Triangular and Gaussian)
used to represent the linguistic variables of FI rules are given in Fig.11.1.2 and Fig.11.1.3 respectively.

Input linguistic variables of the designed FI rules: ���������_���������, ����������_������

Output linguistic variable of the designed FI rules: �(����ℎ�)

Table 11.1.1. Novel FI rules designed to perform weight estimation

Code IF THEN

Rule ���������_��������� ����������_������ �

1 VERY LOW VERY SMALL VERY LARGE WEIGHT

2 VERY LOW SMALL VERY LARGE WEIGHT

3 VERY LOW AVERAGE LARGE WEIGHT

4 VERY LOW LARGE AVERAGE WEIGHT

5 VERY LOW VERY LARGE SMALL WEIGHT

6 LOW VERY SMALL VERY LARGE WEIGHT

7 LOW SMALL LARGE WEIGHT

8 LOW AVERAGE AVERAGE WEIGHT

9 LOW LARGE AVERAGE WEIGHT

10 LOW VERY LARGE SMALL WEIGHT

11 MEDIUM VERY SMALL LARGE WEIGHT

12 MEDIUM SMALL LARGE WEIGHT

13 MEDIUM AVERAGE AVERAGE WEIGHT

14 MEDIUM LARGE SMALL WEIGHT

15 MEDIUM VERY LARGE SMALL WEIGHT

16 HIGH VERY SMALL AVERAGE WEIGHT

17 HIGH SMALL AVERAGE WEIGHT

18 HIGH AVERAGE SMALL WEIGHT

19 HIGH LARGE SMALL WEIGHT

20 HIGH VERY LARGE VERY SMALL WEIGHT

21 VERY HIGH VERY SMALL AVERAGE WEIGHT

22 VERY HIGH SMALL AVERAGE WIGHT

23 VERY HIGH AVERAGE SMALL WEIGHT

24 VERY HIGH LARGE VERY SMALL WEIGHT

25 VERY HIGH VERY LARGE VERY SMALL WEIGHT
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Case 1:

(a)

(b)

(c)

Fig.11.1.2. Graphical representation of fuzzy membership function (Triangular) used to represent (a)
���������_���������, (b)����������_������ and (c)�
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Case 2:

(a)

(b)

(c)

Fig.11.1.3. Graphical representation of fuzzy membership function (Gaussian) used to represent (a)
���������_���������, (b)����������_������ and (c)�

*Note: In this work, despeckling operation is carried out twice using Triangular membership function
(given in Fig.11.1.2 (Case a)) and Gaussian membership function (given in Fig.11.1.3 (Case b))
respectively to obtain the best results.
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Dynamic Range (DR) of linguistic variable,���������_��������� = [0 ������������_���������]

(������������_��������� = max �����_��������� − min �����_��������� )

DR of linguistic variable,����������_������ = [0 �������������_������]

(�������������_������ = max ������_������ − min ������_������ )

DR of linguistic variable,� = [0 1]

max �����_��������� and min �����_��������� represent the maximum and minimum values of
the generated 2D scattering diversity file whose height and width are equal to the height and width of
the corresponding POLSAR image. Similarly, max ������_������ and min ������_������ also
represent the maximum and minimum values of the generated 2D degree purity file.

The input linguistic variables, ���������_��������� and ����������_������ are computed using the following
mathematical equations:

���������_��������� = �����_���������(�, �) − �����_���������(�, �) (11.1.1)

����������_������ = ������_������(�, �) − ������_������(�, �) (11.1.2)

Where,

�����_���������(�, �): Scattering diversity value of the center pixel of any patch which is centered at
pixel position, (�, �).

�����_���������(�, �): Scattering diversity value of any neighboring pixel located at pixel position say,
(�, �) within a patch centered at pixel position, (�, �).

������_������(�, �): Degree purity value of the center pixel of any patch which is centered at pixel
position, (�, �).

������_������(�, �): Degree purity value of any neighboring pixel located at pixel position say, (�, �)
within a patch centered at pixel position, (�, �).

The use of these parameters as input linguistic variables of the FI rules designed for performing weight
estimation enables one to assign a weight to each neighboring pixel depending upon its’ similarities in
scattering properties with the center pixel of the patch in which it is located.

At the end of this step, a defuzzified weight value(�∗) is obtained for each pixel present in an image.

Step4: In this step, despeckling of the centre pixel of each patch is performed similarly as done in Lee
filter but using weighted mean and weighted standard deviation values of pixels lying within the pre-
defined neighbourhood of that centre pixel.

The adaptation of this type of despeckling strategy enables this filter to produce better results compared
to existing filters as proved by the qualitative and quantitative comparative analyses’ results given in
Table 11.1.2 and Table 11.1.3 respectively.



207

Table 11.1.2. Comparative qualitative analysis results

Image No 1 2 3 4

Original image

Noisy image

Original image filtered
using Frost filter [201]

Noisy Image filtered using
Frost filter [201]

Original image filtered
using Lee filter [185]

Noisy Image filtered using
Lee filter [185]

Original image filtered
using Improved Lee Sigma

filter [188]

Noisy Image filtered using
Improved Lee Sigma filter

[188]

Original image filtered
using Non-Local Means

filter [191]

Noisy Image filtered using
Non-Local Means filter

[191]
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Original image filtered
using designed filter
( using Triangular

membership function)

Noisy Image filtered using
designed filter ( using
Triangular membership

function)

Original image filtered
using designed filter
(using Gaussian

membership function)

Noisy Image filtered using
designed filter (using
Gaussian membership

function)

Table 11.1.3. Comparative quantitative analysis results

Image No 1 2 3 4

Frost filter SSIM: 0.5106

PSNR:17.3059

EPI: 0.8992

SSIM: 0.5878

PSNR:67.0606

EPI: 0.8618

SSIM: 0.6393

PSNR:67.2868

EPI: 0.9245

SSIM: 0.6946

PSNR:67.9495

EPI:0.9547

Lee filter SSIM:0.6322

PSNR:67.3958

EPI:0.9254

SSIM:0.6338

PSNR:68.3973

EPI:0.8812

SSIM:0.6892

PSNR:69.0192

EPI: 0.9469

SSIM: 0.7434

PSNR:70.3621

EPI: 0.9691

Kuan filter SSIM: 0.4164

PSNR: 61.9480

EPI: 0.7563

SSIM: 0.4164

PSNR:62.1677

EPI: 0.7618

SSIM: 0.4359

PSNR:62.4248

EPI: 0.7952

SSIM: 0.4859

PSNR:62.8963

EPI:0.8208

Non-Local Means
filter

SSIM: 0.4224

PSNR:59.9762

EPI:0.7346

SSIM: 0.4262

PSNR:60.0509

EPI:0.7312

SSIM: 0.4605

PSNR:60.4597

EPI:0.7531

SSIM: 0.4870

PSNR:61.0194

EPI: 0.7739

Designed filter (using
Triangular

membership function)

SSIM: 0.6983

PSNR:69.4393

EPI: 0.9203

SSIM: 0.6947

PSNR:69.9406

EPI:0.8932

SSIM: 0.7460

PSNR:70.3627

EPI: 0.9482

SSIM:0.7931

PSNR: 71.2970

EPI: 0.9685

Designed filter (using
Gaussian membership

function)

SSIM: 0.7489

PSNR: 70.9632

EPI: 0.9274

SSIM:0.7398

PSNR:71.3747

EPI: 0.9013

SSIM: 0.7871

PSNR:71.9055

EPI:0.9502

SSIM: 0.8250

PSNR:72.9799

EPI: 0.9666
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The details of the quantitative parameters, SSIM and PSNR used for performing quantitative analysis
in this work are given in Chapter 4.

Alongside these quantitative parameters, Edge Preservation Index (EPI) [217] is used here to perform
quantitative analysis. This parameter estimates the edge-preservation ability of filters. Hence, high
value of this parameter suggests better result. ALOS PALSAR images used for performing
comparative analyses are downloaded from the site mentioned in [218].

The consideration of weighted mean and weighted standard deviation values of any patch while
performing despeckling of center pixel of that patch has improved the performance of the proposed
Degree of purity & Scattering diversity based Advanced Lee filter as the computed weights help in
estimation of the similarities between scattering properties of each of the neighboring pixels of any
patch and the pixel on which the patch is centered (centre pixel). The improvement in the performance
of the proposed filter achieved over existing filters by the use of these weighted statistics values while
performing despeckling is also validated both qualitatively as well as quantitatively.
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Chapter 12
In this Chapter, detailed discussion is carried out on the architecture of Crop-Net, the deep neural
network which is designed to perform multi-class cropland (land growing multiple types of crops)
classification in this thesis. The details of Ranking method, a novel feature selection method which is
proposed in this thesis is also given in this Chapter. Improvement in performance achieved due to the
use of Ranking method in combination with Crop-Net to perform classification over existing networks
is also shown in terms of Precision, Recall, F1 score and Test Accuracy in this Chapter.

12.1. Crop-Net architecture

This network is designed in this thesis inspired by the architecture of FFS-CNN [215]. Like FFS-CNN,
Crop-Net also performs classification of multiple pixels present within an image patch simultaneously
by exploiting the similarities in their properties. The architecture of Crop-Net is shown in Fig.12.1.1.

Fig.12.1.1. Crop-Net architecture

Training, validation and testing of Crop-Net is carried out using the patches of size 15 × 15 generated
from AIRSAR L Band Flevoland POLSAR data (this image and its’ GT are given in Section 1.3.4 of
Chapter 1.) 70% of the generated patches are used for training Crop-Net while validation of the
network is carried out using 10% of the generated patches. Testing of Crop-Net is carried out using
20% of the generated patches. Patches used during testing of Crop-Net are not used during either
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training phase or validation phase. Training of network is carried out using stochastic gradient descent
algorithm [181] and back-propagation as a gradient computing technique. Early stopping criterion is
imposed in this work to avoid over-fitting of the designed network. Here the training is stopped when
no improvement in the performance of the network is achieved for ten consecutive iterations on
validation set. The learning rate of the network is initially set to 1e-4 but later adjusted with iterations
using Slanted Triangular Learning Rate [219] technique. PReLU [167] is used as an activation function
in Crop-Net.

12.2. Feature extraction

In this work, classification is performed using features selected by the proposed Ranking Method from
a set of 151 extracted features which includes decomposition methods’ based features, coherency
matrix, Radar Vegetation Index, etc. These features are extracted giving despeckled image files as
inputs to the POLSARpro software. The detailed description of the extracted features are given in [220].

12.3. Feature selection

Following feature extraction, selection of significant features from the set of extracted features is
performed using a novel Ranking Method which selects features based on their respective information
content and contribution in classification estimated by Fuzzy Entropy [31] and TCS parameter
respectively.

The details of TCS parameter is given in Section 9.4.2 of Chapter 9.

The steps of the proposed Ranking Method are discussed as follows:

Step 1. Fuzzy entropy values of features are computed in order to estimate their respective information
content.

Step 2. TCS values of features are estimated for n number of times (Here n=30).

Step 3. A rank namely, ������� is assigned to the ��ℎ feature based on its Fuzzy entropy value. The
feature having least Fuzzy entropy value have highest information content hence, that feature is
assigned ������� = 1 (p represents a random feature index) while the feature having maximum Fuzzy
entropy value have lowest information content hence, that feature is assigned ������� = �. (Here N =
151, as it signifies the total number of extracted features.)

Step 4. A rank namely, ��������� is assigned to the ��ℎ feature based on its estimated TCS value
computed in the ��ℎ time. The feature having least TCS value in ��ℎ time have minimum contribution in
performing classification hence, that feature is assigned ��������� = � while the feature having
maximum TCS value in the ��ℎ time have maximum contribution in performing classification hence,
that feature is assigned ��������� = 1.

At the end of this step, 30 ��������� is assigned to each feature as TCS value of a feature is computed
30 times.

Step 5. In this step, a rank namely, ����������� is assigned to the ��ℎ feature by averaging its 30
��������� using the following mathematical equation:

����������� =
�=1

�

���������� (12.3.1)

Estimated Fuzzy Entropy value computed for each feature and TCSavgrank assigned to them are given in
Table 12.2.3.1. TCS values obtained for each feature during (n = 1 ) are also given in that Table as
example.
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Table 12.2.3.1. Estimated information content and TCSavgrank of each feature

Sl.No Feature Fuzzy Entropy
value

���������� TCS value (n=1)

1. An_Yang4_Dbl 0 71 8.49841106007807

2. An_Yang4_Hlx 0 75 10.295231642201543

3. An_Yang4_Odd 0 81 9.797471864148974

4. An_Yang4_Vol 0 69 9.344510725233704

5. Arii3_NNED_Dbl 0 78 9.806609922554344

6. Arii3_NNED_Odd 0 77 8.183643751079217

7. Arii3_NNED_Vol 0 81 9.529565813019872

8. T12_imag 0 73 9.44232354266569

9. T12_real 0 67 8.577941559487954

10. T13_imag 0 69 8.629685698077083

11. T13_real 0 62 9.614928477909416

12. T23_imag 0 63 9.76933319773525

13. T23_real 0 60 9.133505705744028

14. Freeman_Dbl 0 60 8.54852494597435

15. Freeman_Odd 0 74 8.451142421923578

16. Freeman_Vol 0 75 9.278426544507965

17. Krogager_Kh 0 84 8.898307613329962

18. MCSM_Hlx 0 70 9.807809369638562

19. MCSM_Vol 0 61 9.969269782304764

20. MCSM_Wire 0 67 9.03043690789491

21. feature 1 0 89 9.875435026944615

22. VanZyl3_Dbl 0 80 8.14242148026824

23. VanZyl3_Odd 0 91 9.12126418761909

24. VanZyl3_Vol 0 72 9.518870156258345

25. Yamaguchi3_Dbl 0 70 9.35662810318172

26. Yamaguchi3_Odd 0 85 9.109856134513393

27. Yamaguchi3_Vol 0 77 9.346989485900849

28. Alpha_entropyNeg 0 83 8.712935447692871

29. AlphaNeg_entropyNeg 0 71 9.021330130752176

30. Aghababaee_Orientation_max_SM1 0 77 8.885462042875588

31. Singh4_G4U1_Hlx_dB 0 87 10.061425304040313

32. conformity 0 64 8.883944875560701

33. scatt_predominance 0 66 9.237723296508193

34. Aghababaee_M_SM1_dB 0.030337068 75 7.935561404097825
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35. Singh4_G4U1_Vol_dB 0.108431317 78 9.330919072031975

36. An_Yang3_Vol_dB 0.251734103 65 9.604777349159122

37. Aghababaee_M_SM2_dB 0.601285178 79 7.925651000696234

38. Yamaguchi4_Y4O_Vol_dB 0.63635721 79 8.824525171890855

39. Yamaguchi4_S4R_Vol_dB 0.67440892 73 9.091684993356466

40. Bhattacharya_Frery_BF4_Vol_dB 0.682526103 76 9.616654423996806

41. Barnes1_T33_dB 0.684288339 69 8.540034040808678

42. Freeman2_Vol_dB 0.691314937 73 10.160788114881143

43. Aghababaee_M_SM3_dB 0.692344657 65 9.40677657048218

44. Barnes1_T22_dB 0.701110667 76 8.511308226268739

45. Holm1_T11_dB 0.733656118 89 9.01528334338218

46. An_Yang3_Odd_dB 0.788043826 79 8.862586219562218

47. Aghababaee_Alphap_mean 0.901139319 65 9.01270392909646

48. Huynen_T11_dB 0.906649313 77 8.563165115192533

49. Yamaguchi4_Y4O_Odd_dB 0.915592675 67 10.150295108556747

50. Singh4_G4U1_Odd_dB 1.333117577 89 8.502417794428766

51. Bhattacharya_Frery_BF4_Odd_dB 1.64256741 84 9.265424153767526

52. Singh_i6SD_Odd_dB 1.645534405 68 8.8756586718373

53. Yamaguchi4_S4R_Odd_dB 1.711172793 73 9.435016756877303

54. Aghababaee_Alphap_SM2 1.910797015 71 8.529411740601063

55. Aghababaee_Alphap_SM3 2.074944786 51 10.323421720415354

56. Singh_i6SD_Dbl_dB 2.195479945 78 8.745614470914006

57. Singh4_G4U1_Dbl_dB 2.211145516 90 9.273150190711021

58. Bhattacharya_Frery_BF4_Dbl_dB 2.261971533 67 9.497788412496448

59. Yamaguchi4_Y4O_Dbl_dB 2.275015988 65 8.976202882826328

60. Yamaguchi4_S4R_Dbl_dB 2.286972957 70 9.105310541577637

61. Aghababaee_Phip_SM3 2.342814988 66 9.079544593114406

62. Aghababaee_Phip_mean 2.354850494 68 9.344676431501284

63. Singh_i6SD_Vol_dB 2.363064416 66 9.347997817443684

64. An_Yang3_Dbl_dB 2.366351356 88 8.407321334816515

65. Freeman2_Ground_dB 2.366351356 67 9.050825419835746

66. Holm1_T22_dB 2.393786483 72 9.019756309688091

67. Cloude_T11_dB 2.405816868 77 9.494503281312063

68. Holm2_T11_dB 2.413348762 74 9.30921037774533

69. Barnes1_T11_dB 2.423304067 75 8.738561803940684

70. Barnes2_T33_dB 2.439677792 86 9.435055688023567

71. Aghababaee_Phip_SM2 2.445834714 72 9.244047455955297
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72. Holm1_T33_dB 2.446343593 68 9.82300629466772

73. Aghababaee_Orientation_max_SM3 2.448463927 77 9.68613121425733

74. Barnes2_T22_dB 2.4563357 73 10.168867779895663

75. Singh_i6SD_OD_dB 2.460760462 60 8.949465667828918

76. Huynen_T33_dB 2.463384394 87 7.851741173770279

77. Singh_i6SD_CD_dB 2.463573672 87 8.739310584962368

78. Singh_i6SD_Hlx_dB 2.46805725 77 9.430187784135342

79. Bhattacharya_Frery_BF4_Hlx_dB 2.49106806 63 9.763453794643283

80. Yamaguchi4_Y4O_Hlx_dB 2.493500528 75 9.346348723396659

81. Yamaguchi4_S4R_Hlx_dB 2.49957635 87 8.93141314946115

82. Huynen_T22_dB 2.503669418 81 8.174996389774606

83. Aghababaee_Tawp_SM1 2.507269525 86 8.953196186106652

84. Aghababaee_Tawp_mean 2.515975046 78 8.793234590440989

85. Cloude_T22_dB 2.518768459 81 9.485675308853388

86. Cloude_T33_dB 2.531544874 79 9.27529773209244

87. Holm2_T22_dB 2.532669443 76 8.548610750585794

88. Holm2_T33_dB 2.536907957 94 8.56089044874534

89. Aghababaee_Tawp_SM2 2.550429076 80 9.340628867037594

90. Aghababaee_Orientation_max_mean 2.554387869 74 9.155076812952757

91. Barnes2_T11_dB 2.597705595 94 8.880419051274657

92. Aghababaee_Tawp_SM3 2.610356965 70 9.364790313877165

93. Aghababaee_Alphap_SM1 2.628895976 76 9.512936653220095

94. Aghababaee_Orientation_max_SM2 2.649672547 85 10.03840054711327

95. scatt_diversity 2.66103826 67 9.338813008973375

96. degree_purity 2.665296851 83 8.96094337105751

97. CCCnorm 2.668677462 74 8.90263532847166

98. Aghababaee_Phip_SM1 2.67913289 78 9.567747370922007

99. Neumann_delta_mod 2.708364985 82 9.971582145430148

100. depolarisation_index 2.725174375 77 8.950973495841026

101. TSVM_alpha_s 2.752332703 75 9.755773256532848

102. alpha 2.805237019 62 8.351968116359785

103. TSVM_alpha_s1 2.833400065 80 8.141138772945851

104. Alpha_entropy 2.841210043 69 8.912595286499709

105 Neumann_delta_pha 2.846127199 76 8.509331441484392

106 AlphaNeg_entropy 2.850294473 72 9.092022307449952

107 rvi 2.861184332 70 9.422632409259677

108 Freeman_rvi 2.945778154 70 8.554523355327547
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109 entropy 2.996058268 62 8.784193216823041

110 pedestal height 3.288333544 66 8.728462477913126

111 Alpha_AnistropyNeg 3.320817856 74 8.898862646427006

112 AlphaNeg_Anisotropy 3.344450873 70 8.76123788766563

113 feature2 3.416203667 71 9.640161050483584

114 TSVM_alpha_s2 3.609491348 72 9.138045658823103

115 TSVM_psi2 3.845306333 67 9.156673038378358

116 feature5 3.989596175 76 9.871213790029287

117 Neumann_tau 4.155235669 75 9.760947803966701

118 feature6 4.155235669 85 9.06892828643322

119 TSVM_tau_m1 4.225736241 63 8.883734310977161

120 beta 4.244774673 64 9.454265059437603

121 AlphaNeg_AnisotropyNeg 4.273813488 83 9.883048639632761

122 TSVM_tau_m2 4.382727136 83 9.276523249223828

123 AnisotropyNeg_entropy 4.385116346 78 9.384660806506872

124 TSVM_tau_m 4.491737726 72 9.386454248335212

125 Anisotropy_entropy 4.511460382 74 9.094676777720451

126 TSVM_alpha_s3 4.561852268 85 8.642332427203655

127 AnisotropyNeg_entropyNeg 4.58917105 72 8.93830158887431

128 TSVM_tau_m3 4.60203522 81 10.43788734357804

129 Anisotropy_entropyNeg 4.618879973 75 9.451136153191328

130 TSVM_psi1 4.62097822 86 8.347071443451568

131 TSVM_psi3 4.623812027 76 8.82791235204786

132 feature4 4.62829571 64 9.31102753430605

133 feature3 4.634683266 79 8.606860561296344

134 delta 4.635938071 70 10.275018522050232

135 TSVM_psi 4.669276419 68 9.758043806999922

136 TSVM_phi_s2 4.694094571 72 9.544423955492675

137 TSVM_phi_s1 4.741363877 75 7.1768451649695635

138 TSVM_phi_s 4.774513533 67 10.355733229778707

139 MCSM_Dbl 4.787658833 74 8.53752325475216

140 MCSM_DblHlx 4.813413217 88 9.993599648005329

141 gamma 4.825853407 82 9.22515924833715

142 TSVM_phi_s3 4.856290229 81 10.032533168792725

143 lambda 4.872661561 70 9.069898310117424

144 T11 4.880169617 80 9.207554920576513

145 Alpha_Anistropy 4.884916685 77 9.400624967645854
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146 Krogager_Kd 4.900826854 72 9.620540242409334

147 Krogager_Ks 4.91687013 68 9.50993026420474

148 MCSM_Odd 4.924100311 57 9.217991690151393

149 T22 4.943189601 81 9.323987868614495

150 T33 4.944835899 73 8.727150532184169

151 anisotropy 4.951557204 67 9.226749860448763

Features namely, feature 1, feature 2, feature 3, feature 4, feature 5 and feature 6 (given in Table
12.2.3.1.) are computed as stated below:

feature 1 = 10 log10 (SPAN)

feature 2 = T22/SPAN

feature 3 = T33/SPAN

feature 4 = T12 / T11. T22

feature 5 = T13 / T11. T33

feature 6 = T23 / T33. T22

Step 6: In this step, ten different sets of selected features are created as stated below:

First set comprises of features which possess ������=[1 15] and ����������=[1 15] simultaneously.
Here the range is considered to be [1 15] to denote top 10% of features [10%of N(151) ≅ 15]. The
details of these features are given in Table 12.2.3.2.

Table 12.2.3.2. Features included in the first set

Sl.No Features having ������=[1 15] Features having ����������=[1 15] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3
T13_real

T23_imag

T23_real

Freeman_Dbl

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity
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Second set comprises of features which possess ������=[1 30] and ����������=[1 30] simultaneously.
Here the range is considered to be [1 30] to denote top 20% of features [20%of N(151) ≅ 30]. The
details of these features are given in Table 12.2.3.3.

Table 12.2.3.3 Features included in the second set

Sl.No Features having ������=[1 30] Features having ����������=[1 30] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3 T13_real

T23_imag

T23_real

Freeman_Dbl

T12_real

MCSM_Vol

MCSM_Wire

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

Third set comprises of features which possess ������=[1 45] and ����������=[1 45] simultaneously.
Here the range is considered to be [1 45] to denote top 30% of features [30%of N(151) ≅ 45]. The
details of these features are given in Table 12.2.3.4.
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Table 12.2.3.4. Features included in the third set

Sl.No Features having ������=[1 45] Features having ����������=[1 45] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3

T13_real

T23_imag

T23_real

Freeman_Dbl

T12_real

MCSM_Vol

MCSM_Wire

An_Yang4_Vol

Conformity

Scatt_predominance

pedstal height

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB
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37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi (unfiltered)

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

Fourth set comprises of features which possess ������=[1 60] and ����������=[1 60] simultaneously.
Here the range is considered to be [1 60] to denote top 40% of features [40%of N(151) ≅ 60]. The
details of these features are given in Table 12.2.3.5.

Table 12.2.3.5. Features included in the fourth set

Sl.No Features having ������=[1 60] Features having ����������=[1 60] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3
An_Yang4_Dbl

An_Yang4_Vol

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Vol

Yamaguchi3_Dbl

AlphaNeg_entropyNeg

conformity

scatt_predominance

pedestal height

scatt_diversity

AlphaNeg_Anisotropy

Singh_i6SD_OD_dB

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance
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24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi (unfiltered)

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60.
Aghababaee_Orientation_max_mean AlphaNeg_entropy
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Fifth set comprises of features which possess ������=[1 75] and ����������=[1 75] simultaneously.
Here the range is considered to be [1 75] to denote top 50% of features [50%of N(151) ≅ 75]. The
details of these features are given in Table 12.2.3.6.

Table 12.2.3.6. Features included in the fifth set

Sl.No Features having ������=[1 75] Features having ����������=[1 75] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3 An_Yang4_Dbl

An_Yang4_Vol

T12_imag

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

Freeman_Odd

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Vol

Yamaguchi3_Dbl

AlphaNeg_entropyNeg

conformity

scatt_predominance

pedestal height

Holm2_T11_dB

Barnes2_T22_dB

scatt_diversity

AlphaNeg_Anisotropy

Singh_i6SD_OD_dB

AnisotropyNeg_entropyNeg

Aghababaee_Orientation_max_mean

Aghababaee_Tawp_SM3

Bhattacharya_Frery_BF4_Hlx_dB

Holm1_T33_dB

Yamaguchi4_Y4O_Dbl_dB

Singh_i6SD_Vol_dB

feature2

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2
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Aghababaee_Phip_SM3

Freeman2_Vol_dB

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi (unfiltered)

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60. Aghababaee_Orientation_max_mean AlphaNeg_entropy

61. Aghababaee_Tawp_SM3 AnisotropyNeg_entropyNeg

62. Holm2_T22_dB Aghababaee_Phip_SM2

63. Yamaguchi4_S4R_Hlx_dB Holm1_T22_dB

64. Bhattacharya_Frery_BF4_Hlx_dB Barnes2_T22_dB

65. Yamaguchi4_Y4O_Hlx_dB T12_imag
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66. Holm1_T33_dB T33

67. Aghababaee_Tawp_SM1 Freeman2_Vol_dB

68. Aghababaee_Tawp_mean Yamaguchi4_S4R_Odd_dB

69. Yamaguchi4_Y4O_Dbl_dB Yamaguchi4_S4R_Vol_dB

70. Barnes1_T11_dB Freeman_Odd

71. Singh_i6SD_Vol_dB Holm2_T11_dB

72. feature2 MCSM_Dbl

73. Yamaguchi4_S4R_Dbl_dB Alpha_AnistropyNeg

74. Aghababaee_Phip_SM3 Anisotropy_entropy

75. Freeman2_Vol_dB Aghababaee_Orientation_max_mean

Sixth set comprises of features which possess ������=[1 90] and ����������=[1 90] simultaneously.
Here the range is considered to be [1 90] to denote top 60% of features [60%of N(151) ≅ 90]. The
details of these features are given in Table 12.2.3.7.

Table 12.2.3.7. Features included in the sixth set

Sl.No Features having ������=[1 90] Features having ����������=[1 90] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3
An_Yang4_Dbl

An_Yang4_Hlx

An_Yang4_Vol

T12_imag

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

Freeman_Odd

Freeman_Vol

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Vol

Yamaguchi3_Dbl

AlphaNeg_entropyNeg

conformity

scatt_predominance

pedestal height

Holm2_T11_dB

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB
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Barnes2_T22_dB

CCCnorm

scatt_diversity

AlphaNeg_Anisotropy

feature5

Singh_i6SD_OD_dB

AnisotropyNeg_entropyNeg

Aghababaee_Alphap_SM1

Aghababaee_Orientation_max_mean

Aghababaee_Tawp_SM3

Holm2_T22_dB

Bhattacharya_Frery_BF4_Hlx_dB

Yamaguchi4_Y4O_Hlx_dB

Holm1_T33_dB

Yamaguchi4_Y4O_Dbl_dB

Barnes1_T11_dB

Singh_i6SD_Vol_dB

feature2

Aghababaee_Phip_SM3

Freeman2_Vol_dB

Aghababaee_Alphap_SM2

Bhattacharya_Frery_BF4_Dbl_dB

Aghababaee_Phip_mean

Yamaguchi4_S4R_Odd_dB

Yamaguchi4_Y4O_Odd_dB

Alpha_AnistropyNeg

Holm1_T22_dB

Barnes1_T33_dB

Singh_i6SD_Odd_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi (unfiltered)

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60. Aghababaee_Orientation_max_mean AlphaNeg_entropy
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61. Aghababaee_Tawp_SM3 AnisotropyNeg_entropyNeg

62. Holm2_T22_dB Aghababaee_Phip_SM2

63. Yamaguchi4_S4R_Hlx_dB Holm1_T22_dB

64. Bhattacharya_Frery_BF4_Hlx_dB Barnes2_T22_dB

65. Yamaguchi4_Y4O_Hlx_dB T12_imag

66. Holm1_T33_dB T33

67. Aghababaee_Tawp_SM1 Freeman2_Vol_dB

68. Aghababaee_Tawp_mean Yamaguchi4_S4R_Odd_dB

69. Yamaguchi4_Y4O_Dbl_dB Yamaguchi4_S4R_Vol_dB

70. Barnes1_T11_dB Freeman_Odd

71. Singh_i6SD_Vol_dB Holm2_T11_dB

72. feature2 MCSM_Dbl

73. Yamaguchi4_S4R_Dbl_dB Alpha_AnistropyNeg

74. Aghababaee_Phip_SM3 Anisotropy_entropy

75. Freeman2_Vol_dB Aghababaee_Orientation_max_mean

76. Aghababaee_M_SM2_dB CCCnorm

77. Aghababaee_Alphap_SM2 An_Yang4_Hlx

78. Bhattacharya_Frery_BF4_Dbl_dB Freeman_Vol

79. Aghababaee_Phip_mean Neumann_tau

80. Yamaguchi4_S4R_Odd_dB TSVM_alpha_s

81. Singh_i6SD_Dbl_dB TSVM_phi_s1

82. Yamaguchi4_Y4O_Odd_dB Anisotropy_entropyNeg

83. An_Yang3_Dbl_dB Aghababaee_M_SM1_dB

84. Singh4_G4U1_Dbl_dB Barnes1_T11_dB

85. An_Yang3_Odd_dB Yamaguchi4_Y4O_Hlx_dB

86. Alpha_AnistropyNeg Holm2_T22_dB

87. Singh4_G4U1_Odd_dB Neumann_delta_pha

88. Holm1_T22_dB feature5

89. Barnes1_T33_dB TSVM_psi3

90. Singh_i6SD_Odd_dB Aghababaee_Alphap_SM1

Seventh set comprises of features which possess ������ =[1 105] and ���������� =[1 105]
simultaneously. Here the range is considered to be [1 105] to denote top 70% of features
[70%of N(151) ≅ 105]. The details of these features are given in Table 12.2.3.8.

Table 12.2.3.8. Features included in the seventh set

Sl.No Features having ������=[1 105] Features having ����������=[1 105] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3 An_Yang4_Dbl

An_Yang4_Hlx2. An_Yang4_Hlx MCSM_Odd
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An_Yang4_Vol

Arii3_NNED_Dbl

Arii3_NNED_Odd

T12_imag

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

Freeman_Odd

Freeman_Vol

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Vol

Yamaguchi3_Dbl

Yamaguchi3_Vol

AlphaNeg_entropyNeg

Aghababaee_Orientation_max_S
M1

conformity

scatt_predominance

pedestal height

Alpha_Anistropy

depolarisation_index

Holm2_T11_dB

Barnes2_T22_dB

Cloude_T11_dB

CCCnorm

scatt_diversity

AlphaNeg_Anisotropy

feature5

Singh_i6SD_OD_dB

Singh_i6SD_Hlx_dB

AnisotropyNeg_entropyNeg

Aghababaee_Alphap_SM1

Aghababaee_Orientation_max_
mean

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy
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Aghababaee_Tawp_SM3

Holm2_T22_dB

Bhattacharya_Frery_BF4_Hlx_d
B

Yamaguchi4_Y4O_Hlx_dB

Holm1_T33_dB

Aghababaee_Tawp_mean

Yamaguchi4_Y4O_Dbl_dB

Barnes1_T11_dB

Singh_i6SD_Vol_dB

feature2

Aghababaee_Phip_SM3

Freeman2_Vol_dB

Aghababaee_Alphap_SM2

Bhattacharya_Frery_BF4_Dbl_d
B

Aghababaee_Phip_mean

Yamaguchi4_S4R_Odd_dB

Yamaguchi4_Y4O_Odd_dB

Alpha_AnistropyNeg

Holm1_T22_dB

Barnes1_T33_dB

Singh_i6SD_Odd_dB

Aghababaee_Alphap_SM3

Freeman2_Ground_dB

Barnes1_T22_dB

Bhattacharya_Frery_BF4_Vol_d
B

Yamaguchi4_S4R_Vol_dB

Aghababaee_Alphap_mean

Aghababaee_M_SM3_dB

Aghababaee_Phip_SM2

An_Yang3_Vol_dB

Aghababaee_M_SM1_dB

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60. Aghababaee_Orientation_max_mean AlphaNeg_entropy

61. Aghababaee_Tawp_SM3 AnisotropyNeg_entropyNeg

62. Holm2_T22_dB Aghababaee_Phip_SM2

63. Yamaguchi4_S4R_Hlx_dB Holm1_T22_dB

64. Bhattacharya_Frery_BF4_Hlx_dB Barnes2_T22_dB

65. Yamaguchi4_Y4O_Hlx_dB T12_imag

66. Holm1_T33_dB T33

67. Aghababaee_Tawp_SM1 Freeman2_Vol_dB

68. Aghababaee_Tawp_mean Yamaguchi4_S4R_Odd_dB

69. Yamaguchi4_Y4O_Dbl_dB Yamaguchi4_S4R_Vol_dB

70. Barnes1_T11_dB Freeman_Odd

71. Singh_i6SD_Vol_dB Holm2_T11_dB

72. feature2 MCSM_Dbl

73. Yamaguchi4_S4R_Dbl_dB Alpha_AnistropyNeg

74. Aghababaee_Phip_SM3 Anisotropy_entropy

75. Freeman2_Vol_dB Aghababaee_Orientation_max_mean

76. Aghababaee_M_SM2_dB CCCnorm

77. Aghababaee_Alphap_SM2 An_Yang4_Hlx

78. Bhattacharya_Frery_BF4_Dbl_dB Freeman_Vol
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79. Aghababaee_Phip_mean Neumann_tau

80. Yamaguchi4_S4R_Odd_dB TSVM_alpha_s

81. Singh_i6SD_Dbl_dB TSVM_phi_s1

82. Yamaguchi4_Y4O_Odd_dB Anisotropy_entropyNeg

83. An_Yang3_Dbl_dB Aghababaee_M_SM1_dB

84. Singh4_G4U1_Dbl_dB Barnes1_T11_dB

85. An_Yang3_Odd_dB Yamaguchi4_Y4O_Hlx_dB

86. Alpha_AnistropyNeg Holm2_T22_dB

87. Singh4_G4U1_Odd_dB Neumann_delta_pha

88. Holm1_T22_dB feature5

89. Barnes1_T33_dB TSVM_psi3

90. Singh_i6SD_Odd_dB Aghababaee_Alphap_SM1

91. Bhattacharya_Frery_BF4_Odd_dB Barnes1_T22_dB

92. Aghababaee_Alphap_SM3 Bhattacharya_Frery_BF4_Vol_dB

93. Freeman2_Ground_dB Arii3_NNED_Odd

94. Barnes1_T22_dB Cloude_T11_dB

95. Yamaguchi4_Y4O_Vol_dB Huynen_T11_dB

96. Holm1_T11_dB Yamaguchi3_Vol

97. Aghababaee_Orientation_max_SM2 Alpha_Anistropy

98. Bhattacharya_Frery_BF4_Vol_dB Aghababaee_Orientation_max_SM1

99. Singh4_G4U1_Vol_dB Aghababaee_Orientation_max_SM3

100. Yamaguchi4_S4R_Vol_dB Singh_i6SD_Hlx_dB

101. Aghababaee_Alphap_mean Singh_i6SD_Hlx_dB

102. Aghababaee_M_SM3_dB depolarisation_index

103. Aghababaee_Phip_SM2 Arii3_NNED_Dbl

104. An_Yang3_Vol_dB AnisotropyNeg_entropy

105. Aghababaee_M_SM1_dB Aghababaee_Tawp_mean

Eighth set comprises of features which possess ������=[1 120] and ����������=[1 120] simultaneously.
Here the range is considered to be [1 120] to denote top 80% of features [80%of N(151) ≅ 120]. The
details of these features are given in Table 12.2.3.9.

Table 12.2.3.9. Features included in the eighth set

Sl.No Features having ������=[1 120] Features having ����������=[1 120] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3 An_Yang4_Dbl

An_Yang4_Hlx

An_Yang4_Odd

An_Yang4_Vol

Arii3_NNED_Dbl

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB
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Arii3_NNED_Odd

Arii3_NNED_Vol

T12_imag

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

Freeman_Odd

Freeman_Vol

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Dbl

VanZyl3_Vol

Yamaguchi3_Dbl

Yamaguchi3_Vol

AlphaNeg_entropyNeg

Aghababaee_Orientation_max_SM1

conformity

scatt_predominance

pedestal height

Alpha_Anistropy

feature3

depolarisation_index

Holm2_T11_dB

Barnes2_T22_dB

Cloude_T11_dB

CCCnorm

scatt_diversity

AlphaNeg_Anisotropy

feature5

Singh_i6SD_OD_dB

Singh_i6SD_Hlx_dB

AnisotropyNeg_entropyNeg

Aghababaee_Tawp_SM2

Cloude_T22_dB

Aghababaee_Alphap_SM1

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi (unfiltered)

43. Cloude_T33_dB delta
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Aghababaee_Orientation_max_mean

Aghababaee_Tawp_SM3

Holm2_T22_dB

Bhattacharya_Frery_BF4_Hlx_dB

Yamaguchi4_Y4O_Hlx_dB

Holm1_T33_dB

Aghababaee_Tawp_mean

Yamaguchi4_Y4O_Dbl_dB

Barnes1_T11_dB

Singh_i6SD_Vol_dB

feature2

Aghababaee_Phip_SM3

Freeman2_Vol_dB

Aghababaee_M_SM2_dB

Aghababaee_Alphap_SM2

Bhattacharya_Frery_BF4_Dbl_dB

Aghababaee_Phip_mean

Yamaguchi4_S4R_Odd_dB

Singh_i6SD_Dbl_dB

Yamaguchi4_Y4O_Odd_dB

Alpha_AnistropyNeg

Holm1_T22_dB

Barnes1_T33_dB

Singh_i6SD_Odd_dB

Aghababaee_Alphap_SM3

Freeman2_Ground_dB

Barnes1_T22_dB

Bhattacharya_Frery_BF4_Vol_dB

Yamaguchi4_S4R_Vol_dB

Aghababaee_Alphap_mean

Aghababaee_M_SM3_dB

Aghababaee_Phip_SM2

An_Yang3_Vol_dB

Aghababaee_M_SM1_dB

Huynen_T11_dB

lambda

Aghababaee_Orientation_max_SM3

alpha

TSVM_alpha_s

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60. Aghababaee_Orientation_max_mean AlphaNeg_entropy

61. Aghababaee_Tawp_SM3 AnisotropyNeg_entropyNeg

62. Holm2_T22_dB Aghababaee_Phip_SM2

63. Yamaguchi4_S4R_Hlx_dB Holm1_T22_dB

64. Bhattacharya_Frery_BF4_Hlx_dB Barnes2_T22_dB

65. Yamaguchi4_Y4O_Hlx_dB T12_imag

66. Holm1_T33_dB T33

67. Aghababaee_Tawp_SM1 Freeman2_Vol_dB

68. Aghababaee_Tawp_mean Yamaguchi4_S4R_Odd_dB

69. Yamaguchi4_Y4O_Dbl_dB Yamaguchi4_S4R_Vol_dB

70. Barnes1_T11_dB Freeman_Odd

71. Singh_i6SD_Vol_dB Holm2_T11_dB

72. feature2 MCSM_Dbl

73. Yamaguchi4_S4R_Dbl_dB Alpha_AnistropyNeg

74. Aghababaee_Phip_SM3 Anisotropy_entropy

75. Freeman2_Vol_dB Aghababaee_Orientation_max_mean

76. Aghababaee_M_SM2_dB CCCnorm

77. Aghababaee_Alphap_SM2 An_Yang4_Hlx

78. Bhattacharya_Frery_BF4_Dbl_dB Freeman_Vol

79. Aghababaee_Phip_mean Neumann_tau

80. Yamaguchi4_S4R_Odd_dB TSVM_alpha_s

81. Singh_i6SD_Dbl_dB TSVM_phi_s1
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TSVM_alpha_s1

feature4

AlphaNeg_entropy

82. Yamaguchi4_Y4O_Odd_dB Anisotropy_entropyNeg

83. An_Yang3_Dbl_dB Aghababaee_M_SM1_dB

84. Singh4_G4U1_Dbl_dB Barnes1_T11_dB

85. An_Yang3_Odd_dB Yamaguchi4_Y4O_Hlx_dB

86. Alpha_AnistropyNeg Holm2_T22_dB

87. Singh4_G4U1_Odd_dB Neumann_delta_pha

88. Holm1_T22_dB feature5

89. Barnes1_T33_dB TSVM_psi3

90. Singh_i6SD_Odd_dB Aghababaee_Alphap_SM1

91. Bhattacharya_Frery_BF4_Odd_dB Barnes1_T22_dB

92. Aghababaee_Alphap_SM3 Bhattacharya_Frery_BF4_Vol_dB

93. Freeman2_Ground_dB Arii3_NNED_Odd

94. Barnes1_T22_dB Cloude_T11_dB

95. Yamaguchi4_Y4O_Vol_dB Huynen_T11_dB

96. Holm1_T11_dB Yamaguchi3_Vol

97. Aghababaee_Orientation_max_SM2 Alpha_Anistropy

98. Bhattacharya_Frery_BF4_Vol_dB Aghababaee_Orientation_max_SM1

99. Singh4_G4U1_Vol_dB Aghababaee_Orientation_max_SM3

100. Yamaguchi4_S4R_Vol_dB Singh_i6SD_Hlx_dB

101. Aghababaee_Alphap_mean depolarisation_index

102. Aghababaee_M_SM3_dB Arii3_NNED_Dbl

103. Aghababaee_Phip_SM2 AnisotropyNeg_entropy

104. An_Yang3_Vol_dB Aghababaee_Phip_SM1

105. Aghababaee_M_SM1_dB Aghababaee_Tawp_mean

106. Huynen_T11_dB Singh4_G4U1_Vol_dB

107. lambda Singh_i6SD_Dbl_dB

108. Huynen_T22_dB Cloude_T33_dB

109. Aghababaee_Orientation_max_SM3 feature3

110. alpha Aghababaee_M_SM2_dB

111. Alpha_entropy An_Yang3_Odd_dB

112. TSVM_alpha_s Yamaguchi4_Y4O_Vol_dB

113. TSVM_alpha_s1 T11

115. feature4 TSVM_alpha_s1

116. AlphaNeg_entropy VanZyl3_Dbl

117. Krogager_Ks Aghababaee_Tawp_SM2

118. MCSM_Dbl An_Yang4_Odd

119. MCSM_DblHlx Arii3_NNED_Vol

120. rvi Cloude_T22_dB
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Ninth set comprises of features which possess ������=[1 135] and ����������=[1 135] simultaneously.
Here the range is considered to be [1 135] to denote top 90% of features [90%of N(151) ≅ 135]. The
details of these features are given in Table 12.2.3.10.

Table 12.2.3.10. Features included in the ninth set

Sl.No Features having ������=[1 120] Features having ����������=[1 120] List of selected features

1. An_Yang4_Dbl Aghababaee_Alphap_SM3

An_Yang4_Dbl

An_Yang4_Hlx

An_Yang4_Odd

An_Yang4_Vol

Arii3_NNED_Dbl

Arii3_NNED_Odd

Arii3_NNED_Vol

T12_imag

T12_real

T13_imag

T13_real

T23_imag

T23_real

Freeman_Dbl

Freeman_Odd

Freeman_Vol

Krogager_Kh

MCSM_Hlx

MCSM_Vol

MCSM_Wire

VanZyl3_Dbl

VanZyl3_Vol

Yamaguchi3_Dbl

Yamaguchi3_Odd

Yamaguchi3_Vol

Alpha_entropyNeg

AlphaNeg_entropyNeg

Aghababaee_Orientation_max_SM1

conformity

scatt_predominance

pedestal height

Alpha_Anistropy

degree_purity

2. An_Yang4_Hlx MCSM_Odd

3. An_Yang4_Odd T23_real

4. An_Yang4_Vol Freeman_Dbl

5. Arii3_NNED_Dbl Singh_i6SD_OD_dB

6. Arii3_NNED_Odd MCSM_Vol

7. Arii3_NNED_Vol T13_real

8. T12_imag alpha

9. T12_real entropy

10. T13_imag T23_imag

11. T13_real TSVM_tau_m1

12. T23_imag Bhattacharya_Frery_BF4_Hlx_dB

13. T23_real beta

14. Freeman_Dbl feature4

15. Freeman_Odd conformity

16. Freeman_Vol Aghababaee_Alphap_mean

17. Krogager_Kh Aghababaee_M_SM3_dB

18. MCSM_Hlx An_Yang3_Vol_dB

19. MCSM_Vol Yamaguchi4_Y4O_Dbl_dB

20. MCSM_Wire pedestal height

21. feature 1 Aghababaee_Phip_SM3

22. VanZyl3_Dbl Singh_i6SD_Vol_dB

23. VanZyl3_Odd scatt_predominance

24. VanZyl3_Vol T12_real

25. Yamaguchi3_Dbl anisotropy

26. Yamaguchi3_Odd MCSM_Wire

27 Yamaguchi3_Vol TSVM_phi_s

28 Alpha_entropyNeg TSVM_psi2

29 AlphaNeg_entropyNeg Bhattacharya_Frery_BF4_Dbl_dB

30 Aghababaee_Orientation_max_SM1 Freeman2_Ground_dB

31. Singh4_G4U1_Hlx_dB Yamaguchi4_Y4O_Odd_dB

32. conformity scatt_diversity

33. scatt_predominance Krogager_Ks
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feature3

depolarisation_index

Holm2_T11_dB

Barnes2_T22_dB

Cloude_T11_dB

CCCnorm

scatt_diversity

feature6

AlphaNeg_Anisotropy

feature5

Singh_i6SD_OD_dB

Singh_i6SD_Hlx_dB

AnisotropyNeg_entropyNeg

Neumann_delta_mod

Aghababaee_Tawp_SM2

Cloude_T22_dB

Aghababaee_Alphap_SM1

Aghababaee_Orientation_max_mean

Aghababaee_Tawp_SM3

Holm2_T22_dB

Bhattacharya_Frery_BF4_Hlx_dB

Yamaguchi4_Y4O_Hlx_dB

Holm1_T33_dB

Aghababaee_Tawp_mean

Yamaguchi4_Y4O_Dbl_dB

Barnes1_T11_dB

Singh_i6SD_Vol_dB

feature2

Aghababaee_Phip_SM3

Freeman2_Vol_dB

Aghababaee_M_SM2_dB

Aghababaee_Alphap_SM2

Bhattacharya_Frery_BF4_Dbl_dB

Aghababaee_Phip_mean

Yamaguchi4_S4R_Odd_dB

Singh_i6SD_Dbl_dB

Yamaguchi4_Y4O_Odd_dB

Alpha_AnistropyNeg

Holm1_T22_dB

34. pedestal height TSVM_psi

35. Alpha_Anistropy Aghababaee_Phip_mean

36. degree_purity Holm1_T33_dB

37. feature3 Singh_i6SD_Odd_dB

38. depolarisation_index An_Yang4_Vol

39. Holm2_T11_dB T13_imag

40. Barnes2_T22_dB Alpha_entropy

41. Barnes2_T33_dB Barnes1_T33_dB

42. Holm2_T33_dB Freeman_rvi

43. Cloude_T33_dB delta

44. Cloude_T11_dB lambda

45. CCCnorm MCSM_Hlx

46. scatt_diversity Yamaguchi3_Dbl

47. Barnes2_T11_dB AlphaNeg_Anisotropy

48. feature6 rvi

49. AlphaNeg_Anisotropy Aghababaee_Tawp_SM3

50. feature5 Yamaguchi4_S4R_Dbl_dB

51. Singh_i6SD_OD_dB An_Yang4_Dbl

52. Singh_i6SD_CD_dB feature2

53. Singh_i6SD_Hlx_dB AlphaNeg_entropyNeg

54. AnisotropyNeg_entropyNeg Aghababaee_Alphap_SM2

55. Neumann_delta_mod Krogager_Kd

56. Aghababaee_Tawp_SM2 TSVM_alpha_s2

57. Cloude_T22_dB TSVM_phi_s2

58. Aghababaee_Alphap_SM1 TSVM_tau_m

59. Huynen_T33_dB VanZyl3_Vol

60. Aghababaee_Orientation_max_mean AlphaNeg_entropy

61. Aghababaee_Tawp_SM3 AnisotropyNeg_entropyNeg

62. Holm2_T22_dB Aghababaee_Phip_SM2

63. Yamaguchi4_S4R_Hlx_dB Holm1_T22_dB

64. Bhattacharya_Frery_BF4_Hlx_dB Barnes2_T22_dB

65. Yamaguchi4_Y4O_Hlx_dB T12_imag

66. Holm1_T33_dB T33

67. Aghababaee_Tawp_SM1 Freeman2_Vol_dB

68. Aghababaee_Tawp_mean Yamaguchi4_S4R_Odd_dB

69. Yamaguchi4_Y4O_Dbl_dB Yamaguchi4_S4R_Vol_dB

70. Barnes1_T11_dB Freeman_Odd

71. Singh_i6SD_Vol_dB Holm2_T11_dB
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Barnes1_T33_dB

Singh_i6SD_Odd_dB

Aghababaee_Alphap_SM3

Freeman2_Ground_dB

Barnes1_T22_dB

Aghababaee_Orientation_max_SM2

Bhattacharya_Frery_BF4_Vol_dB

Yamaguchi4_S4R_Vol_dB

Aghababaee_Alphap_mean

Aghababaee_M_SM3_dB

Aghababaee_Phip_SM2

An_Yang3_Vol_dB

Aghababaee_M_SM1_dB

Huynen_T11_dB

lambda

Huynen_T22_dB

Aghababaee_Orientation_max_SM3

alpha

TSVM_alpha_s

TSVM_alpha_s1

feature4

AlphaNeg_entropy

Krogager_Ks

MCSM_Dbl

rvi

T11

TSVM_alpha_s2

Krogager_Kd

Neumann_delta_pha

TSVM_psi2

AnisotropyNeg_entropy

MCSM_Odd

AlphaNeg_AnisotropyNeg

Freeman_rvi

beta

TSVM_tau_m1

Anisotropy_entropy

Neumann_tau

TSVM_tau_m

72. feature2 MCSM_Dbl

73. Yamaguchi4_S4R_Dbl_dB Alpha_AnistropyNeg

74. Aghababaee_Phip_SM3 Anisotropy_entropy

75. Freeman2_Vol_dB Aghababaee_Orientation_max_mean

76. Aghababaee_M_SM2_dB CCCnorm

77. Aghababaee_Alphap_SM2 An_Yang4_Hlx

78. Bhattacharya_Frery_BF4_Dbl_dB Freeman_Vol

79. Aghababaee_Phip_mean Neumann_tau

80. Yamaguchi4_S4R_Odd_dB TSVM_alpha_s

81. Singh_i6SD_Dbl_dB TSVM_phi_s1

82. Yamaguchi4_Y4O_Odd_dB Anisotropy_entropyNeg

83. An_Yang3_Dbl_dB Aghababaee_M_SM1_dB

84. Singh4_G4U1_Dbl_dB Barnes1_T11_dB

85. An_Yang3_Odd_dB Yamaguchi4_Y4O_Hlx_dB

86. Alpha_AnistropyNeg Holm2_T22_dB

87. Singh4_G4U1_Odd_dB Neumann_delta_pha

88. Holm1_T22_dB feature5

89. Barnes1_T33_dB TSVM_psi3

90. Singh_i6SD_Odd_dB Aghababaee_Alphap_SM1

91. Bhattacharya_Frery_BF4_Odd_dB Barnes1_T22_dB

92. Aghababaee_Alphap_SM3 Bhattacharya_Frery_BF4_Vol_dB

93. Freeman2_Ground_dB Arii3_NNED_Odd

94. Barnes1_T22_dB Cloude_T11_dB

95. Yamaguchi4_Y4O_Vol_dB Huynen_T11_dB

96. Holm1_T11_dB Yamaguchi3_Vol

97. Aghababaee_Orientation_max_SM2 Alpha_Anistropy

98. Bhattacharya_Frery_BF4_Vol_dB Aghababaee_Orientation_max_SM1

99. Singh4_G4U1_Vol_dB Aghababaee_Orientation_max_SM3

100. Yamaguchi4_S4R_Vol_dB Singh_i6SD_Hlx_dB

101. Aghababaee_Alphap_mean depolarisation_index

102. Aghababaee_M_SM3_dB Arii3_NNED_Dbl

103. Aghababaee_Phip_SM2 AnisotropyNeg_entropy

104. An_Yang3_Vol_dB Aghababaee_Phip_SM1

105. Aghababaee_M_SM1_dB Aghababaee_Tawp_mean

106. Huynen_T11_dB Singh4_G4U1_Vol_dB

107. lambda Singh_i6SD_Dbl_dB

108. Huynen_T22_dB Cloude_T33_dB

109. Aghababaee_Orientation_max_SM3 feature3
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110. alpha Aghababaee_M_SM2_dB

111. Alpha_entropy An_Yang3_Odd_dB

112. TSVM_alpha_s Yamaguchi4_Y4O_Vol_dB

113. TSVM_alpha_s1 T11

115. feature4 TSVM_alpha_s1

116. AlphaNeg_entropy VanZyl3_Dbl

117. Krogager_Ks Aghababaee_Tawp_SM2

118. MCSM_Dbl An_Yang4_Odd

119. MCSM_DblHlx Arii3_NNED_Vol

120. rvi Cloude_T22_dB

121. T11 Huynen_T22_dB

122. TSVM_alpha_s2 TSVM_phi_s3

123. Krogager_Kd TSVM_tau_m3

124. Neumann_delta_pha gamma

125. TSVM_psi2 Neumann_delta_mod

126. AnisotropyNeg_entropy TSVM_tau_m2

127. T22 AlphaNeg_AnisotropyNeg

128. MCSM_Odd Alpha_entropyNeg

129. AlphaNeg_AnisotropyNeg degree_purity

130. Freeman_rvi Krogager_Kh

131. beta Bhattacharya_Frery_BF4_Odd_dB

132. TSVM_tau_m1 feature6

133. Anisotropy_entropy TSVM_alpha_s3

134. Neumann_tau Yamaguchi3_Odd

135. TSVM_tau_m Aghababaee_Orientation_max_SM2

* In Table 12.2.3.2-Table 12.2.3.10, the elements which gets selected in each set are marked with red.

Tenth set comprises of features which possess ������=[1 151] and ����������=[1 151] simultaneously.
Here the range is considered to be [1 151] to denote all features. This set comprises of all features given
in Table 12.2.3.1.

After generating these ten feature sets, each set is given as input to LeNet 5, FFS-CNN and Crop-Net
separately and the performances of each network is compared in each case. Here the results obtained
till the sixth set are considered for comparison as it is not possible to obtain the results for all the
networks from the seventh set onwards due to hardware constraint. The specifications of the computer
which is used for the generation of the results are given below:

1. Processor: Intel Core i7-8700

2. Memory: 16 GB ((1×16 GB)) DDR4-2666 DIMM Memory

3. 64-bit Operating System

4. Graphics Card Information -NVIDIA GeForce RTX 2060 6GB
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12.4. Experimental results

Case I:

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

1 LeNet 5 18.51% Steam beans 0.00 0.00 0.00

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.70 0.02 0.04

Potatoes 0.00 0.00 0.00

Wheat B 0.00 0.00 0.00

Wheat C 0.00 0.00 0.00

Beet 0.18 1.00 0.31

Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.00 0.00 0.00

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

1 FFS-CNN 18.93% Steam beans 1.00 0.00 0.00

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.69 0.04 0.08

Potatoes 0.97 0.01 0.01

Wheat B 0.00 0.00 0.00

Wheat C 0.68 0.00 0.01

Beet 0.18 1.00 0.31

Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.81 0.01 0.02

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

1 Crop-Net 18.94% Steam beans 1.00 0.00 0.01

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.69 0.04 0.08

Potatoes 1.00 0.01 0.01

Wheat B 0.00 0.00 0.00

Wheat C 0.68 0.00 0.01

Beet 0.18 1.00 0.31
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Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.81 0.01 0.02

Case II:

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

2 LeNet 5 18.53% Steam beans 0.00 0.00 0.00

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.66 0.02 0.04

Potatoes 0.12 0.00 0.00

Wheat B 0.00 0.00 0.00

Wheat C 0.00 0.00 0.00

Beet 0.18 1.00 0.31

Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.00 0.00 0.00

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

2 FFS-CNN 18.30% Steam beans 0.00 0.00 0.00

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.00 0.00 0.00

Potatoes 0.00 0.00 0.00

Wheat B 0.00 0.00 0.00

Wheat C 0.00 0.00 0.00

Beet 0.18 1.00 0.31

Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.00 0.00 0.00

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

2 Crop-Net 18.54% Steam beans 0.00 0.00 0.00

Bare soil 0.00 0.00 0.00

Rape seed 0.00 0.00 0.00

Wheat A 0.60 0.02 0.04

Potatoes 0.21 0.00 0.01



238

Wheat B 0.00 0.00 0.00

Wheat C 0.00 0.00 0.00

Beet 0.18 1.00 0.31

Peas 0.00 0.00 0.00

Barley 0.00 0.00 0.00

Lucerne 0.00 0.00 0.00

Case III.

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

3 LeNet 5 43.35% Steam beans 0.19 0.01 0.03

Bare soil 0.49 0.10 0.17

Rape seed 0.39 0.15 0.22

Wheat A 0.62 0.65 0.64

Potatoes 0.35 0.52 0.42

Wheat B 0.49 0.42 0.45

Wheat C 0.51 0.60 0.55

Beet 0.40 0.47 0.43

Peas 0.29 0.24 0.27

Barley 0.33 0.19 0.24

Lucerne 0.47 0.61 0.53

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

3 FFS-CNN 42.95% Steam beans 0.43 0.03 0.06

Bare soil 0.32 0.23 0.27

Rape seed 0.25 0.34 0.29

Wheat A 0.55 0.73 0.63

Potatoes 0.44 0.44 0.44

Wheat B 0.45 0.36 0.40

Wheat C 0.46 0.66 0.54

Beet 0.40 0.39 0.40

Peas 0.39 0.17 0.24

Barley 0.35 0.32 0.34

Lucerne 0.64 0.43 0.52

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

3 Crop-Net 66.69% Steam beans 0.70 0.37 0.49

Bare soil 0.65 0.43 0.52
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Rape seed 0.61 0.61 0.61

Wheat A 0.74 0.83 0.78

Potatoes 0.67 0.66 0.67

Wheat B 0.68 0.66 0.67

Wheat C 0.70 0.76 0.73

Beet 0.65 0.64 0.65

Peas 0.66 0.52 0.58

Barley 0.56 0.65 0.60

Lucerne 0.67 0.85 0.74

Case IV:

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

4 LeNet 5 68.38% Steam beans 0.44 0.20 0.27

Bare soil 0.75 0.85 0.80

Rape seed 0.50 0.61 0.55

Wheat A 0.75 0.77 0.76

Potatoes 0.83 0.84 0.83

Wheat B 0.69 0.57 0.63

Wheat C 0.73 0.69 0.71

Beet 0.65 0.76 0.70

Peas 0.59 0.50 0.54

Barley 0.56 0.50 0.53

Lucerne 0.74 0.74 0.74

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

4 FFS-CNN 59.25% Steam beans 0.33 0.00 0.00

Bare soil 0.60 0.83 0.70

Rape seed 0.36 0.49 0.42

Wheat A 0.65 0.60 0.63

Potatoes 0.80 0.81 0.81

Wheat B 0.52 0.52 0.52

Wheat C 0.57 0.66 0.61

Beet 0.59 0.71 0.65

Peas 0.51 0.33 0.40

Barley 0.48 0.29 0.36

Lucerne 0.70 0.52 0.60
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Set No. Network Test Accuracy Crop Class Precision Recall F1 score

4 Crop-Net 69.27% Steam beans 0.57 0.12 0.20

Bare soil 0.74 0.78 0.76

Rape seed 0.60 0.42 0.49

Wheat A 0.87 0.73 0.79

Potatoes 0.80 0.88 0.84

Wheat B 0.60 0.67 0.63

Wheat C 0.72 0.74 0.73

Beet 0.62 0.77 0.69

Peas 0.58 0.60 0.59

Barley 0.59 0.52 0.55

Lucerne 0.81 0.75 0.78

Case V:

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

5 LeNet 5 96.86% Steam beans 0.96 0.97 0.97

Bare soil 0.99 0.99 0.99

Rape seed 0.97 0.97 0.97

Wheat A 0.99 0.98 0.98

Potatoes 0.96 0.96 0.96

Wheat B 0.96 0.98 0.97

Wheat C 0.98 0.98 0.98

Beet 0.96 0.96 0.96

Peas 0.98 0.96 0.97

Barley 0.93 0.94 0.93

Lucerne 0.99 0.98 0.99

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

5 FFS-CNN 97.75% Steam beans 0.98 0.97 0.98

Bare soil 1.00 0.99 0.99

Rape seed 0.98 0.99 0.98

Wheat A 0.98 0.99 0.99

Potatoes 0.97 0.97 0.97

Wheat B 0.98 0.98 0.98

Wheat C 0.99 0.99 0.99

Beet 0.97 0.97 0.97
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Peas 0.99 0.97 0.98

Barley 0.95 0.95 0.95

Lucerne 1.00 0.99 0.99

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

5 Crop-Net 98.33% Steam beans 0.99 0.99 0.99

Bare soil 1.00 0.99 0.99

Rape seed 0.99 0.99 0.99

Wheat A 0.99 1.00 0.99

Potatoes 0.96 0.99 0.97

Wheat B 0.99 0.98 0.99

Wheat C 0.99 0.99 0.99

Beet 0.98 0.97 0.98

Peas 0.99 0.98 0.98

Barley 0.97 0.96 0.97

Lucerne 1.00 0.99 1.00

Case VI:

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

6 LeNet5 98.37% Steam beans 0.97 0.98 0.98

Bare soil 1.00 0.99 0.99

Rape seed 0.99 0.99 0.99

Wheat A 0.99 0.99 0.99

Potatoes 0.98 0.97 0.97

Wheat B 0.99 0.99 0.99

Wheat C 0.99 0.99 0.99

Beet 0.97 0.98 0.98

Peas 0.99 0.99 0.99

Barley 0.97 0.96 0.96

Lucerne 0.99 0.99 0.99

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

6 FFS-CNN 98.82% Steam beans 0.98 0.99 0.98

Bare soil 1.00 0.98 0.99

Rape seed 1.00 0.99 0.99

Wheat A 1.00 0.99 1.00

Potatoes 0.98 0.99 0.98
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Wheat B 0.99 0.99 0.99

Wheat C 0.99 1.00 0.99

Beet 0.99 0.98 0.98

Peas 0.99 0.99 0.99

Barley 0.98 0.97 0.97

Lucerne 1.00 0.99 1.00

Set No. Network Test Accuracy Crop Class Precision Recall F1 score

6 Crop-Net 99.44% Steam beans 0.99 0.99 0.99

Bare soil 1.00 1.00 1.00

Rape seed 0.99 1.00 1.00

Wheat A 1.00 1.00 1.00

Potatoes 0.99 0.99 0.99

Wheat B 1.00 1.00 1.00

Wheat C 1.00 1.00 1.00

Beet 0.99 0.99 0.99

Peas 0.99 1.00 1.00

Barley 0.99 0.99 0.99

Lucerne 1.00 1.00 1.00

Precision, Recall and F1 score are calculated as stated in [221]. The results given here proves that for
each set, Crop-Net outperforms both FFS-CNN and LeNet 5.
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Chapter 13
Conclusion & Future scope
In this thesis, three problem statements have been explored because of their immense practical
significance and new methods are proposed to solve the drawbacks of the existing methods in each
problem statement.

I. Daytime and Nighttime image dehazing

 The novel BF-Fuzzy synergism based daytime image dehazing method is proposed in this thesis
focusing on all the crucial aspects of image dehazing. This is by far the first image dehazing
method proposed where a set of novel FI rules is designed for performing each aspect of image
dehazing which increases the robustness as well as the efficiency of the proposed method.

 Three benchmark databases are designed in this thesis focusing on different aspects of image
dehazing problem to enable the researchers to evaluate the original scene restoration capabilities
of dehazing methods in varied atmospheric and illumination conditions. GT image corresponding
to each hazy image is present in these databases to facilitate researchers to perform qualitative and
quantitative analyses of obtained outputs using full-reference and no-reference quantitative
parameters.

 RCCT prior designed in this thesis has successfully overcome the drawbacks of CCT prior and
proved to be an ideal pre-processing step of existing daytime image dehazing methods as its
introduction as a pre-processing step of these methods enable them to dehaze nighttime hazy
images effectively alongside daytime hazy images.

 Fuzzy Logic based sky segmentation method proposed in this thesis by exploiting the analogy
between the sky segmentation problem and the image dehazing problem also has various real-life
applications.

Some shortcomings of the algorithms proposed in this thesis under this problem statement are
highlighted as follows:

 RCCT prior designed in this thesis although has successfully overcome the drawbacks of CCT
prior but its’ performance efficiency is vastly dependent on the image dehazing capability of the
method in which it is introduced as a pre-processing step.

 Fuzzy Logic based sky segmentation method proposed in this thesis have achieved quite high
efficiency in effectively segmenting sky region of an image from remaining regions but fails to
give high quality results when the image contains white buildings as the proposed method
erroneously also identifies the white buildings as sky regions because of their high intensities.

Future work on this problem statement can be focused on finding the probable solutions to these
shortcomings like designing a method which can successfully shifts its’ dehazing parameters based on
the characteristics of daytime and nighttime images, so no pre-processing will be required and a single
algorithm can effectively dehaze all types of hazy images irrespective of the time they are captured.

In the second case also if any edge-detection method is introduced in the designed Fuzzy Logic based
sky segmentation method, then it can be able to differentiate between white buildings and sky regions
as buildings usually contains more edges compared to sky regions.

II. Detection of structurally variant erythrocytes

 The feature ensemble method proposed in this part of the thesis is by far the first algorithm which
is designed to perform inter-selection among FC, InverseReLU and ReLU features extracted from
single CNN, thereby ensuring the selection of features having high information content and
significant contribution in performing classification. The creation of feature ensemble by
combining selected features extracted from multiple CNN networks having varied depths also
further increase the information content of the feature ensemble. This method is designed to solve
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the information loss problem inherent in traditional CNN networks occurring due to the use of
ReLU as an activation function. In this thesis, the efficiency of the proposed feature ensemble
method is validated by performing detection of nine different types of erythrocytes having varied
morphology with the created feature ensemble.

This method is designed mainly considering the variatons in shapes among several types of
poikilocytes but there are some poikilocytes like macrocytes and microcytes which possess almost
similar shapes as that of normal erythrocytes but differs in sizes. The designed method will not be able
to detect those abnormalities.

Future work in this research area can be focused on designing a method which can detect all types of
abnormal erythrocytes. For that blood smear images containing different types erythrocytes captured
with similar microscopic resolution are required to train the network.

III. Land-cover classification using full-polarimetric image data

 Degree of purity & Scattering diversity based Advanced Lee filter designed in this thesis has
successfully solved the limitations of existing filters as it facilitates the filter to perform
despeckling taking into account the similarities in scattering properties between the center pixel
(pixel to be filtered) of any patch and its neighboring pixels.

 Ranking method is designed in this thesis to select the features having high information content
and significant contribution in performing classification to perform land cover classification.

 Crop-Net is designed in this thesis to perform POLSAR image classification. This network has
proved its excellence over popular existing networks like LeNet 5 and FFS-CNN networks in
performing multi-class cropland classification.

Crop-Net architecture designed in this thesis can effectively classify crops growing in large fields but
its performance should be tested using data from smaller fields growing different crops of almost
heights and canopies.

Future work in this research area can be focused on testing the perforances of Crop-Net and other such
deep neural networks using the data of smaller fields growing different crops of almost heights and
canopies.

 In this thesis organization, it is written - “The first part of this thesis is dedicated to “Daytime and
Nighttime image dehazing” problem. This part comprises of Chapter 2 to Chapter 7.” However,
within the thesis, the Chapter 2-7 have actually been divided in 4 parts i.e. Part-A to Part D. On
the other hand, Chapter 8-12 have not been segregated in parts. In this context, I suggest you to
keep consistency of such statement with the actual thesis organization. Rather, I believe, the thesis
should be segregated in three parts as written in the ‘thesis organization’ based on the domain of
their applications.
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